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Preface

Owing to the rapid advances in the physical sciences and engineering, the de-
mand for higher-level mathematics is increasing yearly. This book is designed
for advanced undergraduates and graduate students who are interested in the
mathematical aspects of their own fields of study. The reader is assumed to
have a knowledge of undergraduate-level calculus and linear algebra.

There are any number of books available on mathematics for physics and
engineering but they all fall into one of two categories: the one emphasizes
mathematical rigor and the exposition of definitions or theorems, whereas the
other is concerned primarily with applying mathematics to practical prob-
lems. We believe that neither of these approaches alone is particularly helpful
to physicists and engineers who want to understand the mathematical back-
ground of the subjects with which they are concerned. This book is different
in that it provides a short path to higher mathematics via a combination of
these approaches. A sizable portion of this book is devoted to theorems and
definitions with their proofs, and we are convinced that the study of these
proofs, which range from trivial to difficult, is useful for a grasp of the general
idea of mathematical logic. Moreover, several problems have been included at
the end of each section, and complete solutions for all of them are presented
in the greatest possible detail. We firmly believe that ours is a better peda-
gogical approach than that found in typical textbooks, where there are many
well-polished problems but no solutions.

This book is essentially self-contained and assumes only standard under-
graduate preparation such as elementary calculus and linear algebra. The
first half of the book covers the following three topics: real analysis, func-
tional analysis, and complex analysis, along with the preliminaries and four
appendixes. Part I focuses on sequences and series of real numbers of real
functions, with detailed explanations of their convergence properties. We also
emphasize the concepts of Cauchy sequences and the Cauchy criterion that
determine the convergence of infinite real sequences. Part II deals with the
theory of the Hilbert space, which is the most important class of infinite vec-
tor spaces. The completeness property of Hilbert spaces allows one to develop
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various types of complex orthonormal polynomials, as described in the mid-
dle of Part II. An introduction to the Lebesgue integration theory, a subject
of ever-increasing importance in physics, is also presented. Part III describes
the theory of complex-valued functions of one complex variable. All relevant
elements including analytic functions, singularity, residue, continuation, and
conformal mapping are described in a self-contained manner. A thorough un-
derstanding of the fundamentals treated is important in order to proceed to
more advanced branches of mathematical physics.

In the second half of the volume, the following three specific topics are
discussed: Fourier analysis, differential equations, and tensor analysis. These
three are the most important subjects in both engineering and the physical
sciences, but their rigorous mathematical structures have hardly been covered
in ordinary textbooks. We know that mathematical rigor is often unnecessary
for practical use. However, the blind usage of mathematical methods as a tool
may lead to a lack of understanding of the symbiotic relationship between
mathematics and the physical sciences. We believe that readers who study
the mathematical structures underlying these three subjects in detail will ac-
quire a better understanding of the theoretical backgrounds associated with
their own fields. Part IV describes the theory of Fourier series, the Fourier
transform, and the Laplace transform, with a special emphasis on the proofs
of their convergence properties. A more contemporary subject, the wavelet
transform, is also described toward the end of Part IV. Part V deals with or-
dinary and partial differential equations. The existence theorem and stability
theory for solutions, which serve as the underlying basis for differential equa-
tions, are described with rigorous proofs. Part VI is devoted to the calculus of
tensors in terms of both Cartesian and non-Cartesian coordinates, along with
the essentials of differential geometry. An alternative tensor theory expressed
in terms of abstract vector spaces is developed toward the end of Part VI.

The authors hope and trust that this book will serve as an introductory
guide for the mathematical aspects of the important topics in the physical
sciences and engineering.

Sapporo, Hiroyuki Shima
November 2009 Tsuneyoshi Nakayama
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Real Analysis



2

Real Sequences and Series

Abstract In this chapter, we deal with the fundamental properties of sequences and
series of real numbers. We place particular emphasis on the concept of “convergence,”
a thorough understanding of which is important for the study of the various branches
of mathematical physics that we are concerned with subsequent chapters.

2.1 Sequences of Real Numbers

2.1.1 Convergence of a Sequence

This section describes the fundamental definitions and ideas associated with
sequences of real numbers (called real sequences). We must emphasize
that the sequence

(xn : n ∈ N)

is not the same as the set
{xn : n ∈ N}.

In fact, the former is the ordered list of xn, some of which may be repeated,
whereas the latter is merely the defining range of xn. For instance, the constant
sequence xn = 1 is denoted by (1, 1, 1, · · · ), whereas the set {1} contains only
one element.

We start with a precise definition of the convergence of a real sequence,
which is an initial and crucial step for various branches of mathematics.

♠ Convergence of a real sequence:
A real sequence (xn) is said to be convergent if there exists a real

number x with the following property: For every ε > 0, there is an integer
N such that

n ≥ N ⇒ |xn − x| < ε. (2.1)
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We must emphasize that the magnitude of ε is arbitrary. No matter how
small an ε we choose, it must always be possible to find a number N that will
increase as ε decreases.

Remark. In the language of neighborhoods, the above definition is stated as
follows: The sequence (xn) converges to x if every neighborhood of x contains
all but a finite number of elements of the sequence.

When (xn) is convergent, the number x specified in this definition is called
a limit of the sequence (xn), and we say that xn converges to x. This is
expressed symbolically by writing

lim
n→∞

xn = x,

or simply by
xn → x.

If (xn) is not convergent, it is called divergent.

Remark. The limit x may or may not belong to (xn); this situation is similar
to the case of the limit point of a set of real numbers discussed in Sect. 1.1.5.

An example in which x = limxn but x �= xn for any n is given below.

Examples Suppose that a sequence (xn) consisting of rational numbers is de-
fined by

(xn) = (3.1, 3.14, 3.142, · · · , xn, · · · ),
where xn ∈ Q is a rational number to n decimal places close to π. Since the
difference |xn − π| is less than 10−n, it is possible to find an N for any ε > 0
such that

n ≥ N ⇒ |xn − π| < ε.

This means that
lim

n→∞
xn = π.

However, as the limit, π, is an irrational number it is not in Q.

Remark. The above example indicates that only a restricted class of convergent
sequences has a limit in the same sequence.

2.1.2 Bounded Sequences

In the remainder of this section, we present several fundamental concepts
associated with real sequences. We start with the boundedness properties of
sequences.
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♠ Bounded sequences:
A real sequence (xn) is said to be bounded if there is a positive number

M such that
|xn| ≤ M for all n ∈ N .

The following is an important relation between convergence and boundedness
of a real sequence:

♠ Theorem:
If a sequence is convergent, then it is bounded.

Proof Suppose that xn → x. If we choose ε = 1 in (2.1), there exists an integer
N such that

|xn − x| < 1 for all n ≥ N.

Since |xn| − |x| ≤ |xn − x|, it follows that

|xn| < 1 + |x| for all n ≥ N.

Setting M = max{|x1|, |x2|, · · · , |xN−1|, 1 + |x|} yields

|xn| < M for all n ∈ N ,

which means that (xn) is bounded. ♣

Remark. Observe that the converse of the theorem is false. In fact, the sequence

( 1,−1, 1,−1, · · · , (−1)n, · · · )

is divergent, although it is bounded.

2.1.3 Monotonic Sequences

Another important concept in connection with real sequences is monotonicity,
defined as follows:

♠ Monotonic sequences:
A sequence (xn) is said to be

1. increasing (or monotonically increasing) if xn+1 ≥ xn for all n ∈ N ,

2. strictly increasing if xn+1 > xn for all n ∈ N ,
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3. decreasing (or monotonically decreasing) if xn+1 ≤ xn for all n ∈ N ,
and

4. strictly decreasing if xn+1 < xn for all n ∈ N .

These four kinds of sequences are collectively known as monotonic
sequences. Note that a sequence (xn) is increasing if and only if (−xn) is
decreasing. Thus, the properties of monotonic sequences can be fully investi-
gated by restricting ourselves solely to increasing (or decreasing) sequences.

Once a sequence assumes monotonic properties, its convergence is deter-
mined only by its boundedness, as stated below.

♠ Theorem:
A monotonic sequence is convergent if and only if it is bounded. More

specifically,
(i) If (xn) is increasing and bounded above, then its limit is given by

lim
n→∞

xn = supxn.

(ii) If (xn) is decreasing and bounded below, then

lim
n→∞

xn = inf xn.

Proof If (xn) is convergent, then it must be bounded as proven earlier (see
Sect. 2.1.2). Now we consider the converses for cases (i) and (ii).

(i) Assume (xn) is increasing and bounded. The set S = {xn} will then have
the supremum denoted by supS = x. By the definition of the supremum,
for arbitrary small ε > 0 there is an xN ∈ S such that

xN > x− ε. (2.2)

Since xn is increasing, we obtain

xn ≥ xN for all n ≥ N. (2.3)

Moreover, since x is the supremum of S, we have

x ≥ xn for all n ∈ N . (2.4)

From (2.2), (2.3), and (2.4), we arrive at

|xn − x| = x− xn ≤ x− xN < ε for all n ≥ N,
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which gives us the desired conclusion, i.e,

lim
n→∞

xn = x = supS.

(ii) If (xn) is decreasing and bounded, then (−xn) is increasing and bounded.
Hence, from (i), we have

lim
n→∞

(−xn) = sup(−S).

Since sup(−S) = − inf S, it follows that

lim
n→∞

xn = inf S. ♣

2.1.4 Limit Superior and Limit Inferior

We close this section by introducing two specific limits an any bounded
sequence. Let (xn) be a bounded sequence and define two sequences (yn)
and (zn) as follows:

yn = sup{xk : k ≥ n}, (2.5)
zn = inf{xk : k ≥ n}.

Note that yn and zn differ, respectively, from sup{xn} and inf{xn}. It follows
from (2.5) that

y1 = sup{xk : k ≥ 1} ≥ y2 = sup{xk : k ≥ 2} ≥ y3 · · · ,
which means that the sequence (yn) is monotonically decreasing and bounded
below by inf xn. Thus in view of the theorem in Sect. 2.1.3, the sequence (yn)
must be convergent. The limit of (yn) is called the limit superior or the
upper limit of (xn) and is denoted by

lim sup
n→∞

xn (or lim xn).

Likewise, since (zn) is increasing and bounded above by supxn, it possesses
the limit known as the limit inferior or lower limit of xn denoted by

lim inf
n→∞

xn (or lim xn).

In terms of the two specific limits, we can say that a bounded sequence (xn)
converges if and only if

lim
n→∞

xn = lim sup
n→∞

xn = lim inf
n→∞

xn.

(A proof will be given in Exercise 4 in Sect. 2.1.4.) Note that by definition, it
readily follows that

lim sup
n→∞

xn ≥ lim inf
n→∞

xn,

lim sup
n→∞

(−xn) = − lim inf
n→∞

xn.
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Examples 1. xn = (−1)n ⇒ lim sup
n→∞

xn = 1, lim inf
n→∞

xn = −1.

2. xn = (−1)n +
1
n

⇒ lim sup
n→∞

xn = 1, lim inf
n→∞

xn = −1.

3. x2n = 1 +
(−1)n

n
, x2n−1 =

(−1)n

n
, ⇒ lim sup

n→∞
xn = 1, lim inf

n→∞
xn = 0.

4. (xn) = (2, 0,−2, 2, 0,−2, · · · ) ⇒ lim sup
n→∞

xn = 2, lim inf
n→∞

xn = −2.

The four cases noted above are illustrated schematically in Fig. 2.1. All
the sequences (xn) are not convergent and thus the limit limn→∞ xn does
not exist. This fact clarifies the crucial difference between limn→∞ xn and
lim supn→∞ xn (or lim infn→∞ xn).

1

0 n

1

−1

−1

−1

0

xn

xn

xn

n

x1

x1

x1

x5

x5

x5

x3

x3

x3

x2

x2

x2

x4

x4

x4

x6

x6

x6
1

0 n

Fig. 2.1. All the sequences of {xn} in the figures do not converge, but they all
possess lim sup

n→∞
xn = 1 and lim inf

n→∞
xn = −1

The limit superior of xn has the following features and similar features are
found for the limit inferior.
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♠ Theorem:
1. For any small ε > 0, we can find an N such that

n > N ⇒ xn < lim sup
n→∞

xn + ε.

2. For any small ε > 0, there are an infinite number of terms of xn such
that

lim sup
n→∞

xn − ε < xn.

Proof 1. Recall that lim sup
n→∞

xn = lim
n→∞

yn, where yn is defined in (2.5). For

any ε > 0, there is an integer N such that

n > N ⇒ lim sup
n→∞

xn − ε < yn < lim sup
n→∞

xn + ε.

Since yn ≥ xn for all n, we have

n > N ⇒ xn < lim sup
n→∞

xn + ε. ♣

2. Suppose that there is an integer m such that

n > m ⇒ lim sup
n→∞

xn − ε ≥ xn.

Then for all k ≥ n > m, we have

xk ≤ lim sup
n→∞

xn − ε,

which means that

yn ≤ lim sup
n→∞

xn − ε for all n > m.

In the limit of n → ∞, we find a contradiction such that

lim sup
n→∞

xn ≤ lim sup
n→∞

xn − ε.

This completes the proof. ♣

Exercises

1. Prove that if the sequence (xn) is convergent, then its limit is unique.
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Solution: Let x = limxn and y = limxn with the assumption
x �= y. Then we can find a neighborhood V1 of x and a neigh-
borhood V2 of y such that V1 ∩ V2 = ∅. For example, take
V1 = (x − ε, x + ε) and V2 = (y − ε, y + ε), where ε = |x − y|/2.
Since xn → x, all but a finite number of terms of the sequence
lie in V1. Similarly, since yn → y, all but a finite number of its
terms also lie in V2. However, these results contradict the fact that
V1 ∩ V2 = ∅, which means that the limit of a sequence should be
unique. ♣

2. If xn → x �= 0, then there is a positive number A and an integer N such
that n > N ⇒ |xn| > A. Prove it.

Solution: Let ε = |x|/2, which is a positive number. Hence, there
is an integer N such that n > N ⇒ |xn−x| < ε ⇒ ||xn| − |x|| < ε.
Consequently, |x| − ε < |xn| < |x| + ε for all n ≥ N . From the
left-hand inequality, we see that |xn| > |x|/2, and we can take
M = |x|/2 to complete the proof. ♣

3. Prove that the sequence xn = [1 + (1/n)]n is convergent.

Solution: The proof is completed by observing that the sequence
is monotonically increasing and bounded. To see this, we use the
binomial theorem, which gives

xn =
n∑

k=0

nCn−k
1
nk

= 1 + 1 +
1
2!

(

1 − 1
n

)

+
1
3!

(

1 − 1
n

)(

1 − 2
n

)

+ · · ·

+
1
n!

(

1 − 1
n

)(

1 − 2
n

)

· · ·
(

1 − n− 1
n

)

.

Likewise we have

xn+1 = 1 + 1 +
1
2!

(

1 − 1
n+ 1

)

+
1
3!

(

1 − 1
n+ 1

)(

1 − 2
n+ 1

)

+ · · ·

+
1

(n+ 1)!

(

1 − 1
n+ 1

)(

1 − 2
n+ 1

)

· · ·
(

1 − n

n+ 1

)

.

Comparing these expressions for xn and xn+1, we see that every
term in xn is no more than corresponding term in xn+1. In ad-
dition, xn+1 has an extra positive term. We thus conclude that
xn+1 ≥ xn for all n ∈ N , which means that the sequence (xn) is
monotonically increasing.

We next prove boundedness. For every n ∈ N , we have xn <
∑n

k=0(1/k!). Using the inequality 2n−1 ≤ n! for n ≥ 1 (which can
be easily seen by taking the logarithm of both sides), we obtain
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xn < 1 +
n∑

k=1

1
2k−1

= 1 +
1 − (1/2)n

1 − (1/2)
< 3.

Thus (xn) is bounded above by 3. Thus, view of the theorem in
Sect. 2.1.3, the sequence is convergent. ♣

4. Denote x̄ = lim supxn and x = lim inf xn. Prove that a sequence (xn)
converges to x if and only if x = x̄ = x.

Solution: In view of the theorem in Sect. 2.1.4, it follows that
(−∞, x̄+ ε) contains all but a finite number of terms of (xn). The
same property applied to (−xn) implies that (x − ε,∞) contains
all but a finite number of such terms. If x = x̄ = x, then (x −
ε, x+ ε) contains all but a finite number of terms of (xn). This is
the assertion that xn → x.

Now suppose that xn → x. For any ε > 0, there is an integer N
such that n > N ⇒ xn < x+ε ⇒ yn ≤ x+ε, where yn = sup{xk :
k ≥ n}, as was introduced in (2.5). Hence, x̄ ≤ x+ ε. Since ε > 0
is arbitrary, we obtain x̄ ≤ x. Working with the sequence (−xn),
whose limit is −x, following same procedure, we get x ≥ x. Since
x ≤ x̄, we conclude that x = x̄ = x. ♣

2.2 Cauchy Criterion for Real Sequences

2.2.1 Cauchy Sequence

To test the convergence of a general (nonmonotonic) real sequence, we have
thus far only the original definition given in Sect. 2.1.1 to rely on; in that
case we must first have a candidate for the limit of the sequence in question
before we can examine its convergence. Needless to say, it is more convenient
if we can determine the convergence property of a sequence without having to
guess its limit. This is achieved by applying the so-called Cauchy criterion,
which plays a central role in developing the fundamentals of real analysis.

To begin with, we present a preliminary notion for subsequent discussions.

♠ Cauchy sequence:
The sequence (xn) is called a Cauchy sequence (or fundamental

sequence) if for every positive number ε, there is a positive integer N
such that

m,n > N ⇒ |xn − xm| < ε. (2.6)

This means that in every Cauchy sequence, the terms can be as close to one
another as we like. This feature of Cauchy sequences is expected to hold for
any convergent sequence, since the terms of a convergent sequence have to
approach each other as they approach a common limit. This conjecture is
ensured in part by the following theorem.
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♠ Theorem:
If a sequence (xn) is convergent, then it is a Cauchy sequence.

Proof Suppose limxn = x and ε is any positive number. From hypothesis,
there exists a positive integer N such that

n > N ⇒ |xn − x| < ε

2
.

Now if we take m,n ≥ N , then

|xn − x| < ε

2
and |xm − x| < ε

2
.

It thus follows that

|xn − xm| ≤ |xm − x| + |xn − x| < ε,

which means that (xn) is a Cauchy sequence. ♣

This theorem naturally gives rise to a question as to whether converse
true. In other words, we would like to know whether all Cauchy sequences are
convergent or not. The answer is exactly what the Cauchy criterion states, as
we prove in the next subsection.

2.2.2 Cauchy Criterion

The following is one of the fundamental theorems of real sequences.

♠ Cauchy criterion:
A sequence of real numbers is convergent if and only if it is a Cauchy

sequence.

Bear in mind that the validity of this criterion was partly proven by demon-
strating the previous theorem (see Sect. 2.2.1). Hence, in order to complete
the proof of the criterion, we need only prove that every Cauchy sequence is
convergent. The following serves as a lemma for developing the proof.

♠ Bolzano – Weierstrass theorem:
Every infinite and bounded sequence of real numbers has at least one

limit point in R. (The proof is given in Appendix A.)

We are now ready to prove that every Cauchy sequence is convergent.
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Proof (of the Cauchy criterion): Let (xn) be a Cauchy sequence
and S = {xn : n ∈ N}. We consider two cases in turn: (i) the set S
is finite, and (ii) S is infinite.

(i) It follows from the hypothesis that given ε > 0, there is an integer
N such that

m,n > N ⇒ |xn − xm| < ε. (2.7)

Since S is finite, one of the terms of the sequence (xn), say x,
should be repeated infinitely often in order to satisfy (2.7). This
implies the existence of an m > N such that xm = x. Hence, we
have

n > N ⇒ |xn − x| < ε,

which means that xn → x.

(ii) Next we consider the case that S is infinite. It can be shown that
every Cauchy sequence is bounded (see Exercise 1). Hence, in
view of the Bolzano – Weierstrass theorem, the sequence (xn)
necessarily has a limit point x. We shall prove that xn → x. Given
ε > 0, there is an integer N such that

m,n > N ⇒ |xn − xm| < ε.

From the definition of a limit point, we see that the interval (x−
ε, x+ε) contains an infinite number of terms of the sequence (xn).
Hence, there is an m ≥ N such that xm ∈ (x− ε, x+ ε), i.e., such
that |xn − xm| < ε. Now, if n ≥ N , then

|xn − x| ≤ |xn − xm| + |xm − x| < ε+ ε = 2ε,

which proves xn → x.

The results for (i) and (ii) shown above indicate that every Cauchy
sequence (finite and infinite) is convergent. Recall again that its con-
verse, every convergent sequence is a Cauchy sequence, was proven ear-
lier in Sect. 2.2.1. This completes the proof of the Cauchy
criterion. ♣

Exercises

1. Show that every Cauchy sequence is bounded.

Solution: Let (xn) be a Cauchy sequence. Taking ε = 1, there is
an integer N such that

n > N ⇒ |xn − xN | < 1.
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Since |xn| − |xN | ≤ |xn − xN |, we have

n > N ⇒ |xn| < |xN | + 1.

Thus |xn| is bounded by max{|x1|, |x2|, · · · , |xN−1|, |xN |+1}. ♣

2. Let x1 = 1, x2 = 2, and xn = (xn−1 + xn−2)/2 for all n ≥ 3. Show that
(xn) is a Cauchy sequence.

Solution: Since for n ≥ 3, xn −xn−1 = −(xn−1 −xn−2)/2, we use
the induction on n to obtain xn −xn+1 = (−1)n/2n−1 for all n ∈
N . Hence, if m > n, then

|xn − xm| ≤ |xn − xn+1| + |xn+1 − xn+2| + · · · + |xm−1 − xm|

=
m−1∑

k=n

1
2k−1

=
1

2n−1

m−n−1∑

k=0

1
2k

=
1

2n−1

1 − (1/2)m−n

1 − (1/2)
<

1
2n−1

1
1 − (1/2)

=
1

2n−2
.

Since 1/2n−2 decreases monotonically with n, it is possible to
choose N for any ε > 0 such that (1/2N−2) < ε. We thus conclude
that

m > n ≥ N ⇒ |xn − xm| <
(

1
2

)n−2

<

(
1
2

)N−2

< ε,

which means that (xn) is a Cauchy sequence. ♣

3. Suppose that the two sequences (xn) and (yn) converge to a common limit
c and consider their shuffled sequence (zn) defined by

(z1, z2, z3, z4, · · · ) = (x1, y1, x2, y2, · · · ).

Show that the sequence (zn) also converges to c.

Solution: Let ε be any positive number. Since xn → c and yn → c,
there are two positive integers N1 and N2 such that

n ≥ N1 ⇒ |xn − c| < ε and n ≥ N2 ⇒ |yn − c| < ε.

Define N = max{N1, N2}. Since xk = z2k−1 and yk = z2k for all
k ∈ N , we have

k ≥ N ⇒ |xk − c| = |z2k−1 − c| < ε and |yk − c| = |z2k − c| < ε.

Hence, n ≥ 2N−1 ⇒ |zn−c| < ε, which just means lim zn = c. ♣
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4. Show that lim
n→∞

(an/nk) → ∞, where a > 1 and k > 0.

Solution: We consider three cases in turn: (i) k = 1, (ii) k < 1,
and (iii) k > 1.

(i) Let k = 1. Then set a = 1 + h to obtain

an = (1 + h)n = 1 + nh+
n(n− 1)

2
h2 + · · · > n(n− 1)

2
h2,

which results in

an/n = (1 + h)n/n > (n− 1)hn/2 → ∞. (n → ∞).

(ii) The case of k < 1 is trivial since an/nk > an/n for any n > 1.

(iii) If k > 1, then a1/k > 1 since a > 1. Hence, it follows from
the result of (i) that for any M > 1, we can find an n so that
n > M ⇒ a1/k/n > M . This means that

an

nk
=

[(

a1/k
)n

n

]k

> Mk > M,

which implies that an/nk → ∞. ♣
5. Let xn = an/n! with a > 0. Show that the sequence (xn) converges to 0.

Solution: Let k be a positive integer such that k > 2a, and define
c = ak/k!. Then for any a > 0 and for any n > k, we have

an

n!
= c

a

k + 1
· a

k + 2
· · · a

n
<

c

2n−k
=
c · 2k

2n
<
c · 2k

n
. (2.8)

Since (2.8) holds for a sufficiently large n (> k), it also holds for
n satisfying n > 2kc/ε, where ε is an arbitrarily small number. In
the latter case, we have

an

n!
<

2kc

n
< ε,

which means that

lim
n→∞

xn = lim
n→∞

an

n!
= 0. ♣

2.3 Infinite Series of Real Numbers

2.3.1 Limits of Infinite Series

This section focuses on convergence properties of infinite series. The im-
portance of this issue will become apparent, particularly in connection with
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certain branches of functional analysis such as Hilbert space theory and or-
thogonal polynomial expansions, where infinite series of numbers (or of func-
tions) enter quite often (see Chaps. 4 and 5).

To begin with, we briefly review the basic properties of infinite series of real
numbers. Assume an infinite sequence (a1, a2, · · · , an, · · · ) of real numbers.
We can then form another infinite sequence (A1, A2, · · · , An, · · · ) with the
definition

An =
n∑

k=1

ak.

Here, An is called the nth partial sum of the sequence (an), and the
corresponding infinite sequence (An) is called the sequence of partial sums
of (an). The infinite sequence (An) may or may not be convergent, which de-
pends on the features of (an).

Let us introduce an infinite series defined by
∞∑

k=1

ak = a1 + a2 + · · · . (2.9)

The infinite series (2.9) is said to converge if and only if the sequence (An)
converges to the limit denoted by A. In other words, the series (2.9) converges
if and only if the sequence of the remainder Rn+1 = A−An converges to
zero. When (An) is convergent, its limit A is called the sum of the infinite
series of (2.9), and we may write

∞∑

k=1

ak = lim
n→∞

n∑

k=1

ak = lim
n→∞

An = A.

Otherwise, the series (2.9) is said to diverge.
The limit of the sequence (An) is formally defined in line with Cauchy’s

procedure as shown below.

♠ Limit of a sequence of partial sums:
The sequence of partial sums (An) has a limit A if for any small ε > 0,

there exists a number N such that

n > N ⇒ |An −A| < ε. (2.10)

Examples 1. The infinite series
∞∑

k=1

(
1
k

− 1
k + 1

)

converges to 1 because

An =
n∑

k=1

(
1
k

− 1
k + 1

)

= 1 − 1
n+ 1

→ 1 (n → ∞).
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2. The series
∞∑

k=1

(−1)k diverges because the sequence

An =
n∑

k=1

(−1)k =
{

0 n (is even),
−1 n (is odd)

does not approache any limit.

3. The series
∞∑

k=1

1 = 1 + 1 + 1 + · · · diverges since the sequence An =

n∑

k=1

1 = n increases without limit as n → ∞.

2.3.2 Cauchy Criterion for Infinite Series

The following is a direct application of the Cauchy criterion to the sequence
(An), which consists of the partial sum An =

∑n
k=1 ak:

♠ Cauchy criterion for infinite series:
The sequence of partial sums (An) converges if and only if for any small

ε > 0 there exists a number N such that

n,m > N ⇒ |An −Am| < ε. (2.11)

Similarly to the case of real sequences, the Cauchy criterion alluded to above
provides a necessary and sufficient condition for convergence of the sequence
(An). Moreover, from the definition, it also gives a necessary and sufficient
condition for convergence of an infinite series

∑∞
k=1 ak. Below is an important

theorem associated with the latter statement.

♠ Theorem:
If an infinite series

∑∞
k=1 ak is convergent, then

lim
n→∞

an = 0.

Proof From hypothesis, we have

lim
n→∞

n∑

k=1

ak = lim
n→∞

An = A.

Hence,
lim

n→∞
an = lim

n→∞
(An −An−1) = A−A = 0. ♣
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According to the theorem above, lim an = 0 is a necessary condition for
the convergence of An. However, it is not a sufficient condition, as shown in
the following example.

Examples Let ak = 1/
√
k. Although limk→∞ ak = 0, the corresponding infi-

nite series
∑

ak diverges, as seen from

n∑

k=1

ak = 1 +
1√
2

+ · · · + 1√
n

≥ 1√
n

+
1√
n

+ · · · + 1√
n

=
n√
n

=
√
n → ∞.

Remark. The contraposition of the previous theorem serves as a divergent
test of the infinite series in question; we can say that

lim
n→∞

an �= 0 ⇒
∞∑

k=1

ak is divergent.

2.3.3 Absolute and Conditional Convergence

Assume an infinite series ∞∑

k=1

ak, (2.12)

and an associated auxiliary series

∞∑

k=1

|ak|, (2.13)

in the latter of which all terms are positive. If the series (2.13) converges,
then the series (2.12) is said to converge absolutely. The necessary and
sufficient condition for absolute convergence of (2.12) is obtained by replacing
An in (2.11) by

Bn = |a1| + |a2| + · · · + |an|.
If the series (2.13) diverges and the original series (2.12) converges, we say that
the series (2.12) converges conditionally. These results are summarized by
the statement below.
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♠ Absolute convergence:
The infinite series

∑
ak is absolutely convergent if

∑
|ak| is convergent.

♠ Conditional convergence:
The infinite series

∑
ak is conditionally convergent if

∑
ak is convergent

and
∑

|ak| is divergent.

Examples The infinite series
∞∑

k=1

(−1)k+1

k
(2.14)

converges conditionally, since it converges while its absolute-value series
∑∞

k=1 |(−1)k+1/k| =
∑∞

k=1(1/k) diverges. See Exercises 1 and 2 in this
section.

The following is an important theorem that we use many times in the
remainder of this book.

♠ Theorem:
An infinite series converges if it converges absolutely.

Proof Suppose that the series (Bn) consisting of

Bn =
n∑

k=1

|ak|

converges as n → ∞. This means that for any ε > 0 a number N exists such
that

n,m > N ⇒ |Bn −Bm| < ε. (2.15)
Assuming n ≥ m, we rewrite the left-hand inequality in (2.15) as

|Bn −Bm| = |am+1| + |am+2| + · · · + |an|
≥ |am+1 + am+2 + · · · + an|
= |An −Am| , (2.16)

where we used the law of inequalities for sums. Hence, it follows from (2.15)
and (2.16) that

n,m > N ⇒ |An −Am| < ε,

which means that the series
∑

ak converges. ♣
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The converse of the above theorem is not true. Below we present a well-
known example of a convergent series that is not absolutely convergent.

2.3.4 Rearrangements

Observe that the conditionally convergent series (2.14) expressed by

1 − 1
2

+
1
3

− 1
4

+
1
5

− · · · , (2.17)

may be rearranged in a number of ways, such as

1 +
1
3

− 1
2

+
1
5

− 1
4

+ · · · (2.18)

or
−1

2
− 1

8
+

1
7

+ 1 +
1
3

− · · · (2.19)

or in any other way in which the terms 1,−1/2, 1/3,−1/4, · · · are added in a
certain order. Series such as (2.18) and (2.19) are called rearrangements of
the series (2.17).

Of importance is the fact that rearranging procedures may change the
convergence property of a conditionally convergent series; in what way this
happens depends on the nature of the original series, as we shall now see.
Suppose a series

∑
an to be conditionally convergent. Then, the sum of its

positive terms or that of its negative term goes, respectively to +∞ or −∞;
otherwise the original series would diverge or converge absolutely. Let (bn)
and (cn) be, respectively, the subsequences of positive and negative terms of
(an). Since

∑n
k=1 bk is monotonically increasing with respect to n, there is a

positive integer m1 such that

m1∑

k=1

bk ≥ 1 − c1.

Here the right-hand side is positive since c1 is negative. We rewrite it as

m1∑

k=1

bk + c1 ≥ 1.

Similarly, there is an integer m2 > m1 such that

m2∑

k=1

bk + c2 ≥ 1.

Continue on the same process for m3,m4, · · · ,mn and take the sum of each
side to obtain

mn∑

k=1

bk +
n∑

k=1

ck ≥ n. (2.20)
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Note that the left-hand side is a partial sum of the rearrangement of the
sequence (ak) that may, for instance, take the form of

(b1, b2, · · · , bm1 , c1, bm1+1, bm1+2, · · · , bm2 , c2, · · · ) . (2.21)

Clearly, the left-hand side of (2.20) diverges as n → ∞, which means that
the rearrangement (2.21) diverges. Therefore, the conditionally convergent
series may become divergent through the rearranging procedure. In fact, the
discussion above serves as part of the proof of the theorem below.

♠ Riemann theorem:
Given any conditionally convergent series and any r ∈ R = R∩∞, there

is a rearrangement of the series that converges to r.

Proof The case of r = ∞ was proved in the previous discussion. Now let
r ∈ R and assume that (bn) and (cn) is the subsequence of positive and
negative terms, respectively, in the same order in which they appear in (an).
It is possible to obtain the smallest sum such that

s1 =
m1∑

k=1

bk

exceeds r. Then, add the least number of negative terms ck to obtain the
largest sum. Such that

s2 =
m1∑

k=1

bk +
n1∑

k=1

ck

is less than r. Proceeding in this fashion, we obtain a sequence s1, s2, s3, · · ·
that converges to r, since

lim
n→∞

bn = lim
n→∞

cn = 0.

This result is the case for an arbitrary real number r. Hence, the proof is
complete. ♣

Exercises

1. Determine the convergent property of the series
∞∑

k=1

1
k
. (2.22)

This is known as a harmonic series.
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Solution: Let An =
∑n

k=1(1/k). We then have

A2n −An =
1

n+ 1
+

1
n+ 2

+ · · · + 1
2n

≥ 1
2n

× n =
1
2
,

which implies that the sequence (An) is not a Cauchy sequence.
Thus, view of the Cauchy criterion, the harmonic series (2.22)
diverges. ♣

2. Determine the convergence of the series

∞∑

k=1

1
kp
. (2.23)

This is called a hyperharmonic series (or zeta function) and is de-
noted by ξ(p).

Solution: When p ≤ 1, a partial sum A2n consisting of the first
2n terms reads

A2n =
(

1 +
1
2p

)

+
(

1
3p

+
1
4p

)

+
(

1
5p

+ · · · + 1
8p

)

+ · · ·

+
[

1
(2n−1 + 1)p

+ · · · + 1
(2n)p

]

≥
(

1 +
1
2

)

+
(

1
3

+
1
4

)

+
(

1
5

+ · · · + 1
8

)

+ · · ·

+
[

1
(2n−1 + 1)

+ · · · + 1
2n

]

≥ 1
2

+
1
4

× 2 +
1
8

× 4 + · · · + 1
2n

× 2n−1 =
n

2
.

This means that the series (2.23) diverges for p ≤ 1.

For p > 1, we have

A2n+1−1 = 1 +
(

1
2p

+
1
3p

)

+
(

1
4p

+ · · · + 1
7p

)

+ · · ·

+
[

1
(2n)p

+ · · · + 1
(2n+1 − 1)p

]

< 1 +
1
2p

× 2 +
1
4p

× 4 + · · · + 1
(2n)p

× 2n

<

n∑

k=0

(
1

2p−1

)k

=
1 − (1/2p−1)n+1

1 − (1/2p−1)
<

2p−1

2p−1 − 1
.

Hence, the monotonically increasing sequence {An} is bounded
above and is thus convergent. ♣
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3. Determine the convergence of the series

∞∑

k=1

(−1)k+1

k
. (2.24)

Solution: Let n be an even integer, say n = 2m. Then, it follows
that

A2m =
2m∑

k=1

(−1)k+1

k
=
(

1 − 1
2

)

+
(

1
3

− 1
4

)

+ · · · +
(

1
2m− 1

− 1
2m

)

=
1

2 · 1 +
1

4 · 3 + · · · + 1
2m(2m− 1)

,

which means that (A2m) is increasing with m. In addition, we have

A2m = 1 −
(

1
2

− 1
3

)

−
(

1
4

− 1
5

)

− · · · − 1
2m

< 1,

which indicates that (A2m) is bounded above. Hence, (A2m) con-
verges to a limit A. Further more, sinceA2m+1 = A2m+1/(2m+1),
the same discussion as above tells us that the sequence (A2m+1)
also converges to the common limit A. By applying the result
from shuffled sequences (see Exercise 3 in Sect. 2.1.2), we find
that limAn exists, so the series (2.24) converges. It is thus proven
that the series converges conditionally. ♣

4. Suppose that the infinite series
∑

k ak and
∑

k bk are both convergent
absolutely. Let (aibj) be an infinite sequence in which the terms aibj are
arranged in an arbitrary order, say, as

(a2b1, a1b3, a2b4, a5b1, · · · ).

Show that the sequence of the partial sums of (aibj) converges absolutely
regardless of the order of the terms aibj .

Solution: Let m and n be the maximum values of i and j, re-
spectively, that are involved in the partial sum

∑

(i,j) aibj ; here
(i, j) denotes the possible combinations of i and j that are ar-
ranged in the same order as in thesequence (aibj). The partial
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sum is a portion of the product of the finite sums given by
(
∑m

i=1 ai)
(
∑n

j=1 bj

)

. Hence, we have

∣
∣
∣
∣
∣
∣

∑

(i,j)

aibj

∣
∣
∣
∣
∣
∣

=
∑

(i,j)

|aibj | =

∣
∣
∣
∣
∣

m∑

i

ai

∣
∣
∣
∣
∣
·

∣
∣
∣
∣
∣
∣

n∑

j

bj

∣
∣
∣
∣
∣
∣

≤
m∑

i=1

|ai|
n∑

j=1

|bj |.

(2.25)
From hypothesis, the left-hand side in (2.25) converges as m,n →
∞. This means that the partial sum

∑

(i,j) |aibj | is bounded above.
In addition, it is obviously increasing. Therefore,

∑

(i,j) |aibj | con-
verges (i.e.,

∑

(i,j) aibj converges absolutely) independently of the
order of i and j in the sequence of (aibj). ♣

5. Show that rearrangements of absolutely convergent series always converge
absolutely to the same limit.

Solution: Let
∑∞

k=1 ak be absolutely convergent and assume
that

∑∞
k=1 bk is its rearrangement. Define An =

∑n
k=1 |ak|, A =

limn→∞An, Bn =
∑n

k=1 |bk|, and let ε > 0. By hypothesis, there
is an integer N such that |A− AN | = |aN+1| + |aN+2| + · · · < ε

2 .
Now we choose the integer M so that all the terms a1, a2, · · · , aN

appear in the first M terms of the rearranged series, i.e., within
the finite sequence (b1, b2, · · · , bM ). Hence, these terms do not con-
tribute to the difference Bm − AN , where m ≥ N . Consequently,
we obtain

m ≥ N ⇒ |Bm −AN | ≤ |aN+1| + |aN+2| + · · · < ε

2
⇒ |A−Bm| ≤ |A−AN | + |AN −Bm| < ε,

which shows that limn→∞Bn = A. ♣

2.4 Convergence Tests for Infinite Real Series

2.4.1 Limit Tests

This section covers the important tests for convergence of infinite series. In
general, these tests provide sufficient, not necessary, conditions for conver-
gence. This is in contrast to the Cauchy criterion, which provides a neces-
sary and sufficient condition for convergence, though it is difficult to apply in
practice. The first test to be shown is called the limit test, by which we can
examine the absolute convergence of infinite series quite easily.
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♠ Limit test for convergence:
If

lim
k→∞

kpak exists for some p > 1,

then
∑∞

k=1 ak converges absolutely (and thus converges ordinary).

Proof By hypothesis, we set limk→∞ kpak = A for certain p > 1, which implies
that

lim
k→∞

kp|ak| = |A|.

Hence, there exists an integer m such that

k > m ⇒ kp|ak| − |A| < 1,

or equivalently,

k > m ⇒ |ak| <
|A| + 1
kp

. (2.26)

We know that the series
∑∞

k=m 1/kp converges for any p > 1 (see Exercise
2 in Sect. 2.3). Thus it follows from (2.26) that the series

∑∞
k=m |ak| also

converges, from which the desired conclusion follows at once. ♣

There is a counterpart of the limit test for convergence that determines
divergence properties of series as follows.

♠ Limit test for divergence:
If

lim
k→∞

kak �= 0,

then
∑∞

k=1 ak diverges. The test fails if the limit equals zero.

Proof Suppose lim kak = A > 0. Then there exists an integer m such that

k ≥ m ⇒ kak >
A

2
.

Hence, by employing the result from harmonic series (see Exercise 1 in
Sect. 2.3), we obtain

∞∑

k=m

ak >

∞∑

k=m

1
k

= ∞,

from which the desired result follows. The same procedure can be applied to
the case of A < 0, in which case the series

∑∞
k=1(−ak) may be treated by the

procedure above. The proof is thus complete. ♣



40 2 Real Sequences and Series

Remark.

1. The test is valid even when A goes to infinity.

2. The divergence test described above is inconclusive when lim kak = 0. To
see why, consider the two series

∞∑

k=1

1
k2

and
∞∑

k=2

1
k log k

.

The former converges and the latter diverges, but both yield lim kak = 0.

2.4.2 Ratio Tests

The following provides another test for absolute convergence of infinite series
that is sometimes easier to use than the previous one.

♠ Ratio test:
A series

∑∞
k=0 ak converges absolutely (and thus converges ordinary) if

lim sup
k→∞

∣
∣
∣
∣

ak+1

ak

∣
∣
∣
∣
< 1 (2.27)

and diverges if

lim sup
k→∞

∣
∣
∣
∣

ak+1

ak

∣
∣
∣
∣
> 1. (2.28)

If the limit superior is 1, the test is inconclusive.

Remark. When |ak+1/ak| converges, the limits superior used in (2.27) and
(2.28) reduce to the ordinary limits.

Proof (i) Suppose that � ≡ lim sup
k→∞

∣
∣
∣
∣

ak+1

ak

∣
∣
∣
∣
< 1. Then, for any r ∈ (�, 1), we

can find the number m such that

k > m ⇒
∣
∣
∣
∣

ak+1

ak

∣
∣
∣
∣
< r.

It follows that
∣
∣
∣
∣

am+1

am

∣
∣
∣
∣
×
∣
∣
∣
∣

am+2

am+1

∣
∣
∣
∣
× · · · ×

∣
∣
∣
∣

am+p

am+p+1

∣
∣
∣
∣
< rp or equivalently,

|am+p| < rp|am|, which holds for any p ∈ N . Hence, we have
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∞∑

p=1

|am+p| =
∞∑

k=m+1

|ak| <
∞∑

p=1

rp|am| =
r

1 − r
|am|.

The last term is a finite constant. Therefore, the series
∑∞

k=m+1 |ak| re-
mains finite and the series

∑∞
k=0 ak converges absolutely.

(ii) Next we assume that

lim sup
k→∞

∣
∣
∣
∣

ak+1

ak

∣
∣
∣
∣
= � > 1.

Then there is an integer m such that

k > m ⇒
∣
∣
∣
∣

ak+1

ak

∣
∣
∣
∣
> 1.

That is,
k > m ⇒ |ak| > |am| > 0,

which means that
lim

k→∞
ak �= 0.

In view of the remark in Sect. 2.3.2, the series
∑∞

k=0 ak diverges. ♣

2.4.3 Root Tests

We now give an alternative absolute-convergence test based on examining the
kth root of |ak|.

♠ Root test:
A series

∑∞
k=0 ak converges absolutely (and ordinary) if

lim sup
k→∞

k
√

|ak| < 1

and diverges if
lim sup

k→∞

k
√

|ak| > 1.

If the limit superior is 1, the test fails and does not provide any information.

Proof Let r = lim sup
k→∞

k
√

|ak|. We first prove that the series converges abso-

lutely if r < 1. We choose a positive number c ∈ (r, 1). Then there is a positive
integer N such that

k ≥ N ⇒ k
√

|ak| < c ⇒ |ak| < ck.
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Since the geometric series
∑

ck with c < 1 converges,
∑

|ak| converges, so
that

∑
ak converges absolutely.

When r > 1, it follows from the definition of the limit superior (see
Sect. 2.1.4) that there are an infinite number of terms of k

√

|ak| greater than
1. This implies that lim ak �= 0, which means that the infinite series

∑
ak

diverges. ♣

Examples Assume the series
∞∑

k=0

ak = 1 − 1
2

+
1
42

− 1
23

+
1
44

− 1
25

+ · · · . (2.29)

Since

0
√

|a0| = 1, 1
√

|a1| =
1
2
, 2
√

|a2| =
1
4
, 3
√

|a3| =
1
2
, 4
√

|a4| =
1
4
, · · · ,

we have
lim sup

k→∞
k
√
ak =

1
2
< 1.

Thus the series (2.29) converges (absolutely and ordinary).

2.4.4 Alternating Series Test

All the convergence tests presented so far are tests for absolute convergence,
which assumes ordinary convergence. Nonetheless, certain kinds of series can
exhibit conditional convergence, i.e., ordinary convergence with absolute di-
vergence, whose convergence properties cannot be addressed by the tests given
thus far. Hence, the significance of the test described below, known as the
alternating series test, is that it may be used to test the conditional con-
vergence of some absolutely divergent series.

We say that (xk) is an alternating sequence if the sign of xk is different
from that of xk+1 for every k. The resulting series

∑
xk is called the alter-

nating series, whose convergence properties are partly determined by the
following theorem:

♠ Alternating series test:
An alternating series given by

a1 − a2 + a3 − a4 + · · · =
∞∑

k=1

(−1)k+1ak with ak > 0 for all k

converges if
ak > ak+1 and lim

k→∞
ak = 0.
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Proof First we show that the sequence of partial sums Sn converges. It follows
that

A2n = (a1 − a2) + (a3 − a4) + · · · + (a2n−1 + a2n).

Since ak−ak+1 > 0 for all k, the sequence A2n is increasing. It is also bounded
above because

A2n = a1 − (a2 − a3) − (a4 − a5) − · · · − (a2n−2 + a2n−1) − a2n ≤ a1 (2.30)

for all n ∈ N . Thus, limA2n exists and we call it A. On the other hand, we
have

|A2n+1 −A| = |A2na2n+1 −A| ≤ |A2n −A| + |a2n+1|.
In the limit as n → ∞, the left-hand side vanishes so that we obtain
limA2n+1 = A. Therefore, we conclude that Sn → S ♣

Exercises

1. Show that
∞∑

k=1

(k + 1)1/2

(k5 + k3 − 1)1/3
converges.

Solution: Taking p = 7/6 > 1 into the limit test for convergence,
we have

lim
k→∞

k7/6ak = lim
k→∞

(1 + k−1)1/2

(1 − k−2 + k−5)1/3
= 1. ♣

2. Show that
∞∑

k=1

(−1)k log k
k2

converges.

Solution: With use of the limit test for convergence by taking
p = 3/2, we obtain

lim
k→∞

k3/2ak = lim
k→∞

(−1)k log k√
k

= 0. ♣

3. Show that
∞∑

k=1

k log k
1 + k2

diverges.

Solution: From the limit test for divergence, we have

lim
k→∞

kak = lim
k→∞

k2 log k
1 + k2

= ∞. ♣



44 2 Real Sequences and Series

4. Show that
∞∑

k=0

(k!)2

(2k)!
converges.

Solution: The ratio test yields
∣
∣
∣
∣

ak+1

ak

∣
∣
∣
∣
=

(2k)!
(k!)2

[(k + 1)!]2

(2k + 2)!
=

(k + 1)2

(2k + 2)(2k + 1)

=
(1 + 1

k )2

(2 + 2
k )(2 + 1

k )
→ 1

4
< 1 (k → ∞). ♣

5. Show that
∞∑

k=1

(

1 +
1
k

)−k2

converges.

Solution: The root test yields

[(

1 +
1
k

)−k2]1/k

=
1

[1 + (1/k)]k
→ 1

e
< 1.



Part II

Functional Analysis



3

Real Functions

Abstract Infinite sequences and series of real functions are encountered frequently
in mathematical physics. The convergence of such sequences and series does not
generally preserve the nature of their constituents; e.g., a sequence of “continuous”
functions can converge into a “discontinuous” function. In this chapter, we show
that this is not true in cases of uniform convergence (Sect. 3.2.2), which is a special
class of convergence that preserves the continuity, integrability, and differentiability
of the constituent functions of sequences and series, as we explain in detail in Sects.
3.2.4–3.2.6.

3.1 Fundamental Properties

3.1.1 Limit of a Function

Having discussed the limits of sequences and series of real numbers, we now
turn our attention to the limit of functions. Let A be a real number and f(x)
a real-valued function of a real variable x ∈ R. A formal notation of the above
function is given by the mapping relation f : R → R. The statement “the
limit of f(x) at x = a is A” means that the value of f(x) can be set as close
to A as desired by setting x sufficiently close to a. This is stated formally by
the following definition.

♠ The limit of a function:
A function f(x) is said to have the limit A as x → a if and only if for

every ε > 0, there exists a number δ > 0 such that

|x− a| < δ ⇒ |f(x) −A| < ε. (3.1)

The limit of f(x) is written symbolically as

lim
x→a

f(x) = A
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or
f(x) → A for x → a.

If the first inequality in (3.1) is replaced by 0 < x− a < δ (or 0 < a− x < δ),
we say that f(x) approaches A as x → a from above (or below) and write

lim
x→a+

f(x) = A

(

or lim
x→a−

f(x) = A

)

.

This is called the right-hand (or left-hand) limit of f(x). The two together
are known as one-sided limits.

A necessary and sufficient condition for the existence of limx→a f(x) is
shown below.

♠ Theorem:
The limit of f(x) at x = a exists if and only if

lim
x→a+

f(x) = lim
x→a−

f(x). (3.2)

Proof If limx→a f(x) exists and is equal to A, it readily follows that

lim
x→a+

f(x) = lim
x→a−

f(x) = A. (3.3)

We now consider the converse. Assume that (3.2) holds. This obviously means
that both one-sided limits exist at x = a. Hence, given ε > 0, we have δ1 > 0
and δ2 > 0 such that

0 < x− a < δ1 ⇒ |f(x) −A| < ε,

0 < a− x < δ2 ⇒ |f(x) −A| < ε.

Let δ = min{δ1, δ2}. If x satisfies 0 < |x− a| < δ, then either

0 < x− a < δ ≤ δ1 or 0 < a− x < δ ≤ δ2.

In either case, we have |f(x) −A| < ε. That is, we have seen that for a given
ε, there exists δ such that

0 < |x− a| < δ ⇒ |f(x) −A| < ε.

Therefore we conclude that

Equation (3.2) holds ⇒ lim
x→a

f(x) = A,

and the proof is complete. ♣
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3.1.2 Continuity of a Function

In general, the value of limx→a f(x) has nothing to do with the value (and
the existence) of f(a). For instance, the function given by

f(x) =
{

2 − x2 x �= 1,
2 x = 1

gives
lim
x→1

f(x) = 0 and f(1) = 2,

which are quantitatively different from one another. This mismatch occurring
at x = 1 results in a lack of geographical continuity in the curve of y = f(x),
as depicted in Fig. 3.1. In mathematical language, continuity of the curve of
y = f(x) is accounted for by the following statement.

0 1

2

–1
x

y

Fig. 3.1. A discontinuous function y = f(x) at x = 1

♠ Continuous functions:
The function f(x) is said to be continuous at x = a if and only if for

every ε > 0, there exists δ > 0 such that

|x− a| < δ ⇒ |f(x) − f(a)| < ε.

Remark. The definition noted above seems to be similar to the definition of the
limit of f(x) at x = a (see Sect. 3.1.1). However, there is a crucial difference
between them. When considering the limit of f(x) at x = a, we are only
interested in the behavior of f(x) in the vicinity of the point a, not just at a.
However, the continuity of f(x) at x = a requires the further condition that
the value of f(x) just at x = a has to be defined. In symbols, we write

f(x) is continuous at x = a ⇒ lim
x→a−0

f(x) = lim
x→a+0

f(x) = f(a).
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We must emphasize that given a function f(x) on a domain D, the limit of
f(x) is defined at limit points in D that may or may not lie in D. In contrast,
the continuity of f(x) is defined only at points contained in D. An illustrative
example is given below.

Examples Assume a function given by

f(x) = x for all but x = 1.

It has a limit at x = 1,
lim

x→∞
f(x) = 1,

but there is no way to examine its continuity because x = 1 is out of the
defining domain.

When f(x) is continuous, we can say that f(x) belongs to the class of functions
designated by the symbol C. Then, it follows that

f(x) ∈ C at x = a ⇐⇒ lim
x→a

f(x) = f(a).

If the symbol x → a appearing in the right-hand statement is replaced by
x → a+ (or x → a−), f(x) is said to be continuous on the right (or left)
at x = a. We encounter the latter kind of a limit particularly when we consider
the continuity of a function defined within a finite interval [a, b]; we say that

f(x) ∈ C on [a, b] ⇐⇒
f(x) ∈ C on (a, b) and lim

x→a+
f(x) = f(a), lim

x→b−
f(x) = f(b).

We also say that a function f(x) on [a, b] is piecewise continuous if

(i) f(x) is continuous on [a, b] except at a finite number of points x1, x2, · · · ,
xn;

(ii) at each of the points x1, x2, · · · , xn, there exist both the left-hand and
right-hand limits of f(x) defined by

f(xk − 0) = lim
x=xk−0

f(x), f(xk + 0) = lim
x=xk+0

f(x).

3.1.3 Derivative of a Function

The following is a rigorous definition of the derivative of a real function.

♠ Derivative of a function:
If the limit

lim
x→a

f(x) − f(a)
x− a

exists, it is called the derivative of f(x) at x = a and is denoted by f ′(a).
The function f(x) is said to be differentiable at x = a if f ′(a) exists.
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Similar to the case of one-sided limits, it is possible to define one-sided
derivatives of real functions such as

f ′(a+) = lim
x→a+

f(x) − f(a)
x− a

,

f ′(a−) = lim
x→a−

f(x) − f(a)
x− a

.

♠ Theorem:
If f(x) is differentiable at x = a, then it is continuous at x = a. (The

converse is not true.)

Proof Assume x �= a. Then

f(x) − f(a) =
f(x) − f(a)

x− a
(x− a).

From hypothesis, each function [f(x) − f(a)]/(x− a) as well as x− a has the
limit at x = a. Hence, we obtain

lim
x→a

[f(x) − f(a)] = lim
x→a

f(x) − f(a)
x− a

· lim
x→a

(x− a) = f ′(a) × 0 = 0.

Therefore,
lim
x→a

f(x) = f(a),

i.e., f(x) is continuous at x = a. That the converse is false can be seen by
considering f(x) = |x|; it is continuous at x = 0 but not differentiable. ♣
The term Cn functions is used to indicate that all the derivatives on the order
of ≤n exist; this is denoted by

f(x) ∈ Cn ⇐⇒ f (n)(x) ∈ C.

Such an f(x) is said to be a Cn function or to be of class Cn.

Examples 1. f(x) =
{

0, x < 0
x, x ≥ 0

⇒ f(x) ∈ C0(= C), but f(x) �∈ C1 at x = 0.

2. f(x) =
{

0 x < 0
x2 x ≥ 0

⇒ f(x) ∈ C1, but f(x) �∈ C2 at x = 0.

3. Taylor series expansion for functions f ∈ Cn is given by

f(x) =
∑

k≤n

1
k!

∂f

∂xk

∣
∣
∣
∣
x=x0

(x− x0)k + o (|x− x0|n) .
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3.1.4 Smooth Functions

We now introduce a new class of functions for which the derivative is contin-
uous over the defining domain.

♠ Smooth functions:
The function f(x) is said to be smooth for any x ∈ [a, b] if f ′(x) exists

and is continuous on [a, b].

In geometrical language, the above statement means that the direction of the
tangent changes continuously, without jumps, as it moves along the curve
y = f(x) (see Fig. 3.2). Thus, the graph of a smooth function is a smooth
curve without any point at which the curve has two distinct tangents.

Similar to the case of piecewise continuity, the function f(x) is said to
be piecewise smooth on the interval [a, b] if f(x) and its derivatives are
all piecewise continuous on [a, b]. The graph of a piecewise smooth function
is either a continuous or a discontinuous curve; furthermore, it can have a
finite number of points (called corners) at which the derivatives show jumps
(see Fig. 3.2). Every piecewise smooth function f(x) is bounded and has
a bounded derivative everywhere, except at its corners and points of dis-
continuity; f ′(x) does not exist in the sense of continuity at any of these
points.

y

x0

y

x0

(a) (b)

Fig. 3.2. (a) A continuous function y = f(x). (b) A piecewise smooth function
y = f(x) having two discontinuous points and one corner

3.2 Sequences of Real Functions

3.2.1 Pointwise Convergence

In this section we focus on convergence properties of sequences consisting of
real-valued functions of a real variable. Suppose that for each n ∈ N , we have
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a function fn(x) defined on a domain D ⊆ R. We then say that we have a
sequence

(fn(x) : n ∈ N)

of real-valued functions on D. If the sequence (fn(x)) converges for every
x ∈ D, the sequence of functions is said to converge pointwise on D, and
the function defined by

f(x) = lim
n→∞

fn(x)

is called the pointwise limit of (fn(x)). The formal definition is given below.

♠ Pointwise convergence:
The sequence of functions (fn) is said to converge pointwise to f on

D if, given ε > 0, there is a natural number N = N(ε, x) (which depends
on ε and x) such that

n > N ⇒ |fn(x) − f(x)| < ε.

n = 1

2

5

30

1x0

y

1

Fig. 3.3. Converging behavior of fn(x) = xn given in (3.4)

Examples Assume a sequence (fn) consisting of the function

fn(x) = xn (3.4)

that is defined on a closed interval [0, 1]. It follows that the sequence converges
pointwise to
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f(x) = lim
n→∞

fn(x) =
{

0 for 0 ≤ x < 1,
1 at x = 1. (3.5)

See Fig. 3.3 for the converging behavior of fn(x) with increasing n.
The important point is the fact that under pointwise convergence, conti-

nuity of functions of fn(x) is not preserved. In fact, fn(x) given in (3.4) is
continuous for each n over the whole interval [0, 1], whereas the limit f(x)
given in (3.5) is discontinuous at x = 1. This indicates that interchanging
the order of the limiting processes under pointwise convergence may produce
different results, as expressed by

lim
x→1

lim
n→∞

fn(x) �= lim
n→∞

lim
x→1

fn(x).

Similar phenomena might occur in connection with, integrability and differ-
entiability of terms of functions fn(x). That is, under pointwise convergence,
the limit of a sequence of integrable or differentiable functions may not be
integrable or differentiable, respectively. Illustrative examples are given in
Exercises 1 and 2 in Sect. 3.2.

3.2.2 Uniform Convergence

We know that if the sequence (fn(x)) is pointwise convergent to f(x) on
x ∈ D, it is possible to choose N(x) for any small ε such that

m > N(x) ⇒ |fm(x) − f(x)| < ε. (3.6)

In general, the least value of N(x) that satisfies (3.6) will depend on x. But in
certain cases, we can choose N independent of x such that |fm(x)− f(x)| < ε
for all m > N and for all x over the domain D. If this is true for any small
ε, the sequence (fn(x)) is said to converge uniformly to f(x) on D. The
formal definition is given below.

♠ Uniform convergence:
The sequence (fn) of real functions on D ⊆ R converges uniformly

to a function f on D if, given ε > 0, there is a positive integer N = N(ε)
(which depends on ε) such that

n > N ⇒ |fn(x) − f(x)| < ε for all x ∈ D.

Emphasis is placed on the fact that the integer N = N(ε, x) in the point-
wise convergence depends on x in general, whereas N = N(ε) in the uniform
convergence is independent of x. Under uniform convergence, therefore, by
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taking n large enough we can always force the graph of y = fn(x) into a band
of width less than 2ε centered around the graph of y = f(x) over the whole
domain D (see Fig. 3.4).

y

x0

ε
f (x ) + ε

f (x )

f (x ) − ε
ε

fn (x )

Fig. 3.4. A function y = fn(x) contained overall within a band of width less than
2ε

The definition of uniform convergence noted above is equivalent to the
following statement.

♠ Theorem:
The sequence (fn) of real functions on D ⊆ R converges uniformly to f

on D if and only if

sup
x∈D

|fn(x) − f(x)| = 0 as n → ∞.

3.2.3 Cauchy Criterion for Series of Functions

As in the case of real sequences, the Cauchy criterion is available for testing
uniform convergence for sequences of functions.

♠ Cauchy criterion for uniform convergence:
The sequence of fn defined on D ⊆ R converges uniformly to f on D if

and only if, given ε > 0, there is a positive integer N = N(ε) such that

m,n > N ⇒ |fm(x) − fn(x)| < ε for all x ∈ D, (3.7)

or equivalently,

m,n > N ⇒ sup
x∈D

|fm(x) − fn(x)| < ε.
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Proof Suppose that fn(x) converges uniformly to f(x) on D. Let ε > 0 and
choose N ∈ N such that

n > N ⇒ |fn(x) − f(x)| < ε

2
for all x ∈ D.

If m,n ≥ N , we have

|fn(x) − fm(x)| ≤ |fn(x) − f(x)| + |f(x) − fn(x)| < ε for all x ∈ D.

This result implies that if fn(x) is uniformly convergent to f(x) on D, there
exists an N that satisfies (3.7) for any small ε.

Next we consider the converse. Suppose that (fn) satisfies the criterion
given by (3.7). Then, for each point of x ∈ D, (fn(x)) forms a Cauchy sequence
and thus converges pointwise to

f(x) = lim
n→∞

fn(x) for all x ∈ D.

We now show that this convergence is uniform. Let n > N be fixed and take
the limit m → ∞ in (3.7) to obtain

n > N ⇒ |fn(x) − f(x)| < ε for all x ∈ D,

where N is independent of x, from which we conclude that the convergence
of (fn) to f is uniform. ♣

3.2.4 Continuity of the Limit Function

The most important feature of uniform convergence is that it overcomes some
of the shortcomings of pointwise convergence demonstrated in Sect. 3.2.1; i.e.,
pointwise convergence does not preserve continuity, integrability, and differen-
tiability of terms of the functions fn(x). We now examine the situation under
uniform convergence, starting with the continuity of fn(x).

♠ Theorem:
If fn converges uniformly to f on D ⊆ R, then, if fn is continuous at

c ∈ D, so is f .

Remark. Note that the uniform convergence of fn on D is a sufficient, but not
a necessary, condition for f to be continuous. In fact, if fn is not uniformly
convergent on D, then its limit f may or may not be continuous at c ∈ D.

For the proof, it suffices to see that

lim
x→c

f(x) = lim
x→c

lim
n→∞

fn(x) = lim
n→∞

lim
x→c

fn(x) = lim
n→∞

fn(c) = f(c), (3.8)
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which guarantees the continuity of the limit function f(x) at x = c. In (3.8),
we have used the interchangeability of limiting processes expressed by

lim
x→c

lim
n→∞

fn(x) = lim
n→∞

lim
x→c

fn(x),

which follows from the lemma below.

♠ Lemma:
Let c be a limit point of D ⊆ R and assume that fn converges uniformly

to f on D\{c}. If
lim
x→c

fn(x) = �n (3.9)

exists for each n, then
(i) (�n) is convergent, and
(ii) limx→c f(x) exists and coincides with limn→∞ �n; i.e.,

lim
n→∞

lim
x→c

fn(x) = lim
x→c

lim
n→∞

fn(x). (3.10)

Proof Let ε > 0. Since (fn) converges uniformly on D\{c}, it satisfies the
Cauchy criterion; i.e., there is a positive integer N such that

m,n > N ⇒ |fn(x) − fm(x)| < ε for all x ∈ D\{c}. (3.11)

Take the limit x → c in (3.11) to obtain

m,n > N ⇒ |�n − �m| < ε. (3.12)

This implies that (�n) is a Cauchy sequence and thus convergent, which proves
statement (i) above.

To prove (ii), let
� = lim

n→∞
�n.

Set n = N and m → ∞ in (3.9), (3.11), and (3.12) to set the following results:

lim
x→c

fN (x) = �N , (3.13)

|fN (x) − f(x)| < ε for all x ∈ D\{c}, (3.14)

and
|�N − �| < ε. (3.15)

In addition, the existence of (3.13) implies that there exists a δ > 0 such that

|x− c| < δ with x ∈ D\{c} ⇒ |fN (x) − �N | < ε. (3.16)
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Using (3.14), (3.15) and (3.16), we obtain

|x− c| < δ with x ∈ D\{c}
⇒ |f(x) − �| ≤ |f(x) − fN (x)| + |fN (x) − �N | + |�N − �| < 3ε.

This means that
lim
x→c

f(x) = �,

which is equivalent to the desired result of (3.10). ♣

Remark. The contraposition of the theorem tells us that if the limit function
f is discontinuous, the convergence of fn is not uniform. The example in
Sect. 3.2.1 demonstrated such a sequence.

3.2.5 Integrability of the Limit Function

We know that the limit function f(x) becomes continuous if the sequence
(fn(x)) of continuous functions is uniformly convergent. This immediately
results in the following theorem.

♠ Theorem:
Suppose fn be integrable on [a, b] for each n. Then, if fn converges

uniformly to f on [a, b], the limit function f is also integrable, so that

∫ b

a

f(x)dx = lim
n→∞

∫ b

a

fn(x)dx, (3.17)

or equivalently,

∫ b

a

lim
n→∞

fn(x)dx = lim
n→∞

∫ b

a

fn(x)dx.

Proof Since fn for every n is integrable on [a, b], it is continuous (piecewise,
at least) on [a, b]. Thus f(x) is also continuous (piecewise at least) on [a, b] in
view of the theorem given in Sect. 3.2.4, so that f(x) is integrable on [a, b].
Furthermore, we observe that

∣
∣
∣
∣
∣

∫ b

a

fn(x)dx−
∫ b

a

f(x)dx

∣
∣
∣
∣
∣
≤
∫ b

a

|fn(x) − f(x)| dx

≤
∫ b

a

sup
x∈[a,b]

|fn(x) − f(x)| dx

≤ (b− a) sup
x∈[a,b]

|fn(x) − f(x)| .
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The uniform convergence of (fn) ensures that

sup
x∈[a,b]

|fn(x) − f(x)| → 0 as n → ∞,

which immediately gives the desired result shown in (3.17). ♣

Remark.

1. Note again that uniform convergence is a sufficient but not a necessary
condition for (3.17) to be valid, so (3.17) may be valid even in the absence
of uniform convergence. For instance, the convergence of (fn) with fn(x) =
xn on [0, 1] is not uniform but we have

∫ 1

0

fn(x)dx =
∫ 1

0

xndx =
1

n+ 1
→ 0 =

∫ 1

0

f(x)dx.

2. The conditions on fn stated in the theorem will be significantly relaxed
when we take up the Lebesgue integral in Chap. 6.

3.2.6 Differentiability of the Limit Function

After the last two subsections, readers may expect that results for differentia-
bility will be similar to those for continuity and integrability; i.e., they may be
tempted to conclude that the differentiability of terms of functions fn(x) will
be preserved if (fn) converges uniformly to f . However, this is not the case.
In fact, even if fn converges uniformly to f on [a, b] and fn is differentiable
at c ∈ [a, b], it may occur that

lim
n→∞

f ′
n(c) �= f ′(c).

Consider the following example:

Examples Suppose the sequence (fn) is defined by

fn(x) =

√

x2 +
1
n2
, x ∈ [−1, 1]. (3.18)

Clearly (3.18) is differentiable for each n, and the sequence (fn) converges
uniformly on [−1, 1] to

f(x) = |x| (3.19)

since

|fn(x) − f(x)| =

√

x2 +
1
n2

−
√
x2

=
1

n2
√

x2 + 1
n2 +

√
x2

≤ 1
n

→ 0, for all x ∈ [−1, 1].
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However, the limit function f of (3.19) is not differentiable at x = 0. Hence,
the desired result

lim
n→∞

f ′
n(x) = f ′(x) (3.20)

breaks down at x = 0.

The following theorem provides sufficient conditions for (3.20) to be sat-
isfied. The important point is that it requires the uniform convergence of the
derivatives f ′

n, not of the functions fn themselves.

♠ Theorem:
Suppose (fn) to be a sequence of differentiable functions on [a, b] that

converge at a certain point x0 ∈ [a, b]. If the sequence (f ′
n) is uniformly

convergent on [a, b], then

(i) (fn) is also uniformly convergent on [a, b] to f ,

(ii) f is differentiable on [a, b], and

(iii) limn→∞ f ′
n(x) = f ′(x).

Proof Let ε > 0. From the convergence of (fn(x0)) and the uniform conver-
gence of (f ′

n), we conclude that there is an N ∈ N such that

m,n > N ⇒ |f ′
n(x) − f ′

m(x)| < ε for all x ∈ [a, b] (3.21)

and
m,n > N ⇒ |fn(x0) − fm(x0)| < ε. (3.22)

Given any two points x, t ∈ [a, b], it follows from the mean value theorem
applied to fn − fm that there is a point c between x and t such that

fn(x) − fm(x) − [fn(t) − fm(t)] = (x− t) [f ′
n(c) − f ′

m(c)] .

Using (3.21), we have

m,n > N ⇒ |fn(x) − fm(x) − [fn(t) − fm(t)]| < ε|x− t|. (3.23)

From (3.22) and (3.23), it follows that

|fn(x) − fm(x)| ≤ |fn(x) − fm(x) − [fn(x0) − fm(x0)]| + |fn(x0) − fm(x0)|
< ε|x− x0| + ε

< ε(b− a+ 1) = Cε, for all x ∈ [a, b],

Which means that (fn) converges uniformly to some limit f . Hence, statement
(i) has been proven.
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Next we consider the proofs of (ii) and (iii). For any fixed point x ∈ [a, b],
define

fn(t) =
fn(t) − fn(x)

t− x
, t ∈ [a, b]\{x}

and

g(t) =
f(t) − f(x)

t− x
, t ∈ [a, b]\{x}.

Clearly, fn → g as n → ∞; furthermore, if m,n ≥ N , the result of (3.23) tells
us that

|fn(t) − fm(t)| < ε for all t ∈ [a, b]\{x}.
Thus in view of the Cauchy criterion, we see that fn converges uniformly to
g on [a, b]\{x}. Now we observe that

lim
t→x

fn(t) = f ′
n(x) for all n ∈ N . (3.24)

Then, uniform convergence of fn ensures taking the limit of n → ∞ in (3.24)
followed by interchanging the order of the limit processes, which yields

lim
n→∞

lim
t→x

fn(t) = lim
t→x

g(t) = lim
t→x

f(t) − f(x)
t− x

= f ′(x) = lim
n→∞

f ′
n(x).

This proves that f is differentiable at x and that

f ′(x) = lim
n→∞

f ′
n(x). ♣

Remark. That the uniform convergence of (f ′
n) is just sufficient, not necessary,

is seen by considering the sequence

fn(x) =
xn+1

n+ 1
, x ∈ (0, 1).

This converges uniformly to 0, and its derivative f ′
n(x) = xn also converges to

0. The conclusions (i)–(iii) given in the theorem above are thus all satisfied.
But the convergence of (f ′

n) is not uniform.

Exercises

1. For the function

fn(x) = nx(1 − x2)n, x ∈ [0, 1],

check that an interchange of the order of the limiting process n → ∞
and integration gives different results.
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Solution: The given function is integrable for each n so that

∫ 1

0

fn(x)dx = n

∫ 1

0

x(1 − x2)ndx =
[

−n
2(n+ 1)

(1 − x2)n+1

]1

0

=
n

2(n+ 1)
→ 1

2
.

On the other hand, the limit given by

f(x) = lim
n→∞

fn(x) = 0 for all x ∈ [0, 1]

yields
∫ 1

0
f(x)dx = 0. We thus conclude that

lim
n→∞

∫ 1

0

fn(x)dx �=
∫ 1

0

lim
n→∞

fn(x)dx;

i.e., interchanging the order of integration and limiting processes
is not in general allowed under pointwise convergence. ♣

2. For fn(x) given by

fn(x) =

⎧

⎪⎪⎨

⎪⎪⎩

−1 x < − 1
n ,

sin
(

nπx
2

)

− 1
n < x < 1

n ,

1 x > 1
n ,

check the continuity of its limit f(x) = limn→∞ fn(x) at x = 0.

Solution: fn(x) is differentiable for any x ∈ R for all n, and thus
is continuous at x = 0 for all n. However, its limit,

f(x) =

⎧

⎨

⎩

−1 x < 0,
0 x = 0,
1 x > 0

is not continuous at x = 0. Hence, for the sequence of functions
{fn(x)}, the order of the limiting process n → ∞ and the differ-
entiation with respect to x is not interchangeable. ♣

3. Show that the sequence of functions (fn(x)) defined by

fn(x) = nxe−nx (3.25)

converges uniformly to f(x) = 0 on x > 0.
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Solution: In view of the previous theorem, we show that

sup{fn(x) : x ≥ a} = 0 as n → ∞,

where a > 0. To prove this, we consider the derivative

fn
′(x) = ne−nx(1 − nx). (3.26)

It follows from (3.26) that x = 1/n is the only critical point of fn.
Now we choose a positive integer N such that a > 1/N . Then, the
function fn for each n ≥ N has no critical point on x ≥ a, and
is monotonically decreasing. Therefore, the maximum of fn(x) is
attained at x = a for any n > N , with the result that

sup
x∈[a,∞)

fn(x) = fn(a) = nae−na → 0 (n → ∞).

This holds for any a > 0; hence, we conclude that fn converges
uniformly to 0 on (0,∞), i.e., on x > 0. ♣

Remark. Note that the range of uniform convergence of (3.25) is the open
interval (0,∞), not the closed one [0,∞). Since in the latter case we have

sup
x∈[0,∞)

fn(x) = fn

(
1
n

)

=
1
e

�→ 0,

it is clear that (fn) does not converge uniformly on [0,∞).

3.3 Series of Real Functions

3.3.1 Series of Functions

We close this chapter by considering convergence properties of series of real-
valued functions. Assume a sequence (fn) of functions defined on D ⊆ R. By
analogy with series of real numbers, we can define a series of functions by

Sn(x) =
n∑

k=1

fk(x), x ∈ D,

which gives a sequence (Sn) = (S1, S2, · · · ).
As n increases, the sequence (Sn) may or may not converge to a finite

value, depending on the feature of functions fk(x) as well as the point x
in question. If the sequence converges for each point x ∈ D (i.e., converges
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pointwise on D), then the limit of Sn is called the sum of the infinite series
of functions fk(x) and is denoted by

S(x) = lim
n→∞

Sn(x) =
∞∑

k=1

fk(x), x ∈ D.

It is obvious that the convergence of the series Sn(x) implies the pointwise
convergence limn→∞ fn(x) = 0 on D. A series (Sn) that does not converge at
a point x ∈ D is said to diverge at that point.

Applied to series of functions, the Cauchy criterion for uniform convergence
takes the following form:

♠ Cauchy criterion for series of functions:
The series Sn is uniformly convergent on D if and only if for every small

ε > 0, there is a positive integer N such that

n > m > N

⇒ |Sn(x) − Sm(x)| =

∣
∣
∣
∣
∣

n∑

k=m+1

fk(x)

∣
∣
∣
∣
∣
< ε for all x ∈ D.

Set n = m+ 1 in the above criterion to obtain

n > N ⇒ |fn(x)| < ε for all x ∈ D.

This results implies that the uniform convergence of fn(x) → 0 on D is a
necessary condition for the convergence of Sn(x) to be uniform on D. We will
use this theorem when proving a more practical test for uniform convergence
known as the Weierstrass M -test, which is presented in Sect. 3.3.3.

3.3.2 Properties of Uniformly Convergent Series of Functions

When a given series of functions
∑

fk(x) is uniformly convergent, the proper-
ties of the sum S(x) in terms of continuity, integrability, and differentiability
can be easily inferred from the properties of the separate terms fk(x). In fact,
applying the theorems given in Sects. 3.2.4–3.2.6 to the sequence (Sn) and
using the linearity regarding the limiting process, integration, and differenti-
ation, we obtain the parallel theorems shown below.

♠ Continuity of the sum:
Suppose fk(x) to be continuous for each k. If the sequence (Sn) of the

series

Sn(x) =
n∑

k=1

fk(x)
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converges uniformly to S(x), then S(x) is also continuous, so that

lim
t→x

S(t) = lim
t→x

∞∑

k=1

fk(t) =
∞∑

k=1

lim
t→x

fk(t).

♠ Integrability of the sum:
Suppose fk to be integrable on [a, b] for all k. If (Sn) converges uniformly

to S on [a, b], we have

∫ b

a

S(x)dx =
∫ b

a

∞∑

k=1

fk(x)dx =
∞∑

k=1

∫ b

a

fk(x)dx.

♠ Differentiability of the sum:
Let fk be differentiable on [a, b] for each k and suppose that (Sn) con-

verges to S at some point x0 ∈ [a, b]. If the series
∑

f ′
k is uniformly con-

vergent on [a, b], then Sn(x) is also uniformly convergent on [a, b] and the
sum S(x) is differentiable on [a, b], so that

d

dx
S(x) =

d

dx

[ ∞∑

k=1

fk(x)

]

=
∞∑

k=1

dfk(x)
dx

for all x ∈ [a, b].

Observe that the second and third theorems provide a sufficient condition for
performing term-by-term integration and differentiation, respectively, of an
infinite series of functions. Without uniform convergence, such term-by-term
calculations do not work.

3.3.3 Weierstrass M-test

The following is a very useful and simple test for the uniform convergence of
a series of functions.

♠ Weierstrass M test: If there is a sequence of positive constants Mk

for any x on the interval [a, b] such that

|fk(x)| ≤ Mk (3.27)

and if the series ∞∑

k=0

Mk (3.28)

converges, then the series of functions
∑∞

k=0 fk(x) converges uniformly on
x ∈ [a, b].
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Proof Since (3.28) converges, it follows from the Cauchy criterion that for any
ε > 0 there exists a number N such that

n > m > N ⇒
∣
∣
∣
∣
∣

n∑

k=0

Mk −
m∑

k=0

Mk

∣
∣
∣
∣
∣
=

n∑

k=m

Mk < ε. (3.29)

Furthermore, in view of the inequality rule for absolute values of sums and
the relation (3.27), it follows that

∣
∣
∣
∣
∣

n∑

k=m

fk(x)

∣
∣
∣
∣
∣
≤

n∑

k=m

|fk(x)| ≤
n∑

k=m

Mk (3.30)

for all x ∈ [a, b]. Note that the left-hand term in (3.30) can be rewritten as
∣
∣
∣
∣
∣

n∑

k=m

fk(x)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

n∑

k=0

fk(x) −
m∑

k=0

fk(x)

∣
∣
∣
∣
∣
. (3.31)

From (3.29), (3.30), and (3.31), it follows that

n ≥ m > N ⇒
∣
∣
∣
∣
∣

n∑

k=0

fk(x) −
m∑

k=0

fk(x)

∣
∣
∣
∣
∣
< ε for all x ∈ [a, b],

which clearly indicates the uniform convergence of
∑

fk(x) on [a, b]. ♣

Exercises

1. Determine the convergence of the series
∞∑

k=0

xk.

Solution: It obviously converges to 1/(1 − x) on the interval
[−a, a] if 0 < a < 1. We show that this convergence is uniform on
[−a, a] for any 0 < a < 1. A partial sum yields Sn(x) =

∑n
k=0 x

k =
(1 − xn)/(1 − x), so that

|S(x) − Sn(x)| =
|x|n

|1 − x| ≤ an

1 − a
for |x| ≤ a.

Since 0 < a < 1, the last term decreases monotonically with n;
hence, for a given ε > 0, we can find an N such that n > N ⇒
an/(1 − a) < ε. Clearly the value of N does not depend on x.
Therefore, we conclude that the infinite series

∑
xk is uniformly

convergent on [−a, a] with 0 < a < 1. ♣
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2. Determine the convergence of the series
∞∑

k=0

(1 − x)xk.

Solution: This converges to

S(x) =
{

1, for 0 < x < 1
0, at x = 1

but not uniformly. Actually, we have

|S(x) − Sn(x)| =
{
xn 0 < x < 1
0 x = 1

and if ε = 1/4, for instance, the inequality xn < 1/4 (0 < x < 1)
is false for every fixed n because xn → 1 as x → 1. ♣

3. Examine the uniform convergence of the series
∞∑

k=1

fk(x), where

(i) fk(x) = cos kx
k2 , (ii) fk(x) = sin

(
x
k2

)

, and (iii) fk(x) = 1
k2x2 .

Solution:

(i) The series converges uniformly for every real x. Check this
by taking Mk = 1/k2.

(ii) Let D be a subset of R bounded by c, i.e., |x| ≤ c for all
x ∈ D. Then we have

∣
∣
∣sin
( x

k2

)∣
∣
∣ ≤ x

k2
≤ c

k2
for all x ∈ D.

Taking Mk = c/k2 and noting that
∑

Mk is convergent, we
conclude that

∑
fk is uniformly convergent on any bounded

subset of R. Notably, however, this uniform convergence dis-
appears when we extend the domain D to the whole R. This
is seen by noting that fk → 0 pointwise on R, but

sup
x∈R

|fk(x)| ≥
∣
∣
∣
∣
sin
(
k2π/2
k2

)∣
∣
∣
∣
= 1 �→ 0,

which means that the convergence of (fk) to 0 is not uniform
on R. In view of the theorem in Sect. 3.3.1, therefore, the
series

∑
fk fails to converge uniformly on R.

(iii) The series
∑

k 1/(k2x2) clearly converges pointwise on the
open set R\{0}. Now let c > 0. For all x ∈ R such that |x| > c,
we have |fk(x)| ≤ 1/(k2c2) for all k. Since

∑

k 1/(k2c2) is
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convergent, the series
∑

fk converges uniformly, by the M -
test, on the closed set R\(−c, c) = (−∞,−c] ∪ [c,∞) for all
c > 0. But, although fk → 0 pointwise on R\{0}, we have
supx�=0 |fk(x)| ≥ |fk(1/k)| = 1 �→ 0. Hence, (fk) does not
converge uniformly to 0 on R\{0}, so the series

∑
fk does

not converge uniformly on R\{0}. ♣

3.4 Improper Integrals

3.4.1 Definitions

Suppose that a given function f(x) is integrable on every open subinterval
of (a, b). We try to perform the integration

∫ b

a
f(x)dx under the following

conditions:

1. f(x) is unbounded in a neighborhood of x = a or x = b.
2. The interval (a, b) itself is unbounded.

In Case 1, we define a definite integral,
∫ b

a

f(x)dx = lim
X→b−0

∫ X

a

f(x)dx,

if f(x) is bounded and integrable on every finite interval (a,X) for a < X < b.
Similarly, if f(x) is bounded and integrable on every (X, b) for a < X < b, we
can define

∫ b

a

f(x)dx = lim
X→a+0

∫ b

X

f(x)dx.

These definite integrals are called improper integrals. Straightforward ex-
tensions of these results to Case 2 yields the other improper integrals:

∫ ∞

a

f(x)dx = lim
X→∞

∫ X

a

f(x)dx

and
∫ b

−∞
f(x)dx = lim

X→∞

∫ b

−X

f(x)dx.

Examples 1. The improper integral
∫ ∞

1

dx

x2
has the value 1 since

∫ ∞

1

dx

x2
= lim

A→∞

∫ A

1

dx

x2
.

2. The improper integral
∫ 4

0

dx√
x

has the value 1 since

∫ 4

0

dx√
x

= lim
ε→+0

∫ 4

ε

dx√
x

= lim
ε→+0

2 − √
ε

2
= 1.
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3.4.2 Convergence of an Improper Integral

An improper integral over f(x) is said to converge if and only if the corre-
sponding limit exists. Furthermore, it is said to converge absolutely if and
only if the corresponding improper integral over |f(x)| converges. (Keep in
mind that absolute convergence implies convergence in the ordinary sense.)
A convergent improper integral that does not converge absolutely is condi-
tionally convergent.

An improper integral
∫ b

a
f(x, y)dx converges uniformly on a set S of

values of y if and only if the corresponding limit converges uniformly on S. A
relevant theorem is given below.

♠ Continuity theorem
If f(x, y) is a continuous function, then

∫ b

a
f(x, y)dx is a continuous

function of y in every open interval where the integral converges uniformly.

3.4.3 Principal Value Integral

Suppose that a bounded or unbounded open or closed interval, (a, b) or [a, b],
contains a discrete set of points x = c1, c2, · · · , such that f(x) is unbounded in
a neighborhood of x = ci (i = 1, 2, · · · ). Then, the integral

∫ b

a
f(x)dx may be

defined as a sum of improper integrals, introduced in the previous subsection;
i.e.,

∫ b

a

f(x)dx = lim
X1→a+0

∫ c

X1

f(x)dx+ lim
X2→b−0

∫ X2

c

f(x)dx (a < c < b), (3.32)

∫ b

a

f(x)dx = lim
X1→c−0

∫ X1

a

f(x)dx+ lim
X2→c+0

∫ b

X2

f(x)dx (a < c < b),

(3.33)
∫ ∞

−∞
f(x)dx = lim

X1→∞

∫ c

−X1

f(x)dx+ lim
X2→∞

∫ X2

c

f(x)dx (3.34)

if the limits exists.

Even though the integrals (3.32), (3.33) and (3.34) do not exist, the limits
of integrals

lim
x→∞

∫ X

−X

f(x)dx and lim
δ→0

[
∫ c−δ

a

f(x)dx+
∫ b

c+δ

f(x)dx

]
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may exist. If any of these limits exist, the corresponding integral, (3.32), (3.33)
or (3.34), is necessarily equal to its principal value integral (see Sect. 9.4.1).

3.4.4 Conditions for Convergence

In what follows we give the convergence criteria for improper integrals of the
form

∫ ∞

a

f(x)dx

and
∫ b

a

f(x)dx = lim
X→b−0

∫ X

a

f(x)dx.

We assume that f(x) is bounded and integrable on every bounded interval
(a,X) that does not contain the upper limit of integration.

♠ Cauchy’s test (= necessary and sufficient conditions for conver-
gence):

The improper integral
∫∞

a
f(x)dx converges if and only if for every pos-

itive real number ε, there exists a real number M > a such that

X2 > X1 > M ⇒
∣
∣
∣
∣
∣

∫ X2

X1

f(x)dx

∣
∣
∣
∣
∣
< ε.

Similarly,
∫∞

a
f(x)dx converges if and only if for every positive ε, there

exists a positive δ < b− a such that

b−X2 < b−X1 < δ ⇒
∣
∣
∣
∣
∣

∫ X2

X1

f(x)dx

∣
∣
∣
∣
∣
< ε.

Necessary and sufficient conditions for an improper integral to converge uni-
formly are stated below.

♠ Weierstrass test
The improper integral

∫∞
a

f(x, y)dx [or
∫ b

a
f(x, y)dx] converges uni-

formly and absolutely on every set S of values of y such that |f(x, y)| ≤ g(x)
on the interval of integration, where g(x) is a real comparison function
whose integral

∫∞
a

g(x)dx [or
∫ b

a
g(x)dx, respectively] converges.
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Exercises

1. Show that the integral
∫ ∞

π

sinx
x

dx converges.

Solution: We have
∫ A

π

sinx
x

dx ≤
[
− cosx

x

]A

π

−
∫ A

π

cosx
x2

dx,

so that
∣
∣
∣
∣
∣

∫ A

π

sinx
x

dx

∣
∣
∣
∣
∣
≤ 1
π

+
1
A

+
∫ A

π

dx

x2
=
(

1
π

+
1
A

)

+
(

1
π

− 1
A

)

= 2π.

This completes the proof. ♣

2. Show that
∫ ∞

1

∣
∣
∣
∣

sinx
x

∣
∣
∣
∣
dx diverges.

Solution: It follows that
∫ (n+1)π

nπ

∣
∣
∣
∣

sinx
x

∣
∣
∣
∣
dx =

∫ π

0

sinx
nπ + x

dx >
1

(n+ 1)π

∫ π

0

sinxdx

=
2

(n+ 1)π
>

2
π

∫ n+2

n+1

dx

x
.

Hence, for n > 1 we have
∫ nπ

π

∣
∣
∣
∣

sinx
x

∣
∣
∣
∣
dx >

2
π

∫ n+1

2

dx

x
=

1
π

log(n+ 1) → ∞, (n → ∞). ♣

3. Suppose that f(x) is continuous within an interval (a, b] and diverges at

x = a Prove that
∫ b

a

f(x)dx converges if (x−a)p|f(x)| is bounded on the

interval for 0 < p < 1.

Solution: We assume that there is an appropriate positive num-
ber M such that

(x− a)p|f(x)| < M for all x ∈ (a, b].

Then we obtain
∫ b

a+ε

|f(x)|dx < M

∫ b

a+ε

dx

(x− a)p
= M

[
(x− p)1−p

1 − p

]b

a+ε

=
M

1 − p

[

(b− a)1−p − ε1−p
]

<
M

1 − p
(b− a)1−p

(since 1 − p > 0). (3.35)
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Note that the integral on the left-hand side of (3.35) is mono-
tonically increasing with decreasing ε, since |f(x)| ≥ 0 over the
integration interval. Yet it is bounded from above, as proved in
(3.35). Hence, we conclude that the given integral is convergent
(absolutely). ♣

4. Suppose that f(x) is continuous within [a,∞) and that xp|f(x)| is

bounded there for p > 1. Show that the integral
∫ b

a

f(x)dx converges.

Solution: It follows from hypothesis that there is a positive
number M such that

xp|f(x)| < M for all x ≥ a.

Hence, we have for any X > a,

∫ X

a

|f(x)|dx < M

∫ X

a

dx

xp
=

−M
p− 1

[
1

xp−1

]X

a

<
M

p− 1
1

ap−1
,

which completes the proof. ♣
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Hilbert Spaces

Abstract A Hilbert space is an abstract vector space with the following two prop-
erties: the inner product property (Sect. 4.1.3), which determines the geometry of
the vector space, and the completeness property (Sect. 4.1.6), which guarantees the
self-consistency of the space. Most of the mathematical topics covered in this volume
are based on Hilbert spaces. In particular, Lp spaces and lp spaces (Sect. 4.3), which
are specific classes of Hilbert spaces, are crucial for the formulation of the theories
of orthonormal polynomials, Lebesgue integrals, Fourier analyses, and others, as we
discuss in subsequent chapters.

4.1 Hilbert Spaces

4.1.1 Introduction

This section provides a framework for an understanding of Hilbert spaces.
Plainly speaking, Hilbert spaces are the generalization of familiar finite-
dimensional spaces to the infinite-dimensional case. In fact, the geometric
structure of Hilbert spaces is very similar to that of ordinary Euclidean geom-
etry. This analogy comes from the fact that the concept of orthogonality can
be introduced in any Hilbert space so that the familiar Pythagorean theorem
holds for elements involved in the space. Moreover, owing to its generality,
a large number of problems in physics and engineering can be successfully
treated with a geometric point of view in Hilbert spaces.

As we shall see later, Hilbert spaces are defined as a specific class of vector
spaces endowed with the following two properties: inner product and com-
pleteness. The former property leads to a rich geometric structure and the
latter enables us to describe an element in the space in terms of a set of or-
thonormal bases. These facts result in the possibility of establishing a wide
variety of complete orthonormal sets of functions in Hilbert spaces;
we discussed this point in detail in Sects. 5.1 and 5.2. For a better under-
standing of subsequent discussions, we provide all necessary definitions in
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this section, and then describe several important consequences relevant to an
understanding of the nature of Hilbert spaces.

4.1.2 Abstract Vector Spaces

In order to make this text self-contained, we first give a brief summary of the
definition of vector spaces. A more precise description of vector spaces and
some related matters will be provided in Sect. 4.2.1.

♠ Vector spaces:
A vector space V is a collection of elements called vectors, which we

denote by x,y, · · · , that satisfy the following postulates:
1. There exists an operation (+) on the vectors x and y such that x+y =

y + x, where the resultant quantity y + x also must be a vector.
2. There exists an identity vector (denoted by 0) that yields x+0 = x.
3. For every x ∈ V , there exists a vector αx ∈ V in which α is an arbitrary

scalar (real and complex). In addition,

α(βx) = (αβ)x, 1(x) = x for all x,

α(x + y) = αx + αy, (α+ β)x = αx + βx.

Emphasis is placed on the fact that vector spaces are not limited to a set
of geometric arrows embedded in a Euclidean space (see Sects. 4.1.3 and
19.2.3); rather, they are general mathematical systems that have a specific
algebraic structure. Several examples of such abstract vector spaces are given
below.

Examples 1. The set of all n-tuples of complex numbers denoted by

x = (ξ1, ξ2, · · · , ξn)

forms a vector space if the addition of vectors and the multiplication of a
vector by a scalar are defined by

x + y = (ξ1, ξ2, · · · , ξn) + (η1, η2, · · · , ηn)
= (ξ1 + η1, ξ2 + η2, · · · , ξn + ηn),

αx = α(ξ1, ξ2, · · · , ξn) = (αξ1, αξ2, · · · , αξn).

2. The set of all complex numbers {z} forms a complex vector space (see
Sect. 4.2.1), where z1 + z2 and αz are interpreted as ordinary complex
numerical addition and multiplication,

3. The set of all polynomials in a real variable x, constituting the set
{1, x, x2, x3, · · · }, with complex coefficients is a complex vector space if
vector addition and scalar multiplication are the ordinary addition of two
polynomials and the multiplication of a polynomial by a complex number,
respectively.
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4.1.3 Inner Product

The structure of a vector space is enormously enriched by introducing the
concept of inner product, which enables us to define the length of a vector
in a given vector space or the angle between the two vectors involved.

♠ Inner product:
An inner product is a scalar-valued function of the ordered pair of vectors

x and y such that
1. (x,y) = (y,x)∗.
2. (αx+βy,z) = α∗(x,z)+β∗(y,z), where α and β are certain complex

numbers.
3. (x,x) ≥ 0 for any x; (x,x) = 0 if and only if x = 0.
Here, the asterisk (∗) indicates that one is to take the complex conjugate.

Remark. Vector spaces endowed with an inner product are called inner prod-
uct spaces. In particular, a real inner product space is called a Euclidean
space and a complex inner product space is called a unitary space.

The algebraic properties 1 and 2 are in principle the same as those governing
the scalar product in ordinary vector algebra in a real vector space. The
only property that is not obvious is that in a complex space, the inner product
is not linear, but rather conjugate linear with respect to the first factor, i.e.,

(αx,y) = α∗(x,y).

Examples 1. The simplest, but an important, example of an inner product
space is the space, denoted by C, that consists of a set of complex numbers
{z1, z2, · · · , zn}. For two vectors x = (ξ1, ξ2, · · · ξn) and y = (η1, η2, · · · ηn)
on C, the inner product is defined by

(x,y) =
n∑

i=1

ξ∗i ηi.

2. Suppose that f(x) and g(x) are polynomials in the complex vector space
defined on the closed interval x ∈ [0, 1]. They then constitute an inner
product space under the inner product defined by

(f, g) =
∫ 1

0

f(x)∗g(x)w(x)dx,

where w(x) is a weight function. The weight function becomes impor-
tant when defining the inner product of polynomials, which is treated in
Chap. 5.
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3. If x = [ξ1, ξ2, ξ3, ξ4] and y = [η1, η2, η3, η4] are column four-vectors
having real-valued elements, then the quantity

(x,y) ≡ ξ1η1 + ξ2η2 + ξ3η3 − ξ4η4 (4.1)

satisfies requirements 1 and 2 for an inner product, but not 3 since the
quantity (x,x) is not positive-definite. Thus the entity (4.1) is not an inner
product, but it plays an important role in the theory of special relativity.

For a complex vector space, the inner product is not symmetrical as it is in
a real vector space. That is, (x,y) �= (y,x) but rather (x,y) = (y,x)∗. This
implies that (x,x) is real for every x, so we can define the length of the vector
x by

||x|| = (x,x)1/2.

Since (x,x) ≥ 0, ||x|| is always nonnegative and real. The quantity ||x|| is
referred to as the norm of the vector x. Note also that

||αx|| = (αx, αx)1/2 = [α∗α(x,x)]1/2 = |α| · ||x||.

Remark. Precisely speaking, the quantity ‖x‖ introduced above is a special
kind of norm that is associated with an inner product; in fact, the norm was
originally a more general concept that was independent of the inner product
(see Sect. 4.2.2).

4.1.4 Geometry of Inner Product Spaces

Once a vector space is endowed with an inner product, several important the-
orems that can be easily interpreted in analogy with Euclidean geometry can
be applied. The following three theorems characterize the geometric nature of
inner product spaces (x �= 0 and y �= 0 are assumed; otherwise the theorems
all become trivial).

♠ Schwarz inequality:
For any two elements x and y of an inner product space, we have

|(x,y)| ≤ ‖x‖ ‖y‖. (4.2)

The equality holds if and only if x and y are linearly independent.

Proof From the definition of the inner product, we have

0 ≤ (x + αy,x + αy) = (x,x) + α(x,y) + α∗(y,x) + |α|2(y,y). (4.3)
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Now, set α = −(x,y)/(y,y) and multiply by (y,y) to obtain

0 ≤ (x,x)(y,y) − |(x,y)|2 ,

which gives Schwarz’s inequality.
Next, we prove the statement of the equality in (4.2). If x and y are linearly

dependent, then y = αx for some complex number α so that we have

|(x,y)| = |(x, αx)| = |α|(x,x) = |α|‖x‖ ‖x‖ = ‖x‖ ‖αx‖ = ‖x‖ ‖y‖.

The converse is also true; let x and y be vectors such that |(x,y)| = ‖x‖ ‖y‖,
or equivalently,

|(x,y)|2 = (x,y)(y,x) = (x,x)(y,y) = ‖x‖2 ‖y‖2. (4.4)

Then we set

‖(y,y)x − (y,x)y‖2

= ‖y‖4‖x‖2 + |(y,x)|2 ‖y‖2 − ‖y‖2(y,x)(x,y) − ‖y‖2(y,x)∗(y,x)
= 0, (4.5)

where the postulate (4.4) and the relation (y,x)∗ = (x,y) were used. The
result (4.5) means that

(y,y)x − (x,y)y = 0,

which clearly shows that x and y are linearly dependent, which completes the
proof. ♣

♠ Triangle inequality:
For any two elements x and y of an inner product space, we have

‖x + y‖ ≤ ‖x‖ + ‖y‖.

Proof Setting α = 1 in (4.3), we have

‖x + y‖2 = (x,x) + (y,y) + 2Re(x,y)
≤ (x,x) + (y,y) + 2 |(x,y)|
≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ (by Schwarz′s inequality)

= (‖x‖ + ‖y‖)2 ,

which proves the desired inequality. ♣
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♠ Parallelogram law:
For any two elements x and y of an inner product space, we have

‖x + y‖2 + ‖x − y‖2 = 2
(

‖x‖2 + ‖y‖2
)

.

Proof We have

‖x + y‖2 = (x,x) + (x,y) + (y,x) + (y,y)
= ‖x‖2 + (x,y) + (y,x) + ‖y‖2. (4.6)

Now replace y by −y to obtain

‖x − y‖2 = ‖x‖2 − (x,y) − (y,x) + ‖y‖2. (4.7)

By adding (4.6) and (4.7), we attain our objective. ♣

4.1.5 Orthogonality

One of the most important consequences of having the inner product is being
able to define the orthogonality of vectors. The orthogonality allows us to
establish a set of orthonormal bases that span the inner product space in
question, thus yielding a useful way to analyze both the nature of the space
itself and the relation between the constituents involved in that space.

♠ Orthogonality:
Two vectors x and y in an inner product space are called orthogonal

if and only if (x,y) = 0.

Notably, if (x,y) = 0, then (x,y) = (y,x)∗ = 0 so that (y,x) = 0 as well.
Thus, the orthogonality is a symmetric relation, although the inner product
is not symmetric. Note also that the zero vector 0 is orthogonal to every
vector in the inner product space.

A set of n vectors {x1,x2, · · ·xn} is called orthonormal if (xi,xj) = δij

for all i and j, where δij is the Kronecker delta. That is, the orthonormality
of a set of vectors means that each vector is orthogonal to all the others in
the set and is normalized to unit length.

It follows that any vector x may be normalized by dividing by its length to
form the new vector x/||x|| with unit length. An example of an orthonormal
set of vectors is the set of three unit vectors, {ei} (i = 1, 2, 3), for the three-
dimensional Cartesian space.

The following theorem is important in various fields of mathematical
physics.
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♠ Theorem:

An orthonormal set is linearly independent.

(Proof of the theorem is given in Exercise 1). Importantly, the above theorem
suggests that any orthonormal set serves as a basis for an inner product space
of interest (see Sect. 4.2.5). Below is another consequence of the orthonormal
set of vectors; its proof is given in Exercise 2.

♠ Bessel inequality:

If {x1,x2, · · · ,xn} is a set of orthonormal vectors and x is any vector
defined in the same inner product space, then

||x||2 ≥
∑

i

|ri|2, (4.8)

where ri = (xi,x). Furthermore, the vector x′ = x−
∑

i rixi is orthogonal
to each xj .

4.1.6 Completeness of Vector Spaces

Having described features of inner product spaces, we turn now to an-
other important concept relevant to the nature of Hilbert spaces, i.e., com-
pleteness. When a vector space is finite dimensional, the completeness
of an orthonormal set involved in the space may be characterized by the
fact that it is not contained in any larger orthonormal set. (This is intu-
itively understood by considering the Cartesian basis ei (i = 1, 2, 3) in a
three-dimensional Euclidean space.) When considering an infinite-dimensional
space, however, the completeness must be determined via the Cauchy cri-
terion, which we discussed in Sect. 2.2. The following is a preliminary
definition

♠ Cauchy sequence of vectors:
A sequence {x1,x2, · · · } of vectors is called a Cauchy sequence of

vectors if for any positive ε > 0, there exists an appropriate number N
such that ‖xm − xn‖ < ε for all m,n > N .

In plain words, a sequence is a Cauchy sequence if the terms xm and xn in
the sequence come closer and closer to each other as m,n → ∞
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♠ Convergence of a sequence of vectors:
A sequence {x1,x2, · · · } is said to be convergent if there exists an ele-

ment x such that ‖xn − x‖ → 0.

♠ Completeness of a vector space:

If every Cauchy sequence in a space is convergent, we say that the space
is complete.

Remark. Here the norm ‖x‖ = (x,x)1/2 associated with an inner product is
employed to define a Cauchy sequence, since we are focusing on inner product
spaces. However, the concepts of Cauchy sequence and completeness both
apply to more general vector spaces in which even a norm is unnecessary (see
Sect. 4.1.6 for details).

4.1.7 Several Examples of Hilbert Spaces

Now we are ready to define Hilbert spaces.

♠ Hilbert space:

If an inner product space is complete, it is called a Hilbert space.

Examples 1. Column-vector spaces with n real and complex components,
denoted by Rn and Cn, respectively, are finite-dimensional Hilbert spaces
if endowed with an inner product (x,y) ≡

∑n
i=1 x

∗
i yi. Completeness can

be proved using the Bolzano–Weierstrass theorem (see Appendix A).
2. Assume an infinite-dimensional vector x = (x1, x2, · · · ), where xi is a real

or complex number satisfying the condition

∞∑

i=1

|xi|2 < ∞.

Then, vector spaces spanned by a set of vectors {x}, called �2 spaces (see
Sect. 4.3), are Hilbert spaces under the inner product

(x,y) =
∞∑

i=1

x∗i yi.

Completeness will be proved in Sect. 4.3.1.



4.1 Hilbert Spaces 81

4. Assume a set of square-integrable functions f(x) expressed by

∫ b

a

|f(x)|2dx < ∞.

Then, the collection of all square-integrable functions, called the L2 space,
is a Hilbert space endowed with the inner product

(f, g) =
∫ b

a

f(x)∗g(x)dx. (4.9)

Completeness will be proved given in Sect. 4.3.2.

5. Finally we show an example of an incomplete inner product space. Assume
the following sequence of real-valued continuous functions {f1(x), f2(x), · · · },
each of which is defined within the interval [0, 1]:

fn(x) =

⎧

⎪⎪⎨

⎪⎪⎩

1, for 0 ≤ x ≤ 1
2 ,

1 − 2n
(

x− 1
2

)

for 1
2 ≤ x ≤ 1

2n + 1
2 ,

0, for 1
2n + 1

2 ≤ x ≤ 1.

(4.10)

The graphs of fn(x) for n = 1, 2, 3 are given in Fig. 4.1. After some
algebra, we obtain

‖fn(x) − fm(x)‖ =
[∫ 1

0

(fn − fm)2 dx
]1/2

=
(

1 − n

m

)
√

1
6n

→ 0 as m,n → ∞ (m > n).

y

x0 11/2

n    =    1

2

3

1

Fig. 4.1. The function fn(x) given in (4.10). The sequence {fn(x)} converges to a
step function in the limit of n → ∞
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Thus, {fn} is a Cauchy sequence owing to the inner product given by
(4.9). However, this sequence converges to the limit function

f(x) =

{

1 if 0 ≤ x ≤ 1
2 ,

0 if 1
2 ≤ x ≤ 1,

which is not continuous and, hence, is not an element of the original inner
product space. Consequently, the sequence is not complete, and thus is
not a Hilbert space.

Exercises

1. Show that an orthonormal set is linearly independent.
Solution: Recall that a set of vectors {x1,x2, · · ·xn} is said to
be linearly independent if and only if

n∑

i=1

αixi = 0 ⇒ αi = 0 for all i.

Now suppose that a set {x1,x2, · · · ,xn} is orthonormal and sat-
isfies the relation

∑

i αixi = 0. Then, for any j, the orthonormal
condition (xi,xj) = δij results in

0 =

(

xj ,

n∑

i=1

αixi

)

=
n∑

i=1

αi(xj ,xi) =
∑

i

αiδij = αj .

Therefore, the set is linearly independent. ♣

2. Show the Bessel inequality for x given by 4.8 and the orthogonality of the
vector x′ = x −

∑

i rixi to each xj .

Solution: We consider the inequality

0 ≤ ||x′||2 = (x′,x′) =

⎛

⎝x −
n∑

i=1

rixi, x −
n∑

j=1

rjxj

⎞

⎠

= (x,x) −
n∑

i=1

r∗i (xi,x) −
n∑

j=1

rj(x,xj) +
n∑

i,j=1

r∗i rj(xi,xj)

= ||x||2 −
n∑

i=1

|ri|2 −
n∑

j=1

|rj |2 +
n∑

j=1

|rj |2

= ||x||2 −
n∑

i=1

|ri|2.
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Thus we have ||x||2 ≥
∑

i |ri|2. The second part of the theorem is
proven by

(x′,xj) = (x,xj) −
∑

i

r∗i (xi,xj) = r∗j − r∗j = 0. ♣

4.2 Hierarchical Structure of Vector Spaces

4.2.1 Precise Definitions of Vector Spaces

In this section, we look at the hierarchical structure of abstract vector spaces.
We will find that the Hilbert spaces that we have considered form a very
limited, special class of general vector spaces under strict conditions. We begin
with an exact definition of vector spaces.

♠ Vector spaces:

A vector space V is a set of elements x (called vectors) that satisfy the
following sets of axioms:

1. V is a commutative group under addition:
(i) x + y = y + x ∈ V forany x,y ∈ V (closedness).
(ii) x + (y + z) = (x + y) + z (associativity).
(iii) There exists an addition identity, the zero vector 0, for every x ∈ V

such that x + 0 = x.
(iv) There exists an additive inverse −x for every x ∈ V such that

x + (−x) = 0.

2. V satisfies the following additional axioms with respect to a number
field F , whose elements α are called scalars:
(i) V is closed under scalar multiplication:

αx ∈ V for arbitrary x ∈ V and α ∈ F .

(ii) Scalar multiplication is distributive with respect to elements of both
V and F :

α(x + y) = αx + αy, (α+ β)x = αx + βx.

(iii) Scalar multiplication is associative: α(βx) = β(αx).
(iv) Multiplication with the zero scalar 0 ∈ F gives the zero vector such

that 0x = 0 ∈ V .
(v) The unit scalar 1 ∈ F has the property that 1x = x.

In these definitions, F is either the set of real numbers, R, or the set of
complex numbers, C. A vector space over R is called a real vector space.
If F = C, then V is a complex vector space.
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4.2.2 Metric Space

Once a vector space is endowed with the concept of a distance between the
elements, say, x ∈ V and y ∈ V , it is called a metric space.

♠ Metric space:

Assume a vector space V . A metric space is the pair (V, ρ) in which the
function ρ : V × V → R, called the distance function, is a single-valued,
nonnegative, real function that satisfies:

1. ρ(x,y) = 0 if and only if x = y.
2. ρ(x,y) = ρ(y,x).
3. ρ(x,y) ≤ ρ(x,z) + ρ(z,y) for any z ∈ V .

Remark. Strictly speaking, the above is called a metric vector space as a subset
of more general metric spaces. The latter consists of a pair (U, ρ), where U is
a set of points (not necessarily vectors) and ρ is a distance function. If U is a
vector space V , then (V, ρ) is called a metric vector space.

Examples 1. If we set

ρ(x,y) =
{

0 if x = y,
1 if x �= y

for arbitrary x,y ∈ V , we obtain a metric space.

2. The set of real numbers R with the distance function ρ(x, y) = |x − y|
forms a metric space.

3. The set of ordered n-tuples of real numbers x = (x1, x2, · · · , xn) with the
distance function

ρ(x,y) =

[
n∑

i=1

(xi − yi)
2

]1/2

is a metric space. This is in fact the Euclidean n-space, denoted by Rn.

4. Consider again the set of ordered n-tuples of real numbers x = (x1,
x2, · · · , xn) with an alternative distance function:

ρ(x,y) = max [|xi − yi| ; 1 ≤ i ≤ n] .

This also serves as a metric space. The validity of Axioms 1–3 mentioned
above is obvious.

Comparison between Examples 3 and 4 tells us that the same vector space
V can be metrized in different ways. These two examples call attention
to the importance of distinguishing a metric space (V, ρ) from the vector
space V .
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4.2.3 Normed Spaces

A metric space is said to be normed if for each element x ∈ V there is a
corresponding nonnegative number ‖x‖, which is called the norm of x.

♠ Normed space:

A metric space equipped with a norm is called a normed space. The
norm is defined as a real-valued function (denoted by ‖ ‖) on a vector space
V , which satisfies

1. ‖λx‖ = |λ|‖x‖ for all λ ∈ F and x ∈ X.
2. ‖x + y‖ ≤ ‖x‖ + ‖y‖.
3. ‖x‖ = 0 if and only if x = 0.

Obviously, a normed space is a metric space under the definition of the dis-
tance ρ(x,y) = ‖x − y‖.

Examples 1. The space consisting of all n-tuples of real numbers: x =
(x1, x2, · · · , xn) in which the norm is defined by

‖x‖ =

(
n∑

i=1

x2
i

)1/2

is a normed space.
2. The space above can be normed by a more general form:

‖x‖ =

(
n∑

i=1

xp
i

)1/p

(p ≥ 1).

This norm is referred to as a p-norm of the vector x.
3. We further obtain an alternative normed space if we set the norm of the

vector x = (x1, x2, · · · , xn) equal to the max {|xk|; 1 ≤ k ≤ n}.
4. The collection of all continuous functions defined on the closed interval

[a, b] in which
‖f(x)‖ ≡ max{|f(x)| : x ∈ [a, b]}

is a normed space.
5. The space consisting of all sequences x = (x1, x2, · · · , xn) of real numbers

that satisfy the condition limn→∞ xn = 0 is a normed space if we set

‖x‖ = max{|xk| : 1 ≤ n ≤ ∞}.
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4.2.4 Subspaces of a Normed Space

A class of normed spaces involves the following two subclasses: one endowed
with completeness and the other with the inner product. The normed spaces
of the former class, i.e., a class of complete normed vector spaces, are called
Banach spaces.

♠ Banach space:

If a normed space is complete, it is called a Banach space.

Here, the completeness of a space implies that every Cauchy sequence in the
space is convergent. Refer to the arguments in Sect. 4.1.6 for details.

Remark. Every finite-dimensional normed space is a Banach space, since it is
necessarily complete.

Examples 1. Suppose that a set of infinite-dimensional vectors x = (x1, x2, · · · ,
xn,· · · ) satisfies the condition

∞∑

i=1

|xi|p < ∞, (p ≥ 1).

Then, this set is a Banach space, called an �p space, under the p-norm
defined by

‖x‖p =

( ∞∑

i=1

|xi|p
)1/p

. (4.11)

The proof of its completeness is given in Sect. 4.3.1.
2. Assume a set of functions f(x) expressed by

∫ b

a

|f(x)|pdx < ∞.

Then, this set constitutes a specific class of Banach spaces, called an Lp

spaces, under the p-norm:

‖f‖p =

(
∫ b

a

|f(x)|pdx
)1/p

. (4.12)

Completeness is proved in Sect. 4.3.2.

Now we focus on the counterpart, i.e., a noncompleted normed space endowed
with an inner product known as a pre-Hilbert space.
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♠ Pre-Hilbert space:

If a normed space is equipped with an inner product (not necessarily
complete), then it is called a pre-Hilbert space.

Finally, we are at a point at which we can appreciate the definition of Hilbert
spaces. They are defined as the intersection between Banach spaces and pre-
Hilbert spaces as stated below

♠ Hilbert space:

A complete pre-Hilbert space, i.e., a complete normed space endowed
with an inner product is called a Hilbert space.

Examples The �p spaces and Lp spaces with p = 2, known as the �2 spaces
and L2 spaces, are Hilbert spaces. The inner product of each space, respec-
tively, is given by

(x,y) =
∞∑

i=1

xiyi and (f, g) =
∫ b

a

f∗(x)g(x)dx. (4.13)

Remark. Clearly the quantities (x,x)1/2 and (f, f)1/2, defined through the
inner products (4.13), are special cases of the p-norm given by (4.11) and
(4.12), respectively, with p = 2. In fact, for the �2 and L2 spaces, the inner
products are defined such that

(x,x) = ‖x‖2 and (f, f) = ‖f‖2.

However, for �p and Lp spaces with p �= 2, we cannot introduce inner products
as

(x,x) = (‖x‖p)
p and (f, f) = (‖f‖p)

p

because unless p = 2 the p-norm violates the parallelogram law. Accordingly,
among the family of �p and Lp, only the spaces �2 and L2 can be Hilbert
spaces because they have an inner product.

4.2.5 Basis of a Vector Space: Revisited

For use in Sect. 4.2.6, we briefly review the definition of a basis in a finite-
dimensional vector space and related matters.
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♠ Linearly independent vector:

A finite set of vectors, say, e1,e2, · · · ,en is linearly independent if
and only if

∑

i

cie
n
i=1 = 0 ⇐⇒ ci = 0 for all i. (4.14)

This definition applies to infinite sets of vectors e1,e2, · · · if the vector space
under consideration admits a definition of convergence (see Sect. 4.2.6 for
details).

♠ Basis of a vector space:

A basis of the vector space V is a set of linearly independent vectors
{ei} of V such that every vector x of V can be expressed as

x =
n∑

i=1

αiei. (4.15)

Here, the numbers α1, α2, · · · , αn are coordinates of the vector x with
respect to the basis, and they are uniquely determined owing to the linear
independence property.

Therefore, every set of n linearly independent vectors is a basis in a finite-
dimensional vector space spanned by n vectors. The number n is called the di-
mension of the vector space. Obviously, an infinite-dimensional vector space
does not admit a finite basis, which is why it is called infinite-dimensional.

4.2.6 Orthogonal Bases in Hilbert Spaces

For any vector space (finite- or infinite-dimensional), a set of orthogonal vec-
tors {xn} is called an orthogonal basis if it is complete. Similarly, a com-
plete orthogonal set of vectors is called an orthonormal basis if the norm
‖xn‖ = 1 for all n. It is convenient to use orthonormal bases in studying
Hilbert spaces, since any vector in the space can be decomposed into a linear
combination of orthonormal bases. However, when we choose some basis for
an infinite-dimensional space, some care must be taken to examine its com-
pleteness property; i.e., an infinite sum of vectors in a vector space may or
may not be convergent to the identical vector space.

To examine this point, let us consider an infinite set {ei} (i = 1, 2, · · · ) of
orthonormal vectors all belonging to a Hilbert space V . We take any vector
x ∈ V and form the set of vectors

xn =
n∑

i=1

ciei, (4.16)
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where the complex number ci is the inner product of ei and x expressed by

ci = (ei,x).

For the pair of vectors x and xn, the Schwarz inequality (4.2) gives

|(x,xn)|2 ≤ ‖x‖2 ‖xn‖2 = ‖x‖2

(
n∑

i=1

|ci|2
)

. (4.17)

On the other hand, taking the inner product of (4.16) with x yields

(x,xn) =
n∑

i=1

ci (x,ei) =
n∑

i=1

|ci|2 . (4.18)

From (4.17) and (4.18), we have

n∑

i=1

|ci|2 ≤ |x|2 .

This conclusion is true for arbitrarily large n and can be stated as shown
below.

♠ Bessel inequality:

Let {ei} (i = 1, 2, · · · ) be an infinite set of orthonormal vectors in a
Hilbert space V . Then for any x ∈ V with ci = (ei,x), we have

∞∑

i=1

|ci|2 ≤ ‖x‖2,

which is known as the Bessel inequality.

The Bessel inequality shows that the limiting vector

lim
n→∞

n∑

i=1

ciei ≡
∞∑

i=1

ciei (4.19)

has a finite norm, which means that the vector (4.19) is convergent. However,
we still do not know whether it converges to x. To make such a statement, the
set {ei} should be equipped with the completeness property defined below.

♠ Complete orthonormal vectors:

An infinite set of orthonormal vectors {ei} in a Hilbert space V is called
complete if the only vector in V that is orthogonal to all the ei is the zero
vector.
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The following is an immediate consequence of the above statement.

♠ Parseval identity:

Let {ei} be an infinite set of orthonormal vectors in a Hilbert space V .
Then for any x ∈ V ,

{ei} is complete

⇐⇒ ‖x‖2 =
∞∑

i=1

|ci|2 with ci = (ei,x). (4.20)

Proof Suppose that the set {ei} is complete and consider the vector defined
by

y = x −
∞∑

i=1

ciei,

where x ∈ V and ci = (ei,x). It follows that for any ej ,

(ej ,y) = (ej ,x) −
∞∑

i=1

ci (ej ,ei) = cj −
∞∑

i=1

ciδji = 0. (4.21)

In view of the definition of the completeness of {ei}, (4.21) means that y is
the zero vector. Hence, we have

x =
∞∑

i=1

ciei,

which implies

‖x‖2 =
∞∑

i=1

|ci|2.

We now consider the converse. Suppose x to be orthogonal to all the {ei},
which means

(ei,x) = ci = 0 for all i. (4.22)

It follows from (4.20) to (4.22) that ‖x‖2 = 0, which in turn gives x =
0, because only the zero vector has a zero vector. This completes the
proof. ♣

We close this section by providing precise terminology for the basis of a Hilbert
space.
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♠ Basis of a Hilbert space:

A complete orthonormal set {ei} (i = 1, 2, · · · ) in a Hilbert space V is
called a basis of V .

Remark.

1. The concept of completeness of an orthonormal set of vectors is distinct
from the concept of completeness of the Hilbert space, but they are mu-
tually related.

2. In order to define generalized Fourier coefficients ci = (ei,x) for
x ∈ V (see Sect. 4.3.4), it suffices for the set {ei} to be only orthonormal,
nor necessarily complete.

4.3 Hilbert Spaces of �2 and L2

4.3.1 Completeness of the �2 Spaces

In this subsection, we examine the completeness property of the space �2 on
the field F (here F = R or C). As already noted, the completeness of a given
vector space V is characterized by the fact that every Cauchy sequence (xn)
involved in the space converges to an element x ∈ V such that limn→∞ ‖x −
xn‖ = 0. Hence, to prove the completeness of the �2 space, we show in turn
that (1) every Cauchy sequence (xn) in the �2 space converges to a limit x,
and (2) the limit x belongs to �2.

We consider Statement (1). Assume a set of infinite-dimensional vectors

x(n) =
(

x
(n)
1 , x

(n)
2 , · · ·

)

,

wherein x(n)
i ∈ F , and let the sequence of vectors

{

x(1),x(2), · · ·
}

be a Cauchy
sequence in the sense of the norm

‖x‖ =

( ∞∑

i=1

|xi|2
)1/2

< ∞.

Then, for any ε > 0, there exists an integer N such that

m,n > N ⇒
∥
∥
∥x(m) − x(n)

∥
∥
∥ =

( ∞∑

i=1

∣
∣
∣x

(m)
i − x

(n)
i

∣
∣
∣

2
)1/2

< ε. (4.23)



92 4 Hilbert Spaces

This implies that ∣
∣
∣x

(m)
i − x

(n)
i

∣
∣
∣ < ε (4.24)

for every i and every m,n > N . Furthermore, since (4.23) is true in the limit
m → ∞, we find ∥

∥
∥x − x(n)

∥
∥
∥ < ε (4.25)

for arbitrary n > N . The inequalities (4.24) and (4.25) mean that x(n) con-
verges to the limiting vector expressed by x ≡ (x1, x2, · · · ), in which the
component xi ∈ F is defined by

xi = lim
n→∞

x
(n)
i . (4.26)

(That the limit (4.26) belongs to F is guaranteed by the completeness of F .)
The remaining task is to show that the limiting vector x belongs to the

original space �2. By the triangle inequality, we have

‖x‖ =
∥
∥
∥x − x(n) + x(n)

∥
∥
∥ ≤

∥
∥
∥x − x(n)

∥
∥
∥+

∥
∥
∥x(n)

∥
∥
∥ .

Hence, for every n > N and for every ε > 0, we obtain

‖x‖ < ε+
∥
∥
∥x(n)

∥
∥
∥ .

As the Cauchy sequence (x(1),x(2), · · · ) is bounded, ‖x‖ cannot be greater
than

ε+ lim sup
i→∞

∥
∥
∥x(i)

∥
∥
∥

and is therefore finite. This implies that the limit vector x belongs to �2(F ).
Consequently, we have proven that the space �2(F ) is complete.

Remark. Among the various kinds of Hilbert spaces, the space �2 has a sig-
nificant importance in mathematical physics, mainly because it provides the
groundwork for the theory of quantum mechanics. In fact, any element x of
the space �2 satisfying the normalized conditions ‖x‖ =

∑∞
i=1 |xi|2 = 1 works

as a possible state vector of quantum systems. In the Heisenberg formula-
tion of quantum mechanics, the infinite-dimensional matrices corresponding
to physical observables act on these state vectors.

4.3.2 Completeness of the L2 Spaces

We next consider another important class of Hilbert spaces, called L2 spaces,
which are spanned by square-integrable functions {fn(x)} on a closed interval,
say [a, b]. To prove the completeness of the L2 space, we show that every
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Cauchy sequence {fn} in the L2 space converges to a limit function f(x), and
then verify that the f belongs to L2.

Let {f1(x), f2(x), · · · } be a Cauchy sequence in L2. Then for any small
ε > 0, we can find an integer N such that

m,n > N ⇒ ‖fn − fm‖ =

√
∫ b

a

|fn(x) − fm(x)|2 dx < ε.

Then, it is always possible to find an integer n1 such that

n > n1 ⇒ ‖fn1(x) − fn(x)‖ < 1
2
.

By mathematical induction, after finding nk−1 > nk−2, we find nk > nk−1

such that

n > nk ⇒ ‖fn(x) − fnk
(x)‖ <

(
1
2

)k

.

In this way, we obtain a sequence (fnk
) that is a subsequence such that

‖fnk+1(x) − fnk
(x)‖ <

(
1
2

)k

for k = 1, 2, · · · ,

or equivalently,

‖fn1‖ +
∞∑

k=1

‖fnk+1 − fnk
‖ < ‖fn1‖ +

∞∑

k=1

(
1
2

)k

= ‖fn1‖ + 1 ≡ A,

where A is a finite constant. Let

gk = |fn1 | + |fn2 − fn1 | + · · · + |fnk+1 − fnk
| (k = 1, 2, · · · ).

Then, by the Minkowski inequality, we have

∫ b

a

[gk(x)]2 dx =
∫ b

a

[

|fn1 | + |fn2 − fn1 | + · · · + |fnk+1 − fnk
|
]2
dx

≤
(

‖fn1‖ +
k∑

i=1

∥
∥fni+1 − fni

∥
∥

)2

≤ A2 < ∞. (4.27)

Let g(x) = lim gk(x). Then [g(x)]2 = lim[gk(x)]2, and

∫ b

a

[g(x)]2dx =
∫ b

a

lim
k→∞

[gk(x)]2 dx = lim
k→∞

∫ b

a

[gk(x)]2 dx. (4.28)
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[See the remark below for the interchangeability of the limit and integral signs
in (4.28).] It follows from (4.27) and (4.28) that

∫ b

a

[g(x)]2dx < ∞,

or equivalently,
∫ b

a

(

|fn1 | +
∞∑

k=1

∣
∣fnk+1 − fnk

∣
∣

)2

dx < ∞.

This implies that the infinite sum

‖fn1‖ +
∞∑

k=1

‖fnk+1 − fnk
‖ (4.29)

converges to a function, denoted by f ∈ L2, in the sense of the norm in L2.
We next show that the limit function f(x) expressed by (4.29) is an element

of L2 such as
‖fn(x) − f(x)‖ → 0 (n → ∞). (4.30)

We first note that

f(x) − fnj
(x) =

∞∑

k=j

[

fnk+1 − fnk
(x)
]

.

It follows that
∥
∥f − fnj

∥
∥ ≤

∞∑

k=j

∥
∥fnk+1 − fnk

∥
∥ <

∞∑

k=j

(
1
2

)k

=
1

2j−1
,

so we have
lim

j→∞

∥
∥f − fnj

∥
∥ = 0.

Observe that
‖fn − f‖ ≤ ‖fn − fnk

‖ + ‖fnk
− f‖ ,

where ‖fn − fnk
‖ → 0 as n → ∞ and k → ∞; thus

lim
n→∞

‖fn − f‖ = 0,

which shows that the Cauchy sequence (fn) converges to f ∈ L2.

Remark. The interchangeability of limit and integral signs in (4.28) is justified
by the following three facts:

(i) The sequence ([gk(x)]2) is a sequence of square-integrable functions in
[a, b],

(ii) [gk(x)]2 ≥ 0 for all k, and
(iii) The integral

∫ b

a
[gk]2dx for each k has a common bound A2 as shown in

(4.27). The proof of this point is based on the theory of the Lebesgue
integral, which we discuss in Chap. 6.
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4.3.3 Mean Convergence

Before proceeding, comments on a new class of convergence that is relevant
to the argument on the completeness of the L2 space are in place. Observe
that the expression (4.30) is rephrased in the following sentence: For any small
ε > 0, it is possible to find N such that

n > N ⇒ ‖f(x) − fn(x)‖ < ε. (4.31)

Hence, we can say that the infinite sequence (fn) converges to f(x) in the norm
of the L2 space. Convergence of the type (4.31) is called the convergence
in the mean or the mean convergence, which is inherently different from
the uniform convergence and the pointwise convergence. The point is the fact
that in the mean convergence, the quantitative deviation between fn(x) and
f(x) is measured not by the difference f(x) − fn(x), but by the norm in the
L2 space based on the integration procedure:

‖f(x) − fn(x)‖ =

[
∫ b

a

|f(x) − fn(x)dx|2 dx
]1/2

.

Hence, when f(x) is convergent in the mean to fn(x) on the interval [a, b],
there may exist a finite number of isolated points such that f(x) �= fn(x).
Obviously, this situation is not allowed in cases of uniform or pointwise con-
vergence.

4.3.4 Generalized Fourier Coefficients

Having clarified the completeness property of the two specific Hilbert spaces,
�2 and L2, we introduce two important concepts: generalized Fourier co-
efficients and generalized Fourier series. We shall see that they play a
crucial role in revealing the close relationship between the two distinct Hilbert
spaces �2 and L2.

♠ Generalized Fourier coefficients:

Suppose that a set of square-integrable functions {φi} is orthonormal
(not necessarily complete) in the norm of the L2 space. Then, the numbers

ck = (f, φk) (4.32)

are called the Fourier coefficients of the function f ∈ L2 relative to the
orthonormal set {φi}, and the series

∞∑

k=1

ckφk (4.33)

is called the Fourier series of f with respect to the set {φi}.



96 4 Hilbert Spaces

Remark.

1. In general, the Fourier series shown in (4.33) may or may not be con-
vergent; its convergence property is determined by the features of the
functions f and the associated orthonormal set of functions {φk}.

2. Some readers may be familiar with the Fourier series associated with
trigonometric functions or imaginary exponentials. Notably, however, the
concepts of Fourier series and Fourier coefficients introduced above are
more general concepts than those associated with trigonometric series.

The importance of the Fourier coefficients (4.32) becomes apparent when we
see that they consist of the �2 space. In fact, since ck is the inner product of
f and φk, it yields the Bessel inequality in terms of ck and f :

∞∑

k=1

|ck|2 ≤ ‖f‖. (4.34)

From the hypothesis of f ∈ L2, the norm ‖f‖ remains finite. Hence, the
inequality (4.34) ensures the convergence of the infinite series

∑∞
k=1 |ck|2,

which consists of the Fourier coefficients defined by (4.32). This convergence
means that the sequence of Fourier coefficients {ck} is an element of the space
�2, whichever orthonormal set of functions φk(x) we choose. In this context,
the two elements f ∈ L2 and c = (c1, c2, · · · ) ∈ �2 are connected via the
Fourier coefficient (4.32).

4.3.5 Riesz–Fisher Theorem

Recall that every Fourier coefficient satisfies the Bessel inequality (4.34).
Hence, in order for a given set of complex numbers (ci) to constitute the
Fourier coefficients of a function f ∈ L2, it is necessary that the series

∞∑

k=1

|ck|2

converge. As a matter of fact, this condition is not only necessary, but also
sufficient as stated in the theorem below.

♠ Riesz–Fisher theorem:

Given any set of complex numbers (ci) such that

∞∑

k=1

|ck|2 < ∞, (4.35)

there exists a function f ∈ L2 such that
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ck = (f, φk) and
∞∑

k=1

|ck|2 = ‖f‖2, (4.36)

where {φi} is a complete orthonormal set.

Proof Set linear combinations of φk(x) as

fn(x) =
n∑

k=1

ckφk(x), (4.37)

where the ck are arbitrary complex numbers satisfying condition (4.35). Then,
for a given integer p ≥ 1, we obtain

‖fn+p − fn‖2 = ‖cn+1φn+1 + · · · + cn+pφn+p‖2 =
n+p
∑

k=n+1

|ck|2 . (4.38)

Let p = 1 and n → ∞. Then, from condition (4.35), we have

‖fn+1 − fn‖ = |cn+1|2 → 0 (n → ∞).

This tells us that the infinite sequence {fn} defined by (4.37) associated with a
given set of complex numbers {ci} always converges in the mean to a function
f ∈ L2.

Our remaining task is to show that this limit function f(x) satisfies con-
dition (4.36), so we consider the inner product

(f, φi) = (fn, φi) + (f − fn, φi), (4.39)

where we assume n ≥ i. It follows from (4.37) that the first term on the
right-hand side is equal to ci. The second term vanishes as n → ∞, since

|(f − fn, φi)| ≤ ‖f − fn‖ · ‖φi‖ → 0 (n → ∞),

where we used the mean convergence of {fn} to f . In addition, the left-hand
side of (4.39) is independent of n. Hence, taking the limit n → ∞ on both
sides of (4.39), we obtain

(f, φi) = ci, (4.40)

which means that ci is the Fourier coefficient of f relative to φi. From our
assumption, the set {φi} is complete and orthonormal. Hence, the Fourier
coefficients (4.40) satisfy the Parseval identity:

∞∑

k=1

|ck|2 = ‖f‖2. (4.41)

The results (4.40) and (4.41) are identical to condition (4.36), thus proving
the theorem. ♣
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4.3.6 Isomorphism between �2 and L2

The Riesz–Fisher theorem results immediately in the isomorphism between
the Hilbert spaces L2 and �2. An isomorphism is a one-to-one correspondence
that preserves the entire algebraic structure. For instance, two vector spaces
U and V (over the same number field) are isomorphic if there exists a one-to-
one correspondence between the vectors xi in U and yi in V , say yi = f(xi),
such that

f (α1x1 + α2x2) = α1f(x1) + α2f(x2).

The isomorphism between L2 and �2 is closely related to the theory
of quantum mechanics, which originally consisted of two distinct theories:
Heisenberg’s matrix mechanics, based on infinite-dimensional vectors, and
Schrödinger’s wave mechanics, based on square-integrable functions. From the
mathematical point of view, the difference between the two theories reduces
to the fact that the former uses the space �2, whereas the latter uses the space
L2. Hence, the isomorphism between the two spaces verifies the equivalence
of the two theories describing the nature of quantum mechanics.

Let us prove the above point. Choose an arbitrary complete orthonor-
mal set {φn} in L2 and assign to each function f ∈ L2 the sequence
(c1, c2, · · · , cn, · · · ) of its Fourier coefficients with respect to this set. Since

∞∑

k=1

|ck|2 = ‖f‖2 < ∞,

the sequence (c1, c2, · · · , cn, · · · ) is an element of �2. Conversely, in view of
the Riesz–Fisher theorem, for every element (c1, c2, · · · , cn, · · · ) of �2 there
is a function f(x) ∈ L2 whose Fourier coefficients are c1, c2, · · · , cn, · · · . This
correspondence between the elements of L2 and �2 is one-to-one. Furthermore,
if

f(x) ←→ (c1, c2, · · · , cn, · · · )
and

g(x) ←→ (d1, d2, · · · , dn, · · · ),
then

f(x) + g(x) ←→ (c1 + d1, · · · , cn + dn, · · · )
and

kf(x) ←→ (kc1, kc2, · · · , kcn, · · · ),
which readily follows from the definition of Fourier coefficients (the reader
should prove it). That is, addition and multiplication by scalars are preserved
by the correspondence. Furthermore, in view of Parseval’s identity, it follows
that

(f, g) =
∞∑

i=1

c∗i di. (4.42)
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All of these facts ensure the isomorphism between the spaces L2 and �2,
i.e., the one-to-one correspondence between the elements of L2 and �2 that
preserves the algebraic structures of the space. In this context, we may say
that every element {ci} in an �2 space serves as a coordinate system of the L2

space, and vice versa.

Exercises

1. Prove the inequality
∞∑

k=1

|ck|2 ≤ ‖f‖ given in (4.34).

Solution: Suppose a partial sum Sn(x) =
∑n

k=1 αkφk(x), where
αk is a certain number (real or complex). Since the set {φi} is
orthonormal,

‖f(x) − Sn(x)‖2 =

⎛

⎝f −
n∑

j=1

αjφj(x), f −
n∑

k=1

αkφk(x)

⎞

⎠

= ‖f‖2 −
n∑

k=1

|ck|2 +
n∑

k=1

(αk − ck)2 . (4.43)

The minimum of (4.43) is assumed if αk = ck. In that case, the
equation (4.43) reads

‖f(x) −
n∑

k=1

ckφk(x)‖2 = ‖f‖2 −
n∑

k=1

|ck|2,

which implies
∑n

k=1 |ck|2 ≤ ‖f‖2. Since the right-hand side is
independent of n, the value of n can be taken arbitrarily large.
Hence, by taking the limit n → ∞, we attain the desired result:
∑∞

k=1 |ck|2 ≤ ‖f‖2. ♣

2. Verify the equation (f, g) =
∞∑

i=1

c∗i di given in (4.42).

Solution: This equality is verified because of the relations
(f, f) =

∑∞
i=1 |ci|2 and (g, g) =

∑∞
i=1 |di|2, and their conse-

quences:

(f + g, f + g) = (f, f) + 2(f, g) + (g, g) =
∞∑

i=1

|ci + di|2

=
∞∑

i=1

|ci|2 + 2
∞∑

i=1

c∗i di +
∞∑

i=1

|di|2 . ♣
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Orthonormal Polynomials

Abstract The theory of Hilbert spaces we dealt with in Chap. 4 can be used to
construct a number of polynomial functions that are orthonormal and complete in
the sense of the Lp space. In this chapter we present three important approaches
for the construction of orthonormal polynomials, based, respectively, on the Weier-
strass theorem (Sect. 5.1.1), the Rodrigues formula (Sect. 5.2.1), and generating
functions (Sect. 5.2.7). We shall find that various orthonormal polynomials relevant
to mathematical physics can be effectively classified by adopting these methods.

5.1 Polynomial Approximations

5.1.1 Weierstrass Theorem

There are a number of special polynomials that play a significant role in
various aspects of mathematical physics: Legendre, Laguerre, Hermite, and
Chebyshev polynomials are well known. For instance, Legendre and Laguerre
polynomial expansions are often used to solve second-order differential equa-
tions having spherical symmetry. The point is that many of these special
polynomials form a complete orthonormal set of polynomials; the ori-
gin of their orthonormality and completeness can be accounted for in terms of
the theory of the Hilbert space L2. Owing to completeness, these special poly-
nomials enable us to produce polynomial approximations of fairly arbitrary
functions with desired accuracy, which serves as a useful device in manipulat-
ing square-integrable functions.

The validity of polynomial approximations is based on the famous
Weierstrass approximation theorem, which states that from the set of
powers of a real variable x one can construct a sequence of polynomials that
converges uniformly to any continuous function within a finite interval [a, b].
From this result, we shall see that it is possible to find various kinds of com-
plete orthonormal sets of polynomials on any interval [a, b].

In what follows, for simplicity we focus on polynomial approximations
only of real-valued functions of a real variable. In the case of a complex-valued
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function, the separate validity of the theorem for each of its real and imaginary
parts ensures the validity of the theorem.

♠ Weierstrass approximation theorem:
If a function f(x) is continuous on the closed interval [a, b], there exists

a polynomial such as

Gn(x) =
n∑

k=0

ckx
k (5.1)

that converges uniformly to f(x) on [a, b].

The proof will is be given in Appendix C. Several remarks on this theorem

are given below.

• In the polynomial approximation based on (5.1), the values of coefficients
c
(n)
m depend on n for fixed m. Thus, in order to improve the accuracy of

the approximation by going to polynomials of higher degree, the earlier
coefficients must change. For instance, when the approximating polynomial
(5.1) is replaced by

Gn+1(x) =
n+1∑

k=0

dkx
k,

we have in general
ck �= dk for all k(≤ n).

This situation is in contrast to the case of our familiar Taylor series
expansions, in which the earlier coefficients remain unchanged.

• The Weierstrass theorem requires only that the continuity of functions be
approximated. This condition is much weaker than Taylor’s theorem for
expansion in power series, in which the derivatives of all orders must exists
(i.e., it must be analytic; see Sect. 7.1.2 for the definition of analytic
functions). Furthermore, the former theorem can apply to polynomial
approximations outside the radius of convergence (see Sect. 7.4.1) of a
Taylor series.

• The Weierstrass theorem may be extended to functions of more than one
variable. By a straightforward generalization of the proof (see Appendix
C), it can be shown that if a function f(x1, x2, · · · , xm) is continuous
in each variable xi located within [ai, bi] (i = 1, 2, · · · ,m), it may be
approximated uniformly by the polynomials

Gn(x1, x2, · · · , xm) =
N1∑

k1=0

N2∑

k2=0

· · ·
Nm∑

km=0

ck1k2···km
xk1xk2 · · ·xkm .

The special cases of m = 2 and m = 3 are considered in Sects. 5.1.4 and
5.1.5.
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5.1.2 Existence of Complete Orthonormal sets of Polynomials

It must be emphasized that the Weierstrass theorem requires that the set
of polynomials {Gn} be neither orthogonal nor complete. Nevertheless, the
theorem ensures indirectly the existence of a variety of complete orthonor-
mal sets of polynomials in terms of the L2 space. The proof of their exis-
tence is based on the Gram-Schmidt orthogonalization method shown
below.

♠ Gram-Schmidt orthogonalization method:
Given any set of linearly independent functions {ϕi} normalizable on a

closed interval, it is possible to construct an orthonormal set of functions
{Qi} through the recursion formula

Qi(x) =
ui(x)

‖ui(x)‖ , (i = 1, 2, · · · ),

with the definitions:

u1(x) = ϕ1(x), ui(x) = ϕi(x) −
i∑

k=1

(uk, ϕi+1)uk(x).

Here, (uk, ϕi+1) means the inner product in terms of the L2 space. Let us
apply the Gram-Schmidt orthogonalization process to a set of powers {xn}
that is linearly independent. We then obtain an orthonormal set {Qi} given by

Qi(x) =
i∑

m=0

b′m
(i)
xm. (5.2)

Owing to the orthogonality of the set {Qi}, the original functions xm are
expressed conversely by linear combinations of {Qi} such as

xm =
m∑

i=0

b
(m)
i Qi(x). (5.3)

Substituting (5.3) into (5.1), we obtain

Gn(x) =
n∑

m=0

a(n)
m

m∑

i=0

b
(m)
i Qi(x). (5.4)

The superscripts (n) and (m) attached to the coefficients a
(n)
m and b

(m)
i ,

respectively, remind us that the values of the terms contained in the finite
sequences,
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{

a
(n)
0 , a

(n)
1 , · · · , a(n)

n

}

and
{

b
(m)
0 , b

(m)
1 , · · · , b(m)

m

}

,

depend on n or m: as n (or m) increases, all the earlier terms in the sequence
must be altered.

Now let us show the completeness of the orthonormal set {Qn(x)} given by
(5.2), which was deduced from the orthogonalization process; this is achieved
by proving that Parseval’s identity,

∞∑

n=1

|(f,Qn)|2 = ‖f‖2,

holds for any f ∈ L2, or equivalently, by proving that

(f,Qn) = 0 for all n ⇐⇒ ‖f‖ = 0. (5.5)

The sentence “‖f‖ = 0 implies (f,Qn) = 0 for all n” immediately follows
from the Bessel inequality,

∞∑

k=0

|(f,Qn)|2 ≤ ‖f‖2.

To prove the converse, we note that if (f,Qn) = 0 for all n, we have

(f,Gn) = 0 for all n, (5.6)

since the Gn are linear combinations of the Qn. In addition, we recall that
the Weierstrass theorem guarantees the uniform convergence of the sequence
(Gn) to f . Since uniform convergence implies a mean convergence, we obtain

‖f −Gn‖ → 0. (5.7)

From (5.6) and (5.7), it follows that

‖f −Gn‖2 ≡ (f −Gn, f −Gn) = ‖f‖2 + ‖Gn‖2 → 0,

which implies that ‖f‖ = 0 as well as ‖Gn‖2 → 0. (This is because ‖f‖2 is
independent of n and ‖Gn‖2 is nonnegative for all n.) As summarized, we
attain the desired conclusion (5.5), which indicates that the orthonormal set
{Qn} is complete in terms of the L2 space.

The completeness of the set {Qi} means that there exists a set of constants
{ci} such that any function g ∈ L2 can be approximated in the mean by the
following sequence of partial sums:

gn(x) =
n∑

i=0

ciQi(x). (5.8)
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The reader should appreciate a crucial difference between (5.1) and (5.8). In
the latter, the ci are independent of n in contrast to the case of (5.1). Thus as
we extend the sum to infinity, the approximation improves without changing
the earlier ci. Therefore, we may say that there exists an infinite series

lim
n→∞

gn(x) =
∞∑

i=0

ciQi(x)

that converges to g in the mean. The expansion coefficients ci = (g,Qi) in the
infinite series are the Fourier coefficients we introduced in Sect. 4.3.4.

5.1.3 Legendre Polynomials

The previous discussion revealed that the orthonormal set {Qi} constructed
from the orthogonalization process based on the set of powers {xm} is com-
plete, so that the linear combination

∑n
i=0 ciQi converges in the mean to

f ∈ L2. Let us employ this result to find an explicit function form of a com-
plete orthonormal set of functions {Pn} defined on the interval [−1, 1]. The
first member of such a complete orthogonal set is P0(x) = 1 (For convenience,
the normalization constant is omitted temporarily). Using the Gram-Schmidt
orthogonalization process, we have

P1(x) =
x− (x, P0)P0

‖x− (x, P0)P0‖
= x,

P2(x) =
x2 −

(

x2, P0

)

P0 −
(

x2, P1

)

P1

‖x2 − (x2, P0)P0 − (x2, P1)P1‖
=

1
2
(

3x2 − 1
)

,

where we use the notation

(xm, Pn) =
∫ 1

−1

xmPn(x)dx.

Successive procedures give

P3(x) =
1
2
(

5x3 − 3x
)

, P4(x) =
1
8
(

35x4 − 30x2 + 3
)

,

P5(x) =
1
8
(

63x5 − 70x3 + 15x
)

, · · · .

Eventually, we obtain the complete orthonormal set of polynomials {Pn}
known as the Legendre polynomial. The x dependence of each function
is plotted in Fig. 5.1. Note that Pn(x) has exactly n− 1 distinct zeros in the
open interval [−1, 1].
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A general formula for Pn(x) is given by

Pn(x) =
1
2n

[n/2]
∑

k=0

(−1)k (2n− 2k)!
k! (n− k)! (n− 2k)!

xn−2k, (5.9)

where we used the Gauss notation:

[n

2

]

=

⎧

⎪⎨

⎪⎩

n

2
if n is even,

n− 1
2

if n is odd.

Equation (5.9) is rewritten in a simpler form as

Pn(x) =
1
2n

[n/2]
∑

k=0

(−1)k

k! (n− k)!
dn

dxn
x2n−2k

=
1

2nn!
dn

dxn

n∑

k=0

(−1)kn!
k! (n− k)!

x2n−2k

=
1

2nn!
dn

dxn
(x2 − 1)n. (5.10)

The last line is known as the Rodrigues formula for Legendre polynomials.
This is a special form of the more general Rodrigues formula that is appli-
cable to any orthonormal polynomial function. The derivations of (5.9) and

–1.0
–1.0
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–0.5

0.0

0.0

0.5

0.5

1.0

1.0
x

P
n(

x)

P0(x)

P1(x)

P2(x)

P3(x)

Fig. 5.1. Profiles of the first three terms of the Legendre polynomial Pn(x)
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(5.10), as well as that of general Rodrigues formula are given in Sects. 5.2.1
and 5.2.2.

The orthogonality of the Legendre polynomials follows from the Rodrigues
formula (5.10). To see this, we denote dn/dxn by dn, and assume that n ≥ m.
Dropping constant factors, we have
∫ 1

−1

Pn(x)Pm(x)dx =
∫ 1

−1

[

dn(x2 − 1)n
] [

dm(x2 − 1)m
]

dx

=
[

dn−1(x2 − 1)n
] [

dm(x2 − 1)m
]∣
∣
1

−1

−
∫ 1

−1

[

dn−1(x2 − 1)n
] [

dm+1(x2 − 1)m
]

dx, (5.11)

where we employed integration by parts. Since

dn−1(x2 − 1)n = (x2 − 1) × (a polynomial),

the first term in the last line of (5.11) vanishes upon putting in the limits ±1,
leaving the second term alone. Therefore, after n partial integrations, we have

∫ 1

−1

Pm(x)Pn(x)dx = (−1)n

∫ 1

−1

(x2 − 1)ndm+n(x2 − 1)mdx.

Now, if n > m, then n+m > 2m so that dn+m(x2 − 1)m = 0. Therefore,

∫ 1

−1

Pn(x)Pm(x)dx = 0 form �= n.

If m = n, then we have
∫ 1

−1

Pn(x)2dx =
(−1)n

22n(n!)2

∫ 1

−1

(x2 − 1)nd2n(x2 − 1)ndx, (5.12)

where a normalization constant is explicitly attached. Since (x2 − 1)n is a
polynomial of degree 2n, its (2n)th derivative is just (2n)!. Hence, the integral
(5.12) reads

∫ 1

−1

Pn(x)2dx =
(2n)! · (−1)n

22n(n!)2

∫ 1

−1

(x2 − 1)ndx =
2

2n+ 1
. (5.13)

As summarized, the orthogonal property of Legendre polynomial functions
is given by

∫ 1

−1

Pm(x)Pn(x)dx =

⎧

⎪⎨

⎪⎩

0 (m �= n)

2
2n+ 1

(m = n).
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Remark. Equation (5.13) follows from the identity

∫ 1

−1

(1 − x2)ndx = 22n+1

∫ 1

0

tn(1 − t)ndt = 22n+1B(n+ 1, n+ 1)

= 22n+1 Γ (n+ 1)2

Γ (2n+ 2)
= 22n+1 (n!)2

(2n+ 1)!
.

Here, we have changed the variable by setting x = 2t− 1 to obtain the beta
function B(x, y) and the gamma function Γ (x) defined, respectively, by

B(x, y) =
∫ 1

0

tx−1(1 − t)y−1dt =
Γ (x)Γ (y)
Γ (x+ y)

,

Γ (x) =
∫ ∞

0

e−ttx−1dt.

5.1.4 Fourier Series

We next consider the application of the Weierstrass theorem to functions
of two variables. Through earlier discussions, we have the proof of the
completeness properties of the set of trigonometric functions sinnθ and cosnθ
(n = 0, 1, · · · ,∞).

The Weierstrass theorem tells us that any function g(x, y) that is continu-
ous in both variables on finite closed intervals may be approximated uniformly
by the sequence of functions

gN (x, y) =
N∑

n,m=0

a(N)
nm xnym. (5.14)

Employ polar coordinates and restrict the domain of definition to the unit
circle x = cos θ and y = sin θ to find

gN (cos θ, sin θ) = fN (θ) =
N∑

n,m=0

a(N)
nm cosn θ sinm θ. (5.15)

Clearly, fN (θ) should be periodic with periodicity 2π. Using Euler’s equa-
tion,

eiθ = cos θ + i sin θ,

we obtain expressions for the nth powers of sin θ and cos θ:

cosn θ =
[
1
2
(

eiθ + e−iθ
)
]n

, sinn θ =
[

1
2i
(

eiθ − e−iθ
)
]n

.
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We then rewrite (5.15) in the form

fM (x) =
M∑

n=−M

c
(M)
n

(2π)1/2
einx with M = 2N. (5.16)

where we have inserted the factor (2π)1/2 for later convenience and have
replaced the variable θ by x to emphasize the generality of the result.

The superscript M attached to c(M)
n in (5.16) suggests the possibility that

the values of c(M)
n are dependent of M . However, this is not the case. In fact,

the values of the coefficients cn are determined independently of M owing to
the completeness of the orthonormal set of functions

Fn(x) =
einx

(2π)1/2
, n = 0,±1, · · · ,

defined on the interval [−π, π]. The completeness of the set {Fn} allows us to
approximate an arbitrary function f in the mean by an infinite series of the
Fn, and we write

f(x) �
∞∑

n=−∞
cnFn(x) =

∞∑

n=−∞

cn
(2π)1/2

einx, (5.17)

where the expansion coefficients are given by

cn = (Fn, f) =
1

(2π)1/2

∫ π

−π

f(x)e−inxdx. (5.18)

The series (5.17) with the coefficients (5.18) is known as the trigonomet-
ric Fourier series. The completeness of the set {Fn} can be verified in a
discussion similar to that in Sect. 5.1.2.

5.1.5 Spherical Harmonic Functions

We have derived the sets of Legendre polynomials and trigonometric functions
from the Weierstrass approximation theorem in one and two variables, respec-
tively. We now derive the set of spherical harmonics from a three-variable gen-
eralization. It tells us that a function g of x, y, z (i.e., r) can be approximated
uniformly by a sequence of partial sums given by

gM (r) =
M∑

j,k,n=0

a
(M)
jkn x

jykzn. (5.19)
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We may also use an alternative coordinate system such as

u ≡ x+ iy = r sin θeiφ,

v ≡ x− iy = r sin θe−iφ,

w ≡ z = r cos θ,

which yields

gM (r) =
M∑

α,β,γ=0

b
(M)
αβγu

αvβwγ (5.20)

=
3M∑

l=0

rl
∑

(α,β,γ)

b
(M)
αβγe

i(α−β)φ sinα+β θ cosγ θ. (5.21)

In (5.21), the symbol
∑

(α,β,γ) indicates taking the sums over combinations
of α, β, γ subject to the condition α + β + γ = l. [Note that the sum over all
l in effect removes the restriction on α, β, γ and gives the same results as the
original unrestricted sum in (5.20).]

We now restrict r to the unit sphere by requiring that |r| = 1, and
introduce an index m = α − β. The expression (5.21) is then rewritten in
the form

gM (θ, φ) =
3M∑

l=0

∑

(α,β,γ)

b
(M)
αβγe

imφ sinα+β−|m| θ cosγ θ sin|m| θ.

A trigonometric identity gives

sinα+β−|m| θ cosγ θ = (1 − cos2 θ)(α+β−|m|)/2 cosγ θ,

which is a polynomial in cos θ of maximum degree α+ β + γ − |m| = l− |m|,
since α + β − |m| is even (see the remark below). Denoting this polynomial
by flm(cos θ), we get

gM (θ, φ) =
3M∑

l=0

∑

m

b
(M)
lm eimφ sin|m| θ flm(cos θ). (5.22)

Remark. That α+ β − |m| is even is seen by observing the identity

α+ β − |m| = m− |m| + 2β.

On the right-hand side, 2β is even and

m− |m| =
{

0 if m ≥ 0,
−2m if m < 0.
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The range of the summation over m still has to be specified. Recall that all the
α, β, γ are nonnegative integers subject to the condition that α+β+γ = � ≥ 0.
This is illustrated schematically in Fig. 5.2, in which the point (α, β, γ) must
lie on the oblique face of the tetrahedron depicted in the αβγ space. The line
α− β = m on the γ plane is shown as a solid line. In order for it to intersect
the oblique face, m must satisfy the condition that

−� ≤ m ≤ �.

Therefore, the sum over m in (5.22) is restricted to |m| ≤ l, and the last
equation becomes

gM (θ, φ) =
3M∑

l=0

l∑

m=−l

b
(M)
lm Ylm(θ, φ). (5.23)

Here the sequence of functions

Ylm(θ, φ) ≡ eimφ sin|m| θ flm(cos θ), (5.24)

where flm(cos θ) is a polynomial in cos θ of degree l− |m|, provides a uniform
approximation to any continuous function defined on the unit sphere. The
functions Ylm are called spherical harmonics. Note that for a given l, there
are 2l + 1 functions Ylm.

The orthonormality of the set {Ylm} is characterized by the relation

γ

β

β = α − m

α

A

B

Fig. 5.2. The solid and dashed-dotted lines shown on the γ-plane indicate the
relation α− β = m for −� < m < � and m = ±�, respectively. In order for the point
(α, β, γ) be on the oblique face of the tetrahedron, the condition −� ≤ m ≤ � should
be satisfied so that the solid line intersects the line segment AB on the γ-plane

∫ 2π

0

dφ

∫ π

0

sin θdθ Y ∗
l′m′(θ, φ)Ylm(θ, φ) = δll′δmm′ ,
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which determines the functions Ylm uniquely up to a phase factor.
General equations for the Ylm are

Ylm(θ, φ) = (−1)m

[
2l + 1

4π
(l −m)!
(l +m)!

]1/2

Pm
l (cos θ)eimφ, m ≥ 0

Yl,−m(θ, φ) = (−1)mY ∗
lm(θ, φ), m ≥ 0,

where

Pm
l (x) = (1 − x2)m/2 dm

dxm
Pl(x)

=
1

2
�!
(1 − x2)m/2 d
+m

dx
+m
(x2 − 1)
, m ≥ 0, (5.25)

are called the associated Legendre functions.

Remark.

1. The normalization constant of the Ylm follows immediately from the or-
thonormality relations for the associated Legendre functions:

∫ 1

−1

Pm
l (x)Pm

l′ (x)dx =
(l +m)!
(l −m)!

2
2l + 1

δll′ .

There is, of course, a free choice of phase factor; ours is a common choice
in the physics literature. However, one must be careful because different
authors choose different phase factors for the spherical harmonics.

2. We should note that the associated Legendre functions Pm
l (x) are not

another orthonormal set of polynomials on [−1, 1]. In fact, they are not
polynomials at all as is clearly seen in equation (5.25).

Exercises

1. Find the normalized Legendre polynomials P̃n(x).

Solution: Using equation (5.13), we write the normalized Legendre
polynomials P̃n(x) as

P̃n(x) =

√

2n+ 1
2n

Pn(x), n = 0, 1, 2, · · · . ♣

2. Derive the explicit form of each function: Y00, Y11, Y10, and Y1,−1.
Solution: It follows from (5.24) that for l = m = 0, we obtain
Y00 =

√

1/4π. If l = 1, then m can equal −1, 0, or +1. Recalling
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that flm(cos θ) is a polynomial in cos θ of degree l−|m|, we obtain
Y10 = c1 cos θ + c2, Y11 = c3e

iφ sin θ, Y1,−1 = c4e
−iφ sin θ. The

constants c1, c2, c3, c4 are determined by imposing orthonormality.
For instance,

∫ 2π

0

dφ

∫ π

0

sin θY ∗
00Y10dθ =

√
π

∫ π

0

dθ sin θ(c1 cos θ + c2)

= δ01δ00 = 0,
∫ 2π

0

dφ

∫ π

0

sin θ |Y10|2 dθ = 2π
∫ π

0

dθ [sin θ(c1 cos θ + c2)]
2

= δ10δ10 = 1,

which result in c1 =
√

3/(4π) and c2 = 0. Similarly, it follows
that c3 = −c4 = −

√

3/8π. We choose the minus sign with the
convention to be adopted later. Therefore, the first few members
of the set {Ylm} are

Y00 =

√

1
4π

, Y11 = −
√

3
8π

eiφ sin θ,

Y10 =

√

3
4π

cos θ, Y1,−1 =

√

3
8π

e−iφ sin θ. ♣

3. From the generating function of Legendre polynomials determine that

(i) Pn(1) = 1, Pn(−1) = (−1)n,

(ii) P2n(0) = (−1)n (2n− 1)!!
(2n)!!

, P2n+1(0) = 0 with (−1)!! = 1,

(iii)
∫ 1

0

xnPn(x)dx =
2n(n!)2

(2n+ 1)!
.

Solution: We use the equation

(1 − 2tx+ t2)−1/2 =
∞∑

n=0

Pn(x)tn.

(i) For x = 1, we have

1
1 − t

=
∞∑

n=0

tn =
∞∑

n=0

Pn(1)tn,
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which yields Pn(1) = 1. Similarly for x = −1, we obtain

1
1 + t

=
∞∑

n=0

(−1)ntn =
∞∑

n=0

Pn(−1)tn,

which gives Pn(−1) = (−1)n.

(ii) For x = 0, we have
(

1
1 + t2

)1/2

=
∞∑

n=0

(−1)n (2n− 1)!!
(2nn!)

t2n =
∞∑

n=0

Pn(0)tn.

Then, we have the desired result.

(iii) We get the relation by performing an integration in parts n
times. ♣

4. Show that the Coulomb potential at r = r0 experienced from the unit
charge at z = a on the z-axis is given by

V (r0) =
1

4πa

∞∑

n=0

(r0
a

)n

Pn(cos θ),

where θ is the angle between the z axis and the vector r0 and a satisfies the
condition r0 < a.

Solution: Using the generating function of Legendre polynomials,
we have

V (r0) =
1

4πε0
1

|r0 − a| =
1

4πε0
1

√

r20 + a2 − 2ar0 cos θ

=
1

4πε0

∞∑

n=0

(r0
a

)n

Pn(cos θ).

This series converges because r0 < a and |Pn(cos θ) ≤ 1|. ♣

5.2 Classification of Orthonormal Functions

5.2.1 General Rodrigues Formula

In the previous section we saw that several kinds of orthonormal polynomi-
als can be produced through the Gram-Schmidt orthogonalization process by
starting with 1, x, x2, · · · . However, there is a more elegant approach that ap-
plies to most polynomials of interest to physicists. This section describes this
approach, which is based on the Rodrigues formula and classifies various
orthogonal polynomials in terms of the parameters involved in the formula.
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♠ General Rodrigues formula:

Qn(x) =
1

Knw(x)
dn

dxn
[w(x)sn(x)] (n = 0, 1, 2, · · · ), (5.26)

where it is assumed that
1. Q1(x) is a first-degree polynomial in x.
2. s(x) is a polynomial in x of degree no more than 2 with real roots.
3. w(x) is real, positive, and integrable in the interval [a, b] and satisfies

the boundary condition

w(a)s(a) = w(b)s(b) = 0.

Equation (5.26) under the three conditions noted above provides the sequence
of functions (Q0(x), Q1(x), Q2(x), · · · ) that forms an orthogonal set of poly-
nomials on the interval [a, b] with a weight function w(x), which can be nor-
malized by a suitable choice of constants Kn. For historical reasons, different
polynomial functions are normalized differently, which is why Kn is introduced
here. In the meantime, we omit denoting Kn without loss of generality.

♠ Theorem:

The function Qn(x) defined by (5.26) is a polynomial in x of the nth
degree and satisfies the orthogonality relation on the interval [a, b] with
weight w(x):

∫ b

a

pm(x)Qn(x)w(x)dx = 0 (m < n), (5.27)

where pm(x) is an arbitrary polynomial of degree m < n.

Proof From hypothesis, we have

dm

dxm
[w(x)sn(x)]

∣
∣
∣
∣
x=a or b

= 0 (if m < n) (5.28)

and
dm

dxm

[

w(x)sn(x)p(≤k)(x)
]

= w(x)sn−m(x)p(≤k+m), (5.29)

where the symbol p(≤k)(x) denotes an arbitrary polynomial in x of degree
≤ k. Then, integrating (5.27) by parts n times, we obtain for m < n,
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∫ b

a

pm(x)Qn(x)w(x)dx =
∫ b

a

pm(x)
dn

dxn
[w(x)sn(x)] dx

=
∫ b

a

w(x)sn(x)
dn

dxn
pm(x)dx = 0, (5.30)

where we used (5.26) and (5.28). Next we examine whether or not Qn is a
polynomial of degree n. Set n = m and k = 0 in (5.29) to obtain

1
w(x)

dn

dxn
[w(x)sn(x)] = Qn(x) = p(≤n)(x),

which indicates that Qn(x) is a polynomial of degree no more than n. We thus
tentatively write

Qn(x) = p(≤n−1)(x) + anx
n, (5.31)

and would like to show that an �= 0. Multiplying both parts of (5.31) by
Qn(x)w(x) followed by integrating on [a, b] yields

∫ b

a

[Qn(x)]2 w(x)dx =
∫ b

a

p(≤n−1)(x)Qn(x)w(x)dx+ an

∫ b

a

xnQn(x)w(x)dx

= an

∫ b

a

xnQn(x)w(x)dx,

where we used (5.30). This clearly proves that an �= 0, i.e., that Qn(x) is a
polynomial of the nth degree. ♣

5.2.2 Classification of the Polynomials

In what follows, we classify the orthogonal polynomials that are derived from
the Rodrigues formula (5.26) the three conditions according to noted earlier.
By the condition 1 associated with (5.26), Q1(x) is a first-degree polynomial,
and we can define it as

Q1(x) = − x

K1
. (5.32)

Then the Rodrigues formula (5.26) reads

1
w

dw

dx
= −x+ (ds/dx)

s
. (5.33)

Recall that s(x) can be the zeroth-, first-, or second-degree polynomial. In
each case, we can find an appropriate weight function w(x) that satisfies the
differential equation (5.33) as well as the boundary condition 3:

w(a)s(a) = w(b)s(b) = 0. (5.34)
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Such discussions determine the explicit forms of possible functions s(x) and
w(x) under conditions 1–3 in Sect. 5.2.1 and then allow classification of all
of the orthogonal polynomials provided by the general Rodrigues formula
described below.

Hermite polynomials:

We first consider the case that s(x) is a zeroth-degree polynomial, i.e., a
constant given by

s(x) = α.

Equation (5.33) takes the form

1
w

dw

dx
= −x

α

and has the solution

w(x) = A exp
(

− x2

2α

)

with a constant A. (5.35)

The product w(x)s(x) vanishes only at x = ±∞, provided that α > 0. To
satisfy the conditions in (5.34), we have to set

a = −∞, b = +∞.

The constants A and α affect only the multiplicative factor in front of each
polynomial. Thus, without loss of generality, we can take α = 1 and A = 1,
which yields

w = e−x2
.

The complete orthonormal polynomials corresponding to this case are known
as Hermite polynomials, designated by Hn(x), and satisfy the orthonormal
condition ∫ ∞

−∞
e−x2

Hm(x)Hn(x)dx = δmn.

Laguerre polynomials:

Next we let s(x) be a polynomial of the first degree, such as

s(x) = β(x− α).

The Rodrigues formula (5.26) now becomes

1
w

dw

dx
= − x+ β

β(x− α)
,
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which has the solution

w(x) = const.× (x− α)νe−x/β ,

where
ν ≡ −α+ β

β
.

If β > 0 and ν > −1, then s(x)w(x) vanishes at x = α and x = +∞, and
w(x) is integrable in the interval [α,+∞). The simplest choice is therefore to
take α = 0 and β = 1, which yields

w = xνe−x, a = 0, b = +∞.

These choices result in the Laguerre polynomials, commonly denoted by
Lν

n(x), whose orthonormality relation is given by
∫ ∞

0

x−νLν
m(x)Lν

n(x)dx = δmn with ν > −1.

Jacobi polynomials:

Finally, let us take

s(x) = γ(x− α)(β − x), β > α.

Here we assume that s(x) has two distinct roots. [If s(x) has a double root, the
boundary condition (5.34) cannot be satisfied, since in this case the function
s(x)w(x) cannot vanish at more than one point.] The Rodrigues formula (5.26)
now reads

1
w

dw

dx
= −x+ γ(β − x) − γ(x− α)

γ(x− α)(β − x)
,

which has the solution

w(x) = const.× (x− α)μ(β − x)ν ,

with
μ ≡ −α+ β

β
and ν ≡ 1 − γ

γ
− α

γ(β − α)
.

If μ > −1 and ν > −1, then s(x)w(x) vanishes at x = α and x = β, and w(x)
is integrable on the interval [α, β]. With the replacement

2x− α− β

β − α
→ x,

apart from multiplicative factors, we obtain
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w = (1 − x)ν(1 + x)μ with ν, μ > −1, a = −1, b = +1.

The corresponding complete orthonormal polynomials are called the Jacobi
polynomials Gμ,ν

n (x), and satisfy the relation
∫ 1

−1

(1 − x)−ν(1 − x)−μGμ,ν
m (x)Gμ,ν

n (x)dx = δmn with ν, μ > −1.

Remark. Jacobi polynomials can be divided into subcategories depending on
the values of μ and ν. The most common and widely used in mathematical
physics are collected in Table 5.1.

Table 5.1. Special cases of Jacobi polynomials

μ ν w(x) Polynomial

λ − 1/2 λ − 1/2 (1 − x2)λ−1/2 Gegenbauer, Cλ
n(x). λ > −1/2

0 0 1 Legendre, Pn(x)

−1/2 −1/2 (1 − x2)−1/2 Chebyshev of the first kind, Tn(x)

1/2 1/2 (1 − x2)1/2 Chebyshev of the second kind, Un(x)

5.2.3 The Recurrence Formula

We now show that all the orthogonal polynomials derived from the Rodrigues
formula (5.26) satisfy the following relation:

♠ Recurrence formula:

Qn+1(x) = (anx+ bn)Qn(x) − cnQn−1(x), (n = 1, 2, · · · ) (5.36)

where the constants an, bn, and cn depend on the class of polynomials
considered.

Proof The only property needed for the proof of (5.36) is the orthogonality
relation:

∫ b

a

Qn(x)p(<n)(x)w(x)dx = 0, (5.37)

where the symbol p(<n)(x) denotes an arbitrary polynomial in x of degree less
than n. For convenience, we introduce the following notation:

ξn = coefficient of xn in Qn(x),
ηn = coefficient of xn−1 in Qn(x), (5.38)

In =
∫ b

a

Q2
n(x)w(x)dx. (5.39)
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It then follows that

Qn+1(x) − ξn+1

ξn
xQn(x) =

n∑

i=0

r
(n)
i Qi(x)

because the left-hand side is a polynomial of degree ≤n; r(n)
i are appropriate

constants determined by the left-hand side. Multiplying both sides by wQm,
taking m equal to 0, 1, 2, · · · , n − 2 successively, and using the orthogonality
relation (5.37), we obtain

r(n)
m = 0 for m = 0, 1, 2, · · · , n− 2.

Thus
Qn+1(x) − ξn+1

ξn
xQn(x) = r(n)

n Qn(x) + r
(n)
n−1Qn−1(x), (5.40)

which is the recurrence formula we are looking for. ♣

5.2.4 Coefficients of the Recurrence Formula

We now have to find the constants r
(n)
n and r

(n)
n−1 in (5.40). In view of the

orthogonality relation (5.37), we have

In =
∫ b

a

Q2
n(x)w(x)dx = ξn

∫ b

a

Qn(x)xnw(x)dx. (5.41)

Multiplying (5.40) by wQn−1 and integrating, we obtain

In−1r
(n)
n−1 = −ξn+1

ξn

∫ b

a

Qn(x)Qn−1(x)xw(x)dx

= −ξn+1

ξn
· ξn−1

ξn

∫ b

a

Qn(x)ξnxnw(x)dx

= −ξn+1ξn−1

ξ2n
In.

Therefore,
r
(n)
n−1 = − In

In−1
· ξn+1ξn−1

ξ2n
. (5.42)

Substituting this into (5.40) and comparing the coefficients of xn on both
sides, yields

r(n)
n = −ηn+1

ξn
· ξn+1ηn

ξ2n
. (5.43)

Finally, it follows from (5.40)–(5.43) that the coefficients an, bn, and cn defined
in (5.40) become
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an =
ξn+1

ξn
,

bn =
ξn+1

ξn

(
ηn+1

ξn+1
− ηn

ξn

)

,

cn =
In

In−1
· ξn+1ξn−1

ξ2n
. (5.44)

The constants ξn and ηn can, in principle, be found from the Rodrigues
formula once the functions s(x) and w(x) as well as the constants Kn have
been fixed. The constants In, which determine the normalization of the
polynomials, are given by

In =
(−1)nξnn!

Kn

∫ b

a

s(x)nw(x)dx.

This follows immediately from the Rodrigues formula if we integrate n times
by parts the integral

In =
∫ b

a

Qn(x)2w(x)dx = ξn

∫ b

a

Qn(x)xnw(x)dx

=
ξn
Kn

∫ b

a

xn dn

dxn
[s(x)nw(x)] dx.

Although the explicit form of the coefficients given in (5.44) seems rather
complicated, the corresponding recurrence relation for a specific orthogonal
polynomial simplifies it considerably.

5.2.5 Roots of Orthogonal Polynomials

Consider the recurrence formula (5.36) in which the polynomials Qn(x) are
normalized, and from (5.39) In = 1 (n = 0, 1, 2, · · · ). After some rearrange-
ment, the equation takes the form

xQn−1(x) =
ξn−1

ξn
Qn(x) +

ξn−2

ξn−1
Qn−2(x) + βn−1Qn−1(x),

where
βn−1 =

ηn−1

ξn−1
− ηn

ξn
.

The matrix form is given by
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x

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Q0

Q1

Q2

. . .

. . .

QN−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

β0 ξ0/ξ1 0 · · · · · · 0
ξ0/ξ1 β1 ξ1/ξ2 · · · · · · 0

0 ξ1/ξ2 β2 · · · · · · 0
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · · · · βN−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Q0

Q1

Q2

. . .

. . .

QN−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
. . .

. . .

(ξN−1/ξN )QN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

which gives the eigenvalue equations provided that {xi} are the roots of the
polynomial equation QN (x) = 0 such that

JR(xi) = xiR(xi),

where the column vector R(xi) is defined by

R(xi) = [Q0(xi), Q1(xi), QN−1(xi)] .

Thus, the eigenvalues of the N × N matrix J are the zeros of QN (x). The
matrix is called the Jacobi matrix associated with the sequence {Qn(x)}.
Since J is symmetric, the eigenvalues {xi} are real. We thus have proved the
following theorem:

♠ Theorem:
The eigenvalues {xi} (i = 1, 2, · · · , N) of the matrix J are the

zeros of QN (x). The eigenvector belonging to xi is R(xi) =
[Q0(xi), Q1(xi), QN−1(xi)].

5.2.6 Differential Equations Satisfied by the Polynomials

Historically, most orthogonal polynomials were discovered as solutions of
differential equations. Here we give a single generic differential equation that
is satisfied by all the polynomials Qn.
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♠ Theorem:

All of the orthogonal polynomials Qn(x) derived from the general Ro-
drigues formula (5.26) satisfy the differential equation

d

dx

(

sw
dQn

dx

)

= −λnwQn,

with the constant

λn = −n
(

K1
dQ1

dx
+
n− 1

2
d2s

dx2

)

.

Proof Since dQn(x)/dx is a polynomial of degree ≤ (n − 1), it follows from
(5.29) that the function

1
w

d

dx

[

s(x)w(x)
dQn

dx

]

is a polynomial of degree ≤n. Thus, we can write

1
w

d

dx

[

s(x)w(x)
dQn

dx

]

= −
n∑

i=1

λ(i)
n Qi(x), (5.45)

where the λ(i) are undetermined constants. Multiplying both sides of (5.45)
by wQm and integrating, we get

∫ b

a

Qm(x)
d

dx

[

s(x)w(x)
dQn

dx

]

dx = −λ(m)
n Im. (5.46)

Here Im is an integral given by (5.39). Integrating by parts, for m < n the
left-hand side of (5.46) yields

∫ b

a

Qm(x)
d

dx

[

s(x)w(x)
dQn

dx

]

dx

= −
∫ b

a

s(x)w(x)
dQn

dx

dQm

dx
dx

=
∫ b

a

w(x)Qn(x)
[

1
w

d

dx

(

s(x)w(x)
dQm

dx

)]

dx

= 0.

We have used the condition that s(a)w(a) = s(b)w(b) = 0, which is assump-
tion 3 in Sect. 5.2.1. We also used the fact that Qn(x) is orthogonal to any
polynomial of degree < n. Consequently, we arrive at the result
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λ(m)
n = 0, for m < n.

Setting
λ(n)

n = λn,

for simplicity, we can rewrite (5.45) in the form

d

dx

[

s(x)w(x)
dQn

dx

]

= −w(x)λnQn(x), (5.47)

which is the differential equation satisfied by a polynomial Qn(x). The con-
stant λn can be found by setting m = n in (5.46) and integrating, as we
demonstrate later in Exercise 4.

5.2.7 Generating Functions (I)

As a matter of fact, all the orthogonal polynomials Qn(x) discussed thus far
can be generated from a single function g(t, x) of two variables by repeated
differentiation with respect to t. Called a generating function, it plays a
significant role in many areas of mathematics. Here we study the essence of
generating functions together with several examples by which we can derive
specific orthogonal polynomials.
A formal definition of generating functions is given below.

♠ Generating function:

Assume a (finite or infinite) convergent power series

γ(t) ≡
∑

k

fkt
k.

The γ(t) is called a generating function for the sequence of coefficients
f1, f2, · · · , fn, · · · .

Clearly, all the coefficients fn are obtained from differentiating γ(t) as given
by

fn =
1
n!
dnγ(t)
dtn

.

For orthogonal polynomials, generating functions are assumed to take the
form

g(t, x) =
∞∑

n=0

AnQn(x)tn, (5.48)

where Qn(x) is an orthogonal polynomial associated with g(t, x), and the An

are appropriate constants. The explicit form of g(t, x) can often be derived us-
ing the Rodrigues formula and Cauchy’s integral formula (see Sect. 7.3.1).
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Remember that the latter formula determines an nth-order derivative of a
function f(z) as

dn

dzn
f(z) =

n!
2πi

∫

C

f(ζ)dζ
(ζ − z)n+1

,

where f(z) is analytic within the closed contour C. (See Sect. 7.1.2 for a
definition of analytic functions.) Applying this to the Rodrigues formula
for, say, Hermite polynomials Hn(x), we obtain

Hn(x) = (−1)nex2/2 dn

dxn
e−x2/2 = (−1)nex2/2 n!

2πi

∮

C

e−ζ2/2dζ

(ζ − x)n+1
.

We then try to sum the series as

∞∑

n=0

Hn(x)
n!

tn =
ex2/2

2πi

∮

C

e−ζ2/2

[ ∞∑

n=0

(−1)ntn

(ζ − x)n+1

]

dζ =
ex2/2

2πi

∮

C

e−ζ2/2dζ

ζ − x+ t
,

where we require that the point x−t be inside the contour. Finally we evaluate
the above integral and find

etx−(t2/2) =
∞∑

n=0

Hn(x)tn

n!
.

Comparing this last equation with (5.48), we see that etx−(t2/2) is the gener-
ating function associated with Hermite polynomials Hn(x). Similarly, we can
derive the generating function for Laguerre polynomials as

e−tx/(1−t)

(1 − t)1+α
=

∞∑

n=0

Lα
n(x)tn.

5.2.8 Generating Functions (II)

There is an alternative way to determine a generating function, which is based
on the recurrence formula for a particular polynomial. To see this, we try to
find the generating function of the Legendre polynomials that satisfies the
following recursion formula:

(n+ 1)Pn+1(x) − (2n+ 1)xPn(x) + nPn−1(x) = 0,

with P0(x) = 1, P1(x) = x, and for convenience we set P−1(x) = 0. We seek
an expression in closed form for

g(t, x) =
∞∑

n=0

Pn(x)tn.
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First we note that

∂g

∂t
=

∞∑

n=0

nPn(x)tn−1 =
∞∑

n=0

(n+ 1)Pn+1(x)tn

=
∞∑

n=0

[(2n+ 1)xPn(x) − nPn−1(x)] tn.

By straightforward rearrangement we find that

∂g

∂t
= xg(t, x) + 2tx

∂g

∂t
− tg(t, x) − t2

∂g

∂t
,

which leads to the partial differential equation

1
g

∂g

∂t
=

x− t

1 − 2tx+ t2
.

Coupled with the initial condition g(0, x) = 1 we finally have

1√
1 − 2tx+ t2

=
∞∑

n=0

Pn(x)tn.

Generating functions for other orthogonal polynomials are given in
Appendix D.

Exercises

1. Find the recurrence formula for normalized polynomials Q̃n(x).
Solution: When the polynomials are normalized, we have In = 1 (n =
0, 1, 2, · · · ) from (5.39). The recurrence formula (5.36) is

Q̃n+1(x) = (anx+ bn) Q̃n(x) − an

an−1
Q̃n−1(x). ♣

2. Assume that a sequence of orthogonal polynomials satisfies

Qn+1(x) = [(n+ 1)x+ 1]Qn(x) − 3(n+ 1)Qn−1(x).

Find the normalized constants for Qn(x) defined by Q̃n(x) = λQn(x),
where Q̃n(x) are normalized polynomials.
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Solution: We denote the normalized polynomials as Q̃n(x) =
λQn(x), where the constants λn (n = 0, 1, 2, · · · ) are to be found.
Substituting Q̃n(x) into the given formula, we have

Q̃n+1(x) =
λn+1

λn
[(n+ 1)x+ 1] Q̃n(x) − 3(n+ 1)

λn+1

λn
Q̃n−1(x).

Comparing this with the normalized recurrence formula from
Exercise 1, we have the relation (3λn)/λn−1 = λn−1/(nλn), which
yields λn = λn−1/

√
3n. This relation gives the normalization

constants of the form

λn =
1

3n/2
(n!)1/2λ0. ♣

3. Find the recurrence formula for Hermite and Legendre polynomials.
Solution: For Hermite and Legendre polynomials, (5.36) reads

Hn+1(x) = 2xHn(x) − 2nHn−1(x) (5.49)

and

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x) − nPn−1(x), (5.50)

respectively. See Appendix D for the recurrence relations associ-
ated with the other polynomials we have discussed. ♣

4. Determine the constants λn given in (5.47).
Solution: Setting m = n on the left-hand side of (5.46), we obtain

∫ b

a

Qn(x)
d

dx

[

s(x)w(x)
dQn

dx

]

dx (5.51)

=
∫ b

a

Qn(x)
[
d(sw)
dx

dQn

dx
+ s(x)w(x)

d2Qn

dx2

]

dx

=
∫ b

a

w(x)Qn(x)
[

K1Q1(x)
dQn

dx
+ s(x)

d2Qn

dx2

]

dx. (5.52)

Here we used the relation d(sw)/dx = wK1Q1 [set n = 1 in the
general Rodrigues formula (5.26).] The orthogonality of Qn(x)
means that only the nth power of x in the square brackets con-
tributes to the integral in the last line of (5.52). [See (5.30) for
details of the orthogonal property of Qn(x).] We then set up the
following expressions:
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s(x) = ax2 + bx+ c,

Qn(x) = ξnx
n + ξn−1x

n−1 + · · · ,
Q1(x) = η1 + η0,

which result in

K1Q1
dQn

dx
= K1η1nξnx

n + (const.) × xn−1 + · · ·

and

s
d2Qn

dx2
= an(n− 1)ξnxn + (const.) × xn−1 + · · · .

Thus the relevant terms in the square brackets in the last line in
(5.52) become

[

nK1
dQ1

dx
+

1
2
ds2

dx2
n(n− 1)

]

ξnx
n,

where we used η1 = dQ1/dx and a = (1/2)(ds2/dx2), and we get
∫ b

a

Qn(x)
d

dx

[

s(x)w(x)
dQn

dx

]

dx

=
[

nK1
dQ1

dx
+
n

2
(n− 1)

d2s

dx2

] ∫ b

a

w(x)Qm(x) (ξnxn) dx

= n

(

K1
dQ1

dx
+
n− 1

2
d2s

dx2

)

In.

Comparing this with (5.46), gives us

λn = −n
(

K1
dQ1

dx
+
n− 1

2
d2s

dx2

)

. ♣

5.3 Chebyshev Polynomials

5.3.1 Minimax Property

Thus far we have seen that every real function f(x) defined in a certain interval
(finite or infinite) can be approximated in the mean by appropriate orthogonal
polynomial {Qn(x)} as

f(x) �
n∑

i=0

ciQi(x). (5.53)

The coefficients ci are determined formally by using the orthogonality of the
polynomials in question. The striking advantage of such polynomial approxi-
mations is that an improvement in the approximation through addition of an
extra term cn+1Qn+1(x) does not affect the previously obtained coefficients,
c0, c1, · · · , cn.
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In principle, any polynomial that we discussed in Sect. 5.2 can be approx-
imated using (5.53). From the point of view of numerical analysis, however,
the Chebyshev polynomial {Tn(x)} is the best choice, primarily because at
any point x within the domain [−1, 1], the function Tn(x) has the smallest
maximum deviation from the true function f(x) to be approximated. This
property, which is unique to Chebyshev polynomials, is known as the mini-
max property. In general, polynomials endowed with the minimax property
are very difficult to find, but fortunately, the Chebyshev polynomials fall into
this category an, moreover, are easy to compute.

To show the minimax property of Chebyshev polynomials, we have to be
aware of two of their other properties. The first is a concise formula for Tn(x)
that is an alternative to those based on the Rodrigues formula.

♠ Concise formula for Chebyshev polynomials:

Tn(x) = cos
(

n cos−1 x
)

(n = 0, 1, · · · ). (5.54)

The derivation of (5.54) requires some lengthy calculations, so we put it in
the next subsection (see Sect. 5.3.2). Equation (5.54) implies that each Tn(x)
has n zeros in the interval [−1, 1], which are located at the points

x = cos
[
π

n

(

k − 1
2

)]

(k = 1, 2, · · · , n). (5.55)

In this same interval, there are n+ 1 extrema (maxima and minima), located
at

x = cos
(π

n
k
)

(k = 0, 1, · · · , n).

Note that Tn(x) = 1 at all of the maxima, whereas Tn(x) = −1 at all of the
minima. This feature of Tn is exactly what makes the Chebyshev polynomials
so useful in polynomial approximation of functions

Remark. Equation (5.54) combined with trigonometric identities can yield
explicit expressions for Tn(x):

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x, · · · ,

and more generally,

Tn+1(x) = 2xTn(x) − Tn−1(x) (n ≥ 1).

The last expression is a special case of the general recurrence formula (5.40)
derived in Sect. 5.2.3.

The second property of Chebyshev polynomials to be noted is the discrete
orthogonality relation described below. (The proof is given in Sect. 5.3.3.)
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♠ Discrete orthogonal relation:

If xk (k = 1, · · · , n) are the m zeros of Tn(x) given by (5.55) and i, j < n,
then

n∑

k=1

Ti(xk)Tj(xk) =

⎧

⎨

⎩

0, i �= j,
n/2, i = j �= 0,
n, i = j = 0.

(5.56)

From (5.54) and (5.56), we obtain the following theorem:

♠ Theorem:

Suppose f(x) to be an arbitrary function in the interval [−1, 1] and
define cj (j = 1, · · · , n) by

cj =
2
N

n∑

k=1

f(xk)Tj−1(xk), (5.57)

where xk is the kth zero of Tn(x) given by (5.55). We then have

f(x) =
n∑

k=1

ckTk−1(x) − c1
2

for all x = xk. (5.58)

What is remarkable is the fact that for x = xk, the finite sum in (5.58) is
equal to f(x) exactly. For x �= xk, the sum in (5.58) just approximates f(x);
nevertheless the error can be reduced by increasing the degree n of the sum.
Moreover, for practical use, we can truncate the sum in (5.58) to a much
lower degree, for even if we do so, the approximation (5.58) is sufficiently
accurate over the whole interval [−1, 1], not only at the zeros of Tn(x). This is
in contrast to the case of approximations based on other polynomials, where
the degree of summation n should be taken as large as possible to obtain
high accuracy. In fact, this truncation capability is the reason Chebyshev
polynomial expansion is far better than the other choices.

To examine the above statement, let us suppose that n is so large that
(5.58) is virtually a perfect approximation of f(x). We then consider the
truncated approximation

f(x) �
m∑

k=1

ckTk−1(x) − c1
2

with m � n, (5.59)

where the coefficients ck are given in (5.57). The difference between (5.58)
and (5.59) is given by
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n∑

k=m+1

ckTk−1(x), (5.60)

which can be no larger than the sum of the neglected ck’s as the Tn(x)’s are
all bounded between ±1.

Now we consider the magnitude of the sum (5.60). We know that in general
the ck’s decrease rapidly with k, which follows intuitively from the definition
(5.57). Hence, the magnitude of (5.60) is dominated by the term cm+1Tm(x),
which is much less than unity for all x ∈ [−1, 1]. In addition, cm+1Tm(x) is an
oscillatory function with m + 1 equal extrema distributed almost uniformly
over the interval [−1, 1]. These two features of the dominant term cm+1Tm(x)
result in smooth spreading out of the error of the approximation (5.59). This
context implies that the Chebyshev approximation (5.59) is very nearly the
same as the minimax polynomial that has the smallest maximum deviation
from the true function f(x).

5.3.2 A Concise Representation

The aim here is to derive the alternative representation of Chebyshev poly-
nomials given in (5.54):

Tn(x) = cos
[

n cos−1(x)
]

.

We know that Chebyshev polynomials satisfy the relation

(1 − x2)
d2

dx2
Tn(x) − x

d

dx
Tn(x) + n2Tn(x) = 0,

which can be rewritten in the form

d

dx

(
√

1 − x2
d

dx
Tn(x)

)

+
n2

√
1 − x2

Tn(x) = 0. (5.61)

We now apply the following lemma:

♠ Lemma:

Let p(x) and q(x) be two positive, continuously differentiable functions
that satisfy the differential equation

d

dx

[

p(x)
d

dx
y(x)

]

+ q(x)y(x) = 0. (5.62)

If the product p(x)q(x) is nonincreasing (or nondecreasing), then the rela-
tive maxima of [y(x)]2 form a nondecreasing (nonincreasing) set.
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(The proof of this lemma is outlined in Exercise 1.) We can see that if

p(x) =
√

1 − x2 and q(x) =
n2

√
1 − x2

,

(5.61) corresponds to (5.62), which implies that the product pq is constant.
Thus, according to the lemma, all relative maxima of T 2

n(x) must assume the
same value.

Now we seek a polynomial Tn(x) of degree n that satisfies the condition

T 2
n(x) = 1 whenever T ′

n(x) = 0.

That is, T 2
n(x) = 1 at all x where T 2

n(x) has a relative maximum equal to 1.
Clearly at these points, both T 2

n(x) − 1 and [T ′
n(x)]2 have double zeros. Then

the function
T 2

n(x) − 1
[T ′

n(x)]2
(5.63)

is a rational function and all the zeros of the denominator also occur in the
numerator. Is we compare the degree of the polynomials in the denominator
and in the numerator, it follows that (5.63) is a quadratic, and without loss
of generality we have

T 2
n(x) − 1
[T ′

n(x)]2
= α(x2 − 1). (5.64)

The constant α can be determined by dividing both sides by x2 and letting
x approach infinity. Then, inserting a polynomial of degree n for Tn(x), we
obtain

1
n2

= α so that Tn(x) = cos
[

n cos−1 x+ c
]

,

which yields
x2 − 1
n2

(
dTn

dx

)2

= T 2
n − 1. (5.65)

Equation (5.65) is a differential equation for Tn(x) that determines the
explicit form of our desired Tn(x). To solve it, we set

Tn(x) = cos θ, x = cosφ,

where θ and φ are functions of x. We then have

T 2
n(x) − 1 = − sin2 θ

and
d

dx
Tn(x) =

(
d

dφ
cos θ

)
dφ

dx
=

sin θ
sinφ

dθ

dφ
.
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Substituting these in (5.64) yields
(
dθ

dφ

)2

= n2 so that θ = ±nφ+ c,

and we get
Tn(x) = cos

(

n cos−1 x+ c
)

.

To determine c, we note that

T 2
n(±1) = 1 = cos(c).

Hence, c = 0 and we eventually obtain

Tn(x) = cos
(

n cos−1 x
)

. (5.66)

5.3.3 Discrete Orthogonality Relation

We close this section by proving the discrete orthogonality relation (5.56) for
Chebyshev polynomials.

Proof (of the discrete orthogonality relation): Let xk (k =
1, 2, · · · , n) be the n zeros of Tn(x), which is given by

xk = cos
[
π

n

(

k − 1
2

)]

(k = 1, 2, · · · , n).

Then the value of T
(x) at x = xk, in which � < n is assumed, reads

T
(xk) = cos
[

� cos−1(xk)
]

= cos
[
π�

n

(

k − 1
2

)]

.

Using the trigonometric identity, we have for �,m < n,

T
(xk)Tm(xk)

=
1
2

cos
[
π(�+m)

2n
(2k − 1)

]

+
1
2

cos
[
π(�−m)

2n
(2k − 1)

]

. (5.67)

If � = m = 0, this equals 1 so that we obtain
n∑

k=1

T
(xk)2 =
n∑

k=1

1 = n. (5.68)

Otherwise, if � = m �= 0, the second term in the last line of (5.67)
equals 1/2 and we have

n∑

k=1

T
(xk)2 =
n

2
+

1
2

n∑

k=1

cos
[
�π

n
(2k − 1)

]

=
n

2
+

sin(2�π)
4 sin(�π/n)

=
n

2
, (5.69)
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where we used the equation (see Exercise 2)
n∑

k=1

cos(2k − 1)x =
sin 2nx
2 sinx

(for x �= 0).

In a similar manner, for the case � �= m we find that
n∑

k=1

T
(xk)Tm(xk) = 0. (5.70)

Equations (5.68), (5.69), and (5.70) together are identical to the de-
sired result given in (5.56). ♣

Exercises

1. Prove the lemma associated with the differential equation (5.62).

Solution: The proof is based on the nondecreasing property of the
function defined by

f(x) = [y(x)]2 +
[p(x)y′(x)]2

p(x)q(x)
,

in which the functions y(x), p(x), and q(x) are assumed to satisfy
the differential equation (5.62). The nondecreasing property of
f(x) is verified by seeing its derivative:

f ′(x) = 2yy′ +
2py′

pq
(py′)′ +

(
1
pq

)′
(py′)2 = − (pq)′

(pq)2
(py′)2,

where we used the condition (5.62). From hypothesis, pq is
nonincreasing, which implies (pq)′ ≤ 0. Hence, it is readily seen
that f ′ ≥ 0, i.e., that f is nondecreasing.

Now we realize that, y′ must vanish wherever y(x)2 has a rel-
ative maximum so that f(x) = y2. Suppose that x1 and x2 are
two successive zeros of y′, such that x1 < x2. Since f(x) is nonde-
creasing, we have f(x2) ≥ f(x1), or equivalently, y2(x2) ≥ y2(x1),
which means that the relative maxima of y2 form a nondecreasing
set. This completes the proof of the lemma. ♣

2. Prove that
n∑

k=1

cos(2k − 1)x =
sin 2nx
2 sinx

(for x �= 0).

Solution: This equation is obtained by considering the sum
N∑

k=1

ei(2k−1)x = e−ix
N∑

k=1

e2ikx = e−ix

[
1 − e2i(N+1)x

1 − e2ix
− 1
]

= ei(N−1)x · sin(N + 1)x
sinx

− e−ix.
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Taking the real part of both sides yields

N∑

k=1

cos(2k − 1)x = cos(N − 1)x · sin(N + 1)x
sinx

− cosx

=
sin 2Nx+ sin 2x

2 sinx
− 2 sinx cosx

2 sinx
=

sin 2Nx

2 sinx
. ♣

3. Derive the formula for Chebyshev polynomials:

1 − t2

1 − 2tx+ t2
= T0(x) + 2

∞∑

m=1

Tm(x)tm,

where |t| < 1. Then, using this equation, prove that

∫ 2π

0

cos θ
1 − 2t cos θ + t2

dθ =
2πtn

1 − t2
,

where n ≥ 0.

Solution: It follows that

1 +
∞∑

m=1

2tm cosmθ = −1 + 2Re
∞∑

m=0

eimθtm = −1 + 2Re1/(1 − teiθ)

= (1 − t2)/(1 − 2tx+ t2),

which the desired result. The next equation is found in the Fourier
cosine series, where the coefficients can be obtained from

bn =
1
π

∫ 2π

0

1 − t2

1 − 2tx+ t2
cosnθdθ = 2tn. ♣

5.4 Applications in Physics and Engineering

5.4.1 Quantum-Mechanical State in an Harmonic Potential

We now consider the application of Hermite polynomials Hn(x) to physical
systems in the theory of quantum mechanics. We know that Hn(x) satisfies
the following second-order differential equation:

H ′′
n(x) − xH ′

n(x) + nHn(x) = 0.

Let us introduce the related function

Un(x) = e−x2/4Hn(x). (5.71)
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A simple calculation shows that

U ′′
n (x) +

(

n+
1
2

− x2

4

)

Un(x) = 0. (5.72)

This equation is similar in form to the Schrödinger equation for a quantum
particle whose motion is confined to an harmonic potential well. In fact, the
Schrödinger equation is given by

ψ′′(x) +
(

E − x2

2

)

ψ(x) = 0, (5.73)

where ψ(x) is the quantum wave function whose squared value at the position
x = a, namely, |ψ(a)|2, represents the probability density of the quantum
particle being observed at x = a. The similarity between (5.72) and (5.73)
implies that the product of the function defined by (5.71), i.e., Hn(x), and
e−x2/4 behaves as a wave function that describes the quantum particle in the
potential well.

However, it should be noted that solutions of (5.73) do not always satisfy
the condition ∫ ∞

−∞
|ψ(x)|2dx < ∞, (5.74)

which must be satisfied for the solutions to be physically meaningful. By
comparing (5.73) with (5.72), we see that whenever

E = En = 2n+ 1, (5.75)

we have
ψn(x) = cne

−x2/2Hn

(√
2x
)

,

which clearly satisfies the condition (5.74) if the constants cn are chosen ap-
propriately. Furthermore, the uniqueness theorem for solutions of ordinary
differential equations (see Sect. 15.2.4) guarantees that the values of E given
in (5.75) are the only ones for which (5.73) has solutions satisfying (5.75).
These specific values of E are called the eigenenergies of the system, and
the corresponding solutions psin(x) are called eigenfunctions.

5.4.2 Electrostatic potential generated by a multipole

Next, we briefly discuss the use of Legendre polynomials in describing
the electrostatic potential field generated by a multipole. For simplicity, we
first consider an electric dipole, i.e., a pair of positive and negative charges
separated by an infinitesimal distance h. We choose our coordinate system
such that both charges are located on the x-axis with the negative charge at
the origin. The magnitude of the charges is taken to be ±(1/h). Then, the
electrostatic potential field Φ2(P ) with respect to a point P on the sphere
x2 + y2 + z2 = r2 is represented as
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Φ2(P ) = lim
h→0

1
h

(

1
√

(x− h)2 + y2 + z2
− 1
√

x2 + y2 + z2

)

=
∂

∂x

(
1
r

)

= − x

r3
.

Therefore, when r = 1, we have

Φ2(P )|r=1 = −x = −P1(x) · 1!,

where Pn(x) is a Legendre polynomial.
Similar descriptions can be presented for high-degree multipoles. The po-

tential Φ4(P ) of a quadrupole is determined as follows: Consider a double
negative charge −(2/h2) located at the origin and two positive charges 1/h2

located at the points (x, y, z) = (±h, 0, 0). Then, the associated potential
Φ4(P ) at a point on a sphere of radius r is given by

Φ4(P ) = lim
h→0

1

h2

(

1
√

(x + h)2 + y2 + z2
− 2
√

x2 + y2 + z2
+

1
√

(x − h)2 + y2 + z2

)

=
∂2

∂x2

(
1

r

)

= −r2 − 3x2

r5
,

so for r = 1,
Φ4(P )|r=1 = −1 + 3x2 = P2(x) · 2!.

Similarly, for an octapole, we get

Φ8(P )|r=1 =
∂3

∂x3

(
1
r

)∣
∣
∣
∣
r=1

= −15x3 + 9x = −P3(x) · 3!,

and in general

Φ2n(P )|r=1 =
∂n

∂xn

(
1
r

)∣
∣
∣
∣
r=1

= (−1)nPn(x) · n!.

The final result tells us that the potential of a 2n-pole is described by the
product of the Legendre polynomial Pn(x) and the factor (−1)n ·n!. By solving
the previous equation for Pn(x), we obtain the following expression for the
nth Legendre polynomial:

Pn(x) =
(−1)n

n!
· ∂n

∂xn

(
1
r

)∣
∣
∣
∣
r=1

.
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Lebesgue Integrals

Abstract The concept of “measure” (Sect. 6.1.2) is important for an understanding
of the theory of the Lebesgue integral. A measure is a generalization of the concept of
length that allows us to quantify the length of a set that is composed of, for instance,
an infinite number of infinitesimal points with a highly discontinuous distribution.
Thus, the Lebesgue integral is an effective tool for integrating highly discontinuous
functions that cannot be integrated using conventional Riemann integrals.

6.1 Measure and Summability

6.1.1 Riemann Integral Revisited

It is certain that the Riemann integral is adequate for practical applications
to most problems in physics and engineering, as the functions that we usually
encounter are continuous (piecewise, at least) so that they are integrable by
the Riemann procedure. In advanced subjects in mathematical physics, how-
ever, we come to a class of highly irregular functions where the concept of an
ordinary Riemann integral is not applicable. In order to treat such functions,
we have to employ another, more flexible integral than the Riemann integral.
In this chapter, we present a concise description of the Lebesgue integral.
The Lebesgue integral not only overcomes many of the difficulties inherent in
the use of the Riemann integral, but its study has also generated new concepts
and techniques that are extremely valuable in practical problems in modern
physics and engineering.

At first, the cultivation of an intuitive feeling for the Lebesgue integral
as an adjunct to formal manipulations and calculations is important, and we
achieve this by comparing it with the Riemann integral. When defining the
Riemann integral of a function f(x) on an interval I = [a, b], we divide the
entire interval [a, b] into small subintervals Δxk = [xk, xk+1] such that

a = x1 < x2 < · · · < xn+1 = b.
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The finite set {xi} of numbers is called a partition P of the interval I. Using
this notation P , let us define, e.g., the sums

SP (f) =
n∑

k=1

Mk(xk+1 − xk), sP (f) =
n∑

k=1

mk(xk+1 − xk),

where Mk and mk are the supremum and infimum of f(x) on the interval
Δxk = [xk, xk+1], respectively, given by

Mk = sup
x∈Δxk

f(x), mk = inf
x∈Δxk

f(x). (6.1)

Evidently, the relation SP (f) ≥ sP (f) holds if the function f(x) is bounded
on the interval I = [a, b]. We take the limit inferior (or limit superior) of the
sums,

S(f) = lim inf
n→∞

SP , s(f) = lim sup
n→∞

sP , (6.2)

where all possible choices of the partition P are taken into account. The S(f)
and s(f) are called the upper and lower Riemann–Darboux integrals of
f over I, respectively. If the relation holds, i.e., if

S(f) = s(f) = A,

the common value A is called the Riemann integral and the function f(x)
is called Riemann integrable such that

A =
∫ b

a

f(x)dx.

We note without proof that the following conditions ensure the existence of
the Riemann integral of a function f(x).

1. f(x) is continuous in I = [a, b].
2. f(x) has only a finite number of discontinuities in I = [a, b].

On the other hand, when the function f(x) exhibits too many points of
discontinuity, the above definition is of no use in forming the integral. An
illustrative example is given below.

Examples Assume an enumeration {zn} (n = 1, 2, · · · ) of the rational numbers
between 0 and 1 and let

f(x) =
{

1 (x = z1, z2, · · · , zn)
0 otherwise.

That is, the function f(x) has the value unity if x is rational and the value
zero if x is irrational. In any subdivision of the interval Δxk ⊂ [0, 1],

mk = 0, Mk = 1,

and
sP = 0, SP = 1.

Therefore, the upper and lower Darboux integrals are 1 and 0, respectively,
whence f(x) has no Riemann integral.
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6.1.2 Measure

The shortcoming of the Riemann procedure demonstrated above can be suc-
cessfully overcome by employing Lebesgue’s procedure. The latter requires a
systematic way of assigning a measure μ(Xi) to each subset of points Xi.
In the remainder of this section, we learn about the basic properties of mea-
sure and its relevant materials, which serve as preliminaries to introduce the
precise definition of Lebesgue integrals given in Sect. 6.2.

The measure for a subset of points is a generalization of the concepts of the
length, area, and volume. Intuitively, it follows that the length of an interval
[a, b] is b − a. Similarly, if we have two disjoint intervals [a1, b1] and [a2, b2],
it is natural to interpret the length of the set consisting of these two intervals
as the sum (b1 − a1) + (b2 − a2). However, the ‘length’ of a set of points
of rational (or irrational) numbers on the line is not obvious. This context
requires a rigorous mathematical definition of a measure of a point set, as
shown below.

♠ Measure of a set of points:
A measure μ(X) defined on a set of points X is a function with the

following two properties:
1. If the set X is empty or consists of a single point, μ(X) = 0; otherwise,

μ(X) > 0.
2. The measure of the sum of two nonoverlapping sets is equal to the

sum of the measures of these sets expressed by

μ(X1 +X2) = μ(X1) + μ(X2) for X1 ∩X2 = 0. (6.3)

In the above statement, X1 +X2 denotes the set containing both elements of
X1 and X2, wherein each element is counted only once. If X1 and X2 overlap,
(6.3) is replaced by

μ(X1 +X2) = μ(X1) + μ(X2) − μ(X1 ∩X2)

so that the points common to X1 and X2 will be counted only once.
Various kinds of measures have been thus far introduced in mathematics.

Among them, is the following important example of measure that plays a
central role in the subsequent discussions. Consider a monotonic increasing
function α(x) and let I be an interval (open or closed) with endpoints a and b.
We define the α-measure of I denoted by μα(I), which takes different values
depending on the types of endpoints a and b as shown below.

♠ α-measure of intervals:
α-measure of intervals are defined by

• μα ( [a, b] ) = α(b+) − α(a−) for the closed interval [a, b],
• μα ( (a, b] ) = α(b+) − α(a+) for the semiclosed interval (a, b],
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• μα ( [a, b) ) = α(b−) − α(a−) for the semiclosed interval [a, b),
• μα ( (a, b) ) = α(b−) − α(a+) for the open interval (a, b),
where α(a−) = lim

ε→0
α(a− ε) and α(a+) = lim

ε→0
α(a+ ε).

By definition, the open interval (a, a) is an empty set, so that μα((a, a)) = 0
for any a ∈ R. The other cases of intervals (a, a] and [a, a) are also empty
sets. Note that μα(I) ≥ 0 since α(x) is a monotonically increasing function.

Examples Let α(x) be the monotonically increasing function (see Fig. 6.1)

α(x) =

⎧

⎨

⎩

0, x < 1,
1
2 , x = 1,
1, x > 1.

(6.4)

We then have

μα( [0, 1) ) = α(1−) − α(0−) = 0 − 0 = 0

and

μα( [0, 1] ) = α(1+) − α(0−) = 1 − 0 = 1.

Similarly,

μα( [1, 2] ) = μα( [1, 2) ) = 2 − 0 = 2,
μα( (1, 2] ) = μα( (1, 2) ) = 2 − 1 = 1.

1/2

1

0

α

x
1

(x)

Fig. 6.1. The function α(x) defined in (6.4)

6.1.3 The Probability Measure

The significance of measure is understood by illustrating the probability the-
ory as an example. Probability theory deals with statistical properties of a
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random variable x associated with an event occurring sequentially or simul-
taneously, where it is assumed that the average of x approaches a constant
value as the number of observations increases.

Given a random variable x, its expected (or mean) value is defined by
the integral

E{x} =
∫ ∞

−∞
xp(x)dx, (6.5)

where p(x) ≥ 0 is the probability density function of the random variable
x defined by

p(x) =
dP (x)
dx

,

with the probability distribution function P (x). The function P (x) de-
scribes the probability that the event labeled x occurs. It follows intuitively
that

P{x1 < x ≤ x2} =
∫ x2

x1

p(x)dx (6.6)

and ∫ ∞

−∞
p(x)dx = 1.

Examples For a discrete random variable {xi}, the integral of (6.5) can be
written as a sum:

E{x} =
∑

i

xipi.

In an experiment with dice, e.g., the probability of each event is given by

p1 = p2 = · · · = p6 =
1
6
,

which yields

E{xi} =
6∑

i=1

xipi =
7
3
.

In probability theory, the probability distribution function P (x) plays the
role of measure. Assume a set of continuous real numbers, X = {x ≤ a} and
let the function α(a) be the probability that x has a value no greater than a.
The function α(a) then reads

α(a) = P (x ≤ a), (6.7)

where α(−∞+) = 0 and α(∞−) = 1. Note that α(a) is a monotonically
increasing function. We have as well

P{x1 < x ≤ x2} = α(x2) − α(x1),
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since
P{x ≤ x2} = P{x ≤ x1} + P{x1 < x ≤ x2}.

Therefore, we see that the probability distribution function P (x ∈ I) corre-
sponds to the α-measure for any interval I, as expressed by

μα(I) = P (x ∈ I),

which behaves as 0 ≤ μα(I) ≤ 1 for any I.

Remark. The mean value (6.5) of a random variable x can be interpreted as a
Riemann–Stieltjes integral, rather than as an ordinary Riemann integral.
To see this, we observe that the Riemann integral (6.5) can be expressed by
the Riemann sum as

∫ ∞

−∞
xp(x)dx =

∞∑

k=−∞
ξkp(ξk)(xk+1 − xk), (6.8)

where ξk is any point on Δxk. Since p(xk)(xk+1 −xk) = ΔP{xk < x ≤ xk+1}
from (6.46), the mean value is written in the form

E{x} =
∫ ∞

−∞
xdP =

∫ ∞

−∞
xdμ(x), (6.9)

which is called the Riemann–Stieltjes integral of x with respect to μ(x).

6.1.4 Support and Area of a Step Function

What follows is an important concept that we use together with the concept
of measure to introduce the definition of the Lebesgue integral. Let Ii be any
interval, and suppose that the step function θ(x) given by

θ(x) =
{
ci, x ∈ Ii, i = 1, 2, · · · , n,
0, otherwise,

where a set {c1, c2, · · · , cn} consists of finite and real numbers. We see that
θ is constant on each interval Ii, and zero elsewhere. We now introduce the
following concept:

♠ Support of a step function:
The disjoint set S = I1 ∪ I2 ∪ · · · ∪ In ⊆ I on which θ is nonzero is called

the support of θ(x).
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An example of the support θ(x) is depicted in Fig. 6.2. When the support
of a step function θ has a finite total length, we associate it with the area
A(θ) between the graph of θ and the x-axis, with the usual rule that areas
below the x-axis have a negative sign. We refer to A(θ) as the area under
the graph of θ.

c4

c3

0

( )xθ

x

I1

c1
c2

c5

I2 I3 I4 I5

Fig. 6.2. The disjoint set S = I1 ∪ I2 ∪ · · · that serves as the support of θ(x)

Concepts such as support and area can apply to a linear combination of
step functions. Suppose that θ1, θ2, · · · , θn are step functions on the same
interval I, all with supports of finite total length, and that a1, a2, · · · , an are
finite real numbers. Then, the function Θ(x) defined by

Θ(x) =
n∑

j=1

ajθj(x) for x ∈ I

is also a step function on I. The support of Θ(x) has a finite length and the
area under the graph of Θ(x) is given by

A(Θ) =
n∑

j=1

ajA(θj).

Examples Let θ1, θ2 : [0, 3) → R be defined by

θ1(x) =
{

1 for [0, 2),
2 for [2, 3), θ2(x) =

{
−1 for [0, 1],
1 for (1, 3). (6.10)

Let Θ = 2θ1 − θ2. Then

Θ(x) =

⎧

⎨

⎩

3 for [0, 1],
1 for (1, 2),
3 for [2, 3).

(6.11)

These are plotted in Fig. 6.3. Clearly Θ is a step function. Note also that the
areas are

A(θ1) = 2(1) + 1(2) = 4, A(θ2) = −1(1) + 2(1) = 1,
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and
A(Θ) = 1(3) + 1(1) + 1(3) = 7 = 2A(θ1) −A(θ2).

0

θ

x

2

−1

1 θ

0 x

2

2

3

3

1

12 31

3

−1

(x)Θ

1(x)

2(x)

Fig. 6.3. The functions θ1(x), θ2(x), Θ(x) given in (6.10) and (6.11), respectively

6.1.5 α-Summability

Now, we combine the concepts of α-measure and support of a step function.
Let α(x) be a monotonically increasing function, I be any interval, and θ(x)
be a step function. We further assume that the support of θ is a simple set,
i.e., the union of a finite collection of disjoint intervals. For example, the set
S =

⋃n
k=1 Ik is a simple set if I1, I2, · · · , In are disjoint intervals. Then, the

α-measure of S is given by

μα(S) =
n∑

k=1

μα(Ik).

Observe that the value of μα(S) is independent of the way in which the set S
is subdivided. Note also that

(i) μα(S) ≥ 0 for any simple set S, and

(ii) if S and T are simple sets such that S ⊆ T , then μα(S) ≤ μα(T ).

We are now ready to present the following statement:

♠ α-summability:
A step function θ(x) is α-summable if the support of θ has a finite

α-measure with respect to a given monotonically increasing function α(x).
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Given an α-summable step function θ(x), we associate it with a real number
Aα(θ) defined by

Aα(θ) =
n∑

k=1

ckμα(Ik), (6.12)

where ck is the amplitude of step function θ(x) for x ∈ Ik. In general, Aα(θ)
can be thought of as a generalized area. For example, when setting α(x) = x,
the measure μα(Ik) turns out to be just the ordinary length of the interval
Ik, then Aα(θ) is just the area A(θ) under the graph of θj as defined in
Sect. 6.1.4. However, if α(x) has a more complicated function form, we get a
different value of Aα(θ) from the above since in that case a length along the
x-axis should be measured by the α-measure rather than by ordinary length.
An example of an actual calculation of Aα(θ) is provided in Exercise 2.

Remark. We shall see in Sect. 6.2.2 that the Lebesgue integral is defined by
the limit n → ∞ of the sum in (6.12).

6.1.6 Properties of α-summable functions

We list some basic properties of α-summable step functions without proof.

• If θ(x) is a nonnegative α-summable step function with respect to a given
α(x), then Aα(θ) ≥ 0 and Aα(0) = 0.

• If θ1 and θ2 are α-summable step functions on the same interval I such
that θ1 ≤ θ2 on I, then Aα(θ1) ≤ Aα(θ2).

• Let a set {θm} be α-summable step functions on the same interval I, and
let {am} be finite real numbers. By defining θ : I → R as

θ(x) =
m∑

j=1

ajθj(x)

for all x ∈ I (θ is also an α-summable step function on I), we have

Aα(θ) =
m∑

j=1

ajAα(θj).

Exercises

1. Assume a monotonically increasing function α(x) defined by

α(x) =

⎧

⎪⎪⎨

⎪⎪⎩

0, x ∈ (−∞, 1),
x2 − 2x+ 2, x ∈ [1, 2),

3, x = 2,
x+ 2, x ∈ (2,∞).
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Calculate Aα(θ) for each of the two step functions:

θ1(x) =
{

−1, x ∈ [0, 1),
2, x ∈ [1, 3],

and

θ2(x) =
{

−1, x ∈ [0, 1],
2, x ∈ (1, 3].

Solution: Since

μα( [0, 1) ) = α(1−) − α(0−) = 0 − 0 = 0,
μα( [1, 3] ) = α(3+) − α(1−) = 5 − 0 = 5,

we have
Aα(θ1) = (−1)0 + 2(5) = 10.

For θ2, on the other hand, we have a different result since

μα( [0, 1] ) = α(1+) − α(0−) = 1 − 0 = 1,
μα( (1, 3] ) = α(3+) − α(1+) = 5 − 1 = 4,

which yields
Aα(θ2) = (−1)1 + 2(4) = 7.

It is noteworthy that the values of Aα(θ1) and Aα(θ2) are different,
although the area A(θ) for them is the same. The difference comes
from the fact that α has a discontinuity at the single point where
θ1 and θ2 have different values. ♣

2. Evaluate Aα(θ) of the step function:

θ(x) =
{

2, x ∈ (−∞, 0],
1, x ∈ (0,∞),

which is associated with the α-measure:

α(x) =

⎧

⎨

⎩

0, x < 0,
1
2 , x = 0,
1, x > 0.

Solution: Since

μα((−∞, 0]) = α(0+) − α(−∞+) =
1
2

− 0 =
1
2
,

μα((0,∞)) = α(∞−) − α(0+) = 1 − 1
2

=
1
2
,
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we have

Aα(θ1) = 1
(

1
2

)

+ 2
(

1
2

)

=
3
2
. ♣

3. Show that the function

f(x) = lim
n→∞

lim
m→∞

(cos 2πm!x)n
,

called Dirichlet’s function, takes the form

f(x) =
{

1 for all rational numbers x,
0 otherwise.

Solution: When x is a rational number, it is expressed by a
fraction p/q with relatively prime integers p and q. Hence, for
sufficiently large m, the product m!x becomes an integer since

m!x = m · (m− 1) · · · (q + 1) · p · (q − 1) · · · 2 · 1.

Thus we have cos 2πm!x = 1. Otherwise, if x is an irrational num-
ber, m!x is also an irrational for any m, so that | cos 2πm!x| < 1.
As a result, we obtain

lim
n→∞

lim
m→∞

(cos 2πm!x)n =
{

1 : x is a rational,
0 : x is an irrational. ♣

6.2 Lebesgue Integral

6.2.1 Lebesgue Measure

The Lebesgue integral procedure essentially reduces to finding a measure for
sets of arguments. In particular if a set consists of too many points of discon-
tinuity, we need a way to define its measure that is known as the Lebesgue
measure. It this subsection, we explain how to construct the Lebesgue mea-
sure of a point set.

As a simple example, let us consider a finite interval [a, b] of length L.
This can be decomposed into two sets: a set X consisting of some of the
points x ∈ [a, b] and its complementary set X ′ consisting of all points
x ∈ [a, b] that do not belong to X. A schematic view of X and X ′ is shown
in Fig. 6.4. Both X and X ′ may be sets of several continuous line segments
or sets of isolated points.

We would like to evaluate the measure of X. To do this, we cover the set
of points X by nonoverlapping intervals Λi ⊂ [a, b] such as

X ⊂ (Λ1 + Λ2 + · · · ).
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x
a

X ′

x

X

ba

b

Fig. 6.4. A set X and its complementary set X ′

If we denote the length of Λk by �k, the sum of �k must satisfy the
inequality

0 ≤
∑

k

�k ≤ L.

In particular, the smallest value of the sum
∑

i �i is referred to as the outer
measure of X and is denoted by

μout(X) = inf

(
∑

k

�k

)

.

In the same manner, we can find intervals Λk
′ ⊂ [a, b] of lengths �′1, �

′
2, · · ·

that cover the complementary set X ′ such that

X ′ ⊂ (Λ′
1 + Λ′

2 + · · · ) , 0 ≤
∑

k

�′k ≤ L.

Here we define another kind of measure denoted by

μin(X) ≡ L− μout(X ′) = L− inf

(
∑

k

�′k

)

, (6.13)

which is called the inner measure of X. Note that the inner measure of X is
defined by the outer measure of X ′, not of X. It is a straightforward matter
to prove the inequality

0 ≤ μin(X) ≤ μout(X). (6.14)

Specifically, if
μin(X) = μout(X),

it is called the Lebesgue measure of the point set X, denoted by μ(X).
Clearly, when X contains all the points of [a, b], the smallest interval that
covers [a, b] is [a, b] itself, and thus μ(X) = L.
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Our results are summarized below.

♠ Lebesgue measure:
A set of points X is said to be measurable with the Lebesgue mea-

sure μ(X) if and only if μin(X) = μout(X) ≡ μ(X).

Remark. An unbounded point set X is measurable if and only if (−c, c)∩X is
measurable for all c > 0. In this case, we define μ(X) = limc→∞ μ [(−c, c) ∩X],
which may or may not be finite.

6.2.2 Definition of the Lebesgue Integral

We are now in a position to define the Lebesgue integral. Let the function
f(x) be defined on a set X that is bounded:

0 ≤ fmin ≤ f(x) ≤ fmax.

We partition the ordinate axis by the sequence {fk} (1 ≤ k ≤ n) so that
f1 = fmin and fn = fmax. Owing to the one-to-one correspondence between x
and f(x), there should exist sets Xi of values x such that

fk ≤ f(x) < fk+1 for x ∈ Xk (1 ≤ k ≤ n− 1), (6.15)

as well as a set Xn of values x such that f(x) = fn. Each set Xk assumes a
measure μ(Xk). Thus we form the sum of products fk · μ(Xk) of all possible
values of f , called the Lebesgue sum:

n∑

k=1

fk · μ(Xk). (6.16)

If the sum (6.16) converges to a finite value when taking the limit n → ∞
such that

max |fk − fk+1| → 0,

then the limiting value of the sum is called the Lebesgue integral of f(x)
over the set X.

The formal definition of the Lebesgue integral is given below.

♠ Lebesgue integral:
Let f(x) be a nonnegative function defined on a measurable set X

and divide X into a finite number of subsets such as

X = X1 +X2 + · · · +Xn. (6.17)
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Let fk = infx∈Xk
f(x) to form the sum

n∑

k=1

fkμ(Xk). (6.18)

Then the Lebesgue integral of f(x) on X is defined by

∫

X

fdμ ≡ lim
max|fk−fk−1|→0

[
n∑

k=1

fkμ(Xk)

]

,

where all possible choices of partition (6.17) are considered.

Figure 6.5 is a schematic illustration of the Lebesgue procedure. Obviously,
the value of the Lebesgue sum (6.16) depends on our choice of partition.
If we take an alternative partition instead of (6.17), the value of the sum
also changes. Among the infinite variety of choices, the partition that max-
imizes the sum (6.17) gives the Lebesgue integral of f(x). That a function
is Lebesgue integrable means that the limit superior of the sum (6.18) is
determined independently of our choice of the partition of the x-axis.

f4   =   fmax

f3

0
x

I1

f2

f1     =     fmin

I2

I3

I4

Fig. 6.5. An illustration of the Lebesgue procedure

6.2.3 Riemann Integrals vs. Lebesgue Integrals

Before proceeding further with this discussion, we compare the definitions of
Riemann and Lebesgue integrals for a better understanding of the significance
of the latter. In the language of measure, the Riemann integral of a function
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f(x) defined on the set X is obtained by dividing X into nonoverlapping
subsets Xi as

X = X1 +X2 + · · · +Xn, Xi ∩Xj = 0, for any i, j,

followed by setting the Riemann sum

n∑

k=1

f(ξk)μ(Xk). (6.19)

Here, the measure μ(Xk) is identified with the length of the subset Xk, and
ξk assumes any point that belongs to Xk. We increase the number of subsets
n → ∞ such that

μ(Xk) → 0 for any Xk,

and if the limit of the sum (6.19) exists and is independent of the subdivision
process, it is called the Riemann integral of f(x) over X. Obviously, the
Riemann integral can be defined under the condition that all values of f(x)
defined over Xk tend to a common limit as μ(Xk) → 0. Such a requirement
excludes any possibility of defining the Riemann integral for functions having
too many points of discontinuity.

Remark. In view of the analogy between the sum (6.12) and (6.18), we may
say that, in a sense, the Lebesgue integral is the limit n → ∞ of the quantity
Aα(θ).

Although the Lebesgue sum given in (6.16) is apparently similar to the
Riemann sum given in (6.19), they are intrinsically different. In the Riemann
sum (6.19), f(ξi) is the value of f(x) at an arbitrary point ξi ∈ Xi. Thus the
value of ξi is allowed to vary within each subset, which causes an indefiniteness
in the value of f(ξi) within each subset. On the other hand, in the Lebesgue
sum (6.16), the value of fi corresponding to each subset Xi has a definite
value. Therefore, for the existence of the Lebesgue integral, we no longer need
local smoothness of f(x). As a result, the conditions imposed on the inte-
grated function become very weak compared with the case of the Riemann
integral.

6.2.4 Properties of the Lebesgue Integrals

Several properties of the Lebesgue integral are given below without proof.

1. If f(x) is the Lebesgue integrable on X and if X = X1 +X2 + · · · +Xn,
then

∫

X

fdμ =
n∑

i=1

∫

Xi

fdμ.
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2. If two functions f(x) and g(x) are both Lebesgue integrable on X and if
f(x) ≤ g(x) for any x ∈ X, then

∫

X

fdμ ≤
∫

X

gdμ.

3. If μ(X) = 0, then
∫

X
f(x)dx = 0.

4. If the integral
∫

X
f(x)dx is finite, then the subset of X defined by

X ′ = {x | f(x) = ±∞}

has zero measure. This means that in order for the integral to converge,
the measure of a set of points x at which f(x) diverges is necessarily zero.

5. Suppose that
∫

X
f(x)dx is finite and that X ′ ⊂ X. If we make μ(X ′) → 0,

then ∫

X′
fdμ → 0.

6. When f(x) on X takes both positive and negative values, its Lebesgue
integral is defined by

∫

X

fdμ =
∫

X

f+dμ+
∫

X

f−dμ (6.20)

and ∫

X

|f |dμ =
∫

X

f+dμ−
∫

X

f−dμ, (6.21)

where

f+(x) =
{
f(x) for {x; f(x) ≥ 0},
0 for {x; f(x) < 0},

and

f−(x) =
{

0 for {x; f(x) ≥ 0},
−f(x) for {x; f(x) < 0}.

Definition (6.21) is justified except when both integrals on the right-hand
side diverge.

6.2.5 Null-Measure Property of Countable Sets

Let us show that any countable set has a Lebesgue measure equal to zero. A
rigorous definition of countable sets is given herewith.

♠ Countable set:
A finite or infinite set X is countable (or enumerable) if and only if

it is possible to establish a reciprocal one-to-one correspondence between
its elements and the elements of a set of real integers.
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It follows that every finite set is countable and that every subset of a countable
set is also countable. Any countable set is associated with a specific number,
called the cardinal number, defined below.

♠ Cardinal numbers:
Two sets X1 and X2 are said to have the same cardinal number if and

only if there exists a reciprocal one-to-one correspondence between their
respective elements.

Remark. A set X is called an infinite set if it has the same cardinal number
as one of its subsets; otherwise, X is called a finite set.

It should be stressed that an infinite set may or may not be countable. When
a given infinite set is countable, then its cardinal number is denoted by ℵ0,
which is the same as the cardinal number of the set of the positive real integers.
Furthermore, the cardinal number of every noncountable set is denoted by ℵ,
which is identified with the cardinal number of the set of all real numbers (or
the set of points on a continuous line). Cardinal numbers of infinite sets, ℵ0

and ℵ, are called transfinite numbers.
The most important property of countable sets in terms of measure theory

is given below.

♠ Theorem:
Any countable set (finite or infinite) has a Lebesgue measure of zero,

namely, null measure.

Examples An illustrative example is the set of rational numbers that has
measure zero as shown earlier. The countability of this set follows from the
fact that it can be arranged in a sequence of proper fractions as

0, 1,
1
2
,

1
3
,

2
3
,

1
4
,

3
4
,

1
5
,

2
5
,

3
5
,

4
5
, · · · .

Accordingly, since the set of all rational numbers in the interval [0, 1] has zero
measure, the Lebesgue integral of Dirichlet’s function χ(x) over this interval
is well defined and equal to zero.

Another well-known example of the set of measure zero is the Cantor set,
which is demonstrated in Exercise 2.

6.2.6 The Concept of Almost Everywhere

We have observed that sets of measure zero make no contribution to Lebesgue
integrals. This fact provides a concept of an equality almost everywhere
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for measurable functions, which plays an important role in developing the
theory of function analysis.

♠ Equality almost everywhere:
Two functions f(x) and g(x) defined on the same set X are said to be

equal almost everywhere with respect to a measure μ(X) if

μ{x ∈ X; f(x) �= g(x)} = 0.

We extend this terminology to other circumstances as well. In general, a prop-
erty is said to hold almost everywhere on X if it holds at all points of X
except on a set of measure zero. Thus two functions f(x) and g(x) are said to
be equivalent (written f ∼ g) if they coincide almost everywhere. For exam-
ple, Dirichlet’s function mentioned earlier is equivalent almost everywhere to
the function g(x) ≡ 0.

Since the behavior of functions on sets of measure zero is often unimpor-
tant, it is natural to introduce the following generalization of the ordinary
notion of the convergence of a sequence of functions:

♠ Convergence almost everywhere:
A sequence of functions {fn(x)} defined on a set X is said to converge

almost everywhere to a function f(x) if

lim
n→∞

fn(x) = f(x) (6.22)

for all x ∈ X except for points of measure zero.

Examples A typical example is the sequence

{fn(x)} = {(−x)n}

defined on [0, 1]. It converges almost everywhere to the function f(x) ≡ 0; in
fact it converges everywhere except at the point x = 1.

Exercises

1. Show that the set of all rational numbers in the interval [0, 1] has a
Lebesgue measure equal to zero.

Solution: Denote by X ′ the set of irrational numbers that is com-
plementary to X and the entire interval [0, 1] by I. Since μ(I) = 1,
the outer measure of X ′ reads

μout(X ′) = μout(I −X) = μout(I) − μout(X) = 1 − μout(X).
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By definition, the inner measure of X is given by

μin(X) = μin(I) − μout(X ′) = 1 − [1 − μout(X)] = μout(X).

The last equality asserts that the set X is Lebesgue measur-
able). The remaining task is to evaluate the value of μ(X) = 0.

Let xk (k = 1, 2, · · · , n, · · · ) denote the points of rational num-
bers in the interval I. We cover each point x1, x2, · · · , xn, · · · by
an open interval of length ε/2, ε/22, · · · , ε/2n, · · ·, respectively,
where ε is an arbitrary positive number. Since these intervals may
overlap, the entire set can be covered by an open set of measure
not greater than

∞∑

n=1

ε

2n
=

ε

2
(

1 − 1
2

) = ε.

Since ε can be made arbitrarily small, we find that μout(X) = 0.
Hence, from (6.18) we immediately have μ(X) = 0. ♣

2. Evaluate the measure of a Cantor set, an infinite set constructed as fol-
lows: (i) From the closed interval [0, 1], delete the open interval (1/3, 2/3)
that forms its middle third; (ii) from each of the remaining intervals
[0, 1/3] and [2/3, 1] delete the middle third; (iii) continue this process
of deleting the middle thirds indefinitely to obtain the point set on the
line that remains after all these open intervals.

Solution: Observe that at the kth step, we have thrown out 2k−1

adjacent intervals of length 1/3k. Thus the sum of the lengths of
the intervals removed is equal to

1
3

+
2
9

+
4
27

+ · · · + 2n−1

3n
+ · · · = lim

n→∞

1
3

[

1 −
(

2
3

)n]

1 − 2
3

= 1.

This is just the measure of the open set P ′ that is the comple-
ment of P . Therefore, the Cantor set P itself has null measure

μ(P ) = 1 − μ(P ′) = 1 − 1 = 0. ♣

3. Show that if f(x) is nonnegative and integrable on X, then

μ [ x ∈ X, f(x) ≥ c ] ≤ 1
c

∫

X

fdμ,

which is known as, Chebyshev’s inequality.

Solution: Set X ′ = {x ∈ X, f(c) ≥ c} to observe that
∫

X

fdμ =
∫

X′
fdμ+

∫

X−X′
fdμ ≥

∫

X′
fdμ ≥ cμ(X ′). ♣
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4. Show that if
∫

X
|f |dμ = 0, then f(x) = 0 almost everywhere.

Solution: By Chebyshev’s inequality,

μ

[

x ∈ X, |f(x)| ≥ 1
n

]

≤ n

∫

X

|f |dμ = 0

for all n = 1, 2, · · · . Therefore, we have

μ [x ∈ X, f(x) �= 0] ≤
∞∑

n=1

μ

[

x ∈ X, |f(x)| ≥ 1
n

]

= 0. ♣

6.3 Important Theorems for Lebesgue Integrals

6.3.1 Monotone Convergence Theorem

Our current task is to examine whether or not the equality

lim
n→∞

∫ b

a

fn(x)dx =
∫ b

a

f(x)dx (6.23)

is valid under the Lebesgue procedure. This problem can be clarified by
referring to two important theorems concerning the convergence property of
Lebesgue integrals; the monotone convergence theorem and the dom-
inated convergence theorem. Neither theorem is valid if we restrict our
attention to Riemann integrable functions. We observe that, owing to the
two convergence theorems, Lebesgue theory offers a considerable improvement
over Riemann theory with regard to convergence properties.

In what follows, we assume that X is a set of real numbers, and that {fn}
is a sequence of functions defined on X.

♠ Monotone convergence theorem:
If (fn) is a sequence such that 0 ≤ fn ≤ fn+1 for all n ≥ 1 in X and

f = limn→∞ fn, then

lim
n→∞

∫

X

fndμ =
∫

X

lim
n→∞

fndμ =
∫

X

fdμ.

Remark. The monotone convergence theorem states that in the case of
Lebesgue integrals, the conditions to reverse the order of limit and integration
are much weaker than in the case of Riemann integrals; i.e., only the point-
wise convergence of fn(x) to f(x) is required in the Lebesgue case, whereas
in the Riemann case we must have uniform convergence of fn(x) to f(x).
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Proof (of the monotone convergence theorem): The hypothesis
0 ≤ fn ≤ fn+1 implies that

0 ≤
∫

X

fndμ ≤
∫

X

fn+1dμ,

which indicates that the sequence {
∫

X
fndμ} increases monotonically

with respect to n; thus its limit n → ∞ exists as a we denote it by M
(possibly equal to ∞). In addition, by hypothesis

∫

X

fndμ ≤
∫

X

fdμ, for all n. (6.24)

Since (6.24) is true for arbitrary n, we have

M = lim
n→∞

[∫

X

fndμ

]

≤
∫

X

fdμ.

Therefore, if we can verify the opposite inequality

M ≥
∫

X

fdμ, (6.25)

we will get the desired result,

M = lim
n→∞

∫

X

fndμ =
∫

X

lim
n→∞

fndμ =
∫

X

fdμ.

To show (6.25), let c be a number such that c ∈ (0, 1) and introduce
the point set

Xn = {x : cf(x) ≤ fn(x)}.
Owing to the monotonically increasing property of the sequence
{fn(x)} with regard to n, the set Xn satisfies the inclusion relation

X1 ⊂ X2 ⊂ X3 ⊂ · · · and
∞⋃

n=1

Xn = X.

In addition, the increasing property of the sequence {
∫

Xn
fndμ} yields

c

∫

Xn

fdμ ≤
∫

Xn

fndμ ≤ lim
n→∞

[∫

Xn

fndμ

]

= M. (6.26)

Since (6.26) must hold for any n, we have

c

∫

X

fdμ ≤ M. (6.27)

Furthermore, since (6.27) is true for all c ∈ (0, 1), we have
∫

X

fdμ ≤ M. (6.28)

Note that the substitution c = 1 into (6.27) is allowed because the
symbol ≤, not <, is involved in (6.27). ♣
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6.3.2 Dominated Convergence Theorem (I)

In the previous argument, we saw that the order of limit and integration can
be reversed when considering monotonically increasing sequences of functions.
In practice, however, the requirement in the monotone convergence theorem,
i.e., that the sequence {fn(x)} must be monotone increasing, is sometimes
very inconvenient. In this subsection, we examine the same issue for more
general sequences of functions, i.e., nonmonotone sequences satisfying some
looser conditions and their limit passage. Our current objective is to prove
the theorem below.

♠ Dominated convergence theorem:
Let {fn} be a sequence of functions for almost everywhere on X such

that (a) limn→∞ fn(x) = f(x), and (b) there exists a nonnegative g such
that |fn| ≤ g for all n ≥ 1. Then, we have

lim
n→∞

∫

X

fndμ =
∫

X

fdμ.

Remark. Note that the condition imposed on the theorem above is that the se-
quences {fn} should be bounded almost everywhere. This condition is clearly
looser than that imposed in the monotone convergence theorem. Hence, the
monotone convergence theorem can be regarded as a special case of the dom-
inated convergence theorem.

6.3.3 Fatou Lemma

The proof of the dominated convergence theorem requires the lemma given
below.

♠ Fatou lemma:
If fn(x) ≥ 0 for all n and for almost everywhere in a bounded measurable

set X and if limn→∞ fn(x) = f(x), then
∫

X

[

lim inf
n→∞

fn

]

dμ =
∫

X

fdμ ≤ lim inf
n→∞

[∫

X

fndμ

]

,

where the definition is

lim inf
n→∞

fn = lim
n→∞

[

inf
k≥n

fk

]

.
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Proof Let gn = infk≥n fk. Since the sequence gn(x) is nonnegative and non-
decreasing, we have

lim
n→∞

gn = lim inf
n→∞

fn.

(See Sect. 2.1.4 for the precise definition of lim inf.) In addition, the monotone
convergence theorem implies that

lim
n→∞

∫

X

gndμ =
∫

X

lim
n→∞

gndμ =
∫

X

lim inf
n→∞

fndμ. (6.29)

It also follows that

gn(x) ≤ fk(x) for any k ≥ n.

Hence, ∫

X

gndμ ≤
∫

X

fkdμ for any k ≥ n,

that is, ∫

X

gndμ ≤ inf
k≥n

∫

X

fkdμ.

Taking the limit n → ∞ and applying the monotone convergence theorem,
we get

lim
n→∞

∫

X

gndμ ≤ lim
n→∞

[

inf
k≥n

∫

X

fkdμ

]

= lim inf
n→∞

∫

X

fndμ. (6.30)

From (6.29) and (6.30), we conclude that
∫

X

lim inf
n→∞

fndμ =
∫

X

fdμ ≤ lim inf
n→∞

∫

X

fndμ. ♣

6.3.4 Dominated Convergence Theorem (II)

Our next task is to prove the dominated convergence theorem.

Proof Observe that fn and f are Lebesgue integrable on X. From hypothesis,
it follows that fn + g ≥ 0 and g− fn ≥ 0 almost everywhere. Thus by Fatou’s
lemma, we have

∫

X

lim inf
n→∞

(fn + g) dμ ≤ lim inf
n→∞

∫

X

(fn + g) dμ

or ∫

X

lim inf
n→∞

fndμ ≤ lim inf
n→∞

∫

X

fndμ (6.31)

by the linearity of the Lebesgue integral. It is also true that g− fn ≥ 0 on X;
thus also by Fatou’s lemma we have
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∫

X

lim inf
n→∞

(g − fn) dμ ≤ lim inf
n→∞

∫

X

(g − fn) dμ,

or equivalently,

−
∫

X

lim inf
n→∞

fndμ ≤ lim inf
n→∞

[

−
∫

X

fn

]

dμ.

The latter inequality can be rewritten as
∫

X

lim inf
n→∞

fndμ ≥ lim sup
n→∞

∫

X

fndμ. (6.32)

From (6.31) and (6.32) we set
∫

X

lim inf
n→∞

fndμ ≤ lim inf
n→∞

∫

X

fndμ

≤ lim sup
n→∞

∫

X

fndμ ≤
∫

X

lim inf
n→∞

fndμ,

which clearly indicates that

lim inf
n→∞

∫

X

fndμ = lim sup
n→∞

∫

X

fndμ,

so that the limit limn→∞
∫

X
fndμ exists and is equal to

∫

X
limn→∞ fndμ =

∫

X
fdμ. This completes the proof of the theorem. ♣

6.3.5 Fubini Theorem

For a function of several variables, we may define the Lebesgue integral by
exactly the same process as for a function of one variable. In cases of two
variables, for instance, a rectangle S = [a, b] × [c, d] takes on the role of inter-
vals, and we need only to imitate the definitions and methods that we used
for functions of a single variable. We can develop the theory for the entire
plane R2 analogously to that for the real axis R. In fact, all the consequences
in Sect. 6.2 for Lebesgue integrable functions on a closed interval [a, b] are
easily carried over to the corresponding propositions for the double integral
on the rectangle S without modifying the actual proofs in Sect. 6.2, except
for replacing f(x) by f(x, y).

However, an important new problem arises here. If f is integrable on the
rectangle S = [a, b] × [c, d], we have to determine whether the value of the
integral ∫∫

S

f(x, y)dxdy (6.33)
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is equal to that of the repeated integrals

∫ d

c

[
∫ b

a

f(x, y)dx

]

dy and
∫ b

a

[
∫ d

c

f(x, y)dy

]

dx.

This is true for continuous functions on S. But it is far from obvious that
the existence of the double integral (6.33) guarantees the existence of either
repeated integral.

The following example may lead the reader to consider the point mentioned
above.

Examples Assume the function

f(x, y) =

{
x2−y2

(x2+y2)2 for (x, y) �= (0, 0),

0 for (x, y) = (0, 0),
(6.34)

and compute the repeated integrals

Iyx =
∫ 1

0

dy

[∫ 1

0

f(x, y)dx
]

and Ixy =
∫ 1

0

dx

[∫ 1

0

f(x, y)dy
]

.

Straightforward calculations yield

Ixy =
∫ 1

0

dx

∫ 1

0

∂

∂y

(
y

x2 + y2

)

dy =
∫ 1

0

dx

x2 + 1
dx =

π

4

and

Iyx =
∫ 1

0

dy

∫ 1

0

∂

∂x

(
−x

x2 + y2

)

dx =
∫ 1

0

−dy
y2 + 1

dy = −π

4
.

Hence, we conclude that
Ixy �= Iyx,

which indicates that the order of integrations with respect to x and y cannot
be changed.

We now present the main theorem of this subsection.

♠ Fubini theorem:
Let the function f(x) be integrable on a rectangle S = [a, b]×[c, d]. Then

the following equalities hold:

∫ ∫

S

f(x, y)dxdy =
∫ d

c

[
∫ b

a

f(x, y)dx

]

dy =
∫ b

a

[
∫ d

c

f(x, y)dy

]

dx.
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According to Fubini’s theorem, a double integral
∫ ∫

S
f(x, y)dxdy is computed

by integrating first with respect to x and then with respect to y, or vice versa.
We omit an exact proof of the Fubini theorem, since it requires rather lengthy
arguments regarding the existence and the convergence of the double integrals.
Instead, we present some applications of the theorem.

The following is an extension of the Fubini theorem:

♠ Fubini–Hobson–Tonelli theorem:
Let the function f(x) be defined on S = [a, b] × [c, d]. Then, if either of

the repeated integrals

∫ b

a

[
∫ d

c

|f(x, y)|dy
]

dx or
∫ d

c

[
∫ b

a

|f(x, y)|dx
]

dy

exists, f is integrable on S and, hence,

∫ ∫

S

f(x, y)dxdy =
∫ b

a

[
∫ d

c

f(x, y)dy

]

dx =
∫ d

c

[
∫ b

a

f(x, y)dx

]

dy.

Both the Fubini theorem and the Fubini–Hobson–Tonelli theorem for integrals
on a rectangle S may be easily extended to integrals on all of R2 or to the
integrals on any measurable subsets of R2.

Exercises

1. Suppose that the function

gn(x) = −2k2xe−k2x2
+ 2(k + 1)2xe−(k+1)2x2

is defined on [0,∞), and form the sum

fn(x) =
n∑

k=1

gk(x) = −2xe−x2
+ 2(n+ 1)2xe−(n+1)2x2

.

Show that
∫∞
0

limn→∞ fn(x)dx �= limn→∞
∫∞
0

fn(x)dx.

Solution: We have
∫ ∞

0

lim
n→∞

fn(x)dx =
∫ ∞

0

(

−2xe−x2
)

dx =
[

e−x2
]∞

0
= −1,

whereas

lim
n→∞

∫ ∞

0

fn(x)dx =
[

e−x2 − e−(n+1)2x2
]∞

0
= 0.

Therefore, (6.23) is not valid. ♣
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2. Given the function:

fn(x) =
{
n sinnx for 0 ≤ x ≤ π/n,
0 for π/n ≤ x ≤ π,

show that

lim
n→∞

∫ 1

0

fn(x)dx �=
∫ 1

0

lim
n→∞

fn(x)dx.

Solution: We have limn→∞ fn(x) = 0 for every x in [0, π] and
limn→∞

∫ π

0
fn(x)dx = 2. Hence, we obtain the desired result. ♣

3. Suppose that the nonnegative functions {fn(x) : n ∈ N} are each
summable over a measurable set X, and fn ≤ fn+1 on X. Show that
the limit function f = limn→∞ fn is summable over X and that

lim
n→∞

∫

X

fndμ =
∫

X

fdμ.

Solution: Let gn = f1 −fn, so that 0 = g1 ≤ g2 ≤ · · · ≤ f1. Thus,
the dominated convergence theorem ensures that limn→∞ gn =

f1−f is integrable, and we have lim
n→∞

∫

X

(f1 − fn)dμ =
∫

X

(f1 − f)dμ,

which gives
∫

X

f1dμ− lim
n→∞

fndμ =
∫

X

(f1 − f)dμ.

Further, as f is integrable since 0 ≤ f ≤ f1, we have
∫

X

(f1 − f)dμ =
∫

X

f1dμ−
∫

X

fdμ,

so that
∫

X

f1dμ− lim
n→∞

∫

X

fndμ =
∫

X

f1dμ−
∫

X

fdμ,

which gives

lim
n→∞

∫

X

fndμ =
∫

X

fdμ. ♣

4. Examine the applicability to integrals
∫∞
0

fn(x)dx of dominated and
monotone convergence theorems for the following: (i) fn(x) = 2n2e−n2x2

;
(ii) fn(x) = nxe−nx2



166 6 Lebesgue Integrals

Solution:

(i) Setting y = nx, we have
∫ ∞

0

fn(x)dx =
∫ ∞

0

2n2e−n2x2
dx =

∫ ∞

0

2ne−y2
dy = n

√
π,

where the last term diverges as n → ∞. Hence, the limn→∞∫∞
0

fn(x)dx does not exist. Next, we observe that for x �= 0,

lim
n→∞

fn(x) = lim
n→∞

(

2n2e−n2x2
)

= 0,

whereas for x = 0,

lim
n→∞

fn(0) = lim
n→∞

(

2n2
)

= ∞.

Thus, there is no limiting function f = limn→∞ fn that sat-
isfies the inequality f(x) ≥ 2n2e−n2x2

for all n in X, and we
can conclude that neither the dominated nor the monotone
convergence theorem is applicable.

(ii) It is found that
∫ ∞

0

fn(x)dx =
∫ ∞

0

nxe−nx2
dx =

[

−1
2
e−nx2

]∞

0

=
1
2
,

and that nxe−nx2 → 0 pointwise as n → ∞. Therefore, the lim-
iting function f(x) satisfying the inequality f(x) ≥ nxe−nx2

does
not exist. Hence, neither the dominated nor the monotone conver-
gence theorem is applicable. ♣

5. Using Fubini’s theorem, derive the formula
∫ 1

0

xb − xa

log x
dx = log

1 + b

1 + a
for a, b > 0. (6.35)

Solution: Note that the integral in the left-hand-side is beyond
elementary calculus, so that it is impossible to achieve (6.35) by
straightforward calculations. Instead, we observe that

∫ 1

0

dx

∫ b

a

xydy =
∫ 1

0

xb − xa

log x
dx

and
∫ b

a

dy

∫ 1

0

xydx =
∫ b

a

dy

y + 1
= log

1 + b

1 + a
.
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Thus, when we apply the Fubini theorem to the double integral
∫ ∫

[0≤x≤1, a≤y≤b]

xydxdy,

we obtain the desired result (6.35). ♣

6. Show that the function f(x, y) given in (6.34) in Sect. 6.3.2 is not inte-
grable on [0, 1] × [0, 1].

Solution: It follows that
∫ ∫

0≤x,y≤1

∣
∣
∣
∣

x2 − y2

(x2 + y2)2

∣
∣
∣
∣
dxdy = 2

∫ ∫

0≤x≤y≤1

y2 − x2

(x2 + y2)2
dxdy

= 2
∫ 1

0

dy

∫ y

0

y2 − x2

(x2 + y2)2
dxdy =

∫ 1

0

dy

y
= ∞.

This means that the existence and equality of two repeated inte-
grals do not guarantee the existence of the double integral. ♣

6.4 The Lebesgue Spaces Lp

6.4.1 The Spaces of Lp

We close this chapter by demonstrating the relevance of the Lebesgue in-
tegral theory to the functional analysis that we discussed in Chap. 4. The
Lebesgue theory on integration enables us to introduce certain spaces of func-
tions that have properties that are of great importance in analysis as well
as in mathematical physics, in particular, quantum mechanics. These are the
so-called Lp spaces of complex-valued functions f such that |f |p is integrable.

We have already dealt with the concept of Hilbert space. In fact, L2 for
any measure μ satisfies the conditions for a Hilbert space. We begin with a
short review of the definition of Lp spaces in terms of measure, and follow this
by examining how the spaces possess vector space properties owing to the use
of the Lebesgue integral.

Let p be a positive real number and let X be a measurable set in R. The
Lp space is defined as follows:

♠ Definition of Lp space:
The Lp space is a set of complex-valued Lebesgue measurable functions

f(x) on X that satisfy
∫

X

|f |pdμ < ∞

for p ≥ 1.
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When the integral
∫

X
|f(x)|pdx exists, we call it the p-norm of f and denote

it by

‖f‖p =
(∫

X

|f |pdμ
)1/p

.

Clearly for p = 2, the present definition reduces to our earlier definition of L2.

6.4.2 Hölder Inequality

The following two inequalities are fundamentals that demonstrate the rela-
tions between the norms of functions involved in Lp.

♠ Hölder inequality:
For any f, g ∈ Lp under the conditions

p, q > 1 and
1
p

+
1
q

= 1,

we have
fg ∈ L1 and ‖fg‖1 ≤ ‖f‖p‖g‖p.

Proof We assume that neither f nor g is zero almost everywhere (otherwise,
the result is trivial). To proceed with the proof, we first observe the inequality

a1/pb1/q ≤ a

p
+
b

q
for a, b ≥ 0, (6.36)

which we is justify by rewriting it as

t1/p ≤ t

p
+

1
q
,

where we set t = a/b. Then, we note that the function given by

f(t) = t1/p − t

p
− 1
q

≤ 0

has a maximum at t = 1, namely,

max f(t) = f(1) = 1 − 1
p

− 1
q

= 0,

which results in the inequality (6.36), which we use to obtain

|f(x)g(x)|
AB

≤ A−p|f(x)|p
p

+
B−q|g(x)|q

q
, (6.37)
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where

A =
[∫

X

|f |pdμ
]1/p

and B =
[∫

X

|g|qdμ
]1/q

.

The right-hand side of (6.37) is integrable from the hypothesis that f, g ∈ Lp.
Therefore, using (6.37) we obtain

1
AB

∫

X

|fg|dμ ≤ A−p

p

∫

X

|f |pdμ+
B−q

q

∫

X

|g|qdμ

=
1
p

+
1
q

= 1.

Consequently, we have ∫

X

|fg|dμ ≤ AB,

which proves the inequality. ♣

6.4.3 Minkowski Inequality

The other inequality of interest is stated below.

♠ Minkowski inequality:
If f, g ∈ Lp with p ≥ 1, then

f + g ∈ Lp and ‖f + g‖p ≤ ‖f‖p + ‖g‖p. (6.38)

Proof For p = 1, the inequality is readily obtained by integrating the triangle
inequality for real numbers. For p > 1, it follows that

∫

X

|f + g|pdμ =
∫

X

|f + g|p−1|f |dμ

+
∫

X

|f + g|p−1|g|dμ.

Let q > 0 be such that
1
p

+
1
q

= 1.

Applying the Hölder inequality to each of these last two integrals and noting
that (p− 1)q = p, gives us

∫

X

|f(x) + g(x)|pdx ≤ M

[∫

X

|f + g|(p−1)qdμ

]1/q

= M

[∫

X

|f + g|pdμ
]1/q

, (6.39)
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where M denotes the right-hand side of the inequality (6.38) that we would
like to prove. Now divide the extreme ends of the relation (6.39) by

[∫

X

|f + g|pdμ
]1/q

to obtain the desired result. ♣

Remark. It should be noted that neither the Hölder inequality nor the
Minkowski inequality holds for 0 < p < 1 if μ(X) > 0, which is why we
restrict ourselves to p ≥ 1.

6.4.4 Completeness of Lp Spaces

By virtue of the two inequalities discussed above, we can show the com-
pleteness properties of Lp spaces, which is crucially important for developing
Hilbert space theory for Lebesgue measurable functions.

♠ Completeness of Lp spaces:
The space Lp is complete: i.e., for any fn ∈ Lp satisfying

lim
n,m→∞

‖fn − fm‖p = 0,

there exists f ∈ Lp such that

lim
n→∞

‖fn − f‖p = 0.

Proof Let {fn} be a Cauchy sequence in Lp. Then, there is a natural num-
ber n1 such that for all n > n1, we have

‖fn − fn1‖ <
1
2
.

By induction, after finding nk−1 > nk−2, we find nk > nk−1 such that for all
n > nk we have

‖fn − fnk
‖ < 1

2k
.

Then {fnk
} is a subsequence of {fn} that satisfies

∥
∥fnk+1 − fnk

∥
∥ <

1
2k
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or

‖fn1‖ +
∞∑

k=1

∥
∥fnk+1 − fnk

∥
∥ = A < ∞.

Let
gk = |fn1 | + |fn2 − fn1 | + · · · + |fnk+1 − fnk

|, k = 1, 2, · · · .
Then, by the Minkowski inequality,

∫

X

gp
k(x)dμ =

∫

X

(

|fn1 | + |fn2 − fn1 | + · · · + |fnk+1 − fnk
|
)p
dμ

≤
(

‖fn1‖p +
∞∑

k=1

∥
∥fnk+1 − fnk

∥
∥

)p

≤ Ap < ∞.

Let g = lim gk. Then gp = lim gp
k. By the monotone convergence theorem

given in Sect. 6.2.1, we have
∫

X

gpdμ = lim
k→∞

∫

X

gp
kdμ < ∞,

which shows that g is in Lp, and hence

∫

X

(

|fn1 | +
∞∑

k=1

|fnk+1 − fnk
|
)p

dx < ∞,

implying that

|fn1 | +
∞∑

k=1

|fnk+1 − fnk
|

converges almost everywhere to a function f ∈ Lp.
It remains to prove that ‖fnk

− f‖ → 0 as k → ∞. We first note that

f(x) − fnj
(x) =

∞∑

k=j

[

fnk+1(x) − fnk
(x)
]

.

It then follows that

‖f − fnj
‖ ≤

∞∑

k=j

‖fnk+1 − fnk
‖p <

∞∑

k=j

1
2k

=
1

2j−1
.

Therefore, ‖f − fnj
‖p → 0 as j → ∞. Now

‖fn − f‖p ≤ ‖fn − fnk
‖p + ‖fnk

− f‖p,

where ‖fn − fnk
‖p → 0 as n → ∞ and k → ∞ and thus ‖fn − f‖p =

0 as n → ∞. This shows that the Cauchy sequence {fn} converges to f
in Lp. ♣
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Before closing this chapter, we must emphasize that if we employ the Riemann
integral to construct Lp spaces, the theorem mentioned above breaks down so
that we can no longer expect completeness of the resulting function space. To
illustrate this point, we temporarily define the ‘L1 space’ by a set of Riemann
integrable functions under the ‘1-norm’:

‖f‖[R]
1 ≡

∫ 1

0

|f(x)|dx < ∞.

We then consider a function

fn(x) =
{

1 for x ∈ {an},
0 otherwise,

where {an} (n = 1, 2, · · · ) is an infinite sequence of all rational numbers
in [0, 1]. It readily follows that a function fn(x) − fμ(x) ∈ L1 is Riemann
integrable and reads

‖fn − fm‖[R]
1 =

∫ 1

0

|fn(x) − fμ(x)|dx = 0.

Nevertheless, fn(x) converges to Dirichlet’s function χ(x), which is not
Riemann integrable as noted earlier. As it is impossible to examine the quan-
tity

‖fn − χ‖[R]
1 ,

using Reimann integrals, we cannot establish the complete function space
based on that method.

6.5 Applications in Physics and Engineering

6.5.1 Practical Significance of Lebesgue Integrals

From a practical viewpoint, what makes Lebesgue integrals so important is
the fact that they allow us to interchange the order of integration and other
limiting procedures under very weak conditions, which is not possible in the
case of Riemann integrals. In fact, in the case of Riemann integrals, the iden-
tities

lim
n→∞

∫ ∞

−∞
fn(x)dx =

∫ ∞

−∞
lim

n→∞
fn(x)dx

and ∞∑

n=1

∫ ∞

−∞
fn(x)dx =

∫ ∞

−∞

∞∑

n=1

fn(x)dx

are valid only if the integrands on the right-hand side, i.e., lim fn and
∑

fn, are
uniformly convergent. Such a restriction can be removed by using a Lebesgue
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integral since with the latter, only pointwise convergence of the integrand
is needed. We saw in Sect. 6.3 that the Lebesgue convergence theorem
and Fubini’s theorem markedly weaken the conditions necessary for the
validity of an interchange of the order of integration. As a result, we need
not monitor the order of the limiting procedure, which is very useful in the
practical calculations encountered in physics and engineering.

6.5.2 Contraction Mapping

Another important consequence of Lebesgue integral theory is the complete-
ness of the function space Lp spanned by Lebesgue integrable functions.
Lp spaces have a wide range of applications in physics, statistics, engineering,
and other disciplines. For instance, they serve as a basis in the development of
a rigorous theory of Fourier transformation, in which the mappings between
two different Lp spaces are considered. Moreover, the theory of quantum me-
chanics is established on the basis of the L2 space, a specific class of Lp spaces
with p = 2. In both applications, the completeness property of the Lp space
plays a crucial role in making the theory self-contained. In order for the reader
to learn more about this issue, we present the contraction mapping theo-
rem (or Banach’s fixed point theorem) below. This theorem proves the
existence of a unique solution to a certain kind of equation associated with
Lebesgue integrable functions, which makes the theory based on Lp spaces
self-contained.

A preliminary terminology is defined below.

♠ Contraction mapping:
A contraction mapping T is a mapping from Lp onto Lp that satisfies

the relation
‖T (f) − T (g)‖ ≤ c‖f − g‖ (0 ≤ c < 1) (6.40)

for any f, g ∈ Lp (see Fig. 6.6).

f g T

f
T T

Lp Lp

Fig. 6.6. Sketch of a contraction mapping T acting on f, g ∈ Lp
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Remark. If T is regarded as a differential operator acting on a Lebesgue inte-
grable function f , then we can say that ‘a contraction mapping is a mapping
that satisfies the Lipschitz condition’ (see Sect. 15.2.3).

We should keep in mind that the norm ‖ · · · ‖ used in (6.40) is in terms of
Lp spaces, so that ‖f − g‖ = 0 means f = g almost everywhere. In plain
words, a contraction mapping reduces the distance between two elements in
the Lp space.

We are now ready to move on to the main theorem.

♠ Contraction mapping theorem:
Let T be a contraction mapping and I be an identity mapping. Then

the equation
(T − I)f = 0 (6.41)

has one and only one solution f that belongs to Lp.

Remark. The solution f of the equation (6.41) is called a fixed point in Lp.

The contraction mapping theorem guarantees the existence and uniqueness of
fixed points of certain self-mappings and provides a constructive method for
finding those fixed points. It should be emphasized that the theorem allows
us to prove the existence (and uniqueness) of solutions of ordinary differen-
tial equations with respect to Lebesgue integrable functions, as intuitively
understood if T is set to be a differential operator.

Proof (of the contraction mapping theorem): For arbitrary f0 ∈
Lp, we introduce a sequence of functions {fn} defined by

f1 = T (f0), f2 = T (f1), · · · , fn = T (fn−1), · · · .

We shall see below that the sequence {fn} is a Cauchy sequence
and thus has a limit f ≡ limn→∞ fn. It follows from the definition of
T that

‖fn − fn+j‖ = ‖T (fn−1) − T (fn−1+j)‖
≤ c‖fn−1 − fn−1+j‖
≤ · · · ≤ cn‖f0 − fj‖ (6.42)

and

‖f0 − fj‖ ≤ ‖f0 − f1‖ + · · · + ‖fj−1 − fj‖
≤
(

1 + c+ · · · + cj+1
)

‖f0 − f1‖
≤ (1 − c)−1‖f0 − f1‖, (6.43)
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where we used the Minkowski inequality (6.38) with respect to the
p-norm designated by ‖ · · · ‖. From (6.42) and (6.43), we set

‖fn − fn+j‖ ≤ cn

1 − c
‖f0 − f1‖ → 0 (n → ∞).

This indicates that {fn} is a Cauchy sequence and thus converges to
a limit (denoted by f) regardless of the choice of f0. Furthermore, the
limit f always belongs to Lp since the space Lp is complete. Hence,
the converging behavior of {fn} to f can be expressed by using the
concept of the norm of Lp as

lim
n→∞

‖fn − f‖ = 0. (6.44)

We then obtain

‖T (f) − f‖ ≤ ‖T (f) − fn‖ + ‖fn − f‖
= ‖T (f) − T (fn−1)‖ + ‖fn − f‖
≤ ‖f − fn−1‖ + ‖fn − f‖ → 0 (n → ∞), (6.45)

which means that T (f) = f almost everywhere. Consequently, equa-
tion (6.41) has at least one solution that is a limit f of the sequence
{fn} that we introduced.

The uniqueness of the solution f is readily understood. Suppose
g ∈ Lp such that T (g) = g. We then have

‖g − f‖ = ‖T (g) − T (f)‖ ≤ c‖g − f‖.

This means that ‖g−f‖ = 0 since 0 ≤ c < 1, so we have g = f almost
everywhere. ♣

Remark. Note that it is our use of the Lebesgue integral (instead of the
Riemann integral) that guarantees the validity of the contraction mapping
theorem. In fact, if we restrict ourselves to the Riemann integral, the limit f
of the sequence {fn} may not belong to Lp, and we can no longer obtain the
result (6.45).

6.5.3 Preliminaries for the Central Limit Theorem

The effectiveness of Lebesgue integrals is also observed in probability theory,
particularly in the derivation of the central limit theorem, which plays
a fundamental role in statistical mechanics and in the statistical analysis of
experimental data. Later, we shall see that employing Lebesgue integrals is
necessary for proving the central limit theorem, where the Lebesgue con-
vergence theorem and Fubini’s theorem are used time and again.
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In order to prove the central limit theorem, we introduce a random vari-
able x (see Sect. 6.1.3); for instance, x may be the number of spots we get
when shooting a pair of dice or a real number that we randomly pick from
an interval on the real axis. Suppose that x lies in a set X on the real axis.
(Here, X may be a continuous interval, a set of discrete points, or a union of
the two.) In modern probability theory, measures characterizing the statisti-
cal properties of the system considered are defined in terms of the Lebesgue
integral. For instance, the probability (or distribution) that x is found in
subset X0 ⊂ X is given by

P (x : x ∈ X0) =
∫

X0

pdμ, (6.46)

where μ is the Lebesgue measure of X0 and p is the probability density as-
sociated with x. In general, p is assumed to satisfy the normalization condition
∫

X
pdμ = 1. We can state that the random variables x and y are independent

if
P (x, y) = P (x)P (y).

Moreover, the variables x and y are said to be identically distributed if

P (x) = P (y).

We also define the expected (or mean) value of x and the variance of
x by the integrals

E{x} =
∫

X

xpdμ and V {x} =
∫

X

(x− E{x})2 pdμ,

respectively, where μ is the Lebesgue measure of X. In particular, the ex-
pected value of an imaginary exponent eizx, where z is real, is known as the
characteristic function.

♠ Characteristic function:
The characteristic function ϕx(z) of a random variable x is defined by

ϕx(z) = E{eizx}.

It can be shown that

E{eiz(x+y)} = ϕx(z)ϕy(z)

if and only if the random variables x and y are independent. Furthermore,
we obtain

ϕx(z) = ϕy(z)

if and only if the variables x and y are identically distributed. The latter
condition is known as the uniqueness theorem for characteristic functions,
and the proof, which involves Fubini’s theorem, can be found in advanced
texts on probability theory.
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6.5.4 Central Limit Theorem

We are now ready to state the key theorem.

♠ Central limit theorem:
Assume a series of random variables {xn} in which the xn are indepen-

dent and identically distributed. For arbitrary a and b (b > a), we have

lim
n→∞

P

(

a ≤
∑n

j=1 xj − nm

σ
√
n

≤ b

)

=
1√
2π

∫ b

a

e−ξ2/2dξ, (6.47)

where m = E{xn} and σ2 = V {xn}.

Briefly, the theorem states that the probability that the average of n random
variables equals α is proportional to e−α2/2. (Note that α is the average of n
variables and not a variable itself.) A random variable with the probability
density e−ξ2/2 is said to be normally distributed.

Remark. The central limit theorem is very effective in describing various
stochastic phenomena in nature since it can be applied regardless of the dis-
tribution of the n random variables; i.e., almost all classes of random variables
obey the theorem as long as they are independent and identically distributed.

An illustrative example of the central limit theorem in physics is the
Maxwell – Boltzmann distribution of an ideal gas. For a given tem-
perature T , the distribution f(v) of the velocity of gas molecules v = |v| is
known to satisfy the equation

f(v) =
(

m

2πkBT

)3/2

exp
(

− mv2

2kBT

)

, (6.48)

where m is the mass of a gas molecule and kB is the Boltzmann constant. Here,
the velocity v(ti) as a function of discrete time ti (i = 1, 2, · · · , n) serves as
n random variables. In general, in an equilibrium state, v(ti) for different ti
is independent and identically distributed and, thus, if n is sufficiently large,
the time average of v(ti) obeys the normal distribution described by (6.48).
Figure 6.7 shows the distribution of the squared velocity of gas molecules,
which is determined from the formula 4πv2f(v2), for various values of T ; we
set kB = 1.38 × 10−23 kg · m2/s2 · K and m = 6.6 × 10−27 kg by considering
4He molecules. We observe that the mean value of v2 shifts to the right with
an increase in the temperature, which can be intuitively understood to be due
to the acceleration of the molecules at high temperatures.

It is important to emphasize that the central limit theorem holds good for
any kind of distribution of the n variables {xi} as long as they are independent
and identically distributed. For example, let us consider n variables that obey
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Fig. 6.7. Distribution of square velocity v2 of 4He molecules

the distribution P (x) shown in Fig. 6.8. The average of these variables shows
the distribution depicted in Fig. 6.8, all of which converge to the normal
distribution as n increases. The fact that the distribution of {xi} can be
disregarded is the reason the normal distribution is so universally observed in
a wide variety of stochastic phenomena.

6.5.5 Proof of the Central Limit Theorem

As some further points have to be discussed in order to prove the central
limit theorem, we present below only an outline and not a rigorous proof.
Let us emphasize that the use of Lebesgue integrals is necessary for proving
the central limit theorem, and the Lebesgue convergence theorem and
Fubini’s theorem are used time and again.

Proof We have only to consider the case of m = 0 and σ = 1; otherwise,
the new variable x̃n ≡ (xn − m)/σ is introduced to yield E{x̃n} = 0 and
V {x̃n} = 1. The characteristic function ϕyn

(z) for the variable

yn =

∑n
j=1 xj√
n

is given by

ϕyn
(z) = E

⎧

⎨

⎩
exp

⎛

⎝
iz√
n

n∑

j=1

xj

⎞

⎠

⎫

⎬

⎭
=

n∏

j=1

ϕxj

(
z√
n

)

,
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– – –

Fig. 6.8. Top: Distributions of a random variable x. Bottom: (a)–(c) Distributions
of the average value α of n random variables x1, x2, · · · , xn with n = 10 for (a),
n = 100 for (b), and n = 1000 for (c). For each, 1000 α’s are sampled to create
the distribution. With increasing n, the distribution of α converges to the normal
distribution around the center of 0.125 as expected

in which the condition that all xn are independent allows us to obtain the last
expression. Furthermore, since all xn are identically distibuted, we have

n∏

j=1

ϕxj

(
z√
n

)

=
[

ϕx1

(
z√
n

)]n

,

which is ensured by the uniqueness theorem discussed in Sect. 6.5.5.
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We want the limit of ϕyn
(z) at n → ∞, so we use the formula (see the

lemma below)

lim
n→∞

ϕyn
(z) = e−z2/2, (6.49)

in which the right-hand side is the characteristic function of a normal dis-
tribution. The result of (6.49) together with the continuity theorem (see
below) states that

lim
n→∞

P (a ≤ yn ≤ b) = P (a ≤ y ≤ b) =
1√
2π

∫ b

a

e−y2/2dy. ♣ (6.50)

The following theorem forms the basis for the proof of the central limit
theorem.

♠ Continuity theorem:
Let x and xn be random variables such that

lim
n→∞

ϕxn
(z) = ϕx(z).

We then obtain

lim
n→∞

P (a ≤ xn ≤ b) = P (a ≤ x ≤ b)

for arbitrary a, b(b>a) satisfying P (x = a) = P (x = b) = 0.

This theorem states that the convergence of characteristic functions implies
the convergence of the corresponding distribution functions. Since the proof
requires the use of Fubini’s theorem as well as the Lebesgue convergence
theorem and is quite complicated, we do not present it.

♠ Lemma:
If E{x} = 0 and E{x2} = 1 for a random variable x, then the charac-

teristic function ϕx(z) satisfies the relation

lim
n→∞

[

ϕx

(
z√
n

)]n

= exp
(

−z2

2

)

. (6.51)
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Proof The assumption that E{x2} = 1 < ∞ implies that ϕx(z) is twice
differentiable. In fact, we obtain

ϕx(z) = E{eizx},

ϕx
′(z) = E

{
d

dz
eizx

}

= E
{

ixeizx
}

,

ϕx
′′(z) = E

{
d2

dz2
eizx

}

= E
{

−x2eizx
}

,

where the Lebesgue convergence theorem was used to interchange the
order of differentiation d/dz and integration

∫

dx associated with calculation
of E{· · · }. The twice differentiability of ϕ(z) allows us to expand it around
z = 0 as

ϕx

(
z√
n

)

= ϕx(0) +
z√
n
ϕx

′(0) +
z2

2n
ϕx

′′(η),

where η is small enough to be |η| ≤ |z|/√n. Since ϕx(0) = 1 and ϕx
′(0) =

E{ix} = 0, we have

log
[

ϕ

(
z√
n

)]n

= n logϕ
(

z√
n

)

= n log
(

1 +
z2

2n
ϕ′′(η)

)

=
z2

2
ϕ′′(η) − z4

8n
ϕ′′(η)2 + · · · (n � 1),

where we used the inequality |ϕ′′(η)| ≤ 1 to expand the logarithmic term for
n � 1. As a result, we set

lim
n→∞

log
[

ϕ

(
z√
n

)]n

=
z2

2
ϕ′′(0) = −z2

2
,

which is equivalent to (6.51). ♣.
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Complex Functions

Abstract Differentiation and integration of complex functions are significantly dif-
ferent from those of real functions. In this chapter, we show that two very impor-
tant theorems—the Cauchy theorem (Sect. 7.2.2) and the Taylor series expansion
(Sect. 7.4.3)—result in a broad range of mathematical consequences that are highly
relevant and useful in mathematical physics. However, before moving on to the
principal discussion, we deal with the underlying concepts of analytic functions
(Sect. 7.1.2) and the geometric meaning of analyticity (Sect. 7.1.5).

7.1 Analytic Functions

7.1.1 Continuity and Differentiability

This chapter describes the theory of functions of a complex variable. Let C
denote the set of all elements z of the form

z = x+ iy,

where x, y ∈ R and i is a familiar symbol defined by i2 = −1. Let D be a
domain in C. Then, a complex function defined by

f : D → C

is a rule that assigns a complex-valued function f(z) to each z ∈ D. This f(z)
is equivalent to an ordered pair of real-valued functions u(z) and v(z). Thus,
f(z) can be written in the form

w = f(z) = u(z) + iv(z).

The real-valued functions u(z) and v(z) are called the real and imaginary
parts (or components) of f(z) (see Fig. 7.1). We may write u = Ref and
v = Imf .
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Fig. 7.1. A complex function w = f(z) that assigns a point on the w-plane to each
point on the z-plane

Once we introduce complex functions, the concepts of differentiation and
integration encountered in ordinary real calculus acquire new depth and sig-
nificance. When f(z) has its derivative in D, it is referred to as an analytic
function in D. (More precise definitions of analytic functions are given in
Sect. 7.1.3.) We shall see that the conditions for a complex-valued function
f(z) to be differentiable with respect to a complex variable z is much stronger
than that for a real-valued function f(x) with respect to a real variable x.
This restriction forces a great deal of the structure of f(z).

An exact definition of an analytic function is obtained by considering its
derivative with respect to a complex variable z. Therefore, our first task is to
determine the necessary and sufficient conditions for a complex function f(z)
to have a derivative with respect to z. Before stating what is meant by the
derivative f ′(z), we begin with the definition of continuity for f(z).

♠ Continuity of complex functions:
Let f : D → C be a complex function and z0 a point in D. Then, a

function w = f(z) ∈ C is continuous at the point z0 if

lim
z→z0

f(z) = f(z0). (7.1)

In the limit of (7.1), the complex variable z may approach z0 from any direc-
tion in D (see Fig. 7.2). Hence, if we say the limit (7.1) exists, it means that a
unique quantity f(z0) must result from the limiting process regardless of how
the limit z → z0 is taken.

A similar feature is found in the definition of the derivative of f(z).

♠ Derivatives of complex functions:
A complex function f(z) is said to be differentiable at the point z0 if

and only if the limit
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lim
z→z0

f(z) − f(z0)
z − z0

, z ∈ D (7.2)

exists and is uniquely determined regardless of the manner in which z
approaches z0. When the limit exists, we denote it by f ′(z0), the derivative
of f(z) at z0.

0

zy Im=

zx Re=

z

Fig. 7.2. Approaching direction of z to z0

The definition(7.2) requires that the ratio [f(z0 +Δz)− f(z0)]/Δz always
tend to a unique limiting value, no matter the path along which z approaches
z0. This is an extremely strict condition; in fact, a number of theorems in the
theory of analytic functions are derived from this requirement.

Keep in mind that a function f(z) may be differentiable only at a point,
or on a curve, or through a region. An example for a differentiable function
at single point is presented in Example 3 in Sect. 7.1.2.

7.1.2 Definition of an Analytic Function

Among many differentiable functions, some specific kinds of functions form
the class of analytic functions as stated below.

♠ Analytic functions:
A function f(z) is said to be analytic at the point z = z0 if and only if

it is differentiable throughout a neighborhood of z = z0.
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Remark. There are some synonyms for the term analytic: holomorphic,
regular, and regular analytic.

We offer some comments on the distinction between differentiability and
analyticity. As noted above, the conditions for f(x) to be analytic are more
stringent than those for it to be differentiable; in fact, a function f(z) is said
to be analytic at a point z0 if it has a derivative at z0 and at all points in
some neighborhood z0. In this context, if we say that a function is analytic on
a curve, we mean that it has a derivative at all points on a two-dimensional
narrow strip containing the curve. If a function is differentiable only at a
point or only along a curved line, then it is not analytic so that we say it
is singular there. A typical example of f(x) that is differentiable only at a
point is demonstrated in Example 3 below.

Examples 1. The function f(z) = zn is differentiable and analytic every-
where. In fact, the limit

lim
Δz→0

(z0 +Δz)n − zn
0

Δz

= lim
Δz→0

[

nzn−1
0 +

n(n− 1)
2

zn−2
0 Δz + · · · + (Δz)n−1

]

= nzn−1
0

exists for arbitrary z0, and is clearly independent of the path along which
Δz → 0. This means that any polynomial in z is differentiable and ana-
lytic everywhere.

2. The function f(z) = z∗ is neither differentiable nor analytic anywhere,
since the limit yields

lim
Δz→0

(z0 +Δz)∗ − z∗0
Δz

= lim
Δz→0

Δz∗

Δz
. (7.3)

If Δz → 0 parallel to the real axis, then Δz = Δz∗ = Δx so that the limit
equals 1. However, if Δz → 0 parallel to the imaginary axis, then Δz =
iΔy = −iΔz∗ so that the limit equals −1. Therefore, the quantity (7.3)
depends on the path Δz → 0, which means that it is neither differentiable
nor analytic anywhere.

3. The function f(z) = |z| is differentiable only at the origin. In fact,

f(z0 +Δz) − f(z0) = (z0 +Δz)(z∗0 +Δz∗0) − z0z
∗
0

= z0Δz
∗ + z∗0Δz −ΔzΔz∗,

which yields

lim
Δz→0

f(z0 +Δz) − f(z0)
Δz

= lim
Δz→0

z0Δz
∗ + z∗0Δz −ΔzΔz∗

Δz
= cz0 + z∗0 ,
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where c = limΔz→0(Δz∗/Δz) is a complex-valued constant that depends
on the path of Δz → 0. Hence, the limit noted above is uniquely deter-
mined only when z0 = 0, which means that the function f(z) = |z| is
differentiable only at a point z = 0.

7.1.3 Cauchy–Riemann Equations

Let f : D → C with f(z) = u(z) + iv(z) as usual. We give the necessary and
sufficient conditions for a function f(z) = u(x, y)+iv(x, y) to be differentiable
at a point z0 ∈ D. Let us assume that f(z) is differentiable at z0 ∈ D. Then
we have

f ′(z0) = lim
Δz→0

Δf

Δz
= lim

Δz→0

(
Δu

Δz
+ i

Δv

Δz

)

.

Since f ′(z0) exists, it is independent of the path Δz → 0; i.e., it is independent
of the ratio Δy/Δx. If the limit is taken parallel to the real axis, Δy = 0 and
Δz = Δx, we have

f ′(z0) = lim
Δx→0

(
Δu

Δx
+ i

Δv

Δx

)

=
∂u

∂x
+ i

∂v

∂x
.

On the other hand, if the limit approaches the point z0 along the line parallel
to the imaginary axis, Δx = 0 and Δz = iΔy, then

f ′(z0) = lim
Δy→0

(
Δv

Δy
− i

Δu

Δy

)

=
∂v

∂y
− i

∂u

∂y
.

From the initial assumption, these two limits must be equal, so equating real
and imaginary parts gives us

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
. (7.4)

Equations (7.4) are known as the Cauchy–Riemann relations (abbreviated
by CR relations), and they are a necessary condition for differentiability.

However, alone they are not sufficient, as they provide only necessary con-
dition. This is because they were determined from special cases of the re-
quirement of differentiability as demonstrated above. In fact, the sufficient
conditions for the differentiability of f(z) at z0 consist of the following two
statements:

♠ Theorem:
A function f(z) is differentiable at z0 ∈ D if and only if

(i) the first-order partial derivatives of u(x, y) and v(x, y) exist and are
continuous at z0, and
(ii) those derivatives at z0 satisfy the CR equations.
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Proof We prove that conditions (i) and (ii) imply the differentiability of f(z)
at z0 ∈ D. (The converse was proven implicitly in the beginning of this sub-
section.) From hypothesis (i), the functions u, ∂u/∂x, and ∂u/∂y are all
continuous at the point z0 = x0 + iy0, so we have

Δu = u(x0 +Δx, y0 +Δy) − u(x0, y0)

=
∂u

∂x
Δx+

∂u

∂y
Δy + ε1Δx+ ε2Δy, (7.5)

in approximation of the order Δx and Δy. In (7.5), the partial derivatives
are equated at the point (x0, y0), and the real numbers ε1 and ε2 vanish as
Δx,Δy → 0. Using a similar formula for v(x, y), we have

Δf = f(z0 +Δz) − f(z0) = Δu+ iΔv

=
∂u

∂x
Δx+

∂u

∂y
Δy + ε1Δx+ ε2Δy

+i
(
∂v

∂x
Δx+

∂v

∂y
Δy + ε3Δx+ ε4Δy

)

.

Using the CR equations that are supposed to hold at the point (x0, y0) from
assumption (ii) above gives us

Δf =
(
∂u

∂x
+ i

∂v

∂x

)

(Δx+ iΔy) +Δx(ε1 + iε3) +Δy(ε2 + iε4).

Dividing the both sides by Δz = Δx+ iΔy yields

Δf

Δz
=
∂u

∂x
+ i

∂v

∂x
+ (ε1 + iε3)

Δx

Δz
+ (ε2 + iε4)

Δy

Δz
. (7.6)

Since |Δz| =
√

(Δx)2 + (Δy)2, we have

|Δx| ≤ |Δz| and |Δy| ≤ |Δz|,

so that

∣
∣
∣
∣

Δx

Δz

∣
∣
∣
∣
≤ 1 and

∣
∣
∣
∣

Δy

Δz

∣
∣
∣
∣
≤ 1. (7.7)

Hence, it follows from (7.7) that the last two terms in (7.6) tend to zero with
Δz → 0 because limΔz→0 εn = 0 (1 ≤ n ≤ 4). As a result, the limit

lim
Δz→0

Δf

Δz
=
∂u

∂x
+ i

∂v

∂x
(7.8)

is independent of the path of Δz → 0, so the derivative f ′(z0) exists. We
thus have verified that f(z) is differentiable at z0 if conditions (i) and (ii) are
satisfied. This completes the proof of the analyticity of f(z). ♣
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Examples 1. Regarding the function

f(z) = z2 = (x2 − y2) + i(2xy) ≡ u+ iv, (7.9)

we have
∂u

∂x
= 2x =

∂v

∂y
, and

∂v

∂x
= 2y = −∂u

∂y
. (7.10)

These equations mean that everywhere in the complex plane the CR rela-
tions hold and the partial derivatives are continuous. Hence, the function
(7.9) is analytic in the entire complex plane. Such analytic functions are
called entire functions.

2. We saw in Sect. 7.1.1 that the function f(z) = |z|2 = x2 + y2 is not
analytic anywhere since it is differentiable only at the origin. In fact, it
yields

∂u

∂x
= 2x,

∂u

∂y
= 2y,

∂v

∂x
=
∂u

∂y
= 0,

which satisfy the CR relations only at the origin.

7.1.4 Harmonic Functions

The CR relations immediately provide one remarkable result that points to
connections with physics. Provided that the CR relations hold in a region, we
set

∂

∂x

∂u

∂x
=

∂

∂x

∂v

∂y
=

∂

∂y

∂v

∂x
= − ∂

∂y

∂u

∂y
. (7.11)

Here we assume the continuity of the second-order partial derivatives of u(x, y)
and v(x, y), which allows us to interchange the orders of differentiation in
the mixed partial derivatives in (7.11). (This qualification, however, can be
dropped since the second-order partial derivatives of an analytic function are
necessarily continuous as we prove later.) Equation (7.11) yields the Laplace
equation:

∂2u

∂x2
+
∂2u

∂y2
= ∇2u = 0.

In the same way, it follows that

∇2v = 0.

Thus we set the following theorem:

♠ Theorem:
Each of the real and imaginary parts of analytic functions satisfies the

two-dimensional Laplace equation.

Any function φ satisfying ∇2φ = 0 is called an harmonic function. Accord-
ingly, if f = u+ iv is an analytic function, then u and v are called conjugate
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harmonic functions since ∇2u = ∇2v = 0 holds. The fact that real and
imaginary components of analytic functions satisfy the Laplace equation plays
a crucial role in solving applied second-order partial differential equations. De-
tail discussions on this point are presented in Sect. 9.4.3.

7.1.5 Geometric Interpretation of Analyticity

To gain in-depth insight into the nature of analytic functions, we reveal the
geometric meaning of “analyticity.” We know that the analyticity of f(z)
within a domain D ensures the existence of the derivative f ′(z) = df/dz
defined by

f ′(z) = lim
h→0

f(z + h) − f(z)
h

.

This suggests that at a point z0 within D,

f(z0 + h) − f(z0) � f ′(z0)h (7.12)

for an arbitrary complex number h the magnitude |h| is sufficiently small.
Let us consider the geometrical meaning of (7.12). For the discussion to

be concrete, we assume, for the moment, that the derivative f ′(z) takes the
values

f ′(z0) = 1 + i and f ′(z1) =
−1 +

√
3i

2
at the points z0 and z1 in D. It then follows that

f ′(z0)h = (1 + i)h =
√

2
(

1√
2

+
i√
2

)

h =
√

2eiπ/4h, (7.13)

where h = |h|(cos θ + i sin θ) is a complex number having a certain argument
θ. Equation (7.13) means that f ′(z0)h is obtained through the rotation of the
vector h by π/4 followed by multiplication by

√
2. (Note that any complex

number can be regarded as a vector on the two-dimensional complex plane.)
Similarly, we have

f ′(z1)h = e2πi/3h, (7.14)

which states that f ′(z1)h is obtained through the rotation of h by 2π/3. The
processes are schematically illustrated in Fig. 7.3. The vector h is depicted by
thin arrows and the corresponding vectors f ′(z)h by thick arrows. Noteworthy
is that the magnitude |f ′(z)h| at both z0 and z1, is invariant no matter what
direction the vector h takes; indeed it follows from (7.13) and (7.14) that

|f ′(z0)h| =
√

2|h| and |f ′(z1)h| = |h|.

Hence, when the direction of h is shifted by increasing θ, |f ′(z)h| remains
unchanged so that the front edge of the vector f ′(z)h moves along a circle
centered at the origin.
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Fig. 7.3. Illustration of analyticity of f(z) at z0. An infinitesimal circle on the z-
plane centered at an analytic point is mapped to a circle on the w-plane with slight
modulation

Now we go back to (7.12), which says that if f(z) is analytic at z0, the
acquired vectors f ′(z0)h given above are almost equal to the vectors f(z0 +
h) − f(z0). This implies that the magnitude |f(z0 + h) − f(z0)| is almost
invariant to the change in the direction of h characterized by θ. Thus as θ
increases, the front edge of f(z0 + h) − f(z0) should trace a circle centered at
the origin. (To be precise, the radius may be subjected to a slight fluctuation,
as shown in Fig. 7.3, owing to contributions from higher-order terms than h2.)
In other words, since f(z0) is fixed, an increase in θ from 0 to 2π results in
movement of f(z0 +h) along the circle centered at f(z0). This means that for
analytic functions f(z), the change in the magnitude of f for an infinitesimal
change in z is isotropic. This isotropy is the geometric interpretation of the
analyticity of f(z).

Better understanding can be attained by considering the case of nonana-
lytic functions. Let us use the same argument for the function

f(z) = x2 + iy, (7.15)

where u = x2 and v = y. This function is not analytic, since it does not satisfy
the CR relations. Indeed,

∂u

∂x
= 2x �= 1 =

∂v

∂y

except at x = 1/2. For such a nonanalytic function, the isotropy regarding the
magnitude of the difference |f(z + h) − f(z)| for infinitesimal h breaks down,
as is shown below. Once we set h = |h|(cos +i sin θ) with |h| = ε = const,
we have

f(z0 + h) = (x0 + ε cos θ)2 + i(y0 + ε sin θ)
� x2

0 + 2ε cos θ · x0 + iy0 + iε sin θ
= f(z0) + 2ε cos θ · x0 + iε sin θ, (7.16)
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Fig. 7.4. Schematic illustration of nonanalyticity. When f(z) is not analytic at
z = z0, then an infinitesimal circle centered at z0 is mapped to an ellipse so the
isotropy breaks out

up to the order of ε. Equation (7.16) indicates that when θ increases, the front
edge of the vector f(z0+h) moves along an ellipse that has a major axis of 2x0ε
and a minor axis ε (see Fig. 7.4). That is, the magnitude |f(z0 +h)−f(z0)| is
no longer isotropic, but depends on the direction of h (except for the particular
case of x0 = 1/2).

Exercises

1. Show that f(z) is continuous at z0 if it is analytic there.

Solution: From the identity, we have

f(z) − f(z0) = f(z0 +Δz) − f(z0) = Δz · f(z0 +Δz) − f(z0)
Δz

and with the definition Δz = z − z0, we set

lim
Δz→0

[f(z0 +Δz) − f(z0)] =
(

lim
Δz→0

Δz
)

f ′(z0) = 0.

Moreover, if we write f(z) = u(z)+ iv(z), it follows that u(z) and
v(z) are both continuous. ♣

2. Express the Cauchy–Riemann relations in polar coordinates (r, θ).

Solution: By imposing z = x + iy = reiθ, we transform the
partial derivatives in terms of x into ∂/∂x = (∂r/∂x)(∂/∂r) +
(∂θ/∂x)(∂/∂θ). After some algebra, we obtain ∂/∂x = cos θ(∂/∂r)−
(sin θ/r)(∂/∂θ), which, together with the same procedure with re-
spect to ∂/∂y, yields the polar form of the CR relations as

∂u

∂r
=

1
r

∂v

∂θ
,

∂u

∂θ
= −r ∂v

∂r
.

Their abbreviated forms read ur = vθ/r and uθ = −rvr. ♣
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3. If f(z) is analytic in a region D and if |f(z)| is constant there, then f(z)
is constant. Prove it.

Solution: If |f | = 0, the proof is immediate. Otherwise we have

u2 + v2 ≡ c �= 0. (7.17)

Taking the partial derivatives with respect to x and y, we have
uux + vvx ≡ 0 and uuy + vvy ≡ 0. Using the CR relations, we
obtain uux − vuy ≡ 0 and vux + uuy ≡ 0, so that

(u2 + v2)ux ≡ 0. (7.18)

From (7.17) and (7.18), and from the CR relations, we conclude
that ux = vy ≡ 0. We can obtain uy = vx ≡ 0 in a similar manner.
Therefore, f is constant. ♣

4. Let φ(x, y) and ψ(x, y) be harmonic functions in a domain D. Show that
if we set u = φy − ψx and v = φx − ψy, the function f(z) = u + iv with
the variable z = x+ iy becomes analytic in D.

Solution: It follows that ux − vy = (φyx − ψxx) − (φxy − ψyy) =
−∇2ψ, where ψyx = ψxy was used. Since ∇2ψ = 0, we have ux =
vy. Similarly, we obtain uy = −vx. Hence, u and v satisfy the CR
relations in D, which indicates the analyticity of f on D. ♣

7.2 Complex Integrations

7.2.1 Integration of Complex Functions

We now turn to the integration of functions f(z) with respect to a complex
variable z. The theory of integration in the complex plane is just the theory
of the line integral as defined by

∫ α2

α1

f(z)dz = lim
N→∞,Δzi→0

N∑

i=1

f(zi)Δzi.

Here (Δzi) is a sequence of small segments situated at zi of the curve that
connects the complex number α1 to the other number α2 in the z-plane.
Since there are infinitely many choices for connecting α1 to α2, it is possible
to obtain different values for the integral for different paths.

Examples Assume the contour integral

I =
∮

Ci

z∗dz

from z = 1 to z = −1 along the three paths (see Fig. 7.5): (i) the unit circle
centered at the origin in the counterclockwise direction, designated by C1;
(ii) that in the clockwise direction, denoted by C2; and (iii) the real axis, C3.
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Fig. 7.5. Three paths. C1, C2, and C3

(i) The values of z on the circle are given by z = eiθ, so dz = ieiθdθ. Thus,

I(C1) =
∮

C1

z∗dz =
∫ π

0

e−iθieiθdθ = πi. (7.19)

(ii) In a similar manner as in (i), we have

I(C2) =
∮

C2

z∗dz =
∫ −π

0

e−iθieiθdθ = −πi. (7.20)

(iii) On the real axis, z = x and dz = dx so that

I(C3) =
∮

C3

z∗dz =
∫ −1

1

xdx = −2. (7.21)

In general, complex integrals on the path C possess the following property:

♠ Darboux’s inequality:
Contour integrals on a path C satisfy the relation

∣
∣
∣
∣

∫

C

f(z)dz
∣
∣
∣
∣
≤ ML, (7.22)

where M = max |f(z)| on C and L is the length of C.
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This property is very useful because in working with complex line integrals it
is often necessary to establish upper bounds on their absolute values.

Proof Recall the original definition of complex integrals:

∫

C

f(z)dz = lim
n→∞

n∑

k=1

f(zk)Δzk.

It follows that
∣
∣
∣
∣
∣

n∑

k=1

f(zk)Δzk

∣
∣
∣
∣
∣
≤

n∑

k=1

|f(zk)| |Δzk| ≤ M

n∑

k=1

|Δzk| ≤ ML,

where we have used the facts that |f(z)| ≤ M for all points z on C, that the
∑

|Δzk| represents the sum of all the chord lengths joining zk−1 and zk, and
that this sum is not greater than the length of C. Taking the limit of both
sides, we obtain the desired inequality (7.22). ♣

7.2.2 Cauchy Theorem

We are now in a position to proceed with the key theorem in the theory of
functions of a complex variable. Consider the complex integral

I(Ci) =
∮

Ci

sin zdz

along the closed paths Ci (i = 1, 2, 3) shown in Fig. 7.6: (a) C1 = OP , (b)
C2 = OQ+QP , (c) C3 = OR+RP . After some algebra, we obtain

0

y

x

1

1

R P

Q

Fig. 7.6. Three paths: OQP , OP , and ORP



198 7 Complex Functions

I(C1) = I(C2) = I(C3) = ...,

which gives us the possibility that the integral from O to B remains invariant
in quantity for our choices of integration paths. Actually, this is entirely true;
it depends only on the two endpoints O and B. This peculiarity of integration
comes from the fact that the integrand sin z is analytic on the integration
paths in question. (In fact, it is analytic everywhere on the complex plane.)
This result can be generalized to the following statement, called Cauchy’s
theorem, which is pivotal in the theory of complex function analysis.

♠ Cauchy’s theorem:
If f(z) is analytic within and on a closed contour C, then

∮

C

f(z)dz = 0. (7.23)

The somewhat lengthy discussions that are needed for a proof of Cauchy’s
theorem, are beyond the scope of this textbook, but two immediate corollaries
of the theorem are listed below.

♠ Path independence:
If f(z) is analytic in the region R and if contours C1 and C2 lie in R

and have the same endpoints, then
∫

C1

fdz =
∫

C2

fdz.

The proof readily follows by applying Cauchy’s theorem to the closed contour
consisting of C2 and −C1 as shown in Fig. 7.7:

∫

C2

+
∫

−C1

= 0 ⇒
∫

C2

= −
∫

−C1

=
∫

C1

.

Intuitively, the symbol −C denotes the contour C traced in the opposite
direction. A discussion on the path independence follows the theorem below.

♠ Uniqueness of the integral:
If f(z) is analytic within a region bounded by a closed contour C, then

the integration
∫ z2

z1
f(z)dz along any contour within C depends only on z1

and z2.

This theorem states that an analytic function f(z) has a unique integral not
only a unique derivative. From a practical viewpoint, this theorem is frequently
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Fig. 7.7. Two integration paths: C1 and C2 = −C1

used in the evaluation of contour integrals, since it allows us to choose an
appropriate contour.

Remark. When integrating along a closed contour, we agree to move along
the contour in such a way that the enclosed region lies to our left. An inte-
gration that follows this convention is called integration in the positive sense.
Integration performed in the opposite direction acquires a minus sign.

7.2.3 Integrations on a Multiply Connected Region

x

y y

x00

Fig. 7.8. Left : A simply connected region. Right : A multiply connected region

We should note that Cauchy’s theorem applies in a direct way only to sim-
ply connected regions. A region R is said to be simply connected if every
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closed curve in R can be continuously contracted into a point without leav-
ing R. Otherwise, it is said to be multiply connected; (see Fig. 7.8). The
physical reason for this restriction is easy to find. The important fact is that
Cauchy’s theorem is a restatement that no singular point is included within
the region bounded by the contour C. If the region R bounded by C is multi-
ply connected, it becomes possible to put on singular points within the closed
contour C but surely outside the region R in question. In this case, Cauchy’s
theorem no longer holds even though the integrand f(z) is analytic everywhere
in the region.

Nevertheless, there is still a way to apply Cauchy’s theorem to multiply
connected regions, which is based on allowing the deformation of contours as
described below.

Suppose that f(z) is analytic in the region that lies between two closed
contours C and C ′, where C encloses C ′. Draw two lines AB and EF close
together, so as to connect the two contours. Then ABDEFGA described as
shown in Fig. 7.9 is a closed contour, which we denote by S and f(z) is analytic
within it. Then, we have ∮

S

f(z)dz = 0.

Now let the lines AB and FE approach infinitely close to one another. The
contribution from the part BDE tends toward the integral around C in the
positive (i.e., counterclockwise) direction. Similarly, the contribution from
FGA tends toward that around C ′ in the negative (clockwise) direction, thus
minus that around C ′ in the positive direction. The contributions from AB

0

y

x

B

E

A

F

C

G

C ′

D

Fig. 7.9. Closed contour of ABDEFGA that consists of C and C′
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and EF approach equal and opposite values since they ultimately become the
same path described in opposite directions. We thus come to the conclusion
that ∮

C

f(z)dz =
∮

C′
f(z)dz.

This means that, if a function is analytic between two contours, its integrals
around both contours have the same value.

Remark. There is an immediate extension to the case where C encloses several
closed paths C1, C2, · · · , all external to one another. Because of Cauchy’s
theorem, an integration contour can be moved across any region of the complex
plane over which the integrand is analytic without changing the value of the
integral. It cannot be moved across a hole (the shaded area) or a singularity
(the dot), but it can be made to collapse around either, as shown in Fig. 7.10.
As a result, an integration contour C enclosing n holes or singularities can
be replaced by n separated closed contours Ci, each enclosing a hole or a
singularity as given by

∮

C

f(z)dz =
n∑

i=1

∮

Ci

f(z)dz.

Fig. 7.10. Collapse of an integration path onto the boundaries of a hole (a large
shaded region) and singularity (a small shaded dot)

7.2.4 Primitive Functions

Here is a definition of the primitive function of a complex function.

♠ Primitive function:
Let f(z) be a function that is continuous in a domain D and has the

property
∮

C
f(z)dz = 0 for every closed path C in D. Then, the primitive

function F (z) of f(z) is defined by

F (z) =
∫ z

z0

f(z′)dz′ (z0, z ∈ D),
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which is analytic in D with the derivative

dF (z)
dz

= f(z).

Proof Consider the differential

F (z+Δz)−F (z) =
∫ z+Δz

z0

f(z′)dz′−
∫ z

z0

f(z′)dz′ =
∫ z+Δz

z

f(z′)dz′, (7.24)

where we make use of the path-independence property. If we write
∫ z+Δz

z

f(z′)dz′ = f(z)
∫ z+Δz

z

f(z′)dz′,+
∫ z+Δz

z

[f(z′) − f(z)]dz′

= f(z)Δz +
∫ z+Δz

z

[f(z′) − f(z)]dz′,

then (7.24) becomes

F (z +Δz) − F (z) − f(z)Δz =
∫ z+Δz

z

[f(z′) − f(z)]dz′. (7.25)

Since f(z) is continuous, corresponding to an arbitrary small positive number
ε, there is a number δ such that

|z − z′| < δ ⇒ |f(z) − f(z′)| < ε.

Now choose |Δz| < δ, which ensures |z − z′| < δ for z′ on the path C in
question. Therefore, we have

∣
∣
∣
∣
∣

∫ z+Δz

z

[f(z′) − f(z)]dz′,

∣
∣
∣
∣
∣
≤
∫ z+Δz

z

|f(z′) − f(z)| |dz′| < ε|Δz|

and (7.25) can be written as
∣
∣
∣
∣

F (z +Δz) − F (z)
Δz

− f(z)
∣
∣
∣
∣
< ε for |Δz| < δ.

Since ε can be arbitrarily small, we conclude that

lim
Δz→0

F (z +Δz) − F (z)
Δz

= f(z),

or equivalently,
dF (z)
dz

= f(z).

This result is obtained for any point in D, so F (z) is analytic in D. ♣
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Fig. 7.11. Integration paths used in Exercise 1

Exercises

1. Evaluate the integral
I(C) =

∫

C

sin zdz (7.26)

along the two paths shown in Fig. 7.11: (a) C1 = OB, (b) C2 = OA+AB.

Solution: Since sin z = sin(x + iy) = cosh y sinx + i sinh y cosx
and dz = dx + idy, we can divide (7.26) into real and imaginary
parts as

I(C) =
∫

C

(cosh y sinxdx− sinh y cosxdy)

+
∫

C

(cosh y sinxdy + sinh y cosxdx).

Noting x = y along the curve C1, we have

I(C1) = (1 + i)
∫ 1

0

coshx sinxdx− (1 − i)
∫ 1

0

sinhx cosxdx

= [coshx cosx]10 + [sinhx sinx]10

= (1 − cosh 1 cos 1) + i(sinh 1 sin 1), (7.27)

where we employ partial integrations. Next we evaluate I along
C2. Along the path from O to A, x = 0 and dx = 0, and along the
path from A to B, y = 1 and dy = 0. Therefore,

I(C2) =
∫

C2

sin zdz

= −
∫ 1

0

sinh ydy +
∫ 1

0

coshx sinxdx+ i

∫ 1

0

sinhx cosxdx

= (1 − cosh 1 cos 1) + i (sinh 1 sin 1) .
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Observe that I(C1) = I(C2). ♣
2. Set C : |z| = r, and calculate the following integrals:

(i)
∣
∣
∣
∣

∮

C

dz

z

∣
∣
∣
∣
, (ii)

∮

C

dz

|z| , (iii)
∮

C

|dz|
z
.

Solution: Let z = reiθ, which yields dz = ireiθdθ and |dz| = rdθ.
Hence, we have the results: (i) |

∮

C
dz/z| = |

∫ 2π

0
(ireiθ)/(reiθ)dθ| =

2π, (ii)
∮

C
dz/|z| =

∫ 2π

0
(ireiθ)/rdθ = 0, (iii)

∮

C
|dz|/z =

∫ 2π

0

r/(reiθ)dθ = 0. ♣
3. Let f(z) be analytic on a unit circle D about the origin. For any two

points z1 and z2 on D, there exists two points ξ1 and ξ2 on the line
segment [z1, z2] that satisfy the relation

f(z2) − f(z1) = {Re [f ′(ξ1)] + iIm [f ′(ξ2)]} (z2 − z1). (7.28)

Prove it. (This is a generalization of the mean value theorem that is
valid for real functions.)

Solution: From assumptions, we have

f(z2) − f(z1) =
∫ z2

z1

f ′(z)dz = (z2 − z1)
∫ 1

0

f ′[z1 + t(z2 − z1)]dt

= (z2 − z1)
{∫ 1

0

Re [f ′ (z1 + t(z2 − z1))] dt

+i
∫ 1

0

Im [f ′ (z1 + t(z2 − z1))] dt
}

. (7.29)

Note that the integrals in the last line are both real. Hence, they
satisfy the mean value theorem for integrals of real-valued func-
tions g(t) that are expressed by
∫ 1

0

g[z1 + t(z2 − z1)]dt = g[z1 + c(z2 − z1)] when 0 < c < 1.

Setting ξk = z1 + ck(z2 − z1) with 0 < ck < 1 (k = 1, 2), we
get the desired equation (7.28). ♣

7.3 Cauchy Integral Formula and Related Theorem

7.3.1 Cauchy Integral Formula

We now turn to the famous integral formula that is the chief tool in the
application of the theory of analytic functions in physics.



7.3 Cauchy Integral Formula and Related Theorem 205

♠ Cauchy integral formula:
If f(z) is analytic within and on a closed contour C, we have

∮

C

f(z)
z − a

dz =

{

2πif(a) if a is interior to C,

0 if a is exterior to C.
(7.30)

Proof The latter case is trivial; when z = a is exterior to C, the integrand in
(7.30) becomes analytic within C so that we have at once

∮

[f(z)/(z−a)]dz = 0
by virtue of the Cauchy theorem. Hence, we consider below only the case where
z = a is within C.

Suppose that the integral

J(a) =
∮

C

f(z)
z − a

dz (7.31)

around a closed contour C within and on which f(z) is analytic. In view of
the discussion in Sect. 7.2.3, the contour C may be deformed into a small
circle of radius r about the point a. Accordingly, the variable z is expressed
by z = a+ reiθ.

Now, we rewrite (7.31) as

J(a) = f(a)
∮

C

dz

z − a
dz +

∮

C

f(z) − f(a)
z − a

dz. (7.32)

The first integral on the right-hand side becomes

∮

C

dz

z − a
=
∫ 2π

0

ireiθ

reiθ
dθ = 2πi. (7.33)

Hence, (7.30) is confirmed if the second integral of (7.32) vanishes for some
choice of the radius r of the circle C. To show this, we note the continuity of
f(z) at a, which tells us that for all ε > 0 there exists an appropriate quantity
δ such that

|z − a| < δ ⇒ |f(z) − f(a)| < ε.

This implies that for any arbitrarily small ε, we can find r = |z − a| that
satisfies the relation

∣
∣
∣
∣

∮

C

f(z) − f(a)
z − a

dz

∣
∣
∣
∣
≤
∮

C

|f(z) − f(a)|
|z − a| |dz| < ε

δ
2πδ = 2πε. (7.34)
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Thus by taking r small enough, but still greater than zero, the absolute
value of the integral can be made smaller than any preassigned number. From
(7.32 to 7.34), we obtain the desired equation:

∮
f(z)
z − a

dz = 2πif(a) if a is within C. ♣ (7.35)

Remark. If a is a point located just on the contour C, the integral (7.30) will
have the principal value integral (see Sect. 9.4.1).

The Cauchy integral formula gives us another hint by which to comprehend
the rigid structure of analytic functions: If a function is analytic within and
on a closed contour C, its value at every point inside C is determined by its
values on the bounding curve C.

7.3.2 Goursat Formula

A remarkable consequence of the Cauchy’s integral formula is the fact that,
when f(z) is analytic at z = a, all of its derivatives are also analytic. Fur-
thermore, the region of analyticity for those derivatives is identical with that
of f(z). To prove the theorem, we use the integral representation (7.35) to
evaluate the derivative,

2πif ′(a)

= 2πi lim
h→0

f(a+ h) − f(a)
h

= lim
h→0

[
1
h

∮

f(z)
(

1
z − a− h

− 1
z − a

)

dz

]

= lim
h→0

∮
f(z)

(z − a)(z − a− h)
dz =

∮
f(z)

(z − a)2
dz. (7.36)

The last equality in (7.36) is verified from
∮ [

f(z)
(z − a− h)(z − a)

− f(z)
(z − a)2

]

dz

= h

∮
f(z)

(z − a)2(z − a− h)
dz ≤ hML

b2(b− |h|) , (7.37)

where M is the maximum value of |f(z)| on the contour, L is the length of the
contour, and b is the minimum value of |z−a| on the contour. The right-hand
side of the inequality in (7.37) approaches zero as h → 0, so we have

lim
h→0

∮ [
f(z)

(z − a)(z − a− h)
− f(z)

(z − a)2

]

dz = 0,

which ensures the equality of the last part of (7.36).
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We can continue with the same process to obtain higher derivatives, ar-
riving at the general formula for the nth derivative of f at z = a:

♠ Goursat formula:
If f(z) is analytic within and on a closed contour C, we have

f (n)(a) =
n!
2πi

∮
f(z)

(z − a)n+1
dz (n = 0, 1, 2, · · · ). (7.38)

Note that equation (7.38) guarantees the existence of all the derivatives
f ′(a), f ′′(a), · · · and the analyticity at all a’s within C.

Remark. The Goursat formula (7.38) is valid only within the contour, and
thus gives no information as to the existence of the derivatives just on the
contour.

7.3.3 Absence of Extrema in Analytic Regions

An additional noteworthy fact associated with Cauchy’s integral formula
(7.30) is that it points up the absence of either a maximum or a minimum of
an analytic function within a region of analyticity.

For example, if z = a is a point within C, from (7.30) we see that

f(a) =
1
2π

∫ 2π

0

f(a+ ρeiφ)dφ, (7.39)

which means that f(a) is the arithmetic average of the values of f(z) on any
circle centered at a. We thus have |f(a)| ≤ M , where M is the maximum
value of |f | just on the circle. (Equality can occur only if f is constant on the
contour.)

The above argument applies to arbitrary points within the circle and,
further, to a region bounded by any contour C (not necessary a circle). We
thus conclude that the inequality |f(z)| ≤ M holds for all z within C, which
means that |f(z)| has no maximum within the region of analyticity.

Similarly, if f(z) has no zero within C, then 1/f(z) is an analytic function
inside C and |1/f(z)| has no maximum within C, taking its maximum value
on C. Therefore |f(z)| does not have a minimum within C but does have one
on the contour C. We thus arrive at the following important theorem.

♠ Absolute maximum theorem: If a nonconstant function f(z) is ana-
lytic within and on a closed contour C, then |f(z)| can have no maximum
within C.
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♠ Absolute minimum theorem:
If a nonconstant function f(z) is analytic within and on a closed contour

C, and if f(z) �= 0 there, then |f(z)| can have no minimum within C.

Accordingly, points at which df/dz = 0 are saddle points, rather than true
maxima or minima.

We further observe that the theorems apply not only to |f(z)| but also to
the real and imaginary parts of an analytic function. To see this, we rewrite
(7.39) as

2πf(a) = 2π(ua + iva) and 2πf(a) =
∫ 2π

0

f(x+ iy)dφ =
∫ 2π

0

(u+ iv)dφ,

(7.40)
where ua and va are the values of u(x, y) and v(x, y) at z = x + iy = a.
Equating the last terms of the two equations in (7.40), we obtain

ua =
1
2π

∫ 2π

0

udφ and va =
1
2π

∫ 2π

0

vdφ,

so that ua and va are the arithmetic averages of the values of u(x, y) and
v(x, y), respectively, on the boundary of the circle. Hence, based on the same
reasoning as above, we see that both of u and v take on their minimum and
maximum values on the boundary curve of a region within which f is analytic.

7.3.4 Liouville Theorem

We saw in the previous discussion that |f(z)| has its maximum M on the
boundary of the region of analyticity of f(z). In certain cases, the maximum
of |f(z)| bounds the absolute value of derivatives |f (n)(z)|, as stated in the
theorem below.

♠ Cauchy inequality:

If f(z) is analytic within and on a circle C with a radius r, and M(r) is
the maximum of |f(z)| on C, then we have

∣
∣
∣f (n)(z)

∣
∣
∣ ≤ n!

rn
M(r) within and on C.

This is called the Cauchy inequality.

Proof Goursat’s formula reads

f (n)(z0) =
n!
2πi

∮

C

f(z)
(z − z0)n+1

dz.
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Take |z − z0| = r and use the Darboux inequality to get the desired result:

∣
∣
∣f (n)(z0)

∣
∣
∣ ≤
∣
∣
∣
∣

n!
2πi

∣
∣
∣
∣

∮

C

|f(z)|
|(z − z0)n+1| |dz| ≤

n!
2πrn+1

M(r) · 2πr

=
n!M(r)
rn

. ♣ (7.41)

If the f(z) we have considered is analytic at all points on the complex plane,
i.e., if it is an entire function, the above result reduces to the following
theorem:

♠ Liouville theorem:

If f(z) is an entire function and |f(z)| is bounded for all values of z,
then f(z) is a constant.

Proof Let n = 1 and M(r) = M in (7.41) to obtain

|f ′(z0)| <
M

r
.

Since f(z) is an entire functions we may take r as large as we like. Thus we can
make |f ′(z0)| < ε for any preassigned ε. That is, |f ′(z0)| = 0, which implies
that f ′(z0) = 0 for all z0, so f(z0) = const. ♣

Liouville’s theorem is a very powerful statement about analytic functions over
the complex plane. In fact, if we restrict our attention to the real axis, then it
becomes possible to find many real functions that are entire and bounded but
are not constant; cosx and e−x2

are cases in point. In contrast, there is no
such freedom for complex analytic functions; any analytic function is either
not bounded (goes to infinity somewhere on the complex plane) or not entire
(is not analytic at some points of the complex plane).

7.3.5 Fundamental Theorem of Algebra

The next theorem follows easily from Liouville’s theorem and provides a re-
markable tie-up between analysis and algebra. In what follows, the points z
at which f(z) = 0 are called the zeros of f(z) or roots of f(z).

♠ Fundamental theorem of algebra:
Every nonconstant polynomial of degree n with complex coefficients has

n zeros in the complex plane.
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Proof Let P (z) be any polynomial. If P (z) �= 0 for all z, then the function
f(z) = 1/P (z) is entire. Moreover, if P is nonconstant, then P → ∞ as
z → ∞ so that f is bounded. Hence, in view of Liouville’s theorem, f must be
a constant. This result means that P is also a constant, which is contrary to
our assumption that P is a nonconstant polynomial. We thus conclude that
P (z) has at least one zero in the complex plane.

Furthermore, an induction argument shows that an nth-degree polynomial
has n zeros (counting multiplicity; see Remark 1 below). If we assume that
every kth-degree polynomial can be written

Pk(z) = A(z − α1) · · · (z − αk),

it follows that

Pk+1(z) = A(z − α0)(z − α1) · · · (z − αk). ♣

Remark.

1. The point α is called a zero of order k (or zero of multiplicity k) of
the function P (z) if it reads

P (z) = (z − α)kQ(z),

where Q(z) is a polynomial with Q(α) �= 0. Equivalently, α is a zero of
order k if

P (α) = P ′(α) = · · · = P (k−1)(α) = 0 and P (k)(α) �= 0.

2. It can be shown that if f1(z) and f2(z) are analytic within and on C and
if |f2(z)| < |f1(z)| �= 0 on C, then f1(z) and f1(z) + f2(z) have the same
number of zeros within C. This is called Rouché’s theorem, which is
verified in Sect. 9.3.4.

7.3.6 Morera Theorem

The final important theorem is called Morera’s theorem and, is in a sense the
converse of Cauchy’s theorem.

♠ Morera theorem:
Let f(z) be a continuous function on some domain D and suppose that

∮

C

f(z)dz = 0

for every simple closed curve C in D whose interior also lies in D. Then f
is analytic in D.
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Proof For some fixed point z0 in D, define the function

F (z) =
∫ z

z0

f(z′)dz′, z ∈ D,

where the path is along the line segment in D from z0 to z. From this, we
have

F (z +Δz) − F (z)
Δz

=
f(z)
Δz

∫ z+Δz

z

dz′+
1
Δz

∫ z+Δz

z

{f(z′) − f(z)} dz′ = f(z),

where Darboux’s inequality is used in the second term in the limit Δz → 0.
As a result, we get

F ′(z) = f(z),

which indicates the existence of the first derivative of F (z), so F (z) is analytic
in D and f(z) is also analytic. ♣

Exercises

1. Let f(z) be analytic within a circle D : z = |R|, and let it satisfy the
relations |f(z)| ≤ M and f(0) = 0.

(i) Prove that

|f(z)| ≤ M

R
|z| for z ∈ D. (7.42)

(ii) Prove that the equality in (7.42) holds at z = z0 if and only if there
exists a complex number c that yields |c| = 1 and

f(z0) = c
M

R
z. (7.43)

Statements (i) and (ii) constitute the Schwarz lemma.

Solution: (i) Equation in (7.42) holds trivially for z = 0. For
considering the case of z �= 0, we specify the circle D′ : |z| = ρ < R
and set the function g(z) = f(z)/z. Since g is analytic within and
on D′, it follows from the theorem in Sect. 7.3.3 that

|g(z)| ≤ max
z∈D′

|g(z)| ≤ M

ρ
,

which means that

|f(z)| ≤ M

ρ
|z| for z ∈ D′.

By fixing z within D′ and taking the limit of ρ to R, we get to
(7.42).

(ii) If the equality in (7.42) holds at some z0 ∈ D except at the
origin, we have
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|g(z0)| =
M

R
≥ |g(z)| for z ∈ D.

It follows again from the theorem in Sect. 7.3.3 that g(z) must be
constant within D. Hence, we have

g(z) = c
M

R
with |c| = 1.

This reduces to the desired result (7.43). ♣

2. Let f(z) be analytic on a domain D and f(z) �≡ 0. Show that if f(a) = 0
with a ∈ D, then it is always possible to find small ρ > 0 such that

0 < |z − a| < ρ ⇒ f(z) �= 0.

This means that zeros of f(z) are necessarily isolated from each other.

Solution: Suppose that z = a is an nth zero of f(z). From the
definition of zero of a complex function, there exists an n ∈ N
such that

p < n ⇒ f (n)(a) �= 0 and f (p)(a) = 0.

Hence, the Taylor series of f(z) around z = a reads

f(z) =
∞∑

p=0

f (n+p)(a)
(n+ p)!

(z − a)n+p = (z − a)ngn(z),

where

gn(z) =
∞∑

p=0

f (n+p)(a)

(n+ p)!
(z − a)p, so gn(a) =

f (n)(a)
n!

�= 0.

Since gn(z) is analytic at a, it is continuous there. Thus we can
find ρ > 0 such that

|z − a| < ρ ⇒ |gn(z) − gn(a)| < 1
2

∣
∣f (n)(a)

∣
∣

n!
.

It follows from the triangular inequality that

|gn(z)| > |gn(a)| − 1
2

∣
∣f (n)(a)

∣
∣

n!
=

1
2

∣
∣f (n)(a)

∣
∣

n!
> 0.

This implies that for our choice of ρ,

0 < |z − a| < ρ ⇒ f(z) = (z − a)ngn(z) �= 0. ♣
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3. Obtain an alternative form of Cauchy’s integral formula expressed by

f(z) = f(reiφ) =
R2 − r2

2π

∫ 2π

0

f(reiθ)
R2 − 2rR cos(θ − φ) + r2

dθ

that is valid for |z| < R if f(z) is analytic for |z| ≤ R. This is called
Poisson’s integral formula.

Solution: Consider the function

g(ζ) =
z∗

R2 − z∗ζ
f(ζ),

which is analytic for |ζ| ≤ R. Hence, for the contour C : |ζ| = R,
we have

∮

C
g(ζ)dζ = 0. Furthermore, Cauchy’s integral formula

tells us that
∮

C
f(ζ)/(ζ − z)dζ = 0. From these two results, we

obtain
1

2πi

∮

C

(
1

ζ − z
+

z∗

R2 − z∗ζ

)

f(ζ)dζ =
R2 − |z|2

2πi

∮

C

f(ζ)

(ζ − z)(R2 − z∗ζ)
dζ = 0.

(7.44)

Setting z = reiφ and ζ = Reiθ, we have

(ζ − z)(R2 − z∗ζ) =
(

Reiθ − reiφ
) (

R2 − re−iφReiθ
)

= R2eiθ
[

R2 − 2rR cos(θ − φ) + r2
]

.

Substituting in (7.44), we arrive at the desired formula. ♣

7.4 Series Representations

7.4.1 Circle of Convergence

We now turn to a very important notion: series representations of complex
analytic functions. To begin with, we note (without proof) that most of the
definitions and theorems in connection with the convergence of series of real
numbers and real functions presented in Chap. 2 and 3 can be applied to
complex counterparts with little or no change. Here we give a basic theo-
rem regarding the convergence property of infinite power series consisting of
complex numbers.

♠ Theorem:
If the power series

∞∑

n=0

anz
n (7.45)

converges at z = z0 �= 0, then it converges absolutely at every point of
|z| < |z0| and, furthermore, it converges uniformly for |z| ≤ ρ where 0 <
ρ < |z0|.
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Proof We first prove the statement regarding absolute convergence. From hy-
pothesis, we see that the series

∑∞
n=0 anz

n
0 converges. We set

sn =
n∑

k=0

akz
k
0 ,

to obtain
|sn − sn−1| = |anz

n
0 | → 0 (n → ∞).

Hence, there exists an integer M > 0 that satisfies

|anz
n
0 | ≤ M for all n,

which implies
∞∑

n=0

|anz
n| =

∞∑

n=0

|anz
n
0 |
∣
∣
∣
∣

z

z0

∣
∣
∣
∣
≤ M

∞∑

n=0

∣
∣
∣
∣

z

z0

∣
∣
∣
∣
.

Therefore, if |z| < |z0|, the right-hand side converges so that the series (7.45)
converges absolutely.

Next we consider uniform convergence. For every z satisfying the relation
|z| ≤ ρ < |z0|, we have

∞∑

n=0

|anz
n| ≤ M

∞∑

n=0

ρn

|z0|n
,

since 0 < ρ/|z0| < 1. In view of the Weierstrass M -test, we conclude that the
series (7.45) converges uniformly on the region of |z| ≤ ρ. ♣

This theorem states that converging behavior of power series
∞∑

n=0

anz
n (7.46)

can be classified into the following three types:

1. It converges at all z.
2. It converges (ordinary and thus absolutely) at |z| < R, but diverges at

|z| > R, in which the real constant R depends on the feature of the series.
3. It diverges at all z except the origin.

This classification leads us to introduce the concept of radius of conver-
gence R of the power series (7.46). For the above three cases, it becomes

1. R = 0, 2. R itself, 3. R = ∞,

respectively. The circle C with the radius R about the origin is called the
circle of convergence associated with the series. Note that just on C, con-
verging behavior of the corresponding series is inconclusive—it may or may
not converge.
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The following theorems provide us with a clue for finding the radius of
convergence of a given power series.

♠ Theorems:
Given a power series

∑∞
n=0 anz

n, its radius of convergence R equals

(i) R = lim
n→∞

∣
∣
∣
∣

an

an+1

∣
∣
∣
∣
, if the limit exists;

(ii) R =
1

lim supn→∞
n
√

|an|
.

7.4.2 Singularity on the Radius of Convergence

Given a complex-valued power series, the convergence criterion based on the
radius of convergence discussed in the previous subsection does not provide
us with any information about the convergence property of the series just on
the circle of convergence. We present below two important theorems regarding
the latter point.

♠ Theorem:
If the power series

∑∞
n=0 anz

n has a radius of convergence R, then it
has at least one singularity on the circle |z| = R.

Proof Set

f(z) =
∞∑

n=0

anz
n.

If f(z) were analytic at every point on the circle of convergence, then for each
z with |z| = R, there would exist some maximal εz0 such that f(z) could be
continued analytically to a circular region |z−z0| < εz0 where z0 is located
on the circle |z| = R. (See Sect. 8.3 for details of analytic continuation.)
Here εz0 would depend on z0 and we define

ε ≡ min
|z0|=R

εz0 > 0.

By performing continuations successfully for all possible z0, we obtain a func-
tion g(z) that is analytic for |z| < R + ε. Clearly for |z| < R, g must be
identical to f . In addition, g must have a power series representation,

g(z) =
∞∑

n=0

bnz
n, (7.47)

that is convergent for |z| < R+ ε. Yet since for |z| < R
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g(z) = f(z) =
∞∑

n=0

anz
n,

we conclude that
an ≡ bn.

This implies that the radius of convergence of (7.47) would be R, which clearly
gives us a contradiction. We thus conclude that f(z) has at least one singu-
larity on the circle |z| = R. ♣

In general, it is difficult to determine when a function has a singularity at a
particular point on the circle of convergence of its power series. The following
theorem is one of the few results we have in this direction.

♠ Theorem:
Suppose that a power series

∑∞
n=0 anz

n has a radius of convergence
R < ∞ and that an ≥ 0 for all n. Then the series has a singularity at
z = R on the real axis.

Proof By the previous theorem, the function

f(z) =
∞∑

n=0

anz
n

has a singularity at some point Reiα. If we consider the power series for f
about a point ρeiα with 0 < ρ < R, we have

f(z) =
∞∑

n=0

bn
(

z − ρeiα
)

=
∞∑

n=0

f (n)(ρeiα)
n!

(

z − ρeiα
)n
,

where the radius of convergence is R − ρ. (If it were larger, the power series
would define an analytic continuation of f beyond Reiα.) Note, however,
that for any nonnegative integer j, the derivative f (j) reads

f (j)(ρeiα) =
∞∑

n=j

n(n− 1) · · · (n− j + 1)an(ρeıα)n−j .

Since an ≥ 0, we have ∣
∣
∣f (j)(ρeiα)

∣
∣
∣ ≤ f (j)(ρ).

This implies that the power series representation of f around, z = ρ, expressed
by

f(z) =
∞∑

n=0

f (n)(ρ)
n!

(z − ρ)n
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must have a radius of convergence R−ρ. On the other hand, if f were analytic
at z = R, the above power series would converge on a disc of radius greater
than R− ρ. Therefore, f is singular at z = R. ♣

7.4.3 Taylor Series

Below is the one of the main theorems of this section, which states that any
analytic function can be expanded into a power series around its analytic
point.

♠ Taylor series expansion:
If f(z) is analytic within and on the circle C of radius r around z = a,

then there exists a unique and uniformly convergent series in powers of
(z − a),

f(z) =
∞∑

k=0

ck(z − a)k (|z − a| ≤ r), (7.48)

with

ck =
f (k)(a)
k!

=
1

2πi

∮

C

f(ζ)
(ζ − a)k+1

dζ.

The largest circle C for which the power series (7.48) converges is called the
circle of convergence of the power series and its radius is called the radius
of convergence.

Proof Let f(z) be analytic within and on a closed contour C. From Cauchy’s
integral formula, we have

f(a+ h) =
1

2πi

∮

C

f(z)
z − a− h

dz, (7.49)

where a is inside a contour C. The contour is taken to be a circle about a,
inasmuch as the region of convergence of the resulting series is circular. We
employ the identity
[

1 +
h

z − a
+

h2

(z − a)2
+ · · · + hN−1

(z − a)N−1

](
z − a− h

z − a

)

= 1 − hN

(z − a)N

to obtain the exact expression

1
z − a− h

=
N−1∑

n=0

[
hn

(z − a)n+1

]

+
hN

(z − a− h)(z − a)N
.

Substituting this into (7.49), we have

f(a+h) =
N−1∑

n=0

hn

2πi

∮

C

f(z)
(z − a)n+1

dz+
hN

2πi

∮

C

f(z)
(z − a)N (z − a− h)

dz. (7.50)
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Since the first integral can be replaced by the nth derivative of f at z = a,
we have

f(a+ h) =
N−1∑

n=0

hn

n!
f (n)(a) +RN , (7.51)

where, RN is the second term on the right-hand side of (7.50). It follows from
(7.51) that if limN→∞RN = 0, the Taylor series expansion of f(z) around
z = a is obtained successfully. This is indeed the case. As f(z) is analytic
within and on the contour C, the absolute value of RN is bounded as

|RN | =
∣
∣
∣
∣

hN

2πi

∮

C

f(z)
(z − a)N (z − a− h)

dz

∣
∣
∣
∣
≤ |h|N M r

rN (r − |h|) , (7.52)

where r is the radius of the circle and M is the maximum value of |f | on the
contour. Within the radius r, |h| < r so that

lim
N→∞

RN = 0.

Hence, we have

f(a+ h) =
∞∑

n=0

hn

n!
f (n)(a), (7.53)

which holds at any point z = a+ h within the circle of radius r. ♣

We note that the series (7.53) converges for large h as far as |h| < rc, since
RN vanishes as N → ∞ for any value of |h| smaller than rc. Furthermore, as
the inequality (7.52) holds whenever f(z) is analytic within and on the circle
of radius rc, the radius of convergence, r, can extend up to the singularity
is nearest neighbor to z = a. When the extending circle goes beyond the
nearest singular point, the inequality becomes invalid so that the Taylor series
expansion fails.

7.4.4 Apparent Paradoxes

We have seen that the radius of convergence is determined by the distance to
the nearest singularity. Interestingly, this explains some apparent paradoxes
that which occur if we restrict our attention only to values of the series along
the real axis of z.

A familiar example is the Taylor expansion of f(z) = 1/(1−z) around the
origin:

1
1 − z

= 1 + z + z2 + · · · . (7.54)

Obviously, both sides of (7.54) “blow up” at z = 1. At z = −1, on the other
hand, the right-hand side diverges, whereas the left-hand side has a finite
value of 1/2. Notably, this apparent paradox occurs at all points represented
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by z = eiφ, i.e., at any point on a unit circle surrounding the origin. The
reason for this is clear from the point of view of the radius of convergence.
(We leave it to the reader.)

Another example is
f(z) = e−1/z2

.

Observe that f (n)(0) = 0 for any n = 0, 1, · · · , so if one puts this result
blindly into the Taylor formula around z = 0, one obtains apparent nonsense
as e−1/z2

= 0. The point here is that z = 0 is a singularity, where the Taylor
series expansion is prohibited.

These two examples suggest the importance of realizing the difference be-
tween the series representing a function and “the function itself.” A power
series, such as a Taylor series, has only a limited range of representation char-
acterized by the radius of convergence. Beyond this range, the power series
is unable to represent the function. For example, the function considered in
(7.54),

f(z) =
1

1 − z
, (7.55)

exists and is analytic everywhere except at z = 1, but its power series around
z = 0, given by

1 + z + z2 + · · ·
exists and represents f only within the unit circle centered at the origin (i.e.,
|z| < 1). The region in which a power series reproduces its original function is
dependent on the explicit form of the series expansion. In fact, an alternative
series expansion of (7.55) around z = 3 is given by

−1
2

+
1
4
(z − 3) − 1

8
(z − 3)2 + · · · ,

which exists and represents (7.55) only within the circle of radius 2 centered
at z = 3. We thus conclude that power series (including Taylor’s, Laurent’s,
and others) are not regarded as pieces of a versatile mold by means of which
one can cast a copy of the function. Each piece of the mold can reproduce the
behavior of f only within the region where the series converges, but gives no
indication of the shape of f beyond its range.

7.4.5 Laurent Series

When expanding a function f(z) around its singular point z = a, Taylor’s
expansion is obviously not suitable but we can obtain an alternative expansion
that is valid for a singular point. The latter kind of expansion is called a
Laurent series expansion. Laurent series enter quite often in mathematical
analyses of physical problems, where functions to be considered have a finite
number of singularities.



220 7 Complex Functions

♠ Laurent series expansions:
Let f(z) be analytic within and on a closed contour C except at a point

z = a enclosed by C. Then, f(z) can be expanded around z = a as

f(z) =
∞∑

n=−∞
cn(z − a)n, (7.56)

with the definition

cn =
1

2πi

∮

C

f(ζ)
(ζ − a)n+1

dζ. (7.57)

The series (7.56) with the constants (7.57) is called the Laurent series
expansion of f(z).

a

C C1

C2

Fig. 7.12. Conversion of a closed contour C into C1 + C2 so as not to involve the
singularity of f(z) at z = a in it

Proof The trick to deriving a, Laurent series expansion is to use the contour
C1 + C2 illustrated in Fig. 7.12 such that its interior does not contain the
singular point of f(z) at z = a (i.e., f is analytic within and on the contour).
As is indicated, the original contour C can be reduced to two circular con-
tours C1 and C2 encircling z = a counterclockwise and clockwise, respectively.
Applying Cauchy’s theorem, we have

f(a+ h) =
1

2πi

∮

C

f(z)
z − a− h

dz

=
1

2πi

∮

C1

f(z)
z − a− h

dz − 1
2πi

∮

C2

f(z)
z − a− h

dz. (7.58)
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Note that |z − a| > |h| on the contour C1 and |z − a| < |h| on C2. We thus
have

1
z − a− h

=
1

z − a
· 1
1 − h

z−a

=
1

z − a

∞∑

n=0

(
h

z − a

)n

on C1 (7.59)

and

1
z − a− h

=
1
h

· 1
z−a

h − 1
=

−1
h

∞∑

n=0

(
z − a

h

)n

on C2. (7.60)

The substitution of these two expressions into (7.58) yields

f(a+ h) =
1

2πi

[
∮

C1

∞∑

n=0

hn

(z − a)n+1
f(z)dz +

∮

C2

∞∑

n=1

(z − a)n−1

hn
f(z)dz

]

.

(7.61)
The order of integration and summation within the square brackets can be
reversed since the infinite series involved in the integrals converge. Eventually,
we obtain

f(a+ h) =
∞∑

n=−∞
cnh

n; cn =
1

2πi

∮

C

f(z)
(z − a)n+1

dz. (7.62)

Here, the contour for the coefficients cn should be C1 in the positive direction
for n ≥ 0 and C2 in the negative direction for n < 0. The series (7.62) is
what we call the Laurent series expansion of f(z) around the singular point
z = a. Note that C1 can be taken as the contour for all values of n with the
reverse direction for negative n’s. This is because the integrand is analytic
in the region between C1 and C2, which allows us to expand the size of the
contour C2 until it coincides with the larger contour C1. ♣

7.4.6 Regular and Principal Parts

An important property of Laurent series is the series resolution. To see this,
we rewrite (7.62) as follows:

f(a+ h) =
∞∑

n=0

cnh
n +

∞∑

n=1

c−nh
−n. (7.63)

The first term in (7.63) converges everywhere within the outer circle of conver-
gences, whereas the second term converges anywhere outside the inner circle.
This means that the Laurent series expansion resolves the original function
f(z) into two parts: one that is analytic within the outer circle of conver-
gence, and the other that is analytic outside the inner circle of convergence.
Obviously, each part is analytic over different portions of the complex plane.
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The part of the Laurent series consisting of positive powers of h is called
the regular part. The other part, consisting of negative powers, is called the
principal part. Either part (or both) may terminate at a finite degree of the
sum or be identically zero. Particularly when the principal part is identically
zero, then f(z) is analytic at z = a, and the Laurent series is identical with
the Taylor series.

Remark. At first glance, the regular part exhibited in (7.63) resembles the
Taylor series. However, this is not the case; the nth coefficient cannot gen-
erally be associated with f (n)(a) because the latter may not exist. In most
applications, f(z) is not analytic at z = a.

7.4.7 Uniqueness of Laurent Series

Taylor and Laurent series allow us to express an analytic function as a power
series. For a Taylor series of f(z), the expansion is routine because the coef-
ficient of its n term is simply f (n)(z0)/n!, where z0 is the center of the circle
of convergence. In contrast, for the case of a Laurent series expansion, the
nth coefficient is not (in general) easy to evaluate. It can usually be found by
inspection and certain manipulations of other known series, but if we use such
an intuitive approach to determine the coefficients, we cannot be sure that
the result we obtain is correct. The following theorem addresses this issue.

♠ Theorem:

If the series ∞∑

n=−∞
an(z − z0)n (7.64)

converges to f(z) at all points in some annular region around z0, then it is
the unique Laurent series expansion of f(z) in that region.

Proof Multiply both sides of (7.64) by

1
2πi(z − z0)k+1

,

integrate the result along a contour C in the annular region, and use the easily
verifiable fact that

1
2πi

∮

C

dz

(z − z0)k−n+1
= δkn

to obtain
1

2πi

∮

C

f(z)
(z − z0)k+1

= ak.
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Thus, the coefficient ak in the power series (7.64) is precisely the coefficient in
the Laurent series of f(z) given in (7.57), and the two must be identical. ♣

Remark. A Laurent series is unique only for a specified annulus. In general, a
function f(z) can possess two or more entirely different Laurent series about
a given point, valid for different (nonoverlapping) regions; For instance,

f(z) =
1

z(1 − z)
=

⎧

⎪⎨

⎪⎩

1
z

+ 1 + z + z2 + · · · , 0 < |z| < 1,

− 1
z2

− 1
z3

− 1
z4

− · · · , 1 < |z| < ∞.

7.4.8 Techniques for Laurent Expansion

The following examples illustrate several useful techniques for the construction
of Taylor and Laurent series.

(a) Use of geometric series

Suppose that a function

f(z) =
1

z − a
(7.65)

fails to be analytic at z = a. We would like to obtain the Laurent series of
f(z) around z = a. First we note that for |z| < |a|, f(z) reads

1
z − a

= −1
a

1
1 − (z/a)

= −1
a

∞∑

n=0

(z

a

)n

. (7.66)

This is obviously the Taylor series expansion of f(z) around the point z = 0.
That is, for |z| < |a|, the Laurent series of f(z) given in (7.65) becomes
identical to its Taylor series. Nevertheless this is not the case for |z| > |a|,
since its radius of convergence is R = |a|. Hence, we should also evaluate the
Laurent series around z = a that is valid for |z| > |a|. In a similar manner as
above, we obtain

1
z − a

=
1
z

∞∑

n=0

(a

z

)n

=
∞∑

n=0

an

zn+1
for |z| > |a|. (7.67)

Expansions (7.66) and (7.67) both serve as the Laurent series expansions of
f(z), although the regions of convergence are different from one
another.
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Remark. The function f(z) given in (7.65) can be expanded by this method
about any point z = b; Indeed, write

f(z) =
1

z − a
=

1
(z − b) − (a− b)

(b �= a).

Then, either

f(z) = − 1
a− b

∞∑

n=0

(z − b)n

(a− b)n
(|z − b| < |a− b|)

or

f(z) =
∞∑

n=0

(a− b)n

(z − b)n+1
(|z − b| > |a− b|) .

(b) Rational fraction decomposition

Next we assume a function

f(z) =
1

z2 − (2 + i)z + 2i
.

The roots of the denominator are z = i and z = 2, which are the only points
at which f(z) fails to be analytic. Hence, f(z) has a Taylor series about z = 0
that is valid for |z| < 1 and two Laurent series about z = 0 that are valid for
1 < |z| < 2 and |z| > 2. To obtain them, we use the identities

z2 − (2 + i)z + 2i = (z − i)(z − 2)

and

f(z) =
1

(z − i)(z − 2)
=

1
2 − i

(
1

z − 2
− 1
z − i

)

.

When we want the Laurent series of f(z) around z = 0 that is valid for
1 < |z| < 2, it suffices to expand the function 1/(z − 2) in the Taylor series
about z = 0 [see (a) above] and then expand 1/(z − i) in the Laurent series
about z = 0 that is valid for |z| > 1. (The latter series is also valid for
1 < |z| < 2.) If these two series are subtracted, we obtain a series for f(z)
that is valid for 1 < |z| < 2, which is the desired Laurent series.

(c) Differentiation

The method used in (b) fails for functions with a double root in the denomi-
nator such that

f(z) =
1

(z − 1)2
.
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Among alternative methods, the simplest one is the differentiation

1
(z − 1)2

=
d

dz

(
1

1 − z

)

.

From the discussions regarding the earlier case (a), the function 1/(1 − z) is
seen to be represented by

1
1 − z

=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

∞∑

n=0

zn, |z| < 1,

−
∞∑

n=0

1
zn+1

, |z| > 1.

Hence, term-by-term differentiations yield

1
(z − 1)2

=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

∞∑

n=0

(n+ 1)zn, |z| < 1,

−
∞∑

n=0

(n+ 1)z−(n+2), |z| > 1.

Exercises

1. Let f(z) be an entire function. Employ the Taylor series expansion to
show that the function defined by

g(z) =

⎧

⎨

⎩

f(z) − f(a)
z − a

, z �= a,

f ′(a), z = a.

is also entire.

Solution: For z �= a, we employ the Taylor series expansion of
f(z) to obtain

g(z) = f ′(a) +
f ′′(a)

2!
(z − a) +

f (3)(a)
3!

(z − a)2 + · · · . (7.68)

By the definition of g, the representation (7.68) is valid at z = a.
Hence, g is equal to an everywhere-convergent power series and is
thus an entire function. ♣

2. If f is entire and if for some integer k ≥ 0 there exist positive constants
A and B such that

|f(z)| ≤ A+B|z|k,
then f is a polynomial of degree k at most. Prove it
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Solution: Note that the case k = 0 is the original Liouville
theorem. To prove the case of k > 0, we employ mathematical
induction, and consider

g(z) =

{
f(z) − f(0)

z
, z �= 0,

f ′(0), z = 0,
(7.69)

where f(z) is assumed to obey the conditions noted above. By
Exercise 1, g is entire. In addition, by hypothesis on f we have

|g(z)| ≤ C +D|z|k−1.

Hence, by induction, g is a polynomial of degree k − 1 at most,
then f is polynomial of degree k at most owing to the definition
(7.69). This completes the proof. ♣

3. Find the Laurent series of the multivalued logarithmic function given by

f(z) = log(1 + z) = log |1 + z| + iarg(1 + z).

Solution: The branch cut (see Sect. 8.2.3) is set so as to extend
from −∞ to −1 along the real axis. Hence, log(1 + z) is analytic
within the circle |z| = 1. Since

d

dz
log(1 + z) =

1
1 + z

,

we may expand

1
1 + z

= 1 − z + z2 − z3 + · · · =
∞∑

n=0

(−1)nzn (|z| < 1).

Then, term-by-term integration yields
∫ z dξ

1 + ξ
= z − z2

2
+
z3

3
− · · · + C (|z| < 1),

where C is the constant of integration. Since log 1 = 0, it follows
that C = 0 and

log(1 + z) = z − z2

2
+
z3

3
− · · · =

∞∑

n=1

(−1)n+1 z
n

n
(|z| < 1).

Other branches of log(1 + z) have the same series except for dif-
ferent values of the constant C. ♣
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4. Find the power series representation of f(z) about z = 0 that satisfies the
differential equation

f ′(z) + f(z) = 0 with f(0) = 1. (7.70)

Solution: Let f(z) = 1 +
∑∞

n=1 anz
n. Then we have f ′(z) =

∑∞
n=1 nanz

n−1

= a1 +
∑∞

n=1(n+ 1)an+1z
n. Substitute this into (7.70) to obtain

1 + a1 = 0 and an + (n+ 1)an+1 = 0 for n ≥ 1.

The latter result yields

an = (−1)
1
n
an−1 = (−1)2

1
n(n− 1)

an−2 = · · · = (−1)n 1
n!
a1.

Hence, we have an = (−1)n/n!, so that

f(z) = 1 +
∞∑

n=1

(−1)n

n!
zn = e−z. ♣

5. Let f(z) =
∑∞

n=0 cn(z − a)n be analytic for |z − a| < R. Prove that

1
2π

∫ 2π

0

∣
∣f(a+ reiθ)

∣
∣
2
dθ =

∞∑

n=0

|cn|2r2n for any r < R.

Then show that ∞∑

n=0

|cn|2r2n ≤ M(r)2, (7.71)

in which M(r) = max|z−a|=r |f(z)|. The result (7.71) is called Gutzmer’s
theorem.

Solution: From assumption, it follows that

|f(z)|2 =

[ ∞∑

n=0

cn(reiθ)n

] [ ∞∑

m=0

c∗m(re−iθ)m

]

=
∞∑

n,m=0

cnc∗mrm+nei(n−m)θ

.

This infinite series converges uniformly on the circle |z − a| =
r < R, which allows us to interchange the order of integration and
summation as expressed by

∫ 2π

0

|f(a+ reiθ)|2dθ =
∞∑

n,m=0

cnc
∗
mr

m+n

∫ 2π

0

ei(n−m)θdθ.

The right-hand side vanishes when n �= m since the integral equals
zero. Hence, we have
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∫ 2π

0

|f(a+ reiθ)|2dθ =
∞∑

n=0

|cn|2r2n × 2π,

which is equivalent to the desired equation. Furthermore, since
|f(a+ reiθ)| ≤ M(r), we have

∞∑

n=0

|cn|2r2n =
1

2π

∫ 2π

0

|f(a+reiθ)|2dθ ≤ 1

2π

∫ 2π

0

M(r)2dθ = M(r)2. ♣

7.5 Applications in Physics and Engineering

7.5.1 Fluid Dynamics

This section demonstrates the effectiveness of using complex function theory
for analyzing fluid dynamics in a two-dimensional plane. The primary aim is
to derive the Kutta–Joukowski theorem (see Sect. 7.5.2), which describes
the lift force exerted on a solid material placed in a uniform flow. Before
proceeding, we introduce terminologies and several basic concepts that pertain
to fluid dynamics.

The fundamental quantities that characterize a two-dimensional fluid flow
are velocity v = uex + vey and vorticity ω = ∇ × v, both of which are
vector-valued functions of the position r. Here, we restrict our attention to
the case of an irrotational (ω = 0) and incompressible (∇ · v = 0) fluid.
The assumption ω = ∇×v allows us to define an appropriate function Φ(x, y)
such that

v = ∇Φ, (7.72)

since ∇ × (∇f) = 0 for any analytic function f(x, y) in the x-y plane. The
function Φ(x, y) defined by (7.72) is called the velocity potential. Further,
our assumption of ∇ · v = 0 implies that

∂u

∂x
+
∂v

∂y
= 0,

which in turn suggests the presence of an analytic function Ψ(x, y) defined by

u ≡ ∂Ψ

∂y
, v ≡ −∂Ψ

∂x
(7.73)

that satisfies the two-dimensional Laplace equation ∇2Ψ = 0. Such a function
Ψ(x, y) is called a stream function.
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Remark. The name stream function originates from the fact that the curves
of Ψ(x, y) = const. in the x-y plane represent streamline flow. This is shown
by noting that if dΨ = 0, we have

dΨ =
∂Ψ

∂x
dx+

∂Ψ

∂y
dy = −vdx+ udy = 0,

so that dx/u = dy/v, which implies that dr is parallel to v.

From (7.72) to (7.73), it follows that the components of the velocity v are
expressed as

u =
∂Φ

∂x
=
∂Ψ

∂y
, v =

∂Φ

∂y
= −∂Ψ

∂x
.

This allows us to introduce the concept of a complex velocity potential
f(z) in the complex plane:

f(z) = Φ(z) + iΨ(z) with z = x+ iy. (7.74)

Note that since f(z) is analytic,

∂f

∂x
=

df

dz
= u− iv = |v|e−iθ,

i.e., the absolute value of the derivative |df/dz| gives the magnitude of the
velocity |v|. Furthermore, the contour integral of f(z) has important physical
implications. Given a closed contour C placed on a two-dimensional flow, we
have ∮

C

df = Γ (C) + iQ(C),

where

Γ (C) =
∮

C

dΦ =
∮

C

(udx+ vdy) =
∮

C

v · dr,

Q(C) =
∮

C

dΨ =
∮

C

(udy − vdx) =
∮

C

|v × dr| .

Hence, the integrals Γ (C) and Q(C) represent the circulation (or rotation)
and the fluid flow, respectively.

7.5.2 Kutta–Joukowski Theorem

We are now ready to study the Kutta–Joukowski theorem, which describes
the lift force in a two-dimensional flow. The lift force is a component of the
fluid dynamic force that is perpendicular to the flow direction. It is the lift
force that makes it possible for airplanes, helicopters, sail boats, etc. to move
against the gravitational force or water currents.
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C

yF

xF

U

Fig. 7.13. Spatial configuration of material placed into a two-dimensional uniform
flow with speed U showing the components Fx, Fy of the flow-induced force F acting
on the material

♠ Kutta–Joukowski theorem:

The lift force Fy that acts on a material placed in a uniform flow U in
the x-direction is given by

Fy = −ρUΓ (C), (7.75)

where ρ and Γ (C) are the mass density and the circulation of the fluid,
respectively, within a closed contour C surrounding the material (see
Fig. 7.13).

The lift force is generated in accordance with Bernoulli’s theorem and the
law of conservation of momentum. Both of these principles are used to
explain the mechanism responsible for the occurrence of the lift force in a
uniform flow, which is given by the Blasius formula (see 7.5.3):

F =
iρ

2

∮

C

w2dz,

which plays a key role in the proof of the Kutta–Joukowski theorem, as shown
below.

Proof (of the Kutta–Joukowski theorem). Assume a uniform flow oriented to
the x-axis. Then the function w = df/dz is analytic and satisfies the relation

lim
z→∞

w = U = const.

Hence, w can be expanded at points sufficiently far from the origin:

w =
df

dz
= U +

k0

z
− c1
z2

− 2c2
z3

− · · · (z → ∞), (7.76)
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which implies that

f = Uz + k0 log z + c0 +
c1
z

+
c2
z2

+ · · · (z → ∞) (7.77)

and
w2 = U2 +

2Uk0

z
+
(

k2
0 − 2Uc1

) 1
z2

+ · · · (z → ∞). (7.78)

From (7.77) we have
∮

C

fdz = 2πik0 = Γ (C) + iQ(C), (7.79)

and substituting (7.78) into the Blasius formula expressed by F = (iρ/2)
∮

C
w2dz, we obtain

F = Fx + iFy =
iρ

2
· 2πi · 2Uk0 = −2πρUk0. (7.80)

Combining (7.79) and (7.80) yields

Fx + iFy = ρU(−Q+ iΓ ),

i.e.,

Fx = −ρUQ, Fy = −ρUΓ. (7.81)

of the two results above, it is the second one regarding Fy that states the
theorem. ♣

Remark. The first equation in (7.81) indicates that Fx = 0 if Q = 0; i.e. no
force in the direction of the stream is relevant to a material inside the closed
contour C if no source is located interior to C. This is precisely the case for
an ideal flow without any viscosity.

7.5.3 Blasius Formula

We conclude this section by explaining the Blasius formula, which is impor-
tant for the proof of the Kutta–Joukowski theorem discussed above. Consider
a two-dimensional flow of irrotational and incompressible fluid and assume
that a solid material is placed inside a closed contour C encircling a portion
of the fluid. Apparently, a force F from the flow is exerted on the material.
Hence, the law of the conservation of momentum within the contour C
is written as

F +
∮

C

dG = 0,

where dG represents the sum of momentums that pass through a line element
ds of the closed contour C per unit time. It is given by
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dG = pnds+ ρvvnds, (7.82)

where p is the fluid pressure, n is a basis vector normal to the contour C, ρ
is the density of the fluid, and vn = v · n. The first and second terms on the
right-hand side of (7.82) represent the impulse transmitted to the interior of
C through ds and the volume of fluid passing through ds, respectively. Using
the stream potential Ψ , we rewrite as (7.82)

dG = pnds+ ρvdΨ, (7.83)

since dΨ = vnds.
In order to obtain the complex-number representation of (7.83), we denote

by dz an infinitesimal vector having length ds and a direction normal to n.
We then have

dz = i(nx + iny)ds.

when we apply this relation to (7.82), the quantity dG is expressed as

dGx + idGy = −ipdz + ρ
df∗

dz∗
· df − df∗

2i
, (7.84)

where we consider dΨ to be the imaginary part of df . The pressure p is known
to correlate with f via Bernoulli’s theorem, which is expressed by

p = p0 − ρ

2

∣
∣
∣
∣

df

dz

∣
∣
∣
∣

2

= p0 − ρ

2
df

dz

df∗

dz∗
, (7.85)

where p0 is the pressure at a position far from the material (i.e., z → ∞). It
then follows from (7.84) to (7.85) that

dGx + idGy = −ip0dz +
iρ

2
df

dz

df∗

dz∗
dz − iρ

2
df∗

dz∗

(
df

dz
dz − df∗

dz∗
dz∗
)

(7.86)

= −ip0dz − iρ

2

(
df

dz

)2

dz. (7.87)

Since
∮

C
dz = 0, we finally obtain

F = Fx + iFy =
iρ

2

∮

C

(
df

dz

)2

dz, (7.88)

which is known as the Blasius formula.
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Singularity and Continuation

Abstract We devote the first half of this chapter to the essential properties and
classification of singularities, which are nonanalytic points in a complex plane. We
then describe analytic continuation, which is a most important concept from a the-
oretical as well as an applied point of view. Through analytic continuations, we
observe the interesting fact that the functional form of a complex function may
undergo various changes depending on the defining region in the complex plane.

8.1 Singularity

8.1.1 Isolated Singularities

A singularity of a complex function f(z) is any point where it is not analytic.
In particular, the point z = a is called an isolated singularity if and only
if f(z) is analytic in some neighborhood but not at z = a. Most singularities
we have encountered so far in this text were isolated singularities. However,
we will see later that there are singularities that are not isolated.

When z = a is an isolated singularity of f(z), it is classified as follows:

1. A removable singularity if and only if f(z) is finite throughout a neigh-
borhood of z = a, except possibly at z = a itself.

2. A pole of order m (m = 1, 2, · · · ) if and only if (z − a)mf(z) but not
(z − a)m−1f(z) is analytic at z = a. In this case, limz→a |f(z)| = ∞ no
matter how z approaches z = a.

3. An essential singularity if and only if the Laurent series of f(z) around
z = a has an infinite number of terms involving negative powers of (z−a).

Remark. There is an alternative definition of a pole: the point z = a is a pole
of mth order of f(z) if and only if 1/f(z) is analytic and has a zero of order
m at z = a.
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The three types of isolated singularities described above can be distinguished
by the degree of expansion of the Laurent series of f(z) being considered. Let
f(z) have an isolated singularity at z = a. Then there is a real number δ > 0
such that f(z) is analytic for 0 < |z − a| < δ but not for z = a, which means
that f(z) can be represented by the Laurent series

f(z) =
∞∑

n=0

cn(z − a)n +
M∑

n=0

c−n
1

(z − a)n
. (8.1)

Thus, it suffices to examine the expansion degree M of the principal part, the
second sum in (8.1), in order to determine the type of the isolated singularity
z = a.

Case 1. Removable singularities (M = 0)

In this case, the principal part is absent so that the Laurent series around
z = a reads

f(z) = c0 + c1(z − a) + c2(z − a)2 + · · · (z �= a).

Observe that limz→a f(z) = c0 as is consistent with statement 1 above, which
says that f(z) is finite in a neighborhood of z = a. This kind of singularity
can be eliminated by redefining f(a) as c0, which is why we call it removable.

Examples Consider the function

f(z) =
sin z
z

. (8.2)

This yields limz→0 f(z) = 1, but the value of f(0) is not defined. Hence, z = 0
is a removable singularity of (8.2). In a similar sense, the functions

esin z/z and
1
z

− 1
tan z

are regarded as analytic at z = 0, since this point is the removable singularity
for each.

Case 2. Isolated poles (M is finite)

The second type of isolated singularity, for which the principal part reads

M∑

n=1

c−nh
−n (c−M �= 0, M ≥ 1),

is called a pole of order M . Order M is the minimum of the integer that
makes the quantity

lim
z→z0

(z − z0)Mf(z)

a finite, nonzero complex number.
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Examples 1. The function f(z) = 1/ sin z has Laurent series valid for 0 <
|z| < π;

1
sin z

=
1
z

+
z

6
+

7
360

z3 +
31

15120
z5 + · · · ,

from which it follows that it has a simple pole at the origin.
2. The function f(z) = 1/z has a simple pole at z = 0, which is easily seen

by noting that limz→0 zf(z) = 1.

Case 3: Essential singularities (M = ∞)

The third type of isolated singularity, essential singularity, gives rise to an
infinite principal part.

Examples The function f(z) = e1/z has the Laurent series

e1/z = 1 +
1
z

+
1

2! z2
+

1
3! z3

+ · · · ,

which is valid for |z| > 0. Since the principal part is infinite, the function has
essential singularity at z = 0.

Remark. An infinite principal part in the Laurent series implies essential
singularity only when the series is valid for all points in a neighborhood |z −
a| < ε except z = a. For example, the series

f(z) =
1

(z − 1)2
+

1
(z − 1)3

+
1

(z − 1)4
+ · · ·

does not mean that z = 1 is an essential singularity of f(z), since the series
converges only if |z−1| > 1. It actually represents the function f(z) = 1/(z2−
3z + 2) in the annulus 1 < |z − 1| < R, which evidently has a simple pole at
z = 1.

8.1.2 Nonisolated Singularities

As noted earlier, there are other kinds of singular points that are neither
poles nor essential singularities. For example, neither

√
z nor log z can be

expanded near z = 0 in Laurent series; both of them are discontinuous along
an entire line (say, the negative real axis) so that the singular point z = 0 is
not isolated. Singularities of this kind, called branch points, are discussed
in the next subsection.

Another type of singular behavior of an analytic function occurs when it
possesses an infinite number of isolated singularities converging to some limit
point. Consider, for instance,
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f(z) =
1

sin(1/z)
.

The denominator has simple zeros whenever

z =
1
nπ

(n = ±1,±2, · · · ).

The function f(z) has simple poles at these points and the sequence of these
poles converges toward the origin. The origin cannot be regarded as an isolated
singularity because every one of its neighborhoods contains at least one pole
(actually an infinite number of poles).

8.1.3 Weierstrass Theorem for Essential Singularities

The behavior of a function in the neighborhood of an isolated essential sin-
gularity is different from the cases of other isolated singularities such as poles
and removable singularities. Most remarkable is the fact that f(z) can be
made to take any arbitrary complex value by choosing an appropriate path
of z → a. For instance, if z approaches zero along the negative real semiaxis,
then the function f(z) = e1/z yields |f(z)| → 0. However, if z approaches zero
along the positive real semiaxis, then |f(z)| → ∞. Finally, if z approaches
zero along the imaginary axis, then |f(z)| remains constant but argf(z) os-
cillates, and so on. The character of a function near an essential singularity is
described by the following theorem:

♠ Weierstrass theorem:
In any neighborhood of an isolated essential singularity, an analytic

function approaches any given value arbitrarily closely.

Proof We use the contraposition method to prove our theorem. Let z = a
be an isolated essential singularity of f(z). We assume for the moment that
for |z − a| < ε, |f(z) − γ| with a given complex number γ does not become
arbitrarily small. Then, the function [f(z) − γ]−1 is bounded in the region of
|z − a| < ε so that it is possible to find a constant M such that

∣
∣
∣
∣

1
f(z) − γ

∣
∣
∣
∣
< M for |z − a| < ε.

Hence, [f(z) − γ]−1 is analytic for |z − a| < ε (or at worst has a removable
singularity) and can be expanded by

1
f(z) − γ

= b0 + b1(z − a) + b2(z − a)2 + · · · . (8.3)
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If b0 �= 0, then

lim
z→a

1
f(z) − γ

= b0 so that lim
z→a

f(z) = γ +
1
b0
.

This means that z = a is not a singularity of f(z), which contradicts our
assumption. Otherwise, if b0 = 0, we have

f(z) = γ +
1

(z − a)k [bk + bk+1(z − a) + · · · ] ,

where bk is the first nonzero coefficient in the series (8.3). This clearly shows
that z = a is a pole of f(z) of kth degree, which again is inconsistent with
our assumption. Therefore, we conclude that |f(z)− γ| with a given γ can be
arbitrarily small in the vicinity of an essential singularity z = a. Furthermore,
since γ is arbitrary, the function f(z) approaches any given complex value
arbitrarily closely. ♣

Remark. The above theorem becomes invalid if the point at infinity is taken
into account; the point at infinity z = ∞ is defined as the point z that is
mapped onto the origin z = 0 by the transformation z = 1/z. For instance, the
function f(z) = ez has an essential singularity at z = ∞ but never approaches
zero there.

8.1.4 Rational Functions

In comparisons with the previous case, the behavior of an analytic function
near a pole is easy to describe. We now derive the following result:

♠ Theorem:
A rational function has no singularities other than poles. Conversely,

an analytic function that has no singularities other than poles is neces-
sarily a rational function.

A rational function f(z) is of the form

f(z) =
p(z)
q(z)

, (8.4)

where
p(z) = α0 + α1z + α2z

2 + · · · + αnz
n

and
q(z) = β0 + β1z + β2z

2 + · · · + βmz
m.

Observe that the polynomials p(z) and q(z) are analytic at all finite points on
the complex plane.
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Proof In what follows, we assume that p(z) and q(z) have no common zeros;
if they do have a common zero at z = z0, it is always possible to write f(z) in
(8.4) as the quotient of two polynomials with no common zeros by canceling
a suitable number of the (z − z0)-factors.

Obviously, the only possible singularities of f(z) are situated at the zeros
of q(z). Since the zeros of p(z) do not coincide with those of q(z), f(z) neces-
sarily diverges at the zeros of q(z). Such points can be poles but not essential
singularities in view of the Weierstrass theorem given in Sect. 8.1.3. We have
thus proved that all singularities of rational functions f(z) are necessarily
poles.

To prove the converse, suppose that all the singularities of an analytic
function f(z) are poles at the points a1, a2, · · · , an. The orders of these poles
are denoted by m1,m2, · · · ,mn, respectively. In the vicinity of the point aν ,
the function f(z) has a Laurent series expansion of the form

f(z) =
c
(ν)
−mν

(z − aν)mν
+ · · · +

c
(ν)
−1

(z − aν)
+

∞∑

μ=0

c(ν)
μ (z − aν)μ,

where the superscripts (ν) on c(ν) indicate that they are the coefficients that
belong to the νth poles, z = aν . Denote the principal part by

gν(z) =
c
(ν)
−mν

(z − aν)mν
+ · · · +

c
(ν)
−1

(z − aν)
(8.5)

and consider the expression

h(z) = f(z) − g1(z) − g2(z) − · · · − gn(z).

Since f(z) − gν(z) is analytic at z = aν , and gν(z) is analytic everywhere
except at z = aν , it follows that h(z) is analytic at all points of the complex
plane, including the point at infinity. In view of Liouville’s theorem such a
function is necessarily a constant. Thus we have identically h(z) ≡ γ0, whence

f(z) = γ0 +
n∑

ν=1

gν(z), (8.6)

which implies that f(z) can be brought into the form (8.4). This completes
the proof of our theorem. ♣

Exercises

1. Find the poles and their order of the following functions:

(a) f(z) =
sin(z + 1)

z3
, (b) f(z) =

sin z
z3

.
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Solution: (a) Clearly, limz→0 z
2f(z) = ∞ and limz→0 z

3f(z) =
sin(1) �= 0. Hence, f has a third-order pole at z = 0 arising from
the factor 1/z3. (b) Since limz→0 z

3f(z) = 0, the pole of f(z) is
not a third-order pole. Instead, noting the asymptotic behavior of
sin z near z = 0, we obtain

lim
z→0

z2f(z) = lim
z→0

z2 z − (z3/3!) + · · ·
z3

= 1.

Hence, f(z) has a second-order pole at z = 0. ♣
2. Show that a function f(z) cannot be bounded in the neighborhood of

its isolated singular point z = a.
Solution: Use the contraposition method; if |f(z)| < M for
|z − a| ≤ r, then the expansion coefficients read

|c−n| =
∣
∣
∣
∣

1
2πi

∮

C

(ζ − a)n−1f(ζ)dζ
∣
∣
∣
∣
≤ Mrn for any n,

where C is the circle given by |z − a| = r. Since r may be taken
as small as desired, we have

c−1 = c−2 = · · · = 0,

which means that the Laurent series reduces to a Taylor series.
Hence, f(z) should be analytic at z = a, which contradicts the

assumption that z = a is a singular point. ♣

3. Let both f(z) and g(z) be analytic in the vicinity of z = a and have a
zero of mth order at z = a. Prove that

lim
z→a

f(z)
g(z)

=
f (m)(a)
g(m)(a)

. (8.7)

This result is called l’Hôpital’s rule.
Solution: In the vicinity of z = a, we have

f(z)=(z − a)m

[
f (m)(a)
m!

+(z − a)
f (m+1)(a)
(m+ 1)!

+ (z − a)2
f (m+2)(a)
(m+ 2)!

+ · · ·
]

,

and we also have a form similar to g(z). These expressions imme-
diately yield the desired equation (8.7). ♣

4. Prove that if f(z) has an essential singularity at z = a, 1/f(z) also
has an essential singularity.

Solution: Suppose that f has an essential singularity at z = a
but that 1/f does not. If this is true, 1/f will at most have a pole
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there (of order N , for instance) and is expressed in terms of the
series as

1
f

=
∞∑

n=−N

bnh
n.

Rewrite this to obtain

f =
hN

∑∞
m=0 bm−Nhm

.

Note that the denominator
∑

bm−Nh
m is analytic within C1, and

thus the fraction 1/
∑

bm−nh
m is as well. As a result, the function

f would be expanded into a power series in h starting with hN ;
this result contradicts our assumption that f(z) has an essential
singularity at z = a. Therefore, wherever f(z) has an essential
singularity, 1/f also necessarily has one. ♣

Remark. The above result sounds intriguing when compared with the behavior
of an f(z) that has a pole. If f(z) has a pole of order N at z = a, 1/f obviously
has no pole but does have a zero of order N ; i.e., 1/f ∝ (z − a)N .

8.2 Multivaluedness

8.2.1 Multivalued Functions

Up to this point, our concern has been limited to single-valued functions, i.e.,
functions whose values are uniquely specified once z is given. When we con-
sider multivalued functions, many important theorems must be reformulated.

The necessary concepts are best illustrated by considering the behavior of
the function f(z) = z1/2 in a graphical manner. Figure 8.1 gives a contour of a

0

y

x

a

b 0

υ

u
AB

Fig. 8.1. Mapping of a circle on the z-plane onto an upper-half circle on the w-plane
through f(z) = z1/2
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unit circle a → b on the z-plane. Through the transformation w = f(z) = z1/2,
the circle is mapped onto a semicircle A → B on the w-plane such that

z = 1 → w = 1,

z = i = eπi/2 → w =
(

eπi/2
)1/2

= eπi/4,

z = −1 = eπi → w =
(

eπi
)1/2

= eπi/2,

z = −i = e3πi/2 → w =
(

e3πi/2
)1/2

= e3πi/4.

Of importance is the fact that the images of the points a and b, i.e., A and B,
respectively, are not equal but are distinct on the w-plane. This suggests that
the value of z1/2 for z = 1 is not uniquely determined. Furthermore, a similar
phenomenon occurs for any circular contour a → b with an arbitrarily large
(or small) radius. We thus see that the function f(z) = z1/2 is multivalued,
at least along the positive real axis; one point on the positive real axis of the
z-plane is associated with two distinct points on the w-plane.

As a matter of fact, the multivaluedness of the function f(z) = z1/2 noted
above occurs at all points on the whole z-plane (except at the origin). To see
this, we observe again that the circular contour a → b may have any radius.
As a result, all the points on the z-plane are correlated with only half of the
points on the w-plane, those for which Im [w] = v > 0. The remaining values
of w are generated if a second circuit a → b is made. Namely, the values of
w with v < 0 will be correlated with those values of z whose arguments lie
between 2π and 4π. As a consequence, all values for z1/2 represented by on
the w-plane may be divided into two independent sets: the set of values of w
generated on the first circuit of the z-plane 0 < φ < 2π and those generated
on the second circuit 2π < φ < 4π. These two independent sets of values for
z1/2 are called the branches of z1/2.

The concept of branch allows us to apply the theory of analytic functions
to many-valued functions, where each branch is defined as a single-valued
continuous function throughout its region of definition.

8.2.2 Riemann Surfaces

For the case z1/2, the notion that the regions 0 < φ < 2π and 2π < φ < 4π
correspond to two different regions of the w-plane is awkward geometrically,
since each of these two regions covers the z-plane completely. To re-establish
the single-valuedness and continuity of f(z), it is desirable to give separate
geometric meanings to two z-plane regions. This is achieved through the use
of the notion of Riemann surfaces.

A Riemann surface is an ingenious device for representing both branches
by means of a single continuous mapping. Suppose that two separate z-planes
are cut along the positive real semiaxis from +∞ to 0 (see Fig. 8.2), and that
the planes are superimposed on each other but retain their separate identities.
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Fig. 8.2. A Riemann surface composed of two separated z-planes

Now suppose that the first quadrant of the upper sheet is joined along the
cut to the fourth quadrant of the lower sheet to form a continuous surface. It
is now possible to start a curve C in the first quadrant of the upper sheet, go
around the origin, and cross the positive real semiaxis into the first quadrant
of the lower sheet in a continuous motion. The curve can be continued on the
lower sheet around the origin into the first quadrant of the lower sheet. This
process of cutting and cross-joining two planes leads to the formation of a
Riemann surface, which is thought of as a single continuous surface formed of
two Riemann sheets.

Several important remarks are in order.

1. According to this model, the positive real semiaxis appears as a line where
all four edges of our cuts meet. However, the Riemann surface has no
such property. This results in the line between the first quadrant of the
upper sheet and the fourth quadrant of the lower sheet being considered
distinct from the line between the first quadrant of the lower sheet and the
fourth quadrant of the upper one. There are two real positive semiaxes on
the Riemann surface just as there are two real negative semiaxes. Hence,
the entire Riemann surface is mapped one-to-one onto the w-plane. (The
origin z = 0 belongs to neither branch since the polar angle θ is not defined
for z = 0.)

2. The splitting of a multivalued function into branches is arbitrary to a
great extent. For instance, we can define the following two functions, both
of which may be treated as branches of f(z) =

√
z:

BranchA : fA(z) =

{√
reiθ/2 for 0 < θ ≤ π,

√
rei(θ+2π)/2 for −π < θ ≤ 0.

BranchB : fB(z) =

{√
rei(θ+2π)/2 for 0 < θ ≤ π,

√
reiθ/2 for −π < θ ≤ 0.

Note that branch A is continuous on the negative real semiaxis but is
discontinuous on the positive real semiaxis (so is branch B). These two
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branches together, constitute, the double-valued function f(z) =
√
z, and

this representation is no better and no worse than the previous one.

3. The above-mentioned technique can be extended to other multivalued
functions that require more than two Riemann sheets (for instance, f(z) =
3
√
z requires three). There are functions requiring an infinite number of

Riemann sheets, such as f(z) = zα with an irrational α.

8.2.3 Branch Point and Branch Cut

We so back to the behavior of the multivalued function w = f(z) = z1/2 to
introduce other important concepts referred to as branch point and branch
cut. Let us consider a certain closed curve C without self-intersections in the
z-plane. Specify a point z0 to which we assign a definite value of the argument
θ0. Through the mapping w = z1/2, we will find two distinct points: w0(z0)
and w1(z0).

In what follows, we examine the variation of the functions w0(z) and w1(z)
as the point z moves continuously along the curve C. Since the argument of
the point z on the curve C varies continuously, the functions w0(z) and w1(z)
are continuous functions of z on the curve C.

Here, two different cases are possible. In the first case, the curve C does
not contain the point z = 0 within it. Then, after traveling the curve C, the
argument of the point z0 returns to the original value arg z0 = θ0. Hence, the
values of the functions w0(z) and w1(z) are also equal to their original values
at the point z = z0 after traveling the curve C. Thus, in this case, two distinct
single-valued functions of the complex variable z are defined on C:

w0 = r1/2eiθ/2 and w1 = r1/2ei/2(θ+2π).

Obviously, if the domain D of the z-plane has the property that any closed
curve in the domain does not contain the point z = 0, then two distinct single-
valued continuous functions, w0(z) and w1(z), are defined in D. We call the
functions w0(z) and w1(z) branches of the multivalued function w(z) = z1/2.

In the second case, the curve C contains the point z = 0 within it. Then,
after traversing C in the positive direction, the value of the argument of the
point z0 does not return to the original value θ0 but changes by 2π as expressed
by

arg z0 = θ0 + 2π.

Therefore, as a result of their continuous variation after traversing the curve
C, the values of the functions w0(z) and w1(z) at the point z0 are no longer
be equal to the original values. More precisely, we obtain

w̃0(z0) = w0(z0)eiπ and w̃1(z0) = w1(z0)eiπ,
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which indicate that the function w0(z) goes into the function w1(z) and vice
versa. This recurrence phenomenon stems from the fact that z = 0 is the
branch point of the multivalued function f(z) = z1/2. A formal definition of
branch point is given below.

♠ Branch point:
Suppose that several of branches of f(z) are analytic in the neighborhood

of z = a but not at z = a. Then, the point z = a is a branch point if and
only if f(z) passes from one of these branches to another when z moves
along a closed circuit around z = a.

Remark. The point at infinity, z = ∞, is a branch of f(z) if and only if the
origin is a branch point of f(1/z).

It is important to note that the branch points for a given multivalued function,
always occur pairwise so that they are connected by a simple curve called the
branch cut (cut or branch line). Branch cuts bound the regions within
which the individual single-valued branches are defined. For instance, in the
case of f(z) = z1/2, the branch cut ran from the branch point at z = 0 to
another branch point at z = ∞ along the positive real axis. It should be
emphasized here that any curve joining the origin (z = 0) and the point of
infinity (z = ∞) would have done just as well. For example, we could have
used the negative real axis as the branch cut, for which the regions

−π < φ < π and π < φ < 3π

(instead of 0 < φ < 2π and 2π < φ < 4π) serve as the defining regions for
the first and second branch. On the w-plane, these two would correspond to
Re v > 0 and v < 0, respectively. We therefore may choose the branch cut
that is most convenient for the problem at hand.

Remark. The choice of branches and branch cuts for a given multivalued func-
tion is not unique; however, the branch points and the number of branches
are uniquely determined once a function is given.

Exercises

1. Examine the multivaluedness of a logarithm function ln z.
Solution: Expressing z in polar form, ln z = ln

(

reiφ
)

= ln r+iφ,
and changing φ by 2πk results in

ln z(r, φ+ 2πk) = ln r + i(φ+ 2πk) = ln z(r, φ) + 2πik. (8.8)
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It follows from (8.8) that there is no nonzero value of k for which
ln z(r, φ + 2πk) and ln z(r, φ) are equal. Therefore, the logarithm
function is an infinite-valued function. ♣

2. Evaluate log e, log(−1), log(1 + i) according to the expression (8.8).
Solution: log e = log |e| + i arg e = 1 + 2nπi,

log(−1) = log | − 1| + i arg(−1) = (2n+ 1)πi,
log(1 + i) = log |1 + i| + i arg(1 + i) = log 2

2 + (2n+ 1
4 )πi. ♣

3. Evaluate 1i and ii according to the definition of power functions: za =
ea log z, where z(�= 0) and a are complex numbers.

Solution:

1i = ei log 1 = ei·2nπi = e2nπ,
ii = ei log i = ei(2n+ 1

2 )πi = e(2n− 1
2 )π. ♣

4. Show that a power function zm/n with an irreducible rational number
m/n (n ≥ 2) is an n-valued function.

Solution: The multiple values of z(r, φ)m/n = rm/neimφ/n are
found by varying the integer k in the expression:

z(r, φ+ 2πk)m/n = rm/neimφ/nei2πkm/n = ei2πkm/nz(r, φ)m/n
.

Substituting k = n yields

z(r, φ+ 2πn)m/n = ei2πmz(r, φ)m/n = z(r, φ)m/n
,

wherein ei2πm = 1 for arbitrary m ∈ N . Hence, all multiple values
of zm/n at a given z are found with a value of k in the range
0 ≤ k ≤ n−1. Since there are n different values of k in this range,
zm/n is an n-valued function. ♣

8.3 Analytic Continuation

8.3.1 Continuation by Taylor Series

It is often the case that a complex function is defined only in a limited region
in the complex plane. For instance, a series representation of a function is of
use only within its radius of convergence, but provides no direct information
about the function outside this radius of convergence. An illustrative example
is a function f(z) defined by

f(z) = 1 + z + z2 + · · · . (8.9)

Obviously, this function is identified with 1/(1 − z) for |z| < 1, whereas it
diverges for |z| > 1 and thus is no longer equivalent to 1/(1−z). Nevertheless,
a sophisticated technique makes it possible to identify the function f(z) given
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in (8.9) with 1/(1 − z) even for the region |z| > 1. This technique, by which
the defined region of a function is extended to an ‘uncultivated’ region, is
called analytic continuation. The resultant function may often be defined
by sequential continuation over the entire complex plane without reference to
the original region of definition.

To see an actual process of analytic continuation, we suppose that a func-
tion f is given as a power series around z = 0, with a radius of convergence
R and a singular point of f being on the circle of convergence. We show
that it is possible to extend the function outside R. We first note that at any
point z = a within the circle (|z| < R), we can evaluate not only the value of
the series but all its derivatives at that point as well because the function f
is analytic and the series representation has the same radius of convergence.
Therefore, we can obtain a Taylor series of f(z) around z = a as

f(z) =
∞∑

n=0

f (n)(a)
n!

(z − a)n. (8.10)

The radius of convergence of this series is the distance to the nearest singular
point, say z = zs (see Fig. 8.3a). The resultant circle of convergence with
radius R0 = |zs − z0| is indicated by the solid circle in the figure. One may
setup this process using a new point, e.g., z = b, not necessarily within the
original circle of convergence (see Fig. 8.3b), about which a new series such as
(8.10) can be set up (see Fig. 8.3c). Continuing on in this way, it is apparently
possible by means of such a series of overlapping circles to obtain values for
f for every point in the complex plane excluding the singular points.

Our current discussion can be summarized as follows:

1. Let f(z) be defined by its Taylor series expansion around z = a within
some circle |z − a| = r.

2. Specify a certain point z = b within the circle and evaluate f(b), f ′(b), · · ·
to obtain a Taylor series of f(z) around z = b.

3. Observe that the latter series converges within a circle |z − b| = r′ that
intersects the first circle but may contain a region that is not within the
first circle.

4. Specify again another point z = c within the circle |z− b| = r′ and repeat
the process described above.

8.3.2 Function Elements

We know that the term ‘analytic continuation’ refers to a method that allows
us to extend the defining region of a complex function. Alternatively, this term
can refer to the function that is newly found through analytic continuation of
some other function. The formal definition is given below.
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Fig. 8.3. Illustration of an analytic continuation procedure

♠ Analytic continuation:
Given a single-valued analytic function f1(z) defined on a region D1, the

analytic function f2(z) defined on D2 is called an analytic continuation
of f1(z) to D2 if and only if the intersection D1 ∩ D2 contains a simply
connected open region where f1(z) ≡ f2(z).

If the two analytic functions f1(z) and f2(z) defined on D1 and D2, respec-
tively, are analytic continuations of one another, then it is evident that an
analytic function f(z) can be defined on D1 ∪D2 by setting

f(z) =
{
f1(z) in D1,
f2(z) in D2.

Here, f1 and f2 are called function elements of f . More generally, we can
consider a sequence of function elements (f1, f2, · · · , fn) such that fk is an
analytic continuation of fk−1. The elements of such a sequence are called
analytic continuations of each other. Relevant terminology for this point
is given below.



248 8 Singularity and Continuation

♠ General analytic function:
A general analytic function f is a nonvoid collection of function elements

fk in which any two elements are analytic continuations of each other by
way of a chain whose links are members of f .

♠ Complete analytic function:
A complete analytic function f is a general analytic function that con-

tains all the analytic continuations of any one of its elements.

A complete analytic function is evidently maximal in the sense that it can-
not be further extended. Moreover, it is clear that every function element be-
longs to a unique complete analytic function. Incomplete general analytic
functions are more arbitrary, and there are many cases in which two different
collections of function elements should be regarded as defining the same func-
tion. For instance, a single-valued function f(z) defined in D can be identified
either with the collection that consists of the single function element defined
on D or with the collection of all function elements defined on D′ ⊂ D.

Examples 1. Let us consider the functions

f1(z) =
∞∑

n=0

zn defined on |z| < 1 (8.11)

and

f2(z) =
∞∑

n=0

(
3
5

)n+1(

z +
2
3

)n

defined on
∣
∣
∣
∣
z +

2
3

∣
∣
∣
∣
<

5
3
. (8.12)

Both series converge to 1/(1 − z); Particularly the latter converges since

f2(z) =
3
5

∞∑

n=0

[
3
5

(

z +
2
3

)]n

=
3
5

1 − 3
5 (z + 2

3 )
=

1
1 − z

.

Therefore, the two functions represent the same function f(z) = 1/(1−z)
in the two overlapping regions (see Fig. 8.4), although they have different
series representations. In this context, we can write

f(z) =

{

f1(z) when for z ∈ D1, D1 = {z : |z| < 1},
f2(z) when for z ∈ D2, D2 = {z :

∣
∣z + 2

3

∣
∣ < 5

3}.

2. Another illustrative example is given by

f1(z) =
∫ ∞

0

e−ztdt defined on Rez > 0 (8.13)
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3
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3

5−
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D2

Fig. 8.4. Both functions f1(z) in (8.11) and f2(a) in (8.12) represent the same
function f(z) = 1/(1 − z) in the overlapping region D1 ∩ D2

and

f2(z) = i

∞∑

n=0

(
z + i

i

)n

defined on |z + i| < 1.

Observe that each f1 and f2 reads 1/z for the respective defining region.
Thus, we have

1
z

=

{

f1(z) for z ∈ D1, D1 = {z : Rez > 0},
f2(z) for z ∈ D2, D2 = {z : |z + i| < 1}.

The two functions are analytic continuations of one another, and f(z) =
1/z is the analytic continuation of both f1 and f2 for all z except z = 0.

Remark. In some cases, it is impossible to extend the function outside of a
finite region because an infinite number of singularities are located densely on
the boundary of the region. In that event, the boundary of this region is called
the natural boundary of the function and the region within this boundary
is called the region of the existence of the function.
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8.3.3 Uniqueness Theorem

Having introduced the concept of analytic continuation, we may ask a question
as to whether the function resulting from an analytic continuation process
is uniquely determined, independent of the continuing path; i.e., whether a
function that is continued along two different routes from one area to another
will have the same value in the final area. We now attempt to answer this
question by examining the theorem below.

♠ Uniqueness theorem:
Let f1(z) and f2(z) be analytic within a region D. If the two functions

coincide in the neighborhood of a point z ∈ D, then they coincide through-
out D.

Proof The theorem to be proven is rewritten in the following statement: If
both f(z) and g(z) are analytic at z0 and if f(zn) = g(zn) with n = 1, 2, · · · at
points zn that satisfy limn→∞ zn = z0 but zn �= z0 for all n, then f(z) ≡ g(z)
throughout D. We now prove it.

Let h(z) = f(z)−g(z). Here, f and g are assumed to satisfy the conditions
given in the statement above, so that h(zn) = 0 for all n and h(z) is analytic
at z0. Owing to the analyticity of h(z) at z0, we have the expansion

h(z) = a0 + a1(z − z0) + a2(z − z0)2 + · · · ,

which converges in a certain circle around z0. Since h(z) is continuous at z0,
we have

h(z0) = lim
n→∞

h(zn) = 0,

which means that the coefficient a0 is zero. Then, since h′(z) is also continuous
at z0, we set

h′(z0) = lim
n→∞

h′(zn) = 0,

which means that a1 = 0. Continuing in this fashion, we find successively
that all the coefficients vanish. In its circle of convergence, the function h(z)
is therefore identically zero. This completes the proof. ♣

This remarkable theorem demonstrates the strong correlation between the
behaviors of analytic functions on different parts of the complex plane. For
example, if two functions agree in value over a small arc (arbitrarily small as
long as it is not a point), then they are identical in their common region of
analyticity.

8.3.4 Conservation of Functional Equations

An important consequence of the uniqueness theorem is the so-called principle
of the conservation of a functional equation.
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♠ Conservation of functional equations:
Let F (p, q, r) be an analytic function for all values of the three vari-

ables p, q, r, and let f(z) and g(z) be analytic functions of z. If a relation
F [f(z), g(z), z] = 0 between function elements f(z) and g(z) holds on a do-
main, then this relation is also true for all analytic continuations of these
function elements.

Remark. In plain words, this theorem states that analytic continuations of f(z)
satisfy every functional (and differential) equation satisfied by the original
f(z).

This theorem can easily be generalized to cases of functional equations involv-
ing more than two functions. We illustrate this by two examples.

Examples 1. From elementary trigonometry, we know that the real function
sinx has the additional theorem

sin(x+ u) = sinx cosu+ cosx sinu,

where u is an arbitrary real value. Since sin z, cos z, and sin(z + u) are
analytic for all finite values of z, and since the relation

sin(z + u) = sin z cosu+ cos z sinu

is satisfied if z is any point on the real axis, it follows by analytic contin-
uation that the same relation must hold for all values of z. If we report
the same argument with respect to the real variable u, we find that u may
be replaced by a complex variable w without invalidating the relation in
question. Hence, the addition theorem of the function sin z is true for
arbitrary complex values of z and w.

2. Another important example is afforded by functions satisfying differential
equations. To take a simple case, we consider the function

f(z) = log(1 + z).

This is represented for |z| < 1 by the power series

f(z) = z − z2

2
+
z3

3
− · · · . (8.14)

which yields

f ′(z) = 1 − z + z2 − z3 + · · · =
1

1 + z
.

In this context, the identity
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f ′(z) =
1

1 + z
(8.15)

appears to be valid for |z| < 1. However, it follows that the identity (8.15)
must hold for all analytic continuations of the power series (8.14).

8.3.5 Continuation Around a Branch Point

The uniqueness theorem given in Sect. 8.3.3 also gives us the following corol-
lary:

♠ Theorem:
If D1 and D2 are regions into which f(z) has been continued from D,

yielding the corresponding functions f1 and f2, and if D3 = D1 ∩D2 also
overlaps D, then f1 = f2 throughout D3.

It is important to note that the validity of this theorem is due to the condition
that D3 and D have a common region. If this condition is not satisfied, the
uniqueness of analytic continuation may break down. Instead, one can say: If
analytic continuation of a function f along two different routes from z0 to z1
yields two different values at z1, then f(z) must have a certain kind of singu-
larity between the two routes. This seems obvious by recalling the fact that
the radius of convergence of a power series extends up to the next singularity
of the function; if there were no singularities between the two routes, then it
would be possible to fill in the region between the two routes by means of an-
alytic continuation based on the power series. Then we would obtain sufficient
overlapping so that the uniqueness theorem would be satisfied. In that event
f(z1) for the two different routes would be identical, in contradiction to our
hypothesis. There must therefore be a singularity between the two routes.

Note that the last discussion does not state that different values must be
obtained if there is any kind of singularity between the two routes. It must be
a particular type of singularity to cause a discrepancy, and we call it a branch
point, as we introduced earlier. An analytic function involving branch points
is said to be multivalued and the various possible sets of values generated by
the process of analytic continuation are known as branches. Intuitively, all
the possible values of a function at a given point may be obtained by the
process of analytic continuation if one winds about the branch point as many
times as necessary.

8.3.6 Natural Boundaries

In all the examples considered so far, the singularities were isolated points. It
is, however, easy to construct functions for which this is not the case. Consider,
say, the function
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f(z) =
1

sin(1/z)
.

The denominator vanishes for 1/z = nπ with an integer n. Hence, the points
z = (1/nπ) are singular points of f(z), but are clearly isolated in the vicinity
of the origin. It is further possible for the singular points of a function to fill
a whole arc of a continuous curve; in this case, we speak of a singular line
of the function.

Particularly interesting is a situation in which a function f(z) has a closed
singular line C. In this case, it is obviously impossible to continue f(z)
analytically across C. The entire domain of definition of f(z) is therefore
the interior of C, and we say that C is a natural boundary of f(z).

Such an occurrence is not as unusual as it may seem. Consider, for instance,
the analytic function f(z) defined by the power series

f(z) = z + z2 + z4 + z8 + · · · =
∞∑

n=0

z2n

. (8.16)

By the root test given in Sect. 2.4.3, the circle of convergence of this series
turns out to be |z| < 1. Thus f(z) must have at least one singularity on |z| = 1.
For the sake of simplicity, we assume that this singularity is situated at the
point z = 1; a different location will cause a minor change in the argument.
From the definition of f(z), it follows that

f(z2) = z2 + z4 + z8 + · · · =
∞∑

n=1

z2n

= f(z) − z.

By the principle of conservation (see Sect. 8.3.4), the functional equation

f(z) = z + f(z2) (8.17)

is true for all analytic continuations of f(z). Observe that (8.17) gives

f ′(z) = 1 + 2zf ′(z2),

which means that f(z) cannot have a derivative at z = −1 since from hypoth-
esis f(1) does not exist. Thus, z = −1 is also a singular point of f(z). In the
same way, from the relation

f(z) = z + f(z2) = z + z2 + f(z4)

it follows that the points z for which z4 = 1 are singularities of f(z).
Continuing in this fashion, we conclude that all points z for which z2n

= 1
are singularities of f(z). But these are the points e2πi/(2n) that divide the
circumference |z| = 1 into 2n equal parts. Since, for n → ∞, all points on
|z| = 1 are limits of these points and since the limit point of singular points
is also a singularity, it follows that all points on |z| = 1 are singular points of
f(z). We have thus proven that the unit circle is the natural boundary of the
analytic function (8.16).
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8.3.7 Technique of Analytic Continuations

The uniqueness theorem is the fundamental theorem in the theory of analytic
continuation. However, in practice, the most relevant method would be one
that tells us whether a function f2 is the analytic continuation of a function
f1.

Let us describe two possible methods of analytic continuation: The first is
based on the Schwarz principle of reflection, which essentially makes use
of the functional relation f(z∗) = f(z)∗.

♠ Schwarz principle of reflection:
If f(z) is analytic within a region D intersected by the real axis and is

real on the real axis, then we have f(z∗) = f(z)∗.

Proof Expand f(z) in a Taylor series about a point a on the real axis. The
coefficients of the Taylor series are real by virtue of the hypothesis that f(z)
is real on the real axis. Hence, we have

f(z) =
∑

n

cn(z − a)n, (8.18)

where cn is real. Then

f(z)∗ =
∑

n

cn (z∗ − a)n = f(z∗), (8.19)

proving the theorem. ♣

The above theorem holds for any point within the circle of convergence of
the power series. By the methods of analytic continuation, therefore, it may
be extended to include any nonsingular point conjugate to a point in D. As a
result, the function in question can be continued from a region above the real
axis to a region below.

A second method employs explicit functional relations such as addition
formulas or recurrence relations. A simple example is provided by the
addition formula

f(z + z1) = f(z)f(z1).

If f were known only in a given region, it would be continued outside that
region to any point given by the addition of the coordinates of any two points
within the region. A less trivial example occurs in the theory of gamma
functions. The gamma function is defined by the integral
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Γ (z) =
∫ ∞

0

e−ttz−1dt. (8.20)

This integral converges only for Re z > 0, so that it defines Γ (z) for only
the right half of the complex plane. From (8.20), one may readily derive (by
integrating by parts) a functional relationship between Γ (z) and Γ (z + 1):

zΓ (z) = Γ (z + 1). (8.21)

We may now use (8.21) to continue Γ (z) into the Re z < 0 part of the complex
plane. As first, we assume that Γ (z) is known for x > 0. Then using recurrence
relation (8.21), the points in the strip −1/2 < x < 1/2 can be computed in
terms of the values of Γ (z) for x > 0. The function so defined and the original
function have an overlapping region of convergence so that it is the analytic
continuation into the negative x-region.

8.3.8 The Method of Moment

Suppose that we are given a power series f(z) =
∑∞

n=0 anz
n where the co-

efficients an are the moments of a given continuous function. For example,
suppose that there exists a continuous function g on [0, 1] such that

an =
∫ 1

0

g(t)tndt.

Then

f(z) =
∞∑

n=0

[∫ 1

0

g(t)tndt
]

zn =
∞∑

n=0

[∫ 1

0

g(t)(zt)ndt

]

,

and interchanging the order of summation and integration, we find that

f(z) =
∫ 1

0

[ ∞∑

n=0

g(t)(zt)n

]

dt =
∫ 1

0

g(t)
1 − zt

dt.

(The interchange of summation and integration is easy to justify if |z| < 1.)
Moreover, this integral form serves to define an analytic extension of the
original power series.

Examples Consider

f(z) =
∞∑

n=0

zn

n+ 1
(|z| < 1). (8.22)

Since
1

n+ 1
=
∫ 1

0

tndt,
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we set g(t) = 1 to obtain

f(z) =
∫ 1

0

dt

1 − zt
for |z| < 1.

The integral above is the analytic continuation of the original representation
(8.22), so that the latter is analytic throughout the complex plane except for
the semi-infinite line [1,∞). [In fact, the analytic continuation has a discon-
tinuity at every point of the interval [1,∞).]

Exercises

1. Suppose f(z) =
∞∑

k=0

ckz
nk with lim inf

k→∞

nk+1

nk
> 1. Prove that the circle of

convergence of f(z) above is a natural boundary for f .

Solution: Since the result is independent of ck, we may assume
without loss of generality that the radius of convergence is 1. In
addition, neglecting finitely many terms if necessary, we assume
that for some δ > 0 and for all k, nk+1/nk = 1 + δ. Finally,
it suffices to show that f is singular at the point z = 1. The
same result applied to the series

∑∞
k=0 ck(ze−iθ)nk shows that f

is singular at any point z = eiθ.
Choose an integer m > 0 such that (m + 1)/m < 1 + δ and

consider the power series g(w) obtained by setting z = (wm +
wm+1)/2. We then find that

g(w) = f

(
wm + wm+1

2

)

c0
2n0

wmn0 +
c0n0

2n0
wmn0+1 + · · · + c0

2n0
wmn0+n0

+
c1
2n1

wmn1 +
c1n1

2n1
wmn1+1 + · · · + c1

2n1
wmn1+n1 + · · · .

Note that in this expression no two terms involve the same power
of w, since the inequality mnk+1 > mnk + nk holds whenever
nk1/nk > (m + 1)/m. If |w| < 1, then (|w|m + |w|m+1)/2 < 1,
and since f(z) is absolutely convergent for |z| < 1, the series
∑∞

k=0 |ck|[(|w|m + |w|m+1)/2]nk converges. Hence, for |w| < 1,
g(w) is absolutely convergent. On the other hand, if we take w
real and greater than 1, then (wm + wm+1)/2 > 1, so the series
∑∞

k=0 ck[(wm + wm+1)/2]nk diverges. Note, though, that the jth
partial sums sj of the above series are exactly the nj(m + 1)th
partial sums of the power series of g. Hence, the series for g(w)
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diverges and g, too, has a radius of convergence of 1. This means
that g(w) must have a singularity at some point w0 with |w0| = 1.
If w0 �= 1, then |(wm + wm+1)/2| < 1 and since f is analytic in
|z| < 1, g is analytic at w0. Thus g must have a singularity at
w0 = 1 and since g(w) = f [(wm + wm+1)/2], f(z) must have a
singularity at z = 1. ♣

2. Define an analytic continuation of: (i)
∞∑

n=1

zn

3
√
n

, (ii)
∞∑

n=0

zn

n2 + 1
.

Solution:

(i) Since
1

n1/3
= Γ (1/3)

∫ ∞

0

e−ntt−2/3dt, we have

∞∑

n=1

zn

n1/2
= Γ

(
1
3

)∫ ∞

0

∞∑

n=1

(

ze−t
)n
t−2/3dt

= Γ

(
1
3

)∫ ∞

0

z

t2/3(et − z)
dt,

which is analytic outside of the interval [1,∞).

(ii) Since
1

n2 + 1
=
∫ ∞

0

e−nt sin tdt,

∞∑

n=0

zn

n2 + 1
=
∫ ∞

0

∞∑

n=0

(

ze−t
)n sin tdt =

∫ ∞

0

et sin t
et − z

dt,

which is analytic outside of the interval [1,∞). ♣

3. Suppose that f is bounded and analytic in Imz ≥ 0 and real on the real
axis. Prove that f is constant.

Solution: By the Schwarz reflection principle, f can be extended
to the entire plane and would then be a bounded entire function.
Hence, f is constant. ♣

4. Given an entire function that is real on the real axis and imaginary on
the imaginary axis, prove that it is an odd function; i.e., f(z) = −f(−z).

Solution: Set f(z) = f(x, y) = u(x + iy) + iv(x + iy). The
Schwarz reflection principle implies that f(z∗) = f(x − iy) =
u(x− iy)+ iv(x− iy) = u(x+ iy)− iv(x+ iy) = −f(z). In a similar
way, we have f(−z) = f(−x− iy) = u(−x− iy) + iv(−x− iy) =
−u(x+ iy) − iv(x+ iy) = −f(z). ♣
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Contour Integrals

Abstract In this chapter, we show that singularities do not interfere with the anal-
ysis of complex functions but are useful in extracting complex integrals along closed
contours. This utility of singularities is based on the residue theorem (Sect. 9.1.1),
argument principle (Sect. 9.4), and principal value integrals (Sect. 9.5.1), all of which
correlate the nature of singularities within and/or on the contour with the relevant
complex integrals.

9.1 Calculus of Residues

9.1.1 Residue Theorem

In the preceding two chapters, we provided the theoretical bases of complex
functions. This chapter deals with more practical matters that are relevant to
computations of contour integrations on a complex plane. The theorem below
is central to the development of this topic.

♠ Residue theorem:
If a function f(z) is analytic everywhere within a closed contour C except

at a finite number of poles, its contour integral along C yields
∮

C

f(z)dz = 2πi
∑

j

Res(f, aj). (9.1)

Here, Res(f, aj) is called the residue of f(z) at the pole z = aj . When the
pole is mth order, it reads

Res(f, aj) =
1

(m− 1)!
lim

z→aj

d(m−1)

dz(m−1)
[(z − aj)mf(z)] . (9.2)
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Once the residue is evaluated, the integral
∮

C
f(z)dz around the contour C

surrounding the pole z = a can be determined by the above theorem. Notably,
this theorem enables us to evaluate various kinds of integrals of real functions
that are unfeasible by means of elementary calculus.

Before demonstrating the utility of the residue theorem, we present a short
review of the nature of residues. Originally, the residue of f(z) is defined in
association with a particular coefficient of the Laurent series expansion. We
know that f(z) around its pole at z = a may be expressed by a Laurent series
expansion such as

f(a+ h) =
∞∑

n=−∞
cnh

n, cn =
1

2πi

∮

C

f(z)
(z − a)n+1

dz.

Then, the specific coefficient

c−1 =
1

2πi

∮

C

f(z)dz (9.3)

is called the residue of f(z) at z = a. In fact, the result (9.3) immediately
reduces to the form of (9.1) as

1
2πi

∮

C

f(z)dz = 2πic−1.

The equivalence of the two quantities, Res(f, a) in (9.2) and c−1 in (9.3), is
verified as follows.

Proof (of the residue theorem). Suppose that f(z) has a pole of order m at a.
Then f(z) can be written as

f(z) =
c−m

(z − a)m
+

c−m+1

(z − a)m−1
+ · · · + c−1

(z − a)
+

∞∑

n=0

cn(z − a)n. (9.4)

Now we introduce the quantity

g(z) ≡ (z − a)mf(z) = c−m + c−m+1(z − a) + · · ·

=
∞∑

n=0

cn−m(z − a)n. (9.5)

Since g(z) is analytic everywhere in a neighborhood around a, it can be
expanded in terms of a Taylor series as

g(z) =
∞∑

n=0

g(n)(a)
n!

(z − a)n. (9.6)

The residue c−1 is the coefficient of the n = m − 1 term in (9.5). Hence,
comparing (9.5) with (9.6), we have
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c−1 =
1

(m− 1)!
g(m−1)(a) =

1
(m− 1)!

lim
z→a

d(m−1)

dz(m−1)
[(z − a)mf(z)] , (9.7)

which is simply equation (9.2). ♣

9.1.2 Remarks on Residues

The reason that only the particular coefficient c−1 plays a role in evaluating
the contour integral is clarified by integraing both sides of (9.4) along the
contour containing the mth-order pole a. For convenience, we rewrite (9.4) as

f(z) =
m∑

n=1

c−n(a)
(z − a)n

+ ΨA(z), (9.8)

where

ΨA(z) =
∞∑

n=0

cn(a)(z − a)n

is the regular part of the series (9.8), thus being analytic everywhere in a
region within a closed contour C containing a. By integrating f(z) along the
contour C, we set

∮

C

f(z)dz =
m∑

n=1

c−n

∮

C

1
(z − a)n

dz (9.9)

because of the analyticity of ΨA(z). The integral of (9.9) can be easily eval-
uated by letting the contour be a circle of radius ρ centered at a. Since any
point on the contour can be expressed as z = a+ ρeiφ, we have
∮

C

1
(z − a)n

dz =
∫ 2π

0

iρeiφ

ρneinφ
dφ = iρ−(n−1)

∫ 2π

0

e−i(n−1)φdφ. (9.10)

Note that the integral (9.10) vanishes for all n �= 1, and it is only when n = 1
that it has a nonzero value:

∮

C

1
z − a

dz = i

∫ φ0+2π

φ0

dφ = 2πi.

Therefore, all the terms in the sum of (9.9) are zero except the n = 1 term,
and Goursat’s formula takes the form

∮

C

f(z)dz = 2πi c−1. (9.11)

In short, once we integrate the function f(z) in (9.8), only the term involving
c−1 survives, whereas the other terms vanish. This results in the fact that the
contour integral

∮

C
f(z)dz around a pole is determined by the value of the

specific coefficient c−1.
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9.1.3 Winding Number

To evaluate
∮

C
f(z)dz when C is a general closed curve (and when f may

have isolated singlarities), we introduce the following concept:

♠ Winding number:
Suppose that C is a closed curve and that the point z = a is not located

on C. Then the number

n(C, a) =
1

2πi

∮

C

dz

z − a

is called the winding number of C around a.

Note that if C represents the boundary of a circle (traversed counterclockwise),
then the winding number reads

n(C, a) =
{

0 if a is inside the circle,
1 if a is outside the circle.

Both identities have already been proven in the context of Cauchy’s theorem.
In addition, if the curve C encloses k times the point a, then we have

n(C, a) =
1

2πi

∫ 2kπ

0

idθ = k,

which explains the terminology “winding number.”

♠ Theorem:
For any closed curve C and point a �∈ C, the winding number n(C, a) is

an integer.

Proof Suppose that C is parametrized by z(t), 0 ≤ t ≤ 1, and set

f(s) =
∫ s

0

z′(t)
z(t) − a

dt (0 ≤ s ≤ 1).

Then, it follows from

f ′(s) =
z′(s)

z(s) − a

that the quantity
[z(s) − a]e−f(s)

is a constant, and setting s = 0, we have

[z(s) − a]e−f(s) = z(0) − a.



9.1 Calculus of Residues 263

Hence,

ef(s) =
z(s) − a

z(0) − a
and ef(1) =

z(1) − a

z(0) − a
= 1,

since C is closed, i.e., z(1) = z(0). Thus

f(1) = 2πki for some integer k

and
n(C, a) =

1
2πi

f(1) = k. ♣

In terms of the winding number, the residue theorem given in Sect. 9.1.1
can be restated as follows:

♠ Residue theorem (restated):
Suppose f(z) is analytic in a simply connected domain D except for

isolated singularities at z1, z2, · · · , zm. Let C be a closed curve that does
not intersect any of the singularities. Then

∮

C

f(z)dz = 2πi
m∑

k=1

n(C, zk)Res(f, zk). (9.12)

The proof is left to the reader.

9.1.4 Ratio Method

We saw in Sect. 7.4.5 that a function having a pole of order m can be expressed
by the ratio of two polynomials such as

f(z) =
p(z)
q(z)

. (9.13)

In this case, it is possible to formulate an alternative equation that determines
the residue of f(z). Employing such an equation to evaluate the residue is
referred to as a ratio method.

To derive these equations, we first recall the fact that if a function R(z)
satisfies

p(a) = p′(a) = · · · = p(m−1)(a) = 0 and p(m)(a) �= 0,

the Taylor series for R(z) is given by

p(z) =
p(m)(a)
m!

(z − a)m + h.o.,
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where h.o. means the terms of higher order. Such a function, for which the
lowest power of (z − a) is m, is said to have an mth-order zero at a.

Now we present the equation for the residue of f(z) at a simple pole a.
As seen from (9.13), a simple pole of f(z) arises from the fact that p(z) has a
zero of (m− 1)th order and q(z) has a zero of order m. Then,

f(z) =

p(m−1)(a)
(m− 1)!

(z − a)m−1 + h.o.

q(m)(a)
m!

(z − a)m + h.o.

.

For such a function, we obtain the residue of f at the simple pole a as

c−1 = lim
z→a

(z − a)f(z) = m
p(m−1)(a)
q(m)(a)

. (9.14)

By means of 9.14, we can compute the residue of f(z) at a simple pole a quite
easily.

Next we consider the equation for a second-order pole of f(z) at a. Such
a pole arises when p(z) has a zero of order m and q(z) has a zero of order
(m+ 2) at a. Then,

f(z) =

p(m)(a)
m!

(z − a)m +
p(m+1)(a)
(m+ 1)!

(z − a)m+1 + h.o.

q(m+2)(a)
(m+ 2)!

(z − a)m+2 +
q(m+3)(a)
(m+ 3)!

(z − a)m+3 + h.o.

,

from which we set

c−1 = lim
z→a

d

dz

[

(z − a)2f(z)
]

=
m+ 2
m+ 3

· (m+ 3)p(m+1)(a)q(m+2)(a) − (m+ 1)p(m)(a)q(m+3)(a)
[

q(m+2)(a)
]2 .(9.15)

For example, if the second-order pole of a function arises from a second-order
zero of q(z), then m = 0. The residue of such a pole is given by (9.15) as

c−1 =
2
3

3p′(a)q′′(a) − p(a)q(3)(a)
[q′′(a)]2

. (9.16)

9.1.5 Evaluating the Residues

In what follows, we demonstrate actual procedures to evaluate the residue
by means of the three methods discussed in the previous subsections. As an
instructive example, we consider the function
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f(z) =
ez

z(z + 2)2
,

which has a simple pole at z = 0 and a second-order pole at z = −2.

Using a Laurent expansion:

The present purpose is to evaluate the coefficient c−1 of the Laurent series
expansion of f(z) around the poles at z = 0 and z = −2. In order to do this
we first determine the Taylor series for the factor ez/(z + 2)2 around z = 0.
Since the expressions

ez = 1 + z +
z2

2!
+ · · ·

and
1

(z + 2)2
=

1
4

[
1

1 + (z/2)

]2

=
1
4

(

1 − z +
3
4
z2 − · · ·

)

hold around z = 0, we have

ez

z(z + 2)2
=

1
4z

(

1 + z +
z2

2!
+ · · ·

)(

1 − z +
3
4
z2 − · · ·

)

=
1
4z

+
z

16
+ · · · .

Thus, we immediately obtain

c−1(0) =
1
4
.

Similarly we have

c−1(−2) = −3
4
e−2 (see Exercise 1).

Using Goursat’s formula:

The residue of the simple pole at z = 0 is given by

c−1(0) = lim
z→0

[

z
ez

z(z + 2)2

]

=
1
4

and that of the second-order pole at z = −2 is given by

c−1(−2) =
1
1!

lim
z→−2

d

dz

[

(z + 2)2
ez

z(z + 2)2

]

= −3
4
e−2.
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Using the ratio method:

For this example, the numerator and denominator functions can be chosen in
different ways. For the residue at z = 0, we could take

p(z) = ez, q(z) = z(z + 2)2

or, alternatively,

p(z) =
ez

(z + 2)2
, q(z) = z.

For either choice, the residue for the simple pole is given by

c−1(0) =
p(0)
q′(0)

=
1
4
.

The residue c−1(−2) can be obtained in a similar manner as above (see
Exercise 2).

Exercises

1. Evaluate the residue of
f(z) =

ez

z(z + 2)2

at z = −2 by using a Laurent expansion.

Solution: The residue of f(z) at z = −2 is found by using the
expression

ez = e−2ez+2 = e−2
∞∑

n=0

(z + 2)n

n!
= e−2

[

1 + (z + 2) +
(z + 2)2

2!
+ · · ·

]

,

and the Taylor series expansion for 1/z around z = −2 as

1
z

= −1
2

[
1

1 − (z + 2)/2

]

= −
∞∑

m=0

(z + 2)m

2m+1
= −1

2
−z + 2

4
− (z + 2)2

8
−· · · .

Thus, the Laurent series for f(z) around z = −2 is

ez

z(z + 2)2
= −1

2
e−2

[
1

(z + 2)2
+

3
2

1
z + 2

+
5
4

+ · · ·
]

,

from which we have

c−1(−2) = −3
4
e−2. ♣
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2. Evaluate the residue of
f(z) =

ez

z(z + 2)2

at z = −2 using the ratio method.

Solution: For the pole at z = −2, we can choose either

p(z) = ez, q(z) = z(z + 2)2

as before or
p(z) =

ez

z
, q(z) = (z + 2)2.

Then, regardless of how the numerator and denominator are cho-
sen, we refer to (9.16) to obtain

c−1(−2) =
2
3

3p′(−2)q′′(−2) − p(−2)q(3)(−2)
[q′′(−2)]2

= −3
4
e−2. ♣

9.2 Applications to Real Integrals

9.2.1 Classification of Evaluable Real Integrals

Using the residue theorem, we can evaluate the five types of real integrals
listed below.

1.
∫ 2π

0

f(cos θ, sin θ)dθ, where f(x, y) is a rational function without a pole

on the circle x2 + y2 = 1.

2.
∫ ∞

−∞
f(x)dx, where f(z) is a rational function without a real pole and

is subject to the condition that lim
|x|→∞

xf(x) = 0.

3.
∫ ∞

−∞
f(x)eixdx, where f(z) is an analytic function in the upper-half

plane Imz ≥ 0 except at a finite number of points.

4.
∫ ∞

0

f(x)/xαdx, where α denotes a real number such that 0 < α < 1 and

f(z) is a rational function with no pole on the positive real axis x ≥ 0,
which satisfies the condition f(z)/zα−1 → 0 as z → 0 and z → ∞.

5.
∫ ∞

0

f(x) log xdx, where f(z) is a rational function with no pole on the

positive real axis x ≥ 0 and satisfies the condition lim
x→+∞

xf(x) = 0.
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In Sect. 9.2.2–9.2.6 we demonstrate actual processes for evaluating the
above integrals.

9.2.2 Type 1: Integrals of f(cos θ, sin θ)

Consider an integral of the form
∫ 2π

0

f(cos θ, sin θ)dθ.

Setting z = eiθ makes it a contour integral around the unit circle, and thus
the evaluation of the residues within the circle completes the integration.

Example We evaluate the integral

I =
∫ 2π

0

dθ

1 − 2p cos θ + p2
(p < 1). (9.17)

If we express cos θ in terms of z = eiθ, 9.17 becomes a contour integral,

I =
∮

C

1
1 − p(z + z−1) + p2

dz

iz
=

1
i

∮

C

dz

(1 − pz)(z − p)
, (9.18)

where C is a unit circle centered at the origin. The integrand in (9.18) has a
simple (first-order) pole at z = p within C. Hence, we obtain

I =
1
i
× 2πi lim

z→p

(
1

1 − pz

)

=
2π

1 − p2
. ♣

9.2.3 Type 2: Integrals of Rational Function

Next consider the integral

I =
∫ ∞

−∞
f(x)dx, (9.19)

where f(x) is a rational function subject to the condition

lim
|x|→∞

xf(x) = 0,

which is a necessary and sufficient condition for the integral to be convergent.
To evaluate (9.19), we consider the integral of f(z) along a closed contour
consisting of the real axis from −R to +R and a semicircle Γ (R) in the upper
half-plane. The contour integral is expressed as

∮

C

f(z)dz =
∫ R

−R

f(x)dx+
∫

Γ (R)

f(z)dz. (9.20)
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From the Lemma below, it follows that the second term in (9.20) vanishes in
the limit R → ∞. Hence, we obtain

lim
R→∞

∮

C

f(z)dz =
∫ ∞

−∞
f(x)dx, (9.21)

and applying the residue theorem yields
∫ ∞

−∞
f(x)dx = 2πi

∑

j

Res(f, aj),

where aj is the jth pole of f(z) in the upper half-plane. Therefore, the evalu-
ation of the residues located within the upper half-plane completes the inte-
gration.

Example We prove the equation

I =
∫ ∞

−∞

dx

1 + x2
= π.

Since x/(1 + x2) vanishes as |x| → ∞, we may follow a process similar to the
one discussed above. Since z = i is the only pole of 1/(1+z2) = 1/(z+i)(z−i)
involved in the upper half-plane, we have

I = (2πi) · Res(i) = 2πi
1
2i

= π.

Less simple examples will be found in Exercises Sect. 9.2. ♣
As was noted earlier, our result (9.21) is based on the following lemma:

♠ Lemma:
Let f(z) be continuous in the sector θ1 < argz < θ2. If

lim
|z|→∞

zf(z) = 0 for θ1 < argz < θ2, (9.22)

then the integral
∫

f(z)dz extended over the arc of the circle |z| = r con-
tained in the sector tends to 0 as r → ∞.

Proof Let M(r) be the upper bound of |f(z)| on the arc of the circle |z| = r.
Then we have

∣
∣
∣
∣

∫

f(z)dz
∣
∣
∣
∣
≤ M(r)

∫ θ2

θ1

rdθ = M(r) · r(θ2 − θ1). (9.23)

In view of the condition (9.22), the right-hand side of (9.23) vanishes as r →
∞. This completes the proof. ♣
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9.2.4 Type 3: Integrals of f(x)eix

We now study integrals of the form
∫ ∞

−∞
f(x)eixdx,

where f is analytic on the upper half-plane Imz ≥ 0 except at a finite number
of singularities (if they exist). We first consider the case when the singularities
are not on the real axis. Then, the integral

∫ R

−R

f(x)eixdx

has a meaning, which can be seen from the following theorem:

♠ Theorem:
If lim|z|→∞ f(z) = 0 for Imz ≥ 0, then

lim
R→+∞

∫ R

−R

f(x)eixdx = 2πi
∑

Res
[

f(z)eix
]

,

the summation extending over the singularities of f(z) contained in the
upper half-plane y > 0.

Before starting the proof, we note that |eiz| ≤ 1 in the half-plane y ≥ 0. This
leads us to integrate on the half-plane y ≥ 0 along the contour used above for
an integral of type 2. To prove the theorem, thus it suffices to show that the
integral

∫

Γ (R)
f(z)eizdz tends to 0 as r tends to ∞.

If we know in advance that lim|z|→∞ zf(z) = 0, then it would be sufficient
to apply the lemma in Sect. 9.2.3. To prove that

∫

Γ (R)
f(z)eizdz tends to 0

with only the hypothesis of the theorem above, we use the following lemma:

♠ Jordan Lemma:
Let f(z) be a function defined in a sector of the half-plane y ≥ 0. If

lim|z|→∞ f(z) = 0, the integral
∫

f(z)eizdz extended over the arc of the
circle |z| = r contained in the sector tends to 0 as r tends to ∞.

Proof Let us put z = reiθ and let M(r) be the upper bound of |f(reiθ)| as θ
varies, the point eiθ remaining in the sector. Then,

∣
∣
∣
∣

∫

f(z)eizdz

∣
∣
∣
∣
≤ M(r)

∫ π

0

e−r sin θrθ = 2M(r)
∫ π/2

0

e−r sin θrθ. (9.24)
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Since
π

2
≤ sin θ

θ
≤ 1 for 0 ≤ θ ≤ π

2
,

we have
∫ π/2

0

e−r sin θrθ ≤
∫ π/2

0

e−
2
π rθrθ ≤

∫ ∞

0

e−
2
π rθrθ =

π

2
. (9.25)

From (9.24) and (9.25), it follows that
∣
∣
∣
∣

∫

f(z)eizdz

∣
∣
∣
∣
≤ πM(r). (9.26)

In view of our assumption lim|z|→∞ f(z) = 0, the right-hand side of (9.26)
vanishes as r → ∞, which completes the proof. ♣

Remark.

1. If we have to calculate an integral
∫ ∞

−∞
f(x)e−ixdx

that involves a negative imaginary exponential e−ix, it would be necessary
to integrate in the lower half-plane instead of the upper one because the
function |e−iz| is bounded in the lower half-plane y ≤ 0. More generally,
an integral of the form

∫∞
−∞ f(x)eaxdx (where a is complex constant) can

be evaluated by integrating in the half-plane where |eaz| ≤ 1.
2. Remember that sin z and cos z are not bounded in any half-plane. To

evaluate integrals of the form
∫ ∞

−∞
f(x) sinn xdx and

∫ ∞

−∞
f(x) cosn xdx,

we always express the trigonometric functions in terms of complex expo-
nentials so that the preceding methods can be applied.

9.2.5 Type 4: Integrals of f(x)/xα

Consider integrals of the form
∫ ∞

0

f(x)
xα

dx,

where α denotes a real number such that 0 < α < 1, and f(x) is a rational
function with no pole on the positive real axis x ≥ 0. In addition, we assume
f(z) such that f(z)/zα−1 → 0 in the limits z → 0 and z → ∞.
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To calculate such an integral, we consider the function

g(z) =
f(z)
zα

of the complex variable z, defined in the plane with the positive real axis
x ≥ 0 excluded. Let D be the open set thus defined. It is necessary to specify
the branch of zα chosen in D, so we take the branch of the argument of z
between 0 and 2π. With this convention, we integrate g(z) along the closed
path C(r, ε) as follows: we first trace the real axis from ε > 0 to r > 0, then
the circle Γ (r) of centered at the origin and radius r in the positive sense,
then the real axis from r to ε, and finally, the circle γ(ε) of center 0 and radius
ε in the negative sense. The integral

∫

C(r,ε)

f(z)
zα

dz

is equal to the sum of the residues of the poles of f(z)/zα contained in D if
r has been chosen sufficiently large and ε sufficiently small. We have
∫

C(r,ε)

f(z)
zα

dz =
∫

Γ (r)

f(z)
zα

dz +
∫

γ(ε)

f(z)
zα

dz +
(

1 − e−2πiα
)
∫ r

ε

f(x)
xα

dx

because when the argument of z is equal to 2π,

zα = e2πiα|z|α.

From assumption, f(z)/zα−1 tends to 0 when z tends to 0 or when |z| tends
to infinity. Thus the integrals along Γ (r) and γ(ε) tend to 0 as r → ∞ and
ε → 0. On the limit, we have

(

1 − e−2πiα
)
∫ ∞

0

f(x)
xα

dx = 2πi
∑

Res
[
f(z)
zα

]

. (9.27)

This relation allows us to calculate the original integral.

Example Try to evaluate the integral

I =
∫ ∞

0

dx

xα(1 + x)
(0 < α < 1).

Here we have
f(z) =

1
1 + z

,

where there is only one pole at z = −1. As the branch of the argument of z is
equal to π at this point, the residue of f(z)/zα at this pole is equal to 1/eπiα.
Relation (9.27) then gives

I =
π

sinπα
.
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9.2.6 Type 5: Integrals of f(x) log x

The final type of integral to be noted is a class of the form
∫ ∞

0

f(x) log xdx,

where f is a rational function with no pole on the positive real axis x ≥ 0 and

lim
x→∞

xf(x) = 0.

This last condition ensures that the integral is convergent.
We consider the same open set D as for integrals of Type 4 and the same

path of integration. Here again, we must specify the branch chosen for log z,
and we choose the argument of z between 0 and 2π. For a reason that will
soon be apparent, we integrate the function f(z)(log z)2 instead of f(z) log z.
Here again the integrals along the circles Γ (r) and γ(ε) tend to 0 as r → ∞
and ε → 0, respectively.

When the argument z is equal to 2π, we have

log z = log x+ 2πi.

Thus we have the relation
∫ ∞

0

f(x)(log x)2dx−
∫ ∞

0

f(x)(log x+ 2πi)2dx = 2πi
∑

Res
[

f(z)(log z)2
]

.

and, hence,

−2
∫ ∞

0

f(x) log xdx− 2πi
∫ ∞

0

f(x)dx =
∑

Res
[

f(z)(log z)2
]

. (9.28)

By taking the imaginary part of the relation (9.28), we obtain the desired
result: ∫ ∞

0

f(x) log xdx = −1
2
Im
{∑

Res
[

f(z)(log z)2
]}

.

Example Consider the integral

I =
∫ ∞

0

log x
(1 + x)3

dx.

As the residue of (log z)2/(1 + z)3 at the pole z = −1 is equal to 1 − iπ, we
find

I = −1
2
.
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Exercises

1. Evaluate the integral defined by I =
∫ 2π

0

dθ

(1 − a cos θ)2
(0 < a < 1).

Solution: Let z = eiθ and set C : |z| = 1. Then

I =
4
ia2

∮

C

zdz

[z2 + (2z/a) + 1]2
.

The integrand has two poles of second order at z = z1, z2 (|z1| <
|z2|), which are the solutions of the equation g(z) = z2 +(2z/a)+
1 = 0. Since 0 < a < 1, only the pole z1 = (−1 +

√
1 − a2)/a is

found within C. The residue at z1 is given by

Res(z1) = lim
z→z1

d

dz

[

(z − z1)2
z

g(z)2

]

= lim
z→z1

d

dz

z

(z − z2)2

= − z1 + z2
(z1 − z2)3

=
2/a

(

2
√

1 − a2/a
)3 ,

and thus we obtain

I =
4
ia2

× 2πiRes(z1) =
2π

(1 − a2)3/2
. ♣

2. Evaluate the integral I =
1

2πi

∮

C

ez

zn
dz (C : |z| = 1) for integer n.

Solution: For integers n ≤ 0, it is apparent that I = 0 since
the integrand is analytic within and on C. For integers n > 0,
f(z) = ezz−n has a pole of order n at z = 0. Using the residue
theorem, we have I = 1/(n− 1)!. ♣

3. Calculate the integral I =
∫ ∞

−∞

dx

(1 + x2)n+1
.

Solution: Define the function f(z) = 1/(1 + z2)n+1, and set the
semicircle C as shown in Fig. 9.1. Within C, f(z) has the pole of
(n+ 1)th order at z = i, and its residue reads

1
n!

[
dn

dzn

(z − i)n+1

(1 + z2)n+1

]

z=i

=
1
n!

[
dn

dzn
(z + i)−(n+1)

]

z=i

=
(−1)n(n+ 1)(n+ 2) · · · 2n

n!
(2i)−(2n+1)

=
(2n)!

22n(n!)2
1
2i
.

Hence, in view of Cauchy’s theorem, we have
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∮

C

f(z)dz =
π(2n)!

22n(n!)2
. (9.29)

We now observe that
∮

C

f(z)dz =
∫ R

−R

dx

(1 + x2)n+1
+
∫

Γ

dz

(1 + z2)n+1
, (9.30)

where Γ denotes the upper half-circle. Since |1 + z2| ≥ R2 − 1 on
C, the second integral in the limit R → ∞ yields

∣
∣
∣
∣

∫

Γ

dz

(1 + z2)n+1

∣
∣
∣
∣
≤ πR

(R2 − 1)n+1
→ 0. (9.31)

From (9.29)–(9.31), we conclude that

I =
π(2n)!

22n(n!)2
. ♣

0

y

C

xRR−

R

i

Fig. 9.1. The integration path used in Exercise 3

4. Calculate the integral I =
∫ π

0

log(1 − 2r cos θ + r2)dθ, where r �= 1.

Solution: First we assume that r < 1. Observe that the function
log(1−z)/z = −1−(z/2)−(z2/3)−· · · is analytic for |z| ≤ r < 1.
Hence, if we set the circle C : |z| = r, we have

∮

C

log(1 − z)
z

dz = i

∫ 2π

0

log(1 − z)dθ = 0. (9.32)

Since |1−z|2 = 1−2r cos θ+r2 on C, the real component of the sec-
ond integral in (9.32) reads (i/2)

∫ 2π

0
log
(

1 − 2r cos θ + r2
)

dθ = 0,
so we get
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I = 0 for r < 1.

Next we consider the case of r > 1. Set s = 1/r < 1 to obtain

0 =
∫ π

0

log
(

1 − 2s cos θ + s2
)

dθ =
∫ π

0

log
(

1 − 2
r

cos θ +
1
r2

)

dθ

=
∫ π

0

[

log
(

1 − 2r cos θ + r2
)

− log r2
]

dθ.

Hence, we conclude that

I = 2π log r for r > 1. ♣

5. Calculate the integral I =
∫ ∞

0

xα−1

1 + x
dx, where 0 < α < 1.

Solution: Consider the power function

zβ = eβ log z = eβ(log |z|+iargz)

with −1 < β < 0. Its branch for 0 < argz < 2π is single-valued on
the domain D enclosed by the contour C = AB + Γ + B′A′ + γ
depicted in Fig. 9.2. Let the radius r of the circle γ be sufficiently
small and that R of Γ be sufficiently large. Then, the pole z = −1
of the function f(z) = zβ/(1 + z) is located within C so that we
have
∮

C

f(z)dz =
∫ R

r

xβ

1 + x
+
∫

Γ

f(z)dz −
∫ R

r

xβeβ·2πi

1 + x
+
∫

γ

f(z)dz.

(9.33)
Observe that

∣
∣
∣
∣

∫

Γ

f(z)dz
∣
∣
∣
∣
≤
∫

Γ

|zβ |
|1 + z| |dz| ≤

2πRβ+1

R− 1
→ 0 (R → ∞)

and ∣
∣
∣
∣

∫

γ

f(z)dz
∣
∣
∣
∣
≤ 2πrβ+1

1 − r
→ 0 (r → 0).

Take the limits R → ∞ and r → 0 on both sides of (9.33) to yield

(

1 − eβ·2πi
)
∫ ∞

0

xβ

1 + x
dx = Res

[
zβ

1 + z
,−1
]

= 2πi lim
z→−1

zβ = 2πieβ·πi,

which then gives us
∫ ∞

0

xβ

1 + x
dx = 2πi

eβ·πi

1 − eβ·2πi
.

Since β = α− 1, the above result is equivalent to

I =
π

sinαπ
. ♣
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A

R

B

B′A′

y

x

Γ

γ
1−

Fig. 9.2. Integration path C = AB + Γ + B′A′ + γ used in Exercise 5

9.3 More Applications of Residue Calculus

9.3.1 Integrals on Rectangular Contours

The integrals discussed so far are evaluated using the residue theorem based
on a circular (or semicircular) contour whose radius is eventually made to be
infinitely large or infinitely small. However, there are other integrals that can
be evaluated by the residue theorem that do not have to be closed with a
circle. Several examples are given below.

Let us consider the integral

I =
∫ ∞

−∞

xex

(1 + e2x)2
dx.

To evaluate it, we examine the contour integral

J =
∮

C

zez

(1 + e2z)2
dz (9.34)

around the rectangular contour shown in Fig. 9.3. Beginning at the lower left
hand corner of the rectangle,

J =
∫ L

−L

xex

(1 + e2x)2
dx+

∫ π

0

(L+ iy)eL+iy

(

1 + e2(L+iy)
)2 idy +

∫ −L

L

(x+ iπ)ex+iπ

(

1 + e2(x+iπ)
)2 dx

+
∫ 0

π

(−L+ iy)e−L+iy

(

1 + e2(−L+iy)
)2 idy. (9.35)
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C

y

x
LL−

23 iπ

2iπ

2iπ−

Fig. 9.3. Rectangular contour surrounding the path z = πi/2

In the limit L → ∞, the second and fourth integral of (9.35) go to zero, since
in this limit the magnitude of e2(L+iy) and e2(−L+iy) become very large or
very small, respectively, compared to unity. Hence, we have

lim
L→∞

J =

∫ ∞

−∞

xex

(1 + e2x)
2
dx +

∫ −∞

∞

(x + iπ)ex+iπ

(

1 + e2(x+iπ)
)2

dx,

= I +

∫ ∞

−∞

(x + iπ)ex+iπ

(

1 + e2(x+iπ)
)2

dx = 2I − iπ

∫ ∞

−∞

ex

(1 + e2x)
2
dx, (9.36)

where we have used the expressions ex+iπ = −ex and e2(x+iπ) = e2x. As a
result, the integral I to be evaluated is expressed in terms of J as

I =
1
2

lim
L→∞

J +
iπ

2

∫ ∞

−∞

ex

(1 + e2x)2
dx. (9.37)

The contour integral J is readily evaluated by employing the residue the-
orem. Looking back to the definition (9.34), we see that J has second-order
poles at the values of z for which e2z = −1. These values are

z = ± iπ

2
,±3iπ

2
, · · · ,±i

(

N +
1
2

)

π,

where N is a nonnegative integer. Note that only the pole at z = iπ/2 is
enclosed in the rectangle (see Fig. 9.3). Hence, using the ratio method (see
Sect. 9.1.4) we have

J = 2πiRes
(
iπ

2

)

= 2πi · 2 p
′(iπ/2)

q′′(iπ/2)
=

−π(2 + iπ)
4

, (9.38)

where p(z) = zez and q(z) = (1 + e2z)2 are constituents of the integrand in
(9.34).

The latter integral of (9.37) is evaluated by substituting w = ex, and it
follows that

∫ ∞

−∞

ex

(1 + e2x)2
dx =

∫ ∞

0

dw

(1 + w2)2
=

1
2

∫ ∞

−∞

dw

(1 + w2)2
, (9.39)
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Thus, applying the residue theorem yields

1
2

∫ ∞

−∞

dw

(1 + w2)2
=

1
2

· 2πi · Res(i) = πi lim
w→i

d2

dw2

1
(w + i)2

=
π

4
. (9.40)

From (9.38) and (9.40), we finally obtain

I = −π

4
(2 + iπ) +

π

4
= −π

4
(1 + iπ).

9.3.2 Fresnel Integrals

We would like to derive the equations
∫ ∞

0

cos(kx2)dx =
∫ ∞

0

sin(kx2)dx =
1
2

√
π

2k

with a real positive constant k. These are known as the Fresnel cosine
integral and Fresnel sine integral. Integrals of this type are encountered
in the study of a phenomenon called diffraction, which is exhibited by all types
of waves such as light and sound.

In this connection we consider the integral

I =
∮

C

eikz2
dz (k > 0) (9.41)

around the contour shown in Fig. 9.4. The integral variable z becomes z = x
on the segment along the real axis, z = Reiφ (0 ≤ φ ≤ π/4) along the large
(ultimately infinite) arc, and z = x(1 + i) along the slanted segment defined
by y = x. Therefore, with (1 + i)2 = 2i, we have

lim
R→∞

∮

C

eikz2
dz =

∫ ∞

0

eikx2
dx+ lim

R→∞

[
∫ π/4

0

eikR2e2iφ

iRdφ

]

+ (1 + i)
∫ 0

∞
e−2kx2

dx. (9.42)

Our objective is to evaluate the real and imaginary parts of the first integral
on the right-hand side of (9.42). Then, evaluations of the other integrals shown
in (9.42) complete the computation.

First, we readily obtain
∮

C

eikz2
dz = 0, (9.43)
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0

y

C

x
R

4π

Fig. 9.4. Contour for evaluating the integral (9.41)

since there are no poles within the contour of Fig. 9.4.
Second, we consider the integral along the arc, which is given in the second

term on the right-hand side of (9.42). On the large arc, we have
∣
∣
∣ReikR2e2iφ

∣
∣
∣ =
∣
∣
∣ReikR2 cos(2φ)e−kR2 sin(2φ)

∣
∣
∣ ≤ Re−kR2 sin(2φ),

where the sign of sin(2φ) is always nonnegative in the range 0 ≤ φ ≤ π/4.
Hence,

lim
R→∞

Re−kR2 sin(2φ) = 0, (9.44)

so that the integral along the arc vanishes in the limit R → ∞. In fact,
l’Hôpital’s rule states that for a ≥ 0,

lim
R→∞

R

eaR2 = lim
R→∞

1
2aReaR2 = 0.

Finally we examine the integral along the slanted segment, i.e., the third
term on the right-hand side of (9.42). To evaluate it, we consider the quantity

J ≡
(∫ ∞

−∞
e−2kx2

dx

)2

=
∫ ∞

−∞
e−2kx2

dx ·
∫ ∞

−∞
e−2ky2

dy

=
∫ ∞

−∞
dx

∫ ∞

−∞
dy e−2k(x2+y2).

In terms of the polar coordinates, it yields

J =
∫ ∞

0

dr

∫ 2π

0

dθ re−2kr2
=
∫ ∞

0

d(r2)
2

∫ 2π

0

dθ e−2kr2
=

π

2k
.

and we have the Gaussian integral given by
∫ ∞

−∞
e−2kx2

dx =
√

π

2k
,
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so that

(1 + i)
∫ 0

∞
e−2kx2

dx =
1 + i

2

√
π

8k
. (9.45)

Substituting the results of (9.43), (9.44), and (9.45) into (9.42), we find that
∫ ∞

0

eikx2
dx =

1 + i

2

√
π

2k
. (9.46)

Writing the exponential in trigonometric form and equating the real and imag-
inary parts of both sides of (9.42), we obtain the Fresnel integral:

∫ ∞

0

cos(kx2)dx =
∫ ∞

0

sin(kx2)dx =
1
2

√
π

2k
. ♣

9.3.3 Summation of Series

Our final application of the residue theorem is the summation of a series
∑∞

n=−∞ f(n). Using this method, we can convert a certain type of series to
simple forms such as

∞∑

n=−∞

1
(a+ n)2

=
π2

sin2(πa)
(9.47)

and ∞∑

n=1

2x
x2 + n2π2

= cothx− 1
x
.

This technique is particularly useful, for instance, to express a power series
solution of a differential equation in a simple closed form. In fact, this device
is generalized for various series summations as shown below.

♠ Theorem:
An infinite series of functions f(n) with respect to an integer n is given

by
∞∑

n=−∞
f(n) = −

∞∑

n=−∞
Res (g, an), (9.48)

where Res (g, an) is the residue of the specific function

g(z) =
πf(z)

tan(πz)

at the nth pole of f(z) located at z = an.



282 9 Contour Integrals

According to this theorem, we see that if the number of poles of f(z) is finite
and the values of Res (g, an) are readily obtained, the series on the left-hand
side of (9.48) is written in a simple form.

Proof The key point is to use a function given by π/ tan(πz). This function
has simple poles at z = 0,±1,±2, · · · , each with residue 1 evaluated as

lim
z→n

π

tan(πz)
· (z − n) = lim

z→n

π

π/ cos2(πz)
= 1,

where we used l’Hôpital’s rule (see Exercise 3 in Sect. 8.1). In addition, the
function π/ tan(πz) is bounded at infinity except on the real axis. To derive
(9.48), let us consider the contour integral

∮

C1

πf(z)
tan(πz)

dz (9.49)

around the contour C1 shown in Fig. 9.5. Here f(z) is assumed to have no
branch points or essential singularities anywhere. Since only the pole at z = 0
is found within C1, the contour integral equals 2πi times the residue of the
integrand at z = 0, which is f(0), i.e.,

∮

C1

πf(z)
tan(πz)

dz = 2πif(0).

1C

y

x
12− 21− 0

2C

3C

Fig. 9.5. A sequence of rectangular contours to derive equation (9.48)

Next, the integral around contour C2 is
∮

C2

πf(z)
tan(πz)

dz = 2πi [f(0) + f(1) + f(−1) + Res(g, a1)] ,

where Res(g, a1) stems from the contribution of the pole of f(z) located at
z = a1. Finally, for a contour at infinity, the integral must be

∮

C∞

πf(z)
tan(πz)

dz = 2πi

{ ∞∑

n=−∞
[f(n) + Res(g, an)]

}

. (9.50)
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If |zf(z)| → 0 as |z| → ∞, the infinite contour integral is zero so that we
successfully obtain the equation:

∞∑

n=−∞
f(n) = −

∞∑

n=−∞
Res(g, an). ♣ (9.51)

9.3.4 Langevin and Riemann zeta Functions

Our present aim is to establish the equivalence between Langevin’s
function,

cothx− (1/x),

and the sum ∞∑

n=1

2x
x2 + n2π2

.

Letting f(z) = 2x/(x2 + z2π2), and using the above equation, we obtain

N∑

m=−N

2x
x2 + n2π2

=
1

2πi

∮

C

π cotπzf(z)dz −
∑

poles

Res [π cot(πz)f(z)] ,

where C is a closed contour, say, a rectangle, enclosing the points z =
0,±1, · · · . Now let the length and width of the rectangle C approach ∞.
As this happens,
∣
∣
∣
∣

1
2πi

∮

C

π cotπzf(z)dz
∣
∣
∣
∣
≤ 1

2

∮

C

π| cotπz|
∣
∣
∣
∣

2x
x2 + n2π2

∣
∣
∣
∣
|dz| → 0. (9.52)

Hence, we have

∞∑

m=−∞

2x
x2 + n2π2

= −Res
[
(π cotπz)2x
x2 + z2π2

]

z=±ix/π

= −2x
π

[
cot(ix)
2ix/π

+
cot(−ix)
−2ix/π

]

= 2i cot(ix) = 2 cothx.

This result can be rewritten as

2
∞∑

m=1

2x
x2 + n2π2

+
2
x

= 2 cothx

or

cothx− 1
x

=
∞∑

m=1

2x
x2 + n2π2

, (9.53)

which establishes the result we stated at the outset.
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Remark. To see that the integral in (9.52) vanishes as z → ∞, we observe that

| cotπz| =
| cosπz|
| sinπz| =

√

cos2 πx+ sinh2 πy

sin2 πx+ sinh2 πy
.

If we choose the rectangle whose vertical sides cross the x-axis at a large
enough half-integer, say, x = 105 + 1

2 so that cosπx = 0 and sinπx = 1, then
over these sides of the rectangle

| cotπz| =

√

sinh2 πy

1 + sinh2 πy
= | tanhπy| ≤ 1.

Over the horizontal sides of the rectangle, limz→∞ | cotπz| = 1. Thus the
integrand goes as |1/z2| as |z| → ∞, and the integral vanishes.

If we integrate both sides of (9.53) from 0 to x, we get

∞∑

m=1

ln
(

1 +
x2

m2π2

)

= ln

[ ∞∏

m=1

(

1 +
x2

m2π2

)]

= ln
(

sinhx
x

)

.

Hence,
sinhx
x

=
∞∏

m=1

(

1 +
x2

m2π2

)

.

We may extend this result to all z in the complex plane by analytic contin-
uation. Then setting x = iθ with θ real, we obtain

sin θ = θ

∞∏

n=1

(

1 − θ2

n2π2

)

.

This infinite product formula displays all the zeros of sin θ explicitly. It repre-
sents the complete factorization of the Taylor series and can, in fact, be taken
as the definition of the sine function.

By equating coefficients of the θ3 term of both sides of the above equation,
we obtain a useful sum: ∞∑

n=1

1
n2

=
π2

6
,

which is a special value of the Riemann zeta function,

ζ(z) =
∞∑

n=1

1
nz
.
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Exercises

1. Evaluate
∑∞

n=−∞
1

(a+n)2 by considering the contour integral:

I =
∮

C

π

tan(πz)
1

(a+ z)2
dz,

where a is not an integer and C is a circle of large radius,

Solution: In order to use equation (9.48), we define

f(z) =
1

(a+ z)2
and g(z) =

π

tan(πz)
· 1

(a+ z)2
.

Since the integrand g(z) has simple poles at z = 0,±1,±2 · · · and
a double pole at z = −a, evaluation of Res(g,−a) completes the
problem [see (9.48)]. To find the residue at z = −a, set z = −a+ξ
for small ξ and determine the coefficient of ξ−1:

π

tan(πz)
1

(a+ z)2
=

π

ξ2
1

tan(−aπ + ξπ)

=
π

ξ2

{

1
tan(−aπ)

+ ξ

[
d

dz

1
tan(πz)

]

z=−a

+ · · ·
}

.

It follows from (9.54) that the residue at the double pole z = −a
is

π

[
d

dz

1
tan(πz)

]

z=−a

= π

[
−π

sin2(πz)

]

z=−a

= − π2

sin2(πa)
.

Therefore, it is readily seen from (9.48) that

∞∑

n=−∞

1
(a+ n)2

=
π2

sin2 πa
. ♣

9.4 Argument Principle

9.4.1 The Principle

It may occur that a function f(z) has several zeros and poles simulateously
in a domain D. If we denote the number of such zeros and poles by N0 and
N∞, respectively, these numbers are related to one another as stated below.
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♠ Argument principle:
Let f(z) be an analytic function within a closed contour C except at a

finite number of poles. If f(z) �= 0 on C, then

1
2πi

∮

C

f ′(z)
f(z)

dz = N0 −N∞, (9.54)

where N0 and N∞ are the numbers of zeros and poles of f(z) in C, respec-
tively. Both zeros and poles are to be counted with their multiplicities.

Proof By the residue theorem, the integral

1
2πi

∮

C

f ′(z)
f(z)

dz

is equal to the sum of the residues of the logarithmic derivative of f(z) in D,
i.e.,

g(z) =
f ′(z)
f(z)

=
d[log f(z)]

dz
.

The only possible singularities of g(z) in D coincide with the zeros and poles
of f(z). In order to determine the residue of g(z) at a zero of f(z), we observe
that in the neighborhood of a zero a of the nth order, f(z) has an expansion

f(z) = (z − a)n [c1 + c2(z − a) + · · · ] , c1 �= 0.

We therefore have
f(z) = (z − a)nf1(z),

where f1(z) �≡ 0 in a certain neighborhood of z = a. Hence,

log f(z) = n log(z − a) + log f1(z),

and
f ′(z)
f(z)

=
n

z − a
+
f ′
1(z)
f1(z)

,

where the last term is analytic at z = a. It follows that the residue of g(z),
which is called the logarithmic residue of f(z) at z = a is n, i.e., it is equal
to the order of the zero of f(z) at z = a. If the zeros of f(z) in D are counted
with their multiplicities, the sum of the logarithmic residues of f(z) at the
zeros of f(z) in D will be equal to the number of zeros.

We now turn to the poles of f(z) in D. If z = b is a pole of order m, we
have near it an expansion
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f ′(z) =
c1

(z − b)m
+ · · · + cm

z − b
+ cm+1 + · · ·

=
1

(z − b)m
[c1 + c2(z − b) + · · · ]

=
f2(z)

(z − b)m
,

where f2(z) is analytic at z = b and f2(z) �= 0. Hence,

f ′(z)
f(z)

= − m

z − b
+
f ′
2(z)
f2(z)

,

which shows that the logarithmic residue of f(z) at a pole of f(z) of order m
is −m. If the poles of f(z) in D are counted with their multiplicities, the sum
of the logarithmic residues of f(z) at the points of f(z) in D will be equal to
minus the number of these poles. Since g(z) has no singularities in D except
at the zeros and poles of f(z), we have proven our theorem. ♣

Remark. If we replace f(z) in (9.54) by f(z) − a, this formula will yield the
difference between the number of zeros and the poles of f(z) − a. Since the
latter are identical with the poles of f(z), we find that

1
2πi

∮

C

f ′(z)
f(z) − a

dz = Na −N∞,

where Na indicates how often the value of a is taken by f(z) in D.

Examples 1. For f(z) = z2 and C : |z| = 1, N0 = 2 and N∞ = 0 so that we
have

1
2πi

∮

C

f ′(z)
f(z)

dz = 2.

In fact, the integral reads

1
2πi

∮

C

f ′(z)
f(z)

dz =
1

2πi

∮

C

2z
z2
dz =

1
2πi

× 2 × 2πi = 2.

2. For f(z) = z/(z − a) and C : |z| = R, N0 = 1 and

N∞ =
{

1 if R > a,
0 if R < a.

Hence, we have
1

2πi

∮

C

f ′(z)
f(z)

dz =
{

0 if R > a,
1 if R < a.

(9.55)

Indeed, f(z) = 1 + [a/(z − a)], f ′(z) = −1/(z − a)2, f ′/f = (1/z) − [1/
(z − a)], which yields (9.55).
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9.4.2 Variation of the Argument

Equation (9.54) can be brought into a different form in which its geometric
character becomes more apparent. If we write

ϕ = argf(z), f(z) = |f(z)|eiϕ,

we obtain

1
2πi

∮

C

f ′(z)
f(z)

dz =
1

2πi

∮

C

d log f(z)

=
1

2πi

∮

C

[d log |f(z)| + idϕ]

=
1

2πi

∮

C

d log |f(z)| + 1
2π

∮

C

dϕ.

Recall that logw(z) is a many-valued function of w. If logw is continued
along a closed curve that surrounds to origin, we shall not return to the value
of logw with which we started. However, this many-valuedness is confined
to Im(logw) = argw, i.e., Re(logw) = log |w| is single-valued. If we write
w = f(z), it follows that

∮

C

d log |f(z)| = 0.

In fact,
∫ z2

z1

d log |f(z)| = log |f(z2)| − log |f(z1)|,

and if the integration is performed over a closed contour, the terminals z1
and z2 of the integration coincide; moreover, owing the single-valuedness of
log |f(z)|, the value of the integral is zero. Hence, we have

1
2πi

∮

C

f ′(z)
f(z)

dz =
1
2π

∮

C

dϕ, (9.56)

where ϕ = argf(z).
To interpret (9.56), we observe that

∫ z2

z1

dϕ = ϕ(z2) − ϕ(z1) = argf(z2) − argf(z1)

is the quantitiative change in the argument of f(z), which is called the
variation of the argument of f(z). The integral

∮

C
dϕ is therefore the

total variation of argf(z) if z describes the entire boundary C of the domain
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D. It is clear that the value of this integral must be an integral multiple of
2π. If z describes C, the point f(z) describes a closed curve C ′, and if C ′

surrounds the origin m times in the positive (counterclockwise) direction, the
increase in argf(z) along C ′ will be 2mπ. In view of (9.54) and (9.56), we
obtain the theorem below.

♠ Theorem:
Let the domain D be bounded by one or more closed contours C and let

a function f(z) be single-valued and analytic apart from a finite number
of poles. If N0 and N∞ denote the number of zeros and poles of f(z) in D,
respectively, and f(z) �= 0 on C, then

1
2π

Δc = N0 −N∞,

where Δc denotes the total variation of argf(z).

9.4.3 Extentson of the Argument Principle

The argument principle can be extended to the case in which f(z) has zeros
or poles on the boundary C of the domain D. Suppose that f(z0) = 0, where
z0 is situated on C. Let f(z) be analytic at z0; then we have

f(z) = (z − z0)mf1(z), f1(z0) �= 0,

if m is the multiplicity of the zero. In view of the relation

log f(z) = m log(z − z0) + log f1(z),

it follows that
argf(z) = marg(z − z0) + argf1(z).

At z = z0, f1(z) �= 0 and log f(z) is analytic. Hence, argf1(z) will vary
continuously if z varies along C and passes through z = z0, but the expression
arg(z − z0) shows a different behavior. Since this is the angle between the
parallel to the positive axis through z0 and the linear segment drawn from z0
to z, it is clear that if z0 is passed arg(z − z0) jumps by the amount π. The
contribution of this zero to argf(z) will be mπ, i.e., one-half of what it would
have been if the zero were situated in the interior of D. If z = z0 is a pole of
order m, its contribution to argf(z) will be −mπ. This follows immediately
from the fact that f(z)−1 has a zero of order m at z0 and that

log[f(z)−1] = − log f(z).
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We therefore have the following extension of the argument principle.

♠ Extended argument principle:
The argument principle remains valid if f(z) has poles and zeros on the

boundary, provided that these poles and zeros are counted with half their
multiplicities.

9.4.4 Rouché Theorem

As an application of the argument principle, we prove the following result,
known as the Rouché theorem.

♠ Rouché theorem:
If the function f(z) and g(z) are analytic and single-valued in a domain

D and on its boundary C and if |g(z)| < |f(z)| on C, then the number of
zeros of the function f(z) + g(z) within D is equal to that of zeros of f(z).

Proof We have

log [f(z) + g(z)] = log f(z) + log
[

1 +
g(z)
f(z)

]

,

whence

arg [f(z) + g(z)] = argf(z) + arg
[

1 +
g(z)
f(z)

]

. (9.57)

On the contour C, we have ∣
∣
∣
∣

g(z)
f(z)

∣
∣
∣
∣
< 1.

It thus follows that the points

w = 1 +
g(z)
f(z)

, z ∈ C (9.58)

are all situated in the interior of the circle |1−w| < 1. Since this circle does not
contain the origin, the curve (9.58) cannot surround that point. As a result,
the total variation of the argument of (9.58) along C is zero. Hence, by (9.57),
we have

Δc [f(z) + g(z)] = Δc [f(z)] .

Since neither f(z) nor f(z) + g(z) has poles in D, it follows from (9.54) that
these two functions have the same number of zeros in D. ♣
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The application of Rouché’s theorem is illustrated by the following short
proof of the maximum principle. If f(z) is analytic in D + C and there is a
point z0 in D such that

|f(z)| < |f(z0)| for z ∈ C,

then it follows from Rouché’s theorem that the function f(z0)−f(z) and f(z0)
have the same number of zeros in D and the function f(z)−f(z0) has at least
one zero there, namely, at z = z0. The assumption that |f(z)| < |f(z0)| for
z ∈ C thus leads to a contradiction.

Exercises

1. Let zj be the zeros of a function f(z) that is analytic in a circular domain
D and let f(z) �≡ 0. Each zero is counted as many times as its multiplicity.
Prove that for every closed curve C in D that does not pass through a
zero, the sum of winding numbers yields

∑

j

n(C, zj) =
1

2πi

∮

C

f ′(z)
f(z)

dz. (9.59)

Solution: From hypothesis, we can write f(z) = (z − z1)(z −
z2) · · · (z − zn)g(z), where g(z) is analytic and g(z) �= 0 in D.
Forming the logarithmic derivative, we obtain

f ′(z)
f(z)

=
1

z − z1
+

1
z − z2

+ · · · + 1
z − zn

+
g′(z)
g(z)

for z �= zj , and particularly on C. Since g(z) �= 0 in D, Cauchy’s
theorem yields

∮

C
g′(z)/g(z)dz = 0. Recalling the definition of

n(C, zj), we set the desired result (9.59). ♣
2. Show that an analytic function in a domain D that takes only real values

on the boundary C of D reduces to a constant.
Solution: Let ξ = a + ib, b �= 0, be a nonreal complex number
and consider the values of f(z) − ξ for z ∈ C. If b > 0, say, we
have Im[f(z) − ξ] = b > 0 since f(z) is real on C. The vales of
f(z) − ξ are thus confined to the upper half-plane so that the
curve described by f(z)−ξ cannot surround the origin. Hence, we
have ΔC [f(z) − ξ] = 0. Furthermore, since f(z) − ξ is analytic in
D + C, it follows from the argument principle that f(z) − ξ �= 0,
i.e., f(z) �= ξ in D. The same reasoning also applies to values ξ for
which b < 0. We thus conclude that f(z) does not take nonreal
values in D.
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Next we show that the above result means that f(z) reduces to a
constant. Since f(z) is analytic in D, we have

f ′(z) = lim
h→0

f(z + h) − f(z)
h

= lim
h→0

f(z + ih) − f(z)
ih

,

where h → 0 through positive values. Since f(z) is real throughout
D, the first limit is real and the second limit is imaginary. They can
therefore be equal only if they are both zero. Since z is arbitrary,
it follows that f ′(z) = 0 throughout D; hence, f(z) = const. ♣

3. Show that all zeros of polynomials

p(z) = zn + an−1z
n−1 + · · · + a1z + a0

are located within the region |z| ≤ R0, where

R0 = max {1 + |an−1|, 1 + |an−2|, · · · , 1 + |a1|, |a0|} .

Solution: Let f(z) = zn, g(z) = an−1z
n−1 + · · · + a1z + a0, and

let Rk = R0 + (1/k) for an arbitrary fixed k ∈ N . Observe that

|aj | ≤ R0 − 1 < Rk − 1 for j = 1, 2, · · · , n− 1

and |a0| ≤ R0 < Rk. Then, if |z| = Rk, we have

|g(z)| ≤ |an−1||z|n−1 + · · · + |a1||z| + |a0|
≤ (Rk − 1)Rn−1

k + · · · + (Rk − 1)Rk +Rk = Rn
k = |f(z)|.

In view of Rouche’s theorem, f(z) and f(z) + g(z) = p(z) have
the same number of zeros within the region |z| < Rk. Since f(z)
has n zeros and p(z) is an nth-order polynomial, we conclude that
all the zeros of p(z) have to be located within the region |z| < Rk.
Finally, we take the limit k → ∞ (since k is arbitrary) to find that
all the zeros of p(z) have to be located within |z| < R0. ♣

4. Show that the equation z3+3z+1 = 0 has solutions whose absolute values
are less than 2.

Solution: Let z be on the circle |z| = 2. Then we have

|z3| = 8 > 3 · 2 + 1 > 3|z| + 1 ≥ |3z + 1|.

This means that there are three solutions to the equation z3 +
3z + 1 = 0 and that all of them satisfy |z| < 2. ♣
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9.5 Dispersion Relations

9.5.1 Principal Value Integrals

The previous sections treated contour integrals whose integrand has no pole
on the contour C. If a pole is located on C, the integrand diverges at the
pole so that we cannot use ordinary integration methods. This difficulty is
overcome by introducing a new concept called the principal value integral.
To derive it, we consider an integral

I =
∮

C

f(z)
z − α

dz (9.60)

with the integration contour depicted in Fig. 9.6. In (9.60), α is assumed to
be real without loss of generality. In addition, we assume that f(z) is analytic
at Imz > 0, and behaves as zβ |f(z)| → A (β > 0) as |z| → ∞ there. In order
for the integral (9.60) to be defined, the contour C must be traversed in such
a way as to avoid the pole at z = α. Then, since both f(z) and 1/(z − α) are
analytic within and on C, (9.60) equals zero. Therefore, by breaking it up, we
obtain the following expression:

∮

C

f(z)
z − α

=
∫ α−r

−R

f(x)
x− α

dx+
∫

γ

f(z)
z − α

dz +
∫ R

α+r

f(x)
x− α

dx+
∫

Γ

f(z)
z − α

dz

= 0. (9.61)

Here r is the radius of the small semicircle γ centered at x = α and R is
the radius of the large semicircle Γ centered at the origin. The radius r
can be chosen as small as we please and R can be chosen as large as we
please.

Our current interest is to determine where the sum of the four integrals
appearing in the second line of (9.61) converges in the limits of r → 0 and
R → ∞. This is seen by evaluating the integrals along γ and Γ given in
(9.61). First, once we set z = Reiθ, the integral along the large semicircle Γ
yields

0

y

C

x
RR−

R

α 0

y

Γ

x
RR−

R

α

γ

Fig. 9.6. Integration contour on which the pole of the integrand is located
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∫

Γ

f(z)
z − α

dz = i

∫ π

0

f(Reiθ)
Reiθ − α

Reiθdθ;

hence, ∣
∣
∣
∣

∫

Γ

f(z)
z − α

dz

∣
∣
∣
∣
≤ R

|R− α|Rβ

∫ π

0

∣
∣f(Reiθ)

∣
∣ dθ, (9.62)

where we have used the inequality

|Reiθ − α| =
√

R2 + α2 − 2Rα cos θ ≥
√

R2 + α2 − 2Rα = |R− α|.

In the limit R → ∞, the right-hand side of (9.62) vanishes since β > 0.
Therefore, the integral over the semicircle Γ can be made arbitrarily small by
choosing R sufficiently large.

Next, we write the integral along γ as
∫

γ

f(z)
z − α

dz = f(α)
∫

γ

1
z − α

dz +
∫

γ

f(z) − f(α)
z − α

dz. (9.63)

By setting z − α = reiθ, the first integral on the right-hand side is evaluated
as

f(α)
∫

γ

1
z − α

dz = if(α)
∫ 0

π

dθ = −iπf(α).

In addition, the Taylor series expansion of f(z) around z = α yields

f(z) − f(α)
z − α

dz = f ′(α) · iεeiθdθ +
f ′′(α)

2
· εeiθ · iεeiθdθ + · · · = O(ε),

which means that the second integral in (9.63) vanishes in the limit r → 0.
Equation (9.61) thus yields

lim
R→∞

lim
r→0

[
∫ α−r

−R

f(x)
x− α

dx+
∫ R

α+r

f(x)
x− α

dx

]

− iπf(α) = 0. (9.64)

Now we introduce a new notation as shown below.

♠ Principal value integral:
The notation

P
∫ R

−R

f(x)
x− α

dx ≡ lim
r→0

[
∫ α−r

−R

f(x)
x− α

dx+
∫ R

α+r

f(x)
x− α

dx

]

provides the principal value integral (or the Cauchy principal value)
of f(z)/(z − α) for real α.



9.5 Dispersion Relations 295

with this notation, (9.64) reads

lim
R→∞

P
∫ R

−R

f(x)
x− α

dx = iπf(α),

where f(x) is a complex-valued function of a real variable x. For the sake of
brevity, we write this simply as

P
∫ ∞

−∞

f(x)
x− α

dx = iπf(α). (9.65)

This result provides a way to evaluate the contour integrals involving sin-
gularities on the integration path. When we decompose f(x) in (9.65) as
f(x) = fR(x) + ifI(x) and equate the real and imaginary parts, we obtain an
important relation between fR and fI :

♠ Hilbert transform pair:
A pair of functions fR and fI that satisfies the relations

fR(α) =
1
π
P
∫ ∞

−∞

fI(x)
x− α

dx,

fI(α) = − 1
π
P
∫ ∞

−∞

fR(x)
x− α

dx. (9.66)

is called a Hilbert transform pair.

It readily follows from (9.66) that if fI(x) ≡ 0, then fR(x) ≡ 0.

9.5.2 Several Remarks

The principal value integral is seen as a way of avoiding singularities on a
path of integration; we integration to the point just before the singularity in
question, skip over the singularity, and begin integrating again immediately
beyond the singularity. This prescription enables us to make sense out of
integrals such as

∫ R

−R

dx

x
. (9.67)

Apparently, this integral seems to be zero, since an odd function is integrated
over a symmetric domain. However, the singularity at the origin makes the
integral meaningless unless we insert a symbol P in front of it. Following the
prescription for principal value integrals, we can easily evaluate the principal
value of (9.67):

P
∫ R

−R

dx

x
= lim

r→0

[
∫ −r

−R

dx

x
+
∫ R

r

dx

x

]

.
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In the first integral on the right-hand side, we set x = −y. Then

P
∫ R

−R

dx

x
= lim

r→0

[
∫ r

R

dy

y
+
∫ R

r

dx

x

]

,

where the two integrals within the brackets obviously cancel out. Conse-
quently, we have

P
∫ R

−R

dx

x
= 0. (9.68)

We emphasize again that the integral (9.68) is completely different from the
meaningless quantity in (9.67).

As a further step, we evaluate the principal value integral defined by

P
∫ R

−R

f(x)
x− α

dx.

It follows from the result of (9.83) that

P
∫ R

−R

f(x)
x− α

dx = P
∫ R

−R

[
f(α)
x− α

+
f(x) − f(α)

x− α

]

dx

= f(α) ln
(
R− α

R+ α

)

+ P
∫ R

−R

f(x) − f(α)
x− α

dx. (9.69)

It often happens that the second integral in the second equation in (9.69) is not
be singular at x = α; for instance, as in the case where f(x) is differentiable
at x = α. In this case, the symbol P there can be dropped

Particularly interesting is the behavior of (9.69) in the limit R → ∞, which
yields

P
∫ ∞

−∞

f(x)
x− α

dx = P
∫ ∞

−∞

f(x) − f(α)
x− α

dx. (9.70)

Hence, substituting (9.70) into (9.65), we obtain

fR(α) =
1
π
P
∫ ∞

−∞

fI(x) − fI(α)
x− α

dx,

fI(α) = − 1
π
P
∫ ∞

−∞

fR(x) − fR(α)
x− α

dx, (9.71)

which are complementary expressions of a Hilbert transform pair (9.66).

Remark. Equation (9.70) is equivalent to

P
∫ ∞

−∞

f(a)
x− a

dx = 0, and thus P
∫ ∞

−∞

dx

x− a
= 0,

which readily follows from the result (9.68).
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9.5.3 Dispersion relations

Mathematical arguments given so far are interesting in their own right, but
their applications to physical sciences are also significant. In the following
discussions, we show that general physical quantities associated with response
phenomena satisfy the Hilbert transform relations given in (9.66) and (9.71).
In the language of physics, the relation between corresponding parts of Hilbert
transform pairs referred to as a dispersion relation, plays an important role
in describing the properties of response functions.

We begin by considering a physical system for which an input I(t) is related
to a response R(t) in the following linear manner:

R(t) =
1√
2π

∫ ∞

−∞
G(t− t′)I(t′)dt′. (9.72)

For example, I(t′) might be the electric field acting on a physical object at a
time t′ and R(t) is the resulting polarization field at time t. We have assumed
that G depends only on the difference t − t′ because we want the system to
respond to a sharp input at t0 as expressed by I(t′) = I0δ(t′− t0). In the same
way, it would respond to a sharp input at t0 + τ , i.e., at a time τ later. For
the first case, we have

R1(t) =
1√
2π

∫ ∞

−∞
G(t− t′)I0δ(t′ − t0)dt′ =

I0√
2π

G(t− t0). (9.73)

and for the second,

R2(t) =
1√
2π

∫ ∞

−∞
G(t− t′)I0δ(t′ − t0 − τ)dt′ =

I0√
2π

G(t− t0 − τ),

or, in other words,

R2(t+ τ) =
I0√
2π

G(t− t0) = R1(t).

Thus if we shift the input by τ , the response is also shifted by τ .
Now, in order to derive the dispersion relation for the physical systems of

interest, we consider the Fourier transform of (9.72). Using the convolution
theorem, we find that

r(ω) = g(ω)j(ω),

where

r(ω) =
1√
2π

∫ ∞

−∞
R(t)eiωtdt, g(ω) =

1√
2π

∫ ∞

−∞
G(t)eiωtdt,

and j(ω) =
1√
2π

∫ ∞

−∞
I(t)eiωtdt.

Notably, it is possible to extend g(ω) into the complex z-plane, based on
the assumptions that
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(i) g(z) is analytic for Imz > 0, and
(ii) g(z) → 0 as z → ∞.

Observe that (i) and (ii), are the conditions under which we derived the
Hilbert transform pair (see Sect. 9.4.1). After some discussion, we see that
g(z) arising from a G(t) that satisfies the necessary assumptions yields

gR(ω) =
1
π
P
∫ ∞

−∞

gI(ω′)
ω′ − ω

dω′,

gI(ω) = − 1
π
P
∫ ∞

−∞

gR(ω′)
ω′ − ω

dω′. (9.74)

These relations between gR and gI are called the dispersion relations for
g. The validity of assumptions (i) and (ii) that the function g(z) must satisfy
is demonstrated in Sect. 9.5.6.

9.5.4 Kramers–Kronig Relations

The term “dispersion relation” is often restricted to mean a relation between
two functions whose arguments are quantitatively treatable experimentally.
For instance, in (9.74) only a positive frequency (ω ≥ 0) should actually be
accessible, so they are not directly practical as they stand. In the following, we
derive an alternative expression of the dispersion relations that involve only
positive, experimentally meaningful frequencies.

We first assume that G(t) is real, which is obvious from (9.73), where R1

and I0 are real. Hence, we may proceed as follows:

g(z) =
1√
2π

∫ ∞

0

G(t)eiztdt,

g∗(z) =
1√
2π

∫ ∞

0

G∗(t)e−iz∗tdt =
1√
2π

∫ ∞

0

G(t)e−iz∗tdt

= g(−z∗). (9.75)

As a consequence, we have

g∗(z) = g(−z∗),

which is referred to as the reality condition.
Next let us assume z to be real (z = ω) in order to discuss the behavior

of g(z) on the real axis. It follows from the reality condition (9.75) that

gR(ω) − igI(ω) = gR(−ω) + igI(−ω)

or
gR(ω) = gR(−ω) and gI(ω) = −gI(−ω). (9.76)
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That is, gR and gI are even and odd functions of ω, respectively. Note that if
the conditions in (9.76) are satisfied, the function

G(t) =
1√
2π

∫ ∞

−∞
g(ω)e−iωtdω

becomes a real function. (The proof is left to the reader).
Now we rewrite the first part of (9.74) as

gR(ω) =
1
π
P
∫ 0

−∞

gI(ω′)
ω′ − ω

dω′ +
1
π
P
∫ ∞

0

gI(ω′)
ω′ − ω

dω′.

we rewrite ω′ → −ω′ in the first integral and use (9.76) to obtain

gR(ω) =
2
π
P
∫ ∞

0

ω′gI(ω′)
ω′2 − ω2

dω′ (9.77)

and an identical procedure yields

gI(ω) = −2ω
π

P
∫ ∞

0

gR(ω′)
ω′2 − ω2

dω′. (9.78)

Eventually, the expressions (9.77) and (9.78) involve only positive, experimen-
tally accessible frequencies. These equations are referred to as the Kramers–
Kronig relations.

9.5.5 Subtracted Dispersion Relation

In deriving dispersion relations, it often happens that the quantity of interest,
say g(z), does not tend toward zero as |z| → ∞. Furthermore, we are not
usually fortunate enough to know the precise behavior of the quantity as
|z| tends to infinity. Nevertheless, if we at least know that the quantity is
bounded for large values of |z|, the dispersion relation can be reformulated in
the following way:

Suppose that f(z) is analytic in the upper half-plane, and let α0 be some
point on the real axis at which f(z) is analytic. Our aim is to derive the
dispersion relation for f(x) under the condition that the asymptotic behavior
of f(z) for z → ∞ is unknown. Then, instead of f(z), we consider the function

f(z) − f(α0)
z − α0

≡ φ(z),

which is also analytic in the upper half-plane and not singular at z = α0, and
|φ(z)| → 0 as |z| → ∞ owing to the boundedness of |f(z)| for z → ∞. Thus
in a manner, similar to the case in (9.65), we can write

iπφ(x) = P
∫ ∞

−∞

φ(x′)
x′ − x

dx′.
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In actuality, we have

iπ

[
f(x) − f(α0)

x− α0

]

= P
∫ ∞

−∞

f(x′) − f(α0)
(x′ − x)(x′ − α0)

dx′

= P
∫ ∞

−∞

f(x′)
(x′ − x)(x′ − α0)

dx′ − f(α0)
x− α0

P
∫ ∞

−∞

(
1

x′ − x
− 1
x′ − α0

)

dx′,

so

iπf(x) = iπf(α0) + (x− α0)P
∫ ∞

−∞

f(x′)
(x′ − x)(x′ − α0)

dx′

− f(α0)P
∫ ∞

−∞

dx′

x′ − x
+ f(α0)P

∫ ∞

−∞

dx′

x′ − α0
.

The last two principal value integrals are equal to zero as we demonstrate later
in (9.83). Hence, separating the real and imaginary parts, we finally obtain

fR(x) = fR(α0) +
x− α0

π
P
∫ ∞

−∞

fI(x′)
(x′ − x)(x′ − α0)

dx′,

fI(x) = fI(α0) − x− α0

π
P
∫ ∞

−∞

fR(x′)
(x′ − x)(x′ − α0)

dx′. (9.79)

Relations of the type of (9.79) are referred to as once-subtracted disper-
sion relations. Emphasis is placed on the fact that the relations (9.79) are
free from the assumption that |f(z)| should vanish in the limit z → ∞. For
them to be of use in a particular physical problem, we must have a means of
determining, say, fR(α0) for some α0.

9.5.6 Derivation of Dispersion Relations

This subsection provides a proof of the dispersion relation (9.74). We shall see
that by making a few very reasonable assumptions about the system in ques-
tion, we can show that the real and imaginary parts of the physical quantity
g(ω) are intimately related to one another for real values of ω (i.e., a disper-
sion relation). The key assumption is the causality requirement: we may
say that causality of the function G(t) implies the analytic properties of g(z)
in the upper half-plane and thus verifies the dispersion relations with respect
to g(ω) on the real axis.

Toward this end, let us consider what can be said about G(τ) on general
physical grounds. First to be noted is that an input at t should not give rise
to a response at times prior to t, i.e., G(τ) = 0 for τ < 0. Thus we have

R(t) =
∫ t

−∞
G(t− t′)I(t′)dt′, (9.80)
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which shows that the response at t is the weighted linear superposition of all
inputs prior to t, which is the causality requirement.

Secondly, the possibility that G(τ) is singular for any finite τ is excluded
because, on physical grounds, the response from a sharp input given by

R(t) =
I0√
2π

G(t− t0), t > t0

must always be finite.
Finally, it is assumed that the effect of an input in the remote past does

not appreciably influence the present. This may be stated as the requirement
that G(τ) → 0 as τ → ∞, since the response to any impulse dies down after
a sufficiently long time (i.e., any system has some dissipative mechanism).
Furthermore,G(τ) should vanish faster than τ−1 so that it becomes integrable.
Recall that g(z) is defined through an integration of G(t) with respect to t.

The following three points summarise our physically motivated assump-
tions on G(τ):

(i) G(τ) = 0 for τ < 0,
(ii) G(τ) is bounded for all τ , and
(iii) |G(τ)| is integrable, so G(τ) → 0 faster than 1/τ as τ → ∞.

We demonstrate below that these three assumptions forG(t) lead naturally
to the two conditions for g(z) under which we have derived the dispersion
relation of g(ω).

First, we show that these three conditions require that |g(z)| → 0 at z → ∞
on the upper half-plane. It is possible to write

g(ω) =
1√
2π

∫ ∞

0

G(t)eiωtdt.

We extend this relation into the complex plane by using the definition

g(z) =
1√
2π

∫ ∞

0

G(t)eiztdt =
1√
2π

∫ ∞

0

G(t)eiωte−ηtdt,

where we have written z = ω + iη. We now restrict our attention to the
upper half-plane (η > 0), where the term e−ηt is a decaying exponential. For
0 < θ < π, it reads

|g(z)| ≤ 1√
2π

M

∫ ∞

0

e−(|z| sin θ)tdt,

where we have replaced G(t) by its maximum value M in view of assumption
(ii) above. Hence, we have

|g(z)| ≤ MG√
2π|z| sin θ

.

This means that for 0 < θ < π, |g(z)| → 0 as |z| → ∞. On the other hand,
when θ = 0 or π, we have
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g(ω, η = 0) =
1√
2π

∫ ∞

0

G(t)eiωtdt.

This results in Parseval’s identity:
∫ ∞

−∞
|g(ω, η = 0)|2dω =

1
2π

∫ ∞

−∞
|G(t)|2dt,

where both sides of improper integrals converge. (See Sect. 3.4.2 for the con-
vergence conditions of an improper integral.) Thus |g(ω, η = 0)| vanishes as
ω → ∞. As a result, |g(z)| → 0 as |z| → ∞ in the whole region of 0 ≤ θ ≤ π,
i.e., in any direction in the upper half-plane.

Now we want to show that g(z) is analytic in the upper half-plane. Using

g(z) =
1√
2π

∫ ∞

0

G(t)eiztdt =
1√
2π

∫ ∞

0

G(t)eiωte−ηtdt, (9.81)

we see that for η > 0,

dng

dzn
=

1√
2π

∫ ∞

0

G(t)
dn

dzn
eiztdt =

in√
2π

∫ ∞

0

tnG(t)eiωte−ηtdt. (9.82)

The integrals in (9.82) are uniformly convergent owing to the term e−ηt (η > 0,
t > 0). Thus g(z) is analytic in the upper half-plane (η > 0). Hence, for any
g(z) arising from a G(t) that satisfies assumptions (i), (ii), and (iii), we can
proceed according to the argument in Sect. 9.4.1, and we finally obtain the
dispersion relation (9.74).

Exercises

1. Prove that

P
∫ R

−R

dx

x− a
= ln

(
R− a

R + a

)

when −R < a < R.
Solution: We write

P
∫ R

−R

dx

x− a
= lim

ε→0

[
∫ a−ε

−R

dx

x− ε
+
∫ R

ε+a

dx

x− a

]

.

Setting x = −y in the first integral on the right-hand side, we find
that

P
∫ R

−R

dx

x− a
= lim

ε→0

[∫ ε−a

R

dy

y + a
+ ln(R− a) − ln ε

]

= lim
ε→0

[ln ε− ln(R+ a) + ln(R− a) − ln ε]

= ln
(
R− a

R+ a

)

(−R < a < R). ♣ (9.83)
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2. By using the formula (9.71), prove that
∫ ∞

−∞

sinx
x

dx = π.

Solution: Consider the function f(z) = eiz. This function is an-
alytic everywhere, and if we write z = Reiθ, then |f(z)| → 0 as
R → ∞ for all θ such that 0 < θ < π. In this case, fR(x) = cosx
and fI(x) = sinx, so using (9.71), we obtain

cosα = (1/π)
∫ ∞

−∞
(sinx− sinα)/(x− α)dx.

Since sinx−sinα = 2 sin[(x−α)/2] cos[(x+α)/2], there is no singu-
larity of the integrand at x = α. For the special case α = 0, we find
that 1 = (1/π)

∫∞
−∞(sinx/x)dx, i.e.,

∫∞
−∞(sinx/x)dx = π. From

this result, we also obtain
∫∞
0

(sinx/x)dx = π/2 by symmetry. ♣

3. Show that the integral S(t) =
1

2πi
lim
ε→0

∫ ∞

−∞

eixt

x− iε
dx reads

S(t) =
{

1, t > 0,
0. t < 0.

Solution: Taking the contours Im(z) > 0 for t > 0, and Im(z) < 0
for t < 0, we have the desired result, which is the integral repre-
sentation of Heaviside’s step function. ♣
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Conformal Mapping

Abstract Conformal mapping refers to transformation from one complex plane
to another such that the local angles and shapes of infinitesimally small figures
are preserved. This special class of mapping is indispensable for solving physics
and engineering problems that are expressed in terms of complex functions with
inconvenient geometries. In this chapter we show that a problem can be drastically
simplified by choosing an appropriate mapping, which allows us to evaluate the
solution using elementary calculus.

10.1 Fundamentals

10.1.1 Conformal Property of Analytic Functions

We are concerned here the mapping properties of an analytic function
w = f(z) in a domain D on the z-plane into the w-plane. Through the map-
ping, any line drawn on the z-plane results in a line on the w-plane. Partic-
ularly when f = u + iv is analytic, the transformation is angle-preserving
or conformal. This means that through the transformation from (x, y) to
(u, v), the angle between the crossing lines on the w-plane is equal to the angle
between the crossing lines on the z-plane (see Fig. 10.1). In physics and en-
gineering, the subject derives its usefulness from the possibility of transform-
ing a problem that occurs naturally in a rather difficult setting into another
simpler one.

Let D be a domain on the z-plane, and let Γ1 and Γ2 be two differentiable
arcs lying in D and intersecting at a point z = a in D. If f(z) is an analytic
function in D, the images f(Γ1) and f(Γ2) are differentiable arcs lying in a
domain D′ = f(D) and intersecting at a point a′ = f(a). Then we say the
following:
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0

y

x

Γ1

a

θ

Γ2

z

0

υ

u

f (Γ1)

f (Γ2)

f (a)
θ

w

w = f (z)

Fig. 10.1. Angle-preserving property of a conformal mapping w = f(z)

♠ Conformal mapping:
The mapping w = f(z) is conformal at z = a if for every such pair of

arcs, the angle between the arcs Γ1 and Γ2 intersecting at z = a on the
z-plane is equal to the angle between the arcs f(Γ1) and f(Γ2) at their
intersecting point f(a) on the w-plane.

The mapping is said to be conformal in D if it is conformal at each point in D.
We shall see that if a function w = f(z) is analytic, it is necessarily conformal
except at a finite number of specific points; this fact is formally stated below.

♠ Theorem:
Given an analytic function f(z), the mapping w = f(z) is conformal at

z = a if and only if f ′(a) �= 0.

Proof For proving sufficiency, we consider the arcs Γ1 and Γ2 given paramet-
rically by

z1 = Ψ1(t) and z2 = Ψ2(t) (0 ≤ t ≤ 1)

and assume that z1, z2 are points on Γ1, Γ2 at a short distance � from z = a.
Then, from the relation

z1 − a = �eiα, z2 − a = �eiβ ,

we have the ratio
z2 − a

z1 − a
= ei(β−α).

As � → 0, β−α must approach the angle θ between the curves on the z-plane.
That is,

θ = lim

→0

ang
(
z2 − a

z1 − a

)

.
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For the angle θ̃ between the arcs of f(Γ1) and f(Γ2) at f(a), we have

θ̃ = lim

→0

ang
[
f(z2) − f(a)
f(z1) − f(a)

]

= lim

→0

ang

⎡

⎢
⎢
⎣

f(z2) − f(a)
z2 − a

· (z2 − a)

f(z1) − f(a)
z1 − a

· (z1 − a)

⎤

⎥
⎥
⎦

= lim

→0

ang
[
f ′(a) · (z2 − a)
f ′(a) · (z1 − a)

]

= θ, if f ′(a) �= 0. (10.1)

Thus, the condition f ′(a) �= 0 is necessary. Conversely if f (n)(a) = 0 with
n = 1, 2, · · · and f (p)(a) �= 0, near z = a we have

f(z) = f(a) +O [(z − a)p] .

Thus, we get

θ̃ = lim

→0

arg
[
f(z2) − f(a)
f(z1) − f(a)

]

= lim

→0

arg
[
(z2 − a)p

(z1 − a)p

]

= p lim

→0

arg
(
z2 − a

z1 − a

)

= pθ,

which shows that the angle is magnified by p. Therefore, if the mapping
w = f(z) is conformal, we necessarily have p = 1, which completes the proof
of the sufficiency of the condition. ♣

10.1.2 Scale Factor

There is another important geometric property that analytic functions pos-
sess: whenever f(z) is analytic, any infinitesimal figure plotted on the z-plane
is transformed into a similar figure on the w-plane with a change in size but
with the proportions (and angles) preserved. We prove this by considering the
length of an infinitesimally small quantity df given by

df = du+ idv =
(
∂u

∂x
dx+

∂u

∂y
dy

)

+ i

(
∂v

∂x
dx+

∂v

∂y
dy

)

. (10.2)
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Its square length reads

|df |2 =
(
∂u

∂x
dx+

∂u

∂y
dy

)2

+
(
∂v

∂x
dx+

∂v

∂y
dy

)2

=

[(
∂u

∂x

)2

+
(
∂v

∂x

)2
]

(dx)2 +

[(
∂u

∂y

)2

+
(
∂v

∂y

)2
]

(dy)2

+2
(
∂u

∂x

∂u

∂y
+
∂v

∂x

∂v

∂y

)

dxdy. (10.3)

Substituting the Cauchy–Riemann relations into (10.3), we obtain

|df |2 = h2|dz|2, where h =

√
(
∂u

∂x

)2

+
(
∂u

∂y

)2

=

√
(
∂v

∂x

)2

+
(
∂v

∂y

)2

.

(10.4)
The quantity h is known as a scale factor and measures a magnification ratio
of the elementary lines through the transformation w = f(z). From (10.4), it
readily follows that

h =
∣
∣
∣
∣

df

dz

∣
∣
∣
∣
. (10.5)

We see from (10.5) that since df/dz is isotropic, the scale factor h is also
isotropic (i.e., independent of the direction of dz) for any analytic function f .
This means that any infinitesimal figures on the z-plane are transformed into
similar figures on the w-plane with a change in their size by h = |df/dz|.

Note that the magnitude of h depends on points z and may vanish at
points where f ′(z) = 0. Points where f ′(z) = 0 are called critical points of
the transformation w = f(z), and at these points, the transform becomes non
conformal. The simplest example is

f(z) = z2

for which we have
h = |f ′(0)| = 0.

In fact, when two line elements passing through z = 0 make an angle β−α with
respect to one another, the corresponding lines on the w-plane make an angle
of 2(β − α). Thus mapping is not conformal at z = 0. In general, the region
in the neighborhood of the point at which h = 0 on the w-plane becomes
greatly compressed. In contrast, the corresponding region on the z-plane is
tremendously expanded.

10.1.3 Mapping of a Differential Area

The scale factor h given in (10.4) can be derived in a different way by consid-
ering the conformal mapping of a differential area. Let f(z) be a conformal
mapping that transforms any points in D of the z-plane onto a region S of the
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w-plane. In the domain D, we define a rectangular differential area element
with sides of the rectangle parallel to the x and y-axes. These sides are given by

dz1 = dx and dz2 = idy,

The images of dz1 and dz2 are differential curves in the w-plane given by

dw1 = du1 + idv1 and dw2 = du2 + idv2.

Note that the differential area element of the rectangle in the z-plane reads
dAz = dxdy and that of the parallelogram in the w-plane is

dAw = |Im(dw∗
1dw2)| .

Since dz1 = dx and dz2 = idy, the images of these line elements can be written
as

dw1 =
∂f

∂x
dx =

(
∂u

∂x
+ i

∂v

∂x

)

dx

and

dw2 =
1
i

∂f

∂y
idy =

(
∂u

∂y
+ i

∂v

∂y

)

dy.

Therefore, dAw is given by

dAw = |Im(dw∗
1dw2)| =

∣
∣
∣
∣

∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x

∣
∣
∣
∣
dxdy =

∂(u, v)
∂(x, y)

dAz, (10.6)

where

∂(u, v)
∂(x, y)

≡
∣
∣
∣
∣

∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x

∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
∣

∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y

∣
∣
∣
∣
∣
∣
∣

is called the Jacobian determinant of the transformation. Since f(z) is
analytic, u and v satisfy the Cauchy–Riemann relations over the region R, so
the Jacobian determinant can be written as

∂(u, v)
∂(x, y)

=
(
∂u

∂x

)2

+
(
∂u

∂y

)2

=
(
∂v

∂x

)2

+
(
∂v

∂y

)2

. (10.7)

This provides a physical interpretation of the Jacobian determinant ∂(u, v)/
∂(x, y); namely, it is identical to the square of the same factor h introduced
in (10.4).

10.1.4 Mapping of a Tangent Line

We consider the mapping of a tangent line. Let C be a curve in the z-plane
and Γ be the image of C in the w-plane (see Fig. 10.2). A differential segment
dw along Γ is related to the differential segment dz along C by
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dw =
df

dz
dz = f ′(z)dz. (10.8)

We suppose w0 to be a point on Γ that is the image of z0 on C. Then from
(10.8), the tangent to Γ at w0, denoted by τ(w0), is related to the tangent to
C at z0, denoted by t(z0):

τ(w0) ≡ dw

dλ

∣
∣
∣
∣
w=w0

= f ′(z0)
dz

dλ

∣
∣
∣
∣
z=z0

≡ f ′(z0)t(z0), (10.9)

where λ parametrizes the curve of Γ on the w-plane.
An immediate consequence of equation (10.9) is that if f ′(z0) = 0, the

tangent t(z0) on the z-plane cannot be related to the tangent τ(w0) on the
w-plane. The point z0 that satisfies f ′(z) = 0 is called a critical point on
the curve. For simplicity in the following discussion, we assume that the curve
C does not contain any critical points.

The characteristics of the mapping (10.9) become clear by employing the
polar form.

τ(w0) = |τ(w0)|eiψ(w0), f ′(z0) = |f ′(z0)|eiφ(z0), and t(z0) = |t(z0)|eiθ(z0).
(10.10)

The first equation shows that τ(w0) is oriented at an angle ψ(w0) to the u-
axis; similarly, the third one shows that t(z0) makes an angle θ(z0) with the
x-axis. It follows from (10.9) that

|τ(w0)|eiψ(w0) = |f ′(z0)||t(z0)|ei[φ(z0)+θ(z0)].

Thus the magnitude of τ(w0) and its argument read

|τ(w0)| = |f ′(z0)||t(z0)| and ψ(w0) = φ(z0) + θ(z0).

Each equation gives us the properties of the conformal mapping of a tangent
line as follows:

(i) The magnitude of the tangent |t(z0)| is modified by the scale factor
|f ′(z0)|, thus being enlarged or shrunk by the mapping. Since |f ′(z0)|
depends on z0, the magnification varies from point to point on C.

0

y

x

C

z0

z

0

υ

u

Γ
w0

τ(w0)

w

w = f(z)t(z0)

Fig. 10.2. Conformal mapping of a tangential line
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(ii) The angle between the tangent t(z) and the x-axis at z0 differs from the
angle between the tangent τ(w) and the u-axis at w0. The difference is
determined by the argument of f ′(z0), denoted by φ, called the argument
of the mapping; φ also depends on z0 and thus varies from point to point
on C.

10.1.5 The Point at Infinity

For later use, we introduce a few concepts that are at the basis of further
investigations on conformal mapping. Our aim is to understand the way in
which the entire spherical curved surface is mapped conformally onto the
entire flat plane with a one-on-one correspondence. This is achieved with the
help of a stereographic projection between the complex plane and an artificial
sphere as described below.

Let us consider a sphere of radius R (for convenience, R is taken as 1/2)
such that the complex plane is tangential to it at the origin, as shown in
Fig. 10.3. The point P on the sphere opposite the origin (called the north
pole, for convenience) is used as the “eye” of the stereographic projection. We
draw straight lines through P that intersect both the sphere and the plane.
These lines permit a mapping of point z on the plane onto the point ζ on
the sphere (see Fig. 10.3). In this fashion the entire complex plane is mapped
onto the sphere (called a Riemann or a complex sphere).

As to the properties of the Riemann sphere, the following statements can
be verified without much difficulty.
1. Straight lines in the z-plane are mapped onto circles on the sphere that

pass through P .

O y

x z

ξ

P

Fig. 10.3. Riemann sphere
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2. The images of intersecting straight lines on the plane have two common
points on the Riemann sphere, one of which is P .

3. The images of parallel straight lines on the z-plane have only the point P
in common, and they have a common tangent at P .

4. The exterior of a circle |z| = R with R � 1 is mapped onto the interior
of a small spherical cap around point P . As R → ∞ the cap shrinks to P .

Note that the point P itself has no counterpart on the z-plane. Never-
theless, it has been found convenient to adjoin an extra point to the z-plane,
known as the point at infinity, in such a way that a curve passing through P
on the Riemann sphere is the image of a curve on the z-plane that approaches
the point at infinity.

♠ Point at infinity:
The point at infinity z = ∞ is defined as the point z̃ that is mapped

onto the origin z = 0 by the transformation z̃ = 1/z.

The importance of the point at infinity is greatly enhanced once we appreci-
ate the conformal property of the stereographic projection: i.e., if two curves
intersect on the z-plane at an angle γ, then their images on the sphere inter-
sect at the same angle. This conformal property permits the definition of the
angle between two parallel straight lines on the z-plane, i.e., the angle that
their images make on the sphere at point P . (Indeed this angle is equal to
zero as noted in 3 above.)

10.1.6 Singular Point at Infinity

The concept of a point at infinity is closely interwoven with the study of
singularities of analytic functions. The notion of analyticity can be extended
to a point at infinity by the following device: A function f(z) is considered to
be analytic at infinity if the function

g(z) = f

(
1
z

)

is analytic at z = 0. A more precise statement on this mater is given below.

♠ Extended definition of conformal mappings:
A function w = f(z) is said to transform the neighborhood of a point z0

conformally into a neighborhood of w = ∞ if the function η = 1/f(z)
transforms the neighborhood of z0 conformally into a neighborhood of
η = 0.
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Example The mapping w = 1/z is conformal at the origin z = 0. Initially,
the function f(z) = 1/z is not defined at z = 0; however, the subterfuge
based on the Riemann sphere makes the mapping w = 1/z meaningful (and,
furthermore, conformal) at z = 0. Note that it is also conformal at z = ∞
even though the derivative f ′(z) approaches zero as z → ∞.

Owing to the above convention, it becomes possible to introduce the con-
cept of a pole at infinity, a branch at infinity, and so on, through the
corresponding behavior of g(z) at the origin. In fact, owing to our convention,
a function f(z) = ez that has no singularities in the original z-plane comes to
possess an essential singularity at infinity. Other functions that have no
singularities (e.g., all the polynomials in z) are also found to have a breakdown
of analyticity at infinity. In contrast, functions that are analytic at infinity
possess at least one singularity for some finite value of z. The natural conjec-
ture is that there may not be a perfectly analytic function. This problem has
actually been resolved and is embodied in the theorem below.

♠ Entire function:
A function f(z) whose only singularity is an isolated singularity at the

point at infinity z = ∞ is called an entire function (or integral func-
tion). If this singularity is a pole of mth order, then f(z) must be a poly-
nomial of degree m.

♠ Liouville theorem:
The only function f(z) that is analytic in the entire complex plane as

well as at the point at infinity is the constant function f(z) = const.

Remark. In some texts the term “complex plane” is tacitly assumed to mean
the extended complex plane with the point at infinity included. Certain
theorems may then be stated more conveniently. However, one should never
forget that while there is a point at infinity, there is still no such thing as a
complex number “infinity” in the sense that it possesses the algebraic prop-
erties shared by other complex numbers.

Exercises

1. Suppose that two differential curves on the z-plane, meet at a point z0 at
which f ′(z0) = f ′′(z0) = · · · = f (m−1)(z0) = 0 and f (m)(z0) �= 0. Show
that the angle θ between the two curves is magnified by m times through
the conformal mapping w = f(z).

Solution: From hypothesis, f(z) can be expanded in the
neighborhood of the point z0 as
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f(z) = f(z0) + cm(z − z0)m + cm+1(z − z0)m+1 + · · · ,

where cm �= 0. Then, by the same scenario as we used in deriving
(10.1), the angle θ̃ between the mapped arcs at f(z0) reads

θ̃ = lim

→0

arg
f(z2) − f(z0)
f(z1) − f(z0)

= lim

→0

arg
(
z2 − z0
z1 − z0

)m

= m lim

→0

arg
z2 − z0
z1 − z0

= mθ. ♣

2. We say that the mapping w = f(z) is locally one-to-one at z0 if f(z1) �=
f(z2) for any two distinct points z1 and z2 within the circle |z − z0| < δ
with some δ > 0. Show that w = f(z) is locally one-to-one at z0 if f(z) is
analytic at z0 and f ′(z0) �= 0.

Solution: Let f(z0) = α and take δ > 0 small enough so that
f(z) − α has no other zero in |z − z0| < δ. In view of the theorem
regarding the isolated property of zeros, such a δ can always be
found. The argument principle says that

1 =
1

2πi

∮

C

f ′(z)
f(z) − α

dz,

where C is a circle |z − z0| = δ. Denoting Γ = f(C), we have

1 =
1

2πi

∮

Γ

dw

w − α
=

1
2πi

∮

Γ

dw

w − β

for any β satisfying |β−α| < ε with sufficiently small ε. If we take
δ′ ≤ δ so that

D = {z; |z − z0| < δ′} ⊂ f−1 [D∗ = {w; |w − α| < ε}] ,

it follows that for any z1, z2 ∈ D,

1 =
1

2πi

∮

Γ

dw

w − f(z1)
=

1
2πi

∮

Γ

dw

w − f(z2)
,

or equivalently,

1 =
1

2πi

∮

Γ

f ′(z)
f(z) − f(z1)

dz =
1

2πi

∮

Γ

f ′(z)
f(z) − f(z2)

dz.

This means that each function f(z) − f(z1) and f(z) − f(z2) has
only one zero inside the circle |z− z0| = δ. Therefore, we conclude
that f(z1) �= f(z2) if z1 �= z2. ♣
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10.2 Elementary Transformations

10.2.1 Linear Transformations

The most simple conformal mapping w = f(z) would be the following:

♠ Linear transformation:

w = αz + β, (10.11)

where α and β are complex numbers.

A linear transformation generates a translation plus a magnification and a
rotation of a polygon, but does not affect its shape. Thus, for example, a line
maps to a line, a rectangle maps to a rectangle, a circle maps to a circle, etc.

To appreciate the above statement, we first consider the particular case of
α = 1. From (10.11), we have

w = z + β, (10.12)

which describes a translation by the constant β of the points being mapped.
Obviously, a translation does not modify the length of a line or its orientation,
only changes its position with respect to the coordinate axes. Since a polygon
is constructed from three or more lines, the size and orientation of a polygon
are not affected by a translation; only the position of the polygon is changed.

Next we consider the case of β = 0. When we express α in polar form, the
linear transformation becomes

w = |α|eiγz

with a constant argument γ. Then, the line between two points transforms as

w1 − w2 = |α|eiγ(z1 − z2) = |α| · |z1 − z2|ei(γ+θ).

Therefore, the length of a line in the z-plane, |z1 − z2|, becomes magnified
by a constant factor |α| and the line is rotated through an angle γ. Thus,
the lengths of the sides of a polygon and the orientation of the polygon with
respect to the axes is modified. Nevertheless, its shape remains unchanged by
the linear transformation with β = 0.

We have seen that the values of α and β straightforwardly determine the
image of a polygon in the z-plane under a particular linear transformation.
Conversely, if one knows the coordinates of two points on the original polygon
in the z-plane and the images of those two points in the w-plane, one can
determine α and β and thus the linear transformation.
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10.2.2 Bilinear Transformations

There is another important conformal mapping referred to as the bilinear
transformation (or the fractional or Möbius transformation):

♠ Bilinear transformation:

w =
αz + β

γz + δ
, (10.13)

where α, β, γ and δ are complex numbers satisfying the relation αδ−βγ �= 0.

The condition αδ − βγ �= 0 ensures that

df

dz
=

αδ − βγ

(γz + δ)2

is nonzero at any finite point of the plane. Accordingly, the bilinear transfor-
mation (10.13) possesses the one-to-one property because if f(z1) = f(z2),
then

αz1 + β

γz1 + δ
=
αz2 + β

γz2 + δ
,

which implies (αδ − βγ)(z1 − z2) = 0, and thus z1 = z2.

Remark.

1. If γ = 0, the bilinear transformation (10.13) reduces to a linear transfor-
mation, which has already been discussed. Thus, we require that γ �= 0 in
what follows.

2. The function f(z) = (αz+ β)/(γz+ δ) serves as a general solution (see
Sect. 15.1.4) of the differential equation:

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

= 0,

which is called the Schwarz differential equation.

Observe that the mapping (10.13) has two apparent exceptional points: z = ∞
and z = −δ/γ at which w diverges. It is possible to weed out these exceptions
by extending the definition of conformal representation such that the point
at infinity is included. With such an extension, the conformal property of
the transformation (10.13) at the two points is recovered, even though the
function f(z) itself diverges. Similarly, we cay say that w = f(z) transforms
the neighborhood of z = ∞ conformally into that of a point w0 if w = φ(ξ) =
f(1/ξ) transforms the neighborhood of ξ = 0 conformally into that of the
point w0.
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A particularly interesting example of the bilinear transformation is

w = f(z) =
z − z0
z − z∗0

, (10.14)

where Im(z0) �= 0. This transformation maps the upper half-plane of the z-
plane including the x-axis, onto the unit circle centered at the origin of the
w-plane. This is demonstrated in Exercise 1.

10.2.3 Miscellaneous Transformations

In what follows, we note several elementary transformations that facilitate a
better understanding of the conformal nature of analytic functions. We shall
see that any conformal transformation may be regarded as a transformation
from Cartesian to orthogonal curvilinear coordinates.

Example 1. w = z2, w =
√
z

Assume a conformal mapping defined by

w = z2. (10.15)

Setting z = x+ iy and separating the real and imaginary parts, we have

x2 − y2 = u, 2xy = v. (10.16)

Thus, the straight lines parallel to the x- and y-axes in the z-plane denoted
by

x = a and y = b

are mapped onto rectangular hyperbolas in the w-plane given by

u = a2 − v2

4a2
and u =

v2

4b2
− b2,

respectively. This is shown schematically in Fig. 10.4.
Another important feature of the mapping (10.15) is found by expressing

z and w in polar coordinates:

z = ρeiφ, w = reiθ.

On substitution in (10.15), we obtain

r = ρ2, θ = 2φ. (10.17)

Hence, the upper half of the z-plane, 0 ≤ φ ≤ π, goes into the entire w-
plane, 0 ≤ θ ≤ 2π; the lower half also goes into the entire w-plane. In other
words, points z and −z in the z-plane obviously go into the same point in the
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Fig. 10.4. Mapping w = z2

w-plane. This suggests the possibility that some distinct geometric figures in
the z-plane may go into coincident figures in the w-plane.

Next we consider the transformation: w =
√
z. In terms of polar forms, it

reads √
z = ρ1/2eiφ/2einπ,

so that we have
r =

√
ρ, θ =

φ

2
+ nπ. (10.18)

Owing to the additional term nπ in the latter equation in (10.18), a half
revolution in the z-plane corresponds to one complete revolution in the
w-plane. This is obviously a manifestation of the multivaluedness of the root
function. The mapping of the upper half of the z-plane onto the w-plane is
illustrated schematically in Fig. 10.5.

0
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x 0 u

υ

zw =

a

b

a

ai

−a

b

Fig. 10.5. Mapping w =
√

z
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Example 2. w = ez, w = log z
In the case of

w = ez, (10.19)

there are simple relationships between the Cartesian coordinates in the z-plane
and the polar coordinates in the w-plane

reiθ = ex+iy = ex(cos y + i sin y); i.e., r = ex, θ = y.

The lines x = const., parallel to the y-axis, become concentric circles in the
w-plane; the lines y = const., parallel to the x-axis, become rays emerging
from the origin. Accordingly, a strip of the z-plane bounded by y = y0 and
y = y0 + 2π goes into the entire w-plane.

In the inverse of (10.19)

z = logw, x = log r, y = θ + 2nπ,

which is an infinitely many-valued function since all points for different values
of n correspond to the same point in the w-plane.

Example 3. w = cosh z
Next let us consider the following functions:

w = cosh z.

The Cartesian coordinates in the two planes are related as follows:

u+ iv = cosh(x+ iy) = coshx cos y + i sinhx sin y,
u = coshx cos y, v = sinhx sin y. (10.20)

Dividing the first equation by coshx, the second by sinhx, squaring and
adding, we have an ellipse in the w-plane that corresponds to the straight
line x = const. in the z-plane. Similarly, y = const. goes into a hyperbola in
the w-plane. The equations of the ellipses and hyperbolas are

u2

cosh2 x
+

v2

sinh2 x
= 1,

u2

cos2 y
− v2

sin2 y
= 1. (10.21)

The semimajor and semiminor axes of the ellipses are coshx and sinhx; the
semifocal distance is unity. The semiaxes of the hyperbolas are cos y and sin y;
the semifocal distance is unity. Hence, equations (10.21) represent families of
confocal ellipses and hyperbolas. This transformation may be regarded as a
transformation from Cartesian to elliptic coordinates.

Example 4. w = 1/z
Consider the function

w =
1
z

(10.22)
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and use rectangular coordinates to obtain

(u+ iv)(x+ iy) = 1.

By equating real and imaginary parts, we set

ux− vy = 1, vx+ uy = 0.

By an algebraic elimination first of x and then of y, we arrive at the two
families of circles:

u2 +
(

v +
1
2y

)2

=
1

4y2
,

(

u− 1
2x

)2

+ v2 =
1

4x2
. (10.23)

The degenerate cases x = 0 and y = 0 cannot be handled by (10.23), but from
(10.22) we find that respectively, they give the two axes u = 0 and v = 0.

The transformation is shown in Fig. 10.6. Note that through the transfor-
mation, the edge of the z-plane at infinity (z = ∞) is pulled into the origin
of the w-plane (w = 0), whereas the center of the z-plane is stretched out
in all directions to infinity in the w-plane. It is possible to visualize this pro-
cess by introducing an artificial concept, called “the point at infinity”; see
Sect. 10.1.5 for details.

Remark. The mapping w = 1/z reverses the orientation of the circumference of
the circle to be mapped: arg(w) = − arg(z). For example, the circumference
of |w| = 1 is described in the negative since if |z| = 1 is described in the
positive sense.

u

υ

1=x

21=x

21−=y

1−=y

1=y

21−=x

1−=x

21=y

Fig. 10.6. Mapping w = 1/z
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10.2.4 Mapping of Finite-Radius Circle

Remember that the analyticity of functions is characterized by the isotropy
of their derivatives. Owing to the isotropy, infinitely small circles on the
z-plane are transformed into infinitely small circles an the w-plane through
any analytic function w = f(z). Of course, this shape-preserving behavior dis-
appears when the circle has a finite radius; because the scale factor h generally
depends on z. Nevertheless, there exist a class of nontrivial analytic functions
that transform a finite circle on the z-plane onto the w-plane, which is simply
a bilinear transformation.

♠ Theorem:
Bilinear transformations w = f(z) map circles (or straight lines) on the

z-plane onto circles (or straight lines) on the w-plane.

Proof Our proof is based on the fact that the bilinear transformation formula
(10.11) can be rewritten as

w = f(z) =
α

γ
+
βγ − αδ

γ

1
γz + δ

.

This is composed of a sequential transformation of the following:

1. w = z + b, a simple translation of the plane by the complex vector b.
2. w = az, a rotation of the plane through the angle arg a, followed by an

expansion (or contraction) by |a|.
3. w = 1/z, an inversion that takes the interior of the unit circle to the

exterior and vice versa.

Since these transformations are all conformal, their composition surely maps
circles (or straight lines) onto circles (or straight lines). ♣

Remark. Statement 3 above regarding the inversion w = 1/z is followed by
considering the equation

α(x2 + y2) + βx+ γy + δ = 0,

which represents a circle (α �= 0) or straight line (α = 0) in the z-plane. This
can be written as

α|z|2 +
β

2
(z + z∗) +

γ

2i
(z − z∗) + δ = 0. (10.24)

Then, the transformation w = 1/z maps it onto

δ|w|2 +
β

2
(w + w∗) − γ

2i
(w − w∗) + α = 0,

which is a circle (δ �= 0) or a straight line (δ = 0).
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10.2.5 Invariance of the Cross ratio

The following peculiarity of a Möbius transformation serves as a useful device
in applications of conformal mapping.

♠ Invariance of the cross ratio:
Any Möbius transformation w = f(z) that maps the four points zi

(i = 1, 2, 3, 4) into wi (i = 1, 2, 3, 4), respectively, satisfies

(w1 − w4)(w3 − w2)
(w1 − w2)(w3 − w4)

=
(z1 − z4)(z3 − z2)
(z1 − z2)(z3 − z4)

≡ λ.

The constant λ is called the cross ratio (or anharmonic ratio).

Proof Let zi (i = 1, 2, 3, 4) be four distinct finite points on the z-plane and
let wi (i = 1, 2, 3, 4) be their corresponding images through a Möbius trans-
formation. Then, for any two of the points, we have

wk − wi =
αzk + β

γzk + δ
− αzi + β

γzi + δ
=

αδ − βγ

(γzk + δ)(γzi + δ)
(zk − zi),

and, consequently, for all four,

(w1 − w4)(w3 − w2)
(w1 − w2)(w3 − w4)

=
(z1 − z4)(z3 − z2)
(z1 − z2)(z3 − z4)

. (10.25)

This clearly ensures the invariance of the cross ratio λ under the Möbius
transformation. ♣

Remark. If one of the points of wi, say w1, is the point at infinity, the
corresponding result is obtained by letting w1 → ∞ in (10.25). The left-hand
side then takes the form

w3 − w2

w3 − w4
.

This expression is to be regarded as the cross ratio of the points ∞, w2, w3, w4.
A similar remark applies if one of the points zi is the point at infinity.

If z4 is taken to be a variable z, then the corresponding image w4 on the
w-plane becomes a function of z that obeys the relation

(w1 − w)(w3 − w2)
(w1 − w2)(w3 − w)

=
(z1 − z)(z3 − z2)
(z1 − z2)(z3 − z)

. (10.26)

By solving (10.26) for w, we can verify that it transforms the three points
z1, z2, z3 into the corresponding points w1, w2, w3. In this context, the ex-
pression (10.26) turns out to show that a Möbius transformation is uniquely
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determined by three correspondences. Since a circle is uniquely determined by
three points on its circumference, (10.26) can be used to find Möbius trans-
formations that map a given circle determined by zi(i = 1, 2, 3) onto a second
given circle (or straight line) determined by wi(i = 1, 2, 3).

Example If we take z1 = 1, z2 = i, z3 = −1 and w1 = 0, w2 = 1, w3 = ∞, we
obtain the transformation

w = i
1 − z

1 + z
.

This maps the circle |z| = 1 on the real axis and the interior |z| < 1 of the
unit circle on the upper half of the w-plane.

Exercises

1. Consider the function w = f(z) = (z−z0)/(z−z∗0) with Im(z0) �= 0. Show
that it maps the region Imz > 0 onto |w| < 1.

Solution: Set z = x to obtain

|w|2 =
(
x− z0
x− z∗0

)(
x− z0
x− z∗0

)∗
=
(
x− z0
x− z∗0

)(
x− z∗0
x− z0

)

= 1.

That is, the image on the x-axis is the circumference of the unit
circle centered at the origin of the w-plane.

Next we evaluate the image of a point off the x-axis in the
upper half of the z-plane. Expressing z and z0 in polar form, we
have

|w|2 =

(

reiθ − r0e
iθ0
) (

re−iθ − r0e
−iθ0
)

(reiθ − r0e−iθ0) (re−iθ − r0eiθ0)
=
ξ1 − ξ2
ξ1 + ξ2

, (10.27)

where

ξ1 = r2 + r20 − 2rr0 cos θ cos θ0 and ξ2 = 2rr0 sin θ sin θ0.

Since −1 ≤ cos θ cos θ0 < 1, we have

(r − r0)2 ≤ r2 + r20 − 2rr0 cos θ cos θ0 = ξ1, i.e., ξ1 ≥ 0.

In addition, since z and z0 are in the upper half-plane, both sin θ
and sin θ0 are positive, so ξ2 > 0. Consequently, we have

|w|2 < 1,

which means that the images of points in the upper half of the
z-plane are located in the interior of the unit origin-centered
circle. ♣
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Remark. If z0 were real, all points z would be mapped onto the single point
w = 1, which is the reason we assumed Im(z0) �= 0 in the first place.

2. Show that w = (z − z0)/(z∗0z − 1) in which |z0| < 1 maps |z < 1| onto
|w| < 1 and z = z0 onto w = 0.

Solution: Observe that

1 − |w|2 = 1 − |z − z0|2
|z∗0z − 1|2 =

|z0|2|z|2 − z2 − (z∗0)2 + 1
|z∗0z − 1|2

=
(1 − |z|2)(1 − |z0|2)

|z∗0z − 1|2 .

Hence, |z| = 1 corresponds to |w| = 1. In addition, z = z0 cor-
responds to w = 0. These mean that |z| < 1 is transformed onto
|w| < 1. ♣

3. Let C and C∗ be two simple closed contours in the z- and the w-plane,
respectively, and let w = f(z) be analytic within and on C. If w = f(z)
maps C onto C∗ in such a way that C∗ is traversed by w exactly once in
the positive sense under the condition that z describes C in the positive
sense, then w = f(z) maps the domain bounded by C onto the domain
bounded by C∗.

Solution: We denote the domains bounded by C and C∗ by D
and D∗, respectively. Then it suffices to prove that every point of
D∗ is taken exactly once if z is in D. Recall that the number n of
zeros of the function w0 − f(z) in D is given by

n =
1

2πi

∮

C

f ′(z)
f(z) − w0

dz.

With the substitution w = f(z), f ′(z)dz = dw, this is rewritten
as

n =
1

2πi

∮

C∗

dw

w − w0
,

where the integration has to be extended over the contour C∗ into
which C is transformed by w = f(z). By the residue theorem, the
value of this expression is 1 if w0 is within C∗ and 0 if w0 is outside
C∗. This shows that every point in D∗ is taken exactly once and
that a value outside D∗ is not taken at all. This completes the
proof. ♣

4. Find a conformal mapping w = f(z) of the region between the two circles
|z| = 1 and |z − (1/4)| = 1/4 onto an annulus a < |z| < 1.

Solution: To solve this, we have to find a bilinear transformation
that simultaneously maps |z| < 1 onto |z| < 1 and |z−(1/4)| < 1/4
onto a disc of the form |z| < a. Note that
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w =
z − α

1 − α∗z

maps |z| < 1 onto |z| < 1, and that

g(z) = a
4z − 1 − β

1 − β∗(4z − 1)

maps |z| < 1 and |z− (1/4)| < 1/4 onto a disc of the form |z| < a.
Equating coefficients leads us to α = 2 −

√
3. ♣

5. Find the bilinear transformation that maps z = 0, i,−1 onto w = 1,−1, 0,
respectively.

Solution: Set [z, 0, i,−1] = [w, 1,−1, 0] to obtain w = −(z + i)/
(3z − i). ♣

6. Show that four distinct arbitrary points on the z-plane can be mapped
through the bilinear transformation onto w = 1,−1, c,−c on the w-plane,
where c is a complex number depending on the cross ratio λ of the map-
ping. Determine an explicit form of c as a function of λ.

Solution: Let [z1, z2, z3, z4] = [1,−1, c,−c] to obtain c = (1 +
λ± 2

√
2)/(1 − λ) and c1c2 = 1. ♣

10.3 Applications to Boundary-Value Problems

10.3.1 Schwarz–Christoffel Transformation

In the preceding section, we discussed rich properties of the bilinear trans-
formation that can transform the upper half of the z-plane onto the unit
circle of the w-plane. Now we turn to a similar kind of important mappings
called the Schwarz–Christoffel transformation (abbreviated SC transfor-
mation), which transforms the upper (or lower) half of the z- plane onto the
inside of a n-sided polygon drawn on the w-plane. This transformation is
defined by the following integral:

w(z) = β + α
n∑

i=1

∫ z

(z′ − xi)−θi/πdz′. (10.28)

Here xi (1 ≤ i ≤ n) are n distinct fixed points along the x-axis, and the angle
θj is defined as shown in Fig. 10.7, being either positive or negative according
to whether we follow the boundary of the polygon counterclockwise or clock-
wise. (For example, θ1 and θ2 are positive, but θ3 is negative in Fig. 10.7.)
The constant α gives rise to a magnification of that image by a factor |α|
and a rotation of that image by an angle arg(α). The constant β generates a
translation of the magnified and rotated image.
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Fig. 10.7. Schwarz–Christoffel transformation of the real axis of the z-plane to a
polygon on the w-plane

Remark. If we wish to transform the upper half of the z-plane into the exterior
of the polygon in the w-plane, it suffices to define

w(z) = β + α

∫ z

(z′ − x1)θ1/π(z′ − x2)θ2/π · · · (z′ − xN )θN /πdz′,

where the θ’s are assigned the same values as in the preceding case.

Example The function

w = f(z) =
∫ z dξ
√

(1 − ξ2)(1 − k2ξ2)
(0 < k < 1) (10.29)

maps the upper half of the z-plane (Imz > 0) into the interior of a rectangle
on the w-plane. In fact, (10.29) is obtained by putting n = 4, θi = π/2 for
all i = 1, 2, 3, 4 in the definition (10.28), followed by setting x1 = 1, x2 = −1,
x3 = 1/k and x4 = −1/k, all of which are located on the real axis. The integral
in (10.29) is called an elliptic integral of the first kind.

10.3.2 Derivation of the Schwartz–Christoffel Transformation

In order to derive equation (10.28) for the Schwarz–Christoffel transformation,
we let

x1 < x2 < · · · < xn

be points on the real axis and consider the function f(z) whose derivative is

f ′(z) = α(z − x1)−k1(z − x2)−k2 · · · (z − xn)−kn . (10.30)

For this function we have

arg f ′(z) = argα− k1 arg(z − x1) − k2 arg(z − x2) − · · · − kn arg(z − xn).

Now, visualize the point z as moving from left to right along the real axis,
starting to the left of the point x1. When z < x1, we have
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arg(z − x1) = arg(z − x2) = · · · = arg(z − xn) = π,

whereas for x1 < z < x2, arg(z−x1) = 0, the others remaining at π. Hence, as
z crosses a1 from left to right, arg f ′(z) increases by k1π. It remains constant
for x1 < z < x2 and increases by k2π as z crosses x2, etc. As a result, the
image of the segment −∞ < z < a1 becomes a straight line, the image of
x1 < z < x2 being another whose argument exceeds that of the first by k1π,
and so on.

If we constrain the numbers k1, · · · , kn to lie between −1 and 1, then
the increments in the argument of f ′(z) will lie between −π and π. Further,
for k1 < 1, k2 < 1, · · · , kn < 1, it is obvious that the function f(z) whose
derivative is (10.30) is actually continuous at each of the points x1, x2, · · · , xn.
Therefore, the image of the moving point z will be a polygonal line. Finally,
integrate (10.30) to set the equation

f(z) = β + α

∫ z

(z′ − a1)−k1(z′ − a2)−k2 · · · (z′ − an)−kndz′, (10.31)

which maps the x-axis onto a polygonal line.

Remark.

1. The sum of the exterior angles of this polygonal line is

k1π + k2π + · · · + knπ = π

n∑

i=1

ki.

Hence, in order for the polygon to be closed, it is necessary that
∑n

i=1

ki = 2. Particularly when ki > 0 for all i, then the polygon becomes
convex.

2. The complex constants, α and β, control the position, size, and orientation
of the polygon. Thus β may be so chosen that one of the vertices of the
polygon will coincide with some specified point e.g., the origin. Then α
may be chosen so that one side of the polygon will be of given size and
parallel to a given direction.

10.3.3 The Method of Inversion

The Schwarz–Christoffel transformation itself is applicable to polygons com-
posed of straight lines, but not to those of circular ones. Nevertheless, combin-
ing the method of inversion, the former transformation can be extended
to regions bounded by circular arcs.
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♠ Inversion with respect to a circle:
An inversion transformation w = f(z) with respect to a circle |z| = a is

defined by

w =
a2

z∗
. (10.32)

through which the interior points of the circle are mapped onto exterior
points, and vice versa.

The inversion preserves the magnitude of the angle between two intersecting
curves, but it reverses the sign of the angle. This is attributed to the fact
that (10.32) consists of two successive transformations: the first a2/z, and the
second a reflection with respect to the real axis. The first of these is conformal,
whereas the second maintains the angle but reverses its sign.

For the purpose of this section, we investigate the inversion of a circle of
radius |z0| centered at z = z0 �= 0. This circle is expressed by

|z − z0| = |z0| (10.33)

or
z∗z − z0(z + z∗) = 0. (10.34)

Note that this circle passes through the origin, i.e., the center of an inversion
circle. Through the inversion (10.32), the circle (10.34) is mapped onto

a4

ww∗ − z0

(
a2

w
+

a2

w∗

)

= 0.

0

y

x
P

a
0

2 2za 0z−a

1Q

1R

2R

2Q

0

υ

u

( )Pf

aa−

( )1Qf

( )1Rf

( )2Qf

( )2Rf

w = f (z)

0
2 2za

Fig. 10.8. Inversion of the circle |z − z0| = |z0| in (10.33) with respect to a circle
|z| = a through the mapping w = a2/z∗ given in (10.32)
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By multiplying ww∗ on both sides and putting w = u+ iv, we have

a4 − 2a2z0u = 0,

or equivalently,

u =
a2

2z0
.

This means that by the inversion, the circle (10.33) is mapped onto a straight
line parallel to the imaginary axis of the w-plane (see Fig. 10.8).

The role that inversion plays in extending the Schwarz–Christoffel trans-
formation should now be clear. Assume two interesting circular arcs such as P
and Q in Fig. 10.9 and a circle R of radius a whose center is the intersection
of the two circular arcs. Then, by an inversion with respect to R, the point
at the intersection is transformed into the point at infinity, the arcs them-
selves being transformed into the solid portions of the lines P ′ and Q′. As a
result, the Schwarz–Christoffel transformation may now be applied to these
two straight lines, whereas it may not be applied to the original circular arcs.

Exercises

1. Find a transformation that maps the upper half of the z-plane onto the
triangular region shown in Fig. 10.10 in such a way that the points x1 = −1
and x2 = 1 are mapped onto the points w = −a and w = a, respectively,
and the point x3 = ±∞ is mapped onto w = ib.

Solution: Let us denote the angles at w1 and w2 in the w-plane
by φ1 = φ2 = φ, where φ = tan−1(b/a). Since x3 is taken at
infinity we may omit the corresponding factor in (10.28) to obtain

w = β+α

∫ z

0

(ξ+1)−φ/π(ξ−1)−φ/πdξ = β+α

∫ z

0

(ξ2 −1)−φ/πdξ.

(10.35)
y

x

P

Q′

Q

P′

R

Fig. 10.9. Inversion of circular arcs P and Q with respect to the circle R
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Fig. 10.10. Mapping of the upper half of the z-plane onto a certain limited region
of the w-plane

The required transformation may then be found by fixing the
constants α and β as follows. Since the point z = 0 lies on the
line segment x1x2 it will be mapped onto the line segment w1w2

in the w-plane, and by symmetry must be mapped onto the point
w = 0. Thus setting z = 0 and w = 0 in (10.35), we obtain β = 0.
An expression for α can be found by considering the region in
the w-plane in Fig. 10.10 to be the limiting case of the triangular
region with the vertex w3 at infinity. Thus we may use the above,
but with the angles at w1 and w2 set to φ = π/2. From (10.35),
we obtain w = α

∫ z

0
(1/
√

ξ2 − 1)dξ = iα sin−1 z. By setting z = 1
and w = a, we find iα = 2a/π, so the required transformation is
w = (2a/π) sin−1 z. ♣

2. Find the conformal mapping that transforms the interior of the circle
|z| < 1 to the interior of a polygon on the w-plane, subject to the condition
that the points z1, z2, · · · , zn lying on the circle |z| = 1 are mapped,
respectively, onto the vertex w1, w2, · · · , wn of the polygon.

Solution: Consider first the transformation

τ(z) =
−iz + 1
z − i

, (10.36)

which maps |z| < 1 onto Imτ > 0. It yields
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dτ

dz
= − 2

(z − i)2
and τ − τj =

2(zj − z)
(z − i)(zj − i)

(j = 1, 2, · · · , n).

(10.37)
Next, we assume that through (10.36), the points z1, z2, · · · zn are
mapped, respectively, onto the points τ1, τ2, · · · , τn that are lo-
cated on the line Imτ = 0. Then, the transformation that maps
Imτ > 0 onto the interior of a polygon on the w-plane is given by
w = w(τ), whose derivative reads

dw

dτ
= α(τ − τ1)(k1/π)−1(τ − τ2)(k2/π)−1 · · · (τ − τn)(kn/π)−1.

(10.38)
Here ki is the internal angle of the polygon at the ith vertex, which
satisfies

∑n
i=1 ki = (n = 2)π. From (10.37) and (10.38), we have

dw

dz
= − 2α

(z − i)2
· 1
22

· (z1 − z)(k1/π)−1 · · · (zn − z)(kn/π)−1

(z − i)−2(z1 − i)(k1/π)−1 · · · (zn − i)(kn/π)−1
.

Replace (α/2)(z1 − i)1−(k1/π) · · · (zn − i)1−(kn/π) by α to obtain
the final result:

w = f(z) = α

∫ z

z0

(z1 − ζ)(k1/π)−1 · · · (zn − ζ)(kn/π)−1dζ + β,

where α(�= 0), β are complex constants and z0 �= z1, · · · , zn. ♣
3. Prove that the function

w = f(z) =
∫ z

0

1
3
√

1 − ξ6
dξ (10.39)

maps the unit circle on the z-plane onto a regular hexagon on the w-plane.
Solution: Observe that ξ6 −1 = (ξ− ξ1) · · · (ξ− ξ6) with |ξj | = 1
(j = 1, · · · , 6). Similarly to Exercise 2 above, we map |z| < 1
onto Imτ > 0, and then let the points τ1, · · · τ6 located on the
line Imτ = 0 correspond to ξ1, · · · ξ6. Then, by setting n = 6 and
kj = (2/3)π for all j, we see that the transformation (10.39) maps
|z| < 1 onto a regular hexagon on the w-plane, ( 3

√
2/6)Γ (1/3) on

a side.
4. Suppose that φ(z) satisfies the Laplace equation and let w = f(z) be a

conformal mapping. Then, show that the function

φ(w) = φ(u, v)

also satisfies Laplace’s equation in the w-plane; i.e.,

∂2φ

∂u2
+
∂2φ

∂v2
= 0. (10.40)
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Solution: Since x = x(u, v), the partial derivative ∂/∂x can be
rewritten as ∂/∂x = ux(∂/∂u)+vx(∂/∂v), where ux = ∂u/∂x and
vx = ∂v/∂x. It yields

∂2φ

∂x2
=
(

ux
∂

∂u
+ vx

∂

∂v

)(

ux
∂

∂u
+ vx

∂

∂v

)

φ

= (ux)2
∂2φ

∂u2
+ (vx)2

∂2φ

∂v2
+ 2uxvx

∂2φ

∂u∂v
. (10.41)

Similarly, we have

∂2φ

∂y2
= (uy)2

∂2φ

∂u2
+ (vy)2

∂2φ

∂v2
+ 2uyvy

∂2φ

∂u∂v

= (vx)2
∂2φ

∂u2
+ (ux)2

∂2φ

∂v2
− 2vxux

∂2φ

∂u∂v
, (10.42)

where we have used the Cauchy–Riemann relations: ux = vy, uy =
−vx. Adding up the sides of the second lines of (10.41) and (10.42),
we obtain

∂2φ

∂x2
+
∂2φ

∂y2
=
[

(ux)2 + (uy)2
](∂2φ

∂u2
+
∂2φ

∂v2

)

.

The quantity inside the square brackets is equal to |f ′(z)|2, which
is nonzero for analytic functions f(z). As a consequence, we con-
clude that

∂2φ

∂x2
+
∂2φ

∂y2
= 0 ⇐⇒ ∂2φ

∂u2
+
∂2φ

∂v2
= 0. ♣

10.4 Applications in Physics and Engineering

10.4.1 Electric Potential Field in a Complicated Geometry

The Schwarz–Christoffel transformation is useful in mathematical physics,
since it can be used to solve two-dimensional Laplace equations under
certain boundary conditions. In fact, there are many physical systems that are
described by Laplace’s equation subject to Dirichlet or Neumann bound-
ary conditions. For example, Laplace’s equation can be used to describe
heat conduction in a uniform medium, nonturbulent fluid flow, and an elec-
trostatic field in a uniform system. In this subsection, we demonstrate how
the Schwarz–Christoffel transformation works efficiently to solve such two-
dimensional Laplace equations. It should be emphasized that our method is
independent of the physical system being described. In the meantime, we
apply the transformation to problems in electrostatics in order to illustrate



10.4 Applications in Physics and Engineering 333

the method of solution, bearing in mind that that these techniques are also
applicable to problems involving other physical systems.

The general procedure for determining the electrostatic potential by us-
ing conformal mapping methods involves transforming a complicated charge-
distribution geometry in the z-plane into a simple geometry in the w-plane.
After solving the problem for the simpler geometry, the inverse transformation
to the z-plane is applied to obtain the potential for the original geometry.

As a concrete example, we consider a metal block with a cut out wedge of
angle γ as shown in Fig. 10.11. There is a vacuum inside the wedge. The block
extends to ±∞ in the direction perpendicular to the plane of the page. Since
charge moves freely inside a metal, all of the charge placed in the conductor is
distributed in such a way that the potential at all points along these edges is
the same. We denote this potential by φ0, i.e., the system under consideration
is subject to the Dirichlet boundary conditions given by

φ(r, θ = 0) = φ(r, θ = γ) = φ0. (10.43)

0

y

x

γ
+ + + +

+ +

− − − − − −

Fig. 10.11. Wedge cut of a metal

Our objective is to evaluate the potential φ(z) at points in the vacuum
region inside the wedge (defined by 0 ≤ arg(z) ≤ γ). This potential satisfies
the Laplace equation, and thus, it can be determined by conformal mapping
methods. For this purpose, we attempt to find the mapping that transforms
the wedge in the z-plane onto the real axis of the w-plane. We know that
the transformation of the real axis in the z-plane onto the wedge shown in
Fig. 10.11 is given by the Schwarz–Christoffel transformation:

w = β + α(z − x1)−θ1/π.

Therefore, the inverse mapping

z = x1 +
[

1
α

(w − β)
]−π/θ1

(10.44)

transforms the wedge in the w-plane with an internal angle −θ1 onto the
real axis of the z-plane. By interchanging z and w in (10.44), we obtain the
mapping
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w = u1 +
[

1
α

(z − β)
]−π/θ1

, (10.45)

which transforms the wedge in the z-plane onto the real axis of the w-plane.
In order to apply this mapping to the configuration shown in Fig. 10.11, we
set

γ = −θ1, u1 = β = 0, and
1
α

= 1,

where α is real. Then, the mapping in (10.45) becomes

w = zπ/γ . (10.46)

Remark. It immediately follows that the mapping in (10.46) transforms the
space within the wedge onto the upper half of the w plane. This is because
points within the wedge that satisfy the condition 0 < arg(z) = θ < γ are
mapped onto w = rπ/γeiπθ/γ , whose argument πθ/γ takes values in the inter-
val (0, π).

Remember that the Dirichlet boundary condition is invariant under conformal
mappings. Hence, the boundary condition of (10.43) is mapped to

φ(u, v = 0) = φ0, (10.47)

where v = 0 is the image of the wedge. As noted earlier, the mapping
in (10.46) transforms the problem of finding the potential in the region
within the wedge in Fig. 10.11 to that of finding the potential in the up-
per half of the w plane due to a flat metal surface that extends along the
entire u-axis and is maintained at a potential φ0 by a uniformly distributed
charge.

We now consider the “mapped” Laplace equation for the w-plane. Since all
points on the surface of the flat plane are at the same potential, the potential
all points (u, v) located at the same distance v above the plate is the same.
Thus, the potential at any point must be independent of the value of u and
the Laplace equation in the w-plane becomes

d2φ

dv2
= 0.

Integration of this differential equation followed by application of the bound-
ary condition (10.47) yields

φ(v) = φ0 + cv. (10.48)

The constant c is obtained by using the property that the derivative of the
potential (i.e., the electrostatic field) is a constant for a charged flat plate.
Similar to φ0, the value of this constant field E0 depends on how much charge
is distributed over a given area on the plate. With reference to (10.48),
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∂φ

∂v
= c = −E0, so that φ(v) = φ0 − E0v.

In order to complete the analysis, the potential must be expressed in terms
of the coordinates in the z-plane. From this expression

v = Im(w) = Im
(

rπ/γeiπθ/γ
)

= rπ/γ sin(πθ/γ),

the potential is given by

φ = φ0 − E0r
π/γ sin(πθ/γ)

= φ0 − E0

(

x2 + y2
)π/(2γ)

sin
[
π

γ
tan−1

(y

x

)]

. (10.49)

This is the final solution to the problem in question. We see from (10.49) that
φ = φ(r, θ) is constant when

rπ/γ sin(πθ/γ) = const.

This is the equation for a family of equipotential curves.

10.4.2 Joukowsky Airfoil

Our final discussion related to the applications of conformal mappings con-
cerns the Joukowsky transformation, which is an important conformal

|z–z0| = |1–z0|

w = f(z)

z

Fig. 10.12. The Joukowsky transformation (10.50) of the circle |z − z0| = |1 − z0|
with z0 = (−0.2, 0.2) to the airfoil indicated by the thick curve
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mapping that has been historically employed in the theory of airfoil design.
Here, the term “airfoil” refers to the cross-sectional shape of a wing (or a pro-
peller or a turbine). According to the literature on airfoil theory, any object
with an angle of attack in a moving fluid generates a lift, a force perpendic-
ular to the flow. Airfoils are designed as efficient shapes that increase the lift
that the object generates. The Joukowsky transformation maps a circle on
the complex plane into a family of airfoil shapes called Joukowsky airfoils,
which simplify the analysis of two-dimensional fluid flows around an airfoil
with a complicated geometry.

The Joukowsky transformation w = f(z) is defined by

w = f(z) = z +
1
z
, (10.50)

where z is located on a circle C that passes through the point z = 1 and
encloses the point z = −1 as well as the origin z = 0. Note that the center
of the circle, denoted by z0, does not coincide with the origin, but is located
close to the origin. In fact, the coordinates of z0 are variables, and changes in
these variables alter the geometry of the resulting airfoil. An example of an
airfoil generated by the transformation (10.50) is shown in Fig. 10.12, where
z0 = (−0.2, 0.2). We see that the circle C : |z−z0| = |1−z0| is mapped onto an
airfoil indicated by a thick curve. The stream lines for a flow around the airfoil
can be obtained by applying an inverse transformation to the streamlines for
a flow around the circle and the latter can be easily evaluated.
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Fourier Series

Abstract A Fourier series is an expansion of a periodic function in terms of an
infinite sum of sines and cosines. The use of a Fourier series allows us to break up an
arbitrary periodic function into a set of simple terms that can be solved individually
and then recombined in order to obtain the solution to the original problem with
the desired level of accuracy. In this chapter, we place particular emphasis on the
mean convergence property of a Fourier series (Sect. 11.2.1) and the conditions
that are necessary for the series to be uniformly convergent (Sect. 11.3.1). Better
understanding of convergence properties clarifies the reasons for the utility and the
limit of validity of Fourier series expansion in mathematical physics.

11.1 Basic Properties

11.1.1 Definition

Fourier series are infinite series consisting of trigonometric functions with a
particular definition of expansion coefficients. They can be applied to almost
all periodic functions whether the functions are continuous or not. With these
expansion, physical phenomena involving some periodicity are reduced to a
superposition of simple trigonometric functions, which helps us a great deal
in arithmetic and practical aspects. I section We begin this with a description
of the basic properties of Fourier series. We follow this by considering the
convergence theory of Fourier series, which is the issue in the next section.

First of all, it is important to clarify the distinction between the following
two concepts: trigonometric series and Fourier series.

♠ Trigonometric series:
The series

A0

2
+

∞∑

n=1

(An cosnx+Bn sinnx)

is called a trigonometric series.
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Here the set of coefficients {An} and {Bn} can be taken arbitrarily. (The
expression A0/2 instead of A0 is just due to our convention.) Among the
infinite choices of {An} and {Bn}, a specific definition of the coefficients noted
below provides the Fourier series of a given function f(x).

♠ Fourier series:
The series

a0

2
+

∞∑

n=1

(an cosnx+ bn sinnx) (11.1)

is called a Fourier series of a function f(x) if and only if the coefficients
are given by the Euler–Fourier formula expressed by

an =
1
π

∫ π

−π

f(x) cosnxdx,

bn =
1
π

∫ π

−π

f(x) sinnxdx. (11.2)

Accordingly, a Fourier series is a specific kind of trigonometric series whose
coefficients bear a definite relation (11.2) to some function f(x). In (11.1) we
have written the constant term as a0/2 rather than a0, so that the expression
for a0 is given by taking n = 0 in (11.2). There is no b0 for sin(0 · x) = 0.

By definition, every Fourier series is a trigonometric series. However, the
converse is not true, as demonstrated below.

Example It is known that the trigonometric series given by

∞∑

n=2

sinnx
log n

is not a Fourier series. Indeed, no function can be related to the coefficient
1/ log n via (11.2).

11.1.2 Dirichlet Theorem

Emphasis should be placed on the fact that the definition of Fourier series
provides no information as to its convergence; thus the infinite series (11.1)
may converge or diverge depending on the behavior of the function f(x).
This leads us to discuss which functions f(x) make the series (11.1) conver-
gent. This issue is clarified in part by the following theorem (and by referring
Fig. 11.1):
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x

y

f (x)
f (x) f (x)

(a) (b) (c)

Fig. 11.1. (a) Continuous and smooth function. (b) Continuous but nonsmooth
function. (c) Function with a finite number of discontinuities

♠ Dirichlet theorem:
If f(x) is periodic with the period 2π and if f ′(x) is continuous or at

most have a finite number of discontinuity in [0, 2π], then its Fourier series
converges to
1. f(x), if x is a point of continuity, or

2.
f(x+ 0) + f(x− 0)

2
, if x is a point of discontinuity.

The set of conditions noted above is called Dirichlet’s conditions. It is wor-
thy to note that the Dirichlet conditions are sufficient but not necessary. That
is, if the conditions are satisfied, the convergence of the series is guaranteed;
but if they are not satisfied, the series may or may not converge. An exact
proof of Dirichlet’s theorem requires rather complicated calculations, which
will be demonstrated in the next section.

Remarks.

1. The Dirichlet conditions do not require the continuity of f(x) within
[0, 2π].

2. Almost all periodic functions that we encounter in physical problems sat-
isfy the Dirichlet conditions; therefore, the Fourier series expansion can
be used almost regardless of its convergence.

It follows that if f(x) is continuous within [0, 2π] and satifies Dirichlet’s con-
ditions, then the Fourier series of f(x) converges to f(x) at all the points
within [0, 2π]. This means that the Fourier series of f(x) converges uniformly
to f(x). Once uniform convergence is ensured, we generally write

f(x) =
a0

2
+

∞∑

n=1

(an cosnx+ bn sinnx) (11.3)
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with the definition (11.2) for the coefficients. Consequently, if we form the
Fourier series of f(x) without first examining its convergence to f(x), we
should write

f(x) ∼ a0

2
+

∞∑

n=1

(an cosnx+ bn sinnx) (11.4)

instead of (11.3). The symbol “∼” in (11.4) means that the series on the right-
hand side only corresponds to the function f(x) and can be replaced by the
equality “=” only if we succeed in proving that the infinite series converges
uniformly to f(x).

11.1.3 Fourier Series of Periodic Functions

Preceding arguments were limited to the case of periodic functions with pe-
riod 2π. But Fourier series expansions can apply to periodic functions whose
periods differ from 2π. This is seen by replacing x in (11.3) by (2π/λ)x, which
transforms a series convergent in the interval [0, 2π] to another series conver-
gent to [0, λ]. The resulting Fourier series is

f(x) =
a0

2
+

∞∑

n=1

(an cosnkx+ bn sinnkx) , (11.5)

where k = 2π/λ and

an =
2
λ

∫ λ

0

f(x) cosnkxdx and bn =
2
λ

∫ λ

0

f(x) sinnkxdx. (11.6)

Obviously, these latter expressions can be reduced to the original definitions
(11.1) and (11.2) by setting λ = 2π.

The expressions (11.5) and (11.6) become more concise by imposing the
relations

cos(nkx) =
einkx + e−inkx

2
, sin(nkx) =

einkx − e−inkx

2i
.

Then the Fourier series reads

f(x) =
a0

2
+

∞∑

n=1

(
an − ibn

2

)

einkx +
∞∑

n=1

(
an + ibn

2

)

e−inkx. (11.7)

We rewrite the index n in the second sum by −n′ to find

∞∑

n=1

(
an + ibn

2

)

e−inkx =
∞∑

−n′=1

(
a−n′ + ib−n′

2

)

ein′kx

=
−∞∑

n′=−1

(
an′ − ibn′

2

)

ein′kx,
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where the identities a−n = an and b−n = −bn were used. As a result, we
obtain a complex form of the Fourier series as

f(x) ∼ a0

2
+

∞∑

n=1

(
an − ibn

2

)

einkx +
−∞∑

n=−1

(
an − ibn

2

)

einkx

=
∞∑

n=−∞
cne

inkx, (11.8)

with the definition
cn =

an − ibn
2

. (11.9)

An explicit form of cn is given by substituting the definition of an and bn,
given by (11.6), into (11.9) as

cn =
1
2

{

2
λ

∫ λ

0

f(x) cos(nkx)dx− 2i
λ

∫ λ

0

f(x) sin(nkx)dx

}

=
1
λ

∫ λ

0

f(x)e−inkxdx. (11.10)

11.1.4 Half-range Fourier Series

Fourier series expansions sometimes involve only sine or cosine terms. This
actually occurs when the function being expanded is either even [f(−x) =
f(x)] or odd [f(−x) = −f(x)] over the interval [−λ/2, λ/2]. When a given
function is even or odd, unnecessary work in determining Fourier coefficients
can be avoided. For instance, for an odd function fo(x), we have

an =
2
λ

∫ λ/2

−λ/2

fo(x) cos(nkx)dx

=
2
λ

{
∫ 0

−λ/2

fo(x) cos(nkx)dx+
∫ λ/2

0

fo(x) cos(nkx)dx

}

=
2
λ

{

−
∫ λ/2

0

fo(x) cos(nkx)dx+
∫ λ/2

0

fo(x) cos(nkx)dx

}

= 0 (n = 0, 1, 2, · · · , ) (11.11)

and

bn =
2
λ

{
∫ 0

−λ/2

fo(x) sin(nkx)dx+
∫ λ/2

0

fo(x) sin(nkx)dx

}

=
4
λ

∫ λ/2

0

fo(x) sin(nkx)dx (n = 0, 1, 2, · · · , ). (11.12)
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Here we used the identities cos(−nkx) = cos(nkx) and sin(−nkx) = − sin(nkx).
Accordingly, we have

fo(x) ∼
∞∑

n=1

bn sin(nkx),

which is called the Fourier sine series.
Similarly, in the Fourier series corresponding to an even function fe(x),

the same process yields

an =
4
λ

∫ λ/2

0

fe(x) cos(nkx)dx (n = 0, 1, 2, ·) (11.13)

and bn = 0 for all n. Accordingly, the Fourier series becomes

fe(x) ∼ a0

2
+

∞∑

n=1

an cos(nkx),

which is called the Fourier cosine series.
Note that an and bn given in (11.12) and (11.13) are computed in the

interval [0, λ/2], whose width is half of the period λ. Thus, the Fourier sine or
cosine series of an odd or even function, respectively, is often called a half-
range Fourier series. As discussed later, half-range Fourier series expansion
is important from a practical viewpoint because it enables us to expand a
nonperiodic function within its domain.

♠ Theorem:
If f(x) is an even or odd function and it is periodic with period λ, then

the Fourier coefficients an and bn become

an =
4
λ

∫ λ/2

0

f(x) cos(nkx)dx, bn = 0 if f(x) is even

and

an = 0, bn =
4
λ

∫ λ/2

0

f(x) sin(nkx)dx if f(x) is odd.

11.1.5 Fourier Series of Nonperiodic Functions

A problem that arises quite often in applications is how to apply a Fourier
series expansion to a function f(x) that is defined only on the interval [0, L].
In this case, nothing is said about the periodicity of f(x). However, this does
not prevent us from writing the Fourier series of f(x), since the Euler–Fourier
formulas (11.2) involve only the finite interval.
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Fig. 11.2. Functions fe(x) and fo(x) defined in (11.14) and (11.15), respectively

As an example, we try to expand the function

f(x) = x for [0, L]

as a Fourier series. In this case, f(x) is not periodic, but we can make it
a periodic function by extending it as an even or odd function over [−L,L]
and periodic with period 2L. The respective definitions of fe(x) and fo(x) in
[−L,L] are

fe(x) =

{

−x for −L ≤ x < 0,

x for 0 ≤ x ≤ L
(11.14)

and
fo(x) = x for − L ≤ x ≤ L, (11.15)

whose profiles are shown in Fig. 11.2.
First, we consider the case of the even function fe(x). In terms of the

Fourier cosine expansion, the coefficients a0 and an are given by

an =
2
L

∫ L

0

fe(x) cos(nkx)dx =
2L
π2

[(−1)n − 1]
n2

=

⎧

⎪⎨

⎪⎩

−4L
n2π2

, n = 1, 3, · · · ,

0, n = 2, 4, · · ·
,

a0 =
2
L

∫ L

0

xdx = L.

Here we have used kL = π. Hence, the cosine series becomes

f(x) =
L

2
− 4L

π2

∞∑

n=1

1
(2n− 1)2

cos
(2n− 1)πx

L
. (11.16)

The partial sums of the series given in (11.16) are illustrated in Fig. 11.3.
Although the original function f(x) is defined only within the interval [0, L],
the resulting Fourier series produces not only f(x) in [0, L], but also the even
extension fe(x) with fe(x) = fe(x+ 2L).

Second, we look at the sine series of fo given by (11.15). In this case,

bn =
2
L

∫ L

0

fo(x) sin(nkx)dx =
2L
π

(−1)n+1

n
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Fig. 11.3. A partial sum on the right-hand side of (11.16)

and the sine series is

f(x) =
2L
π

∞∑

n=1

(−1)n+1

n
sin(nkx). (11.17)

Figure 11.4 shows some partial sums of (11.17). As in the case of even ex-
tension, the Fourier series produces the odd extension fo(x) with fo(x) =
fe(x+ 2L).
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Fig. 11.4. A partial sum on the right-hand side of (11.17)

11.1.6 The Rate of Convergence

We have had two kinds of Fourier series representations for f(x) = x in the
interval [0, L]. This poses the following question: Does it make any difference
which kind of Fourier series, (11.16) or (11.17), we use to represent f(x) = x
in the interval [0, λ/2)? Yes, it does. In the above-mentioned case, the even
extension fe(x) is more suitable than the odd extension fo(x) for following
two reasons.
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The first reason concerns the rate of convergence of the resulting Fourier
series. The coefficients given in (11.16) go as 1/(2n − 1)2, whereas those in
(11.17) go as 1/n. Thus, the former series converges more quickly than the
latter. The difference in the rate of convergence is due to the fact that the
periodic extension of fe(x) is continuous, but that of fo(x) has discontinuities
at odd multiples of L. In general, the Fourier coefficients of discontinuous
functions decay as 1/n, whereas those of continuous functions decay at least
as rapidly as 1/n2. These observations as to the rate of convergence of the
coefficient with respect to n can be formulated as follows:

♠ Theorem:
If f(x) and its first k derivatives satisfy the Dirichlet conditions on the

interval [0, λ] and if the periodic extensions of f(x), f ′(x), · · · , f (k−1)(x)
are all continuous, then the Fourier coefficients of f(x) decay at least as
rapidly as 1/nk+1.

The second reason is that the Fourier series representation corresponding to
the odd extension fo(x) exhibits a small discrepancy from the original function
f(x) around points of discontinuity of fo(x). This discrepancy is a Gibbs
phenomenon, illustrated in Sect. 11.3.5. When an extension generates points
of discontinuities, a Gibbs phenomenon will inevitably occur, which makes
the resulting Fourier series representation highly unreliable in the vicinity
of the discontinuity. Consequently, when performing half-range expansions of
nonperiodic functions, the way of extension that renders the resulting function
continuous (and smooth) over its domain is preferred.

11.1.7 Fourier Series in Higher Dimensions

It is important to generalize the Fourier series to more than one dimen-
sion. This generalization is especially useful in crystallography and solid-state
physics, which deal with the three-dimensional periodic structures of atoms
and molecules. To generalize to N dimensions, we first consider a special
case in which an N -dimensional periodic function is a product of N one-
dimensional periodic functions. That is, we take the N functions f (j)(x)
[j = 1, 2, · · · , N ] with period Lj :

f (j)(x) =
∞∑

n=−∞
c(j)n e2πinx/Lj , j = 1, 2, · · · , N, .
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Let us define F (r) by the product of all the N functions f (j)(xj)

F (r) = f (1)(x1)f (2)(x2) · · · f (N)(xN )

=
∑

n1

∑

n2

· · ·
∑

nN

c(1)n1
c(2)n2

· · · c(N)
nN

· e2πi(n1x1/L1+···+nN xN /LN )

=
∑

k

Cke
ik ·r , (11.18)

where we have used the following new notation:

Ck = c(1)n1
c(2)n2

· · · c(N)
nN

,

k = 2π(n1/L1, n2/L2, · · ·nN/LN ),
r = (x1, x2, · · · , xN ).

We take (11.18) as the definition of the Fourier series for any periodic function
of N variables. The definition of the coefficient Ck can be developed for a
general periodic function F (r) of N variables:

F (r) =
∑

k

Cke
ik ·r ⇐⇒ Ck =

1
V

∫

V

F (r)e−ik ·rdNx, (11.19)

where V ≡ L1L2 · · ·LN determines the smallest region of periodicity in N
dimensions. When N = 1 (11.19) obviously reduces to the Fourier series in
one dimension.

Remark. The application of (11.19) requires some clarification regarding the
region V of the integral. In one dimension, the shape of the smallest region of
periodicity is unique, being simply a line segment of length L. In two or more
dimensions, however, such regions can have a variety of shapes. For instance,
in two dimensions, they can be rectangles, pentagons, hexagons, and so forth.
Thus, we let V in (11.18) stand for a primitive cell of the N -dimensional
lattice. This cell in three dimensions, which is important in solid-state physics,
is called the Wigner–Seitz cell.

Recall that F (r) is a periodic function of r. This means that when r is changed
by R, where R is a vector describing the boundaries of a cell, then we should
get the same function: F (r + R) = F (r). This implies that the periodicity of
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F (r) requires the vector k to take only restricted directions and magnitudes.
In fact, when replacing r in (11.19) by r + R, we have

F (r + R) =
∑

k

Cke
ik ·(r+R) =

∑

k

(

eik ·R · Cke
ik ·r) ,

which is equal to F (r) if

eik ·R = 1, i.e., k · R = 2π × (integer). (11.20)

Equation (11.20) is a key relation in determining the allowed directions and
magnitudes of the vector k. In one-dimensional cases, the inner product re-
duces to k · R = (2πn/L) · L = 2πn; thus (11.20) obviously holds true. In
three dimensions, the vector R is represented as R = m1a1 +m2a2 +m3a3,
where m1, m2, and m3 are integers and a1, a2, and a3 are crystal axes,
which are not generally orthogonal. Hence, condition (11.20) is satisfied when
k = n1b1 + n2b2 + n3b3, where n1, n2, and n3 are integers and b1, b2, and b3

are the reciprocal lattice vectors defined by

b1 =
2π(a2 × a3)

a1 · (a2 × a3)
, b2 =

2π(a3 × a1)
a1 · (a2 × a3)

, b3 =
2π(a1 × a2)

a1 · (a2 × a3)
.

In fact,

k · R =

(
3∑

i=1

nibi

)

·

⎛

⎝

3∑

j=1

mjaj

⎞

⎠ =
3∑

i,j

nimjbi · aj ,

and the reader may verify that bi · aj = 2πδij . Thus we obtain

k · R = 2π
3∑

j=1

mjnj = 2π × (integer).

Exercises

1. Expand the following functions in Fourier series:

(i) f(x) = sin ax on [−π, π], where a is not an integer.

(ii) f(x) = sin ax on [0, π], where a is not an integer.

Solution: It is straightforward to obtain the results:

(i) sin ax =
2
π

sin aπ
∞∑

n=1

(−1)nn sinnx
a2 − n2

.
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(ii) sin ax =
1 − cos aπ

π

[

1
a

+ 2a
∞∑

n=1

cos 2nx
a2 − 4n2

]

+ 2a
1 + cos aπ

π

∞∑

n=0

cos(2n+ 1)x
a2 − (2n+ 1)2

. ♣

2. Expand the functions f(x) = cosx on [0, π] in a Fourier sine series.

Solution: cosx =
8
π

∞∑

n=1

n sin 2nx
4n2 − 1

. ♣

3. (i) Find the Fourier series of f(x) = x on the interval [−π, π].

(ii) Prove that the identity
π

4
= 1 − 1

3
+

1
5

− 1
7

+ · · ·.

Solution:

(i) f(x) =
∞∑

n=1

2(−1)n+1

n
sinnx.

(ii) If we substitute x = π/2 in the series, we obtain

π

2
=

∞∑

n=1

2(−1)n+1

n
sin

nπ

2
= 2
(

1 − 1
3

+
1
5

− 1
7

+ · · ·
)

,

which obviously gives the desired result. ♣

4. Expand the function f(x) = x2 into the Fourier cosine series on the do-

main [−π, π] and then prove that
∞∑

n=1

1
n2

=
π2

6
and

∞∑

n=1

4(−1)n

n2
= −π2

3
.

Solution: Straightforward calculations yield x2 =
∞∑

n=1

4(−1)n

n2
cosnx.

By substituting x = π and x = 0, we obtain the desired equa-
tions. ♣

5. Determine both the cosine and sine series of f(x) = x3 −x defined on the
interval [0, 1]. Which series do you suppose converges more quickly?

Solution: We may set the even and odd extensions of f(x) over
[−1, 1], respectively, as
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fo(x) = x3 − x for −1 ≤ x ≤ 1,

and

fe(x) =

{

−x3 + x for −1 ≤ x < 0,

x3 − x for 0 ≤ x ≤ 1.

It follows that fo(x) is smoother than fe(x); namely, fe(x) has a
discontinuity in its derivative at ±n. This implies that the sine se-
ries converges more rapidly than the cosine series. In fact, straight-
forward calculations yield the sine series

fo(x) =
12
π3

∞∑

n=1

(−1)n

n3
sin(nπx)

and the cosine series

fe(x) = −1
4

+
2
π2

∞∑

n=1

{
1 + (−1)n2

n2
+

6
n4π2

[1 − (−1)n]
}

cos(nπx).

The continuity of fo(x) and its first derivatives leads to Fourier
coefficients that decay as 1/n3, whereas the continuity of fe(x)
coupled with the discontinuity in f ′

e(x) leads to Fourier coeffi-
cients that decay as 1/n2. ♣

11.2 Mean Convergence of Fourier Series

11.2.1 Mean Convergence Property

We know that Fourier series are endowed with a specific class of convergence
called mean convergence (or convergence in the mean). This converging
behavior is expressed by an integral:

lim
N→∞

∫ λ

0

∣
∣
∣
∣
∣
f(x) −

N∑

n=−N

cne
inkx

∣
∣
∣
∣
∣

2

dx = 0. (11.21)

Equation (11.21) applies regardless of the continuity and smoothness of the
function f(x), as far as f(x) is square-integrable.
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Remark. From the viewpoint of Hilbert space theory, the relation (11.21)
comes from the completeness property of the set of functions {einkx} in the
sense of the norm in the L2 space. The L2 space is a specific kind of Hilbert
space that is composed of a set of square-integrable functions f(x) expressed
by

∫ b

a

|f(x)|2dx < ∞.

The inner product (f, g) and the norm ‖f‖ of elements f, g ∈ L2, respec-
tively, are given by

(f, g) =
∫ b

a

f(x)∗g(x)dx and ‖f‖ = (f, f) =
∫ b

a

|f(x)|2dx.

The mean convergence of the Fourier series [i.e., the equality in (11.21)] holds
even when the integrand in (11.21) has a nonzero value at discrete points of
x. This comes from the fact that the definition of the mean convergence is
determined through integration, and that a finite number of discontinuities
of the integrand do not contribute to the result of its integration. This is
explained schematically in Fig. 11.5, in which we find

f(x) : a continuous function,
g(1)

n (x) : a series that converges uniformly to f(x)
except at a point of discontinuity x = a.

g(2)
n (x) : a series that converges uniformly to f(x)

except at points of discontinuity x = a1, a2, a3, · · · .

As shown in Fig. 11.5, these three functions are distinct from one another.
However, if we integrate the squared deviation between two of them followed
by taking the limit n → ∞, we have

x

f(x) (x)gn
(1) (x)gn

(2)

(a) (b) (c)

x

n increases

xa a1 2a
3a

Fig. 11.5. Sketches of a continuous function f(x), a series of functions g
(1)
n (x)

converging to f(x) except at a discontiuity, and a similar series of functions g
(2)
n (x)

having several discontinuities. Series {g(1)
n (x)} and {g(1)

n (x)} both converge in the
mean to f(x)
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lim
n→∞

∫ λ

0

|f(x) − g(1)
n (x)|2dx = lim

n→∞

∫ λ

0

|f(x) − g(2)
n (x)|2dx = 0. (11.22)

This is because the area surrounded by two of them vanishes with n → ∞, i.e.,
the area right below (or above) points of discontinuity are zero owing to their
discreteness. Thus, the series g(1)

n (x) and g
(2)
n (x) both converge to f(x) in the

mean regardless of their discrepancy from f(x) at points of discontinuity.

11.2.2 Dirichlet and Fejér Integrals

It is pedagogical to give an alternative exposition of mean convergence of
Fourier series, which is based on the two important concepts: Dirichlet’s
integral and Fejér’s integral.

Consider the partial sum SN (x) of the Fourier series of f(x) expressed by

SN (x) =
N∑

n=−N

cne
inkx

and its arithmetic mean

σN (x) =
1

N + 1
(S0 + S1 + · · · + SN ). (11.23)

After some algebra, we obtain their integral representations as given below
(see Exercises 1 and 2 in 11.2.2 for references).

♠ Dirichlet integral:

SN (x) =
1
λ

∫ λ−x

−x

f(t+ x)
cos(Nkt) − cos{(N + 1)kt}

1 − cos(kt)
dt. (11.24)

♠ Fejér integral:

σN (x) =
1

(N + 1)λ

∫ λ/2

−λ/2

f(t+ x)
sin2 N+1

2 kt

sin2 1
2kt

dt. (11.25)

Remark. Note the distinctive difference between the convergence of SN and
that of σN . Whereas limN→∞ SN = S implies σN → S, the converse does
not generally hold true; in fact, σN may converge even when SN diverges.
A typical example is the case of the numerical sequence un = (−1)n, where,
SN =

∑
un does not converge because S2N = 0 and S2N+1 = 1, whereas

σN =
∑

Sn/(N + 1) converges to 1/2.
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By putting f(x) ≡ 1 in (11.25), we have the following notation:

♠ Dirichlet kernel: The function

DN (t) ≡ 1
N + 1

·
sin2 N+1

2 kt

sin2 1
2kt

(11.26)

is called the Dirichlet kernel, which satisfies the identity:

1 =
1
λ

∫ λ/2

−λ/2

DN (t)dt. (11.27)

The derivation of the identity (11.27) is straightforward. When f(x) ≡ 1, we
have f(t+x) = 1, c0 = 1, and cn = 0 (|n| ≥ 1), which obviously yield SN = 1
for arbitrary N and thus σN = 1. Substitute this into (11.25) to obtain the
identity (11.27). Figure 11.6 plots the behavior of DN (t) with increasing N ;
it shows maxima at t = 0,±λ,±2λ, · · · , and the magnitude of the maxima
become singular when N → ∞.

From (11.25) and(11.27), we arrive at the key relation

σN (x) − f(x) =
1
λ

∫ λ/2

−λ/2

{f(t+ x) − f(x)}DN (t)dt. (11.28)

If f(x) is continuous (piecewise, at least), the integral in (11.28) can be made
arbitrarily small by taking a sufficiently large N (see Exercise 3 below). To
be precise, there exists an m for each ε > 0 such that

–4 –2 0 2 4
0

5

10

15

20 n=1

3

20

Y

X

Fig. 11.6. Dirichlet’s kernel DN (t) defined in (11.26)
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N > m ⇒ |σN (x) − f(x)| < ε. (11.29)

This clearly means that σN (x) converges uniformly to f(x) if f(x) is contin-
uous.

As is shown later, the result (11.29) immediately yields the mean conver-
gence of the Fourier series to f(x).

11.2.3 Proof of the Mean Convergence of Fourier Series

We are now in a position to prove the mean convergence property of Fourier
series.

The function σN (x) can be expressed as a trigonometric polynomial,
since it consists of N ’s trigonometric polynomials S0, S1, · · · , SN as given by
(11.23). Hence, (11.29) implies the existence of a trigonometric series that con-
verges uniformly to f(x). [This is simply Fejér’s theorem (see Sect. 11.3.2).]
Thus we have

σN (x) =
N∑

n=−N

γne
inkx,

where all the coefficients {γn} have to be determined.
We now make use of the fact that for any choice of {γn}, the inequality

∫ λ

0

∣
∣
∣
∣
∣
f(x) −

N∑

n=−N

γne
inkx

∣
∣
∣
∣
∣

2

dx ≥
∫ λ

0

∣
∣
∣
∣
∣
f(x) −

N∑

n=−N

cne
inkx

∣
∣
∣
∣
∣

2

dx

holds true with the Fourier coefficients {cn} of f(x). (See the discussion in
Sect. 11.2.4 for the proof.) Taking the limit N → ∞ yields

lim
N→∞

∫ λ

0

|f(x) − σN (x)|2 dx ≥ lim
N→∞

∫ λ

0

∣
∣
∣
∣
∣
f(x) −

N∑

n=−N

cne
inkx

∣
∣
∣
∣
∣

2

dx. (11.30)

Let f(x) be continuous (piecewise, at least). Then the left-hand side vanishes
owing to the uniform convergence of σN (x) to f(x) at continuous points x of
f(x) (A finite number of discontinuous points of f(x) makes no contribution
to the integral.) Eventually, we come to the desired conclusion:

lim
N→∞

∫ λ

0

∣
∣
∣
∣
∣
f(x) −

N∑

n=−N

cne
inkx

∣
∣
∣
∣
∣

2

dx = 0,

which is a restatement of (11.21).
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11.2.4 Parseval Identity

The mean convergence property of Fourier series can be represented by a
more concise expression, called the Parseval identity. We first note the
main conclusion of this subsection and then go on to its proof. For simplicity
of notation, we use the following short form:

1
λ

∫ λ

0

f(x)g∗(x)dx ≡ (f, g) .

♠ Parseval identity:
A necessary and sufficient condition for the mean convergence of the

Fourier series of f(x) is given by

(f, f) =
∞∑

n=−∞
|cn|2 ,

which is called the Parseval identity.

To prove the above statement, we assume f(x) to be square-integrable and
consider the total squared error of f(x) relative to the series of exponential
functions:

EN =
1
λ

∫ λ

0

∣
∣
∣
∣
∣
f(x) −

N∑

n=−N

γne
inkx

∣
∣
∣
∣
∣

2

dx, (11.31)

whose variables are N and the sequence {γn} consisting of complex numbers.
Term-by-term integration of (11.31) yields

EN = (f, f) −
N∑

n=−N

γ∗n
(

f, einkx
)

−
N∑

n=−N

γn

(

f, einkx
)∗

+
N∑

m,n=−N

γ∗mγn

(

einkx, eimkx
)

= (f, f) −
N∑

n=−N

(γ∗ncn + γnc
∗
n) +

N∑

n=−N

γ∗nγn

= (f, f) +
N∑

n=−N

|γn − cn|2 −
N∑

n=−N

|cn|2. (11.32)

Here we have used the orthonormality of imaginary exponentials,
(

einkx,

eimkx
)

= δm,n, as well as the definitions of the Fourier coefficient cn =
(

f, einkx
)

. Note that (f, f) appearing in (11.32) is nonnegative because
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(f, f) =
1
λ

∫ λ

0

|f(x)|2dx ≥ 0.

Hence, EN becomes minimal when γn = cn and its minimum value reads

min{EN} = (f, f) −
N∑

n=−N

|cn|2. (11.33)

We are now ready to complete our proof. Recall that the mean convergence
of the Fourier series for f(x) is defined by

lim
N→∞

∫ λ

0

∣
∣
∣
∣
∣
f(x) −

N∑

n=−N

cne
inkx

∣
∣
∣
∣
∣

2

dx = 0. (11.34)

From (11.31) and (11.33), we see that the definition of the mean convergence
(11.34) is rewritten as

lim
N→∞

min{EN} = 0, (11.35)

or equivalently,

(f, f) =
∞∑

n=−∞
|cn|2. (11.36)

Relation (11.36) is thus a necessary and sufficient condition for satisfying
the mean convergence of the Fourier series to f(x). Since Parseval’s identity
applies to any square-integrable function f , Fourier series for the functions f
surely converge in the mean to f(x).

11.2.5 Riemann–Lebesgue Theorem

As by-products of the argument in 11.2.4, we obtain the following two impor-
tant properties regarding the Fourier series expansion. The first is the Bessel
inequality

(f, f) ≥
N∑

n=−N

|cn|2. (11.37)

This is obtained from the fact that min{EN} given in (11.33) is nonnegative.
Here we can let N → ∞ in (11.37), because the right-hand side of (11.37)
forms a monotonically increasing sequence that is bounded by its left-hand
side. Then we obtain

(f, f) ≥
∞∑

n=−∞
|cn|2. (11.38)

We further note that the series on the right-hand side of (11.38) necessarily
converges, since it is nondecreasing and bounded from above. Consequently,
we arrive at the second important property to be noted:

lim
n→∞

cn = 0. (11.39)

Separating the real and imaginary parts in (11.39), we eventually find the
second point to be noted:
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♠ Riemann–Lebesgue theorem:
If f(x) is square-integrable on the interval [0, λ], then

lim
n→∞

∫ λ

0

f(x) cos(nkx)dx = 0, lim
n→∞

∫ λ

0

f(x) sin(nkx)dx = 0.

Exercises

1. Derive the expressions (11.24) and (11.25) regarding the Dirichlet and
Fejér integrals, respectively.

Solution: From the definition of cn, the partial sum SN (x) yields
its integral form:

SN (x) =
N∑

n=−N

{

1
λ

∫ λ

0

f(t)e−inktdt

}

· einkx

=
1
λ

∫ λ

0

f(t)

{
N∑

n=−N

e−ink(t−x)

}

dt

=
1
λ

∫ λ−x

−x

f(t+ x)

(
N∑

n=−N

e−inkt

)

dt. (11.40)

The finite series of exponential terms reads

N∑

n=−N

e−inkt = e−iNkt
2N∑

n=0

einkt = e−iNkt · 1 − ei(2N+1)kt

1 − eikt

=
cos(Nkt) − cos{(N + 1)kt}

1 − cos(kt)
.

Substituting this in (11.40) yields Dirichlet’s integral (11.24).
Moreover, its arithmetic mean reduces to Fejér’s integral (11.25)
as demonstrated by

σN (x) =
1

N + 1
{S0 + S1 + · · · + SN}

=
1

(N + 1)λ

∫ λ−x

−x

f(t+ x)
1 − cos{(N + 1)kt}

1 − cos(kt)
dt

=
1

(N + 1)λ

∫ λ/2

−λ/2

f(t+ x)
sin2 N+1

2 kt

sin2 1
2kt

dt. (11.41)



11.2 Mean Convergence of Fourier Series 359

In the last line of (11.41), the interval of the integration from
[−x, λ − x] to [−λ/2, λ/2] is replaced by taking account of the
periodicity of the integrand. ♣

2. Prove that σN (x) uniformly converges to f(x) by postulating the conti-
nuity of f(x).

Solution: Recall that the continuity of f(x) allows us to deter-
mine a δ that satisfies

|x− x′| < δ ⇒ |f(x) − f(x′)| < ε (11.42)

for an arbitrary small ε to be positive. Further, owing to its con-
tinuity, the function f(x) is bounded as |f(x)| < M with an ap-
propriate constant M . We divide the range of integration given
in (11.28) as

∫ λ/2

−λ/2
=
∫ −δ

−λ/2
+
∫ δ

−δ
+
∫ λ/2

δ
and use the inequality

(11.42) to obtain the middle term:
∣
∣
∣
∣
∣

∫ δ

−δ

{f(t+ x) − f(x)}DN (t)dt

∣
∣
∣
∣
∣
≤
∫ δ

−δ

|f(t+ x) − f(x)|DN (t)dt

≤ ε

∫ δ

−δ

DN (t)dt ≤ ελ(11.43)

and
∣
∣
∣
∣
∣

(
∫ −δ

−λ/2

+
∫ λ/2

δ

)

{f(t+ x) − f(x)}DN (t)dt

∣
∣
∣
∣
∣

≤
(
∫ −δ

−λ/2

+
∫ λ/2

δ

)

{|f(t+ x)| + |f(x)|}
sin2 N+1

2 kt

(N + 1) sin2 1
2kt

dt

≤
(
∫ −δ

−λ/2

+
∫ λ/2

δ

)

2M · dt

(N + 1) sin2(kδ/2)

≤ 2Mλ

(N + 1) sin2(kδ/2)
. (11.44)

From (11.28), (11.43), and (11.44), we obtain

|σN (x) − f(x)| < ε+
2M

(N + 1) sin2(kδ/2)
.

Taking the limit N → ∞ and fixing the small quantity δ, the
second term vanishes. We thus conclude that

lim
N→∞

|σN (x) − f(x)| = 0. ♣ (11.45)
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11.3 Uniform Convergence of Fourier series

11.3.1 Criterion for Uniform and Pointwise Convergence

We know that the Fourier series of f(x) converges in the mean to f(x) as far
as f(x) is square-integrable. However, the mean convergence of the Fourier
series provides no information as to its uniform convergence. In order for
the Fourier series to converge (uniformly or pointwise) to the original function
f(x), several conditions regarding continuity and periodicity of f(x) have to
be satisfied. These are formally stated in the following two theorems:

♠ Uniform convergence of Fourier series:
The Fourier series of a continuous, piecewise smooth, and periodic func-

tion f(x) converges to f(x) absolutely and uniformly.

♠ Pointwise convergence of Fourier series:
The Fourier series of a piecewise smooth and periodic function f(x)

(continuous or discontinuous) converges to:

(i) f(x) at any point of continuity, and

(ii)
f(x+ 0) + f(x− 0)

2
at any point of discontinuity.

Our main concern in this section is to prove these two theorems, and we follow
this by demonstrating several important features of Fourier series that occur
at discontinuous points of f(x).

Remark. Observe that the above theorems are consistent with the conclusion
of the Dirichlet theorem given in Sect. 11.1.2; the latter says that a Fourier
series representation becomes identical to f(x) provided that f(x) is periodic,
continuous, and further smooth (piecewise, at least).

11.3.2 Fejér theorem

The theorems given in the previous subsection clearly exhibit sufficient con-
ditions for the Fourier series to converge. It is pedagogical to compare them
with the Fejér theorem:

♠ Fejér theorem:
Any continuous and periodic function f(x) with a period λ can be re-

produced by an infinite trigonometric series
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lim
N→∞

∣
∣
∣
∣
∣
f(x) −

N∑

n=−N

γne
inkx

∣
∣
∣
∣
∣
= 0 for all x, (11.46)

with an appropriate choice of the set of expansion coefficients {γn}.

At first glance, Fejér’s theorem appears to ensure the uniform convergence of
the Fourier series. However, this is not the case at all; the sequence of the
optimal coefficients {γn} satisfying (11.46) cannot in general be replaced by
the Fourier coefficients {cn} defined by

cn =
1
λ

∫ λ

0

f(x)e−inkxdx.

In fact, even when f(x) is continuous and periodic, its Fourier series may
diverge at discrete points, as is expressed by

lim
N→∞

∣
∣
∣
∣
∣
f(x) −

N∑

n=−N

cne
inkx

∣
∣
∣
∣
∣
= ∞ at some points x. (11.47)

Hence, Fejér’s theorem does not guarantee the uniform convergence of the
Fourier series representation. Equation (11.47) also suggests that the conti-
nuity and periodicity of f(x) are only necessary but not sufficient conditions,
for the uniform convergence of its Fourier series to the original function f(x).

11.3.3 Proof of Uniform Convergence

We are now in a position to prove the criterion for uniform convergence of
the Fourier series

∑∞
n=−∞ cne

inx to f(x). The proof that is presented below
is based on the mean convergence property of Fourier series. Recall that the
mean convergence of Fourier series is expressed by

∫ ∞

−∞

∣
∣
∣
∣
∣
f(x) −

∞∑

n=−∞
cne

inx

∣
∣
∣
∣
∣

2

dx = 0. (11.48)

In general, the relation

lim
N→∞

∫ b

a

∣
∣
∣
∣
∣

N∑

n=0

un(x)

∣
∣
∣
∣
∣

2

dx = 0

means

lim
N→∞

{
N∑

n=0

un(x)

}

= 0
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if and only if the infinite series
∑∞

n=0 un(x) converges uniformly to a certain
function of x within the range of integration [a, b]. Therefore, in order to obtain
the desired equality

f(x) =
∞∑

n=−∞
cne

inkx

for any x ∈ [0, λ], we must seek the condition that the infinite series
∑∞

n=−∞ cne
inkx converges uniformly to some function of x [not necessarily

to f(x)]. Thus, we rewrite the Fourier coefficient cn as

cn =
1
λ

∫ λ

0

f(x)e−inkxdx

=
1

−inkλ
[

f(x)e−inkx
]λ

0
+

1
inkλ

∫ λ

0

f ′(x)e−inkxdx

=
1
ink

· 1
λ

∫ λ

0

f ′(x)e−inkxdx =
c′n
ink

, (11.49)

where c′n is the Fourier coefficient of the derivative f ′(x). Here f(x) is assumed
to be periodic, e.g., f(0) = f(λ) and kλ = 2π. We further assume that f(x) is
continuous and smooth (piecewise, at least) on the interval [0, λ]. Then, f ′(x)
is continuous (or piecewise continuous) to yield Parseval’s identity:

∫ λ

0

|f ′(x)|2 dx =
∞∑

n=−∞
|c′n|2 ≡ A,

where A is a constant. Observe that
∞∑

n=−∞
|cn| =

∞∑

n=−∞

∣
∣
∣
∣

c′n
ink

∣
∣
∣
∣
=

∞∑

n=−∞

|c′n|
nk

. (11.50)

From the Schwartz inequality, it follows that

∞∑

n=−∞

|c′n|
nk

=
∞∑

n=−∞

√

1
n2k2

√

|c′n|2 ≤

√
√
√
√

∞∑

n=−∞

1
n2k2

√
√
√
√

∞∑

n=−∞
|c′n|2

=
A

k

√
√
√
√

∞∑

n=−∞

1
n2
. (11.51)

It follows that
∑∞

n=1(1/n
2) is convergent (See the remark below). Hence,

from (11.50) and (11.51), we see that
∑∞

n=−∞ |cn| converges. This implies
that

∑∞
n=−∞ cne

inkx converges uniformly to a certain function on [0, λ] since
|cneinkx| ≤ |cn| for all n on [0, λ]. (See Sect. 3.3.1 for the criteria for uniform
convergence.) This completes our proof.
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Remark. That the series
∑∞

n=1(1/n
2) is convergent is verified as follows: set

A2k+1−1 to be a partial sum consisting of the first 2k+1 − 1 terms. Then we
have

A2k+1−1 = 1 +
(

1
22

+
1
32

)

+
(

1
42

+ · · · + 1
72

)

+ · · ·

+
[

1
(2k)2

+ · · · + 1
(2k+1 − 1)2

]

< 1 +
1
22

× 2 +
1
42

× 4 + · · · + 1
(2k)2

× 2k

<

k∑

j=0

(
1
2

)k

=
1 − (1/2)k+1

1 − (1/2)
< 2.

This means that A2k+1−1 for any k is bounded above. Furthermore, the se-
quence (Am) is monotonically increasing. Hence, (Am) converges in the limit
of m → ∞, which completes the proof.

11.3.4 Pointwise Convergence at Discontinuous Points

This subsection gives an account of the second criterion in Sect. 11.3.1, which
is restated below.

♠ Pointwise convergence at discontinuities:
When a function f(x) is piecewise continuous and piecewise smooth, its

Fourier series converges pointwise to {f(x+ 0)− f(x− 0)}/2 at a point of
discontinuity.

This theorem can be proven in the following manner. It readily follows from
(11.24) that the partial sum of the Fourier series SN (x) is expressed by

SN (x) =
1

2iλ

∫ λ−x

−x

f(x+ t)
ei(N+ 1

2 )kt − e−i(N+ 1
2 )kt

sin
(

1
2kt
) dt.

We rewrite this as

SN (x) =
1

2iλ

∫ λ−x

−x

f(x+ t)
ei 1

2 kt

sin
(

1
2kt
) · eiNktdt

− 1
2iλ

∫ λ−x

−x

f(x+ t)
e−i 1

2 kt

sin
(

1
2kt
) · e−iNktdt

=
1

2iλ

∫ λ−x

−x

{f(x+ t) + f(x− t)} ei 1
2 kt

sin
(

1
2kt
) · eiNktdt.



364 11 Fourier Series

Here we have set t → −t in the second integral in the first line. Further,

SN (x) =
1

2iλ

∫ λ−x

−x

g(t)eiNktdt +
f(x+ 0) + f(x− 0)

2iλ

∫ λ−x

−x

ei 1
2 kteiNkt

sin
(

1
2kt
) dt,

(11.52)
where we have introduced the notation

g(t) = {f(x+ t) − f(x+ 0) + f(x− t) − f(x− 0)} ei 1
2 kt

sin
(

1
2kt
) .

The second term in (11.52) can be simplified via the relation

1
iλ

∫ λ−x

−x

ei 1
2 kteiNkt

sin
(

1
2kt
) dt = 1.

(See Exercise 3 in Sect. 11.3 for its derivation.) Substituting this into (11.52),
we get

SN (x) =
1

2iλ

∫ λ−x

−x

g(t)eiNktdt+
f(x+ 0) + f(x− 0)

2
. (11.53)

If the integration term in (11.53) vanishes with N → ∞, we will success-
fully obtain the desired result. In fact, when g(t) is piecewise continuous in the
interval [−x, λ − x], the integral in (11.53) vanishes owing to the Riemann–
Lebesgue theorem (see Sect. 11.2.5). The remaining task is, therefore, to prove
the piecewise continuity of g(t) on [−x, λ−x], which is actually verified through
the following discussion.

When t �= 0, f(t) is piecewise continuous and sin(t/2) and eit/2 are
bounded; thus g(t) is surely piecewise continuous. When t = 0, we have

g(t) =
{
f(x+ t) − f(x+ 0)

t
+
f(x− t) − f(x− 0)

t

}

· t

2 sin
(

1
2kt
) · 2ei 1

2 kt,

so

lim
t→0

g(t) =
{

lim
t→0

f(t+ x) − f(x+ 0)
t

+ lim
t→0

f(x− t) − f(x− 0)
t

}

· 2. (11.54)

The first and second terms in (11.54) are the derivatives of f(x) on the right
and left, respectively. Since f(t) is assumed to be piecewise smooth, f ′(t) is
piecewise continuous; thus both terms in (11.54) exist. This indicates that
the limit limt→0 g(t) exists, so g(t) is piecewise continuous within the interval
[−x, λ− x].

Consequently, we can conclude from (11.53) that

lim
N→∞

SN (x) =
f(x+ 0) + f(x− 0)

2
,

which implies the pointwise convergence of the Fourier series to [f(x + 0) +
f(x− 0)]/2.
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11.3.5 Gibbs Phenomenon

If a function f(x) has discontinuities in the defining region, its Fourier series
does not reproduce the behavior of f(x) at points of discontinuity. In other
words, the partial sums of a Fourier series cannot approach f(x) uniformly
in the vicinity of a point of discontinuity. Furthermore, close to discontinu-
ous points, the Fourier series inevitably overshoots the value of the original
function to be expanded. The size of the overshoot is proportional to the
magnitude of the discontinuity. This overshoot is known, which as the Gibbs
phenomenon is nicely illustrated with the Fourier series for the step function

f(x) =

⎧

⎪⎪⎨

⎪⎪⎩

+1 for 0 ≤ x ≤ λ

2
,

−1 for
λ

2
< x < λ,

which is a periodic square wave with period λ. The complex Fourier coefficient
cn reads

cn =
1
λ

(
∫ λ/2

0

e−inkxdx−
∫ λ

λ/2

e−inkxdx

)

=
1

2inπ
(

1 − e−inπ
)2

=

⎧

⎨

⎩

0 (n = even)

2
inπ

(n = odd).

Then we have

f(x) ∼
∑

n=··· ,−3,−1,1,3,···

2
inπ

einkx =
∑

n=1,3,···

(
2

−inπ e
−inkx +

2
inπ

einkx

)

=
4
π

∞∑

n=1

sin(2n− 1)kx
2n− 1

. (11.55)

Figure 11.7 shows f(x) for 0 ≤ x ≤ λ for the sum of four, six, and ten
terms of the series. Three features deserve attention.

(i) There is a steady increase in the accuracy of the representation as the
number of included terms is increased.

(ii) All the curves pass through the midpoint of f(x) = 0 at the points of
discontinuity x = nλ/2 (n = 0,±1,±2, · · · ).

(iii) In the vicinity of x = nλ/2, there is an overshoot that persists and shows
no sign of diminishing.

As more and more terms are taken, the small oscillations along each hori-
zontal portion get smaller and smaller and, except for the two outer terms of
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Fig. 11.7. Gibbs phenomena for the Fourier series of a step function. The partial
sums of one, five, and fifty terms the right-hand side of (11.55) are given

each portion closes to the discontinuities, eventually disappear. Even in the
limit of an infinite number of terms, there is still a small overshoot. This over-
shoot is nothing but what we call the Gibbs phenomenon, which results in
the fact that the Fourier series cannot have uniform convergence at a point of
discontinuity.

11.3.6 Overshoot at a Discontinuous Point

Owing to Gibbs phenomena, a Fourier series representation is highly unreliable
in the vicinity of a discontinuity. We now consider the resulting degree of error
when we represent a function f(x) by a Fourier series having a discontinuity.

The maximum overshoot can be evaluated analytically through the follow-
ing procedure. Let us consider a finite sum of the Fourier series in the complex
form

SN (x) =
N∑

n=−N

cne
inkx,

which yields

SN (x) =
1
λ

∫ λ−x

−x

f(t+ x)KN (t)dt, KN (t) ≡
sin
[

(N + 1
2 )kt

]

sin
(

1
2kt
) . (11.56)

We consider the behavior of SN (x) in the vicinity of a discontinuity at x = x0.
We denote the jump of f(x) at this discontinuity by Δf and the jump of its
finite Fourier sum by ΔSN :
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Δf ≡ f(x0 + ε) − f(x0 − ε), ΔSN ≡ SN (x0 + ε) − SN (x0 − ε),

where ε is infinitesimal. We then have

ΔSN =
1
λ

∫ λ−x0−ε

−x0−ε

f(t+ x0 + ε)KN (t)dt− 1
λ

∫ λ−x0+ε

−x0+ε

f(t+ x0 − ε)KN (t)dt.

Owing to the periodicity of the integrand f(t+x)KN (t), we replace the range
of integration as follows:

ΔSN =
1
λ

∫ λ−ε

−ε

f(t+ x0 + ε)KN (t)dt− 1
λ

∫ λ+ε

ε

f(t+ x0 − ε)KN (t)dt.

Hence, we have

ΔSN =
1
λ

(
∫ ε

−ε

+
∫ λ−ε

ε

)

f(t+ x0 + ε)KN (t)dt

− 1
λ

(
∫ λ−ε

ε

+
∫ λ+ε

λ−ε

)

f(t+ x0 − ε)KN (t)dt

=
1
λ

∫ ε

−ε

[f(t+ x0 + ε) − f(t+ x0 − ε)]KN (t)dt

+
1
λ

∫ λ−ε

ε

[f(t+ x0 + ε) − f(t+ x0 − ε)]KN (t)dt. (11.57)

The integrand of (11.57) gives zero for all values of t except near t = 0. Close
to t = 0, the integrand has a somewhat large value because of (i) the jump of
f(t+x0) at t = 0 and (ii) the significant contribution of KN (t) in the vicinity
of t = 0. Hence, we can confine the integration to the small interval (−δ,+δ)
for which the difference in the square brackets in (11.57) is simply Δf . It now
follows that

ΔSN � Δf

λ

∫ δ

−δ

sin
{(

N + 1
2

)

kt
}

sin 1
2kt

dt � 4Δf
λ

∫ δ

0

sin
{(

N + 1
2

)

kt
}

kt
dt,

(11.58)
where the sine in the dominator was approximated by its argument because
of the smallness of t.

The value of ΔSN depends crucially on the interval δ, since the integrand
in (11.58) rapidly alternates its sign as t increases. The reader may find the
plot of the integrand in Fig. 11.8, where it is shown clearly that the major
contribution to the integral comes from the interval [0, λ/(2N + 1)], where
λ/(2N +1) is the first zero of the integrand. Hence, if the upper limit is larger
than λ/(2N + 1), the result of the integral will clearly decrease, because in
each interval of length λ, the area below the horizontal axis is larger than that
above. Therefore, if we are interested in the maximum overshoot of the finite
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Fig. 11.8. The integrand of (11.58)

sum ΔSN , we must set the upper limit equal to λ/(2N + 1). It follows that
the maximum overshoot is

(ΔSN )max � 4Δf
λ

∫ λ/(2N+1)

0

sin(N + 1
2 )kt

kt
dt

=
4Δf
λ

(N +
1
2
)
∫ π

0

sinx
x

dx

(N + 1
2 )k

=
2Δf
π

∫ π

0

sinx
x

dx

� 1.179Δf.

We thus conclude that the finite (large-N) sum approximation of the discon-
tinuous function overshoots the function itself at a discontinuity by about 18%
in this case. This means that the Fourier series tends to overshoot the posi-
tive corner by some 18% and to undershoot the negative corner by the same
amount. The inclusion of more terms (increasing r) does nothing to remove
this overshoot but merely moves it closer to the point of discontinuity.

Exercises

1. Let f(x) be absolutely integrable and form the Fourier series of f(x) in
the interval (−π, π). Show that the convergence of its Fourier series at a
specified point x within the interval depends only on the behavior of f
in the immediate vicinity of this point. (This result is referred to as the
localization theorem.)

Solution: We use the integral formula for the partial sums
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Sn(x) =
1
π

∫ π

−π

f(x+ u)
sinmu

2 sin(u/2)
du

=
1
π

∫ δ

−δ

f(x+ u)
sinmu

2 sin(u/2)
du+ I1 + I2,

where we have set m = n + (1/2). Here δ is an arbitrarily small
positive number, and I1, I2 are the integrals over the intervals
[δ, π] and [−π,−δ], respectively. On these intervals, the function
1/[2 sin(u/2)] is continuous (since |u| ≥ δ) and, therefore, the func-
tion

φ(u) =
f(x+ u)
2 sin(u/2)

is absolutely integrable. It then follows from the Riemann–Lebesgue
theorem that the integral

I1 =
1
π

∫ π

δ

φ(u) sinmudu

approaches zero as m → ∞. The same is true of I2. Thus, whether
or not the partial sums of the Fourier series have a limit at the
point x depends on the behavior of the integral

1
π

∫ δ

−δ

f(x+ u)
sinmu

2 sin(u/2)
du

as m → ∞, which involves only the values of the function f(x) in
the neighborhood [x− δ, x+ δ] of the point x. This completes the
proof. ♣

2. Let f(x) = − log |2 sin(x/2)|, which is even and becomes infinite at x =
2kπ (k = 0,±1,±2, · · · ).

(i) Show that f(x) is integrable.

(ii) Calculate the Fourier series of f(x).

(iii) Derive the identity: log 2 = 1 − (1/2) + (1/3) − (1/4) + · · · .

Solution:

(i) The given f(x) equals zero at x = π/3 and is 2π-periodic.
Hence, to prove the integrability of f(x), it suffices to show
that it is integrable on the interval [0, π/3]. Clearly we have

−
∫ π/3

ε

log
∣
∣
∣2 sin

x

2

∣
∣
∣ dx = ε log

(

2 sin
ε

2

)

+
∫ π/3

ε

x cos(x/2)
2 sin(x/2)

,
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where we have dropped the absolute value sign, since 2 sin(x/2) >
1 for 0 < x < π/3. As ε → 0, the quantity ε log[2 sin(ε/2)] ap-
proaches zero, which is verified by using l’Hôpital’s rule (see
Sect. 1.4.1), whereas the last integral converges since the in-
tegrand is bounded. (Recall that limx→0 x/[2 sin(x/2)] = 1.)
Thus, −

∫ π/3

0
log
∣
∣2 sin x

2

∣
∣ dx exists, i.e., f(x) is integrable on

the interval [0, π/3].

(ii) Since f(x) is even, we have bn = 0 (n = 1, 2, · · · ) and

an = − 2
π

∫ π

0

log
(

2 sin
x

2

)

cosnxdx (n = 0, 1, 2, · · · ).

For n �= 0, integrating by parts and then applying l’Hôpital’s
rule, we get

an =
1
nπ

∫ π

0

sinnx cos(x/2)
sin(x/2)

dx (n = 1, 2, · · · ),

and then use the identity 2 sinnx cos(x/2) = sin[n+(1/2)]x+
sin[n− (1/2)]x to obtain

an =
1
nπ

∫ π

0

sin[n+ (1/2)]x
2 sin(x/2)

dx+
1
nπ

∫ π

0

sin[n− (1/2)]x
2 sin(x/2)

dx

=
1
n
. (n = 0, 1, 2, · · · ).

For n = 0, we have

a0 = − 2
π

∫ π

0

log
(

2 sin
x

2

)

dx = − 2
π

∫ π

0

(

log 2 + log sin
x

2

)

dx

= π log 2 +
∫ π

0

log
(

sin
x

2

)

dx.

The last integral, denoted by I, reads

I = 2
∫ π/2

0

log(sin t)dt = 2
∫ π/2

0

log
(

2 sin
t

2
cos

t

2

)

dt

= π log 2 + 2
∫ π/2

0

log
(

sin
t

2

)

dt+ 2
∫ π/2

0

log
(

cos
t

2

)

dt.

The substitution t = π − u gives
∫ π/2

0
log[cos(t/2)]dt =

∫ π

π/2
log[sin(u/2)]du, which implies that I = π log 2 + 2I, i.e.,

I = −π log 2. Consequently, a0 = 0.
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(iii) Since the function f(x) is obviously differentiable for x �= 2kπ
(k = 0,±1,±2, · · · ), it follows that

− log
∣
∣
∣2 sin

x

2

∣
∣
∣ = cosx+

cos 2x
2

+
cos 3x

3
+ · · · (11.59)

for x �= 2kπ (k = 0,±1,±2, · · · ). Setting x = π in (11.59), we
obtain the desired result. ♣

3. Show that
∫ λ−x

−x

ei(N+ 1
2 )kt

sin
(

1
2kt
) dt = iλ. (11.60)

Solution:

Recall an alternative form of SN (x) given in (11.40):

SN (x) =
1
λ

∫ λ−x

−x

f(t+ x)

(
N∑

n=−N

e−inkt

)

dt. (11.61)

Setting f(t) ≡ 1 into (11.61) and (11.52) and comparing them, we
have

0 +
1
iλ

∫ λ−x

−x

ei 1
2 kteiNkt

sin
(

1
2kt
) dt =

1
λ

∫ λ−x

−x

(
N∑

n=−N

e−inkt

)

dt

=
1
λ

N∑

n=−N

(
∫ λ−x

−x

e−inktdt

)

=
1
λ

N∑

n=−N

λδn,0 = 1. ♣

11.4 Applications in Physics and Engineering

11.4.1 Temperature Variation of the Ground

The most important applications of Fourier series expansions in the physi-
cal sciences are in solving partial differential equations that describe a
wide variety of physical phenomena. In this section, two typical examples of
such applications are presented, while more rigorous discussions on partial
differential equations are given in Chap. 17.

First, we consider the temperature variation of the ground exposed to
sunlight. The temperature at a depth of x meters at time t, denoted by u(x, t),
is known to be determined by the diffusion equation

∂u

∂t
= κ

∂2u

∂x2
. (11.62)
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Here, the proportionality constant κ is called the thermal conductivity and
its magnitude on the ground is roughly estimated at κ = 3.0×10−6 m2/s. We
will see below that the Fourier series expansion provides a means of solving
equation (11.62) and clarifying the physical interpretation of its solution.

Suppose that the temperature of the land surface, u(x = 0, t), changes
periodically with a period T ; the period T may range from a day to a year.
It is then reasonable to express u(x, t) by the Fourier series

u(x, t) =
∞∑

n=−∞
cn(x)einωt

(

ω =
2π
T

)

.

Substitute this into (11.62) to obtain

inωcn(x) = κ
d2cn
dx2

,

which implies

cn(x) ∝

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

exp
(

−1 + i√
2

√
nω

κ
x

)

n > 0

exp

(

−1 − i√
2

√

|n|ω
κ

x

)

n < 0.

Here we have chosen the solutions that behave as |cn(x)| → 0 in the limit of
x → ∞. In order to obtain the zeroth term c0(x), we note that

dc0(x)
dx2

= 0,

and thus
c0(x) = A0 +B0x.

Owing to the condition that limx→∞ |c0(x)| = 0, we see that B0 = 0 and
A0 = const. As a result, we obtain

u(x, t) = A0 + 2
∞∑

n=1

Ane
−αnx cos (nωt− αnx+ φn) , (11.63)

where

αn =
√
nω

2κ

and the constants An and φn are determined by the t-dependence of the
surface temperature u(x = 0, t).

Note the presence of the parameter αn in the general solution (11.63).
It indicates that a wave component with the period T/n has the following
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features: (i) decay of the wave amplitude by e−αnx with an increase in x, and
(ii) a phase shift by αnx relative to the surface temperature u(x = 0, t).

Let us quantify the actual value of αn. For this, we consider the case of
T = 1 day (i.e., 60 × 60 × 24 s) and assume monochromatic variation of the
surface temperature given by

u(0, t) = 15 + 5 cos
(

2π
T
t

)

◦C.

Comparing this with (11.63) with x = 0, we get A0 = 15, A1 = 5/2, and
An = 0 for n ≥ 2. Then, since

α1 =

√

2 × 3.14
2 × (3.0 × 10−6) × (60 × 60 × 24)

� 3.5,

we have

u(x, t) = 15 + 5e−3.5x cos
(

2π
T
t− 3.5x

)

.

A three-dimensional plot of u(x, t) in the x-t plane is shown in Fig. 11.9. We
observe that at depths greater than 1 m, the temperature variation is almost
in antiphase to that at the surface (x = 0) and the amplitude decreases
considerably.

11.4.2 String Vibration Under Impact

The second example is the vibration of an elastic string subject to an impact
force in a local region. Consider the case of a piano wire under an impact force
applied by a hammer. Suppose that an impulse I is applied at the position
x = a of a suspended string with length � and mass density ρ. The vibrational
amplitude of the string, denoted by u(x, t), is governed by the wave equation

∂2u

∂t2
= c2

∂2u

∂x2
. (11.64)

The string is initially assumed to be stationary, i.e.,

u(x, t = 0) = 0. (11.65)

The initial velocity of the line element at x is denoted by v(x). Then, the law
of the conservation of momentum states that

∫ 


0

ρv(x)dx = I, (11.66)

where
v(x) = V · δ(x− a), (11.67)
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Fig. 11.9. Temperature variation u(x, t) of the underground below x meters on t
days

with an appropriate constant V . From (11.66) and (11.67), we have V = I/ρ.
Furthermore, since

v(x) =
∂u

∂t

∣
∣
∣
∣
t=0

,

we have
∂u

∂t

∣
∣
∣
∣
t=0

=
I

ρ
δ(x− a). (11.68)
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Under the two initial conditions (11.65) and (11.68), the general solution of
(11.64) is given by

u(x, t) =
∞∑

n=1

An sin knx sin (ωnt+ φn) , (11.69)

where
kn =

nπ

�
, ωn = ckn.

The constants An and φn in (11.69) are again determined by the initial
conditions. First, imposing the condition u(x, t = 0) = 0 into (11.69) implies

An sinφn = 0 for all n, (11.70)

owing to the linear independence of {sin knx}. Next, it follows from (11.69)
that

∂u

∂t

∣
∣
∣
∣
t=0

=
∞∑

n=1

Anωn cosφn sin knx =
I

ρ
δ(x− a).

Mutiplying both sides by sin kmx and then integrating yields

Amωm cosφn

∫ 


0

sin2 kmxdx =
I

ρ
sin kma for all m. (11.71)

From (11.70) and (11.71), we finally obtain

φn = 0 and An =
2I
ρ�ωn

sin kna for all n. (11.72)

The second expression in (11.72) implies that the position x = a that sat-
isfies sin kna = 0 yields An = 0; i.e., the nth vibration mode is not excited by
the impulsive force applied at x = a that satisfies sin kna = 0. In contrast, if
we apply an impulsive force at x = a satisfying | sin kna| = 1, the correspond-
ing nth mode will have a large vibrational amplitude, as is actually the case
inside a piano.
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Fourier Transformation

Abstract Fourier transformation is an effective tool for confirming the dual na-
ture of a complex-valued function (as well as a real-valued one). Furthermore, the
transformation enables us to measure certain correlations of a function with itself
or with other functions; thus a Fourier transform can be applied to probability the-
ory, signal analysis, etc. In this chapter we also provide the essence of a discrete
Fourier transform (Sect. 12.3), which refers to a Fourier transform applied to a dis-
crete complex-valued series. A discrete Fourier transform is commonly used in the
numerical computation of Fourier transforms because of its computational efficiency.

12.1 Fourier Transform

12.1.1 Derivation of Fourier Transform

The properties of Fourier series that we have already developed are adequate
for handling the expansion of any periodic function. Nevertheless, there are
many problems in physics and engineering that do not involve periodic func-
tions, so it is important to generalize Fourier series to include nonperiodic
functions. A nonperiodic function can be considered as a limit of a given
periodic function whose period becomes infinite.

Let us write Fourier series representing a periodic function f(x) in complex
form:

f(x) =
∞∑

n=−∞
cne

ikx, (12.1)

with the definition k = 2nπ/λ, in which

cn =
1
λ

∫ λ
2

−λ
2

f(x)e−ikxdx.

We then introduce the quantity

Δk =
2π
λ
Δn. (12.2)
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From the definition (12.2), the adjacent values of k are obtained by setting
Δn = 1, which corresponds to (λ/2π)Δk = 1. Therefore, multiplying each
side of (12.1) by (λ/2π)Δk yields

f(x) =
∞∑

n=−∞
cλ(k)eikxΔk, (12.3)

where

cλ(k) ≡ λ

2π
cn =

1
2π

∫ λ
2

−λ
2

f(x)e−ikxdx.

In the limit as λ → ∞, the ks are distributed continuously instead of discretely,
i.e., Δk → dk. Thus, the sum in (12.3) becomes exactly the definition of an
integral. As a result, we arrive at the conclusion

c(k) = lim
λ→∞

cλ(k) =
1
2π

∫ ∞

−∞
f(x)e−ikxdx (12.4)

and
f(x) =

∫ ∞

−∞
c(k)eikxdk. (12.5)

Further, by defining F (k) =
√

2πc(k), equations (12.4) and (12.5) take the
symmetrical form given below, known as the Fourier transform or Fourier
integral representation of f(x).

♠ Fourier transform:
The Fourier transform of f(x) is defined by

F (k) =
1√
2π

∫ ∞

−∞
f(x)e−ikxdx. (12.6)

♠ Inverse Fourier transform:
The inverse Fourier transform of F (k) given above is defined by

f(x) =
1√
2π

∫ ∞

−∞
F (k)eikxdk, (12.7)

We often write the expressions (12.6) and (12.7) in simpler form:

F (k) = F [f(x)] and f(x) = F−1 [F (k)] .

Observe that F (k) as well as f(x) are, in general, complex-valued functions
of the real variables k and x, respectively. Yet, if f(x) is real, then

F (−k) = F ∗(k),

which gives two immediate corollaries (proofs are left to the reader):
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♠ Fourier integral theorem:
1. If f(x) is real and even, F (k) is real.

2. If f(x) is real and odd, F (k) is purely imaginary.

12.1.2 Fourier Integral Theorem

Our derivations of the Fourier transform and its inverse transform, (12.7) and
(12.6), have been ambiguous from a mathematical viewpoint. For developing
exact derivations and clarifying the conditions for the infinite integrals in
(12.7) and (12.6) to converge, the following theorem is of crucial importance:

♠ Fourier integral theorem:
If f(x) is piecewise smooth and absolutely integrable, then

1
π

∫ ∞

0

[∫ ∞

−∞
f(t) cosu(x− t)dt

]

du =
f(x+ 0) + f(x− 0)

2
. (12.8)

Remark. The theorem is valid for each fixed x, so x can be considered a
constant insofar as the integrations are concerned.

Before starting the proof of the theorem, we note that (12.8) reduces to the
form of (12.7) and (12.6) when x is a continuous point of f(x). To see this,
we make use of the identity

∫ ξ

0

cosu(x− t)du =
1
2

∫ ξ

−ξ

eiu(x−t)du. (12.9)

Since (12.8) reads

f(x) = lim
ξ→∞

1
π

∫ ∞

−∞
f(t)dt

∫ ξ

0

cosu(x− u)du, (12.10)

we substitute (12.9) and (12.10) to obtain

f(x) =
1
2π

∫ ∞

−∞
eiuxdu

∫ ∞

−∞
f(t)e−itudt =

1
2π

∫ ∞

−∞
F (u)eiuxdu,

where
F (u) =

1
2π

∫ ∞

−∞
f(t)e−itudt.

These results are clearly equivalent to the forms of (12.7) and (12.6).
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12.1.3 Proof of the Fourier Integral Theorem

The proof of the Fourier integral theorem is based on the following two
lemmas:

♠ Lemma 1: If f(x) is piecewise smooth for all x ∈ R, then

lim
ξ→∞

∫ b

0

f(x)
sin ξx
x

dx =
π

2
f(0+) for b > 0.

♠ Lemma 2: If f(x, t) is a continuous function of t for a ≤ t ≤ b and
if limc→∞

∫ c

0
f(x, t)dx exists and converges uniformly to a certain function

g(t) in the interval, then g(t) is continuous in the interval and

∫ b

a

g(t)dt =
∫ b

a

[∫ ∞

0

f(x, t)dx
]

dt =
∫ ∞

0

[
∫ b

a

f(x, t)dt

]

dx.

Note that f(0+) in Lemma 1 denotes the limiting value of f(x) as x tends
to zero through positive values. The proof of Lemma 1 is left to Exercise 2.
Lemma 2 follows from the fact that uniform convergence allows us to inter-
change the order of limiting and integration procedures (see Chapter 3 for
details).

We are now ready to prove the Fourier integral theorem expressed by (12.8).

Proof (of the Fourier integral theorem): Let f(x) be piecewise
smooth and absolutely integrable. Consider the integral

∫ ∞

−∞
f(t) cosu(x− t)dt.

Since | cosu(x− t)| ≤ 1, the convergence of this integral is ensured by
our hypothesis that

∫∞
−∞ |f(t)|dt converges, and since this conclusion is

independent of u and x, the convergence is uniform for all u. Therefore,
in view of Lemma 2, we can interchange the order of integration in

I ≡
∫ b

0

[∫ ∞

−∞
f(t) cosu(x− t)dt

]

du

to obtain

I ≡
∫ ∞

−∞

[
∫ b

0

f(t) cosu(x− t)du

]

dt =
∫ ∞

−∞

sin b(x− t)
x− t

f(t)dt.

We now decompose this into four integrals:

I =

[
∫ −M

−∞
+
∫ x

−M

+
∫ M

x

+
∫ ∞

M

]

sin b(x− t)
x− t

f(t)dt, (12.11)
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where M is taken to be so large that the first and the last integrals
in (12.11) are less in absolute value than some prescribed ε > 0. By
changing variables, taking u = t − x, we can write the third integral
in (12.11) as

∫ M−x

0

sin bu
u

f(x+ u)du.

In view of Lemma 1, this tends to πf(x + 0)/2 as b → ∞. Similarly,
the second integral tends to πf(x − 0)/2. Therefore, by taking M
sufficiently large, we obtain

lim
b→∞

I <
π [f(x+ 0) + f(x− 0)]

2
+ 2ε,

or equivalently,
∫ ∞

0

[∫ ∞

−∞
f(t) cosu(x− t)dt

]

du− π [f(x+ 0) + f(x− 0)]
2

< 2ε.

This completes the proof of the theorem. ♣

12.1.4 Inverse Relations of the Half-width

In practice, we often encounter functions f(x) having a sharp peak at a specific
point, say x = 0. The width of the peak of such a function is possibly correlated
with the width of the peak that is exhibited by the resulting Fourier transform
F (k) = F [f(x)]. A typical example of this phenomenon is seen by considering
the Fourier transform of a Gaussian function f(x) = ae−bx2

with a, b > 0, i.e.,

F (k) =
a√
2π

∫ ∞

−∞
e−bx2

e−ikxdx =
ae−k2/(4b)

√
2π

∫ ∞

−∞
e−b[x+ik/(2b)]2dx.

We substitute y = x+ ik/(2b) to evaluate the integral as
∫ ∞

−∞
e−b[x+ik/(2b)]2dx =

∫ ∞

−∞
e−by2

dy =
√
π

b
.

and we get
F (k) =

a√
2b
e−k2/(4b),

which is also Gaussian. It is noteworthy that the width of f(x), which is
proportional to 1/

√
b, is in inverse relation to the width of F (k), which is pro-

portional to
√
b. Therefore, increasing the width of f(x) results in a decrease

in the width of F (k). In the limit of infinite width (a constant function), we
get infinite sharpness (the delta function). In fact, denoting the widths as Δx
and Δk, we have ΔxΔk ∼ 1.
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♠ Inverse relation of the half-width:
When f(x) consists of a single peak whose width is characterized by Δx,

its Fourier transform F (k) is also a single-peak function with a width Δk,
which yields ΔxΔk ∼ 1.

For the second example, we evaluate the Fourier transform of a box function
defined by

f(x) =
{
b, if |x| < a,
0, if |x| > a.

From the definition, we have

F (k) =
1√
2π

∫ ∞

−∞
f(x)e−ikxdx =

b√
2π

∫ a

−a

e−ikxdx =
2ab√
2π

(
sin ka
ka

)

.

Observe again that the width of f(x), Δx = 2a, is in inverse relation to the
width of F (k), which is roughly the distance between its first two roots, k+

and k−, on either side of k = 0: Δk = k+ −k− = 2π/a. In addition, if a → ∞,
the function f(x) becomes a constant function over the entire real line, and
we get

F (k) =
2b√
2π

lim
a→∞

sin ka
k

=
2b√
2π

πδ(k).

Otherwise, if b → ∞ and a → 0 in such a way that 2ab [the area under the
graph of f(x)] remains fixed at unity, then f(x) approaches the delta function
and F (k) becomes

F (k) = lim
a→0

lim
b→∞

2ab√
2π

sin ka
ka

=
1√
2π

.

12.1.5 Parseval Identity for Fourier Transforms

If F (k) and G(k) are Fourier transforms of f(x) and g(x), respectively, we
have

∫ ∞

−∞
f(x)g∗(x) dx

=
∫ ∞

−∞

{
1√
2π

∫ ∞

−∞
F (k)e−ikxdk

}

×
{

1√
2π

∫ ∞

−∞
G∗(k′)eik′xdk′

}

dx

=
∫ ∞

−∞
dk

∫ ∞

−∞
dk′F (k)G∗(k)

{
1
2π

∫ ∞

−∞
e−i(k−k′)xdx

}

=
∫ ∞

−∞
dkF (k)

∫ ∞

−∞
dk′G∗(k′)δ(k′ − k)

=
1
2π

∫ ∞

−∞
F (k)G∗(k) dk, (12.12)
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or similarly,
∫ ∞

−∞
f(x)g(x) dx =

1
2π

∫ ∞

−∞
F (k)G(−k) dk. (12.13)

In particular, if we set g(x) = f(x) in (12.12), we have
∫ ∞

−∞
|f(x)|2dx =

1
2π

∫ ∞

−∞
|F (k)|2dk. (12.14)

Here |F (k)|2 is referred to as the power spectrum of the function f(x).
Equation (12.14), or the more general (12.13), is known as the Parseval
identity for Fourier integrals.

Remark. A sufficient condition for interchanging the order of integration in
(12.12) is the absolute convergence of the integrals:

∫∞
−∞ F (k)e−ikxdk and

∫∞
−∞G(k′)e−ik′xdk′.

Parseval’s identity is very useful for understanding the physical interpretation
of the transform function F (k) when the physical significance of f(x) is known,
as illustrated in the following example:

Examples The displacement of a damped harmonic oscillator as a function
of time is given by

f(t) =
{

0 for t < 0,
e−t/τ sinω0t for t ≥ 0.

The Fourier transform of this function is given by

F (ω) =
∫ 0

−∞
0 × e−iωtdt+

∫ ∞

0

e−t/τ sinω0te
−iωtdt

= 0 +
1
2i

∫ ∞

0

[

e−i(ω−ω0)t−t/τ − e−i(ω+ω0)t−t/τ
]

dt

=
1
2

(
1

ω + ω0 − i/τ
− 1
ω − ω0 − i/τ

)

.

The physical interpretation of |F (ω)|2 is the energy content per unit frequency
interval (i.e., the energy spectrum) while |f(t)|2 is proportional to the sum of
the kinetic and potential energies of the oscillator. Hence, Parseval’s identity,
expressed by

∫ ∞

−∞
|f(t)|2dt =

1
2π

∫ ∞

−∞
|F (w)|2dω,

shows the equivalence of these two alternative specifications for the total en-
ergy to within a constant.
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12.1.6 Fourier Transforms in Higher Dimensions

The concept of the Fourier transform can be extended naturally to more than
one dimension. For example, in three dimensions we can define the Fourier
transform of f(x, y, z) as

F (kx, ky, kz) =
1

(2π)3/2

∫ ∫ ∫

f(x, y, z)e−ikxxe−ikyye−ikzzdxdydz (12.15)

and its inverse as

f(x, y, z) =
1

(2π)3/2

∫ ∫ ∫

F (kx, kykz)eikxxeikyyeikzzdkxdkydkz. (12.16)

Denoting the vector with components kx, ky, kz by k and that with compo-
nents x, y, z by r, we can write the Fourier transform pair (12.15), (12.16) as
follows:

♠ Fourier transforms in three dimensions:

F (k) =
1

(2π)3/2

∫

f(r)e−ik·rdr,

f(r) =
1

(2π)3/2

∫

F (k)eik·rdk.

It is pedagogical to evaluate the Fourier transform of a function f(r) under the
condition that the system possesses spherical symmetry, i.e., f(r) = f(r). We
employ spherical coordinates in which the vector k of the Fourier transform
lies along the polar axis (θ = 0). We then have

dr = r2 sin θdrdθdφ and k · r = kr cos θ,

where k = |k|. The Fourier transform is then given by

F (k) =
1

(2π)3/2

∫

f(r)e−ik·rdr

=
1

(2π)1/2

∫ ∞

0

drrtf(r)
∫ π

0

dθ sin θe−ikr cos θ.

The integral over θ may be straightforwardly evaluated by noting that

d

dθ
e−ikr cos θ = ikr sin θ e−ikr cos θ.
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Therefore,

F (k) =
1

(2π)1/2

∫ ∞

0

r2f(r)dr
[
e−ikr cos θ

ikr

]θ=π

θ=0

=
1

(2π)1/2

∫ ∞

0

2r2f(r)
(

sin kr
kr

)

dr.

Remark. A similar result may be obtained for two-dimensional Fourier
transforms in which f(r) = f(ρ), i.e., f(r) is independent of the azimuthal
angle φ. In this case, we find

F (k) =
∫ ∞

0

ρf(ρ)J0(kρ)dρ,

where J0(x) is the zeroth order Bessel function.

Exercises

1. Show that if f(x) is piecewise continuous over (a, b), then

lim
ξ→∞

∫ b

a

f(x) sin ξxdx = 0.

Solution: If f has a continuous derivative, this is easily proved;
we integrate by parts to obtain

∫ b

a

f(x) cos ξxdx =
[

f(x)
sin ξx
ξ

]b

a

− 1
ξ

∫ b

a

f ′(x) sin ξxdx,

which tends to zero as ξ → ∞ since the integral on the right-hand
side is bounded. If f is not integrable, let p be a continuously
differentiable function such that

∫ b

a
|f(x) − p(x)|dx < ε. Then

∣
∣
∣
∣
∣

∫ b

a

[f(x) − p(x)] cos ξxdx

∣
∣
∣
∣
∣
≤
∫ b

a

|f(x) − p(x)| | cos ξx|dx

≤
∫ b

a

|f(x) − p(x)|dx < ε

independently of ξ, and as the preceding discussion gave us
∫ b

a
p(x) cos ξxdx → 0, it follows that

∫ b

a
f(x) cos ξxdx → 0 as well.

The proof that
∫ b

a
p(x) sin ξxdx → 0 is similar. ♣
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2. Show that
∫ ∞

0

sinx
x

dx =
π

2
.

Solution: If we substitute λ = 2π, x = π into (11.60) and note
that the integrand is an odd function, it follows that

∫ π

0

sin
(

2n+1
2 u

)

sin(u/2)
du = π. (12.17)

Applying the result of Exercise 1 noted above to the function
[(2/u) − 1/ sin(u/2)] (which is bounded in 0 < u < π), we have

lim
n→∞

∫ π

0

sin
(

2n+ 1
2

u

){
2
u

− 1
sin(u/2)

}

du = 0. (12.18)

Summing (12.17) and (12.18), we obtain

lim
n→∞

∫ π

0

2 sin 2n+1
2 u

u
du = π.

Changing variables and letting t = (2n+ 1)u/2, we set

lim
n→∞

∫ (2n+1)π/2

0

sin t
t
dt =

π

2
.

We already know that
∫M

0
(sin t)/t dt tends to a limit as M → ∞

which completes our proof. ♣

3. Show that

lim
A→∞

∫ b

0

f(x)
sinAx
x

dx =
π

2
f(0+) forb > 0

whenever f is piecewise smooth.

Solution: Observe that
∫ b

0

f(x)
sinAx
x

dx =
∫ b

0

f(0+)
sinAx
x

dx+
∫ b

0

f(x) − f(0+)
x

sinAxdx

= f(0+)
∫ Ab

0

sinu
u

du+
∫ b

0

f(x) − f(0+)
x

sinAxdx.

From the result of Exercise 1, the last integral tends to zero as
A → ∞, since the integrand is piecewise smooth in the interval
0 < x < b. It also remains bounded in this interval since, as x
tends to zero, [f(x)− f(0+)]/x tends to f ′(0+). From Exercise 2,
the other integral tends to the desired value. ♣
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12.2 Convolution and Correlations

12.2.1 Convolution Theorem

In the application of the Fourier transform, we often encounter a product
such as F (k)G(k), where each of two functions is the Fourier transform of a
function f(x) and g(x), respectively. Here, we are interested in finding out
how the inverse Fourier transform of the product denoted by

F−1 [F (k)G(k)] ,

is related to the individual inverse function

F−1[F (k)] = f(x) and F−1[G(k)] = g(x).

To begin with, we introduce a key concept called convolution and then state
an important theorem that plays a central role in the discussion of the matter.

♠ Convolution:
The convolution of the function f(x) and g(x), denoted by f ∗ g, is

defined by

f ∗ g =
1√
2π

∫ ∞

−∞
f(u)g(x− u)du. (12.19)

The convolution obeys the commutative, associative, and distributive
laws of algebra, i.e., if we have function f1, f2, f3, then

f1 ∗ f2 = f2 ∗ f1 (Commutative).
f1 ∗ (f2 ∗ f3) = (f1 ∗ f2) ∗ f3 (Associative).
f1 ∗ (f2 + f3) = (f1 ∗ f2) + (f1 ∗ f3) (Distributive).

(12.20)

We are now ready to prove the following important theorem regarding the
product F (k)G(k) of two Fourier transforms.

♠ Convolution theorem:
If F (k) and G(k) are Fourier transforms of f(x) and g(x), respectively,

then
F (k)G(k) = F [f ∗ g]. (12.21)
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Proof It follows from the definition of the Fourier transform that

F (k) =
1√
2π

∫ ∞

−∞
f(x)e−ikxdx,

G(k) =
1√
2π

∫ ∞

−∞
g(x)e−ikxdx,

which yields

F (k)G(k) =
1
2π

∫ ∞

−∞

∫ ∞

−∞
f(x)g(x′)e−ik(x+x′)dxdx′. (12.22)

Let x+x′ = u in the double integral of (12.22) transform independent variables
from (x, x′) to (x, u). We thus have

dxdx′ =
∂(x, x′)
∂(x, u)

dudx,

where the Jacobian of the transformation is

∂(x, x′)
∂(x, u)

=

∣
∣
∣
∣
∣
∣

∂x
∂x

∂x
∂u

∂x′

∂x
∂x′

∂u

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣

1 0
0 1

∣
∣
∣
∣
= 1.

Then (12.22) becomes

F (k)G(k) =
1
2π

∫ ∞

−∞

∫ ∞

−∞
f(x)g(u− x)e−ikudxdu

=
1√
2π

∫ ∞

−∞
e−iku

{
1√
2π

∫ ∞

−∞
f(x)g(u− x)dx

}

du

= F [f ∗ g] . ♣ (12.23)

12.2.2 Cross-Correlation Functions

There are several important functions related to the convolution, which are
called correlation functions (see below) and auto-correlation functions
(see Sect. 12.2.3).

♠ Cross-correlation function:
The cross-correlation of two functions f and g is defined by

c(z) =
1√
2π

∫ ∞

−∞
f∗(x)g(x+ z)dx. (12.24)
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Despite the apparent similarity between the cross-correlation function (12.24)
and the definition of convolution (12.19), their uses and interpretations are
very different: the cross-correlation provides a quantitative measure of the
similarity of two functions f and g since one is displaced through a distance
z relative to the other.

Remark. Similar to the convolution, the cross-correlation is both associative
and distributive. Unlike the convolution, however, it is not commutative.

We arrive at an important theorem by considering the Fourier transform of
(12.24):

♠ Wiener–Kinchin theorem:
The Fourier transform of the cross-correlation of f and g is equal to the

product of F ∗(k) and G(k) multiplied by
√

2π, i.e.,

F [c(z)] ≡ C(k) = F ∗(k)G(k). (12.25)

Proof

F [c(x)] ≡ C(k) =
1√
2π

∫ ∞

−∞
dze−ikz

{
1√
2π

∫ ∞

−∞
f∗(x)g(z + x)dx

}

=
1√
2π

∫ ∞

−∞
dxf∗(x)

{
1√
2π

∫ ∞

−∞
g(z + x)e−ikzdz

}

.

Making the substitution u = z + x in the second integral, we obtain

C(k) =
1√
2π

∫ ∞

−∞
dxf∗(x)

{
1√
2π

∫ ∞

−∞
g(u)e−ik(u−x)du

}

=
{

1√
2π

∫ ∞

−∞
f∗(x)eikxdx

}{
1√
2π

∫ ∞

−∞
g(u)e−ikudu

}

= F ∗(k)G(k). ♣ (12.26)

It readily follows from the definition (12.24) and the theorem (12.25) that

c(z) =
1√
2π

∫ ∞

−∞
C(k)eikzdx =

∫ ∞

−∞
F ∗(k)G(k)eikzdk. (12.27)

Then, setting z = 0 gives us the multiplication theorem
∫ ∞

−∞
f∗(x)g(x)dx =

∫ ∞

−∞
F ∗(k)G(k)dk. (12.28)
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Further, by letting g = f , we arrive at the following identity:

♠ Plancherel identity:
A function f(x) and its Fourier transform F (k) are related to one another

by the identity
∫ ∞

−∞
|f(x)|2dx =

∫ ∞

−∞
|F (k)|2dk, (12.29)

which is called the Plancherel identity.

Plancherel’s identity is sometimes called Parseval’s identity, aims to the anal-
ogy with Fourier series.

12.2.3 Autocorrelation Functions

Particularly when g(x) = f(x), the cross-correlation function c(z) is referred
to specifically as follows:

♠ Autocorrelation function:
The autocorrelation function of f(x) is defined by

a(z) =
1√
2π

∫ ∞

−∞
f∗(x)f(x+ z)dx.

Using the Wiener–Kinchin theorem (12.26), we see that

a(z) =
1√
2π

∫ ∞

−∞
A(k)eikxdk =

1√
2π

∫ ∞

−∞

√
2πF ∗(k)F (k)eikxdk

=
1√
2π

∫ ∞

−∞
|F (k)|2eikxdk.

This implies that the quantity |F (k)|2, called the power spectrum of f(x),
is the Fourier transform of the autocorrelation function as formally stated
below.

♠ Power spectrum:
Given f(x), we have

|F (k)|2 =
1√
2π

∫ ∞

−∞
a(z)e−ikxdx,

where F (k) and a(z) are, respectively, the Fourier transform and the auto-
correlation function of f(x).
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This result is frequently made use of in practical applications of Fourier trans-
forms.

12.3 Discrete Fourier Transform

12.3.1 Definitions

The present section includes several topics associated with numerical com-
putation of Fourier transforms. Generally, in computational work, we do not
treat a continuous function f(t), but rather f(tn) given by a discrete set of
tn’s. (For now, we assume that a physical process of interest is described in
the time domain.) In most common situations, the value of f(t) is recorded
at evenly spaced intervals. In this context, we have to estimate the Fourier
transform of a function from a finite number of its sampled points.

Suppose that we have a set of measurements performed at equal time
intervals of Δ. Then the sequence of sampled values is given by

fk = f(tk), tk = kΔ (k = 0, 1, 2, · · · , N − 1). (12.30)

For simplicity, we assume that N is even. With N numbers of input, we can
produce at most N independent numbers of output. So, instead of trying to
estimate the Fourier transform F (ω) in the whole range of frequency ω, we
seek estimates only at the discrete values ω = ωn with n = 0, 1, · · · , N − 1.
By analogy with the Fourier transform for a continuous function f(t), we may
define the Fourier transform for a discrete set of fk = f(tk) (k = 0, 1, · · ·N−1)
as below.

♠ Discrete Fourier transform:
The discrete Fourier transform for a discrete set of fk given by (12.30)

is defined by

Fn = F (ωn) =
1
N

N−1∑

k=0

f(tk)e−iωntk =
1
N

N−1∑

k=0

fke
−2πikn/N , (12.31)

with the definition

ωn ≡ 2πn
NΔ

(n = 0, 1, · · · , N − 1). (12.32)

Note that Fn is associated with frequency ωn. Of importance is the fact that
in (12.31), n can be any integer from −∞ to ∞, whereas k in (12.31) runs
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from 0 to N − 1. The latter restriction is due to the fact that Fn is periodic
with a period of N terms. In fact, for any integer n such that 0 ≤ n ≤ N − 1,
we have

Fn = Fn±N = Fn±2N = · · ·
as readily follows from (12.31).

12.3.2 Inverse Transform

Given the discrete transform Fn, we can reproduce the time series fk with the
aid of the inverse relationship:

♠ Inverse of discrete Fourier transform:
The discrete Fourier transform of a set {fk} satisfies the relation

fk =
N−1∑

n=0

Fne
2πikn/N . (12.33)

Proof For the proof, it suffices to observe that

N−1∑

n=0

e−2πin(k−k′)/N =
{
N (k = k′),
0 (otherwise). (12.34)

(see Exercise 1 in Sect. 12.3). Then, from (12.31) and (12.34), we have

N−1∑

n=0

Fne
2πink′/N =

1
N

N−1∑

n=0

N−1∑

k=0

fke
−2πin(k−k′)/N

=
1
N

N−1∑

k=0

fk ·Nδkk′ = fk′ . ♣

Note that the only differences between expressions (12.31) and (12.33) for
Fn and fk, respectively, are (i) changing the sign in the exponential, and (ii)
dividing the answer by N . This means that a computational procedure for
calculating discrete Fourier transforms can, with slight modifications, also be
used to calculate the inverse transform. In addition, we see from the inverse
transform that only N values of the frequency ωn are needed and that they
range from 0 to N − 1, just as with the discrete time tk.
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12.3.3 Nyquest Frequency and Aliasing

In the above discussion, we have taken the view that the index n in (12.31)
varies from 0 to N . In this convention, n in Fn and k in fk vary over exactly
the same range, so the mapping of N numbers into N numbers is manifest.
Alternatively, since the quantity Fn given in (12.31) is periodic in n with
period N (i.e., Fn = FN+n), n in Fn is allowed to vary from −N/2 to (N/2)−
1. In the latter convention, the discrete Fourier transform and its inverse
transform read, respectively,

Fn =
N/2−1
∑

k=−N/2

fke
−2πikn/N and fk =

1
N

N/2−1
∑

n=−N/2

Fne
2πikn/N . (12.35)

Emphasis is placed on the fact that in (12.35), the upper bound of the
summation is not N/2 but (N/2) − 1. This ensures the count of ωn to
N . Indeed, the periodicity of Fn in n with the period N implies that the
descretized frequency ωn = 2πn/(NΔ) is also periodic in n with N . Hence,
the two extreme values of ωn, i.e.,

ω−N/2 = − π

Δ
and ωN/2 =

π

Δ
,

contribute to Fn as given in (12.31) in the same way. These two indistinguish-
able frequencies are known as the Nyquist critical frequencies.

♠ Nyquist critical frequency:
A Nyquist critical frequency is defined by

ωc ≡ π

Δ
,

where Δ is the sampling interval: tk = kΔ (k = 0, 1, · · · , N − 1).

The Nyquist critical frequency has the following peculiarity. Suppose that we
sample a sine wave of the Nyquist critical frequency, expressed by

f(t) = sin(ωct),

at the sampling interval Δ. Then we have

fk = f(tk) = sin (ωctk + θ) = sin
[ π

Δ
(kΔ+ θ)

]

= sin(kπ + θ)

(k = 0, 1, · · · , N − 1),

where θ is determined by the initial condition: f(0) = sin θ. Then, the
sampling becomes two sample points per cycle: sin θ and − sin θ.

The above arguments further suggest that descretized frequencies ωn above
(and below) ωc are identified with ωn−N (and ωn+N ). This phenomenon,
peculiar to discrete sampling, leads to the following important consequence:
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♠ Aliasing:
When a continuous function f(t) is sampled with an interval Δ, all of the

power spectral density lying outside of the range [−ωc, ωc) with ωc = π/Δ
is moved into that range. Owing to a phenomenon called aliasing.

Through discrete sampling, therefore, any frequency component outside of the
range [−ωc, ωc) is falsely translated into that range.

Example Suppose that two continuous waves exp(iω1t) and exp(iω2t) are sam-
pled with the same interval Δ. Then, if ω2 = ω1 ± 2ωc, we obtain the same
samples, since

exp(iω2tk) = exp(iω1tk) × exp(±2iωctk)
= exp(iω1tk) × exp(±2kπi) = exp(iω1tk),

where tk = kΔ (k = 0, 1, · · · , N − 1). Hence, a sinusoidal wave having a
frequency lying outside the range [−ωc, ωc) appears the same as the sinusoidal
wave whose frequency is within the range.

Remark. The way to overcome aliasing is to (i) know the natural bandwidth
limit of the signal – or else enforce a known limit by analog filtering of the
continuous signal, and then (ii) sample at a rate sufficiently rapid to give at
least two points per cycle of the highest frequency present.

12.3.4 Sampling Theorem

We present below a famous theorem that is useful in certain applications of
the discrete Fourier transform.

♠ Sampling theorem:
Suppose that a continuous function f(t) is sampled at an interval Δ as

fk = f(kΔ). If its Fourier transform satisfies the condition that F (ω) = 0
for all |ω| ≥ ωc = π/Δ, then we have

f(t) =
∞∑

k=−∞
fk

sin [ωc(t− kΔ)]
π(t− kΔ)

.

This theorem states that if a signal f(t) that is in question is bandwidth-
limited (i.e., F (ω) = 0 for |ω| ≥ |ω0|) with a certain preassigned frequency ω0,
then the entire information content of the signal can be recorded by sampling
it at the interval Δ = π/ω0.
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Proof Given a continuous function f(t), we express it by the inverse Fourier
transform as

f(t) =
1√
2π

∫ ∞

−∞
F (ω)eiωtdω.

From hypothesis, F (ω) vanishes at ω ≥ |ωc| so that

f(t) =
1√
2π

∫ ωc

−ωc

F (ω)eiωtdω,

which yields

f(tk) =
1√
2π

∫ ωc

−ωc

F (ω)eiωtkdω for tk = kΔ (k ∈ Z).

Consider the Fourier series expansion of F (ω) as

F (ω) =
∞∑

k=−∞
cke

−iωtk for |ω| ≤ ωc, (12.36)

where the coefficients ck read

ck =
1√
2π

∫ ωc

−ωc

F (ω)eiωtkdω = f(tk). (12.37)

From (12.36) and (12.37), we obtain

F (ω) =
∞∑

k=−∞
f(tk)e−iωtk for |ω| ≤ ωc.

Now we define

H(ω) =
∞∑

k=−∞
f(tk)e−iωtk for all ω.

While the function H(ω) is a periodic function with period 2ωc, the F (ω) is
identically zero outside the interval [−ωc, ωc]. This being so, we can write

F (ω) = H(ω)S(ω) with S(ω) =
{

1 |ω| ≤ ωc,
0 |ω| > ωc.

Thus we have

F (ω) =
∞∑

k=−∞
f(tk)e−iωtkS(ω),
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and its inverse transform reads

f(t) =
1√
2π

∫ ∞

−∞

[ ∞∑

k=−∞
f(tk)e−iωtkS(ω)

]

eiωtdω

=
∞∑

k=−∞
f(tk)

1√
2π

∫ ωc

−ωc

eiω(t−tk)dω

=
∞∑

k=−∞
f(tk)

1√
2π

∫ ∞

−∞
S(ω)eiω(t−tk)dω

=
∞∑

k=−∞
f(tk)

sin[ωc(t− tk)]
ωc(t− tk)

. ♣

12.3.5 Fast Fourier Transform

The fast Fourier transform (often abbreviated by FFT) is an algorithm for
calculating discrete Fourier transforms and is widely known as a useful tool
in computational physics. In this subsection, we demonstrate the efficiency of
this computational method.

In a typical discrete Fourier transform, one has a sum of N terms expressed
by

Fn =
N−1∑

k=0

Wnkfk, (12.38)

where W is a complex number defined by

W ≡ e2πi/N .

Notably, the left-hand side of (12.38) can be regarded as a product of the
vector consisting of the elements {fk} with a matrix whose (n, k)th element
is the constant W to the power n × k. The matrix multiplication produces
a vector whose components are the Fn’s. This operation evidently requires
N2 complex-number multiplications plus a smaller number of operations to
generate the required powers of W . Thus, the discrete Fourier transform ap-
pears to be an O(N2) process.

The efficiency of the fast Fourier transform manifests in the fact that it en-
ables us to compare the discrete Fourier transform in O(N log2 N) operations.
The difference between O(N2) and O(N log2 N) is immense. With N = 108,
e.g., it is the difference between, roughly, 2 s and 3 months of CPU time on a
gigahertz cycle computer.

The fast Fourier transform is based on the fact that a discrete Fourier
transform of length N can be rewritten as the sum of two discrete Fourier
transforms, each of length N/2. This is easily seen from (12.38) as follows:
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Fn =
N−1∑

k=0

e2πikn/Nfk

=
N/2−1
∑

k=0

e2πin(2k)/Nf2k +
N/2−1
∑

k=0

e2πin(2k+1)/Nf2k+1

=
N/2−1
∑

k=0

e2πink/(N/2)f2k +Wn

N/2−1
∑

k=0

e2πink/(N/2)f2k+1

= F e
n +WnF o

n . (12.39)

Here W is the same complex constant we defined in (12.38). The F e
n denotes

the nth component of the Fourier transform of the sequence (f2k) with length
N/2 expressed by

(f2k) = (f0, f2, f4, · · · , fN−2),

which consists of even components of the original fk’s. Similarly, the F o
n is the

corresponding transform of length N/2 formed from odd components. Recall
that Fn is periodic in n with the period N . On the other hand, the transforms
F e

n and F o
n are periodic in k with length N/2. This period-reduction property

is the origin of the efficiency of the fast Fourier transform as demonstrated
below.

Having decomposed Fn into F e
n and F o

n , we can apply the same procedure
to F e

n and F o
n to produce N/4 even-numbered and odd-numbered data:

F e
n =

N/4−1
∑

k=0

e2πink/(N/4)f4k +W k

N/4−1
∑

k=0

e2πink/(N/4)f4k+2

= F ee
n +WnF eo

n , (12.40)

F o
n =

N/4−1
∑

k=0

e2πink/(N/4)f4k+1 +Wn

N/4−1
∑

k=0

e2πink/(N/4)f4k+3

= F oe
n +WnF oo

n . (12.41)

Here, the F eo
k , e.g., is the transform of the sequence (f4k+2) given by

(f4k+2) = (f2, f6, · · · , fN−2),

whose length is N/4. We can continue the above procedure until we obtain
the transform of a single-point sequence, say,

F eoeeoeo···oee
n = fk for some k . (12.42)

This implies that for every pattern of log2 N e’s and o’s, there is a one-point
transform that is just one of the input numbers fk. Therefore, by relating
all the terms fk (0 ≤ k ≤ N − 1) to log2 N patterns of e’s and o’s and



398 12 Fourier Transformation

then tracking back to the procedures (12.39), (12.40), (12.41), and (12.42) to
reproduce Fn, we will successfully obtain the discrete Fourier transform Fn

(0 ≤ n ≤ N − 1) of the original data fk (0 ≤ k ≤ N − 1).
One may ask a question as to the way we can figure out which value of

k corresponds to which pattern of e’s and o’s in (12.42). As we demonstrate
later, this can be achieved by reversing the pattern of e’s and o’s and setting
e = 0 and o = 1. Then, we have the corresponding value of k in a binary
expression. This idea of bit reversal can be exploited in a very clever way
that makes FFTs practical.

12.3.6 Matrix Representation of FFT Algorithm

To make our discussion more concrete, we now present an actual FFT pro-
cedure to obtain the discrete Fourier transform F (n) (n = 0, 1, 2, 3) of the
original vector data f(k) (k = 0, 1, 2, 3). By definition, F (n) is given in the
matrix representation as
⎡

⎢
⎢
⎢
⎣

F (0)
F (1)
F (2)
F (3)

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

W 0 W 0 W 0 W 0

W 0 W 1 W 2 W 3

W 0 W 2 W 4 W 6

W 0 W 3 W 6 W 9

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

f(0)
f(1)
f(2)
f(3)

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

1 1 1 1
1 W 1 W 2 W 3

1 W 2 W 0 W 2

1 W 3 W 2 W 1

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

f(0)
f(1)
f(2)
f(3)

⎤

⎥
⎥
⎥
⎦
,

(12.43)
where we used the fact that

W 4 =
(

e2πi/4
)4

= e2πi = 1;

More generally, we have

Wnk = Wnk mod(N),

where the number
nk mod(N)

is the remainder when the integer nk is divided by N . The trick involved in
the FFT algorithm is to decompose the product of the vector and the matrix
appearing in (12.43) into that of a vector and two matrices:

⎡

⎢
⎢
⎢
⎣

F (0)
F (2)
F (1)
F (3)

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

1 W 0 0 0
1 W 2 0 0
0 0 1 W 1

0 0 1 W 3

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

1 0 W 0 0
0 1 0 W 0

1 0 W 2 0
0 1 0 W 1

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

f(0)
f(1)
f(2)
f(3)

⎤

⎥
⎥
⎥
⎦
. (12.44)

The equivalence between (12.43) and (12.44) is verified in a straightforward
manner. Nevertheless, the reader should pay attention to the fact that in
(12.44), the order of elements in the vector F (n) is altered from that in the
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original form (12.43). As we demonstrate later, this altering property of the
order of F (n) enables us to compute efficiently the F (n) from f(k) with the
help of the bit-reversing process.

The efficiency of FFT can be observed by counting up the number of
multiplication (and additions) between matrix elements in order to complete
the matrix operation given in (12.44). First we set

⎡

⎢
⎢
⎢
⎣

f1(0)
f1(1)
f1(2)
f1(3)

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

1 0 W 0 0
0 1 0 W 0

1 0 W 2 0
0 1 0 W 1

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

f0(0)
f0(1)
f0(2)
f0(3)

⎤

⎥
⎥
⎥
⎦
,

in which f0(k) = f(k) (k = 0, 1, 2, 3). Then f1(0) is obtained through one
complex-number multiplication and one complex-number addition, i.e.,

f1(0) = f0(0) +W 0f0(2). (12.45)

We can obtain f1(1) in the same manner as above. On the contrary, to obtain
f1(2), only one complex-number addition is needed due to the relation W 2 =
−W 0. In fact,

f1(2) = f0(0) +W 2f0(2) = f0(0) −W 0f0(2),

in which the product W 0f0(2) was evaluated earlier in the calculation of
(12.45). Likewise, f1(3) is also computed by only one addition owing to the
relation W 3 = −W 1. As a consequence, the vector f1(k) (k = 0, 1, 2, 3) is
calculated through four-times additions and two-times multiplications.

A similar scenario can apply to the remaining computation:
⎡

⎢
⎢
⎢
⎣

F (0)
F (2)
F (1)
F (3)

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

f2(0)
f2(1)
f2(2)
f2(3)

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

1 W 0 0 0
1 W 2 0 0
0 0 1 W 1

0 0 1 W 3

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

f1(0)
f1(1)
f1(2)
f1(3)

⎤

⎥
⎥
⎥
⎦
.

Calculation of each number f2(0) and f2(2) requires both one addition and
one multiplication, whereas for f2(1) and f2(3) only one addition is required
because of the relations W 2 = −W 0 and W 3 = −W 1. Therefore, the entire
computation to yield F (n) in the above context requires four-time multiplica-
tions and eight-time additions. This computational cost is significantly small
compared with the direct matrix calculation given in (12.43), where 16-times
multiplications and 12-times additions are needed. More generally, when con-
sidering the transform F (k) of the length N = 2γ , the FFT procedure requires
the multiplications of Nγ/2 times and the additions of Nγ times, whereas the
direct matrix calculation procedure demands N2-times multiplications and
N(N − 1)-times additions. Thus the superiority of FFT method is consider-
ably enhanced when N >> 1.
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12.3.7 Decomposition Method for FFT

It is still unclear as to how we can find an appropriate decomposition of general
N × N matrices as performed in (12.44). To see this, we express the indices
n and k in terms of two-digit expressions:

n = 2n1 + n0, k = 2k1 + k0,

where each n1, n0, k1, k0 takes the value 0 or 1 [e.g., n = 3 corresponds to
(n0, n1) = (1, 0)]. Then, the discrete Fourier transform reads

F (n1, n0) =
1∑

k0=0

1∑

k1=0

f0(k1, k0)W (2n1+n0)(2k1+k0).

Now we apply the identity

W (2n1+n0)(2k1+k0) = W 4n1k1W 2n0k1W (2n1+n0)k0 = W 2n0k1W (2n1+n0)k0

to obtain

F (n1, n0) =
1∑

k0=0

[
1∑

k1=0

f0(k1, k0)W 2n0k1

]

W (2n1+n0)k0 . (12.46)

Denoting the sum in the square bracket by f1(n0, k0), we have

f1(n0, k0) =
1∑

k1=0

f0(k1, k0)W 2n0k1 , (12.47)

or equivalently,

f1(0, 0) = f0(0, 0) + f0(1, 0)W 0,

f1(0, 1) = f0(0, 1) + f0(1, 1)W 0,

f1(1, 0) = f0(0, 0) + f0(1, 0)W 2,

f1(1, 1) = f0(0, 1) + f0(1, 1)W 2.

This system of equations is expressed in matrix form as

⎡

⎢
⎢
⎢
⎣

f1(0, 0)
f1(0, 1)
f1(1, 0)
f1(1, 1)

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

1 0 W 0 0
0 1 0 W 0

1 0 W 2 0
0 1 0 W 1

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

f0(0, 0)
f0(0, 1)
f0(1, 0)
f0(1, 1)

⎤

⎥
⎥
⎥
⎦
.
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Similarly, from (12.46) and (12.47), it follows that
⎡

⎢
⎢
⎢
⎣

f2(0, 0)
f2(0, 1)
f2(1, 0)
f2(1, 1)

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

1 W 0 0 0
1 W 2 0 0
0 0 1 W 1

0 0 1 W 3

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

f1(0, 0)
f1(0, 1)
f1(1, 0)
f1(1, 1)

⎤

⎥
⎥
⎥
⎦
.

Hence, we have
F (n1, n0) = f2(n0, n1),

in which the order of n0 and n1 in the parentheses differs on the two sides.
This indicates that the individual numbers f2(n0, n1) are in order not of
n = 2n1 + n0, but of the numbers obtained by bit-reversing n, which is why
the bit-reversing process is required to obtain the discrete Fourier trans-
form F (n) using FFT, The above discussion also clearly demonstrates the
way to construct the decomposed product of matrices that makes the entire
computations a fast.

Exercises

1. Show that
N−1∑

n=0

e−2πin(k−k′)/N =
{
N if k = k′,
0 otherwise,

where k and k′ are integers ranging from 0 to N − 1.

Solution: The proof for the case of k = k′ is trivial. When k = k′,
then

e−2πin(k−k′)/N �= 1 and e−2πin(k−k′) = 1

for any choice of k and k′, so that we have

N−1∑

n=0

e−2πin(k−k′)/N =
1 − e−2πin(k−k′)

1 − e−2πin(k−k′)/N
= 0. ♣

12.4 Applications in Physics and Engineering

12.4.1 Fraunhofer Diffraction I

In optics, Fourier transformation is a powerful tool to describe an important
class of wave diffractions, called Fraunhofer diffraction; this refers to the
diffraction of electromagnetic radiation observed at a point far from a slit or
an aperture. A Fraunhofer diffraction pattern can be described by using the
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wave theory of light, which predicts the areas of constructive and destructive
interference.

Let us derive the diffraction pattern produced by a rectangular aperture
with width a and height b. We assume that both incident and diffracted waves
can be approximated as being plain waves with wavelength λ. In order to make
this assumption, the diffracting obstacle and the observation point must be
sufficiently far from the light source so that the curvature of the incident and
diffracted light can be neglected (see Fig. 12.1). According to elementary wave
optics, the amplitude of light at R on the screen is given by

x

y

y′

x′

z

R
(Light source)

(aperture)

(screen)

Fig. 12.1. Configurations of the light source, a recrangular aperture, and the screen

u(R) = − ik

2πR

∫

ΔS′
u(r′)eik|R−r′|dr′.

Here, k = 2π/λ, ΔS′ represents the area of the rectangular aperture through
which light passes and u(r′) is the amplitude of the incident wave at r′ within
the aperture:

u(r′) = Aeik·r′
.

We assume that this incident wave is oriented in the direction of the z-axis.
Then, the wave vector k is perpendicular to the position vector r′ so that

u(r′) = A = const.

Hence, we have

u(R) = − ikA

2πR

∫ a

−a

dx′
∫ b

−b

dy′eik|R−r′|. (12.48)

Set R = (x, y, z) and r′ = (x′, y′, 0), where the origin is located at the center
of the aperture. Under the assumption that z � |x|, |y| and |x|, |y| � |x′|, |y′|,
we have



12.4 Applications in Physics and Engineering 403

|R − r′| =
√

z2 + (x− x′)2 + (y − y′)2

=
√

R2 − 2(xx′ + yy′) + x′2 + y′2

� R

(

1 − xx′ + yy′

R2
+
x′2 + y′2

2R2

)

� R

(

1 − xx′ + yy′

R2

)

.

Substituting this into (12.48) yields

u(R) = − ikA

2πR
eikR

∫ a

−a

e−
ikx
R x′

dx′
∫ b

−b

e−
iky
R y′

dy′

= −2ikA
πR

eikR
sin

kax

R
kx

R

sin
kby

R
ky

R

.

The light intensity distribution I(R) on the screen is thus given by

I(R) ≡ |u(R)|2 ∝ k2a2b2
[
sin(kax̃)
kax̃

sin(kbỹ)
kbỹ

]2

,

where
x̃ =

x

R
, ỹ =

y

R
.

Remember that (sin ξ)/ξ = 0 at ξ = ±nπ with integers n = 1, 2, · · · . In
addition, since k = 2π/λ, we conclude that

I(R) = 0 at x̃ = ±mλ

2a
or ỹ = ±nλ

2b
, (m,n = 1, 2, · · · ),

which describes the diffraction pattern generated on the screen.

12.4.2 Fraunhofer Diffraction II

We next consider the case of a circular aperture with radius a. For convenience,
we use the polar coordinates defined by x = r cos θ, y = r sin θ. Then (12.49)
reads

u(R) ∝ eikR

∫

ΔS′
exp
[
−ik(xx′ + yy′)

R

]

dr′

=
∫ a

0

dr′
∫ 2π

0

dθ′r′ exp
[
−ikrr′(cos θ cos θ′ + sin θ sin θ′)

R

]

=
∫ a

0

dr′
∫ 2π

0

dθ′r′ exp
[
−ikrr′ cos(θ′ − θ)

R

]

.

To make it consise, we use the following formulae based on the Bessel func-
tion Jn(x):
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∫ 2π

0

eiζ cos φdφ = 2πJ0(ζ),
∫ η

0

ζJ0(ζ) = ηJ1(η).

These give us

u(R) ∝ 2πa2

J1

(
kar

R

)

kar

R

,

where the explicit form of J1(x) is obtained from the definition of Jν(x),

Jν(x) =
(x

2

)ν ∞∑


=0

(−1)
(x/2)2


�!Γ (ν + �+ 1)
,

and thus limx→0 J1(x)/x = 1/2. The first zero of J1(x) is located at x � 1.22π.
Therefore, the radius r0 of the innermost dark ring on the screen is given by

kar0
R

� 1.22π, i.e., r0 � 0.61λ
a

R.

12.4.3 Amplitude Modulation Technique

We conclude this chapter with a discussion regarding the use of Fourier trans-
formations in an amplitude modulation (AM) technique. This technique
is used in electronic communication, most commonly for transmitting infor-
mation via a radio carrier wave. As the name indicates, AM works by mod-
ulating the vibrational amplitude of the transmitted signal according to the
information being sent. This is in contrast to the frequency modulation
(FM) technique that is also commonly used for transmitting sound, but by
modulating its frequency.

For AM, we use two kinds of waves: a carrier wave c(t) and a message
wave m(t) that contains information on the message to be transmitted. For
simplicity, the carrier wave is modeled here as a simple sine wave written as

c(t) = C · cos(ωct+ φc),

where the radio frequency (in Hertz) is given by ωc/(2π). C and φc are con-
stants representing the carrier amplitude and the initial phase, respectively,
and their values are set to 1 and 0. AM is then realized by determining the
product:

y(t) = m(t) · c(t),
whose Fourier transform Y (ω) is expressed as

Y (ω) = F [m(t)c(t)]

=
1√
2π

∫ ∞

−∞
m(t)e−iωt e

iωct + e−iωct

2
dt

=
1
2

[M(ω + ωc) +M(ω − ωc)] . (12.49)

Here M(ω) is the Fourier transform of m(t).
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(c)

––

(a)

(b)

–

–
–

– –

–

–
–

–

–
–

–

Fig. 12.2. Top: A carrier wave c(t) = sin(ωct) with ωc = 5.0 and a message wave
m(t) = 2 exp[−(t− t0)

2/4] with t0 = 1.5. Middle: The products c(t)m(t) ≡ y(t) and
c2(t)m(t). Bottom: The power spectra |F [y(t)]|2 and |F [c(t)y(t)]|2
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The result in (12.49) implies that the modulated signal y(t) has two groups
of components: one at positive frequencies (centered at +ωc) and one at neg-
ative frequencies (centered at −ωc). Figure 12.2 illustrates a carrier wave
c(t) = sin(ωct) with ωc = 5.0, a message wave m(t) = 2 exp[−(t− t0)2/4] with
t0 = 1.5, and the power spectrum of y(t) = c(t)m(t) [i.e., ω-dependence of
Y (ω)] described by (12.49), together with the associated message wave m(t).
The frequency shift from ω to ω ± ωc, which is clearly evident, facilitates the
tuning of the frequency of the transmitted signal to the desired value. We are
concerned only with positive frequencies. The negative ones are mathematical
artifacts that carry no additional information.

In order to reproduce the original signal m(t) from the modulated one
y(t), it is sufficient to multiply c(t) by y(t) and follow that with a filtering
process. The Fourier transform of the product c(t)y(t) is given as

F [c(t)y(t)] = F [m(t) cos2(ωct)]

=
M(ω)

2
+

1
4

[M(ω + 2ωc) +M(ω − 2ωc)] .

We pick up the first term in the last expression and take its inverse transform,
thus obtaining F−1[M(ω)] = m(t).
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Laplace Transformation

Abstract Using the Laplace transform for the mathematical description of a phys-
ical system considerably simplifies the analysis of its behavior Many useful applica-
tions and formulas related to Laplace transforms can be found in other textbooks,
but here we focus on the theoretical background, particularly, on the convergence
properties of the various forms of Laplace transforms. It is important to note that a
Laplace transform exists only if the corresponding improper integral, known as the
Laplace integral, converges. Hence, the convergence of the improper integral must
be confirmed prior to discussing the Laplace transform of a given function. Thus we
devote a portion of this chapter to an analysis of the conditions necessary for the
convergence of Laplace integrals, in contrast to the standard literature that deals
primarily with the practical applications of Laplace transforms.

13.1 Basic Operations

13.1.1 Definitions

The Laplace transformation associates a function f(x) of a real variable x
with a suitable function F (s) of a complex variable s. This correspondence is
essentially a reciprocal one-to-one and often allows us to replace a given com-
plicated function by a simpler one. The advantage of this operation manifests
particularly in applications to problems of linear differential equations (see
Chap. 15). We shall see that the Laplace transformation allows us to reduce
a linear differential equation of f(x) to a certain simple algebraic equation of
F (s), which yields solutions of the original differential equations more readily
than other techniques. Furthermore, it turns out that this reduction method
can be extended to systems of differential equations (ordinary and partial) as
well as to integral equations, which enhances the importance of studying and
understanding the Laplace transform.

To begin with, we define the Laplace transformation operator L that maps
a function f(x) to a corresponding function F (s):
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♠ Laplace transformation:
The (one-sided) Laplace transformation, denoted by the operator L,

is defined by

L[f(x)] =
∫ ∞

0

e−sxf(x)dx = F (s), (13.1)

which associates an image function F (s) of the complex variable s = σ+ iω
with a single-valued function f(x) (x real) such that the integral (13.1)
exists.

♠ Laplace integral:
The integral given in (13.1) is called the Laplace integral. If the

Laplace integral exists for a given f(x), the image function F (s) is called
the (one-sided) Laplace transform of f(x).

It is important to keep in mind the difference between the Laplace integral
and the Laplace transform. Namely, the Laplace transform exists only when
the Laplace integral exists (i.e., converges). Convergence properties of Laplace
integrals are determined by the value of s and the feature of the function f(x),
which is discussed fully in Sect. 13.3. In the meantime, we assume that f(x)
is a function that allows the Laplace integral to converge for certain s.

13.1.2 Several Remarks

Below are several important remarks regarding the properties of the Laplace
transform (13.1).

1. The definition (13.1) states that for a given F (s), there is at most one con-
tinuous function f(x). Nevertheless, it does not determine a unique f(x)
because if f(x) in (13.1) were altered at a finite number of isolated points,
F (s) would remain unchanged, as such discontinuous points make no con-
tribution to the integral. For this reason, we assume in the remainder of
this chapter that f(x) is continuous except at isloated points.

2. In order for the integral (13.1) to exist, any discontinuity of the integrand
inside the interval (0,∞) must be a finite jump so that there are right-
hand and left-hand limits at those discontinuous points. An exception is a
discontinuity at x = 0 (if it exists); for instance, the function f(x) = 1/

√
x

diverges at t = 0 but the integral (13.1) exists.

3. The inverse Laplace transform of F (s) is a function f(x) such that
L[f(x)] = F (s). Hence, the operation of taking an inverse Laplace trans-
form is denoted by L−1 and we have
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L−1[F (s)] = f(x).

This expression implies the possibility of dealing with the operators L
and L−1 algebraically, just as the equation ax = y can be rewritten as
x = a−1y. At thus point, it is not clear as to how the inverse operation
L−1 is to be performed, but actual manipulations are discussed in detail
in Sect. 13.4.2.

4. Not every function F (s) has an inverse Laplace transform. A sufficient
condition for F (s) to have its inverse transform is presented in Sect. 13.4.2.

13.1.3 Significance of Analytic Continuation

Observe that the Laplace integral (13.1) involves a complex-valued term e−sx

in its integrand, which makes it difficult to employ the standard methods
of integration that are applicable to real integrands. One way to proceed
would be to use the equation e−sx = e−σx cosωx− ie−σx sinωx, which yields
two real integrands. This is, however, more complicated than necessary. An
easier method is to make use of the following theorem, which is verified in
Sect. 13.3.7:

♠ Analytic property of Laplace transform:
The Laplace transform F (s), which is a complex-valued function of a

complex variable s, is an analytic function in a region of Re (s) > σc

with a specific real number σc.

Remark. Just at Re(s) = σc, however, no general conclusion can be drawn.

This theorem states that once the value of F (σ) on the real axis is known,
F (s) on an arbitrary point of the complex plane can be obtained by simply
replacing σ by s. This replacement is based on an analytic continuation
from the semi-infinite line of the real axis, σ > σc, to the right half of the
s-plane, Re (s) > σc, which is why we can perform the integration (13.1) as if
s were a real variable. Several examples given later clearly show the efficacy
of identifying s as a real parameter.

At first glance, the formality of replacing σ by s amounts simply to a
change in symbol. But, without analytic continuation, we could no longer
regard our replacement from σ to s as a mere formality; i.e., the concept of
analytic continuation lurks in the background.

Remark. In particular, those cases in which F (s) becomes multivalued cannot
be treated without paying heed in detail to the difference between σ and s.
The latter issue regarding multivalued F (s) is discussed in Sect. 13.2.5.
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13.1.4 Convergence of Laplace Integrals

Emphasis is placed on the fact that the Laplace integral (13.1) may or may
not exist depending on the value of s as well as the nature of f(x). A sufficient
condition for the Laplace integral to converge is that the real component of
s, Re(s), is greater than a specific value. This intuitively follows from the
definition (13.1) that says if the integral (13.1) exists for

s0 = σ0 + iω0,

then the integral also exists for every s such that Re (s) > σ0, since in the
latter case

∣
∣e−sx

∣
∣ <
∣
∣e−s0x

∣
∣ = e−σ0x.

This is stated rigorously in the theorem below.

♠ Convergence of Laplace integrals:
If the Laplace integral

∫ ∞

0

f(x)e−sxdx (13.2)

converges for Re (s) = σ0, then it also converges for Re (s) > σ0.

The proof is given in Sect. 13.3.4. This theorem implies the existence of a
specific real number σc such that the integral (13.2) converges for Re (s) > σc

and diverges for Re (s) < σc (see Fig. 13.1). The number σc is called the
abscissa of convergence of the Laplace integral, whose value depends on
the nature of the function f(x). With this notation, we say that the region
of convergence of the Laplace integral is a half-plane to the right of
Re (s) = σc. This region of convergence is of course identified with the defining
region of the Laplace transform F (s).

Remark. By definition, σc may take −∞ (or ∞), which means that the integral
(13.2) converges (or diverges) for all σ.

Examples Set f(x) = 1 for every x ≥ 0. Then

L[f(x)] =
∫ ∞

0

e−sxdx = lim
X→∞

∫ X

0

s−sxdx

= lim
X→∞

[
s−sx

−s

]X

0

=
1
s

− 1
s

lim
X→∞

e−sX .
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Hence, we have

L[f(x)] =
1
s

for s > 0.

For s ≤ 0, the integral does not converge. This indicates that in this case
σc = 0.

0

sIm

sRe
Cσ

Fig. 13.1. The abscissa of convergence σc to the right of which the Laplace integral
converges

13.1.5 Abscissa of Absolute Convergence

When the Laplace integral converges in the ordinary sense, it might converge
absolutely in part or in all of its converging region. (Remember that the con-
ditions for absolute convergence are more stringent than those for ordinary
convergence). This leads us to define an abscissa of absolute convergence as
follows:

♠ Abscissa of absolute convergence:

Suppose that the Laplace integral (13.2) converges absolutely for
Re(s) = σ0 as

∫ ∞

0

∣
∣f(x)e−sx

∣
∣ dx =

∫ ∞

0

|f(x)|e−σ0xdx < ∞. (13.3)

The greatest lower bound σa of such a σ0 that satisfies (13.3) is called the
abscissa of absolute convergence of the Laplace integral (13.2).

Thus once σa is determined, we say that the integral (13.2) converges ab-
solutely for σ > σa, does not converge absolutely for σ < σa, and may or
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may not converge absolutely at σ = σa. Since absolute convergence implies
ordinary convergence, it is clear that

σc ≤ σa.

The following example shows that σa does not generally coincide with σc (see
Fig. 13.2).

0

sIm

sRe
Cσ aσ

Fig. 13.2. The abscissa of convergence σc and the abscissa of absolute convergence
σa

Example f(x) = ex sin ex

Set u = ex; then we have

F (s) =
∫ ∞

0

e−sxex sin exdx =
∫ ∞

1

sinu
us

du.

The integral converges absolutely for Re (s) = σ > 1, converges conditionally
for 0 < σ ≤ 1, and diverges for σ = 0. Hence, we have

σc = 0 and σa = 1,

which clearly indicates that in this case σc �= σa.

13.1.6 Laplace Transforms of Elementary Functions

Let us evaluate the Laplace transforms F (s) of several classes of elemen-
tary functions. We treat the complex variable s as if it were real, bearing in
mind that this formalism is based on the analyticity of F (s), as discussed in
Sect. 13.1.3. The defining region of each F (s) is found on the right-hand side
of the equation in question.

1. f(x) = xn, where n is a positive integer.

Integrating by parts, we have
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F (s) = L[xn] =
∫ ∞

0

xne−sxdx

=
[
−xne−sx

s

]∞

0

+
n

s

∫ ∞

0

tn−1e−sxdx. (13.4)

Since s > 0 and n > 0, the first term in the last expression of (13.4)
vanishes. Iteration of this process yields

L[xn] =
n(n− 1)(n− 2) · · · 2 · 1

sn
L[t0] =

n!
sn+1

since L[t0] = L[1] = 1/s. As a result, we have

F (s) = L[xn] =
n!
sn+1

(σ > 0).

2. f(x) = eax, where a is a real constant.

F (s) = L[eax] =
∫ ∞

0

e−sxeaxdx =
1

s− a
(σ > a).

3. f(x) = sin ax, where a is a real constant.

Integrating by parts twice, we obtain

F (s) = L[sin ax] =
∫ ∞

0

e−sx sin axdx

=
[

−e−sx

a
cos ax

]∞

0

+
1
a

∫ ∞

0

(−s)e−sx cos axdx

=
1
a

− s

a

{[
e−sx

a
sin ax

]∞

0

+
s

a

∫ ∞

0

e−sx sin axdx
}

=
1
a

− s2

a2
F (s),

where we have used the fact that as s is positive, e−sx → 0 as x → ∞,
whereas sin ax and cos ax are bounded as x → ∞. Eventually, we set to

F (s) = L[sin ax] =
a

s2 + a2
. (σ > 0).

In a simiar manner, we obtain

L[cos ax] =
∫ ∞

0

e−sx cos axdx =
s

s2 + a2
(σ > 0).
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4. f(x) = cosh ax, where a is a real constant.

Using the linearity property of the Laplace transform operator L, we ob-
tain

L[cosh ax] = L

[
eax + e−ax

2

]

=
1
2
L[eax] +

1
2
L[e−ax]

=
1
2

(
1

s− a
+

1
s+ a

)

=
s

s2 − a2
(σ > |a|).

Exercises

1. Show the linearity of the Laplace transformation operator L.

Solution: It follows from the definition of the operator L that

L[c1f(x) + c2g(x)] =
∫ ∞

0

e−sx{c1f(x) + c2g(x)}dx

= c1

∫ ∞

0

e−sxf(x)dx+ c2

∫ ∞

0

e−sxg(x)dx

= c1L[f(x)] + c2L[g(x)],

where c1 and c2 are arbitrary constants. This clearly shows the linearity
of the operator L. ♣

2. Find the Laplace transform of the function,

f(x) =
{

0, 0 ≤ x < c,
1, x ≥ c.

Solution: L[f(x)] =
∫ ∞

0

e−sxf(x)dx =
∫ ∞

c

e−sxdx = e−cs/s (σ > 0).

♣
3. Show that if f(x) is real and F (x) = L[f(x)] is single-valued, then F (s)

is real.

Solution: Set s = σ > σc in the equation F (s) =
∫ ∞

0

f(x)e−sxdx.

Then the integrand f(x)e−σx is real, so F (σ) is real. This establishes
that F (s) is real on the real axis to the right of the point s = σc. In
view of analytic continuation, therefore, F (s) is a real-valued analytic
function. ♣



13.2 Properties of Laplace Transforms 415

13.2 Properties of Laplace Transforms

13.2.1 First Shifting Theorem

In physical applications, we are sometimes required to calculate the Laplace
transform of functions multiplied by exponential factors such as

e−axf(x),

where a is real or complex. This kind of problem can be simplified by applying
the theorem below.

♠ The first shifting theorem:

If F (s) = L[f(x)] for σ > σc, then

F (s+ a) = L[e−axf(x)]

for σ > σc − Re (a), where a is real or complex.

Proof Suppose σc to be the abscissa of convergence for F (s). Then the integral
∫ ∞

0

e−axf(x)e−sxdx =
∫ ∞

0

f(x)e−(s+a)tdx (13.5)

clearly converges for Re (s+ a) > σc. Observe that the integral on the right-
hand side of (13.5) is an expression for F (s + a). Thus we have the general
result:

L
[

e−axf(x)
]

= F (s+ a),

where F (s) = L[f(x)]. ♣

The above theorem states that if we know the Laplace transform of any func-
tion, the transform of that function multiplied by an exponential can imme-
diately be obtained by a simple shift (or translation) in the s variable.

Examples 1. The first shifting theorem tells that

L[e−axxn] =
n

(s+ a)n+1
, σ > −a,

since
L[xn] =

n

sn+1
, σ > 0.
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2. Similarly, it follows from the first shifting theorem that

L[e−ax sin bt] =
b

(s+ a)2 + b2
, σ > −a,

where we use the fact that

L[sin at] =
a

σ2 + a2
.

13.2.2 Second Shifting Theorem

For the next case, assume again that a function f(x) has a transform F (s)
and consider a shift in the x variable from x to x− x0, where x0 is a positive
constant. Stipulating that the new function be zero for x < x0, it can be
written

f(x− x0)θ(x− x0), (13.6)

where

θ(x) =
{

0, x < 0,
1, x > 0.

The Laplace transform of the shifted function (13.6) is thus represented by
the integral

∫ ∞

0

f(x− x0)θ(x− x0)e−sxdx =
∫ ∞

x0

f(x− x0)e−sxdx.

Now we change the variable of integration to t′ = x− x0, which gives us

L [f(x− x0)θ(x− x0)] = e−sx0

∫ ∞

0

f(t′)e−st′dx′ = e−sx0F (s).

The result is stated formally below.

♠ The second shifting theorem:

If F (s) = L[f(x)] for σ > σc, then

e−sx0F (s) = L[f(x− x0)θ(x− x0)]

for σ > σc, where θ(x) is a unit step function and T is a real and positive
constant.

Examples Consider the Laplace transform of the function

f(x) =

⎧

⎨

⎩

0 (x < 0),
1/a (0 ≤ x < a),
0 (x ≥ a).
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Using the step function, we express it as

f(x) =
θ(x) − θ(x− a)

a
.

Hence, it follows from the second shifting theorem that

L[f(x)] =
L[1] − e−asL[1]

a
=

1 − e−as

as
.

Note that in view of l’Hôpital’s rule, when a → 0, L[f(x)] = 1. The latter
result means that the Laplace transform of f(x) equals 1.

13.2.3 Laplace Transform of Periodic Functions

We now consider the Laplace transform of a periodic function f(x) of period
λ, i.e., f(x + λ) = f(x). Assuming that the f(x) is piecewise continuous, we
have by definition

L[f(x)] =
∫ ∞

0

e−sxf(x)dx

=
∫ λ

0

e−sxf(x)dx+
∫ 2λ

λ

e−sxf(x)dx+
∫ 3λ

2λ

e−sxf(x)dx+ · · · .

On the right-hand side, let x = u + λ in the second integral, x = u + 2λ in
the third integral, and so on. We then set

L[f(x)] =
∫ λ

0

e−sxf(x)dx+
∫ λ

0

e−s(u+λ)f(u+ λ)du

+
∫ λ

0

e−s(u+2λ)f(u+ 2λ)du+ · · · .

From hypothesis, f(u + λ) = f(u), f(u + 2λ) = f(u), etc. Replacing the
dummy variable u by x yields

L[f(x)] = (1 + e−sλ + e−2sλ + · · · )
∫ λ

0

e−sxf(x)dx

=
1

1 − e−sλ

∫ λ

0

e−sxf(x)dx. (13.7)

Once we introduce the function

f0(x) =
{
f(x), 0 ≤ t ≤ λ,
0, otherwise,
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equation (13.7) becomes

L[f(x)] =
F0(s)

1 − e−sλ
,

where

F0(s) =
∫ ∞

0

e−sxf0(x)dx =
∫ λ

0

e−sxf(x)dx,

So we have proven the following result:

♠ Laplace transform of a periodic function:

If f(x) is a periodic function of period λ, its Laplace transform is given
by

F (s) =
F0(s)

1 − e−sλ
, (13.8)

where

F0(s) =
∫ λ

0

e−sxf(x)dx.

Examples Consider the Laplace transform of the periodic square wave de-
scribed by f(x+ 2λ) = f(x) with

f(x) =
{

1 (0 < x < λ),
−1 (λ < x < 2λ).

From (13.8), we obtain

F (s) =
1

1 − e−2sλ

∫ 2λ

0

e−sxf(x)dx

=
1

1 − e−2sλ

(
∫ λ

0

−
∫ 2λ

λ

)

e−sxf(x)dx

=
(1 − e−sλ)2

s(1 − e−2sλ)
=

1
s

tanh
(
sλ

2

)

.

13.2.4 Laplace Transform of Derivatives and Integrals

The Laplace transform of derivatives is a most important issue in terms of
applications for solving differential equations. We shall see below that through
the transform, certain kinds of differential equations are reduced to algebraic
equations that are easy to manipulate.
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♠ Laplace transform of derivatives:

If F (s) = L[f(x)] for σ > σc and if

lim
t→∞

e−sxf(x) = 0 for σ > σc, (13.9)

then we have
L[f ′(x)] = sF (s) − f(0). (13.10)

Proof Integration by parts yields

L[f ′(x)] =
∫ ∞

0

e−sxf ′(x)dx

=
[

e−sxf(x)
]∞
0

−
∫ ∞

0

(−s)e−sxf(x)dx. (13.11)

The second term on the right-hand side of (13.11) converges to sF (s) for
σ > σc. In addition, the first term reads f(0) from the hypothesis of (13.9).
Thus for σ > σc, we obtain (13.10). ♣

This result can be extended to cases of higher derivatives.

♠ Laplace transform of higher derivatives:

Suppose f(x) to be such that f (n−1)(x) is continuous. If F (s) = L[f(x)]
for σ > σc and if

lim
t→∞

e−sxf (k)(x) = 0

for k = 0, 1, · · · , n− 1 and σ > σc, then

L[f (n)(x)] = snF (s) −
n∑

k=1

sn−kf (k−1)(0).

The above theorem is central to the use of the Laplace transform for solv-
ing differential equations with specified initial conditions (i.e., initial value
problems).
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♠ Laplace transform of integrals:

If g(x) =
∫ x

0
f(u)du, L[f(x)] = F (s) and if

lim
t→∞

e−sxg(x) = 0,

then

L[g(x)] =
F (s)
s

.

Proof From hypothesis, we have g(0) = 0 and g′(s) = f(x), and thus

L[g′(x)] = L[f(x)].

The left-hand side becomes

L[g′(x)] = sL[g(x)] − g(0) = sL[g(x)].

As a result, we obtain

L[g(x)] =
1
s
L[f(x)] =

F (s)
s

. ♣

13.2.5 Laplace Transforms Leading to Multivalued Functions

Some care should be taken when the Laplace transform results in a multi-
valued function. A typical example is the transform of the function

f(x) =
1√
x

(x ≥ 0). (13.12)

Although this function has a singularity at x = 0, the improper integral
having a real integrand,

∫ ∞

0

e−σx

√
x
dx, (13.13)

converges for σ > 0. In what follows, we first evaluate the integral (13.13) and
then continue analytically with the result to arrive at a suitable region of
the complex s-plane where we can get a precise form of F (s).

The integral (13.13) can be readily evaluated by setting σx = u2; then it
reads

2√
σ

∫ ∞

0

e−u2
du =

√
π√
σ
. (13.14)

Now we would like to continue analytically to take the result (13.14) to the
complex s-plane. At first glance, it suffices to replace

√
σ by

√
s symbolically.

However, this is not sufficient because the function
√
s is double-valued (e.g.,

when s = i = eπi/2,
√
s may take the two distinct values: eπi/4 and e−3πi/4;



13.2 Properties of Laplace Transforms 421

0

s

1

i

0

s

1

( )4exp iπ

( )43exp iπ−

Fig. 13.3. The double-valuedness of the function
√

s

(see Fig. 13.3). Thus we have two possible choices (i.e., two sheets of Riemann
surfaces) when performing analytic continuation from the real single-valued
function

√
σ to the complex double-valued function

√
s. We go into only one

sheet of Riemann surface, the choice being the one on which the points of
√
σ

are situated [i.e., the right half of the whole s-plane, expressed by Re (s) > 0].
With this convention, we arrive at the result

F (s) = L

[
1√
x

]

=
√
π√
s
, (13.15)

where the symbol
√
s implies the single-valued branch mentioned above.

Remark. If the above case had been treated throughout with the variable s
retained, the formal variable change would have led to the factor 1/

√
s as in

(13.15). However, we would not then have a clear meaning for
√
s; i.e., there

would be no way to determine which branch is to be taken.

Exercises

1. Show that
lim

x→+0
f(x) = lim

s→∞
sF (s)

and
lim

x→∞
f(x) = lim

s→0
sF (s),

where the Laplace integral L[f(x)] = F (s) converges for σ ≥ 0.

Solution: Take the limits s → ∞ on both sides of equation
∫ ∞

0

f ′(x)e−sxdx = sF (s) − f(0). (13.16)

Then we have 0 = lims→∞ sF (s) − f(0+), which gives us our first re-
sult. Moreover, in the limit s → 0, the left-hand side of (13.16) reads
∫∞
0

f ′(x)dx = limx→∞ f(x)− f(0+), so that we set our second result. ♣
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2. Find the transform of the function

f(x) =
√
tk,

where k ≥ 1 and is an odd integer.

Solution: This function gives convergence for σ > 0. Integration by
parts yields a general recurrence equation:

∫ ∞

0

√
tke−σxdx = −

[√
tke−σx

σ

]∞

0

+
k

2σ

∫ ∞

0

√
tk−2e−σxdx.

Since k ≥ 1, the lower limit can be used in the first term on the right-
hand side (and thus the integral exists). The result can be stated as

L
[√

tk
]

=
k

2s
L
[√

tk−2
]

where k ≥ 1 and odd.

This yields a sequence of equations, starting with
√
t−1, that is obtained

from (13.15). Consequently, we have

L

[
1√
x

]

=
√
π√
s
, L

[√
x
]

=
√
π

2
√
s3
, L

[√
x3
]

=
3
√
π

4
√
s5
, · · ·

L
[√

xk
]

=
(k + 1)!

√
π

2k+1[(k + 1)/2]!
√
sk+2

.

In these general equations, the root of a power of s is always interpreted
as being on the sheet of the Riemann surface on which the values of√
σk+2 are found. ♣

13.3 Convergence Theorems for Laplace Integrals

13.3.1 Functions of Exponential Order

The Laplace integral is improper by virtue of an infinite limit of integration,
as shown clearly by

∫ ∞

0

f(x)e−sxdx = lim
R→∞

∫ R

0

f(x)e−sxdx. (13.17)

This improper integral can be identified with the Laplace transform F (s) only
when it converges for the values of s in question. Therefore, it is important to
clarify the conditions under which the Laplace integral converges. As a first
step in addressing this issue, we introduce a new class of functions:
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♠ Functions of exponential order:

A function f(x) is said to be of exponential order α0 if there is a real
number α0 such that

lim
x→∞

f(x)e−αx = 0 for any α > α0, (13.18)

and with the limit not existing when α < α0.

See Fig. 13.4 for the decaying behavior of a function f(x) of exponential order
α. Note that condition (13.18) is not necessarily satisfied at α = α0. The order
number α0 may take −∞ if f(x) is identically zero beyond some finite value
of x.

0
x

y

xe α−

( )xf

Fig. 13.4. Decaying behavior of a function f(x) of exponential order α

Examples 1. The function f(x) = x3 is of exponential order zero. To see
this, it suffices to check whether or not

lim
x→∞

(

e−αxx3
)

(13.19)

exists. If α > 0, then l’Hôpital’s rule gives

lim
x→∞

x3

eαx
= lim

x→∞

6
α3eαx

= 0.

In contrast, when α < 0, (13.19) obviously diverges. Therefore x3 is of
exponential order zero. In a similar manner, it can be shown that xn for
any integer n ≥ 0 is of exponential order zero.

2. The function f(x) = ecx with any real constant c is of exponential order
c, owing to the fact that
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lim
x→∞

ecxe−αx = 0

if and only if α > c.

13.3.2 Convergence for Exponential-Order Cases

Suppose f(x) to be of exponential order α0. Then, we can show that the
Laplace integral

∫ ∞

0

f(x)e−sxdx (13.20)

converges absolutely whenever the real component of s is located within the
range

Re (s) = σ > α0. (13.21)

Since absolute convergence implies ordinary convergence, the inequality (13.21)
serves as a sufficient condition for the Laplace integral (13.20) to converge.
This result is formally stated by the theorem below.

♠ Theorem: (= A sufficient condition for convergence for exponential-
order cases)

If f(x) is of exponential order α0, then the Laplace integral
∫∞
0

f(x)e−sxdx converges for

Re (s) > α0.

(See also Fig. 13.5.)

Proof For any σ in the range of (13.21), we can pick a number α1 such that

α0 < α1 < σ.

Since f(x) is of exponential order α0, we have

lim
x→∞

f(x)e−α1x = 0.

This implies that for any given small ε > 0, we can find an appropriate X
such that

|f(x)|e−α1x < ε for any x > X.

Hence, given any small ε > 0, there exists an X such that for A,A′ > X,
∫ A′

A

|f(x)| e−σxdx =
∫ A′

A

|f(x)|e−α1xe−(σ−α1)xdx

< ε

∫ A′

A

e−(σ−α1)xdx, (13.22)
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where the last integral in (13.22) converges to a finite value because σ > α1.
This means that the leftmost integral in (13.22) can be made to approach
zero by taking X sufficiently large. Thus in view of the Cauchy’s test for
improper integrals given in Sect. 3.4.4, the inequality (13.22) establishes
the absolute (and thus ordinary) convergence of the integral (13.20) in the
region Re (s) > α0. ♣

0

sIm

sRe
0α

Fig. 13.5. Converging region of the Laplace integral of a function of exponential
order α0

Remark. The above theorem provides a sufficient condition for the ordi-
nary convergence of the Laplace integral. Hence, a given Laplace integral
of the function of exponential order α0 must converge for Re (s) > α0,
whereas it may or may not converge at Re (s) ≤ α0. For example, f(x) =
cos ex gives α0 = 0, but the corresponding Laplace integral converges for
Re (s) > −1.

13.3.3 Uniform Convergence for Exponential-Order Cases

Next we examine the condition for uniform convergence. Here, uniform con-
vergence means that the improper integral (13.20) as a function of s converges
uniformly to F (s) over the whole defining region of the s-plane. To proceed,
let α2 be a number greater than α0 and let σ be in the range

α0 < α2 ≤ σ. (13.23)

For any choice of α2, we can find a number α1 such that

α0 < α1 < α2.
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The relation (13.22) is again valid by use of α2 instead of α1, as expressed
by

∫ A′

A

|f(x)|e−σxdx < ε

∫ A′

A

e−(σ−α2)xdx.

Furthermore, by introducing α1, we can extend this inequality to

∫ A′

A

|f(x)|e−σxdx < ε

∫ A′

A

e−(α1−α2)xdx.

Note that the last integral converges and is independent of σ. Therefore, in

view of the Weierstrass test for improper integrals (see Sect. 3.4.4), the
Laplace integral

∫∞
0

f(x)e−sxdx converges uniformly for Re (s) ≥ α2 > α0.
We have thus proved the following theorem:

♠ Theorem: (= A sufficient condition for uniform convergence for
exponential-order cases)

If f(x) is of exponential order α0, then the Laplace integral
∫∞
0

f(x)e−sxdx converges uniformly to F (s) = L[f(x)] for

Re (s) ≥ α2 > α0.

(See also Fig. 13.6.)

Here, the constant α2 emphasizes that the converging region guaranteed by
this theorem is closed at the lower end.

0

sIm

sRe
2α0α

Fig. 13.6. The region of uniform convergence associated with a function of
exponential order α0
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Remark. It is important to remember that the above theorem gives only a
sufficient condition for convergence of the Laplace integral. In fact, it is pos-
sible that some functions of exponential order allow their Laplace integrals
to converge uniformly to the left of α0.

13.3.4 Convergence for General Cases

The previous two theorems tell a great deal about convergence of the Laplace
integral for practical functions. On the other hand, for functions that are not
of exponential order (but continuous within the integration interval), the
following slightly different theorem applies.

♠ Theorem: (= A sufficient condition for convergence for general cases)

If the improper integral
∫ ∞

0

f(x)e−sxdx

converges for s = s0, then it converges for Re (s) > Re (s0) (see also
Fig. 13.7).

Proof The proof requires an auxiliary function

g(x) =
∫ ∞

x

f(τ)e−s0τdτ, (13.24)

0

sIm

sRe

0s

Fig. 13.7. Converging region of the Laplace integral that converges for s = s0
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where f(x) is assumed to satisfy the conditions given above. Since f(x) is
continuous, g(x) is also continuous and thus its derivative is given by

g′(x) = −f(x)e−s0x.

In terms of g(x), the Laplace integral can be written as
∫ ∞

0

f(x)e−sxdx =
∫ ∞

0

f(x)e−s0xe−wxdx = −
∫ ∞

0

g′(x)e−wxdx, (13.25)

where we have set w = s− s0.
We now examine sufficient conditions for the rightmost integral in (13.25)

to converge. Cauchy’s test for improper integrals given in Sect. 3.4.4
says that it converges if and only if for an arbitrary small ε > 0, we can find
an X that yields ∣

∣
∣
∣
∣

∫ A

A′
g′(x)e−wxdx

∣
∣
∣
∣
∣
< ε (13.26)

with A′, A > X. Therefore, our task is to show that the relation (13.26) holds
for Re (s) > Re (s0).

Integration by parts gives us
∫ A

A′
g′(x)e−wxdx = −g(A′)e−wA′

+ g(A)e−wA + w

∫ A

A′
g(x)e−wxdx, (13.27)

which results in
∣
∣
∣
∣
∣

∫ A

A′
g′(x)e−wxdx

∣
∣
∣
∣
∣
< |g(A′)|e−xA′

+ |g(A)|e−xA + |z|
∫ A

A′

∣
∣g(x)e−wx

∣
∣ dx.

(13.28)
From (13.24) and from the hypothesis given in the theorem, it follows that
for an arbitrary small ε′ > 0, there exists a number X such that

|g(x)| < ε′ when x > X.

Thus, if A′, A > X we have

|g(A′)|, |g(A)| < ε′.

In addition, if
u ≡ Re (w) > 0,

then the relation (13.28) becomes
∣
∣
∣
∣
∣

∫ A

A′
g′(x)e−wxdx

∣
∣
∣
∣
∣
< ε′

[

e−uA′
+ e−uA +

|w|
u

(

e−uA′ − e−uA
)]

< ε′
(

2 +
|w|
u

)

. (13.29)
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Observe that the quantity in parentheses in (13.29) is finite for any fixed value
of w with u > 0. Therefore, by making ε′ small enough, the quantity

ε ≡ ε′
(

2 +
|w|
u

)

(13.30)

becomes arbitrarily small; this can be the ε in the relation (13.26). Conse-
quently, the relation (13.26) holds for any u > 0, or equivalently, for any

u = Re (w) = Re (s) − Re (s0) > 0.

This completes the proof of the theorem. (Note that if u = 0, the quantity
in parenthesies in (13.29) diverges, and if u < 0, the inequality (13.29) itself
does not hold.) ♣

Remark. The theorem is inconclusive for the convergence property on the
line Re(s) = Re(s0) depicted on the complex s-plane. Note that we do not
get convergence when Re (s) = σ0. This means that even though the integral
converges at a point on the line of Re (s) = σ0, it does not necessarily converge
all along the same line. A simple example is given by

f(x) =

⎧

⎨

⎩

0, 0 ≤ x < 1,

1
x
, x ≥ 1.

The Laplace integral
∫ ∞

0

f(x)e−s0xdx =
∫ ∞

1

e−iω0x

x
dx =

∫ ∞

1

cosω0x

x
dx− i

∫ ∞

1

sinω0x

x
dx

converges for s0 = 0 + iω0 with ω0 �= 0, but diverges at s0 = 0.

13.3.5 Uniform Convergence for General Cases

A sufficient condition for uniform convergence is obtained in a similar way
as in Sect. 13.3.4, although it is not the same as that for ordinary conver-
gence. The difference is due to the fact that in the proof above, ε defined by
(13.30) is dependent on s through |w| = |s− s0|. In order to get the range of
uniform convergence, we need a certain infinitesimal factor that can be taken
independently of s.

To derive such a factor, let θ be the angle of w = s− s0, and observe that
u = Re(w) satisfies the relation

|w|
u

=
∣
∣
∣
∣

1
cos θ

∣
∣
∣
∣
,
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when u > 0. If θ is restricted to the range

|θ| < π

2
, (13.31)

we can find an angle θ′ that satisfies

|θ| ≤ θ′ <
π

2
,

or equivalently,

|w|
u

=
1

cos θ
≤ 1

cos θ′
.

Inserting this into (13.30), we have

ε = ε′
(

2 +
|w|
u

)

≤ ε′
(

2 +
1

cos θ′

)

≡ ε′′,

where the quantity ε′′ is independent of s and becomes arbitrarily small by
making ε′ small enough. This is true as far as condition (13.31) is satis-
fied; in this context, (13.31) represents the region of uniform convergence
of the Laplace integral. Rewriting θ by arg(s− s0), we arrive at the following
theorem:

♠ Theorem (= A sufficient condition for uniform convergence of the
Laplace integrals for general cases):

If the improper integral
∫ ∞

0

f(x)e−sxdx

converges for s = s0, then it converges uniformly to F (s) = L[f(x)] for

|arg (s− s0)| ≤ θ′ <
π

2
.

(See also Fig. 13.8.)

Here, the θ′ shows the closedness of the converging region. The θ′ can be
arbitrarily close to but not equal π/2.
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0

sIm

sRe

0s

Fig. 13.8. The region of uniform convergence for the Laplace integral that converges
for s = s0

13.3.6 Distinction Between Exponential-Order Cases
and General Cases

We have thus far presented four convergence theorems in connection with
Laplace integrals, where the former two are associated with functions of ex-
ponential order and the latter two are relevant to are more general functions.
The theorems for the two cases are similar to the extent that they all identify
a half-plane of convergence for the Laplace integral. Moreover, the general
cases that we have considered cover a wide class of functions that includes
exponential-order functions as a special case. At first glance, these remarks
appear to imply that each of the former two theorems for exponential-order
cases is a special case of each of the latter for general cases, but, this is not
true at all. Below we give the reasons for this not being so.

First, the theorem for ordinary convergence in the exponential-order case
is intrinsically different from that in the general case. Observe that the for-
mer theorem not only tells us that the Laplace integral converges in a half-
plane; it also gives a specific number (i.e., α0) for the abscissa of a left-hand
boundary of such a half-plane. (Of course σc ≤ α0 since it gives a suffi-
cient condition for convergence.) In contrast, the latter theorem merely states
convergence to the right of any point at which we already know that the in-
tegral converges; it gives no information about a boundary of the region of
convergence.

Second, the regions of uniform convergence are specified in a different
manner for the two cases. Whereas the theorem for general cases tells us
only that the Laplace integral converges uniformly in an angular sector of the
right half-plane, the theorem for exponential-order cases indicates uniform
convergence in a less restricted region, namely, a half-plane.

In short, the theorems for the two cases are essentially different. As well,
it should be emphasized again that all the four theorems provide sufficient
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conditions for convergence of the Laplace integrals—not necessary or necessary
and sufficient conditions.

13.3.7 Analytic Property of Laplace Transforms

An important consequence of uniform convergence of the Laplace integral is
the fact that the corresponding Laplace transform,

F (s) =
∫ ∞

0

f(x)e−sxdx, (13.32)

is an analytic function on the complex s-plane. We know that if F (s) is
analytic, it will exist outside the range of convergence of its integral represen-
tation, which can be uniquely determined by analytic continuation. From a
practical viewpoint, the analyticity of F (s) plays a crucial role in evaluating
the Laplace transform of a given function, since we can use it to treat the
complex variable s as if it were real (see Sect. 13.1.3). We close this section
by proving the analyticity of F (s).

♠ Theorem:
The Laplace transform F (s) is analytic in the region of uniform conver-

gence of the corresponding Laplace integral (13.32).

Proof We first recall that for F (s), there is a region of uniform convergence
in the s-plane and then we perform a contour integration with respect to s
over an arbitrary simple closed path C in this region. Owing to the uniform
convergence property, the order of integration may be inverted so that we
have ∮

C

F (s)ds =
∫ ∞

0

f(x)
(∮

C

e−sxds

)

dx = 0.

which gives us zero because Cauchy’s integral formula means that
∮

C

e−sxds = 0.

Since the path of C is arbitrary in the region of uniform convergence, Mor-
era’s theorem establishes that F (s) is analytic inside the region of uniform
convergence of its corresponding Laplace integral. ♣

13.4 Inverse Laplace Transform

13.4.1 The Two-Sided Laplace Transform

This section describes the inverse Laplace transformation. Intuitively un-
derstood, the inverse Laplace transform L−1[F (s)] of a function F (s) is a
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function f(x) whose Laplace transform is F (s). Nevertheless, actual oper-
ations represented by the operator L−1 take some time to develop. To set
to the explicit formula for manipulating the inverse transformation, we first
introduce another kind of Laplace transform:

♠ Two-sided Laplace transform:
If the improper integral

∫ ∞

−∞
f(x)e−sxdx (13.33)

exists, it is called the two-sided Laplace transform (or bilateral
Laplace transform), designated by F(s) = L[f(x)].

It is easy to determine the region of convergence of such an integral. Observe
that

L[f(s)] =
∫ 0

−∞
f(x)e−sxdx+

∫ ∞

0

f(x)e−sxdx. (13.34)

The second integral is an ordinary Laplace integral so that it converges on a
half-plane right to a fixed point denoted by x = σc1. By the change of variable
x = −u the first integral becomes

∫ 0

−∞
f(x)e−sxdx =

∫ ∞

0

f(−u)esudu.

Here, the latter integral is also an ordinary Laplace integral, although s has
been replaced by −s. Hence, its region of convergence is a half-plane left to
a point, say x = σc2. As a result, the common part of the two half-planes,
σc1 < Re(s) < σc2, forms the region of convergence of the integral (13.34) as
depicted in Fig. 13.9.

Remark. Typically, the range of convergence of (13.34) forms a vertical strip
with a finite interval, but may be a right half plane, a left half-plane, the
whole s-plane, a single point, or fail to exist.

Example We show that the function 1/(s2+s) can be expressed as a two-sided
Laplace integral. We readily see that

1
s(s+ 1)

=
1
s

− 1
s+ 1

.
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sIm

sRe
1Cσ 2Cσ0

Fig. 13.9. Overlapping region: the region of convergence of the two-sided Laplace
integral

We know that
1

s+ 1
=
∫ ∞

0

e−xe−sxdx for σ > −1 (13.35)

and
1
s

=
∫ ∞

0

e−sxdx =
∫ 0

−∞
esxdx for σ > 0

the latter and that can be rewritten as

1
s

=
∫ 0

−∞
e−sx(−1)dx for σ < 0. (13.36)

From (13.35) and (13.36), we obtain

1
s(s+ 1)

=
1
s

− 1
s+ 1

=
∫ ∞

−∞
f(x)e−sxdx,

where

f(x) =
{

−e−x, 0 < x < ∞,
−1, −∞ < x < 0,

which means that 1/(s2 + s) = L[f(x)]. The interval of convergence is seen to
be −1 < σ < 0. example

13.4.2 Inverse of the Two-Sided Laplace Transform

Having introduced the two-sided Laplace transform, we are ready to undertake
the inverse Laplce transformation. We first observe that the two-sided Laplace
transform

F(s) =
∫ ∞

−∞
f(x)e−sxdx (13.37)
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is identical with the Fourier transform

F(σ + iω) =
∫ ∞

−∞
f(x)e−σxe−iωxdx

if we regard the real number σ as fixed. We use the inverse Fourier trans-
formation to yield

f(x)e−σx =
1
2π

∫ ∞

−∞
F(σ + iω)eiωxdω,

or equivalently,

f(x) =
1
2π

∫ ∞

−∞
F(σ + iω)eσxeiωxdω. (13.38)

We then replace σ + iω by s, keeping in mind that s should lie on the ver-
tical line with the abscissa Re(s) = σ. Then the integral (13.38) can be
regarded as a contour integral along the vertical line Re(s) = σ. On this
contour,

ds = idω,

so the integral (13.38) becomes

f(x) =
1

2πi

∫ σ+i∞

σ−i∞
F(s)esxds (Re(s) = σ is fixed). (13.39)

This result provides a clue for evaluating the explicit form of f(x) from its
two-sided Laplace transform F(s).

The result (13.39) is not yet satisfying. We should recall that f(x) is
not determined uniquely by F(s) through (13.39) unless the location of the
point x = σ is specified (see Exercise 3 in Sect. 13.4). If we know in advance
that σ lies in the region of convergence of the two-sided integral given by
(13.37), i.e., the strip of convergence, f(x) is uniquely determined by (13.39).
However, if σ used in (13.39) is set outside this strip, the integral of (13.39)
is altered quantitatively because the integration contour passes over one or
more singular points of F(s). Thus for us to be able to use equation (13.39),
we must know the region of convergence of the Laplace integral of f(x) before
we can fix the real number σ. If only F(s) is given, we will not be able to
locate this region, and not be able to obtain f(x) because we will not know
where to put σ. These caveats lead to the following theorem:

♠ Theorem:
The inverse of the two-sided Laplace transform
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f(x) =
1

2πi

∫ σ+i∞

σ−i∞
F(s)e−sxds (Re(s) = σ is fixed)

determines f(x) uniquely only if we know where σ should be located.

13.4.3 Inverse of the One-Sided Laplace Transform

Let us develop the theory that correspond to the above for the one-sided
transform. We compare the two-sided transform L[f(x)] and its one-sided
counterpart L[f(x)], where f(x) is the same function in both cases and is
defined for all x. From the definitions of the one- and two-sided transforms,
it is evident that

F (s) = L[f(x)] = L[f(x)θ(x)],

where θ(x) is the step function. This implies that

f(x)θ(x) =
1

2πi

∫ σ+i∞

σ−i∞
F (s)esxds (σ is fixed). (13.40)

Here, σ must be to the right of all the singularities of F (s) in order for the
integral in (13.40) to converge. As a consequence, we have arrived at the
following theorem:

♠ The inverse Laplace transformation:
If the function F (s) defined by

F (s) =
∫ ∞

0

e−sxf(x)dx

is analytic for Re(s) > σc, then f(x) for x > 0 is uniquely determined by

f(x) = lim
ω→∞

1
2πi

∫ σ+iω

σ−iω

esxF (s)ds,

where σ is arbitrary for all σ > σc.

13.4.4 Useful Formula for Inverse Laplace Transformation

In contrast to the situation with the inverse Fourier transformation, the use of
the inverse Laplace transformation formula is less convenient. This is primarily
because the calculation of the complex integral
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∫ σ+i∞

σ−i∞
esxF (s)ds

can be rather complicated. In this subsection, we present a simple and natural
method of computing integrals of this form that is based on the residue
theorem.

Suppose that F (s) is analytic on the domain Re(s) > σc. We wish to
compute

f(x) = lim
ω→∞

1
2πi

∫ σ+iω

σ−iω

esxF (s)ds, x > 0.

No general method for doing this exists, but it is possible to evaluate this
integral under certain conditions on F (s). Suppose that F (s) is analytic on the
entire complex plane, except at a finite number of singularities s1, s2, · · · , sn

satisfying
Re(sj) < σc, j = 1, 2, · · · , n.

Figure 13.10 is a sketch for this situation. Let σ > σc and let R > 0 be a
real number sufficiently large that the left half-circle CR with center s = σ
and radius R encloses all the points s1, s2, · · · , sn. Devide CR into the two
segments:

IR = {s ∈ C : s = σ + iω,−R < ω < R},

ΓR = {s ∈ C : |s− σ| = R,Re(s) ≤ σ}.

σ
Cσ0

3s

2s

1s

R

RI

RΓ

Fig. 13.10. A finite number of singularities sj of F (s) enclosed by the left half-circle
CR composed of ΓR and IR
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By the residue theorem,
∮

CR

esxF (s)ds =
n∑

j=1

Res [esxF (s); sj ] .

The right-hand side is independent of R, if R is sufficiently large. From CR =
ΓR ∪ IR, it follows that

∮

CR

esxF (s)ds =
∫

ΓR

esxF (s)ds+
∫

IR

esxF (s)ds.

Clearly,

lim
M→∞

∫ σ+iM

σ−iM

esxF (s)ds = lim
R→∞

∫

IR

esxF (s)ds.

Therefore if, by chance, we have

lim
R→∞

∫

ΓR

esxF (s)ds = 0, (13.41)

then we obtain

f(x) = lim
M→∞

1
2πi

∫ σ+iM

σ−iM

esxF (s)ds =
n∑

j=1

Res [esxF (s); sj ] .

Unfortunately, condition (13.41) does not hold for every F . The next theorem
presents a sufficient condition on F under which (13.41) holds true.

♠ Theorem:
Let F be an analytic function on the complex plane except at a finite

number of points (if they exist) and let ΓR be as above. If

lim
R→∞

max
s∈ΓR

|F (s)| = 0,

then
lim

R→∞

∫

ΓR

esxF (s)ds = 0

holds for every x > 0.

Proof This theorem is a reinterpretation of Jordan’s lemma given in
Sect. 9.2.4. ♣

An immediate consequence of this theorem is the following:
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♠ Theorem:
Let F be an analytic function on the complex plane except at a finite

number of points s1, s2, · · · , sn, satisfying Re(sj) < σ for all j. If

lim
R→∞

max
s∈CR

|F (s)| = 0, (13.42)

then the inverse Laplace transform of F (s) is given by

f(x) =
n∑

j=1

Res [esxF (s); sj ] . (13.43)

13.4.5 Evaluating Inverse Transformations

Below are several examples of actual evaluations of inverse Laplace transforms
via the residue formula (13.43).

Example 1. Assume a complex-valued function

F (s) =
1

s2 − 3s+ 2

that has two simple poles s1 = 1 and s2 = 2 We thus choose σ = 3 and set

CR = {s : |s− 3| = R,Re(s) ≤ 3}

in order to make use of equation (13.43). Before doing so, we must check that
condition (13.42) is satisfied. Observe that

max
s∈CR

|F (s)| = max
s∈CR

∣
∣
∣
∣

1
(s− 1)(s− 2)

∣
∣
∣
∣
.

If we let R = |s− 3| go to infinity, then |s− 1| and |s− 2| will also converge
to infinity, so that

lim
R→∞

max
s∈CR

1
|(s− 1)(s− 2)| = 0.

Thus (13.43) provides the desired result:

f(x) = Res
[

esx

(s− 1)(s− 2)
; s = 1

]

+ Res
[

esx

(s− 1)(s− 2)
; s = 2

]

=
esx

s− 2

∣
∣
∣
∣
s=1

+
esx

s− 1

∣
∣
∣
∣
s=2

=
ex

1 − 2
+

e2x

2 − 1
= −ex + e2x. ♣
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Remark. The above example can be solved more easily by rewriting F using
partial fractions F (s) = 1/(s− 2) − 1/(s− 1), followed by applying known
equations to get

f(x) = L−1[F (s)] = L−1

[
1

s− 2

]

− L−1

[
1

s− 2

]

= e2x − ex.

Example 2. It should be cautioned that equation (13.43) is valid only when
the condition (13.42) is satisfied. As a negative example, let us consider the
step function

θ(x) =
{

1, x > c,
0, x < c,

with c > 0, whose Laplace transform reads

F (s) = L[θ(x)] =
e−cs

s
(s > 0),

We would like to derive θ(x) from F (s) through the inverse transformation
given by

f(x) = L−1[F (s)] = lim
M→∞

1
2πi

∫ σ+iM

σ−iM

esxe−cs

s
ds (0 < x �= c).

However, we cannot use (13.43) to obtain f(x), since the function e−cs/s does
not satisfy condition (13.42). In fact, if we set s = σ −R, then

max
s∈CR

∣
∣
∣
∣

e−cs

s

∣
∣
∣
∣
≥ ecRe−cσ

|σ −R| → ∞ (R → ∞)

since c > 0.

Remark. If we were to use (13.43) in Example 2, we would obtain a wrong
result. The function e−cs/s has a single simple pole at s = 0, so

Res
[
esxe−cs

s
; s = 0

]

= 1

for each value of x. This is, of course, not the step function θ(x).

Example 3. Next we consider the inverse Laplace transformation L−1[F (s)] of
the function

F (s) =
1

s+ a
(a > 0).
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The F (s) has a first-order pole at s = −a. The residue of F (s)esx at s = −a
reads

Res [F (s)esx, −a] = lim
s→−a

(s+ a)F (s)esx = lim
s→−a

esx = e−ax.

Hence, we have
f(x) = L−1[F (s)] = e−ax (x > 0).

13.4.6 Inverse Transform of Multivalued Functions

Some caution must be taken when considering the inverse Laplace transform of
multivalued functions. As an example, we consider a multivalued function
F (s) = 1/

√
s, and examine its inverse transform given by

f(x) =
1

2πi

∫

C

esx

√
s
ds, (13.44)

where the symbol
√
s represents values of the original double-valued function

s1/2 in the same sheet of the Riemann surface. The function 1/
√
s has a

branch point at s = 0, so among many choices we set its branch cut at
(−∞, 0].

Since the function 1/
√
s approaches zero as |s| → ∞, Jordan’s lemma

is applicable. Nevertheless, the problem becomes rather complicated owing to
the presence of the branch cut. To perform the integration of (13.44), we close
the path Γ by a circle to the left, bypassing the branch cut in the manner
shown in Fig. 13.11. No singularities are enclosed by the closed curve consising
of C ′ + Γ + γ +C ′′, in which C ′ is the vertical line, C ′′ is the pair of parallel

σ

C′
Γ

C ′′

γ

R

Fig. 13.11. Closed loop employed in evaluating the integral (13.44)
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horizontal segments, γ is the small circle of radius δ, and Γ is a semicircle
from which the infinitesimal gap at the branch cut has been omitted. Hence,
we have ∫

C′

esx

√
s
ds+

∫

Γ

esx

√
s
ds+

∫

γ

esx

√
s
ds+

∫

C′′

esx

√
s
ds = 0.

In the limit R → ∞, the integral over Γ vanishes and the path C ′ reduces to
C as given in (13.44), which implies that

f(x) = lim
R→∞

1
2πi

∫

C

esx

√
s
ds = lim

R→∞

−1
2πi

∫

C′′+γ

esx

√
s
ds. (13.45)

Thus our remaineing task is to evaluate the last term in (13.45).
Recall that

√
s is double-valued so that it is discontinuous across the

branch cut. Consequently, on the parallel segments C ′′,
√
s = i

√
ρ and − i

√
ρ with ρ = |s|,

above and below the branch cut, respectively. On the small circle γ,
√
s =

√
δeiφ/2,

where −π < φ ≤ π, and ds = −dρ on each of the straight lines. Thus, we have

∫

C′′+γ

esx

√
s
ds = −i

∫ δ

R−σ1

e−ρx

√
ρ

(−dρ) + i

∫ R−σ1

δ

e−ρx

√
ρ

(−dρ)

+i
δ√
δ

∫ −π

π

e(δ cos φ)xei(δ sin φ)xeiφ

eiφ/2
dφ.

Let δ go to zero and R approach infinity; then, the first two integrals on
the right-hand side combine into a single integral. The last integral on the
right-hand side approaches zero. As a result, we have

lim
δ→0

lim
R→∞

∫

C′′+γ

esx

√
s
ds = −2i

∫ ∞

0

e−ρx

√
ρ
dρ,

which implies that

f(x) =
1
π

∫ ∞

0

e−ρx

√
ρ
dρ.

By substituting ρx = u2, the right-hand side becomes

1
π

∫ ∞

0

e−ρx

√
ρ
dρ =

2
π
√
x

∫ ∞

0

e−u2
du =

1√
πx

.
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Eventually, we obtain

f(x) = L−1

(
1√
s

)

=
1√
πx

,

which is consistent with the earlier result presented in (13.15).

Exercises

1. Find (a) L−1[5/(p+ 2)] and (b) L−1[1/ps] where s > 0.

Solution: (a) Recall that L[eax] = 1/(p− a); hence L−1[1/(p−
a)] = eax. It follows that

L−1

[
5

p+ 2

]

= 5L−1

[
1

p+ 2

]

= 5e−2x.

(b) Recall that

L[xk] =
∫ ∞

0

e−sxxkdx =
Γ (k + 1)
pk+1

.

From this we have

L

[
xk

Γ (k + 1)

]

=
1

pk+1
,

so

L−1

[
1

pk+1

]

=
xk

Γ (k + 1)
.

If we now let k + 1 = s, then

L−1

[
1
ps

]

=
xs−1

Γ (s)
. ♣

2. Solve the differential equation

f ′′(x) + f(x) = 1 (13.46)

with the initial conditions

f(0) = f ′(0) = 0

using the Laplace transformation.
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Solution: Taking the Laplace transform of both sides of (13.46),
we obtain

L[f ′′(x)] + L[f(x)] = L[1]. (13.47)

Substituting the result

L[f ′′(x)] = s2L[f(x)] − s · f(0) − f ′(0) = s2L[f(x)]

and L[1] = 1/s into (13.47) yields

s2L[f(x)] + L[f(x)] =
1
s
,

i.e.,

L[f(x)] = F (s) =
1

s(s2 + 1)
=

1
s

− s

s2 + 1
.

Thus we see that

f(x) = L−1[F (s)] = L−1

[
1
s

]

− L−1

[
s

s2 + 1

]

=
{

1 − cosx for x ≥ 0,
0 for x < 0,

which is the solution of the initial value problem originally given
by (13.47). ♣

3. Derive the two-sided Laplace transform of the following three functions:

fa(x) =
{
e−2x − e−x, x > 0,
0, x < 0, fb(x) =

{
e−2x, x > 0,
e−x, x < 0,

and

fc(x) =
{

0, x > 0,
e−2x − e−x, x < 0.

Solution: The two-sided Laplace transform read, respectively,

L[fa(x)] =
1

s+ 2
− 1
s+ 1

for σ > −1,

L[fb(x)] =
1

s+ 2
− 1
s+ 1

for − 2 < σ < −1,

L[fc(x)] =
1

s+ 2
− 1
s+ 1

for σ < −2.

Clearly, all the s functions are the same and may be labeled F(s)
(although the region of convergence is different). This implies that
the inverse of a two-sided transform is uniquely determined only
after the location of σ is fixed. ♣
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13.5 Applications in Physics and Engineering

13.5.1 Electric Circuits I

The most familiar applications of Laplace transformations in the physical sci-
ences are encountered in analyses of electric circuits. Consider the RC circuit
depicted in Fig. 13.12. The electric charge q(t) deposited in the condenser
with capacitance C is governed by the equation

R
dq(t)
dt

+
q(t)
C

= v(t), q(t = 0) = 0, (13.48)

where R is a resistance and v(t) is the external voltage. We set a rectangular
voltage defined by (see Fig. 13.13)

v(t) = v0 × [θ(t− a) − θ(t− b)] (a < b) (13.49)

with the step function

θ(t− a) =
{

0, t < a,
1, t ≥ a.

C

R
( )

∼
tv

Fig. 13.12. Diagram of an RC circuit

t

( )tv

a b

0v

0

Fig. 13.13. The time dependence of a rectangular voltage applied to the RC circuit
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We now want to solve the differential equation (13.48) with respect to q(t).
To do this, we apply the Laplace transform to both sides of (13.48) and make
use of the symbol Q(s) ≡ L[q(t)]. Straightforward calculation yields

sQ(s) +
Q(s)
τ

=
v0

R

(
e−as

s
− e−bs

s

)

,

where τ ≡ RC is called a damping time constant. Hence, we have

Q(s) =
v0

R

1
s+ τ−1

(
e−as

s
− e−bs

s

)

= Cv0

(
1
s

− 1
s+ τ−1

)
(

e−as − e−bs
)

= Cv0

(
e−as

s
− e−bs

s
− e−as

s+ τ−1
+

e−bs

s+ τ−1

)

.

Then we use the inverse transform to obtain

q(t) = L−1[Q(s)]

= Cv0

[

θ(t− a) − θ(t− b) − e−(t−a)/τθ(t− a) + e−(t−b)/τθ(t− b)
]

,

=

⎧

⎪⎪⎨

⎪⎪⎩

0 t < a,

cv0

[

1 − e−(t−a)/τ
]

a < t < b,

cv0

[

eb/τ − ea/τ
]

e−t/τ t > b.

The explicit time-dependence of the charge q(t) given by (13.50) is illustrated
in Fig. 13.14, in which various separations b− a are taken.

Fig. 13.14. Time dependence of the electric charge q(t) described by (13.50), which
is accumulated in the condenser in the RC circuit. The parameter a introduced in
(13.49) is fixed at a = 1.0
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13.5.2 Electric Circuits II

Next, in order to illustrate the use of convolution integrals in applications
of Laplace transforms, we solve the previous equation (13.48) with respect to
the current i(t) instead of charge q(t). We consider the differential equation

Ri(t) +
1
C

∫ t

0

i(u)du = v(t), (13.50)

with the rectangular voltage (13.49). The integral term on the left-hand side
in (13.50) is rewritten as a convolution integral:

∫ t

0

i(u)du =
∫ t

0

i(u)θ(t− u)du = θ(t) ∗ i(t), (13.51)

whose Laplace transform reads

L[θ(t) ∗ i(t)] = L[θ(t)] · L[i(t)] =
1
s
I(s).

Hence, applying the Laplace transformation of both sides of (13.50) yields

RI(s) +
I(s)
Cs

=
v0

s

(

e−as − e−bs
)

, (13.52)

which implies

I(s) =
v0

R

e−as − e−bs

s+ τ−1
(τ = RC). (13.53)

Fig. 13.15. Time dependence of the current i(t) in the RC circuit described by
(13.54). The parameter a introduced in (13.49) is fixed at a = 1.0
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Using the inverse transformaion, we finally set

i(t) = L−1 [I(s)]

=
v0

R

[

e−(t−a)/τθ(t− a) − e−(t−b)/τθ(t− b)
]

=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 t < a,

v0

R
ea/τe−t/τ a ≤ t < b,

v0

R

(

ea/τ − eb/τ
)

e−t/τ t ≥ b.

Figure 13.15 illustrates the time dependence of the current i(t).
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Wavelet Transformation

Abstract Similar to the Fourier and Laplace transforms, a wavelet transform is an
integral transform of a function by using “wavelets.” A wavelet is a mathematical
mold with a finite-length and fast-decaying oscillating waveform, which is used to
divide a given function into different scale components. Wavelet transforms have
certain advantages over conventional Fourier transforms, as they can reveal the
nature of a function in the time and frequency domains simultaneously.

14.1 Continuous Wavelet Analyses

14.1.1 Definition of Wavelet

This short chapter covers the minimum ground for understanding wavelet
analysis. The concept of wavelet originates from the study of signal analysis,
i.e., from the need in certain cases to analyze a signal in the time and frequency
domains simultaneously. The crucial advantage of wavelet analyses is that
they allow us to decompose complicated information contained in a signal
into elementary functions associated with different time scales and different
frequencies and to reconstruct it with high precision and efficiency. In the
following discussions, we first determine what constitutes a wavelet and then
describe how it is used in the transformation of a signal.

The primary question concerns the definition of a wavelet:

♠ Wavelet:
A wavelet is a real-valued function ψ(t) having a localized waveform

that satisfies the following criteria:

1. The integral of ψ(t) is zero:
∫ ∞

−∞
ψ(t)dt = 0.

2. The square of ψ(t) integrates to unity:
∫ ∞

−∞
ψ(t)2dt = 1.
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3. The Fourier transform Ψ(ω) of ψ(t) satisfies the admissibility condi-
tion expressed by

CΨ ≡
∫ ∞

0

|Ψ(ω)|2

ω
dω < ∞. (14.1)

Here, CΨ is called the admissibility constant, whose value depends
on the chosen wavelet.

We restrict our attention to real-valued wavelets, although it is possible to
define complex-valued wavelets as well. Observe that condition 2 above says
that ψ(t) has to deviate from zero at finite intervals of t. On the other hand,
condition 1 tells us that any deviation above zero must be canceled out by a
deviation below zero. Hence, ψ(t) must oscillate across the t-axis like a wave.
The following are the most important two examples of wavelets:

Examples 1. The Haar wavelet (See Fig. 14.1a):

ψ(t) ≡

⎧

⎪⎪⎨

⎪⎪⎩

− 1√
2
, −1 < t ≤ 0,

1√
2
, 0 < t ≤ 1,

0, otherwise.

(14.2)

2. The Mexican hat wavelet (see Fig. 14.1b):

ψ(t) ≡
2
(

1 − t2

σ2

)

e−t2/(2σ2)

√
3σπ1/4

. (14.3)

To form the Mexican hat wavelet (14.3), we start with the Gaussian func-
tion with mean zero and variance σ2:

1.0

0.5

0.0

–0.5

–1.0
–2 –1 0 1 2

t

(a)

Ψ
(t

)

–2 –1 0 1 2

1.0

0.5

0.0

–0.5

–1.0

Ψ
(t

)

t

(b)

Fig. 14.1. (a) The Haar wavelet given by (14.2). (b) The Mexican hat wavelet
given by (14.3) with σ = 1
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f(t) ≡ e−t2/(2σ2)

√
2πσ2

.

If we take the negative of the second derivative of f(t) with normalization
for satisfying condition 2, we obtain the Mexican hat wavelet (14.3). In the
meantime, we proceed with our argument on the basis of that wavelet by
setting σ = 1 and omitting the normalization constant for simplicity.

Remark. We know that all the derivatives of the Gaussian function may be
used as wavelets. The most appropriate one many particular case depends on
the application.

14.1.2 The Wavelet Transform

In mathematical terminology, the wavelet transform is known as a con-
volution; more precisely, it is a convolution of the wavelet function with a
signal to be analyzed. In the convolution process, two parameters are involved
that manipulate the function form of the wavelet. The first is the dilatation
parameter denoted by a, which characterizes the dilation and contraction of
the wavelet in the time domain (see Fig. 14.2a). For the Mexican hat wavelet,
it is the distance between the center of the wavelet and its crossing of the time
axis. The second is the translation parameter b, which governs the move-
ment of the wavelet along the time axis (see Fig. 14.2b). With this notation,
shifted and dilated versions of a Mexican hat wavelet are expressed by

1

0

–1
–4 –2 0 2 4 6 8 10

t

Ψ
(t

)

(a)

1

0

–1
–6 –4 20 4 6

t

Ψ
(t

)

(b)

–2

Fig. 14.2. Translation (a) and dilatation of a wavelet (b)
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ψ

(
t− b

a

)

=

[

1 −
(
t− b

a

)2
]

e−[(t−b)/a]2/2, (14.4)

where we have set σ = 1 in (14.3) and omitted the normalization factor for
simplicity. We are now in a position to define the wavelet transform.

♠ Wavelet transform:
The wavelet transform T (a, b) of a continuous signal x(t) with respect

to the wavelet ψ(t) is defined by

T (a, b) = w(a)
∫ ∞

−∞
x(t)ψ

(
t− b

a

)

dt, (14.5)

where w(a) is an appropriate weight function.

Typically, w(a) is set to 1/
√
a because this choice yields

∫ ∞

−∞

[
1√
a
ψ

(
t− b

a

)]2

dt =
∫ ∞

−∞
ψ(u)2du = 1 with u =

t− b

a
,

i.e., the normalization condition for the square integral of ψ(t) remains invari-
ant, which is why we use this value for the rest of this section.

The dilated and shifted wavelet is often written more compactly as

ψa,b(t) =
1√
a
ψ

(
t− b

a

)

,

so that the transform integral may be written as

T (a, b) =
∫ ∞

−∞
x(t)ψa,b(t)dt. (14.6)

From here on, we use this notation and refer to ψa,b(t) simply as the wavelet.

14.1.3 Correlation Between Wavelet and Signal

Having defined the wavelet and its transform, we are ready to see how the
transform is used as a signal analysis tool. In plain words, the wavelet trans-
form works as a mathematical microscope, where b is the location on the time
series being viewed and a represents the magnification at location b.

Let us look at a simple example evaluating the wavelet transform T (a, b).
Figures 14.3 and 14.4 show the same sinusoidal waves together with Mexican
hat wavelets of various locations and dilations. In Fig. 14.3a, the wavelet is
located on a segment of the signal on which a positive part of the signal
is fairly coincidental with that of the wavelet. This results in a large positive
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1
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)

(a)

(c)
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b1

T
 (

a=
1.

0,
b)

(b)

–4–6 –2 0 2 4 6

1

0

–1

Ψ
(t

)

t

Fig. 14.3. (a), (b) Positional relations between the wavelet (thick) and signal
(thin). The wavelet in (a) located at b1 = π/2 is in phase with the signal, which
results in a large positive value of T (a, b) at b1. The wavelet in (b) located at
b2 = −π/2 is out of phase with the signal, which yields a large negative value of
T (b) at b2. (c) The plot of T (a = 1.0, b) as a function of b

value of T (a, b) in (14.6). In Fig. 14.3b, the wavelet is moved to a new location
where the wavelet and the signal are out of phase. In this case, the convolution
expressed by (14.6) produces a large negative value of T (a, b). In between these
two extrema, the value of T (a, b) decreases from a maximum to a minimum as
shown in Fig. 14.3. The three figures thus clearly demonstrate how the wavelet
transform T (a, b) depends on the translation parameter b of the wavelet of
interest.
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Ψ
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=
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Fig. 14.4. Wavelets with a = 0.33 (a) and a = 4.0 (b), in which b = π/2 is fixed.
The resulting wavelet transform T (a, b = π/2) as a function of a is given in (c)

In a similar way, Fig. 14.4 a–c shows the dependence of T (a, b) on the
dilatation parameter a. When a is quite small, the positive and negative parts
of the wavelet are all convolved by roughly the same part of the signal x(t),
producing a value of T (a, b) near zero (see Fig. 14.4a). Likewise, T (a, b) tends
to zero as a becomes very large (see Fig. 14.4b), since the wavelet covers many
positive and negatively repeating parts of the signal. These latter two results
indicate that when the dilatation parameter a is either very small or very
large compared with the period of the signal, the wavelet transform T (a, b)
gives near-zero values.

Figure 14.5 shows a contour plot of T (a, b) vs. a and b for a sinusoidal
signal

x(t) = sin t,
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where the Mexican hat wavelet has been used. The light and shadowed regions
indicate positive and negative magnitudes of T (a, b), respectively. The near-
zero values of T (a, b) are evident in the plot at both large and small values
of a. In addition, at intermediate values of a, we observe large undulations
in T (a, b) corresponding to the sinusoidal form of the signal. This wavelike
behavior is accounted for by referring back to Figs. 14.3a–b and 14.4a–b,
where wavelets move in and out of phase with the signal.

Therefore, when the wavelet matches the shape of the signal well at a
specific scale and location, the transform value is high. On the other hand, if
the wavelet and the signal do not correlated well, the transform value is low.
Carrying out the process at various signal locations and for various wavelet
scales, we can determine the correlation between the wavelet and the signal.

Remark. In Fig. 14.5, the maxima and minima of the transform occur at an
a scale of one quarter of the period, π/2, of the sine wave x(t) = sin t. This
feature holds in general; correlation between the wavelet ψa,b(t) and the signal
x(t) with a period p becomes a maximum at a = p/4.

8

6

4

2

0

–2

–4

–6

–8

1 2 3 4 5 6

b

a

Fig. 14.5. Contour plot of the wavelet transform T (a, b) of a sinusoidal wave x(t) =
sin t

14.1.4 Actual Application of the Wavelet Transform

The wavelet transformation procedure can be applied to signals that have a
more complicated wave form than a simple sinusoidal wave. Figure 14.6 shows
a signal

x(t) = sin t+ sin 3t
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Fig. 14.6. Wavelet transform T (a, b) of a complicated signal x(t) = sin t + sin 3t

composed of two sinusoidal waves with different frequencies. The wavelet
transform T (a, b) of x(t) is plotted in Fig. 14.6. It is clear that the con-
tribution from the wave with the higher-frequency oscillation appears at a
smaller a scale. This clearly demonstrates the ability of the wavelet transform
to decompose the original signal into its separate components.

14.1.5 Inverse Wavelet Transform

Similar to its Fourier counterpart, there is an inverse wavelet transforma-
tion, that enables us to reproduce the original signal x(t) from its wavelet
transform T (a, b).

♠ Inverse wavelet transform:
If x ∈ L2(R), then f can be reconstructed by equation

x(t) =
1
CΨ

∫ ∞

−∞
db

∫ ∞

0

da

a2
T (a, b)ψa,b(t), (14.7)

where the equality holds almost everywhere.

The proof of the equation is based on the lemma below.

♠ Parseval identity for wavelet transform:
Let Tf (a, b), Tg(a, b) be the wavelet transform of f(t), g(t) ∈ L2(R),

respectively, associated with the wavelet ψa,b(t). Then we have
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∫ ∞

0

da

a2

∫ ∞

−∞
dbTf (a, b)T ∗

g (a, b) = CΨ

∫ ∞

−∞
f(t)g(t)∗dt. (14.8)

This identity is derived in Exercise 4. We are now ready to prove the inverse
transformation (14.7).

Proof (of the inverse wavelet transformation): Assume an arbitrary
real function g(t) ∈ L2(R). It follows from the Parseval identity that

CΨ

∫ ∞

−∞
f(t)g(t)dt =

∫ ∞

−∞
db

∫ ∞

0

da

a2
Tf (a, b)Tg(a, b)

=
∫ ∞

−∞
db

∫ ∞

0

da

a2
Tf (a, b)

∫ ∞

−∞
g(t)ψa,b(t)dt

=
∫ ∞

−∞
dtg(t)

[∫ ∞

−∞
db

∫ ∞

0

da

a2
Tf (a, b)ψa,b(t)

]

.

Since g(t) is arbitrary, the inverse equation (14.7) follows. ♣

14.1.6 Noise Reduction Technique

Suppose that the inverse transformation equation (14.7) is rewritten as

x∗(t) =
1
CΨ

∫ ∞

−∞
db

∫ ∞

a∗

da

a2
T (a, b)ψa,b(t),

the integration range with respect to a in an interval [a∗,∞) with a∗ > 0.
Then, the result x∗(t) obtained on the left-hand side deviates from the original
signal x(t) owing to the lack of information for the scale from a = 0 to a = a∗.
In applications, this deviation property is made use of as a noise reduction
technique.

By way of a demonstration, Fig. 14.7a illustrates a segment of the signal

x(t) = sin t+ sin 3t+R(t)

constructed from two sinusoidal waveforms plus a local burst of noiseR(t). The
transform plot of the composite signal shows the two constituent waveforms
at scales a1 = π/2 and a2 = π/6 in addition to a burst of noise around b = 5.0
in a high-frequency region (i.e., small a scale).

Now we try to remove the high-frequency noise component by means of
the following reconstruction procedure. Figure 14.7b shows a reconstruction
of the signal where we artificially set T (a, b) = 0 for a < a∗. In effect, we are
reconstructing the signal using

x(t) =
1
CΨ

∫ ∞

−∞
db

∫ ∞

a∗

da

a2
T (a, b)ψa,b(t),
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Fig. 14.7. Noise reduction procedure through wavelet transformation. (a) A sig-
nal x(t) = sin t + sin 3t + R(t) with a local burst of noise R(t). (b) The wavelet
transform T (a, b) of the x(t). Noise reduction is accomplished through the inverse
transformation of the T (a, b) by applying an artifical condition of T (a < a∗, b) = 0.
(c) The reconstructed signal x∗(t) from the noise-reduction procedure

i.e., over a range of scales [a∗,∞). The lower integral limit, a∗, is the cut-off
scale indicated by the dotted line in Fig. 14.7b. As a result, the high-frequency
noise component evidently reduces in the reconstructed signal as shown in
Fig. 14.7c. This simple noise reduction method is known as scale-dependent
thresholding.

Exercises

1. Show that the Fourier transform of the Haar wavelet satisfies the admissible
condition (14.1).

Solution: The Fourier transform Ψ(ω) of the Haar wavelet ψ(t)
is given by
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Ψ(ω) =
∫ 1/2

0

e−iωtdt−
∫ 1

1/2

e−iωtdt = ie−iω/2 sin2(ω/4)
ω/4

.

Hence, we have

CΨ =
∫ ∞

0

|Ψ(ω)|2
ω

dω = 16
∫ ∞

0

sin4(ω/4)
ω3

dω < ∞. ♣

2. Prove that the Fourier transform of ψa,b(t) yields Ψa,b(ω) =
√
ae−ibωΨ(aω).

Solution: It readily follows that

Ψa,b(ω) =
1√
a

∫ ∞

−∞
e−iωtψa,b(t)dt =

1√
a

∫ ∞

−∞
e−iωtψ

(
t− b

a

)

dt.

Set u = (t− b)/a in the last integral to obtain

Ψa,b(ω) =
1√
a

∫ ∞

−∞
e−iω·(au+b)ψ(u)adu =

√
ae−ibωΨ(aω). ♣

3. Let ψ(t) be a wavelet and φ(t) be a real, bounded, and integrable function.
Show that the convolution ψ ∗ φ is also a wavelet.

Solution: We first show that ψ ∗ φ ∈ L2(R). Observe that

[ψ(t) ∗ φ(t)]2 =
[∫ ∞

−∞
ψ(t− u)φ(u)du

]2

=
[∫ ∞

−∞
ψ(t− u) φ(u)1/2 φ(u)1/2du

]2

≤
∫ ∞

−∞
ψ(t− u)2 φ(u)du

∫ ∞

−∞
φ(u′)du′.

The integral
∫∞
−∞ φ(u′)du′ is a constant, denoted by A. Integrate

both sides with respect to t to obtain
∫ ∞

−∞
[ψ(t) ∗ φ(t)]2dt ≤ A

∫ ∞

−∞
φ(u)

[∫ ∞

−∞
ψ(t− u)2dt

]

du

= A

∫ ∞

−∞
φ(u)du

∫ ∞

−∞
ψ(t)2dt = A2

∫ ∞

−∞
ψ(t)2dt < ∞,

which clearly indicates that ψ ∗ φ ∈ L2(R). Next we show that the
convolution ψ ∗ φ satisfies the admissibility condition. In fact,

∫ ∞

−∞

|F [ψ ∗ φ]|2
ω

dω =
∫ ∞

−∞

|Ψ(ω)Φ(ω)|2
ω

dω

=
∫ ∞

−∞

|Ψ(ω)|2
ω

sup |Φ(ω)|2dω < ∞.

These two results implys that the convolution ψ ∗φ is a wavelet. ♣
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4. Derive the Parseval identity for the wavelet transform (14.8).

Solution: The transform Tf (a, b) reads

Tf (a, b) =
∫ ∞

−∞
f(t)ψ∗

a,b(t)dt =
1
2π

∫ ∞

−∞
F (ω)

√
ae−ibωΨ(aω)dω,

where we used the fact that Ψa,b(ω) =
√
ae−ibωΨ(aω). Similarly,

we have Tg(a, b) =
1
2π

∫ ∞

−∞
G(ω)

√
ae−ibωΨ(aω)dω. Hence, we have

∫ ∞

0

da

a2

∫ ∞

−∞
dbTf (a, b)Tg(a, b)

=
∫ ∞

0

da

a2

∫ ∞

−∞
db

∫ ∞

−∞
dω

∫ ∞

−∞
dω′ ae

−ib(ω+ω′)

(2π)2
F (ω)G(ω′)Ψ(aω)Ψ(aω′)

=
1
2π

∫ ∞

0

da

a

∫ ∞

−∞
dω

∫ ∞

−∞
dω′F (ω)G(ω′)Ψ(aω)Ψ(aω′)δ(ω + ω′)

=
1
2π

∫ ∞

0

da

a

∫ ∞

−∞
dωF (ω)G(−ω)Ψ(aω)Ψ(−aω).

Since ψ(t) and g(t) are both real, Ψ(−aω) = Ψ(aω)∗ and G(−ω) =
G∗(ω). Thus we have
∫ ∞

0

da

a2

∫ ∞

−∞
dbTf (a, b)Tg(a, b) =

1
2π

∫ ∞

−∞
dωF (ω)G∗(ω)

∫ ∞

0

|Ψ(x)|2

x
dx

= CΨ

∫ ∞

−∞
f(t)g(t)dt,

where x ≡ aω. This completes the proof. ♣

14.2 Discrete Wavelet Analysis

14.2.1 Discrete Wavelet Transforms

Having discussed the continuous wavelet transform, we move on to its discrete
version, known as the discrete wavelet transform. In many applications,
data are represented by a finite number of values, so it is important and often
useful to consider the discrete version of a wavelet transform. We also can use
an efficient numerical algorithm, called the fast wavelet transform, which
allows us to compute the wavelet transform of the signal and its inverse quite
efficiently.

We begin with the definition of a discrete wavelet. In the previous sec-
tion, the wavelet function was defined at scale a and location b as
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ψa,b(t) =
1√
a
ψ

(
t− b

a

)

,

in which the values of parameters a and b can change continuously. We now
want to discretize the values of a and b. One possible way to sample a and b
is to use a logarithmic discretization of the a scale and link this to the size of
the steps taken between b locations. This kind of discretization yields

ψm,n(t) =
1

√
am
0

ψ

(
t− nb0a

m
0

am
0

)

, (14.9)

where the integers m and n control the wavelet dilation and translation
respectively; a0 is a specified fixed dilation step parameter and b0 is the lo-
cation parameter. In the expression (14.9), the size of the translation steps,
Δb = b0a

m
0 , is directly proportional to the wavelet scale, am

0 .
Common choices for discrete wavelet parameters a0 and b0 are 1/2 and

1, respectively. This power-of-two logarithmic scaling of the dilation steps is
known as the dyadic grid arrangement. Substituting a0 = 1/2 and b0 = 1
into (14.9), we obtain the dyadic grid wavelet represented by

ψm,n(t) = 2m/2ψ (2mt− n) . (14.10)

Using the dyadic grid wavelet of (14.10), we arrive at the discrete wavelet
transform of a continuous signal x(t):

♠ Discrete wavelet transform:

Tm,n =
∫ ∞

−∞
x(t)ψm,n(t)dt =

∫ ∞

−∞
x(t)2m/2ψ (2mt− n) dt. (14.11)

Remark. Note that the discrete wavelet transform (14.11) differs from the
discretized approximation of the continuous wavelet transform given by

T (a, b) =
∫ ∞

−∞
x(t)ψ∗

a,b(t)dt �
∞∑

l=−∞
x(lΔt)ψ∗

a,b(lΔt)Δt. (14.12)

In (14.12), the integration variable t is discretized, and a and b are continuous
whose values can be arbitrarily chosen. On the other hand, in the discrete
wavelet transform (14.11), a and b are discretized and t remains continuous.



462 14 Wavelet Transformation

14.2.2 Complete Orthonormal Wavelets

The fundamental question is whether the original signal x(t) can be constructed
from the discrete wavelet transform Tm,n through the relation

x(t) =
∞∑

m=−∞

∞∑

n=−∞
Tm,nψm,n(t). (14.13)

As intuitively understood, the reconstruction equation (14.13) is justified if
the discretized wavelets ψm,n(t) are orthonormal and complete. The com-
pleteness of ψm,n(t) implies that any function x ∈ L2(R) can be expanded by

x(t) =
∞∑

m=−∞

∞∑

n=−∞
cm,nψm,n(t) (14.14)

with appropriate expansion coefficients cm,n. Hence, the orthonormality
∫ ∞

−∞
ψm,n(t)ψm′,n′(t)dt = δm,nδm′,n′ (14.15)

results in cm,n = Tm,n in (14.14) because

Tm,n =
∫ ∞

−∞
x(t)ψm,n(t)dt =

∫ ∞

−∞

[ ∞∑

m′=−∞

∞∑

n′=−∞
cm′,n′ψm′,n′(t)

]

ψm,n(t)dt

=
∞∑

m′=−∞

∞∑

n′=−∞
cm′,n′

∫ ∞

−∞
ψm,n(t)ψm′,n′(t)dt

=
∞∑

m′=−∞

∞∑

n′=−∞
cm′,n′δm,nδm′,n′ = cm,n.

In general, however, the wavelets ψm,n(t) given by (14.9) are neither orthonormal
nor complete. We thus arrive at the following theorem:

♠ Validity of the inverse transformation formula:
The inverse transformation formula (14.13) is valid only for a limited

class of sets of discrete wavelets {ψm,n(t)} that is endowed with both or-
thonormality and completeness.

The simplest example of such desired wavelets is the Haar discrete wavelet
presented below.

Examples The Haar discrete wavelet is defined by

ψm,n(t) = 2m/2ψ(2mt− n),
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where

ψ(t) =

⎧

⎨

⎩

1 0 ≤ t < 1/2,
−1 1/2 ≤ t < 1,
0 otherwise.

This wavelet is known to be orthonormal and complete; its orthonormality is
verified in Exercise 1.

14.2.3 Multiresolution Analysis

We know from Sect. 14.2.2 that in order to use equation (14.13), we must find
an appropriate set of discrete wavelets {ψm,n} that possess both orthonormal-
ity and completeness. In the remainder of this section, we describe a frame-
work for constructing such discrete wavelets that is based on the concept of
multiresolution analysis.

Multiresolution analysis involves a particular class of a set of function
spaces. The greatest peculiarity is that it establishes a nesting structure of
subspaces of L2(R) that allows us to construct a complete orthonormal set of
functions (i.e., an orthonormal basis) for L2(R). The resulting orthonormal
basis is simply the discrete wavelet ψm,n(t) that yields the reconstruction
equation (14.13).

♠ Multiresolution analysis: A multiresolution analysis involves a set
of function spaces that consists of a sequence {Vj : j ∈ Z} of closed
subspaces of L2(R). Here the subspaces Vj satisfy the following conditions:

1. · · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 · · · ⊂ L2(R).

2.
⋂∞

j=−∞ Vj = {0}.
3. f(t) ∈ Vj if and only if f(2t) ∈ Vj+1 for all integers j.

4. There exists a function φ(t) ∈ V0 such that the set {φ(t− n), n ∈ Z}
is an orthonormal basis for V0.

The function φ(t) introduced above is called the scaling function (or father
wavelet). It should be emphasized that the above definition gives no informa-
tion as to the existence of (or the way to construct) the function φ(t) satisfying
condition 4. However, once we find such a function φ(t), we can establish a
multiresolution analysis {Vj} by defining the function space V0 spanned by
the orthonormal basis {φ(t − n), n ∈ Z} and then forming other subspaces
Vj (j �= 0) successively by using the property denoted in condition 3. If this is
achieved, we say that our scaling function φ(t) generates the multiresolution
analysis {Vj}.
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Remark. There is no straightforward way to construct a scaling function φ(t)
or, equivalently, a multiresolution analysis {Vj}. Nevertheless, many kinds of
scaling functions have been discovered by means of sophisticated mathemat-
ical techniques. Here we omit the details of the derivations and just refer to
the resulting scaling function at need.

Examples Consider the space Vm of all functions in L2(R) that are constant
in each interval [2−mn, 2−m(n + 1)] for all n ∈ Z. Obviously, the space Vm

satisfies conditions 1–3 of a multiresolution analysis. Furthermore, it is easy
to see that the set {φ(t − n), n ∈ Z} depicted in Fig. 14.8, which is defined
by

φ(t) =
{

1, 0 ≤ t ≤ 1,
0, otherwise, (14.16)

satisfies condition 4. Hence, any function f ∈ V0 can be expressed by

f(t) =
∞∑

n=−∞
cnφ(t− n),

with appropriate constants cn. Thus, the spaces Vm consist of the multireso-
lution analysis generated by the scaling function (14.16).

14.2.4 Orthogonal Decomposition

The importance of a multiresolution analysis lies in its ability to construct an
orthonormal basis (i.e., a complete orthonormal set of functions) for L2(R).

t

t

t

t

φ (t−1)

φ (2t−1)

φ (2t+1)

φ (2t+2)

φ (2t)t

φ (t)

t

φ (t+1)

0
t

1/2−1 1 3/2 2−1/2 0 1/2−1 1 3/2 2−1/2

0 1/2−1 1 3/2 2−1/2

0 1/2−1 1 3/2 2−1/2

0 1/2−1 1 3/2 2−1/2

0 1/2−1 1 3/2 2−1/2

0 1/2−1 1 3/2 2−1/2

(a) Orthonormal basis for ν0 (b) Orthonormal basis for ν1

Fig. 14.8. Two different sets of functions: V0 and V1
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In order to prove this statement, we first recall that a multiresolution analysis
{Vj} satisfies the relation

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ L2.

We now define a space W0 as the orthogonal complement of V0 and V1,
which yields

V1 = V0 ⊕ W0. (14.17)

The space W0 we have introduced is called the wavelet space of zero order:
the reason for the name is clarified in Sect. 14.2.5. The relation (14.17) extends
to

V2 = V1 ⊕ W1 = V0 ⊕ W0 ⊕ W1 (14.18)

or, more generally, it gives

L2 = V∞ = V0 ⊕ W0 ⊕ W1 ⊕ W2 ⊕ · · · , (14.19)

where V0 is the initial space spanned by the set of functions {φ(t − n), n ∈
Z}. Figure 14.9 illustrates the nesting structure of the spaces Vj and Wj for
different scales j.

Since the scale of the initial space is arbitrary, it can be chosen at a higher
resolution such as

L2 = V5 ⊕ W5 ⊕ W6 ⊕ · · · ,
or at a lower resolution such as

L2 = V−3 ⊕ W−3 ⊕ W−2 ⊕ · · · ,

or even at negative infinity, where (14.19) becomes

0ν

+ =
0W 1ν

0ν 1ν 2ν 3ν
2L

• • • • • •

Fig. 14.9. Hierarchical structure of the spaces Vj and Wj as subspaces of L2
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L2 = · · · ⊕ W−1 ⊕ W0 ⊕ W1 ⊕ · · · . (14.20)

The expression (14.20) is referred to as the orthogonal decomposition of
the L2 space and indicates that any function x ∈ L2(R) can be decomposed
into the infinite sum of gj ∈ Wj :

x(t) = · · · + g−1(t) + g0(t) + g1(t) + · · · . (14.21)

14.2.5 Constructing an Orthonormal Basis

Let us further examine the orthogonal property of the wavelet spaces {Wj}.
From (14.17) and (14.18), we have

W0 ⊂ V1 and W1 ⊂ V2.

In view of the definition of the multiresolution analysis {Vj}, it follows that

f(t) ⊂ V1 ⇐⇒ f(2t) ⊂ V2,

so
f(t) ∈ W0 ⇐⇒ f(2t) ∈ W1. (14.22)

Furtheremore, condition 4 in Sect. 14.2.3 results in

f(t) ∈ W0 ⇐⇒ f(t− n) ∈ W0 for any n ∈ Z. (14.23)

The two results (14.22) and (14.23) are ingredients for constructing the or-
thonormal basis of L2(R) that we are looking for, as demonstrated
below.

We first assume that there exists a function ψ(t) that leads to an orthonor-
mal basis {ψ(t− n), n ∈ Z} for the space W0. Then, if we use the notation

ψ0,n(t) ≡ ψ(t− n) ∈ W0,

it follows from (14.22) and (14.23) that its scaled version defined by

ψ1,n(t) =
√

2ψ(2t− n)

serves as an orthonormal basis for W1. The term
√

2 was introduced to keep
the normalization condition

∫ ∞

−∞
ψ0,n(t)2dt =

∫ ∞

−∞
ψ1,n(t)2dt = 1.

By repeating the same procedure, we find that the function

ψm,n(t) = 2m/2ψ(2mt− n) (14.24)
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constitutes an orthonormal basis for the space Wm. Applying these results to
the expression (14.21), we have for any x ∈ L2(R),

x(t) = · · · + g−1(t) + g0(t) + g1(t) + · · ·

= · · · +
∞∑

n=−∞
c−1,nψ−1,n(t) +

∞∑

n=−∞
c0,nψ0,n(t) +

∞∑

n=−∞
c1,nψ1,n(t) + · · ·

=
∞∑

m=−∞

∞∑

n=−∞
cm,nψm,n(t). (14.25)

Hence, the family ψm,n(t) represents an orthonormal basis for L2(R). The
above arguments are summarized by the following theorem:

♠ Theorem:
Let {Vj} be a multiresolution analysis and define the space W0 by W0 =

V1\V0. If a function ψ(t) that leads to an orthonormal basis {ψ(t−n), n ∈
Z} for W0 is found, then the set of functions {ψm,n, m, n ∈ Z} given by

ψm,n(t) = 2m/2ψ(2mt− n)

constitutes an orthonormal basis for L2(R).

Emphasis is placed on the fact that since ψm,n(t) is the orthonormal basis
for L2(R), the coefficients cm,n in (14.25) are identical to the discrete wavelet
transform Tm,n given by (14.11) (see Sect. 14.2.2). Therefore, the function
ψ(t) we introduce here is identified with the wavelet in the framework of
continuous and discrete wavelet analysis, such as the Haar and the Mexican
hat wavelets. In this sense, each Wm is referred to as the wavelet space and
the function ψ(t) is sometimes called the mother wavelet.

14.2.6 Two-Scale Relations

The preceding argument suggests that an orthonormal basis {ψm,n} for L2(R)
can be constructed by specifying the explicit function form of the mother
wavelet ψ(t). Thus the remaining task is to develop a systematic way of
determining the mother wavelet ψ(t) that leads to an orthonormal basis
{ψ(t − n) n ∈ Z} for the space W0 = V1\V0 contained in a given mul-
tiresolution analysis. We shall see that the ψ(t) can be found by examin-
ing the properties of the scaling function φ(t); we should recall that φ(t)
yields an orthonormal basis {φ(t − n) n ∈ Z} for the space V0. (In this
context, the space Vj is sometimes referred to as the scaling function
space.)
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In this subsection, we make reference to an important feature of the scal-
ing function φ(t) called the two-scale relation, which plays a key role in
constructing the mother wavelet ψ(t) of a given multiresolution analysis. We
already know that all the functions in Vm are obtained from those in V0

through scaling by 2m. Applying this result to the scaling function denoted
by

φ0,n(t) ≡ φ(t− n) ∈ V0,

we find that
φm,n(t) = 2m/2φ(2mt− n), m ∈ Z (14.26)

is an orthonormal basis for Vm. In particular, since φ ∈ V0 ⊂ V1 and φ1,n(t) =√
2φ(2t− n) is an orthonormal basis for V1, φ(t) can be expanded by φ1,n(t).

This is formally stated in the following theorem:

♠ Two-scale relation:
If the scaling function φ(t) generates a multiresolution analysis {Vj}, it

satisfies the recurrence relation:

φ(t) =
∞∑

n=−∞
pnφ1,n(t) =

√
2

∞∑

n=−∞
pnφ(2t− n), (14.27)

where
pn =

∫ ∞

−∞
φ(t)φ1,n(t)dt. (14.28)

This recurrence equation is called the two-scale relation of φ(t) and the
coefficients pn are called the scaling function coefficients.

Remark. The two-scale relation is also referred to as the multiresolution
analysis equation, the refinement equation, or the dilation equation,
depending on the context.

Examples Consider again the space Vm of all functions in L2(R) that are
constant on intervals [2−mn, 2−m(n + 1)] with n ∈ Z. This multiresolution
analysis is known to be generated by the scaling function φ(t) of (14.16).
Substituting (14.16) into (14.28), we obtain

p0 = p1 =
1√
2

and pn = 0 for n �= 0, 1.

Thus the two-scale relation reads

φ(t) = φ(2t) + φ(2t− 1).
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This means that the scaling function φ(t) in this case is a linear combination
of its contracted versions as depicted in Fig. 14.10.

( )t2φ

0
t

1/2 1

( )12 −tφ

0
t

1

( )tφ

0
t

1

= +
1/2 1/2

Fig. 14.10. Two-scale relation of φ(t)

14.2.7 Constructing the Mother Wavelet

We are now in a position to determine the mother wavelet ψ(t) that enables
us to establish an orthonormal basis {ψ(t−n), n ∈ Z} for L2(R). Recall that
a mother wavelet ψ(t) = ψ0,0(t) resides in a space W0 spanned by the next
subspace of the scaling function V1, i.e., W0 ⊂ V1. Hence, in the same context
as in the previous subsection, ψ(t) can be represented by a weighted sum of
the shifted scaling function φ(2t) by

ψ(t) =
∞∑

n=−∞
qn

√
2φ(2t− n), n ∈ Z. (14.29)

The expansion coefficients qn are called wavelet coefficients and are given
by

qn = (−1)n−1p−n−1 (14.30)

as stated below.

♠ Theorem:
If {Vm} is a multiresolution analysis with the scaling function φ(t), the

mother wavelet ψ(t) is given by

ψ(t) =
√

2
∞∑

n=−∞
(−1)n−1p−n−1φ(2t− n), n ∈ Z, (14.31)

where pn is the scaling function coefficient of φ(t).

Remember that pn in (14.31) is uniquely determined by the function form
of the scaling function φ(t); See (14.28). Thus the above theorem states that
the mother wavelet ψ(t) is obtained once the scaling function φ(t) of a given
multiresolution analysis is specified.
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Remark. The relation qn = (−1)np1−n employed in equation (14.31) is one
possible choice for constructing the mother wavelet ψ(t) from the father
wavelet φ(t). In fact, there are alternative choices such as

qn = (−1)np1−n

or
qn = (−1)n−1p2N−1−n

with certain N ∈ Z. Hence, the mother wavelet ψ(t) associated with a given
multiresolution analysis is not unique. In practice, however, any preceding
definition of qn can be used to obtain a mother wavelet ψ(t) because it leads
to an orthonormal basis for the space W0.

The proof of equation (14.31) requires the following two lemmas:

♠ Lemma 1:
The Fourier transform Φ(ω) of the scaling function φ(t) satisfies

Φ(ω) = M
(ω

2

)

Φ
(ω

2

)

,

where M(ω) is the generating function of the multiresolution anal-
ysis defined by

M(ω) =
1√
2

∞∑

n=−∞
pne

−inω (14.32)

with the scaling function coefficient pn of φ(t).
♠ Lemma 2:

The Fourier transform F (ω) of any function f ∈ W0 can be expressed
by

F (ω) = V (ω)eiω/2M∗
(ω

2
+ π
)

Φ
(ω

2

)

, (14.33)

where V (ω) is a 2π-periodic function, i.e., V (ω) = V (ω + 2π).

We should keep in mind that V (ω) is the only term on the right-hand side of
(14.33) that depends on f(t); the remainder term eiω/2M∗[(ω/2) + π]Φ(ω/2)
is independent of f(t). The proofs of the two lemmas are outlined in Exercises
3 and 4. Now we turn to a proof of equation (14.31) for the construction of
the mother wavelet ψ(t) from the scaling function φ(t).

Proof (of Theorem): Since the mother wavelet ψ(t) gives an orthonormal
basis {ψ(t − n), n ∈ Z} for the space W0, any function f ∈ W0 can be
expressed by

f(t) =
∞∑

n=−∞
hnψ(t− n)
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with appropriate coefficients hn. Its Fourier transform F (ω) reads

F (ω) =

( ∞∑

n=−∞
hne

−inω

)

Ψ(ω),

where the sum in parentheses is 2π-periodic. Comparing this with (14.33), we
obtain

Ψ(ω) = eiω/2M∗
(ω

2
+ π
)

Φ
(ω

2

)

. (14.34)

Substituting expression (14.32) into (14.34) yields

Ψ(ω) =
eiω/2

√
2

∞∑

n=−∞
pne

in[(ω/2)+π]Φ
(ω

2

)

=
1√
2

∞∑

n=−∞
pne

inπei(n+1)(ω/2)Φ
(ω

2

)

=
1√
2

∞∑

k=−∞
p−k−1(−1)k−1e−ikω/2Φ

(ω

2

)

[k ≡ −n− 1].

Take the inverse Fourier transform of the both sides to find

ψ(t) =
1√
2

∞∑

k=−∞
p−k−1(−1)k−1

∫ ∞

−∞
e−ikω/2eiωtΦ

(ω

2

)

dω

=
2√
2

∞∑

k=−∞
p−k−1(−1)k−1

∫ ∞

−∞
eiω′(2t−k)tΦ(ω′)dω′ [ω′ ≡ ω/2]

=
√

2
∞∑

k=−∞
p−k−1(−1)k−1φ(2t− k).

This is our desired result (14.31). ♣

14.2.8 Multiresolution Representation

Through the discussions thus far, we have obtained an orthonormal basis
consisting of scaling functions φj,k(t) and wavelets ψj,k(t) that span all of
L2(R). Since

L2 = Vj0 ⊕ Wj0 ⊕ Wj0+1 ⊕ · · · ,
any function x(t) ∈ L2(R) can be expanded, e.g.,

x(t) =
∞∑

k=−∞
Sj0,kφj0,k(t) +

∞∑

k=−∞

∞∑

j=j0

Tj,kψj,k(t). (14.35)

Here, the initial scale j0 could be zero or another integer or negative infinity
as in (14.13), where no scaling functions are used. The coefficients Tj,k are
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identified with the discrete wavelet transform given in (14.11). Often Tj,k in
(14.35) is called the wavelet coefficient and Sj,k is called the approxima-
tion coefficient.

The representation (14.35) can be simplified by using the following no-
tation. We denote the first summation on the right-hand side of (14.35) by

xj0(t) =
∞∑

k=−∞
Sj0,kφj0,k(t). (14.36)

Equation (14.36) is called the continuous approximation of the signal x(t)
at scale j0. Observe that the continuous approximation approaches x(t) in the
limit of j0 → ∞, since in this case L2 = V∞. In addition, we introduce the
notation

zj(t) =
∞∑

k=−∞
Tj,kψj,k(t), (14.37)

where zj(t) is known as the signal detail at scale j. With these conventions,
we can write (14.35) as

x(t) = xj0(t) +
∞∑

j=j0

zj(t). (14.38)

Equation (14.38) says that the original continuous signal x(t) is expressed as
a combination of its continuous approximation xj0 at an arbitrary scale index
j0 added to a succession of signal details zj(t) from scales j0 up to infinity.

Also noteworthy is the fact that due to the nested relation of Vj+1 =
Vj ⊕Wj , we can write

xj+1(t) = xj(t) + zj(t). (14.39)

This indicates that if we add the signal detail at an arbitrary scale (index
j) to the continuous approximation at the same scale, we get the signal ap-
proximation at an increased resolution (i.e., at a smaller scale, index j + 1).
The important relation (14.39) between continuous approximations xj(t) and
signal details zj(t) is called a multiresolution representation.

Exercises

1. Verify the orthonormality of the Haar discrete wavelet ψm,n(t) defined by
ψm,n(t) = 2m/2ψ(2mt− n), where

ψ(t) =

⎧

⎨

⎩

1 0 ≤ t < 1/2,
−1 1/2 ≤ t < 1,
0 otherwise.
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Solution: First we note that the norm of ψm,n(x) is unity:
∫ ∞

−∞
ψm,n(t)2dt = 2−m

∫ ∞

−∞

[

ψm,n(2−mt− n)
]2
dt

= 2−m · 2m

∫ ∞

−∞
ψm,n(u)2du = 1.

Thus, we obtain

I ≡
∫ ∞

−∞
ψm,n(t)ψk,l(t)dt =

∫ ∞

−∞
2−m/2ψ(2−mt− n)2−k/2ψ(2−kt− �)dt

= 2−m/2 · 2m

∫ ∞

−∞
ψ(u)2−k/2ψ[2m−k(u+ n) − �]dt. (14.40)

If m = k, the integral in the last line in (14.40) reads
∫ ∞

−∞
ψ(u)ψ(u+ n− �)dt = δ0,n−
 = δn,
,

since ψ(u) �= 0 in 0 ≤ u ≤ 1 and ψ(u + n − �) �= 0 in � − n ≤ u ≤
� − n + 1, so that these intervals are disjoint unless n = �. Owing
to symmetry if m �= k, it suffices to look at the case of m > k. Set
r = m− k �= 0 in (14.40) to obtain

I = 2r/2

∫ ∞

−∞
ψ(u)ψ(2rv + s)du

= 2r/2

[
∫ 1/2

0

ψ(2rv + s)du−
∫ 1

1/2

ψ(2rv + s)du

]

,

which can be simplified as

I =
∫ a

s

ψ(x)dx−
∫ b

a

ψ(x)dx = 0, (14.41)

where 2ru+s = x, a = s+2r−1, b = s+2r. Observe that [s, a] con-
tains the interval [0, 1] of the Haar wavelet ψ(t), which implies that
the first integral in (14.41) vanishes. Similarly, the second integral
equals zero. We thus conclude that

I =
∫ ∞

−∞
ψm,n(t)ψk,
dt = δm,kδn,
,

which means that the Haar discrete wavelet ψm,n(t) is orthonormal.
♣
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2. Let φ ∈ L2(R) and Φ(ω) be the Fourier transform of φ(t). Prove that
the system {φ0,n ≡ φ(t − n), n ∈ Z} is orthonormal if and only if
∑∞

k=−∞ |Φ(ω + 2kπ)|2 = 1 almost everywhere.
Solution: It is obvious that the Fourier transform of φ0,n(t)
reads Φ0,n(ω) = e−inωΦ(ω). In view of the Parseval identity for
the wavelet transform (14.8), we have

∫ ∞

−∞
φ0,n(t)φ0,m(t)dt =

∫ ∞

−∞
φ0,0(t)φ0,m−n(t)dt

=
1
2π

∫ ∞

−∞
Φ0,0(ω)Φ0,m−n(ω)dω =

1
2π

∫ ∞

−∞
e−i(m−n)ω [Φ0,0(ω)]2 dω

=
1
2π

∞∑

k=−∞

∫ 2π(k+1)

2πk

e−i(m−n)ω [Φ0,0(ω)]2 dω

=
1
2π

∫ 2π

0

e−i(m−n)ω
∞∑

k=−∞
[Φ0,0(ω)]2 dω.

It thus follows from the completeness of {e−inω, n ∈ Z} in
L2(0, 2π) that

∫∞
−∞ φ0,n(t)φ0,m(t)dt = 0 if and only if

∞∑

k=−∞
[Φ0,0(ω)]2 = 1 almost everywhere. ♣

3. Let Φ(ω) be the Fourier transform of the scaling function φ(t) and let pn

be its scaling function coefficient. Prove that

Φ(ω) = M
(ω

2

)

Φ
(ω

2

)

with M(ω) =
1√
2

∞∑

n=−∞
pne

−inω. (14.42)

Solution: Since φ(t) =
√

2
∑∞

n=−∞ pnφ(2t− n), we have

Φ(ω) =
√

2
∞∑

n=−∞
pn

∫ ∞

−∞
φ(2t− n)e−iωtdt

=
√

2
∞∑

n=−∞
pn

∫ ∞

−∞
φ(t′)e−iω(t′+n)/2dt (t′ ≡ 2t− n)

=
1√
2

∞∑

n=−∞
pne

−inω/2Φ
(ω

2

)

= M
(ω

2

)

Φ
(ω

2

)

. ♣

4. Let f(t) be a function f ∈ W0 = V1\V0 for a given multiresolution analysis
{Vj}. Prove that its Fourier transform F (ω) necessarily takes the form
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F (w) = V (ω)eiω/2M∗
(ω

2
+ π
)

Φ
(ω

2

)

, (14.43)

where V (ω) = V (ω + 2π).

Solution: Since f ∈ W0 and V1 = V0 ⊕ W0, it follows that
f ∈ V1 and is orthogonal to V0. Hence, we can write f(t) =√

2
∑∞

n=−∞ cnφ1,n(t) =
√

2
∑∞

n=−∞ cnφ(2t − n), where cn =
∫∞
−∞ f(t)φ1,n(t)dt. Take the Fourier transform of both sides to

obtain

F (w) = Mf

(ω

2

)

Φ
(ω

2

)

with Mf (ω) ≡ 1√
2

∞∑

n=−∞
cne

−inω.

(14.44)

Evidently,Mf (ω) is a 2π-periodic function belonging to L2(0, 2π).
Since f is orthogonal to V0, we have

∫∞
−∞ F (w)Φ∗(ω)einωdω = 0,

so
∫ ∞

−∞

[ ∞∑

k=−∞
F (w + 2kπ)Φ∗(ω + 2kπ)

]

einωdω = 0.

Consequently,
∑∞

k=−∞ F (w + 2kπ)Φ∗(ω + 2kπ) = 0. Substituting
(14.42) and (14.44) into this result, we obtain

∞∑

k=−∞
Mf

(ω

2
+ kπ

)

M∗
(ω

2
+ kπ

) ∣
∣
∣Φ
(ω

2
+ kπ

)∣
∣
∣

2

= 0.

Meanwhile we denote Mf (ω)M∗(ω) and |Φ(ω)|2 by M2(ω) and
Φ2(ω), respectively. By splitting the sum into even and odd integers
k and then employing the 2π-periodicity of M(ω) and Mf (ω) [and
thus M2(ω)], we have

0 =
∞∑

k=−∞
M2

(ω

2
+ 2kπ

)

Φ2

(ω

2
+ 2kπ

)

+
∞∑

k=−∞
M2

[ω

2
+ (2k + 1)π

]

Φ2

[ω

2
+ (2k + 1)π

]

= M2

(ω

2

) ∞∑

k=−∞
Φ2

(ω

2
+ 2kπ

)

+M2

(ω

2
+ π
) ∞∑

k=−∞
Φ2

[ω

2
+ (2k + 1)π

]

= M2

(ω

2

)

+M2

(ω

2
+ π
)

, (14.45)
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where we used the orthonormality condition with respect to the set
of scaling functions {φ0,k(t)}. Finally, replacing ω in the last line
in (14.45) by 2ω gives

∣
∣
∣
∣

Mf (ω) M∗(ω + π)
−Mf (ω + π) M∗(ω)

∣
∣
∣
∣
= 0, (14.46)

which indicates the linear dependence of two vectors: [Mf (ω),−Mf

(ω + π)] and [M∗(ω + π),M∗(ω)]. Hence, there exists a function
λ(ω) such that

Mf (ω) = λ(ω)M∗(ω + π). (14.47)

Since both M and Mf are 2π periodic, so is λ. Further, substituting
(14.47) into (14.46) yields

λ(ω) + λ(ω + π) = 0, (14.48)

which means that there exists a function V (ω) such that

λ(ω) = eiωV (ω) and V (ω) = V (ω + 2π).

Eventually, the results (14.44), (14.47), and (14.48) lead to the
desired representation (14.43). ♣

14.3 Fast Wavelet Transformation

14.3.1 Generalized Two-Scale Relations

We know that a signal x(t) ∈ L2(R) can be represented in terms of the
continuous approximation Sm,n and the discrete wavelet transform Tm,n by

x(t) =
∞∑

n=−∞
Sm0,nφm0,n(t) +

∞∑

m=−∞

∞∑

n=−∞
Tm,nψm,n(t),

where

φm,n(t) = 2m/2φ(2mt− n) and ψm,n(t) = 2m/2ψ(2mt− n). (14.49)

[See (14.24) and (14.26).] In principle, both expansion coefficients Sm,n and
Tm,n can be computed through the convolution integral defined by

Sm,n =
∫ ∞

−∞
x(t)φm,n(t)dt and Tm,n =

∫ ∞

−∞
x(t)ψm,n(t)dt. (14.50)

Actual computations of these integrals are very time-consuming. However,
there is an efficient method for computing Sm,n and Tm,n at all m, known as
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the fast wavelet transform. This sophistuated method is based on recursive
equations for Sm,n and Tm,n and thus is markedly suitable for numerical
computations of wavelet analyses.

To proceed with the argument, we need some preliminary results. We know
that the father wavelet φ(t) and the mother wavelet ψ(t) can be described by
a linear combination of contracted and shifted versions of φ(t) as follows:

φ(t) =
√

2
∞∑

k=−∞
pkφ(2t− k) and ψ(t) =

∞∑

k=−∞
(−1)kp1−kφ(2t− k),

where pn is the scaling function coefficient of φ(t). For convenience, we use an
alternative definition qn = (−1)np1−n of the wavelet coefficient qn instead of
the one used in (14.30). These facts immediately result in

φm,n(t) = 2m/2φ (2mt− n) = 2m/2
∞∑

k=−∞
pkφ [2 (2mt− n) − k]

= 2m/2
∞∑

k=−∞
pk2−(m+1)/2φm+1,2n+k(t)

= 2−1/2
∞∑

k=−∞
pkφm+1,2n+k(t), (14.51)

and similarly,

ψm,n(t) = 2−1/2
∞∑

k=−∞
qkφm+1,2n+k(t). (14.52)

The expressions (14.51) and (14.52) are generalizations of (14.27) and (14.31)
applicable for φ(t) and ψ(t).

♠ Generalized two-scale relations:
Given a multiresolution analysis, φm,n(t) and ψm,n(t) are obtained from

the set of functions {φm+1,2n+k(t); −∞ < k < ∞} by

φm,n(t) = 2−1/2
∞∑

k=−∞
pkφm+1,2n+k(t),

ψm,n(t) = 2−1/2
∞∑

k=−∞
qkφm+1,2n+k(t).
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14.3.2 Decomposition Algorithm

The fast wavelet transform consists of two main parts, called, respectively,
the decomposition algorithm and the reconstruction algorithm, each
of which gives a recursive relation between approximation coefficients Sm,n

and wavelet coefficients Tm,n at neighboring scales. This subsection focuses
on the former algorithm and in the next subsection deals with the latter.

Remark. In the literature about the fast wavelet transform, all of the terms
below mean the same thing:

- discrete wavelet transform
- decomposition/reconstruction algorithm
- fast orthogonal wave transform
- multiresolution algorithm
- pyramid algorithm
- tree algorithm

The decomposition algorithm enables us to obtain Sm,n and Tm,n at all m
smaller than a prescribed scale m0, once Sm0,n is given. To attain our objec-
tive, we first derive a recursive formula for Sm,n at two different scales, i.e.,
Sm,n and Sm+1,n. From the expansion (14.49) and from the orthonormality
of φm,n(t), it follows that

Sm,n =
∫ ∞

−∞
x(t)φm,n(t)dt.

Using the generalized two-scale relation (14.51), we can write

Sm,n =
∫ ∞

−∞
x(t)

[

1√
2

∞∑

k=−∞
pkφm+1,2n+k(t)

]

dt

=
1√
2

∞∑

k=−∞
pk

[∫ ∞

−∞
x(t)φm+1,2n+k(t)dt

]

=
1√
2

∞∑

k=−∞
pkSm+1,2n+k.

Replacing the summation index k with k − 2n, we obtain

Sm,n =
1√
2

∞∑

k=−∞
pk−2nSm+1,k, (14.53)

which provides the approximation coefficients Sm,n from Sm+1,n.
Similarly the wavelet coefficients Tm,n can be found from the approxima-

tion coefficients at the previous scale:
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Tm,n =
1√
2

∞∑

k=−∞
qkSm+1,2n+k =

1√
2

∞∑

k=−∞
qk−2nSm+1,k. (14.54)

As a consequence, if we know the approximation coefficients Sm0,k at a specific
scale m0 then, through repeated application of (14.53) and (14.54), we can
generate Sm,n and Tm,n at all m < m0. This procedure, called the decom-
position algorithm, which is based on (14.53) and (14.54) is the first half of
the fast wavelet transform that allows us to compute the wavelet coefficients
efficiently, rather than computing them laboriously from the convolution of
(14.50).

14.3.3 Reconstruction Algorithm

We can go in the opposite direction and reconstruct Sm+1,n from Sm,n and
Tm,n. We already know from (14.39) that xm+1(t) = xm(t) + zm(t), and we
can expand this as

xm+1(t) =
∞∑

n=−∞
Sm,nφm,n(t) +

∞∑

n=−∞
Tm,nψm,n(t).

Furthermore, using (14.51) and (14.52), we can expand this equation in terms
of the scaling function at the previous scale:

xm+1(t) =
∞∑

n=−∞
Sm,n

1√
2

∞∑

k=−∞
pkφm+1,2n+k(t)

+
∞∑

n=−∞
Tm,n

1√
2

∞∑

k=−∞
qkφm+1,2n+k(t).

Rearranging the summation indices, we get

xm+1(t) =
∞∑

n=−∞
Sm,n

1√
2

∞∑

k=−∞
pk−2nφm+1,k(t)

+
∞∑

n=−∞
Tm,n

1√
2

∞∑

k=−∞
qk−2nφm+1,k(t).

(14.55)

We also know that we can expand xm−1(t) in terms of the approximation
coefficients at scale m− 1, i.e.,

xm+1(t) =
∞∑

k=−∞
Sm+1,kφm+1,k(t). (14.56)

Equating the coefficients in (14.56) with (14.55) yields the reconstruction
algorithm:
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Sm+1,n =
1√
2

∞∑

k=−∞
pn−2kSm,k +

1√
2

∞∑

k=−∞
qn−2kTm,k,

where we have swapped the indices k and n. Hence, at the scale m + 1, the
approximation coefficients Sm+1,n can be found in terms of a combination
of Sm,n and Tm,n at the next scale, m. The reconstruction algorithm is the
second half of the fast wavelet transform.
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Differential Equations



15

Ordinary Differential Equations

Abstract The main objective of this chapter is to ensure that the reader under-
stands the “existence theorem” (Sect. 15.2.3) and the “unique theorem” (Sect. 15.2.4)
for a first-order ordinary differential equation. These theorems prove the existence
and uniqueness of a solution of the differential equation and delineate the conditions
that should be satisfied by the functions that are to be differentiated.

15.1 Concepts of Solutions

15.1.1 Definition of Ordinary Differential Equations

Many physical laws are often formulated as ordinary differential equa-
tions (ODEs) whose unknowns are functions of a single variable. Below are
basic notation and several important theorems that are used throughout this
chapter. We start with the formal definition of ODEs.

♠ Ordinary differential equations:
An ordinary differential equation of order n is an equation

F
[

x, y(x), y′(x), · · · , y(n)(x)
]

= 0 (15.1)

that is satisfied by the function y(x) and its derivatives
y′(x), y′′(x), · · · , y(n)(x) with respect to a single independent variable x.

Here, the order of a differential equation means the largest positive integer n
for which an nth derivative appears in equation (15.1). For instance, a general
form of the first-order differential equations is given by

F [x, y(x), y′(x)] = 0, (15.2)
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where F is a single-valued function on its arguments in some domain D.
Hereafter we restrict our attention to the case where x is a real number.

Remark.

1. An ODE (15.1) is called a linear ODE if it is linear in the unknown
function y(x) and in all its derivatives; otherwise, it is nonlinear.

2. A linear ODE of order n is said to be homogeneous if it is of the form
an(x)y(n) + a(n− 1)(x)y(n−1) + ...+ a1(x)y′ + a0(x)y = 0, where there is
no term that contains a function of x alone.

3. The term homogeneous may have a totally different meaning specifically
when a linear ODE is first order, which occurs if the ODE is written in
the form

dy

dx
= F

(y

x

)

. (15.3)

Such equations can be solved in closed form by a change of variables
u = y/x, which transforms the equation into the separable equation

dx

x
=

du

F (u) − u
. (15.4)

15.1.2 Explicit Solution

Let y = ϕ(x) define y as a function of x on an interval I = (a, b). We say that
the function ϕ(x) is an explicit solution or a simple solution of the ODE
(15.1) if it satisfies the equation for every x in I. In mathematical symbols,
this definition reads as follows:

♠ Explicit solution of an ODE:
A function y = ϕ(x) defined on an interval I is a solution of the ODE

(15.1) if
F
[

x, ϕ(x), ϕ′(x), · · · , ϕ(n)(x)
]

= 0

for every x in I.

Note that a real function should be a correspondence between two sets of real
numbers. In this context, if an equation involving x and y does not define
a real function, then it is not a solution of any ODE even if the equation
formally satisfies the ODE. For example, the equation

y =
√

−(1 + x2) (15.5)

does not define a real function; therefore, it is not a solution of the ODE
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x+ yy′ = 0 (15.6)

even though the formal substitution of (15.5) into (15.6) yields an identity.

Examples 1. The function

y = log x+ c, x > 0

is a solution of y′ = 1/x for all x > 0.

2. The function

y = tanx− x, x �= 2n+ 1
2

π (n = 0,±1,±2, · · · ) (15.7)

is a solution of
y′ = (x+ y)2. (15.8)

In fact, the substitution of y into (15.8) gives the identity tan2 x =
(x+ tanx− x)2 = tan2 x in each of the intervals specified in (15.7).

Remark. Note that the ODE (15.8) is defined for all x, but its solution
(15.7) is not defined for all x. Hence, the interval for which the function
given by (15.7) may be a solution of (15.8) is a smaller set of the intervals
in (15.7).

3. The function y = |x| is a solution of

y′ = 1 in the interval x > 0,

and is also a solution of

y′ = −1 in the interval x < 0.

Remark. Observe that the function y = |x| is defined for all x, whereas the
corresponding ODEs are defined in only a restricted interval of x, in contrast
to Example 2.

15.1.3 Implicit Solution

It is sometimes not easy (or even impossible) to solve an equation of the form
g(x, y) = 0 for y in terms of x. However, whenever it can be shown that an
implicit function does satisfy a given ODE on an interval I, then the relation
g(x, y) = 0 is called an implicit solution of the ODE. A formal definition is
given below.
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♠ Implicit solution of an ODE:
A relation g(x, y) = 0 is an implicit solution of an ODE

F
[

x, y(x), y′(x), · · · , y(n)(x)
]

= 0

on an interval I if:
1. There exists a function h(x) defined on I such that g(x, h(x)) = 0 for

every x in I.

2. If F
[

x, h(x), h′(x), · · · , h(n)(x)
]

= 0 for every x in I.

Remark. It must be cautioned that g(x, y) = 0 is merely an equation, and it is
thus never a precise solution of an ODE, as only a function can be a solution
of an ODE. What we mean in the above definition is that the function h(x)
defined by the relation g(x, y) = 0 is the solution of the ODE.

Examples The equation

g(x, y) = x2 + y2 − 25 = 0

is an implicit solution of the ODE

F (x, y, y′) = yy′ + x = 0

on the interval I : −5 < x < 5. In fact, the function h(x) =
√

25 − x2 defined
on I yields

F [x, h(x), h′(x)] =
√

25 − x2

(

− x√
25 − x2

)

+ x = 0

for every x on I.

15.1.4 General and Particular Solutions

We next observe that an ODE in general has many solutions. For example,
the ODE

y′ = ex

can be solved as
y = ex + c, (15.9)

where c can take any numerical value. Similarly, if

y′′′ = ex, (15.10)

then its solution, obtained by integrating three times, is

y = ex + c1x
2 + c2x+ c3, (15.11)
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where c1, c2, c3 can take on any numerical values. Note that both (15.9) and
(15.11) express infinitely many solutions since, which are constants, the c’s
can have infinitely many values. Figure 15.1 is a geometrical interpretation of
this point. Each curve corresponds to a solution (15.11) for c2 = −5, 1, 4 and
c3 = −2, 1, 3 while c1 = 1 is fixed.

Fig. 15.1. Family of the infinitely many solutions (15.11) of the differential equation
(15.10). Solid and dotted curves correspond to c2 = 1 and c2 = 3, respectively

The two examples above illustrate that solutions of an ODE may often
be represented by a single equation involving an arbitrary constant c. Such
a function involving an arbitary constant is called a general solution (or
complete integral or primitive integral) of an ODE. Geometrically, these
are infinitely many curves, one for each set of values of the c’s. If we choose
specific values of the c’s, we obtain what is called a particular solution of
that ODE.

Remark. From the examples above, the reader might assume that

(i) an ODE always has infinitely many solutions, or that
(ii) a solution of an nth order ODE always contains n arbitrary constants.

However, these two conjectures are false. For instance,

• The equation (y′′)2 + y2 = 0 has only one solution y = 0 that possesses
no arbitrary constant.

• The equation |y′| + 1 = 0 has no solution.
• The first-order equation (y′ − y)(y′ − 2y) = 0 has the solution (y −

c1e
x)(y − c2e

2x) = 0 that has two (not one) arbitrary constants.
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15.1.5 Singular Solution

Consider an ODE of the form

y − xy′ = f (y′) , (15.12)

which is known as a Clairaut equation. We solve it by differentiating both
sides to yield

y′′ [f ′(y′) + x] = 0.

We thus have two possibilities. If we set y′′ = 0, then y = ax + b so that
substitution back into the original equation (15.12) gives b = f(a). Thus we
have a general solution:

y = ax+ f(a),

where a is an arbitrary constant. On the other hand, if we set

f ′(y′) + x = 0, (15.13)

then eliminating y′ between (15.13) and the original equation gives us a so-
lution with no arbitrary constant, which is known as a singular solution.
There are various other types of singular solutions, one of which is given below.

Examples Suppose the Clairaut equation to be of the form

y = xy′ + (y′)2

and differentiate both sides to obtain

y′′(x+ 2y′) = 0.

If we set y′′ = 0, then the general solution reads

y = cx+ c2 (15.14)

with an arbitrary constant c. However, if we choose the possibility that 2y′ +
x = 0, then we have

x2 + 4y = 0. (15.15)

Remark. Geometrically, the singular solution (15.14) is an envelope of the
family of integral curves defined by the general solution (15.15), as depicted
in Fig. 15.2. The dotted parabola is the singular solution and the straight
lines tangent to the parabola are the general solution.
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Fig. 15.2. The singular solution (15.14) is an envelope of the family of integral
curves (see Sect. 15.1.6), which are defined by the general solution (15.15)

15.1.6 Integral Curve and Direction Field

Before closing this section, we must emphasize the geometric significance of
a solution of a first-order ODE. In many practical problems, a rough geomet-
rical approximation to a solution may be all that is needed rather then an
evaluation of its explicit functional form. Let

y = f(x) or g(x, y) = 0

define a function of x whose derivative y′ exists on an interval I : a < x < b.
Then y′ gives the direction of the tangent to the curve at each of these points.
Therefore, finding a solution for

y′ = F (x, y), a < x < b (15.16)

can be reduced to finding a curve on the (x-y)-plane whose slope at each of
its points is given by (15.16). The relevant terminology is given below.

♠ Integral curve:
If a curve y = f(x) [or g(x, y) = 0] satisfies a first-order ODE (15.16) on

an interval I, then the graph of this function is called an integral curve.
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Obviously, an integral curve is the graph of a function that is a solution of
a first-order ODE (15.16). Therefore, even if we cannot find an elementary
function that is a solution of (15.16), we can draw a small line element at
any point on the (x-y)-plane for which x is in I to represent the slope of an
integral curve. If this line is short enough, the curve itself over that length
resembles the line. These lines are called line elements and an ensemble of
such lines is called a direction field.

Exercises

1. Test whether the relation

xy2 − e−y − 1 = 0 (15.17)

is an implicit solution of the ODE
(

xy2 + 2xy − 1
)

y′ + y2 = 0. (15.18)

Solution: If we blindly differentiate both sides to yield

2xyy′ + y2 + e−yy′ = 0
(

2xy + e−y
)

y′ + y2 = 0

and then eliminate e−y from the final result by using (15.17), we
obtain the ODE (15.18). This implies the possibility that (15.17)
is an implicit solution of the ODE (15.18). The remaining task is,
therefore, to determine the interval I on which we can define such
a function y = h(x) that satisfies the relation (15.17) for every x
on I.

As a first step, we write (15.17) as

y = ±
√

1 + e−y

x
,

which says that y is defined only for x > 0 since e−y is always
positive. Hence, the interval for which (15.17) may be a solution
of (15.18) must exclude values of x ≤ 0.

Next, we depict a graph of equation (15.17) on the (x-y)-plane
(see Fig. 15.3). From the graph, we see that there are three choices
for the function y = h(x), each of which gives a one-to-one relation
between x and y. If we choose the upper branch (y > 0), then we
can say that “(15.17) is an implicit solution of (15.18) for all x >
0.” If we choose either of the two lower branches (one is above the
dashed line and the other is below), then we can say that “(15.17)
is an implicit solution of (15.18) only for x > x0 � 2.07.” ♣
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Fig. 15.3. The curve of the function (15.17)

15.2 Existence Theorem for the First-Order ODE

15.2.1 Picard Method

In this section, we consider a first-order ODE of the form

y′(x) = f(x, y(x)), (15.19)

where f is some continuous function. Our main purpose is to prove that:

(i) a wide class of equations of the form (15.19) have solutions, and

(ii) solutions to initial value problems

y′(x) = f(x, y(x)), y(x0) = y0

are unique. Statements (i) and (ii) are supported by the existence theo-
rem and the uniqueness theorem, respectively, as is demonstrated in the
subsequent subsections.

Our proof of the two theorems is based on that we call Picard’s method,
which gives solutions of an initial value problem

y′(x) = f ( x, y(x) ) , y(x0) = y0, (15.20)

where f ( x, y(x) ) is assumed to be continuous and real-valued in a rectangle:
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R : |x− x0| < a, |y − y0| < b (a, b > 0). (15.21)

The key to Picard’s method is to replace the differential equation in (15.20)
by the equivalent integral form,

y(x) = y0 +
∫ x

x0

f (t, y(t)) dt, (15.22)

which is an integral equation because the unknown function y(x) ap-
pears in the integrand. That the integral equation (15.22) is equivalent to
the original initial value problem can be checked by differentiating (15.22)
on x.

Remark. Note that the initial condition y(x0) = y0 is automatically included
in (15.22).

We now try to solve (15.22). As a crude approximation to a solution, we take
the constant function ϕ0(x) = y0, which clearly satisfies the initial condition

ϕ0(x0) = y0,

whereas it does not satisfy (15.22) in general. Nevertheless, if we substitute
the constant function into f(t, y(t)) of (15.22), we have

ϕ1(x) = y0 +
∫ x

x0

f( t, ϕ0(t) )dt, (15.23)

which is a closer approximation to a solution than ϕ0(x). By continuing the
process, we have a sequence of functions {ϕn(x)}:

♠ Successive approximation:
Given an integral equation (15.22) with respect to y(x), a set of functions

defined by

ϕ0(x) = y0,

ϕn(x) = y0 +
∫ x

x0

f (t, ϕn−1(t))dt. (n = 1, 2, · · · ) (15.24)

is called a successive approximation to a solution of (15.22).

We understand intuitively that taking the limit n → ∞ yields

ϕn(x) → ϕ(x),
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where ϕ(x) is the exact solution of the integral equation (15.22). The
convergence property of the sequence {ϕi(x)} and the equivalence of
the limit function ϕ(x) to the solution of (15.22) are guaranteed if the
integrand f(x, y(x)) satisfies several conditions as is demonstrated in
Sect. 15.2.3.

In summary, we now know the following:

♠ Picard method:
The differential equation y′(x) = f(x, y(x)) for a given initial value

y(x0) = y0 can be solved by starting with ϕ0(x) = y0 and then computing
successive approximations (15.24). The process converges to a solution of
the differential equation, where f(x, y) satisfies several specific conditions
given in Sect. 15.2.3.

15.2.2 Properties of Successive Approximations

We have previously assumed that f(x, y(x)) is continuous in the rectangle R
defined in (15.21). Hereafter, we further assume that f(x, y(x)) is bounded on
R, which means the existence of a constant M > 0 such that

|f(x, y(x))| ≤ M for all (x, y) ∈ R.

In this case, the successive approximations {ϕn(x)} show both the continuity
and boundedness property stated below.

♠ Continuity of successive approximations:
Let f(x, y) be continuous and bounded by |f(x, y)| ≤ M in a rectangle

R : |x− x0| < a, |y − y0| < b (a, b > 0).

Then, the successive approximations ϕn(x) are continuous on the interval

I : |x− x0| ≤ c ≡ min
[

a,
b

M

]

.

♠ Boundedness of successive approximations:
Under the same conditions as above, the ϕn(x) satisfy the inequality

|ϕn(x) − y0| ≤ M |x− x0|

for all x in I.
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Remark. The condition |f(x, y)| ≤ M has an important geometric meaning
in terms of the direction field. Since y′ = f(x, y), the direction field y′ is
bounded as |y′| ≤ M , namely, −M ≤ y′ ≤ M for all points in R. Therefore,
a solution curve ϕ(x) that passes through (x0, y0) must lie in the shadowed
region in Fig. 15.4.

Proof (of the continuity). From (15.23), we have

|ϕ1(x) − y0| =
∣
∣
∣
∣

∫ x

x0

f( t, ϕ0(t) )dt
∣
∣
∣
∣
≤
∫ x

x0

|f( t, y0 )| dt ≤ M |x− x0| , (15.25)

since ϕ0(t) = y0 and |f(x, y0)| ≤ M . Now we tentatively assume that the
theorem is true for a function ϕn with n ≥ 1, and then prove inductively
that it is also true for ϕn. By hypothesis, all points (t, ϕn−1(t)) for t in I are
located within R. Hence, the function

Fn−1(t) = f(t, ϕn−1(t))

exists for t in I, which implies that

ϕn(x) = y0 +
∫ x

x0

Fn−1(t)dt

exists as a continuous function on I. ♣

Proof (of the boundedness). Since by hypothesis

|Fn−1(t)| = |f (t, ϕn−1(t))| ≤ M,

we have

|ϕn(x) − y0| ≤
∣
∣
∣
∣

∫ x

x0

Fn−1(t)dt
∣
∣
∣
∣
≤
∫ x

x0

|Fn−1(t)| dt ≤ M |x− x0|.

Therefore, the boundedness of ϕn(x) has been proved by induction. ♣
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Fig. 15.4. Continuity and boundedness of a solution curve ϕ(x) on the interval
I : |x − x0| ≤ c ≡ min[a, M
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15.2.3 Existence Theorem and Lipschitz Condition

Let f(x, y(x)) be a function defined for (x, y) in the rectangle R in the
(x-y)-plane. We would like to verify the existence of solutions for the first-
order ODEs expressed by

y′(x) = f(x, y(x))

by imposing a Lipschitz condition:

♠ Lipschitz condition:
We say that f(x, y(x)) satisfies a Lipschitz condition on a region R if

there exists a constant K > 0 such that

|f(x, y(x)) − f(x, z(x))| ≤ K |y(x) − z(x)| (15.26)

for all (x, y), (x, z) ∈ R. Here the positive constant K is called the Lips-
chitz constant.

Our most important theorem is presented below.

♠ Existence theorem:
Suppose that

1. f(x, y) is continuous and real-valued on the rectangle R.

2. |f(x, y)| ≤ M for all (x, y) in R.

3. f satisfies a Lipshitz condition with constant K in R.

Then the initial value problem

y′(x) = f(x, y(x)), y(x0) = y0 (15.27)

has at least one solution y(x) in the interval

I : |x− x0| ≤ c ≡ min
[

a,
b

M

]

.

Proof Consider the successive approximations {ϕn(x)} to a solution of the
initial value problem (15.27), wherein f(x, y(x)) is assumed to satisfy the
Lipshitz condition (15.26). We would like to prove that (i) the limit function

ϕ(x) ≡ lim
n→∞

ϕn(x)

exists and (ii) that it is the solution of (15.27).
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By definition of ϕn(x), for n ≥ 1, we obtain

|ϕn+1(x) − ϕn(x)| ≤
∣
∣
∣
∣

∫ x

x0

[ f (t, ϕn(t)) − f (t, ϕn−1(t)) ] dt
∣
∣
∣
∣

≤
∫ x

x0

|f (t, ϕn(t)) − f (t, ϕn−1(t))| dt

≤ K

∫ x

x0

|ϕn(t) − ϕn−1(t)| dt. (15.28)

Set n = 1 in (15.28) and substitute it in the result (15.25) to find

|ϕ2(x) − ϕ1(x)| ≤ KM
|x− x0|2

2!
. (15.29)

Set n = 2 in (15.28) and use the result of (15.29) in the last term in (15.28).
Continuing the process, we have

|ϕn(x) − ϕn−1(x)| ≤ Kn−1M
|x− x0|n

n!
. (15.30)

Observe that the right-hand side of (15.30) is the nth term of the power series
for eK|x−x0| multiplied by M/K. This implies that the infinite series

ϕ0(x) +
∞∑

k=1

[ϕk(x) − ϕk−1(x)] (15.31)

is absolutely (and thus ordinary) convergent, ensuring the existence of the
limit function ϕ(x) ≡ limn→∞ ϕn(x). (See Sect. 3.2 for the convergence prop-
erties of Cauchy sequences.)

Next we prove statement (ii) above. Note that the nth partial sum of
(15.31) is just ϕn(x) and that the infinite series (15.31) equals the limit func-
tion ϕ(x). Hence, we have from (15.30) and (15.31) that

|ϕ(x) − ϕn(x)| =

∣
∣
∣
∣
∣

∞∑

k=n+1

[ϕk(x) − ϕk−1(x)]

∣
∣
∣
∣
∣

≤
∞∑

k=n+1

|ϕk(x) − ϕk−1(x)| ≤
∞∑

k=n+1

Kk−1M
|x− x0|k

k!

≤
∞∑

k=n+1

Kk−1M
ck

k!
≤ M

K
αne

Kc,

where

αn =
(Kc)n+1

(n+ 1)!
.
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Since αn is the nth term of the power series of eKc, we have limn→∞ αn = 0.
Therefore, the series of functions {ϕn(x)} converges uniformly to ϕ(x) in
the interval I : x ∈ [x0 − c, x0 + c], which means that

lim
n→∞

f (x, ϕn(x)) = f(x, ϕ(x)). (15.32)

That being so, we can write

ϕ(x) = lim
n→∞

ϕn(x) = y0 + lim
n→∞

∫ x

x0

f (t, ϕn(t)) dt

= y0 +
∫ x

x0

lim
x→∞

f (t, ϕn(t)) dt

= y0 +
∫ x

x0

f (t, ϕ(t)) dt. (15.33)

By differentiating on x, we have

ϕ(x)′ = f (x, ϕ(x)) , ϕ(x0) = y0.

These ensure that ϕ(x) is a solution of our initial value problem (15.27). ♣

15.2.4 Uniqueness Theorem

Next we examine the uniqueness of the solution ϕ(x) that we found earlier
using the Picard approximation method (see Sect. 15.2.1). This is described
by the theorem below.

♠ Uniqueness theorem:
Let f(x, y) be continuous and satisfy the Lipschitz condition (15.26) in

the rectangle R. If ϕ and ψ are two solutions of the initial value problem
(15.27) in an interval I containing x0, then ϕ(x) = ψ(x) for all x in I.

Proof We assume that both ϕ(x)and ψ(x) are solutions of (15.27). For x > x0,
we have from (15.33) and the Lipschitz condition (15.26) that

|ϕ(x) − ψ(x)| ≤
∫ x

x0

|f(t, ϕ(t)) − f(t, ψ(t))| dt

≤ K

∫ x

x0

|ϕ(t) − ψ(t)| dt. (15.34)

This holds in the interval I : x ∈ [x0, x0 + δ] for arbitrary small δ > 0. Since
|ϕ(x) − ψ(x)| is continuous in I, it has a maximum at some x on I, which we
label μ. Equation (15.34) provides that
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μ ≤ Kμ |x− x0| ≤ Kμδ for all x in I, (15.35)

so we have
(1 −Kδ)μ ≤ 0.

Note that by definition μ ≥ 0. Hence, if Kδ < 1, we have μ = 0, which says
that given any Lipshitz constant K, we can find a sufficiently small δ such
that

max |ϕ(x) − ψ(x)| = 0,

i.e.,
|ϕ(x) − ψ(x)| ≡ 0 for x ∈ [x0, x0 + δ].

Continuing this process yields the conclusion that |ϕ(x) − ψ(x)| ≡ 0 for all x
in R. The same holds for the case x < x0, completing the proof. ♣

15.2.5 Remarks on the Two Theorems

1. The existence and uniqueness theorems only ensure the existence and
uniqueness of a solution. They do not tell us whether the solution can or
cannot be expressed in terms of an elementary function form or help us
to find the solution.

2. Arguments for real-valued functions given thus far are straightforwardly
extended to the case that f is complex-valued. In this case we must admit
complex-valued solutions and f must be defined for complex z. The set
of points z satisfying |z − z0| ≤ b becomes a circle with a center z0 and
radius b, so domain R is no longer a rectangle.

3. The initial value problem

y′(x) =
√

|y(x)|, y(0) = 0,

has two solutions,

y(x) ≡ 0 and y(x) =
{

x2/4 if x ≥ 0,
−x2/4 if x < 0,

although f(x, y) =
√

|y| is continuous for all y. The Lipshitz condition is
violated in any region that includes the line y = 0 because for y1 = 0 and
positive y2 we have

|f(x, y2) − f(x, y1)|
|y2 − y1|

=
√
y2

y2
=

1
√
y2

(
√
y2 > 0) (15.36)

and this can be made as large as we please by choosing y2 sufficietly small,
whereas the Lipshitz condition requires that the quotient on the left-hand
side of (15.36) not exceed a fixed constant M .
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Exercises

1. Using the Picard method, evaluate the successive approximation to the
solution of the initial value problem

y′(x) = 1 + y(x)2, y(0) = 0.

Solution: Set x0 = 0, y0 = 0, f(x, y) = 1 + y2 in (15.24) to find
that

ϕn(x) =
∫ x

0

{

1 + [ϕn−1(t)]
2
}

dt = x+
∫ x

0

[ϕn−1(t)]
2
dt.

Hence, we obtain

ϕ1(x) = x+
∫ x

0

0 dt = x, ϕ2(x) = x+
∫ x

0

t2dt = x+
x3

3
,

ϕ3(x) = x+
∫ x

0

(

t+
t3

3

)2

dt = x+
x3

3
+

2
15
x5 +

1
63
x7, and so on. ♣

Remark. The exact solution of the above problem can be deduced by sepa-
rating variables:

y(x) = tanx = x+
x3

3
+

2
15
x5 +

17
315

x7 + · · ·
(

−π

2
< x <

π

2

)

.

The first three terms of ϕ3(x) and of the series above are the same. The
series converges only for |x| < π/2; therefore, all that we can expect is that
our sequence ϕ1, ϕ2, · · · converges to a function that is the solution of our
problem for |x| < π/2.

2. By applying the Picard method to

y′(x) = xy(x), y(0) = 1, (15.37)

show that the Picard series {ϕn(x)} converges absolutely and uniformly.

Solution: The integral equation corresponding to (15.37) becomes

y(x) = 1 +
∫ x

0

ty(t)dt.

The iterative equation is written as ϕ0(x) = 0 and

ϕn+1(x) = 1 +
∫ x

0

tϕn(t)dt, (n = 1, 2 · · · ).
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Thus, we easily find

ϕn(x) = 1 +
x2

2
+

1
2!

(
x2

2

)2

+ · · · + 1
k!

(
x2

2

)n

.

The nature of the convergence is obvious for all real x, since it is
a partial sum for the Taylor series of the function ϕ(x) = ex2/2.
This means that ϕn(x) → ϕ(x) as n → ∞. ♣

3. For the equation given by

y′(x) = 2y(x)1/2, y(0) = 0,

check the uniqueness of the solution in connection with the Lipschitz condi-
tion.

Solution: This equation has the two solutions y(x) = 0, y(x) =
16x2, although f(x, y) = 2(y)1/2 is continuous for all y. The Lips-
chitz condition (15.26) is violated in any region that includes the
line y(x) = 0 because for y1 = 0 and y2 �= 0 we have

|f(x, y2) − f(x, y)|
|y2 − y1|

=
√
y2

y2
=

1
√
y2
,

which diverges for y2 → 0, exceeding a fixed constant K. ♣

15.3 Sturm–Liouville Problems

15.3.1 Sturm–Liouville Equation

ODEs encountered in physics are often classified as Sturm–Liouville equa-
tions:

♠ Sturm–Liouville equation:
A Sturm–Liouville equation is a second-order homogeneous linear ODE

of the form

− d

dx

[

p(x)
dy

dx

]

+ q(x)y + λw(x)y = 0, (15.38)

where λ is a parameter and p, q, w are real-valued continuous functions
with p(x) > 0 and w(x) > 0. Here w(x) is called a weight function.

Using the Sturm–Liouville operator L defined by

L =
1

w(x)

[

− d

dx

(

p(x)
d

dx

)

+ q(x)
]

(15.39)
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we reduce the Sturm–Liouville equation (15.38) to the abbreviated form

Ly(x) = −λy(x). (15.40)

Examples The Legendre equation
(

1 − x2
)

y′′ − 2xy′ + n(n+ 1)y = 0, n ≥ 1, x ∈ [−1, 1]

is expressed as
[(

1 − x2
)

y′
]′

+ n(n+ 1)y = 0.

This is in the Sturm–Liouville form of p = 1 − x2, q = 0, w = 1, and λ =
n(n+ 1).

Relevant terminology is given below.

♠ Sturm–Liouville system:
A Sturm–Liouville system consists of a Sturm–Liouville equation

(15.38) on a finite closed interval a ≤ x ≤ b, together with two separated
boundary conditions of the form

y(a) = αy′(a) and y(b) = βy′(b)

with α, β being real.

A nontrivial solution of a Sturm–Liouville system is called an eigenfunction
and the corresponding λ is called an eigenvalue. The set of all eigenvalues
of a Sturm–Liouville system is called the spectrum of the system.

Examples The Sturm–Liouville system consisting of the ODE

y′′ + λy = 0 0 ≤ x ≤ π

with the separated boundary conditions

y(0) = 0, y(π) = 0

has the eigenfunction
yn(x) = sinnx

and the eigenvalues
λn = n2. (n = 1, 2, · · · ).

15.3.2 Conversion into a Sturm–Liouville Equation

Mathematically, Sturm–Liouville equations represent only a small fraction of
the second-order differential equations. Nevertheless, any second-order equa-
tion of the form

a(x)y′′ + b(x)y′ + c(x)y + λe(x)y = 0
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can be transformed into a Sturm–Liouville equation by multiplying the factor

ξ(x) = exp
[∫ x b(s) − a′(s)

a(s)
ds

]

, (15.41)

which yields a Sturm–Liouville form,

(ξay′)′ + ξcy + λξey = 0,

with a nonnegative weight function ξ(x)a(x).

Examples We show below that the Hermite equation of the form

y′′ − 2xy′ + 2αy = 0 (15.42)

can be transformed into a Sturm–Liouville equation. Substituting a(x) = 1
and b(x) = −2x into (15.41) yields

ξ(x) = exp
[∫ x

(−2s)ds
]

= e−x2
,

by which we multiplying both sides of (15.42), to obtain

e−x2
y′′ − 2xe−x2

y′ + 2αe−x2
y =

(

e−x2
y′
)′

+ 2αe−x2
y = 0,

This is the Sturm-Liouville form with

p(x) = e−x2
, q(x) = 0, w(x) = e−x2

,

and λ = 2α.

15.3.3 Self-adjoint Operators

We know many facts about Sturm–Liouville problems. Below is an important
concept regarding the nature of these problems.

♠ Adjoint operator:
The adjoint of an operator L, denoted by L†, is defined by

∫ b

a

f∗(x)[Lg(x)]ρ(x)dx =

{
∫ b

a

g∗(x)[L†f(x)]ρ(x)dx

}∗

. (15.43)

Using inner product notation, we can write the definition of the adjoint
operator (15.43) as

(f, Lg) = (g, L†f).
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The most important terminology in this section is given below.

♠ Self-adjoint operator:
An operator L is called self-adjoint (or Hermitian) if

L = L†

or, in inner product notation,

(f, Lg) = (g, Lf)∗.

It should be noted that an operator is said to be self-adjoint only if certain
boundary conditions are met by the functions f and g on which it acts. An
illusrative example follows:

Examples Let us derive the required boundary conditions for the linear oper-
ator

L =
d2

dx2

to be self-adjoint over the interval [a, b]. From the definition of self-adjoint
operators, the operator L should satisfy the relation:

∫ b

a

f∗ d
2g

dx2
dx =

(
∫ b

a

g∗
d2f

dx2
dx

)∗

. (15.44)

Through integration by parts, the left-hand side gives

∫ b

a

f∗ d
2g

dx2
dx =

[

f∗ dg

dx

]b

a

+
[

−g df
∗

dx

]b

a

+
∫ b

a

g
d2f∗

dx2
dx. (15.45)

From a comparison as (15.44) and (15.45), it follows that the operator L is
Hermitian provided that

[

f∗ dg

dx

]b

a

=
[

g
df∗

dx

]b

a

.

15.3.4 Required Boundary Condition

In the example in Sect. 15.3.3, we derived the required boundary condition
for a specific Sturm–Liouville operator to be self-adjoint. For general Sturm–
Liouville operators, such a required boundary condition is given by the fol-
lowing theorem.
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♠ Theorem:
A Sturm–Liouville operator is self-adjoint on [a, b] if any two eigenfunc-

tions yi and yj of (15.38) satisfy the boundary condition

[

py∗i y
′
j

]b

a
= 0. (15.46)

Proof It follows from the explicit form of the Sturm–Liouville operator L that

(yi, Lyj) = − 1
w

∫ b

a

y∗i
(

py′j
)′
dx− 1

w

∫ b

a

y∗i qyjdx. (15.47)

The first integral is integrated by parts to give

− 1
w

[

y∗i py
′
j

]b

a
+

1
w

∫ b

a

(y∗i )′ py′jdx,

in which the first term vanishes because we have assumed the boundary con-
dition (15.46). Integration by parts then yields

1
w

[

(y∗i )′ pyj

]b

a
− 1
w

∫ b

a

[

(y∗i )′ p
]′
yjdx,

where the first term is again zero owing to our assumption. As a result, the
sum of integrals I in (15.47) reads

(yi, Lyj) =
1
w

∫ b

a

{[

− (y∗i )′ p
]′
yj − y∗i qyj

}

dx (15.48)

=
1
w

{

−
∫ b

a

[

y∗j (py′i)
′ − yiqy

∗
j

]

dx

}∗

= (yj , Lyi)∗, (15.49)

which completes the proof. ♣

15.3.5 Reality of Eigenvalues

♠ Theorem: For a Sturm–Liouville system under the boundary condition
(15.46), we have:
(a) All eigenvalues are real.
(b) Eigenfunctions corresponding to distinct eigenvalues are orthogonal.
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Proof of (a). If an eigenfunction yn belongs to the eigenvalue λn, then

λ∗n(yn, yn) = (λnyn, yn) = −(Lyn, yn)
= −(yn, Lyn) = λn(yn, yn).

This indicates that λ∗n = λn since (yn, yn) > 0. Therefore λn is real for all n.
♣

Proof of (b). According to the same argument as above,

λm(ym, yn) = (λmym, yn) = −(Lym, yn)
= −(ym, Lyn) = λn(ym, yn).

Thus, for λm �= λn, (ym, yn) = 0, which means that eigenfunctions corre-
sponding to distinct eigenvalues are orthogonal. ♣

Remark. If eigenvalues are degenerate, say, λm = λn (m �= n), an orthogonal
set of eigenfunctions is constructed using the Gram–Schmidt orthogonal-
ization method. Namely, we can choose the eigenfunctions to be orthogonal
to each other with respect to the weight function w such that if (ym, yn) �= 0,
we replace yn by ỹn = yn − aym where a should be chosen to be (ym, ỹn) = 0.

Exercises

1. Show that the Bessel equation given by

x2y′′ + xy′ +
(

x2 − n2
)

y = 0 with n ≥ 0 and x ∈ (−∞,∞)

can be expressed in the form of a Sturm–Liouville equation.

Solution: After the transformation x → kx, we have

[xy′(kx)]′ +
(

−n2

x
+ k2x

)

y(kx) = 0, n ≥ 0,

where p = x, q = −n2x, w = x, and the parameter λ = k2 in
(15.38). ♣

2. The Bernoulli equation is given as a nonlinear equation by

y′ = a(x)y + b(x)yk, (15.50)

where a(x), b(x) are continuous functions in an interval I and k is an
arbitrary constant.
(a) Show that the transformation u = y1−k provides an inhomogeneous

linear equation for u.
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(b) Find a solution for the transformed linear equation for u under the
initial condition u(x0) = u0.

Solution:

(a) The transformed equation becomes u′ = (1 − k)a(x)u +
(1 − k)b(x).

(b) The above equation can be reduced to an inhomogeneous
linear equation of the form

u′ = p(x)u+ q(x),

where p(x) = (1−k)a(x), q(x) = (1−k)b(x) are continuous
functions. Let P (x) be a function whose derivative is p(x)
such that

P (x) =
∫ x

x0

p(t)dt,

where x0 is a fixed point in I. Multiplying both sides of
(15.50) by eP (x) to, we have the relation

(ePu)′ = eP (u′ − pu) = eP q.

Therefore, we obtain a solution such that

u(x) = u0e
−P (x) + e−P (x)

∫ x

x0

eP (s)q(s)ds,

where u0 comes from the initial condition. ♣
3. The logistic equation is a special type of Bernoulli equation given by

y′ = ay − by2, (15.51)

where a, b are constants. Find a solution for the above by imposing the
initial condition y(x0) = y0.

Solution: Using a solution for Exercise 2(b) by setting k = 2,
we have

y(x) =
a

b+ (a/y0 − b)e−a(x−x0)
.

Note that y(x) = a/b as x → ∞. ♣
4. The Riccati equation is a nonlinear equation given by

y′ + p(x)y + q(x)y2 = r(x). (15.52)

(a) Assuming u(x) to be a particular solution of the above, namely, a
solution when we set r(x) = 0, show that z(x) defined by y(x) =
u(x) + z(x) constitutes the Bernoulli equation.

(b) Show that the Riccati equation is reduced to a linear equation of the
second order by the transformation y = Qv′/v.
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Solution:

(a) Substituting y = u+ z into the equation, we have
[

z′ + p(z2 + 2uz) + qz
]

+
[

u′ + pu+ qu2 − r
]

= 0.

The second parenthesis vanishes and we have the Bernoulli
equation such that z′ + (2up+ q)z + pz2 = 0.

(b) The first order derivative gives

y′ = Q

(
v′′

v
− v′2

v2

)

+Q′ v
′

v
.

Thus, we have

Q
v′′

v
+ (pQ− 1)Q

v′2

v2
+ (Q′ + qQ)

v′

v
+ r = 0.

Setting Q = 1/p(x), we have v′′ +
(

q − p′

p

)

v′ + prv = 0. ♣
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System of Ordinary Differential Equations

Abstract In this chapter we focus on an autonomous system (Sect. 16.3), which
is a specific type of system of ordinary differential equations. Autonomous systems
can be used to describe the dynamics of the physical objects that are encountered
in physics and engineering problems, wherein the laws governing the motion of the
objects are time-independent, namely, they hold true at all times. The stability of
these dynamical systems is characterized by the critical point (Sect. 16.3.3), whose
nature is revealed by the functional form of the autonomous systems.

16.1 Systems of ODEs

16.1.1 Systems of the First-Order ODEs

This section deals with n coupled ordinary differential equations (ODEs). The
formal definition is stated below.

♠ Systems of ODEs:
A system of ODEs is given by

Fi

[

x; y1, y1
′, y1

′′, · · · , y1
(ri1); y2, y2

′, y2
′′, · · · , y2

(ri2); · · ·
]

= 0 (i = 1, 2, · · · ), (16.1)

which involves a set of unknown functions y1(x), y2(x), · · · and their deriva-
tives with respect to a single independent variable x.

For each ith equation of (16.1), we denote the highest order of the derivatives
of yj by rij . Hereafter, we consider the case of rij ≡ 1 for all i and j, i.e., a
system of n ordinary differential equations (ODEs) of the first order expressed
by
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y′1(x) = f1(x, y1, y2, · · · , yn),
y′2(x) = f2(x, y1, y2, · · · , yn),

· · ·
y′n(x) = f2(x, y1, y2, · · · , yn). (16.2)

Here, {fk} , k = 1, 2, · · · , n are single-valued continuous functions in a certain
domain of their arguments and {yk} , k = 1, 2, · · · , n are unknown complex
functions of a real variable x.

16.1.2 Column-Vector Notation

For convenience we use column-vector notation for an ordered set of un-
known functions {yk(x)} in which each yk(x) is called a component, which we
denote by a bold-face letter:

y(x) = [y1(x), y2(x), · · · , yn(x)]T , (16.3)

where the norm of the vector is defined by

‖y(x)‖ =
(

|y1|2 + |y2|2 + · · · + |yn|2
)1/2

. (16.4)

Using vector notation, we can express (16.2) in the concise form

y′(x) = f(x,y(x)), (16.5)

where the column vector f is defined by its components

f(x,y(x)) = [f1, f2, · · · , fn]T . (16.6)

If there exists a set of functions ϕ(x) = (ϕ1(x), ϕ2(x), · · · , ϕn(x)) satisfying

ϕi(x)′ = fi (x, ϕ1(x), ϕ2(x), · · · , ϕn(x)) , i = 1, 2, · · · , n,

we say ϕ(x) is a solution of (16.2). The initial value problem consists of finding
a solution ϕ(x) of (16.5) in I satisfying the initial condition ϕ(x0) = y0 =
(y10, y20, · · · , yn0).

16.1.3 Reducing the Order of ODEs

Let consider an nth order ODE of u(x) given by

dnu(x)
dxn

+ p1(x)
dn−1u(x)
dxn−1

+ · · · + pn(x)u(x) = q(x). (16.7)

We show that equation (16.7) can always be reduced to a system of n first-
order differential equations, which is stated as follows:
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♠ Theorem:
Given an nth-order ODE, it can always be reduced to a system of n

first-order ODEs.

Proof We take u(x) and its derivatives u′, u′′, · · · , u(n−1) as new unknown
functions defined by

yk(x) ≡ dk−1u(x)
dxk−1

, k = 1, 2, · · · , n. (16.8)

It is evident that (16.7) is equivalent to the following set of equations:

y′1 = y2, y′2 = y3, · · · , y′n−1 = yn (16.9)

and
y′n = −p1yn − p2yn−1 − · · · − pny1 + q. (16.10)

Equations (16.9) and (16.10) can be written in a brief vector form as

dy(x)
dx

= f (x,y) , (16.11)

where the column vectors are defined as

y = (y1, y2, · · · , yn)

and

f = f(x,y)

= [y2, y3, · · · , yn, −p1yn − p2yn−1 − · · · − pny1 + q]T . ♣

Example One of the most famous systems of the type (16.11) results from the
equation of motion for a particle of mass m. For a mobile particle along the
x-axis, the equation of motion is

m
d2x(t)
dt2

= F

(

t, x(t),
dx(t)
dt

)

, (16.12)

where t is the time and F represents the force acting on the particle. To see
how the second-order ODE (16.12) can be viewed as a system of the form
(16.11), we make the following substitutions:

t → x, x → y1,
dx

dt
→ y2.

Then (16.12) is equivalent to a system of two equations:

y′1 = y2,

y′2 =
1
m
F (x, y1, y2) ,

which is of the form of y′(x) = f(x,y).
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16.1.4 Lipschitz Condition in Vector Spaces

The vector equation
y′(x) = f(x,y) (16.13)

is obviously analogous to the scalar equation

y′(x) = f(x, y).

This analogy implies the possibility that the definition of a Lipschitz condi-
tion can be extended to the vector equation. The extended Lipshitz condition
provides a simple sufficient condition for the uniqueness and existence of so-
lutions, which implies that all the theorems for the scalar equation can be
generalized so as to hold for the vector equation.

♠ Lipschitz condition for a vector function:
A vector function f(x,y) in (16.13) is said to satisfy the Lipschitz

condition on a region R if and only if

|f (x,y(x)) − f (x,z(x))| ≤ K |y(x) − z(x)| ,

(R : |x− x0| ≤ a, |y − y0| ≤ b, |z − z0| ≤ b) . (16.14)

for the Lipschitz constant K.

When f(x,y) satisfies the Lipschitz condition noted above, we see from (16.14)
that

|fk(x, y1, y2, · · · , yn) − fk(x, z1, z2, · · · , zn)|
≤ K(|y1 − z1| + |y2 − z2| + · · · + |yn − zn|) (k = 1, 2, · · · , n).(16.15)

Using this, we can prove the theorem of the existence and uniqueness of so-
lutions for the general vector equation (16.13). For instance, the uniqueness
of the solution for (16.13) is straightforward as shown below. The right-hand
side of (16.15) yields

K

n∑

k=1

|yk(x) − zk(x)| ≤ K

n∑

k=1

∫ x

x0

|fk(x,y(x)) − fk(x,z(x))| dx

≤ nK2

∫ x

x0

n∑

k=1

|yk(x) − zk(x)|dx, (16.16)

which holds for the interval I; x ∈ [x0, x0 + δ] for any small δ. Since the left-
hand side of (16.16) is continuous on I, it has a maximum at some x, which
we label μ. Then, the inequality (16.16) becomes

μ ≤ nKμ(x− x0) ≤ nKμδ,
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which gives us μ(1 − nKδ) ≤ 0. For any small δ > 0, we have μ = 0, which
indicates that

∑
|yk −zk| = 0. The same holds true for the case x < x0. Thus,

the solution of (16.13) is unique.

Exercises

1. Consider a initial value problem given by

y′ = f(x,y), y(x0) = y0,

defined on R : |x − x0| ≤ a, |y − y0| ≤ b, (a, b > 0). Assuming that f is
continuous on R, a sequence of successive approximations ϕ0,ϕ1, · · · is
given by

ϕ0(x) = y0

and
ϕn+1(x) = y0 +

∫ x

x0

f(t,ϕn(t))dt for n = 1, 2, · · · .

Using this procedure, find a sequence of successive approximations for

(y′1, y
′
2) = (y2,−y1), for y(0) = (0, 1).

Solution: Here f(x,y) = (y2,−y1), so we have

ϕ0(x) = (0, 1),

ϕ1(x) = (0, 1) +
∫ x

0

(1, 0)dt = (x, 1),

ϕ2(x) = (0, 1) +
∫ x

0

(1,−t)dt = (0, 1) +
(

x,−x2

2

)

=
(

x, 1 − x2

2

)

.

Continuing with this process, we find the solution of the problem as
ϕk(x) → ϕ(x) = (sinx, cosx). ♣

16.2 Linear System of ODEs

16.2.1 Basic Terminology

We now focus on a particular class of systems of ODEs called a linear system
of first-order ODEs, described by

dy1(x)
dx

−
n∑

j=1

a1j(x)yj(x) = q1(x),
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dy2(x)
dx

−
n∑

j=1

a2j(x)yj(x) = q2(x),

· · ·
dyn(x)
dx

−
n∑

j=1

anj(x)yj(x) = qn(x).

Here akj(x) and qk(x) with j, k = 1, 2, · · · , n are continuous functions
on x on some interval I. For convenience we use the vector representation
given by

dy(x)
dx

− A(x)y(x) = q(x), (16.17)

where A = [akj ] is an n × n matrix. Therefore, Ay stands for the matrix
A applied to the column vector y = [y1, y2, · · · , yn]T, namely, the linear
transform of y by A. The vector q is defined as q = [q1, q2, · · · , qn]T. Given
any y(x0) for x0 in I, there exists a unique solution ϕ(x) on I such that
ϕ(x0) = [y1(x0), y2(x0), · · · , yn(x0)]T.

The use of the linear operator L to (16.17) yields

L [y(x)] = q(x),

where the L is defined as
L =

d

dx
− A. (16.18)

If q(x) = 0 for all x on I, (16.17) is said to be a linear homogeneous
system of nth order, expressed by

dy(x)
dx

− A(x)y(x) = 0. (16.19)

Otherwise, (16.17) is called inhomogeneous. A homogeneous system ob-
tained from the inhomogeneous system (16.17) by setting q(x) ≡ 0 is called
the reduced or complementary system.

Remark. Note that every linear homogeneous system always has a trivial
solution ϕ(x) = 0, as can be immediately checked. From the uniqueness of
the solution, therefore, there is no solution vanishing at only some point of x.

16.2.2 Vector Space of Solutions

Let ϕi(x) (i = 1, 2, · · · ) be solutions for an n-dimensional linear homogeneous
system

y′(x) = A(x)y(x). (16.20)

Referring to the axioms given in Sect. 4.2.1, it readily follows that the solutions
{ϕi(x)} form a vector space V . Indeed, if ϕ1(x) and ϕ2(x) are solutions of
(16.20), then c1ϕ1(x)+c2ϕ2(x) with arbitrary constants c1, c2 is also a solution
of (16.20), and so on.
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Now we pose a question as to the dimension of the vector space V men-
tioned above. We have the answer in the following theorem:

♠ Theorem:
Solutions of the system (16.20) on an interval I form an n-dimensional

vector space if the n× n matrix A(x) is continuous on I.

Proof The continuity of A(x) implies that all its components do not diverge.
This allows us to set a constant K,

K = max
n∑

i=1

|aij(x)| ,

and it then follows that the vector f defined by f(x) = A(x)y(x) satisfies the
Lipschitz condition:

|f(x,y) − f(x,z)| ≤ K |y − z| for x ∈ I.

From the existence and uniqueness theorems we know that there are n solu-
tions ϕi(x) of (16.20) such that each solution exists on the entire interval I
and satisfies the initial condition

ϕi(x0) = ei (i = 1, 2, · · · , n) for x0 ∈ I, (16.21)

where the e′
is are n linearly independent vectors.

We tentatively assume that the solutions ϕi are linearly dependent on I.
Then there exist constants ci, not all zero, such that

n∑

i=1

ciϕi(x) = 0 for every x on I.

In particular, setting x = x0, and using the initial condition (16.21), we have

n∑

i=1

ciei = 0,

which contradicts the assumed linear independence of ei. Hence, we conclude
that the solutions ϕi are linearly independent on I.

Next we prove the completeness of {ϕi(x)}; i.e., that every solution ψ(x) of
(16.20) can be expanded as a linear combination of ϕi(x) satisfying the initial
condition (16.21). Since the ei are linearly independent in the n-dimensional
Euclidean space En, they form a basis for En and there exist unique constants
bi such that the constant vector ψ(x0) can be expressed as

ψ(x0) =
n∑

i=1

biei. (16.22)
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Consider the vector

ϕ(x) =
n∑

i=1

biϕi(x),

where the bi are identical to those in (16.22). Clearly ϕ(x) is a solution of
(16.20) on I. In addition, the initial value of ϕ reads

ϕ(x0) =
n∑

i=1

biei,

so that ϕ(x0) = ψ(x0). In view of the uniqueness theorem, we have

ϕ(x) = ψ(x) for every x on I.

This leads to the conclusion that every solution ψ(x) of an nth-order linear
homogeneous system (16.20) is expressed by the unique linear combination

ψ(x) =
n∑

i=1

biϕi(x) for every x on I,

where the bi are uniquely determined once we have ψ(x). As a result, n
solutions ϕi(x) of the system (16.20) form the basis for an n-dimensional
vector space. ♣

16.2.3 Fundamental Systems of Solutions

Again let ϕi(x) = [ϕ1i(x), · · · , ϕni(x)]T (i = 1, 2, · · · , n) be solutions of the
linear homogeneous system (16.20) such that

ϕi(x)′ = A(x)ϕi(x) for all i = 1, 2, · · · , n.

Note here that {ϕi(x)} may or may not be linearly independent, since no
initial condition is imposed (contrary to the case of (16.21)). Specifically, if
the set {ϕi(x)} is endowed with the linear independence property, it is called
the fundamental system of solutions of (16.20).

♠ Fundamental system of solutions:
A collection of n solutions {ϕi(x)} of an n-dimensional lienar homoge-

neous system is called a fundamental system of solutions of the system
if it is linearly independent.

Remark. The significance of a fundamental system of solutions lies in the fact
that it can describe any solution ϕ(x) of the corresponding linear homoge-
neous system. Consequently, the problem of finding a solution ϕ(x) becomes
equivalent to that of finding n linearly independent solutions.
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With this terminology, the theorem presented in Sect. 16.2.2 leads to the
following result:

♠ Theorem:
A fundamental system of solutions exists for an arbitrary linear homo-

geneous system.

Example The second-order equation

y′′(t) + y(t) = 0 (16.23)

is equivalent to the two-dimensional linear system

u′(t) = Au(t) (16.24)

with

u(t) =
[
y′(t)
y(t)

]

and A =
(

0 1
−1 0

)

.

The fundamental system of solutions of (16.24) is given by

ϕ1(t) = [cos t,− sin t]T and ϕ2(t) = [sin t, cos t]T,

whose linear independence follows from the fact that c1 sin t ± c2 cos t ≡ 0
implies c1 = c2 = 0. Furthermore, ϕ1(0) = (1, 0) and ϕ2(0) = (0, 1), so any
solution ϕ(t) is given by

ϕ(t) = a0ϕ1(t) + b0ϕ2(t) for −∞ < t < ∞, (16.25)

where ϕ(0) = (a0, b0).

Remark. The solution ϕ(t) in (16.25) corresponds to the solution of the
second-order ODE (16.23) satisfying the initial conditions: y(0) = a0 and
y′(0) = b0.

16.2.4 Wronskian for a System of ODEs

The theorems given in Sect. 16.2.2 and 16.2.3 ensure the existence of a fun-
damental system of solutions for any linear homogeneous system of the form

y′(x) = A(x)y(x). (16.26)

However, it provides no information as to whether a certain set of solutions
is a fundamental system or not. In what follows, we consider the criteria
concerning this issue. Following are preliminary concepts that we need in
order to proceed.
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♠ Wronsky determinant:
Let {ϕk(x)} (k = 1, 2, · · · , n) be solutions of (16.26), where ϕk(x) =

[ϕ1k(x), · · · , ϕnk(x)]T. Then the scalar function

W (x) = det

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ϕ11 ϕ12 · · · ϕ1n

ϕ21 ϕ22 · · · ϕ2n

· · · · · ·
· · · · · ·
· · · · · ·

ϕn1 ϕn2 · · · ϕnn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16.27)

is called the Wronsky determinant (or the Wronskian) of the solutions
{ϕk(x)}.

If {ϕk(x)} is a fundamental system of solutions of (16.26), then the matrix
corresponding to W (x) is called a fundamental matrix. Hence, a fundamen-
tal matrix is a matrix whose columns form a fundamental system of solutions
of (16.26).

Example For the two-dimensional system given in Sect. 16.2.3, the matrix

Φ(t) =
(

cos t sin t
− sin t cos t

)

, −∞ < t < ∞

is a fundamental matrix and W (t) ≡ 1 for all t.

16.2.5 Liouville Formula for a Wronskian

The following theorem shows that given any n solutions of (16.26) and any t0
in (r1, r2), we can completely determine the corresponding Wronskian without
computing the n× n determinant.

♠ Liouville formula:
Let {ϕk(x)} (k = 1, 2, · · · , n) be any n solution of (16.26) and let x0 be

in (r1, r2). Then the Wronskian of {ϕk(x)} for x ∈ (r1, r2) is given by

W (x) = W (x0) exp
[∫ x

x0

trA(s)ds
]

.

See Exercise 2 for the proof. Since exp
[∫ x

x0
trA(s)ds

]

is never zero, the
theorem implies that the Wronskian of any collection of n solutions of (16.26)
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is identically zero or never zero on (r1, r2). The latter case characterizes a
fundamental system, as shown by the following theorem:

♠ Theorem:
A necessary and sufficient condition for {ϕk(x)} (k = 1, 2, · · · , n) to

be a fundamental system of solutions of (16.26) is that W (x) �= 0 for
r1 < x < r2.

Proof Let {ϕk(x)} (k = 1, 2, · · · , n) be a fundamental system of solutions of
(16.26) and let ϕ(x) be any nontrivial solution. Then there exist c1, · · · , cn
not all zero such that ϕ(x) =

∑n
i=1 ciϕi(x), and by the uniqueness of the

solutions the ci are unique. If c = [c1, · · · , cn]T and Φ(x) is the fundamental
matrix of {ϕk(x)}, then the previous relation can be written as

ϕ(x) = cΦ(x).

For any x in (r1, r2), this is a system of n linear equations in the unknowns
c1, · · · , cn. Since this has a unique solution in c, detΦ cannot be zero, i.e.,

detΦ(x) = W (x) �= 0 for any x ∈ (r1, r2).

Conversely, W (x) �= 0 for r1 < x < r2, implies that the columns
ϕ1(x), · · · ,ϕn(x) of Φ(x) are linearly independent for r1 < x < r2. Since
they are solutions of (16.26), they form a fundamental system ofsolutions. ♣

16.2.6 Wronskian for an nth-Order Linear ODE

The previous results for systems of ODEs can be applied to an nth-order
linear equation

u(n)(x) + a1(x)u(n−1)(x) + · · · + an(x)u(x) = 0, (16.28)

since (16.28) is transformed into a vector form as

y′ = Ay, (16.29)

where

y =

⎡

⎢
⎢
⎢
⎢
⎣

u
u′

· · ·
· · ·

u(n−1)

⎤

⎥
⎥
⎥
⎥
⎦

and A =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 0 · · · 0
0 0 1 · · · 0
· · · · · ·
0 0 1

−an(x) −an−1(x) · · · · · · −a2(x) −a1(x)

⎤

⎥
⎥
⎥
⎥
⎦

.
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Relevant terminology and theorems are given below.

♠ Fundamental system of solutions:
A collection

ξ1(x), · · · , ξn(x), r1 < x < r2

of solutions of (16.28) is called a fundamental system of solutions of
(16.28) if it is linearly independent.

♠ Theorem:
A fundamental system of solutions of equation (16.28) exists.

Proof We know that a fundamental system of solutions of (16.29) exists, and
we express it by ϕ1(x), · · · ,ϕn(x), where ϕk(x) = [ϕ1k(x), · · · , ϕnk(x)]T.
Furthermore, we may assume that given x0 in (r1, r2),

ϕk(x0) = [0, · · · , 0, 1, 0, · · · , 0]T ≡ ek, k = 1, 2, · · · , n,

where the single nonzero component 1 in ek is assigned to the kth place in the
square brackets. By the correspondence of solutions of (16.28) and (16.29), we
have

ϕk(x) =
[

ξk(x), ξ′k(x), · · · , ξ(n−1)
k (x)

]T

for some solution u(x) = ξk(x) of (16.28). The collection ξ1(x), · · · , ξn(x)
comprises distinct nontrivial solutions, since they satisfy distinct initial con-
ditions and ξk ≡ 0 for r1 < x < r2 would imply that ϕk(x) ≡ 0, which is
impossible.

Finally, if there existed constants c1, · · · , cn not all zero such that
∑n

k=1 ck
ξk(x) ≡ 0 for r1 < x < r2, then

n∑

k=1

ckξ
′
k(x) ≡ 0, · · · ,

n∑

k=1

ckξ
(n−1)
k (x) ≡ 0, r1 < x < r2.

This implies that
n∑

k=1

ckϕk(x) ≡ 0, r1 < x < r2,

which contradicts the fact that {ϕk(x)} is a fundamental system of (16.29).
♣

We now define the Wronskian of a collection of n solutions of (16.28).
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♠ Wronsky determinant:
Given any collection ξ1(x), · · · , ξn(x) of solutions of (16.28), then

W (x) = det

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ξ1 ξ2 · · · ξn
ξ′1 ξ′2 · · · ξ′n

· · · · · ·
· · · · · ·
· · · · · ·

ξ
(n−1)
1 ξ

(n−1)
2 · · · ξ(n−1)

n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16.30)

is called the Wronsky determinant (or the Wronskian) of the solutions
{ξk(x)} (k = 1, 2, · · · , n).

As before, if ξ1(x), · · · , ξn(x) make up a fundamental system of (16.28), then
the matrix corresponding to W (x) is called a fundamental matrix. In
any case, note that the columns of the matrix corresponding to W (x) are
n solutions of the system (16.29). We may therefore immediately state a
result analogous to the Liouville formula given in Sect. 16.2.4, noting that
trA(x) = −a1(x):

♠ Theorem:
The Wronskian W (x) of any collection ξ1(x), · · · , ξn(x) of solutions of

(16.28) satisfies the relation

W (x) = W (x0) exp
[

−
∫ x

x0

a1(s)ds
]

, r1 < x0, x < r2.

Finally, we have the result corresponding to the theorem in Sect. 16.2.4, for
which the proof is virtually the same.

♠ Theorem:
A necessary and sufficient condition for ξ1(x), · · · , ξn(x) to be a funda-

mental system of solutions of equation (16.28) is that

W (x) �= 0 for r1 < x < r2.

Example Assume a second-order equation

y′′(x) + a(x)y(x) = 0.
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For any two solutions ξ1(x) and ξ2(x), we have

W (x) = det
(
ξ1(x) ξ2(x)
ξ′1(x) ξ′2(x)

)

= const.

The constant is nonzero if and only if ξ1 and ξ2 are linearly independent.

Remark. The fact that linear independence implies a nonvanishing Wronskian
is a property of solutions of linear equations; i.e., it does not hold for nonlinear
equations. To see this, we consider the functions ξ1(x) = x3 and ξ2(x) = |x|3.
They are linearly independent on −∞ < x < ∞, but

W (x) = det
(
x3 |x|3
3x2 3x|x|

)

= 0.

This results from the fact that ξ1(x) and ξ2(x) cannot both be solutions near
x = 0 of a second-order linear equation. In fact, they both satisfy ξ(0) =
ξ′(0) = 0 yet are distinct, which violates uniqueness.

16.2.7 Particular Solution of an Inhomogeneous System

We close this section by discussing an inhomogeneous linear equation

dy(x)
dx

− A(x)y(x) = q(x). (16.31)

Let q(x) be continuous on x on some interval I and let {ϕk} (k = 1, 2, · · · , n)
be a fundamental system of solutions for the reduced equation of (16.31). A
general solution of (16.31) can be written as the sum

ψ(x) = ϕp(x) + c1ϕ1(x) + · · · + cnϕn(x), (16.32)

where ϕp(x) is a particular solution of (16.31) with no adjustable parame-
ter.

A particular solution can be obtained from a fundamental system {ϕk}
(k = 1, 2, · · ·n) of the reduced equation (16.19) by means of the method of
variation of constant parameters. We assume a particular solution of the
form

ϕp(x) = C1(x)ϕ1(x) + · · · + Cn(x)ϕn(x), (16.33)

where the coefficients {Ck(x)} (k = 1, 2, · · · , n) are not constants, but un-
known functions of x. Differentiating (16.33) on x and substituting it into
(16.31), we obtain

n∑

k=1

[Ck(x)ϕ′
k(x) + C ′

k(x)ϕk(x) − Ck(x)A(x)ϕk(x)] = q(x). (16.34)
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Since {ϕk} (k = 1, 2, · · · , n) are solutions of the reduced equation (16.19),
equation (16.34) yields

n∑

k=1

ϕk(x)C ′
k(x) = q(x). (16.35)

If we express ϕk(x) by its components as

ϕk(x) = [ϕk1(x), ϕk2(x), · · ·ϕkn(x)] ,

equation (16.35) becomes
n∑

j=1

ϕkj(x)C ′
j(x) = qk(x), (16.36)

or equivalently,⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ϕ11 ϕ12 · · · ϕ1n

ϕ21 ϕ22 · · · ϕ2n

· · ·
· · ·
· · ·

ϕn1 ϕn2 · · · ϕnn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C ′
1(x)

C ′
2(x)
·
·
·

C ′
n(x)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

q′1(x)
q′2(x)

·
·
·

q′n(x)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (16.37)

The matrix [ϕkj ] on the left-hand side of (16.37) satisfies det[ϕkj ] �= 0 be-
cause of the linear independence of the fundamental system of solutions {ϕk}.
Hence, multiplying the inverse matrix (see Sect. 18.1.7) of [ϕkj ] by the both
sides of (16.37), we have

C ′
k(x) = pk(x), (16.38)

where {pk(x)} , k = 1, 2, · · · , n are continuous functions obtained from
(16.37). Thus once the differential equation (16.38) is solved with respect
to Ck(x), the solutions determine a particular solution of the form

ϕp(x) =
n∑

k=1

Ck(x)ϕk(x).

Exercises

1. Suppose ϕ1(x), ϕ2(x) to be two solutions of the ODE y′′ + a1y
′ + a2y = 0

on an interval I containing a point x0. Show that

W (ϕ1, ϕ2)(x) = e−a1(x−x0)W (ϕ1, ϕ2)(x0).

Solution: We have ϕ1
′′ +a1ϕ1

′ +a2ϕ1 = 0 and ϕ2
′′ +a1ϕ2

′ +a2ϕ2 =
0. Multiplying the first equation by −ϕ2, and the second by ϕ1 and
adding we obtain

(ϕ1ϕ2
′′ − ϕ1

′′ϕ2) + a1 (ϕ1ϕ2
′ − ϕ1

′ϕ2) = 0.
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Note that W = ϕ1ϕ2
′ − ϕ1

′ϕ2 and W ′ = ϕ1ϕ2
′′ − ϕ1

′′ϕ2. Thus W
satisfies the first-order equation:

W ′ + a1W = 0,

which implies W (x) = ce−a1x in which c is some constant. Setting
x = x0, we have c = e−a1x0W (x0), and thus

W (x) = e−a1(x−x0)W (x0). ♣
2. Assume an n-dimensional linear homogeneous system y′(x) = A(x)y(x)

on I = (a, b), and let {gi(x)} be any n solution. Show that the Wronskian
of {gi(x)} is given by

W (x) = W (x0) exp
[∫ x

x0

trA(s)ds
]

, where a < x0 < b, (16.39)

which is called the Liouville formula.

Solution: We show thatW (x) satisfies the differential equationW ′(x) =
trA(x)W (x) from which the conclusion (16.39) follows. The expansion
by cofactors of W (x) yields

W (x) =
n∑

j=1

ϕij(x)Δij(x), (16.40)

where ϕij(x) is the jth element of ϕi(x) and Δij(x) is the cofactor
of W (x) (see Sect. 18.1.7 for the definition of the cofactor). Note that
Δij(x) does not contain the term ϕij(x). Hence, if W (x) given in
(16.40) is regarded as a function of the ϕij(x), we have ∂W/∂ϕij =
Δij(x) and, by the chain rule,

W (x)′ =
n∑

i,j=1

∂W

∂ϕij
ϕij(x)′ =

n∑

i=1

⎡

⎣

n∑

j=1

ϕij(x)′Δij(x)

⎤

⎦ . (16.41)

We define Wi(x) as

Wi(x) ≡ det

⎛

⎜
⎜
⎜
⎜
⎝

ϕ11(x) · · · · · · ϕ1n(x)
· · · · · ·

ϕi1(x)′ · · · · · · ϕ′
in(x)

· · · · · ·
ϕn1(x) · · · · · · ϕnn(x)

⎞

⎟
⎟
⎟
⎟
⎠

,

where all the elements in the ith row are differentiated. Then, the
expression in the square brackets in (16.41) is the expansion of Wi(x)
by cofactors, so that

W (x)′ =
n∑

i=1

Wi(x). (16.42)
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Furthermore, since ϕij(x)′ =
∑n

k=1 aik(x)ϕkj(x), we have

Wi(x) ≡ det

⎛

⎜
⎜
⎜
⎜
⎝

ϕ11(x) · · · · · · ϕ1n(x)
· · · · · ·

∑n
k=1 aikϕk1(x) · · · · · ·

∑n
k=1 aikϕkn(x)

· · · · · ·
ϕn1(x) · · · · · · ϕnn(x)

⎞

⎟
⎟
⎟
⎟
⎠

.

Multiply the kth row (k �= i) of the left matrix by −aik(x) and then
add it to the ith row. This process does not change the value of the
determinant Wi(x), but gives the relation

Wi(x) ≡ det

⎛

⎜
⎜
⎜
⎜
⎝

ϕ11(x) · · · · · · ϕ1n(x)
· · · · · ·

aiiϕi1(x) · · · · · · aiiϕin(x)
· · · · · ·

ϕn1(x) · · · · · · ϕnn(x)

⎞

⎟
⎟
⎟
⎟
⎠

= aii(x)W (x). (16.43)

From (16.42) and (16.43), we arrive at the desired result. ♣

16.3 Autonomous Systems of ODEs

16.3.1 Autonomous System

We noted earlier that an nth-order ODE reduces to the first-order form:

y(x)′ ≡ d

dx

⎡

⎢
⎢
⎣

y1(x)
y2(x)
· · ·

yn(x)

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

F1(x; y1, y2, · · · , yn)
F2(x; y1, y2, · · · , yn)

· · ·
Fn(x; y1, y2, · · · , yn)

⎤

⎥
⎥
⎦

≡ F (x,y), (16.44)

where y(x) and F (x,y) are n column vectors. Particularly important in many
applications is the case where F (x,y) does not depend explicitly on x. Rele-
vant terminology is given below.

♠ Autonomous system of ODEs:
A system of a first-order ODE of the form

y′(x) = F (y)

is called an autonomous system, wherein F does not depend explicitly
on the independent variable x.



526 16 System of Ordinary Differential Equations

If F does depend explicitly on x, the system is said to be nonautonomous.

Example Consider a second-order ODE of the form

u′′(x) = f (u(x), u′(x)) .

Setting y1(x) = u(x) and y2(x) = u′(x), we have an autonomous system such
as

y′(x) =
d

dx

[
y1(x)
y2(x)

]

=
[

y2(x)
f(y1(x), y2(x))

]

≡ F (y).

16.3.2 Trajectory

As a prototype of autonomous systems of ODEs, we consider a two-dimensional
system such that

y′(t) =
d

dt

[
y1(t)
y2(t)

]

=
[
f1(y1, y2)
f2(y1, y2)

]

= f(y), (16.45)

where y1(t), y2(t) are unknown functions on t in some interval I. We assume
that f1(y1, y2) and f2(y1, y2) are defined in some domain D and satisfy the
Lipschitz condition on both y1(t) and y2(t). If t0 is any real number and
(y10, y20) ∈ D for any y10 ≡ y1(t0) and y20 ≡ y2(t0), the above hypotheses
guarantee the existence and uniqueness of solutions for (16.45),

y1(t) = ϕ1(t), y2(t) = ϕ2(t),

satisfying the initial conditions

ϕ1(t0) = y10, ϕ2(t0) = y20.

We now consider a subdomain R of D in which f1(y1, y2) does not vanish.
Then, we have in R the relation

dy2

dy1
=
dy2

dt

dt

dy1
=
dy2/dt

dy1/dt
=
f2(y1, y2)
f1(y1, y2)

, (16.46)

which represents a direction field in (y1-y2)-plane as noted in Sect. 15.1.6.
From the uniqueness theorem, there exists a unique integral curve of (16.46)
in R satisfying the initial conditions. Such an integral curve on (y1-y2)-plane
is called a trajectory of (16.45).

♠ Theorem: At most one trajectory passes through any point.

Proof This is obvious from the uniqueness of solutions. If not, two or more
trajectories emerge from the crossing point chosen as an initial value
point. ♣
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Remark. When the vector field

v(x, y) =
[
x′1
x′2

]

=
[
f1(x1, x2)
f2(x1, x2)

]

describes the motion of a point in R, the domain R is called a phase space
of the system (16.45).

16.3.3 Critical Point

Suppose that the autonomous system (16.45) has a time-independent solution
expressed by

ϕ(t) = c ∈ D,

where c = (c1, c2) is a constant vector. Then, no trajectory can pass through
the point c (see the theorem in Sect. 16.3.3). In addition, we obviously have

ϕ′(t) = 0 = f(c).

Conversely, if there exists a point c in R for which f(c) = 0, then the functions
ϕ(t) = c are solutions of (16.45). The point c is said to be a critical point
(or singular point or point of equilibrium).

♠ Critical point:
Assume an autonomous system

y′(x) = F (y) for y ∈ D. (16.47)

Then, any point c ∈ D that gives

F (c) = 0

is called a critical point of (16.47). Any other point in D is called a
regular point.

16.3.4 Stability of a Critical Point

Let us discuss the stability of a critical point of an autonomous system
(16.45) by analyzing trajectories of its solutions around the critical point.

We assume throughout that the function F (y) is differentiable of the first
order on D, which guarantees the existence and uniqueness of solutions of
the initial value problem (16.45). Then, the solutions of (16.45) can be con-
veniently pictured as curves in the phase space.
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Now we consider a solution ψ(x) of (16.45) that passes through the point
η for x0, where the distance between η and c is small. Let us now follow
the trajectory that starts at a point η different from y0, but near c. If the
resulting motion ψ remains close to the critical point c for x ≥ x0, then the
critical point is said to be stable, but if the solution ψ tends to return to
the critical point c as x increases to infinity, then the critical point is said
to be asymptotically stable. Finally, if the solution ψ leaves every small
neighborhood of c, the critical point is said to be unstable. More precisely,
we have the following definitions:

♠ Stability of a critical point:
Let c be a critical point of the autonomous system y′(x) = F (y), so

that F (c) = 0. The critical point c is called:

(i) stable when given a positive ε, there exists a δ so small that

|y(0) − c| < δ ⇒ |y(x) − c| < ε for all x > 0;

(ii) asymptotically stable when for some δ,

|y(0) − c| < δ ⇒ lim
x→∞

|y(x) − c| = 0;

(iii) strictly stable when it is stable and asymptotically stable;
(iv) neutrally stable when it is stable but not asymptotically stable; and
(v) unstable when it is not stable.

16.3.5 Linear Autonomous System

An autonomous system y′ = F (y) is called linear if and only if all the
elements Fi of F are linear homogeneous functions of the yk, so that

dyk

dx
= ai1y1 + · · · + ainyn (i = 1, · · · , n).

Hence, a linear autonomous system is just a (homogeneous) linear system of
ODEs with constant coefficients. The analyses for linear systems are generally
useful since we can always replace Fi(y) by the linear terms of their Taylor
expansions about a point y = y0 for analyzing their local behavior.

We now discuss in detail the case n = 2 of linear plane autonomous systems
of the form y′ = Ay. Any such system is expressed by

dx

dt
= ax+ by,

dy

dt
= cx+ dy, (16.48)
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where x = y1, y = y2, and

A =
(
a b
c d

)

with a, b, c, d being constants. Observe that the simultaneous linear equations

ax+ by = cx+ dy = 0

have no solution except
x = y = 0

unless detA = 0. We thus see that the origin is the only critical point of the
system (16.48) unless ad = bc.

Relevant terminology is given below.

♠ Secular equation:
If (x(t), y(t)) is a solution of (16.48), then x(t) and y(t) satisfy the equa-

tion:
u′′ − (a+ d)u′ + (ad− bc)u = 0. (16.49)

This equation is called the secular equation of the autonomous system
(16.48).

Proof The first equation of (16.48) says that

by = x′ − ax,

which implies that
x′′ − ax′ = by′.

We thus have

x′′ − ax′ = b(cx+ dy) = bcx+ d(x′ − ax),

or equivalently,
x′′ − (a+ d)x′ + (ad− bc)x = 0.

The proof for y(t) is the same, replacing a with d and b with c. ♣

The secular equation (16.49) has an important property associated with the
nature of the critical point. This is seen by introducing the concept of the
characteristic polynomial P of (16.49) as

P ≡ λ2 − (a+ d)λ+ (ad− bc) =
∣
∣
∣
∣

a− λ b
c d− λ

∣
∣
∣
∣
= det(A − λI).
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If λj (j = 1, 2) are the roots of P = 0, then there exist nonzero eigenvectors
(xj , yj) such that

(
a b
c d

)(
xj

yj

)

=
(
axj + byj

cxj + dyj

)

= λj

(
xj

yj

)

.

From this, it follows that the functions

eλ1t

(
x1

y1

)

and eλ2t

(
x2

y2

)

are a basis of vector-valued solutions of (16.48). We shall see later that the
nature of a critical point of a system is completely determined by the values
of the roots λ1, λ2.

16.4 Classification of Critical Points

The behavior of trajectories of a linear autonomous system

d

dt

(
u
v

)

=
(
a b
c d

)(
u
v

)

= A

(
u
v

)

(16.50)

near its critical point depends on the eigenvalues of the matrix A, denoted by
λ1 and λ2. There are five cases to consider and we discuss each in turn.

16.4.1 Improper Node

We first consider the case where λ1 and λ2 are real, unequal, and of the same
sign. A critical point for this case is called an improper node. In this case, all
the trajectories approach the critical point tangentially to the same straight
line with increasing t.

Example An example of improper nodes is given by

d

dt

(
u
v

)

=
(

−2 0
0 −3

)(
u
v

)

. (16.51)

The eigenvalues are obviously λ = −3,−2 and the corresponding eigenvectors
are (1, 0) and (0, 1). The general solution to (16.51) is

(
u
v

)

= c1

(
1
0

)

e−2t + c2

(
0
1

)

e−3t. (16.52)

The trajectories given by (16.52) for several values of c1 and c2 are shown in
Fig. 16.1.
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Fig. 16.1. Trajectories associated with the improper node of the system (16.51)

Remark. If the eigenvalues are real, unequal, and positive (contrary to the
above example), then the trajectories are similar to those in Fig. 16.1 except
that the directions of the arrows are reversed; in other words the trajectories
recede from the critical point and go off toward infinity.

16.4.2 Saddle Point

We next consider the case where λ1 and λ2 are real, unequal, and of the
opposite sign. In this case, the trajectories approach the critical point along
one eigenvector direction and recede along the other eigenvector direction.
The critical point in this case is called a saddle point.

Example Assume the system

d

dt

(
u
v

)

=
(

−1 1
0 2

)(
u
v

)

. (16.53)

The eigenvalues are λ± = −1, 2, and the corresponding eigenvectors are (1, 0)
and (1, 3), respectively. The general solution to (16.53) is

(
u
v

)

= c1

(
1
0

)

e−t + c2

(
1
3

)

e2t. (16.54)

The trajectories given by (16.54) are shown in Fig. 16.2. As (16.54) consists
of an e−t term and an e2t term, the trajectories approach the origin along the
eigenvector direction (1, 0) and recede along the direction (1, 3) as t increases.
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Fig. 16.2. Trajectories around the saddle point of the system (16.53)

16.4.3 Proper Node

We next consider the case of two roots of the characteristic equation being
real and equal. This type of critical point is called a proper node.

Example We consider the critical point of the system

d

dt

(
u
v

)

=
(
α 0
0 α

)(
u
v

)

. (16.55)

The critical point occurs at the origin, with the degenerate eigenvalue being α.
Generally when the eigenvalue λ of the characteristic equation is degenerate,
the eigenvector is given by

u(t) = (c1 + c2t)eλt, v(t) = (c3 + c4t)eλt. (16.56)

Hence, we set λ = α in (16.56) and substitute the results into (16.55) to obtain
c2 = c4 = 0. The solution to (16.55) is thus

u(t) = c1e
αt, v(t) = c3e

αt. (16.57)

Eliminating t from (16.57) yields the expression of the trajectories:

v =
c3
c1
u if c1 �= 0

and
u = 0 if c1 = 0,

both of which are depicted in Fig. 16.3. The trajectories approach or recede
from the origin, depending on the sign of α.
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Fig. 16.3. Trajectories around the proper node of the system (16.55)

16.4.4 Spiral Point

So far, we have restricted our attention to cases where the two eigenvalues
are real. Now we consider the case in which the two eigenvalues are complex
conjugates of each other. The corresponding critical point is called a spiral
point or a focus.

Example An example for this case is

d

dt

(
u
v

)

=
(

0 −1
2 −2

)(
u
v

)

. (16.58)

The critical point is at the origin, and the eigenvalues are λ± = −1 ± i with
coresponding eigenvectors (1, 1 ∓ i). The general solution to this system is

(
u
v

)

= c1

(
1

1 − i

)

e(−1+i)t + c2

(
1

1 + i

)

e(−1−i)t. (16.59)

The result represents a family of curves that spiral into the critical point as
t increases. Real components of the solutions u(t) and v(t) given by (16.59)
are plotted in Fig. 16.4.

16.4.5 Center

The final class of critical points is called a center, for which the two eigenval-
ues are pure imaginary. In this case, trajectories consist of a family of closed
loops centered about the critical point.
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Fig. 16.4. Trajectories for the spiral point of the system (16.58)

Example Consider the system

d

dt

(
u
v

)

=
(

1 2
−1 −1

)(
u
v

)

. (16.60)

The eigenvalues and corresponding eigenvectors are λ± = ±i and (1± i, −1),
and the general solution reads

(
u
v

)

= c1

(
1 + i
−1

)

eit + c2

(
1 − i
−1

)

e−it. (16.61)

Figure 16.5 shows several trajectories for different values of c1 and c2. All the
trajectories represent periodic motion about the critical point.

16.4.6 Limit Cycle

Before closing this section, we have one more topic to discuss. Consider the
system

x′ = x+ y − x
(

x2 + y2
)

,

y′ = −x+ y − y
(

x2 + y2
)

. (16.62)

The only critical point is at the origin. Letting x = r cos θ and y = r sin θ, the
system (16.62) becomes

r′ = r
(

1 − r2
)

and θ′ = −1. (16.63)
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Fig. 16.5. Periodic trajectories for the center of the system (16.60)

The system (16.63) has a trivial solution of r = 1, θ = −t + const, which
represents periodic clockwise motion around the unit circle. We can find other
solutions by solving (16.63). The equation for r is easy to solve, yielding

r(t) =
1

√

1 +
(

1 − r20
r20

)

e−2t

,

where r(0) = r0. Figure 16.6 shows r(t) plotted against t for r0 > 1 and
r0 < 1. The trajectories spiral in toward the unit circle as t → ∞ if r0 > 1

Fig. 16.6. Converging behavior of solutions of the system (16.62) to a limit cycle
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and they spiral out toward the unit circle as t → ∞ if r0 < 1. Hence, all the
trajectories spiral into the unit circle as t → ∞.

The unit circle mentioned above is called a limit cycle. Limit cycles are
important for determining the stability of the system, since the existence of a
limit cycle ensures the existence of periodic solutions to a system.

Exercises

1. Consider the system given by

x′ = ex + sin 5y − cos 2y,
y′ = x+ 2 sin y.

Find the equilibrium point and describe the stability of the system around
the point.

Solution: Expanding all functions on the right-hand side around x =
0, y = 0, we have

x′ = x+ 5y + g(x, y),
y′ = x+ 2y + h(x, y).

The functions g, h converge to zero faster than
√

x2 + y2, and the
characteristic equation becomes

∣
∣
∣
∣

−λ+ 1 5
1 −λ+ 2

∣
∣
∣
∣
= 0,

whose roots are (3±
√

21)/2. Both of these are positive and the system
is unstable. ♣

16.5 Applications in Physics and Engineering

16.5.1 Van der Pol Generator

As a physical example of a system in which a limit cycle may occur, we
consider the following electric circuit consisting of a coil with inductance L
and a condenser with capacitance C attached to a tunnel diode . A tunnel
diode is a nonlinear element in the sense that it exhibits nonlinear current–
voltage characteristics:

I(V ) = I0 − a(V − V0) + b(V − V0)3. (16.64)

It follows from Fig. 16.7 that a tunnel diode behaves like an ordinary resistor
at low and high voltages, but like a negative resistor at intermediate voltages.
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Fig. 16.7. Left : An electric circuit consisting of a coil with inductance L, a condenser
with capacitance C, and a tunnel diode. Right : Plot of the nonlinear current–voltage
characteristics I(V ) of the tunnel diode

Thus, a tunnel diode is expected to amplify small oscillations in the system,
provided we choose the parameters in an appropriate manner.

The equation of motion for the LC circuit attached to a tunnel diode is
obtained as described below. The law of the conservation current flow
ensures that

IL + I(V ) + IC = 0, (16.65)

where
IL =

1
L

∫

V dt and IC = C
dV

dt
. (16.66)

Substituting (16.64) and (16.66) into (16.65) and then differentiating with
respect to time, we get

d2V

dt2
+

1
C

[

−a+ 3b(V − V0)2
] dV

dt
+ ω2

0V = 0,

where we introduce the resonant frequency ω0 defined by the equation ω2
0 =

1/(LC). For simplicity, we define a new variable

x =
V − V0

V
,

for which

ẍ− α(1 − βx2)ẋ+ ω2
0x = 0

(

ẋ ≡ dx

dt

)

(16.67)

with

α =
a

C
, β =

3CV 2
0 b

a
.
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Fig. 16.8. Trajectories for the Van der Pol equation (16.68) with the parameter
μ = 0.3 for (a) and μ = 3.0 for (b)

Equation (16.67) can be further simplified by replacing x by x/
√
β and intro-

ducing a new time variable t̃ ≡ ω0t. Hence, we finally obtain

ẍ− μ(1 − x2)ẋ+ x = 0 (16.68)

with the following key parameter:

μ =
α

ω0
= a

√

L

C
.

The nonlinear differential equation (16.68) is known as the Van der Pol
equation. As shown below, it describes self-sustaining oscillations in which
energy is supplied to small oscillations and removed from large oscillations,
which gives rise to the limit cycle in the phase space.

We can observe the self-exciting behavior of the system governed by (16.68)
in the phase space plot in Fig. 16.8, where we set μ = 0.3 and μ = 3.0 for
various initial points x0 = (x(t = 0), ẋ(t = 0)). We see that all the trajectories
starting at a point x0 inside (or outside) a closed contour C move outward (or
inward) as t increases and then converge to the contour C; such a characteristic
closed contour is known as the limit cycle of the system. The shape of the limit
cycle depends on the value of μ, as is evident from Fig. 16.8.
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Partial Differential Equations

Abstract Broadly speaking, there are three classes of partial differential equations
that are relevant to mathematical physics, as reflected in the section titles of this
chapter. After examining the basic properties common to all the abovementioned
classes of equations, we devote the balance of this chapter to a discussion of the
mathematical essence of each class.

17.1 Basic Properties

17.1.1 Definitions

In this section we present the basic theory of partial differential equations
(PDEs), an understanding of which is crucial is for describing or predicting
the realm of nature. The formal definition is given below.

♠ Partial differential equations:
A partial differential equation of order r is a functional equation of the

form

F

(

x1, x2, · · · , xn;
∂u

∂x1
,
∂u

∂x2
, · · · , ∂u

∂xn
;
∂2u

∂x2
1

, · · ·
)

= 0, (17.1)

which involves at least one rth-order partial derivative of the unknown
function u = u(x1, x2, · · · , xn) of independent variables x1, x2, · · · , xn.

In this chapter we often denote partial derivatives with subscripts such as

∂u

∂x
≡ ux ≡ ∂xu,

∂2u

∂x∂y
≡ uxy ≡ ∂x∂yu,
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We also use the shorthand

∂j ≡ ∂

∂xj
, ∂i∂j =

∂2

∂xi∂xj
,

Then, the general form (17.1) of a PDE is expressed as

F (x, y, · · · , u, ux, · · · , uxx, uxy, · · · ) = 0, (17.2)

where u = u(x, y, · · · ) is the unknown function of independent variables
x, y, · · · . A solution (or integral) of a PDE is a function ϕ(x, y, · · · )
satisfying equation (17.2) identically, at least in some region of the indepen-
dent variables x, y, · · · .

17.1.2 Subsidiary Conditions

The general solution of (17.1) depends on an arbitrary function. This state-
ment is valid even for higher-order PDEs, indicating that a PDE has in gen-
eral many solutions. Hence, in order to determine a unique solution, auxiliary
conditions must be imposed. Such conditions are usually called initial con-
ditions on time or boundary conditions for positions.

Initial condition:
In physics, an unknown function in a PDE usually involves independent

variables of time t and position x, y, · · · . Initial conditions for an unknown
function are imposed on a particular (initial) time t = t0 for an unknown
function and/or its time derivatives.

Boundary condition:
Boundary conditions are imposed for an unknown function at the bound-

ary or the infinity of a domain D in which the PDE is valid and are classified
into two cases:
1. Dirichlet condition is the case in which an unknown function u is

specified on the boundary of the domain D (often denoted by ∂D),
where u is a function of time t and position x, y, · · · .

2. Neumann condition is the case in which the normal derivative of an
unknown function ∂u/∂n is specified.

17.1.3 Linear and Homogeneous PDEs

A PDE is called linear if and only if the F of (17.1) is a linear function of u
and its derivatives. First we assume a first-order PDE with two independent
variables x and y, whose general form reads
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F (x, y; u, ux, uy) = 0. (17.3)

Then, if it is linear, (17.3) can be expressed by

a(x, y)ux + b(x, y)uy + c(x, y)u = g(x, y), (17.4)

where a, b, c, and g are given functions of x, y. Using the operator L, we
express (17.4) by a simple form such that

Lu(x, y) = g(x, y), (17.5)

where the operator L is defined by

L = a(x, y)∂x + b(x, y)∂y + c(x, y).

The linearity of PDEs guarantees that for any function u, v and any constant
c the relations hold for

L(u+ v) = Lu+ Lv, L(cu) = cL(u).

Examples
uxx − e−xuyy = 0 (linear)
uxx − e−xuyy = sinx (linear)
uux + uy = 0 (nonlinear)
xux + yuy + u2 = 0 (nonlinear)

A linear equation is said to be homogeneous if the equation contains
either the dependent variable u or its derivatives ux, uy, · · · , not an indepen-
dent variable such as x, y, · · · . For instance, the PDE (17.5) is homogeneous if

g(x, y) ≡ 0,

since the equation
Lu(x, y) = 0 (17.6)

involves only u, ux, uy and not x or y. On the other hand, if g �= 0 in (17.5), it
is called an inhomogeneous (or nonhomogeneous) linear equation. These
statements are generally valid even for higher-order PDEs.

17.1.4 Characteristic Equation

We consider a first-order homogeneous linear PDE of the form

a(x, y)∂xu(x, y) + b(x, y)∂yu(x, y) = 0, (17.7)

which is the most simple (and thus pedagogical) class of PDEs. In general,
solutions of PDEs are described by arbitrary functions f(p) of a particular
independent variable p, wherein p = p(x, y) is some combination of independent
variables x and y. We verify this statement for the case of (17.7).
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By the chain rule on the derivative, we have

∂u

∂x
=

∂p

∂x

df

dp
,

∂u

∂y
=

∂p

∂y

df

dp
. (17.8)

Hence, the PDE (17.7) can be rewritten in the form
[

a(x, y)
∂p

∂x
+ b(x, y)

∂p

∂y

]
df

dp
= 0. (17.9)

This implies that the function form of f(p) may be arbitrary if p = p(x, y)
satisfies the equation

a(x, y)
∂p

∂x
+ b(x, y)

∂p

∂y
= 0. (17.10)

Therefore, an arbitrary function f(p) such that the p satisfies (17.10) serves
as the solution of the original PDE of (17.7). [The case of ∂f/∂p = 0 gives a
trivial solution of f(p) = u(x, y) = const, which we omit below.]

To obtain the solution p = p(x, y) of the equation (17.10), we tentatively
suppose that the function p = p(x, y) takes a constant value along a curve
C : y = y(x) on the (x-y)-plane. Then, the total derivative of p on the curve
C should vanish, so that

dp =
∂p

∂x
dx+

∂p

∂y
dy = 0. (17.11)

From the correspondence between (17.10) and (17.11), we see that these are
equivalent provided that

dy

dx
=

b(x, y)
a(x, y)

, a(x, y) �= 0. (17.12)

This is called the characteristic equation of the PDE (17.7) and its solution
y = y(x) is the characteristic curve of (17.7). From (17.11) and (17.12),
therefore, we obtain the desired function form of p = p(x, y) that makes an
arbitrary function f(p) the solution of the original PDE.

Examples We evaluate a general solution for (17.7) in the case that a, b are
constant and nonzero coefficients. From (17.11) and (17.12), we obtain the
characteristic curve (line) p = bx−ay. Then a general solution takes the form

u(x, y) = f(p) = f(bx− ay), (17.13)

where f is an arbitrary function. The solution can be easily checked by tak-
ing derivatives using (17.8) and substituting those into (17.7). A less trivial
example is given in Exercise 1.
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17.1.5 Second-Order PDEs

The general form of second-order linear PDEs is

n∑

i,j=1

aij(x1, x2, · · · , xn)∂i∂ju +
n∑

j=1

ai(x1, x2, · · · , xn)∂iu

+a0(x1, x2, · · · , xn)u = g(x1, x2, · · · , xn), (17.14)

where the unknown function u depends on n-independent variables denoted
by x1, x2, · · · , xn. Note that aij = aji since the mixed derivatives are equal.
The form of (17.14) represents a very large class of PDEs. Among them, we
restrict our attention to the case g = 0 with real constant coefficients, namely,
second-order linear homogeneous PDEs. The general form of linear PDEs of
second-order involving n independent variables with real constant coefficients
is written as

n∑

i,j=1

aij∂i∂ju+
n∑

j=1

ai∂iu+ a0u = 0. (17.15)

The linear transformation of independent variables x = (x1, x2, · · · , xn)
to y = (y1, y2, · · · , yn) is given by

y = Bx, (17.16)

or equivalently,

yk =
n∑

m=1

bkmxm,

where the bkm are elements of the n × n matrix B. Using the chain rule on
the derivative, we have

∂

∂xj
=

n∑

k=1

∂yk

∂xi

∂

∂yk

and
∂2u

∂xi∂xj
=

(
n∑

k=1

bki
∂

∂yk

)(
n∑

m=1

bmj
∂

∂ym

)

u. (17.17)

Hence, the first term of (17.15) is converted to

n∑

i,j=1

aij∂i∂ju =
n∑

k,m=1

(bkiaijbmj) ∂k∂mu,

which leads the relation

aij →
n∑

k,m=1

bkiaijbmj . (17.18)
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Thus we obtain the PDE with new variables y1, y2, · · · , yn by the transforma-
tion A → BtAB, where Bt is the transpose of B.

The appropriate choice of the matrix B makes it possible to diagonalize
A such that

BtAB =

⎛

⎜
⎜
⎜
⎝

c1
c2 0

0
. . .

cn

⎞

⎟
⎟
⎟
⎠
,

where c1, c2, · · · , cn are the real eigenvalues of the matrix A. Thus, any PDE
of the form (17.15) can be converted into a PDE with diagonal coefficients in
terms of a linear transformation of a set of independent variables such as

n∑

i=1

ci
∂2u

∂y2
i

+
n∑

i=1

di
∂u

∂yi
= 0. (17.19)

♠ Theorem:
By linear transformation of independent variables, the equation (17.15)

can be reduced to the canonical form (17.19).

17.1.6 Classification of Second-Order PDEs

We can classify the types of PDEs depending on the positive or negative values
of the coefficients c1, c2, · · · , cn in (17.19) for the case di ≡ 0.

1. Elliptic case:
If all the eigenvalues c1, c2, · · · , cn are positive or negative, the PDE is
called elliptic. A simple example is given by

∂2u

∂y2
1

+
∂2u

∂y2
2

+ · · · = 0.

2. Hyperbolic case:
In this case none of the {ci} : i = 1, 2, · · · , n vanish and one of them has
the opposite sign from n− 1 than the others. For example,

∂2u

∂y2
1

− ∂2u

∂y2
2

+ · · · = 0.

3. Parabolic case:
If one of the {ci}, i = 1, 2, · · · , n is zero and all the others have the same
sign, the PDE is parabolic.
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Below are basic PDEs in physics classified by the definition given above:

Laplace equation: Δnu = 0, (17.20)
Wave function: utt = Δnu, (17.21)

Here Δn means the Laplacian defined by Δn = ∂2
1 +∂2

2 + · · ·+∂2
n. The other

important equation takes the form

ut = Δnu, (17.22)

which we call the diffusion equation. The diffusion equation is different
from the wave equation, where the time reversal symmetry t → −t holds. All
of these equations (17.20)–(17.22) are linear since they are first degree in the
dependent variable u.

Exercises

1. Find a general solution of the PDE of u = u(x, y) given by

ux + 2xy2uy = 0. (17.23)

Solution: The characteristic equation of (17.23) reads dy/dx =
2xy2, which has the solution y = 1/(p − x2). Hence, we have
p = x2 + (1/y), i.e., the general solution is given by

u(x, y) = f

(

x2 +
1
y

)

.

In fact, u(x, y) is a constant on the characteristic curve y = 1/(p−
x2) whatever value p takes, as proved by

d

dx
u

(

x,
1

p− x2

)

=
∂u

∂x
+

2x
(p− x2)2

∂u

∂y
=
∂u

∂x
+ 2xy2 ∂u

∂y
= 0,

and similarly we have du/dy = 0. ♣
2. Classify second-order PDEs in two independent variables whose general

form is given by
∂2

xu+ 2a12∂x∂yu+ a22∂
2
yu = 0, (17.24)

where a12, a22 are real constants.

Solution: By completing the square, we can write (17.24) as

(∂x + a12∂y)2u+ (a22 − a2
12)∂

2
yu = 0. (17.25)
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Here, let us introduce the new variables z and w by the linear
transformation of the form x = z, y = a12z+ (a22 − a2

12)
1/2w. We

then have
∂

∂z
=

∂

∂x
+ a12

∂

∂y
,

∂

∂w
= (a22 − a2

12)
1/2 ∂

∂y
,

so that for the case a22 > a2
12 (17.25) gives

∂2u

∂z2
+

∂2u

∂w2
= 0.

This is the elliptic case and is called the Laplace equation in the
zw-plane. We easily see that for (17.25) the hyperbolic case is ob-
tained for a22 < a2

12. Thus, the second term of (17.25) determines
the types of PDEs. ♣

17.2 The Laplacian Operator

17.2.1 Maximum and Minimum Theorem

We describe the fundamental properties of three operators, the Laplace, dif-
fusion, and wave operators. These three operators are of great importance in
the theory of PDEs. We begin with a description of the Laplace operator
(or simply Laplacian) Δn on Rn defined by

Δn =
n∑

i=1

∂2
i ,

where n is a positive integer. The Laplacian is not only important in its
own right, but also forms the spatial component of the diffusion operator
LD = ∂t −Δn and the wave operator LW = ∂2

t −Δn, whose properties are
discussed in Sect. 17.3 and 17.4.

First, we explain the maximum principle for the Laplace equation
given by

Δnu(x) = 0,

whose solutions are called harmonic functions. Obviously, the one-dimen-
sional case (n = 1) is trivial, so we consider the case where n > 1. Let
D be a connected open set and u be an harmonic function in D with sup
u(x) = A < ∞ for x ∈ D.

♠ Maximum and minimum theorem:
The maximum and minimum values of u are achieved on ∂D, say the

boundary of D, and nowhere inside.
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Before going to the proof, we examine certain properties of the solutions of
Poisson’s equation expressed by

Δnu(x) = −4πρ(x). (17.26)

♠ Lemma:
If the function ρ(x) in Poisson’s equation (17.26) is positive (or negative)

at a point x0, then the solution of (17.26) cannot attain its maximum (or
minimum) value at the point x0.

Proof (of the lemma): If the function u(x) satisfying (17.26) at-
tains a minimum at a point x0, then it should attain a minimum with
respect to each component x1, x2, · · · , xn separately at that point.
Then all the second-order derivatives of u would have to be non-
negative, which means that the left-hand side of (17.26), i.e., the
sum of the second-order derivatives would have to be nonnegative.
This result contradicts our hypothesis that ρ(x) in (17.26) is positive.
Hence, the first part of the lemma has been proved. The second part
of the lemma is proved in a similar manner by assuming that ρ(x) is
negative. ♣

We are now ready to verify the maximum and minimum theorem.

Proof (of the maximum and minimum theorem): The proof is
by contradiction. We first assume that

u(x0) > ub + ε,

where ub is the value of the function u(x) at an arbitrary point on the
boundary of the defining domain D. We further assume the function

v(x) = u(x) + ηr(x)2,

where
r(x)2 = |x − x0|2

and η is some positive constant. It then follows that

Δnv = Δnu+ 2nη = 2nη,

which says that the v(x) is a solution of Poisson’s equation (17.26)
with negative ρ(x). Note that v(x0) = u(x0) and by hypothesis

u(x0) > ub + ε = vb + ε− ηr2.
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Choosing η to be so small that throughout D

ε− ηr2 >
ε

2
,

we obtain
v(x0) > vb +

ε

2
,

which implies that v attains its maximum somewhere within the do-
main D. This clearly contradicts the lemma above, so our assumption
at the beginning of the proof was false. ♣

17.2.2 Uniqueness Theorem

The following theorem establishes the uniqueness of the solution of the
Dirichlet problems for the Laplace equations.

♠ Uniqueness theorem:
If it exists, the solution of the Dirichlet problem for a Laplace equation

is unique.

Proof Suppose that u1 and u2 are solutions on D for the Dirichlet problem
such that

Δnu = f(x) in D,

u = g(x) on ∂D.

Let w = u1 − u2, then Δnw = 0 in D and w = 0 on ∂D. By the maximum
(or minimum) principle, the point xm (or xM ) that minimizes (or maximizes)
w(x) should be located on the boundary of D. Hence, we have

0 = w(xm) ≤ w(x) ≤ w(xM ) = 0

for all x ∈ D, which means that w = 0 and u1 = u2. ♣

17.2.3 Symmetric Properties of the Laplacian

The Laplacian is invariant under all rigid transformations such as translations
and rotations. A translation from x to a new variable x′ is given by

x′ = x + a,

where a is a constant vector in n-dimensional space. The rotation is expressed
by

x′ = Bx, (17.27)
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where B is an orthogonal matrix with the property BBt = BtB = I.
Invariance under translations or rotations means simply that

n∑

i=1

∂2

∂x2
i

=
n∑

j=1

∂2

∂x′2j
.

The proof for translational invariance is simple, so we leave it to the reader.
In physical systems, translational invariance is apparent because the physical
laws are independent of the choice of coordinates.

A rotational invariance under (17.27) is proved by using the chain rule on
the derivative such that

n∑

k=1

∂2

∂x2
k

=
∑∑

ij

bikbjk
∂2

∂x′i∂x
′
j

=
∑

i,j

δij
∂2

∂x′i∂x′j
=

n∑

i=1

∂2

∂x′2i
,

where we have used the relation
n∑

k

bikbjk = (BBt)ij = δij .

Thus the proof has been completed.
Rotational invariance suggests that a two- or three-dimensional Laplacian

should take a particularly simple form in polar or spherical coordinates.

Exercises

1. Find the harmonic function for a two-dimensional Laplace equation that
is invariant under rotations.

Solution: The two-dimensional Laplacian in polar coordinates is
given by

Δ2 =
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂ϑ2
(r > 0),

where we seek for solutions u(r) depending only on r. Then we
take the radial part of the Laplace equation, which gives urr +
1
rur = 0 (r > 0). This is the ODE whose solution is given by
u(r) = a log r+ b (r > 0), where a, b are constants. Note that the
form of the function log r is scale invariant under the dilatation
transformation r → cr for a positive constant c. ♣

2. Find the harmonic function in three dimensions that is invariant under
rotations.
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Solution: The Laplacian in spherical coordinates takes the form

Δ3 =
∂2

∂r2
+

2
r

∂

∂r
+

1
r2 sinϑ

∂

∂ϑ

(

sinϑ
∂

∂ϑ

)

+
1

r2 sin2 ϑ

∂2

∂φ2
(r > 0).

Since the solution depends only on r, we have the Laplace equation
given by urr + 2

rur = 0 (r > 0). So we have (r2ur)r = 0 and the
solution becomes u = a

r + b (r > 0), where a, b are constants.
This is an important harmonic function that is not finite at the
origin. ♣

3. Show that, for an arbitrary integer n > 2, the general form of solutions
with rotational symmetry is given by

u(r) = ar2−n + b (n > 2, r > 0), (17.28)

where a, b are constants.

Solution: This is shown by applying the chain rule to the deriva-
tive such that

Δnu(r) =
n∑

i=1

∂i

[xi

r
u′(r)

]

=
n∑

i=1

[
x2

i

r2
u′′(r) +

1
r
u′(r) − x2

i

r3
u′(r)

]

= u′′(r) +
n− 1
r

u′(r), (17.29)

where the relation ∂r/∂xi = xi/r is used. If Δnu = 0, (17.29)
yields

u′′(r)
u′(r)

=
1 − n

r
.

Integrating twice, we have (17.28). ♣

17.3 The Diffusion Operator

17.3.1 The Diffusion Equations in Bounded Domains

The diffusion equation describes physical phenomena such as Brownian
motion of a particle or heat flow, whose general form is written as

LDu(x1, x2, · · · , t) = 0, (17.30)

where LD is the diffusion operator defined by

LD = ∂t −
n∑

i=1

∂2
i . (17.31)

If the scale transformation t → Dt is used, we have the diffusion equation
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∂tu−DΔu = 0,

where D is the diffusion constant. For heat flow u represents the tempera-
ture at position x = (x1, x2, · · · ) and time t, and for Brownian motion u is the
probability of finding a particle at x and t. Hereafter, we treat the system of
the unit diffusion constant D = 1. If we have to go back to the actual diffusion
equation, we do the transformation t → Dt in the final solution.

17.3.2 Maximum and Minimum Theorem

We begin by describing the maximum principle for the diffusion equation
defined in a bounded domain, from which we deduce the uniqueness of initial
and boundary value problems.

♠ Maximum and minimum theorem:
Let D be a bounded domain in Rn and 0 < t < T < ∞. If u is a real-

valued continuous function, it takes its maximum either at the initial value
(t = 0) or on the boundary ∂D.

Proof For any ε > 0, we set

v(x, t) = u(x, t) + ε |x|2 ,

for which we have
vt −Δnv = −2nε < 0. (17.32)

If the maximum for u occurs at an interior point (x0, t0) in the domain
D× [0, T ], we know that the first derivatives vt, vx1 , vx2 , · · · of v vanish there
and that the second derivative Δv ≤ 0. This contradicts (17.32), so there is
no interior maximum. Suppose now that the maximum occurs at t = T on D;
the time derivative vt must be nonnegative there because

v(x0, T ) ≥ v(x0, T − δ)

and
Δv ≤ 0,

which again contradicts (17.32). Therefore, the maximum must be at the
initial time t = 0, namely, D × {0} or the boundary ∂D. Replacing u by −u,
we see that the minimum is also achieved on either D × {0} or ∂D. ♣

17.3.3 Uniqueness Theorem

The maximum principle can be used to prove uniqueness for the Dirichlet
problem for the diffusion equation. The conditions are given by
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LDu = f(x, t) on D × (0,∞)
u(x, 0) = g(x), u(x, t) = h(t) on ∂D

for given functions f, g, and h.
The following is an immediate corollary of the maximum and minimum

theorem.

♠ Uniqueness theorem:
There is at most one solution of the Dirichlet problem for the diffusion

equation.

Proof Let u(x, t) and v(x, t) be two solutions of (17.33) and w = u−v be their
difference. Hence, we have LDw = 0, w(x, 0) = 0, w(0, t) = 0, w(x, t) = 0
on ∂D. By the maximum principle, w(x, t) has its maximum at the initial
time or the boundary, exactly where w vanishes. Thus w(x, t) ≤ 0. The same
reasoning for the minimum shows that w(x, t) ≥ 0. Therefore w(x, t) = 0, so
that u = v for all t ≥ 0. ♣

17.4 The Wave Operator

17.4.1 The Cauchy Problem

The wave operator (or d’Alemberian) on Rn × R is expressed by

L = ∂2
t −Δn = ∂2

t −
n∑

i=1

∂2
i , (17.33)

from which we have the wave equation in the general form

Lu = ∂2
t u−Δnu = 0. (17.34)

The wave equation is the prototype of the hyperbolic PDEs and describes
waves with unit velocity of propagation in homogeneous isotropic media. By
making the transformation t → ct, we have the standard form of the wave
equation

∂2
t u− c2Δnu = 0, (17.35)

where c is the wave velocity. The solution for (17.35) is obtained by trans-
forming the time variable t into ct in the result of (17.34).

The initial value problem for the wave equation is called the Cauchy
problem and is given by the inhomogeneous wave equation

∂2
t u(x, t) −Δnu(x, t) = f(x, t) (17.36)
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under the two initial conditions

u(x, 0) = φ(x),
∂tu(x, 0) = ψ(x),

where f, φ, ψ are continuous and differentiable given functions. For example,
f(x, t) provides an external force acting on the system described by (17.36).

The wave operator (17.33) is a linear operator, so the solution is the sum
for the general solution of the homogeneous equation (17.34) and a particular
solution for the inhomogeneous equation (17.36).

17.4.2 Homogeneous Wave Equations

First, we provide the solution for the one-dimensional homogeneous version
(f = 0) of the Cauchy problem (17.36), in which the spatial part is defined on
the whole region of one dimension −∞ < x < ∞. For example, consider the
case of an infinitely long vibrating string. The wave equation is written as

utt − uxx = 0, (17.37)

which is a hyperbolic second-order PDE that we can express by
(
∂

∂t
− ∂

∂x

)(
∂

∂t
+

∂

∂x

)

u = 0. (17.38)

Let us set
ut + ux = v, (17.39)

then the first-order PDE for v(t, x) is obtained from (17.38) as

vt − vx = 0. (17.40)

As shown earlier, (17.40) has a solution of the form

v(x, t) = g(x+ t), (17.41)

where g is any function. Thus we must solve (17.39) for u, which is given by

ut + ux = g(x+ t). (17.42)

One solution of (17.42) takes the following form:

u(x, t) = h(x+ t), (17.43)

which we can check through direct differentiation of (17.43) by setting p = x+t
such that

∂u

∂x
=
dh

dp

∂p

∂x
= h′,
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∂u

∂t
=
dh

dp

∂p

∂t
= h′.

Then we have

h(p) =
1
2

∫ p

g(p)dp. (17.44)

Another possibility is the general solution of the homogeneous equation
obtained by setting g = 0 in (17.42), which takes the form

u = z(x− t). (17.45)
Adding this to (17.44), we have the general expression of a solution,

u(x, t) = h(x+ t) + z(x− t). (17.46)

Now let us solve (17.46) under the initial conditions

u(x, 0) = φ(x),
ut(x, 0) = ψ(x),

where φ and ψ are given functions of x. From (17.46), we have the relations

φ(x) = h(x) + z(x), (17.47)
ψ(x) = h′(x) − z′(x). (17.48)

By differentiating (17.47), we obtain φ′ = h′+z′. Combining this with (17.48),
we have

h′ =
1
2
(φ′ + ψ), z′ =

1
2
(φ′ − ψ).

Integrating on p yields

y(p) =
1
2
φ(p) +

1
2

∫ p

0

ψdp+ a,

z(p) =
1
2
φ(p) +

1
2

∫ p

0

ψdp− a.

So, we get

u(x, t) =
1
2

[φ(x+ t) + φ(x− t)] +
1
2

∫ x+t

x−t

ψ(p)dp, (17.49)

which is the solution for the initial value problem for the homogeneous equa-
tion (17.37).
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17.4.3 Inhomogeneous Wave Equations

Next we solve the initial value problem for an inhomogeneous PDE (f �= 0)
by applying the method of characteristic coordinates. We transform the
variables x, t into new variables ξ = x + t, η = x − t. The wave equation for
the new variables yields

∂η∂ξu = −1
4
f

(
ξ + η

2
,
ξ − η

2

)

.

This equation can be integrated with respect to η, leaving ξ as a constant.
Thus we have

uξ = −1
4

∫ η

fdη, (17.50)

where the lower limit of integration is arbitrary. Again we can integrate with
respect to ξ:

u(ξ, η) = −1
4

∫ ξ ∫ η

f

(
ξ + μ

2
,
ξ − η

2

)

dηdξ. (17.51)

Here we consider the dependent variable u at a fixed point (ξ0, η0) defined
by

ξ0 = x0 + t0, η0 = x0 − t0. (17.52)

We can evaluate (17.51) at the point (ξ0, μ0) and make a particular choice of
the lower limits such that

u(ξ0, μ0) =
1
4

∫ ξ

−∞

∫ ∞

η0

fdηdξ.

Here we change the variables ξ, η into the original ones (x, t), and the Jacobian
is the determinant of its coefficient matrix:

J = det

∣
∣
∣
∣
∣
∣
∣
∣

∂ξ

∂x

∂ξ

∂t

∂η

∂x

∂η

∂t

∣
∣
∣
∣
∣
∣
∣
∣

= 2.

Thus dξdη = Jdxdt = 2dxdt, so the double integral can be transformed as

u(x0, t0) =
1
2

∫ t0

0

∫ x0+(t0−t)

x0−(t0−t)

f(x, t)dxdt

As a result, we have the following theorem:
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♠ Theorem:
The unique solution of (17.36) on one spatial dimension is given by

u(x, t) =
1
2

[φ(x+ t) + ψ(x− t)]

+
1
2

∫ x+t

x−t

ψ(p)dp+
1
2

∫ t

0

∫ x+(t−t′)

x−(t−t′)

f(x′, t′)dx′dt′,

where φ(x) = u(x, 0) and ψ(x) = ut(x, 0).

17.4.4 Wave Equations in Finite Domains

In this section we attempt to solve the wave equations defined in the region
D× (0,∞), where D is the bounded domain of Rn. For this problem, we have
to specify the initial conditions at t = 0 as well as some boundary conditions
on ∂D. As noted in Sect. 17.1.2, the commonly used boundary conditions are
the Dirichlet and Neumann conditions. First we treat a homogeneous wave
equation with no external term given by

∂2
t u−Δnu = 0, (17.53)

where the initial condition is

u(x, 0) = f(x), ∂tu(x, 0) = g(x), (17.54)

and the boundary conditions on ∂D are given by

u(x, t) = 0 or ∂nu(x, t) = 0. (17.55)

Thus, when the boundary conditions are independent of t, the method of
separation of variables is useful, i.e., we assume that the solution u takes
the form

u(x, t) = X(x)T (t), (17.56)

where X satisfies the boundary conditions (17.55) on ∂D. Substituting (17.56)
into (17.53), we have

−ΔX(x)
X(x)

= −T ′′(t)
T (t)

= μ2. (17.57)

This defines a quantity μ2 that must be constant since ΔX/X depends only
on x and T ′′/T depends only on t. The reason for the positive constant μ2 > 0
will be seen later.

Equation (17.57) gives a pair of separate differential equations for X(x)
and T (t): the one equation is
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ΔX(x) = −μ2X(x) (17.58)

that satisfies the given boundary conditions of (17.55), and the other is

T ′′(t) = −μ2T (t) (17.59)

in which 0 < t < ∞. The solution for this ODE is obtained as

T (t) = a cosμt+ b sinμt, (17.60)

where a and b are constants that can be determined from the initial conditions.
Combining (17.60) with X(x), the solution is expressed as

u(x, t) = Xμ(x)(a cosμt+ b sinμt). (17.61)

This is a normal mode of vibration with eigenfrequency μ and the general
solution is obtained by the superposition of normal modes. Thus, we have
the general solution of the form

u(x, t) =
∑

n

Xn(x)(an cosμnt+ bn sinμnt). (17.62)

For example, from the initial conditions in (17.54), we have
∑

n

anXn = f,
∑

n

μnbnXn = g,

so the coefficients in (17.62) are given by

an = 〈f | Xn〉 , bn = 〈g | Fn〉 /μn.

Exercises

1. Find the general solution for the wave equation defined on the one-
dimensional bounded domain (0, l) × (0,∞), which is given by

∂2
t u−Δu = 0,

under the conditions: u(x, 0) = f(x), ∂tu(x, 0) = g(x), u(0, t) =
u(l, t) = 0.

Solution: The normalized eigenfunctions are Xn =
√

2
l sin

(
nπx

l

)

,
and the associated eigenfrequencies μn are the integer multiples
of the fundamental frequency π/l. Thus, we obtain

u(x, t) =
∑
(

an cos
nπt

l
+ bn sin

nπt

l

)

sin
nπx

l
,

where the coefficients are

an =
2
l

∫ l

0

f(x) sin
nπx

l
dx, bn =

1
πn

∫ l

0

g(x) sin
πx

l
dx. ♣
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2. The differential equation under a point source r = 0 at time t0 = 0 in an
infinite medium is given by

∂tG−Δ3G = δ(r)δ(t). (17.63)

Find the solution G(r, t) called Green’s function by means of Fourier
and Laplace transforms.

Solution: If we take a Fourier transform in space and a Laplace
transform in time, (17.63) becomes G(k, ω) = 1/[(2π)3(ω + k2)].
The inverse Laplace transform yields G(k, t) = e−k2t/(2π)3. We
then obtain Green’s function G(r, t) by the spatial Fourier trans-
form given by

G(r, t) =
1

(2π)3

∫

e−k2teik·rd3k.

Integrating over the angles of r yields

G(r, t) =
1

(2π)2

∫ ∞

0

e−k2t sin kr
kr

k2dk =
1

4πr
Im
∫ ∞

−∞
e−k2teikrkdk

=
1

4πr
Im

1
i

∂

∂r

∫ ∞

−∞
e−k2teikrdk,

which gives Green’s function in the formG(r, t) = e−r2/4t/(4πt)3/2,
t > 0. For t < 0, G(r, t) = 0. ♣

3. Find the half-space one-dimensional Green’s function defined on x > 0
that satisfies the boundary condition of G(x, t) = 0 at x0 = 0.

Solution: Using an image source of negative strength at x = −x0,
the solution is expressed by G(x, t) = G0(x−x0, t)−G0(x+x0, t),
x > 0, where G0(x, t) = e−x2/4t/(4πt)1/2. ♣

4. Consider the wave equation with a source term h(r, t) given by

∂2
t f −Δ3f = h(r, t).

Show that the solution is expressed as

f(r, t) =
1
4π

∫

h(r′, t)
1

|r − r′|d
3r. (17.64)
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Solution: The Green function G(r, t) is defined as the solution sat-
isfying the equation ∂2

tG − Δ3G = δ(r)δ(t). The spatial Fourier
and temporal Laplace transform of the above is obtained by set-
tings ω → −ω2 in Exercise 1 as G(k, ω) = 1/[(2π)3(−ω2 + k2)].
The inverse transform of the above gives G(|r − r′|, t − t′) =
δ(|r−r′|)δ(t− t′)/(4π|r−r′|). Since the physical system is invari-
ant under the translations in space and time, the Green function
depends only on relative space and time coordinates |r − r′| and
t− t′. The Green function has the property that the solution can
be written as f(r, t) =

∫

G(r, r′; t, t′)h(r′, t′)d3r′dt, so it is given
by (17.64). ♣

6. Find the general solution for the wave equation

∂2
t u−Δ3u = 0,

where Δ3 is the Laplacian defined by

Δ3 = ∂2
x + ∂2

y + ∂2
z .

Solution: Since the system is isotropic and homogeneous, we can
assume the solution in analogy with the one-dimensional case as
f(p) = f(n·x±t), where n is the unit vector that points along the
direction of propagation of the wave and n·x = lx+my+nz. From
the chain rule on derivatives, we have (l2 +m2 +n2 −1)f ′′(p) = 0.
Thus, f can be arbitrary since l2 + m2 + n2 = 1. The general
solution is given by u(x, t) = f(n · x − t) + g(n · x + t), where n
is any unit vector. ♣

17.5 Applications in Physics and Engineering

17.5.1 Wave Equations for Vibrating Strings

In the previous sections, we rigorously studied the theories underlying the
following three typical classes of partial differential equations: Laplace equa-
tions, diffusion equations, and wave equations. In this section, we attempt
to formulate mathematical expressions for these classes on the basis of the
associated physical phenomena; e.g., we will see that the mathematical form
of the wave equation

∂2
t u(x, t) = v2∂2

xu(x, t) (17.65)

is derived by considering the wavy motion of a that string. This will make
clear why equations of the same form as (17.65) are called wave equations.



560 17 Partial Differential Equations

Δs

x

u

θ1

θ2

Δxτ

τ

Fig. 17.1. Schematic of a thin stretched string and a line element Δs; the tensions
exerted at both ends of the line element have equal magnitudes τ but act in different
directions

Suppose that a thin string is stretched between two fixed points with a
tension τ exerted at the two end points. We assume that the string is perfectly
flexible, i.e., only tensile forces can be transmitted in the tangential direction.
Then, as illustrated in Fig. 17.1, the magnitude of the tension exerted in the
tangential direction is the same for every part of the string. It can be seen
from the figure that the vertical components of the tension τ at the two ends
of a line element with length Δs are −τ sin θ1 and τ sin θ2, where τ = |τ |.
Hence, the vertical component τu of the external force exerted on the line
element is given by

τu = τ (sin θ2 − sin θ1) . (17.66)

The sine terms are rewritten in terms of the derivative ∂xu by using the
following approximations:

sin θ1 =
∂u

∂s
= ∂xu

dx

ds
= ∂xu

1
√

1 + (∂xu)2

� ∂xu

[

1 +
1
2

(∂xu)2 + · · ·
]

� ∂xu

where the relation ds =
√

(dx)2 + (du)2 was used, and

sin θ2 =
∂u(x+Δx)

∂s
=
∂u(x+Δx)

∂x

dx

ds
� ∂u(x+Δx)

∂x

= ∂xu+ ∂2
xu
∣
∣
x=ξ

Δx,

where ξ is a constant satisfying the condition x ≤ ξ ≤ x + Δx. (The mean
value theorem ensures the existence of such a constant ξ.) Substitution of
the sine terms in (17.66) yields
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τu = τ ∂2
xu
∣
∣
x=ξ

Δx.

Since the inertial force exerted by the line element is given by

ρΔs∂2
t u,

where, (ρ is the line density) we obtain the equation of motion for the string
in the vertical direction:

ρ
Δs

Δx
∂2

t u = τ ∂2
xu
∣
∣
x=ξ

.

Taking the limit Δx → 0 so that ξ → x, and then approximating ds/dx as 1,
we obtain the final result:

∂2
t u =

τ

ρ
∂2

t u. (17.67)

It is customary to denote the positive constant as τ/ρ, v2, which allows us to
write (17.67) in the familiar form (17.65).

17.5.2 Diffusion Equations for Heat Conduction

In this subsection, we attempt to derive mathematical expressions for diffu-
sion equations by considering the physical phenomena that occur during heat
conduction, i.e., the flow of heat in a certain medium from points at a high
temperature to those at lower temperatures. This process takes place in such
a manner that molecules in irregular motion exchange their kinetic energy by
colliding with each other.

We aim to determine the amount of heat δQ penetrating an arbitrarily
chosen surface element δS inside the medium per unit time (called the heat
flux). In order to find δQ, we consider another surface element δS1, which
has the same magnitude as δS, parallel to δS and located at an orthogonal
distance Δn from δS. We assume that δS is so small that the temperatures
u = u(x, y, z, t) on δS and u1 = u(x+ δx, y+ δy, z+ δz, t) on δS1 are constant
over δS and δS1, respectively.

From thermodynamics, we know that the magnitude of the flux of heat
difference between u and u1, denoted by δu, and the area of the surface element
are related in the following manner:

δQ · δn = κ · δu · δS, (17.68)

where the value of the constant κ, called the thermal conductivity, depends
on the medium. Dividing both sides of (17.68) by δn and taking the limit
δn → 0, we have

δQ = κ
∂u

∂n
· δS.

Here, ∂u/∂n is the derivative in the direction normal to δS and is expressed
as
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∂u

∂n
= n · ∇u,

where n is the unit vector normal to δS. Thus, we obtain the flux passing
through a volume element δv that is enclosed by a surface S:

Q = κ

∫ ∫

S

∂u

∂n
dS = κ

∫ ∫

S

∇u · ndS

= κ

∫ ∫ ∫

V

∇ · (∇u)dV.

We now apply the mean value theorem to the volume integral over δv to
obtain

Q = κ∇ · [∇u(x∗, y∗, z∗, t)] δv, (17.69)

where (x∗, y∗, z∗) is a point in δv.
Apart from the above-mentioned discussion, we also see that Q is related

to the temperature variation in δv with time. In fact, the temperature u in δv
increases (or decreases) owing to the accumulation (or loss) of heat in δv at a
rate of ∂u/∂t. Therefore, the flow of heat into (or out of) δv can be written
as

ρσ
∂u

∂t
δv, (17.70)

where ρ is the mass density and σ (the specific heat) is a characteristic of
the medium. By setting (17.69) equal to (17.70), and allowing the volume
element δv to shrink to a point, we have

ρσ∂tu = κ∇ · (∇u) = κ∇2u.

Clearly, this result is of the same form as a diffusion equation that describes
heat conduction in a medium with physical parameters ρ, σ, κ.
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Cartesian Tensors

Abstract Tensors are geometric entities that provide concise mathematical frame-
works for formulating problems in physics and engineering. The most important
feature of tensors is their coordinate invariance: tensors are independent of the type
of coordinate system chosen. This feature is similar to the condition that the length
and direction of a geometric figure do not change, regardless of the coordinate sys-
tem used for the algebraic expression. In contrast, the components of a tensor are
coordinate-dependent in a structured routine. In this chapter, we discuss the ways
in which the choice of a coordinate system affects the components of a tensor.

18.1 Rotation of Coordinate Axes

18.1.1 Tensors and Coordinate Transformations

A tensor is a natural generalization of a vector or a scalar encountered in
elementary vector calculus. The latter two are, in fact, both special cases of
tensors of order n, whose specification in a three-dimensional space requires
3n numbers, called the components of the tensor. In this context, scalars are
tensors of the zero order with a 30 = 1 component and vectors are tensors of
the first order with 31 = 3 components.

Of importance is the fact that a tensor of order n is much more than
just a set of 3n numbers. The key property of tensors is adherence to the
transformation law of its components under a change of coordinate system,
say, from a rectangular to elliptic, polar, or other curvilinear coordinate sys-
tem. If the coordinate system is changed to a new one, the components of
a tensor change according to a characteristic transformation law. We shall
see that this transformation law makes clear the physical (or geometrical)
meaning of the tensor being invariant under a change of coordinate system.
The coordinate-invariance-character of tensors answers the demand that the
proper formulation of physical laws should be independent of the choice of
coordinate systems.
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It is obvious that physical processes must be independent of the coordinate
system. However, what is not so trivial is what the coordinate-independence
property of physical processes implies about the transformation law of math-
ematical objects (i.e., tensors). The study of these implications and the classi-
fication of physical quantities by means of the transformation laws constitute
the primary content of this chapter. Emphasis is placed on the fact that all
kinds of tensors are geometric objects whose representation (i.e., The values of
its components) obey a characteristic transformation law under coordinate
transformation.

18.1.2 Summation Convention

In order to simplify subsequent notation, we introduce the following two con-
ventions:

♠ Summation convention:
When the same index appears repeatedly in one term, we carry out a

summation with respect to the index. The range of summation is from 1
to n, where n is the number of dimensions of the space.

♠ Range convention:
All non repeated indices are understood to run from 1 to n.

These conventions are operative throughout this chapter unless specifically
stated otherwise.

Example The summation convention yields the new notation as

aibi ≡
n∑

i=1

aibi = a1b1 + a2b2 + · · · + anbn.

Similarly, if i and j have the range from 1 to 2, then

aijbij = a1jb1j + a2jb2j

= a11b11 + a12b12 + a21b21 + a22b22,

where it does not matter whether the first sum is carried out on i or j.

Remark. Repeated indices are referred to as dummy indices since, owing to
the implied summation, any such pair may be replaced by any other pair of
repeated indices without changing the meaning of the mathematical expres-
sion.
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18.1.3 Cartesian Coordinate System

A tensor is a mathematical object composed of several components. The values
of the components depend on the coordinate system to be employed, so are
altered through a coordinate transformation even when the tensor itself re-
mains unchanged. Among the many possible choices of coordinate transfor-
mations, a rigid rotation of a rectangular Cartesian coordinate sys-
tem is the simplest. The remainder of this section is devoted to explaining
the basic properties of the simplest coordinate transformations, as a prelimi-
nary for our subsequent study of tensors in terms of more general coordinate
systems.
We begin with two formal definitions:

♠ Cartesian coordinate system:
A Cartesian coordinate system associates a unique ordered set of real

numbers (coordinates) (x1, x2, · · · , xn) with every point in a given n-
dimensional space by reference to a set of directed straight lines (coordi-
nate axes) Ox1, Ox2, · · · , Oxn intersecting at the origin O.

♠ Rectangular Cartesian coordinate system:
If the three axes of a Cartesian coordinate system are mutually per-

pendicular, we have what is called a rectangular Cartesian coordinate
system.

Figure 18.1 is a schematic illustration of a rectangular Cartesian coordinate
system in three-dimensional space. Referring to this coordinate system, we
denote the triples (1, 0, 0), (0, 1, 0), (0, 0, 1) by e1, e2, e3, respectively. These
triples are represented geometrically by mutually perpendicular unit arrows.

The set of Cartesian axes Ox1, Ox2, and Ox3 is said to be right-handed
if and only if the rotation needed to turn the x1-axis into the direction of
the x2-axis through an angle ∠x1Ox2 < π would propel a right-handed screw
toward the positive direction of the x3-axis. Conversely, if such a rotation

1x
1x′

2x′

2x

3x

2x
2x′ 1x′

1x

3x

(a) (b)

Fig. 18.1. (a) Right-handed and (b) left-handed Cartesian coordinate systems
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propels a left-handed screw in the positive direction of the x3-axis, the set of
axes is said to be left-handed. In this section, we consider only Cartesian
coordinate systems that are rectangular and right-handed.

18.1.4 Rotation of Coordinate Axes

We now formulate a rigid rotation of rectangular Cartesian axes. Assume a po-
sition arrow r whose components are given by (x1, x2, x3) and (x′1, x′2, x′3)
in terms of two different rectangular coordinate systems having a common
origin. We denote the set of unit orthogonal basis arrows associated with the
unprimed and primed system by {ei} and {e′

i}, respectively. The transfor-
mation from one Cartesian coordinate system to another is called a rigid
rotation of Cartesian axes and has the following property:

♠ A rigid rotation of Cartesian axes:
A rigid rotation of Cartesian axes is described by the transformation

equations of coordinates xk as

x′j = Rjk xk (summed over k), (18.1)

xk = Rjk x
′
j (summed over j), (18.2)

where Rjk = e′
j · ek are directed cosines of e′

j associated with ek.

Remarks.

1. Each of the two indices j and k for Rjk refers to a different basis: the first
index j refers to the primed set {e′

j}, while the second index k refers to
the unprimed one {ek}. This means that, in general, Rjk �= Rkj .

2. The transformation coefficients Rjk do not constitute a tensor, but simply
set of real numbers. (See the second remark in Sect. 18.2.3.)

Proof A geometric arrow r joining the origin O and the point P is expressed
by

r = xkek = x′je
′
j . (18.3)

We expand ek by the set of {e′
j} as

ek = (e′
j · ek) e′

j = Rjke′
j , (18.4)

where we use both the range and the summation conventions. Substituting
(18.4) into (18.3), we obtain

xkRjke′
j = x′je

′
j ,
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and thus
(xkRjk − x′j) e′

j = 0.

Since the arrow set {e′
j} is linearly independent, the quantities in the paren-

theses equal zero, which results in the desired equation (18.1).
Similarly, expanding {e′

j} by {ek} as

e′
j = (ek · e′

j) ek = Rjkek (18.5)

and substituting it into (18.3), we arrive at equation (18.2). ♣

Remark. Observe that in the transformation law (18.1) and the expansion
(18.5), Rjk acts on an unprimed entity (i.e., xk or ek) to produce a primed one
(i.e., x′j or e′

j). However, in (18.2) and (18.4), Rjk acts on a primed entity to
produce an unprimed one. In all the cases above, we should make sure that the
order of indices j and k attached to the coefficients Rjk remains unchanged:
the first index, j, always refers to the primed entity and the second, k, to the
unrpimed one.

18.1.5 Orthogonal Relations

The following theorem states an important property of the transformation
coefficients Rjk that gives rise to a rigid rotation of Cartesian axes.

♠ Orthogonal relations:
The transformation coefficients Rjk for a rigid rotation of axes satisfy

the conditions
RikRjk = δij , RikRi
 = δk
. (18.6)

Proof The first relation of (18.6) follows from a geometric formula for the
angle θ between two basic arrows: e′

i and e′
j . Taking the inner product of the

two basic arrows e′
i = Rikek and e′

j = Rj
e
, we have

cos θ = e′
i · e′

j = RikRj
(ek · e
) = RikRj
δk
 = RikRjk. (18.7)

If i = j, e′
i and e′

j coincide so that θ = 0, whereas if i �= j, e′
i and e′

j are
orthogonal so that θ = π/2. Hence, we have

RikRjk =
{

1 if i = j,
0 if i �= j.

The second equation of (18.6) can be verified in a similar manner by con-
sidering the angle between ek and e
. ♣

The physical meaning of the relations (18.6) is rather obvious. They ensure
that the axes of each set {e′

i} or {ek} are mutually orthogonal, i.e.,

e′
i · e′

j = δij and ek · e
 = δk
.
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18.1.6 Matrix Representations

Since the transformation coefficients Rjk have two subscripts, it is natural
to display their values in matrix form. The notation [Rjk] is used to denote
the matrix having Rjk as the element in the jth row and kth column. In
addition, when denoted by R, it represents a linear operator of a rotation of
axes without reference to any of the values of its coefficients Rjk.

Example In two dimensions, a rigid rotation of rectangular axes for an angle
θ is given by

e′
i = Rijej , [Rij ] =

(

R11 R12

R21 R22

)

=

(

cos θ sin θ

− sin θ cos θ

)

. (18.8)

This rotation of axes gives rise to a coordinate transformation,

x′i = Rijxj ,

or equivalently,
(

x′1

x′2

)

=

(

R11 R12

R21 R22

)(

x1

x2

)

=

(

cos θ sin θ

− sin θ cos θ

)(

x1

x2

)

. (18.9)

Remark. We comment briefly on the distinction between active and passive
tranformations; since it often causes confusion. Throughout this chapter, we
are concerned solely with passive transformations, for which physical entities
of interest (e.g., the mass of a particle or a geometric arrow) remain unaltered
and only the coordinate system is changed from {ei} to {e′

i}, as given by
(18.8). In contrast, an active transformation alters the position and/or the
direction of the physical entity itself, while the axes {ei} remain fixed. In
the latter case, a rotation of a geometric arrow x through an angle θ in two
dimensions is described by

e′
i = ei and

(

x′1

x′2

)

=

(

cos θ − sin θ

sin θ cos θ

)(

x1

x2

)

,

which obviously differs from those for a passive transformation. Figure 18.2
illustrates the difference between the two transformations.

It can be shown that the determinant of the matrix [Rk
] reads

det[Rk
] = ±1 (18.10)

(see the proof in Exercise 5). This means that there are two classes of rectan-
gular Cartesian coordinate systems, corresponding to the positive and neg-
ative signs in (18.10). Throughout this section, we consider only cases of
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1x

1x ′

2x ′ 2x

1x

2x

P P
P ′

(a) (b)

Fig. 18.2. Difference between a passive (a) and an active (b) transformation

det[Rk
] = +1, which corresponds to our previous restriction to a single type
of coordinate system (i.e., right-handed). We shall see in sect. 18.3.1 that
the rotation of coordinate axes whose transformation coefficients give rise to
det[Rk
] = −1 yields the left-handed system, which for the moment is beyond
our scope.

18.1.7 Determinant of a Matrix

We close this section by commenting on a formal definition of the determinant
of a matrix and its relevant materials, as a preliminary for the exercises below.

1. The determinant

D = det[aij ] =

∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · ·
an1 an2 · · · ann

∣
∣
∣
∣
∣
∣
∣
∣

(18.11)

of the square array of n2 numbers (elements) aij is the sum of the n! terms

(−1)ra1k1a2k2 · · · ankn
, (18.12)

each corresponding to one of the n! different ordered sets k1, k2, · · · , kn

obtained by r interchanges of elements from the ordered set 1, 2, · · · , n.
2. The minor (or complementary minor) Mij of the elements aij in the

nth-order determinant D = det[aij ] is the (n − 1)th-order determinant
obtained from (18.11) on erasing the ith row and the jth column.

Example Given a third-order determinant

D =

∣
∣
∣
∣
∣
∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣
∣
∣
∣
∣
∣

,

its a12 minor is obtained by removing the first row and the second column
in D, as expressed by

M12 =
∣
∣
∣
∣

a21 a23

a31 a33

∣
∣
∣
∣
.
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3. The cofactor Cij of the element aij is defined by

Cij =
∂D

∂aij
,

or equivalently,
Cij = (−1)i+jMij .

4. A determinant D may be represented in terms of the elements and cofac-
tors of any one row or column by

D = det[aij ] =
n∑

i=1

aijCij =
n∑

k=1

ajkCjk (with j fixed). (18.13)

This is called simple Laplace development of a determinant D. (The
proof is given in Exercise 2). The expression (18.13) gives the same value
for D regardless of the column or row [i.e., no matter what value of j in
(18.13)] we choose in the expansion. Note also that for j �= h,

n∑

i=1

aijCih =
n∑

k=1

ajkChk = 0.

Example The expansion by the first row gives

D =

∣
∣
∣
∣
∣
∣

1 3 0
2 6 4

−1 0 2

∣
∣
∣
∣
∣
∣

= 1
∣
∣
∣
∣

6 4
0 2

∣
∣
∣
∣
− 3
∣
∣
∣
∣

2 4
−1 2

∣
∣
∣
∣
+ 0
∣
∣
∣
∣

2 6
−1 0

∣
∣
∣
∣
= −12.

Remark. In view of the expansion (18.13), an nth-order determinant D is rep-
resented by a linear combination of n numbers of (n−1)th-order determinants.
Similarly, each of the latter (n−1)th-order determinants is in turn represented
in terms of n − 1 numbers of (n − 2)th-order determinants, and so on. In a
successive manner, we finally arrive at n! numbers of first-order determinants
(i.e., just n! real numbers), each of which is expressed by (18.12).

Exercises

1. Check the validity of the orthogonal conditions (18.6) for the transforma-
tion coefficients Rij in two dimensions.

Solution: For instance, if we set j = 1 and k = 2, then

Ri1Ri2 = R11R12 +R21R22 = − cos θ sin θ + cos θ sin θ = 0,

or if j = k = 2, we have

Ri2Ri2 = R21R21 +R22R22 = (− sin θ)2 + cos2 θ = 1.

Other equations can be proved in a similar way. ♣
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2. Show that the expression (18.13) for a determinant

D = det[apq] =
n∑

k=1

aikCik and D =
n∑

i=1

a
iC
i for fixed i

yields the same value of D no matter what value of i we choose.
Solution: We prove only the first formula, since the proof of the
second is quite similar to that of the first.

It easily follows that the statement is true for a second-order
determinant for which the expansions with fixed i = 1, a11a22 +
a12(−a21) and that with i = 2, a21(−a12) + a22a11, give the same
value. By mathematical induction, we tentatively assume that the
statement is true for an (n− 1)th-order determinant and try to
prove that it is also true for an nth-order determinant.

To do so, we expand D in terms of each of two arbitrary
rows, say, the ith and the jth row with i < j, and compare the
results.

(i) Let us first expand D by its ith row. A typical term in the
expansion by the ith row reads

aikCik = aik · (−1)i+kMik, (18.14)

where i is fixed and k runs from 1 to n. Since the minor Mik of
aik in D is an (n−1)th-order determinant, owing to the induction
hypothesis it can be expanded by any row. Expand Mik by its
(j − 1)th row. This row corresponds to the jth row of D, because
Mik does not contain elements of the ith row of D and i < j.
Hence, the expansion of Mik by its (j − 1)th row consists of the
linear combination of the elements aj
 with � = 1, 2, · · · , k−1, k+
1, · · · , n (i.e., � �= k). We distinguish between the two cases, � < k
and � > k, as follows.

For � < k, the element aj
 belongs to the �th column of Mik.
Hence, the term involving aj
 in the expansion of Mik reads

aj
 · (cofactor of aj
 in Mik) = aj
 · (−1)(j−1)+
Mikj
. (18.15)

Here Mikj
 is the minor of aj
 in Mik, which is obtained from D
by deleting the ith and jth rows and the kth and �th columns
of D. Then it follows from (18.14) and (18.15) that the resulting
terms in the expansion of D are of the form

aikaj
 · (−1)bMikj
 with b = i+ k + j + �− 1. (18.16)

If � > k, the only difference is that aj
 belongs to the (�−1)th
column of Mik because Mik does not contain elements of the kth
column of D and k < �. This results in an additional minus sign
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in (18.15) and instead of (18.16) we obtain −aikaj
 · (−1)b+1Mikj


with the same value of b. In short, the expansion of D by the ith
row yields

D =
n∑

k=1

aikCik =
n∑

k=1

aik

[
k−1∑


=1

(−1)baj
Mikj
 +
n∑


=k+1

(−1)b+1aj
Mikj


]

(18.17)
with b = i+ k + j + �− 1.
(ii) We next expand D by the jth row. A typical term in this
expansion is

aj
Cj
 = aj
 · (−1)j+
Mj
. (18.18)

By the induction hypothesis, we may expand the minor Mj
 of aj


in D by its ith row, which corresponds to the ith row of D since
j > i.

For k > �, the element aik in that row belongs to the (k−1)th
column of Mj
, because Mj
 does not contain elements of the �th
column of D and � < k. Hence, the term involving aik in this
expansion is

aik · (cofactor of aik in Mj
) = aik · (−1)i+(k−1)Mikj
, (18.19)

where the minor Mikj
 of aik in Mj
 is obtained by deleting the
ith and jth rows and the kth and �th columns of D, and is thus
identical to Mikj
 in (18.15). It follows from (18.18) and (18.19)
that this yields a representation whose terms are identical to those
given by (18.16) when � < k.

For k < �, the element aik belongs to the kth column of Mj
,
so we get an additional minus sign and the result agrees with that
characterized by (18.16). Hence, we conclude that the expansion of
D by the j(> i)th row,

∑n
k=1 ajkCjk, is identical to the expansion

(18.17).
The conclusions from the discussions in (i) and (ii) clearly show
that the two expansions of D consist of the same terms, which
completes our proof of the given statement. ♣

3. Let bkj = Cjk/D, where Cjk is the cofactor of [ajk] in D = det[ajk]. Show
that

bkja
k = δj
 and bkjaj
 = δk
, (18.20)

which means that the matrix [bkj ] is the inverse of [ajk].
Solution: If follows that

bkja
k =
Cjka
k

D
=
a
1Cj1 + a
2Cj2 + · · · + a
nCjn

D
. (18.21)
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The discussion in Exercise 2 tells us that the sum in the numerator
equals D when � = j regardless of the value of j. Hence, we have

bkja
k = 1 if j = �.

We next consider the case of j �= �. To do thus we replace the
elements in the jth row of D by those in the �(�= j)th row of D.
The resulting determinant, denoted by D̃, reads

D̃ =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 · · · a1n

· · · · · · · · ·
aj−1,1 aj−1,2 · · · aj−1,n

a
,1 a
,2 · · · a
,n

aj+1,1 aj+1,2 · · · aj+1,n

· · · · · · · · ·
an,1 an,2 · · · an,n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0,

since D̃ has two identical rows. Note that the expansion of D̃ by its

�th row is D̃ =
n∑

p=1

a
pCjp, which equals the sum in the numerator

in (18.21). It thus follows that

bkja
k = 0 if j �= �.

These arguments complete the proof of the first equation. The
second can be verified in the same manner. ♣

4. Suppose a matrix [Qkj ] defined by Qkj = Cjk/det[Rjk], where the Rjk

are the transformation coefficients of a rigid rotation of axes and the Cjk

are the cofactors of [Rjk] in det[Rjk]. Prove that Qkj = Rjk.
Solution: Apply the result of Exercise 3 to find that QkjR
k = δ
j .
Multiplying both sides by R
m and summing with respect to �, we
arrive at

QkjR
kR
m = δ
jR
m = Rjm.

Then, the orthogonal relationR
kR
m = δkm implies thatQkjδkm =
Qmj = Rjm. ♣

5. Show that det[Rjk] = ±1.
Solution: It follows from (18.20) that

det[QkjRj
] = det[δk
] = 1,

where the Qkj are the same quantities as in Exercise 4. From
elementary linear algebra, we find that
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det[QkjRj
] = det[Qkj ]det[Rj
] = (det[Rj
])
2
,

where the identity Qkj = Rjk was used to obtain the last term.
Combining the two results above, we obtain det[Rjk] = ±1. ♣

18.2 Cartesian Tensors

18.2.1 Cartesian Vectors

Having dealt with the rotation of coordinate axes, we are ready to introduce
the concept of tensors and their transformation law in terms of Cartesian
coordinate systems. Assume an ordered set of three quantities vi (i = 1, 2, 3)
that are explicit or implicit functions of xj . Let us see how the values of
vi(xj) change through a rigid rotation of the Cartesian axes. If they transform
according to the law given below, the quantities vi are called the components
of a particular kind of tensor, i.e., of a Cartesian vector (or a first-order
Cartesian tensor).

♠ Cartesian vectors:
A Cartesian vector v is an object represented by an ordered set of n

functions vi(xj) in terms of the x-coordinate system and by another set of
n functions v′i(x′j) in terms of the x′-coordinate system, where v′i and vi

at each point are related by the transformation law:

v′i = Rijvj and vi = Rkiv
′
k, (18.22)

where Rij = e′
i · ej .

Obviously, a vector v is a geometric object (like an arrow) so that it is uniquely
determined independently of the coordinate system. On the other hand, the
function form of the components vi(xj) depend on our choice of coordinate
system, even when we consider only the same vector v. This is why the con-
cepts of a vector and its components are inherently different from each other.
(See also Sect. 18.2.2 on this point.)

We emphasize again that the index i of Rij in (18.22) refers to the dashed
(transformed) function v′i, whereas the j refers to the undashed (original)
one vj . In the following, we consider several examples of ordered sets of func-
tions vi in two dimensions, which may or may not be a first-order Cartesian
tensor.

Examples 1. The ordered set of functions (vi) (i = 1, 2) with the components
v1 = x2 and v2 = −x1.

Using the transformation law of coordinates x′i = Rijxj , we set the fol-
lowing for each function:



18.2 Cartesian Tensors 577

v′1 = x′2 = R21x1 +R22x2 = −x1 sin θ + x2 cos θ,
v′2 = −x′1 = −R11x1 −R12x2 = −x1 cos θ − x2 sin θ.

On the other hand, the functions v′i should be obtained from vi through
the transformation law as

v′1 = R1kvk = v1 cos θ + v2 sin θ = x2 cos θ − x1 sin θ,
v′2 = R2kvk = −v1 sin θ + v2 cos θ = −x2 sin θ − x1 cos θ.

The two expressions for v′1 and v′2 are identical to one another regardless
of the values of θ. Therefore, the pair of functions vi(xj) are components
of a Cartesian vector.

2. The set vi with v1 = x2 and v2 = x1.

Following the same procedure as above, we have

v′1 = x′2 = −sx1 + cx2,
v′2 = x′1 = cx1 + sx2

and
v′1 = cv1 + sv2 = cx2 + sx1,
v′2 = −sv1 + cv2 = −sx2 + cx1,

where c and s represent cos θ and sin θ, respectively. These two sets of
expressions do not agree with each other. Hence, the pair (x2, x1) is not
a first-order Cartesian tensor.

18.2.2 A Vector and a Geometric Arrow

The result of Example 2 in Sect. 18.2.1 might be confusing for some readers;
the functions vi(x1, x2) given there are not components of a vector, although
they appear to represent a geometric arrow in (x1-x2)-plane. To make this
point clear, we have to comment on the difference between the formal defini-
tion of a vector as a first-order tensor and our familiar definition of a vector
as a geometric arrow.

In elementary calculus, vectors are simply defined by a geometric arrow
with certain length and direction, commonly denoted by a bold-face letter,
say, v. Owing to this definition, v is uniquely determined by specifying its
length and direction, which are both independent of our choice of coordinate
systems. However, the uniqueness disappears if it is defined algebraically by
specifying its components vk relative to given coordinate axes. The values
of the components vk depend on our choice of coordinate system even when
the same arrow v is considered. Hence, when we apply a coordinate transfor-
mation, the values of vk are altered in a way that preserves the length and
direction of the arrow v, according to (18.22), which is why we call the set of
n functions vk not a vector, but the components of a vector.

In short, we should always keep in mind that a vector is a geometric
object independent of coordinate systems, whereas components of a vector
are just mathematical representations of the vector with reference to a specific
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coordinate system. This caution applies to all the classes of tensors presented
throughout this section.

Remark. Despite the above caution, we sometimes call a set of components of
a tensor just a “tensor” to shorten our sentences. However, it is important to
note an inherent difference between a tensor (=coordinate-independent object)
and components of a tensor (=coordinate-dependent quantities).

18.2.3 Cartesian Tensors

We turn to a second-order Cartesian tensor that requires two subscripts
to identify a particular element of the set.

♠ Second-order Cartesian tensor:
A second-order Cartesian tensor T is an object represented by an ordered

set of two-index quantities Tij in terms of the x-coordinate system and by
another set of quantities T ′

k
 in terms of the x′-coordinate system, where
Tij and T ′

k
 at each point are related by

T ′
ij = RikRj
Tkl, Tk
 = RmkRn
T

′
mn. (18.23)

Here, the two-index quantities Tij are called components of the tensor
T .

In a similar way, we may define a Cartesian tensor of general order as follows:
The set of expressions Tij···k are the components of a Cartesian tensor if, for
all rotations of the axes, the expressions using the new coordinates T ′


m···n
are given by

T ′
ij···k = Ri
Rjm · · ·RknT
m···n

and
T
m···n = Rp
Rqm · · ·RrnT

′
pq···r.

It is apparent that an nth-order Cartesian tensor in three dimensions has 3n

components.

Example Assume two Cartesian vectors a and b, each of which is represented
by the components aj and bk associated with the same coordinate system.
Then, it is possible to create nine products of the components expressed by

ajbk (j, k = 1, 2, 3),

which is called an outer product (or direct product) of the vectors a
and b (see also Sect. 18.4.3). The outer product consists of a second-order
Cartesian tensor. In fact, since each ai and bj transforms as



18.2 Cartesian Tensors 579

a′i = Rikak and b′j = Rj
b
,
we have

T ′
ij ≡ a′ib

′
j = RikRj
akb
 = RikRj
Tk
.

Remark. We emphasize that transformation coefficients, say, the Rij , do not
form a tensor and note the fact that the two indices i and j in the tensor
Tij refer to the same coordinate system, whereas those in the coefficients
Rij refer to different coordinate systems. Hence, Tij and Rij are inherently
different from each other, though both require two indices.

18.2.4 Scalars

Contrary to the case of finite-order tensors, we now consider quantities that
are unchanged by a rotation of axes, which are called scalars or tensors of
zero order and contain only one component. The most obvious example is
the square of the distance of a point from the origin, which must be invariant
under any rotation of coordinate axes. Other examples of scalars are presented
below.

Examples 1. We show that the scalar product u · v is invariant under
rotation. In the original (unprimed) system, the scalar product is given
in terms of components by uivi and in the rotated (primed) system, it is
given by

u′iv
′
i = (Rijuj) (Rikvk) = RijRikujvk = ujvkδjk = ujvj , (18.24)

where the orthogonal relation RijRik = δjk in (18.6) was used. Since
the expression in the rotated system is the same as that in the original
system, the scalar product is indeed invariant under rotations.

2. If the vi are the components of a vector, the divergence ∇ · v = ∂vi/∂xi

becomes a scalar. This is proven as follows: In the rotated coordinate
system, ∇ · v is given by

∂v′i
∂x′i

=
∂

∂x′i
(Rikvk) = Rik

∂vk

∂x′i
,

where the elements Rik = ek · e′
i are not functions of position. Using the

relation ∂xj/∂x
′
i = Rij (see Exercise 2 below), we have

Rik
∂vk

∂x′i
= Rik

∂xj

∂x′i

∂vk

∂xj
= RikRij

∂vk

∂xj
= δjk

∂vk

∂xj
=

∂vj

∂xj
.

Finally, we obtain
∂v′i
∂x′i

=
∂vj

∂xj
.
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Exercises

1. Examine whether or not the ordered set of functions vi defined by v1 =
(x1)2 and v2 = (x2)2 constitute a vector. Here (x1)2 means the square of
x1.

Solution: To examine the first function, v1, alone is sufficient to
show that this pair is not a vector. Evaluating v′1 directly gives

v′1 = (x′1)2 = c2(x1)2 + 2c(−s)x1x2 + (−s)2(x2)2,

whereas (18.8) requires that v′1 = cv1 − sv2 = c(x1)2 − s(x2)2,
which is different from the above. ♣

2. Show that Rij = e′
i · ej =

∂x′i
∂xj

=
∂xj

∂x′i
in Cartesian coordinate systems.

Solution: Set x′ie′
i = xjej and differentiate both sides with re-

spect to x′j to obtain (∂x′i/∂xj)e′
i = ej . Taking the scalar prod-

uct of both sides with e′
k yields

∂x′i
∂xj

e′
i · e′

k =
∂x′i
∂xj

δik =
∂x′k
∂xj

and ej · e′
k = Rkj .

Hence, we have Rkj = ∂x′k/∂xj . Similarly, if we differentiate by
x′i (instead of xj) the first identity yields Rkj = ∂xj/∂x

′
k. ♣

3. Show that the gradient of a vector v, denoted by ∇v, is a second-order
tensor.

Solution: Suppose that vi represents the components of a vector
v and consider the quantities generated by Tij = ∂vi/∂xj (i, j =
1, 2, 3). These nine quantities form the components of a second-
order tensor, as can be seen from the fact that

T ′
ij =

∂v′i
∂x′j

=
∂(Rikvk)
∂x


∂x


∂x′j
= Rik

∂vk

∂x

Rj
 = RikRj
Tk
. ♣

Remark. The concept (and its notation) ∇v introduced above is not in the
category of simple vector calculus. In fact, the quantity ∇v is not a vector
like ∇ × v and ∇φ, but a second-order tensor.

18.3 Pseudotensors

18.3.1 Improper Rotations

So far our coordinate transformations have been restricted to rigid rotations
described by an orthogonal matrix [Rij ] with the property
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|R| ≡ det[Rij ] = +1.

Such transformations are called proper rotations. We now broaden our dis-
cussion to include transformations that are described by an orthogonal matrix
[Rij ] for which

|R| = −1.

The latter kind of transformations are called improper rotations (or rota-
tion with reflection). Below are two examples of improper rotations.

(a) Inversion

The most obvious example of an improper rotation is an inversion of the
coordinate axes through the origin represented by

e′
i = −ei for all i = 1, 2, 3.

In this case, a position arrow x is described in terms of the bases e′
i and ei,

respectively, by

x = xiei and x = x′ie
′
i = x′i(−ei).

Equating them, we obtain

xi = −x′i = −δijx
′
j ,

which shows that an inversion of axes is expressed by Rij = −δij . In fact, its
determinant becomes

|R| =

∣
∣
∣
∣
∣
∣

−1 0 0
0 −1 0
0 0 −1

∣
∣
∣
∣
∣
∣

= −1.

(b) Reflection

Another example is a reflection that reverses the direction of one basis:

e′
i = −ei for a specified i.

For the reflection of the x-axis, e.g., we have

|R| =

∣
∣
∣
∣
∣
∣

−1 0 0
0 1 0
0 0 1

∣
∣
∣
∣
∣
∣

= −1.

Remark. Note that an inversion is different from a proper rotation only for
an odd dimensionality. In a case of two or four dimensions, for instance, an
inversion is the same as a proper rotation. In contrast, a reflection that changes
the sign of only one coordinate is always different from a proper rotation
regardless of the dimensionality.
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Through an improper rotation, our initial right-handed coordinate
system is changed into a left-handed one. This is illustrated schematically in
Fig. 18.3. The reader should note that such a change cannot be accomplished
by any kind of proper rotation.

18.3.2 Pseudovectors

Regardless of whether it is proper or improper, any rotation described by Rij

transforms the components vi of a vector v as

v′i = Rijvj .

This is because any real physical vector v may be considered as a geometrical
object (i.e., an arrow in space), whose direction and magnitude cannot be
altered merely by describing it in terms of a different coordinate system.

It is, however, possible to define another type of vector w whose compo-
nents wi transform as

w′
i = Rijwj under proper rotations,

w′
i = −Rijwj under improper rotations,

or equivalently,
w′

i = |R|Rijwj .

In this case, the wi are no longer strictly the components of a true Cartesian
vector. Rather, they are said to form the components of a pseudovector or
a first-order Cartesian pseudotensor. A pseudovector may be alternatively
referred to as an axial vector; correspondingly, a true vector may be called
a polar vector.

e3

e2

e3

e1
e1

e2′ e2′

e1′

e3′

(a) (b) (c)

Fig. 18.3. Improper rotation: (b) inversion and (c) reflection of the right-handed
Cartesian coordinate systsem depicted in (a)
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Remark. A pseudovector should not be considered a real geometric arrow
in space, since its direction is reversed by an improper transformation of
the coordinate axes. This is illustrated in Fig. 18.4, where the pseudovec-
tor w is shown as a broken line to indicate that it is not a real physical
vector.

Below is a summary of the discussion above.

♠ Vectors and pseudovectors:
Components vi of a vector v transform as

v′i = Rijvj

under a rigid rotation of Cartesian axes, whereas components wi of a pseu-
dovector w transform as

w′
i = |R|Rijwj ,

where |R| is the determinant of the transformation matrix [Rij ].

Hence, the difference between a vector and a pseudovector manifests when
applying an improper rotation that yields |R| = −1.

Pseudovectors occur frequently in physics, although this fact is not usually
pointed out explicitly. Following are physical examples of pseudovectors.

Examples The following three physical quantities are all pseudovectors.

1. Angular momentum of a moving particle, L = r × p, where r is the
particle’s position arrow and p its moment vector.

2. Torque on a particle, N = r ×F , where r is the particle’s position arrow
and F the force acting on the particle.

3. Magnetic field, B = ∇×A, defined by the rotation of the vector potential
A.

3e

1e

2e

3e

1e

2e′

33ew w=

w

e

ew

−=

−=

′−=′

33

33

w

w

Fig. 18.4. Reversing behavior of the pseudovector w via the reflection of the e2-axis
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It is noteworthy that each of these pseudovectors consists of a vector prod-
uct of two vectors.

18.3.3 Pseudotensors

We can extend the notion of vectors and pseudovectors to objects with two
or more subscripts. For instance, assume a quantity with components trans-
forming as

T ′
ij = RikRj
Tk


under proper rotations, but

T ′
ij = −RikRj
Tk


under improper ones. Then, the Tij are components of a second-order
Cartesian pseudotensor. Similarly, Cartesian pseudotensors of arbitrary
order are defined such that their components transform as

T ′
ij···k = |R|Ri
Rjm · · ·RknT
m···n

where |R| is the determinant of the transformation matrix [Rij ]. Correspond-
ing to these, zeroth-order objects may also be divided into scalars and pseu-
doscalars, the latter being invariant under rotation but changing sign on im-
proper rotation.

18.3.4 Levi–Civita Symbols

A typical example of a third-order pseudotensor is the Levi–Civita symbol
εijk.

♠ Levi–Civita symbol:
The Levi–Civita symbol (or the permutation symbol), denoted by

εijk, takes the values +1 and −1 if the ordered set i, j, k is obtained by an
even or odd permutation, respectively, of the set 1, 2, 3.

Actually, εijk takes the values

ε123 = ε231 = ε312 = +1,
ε213 = ε321 = ε132 = −1,

and εijk = 0 if any two of the indices i, j, k are equal.
The pseudotensor property of εijk follows from a convenient notation for

the determinant |A| of a general 3 × 3 matrix [Aij ] (see Exercise 2):

|A|εlmn = Ai
AjmAknεijk.



18.3 Pseudotensors 585

Certainly, this equation holds for the transformation matrix [Rji] for rigid
rotation. Hence, we have

|R|εlmn = Ri
RjmRknεijk,

or equivalently,
εijk = |R|Ri
RjmRknε
mn. (18.25)

This shows that εijk is a third-order Cartesian tensor.
The result (18.25) indicates more than the pseudotensorian character

of εijk. It clearly demonstrates that all of the components of εijk are un-
altered by any rotation of axes. Tensors endowed with this property are
called isotropic tensors (invariant tensors or fundamental tensors).
We know that there are no isotropic tensors of first order and that the
only ones of second and third order are scalar multiples of δij and εijk, re-
spectively. Additionally, the most general isotropic tensor of fourth order is
given by

λδikδmp + μδimδkp + νδipδkm,

with arbitrary constants λ, μ, ν. (Such a fourth-order isotropic tensor occurs
in the elasticity theory of solids; see Sect. 18.5.4). All the isotropic tensors
above are relevant to the description of the physical properties of an isotropic
medium (i.e., a medium having the same properties regardless of the way in
which it is orientated).

Exercises

1. Show that an angular momentum L = r × p is a pseudovector.
Solution: Since the position vector r and the momentum vector
p are vectors, they transform under certain rotations of the axes
(proper and improper) as r′j = Rjkrk, p′m = Rmnpn. Hence, the
components of L in a new coordinate system read

L′
i = ε′ijkr

′
jp

′
k

= (|R| Ri
RjmRkn ε
mn) (Rjqrq) (Rksps)
= |R| Ri
 (RjmRjq) (RknRks) ε
mnrqps

= |R| Ri
 δmqδns ε
mnrppq

= |R| Ri
 ε
mnrmpn = |R| Ri
 L
,

which clearly indicates that the quantities Li form the components
of a first-order Cartesian pseudotensor (i.e., a pseudovector). ♣
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2. Determine whether |A|ε
mn = Ai
AjmAknεijk holds for a general matrix
[Aij ] in three dimensions.

Solution: Set � = 1, m = 2, n = 3, for instance, to find that the
right-hand side reads

Ai1Aj2Ak3εijk = A11A22A33 +A21A32A13 +A31A12A23

−A11A32A23 −A21A12A33 −A31A22A13 = |A|.

Other cases can be proven in the same manner. ♣

3. Derive the identity: εijkεklm = δilδjm − δimδjl.
Solution: We first note that the right-hand side of the above iden-
tity, δilδjm − δimδjl, reads

+ 1 if i = l and j = m �= i, (18.26)
−1 if i = m and j = l �= i, (18.27)

0 otherwise.

In the case of (18.26), the left-hand side of the desired identity is

εijkεklm = εijkεkij = (εijk)2. (18.28)

Since i �= j, (18.28) takes the value +1 when k �= i and k �= j.
As a result, we successfully obtain the desired identity. A similar
procedure reveals that εijkεklm = −1 in the case of (18.27) and 0
otherwise. ♣

Remark. We should note that in (18.28), we have not summed with respect
to i and j. This is because the second term in (18.28) was obtained by a
substitution of particular values into the subscripts l and m, respectively.

18.4 Tensor Algebra

18.4.1 Addition and Subtraction

We demonstrate below the bases of tensor algebra that provide ways of con-
structing new tensors from old ones. For convenience, we may simply refer to
Tij as the tensor, but it should always be remembered that the Tij are the
components of T in a specific coordinate system.

The addition and subtraction of tensors are defined in an obvious fashion.
If Aij···k and Bij···k are (the components of) tensors of the same order, then
their sum and differences, Sij···k and Dij···k respectively, are given by

Sij···k = Aij···k +Bij···k,
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Dij···k = Aij···k −Bij···k,

for each set of values i, j, · · · k. Furthermore, the linearity of a rotation of
coordinates immediately yields

RipSpq···r = Rip (Apq···r +Bpq···r) = RipApq···r +RpiBpq···r

= A′
iq···r +B′

iq···r = S′
iq···r.

18.4.2 Contraction

Next is an operation peculiar to tensor algebra that is of considerable impor-
tance in certain manipulations.

♠ Contraction:
Contraction is an operation that makes two of the indices equal and

sums over all values of the equalized indices.

As an example, we consider a third-order tensor Tijk whose transformation
law is described by

T ′
ijk = Ri
RjmRknT
mn. (18.29)

Now we perform a contraction of this tensor with respect to j and k.
Setting j = k in (18.29) and summing over k, we get

T ′
ikk = Ri
RkmRknT
mn = Ri
δmnT
mn = Ri
T
nn,

where we used the orthogonality condition on the sum RkmRkn. The result
indicates that the quantity Tikk forms the components of a tensor of order
1 = 3 − 2. In general, contraction reduces the order of a tensor by two;
contraction of an Nth-order tensor Tij···l···m···k by making the subscripts l and
m equal produces another tensor of order N − 2. In particular, if contraction
is applied to a tensor of order 2, the result is a scalar.

18.4.3 Outer and Inner Products

Let us consider the multiplication of tensors. For example, we may take two
tensorsAij andBk
m of different order and simply write them in juxtaposition:

Cijk
m ≡ AijBk
m. (18.30)

Then, the quantities are the components of a tensor of fifth-order, which
follows immediately from the transformation law of tensors. Such a product



588 18 Cartesian Tensors

of (18.30), in which all the indices are different from one another, is called an
outer product of tensors.

Another kind of tensor, product of known as the inner product of tensors,
is obtained from the outer product by contraction. For instance, putting j = k
in (18.30) results in

Cijj
m ≡ AijBj
m, (18.31)

which consists of a third-order tensor as demonstrated in Sect. 18.4.2. Then,
the right-hand side of (18.31) is called an inner product of the components of
the tensors Aij and Bk
m.

Examples The process of taking the scalar product of two vectors u and v,
expressed by uivi, can be recast into tensor language as forming the outer
product

Tij ≡ uivj

and then contracting it to give

Tii = uivi.

Using the concept of outer (and inner) product of tensors, we can write
many familiar expressions of vector algebra as contracted tensors. For exam-
ple, the vector product a = b × c has

ai = εijkbjck,

as its ith component, where εijk is the Levi–Civita symbol introduced in
Sect. 18.3.4. This notation clarifies the distinction between the pseudovector
consisting of the components εijkbjck and the second-order tensor composed
of the outer product bicj .

Remark. The outer product of two vectors is often denoted without reference
to any coordinate system as

T = u ⊗ v. (18.32)

This should not be confused with the vector product of two vectors, which is
itself a pseudovector and is discussed in Sect. 18.3.2. The expression (18.32)
gives the basis to which the components Tij of the second-order tensor refer:
since u = uiei and v = vjej , we may write the tensor T as

T = uiei ⊗ vjej = uivju ⊗ v = Tiju ⊗ v.

Furthermore, we have

T = uiei ⊗ vjej = u′ie
′
i ⊗ v′je

′
j ,

which indicates that the quantities T ′
ij are the components of the same ten-

sor T but referred to a different coordinate system. These concepts can be
extended to higher-order tensors.
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We show below several expressions of vector algebra as contracted Cartesian
tensors: the notation [a]i indicates that one takes the ith component of the
vector (or tensor) a.

Examples

1. a · b = aibi = δijaibj .

2. [a · (b × c)]i = δilai[b × c]l = δilai(εljkbjck) = εijkaibjck.

3. ∇2φ =
∂2φ

∂xi∂xi
= δij

∂2φ

∂xi∂xj
.

4. [∇ × v]i = εijk
∂vk

∂xj
.

5. [∇(∇ · v)]i =
∂

∂xi
(∇ · v) =

∂

∂xi

(
∂vj

∂xj

)

= δjk
∂2vj

∂xi∂xk
.

6. [∇ × (∇ × v)]i = εijk
∂

∂xj
[∇ × v]k = εijkεklm

∂2vm

∂xj∂xl
.

18.4.4 Symmetric and Antisymmetric Tensors

The order of subscripts attached to a tensor is important; in general, Tij is
not the same as Tji. But there are some cases of interest as described below.

♠ Symmetric and asymmetric tensor:
If

Tij = Tji,

holds for all i and j, the tensor composed of Tij is called a symmetric
tensor. Otherwise, if

Tij = −Tji, (18.33)

the tensor is said to be antisymmetric (or skew-symmetric).

A tensor that is symmetric (or antisymmetric) in one coordinate system re-
mains symmetric (or antisymmetric) in any other coordinate system. In fact,
if Tij is symmetric in a given system, i.e., Tij = Tji, then

T ′
ij = RikRj
Tk
 = Rj
RikT
k = Tji,

and similarly for antisymmetry and tensors of higher order.
Notably, every tensor can be resolved into symmetric and antisymmetric

parts by the identity
Tij = Sij +Aij , (18.34)
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where
Sij =

1
2
(Tij + Tji) and Aij =

1
2
(Tij − Tji).

Evidently Sij is a symmetric tensor since it is unaltered even if i and j are
interchanged. In contrast, Aij is an antisymmetric tensor since the signs of
all the components are reversed by exchanging i and j. Then, Sij and Aij are
called the symmetric and antisymmetric parts of Tij , respectively.

18.4.5 Equivalence of an Antisymmetric Second-Order Tensor
to a Pseudovector

It is noteworthy that in three dimensions, a second-order antisymmetric
tensor W is associated with a pseudovector w. To see this, let the Wij be
components of an antisymmetric second-order tensor whose the transforma-
tion law reads

W ′
ij = Ri
RjmW
m

= Ri1Rj2W12 +Ri1Rj3W13 +Ri2Rj1W21 +Ri2Rj3W23

+Ri3Rj1W31 +Ri3Rj2W32, (18.35)

since W11 = W22 = W33 = 0. Moreover, since W
m = −Wm
, we can reduce
(18.35) to the form

W ′
ij =

∑

(
,m)

(Ri
Rjm −RimRj
)W
m, (18.36)

where the sum
∑

(
,m) restricts the values of (�,m) to (1, 2), (2, 3), or (3, 1).
Now we introduce the notation

w1 ≡ W23 = W32, w2 ≡ W31 = W13, w3 ≡ W12 = W21,

or more concisely,
wn ≡ W
m,

where �,m, n is a cyclic permutation of the numbers 1, 2, 3, i.e.,

(�,m, n) = (1, 2, 3), (2, 3, 1), (3, 1, 2).

Then (18.36) can be written as

w′
k =

∑

(
,m,n)

(Ri
Rjm −RimRj
)wn, (18.37)

in which i, j, k and �,m, n are both cyclic permutations of 1, 2, 3.
Noteworthy is the fact that (18.37) is equivalent to the transformation

law of components wk of a pseudovector w. After some algebra, we see that
equation (18.37) can be reduced to a more compact form as
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w′
k = |R|Rknwn, (18.38)

which is nothing but the transformation law of a pseudovector. [See Exercise
2 for the proof of (18.38).]

We have now arrived at the following theorem:

♠ Theorem:
Assume a second-order antisymmetric tensor in three dimensions, whose

components Wij take the form

[Wij ] =

⎛

⎝

0 W12 −W31

−W12 0 W23

W31 −W23 0

⎞

⎠ .

Then, the three components, W12, W31, and W23 can be associated with
the pseudovector w whose components are given by

(w1, w2, w3) = (W23,W31,W12) ,

or more concisely,

wi =
1
2
εijkWjk. (18.39)

The right-hand side of (18.39) is a twice-contracted product of the third-order
pseudotensor, εi

jk, and second-order tensor, Wij ; hence, it is a pseudovector.

Examples In physical applications, we often use the vector representation
(18.39) of a second-order antisymmetric tensor. For instance, let us consider
the equations of angular momentum of a moving particle with mass m. We
assume that a force F acts on the particle located at x. Then, with i and j
each taking the values 1, 2, 3 we get

m(ẍjxk − ẍkxj) = Fjxk − Fkxj , (18.40)

which gives us nine equations. Note that both sides of (18.40) are antisym-
metric tensors. Among the nine equations, therefore, there are only three that
are independent, (j, k) = (1, 2), (2, 3), (3, 1). So we can convert (18.40) into a
more concise vector form as

mwi = Ni,

where we have defined

wi = εijk(ẍjxk − ẍkxj) and Ni = εijk(fjxk − fkxj).
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18.4.6 Quotient Theorem

Sometimes it is necessary to clarify whether a set of functions, say, {ai(xj)},
forms the components of a vector or not. A direct method is to examine
whether the functions satisfy a required transformation law under a rotation
of axes, which is, however, troublesome in practice. In this subsection, we
describe an alternative and more efficient method, called the quotient law,
which is a simple indirect test for determining whether a given set of quantities
forms the components of a tensor.

♠ Quotient theorem:
If aivi is a scalar for a vector v in any rotated coordinate system, then

the ai constitute the components of a vector a.

Proof Suppose that we are given a set of n quantities ai subject to the condi-
tion that aivi is a scalar for components vi of arbitrary vector v in terms of
an arbitrarily rotated coordinate system. We may then write

ajvj = φ, (18.41)

in which φ denotes a scalar. Denoting the (as yet unknown) transform of ai

by a′j , we know that in the x′-coordinate system the condition (18.41) reads

a′iv
′
i = φ′. (18.42)

Since φ is a scalar, φ = φ′. Furthermore, since vi are components of a vector,
it follows that

v′i = Rijvj .

Accordingly, subtracting (18.42) from (18.41) gives

(aj − a′iRij) vj = 0. (18.43)

On the left-hand side, a summation over j is implied, so, we cannot assert
directly that the coefficients of vj vanish. However, since (18.43) should be
valid for any coordinate system, we may specifically choose the coordinate
system in which the components of v read v1 = 1 and v(i�=1) = 0. Equation
(18.43) then reduces to

a1 −Ri1a
′
i = 0.

Similarly, choosing an appropriately rotated coordinate system that provides
the components v2 = 1 and v(i�=2) = 0, we infer that

a2 −Ri2a
′
i = 0.

Continuing in this manner, we find that
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aj = Rija
′
i for all j.

Multiplying both sides by Rkj yields

Rkjaj = RkjRija
′
i = δkia

′
i = a′k,

i.e.,
a′i = Rijaj ,

which is the transformation law for components of a vector. We thus conclude
that the ai constitute the components of a vector, denoted by a. ♣

Remark. In applications of the above theorem, one must be certain that the
coordinate system employed is arbitrarily rotated, and this hypothesis repre-
sents a very strict condition that is not often satisfied.

18.4.7 Quotient Theorem for Two-Subscripted Quantities

As a second important case, assume a set of n2 quantities aij such that aijvivj

is a scalar φ for a vector v and for any rotated coordinate system. Our task is
to examine whether such two-subscripted quantities aij constitute the com-
ponents of a tensor of second order. We shall see, however, that the answer is
negative. In fact, we can say nothing about the tensorian character of aij from
the hypothesis noted above, which implies the need to modify the quotient
theorem for two-subscripted quantities.

Developing the modified quotient theorem requires a discussion that par-
allels that given in Sect. 18.4.5. By hypothesis, we can set

aijvivj = φ

in the given x-coordinate system and similarly

a′k
v
′
kv

′

 = φ′ (18.44)

in the x′-coordinate system. In (18.44), we have denoted the as yet unknown
transforms of aij by a′ij . Using the transformation law of vi as well as the
fact that φ = φ′ gives us

(aij −RkiR
ja
′
k
) vivj = 0. (18.45)

As a summation is implied over i and j, we cannot infer directly that
the coefficients of vivj vanish. Instead, we successively choose components
(v1, v2, v3, · · · ) as (1, 0, 0, · · · ) and (0, 1, 0, · · · ), etc., to get

a11 −Rk1R
1a
′
k
 = 0, a22 −Rk2R
2a

′
k
 = 0, · · · . (18.46)

These results imply that the terms aij with i = j obey the transformation
law of second-order tensors. Nevertheless, it tells us nothing about the terms
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involving aij with i �= j. To further examine this point, we set components as
v1 �= 0, v2 �= 0, and vi = 0 for other i. Then, (18.45) becomes

(a11 −Rk1R
1a
′
k
) v1v1 + (a12 −Rk1R
2a

′
k
) v1v2

+ (a21 −Rk2R
1a
′
k
) v2v1 + (a22 −Rk2R
2a

′
k
) v2v2 = 0.

Owing to (18.46), we find that the coefficients of v1v1 and v2v2 vanish. Fur-
thermore, since

Rk1R
2a
′
k
 = Rk2R
1a

′

k

is simply a relabeling of the indices k and �, we see that

[(a12 + a21) − (a′k
 + a′
k)Rk2R
1] v1v2 = 0.

Thus, choosing v1 = 1 and v2 = 1 gives us

a12 + a21 = (a′k
 + a′
k)Rk2R
1.

Again, this process may be repeated to yield

aij + aji = (a′k
 + a′
k)RkjR
i,

i.e.,
a′k
 + a′
k = RkjR
i (aij + aji) .

This is indeed the transformation law of a second-order tensor, but it refers to
aij + aji, i.e., the symmetric part of 2aij , and not to aij as such. Accordingly,
the quotient theorem for this case must be stated as follows.

♠ Quotient theorem for two-subscripted quantities:
Suppose a set of n2 quantities aij to be such that for a vector v and for

any rotated system, the sum aijvivj is a scalar. Then the symmetric parts
(aij + aji)/2 of aij are the components of a second-order tensor.

Remark.

1. If in addition to the above hypothesis, we are given that the aij are sym-
metric, then the aij themselves are the components of a second-order
tensor.

2. Nothing can be inferred about the tensorial character of the anti-symmetric
part of aij from the above hypothesis that because part contributes noth-
ing to the scalar φ, as seen from

(aij − aji)vivj = aijvivj − ajivivj = aijvivj − aijvjvi = 0,

where in the last step the indices i and j are interchanged.
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Example Using the quotient theorem, we show that the two-subscripted quan-
tities aij given by

[aij ] =
[

(x2)2 −x1x2

−x1x2 (x1)2

]

are the components of a second-order tensor. Note first that aij = aji and that
the outer product xkx
 is a second-order tensor. Contracting the quantities
aij with the outer product xkx
, we obtain

aijxixj = (x2)2(x1)2 − x1x2x1x2 − x1x2x2x1 + (x1)2(x2)2 = 0, (18.47)

in which the last term, 0, is a zeroth-order tensor. Since (18.47) holds for any
rotated coordinate system, we conclude that aij is a second-order tensor.

Exercises

1. Derive the equation ∇ × (∇ × v) = ∇(∇ · v) − ∇2v.
Solution: Straightforward calculations yield

[∇ × (∇ × v)]i = εijkεklm
∂2vm

∂xj∂xl
= (δilδjm − δimδjl)

∂2vm

∂xj∂xl

=
∂2vj

∂xj∂xi
− ∂2vi

∂xj∂xj
=

∂

∂xi

(
∂vj

∂xj

)

− ∂2vi

∂xj∂xj

=
∂

∂xi
(∇ · v) − ∇2vi = [∇(∇ · v)]i − [∇2v]i

= [∇(∇ · v) − ∇2v]i. ♣

2. Derive the expression (18.38) using the result (18.37).
Solution: We consider the vector products (in the sense of elemen-
tary vector calculus) of the transformed basis arrows e′

i given by
e′

i × e′
j =

(Ri
e
) × (Rjmem) = Ri
Rjme
 × em. Forming the scalar prod-
uct with en yields

(e′
i × e′

j) · en = Ri
Rjm (e
 × em) · en,

where on the right-hand side only two terms survive for each fixed
value of n since

(e
 × em) · en =

⎧

⎨

⎩

+1 if (�,m, n) = (1, 2, 3), (2, 3, 1), (3, 1, 2),
−1 if (�,m, n) = (2, 1, 3), (3, 2, 1), (1, 3, 2),
0 otherwise.

(Here we assume that the coordinate systems associated with {ei}
and {e′

j} are both right-handed.) Hence, we have
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(e′
i × e′

j) · en = Ri
Rjm −RimRj
, (18.48)

where �,m, n is a cyclic permutation of 1, 2, 3. Moreover, since

e′
i × e′

j = e′
k = Rkrer, (18.49)

it follows from (18.48) and (18.49) that

Rkrer · en = Rkrδrn = Rkn = Ri
Rjm −RimRj
,

where again i, j, k and �,m, n are both cyclic permutations of
1, 2, 3. If {e′


} is left-handed, a similar procedure yields

Rkn = − (Ri
Rjm −RimRj
) .

Substituting these results into (18.37), we finally arrive at the
conclusion that

w′
k = |R|Rknwn,

which is a transformation law for a pseudovector. ♣

3. Show that the process of contraction of an Nth-order tensor produces
another tensor of order N − 2.

Solution: Let Tij···l···m···k be the components of an Nth-order ten-
sor; then

T ′
ij···l···m···k = RipRjq · · ·Rlr · · ·Rms · · ·RknTpq···r···s···n.

Thus if, e.g., we make the two subscripts l and m equal and sum
over all the values of these subscripts, we obtain

T ′
ij···l···m···k = RipRjq · · ·Rlr · · ·Rms · · ·RknTpq···r···s···n

= RipRjq · · · δrs · · ·RknTpq···r···s···n

= RipRjq · · ·RknTpq···r···r···n,

showing that Tij···l···l···k are the components of a (different) Carte-
sian tensor of order N − 2. ♣

18.5 Applications in Physics and Engineering

This section is devoted to illustrations of physical applications of second- and
higher-order Cartesian tensors. We start with an example from mechanics and
follow that by examples from electromagnetism and elasticity.

18.5.1 Inertia Tensor

Consider a collection of rigidly connected particles, wherein the αth particle
has mass m(α) and is positioned at r(α) with respect to the origin O. Suppose
that the rigid assembly is rotating about an axis through O with angular
velocity ω. The angular momentum J of the assembly is given by
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J =
∑

α

(

r(α) × p(α)
)

.

Here p(α) = m(α)ṙ(α) and ṙ(α) = ω × r(α) for any α whose components are
expressed in subscript form as

p
(α)
k = m(α)ẋ

(α)
k and ẋ

(α)
k = εklmωlx

(α)
m .

Thus we obtain

Ji =
∑

α

∑

j,k

εijkx
(α)
j ṗ

(α)
k =

∑

α

∑

j,k,l,m

m(α)εijkx
(α)
j εklmωlx

(α)
m

=
∑

α

∑

j,l

m(α)(δilδjm − δimδjl)x
(α)
j x(α)

m ωl

=
∑

α

∑

l

m(α)

[(

r(α)
)2

δil − x
(α)
i x

(α)
l

]

ωl ≡
∑

l

Iilωl, (18.50)

with the definition

Iil =
∑

α

m(α)

[(

r(α)
)2

δil − x
(α)
i x

(α)
l

]

. (18.51)

The set of quantities Iil forms a symmetric second-order Cartesian tensor; the
symmetric property expressed by Iil = Ili follows readily from (18.51). The
fact that the Iil form tensors can be proved by applying the quotient rule (see
Sect. 18.4.6) to equation (18.50), wherein Ji and ωl are vectors. The tensor
Iil is called the inertia tensor of the assembly with respect to O. As evident
from (18.51), Iil depends only on the distribution of mass in the assembly and
not on the direction or magnitude of the angular velocity of the assembly, ω.

If a continuous rigid body is considered, m(α) is replaced by the mass
distribution ρ(r) and the summation

∑

α by the integral of
∫

dV over the vol-
ume of the whole body. When expanded in Cartesian coordinates, the inertia
tensor of a continuous body would have the form

I = [Iij ] =

⎛

⎜
⎜
⎝

∫

(y2 + z2)ρdV −
∫

xyρdV −
∫

zxρdV

−
∫

xyρdV
∫

(z2 + x2)ρdV −
∫

yzρdV

−
∫

zxρdV −
∫

yzρdV −
∫

(x2 + y2)ρdV

⎞

⎟
⎟
⎠
.

The diagonal elements of this tensor are called the moments of inertia
and the off-diagonal elements without the negative signs are known as the
products of inertia.

It is possible to show that the kinetic energy K of the rotating system
is given by K = 1

2Ijlωjωl, which is a scalar obtained by twice contracting
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the vector ωj with the inertia tensor Ijl. In fact, an argument parallel to that
leading to (18.50) yields

K =
1
2

∑

α

m(α)ṙ(α) · ṙ(α) =
1
2

∑

α

m(α)
∑

j,k,l,m

εijkωjx
(α)
k εilmωlx

(α)
m

=
1
2

∑

j,l

Ijlωjωl.

This shows that the kinetic energy of the rotating body can be expressed as
a scalar obtained by twice contracting the vector ωj with the inertia tensor
Ijl. Alternatively, since Jj = Ijlωl, the kinetic energy may be written as
K = 1

2Jjωj .

18.5.2 Tensors in Electromagnetism in Solids

Magnetic susceptibility and electric conductivity are also examples of
physical quantities represented by second-order tensors. For the former, we
have the standard expression

Mi =
∑

j

χijHj , (18.52)

where M is the magnetic moment per unit volume and H is the magnetic
field. Similarly, for the case of electric conductivity, we can write

ji =
∑

j

σijEj . (18.53)

Here, the current density j (current per unit perpendicular area) is related to
the electric field E. In both cases, we have a vector on the left-hand side and
the contraction of a second-order tensor with another vector on the right-hand
side.

For isotropic media, the vector M is parallel to H and, similarly, the
vector j is parallel to E. Thus, the above tensors satisfy χij = χδij and
σij = σδij , respectively, resulting in M = χH and j = σE. However, for
anistropic materials such as crystals, the magnetic susceptibility and electric
conductivity may be different along different crystal axes, thus making χij

and σij general second-order tensors (usually symmetric).

18.5.3 Electromagnetic Field Tensor

All the tensors that we have considered in this chapter so far relate to the three
dimensions of space and they are defined as having a certain transformation
property under spatial rotations. In this subsection, we shall have the occasion
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to use a tensor in the four dimensions of relativistic space-time; the tensor is
the electromagnetic field tensor Fμν .

Recall that an electromagnetic field in free space is governed by the
Maxwell equations, which take the form

∇ · B = 0, ∇ · E = 4πk1ρ,

∇ × B = 4πk2J +
k2

k1

∂E

∂t
, ∇ × E = −k3

∂B

∂t
.

Here E is the electric field intensity, B is the magnetic induction, ρ is the
charge density, and J is the current density. There are several ways of defining
the values of constants ki (i = 1, 2, 3); indeed, their values depends on which
system of unit we use. Typical examples are listed in Table 18.1.

The Maxwell equations take on a particularly simple and elegant form on
introducing the electromagnetic field tensor Fμν defined as

Fμν = ∂νAμ − ∂μAν . (18.54)

Here, Aμ = (φ/c,−A) is called a four potential, determined by the scalar
potential φ and the vector potential A that generate the fields B = ∇×A and
E = −∇φ− ∂A/∂t. The symbol ∂μ in (18.54) denotes the partial derivatives
with respect to the μth coordinate. Straightforward calculations yield

[Fμν ] =

⎡

⎢
⎢
⎣

0 E1/c E2/c E3/c
−E1/c 0 −B3 B2

−E2/c B3 0 −B1

−E3/c −B2 B1 0

⎤

⎥
⎥
⎦
, (18.55)

where E = (E1, E2, E3) and B = (B1, B2, B3). We also introduce another
relevant tensor defined by

[Fμν ] =

⎡

⎢
⎢
⎣

0 −E1/c −E2/c −E3/c
E1/c 0 −B3 B2

E2/c B3 0 −B1

E3/c −B2 B1 0

⎤

⎥
⎥
⎦
, (18.56)

in which μ and ν are superscripts in opposed to (18.55), where they are
subscripts. As a result, we can see that the Maxwell equations are equivalent

Table 18.1. Values of the constants ki(i = 1, 2, 3) in the Maxwell equations. μ0, ε0

and c are the permeability, permittivity, and speed of light in vacuum, respectively

System of Unit k1 k2 k3

MKSA 1/(4πε0) μ0/(4π) 1
CGS-esu 1 1/c2 1
CGS-emu c2 1 1
CGS-Gauss 1 1/c 1/c
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to the following two field equations:
∑

ν

∂νF
μν = μ0j

μ,

∂σFμν + ∂μFνσ + ∂νFσμ = 0,

where jμ = (ρc,J) is the four-current density.

Remark. The distinction between superscripts and subscripts on the symbol
F shown in (18.55) and (18.56), respectively, is clarified in Chap. 19, which
deals with non-Cartesian tensor calculus.

18.5.4 Elastic Tensor

Thus so far, we have focused on the physical applications of second-order
tensors, which relate two vectors. Now, we extend this idea to a situation
where a fourth-order tensor relates two physical second-order tensors. Such
relationships commonly occur in elasticity theory. In the framework of this
theory, the local deformation of an elastic body at any interior point P is
described by a second-order symmetric tensor eij called the strain tensor,
which is given by

eij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)

,

where u is the displacement vector describing the strain of a small volume
element. Similarly, we can describe the stress in the body at P by a second-
order symmetric stress tensor pij ; the quantity pij is the xj-component of
the stress vector acting across a plane through P , whose normal lies in the xi-
direction. A generalization of Hooke’s law that relates the stress and strain
tensors is

pij =
∑

k,l

cijklekl, (18.57)

where cijkl is a fourth-order Cartesian tensor.
Specifically, for an isotropic medium, we must have an isotropic tensor for

cijkl; the most general fourth-order isotropic tensor is

cijkl = λδijδkl + ηδikδjl + νδilδjk.

Substituting this into (18.57) yields

pij = λδij

∑

k

ekk + ηeij + νeji. (18.58)

Note that eij is symmetric. Hence, if we write η + ν = 2μ, (18.58) takes the
conventional form

pij = λ
∑

k

ekkδij + 2μeij ,

in which λ and μ are known as Lamé constants.
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Non-Cartesian Tensors

Abstract Having discussed tensor theory based on Cartesian coordinates, we now
move on to its counterpart, i.e., tensors described by curvilinear coordinate systems.
The use of a curvilinear coordinate system endows the tensor calculus with the
properties of “covariance” (Sect. 19.1.3) and “contravariance” (Sect. 19.1.4), both
of which are new concepts originating from the nonorthogonality of the coordinate
axes.

19.1 Curvilinear Coordinate Systems

19.1.1 Local Basis Vectors

We have thus far restricted our attention to the study of Cartesian ten-
sors, where, from a practical stand point, only rigid rotations of axes (proper
and/or improper) are taken into account as coordinate tranformations. How-
ever, we must free ourselves from this restriction and develop the tensor calcu-
lus in terms of curvilinear coordinate systems, In advanced mathematical
physics, we often have to deal with tensor analysis on curved surfaces (or more
abstract manifolds) on which orthonormal coordinate systems cannot be de-
fined, and in such cases the theory developed thus far is entirely inadequate.
This means that we have to formulate tensors and their transformations in
terms of general curvilinear coordinate systems.

To begin with, we review some properties of general curvilinear coordi-
nates. Suppose that the position of an arbitrary point P in a three-dimensional
space has Cartesian coordinates x, y, z. In general, this position may be ex-
pressed in terms of three curvilinear coordinates u1, u2, u3, which are functions
of x, y, z as explicitly represented by

u1 = u1(x, y, z),
u2 = u2(x, y, z),
u3 = u3(x, y, z).
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We denote by r the position arrow connecting the origin O and the point P .
Obviously, the direction and magnitude of the arrow depend on the coordi-
nates of P , which are symbolized by

r = r(u1, u2, u3).

We now consider the partial derivative of r with respect to ui, i.e.,

ei ≡ ∂r

∂ui
. (19.1)

From the definition, the vectors ei are directed along the corresponding coor-
dinate lines at the point P . As a result, an infinitesimal vector displacement
dr in curvilinear coordinates is given by

dr =
∂r

∂ui
dui = eidui,

where the summation convention is employed. The vectors ei are referred to
as local basis vectors. (In precise terminology, they are called covariant
local basis vectors, as explained later.)

It is obvious from (19.1) that the vectors ei are functions of the curvilinear
coordinates ui, namely, ei = ei(u1, u2, u3). This implies that the directions
and magnitudes of the ei vary from point to point in the space considered,
which is in contrast to the case of a Cartesian coordinate system, where the
basis vectors are spatially independent. Spatial dependence of basis vectors
is actually one of the most important properties of curvilinear coordinate
systems.

Another notable property of curvilinear coordinate systems is the fact that
they allow us to define another useful set of three vectors at P as

εi ≡ ∇ui.

Clearly the direction of εi is normal to the surface ui = const; thus being
different from the directions of any vectors ei (i = 1, 2, 3) in general (see
Fig. 19.1). Therefore, at each point P in a curvilinear coordinate system,
there exist two sets of basis vectors defined by

(a)

( )Q1e

( )Q2e

( )P2e
( )P1e

( )Q2e ( )Q1e

( )Q1
( )Q2(b)

u2 = const

u1 = const

Fig. 19.1. (a) Spatial dependence of ei in the curvilinear coordinate system. (b)
Difference between ei and εi
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ei =
∂r

∂ui
and εi = ∇ui. (19.2)

In the tensor analysis, literature of the set of vectors εi introduced above is
denoted by ei, the index being placed as a superscript to distinguish it from the
first set of vectors ei. Relating to the notation above, we introduce a modified
summation convention as follows: if we find a lower-case alphabetic index
that appears twice, once as a subscript and once as a superscript, we sum
over all the values that the index can take. In this convention, the curvilinear
coordinates are denoted by u1, u2, u3, with the index raised (see the remark
in Sect. 19.1.3), to arrive at the following definition.

♠ Local basis vectors:
A curvilinear coordinate system is characterized by two sets of three

vectors {ei} and {ei} defined by

ei =
∂r

∂ui
and ei = ∇ui.

Here, the ei are referred to as the covariant local basis vectors, and the
ei as the contravariant local basis vectors.

The prefix “local” emphasizes the fact that the lengths and orientations of
these basis vectors vary from point to point in the space; this fact is explicitly
represented by

ei = ei(u1, u2, u3) and ej = ej(u1, u2, u3).

For the sake of conciseness, we omit the prefix in the subsequent discussions
and use the terms contravariant (or covariant) basis vectors, bearing the
locality in mind.

Remark.

1. In common practice indices that represent contravariant character are
placed as superscripts and those indicating covariant character as sub-
scripts.

2. For Cartesian coordinate systems, the two sets of basis vectors ei and ei

are identical and, hence, there is no need to differentiate between con-
travariance and covariance.

3. In derivatives such as ∂r/∂ui, the i is considered as a subscript.

19.1.2 Reciprocity Relations

Generally the covariant basis vectors e1, e2, and e3 are neither of unit length
nor are they orthogonal to each other; this is also true for the contravariant
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basis vectors, e1, e2, and e3. Nevertheless, the sets {ei} and {ej} still have
an important property as stated below.

♠ Reciprocity relations:
The sets of contravariant and covariant local basis vectors {ei} and

{ej} satisfy the reciprocity relations such that

ei · ej = δj
i , (19.3)

where the scalar product of the vectors is taken in the sense of elementary
vector calculus.

Proof By using Cartesian representation, we have

ei · ej =
∂r

∂ui
· ∇uj =

(
∂x

∂ui
,
∂y

∂ui
,
∂z

∂ui

)

·
(
∂uj

∂x
,
∂uj

∂y
,
∂uj

∂z

)

=
∂x

∂ui

∂uj

∂x
+

∂y

∂ui

∂uj

∂y
+

∂z

∂ui

∂uj

∂z

=
∂uj

∂ui
= δj

i . ♣

Remark. The reciprocity relation (19.3) implies that each covariant (or con-
travariant) basis vector ei (or ei) is perpendicular to all contravariant (or
covariant) basis vectors ek (or ek) except k = i. For instance, e1 is perpen-
dicular to e2 and e3, but not to e1 in general. To be precise, the vectors e1

and e1 make an angle θ that satisfies

e1 · e1 = |e1| |e1| cos θ = 1,

where |e1| �= 1 and |e1| �= 1.

19.1.3 Transformation Law of Covariant Basis Vectors

We are now in a position to discuss the concept of general transformations
from one coordinate system, u1, u2, u3, to another, u′1, u′2, u′3. A coordinate
transformation is described by using the three equations

u′
i = u′

i(u1, u2, u3), (19.4)
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for i = 1, 2, 3, in which the new coordinates u′i can be arbitrary functions of
the old ones ui. We assume that the transformation can be inverted, so that
we can write the old coordinates in terms of the new ones as

ui = ui(u′1, u′2, u′3).

We now formulate the transformation law of basis vectors. The two sets
of basis vectors in the new coordinate system are given by

e′
i =

∂r

∂u′i
and e′i = ∇u′i. (19.5)

Using the chain rule, we find that the first set of basis vectors yields

e′
i =

∂r

∂uj

∂uj

∂u′i
=

∂uj

∂u′i
ej . (19.6)

This describes the transformation behavior of the local covariant basis vectors
from the unprimed one ej to the primed one e′

i under the coordinate trans-
formation (19.4). Note that the partial derivatives as well as the basis vectors
in (19.6) vary from point to point. Hence, relation (19.6) is valid under the
condition that all terms involved are evaluated at the same point P in the
space being considered.

In the same manner, it follows that

ek =
∂r

∂uj
=

∂r

∂u′

∂u′


∂uk
=
∂u′


∂uk
e′


.

We thus have proved the following theorem:

♠ Transformation law of covariant basis vectors:
The sets of local covariant basis vectors {ei(uj)} and {e′

k(u′
)} asso-
ciated with two different curvilinear coordinate systems are related at a
point P by

e′
i =

∂uj

∂u′i
ej and ek =

∂u′


∂uk
e′


, (19.7)

in which the partial derivatives are to be evaluated at P .

Remark. Observe that in all the mathematical expressions above (and be-
low), the summation convention is applied to the indices that are repeated
in one term as both a subscript and a superscript. Indeed, it was to satisfy
this summation convention that the coordinates were written as ui rather
than ui.
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19.1.4 Transformation Law of Contravariant Basis Vectors

Next we consider the transformation law of the contravariant basis vectors
ei = ∇ui. Recall that in terms of a rectangular Cartesian coordinate system,
the operator ∇ is expressed as

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
,

where i, j,k are mutually orthogonal basis vectors of unit length. It then,
follows that

e′k = ∇u′k = i
∂u′k

∂x
+ j

∂u′k

∂y
+ k

∂u′k

∂z
,

in which the first partial derivative reads

∂u′k

∂x
=
∂ui

∂x

∂u′k

∂ui

and other derivatives are written in the same way. Hence, we have

e′k =
(

i
∂ui

∂x
+ j

∂ui

∂y
+ k

∂ui

∂z

)
∂u′k

∂ui
=
(

∇ui
) ∂u′k

∂ui
=
∂u′k

∂ui
ei.

Similarly, we have

ej = ∇uj =

(

i
∂u′


∂x
+ j

∂u′


∂y
+ k

∂u′


∂z

)

=
∂uj

∂u′

e′
.

These results are summarized as follows:

♠ Transformation law of contravariant basis vectors:
The two sets of local contravariant basis vectors {ei(uj)} and {e′k(u′
)}

are related at a point P by

e′k =
∂u′k

∂ui
ei and e
 =

∂u


∂u′j
e′j , (19.8)

where the partial derivatives are again to be evaluated at P .

It should be emphasized again that, owing to the summation convention, the
repeated indices in (19.8) appear once as a superscript and once as a subscript

19.1.5 Components of a Vector

Given the two bases ei and ei, we may express a general geometric arrow a
(i.e., a vector a) equally well in terms of either basis as follows:
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a = a1e1 + a2e2 + a3e3 = aiei,

a = a1e
1 + a2e

2 + a3e
3 = aie

i.

The ai are called the contravariant components of the vector a and the ai

the covariant components. Both kinds of components ai and aj describe
the same vector a, but they are associated with different basis vectors ei and
ej , respectively. In plain words, a vector assigned at a point in a curvilinear co-
ordinate system has two different expressions; say, (a1, a2, a3) and (a1, a2, a3)
for the same vector a. The tensorian characters of the two kinds of compo-
nents are inherently different from each other, as we shall see in subsequent
discussions.

For any vector a, the two kinds of components ai and ai are readily ob-
tained by forming the scalar products,

a · ei = ajej · ei = ajδi
j = ai

and
a · ei = ajej · ei = ajδ

j
i = ai,

where we have used the reciprocity relation (19.3). Furthermore, using the
transformation law of ei given in (19.7) gives us

a = a′
i
e′

i = ajej = aj ∂u
′i

∂uj
e′

i. (19.9)

This provides the transformation law of the contravariant components of a
vector such that

a′
i =

∂u′i

∂uj
aj . (19.10)

This relation is, in fact, the defining property for a set of quantities ai to
form the contravariant components of a vector. The formal statement is given
below.

♠ Contravariant component of a vector:
Quantities ai associated with a point P are said to be the contravariant

components of a vector if these, quantities transform through the equation

a′
i =

∂u′i

∂uj
aj , (19.11)

where the partial derivatives are evaluated at P .

Remark. It might occur that a given ordered set of quantities ak associated
with a point P has nothing to do with a vector; only those sets satisfying the
transformation law (19.11) serve as (contravariant) components of a vector.
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Analogously to the case of (19.9), it follows from the identity for an arbi-
trary vector a,

a = a′ie
′i = aje

j = aj
∂uj

∂u′i
e′i,

that the transformation law of covariant components yields

a′i =
∂uj

∂u′i
aj . (19.12)

Again we take this result as the defining property of the covariant components
of a vector.

♠ Covariant components of a vector:
Quantities ai associated with a point P are said to be the covariant

components of a vector if those quantities transform through the equation

a′k =
∂u


∂u′k
a
, (19.13)

where the partial derivatives are evaluated at P .

Remark. Other textbooks may use the expression “contravariant (or co-
variant) vector,” which is a distinctly different concept from a vector a
or its components ai (or ai) that we have just defined. Say, rather, that a
contravariant vector is a collection of ordered triples,

{ (

a1, a2, a3
)

,
(

a′
1
, a′

2
, a′

3
)

,
(

a′′
1
, a′′

2
, a′′

3
)

, · · ·
}

,

in which all the ordered triples consist of contravariant components of the
same vector a associated with different coordinate systems. We should make
sure that a contravariant (or covariant) vector is not expressed by a geometric
arrow as is done for a vector.

19.1.6 Components of a Tensor

We now define geometric objects of the contravariant class, which are more
complicated in character than vectors and begin with the following:

♠ Contravariant component of a tensor:
Index quantities Tjk associated with a point P are said to be contravari-

ant components of a tensor if these quantities transform according to the
equation
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T ′jk = T 
m ∂u′j

∂u


∂u′k

∂um
. (19.14)

There is no difficulty in defining covariant tensors of higher orders. For a
tensor of second order, e.g., we have the definition below.

♠ Covariant components of a tensor:
Index quantities Tjk are said to be covariant components of a second-

order tensor if these quantities transform according to the equation

T ′
jk = T
m

∂u


∂u′j
∂um

∂u′k
. (19.15)

We shall see later that there are many examples of tensors of this kind in
physics and engineering. The moment of inertia, the stress of elasticity, and the
electromagnetic field are cases in point; if their components in terms of certain
coordinate systems are evaluated, they all turn out to obey the transformation
law (19.14).

In terminology, all quantities satisfying (19.11), (19.13) and (19.14), (19.15)
are called components of a first-order tensor and components of a
second-order tensor, respectively; the order goes as the number of in-
dices attached. The definitions of tensors of higher orders are given through a
straightforward generalization of the above. Conversely, we can define a ten-
sor of zero order, called a scalar, that involves no index so that its single
component (i.e., the scalar itself) is constant under any coordinate transfor-
mation; namely,

T ′ = T.

Such a quantity is called an invariant.

Remark. For any components of tensors, the number of indices is independent
of the number of dimensions of the space considered. The definitions above
for vectors, tensors, and scalars are all valid for an arbitrary n-dimensional
space.

19.1.7 Mixed Components of a Tensor

Having defined contravariant and covariant components of a tensor, we can
now define another class of components, called mixed components of a
tensor, that involve the two character simulteneously.
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♠ Mixed components of a tensor:
Index quantities T i

jk are said to be the mixed components of a tensor
of the third order if these quantities transform according to the equation

T ′i
jk = T 


mn

∂u′i

∂u


∂um

∂u′j
∂un

∂u′k
.

Clearly, T i
jk transforms contravariantly with respect to the first index i but

covariantly with respect to the other indices j and k.
If we consider the components of higher-order tensors in non-Cartesian

coordinates, there are even more possibilities. As an example, let us consider
a second-order tensor T . Using the outer product notation, we may write T
in three different ways:

T = T ijei ⊗ ej = T i
je

i ⊗ ej = Tije
i ⊗ ej ,

where T ij , T i
j , and Tij are called the contravariant, mixed, and covari-

ant components of T , respectively. It is important to remember that these
three sets of quantities form the components of the same tensor T but refer
to different tensor bases made up from the basis vectors of the coordinate
system. Again, if we use Cartesian coordinates, the three sets of components
are identical.

We may generalize the above equation to higher-order components. An
object Tα···β

γ···δ is called a component of type (n,m) in which the integers n
and m represent the numbers of superscripts and subscripts, respectively.
By definition, components carrying only superscripts (i.e., m = 0) or those
carrying only subscripts (i.e., n = 0) are referred to as the contravariant and
covariant components, respectively; all others are called mixed components.

Remark. The order of indices needs caution. For instance, we shall see later
that in general

T i
j �= T i

j .

Nevertheless, we can write T i
j with no clarification of the order of i and j if

no ambiguity occurs or the order of indices is irrelevant.

19.1.8 Kronecker Delta

The Kronecker delta is a special kind of a second-order tensor that has
mixed components given by δi

j , and is defined as follows:

δi
j =

{
1 (i = j),
0 (i �= j).
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As these are mixed components of a tensor, they transform as

δ′
i
j =

∂u′i

∂u


∂um

∂u′j
δ

m =

∂u′i

∂u


∂u


∂u′j
=

∂u′i

∂u′j
=
{

1, if i = j,
0, if i �= j,

since in the last partial derivative, u′i and u′j are independent coordinates.
Thus, we obtain the result

δ′
i
j = δi

j , (19.16)

which means that the tensor consisting of δi
j has the same components in

all coordinate systems. This is why the tensor consisting of δi
j is called the

fundamental mixed tensor.

Remark. The components δij (or δij) are of no special importance, since they
do not satisfy the invariance condition (19.16), which means that their values
change when we use other coordinate systems. A exception is the case of
rectangular coordinate systems, where the contravariant and covariant tensors
become identical, so that we have δij = δi

j = δij .

19.2 Metric Tensor

19.2.1 Definition

We now introduce important quantities that describe the geometric character
of the space arithmetized by a certain curvilinear coordinate system. We know
that the scalar product of a vector a and local basis vectors ei and ej yields

aj = a · ej = ai (ei · ej) and aj = a · ej = ai

(

ei · ej
)

. (19.17)

Now we introduce the following notation:

ei · ej = gij = gji

and
ei · ej = gij = gji.

We can then write (19.17) in the form

aj = gjka
k and aj = gjkak.

These equations express the covariant components of the vector a in terms
of its contravariant components, and vice versa. We shall see that the nine
quantities gik form a second-order tensor called a metric tensor.



612 19 Non-Cartesian Tensors

♠ Metric tensor:
Two-index quantities defined by

gij = ei · ej and gk
 = ek · e
 (19.18)

serve as covariant and contravariant components of a second-order tensor
called a metric tensor.

The proof of the tensor character for the above is given in Exercise 1.

Remark.

1. Since both ei and ej are functions of the coordinates, so are the quantities
gij and gij .

2. The mixed components gi
j of the metric tensor are identical to those of

δi
j since, by definition, we have

gi
j = ei · ej = δi

j .

Examples We calculate the elements gij for cylindrical coordinates, where
(u1, u2, u3) = (ρ, φ, z) and ρ and φ are related to Cartesian coordinates x and
y as x = ρ cosφ and y = ρ sinφ. Hence, the position vector r of any point
may be written as

r = ρ cosφi + ρ sinφj + zk,

where i, j,k are orthogonal basis vectors. By definition, we have

ei =
∂r

∂ρ
= cosφi + sinφj, (19.19)

ej =
∂r

∂φ
= −ρ sinφi + ρ cosφj, (19.20)

ek =
∂r

∂z
= k. (19.21)

Thus the components of the metric tensor [gij ] = [ei · ej ] are found to be

[gij ] =

⎛

⎜
⎝

1 0 0
0 ρ2 0
0 0 1

⎞

⎟
⎠ .

19.2.2 Geometric Role of Metric Tensors

The quantities gik (or gik) describe the fundamental geometric character of
a space arithmetrized by a certain ui-coordinate system with a basis {ei}.
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A geometric role for gij was implied in the definition (19.18), where gij equals
the scalar product of the two covariant local basis vectors ei and ej . Hence,
gij determines the angles of local basis vectors ei and ej at each point and
thus describes the coordinate(uk)-dependence of the vectors ei = ei(uk) and
ej = ej(uk) that span the space being considered. This implies the possibility
that the metric tensor g rather than the basis vectors can be regarded as a
more fundamental object determining the geometric nature of the space in
question. Indeed, we can establish the framework of tensor calculus based on
a knowledge of the spatial dependence of the metric tensor g without any
information about the local basis vectors. This point is dealt with in §20.3.5
Sect. 20.3.5.

The role of gij in determining the geometric nature of the space also follows
from another stand point as shown below. Let ds be the arc length between
two infinitely close points. We denote by dr the vector joining the two points,
whose covariant components are dui and contravariant components dui. Then,
since dr = eidu

i = ekduk, we have

(ds)2 = |dr|2 = dr · dr
= eidu

i · ekdu
k = eidu

i · ekduk = eidui · ekduk,

or

(ds)2 = gikdu
iduk, (19.22)

(ds)2 = gikduiduk, (19.23)
(ds)2 = duidu

i. (19.24)

Since (ds)2 is a scalar, all of the quantities on the right-hand sides are also
scalars. It should also be noted that in (19.22) and (19.23), the dui (or duk)
are contravariant (or covariant) components of a vector. Hence, in view of the
quotient theorem regarding two-index quantities (see Sect 18.4.7), it turns out
that the symmetric quantities gik (or gik) form covariant (or contravariant)
components of a second-order tensor.

19.2.3 Riemann Space and Metric Tensor

We have seen that in terms of tensor calculus, the metric tensor g rather than
the local basis vectors ei and ej is a more fundamental object in determining
geometric properties of the space being considered. In fact, an abstract space
of points to which we assign a certain class of a second-order tensor g at each
point is referred to by a special name as stated below, which gives a formal
definition of the metric tensor g in the language of tensor calculus.
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♠ Riemann space:
A finite-dimensional space of points labeled by an ordered set of real

coordinates u1, u2, · · · , un is called a Riemann space if it is possible to
define two-index quantities gij that possess the following properties:
1. Each entity gij(u1, u2, · · · , un) is a real single-valued function of the
coordinates and has continuous partial derivatives.
2. gik(u1, u2, · · · , un) = gki(u1, u2, · · · , un).
3. g = det[gik] �= 0.
The tensor g formed by the two-index quantities gij noted above is called
a metric tensor of the space.

Remark. Note that the above definition of a metric tensor is free of the concept
of local basis vectors.

In this context, the superscripted components gij are defined by

gikgkj = δi
j or gik =

Cik

g
,

where Cik(= Cki) is the cofactor of gik in the determinant g = det[gik]. (See
Exercise 2 for the proof of the above.)

Our familiar Euclidean space is a particular class of Riemann space as
stated below.

♠ Flat Riemann space:
A Riemann space is flat if and only if it admits a system of rectangular

Cartesian coordinates x1, x2, · · · , xn such that at every point of the space,

(ds)2 = ε1
(

dx1
)2

+ ε2
(

dx2
)2

+ · · · + εn (dxn)2 , (19.25)

where each εi equals either +1 or −1.

♠ Euclidean space:
A Euclidean space is a flat Riemann space for which all εi in (19.25)

are equal to +1.

19.2.4 Elements of Arc, Area, and Volume

Below we describe several useful relations in connection with the elements of
arc length, areas, and volumes in terms of metric tensors.
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1. Element of arc length:
The element of arc length dsi along a particular coordinate curve ui with
fixed i is

dsi = |dr| = |ei|dui =
√

ei · eidu
i =

√
giidu

i (no summation over i).

2. Element of area
The element of area dσ1 in the coordinate surface u1 = const; for instance,
reads

dσ1 = |dr2 × dr3| = |e2 × e3| du2du3

=
√

(e2 × e3) · (e2 × e3) du2du3

=
√

(e2 · e2) (e3 · e3) − (e2 · e3) (e2 · e3) du2du3

=
√

g22g33 − (g23)
2
du2du3.

Similarly, we have

dσ2 =
√

g33g11 − (g13)
2
du3du1,

dσ3 =
√

g11g22 − (g12)
2
du1du2,

which are summarized by

dσi =
√

gjjgkk − (gjk)2 dujduk (no summation over j and k),

where i, j, k is a cyclic permutation of the numbers 1, 2, 3.
3. Element of volume

Finally, we can derive the equation for the element of volume as

dV = |(dr1 × dr2) · dr3| = |(e1 × e2) · e3| du1du2du3

=
√
gdu1du2du3,

where g = det[gik]. [Proof of the identity (e1 × e2) · e3 = g is given in
Exercise 2.]

Our results are summarized as:

♠ Theorem:
Elements of arc length dsi, area dσi, and volume dV , respectively, are

represented in terms of curvilinear coordinate systems by

dsi =
√
giidu

i (no sum over i),
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dσi =
√

gjjgkk − (gjk)2 dujduk (no sum over j and k), and

dV =
√
g du1du2du3,

where i, j, k is a cyclic permutation of 1, 2, 3.

19.2.5 Scale Factors

In this subsection, we consider the case of orthogonal coordinate systems, for
which the basic descriptive quantities are the scale factors (or the metric
coefficients) h1, h2, h3, defined by

h1 =
√
g11, h2 =

√
g22, h3 =

√
g33.

Obviously, they satisfy the equation

(ds)2 =
(

h1du
1
)2

+
(

h2du
2
)2

+
(

h3du
3
)2
.

Furthermore, since gij = 0 for i �= j, we have

dsi = hidu
i (no sum over i),

dσi = hjhkdu
jduk (no sum over j and k),

dV = h1h2h3du
1du2du3,

where i, j, k is a cyclic permutation of 1, 2, 3.

Examples 1. In rectangular Cartesian coordinates,

(ds)2 = (dx)2 + (dy)2 + (dz)2,

so
h1 = h2 = h3 = 1.

2. In cylindrical coordinates,

(ds)2 = (dR)2 + (Rdθ)2 + (dz)2,

so
h1 = 1, h2 = R, h3 = 1.

3. In spherical coordinates,

(ds)2 = (dR)2 + (Rdθ)2 + (R sin θdφ)2,

so
h1 = 1, h2 = R, h3 = R sin θ.
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19.2.6 Representation of Basis Vectors in Derivatives

It is often desirable to represent local covariant basis vectors ei as well as
components of metric tensors gij = ei · ej at a point r in terms of derivatives
of r with respect to coordinates the ui.

Suppose the relation between a system of curvilinear coordinates u1, u2, u3

and an underlying system of rectangular coordinates x1, x2, x3( = x, y, z) is
given by

ui = ui(xk) and xk = xk(ui), (19.26)

where the Jacobian

J =
∣
∣
∣
∣

∂ui

∂xk

∣
∣
∣
∣

is neither zero nor infinite. Writing the latter equation in (19.26) more con-
cisely as

r = r(ui),

where r = xkik is the position arrow of an arbitrary point, we find

dr =
∂r

∂ui
dui.

It then follows that

(ds)2 = dr · dr =
∂r

∂ui
· ∂r

∂uj
duiduj ,

which implies that the vectors of the local basis are

ei =
∂r

∂ui

and the metric tensor is

gij =
∂r

∂ui
· ∂r

∂uj
=
∂xk

∂ui
ik · ∂x


∂uj
i
 =

∂xk

∂ui

∂x


∂uj
(ik · i
) =

∂xk

∂ui

∂xk

∂uj
.

This leads to the following expression for the scale factors (for the case of
orthogonal coordinate systems):

hi =

√
(
∂x1

∂ui

)2

+
(
∂x2

∂ui

)2

+
(
∂x3

∂ui

)2

.

19.2.7 Index Lowering and Raising

In curvilinear coordinate systems, it is possible to express a scalar product
of two vectors via several different subscript forms. For instance, the scalar
product of two vectors a and b may be written using their contravariant or
covariant components:
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a · b = aiei · bjej = gija
ibj (19.27)

and
a · b = aie

i · bjej = gijaibj . (19.28)
Furthermore, we may express the scalar product in terms of the contravariant
components of one vector and the covariant components of the other:

a · b = aie
i · bjej = aib

jδi
j = aib

i (19.29)

and
a · b = aiei · bjej = aibjδ

j
i = aibi. (19.30)

By comparing the four alternative expressions (19.27)–(19.30) for a · b,
we can deduce the following useful property of gij and gij . From (19.27) and
(19.30) we see that the identity

gija
ibj = aibi

holds for any arbitrary ai. Hence, we have

gijb
j = bi. (19.31)

which illustrates the fact that the covariant components gij can be used to
lower an index bj . In other words, it provides a means of obtaining the co-
variant components bi of a vector from its contravariant components bj . By a
similar argument, we have

gijbj = bi,

where the contravariant components gij are used to raise the index j attached
to bj .

♠ Index lowering and raising (I):
For any vector a, its components ai and ai are related via the compo-

nents of the metric tensor as

ai = gika
k and aj = gj
a
.

The above discussion regarding vectors can be extended to tensors of arbi-
trary rank. For example, the contraction with gij results in a lowering of the
corresponding index:

Tij = gikT
k
• j = gjkT

• k
i . (19.32)

Here the dots (•) in the mixed components emphasize the order of occurrence
of the indices; in fact, in general, T • l

i �= T l
• i. Repeated contraction with gij

yields
Tij = gikgjlT

kl.
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Similarly, contraction with gij raises an index, i.e.,

T ij = gikT • j
k = gikgjlTkl. (19.33)

Comparable arguments are applicable to local basis vectors ei and ej as
stated below.

♠ Index lowering and raising (II):
Local basis vectors ei and ek are related as

ei = gikek and ej = gj
e
.

Proof Since a = aiei = aje
j = akgkje

j , we have

a1
(

e1 − g1je
j
)

+ a2
(

e2 − g2je
j
)

+ a3
(

e3 − g3je
j
)

= 0,

which holds for any vector a. Hence, ek − gkje
k = 0 for all k, i.e.,

ek = gkje
j .

Similarly, we have
ek = gkjej . ♣

Exercises

1. Show that the quantities gij = ei · ej form the covariant components of a
second-order tensor.

Solution: In the new (primed) coordinate system we have
g′ij = e′

i · e′
j . Using the transformation law (19.7) of covariant

basis vectors, we have

g′ij =
(
∂uk

∂u′i
ek

)

·
(
∂ul

∂u′j
el

)

=
∂uk

∂u′i
∂ul

∂u′j
(ek · el) =

∂uk

∂u′i
∂ul

∂u′j
gkl.

This clearly indicates that the gij are covariant components of a
second-order tensor (i.e., the metric tensor g). A similar argument
shows that the quantities gij form the contravariant components
of g, which transform as follows:

g′
ij =

∂u′i

∂uk

∂u′j

∂ul
gkl. ♣
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2. Show that the matrix [gij ] is the inverse of the matrix [gij ].

For an arbitrary vector a, we find ai = gijaj = gijgjka
k. Since a is

arbitrary, we must have

gijgjk = δi
k =

{
1 i = k,
0 i �= k.

(19.34)

This clearly indicates that the matrices [gij ] and [gij ] are inverse to each
other. ♣

3. Show that
√
g = (ei × ej) · ek and 1/

√
g = (ei × ej) · ek, where i, j, k is a

cyclic permutation of the numbers 1, 2, 3.
Solution: By direct calculations, we obtain

gi
 = ei · e
 =
(ej × ek) · (em × en)

[ei · (ej × ek)] [e
 · (em × en)]
, (19.35)

where i, j, k and �,m, n are cyclic permutations of the ordered set
of numbers 1, 2, 3. The numerator in (19.35) reads

(ej × ek) · (em × en) = [(ej × ek) × em] · en

= [(ej · em) ek − (ek · em) ej ] · en

= (ej · em) (ek · en) − (ek · em) (ej · en)

=
∣
∣
∣
∣

ej · em ek · em

ej · en ek · en

∣
∣
∣
∣

=
∣
∣
∣
∣

gjm gkm

gjn gkn

∣
∣
∣
∣

= Ci
.

Here, Ci
 is the cofactor of gi
 in the determinant g = det[gi
].
Comparing the results with the definition gi
 = Ci
/g, we find
that

g = [ei · (ej × ek)] [e
 · (em × en)] ,

which is equivalent to

g = [ei · (ej × ek)]2 , i.e.,
√
g = ±ei · (ej × ek) ,

where the plus sign is chosen if the given basis is right-handed.
In a similar manner, via the relations gi
 = Ci
 and det[δk

i ] =
det[gijg

jk] = det[gij ]det[gjk] = 1, we obtain

1
√
g

= ±ei ·
(

ej × ek
)

. ♣
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19.3 Christoffel Symbols

19.3.1 Derivatives of Basis Vectors

Several new concepts are required for the differentiation of vectors or tensors
with respect to curvilinear coordinates. Recall that in a general curvilinear
coordinate system, the basis vectors ei and ei are functions of the coordinates.
This implies that differentiation of vectors (say, v = viei) or tensors (say,
T = T j

i ei ⊗ ej) involves their derivatives, such as ∂ei/∂u
j .

Suppose that the derivative ∂ei/∂u
j can be written as a linear combination

of the basis vectors ek as denoted by

∂ei

∂uj
= Γ k

ijek, (19.36)

the symbol Γ k
ij being the coefficients associated with the kth component of

the linear combination. Using the reciprocity relation ei · ej = δi
j , we write

this as
Γ k

ij = ek · ∂ei

∂uj
. (19.37)

This three-index symbol is called a Christoffel symbol. In a similar manner
as above, we can show that the derivative of the contravariant basis vectors
reads

∂ei

∂uj
= −Γ i

kje
k. (19.38)

Details of the derivation are given in Exercise 1.
We shall see that Christoffel symbols play a key role in defining the deriva-

tives of vectors and tensors in terms of general coordinate systems. A more
formal definition of Christoffel symbols in terms of metric tensors is given in
Sect. 19.3.4.

Remark. It is clear from (19.37) that in Cartesian coordinate systems, Γ k
ij = 0

for all values of the indices i, j, and k, owing to the identity: ∂ei/∂u
j ≡ 0.

Example 4. Let us calculate the Christoffel symbols Γm
ij for cylindrical coor-

dinates, where (u1, u2, u3) = (ρ, φ, z), and the position vector r of any point
may be written

r = ρ cosφi + ρ sinφj + zk.

From this we find that the covariant basis vectors are given by

eρ =
∂r

∂ρ
= cosφi + sinφj, (19.39)

eφ =
∂r

∂φ
= −ρ sinφi + ρ cosφj, (19.40)
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ez =
∂r

∂z
= k. (19.41)

It is a straightforward mother to show that the only derivatives of these vectors
that are nonzero with respect to the coordinates are

∂eρ

∂φ
=

1
ρ
eφ,

∂eφ

∂ρ
=

1
ρ
eφ,

∂eφ

∂φ
= −ρeρ.

Thus, from (19.37), we immediately have

Γ 2
12 = Γ 2

21 =
1
ρ

and Γ 1
22 = −ρ. (19.42)

19.3.2 Nontensor Character

Despite their appearance, the Christoffel symbols Γ k
ij do not form the compo-

nents of a third-order tensor.

♠ Theorem:
Christoffel symbols Γ k

ij do not form any kind of tensor.

Proof This is verified by considering their transformation behavior under a
general coordinate transformation. In a transformed coordinate system, we
have

Γ ′k
ij = e′k · ∂e′

i

∂u′j
. (19.43)

Applying the transformation law of local basis vectors, we obtain

Γ ′k
ij =

(

∂u′k

∂un
en

)

· ∂

∂u′j

(
∂ul

∂u′i
el

)

=

(

∂u′k

∂un
en

)

·
[

∂2ul

∂u′i∂u′j
el +

(
∂ul

∂u′i
∂el

∂u′j

)]

=
∂u′k

∂un

∂2ul

∂u′i∂u′j
(en · el) +

∂u′k

∂un

∂ul

∂u′i

(

en · ∂el

∂u′j

)

=
∂u′k

∂un

∂2ul

∂u′i∂u′j
δn
l +

∂u′k

∂un

∂ul

∂u′i
∂um

∂u′j

(

en · ∂el

∂um

)

=
∂u′k

∂ul

∂2ul

∂u′i∂u′j
+
∂u′k

∂un

∂ul

∂u′i
∂um

∂u′j
Γn

lm. (19.44)

Hence, the presence of the first term in the last line in (19.44) prevents the
Γ k

ij from forming a third-order tensor. ♣
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19.3.3 Properties of Christoffel Symbols

Christoffel symbols Γ k
ij satisfy the following relations:

1. Γ k
ij = Γ k

ji.

2.
∂gij

∂uk
= g
jΓ



ik + gi
Γ



jk.

3.
∂gij

∂uk
= −gi
Γ j


k − gj
Γ
i

k.

4. Γ k
ik =

∂

∂ui
log
√

|g| =
1
√

|g|
∂
√

|g|
∂ui

.

Proofs of these relations are given in Exercises 2–4.

Remark. Some textbooks refer to our three-index symbol Γ k
ij defined by (19.37)

as the Christoffel symbol of the second kind and use the following no-
tation:

Γ k
ij =

{
k
i j

}

= ek · ∂ei

∂uj
. (19.45)

As a counterpart, we may define the Christoffel symbol of the first kind
[k, ij] by

[k, ij] = ek · ∂ei

∂uj
. (19.46)

Note that the index k on the right-hand side of (19.46) is a superscript, whereas
that of (19.45) is a subscript. These two kinds of Christoffel symbols are related
to each other as {

k
i j

}

= gk
[�, ij].

19.3.4 Alternative Expression

In principle, we can calculate the Γ k
ij in a given coordinate system using the

expression (19.37) based on ei. However, it is simple to use an alternative
expression in terms of the metric tensor gij and its derivatives as stated below.

♠ Theorem:
Christoffel symbols are expressed as

Γm
ij =

1
2
gmk

(
∂gjk

∂ui
+
∂gki

∂uj
− ∂gij

∂uk

)

.
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Proof Recall the relation

∂gij

∂uk
= g
jΓ



ik + gi
Γ



jk (19.47)

given in Sect. 19.3.3. By cyclically permuting the free indices i, j, k, we obtain
two further equivalent relations:

∂gjk

∂ui
= Γ 


jig
k + Γ 

kigj
 (19.48)

and
∂gki

∂uj
= Γ 


kjg
i + Γ 

ijgk
. (19.49)

Then, subtracting (19.47) from the sum of (19.48) and (19.49), we find

∂gjk

∂ui
+
∂gki

∂uj
− ∂gij

∂uk

= Γ 

jig
k + Γ 


kigj
 + Γ 

kjg
i + Γ 


ijgk
 − Γ 

ikg
j − Γ 


jkgi


=
(

Γ 

jig
k + Γ 


ijgk


)

+
(

Γ 

kigj
 − Γ 


ikg
j

)

+
(

Γ 

kjg
i − Γ 


jkgil

)

= 2Γ 

ijgk
 + 0 + 0 = 2Γ 


ijgk
, (19.50)

where we have used the symmetry properties: gij = gji and Γ 

ij = Γ 


ji. Con-
tracting both sides with gmk yields

gmk

(
∂gjk

∂ui
+
∂gki

∂uj
− ∂gij

∂uk

)

= 2gmkΓ 

ijgk
 = 2Γ 


ijδ
m

 = 2Γm

ij ,

i.e.,

Γm
ij =

1
2
gmk

(
∂gjk

∂ui
+
∂gki

∂uj
− ∂gij

∂uk

)

. ♣ (19.51)

This result enables us to compute the Christoffel symbol of a given coordinate
system from information about the metric tensor.

Examples We again evaluate the Christoffel symbols Γm
ij for cylindrical co-

ordinates. Using (19.51) and the fact that g11 = 1, g22 = ρ2, g33 = 1 and
the other components are zero, we see that the only three nonzero Christoffel
symbols are indeed Γ 2

12 = Γ 2
21 and Γ 1

22. Given by

Γ 2
12 = Γ 2

21 =
1

2g22
∂g22
∂u1

=
1

2ρ2

∂

∂ρ
ρ2 =

1
ρ
, (19.52)

Γ 1
22 = − 1

2g11
∂g22
∂u1

= −1
2
∂

∂ρ
ρ2 = −ρ, (19.53)

they agree with the expressions in (19.42).
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Remark. The result (19.51) implies that the Christoffel symbol of the first
kind [k, ij] mentioned in (19.46) is written as

[k, ij] =
1
2

(
∂gjk

∂ui
+
∂gki

∂uj
− ∂gij

∂uk

)

.

Exercises

1. Derive equation (19.38).
Solution: By differentiating the reciprocity relation ei · ej = δi

j

with respect to the coordinates, we have

∂ei

∂uk
· ej + ei · ∂ei

∂uk
=

∂δi
j

∂uk
. (19.54)

The right-hand side of (19.54) vanishes since the element δi
j con-

sists of the contants +1 and 0, which are independent of the co-
ordinates uk. Hence, using (19.37), we obtain

∂ei

∂uk
· ej + Γ i

jk = 0. (19.55)

Similar to the case of (19.36), for the moment we write the deriva-
tive ∂ei/∂uj as a linear combination of the basis vector e
 as

∂ei

∂uk
= B


ike
. (19.56)

Substituting (19.56) into (19.55), we obtain Bj
ik = −Γ i

jk. Conse-

quently, we have
∂ei

∂uk
= −Γ i


ke
, or equivalently (by interchanging

the subscripts),
∂ei

∂uj
= −Γ i

kje
k. ♣

2. Show that Γ k
ij = Γ k

ji.

Solution: It follows that
∂ei

∂uj
=

∂

∂uj

∂r

∂ui
=

∂

∂ui

∂r

∂uj
=
∂ej

∂ui
, which

yields Γ k
ij = ek · ∂ei

∂uj
= ek · ∂ej

∂ui
= Γ k

ji. ♣

3. Show that
∂gij

∂uk
= g
jΓ



ik + gi
Γ



jk.
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Solution: Derivatives of the metric tensor gij = ei · ej with
respect to uk read

∂gij

∂uk
=

∂ei

∂uk
· ej + ei · ∂ej

∂uk
= Γ 


ike
 · ej + ei · Γ 

jke


= Γ 

ikg
j + Γ 


jkgi
. ♣

4. Show that
∂g

∂uk
= ggji ∂gij

∂uk
, where g = det[gij ].

Solution: We know that the determinant g is given by (see
Sect. 18.1.7)

g =
n∑

j=1

gijC
ij (with i fixed),

where Cij is the cofactor of the element gij in g. Partially differ-
entiating both sides with respect to gij gives

∂g

∂gij
= Cij . (19.57)

Since gij = Cij/g (see Sect. 19.2.4), it follows from (19.57) that

∂g

∂uk
=

∂g

∂gij

∂gij

∂uk
= Cij ∂gij

∂uk
= ggji ∂gij

∂uk
. ♣

5. Show that Γ k
ik =

∂

∂ui
log

√
g.

Solution: According to the expression (19.51), we have

Γ i
ki =

1
2
gi


(
∂gi


∂uk
+
∂gk


∂ui
− ∂gki

∂u


)

.

The last two terms in the parentheses cancel out because

gi
 ∂gk


∂ui
= g
i ∂gki

∂u

= gi
 ∂gki

∂u

,

where we have interchanged the dummy indices i and l in the first
equality, and have used the symmetry of the metric tensor in the
second. Hence, we set

Γ i
ki =

gi


2
∂gi


∂uk
. (19.58)

This can be further simplified by using the result of Exercise 4 as

Γ i
ki =

1
2g

∂g

∂uk
=

1
2g

∂g

∂
√
g

∂
√
g

∂uk
=

1
√
g

∂
√
g

∂uk
=

∂

∂uk
log

√
g. ♣
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19.4 Covariant Derivatives

19.4.1 Covariant Derivatives of Vectors

The derivatives of a scalar in terms of Cartesian coordinates work as covariant
components of a vector. This is also true for the case of general coordinate
systems, as can be shown by considering the differential of a scalar

dφ =
∂φ

∂ui
dui.

Since the dui are contravariant components of a vector and dφ is a scalar,
we see from the quotient law that the quantities ∂φ/∂ui must form covariant
components of a vector.

Except for a scalar, however, the derivatives of a general tensor do not
necessarily form the component of another tensor. To see this, we consider
the derivative of the covariant components vi of a vector v with respect to a
general coordinate uj . In a new (primed) coordinate, it reads

∂v′i

∂u′j
=

∂uk

∂u′j
∂v′i

∂uk
=

∂uk

∂u′j
∂

∂uk

(

∂u′i

∂ul
vl

)

=
∂uk

∂u′j
∂u′i

∂ul

∂vl

∂uk
+

∂uk

∂u′j
∂2u′i

∂uk∂ul
vl. (19.59)

The presence of the second term in the last line of (19.59) prevents the deriva-
tive ∂vi/∂xj from obeying the transformation law of the components of a
second-order tensor. The nontensor character stems from the fact that the
second-order derivative,

∂2u′i

∂uk∂ul
, (19.60)

involved in the last line of (19.59) does not vanish. In fact, the first-order
derivative ∂u′i/∂ul is not constant in non-Cartesian coordinates, whereas it
is constant in Cartesian coordinates [so that the term (19.60) vanishes in the
latter case].

In the context above, it is natural to introduce a new class of differentia-
tion that turns the derivatives of components of a tensor into components of
another tensor. This is achieved with the help of the Christoffel symbols dis-
cussed in Sect. 19.3. Let us consider the derivative of a vector v with respect
to the coordinates uj . We find

∂v

∂uj
=

∂vi

∂uj
ei + vi ∂ei

∂uj
, (19.61)

where the second term arises because, in general, the basis vectors ei are not
constant. Using (19.36), we write
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∂v

∂uj
=

∂vi

∂uj
ei + viΓ k

ijek.

Since i and k are dummy indices, we may interchange them to obtain

∂v

∂uj
=

∂vi

∂uj
ei + vkΓ i

kjei

=
(
∂vi

∂uj
+ vkΓ i

kj

)

ei. (19.62)

The quantity in parentheses is referred to specificcally as the covariant
derivative of a vector:

♠ Covariant derivative of a vector:
The quantities defined by

vi
;j ≡ ∂vi

∂uj
+ Γ i

kjv
k. (19.63)

are called covariant derivatives of contravariant components vi of a vec-
tor v with respect to uj . Here, the semicolon subscript on the left-hand
side denotes covariant differentiation.

Using this notation, we may write the derivative of a vector in the very
compact form

∂v

∂uj
= vi

;jei.

The corresponding result for the covariant components vi can be found in a
similar way by considering the derivative of v = vie

i and using (19.38) to
obtain

vi ;j =
∂vi

∂uj
− Γ k

ijvk. (19.64)

19.4.2 Remarks on Covariant Derivatives

1. The arrangement of indices i, j, k in the Christoffel symbols in (19.63) and
(19.64) can be determined systematically in the following manner. First, the
index to which the derivative is taken (i.e., j in this case) is the last subscript
on the Christoffel symbol. Secondly, the other index appearing on the left-
hand side (i.e., i in this case) also appears in the Christoffel symbol on the
right-hand side without raising or lowering. The remaining index can then be
arranged in only one.
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2. Similar to vi
;j , a comparable short-hand notation for partial derivatives is

obtained by replacing the semicolon by a comma such as

vi
,j ≡ ∂vi

∂uj
and vi ,j ≡ ∂vi

∂uj
.

3. In Cartesian coordinates, all the Γ i
kj are zero, so the covariant derivative

reduces to the simple partial derivative, say, vi
;j ≡ vi

,j .

19.4.3 Covariant Derivatives of Tensors

Covariant derivatives of higher-order tensors can be defined by a procedure
similar to the one for vectors. As an example, let us consider the derivative of
the second-order tensor T with respect to the coordinate uk. Expressing T in
terms of its contravariant components, we have

∂T

∂uk
=

∂

∂uk

(

T ijei ⊗ ej

)

=
∂T ij

∂uk
ei ⊗ ej + T ij ∂ei

∂uk
⊗ ej + T ijei ⊗ ∂ej

∂uk
. (19.65)

Using Christoffel symbols, we obtain

∂T

∂uk
=
∂T ij

∂uk
ei ⊗ ej + T ijΓ 


ikel ⊗ ej + T ijei ⊗ Γ 

jkel.

Interchanging the dummy indices i and l in the second term and j and l in
the third term on the right-hand side, we set

∂T

∂uk
=
(
∂T ij

∂uk
+ Γ i

lkT
lj + Γ j

lkT
il

)

ei ⊗ ej ,

where the expression in parentheses is the required covariant derivative defined
by

T ij
;k =

∂T ij

∂uk
+ Γ i

lkT
lj + Γ j

lkT
il. (19.66)

Using the notation (19.66), we can write the derivative of the tensor T with
respect to uk as

∂T

∂uk
= T ij

;kei ⊗ ej .

Results similar to (19.66) can be obtained for the covariant derivatives of
the mixed and covariant components of a second-order tensor. Collecting all
of these results leads to the following:
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♠ Covariant derivative of a tensor:
Covariant derivatives of components of a second-order tensor T are given

by

T ij
;k = T ij

,k + Γ i
lkT

lj + Γ j
lkT

il,

T i
j ;k = T i

j ,k + Γ i
lkT

l
j − Γ 


jkT
i
l ,

Tij ;k = Tij ,k − Γ 

ikTlj − Γ 


jkTil,

where the comma notation means the taking of partial derivatives.

The position of the indices in the expressions is very systematic. We focus on
the index i or j on the left-hand side. First, the index k to which the derivative
is taken should be the last subscript on the Christoffel symbol. Next, if the
index (i or j) on the left-hand side is a superscript, then the corresponding
term on the right-hand side containing a Christoffel symbol is attached to a
plus sign. In contrast, when the index on the left-hand side is a subscript,
the corresponding term on the right is attached to a minus sign. We can
extend this in a straightforward manner to tensors with an arbitrary number
of contravariant and covariant indices.

Remark.

1. All of the quantities T ij
;k, T i

j ;k, and Tij ;k are the components of the same
third-order tensor ∇T with respect to different tensor bases, i.e.,

∇T = T ij
;kei ⊗ ej ⊗ ek = T i

j ;kei ⊗ ej ⊗ ek = Tij ;kei ⊗ ej ⊗ ek.

2. In general, we may call the vi
;j the covariant derivative of v and denote

it by ∇v. In Cartesian coordinates, its components are just ∂vi/∂xj .
3. Given a metric tensor g, the covariant derivatives of its components, gij; k

and gij
;k, are identically zero in terms of arbitrary coordinates. This is

called Ricci’s theorem, for which we give the proof in Exercises 2 and 3).

19.4.4 Vector Operators in Tensor Form

This subsection is devoted to finding expressions for vector differential opera-
tors such as grad, div, rot, and the Laplacian in tensor form that are valid in
general coordinate systems. In principle, they are obtained in a straightfor-
ward manner by replacing the partial derivative given in Cartesian coordinates
with covariant derivatives. These tensor forms, however, can be simplified by
using the metric tensor gij as shown below.



19.4 Covariant Derivatives 631

1. Gradient: The gradient of a scalar φ in a general coordinate system is
given by

∇φ = φ ;ie
i =

∂φ

∂ui
ei, (19.67)

since the covariant derivative of a scalar is the same as its partial deriva-
tive.

2. Divergence: The tensor form of the divergence of a vector v is given by

∇ · v = vi
;i =

∂vi

∂ui
+ Γ i

kiv
k. (19.68)

Observe that the index i appears twice in the Christoffel symbol. Using
the expression (see Sect. 19.3.3)

Γ k
ik =

∂

∂ui
log

√
g =

1
√
g

∂
√
g

∂ui
,

we obtain a more compact form:

vi
;i =

∂vi

∂ui
+ Γ i

kiv
k =

∂vi

∂ui
+
(

1
√
g

∂
√
g

∂uk

)

vk

=
1

√
g

√
g

(
∂vk

∂uk

)

+
1

√
g

(
∂
√
g

∂uk

)

vk =
1

√
g

∂

∂uk

(√
gvk
)

.(19.69)

3. Laplacian: The tensor form of the Laplacian ∇2φ is obtained by making
use of the following relation:

vi
;i = ∇ · v = ∇ · (∇φ) = ∇2φ,

where we assume that v = ∇φ. From (19.67), we have

vie
i = v = ∇φ =

∂φ

∂ui
ei.

Thus the covariant components of v are given by

vi =
∂φ

∂ui
,

and its contravariant components vi can be obtained by raising the index
using the metric tensor:

vj = gjkvk = gjk ∂φ

∂uk
.

Substituting this into (19.69), we finally arrive at

∇2φ = vj
;j =

1
√
g

∂

∂uj

(
√
ggjk ∂φ

∂uk

)

. (19.70)
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4. Rotation: In general curvilinear coordinates, the operation ∇ × v is de-
fined by

[∇ × v]ij = vi ;j − vj ;i, (19.71)

which forms covariant components of an antisymmetric tensor. The right-
hand side of (19.71) can be simplified as

vi ;j − vj ;i =
∂vi

∂uj
− Γ 


ijv
 − ∂vj

∂ui
+ Γ 


jiv


=
∂vi

∂uj
− ∂vj

∂ui
, (19.72)

where the Christoffel symbols cancel out owing to their symmetric prop-
erties. Therefore, components of the tensor ∇×v can be written in terms
of partial derivatives as

[∇ × v]ij =
∂vi

∂uj
− ∂vj

∂ui
. (19.73)

Our results are summarized as follows:

♠ Vector operators in tensor forms:

1. ∇φ =
∂φ

∂ui
ei. 2. ∇ · v =

1
√
g

∂

∂ui

(√
gvi
)

.

3. ∇2φ =
1

√
g

∂

∂ui

(
√
ggik ∂φ

∂uk

)

. 4. [∇ × v]ij =
∂vi

∂uj
− ∂vj

∂ui
.

Exercises

1. Prove that the covariant derivatives vk
;j form a second-order tensor of type

(1, 1).
Solution: Employ the transformation laws of vk and Γ k

pj [see
(19.44)] to obtain

vk
;j =

∂vk

∂uj
+ Γ k

pjv
p

=
∂

∂uj

(
∂uk

∂u′q v′q
)

+

(
∂uk

∂u′q
∂u′r

∂up

∂u′s

∂uj
Γ ′q

rs +
∂uk

∂u′q
∂2u′q

∂up∂uj

)(
∂up

∂u′t v′t
)

=
∂2uk

∂u′a∂u′q
∂u′a

∂uj
v′q +

∂uk

∂u′q
∂u′t

∂uj

∂v′q

∂u′t

+
∂uk

∂u′q

(
∂u′r

∂up

∂u′s

∂uj
Γ ′q

rs +
∂2u′q

∂up∂uj

)
∂up

∂u′t v′t. (19.74)
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The sum of the terms involving second derivatives is zero; this
is seen by taking a partial derivative with respect to u′q in the
expression

∂uk

∂u′a
∂u′a

∂uj
= δk

j ,

which yields

∂

∂u′q

(
∂uk

∂u′a
∂u′a

∂uj

)

=
∂2uk

∂u′q∂u′a
∂u′a

∂uj
+

∂uk

∂u′a
∂2u′a

∂u′q∂uj

=
∂2uk

∂u′q∂u′a
∂u′a

∂uj
+

∂uk

∂u′a
∂um

∂u′q
∂2u′a

∂um∂uj

= 0. (19.75)

From (19.74) and (19.75), it follows that

vk
;j =

∂uk

∂u′q
∂u′t

∂uj

∂v′q

∂u′t
+

∂uk

∂u′q
δ′

r
t

∂u′s

∂uj
Γ ′q

rsv
t

=
∂uk

∂u′q
∂u′s

∂uj

(
∂v′q

∂u′s
+ Γ ′q

tsv
′t
)

=
∂uk

∂u′q
∂u′s

∂uj
v′

q
;s,

in which the last term in the last line, v′q;s, represents the covariant
derivative of v′q with respect to the primed coordinates u′s. Hence,
we see that the vk

;j form a second-order tensor of type (1, 1). ♣
2. Show that the metric tensor is a covariant constant, i.e., the covariant

derivative of any component is identically zero: gkp; j = 0. This result is
known as Ricci’s theorem.

Solution: It follows that

gkp; j = gkp, j − Γ r
kjgrp − Γ r

pjgkr

= gkp, j −
1

2
δs

p (gjs, k + gsk, j − gkj, s) −
1

2
δs

k (gjs, p + gsp, j − gpj, s)

= 0. ♣

3. Show that δp
k and gkp are also covariant constants.

Solution: We have δp
k ; j

= δp
k, j

− Γ p
qjδ

q
k − Γ q

kjδ
p
q = 0, which com-

pletes our first proof. Next, observe that δk
j = gjpg

pk to find the
identity

0 = δk
j ; q

=
(

gjpg
pk
)

; q
= gjp ; qg

pk + gjpg
pk
; q.

Since gjp is a covariant constant, the first term in the last expres-
sion has the value zero. Multiplication by gjr produces the desired
result. ♣
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Remark. Owing to Ricci’s theorem and its two corollaries noted above, the
components of the metric tensor can be regarded as constants under covariant
differentiation. Thus, e.g.,

gi
A


; k =

(

gi
A


)

; k
= Ai; k,

gi
T

m

; k =
(

gi
T

m
)

; k
= T m

i ; k,

Tik; 
g
imgkn =

(

Tikg
imgkn

)

; 

= Tmn

; 
,

and so on.

3. Use (19.70) to find expressions for ∇2φ and ∇ · v in an orthogonal coor-
dinate system with scale factors hi (i = 1, 2, 3).

Solution: For an orthogonal coordinate system
√
g = h1h2h3;

further, gii = 1/h2
i for fixed i and gij = 0 for i �= j. Therefore,

from (19.70), we set

∇2φ =
1

h1h2h3

∂

∂uj

(

h1h2h3

h2
j

∂φ

∂uj

)

.

In a similar manner, we have

∇ · v =
1

h1h2h3

∂

∂uj

(

h1h2h3v
i
)

. ♣

.

19.5 Applications in Physics and Engineering

19.5.1 General Relativity Theory

It cannot be denied that the general relativity theory is one of the most
famous and beautiful applications of non-Cartesian tensor calculus in physics.
This section outlines the concepts one needs in order to understand the general
theory of relativity, which is necessary for obtaining the gravitational field
equation and relevant tensorial quantities that are involved with the equation.

Before proceeding to the argument, let us point out that the notion of
geometric curvature is central to general relativity, which quantifies the
curvature of space at any given point in the space considered. In Sect. 19.2.3,
we learned that a space is a flat locally (or entirety), if there exist coordinates
xi such that the line element through a limited region (or the whole) can be
written as

(ds)2 = εi(dxi)2,
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where ε = ±1. However, if we employ a different coordinate system x′i, the
line element (ds)2, in general, is not of the above form, but reads as

(ds)2 = gijdx
idxj

with the appropriate metric tensor gij . Hence, we require a means of identi-
fying a flat space directly from the metric gij , independent of our choice of
coordinate system. Such a coordinate-independent way of defining the curva-
ture of a space leads to the field equation of gravity, i.e., Einstein’s field
equation, described in Sect. 19.5.4.

19.5.2 Riemann Tensor

The curvature of space can be quantified in a manner independent of the
coordinate system by changing the order of covariant differentiation. Co-
variant differentiation is a generalization of partial differentiation, in which
interchanging the order of differentiation changes the result. To illustrate this,
let us consider an arbitrary vector field with covariant components vi. The
covariant derivative of vi is given by [see (19.64)]

vi ;j =
∂vi

∂uj
− Γ 


ijv
.

A second covariant differentiation then yields

(vi ;j);k =
∂vi ;j

∂uk
− Γm

ik vm ;j − Γm
jkvi ;m

=
∂2vi

∂uj∂uk
−
(

∂Γ 

ij

∂uk

)

v
 − Γ 

ij

(
∂v


∂uk

)

−Γm
ik

(
∂vm

∂uj
− Γ 


mjv


)

− Γm
jk

(
∂vi

∂um
− Γ 


imv


)

.

By interchanging the indices j and k to obtain the expression corresponding
to (vi ;k);j and then subtracting the expression we set from the above relation
gives us

(vi ;j);k − (vi ;k);j = R

ijkv
,

where

R

ijk =

∂Γ 

ik

∂uj
−
∂Γ 


ij

∂uk
+ Γm

ik Γ


mj − Γm

ij Γ


mk. (19.76)

The quantity R

ijk shown on the left-hand side is called the Riemann tensor

(or curvature tensor). Since Christoffel sumbols Γ k
ij are functions of the

metric tensor gij , (19.76) indicates that the Riemann tensor is defined in terms
of the metric tensor and its first and second derivatives.
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Recall that if the space being considered is flat, we may choose coordinates
such that Γ k

ij and its derivatives vanish. Therefore, we have

R

ijk = 0 (19.77)

at every point in the flat region. In fact, it is possible to show that (19.77)
is a necessary and sufficient condition for the region of a space to be flat.
Consequently, we conclude the following: when the Riemann tensor satisfies
(19.77), it indicates that the region of a space is flat and when it does not
satisfy (19.77), the region is curved.

Two relevant quantities are obtained by contracting the Riemann tensor.
One is the Ricci tensor defined by

Rij ≡ Rk
ijk

and the other is the scalar curvature (or Ricci scalar) given by

R ≡ gijRij = Ri
i.

These two quantities are important for introducing the Einstein tensor

Gij = Rij − 1
2
gijR,

which describes the space-time curvature in the field equation of general rel-
ativity.

19.5.3 Energy–Momentum Tensor

We now wish to determine the form of the gravitational field equation that,
in the weak limit of a static gravitational field, reduces, to the classical
Newtonian field of gravity described by

∇2Φ = 4πGρ. (19.78)

Here, Φ is the potential field that corresponds to the space-time curvature in
relativistic theory, G is the universal gravitational constant, and ρ is the
mass-density distribution of matter. Note that (19.78) is a form of Poisson’s
equation with 4πGρ as the source term. This implies the presence of a corre-
sponding source term associated with the space-time curvature in Einstein’s
field equation. This source term is given by the energy-momentum tensor
T ij defined by

T ij = ρuiuj .

Here, ρ is the density of matter, ui is the four-velocity represented by
ui = (u0, u1, u2, u3) = (γc, γv), where c is the velocity of light, v is the three-
dimensional velocity (nonrelativistic) of a particle, and γ = (1 − v2/c2)−1/2.
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The physical interpretations of the components of the energy-momentum ten-
sor are:

T 00 : the energy density of the particles.
T 0i : the energy flux (the heat conduction) in the ith direction.
T i0 : the momentum density in the ith direction.
T ij : the flow of the ith-component momentum in the jth direction

(i.e., the random thermal motions giving rise to viscous stress).

19.5.4 Einstein Field Equation

The parameters necessary to obtain Einsteinfs field equation, which relates
the geometric space-time curvature to the density of mass-energy, are already
on hand. One side of the equation should comprise the measure of the density
of mass-energy, i.e, the stress-energy tensor Tij , and the other side should
consist of a measure of the curvature involving the Ricci curvature Rij and
scalar curvature R. By making this equation consistent with Newtonfs equa-
tion of motion in the limit of a weak gravitational force as well as with several
postulates from a physical standpoint, Einstein’s field equation is obtained in
the following form:

Rij − 1
2
gijR =

8πG
c4

Tij . (19.79)

Given the matter source Tij , this tensor equation is composed of ten partial
differential equations for the metric tensor gij(x). Apparently, the tensor equa-
tion is analogous to the Maxwell equations that determine the electromag-
netic field given the charge and current densities (see Sect. 18.5.3). Unlike the
Maxwell equations, however, the differential equations of gravitational theory
are nonlinear, which make them very difficult to solve. Surprisingly, despite
the nonlinearity, a number of exact solutions have been obtained owing to the
presence of symmetries in space-time, which restrict the possible forms of the
metric.

Remark. Einstein’s field equation in (19.79) is the most fundamental equation
in classical physics. The explicit form of the equation can be derived from a
few arguments. However, it cannot be derived from other physical principles
since there is no theory that is more fundamental.
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Tensor as Mapping

Abstract In this chapter, we show that tensors can be identified with mathemat-
ical operators that transform elements from one abstract vector space to another.
This viewpoint on tensors is apparently different from those presented in Chaps. 18
and 19, where tensors have been identified as sets of index quantities subject to a
transformation law under changes of coordinate systems. However, the viewpoint
presented here turns out to be consistent with those presented in the previous two
chapters when we introduce the concept of inner product into the abstract vector
space (Sect. 20.3.4).

20.1 Vector as a Linear Function

20.1.1 Overview

In Chaps. 19 and 20 tensors are defined as collections of index quantities
that obey characteristic transformation laws under a change of coordinate
systems. In this chapter we present an alternative definition of tensors; that
does not require specification of a coordinate system, so that it is suitable
for more general tensor analyses describing geometric properties of abstract
vector spaces other than our familiar three-dimensional Euclidean space.

The crucial point is that in this alternative definition, a tensor is considered
not as a set of index quantities but as an operator (linear function or mapping)
acting on vector spaces. For instance, a second-order tensor T is identified
with a linear function that associates two vectors v and w with a real number
c ∈ R, which is symbolized by

T (v,w) = c.

Emphasis should be placed on the fact that such a generalized definition
of tensors applies to all kinds of general vector spaces (finite-dimensional),
regardless of whether or not they possess geometric properties such as the
distance, norm, or inner product of their elements (see Sect. 4.2.1). In
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fact, the tensors we discussed earlier belong to a specific class of more general
tensors, in the sense that they were defined solely on the threedimensional
Euclidean space, a particular class of vector spaces endowed with the inner
product property. However, we shall see that, the concept of tensor can be
extended beyond inner product spaces by introducing the more general defi-
nition referred to above.

Throughout the following discussion, we restrict our arguments to finite-
dimensional vector spaces over R in order to provide a minimal course for
general tensor calculus.

20.1.2 Vector Spaces Revisited

To begin with, we briefly review the definition of abstract vector spaces. A
vector space (or linear space) V over R is a set of elements called vectors
that have two operations, addition and scalar multiplication, and a distin-
guishing element 0 ∈ V . Here, addition (denoted by +) assigns to each pair
of elements v,w ∈ V a third element v +w ∈ V and the scalar multiplication
assigns an element cv ∈ V to each v ∈ V and c ∈ R. By definition, all of the
elements v,w,x ∈ V and all a, b ∈ R must satisfy the following axioms.

1. The commutative law for +, i.e., v + w = w + v.
2. The associative law for +, i.e., (v + w) + x = v + (w + x).
3. Existence of identity for +, i.e., v + 0 = v.
4. Existence of negatives, i.e., there is −v such that v + (−v) = 0.
5. a(v + w) = av + aw.
6. (a+ b)v = av + bv.
7. (ab)v = a(bv).
8. 1v = v.

Given two vector spaces V and W , it is possible to set a function f so that

f : V → W.

The function f is called a linear function (or linear mapping) of V into
W if for all v1,v2 ∈ V and c ∈ R it yields

f(v1 + v2) = f(v1) + f(v2),
f(cv1) = cf(v1).

20.1.3 Vector Spaces of Linear Functions

In elementary calculus, the concepts of vectors and linear functions are dis-
tinguished from one another: vectors are elements of a vector space and linear
functions provide a correspondence between them. However, in view of the
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axioms 1 to 8 above, we observe that the set of linear functions f, g, · · · of V
into W also forms a vector space in which addition and scalar multiplication,
respectively, are defined by

(f + g)v = f(v) + g(v), (20.1)

and
(cf)v = cf(v), (20.2)

where v ∈ V and f(v), g(v) ∈ W . We denote by L(V,W ) a vector space
spanned by a set of linear functions f as

f : V → W.

It is a trivial matter to verify that f+g and cf are also linear functions and so
belong to the same vector space L(V,W ). These arguments are summarized
by the follwing important theorem:

♠ Vector space of linear functions:
Let V and W be vector spaces. A set of linear functions f : V → W

forms a vector space denoted by L(V,W ).

This theorem states that the linear functions f1, f2, · · · of V into W are
elements of a vector space L(V,W ), analogous to vectors v1,v2, · · · being
elements of a vector space V . This analogy implies that a linear function
f ∈ L(V,W ) can be regarded as a vector and, conversely, that a vector v ∈ V
can be regarded as a linear function. Such identifying vectors and linear func-
tions is crucially important for obtaining a generalized definition of tensors
that is free of the concept of inner product and the specification of a coordinate
system.

20.1.4 Dual Spaces

Let V ∗ denote a set of all linear functions such as

f : V → R.

(Note that the asterisk (*) in V ∗ does not mean complex conjugate.) Then,
since

V ∗ = L(V,R),

it follows that V ∗ is a vector space. The vector space V ∗ is called the dual
space (or conjugate space) of V , whose elements f ∈ V ∗ associate a vector
v ∈ V with a real number c ∈ R, symbolized as

f(v) = c.
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Particularly important elements of V ∗ are linear functions

εi : V → R (i = 1, 2, · · · , n)

that associate a basis vector ei ∈ V with the unit number 1. In fact, a set
of such linear functions {εj} serves as a basis of the dual space V ∗ as stated
below.

♠ Dual basis:
For each basis {ei} for V , there is a unique basis {εj} for V ∗ such that

εj(ei) = δj
i . (20.3)

The linear functions εj : V → R defined by (20.3) make up the dual basis
to the basis {ei} of V .

Proof Let us verify that the set of {εj} defined by (20.3) serves as a basis of
V ∗. Recall that in finite dimensions, a basis of a vector space V is defined
as a set of linearly independent vectors that spans all of V . To show linear
independence, we assume that ajε

j = 0. Then we have

ajε
j(ei) = ajδ

j
i = ai = 0 for all i,

which implies that {εj} is linearly independent. ♣

Remark. Raising of the index j attached to εj is intentional, as this convention
is necessary to provide a consistent notation of components of generalized
tensors, demonstrated in Sect. 20.3.

Examples Expand a vector v ∈ V as

v = viei,

to find that
εj(v) = εj

(

viei

)

= viεj (ei) = viδj
i = vj .

This indicates that εj is the linear function that scans the jth component of
v with respect to the basis {ei}.

20.1.5 Equivalence Between Vectors and Linear Functions

If V is a vector space and τ ∈ V ∗, then τ is a function of the variable v ∈ V
that generates a real number denoted by τ(v). Owing to the identification of
vectors and linear functions, however, it is possible to reverse our reasoning
and consider v as a function of the variable τ , again with the real value
v(τ) = τ(v). When we take this approach, v is a linear function on V ∗.
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Remark. The two views contrasted above are both asymmetric, but this asym-
metry can be eliminated by introducing the notation

〈 , 〉 : V × V ∗ → R,

which gives
〈v, τ〉 = τ(v) = v(τ) ∈ R.

Here 〈 , 〉 is a function of two variables v and τ , called the natural pairing
of V and V ∗ into R. It is easy to verify that 〈 , 〉 is bilinear.

The concepts and notation introduced in Sect. 20.1.3 and 20.1.4 serve as
preliminaries for the discussions in the following sections.

20.2 Tensor as Multilinear Function

20.2.1 Direct Product of Vector Spaces

To arrive at the new definition of tensors we are seeking requires three more
concepts, demonstrated in Sect. 20.2.1–20.2.2.

The first is the direct product of vector spaces; if V and W are vector
spaces, then we can establish a new vector space by forming the direct prod-
uct (or Cartesian product) V ×W of the two spaces. The direct product
V ×W consists of ordered pairs (v,w) with v ∈ V and w ∈ W , as symbolized
by

V ×W = {(v,w) | v ∈ V,w ∈ W}.
The addition and scalar multiplication of the elements are defined by

(v,w1) + (v,w2) = (v,w1 + w2),
(v1,w) + (v2,w) = (v1 + v2,w),

c(v,w) = (cv,w) = (v, cw).

The linear dimension of the resulting vector spaces V ×W equals the product
of the linear dimensions of V and W . The elements (v,w) of the direct product
V ×W is sometimes noted by vw.

Remark. The reader should note a distinction between the direct product
V × W and the direct sum V + W of the two vector spaces. A direct sum
V +W consists of all pairs (v,w) ≡ (w,v) with v ∈ V and w ∈ W for which
addition and scalar multiplication are defined by

(v1,w1) + (v2,w2) = (v1 + v2,w1 + w2), c(v,w) = (cv, cw).

The linear dimension is thus equal to the sum of the dimensions of V and W .
Every linear vector space of dimension greater than one can be represented
by a direct sum of nonintersecting subspaces.
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20.2.2 Multilinear Functions

Let V1, V2 and W be vector spaces. A function

f : V1 × V2 → W

is called bilinear if it is linear in each variable, i.e., if,

f(av1 + bv′
1, v2) = af(v1,v2) + bf(v′

1,v2),
f(v1, av2 + bv′

2) = af(v1,v2) + bf(v′
1,v2).

The extension of this definition to functions of more than two variables is
simple. Indeed, functions such as

f : V1 × V2 × · · · × Vn → W (20.4)

are called multilinear functions, more specifically n-linear functions, for
which the defining relation is

f(v1, · · · , avi + bv′
i, · · · ,vn) = af(v1, · · · ,vi, · · · ,vn)

+ bf(v1, · · · ,v′
i, · · · ,vn).

An n-linear function can be multiplied by a scalar and two n-linear func-
tions can be added; in each case the result is an n-linear function. Thus,
the set of n-linear functions given in (20.4) forms a vector space denoted by
L(V1 × · · · × Vn, W ).

20.2.3 Tensor Product

Suppose that τ1 ∈ V ∗
1 and τ2 ∈ V ∗

2 , i.e., τ1 and τ2 are linear real-valued
functions on V1 and V2, respectively. We can then form a bilinear real-valued
function such as

τ1 ⊗ τ2 : V1 × V2 → R,

which is represented by

τ1 ⊗ τ2(v1,v2) = τ1(v1)τ2(v2). (20.5)

Note that the right-hand side of (20.5) is just the product of two real numbers:
τ1(v1) and τ2(v2). The bilinear function τ1⊗τ2 is called the tensor product
of τ1 and τ2. Clearly, since τ1 and τ2 are separately linear, so is τ1⊗τ2. Hence,
the set of the tensor product τ1 ⊗ τ2 forms a vector space L(V1 × V2, R).

Recall that the vectors v ∈ V can be regarded as linear functions acting
on V ∗. In this context, we can also construct tensor products of two vectors.
For example, let v1 ∈ V1 and v2 ∈ V2 and define the tensor product

v1 ⊗ v2 : V ∗
1 × V ∗

2 → R
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by
v1 ⊗ v2(τ1, τ2) = v1(τ1)v2(τ2) = τ1(v1)τ2(v2). (20.6)

This shows that the tensor product v1 ⊗ v2 can be considered a bilinear
function acting on V ∗

1 × V ∗
2 , similar to τ1 ⊗ τ2 being a bilinear function on

V1 × V2, which indicates that the set of v1 ⊗ v2 form a vector space L(V ∗
1 ×

V ∗
2 , R).

Furthermore, given a vector space V , we can construct mixed types of
tensor products such as

v ⊗ τ : V ∗ × V → R

given by
v ⊗ τ(φ,u) = v(φ)τ(u) = φ(v)u(τ), (20.7)

where u,v ∈ V and φ, τ ∈ V ∗. In a straightforward extrapolution, it is possible
to develop tensor products of more than two linear functions or vectors such
as

v1 ⊗ v2 ⊗ · · ·vr ⊗ τ1 ⊗ τ2 ⊗ · · · τs, (20.8)

which act on the vector space

V ∗ × V ∗ × · · · × V ∗ × V × V × · · · × V,

where V ∗ appears r times and V s times. Similar to the previous cases, the
set of tensor products (20.8) forms a vector space denoted by

L [(V ∗)r × V s, R] ,

where (V ∗)r and V s are direct products of V ∗ with r factors and those of V
with s factors, respectively.

20.2.4 General Definition of Tensors

We finally arrive at the following generalized definition of a tensor.

♠ Tensor:
Let V be a vector space with a dual space V ∗. Then a tensor of type

(r, s), denoted by T r
s , is a multilinear function

T r
s : (V ∗)r × (V )s → R.

The number r is called the contravariant degree of the tensor, and s is
called the covariant degree of the tensor.
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♠ Tensor space:
The set of all tensors T r

s for fixed r and s forms a vector space, called
a tensor space, denoted by

T r
s (V ) ≡ L[(V ∗)r × V s, R].

As an example, let v1, · · · ,vr ∈ V and τ1, · · · , τs ∈ V ∗ and define the tensor
product (i.e., multilinear function)

T r
s ≡ v1 ⊗ · · · ⊗ vr ⊗ τ1 ⊗ · · · ⊗ τs, (20.9)

which yields for θ1, · · · , θr ∈ V ∗ and u1, · · · ,us ∈ V ,

v1 ⊗ · · · ⊗ vr ⊗ τ1 ⊗ · · · ⊗ τs(θ1, · · · , θr,u1, · · · ,us) (20.10)
= v1(θ1) · · ·vr(θr)τ1(u1) · · · τs(us)

=
r∏

i=1

s∏

j=1

vi(θi)τ j(uj).

Observe that each v in the tensor product (20.10) requires an element θ ∈ V ∗

to produce a real number θ, which is why the number of factors of V ∗ in the
direct product (20.9) equals the number of v’s in the tensor product (20.10).

In particular, a tensor of type (0, 0) is defined as a scalar, so T 0
0 (V ) = R;

a tensor of type (1, 0), an ordinary vector, is called a contravariant vector;
and one of type (0, 1), a linear function, is called a covariant vector. More
generally, a tensor of type (r, 0) is called a contravariant tensor of rank
(or degree) r and one of type (0, s) is called a covariant tensor of rank (or
degree) s.

Remark. We can form a tensor product of two tensors T r
s and Uk


 such as

T r
s ⊗ Uk


 : (V ∗)r+k × V s+
 → R,

which is a natural generalization of tensor products given in (20.5), (20.6),
and (20.7). It is easy to prove that the tensor product is associative and
distributive over tensor addition, but not commutative.

20.3 Components of Tensors

20.3.1 Basis of a Tensor Space

In physical applications of tensor calculus, it is necessary to choose a basis for
the vector space V and one for its dual space V ∗ to represent the tensors by a
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set of real numbers (i.e., components). The need for this process is analogous
to the cases of elementary vector calculus, in which linear operators are often
represented by arrays of numbers, i.e., by matrices referring to a chosen basis
of the space. A basis of our tensor space T r

s (V ) ≡ L[(V ∗)r ×V s, R] is defined
as follows.

♠ Basis for the tensor space:
Let {ei} and {εj} be a basis in V and V ∗, respectively. Then, a basis

for the tensor space T r
s (V ) is a set of all tensor products:

ei1 ⊗ · · · ⊗ eir
⊗ εj1 ⊗ · · · ⊗ εjs . (20.11)

♠ Components of a tensor:
The components of any tensor A ∈ T r

s (V ) are the real numbers given
by

Ai1···ir
j1···js

= A
(

εi1 , · · · , εir ,ej1 , · · · ,ejs

)

.

Remark. 1. A useful result of the theorem is the relation

A = Ai1···ir
j1···js

ei1 ⊗ · · · ⊗ eir
⊗ εj1 ⊗ · · · ⊗ εjs .

2. Note that for every factor in the basis of T r
s (V ), there are N possibilities.

(For instance, we have N choices for ei1 in which i1 = 1, 2 · · · , N .) Thus,
the number of possible tensor products represented by (20.11) is Nr+s.

Examples 1. A tensor space T 1
0 (V ) has a basis {ei} so that an element (i.e.,

a contravariant vector) v ∈ T 1
0 (V ) can be expanded by

v = viei,

where the real numbers vi = v(εi) are called the components of v : V → R.

2. A tensor space T 0
1 (V ) has a basis {εj} so that an element (i.e., a covariant

vector) τ ∈ T 0
1 (V ) can be expanded by

τ = τjε
j ,

where the real numbers τj = τ(ej) are called the components of τ : V ∗→ R.

3. A tensor space T 2
1 (V ) has a basis {ei⊗ej ⊗εk} so that for any A ∈ T 2

1 (V )
we have

A = Aij
k ei ⊗ ej ⊗ εk,

where the real numbers



648 20 Tensor as Mapping

Aij
k = A

(

εi, εj ,ek

)

are the components of A : V × V × V ∗ → R.

20.3.2 Transformation Laws of Tensors

The components of a tensor depend on the basis in which they are de-
scribed. If the basis is changed, the components change. The relation between
components of a tensor in different bases is called the transformation law
for that particular tensor. Let us investigate this concept.

Assume two different bases of V , denoted by {ei} and {e′
i}. Similarly, we

denote by {εj} and {ε′j} two different bases of V ∗. We can find appropriate
transformation matrices [Rj

i ] and [S

k] that satisfy

e′
i = Rj

i ej and ε′
k = Sk


 ε

.

Then, for a tensor T of type (1, 2), we have

T ′i
jk = T

(

ε′
i
,e′

j ,e
′
k

)

= T
(

Si

ε


, Rm
j em, R

n
ken

)

= Si

R

m
j R

n
kT
(

ε
,em,en

)

= Si

R

m
j R

n
kT



mn, (20.12)

which is the transformation law of the components of the tensor T of type
(1, 2).

Remember that in the coordinate-dependent treatment of tensors (as
shown in Chaps. 18 and 19), the result (20.12) was considered to be the
defining relation for a tensor of type (1, 2). In other words, a tensor of type
(1, 2) was defined as a collection of numbers Tm

np that transform to another
collection of numbers T ′i

jk according to the rule in (20.12) when the basis is
changed. In our current (i.e., coordinate-free) treatment of tensors, it is not
necessary to introduce a basis to define a tensor; a basis must be introduced
only when the components of a tensor are needed. The advantage of this
approach is obvious, since a (1, 2)−type tensor has 27 components in three
dimensions and 64 components in four dimensions, and all of these can be
represented by the single symbol T .

Remark. Note that the above arguments do not downplay the role of compo-
nents. In fact, when it comes to actual calculations, we are forced to choose a
basis and manipulate the components.

20.3.3 Natural Isomorphism

We comment below on an important property that is specific to components of
tensors A ∈ T 1

1 (V ). We know that tensors A ∈ T 1
1 (V ) are bilinear functions

such as
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A : V ∗ × V → R

and that their components Ai
j are defined by

Ai
j = A(εi,ej), (20.13)

where each εi and ej is a basis of V ∗ and V , respectively. Now we consider
the matrix

[Ai
j ] =

⎡

⎢
⎢
⎣

A1
1 A1

2 · · · A1
n

A2
1 · · · · · ·

· · · · · ·
An

1 · · · An
n

⎤

⎥
⎥
⎦
, (20.14)

whose elements Ai
j are the same as those given in (20.13). We shall see that

(20.14) is the matrix representation of a linear operator A in terms of the
basis {ei} of V , which associates a vector v ∈ V with another u ∈ V , i.e.,

A : V → V.

A formal statement on concerning this point is given below.

♠ Natural isomorphism:
For any vector space V , there is a one-to-one correspondence (called a

natural isomorphism) between a tensor A ∈ T 1
1 (V ) and a linear operator

A ∈ L(V, V ).

Proof We write the tensor A ∈ T 1
1 (V ) as

A = Ai
jei ⊗ εj .

Given any v ∈ V , we obtain

A(v) =
(

Ai
jei ⊗ εj

)

(v) = Ai
jei

[

εj(v)
]

= Ai
jei

[

εj(vkek)
]

= Ai
jei

(

vkδj
k

)

= Ai
jv

jei. (20.15)

Observe that the Ai
jv

j in the last term are real numbers and that ei ∈ V .
Hence, the object A(v) is a linear combination of bases ei for V , i.e.,

A(v) ∈ V.

Denoting A(v) in (20.15) by u = uiei, we find that

ui = Ai
jv

j , (20.16)
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in which ui, vj are contravariant components of the vectors u,v ∈ V , respec-
tively, in terms of the basis {ei}. The result (20.16) is identified with a matrix
equation:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

u1

u2

· · ·
un

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A1
1 A1

2 · · · A1
n

A2
1 · · ·

· · ·
An

1 An
2 · · · An

n

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

v1

v2

· · ·
vn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (20.17)

Thus we can see that given A ∈ T 1
1 (V ), its components form the matrix

representation [Ai
j ] of a linear operator A that transforms a vector v ∈ V into

another vector u ∈ V .
Conversely, for any given linear operator on V with a matrix representation

[Ai
j ] in terms of a basis of V , there exists a tensor A ∈ T 1

1 (V ). This suggests
a one-to-ome correspondence between the tensor space T 1

1 (V ) and the vector
space L(V, V ) comprising the linear mapping f : V → V . ♣

A parallel discussion serves for a linear operator on V ∗. In fact, for any
τ ∈ V ∗, we have

A(τ) =
(

Ai
jei ⊗ εj

)

(τ) = Ai
j [ei(τ)] εj

= Ai
j

[

ei

(

τkε
k
)]

εj = Ai
j

(

τkδ
k
i

)

εj

= Ai
jτiε

j ,

which means that A(τ) is a linear combination of bases εj for V ∗, i.e.,

A(τ) ∈ V ∗.

Denoting A(τ) by θ = θjε
j , we obtain

θj = Ai
jτi, (20.18)

where θj and τi are (covariant) components of the vectors θ, τ ∈ V ∗ in terms
of the basis {εi}. Using the same matrix representation of [Ai

j ] as in (20.17),
we can rewrite (20.18) as

[θ1, · · · , θn] = [τ1, · · · , τn]

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A1
1 A1

2 · · · A1
n

A2
1 · · ·

· · ·
An

1 An
2 · · · An

n

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

which describes a linear mapping from a vector τ ∈ V ∗ to another vector
θ ∈ V ∗ through the linear operator with the matrix representation [Ai

j ].
We thus conclude that there is a natural isomorphism among the three

vecror spaces:
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T 1
1 (V ) = L(V ∗ × V, R), L(V, V ), and L(V ∗, V ∗).

Owing to this isomorphism, these three vector spaces can be treated as though
they are the same.

20.3.4 Inner Product in Tensor Language

As noted at the beginning of this chapter, our current discussion is applicable
to any kind of vector space regardless of whether or not it is endowed with
inner product properties. If the spaces we are dealing are inner product spaces,
then all the results of Chaps. 18 and 19 are reproduced, owing the assumption
that only a Euclidean space (i.e., a real inner product space; see Sect. 19.2.3)
is considered there. In this subsection, we shall see that this is true, but we
first have to introduce the concept of inner product in connection with our
current vector spaces. Such a discussion enables us to make the correspondence
between the two views of tensors clear:

tensors are sets of index-quantities (in Chaps. 18 and 19),

and
tensors are linear mappings (in Chap. 20).

Below is the definition of the inner product in the language of tensor
calculus.

♠ Inner product:
An inner product, denoted by ( , ), is a real-valued function such as

( , ) : V × V → R,

which has the following properties:

(i) it is nondegenerate, i.e.,

(u,v) = 0 for all v ⇐⇒ u ≡ 0,

(ii) it is symmetric, i.e., (u,v) = (v,u),
(iii) it is positive definite, i.e., (u,v) > 0 whenever u �= 0, and
(iv) it is bilinear, i.e., (au + bv,w) = a(u,v) + b(v,w).

Remark. The set of four axioms above is a restatement of those presented in
Sect. 4.1.3 for real vector spaces.
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By definition, the inner product of v and w reads

(v,w) = (viei, w
jej) = viwj(ei,ej),

where (ei,ej) as well as (v,w) are certain real numbers. Then, if we establish
a matrix [gij ] with the entities

gij ≡ (ei,ej), (20.19)

we have
(v,w) = gijv

iwj ,
which reproduces the previous notation (18.27) obtained via the coordinate-
dependent treatment of tensors.

Remark. The notation in (20.19) seems to imply that the function ( , ) is
written in terms of the dual basis εi ∈ V ∗ by

( , ) = gijε
i ⊗ εj . (20.20)

However, this is not the case because (20.20) does not satisfy the symmetric
property required by (ii) in the above definition of an inner product.

20.3.5 Index Lowering and Raising in Tensor Language

We demonstrate below another important consequence of the notation in
(20.19). Since the inner product (v,w) is a bilinear function with variables v
and w, it is a linear function of w if we fix v. Assume a function ν : V → R
defined by

ν(w) ≡ (v,w).

Clearly, ν is a linear function of w and ν ∈ V ∗. Hence, ν can be expanded by
the dual basis εj ∈ V ∗, which results in

ν = νjε
j = ν(ej)εj

= (v,ej)εj = (viei,ej)εj

= vigijε
j .

This indicates that the components νj of the linear function ν are given by

νj = gijv
i.

Denoting νj by vj , we obtain

vj = gijv
i, (20.21)
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which is identified with the index lowering of vi by the use of gij . Emphasis is
placed on the fact that the result (20.21) gives a one-to-one relation between
v ∈ V and ν ∈ V ∗ via the entities gij = (ei,ej). That is, going from a vector
v ∈ V to its unique image ν ∈ V ∗ is achieved by simply lowering the index of
the contravariant component of v through relation (20.21).

The counterpart of (20.21), index raising, is obtained by noting the fact
that by hypothesis the matrix [gij ] is nondegenerate. This implies the existence
of the inverse matrix denoted by [gij ]. Multiplying the elements gkj by both
sides of (20.21) yields

gkjvj = gkjgijv
i = gkjgjiv

i = δk
i v

i = vk,

i.e.,
vi = gijvj .

We have thus shown that the introduction of the matrix [gij ] composed of
the real numbers gij defined by (20.19) provides a bridge between the two
apparently different viewpoints (those in Chaps. 18, 19 and in Chap. 20)
regarding tensors.
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A

Proof of the Bolzano–Weierstrass Theorem

A.1 Limit Points

In this appendix we prove the Bolzano–Weierstrass theorem, first intro-
duced in Sect. 2.2.2, which guarantees the existence of a limit point in some
sets of real numbers. For a better understanding, we begin with a brief review
of the basic properties of limit points.

Below is we repeat the definition of a limit point from Sect. 1.1.5.

♠ Limit point:
A point x ∈ R is called a limit point of a set S ⊆ R if every neighbor-

hood V of x contains an element different from x.

We denote by Ŝ the set of limit points of S. A point in S that is not a limit
point of S is called an isolated point of S. A limit point is often referred to
as a cluster point or accumulation point.

Observe that x ∈ Ŝ if and only if every neighborhood of x contains an
infinite number of points of S. This is so because if a neighborhood

V = (x− δ, x+ δ)

of a limit point x contains only a finite number of points, say a1, a2, · · · , an,
where ai �= x, then there is a positive number ε such that

ε = min
1≤i≤n

|ai − x|.

Since x is a limit point of S, there is a point a ∈ S such that a �= x and
|x−a| < ε. This means that a ∈ V but a �= ai for any i, which contradicts the
assumption that V contains only n points of S. The implication in the other
direction is obvious.

A finite set cannot have a limit point, since any neighborhood of a limit
point must contain an infinite number of elements of the set. On the other
hand, an infinite set may or may not have a limit point.
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A.2 Cantor Theorem

The previous discussion raises the question: When does a set possess a limit
point? The following theorem serves as a lemma to answer this question.
Meanwhile we denote by �(I) = b−a the length of any closed interval I = [a, b]
with a ≤ b.

♠ Cantor theorem:
Let (In) be a sequence of nonempty, closed, and bounded intervals. If

In+1 ⊆ In for every n ∈ N , then the intersection
⋂∞

n=1 In is not empty.
Furthermore, if

inf{�(In) : n ∈ N} = 0,

then
⋂∞

n=1 In is a single point.

Proof Suppose In = [an, bn] and I =
⋂∞

n=1 In. Using the nested property of
the intervals In, we have

m ≥ p ⇒ Im ⊆ Ip ⇒ ap ≤ am < bm ≤ bp. (A.1)

Clearly, the set S = {an : n ∈ N} ⊂ R is not empty and is bounded above
by b1. Hence, the set S has a least upper bound, which we call x. If we can
prove that x ∈ I, we can conclude that I is not empty. In fact, this can be
proven by observing that

x ∈ Ik for all k ∈ N ,

i.e.,
ak ≤ x ≤ bk for all k ∈ N . (A.2)

First, it is obvious from the definition of x that ak ≤ x for all k. Second,
bk for arbitrary k satisfies an ≤ bk for all n ∈ N , i.e., bk is an upper bound of
S. In fact, if n ≤ k then, by (A.1), an ≤ ak ≤ bk; and if n > k then, again by
(A.1), an ≤ bn ≤ bk. Finally, it follows that x ≤ bk for all k ∈ N , since x is a
least upper bound of S, whereas bk is just an upper bound of S. Thus we can
conclude that (A.2) is true.

Now we consider the second statement in the above theorem. Suppose that

inf{�(In) : n ∈ N} = 0,

and let x, y ∈ I. It then follows that x, y ∈ In for every n, which implies that

|x− y| ≤ �(In) for all n ∈ N ,

so
|x− y| ≤ inf{�(In) : n ∈ N} = 0.
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This means that x = y, i.e., the interval

I =
∞⋂

n=1

In

is a single point. ♣

A.3 Bolzano–Weierstrass Theorem

We are now ready to prove the Bolzano–Weierstrass theorem, which gives us
sufficient conditions for the existence of a limit point in a set.

♠ Bolzano–Weierstrass theorem:
Every infinite and bounded subset of R has at least one limit point in R.

Proof Let S be an infinite and bounded set of real numbers. Being bounded,
S is contained in some bounded closed interval I0 = [a0, b0]. First we bisect
I0 into the two subintervals

I ′0 =
[

a0,
a0 + b0

2

]

, I ′′0 =
[
a0 + b0

2
, b0

]

.

Since S ⊆ (I ′0 ∪ I ′′0 ) is infinite, at least one of the two sets S ∩ I ′0 and S ∩ I ′′0
is infinite. Let I1 = [a1, b1] = I ′0 if S ∩ I ′0 is infinite; otherwise let I1 = I ′′0 . We
then have

I1 ⊆ I0, �(I1) =
b0 − a0

2
.

Now we bisect I1 into the subintervals

I ′1 =
[

a1,
a1 + b1

2

]

, I ′′1 =
[
a1 + b1

2
, b1

]

,

one of which necessarily intersects S in an infinite set. Let I2 = [a2, b2] = I ′1 if
S ∩ I ′1 is infinite; otherwise let I2 = I ′′1 . Continuing in this fashion, we obtain
the intervals Ii = [ai, bi], 0 ≤ i ≤ n, which satisfy

Ii ⊆ Ii−1, �(Ii) =
b0 − a0

2i
,

and the fact that S ∩ Ii is infinite. We bisect In again to obtain

I ′n =
[

an,
an + bn

2

]

, I ′′n =
[
an + bn

2
, bn

]

.

Since In = I ′n ∪ I ′′n and S ∩ In is infinite, either S ∩ I ′n is infinite wherein we
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set In+1 = [an+1, bn+1] = I ′n, or S ∩ I ′′n is infinite where In+1 = I ′′n is chosen.
Now we see that

In+1 ⊆ In, �(In+1) =
b0 − a0

2n+1
=
�(In)

2

and that S ∩ In+1 is infinite. By induction, therefore, it is show that there
exists a sequence (In) of nonempty, closed, and bounded intervals. In view of
Cantor’s theorem, we see that the intersection

⋂∞
n=1 In contains at least one

single point x. We now complete our proof by showing that x ∈ Ŝ.
Suppose that x ∈

⋂∞
n=1 In. Given any ε > 0, we can choose n ∈ N so that

b0 − a0

2n
< ε,

or equivalently,
|In| < ε.

This, together with the fact that x ∈ In for all n, implies that

In ⊂ (x− ε, x+ ε).

Since In contains an infinite number of elements of S, so does the neighbor-
hood (x− ε, x+ ε) of x; hence x ∈ Ŝ. ♣



B

Dirac δ Function

B.1 Basic Properties

In this appendix, we review the properties and various expressions of Dirac’s
δ function. The first thing to be noted is that the δ function is not a function
at all. A function is a rule that assigns another number to each number in a
set of numbers. However, the δ function as used in physics is rather a short-
hand notation for a complicated limiting process whose use greatly simplifies
calculations. It takes on a meaning only when it appears under an integral
sign, in which case it behaves as

∫ ∞

−∞
f(x)δ(x)dx = f(0), (B.1)

For the special case of f(x) ≡ 1. We have
∫ ∞

−∞
δ(x)dx = 1. (B.2)

If the singular point is located at an arbitrary point x0, then
∫ ∞

−∞
f(x)δ(x− x0)dx = f(x0). (B.3)

Except at the singular point x0 = 0,

δ(x) = 0. (B.4)

Thus δ(x) vanishes at all points where its argument is not zero, but at that
one point it is undefined. Nevertheless its behavior near this point is all that
matters.
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Let δa(x) be a set of functions parametrized by the index a that has the
properties

lim
a→0

δa(x) = 0 for all x �= 0,

lim
a→0

∫ +∞

−∞
f(x)δa(x)dx = f(0). (B.5)

In precise terms the original equations defining the δ function must be inter-
preted as standing for the limiting processes of (B.5).

B.2 Representation as a Limit of Function

In what follows, we look at several sets of functions that are endowed the
properties described in (B.5).

1. The limit of a box function

The simplest example is the function δc(x) defined (for c > 0) by

δc(x) ≡
{

1/c for |x| ≤ c/2,

0 for |x| > c/2.
(B.6)

Clearly, limc→0 δc(x) = 0 at all x �= 0 and
∫ +∞
−∞ δc(x)dx = 1 independent of c.

In addition, we have

lim
c→0

∫ ∞

−∞
f(x)δc(x)dx = f(0), (B.7)

which can be shown formally for continuous functions f(x) as

lim
c→0

∫ ∞

−∞
f(x)δc(x)dx = lim

c→0

∫ c/2

−c/2

f(x)δc(x)dx = lim
c→0

1
c

∫ c/2

−c/2

f(x)dx

= lim
c→0

f(ξc)
c

∫ c/2

−c/2

dx = lim
c→0

f(ξc).

In the last line, the mean value theorem of integral calculus was employed
with the definition −1/2 < ξ < 1/2. Letting c → 0, we obtain (B.7).

2. The limit of a Gaussian function

The sequence of the Gaussian distribution function

δa(x) ≡ 1
a
√
π
e−x2/a2
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provides another representation of the δ function. Note that lima→0 δa(x) = 0
at all x �= 0,

∫ +∞
−∞ δa(x)dx = 1 independent of a, and lima→0

∫∞
−∞ f(x)δa(x)

dx = f(0). The entire contribution to the integral, as a → 0, comes from the
neighborhood of x = 0. Therefore, we may write symbolically,

δ(x) = lim
a→0

δa(x) = lim
a→0

1
a
√
π
e−x2/a2

.

3. The limit of a Lorentzian function

Another useful representation for the δ function is

δ(x) = lim
ε→0

δε(x) ≡ lim
ε→0

1
π

ε

x2 + ε2
,

which the reader can work out as in the above example.

4. The n → ∞ limit of a sequence of functions

The final representation of the δ function is slightly different from the preced-
ing three and plays a central role in the proof of the Weierstrass theorem, as
demonstrated in Appendix C. It is defined as

δn(x) =

{
cn(1 − x2)n for 0 ≤ |x| ≤ 1 (n = 1, 2, 3 · · · ),

0 for |x| > 1,
(B.8)

where the constant cn must be determined so that
∫ 1

−1

δn(x)dx = 1. (B.9)

The functions δn(x) form a sequence whose limit is a δ function. This represen-
tation of the δ function differs from the others in that the defining parameter
n increases to infinity, rather than decreasing continuously to zero.

B.3 Remarks on Representation 4

We show below that representation 4 above has the conditions (B.5) required
for identification with Dirac’s δ function. At first, we determine the normal-
ization constant cn. From the hypothesis (B.9), we have

1
cn

=
∫ 1

−1

(1 − x2)ndx = 2
∫ 1

0

(1 − x2)ndx. (B.10)
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Making the change of variable x = sin θ, we obtain

1
cn

= 2
∫ 0

π/2

cos2n+1 θdθ =
2n+1n!

1 · 3 · 5 · · · (2n+ 1)
, (B.11)

which becomes

cn =
(2n+ 1)!

22n+1(n!)2
. (B.12)

Next we consider the asymptotic behavior of cn as n → ∞. It follows from
(B.10) that

1
cn

= 2
∫ 1

0

(1 − x2)ndx ≥ 2
∫ 1/

√
n

0

(1 − x2)ndx, (B.13)

since 1/
√
n for all n = 1, 2, · · · and the integrand is positive throughout [0, 1].

Now we consider the function

g(x) ≡ (1 − x2)n − (1 − nx2).

Since g(0) = 0 and

g′(x) = 2nx
[

1 − (1 − x2)n−1
]

> 0 for all 0 < x ≤ 1,

g(x) must be monotonically increasing in the interval [0, 1]. Therefore, g(x) ≥
0, or equivalently,

(1 − x2)n ≥ 1 − nx2

for all x in [0, 1]. Using this inequality in (B.13), we have

1
cn

≥ 2
∫ 1/

√
n

0

(1 − nx2)ndx =
4

3
√
n
>

1√
n
,

i.e.,
cn <

√
n. (B.14)

This result implies that the limit n → ∞ of the function δn(x) given in (B.8)
equals zero for all x �= 0.

Finally, we examine the validity of the relation:

lim
n→∞

∫ ∞

−∞
f(x)δn(x)dx = f(0). (B.15)

To prove this, it suffices to verify that the contribution to the integral
∫ 1

−1
δn(x)dx comes increasingly from the neighborhood surrounding the origin

as n → ∞. Note that for 0 < ε < 1,
∫ −ε

−1

δn(x)dx =
∫ 1

ε

δn(x)dx, (B.16)
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since δn(x) is an even function of x. Now

∫ 1

ε

δn(x)dx <
√
n

∫ 1

ε

(1−x2)ndx <
√
n(1−ε2)n(1−ε) <

√
n(1−ε2)n, (B.17)

where we employ the fact that (1−x2)n in the interval [ε, 1] takes its maximum
at x = ε. It is obvious that the decreasing behavior of the term (1− ε2)n with
n dominates increasing behavior of the term

√
n, so that

lim
n→∞

∫ 1

ε

δn(x)dx = 0. (B.18)

The results (B.16) and (B.18) justify the desired relation (B.15).





C

Proof of Weierstrass Approximation Theorem

♠ Weierstrass approximation theorem:
If a function f(x) is continuous on the closed interval [a, b], there exists

a polynomial

Gn(x) =
n∑

k=0

ckx
k (C.1)

that converges uniformly to f(x) on [a, b].

To prove this, we may assume without loss of generality that f(x) is defined
on [0, 1] and that f(0) = f(1) = 0. Outside the interval [0, 1], we may define
f(x) to be identically zero. Then, the relevant polynomial (C.1) is given by
the integral form as

Gn(x) =
∫ 1

−1

f(x+ t)δn(t)dt, 0 ≤ x ≤ 1. (C.2)

Here δn(t) is the sequence of the functions represented by

δn(t) =

{

cn(1 − t2)n for − 1 ≤ t ≤ 1,

0 for |t| > 1,

where cn is

cn =
(2n+ 1)!

22n+1(n!)2
, so that

∫ 1

−1

δn(t)dt = 1.

(In fact, the sequence δn(t) as n → ∞ does have the properties characterizing
a δ function; see Appendix B). Since f(x) is assumed to vanish outside the
interval [0, 1], (C.2) can be rewritten as

Gn(x) =
∫ 1−x

−x

f(x+ t)δn(t)dt.
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By a change of variable t → t− x, we obtain

Gn(x) =
∫ 1

0

f(t)δn(t− x)dt =
∫ 1

0

f(t)cn
[

1 − (t− x)2
]n
dt.

This last integral shows that Gn(x) is a polynomial of degree 2n in x. In what
follows, we prove that the sequence of polynomials given by {G1(x), G2(x), · · · }
converges uniformly to f(x).

Since f(x) is continuous on [0, 1], there exists an appropriate infinitesimal
δ such that for a given ε > 0,

|f(x+ δ) − f(x)| < ε

for all x in [0, 1]. Now, we use (C.2) for Gn(x) to obtain the quantity

|Gn(x) − f(x)| =
∣
∣
∣
∣

∫ 1

−1

[f(x+ t) − f(x)] δn(t)dt
∣
∣
∣
∣

≤
∫ 1

−1

|f(x+ t) − f(x)| δn(t)dt, (C.3)

where δn(t) ≥ 0 on t ∈ [0, 1]. If the last term in (C.3) vanishes as n → ∞, the
proof of the theorem is complete.

To show this, we break up the range of integration into three parts,
∫ 1

−1

=
∫ −γ

−1

+
∫ γ

−γ

+
∫ 1

γ

,

where γ is a certain infinitesimal number. Since f(x) is continuous on a closed
interval, it is bounded there. Let the maximum value of |f(x)| = M . Then
the last term of integrals becomes
∫ 1

γ

|f(x+ t) − f(x)| δn(t)dt ≤
∫ 1

γ

|f(x+ t)| δn(t)dt+
∫ 1

γ

|f(x)| δn(t)dt

≤ 2M
∫ 1

γ

δn(t)dt < 2M
√
n(1 − γ2)n, (C.4)

where we have used the inequality (B.17). Similar arguments yield
∫ −γ

−1

|f(x+ t) − f(x)| δn(t)dt < 2M
√
n(1 − γ2)n. (C.5)

Finally, the remaining integral,
∫ γ

−γ
, is estimated by using the continuity of

f(x), which guarantees that for any ε we can find an infinitesimal γ that
satisfies

|t| < γ ⇒ |f(x+ t) − f(x)| < ε.
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This yields
∫ γ

−γ

|f(x+ t) − f(x)| δn(t)dt < ε

∫ γ

−γ

δn(t)dt < ε, (C.6)

since
∫ γ

−γ
δn(t)dt < 1.

Collecting the results of (C.3)–(C.6), we have

|Gn(x) − f(x)| < 4M
√
n(1 − γ2)n + ε.

The value of
√
n(1 − γ2)n for 0 < γ < 1 can be set arbitrarily small for large

enough n and, in particular, smaller than ε. Therefore, there exists an N such
that

n > N ⇒ |Gn(x) − f(x)| < ε

for any arbitrarily small preassigned ε where N does not depend on x. This
means that the sequence of polynomials Gn(x) converges uniformly to the
continuous function f(x) on [0, 1], which completes the proof. We emphasize
that the above discussion holds for an arbitrary continuous function on an
arbitrary finite closed interval [a, b], as was indicated at the outset.

Remark. It should be emphasized that our initial hypothesis that f(0) =
f(1) = 0 imposes no limitation on the validity of the proof. To see this, we
now suppose that f(x) is defined on [a, b]. Then, the function g(x) defined by

g

(
x− a

b− a

)

≡ f(x)

yields f(a) = g(0) and f(b) = g(1), where any x in the interval [a, b] corre-
sponds to z in [0, 1]. Furthermore, by introducing the function

h(z) = g(z) − g(0) − z [g(1) − g(0)]

for z in [0, 1], we have h(0) = 0 and h(1) = 0. We can show that the polynomial
Gn(x) that approximates the original function f(x) also approximates the
modified function h(z) by replacing the variable x in Gn(x) by z.





D

Tabulated List of Orthonormal Polynomial
Functions

Hermite Polynomials Hn(x)

Orthogonality:
∫ ∞

−∞
e−x2

Hm(x)Hn(x)dx = 2nn!
√
πδmn.

Rodrigues formula:

Hn(x) = (−1)nex2 dn

dxn

(

e−x2
)

.

Differential equation:

d2

dx2
Hn(x) − 2x

d

dx
Hn(x) + 2nHn(x) = 0.

Recurrence formula:

Hn+1(x) − 2xHn(x) + 2nHn−1(x) = 0.

Generating functions:

g(t, x) = e2xt−t2 =
∞∑

n=0

Hn(x)
n!

tn.

Laguerre Polynomials Lν
n(x)

Orthogonality:
∫ ∞

0

xνe−xLν
m(x)Lν

n(x)dx =
Γ (n+ ν + 1)
Γ (n+ 1)

δmn.
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Rodrigues formula:

Lν
n(x) =

x−ν

n!
ex dn

dxn

(

e−xxν+n
)

.

Differential equation:

x
d2

dx2
Lν

n(x) + (ν + 1 − x)
d

dx
Lν

n(x) + nLν
n(x) = 0.

Recurrence formula:

(n+ 1)Lν
n+1(x) − (2n+ ν + 1)Lν

n(x) − (n+ ν)Lν
n−1(x) = 0.

Generating functions:

g(t, x) =
e−xt/(1−t)

(1 − t)ν+1
=

∞∑

n=0

Lν
n(x)tn.

Jacobi Polynomials G
(ν,μ)
n (x)

Orthogonality:
∫ 1

−1
(1+x)μ(1−x)νG

(ν,μ)
m (x)G

(ν,μ)
n (x)dx =

2μ+ν+1Γ (n + μ + 1)Γ (n + ν + 1)

n!(2n + μ + ν + 1)Γ (n + ν + μ + 1)
δmn.

Rodrigues formula:

G
(ν,μ)
n (x) =

(−1)n

2nn!
(1 − x)−ν(1 + x)−μ dn

dxn

[

(1 − x)ν+n(1 + x)μ+n
]

.

Differential equation:

(1 − x2)
d2

dx2
G

(ν,μ)
n (x) + [μ − ν − (ν + μ + 2)x]

d

dx
G

(ν,μ)
n (x)

+ n(n + ν + μ + 1)G
(ν,μ)
n (x) = 0.

Recurrence formula:

G
(ν,μ)
0 (x) = 1, G

(ν,μ)
1 (x) =

1

2
{(ν + μ + 2)x + (ν2 − μ2)},

2(n + 1)(n + ν + μ + 1)(2n + ν + μ)G
(ν,μ)
n+1 (x)

−(2n + ν + μ + 1)
[

(2n + ν + μ)(2n + ν + μ + 2)x + ν2 − μ2
]

G
(ν,μ)
n (x)

−2(n + ν)(n + μ)(2n + ν + μ + 2)G
(ν,μ)
n−1 (x) = 0.
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Generating functions:

g(t, x) =
2ν+μ

(1 − 2xt + t2)1/2
{

1 − t + (1 − 2xt + t2)1/2
}ν {

1 + t + (1 − 2xt + t2)1/2
}μ

=
∞∑

n=0

G
(ν,μ)
n (x)tn.

Gegenbauer Polynomials Cλ
n(x)

Orthogonality:
∫ 1

−1

(

1 − x2
)λ− 1

2 Cλ
m(x)Cλ

n(x)dx =
√
πΓ (n+ 2λ)Γ

(

λ− 1
2

)

n!(n+ λ)Γ (2λ)Γ (λ)
δmn.

Rodrigues formula:

Cλ
n(x) =

(−1)nΓ (n+ 2λ)Γ [λ+ 1
2 ]

2nn!Γ [n+ λ+ 1
2 ]Γ (2λ)

(1−x2)−λ+ 1
2
dn

dxn

[

(1 − x2)n+λ− 1
2

]

.

Differential equation:

(1 − x2)
d2

dx2
Cλ

n(x) − (2λ+ 1)x
d

dx
Cλ

n(x) + n(n+ 2λ)Cλ
n(x) = 0.

Recurrence formula:

(n+ 1)Cλ
n+1(x) − 2(n+ λ)xCλ

n(x) − (n+ 2λ− 1)Cλ
n−1(x) = 0.

Generating functions:

g(t, x) =
1

(1 − 2xt+ t2)λ
=

∞∑

n=0

Cλ
n(x)tn.

Legendre Polynomials Pn(x)

Orthogonality:
∫ 1

−1

Pm(x)Pn(x)dx =
2

2n+ 1
δmn.

Rodrigues formula:

Pn(x) =
(−1)n

2nn!
dn

dxn

[

(1 − x2)n
]

.
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Differential equation:

(1 − x2)
d2

dx2
Pn(x) − 2x

d

dx
Pn(x) + n(n+ 1)Pn(x) = 0.

Recurrence formula:

(n+ 1)Pn+1(x) − (2n+ 1)xPn(x) + nPn−1(x) = 0.

Generating functions:

g(t, x) =
1

(1 − 2xt+ t2)1/2
=

∞∑

n=0

Pn(x)tn.

Chebyshev Polynomials of the First Kind Tn(x)

Orthogonality:
∫ 1

−1

Tm(x)Tn(x)√
1 − x2

dx =
π

2
δmn (1 + δm0δn0) .

Rodrigues formula:

Tn(x) =
(−2)nn!

√
π

(2n)!
(1 − x2)

1
2
dn

dxn

[

(1 − x2)n− 1
2

]

.

Differential equation:

(1 − x2)
d2

dx2
Tn(x) − x

d

dx
Tn(x) + n2Tn(x) = 0.

Recurrence formula:

Tn+1(x) − 2xTn(x) + Tn−1(x) = 0.

Generating functions:

g(t, x) =
1 − t2

1 − 2xt+ t2
=

∞∑

n=1

2Tn(x)tn + T0(x).

Chebyshev Polynomials of the Second Kind Un(x)

Orthogonality:
∫ 1

−1

√

1 − x2Um(x)Un(x)dx =
π

2
δmn (1 − δm0δn0) .
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Rodrigues formula:

Un(x) =
(−2)n(n+ 1)!

√
π

(2n+ 1)!
(1 − x2)−

1
2
dn

dxn

[

(1 − x2)n+ 1
2

]

.

Differential equation:

(1 − x2)
d2

dx2
Un(x) − 3x

d

dx
Un(x) + n(n+ 2)Un(x) = 0.

Recurrence formula:

Un+1(x) − 2xUn(x) + Un−1(x) = 0.

Generating functions:

g(t, x) =
1

1 − 2xt+ t2
=

∞∑

n=0

Un(x)tn.
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Abscissa of absolute convergence, 411,
412
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Absolute convergence, 32, 38, 40, 42,
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Absolute convergence of an infinite
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Absolutely divergent series, 42

Accumulation point, 6, 657

Active transformation, 570, 571

Addition, 83, 640, 641, 643, 646

Addition formula for analytic continua-
tion, 254

Addition identity, 83

Addition of complex number, 74

Addition of tensor, 586

Addition of vector, 74

Addition theorem of trigonometric
function, 251

Additive inverse, 83

Adjoint operator, 502

Admissibility condition, 450, 459

Admissibility constant, 450

Airfoil, 335, 336

Aliasing, 394

Almost everywhere, 156, 158, 160, 168,
174, 456, 474

Alternating sequence, 42

Alternating series, 42

Alternating series test, 42

Amplitude modulation, 404

Analytic continuation, 215, 216, 246,
247, 249, 251–254, 284, 409, 420,
421, 432

Analytic continuations of each other,
247, 248

Analytic function, 102, 125, 186–188,
191–194, 198, 201, 202, 204–208,
210, 213, 217, 220, 236, 237, 244,
251, 254, 259, 263, 286, 289, 290,
305, 306, 409, 432, 436, 438

Analyticity, 188, 190, 192, 193, 195,
261, 312, 321, 412, 432

Analyticity at infinity, 313
Angle-preserving, 305, 306
Angular momentum, 583, 591, 596
Angular velocity, 596
Anharmonic ratio, 322
Antisymmetric part of tensor, 590
Antisymmetric tensor, 589–591
Approximation coefficient, 472, 478–480
Area under the graph, 145, 382
Associated Legendre function, 112
Associative, 83, 387, 389, 646
Associativity, 83
Asymptotically stable critical point, 528
Auto-correlation function, 390
Autonomous system, 528
Axial vector, 582

Banach space, 86, 87
Banach’s fixed point theorem, 173
Basis, 79, 87, 88, 612, 642, 646, 649, 650
Basis of a Hilbert space, 91
Basis of tensor space, 647, 648



678 Index

Bernoulli equation, 505, 506
Bernoulli’s theorem, 230, 232
Bessel equation, 505
Bessel function, 385, 403
Bessel inequality, 79, 82, 89, 96, 104,

357
Beta function, 108
Bilateral Laplace transform, 433
Bilinear, 643, 651
Bilinear function, 644, 645, 648, 651,

652
Bilinear transformation, 316, 317, 321,

324, 325
Binomial theorem, 24
Bit reversal, 398
Bit-reversing process, 399, 401
Blasius’ formula, 230–232
Bolzano-Weierstrass’ theorem, 26, 27,

80, 657, 659
Boundary point, 7
Bounded above, 3, 20, 21, 36–38, 43
Bounded almost everywhere, 160
Bounded below, 3, 20, 21
Bounded closed interval, 5
Bounded open interval, 5
Bounded real sequence, 19–21, 26, 27
Bounded set, 3
Branch, 226, 241–244, 252, 272, 273,

276, 421
Branch at infinity, 313
Branch cut, 226, 243, 244, 441, 442
Branch line, 244
Branch point, 235, 243, 244, 252, 282,

441
Brownian motion, 550, 551

Cantor set, 155, 157
Cantor’s theorem, 658
Cardinal number, 155
Carrier wave, 404–406
Cartesian basis, 79
Cartesian coordinate, 317, 319
Cartesian coordinate system, 567, 568,

576, 580, 582, 602, 603
Cartesian product of vector spaces, 643
Cartesian space, 78
Cartesian tensor, 578, 589, 596, 601
Cartesian tensor of the first order, 576,

577

Cartesian tensor of the fourth order,
585, 600

Cartesian tensor of the second order,
578

Cartesian tensor of the third order, 585
Cartesian vector, 576–578, 582
Cauchy criterion, 25–27, 31, 36, 38, 53,

55, 59, 62, 64, 79
Cauchy criterion for convergence, 31
Cauchy criterion for uniform conver-

gence, 53
Cauchy inequality, 208
Cauchy principal value, 294
Cauchy problem, 552, 553
Cauchy sequence, 25–28, 36, 54, 55, 79,

80, 82, 86, 91–94, 170, 171, 174,
175, 496

Cauchy’s integral formula, 124, 205–207,
213, 217, 432

Cauchy’s test for improper integrals,
68, 425, 428

Cauchy’s theorem, 198–201, 205, 210,
220, 262, 274, 291

Cauchy-Riemann relation, 189, 194,
308, 309, 332

Causality requirement, 300
Center, 533, 535
Central limit theorem, 175–178, 180
Characteristic curve of a PDE, 542
Characteristic equation of a PDE, 542
Characteristic function, 176, 178, 180
Characteristic polynomial, 529
Chebyshev polynomial of the First

Kind, 674
Chebyshev polynomial of the first kind,

119, 129–131, 133, 135
Chebyshev polynomial of the Second

Kind, 674
Chebyshev polynomial of the second

kind, 119
Chebyshev’s inequality, 157, 158
Christoffel symbol, 621–625, 627, 628,

630–632, 635
Christoffel symbol of the first kind, 623
Christoffel symbol of the second kind,

623
Circle of convergence, 214–217, 221,

222, 246, 250, 253, 254, 256
Circulation (of fluid flow), 229
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Clairaut equation, 488
Closed set, 7
Closedness, 83, 430
Closure, 5, 7
Cluster point, 6, 657
Cofactor, 524, 572–575
Column-vector notation, 510
Commutative, 83, 387, 389, 640, 646
Complement, 2
Complementary minor of an element of

a matrix, 571
Complementary set, 2, 7, 8, 149, 150,

156, 157
Complementary system, 514
Complete, 73, 79, 80, 86–89, 91, 101,

170, 173, 515
Complete analytic function, 248
Complete integral of an ODE, 487
Complete orthonormal set of functions,

73, 97, 98, 109, 463, 464
Complete orthonormal set of poly-

nomials, 101, 103–105, 117,
119

Complete orthonormal vectors, 89
Completeness of wavelets, 462, 463
Complex conjugate, 75, 533, 641
Complex function, 185, 186
Complex sphere, 311
Complex vector space, 74–76, 83
Component of a tensor, 565, 576, 578
Conditional convergence, 32–35, 37, 42
Conditional convergence of an improper

integral, 67, 412
Conditional convergence of an infinite

series, 33
Conformal, 305
Conformal mapping, 306–308, 310–313,

315–317, 321, 322, 324, 328, 330,
331, 333–335

Conjugate harmonic function, 192
Conjugate linear, 75
Conjugate space, 641
Conservation law of current flow, 537
Conservation law of momentum, 230,

231, 373
Conservation of a functional equation,

250, 253
Contact point, 5–9
Continuity of complex function, 186

Continuity theorem (for characteristic
functions), 180

Continuity theorem (of integrals), 67
Continuous approximation, 472, 476
Continuous function, 47, 50
Continuous on the left, 48
Continuous on the right, 48
Contraction, 587–589, 591, 596, 598,

618
Contraction mapping, 173, 174
Contraction mapping theorem, 173–175
Contrapositive proof, 9
Contravariant basis vector, 603, 604,

606, 621
Contravariant component of a tensor,

608–610, 612, 613, 618, 619, 629
Contravariant component of a vector,

607, 611, 613, 617, 627, 628, 631,
650, 653

Contravariant degree of tensor, 645
Contravariant local basis vector, 603
Contravariant tensor, 646
Contravariant vector, 646, 647
Convergece test for alternating series,

42
Convergence almost everywhere, 156,

171
Convergence of a real sequence, 17
Convergence of a sequence of vectors,

80
Convergence of an improper integral, 67
Convergence of an infinite series, 30, 33
Convergence of Laplace integral,

408–411, 422, 424–427, 430–432,
435

Convergence test, 29, 38, 42
Convolution, 387–389, 451, 453, 459,

479
Convolution integral, 447, 476
Convolution theorem, 387
Coordinate, 88, 567
Coordinate axis, 567
Coordinate transformation, 566, 567,

570, 577, 580
Corner, 50
Correlation function, 388
Countable set, 154, 155
Covariant basis vector, 603–605, 608,

613, 617, 619, 621
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Covariant component of a tensor, 609,
610, 613, 619, 632

Covariant component of a vector, 607,
608, 611, 613, 617, 627, 628, 631,
635, 650

Covariant constant, 633

Covariant degree of tensor, 645

Covariant derivative, 628–633

Covariant differentiation, 634, 635

Covariant local basis vector, 602, 603

Covariant tensor, 646

Covariant vector, 608, 646, 647

Critical point of an autonomous system,
527–534

Critical point of conformal mapping,
308, 310

Cross ratio, 322, 325

Cross-correlation function, 388–390

Curvature tensor, 635

Curvilinear coordinate system, 565,
601–603, 605, 607, 611, 615, 617,
621

Cut, 244

Cylindrical coordinate system, 612, 616,
621, 624

D’Alemberian, 552

Damped harmonic oscillator, 383

Damping time constant, 446

Darboux’s inequality, 196, 209, 211

Decomposition algorithm, 478, 479

Decreasing sequence, 20

Derivative (of a complex function), 186,
187

Derivative (of a real function), 48

Determinant of a matrix, 571

Difference, 2

Differentiability (of a complex function),
186, 188

Differentiability (of a real function), 48

Diffusion constant, 551

Diffusion equation, 371, 545, 550, 551,
561, 562

Diffusion operator, 546, 550

Dilatation parameter, 451, 454

Dilation equation, 468

Dimension of a vector space, 88

Dirac’s δ-function, 661–663, 667

Direct product (of vector spaces), 643,
645, 646

Direct product (of vectors), 578
Direct proof, 9
Direct sum of vector spaces, 643
Directed cosine, 568
Direction field, 490, 494, 526
Dirichlet boundary condition, 332–334,

540, 556
Dirichlet problem for the diffusion

equation, 551
Dirichlet problems for the Laplace

equation, 548
Dirichlet theorem, 360
Dirichlet’s conditions for the Fourier

series convergence, 341, 347
Dirichlet’s function, 149, 155, 156, 172
Dirichlet’s integral, 353, 358
Dirichlet’s kernel, 354
Dirichlet’s theorem, 341
Discrete Fourier transform, 391–394,

396, 398, 400, 401
Discrete wavelet, 460, 462, 463
Discrete wavelet transform, 460–462,

467, 472, 476, 478
Disjoint interval, 141, 146
Disjoint set, 2, 144, 145
Dispersion relation, 297–302
Displacement vector, 600
Distance, 84, 174, 639
Distance function, 84, 85
Distribution, 176–180
Distributive, 83, 387, 389, 646
Divergence (as a vector operation), 631
Divergent sequence, 18, 19
Divergent series, 32, 33, 35, 42
Divergent test, 32
Dominated convergence theorem, 158,

160, 161, 165, 166
Dual basis, 642, 652
Dual space, 641, 642, 645, 646
Dummy index, 566, 626, 628, 629
Dyadic grid arrangement, 461
Dyadic grid wavelet, 461

Eigenenergy, 136
Eigenfrequency, 557
Eigenfunction, 136, 501, 504, 505, 557
Eigenvalue, 501, 504, 505, 530–534, 544
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Eigenvector, 530–534
Einstein tensor, 636
Einstein’s field equation, 635–637
Elasticity theory, 600
Elastisity theory, 585
Electric conductivity, 598
Electromagnetic field, 599
Element, 1–5, 7, 74, 76, 83
Elliptic class of PDEs, 544
Elliptic coordinate, 319
Elliptic coordinate system, 565
Elliptic integral of the first kind, 326
Empty set, 1, 141, 142
Entire function, 191, 209, 313
Enumerable, 154
Equal, 2
Equality almost everywhere, 156, 158,

174, 175, 456, 474
Equivalent, 10
Essential singularity, 233, 235–240, 282
Essential singularity at infinity, 313
Euclidean space, 3, 74, 75, 515, 614,

639, 640, 651
Euler’s formula, 108
Euler-Fourier formula, 340, 344
Existence theorem, 491, 495, 498, 515
Expected value of a random variable,

143, 176
Explicit solution of an ODE, 484
Exponential order, 423–427, 431
Extended definition of conformal

mappings, 312
Extended real number, 3

False, 9
Fast Fourier transform, 396, 397
Fast Fourier transform (FFT), 396, 398,

399, 401
Fast orthogonal wave transform, 478
Fast wavelet transform, 460, 477–480
Father wavelet, 463, 470, 477
Fejér’s integral, 353, 358
Fejér’s theorem, 355, 360, 361
Finite set, 1, 140, 154, 155, 657
First shifting theorem, 415
First-order Cartesian pseudotensor,

582, 585
First-order linear homogeneous ODE,

484

Fisrt-order linear homogeneous PDE,
541

Fixed point in LP , 174
Flat Riemann space, 614
Flat space, 634–636
Fluid flow, 229
Focus, 533
Four potential, 599
Four-current density, 600
Four-vector, 76
Four-velocity, 636
Fourier coefficient, 95–98, 105
Fourier cosine series, 344, 345, 350
Fourier integral, 383
Fourier integral representation, 378
Fourier integral theorem, 379, 380
Fourier series, 95, 96, 339–341, 360, 363,

366, 377
Fourier sine series, 344, 350
Fourier transform, 378, 382, 390, 391,

406, 435, 559
Fourier transform in three dimension,

384
Fourier transform in two dimension, 385
Fractional transformation, 316
Fraunhofer diffraction, 401, 403
Frequency modulation, 404
Fresnel cosine integral, 279, 281
Fresnel sine integral, 279, 281
Fubini’s theorem, 162–164, 166, 167,

173, 175, 176, 178, 180
Fubini-Hobson-Tonelli theorem, 164
Function element, 247
Function of exponential order, 423–427,

431
Function space, 172, 173
Fundamental matrix, 518, 519, 521
Fundamental mixed tensor, 611
Fundamental sequence, 25
Fundamental system of solutions,

516–523
Fundamental tensor, 585

G.l.b., 4
Gamma function, 108, 254
Gauss notation, 106
Gegenbauer polynomial, 119, 673
General analytic function, 248
General relativity theory, 634, 636
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General solution of a differential
equation, 316, 372, 375, 487–489,
522, 530, 531, 533, 534, 540, 542,
545, 553, 554, 557, 559

Generalized Fourier coefficient, 91, 95
Generalized Fourier series, 95
Generating function, 113, 114, 124–126,

470
Generating function of Chebyshev

polynomials of the first kind, 674
Generating function of Chebyshev

polynomials of the second kind,
675

Generating function of Gegenbauer
polynomials, 673

Generating function of Hermite
polynomials, 125, 671

Generating function of Jacobi polyno-
mials, 673

Generating function of Laguerre
polynomials, 125, 672

Generating function of Legendre
polynomials, 113, 114, 125, 674

Generating function of the multiresolu-
tion analysis, 470

Geometric curvature, 634
Gibbs phenomenon, 347, 365, 366
Goursat’s formula, 206–208, 261, 265
Gradient, 631
Gradient of a scalar, 631
Gradient of a vector, 580
Gram-Schmidt orthogonalization

method, 103, 105, 114, 505
Greatest lower bound, 4, 411
Green’s function, 558, 559
Gutzmer’s theorem, 227

Haar discrete wavelet, 462, 472, 473
Haar wavelet, 450, 458, 467, 473
Half-range Fourier series, 344, 347
Harmonic function, 191, 195, 546, 549,

550
Harmonic series, 35, 36, 39
Heat flow, 550
Heat flux, 561
Hermite equation, 502
Hermite polynomial, 117, 125, 127, 135,

671
Hermitian operator, 503

Hilbert space, 73, 74, 79–83, 87–92, 95,
98, 352

Hilbert space theory, 352
Hilbert transforms pair, 295–298
Holomorphic, 188
Hooke’s law, 600
Hyperbolic class of PDEs, 544, 546,

552, 553
Hyperharmonic series, 36

Identically distributed, 176, 177, 179
Identity vector, 74
If and only if, 10
Imaginary part of a complex function,

185
Implicit solution of an ODE, 485, 486,

490
Improper integral, 66–68, 302, 412, 420,

422, 425–428, 430, 433
Improper node, 530, 531
Improper rotation, 580–585
Incomplete inner product space, 81
Incompressible, 228
Increasing sequence, 19
Independent random variable, 176, 177
Index lowering, 652
Index raising, 652
Inertia tensor, 596–598
Infimum, 4, 8, 140
Infinite series, 29–33, 37, 38, 40, 42, 96,

105, 109, 221, 339
Infinite series of functions, 62–64, 227,

281, 340, 342, 362, 496
Infinite set, 1, 154, 155, 157, 657
Initial value problem, 419, 491–493,

495, 497–499, 510, 513, 527, 552,
554, 555

Inner measure, 150, 157
Inner product, 73, 75, 76, 78, 80, 87, 89,

96, 97, 352, 588, 639, 641, 651
Inner product (in tensor calculus), 651,

652
Inner product notation, 502, 503
Inner product space, 75–82, 86, 87, 640,

651
Integral curve, 488–490
Integral equation, 492
Integral function, 313
Integral of PDE, 540
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Interior point, 7
Intersection, 2, 87, 247, 658, 660
Interval, 4
Invariant, 609
Invariant tensor, 585
Inverse Fourier transform, 378, 379,

384, 387, 395, 396, 406, 471
Inverse Fourier transformation, 435
Inverse Laplace transform, 408, 409,

432, 434, 436, 439–441, 444, 446,
448, 558

Inverse matrix, 523, 574, 620, 653
Inverse of discrete Fourier transform,

392, 393
Inverse of the two-sided Laplace

transform, 434, 435
Inverse wavelet transform, 456–458, 460
Inversion (as a bilinear transformation),

321, 327–329
Inversion (as an improper rotation),

581, 582
Irrotational, 228, 231
Isolated point, 6–8, 95, 149, 212, 657
Isolated singularity, 233–236, 239, 252,

262, 263, 313
Isomorphism, 98, 649
Isomorphism between �2 and L2, 98, 99
Isotropic tensor, 585, 600

Jacobi matrix, 122
Jacobi polynomial, 118, 672
Jacobian determinant, 309, 388, 555,

617
Jordan’s lemma, 270, 438, 441
Joukowsky airfoil, 336
Joukowsky transformation, 335, 336

Kinetic energy, 597
Kramers-Kronig relations, 299
Kronecker’s delta, 78, 610
Kutta-Joukowski’s theorem, 228–231

L’Hôpital’s rule, 12, 13, 239, 280, 282,
370, 417, 423

L.u.b., 3
Laguerre polynomial, 117, 118, 125, 671
Lamé constants, 600
Langevin’s function, 283
Lapalce transform, 408

Laplace equation, 191, 192, 228,
331–334, 545, 546, 548–550

Laplace integral, 408, 410, 411, 421,
422, 428, 429, 432, 433

Laplace operator, 546
Laplace transform, 407–409, 412,

414–418, 420, 422, 432, 444–447,
558, 559

Laplace transform of derivative, 419
Laplace transform of integral, 420
Laplacian, 545, 546, 548–550, 559, 630,

631
Laurent series expansion, 219–224, 226,

233–235, 238, 239, 260, 265, 266
Least upper bound, 3, 658
Lebesgue convergence theorem, 173,

175, 178, 180, 181
Lebesgue integrable, 152, 153, 161, 173,

174
Lebesgue integral, 139, 141, 144, 147,

149, 151–155, 158, 161, 162, 167,
172, 175, 176

Lebesgue measurable function, 167, 170
Lebesgue measurable set, 157
Lebesgue measure, 149–151, 154–156,

176
Lebesgue sum, 151–153
Left-hand limit, 46, 48, 408
Left-handed coordinate system, 568,

582
Legendre polynomial, 105–107, 109,

112–114, 119, 125, 127, 136, 137,
673

Legendre’s equation, 501
Levi-Civita symbol, 584, 588
Lift, 336
Lift force, 228
Limit, 18
Limit cycle, 536, 538
Limit inferior, 21, 22, 140
Limit of a function, 45
Limit point, 6, 18, 657
Limit superior, 21, 22, 40–42, 140
Limit test for convergence, 38, 39, 43
Limit test for divergence, 39, 40, 43
Line element, 490
Linear autonomous system, 528
Linear differential equations, 407
Linear function, 640
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n-linear function, 644
Linear homogeneous ODE, 484, 500
Linear homogeneous PDE, 541
Linear homogeneous system of ODEs,

514, 516, 517, 524, 528
Linear independence, 76, 79, 82, 88,

103, 375, 515–517, 519, 520, 522,
523, 569, 642

Linear inhomogeneous ODE, 505, 506
Linear inhomogeneous PDE, 541
Linear inhomogeneous system of ODEs,

514, 516
Linear mapping (of vector spaces), 640,

650, 651
Linear ODE, 484
Linear partial differential equation

(PDE), 540
Linear space, 640
Linear transformation, 315, 316, 514,

543, 544
Liouville’s formula, 518, 521, 524
Liouville’s theorem, 209, 238, 313
Lipschitz condition, 174, 495, 497, 500,

512, 515, 526
Lipschitz constant, 495, 512
Local basis vectors, 602
Localization theorem, 368
Logarithmic residue, 286, 287
Logistic equation, 506
Lower bound, 3
Lower limit, 21
Lower Riemann-Darboux integral, 140

Möbius transformation, 316, 322
Magnetic susceptibility, 598
Maximum, 4
Maxwell equation, 599, 637
Maxwell-Boltzmann distribution, 177
Mean convergence, 95, 97, 105, 351–353,

355–357, 360, 361
Mean value of a random variable, 143,

144, 176
Mean value theorem, 58, 204, 560, 562,

662
Measurable set, 151, 157, 160, 164, 165,

167
Measure, 141
α-measure, 141, 144, 146–148
Message wave, 404–406

Method of inversion, 327

Method of variation of constant
parameters, 522

Metric coefficient, 616

Metric space, 84, 85

Metric tensor, 611–614, 617–619, 621,
623, 624, 626, 630, 631, 633–635,
637

Metric vector space, 84

Mexican hat wavelet, 450–452, 455, 467

Minimax property, 129

Minimum, 4

Minkowski’s inequality, 93, 169–171,
175

Minor of elements of a matrix, 571

Mixed component of a tensor, 609–612,
618

Modified summation convention, 603,
605, 606

Moment of inertia, 597, 609

Monotone convergence theorem,
158–161, 165, 166, 171

Monotonic sequence, 20

Monotonically decreasing sequence, 20

Monotonically increasing sequence, 19

Morera’s theorem, 210

Mother wavelet, 467–470, 477

Multilinear function, 644–646

Multiplication of complex number, 74

Multiply connected region, 200

Multipole, 136

Multiresolution algorithm, 478

Multiresolution analysis, 463, 464,
466–470, 474, 477

Multiresolution analysis equation, 468

Multiresolution representation, 472

Multivalued function, 226, 240–244,
252, 318, 409, 420, 441

Natural boundary, 249, 253, 256

Natural isomorphism, 649–651

Natural pairing, 643

Necessary and sufficient condition, 10

Necessary condition, 9

Neighborhood, 5–8, 10, 12, 18, 24, 66,
67, 187, 188, 218, 233–236, 239,
244, 250, 260, 286, 308, 312, 313,
316, 369, 528, 657, 660
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Neumann boundary condition, 332, 540,
556

Neutrally stable critical point, 528
Newtonian field of gravity, 636
Noise reduction, 457, 458
Non-degenerate, 651
Non-isolated singularity, 235
Nonhomogeneous linear partial

differential equation, 541
Nonlinear differential equation, 484,

505, 506, 522, 538, 637
Nonoverlapping sets, 141
Norm, 76, 80, 85–87, 89, 91, 94–96, 174,

352, 473, 510, 639
p-norm, 85–87, 168, 175
Normal distribution, 177–180
Normed space, 85–87
Null measure, 155, 157
Nyquist critical frequency, 393

Once-subtracted dispersion relation,
300

One-sided derivative, 49
One-sided limit, 46
Open set, 7
Order of differential equation, 483
Order of zero of function, 233
Ordinary differential equation (ODE),

174, 483
Orthogonal basis, 88
Orthogonal complement, 465
Orthogonal curvilinear coordinate, 317
Orthogonal decomposition, 466
Orthogonal polynomial, 114–117, 119,

121–124, 126, 128, 129
Orthogonal relation, 579
Orthogonality, 73, 78, 79, 82, 88–90,

103, 105, 107, 127
Orthogonality relation, 115, 119, 120,

129, 133
Orthonormal basis, 73, 78, 88, 463, 464,

466–471
Orthonormality, 78, 101
Orthonormality of wavelets, 462, 463
Outer measure, 150, 156
Outer product, 578, 588, 595, 610

Parabolic class of PDEs, 544
Parallelogram law, 78, 87

Parseval’s identity, 90, 97, 98, 104, 302,
356, 357, 362, 383, 390

Parseval’s identity (for wavelet
transform), 457, 460, 474

Partial differential equation (PDE),
371, 539

Partial sum, 30, 31, 35–38, 43, 64, 99,
104, 109, 256, 345, 346, 353, 358,
363, 365, 366, 368, 369, 496, 500

Particular solution of differential
equation, 487, 506, 522, 523, 553

Partition, 140, 152
Passive transformation, 570, 571
Path independence, 198
Permutation symbol, 584
Phase space, 527, 538
Picard’s method, 491, 492, 497, 499
Piecewise continuous function, 48, 50,

362–364, 385, 417
Piecewise smooth function, 50, 360,

363, 364, 379, 380, 386
Plancherel’s identity, 390
Point, 1
Point at infinity, 237, 238, 244, 312,

313, 320, 322, 329
Point of equilibrium of an autonomous

system, 527
Pointwise convergence, 51, 52, 54, 60,

62, 95, 158, 173, 360, 363, 364
Pointwise limit, 51
Poisson’s equation, 547, 636
Poisson’s integral formula, 213
Polar coordinate system, 108, 194, 244,

280, 310, 315, 317–319, 323, 403,
549, 565

Polar vector, 582
Pole, 233–238, 240
Pole at infinity, 313
Positive definite, 651
Potential field, 114, 136, 137, 228, 229,

232, 333–335, 583, 599, 636
Power spectrum, 383, 390, 405, 406
Pre-Hilbert space, 86, 87
Primitive integral of an ODE, 487
Principal part in the Laurent series,

222, 234, 235, 238
Principal value integral, 68, 206,

293–296, 300
Probability, 143, 176, 177
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Probability density, 136, 176, 177
Probability density function, 143
Probability distribution function, 143,

144
Product of inertia, 597
Proof by contradiction, 9
Proper node, 532, 533
Proper rotation, 581, 582, 584, 585
Proper subset, 2
Pseudotensor, 580, 582
Pseudovector, 582, 583, 590
Pyramid algorithm, 478
Pythagorean formula, 73

Quantum mechanics theory, 135
Quotient law, 592

Radius of convergence, 102, 214–219,
223, 245, 246, 252, 256, 257

Random variable, 143, 144, 176, 177,
179, 180

Range convention, 566, 568
Ratio method, 263, 266, 267, 278
Ratio test for convergence, 40, 44
Rational function, 132, 237, 238, 267,

268, 271, 273
Real part of a complex function, 185
Real vector space, 83
Reality condition, 298
Rearrangement, 34, 35, 38
Reconstruction algorithm, 478–480
Rectangular Cartesian coordinate

system, 565, 567, 570, 606
Recurrence formula for orthogonal

polynomials, 119–121, 125–127,
129, 671–675

Recurrence relation (for analytic
continuation), 254

Recurrence relation (of gamma
functions), 255

Recurrence relation (of scaling
functions), 468

Reduced system, 514
Refinement equation, 468
Reflection, 581–583
Region of analyticity, 206–208, 250
Region of convergence of the Laplace

integral, 410, 425, 427, 430–435,
444

Region of the existence, 249

Regular, 188
Regular analytic, 188

Regular part in the Laurent series, 222
Regular point, 527

Removable singularity, 233, 234, 236
Residue, 259, 260, 263–268, 272–274,

281, 282, 285, 286

Residue theorem, 259, 260, 263, 267,
269, 274, 277–279, 281, 286, 437

Riccati equation, 506
Ricci curvature, 637

Ricci scalar, 636
Ricci tensor, 636

Ricci’s theorem, 630, 633, 634
Riemann integrable, 140

Riemann integrable function, 158, 172
Riemann integral, 139, 140, 144, 152,

153, 158, 172, 175
Riemann space, 614

Riemann sphere, 311–313
Riemann sum, 144, 153

Riemann surface, 241–243, 421, 422,
441

Riemann tensor, 635, 636

Riemann’s theorem, 35
Riemann-Darboux integral, 140

Riemann-Lebesgue theorem, 358, 364,
369

Riemann-Stieltjes integral, 144
Riemann-zeta function, 284

Riesz-Fisher’s theorem, 96, 98
Right-hand limit, 46, 48, 408

Right-handed coordinate system, 567
Rigid rotation of coordinate axes,

567–570, 575, 576, 580, 583, 585
Rodrigues formula, 106, 107, 114–119,

121, 123, 124, 127, 129, 671–675
Root test for convergence, 41, 44, 253

Rotation (as a vector operation), 632
Rotation (of fluid flow), 229

Rotation with reflection, 581
Rouché’s theorem, 210, 290–292

Saddle point, 531, 532
Sampling theorem, 394

Scalar, 83, 579, 609, 646
Scalar curvature, 636, 637
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Scalar multiplication, 74, 83, 640, 641,
643

Scalar product, 75, 579, 604, 607, 611,
613, 617, 618

Scale factor, 308, 310, 321, 616, 617, 634
Scale-dependent thresholding, 458
Scaling function, 463, 464, 467–471,

474, 476, 479
Scaling function coefficient, 468–470,

474, 477
Scaling function space, 467
Schrödinger equation, 136
Schwarz differential equation, 316
Schwarz Lemma, 211
Schwarz principle of reflection, 254, 257
Schwarz’s inequality, 76, 77, 89
Schwarz-Christoffel transformation,

325–327, 329, 332, 333
Second shifting theorem, 416
Second-order Cartesian pseudotensor,

584
Second-order linear homogeneous PDE,

543
Secular equation, 529
Self-adjoint operator, 503
Semiclosed interval, 5
Sequence of partial sum, 30, 31, 43, 104,

109
Sequence of the remainder, 30
Set, 1
Shuffled sequence, 28, 37
Signal approximation, 472
Signal detail, 472
Simple Laplace development, 572
Simple set, 146
Simple statement, 9
Simply connected region, 199
Single-valued function, 84, 240, 241,

243, 247, 248, 288–290, 408, 414,
421, 484, 510, 614

Singular line, 253
Singular point of an autonomous

system, 527
Singular solution of ODE, 488, 489
Singularity, 188, 233
Skew-symmetric, 589
Smooth function, 50
Solution of ODE, 484
Solution of PDE, 540

L2 space, 81, 87, 92, 95, 98, 99, 352
Lp space, 86, 87
�2 space, 80, 87, 91, 92, 95, 96, 98, 99
�p space, 86, 87
Specific heat, 562
Spectrum of Sturm-Liouville system,

501
Spherical coordinate system, 384, 549,

550, 616
Spherical harmonic function, 109, 111,

112
Spiral point, 533, 534
Square-integrable function, 81, 92, 94,

95, 98, 101, 352, 357, 358
Stability of critical point, 527, 528
Stable critical point, 528
Step function, 81, 144–148, 365, 366,

416, 417, 436, 440, 445
Strain tensor, 600
Stream function, 228
Stress tensor, 600
Strictly decreasing sequence, 20
Strictly increasing sequence, 19
Strictly stable critical point, 528
Sturm-Liouville equation, 500–502, 505
Sturm-Liouville operator, 500, 503, 504
Sturm-Liouville system, 501, 504
Subinterval, 5
Subset, 1
Subtraction of tensor, 586
Successive approximation, 492, 493,

495, 499
Sufficient condition, 9
Sum of infinite series, 30
Sum of infinite series of functions, 62
α-summable, 146, 147
Summation convention, 566, 568, 602
Support, 144–146
Supremum, 3, 4, 8, 11, 140
Symmetric Cartesian tensor of the

second order , 597
Symmetric part of tensor, 590
Symmetric tensor, 589

Taylor series expansion, 49, 102, 212,
217–219, 222–225, 239, 246, 254,
260, 263, 265, 266, 284, 294, 500,
528

Tensor, 565, 645
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Tensor of the first order, 609
Tensor of the second order, 609
Tensor of zero order, 579, 609
Tensor product, 644–647
Tensor space, 646–648, 650
Thermal conductivity, 372, 561
Total variation of argument, 288–290
Trajectory, 526–528, 530
Transfinite number, 155
Translation parameter, 451, 453
Tree algorithm, 478
Triangle inequality, 77, 92, 169
Trigonometric Fourier series, 109, 339,

340
Trigonometric series, 339, 340, 355, 360
True, 9
Tunnel diode, 536
Two-scale relation, 468, 469, 477, 478
Two-sided Laplace integral, 433, 434
Two-sided Laplace transform, 433–435,

444

Unbounded open interval, 5
Unbounded set, 3
Uniform convergence (of complex-

function sequence), 213, 214, 217,
227

Uniform convergence (of Fourier series),
341, 342, 352, 355, 359–362, 366

Uniform convergence (of improper
integral), 67, 68, 380

Uniform convergence (of Laplace
integrals), 425–427, 429–432

Uniform convergence (of polynomial
sequence), 101, 102, 104

Uniform convergence (of real-function
sequence), 52–68, 95, 158, 172, 497

Union, 2
Uniqueness of the integral, 198
Uniqueness theorem (for analytic

continuation), 250, 252, 254
Uniqueness theorem (for characteristic

function), 176, 179
Uniqueness theorem (for solution of

ODE), 136, 491, 497, 498, 515,
516, 526

Uniqueness theorem of the Dirich-
let problem (for the diffusion
equation), 552

Uniqueness theorem of the Dirich-
let problem (for the Laplace
equation), 548

Unit scalar, 83
Unitary space, 75
Universal gravitational constant, 636
Universal set, 2
Unstable critical point, 528
Upper bound, 3
Upper limit, 21
Upper Riemann-Darboux integral, 140

Van der Pol equation, 538
Vanishing order, 11
Variation of argument, 288
Vector, 74
Vector space, 73, 74, 83, 640
Velocity potential, 228

Wave equation, 373, 545, 552, 555, 556,
558, 559

Wave operator, 546, 552, 553
Wavelet, 449
Wavelet analysis, 449
Wavelet coefficient, 469, 472, 477, 478
Wavelet space, 467
Wavelet transform, 451–456, 458, 460
Weierstrass approximation theorem,

101
Weierstrass’ M test, 63
Weierstrass’ test for improper integral,

68, 426
Weight function, 75, 115, 452, 500, 502,

505
Wiener-Kinchin’s theorem, 389, 390
Wigner-Seitz cell, 348
Winding number, 262, 263, 291
Wronskian, 518, 521
Wronsky determinant, 518, 521

Zero of function, 105, 122, 129, 130,
132, 133, 207, 209, 210, 212, 264,
286, 289, 367, 404

Zero scalar, 83
Zero vector, 78, 83, 89, 90
Zeros of function, 264
Zeta function, 36
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