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Preface

The 1st International Workshop on "Localisation of Soils" was held in 
Karlsruhe, Germany on February 22-25, 1988. It was followed by the 2nd

International Workshop in Gdansk, Poland on September 25-30, 1989. The 
first two events emphasised fundamental aspects of bifurcation theory 
applied to Soil Mechanics, and they were sponsored by the German and 
Polish Research Councils. The 3rd International Workshop on "Localisa-
tion and Bifurcation" was held in Aussois, France on September 6-9, 1993, 
and the topics were extended to accommodate Rock Mechanics; generous 
support was provided by the French Research Council. The 4th and 5th

Workshops held in Gifu, Japan and Perth, Australia The University of 
Minnesota was selected as the place for the 6th International Workshop on 
"Bifurcations and Instabilities in Geomechanics". The event was hosted at 
the St. John’s University in Collegeville, Minnesota U.S.A. on June 2 - 5, 
2002 and was supported by a grant from the NSF and has generous 
received Corporate support (BP Amoco-Houston, Schlumberger-Houston-
Cambridge, Shell-Houston), MTS-Minneapolis, Itasca-Minneapolis). 

The objective of all these workshops has been to bring together interna-
tional researchers and practitioners dealing with bifurcations and instabili-
ties in Geomechanics. The focus was to collect and debate the develop-
ments and applications that have taken place since the first workshop in 
1988. The topics covered included modelling of bifurcation, structural 
failure of geomaterials and geostructures, advanced analytical, numerical 
and experimental techniques, application and development of generalised 
continuum models etc. The scope of these workshops included analytical 
solutions, numerical methods, experimental techniques, and case histories. 
Besides the presentation of fundamental research findings, applications in 
geotechnical, petroleum, mining, and bulk materials engineering were 
emphasised. 

These workshops have provided a forum for researchers and practitio-
ners to present their findings, interact formally and informally on a person-
to-person basis, and exchange ideas on problems and solutions with collea-
gues from other countries. Exchange of ideas is an important ingredient in 
the professional growth and development of engineers. Our workshop has 
offered excellent opportunities for such growth. 

The papers presented in this special issue and those published in a 
special Volume entitled Bifurcations, Instabilities and Degradation in 
Geomechanics (George Exadaktylos and Ioannis Vardoulakis, editors) 
Springer Verlag (2006) give the picture of the state of the art in the area of 
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contemporary Geomechanics. At this point, the Guest Editors of this spe-
cial Issue of the IJNAMG and Organizers of the 7th IW BIDG would like 
to acknowledge the support of the following contributors and sponsors:  
Technical University of Crete (TUC), National Technical University of 
Athens (NTUA), EDRASIS S.A., Hellenic Society for Soil Mechanics and 
Geotechnical Engineering, DIGA Research Training Network, A.L.E.R.T. 
Geomaterials, TC34 of ISSMGE, and the Technical Chamber of Greece. 

The assistance of Mr. Pantelis Liolios, Mr. Sotiris Alevizos, Mrs. 
Stavroula Tsouvala, Mr. George Xiroudakis, and Mr. Manolis Veveakis 
during the successful organization and execution phases of this workshop 
is deeply acknowledged here. Last, but not least, we deeply acknowledge 
the contribution of Mr. George Barakos who significantly assisted the 
Guest Editors for the edition of this volume.   

G.E. Exadaktylos, TUC 
I.G. Vardoulakis, NTUA 



                                                                                                       vii 

Organization of the 7th International Workshop 

At the board meeting in St. John’s University it was decided that the next 
event will be hosted jointly by the National Technical University of Athens 
and the Technical University of Crete, at the City of Chania in the 
Northwest part of the island of Crete, in Greece. The event is entitled as 
the “7th International Workshop on "Bifurcations, Instabilities and Degra-
dation in Geomechanics”.   

For the organization of the 7th IWBIDG in Chania the following commit-
tees have been formed: 

Local Organizing Committee
International Advisory Board
International Scientific Committee

A number of topics were attacked in this Workshop such as: 

1. Advanced Experimental Techniques 
2. Micromechanical approaches 
3. Constitutive modeling 
4. Mathematical analyses 
5. Numerical analyses 
6. Failure mechanics, damage mechanics and fracture mechanics 
7. Multiphase flow and granular flow aspects 

Particular attention is also given to be plenty of time for presentations 
and fruitful discussions among the participants. 
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Introduction



1 The Concept of Bifurcation in Geomechanics 

Contemporary localization theory [24] is a natural extension of Mohr’s 
[12] original strength theory published in the year 1900 in a milestone 
paper with the title, “Welche Umstände bedingen die Elastizitätsgrenze 
und den Bruch eines Materials?”. Mohr’s question cannot be answered 
without resorting to experiments carefully and systematically run. Experi-
ments, however do not give definite answers, since they are always subject 
to theoretical interpretation: In order to arrive to some conclusion one 
needs a theoretical framework within which the experiment is run and 
interpreted. In that sense Mohr’s fundamental geometrical theory of stress 
analysis provided a useful tool for engineering design. Fig. 1.1 is taken 
from Mohr's paper and is usually referred to as the graphical representation 
of the 'Mohr-Coulomb' failure criterion; although in Mohr's original paper 
no explicit reference to Coulomb's work [4] is made. Unfortunately as a 
result of traditionalism it is customary to give more than necessary 
emphasis to the Mohr-Coulomb linear regression parameters, c  and ,
namely the renowned "cohesion" and "friction angle" of the material. 

+

+

0

2

14
3

1F

2F

2E

1E

1B2B

34BB

Fig. 1.1. Mohr's original failure criterion for a cohesive-frictional or 
‘Coulomb’ material  
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In the aforementioned paper Mohr summarizes his observations by 
pointing to the following general property of localized deformation: “...The 
deformations observed in a homogeneous body after the elasticity limit [is 
reached] are not confined in the smallest domains of the body. They 
consist more or less in that, parts of the body of finite dimension displace 
with respect to each other on two sets of slip bands...”. Indeed one basic 
property of localization phenomena is some degree discontinuity of the 
deformation. Today we know that prior to localization the governing 
partial differential equations of the underlying quasi-static rate-boundary-
value problem are elliptic and exclude discontinuous solutions. At the 
onset of localization these equations are changing type and from elliptic 
they turn hyperbolic. Slip-lines and shear-bands are thus identified with 
the characteristic lines of the governing hyperbolic partial differential 
equations. Presently we are not only interested in states of incipient failure.
One is increasingly interested in ways to trace the deformation in the so-
called post-failure regime. Since at failure the underlying mathematical 
problem is changing type (an elliptic-to-hyperbolic transition), post-failure 
we deal in general with mathematically ill-posed problems which need 
some degree of regularization. 

Granular materials are ideal examples of plastic1 solids, showing 
predominantly irreversible deformations. Besides internal friction granular 
media show predominant plastic dilatancy [17,10]. 

Fig. 1.2. Dilatancy of a regular dense poacking into a loose packing due to 
shear

                                                     
1
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Fig. 1.3. Stresses and velocities in direct shear of: a) a 'real' frictional-dilatant 
medium like dry sand and b) an equivalent, from the point of view of energy 
dissipation, model frictional material 

Accordingly Taylor's stress-dilatancy condition [21, 25] constitutes the 
simplest generalization of the normality condition of classical flow theory 
of plasticity, which is included in it for the degenerate case of zero effecti-
ve friction coefficient. It is customary, however, to call the corresponding 
flow-rule non-associated [13], although Taylor's rule provides a simple 
way to relate the normals to the plastic potential- and yield-surface. It 
should be noticed also that Rowe [19] and de Joselin de Jong [5] have used 
the same concept as Taylor. In these attempts of deriving macro-scopic 
equations from simple micro-mechanical models they have introduced a 
‘true’ angle of friction and identified it with the inter-particle friction 
coefficient.

Recently non-associative elasto-plastic behavior has been related to 
flutter-type instabilities [2], instabilities in the form of failure of Hill's con-
dition [5] and to loss of controllability at the element level [15]. Some of 
these instabilities may be physical and some are perhaps purely mathema-
tical. This state of affairs raises naturally the question if classical non-
associative plasticity theory and equivalent variants of it constitute after all 
useful soil models or not. 

In granular materials shear-band localization induces intense inter-granu-
lar slip, which in turn leads to strong dilatancy and large deformations of 
the material inside the localized zone [7], as is shown for example in Fig. 
1.4 in three sequential X-ray plates of shear-banding in sand specimen 
emerging out of soft-sand lens. Strong localized material dilatancy, due to 
grain rearrangement and grain rotation are the dominant micro-kinematical 
features of shear banding. Increasing porosity reduces naturally the coordi-
nation number of the granular assembly, yielding progressively to a 
weaker granular structure. On top of that and from the microstatical point 
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of view an important structure that appears to dominate this type of 
localized deformation is the formation and collapse (buckling) of grain 
columns [16], which in turn lead to a basic asymmetry of shear stress and 
probably to micro-polar effects [14]. 

Fig. 1.4. Evolution of dilatancy localization in a sand specimen under biaxial  
compression [20] 

Reduction of coordination number and grain-column buckling lead both 
to macroscopic (structural) softening of the material inside the localized 
zone. For equilibrium reasons the material outside the localized zone is 
unloading. Thus we perceive the shear-band as being separated from the 
rest material by a set of parallel discontinuity surfaces at some distance 

Bd2 , the so-called shear-band boundaries. The shear-band boundaries 
may be modeled as elasto-plastic boundaries; i.e. material surfaces, which 
separate the elasto-plastically softening shear band from its elastically 
unloading neighborhood.  
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Fig. 1.5. The elasto-plastic shear-band model 

The problem of modeling localized deformation in geomaterials is quite 
a challenging task and has been addressed in all previous Workshops of 
the present series. This is due to the mathematical difficulties, which are 
encountered while dealing with non-associate and softening material 
behavior and boundary-value problems with moving internal elasto-plastic 
boundaries. Thus, as first addressed by Mandel [11], questions of unique-
ness and stability of solutions arise naturally within the context of shear-
band analysis. It turns out that the result of such analyses depends 
primarily on the assumed physical non-linearities, which are inherent to 
the underlying constitutive description [3] and, in a much lesser degree, it 
is influenced by geometrical non-linearities. 

The various drawbacks and shortcomings of the classical continuum and 
constitutive theories in connection with strain localization or, more gene-
rally, for problems where loss of ellipticity of the governing partial 
differential equations is taking place, have been discussed extensively in 
many recent papers [1]. The origin of this undesirable situation can be 
traced back to the fact that conventional constitutive models do not contain 
material parameters with the dimension of length, so that the shear-band 
thickness or the dominant surface buckling mode are vanishingly small, 
which in turn leads to mathematical ill-posedness of the related linearized 
problem [20].  

Already in the early 70’s the Karlsruhe group under the leadership of 
Professor Gerd Gudehus [22] has conjectured that spontaneous loss of 
homogeneity in the form of shear-band formation is a clear indication for 
the existence of material length scale. Indeed, there is ample experimental 
evidence that shear-bands in granular materials engage a significant 
number of grains. Based on direct experimental observations, Roscoe [18] 
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proposed that the width of shear-bands is about 10 times the average grain 
diameter.

Fig. 1.6. Shear-band thickness correlation to grain size [24] 

Localization of deformation leads to a change of scale of the problem, so 
that phenomena occurring at the scale of the grain cannot be ignored 
anymore in the mechanical modeling process of the macroscopic behavior 
of the material. Thus in order to describe correctly localization phenomena 
it appears necessary to resort to continuum models with micro-structure. 
These generalized continua usually contain additional kinematical degrees 
of freedom and/or higher deformation gradients. These observations have 
prompted the extension of classical continuum mechanical descriptions for 
geomaterials past the softening regime by resorting to the so-called 
Cosserat or Gradient models. Cosserat continua and higher gradient conti-
nua belong to a general class of constitutive models, which account for the 
material’s micro-structure. The description of statics and kinematics of 
continuous media with microstructure has been studied systematically by 
many authors in the past [8, 9] and several important contributions appea-
red in the present series of Workshops. The consideration of higher order 
continuum models is however not free of new problems and challenges. 
Issues of extra boundary conditions, physical parameter identification, 
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computational issues and thermodynamical considerations are presently at 
the drawing board of researchers and engineers.  

There is also interest in Structural Geology where shear bands appear as 
faults (Fig. 1.7a,b & c) which among other things give clues to the history, 
the magnitude and the orientation of tectonic stresses. Advanced studies in 
coupled phenomena related with localized deformations are now applied to 
understand the effects of fluid flow and temperature changes on the 
behavior of active fault zones. Further, other tectonic processes as folds 
may be studied in the context of bifurcation theory as presented in the 
pioneering work of Maurice Biot. 

Fig. 1.7a: (a) Pyrgaki normal fault at Aigion region and 
                (b) Rough sketch of the normal faults forming the Gulf of Corinth 
                    (http://www.corinth-rift-lab.org)
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Fig. 1.7b : Normal and antithetic faults delineated from inversion of 
seismological measurements at the Gulf of Corinth [26] 

Dissemination of bifurcation theory: Bifurcation and stability analyses 
focusing mainly on the constitutive behavior of geomaterials (soils, rocks 
and concretes) can be viewed as an extension of classical strength of 
materials.  In its early development, bifurcation theory applied to geome-
chanics was used by very few researchers and was not appreciated by the 
engineering community, because it requires a more advanced mathematics 
and continuum mechanics background.  The “7th International Workshop 
on Bifurcations, Instabilities and Degradation in Geomechanics (IWBIDG 
2005)” organized jointly by the National Technical University of Athens 
and the Technical University of Crete aims at a significant dissemination 
of bifurcation theory.  A new breed of young engineers from Europe and 
abroad have presented developments in advanced mathematical, constitu-
tive and numerical modeling, as well as in experimental techniques.   

Education of decision-making civil and mining engineers: It appears 
that some of the important modeling work in civil and mining engineering 
as well as in geology is increasingly performed by applied mathematicians 
and physicists. This is because some of the more conventional civil engi-
neering, mining engineering, geological engineering and geology schools 
do not prepare their students for advanced needs, which call for top skills 
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in applied mathematics, mechanics, computer aided analysis and experi-
mentation.  The trouble in choosing scientists to play the role of civil and 
mining engineers lies in the fact that the former, coming from a university 
environment with different views on applied and fundamental research, 
may, in many occasions, lead to ‘re-inventing the wheel’. On the other 
hand geologists know rocks very well, but often they shy away from 
mathematical presentations concerning the physical and mechanical 
properties of rocks. The reverse can also be true: engineers do not always 
know the history of the rocks on which they have accumulated substantial 
data. This is another manifestation of the loss of engineering know-how, 
which is the delayed effect of not supporting engineering faculty to be 
active in advanced fundamental research. 

The forthcoming 8th International Workshop on "Bifurcation, 
Instabilities and Degradation in Geomechanics" will cover the "classi-
cal" subjects of contemporary constitutive theory, bifurcation, localization 
and stability theories, methods of numerical simulations, and advanced 
experimental techniques, and hopes also to extend the scope into the 
subjects of degradation and phase changes of Geomaterials and monu-
mental stones, being these of purely mechanical or physicochemical origin. 
Another aim is to bring closer geologists with engineers in order to jointly 
attack the problems related with the mechanics of jointing, faulting and 
folding in geological materials. 
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Summary

High porosity sandstones are observed to fail by the formation of localized 
bands in field and laboratory settings. Compaction bands form perpen-
dicular to the direction of maximum compression, with pure compactant 
strain, while shear bands form at an angle to the direction of maximum 
compression, with shear strain accompanied by either compactant or 
dilatant strain normal to the band. Recent experimental evidence indicates 
that mechanical behavior of some high porosity sandstones depends on the 
third invariant of deviatoric stress (J3). In this work, a J3 dependent single 
yield surface constitutive model was developed, and band orientation 
predictions determined using the Rudnicki and Rice bifurcation theory. 
While in the laboratory, high porosity sandstones are typically tested under 
axisymmetric compression (ASC; intermediate principal stress equal to the 
least compressive principal stress), stress states in the field are often non-
axisymmetric. Therefore, localization conditions were determined under 
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P1, a stress state perturbed from ASC. For ASC, the localization conditions 
resulting from the J3 dependent model are identical to those from the J3
independent model. The most favorable conditions for compaction band 
formation occur under ASC, while under P1, localization conditions favor 
shear band formation. Mild to moderate J3 dependence favors formation of 
shear bands over compaction bands, and a strong J3 dependence prohibits 
localized deformation band formation. These results provide one possible 
expla-nation for relatively few field observations of compaction bands 
versus more commonly observed shear bands. 

1 Introduction 

The phenomenon of strain localization has been identified as a common 
deformation mode in high porosity sandstones, both in the field and in 
laboratory test specimens. Localized deformation is observed to occur at 
scales ranging from intragranular to global (Aydin 1978; Mollema and 
Antonellini 1996; Olsson 1999; Olsson and Holcomb 2000; Wu et al. 
2000; Cashman and Cashman 2000; Klein et al. 2001; Wong et al. 2001; 
Du Bernard et al. 2002; Baud et al. 2004a; Baud et al. 2004b; Sternlof and 
Chapin, 2004).  Deformation structures are typically classified depending 
on the dominant strain component as: compaction bands, which form 
perpendicular to the direction of maximum compression, and are identified 
as planar structures with pure compressional deformation; dilation bands, 
which form perpendicular to the direction of minimum compres-
sion/maximum extension with pure dilational deformation; and, shear 
bands, which form at an angle to the direction of maximum compression, 
and are characterized by shear deformation, often coupled with either 
dilatant or compactant deformation normal to the band. In the laboratory, 
high porosity sandstones are commonly tested under axisymmetric 
compression (ASC). The ASC stress state is traditionally obtained by 
holding the confining pressure constant (intermediate principal stress equal 
to the minimum compressive stress) while increasing the axial 
compressive stress. Therefore in the traditional ASC test the lateral stresses 
are maintained at a constant value, unlike in an oedometric test where zero 
lateral strain is maintained. Under ASC, laboratory specimens are 
generally observed to fail by the formation of either shear bands and/or 
compaction bands, depending on the confining pressure under which the 
material is tested (Dunn et al. 1973; Scott and Neilsen 1991; Wong et al. 
1992; Zhang et al. 1993; Wong et al. 1997; Olsson 1999; Mair et al. 2000; 
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Olsson and Holcomb 2000; Wu et al. 2000; Klein et al. 2001; Wong et al. 
2001; Du Bernard et al. 2002; Baud et al. 2004a; Baud et al. 2004b).

Typically, localized deformation band formation in high porosity sand-
stones is accompanied by a change in porosity within the band, compared 
to the base material. As a result of a local change in porosity within the 
band, permeability variations are also reported (Zhu et al. 1997; Olsson 
and Holcomb 2000; Baud et al. 2004b). It has been suggested that the 
formation of localized bands in high porosity sandstones could alter fluid 
flow pathways within reservoirs, due to changes in permeability (Zhu et al. 
1997; DiGiovanni et al. 2000; Olsson 2001; Olsson et al. 2002; Baud et al. 
2004b). Sand production during bore hole drilling could be due to the 
formation of compaction bands perpendicular to the drilling direction; the 
crushed material within compaction bands is washed out by drilling fluid 
(Haimson and Song 1998; Haimson 2001). Additionally, the efficiency of 
porous sandstones for use in sequestration applications could be influenced 
by the formation of localized bands (Wawersik et al. 2001). Zones of 
localized compaction have also been observed in porous cellular materials 
such as metal foams, honeycombs and cancellous bone (Odgaard et al. 
1989; Papka and Kyriakides 1999; Ashby et al. 2000; Bastawros and 
Evans 2000). In both granular and cellular solids compaction localization 
is characterized by a band of reduced porosity.  Whereas, in granular 
materials, the porosity reduction mechanism inside the band is grain 
crushing and/or grain rotation, in cellular solids, compaction bands form 
via cell collapse. 

Rudnicki and Rice (1975) determined the conditions governing 
formation of shear bands in low porosity rocks by incorporating a single 
yield surface constitutive model (SYSM) within the framework of a 
bifurcation theory. Subsequently, compaction bands were identified as a 
new mode of localized deformation within high porosity sandstones in the 
field, and in laboratory specimens (Mollema and Antonellini 1996; Olsson 
1999; Olsson and Holcomb 2000; Klein et al. 2001; Wong et al. 2001; 
Sternlof et al. 2004). Following experimental studies of Castlegate 
sandstone tested under ASC, Olsson (1999) proposed that compaction 
band formation could be explained using the Rudnicki and Rice (1975) 
localization theory. Issen and Rudnicki (2000, 2001) determined 
conditions for compaction band formation by re-examining the results 
obtained by Rudnicki and Rice (1975), and considering work done by 
Ottosen and Runesson (1991) and Perrin and Leblond (1993). According 
to the constitutive model considered by these authors (Rudnicki and Rice 
1975; Ottosen and Runesson 1991; Perrin and Leblond 1993; Issen and 
Rudnicki 2000; Issen and Rudnicki 2001), the mechanical behavior of high 
porosity sandstones was assumed to be independent of the third invariant 
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of deviatoric stress (J3). However, recent experimental evidence indicates 
that some high porosity sandstones display J3 dependence (Drs. T. –f. 
Wong and P. Baud, personal communication). For such materials, the yield 
stress under compression is greater than that under extension i.e., the 
portion of the yield surface accessed by the stress path for extension is 
closer to the mean stress axis than that accessed under compression. While 
the mechanical behavior of some geomaterials has been described using J3
dependent constitutive models (Lade 1977; Desai 1980; Desai and Faruque 
1983; Desai et al. 1986; Desai and Salami 1987; Brown and Yu 1988; 
Lade and Kim 1988; Sture et al. 1989; Bardet 1990; Ottosen and Runesson 
1991; Lade and Kim 1994; Schwer and Murray 1994; Fossum and 
Fredrich 2000; Krenk 2000), none of these models were extended to 
discuss the conditions governing localized deformation. 

Motivated by recent experimental observations, a J3 dependent SYSM is 
developed in this work. Localization conditions and theoretical band 
orientation predictions are determined by incorporating this J3 dependent 
SYSM within the framework of the Rudnicki and Rice bifurcation theory. 
While the behavior of high porosity sandstone is typically investigated 
under ASC in the laboratory, stress states in the field are certainly not 
limited to ASC, and there is some question as to whether this stress state is 
common. Additionally, field observations of compaction bands are rare 
compared to shear bands. One possible reason for this is that compaction 
bands are either under-identified or misdiagnosed. Another possible 
explanation is that the ASC stress state, while identified as the 
theoretically most favorable for compaction band formation (Issen and 
Rudnicki 2000), is not common in the field. Therefore, in order to 
understand whether non-axisymmetric stress states produce conditions 
favoring compaction band formation, the present work investigates band 
orientation predictions for a stress state perturbed from ASC. Note that this 
analysis can be conducted for any number of stress states between ASC 
and axisymmetric extension (ASE, intermediate principal stress equal to 
the maximum compressive principal stress). However, since the focus of 
this investigation is on compaction bands, which are reported to form 
under ASC or near-ASC conditions, this work examines results for a stress 
state slightly perturbed from ASC. In the succeeding analyses, the engine-
ering convention for principal stresses is used to derive the theoretical 
results: IIIIII , positive in tension, where III corresponds to the 
direction of maximum compressive stress. In geomechanics notation, the 
principal stresses are traditionally defined as: III1 , II2 , and 

I3 .
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2 Constitutive Relation 

The expressions defining the yield and plastic potential surfaces for the J3
dependent SYSM are similar to those proposed by Holcomb and Rudnicki 
(2001) for a J3 independent SYSM. The J3 dependence is incorporated 
within the constitutive relations though a similarity angle, . The yield 
surface, F, and the plastic potential surface, , are defined as 

3
p

JF f , , (2.1)

3
p

J g , , (2.2)

where the subscript ‘J3’ indicates a J3 dependence. In (2.1) and (2.2), the 
dependence on the first and second invariants of stress is through the mean 
stress, 1 3I / , and the Mises equivalent shear stress, 2J ,

respectively. The first invariant of principal stress is 1 kkI  (positive in 

tension); and the second invariant of deviatoric stress is 2 1 2 ij ijJ / s s ,

where the deviatoric stress is / 3ij ij kk ijs . The similarity angle is 
1 3

31 3 cos 3 3 2/ J / , where 3 1 3 ij jk kiJ / s s s . The similari-

ty angle, , is used to incorporate the J3 dependence instead of the Lode 
angle because of the convenience afforded during constitutive model deve-
lopment. It is related to the Lode angle, , as: cos3 sin 3 , such that 
the similarity angle varies smoothly from 0 to / 3  between ASE and 
ASC, while the Lode angle varies from / 6  to / 6 . The accumulated 
inelastic shear strain, p , tracks inelastic deformation. The inelastic strain 
increment, obtained by incorporating the plastic potential expression (2.2) 
within the non-associated flow rule, /p

ij ijd d , is 

3

p
ij J

ij ij ij

g gd d (2.3)

where d  is a non-negative scalar. The requirement that the material 
continues to experience inelastic deformation with continued loading past 
the elastic limit, is satisfied by the consistency condition, dF = 0. This 
condition, using the expression for the yield surface 2.1, becomes 
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3
0p

pJ

f f fdF d d d d (2.4)

In (2.3) and (2.4), f /  and g /  are the components of the 
gradient, with respect to , of the yield and plastic potential surfaces, 
respectively. These gradient components are defined as: /f and

/g , where μ (the friction coefficient) and  (the dilation coef-
ficient) are the local slopes, in the  –  plane, of the yield and plastic 
potential surfaces, respectively (Fig. 2.1). 

Fig. 2.1. Single yield surface for high porosity sandstone. The friction factor, μ,
defines the slope of the yield surface. The dilation coefficient, , defines the slope 
of the plastic potential surface, which is perpendicular to the inelastic strain 
increment 

In 2D space, the slope of a curve at a specific point (point O in inset, Fig. 
2.2) is defined as: 

tan

tan
O

rr
m

rr
(2.5)

where, r is the radius of the curve at ‘O’, and  is the angle made by ‘O’
with the x-axis (inset, Fig. 2.2). Relating these terms to the parameters in 
the deviatoric plane, r corresponds to the shear stress , and  corresponds 
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to the similarity angle, . The partial derivative /r  corresponds to 
/ / / /F F  for the yield surface, and to 

/ / / /  for the plastic potential surface. 
Substituting these terms in 2.5 and rearranging, the definitions for the 
gradients / / /  and / / /F F  are given by: 

1 tan/
/ tan

p

p

m

m
(2.6)

1 tan/
/ tan

y

y

mF
F m

(2.7)

Fig. 2.2. Yield/plastic potential surfaces and stress paths in the deviatoric plane. 
The circle represents a yield/plastic potential surface with no J3 dependence, and 
the triangle represents a strong J3 dependence. The similarity angle, , is measured 
from the ASE axis. The slope of a curve at point O (in inset) is defined as a 
function of  r, the radius of the curve at O, and , the angle made by point O with 
the x-axis. These can be related to the constitutive parameters as: r   and 
, and used to define the deviatoric parameters  and . Inset table gives values of 
 and  for the ASC and P1 stress states 
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In (2.3) and (2.4), g /  and f /  are the components of the 
gradient, with respect to , of the plastic potential and yield surfaces, 
respectively. These components are related to the gradients defined in (2.6) 
and (2.7) as / / / /g  and 

/ / / /f F F . The deviatoric parameters 
and  are related to the local slopes, in the deviatoric plane, of the plastic 
potential (mp) and yield surface (my), and the similarity angle ( ) as 

tan 1
tan

p

p

m
m

(2.8)

tan 1
tan

y

y

m
m

(2.9)

Using the tensor definitions of d , d  and d , and substituting the 
gradient components defined above into (2.3) and (2.4), the inelastic strain 
increment, p

ijd , and the inelastic shear strain increment, pd , are found 
to be 

3 2 3
ijp

ij ij ijJ

s
d d S (2.10)

3

1
2 3/

ijp
ij ij ijpJ

s
d S d

f
(2.11)

where  

2

1 cos3 3
sin3 2 23

ij ij ik kj
ij

s s s
S (2.12)

In (2.11), pf /  = h, which is a hardening modulus defined as the 
slope of the shear stress – inelastic shear strain curve at constant mean 
stress. The inelastic strain increment, p

ijd , is related to the inelastic shear 

strain increment, pd , as 2 2 / 3p p p p p
ij ij kk mmd d d d d  (derived 

from the relation 2p p p
ij ijd de de  and the definition of the deviatoric 
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strain 3p p
ij ij kk ijde d d / ). Using this relation and (2.10), the 

inelastic shear strain increment is found to be 21pd d .
Comparing this definition for the inelastic shear strain increment, with that 
given in (2.11), d  is found to be 

2

1
2 31

ij
ij ij ij

s
d S d

h
(2.13)

Finally, substituting (2.13) into (2.10), the total inelastic strain 
increment is 

2

3

1
2 3 2 31

p
ij J

ij kl
ij ij kl kl kl

d

s s
S S d

h

(2.14)

As will be discussed later, when the J3 dependence is removed,  and 
equal zero; in which case the J3 independent expression for p

ijd ,
determined by Rudnicki and Rice (1975), is recovered from (2.14). 

The elastic strain increment, assuming isotropic elasticity, is defined as 
1/ 2 / 1e

ij ik jl ij kl kld G d . Therefore, the total strain 

increment is given by e p
ij ij ij ijkl kld d d R d . Inverting this strain 

– stress relation results in ij ijkl kld L d , where Lijkl is a modulus tensor. 
The expression for the modulus tensor, Lijkl, for the J3 dependent SYSM, is 
given by 

1
ijkl ijkl ij klL M A B

H
(2.15)

where

2
1 2ijkl ik jl il jk ij klM G (2.16)

2ij ij ij ijA GN K G S (2.17)

2kl kl kl klB GN K G S (2.18)
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21H h K G G (2.19)

In (2.16) – (2.19) G is the elastic shear modulus, K is the elastic bulk 
modulus, Nij are the stress state parameters defined as ij ijN s / , and 
is the elastic Poisson’s ratio. 

3 Localization Conditions 

3.1 Hardening Modulus (h) Expression 

Rudnicki and Rice (1975) modeled localized deformation as a bifurcation 
from homogeneous deformation due to instability in the constitutive 
framework used to describe the behavior of an inelastically deforming ma-
terial. Localized deformation, in the form of a planar band whose orienta-
tion is defined by the band normal n , is possible when det 0i ijkl ln L n  is 

satisfied. When the combination of material parameters is such that this 
condition is satisfied, band formation is predicted. Substituting (2.15) into 
the localization condition and solving for h, results in 

RR
1 2 32

3

1

1

Jh

G
h H H H
G

(3.1)

where the H1, H2 and H3 terms, defined in Appendix A, are functions of ,
nK and NK. In (3.1), hRR is equivalent to the hardening modulus expression 
from the J3 independent Rudnicki and Rice (1975) SYSM, and is given by 

22 22 2 2RR
12 23

/ /
4G
3

                                                            / 1

G N K G N K Gh N N
K G

K G

(3.2)

In (3.2), the stress state parameters (expressed in a local coordinate 
system where the 2-direction is defined as perpendicular to the band; see 
Rudnicki and Rice 1975), represented by combinations of Nij and Yij terms, 
are defined as 



Vennela Challa, Kathleen Issen   27 

2 2 2
22 I I II II III IIIN n N n N n N (3.3)

2 2 2 2 2 2
22 I I II II III IIIY n N n N n N (3.4)

2 2 2
12 23 22 22N N Y N (3.5)

2 2 2 4 2 4 2 4 2
12 23 22I I II II III IIIY Y n N n N n N Y (3.6)

2 3 2 3 2 3
12 12 23 23 22 22I I II II III IIIN Y N Y n N n N n N N Y (3.7)

where nK are band normal components (K = I, II, III are the principal stress 
directions), and NK are stress state parameters in the principal stress 
directions, defined as: K KN s / , and their values are specific to the 
stress state under consideration. In (3.3) – (3.7), Yij are stress state 
parameters (expressed in the local coordinate system) defined as: 

2/ij ik kjY s s . Typically, the value of the hardening modulus, h, is 
observed to decrease with continued inelastic loading. Therefore, the band 
orientation that produces the maximum value for 

3Jh  is predicted to form. 

Note that, when the J3 dependence is removed,  and  equal zero, and 
(3.1) reduces to (3.2). 

3.2 Determination of Critical Hardening Modulus (hcr)

Equations (3.3) – (3.7) can be simplified using the assumption that nII = 0, 
corresponding to localized deformation in the plane of maximum shear 
(Rudnicki and Rice 1975). Recall that the band orientation with the 
maximum value of the hardening modulus is the orientation theoretically 
predicted to form. Therefore, using the method of Lagrange Multipliers, 
the expression defining the maximum h, and the corresponding predicted 
band orientation, are determined. This expression for h is referred to as the 
critical hardening modulus, hcr. Analytical expressions are determined for 
two cases: (1) one of the nK in (3.1) is zero, corresponding to maximizing 
hcr for shear bands, and (2) two of the nK are zero (nI = nII = 0 corresponds 
to compaction bands, and nII = nIII = 0 to dilation bands). The hcr
expression for shear bands is given by 
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2 2
cr

1 2 2 1

2
1 2

2 2
1 2

1 2 2 1 1 2

3 1 2 2 11
8 1 3 1 21

1               1 2
2

1 2 1 2
1

2 2 1

II

J

II I II III

II

h T S T S
G S S

N N N N S S

N T S T S T T
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where the terms T1, T2, S1 and S2, defined in Appendix A, are functions of 
the variables , μ, ,  and . The angle between the band normal 
corresponding to the plane of localization, and the direction of maximum 
compression, is: III IN / N , where  is given by 

1 2

1 2

1 2
1

2 II
T T

N
S S

(3.9)

Under general loading conditions, the solution given by (3.8) is valid 
when the following inequality is satisfied 

1 2

1 2

1 2
1

2III II I
T T

N N N
S S

(3.10)

which is determined from the requirement that the squares of the 
components of the band normal must be positive: 2 0Kn . If the left side 
of the inequality is violated, compaction bands are predicted, and if the 
right side is violated, dilation bands are predicted. 

When two of the nK are equal to zero, the third equals unity following 
the restriction 2 2 2 1I II IIIn n n . When 2 2 0II IIIn n  and 2 1In , the 
band is perpendicular to the direction of minimum compression/maximum 
extension, and is defined as a dilation band. Similarly, when 2 2 0I IIn n
and 2 1IIIn , this corresponds to a compaction band, which is 
perpendicular to the direction of maximum compression. The hcr for these 
orientations is 
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where J = III for compaction bands, and J = I for dilation bands. The terms 

1
Jq  and 2

Jq , defined in Appendix A, are functions of the variables , ,

and NJ. In (3.11), cr RR

Jh  is the expression for the critical hardening 

modulus obtained from the J3 independent SYSM used by Rudnicki and 
Rice (1975), and defined as (Issen and Rudnicki 2000). 

2 2cr

2

1 31
G 9 1 4

1 1 1
1 2 3

J

J

J

h
N

N
(3.12)

3.3 Theoretical Parameters 

In (3.1) – (3.12), the stress state parameters, NK, and the similarity angle, ,
are functions of the stress state. For example, the similarity angle (see Fig. 
2.2) is equal to 3/  for ASC, 6/  for pure shear (PS), and 0 for ASE. 
The stress state parameters for ASC are defined as: 1 3I IIN N / ,

2 3IIIN / ; and for ASE are given by: 2 3IN / ,

1 3II IIIN N / . The values of the deviatoric parameters,  and ,
depend on the similarity angle, and the shapes of the yield and plastic 
potential surfaces in the deviatoric plane. Two important assumptions are 
considered to limit the shapes of these surfaces: (1) The material is 
assumed to be isotropic prior to inception of localized deformation, 
therefore, the shape of the yield surface is constrained to be symmetric 
about the principal stress axes in the deviatoric plane, (2) It is required that 
the yield and plastic potential surfaces remain convex, therefore, the 
limiting shapes for these surfaces are assumed to be a circle, corresponding 
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to no J3 dependence, and a triangle, corresponding to extreme J3
dependence (see Fig. 2.2). 

For circular surfaces, the slopes (in Cartesian coordinates) of the yield 
and plastic potential surfaces are given by: 1 tany pm m / .
Substituting this into (2.8) and (2.9) reveals that, for circular surfaces, 

0  is always true, irrespective of the stress state under which the 
material is loaded (i.e., any stress state between and including ASC and 
ASE). When 0  is substituted into (3.1), the expression for 

3Jh
reduces to hRR, which is equivalent to the h from the J3 independent SYSM 
used by Rudnicki and Rice (1975). Similarly, when 0  is 

substituted into (3.11), the expression for cr
3

J

J
h reduces to cr RR

Jh , the 

result from the J3 independent SYSM defined in (3.12). Since the J3
independent model can be recovered from the J3 dependent model by 
setting 0 , circular surfaces correspond to no J3 dependence under 
any stress state. Conducting a similar analysis for triangular surfaces, it is 
determined that 0  under ASE ( 0 ), while, for PS 

( 6/ ), 1/ 3 . Under ASC there is a sharp vertex, and the 
strain direction is undefined. To avoid this singularity, the vertices of the 
triangle are typically rounded, such that 0  is again true for ASC. 
Therefore under ASC or ASE, 0  is always true irrespective of the 
shape of the yield and plastic potential surfaces, and the localization 
conditions reduce to those from the J3 independent SYSM. For non-
circular yield and plastic potential surfaces, the influence of the J3
dependence can be significant for stress states perturbed from ASC and 
ASE.

4 Results 

In prior sections, constitutive relations and localization conditions for a J3
dependent material were derived for a general stress state.  Next, we 
examine the influence of J3 dependence on band orientation predictions for 
the ASC stress state and a stress state P1 perturbed from ASC. To 
determine the hcr for any stress state, first the values of NK, ,  and ,
specific to the stress state, must be determined. The stress state parameters 
were previously defined for ASC and ASE. Issen and Challa (submitted) 
used sample principal stress values to determine the NK parameters for 
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stress states perturbed from axisymmetric. Note that the deviatoric stress 
states are characterized by the value of the intermediate principal stress 

II , with respect to the values of the other two principal stresses 

I III, . For ASC and ASE, II is equal to either I or III, respectively, 
which is no longer true for stress states perturbed from axisymmetric. 
Fixed numerical values were assumed for the minimum and maximum 
principal stresses, and values of II  were assumed to range between 

II I  (corresponding to ASC) and II III  (corresponding to ASE). 
While Issen and Challa (submitted) investigated a range of stress states 
between ASC and ASE, in this work only the P1 stress state will be 
discussed, in addition to reviewing the results under ASC. 

4.1 Specialized Deviatoric and Stress State Parameters 

In the current analysis, the assumed minimum and maximum principal 
stress values are: III  = –200 MPa and I  = –100 MPa, respectively. 
Additionally, the elastic Poisson’s ratio, , is assumed to be 0.2. While, for 
ASC, II  = –100 MPa, for the P1 stress state, II  = –110 MPa. The 
similarity angle, , for the P1 stress state is found to be equal to 54.7˚, and 
the values of the stress state parameters are determined to be: NI = 0.667, 
NII = 0.483 and NIII = –1.15.  While specific stress values were used to 
facilitate the analysis, the results discussed below are not limited to these 
specific values; results are applicable to all stress states that produce the 
same values of NI, NII and NIII (for example, III  = –100 MPa, II  = –55 
MPa, and I  = –50 MPa). 

For circular yield and plastic potential surfaces, 0  is true for 
all stress states. For triangular surfaces (for non-axisymmetric stress 
states), tan, , so for the P1 stress state ( 54 7. ),

 1 41, . . Therefore, for the P1 stress state, the values associated 
with the deviatoric parameters vary from 0 to –1.41, for surfaces varying 
between a circle and a triangle (see table inset, Fig. 2.2). In (3.1), for any 
specific stress state (ASC, P1, ASE, etc.), the values of NK and  are fixed. 
Additionally, for a specified stress state, after the shapes of the yield and 
plastic potential surfaces in the deviatoric plane are defined, the values of 
the deviatoric parameters  and  are also fixed. Therefore, for a specific 
stress state with defined shapes for the yield and plastic potential surfaces,  
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Fig. 4.1. Contours of constant cr
IIIh  in the  – μ plane, using equation (3.12). 

Moving outward from O, along normality (  = μ), hcr is always negative and 
compaction band formation is inhibited. Moving outward along AA’ (  + μ = 3), 
hcr > 0 and compaction band formation is predicted prior to the peak stress 

the h in (3.1) is a function of only the band normal component nI, and the 
parameters  and μ. Consequently, the band orientation predictions for the 
ASC and P1 stress states are investigated by plotting the results on the  – 
μ plane.

4.2 Band Orientation Predictions: Limiting Conditions 

In this work, conditions are defined as being theoretically “favorable” for 
band formation when hcr > 0 is true, since this corresponds to the inception 
of localized deformation earlier in the loading program. Conditions for 
localized deformation are theoretically “unfavorable” when hcr is negative, 
since this corresponds to band formation after the peak in the stress-strain 
curve. This distinction is based on current experimental observations, 
which indicate that compaction band formation initiates pre-peak or at 
peak, rather than post-peak. Note that, although band formation is still 
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possible for small negative values of hcr, when hcr is a large negative 
number (e.g., hcr < –G/2), localized deformation is likely to be completely 
prohibited (Challa and Issen 2004; Issen and Challa 2005). The value of hcr

varies significantly, depending on the values of  and .  This is shown in 
Fig. 4.1, which plots contours of constant hcr for ASC, using the cr

IIIh
expression for compaction bands from (3.12). 

Band orientation predictions for the ASC and P1 stress states are 
illustrated in Figs. 4.2 – 4.8. In these plots, compaction bands are predicted 
below line AA’, dilation bands above line BB’ and shear bands between 
these two bounding lines. The equations defining lines AA’ and BB’ are 
determined using inequality (3.10). The value of hcr, determined from (3.8) 
and (3.11), is positive in the shaded regions and negative in the unshaded 
regions. Experimental data from Olsson (1999) and Wong et al. (2001), 
where compaction bands and/or shear bands were observed to form under 
ASC, are represented by ovals. The dots represent  and μ values 
determined using data from Bentheim sandstone tested under ASC (Baud 
et al. 2004a) where compaction bands and/or shear bands were observed. 
We know of no reported experimental data from high porosity sandstones 
tested under the P1 stress state, which could be used to evaluate theoretical 
predictions for this stress state.  However, while the  and μ values for this 
stress state will not likely be exactly the same as those for ASC, it does not 
seem unreasonable to assume that the deviation would not be too large.  
Therefore, the ASC data values are also shown on Figs. 4.3 – 4.8, for the 
P1 stress state, to provide a rough estimate of how theoretical predictions 
might be expected to compare with experimental data. Existing 
experimental data from laboratory tests on high porosity sandstones 
indicate that while non-normality is typically true for these materials, large 
deviations from  do not occur (Olsson 1999; Wong et al. 2001; 
Baud et al. 2004a). Therefore, band orientation predictions in Figs. 4.2 – 
4.8 are investigated only for values of  and μ satisfying normality, or 
corresponding to a small deviation from normality. 

4.3 Axisymmetric Compression 

Expression (3.12) represents a hyperbolic paraboloid (saddle shape) in the 
h –  –  space, and Fig. 4.1 shows the  –  plane obtained by taking a 
section through h = 0.  The saddle point falls at 3 / 2 , and hcr

= 0 along the lines 3 / 2  and 3 / 2 .  As the values of 
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and  move outward from O, along the  line, cr
IIIh  becomes 

increasingly negative. Therefore, under ASC, when normality is true, cr
IIIh

Fig. 4.2. Band orientation predictions as a function of and  for ASC (  =  = 
0). The hcr > 0 in the shaded regions. Compaction bands (  = 0˚) are predicted 
below  + μ = - 3, and dilation bands (  = 90˚) are predicted above  + μ = 3(2-

)/(1+ ).  Shear bands, with 0˚  90˚, are predicted between AA’ and BB’.  
The compaction band orientation, represented by the AA’ line passes through the 
saddle point (- 3/2, - 3/2). The band orientation, , is the angle between the band 
normal and the axial direction.  Only shear bands are predicted for reported values 
of � and �, while compaction bands and/or shear bands were observed 

is always negative, so band formation is predicted later in the loading 
program, and localization conditions are defined as being “unfavorable”.  
However, as the values of  and  move outward from the saddle point, 

along the 3  line, cr
IIIh  is always positive and becomes 

increasingly positive for increasing deviations from normality. Thus, 
theory predicts increasingly favorable localization conditions for 
increasing deviations from normality; however, experiment results 
typically demonstrate only modest deviations from normality.  Therefore, 
the optimal conditions for localization occur for the band angle that 
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produces the largest positive hcr for the smallest deviation from normality.  
We refer to this band orientation as the “optimal band angle.” As shown in 
Fig. 4.2, for ASC, the compaction band is the orientation corresponding to 
the optimal localization conditions, since the compaction band boundary 
(line AA’ in Fig. 4.2) goes through the saddle point and always lies in the 
region where cr 0h . Therefore, conditions for the formation of 
compaction bands are defined as being “favorable” for combinations of 
and μ values that fall on (or slightly below) line AA’. 

Under ASC, regardless of J3 dependence (Fig. 4.2), shear bands are 
predicted between the bounds defined by 

3 3 2 1/ . There is a smooth transition in the 
predicted band angles, from low angle compacting shear bands just above 
line AA’, to high angle dilating shear bands just below line BB’.  
However, as reported by other authors (Olsson 1999; Issen and Rudnicki 
2000; Issen and Rudnicki 2001; Wong et al. 2001; Baud et al. 2004a) the 
data falls entirely in the region where shear bands are predicted, so the 
observed shear bands are predicted, but not the observed compaction 
bands.  Improved agreement can be obtained through use of a J3
independent two yield surface model (Issen 2002; Challa and Issen 2004; 
Issen and Challa 2005).  Incorporation of J3 dependence into a two yield 
surface model is significantly more complex than for the SYSM discussed 
in this work, and therefore, will be examined in a forthcoming paper. 

4.4 J3 Independent SYSM: P1 Stress State 

Figure 4.3 shows band orientation predictions for the P1 stress state, using 
the J3 independent model.  The predictions are largely similar to those for 
ASC, and hcr < 0 is again true along normality. The saddle point is at (–
0.73, –0.73), which has moved up slightly along the  =  line, compared 
to the location for ASC. Unlike ASC, where AA’ (corresponding to 
compaction bands) passes through the saddle point, under P1, the CC’ 
contour, corresponding to an 18˚ compacting shear band (characterized as 
a shear band with a compaction strain component normal to the band), 
passes through the saddle point.  Therefore, line CC’ corresponds to the 
largest range of  and μ values along which hcr > 0 is always true.  Thus, 
for a slight perturbation from ASC, the most favorable localization 
conditions exist for the 18˚ band orientation, in contrast to ASC, where 
conditions for compaction bands were the most favorable. Shear bands are 
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Fig. 4.3. Band orientation predictions as a function of and  for P1 (J3

independent SYSM,  =  = 0). The hcr > 0 in the shaded regions. Compaction 
bands (  = 0˚) are predicted below  + μ = -1.9, and dilation bands (  = 90˚) are 
predicted above  + μ = 2.6. Shear bands, with 0˚  90˚, are predicted between 
AA’ and BB’. The 18˚ shear band orientation is predicted along the CC’ line (  + 
μ = -1.5). The CC’ line passes through the saddle point (-0.73, -0.73), which has 
moved up along the  = μ line compared to ASC in Fig. 4.2 

predicted between the bounds defined by: 1 9 2 6. .  (for  = 
0.2). Compared to the results from the ASC stress state, the bounding lines 
(AA’ and BB’) for the P1 stress state shift outward slightly. Therefore, 
shear bands are predicted in a slightly larger area of the  plot.  For 
both the ASC and P1 stress states, using the J3 independent model, only 
shear bands are predicted whereas shear and/or compaction bands were 
observed experimentally. 

4.5 J3 Dependent SYSM: P1 Stress State,  = 

Using the J3 dependent model, two cases were investigated for the P1

stress state: (1) assuming deviatoric normality ( ), and (2) assuming 
deviatoric non-normality ( ). For the first case, when the plastic 
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potential and yield surfaces are close to a circle ( 0 35. ), band 
orientation predictions are shown in Fig. 4.4.  Compared to the J3
independent case (Fig. 4.3), the bounding lines AA’ and BB’ have moved 
out, so shear bands are predicted in a much larger region: 

2.5 2.7  (for  = 0.2). Along , and for small deviations 
from normality, the critical hardening modulus is always negative, and 
band formation is inhibited.  

Fig. 4.4. Band orientation predictions as a function of and  for P1 (J3

dependent SYSM,  =  = -0.35, corresponding to a mild J3 dependence). In the 
unshaded regions hcr < 0 (always true along  = μ). Compaction bands (  = 0˚) are 
predicted below  + μ = -2.5, and dilation bands (  = 90˚) are predicted above  + 
μ= 2.7. Shear bands, with 0˚  90˚, are predicted between AA’ and BB’. Shear 
band conditions are more favorable than compaction band conditions 

Although some of the experimental data lies within the region where hcr
> 0 (corresponding to localized deformation pre-peak), only shear bands 
are predicted. Compaction bands are predicted with cr 0IIIh  only for large 
deviations from normality, with improbably large negative values of either 
 or μ.  Therefore, the compaction band conditions are significantly less 

favorable for a stress state perturbed from ASC, if the material has a small 
J3 dependence. 
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Figure 4.5 shows predictions when the yield and plastic potential sur-
faces are triangles, with 1 41.  (corresponding to a large J3

dependence). Compared with a small J3 dependence (Fig. 4.4), the 
compaction band boundary, AA’, has moved down significantly, such that 
compaction band formation is only possible for strongly negative values of 

Fig. 4.5. Band orientation predictions as a function of and  for P1 (J3

dependent SYSM,  =  = -1.41, corresponding to a strong J3 dependence). The hcr
> 0 in the shaded regions. Compaction bands (  = 0˚) are predicted below  + μ = 
-4.5, and dilation bands (  = 90˚) are predicted above  + μ = 3.5. Shear bands, 
with 0˚  0˚, are predicted between AA’ and BB’. The hcr < 0 in the unshaded 
regions and is always true along  = μ. Localized deformation band formation is 
theoretically inhibited for possible values of  and μ

 and .  Additionally, the boundary line for dilation bands, BB’, moves 
up slightly. For this case, shear bands are predicted within a large region of 
the  plot defined by the bounds: 4.5 3.5 . However, hcr

> 0 is possible only with large deviations from normality. While the 
strongly negative values of  and μ required for compaction band forma-
tion might be possible for loading paths intersecting the cap portion of the 
yield surface (very close to the mean stress axis, at high confining 
pressures), the strong deviations from normality required are unlikely to 
occur for these loading paths. Additionally, all of the ASC experimental 
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data falls in a region where hcr is a large negative number, indicating that 
localized deformation is inhibited. Therefore, for this case, for possible 
values of  and μ, the inception of localization should be prohibited. This 
is in accordance with results from high confining pressure ASC 
experiments, where uniform cataclastic flow, not strain localization, was 
observed (Wu et al. 2000). 

Fig. 4.6. Band orientation predictions as a function of and  for P1 (J3

dependent SYSM,  = -0.35,  = 0, the plastic potential surface is independent of 
J3 while the yield surface is mildly J3 dependent). The hcr > 0 in the shaded 
regions. Compaction bands (  = 0˚) are predicted below  + 0.86μ = -2, and 
dilation bands (  = 90˚) are predicted above  + 0.86μ = -2.5. Shear bands, with 0˚

 90˚, are predicted between AA’ and BB’. At points a and b, the 19˚ and 38˚
band orientations are predicted, respectively, with hcr > 0. Conditions for low 
angle compacting shear bands are more favorable than those for compaction bands 

Next, the influence of deviatoric non-normality ( ) is investigated 
for the P1 stress state.  Unfortunately, we know of no experimental results 
for high porosity sandstones that could be used to guide selection of 
appropriate values for  and , and there are many theoretically possible 
permutations.  Therefore, the current work will explore only a few of the 
possible values for  and , which satisfy deviatoric non-normality. Should 
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experimental results become available in the future, certainly a similar 
process could be used to conduct a more comprehensive evaluation. 

4.6 J3 Dependent SYSM: P1 Stress State, 

Figure 4.6 shows band orientation predictions when the plastic potential 
surface is independent of J3, and the yield surface has a mild J3

dependence so it is nearly circular ( 0 , 0 35. ). Shear bands are 
predicted between the bounding surfaces defined by: 

2 0.86 2.5 . The first band orientation predicted with hcr > 0 
along the  line is the 19˚ shear band, which is indicated by point a
in Fig. 4.6. At point b the 38˚ shear band is predicted with a positive hcr.
Therefore, shear bands with 22 38  are predicted to form with hcr

> 0 along normality, and for deviations from normality. Note that, when 
, the AA’ and BB’ lines are symmetric about and perpendicular to 
; this is no longer true when deviatoric non-normality is assumed. 

Conditions for the formation of compaction bands are again less favorable 
than for no J3 dependence, since these bands are predicted with cr 0IIIh
only for large deviations from normality and with large negative values of 
either  or μ.

When the yield surface is in between a circle and a triangle 
( 0 71. ), corresponding to a moderate J3 dependence, and the plastic 
potential has mild J3 dependence (closer to a circle, 0 35. ), the band 
orientation predictions are shown in Fig. 4.7. Along normality, shear bands 
within the range 33  (point a) and 62  (point b) are predicted 
with hcr > 0, for small positive to small negative values of  and μ.  Shear 
bands are predicted within the bounds defined by: 

2.8 0.86 2.6 . Compared to the case where deviatoric 
normality was assumed with a moderate J3 dependence (Fig. 4.4), with 
increasing deviatoric non-normality, the AA’ and BB’ lines move outward, 
increasing the region on the  plot where shear bands are predicted 
(Fig. 4.7). 

When the yield surface is strongly J3 dependent (a triangle, 
1 41. ), and the plastic potential is mildly J3 dependent (close to a 

circle, 0 35. ), band orientation predictions are illustrated in Fig. 4.8. 
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Fig. 4.7. Band orientation predictions as a function of and  for P1 (J3

dependent SYSM,  = -0.71,  = -0.35). The hcr > 0 in the shaded regions. 
Compaction bands (  = 0˚) are predicted below  + 0.86μ = -2.8, and dilation 
bands (  = 90˚) are predicted above  + 0.86μ = 2.6. Shear bands, with 0˚
90˚, are predicted between AA’ and BB’. At points a and b, 33˚ and 62˚ band 
orientations are predicted, respectively, with hcr > 0 

Along normality, bands orientations varying from shear bands with 
47  (point a), to dilation bands ( 90 , at point b), are predicted 

with a positive hcr. Similar to the results discussed in the previous case 
(Fig. 4.7), compaction bands are predicted with hcr > 0 only for large 
deviations from normality, and for large negative values of ; both 
conditions are not commonly reported when compaction bands are 
observed experimentally. However, analogous to the prior discussion 
regarding Fig. 4.5, values of  and μ sufficiently positive to fall in the large 
region in Fig. 4.8 where hcr > 0 (where dilating shear bands are predicted, 
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Fig. 4.8. Band orientation predictions as a function of and  for P1 (J3

dependent SYSM,  = -1.41,  = -0.35). The hcr > 0 in the shaded regions. 
Compaction bands (  = 0˚) are predicted below  + 0.7μ = -2.8, and dilation bands 
(  = 90˚) above  + 0.7μ = 2.4. Shear bands, with 0˚  90˚, are predicted 
between AA’ and BB’. At point a, a 47˚ shear band is predicted, and at point b,
dilation bands are predicted, both with hcr > 0. Compaction bands are predicted 
only with large deviations from normality, and for improbably large negative 
values of  and μ

e.g., between points a) and b), could be produced by conducting 
experiments using a proper low mean stress loading path. 

For non-normality in the deviatoric plane, the band orientation pre-
dictions are no longer arranged symmetrically on the  – μ plane (lines 
AA’ and BB’ in Figs. 4.6 – 4.8 are not perpendicular to the  line). 
This asymmetry can be explained analytically by substituting the appro-
priate deviatoric and stress state parameters into 3.10 and expanding. For 
the P1 stress state, when deviatoric normality is true, 3.10 simplifies to 

0 4 0 37
0 76 1 05

1 0 45
. .

. .
.

(4.1)
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For fixed values of (= ), the coefficients of  and  in (4.1) are 
equal. Therefore, the bounding surfaces (AA’ and BB’ in Figs. 4.2 – 4.5) 
are symmetric about = μ. For deviatoric non-normality, (3.10) simplifies 
to:

0 4 0 187 0 4 0 1870 76 1 05
1 0 45 1 0 45

. . . .. .
. .

(4.2)

where, due to the denominators in (4.2), the coefficients of  and  are 
no longer equal. Therefore, bounding surfaces AA’ and BB’ (Figs. 4.6 – 
4.8) are not symmetric about  = μ.

To summarize, assuming deviatoric non-normality ( ) for the P1

stress state, with increasing J3 dependence and increasing deviatoric non-
normality, the hcr = 0 lines, and the bounding lines within which shear 
bands are predicted, move further apart (Figs. 4.6 – 4.8). Additionally, for 
increasing deviatoric non-normality, along the  line, shear bands 
with larger band angles are predicted with a positive hcr.  With increasing 
deviatoric non-normality and increasing J3 dependence, the region on the 

 plot where hcr is positive becomes larger, and conditions become 
more favorable for shear band formation; conditions become less favorable 
for the formation of compaction bands. Although most of the experimental 
data falls in a region where hcr > 0, conditions are observed to be more 
favorable for the formation of shear bands than for compaction bands. 
While the shear bands observed in ASC tests are predicted theoretically, 
the observed compaction bands are not predicted in any of these three 
cases investigated. 

5 Summary and Conclusions 

Recent experimental evidence suggests that the mechanical behavior of 
high porosity sandstones depends upon the third invariant of deviatoric 
stress (J3). While J3 dependent constitutive models have been developed by 
researchers (Lade 1977; Desai 1980; Desai and Faruque 1983; Desai et al. 
1986; Desai and Salami 1987; Brown and Yu 1988; Lade and Kim 1988; 
Sture et al. 1989; Bardet 1990; Ottosen and Runesson 1991; Lade and Kim 
1994; Schwer and Murray 1994; Fossum and Fredrich 2000; Krenk 2000) 
to describe the behavior of geomaterials, the analyses were not extended to 
determine conditions under which localized deformation could be possible. 
Additionally, while laboratory specimens are frequently tested under 
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axisymmetric stress states, there is some question whether stress states in 
the field are limited to these stress states. Therefore, there is a gap in the 
understanding of the behavior of this material, in particular the localization 
behavior, under non-axisymmetric stress states. 

In this work, a J3 dependent single yield surface constitutive model 
(SYSM) was developed for high porosity sandstones, and the conditions 
for the formation of localized bands were determined. Additionally, band 
orientation predictions were determined using this J3 dependent SYSM for 
two stress states: ASC, and a stress state, P1, slightly perturbed from ASC. 
Analyses focused on examining conditions required for compaction band 
formation, since these bands have recently been identified in field settings 
and in laboratory specimens and their formation could influence fluid flow, 
and impact fluid extraction and storage applications. 

The analyses conducted in this work reveal that the ASC stress state is a 
specialized case, where theoretical band orientation predictions remain 
insensitive to a dependence on J3. Therefore, under ASC (or ASE) the 
localization conditions, and the band orientation predictions, remain the 
same as those from the J3 independent SYSM. For non-axisymmetric 
stress states, incorporating a J3 dependence results in a large variation in 
the band orientation predictions for stress states even slightly perturbed 
from ASC. A similar analysis conducted for stress states slightly perturbed 
from ASE (results not presented here) reveals that the variation in band 
orientation predictions is small to moderate. 

This work defined conditions for formation of a particular band 
orientation as “favorable,” when hcr  0 (where h is the hardening modulus, 
and hcr  0 corresponds to localization at or prior to the peak stress) is 
possible for normality (  = , where  is the dilation coefficient, and  is 
the friction factor) and/or for small deviations from normality. Conversely, 
conditions were defined as “unfavorable” when large deviations from 
normality are required to obtain hcr  0.  The “optimal” band angle, for a 
given stress state, is that which provides the largest hcr value for the 
smallest deviation from normality.  For ASC (with or without J3
dependence), the optimal band angle is a compaction band.  For P1, when 
the material is independent of J3, the optimal band angle is an 18˚ shear 
band (a compacting shear band). For this case while compaction bands are 
possible when  +  –1.9, for ASC, the less restrictive condition,  + 

 – 3 , is required for compaction band formation. For P1, shear bands are 
predicted on a larger area of the  plot and compaction bands are 
predicted with hcr > 0 only for large deviations from normality.  Thus, 
conditions for compaction band formation are most favorable under ASC. 
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Several possible forms of J3 dependence were examined for the P1 stress 
state.  For normality in the deviatoric plan, when a mild J3 dependence is 
incorporated, compaction bands are only possible for 2 5. ,
while for a strong J3 dependence, 4 5.  is required.  As J3

dependence increases, increasing deviations from normality are required to 
predict compaction bands with hcr  0. Additionally, for strong J3
dependence, it seems unlikely that any form of localized deformation band 
formation is possible.  Assuming deviatoric non-normality, there exists a 
region along normality where hcr > 0 for a range of shear band angles. For 
mild to moderate J3 dependence (and mild to moderate deviatoric non-
normality), band angles between 19˚ and 62˚ correspond to hcr > 0. For 
strong J3 dependence (and larger deviatoric non-normality), the range of 
band angles is 47˚ to 90˚. Therefore, the P1 stress state with a J3 dependent 
material, results in conditions favorable for shear band formation, but 
unfavorable (possibly prohibitive) for compaction band formation. Thus, if 
stress states in the field are even slightly perturbed from ASC, the 
preceding discussion provides a possible explanation for why shear bands 
are more frequently reported in the field than compaction bands. 

The band orientation predictions from the ASC and P1 stress states, with 
and without J3 dependence, were compared with the available 
experimental data from ASC tests (data not available for P1).  For reported 
values of  and , the observed shear bands are predicted, but not the 
observed compaction bands. Some authors (Zhang et al. 1990; Wong et al. 
1992; Menéndez et al. 1996; Wong et al. 1997; Wong et al. 2001) have 
reported that compaction bands typically form when high porosity 
sandstone is tested under stress states where multiple deformation 
mechanisms appear to be active. A J3 independent two yield surface 
constitutive model (TYSM) (Issen 2002; Challa and Issen 2004; Issen and 
Challa 2005) predicts both experimentally observed compaction bands and 
shear bands for reported values of key material parameters.  Additionally, 
predicted shear band angles generally agree with the range of reported 
band angles. The TYSM incorporates multiple active deformation 
mechanisms by considering a shear yield surface which corresponds to a 
dilatant, frictional mechanism and a cap which corresponds to a 
compactant mechanism. These results suggest that use of a TYSM may be 
more appropriate for describing the behavior of high porosity sandstone 
for stress states corresponding to the brittle – ductile transition, where 
compaction bands are commonly observed in experiments. Therefore, in 
an ensuing paper, a J3 dependent TYSM will be developed, and the 
consequent localization conditions and band angle predictions 
investigated.
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In the current work, experimental data from existing ASC tests on high 
porosity sandstones were used to conduct preliminary evaluations of the 
predictions from the J3 dependent SYSM. However, the existing data 
cannot be used to determine accurate values of the deviatoric parameters 
specific to the J3 dependent constitutive models, since ASC tests are not 
sufficient to characterize the shapes of the yield and plastic potential 
surfaces in the deviatoric plane.  Additionally, we know of no existing 
experimental results for the P1 stress state, which can be directly compared 
to the predictions for this stress state. Therefore, there is a definite need for 
additional experimental work, to examine the behavior of high porosity 
sandstones under non-axisymmetric stress states. These experimental 
results could be used to determine the degree of J3 dependence of these 
materials and rigorously evaluate the theoretical predictions for loading 
under non-axisymmetric stress states.  Additionally, findings from these 
experiments would enable determination of bounds on stress states that 
produce compaction bands, which could ultimately be useful in under-
standing compaction band formation in field settings. 

Appendix A 

The parameters that appear in (3.1) are defined as follows 

22 22
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where Nij and Yij are defined in (3.3) – (3.8). Terms H1, H2 and H3 in (A.1) 
– (A.3) are always negative for the P1 stress state, and zero for the 
axisymmetric stress states. The parameters T1, T2, S1 and S2, appearing in 
(3.9) – (3.12), are defined as: 
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In (3.12) the terms 1
Jq  and 2

Jq  are defined as 
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It is important to note that, when 0  (corresponding to (1) circular 
yield and plastic potential surfaces, and (2) ASC and ASE stress states), 
the variables in (A.4) – (A.9) simplify to 1 /T K G , 2 /T K G ,

1 2, 1S S  and 1 2, 0J Jq q .
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Summary

In this paper we examine a borehole failure model which is based on 
fracture mechanics and layer buckling theories in the light of experimental 
data. The model assumes that the main mechanism of borehole collapse 
takes place in the form of (pre-existing or formed) layers buckling [1]. The 
model introduces a combination of fracture mechanics parameters with 
length dimension that scale the size of the holes allowing for size effect 
predictions. We present and compare the model predictions with available 
experimental data. For the model predictions as well the experimental data 
we found a strong correlation between hole strength normalized by the 
uniaxial compressive strength and hole size normalized by the square of 
the division of rock fracture toughness over its tensile strength. These 
findings can be used for constructing mechanical models to predict failure 
in small size holes such as perforations.                                       

1 Introduction 

Hollow cylinder tests on different size holes showed that the most domi-
nant factor in the range of perforation size (less than 25 mm) is the scale 
effect. Results on the dependence of the hole strength on its size were 
presented in references [2], [6], [10] and in other studies over the last three 
decades. From all these results it was made clear that small holes are much 
stronger than large holes. 

For practical applications modelling of the dependence of the hole 
strength on its size (scale effect) becomes important in the case where the 
stability of wellbore in the field is assessed using hollow cylinder test data. 
The existence of the scale effect was ignored for many years and the 
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Elastic models were blamed for failing to predict correctly the hollow 
cylinder experimental data. Later it was made clear that plasticity models 
are also inadequate to predict the scale effect since they are short of an 
internal length (microstructure) for scaling the size of a hole. Nevertheless, 
a properly calibrated plasticity model is in a position to predict correctly 
the stability of a large size wellbore as long no attempt is made to calibrate 
it with hollow cylinder tests.  

The importance of the scale effect is much more important for predicting 
failure around a perforation since the size of the perforations fall in the 
range where the scale effect is dominant. We mention here that sanding 
experiments run in hollow cylinders indicated that in weakly consolidated 
rocks, stress induced failure occurs before sand production. The role of 
fluid-flow is mainly restricted in transferring the loose sand grains which 
fall into the cavity after failure. During field production, failure takes place 
mainly due to increase of the effective stresses after depletion and 
secondary due to increase of draw-down pressure. Therefore, in the sand 
prediction modelling emphasis was put on predicting and avoiding rock 
failure.

Models which can account for the scale effect in borehole failure were 
based on bifurcation analyses with higher order continuum models. These 
models introduce the microstructure of the rock into the constitutive 
equations in the form of extra degrees of freedom such as grain rotation 
[8], [9] or higher order terms of the deformation gradient [13]. As an 
example we show in Figure 1.1 the predictions of a Cosserat model for the 
load at which bifurcation takes place (dashed line) and the peak load (solid 
line) as a function of the hole radius normalized by an internal length 
related to the average grain size [9]. The computations were performed for 
material parameters of Castlegate sandstone and models with different 
internal radii but with fixed ratio 5:1 of the external radius to the internal. 
It is clear that both bifurcation and peak loads increase as the hole radius 
decreases. For very small holes bifurcation does not take place and limit 
point is reached. Smaller holes bifurcate with lower warping modes. The 
scale effect fades out rapidly with increasing hole size.  As the hole gets 
bigger, the scale effect becomes less pronounced, a tendency also observed 
in the experiments of references [2], [6], [10]. The scale effect fades out 
also for very small hole size because bifurcation disappears and the load 
reaches a limit value. This finding is also supported by experimental 
results discussed in detail in reference [11]. Such models are usually 
employed in non-linear finite element analyses that are computationally 
intensive and not easy to use for practical applications. In addition, the use 
of such models is limited also by the issue of material parameters 
determination, such as the rate of softening and the value of the internal 
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length. The rate of softening can not be measured directly in a mechanical 
test and an inverse matching procedure of the test results with a 
localization model shall be employed. For the identification of the internal 
length it was suggested that is related to the average diameter of the 
sandstone grain or to the assembly of grains. An account of these models 
for borehole failure prediction was presented in reference [9] in a 
hierarchical approach covering a wide range of models from linear 
elasticity to post-bifurcation analysis. It is also true that the scale effect 
observed in hollow cylinder tests is more dramatic than the predictions of 
Figure 1. However, the predicted scale effect of Figure 1 may become 
more pronounced by varying the model parameters such as the rate of 
softening or the dilation angle. 

Figure 1.1. Bifurcation and peak loads versus normalized hole radius as predicted 
by Cosserat model  

Due to the importance of the size effect on hole strength and in general 
of the collapse mechanism around a borehole, we investigate in this study 
an alternative approach based on fracture mechanics and buckling theories. 
The objective is always to derive an analytical solution for predicting hole 
collapse taking into account the size effect. We follow the model proposed 
in [1] and we examine its predictions in the light of the available 
experimental data. The model considers buckling of layers as the main 
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mechanism of borehole instability. The layers pre-exist or formed due to 
crack growth. This type of failure mechanism was clearly seen in labora-
tory experiments performed on shale samples [5]. 

In the next section, we present the basic equations upon which the model 
is based. In section 3 we present the calibration of the model and in section 
4 we present and discuss the results of parametric studies in comparison 
with experimental data. The main conclusions are summarized in section 
5.

2 Mathematical Model 

A number of papers assumed that the main mechanism of borehole col-
lapse takes place in the form of buckling layers (pre-existing or formed). 
These theories introduce micro-mechanical parameters related to the layer 
thickness and fracture mechanics parameters. Such approach was 
examined first in composite materials in [3] considering the failure stress 
required to buckle a thin surface of layer material under compression.  In 
rock mechanics, the layer buckling approach, among others, was adopted 
in [12], [1] and recently in [4] for modelling rockburst and breakouts near 
an underground opening. In this study we will investigate the model 
presented in [1]. In the following, we summarize the basic equations of the 
model. 

A borehole of radius R is embedded in an infinite elastic medium and is 
subjected to a uniform remote stress field. The deformation perpendicular 
to the hole axis is in plane strain state. The failure in general, tends to 
enlarge the hole axis to an elliptical shape in the direction of breakouts 
which is usually along the minimum in situ stress. It is assumed that the 
shape of the wellbore does not change in the other perpendicular direction 
along which the wellbore remains circular of radius R (Figure 2.1). 

As it is mentioned the breakout area is formed by buckling of layers 
which  pre-exist, like in the case of laminated shales [5], or formed due to 
growth of axial splitting cracks in mode-I. The length of theses layers are 
bounded by the formation of shear bands or mode-II cracks. These shear 
bands or mode-II cracks are bending to meet each other in some distance 
in the interior of the rock. Therefore, the length of the buckling layers 
decreases with the distance from the hole center suggesting that the failure 
process will stabilize at some depth beyond the hole boundary for constant 
applied stress field. Furthermore, research work to consider anisotropic 
rocks is currently under progress. 
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Figure 2.1. Failure around a hole in the form of buckling and growth of the cavity 
in elliptical shape 

Based on Eshelby´s solution, the energy release due to growth (or 
cutout) of an elliptical cavity of long axis a>R  in an initially uniformly 
stressed infinite elastic space is 

yxyx aRaRaRRa
E

2)2()2(
2

22
1 (2.1)

where )1/( 2EE  is the plane strain modulus. 1  represents the 
sum of the work of the stresses on the strain changes outside the ellipse 
which is non-uniformly distributed and decay with distance from the 
ellipse, and the work of the stresses on the strain changes inside the 
elliptical cut-out which, according to Eshelby´s theorem, are uniformly 
distributed. Equation (2.1) gives the potential energy when the stresses 
within the ellipse are reduced to zero. The potential energy change when 
the initial stress y is reduced to a critical stress value cr, rather than zero 
is [1]  
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In the limit case of 0R , the elliptical hole becomes a crack and 
equation (2.1) yields the expression for the energy loss for creating a crack 
of length 2  in an infinite space, 

22
1 a

E y (2.3)

The potential energy change for the case of no cavity to the case of a 
circular cavity of radius R is obtained from (2.1) by setting =R

yxyxE
R 233

2
22

2

0 (2.4)

The potential energy change when the stress in the area between the 
original circle and the circumscribed ellipse is reduced from y to cr is 
obtained by subtracting (2.4) from (2.2) 

1 1 0

2 2 2 2 2 2 2
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E
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(2.5)

Fracturing under compression creates a system of parallel, equidistant, 
splitting cracks parallel to the direction of the maximum principal stress y
(Figure 2.1). The stress carried by the slabs of thickness h between the 
cracks is limited by elastic buckling, analogous of a fixed-end column of 
length 2L equal to the crack length. Therefore, the vertical compressive 
stress will not be zero but will have the Euler bifurcation load given by  

12

2

2

2 hE
Lcr (2.6)

Assuming that the mode of failure in small and large holes is geome-
trically similar, the half-length of the cracks can be expressed as 

L R (2.7)

where is empirical constant usually less than 1.  
In addition, in compressive buckling the crack opening displacement is 

zero and due to the roughness of the crack faces in the rock, a shear stress 
is transmitted resulting in increase of the critical stress according to [1]  

GhhE
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where  is an empirical length (material property) and G is the elastic shear 
modulus. The work of shear stress is neglected at the initiation of buckling. 

The residual strain energy contained in the zone between ellipse and the 
initial circle is given by the bending energy of all the slabs, approximately 
expressed as 

2 2 2
2 2

2 2

( )( ) ( )
2 2 12

cr
cr

R R E h hR R G
E E R

(2.9)

The energy loss due to changing from a circular hole in elastic rock to a 
damaged elliptical zone of splitting cracks is 

cr01
(2.10)

 On the other hand, the dissipated energy in rock fracturing is the sum of 
the energy dissipated in all the splitting cracks [1] 
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The energy balance requires that 

- fW (2.12)

 Assuming that the parallel cracks are formed progressively, equation 
(2.12) can be differentiated with respect to to derive the incremental 
energy balance relation 
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which results in 
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The initiation of breakouts occurs for =R, and for this value of  in 
equation (2.14) we obtain 
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Noticing that the remote effective applied stress can be expressed by 
2 2 2( 5 2 ) / 5ef x y x y (2.16)

equation (2.15) is written in the form 
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The minimum applied stress ef will occur for the width of splitting 
crack spacing h that minimizes the RHS of equation (2.17) [1]. This value 
can be obtained from differentiation of the RHS of equation (2.17) with 
respect to h resulting in 
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The algebraic equation (2.18) can be solved numerically to obtain the 
value of h and then the applied effective stress ef from equation (2.17). 
Bounds for the solution of h are derived for holes of small radius R by
neglecting the 2nd and 3rd terms, in comparison with the 1st term, 
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and for holes of very large R
3/1
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 Equation (2.19) suggests that the splitting crack spacing h will increase 
with radius R but will reach a constant value for sufficient large holes. 

Bazant et al. [1] obtained the solution for small holes by replacing the 
value of h from equation (2.19) in equation (2.17), 
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and the solution for large holes by replacing the value of h from equation 
(2.20) in equation (2.17), 

0Cef ,
3/1

0 5
3 fGEG

C (2.22)

For the intermediate values of R they suggested an approximate solution 
by combining equations (2.21) and (2.22) 

0
5/2

1 CRCef (2.23)

As we can see in the next section of the results, the proposed 
approximate solution (2.23) is not that close to the full solution (2.17) for 
practical applications. 

3 Model Calibration 

In this section we will explain how we obtained the different parameters 
required by the model in equations (2.17) to (2.22). Table 3.1 shows the 
material parameters of three sandstones which were used in hollow 
cylinder experiments [6], [11], the results of which will be compared with 
the model predictions in the next section. These parameters are the 
Young´s modulus E and the Poisson´s ratio , the Uniaxial Compressive 
Strength, UCS, and an approximate value for the fracture toughness, KIC.
The values for the shear modulus, G, and the plane strain elastic modulus, 
E’ are given by 

)1(2
EG ,             

)1( 2

EE (3.1)

The energy release rate Gf per crack tip can be calculated from 

EKG ICf /2 (3.2)

The numbers of the fracture toughness shown in Table 3.1 are 
approximate values since there are no known data for fracture toughness 
for these particular rocks. These values are in the expected range for weak 
rocks, 0 - 2.5 MPa m1/2,  nearly proportional to the rock strength and in 
particular to the tensile strength. A good approximate value for the tensile 
strength of a rock is about, 
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10/UCST (3.3)

Nevertheless, in the next section we will show sensitivity of the results 
to the fracture toughness value. In order to determine the unknown 
parameter , we used first the asymptotic solution for large holes shown by 
the experimental results  

1/ 2
0

4( ) 1.43
5

C UCS= (3.4)

and then we solved for  equation (2.22). The factor coefficient 1.43 is 
obtained from the asymptotic solution for large holes suggested by 

experimental data [6], [10]. The factor 1/ 24( )
5

 in equation (3.4) is due to 

the relation (2.16) for isotropic loading 

1/ 24( )
5ef HCSs = (3.5)

Table 3.1. Calibration parameters for fracture mechanics model 

Sandstone 
Elastic

modulus 
(MPa ) 

Poisson’s 
ratio 

Uniaxial 
Compressive 

Strength
(MPa) 

Tensile 
Strength
=UCS/10

(MPa) 

Fracture
toughness 
(MPa m1/2)

Berea 17300 0.27 27 2.7 2.5 

Castlegate 6830 0.178 10 1.0 1.0 

Red  
Wildmoor 

3400 0.20 6 0.6 0.5 

Another relatively unknown parameter in the model is  which gives the 
half length of the splitting cracks as a proportion of the hole radius in 
equation (2.7). Bazant et al. [1] suggested a value near 0.25 which is found 
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in this study to produce good results. Experimental results [5] and finite 
element modeling [8] suggest that the value of  may vary in the range of 0 
to 1. In anyway, sensitivity of the results to the parameter will also be 
investigated in the next section.

4 Results and Discussion 

Figure 4.1 shows the predicted hole strength by the model for different 
values of the parameter and comparison with experimental data on Berea 
sandstone. It is clear that the model gives almost accurate predictions for 
close to 0.25 which means that the length of the splitting cracks and 
formed slabs are close to 0.5R. Figure 4.2 shows the calculated width of 
the slabs normalized by the grain size of Berea sandstone. The results 
show that for very small holes the calculated theoretical width can be less 
than the grain size. This suggestion is not appear to be realistic. Greater 
range of small hole size where the results can be permissible is obtain 
again for  close to 1. 

Figure 4.3 shows the sensitivity of the model to the value of the rock 
fracture toughness. The results are quite sensitive to the fracture toughness 
value in the range of the very small holes. For small size holes the width of 
the slab is almost independent of the fracture toughness but it varies for 
medium and large holes (Figure 4.4). For a constant fracture toughness the 
slab width reaches an asymptotic value above a certain hole radius.  

Figure 4.5 shows the predictions of the hollow cylinder strength for 
different values of fracture toughness and comparison with experimental 
results on Castlegate sandstone. Similar results are shown in Figure 4.6 for 
Red Wildmoor sandstone. The relative variation of fracture toughness is 
greater in Figure 4.6 since the larger spread of the predicted results. Figure 
4.7 shows the best predictions obtained by the model in comparison with 
the experimental results on the three sandstones. The same results are also 
compared in Figure 4.8 with the approximate solution suggested in 
reference [1], equation (2.23). We observe that the approximate solution 
deviates significantly from the full solution. 

In Figure 4.9 we attempted normalization of all the theoretical and 
experimental results shown in Figure 4.7. The results in the vertical axis 
were normalized by the UCS of each rock. The results in the horizontal 
axis were normalized by the parameter 2)/( TICK  which has a length 
unit in order to obtain a final dimensionless form. After normalization the 
dimensionless results collapse in a narrow band supporting a strong 
correlation. This correlation suggests that it is possible to derive an appa-
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rent strength model which can be further employed in a stress analysis for 
predicting perforation failure. The model is based on parameters which are 
measurable and easy to obtain or interpret. The only parameter that appears 
to be difficult to obtain from the field data is the rock fracture toughness. 
Nevertheless, it may be possible to interpret it from correlation functions 
with UCS. 

Figure 4.1. Prediction of the hole strength for different values of the parameter 
and comparison with experimental results on Berea sandstone 
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Fig. 4.2. Normalized slab width h for different values of the parameter 

Fig. 4.3. Prediction of the hole strength for different values of fracture toughness
and comparison with experimental results on Berea sandstone 
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Fig. 4.4. Normalized slab width h for different values of fracture toughness 

Fig. 4.5. Prediction of the hole strength for different values of fracture toughness
and comparison with experimental results on Castlegate sandstone 
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Fig. 4.6. Predictions of the hole strength for different values of fracture toughness
and comparison with experimental results on Red Wildmoor 

Fig. 4.7. Model predictions and comparison with experimental data 



Panos Papanastasiou 68

Fig. 4.8. Comparison of the predictions of (a) full model (solid lines) and (b) 
approximate model equation (2.23) (dashed lines) with experimental data 

Fig. 4.9. Model predictions and experimental results in a normalized form 
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5 Conclusions 

In this paper we examined a model originally proposed in reference [1] for 
predicting borehole collapse based on fracture mechanics and layer 
buckling theories. The model considers that the main mechanism of 
borehole collapse takes place in the form of (pre-existing or formed) layers 
buckling. A combination of the fracture mechanics parameters introduced 
by the model allows scaling of the hole size and prediction of the 
dependence of load collapse on its radius. We presented sensitivity of the 
model to the most uncertain parameters and compared the results with 
available experimental data. We showed that the model is capable of 
producing results close to experimental data following a strong scale 
dependence of the hole strength on its radius. In addition, for model 
predictions as well experimental data we found a strong correlation 
between hole strength normalized by the Uniaxial Compressive Strength of 
the rock and hole size normalized by the square of division of rock fracture 
toughness divided by tensile strength. These results can be used for 
deriving an apparent strength model which can be further employed in 
mechanical models for predicting the strength of small holes like 
perforations.    
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Summary

The paper examines an experimental evaluation of the intertwined effects 
of microstructure (fabric) and dilatancy on the stability and strength of 
granular materials. The basic premise is that a granular material such as 
sand has at the outset a certain potential to dilate by an amount 
commensurate with the nature of the applied external loads (stress or strain 
imposed) and how conducive they are to fabric changes. As such, the 
deformation of dense packings of two-dimensional photoelastic disks of 
various cross-sections is investigated along so-called proportional strain 
paths that correspond to various dilation rates. Several stress (strain) paths 
together with stress (strain) probes are performed in the context of biaxial 
element tests, and the resulting strain (stress) response envelopes are 
determined. This is a more objective way of evaluating the stress-strain 
behaviour of granular soils with reference to anisotropy and dilatancy. One 
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of the findings of this investigation is the elucidation of the microstructural 
changes accompanying the instability behaviour of granular materials 
when all effective stresses nullify such as in static liquefaction. It is found 
that strong force chains develop in a dilating specimen, and that a flow 
type of failure is due to the buckling of these force chains. Instability is 
also more formally analyzed within the framework of Hill’s second order 
work. It is interesting to note that experimental results obtained in such a 
‘coarse’ two-dimensional material (200-400 particles with mean diameter 
of 5-7 mm) are very consistent with simulation results from a 
micromechanically based plasticity model reported in a previous 
publication. This confirms the pivotal importance of microstructure in any 
constitutive modelling endeavour. 

1  Introduction 

Granular materials are endowed with a microstructure (fabric) that evolves 
during the course of deformation history. On the other hand, it is well-
known that dilatancy can be interpreted as volume changes that arise from 
kinematical constraints imposed by the grain connectivity against applied 
external loads. Hence, dilatancy and fabric are invariably intimately linked 
and involve important micro-kinematics such as relative sliding and rolling 
of particles, including microstructural features such as force chains that 
control both material strength and stability. It is believed that such 
micromechanical information must be incorporated into any constitutive 
model, if salient behavioural features of granular materials such as shear 
banding, strain localization, dilatancy and material instability are to be 
appropriately captured. Yet, one of the obstacles to overcome in any 
micromechanically formulated constitutive law is the mathematical 
description of fabric and its evolution with deformation history. There 
have been many attempts to visualize the evolution of the microstructure, 
and hence the development of anisotropy, in a deforming sand by using CT 
X-ray scans; see a comprehensive review expounded in Oda and Iwashita 
(1999). On the other hand, simpler ways of observing the micro-kinema-
tics of granular material deformation involve the use of an analogue 2-D 
Schneebeli material which consists of a stack of several rods of different 
diameters as used by Calvetti et al. (1997). In order to examine the statics 
of the granular assembly, force contact chain (network) development can 
be optically rendered by using photoelastic disks of various shapes and 
sizes. The first attempt to put such a contact force network into evidence 
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was due to Drescher and de Jong (1972). Oda et al. (1982), and others have 
followed with the characterization of fabric tensors. 

In this paper, we use techniques of photoelasticity to investigate the 
failure behaviour of a 2-D analogue granular material when subjected to 
proportional strain paths with imposed dilation or contraction rate under 
biaxial loading. The motivation behind such a study stems from the fact 
that in many geotechnical applications, e.g. submarine slopes, soils could 
still display unstable behaviour (liquefy) while undergoing some degree of 
dilation in conditions other than undrained such as partial drainage. Hence, 
the experiments reported in this paper will focus on the failure and 
material instability issues in a 2-D analogue photoelastic granular material 
using microstructural and fabric arguments. The experimental results will 
be useful in developing microstructurally based constitutive models. 

2 Proportional Strain Paths 

We refer to loading along proportional strain paths with a constant impo-
sed deformation rate  defined as the rate of volumetric strain ( vd ) over 
that of shear strain ( d ). As such, the special case of isochoric 
deformations corresponds to the condition of 0 , while imposed 
dilation and compaction refer to 0  and 0  respectively. Such 
strain path controlled experimental studies are scarce in the literature, with 
the exception of the work reported by Chu et al. (1992) that probes sand 
behaviour along proportional strain paths with reference to strain 
softening, localization, as well as material stability. On the other hand, 
there have also been various numerical explorations of material behaviour 
in proportional strain paths; see Darve & Laouafa (2002), and Wan & Guo 
(2004). From a practical viewpoint, Vaid and Sivathayalan (2000) have 
also investigated strain path tests by controlling the drainage conditions in 
the test specimen so that the rate at which water flows into or out of it 
would produce either dilation or contraction. The rationale of such tests is 
that under ‘real’ field conditions, soils deform in a partially drained 
condition. Another instance of this occurs during gas ex-solution in gassy 
soils where the rate of production of gas makes the soil skeleton deform 
along strain paths with sensibly constant dilation rates. 
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3 Biaxial Testing Apparatus 

We study the issue of fabric and microstructural changes in two-dimen-
sions by loading biaxially an assembly of flat photoelastic particles, and 
thereafter optically observing the particle force chains developed through a 
network of fringes. 

Fig. 3.1 shows the schematics of a biaxial tester that was designed, and 
consisting of four sliding loading beams that enclose the test specimen 
(100 x 100 mm). The test specimen is composed of an assembly of 
particles made of flat pentagons (circumscribing circle of 7 mm in 
diameter) that are cut out from a sheet of photoelastic polyurethane 
material, 10 mm in thickness. A typical specimen contains about 220 
pentagons depending on the packing. Custom made disks of circular cross-
sections can also be used to constitute the specimen. These were prepared 
by casting the material into moulds of various sizes to produce the desired 
disk diameter (5 and 7 mm). 

Fig. 3.1. Schematics of biaxial testing apparatus 

Fig. 3.2 shows the various photoelastic disks used in this study. The 
physical and optical properties of the photoelastic material are as follows: 
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material fringe value F=0.15 kPa/fringe/m, elastic modulus E=4 MPa, and 
Poisson's ratio =0.5. The material fringe value is a parameter that links 
optical information to applied stresses as a function of the light wavelength 
used.

Fig. 3.2. Photoelastic disks: from left to right: 7 mm equivalent diameter 
pentagonal disk, 5 mm diameter circular disk, and 7 mm diameter circular disk 

By using a circular polariscope arrangement, consisting of crossed 
polarizers, it is possible to visualize fringes (hence force chain networks) 
as well as estimate forces at the particle level (Fig. 3.3). Basically, as the 
pentagons are stressed, a ray of polarized light gets resolved along two 
principal stress directions with each of these components experiencing 
different refractive indices due to the phenomenon of birefringence. These 
two light wave components suffer a phase retardation that is a function of 
applied stress, and hence produces an interference (fringe) pattern visible 
in a system of crossed polarizers. The reader is referred to Coker and Filon 
(1931) for a classic treatise on photoelasticity. 

Finally, the loading system is set up such that either displacements ( 1D
and 2D ) or loads ( 1f  and 2f ) can be independently controlled in both 
axial and lateral directions. 
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Fig. 3.3. Schematics of photoelastic setup and polarizer 

4 Proportional Strain Path Testing 

In view of testing the material along proportional strain paths, both axial 
and lateral displacement rates 21  & ( DD  respectively) are applied in a 
ratio defined as )/()( 2121

* DDDD . Hence, forced dilatant and 
contractant strain paths refer to negative and positive *  values 
respectively, whereas the isochoric deformation condition is given by 

0* . The axial and lateral forces arising from the applied display-
cements are also measured as 1f  and 2f  respectively. 

4.1 7 mm Pentagonal Disks 

A relatively dense packing of pentagons is achieved by carefully placing 
the particles one by one in a consistent manner following a given pattern 
so that the initial packing of the specimen is repeatable. Then, the speci-
men is stressed at a targeted confining pressure, and thereafter forced to 
deform along various strain paths of *  values corresponding to a 
particular prescribed dilation or contraction rate. 

Fig. 4.1 shows the force response paths resulting from shearing the 
specimen along some selected strain paths that range from imposed 
compaction to dilation. One immediate observation is the material 
response is not bounded by the ones given in the constant lateral 
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confinement (akin to a drained test) and the isochoric (akin to an undrained 
test) conditions. In other words, the densely packed granular material may 
well display unstable behaviour if it were taken along a dilatant path (e.g. 

* 0.67 and 1.5) , while it would display a stable hardening behaviour 
when forced to compact (e.g. * 0.6 and 1.2) .

Fig.  4.1. Force path response for various constant rates of dilation and compaction 

Amongst all force response paths, it is of interest to examine the one 
path pertaining to an imposed dilation rate of 67.0*  which displays 
an initial hardening phase (BC) followed by a snap back phase (CD), 
whereby the material suffers an abrupt collapse. To further examine this 
phenomenon, the evolutions of axial ( 1f ), lateral ( 2f ) and mean ( mf )
forces are shown in Fig. 4.2 There is a general increase in axial forces 
during the hardening phase while the lateral forces are small and conti-
nually drop. 
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Fig. 4.2. Force component evolutions: dilatant path *= .67

In order to pursue an investigation of fundamentals at the microscopic 
level, Fig. 4.3 gives the contact force chain and associated structure at key 
points A, B and C on the force response curve plotted in Fig. 4.2. The 
fringe patterns indeed reveal the formation of contact force chains along 
path A-B, while both axial and lateral loads are being reduced. Between B 
and C, additional force chains develop in the axial direction as the axial 
load picks up. At the same time, in order to sustain the imposed 
deformations as prescribed by *  value, the lateral load has to decrease so 
as to allow the required dilation. The force chains ultimately buckle at 
point C, giving an abrupt snap back in load response. At this point, the 
material response is very unstable with failure associated to a complete 
loss of load bearing capacity due to the disaggregation of particles. This is 
germane to a percolation threshold at which all the contact forces 
(effective stresses) vanish. It is also interesting to note that a two-phase 
structure emerges with the force chains seen embedded into a matrix of 
apparently less loaded particles. This observation was reported by Radjai 
et al. (1996) in numerical simulations of granular packings using the 
discrete element method. 
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Fig. 4.3. Fabric evolution along dilatant strain path ABC: compaction of grains, 
formation of strong force columns, and spontaneous buckling of force chains due 
to loss of lateral confinement. Also, the evolution of the directional void ratio plot 
confirms the mechanism of deformation 

They defined two ‘populations’ of contact networks, a weak and a strong 
one depending on whether the transmitting forces are below and above a 
mean force value respectively. The strong contact network can be 
identified with strong force chains. The experimental results reported 
herein suggests that in the development of a microstructurally oriented 
constitutive law, the average stress, , in a granular material could 
potentially be decomposed into partial stresses, w  and s , corresponding 
to the weak and strong contact networks respectively, i.e. 

w
s

s
s )1( (4.1)

where s  is the relative proportion of strong contacts in the system. 
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Superimposed on the images in Fig. 4.3, are the polar plots of void ratio 
distributions conveying their directional nature as a function of loading 
history along path ABC. The directional void ratio plots were created by 
drawing a series of scan lines radiating from the centre of the specimen. 
Each radial line intersects a number of grains as well as voids along its run. 
The lineal void ratio along a scan line is simply defined as the ratio of the 
length of intersected voids to that of solid. The raw data has also been 
smoothened out using a high order Fourier series as shown by the 
continuous void ratio distribution. Initially, at point A, the packing is 
almost isotropic with an average lineal void ratio of approximately 0.2. At 
the turning point (pt. B), the formation of force chains in the axial direction 
is reflected by a generalized reduction in void ratio in that same direction, 
while void ratio tends to increase in other directions. At the point of 
collapse (C), the buckling of the columns produces a loosening of the 
packing in the lateral direction as confirmed by the rotation of the void 
ratio distribution.  

In order to formally examine material stability issues, the second order 
work as stipulated by Hill (1958) is advocated. Basically, a sufficient con-
dition for material stability is that the second order work, ddWd .2 ,
must be positive in any increment during deformation history. By material 
stability, we mean that the material response is small in the neighborhood 
of a stress and strain state for any small perturbation in loading, see Darve 
and Laouafa (2002). Here, in 2-D deformation conditions, the second order 
work expressed in terms of force and displacement increments gives: 

2 2
1 1 2 2 1 1

dfd W df dD df dD df dD (4.2)

where 21 /*)1/(*)1( dDdD . Hence, a peak in the plot of 
)/( 21 ff  against 1D  signals a zero second order work, or material in-

stability. Fig. 4.4 depicts such plots for the selected *  paths in Fig. 4.1 
The analysis shows that for 67.0* , material instability prevails as 
revealed by noticeable peaks (zero slope) on the second order work curves. 
On the other hand, material stability is ensured for path with 0* .

The essentials of the results are next summarized in the deviatoric ( )df
versus mean ( )mf  force space shown in Fig. 4.5. The force (stress) space 
is divided into dilation and compaction regions as distinguished by negate-
ve and positive *  values respectively. Interestingly, it is found that there 
are certain forced dilatant *  paths for which the material response can 
still be stable with the value *= 0.67 as threshold for this case. Those 
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force response paths, found within the “forced dilation and stable” region, 
refer to a dilatant hardening behaviour. In these cases, strong contacts pre-
vail over weak ones in the force network throughout deformation history. 

Fig. 4.4. Investigation of material instability through second order work plot 

Fig. 4.5. Zones of stability and instability under forced compaction and dilation 
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Next, it is worthwhile to establish the contribution of dilatancy to shear 
strength as deduced from some apparent friction angle p  calculated from 
the asymptotic part of force response paths given in Fig. 4.1 If  is the 
angle of inclination of the asymptotic part of the force response path in the 

mf versus df axes, and invoking a Mohr-Coulomb failure criterion, it turns 

out that tansin p . In addition, recalling the imposed dilation rate as 
)/()( 2121

* DDDD , we can obtain a dilatancy angle based on 
kinematical conditions, and considering the Mohr’s circle of strains 
(Hansen 1958), it follows that 

*sin
21

21

DD
DD

(4.3)

Since for each test, the enforced dilation rate *  (hence dilation angle 
) is known, a relationship between the apparent friction angle, p , as 

derived from  and dilation angle  can be established. Table 4.1 shows 
the measured as well as transformed data from a more complete set of tests 
than the ones given in Fig. 4.1. From the data, we arrive at the following 
simple relationship, i.e. 

4.0cv
p (4.4)

where cv  refers to the friction angle of constant volume (critical state). 
We note that the above established relationship is similar to the one 
developed by Bolton (1986), i.e. 

8.0cv
p (4.5)

which was derived from experimental data on sand. 

Table 4.1. Dilation angles as observed from static and kinematic analyses 

* (deg) p  (deg) cv
p  (deg) *)(sin 1

0 39.8 56.4 (= cv ) 0 0 
-0.2 41.5 62.1 5.7 11.5 
-0.33 42.1 64.5 8.1 19.3 
-0.60 43.18 69.8 13.4 36.8 
-0.67 44 74.9 18.5 42.0 
-0.75 45 90 33.6 48.6 
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4.2 7 mm Circular Disks 

We next investigate the effect of particle shape by replacing the pentagonal 
disks with circular ones of the same diameter, i.e. 7mm. Fig. 4.6b shows 
the force response path for the strain path *= 0.67. There is no snap-
back phenomenon as seen in the case of the pentagonal disk assembly. In 
fact, both axial and lateral forces (f1 and f2) steadily decrease throughout 
deformation history (Fig. 4.6a). In order to get more insight in the develop-
ment of characteristic failure mechanisms during loading history, the disk 
packing corresponding to the different stages of the force response path are 
subsequently shown in Figs. 4.6c, d, e and f. At point B, some disks in the 
central part of the specimen are highly stressed in comparison to other 
ones at the two lateral sides. As the peak point (point C) on the force 
response path is reached, a general weakening of the central core occurs, 
until finally at point D and beyond, the fringes correlating to intensity of 
contact forces disappear for most of the disks in a diffuse manner. The lat-
ter corresponds to a progressive softening of the sample that exacerbates in 
time to eventually lead to its collapse. It is clear from the images that the 
sample never hardens, which is in contrast with the pentagonal disk case 
where the sample showed remarkable hardening due to interlocking until it 
could no longer hold loads anymore so as to succumb and collapse as force 
chains buckled. In general, the degree of interlocking in a circular disk 
assembly is much less than in the case of pentagonal disks. 

4.3 5 mm Circular Disks 

Circular disks of smaller diameter (5 mm) were tested along the same 
strain path = 0.67 as in the previous subsection. Images of the micro-
structure at different points on the force path are shown in Fig. 4.7. It is in-
teresting to note that a change in disk diameter leads to a different response 
in spite of the same packing and void ratio. In this case (5mm disk) harde-
ning behaviour is observed compared to the 7 mm disk case (Fig. 4.6). Fig. 
4.7a shows that the mean force (fm) after reaching a peak drops to a con-
stant value for large shearing (from pt B to D). For the 7 mm disk sample, 
no such response was observed (see Fig. 4.6a), where the mean force 
dropped all the way down. The characteristic response of the 5 mm disk 
assembly can be explained from the images. In the image corresponding to 
point B (Fig. 4.7d), a visible core of highly stressed region develops in the 
middle to support increasing stresses along the axial direction. With further 
shearing at point C, the sample begins to soften, whereby disks along dia-
gonal directions start to slip with each other with the strong core vanishing. 
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Once this mechanism is initiated, the disks slip forming a wedge (as shown 
at point D, Fig. 4.7f) to lead to sample instability. 

Fig. 4.6. Force components, force response path, and microstructure at key points 
for 7 mm circular disks 

Fig. 4.7. Force components, force response path, and microstructure at key points 
for 5 mm circular disks 
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5 Stress (Strain) Response Envelopes and Anisotropy 

We next turn to the characterization of the constitutive behaviour at the 
macroscopic scale with underlying microstructural changes. The concept 
of response envelopes, as first introduced by Gudehus (1979), is herein 
adopted in order to examine the nature of the constitutive behaviour of the 
tested 2-D analogue granular material with respect to anisotropy and 
loading history. Basically, for a given stress (strain) state, a series of strain 
(stress) probes of a predetermined magnitude is applied to the granular 
material. By plotting the corresponding responses in the stress or strain 
space, and depending on the nature of the probing, a stress or strain enve-
lope can be drawn. From the elasticity equations, we can easily determine 
that an elastic response is characterized by an ellipse centered about the 
initial stress (or strain) point with the major (or minor) principal axis 
oriented at 045  with the horizontal in either the stress or strain space. Any 
rotation of the ellipse would indicate anisotropic elastic behaviour, where-
as a translation about the initial stress (strain) point refers to inelastic 
behaviour, see Wu and Kolymbas (2002). 

From a constitutive viewpoint, a response envelope generally conveys 
the notion of the directional loading dependence of material behaviour, 
while its shape depicts the variation of directional compliance or stiffness. 
Also, any discontinuity in the response envelope reveals a non-continuity 
of incremental response between tensorial zones as defined by Darve and 
Laouafa (2000), which may signal material instability. 

5.1 Stress Response Envelope and Effect of Stress History 

In the following, the effect of stress history is investigated by examining 
the response of a system of pentagonal disks (circumscribing circle diame-
ter of 7 mm) against strain probes of different magnitudes for two cases. In 
the first case, the probes are applied to the specimen which was anisotropi-
cally stressed up to a state, 1f  40 N and 2f 20 N. The second case 
involves applying the strain probing after the specimen has undergone an 
initial isotropic compaction followed by a preshear so as to reach the same 
state as previously. 

Fig. 5.1 shows the response envelopes measured for selected strain pro-
bes of magnitudes 0.5 and 1.0 mm after initial anisotropic compaction. In 
order to facilitate the discussion, the elastic response envelopes are also 
plotted in dotted lines and compared with the ones obtained by fitting the 
experimental data into a surface. The measured response envelopes deviate 
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from the baseline elliptical (elastic) ones in that the former are rotated, and 
also are unsymmetrical with respect to the initial force (stress) state point 
A. This signifies that the material response is predominantly anisotropic 
with some plastic deformation, the degree of which increases with probing 
strain level. 

Fig. 5.1. Force response envelopes for strain probes applied after isotropic 
compaction (OA) 

Fig. 5.2 shows the response envelopes for strain probes applied to the 
same pentagonal disk assembly subjected to a different stress history that 
involves a preshear in addition to an initial isotropic compaction. In 
contrast with the previous case (Fig. 5.1), the deviation of material 
response from the elastic one is larger for both strain probe levels of 0.5 
and 1.0 mm. This is probably because the fabric change induced prior to 
strain probing is less than in the previous case. Along the isotropic 
compaction path OC, virtually no stress induced fabric change is to be 
expected so that the only fabric change is due to path CA. Hence, when the 
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strain probing is applied, there is much potential for the development of 
plastic deformations and anisotropy. 

Fig. 5.2. Force response envelopes for strain probes applied after a combination of 
isotropic compaction (OC) and preshear (CA) 

Finally, Figs. 5.3 and 5.4 show the evolution of stress envelopes for both 
stress histories as the level of probing strain is increased. It is observed that 
at higher probing strain levels (D = 2 and 3 mm), the response envelopes 
are no longer elliptical in shape and are unsymmetrical about the initial 
stress state, thus showing substantial deviation from an elastic behaviour. 
Also, comparing Figs. 5.3 and 5.4, the response envelopes at higher 
probing strain levels are found to be similar in each case. This suggests 
that the effect of preshear is virtually erased at higher probing strain levels 
as the plasticity induced fabric changes are so large that the preshear 
memory is swept away. 
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Fig. 5.3. Complete force envelopes for anisotropically compacted specimen 

Fig. 5.4. Complete force envelopes for specimen compacted isotropically followed 
by a preshear 
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5.2 Strain Response Envelopes and Uniqueness of Incremental Plastic 
Strain Direction 

The two cases pertaining to two different stress histories that lead to the 
same initial state are now subjected to force (stress) probes of magnitudes 
10 and 15 N along 8 different directions in the force space. Figs. 5.5 and 
5.6 show the strain response envelopes for a force probe level of 10 and 15 
N respectively, when the specimen was isotropically compacted followed 
by a preshear. By unloading at the end of each force probing direction, the 
amount of elastic deformation was measured. Hence, any plastic strain 
increment developed during probing could be deduced. In Figs. 5.5 and 
5.6, it is found that all force probings give a strain envelope that collapses 
into a line, resulting into a single plastic strain increment direction defined 
by 2tan/ 21 DD , no matter the force probing level and direction. 
The same conclusion was reached for the other stress history involving an 
anisotropically compacted specimen to the same initial state prior to 
probing. This means that a single plastic strain increment vector is 
obtained irrespective of the incremental stress direction and history, which 
means that the granular assembly deforms according to a regular plasticity 
flow rule. 

Fig. 5.5. Strain response envelope for isotropically compacted and presheared 
specimen at force probe of 10 N 
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Fig. 5.6. Strain response envelope for isotropically consolidated and presheared 
specimen at force probe level of 15 N 

Finally, Fig. 5.7 summarizes all experimental results showing the dedu-
ced plastic strain increment vector, and the probable yield and plastic 
potential surfaces by invoking the theory of plasticity. The experimental 
results of Figs. 5.5 and 5.6 showing the existence of a regular plasticity 
flow rule imply that the granular assembly can be described using any 
classic elastoplastic constitutive model. However, subtle material 
responses such as described in the beginning of the paper involving 
instability and force chain collapse can only be modelled by enriching an 
elastoplastic constitutive law with microstructural information, see for 
example, Wan et al. (2005). The validity of a regular plasticity flow rule in 
describing the behaviour of a granular material is subject of debate in the 
literature; see Darve and Nicot (2005). For instance, a regular plasticity 
flow rule may only hold under two dimensional stress/strain conditions, 
but may not apply to three dimensions where the response is manifestly a 
function of the direction of loading increment as advocated in incremental 
constitutive laws of the type first proposed by Darve and Labanieh (1982). 
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Fig. 5.7. Uniqueness of plastic strain increment direction and probable yield and 
plastic potential surfaces 

6 Conclusions 

The experimental results presented in this paper demonstrate the possibi-
lity of evaluating microstructural changes through the visualization of 
force networks that control the macroscopic response of granular materials 
by using an anologue photoelastic material. The importance of testing the 
material response along proportional strain paths with an imposed constant 
rate of dilation is identified. These strain paths generalize the conventional 
undrained and drained triaxial testing in soil mechanics in that they refer to 
various degrees of drainage under in-situ conditions. The experimental 
results obtained in this study demonstrate the failure mechanisms leading 
to collapse under forced dilation strain paths. Material stability as descry-
bed by hardening behaviour corresponds to the formation of strong force 
columns in the central core of the specimen. It is the lateral confinement 
that dictates the strength of the central core which can locally collapse, and 
hence lead to failure at the macroscopic level. It was also observed that a 
two-phase structure emerges with the force chains seen embedded into a 
matrix of apparently less loaded particles as found in discrete element 
modelling, see Radjai et. al. (1996) and Goddard (2002). 
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Stress and strain response envelopes have also been determined experi-
mentally for various stress and strain probes. One of the main findings is 
that stress history memory is swept away at high probing strain levels. 
More importantly, when imposing stress probes on a material with two 
different stress histories, it is found that the resultant plastic strain 
envelope collapses into a single line defining the direction of plastic strain 
increment vector. This observation remains true at least for the two 
dimensional case, and hence a regular plasticity flow rule within the theory 
of non-associated plasticity can be used to model granular materials at the 
continuum level. In three dimensional conditions, the dependence of the 
plastic strain increment vector on the direction of loading (stresses) may be 
destroyed as advocated by Darve and Nicot (2005) using micromechanical 
arguments. Basically, in two dimensions, the sliding direction between a 
pair of grains is kinematically constrained along a line, and is independent 
of the loading direction. In three dimensions, the problem is less 
constrained as the sliding direction, while depending on the loading 
direction, may be anywhere within the contact plane. 

All the results reported in this paper are consistent with simulation 
results obtained from a constitutive model developed at a continuum level, 
based on the theory of plasticity and enriched with microstructural infor-
mation; see Wan et al. (2005) for instance. By incorporating microstructu-
ral information through an embedded fabric tensor, it is possible to descry-
be micro/meso phenomena through the model in the above cited work. 
This further underscores the importance of microstructure information in 
any constitutive modelling endeavour. 
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Summary

The mechanical behavior and permeability of the Tuffeau de Maastricht 
calcarenite under compactive cataclastic flow have been studied. The 
model used to back-test analyze the experimental results was the one 
developed by Lade and Kim, which employs all three invariants. The 
model parameters were calibrated based on conventional triaxial and 
hydrostatic experiments. In order to predict the formation of localization 
zones, bifurcation analysis was applied. The localization point was 
identified to be the onset of shear-enhanced compaction (a threshold in 
differential stress after which significant reduction of porosity is induced). 
The numerical results proved to be in good agreement with the 
experimental ones. As for the permeability measurements, K-constant as 
well as conventional triaxial experiments were conducted. The effective 
mean stresses were in the "transitional" regime between brittle faulting and 
cataclastic flow. Before the onset of shear-enhanced compaction, 
permeability was primarily controlled by the effective mean stress, 
independent of the deviatoric stresses. With the onset of shear-enhanced 
compaction, however, coupling of the deviatoric and hydrostatic stresses 
induced considerable permeability and porosity reduction. 
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1 Introduction 

Compaction bands are localized, planar zones of compressed material that 
form normal to the most compressive stress. Compaction bands were 
found by Mollema and Antonellini 1996 in a porous sandstone from the 
Navajo Formation. More recently, Sternlof and Pollard 2001 documented 
field observations of compaction bands in the Jurassic Aztec sandstone of 
southeastern Nevada. Such bands have been observed also in the 
laboratory (Olsson 1999; Olsson and Holcomb 2000; Wong et al 2001), in 
high porosity rocks that failed by cataclastic flow, as well as in 
polycarbonate honeycombs (Papka and Kyriakides 1998), steal foams 
(Park and Nutt 2001) and plaster (Lajtai 1974). Within these bands in high 
porosity sandstones, microstructural observations in laboratory samples 
revealed intragranular cracks - recent field observations of Sternlof et al 
2005 show almost no cracking - that extend across the grains and result in 
comminution and pore collapse (Baud et al 2004). These field and 
laboratory results suggest that compaction bands are probably a common 
feature in high porosity rocks. 

The evolution of compaction bands has been observed to take several 
forms: once initiated a compaction band may widen to accommodate the 
cumulative strain (diffuse bands) (Olsson and Holcomb 2000; Baud et al 
2004), or alternatively further compaction is accommodated by the 
initiation of additional bands that remain relatively narrow (discrete 
bands); alternating bands of compacted and uncompacted material (Wong 
et al 2001; Klein 2001; Baud et al 2004). There is little understanding so 
far for the origins of these different morphologies although Baud et al 
2004 have pointed out some of the key microstructural attributes that are 
favorable for the development of compaction localization in the form of 
discrete bands. The relationship of the laboratory compaction bands to 
those observed in the field has not, also, been fully established. 
Microscopic differences regarding the amount of the grain-scale fracturing 
indicates that further study is needed to determine the exact relationship. 

Because the material within the compaction bands is more dense, it has 
lower permeability than the surrounding material (Holcomb and Olsson 
2003, Vajdova et al 2004). Hence, compaction bands constitute barriers to 
fluid flow, adversely affecting the injection and extraction of fluids for 
storage or energy production. The presence of compaction bands affects 
the overall mechanical strength of the formation as well. The grain 
breakage and microstructural weakening within the compaction bands 
could lead to breakout phenomena causing increased sand production 
(Haimson 2003; Haimson and Song 1998; Haimson and Lee 2004). 
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Permeability reduction and increased sand production are of economic 
significance in the oil industry.  

Systematic studies (Wong et al 2001; Baud et al 2004) have 
demonstrated that compaction localization is associated with stress states 
in the transitional regime from brittle faulting to cataclastic flow where 
two different damage mechanisms are active (axial microcracks that grow 
and coalesce, and pores that collapse while grains are crushed). In the 
cataclastic flow, it is known that application of nonhydrostatic stresses 
causes the pore space in a high porosity rock to compact (shear-enhanced 
compaction) and permeability to decrease. In the brittle regime, 
contradictory observations in sandstones were reported. Nevertheless, Zhu 
et al 1997 observed that permeability in four different sandstones with 
porosity above 15% consistently decreased with increasing stress. The 
current understanding of the effect of stress on permeability in porous rock 
is not quite comprehensive. Experimental studies (Holt 1989; Rhett and 
Teufel 1992; Zhu and Whong 1997) revealed that permeability in 
sandstones is very sensitive to loading path through the interplay of 
hydrostatic and deviatoric loadings. On the other hand, Somerton et al 
1975 concluded that in coal, permeability is affected primarily by the mean 
effective stress and that the nonhydrostatic stress has negligible influence. 

Since the pioneering work of Rudnicki and Rice 1975, the onset of 
localized deformation has been interpreted as instability in the constitutive 
description of the deforming homogeneous material. To date, most of the 
modeling efforts for the prediction of compaction bands have focused on 
two invariant constitutive descriptions of the homogeneous deformation. 
Rudnicki and Rice 1975, Olsson 1999 and Issen and Rudnicki (2000, 
2001) adopted a simple constitutive framework whereby the yield 
envelope and inelastic volumetric change can be characterized by the 
pressure sensitivity parameter and the dilatancy factor, respectively. Their 
results are roughly consistent with the conditions under which compaction 
bands form. Recently, Issen 2002 proposed a two-yield surface model to 
capture the combined effect of the two different damage mechanisms 
active in the transitional regime from brittle faulting to cataclastic flow, 
where compaction bands form, in which the shear yield surface and cap 
meet at a vertex. The bifurcation analysis for this model is elaborate, but 
analytical results are available for some special cases. The results obtained, 
have extended the range of parameters over which compaction bands form. 
However, laboratory and numerical work suggest that the third stress 
invariant may play a significant effect on the description of the mechanical 
response of geomaterials (Kim and Lade 1988; Lade and Kim 19881,2;
Borja 2002; Borja 2004; Borja and Aydin 2004). Nevertheless, bifurcation 
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analysis applies only to the onset of localization and further analyses are 
required to elucidate the development of the localized failure. 

The present study identifies the development of compaction bands in a 
sedimentary limestone, namely the Tuffeau de Maastricht calcarenite. The 
experimental results are presented in Section 2. Section 3 revisits the 
general localization theory of deformation bands. Section 3 also presents 
the formulation and calibration of an elastoplastic constitutive model 
developed by Kim and Lade (Kim and Lade 19881,2; Lade and Kim 1988) 
on the basis of the experimental observations of the mechanical behavior 
of the tested rock. The developed model is used in Section 4 for back 
analysis of the experimental results. Conclusions concerning the permeabi-
lity evolution and its dependence on the stress states and formation of 
compaction bands are drawn in Section 5. In the last Section (Section 6) 
follows an overall discussion of the study. In matters of terminology, 
compactive stresses and strains are taken positive.  

2 Experimental Procedure and Mechanical Data 

The tested rock, the Tuffeau de Maastricht calcarenite, is a high-porosity 
outcrop yellowish-white porous sedimentary limestone. The Tuffeau is a 
siliceous limestone formed from the erosion of other rocks by marine 
sedimentation 90 million years ago. The word "Tuffeau" comes from the 
Latin tofus meaning spongy stone (Beck et al 2003). 

All tests were conducted on right circular cylinders (approximately 38 
mm in diameter and 76 mm in height, that is a height:diameter ratio of 
2:1), under triaxial and K-constant compression. Cores were drilled in the 
same direction to eliminate the possibility of lithological variations and 
anisotropy influencing the results. The tolerance of the samples was within 
the ISRM requirements. Thin nitrile sleeves were used to separate the dry 
samples from the confining fluid while for the saturated samples FEP 
teflon sleeves were used. Axial deformations were measured using LVDTs 
(Linear Variable Differential Transformer), while radial ones were 
measured in two orthogonal directions using cantilevers jigs. The samples 
were tested at room temperature inside a pressure vessel. Both the axial 
force and the confining pressure were applied by servo-controlled 
hydraulic systems.  

In tests performed for permeability measurements, the samples were 
saturated with purified kerosene. Each steel piston used, had two fluid 
ports delivering the fluid to a centered hole in the piston front face. Sinte-
red steel disks were placed at the end faces of the saturated samples to 
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distribute the fluid over the cross section. Volumetric flow rates were re-
corded by the fluid delivery pumps (Quizix SP-5200), while a differential 
pressure transducer recorded the pressure drop across the sample. 

A set of mechanical data for Tuffeau de Maastricht calcarenite is shown 
in Fig. 2.1. The axial stress is plotted against the axial strain for specimens 
that tested in conventional triaxial experiments with confining pressures as 
indicated in the figure. The samples deformed uniaxially and at confining 
pressure 0.5 MPa are representative of the brittle faulting regime. The axial 
stress attained a peak, beyond which the stress progressively dropped 
(strain softening). The peak stress shows a positive correlation with mean 
stress (Fig. 2.2). At 0.5 MPa confining pressure the volumetric strain 
initially increased, but near the peak stress it reversed to a decrease (Fig. 
2.3). Visual inspection of the tested samples confirmed the development of 
shear localization. 

In the "transitional" regime between brittle faulting and cataclastic flow 
(deformation at confining stresses 2, 2.5, 4, 4.5 and 5 MPa) the volumetric 
strain increased in all experiments monotonically with ongoing 
deformation (Fig. 2.3). A peak in the differential stress and strain softening 
(negative slope in the axial stress vs. axial strain curve) are evident at the 
deformation behavior of the samples tested at 2, 2.5, 4 and 5 MPa 
confining pressure. CT scans and microscopic observations confirmed the 
formation of compaction bands and development of several conjugate 
shear bands of "high" angle in the samples tested at 4.5 and 5 MPa 
confining pressure. The CT scan of the sample tested at 4.5 MPa confining 
pressure revealed the formation inside the sample of fractures (dark areas) 
that were not visible in the outer surface (Fig. 2.4). The fractures were 
generated in high angles (almost normal some of them) to the plug axis 
that is the direction of the most compressive stress. The whole specimen 
was first impregnated by blue-stained epoxy and then petrographic thin 
sections (30 mm thick) were taken and examined by transmitted light 
microscopy. The thin section presented in Fig. 2.5 was located to a part of 
the plug where an open fracture had been observed in the CT image and 
demonstrates the presence of released grains in the fractures. In another 
thin section (Fig. 2.6) crushed grains close to a fracture and some micro 
cracks oriented orthogonal to the fracture can be seen. The CT scan of the 
sample tested at 5 MPa confining pressure (Fig. 2.7) reveals also fractures 
oriented in high angles to the most compressive stress. In both samples 
grain packing is evident across the fractures (Fig. 2.8). Grain breakage and 
packing along the fractures but not in the large fragments in between them 
suggest that localization occurred in the loading phase. In the unloading 
phase (elastic phase), due to stress release, fractures emerged inside the lo-
calization zones since the grain bonds were broken and fragments were not     
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Fig. 2.1. Axial stress vs axial strain curves obtained from conventional triaxial 
experiments performed at confining pressures as indicated in the figure. 

Fig. 2.2. Failure envelope of the tested rock. In  "   ", data from tests not presented 
in Fig. 2.1 
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Fig. 2.3. Mean stress vs volumetric strain curves for a set of conventional triaxial 
tests performed at confining pressures as indicated in the figure. 

attached to each other by cement (released gains). The orientation of some 
of the fractures (normal to the most compressive stress) suggests the 
formation of compaction bands. 

Additional insight is gained by examining the effects of the hydrostatic 
and deviatoric stresses on volumetric strain (Fig. 2.3). There is a point in 
the hydrostat denoted P_ which corresponds to the onset of grain crushing 
and pore collapse. Deviations from the hydrostat imply that additional 
volumetric strain change is induced by the deviatoric stresses. In the 
transitional regime between brittle faulting and cataclastic flow, beyond 
the stress levels, denoted by C* in Fig. 2.3, that correspond approximately 
to the first local peak stresses, deviatoric stresses provides a significant 
contribution to the compactive volumetric strain (shear-enhanced 
compaction). In contrast, in the brittle faulting regime deviatoric stresses 
induced the volumetric strain to decrease (shear-enhanced dilation). The 
mean stress-volumetric strain curves describing the experiments at 2 and 
2.5 MPa have the qualitative descriptions of the others in the transitional 
type of failure. That is, before the peak stress was attained, the volumetric 
strain increased somewhat relative to the hydrostat, but then a pronounced 
increase occurred post-peak. 
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Fig. 2.4. CT-scan of a sample tested triaxially at 4.5 MPa confining pressure 

Fig. 2.5. Thin section photo of the sample tested at 4.5 MPa confining pressure 
showing released grains in fracture. A 0.5 mm scale bar is shown 

Fig. 2.6. Thin section photo of the sample tested at 4.5 MPa confining pressure 
showing crushed grains close to a fracture. Some micro cracks (upper arrows) are 
oriented orthogonal to the fracture (horizontal, just above the photo). A 0.5 mm 
scale bar is shown 
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Fig. 2.7. CT-scan of a sample tested triaxially at 5 MPa confining pressure 

Fig. 2.8. Thin section photo of the sample tested at 5 MPa confining pressure 
showing possible denser grain packing close to large fragments that are not 
compressed. A 0.5 mm scale bar is shown 

3 Infinitesimal Deformation Theory of Bifurcation of Elastopla-
stic Solids – Calibration of the Lade and Kim’s Model 

In this section we revisit the general localization theory of deformation 
bands and calibrate the elastoplastic model developed by Lade and Kim to 
the experimental data.

3.1 General Analysis of the Deformation Bands 

We assume an elastoplastic material with a yield function F and a plastic 
potential function Q. If plastic volumetric strain pv is used as the only 
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parameter to keep track of the history of inelastic deformation, then the 
yield condition can be written as 

0)( ,kijF (3.1)

where )(: pvkk  is a function of the plastic volumetric strain pv  induced 

by the stresses )3,2,1,( jiij .
When the stress state is on the yield surface, the inelastic strain 

increments )3,2,1,( jid p
ij  are assumed to be normal to the plastic 

potential Q, thus are assumed to be expressed by the following relation: 

ij
p

p
ij

Qdd (3.2)

where pd  is a non-negative factor of proportionality and  denotes 
partial differentiation with respect to the indicated variable. Then, the rate 
constitutive equation takes the form: 

ij
pklijklij

QddCd (3.3)

where with isotropy in the elastic response, the elasticity tensor reads: 

jkiljlikklijijkl v
v

v
EC

1
2

)1(2
(3.4)

E and v denote Young's modulus and Poisson’s ratio, respectively, and 
ij is the Kronecker's delta. 

Because pv  changes with inelastic deformation, so that the stress state 
remains on the yield surface, the following consistency condition must be 
satisfied:

p
p

ij
ij

dv
dv
dk

k
FdFdF (3.5)

Substituting
3

1
321

i i
p

ppp
p

Qdddddv (3.6)
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where )3,2,1(ii  denote the principal stresses and )3,...,1(id p
i

denote the principal plastic strain increments, into (3.5), solving for pd
and substituting the result into (3.5) yields the following expression for the 
stress increments: 

kl
p

ijklij dCd (3.7)

where the elastoplastic constitutive operator p
ijklC  is given by 

HFCF

CFFC
CC

tu
rstu

rs

pqkl
pqmn

ijmn

ijkl
p

ijkl (3.8)

and
3

1i ip

Q
dv
dk

k
FH (3.9)

is the plastic hardening modulus. 
The loading criterion for a given strain increment reads: 

.,0

;,0

;,0

unloadingdCF

loadingneutraldCF

loadingdCF

klijkl
ij

klijkl
ij

klijkl
ij

(3.10)

Rudnicki and Rice 1975 showed that localized deformation in a planar 
zone with unit normal n is a bifurcation from homogeneous deformation if 
a non trivial solution exists to the following eigenvalue problem: 

0kl
p

ijkli mnCn (3.11)

A non-trivial solution for the mk is possible only when 

0det l
p

ijkli nCn (3.12)
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l
p

ijkli nCn  is the acoustic tensor and m it’s eigenvector. The localization 
condition is the result of the requirements that the traction rates be 
continuous across the band boundary and that the velocity field be 
continuous at the instant of band localization. The nature of the 
deformation band at localization depends on the inner product (n, m) of 
the vectors n and m:

,1),(
,1),(0

,0),(
,0),(1

,1),(

mn
mn

mn
mn

mn

.
;

;
;tan

;

bandcompactionpure
bandshearcompactive

bandshearpure
bandsheartdila

banddilationpure

(3.12)

3.2 Constitutive Model Developed by Lade and Kim 

Kim and Lade (Kim and Lade 19881,2; Lade and Kim 1988) developed a 
single hardening constitutive model for frictional materials. The model 
incorporates all three stress invariants and it was validated by the authors 
for sand and plain concrete. It consists of twelve parameters that are to be 
calibrated from at least a hydrostatic, a uniaxial and a conventional triaxial 
experiment in the brittle faulting regime. The restricted number of tests 
necessary for the calibration of the model is of importance, since the 
number of in situ cores available for testing is often restricted as well. It 
should be noted however that the presence of the third invariant is not 
necessary for the simulation of the experiments performed. 

In table 3.1 values of Young's modulus E and Poisson ratio v obtained 
from unloading-reloading cycles performed at different conventional 
triaxial experiments are given. The averaged values, together with the 
parameters of model that are calibrated below, are used in order to 
calculate the elastoplastic tensor p

ijklC  of Section 3.1. 
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Table 3.1. Determination of Young's modulus E and Poisson ratio v for Tuffeau de 
Maastricht rock from unloading-reloading cycles in conventional triaxial 
experiments at confining pressures as indicated in the table 

Triaxial compression 
tests performed at 

E (MPa) v

0 MPa 2807.65 0.23
0.5 MPa 2648.24 0.223 
2 MPa 3161.27 0.202 

2.5 MPa 3158.48 0.206 
 averaged E 2943.91 averaged v 0.215 

3.2.1  Plastic Potential Function 

The plastic potential function is expressed as a function of the three stress 
invariants I1, I2 and I3 in the following form: 

1
3

3
1

3
2

2
1 I

I
Ic

I
IcQ o (3.13)

where the subscript "1" denotes the direction of the most compressive 
stress.

The parameter c0 controls the intersection with the hydrostatic axis, the 
parameter c3 acts as a weighting factor between the triangular shape (from 
the I3 term) and the circular shape (from the I2 term), and the exponent 
determines the curvature of the meridians. A constant stress a (tensile 
strength) must be added to stresses before substituting them to the 
invariants.  is a cohesion like parameter. If a uniaxial extension test is 
not available then  can be approximated reasonably well from the 
compressive strength c , using the relation 

75.022.0 c (3.14)

which holds for sedimentary rocks (Kim and Lade 1984). The above 
relation yields MPa5142.0  for the tested Tuffeau. In what follows 
we will keep the notation used for the stresses and for the stress invariants 
to denote the translated stresses and translated stress invariants respe-
ctively. 
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3.2.2 Determination of the Parameters c3, c0, μ

In Kim and Lade 19881, it was shown for various frictional materials that 
c3 decreases as the rigidity of the materials increase, and the cross-section 
of the plastic potential surface changes from a triangular to a rounded 
shape. The effect of material rigidity was also observed in the characteri-
stics of the failure surfaces. Thus the curvature of failure surface meridians 
increases with increasing rigidity. This curvature is modeled by the 
parameter m in the failure criterion below. The relation between c3 and m
for frictional materials can be expressed as a power function 

27.1
3 00155.0 mc (3.15)

giving 0007.03c , since 853.1m  (see Failure Criterion below). 
By defining now 

p

p

p d
dv

1

3 (3.16)

and substituting the plastic strain increments using the plastic flow rule, 
under triaxial compression conditions, we obtain 
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I
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pp
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(3.17)

or

021
1 cff (3.18)

Then the parameters , and 0c  can be determined by linear regression 
from several data points (Fig. 3.1). For the tested rock 32.4  and 

96.20c . Notice that the condition of irreversibility that is plastic work 
should be positive whenever a change in plastic strain occurs (Kim and 
Lade 19882), is satisfied since 
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0 (3.19)

)327( 30 cc (3.20)

The plastic potential surface for Tuffeau de Maastricht has the shape of 
an asymmetric cigar in the principal stress space (Fig. 3.2). The surface is 
continuous throughout the stress space except at the intersection with the 
hydrostatic axis behind the origin of the space. 

Fig. 3.1. Determination of the parameters _ and c0 by linear regression from 
several data points 

Fig. 3.2. Plastic potential surface for Tuffeau de Maastricht calcarenite in principal 
stress space 
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3.2.3  Failure Criterion m
f IIIF 13

3
1 27/

The above criterion was proposed by Kim and Lade 1984 based on data for 
different types of rock. The constant parameters m  and  can be 

determined by plotting 27
3

3
1

I
I

 vs 
1

1
I

 at failure in a log-log diagram 

and locating the best fitting straight line. The intercept of this line with 

11
1I

 is the value of 716.1127  and 863.1m  is the slope of the 

line (Fig. 3.3).

Fig. 3.3. Failure envelope for Tuffeau de Maastricht rock in a diagram of the first 
and second principal stresses 

3.2.4  Yield Criterion and Hardening/Softening Law 

The proposed isotropic yield function is expressed as follows: 

)()( pi vkfF (3.21)

in which 

qh
i eI

I
I

I
Icf 1

3

2
1

3

3
1

3)( (3.22)
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and )( pvk  keeps track of the history of inelastic deformation based solely 

in the plastic volumetric strain )( pv . The parameter c3 was determined in 
the plastic potential function. Parameters h (constant) and q (variable) con-
trol the meridional curvature of the yield surface.  

The yield surface together with the compactive yield cap have the shape 
of an asymmetric tear drop with a smoothly rounded triangular cross 
section as shown in Fig. 3.4. 

Fig. 3.4. Yield envelope for Tuffeau de Maastricht calcarenite in principal stress 
space

3.2.5  Parameter Determination for Yield Criterion  

Consider two stress points A and B on the same plastic volumetric strain 
contour (plastic volumetric strain contours coincide with yield surfaces). 
We suppose that q, which is variable, is 1 at the failure point B and 0 at the 
point A which lies on the hydrostatic axis. Then atBiatAi FF )()(  or 

B

A

B

B

B

B

I
I

e
c

I
I

I
Ic

h

1

1

3

2

2
1

3

3
1

3

ln

327
ln

(3.23)
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In table 3.2 the values of h, in the conventional triaxial experiments at 
confining pressures that correspond in the brittle faulting regime and in the 
transition regime between brittle faulting and cataclastic flow, are given. 

Table 3.2. Determination of the parameter h for Tuffeau de Maastricht rock 

Triaxial compression tests performed at h 

0.5 MPa 3.25
2 MPa 3.64

2.5 MPa 3.08

 averaged h 3.324

The parameter q is a function of stress level such that 

,1
,10

,0

q
q

q

.
;

;

stressesfailureat
hardeningduring

ncompressiochydrostatiduring
(3.24)

The dependence of q on the stress level in the hardening regime will be 
investigated in the sequel. We have to keep in mind though, that q = 0 
during hydrostatic compression in order to calibrate the parameters of the 
hardening law that follows. 

3.2.6  Hardening Law )(: '
pvfk

The translated hydrostatic pressure may be modeled by a quadratic fun-
ction of the plastic volumetric strain, up to a value in

pv  chosen for the best 
fitting possible, but otherwise arbitrary: 

WLvKvI pp
2

1 (3.25)

where the parameters K, L and W are all constants. Then, the parameters of 
the quadratic function (K, L and W) update so that 
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updated
in
p

in
p

in
p

in
p WLvvKWLvvK 22 )()( (3.26)

updated
in
p

in
p LKvLWKv 22 (3.27)

*

2 p
updated

v
K
L

(3.28)

(3.26) and (3.27) yield that the curve which simulates the translated 
hydrostatic pressure is C1 differentiable (Fig. 3.5), while due to (3.28) the 
transition from hardening to softening occurs when the plastic volumetric 
strain takes the value *

pv (see also Softening law). 

Fig. 3.5. Simulation of the translated hydrostatic principal stress I1 as a 
function of plastic volumetric strain 

The plastic volumetric strain contour at *
pv  approximates the compactive 

failure cap, that is the curve defined by the stress states *C (Table 3.3). So 
for a hydrostatic compression test (q = 0, q defined in the yield criterion) 

h
ppppi WLvKvcvfvff )(327)()()( 2

3
'' (3.29)
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3.2.7  Variation of q 

The stress level 
n

F
S f  varies from 0 on the hydrostatic axis to 1 at the 

failure surface. S is a hyperbolic function of 

Table 3.3. Values of pv on the compactive failure cap for different triaxial com-
pression 

Triaxial compression tests performed at pv

2.5 MPa 0.00913 
4 MPa 0.00915 and 0.0123 

4.5 MPa 0.0138 and 0.0128 
5 MPa 0.0118 

averaged *
pv 0.0115 

Hydrostatic experiment 0.0149 

h

p

I
I
I

I
Ic

vf
q

1
3

2
1

3

3
1

3

' )(
ln (3.30)

that is 
q

qS  where  and  are constant parameters. Since the 

curve passes through (1, 1) we obtain 

S
Sq

)1(1
(3.31)
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Fig. 3.6 presents the variation of q with respect to the stress level for the 
tested Tuffeau.  was found to be approximately 0.7. 

Fig. 3.6. Variation of q as a function of the stress state S

3.2.8  Softening Law pBv
p Aevfk )(: ''

Softening may begin anywhere along the monotonically increasing harde-
ning curve and is initiated when q=1, which in turn occurs when S=1.
Softening may also occur when the plastic volumetric strain takes the 
value *

pv of the plastic volumetric strain contour that approximates the fai-
lure cap that is in the case of Tuffeau de Maastricht rock the value 0.0115 

strain (table 3.3). This value must be equal to
K
Lvp 2

*  for which the 

hardening modulus )2()()327( 12
3 LKvWLvKvhcH p

h
pp

becomes zero and softening begins. 

3.2.9  Determination of the Parameters A and B  

The slope of the softening curve is set equal to one tenth the negative slope 
of the hardening curve at the peak point. This assumption enables us to 
calculate both parameters 
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peakvB
peak

pefA )(' )( (3.32)

peakpeakhardp fdv
dfB
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(3.33)

The values of all the parameters that are needed for the calculation of the 
elasto-plastic tensor ep

ijklC  of the tested rock are listed in table 3.4. 

Table 3.4. Parameters needed for the calculation of the elasto-plastic tensor 
ep
ijklC of Tuffeau de Maastricht rock 

E (MPa) v m

2943,91 0.215 0.5142 1.853 1127.716 

0c 3c h

-2.96 0.0007 4.32 3.324 0.7 

4  Back Test Analysis 

The back analysis of the triaxial tests used for the calibration of the elasto-
plasticity model follows. Because of the non-linear constitutive model, the 
simulation of the tests is performed incrementally using numerically Euler 
forward integration. 

Fig. 4.1 shows the numerical simulation in comparison with the experi-
mental data of a hydrostatic test up to point *P that corresponds to the 
onset of grain crushing and pore collapse. In the uniaxial compressive test 
the numerical data is roughly consistent with the experimental data,  
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Fig. 4.1 Experimental data and numerical simulation of a hydrostatic test 

Fig. 4.2. Experimental data and numerical simulation of a uniaxial test. The two 
left curves represent the radial strains (experimental and simulated) 

and the reason is that in the calibration as customary the uniaxial test was 
not taken into account (Fig. 4.2). 

The comparison of the numerical simulation of the conventional triaxial 
experiment at 0.5 MPa confining pressure with the experimental data (Fig. 
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4.3), together with the back analysis of the other tests below, shows that 
the model of Lade and Kim does capture the behavior of Tuffeau rock. 

Fig. 4.3. Experimental data and numerical simulation of a conventional triaxial 
test at 0.5 MPa confining pressure. The two left curves represent the radial strains 
(experimental and simulated). 

The bifurcation analysis for this test predicts a localization of the 
homogeneous deformation in a dilatant (almost isochoric) shear band (0 < 
(n, m) = O (10-2)) in the softening regime. The angle between the plane of 
localization and the most compressive stress is approximately 241.0 . In 
the next figure (Fig. 4.4) the back analysis of a conventional triaxial test 
with 2 MPa confining pressure is presented. The predicted localization 
band that forms in the softening regime, is in this case a compactive shear 
band ((n, m) < 0) with the aforementioned angle being approximately 

345.0 . The same angle between the plane of the predicted localization 
band and the most compressive stress in the conventional triaxial 
experiment at 2.5 MPa confining pressure is 342.0 approximately (Fig. 
5.1). The onset of the predicted compactive shear band occurs again post-
peak. The above tests were representatives of the brittle faulting regime 
and the transitional regime between brittle faulting and cataclastic flow. In 
the conventional triaxial experiments that follow with confinements in the 
cataclastic flow regime, namely at 4, 4.5 and 5 MPa confining pressures, 
the model predicts pure compaction bands ((n, m) -1) pre-peak. The 
comparison of the experimental data with the numerical simulation as well 
as the predicted onsets of the pure compaction bands are given in Figs. 5.2,  
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Fig.4.4. Experimental data and numerical simulation of a conventional triaxial test 
at 2 MPa confining pressure. The two left curves represent the radial strains 
(experimental and simulated). 

5.3 and 5.4 for the tests at confining pressures 4, 4.5 and 5 MPa, 
respectively. Again only the deviatoric part of the tests is considered. 

5 Permeability Reduction

There was an appreciable scatter in permeability between different sam-
ples. Instead of presenting the normalized data from all the experiments 
performed, we prefer to show the primary data of those samples with 
comparable permeabilities.

In Fig. 5.5 the axial stress as a function of the axial strain at conventional 
triaxial experiments performed at 4, 4.5 and 5 MPa effective pressures and 
a K-constant experiment for K=0.7 (the ratio 12 /  is equal to 0.7, where 

32  and )3,...,1(  are the principal stresses), are shown. The 
tests were drained with the pore pressure kept constant at 2 MPa. The 
stress-strain curves of the conventional triaxial experiments in Fig. 4.4 are 
similar to those of the samples that were subjected to loading at 
corresponding confining pressures. However, there is a difference in the 
strength, due to the presence of kerosene used to saturate the samples and 
to creep since at 0.5 MPa effective mean stress some preliminary 
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Fig. 5.1. Experimental data and numerical simulation of a conventional triaxial 
test at 2.5 MPa confining pressure. The two left curves represent the radial strains 
(experimental and simulated) 

Fig. 5.2. Experimental data and numerical simulation of a conventional triaxial 
test at 4 MPa confining pressure. The two left curves represent the radial strains 
(experimental and simulated) 
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permeability measurements had to be recorded. This difference is 
approximately 13.6% of the strength of the dry samples. All the above 
experiments are performed at effective pressures that correspond to the 
cataclastic flow regime. Permeability consistently decreases with increa-
sing strain, independently of whether the sample showed hardening or 
softening. The mechanical data presented in Section 2 indicate that with 
the onset of shear-enhanced compaction *C (a threshold in differential 
stress) coupling of the deviatoric and hydrostatic stresses induce considera-
ble volumetric strain increase. The critical stress levels *C mark the onset 
of significant reduction in permeability as well. Before the onset of shear-
enhanced compaction permeability is primarily controlled by the effective 
mean stress, independent of the deviatoric stresses. With the onset of 
shear-enhanced compaction, however, the nonhydrostatic loading exerts 
dominant control over permeability (Fig. 5.6). 

Fig. 5.3. Experimental data and numerical simulation of a conventional 
triaxial test at 4.5 MPa confining pressure. The two left curves represent 
the radial strains (experimental and simulated) 

Minor differences can be seen between the hydrostatic and triaxial expe-
riments when permeability is plotted as a function of volumetric strain 
(overall positive correlation). 
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Fig. 5.4. Experimental data and numerical simulation of a conventional triaxial 
test at 5 MPa confining pressure. The two left curves represent the radial strains 
(experimental and simulated) 

Fig. 5.5. Axial effective stress vs axial strain curves obtained from conventional 
triaxial and a K-constant experiments performed for testing permeability evolution 
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Fig. 5.6. Permeability plotted against mean effective stress for conventional 
triaxial experiments in the cataclastic flow regime. 

6 Concluding Remarks 

The mechanical behavior of Tuffeau de Maastricht calcarenite was studied. 
Dry conventional triaxial and hydrostatic experiments were performed. 
The data obtained was used to calibrate the parameters of the single harde-
ning elasto-plastic model developed by Kim and Lade. The numerical re-
sults were in good agreement with the experimental ones. The tested sam-
ples were CT scanned and petrographic thin sections were taken based on 
these CT scans, in an effort to identify the presence of deformation bands.

The model predicts dilatant shear bands in the brittle faulting regime in 
accordance with the experimental observation, while in the transitional 
regime between brittle faulting and cataclastic flow predicts compactive 
shear bands and almost pure compaction bands. The localization points in 
the cases of dilatant shear bands and compactive shear bands occur post-
peak (after the peak in the stress-strain curve is attained). Almost pure 
compaction bands are predicted before the onset of shear-enhanced 
compaction (that is the first local peak). The localization points in all test 
back analysis are very close to the first local peaks where deformation 
bands are assumed to form with the exception of the test back analysis of 
the triaxial experiment performed at 5 MPa confining pressure, where the 
onset of the compaction band is predicted quite pre-peak. 

Conventional triaxial and K-constant experiments were also performed 
to elucidate the stress dependence of permeability. The effective mean 
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stresses were sufficiently high that the sample failed by cataclastic flow. 
The critical stress levels *C  (onsets of shear-enhanced compaction) mark 
the onset of considerable permeability reduction due to the coupling effect 
of the deviatoric and hydrostatic stresses. Before the onset of shear-
enhanced compaction, permeability is primarily controlled by the effective 
mean stress, independent of the deviatoric stresses.
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1 Introduction 

Continuum damage mechanics is often used as a framework for describing 
the variations of the elastic properties of due to micro-structural degrada-
tions. Experimentally, concrete specimens exhibit a network of microsco-
pic cracks that nucleate sub-parallel to the axis of loading. Due to the 
presence of heterogeneities in the material (aggregates surrounded by a 
cement matrix), tensile transverse strains generate a self-equilibrated stress 
field orthogonal to the loading direction, a pure mode I (extension) is thus 
considered to describe the behaviour even in compression. This rupture 
mode must be reproduced numerically. This is the reason why the failure 
criterion of the chosen constitutive law is expressed in terms of the 
principal extensions and that a tension test is modelled at the end of this 
paper. The influence of micro-cracking due to the external loads is 
introduced via damage variables, ranging from 0 for the undamaged 
material to 1 for a completely damaged material. 

This approach, however, is known to be inadequate for studies where 
strain softening appears. Calculations performed with a local classical 
continuum model - which does not incorporate an internal length variable - 
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are unable to objectively model intrinsic failure zones. Spurious mesh 
dependence appears and also cases of failure without any energy 
dissipation. In order to improve computational performance the nonlocal 
damage approach is often used in the literature. A different solution is 
investigated within this work. Local second gradient models are chosen to 
include a meso scale in the continuous. This approach differs from the 
nonlocal one in the sense that it is a local theory with higher order stresses 
depending only on the local kinematic history. 

A brief presentation of a classical damage mechanics constitutive law 
used for the calculations is given at the first part of the paper. The second 
gradient local approach for a 1D medium is then introduced. Finally, 
different numerical computations with 1D specimens in traction are 
presented. Using a random initialization of the iterative solver of the 
equilibrium equation we search the existence of various solutions and we 
show that the second gradient term regularize the problem giving results 
that are mesh insensitive and objective. 

2 Scalar Damage Model 

Introduced in 1958 by Kachanov [1] for creep-related problems, conti-
nuum damage mechanics has been applied in the 1980s for simulating the 
non linear behaviour of concrete [2], [3], [4]. Thermodynamics of 
irreversible processes gave the framework to formulate the adapted consti-
tutive laws [5], [6]. Considering the material as a system described by a set 
of variables and a thermodynamic potential, constitutive laws are systema-
tically derived along with conditions on the evolution of damage. How-
ever, an adequate choice of the potential and of the damage variable (scalar 
or tensor) remains to be made. Several anisotropic damage models have 
already been proposed [7], [8], [9], [10]. Possible applications cover also 
dynamic problems [11], [12], porous materials [13] and chemical damage 
[14]. Recent literature reviews on damage mechanics and concrete can be 
found in [15], [16], [17]. 

The outlines of a local scalar 3D damage mechanics law for concrete are 
presented hereafter [18], [19]. In this model, the material is supposed to 
behave elastically and to remain isotropic. The loading surface takes the 
following form: 

)()( DKDf eq (2.1)

with eq  the equivalent strain defined as: 
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2

i
eq (2.2)

being  the principal strains with (+ for traction) 

000 iii ifandif (2.3)

The choice of the previous definition of the equivalent strain eq is guided 
by the fact that tensile transverse strains are considered to describe the 
behaviour even in compression (see section 1). D is a scalar whose value is 
in the domain [0, 1]. The hardening-softening parameter K (D) takes the 
largest value of the equivalent strain ever reached by the material at the 
considered point. In that way it retains the previous loading history. 
Initially K (0) equals a given threshold 0D . Evolution laws for damage are 
used to describe the response in tension or compression - index j refers 
either to tension (t) or compression (c):

0
0 exp

)1(
1 Deqjj

eq

jD
j BA

A
D (2.4)

jA and jB are material parameters identified independently from com-
pression tests on cylinders and bending tests on beams. The scalar damage 
variable D, that has to be introduced in the constitutive equation, is a 
weighted sum of Dt and Dc.

cctt DDD (2.5)

is a parameter that has been added to the original version of the 
model in order to reproduce more accurately the behaviour of under shear. 
It is usually taken equal to 1.06. We call and )( the 
tensors in which appear only the positive and negative principal stress 
respectively, and t and c the strain tensors defined as: 

:: 11
ct and (2.6)

)(D is a fourth-order symmetric tensor interpreted as the secant 
stiffness matrix and it is a function of damage. The weights t and c are 
defined by the following expressions: 
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01 ticiii ifH , otherwise 0iH . ca and ta are the coeffi-
cients defining the contribution of each type of damage for general 
loading. From (2.7) and (2.8) it can be verified that for uniaxial 
tension 1ta , 0ca , tDD , and vise versa for compression. Responces 
under uniaxial compression and tension of this model are presented in 
figure 2.1. 

Fig. 2.1. Response of the Mazars damage model for concrete in uniaxial tension 
(left) and compression (right), (E being the Young modulus) 

3 Local Second Gradient Model 

It is today well established that strain softening induces bifurcation, strain 
localization, and that the numerical codes often predict failure without any 
energy dissipation [20],[21]. One of the possible remedies is to use 
classical damage mechanics constitutive laws based on the nonlocal 
damage theory (e.g., [22], [23], [24]) or nonlocal second within the flow 
theory of plasticity. The latter involve the second gradient of the plastic 
strain in the consistency condition and/or the flow rule, while the 
kinematic and equilibrium equations remain unchanged (e.g., [25], [26], 
[27]). For these models the constitutive equation in its incremental form is 
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itself a partial differential equation. Peerlings [28], [29] and Fremond [30] 
have also studied second gradient models within the theory of damage 
mechanics. Zervos et al. [31] proposed a mixed type model that can be 
interpreted as a strain-gradient theory with softening law enriched by the 
second gradient on an internal variable.  

A different approach is investigated within this work consisting of using 
second gradient local models to introduce a meso scale in continuous mo-
dels [32], [33], [34]. The word local means that the constitutive equation is 
a relation only between local quantities. Strain gradients are considered as 
additional observable state variables and are conjugate to higher order 
stresses that enter the equilibrium equations. This local model is a direct 
extension of microstructured or micromorphic continua proposed in [35] 
and [36]. Its general formulation follows. 

For a 1D medium the internal virtual power *
inP for the domain ba,

is a linear form in *'u and '*'u , the first and second derivatives with respect 
to the space variable x of the virtual velocity field *u (. is the symbol used 
for the derivatives with respect to the time and ' with respect to the space 
variable x). It takes the following form: 

dxuMuNP
b

a
in

'*'*'* (3.1)

N being the usual normal stress in 1D continuum, M is a double stress. 
In order to calculate the external virtual power *

exP , additional external 
forces μ, associated to the second gradient terms, have to be added to the 
classical external forces , associated to the first gradient terms (no distri-
buted forces are taken into consideration, so the only forces are those 
acting on the two ends a and b). The virtual power of the external forces is 
then:

*'*'*** uuuvuvP bbaabbex (3.2)

The virtual power formulation of the equilibrium equation of the conti-
nuum is for all kinematically admissible field *u :

0**
inex PP (3.3)

Integrating by parts twice shows that equation (3.3) is equivalent to: 

0''' MN (3.4)

and
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'' (3.5)

The next step is to choose the constitutive laws linked with the first and 
the second gradient part of the model. 

)( 'ufN (3.6)

)( ''ugM (3.7)

For large strain computations, there is a difference between the time de-
rivative of the strains and 'u , the derivative of the velocity with respect to 
the actual space variable. is a Lagrangian measure and 'u , 'u are Eulerian 
ones. When small strains are assumed 'u and both models can be 
written in an integral manner as follows: 

)(fN (3.8)

)( 'gM (3.9)

The balance equation (3.4) can be integrated as: 

1
' NntconstMN (3.10)

Substituting N and M given by equations (3.8) and (3.9) in equation 
(3.10), yields a differential equation which has to be met by the function u
of x. This equation can be solved analytically under certain conditions. 
Assuming that there is no coupling between those f and g, various types of 
constitutive relations can be studied. In the original papers [32], [33], a 
classical elastoplastic bilinear model (or a CLoE family model [37], [38]) 
exhibiting softening has been chosen for f and a linear relation for g. The 
authors have proven analytically that for a given problem the solutions 
have to be built using patches of different fundamental solutions, consisted 
of ‘hard parts’ corresponding to the unloading pieces and ‘soft parts’ for 
the loading pieces of the media. In that way, different solutions are 
possible (an inner hard solution, a hard-soft solution, a soft-hard-soft 
solution... see figure 3.1). In order to built a patch solution, one has to 
equate the values of the displacements u, strains u  and of the two internal 
forces N M  and M at the ends of the different pieces in order to meet the 
virtual power equation, and then to check that lim

' eu in hard pieces and 
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lim
' eu in soft pieces ( lime  being a threshold of the constitutive law, for 

example 0lim De for the Mazars law). 

Fig. 3.1. Patches of different fundamental solutions 

A 2D second gradient element has been developed [39], [40] and imple-
mented in the finite element code LAGAMINE (Université de Liége). The 
formulation of the element and the corresponding constitutive equations 
use a mathematical constraint between the micro kinematics description 
and the usual macro deformation gradient field. They are valid for large 
strains. This constraint is enforced in a weak sense by using Lagrange 
multipliers in order to avoid difficulties with the C1 continuity (second 
involving the first and the second derivatives of the displacement field).  

In the following section, the feasibility of this local approach with 
constitutive laws based on damage mechanics is proven numerically using 
1D simulations. The Mazars damage mechanics law is used for the fun-
ction f and some remarks about the uniqueness of solution, the objectivity 
of the calculations and the influence of a possible coupling between the 
functions f and g are drawn. 

4 1D Numerical Simulations 

A 1D concrete bar submitted to traction is studied hereafter and the length 
of the localization zone is compared with the analytical solutions provided 
in [32], [33]. The bar is modelled using the 2D second gradient element of 
the finite element code LAGAMINE (Université de Liége, [39], [40]) 
under plane deformations. In order to avoid any 2D effects, a zero vertical 
displacement is applied at the upper and lower boundaries along the bar (u2
= 0, figure 4.1). The right end of the bar is fixed (u1 = u2 = 0) and the 
external traction displacement is applied at the left end. The additional 
external forces b, a, μb, μa are assumed to be zero at both ends. The 
section of the bar is 0.1 x 1m2 and its length 1m.
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Fig. 4.1. Boundary conditions for simulating 1D traction in a 2D FE code 

Fig. 4.2. Constitutive models: (a) first gradient part, (b) second gradient part 

For the calculations presented hereafter it is assumed that there is no cou-
pling between the first and the second gradient part of the model (functions 
f and g). The constitutive relations are the Mazars damage law for the first 
gradient part and a linear relation for the second gradient part (Figure 4.2). 
The parameters chosen for the damage law correspond to that of a typical 
specimen ( 042,5.0,04.1,09.30 01 EBAEPaEA ttD ,
Poisson’s ratio 0.2, parameters that provide PaEA 097.162 ).

The second gradient local approach defines implicitly two internal 
lengths, the first (namely 1/ AB ) corresponding to the unloading regime 

of the first gradient part of the model, and the second (namely )/( 2AB )
corresponding to the softening loading regime just after the peak (B being 
the slope of the linear relation of the second gradient part, see figure 4.2). 
A way to define the order of magnitude used for B, is to use the criteria 
proposed in [32], [33] - valid under the small strain assumption and for a 
bilinear plastic law - in order to have possible analytical solutions and to 
avoid snap-back phenomena for the corresponding differential equation. 
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Assuming a two-part solution is possible (built with a patch of a hard part 
and a soft one) and considering B = 0.37E + 09N, one finds analytically 
that under small strains and for a bilinear law with A1 = 30.E + 09Pa and 
A2 = 16.7E + 09Pa the length of the soft part is equal approximately to 
0.37m. For the case of a three-part solution (hard - soft - hard) the length of 
the soft part equals approximately 0.78m.

As soon as the peak is reached the problem exhibits a loss of uniqueness. 
In order to determine numerically bifurcation thresholds, an algorithm of 
random initialization of the iterative solver of the equilibrium equation is 
used just after the peak (at 042.10 ED , [41], [42]). For every step, a 
full Newton-Raphson method under displacement control, involving a 
numerical consistent tangent stiffness operator for the complete model (i.e. 
the second gradient terms as well as the classical ones) is used [39]. The 
results of two meshes with 14 and 50 elements are presented hereafter 
[43]. Figure 4.3 shows the global force displacement curve for both 
meshes. Figure 4.4 presents the distribution of the damage variable D just 
after the peak ( 042.10 ED ), and figure 4.5 at the end of the loading 
( 049.20 ED ).

Fig. 4.3. 1D traction: Force - displacement curves for the two meshes 
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Fig. 4.4. Localization patterns (distribution of damage variable D) just after the 
peak ( 042.10 ED ): (a) 14-element mesh, (b) 50-element mesh 

Both meshes reproduce the homogeneous solution when no random initia-
lization of the iterative solver is used. When random initialization of the 
velocities is used just after the peak, differences in the global curves 
appear. This is due to the different corresponding localization patterns. The 
mesh with 14 elements has converged to a solution with two patches (a 
hard part and a soft one with a length equal approximately to the length 
calculated analytically). The mesh with 50 elements has converged to a 
three-part solution (hard - soft - hard) with the length of the soft part again 
very similar to the analytical value (Figure 4.4). One can also notice that 
the maximum values of the damage variable D are different (0.587 for the 
14 element mesh and 0.347 for the 50 element mesh). Of course, other 
random initialization can converge to different solutions, independently of 
the mesh discretization. 

The 50-element mesh switches after to the two-part solution (Figure 4.5), 
thus the localization pattern and the global curves become identical. This is 
also seen in [44]. The maximum values of the damage variable D for both 
meshes are almost the same (approximately equal to 0.876). 

From the previous results, it is obvious that the use of local second with 
damage mechanics laws provide internal lengths, and consequently 
solutions that do not depend on the spatial discretization. Finite element 
meshes with different number of elements provide the same solutions  
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Fig. 4.5. Localization patterns (distribution of damage variable D) at the end of the 
loading ( 049.20 ED ): (a) 14-element mesh, (b) 50-element mesh 

(Figures 4.3 and 4.5 at the end of the loading). However, this approach 
does not restore the uniqueness properties for the corresponding boundary 
value problem. Different converged solutions can appear (Figures 4.3 and 
4.4 just after the peak). Nevertheless, all these solutions are correct and 
possible to happen, contrary to the parasitic solutions obtained with a 
classical medium [20], [21]. 

5 Expansion of the Plastic Region 

The previous results show that when the magnitude of the softening modu-
lus decreases during the softening process, the plastic region is expanding. 
Some limited expansion of the plastic region is acceptable. However, as 
the softening modulus tends to zero, the size of the plastic region can grow 
without any bounds. This, as mentioned in [45], is a spurious, non physical 
effect which can be accompanied by stress locking, manifested by a non 
vanishing residual resistance of the structure even at very large elonga-
tions. The total work needed to completely break the bar (given by the area 
under the load-displacement diagram) is larger than in the absence of 
localization. In other words, the bar cannot fail by yielding of its limited 
segments, but every section must sooner or later start yielding. This is in 
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contradiction with the observed failure of concrete specimens, typically 
localized in regions having a limited length. 

A way to deal with this problem is to abandon the hypothesis of the non 
coupling between the first and the second gradient part of the model 
(functions f and g). Assuming an anelastic relation also for the function g 
(inducing a decrease of the tangent modulus with the loading), one can 
expect that the structure will not present any residual resistance at very 
large elongations, and that the spurious stress locking will disappear. The 
function g could be such that the internal length corresponding to the 
softening loading regime after the peak stays constant throughout the 
whole loading history or is a function of the damage variable D. In that 
way we could control the evolution of the localization zone, that can now 
increase, stay constant or even decrease depending on the form of the 
chosen function. 

For the following simulation the functions f and g are considered 
coupled. The Mazars damage mechanics law is used for the function f and 
the material parameters are kept the same as before. However, this time the 
second order stress M is calculated as a function of the damage variable D.
Figure 5.1 shows the global force - displacement curves using the second 
gradient model with or without coupling. Figure 5.2 presents the 
distribution of the damage variable D during the whole loading when f and 
g are coupled. 

Fig. 5.1. 1D traction: Force - displacement curves considering or not coupling 
between the first and the second gradient part 
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In figure 5.1, one can observe that although the global curve presents a 
non-zero stress for large elongations, the localization zones in figure 5.2 do 
not expand. At the beginning and for the first displacement increments the 

Fig. 5.2. 1D traction: Evolution of the localization pattern for the whole loading 
history considering coupling between the first and the second gradient part 

damage variable has the same value all along the bar. However, a hard soft 
hard soft solution soon appears and the localization zone does not increase 
although the damage variable D approaches to 1. This behaviour is more 
realistic. The results of this first simulation seem to indicate that the 
coupling of the first and the second gradient part of the model could 
provide a solution in order to correctly predict complete failure. 

6 Conclusions 

The feasibility of using local second gradient models with constitutive 
laws based on damage mechanics is proved throughout this work. 1D 
numerical computations with concrete specimens and the relevant post-
localization studies are presented. Using a random initialization of the 
iterative solver of the equilibrium equations it is shown once again that the 
second gradient term regularizes the problem providing results that are 
mesh insensitive and objective. However, as expected, it does not restore 
uniqueness properties for the corresponding boundary value problem. 
Numerical results considering coupling of the first and the second gradient 
part of the model indicate that the length of the localization zone can stay 
constant, property that could be useful in order to reproduce correctly the 
complete failure of concrete specimens. 
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Work in progress concerns the implementation of advanced following 
path techniques into the finite element code LAGAMINE to reproduce 
correctly snap-back phenomena [46], and various studies on the boundary 
conditions to use within a second gradient medium. Numerical simulations 
of biaxial tests will also be performed and comparisons with experimental 
2D failure schemes of various concrete specimens. 
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Summary

Starting from a maximum-entropy model of granular statics, this brief note 
explores a possible material instability in the form of a “stress localization” 
anticipated in previous work (Goddard, 2002). After a brief review of the 
maximum-entropy model, it is shown that a special case allows for non-
convex pressure-volume response of a kind that could lead to heteroge-
neous stress states in an isotropically compressed granular packing. 

1 Statistics of Kinematics and Stress 

Maximum-entropy estimates for the quasi-static mechanics of granular 
media date back at least to the pioneering work of Kanatani (1980) on the 
voidage of 2D granular packings. Recent works (Bagi, 1997; Kruyt & 
Rothenburg, 2002; Kruyt, 2003; Goddard, 2004a) treat both stress and 
infinitesimal strain, the latter pointing out the necessity of some specifica-
tion of a priori probability in the relevant state space. This fact is already 
recognized in the work of Kanatani (1980), who refers to it as the “density 
of states” (a term also employed in quantum mechanics). 

1.1 Delaunay Triangulation, Deformation and Stress 

Following previous works, Kanatani (1980); Satake (1992); Bagi (1996), 
we assign to a granular assembly a (Satake) graph, which we associate 
with a Delaunay triangulation. The graph consists of a network of vertices 
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or nodes, representing particle centroids, connected by edges or “bonds”, 
representing nearest-neighbor pairs. The latter correspond to real and latent 
mechanical contacts and define the edges of an elementary space-filling 
volume known as Delaunay simplices. In space dimension d the Delaunay 
simplex represents the minimal cluster of particles for which a d-volume 
can be assigned, with d + 1 vertices connected d(d + 1)/2 edges, defining 
triangles in 2D, tetrahedral (Fig. 1.1) in 3D, etc. The Delaunay triangular-
tion in any dimension d suffices to define the global stress and kinematics 
of a granular assembly. 

Fig. 1.1. Delaunay simplex (tetrahedron) in 3D, with vertices representing grain 
centroids and edges representing contacts, actual (solid lines) and latent (dotted 
lines). Basis vectors gi, foreshortened for clarity, have length of Delaunay edges 

Stress and deformation for an assembly of rigid grains involve contribu-
tions from the forces and relative motion between particles. We restrict 
attention to globally homogeneous deformations, where the difference bet-
ween particle rotation and mean material rotation (Cosserat effect) is 
negligible. Hence, we can focus on the kinematics and stress associated 
with Delaunay edges. 

As in Goddard (2004b), the global or effective velocity gradient 
TvL  of a granular assembly is provisionally taken to be the volume-

weighted average over simplexes s = 1, 2, . . . 

s
sss

LV
V

LL 1: (1.1)

where Vs is the volume of simplex s and
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s
sVV (1.2)

is that of the assembly. For statistically homogeneous assemblies, averages 
of the type (1.1) can be identified with ensemble averages based on an 
appropriate probability measure.  

The relation (1.1) written in terms of a given edge, say i = 1 in simplex s
as

s
s

s au
V

L ,11,1
1

(1.3)

where 11 gu is the difference in velocity at the vertices connected by this 
edge, and 

32132,1 2
1,

2
1

1 gggVgggVa sss (1.4)

are, respectively, the area vector of the opposite face and the volume of the 
simplex. 

Fig. 1.2. Edge (contact) complexes in (a) 2D, (b) 3D 

As illustrated in Fig 1.2, we identify the simplicial edge complex c(e) for a 
given edge e as the set of simplices having e as common edge. Replacing 
subscript 1 in (1.3) by e, we obtain the contribution of an arbitrary edge e 
to the global velocity gradient: 
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The corresponding volume-average velocity gradient is given by 

e
ee

e
ee au
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(1.7)

1.2 Stress and Stress Power 

The conventional expression for granular (Cauchy) stress as dipolar force 
density can be expressed in terms of edge contributions as 

e

ee

e
eee V

fwhereTTV
V

T 1,1
(1.8)

where fe is interparticle force at particle contact represented by edge e. At 
this level, (1.5) and (1.8) provide the correct expression for stress-power: 

a
a

T

e

ee
ee BAABtrBAwhere

V
ufLT :,: (1.9)

By contrast, it is generally recognized that the corresponding expression 
T:L, with T defined by (1.8) and L by (1.7), does not represent global 
stress power, owing essentially to micro-level heterogeneity. The latter 
requires additional work terms to account higher-order moment stresses 
and gradients (Goddard, 2006), reconsidered briefly below.  

2  Maximum Entropy & Virtual Thermodynamics 

Following Goddard (2004a), letting z  denote a representative point in 
the relevant state (or phase) space , having probability measure 
P(z)d (z), where d (z) is an elemental state-space measure that remains 
to be specified. P(z) may depend on time, but we restrict attention here to 
spatially homogeneous systems, such that P(z) and d (z) are independent 
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of spatial position. Statistical averages of arbitrary mechanical variables 
A(z) are then given by 

zdzPzAA (2.1)

with relation between probability densities 

)()()(),()()(
,...:)(),()()()( 21

zPzJzandzdVzJzd
dzdzdzzdVwithzdVzzdzP n (2.2)

connecting P and the probability density  in dV(z). Specification of J, the 
“density of states” (Kanatani, 1980), is essential to the determination of 
(z). Several examples are considered elsewhere (Goddard, 2004a), where 

it is conjectured that J generally should represent a dynamically invariant 
measure determined by the micromechanics. 

The standard statistical-thermodynamical estimate for the unknown 
probability distribution P(z) is based on maximization of the entropy 
functional:

)()(log)(log][ zdzPzPPPS (2.3)

subject to a discrete set of constraints of the form .)( constz
For either constrained stress or constrained kinematics, the expressions 

(1.7) and (1.8) can be put into the common form Goddard (2004b) 

yxyxMwithyxMnA c :),(,),( (2.4)

with sums interpreted in terms of ensemble averages over contacts or 
edges, and with nc denoting contact-number density. 

With state space is now defined by yxz , the maximization of (2.3) 
subject to stationarity of A yields the canonical distribution 

yxZMZyxP exp:exp),( 11 (2.5)

where Z is the partition function: 

),(exp)( yxdyxZ (2.6)
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a function of a tensor-valued Lagrange multiplier . The arbitrary 
constant , having units of inverse energy or power, plays the role of 
temperature in the usual thermodynamic formalism (Goddard, 2004b). 
This same formalism dictates that all macroscopic properties be derivable 
from Z, in particular 

),(log),(, 1 ZnxwithxA c (2.7)

with x assuming the role of potential-energy function and denoting 
partial derivative at constant .

Table 2.1. Constraints and variables 

Constraint x y A

Stress f l L T( , )  ( , L) 

deformation u a T L( , T) ( , )

Table 2.1, from Goddard (2004b), summarizes the complementary rela-
tions between stress T and velocity or displacement gradient L. With a 
further restriction to infinitesimal deformation, one may interpret L as 
displacement gradient. The relation (2.7) represents a virtual thermome-
chanics, with  serving as analog of Helmholtz free energy and  as its 
complementary energy. The standard thermodynamic interpretation of 
Table 2.1 would require that the measures d (f, l) and d (u, a) be such as 
to satisfy the (Legendre) relation: 

LTTL :),(),( (2.8)

As also pointed out by Goddard (2004b), the general validity of (2.7) 
appears to hinge on the possibility of capturing both elastic and frictional 
effects (conservative and non-conservative forces) via an elastic-plastic
decomposition of the type employed in well-known incremental plasticity 
theories. However, such decompositions impose severe restrictions on 
particle-level statistical mechanics and need further micromechanical 
justification.
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3  Material Instability 

As the main contribution of the present article, we consider the possible 
non-convexity (Goddard, 2002, 2004b) of the functions  or  as a con-
dition for material instability, with non-unique relation between stress and 
deformation. The analog of thermodynamic phase transition, this could 
allow for the well-known strain localization or its less familiar counterpart, 
stress localization. 

To illustrate the latter, we consider the simplest case of a static isotropic 
compression, with T= p1 as constraint and t = ncu·a as local compressive 
volumetric strain, which we shall allow to take on values in [0, ). Then, 
by means of (2.7) and the second row of Table 2.1, the nondimensional 
pressure s = p/nc is given as implicit function of global volumetric strain 

V by: 

0

0

)(

)(

dttJe

dtttJe
st

st

V (3.1)

To make further progress, we assume a local density of states J(t) of the 
general form 

,...1,0,1,...)( 10 nvtJtJJttJ n
n

v (3.2)

which gives an (n+1)th-degree polynomial for s : 

0... 11
1

0 n
nn PsPsP (3.3)

where

0,1...,0),)(1)...(( 111 nVkkk JJnkJJvkvP (3.4)

By Descartes’ rule of sign, one can readily predict the number of real 
positive roots s = p/nc, and this prediction is independent of the exponent 
v in (3.2). 

For example, with n = 2 and J(t) > 0 for t 0, then J0 > 0, and we obtain 
three positive roots for J2 > 0, J1 < J2 V , J0 > J1 V . If J1> 0, this reduces to 

1021 //,2,1,0,0 JJJJwithkJ Vk (3.5)

a situation depicted schematically in Fig. 3.1 (Goddard, 2002). 
Presumably, the above multiplicity could lead to a two-phase granular 

structure such as that found in the numerical simulations of Radjai et al. 
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(1998), consisting of an isotropic high-pressure network of force chains, 
supported laterally by an amorphous granular phase having much smaller 
contact forces and pressure. 

Although not pursued here, the simplicity of the above construct sug-
gests a similar construct for multiple stress states involving shear stress 
with anisotropic two-phase structures like those of Radjai et al. (1998). Of 
course, a more fundamental micromechanical analysis is needed to justify 
phenomenological models like (3.2) for the density of states. In the 
author’s opinion, a particle-chain buckling instability with local densifi-
cation represents a plausible mechanism. 

In closing, we note that there is a further interesting question as to length 
scales of the conjectured two-phase structures. While a micromechanical 
analysis is obviously needed to establish the implied spatial correlations, 
one can anticipate that these must signal the emergence of moment stresses 
T ,… and conjugate kinematic quantities L ,… (Goddard, 2006). 

One can further anticipate that the maximum entropy principal would 
add terms T u ,… or L f l l ,… to the canonical exponential form 
(2.5). However, it is not clear how the corresponding constraints are to be 
imposed in a granular medium with nominally homogeneous stress or 
deformation.

Fig. 3.1. Schematic of pressure vs. volumetric compressive strain for conditions in 
(3.5) 

4 Conclusions 

The preceding analysis suggests that maximum-entropy estimates of quasi-
static granular stress and kinematics, together with a relatively simple phe-
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nomenological model for the density of states, can provide a model of 
material instability with two-phase structure. Further micromechanical 
modeling is required to justify the purely phenomenological forms 
assumed above and to determine the relevant mesoscopic length scales. 
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Summary

Thin zones of localised compaction have been observed in the field and 
were associated with regions of severe grain crushing or microcracking. 
They were found to occur inside cemented granular materials and have 
been successfully reproduced in experiments. This is a relatively new form 
of localised feature for which the mechanics is not yet clearly understood. 
In addition, compaction bands form as thin impermeable structures that 
could therefore severely decrease the permeability of a soil. The implica-
tions this might have for the recovery of oil from a reservoir are immense. 
A thorough understanding of the micromechanical processes involved in 
their triggering and propagation is therefore needed. 

Discrete Element Modelling of the specific phenomenon has been car-
ried out. The discrete element sample has been slightly modified so as to 
ensure that compaction bands do not form near the boundaries (as happens 
in the laboratory). Compaction bands were observed as forming inside the 
bulk of the material, in a direction sub-perpendicular to the maximum 
principal stress in the sample. This implies that their direction might be 
controllable. It was observed that such instabilities due to particle crushing 
might form in unbonded granular materials as well, something that has not 
been fully investigated by experiments on sand. The effects of inter-
particle bond breakage and grain breakage will be contrasted.  

The initiation of grain crushing or bond cracking is seen in relation to the 
joint probability density function of contact forces exceeding grain cru-
shing or bond strengths. The propagation of crushing or cracking after the 
initial event will be seen in relation to the perturbation of the local stress-
carrying network inside the simulated rock. An insight into the conditions 
and micromechanical parameters which will lead to a crushing / cracking 
avalanche will be sought. 
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1 Introduction 

Certain high-porosity sandstones have been seen to depart from the condi-
tion of homogeneous compaction throughout their volume and to favour 
localisation when subjected to certain stress paths (e.g. Baud et al. 2004, 
Olsson et al. 2002). They then form zones of low porosity and localised 
compaction, called compaction bands. They have been seen to form in 
directions sub-perpendicular to the major principal stress direction in the 
parent rock. Compaction bands are similar in appearance to shear bands as 
observed in loose sands, the significant difference being that there is no 
observed offset (shear) of the top relative to the bottom layer. Another 
difference is that they come about by a different micromechanism; this 
however has not been fully understood. 

Inside all compaction bands a loss of pore space is observed through 
particle (and particle fragment) rearrangement to a locally denser structure. 
It should be noted that depending on the material tested, compaction bands 
can come about by very different micromechanisms. The main focus of 
this investigation is compaction bands forming in sandstones with quartz 
grains, a common oil-reservoir rock, which we might term ‘crushing com-
paction bands’. Here intense particle crushing and closer packing of the 
products of fragmentation is occurring inside a band (as observed by Baud 
et al. 2004 in experiments). Therefore we will be examining the phenome-
non of crushing localisation inside a sample. 

One should note that compaction bands have been observed in other 
materials as well. Of particular relevance to this work is the experimental 
observation of crushing localisation inside an unbonded sample of mono-
disperse glass beads as made by Garbrecht (1973) and reproduced by 
Vardoulakis and Sulem (1995). In addition, Papamichos et al. (2005) 
report features similar to compaction bands in calcarenite, and Arroyo et 
al. (2005) in artificial conchiliades (a bonded material made of silica sand, 
fragmented shells and lime). 

The importance of compaction bands in sandstone is that they are relati-
vely impermeable structures that might trap, or channel pore-fluid between 
them. As they have been found in sandstone which is an oil-reservoir rock, 
their significance as barriers to oil extraction is of great importance. 
Existing compaction bands will be picked up by oil companies’ site 
investigation. However, new compaction bands might also form if the 
reservoir pore pressure is lowered, inducing significant effective stress 
increases due to oil extraction. By carefully controlling the pore pressure 
inside the rock (and hence the effective stress field) the formation of bands 
might be controlled to specific directions perpendicular to the major prin-
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cipal stress, thus creating advantageous flow paths (channels) for the oil. 
Furthermore, Haimson (2003) suggests that compaction bands are one of 
the mechanisms responsible for borehole breakouts in high-porosity 
sandstones.
It might be therefore advantageous to understand in which rocks compa-
ction bands will form, and how exactly they form and propagate. A 
micromechanical study of the phenomenon of crushing localisation using 
Discrete Element Modelling is therefore thought essential. Results of 
relevant computer simulations and the insight they have provided will be 
presented here.

2 The Discrete Element Method 

The simulations reported here were conducted using the three-dimensional 
discrete element code PFC3D developed by Itasca Inc. A concise descry-
ption of this code can be found in the PFC3D manual (Itasca Inc. 2003). 
Two different sets of simulations were conducted, one on a bonded 
material with infinitely strong grains and one on unbonded material consi-
sting of crushable particles. These are considered to be analogous materials 
to a sandstone and a sand respectively. In order to produce comparable 
results the same sample was used for both. The reason why simulations on 
both sand and sandstone were conducted was to assess the relative 
significance of particle crushing and bond cracking in the production of 
significant porosity reduction and compaction bands. 

The sample used was cuboidal having a porosity of 44.8% and initial 
dimensions of 6 cm x 6 cm x 7.2 cm. It consisted of 8943 spherical 
particles of radii uniformly distributed between 1 and 2 mm. In selecting 
25 as the ratio of the size of the sample to the diameter of the typical 
particle, the intention was to provide sufficient volume remote from any 
boundary effects, within which localisation could occur. The sample was 
prepared by a simulated ‘numerical dry pluviation’ and was bounded by 
frictionless walls on all sides. It should be noted that no gravity forces 
were included in this model and a soft contact approach was used. The 
side-walls were kept stationary while a constant axial shortening rate of 
0.1 m/s was applied. The micromechanical parameters used in these 
simulations can be found in Table 2.1. Care was taken when choosing the 
parameters so that their values were of the same order of magnitude as 
those inferred from single crushing tests on quartz particles reported by 
Nakata et al. (1999). 
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Table 2.1. Micromechanical parameters used for the simulation 

Parameter Numerical Value

normal and shear stiffness of balls 4 x 106 N/m 

normal and shear stiffness of walls 4 x 106 N/m 

particle friction coefficient, μ b 0.5 

wall friction coefficient, μ w 0.0 

density of spheres 2650 kg/m3

coefficient of local damping 0.7

sample shortening rate 0.1 m/s 

particle ‘crushing strength’ 40Mpa 

cementation bond radius / particle radius 0.4 

bond normal and shear strength 40MPa 

normal and shear bond stiffness 5000 N/mm3

2.1 Simulations on Sandstone 

In the computer modelling of sandstone the cementation bond between two 
particles was represented by a disk around the contact. This is a standard 
procedure in PFC3D and is described in the relevant user’s manual (Itasca 
Inc. 2003). The cementation bond is put in as both a normal and tangential 
spring acting in parallel to the ones representing the contact. The full 
parameters associated with the bond can be found in Table 2.1. The bond 
was allowed to break at a limiting value of the relevant stress in the bond, 
both in tension, compression and shear (40MPa). After a bond breakage 
normal frictional behaviour is imposed at the contact. In these sandstone 
simulations no individual particle crushing was allowed. 
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2.2 Simulations on Sand 

Sand simulations were conducted on unbonded particles. Crushing events 
were simulated as follows. A characteristic crushing stress parameter was 
assigned to each particle (here uniform, set as 40MPa). The characteristic 
stress inside a particle, defined as the maximum normal contact force 
divided by the square of the diameter (following Nakata et al. 1999) was 
monitored throughout the simulation. A particle was then completely re-
moved, so as to simulate crushing, when its characteristic stress exceeded 
its characteristic strength. This is thought to represent adequately the 
process by which small fragments, produced by crushing, fall into the pore 
space and lose their force-carrying capacity. This is certainly true for small 
strain increments and sufficient for our case where the characteristics of 
the localisation itself and not the post-localisation behaviour are sought.

Extra care is needed when considering what boundary to use for the 
simulations. A flat boundary will impose a local disruption to the fabric 
defined in terms of contact orientations (seen in Fig. 2.1a) that extends up 
to a maximum distance of three particle diameters away from it, and a 
more local density variation (see Fig. 2.1b). The particle density in the 
boundary region is smaller than in other planes inside the element. As 
force needs to be transmitted from the top to the bottom platen of the 
sample the decreased density means that boundary particles see a local 
increase in force, which will favour particle crushing here. Very similar 
simulations using a flat boundary were observed to produce localisation 
exactly at the boundary (Marketos and Bolton (2005)). This is no artefact 
of the specific simulation; it should also be observed in experiments using 
flat boundaries, and might be the reason why Olsson et al. (2002) report 
crushing localisation initiating at the top of their sample. 

In order to suppress the unwanted localisation at the boundary an inter-
nal element was used that excluded the region 3 mean particle diameters 
away from the top and bottom platens. Particles in the outside region were 
not allowed to crush in the sand simulations and cementation bonds were 
not allowed to break in the sandstone simulations. This method is thought 
to be a good way of creating a representative element for a discrete 
material as it allows for the behaviour of the bulk of the material to be 
investigated. Its main advantage over periodic boundaries is that no 
artificial reflections of localised features are observed and there is no 
distortion of sample space. 
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Fig. 2.1a. A plot of the deviation from the mean fabric versus distance from the 
flat boundary (as non-dimensionalised by the mean particle diameter) 

Fig. 2.1b. A plot of the local voids ratio versus distance from the flat boundary (as 
non-dimensionalised by the mean particle diameter) 
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3 Results 

3.1 Sand Simulations 

Fig. 3.1. A plot of the vertical stress and number of crushing events (similar to 
acoustic emission data) versus strain 

The simulations on unbonded crushable particles yielded the stress-strain 
curve of Fig. 3.1. This plot includes a history of crushing events similar to 
acoustic emission data reported in experiments (e.g. Baud et al. 2004). One 
can observe two phases of behaviour of the sample. Initially and up to 0.06 
strain, contraction is due mostly to particles rearranging and to a lesser 
extent elastic shortening at the contacts. Crushing of particles is initiated at 
this point and finally a constant mean level of crushing of about 100 events 
per 0.007 strain interval is reached. Sample shortening is dominated by 
particle crushing after a strain of roughly 0.10. It is this last regime of be-
haviour, where the stress-strain curve is flatter in which one might observe 
compaction bands. 

As one can see on Fig. 3.1 the stress-strain curve exhibits instabilities. 
Its peaks and drops can be associated with peaks and drops in the number 
of crushing events observed. The locations of the crushing events corre-
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sponding with these drops (i.e. points marked (b), (c) and (d) on Fig. 3.1) 
are plotted in Fig. 3.2. One can see that at each stress drop particle cru-
shing, and therefore pore collapse, is fairly localised within a region that 
we might call a compaction band. A plot of all the particle crushing events 
is included in Fig. 3a. We can observe here that overall crushing is homo-
geneously distributed through the sample. As a stronger boundary region 
was imposed on the specimen (see section above), these compaction bands 
were observed to form inside the specimen. Here there is no density or 
contact anisotropy variation due to the boundary and these features are 
thought to be representative of the sort of localisation that would affect the 
bulk behaviour of the material. 

Fig. 3.2. A 3D plot of the location of crushing events inside the cubical element 
for a strain increment of (a) the whole run and (b), (c), (d) as marked on Fig. 3.1 

An inspection of individual compaction bands reveals that they corre-
spond to a surge in the number of crushing events and a stress drop, as 
observed in experiments (see Fig. 3.1). The first particle-crushing event 
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causes a severe disruption to the stress-carrying network of the sample, by 
removing the highest-stressed link in the strong-force network. The force 
carried by the crushed particle will need to redistribute itself to neighbour-
ring particles (neighbouring links in the stress network). This might cause 
a crushing avalanche by locally removing links lying roughly on the same 
plane normal to the major principal compressive stress. The observation of 
a crushing localisation will be dependent on the particle structure and 
density (packing), the stress level, and the coefficient of variation of 
particle crushing strengths. The rate at which crushing will pulverise parti-
cles in a compaction band might be larger than the strain rate in a strain-
controlled test. This will severely damage the stress-carrying ability of the 
sample, thus producing a stress drop, as observed. The stress-drops 
interpreted as instabilities and seen in Fig. 3.1 occur over very small 
displacement increments (of the order of 0.2% of sample size, which 
corresponds to approximately 0.05 particle diameters). This supports the 
use of particle removal to simulate the propagation effect of grain 
breakage. Although a real grain may fragment into pieces that later pick up 
loads themselves, this could only occur after much larger compressions, 
perhaps of the order of 0.3 particle diameters. Of course, it would be 
necessary to replace broken fragments if the post-localisation stiffening of 
the sample was the focus of the investigation. It is however not expected 
that the inclusion of fragments can have a significant effect on the 
magnitude of such small-strain stress drops. Compaction bands in stress-
controlled experiments (or simulations) will appear as jumps in the strain 
rate. As in nature most events are stress-controlled this might prove 
catastrophic in the vicinity of structures such as oil wells. 
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3.2 Sandstone Simulations 

Fig. 3.3. A plot of the vertical stress and number of cracking events (similar to 
acoustic emission data) versus strain 

The simulations with infinitely strong particles held together by breaka-
ble cementation bonds yielded the stress-strain curve of Fig. 3.3. As for the 
sand simulations a plot of the history of bond cracking events (similar to 
acoustic emission) is plotted on the same diagram. One should note here 
the difference between the crushing and cracking rates. The cracking rate 
is overall 50 times larger than the crushing rate even though the shortening 
rate of the specimen is the same. This can be explained by the fact that 
crushing, as it pulverises the grains, is associated with a larger volume 
contraction as compared to cracking of bonds in sandstones, where the 
initial particles are still there. One can note that instability (a stress drop in 
strain-controlled simulations) can be observed in Fig. 3.3. Plots for the 
bond cracking locations for the strain increments annotated as a b c and d 
on the plot of Fig. 3.3 are shown on Fig 3.4. 
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Fig. 3.4. 3D plots of the location of cracking events inside the cubical element for 
the strain increments (a), (b), (c) and (d) as marked on Fig. 3.3 

On Figs. 3.4a, 3.4b and 3.4c one can see that cracking might also be in-
terpreted as local. However, one can say that on its own, cementation bond 
cracking is not responsible for compaction bands, as it cannot produce the 
large porosity and permeability reductions for sandstones with common 
grain structures. When bond cracking occurs, particles still have to 
rearrange in denser structures, something that involves extensive grain 
movement. It is improbable for common material grain structures that this 
micromechanism alone, with no crushing, will produce so big a porosity 
reduction as observed in a compaction band. 

A comparison of the results of the sand and sandstone simulations has 
allowed us to assess the relative importance of grain crushing and bond 
cracking in compaction banding of rocks. Having realised the importance 
of grain crushing in this phenomenon, future work will focus on the better 
understanding of crushing localisations from a micromechanics point of 
view. In particular, a probabilistic analysis of crushing and a statistical 
analysis of the crushing locations might hold the key to this phenomenon. 
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4 Proposed Statistical Approach 

The force inside a granular material is distributed in a highly inhomo-
geneous manner with some researchers speaking of the separation of the 
force network into a sparse strong force network carrying the majority of 
force and a weak force network which has relatively low importance 
(Thornton 1997). In order to quantify the variability in the force network 
we have conducted a set of simulations for the sample where no bonding 
and no crushing is present, so that the only mechanism responsible for 
deformation is particle rearrangement. Fig. 4.1 shows the resultant proba-
bility density of normal contact force at 3 different stress levels, both on 
linear (a) and semi-logarithmic scales (b). This plot is essentially a histo-
gram plot where the y value has been divided by the histogram interval 
width so as to ensure that the area under the curve has a value of 1. 

It is interesting to observe that when the force is non-dimensionalised by 
the mean force the plots for different stress levels collapse to the same 
curve. This is very promising as it allows for an easy mathematical 
description of the force variability in terms of the mean force and therefore 
the stress-level. This curve was fitted using the expression (x+A) B e-Cx+D

(with A = 1.15 , B = 4.75 , C = 2.92 , D = -1.41 ). The semi-logarithmic 
plot of Fig. 3.5b shows that the force exhibits an approximately 
exponential tail. If only large force is important (as in our case where these 
forces will cause crushing) a single exponential of the form a e-bx might be 
used to describe the strong force network (for F>Fmean, with a = 6.6 and b 
= 1.8 ). This last observation agrees well with simulation results reported 
by (Thornton 1997, Radjai et al. 1996). 
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Fig. 4.1a. A plot of the probability density function of the normal contact force (as 
non-dimensionalised by the mean force) for three different stress levels. A fit to 
the data of the functional form (x+A) B e-Cx+D has also been plotted 

Fig. 4.1b. A semi-logarithmic plot of the probability density function of the nor-
mal contact force (as non-dimensionalised by the mean force) for three different 
stress levels. A fit to the data of the functional form (x+A) B e-Cx+D has also been 
plotted 
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In our case one can imagine the following sequence of events: Particles 
with strengths given by a certain distribution (e.g. Weibull) are randomly 
distributed in the sample. As the sample is stressed and the mean force is 
increased the weakest particles under a strong force chain will be the first 
to crush. Further increase of force will mean that a greater number of 
grains will crush and a probabilistic analysis could be used to quantify the 
amount of crushing inside a sample. Work in this direction is in progress, 
and results from a simple statistical analysis are presented in Marketos and 
Bolton (2006). 

However if our main aim is to understand localisation a more sophisti-
cated approach is needed. Central to this approach is the understanding of 
the effect one crushing event has on the force distribution around it. For 
this reason, a set of 72 particle-crushing simulations were performed 
starting from the same initial sample stressed at 6 MPa. The force network 
was probed both before and after the crush and the difference in the 
magnitude of force was plotted versus the distance from the crushed 
particle. This has yielded the plot of Fig. 4.2. 

Fig. 4.2 A plot of the difference in the magnitude of force (non-dimensionalised 
by the maximum force on the particle that crushed and expressed as a percentage) 
versus the distance from the crushed particle (non-dimensionalised by the mean 
particle diameter) 
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It should be noted that this plot is again in terms of non-dimensional 
quantities, which in this case are distance normalised by the mean particle 
diameter and difference in the force magnitude normalised by the maxi-
mum force on the particle that crushed and expressed as a percentage. One 
can immediately note from Fig. 4.2 that the force network is disturbed 
significantly up to a distance of 5 particle diameters. Plotting again proba-
bility density functions in each R-range will produce the plot of Fig. 4.3 
below.

An approach using the spatial information on the effect of crushing 
might predict where a subsequent crush will occur. Two crushing events 
close to each other will create a larger force perturbation in the sample, 
creating larger stress concentrations in their vicinity. A compaction band, 
which is essentially the unstable propagation of crushing might be initiated 
and a method taking into account the force perturbation due to crushing 
might be able to predict its location. This is the main focus of future work. 

Fig. 4.3. A 3D plot of the probability density functions in each R-range as a 
function of the normalised distance from the crushed particle and the percentage 
of normalised force increase. Note that only positive force magnitude differences 
are plotted 
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5 Conclusions 

The simulations reported here were performed in order to contrast two 
micromechanisms potentially responsible for compaction band formation, 
grain crushing and inter-particle bond cracking. We have observed locali-
sation of crushing in sand and to a lesser extent localisation of cracking in 
sandstone, related with the unstable propagation of cracks for relatively 
low bond strengths. However, given the porosity reduction reported by 
Mollema and Antonellini (1996), from 20-25% to a few %, we have 
concluded that for common initial grain structures of sandstones only grain 
crushing can produce significant permeability decrease. This is consistent 
with Baud et al. (2004) observations that report compaction bands due to 
crushing in the laboratory.

We therefore decided to focus on simulations of crushing. The strain-
controlled simulations exhibit significant drops in the stress-strain curve. 
These instabilities can be attributed to the localisation of crushing. Inside 
the sample a crushing event occurs. This event locally disturbs the force 
distribution inside the specimen, meaning that neighbouring particles see 
an increase in stress for equilibrium to be conserved. This might cause a 
second particle to crush, increasing the local force disturbance, and under 
certain conditions crushing might propagate in an unstable fashion through 
the sample. This is what we call a compaction band. 

From the above it becomes apparent that a micromechanical analysis of 
this type of localisation is needed. We have seen that useful insight into 
grain crushing can be obtained by using statistics and probabilistic argu-
ments. We have seen that a crush creates a local disturbance of force that 
extends roughly 5 particles away from the crush. Future work will make 
use of statistics in this direction. We are hoping to relate the parameters in 
the probability density functions involved to measurable quantities inside a 
real sand sample. This might allow us to use a few simple physical tests to 
predict whether compaction banding is possible or not, without the 
conduction of a triaxial test. 
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Summary

The paper focuses on the effect of different spatially correlated stochastic 
distributions of the initial void ratio on the formation of shear localization 
within a granular specimen during a conventional plane strain compression 
test. For a simulation of the mechanical behavior of a sand specimen du-
ring a monotonous deformation path, a hypoplastic constitutive enhanced 
by a characteristic length of micro-structure within a micro-polar, non-
local and second-gradient continuum was used. The random fields of the 
initial void ratio were generated in a granular specimen using a conditional 
rejection method.

1 Introduction 

Localization of deformation in the form of narrow zones of intense shea-
ring is a fundamental phenomenon in granular materials and can appear 
under both drained and undrained conditions [9], [15], [20], [35], [40], 
[49], [51]. Localization can appear as a spontaneous one inside of granular 
materials or as an induced one at interfaces between granulates and stru-
cture members. An understanding of the mechanism of the formation of 
shear zones is important since they usually act as a precursor to ultimate 
soils failure. 

To model the mechanical behaviour of granular bodies based on conti-
nuum mechanics, two different approaches are usually used: elastoplastic 
[18], [31]. [50] and hypoplastic [2], [10], [12], [17], [19], [21], [46], [47]. 
To describe the properly the shear zone formation in a quasi-static regime, 
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the approaches have to be enriched by a characteristic length of micro-
structure by means of a micro-polar [23], [34], [43], non-local [3], [7], [21] 
and second-gradient theory [1], [5], [29]. The approaches regularize the ill-
posedness (i.e. preserve the well-posedness) of the underlying incremental 
boundary value problem caused by strain-softening material behaviour and 
localization formation (differential equations of motion do not change their 
elliptic type during quasi-static calculations and hyperbolic type during 
dynamic calculations) and prevent pathological discretization sensitivity 
[6]. Thus, objective and properly convergent numerical solutions for loca-
lized deformation (mesh-insensitive load-displacement diagram and mesh-
insensitive deformation pattern) are achieved. The presence of a characteri-
stic length allows also to take into account microscopic inhomogeneities 
triggering shear localization (e.g. grain size, size of micro-defects) and to 
capture the size effect of a specimen [37] (dependence of strength and 
other mechanical properties on the size of the specimen) observed experi-
mentally on softening granular specimens. 

Laboratory experiments [9], [49] and FE-studies [4], [8], [11], [14], 
[25], [26], [33], [37] show that the distribution of microscopic inhomoge-
neities inherently present in granular materials and triggering shear 
localization seems to be an influential factor. In the paper, the shear zone 
formation during monotonic plane strain compression with a cohesionless 
non-homogeneous granular material under constant lateral pressure was 
investigated. The analysis was performed with the finite element method 
and a hypoplastic constitutive model enhanced by a characteristic length of 
micro-structure (with the aid of micro-polar, non-local and second-gradient 
terms [21], [37]) which is able to describe the essential properties of 
granular bodies during shear localization in a wide range of pressures and 
densities during monotonous deformation paths. The FE-calculations of a 
plane strain compression test for granular materials [37] have demonstra-
ted that the mesh dependence inherent in classical plasticity and hypopla-
sticity is remedied using the enhanced approaches. In those calculations 
(similarly as in other FE-analyses), the distribution of the initial void ratio 
was assumed to be uniform (with exception of one element with a higher 
initial void ratio to induce shear localization). In the calculations presented 
in this paper, the distribution of an initial void ratio was assumed to be 
more realistic, i.e. it was taken stochastically with a spatially correlated 
distribution [32], [44]. The random fields of the initial void ratio were 
generated in a granular specimen using a conditional rejection method 
proposed by Walukiewicz et al. [44]. The quasi-static 2D calculations were 
carried out with the same random field of the mean initial void ratio for 
different characteristic lengths of micro-structure within enhanced hypo-
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plastic models. The effect of different stochastic parameters on the shear 
zone formation was investigated only with a micro-polar hypoplastic law.  

The FE-simulations of the influence of the initial void ratio (with a 
spatially correlated distribution) on the shear zone formation have not been 
performed yet.  

2 Hypoplasticity 

Hypoplastic constitutive laws [2], [12], [17], [21], [24], [46] formulated at the 
Karlsruhe University are an alternative to elasto-plastic formulations [18], 
[31], [50] for continuum modeling of granular materials. They describe the 
evolution of effective stress components with the evolution of strain compo-
nents by a differential equation including isotropic linear and non-linear 
tensorial functions according to the representation theorem by Wang [45]. In 
contrast to elasto-plastic models, the decomposition of deformation compo-
nents into elastic and plastic parts, yield surface, plastic potential, flow rule 
and hardening rule are not needed. The hypoplastic models describe the 
behaviour of so-called simple grain skeletons which are characterized by the 
following properties [12]: 

the state is fully defined through the skeleton pressure and the void ratio 
(inherent anisotropy of contact forces between grains is not considered 
and vanishing principal stresses are not allowed), 
deformation of the skeleton is due to grain rearrangements (e.g. small 
deformations <10-5 due to an elastic behaviour of grain contacts are 
negligible),
grains are permanent (abrasion and crushing are excluded in order to 
keep the granulometric properties unchanged), 
three various void ratios decreasing exponentially with pressure are 
distinguished (minimum, maximum and critical), 
the material manifests an asymptotic behaviour for monotonous and 
cyclic shearing or SOM-states (swept-out-of–memory) for proportional 
compression, 
rate effects are negligible, 
physico-chemical effects (capillary and osmotic pressure) and cementa-
tion of grain contacts are not taken into account. 
The hypoplastic constitutive laws are of the rate type. Due to the incre-

mental non-linearity with the deformation rate, they are able to describe 
both a non-linear stress-strain and volumetric behaviour of granular bodies 
during shearing up to and after the peak with a single tensorial equation. 
They include also: barotropy (dependence on pressure level), pycnotropy 
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(dependence on density), dependence on the direction of deformation rate, 
dilatancy and contractancy during shearing with a constant pressure, in-
crease and release of pressure during shearing with a constant volume, and 
material softening during shearing of a dense material. They are apt to 
describe stationary states, i.e. states in which a grain aggregate can conti-
nuously be deformed at a constant stress and a constant volume under a 
certain rate of deformation. Although, the hypoplastic models are develop-
ped without recourse to concepts of the theory of plasticity, a failure 
surface, flow rule and plastic potential are obtained as natural outcomes 
[24]. The feature of the model is a simple formulation and procedure for 
determination of material parameters with standard laboratory experiments 
[16]. The parameters are directly related to granulometric properties en-
compassing grain size distribution curve, shape, angularity and hardness of 
grains [16]. Owing to that only one set of material parameters is valid 
within a large range of pressures and densities. The constitutive law can be 
summarized as follows: 
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wherein
ij - Cauchy stress tensor,  

*
ij  - deviatoric part of ij ,

o

ij  - Jaumann stress rate tensor (objective stress rate tensor),  
e - current void ratio,

e  - changes of the current void ratio,  
dkl - rate of deformation tensor (stretching tensor), 
wij - spin tensor,  
v - material velocity,  
fs - stiffness factor,
hs - granular hardness, 

kk - mean stress, 
fd - density factor, 
ec - critical void ratio (ec0 - value of ec for kk=0),
ed - void ratio at maximum densification (ed0 - value of ed for kk=0), 
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ei - maximum void ratio (ei0 - value of ei for kk=0),
 - pycnotropy coefficient, 

n - compression coefficient, 
 - stiffness coefficient, 

a1 - parameter representing the deviatoric part of the normalized stress 
in critical states, 

c - critical angle of internal friction during stationary flow,  
 - Lode angle. 

In case of sand, the hypoplastic constitutive relation is approximately valid 
in a pressure range 1 kPa<- kk/3<1000 kPa. Below it, additional capillary 
forces due to the air humidity and van der Waals forces may become 
important, and above it, grain crushing. The first term in Eq. 2.1 is linear in 
dkl, and the second one is non-linear in dkl. The constitutive relationship 
requires 8 material constants: ei0, ed0, ec0, c, hs, n,  and . The FE-analyses 
were carried out with the following material constants (for so-called 
Karlsruhe sand): ei0=1.3, ed0=0.51, ec0=0.82, c=30o, hs=190 MPa, n=0.5, 

=1.0 and =0.3 [2]. The parameters hs and n are estimated from a single 
oedometric compression test with an initially loose specimen (hs reflects the 
slope of the curve in a semi-logarithmic representation, and n its curvature). 
The constants  and are found from a triaxial test with a dense specimen 
(they reflect the height and position of the peak value of the stress-strain 
curve). The angle c is determined from the angle of repose (inclination angle 
of a free granular heap) or measured in a triaxial test with a loose specimen. 
The values of ei0, ed0 and ec0 are obtained with conventional index tests 
(ec0 emax, ed0 emin, ei0 (1.1-1.5)emax).

A hypoplastic constitutive law cannot describe realistically the thickness 
of shear localization since it does not include a characteristic length of 
micro-structure. The characteristic length can be taken into account by 
means of a polar, non-local and second-gradient theory [37]. 

3 Micro-Polar Hypoplastic Law 

The micro-polar terms were introduced in a hypoplastic law with the aid of 
a polar (Cosserat) continuum [23]. In a Cosserat continuum, each material 
point has for the case of plane strain three degrees of freedom: two transla-
tional degrees of freedom and one independent rotational degree of 
freedom (Fig.3.1a). The gradients of the rotation are connected to curvatu-
res which are associated with couple stresses (Fig.3.1b). It leads to a non-
symmetry of the stress tensor and a presence of a characteristic length 
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directly related to a mean grain diameter. The polar extension of the hypo-
plastic constitutive law [37], [42] was achieved analogously to Mühlhaus’s 
formulation [23] (for details, the reader is referred to [42]). Its other 
advantages are: it takes into account Cosserat rotations (resultant grain 
rotations from a certain region of the granular specimen) and couple 
stresses which are significant during shearing [27], [28], the characteristic 
length lc is directly related to the mean grain diameter d50 [37], and realistic 
wall boundary conditions at the interface of granulate with a structure 
(with consideration of the wall roughness) can be derived [41]. Pasternak 
and Mühlhaus [30] have demonstrated that the additional rotational degree 
of freedom of a Cosserat continuum arises naturally by mathematical 
homogenization of an originally discrete system of spherical grains with 
contact forces and contact moments. The Cosserat model is only suitable 
for shear dominated problems.  

Fig. 3.1. Plane strain Cosserat continuum: a) degrees of freedom (u1 - horizontal 
displacement, u2 -vertical displacement, c - Cosserat rotation), b) stresses ij and 
couple stresses mi at an element  

The constitutive law can be summarized for plane strain as follows [37], 
[42]: 

o ^ ^
c

ij kl ks ij kl k 50f [ L ( ,m ,d ,k d )
^

c c 2
ijd ij kl kl k k 50f N ( ) d d k k d ],

(3.1)
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o ^ ^
c c

i kl k50 s i kl k 50m / d f [ L ( ,m ,d ,k d )
^

c c c 2
id i kl kl k k 50f N ( m ) d d k k d ],

(3.2)

^ ^ ^
2 c c

kl kij 1 ij ij kl k 50L a d ( d m k d ), (3.3)

^ ^ ^
c 2 2 c

kl ki 1 i 50 1 i kl k 50L a k d a m ( d m k d ), (3.4)

^
c 2

ii 1 cN a a m , (3.5)

o

i i ik k k kim m 0.5w m 0.5m w , (3.6)

^
k

k

kk 50

mm ,
d (3.7)

c c
ij ij ij ijd d w w , (3.8)

c
i ,ik w , (3.9)

c c c c
kk 21 12w 0,        w w w , (3.10)

wherein  
mi - Cauchy couple stress vector, 

i

o

m  - Jaumann couple stress rate vector,
dij

c - polar rate of deformation tensor, 
ki - rate of curvature vector,
wc - rate of Cosserat rotation,  
ac - micro-polar constant,  
d50 - mean grain diameter of sand (d50=0.5 mm).  
A micro-polar constant ac can be correlated with the grain roughness 

and estimated with a numerical analysis for shearing of a narrow granular 
strip between two very rough boundaries (e.g. ac=a1

-1 [42]). The micro-
polar hypoplastic model has 10 material constants. 
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4 Non-Local Hypoplastic Law 

A non-local approach can take into account shear zones and cracks. It is 
based on spatial averaging of tensor or scalar state variables in a certain 
neighbourhood of a given point (i.e. material response at a point depends both 
on the state of its neighbourhood and the state of the point itself). It is 
sufficient to treat non-locally only one internal constitutive variable (e.g. 
equivalent plastic strain in an elasto-plastic formulation [7] or modulus of the 
deformation rate or density factor in a hypoplastic approach [21], [37]) 
whereas the others can retain their local definitions. 

In the FE-calculations, the modulus of the deformation rate of Eq. 2.1 
expressed by 

kl kld d d (4.1)

was treated non-locally. It was assumed as 

* 1d ( x ) w( r )d( x r )dV ,
A

(4.2)

where r is the distance from the material point considered to other 
integration points of the entire material body, w is the weighting function 
and A is the weighted body volume. The error density function (normal 
Gaussian distribution function) was chosen as a weighting function w [37]: 

2r( )
l

c

1w( r ) e
l

(4.3)

The parameter lc denotes a characteristic length (it determines the size of 
the neighbourhood influencing the state at a given point). At the distance 
of 3 lc, the function w is almost equal to zero. Generally, the characteristic 
length lc in Eq. 4.3 is not directly related to the mean grain diameter of the 
granulate. It can be determined from an inverse identification process of 
experimental data [21]. 

5 Second-Gradient Hypoplastic Law 

In the FE-calculations, the second gradient of the Euclidean norm of the 
deformation rate (Eq. 3.10) was taken into account [37]. Thus, the enhan-



Jacek Tejchman 182 

ced modulus of the deformation rate d* was calculated for two-dimensional 
problems in the following way 

2 2 2 2
* c

2 2

l d d dd ( x, y ) d ( 2 )
4 x y x y

. (5.1)

Instead of using complex shape functions to describe the evolution of 
the second gradient of d [29], [52], a central difference scheme was 
applied. The advantages of such approach are: simplicity of computation, 
little effort to modify each commercial FE-code and high computation effi-
ciency. To take into account the effect of not only adjacent elements (as in 
the standard difference method), one assumed a polynomial inter-polation 
of the function d of the fourth order in both directions [37]. The second 
derivatives of the variable d can be approximated in each triangular 
element of the same quadrilateral, e.g. in the element 13 of Fig.5.1 (for the 
mesh regular in the vertical and horizontal direction) as [37]:  

Fig. 5.1. Diagram for determination of the gradient of the constitutive variable d in 
triangular elements using a central difference method 

2
13

3 8 13 18 232 2

d 1 1 16 30 16 1[ d d d d d ],
x dx 12 12 12 12 12

(5.2)

2
13

11 12 13 14 152 2

d 1 1 16 30 16 1[ d d d d d ],
y dy 12 12 12 12 12

(5.3)
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2
13

1 2 4 5

6 7 9 10

16 17 19 20

21 22 24 25

d 1 1 1 8 8 1[ ( d d d d )
x y dxdy 12 12 12 12 12

8 1 8 8 1( d d d d )
12 12 12 12 12
8 1 8 8 1( d d d d )

12 12 12 12 12
1 1 8 8 1( d d d d )],

12 12 12 12 12

(5.4)

where the lower subscript at the variable d denotes the number of any 
triangular element in the specified quadrilateral (Fig.5.1), and dx and dy
are the distances between the triangle centers in the neighboring quadrila-
terals in a horizontal and vertical direction, respectively. Thus, the effect of 
neighboring elements near each element is taken into account. The adva-
ntage of a second-gradient approach is that it is suitable for both shear and 
tension dominated applications, and the computation time is shorter as 
compared to micro-polar and non-local hypoplasticity [37]. The disadvanta-
ges is (similarly as in a non-local continuum) that the characteristic length 
can be only determined from an inverse identification process of experi-
mental data [21].  

6 FE-Input Data 

FE-calculations of plane strain compression tests were performed with a 
sand specimen which was ho=14 cm high and b=4 cm wide (as in the 
experiments [48], [49]). Only quadrilateral finite elements composed of 
four diagonally crossed triangles were applied to avoid volumetric locking. 
In total, 896 quadrilateral elements (0.25 0.25 cm2) divided into 3584 
triangular elements with linear shape functions for displacements were 
used. The dimensions of finite elements were 5 d50 to obtain the thickness 
of shear zones independent of the mesh size within an enhanced 
hypoplasticity [21], [37]. The integration was performed with one sa-
mpling point placed in the middle of each element. The calculations were 
carried out with large deformations (non-local and gradient model) or large 
deformations and curvatures (micro-polar model) using the so-called 
Updated Lagrangian formulation [37]. The second gradient terms and non-
local terms of the modulus of the deformation rate d were calculated in 
each triangular element on the basis of the previous iteration step (explicit 
scheme).  
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As the initial stress state, a K0-state with 22= dx2 and 11=K0 dx2 was 
assumed in the specimen where, x2 is the vertical coordinate measured from 
the top of the specimen, d=16.5 kN/m3 denotes the initial volume weight of 
medium dense sand and K0=0.47 is the earth pressure coefficient at rest [2] 
( 11 - horizontal normal stress, 22 - vertical normal stress). Next, a confining 
pressure of c=200 kPa was prescribed. 

A quasi-static deformation in sand was imposed through a constant vertical 
displacement increment prescribed at nodes along the upper edge of the 
specimen. The boundary conditions of the sand specimen implied no shear 
stress at the smooth top and smooth bottom edge. To preserve the stability of 
the specimen against horizontal sliding, one node in the middle of the top 
edge was kept fixed. To simulate a movable roller bearing in the experiment 
[49], the horizontal displacements along the specimen bottom were 
constrained to move by the same amount. Other calculations have shown 
that the effect of the boundary condition along a smooth bottom is 
insignificant on the results [36]. The derivatives of the modulus of the 
deformation rate 2 2/d x  were set to zero along vertical boundaries and 
the derivatives 2 2/d y  were set to zero along horizontal boundaries 
within a second-gradient approach [37] (similarly as in elasto-plasticity 
[29]). The mixed derivatives were zero along all boundaries. 

Different distributions of the initial void ratio can be assumed in 
granular specimens [11], [13], [22], [25]. However, it is not easy to assume 
a realistic spatial stochastic distribution of the initial void ratio due to the 
lack of experimental data. In the paper, a spatially correlated distribution 
of the initial void ratio eo was assumed in the form of a two-dimensional 
Gaussian random field. Randomness of the initial void ratio was described 
by the following correlation function [32], [44] 

1 21 2

1 2

2
1 2( , ) (1 ) (1 ),x xx x

d x xK x y s e x e x (6.1)

where x1 and x2 are the distances between two field points along the 
axis x1 and x2, x1 and x2 are the decay coefficients characterizing spatial 
variability of the specimen properties while the standard deviation sd
represents its scattering. The random fields were generated using a 
conditional rejection method proposed by Walukiewicz et al. [44], where a 
superior role plays a propagation scheme consisting of a growing number 
of points covering sequentially the nodes of the mesh. A discrete random 
field was described by multidimensional random variables defined at mesh 
nodes. The field was represented by the random vector ( 1)mx , and its 
mean value 1mx . The covariance function was replaced by the sym-
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metric and positively defined covariance matrix ( )K m m . The random 
variable vector ( 1)mx  was divided into blocks consisting of the 
unknown ( 1)u nx  and the known ( 1)kx p  elements ( )n p m . The 
covariance matrix ( )K m m  and the expected values vector ( 1)mx
were also appropriately cut: 

11 12

21 22

, ,           u u

k k

n n n

p p p
n p

x xK K
x K x

x xK K (6.2)

The unknown vector ux  was estimated from the following condi-
tional truncated distribution [44].

1
2 2

T
12

1( / ) 1 det 2 exp
2 1

m
m

c ct u k c u c uf x x t K x x K x x
t (6.3)

where cK  and cx are described as the conditional covariance matrix and 
conditional expected value vector: 

1
11 12 22 21cK K K K K , (6.4)

1
12 22 ( )c u kkx x K K x x . (6.5)

The constant t is the truncation parameter 
2exp( 2)

2   ( )
d d

d

s st
erf s

(6.6)

with
2

0

1( ) exp( )
22

ds

d
xerf s dx (6.7)

The single variable was determined in accordance with the random field 
boundaries 

,   1,...,i i i i ix a b a u i m (6.8)

where iu  are the random variables uniformly distributed in the interval 
[0,1], and ( ,  )i ia b , 1, 2, ... ,i m  are intervals of the reals (an envelope 
of the random field). The simulation process was divided into three stages. 
First, the four-corner random values were generated. Next, a propagation 
scheme with a growing number of points covered a defined base scheme of 
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the field mesh. In the third stage, the base scheme was appropriately 
shifted, and the next group of unknown random values was simulated 
(Fig.6.1). The base scheme was translated so as to cover all the field nodes. 
The following random fields for the initial void ratio were introduced by 
means of 2000 realizations: oe 6 ds ( oe - mean initial void ratio). The void 
ratio scattering in the specimen was also limited by the pressure dependent 
void ratios ed0 and ei0 (Eqs. 2.8 and 2.9). For the sake of simplicity, only 
realizations of the random correlated fields with oe =0.65 (medium dense 
sand) were performed. To compare FE-results of shear localization within 
a micro-polar, non-local and second-gradient continuum, the same random 
field for eo with sd=0.1 and x1= x2=1 (strongly correlated entire field) was 
assumed (Fig.6.2). In addition, the FE-calculations were carried out for 
different combinations of decay coefficients x1 and x2 assuming a smaller 
standard deviation (sd=0.05) within a micro-polar continuum. One random 
field was also generated with consideration of the rotation of the axis x1 or 
x2 by the angle =30o.

For the solution of a non-linear system, a modified Newton-Raphson 
scheme with line search was used with a global stiffness matrix calculated 
with only linear terms. The stiffness matrix was updated every 100 steps. 
To accelerate the calculations in the softening regime, the initial incre-
ments of displacements (non-local and gradient approach) or display-ce-
ments and rotations (micro-polar approach) in each calculation step were 
assumed to be equal to the final increments in the previous step [37].  
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Fig. 6.1. Coverage of the field points with the moving propagation scheme during 
a generation process [44] 

Fig. 6.2.  Distribution of the initial void ratio in the random granular specimen for 
decay coefficients x1=1, x2=1, standard deviation sd=0.1 and mean initial void 
ratio oe =0.65 (ho – specimen height, b – specimen width) 
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The iteration steps were performed using translational convergence crite-
ria (non-local and gradient approach) or translational and rotational con-
vergence criteria (micro-polar approach). 

7 FE-Results

Figures 7.1-7.6 present the results of the plane strain compression test for 
medium-dense sand (eo=0.65, d=16.50 kN/m3) within the micro-polar 
continuum (Figs.7.1 and 7.2), second-gradient continuum (Figs.7.3 and 
7.4) and non-local continuum (Figs.7.5 and 7.6) under confining pressure 

c=0.2 MPa using characteristic lengths in the range of lc=0.5-2.0 mm. The 
normalized load-displacement curves are depicted in Figs.7.1, 7.3 and 7.5 
(P – vertical force, c – confining pressure, b - specimen width, u2

t – 
vertical displacement of the top, ho – initial height of the sand body). The 
specimen length is l=1.0 m due to two-dimensional calculations. In turn, 
Figures 7.2, 7.4 and 7.6 show the deformed FE-mesh with the distribution 
of void ratio (Eq.2.2) (the darker the region, the higher the void ratio). The 
results of the overall internal friction angle at the peak and at residual state 
(u2

t/ho=0.10) are given in Table 7.1. In addition, the vertical normal strain 
corresponding to the maximum force and the thickness of the shear zone at 
residual state are presented. The overall mobilized angle of internal friction 
for the sand specimen was calculated with the aid of principal stresses 
from the Mohr’s formula 

1 3

1 3

arcsin , (7.1)

where 1=P/(bl) denotes the vertical principal stress and 3= c is the 
horizontal principal stress (l=1.0 m).  

The resultant vertical force in the specimen P increases first, shows a 
pronounced peak, drops later and approaches a residual state. The 
maximum vertical force Pmax and the vertical displacement of the top 
boundary corresponding to Pmax increase with increasing lc. The material 
becomes more ductile after the peak with increasing lc. The reason is that 
the enriched continua are stiffer than the conventional one since their work 
is augmented by additional terms which depend upon the characteristic 
length of microstructure. Thus, the shear resistance and material ductility 
increases always with increasing ratio lc/L (L –specimen size). 
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Fig. 7.1. Normalized load-displacement curve within a micro-polar hypoplastic 

continuum( oe =0.65): a) lc=d50=0.5 mm, b) lc=d50=1.0 mm 

Fig. 7.2. Deformed FE-mesh with the distribution of void ratio in the residual state 

within a micro-polar hypoplastic continuum ( oe =0.65): a) lc=d50=0.5 mm, b)
lc=d50=1.0 mm 
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Fig. 7.3. Normalized load-displacement curve within a within a second-gradient 

hypoplastic continuum ( oe =0.65): a) lc=0.5 mm, b) lc=1.0 mm, c) lc=2.0 mm  

Fig. 7.4. Deformed FE-mesh with the distribution of void ratio in the residual state 

within a second-gradient hypoplastic continuum ( oe =0.65): a) lc=0.5 mm, b)
lc=1.0 mm, c) lc=2.0 mm 
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Fig. 7.5. Normalized load-displacement curve within a non-local hypoplastic 

continuum ( oe =0.65): a) lc=0.5 mm, b) lc=1.0 mm, c) lc=2.0 mm  

Fig. 7.6. Deformed FE-mesh with the distribution of void ratio in the residual state 

within a non-local hypoplastic continuum ( oe =0.65): a) lc=0.5 mm, b) lc=1.0 mm, 
c) lc=2.0 mm  
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Table 7.1. Results of mobilized internal friction angle at peak p and residual state 
res, vertical normal strain corresponding to p and shear zone thickness ts for 

different characteristic lengths lc within a micro-polar, second-gradient and non-
local hypoplastic continuum ( oe =0.65, c=0.2 MPa) 

Enhanced 
hypoplastic 

constitutive model 
(eo=0.65,

c=0.2 MPa) 

lc [mm] 

p

[o] u2
t/ho [-] 

at peak

res
[o]

at
u2

t/ho=0.125 

ts
[mm] 

at residual state 
for u2

t/ho=0.10

Micro-polar model 

lc=0.5 mm 
lc=1.0 mm 

42.8 
43.0 

0.023 
0.024 

31.4 
31.4 

8.2 (16.4 lc)
10.3 (10.3 lc)

Gradient model 

lc=0.5 mm 
lc=1.0 mm 
lc=2.0 mm 

42.4 
42.8 
43.9 

0.022 
0.023 
0.024 

30.8 
29.8 
29.0 

6.5 (13.0 lc)
7.7 (7.7 lc)
10.6 (5.3 lc)

Non-local model 

lc=0.5 mm 
lc=1.0 mm 
lc=2.0 mm 

42.4 
43.3 
44.7 

0.022 
0.024 
0.026 

30.8 
30.1 
30.5 

5.5 (11 lc)
6.6 (6.6 lc)
10.6 (5.4 lc)

The overall internal friction angle at peak is in the range p=42.4o-44.7o

and at residual state res=29.0o-31.4o (at u2
t/ho=0.125) with 3 different 

enhanced hypoplastic models. The evolution of the vertical force on the 
top after the peak is dependent upon the enhanced model used. The 
material is the most ductile within a non-local continuum and the most 
brittle within a second-gradient continuum. 

The obtained results of internal friction angles at the peak and in the 
residual state in medium dense sand, and the corresponding vertical 
displacements of the sand specimen compare well with experimental 
results with Karlsruhe sand (d50=0.5 mm) carried out by Vardoulakis [49] 
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and Vardoulakis and Goldscheider [48], where the dimensions of the sand 
specimen were: h0=140 mm, b=40 mm and l=80 mm.

The experiments with dense sand (eo=0.55-0.60) resulted in the 
following values of p=45o-48o and res=32o-33o at c=200 kPa. In turn, the 
experiments with loose sand (eo=0.70-0.75) resulted in the following 
values of p=37o and res=33o-34o at c=200 kPa. The calculated values of 

p for medium dense sand lie between the experimental results. In turn, the 
calculated values of res are slightly smaller than the experimental ones. 
The shape of the calculated load-displacement curves is close to the 
experimental one [48]. However, the calculated stiffness is too high before 
the peak (in the hardening region). 

During deformation, first, a pattern of shear zones can be observed due 
to a stochastic distribution of the initial void ratio [13], [38]. Next, strain 
localization continues to localize within one dominant single zone inside 
of the specimen. The complete shear zone is already noticeable shortly 
after the peak. It is characterized both by a concentration of shear 
deformations, and a significant increase of the void ratio and modulus of 
the deformation rate [37]. The thickness of the internal shear zone grows 
with increasing lc (Tab.7.1) and is about (on the basis of shear 
deformation): 8.2-10.3 mm (micro-polar continuum, lc=0.5-1.0 mm), 6.5-
10.6 mm (second-gradient continuum, lc=0.5-2.0 mm) and 5.5-10.6 mm 
(non-local continuum, lc=0.5-2.0 mm). The calculated thickness of the 
shear zone with lc=d50=0.5 mm within a micro-polar continuum and lc=1.0
mm within a second-gradient and non-local continuum is similar. It is in 
satisfactory accordance with the observed thickness, ts=(10-15) d50,
during plane strain compression tests with dense sand at c=200 kPa [48], 
[49]. The calculated inclination of the shear zone is about 50o. The location 
of the shear zone is the same for lc=d50=0.5-1.0 mm (micro-polar 
continuum) and lc=1.0-2.0 mm (second-gradient and non-local continuum). 

Figures 7.7 and 7.8 present the calculated load-displacement curves for 
different coefficients  and sd as compared to the solution with the uniform 
initial void ratio using one weak element within a micro-polar continuum. 

The effect of the initial void ratio distribution on the load-displacement 
diagram can be observed up to the residual state where all forces are 
almost the same. The highest vertical force on the top appears for the case 
of x1=1, x2=3 and sd=0.1 (curve ‘g’ in Fig.7.8) and the lowest one for 

x1=1, x2=3, sd=0.05 (curve ‘c’ in Fig.7.7) and x1=3, x2=1, sd=0.1
(curve ‘h’ in Fig.7.8). The maximum vertical forces for stochastic 
distributions of eo can be larger than this for the uniform distribution of eo
(curve ‘a’ in Figs.7.7 and 7.8). The vertical strain corresponding to the 
maximum vertical force is always smaller than this for the uniform distri-
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bution of eo. The highest difference between the maximum vertical forces 
for various distributions of eo is about 15%. Thus, the weakest link 
principle does not apply. The fact that the spatial fluctuation of the void 
ratio can make the material stronger is caused by the fact that at the early 
stage of deformation, initially several shear zones propagate starting from 
the weakest spots (Fig.7.9). Thus, the weakest cross-section cannot be 
chosen at the beginning of deformation.  

The effect of different fields of the initial void ratio on the shear zone 
formation (thickness and inclination) was found to be insignificant. The 
location of the shear zone in the granular specimen was influenced only. 

Fig. 7.7. Load-displacement curves during plane strain compression with a 
medium dense specimen for the uniform distribution (a) and spatially correlated 
distribution of the initial void ratio (sd=0.05): b) x1=1, x2=1, c) x1=1, x2=3, d) 

x1=3, x2=1, e) x1=3, x2=3

8  Conclusions 

The FE-calculations of a plane strain compression test for a random granu-
lar material with a spatially correlated distribution of the initial void ratio 
demonstrate that the internal friction angle at peak and the thickness of the 
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localized shear zone increase with increasing characteristic length within 
the enhanced continuums. 

The characteristic length of micro-structure for the second-gradient 
continuum and non-local continuum corresponds approximately to two 
mean grain diameters of the granulate within the micro-polar continuum. 

The granular material becomes the most ductile within the non-local 
continuum and the most brittle within the second-gradient continuum. 

The material strength can be larger for the stochastic field of the initial 
void ratio than for the uniform one due to the appearance of several shear 
zones at the beginning of deformation. 

The stochastic distribution of the initial void ratio does not affect the 
load-displacement curve at residual state and shear zone formation (its 
thickness and inclination). 

The vertical strain corresponding to the maximum vertical force is 
always smaller in the case of a stochastic distribution of the initial void 
ratio.

The void ratio in the shear zone always approaches the critical pressure-
dependent void ratio. 

Fig. 7.8. Load-displacement curves during plane strain compression with a 
medium dense specimen for the uniform distribution (a) and spatially correlated 
distribution of the initial void ratio (sd=0.1): f) x1=1, x2=1, g) x1=1, x2=3, h) 

x1=3, x2=1, i) x1=3, x2=3, j) x1=3, x2=1, =30o
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The numerical calculations of the shear zone formation in a 2D random 
granular specimen will be continued for other boundary value problems. 
The choice of the representative samples will be governed by the Latin 
hypercube sampling method. 

Fig. 7.9. FE-mesh with distribution of strain measure ijij at different 

vertical deformation: a) u2
t/ho=0.018, b) u2

t/ho=0.036 ( x1=1, x2=3, sd=0.1) 
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Summary

This paper presents a theoretical approach for deriving a stress-dilatancy 
formulation for granular materials. We first revisit Rowe’s stress-dilatancy 
relation by investigating two-dimensional granular assemblies with various 
regular particle arrangements. It is found that the energy ratio during 
deformation varies with particle arrangements (or fabric) with its minimum 
value corresponding to a particular deformation state. As such, Rowe’s 
stress-dilatancy equation is seen to be the lower bound of all possible 
dilatancy states the material can assume at various particle arrangements. 
Furthermore, we demonstrate that Rowe’s hypothesis of minimum energy 
ratio can be lifted, if we work out rigorously the local sliding planes 
through micromechanical analysis. Such a micromechanical approach 
yields a more accurate description of the dilatancy behaviour of sand. 
More importantly, this new approach can be readily extended to describe 
the dilatancy behaviour of sand under general stress conditions. 
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1 Introduction 

Shear induced volume change, or dilatancy, distinguishes granular mate-
rials from most of other engineering materials. The phenomenon of dila-
tancy was first revealed by Osborne Reynolds (1885) and has fascinated 
researchers over centuries with pioneering works from Caquot (1934), 
Taylor (1948), Newland and Alley (1957), Rowe (1962) and Horne (1965), 
to name a few. Dilatancy is important since any successful description of 
the stress/strain/strength behaviour of granular materials, particularly for 
dense sand, crucially depends on an appropriate account of accurate volu-
metric changes. It has been recognized physically that dilatancy is the 
manifestation of an internal kinematical constraint, involving both particle 
shape and particle arrangement with operative inter-particle friction, 
against applied stresses. 

Early studies on dilatancy primarily focused on the increased shear 
strength due to dilatancy based on energy principles; see, for example, 
Taylor (1948), Newland and Alley (1957), Roscoe et al. (1963), and 
Schofield and Wroth (1968) among others. Based on a purely frictional 
deformation mechanism and the hypothesis of minimum energy ratio 
(work input to work output), Rowe (1962) related dilatancy to the principal 
stress ratio and developed a conceptual stress-dilatancy relation. However, 
even though Rowe recognized that dilatancy is due to an internal geometry 
constraint of granular particles with sliding occurring on a global plane 
different from local inter-granular contact planes, this notion of packing 
(fabric) is ultimately lost when making the hypothesis of minimum energy 
ratio. As such, there seems to be a contradiction in reasoning. 

According to the modern theory of internally constrained continua, 
Goddard and Bashir (1990) argued that Reynolds dilatancy represents a 
kinematic constraint imposed by internal grain geometry during macrosco-
pic deformations. As stated in Goddard (1999), “Reynolds dilatancy 
represents a strict kinematic coupling between shape and volume for 
assemblies of rigid particles, such that, in the limit of frictionless granules 
envisaged by Reynolds, the plastic yield locus is tantamount to a purely 
reactive (work-free) stress”. Stress-dilatancy relations have been develop-
ped along this line; see, e.g., Matsuoka (1974), Tokue (1979), Nemat-
Nasser (1980), Houlsby (1993), and Goddard and Didwania (1998). The 
microstructure (fabric) of granular materials acts as an internal kinematic 
constraint against applied stresses, giving rise to volume dilation with a 
concomitant constraining stress (in particular, dissipative). Kanatani 
(1982) further argued that if this additional constraining stress is subtracted 
from the total effective stress, Drucker’s postulate may still apply. On the 
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other hand, the applied stress and interparticle friction control the force 
network developed at particle contacts. Hence, the connectivity of particles 
and grain geometry necessarily imply a kinematic constraint to global 
deformations. In other words, dilatancy has to be related to applied stress, 
interparticle friction as well as fabric, which in general is in agreement 
with the recent work of Collins and Muhunthan (2003). The latter demon-
strated according to thermodynamics that, when internal constraint is defi-
ned as a deformation in which the applied pressure dissipates no energy, 
the dilation and friction angles can be related by Taylor’s formula (Taylor, 
1948).

The micromechanics of granular materials along with the discrete ele-
ment method provide alternate approaches towards the development of 
dilatancy formulations. For example, based on a micromechanical analysis, 
Christoffersen et al. (1981) proposed a dilatancy formulation, which has 
almost the same features as Rowe’s model. The notion of fabric, however, 
is lost in the final expression of the dilatancy formulation, even though it 
was developed by accounting for particle arrangement. Kruyt and 
Rothenburg (2004) showed that the rate of dilatancy can be uniquely 
determined from particle arrangement quantified by the distribution of 
contact normals, while the applied stress and interparticle friction are not 
explicitly involved. Obviously, dilatancy formulations of this type may not 
be easily incorporated into continuum constitutive models. 

The above issues motivate the present paper, whose primary goal is to 
develop a new approach for describing stress-dilatancy of granular soils 
explicitly in terms of fabric by invoking a micromechanical analysis. The 
latter offers the possibility to express micro-parameters (inter-particle 
forces, relative displacements and rotations) to macro-parameters (“avera-
ge” stresses and strains) through a so-called fabric tensor describing 
particle connectivity. By revisiting Rowe’s stress-dilatancy formulation 
and investigating two-dimensional granular assemblies with various regu-
lar particle arrangements, we first explore the variation of energy ratio 
during deformation with respect to particle arrangements (or fabric) to 
examine Rowe’s hypothesis of minimum energy ratio. Then, we demon-
strate that the hypothesis of minimum energy ratio can be lifted, if we 
work out rigorously the local sliding planes through micromechanical 
analysis. As such, the resulting micromechanically based approach yields a 
more accurate description of the dilatancy behaviour of sand. Finally, the 
dilatancy formulation derived from the new approach is simplified so that 
it can be easily implemented into an elasto-plasticity model via a flow rule. 
More importantly, this new approach can be readily extended to describe 
the dilatancy behaviour of sand under general stress conditions. 
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2 Rowe’s Stress-Dilatancy Formulation Revisited 

As a prelude we recall various experimental observations that highlight the 
roles of dilatancy and fabric on the shear strength of a granular material. 

Considering a biaxial compression stress state with the principal effecti-
ve stresses 1 2 0 , Rowe (1962) showed that the ratio between the 
incremental plastic work due to the principal stresses could be expressed as 

1 1

2 2

tan( )
tan

p

pE (2.1)

where 1
p  and 2

p  = major and minor plastic strain increment, respecti-
vely; = interparticle friction angle; and  = angle of inclination of the 

grain-to-grain sliding contact plane with the direction of 1 . Rowe showed 
that when / 4 / 2 , the work increment ratio E reaches its 
minimum, yielding 

21 1

2 2

tan
4 2

p

p (2.2)

When defining the angle of dilation  as 

1 2

1 2

sin
p p p

v
p p p (2.3)

and invoking the mobilized friction angle m via Mohr-Coulomb criterion 
such that 1 2 1 2sin ( ) ( )m , Eq. (2.2) becomes 

sin sin
sin

1 sin sin
m

m
(2.4)

In order to accommodate for the behaviour of both loose and dense sand, 
and to account for the influence of sliding, rolling and rearrangement of 
particles, Rowe suggested using the critical state friction angle cv to 
replace  in Eq. (2.4). Even though Eq. (2.1) is based on recognizing that 
dilatancy is due to an internal geometry constraint of granular particles 
with sliding occurring on a global plane different from local inter-granular 
contact planes, when making the hypothesis of minimum energy ratio, the 
notion of packing (fabric) is ultimately lost in Eqs. (2.2) and (2.4). 

The principles involved in Rowe’s stress-dilatancy theory were more 
rigorously substantiated by Horne (1965), who showed that, for triaxial 
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compression, the geometrical anisotropy could be characterized by the 
ratio between 1m  and 3m  that are the numbers of contacts at incipient slip 
in the direction of 1  and 3  respectively. Horne further argued that the 
principal stress ratio 1 3/  and the corresponding strain increment ratio 
can both be related to changes of geometrical anisotropy such that 

1 1

3 3

4 tan
4 2

m
m

; 1 1

3 3

2 tan
4 2

m
m

(2.5)

These relations result in a stress-dilatancy equation 

21 1

3 3

tan
2 4 2

(2.6)

which is identical to Rowe’s stress-dilatancy formulation for triaxial stress 
conditions. It should be noted that Horne’s approach provided a conceptual 
method to describe the relation between dilatancy of granular materials 
and anisotropy, which is assumed to be a cross-anisotropy under axi-
symmetric stress conditions. 

Oda (1972) introduced a fabric parameter S based on the directional 
distribution of contact normal to account for the effect of fabric on strength 
and dilatancy behaviour of sand. He demonstrated that, for triaxial 
compression, the principal stress and strain increment ratios can be related 
to S in the principal stress directions through 

1
1 2 3 4

3 1

z v z

x x

S Sk k k k
S S (2.7)

which yields a stress-dilatancy formulation in the form of 

1
5 6

3 1

vk k (2.8)

where v  is the volumetric strain increment,  k1 through k6 are constants, 
while Sz and Sx , which are the components of S in the direction of 1 and 

3 respectively, can be regarded as the projected area of contacts in the 
directions of 1 and 3 with the ratio Sz/Sx reflecting the fabric 
characteristics of granular materials. 

In general, approaches proposed by Horne (1965) and Oda (1972) are 
more rigorous than Rowe’s method. However, the resulting stress-dila-
tancy relations given in Eqs. (2.6) and (2.8) still do not explicitly include 
the influence of fabric. In other words, all these dilatancy formations, in 
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which the notion of packing (fabric) is lost, imply that the rate of dilation 
only depends on the applied stress ratio, which is inconsistent with 
numerous experimental results (e.g., Miyamori 1976, Tokue 1979, Miura 
and Toki 1984, and Nakai 1987). As a result, it is necessary to re-examine 
the effect of fabric on dilatancy of granular materials. 

3 Effect of Fabric on Stress-Dilatancy Relations 

3.1 Simple Cases: Regular Packing 

Let us consider three packings of monodisperse and polydisperse rigid gra-
nular materials, as illustrated in Fig. 3.1. For all of these regular packings 
subjected to uniformly distributed stress 1 and 2, the ratio of external 
forces and incremental displacements in the vertical and horizontal 
directions can be found from an equilibrium and kinematic analysis as 

sin cos tan( )
sin cos

v

h

F
F (3.1)

cotv

h

u
u (3.2)

where  is the inclination angle of contact normals, or the angle between 
the sliding plane and the direction of major principal stress 1, and 

tan   with  being the interparticle friction angle.  By means of 
Eqs. (3.1) and (3.2), the work increment ratio can be expressed as 
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Fig. 3.1. Typical regular packings for 2D granular particles 

which leads to the following stress-dilatancy relation 

1 2

2 1

tan( )
tan

p

p (3.4)

One observes that Eq. (3.3) is identical to Rowe’s work increment ratio 
given in Eq. (2.1). Referring to Fig. 1, the angle , which has a clear 
physical meaning, reflects the mode of particle arrangement (or fabric) and 
varies with deformation or the applied stresses. Moreover, does not have 
to take the value of / 4 / 2  as derived from Rowe’s minimum 
energy ratio hypothesis. 

The variation of work increment ratio E during deformation can be 
determined as follows. For all of the three cases shown in Fig. 1, the 
principal stress ratios can be derived from equilibrium conditions as 
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respectively. Herein r is defined in Fig. 3.1 to characterize the size of 
individual grains.  The corresponding incremental plastic strain ratios are 
readily obtained from the stress-dilatancy relation given in Eq. (3.4): 

2

1

2

cot for Packing A
2cos for Packing B

1 2sin tan
1 2cos for Packing C

2sin tan

p

p (3.8)

which are identical to those derived by considering the kinematic 
constraints and connectivity of particles during deformation. For any given 
value of , one can determine the stress ratio and work increment ratio, 
and hence the variation of E with respect to 1 2 , as shown in Fig. 3.2 
plotted for 020 .  One observes that the energy ratio E changes in the 
course of deformation and reaches the same minimum value 

2
min tan ( 4 2)E  at a particular deformation state (stress ratio) for 

each case; see Fig. 2a. In contrast, Rowe’s major assumption was that at 
any given time during deformation, the energy ratio is the minimum, 
regardless of the packing. The dilatancy plots for Packing A, B and C 
shown in Fig. 3.22b further confirm that the dilatancy characteristics of 
granular materials may deviate substantially from Rowe’s equation. The 
closest agreement with Rowe’s equation seems to be Packing B for which 
the energy ratio changes moderately during deformation, as shown in Fig. 
3.2a.
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Fig. 3.2(a) Energy ratio and (b) dilatancy characteristics of granular assemblies 
with regular packing 

It should be noted that the deformation of the regular granulate packings 
shown in Fig. 3.1 might be unstable in biaxial compression, since axial 
compression of each packing reduces the angle , which in turn requires a 
decrease in the principal stress ratio 1 2  according to Eqs. (3.5) to (3.7). 
Fig. 3.3 presents the variation of 1 2  with angle  and axial strain for 
Packings A and B. For a given initial value of , before Eq. (3.5) is 



          Peijun Guo and Richard Wan 210 

satisfied, the initial increase of 1 2  does not induce any deformation of 
the granular assembly. Once sliding is triggered, the stress ratio 1 2

decreases with axial strains as a result of variation in angle  during 
deformation as illustrated in Fig. 3.3. 

Fig. 3.3. Unstable deformation for regular packings A and B 

For the random packing of granular particles that will be discussed in the 
following section, stable deformation is expected. Since  for any contact 
particles varies between 90  and 90  in a random packing of particles, 
sliding may first take place at contacts of large  angles. The number of 
sliding contacts, however, may only be a small fraction of the total. 
Moreover, the rearrangement of sliding particles tends to produce more 
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stable structures, resulting in an increase in the vertical stress with 
continuing deformation. 

3.2  Random Packing 

Now let us extend the above analysis meant for regular packing to granular 
assemblies of random packing shown in Fig. 3.4. Assume that global 
failure takes place on plane ab, while local sliding occurs along a zigzag 
slide path with the mean sliding direction making an angle  relative to 
the direction of major principle stress 1  (i.e., the vertical direction). On a 
segment AB in the mean sliding direction, however, individual particles 
may move in different directions (as shown in Figs. 3.4b and c). For any 
two particles at a sliding contact k on AB, given the angle ( )k that defines 
the orientation of local contact plane, the vertical and horizontal 
components of the contact force at k are related by 

( ) ( ) ( )tan( )k k k
v hf f (3.9)

The ratio between the vertical and horizontal components of the total 
force on ab is then 

( ) ( )( ) ( )( )

( )( ) ( )

tan( ) ( ) tan( )
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k kk kk
h hv hv

kk k
h h h h h

f ff fF
F f f f f
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where  and hf  are the average values of the contact angle and the 

horizontal contact force component, with ( )k  and ( )k
hf  being the local 

fluctuations at contact k. When ( )k  varying over a limited range, Eq. 
(3.10) may be approximated to 
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which may be further simplified as 

)tan( f
h

v

F
F

(3.12)

where f, which is different from the interparticle friction angle , should 
be considered as an equivalent friction angle in terms of the normal and 
tangential forces along the mean sliding direction AB.  By applying the 
same reasoning to the kinematical analysis, one obtains the relation 
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between incremental displacements in the horizontal and vertical 
directions:

tan
v

h

u
u

(3.13)

Fig. 3.4. Granular assembly for a random packing 
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Eqs. (3.12) and (3.13) yield the energy ratio 
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tan
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p
h h

F uE
F u

(3.14)

It follows that 

1 2

2 1

tan( )
tan

p
f

p (3.15)

Eq. (3.15) takes the same form as Eq. (3.3), given that  represents the 
angle between the average particle sliding direction and the major 
principal stress 1. One may conclude that Eq. (3.15) can be regarded as a 
general expression of stress-dilatancy relation for granular materials, 
however,  and f are yet to be determined. As illustrated in Fig. 3.4c, the 
mean sliding direction  varies with mobilization of particle sliding or the 
increase of shear stresses. In other words, / 4 / 2 , a condition 
required by the minimum energy ratio hypothesis in Rowe’s dilatancy 
formulation is not a necessary condition for dilation to occur. 
Consequently, the minimum energy ratio hypothesis may be lifted. 

In the following sections, an alternative approach for the determination 
of  is proposed based on micromechanical analysis to incorporate 
microstructural aspects into the formulation of stress-dilatancy relations. 

4  Stress-Dilatancy Formulation with Micromechanical 
Considerations

4.1  Stress-Dilatancy Formulation: Generalities 

According to the micromechanics of granular materials, for a representa-
tive elementary volume (REV), micro-variables can be averaged and 
expressed in terms of macro-variables and vice versa. Fig. 4.1 shows a 
cluster of rigid particles chosen in a REV with particle connectivity 
represented by a graph of branch vectors l that connect the gravity centres 
of contacting particles. As a result of volume averaging, Cauchy stress, ,
can be determined from contact forces f between particles and the local 
branch vector l via 
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Fig.  4.1. Granular assembly in REV and graph representation of contact topology 

1
ij i jf l

V
(4.1)

A so-called fabric tensor, F, that describes the geometrical arrangement 
of particles, can be essentially represented by a second order tensor formed 
of the dyadic product of local branch vectors such as 

01
ij i j i j

NF l l l l
V N

(4.2)

where N0 is the number of contacts per unit volume and N = N0V is the 
total number of contacts in volume V. Via a so-called "localization" 
operation (Emeriault and Chang 1997) that is opposite to averaging, the 
contact forces fi between particles can be expressed in terms of Cauchy 
stress, , and the fabric tensor, F, as 

1
i ij jm mf F l (4.3)

Details can be found in Guo (2000), Emeriault and Chang (1997) and 
Chang and Ma (1991) among others. 

For a granular assembly of random packing with a given interparticle 
friction angle  the tangential and normal components of contact forces, 
T and N, satisfy tanT N . Sliding only occurs at a fraction of contacts 
at which T reaches the maximum 

tanT N (4.4)

For a contact with contact normal n, N and T can be computed from 



Peijun Guo and Richard Wan    215 

1 1
i i ij jm m i i i ij jm m iN f n F l n T f s F l s (4.5)

with s being the tangent of the contact plane. It should be noted that s and 
n are both unit vectors with 

0 1 1i i i i i is n s s n n (4.6)

Consequently, the direction of local sliding planes can be determined 
from 

1

1 tanij jm m i

ij jm m i

F l sT
N F l n

(4.7)

Introducing the Lagrangian formulation for constraints in Eq. (4.6), Eq. 
(4.7)  may be more generally expressed as the minimization of 

21 1
1 2 3( 1) ( 1)ij jm m i ij jm m i i i i i i iF l s F l n n n s s n s (4.8)

in which 1 , 2  and 3  are the Lagrangian multipliers. The stationary 
conditions of  with respect to ’s recover constraint conditions (4.6), 
whereas the stationary conditions with respect to in  and is  yield 

1 1 1 1 1
1 32 2 0m m

ij jm m i ij jm m i ij jm i ij jk i kj jm m k k
k k k

l lF l s F l n F s F n F l n s
n n n (4.9)

and

1 1 1
2 32 2 0ij jm m i ij jm m i kj jm m k k

k

F l s F l n F n s n
s (4.10)

which with Eq. (4.6) provide a set of equations that can be solved for the 
Lagrangian multipliers as well as the directions ni and si. It should be noted 
that ni and si represent the directions of critical contacts at which sliding is 
just triggered by the current stress ij, with particles mobilized previously 
continuing to slide (as illustrated in Fig. 3.4). For a random packing with 
the contact normal distribution described by a density function p(n), the 
normal of the average sliding direction can be expressed as 

( )
s

s sp dn n n (4.11)

with sn  being the normal of a sliding contact and s  the domain in which 
sliding takes place. Referring to Fig. 3.4, the inclination angle  of the 
average sliding plane can be readily obtained from sn .
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It is noted from Eqs. (4.8) to (4.10) that the distributions of both the 
contact normal and branch vectors are required to determine the average 
sliding direction or  However, since the directions of the branch vector l
and the contact normal n at a contact may be different, particularly for 
non-spherical particles (as illustrated in Fig. 4.2), the density functions 
describing the directional distribution of l and n are generally required. 
Alternatively, one may decompose the branch vector l in the directions of 
n and s; i.e., 

( ) ( ) ( ) ( )n s n sl ll l l n s (4.12)

with ( )nl  and ( )sl   being the length of branch vector projected in the 
directions of n and s, respectively (see Fig. 6). By introducing the ratio of 

( )sl  and ( )nl  associated to a contact normal n
( )

( )( )
s

n
l
l

nñ (4.13)

the corresponding expressions for contact forces become 
1 ( ) 1 ( )n n

ij jm m m i ij jm m m iN F l n s n T F l n s sñ ñ (4.14)

As can be seen, whether sliding takes place at a contact is determined by 
not only the applied stresses and the contact normal, but the non-coaxiality 
between the branch vector l and the contact normal n.

Fig.  4.2. Decomposition of a branch vector 

As a special case, the procedure described above can be simplified for a 
regular packing of spherical particles with a single size, such as packing A 
in Fig. 3.1a. In this case, the length of branch vector is constant and the 
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direction of a branch vector is identical to the contact normal at any 
contact point; i.e., ll n . As a result, Eq. (4.14) is simplified into 

1 1
i i ij jm m i i i ij jm m iN f n l F n n T f s l F n s (4.15)

The stationary conditions in Eqs. (4.9) and (4.10) become 
1 1 1 1 1

1 32 2 0ij jm m i ij jm m i ij jk i ij jk i kj jm m k k
k

F n s F n n F s F n F n n s
n (4.16)

1 1 1
2 32 2 0ij jm m i ij jm m i kj jm m k k

k

F n s F n n F n s n
s

(4.17)

It should be noted that for this regular packing, sliding occurs in the 
same direction at all sliding contacts; i.e. n n .

4.2  Nominal Friction Angle f on Sliding Plane and Critical State 
Friction Angle cv

After the mean sliding direction is determined, the nominal friction angle 
f  on the average sliding plane is still required to complete the stress-

dilatancy formulation. For any regular packing given in Fig. 3.1, it can be 
shown f  since sliding occurs in the same direction at all sliding 
contacts. For a random packing of particles, however, the nominal friction 
angle f  along the mean sliding plane varies with the progressive 
mobilization of sliding particles. Referring to Eq. (3.12) and Fig. 3.4, f

by definition can be calculated from 
( ) ( ) ( ) 1 ( ) ( ) ( )

( ) ( ) ( ) 1 ( ) ( ) ( )

tan
tan tan

k k k k k k
i ij j i jp pq q j i

f k k k k k k
l lm m l ms st t m l

f n s F l n ss sT
N f n n F l n nn n

(4.18)

where T and N are the tangential and normal components of the total 
contact force on the average sliding plane. By taking into account the 
directional distribution of contact normals using the density function 

( )p n , Eq. (4.18) may be rewritten as 

1

1

( )
tan tan

( )
s

s

ijp pq q j i

f
lms st t m l

F p l n s ds

F p l n n dn

n

n
(4.19)

where s  is the domain in which sliding takes place (see Fig. 3.4c) and it 
has been determined based on the local sliding criterion as discussed in the 
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previous section. One observes from Eq. (4.19) that f , which is a 
function of fabric and the applied stresses, tends to vary with the 
mobilization of sliding among particles. When sliding occurs at all 
contacts in the same direction, tan  is recovered from Eq. (4.19). 

It should be noted that when an equivalent friction angle f  is defined 
such that 

2 tan( )
tan

4 2 tan
f fK (4.20)

the dilatancy formulation in Eq. (3.15) takes the same form as Rowe’s 
equation in Eq. (2.2) with the interparticle friction angle  being replaced 
by f .

5  Verification 

This section verifies the new approach for the derivation of dilatancy 
formulation for granular assemblies of regular packing as shown in Fig. 
3.1. The procedure to find the orientation of local sliding plane can be 
significantly simplified as follows. 

According to Eq. (4.2), the fabric tensor and its inverse for packing A are 
2 2

1
0 2 22 2

0

sin 0 cos 01;
sin cos0 cos 0 sinij ijF N F

N
(5.1)

where 0N N V  is the number of contact in a unit volume of the 
specimen,  is the inclination angle of the contact normal, which is the 
same as the associated branch vector. The components of the contact force 
at a given contact according to Eqs. (4.3) and (4.5) are 

1 1
1 1 11 2 22 22sin ; cosf F f F (5.2)

1 2 1 2sin cos cos sinN f f T f f (5.3)

When applying the sliding criterion given in Eq. (4.7), one has 
1

1 11 1 1
1

2 22 2 2

1tan( )
tan

F l
F l (5.4)
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The stress-dilatancy formulation in Eq. (3.15) yields the strain increment 
ratio as 

1
2

2

1
tan

p

p (5.5)

which is identical to the first equation of Eq. (3.8). 
For the particle assembly of Packing B shown in Fig. 3.1(b), the 

directions of the contact normal and the branch vectors are different, with 
the inclination angles being   and , respectively. Given the fabric tensor 
and its inverse 

2 2
1

0 2 22 2
0

sin 0 cos 01
sin cos0 cos 0 sinij ijF N F

N (5.6)

with   and   being related by 

1 2sintan
2cos (5.7)

the sliding condition for this case is expressed as 

1
11 11 1 1

1
222 22 2

2costan( )
1 2sin

F l
F l

(5.8)

When applying the stress-dilatancy formulation to Eq. (3.15), the second 
equation of Eq. (3.8) is recovered. 

By drawing a parallel to Packings A and B, it can be shown that the 
combination of the sliding criterion and the stress-dilatancy formulation in 
Eq. (3.15) also recovers, for Packing C, the strain increment ratio given in 
the last equation of Eq. (3.8). 

6  Simplified Procedure and Modified Rowe’s Stress-Dilatancy 
Relation

Even though the fundamentals for the derivation of dilatancy formulation 
are given in Section 4 already, including the determination of the mean 
sliding direction  and the nominal friction angle f , the resulting 
dilatancy equation is not given in an explicit form. This section discusses a 
simplified procedure to obtain an easy to implement stress-dilatancy 
formulation. 
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6.1  Mean Sliding Direction and Nominal Friction Angle f

It is expected that sliding does not occur at a contact k with the mobilized 
coefficient of friction ( ) ( ) ( )k k k

mob T N . According to Eq. (4.5), ( )k
mob  is 

calculated as 
( ) ( ) ( ) ( ) ( ) 1 ( ) ( ) 1 ( ) ( )

( ) 1 2 11 11 1 22 22 2
( ) ( ) ( ) ( ) ( ) 1 ( ) ( ) 1 ( ) ( )

1 2 11 11 1 22 22 2

cos sin cos sin
sin cos sin cos

k k k k k k k k k
k

mob k k k k k k k k k
T f f F l F l
N f f F l F l (6.1)

The superscript k, which represents quantities at an individual contact, 
will be dropped in the following discussions for simplicity. When the 
branch vector is different from the associated contact normal with an 
inclination angle of , mob  can be rewritten as 

sin sin 2
1 sin cos2

m
mob

m

(6.2)

where sin m , which is a local parameter at a specific contact point, is 
expressed as 

11 22

11 22

sin cos cos sinsin
sin cos cos sinm (6.3)

and
1 1

11 11 11 22 22 22F F (6.4)

It can be shown that the non-sliding condition mob  can be rewritten 
as

sin
sin 2

sin m

(6.5)

Consequently, one concludes that sliding occurs at contacts with the 
inclination angle  satisfying 

1 1sin sin
sin 2 sin

sin sinm m

(6.6)

which defines the range of sliding contacts as min max  with 

1 1
min max

sin sin1 1sin sin
2 2 2 2 2sin sinm m

(6.7)
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One observes that sliding first takes place at contacts with 
4 2  when m . When the mobilized friction m  exceeds 

 owing to the increase of shear stress, more sliding is activated and the 
difference between max  and min  is 

1
max min

sin
sin

2 sin m

(6.8)

The value of  varies between 0 (when sliding starts at m ) and 

2  (when sin 1m ).
Without loss of generality, one may assume that the mean sliding 

direction to be 

max min
1
2 4 2

(6.9)

The nominal friction along the mean sliding direction may be considered 
as the average of the friction on all planes with min max . When 
introducing a density function describing the directional distribution of 
contact normal (Emeriault and Chang 1997) 

0( ) 1 cos2( )E n (6.10)

with  defining the degree of anisotropy and 0  representing the 
orientation of the greatest density of the contact normals, f  can be 
calculated as 

2

02

0

0 0

1tan tan( ) 1 cos2( )

cos( 2)1 ln tan cos 2
cos( 2) 6 2

tan cos 2 4 tan cos2
2

f f d

(6.11)

Herein, Simpson’s three-point method is used to evaluate the integral. 
When 0  and 2 , f  reaches its minimum and maximum 
values, which are given as follows: 
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min 0
0

tan tan 1 cos2 tanlimf f (6.12)

3
0 04 2

max
2 4 2

sin 2 2 sin 1 tan cos21 cos( )tan ln
3cos( )f (6.13)

with 2cos (sin cos2 ) . Finally, the stress dilatancy formulation 
is expressed as 

1 1

2 2

tan( )
,

tan 4 2

p
f

p K (6.14)

One may further define an equivalent friction angle f  such that 

2 tan( 4 2)
tan

4 2 tan 4 2
f fK (6.15)

As a result, the dilatancy equation in Eq. (6.14) will have the same form 
as Rowe’s formulation with cv  being replaced by f  such that 

sin sin
sin

1 sin sin
m f

m f
(6.16)

According to Eqs. (6.12) and (6.15), the minimum values of minsin f

can be approximated to 

min 0sin (1 0 85 cos2 )sinf (6.17)

When turning to maxf , let us check a special case of 0 / 2 when the 
orientation of the greatest density of the contact normal is aligned in the 
direction of the major principal stress 1.  Fig. 6.1 shows the variation of 

maxf  with respect to  at different degrees of anisotropy. Though maxf

tends to decrease with increased degree of anisotropy, a comparison of 
maxf  with experimental data for critical state friction angles cv  (Moroto 

1988, and Hardin 1985) reveals that maxf  calculated from Eq. (6.13) is 
very close to cv  for materials of weak to medium anisotropy. In other 
words, the critical state friction angle cv  can be regarded as the upper 
bound of f . This conclusion is consistent with Rowe’s experimental 
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data. Without loss of accuracy, one may argue that f  varies over a range 
of 0(1 0 82 cos2 )sin sin sin cvf .

Fig.  6.1. Dependency of maxf  on interparticle friction angle 

As for the evolution of f  during deformation, referring to Eq. (6.11), 

f  and hence f  both increase with , which describes the range of 
contact normal orientation at sliding contacts. Moreover, f  is meaningful 
only when relatively displacements occur between soil particles, implying 
that f  is a function of plastic deformation. Consequently, it is reasonable 
to assume an evolution law for f  in the form of 

0(1 0 85 cos2 )sin sin
p

cvf p

X
a

(6.18)

By adopting sin /sin cvX , maxsin sin cvf  and minsin f  given 
in Eq. (6.17) are both recovered. 

According to Cambou et al. (1995), the degree of anisotropy  can be 
related to the principal components of the fabric tensor via 
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1 2

1 2

F F
F F (6.19)

When the fabric and stress tensors are non-coaxial, one has 

11 22 1 2
0 0

11 22 1 2

cos2 cos2F F F F
F F F F (6.20)

with 0  being the angle the major principal fabric direction makes with 
respect to the horizontal (i.e., the direction of 2  in biaxial compression 
shown in Fig. 3.4). By applying Eq. (6.20), the minimum value of sin f

can be approximately expressed as 

22
min

11

1sin 1 sin
2f

F
F (6.21)

which yields an alternative expression for Eq. (6.18): 

22 111 2
sin sin

p

cvf p

X F F
a

(6.22)

For weakly anisotropic materials with 22 11 1F F , the above equation 
can be further simplified into 

22 11sin sin
p

cvf p

XF F
a

(6.23)

which is consistent with the expression proposed by Wan and Guo (2001) 
in the following form 

22 11sin sin
p

f cvp
cr

XF F e
a e

(6.24)

in which the effect of void ratio is taken into account by the ( )cre e
factor.

6.2  Comments on m  and 

Even though *
m  is introduced in Eq. (6.3) as a friction angle of some 

stress measure, its physical meaning is not clear at this point. For an 
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ensemble of spherical particles, *
m  is the friction angle associated with the 

modified stress ij  defined in Eq. (6.4). According to Oda (1993), the 

modified stress ij  can be considered as the “true” stress in terms of 
effective contact area between particles. It has been known that during the 
deformation process of granular materials, contact normals gradually 
concentrate towards the major principal stress direction and form particle 
columns or force chains; between the columns, particle may carry little or 
even no load. Usually sliding does not occur at contacts comprising the 
major force chains. Instead, slip takes place predominantly in the regions 
between the major force chains. The deformation consists of a series of 
buckling of these major force chains, resulting into fewer contacts between 
particles in the minor principal stress direction. When the steady-state is 
reached, new columns are created at the same rate that old columns 
collapse and vanish: the total number of contacts remains more or less 
constant. More generally, when taking into account the discrete feature of 
contact forces and forces chain, the true stress ij  used for determining 
contact forces should be considered as a “local” measurement of stresses. 
For a small domain along the major columns, one may expect that the local 
value of ij  in the direction of the column is much higher than that in the 
orthonormal direction, yielding high 11 22/  ratios. As a result, the value 
of *

m  is likely to be much higher than the friction angle based on the 
average stress ij .

One can also check the possible value of *
m  by exploring the variation 

of , i.e., the range of the sliding contact orientations. Oda et al. (1982) 
and Konishi et al. (1983) observed in a series of biaxial compression tests 
on assemblies of oval cross-sectional rods that the disappearing and 
generated contacts were limited in a certain range. It is plausible that 
relative sliding (or rolling) occurs, but not limited to disappearing contacts 
and new contacts are generated during deformation. As shown in Fig. 6.2, 
the orientation of disappearing contacts varies over a range of 
0 2 , which is consistent with Eq. (6.7). Closer examinations 
of particle movement (Oda and Kazama 1998) reveal that the buckling of 
particle columns at the residual stress state is induced by particle 
movement in the direction of 2 , which corresponds to 

max 2 . More experimental evidence which confirms that relative 
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particle sliding occurs at 0 2  can be found in Calvetti et al.
(1997).

Discrete element simulations for biaxial compression tests can also be 
used to examine the range of sliding contact orientation. Fig. 6.3 shows the 
directional distribution of the sliding contacts at different shear stress 
levels (Alonso-Marroquin et al. 2004). It can be seen from the figure that 
the range of sliding contact orientation increases with shearing and max
gradually approaches 2 . As a result, one may conclude that results 
shown in Figs. 8 and 9 provide the physical bases for the reasoning 
presented in the previous section. 

Fig. 6.2. Disappearing contacts: from initial state to peak, rods of oval cross-
section (data after Oda et al. 1982 and Konishi et al. 1983) 
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Fig.  6.3. Directional distribution of sliding contacts at various shear stress levels 

7  Closing Remarks 

Based on the investigation of two-dimensional granular assemblies with 
various regular particle arrangements, it is demonstrated that Rowe’s 
hypothesis of minimum energy ratio is not necessary for granular material 
deformation. Rowe’s stress-dilatancy equation is in fact the lower bound of 
all possible dilatancy states the material can assume at various particle 
arrangements. When working out rigorously the local sliding planes 
through principles of the micromechanics of granular materials, a 
theoretical dilatancy formulation is derived with Rowe’s hypothesis of 
minimum energy being lifted. The resulting micromechanically based 
approach, with the effect of fabric embedded in the analysis, yields a more 
accurate description of the dilatancy behaviour of granular materials; it can 
also be readily extended to describe the dilatancy behaviour of sand under 
general stress conditions. When simplified, the new dilatancy formulation 
reverts to the basic form that was proposed by the authors in previous 
publications, see Wan and Guo (1998, 2001, 2004). 
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Summary

We study the appearance of instable behaviors (like strain localization 
bands) in elastic solids, as a consequence of micro-fracture. A two-scale 
approach of computational homogenization is considered. The macrosco-
pic behavior is obtained by unit cell finite element computations. On the 
micro-level, we consider a granular structure with each grain made of a 
large strain elastic material. Inter-granular boundaries are modeled with 
cohesive laws, friction and unilateral contact. We show that decohesion 
between grains give rise to macro-instabilities, indicated by the loss of 
ellipticity, typical for deformation localization bands. The relation between 
the microscopic softening on inter-granular boundaries and the onset of 
macro-instabilities is pointed out on some numerical examples. The 
influence of the cohesive law and friction parameters is analyzed.  

1 Introduction 

This contribution aims at establishing a link between inter-granular micro-
fracture and the onset of macro-instabilities in granular solids.

A two-scale framework of computational homogenization (e.g. Kouzne-
tsova et al. [1], Miehe [2]) is considered. The macroscopic response is 
obtained by localization/homogenization exchanges with a representative 
volume element (RVE). Linear deformation boundary conditions are 
assumed for the elementary cell. The microstructure is composed of 
deformable grains separated by cohesive interfaces. Large strain hyper-
elastic St. Venant-Kirchhoff material is considered for grains and traction-
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displacement cohesive laws for the inter-granular interfaces. A Coulomb-
type friction law is also considered on these interfaces. We show that a 
microscopic origin of the loss of ellipticity for the homogenized 
equilibrium can be the granular decohesion, the inside-grain equilibrium 
equations remaining elliptic.

Two particular geometries of the RVE are studied. First, we consider a 
RVE made of two grains, separated by an interface. This simple 
morphology provides an elementary deformation pattern which will be 
reproduced in more complex geometries. We show that the instable 
macroscopic behavior may appear when a critical length of interface zones 
in softening regime is reached. This behavior depends very much on the 
values of the friction and cohesive parameters. Zones of 
stability/instability and curves of complete decohesion are identified in the 
plane of macroscopic bi-axial loading. 

Then, we illustrate the case of more complex granular structures by an 
unit cell composed of 15 grains. In this case, the successive decohesion on 
different inter-granular interfaces is resulting as a composition of 
elementary modes described previously. The homogenized response 
appears as a sequence of alternating stable/instable regions.  

These two examples allow us to understand the case of more realistic 
microstructures, with a large number of grains. It can be easily seen that a 
macroscopic instable response is appearing as a limit of the alternating 
stable/unstable regions observed on our examples.  

The paper is structured as follows. In section 3 we describe the 
microscopic problem and the homogenization procedure. Section 4 is 
devoted to the macroscopic stability analysis. Numerical examples and 
discussions are given in Section 5. 

2 RVE Problem 

The macroscopic response is obtained through numerical homogenization 
on elementary cells representing granular microstructures. We focus on the 
behavior in a macroscopic point by performing a unit cell analysis. A mean 
kinematics is applied through boundary conditions and the mean stress is 
recovered from the computed microscopic solution.  

Let 0V  a two-dimensional representative volume of the undeformed con-
figuration of the body (Fig. 2.2). We denote by X  the deformation 
application and by F X   its gradient. The microscopic stress is described 
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by the first Piola-Kirchhoff tensor P X . At the macroscopic level we 
have the deformation gradient F X  and the stress P X .

Given a macro-deformation gradient F , linear deformations boundary 
conditions are applied on the cell boundary : 

X F X (2.1)

We have two types of internal boundaries: cohesive interfaces and 
traction-free boundaries around the holes at intersections of interfaces or at 
the intersection of one interface with an external boundary. In the first 
case, we consider an interface traction-separation law (e.g. Tvergaard [3]) 
of the form:  

P N P N T ; T T (2.2)

where n tT TT   are the  normal and tangential tractions and 

n t , respectively, the normal and tangent relative displacements 
on the interface.  

Fig. 2.1. Traction-separation and contact relations in normal and tangential 
direction on a cohesive interface. The continuous curves also incorporate friction 
behavior 
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By introducing the non-dimensional parameter  
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f t (2.6)

where n , t  are the total separation values in the purely normal and, 
respectively, purely tangential modes. The unilateral contact in normal 
compression is implemented through the penalty condition with the 
constant n . The superimposed dot represents the time derivative in the 
quasistatic deformation process. For decreasing  elastic unloading holds, 
with max , on the partially damaged interface. The friction acts 



G. Bilbie, C. Dascalu, R. Chambon and D. Caillerie  235 

progressively during decohesion and completely after, with μ0 the friction 
coefficient. The above relations are illustrated in Fig. 2.1, for the normal 
and tangential directions. 

For every grain subdomain we consider a Saint-Venant Kirchhoff 
material: 

' 2 'trS E I E (2.7)

Fig. 2.2.  Elementary volumes with 2 and respectively 15 grains 

where -1S F P  is the second Piola-Kirchhoff stress tensor and 
1
2

TE F F I  is the Green-Lagrange deformation tensor. 

The equilibrium equation reads 

0div P (2.8)

The numerical solution of the above boundary value problem allow us to 
obtain the mean stress as  

0

0
0

1
V

dV
V

P P (2.9)

Here 0V  represents the area occupied by the solid in the RVE and the 

integral is considered on this region. In this way we get the mechanical 
response of the RVE in the form of a numerical constitutive law. For an 
increasing macroscopic loading, this equation can be written as P P F .

This relation allows us to perform a macro-stability analysis based on the 
loss of ellipticity of the homogenized equilibrium equation. 
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3 Macroscopic Loss of Ellipticity  

Let us consider a quasi-static deformation process. If iX  represents the 
position of a macroscopic point in the reference configuration and ix  its 
position in the deformed configuration, then the macro-deformation 

gradient is k
kL

L

xF
X

 and the equilibrium equation is 

0iJ

J

P
X

(3.1)

The homogenized constitutive law can be written in the incremental 
form, in the vicinity of a direction of the gradient of deformation gradient: 

iJ iJkL kLP B F (3.2)

This rate constitutive law is certainly nonlinear, with the modulus B
depending on the direction on the deformation gradient. Due to the 
complexity of the geometry of the representative volume it may not be 
simple to define a global unloading in connection with the local unloading 
on interfaces.  

The tangent modulus, depending only on the above-mentioned direction, 
is given by 

iJ iJ
iJkL

kL kL

P PB
F F

(3.3)

The last expression is a finite-difference approximation for the 
computation of the tangent modulus with the cell solutions.  
The macroscopic stability is defined by the ellipticity of the equilibrium 
equation (3.1). It can be shown ([4]) that localization modes are possible if  

det 0Q (3.4)

where we have introduced the acoustic tensor ik J iJkL LQ n B n , with n is 
the normal to the localisation band. This condition corresponds to the loss 
of ellipticity of the homogenized equilibrium equations (3.1). 

The loss of ellipticity expressed by (3.4) it the instability concept 
adopted in this paper. Different instability modes may occur, especially 
due to the presence of friction. Further analysis should be carried out in 
order to completely describe the onset of macro-instabilities. 
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The ellipticity condition is an indicator of the stability of the deformation 
process. Its violation describes the onset of macro-instabilities, like the 
localized deformation bands. In what follows we’ll check the conditions 
(3.4) for the homogenized constitutive law.  

The stability question may be also formulated at the microscopic level. 
We can show (e.g. [5]) that, for ' 2 ' 0 , ' 0  and the Poisson ratio 
0 0.5 , the relation (2.5) assures the strong ellipticity of the 
microscopic equilibrium. This means that the macroscopic instabilities are 
exclusively the result of decohesion fracture on inter-granular boundaries. 

4 Numerical Examples and Discussion 

Two examples of micro structural geometry will be considered in this 
section. In both cases the RVE is a square of 1.0 mm. The Lamé constants 
for the St-Venant Kirchhoff material are ' =1442.3MPa, ' =961.5 MPa.  
A total Lagrangian finite element formulation is implemented to obtain the 
solution of the cell problem. The interfaces between grains are modelled 
using cohesive finite elements (see, for instance [6], [7]). All the 
computations are performed for applied macro-deformation gradients of 
the form 0F I G  where 0G is a fixed macroscopic load and  is a load 
factor running from 0 to 1. 

The first geometry, represented in Fig. 2.2, consists of two grains 
separated by an interface. This simple microstructure will provide an 
elementary mode for the onset of macro-instabilities due to inter-granular 
decohesion.

Fig. 4.1 clearly shows the hierarchy of unstable behaviours for our 
model. A lag between the occurrence of softening on the interface (step 
(1)) and the loss of macro-ellipticity (step (2)) is observed. The other 
numerical results given in this section will show the dependence of the 
step of loss of macro-ellipticity and the corresponding micro-modes for 
different parameters of the cohesive law. The next step (3), in Fig. 4.1, 
corresponds to the first occurrence of total decohesion at the micro-level. 
One can remark that the loss of macro-stability corresponds to some length 
of the softening zone on the interface. This result is similar to that obtained 
in [8] where we have proved that a critical length of the softening region 
on an interface is necessary to activate instability modes.  
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Fig. 4.1. Left: homogenized stress (MPa) versus loading factor , for the values of 
n = t =0.01, max 10T MPa, for 3 different meshes. The point (1) is the first step 

in which micro-softening points occur on the interface. (2) is the step in which 
macroscopic loss of ellipticity occurs, while the step (3) represents the first 
occurrence of some complete decohesion points on the interface. The 
corresponding values of , for the three steps, are plotted at the right. For the step 
(1) we also represented the softening region for the three cohesive element 
discretisations of the interface, corresponding to the three meshes in the bulk.  

Let’s consider now the question of the mesh dependence of our results. 
All the numerical tests we have performed showed independence of the 
mesh. One can easily see in the Figure 4.1 (left) that all the instability 
points, obtained with three different meshes, correspond to the same 
loading steps. We have also represented in Fig. 4.1 the softening region for 
the loading (1), as obtained with the three meshes. One can remark that the 
three regions coincide. We believe that the mesh independence is due to 
the stability inside the grains and the fact that softening microscopic 
behaviours occur only on sets of measure zero (2D curves). 

For the representation in Figure 4.2 we have taken the compressive load   
0 0; 0 -0.10G , for different values of n = t and max 30T MPa.

The numerical results show that the onset of macro-instabilities may 
correspond to different lengths of the interface micro-instability zones, 
depending on the cohesive law parameters.    
A similar connection between micro-macro instabilitiy is illustrated in Fig. 
4.3, for different values of Tmax . For large values of Tmax, only a few 
instable interface elements are necessary for the loss of ellipticity at the 
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macro level, while for small values of Tmax all the interface elements 
should be in the softening regime.    

Fig. 4.2. Homogenized stress (MPa) versus loading factor , for different values of 
n = t  and the corresponding values of the decohesion parameter . nie = 

number of the interface element and the interface softening regime corresponds to 
 > 1/3 (horizontal lines).  

Fig. 4.3. Homogenized stress (MPa) versus loading factor , for different values of 
Tmax and the corresponding values of the decohesion parameter .

The influence of the friction parameter μ0 is analyzed in Figure 4.4. It 
can be seen that the presence of friction has an impeding effect on the 
initiation of macro-instabilities.  
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In Figure 4.5 we represented the regions of stability/instability in the 
macroscopic loading plane 11F  - 22F , with and without friction on the 
interface. One can remark the difference between tension and compression 
as concerns the macro-stability domain and the fact that in some directions 
we didn’t found that ellipticity is lost. 

Fig. 4.4. Homogenized stress (MPa) versus loading factor , for different values of 
the friction coefficient μ0  and the corresponding values of .

Fig. 4.5. Zones of (non) ellipticity in the macroscopic loading plane with (right) 
and without (left) friction on the interface (μ0=0.1). We represent the curves of 
loss of ellipticity and of decohesion in all points of the interface.  
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The complete decohesion curve, corresponding to total rupture of the 
elementary volume, is also represented. Comparison between the two cases 
confirms that friction has a retarding effect on macro-instability onset. 

The second RVE geometry is the granular structure illustrated in Fig 
2.2b. The cell dimension and the material constants are the same as before.

Fig. 4.6. Homogenized stress P11 (MPa) versus loading factor  for different sets 
of parameters  1) Tmax=20, t = n =0.01, μ0=0 ; 2) Tmax=20, t = n =0.015, μ0=0 ; 
3) Tmax=30, t = n =0.01, μ0=0 ; 4) Tmax=20, t = n =0.01, μ0=0.1. In the case 3) 
we show three successive configurations of RVE and the corresponding zones of 
complete decohesion on inter-granular boundaries.  

We consider the compressive loading -0.1 0; 0 00G  and different 
variations of the parameters Tmax, n , t and μ0 , as described in the legend 
of Fig. 4.6. Successive ruptures, of the type described before, are here 
present. This is illustrated by the three RVE configurations shown. This 
stepwise decohesion leads to a combination of stable/instable zones in the 
macroscopic response. The influences of the different parameters pointed 
out before are here recovered.

We finally remark that in a more realistic situation, for a RVE with a 
large number of grains, the “discrete” alternated stable/instable behaviour 
obtained in the last example will approach a smooth instable curve, as can 
be observed for the mean response, in a region after the first peak on the 
curves in Fig 4.4. In this case, successive decohesions take place on a large 
number of interfaces leading to a macro-instability region in the 
homogenized response. The influences of cohesion and friction 
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parameters, illustrated in the simple cases considered in this paper, will 
remain true for more complex micro-structural geometries.      
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Summary

We here investigate potentials and limitations of Griffith's energy release 
rate criterion to describe effective stress-strain behavior of brittle materials 
damaged by mode I type propagating microcracks. For this purpose stiff-
ness estimates for representative volume elements (RVEs) of a microcra-
cked material (based on continuum micromechanics) are combined with 
the energy release rate criterion for the behavior of one single penny-
shaped crack embedded in an infinite matrix subjected to remote uniform 
stresses (taken from linear-elastic fracture mechanics). This combination 
allows for studying the effect of stable (quasi-static) mode I propagation of 
open microcracks on the macroscopic behavior of microcracked material 
volumes subjected to different types of macroscopic loading. As regards 
uniaxial tension, the combined fracture-micromechanics approach predicts 
macroscopic strain-softening, resulting from propagation of cracks 
perpendicular to the loading direction. As regards uniaxial compression, 
consideration of non-zero crack openings is mandatory in order to predict a 
typical relation between tensile and compressive strengths, amounting to 
about 1:12. Thereby, uniaxial compressive failure is related to axial split-
ting, i.e. to propagation of open cracks in the loading direction. As regards 
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axial splitting caused by confined compression, additional strength increa-
se because of lateral confinement can be represented at least qualitatively. 
However, it turns out to be necessary to combine Griffith's energy release 
rate criterion with a stress criterion taking into account the sign of the 
microstresses in the vicinity of the crack edge. 

1 Statistics of Kinematics and Stress 

Microcracking is the dominant failure mechanism of brittle materials. 
Specific types of macroscopic loading lead to propagation of microcracks 
along their planes, while the relative displacement between the two crack 
surfaces is perpendicular to the crack growth direction. This type of crack 
propagation, referred to as cracking mode I, is observed under macrosco-
pic uniaxial tension, macroscopic uniaxial compression, and macroscopic 
axial compression with lateral confinement. It is the central issue of the 
present paper. 

Uniaxial tension experiments on brittle materials are very sensitive to 
imperfections [33]. Therefore, such experiments require very accurate and 
experienced handling of the specimen, the loading machine, and the 
measurement equipment [33]. In the post-peak regime of a uniaxial tension 
experiment, strain-softening is observed. Thereby, crack propagation is 
concentrated in a localization zone, i.e. to a narrow crack band [1]. The 
crack propagation direction is perpendicular to the direction of the applied 
tension. At the end of a uniaxial tension test on a brittle specimen, the 
sample splits up into two parts. 

In uniaxial compression experiments with carefully lubricated interfaces 
between load platens and specimen, characterized by approximately uni-
form stress states within the tested sample, open cracks propagate in the 
direction of axial loading, through a predominantly mode I cracking 
mechanism [37]. In the post-peak regime of such a test, crack propagation 
is accompanied by strain-softening. Thereby, the number of cracks deve-
loping within a certain volume is rather large [36]. At the end of a uniaxial 
compression test on a brittle specimen, the sample splits up into many 
slender "columns", and final failure is due to buckling and bending, or 
tilting and sliding of these columns [37]. 

Complementing uniaxial compression experiments by lateral confine-
ment pressure results in different failure mechanisms, related to different 
levels of confinement pressure: 
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At small confinements, strain-softening is observed after the onset of 
axial splitting, and the final failure mode is the same as in unconfined 
uniaxial compression experiments. 
At moderate confinements, axial splitting is first associated with strain 
hardening, i.e. an increase of stress with increasing strain. Subsequently, 
strain softening and final failure is caused by shear-mode propagation of 
closed cracks which are inclined to the axis of uniaxial loading. This 
type of failure is referred to as faulting [19]. 
At large confinements a transition from brittle failure to ductile material 
behavior is observed [19]. 

In this paper, we investigate whether effective macroscopic stress-strain 
behavior under uniaxial tension, uniaxial compression, and axial compres-
sion with lateral confinement, respectively, can be predicted by combining 
Griffith's energy release rate criterion for mode I crack propagation (taken 
form linear-elastic fracture mechanics) with the Mori-Tanaka stiffness 
estimate specified for microcracked materials (taken from continuum 
micromechanics). In Section 2, we shortly revisit Griffith's energy release 
rate criterion and determine, in the framework of the equivalent inclusion 
method, the energy release associated with the growth of a single crack 
embedded in an infinite matrix subjected to remote uniform stress states, 
namely uniaxial tensile stresses acting perpendicular to the crack plane, 
uniaxial compressive stresses acting parallel to the crack plane, and triaxial 
compressive stresses acting both parallel and perpendicular to the crack 
plane. Section 3 deals with continuum micromechanics. There, we give 
details on the Mori-Tanaka estimation of the effective stiffness of a 
representative material volume damaged by microcracks. Employing the 
simple concentration procedure proposed by Zaoui [39, 40, 41], we recall 
how these estimates can be derived on the basis of the strain state in a 
single penny-shaped crack surrounded by an infinite matrix subjected to 
fictitious remote (uniform) strains. The explicit consideration of these 
fictitious remote strains provides the link between continuum micromecha-
nics and classical fracture mechanics, i.e. the link between the crack 
propagation criteria at the level of a single crack and the damage evolution 
at the level of the microcracked (“damaged”) material. This link is worked 
out in detail for macroscopic uniaxial tension, uniaxial compression, and 
axial compression with lateral confinement in Section 4: Through the 
aforementioned upscaling technique, we study the effect of stable (quasi-
static) mode I propagation of open microcracks on the macroscopic 
behavior of a microcracked material volume. 
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2 Single Crack Mechanics 

2.1 Short Review of Griffith’s Crack Propagation Criterion 

Linear-elastic fracture mechanics deals with the behavior of a single crack 
embedded in an infinite matrix subjected to remote uniform stresses 
(Fig. 2.1). Griffith [12] and Irwin [21] related crack propagation to the 
energy 

Fig. 2.1. Problem of linear-elastic fracture mechanics: A single penny-shaped 
crack (Fig. 2.2) is embedded in an infinite matrix subjected to remote uniform 
stresses

 released upon an increase of the crack area A from zero to its current 
size, = ( , A). The driving force for crack propagation is the energy 
release rate G, which is obtained by derivation of  with respect to A.

A
AAG ,, (2.1)

The material resistance against crack propagation is referred to as Gc.
Comparison of G( , A) with Gc allows for identifying different types of 
crack behavior: 

a crack is stationary, i.e. it does not propagate, if 

cA G,G (2.2)
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onset of cracking occurs, if 

cA G,G (2.3)

stable (quasi-static) crack propagation occurs, if (2.3) is satisfied and if 

00 dAanddA
A

dd
GG

G (2.4)

and instable (dynamic) crack growth is associated with 

cA GG , (2.5)

Since we restrict our considerations throughout the paper to penny-
shaped cracks with crack radius a and crack half-opening c (Fig. 2.2), it is 
convenient to reformulate the expression of the energy release rate (2.1) as 
[26] 

2
1G

A
(2.6)

where, instead of the crack area A = a2 , the crack radius a is introduced as 
the parameter describing the size of the crack. 

2.2 Energy Released by Penny-Shaped Cracks Propagating in Mode I 
under Uniaxial and Triaxial Stress States 

The energy , released upon crack growth from zero to its current size, can 
be determined in the framework of the equivalent inclusion method [9, 27, 
18]. This method deals with two different types of subdomains within an 
infinite, linear-elastic matrix: inhomogeneities and inclusions (see, e.g., 
[27]). An inhomogeneity has an elastic stiffness Ci differing from the ma-
trix stiffness Cm (Fig. 2.3a); whereas an inclusion has the same stiffness as 
the matrix, but exhibits eigenstrains * [27] (Fig. 2.3b), also called stress -
free strains [9]. 
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Fig. 2.2. Spatial dimensions of a penny-shaped crack (inhomogeneity) with unit 
normal to the crack plane n, and definition of the crack coordinate system (r, , z) 

Fig. 2.3. Eshelby's equivalent inclusion problem: the behavior of (a) a single
ellipsoidal inhomogeneity with stiffness Ci, embedded in a 3D infinite matrix of 
stiffness Cm, which is subject to remote uniform strain E , is modeled by (b) an 
ellipsoidal inclusion with equivalent eigenstrain *, embedded in a homogeneous 
infinite body of stiffness Cm,, which is subject to remote uniform strain E

In case of remote uniform loading, either in terms of strains E  or of 
stresses 

ECm : (2.7)

the mechanical behavior of an infinite matrix containing a single ellipso-
idal inhomogeneity is equivalent to that of an infinite matrix containing an 
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equally-shaped inclusion with eigenstrains * [9] (Figs. 2.3a and 2.3b), 
reading as [13]. 

ECCC mmi
m
i ::$

11* (2.8)

where m
i$ denotes the so-called Eshelby tensor, relating the eigenstrains *

to the difference between the total inclusion strains i (eigenstrains plus 
elastic strains resulting from constraints of the inclusion by the surround-
ding matrix) and the remote uniform strains E  [39]. 

*:$m
i

i E (2.9)
* enters the expression for the difference between the potential energy W 

of a -loaded matrix with an inhomogeneity and that of the same matrix 
without any inhomogeneity, W0, [27]. 

*
0 2

1
iVWWW (2.10)

where Vi denotes the volume of the inhomogeneity. The energy difference 
W is called interaction energy. 
For an open crack, represented as an ellipsoidal inclusion with vanishing 

stiffness Ci =0, the equivalent eigenstrains follow from (2.8) as 

Em
c :$ 1* (2.11)

where I denotes the fourth-order unity tensor, Iijkl = 1/2 ( ik jl + il kj), with 
ij denoting the Kronecker delta. For a penny-shaped crack (Fig. 2.2) with 

unit normal n pointing in the x3 direction ( =0, Fig. 2.4), embedded in an 
isotropic matrix, the non-zero components of m

c$ read as [18, 27]. 
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and with vm as the Poisson's ratio of the matrix. The crack interaction ener-
gy W i.e. the change in potential energy because of the presence of the 
crack, is identical to Griffith's energy E released upon an increase of the 
crack radius a from zero to its current size, so that [compare (10)] 

E *

2
1

cV (2.13)

where Vc denotes the volume of the crack: 

caVc
2

3
4 (2.14)

In the following, we consider three specific remote uniform stress states 
(i) uniaxial tension acting orthogonal to the crack plane, (ii) uniaxial 
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Fig. 2.4. Definition of the unit vector n as a function of the angular coordinate 

compression acting parallel to the crack plane, and (iii) a triaxial stress 
state where compressive stresses act both orthogonal as well as parallel to 
the crack plane. 

For remote uniaxial tensile stress acting perpendicular to the crack plane 
(Fig. 2.1). 

0, 333333 gg (2.15)

E follows from specification of (2.13) for (2.14), (2.15), (2.11), (2.12), 
and (2.7) as 

E
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and the energy release rate follows from insertion of (2.16) into (2.6) as 
232

33
22

33 431
3

14G
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cO
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E
vva

E
va

m

mm

m

m
I (2.17)

In case of (c/a)<<1, the first term of (2.17) is significantly larger than the 
following terms, such that the energy released by a slightly opened crack 
(a >> c  0) can be approximated by that released by a sharp crack (c= 0). 

For remote uniaxial compressive stress acting parallel to the crack plane 
(Fig. 2.1). 

0, 111111 gg (2.18)

E follows from specification of (2.13) for (2.14), (2.18), (2.11), (2.12), 
and (2.7) as 
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and the energy release rate follows from insertion of (2.19) into (2.6) as 
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Hence, energy release requires at least slight opening of the crack; and 
no energy is released if a sharp crack (c = 0) propagates. 

For remote triaxial stress states in the form of compressive stress 11

acting parallel to the crack plane and confinement stress 33 acting both 
parallel and perpendicular to the crack plane (Fig. 2.1). 

0,0, 331113322331111 gggggg (2.21)

E follows from specification of (2.13) for (2.14), (2.21), (2.11), (2.12), 
and (2.7) as 
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and the energy release rate follows from insertion of (2.22) into (2.6) as 
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For very small confinements 33 << 11 , the first two terms on the right-
hand side in (2.23), containing as factors (c/ )0 = 1 and (c/ )1, respectively, 
are of the same magnitude; otherwise the confinement pressure 33 governs
the energy release rate in (2.23). 
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3 Representative Volume Elements Damaged by many 
Interacting Microcracks 

3.1 Representative Volume Element (RVE) and Material Phases [17, 
40, 31] 

To study the mechanical behavior of a deformable solid with the help of 
continuum (micro)mechanics, constitutive material elements must be labe-
led and their geometrical evolution must be followed [40, 31]. A 
representative volume element (RVE) of a micro-heterogeneous material 
must be homogeneous on a macroscopic scale [17], which implies that the 
characteristic length l of a RVE satisfies the condition 

l b (3.1)

where b denotes the characteristic length of heterogeneities within the 
RVE, see Figs. 5b, 6b, and 6c for RVEs containing penny-shaped micro-
cracks. Furthermore, in order to render differential calculus applicable in 
continuum mechanics, the condition 

PL, l (3.2)

Fig. 3.1. Separation of scales: (a) Structure containing a fracture process zone 
ahead of a macrocrack and (b) RVE of a microcracked (damaged) material with 
cracks of identical size and orientation, subjected to displacements  related to 
“homogeneous strains” E at the boundary 
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Fig. 3.2. (a) Microcracked sample tested in a uniaxial compression device,             
              (b) and (c) sections through a RVE of a microcracked (damaged) material   
              with equally-sized penny-shaped cracks, axisymmetrically distributed  
              with respect to the x1 axis 

must be satisfied, where L denotes the characteristic length of the structure 
containing the RVE, and P stands for the characteristic length of structure 
excitations such as, e.g., surface-loads or wave lengths (Figs. 3.1a and 
3.2a).

In general, the microstructure within each RVE is so complicated that it 
cannot be described in complete detail. Therefore, quasi-homogeneous 
sub-domains with known physical quantities (such as volume fractions and 
elastic properties) are reasonably chosen. They are called material phases. 
As regards microcracked (damaged) media, the introduction of two phases 
is most common in the open literature [5, 13, 23, 29, 30, 32]: (1) the sane 
(uncracked) matrix, and (2) the cracks in form of penny-shaped inhomoge-
neities.

For the sake of simplicity, we deal with RVEs comprising penny-shaped 
cracks with identical size. In case of uniaxial tension, we consider cracks 
of identical orientation where the crack normal n is aligned with the di-
rection of tensile loading. Notably, the problem of strain localization, as 
observed, e.g., in a uniaxial tension test on a brittle material, is beyond the 
scope of this paper. Moreover, we do not deal with macrocracking, and in 
particular not with the influence of many microcracks on the behavior of a 
macrocrack, such as done in [10, 20, 28, 8].We rather describe the 
behavior of a material volume element (Fig. 3.1b) inside the localization 
zone (narrow crack band [1]) observed in a uniaxial tension experiment or 
inside the fracture process zone ahead of a macrocrack (Fig. 3.1). In case 
of axial compression (with and without lateral confinement), we consider 
axisymmetrically distributed cracks with normals n orthogonal to the 
direction of the predominant axial compressive loading (Fig. 3.2). 
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3.2 Stress / Strain Averaging and Concentration [17, 39, 40, 41] 

For studying deformation states of the RVE, a position vector x is introdu-
ced. It labels, with resolution b, locations within the RVE and on its boun-
dary. Subjecting the boundary V of the RVE to displacements 

Vonxx (3.3)

(Hashin boundary condition [15]), implies 

mmcc
V

fdnfdVx
V

*

0
*

11 (3.4)

with dVV/1: as the volume average. mf and cf denote the volume 

fraction of the matrix and of the cracks, respectively. m and c[n( )] deno-
te the (average) strains of the matrix and of cracks with normals n defined 
by the angular coordinate  (Fig. 2.4), respectively. The integral over d  in 
(3.4) accounts for different crack orientations. Cracks of identical orienta-
tion, as observed under uniaxial tension (Fig. 3.1b), correspond to *  0. 
An axisymmetrical distribution of cracks, as observed under axial com-
pression with and without lateral confinement (Figs. 3.2b and 3.2c), refers 
to * = .

Linear-elastic behavior of the cracks and of the matrix is considered 

mmmccc CandC :: (3.5)

with Cc and Cm as the stiffness of the cracks and of the matrix, respective-
ly. Consequently, the superposition principle implies the existence of a 
linear relationship between macroscopic strains E and (“microscopic”) 
strains m and c ( ) [17]. 

:: mmcc andnn (3.6)

with Am as the fourth-order concentration tensors of the matrix and 
Ac[n( )] as the fourth-order concentration tensors of the cracks with nor-
mal n defined by . (3.4) and (3.6) imply that 

mmcc fdnf
*

0
*

1 (3.7)

Insertion of (3.6) into (3.5), averaging over the resulting expressions for 
c [n( )] and m according to 
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mmcc fdnf
*

0
*

1 (3.8)

(with  as the macroscopic stress tensor), and accounting for (3.7) yields 
the macroscopic constitutive law 

:homC (3.9)

with
*

0
*hom :1 dnCCfCC cmccm (3.10)

as the homogenized (macroscopic) elasticity tensor. We are left with the 
determination of the strain concentration tensors Ac[n( )], which are un-
known so far. However, they can be estimated from Eshelby's matrix-
inclusion problem. 

3.3 Stiffness Estimation on the Basis of Eshelby’s Matrix - Inclusion 
Problem [39, 40, 41] 

The concentration tensors Ac[n( )] can be estimated on the basis of matrix-
inclusion problems [39, 40, 41], such as the ones of Eshelby [9] or Laws 
[24, 25]. The stiffness of the sane matrix of the (microcracked) RVE, Cm,
is introduced as the stiffness of the matrix in the Eshelby problem (Figs. 
3.1b and 2.3). Following Zaoui's concentration procedure [39, 40, 41], the 
average strains of each phase, c[n( )] and m , are set equal to the strains in 
a single ellipsoidal inclusion (with stiffness Cc and Cm, respectively) em-
bedded in an infinite matrix of stiffness Cm, subjected to fictitious (uni-
form) strains E  at infinity [39, 40, 41]. Accordingly, the average strains of 
penny-shaped microcracks embedded in a RVE follow as [39, 13]. 

:::$ 11
mcm

m
cc CCCnn (3.11)

as can be shown from (2.8) and (2.9). In the same sense, the average 
strains of the matrix phase of the RVE are set equal to those prevailing in 
an inclusion of stiffness Cm, resulting in the trivial relation [39, 40, 41]. 

m (3.12)
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The strains E , prescribed at infinity to a matrix surrounding a single 
crack, must be related appropriately to the macroscopic strains E, imposed 
as uniform boundary condition onto the RVE. 

Assuming the case of a non-dilute concentration of cracks, their inter-
action needs to be considered. The simplest consideration of crack inter-
action consists of defining the fictitious remote strains E  such that the 
strain average rule (3.4) is satisfied [39, 40, 41], i.e. by insertion of (3.11) 
and (3.12) into (3.4). 

:::$1
1

0

11
*

*

dCCCnff mcm
m
ccm

(3.13)

Back-substitution of (3.12) into (3.10), while considering (3.6.1), yields 
the Mori-Tanaka estimate for the concentration tensors Ac[n( )]. 
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(3.14)

Finally, insertion of (3.14) into (3.10) yields the Mori-Tanaka stiffness 
estimate of a material with microcracks [2, 3, 4, 11] 
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(3.15)

Evidence for the suitability of considering crack interaction through 
(3.15) was gained in 2D, see [22]. There, it is shown that the 2D equivalent 
to the 3D Mori-Tanaka stiffness estimate used in this paper is quasi-identi-
cal to effective stiffnesses determined from a series of full structural com-
putations (computer experiments [22]) of solids with different crack confi-
gurations (Fig. 3.3). These numerical analyses precisely accounted for (i) 
the load-carrying behavior of the matrix between the cracks and, hence, for 
(ii) crack interaction. The self consistent scheme and the differential sche-
me (for the latter see also [16]), however, overestimate the stiffness 
decrease with increasing crack density parameter (Fig. 3.3). This is the 
motivation to restrict our considerations to the Mori-Tanaka scheme. 
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Fig. 3.3. Illustration of results of [22]: Young's modulus of a microcracked mate-
rial over Young's modulus of the uncracked (sane) matrix, as a function of the 
(2D) crack density parameter; for (a) randomly orientated cracks and (b) parallel 
cracks. The vertical bars refer to the scatter interval of computed effective stiffnes-
ses obtained from 15 numerical simulations with the same crack density, but with 
different, randomly generated configurations of interacting cracks. 

3.4 Open and Empty Penny-Shaped Cracks 

Specification of (3.15) for open and empty penny-shaped cracks, chara-
cterized by Cc = 0, yields 

1

0

1

*
)(

hom

*

$1 dnffCfC m
ccmmm

MT (3.16)

Based on (2.14), the crack volume fraction reads as 

caNNVf cc
2

3
4 (3.17)

with N denoting the number of cracks per unit volume. 
As regards microcracking under uniaxial tension, we deal with RVEs 

comprising penny-shaped cracks of identical orientation (Fig. 3.1b) with   
n = n ( =0). The corresponding stiffness estimate is obtained from specifi-
cation of (3.16) for the limit case * 0. When also considering (3.17) and 
fm = 1- fc, it reads as 

11)(
hom 0$11 nffCfC m

cccmc
MT (3.18)
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where the non-vanishing components of 0$ nm
c , which are function 

of the crack aspect ratio c/ , are given in (2.12). For the limit case of sharp 
open cracks, characterized by the crack aspect ratio tending to zero: 
c/ 0, the stiffness estimate (3.18) reduces to [6, 7] 

1
3)(

hom 3
4 NaCC m

MT (3.19)

Thereby, the tensor T, introduced by Dormieux and Kondo [6, 7], is de-
fined as 

1

0/
0$lim n

a
c m

cac
(3.20)

The non-vanishing components of T, exhibiting the symmetries Tijkl = 
Tjikl = Tijlk , read as [6, 7] 
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As regards microcracking under axial compression (with and without la-
teral confinement), we consider cracks with normals n, oriented perpendi-
cular to the direction of loading, i.e. n e1. The corresponding stiffness 
estimate is obtained from specification of (3.16) for *= . When also 
considering (3.17) and fm = 1- fc, this yields 

1

0

1)(
hom $111 dnffCfC m

cccmc
MT (3.22)

The secant-stiffness estimates of (3.19) and (3.22) depend on the actual 
degree of damage within the RVE, described by the crack volume fraction 
fc [see (3.22)] or Budiansky's crack density parameter Na3 [see (3.19)], 
respectively. For fc = const or Na3 = const, respectively, they describe the 
behavior of stationary (non-propagating) cracks. Estimation of the homo-
genized stiffness during microcrack propagation requires quantification of 
the evolution of fc or Na3, respectively, i.e. a damage evolution law is ne-
eded, which is derived subsequently. To end up with a fully micromecha-
nics-based damage model for brittle materials, we will consider onset of 
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cracking and crack propagation of every single microcrack embedded in a 
RVE containing many such cracks. 

3.5 Linking Macroscopic Stresses to Single-Crack Related Crack 
Propagation Criteria 

In the following, we describe a link between the single-crack related crack 
propagation criteria of Section 2 and the macroscopic stresses  imposed 
as uniform boundary conditions on a microcracked RVE. This link allows 
for investigation of the influence of the propagation of single cracks on the 
progressive reduction of the effective stiffness of a material comprising 
numerous propagating cracks. The key to this link is that both micro-
mechanics and fracture-mechanics rely on matrix-inclusion problems 
(Figs. 2.3 and 2.1) dealing with a single crack embedded in an infinite 
matrix subjected to remote uniform loading: Zaoui's concentration proce-
dure [39, 40, 41] provides a relation between the macroscopic strains E
(Fig. 3.1b) acting on the boundary of the RVE of a damaged material with 
numerous microcracks and the strains E  (Fig. 2.3) imposed (at infinity) 
on a matrix surrounding a single microcrack: 

:$1
1

0

1

*

*

dnff m
ccm

(3.23)

as follows from specification of (3.13) for Cc=0. Setting the fictitious 
strains E  equal to the ones caused by  in the fracture mechanics pro-
blem of Fig. 2.1, i.e. 

:1
mC (3.24)

establishes the aforementioned link between micromechanics and fracture- 
mechanics: (3.24), together with (3.23), allow for relating the remote 
stresses  “felt” by one single microcrack to the macroscopic strains E
prevailing on the RVE of the material with numerous microcracks. Addi-
tional consideration of (3.9) delivers the relation between  and the ma-
croscopic stresses  acting on the RVE, reading, with )(

homhom
MTCC from

(3.16), as 

cm ff 1
(3.25)
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Particularly, (3.25) provides the link between the RVE-related quantity 
 and the fracture-mechanics related quantity , playing the governing 

role in the criteria for single-crack propagation (2.2)-(2.5), see also (2.17), 
(2.20), and (2.23). 

4 Effective Stress-Strain Behavior of Microcracked Brittle Mate-
rials – Assessment of Griffith’s Energy Release Rate Criterion

While the stiffness estimates (3.19) and (3.22) define the effective stress-
strain behavior in the elastic regime, the link (3.25), together with single-
crack related propagation criteria (2.2)-(2.4) mark the limit of this regime, 
and give access to the effective stress-strain behavior during stable mode-
I-type propagation of the microcracks; i.e. during evolving damage of the 
material defined on the RVE. Thereby, they relate the macroscopic stress 
imposed on the RVE to the characteristics of the microcracks inside the 
RVE (i.e. , c, and N).

Comparison of model predictions with the behavior of brittle materials 
observed in corresponding experiments will allow for assessing the perfor-
mance of Griffith's energy release rate criterion in the framework of mode 
I type microcracking in brittle materials. 

4.1 Uniaxial Macroscopic Tension – Tensile Mode I Micro-cracking 

To study tensile microcracking, we consider a RVE (Fig. 3.1b) subjected 
to the macroscopic uniaxial tensile stress state 

0, 333333 ee (4.1)

In order to represent the crack patterns observed in corresponding expe-
riments [33, 34], we consider cracks of identical orientation with normals 
n (Fig. 2.2) pointing in the direction of loading (n = e3 in Fig. 3.1b). Consi-
deration of sharp cracks (c = 0), as relevant approximation for slightly 
opened cracks under tensile mode-I-type loading (see (2.17) and discus-
sion below), implies fc = 0 [see (3.17)], and, hence,  =  [see (3.25)]. 
Therefore, the expression of GI for every single of the many microcracks
embedded in the considered RVE follows from replacing 33 by 33 in
(2.17), i.e. 
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m

m
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va 22
33 14G (4.2)

The relation (4.2), together with the crack propagation criteria (2.2)-
(2.4), allows for testing whether or not macroscopic loading 33 on the 
RVE of the microcracked material leads to propagation of the individual 
microcracks in the material. If the criterion (2.2) is satisfied: 

c
m

m
I E

va G14G
22

33 (4.3)

the microcracks do not propagate, i.e.  = ini = const., where ini denotes 
the initial radius of the penny-shaped cracks. The damaged material beha-
ves linear elastically, according to the specification of (3.9) for (3.19) and 
(4.1)

33

1
23

33 1
3

161 EvNaE mm
(4.4)

If, however, (2.3) and (2.4) are satisfied: 

c
m

m
I E

va G14G
22

33 (4.5)

the cracks propagate such that the crack radius increases (d  > 0) while the 
equality (4.5) remains satisfied. This renders the uniaxial macroscopic 
stress 33 as a function of the crack radius .

233 14 m

mc

va
EGa (4.6)

When assuming that N = const. during crack propagation, the corre-
sponding strain E33 = E33( ) follows from substitution of (4.6) into the 
stress-strain relation (4.4), 

23
233 1

3
161

14 m
mm

c vNa
vaE

GaE (4.7)

(4.6) and (4.7) describe stress-strain relations in parameter form, with the 
crack radius a as the parameter, see descending crack propagation paths in 
Fig. 4.1a and 4.2b. 
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Fig. 4.1. Effective stress-strain behavior in uniaxial tension of a microcracked brit-
tle material (Fig. 3.1b), predicted by combined fracture-micromechanics model on 
the basis of material constants of Silurian sedimentary rock (Table 4.1): (a) effect 
of initial crack radius ini and (b) effect of number of cracks per unit volume, N

Table 4.1. Material constants, uniaxial tensile strength, and uniaxial compressive 
strength of Silurian sedimentary rock [14] 

][GPaEm ][mv ][ mMPaKIc
2/mJGc ][MPatu ][MPacu

49.4 0.24 1.74 57.76 13.6 158 

(4.6) and (4.7) propose that materials with the same number of differently 
sized microcracks exhibit identical softening paths in the 33-E33 space 
(Fig. 4.1a). However, the peak stresses (theoretical tensile strengths) of 
such materials decrease with increasing initial crack radius ini (Fig. 4.1a). 
On the other hand, materials with different numbers of equally sized mi-
crocracks exhibit identical peak stresses (Fig. 4.1b). Related softening 
paths are, however, the steeper the fewer cracks are contained in the RVE 
(Fig. 4.1b). Summarizing these results, effective strain-softening under 
uniaxial tension can be, at least qualitatively, predicted by a combined 
fracture micromechanics model based on Griffith's energy release rate 
criterion.

4.2 Uniaxial Macroscopic Compression – Axial Splitting 

To study axial splitting, we consider a RVE subjected to the macroscopic 
uniaxial compressive stress state 



266   Bernhard Pichler, Christian Hellmich and Luc Dormieux                                                      

0, 111111 ee (4.8)

In order to represent the crack patterns observed in corresponding expe-
riments [35, 36, 37], we consider cracks with normals n (Fig. 2.2) perpen-
dicular to the direction of loading (n( ) e1 [0, ] in Fig. 2.4), i.e. 
we introduce microcracks with orientations axisymmetrically distributed 
with respect to the axis of loading, the x1 axis in Fig. 3.2. Opposed to the 
situation in Subsection 4.1, consideration of the crack opening (c  0) is 
mandatory for appropriate determination of the energy release (see (2.20) 
and discussion below), even if the crack is only slightly opened. Accordin-
gly, the released energy E for every single of many axisymmetrically 
distributed microcracks embedded in the considered RVE follows from 
insertion of (3.25), relating 11 to cf1/11 , into (2.19), yielding 
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mc

(4.9)

Calculation of GI requires derivation of E with respect to  [see (2.6)]. 
Thereby, the dependence of fc on  [see (3.17)] must be taken into account, 
which yields 
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E
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m
I (4.10)

Since c/  << 1, quadratic and higher-order terms in c/  may be neglect-
ed, rendering GI as 

m
I E

c
3

2G
2
11 (4.11)

The relation (4.11), together with the crack propagation criteria (2.2)-
(2.4), allows for testing whether or not macroscopic loading 11 on the 
RVE of the microcracked material leads to propagation of the individual 
microcracks in the material. If the criterion (2.2) is satisfied: 

c
m

I E
c G

3
2G

2
11 (4.12)

the cracks do not propagate, i.e.  = ini = const., and the damaged material 
behaves linear elastically, according to the specification of (3.9) for (3.22) 
and (4.8): 
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(4.13)

If, however, (2.3) and (2.4) are satisfied: 

c
m

I E
c G

3
2G

2
11 (4.14)

the cracks propagate such that the crack radius increases (d  > 0) while the 
equality (4.14) remains satisfied. Since (4.14) does not depend on , it 
follows that stable crack propagation (increase of ) requires a constant 
macroscopic stress: 11 = const. (Fig. 4.2). This is a remarkable difference 
to macroscopic uniaxial tension where stable microcrack propagation re-
quires a decreasing loading of the RVE (Figs. 4.1a and 4.1b). (4.14) deli-
vers the macroscopic stress 11 associated to microcrack propagation as 

.
2

3
11 const

c
EGa mc (4.15)

When assuming that N = const during crack propagation, the correspond-
ding strain E11 = E11( ) follows from substitution of (4.15) into the stress-
strain relation (4.13), 

3
41

2
3 2

11
cNa

c
EGaE mc (4.16)

(4.15) and (4.16) describe stress-strain relations in parameter form, with 
the crack radius  as the parameter. Related crack propagation paths yield 
a stress plateau in the 11- E11 space (Fig. 4.2). Thereby, the absolute value 
of the bearable compressive stress increases with decreasing crack half 
opening width (Fig. 4.2). However, Griffith's energy release rate criterion 
does not predict strain-softening under uniaxial compression. In this line, 
the experimentally observed strain-softening behavior [36] would have to 
be caused by failure effects after the sample has split up into many slender 
“columns”, i.e. by buckling and bending and/or tilting and sliding of these 
columns. Experimental observations of [38] foster this argumentation: The 
characteristic stress strain curve referring to unconfined axial compression 
shows, before the stress drop beyond the peak load, a region of almost 
vanishing inclination of the stress strain curve, i.e. a quasi-plateau, such as 
predicted by our model. In this region of the stress strain curve, a large 
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number of isolated fractures are formed, and fracturing clearly predomina-
tes along the direction of loading [38]. 

Fig. 4.2. Effective stress-strain behavior in uniaxial compression of a micro-
cracked brittle material (Figs. 3.2b and 3.2c), predicted by combined fracture-
micromechanics model on the basis of material constants of Silurian sedimentary 
rock (Table 4.1): effect of initial crack half opening width cini

4.3 Determination of the Initial Microcrack Radius and of the Initial 
Microcrack Half-Opening from the Uniaxial Tensile Strength and the 
Uniaxial Compressive Strength 

By example of brittle Silurian sedimentary rock [14] (Table 4.1), experi-
mentally determined uniaxial strength values in tension and compression, 

tu and cu, will be used for identification of the (initial) geometric pro-
perties of the microcracks: The initial crack radius aini follows from setting  

33 tu and in (4.5) and solving the resulting expression for a, yielding 

mm
v

E
a

mtu

cm
ini 86.12

14
G

22
(4.17)

according to the material constants listed in Table 4.1. The initial crack 
half-opening cini follows from setting the stress 11 cu in (4.14) and sol-
ving the resulting expression for c, yielding 

mm
E

c
cu

cm
ini 17.0

2
G3
2

(4.18)
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according to the material constants listed in Table 4.1. Remarkably, (4.17) 
and (4.18) imply that the ratio between the uniaxial compressive strength 
and the uniaxial tensile strength depends on the Poisson's ratio of the ma-
trix and on the initial crack aspect ratio cini/aini (Fig. 4.3). 

1216
ini

inim

tu

cu

a
cv (4.19)

This is a key result of the combined fracture-micromechanics approach 
of Subsection 3.5. According to (4.17) and (4.18), the Silurian sedimentary 
rock, described in [14], is characterized by an initial microcrack aspect ra-
tio equal to cini= ini = 1/75. 

Fig. 4.3. Ratio between the uniaxial compressive strength cu and the uniaxial ten-
sile strength tu as a function of the crack aspect ratio c/  and Poisson's ratio of the 
matrix, vm, predicted by the combined fracture-micromechanics approach 

cini = 0.17mm may appear as quite large, however, one should take into ac-
count that cini is the half opening of an equivalent penny-shaped crack.
Real crack surfaces in rocks are not plane but have some kind of micro-
roughness (Fig. 4.4), and the initial opening of real cracks might be well 
below 0.17mm. If such a crack is modeled by an equivalent (ideal) penny-
shaped microcrack, the initial opening of the latter accounts for both the 
microroughness and the initial opening of the real crack (Fig. 4.4). There-
fore, modeled crack openings are always larger than the real ones. 
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Fig. 4.4. Representation of (a) a realistic crack shape with microroughness by (b) 
an equivalent elliptic crack 

4.4 Confined Macroscopic Compression – Axial Splitting 

To study axial splitting under confined compression, we consider a RVE 
subjected to the macroscopic triaxial compressive stress state 

0,0, 33113322331111 eeeeee (4.20)

where 11 is the predominant axial compressive stress and 33 is the lateral 
confinement pressure. In order to represent the crack patterns observed in 
corresponding experiments [35, 36, 37], we again consider cracks with axi-
symmetric orientation and non-vanishing crack half-opening widths, c 0,
as in Subsection 4.2 (Fig. 3.2). The released energy E for every single of 
many axisymmetrically distributed microcracks embedded in the conside-
red RVE follows from insertion of (3.25), relating 11 to cf1/11 and

cf1/33 , into (2.22), yielding 
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Calculation of GI requires derivation of E with respect to a [see (2.6)]. 
Thereby, the dependence of fc on a [see (3.17)] must be taken into account: 
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In order to assess whether or not Griffith's energy release rate criterion 
has the potential to satisfactorily predict material damage under confined 
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compression, it is useful to consider onset of microcracking, by inserting 
GI from (4.22) into the condition (2.3), yielding 
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when having neglected the higher-order terms O(c/ )2 in (4.22). Solving 
(4.23) for 11 delivers the predominant axial compressive stress at onset of 
microcracking, denoted by cr

11 , as a function of the lateral confinement 
pressure 33.

2
1

2
33

2
1

2
33

11 2
23116

2
3

a
cOvv

a
cv

a
EG mmmmccr (4.24)

Evaluation of (4.24) for the material parameters of Table 4.1 and for ini
and cini according to (4.17) and (4.18), proposes that an increase of lateral 
confinement pressure from zero up to 1% of cu increases the predominant 
axial compressive stress at onset of axial splitting, but only by less than 
1% (Fig. 4.5). Further increase of the confinement pressure is predicted to 
decrease the predominant axial compressive stress at onset of axial split-
ting, which contradicts experimental findings. 

Fig. 4.5. Predominant axial compressive stress at onset of microcracking as a fun-
ction of the lateral confinement pressure, predicted by combined fracture-micro-
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mechanics model on the basis of material constants of Silurian sedimentary rock 
(Table 4.1) 

This contradiction is due to the fact that we do not account for the sign 
of the microstress component zz in the vicinity of the crack edge (Fig. 
2.1). In case of uniaxial compression parallel to the crack plane, these 
stresses are tensile. If confinement stresses orthogonal to the crack plane 
are additionally applied, the initially tensile stresses zz become compressi-
ve, already at very small confinement pressures. Consequently, crack pro-
pagation becomes impossible and (4.23) as well as (4.24) are no longer 
valid. Hence, the presented approach proposes that, under such confine-
ments, brittle failure is not associated with mode I propagation of cracks in 
the direction of predominant compressive axial loading, but with propaga-
tion of closed, inclined cracks. This shear mode type of crack propagation, 
however, is not the topic of the present paper. Summarizing these results, 
Griffith's crack propagation criterion based on energy release rate is seen 
to be applicable also to compressive stress states, but it is mandatory to 
account for the sign of the normal stresses in the vicinity of the crack edge, 
acting in the crack normal direction. 

5 Conclusions

The aim of this paper was to assess the potentials and the limitations of 
Griffith's energy release rate criterion to predict effective stress-strain 
behavior of brittle materials damaged by microcracks propagating in 
cracking mode I. For this purpose, Griffith's energy release rate criterion, 
related to a single penny-shaped crack embedded in an infinite matrix 
subjected to remote uniform stresses, was combined with stiffness estima-
tes for RVEs of damaged (microcracked) materials taken from continuum 
micromechanics. As regards uniaxial tension, this combination allows for 
modeling macroscopic strain-softening as a result of propagation of 
microcracks, i.e. as a microstructural effect. Hence, Griffith's energy 
release rate criterion has the potential to predict, at least qualitatively, the 
behavior of microcracked materials under uniaxial tension. Thereby, the 
microcracks may be modeled as sharp cracks (as commonly introduced in 
fracture mechanics), since sharp cracks release (during tensile crack 
propagation) an amount of energy similar to that released by slightly 
opened cracks. As for uniaxial compression, however, the non-vanishing 
opening width of the microcracks must be taken into account, even though 
it is commonly by orders of magnitude smaller than the in-plane crack 
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diameter. There, the described combination of fracture and micromecha-
nics proposes that macroscopic axial splitting under uniaxial compression 
is characterized by a constant stress level. Remarkably, the proposed 
model reveals that the ratio between the uniaxial tensile strength and the 
uniaxial compressive strength is a function of the crack aspect ratio, i.e. the 
ratio between the crack half-opening width and the crack radius. 
Therefore, the combined fracture-micromechanics approach accounts for 
the basic strength properties of brittle materials simply by introducing 
geometric properties of the microcracks within the RVE. However, 
Griffith's energy release rate criterion does not have the potential to predict 
effective strain-softening under uniaxial compression. The latter would 
have to be explain-ned by buckling or tilting of slender columns after 
disintegration of the material. As a further limitation, Griffith's energy 
release rate criterion alone was found to be insufficient for prediction of 
axial splitting caused by confined compression: A complementary stress 
criterion accounting for the sign of the microstresses in the vicinity of the 
crack edge would be necessary. 
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Summary

In this paper the essential mechanical behavior of rockfill materials is 
modeled using a hypoplastic continuum approach. Critical states are inclu-
ded in the model for large shearing. With respect to a pressure dependent 
relative density the model can capture the essential mechanical properties 
of initially loose and dense granular materials with a single set of 
constants. While the calibration and application of hypoplastic models has 
already been extensively investigated for fine-grained materials like sand 
and powders, the present application to weathered rockfill materials is a 
first attempt to describe coarse-grained materials with a low and decree-
sing grain hardness. Particular attention is paid to modeling the influence 
of the initial density, the pressure and the moisture content of weathered 
broken rock on the incremental stiffness. An increase of the compressibi-
lity and a decrease of the limit void ratios with an increase of the moisture 
content of the grains is modeled in a simplified manner using only a 
moisture dependent granular hardness. The comparison of the numerical 
simulations of isotropic compression tests and triaxial compression test 
with experiments shows that the model captures the essential properties of 
weathered rockfill materials for both dry and water saturated grains. The 
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possibility of spontaneous shear band bifurcation under plane strain 
compression is analyzed and discussed for different initial densities. 

1 Introduction 

The mechanical behavior of rockfill materials is mainly determined by the 
grain hardness, the grain shape, the grain size distribution, the packing 
density, the orientation of contact planes, the stress state and the loading 
history. Stiffness and shear strength are influenced by the pressure level, 
the packing density and the rate of deformation and are therefore not 
material constants, e.g. [12]. The mechanical behavior of broken rock is 
different for unweathered or weathered grains. The degree of geological 
disintegration, i.e. by chemical weathering or by the intensity and the 
orientation of micro-cracks, has a significant influence on the granular 
hardness and as a consequence on the evolution of grain abrasion, grain 
breakage and grain size distribution. Depending on the state of weathering 
the propagation of micro-cracks due to water-induced stress corrosion can 
be strongly influenced by the moisture content of the grains [24]. Under 
higher stress levels the disintegration of grains can be accelerated by 
moisture, which leads to a reduction of the resistance to compaction and 
shearing [19, 20, 23]. 

The focus of the present paper is on modeling the mechanical behavior 
of broken rock materials using a hypoplastic continuum approach. In 
hypoplasticity the evolution equation for the stress tensor is formulated 
with a nonlinear isotropic tensor-valued function depending on the current 
state quantities and the rate of deformation. Unlike the classical concept of 
elasto-plasticity no decomposition of the deformation into elastic and 
plastic parts is needed in hypoplasticity [13, 21]. In order to model 
inelastic material properties the rate of deformation tensor is incorporated 
in the constitutive equation in a nonlinear formulation. With a pressure 
dependent density factor the influence of pressure and density on the 
incremental stiffness, the peak friction angle and the dilatancy can be 
modeled for an initially loose or dense state using a single set of constants 
[2, 15, 33, 34]. Limit states or so-called critical states are included in the 
constitutive equation for a simultaneous vanishing of the stress rate and 
volume strain rate. Originally hypoplastic material models were developed 
and calibrated for dry and cohesionless granular materials like sand. A 
comprehensive historical review can be found for instance in Wu and 
Kolymbas [37], Bauer and Herle [6]. 
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While in the hypoplastic model by Gudehus [15] and Bauer [2] for 
granular materials with unweathered grains the so-called granular hardness 
is assumed to be constant, an extension of this version with a granular 
hardness depending on the moisture content is discussed for applications to 
weathered broken rock materials in the present paper.  Herein the granular 
hardness is related to the grain assembly in the sense of a continuum 
description and does not mean the hardness of an individual grain. It is 
demonstrated that with the moisture content as an additional state variable 
the extended model captures the essential properties of weathered rockfill 
materials with a single set of constants for both dry and moisture grains. 
The model is calibrated for a weathered broken granite and the results 
obtained from the numerical simulation of element tests are compared with 
experiments. Finally the possibility of a spontaneous shear band 
bifurcation under plane strain compression is analyzed for different initial 
densities and for dry and wet conditions.  

Throughout the paper compression stresses and strains are defined as 
negative. Bold lower case, bold upper case and calligraphic letters denote 
vectors, tensors of second order and of fourth order, respectively. In parti-
cular, the identity tensor of second order is denoted by I  and the identity 
tensor of fourth order is denoted by . For vector and tensor components 
indices notation with respect to a rectangular Cartesian basis ie ( 3,2,1i )
is used. Operations and symbols are defined as: iibaab , ijijbA eAb ,

jijiba eeba , jiij eeI , lkjijlik eeeeI ,

lkjiklij BA eeeeBA , jikjik BA eeAB , iiAAI : , and 

jiklijkl BA eeB:A . Herein ik denotes the Kronecker delta and the 
summation convention over repeated indices is employed. A superimposed 
dot indicates a time derivatives, i.e. tdd AA , and the symbol A
denotes the jump of the field quantity A  at the discontinuity. 

2 Granular Hardness and Pressure Dependent Limit Void 
Ratios

It is experimentally evident that for weathered rockfill materials the com-
pressibility is higher for a wet than for a dry material as illustrated in Fig. 
(2.1). For a pre-compressed material under dry conditions (path A-B) a 
following wetting leads to an additional settlement along the path B-C. For 
a continuing loading the load-displacement curve (path C-D) follows the 
curve A-D obtained for an initially wet material, i.e. the memory of the 



E. Bauer, K. Kast, S. F. Tantono and W. Cen 280 

material of the pre-compaction under dry conditions is swept out if the 
load-displacement curve obtained for the wet material (path A-D) starts 
from the same initial density. In this context it is important to note that for 
different initial densities the compression curves are different for both dry 
and wet states of the material [20]. 

Fig. 2.1. Compression behavior of weathered broken rock in dry and wet states

In the following the compression behavior is first discussed for a dry 
granular material and modeled using a relation between the void ratio e
and the mean pressure 3: TIp  where T  denotes the Cauchy stress 
tensor. The evaluation of numerous tests has shown that the compression 
behavior of various cohesionless materials can be approximated with the 
following exponential function [1]:  

n

sh
pee 3exp0 . (2.1)

Herein the constant 0e  denotes the void ratio for 0p , sh  has the 
dimension of stress and n  is a dimensionless constant. The quantity of sh
is called granular hardness [15] which is related to the grain aggregate 
under isotropic compression and different from the hardness of an 
individual grain. Experimental investigations show that the quantity of sh
reflects the isotropic pressure where grain crushing becomes dominant. 
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More precisely, sh  represents the isotropic pressure p3 at which the 
compression curve in a semi-logarithmic representation shows the point of 
inflection while the exponent n  is related to the inclination of the 
corresponding tangent (Figure 2.2a). For high pressures the void ratio in 
Eq. (2.1) tends to zero, which can be explained by grain plastification and 
grain crushing. Relation (2.1) is consistent within a very wide pressure 
range with the exception of states p , which are characterized by a 
phase transition of the material.  

Fig. 2.2. (a) Isotropic compression relation (1) in a semi-logarithmic representa-
tion, (b) Pressure dependence of the maximum void ratio ie , minimum void ratio 

de  and critical void ratio ce

For the evolution of the current void ratio e  the assumption is made that 
the volume change of the solid material can be neglected. To this end, the 
rate of the void ratio can be directly derived from the mass balance, which 
yields: 

.:1 DIe e (2.2)

Herein the rate of deformation D  is defined as the symmetric part of the 
velocity gradient of the grain skeleton. It can be noted that relation (2) is 
not restricted to granular materials with permanent rigid grains because the 
requirement of a constant solid volume is also fulfilled for a volume 
constant deformation of individual grains, grain crushing and abrasion. 
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Under the same pressure cohesionless granular materials can show 
differrent packing densities of the grain assembly so that the void ratio can 
range between a maximum void ratio ie  and a minimum void ratio de . In 
order to represent the range of possible void ratios for a given granular 
material it is convenient to consider the so-called phase diagram of grain 
skeletons [16] as sketched in Figure (2.2b). Herein the limit void ratios ie
and de  are pressure dependent and they decrease with an increase of the 
mean pressure p . The upper bound, ie , can be related to an isotropic com-
pression starting from the loosest possible skeleton with grain contacts, i.e. 
there exists no homogeneous deformation which goes beyond iee .
Values of de  will be achieved by cyclic shearing with very low amplitudes 
and nearly fixed mean pressure. By contrast, large monotonic shearing 
leads to a stationary state, which is characterized by a constant stress and 
constant void ratio. The void ratio in such a limit state, which is called 
critical void ratio, ce , is not a material constant. Experimental observations 
with sand specimens (e.g. [8]) indicate that the critical void ratio decreases 
with the pressure p . It was suggested by Gudehus [15] to postulate that 
the maximum void ratio ie , the minimum void ratio de  and the critical 
void ratio ce  decrease with the mean pressure according to  

n

sco

c

do

d

io

i

h
p

e
e

e
e

e
e 3exp , (2.3)

where ioe , doe , and coe  are the corresponding values for 0p as shown 
in Figure (2.2b).  

In order to model the influence of disintegration of a stressed rockfill by 
a reaction with water a degradation of the granular hardness with an 
increase of the moisture content  of the solid material is assumed in the 
following. To this end the constant granular hardness sh  in Eq.(2.3) is 
replaced by the moisture dependent quantity sh , i.e. [7] 

sos hh . (2.4)

Herein soh  is the value of the granular hardness obtained for the dry 
material, i.e. soh  is related to 1 , and 1  denotes the 
disintegration factor depending on the moisture content  of the grain 
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material. A lower value of sh  means a higher compressibility of the 
material as illustrated in Fig. (2.3a). 

Fig. 2.3. Influence of the moisture content (solid curves: dry state, dashed curve: 
wet state) on (a) compression behavior, (b) limit void ratios 

A specific representation of the scalar function  can be obtained by 
curve fitting experimental data. Due to the lack of experimental data for 
states with intermediary moisture contents, only a distinction between the 
granular hardness in the dry and the water-saturated state will be 
considered in the present paper. Then the disintegration factor  can be 
obtained by comparing the compression behavior for the dry material with 
the water saturated material using the compression relation (2.3) for the 
maximum void ratio ie , i.e. 1 for the dry state and the value 
obtained for the water-saturated state must be 1 .  It is obvious that 
with a degradation of the granular hardness according to relation (2.4) the 
pressure dependent limit void ratios and the critical void ratio obtained 
from relation (2.3) are lower for 1  as illustrated in Fig. (2.3b). 
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3 Hypoplastic Model 

3.1 Inelastic Material Properties 

In hypoplasticity inelastic material properties are modeled with a constitu-
tive equation of the rate type where the objective stress rate T is expressed 
by an isotropic tensor-valued function consisting of the sum of the tensor 
function D:A , which is linear in the rate of deformation D , and the tensor 
function DDB : , which is nonlinear in D , i.e. 

DDBDT ::A (3.1)

Herein A  and B are tensor-valued functions of the fourth order and 
second order, respectively. In the simplest case A  and B  only depend on 
the current Cauchy stress tensor T , i.e.  )(TAA  and )(TBB , but for 
a refined modeling of the material behavior it may also depend on 
additional state quantities as outlined in the following sections. The 
constitutive equation (3.1) is positively homogeneous of the first order in 
D , thus the material behavior to be described is rate independent. With the 
nonlinearity in D  an inelastic material behavior is modeled in 
hypoplasticity with a single constitutive equation and there is no need to 
distinguish between elastic and plastic parts of the deformation explicitly 
[21]. Limit states are included in the constitutive equation for states in 
which 0D  and 0T . In particular for a vanishing stress rate T it 
follows from the constitutive equation (3.1) that T  and D  in the limit 
state satisfy the relation 

0:: DDBDA . (3.2)

The normalized rate of deformation, D̂ , can be obtained from Eq.(3.2) 
to:

B
DD

DD :
:

ˆ 1A . (3.3)

Inserting Eq.(3.3) into the identity 1ˆ:ˆ DD  leads to the stress limit 
condition [10]: 

01):(:):( BB 11 AA (3.4)

The set of all stresses which fulfill this condition can be represented by a 
surface in the stress space which is called limit stress surface, e.g. [35]. It 
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is worth noting that Eq.(3.4) first fulfills only the requirement for a 
vanishing stress rate and it is only related to critical stress states if the 
second requirement for a vanishing volume strain rate is also fulfilled, i.e. 

0):(:ˆ: BIDI 1A . (3.5)

In order to model critical states for any deviatoric stress direction Eqs. 
(3.4) and (3.5) are necessary conditions for specific representations of A
and B  as firstly discussed by Bauer [1] and von Wolffersdorff [30]. 
Furthermore in a stationary state the right-hand side of Eq. (3.3) must be 
homogeneous of degree zero in T , otherwise the critical stress ratio would 
not be invariant with regard to the stress level. 

3.2 Density, Pressure and Moisture Dependent Properties 

In order to take into account the influence of the density, the pressure and 
the disintegration of the granular hardness on the incremental stiffness the 
state quantities of the tensor functions A  and B  of the constitutive Eq. 
(3.1) are extended with the current void ratio e  and the moisture 
dependent granular hardness sh , i.e. )( Tp,,he, sAA  and 

),,,( TBB phe s . Herein the mean pressure is defined as 3: TIp .
To specify these tensor functions a factorized representation is used in a 
way similar to those proposed by Gudehus [15] and Bauer [2]. In particular 
with )ˆ(),,( TLA phef ss   and )ˆ(),,(),,( TNB phefphef sdss   the 
extended constitutive equation can be written as: 

DDTNDTT :)ˆ(),,(:)ˆ(),,( phefphef sdss L (3.6)

In Eq. (10) the scalar factors sf  and df  are called stiffness factor and 
density factor, respectively. The fourth order tensor )ˆ(TL  and the second 
order tensor )ˆ(TN  are isotropic tensor-valued functions of the normalized 
stress tensor ):(ˆ TITT  and the corresponding deviatoric part 

3ˆˆ * ITT . The requirements (3.4) and (3.5) for modeling critical states 
are satisfied for the following specific functions [5]: 

TTT ˆˆˆ)ˆ( 2IL a , (3.7)

*2 ˆˆˆ)ˆ( TTTN a . (3.8)
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b
i

s f
e
e

f
TT ˆ:ˆ

1 , (3.9)

dc

d
d ee

ee
f . (3.10)

Herein â  is related to the stress limit condition in critical states as 
outlined later on and 5.0  and 1 are constitutive constants. In 
relations (3.9) and (3.10) the current void ratio e  is related to the 
maximum void ratio ie , the minimum void ratio de  and the critical void 
ratio ce . According to the relations (2.3) and (2.4) the quantities ie , de  and 

ce  decrease with the mean pressure p  and they are lower for a smaller 
granular hardness sh  (Fig. 2.3b). Factor sf  models the influence of the 
pressure, density and granular hardness on the incremental stiffness while 
factor df  triggers the dilatancy behavior and the peak friction angle. 
Under shearing a stress peak is defined for a vanishing stress rate and for 

1df . A closer inspection shows that for an initially dense material, i.e. 

cee  and 1df , the part DTN )ˆ(),,( phef sd  in (3.6) decreases and a 
higher peak friction angle is obtained. As a consequence of dilatancy the 
void ratio increases after the peak and it tends towards the critical void 
ratio ce . Shearing of an initially loose material, i.e. cee  and 
consequently 1df , leads a densification towards the critical void ratio, 
but no stress peak appears. In a critical state, cee , the value of the 
density factor 1df  and it is independent of the initial void ratio, the 
pressure level and the granular hardness. It can be proved that for 
unlimited monotonic shearing a stationary stress state cT  and void ratio ce
is reached asymptotically both for an initially dense and for an initially 
loose state [1]. By substituting the conditions for critical states, i.e. 

0cT , 0: cDIec   and 1df , into the constitutive equation (3.6) 
the following relation for the stress limit condition in critical states is 
obtained [1,5]: 

0ˆ:ˆˆ *
c

*
c TTca . (3.11)
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Fig. 3.1. (a) Critical stress surface in the space of principal stress component, (b) 
contour of the stress limit condition in the -plane 

By substituting the identity 3ˆˆ ITT*
c  into (3.11) it is obvious that in 

the space of principal stress components the stress limit condition 
representts a conical surface with its apex at the origin of the stress space 
(Fig. 3.1a). The scalar câ  in (3.11) can be interpreted as the radius of the 
trace of the critical stress surface in the -plane, i.e. câ  is equal to the 
Euclidean norm of the normalized stress deviator (Fig. 3.1b). Apparently 
the size and shape of the critical stress surface is fully determined by factor 
â  of the constitutive equation. By choosing suitable representations for â
the reproduction of various conical limit surfaces is possible without loss 
of the general form of the constitutive equation (3.6) as outlined in detail 
by Bauer [5]. In the present paper the stress limit condition given by 
Matsuoka and Nakai [22] is considered, which can be modeled by factor â
as:

** ˆ:ˆ
sin3

sinˆ TTba ,

with
3cosˆ:ˆ231

3cosˆ:ˆ23ˆ:ˆ338
21**

23****

TT

TTTT
b .

(3.12)

Herein  denotes the critical friction angle and  is the Lode-angle, 
which is defined as: 
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.
]ˆ:[

ˆ:63cos
232*

3*

TI

TI
(3.13)

Since â  is embedded in the constitutive equation (3.6) it is always 
effective and only for cases where ** ˆˆ

cTT  the value of â  obtained from 
Eq. (3.12) is equal to the limit condition given by Matsuoka and Nakai, i.e. 

**** ˆ:ˆˆ)ˆˆ(ˆ cccc aa TTTT .
In order to link Eq. (3.6) with Eq.(2.1) it was postulated by Gudehus [15] 

that the response of the constitutive equation (3.6) for an isotropic 
compression starting from the loosest state, i.e. ioee , must coincide with 
the proposed compression law (2.1). This condition permits the direct 
determination of factor bf  in (3.9), yielding: 

n

si

i

i

s
b h

p
e

e
hn

h
f

1
31

,

with
doco

doio
i ee

ee
h

sin3
sin221

sin3
sin8

2

2

.

(3.14)

It follows from relation (3.14) that the stiffness factor sf  in (3.9) is 
proportional to the moisture dependent granular hardness sh . Therefore 
the moisture content of the solid material is not only taken into account for 
the isotropic compression behavior and the pressure dependent limit void 
ratios in relation (2.3), it generally influences the incremental stiffness 
modeled by the constitutive equation (3.6).  

The present hypoplastic model for cohesionless granular materials 
includes 9 constants which can be determined from simple index and 
element tests [2, 18]. In particular soh  and n  can be determined from the 
compression behavior of the dry material,  depends on the moisture con-
tent . The quantities  and coe  are related to the critical state in triaxial 
compression,  and  depend on the peak friction angle, and ioe  and doe
are the limit void ratios for a nearly stress free state. Since the current void 
ratio e  is related to the pressure dependent limit void ratios by the 
functions sf  and df , the constitutive constants are not restricted to a 
certain initial density. In the present paper the calibration of the constants 
is based on the experiments carried out by Kast [20] with weathered 
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broken granite. The following values were obtained: 042 ,
MPa75soh , 1  for dry states and 34.0  for the water saturated 

state of the solid material, 6.0n ,  85.0ioe , 39.0coe , 2.0doe ,
125.0  and 05.1 . It should be noted that in the present model the 

critical friction angle  is assumed to be a constant because the experi-
ments used for the present calibration did not show a clear influence of the 
moisture content on the critical friction angle.  

3.3 Comparison of Numerical Simulations with Experiments 

The results obtained from the numerical simulation of homogeneous 
element tests are compared with experiments carried out by Kast [20] for 
isotropic compression (Fig. 3.2) and triaxial compression (Fig. 3.3 and Fig. 
3.4). Under isotropic compression starting from an initial void ratio of 

46.00e  the densification is significantly higher for the water-saturated 
state of the solid material (Fig. 3.2b) than for the dry state (Fig. 3.2a). 

Fig. 3.2. Isotropic compression starting from an initial void ratio of 
46.00e : (a) dry state ( 1 ), (b) saturated state ( 34.0 )

For a mean pressure of MPa8.0p  the corresponding void ratios are 
418.0e  for the dry material and 378.0e  for the saturated solid 

material. These are the initial states for the triaxial compression under a 



E. Bauer, K. Kast, S. F. Tantono and W. Cen 290 

constant mean pressure of MPa8.0p as shown in Fig.(3.3). As the 
initial void ratio is higher than the corresponding pressure dependent 
critical one, i.e. for 34.0MPa8.0 cep  for the dry material and 

31.0ce  for the saturated material, the triaxial compression leads to a 
further densification for both the dry material and the saturated material. 

Fig. 3.3. Triaxial compression under constant mean pressure starting from an 
initial void ratio of: (a) 418.00e  for the dry state ( 1 ), (b) 387.00e  for 
the saturated state ( 34.0 )

The increase of the mobilized friction angle mob  with the vertical strain 

22  is more pronounced for the dry material (Fig. 3.3a) than for the satu-
rated one (Fig. 3.3b), which is also in agreement with the experiments. In 
order to study the influence of an initially dense material the experiments 
for triaxial compression under a constant mean pressure of MPa8.0p
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starting from 29.0e  for the dry material and 285.0e  for the saturated 
solid material are compared with the prediction of the hypoplastic model in 
Fig.(3.4). 

A comparison of Fig. (3.3) with Fig. (3.4) shows that the volume-strain 
behavior is strongly influenced by the initial density and it differs for the 
dry and saturated states of the solid material. The additional densification 
is less pronounced and the maximum mobilized friction angle is higher for 
the initially dense material. A clear peak state for mob  can only be de-
tected for the dry and initially dense material (Fig. 3.4a). After the peak the 
value of mob  slightly decreases with advanced vertical compression and it 
is accompanied by dilatancy. For the saturated and initially dense state of 
the material the dilatancy is less pronounced. 

Fig. 3.4. Triaxial compression under constant mean pressure starting from an 
initial void ratio of: (a) 29.00e  for the dry state ( 1 ), (b) 285.00e  for the 
saturated state ( 34.0 )
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4 Shear Band Analysis or Plane Strain Compression 

In this section the possibility of a spontaneous shear band formation under 
plane strain compression at a constant lateral pressure is studied. Of parti-
cular interest is the influence of the density, pressure level and granular 
hardness on the lowest stress ratio and the inclination angle of the shear 
band at the onset of shear band formation. The present investigation is 
based on the general bifurcation theory [17, 25, 26, 29]. The bifurcation 
condition is derived in a way similar to the ones outlined for hypoplastic 
models in earlier publications (e.g. [3, 4, 9, 10, 11, 14, 31, 32, 36]). A 
comprehensive historical review of the individual contributions can be 
found for instance in Tamagnini et al. [27, 28]. 

Fig. 4.1. Orientation  of the shear band under plane strain compression 

In the following the possibility of a spontaneous formation of a shear 
band is studied for discrete states ( e , sh , T ) with respect to a fixed 
Cartesian co-ordinate system as sketched in Fig. (4.1). The shear plane or 
so-called discontinuity plane is characterized by a different velocity 
gradient v  on either side of this plane. The jump of the velocity gradient 
can be represented by the dyadic product of the unit normal n  of the 
discontinuity plane and a vector g  defining the discontinuity mode of the 
velocity gradient [4], i.e. 
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0ngv . (4.1)

The condition for a continuing equilibrium across the discontinuity 
requires the jump of the stress rate normal to the discontinuity plane to be 
zero [25]: 

0]][[ nT . (4.2)

Herein the jump of the stress rate can be related to the jump of the 
Jaumann stress rate, i.e.  

]][[]][[]][[]][[ WTTWTT . (4.3)

where T  is the response of the hypoplastic model (3.6) and W  denotes 
the antisymmetric part of the velocity gradient. Inserting the Jaumann 
stress rate into Eq.(4.2) leads to the relation: 

0: nWTnTWNnnD dss fff L ,

with:

2
gnngD ,

2
gnngW ,

]]:[[ DD .

(4.4)

At the onset of a shear band bifurcation the quantities sf , df , L  and 
N of Eq.(3.6) are the same on either side of the discontinuity plane and 
they are independent of the velocity gradient. It is a peculiarity in 
hypoplasticity that the possibility of different incremental stiffnesses due 
to a different velocity gradient on either side of the discontinuity is taken 
into account by the single relation (4.4) and there is no need to distinguish 
whether the material outside the shear band undergoes loading or 
unloading (e.g. [3, 9, 31]). Relation (4.4) can be rewritten as rgK or:

rKg 1 , (4.5)

with:

21 bbK
2
1

sf ,                    

TnnTnnIb1
ˆˆ

2
1ˆ 2a ,

nnTTTnnITnnb2

(4.6)
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and

nTTr *ˆˆâff ds . (4.7)

Inserting relation (4.5) for g  into the norm of D , i.e. 

2
)()(

:
2nggg

DD (4.8)

leads to the bifurcation condition: 

0
2

2nrKrKrK 111
f . (4.9)

The components of the unit normal n  of the discontinuity plane are 
related to the unknown shear band inclination angle , i.e. 

sin , cos , 0 Tn  with respect to the co-ordinate system in Fig. (4.1). 

K  and r  depend on the current state quantities: e , sh , and T . In order to 
find the lowest possible bifurcation stress ratio the value of  can be 
set equal to 1 as discussed for instance by Wu et al. [32] and Bauer [4]. 
Thus, relation (4.9) represents an equation for the unknown , whereby 
only real solutions to (4.9) indicate the possibility of a shear band 
bifurcation.

For a homogeneous plane strain compression under a constant lateral 
stress of MPa8.011T  the results are shown for an initial loose material 
(Fig. 4.2a) and an initially dense material (Fig. 4.2b) for both dry state 
( 1 ) and water saturated state ( 34.0 ) of the solid material. In all 
the tests an initially isotropic stress state was assumed. The stress-strain 
curves and volume-strain curves show a strong influence of the initial void 
ratio and they are different for the dry and the water saturated material. In 
particular the incremental stiffness at the beginning of compression is 
higher for an initially dense material and a dry state. The densification is 
more pronounced in the case of an initially looser material and for 
saturated states. Dilatancy can only be detected for the initially dense and 
dry material. 

Starting from the isotropic state the bifurcation criterion (4.9) was 
examined for the individual stress paths. In Fig. (4.2) the first possibility 
where a shear band can appear is marked with a dot. Therefore the bold 
part of the curves denotes states in which a spontaneous shear band 
bifurcation is not possible. But states above the first bifurcation point 
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(dotted curves) again fulfill criterion (4.9) also for  as discussed in 
detail for an inherently isotropic material by Bauer [4]. It can clearly be 
seen that the smallest stress ratio for a possible shear band bifurcation 
occurs before the peak state. The stress ratio is lower for the initially 
higher void ratio and for the saturated state of the material. But for the 
same initial density the difference of the predicted stress ratio for the dry 
state and the saturated state of the material is not very pronounced. The 
shear band inclination  is higher for the initially denser material and the 
dry state. 

Fig. 4.2. Onset of shear band bifurcation under plane strain compression starting 
from an initial void ratio of: (a) 418.00e  for the dry state ( 1 ), 387.00e
for the saturated state ( 34.0 ), (b) 29.00e  for the dry state ( 1 ),

285.00e  for the saturated state ( 34.0 )
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5 Conclusions 

A hypoplastic continuum model is presented to describe the essential 
properties of weathered rockfill materials. In particular an increase of the 
compressibility and a decrease of the limit void ratios with an increase of 
the moisture content of the solid material is modeled in a simplified 
manner using only a moisture dependent granular hardness. The 
constitutive equation for the evolution of the stress is based on nonlinear 
tensor-valued functions depending on the current void ratio, the stress, a 
moisture dependent granular hardness and the rate of deformation. As the 
hypoplastic concept does not need to distinguish between elastic and 
plastic deformation the calibration of the constitutive constants is rather 
easy. The calibration is carried out based on experiments for a weathered 
broken granite. It is demonstrated in this paper that the mechanical 
behavior of an initially loose and dense material can be captured with a 
single set of constants. The comparison of the numerical simulations of 
isotropic compression and triaxial compression with experiments shows 
that the model captures the essential properties of weathered rockfill 
materials for both dry and water saturated grains. For a homogeneous 
plane strain compression under a constant lateral stress the possibility of 
spontaneous shear band bifurcation is analyzed for different initial states. It 
can be concluded that the lowest possible bifurcation stress ratio occurs 
before the peak and the stress ratio and shear band inclination is higher for 
dry and an initially dense state of the material.   
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Summary

We consider a mechanism of macroscopic crack growth and failure in rock 
and rock mass in compression based on three-dimensional patterns of 
stress non-uniformity associated with generation of multitudes of wing 
cracks. In 3D each wing crack has a limiting ability to grow and hence 
cannot produce sample failure on its own. Neither the crack coalescence 
can form 3D patterns that can evolve into a macroscopic crack. Instead 
opening and shearing of the wing cracks produce additional stress 
disturbance. The combined effect of the stress disturbances from all wing 
cracks results in a non-uniform stress field spatially varying in a random 
fashion. The main feature of such a field is that any plane running through 
the sample can potentially have parts subjected to tensile stress alongside 
with the parts under compression (the average stress equal to the applied 
external load acting on this plane). As the load increases, these stress 
variations become stronger and, eventually, produce a macroscopic tensile 
crack at the place where the tension was maximal. Further growth of the 
macrocrack proceeds by initiating new segments, offset from the main 
crack plane in order to avoid the places under compression. This 
apparently en-echelon fracture is formed through a specific mechanism of 
tensile crack growth rather than coalescence. The macroscopic crack is 
inclined to the direction of axial compression at the angle maximising the 
average magnitude of the tensile parts of the stress field. This angle depend 
upon the ratio between total normal opening (dilatancy) and shear of the 
wing cracks, which in its own term depends upon the material micro-
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structure and the confining pressure. When this ratio is above a certain 
threshold, the macrocrack will be parallel to the direction of axial 
compression producing splitting. When the ratio is below the threshold, the 
macrocrack will be inclined and look like shear fracture.  

1 Introduction 

Failure in compression of heterogeneous materials such as rocks and, at 
large scales the Earth’s crust, is characterised by two major modes (see 
Germanovich et al. 1994 and the literature cited there): (1) splitting or 
columnar failure, predominantly observed in uniaxial compression; (2) 
shear or oblique failure observed in triaxial compression and, often in 
uniaxial compression. In the latter case the sample is broken by what 
appears as shear cracks. 

The most popular approach to describe shear failure is to use the Mohr-
Coulomb theory or its various modifications, which adequately represent 
experimental data related to the oblique failure. In this theory, as well 
known, the direction of the future fracture is determined as the one at 
which the shear stress reaches the friction stress at the least load magnitude 
the latter being referred to as the compressive strength. The drawbacks of 
this theory are also well known. Firstly, it has a contradiction in itself since 
it is based on friction properties of a not yet existing interface. This 
immediately turns the Mohr-Coulomb criterion into an empirical one in 
which the friction parameters are treated as internal material parameters to 
be back calculated from the results of compressive tests. Subsequently, the 
application of the criterion becomes limited to the cases allowing direct 
testing, which often excludes in-situ characterisation since direct transfer 
of laboratory data to large-scale situations is precluded by the scale effect. 
The second drawback is the inability of the Mohr-Coulomb theory to 
explain the splitting. In view of these drawbacks a considerable effort was 
devoted to developing micromechanical models of failure. 

The majority of models developed to explain splitting are based on the 
concept of wing crack – the crack generated by a local stress concentrator 
(a pre-existing shear crack or pore or a certain type of grain contact) 
assuming that the wing crack can grow extensively at least under uniaxial 
compression as observed in 2D experiments (e.g., Brace and Bombolakis 
1986, Horii and Nemat-Nasser 1986). The failure is attributed either to the 
growth of one of the wing cracks throughout the whole sample or to 
unstable crack growth caused by interaction between the cracks (e.g., 
Ashby and Hallam 1986, Germanovich and Dyskin 1988, Kemeny 1991). 
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These 2D models fail however to recognise the fact that the real three 
dimensional wing cracks have an intrinsic limitation to the growth 
preventing the wing elongation beyond the size of the initial shear crack 
even in the most favourable case of uniaxial compression, Fig. 1.1. 

2D wing crack 3D wing crack

(a) (b)

Fig. 1.1. Wing crack growth in uniaxial compression: (a) 2D wing crack growth. 
The wings are capable of extensive growth and can reach lengths macroscopic as 
compared to the length of the initial crack; (b) 3D wing crack growth. The wings 
have intrinsic limitations to their growth. Their maximum dimensions are 
comparable with the size of the initial crack, Dyskin et al. (2003). 

Modelling of shear failure in compression, that takes into account the 
fact that the shear cracks do not propagate in their own plane, but rather 
kink, is based on considering various mechanisms of wing crack 
coalescence (e.g., Wittmann 1981, Stavrogin and Tarasov 2001) or en-
echelon formation (e.g., Horii and Nemat-Nasser 1986, Schulson 1990, 
Reches and Lockner 1994). A typical model of en-echelon crack is shown 
in Fig. 1.2a. The main feature of models of this kind is that they are two-



A. V. Dyskin and E. Pasternak 304 

dimensional. As soon as one returns to a real 3D situation the picture 
becomes complicated. Indeed, a direct three-dimensional analogue of the 
en-echelon model is an arrangement sketched in Fig. 1.2b. Two conditions 
should be satisfied to make such an arrangement possible. Firstly, all wing 
cracks or the corresponding parts of the wings participating in the 
formation of the en-echelon crack should be more or less parallel to each 
other. Secondly, since the wings are more or less equiaxial, the ones 
forming the en-echelon crack should have suitable spatial arrangement.  

In order to make the idea of en-echelon crack formation viable, it is 
therefore necessary to identify the mechanism(s) ensuring these arrange-
ments. If one hypothesises that the cracks forming en-echelon constitute 
only a portion of all cracks then, inevitably, extremely high concentrations 
of such cracks should be assumed. In particular, given that the dimensions 
of the wing cracks in rocks are often of the order of the grain size, the first 
of the above conditions demands that the grains happened to be in the 
place of future en-echelon crack be already separated from the rest of the 
rock volume. Indeed, while the wings separate the grain from the sides, the 
initial crack that initiated the wings separates the grain from above or 
below (the compression direction being vertical). This obviously 
contradicts the experimental observations according to which the 
formation of macroscopic shear fracture does not yet lead to full rock 
separation.

The above consideration suggests that the cracks forming en-echelon 
were not there initially, but rather were formed in the process of 
propagation of the macrocrack.  

Direct finite element simulations of failure in heterogeneous materials 
are based on specifying failure criteria for each finite element (e.g., Zou et 
al. 1996). In essence, these criteria are usually chosen similar to the ones 
deduced from the tests on macroscopic samples. Therefore, the question of 
the failure criterion is simply shifted from macroscopic to microscopic 
scale without actually producing the relevant failure mechanism. Models 
treating the shear cracks as planes of strain localisation (e.g., Rudnicki and 
Rice 1975) face the same problem: the material behaviour at the micro 
level should resemble the macroscopic behaviour the model is set to 
explain. To complicate the matter further, the direct numerical simulations 
suffer from mesh-dependence which renders the simulations unusable. 

Dyskin (1999) noticed that the wing cracks create considerable stress 
non-uniformity (spatial stress fluctuations) with the material in some 
places subjected to tensile stresses and therefore capable of generating 
tensile cracks. Based on this idea a 3D model of splitting crack formation 
and propagation was proposed. In this paper we extend this idea to model 
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the formation and propagation of inclined tensile cracks which produce 
oblique (shear-like) failure. 

2D en-echelon 3D analogue?

(a) (b)

Fig. 1.2. ‘En-echelon’ crack: (a) 2D en-echelon crack as depictured following 
cross-section observations in rock samples or the Earth’s crust; (b) a schematics of 
possible 3D analogue of en-echelon crack. It is assumed that the vertical fractures 
being parts of wing cracks are approximately equiaxial, as shown in Fig. 1.1. The 
broken line shaded area signifies a cross-section of observation, while two 
inclined broken lines indicate the position of traces of the en-echelon crack in the 
cross-section. 

2 Mechanism of Crack Propagation in Non-Uniform Stress 
Fields

The stress field generated by wing cracks as well as other heterogeneities 
is non-uniform and random owing to their random locations, orientations, 
shapes and dimensions. In the parts of the sample where the stress 
variations become tensile new cracks can be generated and grown to 
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macrocracks, Dyskin (1999). Fig. 2.1 explains a possible mechanism of 
tensile macrocrack formation and propagation. Fig. 2.1a shows a possible 
realisation of random field of a normal stress component 33; the stress 
increasing from dark to white, such that the dark areas correspond to 
compression, while the white areas correspond to tension. For the 
illustration purpose, only a section parallel to the (x2, x3) plane is shown. 
Obviously, the first crack (crack 1) is generated at the area with the 
maximum tensile stress. This crack will propagate until it is arrested in the 
areas subjected to compression. As the applied load increases, so does the 
amplitude of the stress variations. Further propagation of crack 1 will 
however be prevented by similarly increased compression; instead a new 
crack (crack 2) will be generated where the original stress distribution 
showed no compression. This will result in a discontinuous offset-type 
trajectory of crack growth, which in the real 3D case will look like the one 
shown in Fig. 2.1b. Essentially, the crack segments will be situated at 
places where no compressive stresses acted. On average, the magnitude of 
these stresses is equal to the mathematical expectation of positive (tensile) 
values

df )(0,max (2.1)

where  denotes the relevant stress component, f( ) is the probability 
density function. 
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Direction of macrocrack growth
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Fig. 2.1. Macroscopic crack formation and growth under spatially random stress 
field: (a) a realisation of the random stress field 33; the maximum compression is 
shown in black, the tension - in white. The first crack segment (crack 1) appears at 
the place of maximum tension. Crack 2 is then generated at the closest place 
where the compressive stress is minimal (whitish spot), then other segments 
(cracks 3 and 4) are generated in the same fashion; (b) a 3D structure of the 
compound (en-echelon) macrocrack; (c) the macrocrack is modelled as a crack (a 
cross-section is shown) with Winkler layer of stiffness k that depends upon the 
size and the density of the segment cracks 

We will model such a complex compound (en-echelon) crack, macrosco-
pically, as a planar crack with Winkler layer, i.e. we will assume that 
opening of the crack is resisted by linear links between the faces, Fig. 2.1c. 
These linear links model the action of intact material between the crack 
segments. The Winkler layer is characterised by stiffness k that locally 
relate the mutual normal displacement of the crack faces v and the 
normal stress , vk , the stiffness k being dependent upon the crack 
segment sizes and concentration. We will also assume that the faces of the 
macroscopic crack are subjected to a uniform load + associated with the 
action of stress fluctuations. We assume further that the macro-crack is 
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disk-like of a radius R. We will characterise the conditions of its growth 
using the macroscopic scale, where we can employ the conventional 
criterion of crack propagation IcI KK . Here IcK is the macroscopic 
fracture toughness which characterise the conditions of creation of the new 
crack segments. 

Since the macrocrack is much larger than the characteristic size of the 
Winkler layer, kE , where E is the Young’s modulus of the rock, the 
stress intensity factor has the following form, Shifrin (1988)  

21k
EKI (2.2)

One can see that the stress intensity factor is independent of the 
macrocrack size, i.e. the macrocrack can support its own growth without 
an increase in the load. 

A remark should be made with respect to the concept introduced. 
Macroscopically, the considered crack grows as an open tensile crack. 
However, it is also subjected to shear stress. The corresponding shear 
component of the relative displacement of the crack faces creates tensile 
stresses on one side of the macrocrack contour and compressive on the 
other. In the process of the macrocrack growth the tensile stress 
concentration leads to the appearance of small tensile cracks 
approximately oriented in the vertical direction and predominantly located 
on one side of the macrocrack, Fig. 2.2. It is these cracks that create 
impression of en-echelon nature of the macrocrack. It has also been 
observed on sample cross-sections by Moore and Lockner (1995) that 
these vertical cracks are biased to one side of the macrocrack. 

We shall now introduce a method for estimating the fluctuation-induced 
stress +. Suppose the random stress is Gaussian with the uniform 
mathematical expectation, av and standard deviation, . Then direct 
calculations give: 

2

2

2
1

2
1 e

x
x

av dxex
0

2

2

2
1)(,

(2.3)

Therefore, in order to determine the fluctuation-induced stress one needs 
to know the statistical properties of the Gaussian stress fluctuations. These 
will be determined in the following section. 
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Direction of macrocrack growth

Direction of macrocrack growth

Secondary 
vertical cracks

Fig. 2.2. Formation of secondary tensile cracks in the process of macrocrack 
growth. These secondary cracks may be responsible for the en-echelon 
appearance. 

3 Statistical Properties of Non-Uniform Stress Field Created by 
Many Wing Cracks 

In order to quantify the mechanism by which this field produces and drives 
macrocracks we need to determine the mathematical expectation and 
variance of this field.

Suppose that the rock volume is loaded such that in a similar homo-
geneous volume a uniform stress field ik

0 (i,k=1,2,3) would be produced. 
In the case of compression of magnitude p in x3 direction (see the co-
ordinate frame on Fig. 3.1) and confining pressure of magnitude q in the 
normal directions 

0,, 0
21

0
13

0
12

0
33

0
22

0
11 pq (3.1)
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The actual stress field ik is of course different from the uniform one, 
predominantly owing to the effect of wing cracks with some contribution 
from other heterogeneities. Nevertheless its volumetric average over the 
whole sample, ij , is equal to 0

ij . Indeed, suppose a volume V is 

loaded at its external surface S by tractions jij n0 , where in  is the external 
normal vector to S, while its internal surfaces (e.g., pores or cracks) are 
free from external load (only contact forces can act there). We will also 
neglect the body forces. 

We use the following identity which is based on the divergence theorem 

V
jkik

V
jkik

V
kjik

S
kjik dVdVxdVxdSnx xxx xxxx ,,

0

(3.2)

The first integral in the right-hand part is equal to zero because of the 
equations of equilibrium with zero body forces. Because the actual and 
uniform stress fields corresponds to the same tractions at S, one obtains 

000
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dV
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x

xx x

(3.3)

Furthermore, assuming ergodicity, the mathematical expectation of this 
random stress field can be found 

0
ikikik (3.4)

In order to estimate the variance of the stress field generated by the wing 
cracks we model each crack by a dislocation loop, Fig. 3.1, with the shear 
component of the Burgers vector, bt, directed parallel to the axial load and 
the normal component, bn, directed perpendicular to the axial load. The 
shear component reflects the contribution of the wing crack to the non-
linear part of axial strain, while the normal component reflects the wing 
crack contribution to dilatancy. As further simplification, in order to 
account for the collective effect of the wing cracks while neglecting the 
peculiarities of the shape of each crack, we replace the dislocation loops 
with point defects. It will be done by limiting transition of the loop area, A,
to zero keeping the corresponding volumes, Ut=btA, Un=bnA, constant.  
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Fig. 3.1. Wing crack evolved form an initial inclined shear crack (left) and its 
model as a dislocation loop (right) with Burgers vector (bt,bn).

We represent, following Landau and Lifshitz (1959), the dislocation loop 
through equivalent body forces 

klmmliklmi bnbnf ,2
1 )( , (3.5)

where nm and bm are the components of unit normal vector to the loop and 
the Burgers vector respectively, )(  is the delta-function of coordinate 

along the normal vector, )(,k  denotes differentiation with respect to kx
(summation is presumed over repeated indexes) and iklm  is the tensor of 
elastic moduli. For isotropic rock with the Young’s modulus E and 
Poisson’s ratio it has the form: 

lmikklimkmiliklm
E

212
1

1
(3.6)

We now represent the crack as a point defect located at a point 
M,,1,x , where M is the number of wing cracks in the rock 

volume and take into account that in this representation the Burgers 
vectors are constant 

3itini UnUb . (3.7)

Here we considered that the normal vector, according to Fig. 3.1 is 
always perpendicular to the 3x  axis. As a result, we come up with the 
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following expression for the body forces through the volumes of crack 
opening/shear 

klmmliklmi bnbnf ,2
1 )( xx (3.8)

Now, using identity (3.2) and the equilibrium equations  

0, jiij f , (3.9)

with the body forces (3.8) one can express the volumetric average of the 
stress field generated by these point defects, which is the average stress 
field outside the wing cracks. It reads 
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(3.10)

where ik
0 is the applied load, V is the rock volume, M is the number of 

wing cracks in the volume (this number can grow as loading progresses), 
the superscript index  refers to a particular wing crack. It is important to 
distinguish between this stress field which essentially represents the 
stresses generated at a distance from the wing cracks (since this 
approximation relates to the scale from which the wing cracks are seen as 
point defects) with the full stress field (that includes stresses in immediate 
neighbourhoods of the wing cracks) which volumetric average is given by 
equation (3.4).  

Direct computations of the correlation function for the stress fields in the 
point defect approximation, Dyskin (1999), suggested that the correlation 
length is of the order of the wing crack size. Based on this observation, we 
break the sample volume V into M parts V , =1,..,M such that the 
averages over V ,  < ik>  are approximately independent from each other. 
Then from the ergodicity, the variance Var(< ik> ) can be expressed 
through the variance of the full volumetric average, Var(< ik>). We 
assume that the latter is adequately represented by the variance of (3.10). 
For wing cracks uniformly oriented in the (x1, x2) plane, assuming that the 
average values of shear ‘volume’ Ut and volume of opening of wing cracks 
Un are independent, one obtains  
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where N is the number of wing cracks per unit volume,  has the meaning 
of the ratio between dilatancy and inelastic part of the axial strain. 

4 A Mechanism of Splitting and Oblique Failure in Compression 

Consider a plane inclined at an angle  to the x3 axis and determine the 
average tensile stress + acting on that plane. Substituting (3.1), (3.11) into 
(2.3) one obtains 

22

2

222222

tan2

tan2
2
1cossintan2cos

2
1

2

2

t
pq

qpet

(4.1)

Fig. 4.1 shows stress (4.1) for t=p and for different q and . It is seen that 
for =1 stress + reaches maximum at =0, which corresponds to splitting. 
Small values of  lead to oblique failure. Since for q>0 mainly oblique 
failure is observed,  should be small as compared to tan( .
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Fig. 4.1. Dependence of average tensile stress acting on a plane vs. the angle of its 
inclination for various values of the lateral compression q
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For uniaxial compression the critical value of has the form 

122
2

2

t
p

t
p

cr (4.2)

Subsequently, cr corresponds to splitting, while cr  corre-
sponds to oblique or ‘shear’ failure. 

We now assume that the opening of the wing cracks is mainly controlled 
by sliding of their shear part and for that reason the average opening is 
proportional to the deviatoric stress acting on them such that 

)( qpt , where  is a factor. We also assume that the macrocrack 
start propagating when the positive component of stress fluctuations acting 
in its plane reaches a certain critical value: cr . For the case of low 
values of  such that tan2tan2 22 , we can rearrange expression 
(4.1) in the following way: 

tancossincossin 22 qpcqp (4.3)

where

22

22

2
2
1tan,

2
eec crcr (4.4)

This is an expression similar to Coulomb-Mohr criterion. In general its 
parameters are not independent of p and q. If, in addition, t>>p the 
Coulomb-Mohr parameters will change little and can be considered 
independent of the loads p and q.

The values of parameters depend upon the factors associated with the 
wing cracks, their sizes and distributions. However, the mechanism itself is 
scale-independent.  

5 Conclusions 

It is demonstrated that the random stress non-uniformity created by the 
multitude of wing cracks is sufficient to induce tensile cracks and then 
make them grow as a macroscopic tensile fracture. Its structure – a set of 
crack-segments as well as vertical cracks induced by shear stresses in the 
process of its growth create an appearance of en-echelon fracture. The 
macroscopic fracture is inclined to the direction of axial compression at the 
angle maximising the average magnitude of the tensile parts of the stress 
field. This angle depends upon the ratio between total normal opening 
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(dilatancy) and shear of the wing cracks. When this ratio is above a certain 
threshold, the macrocrack will be parallel to the direction of axial 
compression producing splitting. When the ratio is below the threshold, the 
macrocrack will be inclined and look like shear fracture. 
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Summary

The paper presents results of numerical simulations of the behaviour of 
quasi-brittle materials (like concrete) under plane strain conditions. Two 
boundary value problems with a dominating failure mode I were 
simulated: uniaxial tension and a three-point bending test for concrete 
beams with a different size. To model the material behaviour, two different 
continuum approaches were used: elasto-plastic and an isotropic damage 
constitutive model with non-local softening. Attention was focused of the 
effect of a characteristic length on the width of strain localization and load-
displacement curve, and an identification of a characteristic length on the 
basis of the load-displacement curves only from size effect tests. 

1 Introduction 

The analysis of concrete elements is complex due to occurrence of strain 
localization which is a fundamental phenomenon under both quasi-static 
and dynamic conditions [5], [9], [17], [48], [50]. It can occur in the form of 
cracks (if cohesive properties are dominant) or shear zones (if frictional 
properties prevail). The determination of the width and spacing of strain 
localization is crucial to evaluate the material strength at peak and in the 
post-peak regime. The concrete behaviour can be modeled within 
continuum mechanics models using, e.g.: non-linear elasticity [34], 
fracture [4], [24], endochronic theory [3], [8], micro-plane theory [7], [27], 
plasticity [11], [33], [38], [48], damage theory [11], [16], [20], [37] and 
coupled plastic-damage approach [14], [26], [32], [42], and discrete 
models using a lattice approach [23], [30], [43], [49] and DEM [18], [19], 
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[41]. To describe properly strain localization within continuum mechanics, 
the models should be enhanced by a characteristic length of micro-
structure [13]. There are several approaches within continuum mechanics 
to include a characteristic length and to preserve the well-posedness of the 
underlying incremental boundary value problem in engineering materials 
as: second-gradient [17], [35], [36], [37], non-local [2], [10], [16], [39] and 
viscous ones [13], [45]. Owing to them, objective and properly convergent 
numerical solutions for localized deformation (mesh-insensitive load-
displacement diagram and mesh-insensitive deformation pattern) are 
achieved. Otherwise, FE-results are completely controlled by the size and 
orientation of the mesh and thus produce unreliable results, i.e. strain 
localization becomes narrower upon mesh refinement (element size 
becomes the characteristic length) and computed force-displacement 
curves change considerably depending on the width of the calculated 
localization. In addition, a premature divergence of incremental FE-
calculations is often met. 

The aim of the present paper is to compare the FE-results of the width of 
strain localization in concrete elements (characterized by a failure mode I) 
during uniaxial tension and three-point bending using two different 
continuum models enhanced by an internal length of microstructure: 
isotropic elasto-plastic model and isotropic damage model both with non-
local softening. The FE-results with respect to the load-displacement 
curves were compared to some laboratory experiments and the size effect 
law by Bazant [5]. Attention was focused of the effect of a characteristic 
length on the width of strain localization and load-displacement curve, and 
an identification of a characteristic length on the basis of the measured 
load-displacement curves only. 

2  Constitutive Models for Concrete 

2.1  Elasto-Plastic Model 

An elasto-plastic model with isotropic hardening and softening using two 
yield conditions was assumed. In a compression regime, a Drucker-Prager 
criterion was defined as [1]  

1 1
1tan 1 tan ,
3 cf q p (2.1)
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where q – von Mises equivalent stress, p – mean stress,  – the internal 
friction angle, c – uniaxial compression yield stress and 1 – hardening 
(softening) parameter equal to plastic vertical strain in uniaxial 
compression p

11 . The invariants p and q were defined as  

1 3        and        , 
3 2kk ij jip q s s (2.2)

where ij is the stress tensor and sij stands for the deviatoric stress tensor. 
The flow potential function was taken as 

1 tan ,g q p (2.3)

where  is the dilatancy angle. In a tensile regime, a Rankine criterion was 
assumed with the yield function  

2 1 2 3 2max , , ,tf (2.4)

where 1, 2 and 3 – principal stresses, t – the tensile yield stress and 2 – 
softening parameter (equal to the maximum principal plastic strain p

1 ).
The associated flow rule was assumed. 

2.2 Damage Model 

An isotropic damage continuum model describes the degradation of the 
material due to micro-cracking with the aid of a single scalar damage 
parameter D growing from zero (undamaged state) to one (completely 
damaged state). The stress-strain function is represented by the following 
relationship

1 ,
ijkl

e
ij klD C (2.5)

where e
ijklC  – linear elastic material stiffness matrix and kl – strain tensor. 

The damage parameter D acts as a stiffness reduction factor (the Poisson 
ratio  is not affected by damage). The growth of the damage variable is 
controlled by a damage threshold parameter  which is defined as a 
maximum of the equivalent strain measure ~  reached during the load 
history up to time t. The loading function of damage is 

0, max ,f (2.6)
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where 0 – initial value of  when damage begins . If the loading function f
is negative, damage does not develop. During monotonic loading, the 
parameter  grows (it coincides with ~ ) and during unloading and 
reloading it remains constant. To define the equivalent strain measure ~ ,
two different criteria were assumed: a) a von Mises failre criterion in terms 
of strains [37] and b) Rankine failure type criterion [28]. In the first case ~

was [37] 
2

2
1 1 22 2

11 1 12 ,
2 1 2 2 1 2 1

kk kI I J
k k

(2.7)

where  is the Poisson’s ratio, and I1 and J2 are the first invariant of the 
strain tensor and the second invariant of the deviatoric strain tensor, 
respectively:  

2
1 11 22 33 2 1

1 1         and          ,
2 6ij ijI J I (2.8)

The parameter k in Eq.2.7 denotes the ratio between the compressive and 
tensile strength of the material. In the second case, the equivalent strain 
measure ~  was [28] 

1 max ,eff
iE

(2.9)

where E denotes the Young modulus and eff
i  are the principal values of 

the effective stress eff
ij

eff e
ij ijkl klC (2.10)

To describe the evolution of the damage parameter D, an exponential 
softening law was used [37] 

0

0

1 1 ,D e (2.11)

where  and  are the material parameters. 
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3  Non-Local Approach 

To describe strain localization, to preserve the well-posedness of the 
boundary value problem and to obtain mesh-independent FE-results, a 
non-local theory was used as a regularization technique [6], [39]. Usually, 
it is sufficient to treat non-locally only variable controlling material 
softening [15], [39] (whereas stresses and strains remain local). It was 
assumed in elasto-plasticity that the softening parameter  was non-local

1 ,k kx r x r dV
A

(3.1)

where kx  – coordinates of the considered (actual) point, r - distance 
measured from the point kx  to other material points,  – weighting 
function and A – weighted volume. As a weighting function , the Gauss 
distribution function for 2D problems was used 

2

1 ,c

r
l

c

r e
l

(3.2)

where lc denotes  a characteristic (internal) length connected to 
microstructure of the material. The averaging in Eqs.3.1 and 3.2 is 
restricted to a small representative area around each material point. The 
influence of the points at the distance of r=3l is only about 0.1%. The 
softening rates d i were assumed according to the Brinkreve modified 
formula [15] (independently for both yield surfaces)  

1 ,i k i k i k
md x m d x r d x r dV
A

(3.3)

where m is the non-local parameter which should be greater than 1 to ob-
tain mesh-independent results [10]. Equation 3.3 can be rewritten as [15] 

1 ,i k i k i k i kd x d x m r d x r dV d x
A

(3.4)

Since the rates of the hardening parameter are not known at the 
beginning of each iteration, the extra sub-iterations are required to solve 
Eq.3.4. To simplify the calculations, the non-local rates were replaced by 
their approximations est

id calculated on the basis of the known total strain 
rates [15]. 
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1 ,
i

est est
i k i k k i kd x d x m r d x r dV d x

A
(3.5)

In the damage mechanics model, the equivalent strain measure ~  was 
replaced in Eqs. 2.7 and 2.9 by its non-local definition 

1 ,k kx r x r dV
A

(3.6)

Both models enhanced by non-local terms were implemented in the 
Abaqus Standard program [1] with the aid of the subroutine UMAT (user 
constitutive law definition) and UEL (user element definition) [10]. The 
FE-simulations were performed under plane strain conditions. The 
geometric nonlinearity was taken into account. The non-local averaging 
was performed in the current configuration. The quadrilateral elements 
composed of four diagonally crossed triangles were used to avoid 
volumetric locking [42]. 

4  FE - Simulations 

4.1  Uniaxial Tension 

4.1.1 Elasto-Plastic Model 

To study the size effect, the calculations were carried out with 3 different 
concrete specimens with one notch whose dimensions (from Fe-
simulations by Gutierrez and de Borst [22]) and boundary conditions are 
given in Fig.4.1. The lower and upper edge of the specimen were smooth 
(no shear stress). The nodes along the bottom edge were fixed in vertical 
direction. To preserve the stability of the specimen, the node in the middle 
of the bottom was fixed in the horizontal direction. The deformation was 
imposed by prescribing a vertical displacement u along the upper edge. To 
introduce a non-homogenous strain field, a small notch at the left side at 
mid-height was assumed. Three different meshes were used with 1500, 
2620 and 5100 triangular elements for the small, medium and large 
specimens, respectively. When calculating non-local quantities close to the 
notch, the so-called “shading effect” was considered (i.e. the averaging 
procedure considers the notch as an internal barrier that is shading the non-
local interaction [29]). In the elastic region, the modulus of elasticity was 
taken as E=30 GPa and Poisson’s ratio as =0.20. The diagram describing 
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the tensile stress t versus the softening parameter 2 is shown in Fig.4.2. 
To simplify calculations, a linear relationship t=f( 2) was assumed with 
the softening modulus in tension equal to Ht=3.0/(3.0 10-3)=1000 MPa. 
The tensile strength was equal ft=3.0 MPa. The non-locality parameter 
m=2 was chosen on the basis of initial own FE-studies [10] and other 
studies [29]. Higher values of m resulted in unrealistic large shear zone 
widths. The characteristic length was taken as lc=15 mm.  

Specimen b [cm] h [cm]

small 5 10 

medium 10 20 

large 20 40 

Fig. 4.1. Geometry and boundary conditions of the specimen subjected to uniaxial 
tension ([22]) 

Fig.4.3 presents the normalized load-displacement curves for different 
sizes of the concrete specimen of Fig.4.1 (P – resultant vertical force, u – 
vertical displacement of the top edge).  

The size effect is significant, i.e. the smaller the specimen, the larger the 
normalized strength and the larger the material ductility. The plots of the 
non-local softening parameter 2  in the neighborhood of the notch for 3 
different specimens are shown in Fig. 4.4. 

The calculated height of the localized zone increases with the specimen 
size and is equal to 5.0 cm (3.3 lc), 6.0 cm (4 lc) and 7.0 cm (4.6 lc) for 
the small, medium and large specimens, respectively. The results are 
qualitatively similar to those obtained with the second-gradient elasto-
plastic constitutive model by Gutierrez and de Borst [22]. 
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The maximum loads obtained from FE-simulations for concrete were 
compared with the energetic size effect law given by Bazant [5], [9] which 
is valid for structures with pre-existing notches or large cracks: 

,
1 /

Bf
D D

t
o

(4.1)

where  - nominal strength, B – dimensionless geometry-dependent 
parameter which depends on the geometry of the structure and of the 
crack, D - specimen size (equal to the specimen height h) and D0 – size-
dependent parameter called the transitional size. 

Fig. 4.2. Assumed curve t=f( 2) in tensile regime using the elasto-plastic model 
for uniaxial tension ( t – tensile stress, 2 – softening parameter) 

Fig. 4.3. Calculated normalized load–displacement curves for uniaxial tension 
(elasto-plastic model with non-local softening) 
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a) b) c) 

Fig. 4.4. Calculated contours of the nonlocal softening parameter 2  for uniaxial 
tension of a large (a), medium (b) and small (c) specimen within elasto-plasticity 
with non-local softening) (different scale is used in 3 specimens) 

Eq.4.1 can be rewritten as:  

1      with     /      and        1/ ,02
D c c D Bf cf (4.2)

To find parameters B and Do from the FE-analysis, a linear regression 
was used. Fig.4.5 present the differences between stresses  from the FE-
calculations ( =P/(0.75bt), b - element width, t=1.0 m – size in the third 
direction) and those obtained from Eq. 4.2. A good agreement with 
Bazant’s size effect law [9] was obtained. The normalized strength 
decreases almost linearly with the size ratio h/lc in the considered range. 

4.1.2 Damage Model 

The problem of a double notched specimen under uniaxial tension was 
experimentally investigated by Hordijk [25]. The geometry of the concrete 
specimen (width b=60 mm, height h=125 mm, thickness in the out-of-
plane direction t=50 mm) and boundary conditions (similar as in Fig.4.1) 
are presented in Fig.4.6. Two symmetric notches 55 mm2 were located at 
the mid-point of both sides of the specimen. The modulus of elasticity was 
equal to E=18 GPa and the Poisson’s ratio was =0.2. The following 
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parameters of the damage model were chosen (using Eqs.2.7 and 2.11): 
4

0 101.2 , =0.96, =500 and k=10. The characteristic length lc was 
assumed to be 5 mm. Three different FE-meshes were used: coarse (1192 
triangular elements), medium (1912 triangular elements) and fine (4168 
triangular elements), Fig.4.7.  

Fig. 4.5. Relationship between calculated normalized concrete strength 
=P/(0.75bt) from uniaxial tension and ratio h/lc (elasto-plastic model with non-

local softening) compared to the size effect law by Bazant [5] 

Fig. 4.6. Geometry and boundary conditions of a specimen with a notch under 
uniaxial tension (dimensions are given in mm) 
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The calculated contours of the damage parameter  in the specimen are 
shown in Fig.4.8 at residual state. The results are mesh-independent since 
the width of the damage region in the mid-region of the specimen is 
always the same. The width of the localization zone is approximately 22 
mm (4.4 lc).

a) b) c) 

Fig. 4.7. FE-meshes used for calculations of uniaxial tension: a) coarse, b) 
medium, c) fine 

Fig.4.9 presents the nominal stress–elongation tensile curves for all 
meshes as compared to the experimental curve [25]. The elongation  in 
Fig.4.9 denotes the elongation of the specimen above and below both 
notches at the height of 35 mm (Fig.4.7). It was measured experimentally 
by 4 pairs of extensometers with a gauge length of 35 mm. The vertical 
normal stress was calculated by dividing the calculated resultant vertical 
force along the upper edge by the specimen cross-section of 50 50 mm2.
The calculated load-displacement curves of Fig. 4.9 practically coincide 
for the different meshes. They are also in a satisfactory agreement with the 
experimental curve [25], although a small deviation between the theory 
and the experiment (in particular after the peak) takes place. 

In addition, the influence of the characteristic length lc of micro-structure 
on the specimen behaviour was investigated. The FE-calculations were 
performed with lc in the range from 2.5 mm up to 10.0 mm. The obtained 
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load-displacement curves are presented in Fig. 4.10. The larger the 
characteristic length, the higher the maximum tensile stress. The 
inclination of all curves to the horizontal after the peak becomes smaller 
with increasing lc (the material becomes more ductile). The width of the 
localized zone was 12 mm (4.8 lc for lc=2.5 mm), 22 mm (4.4 lc for lc=5
mm), 34 mm (4.5 lc for lc=7.5 mm) and 44 mm (4.4 lc for lc=10 mm), Fig. 
4.11.

a) b) c) 

Fig. 4.8. Calculated contours of the damage parameter  in a specimen under 
uniaxial tension for: a) coarse, b) medium and c) fine mesh (damage model with 
non-local softening) 

The results are in a good accordance with the FE-results by Pamin [36] 
and Peerlings et al. [37] using a second-gradient damage continuum 
model. 

4.2 Three-Point Bending 

The behaviour of the concrete beam with a notch at the bottom at mid-span 
and free ends during three-point bending was simulated. This behaviour 
was experimentally investigated by Le Bellego at al. [31], and later 
numerically simulated by Le Bellego et al. [31] and Rodriguez-Ferran et al 
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[40] with a non-local damage approach. Three different beams were used 
in laboratory tests: small (h=8 cm), medium (h=16 cm) and large one 
(h=32 cm). The beam length was L=3h. The geometry and boundary 
conditions of the beam are presented in Fig.4.12. The loading was 
prescribed at the top edge in the mid-span via displacement. Three 
different FE-meshes were assumed: with 1534, 2478 and 4566 triangular 
elements for a small, medium and large specimen, respectively. Due to the 
symmetry of the problem, only half of the beam was modeled. In the 
simulations, the modulus of elasticity was taken as E=38.5 GPa and the 
Poisson ratio as =0.2.

Fig. 4.9. Calculated stress–elongation diagrams for a specimen under uniaxial 
tension (damage model with non-local softening) with different FE-meshes 
compared to the experimental diagram [25] 

4.2.1 Elasto-Plastic Model 

In the tensile regime, the Rankine criterion (Eq.2.4) using the exponential 
curve in the softening regime proposed by Hordijk [25] was defined 

3
32 2 2

2 1 2 1 21 exp 1 exp ,t t
u u u

f c c c c (4.3)

where t – tensile stress, ft – tensile strength of the concrete, u – ultimate 
value of the softening parameter and c1, c2 – constants equal to 3 and 6.93, 
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respectively. Two different characteristic lengths were assumed in the FE-
analyses, namely lc=5 mm and lc=10 mm. For each characteristic length, 
the following material parameters were chosen: ft=3.6 MPa, u=0.005 (lc=5
mm), and ft=3.3 MPa, u=0.003 (lc=10 mm) with m=2. They were adopted 
to obtain the best agreement between the load-displacement diagrams from 
FE-analyses and laboratory tests [31I. The internal friction angle was equal 
to =10° [1] and the dilatancy angle =5°. The compressive strength was 
equal to fc=40 MPa. The softening modulus in compression was Hc=0.8
MPa. The material parameters in the compressive regime did not influence 
the FE-results. 

Fig. 4.13 presents the load-displacement curves for all beams obtained 
from FE-calculations with the characteristic length of lc=5 mm and lc=10
mm compared with experiments. A satisfactory agreement was obtained. 
The FE-results overestimate slightly the load bearing capacity of the small 
and medium beam and underestimate the maximum load for the large 
beam. The results demonstrate that a characteristic length can be only 
determined on the basis of the measured width of strain localization (from 
an inverse identification process) but not from the measured load-
displacement curves.  

Fig. 4.10. Calculated stress–elongation diagrams using different characteristic 
lengths lc for a specimen under uniaxial tension (damage model with non-local 
softening) 
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The width of the calculated localization zone was about 20 mm (4 lc) for 
lc=5 mm (Fig.4.13), and 45 mm (4.5 lc) (small beam), 40 mm (4 lc)
(medium beam, Fig.4.13) and 35 mm (3.5 lc) (large beam) for lc=10 mm, 
respectively. It did not depend on the mesh size.  

a) b) c) d) 

Fig. 4.11. Calculated contours of the damage parameter  in a specimen under 
uniaxial tension: a) lc=2.5 mm, b) lc=5 mm, c) lc=7.5 mm, d) lc=10 mm (damage 
model with non-local softening, fine mesh) 

Fig. 4.12. Geometry of the beam and boundary conditions [31] 
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4.2.2 Damage model 

Two different characteristic lengths were again assumed, namely lc=5 mm 
and lc=10 mm. For each lc, the following material parameters were chosen: 

0=7·10-5, =0.99, =600 (lc=5 mm), and 0=6.25·10-5, =0.99, =1000
(lc=10 mm) (using Eqs.2.9 and 2.11). A satisfactory agreement between 
FE-results and experimental ones was achieved in both cases (Fig. 4.14).  

a)

b)

Fig. 4.13. Load-displacement curves from experiments [31] and FE-simulations, 
and calculated contours of the non-local parameter: a) lc=5 mm, b) lc=10 mm 
(elasto-plastic model with non-local softening, beam height h=160 mm) 

The width of the localization zone at the end of the loading process was 
equal to 40 mm (8 lc) (small beam), 35 mm (7 lc) (medium beam, 
Fig.4.14) and 40 mm (8 lc) (large beam) for lc=5 mm, and 50 mm (5 lc)
(small beam), 60 mm (6 lc) (medium beam, Fig.4.14) and 80 mm (8 lc)
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(large beam) for lc=10 mm, respectively. It did not depend on the mesh 
size. The width of the localization zone was not constant and it increased 
during loading [36]. Similarly as in elasto-plasticity, the FE-calculations 
overestimate slightly the load bearing capacity for the small and medium 
beam and underestimate the maximum load for the large beam. The same 
conclusions were drawn by Le Bellego et al. [31] and Rodriguez-Ferran et 
al. [40] from their simulations, although they used different definitions of 
the equivalent strain ~ and evolution laws.  

The maximum loads obtained from FE-simulations were compared again 
with the energetic size effect law given by Bazant (Eq.4.1) (Fig.4.15). A 
good match was achieved. The normalized strength decreases almost 
linearly with increasing size ratio h/lc in the considered range. 

a)

b)

Fig. 4.14. Load-displacement curves from experiments [31] and FE-simulations 
and calculated contours of the non-local parameter for beam height h=160 mm: a) 
lc=5 mm, b) lc=10 mm (damage model with non-local softening) 
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a)

b)

Fig.  4.15. Relationship between the calculated normalized loads: (PL)/(E oh2t)
and (PL)/(fth2t) during bending (with lc=5mm) and the ratio h/lc as compared to the 
size effect law by Bazant [5] within: a) damage mechanics, b) elasto-plasticity 

5  Conclusions 

The FE-calculations have shown that both constitutive models: elasto-
plastic and damage with non-local softening are able to capture strain 
localization and related size effect in problems characterized by the failure 
mode I. The obtained FE-results did not suffer from the mesh sensitivity.  
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A satisfactory agreement between numerical simulations and laboratory 
experiments with respect to the load-displacement curves was achieved. 

The larger the ratio between the characteristic length of micro-structure 
and the specimen size, the higher both the material strength and ductility of 
the specimen.  

The width of the localized strain zone in concrete specimens increases 
with increasing ratio between the characteristic length of micro-structure 
and the specimen size.  

The width of the localized strain zone is for uniaxial tension about (3.3-
4.5) lc within elasto-plasticity and (4.5-5.0) lc damage mechanics. The 
width of the localized zone in beams was larger in FE-analyses with a 
damage model (about (5-8) lc) than with an elasto-plastic model (about 
(3.5-4.5) lc). It was similar in beams for the characteristic length of 5 mm, 
and decreased in elasto-plasticity and increased in damage mechanics with 
increasing beam size for the characteristic length of 10 mm. 

The size effect decreases almost linearly with decreasing ratio between 
the specimen size and characteristic length. It is in agreement with the size 
effect law by Bazant. 

A characteristic length of micro-structure can be only identified on the 
basis of measurements of strain localization. 

The calculations on strain localization in concrete will be continued. To 
include plastic deformation and hardening, the damage model will be 
combined with an elasto-plastic model [12]. Afterwards, the model will be 
enriched by anisotropy [51]. To describe a statistical size effect, a spatially 
correlated distribution of the tensile strength will be assumed [46]. In 
addition, laboratory tests will be performed wherein the width of strain 
localization will be measured using a DIC technique. 
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Summary

Sensitive clays, exhibits softening, are characterized by a response in 
which shear stress increases monotonically up to a peak value, and 
decreases with further increase of shear strain i.e. second order work 
becomes negative, during the shear deformation and will therefore develop 
excess pore pressure in the shear bands. Due to the low permeability of 
clays in combination with a generally high deformation rate, the failure 
process is often considered being undrained and analyzed using a total 
stress approach. However, if thin localized shear zones develop, local 
pore-water dissipation will take place. This diffusion process may be 
important to define the shear bands. To study this process an effective 
stress based soil model is needed. The model must incorporate a formu-
lation for how excess pore pressures accompany the softening process. 
Keeping in view, a simple direct shear sample (DSS) test and one 
dimensional soil column is simulated to analyze the coupled strain 
softening pore water mechanism. This study is initiated to test the 
hypothesis that a finite shear band thickness may result for a given 
deformation rate. 

Key words: strain softening, sensitive clays, finite element analyses, shear 
band
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1 Introduction 

Since Biot (1941, 1965) have derived the general theory of three 
dimensional consolidations and initiated research on material instability, 
much effort has been devoted to the study of multi-phase media (Bardet 
1992; Bowen 1982; Schrefler et al. 1990) and solid instability (Bardet 
1991; Hill and Hutchinson 1975; Vardoulakis 1981; Bardet, 1990). 

The mechanical response of multiphase (solid, air and water) system like 
geomaterials is of great importance in engineering practice. For instance 
uneven settlement of underlying soil deposits due to time dependent pore 
water pressure dissipation from foundation loading, shear creep are the 
most comely recognized examples. Since the end of 70’s several authors 
have studied strain localization in multiphase materials. Rudnicki (1984) 
analyzed a fluid saturated rock mass with an embedded weakened layer. 
Rice (1985) studied the effect of material dilatancy on strain localization in 
fully saturated frictional material. In recent years, much effort has been 
developed to devise regularization strategies to simulate the development 
of shear band in multiphase material without mesh dependency. Rice 
(1985) and Vardoulakis (1985) extended the instability analyses from 
single phase to multiphase materials. (Liu, 2003) 

According to studies e.g. Schrefler et al (1995), Schrefler et al.(1996), 
Liu et al. (2001) and Liu (2003), numerical simulation of strain 
localization in a multiphase material have evidenced that mesh dependency 
is not severe as in single phase material. The reason is that the governing 
field eq.s a gradient term is included through Darcy’s law, an internal 
length scale is introduced naturally, resulting thus a regularization for 
strain localization (Loret and Prevost, 1991 and Schrefler et al. 1995). This 
internal length scale depends on several material parameters and in 
particular on the permeability, applied strain rates. 

A numerical simulation of biaxial test by Liu (2003) reports the 
importance of permeability, boundary roughness and excess pore water 
pressure in strain localization phenomenon for granular material under 
undrained condition. 

This paper presents some initial numerical examples using the finite 
element simulation to demonstrate the kinematics of shear zone 
deformation governed by the coupled mechanism. 
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2 Governing Equation for Coupled Flow 

A coupled formulation for the description of deformation and motion of a 
multiphase media are carried out on the basis of modern mixture theory, 
see Bowen (1982) Ehlers (1989), Lewis and Schrefler (1998) and Liu 
(2003). In this study, soil is considered as two phase media, solid and 
water, sighting the assumption of a fully saturated state. 

The equilibrium equation for the soil solid skeleton can be written as 

V

T

V
t

TT

t

ttV

T

t

tt
w

V

T

V

T

dVgNdVBdsN

dVdtB

dVdtpBdVN

(2.1)

where N is the shape function, a is the acceleration, B is the displacement 
vector,  is the Biot’s constant,  is the Kronecker’s delta, pw is pore water 
pressure, t is the time, V represents the volume, ´ is the effective stresses 
which represents the stress associated with the total deformation of the 
multiphase media, s is the surface traction and g is the gravity. 

In wide sense, in finite element analyses by using multidimensional 
incremental springs, the element stiffness matrix for soil skeleton can also 
be written as 

fvD (2.2)

where D is fourth order tensor that characterizes the material behavior, v
is nodal displacements and f is corresponding nodal forces. By adding for 
all elements gives the global increment stiffness matrix. 

By including the time derivative of wp , eq. (2.1) can also be written as 
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and, the continuity eq. of the pore fluid can be as following 
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Also, for two dimensional flow cases, Darcy’s law can be written as 
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Here pw is the pore pressure and q designated to nodal flow in x and y 
directions respectively. Pore water flow follows the Darcy’s law which can 
be rewritten from eq. (2.12) 
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After rearranging above esq., can be combined in matrix form as 
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3 Pore Water Pressure Generation Dissipation Equation

Considering a one dimensional consolidation situation, a classical eq. of 
flux flow can be written as 

2

2
2

z
Pc

t
P ww (3.1)

Assuming that drainage path is of infinite length on both sides (and 
laterally impermeable surface). Then there will not be any boundary 
conditions, but only the initial condition 

)()0,( zfzPw (3.2)

where f(z) is the given initial pore water pressure of the bar. By substi-
tuting Pw(z,t)=F(z)G(t), we obtained two ordinary differential eq. 
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A complete solution can be written as 
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Since f(x) is not assumed to be periodic, it is natural to use Fourier 
integral instead of Fourier series. Also, A and B in eq. (3.5) are arbitrary 
and re-garded as the function of , can be determined from initial 
condition.
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and hence u(x, 0) can be written as 
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Finally, eq. (3.9) becomes 
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The above eq. can be simplified to 
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In order to demonstrate characteristic of eq. (3.11), a one dimensional 
soil column is of length (z) with an embedded shear band thickness (v). In 
this example, refer Fig. 3.1, the ratio between length of soil column to the 
shear band thickness is assumed as 10. Soft clays have coefficient of 
diffusion (c) equals to 0.24 m2/year. 

A globally undrained soil column is subjected to shear at different strain 
rates such that the local undrained to a partial drainage situation can be 
obtained. Excess pore pressure is maximum within contracting shear band 
due to incompressibility of pore water. At significantly higher strain rate, 
distribution of excess pore pressure is quasi-static. This also represents a 
situation where no pore water flow from shear band to the outside body 
and hence softening can be very rapid due to drastic reduction in effective 
stress. This situation is recognized as locally undrained condition. 

A smooth transition of pore water is observed with decreasing applied 
strain rates. 

Fig. 3.1. Strain localized pore water diffusion from shear column 
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4 Finite Element Simulation of Coupled Pore Water and Strain 
Localization 

A finite element model is simulated and practiced for different strain rates. 
A long natural slope in soft soil shown in Fig. 4.1 is utilized for modeling 
purpose, however due to specific nature of this study; only a small portion 
of the slope is modeled. 

At the onset of localization, plastic deformation is only concentrated in 
the shear band zone and rest of the non-localized body have a rigid body 
motion, which means it is more important to simulate a local model which 
has embedded shear band and neighborhood explicitly. It is not a very 
useful to consider complete non-localized elastically deforming slope, 
because influence of localization will decrease with the increasing distance 
from the shear band. This statement is true only for the present case. 

For simplicity, referring to a local co-ordinate (n, s) system, a direct 
simple shear model is simulated in finite element code using poro-elastic 
element in order to have a coupled tangent stiffness matrix where pore 
water and soil skeleton contributes simultaneously. 

Fig. 4.1 Shear band in a natural slope 

Simple elastic perfectly plastic with negative dilatancy material model is 
considered. Experimentally affiliated parameters have been selected for the 
modeling purpose, a typical soft and sensitive clay, for example the 
Norwegian quick clays have shear modulus of 5000 kPa, Poisson’s ratio 
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equal to 0.25, frictional angle 30 degrees, dilatancy of minus 1 degree and 
horizontal and vertical permeability equal to 1x10-6 m/day. 

In order to trigger localization, a weak perturbation is embedded within 
model. Fig. 4.2 represents (a) the DSS model after deformation; (b) 
localized zone and (c) consequently developed excess pore pressure and 
pore water flow. A different mesh size and different strain rates were 
practiced in order to study the model widely. 

Fig. 4.2 Direct simple shear model 

5 Results and Discussion 

Phenomenological characteristics of coupled localization obtained from 
DSS model is discussed pedagogically. Results are presented in different 
sub-sections, as follows.

5.1 Evaluation of Strain Localization 

Strain localization occurs when the deformation in a continuum is loca-
lized in well defined but narrow zones of intense straining. In order to 
illustrate, DSS model has been simulated and studied for different 
displacement rates to observe time dependent pore water flow and 
localization. Results are presented in Table 1. 
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Table 5.1. Evaluation of strain localization at different strain rates 

Shear strain level 0.7% 1.2% 2% 

Displacement rate  

0.07 mm/min 
(fastest)

0.007 mm/min 
(medium) 

0.014 mm/min 
(slowest) 

An embedded week element initiates the localization process and 
gradually progresses in neighborhood horizontally (by virtue of direct 
shear). At the onset of localization shear band can propagate in any critical 
direction (horizontally or vertically) due to symmetric model. But in this 
case, a guided shear band development in the direction of globally applied 
displacement is achieved. 

For sake of brevity, only three cases are considered where globally 
applied displacement rates are equal to 0.07mm/min, 0.007mm/min and 
0.0014mm/min. In other words, the first two displacement rates are 50 
times (0.07mm/min) and 5 times (0.007mm/min) faster than the slowest 
displacement rate i.e. 0.0014mm/min. Table 1 represents the growth of 
shear band at three different shear strain level e.g. 0.7%, 1.2% and 2%, for 
these displacement rates. 

The slowest (0.0014mm/min) deformation rate delays the localization 
occurrence; refer Table 5.1, on other hand fastest deformation rate 
(0.07mm/min) can cause a rapid localization. In order to justify this 
statement, for instance, choose a strain level of 1.2 % and compare the 
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localization pattern for all three deformation rates. At higher rate, shear 
band developed more dominating and distinct, on other hand, at the 
slowest rate is plastic strain distribution is more diffused in behaviour and 
yet to localized in a well defined state. 

Excess drainage of pore water from shear band at slower rate causes less 
reduction in effective stresses and hence post peak stress strain response is 
not as severe as in case of faster deformation rate. However, end result is 
same for all the cases, apart from different magnitude of plastic strain 
within shear band. The same time it must also be noted that finite element 
analysis is certainly suffer from mesh dependency. However, coupled 
analyses helps to make well posed situation up to a certain extent but at the 
higher strain, hydraulic gradient between two gauss point becomes very 
high, plastic strain distribution also becomes irregular, as shown in Fig. 
5.1, and mesh dependent result yields. 

Fig. 5.1. Incremental and total shear strains along the shear band at higher strain
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5.2 Effect of Excess Pore Water Pressure 

According to laboratory observation, in drained test, depending on the 
stress level, material exhibits a dilating or contracting behavior. In the 
undrained test due to incompressibility of pore water will induced pore 
water pressure changes (Liu 2003).

Desrues (2004) describes that the low over consolidated clays have ten-
dency of local drainage within a global undrained boundary of specimen. 
By finite element simulation and analytical solution proposed by Thakur et 
al (2005) shows that generation of excess pore pressure is one of the major 
reasons for localization in soft and sensitive clays. A rate dependent partial 
drainage characteristics coupled with localization not only influences the 
strain softening behavior but also affect the shear band thick-ness. Clays 
have a global undrained boundary and so global volumetric change must 
be zero, however internal exchange between contracting zones i.e. shear 
bands and swelling zone i.e. elastically unloading body is possible. 

From Fig. 5.2, at higher deformation rate, high excess pore pressure 
develops within shear band and vise versa. Higher deformation rate also 
represent a more undrained situation where pore pressure is accumulated 
within shear band and thus stain softening is more pronounce. In case of 
slower rate of deformation, there is sufficient time for pore water to escape 
and hence accumulated pore water pressure within shear band is also less 
which ultimately causes a reduction in rate of softening and hence results 
are less mesh sensitive. 

Fig. 5.2. Rate dependent pore water pressure accumulated inside shear band 
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Sufficient drained condition can also be responsible for a steady state 
situation, rate of pore water pressure generation and dissipation is constant, 
that can lead to a definite thickness of shear band. Smooth transition of 
pore water diffusion is observed at lower strain rates. At higher strain rate, 
due to lack of sufficient time to reach a steady state situation, pore water 
distribution profile along and across the shear band is abrupt, refer Fig.5.3. 

Fig. 5.3. Pore water pressure profile 

5.3 Material Behavior 

Well known that at the onset of localization domain divide in two parts i.e. 
localized and elastically unloaded part. Localized part, so called shear 
band emerges at low displacement and contracts as the strain concentration 
increases. Due to incompressibility of pore water, excess pore pressure 
develops and cause reduction in effective stress and so the mobilization. 
This statement is valid for post peak condition within the perspective of 
the model used for this study. 
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Once the partial drainage occurs, there will be a local volume change 
however global volume of the body remains constant. Shear band reduces 
to an equal volume replaced by the elastically swollen media. Change in 
volume depends how fast pore water is transported from shear band. If a 
situation when the rate of pore water pressure dissipation equal to the rate 
of pore water pressure generation, i.e. a steady state condition, the 
contraction in shear band will also stop because effective stresses will not 
decrease anymore. In such a situation, a definite thickness of shear band 
can be expected. Fig. 5.4, represents a rate dependent stress strain 
characteristics, with the decrease in strain rate, strain softening is also 
reducing.

Fig. 5.4. Stress strain curve 

From the present study, it is also understandable that simple material 
models can only predict the real characteristics of localization within a 
limited gamut. One of the important reasons to obtain mesh sensitive 
results is due to insufficient loading and unloading criterion in constitutive 
modeling. This becomes more severe with over simplified simple material 
models.  

Fig. 5.5 shows a typical effective stress path for the DSS model analyses, 
five different gauss points has been chosen, A,B,C,D and E. Point A  of the 
material and with equally increasing distance (in vertical direction) from 
shear band respectively. In the beginning A, B localizes, however C, D, E 
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never reaches to yield and starts unloading. Gauss point A always retains 
in localization state and hence passes along the failure line. On other 
hands, point B travel in failure line for some distance and than unloaded 
due to contracting shear band but parallel to failure line, due to decrease of 
effective stress caused by gain of high excess pore pressure from the 
neighborhood. Similarly, point C, D, and E also violate the constitutive 
rule where elastically unloading must be a rigid body motion without 
changing its effective stress state. 

Especially point B which receives a high excess pore pressure from the 
shear band (point A) must also develop some plastic strain due to change 
in mobilization and a mesh independent result can be expected. Since the 
present model is not robust enough to take in account such type of facts 
and hence only one gauss point A remain under softening branch and mesh 
dependent results achieved. In sort, if proper criteria must utilize then a 
finite element analyses can also be well posed up to certain extent within 
the contrast of coupled analyses. 

Fig. 5.5. The effective stress path 
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6 Conclusions 

This study brings out the importance of solid fluid interaction within the 
perspective of strain localization in soft clays. An introductory exercise is 
chosen to demonstrate the mechanism of shear band and pore water flow 
using a simple constitutive model in finite element analyses. Rate 
dependent pore water diffusion from shear band and consequently, strain 
softening rate are analogously discussed. Inherence regularization in a 
form of hydraulic gradient helps to handle post peak softening. Elasto- 
plastic frame work with fluid coupling can also be a sufficient tool to 
handle strain softening problem. However, in order to validate this 
statement, a robust model must be utilized and practiced for complete 
boundary value problems. In short, contracting behavior of shear bands 
and pore water diffusion not only a complementary characteristics in 
porous media but also opens a new technique to regularize the ill posed 
boundary value problem. 
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Summary

We have developed a simulation method to predict the ground deformation 
due to the dissociation of methane hydrate. In the dissociation process, the 
phase change from solid to fluids leads to the change in partial stresses in 
the porous media, which will cause the ground deformation. The 
simulations are based on the chemo-thermo-mechanical coupled finite 
element analysis, in which the phase change, the flow of pore fluids, the 
mechanical behavior of solid skeleton, and heat transfer are simultaneously 
solved. We treat the ground as unsaturated soils, and apply an elasto-
viscoplastic constitutive model to the soil skeleton. Using the proposed 
method, we have numerically analyzed the dissociation process for heating 
methods. Ground deformation has been predicted which is caused by water 
and gas generation during the dissociation. 

1 Introduction 

Hydrates are treated as a potential energy resource for the 21st century 
because a large amount of methane gas is contained in hydrate reservoirs. 
The impact of gas hydrate dissociation on the ground stability is important 
for evaluating the safety of offshore structures as well as for understanding 
environmental effect. From an environmental point of view it is necessary 
to predict the long-term behavior of reservoir and surrounding ground due 
to the dissociation. In order to accurately predict the behavior of sea 
ground due to the dissociation of natural gas hydrate, it is necessary to 
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develop a powerful simulator considering soil deformation as well as gas 
production. In the past few years, some numerical simulators to evaluate 
gas production values have been developed. Masuda et al. (2002) and 
Ahmadi et al. (2004) have developed a numerical model by using finite 
difference method for predicting gas and water flow with hydrate 
dissociation. They consider fluid transfer and heat transfer, however, solid 
phases are assumed to be immobile. Some other simulators have been 
developed, however, in most of them the solid phases are assumed to be 
rigid (e.g., Bejan et al. 2002; Tsypkin 2000; Bondarev and Kapitonova 
1999). Klar and Soga (2005) presented flow-deformation analysis of 
methane hydrate extraction problems using finite difference code. They 
treat hydrate-solid mixture as plastic material which strength is a function 
of hydrate saturation. Heat transfer has not been considered in the model. 
Therefore the powerful simulator which can consider chemo-thermo-
mechanical coupling behavior needs to be developed in order to 
investigate the ground stability during gas production. 

The proposed analysis in the present paper is based on the fundamental 
concept of theory of porous media (e.g. Ehlers 2003) and the extended 
Biot’s theory (1956). Materials are assumed to be composed of solid, 
water, and gas, which are continuously distributed over the space. In the 
simulation, dissociation occurs when hydrated pass out the stability zone 
which is described by pressure and temperature (Bejan et al. 2002). In 
order to consider phase change caused by dissociation, the mass increasing 
ratio of water, gas and dissociation heat ratio is introduced in the mass 
conservation law and the energy conservation law. Water and gas flows 
are assumed to be controlled by Darcy’s type law. 

In the dissociation process, the generated gas pressure cannot be 
neglected, and hence soil mechanics under unsaturated state becomes 
important to predict the ground deformation. In the modeling of mechanic-
cal behavior for unsaturated soil, it is necessary to choose appropriate 
stress variables which control the mechanical behavior. Furthermore, the 
effect of suction has to be described in the model. In the present study the 
average skeleton stress, which is determined from the difference between 
the total stress and the average pore fluid pressure, is used as the stress 
variables in the constitutive model. The effect of suction is expressed in 
the constitutive equation, as shrinkage or expansion of the yield surface. 
An elasto-viscoplastic constitutive model is adopted for the soil skeleton, 
since the hydrate reservoir around Japan archipelago is laminated with 
sand, clay, and silt. Several material parameters were determined 
considering the results obtained by the field research at Nankai Ocean. 
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2 Simulation Method 

2.1 Multiphase Mixture Theory 

Geomaterials generally fall into the category of multiphase materials. They 
are basically composed of soil particles, water, and air. The behavior of 
multiphase materials can be described within the framework of a macro-
scopic continuum mechanical approach through the use of the theory of 
porous media (Boer 1998). The theory is considered to be a generalization 
of Biot’s two-phase mixture theory for saturated soil (Biot 1941; Biot 
1955; Biot 1956). 

Proceeding from the general geometrically non-linear formulation, go-
verning balance relations for the multiphase materials can be obtained 
(e.g., Boer 1998; Loret and Khalili 2000; Ehlers 2003; Ehlers et al. 2004). 
Mass conservation laws for the gas phase as well as for the liquid phase 
are considered in those analyses. In the field of geotechnics, air pressure is 
assumed to be zero in many research works (e.g., Sheng et al. 2003), since 
geomaterials usually exist in an unsaturated state near the ground surface. 
Considering the hydrate dissociation, however, we have to deal with a high 
level of gas pressure under the deep ground; this means that the mass 
balance for both phases has to be considered. 

Furthermore, the conservation of energy is required when there is a con-
siderable change in temperature during the deformation process. Vardoula-
kis (2002) has shown that the temperature in saturated clay rises with 
plastic deformation. Oka et al. (2004) has simulated the thermal consolida-
tion process. Hydrate dissociation is an endothermic reaction, and heat 
transfer plays an important role in gas production and in ground deforma-
tion.

2.2 General Setting 

Materials are composed of four phases, namely, solid (S), water (W), gas 
(G) which are continuously distributed over space, and hydrates (H). For 
simplicity, we assume that hydrates (H) move with the solid phase before 
dissociation. Total volume V is obtained from the sum of the partial volu-
mes of the constituents, namely, 

),,,( HGWSaVV
a

a
(2.1)

The volume of the void Vv , which is composed of water, gas, and hydra-
tes is given in the following:
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),,( HGWVV v
(2.2)

Volume fraction na is defined as the local ratio of the volume element 
with respect to the total volume, in other words, 

V
Vn (2.3)

),,,(1 HGWSn (2.4)

The volume fraction of the void, n, is written as 

),,(1 HGWn
V

VV
V
Vnn s

sv

(2.5)

The volume fraction of the fluid, nF, is given by 

),( GWnnnn HF
(2.6)

In addition, water saturation is required in the triphasic model, namely, 

F

W

GW

W

GW

W

r n
n

nn
n

VV
Vs (2.7)

2.3 Conservations of Mass 

The conservations of mass for phase (=W,G) are given in the following 
equation as: 

),(, GWmqn
t iMi (2.8)

in which  is the material density, Miq is the flux vector of the fluid and 

m  is the mass rate of phase per unit volume generated by dissociation. 
The flux vector is expressed with the relative velocity of flow, iV , namely, 

),( GWvvnV S
iii (2.9)

),(, GWVq iiMi (2.10)
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where iV is the velocity of phase . The conservation laws in Eq. (2.8) for 
the water and the gas phases are expressed with water saturation sr and the 
volume fraction of the void, n as: 

W

W
W
ii

F
r

F
r

mVnsns , (2.11)

G

G

G

G
ii

G

G

G
F

r
F

r
F

r
mV

nsnsns ,11 (2.12)

The water density is assumed to be constant in Eq. (2.11). The volume 
fraction changing rate of hydrates is given by 

H

HH
H m

V
Vn (2.13)

where 0Hn when dissociation occurs, and Hm is a mass decreasing ratio 
of hydrates. 

2.4 Skeleton Stress 

In the theory of porous media, the concept of the effective stress tensor, 
which is related to the deformation of the soil skeleton, plays an important 
role. The effective stress tensor has been defined by Terzaghi (1943) for 
water saturated soil; however, the effective stress needs to be redefined if 
the fluid is made of compressible materials. In the present study, the skele-
ton stress ij is defined, which is used as the stress variables in the consti-
tutive relation for the soil skeleton (Jommi 2000; Gallipoli et al. 2003). 

ij
F

ijij P (2.14)

ij is the total stress and PF is the average pressure of the fluids surround-
ing the grain (Schrefler 1996) expressed by 

G
r

W
r

F PsPsP 1 (2.15)

in which PW is the pore water pressure and PG is the pore gas pressure. 

2.5 Conservation of Momentum 

The momentum balance is required for each phase, namely, 
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GWSPFnn iijiji ,,~
, (2.16)

in which iF  is the gravity force and iP~ is related to the interaction term 
given by 

GWSDDDP iii ,,,~
(2.17)

where D  are parameters which describe the interaction with each phase. 
The momentum balance equation for each phase is obtained in the fol-
lowing equations when the acceleration is disregarded as: 
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where D  is given in the following: 

G

GG
WS

W

WW
WS

k
gnD

k
gnD

22

, (2.21)

in which kW and kG are the permeability coefficients for the water and the 
gas phases, g is the acceleration of gravity. 

When we assume that the space derivative of volume fraction in, , is 
negligible and the interaction between water and gas phases DGW and DWG

is zero, Darcy’s type laws for the water phase and the gas phase are 
obtained from Eqs. (2.19) and (2.20) as: 

i
WW

iW

W
S
i

W
i

WW
i FP

g
kvvnV , (2.22)

i
GG

iG

G
S
i

G
i

GG
i FP

g
kvvnV , (2.23)

In the analysis, the gravity force of the gas phase is neglected. The sum 
of Eqs. (2.18) – (2.20) leads to 

0, i
E

jji F (2.24)

GWSnE ,, (2.25)

The rate type of conservation of momentum is given by 
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0, jjiS (2.26)

where jjiS , is the total nominal stress rate tensor defined as 

qiqjijppijjji LLS , (2.27)

where ij is the Cauchy stress tensor, ij is the time rate of stress, and Lij is 
the velocity gradient tensor. The relations between Cauchy stress tensor 
and the skeleton Cauchy stress tensor is given in Eq. (2.14) as 

ij
F

ijij P (2.28)

From the above equations, we obtain 

jkik
F

ij
F

kkij
F

ijij LPPLPSS (2.29)

in which, ijS  is the skeleton nominal stress rate tensor. 

2.6 Conservation of Energy 

The following energy conservation equation is applied for considering the 
heat conductivity and the heat sink rate with hydrate dissociation: 

H
iiij

vp
ij

E QhDc , (2.30)

HGWScnc E ,,, (2.31)

where c is the specific heat, (K) is the temperature for all the phases, 
vp
ijD is viscoplastic stretching tensor and HQ is the dissociation heat rate 

per unit volume by hydrate dissociation. 

V
QNQ

H
H (2.32)

where Q (kJ/kmol) is the dissociation heat per unit kilo mole (Kuustraa et 
al. 1983), and it changes with temperature: 

744.1656599Q (2.33)

hi denotes heat flux defined as

),(,, GWnh E
i

E
i (2.34)

in which  is the thermal conductivity. 
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2.7 Suction-Saturation Relation 

The relation between suction and saturation is given in the following 
equation proposed by van Genuchten (1980). 

mnC
re Ps 1 (2.35)

in which , m and n are the material parameters, and m =1-1/n  is assumed. 
PC (=PG -PW) is the suction and sre is the effective saturation as 

minmax

min

rr

rr
re ss

sss (2.36)

where srmax and srmin are the maximum and the minimum values of suction, 
respectively. 

3  Dissociation of Hydrates 

If the conditions for pore pressure and temperature shift to the unstable 
region given in the following equation (Bejan et al. 2002) as schematically 
shown in Fig. 5.1, gas hydrates dissociate into water and gas with the re-
action expressed in Eq. (3.2). The average pressure of fluids PF is regarded 
as pore pressure P in the analysis. 

T
bcP exp   (Unstable region) (3.1)

)()()( 4224 gasCHwaterOnHhydrateOnHCH (3.2)

where a, b and c are material parameters. n is a hydrate number and is 
assumed to be 5.75. Dissociation ratio HN (kmol/s) is given by following 
Kim-Bishnoi’s equation (Kim et al., 1987): 

3
2

3
1

0

9400
10 exp10585.0 HHeH NNPPN (3.3)

in which NH (kmol) is moles of hydrates in volume V (m3), NHo (kmol) is 
moles of hydrates at initial state, P (kPa) is average pore pressure Pe is
equilibrium pressure at temperature (K). 0HN  when dissociation oc-
curs. Water and gas generating ratios are given by 

HW NN 75.5 (3.4)

HG NN (3.5)
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The mass increasing ratio (t/sec/m3) for hydrates, water, and gas phase 
required in mass conservation law Eqs. (2.11), (2.12), and (2.13) is given 
as follows: 

310/VMNm HHH (3.6)

310/VMNm WWW (3.7)

310/VMNm GGG (3.8)

in which MH, MW, MG (kg/kmol) are the molecular weights for each mate-
rial.

4 Constitutive Model for Soil 

4.1 Elasto-Viscoplastic Model for Unsaturated Soil

Natural hydrates exist between soil particles and are considered to have a 
bonding effect which makes the solid phase hard. From this point of view, 
we assume that the soil is a rigid elastic material before dissociation, and 
that the soil is an elasto-viscoplastic material after dissociation. An elasto-
viscoplastic model for the overstress-type of viscoplasticity with soil stru-
cture degradation for saturated soil (Kimoto et al. 2004) has been extended 
to unsaturated soil using the skeleton stress and the newly introduced 
suction effect within the constitutive model (Kim et al. 2005).  

It is assumed that the strain rate tensor consists of elastic stretching 
tensor e

ijD and viscoplastic stretching tensor vp
ijD as: 

vp
ij

e
ijij DDD (4.1)

The elastic stretching is given by a generalized Hooke type of law, na-
mely,

ij
m

m
ij

e
ij e

S
G

D
)1(32

1
(4.2)

where ijS is the deviatoric stress tensor, m is the mean skeleton stress, G is 
the elastic shear coefficient, e is the initial void ratio,  is the swelling 
index, and the superimposed dot denotes the time differentiation. 
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4.2 Overconsolidation Boundary Surface

In this model, it is assumed that there is an overconsolidation (OC) boun-
dary surface that delineates the normally consolidated (NC) region, fb  0, 
and the overconsolidated region, fb < 0as follows: 

0ln**
)0(

mb

m
mb Mf (4.3)

mijijijijijij S /, *2
1

*
)0(

**
)0(

**
)0(

(4.4)

vp
v

C
mamb

ezP 1exp, (4.5)

where *
mM is the value of ***

ijij when the volumetric strain increment 

changes from compression to dilating, which is equal to the ratio *
fM  at 

the critical state, mb is the hardening parameter,  is the compression 
index,  is the swelling index, and b is a material parameter which is 
determined by the m -axis intercept of the critical state line. *

)0(ij is the 
stress ration at the end of the anisotropic consolidation. In the value of 

zPC
ma , , which controls the size of the surface, suction effect is intro-

duced (Kim et al. 2005). 

1exp1, C

C
i

dIma
C

ma P
PsSzP (4.6)

where C
iP is the initial value of suction, CP is the present value of suction, 

SI denotes the material parameter which denotes the strength ratio to the 
saturated soil when the suction is C

iP . ds is the parameter which controls 

the rate of the increasing or decreasing strength. In the initial state of C
iP ,

the strength ratio of the unsaturated soil to the saturated soil is 1+ SI, and it 
decreases with a decrease in suction. ma is a strain softening parameter 
used to describe the degradation of the material caused by structural chan-
ges, namely, 

zmafmaimafma exp (4.7)
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vp
ij

vp
ij

t

zdtzz
0

, (4.8)

in which mai  and maf  are the initial and the final values of ma ,  is a 
material parameter which controls the rate of structural changes, and z is
an accumulation of the second invariant of viscoplastic strain rate vp

ij . De-
tails of the constitutive model with soil structure degradation are given by 
Kimoto et al. (2004). 

4.3 Static Yield Surface  

The static yield function is given by Eq. (4.9). 

0ln~
)(

**
)0( s

my

m
y Mf (4.9)

In the same way as the overconsolidation boundary surface, the suction 
effect is introduced in the value of )(s

my .

vp
kk

s
myi

mai

C
mas

my
ezP 1exp, )()( (4.10)

The value of )(s
my changes with changes in zPC

ma ,  when suction in-
creases or decreases. 

4.4 Viscoplastic Potential Surface

The plastic potential surface is described as: 

0ln~ **
)0(

mp

m
p Mf (4.11)

where *~M is assumed to be constant in the NC region and varies with the
current stress in the OC region as

regionOC

regionNCM
M

mcm

ijij

m

:
/ln

:
~ **

*

* (4.12)
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where *~M is the value of mijij /** at the critical state, and mc  denotes 

the mean skeleton stress at the intersection of the overconsolidation boun-
dary surface and the m axis as: 

*

*
)0(

*
)0(exp
m

ijij
mbmc M

(4.13)

4.5 Viscoplastic Flow Rule 

The viscoplastic stretching tensor is given as the following equation based 
on Perzyna's type of viscoplastic theory (Oka 1982; Oka et al. 2004) as: 

ij

p
yijkl

vp
ij

f
fCD 1 (4.14)

bCbCbC jkiljlikklijijkl 23,2, 21 (4.15)

in which are Macaulay’s brackets; xfxf , if x > 0, =0 if x  0. 
C1 and C2 are the viscoplastic parameters for the deviatoric component and 
the volumetric component respectively. 1 indicates the strain rate sensiti-
vity. Based on the experimental data from the strain rate constant triaxial 
tests, material function 1 is given as: 

mb

m
m

s
my

m
my

MmC

MmCf

ln~exp

ln~exp

**

)(
**

1

(4.16)

)(
* ln~exp s

myi

maiMmCC (4.17)

Finally the viscoplastic stretching tensor is given in the following 
equation as: 

kl

p

mb

m
ijkl

vp
ij

f
MmCD ln~exp **

)0( (4.18)
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5 Simulation Examples 

The weak forms of Eqs. (2.11), (2.12), (2.26), and (2.30) are discretized in 
space and solved by a finite element method. The independent variables 
are nodal velocity, pore water pressure, pore gas pressure, and temperature. 
In the finite-element formulation, an eight-node quadrilateral element with 
a reduced Gaussian integration is used for the displacement, and four 
corner nodes are used for the pore pressures, and the temperature. For the 
time discretization, the backward finite difference method is used. An 
eight-node quadrilateral isoparametric element with a reduced Gaussian 
four points integration is used for the displacement, and the pore water 
pressure, the pore gas pressure, and the temperature are defined by four 
node quadrilateral isoparametric element. 

We have simulated dissociation by heating in the seabed ground. Finite 
element meshes and boundary conditions are shown in Fig. 5.2, and Table 
5.1. All elements are initially in a stable state, that is, they have a pressure 
level of 11 MPa and a temperature of 282 K, as shown in Fig. 5.2. The 
bottom edge is heated to promote dissociation, and water and gas can flow 
out from the bottom edge. The initial conditions are listed in Table 5.2. 
Material parameters for soil listed in Table 5.3 are determined considering 
the results obtained by the field research at Nankai Ocean. The parameters 
for the suction-saturation relation are listed in Table 5.4. The initial water 
permeabi-lity set to be 1.0×10-9 m/s, and the gas permeability is set to be 
1.0×10-8 m/s. Notice that the gas permeability is equal to zero before 
dissociation, whereas it takes constant value and gas can flow out after 
dissociation.

Changes in moles of hydrates in each element are shown in Fig. 5.4. The 
dissociation progresses from the bottom to the top of the elements, and it 
takes longer time for dissociation for the upper element. From Fig. 5.5, 
temperature takes constant value around 286 kPa in the elements during 
dissociation. It means that the obtained all of the heat is consumed for 
dissociation and the temperature-pressure relation is on the equilibrium 
curve in Fig. 5.1. Fig. 5.6 shows generated gas pressure at nodes. The gas 
is generated at each node when the dissociation takes place and then it 
flows out. In contrast, the water pressure decreases during the dissociation 
as shown in Fig. 5.7, which results in the increases of skeleton stress. 
Compressive deformation takes place as shown in Fig. 5.8. In this case, 
viscoplastic deformation is small and deformation recovers after dissocia-
tion. One of the reasons for the behavior is that we do not consider the 
structural change caused by dissociation, namely, strength dependency on 
hydrates saturation and thermal softening. 
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Fig. 5.1. Stable zone of hydrates 

Fig. 5.2. Simulation model 

Table 5.1. Boundary conditions 

displacement pore water pore gas heat 

1 fixed in x-direction permeable 
(11MPa) impermeable zero heat flux 

2 fixed in x-direction impermeable impermeable zero heat flux 

3 fixed in x,y-
direction 

permeable 
(11MPa) 

permeable 
(11MPa) fixed (322K) 
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Table 5.2. Initial conditions 

Initial void ratio 5.0n
Initial volume ratio of hydrate 3.0Hn

Initial vertical stress )(0.17250 kPav

Earth pressure at rest 5.00K
Initial saturation 0.10s

Initial pore pressure )(0.110000 kPaPs

Initial temperature )(0.2820 K

Table 5.3. Material parameters for soil 

Elastic shear modulus )(0.53800 kPaG
Compression index 169.0

Swelling index 017.0
Consolidation yield stress )(0.1150 kPambi

Stress ratio at maximum compression 08.1*
mM

Viscoplastic parameter 0.23m
Viscoplastic parameter )/1(100.1 12

0 sC
Structural parameter 0
Suction parameter )(200 kPaPC

i

Suction parameter 8.0IS
Suction parameter 0.5ds

Table 5.4. Parameters for suction-saturation relations 

van Genuchten parameter 0025.0
van Genuchten parameter 0.10n

maximum saturation 0.1maxs
minimum saturation 0.0mins
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Fig. 5.3. Numbers of elements and nodes 

Fig. 5.4. Moles of hydrates-time relations 



Sayuri Kimoto, Fusao Oka, Masaya Fujiwaki and Yuji Fujita   377                      

Fig. 5.5. Temperature-time relations 

Fig. 5.6. Gas pressure-time relations 
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Fig. 5.7. Water pressure-time relations 

Fig. 5.8. Displacement-time relations 
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6 Conclusions 

We have developed a chemo-thermo-mechanical coupled simulation me-
thod to predict the ground stability during hydrate dissociation. From the 
simulations, the ground deformation can be predicted due to the ejection of 
pore fluid and change in pore pressure. To predict actual mechanical 
behavior, saturation dependency of permeability, and strength degradation 
caused by loss of hydrates have to be introduced in the future work. 
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Summary

This study presents numerical framework for predicting impact force of 
geomaterial flow against a retaining structure. The numerical scheme used 
in this study is CCUP method that is based on fluid dynamics. In order to 
describe behavior of geomaterials, the Mohr-Coulomb failure criterion is 
introduced into the Bingham plastic fluid model. To validate the numerical 
framework, a series of laboratory experiments related to impact force of 
geomaterial flow against a retaining structure were conducted, and then 
simulations of the experiments were carried out. In this paper, the 
numerical framework, the laboratory experiments and numerical 
simulations are explained, and effectiveness of the numerical framework is 
discussed.

1 Introduction 

Slope disasters, such as landslide, slope failure and soil avalanche have 
caused loss of many lives and huge damage to important infrastructures. 
Especially, in Japan, the disasters have occurred year after year. For 
example, during the 1995 Hyogoken-Nanbu earthquake, a large-scale 
landslide occurred at Nishinomiya city in Hyogo Prefecture (Sabo 
Technical Center, 1995). Other reported incidents, which caused many 
casualties, include a soil avalanche that occurred at Izumi City, Kagoshima 
Prefecture in 1997 (Kitamura et al., 1998, Iwamatsu, 1997) and another 
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soil avalanche that took place at Minamata City, Kumamoto Prefecture in 
2003 (Iwao, 2003, Taniguchi, 2003).  

In order to reduce damages from slope disasters, it is important to predict 
the behavior of geomaterial flow, such as traveling distance and impact 
force against a retaining structure. As far as traveling distance concerned, 
some methods have been proposed, and can be classified into two 
categories. One group is the methods based on statistical processing 
(Scheidegger (1973), Moriwaki (1987)). And the other group is based on 
numerical calculation using physical model (Ashida et al. (1983)). 
Although these methods can predict traveling distance of sediment simply, 
it is difficult to reflect the influence of an important factor, the slope 
configuration. In addition, the methods cannot describe precisely the 
behavior of the sediment during flow, such as the speed of the flow and 
configuration of flow sediment. It is necessary to conduct numerical 
simulation to know detail behavior of geomaterial flow. It is, however, 
difficult to simulate geomaterial flow using traditional methods based on 
continuum mechanics with lagrangean mesh framework, such as the Finite 
Element Method (FEM). Although, the Arbitrary Lagrangian-Eulerian 
(ALE) method (Hughes et al., 1981) has been applied to deformation 
analysis of geomaterials, it is still incapable of treating extreme large 
deformation problems.  

There is different way to simulate behavior of geomaterials at large 
deformation region. Trunk and Dent (1986), Sousa and Voight (1991), 
Uzuoka et al. (1998), Hadush et al. (2001) and Moriguchi et al. (2005) 
proposed numerical methods based on fluid dynamics with non-Newtonian 
fluid models for the deformation analysis of geomaterials. In these works, 
geomaterials are assumed to be viscous fluids. The proposed methods can 
treat large deformation of geomaterials in the framework of Eulerian mesh. 
Uzuoka et al. (1998) and Moriguchi et al. (2005) conducted simulation of 
real geomaterial flow to validate the proposed methods. According to the 
simulated results, it was confirmed that the methods are effective to predict 
flow behavior and traveling distance of sediment. Additionally, Moriguchi 
et al (2005) proposed fluid model with the Mohr-Coulomb failure 
criterion, and it was confirmed that deformation of geomaterials can be 
described using the friction angle and the cohesion in the framework of 
fluid dynamics.  

It is important to know traveling distance of sediment for predicting 
damage from slope disasters. As mentioned above, it can be considered 
that the methods based on fluid dynamics with non-Newtonian fluid 
models are effective for predicting traveling distance. The effectiveness of 
the methods for impact force against a retaining structure, however, has 
not been confirmed in previous study. In this study, a series of laboratory 
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experiments are conducted, and numerical simulations of the experiments 
are carried out using a method based on fluid dynamics to validate the 
numerical framework based on fluid dynamics. 

2 Numerical Framework 

2.1 Constitutive Model 

In this study, geomaterial is assumed to be a special fluid that has the shear 
strength. Chen and Ling (1996, 1998) proposed generalized visco-plastic 
fluid models to describe the behavior of granular flow. In their models, the 
shear rate is used as the most important parameter among other parameters 
such as grain concentration and grain size. Although we can predict 
rheological behavior of geomaterials with granular characteristics by those 
models, it is still difficult to express the real phenomena in simulations 
with many parameters. In this study, a simplified fluid model is used to 
describe behavior of geomaterial. The fluid model used in this study is 
obtained by modifying the Bingham plastic fluid model. The behavior of 
the Bingham fluid can be expressed in one-dimensional condition as 
follow,

y0 (2.1)

where  is the shear stress, o  is viscosity after yield,  is the shear 
strain rate and y  is shear strength. From Equation 1, an equivalent 
Newtonian viscosity of the Bingham fluid can be obtained. The equivalent 
viscosity is expressed by following equation. 

y
0 (2.2)

Figure 2.1 shows behavior of the Bingham fluid and the concept of the 
equivalent viscosity. As shown in Equation 2.1, the shear stress of the 
Bingham fluid is described as a linear function of shear strain rate. Shear 
strength of the Bingham fluid is expressed as intercept of the liner 
function. In Figure 2.1, a solid line describes the behavior of the Bingham 
fluid, and a dashed line expresses the behavior of an equivalent Newtonian 
fluid. The equivalent viscosity  is described as the gradient of the 
dashed line. In other words,  is an apparent viscosity of the Bingham 
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fluid. If the shear strain rate increases, the dashed line moves in the 
direction of (A) as shown in Figure 2.1, and the equivalent viscosity 
coefficient becomes smaller. Likewise, when the shear strain decreases and 
the dashed line moves in the direction of (B) then the equivalent viscosity 
coefficient becomes larger. An infinite value of the equivalent viscosity 
arises when shear strain rate equals to zero. It is impossible to treat such 
infinite value in numerical calculations. In order to avoid the numerical 
difficulty, the maximum value for the equivalent viscosity is defined as 
below,

maxmax

max0

if

ify

(2.3)

where max  is maximum equivalent viscosity. Using this concept, the 
Bingham model is described as a bi-liner model as shown in Figure. 2.2. 
The relationship between the equivalent viscosity and the shear strain rate 
is described in Figure 2.3. As shown in Figure 2.3, max  and o  defines 
the maximum and minimum value of the equivalent viscosity. In the 
simulation conducted in this study, the equivalent viscosity is constant 
value in one calculation step, and  is updated step by step. In the 
calculation for  in two and three-dimensional condition, the shear strain 
rate  is defined using second invariant of shear strain tensor ijV as follow, 

ijijVV
2
1 (2.4)

in which, 

i

j

j

i
ij x

u
x
uV

2
1

(2.5)

where iu  is the velocity vector. 
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Using the equivalent Newtonian viscosity, the behavior of the Bingham 
model can be expressed in the numerical analysis. The original Bingham 
model, however, cannot describe deformation behavior of geomaterials 
perfectly. In order to express the shear strength of geomaterial, Moriguchi 
et al (2005) introduced the Mohr-Coulomb failure criterion into the Bing-
ham model. The Mohr-Coulomb failure criterion is described as follows, 

cny tan (2.6)

where y  is the shear strength of geomaterial, n  is the effective stress, 
is the internal friction angle and c  is the cohesion. Substituting the shear 
strength derived from Equation 2.6 into Equation 2.1, the modified 
Bingham model with shear strength of geomaterial is given as below, 

cn tan0 (2.7)

In this study, as numerical simulations are conducted based on fluid 
dynamics, there is no concept of the effective stress. Therefore, the 
hydrostatic pressure p  is used as a substitute for the normal stress n  as 
follows,

cp tan0 (2.8)

Using the modified Bingham model in Equation 2.8, the equivalent 
viscosity is described as follow, 

maxmax

max0
tan

if

ifcp

(2.9)

The equivalent viscosity is used to describe deformation behavior of 
geomaterials in this study.  

The stress tensor for a Newtonian fluid is described by the following 
equation.

ijijkkijij VVp 2 (2.10)

where ij  is the stress tenser, p  is the hydraulic pressure, ij  is the 

Kronecker delta, ijV  is the shear strain rate tensor,  is the second 
coefficient of viscosity and  is the viscosity coefficient. Here, the 
following hypothesis is introduced.  
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        0
3
2

(2.11)

Above equation describes the relationship between the second coeffi-
cient of viscosity  and the viscosity coefficient , and is called as Stokes 
hypothesis. Based on this hypothesis, Equation 2.10 can be rewritten as 
below,

ijijkkijij VVp 2
3
2

(2.12)

By substituting the equivalent viscosity  for , the constitutive model 
used in this study is given as below, 

ijijkkijij VVp 2
3
2

(2.13)

2.2 Governing Equations 

In this study, following equations are used as governing equations. 

k
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(2.14)
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u
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(2.16)

where iu  is the velocity vector  is the density, sC  is the sound speed and 

ib  is the body force vector. Equation 2.14 shows the continuity equation, 
Equation 2.15 shows the equation related to the pressure, and equation 
2.16 shows the law of linear conservation of momentum. By using the 
constitutive model shown in equation 2.13, the law of linear conservation 
of momentum is described as follow. 
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For Newtonian fluid, generally, the spatial derivative of viscosity is not 
considered. The value of the equivalent viscosity, however, depends on the 
distribution of velocity and pressure as shown in Equation 2.9. This means 
that the equivalent viscosity  has the spatial derivative. Therefore, the 
spatial derivative of  is considered in Equation 2.15.  

2.3 Numerical Scheme 

In this study, CCUP (CIP and Combined, Unified Procedure) method 
(Yabe and Wang, 1991) is used as the numerical scheme. In the numerical 
schemes, the governing equations are split into two parts, called the 
advection phase and the non-advection phase by using the time splitting 
technique.

Advection phase 

0
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t (2.18)
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Non advection phase 

k

k

x
u

t
(2.21)

k

k
s x

u
C

t
p 2 (2.22)



S. Moriguchi, A. Yashima, K. Sawada, M. Ito, S. Hadush and S. Inoue   389 

iij
j

kk
ii

i bV
x

V
xx

p
t

u )(121
3
21

(2.23)

By solving the advection phase and the non-advection phase alternately, 
quantities such as pressure, density and velocity, are updated. In this study, 
the non-advection phases are calculated firstly, and then the advection 
phases are calculated. At the current time step, we have the quantities at 
the previous time step ( n

iu , n , np ). After the non-advection calculation, 

the tentative quantities ( iu , , p ) are obtained, and the quantities at 

current time step ( 1n
iu , 1n , 1np ) are given by solving the advection 

phases. The Eulerian type finite difference scheme is used to solve non-
advection phases as follows, 
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Generally, the pressure term of the Equation 2.18 is solved implicitly, 
and the viscous term is solved explicitly. However, the equivalent 
viscosity  changes greatly with time and space step by step, so that 
numerical instability arises when the viscous term is solved explicitly. 
Therefore, the viscous term is treated implicitly in this study.  

Considering the divergence of Equation 2.26 the following equation is 
given.

i
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(2.28)
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By using the concept of fractional step method (Chorin, 1969), the 
following Poisson equation of pressure is obtained from Equations 2.25 
and 2.28. 

i

n
i

s
n
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n

i x
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tCt
pp

x
p

x
11

22

**

(2.29)

By solving the above Poisson equation, the tentative pressure p  is 
obtained, and then iu  is given from Equation 2.26. Finally, iu  and 
are obtained from Equations 2.24 and 2.27. The matrix derived from 
Equations 2.27 and 2.29 is computed using the Preconditioned Conjugate 
Gradient Squared method (PCGS) (Zhang et al. 1996) with the Incomplete 
LU (ILU) pre-conditioner. In the CCUP method, the sound speed is used 
as a numerical parameter. Thus, it is possible to treat two or more different 
materials with different respective densities in a same calculation domain. 
By using the CCUP method, we can calculate behavior of air and 
geomaterial together, therefore it is not necessary to give a special 
boundary condition for surface of geomaterial. 

After the calculation of the non-advection phase, advection phase is 
solved to get the quantities at current time step ( 1n

iu , 1n , 1np ). In the 
CCUP method, the Constrained Interpolated Profile (CIP) method (Yabe et 
al., 1991, Yabe and Aoki, 1991) is adopted to solve the advection phase. 
The CIP method has some advantages over other methods. Here, a one-
dimensional advection equation is used to simplify the explanation of CIP 
method. One dimensional advection equation is described as below, 

0
x
fu

t
f

(2.30)

where f  stands for physical quantities such as velocity, density and 
pressure. The approximate solution of the above equation is given as: 

),(),( ttuxfttxf ii (2.31)

where ix  is the coordinates of calculation grid. The above equation 
indicates that a specific profile of f  at time tt  is obtained by shifting 
the profile at time t  with a distance tu . Therefore, if the spatial profile of 
f  at time t  can be obtained, the value of f  at each point can be 

predicted. In the numerical analysis, however, the value of f  is kept at 
only grid points, so that it is necessary to interpolate spatial profile 
between grid points. The simplest way for the interpolation is to use linear 
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function. In this case, great difference arises between the interpolated 
profile and exact solution. There is the ways to use high order function to 
overcome this problem. In this case, it is necessary to be careful about 
numerical undershooting and overshooting. On the other hand, in the CIP 
method, a spatial profile between grid points is interpolated considering 
the continuity of spatial derivative of f . Differentiating Equation 2.25 
with a spatial variable x  gives: 

x
ug

x
gu

t
g

(2.32)

where g  stands for the spatial derivative of f  ( xfg ). By solving 
Equations 2.25 and 2.27 simultaneously, not only value of f  but also it’s 
spatial derivative g  can be obtained at each grid points. Therefore, High 
order function can be adapted by using information of a small number of 
grid points. Additionally, the spatial profile can be given without the 
numerical undershooting and overshooting.  

Changes of velocity, density and pressure can be expressed by the 
governing equations. However, changes of viscosity and sound speed are 
not expressed. Especially, value of viscosity and sound speed should be 
given with good accuracy in multi-phase flow analysis. For this purpose, 
density functions (color functions) i  are used to distinguish different 

kinds of materials. Density functions are defined in each element. If i =1,

the element is filled up with the material i , and if i =0, there is no 
material i in the mesh. Using the density functions, the viscosity 
coefficient and the sound speed in each element are calculated as follows, 

)10( iii (2.33)

)10( iisis CC (2.34)

The change of density functions is calculated using following advection 
equation.

0
k

i
k

i

x
u

t (2.35)

In this study, the equivalent viscosity is used to describe the behavior of 
geomaterials, so that it is necessary to pay much attention to the interface 
treatment. For this proposes, a tangent transformation method (Yabe et al. 
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1993) is applied. In the method, density functions are transformed using a 
tangent function as below, 

5.0tan)(H (2.36)

where H  is the transformed density function. In the calculation, this 
transformation is applied before advection calculation, and following 
inverse transformation is applied after advection calculation.  

5.0)(arctan H
(2.37)

Using this technique, the interface of different materials can be kept 
sharply. In this study, the transformation method is applied for the 
treatment of interface of geomaterial. The aforementioned method for 
treatment of boundary surface is similar to the method in the level set 
(Osher and Sethian, 1988, Sussman et al., 1994), however, there is a big 
difference between two methods. In the CIP method, the advection 
equation with a transformed density function H  is solved. Thus, it is 
possible to describe boundary surface sharply, so that it is not necessary to 
conduct re-initialization, which is employed in the level set method. 

3 Laboratory Experiment 

In order to obtain detailed data about the impact force of geomaterial flow 
against a retaining structure, a laboratory experiment, namely sand flow 
experiment, is conducted using a model slope. Figure 3.1 shows the photo 
of the model slope, and Figure 3.2 shows an illustrative figure of the model 
slope. The length of the model slope is 1.8m, and the width is 30 cm. 
Different slope angles, 45, 50, 55, 60 and 65 degree, are used in the 
experiment. Vertical wall is set at the end of the model slope against the 
flow. A transparent acrylic board is used for the side wall of the model 
slope to see whole flow process. The flow process is recorded by a video 
camera. A wooden box, namely sand box, which has a side door, is fixed 
at the upstream side of the model slope. In the experiment, Toyoura sand is 
filled into the box, and the flow is initiated by quickly opening of the door 
of the sand box. Figures 3.3 and 3.4 show the photo and an illustrated 
figure of the sand box, respectively. The total weight of the sand in the box 
is 500N and the average density of the sand is 13.80 kN/m3. The impact 
forces due to the sand flow on the vertical wall are measured using an 
instrument with load cells set in front of the wall. Figures 3.5 and 3.6 show 
a photo and an illustrated figure of the instrument. As shown in Figure 3.6, 
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rollers are used to transfer the impact forces from the surface to the load 
cells. The surface of the model slope is coated with Toyoura sand in order 
to consider friction at the bottom part.  

Fig. 3.1. Photo of the model slope 
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Fig. 3.3. Photo of sand box                
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Fig. 3.4. Photo of sand box 

Fig. 3.5. Photo of instrument for measuring the impact force 
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Fig. 3.6. Illustration of instrument for measuring the impact force 

In the experiment, five different slope angles are used to investigate 
influence of slope angle. Besides, the same experiment is repeated five 
times for each slope angle to investigate reproducibility of the experiment. 
Figure 3.7 shows the time histories of the impact force for each slope angle 
measured in this experiment. These time histories are selected from five 
ones in each case and can be regarded as a typical history for each slope 
angle. Table 3.1 shows the maximum impact force obtained in the experi-
ment. Additionally, the average and standard deviation of the obtained 
maximum impact forces are shown in Table 3.1. As shown in Table 3.1, 
the experimental data show no much scattering. Therefore, it can be consi-
dered that the experimental results are quite convincing. 

Two-dimensional simulations of the sand flow experiment are carried 
out using the numerical framework mentioned before. Figure 3.8 shows 
the numerical model used in this simulation. The numerical model is pre-
pared based on the experimental condition. A sand column of 30 cm high 
and 50 cm wide is set at the upstream side of the slope. Gravity is the only 
external force considered in this simulation and the slope angle is 
described by the gravity forces in the x and y directions as shown in Figure 
3.8. The impact force due to the flowing sand on the downstream wall is 
calculated by the contacted area multiplied with average pressures on the 
wall. The area of the wall is assumed to be 30 cm high as shown in Figure 
3.8. The size of the area is corresponds to the size of the instrument for 
measuring impact force used in the experiment. Table 3.2 shows the 
parameters used in this simulation. In the simulation, sand is assumed to be 
pure granular material, so that the value of cohesion is 0. To determine the 
internal friction angle of the sand, the box shear test was carried out, and 
the value of internal friction angle obtained from the box shear test 
( =41.0) is used in the simulation.  

As is the same in the experiment, five different slope angle cases are 
considered in the simulations. Figure 3.9 shows simulated time histories of 
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the impact force for each slope angle obtained from the simulations. Figure 
3.9 shows the relationship between the slope angles and maximum impact 
force obtained from both the simulations and the experiments. By compa-
ring Figure 3.7 and Figure 3.9, it is found that simulated impact forces are 
smaller than the impact forces obtained from the experiment, and there are 
big difference between simulated data and experimental data. It can be also 
seen from Figure 3.10. The reason of this difference can be considered that 
the value of internal friction angle used in the simulations is not suitable. 
The value of internal friction angle obtained from the box shear test 
corresponds to the static friction angle, but it is necessary to use the kinetic 
friction angle in the simulation. In order to investigate the effect of internal 
friction angle, parametric study was carried out. Based on the numerical 
investigation, it is found that most suitable numerical results are obtained 
when  equal to 30 degree. The simulated results in the case of =30 
degree are descried in Figure 3.11 and 3.12. These figure show simulated 
time histories of the impact force for each slope angle and the relationship 
between the slope angles and maximum impact force, respectively. As 
shown in these figure, there is a good agreement with experimental results 
and simulated results.  

Figures 3.13(a)-(d), 3.14(a)-(d) and 3.15(a)-(d), show surface configure-
tions of the flowing sand at different time steps obtained from experiment 
and simulations in the cases of =41.0 and =30.0. In Figure 3.13 
(experimental result), lines are made at interface of sand to get a better 
view. As is the same about value of impact force, the simulated surface 
configuration in the case of =41.0 dose not correspond with the 
experimental result. On the other hand, there is a good agreement between 
the simulated result in the case of =30.0 and the experimental result.  

Based on the results mentioned above, it is found that the numerical 
method can describe behavior of geomaterial flow including impact force 
and configuration during flow. It is, however, also found that it is impor-
tant to use kinetic friction angle in the numerical simulation, so that a way 
to determine the parameter still remains as unsolved problem. 
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Fig. 3.7. Time history of impact forces from experiment 

Table 3.1. Maximum impact force 

Maximum impact force (N) 

Slope angle (degree) 45 50 55 60 65 

Trial 1 168.9 212.7 269.0 394.1 500.4 

Trial 2 200.2 193.9 262.7 369.1 487.8 

Trial 3 187.7 200.4 265.5 406.6 512.9 

Trial 4 193.9 200.2 294.0 444.1 469.1 

Trial 5 212.7 206.4 300.2 337.7 512.9 

Average 192.7 202.7 276.5 390.3 469.7 

Standard deviation 14.5 6.4 17.4 35.7 16.6 

San d

Aircosggx
singg y

Slope a n gle
g Gra vity

cosggx
singg y

Slope a n gle
g Gra vity

Slope a n gle
g Gra vity

P ressu re 
mea su remen t 
pa rt  

30

180 50

30

20

Un it  : cm

ygg

xg

ygg

xg

F low

Fig. 3.8. Numerical model for simulation of sand flow experiment 
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Table 3.2. Parameters used for simulation of sand flow experiment 

 Air Granular Material 

Density (kN/m3) 0.0125 13.80 

Sound speed (m/s) 340.0 1500.0 

Viscosity coefficient (Pa�s) 0.00002 �

Cohesion (Pa) � 0.0 

Internal friction angle 
(degree) � 41.0 

Mesh size dx,dy (m) dx=0.02    dy=0.02 

Number of mesh Nx×Ny  115×50 
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Fig. 3.9. Simulated time histories of impact force ( =41.0) 
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Fig.  3.11. Simulated time histories of impact force ( =30.0) 
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(a) Initial         (b) After 0.4sec    (c) After 0.8sec     (d) After 1.2sec 

Fig. 3.13. Surface configurations of sand (from experiment) 
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(a) Initial         (b) After 0.4sec    (c) After 0.8sec     (d) After 1.2sec 

Fig.  3.14. Surface configurations of sand (from simulation with =41.0) 

(a) Initial         (b) After 0.4sec    (c) After 0.8sec     (d) After 1.2sec 

Fig. 3.15. Surface configurations of sand (from simulation with =30.0) 

4 Conclusions 

This work presents experiments related to impact force of geomaterial 
flow and its simulations. The Bingham fluid model with the Mohr-
Coulomb failure criterion was used to describe the behavior of geomate-
rial, and the CCUP method was used as a numerical scheme. The results 
from this work are summarized as follows. 
1. In order to reproduce experimental results, we have to use much smaller 

friction angle in simulations than that obtained by usual direct shear 
tests.

2. It is supposed that the appropriate kinetic friction angle used in the 
simulation depends on the shear strain rate. It is necessary to examine 
the relation ship between the value of kinetic friction angle and shear 
strain rate for better simulations. 
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Summary

This paper focuses on the diametral compression of a disc with an “almost 
mathematical” central crack (Centrally Cracked Brazilian Disc - CCBD). 
A 2D finite element methodology is used to study the stress field and the 
Stress Intensity Factors KI and KII at the tips of the crack for different 
values of the crack length, 2L and the crack inclination angle, . By 
changing the crack inclination angle the mode of fracture was varied from 
mode I (tensile) to mixed mode (tension-shear and compression-shear). 
The dimensions of the models fitted those of the specimens (as suggested 
by the international standards), in order to check the numerical results by 
standardized experiments that are planned in the future 

Keywords: Cracked Brazilian test, indirect tensile test, stress intensity 
factors, finite element analysis, caustics. 

1 Introduction 

The conventional method of measuring the tensile strength of rocks is the 
direct tension test, which, however, presents experimental difficulties and 
is not commonly conducted in Rock Mechanics laboratories. This is due to 
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both the bending or torsion moments (developed due to the eccentricity of 
the applied axial loads) and the localized concentrated stresses (caused by 
improper gripping of the specimens) [5, 24].

Because of these experimental difficulties, alternative techniques were 
developed to determine the tensile strength of rocks. The Brazilian test was 
developed to measure indirectly the tensile strength of brittle materials like 
rocks and concrete [6]. In this test, the specimen preparation and the 
experimental setup are simple when compared to other methods. This 
method was also suggested by the I.S.R.M [16] and it uses a circular solid 
disc, which is compressed to failure across the loading diameter. In 
principle, the stress field, which induces tensile failure when the disc is 
compressed diametrically, can be fully determined, provided that the 
material maintains a perfect linear elastic behavior up to the point of 
failure.

The Brazilian test has been under investigation and continuous develop-
ment in rock mechanics since the very first publication on the subject. The 
theoretical fundamentals (i.e. the stress solutions), as they are thoroughly 
discussed by Timoshenko and Goodier [29], were originally proposed by 
Hertz in 1883 and by Mitchell some years later (in 1900). Hondros [15]

proposed a solution for the Brazilian test configuration for the case of 
isotropic rocks along the loading diameter and the horizontal diameter. 
Fairhurst [12] and Collback [10], have set the basic issue of the validity of the 
Brazilian test. Their studies showed that the failure meets the Griffith 
failure criterion [13], and for very small loading angles, failure may occur 
away from the center of the specimen. Addinall and Hackett[1], have 
proved experimentally that the fracture initiation under specific loading 
conditions is a function of the contact area. They also showed that fractu-
ring does not always initiate at the center of the disk. Mellor and Hawkes 
[22], proved that in a successful test fracturing does not initiate under the 
steel platens. They studied the contact stresses under the applied loads and 
as a result, they designed a system of metal jigs with curved contact areas. 
The distributions of the contact forces are still under investigation in the 
rock mechanics community, but in general the test with metal jigs provides 
adequate results for Griffith materials. In 1993, Guo and his colleagues 
proposed the Brazilian test as a method to determine the fracture toughness 
(Kic, i=I,II) [14]. Samples with a center notch were utilised to examine the 
fracture mode in Brazilian tests by Jia et al. [17]. By changing the notch 
inclination angle, with respect to the loading direction, the mode fracture 
was varied from mode I to mixed mode (I+II). A theoretical treatment of 
tangential loading effects on the Brazilian test stress distribution was 
presented by Lavrov and Vervoort [20]. Wang et al. improved Guo’s work 
on the fracture toughness (Kic, i=I,II) [31]. It was made clear that the key 
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problem of center crack initiation must be addressed properly. Wang 
suggested the modification of the circular disk by introducing two flat ends 
at the disk. This modification changes the circumferential loading to 
uniform distributed at the flat ends of the disk. This type of loading is 
assumed to guarantee the center crack initiation.  

Concerning the anisotropic material properties, Pinto [27] extended 
Hondros’s method to anisotropic rocks and checked the validity of his 
methodology on schisteous rock. Recent investigations have led to a closed 
form solution for an anisotropic disc [2,3], a series of charts for the determi-
nation of the stress concentration factors at the center of an anisotropic 
disc [9] and explicit representations of stresses and strains at characteristic 
points of an anisotropic circular disc compressed diametrically [11,18].

Although rocks with pre-existing cracks are a common occurrence, the 
theoretical solutions to these problems find limited application in 
engineering practice and when an analytical solution is available it is quite 
a challenge to deal with. Hence, many researchers have turned to 
numerical approaches to study the Brazilian test such as the boundary 
element and the finite element methods. Bouchard et al. [7] have used the 
finite element method to study the fracture propagation in the Brazilian 
test. Remeshing techniques are used to update the mesh following the 
crack extension. This technique becomes computationally inefficient when 
multiple cracks propagate simultaneously. The advantage of the finite 
element method over the boundary element method is that the former can 
model the material anisotropy more easily and computationally effective. 
Recently, Cai and Kaiser [8] used the distinct element method (micro-
mechanical models) to simulate the Brazilian disk with anisotropic 
material properties as well as to simulate the fracture propagation of pre-
existing cracks.

In this paper, section 2 details the configuration of a Brazilian Disc test 
where an “almost mathematical” crack (almost zero width) is introduced 
passing through the center of the disc. The geometry and boundary condi-
tions of the models used in the numerical analysis are also presented. In 
Section 3, the distributions of the stress components  and r along the 
crack diameter as well as the equivalent stress G are presented in order to 
investigate the center crack initiation. The Stress Intensity Factors KI and 
KII calculated from the numerical models are also illustrated. In Section 4, 
the numerical results for the stress components are discussed and the cal-
culated KI and KII are compared with those presented by Atkinson et al.[4].
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2 The Problem 

2.1 The Scope  

The purpose of the present work is to investigate how a single pre-existing 
crack (of varying length and orientation) affects the stress field a) at the 
center of a Brazilian disc and b) at the crack tip, during diametral compres-
sion. This study focuses on two distinct areas:  

The numerical calculation of the stress components at each point of the 
disc and especially in the critical regimes, i.e. the disc center and the 
crack tip.
The numerical determination of the Stress Intensity Factors KI and KII at 
the crack tips and the determination of the inclination angle , at which 
the crack is under pure mode II loading. 

2.2 The Intact Brazilian Disc 

For the elastic equilibrium of a homogeneous, continuous, isotropic disc 
with diameter D=2R and thickness, t, subjected to a uniform radial pres-
sure, p acting along an arc which corresponds to a loading angle, 2
(original Brazilian test, see Figure 2.1), the exact stress solution on the 
loading diameter is given by the following relationships [11, 15].



  E. Sarris, Z. Agioutantis, K. Kaklis and S. K. Kourkoulis   407 

2

2

2 4 2

r sin2
2p sin2 r R= 1 arctan

Rr r r1 2 cos2 1 cos2
R R R

2

2

r 2 4 2

r sin2
2p sin2 r R= 1 arctan

Rr r r1 2 cos2 1 cos2
R R R

(2.1)

At the center of the disc these stresses become: 
2P=
Dt

r
6P=
Dt

(2.2)

where 2

1

t

t
P= pdt  is the total external force. 

Recently a full field solution has been presented [21] according to which 
the stress components at any point of the disc are given by the following 
relationships:

Fig. 2.1. The intact Brazilian Disc specimen under uniform diametral compression 
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r 1 3 2 4

2 2 2
4 2 2 4 4 2 2 4

p 2 arg t z arg t z arg t z arg t z

sin 2 sin 2
R r R

R 2r R cos 2 r R 2r R cos2 r
(2.3a)

1 3 2 4

2 2 2
4 2 2 4 4 2 2 4

p 2 arg t z arg t z arg t z arg t z

sin 2 sin 2
R r R

R 2r R cos2 r R 2r R cos2 r
(2.3b)

2 2 2 2
2 2

r 4 2 2 4 4 2 2 4
R cos2 r R cos2 rp r R

R 2r R cos2 r R 2r R cos2 r
(2.3c)

where z=x+iy=rei  and t1, t2, t3 and t4 are the points of the physical plane at 
which the externally applied uniform loading begins and ends (Figure 2.1). 

However, for the cracked Brazilian disc (Figure 2.2) similar closed-form 
solutions are not yet available so a Finite Element Analysis program is 
used here for the calculation of the tangential  and the radial r stresses 
along the vertical axis of symmetry for different central crack lengths 2L 
and orientation angles, .

2.3 The Cracked Brazilian Disc 

The proposed configuration of the cracked Brazilian test is presented in 
Figure 2.2. The elastic, homogeneous, continuous and isotropic disc of 
diameter D and thickness t with a central through crack of length 2L and 
orientation angle, , is subjected to a uniform pressure, p acting over a 
strip of the circumference at each end of the diameter which corresponds to 
the loading angle 2 .

Throughout this paper (unless stated otherwise) tensile stresses and 
strains are considered to be positive quantities and consequently compres-
sive stresses and strains are taken as negative quantities. 
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2.4 Geometry 

The test was modeled in 2-D space in the MSC.Mentat front-end program, 
and was solved by the MSC.Marc Finite Element Analysis program [23]. To 
fully simulate the behavior of the material during diametral compression, 
both the specimen and the steel jigs used to apply the load were modeled 

Models were created for six different orientation angles  (15o, 30o, 45o,
60o, 75o, 90o) and four different crack lengths 2L (10 mm, 20 mm, 30 mm, 
40 mm). All models were in actual experimental dimensions, i.e. corre-
sponding to the full laboratory specimen and the metal jigs setup. A 
number of these models are presented in Figure 2.3. 

t

p

p

D

Fig. 2.2. The cracked Brazilian Disc specimen under uniform diametral 
compression 
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Fig. 2.3. A series of CCBD models with diametral crack length 2L=30 mm and 
diameter D=54 mm with the steel jigs and six different orientation angles .

2.5 Material Models and Boundary Conditions 

The steel jigs and the specimen were modeled as linearly elastic isotropic 
materials with elastic constants =210 GPa, =0.3, and =80 GPa, =0.25 
respectively (E denotes the modulus of elasticity and  the Poisson’s ratio). 
Note that these are typical values for Dionysos marble [19,30]. The boundary 
conditions were as follows (Figure 2.4): 
1. A maximum pressure of 4.5 MPa was applied on the upper and lower 

flat edge of the jigs in twenty linear loading. The total applied load 
corresponds to the estimated failure load.  

2. For the jigs, the left and right vertical boundary line of nodes for each 
model was fixed for horizontal displacement (dx=0) in order to ensure 
the perfect vertical motion of the metal jigs towards the specimen. 

3. For the specimen, the two boundary nodes along the vertical diameter of 
the disc, at the upper and lower end of the specimen, were fixed for 
horizontal displacement (dx=0) as well as the two boundary nodes along 
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the horizontal diameter of the disc, at the left and right end of the 
specimen, were fixed for vertical displacement (dy=0). 
A uniformly distributed traction was applied in the vertical direction on 

the flat ends of the jigs. Contact elements with friction coefficient 0.4
were used to model the crack lips as well as the interface between steel 
platens and specimen in order to avoid element overlapping. No symmetry 
was taken into consideration due to the existence of a “mathematical 
crack” of varying orientation. 

3 Numerical Analysis and Results 

3.1 Stress Distributions 

Figure 3.1 presents a typical distribution of the xx stress component for 
CCBD models with a crack length 2L=20 mm and an orientation angle 

=45  (Figure 4a) and =90  (Figure 4b). Similar results were obtained for 
all models.  

Fig. 2.4. Typical boundary conditions for all models. Model with crack length 
2L=30 mm and orientation angle =45
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(a) (b) 

Fig. 3.1. Distribution of the xx stress component on CCBD models with crack 
length 2L=20 mm and orientation angle =45o (a) and =90  (b) 

Figs. 3.2 and 3.3 present the variation of the dimensionless /[2P/ Dt] 
and r/[2P/ Dt] along the crack diameter for the models with an inclination 
angle =45  and =90  respectively, while Figure 3.4 presents the same 
variation for the model with a crack length 2L=20 mm. 
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Fig. 3.2. Variation of the reduced  (a) and r (b) along the crack diameter, for a 
crack inclination angle =45
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Fig. 3.3. Variation of the reduced  (a) and r (b) along the crack diameter, for a 
crack inclination angle =90
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Fig. 3.4. Variation of the reduced  (a) and r (b) along the crack diameter, for 
2L=20 mm 

Figure 3.5 presents the variation of the dimensionless quantity 
G/[2P/ Dt] along the crack diameter for the models with an inclination 

angle =45  (Figure 3.5a) and =90  (Figure 3.5b) respectively, while 
Figure 3.6 presents the variation of the same quantity for the model with a 
crack length 2L=20 mm. Note that G is the equivalent Griffith stress as 
defined in Section 4.1. 
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Fig. 3.5. Variation of the reduced G along the crack diameter, for =45  (a) and 
=90
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Fig. 3.6. Variation of the reduced G along the crack diameter for 2L=20 mm 

3.2 Distributions of Stress Intensity Factors  

Figure 3.7 presents the variation of the Stress Intensity Factors KI and KII,
at the crack tip for all crack lengths with varying inclination angle. 
Similarly Figure 3.8 presents the variation of the Stress Intensity Factors 
KI and KII at the crack tip for all inclination angles as a function of crack 
length.
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Fig. 3.7. Variation of the Stress Intensity Factor KI (a) and KII (b) at the crack tips 
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Fig. 3.8. Variation of the Stress Intensity Factor KI (a) and KII (b) at the crack tips 
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4. Discussion 

The discussion focuses on two subjects. The stress distribution on the spe-
cimen and how the distribution compares to the Griffith strength criterion 
and the comparison of the Stress Intensity Factors obtained numerically to 
analytical values proposed by other researchers.  

4.1 Stress - Griffith Strength Criterion 

As expected the stress distribution varies with the inclination angle of the 
assumed “mathematical” crack. For example, for the case with =45o, the 
peak stresses (both tangential and radial) are compressive and appear at the 
crack tip for all crack lengths (Figure 3.2) (note that the peaks for radial 
stresses occurring close to crack center for longer cracks need to be further 
investigated). Similar results are obtained for angles less than 45o, were 
crack closure is observed at the crack tip as well.  

For the case where =90o (vertical crack) the maximum tangential 
stresses are tensile and occur at the center of the disc (Figure 3.3a). The 
high radial stresses observed for the longer cracks may be attributed to the 
proximity of the crack tip to the loaded area. Figure 3.4 shows that the 
peak tangential stress appear at the crack tip for a given crack length for 
low inclination angles, while high stresses appear around the crack center 
for higher inclination angles. Table 4.1 summarizes the nature (compres-
sive or tensile) of the expected stress regimes at the crack tip for all 
inclination angles and crack lengths. 

Table 4.1. Summary of the nature of the expected stress regimes 

 = 150 = 300 = 450 = 600 = 750 = 900

2L=10mm compression compression compression tension tension tension 

2L=20mm compression compression compression tension tension tension 

2L=30mm compression compression compression compression tension tension 

2L=40mm compression compression compression compression compression tension 

From Figure 3.7b, it follows that shear stresses are developed at the 
crack tip for all crack inclinations and lengths with the exception of =90o.
It should be noted again that the high shear stresses observed for higher 
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crack lengths could be attributed to the interaction of the crack process 
zone with the disc loading area. 

Figures 3.7a,b support the notion that for =90o cracking is under pure 
mode I while for the other cracked inclinations, cracking can be considered 
as mixed mode ( + ).

When considering the Griffith strength criterion [13], the equivalent stress 
G is calculated as follows (assuming that the tensile stress is considered 

positive and 1 2 3 ):

1 3 G 1

2
1 3

1 3 G
1 3

when   3 + 0, =

-
when   3 + <0, =

8 +
(4.1)

Applying Eq.(4.1) for the case of the CCBD test the equivalent stress G
can be calculated by setting 1= , 3= r. This was accomplished for all 
studied inclination angles and crack lengths (Figures 3.5 and 3.6). It is 
evident from these figures that the largest value of G is calculated for the 
disc center than for any point elsewhere on the loading diameter. Hence 
the crack is most likely to initiate at the centre of the disc.  

4.2 Stress Intensity Factors 

Atkinson et al.[4], have calculated the Stress Intensity Factors for the 
Brazilian disc containing a central straight-through crack. The numerical 
solutions for the Stress Intensity Factors, KI and KII, can be expressed by 
the following relationships: 

I I
P 2LK = N

Rt
(4.2)

II II
P 2LK = N

Rt
(4.3)

where NI and NII are dimensionless coefficients depending on the 
dimensionless crack length (2L/R) and the crack inclination angle . For 
small crack lengths (2L/R 0.3) NI and NII are given by the following 
expressions:
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2 2 2
I

2LN =1 4sin j +4sin j 1 4cos j
2 2 2 R

(4.4)

2
2

II
2LN = 2+ 5+4cos j sin 2 j

2 R 2
(4.5)

For 2L/R=0.3 => 2L/(27 mm)=0.3 => 2L=8.1 mm, the variations of NI
and NII with the inclination angle  are presented in Figure 4.1a. Also the 
corresponding variations of KI and KII are presented in Figure 4.1b. 
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Fig. 4.1. Variation of the dimensionless coefficients NI and NII (a) and the Stress 
Intensity Factors KI and KII (Atkinson et al.) 
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From equation (4.4) an equation may be obtained for the inclination 
angle at which the crack is under pure mode II loading. The angle  can be 
determined by equating NI =0, i.e. 

2 2 2 2L1 4sin j +4sin j 1 4cos j =0
2 2 2 R

(4.6)

Equation (4.6) clearly shows that the angle  is a function of the 
dimensionless crack length, 2L/R. In Table 4.2 the crack inclination angles 

 for pure mode II loadings obtained by the relationship (4.4) for the 
values L/R used in the numerical study are presented. The numerical 
results are also presented in the same table.  

Table 4.2. Crack inclination angle for pure mode II loadings for various crack 
lengths. 

L (mm) L/R 
 (degrees) 

(Atkinson et al.)
 (degrees) 

(numerical results)
Deviations with respect 
to Atkinson et al. (%) 

5 0.185 61.11 56 8.4 

10 0.370 64.06 58.5 8.7 

15 0.555 67.79 71 4.7 

20 0.741 71.25 80 12.3 
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Fig. 4.2. Variation of the dimensionless coefficient NI obtained by the numerical 
analysis.

It is observed that the numerical results are in good agreement with the 
corresponding values presented by Atkinson et al. [4] especially for crack 
length values under 0.3. Fig. 4.2 presents the variation of the dimension-
less coefficient NI versus the inclination angle , for different crack length 
values. The corresponding values of  for pure mode II loading are 
presented in Table 4.1. 

As it is concluded from Table 4.1 and Figure 4.2, crack closure is possi-
ble since the specific combinations of y and L, the mode I Stress Intensity 
Factor becomes negative. The problem of the partial closure of the lips of a 
crack (natural or artificial) concerns the scientific community already from 
the late sixties since it imposes a change of the boundary conditions 
rendering the analytic solution extremely difficult.  

According to the classical elasticity solution, the displacement field (u,v) 
for a plane body with an internal crack of length 2a, along axis x (the 
inclination angle with respect to the vertical direction is denoted by )
loaded bi-axially with ,horizontal/ ,vertical=k, is given by the following 
Muskhelishvili - Kolossov relations in terms of the complex potentials 

(z) and (z):

)()()(2

)()(

)()(2

zzzzzivuG

zzzzzi

zz

yyxx

yyxx

(4.7)
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where the over-bar designates the complex conjugate, G is the shear 
modulus,  is Poisson’s ratio while =(3 )/(1+ ) for plane stress and 

=3 4  for plane strain. Regarding the holomorphic functions (z) and 
(z) the following are true [28]:

2
12

2
1)()(

2
12

2
1)()(

2

2

az
zzz

az
zzz

(4.8)

with:

ii

i

eke

ek

22
0

2
0

11
4
12

2
1

1
4
1

2
1

(4.9)

The displacement field is obtained from the above relations as [26]:

220

220

)2)(cos1()1()2)(sin1(
8

)1(

)(Im
2

1)(

)2)(sin1()2)(cos1(
8

)1(

)(Re
2

1)(

xakkxk
G

z
G

xv

xakxk
G

z
G

xu

xz

xz

(4.10)

The index [+] or [–] indicates the displacements of the upper or lower 
crack lip, respectively of the analytic equations. The above relations 
represent the exact form of the displacements of the crack lips and they 
allow the calculation of the exact shape of the deformed crack.  

It should be noted that, for a given material, specific combinations of 
geometry and loading exist which yield overlapping lips for various values 
of parameter c= (1+ )/G, violating the stress free crack lips condition. 
These combinations are presented in Figure 4.3.  

The general touching lips condition in terms of k (loading),  (geometry) 
and c (material) is given by: 

2 2c (1+k) (1 k)cos2 c(1 k) +c(1 k )cos2 =0 (4.11)
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Fig. 4.3. Combinations of  (geometry) and k (loading) leading to overlapping of 
the crack lips for various values of the material parameter c= (1+ )/G [26]

For the Brazilian disc (uniaxial external field of compressive nature) the 
crack closure, for a natural crack, is avoided only when the crack is paral-
lel to the load direction. In any other configuration the Stress Intensity 
Factors calculated numerically deviate significantly from the experimental-
ly obtained ones. This is due to the friction forces developed between the 
lips of the crack, which are now under mutual compression. These forces 
“prohibit” the displacement field along the crack flanks from reaching the 
tip of the natural crack and, thus, the crack tip appears to be unloaded.  

The above observation has been verified experimentally using the opti-
cal method of caustics [25]. Indeed, for most tests a caustic does not appear, 
until a certain load level was reached, equal to almost half of the failure 
load. Then if this limit is exceeded the friction forces are overcome and the 
displacement field appears “propagating” under constant load towards the 
crack tip. Upon reaching it, the caustic suddenly appears. In Figure 4.4 a 
series of three photographs is displayed, corresponding exactly to the 
instant at which the load reached the above mentioned critical level, and 
the displacement field started “propagating” towards the tip of the natural 
crack. It is emphasized that all three photographs of Figure 16 correspond 
to the same load level. It is concluded, thus, that at least for natural cracks 
the influence of the friction forces cannot be ignored in case the critical 
Stress Intensity Factors are to be calculated, because the results obtained 
are erroneous. 
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Regarding the case of artificial cracks it is again possible to observe 
contact of the lips as it was verified experimentally by the method of 
caustics [25], however the critical parameter is now the width of the crack. 
For this problem there are not any closed form solutions and therefore the 
numerical approximations, like the one discussed previously, become 
extremely valuable. 

5 Conclusions 

The present work, verifies that the presence of pre-existing cracks in the 
specimens, with different lengths and orientations affect the determination 
of the overall tensile strength of the rocks. From the simulations conducted 
it was shown that the presence of pre-existing cracks does not affect the 
stress field developing at the center of the disk. Stress concentrations of 
high magnitude also develop at the crack tips but depending on the crack 
orientations, they may be either compressive or tensile. This is also shown 
by applying the Griffith fracture criterion for the case of the open crack 
situation at a compressive stress field. The results indicate that that initial 
failure will primarily occur at the center of the disk and secondly at the 
crack tips.

As far as the Stress Intensity Factors are concerned, it has been verified 
that for crack orientation =90o, the crack is under mode I loading. For all 
the other cases of crack orientation, the crack is under mixed mode loading 

(a) (b) (c) 

Fig. 4.4. A series of photographs indicating the evolution of the caustic at the tip of 
a natural crack, at a constant load P=0.68Pfracture, from the almost load free state (a) 
to the preliminary mixed-mode caustic (b) up to the almost pure mode-II caustic 
(c) [25]
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conditions. In such cases, if the crack is considered as natural, crack-lips 
contact cannot be avoided unless the crack is parallel to the loading 
direction. Otherwise the results are meaningless since the friction forces 
render the initial formulation of the problem unacceptable from a 
mathematical point of view and only numerical simulations can provide 
estimations of the Stress Intensity Factors. The results obtained from the 
numerical simulation of the present paper are in good agreement with the 
corresponding values presented by Atkinson et al. [4].
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Summary

The present work is essentially a continuation of a previous study (Liolios 
and Exadaktylos, 2006) aiming at the investigation of the stress-deforma-
tion state of a porous body under the influence of mechanical and fluid 
flow fields, in the regions where stress singularities (e.g. cracks, thin strip 
inclusions, holes etc.) exist. For the solution of the problem the theories of 
complex variables and Cauchy-type singular integral equations are 
employed, since these methods are the most suitable for the calculation of 
the Stress Intensity Factors (SIFs) at crack tips. A fast solver has been de-
veloped for the stress analysis of multiply fractured porous media.  

1 Introduction 

A class of important geomechanical problems involves the quantification 
of critical conditions for crack initiation in the vicinity of singularities and 
stress concentrators in geomaterials (e.g. fractures, faults, joints, interface 
cracks, corners in slopes and foundations, rectangular underground exca-
vations in rocks etc.). It is apparent that this class of problems may be 
significantly extended if the diffusion of pore pressure and/or heat in the 
porous saturated geomaterial is also considered.

The study of fluid flow and stresses in rocks has many significant practi-
cal applications such as: hydraulic fracturing in boreholes in petroleum or 
geothermal reservoirs in order to increase the permeability of the forma-
tion, pore pressure influence on fracture propagation and in situ stress 
measurements with the hydraulic fracturing technique, estimation of the 
permeability of fluid reservoirs (e.g. petroleum, water), hydro-mechanical 
erosion of rocks around wellbores, rock fracturing with thermal fatigue, 
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applications involving the injection or withdrawal of fluids from porous 
subsurface formations that are transected by compaction bands, such as 
aquifer management, energy recovery and storage, waste disposal etc. In 
the laboratory as well as in many theoretical studies, the length of material 
discontinuities is limited to the width of specimen or of the modeled 
domain, respectively, but in the field finite lengths of faults, joints and 
cracks that exhibit stress singularities at their tips, are observed. Even if 
the failure mechanism cannot, in many cases, be completely described 
only by the propagation of cracks, the investigation of the conditions 
which trigger the initiation of a crack or a system of cracks from the pre-
existing defects in the material (cracks, inclusions, cavities etc.) is of great 
theoretical and technological importance. 

There are also two other areas of application that came into the authors 
attention during this Conference, namely: (a) the influence of stress non-
uniformity produced by many interacting cracks under a given stress field 
on the strength of brittle rocks proposed by Dyskin and Pasternak (2006) 
(in this volume), and (b) the validation of continuum micromechanical 
models such as that proposed by Pichler et al. (2006) in this volume. 

The approach, which is followed here, is based on the Theories of 
Complex Variables and Singular Integral Equations (SIE) developed by 
Muskhelishvili (1953) and on the numerical solution of the SIE’s. The 
present solution can be applied for the general case of multiple non-
intersecting curvilinear cracks where the shape of each crack may not be 
reduced to a known equation. Furthermore, it is demonstrated that the 
proposed solution converges rapidly to an estimation. Hence, it may be 
used to test the accuracy of a numerical code (such as Finite Elements, 
Finite Differences or Boundary Elements), as a tool for quick back analy-
sis of in situ fluid flow or pore pressure measurements, and as a supple-
ment to another numerical code dedicated for coupled thermo-hydro-
mechanical problems. 

2 Formulation of the (a) Short-Term and (b) Long-Term 
Problems

The variability of properties and the complexity of a porous, granular 
medium make it impossible to mathematically characterize it on a micro-
scopic scale which identifies each constituent boundary. An average mate-
rial element can be introduced in place of a detailed point description, 
provided that the Representative Element Volume (REV) is large enough 
to remove microscopic inhomogeneities of the constituent interfaces but 
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small enough to ensure that large-scale discontinuities in the porous media 
are not included. Since our interest is to model material behavior on a 
macroscopic scale, grid blocks, which define elementary volumes in 
simulations, will be assumed to be large enough to treat porosity and other 
material properties as well-defined continuum variables. The following 
assumptions are made in this study: 

1. Infinitesimal displacements 
2. Linear elastic behavior 
3. Saturated porous medium 
4. Isotropic, homogeneous medium 
5. Isothermal conditions 
6. Body forces are discarded 
7. Plane strain conditions 
8. Terzaghi’s effective stress principle holds true 
9. The cracks are open 

Terzaghi’s effective stress principle has as follows 

pp ijijijijijij '' (2.1)

where ij is the stress tensor of the total stresses, ij' is the effective stress 
tensor and p  is the pore pressure. The basic state variables of the problem 
are the total stress and pore pressure. Herein, unless otherwise stated, we 
follow the geomechanics convention, namely that compressive stresses are 
positive. The solution must satisfy equilibrium, compatibility and Hooke’s 
equations, as well as the boundary conditions. 

In plane strain equilibrium, the combination of compatibility and elastic-
city equations gives 
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The field equation for flow in the porous medium in plane strain is 
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where ,E  are the elasticity constants of the isotropic medium, K is the 
permeability of the porous medium and w is the unit weight of the pore 
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fluid. Note that (2.1), (2.2) and (2.3) are coupled equations that must be 
solved simultaneously. 

However, in steady state conditions where no more changes occur with 
time 0t/ , hence (2.3) simplifies to the Laplace’s equation 
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Also (2.2) takes the form 
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Since from (2.1) 
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then (2.4b) is equivalent to 

0
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(2.4d)

Thus, the problem may be formulated in terms of total stresses, instead 
of (2.4b) that is expressed in terms of effective stresses. The end result re-
mains the same, namely that the partial differential eqs for stresses (either 
total or effective) and for the pore pressure are decoupled in long term. 

In short term (t tends to zero or the phenomenon occurs over a period of 
time that is very short compared to the permeability of the medium) it is 
known from poroelasticity that the volumetric strain is zero (that is to say 
there is no change in volume) 

0
E

121
yyxxvol (2.5)

This essentially means that the effective hydrostatic stress is zero every-
where in the domain 

xxyyyyxx 0 (2.6)

Thus, the effective stresses and pore pressure are related with total 
stresses through the formulae 
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yyxxyyxx 2
1

(2.7a)
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1pp2 (2.7b)

Hence by solving only the stress problem governed by pde (2.4d), the 
effective stresses and pore pressure are found from eqs (2.7a,b), respecti-
vely. This solution corresponds to the short term or undrained conditions.

For example based on the above arguments the state of affairs close to 
the crack tip in the short term will be as follows 
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wherein III KK ,  denote the stress intensity factors in mode-I and mode-II, 
respectively, and ,r  are the polar coordinates with their origin to be sea-
ted on the crack tip. 

3  The First Fundamental Boundary Value Problem of the 
Cracked Body (Prescribed Normal and Tangential Stresses on 
Cracks) 

The total stresses in an isotropic linear elastic solid transected by a system 
of cracks, holes and thin inclusions (e.g. Fig. 3.1) that obey the equilibrium 
and strain compatibility equations  (2.4d), may be given as expressions of 
two complex potentials zz 00 ,  of the complex coordinate 

iyxz  as follows (Muskhelishvili, 1953). 
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where we have set 

zz
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0 (3.2)

and

ieNN
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2
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(3.3)

21 , NN  are the principal stresses at infinity,  is the angle subtended 
between the vector of principal stress 1N  and the Ox  axis (Fig. 3.1), and 
the bar over a symbol denotes complex conjugate. 

Fig. 3.1. A plane elastic body containing cracks ),1( 1kiLi  subjected to a 

homogeneous fluid flow q  and to principal stresses 21 , NN  at infinity
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3.1 Formulation for a Single Crack 

The first fundamental problem refers to the calculation of the two complex 
potentials subject to the following boundary conditions of prescribed tra-
ctions along the lips of the crack (Muskhelishvili, 1953) (Fig. 3.2). 

000
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0
0000 ttt

dt
dttti tn (3.4)

where Lt0  and tn ,  are the total normal and the tangential stresses 
acting on the crack, respectively. By adding and subtracting by parts 
equations (3.4) the following system of equations is obtained. 
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where we have set 
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and
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Fig.3.2. Single curvilinear crack L in the body S and global as well local systems 
of coordinates 

We assume that the function z  is holomorphic in the entire plane 
except on the crack, thus it is partially holomorphic, and at the infinity its 
behavior as well as the behavior of z , is as follows 

z
Oz

z
Oz

zz

1,1
(3.7)

For this purpose, we assume that z  is given by a Cauchy integral: 

L
dt

zt
t

i
z

2
1

(3.8)

without having poles either at infinity or at any specific point of the plane 
(except of the tips of the crack) and the principal stresses at infinity do not 
affect z . We assume that the functions n , t  and consequently the 
functions 01 tp , 01 tq  and the density t  satisfy the Hölder condition 
which is also assumed for the density function t .

The Plemelj’s formulae due to (3.8) may be expressed as follows 

000 ttt (3.9a)
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Also, by taking the derivatives of (3.9a) and (3.9b) with respect to 0t  we 
get:

000 ''' ttt (3.10a)
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By combining equations (3.8), (3.10) and (3.5b) we get: 
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From equation (3.11) it is derived that the function z , which is 
sectionally  holomorphic on the entire plane except on the crack L and its 
behavior at the infinity is described by equation (3.7), can be expressed as 
a function of the density 0t  and 01 tq , as follows 
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By applying Plemelj’s formula to (3.12), for the expression 

00 tt  we get equation (3.11) while for the expression 

00 tt  the following result is obtained 
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By substituting the expressions (3.9b), (3.10b) and (3.13) into the 
boundary condition (3.5a) we get the following singular integral equation 
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The unknown function in equation (3.14) is the density function t .
The determination of t  leads to the calculation of the potentials z
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and z , hence to the solution of the problem. The determination of the 
density function t  in closed form is impossible except for some special 
very simple cases. However, the density can be calculated approximately 
by numerical integration that will be presented is a subsequent paragraph. 

In the case the loading on the lips of the crack are equal and opposite, 
then equation (3.14) takes the form 
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Next, the complex singular integral equation (3.15) is further reduced 
into a system of two real singular integral equations by introducing two 
functions sh1  and sh2  with respect to the variable s  which is the arc 
length of the crack as follows 

tiet
ds
dttsihshsh 21 (3.16)

where t  is the angle enclosed by the tangent at the point t  and the Ox -
axis (measured counterclockwise). By solving (3.16) with respect to t
we get: 

tieshsht 21 (3.17)

Substitution of (3.17) into (3.15) leads to the following form of the 
complex singular integral equation: 
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where  is the angle subtended by the tangent at the point 0t  and the 
Ox -axis (measured counterclockwise), and s ,  are real arc length 
coordinates at t  and 0t  respectively. In addition we set 

''0 iyxt
siysxt

(3.19)

and
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12111 ippp (3.20)

By taking into consideration the following relationship 
2sin2cos2 ie i (3.21)

and substituting equations (3.19), (3.20) and (3.21) into (3.18) we derive 
the following system of real singular integral equations 
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wherein
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Additionally, the system of real singular equations (3.22) and (3.23) is 
subjected to the following condition which is derived from the condition of 
single-valuedness of displacements 
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which is finally equivalent to the following set of real integral equations 
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3.2 Formulation for a System of Non-Intersecting Cracks 

In the case of a system of k  non-intersecting cracks, it can be proven that 
at a point 0t  that belongs to a crack cL  the following system of real singu-
lar integral equations holds true: 
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and
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subject to the following conditions for single-valuedness of the 
displacements 
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3.3 Numerical Solution for a Single Crack 

For the solution of equations (3.22) and (3.23) the Gauss-Chebyshev
numerical integration scheme for singular integrals of Cauchy type propo-
sed by Erdogan and Gupta (1972) is employed. The integration scheme is 
based on the methodology proposed for the fundamental Cauchy integral 
in the linear interval 1,1

1
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The decomposition of the density into a singular and a regular part is 
performed by setting )(ˆ)()( ttwt , with )(tw  to be an appropriate 
weight function. Since the Cauchy integral refers to a derivative of a 
potential (derivative of displacements, hence stresses) the weight function 
that will be used is, as proposed, the following 
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Thus, the integral (3.30) can be approximately calculated as follows 
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where jt  are the roots of the Chebyshev polynomials of first type and 
order n
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and rt0  are the roots of the Chebyshev polynomials of second type and 
order 1n

1,,2,1,cos0 nr
n
jt r (3.34) 

We can apply this integration scheme also for the case of curvilinear 
cracks of arbitrary shape following the methodology by Liolios and 
Exadaktylos (2006). 
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By applying the above numerical integration scheme to equations (3.22) 
and (3.23) we derive the following linear system of equations for the cal-
culation of the unknown densities sh1  and sh2
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and
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The above system (3.35), (3.36) represents a system of 12 n  linear 
algebraic equations with n2  unknowns. The additional two equations 
required for the solution of the system is derived from equations (3.26) as 
follows
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After the calculation of the densities sh1  and sh2  from the above 
algorithm, the calculation of the stresses at any point of the plane can be 
found by calculating the complex potentials z  and z  from the 
expressions (3.8) and (3.12), respectively, by virtue of an analogous 
numerical integration scheme that was described above. The stresses are 
then calculated from the set of equations (3.1). 

3.4 Numerical Solution for a System of Non-Intersecting Cracks 

Following a similar methodology as before, we derive the system of linear 
equations for a system of k  non-intersecting cracks of arbitrary shape by 
applying numerical integration to equations (3.27), (3.28) and (3.29) 
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and finally the additional equations 
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4  Solution of the Pore Pressure 

The solution of the field equation (2.4a) for multiple cracks of arbitrary 
shape subjected to Dirichlet and Newmann, as well as to mixed boundary 
conditions has been presented in detail in (Liolios and Exadaktylos, 2006).  
In this work the solution for the pore pressure that satisfies (2.4a) was set 
as follows 

zFzp Re2 (4.1)

where F(z) is an analytic function of the complex variable z. Further, the 
fluid mass flow or specific discharge vector q[L/T] is given by Darcy’s 
law as follows 

zp
y

izp
x

Kzq (4.2)

The unknown function F was set in the form of a Cauchy integral 

L tt
dttftF
0

0
1

(4.3)

Subsequently, by taking into consideration the nature of the pore pres-
sure solution this integral was decomposed as follows 

L

dt
tt
tfttF

0

2
0

ˆ
1

2
1

(4.4)

The integration rule also followed for the stresses was adopted 

1,,2,1,
ˆˆ

1
1 0

1

1
0

21

1
0

nr
tt
tftwdt

tt
tftdt

tt
tfI

n

j rj
j (4.5)

where

1
sin

1
2

n
j

n
twj (4.6)

The integration points are given by 

nj
n
jt j ,,2,1,

1
cos (4.7)

and the collocation points also given by the relations 

1,,2,1,
12
12cos0 nr

n
rt r (4.8)
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Based on the above integration scheme the system of complex singular 
integral equations along the curvilinear cracks subjected to Dirichlet or 
Newmann boundary conditions is transformed into a linear algebraic 
system of equations with unknowns the densities of the Cauchy integrals 

1,...,1,ˆ kitf i  along the lips of the cracks. 

5  Numerical Examples 

In the following, some numerical exercises by virtue of the proposed me-
thod are demonstrated.  

5.1 Example 1: Single Linear Crack on Ox Axis  

For the validation of the Gauss Chebyshev scheme presented above we 
consider the problem of a single straight crack that occupies the interval 

1,1  on Ox -axis. The crack is under uniform dimensionless pore 
pressure 1sp  (thereafter compressive stresses are taken as negative 
quantities), where s  is a real variable along the length of the crack. Hence, 
the dimensionless normal stress that acts on the lips of the crack is 

1sn  and the medium is free of far field stresses. Further, the 
dimensionless permeability coefficient 1K  and we assume that steady-
state conditions have reached. For the numerical solution of the pore 
diffusion equation and stress equations (3.35)-(3.37) we have used 30 
integration points. 

If we neglect the pore pressure for a moment, then the problem (straight 
crack under normal loading) has a closed form solution regarding the 
normal stresses in Oy-direction. The solution is given by Muskhelishvili as 
follows

1
1z

z
2n (5.1)

Fig. 5.1 shows the perfect agreement of the closed form solution (5.1) 
with the Gauss – Chebyshev numerical integration scheme. Fig’s 5.2 – 5.9 
illustrate respectively the pore pressure distribution, the fluid flow 
distribution along O x  and O y  directions, the total stress distributions on 
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the plane x , y  and xy , and finally the effective stresses distributions 

x'  and y' .

Fig. 5.1. Comparison between analytical and numerical solutions referring to the 
distribution of y  along Ox-axis 

Fig. 5.2.  Absolute pore pressure distribution on the plane 
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Fig. 5.3.  Fluid flow towards O x  direction 

Fig. 5.4.  Fluid flow towards O y  direction 
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Fig. 5.5.  Distribution of total stress x

Fig. 5.6.  Distribution of total stress y
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Fig. 5.7.  Distribution of shear stresses xy

Fig. 5.8.  Distribution of effective stress x
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Fig. 5.9.  Distribution of effective stress y

5.2 Example 2: System of Three Parallel Cracks 

Assume that we have a system of three (3) linear cracks as shown in Fig. 
5.10. In all the cracks a uniform pore pressure equal to 1 (which means 
normal loading equal to -1) is specified. Also, the system is under far field 
N2 stress (along Oy-axis) equal to 1 (tensile). The steady state solution of 
this problem is presented in Fig’s 5.10 – 5.15. 
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Fig. 5.10. Absolute pore pressure distribution 

Fig. 5.11. Distribution of total stress x
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Fig. 5.12. Distribution of total stress y

Fig. 5.13.  Distribution of shear stresses xy
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Fig. 5.14.  Distribution of effective stress x

Fig. 5.15. Distribution of effective stress y
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5.3 Example 3: Multiple (40) Cracks Ahead of a Horizontal Crack 
under Uniform Pore Pressure (Steady State) 

Assume that we have a main crack along which a uniform pore pressure 
equal to 1 (which means normal loading equal to -1) is applied with its left 
tip surrounded by a swarm of microcracks with pore pressure zero. The 
steady-state solution of this problem for the pore pressure diffusion and 
stresses is presented in Fig’s 5.16 – 5.21. 

Fig. 5.16. Pore pressure distribution 
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Fig. 5.17.  Distribution of total stress x

Fig. 5.18. Distribution of total stress y



         P. Liolios and G. Exadaktylos    460 

Fig. 5.19. Distribution of shear stresses xy

Fig. 5.20.  Distribution of effective stress x
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Fig. 5.21. Distribution of effective stress y
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424

tangent, 135, 138, 215, 233, 236, 
281, 348, 391, 440 

tectonic, 9 
Tejchman, 173, 198, 199, 319, 

338, 339, 340 
tensile strength, 61, 273, 325, 

331, 404 
Thakur, 352, 357 
thermodynamical, 9, 149 
thermodynamics, 128, 148 
three-point bending, 319, 320, 

330
triaxial compression, 290 
undrained condition, 342, 347 
undrained conditions, 173, 435 



 Index                                                                                                                 469

uniaxial compressive strength, 
53, 265, 269, 273 

unsaturated soils, 361, 379, 380 
Vardoulakis, 12, 13, 70, 141, 

156, 171, 192, 197, 199, 228, 
276, 298, 342, 357, 363, 380, 
429, 430 

viscoplastic, 367, 369, 371, 372, 
373, 380 

viscoplastic flow rule, 372 
void ratio, 79, 80, 83, 173, 174, 

175, 177, 178, 184, 186, 187, 
188, 189, 190, 191, 193, 194, 
195, 198, 224, 280, 281, 282, 
283, 285, 286, 288, 289, 290, 
291, 294, 295, 296, 340, 369, 
375 

volumetric strain, 73, 99, 101, 
104, 111, 113, 114, 115, 121, 
151, 205, 370, 434 

Wan, 13, 73, 91, 93, 94, 224, 
227, 230 

weathering, 278 
wellbore, 53, 56 
well-posedness, 174, 320, 323 
wing crack, 301, 302, 303, 310, 

312 
Yashima, 297, 401, 402 
yield surface, 17, 49, 371 
Young´s modulus, 61 
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