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Preface

This book is intended to provide fundamental statistical concepts and tools
relevant to the analysis of genetic data arising from population-based associa-
tion studies. Elementary knowledge of statistical methods at the level of a first
course in biostatistics is assumed. Chapters 1–3 provide a general overview of
the genetic and epidemiological considerations relevant to this setting. Topics
covered include: (1) types of investigations, typical data components and fea-
tures in genetic association studies, and basic genetic vocabulary (Chapter 1);
(2) epidemiological principles relevant to population-based studies, including
confounding and effect modification (Chapter 2); (3) elementary statistical
methods for estimating and testing association (Chapter 2); (4) the overarch-
ing analytical challenges inherent in these investigations (Chapter 2); (5) basic
genetic concepts, including linkage disequilibrium, Hardy-Weinberg equilib-
rium, and haplotypic phase (Chapter 3); and (6) quality control methods for
assessing genotyping errors and population substructure (Chapter 3).

The remaining chapters are organized as follows. Chapters 4 and 5 deal
primarily with methods that aim to identify single genetic polymorphisms or
single genes that contribute individually to measures of disease progression or
disease status. This includes testing concepts and methods for appropriately
adjusting for multiple comparisons (Chapter 4) and approaches to the analy-
sis of unobservable haplotypic phase (Chapter 5). Chapters 6 and 7 focus on
methods for variable subset selection and particularly methods that simulta-
neously evaluate a large number of variables to arrive at the best predictive
model for the complex disease trait under investigation. Notably, while all
of these methods consider multiple polymorphisms concomitantly, some fo-
cus on conditional effects of these genetic variables, while other methods are
specifically designed for identifying and testing potential interaction among
genetic polymorphisms in their effects on disease phenotypes. This section
covers classification and regression trees (Chapter 6), extensions of the tree
framework—namely random forests, logic regression and multivariable adap-
tive regression splines—and a brief introduction to Bayesian variable selection
(Chapter 7).

VII
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The field of statistical genomics includes a large array of methods for a
wide variety of medical and public health applications. While the methods
described herein are broadly relevant, this text does not directly address is-
sues specific to family-based studies, evolutionary (population genetic) mod-
eling, and gene expression analysis. This text also does not attempt to pro-
vide a comprehensive summary of existing methods in the rapidly expand-
ing field of statistical genomics. Rather, fundamental concepts are presented
at the level of an introductory graduate-level course in biostatistics, with
the aim of offering students a foundation and framework for understanding
more complex methods. Two application areas are considered throughout this
text: (1) human genetic investigations in population-based association stud-
ies of unrelated individuals and (2) studies aiming to characterize associa-
tions between Human Immunodeficiency Virus (HIV) genotypes and pheno-
types, as measured by in vitro drug responsiveness. Several publicly available
datasets are used for illustration and can be downloaded at the book web-
site (http://people.umass.edu/foulkes/asg.html). While data simulations are
not described, emphasis is placed on understanding the implicit modeling as-
sumption generally required for testing. An overarching theme of this text is
that the application of any statistical method aims to characterize a specific
relationship among variables. For example, just as an additive model of asso-
ciation can be used to evaluate additive structure, a classification or regression
tree aims to characterize conditional associations. The array of methods that
are applied to data arising from genetic association studies differ primarily in
the types of associations that they are designed to uncover.

This text is also intended to complement the existing literature on statis-
tical genetics and molecular epidemiology in two ways. First, this text offers
extensive and integrated examples using R, an open-source, publicly avail-
able statistical computing software environment. This is intended both as a
pedagogical tool for providing readers with a deeper understanding of the
statistical algorithms presented and as a practical tool for applying the ap-
proaches described herein. Second, this text provides comprehensive coverage
of both genetic concepts, such as linkage disequilibrium and Hardy-Weinberg
equilibrium, from a statistical perspective, as well as fundamental statistical
concepts, such as adjusting for multiplicity and methods for high-dimensional
data analysis, relevant to the analysis of data arising from genetic associa-
tion studies. Several excellent texts, including Thomas (2004) and Ziegler and
Koenig (2007), provide in-depth coverage of genetic data concepts relevant
to both population-based and family-based investigations. The present text
presents these concepts within the context of familiar statistical nomencla-
ture while providing coverage of several additional pertinent epidemiological
concepts and statistical methods for characterizing association. This presen-
tation is at a level that is accessible to the reader with a limited background
in biostatistics and with an interest in public health or biomedical research.
More advanced discussions of the underlying theory can be found in alterna-
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tive texts such as Hastie et al. (2001) and Lange (2002), as well as the original
manuscripts cited throughout this text.

The primary focus of this text is on candidate gene studies that involve the
investigation of polymorphisms at several genetic sites within and across one
or more genes and their associations with a trait. In the past several years,
technological advancements leading to development and widespread availabil-
ity of “SNP chips” have led to an explosion of genome-wide association studies
(GWAS) involving 500 thousand to 1 million single-nucleotide polymorphisms
(SNPs). The methods presented in this text apply equally to candidate gene
approaches and whole and partial GWAS. Notably, however, the latter setting
requires additional consideration of the computational burden of associated
analysis as well as data preprocessing and error checking, as discussed in Sec-
tion 3.3 and throughout this text. While GWAS have gained a great deal of
popularity in recent years, they do not obviate the need for candidate gene
studies that further investigate the role of specific genes in disease progression
as well as the potential confounding or modifying roles of traditional risk fac-
tors, including both clinical and demographic characteristics. Instead, GWAS
provide investigators with a vastly improved body of scientific knowledge to
inform the selection of candidate genes for hypothesis-driven research.

The term high-dimensional has taken on many meanings across different
fields of research and over the past decade of rapid expansion in these fields. In
this text, high-dimensional is defined simply as a large number of potentially
correlated variables that may interact, in a statistical or a biological sense,
in their association with the outcome under investigation. The term is used
loosely to refer to any number of variables for which there is a complex, un-
characterized structure and the usual least squares regression setting may not
be easily applicable. High-dimensional data methods including approaches to
multiplicity and characterizing gene–gene and gene–environment interactions
are addressed within the context of characterizing associations among genetic
sequence data and disease traits. In these settings, the predictor variables are
SNPs or corresponding amino acids and are categorical. Primary consideration
is given to dependent variables that are either continuous measures of disease
progression or binary indicators of disease status, though brief mention is also
made of methods for multivariate and survival outcomes. Specific attention
is given to the potential confounding and mediating roles of individual-level
clinical and demographic data.

Implementation of all described methods is demonstrated using the R en-
vironment and associated packages, which are publicly available at the Com-
prehensive R Archive Network (CRAN) website (http://cran.r-project.org/).
The decision to use R in this text over alternative programming languages
is multifaceted. First, as a publicly available package, R is freely accessible
to all readers and, importantly, students will continue to have access to R
at all future personal and professional venues. As an open-source language,
R also provides students with the opportunity to view code used to generate
functions, serving as a valuable pedagogical tool for more programmatically
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minded learners. Another key advantage of R is that investigators who develop
new statistical methodology often provide an accompanying R package for
implementation through the CRAN website, providing users with almost im-
mediate access to implementation of the most recently developed approaches.
Finally, with the availability of contributed packages, the choice of method to
apply rests with the user rather than with what a core development team of
the programming language chooses to release.

While strongly preferable for the reasons mentioned above, use of R in
this text does have the drawback from a pedagogical perspective that both
the versions and packages are updated frequently. That is, we see a clear
trade-off between accessibility and stability. In the process of writing this
text, several changes in the packages described herein occurred, resulting in
inconsistent outputs. While these inconsistencies have been resolved as of
the present date, several more are likely to arise over the next several years.
The reader is encouraged to visit the textbook website for information on
these changes. All of the programming scripts in this text were written and
tested for R version 2.7.1. Ascii text files with complete R code used for the
examples in this textbook can be found on the textbook website. The files
can be downloaded, or read directly into R using the source() function. For
example, to source the code from Example 1.1, we can write the following at
the R prompt:

> source("http://people.umass.edu/foulkes/asg/examples/1.1.r")

Additionally specifying print.eval=T in this function call will print the cor-
responding output. While the programs presented within this text are compre-
hensive, the novice reader can begin with the appendix for a brief introduction
to some fundamental concepts relevant to programming in R. Several, more
comprehensive, introductions to R are available, and the reader is encouraged
to reference these texts as well, including Gentleman (2008), Spector (2008)
and Dalgaard (2002), for additional programming tools and background.

I am grateful for the advice and support I have received in writing this
text from many colleagues, students, friends and family members. I would
especially like to thank my students and postdoctoral fellows, M. Eliot, X.
Li, Y. Liu, Dr. B.A. Nonyane and Dr. K. Au, who spent many hours check-
ing for notational and programming consistency as well as sharing in helpful
discussions. I am indebted to all of the students in the fall 2008 semester
of public health 690T at the University of Massachusetts, Amherst for their
helpful suggestions and for bearing with me in the first run of this text. I am
grateful for having a long-term friend and colleague in Dr. R. Balasubrama-
nian, whose support and encouragement were pivotal in my decision to write
this text. I am also thankful for the many conversations with Dr. D. Cheng
and her willingness to share her extensive knowledge in applied statistics. I
am obliged to Dr. M.P. Reilly for an enduring collaboration that has fueled
my interest and enhanced my knowledge in applied statistical genetics for
medical research. I am grateful to Dr. A.V. Custer, whose dedication to the
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open-source software community was inspirational to me. Dr. V. De Gruttola’s
early mentorship continues to shape my research interests, and I am thankful
for the passion and deep thinking he brings to our profession. I also value the
strong encouragement and intellectual engagement of my early career mentors
Dr. E. George and Dr. T. Ten Have. The efforts of Dr. E. Hoffman, Dr. H.
Gorski and colleagues in providing the FAMuSS and HGDP data were ex-
traordinary, and their commitment to public access to data resources is truly
outstanding. I am also indebted to Dr. R. Shafer and colleagues for their re-
markable effort in creating and maintaining the Stanford University HIV Drug
Resistance Database, from which the Virco data were downloaded and sev-
eral additional data sets can be accessed easily. I also greatly appreciate the
insightful leadership of the R core development team and the individuals who
wrote and maintain the R packages used throughout this text. All figures in
this text were generated in R or created using the open-source graphics editor
Inkscape (http://www.inkscape.org/). I value the many insightful comments
and suggestions of the editors and anonymous reviewers. Support for this text
was provided in part by a National Institute of Allergies and Infectious Dis-
ease (NIAID) individual research award (R01AI056983). Finally, thanks to
my family for their tremendous love and support.

Andrea S. Foulkes
Amherst, MA

May 2009
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Genetic Association Studies

Recent technological advancements allowing for large-scale sequencing efforts
present an exciting opportunity to uncover the genetic underpinnings of com-
plex diseases. In an attempt to characterize these genetic contributors to dis-
ease, investigators have embarked in multitude on what are commonly referred
to as population-based genetic association studies. These studies generally aim
to relate genetic sequence information derived from unrelated individuals to a
measure of disease progression or disease status. The field of genomics spans
a wide array of research areas that involve the many stages of processing from
genetic sequence information to protein products and ultimately the expres-
sion of a trait. The breadth of genomic investigations also includes studies
of multiple organisms, ranging from bacteria to viruses to parasites to hu-
mans. In this chapter, two settings are described in which population-based
genetic association studies have marked potential for uncovering disease etiol-
ogy while elucidating new approaches for targeted, individualized therapeutic
interventions: (1) complex disease association studies in humans; and (2) stud-
ies involving the Human Immunodeficiency Virus (HIV).

In both settings, interest lies in characterizing associations between mul-
tiple genetic polymorphisms and a measured trait. In addition, these settings
share the essential need to account appropriately for patient-level covariates
as potential confounders or modifiers of disease progression to make clinically
meaningful conclusions. While these two settings are not comprehensive, to-
gether they provide a launching point for discussion of quantitative methods
that address the challenges inherent in many genetic investigations. This chap-
ter begins by describing types of population-based studies, which represent one
class of investigations within the larger field of genomics research. Also dis-
cussed are the fundamental features of data arising from these investigations
as well as the analytical challenges inherent in this endeavor.

A.S. Foulkes, Applied Statistical Genetics with R: For Population-based Association 1
Studies, Use R, DOI: 10.1007/978-0-387-89554-3 1,
c© Springer Science+Business Media LLC 2009
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1.1 Overview of population-based investigations

Population-based genetic association studies can be divided roughly into four
categories of studies: candidate polymorphism, candidate gene, fine mapping
and whole or partial genome-wide scans. In the following paragraphs, each
of these types of studies is described briefly, followed by a discussion of how
population-based genetic investigations fit within a larger context of genomic-
based studies. Further discussions of population-based and family-based de-
signs can be found in Thomas (2004) and Balding (2006).

1.1.1 Types of investigations

Candidate polymorphism studies

Investigations of genotype–trait associations for which there is an a priori hy-
pothesis about functionality are called candidate polymorphism studies. Here
the term polymorphism is defined simply as a genetic variant at a single lo-
cation within a gene. Technically, a variation must be present in at least 1%
of a population to be classified as a polymorphism. Such a variable site is
commonly referred to as a single-nucleotide polymorphism (SNP). Candidate
polymorphism studies typically rely on prior scientific evidence suggesting
that the set of polymorphisms under investigation is relevant to the disease
trait. The aim is to test for the presence of association, and the primary hy-
pothesis is that the variable site under investigation is functional. That is, the
goal of candidate polymorphism studies is to determine whether a given SNP
or set of SNPs influences the disease trait directly.

Candidate gene studies

Candidate gene studies generally involve multiple SNPs within a single gene.
The choice of SNPs depends on defined linkage disequilibrium (LD) blocks and
is discussed further in Section 3.1. The underlying premise of these studies is
that the SNPs under investigation capture information about the underlying
genetic variability of the gene under consideration, though the SNPs may
not serve as the true disease-causing variants. That is, the SNPs that are
being studied are not necessarily functional. Consider for example a setting
in which we want to investigate the association between a gene and disease.
A gene comprises a region of deoxyribonucleic acid (DNA), representing a
portion of the human genome. This is illustrated by the shaded rectangle in
Figure 1.1. In a simple model, we might assume that a mutation at a single
site within this region results in disease. In general, the precise location of this
disease-causing variant is not known. Instead, investigators measure multiple
SNPs that are presumed “close” to this site on the genome. The term “close”
can be thought of as physical distance, though precise methods for choosing
appropriate SNPs are described in more detail in Section 3.1.
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Fig. 1.1. Marker SNPs

These proximate SNPs are commonly referred to as markers since the
observed genotype at these locations tends to be associated with the genotype
at the true disease-causing locus. The idea underlying this phenomenon is that,
over evolutionary time (that is, over many generations of reproduction), the
disease allele was inherited alongside variants at these marker loci. This occurs
when the probability of a recombination event in the DNA region between
the disease locus and the marker locus is small. Thus, capturing variability
in these loci will tend to capture variability in the true disease locus. Further
discussion of recombination is provided in Section 1.3.1.

Fine mapping studies

The aim of fine mapping studies tends to differ from those of candidate gene
and candidate polymorphism approaches. Fine mapping studies set out to
identify, with a high level of precision, the location of a disease-causing vari-
ant. That is, these studies aim to determine precisely where on the genome the
mutation that causes the disease is positioned. Knowledge about this location
can obviate the need for investigations based on marker loci, thus reducing
the error and variability in associated tests. Within the context of mapping
studies, the term quantitative trait loci (QTL) is used to refer to a chromoso-
mal position that underlies a trait. Methods for mapping and characterizing
QTLs based on controlled experiments of inbred mouse lines are described in
Chapter 15 of Lynch and Walsh (1998). Mapping studies are not a focal point
of this text; however, we note that in some contexts the term “mapping” is
used more loosely to refer to association, the topic of this text, in both family-
and population-based studies. For comprehensive and advanced coverage of
gene mapping methods, the reader is referred to Siegmund and Yakir (2007).

Genome-wide association studies (GWAS)

Similar to candidate gene approaches, studies involving whole and partial
genome-wide scans, termed genome-wide association studies (GWAS), aim
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to identify associations between SNPs and a trait. GWAS, however, tend to
be less hypothesis driven and involve the characterization of a much larger
number of SNPs. Partial scans generally involve between 100Kb and 500Kb
segments of DNA, while whole-genome scans range from 500Kb to 1000Kb
regions. While the underlying goal of candidate gene studies and GWAS can
be similar, the data preprocessing is generally more extensive and the compu-
tational burden greater in the context of GWAS, requiring the application of
software packages designed specifically to address the high-dimensional nature
of the data, as described in Section 3.3. While GWAS have gained in popu-
larity in recent years due to the advent and widespread availability of “SNP
chips”, they do not obviate the need for candidate gene studies. Candidate
gene studies serve to validate findings from GWAS as well as further explore
the biological and clinical interactions between genes and more traditional risk
factors for complex diseases, such as age, gender, and other patient-level clini-
cal and demographic characteristics. Importantly, the fundamental statistical
concepts and methods described throughout this text are broadly relevant to
both candidate gene studies and GWAS.

1.1.2 Genotype versus gene expression

The term “association” study has come to refer to studies that consider the
relationship between genetic sequence information and a phenotype. Gene
expression studies, based on microarray technology, on the other hand, aim
to characterize associations among gene products, such as ribonucleic acid
(RNA) or proteins, and disease outcomes. While the scientific findings from
these investigations will likely lend support to one another, it is important to
recognize that the two types of studies focus on different aspects of the cell
life cycle. In the context of association studies, the raw genetic information
as characterized by the DNA sequence is the primary predictor variable un-
der investigation, and the aim is to understand how polymorphisms in the
sequences explain the variability in a disease trait. Gene expression studies,
on the other hand, focus on the extent to which a DNA sequence coding for
a specific gene is transcribed into RNA (transcriptomics) and then translated
into a protein product (proteomics). The former arises from gene chip tech-
nology and is commonly referred to as expression data, while the latter is
an output of mass spectrometry. Since transcription and translation depend
on many internal and external regulation factors, the expression of a gene
sequence represents a different phenomenon than the sequence itself.

A fundamental unit of analysis in population association studies is the
genotype. As described in Section 1.2, genotype is a categorical variable that
takes on values from a predefined set of discrete characters. For example, in
humans, most SNPs are biallelic, indicating there are two possible bases at
the corresponding site within a gene (e.g., A and a). Furthermore, since hu-
mans are diploid, each individual will carry two bases, corresponding to each
of two homologous chromosomes. As a result, the possible genotype values
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in the population are AA, Aa and aa. In studies of gene expression, on the
other hand, the basic unit used in analysis is the gene product, which is typi-
cally a real-valued positive number. Notably, investigators may subsequently
dichotomize this variable, though this additional level of data processing will
depend on the scientific questions under consideration and prior knowledge.

In both settings, a measure of disease status or disease progress, referred
to as the trait in this text, is also collected for analysis. Notably, in population
association studies, we generally treat the genotype as the predictor variable
and the trait as the dependent variable. In gene expression studies, this may or
may not be the case. Consider for example the setting in which investigators
aim to uncover the association between breast cancer and gene expression.
In this case, the expression of a gene, as measured by how much RNA is
produced, may serve as the main dependent variable, with cancer status as
the potential predictor. The alternative formulation is also tenable. In this
text, since emphasis is on population-based association studies, it is always
assumed that genotype precedes the trait in the causal chain.

While careful consideration must be given to the several notable differences
in the form as well as the interpretation of the data, many of the statistical
methods described herein are equally applicable to gene expression studies. In
the context of genotype data, we might for example test the null hypothesis
that cholesterol level is the same for individuals with genotype AA and geno-
type aa. In the expression setting, the null hypothesis may instead be framed
as the gene expression level is the same for individuals with cardiovascular
disease and those without cardiovascular disease. In both cases, a two-sample
test for equality of means or medians (e.g., the two-sample t-test or Wilcoxon
rank sum test) could be performed and similar approaches to account for mul-
tiple testing employed. Notably, preprocessing of gene expression data prior
to formal statistical analysis also has its unique challenges. Several seminal
texts provide discussion of statistical methods for the analysis of gene expres-
sion data. See for example Speed (2003), Parmigiani et al. (2003), McLachlan
et al. (2004), Gentleman et al. (2005) and Ewens and Grant (2006).

Finally, we distinguish between genetic association studies and the rapidly
growing field of research in epigenetics. The term epigenetics is used to de-
scribe heritable features that control the functioning of genes within an in-
dividual cell but do not constitute a physical change in the corresponding
DNA sequence. The epigenome, defined literally as “above-the-genome”, also
referred to as the epigenetic code, includes information on methylation and hi-
stone patterns, called epigenetic tags, and plays an essential role in controlling
the expression of genes. These tags can inhibit and silence genes, leading to
common complex diseases such as cancer. In this text, we consider traditional
epidemiological risk factors, such as smoking status and diet, that may play
a role in defining an individual’s epigenetic makeup; however, we do not ad-
dress directly the challenges of epigenetic data. For a further discussion of the
role of epigenetics in the link between environmental exposures and disease
phenotypes, see Jirtle and Skinner (2007).
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1.1.3 Population-versus family-based investigations

The term “population”-based is used to refer to investigations involving un-
related individuals and distinguished from family-based studies. The latter,
as the name implies, involves data collected on multiple individuals within
the same family unit. The statistical considerations for family-based studies
differ from those of population-based investigations in two primary regards.
First, individuals within the same family are likely to be more similar to one
another than are individuals from different families. This phenomenon is re-
ferred to in statistics as clustering and implies a within-family correlation.
The idea is that there is something unmeasurable (latent), such as diet or
underlying biological makeup, that makes people from the same family more
alike than people across families. As a result, the trait under investigation is
more highly correlated among individuals within the same family. Account-
ing for the potential within-cluster correlation in the statistical analysis of
family-based data is essential to making valid inference in these settings.

In population-based studies, a fundamental assumption is that individu-
als are unrelated; however, other forms of clustering may exist. For example,
individuals may have been recruited across multiple hospitals so that patients
from the same hospital are more similar than those across hospitals. This
within-cluster correlation can arise particularly if the catchment areas for the
hospitals include different socioeconomic statuses or if the standards for pa-
tient care are remarkably different. Alternatively, we may have repeated mea-
surements of a trait on the same individual. This is another common situation
in which the assumption of independence is violated. In all of these cases, an-
alytical methods for correlated data are again warranted and are essential for
correctly estimating variance components. In this text, attention is restricted
primarily to methods for independent observations, though consideration is
given to clustered data methods in Section 4.4.2. Tests for relatedness are also
described in Section 3.3. In-depth and comprehensive coverage of correlated
data methods can be found in Diggle et al. (1994), Vonesh and Chinchilli
(1997), Verbeke and Molenberghs (2000), Pinheiro and Bates (2000), McCul-
loch and Searle (2001), Fitzmaurice et al. (2004) and Demidenko (2004).

A second remarkable difference between population- and family-based
studies involves what is termed allelic phase and is defined as the alignment
of nucleotides on a single homolog. Allelic phase is typically unobservable in
population-based association studies but can often be determined in the con-
text of family studies. This concept is described in greater detail in Section 1.2
and Chapter 5. As a result of these differences in the data structure, the meth-
ods for analysis of family-based association studies tend to differ from those
developed in the context of population-based studies. Though some of the
methods described herein, particularly adjustments for multiplicity, are appli-
cable to family-based studies, this text focuses on methods specifically relevant
to population association studies, including inferring haplotypic phase (Chap-
ter 5). Elaboration on the specific statistical considerations and methods for
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family-based studies can be found in Khoury et al. (1993), Liu (1998), Lynch
and Walsh (1998), Thomas (2004), Siegmund and Yakir (2007) and Ziegler
and Koenig (2007).

1.1.4 Association versus population genetics

Finally, we distinguish between population-based association studies (the
topic of this text) and population genetic investigations. Population genet-
ics refers generally to the study of changes in the genetic composition of a
population that occur over time and under evolutionary pressures. This in-
cludes, for example, the study of natural selection and genetic drift. In this
text, we instead focus on estimation and inference regarding the association
between genetic polymorphisms and a trait. Statistical methods relevant to
population genetics are described in a number of texts, including Weir (1996),
Gillespie (1998) and Ewens and Grant (2006).

1.2 Data components and terminology

Data arising from population-based genetic association studies are generally
comprised of three components: (1) the genotype of the organism under in-
vestigation; (2) a single trait or multiple traits (also referred to as pheno-
types) that are associated with disease progression or disease status; and (3)
patient-specific covariates, including treatment history and additional clinical
and demographic information. The primary aim of many association studies
is to characterize the relationship between the first two of these components,
the genotype and a trait. Pharmacogenomic investigations aim specifically to
analyze how genotypes modify the effects of drug exposure (the third data
component) on a trait. That is, these investigations focus on the statistical
interaction between treatment and genotype on a disease outcome. While the
specific aims of many association studies do not expressly involve the third
data component, patient-specific clinical and demographic information, care-
ful consideration of how these factors influence the relationship between the
genotype and trait is essential to making valid biological and clinical conclu-
sions. In this chapter, we describe each of these data components, all of which
are highly relevant to population-based association studies, and introduce
some additional terminology. A discussion of the potential interplay among
components of the data and important epidemiological principles, including
confounding, effect mediation, effect modification and conditional association,
is provided in Section 2.1.2. Further elaboration on the concept of phase am-
biguity and appropriate statistical approaches to handling this aspect of the
data are given in Chapter 5.
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1.2.1 Genetic information

Throughout this text, the term genotype is defined as the observed genetic
sequence information and can be thought of as a categorical variable. The
term observed is used here to distinguish genotype information from haplotype
data, as described below. Humans carry two homologous chromosomes, which
are defined as segments of deoxyribonucleic acid (DNA), one inherited from
each parent, that code for the same trait but may carry different genetic
information. Thus, in its rawest form in humans, the genotype is the pair
of DNA bases adenine (A), thymine (T), guanine (G) and/or cytosine (C)
observed at a location on the organism’s genome. This pair includes one base
inherited from each of the two parental genomes and should not be confused
with the pairing that occurs to form the DNA double helix. These two types
of pairing are described further in Section 1.3.1. Genotype data can take
different forms across the array of genetic association studies and depend
both on the specific organism under investigation and the scientific questions
being considered, as we will see throughout this text.

The term nucleotide refers to a single DNA base linked with both a sugar
molecule and phosphate and is often used interchangeably with the term DNA
base. Genes are defined simply as regions of DNA that are eventually made
into proteins or are involved in the regulation of transcription; that is, regions
that regulate the production of proteins from other segments of DNA. In
candidate gene studies, the set of genes under investigation is chosen based
on known biological function. These genes may, for example, be involved in
the production of proteins that are important components of one or more
pathways to disease. In whole and partial genome-wide association studies
(GWAS), segments of DNA across large regions of the genome are considered
and may not be accompanied by an a priori hypothesis about the specific
pathways to disease.

In population-based association studies, the fundamental unit of analysis
is the single-nucleotide polymorphism (SNP). A SNP simply describes a single
base pair change that is variable across the general population at a frequency
of at least 1%. The term can also be used more loosely to describe the specific
location of this variability. The overriding premise of association studies is
that there exists variability in DNA sequences across individuals that cap-
tures information on a disease trait. Regions of DNA within and across genes
are said to have genetic variability if the alleles within the region vary across
a population. Conserved regions, on the other hand, exhibit no variability in
a population. Take the simple example of a single base pair location within a
gene. If the genotype at this site is AA for all individuals within the popula-
tion, then this site is referred to as conserved. On the other hand, if AA, Aa
and aa are observed, then this site is called variable. Here the letters A and a
are used to represent the observed nucleotides (A, C, T or G). For example, A
may represent adenine (A) and a may represent thymine (T). Further discus-
sion of notation is provided in Section 2.1.1. Highly conserved regions of DNA
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are less relevant in the context of association studies since they will not be
able to capture the variability in the disease trait. Studying highly conserved
regions would be tantamount in a traditional epidemiological investigation to
only recruiting smokers to a study and then trying to assess the impact of
smoking on cancer risk. Clearly, multiple levels of the predictor variable, in
this case smoking status, are necessary if the goal is to assess the impact of
this factor on disease.

Multilocus genotype is used to describe the observed genotype across mul-
tiple SNPs or genes, though the terms genotype and multilocus genotype are
often used interchangeably. A locus or site can refer to the portion of the
genome that encodes a single gene or the location of a single nucleotide on
the genome. Multilocus genotype data consist of a string of categorical vari-
ables, with elements corresponding to the genotype at each of multiple sites on
the genome. For example, an individual’s multilocus genotype may be given
by (Aa,Bb), where Aa is the genotype at one site and Bb is the genotype at
a second site. Again the letters A, a, B and b each represent the observed
nucleotides (A, C, T or G). Notably, the specific ordering of alleles is non-
informative, so, for example, the genotypes Aa and aA are equivalent.

The term multilocus genotype should not be confused with the concept of
haplotype. Haplotype refers to the specific combination of alleles that are in
alignment on a single homolog , defined as one of the two homologous chromo-
somes in humans. Suppose again that an individual’s multilocus genotype is
given by (Aa,Bb). The corresponding pair of haplotypes, also referred to as
this individual’s diplotype, could be (AB, ab) or (Ab, aB). That is, either the
A and B alleles are in alignment on the same homolog, in which case a and
b align, or the A and b alleles align, in which case a and B are in alignment.
These two possibilities are illustrated in Figure 1.2 and described further in
Section 2.3.2. This uncertainty is commonly referred to as ambiguity in allelic
phase or more simply phase ambiguity. In general, a multilocus genotype is
observable, although missing data can arise from a variety of mechanisms.
Haplotype data, on the other hand, are generally unobservable in population-
based studies of unrelated individuals and require special consideration for
analysis, as described in detail in Chapter 5.

This layer of missingness renders population-based association studies
unique from family-based investigations. If parental information were available
on the individual above, then it might be possible to clarify the uncertainty
in allelic phase. For example, if the maternal genotype is (AA,BB) and the
paternal genotype is (aa, bb), then it is clear that A and B align on the same
homolog that was inherited from the maternal side and the a and b align on
the copy inherited from the paternal side. In population-based studies, family
data are generally not available to infer these haplotypes. However, it is possi-
ble to draw strength from the population haplotype frequencies to determine
the most likely alignment for an individual. This is discussed in greater detail
in Chapter 5.
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Fig. 1.2. Haplotype pairs corresponding to heterozygosity at two SNP loci

The term zygosity refers to the comparative genetic makeup of two ho-
mologous chromosomes. An individual is said to be homozygous at a given
SNP locus if the two observed base pairs are the same. Heterozygosity, on the
other hand, refers to the presence of more than one allele at a given site. For
example, someone presenting with the AA or aa genotype would be called
homozygous, while an individual with the Aa is said to be heterozygous at
the corresponding locus. The term loss of heterozygosity (LOH), commonly
used in the context of oncology, refers specifically to the loss of function of
an allele, when a second allele is already inactive, through inheritance of the
heterozygous genotype.

The minor allele frequency, also referred to as the variant allele frequency,
refers to the frequency of the less common allele at a variable site. Note that
here the term frequency is used to refer to a population proportion, while
statisticians tend to use the term to refer to a count. The terms homozygous
rare and homozygous variant are commonly used to refer to homozygosity
with two copies of the minor allele. Consider the simple example of a single-
variable site for which AA is present in 75% of the population, Aa is present
in 20% and aa is present in 5%. The frequency of the A allele is then equal to
(75 + 75 + 20)%/2 = 85%, while the frequency of a is (20 + 5 + 5)%/2 = 15%.
In this case, the minor allele (a) frequency is equal to 15%. The major allele
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is the more common allele and is given by A in this example. An example
of calculating the minor and major allele frequencies in R is provided in Sec-
tion 1.3.3.

1.2.2 Traits

Population-based genetic association studies generally aim to relate genetic
information to a clinical outcome or phenotype, which are both referred to in
this text as a trait. The terms quantitative and binary traits refer respectively
to continuous and binary variables, where a binary variable is defined as one
that can take on two values, such as diseased or not diseased. The term phe-
notype is defined formally as a physical attribute or the manifestation of a
trait and in the context of association studies generally refers to a measure of
disease progression. In the context of viral genetic investigations, phenotypes
typically refer to an in vitro measure such as the 50% inhibitory concentration
(IC50), which is defined as the amount of drug required to reduce the replica-
tion rate of the virus by 50%. The term outcome tends to mean the presence
of disease, though it is often used more generally in a statistical sense to refer
to any dependent variable in a modeling framework.

Clinical measures such as total cholesterol and triglyceride levels are ex-
amples of quantitative traits, while the indicator for a cardiovascular outcome,
such as a heart attack, is an example of a binary trait. In a study of breast
cancer, the trait may be defined as an indicator for whether or not a patient
has breast cancer. In HIV investigations, traits include viral load (VL), de-
fined as the concentration of virus in plasma, and CD4+ cell count, which
is a marker for disease progression. In this text, the terms trait, phenotype
and outcome are used broadly to refer to both in vitro and in vivo clinical
measures of disease progression and disease status. Survival outcomes, such
as the time to onset of AIDS, time to a cardiovascular event, or time to death,
as well as ordinal outcomes, such as severity of disease, are other examples of
traits that are also highly relevant to the study of genetic associations with
disease. While this text focuses on continuous and binary traits, alternative
formulations apply and the general methodology presented is applicable to a
wider array of measures.

Traits can be measured cross-sectionally or over multiple time points span-
ning several weeks to several years. Data measured over time are referred to
as longitudinal or multivariate data and provide several advantages from an
analytical perspective, as discussed in detail in several texts, including Fitz-
maurice et al. (2004). The choice of using cross-sectional or longitudinal data
rests primarily on the scientific question at hand. For example, if interest lies
in determining whether genotype affects the change in VL after exposure to
a specific drug, then a longitudinal design with repeated measures of VL is
essential. On the other hand, if the interest is in characterizing VL as a func-
tion of genotype at initiation of therapy, then cross-sectional data may be
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sufficient. While longitudinal studies can increase the power to detect associ-
ation, they tend to be more costly than cross-sectional studies and are more
susceptible to missing data and the resulting biases. In this text, we focus
on the analysis of cross-sectional studies, though the overarching themes and
concepts, such as multiple testing adjustments and the need to control type-1
error rates, are equally applicable to alternative modeling frameworks.

1.2.3 Covariates

In addition to capturing information on the genotype and trait, population-
based studies generally involve the collection of other information on patient-
specific characteristics. For example, in relating genetic polymorphisms to
total cholesterol level among patients at risk for cardiovascular disease, ad-
ditional relevant information may include body mass index (BMI), gender,
age and smoking status. The additional data collected tend to be on variables
that have previously been associated with the trait of interest, in this case
cholesterol level, and may include environmental, demographic and clinical
factors. Consideration of additional variables in the context of analysis will
again depend on the scientific question at hand, the biological pathways to
disease and the overarching goal of the analysis. For example, if the aim of
a study is to identify the best predictive model (that is, to determine the
model that can give the most accurate and precise prediction of cholesterol
level for a new individual), then it is generally a good idea to include variables
previously associated with the outcome in the model. If the goal is to charac-
terize the association between a given gene and the outcome, then including
additional variables, for example self-reported race, may also be warranted if
these variables are associated with both the genotype and the outcome. This
phenomenon is typically referred to as confounding and is discussed in greater
detail in Chapter 2. On the other hand, if a variable such as smoking status
is in the causal pathway to disease (that is, the gene under investigation in-
fluences the smoking status of an individual, which in turn tends to increase
cholesterol levels), then inclusion of smoking status in the analysis may not
be appropriate. In this text, the term covariate is used loosely to refer to
any explanatory variables that are not of specific independent interest in the
present investigation. Covariates are also commonly referred to as independent
or predictor variables.

1.3 Data examples

Throughout this textbook, we provide examples using publicly available
datasets, including data arising from two human-based investigations and one
study involving HIV. Each of these datasets can be downloaded as ascii text
files from the textbook website:
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http://people.umass.edu/foulkes/asg.html

Below we include a summary of each dataset and example code for importing
the data into R. Instructions for downloading R, inputing data and basic data
manipulation strategies are given in the appendix. Additional elementary R
concepts can be found in Gentleman (2008), Spector (2008), Venables and
Smith (2008) and Dalgaard (2002). Complete information on all of the vari-
ables within each dataset can be found in the associated ReadMe files on the
textbook website.

The two settings described in this section, complex disease association
studies in humans and HIV genotype–trait association studies, serve as a
framework for the methods presented throughout the text. While both the
structure of the data and the overarching aims of the two settings are similar,
there are a few notable differences worth mentioning. In both settings, belief
lies in the idea that genetic polymorphisms (that is, variability in the genetic
makeup across a population) will inform us about the variability observed in
the occurrence or presentation of disease. Furthermore, this genetic variability
in both HIV and humans is introduced through the process of replication.
The rate at which these two organisms complete one life cycle, however, is
dramatically different. While humans tend to replicate over the course of
several years, an estimated 109 to 1010 new virions are generated in a single
day within an HIV-infected individual. Furthermore, the replication process
for HIV, described in more detail below, is highly error-prone, resulting in a
mutation rate of approximately 3 × 10−5 per base per replication cycle, see
for example Robertson et al. (1995).

As a result, there is a tremendous degree of HIV genetic variability within
a single human host. That is, each HIV-infected individual carries an entire
population of viruses, with each viral particle potentially comprised of differ-
ent genetic material. In addition, the number of viral particles varies across
individuals. Notably, both of these phenomena, genetic variability and the
amount of virus in plasma, are influenced by current and past drug expo-
sures. In contrast, humans carry two copies of each chromosome, with the
exception of the sex chromosome, one inherited from each parent, and these
tend to remain constant over an individual’s lifetime. While relatively rare,
mutations in the human genome do occur within a lifespan as a result of en-
vironmental exposure to mutagens. This process is notably slower in humans
than in HIV and is not a focal point of this text. Additional details on each
of these two settings are provided below.

1.3.1 Complex disease association studies

Characterizing the underpinnings of complex diseases, such as cardiovascular
disease and cancer, is likely to require consideration of multiple genetic and
environmental factors. As described in Section 1.1.1, human genetic inves-
tigations can involve several stages of processing of human genes, from the



14 1 Genetic Association Studies

DNA sequence to the protein product, and encompass a wide assortment of
study designs. In this text, consideration is given to population-based studies
of unrelated individuals, and the primary unit of genetic analysis is the DNA
sequence. Humans inherit their genetic information from their two parental
genomes through processes termed mitosis and meiosis. All human cells, with
the exception of gametes, contain 46 chromosomes, including 22 homologous
pairs, called autosomes, and 2 sex chromosomes. Each chromosome is com-
prised of a DNA double helix with two sugar-phosphate backbones connected
by paired bases. In this context, guanine pairs with cytosine (G-C) and ade-
nine pairs with thymine (A-T). This pairing is distinct from the pairing of
homologous chromosomes that constitutes an individual’s genotype. Notably,
the latter pairing is not restricted, so that, for example, genotypes GT and
AC can be observed.

Mitosis is a process of cell division that results in the creation of daugh-
ter cells that carry identical copies of this complete set of 46 chromosomes.
Meiosis is the process by which a germ cell that contains 46 chromosomes,
consisting of one homolog from each parent cell, undergoes two cell divisions,
resulting in daughter cells, called gametes, with only 23 chromosomes each. In
turn, this new generation of maternal and paternal gametes combines to form
a zygote. A visual representation of meiosis is provided in Figure 1.3. Notably,
prior to the meiotic divisions, each of the two homologous chromosomes are
replicated to form sister chromatid . Subsequently, in the process of meiosis,
cross-over between these maternal and paternal chromatids can occur. This
is referred to as a cross-over or a recombination event and is depicted in
the figure, where we see an exchange of segments of the paternal chromatid
(shaded) and the maternal chromatid (unshaded). Finally, it is important to
note that the 23 chromosomes are combined independently so that there are
223 = 8, 388, 608 possible combinations of chromosomes within a gamete. This
phenomenon is commonly referred to as independent assortment . The reader
is referred to any of a number of excellent textbooks that describe these pro-
cesses in greater detail. See for example Chapter 19 of Vander et al. (1994)
and Alberts et al. (1994).

Meiosis ensures two things: (1) each offspring carries the same number of
chromosome pairs (23) as its parents; and (2) the genetic makeup of offspring is
not identical to that of their parents. The latter results from both recombina-
tion and independent assortment. An important aspect of meiosis is that whole
portions or segments of DNA within a chromosome tend to be passed from one
generation to another. However, portions of DNA within chromosomes that
are far from one another are less likely to be inherited together, as a result
of recombination events. In the context of candidate gene studies, the SNPs
under investigation can be known functional SNPs or what are referred to as
haplotype tagging SNPs. Functional SNPs affect a trait directly, serving as a
component within the causal pathway to disease. Haplotype tagging SNPs, on
the other hand, are chosen based on their ability to capture overall variabil-
ity within the gene under consideration. These SNPs tend to be associated
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Fig. 1.3. Meiosis and recombination

with functional SNPs but may not be causal themselves. Notably, the length
of a gene region can vary as well as the number of measured base pairs within
each gene. The latter depends on what are called linkage disequilibrium blocks
and relate to the probability of recombination within a region. This is de-
scribed further in Section 3.1.

The structure of human genetics data is similar to that in the HIV set-
ting, with a couple of notable exceptions. First, in human investigations, each
individual has exactly two bases present at each location, one from each of
the two homologous chromosomes. As described below in Section 1.3.2, in the
viral genetics setting, an individual can be infected with multiple strains, re-
sulting in any number of nucleotides at a given site. A second difference is that
in many population-based association studies, human genetic sequence data
are assumed to remain constant over the study period. One notable exception
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is in the context of cancer, in which DNA damage develops, resulting from
environmental exposure to mutagens and resulting in uncontrolled cell prolif-
eration. In the complex disease association studies described in this text, the
genes under investigation do not vary within the timeframe of study. This is
a marked difference from the viral genetic setting, in which multiple genetic
polymorphisms can occur within a short period of time, typically in response
to treatment pressures. In the following section, we describe the HIV genetic
setting in greater detail.

1.3.2 HIV genotype association studies

The Human Immunodeficiency Virus (HIV) is a retrovirus that causes a weak-
ening of the immune system in its infected host. This condition, commonly
referred to as Acquired Immunodeficiency Syndrome (AIDS), leaves infected
individuals vulnerable to opportunistic infections and ultimately death. The
World Health Organization estimates that there have been more than 25 mil-
lion AIDS-related deaths in the last 25 years, the majority of which occurred
in the developing world. Highly active anti-retroviral therapies (ARTs) have
demonstrated a powerful ability to delay the onset of clinical disease and
death, but unfortunately access to these therapies continues to be severely lim-
ited. Furthermore, drug resistance, which can be characterized by mutations
in the viral genome, reduces and in some cases eliminates their usefulness.
Both vaccine and drug development efforts, as well as treatment allocation
strategies in the context of HIV/AIDS, will inevitably require consideration
of the genetic contributors to the onset and progression of disease. In this
section, the viral life cycle and notable features of the data relevant to these
investigations are described.

A visual representation of the HIV life cycle is given in Figure 1.4. As
a retrovirus, HIV is comprised of ribonucleic acid (RNA). From the figure,
we see that the virus begins by fusing on the membrane of a CD4+ cell in
the human host and injecting its core, which includes viral RNA, structural
proteins, and enzymes, into the cell. The viral RNA is then reverse transcribed
into DNA using one of these enzymes, reverse transcriptase. Another enzyme,
integrase, then splices this viral DNA into the host cell DNA. The normal cell
mechanisms for transcription and translation then result in the production
of new viral protein. In turn, this protein is cleaved by the protease (Pr)
enzyme and together with additional viral RNA forms a new virion. As this
virion buds from the cell, the infected cell is killed, ultimately leading to the
depletion of CD4 cells, which are vital to the human immune system. ARTs,
the drugs used to treat HIV-infected individuals, aim to inhibit each of the
enzymes involved in this life cycle.

Reverse transcription of RNA into DNA is a highly error-prone process,
resulting in a mutation rate of approximately 3×10−5 per base per cycle. This,
coupled with a very fast replication cycle leading to 109 to 1010 new virions
each day, results in a very high level of genetic variability in the viral genome.
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Fig. 1.4. HIV life cycle

The resulting viral population within a single human host is commonly re-
ferred to as a quasi-species. While many of these viruses are not viable (that
is, they cannot survive with the resulting mutations), many others do remain.
Notably, evidence suggests that mutated viruses can be transmitted from one
host to another. The composition of a viral quasi-species tends to be highly
influenced by current and past treatment exposures. HIV therapies generally
consist of a combination of two or three anti-retroviral drugs, commonly re-
ferred to as a drug cocktail. There are currently four classes of drugs that each
target a different aspect of the viral life cycle: fusion inhibitors, nucleoside
reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase
inhibitors (NNRTIs) and protease inhibitors (PIs). In the presence of these
treatment pressures, viruses that are resistant to the drugs tend to emerge
as the dominant species within a person. As individuals develop resistance to
one therapy, another combination of drugs may be administered and a new
dominant species can emerge. Evidence suggests that a blueprint of drug ex-
posure history remains in latent reservoirs in the sense that a resistant species
will re-emerge quickly in the presence of a drug to which a patient previously
exhibited resistance.

The genetic composition of HIV is a single strand of RNA consisting of
the four base pairs adenine (A), cytosine (C), guanine (G) and uracil (U).
In general, and for the purpose of this textbook, the amino acid (AA) corre-
sponding to three adjacent bases is of interest since AAs serve as the building
blocks for proteins. Notably, there is not a one-to-one correspondence between
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base triplets and AAs, and thus there are instances in which base information
is more relevant, for example in phylogenetic analyses aimed at characteriz-
ing viral evolution. There are a total of 20 AAs, though between 1 and 5 are
typically observed within a given site on the viral genome across a sample of
individuals.

As described above, the viral genome changes over time and in response to
treatment exposures. Thus, while viral RNA is single stranded, an individual
can carry multiple genotypically distinct viruses, which we refer to as strains,
resulting from multiple infections or quasi-species that developed over time
within the host. Technically, a strain refers to a group of organisms with a
common ancestor; however, here we use the term more loosely to refer to
genetically distinct viral particles. As a result, multiple AAs can be present
at a given site within a single individual. Typically, a frequency of at least
20% within a single host is necessary for standard population sequencing
technology to recognize the presence of an allele. Thus, the number of AAs at
a given location within an individual tends to range between one and three. In
contrast, there are always exactly two alleles present at a given site within an
individual for the human genetic setting, one inherited from each of the two
parental genomes. Regions of the genome are segments of RNA that generally
code for a protein of interest. For example, in the context of studying viral
resistance, the Protease (Pr) region and Reverse Transcriptase (RT) regions
are of interest since these code for enzymes that are targeted by ARTs. The
Envelope region, on the other hand, may be relevant to studies of vaccine
efficacy since it is involved in cell entry. Regions are tantamount to genes in
the context of human genetic studies.

1.3.3 Publicly available data used throughout the text

The FAMuSS study

The Functional SNPS Associated with Muscle Size and Strength (FAMuSS)
study was conducted to identify the genetic determinants of skeletal muscle
size and strength before and after exercise training. A total of n = 1397
college student volunteers participated in the study, and data on 225 SNPs
across multiple genes were collected. The exercise training involved students
training their non-dominant arms for 12 weeks. The primary aim of the study
was to identify genes associated with muscle performance and specifically to
understand associations among SNPs and normal variation in volumetric MRI
(muscle, bone, subQ fat), muscle strength, response to training and clinical
markers of metabolic syndrome. Primary findings are given in Thompson et al.
(2004). A complete list of associated publications can be found in the ReadMe
file on the textbook webpage.

The data are contained in a tab-delimited text file entitled FMS data.txt
and illustrated, in part, in Table 1.1. The file contains information on genotype
across all SNPs as well as an extensive list of clinical and demographic factors
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for a subset (n = 1035) of the study participants. We begin by specifying the
web location of the data file as follows:

> fmsURL <- "http://people.umass.edu/foulkes/asg/data/FMS_data.txt"

We then use the read.delim() function to pull the data into R directly from
the textbook website:

> fms <- read.delim(file=fmsURL, header=T, sep="\t")

By specifying header=T, we are indicating that the first row of the text file
contains the variable names. Alternatively, we could have specified header=F,
which assumes that the first line of the file is the first record of data. We also
indicate with the argument sep="\t" that a tab separates each variable within
a line of the data. Common alternative specifications are sep="," and sep="",
indicating comma and space delimiters, respectively. As described in the ap-
pendix, other useful functions for reading data into R include read.table()
and read.csv(). The specifications given above are the default values for
read.delim() and need not be written out explicitly. We do so for the pur-
pose of illustration.

A portion of the data on the first 20 individuals in this sample are dis-
played in Table 1.1. Included in this table are the genotypes for four SNPs
within the actn3 gene and a few corresponding clinical and demographic
parameters. The variable Term indicates the year and term (1—spring, 2—
summer, 3—fall) of recruitment into the study, and Gender, Age and Race are
all self-declared values of these demographic factors. The percentage changes
in muscle strength before and after exercise training are given by NDRM.CH
for the non-dominant arm and DRM.CH for the dominant arm. Generation of
the LaTeX code for Table 1.1 is done in R using the xtable() function in
the xtable package. The print() function with the floating.environment
option set equal to ‘sidewaystable’ is used to generate a landscape table.
Alternatively, we can print the table in R as shown below:

> attach(fms)

> data.frame(id, actn3_r577x, actn3_rs540874, actn3_rs1815739,

+ actn3_1671064, Term, Gender, Age, Race, NDRM.CH,DRM.CH)[1:20,]

We use the attach() function so that we can call each variable by its name
without having to indicate the corresponding dataframe. For example, after
submitting the command attach(fms), we can call the variable Gender with-
out reference to fms. Alternatively, we could write fms$Gender, which is valid
whether or not the attach() function was used. A dataframe must be re-
attached at the start of a new R session for the corresponding variable names
to be recognized. The numbers 1:20 within the square brackets and before
the comma are used to indicate that row numbers 1 through 20 are to be
printed.

We see from this table that the genotype for id=FA-1801 at the first
recorded SNP (r577x) within the gene actn3 is the pair of bases CC. In most
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cases, SNPs are biallelic, which means that two bases are observed within a
site across individuals. For example, for SNP r577x in gene actn3, the letters
C and T are observed, while at rs540874 in gene actn3, the two bases G and
A are observed. This pairing is not restricted (that is, A can be present with
T , C or G within another site), distinguishing this from the pairing of bases
that occurs to form the DNA double helix within a single homolog (in which
A always pairs with T and C with G).

Recall that an individual is said to be homozygous if the two observed
base pairs are the same at a given site and heterozygous if they differ. From
Table 1.1, for example, we see that individual FA-1801 from the FAMuSS
study is homozygous at actn3 rs540874 with the observed genotype equal
to GG. Likewise, individual FA-1807 is homozygous at this site since the
observed genotype is AA. Individuals FA-1802, 1803 and 1804, on the other
hand, are all heterozygous at actn3 rs540874 since their genotypes contain
both the G and A alleles. Determination of a minor allele and its frequency is
demonstrated in the following example using data from the FAMuSS study.

Example 1.1 (Identifying the minor allele and its frequency). Suppose we are
interested in determining the minor allele for the SNP labeled actn3 rs540874
in the FAMuSS data. To do this, we need to calculate corresponding allele
frequencies. First we determine the number of observations with each genotype
for this SNP using the following code:

> attach(fms)

> GenoCount <- summary(actn3_rs540874)

> GenoCount

AA GA GG NA’s

226 595 395 181

The table() function in R outputs the counts of each level of the ordinal
variable given as its argument. In this case, we see n = 226 individuals have
the AA genotype, n = 595 individuals have the GA genotype and n = 395
individuals have the GG genotype. An additional n = 181 individuals are
missing this genotype. For simplicity, we assume that this missingness is non-
informative. That is, we make the strong assumption that our estimates of the
allele frequencies would be the same had we observed the genotypes for these
individuals. To calculate the allele frequencies, we begin by determining our
reduced sample size (that is, the number of individuals with complete data):

> NumbObs <- sum(!is.na(actn3_rs540874))

The genotype frequencies for AA, GA and GG are then given respectively by

> GenoFreq <- as.vector(GenoCount/NumbObs)

> GenoFreq

[1] 0.1858553 0.4893092 0.3248355 0.1488487
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The frequencies of the A and G alleles are calculated as follows:

> FreqA <- (2*GenoFreq[1] + GenoFreq[2])/2

> FreqA

[1] 0.4305099

> FreqG <- (GenoFreq[2] + 2*GenoFreq[3])/2

> FreqG

[1] 0.5694901

Thus, we report A is the minor allele at this SNP locus, with a frequency
of 0.43. In this case, an individual is said to be homozygous rare at SNP
rs540874 if the observed genotype is AA. Homozygous wildtype, on the other
hand, refers to the state of having two copies of the more common allele, or
the genotype GG in this case.

Alternatively, we can achieve the same result using the genotype() and
summary() functions within the genetics package. First we install and upload
the R package as follows:

> install.packages("genetics")

> library(genetics)

We then create a genotype object and summarize the corresponding genotype
and allele frequencies:

> Geno <- genotype(actn3_rs540874,sep="")

> summary(Geno)

Number of samples typed: 1216 (87%)

Allele Frequency: (2 alleles)

Count Proportion

G 1385 0.57

A 1047 0.43

NA 362 NA

Genotype Frequency:

Count Proportion

G/G 395 0.32

G/A 595 0.49

A/A 226 0.19

NA 181 NA

Heterozygosity (Hu) = 0.4905439

Poly. Inf. Content = 0.3701245

Here we again see that A corresponds to the minor allele at this SNP locus,
with a frequency of 0.43, while G is the major allele, with a greater frequency
of 0.57. �
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The Human Genome Diversity Project (HGDP)

The Human Genome Diversity Project (HGDP) began in 1991 with the aim
of documenting and characterizing the genetic variation in humans worldwide
(Cann et al., 2002). Genetic and demographic data are recorded on n = 1064
individuals across 27 countries. In this text, we consider genotype information
across four SNPs from the v-akt murine thymoma viral oncogene homolog 1
(AKT1) gene. In addition to genotype information, each individual’s country
of origin, gender and ethnicity are recorded. For complete information on
this study, readers are referred to http://www.stanford.edu/group/morrinst/
hgdp.html. Data are contained in the tab-delimited text file HGDP AKT1.txt
on the textbook website. Again we begin by specifying the location of the
data:

> hgdpURL <- "http://people.umass.edu/foulkes/asg/data/HGDP_AKT1.txt"

Then we apply the read.delim() function to read the data into R:

> hgdp <- read.delim(file=hgdpURL, header=T, sep="\t")

Data on the first 20 observations in this dataset are provided in Table 1.2.
Here the variable Population refers to ethnicity, Geographic.origin is the
country of origin and Geographic.area is a more general description of loca-
tion for the individuals in this cohort.

The Virco data

Several publicly available datasets that include viral sequence information,
treatment histories and clinical measures of disease progression for HIV-
infected individuals are downloadable at the Stanford Resistance Database:
http://hivdb.stanford.edu/. In this text we consider a data set generated by
VircoTM , which includes protease (Pr) sequence information on 1066 viral
isolates and corresponding fold-resistance measures for each of eight Pr in-
hibitors. Fold resistance is a comparative measure of responsiveness to a drug,
where the referent value is for a wildtype or consensus virus. The consensus
AA at a site on the viral genome is defined as the AA that is most common
at this site in the general population. The data are comma delimited and
contained in the file Virco data.csv on the textbook website. We use the
read.csv() function in R to read in the data:

> vircoURL <- "http://people.umass.edu/foulkes/asg/data/Virco_data.csv"

> virco <- read.csv(file=vircoURL, header=T, sep=",")

Note that we now indicate sep="," since the data are comma delimited.
This is the default for the read.csv() function. Complete information on the
variables in the database and associated publications can be found on the
Stanford Resistance Database website. A sample of the data on a select set
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of variables is given in Table 1.3. The variable SeqID is the sequence iden-
tifier, and IsolateName is the name given to the corresponding isolate. The
drug-specific fold-resistance variables are labeled Drug.Fold, so, for example,
Indinavir (IDV) fold resistance is given by the variable IDV.Fold. A higher
fold-resistance value indicates that the corresponding isolate is more resistant
(less sensitive) to the indicated drug than a wildtype sequence based on an in
vitro assay.

The genotype information is available in two formats. The first represen-
tation is given by the variables with names that begin with the letter P and
followed by a number. This number refers to the amino acid position within
the Pr region of the viral sequence. For example, the variable P10 represents
the tenth AA position within the Pr region of the viral genome. A “−” in
the data table indicates the presence of the population consensus AA, while a
letter indicates a mutation in the form of the AA corresponding to this letter.
For example, for SeqID==3852, a variant AA is observed at site 10 in the form
of Isoleucine (I). A total of 99 P variables are included in this dataset, corre-
sponding to the 99 AA sites in the protease region of the viral genome. An
alternative formulation of the data is given by the variable MutList, which is
a list of all the observed mutations. These data are coded by a letter, followed
by a number, followed by another letter. The number is again the AA loca-
tion, the first letter is the consensus AA at this site and the letter following
the number is the AA(s) that are observed at the corresponding location. For
example, L10I indicates that AA I is present in place of leucine (L) at site
10.
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Problems

1.1. State the primary analytic considerations that distinguish population-
based and family-based investigations.

1.2. Define and contrast the following terms: (a) genotype, (b) haplotype, (c)
phase, (d) homologous, (e) allele, and (f) zygosity.

1.3. Based on the FAMuSS data, determine the minor allele and its frequency
for the actn3 1671064 SNP. Report these frequencies overall and stratified
by the variable labeled Race. Interpret your findings.

1.4. Using the HGDP data, summarize the genotype frequencies for the SNP
labeled AKT1.C6024T, overall and by geographic area, using the variable
named geographic.area. Interpret the results.

1.5. Report the observed proportion of mutations at sites 1, 10, 30, 71, 82
and 90 in the Protease region of the HIV genome for the Virco data using the
variables labeled P1, P10, P30, P71, P82 and P90. Explain your findings.



2

Elementary Statistical Principles

This chapter includes coverage of several statistical and epidemiological con-
cepts that are broadly relevant to the study of association among multiple
variables and specifically important in the analysis of genetic association in
population-based investigations. The chapter is divided into three sections.
Section 2.1 offers a general background, including the notation used through-
out this text and some elementary probability concepts. This section also
provides a basic overview of several fundamental epidemiological concepts
relevant to any population-based investigation, including confounding, effect
mediation, effect modification and conditional association. The reader is re-
ferred to Rothman and Greenland (1998) for a comprehensive overview of
these and other epidemiological principles. Some of these concepts are very
similar to the genetic data concepts discussed in Chapter 3, though they tend
to have different nomenclature. All of these elements are important to the
discovery and characterization of genotype–trait associations. Section 2.2 de-
scribes several simple measures and tests of statistical association, including
correlation analysis, contingency table analysis and simple linear and logis-
tic regression. Also included in this section is an introduction to methods for
multivariable analysis. Finally, Section 2.3 offers an overview of the analytic
challenges inherent in population-based genetic investigations. The testing
procedures described throughout this chapter can be applied to each of a set
of genotype variables though they generally require an adjustment for multiple
comparisons, as described in Chapter 4. Further extensions that allow simul-
taneous assessment of associations for a group of SNPs or genes are presented
in Chapters 5–7.

A.S. Foulkes, Applied Statistical Genetics with R: For Population-based Association 29

Studies, Use R, DOI: 10.1007/978-0-387-89554-3 2,
c© Springer Science+Business Media LLC 2009
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2.1 Background

2.1.1 Notation and basic probability concepts

Notation

As described in Section 1.2, data arising from population-based association
studies are comprised of three primary components: the trait, which in this
text is either quantitative or binary; a single or multilocus genotype; and
several patient-level covariates. Throughout this text, we use y to represent
the trait under study, x to represent the genotype data and z to represent
covariates. For example, we let yi be the trait for the ith individual in our
sample, where i = 1, . . . , n and n is our total sample size. Furthermore, xij is
the genotype at the jth SNP for individual i, where j = 1, . . . , p and p is the
total number of SNPs under study. Finally, zik is the value of the kth covariate
for individual i, where k = 1, . . . ,m and m is the number of covariates.

Boldface font is used to indicate vectors, and capital letters are used to
represent matrices. For example, we use x = (x1, . . . , xn)T to represent an
n × 1 vector of genotypes at a single site on the genome across all individ-
uals in our sample and xj = (x1j , . . . , xnj)T to represent the genotypes at
the jth site under study. The notation T is used to indicate the transpose
of a vector. Similarly, y = (y1, . . . , yn)T is a vector with its ith element cor-
responding to the trait for individual i. In several settings, we additionally
use xi = (xi1, . . . , xip)T to denote the genotype data for the ith individual
across p variables. The difference between xi and xj will be made clear by the
particular context presented. Recall that y can be quantitative, such as CD4
count or total cholesterol, in which case it is typically measured with error.
Alternatively, y may be a binary random variable representing disease status.

An n×p matrix of genotype variables is given by X, with the (i,j)-element
corresponding to the jth genotype for individual i. Similarly, the n×m matrix
Z is used to represent the entire set of covariates. These may include multiple
clinical, demographic and environmental variables, such as age, sex, weight
and second-hand smoke exposures. The concatenated matrix given by

[
X Z

]
represents all potential explanatory variables. If dimensions are not indicated,
they can generally be inferred based on the specific model of association under
consideration. Finally, while Roman letters are used to represent data, Greek
symbols, such as α, µ, β and θ, are used to represent model parameters. These
parameters are unobservable quantities that we are generally interested in
estimating or making inference about.

Application of any statistical approach requires first understanding the
potential ways in which the components of our data can be defined. In general,
the genotype for individual i at site j, denoted xij , is a categorical variable
that takes on two or more levels. For example, xij may be defined as a three-
level factor variable taking on the three possible genotypes at a biallelic site,
given by AA, Aa and aa. Alternatively, we can define xij as a binary variable
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indicating the presence of at least one variant allele at a single SNP locus.
That is, for example, we can let xij = 0 if the observed genotype is AA and
xij = 1 otherwise. Yet another alternative is to define xij as an indicator for
the presence of any variant alleles across multiple SNPs within a given gene.
For example, suppose there are two SNPs within the jth gene. We can then
let xij = 0 if the multilocus genotype is (AA,BB) and xij = 1 otherwise.

Note that throughout this text we offer simple examples in which the
letters A, a, B and b are used to represent the alleles at two biallelic loci.
The two letters A and B are used to indicate different sites, and the capital
and lowercase letters are intended to represent the different alleles at each
corresponding site. For example, if the nucleotides C and G are observed at
the first site, then we may let A = C and a = G. In general, A represents the
major allele and a represents the minor allele. This notation is presented in
several genetics texts, though alternative notation has also been used. Most
notably, we often see the notation A1, A2, B1 and B2, where now the subscript
is used to indicate the corresponding allele. The advantage of this alternative
notation is that we are not restricted to biallelic SNPs. That is, if more than
two alleles are present in a population at a given site, we can represent these
as A1, A2, A3, . . ., Ak for k > 2. In this text, we resort to the more commonly
used A, a notation since it tends to be less cumbersome within larger formulas.

Statistical independence

The concept of independence is a cornerstone of statistical inference. In the
context of genetic association studies, we are often interested in testing the
null hypothesis that the trait under study is independent of genotype. That
is, a summary value of the trait, such as the mean, is the same for all levels
of genotype. As we will see in Chapter 3, assessing independence of alleles
across two or more loci (linkage equilibrium) or independence of alleles across
two homologous chromosomes (Hardy-Weinberg equilibrium) is also of gen-
eral interest in genetic association studies. In probability terms, we say that
two events are independent if the joint probability of their occurrence is the
product of the probabilities of each event occurring on its own.

Consider for example a single SNP with alleles given by A and a. Suppose
one event is defined as the presence of A on one of the two homologous chro-
mosomes and a second event is defined as the presence of A on the second of
the two homologous chromosomes. Further, let pA be the allele frequency of
A and pAA be the joint probability of having two copies of A, one on each of
the two homologous chromosomes. We say these two events are independent
(that is, the occurrences of A on each of the two homologous chromosomes
are independent) if pAA = pApA. For example, if the probability of A is
pA = 0.50, then, under independence, the probability of the AA genotype is
pAA = 0.52 = 0.25.

Dependency, on the other hand, refers to the situation in which the prob-
ability of one event depends on the outcome of another event. For example,
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suppose one event is defined as having a mutation in the BRCA1 gene, a
known risk factor for breast and ovarian cancers, and a second event is de-
fined as developing breast cancer. In this case, the probability of developing
breast cancer depends on whether a mutation is present; that is, the second
event depends on whether the first event occurred. Formally, let our two events
be denoted E1 and E2. The conditional probability of the second event given
that the first one has occurred is written Pr(E2|E1), where | is read “given”.
In general, we have Pr(E2|E1) = Pr(E2 and E1)/Pr(E1). If the two events
are independent, then this reduces to Pr(E2|E1) = Pr(E2), and similarly we
have Pr(E1|E2) = Pr(E1).

Expectation

The expectation of a discrete random variable can be thought of simply as
a weighted average of its possible values, where the weights are equal to the
probabilities that the variable takes on corresponding values. For example,
suppose Y is a random variable that takes on the value 1 with probability
p and the value 0 with probability (1 − p). We say Y is a Bernoulli random
variable and we have the following, where E[·] is used to denote expectation:

E[Y ] = 1 ∗ p+ 0 ∗ (1− p) = p (2.1)

In the continuous case, we instead weight by the probability density function.
Notably, if c is a constant, then E[c] = c and the expectation of a mean 0 ran-
dom variable is equal to 0. We will see the use of expectations in Section 2.2.3
and Chapter 5. Emphasis, however, is placed on the general concept of ex-
pectation as a weighted average, and technical details are not emphasized.

Likelihood

Maximum likelihood is probably the most widely used approach to finding
point estimates of population-level parameters based on a sample of data.
For the genetic association setting described herein, we may be interested,
for example, in characterizing the effect of having a variant allele at a given
SNP locus on a quantitative trait. Maximum likelihood is one approach to
deriving an estimate of this effect based on a sample of observations that
maintains several desirable properties. A complete introduction to estimation
and associated concepts is provided in Casella and Berger (2002).

Briefly, suppose our parameter of interest is denoted θ. The likelihood func-
tion is given by

L(θ|y) = L(θ|y1, . . . , yn) = f(y1, . . . , yn|θ) (2.2)

where n is the number of individuals in our sample and f(y1, . . . , yn|θ) is the
joint probability distribution of y = (y1, . . . , yn). Under the assumption that
our observations are independent and identically distributed, we have
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L(θ|y) =
n∏
i=1

f(yi|θ) (2.3)

If we further assume our trait is normally distributed with mean µ and vari-
ance σ2, then we have f(yi|θ) = N(µ, σ2). Here θ is the vector (µ, σ2). The
maximum likelihood estimate of θ, denoted θ̂, is one that maximizes the like-
lihood function given in Equation (2.2) with respect to θ. Notably, this is
conditional on the observed data, y. That is, the maximum likelihood esti-
mate is the most probable value of the corresponding parameter, given the
data at hand.

2.1.2 Important epidemiological concepts

In this section we review several notable epidemiological and biostatistical
concepts, including confounding, effect mediation, interaction and conditional
association, relevant to any population-based investigation. The importance
of these concepts is highlighted throughout this text. For example, we see in
Chapter 3 that race and ethnicity often play the role of a traditional con-
founder in the association between genotype and a trait. In Chapter 6, we
discuss the distinction between interaction and conditional association when
interpreting the results of a classification or regression tree.

Confounding and effect mediation

Consider the setting in which interest lies in characterizing the association
between two variables, an exposure and an outcome. For example, we may
want to determine whether heavy alcohol consumption (the exposure) is as-
sociated with total cholesterol level (the outcome). A confounder is defined
as a variable that is: (1) associated with the exposure variable; (2) indepen-
dently associated with the outcome variable; and (3) not in the causal pathway
between exposure and disease. For example, smoking status is a potential con-
founder in the relationship above since smoking tends to be associated with
heavy alcohol use and is also associated with cholesterol level among individ-
uals who are not heavy alcohol users. In population-based genetic settings,
we are generally interested in the association between genotype, as defined
by one or more SNPs, and a trait. In this case, a confounder is defined as
a clinical or demographic variable that is associated with both the genotype
and trait under investigation, as illustrated in Figure 2.1.

In this figure, the solid, double-headed arrows are used to denote an asso-
ciation, while single-headed arrows are used to denote causality in the sense
that one variable is believed to precede another. The dotted line between geno-
type and trait in this diagram is used to emphasize the fact that there may
or may not be an association between these two variables. The existence of a
true underlying association between the two variables of interest is irrelevant
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Fig. 2.1. Confounding
A confounder variable is associated with the genotype and independently associated
with the trait. We exclude the situation in which a third variable is in the causal
pathway between genotype and disease, as described by Figure 2.2.

to the definition a confounder. Importantly, however, ignoring the presence
of a confounder in the analysis can lead to erroneous conclusions about the
association of interest. Technically, since a confounder cannot be in the causal
pathway, the arrows cannot point both from the genotype to the confounder
and from the confounder to the trait.

In Section 3.1.3, we will see confounding in the context of assessing link-
age disequilibrium (LD) in the presence of population stratification. LD is
defined as an association between the alleles on a single homologous chro-
mosome between two genetic loci. If the allelic distribution at both of these
sites differs across subpopulations, such as racial or ethnic groups, then pop-
ulation serves as a confounder in the relationship between the two sites. In
the LD setting, we will see that combining data across subpopulations may
result in the appearance of LD when in fact there is no association between
the sites in either subpopulation considered alone. In population-based asso-
ciation studies, population admixture can similarly lead to the appearance
of an association between genotype and disease status when in fact such an
association does not exist. In this case, population serves to confound this
relationship if the likelihood of disease as well as the genotype frequencies
differ across subpopulations.

One common example of confounding is found in studies of cardiovascu-
lar disease that involve multiple racial or ethnic groups. As we describe in
Chapter 3, genotype frequencies often differ by race and ethnicity, and in
some cases the dominant allele at a given site even varies across these groups.
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Several reports also suggest that lipid outcomes, such as total cholesterol and
triglyceride levels, are associated with race and ethnicity, with Black non-
Hispanics generally having a better lipid profile than Whites and Hispanics.
This is a classic case of race and ethnicity confounding the relationship be-
tween genotype and lipid measures and may result in a spurious association
between exposure and disease. Other clinical and demographic variables may
also serve as confounders in genotype–trait association studies. For example,
country of origin may be associated with both allele frequencies and a disease
phenotype. Smoking and alcohol use are also thought to be associated with ge-
netic polymorphisms and many disease traits. Careful consideration, however,
is needed for variables such as these to distinguish between confounders and
what are called effect mediators. This subtle yet very important distinction
is discussed below. Further details on the challenges associated with different
variable types in analysis are provided in Christenfeld et al. (2004). Identifica-
tion of potential confounders will rely heavily on the input of the investigative
team, inclusive of clinicians, epidemiologists, and geneticists.

A variable that lies in the causal pathway between the predictor and out-
come of interest is called an effect mediator or causal pathway variable. A
diagram illustrating the presence of an effect mediator in the association be-
tween genotype and a trait is provided in Figure 2.2. Here we see that the
genotype affects the trait through alteration of the mediator variable. Consider
for example a study that aims to determine whether there is an association
between a single genetic polymorphism and lung cancer. If the polymorphism
under study increases the likelihood that an individual smokes, and in turn it
is the smoking that causes lung cancer, then we would say that smoking is an
effect mediator in this case. By definition, a marker for disease is believed to be
within the causal pathway to disease. Importantly, a thorough analysis plan
must distinguish between patient-level covariates that serve as confounders
and those that play the role of effect mediators. In general, while adjust-
ment for confounding is essential in our analysis, inclusion of causal pathway
variables is not recommended in the usual multivariable regression setting.
Unfortunately, it is difficult to distinguish between confounding and effect me-
diation from an analytical standpoint. Scientific insight into the mechanisms
of disease will elucidate these distinctions. Further discussion of the analytic
challenges arising from confounding, effect mediation and the conflation of the
two can be found in Robins and Greenland (1992), Rothman and Greenland
(1998), Cole and Hernan (2002), Hernan et al. (2002) and Christenfeld et al.
(2004).

Interaction and conditional association

Effect modification describes the setting in which the effect of a predictor
variable on the outcome depends on the level of another variable, called a
modifier. In this case, we say the predictor variable and the modifier interact
in a statistical sense in their association with the outcome. Consider Fig-
ure 2.3, for example, where again we assume interest lies in characterizing the
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Fig. 2.2. Effect mediation
An effect mediator is in the causal pathway between the genotype and the trait. A
confounder, on the other hand, is associated with the genotype and the trait, but is
not in the causal pathway.

relationship between genotype and a trait. An effect modifier is defined as a
variable that alters the relationship between the exposure and outcome. In
this figure, the effect of genotype on the trait is given by β1 when the effect
modifier is equal to 0, while this effect is β2 when the effect modifier is equal
to 1. Formally, interaction is defined precisely as β1 6= β2 and is assessed by
testing the null hypothesis H0 : β1 = β2. Rejection of this null implies sta-
tistical interaction. We return to a discussion of statistical interaction in the
context of multivariable models in Section 2.2.3.

Conditional association is technically different from interaction, though
the two terms are often used interchangeably. A conditional association is
when the effect of x on y is statistically significant within either or both
levels of a third variable, z. Returning to Figure 2.3, we say a conditional
association exists if β1 6= 0 or β2 6= 0 (or both). That is, a test of conditional
association is a test of the composite null, given by H0 : β1 = 0 and β2 = 0.
If either effect is different from 0, then we would reject this null in favor
of a conditional association. Notably, a statistically significant conditional
association between x and y (conditional on z) does not imply a significant
statistical interaction between x and z. Consider for example the extreme
case in which β1 = β2 = 4. Assuming a reasonable spread and sample size,
we expect to find that both β1 6= 0 and β2 6= 0 and reject the null; however,
we do not expect to reject the interaction null (H0 : β1 = β2). The difference
between conditional association and interaction is an important one when
considering methods that are designed specifically for detecting one or the
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Fig. 2.3. Effect modification and conditional association

other. For example, we will see in Chapter 6 that classification and regression
trees are formulated specifically for detecting conditional associations.

2.2 Measures and tests of association

This section provides a basic overview of a few simple statistical measures and
tests of association. Several introductory biostatistics books cover these topics
in greater detail, and the reader is referred to these for a comprehensive dis-
cussion; see for example Pagano and Gauvreau (2001) and Rosner (2006). As
we will see below, the choice of statistical procedure used to assess association
among variables depends on the hypothesis and structure of the data under
investigation. Furthermore, estimation and testing can be either unadjusted or
adjusted and univariate or multivariable. Adjusted analyses take into account
potential confounders in the relationship between exposure (genotype in our
setting) and the outcome. Multivariable methods involve multiple predictors
and provide a venue for assessing interaction and conditional association. In
the remainder of this chapter and Chapter 3, we use the term p-value without
explicitly defining it, assuming the reader is broadly familiar with hypothesis
testing. We define this term as well as other relevant testing concepts, such
as type-1 and type-2 error rates, in Chapter 4.
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Table 2.1. 2 × 3 contingency table for genotype–disease association

Genotype
aa Aa AA

Disease
+ n11 n12 n13 n1.

− n21 n22 n23 n2.

n.1 n.2 n.3 n

2.2.1 Contingency table analysis for a binary trait

Odds ratio

As described in Chapter 1 for the human genetic setting, the genotype at a
given SNP has three levels: homozygous wildtype, heterozygous, and homozy-
gous rare. If the outcome is binary, then the data can be represented by the
2× 3 contingency table given in Table 2.1. Here nij is the number of individ-
uals in the corresponding cell for i = 1, 2 and j = 1, 2, 3. For example, n11 is
the number of individuals in our sample who have disease and express the aa
genotype. In this setting, a commonly used measure of association is the odds
ratio (OR), defined as the ratio of the odds of disease among the exposed to
the odds of disease among the unexposed. In our setting, genotype can be
thought of as the exposure, so that the OR is the ratio of the odds of disease
given a specific genotype to the odds of disease among individuals without
the specified genotype.

Formally, if D+ and D− represent diseased and not diseased and E+ and
E− represent exposed and not exposed, respectively, then the OR is written

OR =
Pr(D+|E+)/ [1− Pr(D+|E+)]
Pr(D+|E−)/ [1− Pr(D+|E−)]

(2.4)

where | indicates conditional, as described in Section 2.1.1. In the case of
a three-level exposure variable, it is common to calculate the OR for each
level of exposure in relation to the referent group. In the genetics setting,
we often calculate the OR for each genotype in relation to the homozygous
wildtype genotype, AA. That is, we define ORaa,AA as the odds of disease
for individuals with the homozygous rare genotype, aa, compared with those
with the homozygous wildtype genotype AA. Likewise ORAa,AA is the odds
of disease for heterozygous individuals compared with those individuals with
the AA genotype. Algebraically, based on Equation (2.4) and the notation in
Table 2.1, we have

ORaa,AA =
(n11/n.1)/(n21/n.1)
(n13/n.3)/(n23/n.3)

=
n11n23

n21n13
(2.5)
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Table 2.2. 2 × 2 contingency table for genotype–disease association

Genotype
(Aa or aa) AA

Disease (D)
+ n11 n12 n1.

− n21 n22 n2.

n.1 n.2 n

since Pr(D+|E+) = n11/n.1 and Pr(D+|E−) = n13/n.3. Similarly, it is
straightforward to show that ORAa,AA = (n12n23)/(n22n13).

One alternative approach is to dichotomize genotype prior to calculating
the OR. For example, we can define genotype as an indicator for the presence
of any variant allele. Suppose the three possible genotypes are again given by
AA, Aa, and aa. Then a dichotomized genotype exposure could be defined
as E+ = (Aa or aa) and E− = (AA). The corresponding count data are now
given by Table 2.2. In this case, we have a 2 × 2 contingency table, and the
single corresponding OR is equal to

ÔR =
(n11/n.1)/(n21/n.1)
(n12/n.2)/(n22/n.2)

=
n11n22

n21n12
(2.6)

An estimate of the OR can be calculated in R using the oddsratio() function
in the epitools package.

Pearson’s χ2-test and Fisher’s exact test

A formal test of association between a categorical exposure (genotype) and
categorical disease variable (trait) is conducted using Pearson’s χ2-test or
Fisher’s exact test. In the context of a 2 × 2 table, a test of no associa-
tion between the rows and columns is equivalent to a test of the single null
hypothesis, H0 : OR = 1. Pearson’s χ2-test involves first determining the
expected cell counts of a corresponding contingency table under the assump-
tion of independence between the genotype and trait. These expected counts
are calculated using the concept of independence described in Section 2.1.1.
Recall that the probability of two independent events, in this case exposure
and disease, is simply the product of the probabilities of each event. Thus, for
example, the probability that an individual contributes to the (1,1)-cell, under
independence, is given by Pr(D+)Pr(E+) = (n1./n)(n.1/n) = n1.n.1/n

2. We
multiply this by n, the total number of individuals in our sample, to get a
corresponding expected count, E11 = n1.n.1/n.

More generally, the expected count for the (i,j)-cell is given by Eij =
ni.n.j/n for i = 1, 2 and j = 1, 2, 3. Letting the corresponding observed cell
counts be denoted Oij , Pearson’s χ2-statistic is given by
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χ2 =
∑
i,j

(Oij − Eij)2

Eij
∼ χ2

(r−1)(c−1) (2.7)

This statistic has a χ2-distribution with (r−1)(c−1) degrees of freedom, where
r = 2 and c = 3 are the number of rows and columns, respectively. Application
of this testing framework is straightforward in R using the chisq.test()
and is described in the example below. Further application of this approach
is presented in the context of assessing association between alleles for two
homologous chromosomes (that is, for testing Hardy-Weinberg equilibrium
(HWE)) in Chapter 3.

Example 2.1 (Chi-squared test for association). Suppose we are interested in
determining whether there is an association between any of the SNPs within
the esr1 gene and an indicator of body mass index (BMI) > 25 at baseline
of the FAMuSS study. We use the following code first to identify the names
of all of the esr1 SNPs:

> attach(fms)

> NamesEsr1Snps <- names(fms)[substr(names(fms),1,4)=="esr1"]

> NamesEsr1Snps

[1] "esr1_rs1801132" "esr1_rs1042717" "esr1_rs2228480" "esr1_rs2077647"

[5] "esr1_rs9340799" "esr1_rs2234693"

The genotype matrix can now be defined by selecting the columns of fms that
correspond to the esr1 SNP names:

> fmsEsr1 <- fms[,is.element(names(fms),NamesEsr1Snps)]

We define our trait to be an indicator for whether BMI is > 25 at baseline:

> Trait <- as.numeric(pre.BMI>25)

Next we write a function to record the p-values from applying the χ2-test to
the 2× 3 contingency tables corresponding to each SNP and this trait:

> newFunction <- function(Geno){

> ObsTab <- table(Trait,Geno)

> return(chisq.test(ObsTab)$p.value)

> }

Finally, we apply this function to the columns of fmsEsr1:

> apply(fmsEsr1,2,newFunction)

[1] 0.4440720 0.0264659 0.1849870 0.1802880 0.1606800 0.1675418

Based on this output, we see the suggestion of an association between the
second SNP, esr1 rs1042717, and BMI. A closer look at these data yields
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> Geno <- fmsEsr1[,2]

> ObsTab <- table(Trait,Geno)

> ObsTab

Geno

y AA GA GG

0 30 246 380

1 30 130 184

This reveals that individuals with the AA genotype are equally likely to have
a BMI greater than or less than 25, while the proportion of individuals with
the GG genotype who have a BMI greater than 25 is only 184/(380 + 184) =
32.6%. Importantly, this analysis does not correct for multiple testing, which,
as discussed in Section 2.3.1, leads to an inflation of the type-1 error rate;
that is, the probability of rejecting the null hypothesis when it is in fact
true. We return to this example and consider appropriate multiple comparison
adjustments in Chapter 4. �

Fisher’s exact test is preferable when at least 20% of the expected cell
counts are small (Eij < 5). The exact p-value is given by the probability of
seeing something as extreme or more extreme in the direction of the alternative
hypothesis than what is observed. Fisher derived this probability for the 2×2
table of Table 2.2, and it is defined explicitly in Section 3.2.1 for testing
HWE. Implementation of this test of association is straightforward using the
fisher.test() function in R, as demonstrated in the following example.

Example 2.2 (Fisher’s exact test for association). Returning to Example 2.1,
suppose we are again interested in determining whether there is an association
between any of the SNPs within the esr1 gene and an indicator of body
mass index (BMI) > 25 at baseline of the FAMuSS study. In this case, we
create a function that returns Fisher’s exact p-value for a test of association
between each of the SNPs and the trait using the Trait variable created in
Example 2.1:

> newFunction <- function(Geno){

> ObsTab <- table(Trait,Geno)

> return(fisher.test(ObsTab)$p.value)

> }

Application of this function to the fmsEsr1 matrix of genotypes, created in
Example 2.1, yields

> apply(fmsEsr1,2,newFunction)

[1] 0.46053113 0.02940733 0.18684765 0.17622428 0.15896064 0.16945636

In this case, the p-values of the two approaches to analysis (Fisher’s exact
test and Pearson’s χ2-test) are comparable since the asymptotic assumptions
of the χ2-test are not violated. In both cases, there is the suggestion of an
association between the second SNP, esr1 rs1042717, and BMI. �
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Correlation

The term correlation is often used in a general sense to refer to an association
between two variables. For example, alcohol use and smoking status are often
said to be “correlated” since smokers tend to drink more alcohol than non-
smokers. The correlation coefficient between two random variables is defined
mathematically as the ratio of the covariance between these two variables and
the product of their respective standard deviations. So defined, the correla-
tion coefficient is a measure of linear association between two variables and
takes on values between −1 and 1. The two most commonly used sample-
based estimates of the correlation coefficient are Pearson’s product-moment
correlation coefficient and Spearman’s rank correlation coefficient. These are
often referred to as the Pearson and Spearman coefficients, respectively, and
are appropriate measures for continuous variables.

A primary limitation of Pearson’s coefficient is that it is highly sensitive to
outlying values. In these settings, the non-parametric alternative, Spearman’s
rank correlation coefficient, is generally preferred. In the genetic association
setting, we are often interested in relating a categorical genotype variable to
a quantitative or binary trait. The correlation between two dichotomous vari-
ables for which the underlying distribution is not assumed to have continuity
is estimated by the phi-coefficient, denoted φ. This is calculated using the
same formula as Pearson’s correlation coefficient and is closely related to the
χ2-statistic for a test of association between two binary variables. In fact, it
can be shown that φ =

√
r2, where r2 is defined in Section 3.1.1 as a measure

of association, also referred to as linkage disequilibrium (LD), between two
genetic loci.

Cochran-Armitage (C-A) trend test

The Cochran-Armitage (C-A) trend test is commonly applied in the analysis
of association between a biallelic locus, with three corresponding genotype lev-
els, and a binary trait. The C-A trend test is a test developed specifically for
detecting a linear trend in proportions over levels of the exposure variable. In
our setting, it is a test of whether the probability of disease increases linearly
with genotype. We begin by taking into account the ordering of the columns
of the contingency table. For example, we may choose to code the genotype
data as 0, 1, or 2 for the number of A alleles. If indeed the relationship be-
tween genotype and disease is linear, the C-A test will be more powerful than
Pearson’s χ2-test. Formally, returning to Table 2.1, let pj be the probability
of disease for the jth genotype column. A trend test can be defined as a test of
the null hypothesis that there is no linear relationship among the pj ’s. A linear
relationship is expressed algebraically as pj = α+βSj , where Sj is a score for
the jth column. For example, we can define S1 = 1, S2 = 2 and S3 = 3. Thus,
the null hypothesis of no linear association is given by H0 : β = 0. Testing of
this hypothesis is achieved using a χ2-test statistic that is a function of the
observed and expected scores and is illustrated in the following example.
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Example 2.3 (Cochran-Armitage (C-A) trend test for association). In this ex-
ample, we demonstrate application of the C-A trend test for association be-
tween the esr1 rs1042717 SNP and baseline BMI for the FAMuSS data,
where again BMI is defined as a binary indicator for BMI > 25. This
test statistic can be calculated using the independence test() function in
the coin package in R. We begin by installing several packages required
by the coin package, including splines, survival, stats4, mvtnorm and
modeltools, and then call the coin package:

> install.packages("coin")

> library(coin)

We then define our genotype and trait variables without needing to exclude
observations with missing genotypes:

> attach(fms)

> Geno <- esr1_rs1042717

> Trait <- as.numeric(pre.BMI>25)

The independence test() function, with the option testat="quad" spec-
ified, can then be applied to conduct the C-A trend test. Here we use the
ordered() function to specify that the genotypes are ordered. The scores
option allows us to specify the relationship between different levels of our
genotype:

> GenoOrd <- ordered(Geno)

> independence_test(Trait~GenoOrd,teststat="quad",

+ scores=list(GenoOrd=c(0,1,2)))

Asymptotic General Independence Test

data: Trait by Geno.or (AA < GA < GG)

chi-squared = 4.4921, df = 1, p-value = 0.03405

In this case, the p-value is greater than we saw for the corresponding SNP
in Example 2.1. Returning to that example, we saw that the proportion of
individuals with BMI greater than 25 does not decrease linearly with genotype
at this SNP. In fact, these proportions are 0.50, 0.35 and 0.33 for 2, 1 and 0
copies of the A allele, respectively. �

Methods for adjusting for a single categorical confounder or effect modifier
are well described in the context of contingency table analysis, see for exam-
ple Rosner (2006) and Agresti (2002). The more general linear and logistic
regression frameworks, described in Section 2.2.3, offer an alternative setting
for analysis. The primary advantage of the regression settings is that they
provide for simultaneous consideration of multiple potential confounders and
effect modifiers. Furthermore, the regression framework is a natural setting
for consideration of both categorical and continuous covariates. Before pre-
senting this setting, we offer a brief description of simple tests of association
for quantitative traits.
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2.2.2 M-sample tests for a quantitative trait

In the previous section, we focused on a binary trait such as disease status
and described methods for assessing genotype–trait associations in that set-
ting. Now we turn to consideration of quantitative traits and discuss analytic
methods for the setting in which we aim to characterize the association be-
tween genotype and this quantitative trait. Genotype can be defined as an
M-level factor and in the simplest case reduces to a binary indicator, for ex-
ample, for the presence of at least one variant allele at a given SNP locus.
We begin by describing the two-sample t-test and Wilcoxon rank-sum test,
which are typically applied to test for association in this setting. We then
present the analysis of variance (ANOVA) and the non-parametric analog,
the Kruskal-Wallis (K-W) test, which are applicable in the more general con-
text of multiple genotype levels.

Two-sample t-test and Wilcoxon rank-sum test

Formally, the t-test is a test of the null hypothesis that the mean is the
same in two populations, written H0 : µ1 = µ2, where in our setting the
populations are defined based on genotype. For example, we might define µ1

as the population mean for individuals with the AA genotype and µ2 as the
population mean for individuals with the Aa or aa genotypes. The two-sample
t-test statistic, assuming equal variances, is given by

t =
ȳ1 − ȳ2√

s2
p [1/n1 + 1/n2]

∼ Tn1+n2−2 (2.8)

where ȳ1 and ȳ2 are the sample means of the quantitative trait for genotype
groups 1 and 2, s2

p is the pooled estimate of the variance, and n1 and n2 are
the respective sample sizes. Under the null, this statistic has a T -distribution
with degrees of freedom equal to n1 + n2 − 2.

The Wilcoxon rank-sum test (also called the Mann-Whitney U -test) is
a non-parametric analog to the two-sample t-test and is more appropriate
than the t-test if the trait is not normally distributed and the sample size
is small. The Wilcoxon rank-sum test is a rank-based test and is used to
test the null hypothesis that the medians of a quantitative trait in each of
two populations are equal. Both the t-test and Wilcoxon rank-sum test are
easily implemented in R using the t.test() and wilcox.test() functions,
respectively, as illustrated in the following example.

Example 2.4 (Two-sample tests of association for a quantitative trait). Re-
turning to the FAMuSS data, suppose we are interested in determining
whether having at least one copy of the variant allele for any of the SNPs
within the resistin gene is associated with a change in the non-dominant
muscle strength before and after exercise training, given by the variable
NDRM.CH. In this case, we begin by creating a vector of names for the SNPs
within the resistin gene and a corresponding matrix of genotypes.
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> attach(fms)

> NamesResistinSnps <- names(fms)[substr(names(fms),1,8)=="resistin"]

> fmsResistin <- fms[,is.element(names(fms),NamesResistinSnps)]

We then create a new function that takes a single genotype vector, converts
it to binary elements, and generates p-values based on the t-test of equality
of the mean trait across the resulting two levels. We first call the genetics
package since we are using the allele.names() function within this package:

> library(genetics)

> TtestPval <- function(Geno){

+ alleleMajor <- allele.names(genotype(Geno, sep="",

+ reorder="freq"))[1]

+ GenoWt <- paste(alleleMajor, alleleMajor, sep="")

+ GenoBin <- as.numeric(Geno!=GenoWt)[!is.na(Geno)]

+ Trait <- NDRM.CH[!is.na(Geno)]

+ return(t.test(Trait[GenoBin==1], Trait[GenoBin==0])$p.value)

+ }

Here we define the binary genotype variable (GenoBin) as an indicator for
at least one variant allele at the corresponding site. Notably, this amounts
specifically to testing a dominant genetic model in which one or two copies of
the variant allele result in a shift in the mean of NDRM.CH compared with the
homozygous wildtype genotype, as we will see in Section 2.3.4.

Next we apply this function, TtestPval, to each of the columns of the
genotype matrix, fmsResistin:

> apply(fmsResistin,2,TtestPval)

resistin_c30t resistin_c398t resistin_g540a resistin_c980g

0.04401614 0.08098567 0.11578470 0.27828906

resistin_c180g resistin_a537c

0.03969448 0.06573061

This analysis suggests that the first and fifth SNPs within resistin may
be associated with a change in NDRM before and after exercise training; how-
ever, we have not adjusted for multiple testing, and our conclusions are not yet
decisive. Closer examination of the output from application of the t.test()
function provides additional information on the nature of the underlying as-
sociation:

> Geno <- fms$"resistin_c180g"

> table(Geno)

Geno

CC CG GG

330 320 89

> GenoWt <- names(table(Geno))[table(Geno)==max(table(Geno))]

> GenoWt



46 2 Elementary Statistical Principles

[1] "CC"

> GenoBin <- as.numeric(Geno!=GenoWt)[!is.na(Geno)]

> Trait <- NDRM.CH[!is.na(Geno)]

> t.test(Trait[GenoBin==1],Trait[GenoBin==0])

Welch Two Sample t-test

data: Trait[GenoBin == 1] and Trait[GenoBin == 0]

t = -2.0618, df = 552.158, p-value = 0.03969

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-10.9729548 -0.2658088

sample estimates:

mean of x mean of y

50.43503 56.05441

The output reveals that the sample mean change in NDRM is 56.05 among
individuals with the CC genotype while the mean change is 50.44 among in-
dividuals with at least one variant allele at this site (CG or GG). Thus, the
presence of at least one variant allele appears to lead to a decrease in the
change in NDRM before and after exercise training. Again, an adjustment
for multiple comparisons is needed to make firm conclusions, as described in
Chapter 4. A similar approach can be taken to apply the Wilcoxon rank-
sum test, where the t.test() function is replaced with the wilcox.test()
function. �

Analysis of variance (ANOVA) and Kruskal-Wallis (K-W) test

If a priori dichotomization of the genotype variables is not desirable, we
can perform an analysis of variance (ANOVA) or the non-parametric ana-
log, the Kruskal-Wallis test, to characterize association with a quantitative
trait. ANOVA is an extension of the two-sample t-test to the M -sample set-
ting and is based on an F -test for a full model with M−1 genotype indicators
(dummy variables) compared with the reduced model with an overall mean.
The Kruskal-Wallis test similarly extends the Wilcoxon rank-sum test. Appli-
cations of these tests are illustrated in the following example. Further details
on ANOVA and its relevance to the analysis of data arising from genetic
association studies are provided in Section 4.4.2.

Example 2.5 (M -sample tests of association for a quantitative trait). Suppose
we are again interested in determining whether there is an association between
the resistin c180g SNP and the percentage change in the non-dominant arm
muscle strength before and after exercise training, as measured by NDRM.CH,
based on the FAMuSS data. Further, suppose we do not want to impose any
prior assumptions about the genetic model and so decide to treat genotype
as a three-level factor variable. We begin by reading in the relevant genotype
data as a factor variable and defining the trait:



2.2 Measures and tests of association 47

> attach(fms)

> Geno <- as.factor(resistin_c180g)

> Trait <- NDRM.CH

We use the lm() function in R to perform ANOVA. Alternatively, the
aov() function can be applied, though the corresponding output of the as-
sociated print() and summary() functions will differ. Here we indicate that
we want to exclude individuals with missing values for the trait, coded as NA,
using the option na.action==na.exclude. The summary() function takes as
input an object of class “lm” and provides us with the details of the model-
fitting results, including the overall F -test for association.

> AnovaMod <- lm(Trait~Geno, na.action=na.exclude)

> summary(AnovaMod)

Call:

lm(formula = Trait ~ Geno, na.action = na.exclude)

Residuals:

Min 1Q Median 3Q Max

-56.054 -22.754 -6.054 15.346 193.946

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 56.054 2.004 27.973 <2e-16 ***

GenoCG -5.918 2.864 -2.067 0.0392 *

GenoGG -4.553 4.356 -1.045 0.2964

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 33.05 on 603 degrees of freedom

(791 observations deleted due to missingness)

Multiple R-squared: 0.007296, Adjusted R-squared: 0.004003

F-statistic: 2.216 on 2 and 603 DF, p-value: 0.1100

This analysis yields an overall F -test statistic of F2,603 = 2.216 (p = 0.11).
Based on this model and the data at hand, we therefore conclude that there is
not enough evidence to suggest an association between resistin c180g and
NDRM.CH. Interestingly, based on a Wald test, there appears to be an effect
of the CG genotype compared with the referent CC genotype (t = −2.067,
p = 0.0392); however, interpretation of this p-value needs to be in light of the
two t-statistics generated unless there was an a priori hypothesis about the
heterozygous genotype in this setting. Further discussion of the appropriate
adjustment is given in Chapter 4.

A Kruskal-Wallis (K-W) test can also be applied and is more appropriate
in small-sample settings in which the assumption of normality may not be
reasonable. This is straightforward using the following code. Again we specify
na.action==na.exclude to exclude individuals with missing values for the
trait, which are coded as NA:
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> kruskal.test(Trait, Geno, na.action=na.exclude)

Kruskal-Wallis rank sum test

data: Trait and Geno

Kruskal-Wallis chi-squared = 4.9268, df = 2, p-value = 0.08515

In this example, the K-W test yields a p-value of 0.085, and a similar con-
clusion is reached that there is not sufficient evidence of an association be-
tween resistin c180g and percentage change in muscle strength of the non-
dominant arm as measured by NDRM.CH. �

2.2.3 Generalized linear model

In the previous sections, we focused on tests of association between genotype
and a trait without specific consideration of additional covariates. These uni-
variate methods can easily be applied within strata (levels) of a third variable.
Such a stratified analysis is common if there is reason to believe that the effect
of genotype on the trait varies depending on the value of another variable.
For example, we may stratify by smoking status if we think the effect of a
variant allele on lipid abnormalities is potentially different for smokers and
non-smokers. Alternatively, we can fit a multivariable model to either quan-
titative or binary traits. Multivariable models have the primary advantage of
allowing us to account appropriately for multiple potential confounders and
effect modifiers. Several excellent texts provide an introduction to linear mod-
eling; see for example Faraway (2005) and Neter et al. (1996). Here we offer
a brief summary of important concepts used throughout this text.

The generalized linear model (GLM) is given in matrix notation by the
equation

g(E[y]) = Xβ (2.9)

where E[Y] = µ denotes the expectation of Y, as described in Section 2.1.1,
g() is a link function and X is the design matrix. The generalized linear
model should not be confused with the general linear model for multivariate
data. The generalized linear model, the topic of this section, is a modeling
framework that is applicable to a variety of dependent variables, including
both quantitative and binary traits, as well as count data. Here we begin
by describing the linear regression model for quantitative traits and then
introduce the logistic model for binary outcomes. Both represent special cases
of the generalized linear model.

Simple and multivariable linear regression

In the case of a quantitative trait, we let g() be the identity link, and Equa-
tion (2.9) reduces to the ordinary linear regression model. That is, we have
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g(E[y]) = E[y] = Xβ (2.10)

or equivalently

y = Xβ + ε (2.11)

For example, a simple linear regression model for a quantitative trait is given
by Equation (2.11) where

y =


y1

y2

...
yn

 ; X =


1 x1

1 x2

...
1 xn

 ; ε =


ε1
ε2
...
εn

 (2.12)

and β = (β0, β1)T . This model includes an intercept, represented by the first
column of X, and a single predictor variable, given by the second column of
X. In general, we assume the error terms, εi for i = 1, . . . , n, are independent
and identically distributed with mean 0.

The scalar formulation of this simple linear regression model is given by

yi = β0 + β1xi + εi (2.13)

where i = 1, . . . , n indicates individual. In this model, the measure of associ-
ation between x and y is given by the parameter β1, defined as the amount
of change in y that occurs with one unit change in x. For example, if x is an
indicator for the presence of a variant allele at a given SNP locus and y is
cholesterol level, then β1 is the difference in mean cholesterol level between
individuals with and without this variant allele. The least squares estimates of
β0, the overall mean, and β1, the association parameter, are given respectively
by

β̂0 =

(∑
i

yi − β̂1

∑
i

xi

)
/n (2.14)

and

β̂1 =
n
∑
i xiyi −

∑
i xi
∑
i yi

n
∑
i x

2
i − (

∑
i xi)

2 (2.15)

Notably, the estimates above do not require an assumption of normality of
the error terms. Importantly, β is a measure of linear association, capturing
information on the extent to which the relationship between x and y is a
straight line.

The multivariable linear model is a generalization of the model given in
Equation (2.13) in which additional variables are included on the right-hand
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side of the equation. For example, suppose we have m covariates, given by
zi1, . . . , zim for the ith individual. For example, zi1 may be gender and zi2
may represent smoking status for individual i. We are often interested in
fitting a model of the form

yi = β0 + β1xi +
m∑
j=1

αjzij + εi (2.16)

We call this a multivariable linear regression model since multiple independent
variables are included. Again the measure of association between the geno-
type and trait is given by β1. Now, however, estimation and testing of this
parameter takes into account the additional variables in the model. These ad-
ditional variables may be confounders or may help to explain the variability in
our trait. As described in Section 2.1.2, the inclusion of confounding variables
is important for drawing valid conclusions about the effect of genotype on
the trait. Adding non-confounding variables to the model will not change our
genotype effect estimate substantially. However, by reducing the unexplained
variability in our model, including these variables may increase our power to
detect the association of our primary independent variable.

A multivariable regression model is also a natural framework for consid-
eration of effect modification by continuous or categorical variables. Suppose
for example we are engaged in a pharmacogenomic investigation where inter-
est lies in characterizing the extent to which the effect of a drug exposure on
our trait varies by genotype. Statistically, we aim to estimate the interaction
between genotype and drug exposure on our trait. Let genotype again be rep-
resented by x, the drug exposure given by z and a quantitative trait measured
by y. In this case, we construct an interaction model given by

yi = β0 + β1xi + β2zi + γxizi + εi (2.17)

Here γ is the interaction effect and represents the additional effect of z when
the genotype is present.

For example, suppose x is an indicator for at least one polymorphism in
ApoCIII, a gene that has previously been associated with triglyceride levels.
Further, suppose z is an indicator for current exposure to lipid-lowering ther-
apy (LLT) and y is fasting triglyceride level. According to the model given
in Equation (2.17), the effect of LLT on triglycerides is β2 among individuals
with no polymorphisms in ApoCIII (xi = 0) and β2 + γ among individuals
with at least one polymorphism in ApoCIII (xi = 1). In other words, the
interaction effect, γ, is the difference between the effect of z on y among those
individuals with a polymorphism and the effect of z on y among those without
a polymorphism. This model can also be represented in matrix notation by
Equation (2.11), where now the design matrix, X, is defined as
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X =


1 x1 z1 (x1 × z1)
1 x2 z2 (x2 × z2)
...
1 xn zn (xn × zn)

 (2.18)

and β = (β0, β1, β2, γ)T .
It is important to distinguish between interaction and a multiplicative

effect. Consider for example the setting in which we take a natural log trans-
formation of our trait, y, in order to normalize the data. In this case, an
additive linear regression model is written

ln(yi) = β0 + β1xi + β2zi + εi (2.19)

or equivalently

yi = exp[β0] exp[β1xi] exp[β2zi] exp[εi] (2.20)

Here we see that the effects of x and z on y are multiplicative since the effect
of a unit change in x is an exp[β1]-fold increase in y and likewise the effect
of a unit change in z is an exp[β2]-fold increase in y. The effect of x on y,
however, does not depend on the level of z. That is, whether zi = 0 or zi = 1,
a unit change in x results in the same increase in y. Similarly, the effect of
z on y does not depend on the level of x. Therefore, this is a multiplicative
model but not an interaction model.

In all of the modeling schemes above, interest lies both in estimating the
model parameters and in testing hypotheses relating to their true population
values. For example, for the additive model given in Equation (2.16), we may
be interested in testing the null hypothesis of no association between the
genotype and trait, given by H0 : β1 = 0. Testing the null hypothesis that
there is no statistical interaction, on the other hand, will be based on the
model in Equation (2.17) and given by H0 : γ = 0. Notably, in traditional
statistical applications, we do not test hypotheses that involve only main
effects of a variable if indeed an interaction exists between that variable and
another variable. That is, for the model in Equation (2.17), we would not test
the hypothesis that β1 = 0 unless we first conclude that there is no evidence
for interaction, such that γ = 0.

Application of the Wald test or likelihood ratio test (LRT), which is equiv-
alent to the F -test, is reasonable for testing hypotheses about parameters in
the multivariable regression setting. The LRT makes few asymptotic assump-
tions and may be preferable if the results differ between methods. Further
details on these testing procedures can be found in a number of intermediate
biostatistics texts, including McCulloch and Searle (2001), Faraway (2005)
and Neter et al. (1996). Importantly, while least squares estimation of the
model parameters does not require a normality assumption on the errors, in-
ference procedures for testing hypotheses based on the linear regression model
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generally assume the trait is normally distributed. Fitting a multivariable lin-
ear model is straightforward using the lm() function in R, as demonstrated
in the following example.

Example 2.6 (Linear regression). In this example, we consider the association
of the actn3 r577x SNP with the percentage change in strength of the non-
dominant arm before and after exercise training based on the FAMuSS data.
Our investigative team believes the effect of genotype on our trait may be
modified by gender, and so we decide to fit a multivariable model with an
interaction term. First we define our genotype and trait variables:

> attach(fms)

> Geno <- actn3_r577x

> Trait <- NDRM.CH

The full model includes terms for genotype, gender and a genotype by gender
interaction:

> ModFull <- lm(Trait~Geno+Gender+Geno*Gender, na.action=na.exclude)

> summary(ModFull)

Call:

lm(formula=Trait ~ Geno + Gender + Geno * Gender, na.action=na.exclude)

Residuals:

Min 1Q Median 3Q Max

-68.778 -20.258 -4.351 14.970 184.970

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 53.558 2.964 18.068 < 2e-16 ***

GenoCT 11.471 3.882 2.955 0.003251 **

GenoTT 15.219 4.286 3.551 0.000414 ***

GenderMale -13.507 4.769 -2.832 0.004777 **

GenoCT:GenderMale -14.251 6.117 -2.330 0.020160 *

GenoTT:GenderMale -13.537 6.867 -1.971 0.049153 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 30.8 on 597 degrees of freedom

(794 observations deleted due to missingness)

Multiple R-squared: 0.1423, Adjusted R-squared: 0.1351

F-statistic: 19.81 on 5 and 597 DF, p-value: < 2.2e-16

We compare this model to the reduced model without an interaction term by
first fitting the reduced model:

> ModReduced <- lm(Trait~Geno+Gender, na.action=na.exclude)
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The anova() function in R provides us with an F -test comparing the full and
reduced models. Formally, this is a test of the null hypothesis that there is no
interaction between genotype and gender:

> anova(ModReduced, ModFull)

Analysis of Variance Table

Model 1: Trait ~ Geno + Gender

Model 2: Trait ~ Geno + Gender + Geno * Gender

Res.Df RSS Df Sum of Sq F Pr(>F)

1 599 572345

2 597 566518 2 5827 3.0702 0.04715 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The F -test statistic with 2 and 597 degrees of freedom is 3.07, with a cor-
responding p-value of 0.047. We therefore conclude that there does appear
to be an interaction between gender and genotype based on these data and
under the modeling assumptions. Based on the full model results above, we
conclude that the overall percentage change in the non-dominant arm muscle
strength is 53.56 for females with the homozygous wildtype CC genotype. In
females, the effect of having the heterozygous CT genotype compared with
CC is 11.47 and the effect of having the homozygous variant TT genotype in
females is 15.22. In males, on the other hand, the effect on NDRM.CH of the CT
genotype is 11.47− 14.25 = −2.78 and the effect of carrying the TT genotype
is 15.22− 13.54 = 1.68.

Finally, the predicted change in muscle strength for the non-dominant arm
and corresponding prediction intervals based on the full model and for each
level of genotype and gender can be generated as follows:

> NewDat <- data.frame(Geno=rep(c("CC","CT","TT"),2),

+ Gender=c(rep("Female",3), rep("Male",3)))

> predict.lm(ModFull, NewDat, interval="prediction", level=0.95)

fit lwr upr

1 53.55833 -7.220257 114.33692

2 65.02980 4.330657 125.72895

3 68.77778 7.973847 129.58171

4 40.05147 -20.890899 100.99384

5 37.27168 -23.494571 98.03793

6 41.73437 -19.235589 102.70434

From this output, we see that the predicted change in females increases
steadily from 53.56 to 65.03 to 68.78 for the CC, CT and TT genotypes. How-
ever, the predicted change in males dips lower for the CT genotype compared
with the CC and TT genotypes. In general, the percentage change in males is
much smaller than in females, regardless of genotype. �



54 2 Elementary Statistical Principles

Logistic regression

As described above, the generalized linear model of Equation (2.9) can also
be applied to a binary trait. In this setting, g() is commonly defined as the
logit function, reducing Equation (2.9) to the logistic regression model. As
described in Section 2.1.1, for a random variable from a Bernoulli trial, we have
E[y] = Pr(y = 1n) = π, where 1n is an n× 1 vector of 1’s, π = (π1, . . . πn)T ,
and πi is the probability that yi = 1 for i = 1, . . . , n. Thus, we can write
Equation (2.10) as

g(E[y]) = logit(π) = Xβ (2.21)

Logistic regression models provide a setting for modeling dichotomous out-
comes based on multiple categorical or continuous predictors. The general
form of a univariate logistic model in scalar form is given by

logit(πi) = β0 + β1xi (2.22)

where πi = Pr(yi = 1|xi) and logit(πi) = ln [πi/(1− πi)]. For example, sup-
pose y is an indicator for disease status. The β parameter is then interpreted
as the effect of one unit increase in x on the log odds of disease. If x is again
a binary variable for the presence of a variant allele, then β is the log odds
of disease for individuals with this variant versus those that are homozygous
wildtype. In this case, we have OR = exp[β1]. Again additional variables can
be added to this model to account for potential confounding and effect modi-
fication. Estimation of the parameters is achieved using maximum likelihood
methods. Tests of these parameters can again be carried out based on the Wald
statistic and LRT. The reader is referred to Hosmer and Lemeshow (2000) and
Agresti (2002) for a complete discussion of logistic regression models and as-
sociated methods. Finally, fitting a logistic model is also straightforward using
the glm() function and specifying family=binomial in R.

Multivariable regression approaches have many advantages in population-
based genetic investigations. First, they provide a natural framework for in-
corporating continuous predictor variables. In the context of contingency table
analysis, continuous variables can be discretized to include in analysis, though
this requires a priori knowledge about the correct approach for doing this. An-
other advantage of multivariable models is that they provide a natural setting
for inclusion of multiple independent variables. This allows for consideration
of many predictors of disease as well as providing a means for assessing the po-
tential confounding or mediating role of additional clinical and demographic
factors.

There are some important limitations, however, to keep in mind. First, as
a general rule of thumb, limiting our model to include at most one predictor
for every five to ten observations for a quantitative trait, or events (given by
the minimum of the numbers of successes and failures) in the case of a binary
trait, is preferable. In addition, the model parameters may not be identifiable
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if the predictor variables are highly correlated with one another. Depending
on the number of SNPs and their relationship to one another, inclusion of all
SNPs within a single model may not be tenable. A first-stage analysis that
involves fitting a separate multivariable model for each SNP under investiga-
tion, adjusted for confounders and other predictors of the disease trait, may be
necessary. Interpreting the results from fitting a large number of such models
or testing multiple predictors in a single model needs to include consideration
of the number of tests performed. In Chapter 4, several methods for adjusting
for multiple testing are described that can be applied to this analysis.

2.3 Analytic challenges

The defining characteristics of data arising from genetic association stud-
ies render many traditional statistical methods less applicable. This section
provides a brief overview of the analytic challenges inherent in characteriz-
ing associations among genotypes and measures of disease progression. This
serves as a motivation for the remaining chapters of this text, which describe
methods aimed at addressing each of these challenges.

2.3.1 Multiplicity and high dimensionality

Some of the greatest challenges in the analysis of population association stud-
ies arise from what is often called the curse of dimensionality , a term orig-
inally coined by the applied mathematician Richard Bellman. Investigations
involving a large number of genetic markers that are potentially informative
have two analytical challenges: (1) inflation of error rates, which arises due to
multiple testing; and (2) the complex, generally uncharacterized relationships
among the genetic markers under consideration. The former is often referred
to as the multiplicity problem, and combined these represent the challenge of
high-dimensional data.

Error inflation

In statistical hypothesis testing, we only want to reject the null hypothesis
if we are reasonably certain that the alternative hypothesis is in fact true.
The probability of making a mistake in this case (that is, the probability of
rejecting the null in favor of an alternative when in fact the null is true) is
called the type-1 error rate. In testing a hypothesis, investigators traditionally
aim to control the type-1 error at a level α. That is, we want to be certain
that the type-1 error rate is less than or equal to α. Formally, for a given null
hypothesis denoted H0, we have

type-1 error rate = Pr(reject H0 | H0 is true) ≤ α (2.23)
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Recall that the p-value for a given hypothesis is determined based on a sample
of data and is defined as the probability of observing something as extreme
or more extreme, given that the null hypothesis is true. If the p-value is less
than α (typically 0.05), then we reject the null hypothesis in favor of the
alternative.

Now suppose we are interested in testing K null hypotheses, given by H0k,
for k = 1, . . . ,K. The family-wise error under the complete null (FWEC) is
defined as the probability of rejecting one or more of these null hypotheses
given that they are all true. If each test is independent and controlled at level
α, then we have

FWEC = Pr(reject at least one H0k | H0k is true for all k)
= 1− Pr(reject no H0k | H0k is true for all k)

≤ 1− (1− α)K
(2.24)

If we are testing only a single hypothesis so that K = 1 and we let α = 0.05,
then Equation (2.24) reduces to FWEC ≤ 0.05. On the other hand, if we
consider two independent tests (K = 2), then we are only certain that the
FWEC is less than or equal to 1−0.952 = 0.0975. This upper bound increases
rapidly such that for K = 10 independent tests, we have FWEC ≤ 0.401.
In other words, if we conduct ten independent tests, each at a level α, then
the chance of making a type-1 error is as much as 40.1%. This phenomenon is
referred to as inflation of the type-1 error rate and is a grave concern in the
context of analyzing the associations between a large number of SNPs and a
trait. Chapter 4 describes methods for controlling the family-wise error rate
as well as the false discovery rate, which has been described as a potential
alternative error measure in this context. Methods for both independent and
potentially correlated tests are presented.

Unknown model of association

An additional challenge that arises in the context of a large number of SNPs
is that the SNPs are likely to interact with one another in a manner that is
not yet well characterized. That is, the model of association between the geno-
types and the trait is unknown. The term interaction has taken on multiple
meanings in the scientific literature. For example, in many biological settings,
the term refers to belonging to the same pathway to disease. In a statistical
sense, interaction refers to a specific mathematical relationship in which the
effect of one polymorphism is modified by the presence of another polymor-
phism or level of a covariate, as described in Section 2.1.2. Further discussion
on the array of definitions associated with the term interaction can be found
in Cordell (2002), Ahlbom and Alfredsson (2005) and Berrington de Gonzalez
and Cox (2007), with an R coding example given in Kallberg et al. (2006).

Suppose for example we have a sample of n individuals and M measured
SNPs denoted for individual i by xi1, . . . , xiM . For simplicity, suppose each
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of the x variables are binary indicators for the presence of at least one copy
of the corresponding minor allele. Further suppose we are interested in using
these variables to predict a quantitative trait y. If the SNPs together have
an additive effect on the trait, then a typical linear regression model for this
setting could be constructed as

yi = β0 + β1xi1 + β2xi2 + . . .+ βMxiM + εi

= β0 +
M∑
j=1

βjxij + εi
(2.25)

where i = 1, . . . , n and the εi’s are assumed to be independent and identically
distributed. In this case, a null hypothesis of interest might be that there is
no effect on y of having a variant allele at site j. Formally, we write this null
hypothesis as H0 : βj = 0.

Alternatively, we may believe that the presence of some polymorphisms
can potentially alter the effects of other polymorphisms, so that we have
interaction in a statistical sense. In this case, an appropriate multivariable
regression model is given by

yi = β0 +
M∑
j=1

βjxij +
∑

k,l(k 6=l)

γklxikxil + εi (2.26)

Here the γkl are called interaction effects and are interpreted as the increase
(or decrease) in the outcome y that occurs when a variant allele is present at
both sites k and l; that is, beyond the sum of the effects of a polymorphism
at either site alone. Consider for example the simple model in which M = 2
and Equation (2.26) reduces to

yi = β0 + β1xi1 + β2xi2 + γ12xi1xi2 + εi (2.27)

In this case, the effect of having a variant at site 1 (xi1 = 1) when xi2 = 0 is
β1 and the effect of having a variant at site 2 (xi2 = 1) when xi1 = 0 is β2;
however, the effect of having a variant allele at both sites is β1 + β2 + γ12,
which is more than the sum of the two individual effects.

For the general model given in Equation (2.26), the number of interaction
parameters is equal to (

M

2

)
=

M !
(M − 2)!2!

(2.28)

where M ! (read “M-factorial”) = M(M −1)(M −2) . . . 1. If for example M =
10, the number of γkl’s is equal to (10 ∗ 9)/2 = 45. Clearly, incorporation of
three- and four-way interactions would make this model unwieldy. In general,
the need for considering potential higher-order interactions is not known. Even
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for these relatively simple models, unique estimates of the parameters β and
γ may not exist. There are two reasons this can occur. First, if the number
of individuals n is less than the number of parameters, given by (1 + M) in
Equation (2.25) and (1 +M +

(
M
2

)
) in Equation (2.26), then the parameters

are not identifiable. In addition, if collinearity exists between the SNPs, then
unique estimates will also not be obtainable. Collinearity refers to a strong
correlation, and in Chapter 3 we will see that this is captured by a high degree
of linkage disequilibrium between SNP loci. The problem of estimability can
be seen to result from a singular (or close to singular) design matrix and is
described further in more advanced linear models texts such as Christensen
(2002).

2.3.2 Missing and unobservable data considerations

Additional analytic challenges arise from the presence of both missing and
unobservable data. In Example 1.1, we encountered missing genotype data on
one SNP, and while we ignored it in our analysis, the missingness mechanism
may be informative. For example, it may have been more difficult to genotype
the rare allele, and thus our frequency estimates would be incorrect. Through-
out this text, we use the term unobservable data to refer to information that
is not observed due to technological limitations. In the genetics setting, the
primary example of unobservable data is the alignment of alleles on a single
homologous chromosome, commonly referred to as the haplotypic phase. This
is distinguished from the usual missing data, which are comprised of data that
were intended to be collected.

Haplotypic phase is described in Section 1.2 and discussed in more detail
in Chapter 5. Briefly, two alleles that are on the same homologous chromo-
some are said to be in cis, while alleles on opposite homologs are said to be
in trans. The particular combination of alleles on a single strand is called
the haplotype. Consider for example two biallelic SNPs with alleles A, a and
B, b, respectively. As described in Section 1.2, the four possible haplotypes
corresponding to these two SNPs are {(AB), (Ab), (aB), (ab)}. The number of
possible haplotypes increases rapidly as the number of SNPs increases. Specif-
ically, if there are k biallelic SNPs, then there are 2k possible haplotypes so
that three SNPs yields eight haplotypes and four SNPs results in 32 possible
haplotypes. An example of the set of possible haplotype pairs across two bial-
lelic SNPs is given in Figure 2.4. Here the two alleles at the first SNP locus
are denoted A and a, while the two alleles at the second SNP locus are given
by B and b. Recall that in a diploid population each individual carries exactly
two haplotypes. In the case of k = 2 SNPs, there are four haplotypes and(

4
2

)
+ 4 = 10 possible combinations of two haplotypes, since an individual can

have two copies of the same haplotype.
In general, in population-based association studies, the allelic phase is not

observed but is potentially informative. That is, in many instances an in-
dividual’s pair of haplotypes is not known with complete certainty; however,



2.3 Analytic challenges 59

Fig. 2.4. Possible haplotype pairs corresponding to two SNPs

information on phase may be relevant for predicting the trait of interest. Con-
sider for example an individual whose genotypes are Aa and Bb at each of two
SNPs. Recall that this individual is said to be heterozygous at each of these
SNPs. The two possible pairs of haplotypes, also referred to as diplotypes, are
(AB, ab) and (Ab, aB), as we saw in Figure 1.2. Notably, the true underlying
diplotype is not known, but the probabilities that it is (AB, ab) or (Ab, aB)
can be estimated. Methods for arriving at these estimates are described in
detail in Chapter 5.

Now consider the setting in which the true disease-causing variant tends
to occur on the same segment of DNA as the AB haplotype. That is, we say
the “disease allele” is in high linkage disequilibrium (LD) with the A and B
alleles. The concept of LD is described in detail in Section 3.1. In this case, an
individual with diplotype (AB, ab) would likely exhibit the disease trait, while
an individual with the haplotype pair (Ab, aB) would probably not exhibit the
disease phenotype. Note that the presence of the disease allele does not always
lead to the disease phenotype. The extent to which this phenomenon occurs is
termed penetrance. Further discussion of penetrance and the related concept of
phenocopies (individuals who exhibit the disease phenotype but do not carry
the allele under consideration), and particularly the estimation of genotype
relative risk under departures from full penetrance and no phenocopies, is
given in Ziegler and Koenig (2007). A succinct introduction to these and
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related genetics concepts for complex disease settings is given in Lander and
Schork (1994).

As discussed above, humans are a diploid population, which means that
each person carries two homologous chromosomes. Certain plants and animal
species are polyploidy, indicating the presence of more than two homologous
chromosomes. Viral and parasitic organisms, on the other hand, are often com-
prised of a single DNA or RNA strand. Interestingly, however, as seen in the
HIV example, an entire population of viruses or parasites can infect a single
individual. The allelic phase across multiple viral strains within a single host is
similarly unobservable. Unobservable data can be thought of as a special case
of missing data. In this text, methods for accounting for unobservable phase
are described extensively in Chapter 5 and considered as well in Section 7.1.2.
Missing information that arises by way of more traditional mechanisms, such
as loss to follow-up in longitudinal settings, is not addressed specifically in
this text. Extensive literature exists on missing data issues and methods since
missingness is commonly encountered in population-based studies. The reader
is referred to Little and Rubin (2002) for a comprehensive summary of appro-
priate statistical considerations and approaches.

2.3.3 Race and ethnicity

Race and ethnicity are amorphous categories that are typically self-reported in
population-based investigations. While these categories remain vague, consid-
eration of race and ethnicity is potentially informative in genetic association
studies, and understanding the potential implications of population substruc-
ture is vital to making valid conclusions from population-based investigations.
The terms population substructure and population stratification are used to
refer to the phenomenon in which a population consists of subgroups within
which there is random mating but between which there is little mixing or
gene flow. An admixed population is defined formally as a population in which
mating occurs between subgroups with different allelic distributions. However,
more commonly population admixture is used loosely to indicate a population
in which multiple subgroups are present.

The reasons for considering race and ethnicity in our analysis are multi-
faceted and described more fully in the following chapters. First, the allelic
distributions can vary widely across racial and ethnic groups. In fact, in some
instances, the major and minor alleles differ across geographic regions. As
a result, ignoring admixture can result in erroneous conclusions about the
presence of LD, as described in Section 3.1. In addition, the phenotypic char-
acteristics under investigation can differ dramatically across racial or ethnic
groups. For example, it has been reported that Black non-Hispanics tend to
have a better lipid profile than White non-Hispanics. As a result of these
two phenomena, we commonly encounter the problem of confounding by race
or ethnicity and must adjust our analysis appropriately. The concept of con-
founding by race and ethnicity is discussed in greater detail in Chapter 3.
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Another notable difference that is observed across racial and ethnic groups
is the length of LD blocks. These are described in more detail in Section 3.1
and are defined as regions of DNA that tend to be conserved from past gen-
erations. As a result, the SNP loci that are reported to tag these blocks will
differ across these groups. Haplotype-based analyses thus generally require
a stratified analysis where strata are defined according to race and ethnicity
groupings. Finally, race and ethnicity are often thought to capture information
on unobserved environmental or demographic factors, such as diet or family
history. In that sense, it may be informative in an analysis as any measured
clinical factor tends to be. In summary, inclusion of race and ethnicity as main
effects in a regression model or as modifiers of the genotype effect on the trait
of interest may be the most appropriate model of association.

2.3.4 Genetic models and models of association

In this text, a distinction is made between genetic models and models of
association. The term model of association is used to refer to a mathemati-
cal formula relating genotype variables to the trait of interest. For example,
in Section 2.3.1, additive and multiplicative models of association were de-
scribed by Equations (2.25) and (2.26), respectively. Models of association
can be much more elaborate, including both deterministic and stochastic el-
ements and complex structure. For example, in Chapter 6 we will see that
classification and regression trees impose a model of association that includes
a series of conditional associations.

In addition to the model of association, careful consideration needs to be
given to what is termed the genetic model. The genetic model describes the
biological interaction between alleles on homologous chromosomes. Examples
of common genetic models are dominant, recessive and additive models. Con-
sider the simple case in which the possible alleles are A and T at a given SNP
locus where A is the wildtype or most common allele and T is the variant or
minor allele. Further suppose we are interested in a quantitative trait, y. An
additive model implies that if the effect of having a single copy of the T allele
is to increase y by an amount equal to β, then having two copies of the T
allele will increase y by 2β. If we let I(xi,k = T ) be an indicator for whether
the allele on the kth homolog (k = 1, 2) is equal to T for individual i, then an
additive genetic model for this SNP locus is written explicitly as

yi = α+ β [I(xi,1 = T ) + I(xi,2 = T )] + εi (2.29)

A dominant genetic model, on the other hand, assumes that having one or
more copies of the T allele will result in a β increase in the quantitative trait
y and is given by

yi = α+ βI(xi,1 = T or xi,2 = T ) + εi (2.30)
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Finally, a recessive model assumes that both homologs must contain the rare
allele in order for the effect to be present. Formally, this model is written

yi = α+ βI(xi,1 = T ) ∗ I(xi,2 = T ) + εi (2.31)

It is important to note that any model of association can be coupled with
an underlying genetic model. For example, consider the dominant genetic
model of Equation (2.30). An additive model of association with a dominant
genetic model across all M loci is written

yi = α+
M∑
j=1

βjI(xij,1 = T or xij,2 = T ) + εi (2.32)

where xij,k is the observed base on the kth homolog at the jth locus for
individual i. Thus we see that the way in which we define our model inputs,
for example the predictor variables in a regression model, reflects an implicit
assumption about both the underlying genetic model and model of association.
In many instances, both of these models are not known. Understanding the
modeling assumptions is critical since specification of an incorrect genetic
model can potentially cloud our interpretation of the results from fitting a
model of association.

Problems

2.1. Define and contrast each of the following terms: (1) confounding, (2)
effect mediation, (3) effect modification, (4) causal pathway, (5) interaction
and (6) conditional association.

2.2. Based on the FAMuSS data, determine whether any of the four SNPs
within the akt2 gene are associated with percentage change in non-dominant
arm muscle strength as measured by NDRM.CH. Perform your analysis unad-
justed and then adjusting for Race, Gender and Age. State clearly how you
code all variables and justify this approach. (No adjustment for multiple test-
ing is needed for this exercise.)

2.3. Use the FAMuSS data and the lm() function in R to test for a linear
trend in the number of variant alleles at actn3 r577x on percentage change
in the non-dominant arm muscle strength as measured by NDRM.CH. Perform
this test within and across gender strata. Hint: Begin by coding actn3 r577x
as a numeric variable.

2.4. Based on the FAMuSS data, determine the odds of having a baseline
body mass index, measured by pre.BMI, greater than 25 for individuals who
are homozygous variant compared with those that are homozygous wildtype
at the resistin c180g SNP.
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2.5. Write a one-way ANOVA model with three groups using matrix notation.
Assume the total sample size is n and the numbers of individuals in each group
are n1, n2 and n3, respectively. Let the quantitative response be given by y.

2.6. Write an additive model of association that assumes a recessive genetic
model. Be sure to define all terms explicitly.

2.7. Suppose we conduct five independent hypothesis tests for association,
each at a level α = 0.05. Determine the upper limit for our resulting type-1
error rate. What is this limit if instead we conducted 50 independent α-level
tests?
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Genetic Data Concepts and Tests

This chapter provides an overview of two important concepts relevant to
population-based association studies: linkage disequilibrium (LD) and Hardy-
Weinberg equilibrium (HWE). Both of these concepts are based on the genetic
component of our data and do not involve the trait that we aim to associate
with this genetic information. Instead, consideration of LD and HWE is an
important step of data processing that typically precedes consideration of as-
sociation, and thus a discussion is included in this text. Both LD and HWE
are measures of allelic association—the difference between them is that LD is
a measure of allelic association between two sites on the genome, while HWE
is a measure of allelic association between two homologous chromosomes at a
single site.

3.1 Linkage disequilibrium (LD)

In candidate gene studies, the hypothesis of interest is whether the gene is
involved in the causal pathway to disease. In this case, the particular SNP loci
within the gene that are chosen may not be functional; that is, they may not
directly cause the disease. However, these sites are likely to be associated with
disease because they are in what is commonly referred to as linkage disequi-
librium (LD) with the functional variant. Linkage disequilibrium is defined as
an association in the alleles present at each of two sites on a genome. Notably,
the concept of LD differs from the term linkage used in the context of linkage
analysis. Linkage analysis is an approach that aims to identify the location
on a chromosome of a specific gene. Linkage analysis is typically applied in
the context of family-based studies (i.e., studies involving related individuals)
and draws on information from genes with known location. Linkage analysis
is based on the phenomenon that the farther apart genes are, the more likely
that a recombination event has occurred between them. Recombination in
the genetic sense is defined as the joining of two broken DNA strands, one
from the maternal side and one from the paternal side, and occurs as parental
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chromosomes are passed to an offspring. Further details on recombination in
the context of meiosis are provided in Section 1.3.1.

Fine mapping studies are often performed to further investigate regions
of a chromosome that were identified through linkage analyses. These stud-
ies again aim to identify the location of a specific candidate gene, in this
case with greater precision. Both fine mapping and linkage analysis differ
from candidate-gene association studies in that a fundamental goal of the
former two is to map the chromosomal location of a disease-causing gene.
The specific allele(s) contributing to the disease phenotype are less relevant.
Candidate-gene and candidate-polymorphism studies instead aim to charac-
terize the association between allelic variation at a given location and the
disease phenotype. Notably, methods that simultaneously assess linkage and
association have been described. For a complete discussion of linkage, the
reader is referred to Thomas (2004).

The following section defines two closely related measures of LD:D′ and r2.
These measures are also related to Pearson’s χ2-statistic, typically generated
for a test of association between two categorical variables, as described in
Chapter 2. Several additional measures of LD have been described, each with
its own set of advantages and disadvantages. Additional discussion of these
measures can be found in Devlin and Risch (1995), Chapter 8 of Thomas
(2004) and Chapter 9 of Ziegler and Koenig (2007).

3.1.1 Measures of LD: D′ and r2

To begin, consider the distribution of alleles for n individuals across two sites.
Let us first assume that the two sites are independent of one another. That
is, the presence of an allele at one site does not influence the particular allele
observed at the second site. Further, suppose A and a are the possible alleles
at Site 1, B and b are the alleles at Site 2, and pA, pa, pB and pb denote the
population frequencies for A, a, B and b, respectively. Since each individual
carries two homologous chromosomes, there are in total N = 2n homologs
across the n individuals in our sample. The expected distribution of alleles
under independence between Sites 1 and 2 is given in Table 3.1. Here the
number in each cell of this 2 × 2 table is the corresponding haplotype count
and is denoted nij for i, j = 1, 2. For example, n11 is the expected number
of homologs with allele A at Site 1 and allele B at Site 2 in this population.
That is, it is the expected number of homologs with the AB haplotype. Recall
from Section 2.1.1 that, under independence, the frequency of AB is simply
the product of the frequency of A and the frequency of B. Mathematically, we
write pAB = pApB , where pAB is the joint probability of A and B occurring
together. Therefore, the expected number of AB homologs is given by n11 =
NpAB = NpApB .

If the observed data support Table 3.1, then this provides evidence that
Sites 1 and 2 are in linkage equilibrium. If, on the other hand, Sites 1 and 2 are
in fact associated with one another, then the observed counts will deviate from
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Table 3.1. Expected allele distributions under independence

Site 2
B b

Site 1
A n11 = NpApB n12 = NpApb n1. = NpA

a n21 = NpapB n22 = Npapb n2. = Npa

n.1 = NpB n.2 = Npb N = 2n

Table 3.2. Observed allele distributions under LD

Site 2
B b

Site 1
A n11 = N(pApB +D) n12 = N(pApb −D) n1.

a n21 = N(papB −D) n22 = N(papb +D) n2.

n.1 n.2 N = 2n

the numbers in Table 3.1. The amount of such deviation is represented by the
scalar D in Table 3.2. With the introduction of D, this table represents the
more general setting, in which independence across sites is not assumed. Note
that if D = 0, then Table 3.2 reduces to Table 3.1. Intuitively, the value of the
scalar D captures information on the magnitude of the departure from linkage
equilibrium. For example, if D is relatively large, then the counts n11 and n22

in Table 3.2 will be greater than is expected under independence, while n12

and n21 will be smaller than expected, suggesting a large departure from LD.
On the other hand, if the absolute value of D is close to 0, then the observed
counts in Table 3.2 will be close to the expected numbers under independence,
indicating little or no departure from LD. The two measures described in this
chapter, D′ (pronounced D-prime) and r2 (pronounced R-squared), are both
functions of the scalar D.

We can express D in terms of the joint probability of A and B and the
product of the individual allele probabilities as follows:

D = pAB − pApB (3.1)

In practice, we estimate D by plugging in the corresponding estimates of the
marginal and joint probabilities. It is straightforward to show that p̂A = n1./N
and p̂B = n.1/N are the estimates of pA and pB , respectively. Estimation of
pAB is not as straightforward, however, since the number of homologs in our
sample with the A and B alleles is not observed. That is, the number of
copies of the AB haplotype is uncertain, resulting from the fact that we have
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Table 3.3. Genotype counts for two biallelic loci

Site 2
BB Bb bb

Site 1
AA n11 n12 n13

Aa n21 n22 n23

aa n31 n32 n33

population-based data of unrelated individuals, as described in Sections 1.3.1
and 2.3.2.

To estimate pAB in this setting, we first write the likelihood of our pa-
rameters, θ = (pAB , pAb, paB , pab), conditional on the observed data. Recall
from Section 2.1.1 that the likelihood is written as the joint probability of the
observed data, in this case the cell counts. Thus, we have

logL(θ|n11, . . . , n33) ∝ (2n11 + n12 + n21) log pAB
+ (2n13 + n12 + n23) log pAb + (2n31 + n21 + n32) log paB
+ (2n33 + n32 + n23) log pab + n22 log(pABpab + pAbpaB)

(3.2)

where now nij are the genotype counts, for i, j = 1, 2, 3, as shown in Table 3.3.
This likelihood can be rewritten as a function of pAB , pA and pB by using the
relationships pAb = pA− pAB , paB = pB − pAB and pab = 1− pA− pB − pAB .
Finally, since there is no closed-form solution for the maximum likelihood esti-
mate of pAB , a numerical algorithm, such as Newton-Raphson, can be applied.
In general, numerical algorithms are cumbersome when more than two sites are
considered, and alternative approaches, such as an expectation-maximization
(EM) type algorithm, are applied for haplotype frequency estimation, as de-
scribed in Chapter 5.

Since cell counts cannot be negative, the value of D is constrained in a
way that depends on pA, pa, pB and pb. For this reason, a rescaled value of
D, given by D′, is often used as a measure of LD. Formally,

D′ =
|D|
Dmax

(3.3)

where Dmax represents the upper bound on D and is given by:

Dmax =

{
min (pApb, papB) D > 0
min (pApB , papb) D < 0

(3.4)

Note that 0 ≤ D′ ≤ 1. Values of D′ that are close to 1 are assumed to indicate
high levels of LD, while values close to 0 suggest low LD. Importantly, formal
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testing of the hypothesis that LD is equal to 0 requires consideration of the
fact that haplotype frequencies used in the calculation of D are estimated.
Inference procedures must account for the additional variability resulting from
this estimation. Further discussion of the challenges inherent in testing for
linkage disequilibrium in the context of phase ambiguity is provided in Schaid
(2004). The following two examples illustrate how to calculate an estimate of
D′ between pairs of SNPs for data collected on unrelated individuals using R.

Example 3.1 (Measuring LD using D′). In this example, we use the R pack-
age genetics. Loading this package requires several additional R packages
that are not included in the typical R installation, including MASS, combinat,
gdata, gtools and mvtnorm. Additional details on installing new packages
can be found in the appendix. To load the necessary R packages, we use the
library() function as follows:

> library(genetics)

Suppose we aim to calculate LD as measured by D′ for two SNPs within
the gene alpha-actinin 3 (actn3) based on data from the FAMuSS study. The
reader is referred to Section 1.3.3 for additional background on these data.
We begin by attaching these data so that we can call associated variables:

> attach(fms)

The next step is to create objects of class genotype for each of our SNP
variables. Recall from Table 1.1 that the first ten observations for SNPs r577x
and rs540874 have the following form:

> actn3_r577x[1:10]

[1] CC CT CT CT CC CT TT CT CT CC

Levels: CC CT TT

> actn3_rs540874[1:10]

[1] GG GA GA GA GG GA AA GA GA GG

Levels: AA GA GG

To create genotype objects, we use the corresponding genotype() function
as follows:

> Actn3Snp1 <- genotype(actn3_r577x,sep="")

> Actn3Snp2 <- genotype(actn3_rs540874,sep="")

Note that we specify sep="" since in our data the alleles at a given SNP site
are not separated. For example, the genotype for the first person at the first
SNP is CC. The default character assumed to delineate alleles within a site is
/. We can see by printing the first ten observations that the data for the first
SNP are now represented as follows:

> Actn3Snp1[1:10]
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[1] "C/C" "C/T" "C/T" "C/T" "C/C" "C/T" "T/T" "C/T" "C/T" "C/C"

Alleles: C T

with the corresponding class attributes given by

> class(Actn3Snp1)

[1] "genotype" "factor"

The data are now appropriately formatted for calculating D′. We do this using
the LD() function of the genetics package:

> LD(Actn3Snp1,Actn3Snp2)$"D’"

[1] 0.8858385

This result, D′ = 0.89, suggests that there is a high degree of LD between
SNPs labeled r577x and rs540874 within the actn3 gene.

If instead we consider two SNPs across two different genes, we expect D′ to
be relatively small. For example, consider the SNP labeled rs1801132 within
the estrogen receptor 1 gene (esr1). D′ between this SNP locus and the first
SNP in actn3 yields a much lower value, suggesting that there is not strong
LD between these SNPs. This is illustrated with the following R code:

> Esr1Snp1 <- genotype(esr1_rs1801132,sep="")

> LD(Actn3Snp1,Esr1Snp1)$"D’"

[1] 0.1122922 �

Example 3.2 (Measuring pairwise LD for a group of SNPs). Now suppose we
are interested in calculating pairwise LD for a group of SNPs within the actn3
gene. In this case, we can use the same R function, LD(). First we read in two
additional SNPs as genotype variables and create a corresponding dataframe:

> Actn3Snp3 <- genotype(actn3_rs1815739,sep="")

> Actn3Snp4 <- genotype(actn3_1671064,sep="")

> Actn3AllSnps <- data.frame(Actn3Snp1,Actn3Snp2,Actn3Snp3,Actn3Snp4)

A matrix of pairwise LD measures is then given by the upper triangular
elements of the D′ matrix:

> LD(Actn3AllSnps)$"D’"

Actn3Snp1 Actn3Snp2 Actn3Snp3 Actn3Snp4

Actn3Snp1 NA 0.8858385 0.9266828 0.8932708

Actn3Snp2 NA NA 0.9737162 0.9556019

Actn3Snp3 NA NA NA 0.9575870

Actn3Snp4 NA NA NA NA
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Pairwise LD

Physical Length:3kb
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Fig. 3.1. Map of pairwise LD

As expected since these SNPs are all within the same gene, there appears to
be a high level of LD for all pairs. That is, in all cases, the presence of a
given allele at one SNP locus tends to be associated with the presence of a
specific allele at another SNP locus. This result can also be illustrated using
the LDheatmap() function within the LDheatmap package, as follows:

> install.packages("LDheatmap")

> library(LDheatmap)

> LDheatmap(Actn3AllSnps, LDmeasure="D’")

The resulting plot is given in Figure 3.1, where the shading represents the
degree of association. �

Another intuitively appealing measure of LD is the quantity r2. This mea-
sure is based on Pearson’s χ2-statistic for the test of no association between
the rows and columns of an r × c contingency table such as the one given in
Table 3.2. Specifically, r2 is defined as

r2 = χ2
1/N (3.5)

Recall that as described in Section 2.2.1, Pearson’s χ2-test statistic is given
by

χ2
1 =

∑
i,j

(Oij − Eij)2

Eij
(3.6)

where i = 1, 2, . . . , r, j = 1, 2, . . . , c, and Oij and Eij are respectively the
observed and expected cell counts for the i, j cell of an r × c table. The
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expected counts are determined under a model of independence, and in the
LD setting we let r = c = 2 as in Table 3.2.

Interestingly, the quantity r2 in Equation (3.5) can also be written in terms
of the scalar D. To see this, we first note from Tables 3.1 and 3.2 that

(Oij − Eij)2 = (ND)2 (3.7)

for all i, j pairs. Therefore, we can write

χ2
1 =

∑
i,j

(ND)2

Eij

= (ND)2

(
1

NpApB
+

1
NpApb

+
1

NpapB
+

1
Npapb

)

= ND2

(
papb + papB + pApb + pApB

pApBpapb

)

=
ND2

pApBpapb

(3.8)

The final equality holds since pa + pA = 1 and pb + pB = 1. Thus we have

r2 = χ2
1/N =

D2

pApBpapb
(3.9)

Notably, the difference between D′ and r2 rests in the type of adjustment
made to the scalar D. In both cases, this adjustment involves the marginal
allele frequencies since the value of D will depend on these. Investigators
tend to prefer r2 due to its straightforward relationship to the usual χ2-
test for a contingency table analysis. Readers are cautioned, however, against
comparing Nr2 to a χ2

1-distribution in the analysis of population-based data.
Recall that in population-based investigations, haplotypes are not observed
and so the cell counts of the corresponding contingency table are not known.
As a result, an estimation procedure, such as the EM algorithm, must be
used, and in turn this introduces additional variability into our measure. In
addition, Pearson’s χ2-test assumes independent observations, which may be
violated in our sample in the absence of Hardy-Weinberg equilibrium (HWE)
(described below) since the contingency table includes two observations per
person. This challenge is highlighted in Sasieni (1997). The following example
illustrates estimation of LD based on r2.
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Example 3.3 (Measuring LD based on r2 and the χ2-statistic). Suppose that
we are again interested in measuring LD between the SNPs r577x and
rs540874 within the actn3 gene based on the FAMuSS data. Calculation
of r2 can be achieved using the same LD() function described in Examples 3.1
and 3.2. Again the SNP variables first need to be transformed into genotype
objects:

> attach(fms)

> library(genetics)

> Actn3Snp1 <- genotype(actn3_r577x,sep="")

> Actn3Snp2 <- genotype(actn3_rs540874,sep="")

> LD(Actn3Snp1,Actn3Snp2)$"R^2"

[1] 0.6179236

Similar to Example 3.1, based on this measure there is strong evidence to
suggest LD between these two SNP loci.

This result is based on the n = 725 individuals with complete data on
both SNPs. Based on this, we see that the corresponding χ2-statistic is equal
to 0.6179236 ∗ 725 ∗ 2 = 896. The LD() function also returns this statistic and
a corresponding “p-value”, as seen below with the complete function output:

> LD(Actn3Snp1,Actn3Snp2)

Pairwise LD

-----------

D D’ Corr

Estimates: 0.1945726 0.8858385 0.7860811

X^2 P-value N*

LD Test: 895.9891 0 725

(*note: N in this output is represented by n in the textbook notation.)

The reader is cautioned however against interpreting this statistic as a formal
test of LD (as suggested by the corresponding package documentation) for
two reasons. First, it is generated based on two observations per person. That
is, the total of the cell counts is equal to N = 2 ∗ n, where n is our sample
size. Second, cell counts are estimated, which introduces additional variability.
Thus, the usual χ2-test for association is not valid in this setting. �

D′ and r2 are both measures of linkage disequilibrium between loci, esti-
mating the amount of association between sites. While the information cap-
tured by these quantities can be highly useful, conclusions must be drawn
with caution. These quantities reflect estimates of association and interpret-
ing them as formal statistical tests has a few limitations. First, as noted in
Example 3.3, the χ2-statistic that is generated using the LD() function in R is
based on data from a 2× 2 table that includes correlated data—in this case,
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two observations for each individual. Second, an additional layer of estimation
is performed in the process of calculating these measures since the haplotypic
phase and thus the cell counts are not observable. Accounting for the error
associated with this estimation is crucial for testing association between loci.
Thus this statistic cannot be interpreted in the usual way described for con-
tingency table analysis.

3.1.2 LD blocks and SNP tagging

In the previous section, we considered measures of pairwise LD between two
alleles. More generally, interest may lie in determining whether a group of
alleles are in LD. One intuitively appealing measure of LD across a region
comprised of multiple SNPs is simply the average of all pairwise measures D′.
For example, suppose D′ij is a measure of LD between loci i and j for i, j ∈ L,
where L is a set of loci within a region of interest. Then one measure of LD
for this region is given by

D̄′ =
1
nL

∑
i,j∈L

D′ij (3.10)

where nL is the number of ways of choosing two loci from the set L and the
summation is over all such pairs. This calculation is straightforward, as the
following example shows.

Example 3.4 (Determining average LD across multiple SNPs). Returning to
the FAMuSS data and the actn gene, we saw in Example 3.2 that calculation
of D′ for all pairs of SNPs within this gene is straightforward using the LD()
function

> LDMat <- LD(Actn3AllSnps)$"D’"

where actn3.allSNPs is a dataframe with each element a genotype object
representing a SNP locus within actn. Calculating the average LD is achieved
using the mean() function as in the following code. Remember to specify that
missing values should be removed by including na.rm=T.

> mean(LDMat,na.rm=T)

[1] 0.9321162 �

More precise estimates of LD are also tenable through fine mapping stud-
ies. Ultimately, through characterizing regions of high LD, the human genome
can be divided into LD blocks. These blocks are separated by hotspots, regions
in which recombination events are more likely to occur. For further discussion
of LD blocks and recombination hotspots, see Balding (2006). An illustration
of two LD blocks separated by a recombination hotspot is given in Figure 3.2.
In general, alleles tend to be more correlated within LD blocks than across LD
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Fig. 3.2. Illustration of LD blocks and associated tag SNPs

blocks. Once regions of high LD are identified, investigators aim to determine
the smallest subset of SNPs that characterizes the variability in this region,
a process referred to as SNP tagging. Here the goal is to reduce redundancies
in the genetic data. Consider a pair of SNPs that are in perfect LD so that
D′ is equal to 1. Genotyping both SNPs in this case is unnecessary since the
relationship between the two is deterministic. That is, by the definition of
LD, knowledge of the genotype of one SNP completely defines the genotype
of the second, and so there is no reason to sequence both loci. Well-defined
tag SNPs will capture a substantial majority of the genetic variability within
an LD block.

The tag SNPs corresponding to one LD block are illustrated in Figure 3.2.
As shown in this figure, tag SNPs are correlated with the true disease-causing
variant but are not typically functional themselves. Notably, LD blocks dif-
fer substantially across race and ethnicity groups and in particular tend to
be shorter in Black non-Hispanics than Whites and Hispanics. As a result,
a set of tag SNPs may capture information on the true disease-causing vari-
ant in one racial group and not another. Consideration of this phenomenon
and application of appropriate analytic methods is crucial in the analysis of
population-based association studies that include multiple racial and ethnic
groups. In the following section, we discuss the impact of population sub-
structure on measures of LD. Importantly, the differences in the SNPs that
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Table 3.4. Haplotype distribution assuming linkage equilibrium and varying allele
frequencies

Population 1 Site 2
B b

Site 1
A 200 ∗ 0.82 = 128 200 ∗ 0.8 ∗ 0.2 = 32 160

a 200 ∗ 0.8 ∗ 0.2 = 32 200 ∗ 0.22 = 8 40

160 40 N = 200

(a) Assuming A and B allele frequencies of 0.8

Population 2 Site 2
B b

Site 1
A 200 ∗ 0.22 = 8 200 ∗ 0.8 ∗ 0.2 = 32 40

a 200 ∗ 0.8 ∗ 0.2 = 32 200 ∗ 0.82 = 128 160

40 160 N = 200

(b) Assuming A and B allele frequencies of 0.2

capture information on LD block across racial and ethnic groups may lead in-
vestigators to the collection of different variables across these subpopulations,
in which case a stratified analysis will be necessary.

3.1.3 LD and population stratification

As described in Section 2.3.3, population stratification refers to the presence
of multiple subgroups between which there is minimal mating or gene trans-
fer. Ignoring underlying population stratification in our sample can lead to
erroneous conclusions about the presence of LD between two SNPs. This is
illustrated in the following example.

Example 3.5 (Population substructure and LD). Consider two SNPs with
dominant allele frequencies pA = pB = 0.8 in one population and qA = qB =
0.2 in a second population. Suppose that in both populations these two SNPs
are not associated; that is, there is no LD between them. Under such a model
of no association, the observed counts will be similar to the counts given in
Tables 3.4(a) and (b) for the first and second populations, respectively, as-
suming a sample size of n = 100 individuals (N = 2∗100 haplotypes) for each
group. If data from these two populations are combined into a single 2 × 2
contingency table, then the observed counts will be given by Table 3.5. The
expected counts are calculated in R using the chisq.test() function and
involves first creating a matrix of observed counts:
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Table 3.5. Apparent LD in the presence of population stratification

Populations 1 and 2 Site 2
B b

Site 1
A 128 + 8 = 136 32 + 32 = 64 200

a 32 + 32 = 64 8 + 128 = 136 200

200 200 N = 400

> ObsCount <- matrix(c(136,64,64,136),2)

> ObsCount

[,1] [,2]

[1,] 136 64

[2,] 64 136

> ExpCount <- chisq.test(ObsCount)$expected

> ExpCount

[,1] [,2]

[1,] 100 100

[2,] 100 100

Taking the absolute difference between the observed and expected counts and
dividing by N yields D = 36/400 = 0.09. Furthermore, based on the observed
cell counts of the combined populations, we have pA = pa = pB = pb = 0.5
and so Dmax = 0.25 and D′ = 0.09/0.25 = 0.36. Thus, combining data across
the two populations and not accounting for the resulting substructure in our
analysis leads to the incorrect conclusion that there is mild LD between the
alleles at Sites 1 and 2. �

The effect of population admixture on LD is a well-described concept in
biostatistics and epidemiology texts and is commonly referred to as Simpson’s
paradox; see, for example, Pagano and Gauvreau (2001). Simpson’s paradox
occurs in the presence of a confounding variable that is not appropriately ac-
counted for in the analysis. In this setting, “population” is confounding the
relationship between Sites 1 and 2, and by ignoring this factor we see an associ-
ation that does not exist in either population on its own. Further discussion of
confounding, how to adjust for it appropriately in analysis, and other related
concepts is provided in Chapter 2. Notably, population substructure is not
always observed, and thus straightforward application of statistical methods
for confounding may not be tenable.
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3.2 Hardy-Weinberg equilibrium (HWE)

Another important concept in population-based genetic association studies is
Hardy-Weinberg equilibrium (HWE). While LD refers to allelic association
across sites on a single homolog, HWE denotes independence of alleles at a
single site between two homologous chromosomes. Consider for example the
simple case of one biallelic SNP with genotypes AA, Aa and aa. HWE implies
that the probability of an allele occurring on one homolog does not depend on
which allele is present on the second homolog. Formally, independence in this
setting is equivalent to stating, for example, that the joint probability of A and
a, given by pAa, is equal to the product of the individual allele probabilities, pA
and pa. Formally, independence implies pAA = p2

A, pAa = pApa and paa = p2
a,

where pA and pa = 1 − pA are the population frequencies of alleles A and a,
respectively. The following section introduces two approaches to testing for a
departure from HWE.

3.2.1 Pearson’s χ2-test and Fisher’s exact test

Tests of HWE include Pearson’s χ2-test and Fisher’s exact test. The χ2-test
is computationally advantageous but relies on asymptotic theory. Thus, when
more than 20% of the expected counts are less than five, Fisher’s exact test
is preferable. Consider the 2× 2 table of genotypes at a single locus given in
Table 3.6. Here n11 and n22 are the number of individuals with genotypes AA
and aa, respectively, and these counts are observed. Notably, the genotypes
Aa and aA are indistinguishable in population-based investigations, and thus
we only observe the sum n∗12 = n21 + n12 and not the individual cell counts,
n21 and n12.

The expected counts corresponding to these three observed counts, n11,
n∗12, n22, are given respectively by E11 = Np2

A, E12 = 2NpA(1 − pA) and
E22 = N(1−pA)2, where pA is the probability of A and is estimated based on
the observed allele count. That is, we let pA = (2n11 + n∗12) /(2N). The χ2-test
statistic is then constructed in the usual way, as described in Section 2.2.1,

χ2 =
∑

(i,j)∈C

(Oij − Eij)2

Eij
∼ χ2

1 (3.11)

where now the summation is over the set C of three observed cells. This
statistic is compared with the appropriate quantile of a χ2

1-distribution to
determine whether to reject the null hypothesis of HWE. We still have a
single degree of freedom since knowledge of the count in any one of the three
cells in C fully determines the counts in the remaining cells, conditional on
the marginal totals. For example, if we know n∗12, then we can determine n11

and n22. To see this, note that we have n11 + n12 = n1. and n11 + n21 = n.1.
Therefore, 2n11 + n∗12 = n1. + n.1 or equivalently n11 = (n1. + n.1 − n∗12) /2.
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Table 3.6. Genotype counts for two homologous chromosomes

Homolog 2
A a

Homolog 1
A n11 n12 n1.

a n21 n22 n2.

n.1 n.2 n

That is, knowledge of n∗12 and the margin totals, n1. and n.1, is sufficient to
determine n11. A similar expression can be derived for n22.

A statistically significant test of HWE suggests that the SNP under in-
vestigation is in Hardy-Weinberg disequilibrium (HWD). The term HWD is
often used synonymously with the phrase non-random mating since HWD can
arise from self-selecting mates. The relationship between HWE and popula-
tion substructure is discussed further in Section 3.2.2. An example of applying
Pearson’s χ2-test to test for HWE is given below.

Example 3.6 (Testing for HWE using Pearson’s χ2-test). Suppose we are
interested in testing for HWE for the SNP labeled AKT1.C0756A in the HGDP
data. To do this, we first need to calculate the observed and expected genotype
counts. This can be done as follows:

> attach(hgdp)

> Akt1Snp1 <- AKT1.C0756A

> ObsCount <- table(Akt1Snp1)

> Nobs <- sum(ObsCount)

> ObsCount

Akt1Snp1

AA CA CC

48 291 724

> FreqC <- (2 * ObsCount[3] + ObsCount[2])/(2*Nobs)

> ExpCount <- c(Nobs*(1-FreqC)^2, 2*Nobs*FreqC*(1-FreqC),Nobs*FreqC^2)

> ExpCount

[1] 35.22319 316.55362 711.22319

In this example, vectors of observed and expected counts are for the genotypes
AA, CA and CC, respectively. The χ2-statistic is calculated using the formula
of Equation (3.11) and the following R code:

> ChiSqStat <- sum((ObsCount - ExpCount)^2/ExpCount)

> ChiSqStat

[1] 6.926975
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This statistic has a χ2-distribution with a single degree of freedom. The quan-
tile corresponding to 1− α, where α = 0.05, is given by

> qchisq(1-0.05,df=1)

[1] 3.841459

Since 6.93 > 3.84, based on this sample we would reject the null hypothe-
sis of HWE at this SNP locus and conclude instead that the alleles on the
two homologous chromosomes are associated with one another. Alternatively,
the HWE.chisq() function in the genetics package can be used to calculate
this statistic. In this case, we first use the genotype() function to create a
genotype object as follows:

> library(genetics)

> Akt1Snp1 <- genotype(AKT1.C0756A, sep="")

> HWE.chisq(Akt1Snp1)

Pearson’s Chi-squared test with simulated p-value (based on

10000 replicates)

data: tab

X-squared = 6.927, df = NA, p-value = 0.007199

Note that the same χ2-statistic is returned with a corresponding p = 0.0072.
Again, based on this result, we would reject the null hypothesis of HWE
and conclude that there appears to be non-random mating. In Section 3.2.2,
we return to this example with a further analysis that considers the ethnic
diversity of this sample. �

The p-value from Fisher’s exact test is based on summing the exact prob-
abilities of seeing the observed count data or something more extreme in the
direction of the alternative hypothesis. Fisher showed that the exact proba-
bility from a contingency table such as Table 3.6 is given by

pA =

(
n1.

n11

)(
n2.

n21

)(
N
n.1

) =
n1.! n2.! n.1! n.2!

N ! n11! n12! n21! n22!
(3.12)

It was further shown by Emigh (1980) for the genetics setting that if we let
n1 = 2 ∗ n11 + n∗12, we can write this probability as

pA =

(
n

n11,n∗12,n22

)(
2n
n1

) 2n
∗
12 (3.13)

In the following example, we illustrate calculation of this exact probability
and the exact p-value for a test of HWE.
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Example 3.7 (Testing for HWE using Fisher’s exact test). Now suppose we
are interested in testing for a departure from HWE for the same SNP of
Example 3.6 but only within the Maya population. This subgroup consists
of N = 25 individuals, and the observed and expected genotype counts are
calculated as follows:

> attach(hgdp)

> Akt1Snp1Maya <- AKT1.C0756A[Population=="Maya"]

> ObsCount <- table(Akt1Snp1Maya)

> ObsCount

Akt1Snp1Maya

AA CA CC

1 6 18

> Nobs <- sum(ObsCount)

> FreqC <- (2 * ObsCount[3] + ObsCount[2])/(2*Nobs)

> ExpCount <- c(Nobs*(1-FreqC)^2, 2*Nobs*FreqC*(1-FreqC),Nobs*FreqC^2)

> ExpCount

[1] 0.64 6.72 17.64

Since the expected count for the first cell is less than 5, using Fisher’s exact
test to test for HWE is most appropriate. An exact probability of seeing the
observed counts, as described in Equation (3.13), is given by FisherP1 in the
following code example:

> n11 <- ObsCount[3]

> n12 <- ObsCount[2]

> n22 <- ObsCount[1]

> n1 <- 2*n11+n12

> Num <- 2^n12 * factorial(Nobs)/prod(factorial(ObsCount))

> Denom <- factorial(2*Nobs) / (factorial(n1)*factorial(2*Nobs-n1))

> FisherP1 <- Num/Denom

> FisherP1

[1] 0.4011216

Fisher’s exact p-value is given by summing over all probabilities of seeing
something as extreme as or more extreme than the observed data. Thus, to
arrive at this p-value, we need to perform the calculation above for the more
extreme situations as well, given by n11 = 19, n11 = 20 and n11 = 21, with
n12 and n22 adjusted accordingly.

The function HWE.exact() from the genetics package can also be used
to calculate this exact p-value, as illustrated below:

> library(genetics)

> Akt1Snp1Maya <- genotype(AKT1.C0756A[Population=="Maya"], sep="")

> HWE.exact(Akt1Snp1Maya)
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Exact Test for Hardy-Weinberg Equilibrium

data: Akt1Snp1Maya

N11 = 18, N12 = 6, N22 = 1, N1 = 42, N2 = 8, p-value = 0.4843

Based on this output, we see that the exact p-value is 0.4843 and we are
unable to reject the null hypothesis that there is a departure from HWE in
this population. �

3.2.2 HWE and population substructure

The concepts of HWE and population substructure are closely linked. In this
section, we highlight some important connections that will help guide analysis
strategies discussed in later chapters. Specifically, we illustrate that: (1) HWE
implies constant allele frequencies over generations; (2) HWE is violated in the
presence of population admixture; and (3) HWE is violated in the presence
of population stratification.

We begin by demonstrating that, under the HWE assumption, allele fre-
quencies remain constant over generations. Consider for example the genotype
of a parent at a single biallelic locus. Assuming HWE, we know that the joint
probability of a pair of alleles is the product of the two individual-level prob-
abilities. This is also referred to as statistical independence, as described in
Section 2.1.1, and implies that the probabilities of genotypes AA, Aa and aa
are given by pAA = p2

A, pAa = 2pA(1− pA) and paa = (1− pA)2, respectively.
We also know that the probability that an offspring inherits the A allele from
a parent with genotype AA is 1, from a parent with genotype Aa it is 1/2
and from a parent with genotype aa it is 0. Formally, if Pr(A|X) is the con-
ditional probability of an offspring having the A allele given that the parental
genotype is X, then we have

Pr(A|AA) = 1
Pr(A|Aa) = 1/2
Pr(A|aa) = 0

(3.14)

Thus, the joint probabilities of the parental genotype and inheritance of the
A allele are given by

Pr(A,AA) = Pr(A|AA)Pr(AA) = p2
A

Pr(A,Aa) = Pr(A|Aa)Pr(Aa) = pA(1− pA)
Pr(A, aa) = Pr(A|aa)Pr(aa) = 0

(3.15)

using the identities stated in Section 2.1.1. The frequency of A in this new
generation is equal to the sum of the probabilities in Equation (3.15). That



3.2 Hardy-Weinberg equilibrium (HWE) 83

Table 3.7. Example of the effect of population admixture on HWE

Population 2
Population 1 A a

A npAqA = 64 npA(1 − qA) = 96 npA = 160

a n(1 − pA)qA = 16 n(1 − pA)(1 − qA) = 24 n(1 − pA) = 40

nqA = 80 n(1 − qA) = 120 n = 200

is, Pr(A) = Pr(A,AA) + Pr(A,Aa) + Pr(A, aa) = pA and is the same as
the parent generation. This result implies that allele frequencies will tend to
remain constant over time under HWE.

In the presence of population admixture, on the other hand, a departure
from the HWE assumption will likely be detected. Recall from Section 2.3.3
that population admixture refers to the setting in which mating occurs between
two populations for which the allele frequencies differ. For example, suppose
Pr(A) = pA in one population and Pr(A) = qA in a second population, where
pA 6= qA. Now suppose two individuals, one from each population, reproduce.
The probability that the offspring has the AA genotype is given by pAqA, the
probability of the Aa genotype is pA(1− qA) + qA(1−pA) and the probability
of the aa genotype is (1 − pA)(1 − qA). Now consider a sample of n = 200
individuals from an admixed population where Pr(A) = pA = 0.8 in one
subpopulation and Pr(A) = qA = 0.4 in the second sub-population for a
given site. In this setting, the observed cell count data will look similar to
those given in Table 3.7.

Recall that the observed data will consist of n11 = 64, the sum of the two
off-diagonal cells, given by n∗12 = 96+16 = 112, and n22 = 24. Under the HWE
assumption, the corresponding expected counts are given by the quantities
E11 = Np2

0 = 72, E12 = 2Np0(1−p0) = 96 and E22 = N(1−p0)2 = 32, where
p0 is the estimated A allele frequency, p0 = (2 ∗ 64 + 96 + 16)/(2 ∗ 200) = 0.6.
Thus, the χ2 statistic corresponding to a test of HWE, for this example, is
given by

χ2
1 =

(
(72− 64)2

72
+

(96− 112)2

96
+

(32− 24)2

32

)
= 5.56 (3.16)

Comparing this result to a χ2-distribution with 1 degree of freedom, we would
reject the null hypothesis of HWE. In other words, inbreeding of two popu-
lations with differing allele frequencies (i.e., population admixture) results in
an apparent departure from HWE.

A similar result is observed in the context of population stratification.
Recall that population stratification is the combination of populations in which
breeding occurs within but not between subpopulations. Consider for example
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Table 3.8. Genotype distributions for varying allele frequencies

Population 1 Homolog 2
A a

Homolog 1
A 200 ∗ 0.82 = 128 200 ∗ 0.8 ∗ 0.2 = 32 160

a 200 ∗ 0.8 ∗ 0.2 = 32 200 ∗ 0.22 = 8 40

160 40 n = 200

(a) Assuming Pr(A) = 0.8

Population 2 Homolog 2
A a

Homolog 1
A 200 ∗ 0.42 = 32 200 ∗ 0.4 ∗ 0.6 = 48 80

a 200 ∗ 0.4 ∗ 0.6 = 48 200 ∗ 0.62 = 72 120

80 120 n = 200

(b) Assuming Pr(A) = 0.4

the genotype counts for two populations, given by Tables 3.8(a) and 3.8(b),
in which the probabilities of the A allele are Pr(A) = 0.8 and Pr(A) = 0.4,
respectively. Within each population, we have HWE since the observed cell
counts are as expected under random mating. If, however, we consider the
data on the two populations combined, as given in Table 3.9, it can be shown
that the HWE assumption is violated. This is commonly referred to as the
Wahlund effect, after the Swedish geneticist who first documented the concept
(Wahlund, 1928). To see this phenomenon, we can use the chisq.test()
function in R, assuming for simplicity of presentation that the cell counts are
fully observed:

> ObsDat <- matrix(c(160,80,80,80),2)

> chisq.test(ObsDat,correct=FALSE)

Pearson’s Chi-squared test

data: ObsDat

X-squared = 11.1111, df = 1, p-value = 0.0008581

Here we specify correct=FALSE, indicating that Yates’ continuity correction
is not necessary since the expected cell counts are all greater than 5. Based
on this result, we would reject the null of HWE and conclude there is dis-
equilibrium in this stratified population. Notably, this is very similar to the
result that we saw in the context of linkage disequilibrium, described in Sec-
tion 3.1.3. The following example illustrates the effect of geographic origin on
HWE for one SNP within the HGDP data.
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Table 3.9. HWD in the presence of population stratification

Populations 1 and 2 Homolog 2
A a

Homolog 1
A 128 + 32 = 160 32 + 48 = 80 240

a 32 + 48 = 80 8 + 72 = 80 160

240 160 n = 400

Example 3.8 (HWE and geographic origin). Returning to the HGDP data de-
scribed in Section 1.3.3, we notice that there are individuals from multiple
geographic regions. The distribution of the n = 1064 individuals across these
regions is given by

> attach(hgdp)

> table(Geographic.area)

Geographic.area

Central Africa Central America China Israel

119 50 184 148

Japan New Guinea Northern Africa Northern Europe

31 17 30 16

Pakistan Russia South Africa South America

200 67 8 58

Southeast Asia Southern Europe

11 125

Tests of HWE within each region are calculated using the tapply() and
HWE.chisq() functions. In the following code, we print out the results for
two regions for the AKT1.C0756A SNP:

> library(genetics)

> Akt1Snp1 <- genotype(AKT1.C0756A, sep="")

> HWEGeoArea <- tapply(Akt1Snp1,INDEX=Geographic.area,HWE.chisq)

> HWEGeoArea$"Central Africa"

Pearson’s Chi-squared test with simulated p-value (based on

10000 replicates)

data: tab

X-squared = 0.2322, df = NA, p-value = 0.6589

> HWEGeoArea$"South America"

Pearson’s Chi-squared test with simulated p-value (based on

10000 replicates)

data: tab

X-squared = 27.2386, df = NA, p-value = 9.999e-05
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A review of the output for all regions reveals that population admixture or
stratification is likely to be present within the observed South American and
Russian samples. In all other geographic areas, we cannot detect a deviation
from the HWE assumption based on a level α = 0.05 χ2-test unadjusted for
multiple comparisons. �

In practice, a test of HWE is used to assess whether either population
admixture or stratification is present. A test of HWE is also used to iden-
tify genotyping errors, as described in Section 3.3.2 below. While admixture
and stratification represent two different phenomena—the former describes
in-breeding while the latter implies the presence of multiple subpopulations
in which there is no inbreeding—the manifestation of both is a violation of
the HWE assumption. The analytic implications are therefore similar and
the terms are often used interchangeably. Throughout the remainder of the
text, the phrase population substructure is used generically to encompass both
population admixture and population stratification.

3.3 Quality control and preprocessing

In the remaining chapters of this textbook, we focus on methods for identifying
and characterizing association among multiple SNPs and a trait. Prior to
this analysis, careful consideration of potential errors in the data, through
the application of quality control measures, is essential. The need for this is
particularly relevant to genome-wide association (GWA) studies in which a
vast array of data are measured. Here we give a brief discussion of SNP chips
(Section 3.3.1) and methods for identifying and accounting for genotyping
errors (Section 3.3.2), population substructure (Sections 3.3.3 and 3.3.5) and
relatedness (Section 3.3.4).

3.3.1 SNP chips

The introduction of SNP chip technology, coupled with the success of the
International Haplotype Map (HapMap) Project, has led to an explosion of
new clinical research studies involving whole or partial genome-wide scans,
commonly referred to as genome-wide association studies (GWAS). High-
throughput SNP genotyping platforms, including Affymetrix and Illumina
chips, provide for simultaneous genotyping of 500, 000 to one million SNPs.
While the human genome consists of approximately 3×109 bases, variability in
the genome is captured by a subset of SNPs due to well-defined LD blocks. In
fact, evidence suggests that whole genome-wide arrays of approximately one
million SNPs are sufficient to characterize human genetic variability across a
population.

Detailed information on chip technology can be found in Kennedy et al.
(2003) and Affymetrix (2006). Notably, the output of a SNP array is a probe
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quartet for each possible pair of alleles for all SNPs on the chip. This probe
quartet consists of an ensemble of continuous measures: two intensities based
on perfect match probes, one for each of the pair of alleles, and two intensities
corresponding to mismatch probes. For example, for the two alleles A and T ,
at each site we have measures of probe intensity corresponding to: (1) a perfect
match for A; (2) a perfect match for T ; (3) a mismatch for A; and (4) a mis-
match for T . Application of a classification-type algorithm yields a genotype
call , for example AA, AT or TT , based on these data. One such algorithm
that exhibits relatively strong performance is based on a robustly fitted linear
model and an application of Mahalanobis distance (RLMM), as described in
Rabbee and Speed (2006). This approach, as well as appropriate data normal-
ization, can be applied in R using the Classify() and normalize Rawfiles()
functions within the RLMM package. While the concordance between genotype
calls and the true underlying genotype is remarkably high using a sophisti-
cated algorithm such as that of Rabbee and Speed (2006), some error tends
to be introduced at this stage. Methods for detecting remaining genotyping
errors are discussed in Section 3.3.2 below.

The focus of this text is on candidate gene investigations; however, the
statistical methods described herein are equally relevant and applicable to
GWAS. Several software tools have been developed that apply these methods
while accounting for the computational demands of whole genome-wide inves-
tigations. Included in these is, most notably, the free and open-source package
PLINK, which can be downloaded for Linux, MS-DOS and Mac OS at the
PLINK webpage: http://pngu.mgh.harvard.edu/∼purcell/plink/. PLINK in-
cludes applications of many of the methods described in this text and can
be used in combination with R to take advantage of the array of statistical
tools in R and the advanced data-handling ability of PLINK using Rserve.
Additional information and details can be found in Purcell et al. (2007). The
R packages SNPassoc, GENAbel and snpMatrix are also designed specifically
to handle genome-wide association data. The snpMatrix package is a compo-
nent of the BioConductor open-source and open development software project
for the analysis of genomic data, and additional details can be found in Clay-
ton and Leung (2007). While specific applications of the functions provided
within these packages are not illustrated in this text, the concepts behind
many of these functions are described, including tests of association such as
the Cochran-Armitage trend test and Pearson’s χ2-test, measures of linkage
disequilibrium such as D′ and r2, and summaries of population substructure,
including principal component analysis.

While GWAS have gained a great deal of popularity in recent years, the
need remains for well-designed studies that investigate candidate genes, their
interactions, and the potential modifying and confounding roles of clinical and
demographic data. The findings from GWAS will aid in these investigations
by offering novel hypotheses about the pathways to disease. These studies will
also provide new, better characterized candidate genes requiring further study
in a more traditional epidemiological context.
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3.3.2 Genotyping errors

A genotyping error is defined as a deviation between the true underlying geno-
type and the genotype that is observed through the application of a sequenc-
ing approach. These errors occur with varying degrees of frequency across the
different technological platforms and arise for a variety of different reasons.
For a complete discussion of causes and frequencies of genotyping errors, see
Ziegler and Koenig (2007). The most common statistical approach to identi-
fying genotyping errors in population-based studies of unrelated individuals
is testing for a departure from HWE at each of the SNPs under investiga-
tion (Hosking et al., 2004). This proceeds in the same manner as described
in Section 3.2.1 using either an asymptotic χ2-test or Fisher’s exact test for
association. There are a few notable drawbacks to this approach that we de-
scribe here, as they are important to keep in mind in making the decision to
remove SNPs from analysis.

First, deviations from HWE within individuals with disease (cases) can
be due to association between genotypes and disease status. In order to ac-
count for this possibility, some researchers advocate testing for departures
from HWE only within the control population. This, however, can be mis-
leading as well since removing cases from the analysis may lead to an ap-
parent departure from HWE when indeed the entire population is in HWE.
One resolution to this problem for case–control studies involves application
of a goodness-of-fit test to identify the most probable genetic disease model;
e.g., dominant, recessive, additive or multiplicative (Wittke-Thompson et al.,
2005). This approach provides a means of distinguishing between departures
from HWE that are due to the model for disease prevalence and those de-
partures that are indeed a result of other phenomena, such as genotyping
errors.

Another drawback to using tests of HWE exclusively for identifying geno-
typing errors is that a departure from HWE may in fact be a result of popu-
lation substructure, as described in Section 3.2.2. Removing these SNPs from
the analysis can therefore lead to a loss of data that are potentially informa-
tive regarding underlying structure in our population. In Section 3.3.3 below,
we discuss methods for identifying population substructure that use this in-
formation. Thus, it is generally recommended that use of HWE to identify
genotyping errors be coupled with repeat genotyping. Unfortunately, repeat
genotyping is costly and labor intensive and therefore impractical in many
instances.

Finally, multiplicity is also a challenge in this setting. As described in
Section 2.3.1, multiple testing leads to an inflation of the type-1 error rate.
Therefore, if we test for a departure of HWE at each of multiple SNPs, then
the likelihood of incorrectly rejecting the null hypothesis (and concluding
HWD) can be substantial, particularly in the context of GWAS. This is at-
tenuated to some extent by the correlated nature of the tests, arising from LD
among SNPs; however, consideration of multiple testing adjustments is still
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warranted. In this setting, a more extreme threshold for significance, such as
0.005 or 0.001, is typically applied. A more extensive discussion of multiple
testing procedures is given in Chapter 4.

If a departure from HWE is detected and additional investigation con-
firms that there is truly a genotyping error, then the entire SNP is typically
removed from analysis. That is, these approaches do not provide for identifi-
cation of specific records (individuals) within which an error exists. Instead,
it is assumed that the genotype information is incorrect across all individuals
in the sample and the entire corresponding column is removed prior to fitting
and interpreting models of association.

3.3.3 Identifying population substructure

As discussed in Sections 2.1.2 and 2.3.3, the presence of population substruc-
ture can result in spurious associations. There are, broadly speaking, two
approaches to handling population substructure in the context of associa-
tion studies. The first is to stratify the analysis by racial and ethnic groups
and in some instances, in particular if the corresponding strata are small, re-
move outlying individuals prior to testing for association. A second approach
is to account for the population substructure in the analysis of association.
Both approaches are complicated by the fact that race and ethnicity are not
welldefined. That is, while information on a self-declared value of race and
ethnicity is often available in population-based investigations, this variable,
in a true sense, is unobservable, or what is commonly referred to as latent.
In this section, we focus on methods for identifying population substructure.
Based on the findings from this analysis, we can proceed with (1) a stratified
or subset analysis or (2) an adjustment in the analysis of association using a
multivariable modeling approach, as described in Section 2.2.3.

Applications of principal components analysis (PCA) and multidimen-
sional scaling (MDS) (also known as principal coordinate analysis) provide
visual means of identifying population substructure. The idea behind both
approaches is to provide a low-dimensional representation of our data that cap-
tures information on the variability between individuals across SNPs. These
methods are described in detail in many multivariate texts; see for example
Johnson and Wichern (2002). Briefly, the aim of MDS is to fit our data into a
lower dimensional space (coordinate system) such that the pairwise distances
between individuals are similar to the original distances (in the higher dimen-
sional space.) The aim of PCA, on the other hand, is to identify k (k < p)
linear combinations of the data, commonly referred to as principal compo-
nents, that capture overall variability, where p is the number of variables, or
SNPs in our setting.

MDS thus begins by defining a measure of similarity between all pairs
of individuals. For example, for a given individual, we can let each SNP be
represented by a 0, 1 or 2, corresponding to the number of variant alleles
present at the corresponding site. The similarity between two individuals
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is then defined as the distance between the respective vectors of data. The
most commonly applied measure of distance is Euclidean, though alternative
measures, such as the Manhattan and binary distances, may be reasonable
options. An example of generating a similarity matrix is illustrated in the
following example.

Example 3.9 (Generating a similarity matrix). In this example we generate
distances between all pairs of individuals in the FAMuSS dataset based on all
24 SNPs within the akt1 gene. To do this, we apply the dist() function in
R. First we create a vector containing the names of all of the SNPs within
this gene as follows:

> attach(fms)

> NamesAkt1Snps <- names(fms)[substr(names(fms),1,4)=="akt1"]

> NamesAkt1Snps

[1] "akt1_t22932c" "akt1_g15129a"

[3] "akt1_g14803t" "akt1_c10744t_c12886t"

[5] "akt1_t10726c_t12868c" "akt1_t10598a_t12740a"

[7] "akt1_c9756a_c11898t" "akt1_t8407g"

[9] "akt1_a7699g" "akt1_c6148t_c8290t"

[11] "akt1_c6024t_c8166t" "akt1_c5854t_c7996t"

[13] "akt1_c832g_c3359g" "akt1_g288c"

[15] "akt1_g1780a_g363a" "akt1_g2347t_g205t"

[17] "akt1_g2375a_g233a" "akt1_g4362c"

[19] "akt1_c15676t" "akt1_a15756t"

[21] "akt1_g20703a" "akt1_g22187a"

[23] "akt1_a22889g" "akt1_g23477a"

The substr() function extracts elements of the character string given in its
argument. By applying this function to a vector, we extract these elements
from each component of the vector and return a vector. In this case, we specify
that we want to take the one to four elements of each of the character strings
in the vector of names associated with the fms data.

The next step is to convert the genotype data from factor variables to nu-
meric variables using the data.matrix() function. Note that we additionally
assign the missing data a number in the code below:

> FMSgeno <- fms[,is.element(names(fms),NamesAkt1Snps)]

> FMSgenoNum <- data.matrix(FMSgeno)

> FMSgenoNum[is.na(FMSgenoNum)] <- 4

This results in values of 1, 2, 3 and 4 for each SNP. In all cases, the number
4 corresponds to missing (NA) and the number 2 corresponds to the heterozy-
gous genotype, while the numbers 1 and 3 can correspond to either homozy-
gous wildtype or homozygous variant at the corresponding site. Finally, we
apply the dist() function to compute the distance matrix for the resulting
dataframe and print the results for the first five individuals:
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> DistFmsGeno <- as.matrix(dist(FMSgenoNum))

> DistFmsGeno[1:5,1:5]

1 2 3 4 5

1 0.000000 4.795832 5.291503 3.741657 3.162278

2 4.795832 0.000000 2.236068 3.872983 3.000000

3 5.291503 2.236068 0.000000 3.162278 3.741657

4 3.741657 3.872983 3.162278 0.000000 2.449490

5 3.162278 3.000000 3.741657 2.449490 0.000000

This table tells us that the Euclidean distance between individuals 1 and 2,
for example, is 4.796, while the distance between individuals 1 and 5 is 3.162.

�

Several R functions provide for application of MDS, including cmdscale(),
which is an application of the classical MDS method, sammon() and isoMDS()
in the MASS package, and several functions within the vegan and SensoMineR
packages, which offer extensions. For example, sammon() and isoMDS() ap-
ply non-metric multidimensional scaling based on an initial rank ordering of
pairwise distances. The three functions listed require a similarity matrix as
input. An example of applying the classical approach is given below followed
by an application of PCA.

Example 3.10 (Multidimensional scaling (MDS) for identifying population sub-
structure). Suppose we are interested in determining whether there is any ev-
idence for population substructure in the FAMuSS cohort based on the akt1
SNPs. We can begin with the dataset labeled FMSgenoNum and the correspond-
ing distance matrix, given by DistFmsGeno, that we generated in Example 3.9.
We then plot the first and second coordinates from an MDS analysis as follows:

> plot(cmdscale(DistFmsGeno),xlab="C1",ylab="C2")

> abline(v=0,lty=2)

> abline(h=4,lty=2)

The resulting plot is given in Figure 3.3, which suggests that there may be
multiple clusters in the data. Specifically, there appear to be as many as
three clusters within the lower left quadrangle of the plot, as well as two
clusters that are more clearly delineated in the top left and bottom right
quadrangles. Notably, there is substantial missing data in this cohort that
may be driving the formation of these clusters. Furthermore, the missingness
mechanism appears to be related to race/ethnicity, and thus interpretation of
these findings must be approached with caution. �

Example 3.11 (Principal components analysis (PCA) for identifying popula-
tion substructure). Similar results are found in the application of PCA. We
use the following R code to determine the principal components based on
the SNP dataset generated in Example 3.9 and to plot the data in the space
defined by the first and second principal components:
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Fig. 3.3. Application of MDS for identifying population substructure

> PCFMS <- prcomp(FMSgenoNum)

> plot(PCFMS$"x"[,1],PCFMS$"x"[,2],xlab="PC1",ylab="PC2")

The resulting plot is illustrated in Figure 3.4. For this example, the plot reveals
information identical to what we saw in Figure 3.3. �

3.3.4 Relatedness

In the methods described throughout this text, we assume individuals are
unrelated. If this assumption is violated, then, as described in Section 1.1.3,
accounting for the within-family correlations is imperative for valid inference.
Unfortunately, relatedness between individuals can easily arise in large-scale
population-based studies but is not always known to exist. Several quality
control measures have been described for detecting relationship misspecifica-
tions among individuals in a sample. Here we describe one relatively simple
and intuitively appealing approach, called the graphical representation of re-
lationship errors (GRR), proposed by Abecasis et al. (2001). The idea behind
GRR is that pairs of individuals who have the same relationship to one an-
other (e.g., siblings, parent–offspring pairs or unrelated individuals) will share
a similar number of identical-by-state (IBS) alleles. Alleles that are IBS have



3.3 Quality control and preprocessing 93

−4 −2 0 2 4

−2
0

2
4

6

PC1

PC
2

Fig. 3.4. Application of PCA for identifying population substructure

the same DNA composition and may or may not derive from the same ances-
tor. Identical-by-descent (IBD) alleles derive from the same ancestor. Further
discussion of these concepts can be found in Ziegler and Koenig (2007) and
Thomas (2004).

GRR begins by enumerating the shared IBS alleles across multiple SNPs
between all pairs of individuals within a given type of relationship. In
population-based investigations, the assumption is that all individuals are
unrelated and thus there is only a single relationship type. Suppose we let
xij,k be the number of IBS alleles for individuals i and j, i 6= j, at SNP k,
where k = 1, . . . ,K. Note that for a biallelic locus k, xij,k takes on the value
0, 1 or 2. The mean and variance of IBS allele sharing for individuals i and j
across the K SNPs are then given respectively by

µij =
1
K

K∑
k=1

xij,k (3.17)

σ2
ij =

1
K − 1

K∑
k=1

(xij,k − µij)2 (3.18)

A scatterplot of (µij , σij) for all pairs of individuals then reveals potential
relationship misspecifications. In general, we expect unrelated individuals to
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have a lower average IBS allele sharing and higher variability than siblings
and parent–offspring pairs. This approach can be implemented using the freely
available GRR software (http://www.sph.umich.edu/csg/abecasis/GRR/) or
through writing a corresponding R script, which is given as an exercise for
the reader.

Upon identifying related individuals, we have several choices for how to
proceed with the analysis. One approach is simply to select one individual in
each family at random for analysis and remove the remaining observations
from our sample. This allows us to apply all of the methods described in
this text and specifically the multivariable regression modeling approaches
described in Section 2.2.3. Importantly, inference (that is, testing of associa-
tion, as described herein) assumes independence across all observations within
the sample. Alternatively, we can use all of the available data and apply meth-
ods developed specifically to handle correlated observations. Correlated data
extensions of the modeling approaches presented in Section 2.2.3, include the
generalized estimating equation (GEE) approach and mixed effects modeling.
Several more advanced texts cover these topics in detail, including Fitzmau-
rice et al. (2004), Demidenko (2004), McCulloch and Searle (2001) and Diggle
et al. (1994). A brief discussion of the mixed model is provided in Section 4.4.2
in the context of global testing as an alternative to multiplicity adjustments.
This model can be applied to data involving multiple members of the same
family by treating family unit as the cluster indicator.

3.3.5 Accounting for unobservable substructure

In Section 3.3.3 and 3.3.4, we describe the use of MDS, PCA and GRR to
identify the presence of population substructure and relatedness in our sam-
ple. Based on the results from this analysis, we may choose to stratify our
sample for subsequent analysis or simply remove individuals who appear to
deviate from well-defined racial/ethnic groupings. This, however, is not al-
ways practical since such groupings are generally amorphous, with a broad
spectrum of deviations. In addition, by stratifying our analysis in the absence
of effect modification, we lose power to detect true underlying associations.
An alternative is to treat population heterogeneity and/or cryptic relatedness
as a confounder in our analysis. This, however, poses an analytic challenge
since both phenomena are generally not observed. Several methods have been
proposed in the context of case–control studies to handle this situation, in-
cluding genomic control (Devlin and Roeder, 1999), structured association
(Pritchard et al., 2000), principal components analysis (Price et al., 2006)
and the stratification-score approach (Epstein et al., 2007).

Here we describe briefly the most recently proposed stratification-score
approach. This approach is intuitively appealing, relies on having access to
data on a collection of substructure informative loci and proceeds in two
stages. The motivation for the stratification-score approach is that popula-
tion substructure, represented by the variable U , is a potential confounder
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and therefore estimation of genotype effects without adjusting for U is in-
valid. However, U is unobservable, so direct adjustment is not tenable. In-
stead, the stratification-score approach makes use of the fact that we can
define strata based on substructure informative loci within which the effect
of our genotypes of interest can be estimated correctly. Suppose Z represents
the substructure informative loci and X is the genotype under study. We
begin in stage 1 by calculating the odds of disease given Z, denoted θZ , us-
ing for example a simple logistic regression model. More sophisticated models
can also be applied at this stage. If we assume that the unobservable vari-
able U does not interact in a statistical sense with X, then the effect of X
on the odds of disease can be estimated within strata with a constant value
of θZ . Thus, in stage 2, we test for association between X and disease sta-
tus within each of five strata defined based on quartiles of θZ . Information
on software availability for the stratification-score approach can be found at
http://www.genetics.emory.edu/labs/epstein/software/.

The challenge of unmeasured confounding has received a lot of attention in
the statistical literature since it is common in observational (non-randomized)
studies. The broad literature on causal inference and instrumental variables
techniques may serve as a backbone for further methodological developments
to handle unobservable substructure. For an introduction and overview of
causal inference, see for example Pearl (2000) and Gelman and Meng (2004).

Problems

3.1. Define and contrast the following terms: (a) linkage disequilibrium (LD),
(b) Hardy-Weinberg equilibrium (HWE), (c) population stratification, (d)
population admixture and (e) tagSNP.

3.2. Determine whether there is a deviation from Hardy-Weinberg equilibrium
(HWE) for the akt1 t10726c t12868c SNP based on the full FAMuSS cohort.
Check whether stratifying by the variable Race alters your findings. Interpret
the results of your analysis.

3.3. Report an overall measure of linkage disequilibrium (LD) for all SNPs
within the esr1 gene for the FAMuSS data. Does this measure adequately
summarize the pairwise estimates of LD between these SNPs?

3.4. Report estimates of pairwise linkage disequilibrium (LD) for all SNPs
within the akt1 gene for the HGDP data. Do these estimates tend to vary
across Geographic.area? Interpret your findings.

3.5. Assess whether there is any evidence for genotyping errors in the akt1
gene for the HGDP data. State clearly how you made this determination.

3.6. Determine whether there is any evidence for population substructure
in African Americans in the FAMuSS data. Explain how you reached this
conclusion.
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3.7. Write an R script to determine the mean and standard deviation of
identical-by-state (IBS) allele sharing between all pairs of observations. Derive
an example and plot and interpret the results.



4

Multiple Comparison Procedures

In the previous chapter, several traditional statistical methods were described
for testing for an association between a genotype and a trait. These methods
generally require comparing a test statistic to its known (or simulated) distri-
bution in order to quantify the probability of seeing what we do or something
more extreme under the assumption that the null hypothesis is true. Our de-
cision to accept or reject the null then rests on a comparison of this quantity,
called the p-value, to a threshold based on a previously determined acceptable
level of error. In population-based association studies, we generally aim to test
for the presence of associations between the trait and each of multiple geno-
types across several SNPs and gene loci. As we saw in Section 2.3 and describe
in more detail below, testing multiple hypotheses can result in an inflation of
the error rate, which we want to control. Several methods, termed simulta-
neous test procedures (STPs), have been developed to address this challenge
directly. In this chapter, a few such methods for adjusting for multiple testing
are described, including single-step and step-down methods (Section 4.2) and
resampling-based approaches (Section 4.3). First, some important measures
of error are defined (Section 4.1). The advanced reader is referred to the more
theoretical coverage of multiple testing procedures and their latest develop-
ments in Dudoit and van der Laan (2008), Dudoit et al. (2003) and Chapter
16 of Gentleman et al. (2005). These discussions include applications to data
arising from gene expression studies, human genetic association studies and
HIV genetic investigations.

4.1 Measures of error

Much of the literature on methods for adjusting for multiple comparisons
describes controlling one of two error rates: the family-wise error rate (FWER)
and the false discovery rate (FDR). In this section, we define each of these
measures and describe their relative interpretations in population association
methods. Additional discussions of FWER and FDR can be found in Westfall

A.S. Foulkes, Applied Statistical Genetics with R: For Population-based Association 97
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Table 4.1. Type-1 and type-2 errors in hypothesis testing

Test
Non-significant Significant

Truth
H0 True Negative Type-1 Error

HA Type-2 Error True Positive

and Young (1993) and Benjamini and Hochberg (1995), respectively. Methods
for error control in the context of multiple testing are described in Sections 4.2
and 4.3.

4.1.1 Family-wise error rate

Table 4.1 illustrates the four scenarios for testing hypotheses and the types of
errors that can result. The rows in this table correspond to the (unobserved)
truth, and the columns correspond to the result of applying our testing proce-
dure. Tests of a single hypothesis can result in two types of errors: (1) conclud-
ing that the null hypothesis is false when in fact it is true, called type-1 error,
and (2) not rejecting the null hypothesis when it is indeed false, called type-2
error. Consider for example the null hypothesis that the mean response for
genotype 1, given by µ1, is equal to the mean response for genotype 2, given
by µ2. Formally, this null is written H0 : µ1 = µ2. Further suppose we con-
duct a two-sample t-test of this null hypothesis, and the resulting test statistic
is given by T . The first type of error, a type-1 error, occurs when this test
statistic is declared significant and in fact the null is true. In our example,
this means that T is more extreme than the predefined significance threshold
but in fact the two population means are equal. The second type of error,
referred to as a type-2 error, occurs when we fail to reject the null hypothesis
but it is in fact false. For our example, this would mean that T is less than the
significance threshold but the two population means are actually different.

Traditionally, statistical testing relies on control of the type-1 error rate.
The level of a test, usually denoted by α and set equal to 0.05, is precisely
the probability of incorrectly rejecting the null hypothesis. That is, the level
of a test is the probability of making a type-1 error. Typically the p-value
is compared to α in order to make a decision about whether or not to re-
ject the null hypothesis. The p-value is defined formally as the probability
of observing something as extreme or more extreme than the observed test
statistic given that the null hypothesis is true. Consider a setting in which
the null hypothesis is true, for example µ1 = µ2, where µi is the mean value
of a trait for individuals with genotype i. Now suppose we took 1000 sample
sets, where each sample was comprised of n1 individuals from a population
with genotype 1 and n2 individuals from a population with genotype 2. If
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Table 4.2. Errors for multiple hypothesis tests

Test
Non-significant Significant

Truth
H0 U V m0

HA T S m−m0

m−R R m

we conducted our test on each of the 1000 sample sets, we would expect the
resulting test statistic to be slightly different each time. For example, if we
know this statistic has a normal distribution, then the proportion of times
the absolute value of the test statistic across the 1000 sample sets is ≥ 1.96
is 0.05. Thus the p-value corresponding to 1.96 is 0.05.

Now consider testing m null hypotheses, given by H1
0 , . . . ,H

m
0 . Again two

types of errors can occur for each of these m tests, as described in Table 4.1.
Summing over all of the tests yields the results given by Table 4.2, where V is
the number of type-1 errors and T is the number of type-2 errors. The family-
wise error rate (FWER) is defined as the probability of making at least one
type-1 error. Formally, we have

FWER = Pr(V ≥ 1) (4.1)

The FWER is more precisely defined in terms of whether the null hypotheses
are indeed true. The FWER under the complete null (FWEC) is the proba-
bility that at least one type-1 error occurs given that all null hypotheses are
true. That is,

FWEC = Pr(V ≥ 1 |HC
0 true) (4.2)

where HC
0 =

[
H1

0 , . . . ,H
m
0

]
is the complete set of all null hypotheses. The

FWER under a partial null (FWEP), on the other hand, is conditional on a
subset of null hypotheses, say HP1

0 =
[
H1

0 , . . . ,H
k
0

]
, being true. That is,

FWEP = Pr(V ≥ 1 |HP1
0 true) (4.3)

A test procedure can have strong or weak control of the FWER. A proce-
dure is said to control the FWER at level α in the weak sense if the FWEC
is less than or equal to α. Strong control of the FWER is when the FWEP is
less than or equal to α under all subsets of null hypotheses. That is, strong
control implies FWEP≤ α for all partial nulls. Consider for example a simple
situation in which we are interested in testing m = 2 null hypotheses, given
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by H1
0 and H2

0 . Under the complete null, m0 of Table 4.2 will be given by
m0 = m = 2. There are a total of four partial nulls, given by

HP1
0 =

[
H1

0 , H
2
0

]
HP2

0 = H1
0

HP3
0 = H2

0

HP4
0 = ∅

(4.4)

Control of the FWER in the strong sense means that the FWEP is less than
or equal to α for all four of these configurations of true null hypotheses. In
general, strong control of the FWER is desirable since we do not know which
set of null hypotheses are indeed true.

4.1.2 False discovery rate

The false discovery rate (FDR) has also gained popularity in the past decade
as a measure of error associated with hypothesis testing. Formally, FDR is
defined as the expected proportion of null hypotheses that are true among
those that are declared significant. Returning to the notation of Table 4.2 and
assuming R, the number of tests that are declared significant, is greater than
0, FDR is given by

FDR = E

(
V

R

)
(4.5)

Here E(·) denotes expectation and is defined explicitly in Section 2.1.1. For
R = 0, we define the ratio V/R as identically equal to 0 since no false rejections
can occur. The FDR can therefore be expressed equivalently as

FDR = E(V/R|R > 0)Pr(R > 0) + E(V/R|R = 0)Pr(R = 0)
= E(V/R|R > 0)Pr(R > 0)

(4.6)

In Section 4.2.4, we return to this definition and consider a slight modification,
termed the positive false discovery rate (pFDR).

There is a well-defined relationship between the FDR and the FWER. To
see this, first suppose that all null hypotheses are true. In this case, we have
that V = R and

V/R =

{
0 if V = 0
1 if V ≥ 1

(4.7)

Thus



4.2 Single-step and step-down adjustments 101

E (V/R) = 0 ∗ Pr(V = 0) + 1 ∗ Pr(V ≥ 1)
= Pr(V ≥ 1)
= FWER

(4.8)

That is, if all null hypotheses are true, then the FDR is equal to the FWER.
In other words, we say that control of the FDR leads to control of the FWER
in the weak sense. If not all null hypotheses are true, so that V < R, then we
have V/R < 1 and

E (V/R) = (V/R)Pr(V ≥ 1) + (0/R)Pr(V = 0)
= (V/R)Pr(V ≥ 1)
< Pr(V ≥ 1)

(4.9)

Consequently, we have the general result that the FDR is less than or equal
to the FWER. This implies that any approach that controls the FWER will
also control the FDR. The reverse, however, is not true. That is, control of
the FDR does not generally imply control of the FWER.

Controlling the FDR has become increasingly popular in the context of
analyzing a large number of variables. The reason for this stems largely from
the fact that many of these hypotheses are expected to be false. As the number
of false hypotheses, given by m −m0 in Table 4.2, increases, the number of
true positives, given by S, will also tend to increase. In turn, V/R will be
smaller and the difference between the FDR and the FWER will be greater.
The choice of which error measure to use rests heavily on the scientific goal
and expectations of our investigation. Consider for example a setting in which
the primary aim of the analysis is exploratory in the sense that the discovery
of new genes will spark additional confirmatory experiments. In this case, we
want very good power to detect associations and making some mistakes is
acceptable since we are likely to identify them in subsequent experiments.
Controlling the FDR is a natural choice in this setting since it quantifies the
proportion of significant tests for which the null is true. On the other hand,
if the number of truly false null hypotheses is small or the consequence of
incorrectly declaring a test significant is grave, then the FWER may be a
more appropriate measure.

4.2 Single-step and step-down adjustments

This section includes a discussion of two general types of algorithms for mak-
ing multiple testing adjustments. The first is the single-step adjustment, in
which a single criterion is used to assess the significance of all test statistics
or corresponding p-values. The second is the step-down adjustment, which
involves ordering test statistics or p-values and then using a potentially dif-
ferent criterion for each of the ordered values. The methods of Bonferroni,
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Tukey (1977) and Scheffe (1999) are single-step approaches, while the method
of Benjamini and Hochberg (1995), described below, is a step-down approach.
The resampling procedures of Westfall and Young (1993) and Pollard and
van der Laan (2004) can be single-step or step-down and are discussed in
Section 4.3.

4.2.1 Bonferroni adjustment

Suppose we conduct m tests of hypotheses, given by H1
0 , . . . ,H

m
0 , and each

test is controlled at a level equal to α. This means that, for any single test,
the probability of incorrectly rejecting the null hypothesis, the type-1 error
rate, is less than or equal to α. Formally, we write this as

Pr(reject Hi
0 | Hi

0 true) ≤ α (4.10)

for all i = 1, . . . ,m. Now let us assume that these tests are independent of
one another, so that the likelihood of rejecting a test does not depend on
the outcomes of other tests. If we let V be the number of true nulls that are
declared significant, then the probability of incorrectly rejecting at least one
null hypothesis is given by

FWEC = Pr(V ≥ 1 | HC
0 true)

= 1− Pr(V = 0 | HC
0 true)

= 1−
m∏
i=1

Pr(do not reject Hi
0 | Hi

0 true)

= 1−
m∏
i=1

[
1− Pr(reject Hi

0 | Hi
0 true)

]
≤ 1−

m∏
i=1

(1− α) = 1− (1− α)m

(4.11)

Notably, if m = 1, then this equation reduces to FWEC ≤ α. However, if
m = 2 independent tests are performed, each at level α = 0.05, then we are
only certain that the probability of making at least one type-1 error is less
than or equal to 1 − (1 − 0.05)2 = 0.0975. Performing ten tests each at level
α only controls the FWEC at a level of 1 − (1 − 0.05)10 = 0.401 and so on.
This means that although we are controlling each of the ten individual tests
at a level α, overall our error may be as great as 40%.

The Bonferroni adjustment for multiple comparisons is a single-step pro-
cedure and probably the most straightforward adjustment to apply. It involves
simply using α′ = α/m in place of α for the level of each test, where m is the
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number of tests to be performed. For example, if we plan to conduct m = 10
hypothesis tests and want to control this at an overall level of α = 0.05, then
we let α′ = 0.05/10 = 0.005. In this case, Equation (4.11) reduces to

FWEC ≤ 1− (1− 0.005)10

= 1− 0.951 = 0.049
(4.12)

That is, if we control each of m tests at the α/m level, then our overall FWEC
will be controlled at a level equal to α. It is noted that the Bonferroni adjust-
ment is thought to be quite conservative in many genetic investigations since
(1) it assumes all tests are independent, which is generally not the case, and
(2) it is based on FWER control. As a result, power for detecting associations
will be limited. An illustration of applying the Bonferroni adjustment in R is
given below.

Example 4.1 (Bonferroni adjustment). In this example, we test for associa-
tions between mutations in the protease region of the HIV genome and the
difference between indinavir (IDV) and nelfinavir (NFV) fold resistance based
on the Virco data. Additional information on this dataset is given in Sec-
tion 1.3.3. Recall that IDV and NFV fold resistance are measured by the vari-
ables IDV.Fold and NFV.Fold, respectively, while the categorical variables
P1,...,P99 represent the amino acids present at the corresponding protease
site. We dichotomize the genotype variables and only consider sites for which
at least 5% of individuals have an observed mutation. Also, for simplicity, we
assume a missing genotype value is the wildtype genotype.

> attach(virco)

> PrMut <- virco[,23:121]!="-" & virco[,23:121]!="."

> NObs <- dim(virco)[1]

> PrMutSub <-data.frame(PrMut[ , apply(PrMut,2,sum) > NObs*.05])

> Trait <- IDV.Fold - NFV.Fold

Tests of differences in the trait between individuals with and without a mu-
tation at the corresponding sites are calculated based on the t-test. A vector
of sorted p-values corresponding to these tests is then reported:

> TtestP <- function(Geno){

+ return(t.test(Trait[Geno==1],

+ Trait[Geno==0], na.rm=T)$"p.value")

+ }

> Pvec <- apply(PrMutSub, 2, TtestP)

> sort(Pvec)

P30 P76 P88 P55 P48

3.732500e-12 9.782323e-10 1.432468e-06 2.286695e-06 5.749467e-06

P89 P11 P82 P60 P85

8.924013e-05 4.171618e-04 9.500604e-04 1.115441e-03 1.219064e-03



104 4 Multiple Comparison Procedures

P54 P43 P61 P46 P67

1.489381e-03 2.025621e-03 2.556156e-03 4.198935e-03 7.765537e-03

P69 P84 P47 P35 P32

1.113762e-02 1.557464e-02 1.574864e-02 2.392427e-02 2.508445e-02

P33 P14 P16 P72 P13

2.722251e-02 3.441981e-02 5.570492e-02 5.748494e-02 6.375590e-02

P15 P34 P53 P64 P90

1.089171e-01 1.167541e-01 1.556130e-01 2.540249e-01 2.618606e-01

P36 P63 P37 P77 P24

2.896151e-01 2.945370e-01 3.257741e-01 3.356589e-01 3.441678e-01

P93 P71 P10 P74 P73

3.619516e-01 3.761893e-01 4.268153e-01 4.480744e-01 4.906612e-01

P20 P19 P58 P62 P41

5.311825e-01 5.342250e-01 5.440101e-01 6.677043e-01 6.998280e-01

P12 P57

8.050362e-01 9.938846e-01

Based on this unadjusted analysis and α = 0.05, we would conclude that
baseline mutations at each of multiple sites (listed below) are associated with
a difference in IDV and NFV fold resistance:

> names(PrMutSub)[Pvec < 0.05]

[1] "P11" "P14" "P30" "P32" "P33" "P35" "P43" "P46" "P47" "P48" "P54"

[12] "P55" "P60" "P61" "P67" "P69" "P76" "P82" "P84" "P85" "P88" "P89"

Bonferroni adjusted p-values are generated using the p.adjust() function
as follows:

> PvecAdj <- p.adjust(Pvec, method="bonferroni")

> sort(PvecAdj)

P30 P76 P88 P55 P48

1.754275e-10 4.597692e-08 6.732600e-05 1.074747e-04 2.702250e-04

P89 P11 P82 P60 P85

4.194286e-03 1.960660e-02 4.465284e-02 5.242573e-02 5.729603e-02

P54 P43 P61 P46 P67

7.000090e-02 9.520419e-02 1.201393e-01 1.973500e-01 3.649803e-01

P69 P84 P47 P10 P12

5.234681e-01 7.320083e-01 7.401862e-01 1.000000e+00 1.000000e+00

P13 P14 P15 P16 P19

1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00

P20 P24 P32 P33 P34

1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00

P35 P36 P37 P41 P53

1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00

P57 P58 P62 P63 P64

1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00

P71 P72 P73 P74 P77

1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
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P90 P93

1.000000e+00 1.000000e+00

It is easy to see that this is equivalent to taking the original p-values and
multiplying by the number of tests, 47 in this case. For example, multiplying
the smallest p-value, 3.73× 10−12, by 47 yields the adjusted p-value of 1.75×
10−10. Adjusted values that are greater than 1 are set equal to 1 since a p-
value is restricted to the closed set [0, 1]. Based on this adjustment, we are
only able to reject a subset of the null hypotheses that we rejected previously:

> names(PrMutSub)[PvecAdj < 0.05]

[1] "P11" "P30" "P48" "P55" "P76" "P82" "P88" "P89" �

4.2.2 Tukey and Scheffe tests

Tukey’s studentized range test is another single-step adjustment method for
testing multiple hypotheses that is useful for the comparison of means between
groups (Tukey, 1977). For example, suppose we fit an ANOVA model of the
form

Yij = µ+ αi + εij (4.13)

where Yij is the measured trait for the jth individual with treatment i, µ is the
overall population mean, αi is the shift in the mean resulting from receiving
treatment i, i = 1, . . . ,m and j = 1, . . . , ni. Typically, we begin by conducting
an overall F-test for equality of means across the treatment groups. Formally,
we test the null hypothesis given by H0 : α1 = α2 = . . . = αm. If this test
is significant, indicating a departure from the null, then interest may lie in
identifying the specific treatment groups that are different. That is, we may
now want to test the set of “M choose 2” hypotheses, given by H0 : αi = αj
for i 6= j.

Tukey’s honestly significantly different (HSD) test based on the studen-
tized range distribution is a natural approach for this setting. Notably, in its
original formulation, this method is applicable to groups that have the same
sample size, so we begin by assuming ni = n for all i. For each null hypothesis
H0 : µi = µj , a test statistic is given by

ts =
√

2D̂√
Var[D̂]

∼ qm,(m×n)−m (4.14)

where D̂ is the difference in the sample means for groups i and j. It can be
shown that ts can also be written as:
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ts =
√
nD̂√
MSE

∼ qm,(m×n)−m (4.15)

where MSE is the mean square error from fitting the full ANOVA model. This
statistic has a studentized range distribution with m and (m×n)−m degrees
of freedom. This statistic is also very similar to the statistic we construct in
performing a two-sample t-test for the comparison of two independent means.
Specifically, ts =

√
2t, where t is a two-sample t-statistic based on equal sam-

ple sizes. The adjustment for the number of tests performed comes into play
in the degrees of freedom for the studentized range statistic ts. As the numer-
ator degrees of freedom, given by m, increase, the critical value qm,(m×n)−m
also increases, and it becomes harder to reject the null hypothesis. In other
words, as the number of tests increases, the criterion for rejection becomes
more stringent in order to account for chance variation in the test statistics.

In the context of population genetic association studies, we are generally
interested in testing whether the trait is the same across all levels of the
genotype. For example, suppose our trait is the age of onset of breast cancer
and we have a single biallelic candidate SNP taking on the values A1A1, A1A2

and A2A2. If we let µ1, µ2 and µ3 be respectively the population-level mean
age of onset of breast cancer for each of these genotypes, the null hypotheses
are given by H0 : µ1 = µ2, H0 : µ1 = µ3 and H0 : µ2 = µ3. In this setting,
it would be unusual for the sample sizes to be equal across genotypes, and
thus an extension of Tukey’s method is required. The Tukey-Kramer method
involves simply replacing n of Equation (4.15) with the harmonic mean of the
two sample sizes, given by nij = 2 (1/ni + 1/nj)

−1. An example of applying
this approach in R is provided in the following example.

Example 4.2 (Tukey’s single-step method). Returning to Example 2.5, we
again consider the association between the SNP labeled resistin c180g and
the percentage change in the non-dominant muscle strength before and after
exercise training, as measured by NDRM.CH, using the FAMuSS data. Both the
ptukey() and qtukey() functions in R assume equal sample sizes per group
so we employ the TukeyHSD() function, which allows for unbalanced data.
Recall that without an adjustment for multiple testing, we had the following
result:

> attach(fms)

> Trait <- NDRM.CH

> summary(lm(Trait~resistin_c180g))

Call:

lm(formula = Trait ~ resistin_c180g)

Residuals:

Min 1Q Median 3Q Max

-56.054 -22.754 -6.054 15.346 193.946
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 56.054 2.004 27.973 <2e-16 ***

resistin_c180gCG -5.918 2.864 -2.067 0.0392 *

resistin_c180gGG -4.553 4.356 -1.045 0.2964

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 33.05 on 603 degrees of freedom

(791 observations deleted due to missingness)

Multiple R-squared: 0.007296, Adjusted R-squared: 0.004003

F-statistic: 2.216 on 2 and 603 DF, p-value: 0.1100

We see from this output that the unadjusted Wald test comparing the mean
percentage change in muscle strength of individuals with the CG genotype to
those with the homozygous wildtype CC genotype yields a significant p-value
of 0.039. The estimated coefficient of −5.92 implies that the mean change in
muscle strength for individuals with the CG genotype is lower than the mean
change among individuals with the CC genotype. Applying the Tukey approach
provides us with adjusted p-values:

> TukeyHSD(aov(Trait~resistin_c180g))

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = Trait ~ resistin_c180g)

$resistin_c180g

diff lwr upr p adj

CG-CC -5.917630 -12.645660 0.8103998 0.0977410

GG-CC -4.553042 -14.788156 5.6820721 0.5486531

GG-CG 1.364588 -8.916062 11.6452381 0.9478070

From this we again see that the difference in means between the individuals
with the CG and CC genotypes is −5.92; however, we are unable to detect
a significant difference in means between genotype pairs after applying the
Tukey adjustment for multiple comparisons. The corresponding adjusted p-
value is 0.098. �

Another commonly used approach to controlling the FWE is Scheffe’s
method. This approach differs from Tukey’s method in the set of hypotheses
considered. Recall that Tukey’s method provides an adjustment for testing
for differences between all pairs of means. Scheffe’s method involves testing a
larger set of hypotheses that includes all contrasts of the factor-level means.
A contrast in the one-way ANOVA setting is defined as a linear combination
of the means such that the coefficients sum to zero. More formally, a contrast
is written as the function
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l =
m∑
i=1

λiµi (4.16)

such that
∑m
i=1 λi = 0. For example, in the discussion above, we considered

the hypothesis given by H0 : µi = µj , which is equivalent to H0 : µi−µj = 0.
This can also be rewritten as H0 : λ′µ = 0, where µ = (µ1, . . . , µm)T is the
vector of factor means and λ′ is a vector with a 1 in the ith position, a −1 in
the jth position and 0’s elsewhere. That is, λi = 1 and λj = −1. The vector λ
is referred to as the coefficient vector, and we see in this example that the sum
of the elements of λ is equal to zero. Therefore, we say l = λ′µ is a contrast.
There are many different hypotheses about contrasts that we can test. For
example, another hypothesis involving a contrast is given by

H0 :
µi + µj

2
− µk + µl

2
= 0, i 6= j 6= k 6= l (4.17)

In this case, we define λi = λj = 1/2 and λk = λl = −1/2. We let L be
the set of all linear contrasts of the factor means. As just described, this set
includes all pairwise differences in means as well as functions of the form
given in Equation (4.17), among others. Scheffe’s method is an adjustment
approach that controls the FWER when we are interested in testing whether
each element of L is equal to zero.

In order to construct an F -test statistic for testing a single contrast H0 :
λ′µ = 0, we begin by defining the vector ρ as

ρ′ =
(
λ1

n1
1′n1

, . . . ,
λm
nm

1′nm

)
(4.18)

where 1ni
is an ni×1 vector of 1’s and ni is the number of individuals in group

i. The usual F -statistic corresponding to a test of our hypothesis is given by

F =
ρ′Y

MSE(ρ′ρ)
∼ F1,(m×n)−1 (4.19)

where again the MSE is arrived at from fitting an ANOVA model and Y is
a vector of observed responses (i.e., the trait of interest). Scheffe’s method
involves constructing a slightly modified F -statistic given by

Fs =
ρ′Y/(m− 1)
MSE(ρ′ρ)

∼ Fm−1,(m×n)−m (4.20)

Again the adjustment for multiple comparisons enters into the test statistic
through the degrees of freedom. In this case, the numerator degrees of freedom
are set equal to m− 1, where in the usual setting for testing a single contrast,
we set this equal to 1.
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Consider for example a situation in which there are m = 5 groups, each
of size n = 20. Suppose an investigator decides to test the null hypothesis
H0 : µ1 = µ2 at the α = 0.05 level without making a multiple comparison
adjustment. Using Equation (4.19), this investigator calculates the F -statistic
to be 4.5. Comparing it with the critical value given by F1,40−1 = 4.08, it is
concluded that the null hypothesis is false and indeed there is a difference in
the two population means. Note that the denominator degrees of freedom are
40− 1 since we are comparing two groups, each of size 20, for this test. Using
Scheffe’s method, we would instead get Fs = 4.5/(5−1) = 1.125 and compare
it with the critical value of F4,100−5 = 2.47. In this case, we would conclude
that, based on the observed data, we cannot reject the null hypothesis that the
two population means are equal. While a function for implementing Scheffe’s
test in R is not readily available, it is straightforward to apply this approach
using existing functions and the identity derived above. This is given as an
exercise.

4.2.3 False discovery rate control

As described in Section 4.1.2, the FDR is another intuitively appealing mea-
sure of our error rate in the context of genetic investigations. Here we begin
by describing one approach to controlling FDR, termed the Benjamini and
Hochberg (B-H) adjustment, which is named after the authors who originally
proposed it (Benjamini and Hochberg, 1995). Again we begin by considering
testing the series of independent null hypotheses given by H1

0 , . . . ,H
m
0 and

supposing the resulting p-values are given by p1, . . . , pm. Further, let us sup-
pose that we want to control the false discovery rate at a level q. The B-H
procedure is summarized in the following three simple steps:

Algorithm 4.1: False discovery rate control (B-H procedure):

1. Let p(1), . . . , p(m) denote the ordered observed p-values such that

p(1) ≤ . . . ≤ p(m)

and let the corresponding null hypotheses be given by H(1)
0 , . . . ,H

(m)
0 .

2. Define

k = max
{
i : p(i) ≤

i

m
q

}
(4.21)

3. Reject H(1)
0 , H

(2)
0 , . . . ,H

(k)
0 .

Let us suppose, for example, that we want to test for an association be-
tween each of ten SNPs and the presence of disease. For simplicity, we assume
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that each SNP is in a separate gene and our tests are independent. Further
suppose we are primarily interested in the main effects of the SNPs and not
their interactions. In this case, for each SNP i = 1, . . . , 10, we construct a
2× 3 contingency table and calculate a χ2-statistic corresponding to the null
hypothesis H0 : ORi = 1 as described in Section 2.2.1. Suppose the resulting
ordered p-values are given by

0.001 0.012 0.014 0.122 0.245
0.320 0.550 0.776 0.840 0.995

The Bonferroni adjustment would lead us to use the adjusted significance
level of α∗ = 0.05/10 = 0.005. Based on this, we would reject only H

(1)
0 .

Using the B-H method, we would instead compare the ith ordered p-value to
α∗i = 0.05 (i/10), given by

0.005 0.010 0.015 0.020 0.025
0.030 0.035 0.040 0.045 0.050

The value of k in Equation (4.21) is simply the maximum i such that p(i)

is less than or equal to α∗i . In this example, we have k = 3 since p(3) =
0.014 < 0.015, while p(i) > α∗i for i > 3. Thus, using the B-H approach, we
would reject the null hypotheses H(1)

0 , H(2)
0 and H

(3)
0 . Importantly, the fact

that p(2) = 0.012 is not less than α∗i = 0.010 is not relevant since the larger
p-value p(3) = 0.014 does meet its rejection criterion. We call this procedure
a step-down adjustment since each test statistic has a different criterion for
rejection.

In addition to defining rejection criteria, we can also calculate adjusted
p-values. This proceeds in two steps. First we calculate an adjusted p given
by padj(i) = p(i)m/i for each i. We then update these p-values to ensure mono-

tonicity by letting padj(i) = minj≥i
(
padj(j)

)
. Application of the B-H adjustment

and calculation of adjusted p-values is illustrated in the following example.

Example 4.3 (Benjamini and Hochberg (B-H) adjustment). We return now
to the Virco analysis results of Example 4.1. Recall that in that example
we calculated a vector of unadjusted p-values based on performing multi-
ple t-tests and called this Pvec. The B-H adjusted p-values are calculated
based on this vector using the two-step approach above. In the following
code, we first sort from largest to smallest and multiply by the sequence
(m/m,m/(m − 1), . . . ,m/2,m/1). This is necessary to apply the cummin()
function appropriately for monotonicity:

> Pvec <- as.vector(Pvec)

> m <- length(Pvec)

> BHp <- sort(Pvec,decreasing=T)*m/seq(m,1)

> sort(cummin(BHp))
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[1] 1.754275e-10 2.298846e-08 2.244200e-05 2.686866e-05 5.404499e-05

[6] 6.990477e-04 2.800943e-03 5.581605e-03 5.729603e-03 5.729603e-03

...

[41] 5.946157e-01 5.946157e-01 5.946157e-01 7.132296e-01 7.309314e-01

[46] 8.225370e-01 9.938846e-01

The resulting sites that are declared significant based on the B-H adjustment
are given as follows. Note that we first reorder the adjusted p-values to be
consistent with the original ordering:

> BHp[order(Pvec,decreasing=T)] <- cummin(BHp)

> names(PrMutSub)[BHp < 0.05]

[1] "P11" "P30" "P43" "P46" "P47" "P48" "P54" "P55" "P60" "P61" "P67"

[12] "P69" "P76" "P82" "P84" "P85" "P88" "P89"

Notably, this is a subset of the sites found based on an unadjusted analysis
and is less conservative than the Bonferroni adjustment described in Exam-
ple 4.1. Finally, the same adjusted p-values can also be calculated by specifying
method="BH" within the p.adjust() function as follows:

> sort(p.adjust(Pvec, method="BH"))

[1] 1.754275e-10 2.298846e-08 2.244200e-05 2.686866e-05 5.404499e-05

[6] 6.990477e-04 2.800943e-03 5.581605e-03 5.729603e-03 5.729603e-03

...

[41] 5.946157e-01 5.946157e-01 5.946157e-01 7.132296e-01 7.309314e-01

[46] 8.225370e-01 9.938846e-01 �

The B-H procedure for controlling the FDR assumes independence of
the test statistics corresponding to the true null hypotheses. In a follow-up
manuscript, Benjamini and Yekutieli (2001) proved that this procedure will
also control the FDR if the test statistics corresponding to the true null hy-
potheses are positively regression dependent (PRD). The concept of PRD is
beyond the scope of this text, though the ambitious reader is encouraged to
read the cited manuscript for specific examples of when PRD holds. Benjamini
and Yekutieli (2001) also propose an extension of the B-H approach that con-
trols the FDR in settings for which PRD does not hold. This extension is to
simply replace q of Equation (4.21) with the quantity q̃ = q/

∑m
i=1 (1/i) and

is referred to as the Benjamini and Yekutieli (B-Y) adjustment. Application
of this adjustment is illustrated in the following example.

Example 4.4 (Benjamini and Yekutieli adjustment). Again using the vector
of p-values from Example 4.1, the B-Y adjustment is calculated using the
p.adjust() function as follows:

> BYp <- p.adjust(Pvec, method="BY")

> sort(BYp)
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[1] 7.785410e-10 1.020220e-07 9.959678e-05 1.192422e-04 2.398497e-04

[6] 3.102348e-03 1.243048e-02 2.477096e-02 2.542777e-02 2.542777e-02

...

[41] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00

[46] 1.000000e+00 1.000000e+00

The resulting p-values are more conservative than we saw with the application
of the B-H approach in Example 4.3. The sites corresponding to significant
associations are now given by

> names(PrMutSub)[BYp < 0.05]

[1] "P11" "P30" "P43" "P48" "P54" "P55" "P60" "P61" "P76" "P82" "P85"

[12] "P88" "P89" �

4.2.4 The q-value

The q-value is an alternative measure of significance based on the FDR con-
cept that was recently proposed for genome-wide association studies (Storey,
2002, 2003; Storey and Tibshirani, 2003). Before defining the q-value, we first
introduce the positive false discovery rate (pFDR). The pFDR is defined for-
mally as

pFDR = E

[
V

R
|R > 0

]
(4.22)

and differs from the FDR by the multiplicative factor Pr(R > 0), as seen
by returning to Equation (4.6). A primary motivation for this alternative
quantity is the intuitive appeal of conditioning on the occurrence of at least
one positive finding. Notably, however, the pFDR cannot be controlled in a
traditional sense since it is identically equal to 1 if the proportion of true null
hypotheses, given by m0/m in Table 4.2, is equal to 1. That is, we cannot
guarantee that pFDR≤ α for α < 1. The FDR, on the other hand, is not
subject to this limitation. The q-value is based on an alternative paradigm that
eliminates this concern. Specifically, rather than fixing an error rate and then
estimating a significance threshold that maintains this rate on average, we fix
the significance threshold and then estimate the rate over that threshold. The
familiar significance analysis of microarrays (SAM) similarly involves fixing
rejection regions and then estimating the corresponding FDRs (Tusher et al.,
2001).

Recall that we have defined the p-value as the probability of seeing some-
thing as extreme as or more extreme than the observed test statistic given that
the null hypothesis is true. Formally, we can write the p-value, corresponding
to an observed test statistic T = t as

p(t) = inf
{Γ :t∈Γ}

Pr (T ∈ Γ |H0) (4.23)
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where inf (“infimum”) is defined as the greatest lower bound over the corre-
sponding set and {Γ : t ∈ Γ} is a set of nested rejection regions that contain
the observed test statistic t. For example, we can define {Γ} = [c,∞) for all
real-valued c < t. That is, we can think of the p-value as the minimum prob-
ability under the null that our test statistic is in the rejection region (i.e., the
minimum type-1 error rate) over the set of nested rejection regions contain-
ing the observed test statistic. A set of nested rejection regions for p-values,
on the other hand, might be given by {Γ} = {[0, γ] : γ ≥ 0}. The reader is
referred to Lehmann (1997) for more details.

The q-value is defined similarly as the greatest lower bound of the pFDR
that can result from rejecting a test statistic based on a rejection region in
the set of nested rejection regions. Formally, the q-value is written

q(t) = inf
{Γ :t∈Γ}

[pFDR(Γ )] (4.24)

Similar to a p-value, the q-value can be thought of as the expected proportion
of false positives among all features that are as extreme as or more extreme
than the feature under consideration. In the context of SAM, the q-value is
computed as the FDR for the smallest estimated rejection region for which the
gene under consideration is called significant (Chu et al., 2008). Intuitively,
the q-value is simply the minimum pFDR that can occur over the set of nested
rejection regions when we reject our test statistic T = t. This parallels nicely
with the definition of p-value as the minimum type-1 error rate that can
occur over all nested rejection regions when we reject our test statistic. For
the interested reader, a well-formulated Bayesian interpretation of the q-value
as a posterior p-value can be found in Storey (2003).

Similar to FDR control, use of the q-value is most appropriate when the
number of tests performed, given by m in Table 4.2, is large. In this case, the
probability that at least one test is declared significant, given by Pr(R > 0), is
close to 1. If we set the tuning parameter λ, a quantity that informs us about
the proportion of true null hypotheses, equal to 0, then the q-value results in
the same adjusted p-values as the FDR adjustment described in Section 4.2.3;
however, this is a conservative estimate of the q-value, and optimizing the
choice of λ is tenable. Calculation of the q-value in R is illustrated in the
following example using the qvalue() function within the qvalue package.

Example 4.5 (Calculation of the q-value). The q-value is calculated using the
qvalue() function in the qvalue package. Again using the vector of p-values
from Example 4.1 and setting the tuning parameter λ equal to 0, we get the
same adjusted p-values as we saw in Example 4.3:

> library(qvalue)

> sort(qvalue(Pvec,lambda=0)$qvalues)

[1] 1.754275e-10 2.298846e-08 2.244200e-05 2.686866e-05 5.404499e-05

[6] 6.990477e-04 2.800943e-03 5.581605e-03 5.729603e-03 5.729603e-03
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...

[41] 5.946157e-01 5.946157e-01 5.946157e-01 7.132296e-01 7.309314e-01

[46] 8.225370e-01 9.938846e-01

If instead of specifying λ we specify to use the bootstrap estimation method,
pi0.method="bootstrap", we get less conservative estimates of the q-values,
as shown below:

> sort(qvalue(Pvec,pi0.method="bootstrap")$qvalues)

[1] 2.488334e-11 3.260774e-09 3.183262e-06 3.811158e-06 7.665956e-06

[6] 9.915570e-05 3.972969e-04 7.917170e-04 8.127096e-04 8.127096e-04

...

[41] 8.434265e-02 8.434265e-02 8.434265e-02 1.011673e-01 1.036782e-01

[46] 1.166719e-01 1.409765e-01

In this case, many more sites appear to be significant predictors of a difference
in IDV and NFV fold resistance. The qvalue() function can also give us an
estimate of the proportion of true null hypotheses, given by m0/m, where
m0 and m are respectively the number of true null hypotheses and total
hypotheses, as defined in Table 4.2. In this example, this proportion is given
by

> qvalue(Pvec,pi0.method="bootstrap")$pi0

[1] 0.1418440 �

4.3 Resampling-based methods

Resampling-based methods are an alternative to the single-step and step-
down procedures described above that involves taking repeated samples from
the observed data. One primary advantage of resampling-based methods is
that they offer a natural approach to account for underlying unknown cor-
relation structure among multiple hypotheses. We begin by describing one
popular approach given by Westfall and Young (1993), termed the free step-
down resampling (FSDR) method, and how it can be applied in the context
of a population-based investigation with covariates. This approach makes one
strong assumption, called subset pivotality, which may or may not be appro-
priate in the settings under consideration. We thus also discuss an alternative
approach proposed by Pollard and van der Laan (2004) that relaxes this as-
sumption.

4.3.1 Free step-down resampling

Suppose again that we are interested in testing a series of m null hypothe-
ses denoted H1

0 , . . . ,H
m
0 . For example, the jth null hypothesis may be that
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there is no association between the jth SNP under investigation and a marker
for disease progression. The idea behind the resampling-based approach we
describe is that by taking repeated samples of the observed data, we can sim-
ulate the distribution of the test statistics (or p-values) under the complete
null hypothesis, HC

0 . Recall that the complete null is defined by

HC
0 = H1

0 ∩H2
0 ∩ . . . ∩Hm

0 (4.25)

where ∩ denotes intersection. That is, the complete null refers to the situation
in which all null hypotheses are true. We then compare the observed test statis-
tics to this empirical distribution to ascertain the corresponding significance
of our tests. The subset pivotality condition states that the distribution of test
statistics is the same under any combination of true null hypotheses. That is,
the test statistic distribution is invariant to whether all null hypotheses are
indeed true (HC

0 ) or a partial set of null hypotheses are true. Specifically, the
covariance between test statistics is assumed to be the same under all scenarios
of true and false null hypotheses. Under this assumption, importantly, error
control under the complete null will give us the desired control under the true
data-generating distribution. The FSDR approach hinges on this assumption
and is described first for a quantitative trait. We then discuss application of
this algorithm to a binary trait and methods for incorporating confounders
and effect modifiers into our analysis.

The FSDR method proceeds in three steps, as follows:

Algorithm 4.2: Free step-down resampling (MaxT):

1. Determine the “observed” test statistics and p-values. We begin by letting
xj represent our genotype variables for j = 1, . . . ,m and suppose the
phenotype under study is given by y. Based on the observed data, we can
construct the linear model

yi = β0 + β1xi1 + . . .+ βmxim + εi (4.26)

for i = 1, . . . , n, where n is our sample size and we assume εi ∼ N(0, σ2).
Alternative formulations of this initial model are discussed below. Us-
ing ordinary least squares regression, we arrive at an estimate, β̂, of the
vector of parameters β = (β0, β1, . . . , βm)T , as described in Chapter 2.
In addition, for each βj , we can construct a test statistic and p-value,
given by Tj and pj , respectively, corresponding to the null hypothesis of
H0 : βj = 0. For example, Tj may be a Wald test statistic as described
in Section 2.2.3, and pj = Pr(|Tj | > t(n−1),(1−α)/2). We term these the
“observed” test statistics and p-values since they are based on the orig-
inal data. Now let the corresponding ordered absolute value of the test
statistics, sorted from smallest to largest, be given by |T |(1), . . . , |T |(m).

2. Generate the (approximate) distribution of test statistics under the com-
plete null. The next step involves determining the distribution of the or-
dered test statistics under the complete null hypothesis. To do this for
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our setting, we begin by determining the residuals from the model-fitting
procedure described in Step 1. These are given by r̂i = yi −

[
1 xTi

]
β̂,

where xTi = (xi1, . . . , xim). Now we sample with replacement from these
residuals to get a bootstrap dataset. That is, for i = 1, . . . , n, we let
y∗i = r̂∗i , where r̂∗i is drawn with replacement from the original set of
residuals r̂1, . . . , r̂n. Using these new data, y∗1 , . . . , y

∗
n as our response and

the original design matrix X, we refit the model given in Equation (4.26)
and determine corresponding test statistics. The absolute values of these
are recorded as |T |∗(1), . . . , |T |

∗
(m), where the ordering is the same as the

ordering of the original test statistics. Note that at this step the |T |∗ are
not necessarily ranked from smallest to largest, or, in other words, mono-
tonicity does not hold. These resulting test statistics are one realization
from the complete null generating distribution.

3. Compare the observed test statistics to test statistics under the complete
null to get adjusted p-values. The resampling component of Step 2 above
is repeated B times to arrive at multiple bootstrap samples. For each
sample, successive maxima are defined as

q∗1 = |T |∗(1)

q∗2 = max(q∗1 , |T |∗(2))

q∗3 = max(q∗2 , |T |∗(3))

...
q∗m = max(q∗(m−1), |T |

∗
(m))

(4.27)

and we determine whether q∗j > |T |(j). That is, we check whether the
jth ordered test statistic is less than the corresponding statistic that was
generated based on the distribution of test statistics under the complete
null. The adjusted p-values, given by p̃(j) for j = 1, . . . ,m, are then defined
as the proportion of the B bootstrap samples for which this inequality
holds. More formally, we write

p̃(j) =
1
B

B∑
b=1

I
(
q
∗(b)
j > |T |(j)

)
(4.28)

where I(·) is the indicator function, which equals 1 if the argument is true
and 0 otherwise, and b indicates the specific bootstrap sample. Finally,
monotonicity of these resulting adjusted p-values is ensured by completing
this final step:
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p̃∗(m) = p̃∗(m)

p̃∗(m−1) = max(p̃∗(m), p̃
∗
(m−1))

...
p̃∗(1) = max(p̃∗(2), p̃

∗
(1))

(4.29)

Notably, Westfall and Young (1993) demonstrate that under the subset
pivotality assumption, this approach controls the FWE in the strong sense.
This approach is also referred to as the maxT procedure. Replacing the test
statistics of Equation (4.27) in step (3) with p-values and taking successive
minima yields the minP approach to multiple testing. In the following ex-
ample, we demonstrate this procedure through direct coding. The mt.maxT()
and mt.minP() functions in the multtest package can also be used to imple-
ment the FSDR approach. However, application of these functions, originally
written for gene expression data, to data arising from SNP association studies
is not straightforward. To see this, recall that, in its simplest form, expression
data generally include quantitative measurements for each individual on each
of multiple genes and a single class label, such as disease status. In this case,
interest lies in multiple tests of association between the presence of the disease
and gene expression levels across several genes. In our setting, we instead have
a single quantitative or binary trait measured for each individual and multiple
class labels, representing each of the SNPs under investigation. The multiple
tests of interest thus correspond to tests of association between the trait and
each class label.

Example 4.6 (Free step-down resampling adjustment). Returning to the FA-
MuSS data, we consider whether there is an association between change in
muscle strength of the non-dominant arm and the presence of two variant al-
leles for each of the four SNPs within the actn3 gene. Let us begin by fitting
a multivariable linear model that includes four indicators for the presence of
two variant alleles at each of the corresponding SNPs:

> attach(fms)

> Actn3Bin <- data.frame(actn3_r577x!="TT",actn3_rs540874!="AA",

+ actn3_rs1815739!="TT",actn3_1671064!="GG")

> Mod <- summary(lm(NDRM.CH~.,data=Actn3Bin))

> Mod

Call:

lm(formula = NDRM.CH ~ ., data = Actn3Bin)

Residuals:

Min 1Q Median 3Q Max

-55.181 -22.614 -7.414 15.486 198.786

Coefficients:
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 54.700 3.212 17.028 <2e-16 ***

actn3_r577x.....TT.TRUE -12.891 4.596 -2.805 0.0052 **

actn3_rs540874.....AA.TRUE 10.899 11.804 0.923 0.3562

actn3_rs1815739.....TT.TRUE 27.673 17.876 1.548 0.1222

actn3_1671064.....GG.TRUE -29.166 17.516 -1.665 0.0964 .

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 32.93 on 591 degrees of freedom

(801 observations deleted due to missingness)

Multiple R-squared: 0.01945, Adjusted R-squared: 0.01281

F-statistic: 2.93 on 4 and 591 DF, p-value: 0.02037

The first step of the FSDR approach is to record the “observed” test
statistics. We see from the output above that these statistics are given by
−2.81, 0.923, 1.55 and −1.67. We take the absolute values of these statistics
and record the ordered values as follows:

> TestStatObs <- Mod$coefficients[-1,3]

> Tobs <- as.vector(sort(abs(TestStatObs)))

Before applying the resampling procedure, we need to subset the data that
went into the analysis above. Recall from the modeling output that n = 801
observations were deleted due to missingness in the genotype or trait variables.
We also need to record the ordering of our original test statistics. We do these
two steps as follows:

> MissDat <- apply(is.na(Actn3Bin),1,any) | is.na(NDRM.CH)

> Actn3BinC <- Actn3Bin[!MissDat,]

> Ord <- order(abs(TestStatObs))

The second step of the FSDR requires resampling from the residuals and ar-
riving at test statistics under the null generating distribution. This is achieved
using the following for loop:

> M <- 1000

> NSnps <- 4

> Nobs <- sum(!MissDat)

> TestStatResamp <- matrix(nrow=M, ncol=NSnps)

> for (i in 1:M){

+ Ynew <- sample(Mod$residuals, size=Nobs, replace=T)

+ ModResamp <- summary(lm(Ynew~., data=Actn3BinC))

+ TestStatResamp[i,] <- abs(ModResamp$coefficients[-1,3])[Ord]

+ }

We see that in each iteration of the for loop we (1) take a sample from the
model residuals with replacement, (2) refit the model using this sample as the
new outcome and (3) record the test statistics corresponding to our ordered
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observed statistics, given by Tobs. The result is a matrix of test statistics,
called TestStatResamp, corresponding to the null distribution. The final step
is to compare our observed test statistics with the distribution of test statistics
we generated. To do this, we first arrive at successive maxima by applying the
cummax() function to each row of our matrix of resampling-based statistics:

> Qmat <- t(apply(TestStatResamp, 1, cummax))

Adjusted p-values are then given by

# Note that your code will result in slightly different

# values since we took a random sample above.

> Padj <- apply(t(matrix(rep(Tobs,M), NSnps)) < Qmat, 2, mean)

> Padj

[1] 0.310 0.203 0.203 0.034

Here monotonicity of the resulting p-values is already achieved and an
additional step is not needed. Based on this analysis, we conclude that indi-
viduals who have at least one variant allele at the actn 577x SNP have a sig-
nificantly lower percentage change in non-dominant arm muscle strength than
individuals who are homozygous wildtype at this SNP (adjusted p = 0.034).
Notably, this analysis controls for other SNPs within the actn gene but not
additional potential predictors, such as race/ethnicity, age and gender. Inclu-
sion of these variables in the initial multivariable model is straightforward.
Depending on whether interest lies in testing hypotheses relating to these
variables as well, the set of recorded test statistics can be limited to the SNPs
under study or expanded to include additional covariates in the model. �

A slight modification of the algorithm above is required in the context of
a binary trait, such as an indicator for the presence of disease. In this case,
instead of the linear regression model described in Equation (4.26), we can fit
a logistic model of the form

logit(πi) = β0 + β1xi1 + . . .+ βmxim (4.30)

where πi = Pr(yi = 1|xi), as described in Section 2.2.3. In turn, rather than
resampling from the set of model residuals, we generate binary y∗i such that

y∗i =

{
1 with probability π̂i
0 with probability 1− π̂i

(4.31)

where π̂i = exp(xTi β̂)/(1+exp(xTi β̂)) for i = 1, . . . , n. With this modification
to the resampling component of step 2, the same approach as described above
can be applied to this setting. Importantly, however, the subset pivotality
condition is not met for this setting, as described in Chapter 6 of Westfall and
Young (1993). Application of the FSDR algorithm to this binary trait setting
is left as an exercise.
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4.3.2 Null unrestricted bootstrap

As described above, the free step-down approach hinges on the assumption
that the test statistic null distribution can be validly determined by resampling
data under the complete null. This holds under the subset pivotality condition,
which states that the distribution of test statistics for a subset of true null
hypotheses is the same regardless of whether just this subset is true or the
complete null is true. However, if this assumption is violated, an alternative
multiple testing procedure is needed. Here we describe an approach proposed
by Pollard and van der Laan (2004), termed the null unrestricted bootstrap
approach, for determining the null distribution of the test statistics that does
not require the subset pivotality assumption. Recall that for the free step-
down approach, we resample data from the complete null distribution and
then generate the test statistic distribution based on these resampled data.
Now we will instead arrive at the test statistic distribution based on the
original data. In turn, the projection of this distribution onto the space of
mean zero distributions yields asymptotic strong control of the FWE.

More formally, let Q0n be the complete null distribution of test statistics.
This is the distribution that we aim to determine. Further suppose P0 is the
distribution of the data under the complete null and P is the true data dis-
tribution. Now suppose Qn(P0) is the distribution of test statistics under the
null generated distribution. For example, Qn(P0) may be the distribution of
test statistics that we arrive at by first resampling from the residuals resulting
from a model-fitting procedure, as described in Section 4.3.1. Now consider
the simple example in which this distribution of test statistics based on the
complete null generated distribution is given by Qn(P0) = MVN(0, Σ(P0)).
If subset pivotality does not hold and specifically Σ(P0) does not equal Σ(P ),
then Qn(P0) will not equal Q0n = MVN(0, Σ(P )), the distribution we aim to
determine. The basic idea behind the null unrestricted bootstrap approach is
to project the distribution of test statistics, given by Qn(P ) for the true data-
generating distribution, onto the space of mean zero distributions to arrive at
Q0n.

To see how this approach works in practice, consider again the linear model
given in Equation (4.26). Suppose we are interested in testing the series of
null hypotheses given by H0 : βj = 0 for j = 1, . . . ,m. The null unrestricted
bootstrap approach proceeds as follows:
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Algorithm 4.3: Null unrestricted bootstrap:

1. Fit the model of Equation (4.26) and calculate the least squares
estimate of β, denoted β̂n.

2. Bootstrap (yi,xi) with replacement, preserving the within-individual
link.

3. Estimate β based on the bootstrap sample and denote this β#
n , with

the jth element corresponding to the jth hypothesis under study.

4. Record the vector of statistics

Z#1
n = (β#

n − β̂n)/sd(β#
n ) (4.32)

5. Repeat steps (2)–(4) B times to get Z#1
n , . . . , Z#B

n . The distribution
of Z#

n , given by Q#
0n, converges to Q0n conditional on the data.

6. Determine a single-step significance cutoff by choosing a vector c =
(c1, . . . , cm) such that

Pr

 m∑
j=1

I
{
|Z#
jn| > cj

}
≥ k

 = α (4.33)

where Z#
jn is the jth element of Z#

n . Here α is the level at which we
want to control the type-1 error, and typically we let k = 1.

This approach is demonstrated in the following example.

Example 4.7 (Null unrestricted bootstrap approach). Returning to the data
setting and model from Example 4.6, we now apply the null unrestricted
bootstrap approach. This begins by defining the estimated coefficients based
on the model denoted Mod:

> CoefObs <- as.vector(Mod$coefficients[-1,1])

The following for loop is then applied, where Nobs, MissDat and Actn3BinC
are defined in Example 4.6:

> B <-1000

> TestStatBoot <- matrix(nrow=B,ncol=NSnps)

> for (i in 1:B){

+ SampID <- sample(1:Nobs,size=Nobs, replace=T)

+ Ynew <- NDRM.CH[!MissDat][SampID]

+ Xnew <- Actn3BinC[SampID,]

+ CoefBoot <- summary(lm(Ynew~.,data=Xnew))$coefficients[-1,1]

+ SEBoot <- summary(lm(Ynew~.,data=Xnew))$coefficients[-1,2]
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+ if (length(CoefBoot)==length(CoefObs)){

+ TestStatBoot[i,] <- (CoefBoot-CoefObs)/SEBoot

+ }

+ }

We see here that we begin by drawing a bootstrap sample from the data
(both the trait and genotypes) without disrupting the within-individuals link.
We then fit a model based on these data and calculate the vector of test
statistics, Z#

n . Notably, if there are insufficient data in the bootstrap sample
to fit the full model (that is, estimate all four coefficients), we assume this is
non-informative and do not record the results. This occurred in 11 of the 1000
bootstrap samples. Finally, we determine a significant threshold as follows:

> for (cj in seq(2.7,2.8,.01)){

+ print(cj)

+ print(mean(apply(abs(TestStatBoot)>cj,1,sum)>=1,na.rm=T))

+ }

# Note that, depending on your sample,

# a different range for cj may be required

[1] 2.7

[1] 0.06471183

[1] 2.71

[1] 0.06268959

[1] 2.72

[1] 0.05965622

[1] 2.73

[1] 0.0586451

[1] 2.74

[1] 0.05662285

[1] 2.75

[1] 0.05460061

[1] 2.76

[1] 0.05257836

[1] 2.77

[1] 0.05055612

[1] 2.78

[1] 0.04954499

[1] 2.79

[1] 0.04954499

[1] 2.8

[1] 0.04853387

From this output, we see that a significance threshold of 2.78 for all four
tests maintains a type-1 error rate of less than 0.05. Comparing this with
the observed test statistics given in Example 4.6, we again conclude that the
actn3 577x SNP is significantly associated with percentage change in the
non-dominant arm muscle strength based on the multivariable model under
consideration. �
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4.4 Alternative paradigms

In Sections 4.1– 4.3, we focused on measures of error and approaches to adjust-
ing for multiple comparisons. In this section, we shift our focus to methods for
reducing the number of tests. First, we present the approach, first described
by Cheverud (2001), that takes into account LD structure to determine the
effective number of tests (Meff). Second, we describe a global testing frame-
work, proposed independently by Goeman et al. (2004) for gene expression
data and Foulkes et al. (2005) for SNP data, that obviates the need for a
multiple testing adjustment in some settings.

4.4.1 Effective number of tests

As described in Section 4.2.1, the Bonferroni adjustment is conservative in
the context of many genetic association studies since the SNPs under inves-
tigation are usually correlated with one another. This serves as the primary
motivation behind the effective number of tests (Meff) approach described
by Cheverud (2001), Nyholt (2004), Li and Ji (2005) and Gao et al. (2008).
This approach has gained in popularity in recent years due to its intuitively
appealing interpretation and ease of implementation.

Briefly, this approach draws on the fact that the variance of the eigenval-
ues of a correlation matrix of a set of variables captures information on the
collective correlation of this set. An eigenvalue is a characteristic of a ma-
trix that is defined as the amount by which a vector in the direction of the
corresponding eigenvector is stretched or shrunken when acted upon by this
matrix. Formally, we write

Ax = λx (4.34)

where x is an eigenvector of the matrix A and λ is the corresponding eigen-
value. If all of the variables are perfectly correlated with one another, so that
the correlation matrix is given by

VM×M =


1 1 . . . 1
1 1 . . . 1
...

...
1 1 . . . 1

 (4.35)

we will have a single non-zero eigenvalue, given by M , where M is the number
of variables in our set. In this case, the variance of the eigenvalues, given by
Var[M, 0, 0, . . . , 0], is equal to M . On the other hand, if the correlation is 0
between all pairs of observations so that
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VM×M =


1 0 . . . 0
0 1 . . . 0

. . .
0 0 . . . 1

 (4.36)

then all of the eigenvalues will be equal to 1 and the variance of the eigen-
values is 0. Thus the variance of the eigenvalues of the correlation matrix
of M variables ranges from 0 to M and depends on the amount of pairwise
correlation between variables.

The proportion reduction in the number of tests due to correlation is then
characterized by the ratio Var[λobs]/M , where λobs is the set of observed
eigenvalues for the correlation matrix of the M variables in our set. The
effective number of tests ranges from 1 to M and is defined by

Meff = 1 + (M − 1)
[
1− V ar(λobs)

M

]
(4.37)

For example, if all of the variables are perfectly correlated, as described by
Equation (4.35), then Var[λobs] = M and Meff = 1. On the other hand, if we
have no correlation among the set of SNPs under investigation, as given by
Equation (4.36), then Var[λobs] = 0 and Meff = M . In a recent manuscript,
Gao et al. (2008) propose using an alternative definition for the effective num-
ber of tests, given by Meff-G and defined as the number of principal compo-
nents of the correlation matrix that explain C% of the variability in the data.
More formally, Meff-G is the minimum x such that

∑x
i=1 λi/

∑M
i=1 λi > C,

where C is a predefined threshold. Additional details on principal components
analysis (PCA) can be found in Section 3.3.3.

Once the effective number of tests is determined, the resulting value can be
used in place of M in our usual adjustment of multiple testing. For example,
application of the Bonferroni adjustment is straightforward, where we now
use

α′′ = 1− (1− α)1/Meff ≈ α/Meff (4.38)

as our significance threshold. The results of this analysis may be sensitive to
the choice of correlation matrix. In the original formulation of this approach,
Cheverud (2001) proposes defining genotype scores (+1, 0 and −1) based on
the observed genotype at each marker and then calculating Pearson’s product-
moment correlation, defined in Section 2.2.1. Gao et al. (2008) propose apply-
ing a composite LD between markers (see, for example, Weir (1996)), which
reduces to the same Pearson correlation coefficient using a 0, 1, 2 coding of
genotypes. Alternatively, Nyholt (2004) proposes using the measure of LD
given by r2 of Section 3.1.1 as elements of the correlation matrix. In all cases,
a spectral decomposition of the correlation matrix yields the corresponding
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eigenvalues. Notably, for population-based association studies, allelic phase is
potentially unobservable and derivation of r2 thus requires consideration of
this missing data challenge, as described in Section 3.1.1.

We leave application of the Meff approach as an exercise for the reader.
This section is included in this text due to the increasing popularity of the
approach. Notably, however, this approach has met some criticism in recent re-
ports. Specifically, Salyakina et al. (2005) suggest that using either r2 or Pear-
son’s correlation as a measure of correlation in the application of this method
is anti-conservative in the context of high LD, as demonstrated through sim-
ulation studies. Further characterization and development of this approach is
warranted and will likely serve to elucidate its usefulness.

4.4.2 Global tests

In Sections 2.2.2 and 4.2.2, we briefly describe the analysis of variance
(ANOVA) as an analytic approach for characterizing and testing the equality
of means across multiple groups. This approach can be thought of as a global
testing framework since it allows us to determine simultaneously if there is
a difference across genotypes. For example, suppose we have three observed
genotypes, given by AA, Aa and aa, and we aim to determine whether the
mean cholesterol level is the same across these genotypes. We can construct
for this setting the model

yij = µ+ αi + εij (4.39)

where yij is the observed trait (cholesterol level in our example) for the jth
individual with genotype i and i = 1, 2, 3. Here µ is the overall population
mean, αi is the deviation from this mean for individuals with genotype i and
εij ∼ N(0, σ2) is the associated error in the observed data.

An overall test for association between genotype and traits can be ex-
pressed as a test of the null hypothesis:

H0 : αi = 0 for i = 1, 2, 3 (4.40)

A corresponding test statistic is given by the ratio of the within- and between-
group variabilities and has an F -distribution with p− 1 and n− p degrees of
freedom, where p is the number of genotype levels and n is our sample size.
Specifically, we have

F =
BSS/(p− 1)
WSS/(n− p)

∼ Fp−1,n−p (4.41)

under H0, where BSS is the between group sum of squares and WSS is the
within group sum of squares. Additional details on this statistic, including
its derivation, can be found in Rosner (2006) (algebraic representation) and
Christensen (2002) (matrix representation).
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Now suppose we are interested in testing a group of genes or multiple
SNPs within a single gene. We can construct several models and corresponding
hypotheses that may be relevant to our investigation. For example, suppose
we have two SNPs within a single gene so that there are 32 = 9 possible
genotypes, given by

G = {(AA,BB), (AA,Bb), (AA, bb),
(Aa,BB), (Aa,Bb), (Aa, bb),
(aa,BB), (aa,Bb), (aa, bb)}

(4.42)

Again we can consider the model given by Equation (4.39), where now we have
nine genotypes, or genotype groups, so that i = 1, 2, . . . , 9. In this case, the
test statistic corresponding to a test that all of the genotype group effects are
0 (that is, a test of H0 : αi = 0 for i = 1, 2, . . . , 9) has an F -distribution with
p − 1 = 8 and n − 9 degrees of freedom. While F(8,n−9,0.95) < F(2,n−3,0.95),
it actually tends to become harder to reject the null hypothesis with more
groups because we divide the numerator of F in Equation (4.41) by p − 1,
so our statistic is smaller. In other words, the power of our test is limited by
the number of groups, as the degrees of freedom are expended on relatively
rare genotypes. This well-known degrees-of-freedom problem is described for
the analysis of haplotype–trait association studies in Chapman et al. (2003),
Clayton et al. (2004), Tzeng et al. (2006) and Foulkes et al. (2008).

Several methods for addressing the degrees-of-freedom challenge have been
described. For example, Chapman et al. (2003) propose an elegant approach
involving the use of information on LD structure and selecting a subset of
markers for analysis to minimize the degrees of freedom. Tzeng et al. (2006)
propose a combination of dimension reduction, through the application of a
clustering algorithm, and regression modeling based on homogenous haplotype
groups. In this text, we present a modeling framework that addresses this
challenge and can be seen as a simple extension of the ANOVA model of
Equation (4.39). Further details of this approach are given in Goeman et al.
(2004) for gene expression data and Foulkes et al. (2005) for SNP data.

Consider again the model given by Equation (4.39). We now make the
additional assumption that the genotype group effects, αi, are random, arising
from a specified distribution. Specifically, we assume

αi ∼ N(0, σ2
α) (4.43)

where the variance parameter, σ2
α, is unknown and the αi are independent of

one another and independent of εij . This model is commonly referred to as
a random effects model, or more generally a mixed effects model when addi-
tional covariates are included as independent variables. The mixed modeling
framework is a well-established analytic approach for handling correlated ob-
servations arising from repeated measures on a single individual or clustering.
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Clustering arises for a variety of reasons, including for example the inclusion
within our study of multiple individuals within the same family unit. Sev-
eral texts describe the mixed model in detail, including its application and
methods for estimation and inference. See for example Diggle et al. (1994),
Pinheiro and Bates (2000), Fitzmaurice et al. (2004) and Demidenko (2004).

In place of H0 given by Equation (4.40), based on the mixed model, we
can test the composite null hypothesis given by

H0 : σ2
α = 0 (4.44)

In other words, the null hypothesis is that there is no variability in the effects
of genotypes on the trait. A likelihood ratio test can be applied to test this
hypothesis, and the resulting test statistic has a χ0

0 + χ2
1 = 1

2χ
2
1 distribution.

We have a mixture distribution since we are testing a variance parameter at a
boundary. Notably, this test has a single degree of freedom, regardless of the
number of genotypes under consideration. This approach is straightforward
to apply using the lme() and nlme() of the nlme package in R and is left as
an exercise for the reader.

Predicted values of the random effects, αi, given by the empirical Bayes
estimates (posterior means), and corresponding prediction intervals, provide
additional information on the specific genotypes that may be driving the vari-
ability in effects and may be a useful exploratory tool. Note that in the mixed
model we are assuming a prior distribution on genotype effects, which is typi-
cal of Bayesian inference. The application of a fully Bayesian approach to data
arising from a GWAS that similarly begins by assuming a distribution on the
SNP effects is described in Schumacher and Kraft (2007). This approach has
its roots in Bayesian variable selection methods, as described in Section 7.4.

Problems

4.1. Define and contrast the following terms: (1) family-wise error, (2) type-1
and type-2 errors, (3) strong and weak controls, and (4) complete and partial
nulls.

4.2. Use the Bonferroni and the Benjamini and Hochberg corrections to test
for an association between high-density lipoprotein cholesterol, represented by
HDL C, and all SNPs within the actn3 gene based on the FAMuSS data. Code
the SNPs as binary indicators for the presence of at least one variant allele.
Compare and contrast these results with each other and with an analysis that
is not adjusted for multiple comparisons.

4.3. Using the FAMuSS data and the Tukey adjustment, determine if there is
a significant association between total cholesterol, measured by CHOL, and the
resistin c180g SNP. Perform the analysis overall and stratified by gender.
Compare and contrast your findings.
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4.4. Calculate the q-values corresponding to the tests described in Problem
4.2.

4.5. Write an R script to implement Scheffe’s adjustment for multiple testing.
Demonstrate it with an application to the Virco data.

4.6. Apply the free step-down resampling approach to adjust for multiple
testing using the FAMuSS data to determine whether there is an association
between the presence of at least one variant allele in each of the four SNPs
within the actn3 gene and the binary trait defined as an indicator for being
in the top sample quartile of change in non-dominant arm muscle strength,
given by NDRM.CH.

4.7. Determine the effective number of tests if we were to test for an asso-
ciation between each of the four AKT1 SNPs and a trait using the HGDP
data.

4.8. Based on the FAMuSS data, use a mixed effects model to test for an
overall effect of the akt2 gene on percentage change in non-dominant muscle
strength, as measured by NDRM.CH, adjusted for Race, Gender and Age.
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Methods for Unobservable Phase

One of the primary analytic challenges in population-based genetic investiga-
tions of unrelated individuals is the unobservable nature of allelic phase. We
introduced this concept briefly in Section 2.3.2, and here we elaborate on the
statistical challenges and analytic techniques for characterizing haplotype as-
sociations in the context of unknown phase. Recall that haplotypic phase refers
to the specific alignment of alleles on a single homologous chromosome and
is generally not observable in the context of population-based investigations
of unrelated individuals. Since the SNPs under study are often markers for
the true disease-causing variant, haplotypes may capture more variability in
the disease trait than genotype alone. Several statistical approaches to infer-
ring haplotypic phase have been proposed. The goals of these methods are
generally twofold. On the one hand, interest lies in estimating population-
level haplotype frequencies; that is, the prevalence of specific haplotypes in
the general population. Investigators are also interested in making inference
about the association between haplotypes and a trait. This chapter addresses
both aims and is divided into two sections. The first (Section 5.1) focuses on
methods for estimation of haplotype frequencies that do not involve knowl-
edge about a trait or disease phenotype. The second (Section 5.2) focuses on
methods that involve both estimation of haplotype frequencies and testing for
association between these haplotypes and a measured trait.

In the first section, two methods are described: (1) an expectation-
maximization (EM) algorithm and (2) a Bayesian haplotype reconstruction
approach. Both approaches draw solely on genotype information to arrive at
haplotype estimates and do not incorporate knowledge about the trait under
investigation. Further details on these approaches can be found in Excoffier
and Slatkin (1995), Hawley and Kidd (1995), Long et al. (1995), Stephens and
Donnelly (2000), Stephens et al. (2001) and Stephens and Donnelly (2003).
Both methods can be used to infer individual-level haplotypes and in turn
make inference about haplotype–trait associations; however, this must pro-
ceed with careful consideration of the additional variability introduced due
to the uncertainty in the estimated data. This is described in Section 5.2.
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Section 5.2 also considers a fully likelihood-based approach that additionally
incorporates information about the trait of interest in the haplotype estima-
tion procedure. Details of this approach can be found in Lake et al. (2003)
and Lin and Zeng (2006). This latter approach provides a natural framework
for formally testing haplotype–trait associations.

5.1 Haplotype estimation

In this section we discuss two methods for estimating individual haplotypes
and population-level frequencies. The first is an EM approach that sets out
to estimate haplotype frequencies. In turn, these estimates can be used to
infer unknown haplotypes for the individuals in our sample. The second ap-
proach we describe is a Bayesian approach that focuses on reconstructing
unknown haplotypes. In turn, the reconstructed data can be used to estimate
population-level haplotype frequencies. More detailed mathematical deriva-
tions require knowledge of elementary calculus and can be found in the sup-
plemental notes at the end of this chapter. Here emphasis is placed on some
general intuition behind the approaches and the practical tools for their im-
plementation. Methods for using the results of these analyses for the study of
haplotype–trait associations are described in Section 5.2.

5.1.1 An expectation-maximization algorithm

The expectation-maximization (EM) algorithm is a natural approach to esti-
mating population-level parameters in the context of missing data. Details on
the original algorithm and further intuition behind its inception are given in
Dempster et al. (1977). In order to understand intuitively how this algorithm
works, recall that a maximum likelihood estimate (MLE) is an estimate of a
population-level parameter, θ, that is derived by maximizing a function of the
data, X = (x1, . . . , xn). Specifically, the MLE is the value of the parameter
that maximizes the likelihood of the data, given by

L(θ|X) =
n∏
i=1

Pr(xi|θ) (5.1)

where Pr(xi|θ) is the probability density function of xi. Since taking the
logarithm of a function is an order-preserving transformation, maximizing
this function is equivalent to maximizing the logarithm of this function, which
tends to be easier analytically. In missing data settings, the data X are not
fully observed and so the likelihood of Equation (5.1) cannot be calculated.
The set of data that includes both the observed data, denoted Xobs, and the
missing data is commonly referred to as the complete data and is denoted Xc.

The EM approach involves first taking the expectation of the complete
data log likelihood conditional on the observed data and the current parameter
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estimate. This is called the E-step and amounts to determining the most likely
value of the likelihood for the complete data given what we have observed and
the current estimate θ̂(t). Formally, we calculate

E
(

logL(θ|Xc)|Xobs, θ̂(t)
)

(5.2)

where E(·) is the expectation and is defined in Section 2.1.1. The second step
of the EM algorithm, called the M-step, is to maximize Equation (5.2) with
respect to the parameter θ. This yields a new estimate, which we denote θ̂(t+1).
Finally we iterate between the E-step and the M-step until a convergence
criterion is met to arrive at an MLE of θ.

Details of the algorithm above for the genetic association setting are given
in the supplemental notes at the end of this chapter. In our setting, interest
lies in estimating the population-level haplotype frequencies. That is, θ is
a vector with elements corresponding to the probability of each haplotype.
The observed data are the genotypes for all individuals in our sample, and
the missing data are the corresponding haplotype pairs. In other words, the
observed data are the two nucleotides at each site, and the missing data are
the specific alignment of these nucleotides on each of the two homologous
chromosomes. The complete data are thus comprised of both the observed
genotype information and the haplotype pairs. Since knowledge of haplotype
pairs will inform us about genotypes, we more simply express the complete
data as the haplotype pairs.

The EM algorithm proceeds by first writing out the complete data log
likelihood for the haplotypes and then taking the conditional expectation of
this function, conditional on the observed genotypes. This expectation is a
weighted sum over all haplotype pairs that are consistent with the observed
genotypes for a given individual and is written formally as

E
(

logL(θ|Xc)|Xobs, θ̂(t)
)

= E
(

logL(θ|H1, . . . ,Hn) | G1, . . . , Gn, θ̂
(t)
)

=
n∑
i=1

∑
Hi∈S(Gi)

p̂
(t)
Hi

logPr(Hi|θ)

(5.3)

where Gi is the observed genotype for individual i, Hi is a corresponding
haplotype pair and S(Gi) is the set of all haplotype pairs that are consis-
tent with the observed genotype. For example, suppose the observed geno-
type across two sites for individual i is given by Gi = AaBb. The set
of all haplotype pairs that are consistent with this genotype is given by
S(Gi) = {(AB, ab), (Ab, aB)}. The weight, given by p̂

(t)
Hi

for individual i, is
the estimated probability of Hi given the genotype for this individual and
θ̂(t). Formally, we refer to these weights as posterior probabilities of the corre-
sponding haplotype pair given the observed genotype and current parameter
estimates and write



132 5 Methods for Unobservable Phase

p̂
(t)
Hi

= Pr(Hi|Gi, θ̂(t)) =
Pr(Hi, Gi|θ̂(t))

Pr(Gi|θ̂(t))
=

Pr(Hi|θ̂(t))∑
Hi∈S(Gi)

Pr(Hi|θ̂(t))
(5.4)

Intuitively, the idea behind the E-step is that we are averaging over all
possible resolutions of the missing data in a manner that takes into account
the current parameter estimates. Consider for example the simple case above
in which an individual’s genotype is given by Aa,Bb. Application of the E-
step will give more weight to the haplotype pair that has a higher estimated
frequency. That is, suppose the haplotypes AB and ab are relatively common
while the haplotypes Ab and aB appear rare, based on our current parameter
estimates. In this case, we want to lend additional weight to the (AB, ab) pair
since it is more likely to be the true haplotype for this individual. The posterior
probabilities capture this information. During the M-step, the expectation of
Equation (5.3) is maximized to arrive at updated parameter estimates and the
process is repeated. Importantly, this approach assumes HWE and thus should
be applied within racial and ethnic strata within which there is no evidence
of a departure from this assumption. Implementation of this procedure is
straightforward, as illustrated in the following example. Detailed derivations
are provided in the supplemental material at the end of this chapter.

Example 5.1 (EM approach to haplotype frequency estimation). In this ex-
ample, we estimate the population-level frequencies of haplotypes within the
actn3 gene for African Americans and Caucasians separately based on the
FAMuSS data. We begin by calling the haplo.stats package and creating a
genotype matrix. The genotype matrix has a pair of adjacent columns for each
SNP such that each column corresponds to one of the two observed alleles at
the corresponding site. The order of the columns is assumed to correspond to
the order of the sites on the chromosome. Recall that we start with four SNPs
within the actn3 gene and so the following code is required:

> install.packages("haplo.stats")

> library(haplo.stats)

> attach(fms)

> Geno <- cbind(substr(actn3_r577x,1,1), substr(actn3_r577x,2,2),

+ substr(actn3_rs540874,1,1), substr(actn3_rs540874,2,2),

+ substr(actn3_rs1815739,1,1), substr(actn3_rs1815739,2,2),

+ substr(actn3_1671064,1,1), substr(actn3_1671064,2,2))

> SNPnames <- c("actn3_r577x", "actn3_rs540874", "actn3_rs1815739",

+ "actn3_1671064")

We then subset African Americans and Caucasians and apply the haplo.em()
function to each group. This function applies a modified version of the EM
approach described above, in which sets of loci are progressively included and
in turn haplotype pairs with small estimated probabilities are excluded. The
haplo.em.control() function is used within the haplo.em() function call
to specify the minimum posterior probability of a haplotype pair. Pairs that
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have an estimated frequency lower than this threshold will be removed from
the list of possible pairs.

> Geno.C <- Geno[Race=="Caucasian" & !is.na(Race),]

> HaploEM <- haplo.em(Geno.C, locus.label=SNPnames,

+ control=haplo.em.control(min.posterior=1e-4))

> HaploEM

# Note that the results may differ slightly each run since different

# starting values are used

======================================================================

Haplotypes

======================================================================

actn3_r577x actn3_rs540874 actn3_rs1815739 actn3_1671064 hap.freq

1 C A C G 0.00261

2 C A T A 0.00934

3 C A T G 0.01354

4 C G C A 0.47294

5 C G C G 0.01059

6 T A C A 0.00065

7 T A T G 0.39891

8 T G C A 0.08557

9 T G T A 0.00065

10 T G T G 0.00520

======================================================================

Details

======================================================================

lnlike = -1285.406

lr stat for no LD = 2780.769 , df = 5 , p-val = 0

> Geno.AA <- Geno[Race=="African Am" & !is.na(Race),]

> HaploEM2 <- haplo.em(Geno.AA, locus.label=SNPnames,

+ control=haplo.em.control(min.posterior=1e-4))

> HaploEM2

======================================================================

Haplotypes

======================================================================

actn3_r577x actn3_rs540874 actn3_rs1815739 actn3_1671064 hap.freq

1 C A C A 0.01140

2 C A C G 0.08130

3 C A T G 0.03764

4 C G C A 0.57762

5 C G C G 0.01156

6 T A C A 0.00032

7 T A T G 0.17166

8 T G C A 0.10833

9 T G C G 0.00016

======================================================================

Details
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======================================================================

lnlike = -84.97891

lr stat for no LD = 119.7087 , df = 4 , p-val = 0

The column entitled hap.freq is the estimated population-level haplo-
type frequency. Note that the row numbers in the two outputs above do not
necessarily correspond to the same haplotypes. Based on this output, we can
see that the most prevalent haplotype is the same in African Americans and
Caucasians and is given by h4 = CGCA. The estimated prevalence of this
haplotype is higher for African Americans (θ̂4 = 0.58) than for Caucasians
(θ̂4 = 0.47). On the other hand, the estimated prevalence of the h7 = TATG

haplotype is markedly lower in African Americans (θ̂7 = 0.17) than in Cau-
casians (θ̂7 = 0.40). �

Based on the estimated population-level haplotype probabilities, we can
calculate the probabilities of each possible haplotype pair for an observation
in our sample. Consider again the simple example in which an individual
presents with the genotype Aa and Bb across two SNPs. This individual’s
haplotype pair is ambiguous, though we know it is either H1 = (AB, ab) or
H2 = (Ab, aB). Now suppose the haplotype frequencies are θ1, θ2, θ3 and θ4

for haplotypes AB,Ab, aB and ab, respectively. Assuming independence, we
know that the posterior probability of H1 is p1 = 2θ1θ4, while the probability
of H2 is p2 = 2θ2θ3 given the observed genotype. If additional haplotype
pairs are present in our population, we must additionally divide each of these
probabilities by the sum p1 + p2 since we are conditioning on one of the two
haplotype pairs for this individual. A demonstration of how we can calculate
these posterior probabilities is given in the following example.

Example 5.2 (Calculating posterior haplotype probabilities). In this example,
we illustrate how to determine the posterior probability of each haplotype
pair that is consistent with the observed genotype for an individual. Let us
return to Example 5.1 and recall that HapoEM is the result of applying the
haplo.em() function to the SNPs within the actn3 gene on the Caucasian
subgroup within the FAMuSS study. The associated object HaploEM$nreps
is a vector of length equal to the number of individuals in our sample with
elements equal to the number of haplotype pairs that are consistent with the
observed genotype. For example, consider the first five elements of this vector,
given by

> HaploEM$nreps[1:5]

indx.subj

1 2 3 4 5

1 2 2 2 1

This tells us that there is one haplotype pair consistent with the observed
genotype for the first and fifth individuals and two pairs that are consistent
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with each of the observed genotypes for the second, third and fourth indi-
viduals. The corresponding potential haplotypes for these five individuals are
given by the associated vectors HaploEM$hap1code and HaploEM$hap2code
as shown below, where the coding corresponds to the numbering system we
saw for Caucasians in Example 5.1. The indx.subj vector tells us the cor-
responding record number and contains the sequence of numbers from 1 to
the number of observations in our sample, with each element of the sequence
repeated according to the value in HaploEM$nreps.

> HaploEM$indx.subj[1:8]

[1] 1 2 2 3 3 4 4 5

> HaploEM$hap1code[1:8]

[1] 4 8 7 3 7 8 4 4

> HaploEM$hap2code[1:8]

[1] 4 3 4 8 4 3 7 4

Based on this output, we see that the first and fifth individuals have the
haplotype pair (4, 4), while the second, third and fourth individuals are all
ambiguous between (3, 8) and (4, 7). The posterior probabilities associated
with these pairs are given by

> HaploEM$post[1:8]

[1] 1.000000000 0.006102808 0.993897192 0.006102808 0.993897192

[6] 0.006102808 0.993897192 1.000000000

Notably, the sum of these probabilities within any single individual is equal
to 1.

We can also calculate these probabilities directly based on the estimated
haplotype frequencies. To see this, first note that the ten haplotype proba-
bilities given in the first table of output in Example 5.1 are contained in the
vector

> HapProb <- HaploEM$hap.prob

> HapProb

[1] 0.0026138447 0.0093400121 0.0135382727 0.4729357032 0.0105890282

[6] 0.0006518550 0.3989126969 0.0855667219 0.0006548104 0.0051970549

Now consider one of our individuals who is ambiguous between the pairs
(3, 8) and (4, 7). Assuming independence, which was already assumed in the
estimation procedure, estimated probabilities of each of these pairs are given
respectively by

> p1 <- 2*prod(HapProb[c(3,8)])

> p2 <- 2*prod(HapProb[c(4,7)])

> p1 / (p1+p2)
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[1] 0.006102807

> p2 / (p1+p2)

[1] 0.9938972

As expected, these values are equivalent to the probabilities given in the sec-
ond and third elements of HaploEM$post. �

Investigators often fill in unknown haplotypes by assigning each individual
the haplotype pair with the highest corresponding posterior probability and
then treating these as known in subsequent analysis. We caution the reader
against proceeding in this manner since valuable information on the uncer-
tainty in the assignment is lost. Instead, methods described in Section 5.2 can
be applied if the ultimate goal is to characterize haplotype–trait association.

Finally, we note that testing hypotheses involving haplotype frequencies
within the EM context requires consideration of the uncertainty in the esti-
mation procedure. For example, suppose we are interested in testing the null
hypothesis that the h4 = CGCA haplotype frequencies are equal for Cau-
casians and African Americans. This requires knowledge about the unknown
variance/covariance matrix of the estimates. Derivation of this matrix can
be obtained by inverting the observed information matrix and using Louis’
method for the EM framework (Louis, 1982). Alternatively, the observed infor-
mation matrix can be approximated with the empirical observed information
(Meilijson, 1989; McLachlan and Krishnan, 1997). The details of this deriva-
tion are beyond the scope of this textbook, though an example of applying
this approach is given below.

Example 5.3 (Testing hypotheses about haplotype frequencies within the EM
framework). In this example, we test the null hypothesis that the frequency
of haplotype h4 defined in Example 5.1 is the same in African Americans
and Caucasians. We do this by constructing a confidence interval around the
difference in the two frequencies and checking whether it covers 0. First we
calculate the difference in the estimated frequencies. In order to calculate the
standard error of each frequency, we use the function HapFreqSE() defined in
the supplemental R scripts at the end of this chapter. We then combine the
results to get an estimate of the standard error of this difference. Finally, a 95%
confidence interval is calculated based on a normal probability distribution:

> FreqDiff <- HaploEM2$hap.prob[4] - HaploEM$hap.prob[4]

> s1 <- HapFreqSE(HaploEM)[4]

> s2 <- HapFreqSE(HaploEM2)[4]

> SE <- sqrt(s1^2 + s2^2)

> CI <- c(FreqDiff - 1.96*SE, FreqDiff + 1.96*SE)

> CI

[1] -0.003395297 0.212772537
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Since this interval covers 0, there is not enough evidence to suggest a difference
in the frequency of h4 between Caucasians and African Americans based on
our sample and a two-sided 0.05 level test. �

5.1.2 Bayesian haplotype reconstruction

Several alternative Bayesian approaches have been described for analyzing
data in the context of missing haplotypic phase (Stephens et al., 2001; Niu
et al., 2002; Lin et al., 2002; Stephens and Donnelly, 2003). Here we focus
on the haplotype reconstruction approach of Stephens et al. (2001) and re-
lated extensions. Similar to the EM approach described above, this method
allows for estimation of population-level haplotype frequencies in the context
of data for which allelic phase is potentially unobservable. The primary aim,
however, is the reconstruction of individual-level haplotype pairs. That is, the
approach we present sets out to assign each individual the most likely hap-
lotype pair. Estimation of haplotype frequencies then follows, assuming these
haplotypes are the true haplotypes. In this section, we focus on the approach
of Stephens et al. (2001) with extensions described in Stephens and Donnelly
(2003). This method can be implemented using the PHASE and fastPHASE
software, though a comparable R package is not yet available. We begin by
providing a brief discussion of Bayesian inference and a computational tech-
nique called Gibbs sampling. The reader is referred to an intermediate text
for additional discussion and examples of Bayesian methods (Gelman et al.,
2004; Givens and Hoeting, 2005).

The general idea behind Bayesian methods is that we can make inference
about our parameter based on its conditional distribution given the data. Let
the parameter of interest be denoted θ and the data be given by X. The
conditional distribution of θ given X is denoted π(θ|X) and is commonly
referred to as the posterior density of θ. This distribution depends on three
quantities: (1) the prior distribution of θ, given by π(θ); (2) the likelihood of
the data, given by L(θ|X) = f(X|θ); and (3) a constant, denoted c and written
formally as c = 1/

(∫
θ
π(θ)L(θ|X)dθ

)
. Recall that, in the more traditional

frequentist setting, estimation is based instead on the likelihood L(θ|X) =
f(X|θ). The relationship between the posterior density and each of the three
quantities listed is a result of Bayes’ rule, given by

π(θ|X) =
π(θ; X)
f(X)

=
f(X|θ)π(θ)∫

θ
π(θ)f(X|θ)dθ

(5.5)

Equivalently, we can write

π(θ|X) = cL(θ|X)π(θ) (5.6)

since the integral in the denominator of Equation (5.5) is a constant that does
not depend on θ, and f(X|θ) is the likelihood of θ given the observed data,
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X. In practice, exact calculation of this posterior distribution is not tenable
and computational techniques for approximating it are needed. Markov chain
Monte Carlo (MCMC) methods are an approach to generating an approximate
sample from a distribution, and one well-described example of an MCMC
approach is the Gibbs sampler.

Here we present a brief description of the Gibbs sampler in a general con-
text and then discuss its application to the genetics setting. Suppose the pop-
ulation parameters are θ = (θ1, . . . , θK) and that we are interested in the joint
posterior density, π(θ|X), which we cannot obtain analytically. Further sup-
pose π(θk|θ−k,X) is the marginal distribution of the single parameter θk con-
ditional on current values of all other parameters, θ1, . . . , θk−1, θk+1, . . . , θK .
A Gibbs sampler provides us with a sample of data from the posterior density,
π(θ|X), based on sampling from these marginal distributions, π(θk|θ−k,X).
It proceeds as follows, where we begin by letting t = 0 and defining initial
values for θ(0)

1 , . . . , θ
(0)
K .

Algorithm 5.1: Gibbs sampling
1. Sample:

• θ
(t+1)
1 |θ−1,X ∼ π(θ1|θ(t)

2 , . . . , θ
(t)
K ,X)

• θ
(t+1)
2 |θ−2,X ∼ π(θ2|θ(t+1)

1 , θ
(t)
3 , . . . , θ

(t)
K ,X)

• θ
(t+1)
3 |θ−3,X ∼ π(θ3|θ(t+1)

1 , θ
(t+1)
2 , θ

(t)
4 , . . . , θ

(t)
K ,X)

...
• θ

(t+1)
K |θ−K ,X ∼ π(θK |θ(t+1)

1 , . . . , θ
(t+1)
K−1 ,X)

2. Let t = t+ 1 and repeat step (1) M times for M large.

We see that θ(t) is the value of θ at the tth iteration and is sampled conditional
on current estimates of the remaining parameters. Algorithm 5.1 results in
what is termed a Markov chain since each parameter value θ(t+1)

k depends only
on the previous value θ(t)

k in the series. Furthermore, under certain regularity
conditions, it can be shown that the stationary distribution of this chain, as the
number of iterations s → ∞, is equal to π(θ|X). Thus, the final observation
from this chain represents a sample point from the posterior distribution,
π(θ|X). In practice, after convergence is met, we continue sampling using the
same iterative algorithm to obtain a sample, θ1, . . . , θS , from the posterior
distribution. Taking the mean across these S samples will give a consistent
estimate of θ.

Now let us consider the genetics setting. Let Hi represent the potentially
unobservable haplotype and Gi represent the observed genotype for individual
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i, where i = 1, . . . , n. We are interested in the posterior probability of haplo-
types given the observed genotype data across individuals, denoted π(H|G).
This probability relies on a prior distribution for the haplotypes, given by
π(H), and the likelihood of the data, given by L(H|G). Formally, we write

π(H|G) = cL(H|G)π(H) (5.7)

where again c is a constant. Application of a Gibbs sampler to reconstruct
haplotypes proceeds as follows. Again the idea is to generate data from the
posterior distribution and then find the mode of this distribution, which will
give a consistent estimate of the haplotype pair for an individual. The al-
gorithm is similar to the one described above, except that the parameters,
given by θ, are replaced with haplotype pairs. Specifically, in its original for-
mulation, the algorithm is given as follows, where we again begin by letting
t = 0 and defining initial values H(0)

1 , . . . ,H
(0)
n∗ , where n∗ is the number of

ambiguous individuals in our sample:

Algorithm 5.2: Bayesian Haplotype Reconstruction

1. Sample:
• H

(t+1)
1 |G,H−1 ∼ π(H1|H(t)

2 , . . . ,H
(t)
n∗ ,G)

• H
(t+1)
2 |G,H−2 ∼ π(H2|H(t+1)

1 , H
(t)
3 , . . . ,H

(t)
n∗ ,G)

• H
(t+1)
3 |G,H−3 ∼ π(H3|H(t+1)

1 , H
(t+1)
2 , H

(t)
4 , . . . ,H

(t)
n∗ ,G)

...
• H

(t+1)
n∗ |G,H−n∗ ∼ π(Hn∗ |H(t+1)

1 , . . . ,H
(t+1)
n∗−1 ,G)

2. Let t = t+ 1, and repeat step (1) M times for M large.

Repeating Algorithm 5.2 a large number of times again results in a Markov
chain and leads to consistent estimates of the unknown haplotypes. In order
to implement this algorithm, we need to make some assumptions about the
distribution π(Hi|G,H−i) from which we sample. A cogent summary with
implications for each underlying model is provided in Stephens and Donnelly
(2003). The coalescence model given by Stephens and Donnelly (2000) has
gained popularity due to its relatively strong performance and interpretabil-
ity. Similar to the EM framework, this approach assumes random mating so
that the probability of a pair of haplotypes is given by the product of each of
the two haplotype probabilities. Further refinements of this algorithm, which
improve overall performance, have been described by Stephens et al. (2001),
Stephens and Donnelly (2003) and Scheet and Stephens (2006). These exten-
sions are straightforward to implement using the publicly available PHASE
and fastPHASE software. Once each individual’s unknown haplotype pair is
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reconstructed, we can estimate population-level haplotype frequencies by sim-
ply tabulating the data under the assumption that the individual haplotype
pairs are known.

One advantage of PHASE is in its handling of ambiguous individuals whose
possible haplotype pairs are not any of the observed haplotypes. The PHASE
approach assigns these individuals pairs of haplotypes that are similar to
observed haplotypes with high population-level frequencies. That is, PHASE
uses information on the frequencies of observed haplotypes to inform us about
the likelihood of similar haplotypes within phase-ambiguous individuals. This
is in contrast to the EM approach described in Section 5.1.1, which instead
will give haplotype pairs equal posterior probabilities if they are not observed.
In practice, the two approaches will tend to differ if the number of SNPs under
study is large and/or several alleles are present at a given SNP site.

5.2 Estimating and testing for haplotype–trait
association

In the previous section, focus was on methods for haplotype estimation that
are based solely on genetic sequence information. More generally, information
on a measured trait is also available, and interest lies in detecting associa-
tion between haplotypes and this trait. In this case, haplotype reconstruction
may be an intermediary step in a larger hypothesis-driven analysis. Notably,
information on a trait can also help to inform us about the true underlying
haplotypes, as described in Section 5.2.2. In this section, we describe two gen-
eral approaches to estimating and testing for association between a haplotype
and a trait in the context of population-based data in which allelic phase is
potentially ambiguous. The first set of approaches, given in Section 5.2.1, are
two-staged approaches that involve first reconstructing haplotypes using one
of the methods described in Section 5.1 and then fitting a standard gener-
alized linear model. The second approach, discussed in Section 5.2.2, is fully
likelihood-based and uses an EM-type algorithm that incorporates both the
genotype and trait in simultaneous estimation of population-level haplotype
frequencies and haplotype–trait associations.

5.2.1 Two-stage approaches

The methods described in Section 5.1 provide us with reconstructed haplo-
types based on the most likely pair given the observed genotype informa-
tion. The most straightforward approach to characterizing haplotype–trait
associations is to assume simply these reconstructed haplotypes are the true
haplotypes and fit a model of association. In the statistics literature, this is
commonly referred to as single imputation since we are completing the data
a single time. Unfortunately, while simple, this approach can lead to erro-
neous inference about our haplotype–trait associations. For a full discussion
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of the pitfalls of this approach, see Lin and Huang (2007) and the associated
commentary by Kraft and Stram (2007). Here we describe two alternatives to
single imputation that both draw on the results of the analyses presented in
Section 5.1.

Haplotype trend regression

Haplotype trend regression (HTR) is an approach to association analysis that
involves assigning to each ambiguous individual in our sample the conditional
expectation of the number of copies of each potential haplotype. That is, in
place of indicating the presence of nh = 0, 1 or 2 copies of haplotype h,
as we would do in the observed data setting, we instead assign a value of
E(nh|G). Consider for example the simple situation in which an individual i
is ambiguous between the haplotype pairs H1 = (h1, h4) and H2 = (h2, h3)
with posterior probabilities of p1 and p2, respectively. In this case, we define
the variables xi1, . . . , xi4, where xij is the value corresponding to the jth
haplotype for individual i, and set xi1 = xi4 = p1 and xi2 = xi3 = p2. Finally,
we test for both overall and specific haplotype–trait associations by fitting a
linear model that includes these xij ’s as predictor variables and conduct the
usual F -test. We demonstrate this in the following example. Further details
of this approach can be found in Zaykin et al. (2001).

Example 5.4 (Application of haplotype trend regression (HTR)). Haplotype
trend regression begins by creating a design matrix with elements equal to
the conditional expectation for the number of copies of each haplotype. This
is achieved using the function HapDesign() defined in the supplemental notes
at the end of this chapter. Fitting a linear model using this new design matrix
and conducting an overall F -test that compares this model to the reduced
model with just an intercept is straightforward. In the following code, we use
the percentage change in muscle strength for the non-dominant arm as the
trait and the HaploEM object from Example 5.1:

> attach(fms)

> HapMat <- HapDesign(HaploEM)

> Trait <- NDRM.CH[Race=="Caucasian" & !is.na(Race)]

> mod1 <- (lm(Trait~HapMat))

> mod2 <- (lm(Trait~1))

> anova(mod2,mod1)

Analysis of Variance Table

Model 1: Trait ~ 1

Model 2: Trait ~ HapMat

Res.Df RSS Df Sum of Sq F Pr(>F)

1 776 881666

2 764 868364 12 13303 0.9753 0.4708

Based on this output, we conclude that there is not sufficient evidence to
support a haplotype–trait association. �
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Multiple imputation

An alternative to the HTR approach is multiple imputation (MI), a well-
described approach for handling missing data that involves repeatedly filling
in missing information and then making an appropriate adjustment in the
inference procedure. This adjustment is important to account for the addi-
tional variability introduced by the uncertainty in the “realized” data values.
A complete discussion of MI can be found in Little and Rubin (2002). Appli-
cation of MI in the context of phase uncertainty is straightforward using the
posterior probability estimates that we derived in Section 5.1.

Suppose pi is a vector of estimated posterior probabilities for each haplo-
type pair Hi ∈ S(Gi) for individual i, where S(Gi) = {Hi1, . . . ,HiKi

} is again
the set of all haplotype pairs that are consistent with the observed genotype,
Gi. An explicit formula for the posterior probabilities is given by p̂Hi(θ) in
Equation (5.4). If an individual’s haplotype pair is fully determined given the
observed genotype, then the size of S(Gi) = 1 and pi = 1. Multiple imputation
involves repeated sampling of the possible haplotype pairs for each individual
based on the probabilities in pi. Specifically, we repeatedly assign H∗i = Hik

with probability p̂ik for k = 1, . . . ,Ki. In the simple case where pi = 1, H∗i is
set equal to the observed haplotype pair. Performing this one time is called
a single imputation, while repeating this sampling process multiple times is
referred to as multiple imputation. Once an imputed dataset is generated, a
model-fitting procedure can be applied and a corresponding effect estimate
and test statistic can be recorded. These values can then be combined over
the multiply imputed datasets.

To understand how this approach works in practice, consider the simple
linear regression model described in Section 2.2.3 and given by the equation

yi = α+ βxi + εi (5.8)

Here yi is a quantitative trait and we define xi = I(hk ∈ Hi) as an indica-
tor for whether haplotype hk is in the (potentially unobserved) diplotype Hi

for individual i, where i = 1, . . . , n. Further suppose interest lies in testing
the null hypothesis of no association between x and y, given by H0 : β = 0.
As discussed in Section 2.2.3, a Wald statistic can be used to test this null
hypothesis. In the missing data context, we instead calculate β̂ for each of mul-
tiple imputed datasets. That is, we complete the data by randomly selecting
a haplotype pair for each individual with probabilities equal to the estimated
posterior probabilities resulting from application of the EM approach. Based
on these completed data, we fit the model of Equation (5.8) and arrive at a
least squares estimate of β. This process is then repeated D times, and we let
the resulting estimates be denoted β̂1, . . . , β̂D.

A combined estimate of β over these D imputations is then given by
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β̄D =
1
D

D∑
d=1

β̂d (5.9)

The variance of this estimate must take into account the variability both
within and between imputations. Suppose Ŵd is the variance of β̂ for the dth
completed dataset, where again d = 1, . . . , D. The within-imputation variance,
denoted W̄D, can be calculated as the average over the D imputations, and
the between-imputation variance, denoted B̄D, is given by a summary of the
deviations of each estimated value of β̂ from the average over all imputations.
The total variability that is associated with the parameter estimate, given
by TD, is a weighted sum of the within- and between-imputation variances.
Formally, we write

W̄D =
1
D

D∑
d=1

Ŵd (5.10)

B̄D =
1

D − 1

D∑
d=1

(
β̂d − β̄D

)2

(5.11)

TD = W̄D +
D + 1
D

B̄D (5.12)

Note that the total variability will be greater than the variability based on
any single imputation. Furthermore, as the difference between estimates from
one imputation to the next approaches 0, this total variability will approach
the average of the within-imputation variances. A t-test statistic correspond-
ing to the null hypothesis H0 : β = 0 is now given by

β̄D/
√
TD ∼ tv (5.13)

where the degrees of freedom, v, are equal to

v = (D − 1)
(

1 +
1

D + 1
W̄D

BD

)2

(5.14)

A step-by-step summary of this MI approach is provided in Algorithm 5.3.
Notably, the first step of this algorithm involves estimation of the posterior
probabilities. This introduces additional variability that we are not account-
ing for in this procedure. Bootstrapping the entire algorithm would capture
this additional variability. This involves resampling from our original data,
with replacement, running through the algorithm and then repeating multi-
ple times. An application of MI to estimation and testing of haplotype–trait
association is given in the following example.
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Algorithm 5.3: Multiple imputation for haplotype–trait asso-
ciation

1. Estimate posterior probabilities of each haplotype pair for each
individual i = 1, . . . , n given the observed genotypes.

2. Sample a single diplotype for each individual according to this proba-
bility distribution.

3. Calculate an effect estimate and corresponding variance.

4. Repeat steps (2) and (3) D times for D large.

5. Determine and evaluate test statistic according to Equation (5.13).

Example 5.5 (Multiple imputation for haplotype effect estimation and testing).
In this example, we again consider the question of whether there is an associa-
tion between the actn3 gene and the percentage change in the non-dominant
arm muscle strength before and after exercise training. Specifically, we con-
sider whether the presence of at least one copy of the h8 = TGCA haplotype
within Caucasians is associated with NDRM.CH using the FAMuSS sample. The
following for() loop samples from the potential haplotypes for each individual
according to the estimated posterior probabilities. This is repeated D = 1000
times, and the estimated effects of the h9 haplotype and corresponding stan-
dard errors are recorded in the vectors Est and SE:

> attach(fms)

> Nobs <- sum(Race=="Caucasian", na.rm=T)

> Nhap <- length(HaploEM$hap.prob)

> D <- 1000

> Est <- rep(0,D)

> SE <- rep(0,D)

> for (nimput in 1:D){

+ Xmat <- matrix(data=0,nrow=Nobs,ncol=Nhap)

+ for (i in 1:Nobs){

+ IDSeq <- seq(1:sum(HaploEM$nreps))[HaploEM$indx.subj==i]

+ if (length(IDSeq)>1){Samp <- sample(IDSeq,size=1,

+ prob=HaploEM$post[IDSeq])}

+ if (length(IDSeq)==1){Samp <- IDSeq}

+ Xmat[i,HaploEM$hap1code[Samp]] <-1

+ Xmat[i,HaploEM$hap2code[Samp]] <-1

+ }

+ h8 <- Xmat[,8]>=1

+ Est[nimput] <- summary(lm(Trait~h9))$coefficients[2,1]

+ SE[nimput] <- summary(lm(Trait~h9))$coefficients[2,2]

+ }

# (this can take several minutes to run)
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Based on these results, we can calculate the average estimate over all the
imputations (MeanEst), the within-imputation variance (Wd), the between-
imputation variance (Bd) and the total variance (Td) as follows:

> MeanEst <- mean(Est)

> Wd <- mean(SE^2)

> Bd <- (1/(D-1))*sum((Est-MeanEst)^2)

> Td <- Wd + ((D+1)/D)*Bd

Finally, we calculate the degrees of freedom and p-value corresponding to a
test of no association between the presence of at least one copy of h8 and the
percentage change in muscle strength of the non-dominant arm. Here we use
the pt() function, which returns the lower tail probability corresponding to
the quantile and degrees of freedom given as its argument.

> nu <- D-1*(1 + (1/(D+1))*(Wd/Bd))^2

> 1-pt(MeanEst/sqrt(Td),df=nu)

[1] 0.05738632

This result suggests that there is marginal evidence for an effect of haplo-
type h8 in actn3 on the percentage change in the non-dominant arm muscle
strength within Caucasians. �

5.2.2 A fully likelihood-based approach

In the previous section, we described two-stage approaches that involve first
estimating posterior haplotype probabilities based on genotype information
alone and second estimating the association between inferred haplotypes
and a trait. Alternatively, we can apply a fully likelihood-based approach
that involves simultaneous haplotype frequency estimation and estimation of
haplotype–trait association. One marked advantage of this approach is that
it uses information on the trait to inform us about the most likely haplotype
pair for an individual. Consider a simple example in which an individual is
ambiguous between the diplotypes (h1, h4) and (h2, h3). That is, based on this
person’s genotype, we are not sure whether h1 and h4 are present or h2 and
h3 are present. In the previous section, we described methods for estimating
the probabilities that the diplotype is (h1, h4) or (h2, h3) based on informa-
tion about the population-level frequencies and underlying population genetic
models. Now suppose that we have also measured a quantitative trait y for
this person and it is equal to 2.1. Suppose further that those individuals in our
sample who are homozygous for h1, h2, h3 or h4 (and therefore fully observed)
have an average response of ȳh1 = 2.0, ȳh2 = −1.5, ȳh3 = −2.0 and ȳh4 = 2.5,
respectively. In this simple case and depending on the model of association,
the ambiguous individual may be more likely to have the (h1, h4) haplotype
since the observed trait for this individual is closer to the respective sample
averages.
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Details of the fully likelihood-based approach are given in Schaid et al.
(2003), Lake et al. (2003), Lin and Zeng (2006) and in the supplemental
notes at the end of this chapter. Briefly, similar to the method described
in Section 5.1.1, this approach involves the application of an expectation-
maximization (EM) algorithm. In this setting, however, the complete data
log likelihood is now defined in terms of both the haplotypes and the trait
under investigation. The E-step involves taking the conditional expectation of
this complete data log likelihood. This amounts to calculating a weighted sum
of the likelihood evaluated for each possible haplotype pair, where the weights
are the posterior probabilities of these pairs given the observed genotype and
trait. This posterior probability is evaluated based on the current parameter
estimates and is given formally by Equation (5.35) in the supplemental notes
to this chapter. The M-step maximizes the conditional expectation derived
in the E-step to arrive at new parameter estimates. Finally, the two steps
are repeated until a convergence criterion is met. Testing of the resulting
parameters requires incorporating the additional uncertainty resulting from
the missingness in the data. We demonstrate this approach in the following
example using the haplo.glm() function of the haplo.stats package. While
methods for handling specific departures from HWE have been described, this
function assumes HWE and should be applied within racial and ethnic strata
as appropriate.

Example 5.6 (EM for estimation and testing of haplotype–trait association).
In this example, we implement the fully likelihood-based approach to estimat-
ing haplotype frequencies and haplotype–trait association. Again we consider
data from the FAMuSS study and focus on association between haplotypes
within the actn3 gene and the percentage change in the non-dominant arm
muscle strength. Using the genotype data matrix Geno.C that we generated
in Example 5.1, we can apply the following code, where again haplo.glm()
is a function within the haplo.stats package:

> attach(fms)

> Geno.C <- setupGeno(Geno.C)

> Trait <- NDRM.CH[Race=="Caucasian" & !is.na(Race)]

> Dat <- data.frame(Geno.C=Geno.C, Trait=Trait)

> library(haplo.stats)

> haplo.glm(Trait~Geno.C,data=Dat,

+ allele.lev=attributes(Geno.C)$unique.alleles)

Call:

haplo.glm(formula = Trait ~ Geno.C, data = Dat,

allele.lev = attributes(Geno.C)$unique.alleles)

Coefficients:

coef se t.stat pval

(Intercept) 50.678 2.217 22.8572 0.0000

Geno.C.3 8.496 0.611 13.8975 0.0000
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Geno.C.5 -0.441 7.280 -0.0606 0.9517

Geno.C.8 2.011 1.891 1.0633 0.2880

Geno.C.9 8.422 3.510 2.3995 0.0167

Geno.C.rare 3.985 6.294 0.6331 0.5268

Haplotypes:

loc.1 loc.2 loc.3 loc.4 hap.freq

Geno.C.3 C A T G 0.0125

Geno.C.5 C G C G 0.0108

Geno.C.8 T A T G 0.4024

Geno.C.9 T G C A 0.0839

Geno.C.rare * * * * 0.0181

haplo.base C G C A 0.4722

By default, the base haplotype is set equal to the most prevalent one in
our sample, in this case CGCA. Each of the p-values returned by applying the
haplo.glm() function corresponds to a test that the effect of the correspond-
ing haplotype, compared with this base haplotype, is equal to 0. For example,
we see that the effect of Geno.C.9 is 8.422 with a corresponding p-value of
0.0167. This implies that the mean percentage change in muscle strength is
8.422 greater among individuals with one copy of the Geno.C.9 haplotype
compared with individuals that are homozygous for the CGCA haplotype and
this effect is significantly different from zero.

Several parameters can be controlled in the analysis above. First of all, we
can change the base haplotype, which is useful if we are trying to compare
results across different racial/ethnic strata within which the most prevalent
haplotype differs. This is also useful if there is a specific haplotype to which
we would like to compare all other haplotypes. To see how we do this, suppose
we want TGCA to be the base haplotype. In this case, we use the following code,
where the index h9 is based on the output from Example 5.1:

> haplo.glm(Trait~Geno.C,data=Dat,

+ allele.lev=attributes(Geno.C)$unique.alleles,

+ control=haplo.glm.control(haplo.base=9))

Call:

haplo.glm(formula = Trait ~ Geno.C, data = Dat,

control = haplo.glm.control(haplo.base = 9),

allele.lev = attributes(Geno.C)$unique.alleles)

Coefficients:

coef se t.stat pval

(Intercept) 67.5222 5.33 12.6714 0.0000

Geno.C.3 0.0738 4.60 0.0161 0.9872

Geno.C.4 -8.4221 3.14 -2.6808 0.0075

Geno.C.5 -8.8630 7.35 -1.2066 0.2279

Geno.C.8 -6.4110 3.08 -2.0842 0.0375

Geno.C.rare -4.4371 6.50 -0.6830 0.4948
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Haplotypes:

loc.1 loc.2 loc.3 loc.4 hap.freq

Geno.C.3 C A T G 0.0125

Geno.C.4 C G C A 0.4722

Geno.C.5 C G C G 0.0108

Geno.C.8 T A T G 0.4024

Geno.C.rare * * * * 0.0181

haplo.base T G C A 0.0839

Another important parameter that we can control is an indicator for the
type of genetic model. By default, the haplo.glm() function assumes an ad-
ditive genetic model, so that the effect of having two copies of a haplotype
is twice the effect of having a single copy of the haplotype. Additive models
as well as other potential genetic models are defined in Section 2.3.4. We can
easily specify an alternative model structure by specifying the haplo.effect
parameter within haplo.glm.control. For example, under a dominant ge-
netic model in which one or more copies of a haplotype cause the effect, we
have

> haplo.glm(Trait~Geno.C,data=Dat,

+ allele.lev=attributes(Geno.C)$unique.alleles,

+ control=haplo.glm.control(haplo.effect="dominant"))

Call:

haplo.glm(formula = Trait ~ Geno.C, data = Dat,

control = haplo.glm.control(haplo.effect = "dominant"),

allele.lev = attributes(Geno.C)$unique.alleles)

Coefficients:

coef se t.stat pval

(Intercept) 48.94 2.38 20.587 0.000000

Geno.C.3 4.35 1.25 3.478 0.000533

Geno.C.5 1.39 9.43 0.147 0.883253

Geno.C.8 4.58 2.70 1.699 0.089813

Geno.C.9 13.90 4.87 2.856 0.004412

Geno.C.rare 3.43 7.51 0.458 0.647324

Haplotypes:

loc.1 loc.2 loc.3 loc.4 hap.freq

Geno.C.3 C A T G 0.0125

Geno.C.5 C G C G 0.0108

Geno.C.8 T A T G 0.4024

Geno.C.9 T G C A 0.0838

Geno.C.rare * * * * 0.0181

haplo.base C G C A 0.4724

We see that the results of this analysis are slightly different from the results un-
der the additive assumption. Specifically, there is stronger evidence of an asso-
ciation between our trait and haplotypes Geno.C.3=CATG and Geno.C.9=TGCA.



Problems 149

Other parameters that can be controlled include handling of missing genotype
data, the minimum prevalence for inclusion in the rare haplotype group and
the distributional family. The default setting handles missing genotype infor-
mation within the EM framework while excluding individuals with missing
trait or covariate data. The family option allows testing association with a
binary trait, similar to the glm() function. �

In general, the fully likelihood-based approach described in this section is
preferable to the two-stage approaches described in Section 5.2.1 when the
primary aim is to characterize haplotype–trait association. This approach is
straightforward to implement and carries many desirable statistical proper-
ties. The two-stage approaches, however, have one primary advantage that is
relevant to studies across multiple racial or ethnic groups. These approaches
allow for estimation of haplotype effects within subgroups and then combining
the data for estimation and testing of effects. For example, we can use the
haplo.em() function within African Americans and Caucasians separately to
arrive at posterior probability estimates of each individual and impute data
based on these estimates. We are then able to fit a model using all of the data
combined. Repeating the imputation procedure as described in Section 5.2.1
yields valid estimates and tests. By using all of the data across racial and
ethnic groups in the estimation step, this approach will give us more power to
detect associations under the assumption that there is no effect modification
by race or ethnicity. The haplo.glm() function, on the other hand, makes the
HWE assumption and is therefore most appropriately applied within racial or
ethnic groups within which there is no evidence of a departure from HWE.

Problems

5.1. Using the FAMuSS data, estimate the resistin haplotype frequencies
for Caucasians and African Americans separately. Determine whether the fre-
quency of the most common haplotype in Caucasians is statistically different
from the frequency of this haplotype in African Americans.

5.2. Based on the HGDP data, estimate the AKT1 haplotype frequencies within
groups defined by the variable Population. Repeat estimation within groups
defined by Geographic.origin. Compare and contrast your conclusions for
the two analyses.

5.3. Is there an association between Gender and Geographic.origin in the
HGDP data? If so, how would this influence your interpretation of an analysis
of a genotype–trait association?

5.4. Apply haploytpe trend regression (HTR) to determine if there is an as-
sociation between the resistin haplotypes and change in non-dominant arm
muscle strength within African Americans using the FAMuSS data.
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5.5. Using the expectation-maximization approach of the haplo.glm() func-
tion, determine if there is an association between the resistin haplotypes
and change in non-dominant arm muscle strength, as measured by NDRM.CH,
within African Americans, based on the FAMuSS data. Consider both domi-
nant and additive genetic models.

Supplemental notes

EM approach to haplotype frequency estimation

Before stepping through this algorithm, we begin by defining our notation.
Let Gi represent the (observed) unphased genotype for individual i, where i =
1, . . . , n. Further suppose Hi is the (unobservable) combination of haplotypes
for individual i. So, for example, in a diploid setting, Hi represents a pair
of haplotypes and multiple pairs are generally consistent with the observed
genotype, Gi. We let S(Gi) denote the set of all Hi that are consistent with Gi.
The set of all K single haplotypes observed within our sample of individuals
is denoted h1, . . . , hK , and the corresponding population-level frequencies are
given by θ = (θ1, . . . , θK). The first goal of our analysis is to estimate these
haplotype frequencies.

To begin, we define the complete data by Xc = [G,H], where G =
(G1, . . . , Gn) and H = (H1, . . . ,Hn). The complete data likelihood is then
given by

L(θ|Xc) =
n∏
i=1

Pr(Hi|θ) (5.15)

where we assume the haplotype set probabilities, Pr(Hi|θ), are given by the
multinomial distribution. That is,

Pr(Hi|θ) = Ci

K∏
k=1

θδik

k (5.16)

where Ci = 2/(δi1! . . . δiK !), δik is the number of copies of hk carried by
individual i and

∑K
k=1 θk = 1. In a diploid population, δik can take on the

value 0, 1 or 2 and Ci equals 1 if individual i is homozygous and 2 otherwise.
Taking the logarithm of the complete data likelihood given in Equation (5.15)
yields

lθ = logL(θ|Xc) =
n∑
i=1

logPr(Hi|θ) (5.17)

The E-step involves taking the conditional expectation of this complete
data log likelihood based on the observed data and current estimates of the
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population haplotype frequencies. For the tth iteration of the EM algorithm,
we denote this estimate by θ̂(t). That is, we calculate

E
(
lθ|G, θ̂(t)

)
=

n∑
i=1

∑
Hi∈S(Gi)

p̂
(t)
Hi

logPr(Hi|θ) (5.18)

where p̂
(t)
Hi

is the estimated posterior probability of Hi given Gi and θ̂(t).
Formally, we write

p̂
(t)
Hi

=
Pr(Hi|θ̂(t))∑

Hi∈S(Gi)
Pr(Hi|θ̂(t))

(5.19)

The M-step involves maximizing the conditional expectation of Equation (5.18)
with respect to θ. To do this, we set the first derivative equal to 0 and solve
for θ. Note that the partial derivative of this conditional expectation is given
by

∂E
(
lθ|G, θ̂(t)

)
∂θk

=
n∑
i=1

∑
Hi∈S(Gi)

p̂
(t)
Hi
∂ logPr(Hi|θ)/∂θk (5.20)

To find ∂ logPr(Hi|θ)/∂θk, we first note that we can write

logPr(Hi|θ) = logCi +
K∑
k=1

δik log θk (5.21)

Taking the first derivative of this quantity yields

∂ logPr(Hi|θ)
∂θk

= ∂ [logCi] /∂θk + ∂

[
K∑
k=1

δik log θk

]
/∂θk (5.22)

The first term in this sum is equal to 0 since the argument of the derivative
does not involve θ. Therefore, after introducing the constraint

∑K
k=1 θk = 1,

we have
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∂ logPr(Hi|θ)
∂θk

=
K∑
k=1

∂ (δik log θk)
∂θk

=
K∑
k=1

∂ (δik log θk)
∂θk

+
∂
[
δiK log

(
1−

∑K−1
k=1 θk

)]
∂θk

=
δik
θk
− δiK(

1−
∑K−1
k=1 θk

) =
δik
θk
− δiK
θK

(5.23)

We can therefore write Equation (5.20) as follows for each k = 1, . . . ,K − 1:

∂E (lθ|G)
∂θk

=
n∑
i=1

∑
Hi∈S(Gi)

p̂
(t)
Hi

(
δik
θk
− δiK
θK

)
(5.24)

Setting these K − 1 equations equal to 0 yields

1

θ̂k

n∑
i=1

∑
Hi∈S(Gi)

p̂
(t)
Hi
δik =

1

θ̂K

n∑
i=1

∑
Hi∈S(Gi)

p̂
(t)
Hi
δiK (5.25)

for each k = 1, . . . ,K − 1. Since the right-hand side of this equation is the
same for all k = 1, . . . ,K − 1, we can write

1

θ̂k

n∑
i=1

∑
Hi∈S(Gi)

p̂
(t)
Hi
δik =

1

θ̂1

n∑
i=1

∑
Hi∈S(Gi)

p̂
(t)
Hi
δi1 (5.26)

for k = 2, . . . ,K − 1. Solving for θ̂k yields

θ̂k =

∑n
i=1

∑
Hi∈S(Gi)

p̂
(t)
Hi
δik∑n

i=1

∑
Hi∈S(Gi)

p̂
(t)
Hi
δi1

θ̂1 (5.27)

Thus we can derive an estimate of θ1 and use this to estimate θk for each
k = 2, . . . ,K − 1.

An estimate of θ1 is derived based on Equation (5.25) for k = 1 and using
the relationship θK = 1−

∑K−1
k=1 θk. To see this, note that we can write
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θ̂1

n∑
i=1

∑
Hi∈S(Gi)

p̂
(t)
Hi
δiK = θ̂K

n∑
i=1

∑
Hi∈S(Gi)

p̂
(t)
Hi
δi1

=

(
1−

K−1∑
k=1

θ̂k

)
n∑
i=1

∑
Hi∈S(Gi)

p̂
(t)
Hi
δi1

=

(
1−

K−1∑
k=1

∑n
i=1

∑
Hi∈S(Gi)

p̂
(t)
Hi
δik∑n

i=1

∑
Hi∈S(Gi)

p̂
(t)
Hi
δi1

θ̂1

)
n∑
i=1

∑
Hi∈S(Gi)

p̂
(t)
Hi
δi1

=
n∑
i=1

∑
Hi∈S(Gi)

p̂
(t)
Hi
δi1 − θ̂1

K−1∑
k=1

n∑
i=1

∑
Hi∈S(Gi)

p̂
(t)
Hi
δik

(5.28)

The next to final step in the equation above involves simply plugging in the
result of Equation (5.27) for k = 2, . . . ,K − 1. This is equivalent to

θ̂1

n∑
i=1

∑
Hi∈S(Gi)

p̂
(t)
Hi

K∑
k=1

δik =
n∑
i=1

∑
Hi∈S(Gi)

p̂
(t)
Hi
δi1 (5.29)

Solving for θ̂ and using the identities
∑K
k=1 δik = 2 and

∑
Hi∈S(Gi)

p̂
(t)
Hi

= 1,
we have

θ̂
(t+1)
1 =

1
2n

n∑
i=1

∑
Hi∈S(Gi)

p̂
(t)
Hi
δi1 (5.30)

Finally, plugging this result back into Equation (5.27) gives the general result

θ̂
(t+1)
k =

1
2n

n∑
i=1

∑
Hi∈S(Gi)

p̂
(t)
Hi
δik (5.31)

In summary, the EM algorithm involves first calculating individual-level
posterior probabilities for each of the haplotype pairs that are consistent with
the observed genotypes. This is given by Equation (5.19). The second step
then involves updating the parameter values based on the current posterior
probabilities. These new parameter estimates are given in Equation (5.31).
We then iterate between these two steps until the value of the estimate does
not vary substantially from one iteration to the next. For example, we may
stipulate that iteration continues until maxk

(
|θ̂(t)
k − θ̂

(t+1)
k |/θ̂(t)

k

)
< 1.0 ×

10−5. Alternatively, we can base our convergence criterion on the observed
data likelihood, given by

∏n
i=1 Pr(Gi|θ) =

∏n
i=1

∑
Hi∈S(Gi)

Pr(Hi|θ).
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EM approach to haplotype–trait association

Consider the general linear model setting in which the dependent variable,
Y , arises from an exponential family with a canonical link function. Let the
covariates and haplotype information be denoted collectively by [X H]. Then
we have the density of y given by

fβ(y|X,H) = exp
{
y[XT HT ]β − b([XT HT ]β)

a(Ψ)
+ c(y, Ψ)

}
(5.32)

where a, b and c are known functions, β is a vector of parameters corresponding
to the design matrix X and Ψ represents a scale parameter, such as the error
variance.

In general, haplotype information is not observed and estimation of β
can again proceed using the EM algorithm. Recall that this is an iterative
two-stage approach involving first taking the conditional expectation of the
complete data log likelihood (E-step) and then maximizing this with respect
to the parameters (M-step). This process is then repeated until a convergence
criterion is met. The complete data are now given by Y and H, and the
complete data likelihood for the i individual can be written

Lci (Φ) = Lci (Φ|Yi,Xi,Hi) = f(Yi,Hi|Xi, Φ) = fβ(Yi|Xi,Hi)Prθ(Hi) (5.33)

where Φ = (β, θ), θ = (θ1, . . . , θK) is a vector with kth element equal to the
population-level frequency of haplotype k.

The conditional expectation is given by the weighted sum of this likelihood
given each possible haplotype, where the weights are equal to the posterior
probabilities of the haplotypes given the observed genotypes. Formally, we
write

E[logLci (Φ)|Yi,Xi,Gi] =
∑

H∈S(Gi)

pi(Φ) [log fβ(Yi|Xi,Hi) + logPrθ(Hi)]

(5.34)
where

pi(Φ) =
fβ(Yi|Xi,Hi)Prθ(Hi)∑

H∈S(Gi)
fβ(Yi|Xi,Hi)Prθ(Hi)

(5.35)

For each iteration of the EM algorithm, we substitute the current estimates
of β and θ into the calculation of the posterior haplotype probabilities (Equa-
tion (5.35)) and then update these estimates by maximizing the conditional
expectation (Equation (5.34)). Maximization at the (t + 1)st iteration pro-
ceeds by taking the partial derivative with respect to each parameter, setting
this equal to 0
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n∑
i=1

∑
H∈S(Gi)

p̂
(t)
i

∂ log fβ(Yi|Xi,Hi)
∂β

= 0 (5.36)

n∑
i=1

∑
H∈S(Gi)

p̂
(t)
i

∂ logPrθ(Hi)
∂θ

= 0 (5.37)

and solving for β and θ, respectively. Here note that the posterior probabilities
are evaluated at the current parameter values, so that p̂(t)

i = pi(Φ̂(t)).
Under the HWE assumption, we can write the probability of H = (hk, hl)

as the product of the probability of each element of the pair, as given in
Equation (5.16). Notably, the HWE assumption is not necessary, and Lin
and Zeng (2006) describe estimation under specific departures from HWE.
Drawing inference about β and θ in this setting requires estimation of the
variance/covariance matrix. This matrix is given by the inverse of the observed
information matrix, which can be approximated with the empirical observed
information (Meilijson, 1989). Formally, we write

I(Φ̂) =
n∑
i=1

si(Φ̂)si(Φ̂)T (5.38)

where si(Φ̂) is given by the inside sums of Equations (5.36) and (5.37), eval-
uated at the last iteration of the EM algorithm (McLachlan and Krishnan,
1997).

Supplemental R scripts

######################################################################

# Description: This function creates a design matrix with i,j

# element equal to the conditional expectation

# of the number of copies of haplotype j for

# individual i based on the output from haplo.em()

# Input: HaploEM (object resulting from haplo.em())

# Output: XmatHap

######################################################################

HapDesign <- function(HaploEM){

Nobs <- length(unique(HaploEM$indx.subj)) #number of observations

Nhap <- length(HaploEM$hap.prob) #number of haplotypes

XmatHap <- matrix(data=0,nrow=Nobs,ncol=Nhap)

for (i in 1:Nobs){

IDSeq <- seq(1:sum(HaploEM$nreps))[HaploEM$indx.subj==i]

for (j in 1:length(IDSeq)){

XmatHap[i,HaploEM$hap1code[IDSeq][j]] <-
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XmatHap[i,HaploEM$hap1code[IDSeq][j]] +

HaploEM$post[IDSeq][j]

XmatHap[i,HaploEM$hap2code[IDSeq][j]] <-

XmatHap[i,HaploEM$hap2code[IDSeq][j]] +

HaploEM$post[IDSeq][j]

}

}

return(XmatHap)

}

######################################################################

# Description: This function creates a vector with jth element

# equal to the standard error of haplotype j

# based on the output from haplo.em()

# Input: HaploEM (object resulting from haplo.em())

# Output: HapSE

######################################################################

HapFreqSE <- function(HaploEM){

HapMat <- HapDesign(HaploEM)

Nobs <- length(unique(HaploEM$indx.subj)) #number of observations

Nhap <- length(HaploEM$hap.prob) #number of haplotypes

S.Full<-matrix(data=0, nrow=Nobs, ncol=Nhap-1)

for(i in 1:Nobs){

for(k in 1:(Nhap-1)){

S.Full[i,k]<-HapMat[i,k]/HaploEM$hap.prob[k]-

HapMat[i,Nhap]/HaploEM$hap.prob[Nhap]

}

}

Score<-t(S.Full)%*%S.Full

invScore<-solve(Score)

HapSE<-c(sqrt(diag(invScore)),

sqrt(t(rep(1,Nhap-1))%*%invScore%*%rep(1,Nhap-1)))

return(HapSE)

}
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Classification and Regression Trees

Classification and regression trees (CARTs) are an approach to discovering
relationships among a large number of independent (predictor) variables and
a categorical or continuous trait. Classification trees are applied to categorical
outcomes, while regression trees apply to continuous traits. Both involve the
application of a recursive algorithm that aims to partition individuals into
groups in a way that minimizes the within-group heterogeneity. CART was
originally described by Breiman et al. (1993) and has gained popularity in
recent years as a method for identifying structure in high-dimensional data
settings. In the following sections, we begin by describing methods for con-
structing a tree. This involves defining a measure of heterogeneity, or what is
commonly referred to as node impurity, as well as determining how predictor
variables are input into the model. Both of these components will impact the
resulting tree and need to be considered and defined carefully to reflect the
scientific questions at hand. We then describe methods for refining this tree
to arrive at a final reproducible model. Further discussions of CART methods
can be found in Breiman et al. (1993) and Zhang and Singer (1999). In Chap-
ter 7, we describe extensions of the CART model, including random forests
and logic regression trees that offer some additional advantages.

6.1 Building a tree

6.1.1 Recursive partitioning

Suppose our data consist of a trait y = (y1, . . . , yn) and p potential predictor
variables given by x1, . . . ,xp, where xj = (x1j , . . . , xnj)T and i = 1, . . . , n
indicates individual. In general, interest lies in discovering the relationship
between X = [x1, . . . ,xp] and y. A tree is constructed by first determining
the variable xj , among the set of all potential predictors, that is most predic-
tive of the trait y. The phrase “most predictive” is used loosely here and is
defined explicitly in Section 6.1.2 below. Individuals in our sample are then
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divided into two groups based on their corresponding value of xj . Suppose,
for example, that xj is a binary indicator for the presence of the variant allele
at the jth SNP under investigation. If xj is identified as the most predic-
tive variable, then individuals with at least one variant allele at this SNP are
assigned to one group, while individuals that are homozygous wildtype are
assigned to a second group. This process is then repeated within each of the
two resulting groups.

More formally, let the set of all individuals be denoted Ω. For simplicity
of presentation, suppose all potential predictors are binary, and let the most
predictive variable be given by x(1). Individuals are first divided into Ω1 and
Ω2 based on the value of x(1). That is, we define Ω1 = {i : xi(1) = 0} and
Ω2 = {i : xi(1) = 1} for i = 1, . . . , n, representing individual. The next step
of the tree-building algorithm involves again identifying the variable that is
most predictive of yi but now within each of the groups of individuals given
by Ω1 and Ω2. Suppose this variable is x(2) for Ω1 and x(3) for Ω2. Further
subgroups are then defined based on the values of x(2) and xi(3). That is, we
define

Ω1,1 = {i : i ∈ Ω1 and xi(2) = 0} = {i : xi(1) = 0 and xi(2) = 0}
Ω1,2 = {i : i ∈ Ω1 and xi(2) = 1} = {i : xi(1) = 0 and xi(2) = 1}
Ω2,1 = {i : i ∈ Ω2 and xi(3) = 0} = {i : xi(1) = 1 and xi(3) = 0}
Ω2,2 = {i : i ∈ Ω2 and xi(3) = 1} = {i : xi(1) = 1 and xi(3) = 1}

(6.1)

This partitioning procedure is then repeated recursively until a stopping rule
is achieved. For example, we might continue splitting into smaller and smaller
subgroups until a subgroup has less than five individuals. Note that the stop-
ping rule may result in an asymmetric tree.

A visual representation of this recursive algorithm is given in Figure 6.1.
Each circle is called a node. The first node is termed the root node or parent
node, and subsequent splits result in the formation of left and right daughter
nodes. A node is simply a representation of a group of individuals, which
we denote with Ω. Importantly, at each stage of the splitting algorithm, we
are identifying the variable that is most predictive of the trait of interest
among all variables under consideration; however, in general, this is not based
on a formal statistical test. That is, these variables may not be significantly
associated with the trait, even though they are more predictive than any
other variable. Therefore, after building a tree in this manner, it is important
to “prune” it back in order to avoid overfitting. In the following section, we
describe criteria that are used for splitting nodes and then discuss pruning
techniques and appropriate measures of tree accuracy in Section 6.2.

6.1.2 Splitting rules

In order to arrive at a tree structure similar to the one illustrated in Figure 6.1,
first we need to define a rule for splitting our observations into subgroups. This
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Fig. 6.1. Tree structure

typically proceeds by defining a measure of node impurity, or heterogeneity,
and choosing the splitting variable to be the one that maximizes the reduction
in this measure. While this is not the only approach for generating a tree, it
is widely accepted and will be the focus of the presentation in this text. Let
the impurity for node Ω be given by I(Ω). Formally, the goal is to choose the
split that maximizes

φ = I(Ω)− I(ΩL)− I(ΩR) (6.2)

where ΩL and ΩR are the left and right daughter nodes of Ω, respectively.
Several measures of impurity, I(Ω), are reasonable, and Breiman et al. (1993)
suggest that in many instances the final tree tends to be insensitive to the
choice of measure. In this section, we describe a few measures that are com-
monly applied in the context of binary and quantitative traits.

Binary trait

First consider a binary trait, y, that takes on the values 0 and 1. For example,
y may be an indicator for the presence of disease. In this case, we define
I(Ω) = π(Ω)i(Ω) where π(Ω) is the probability of belonging to Ω, and rewrite
Equation (6.2) as
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φ = π(Ω)i(Ω)− π(ΩL)i(ΩL)− π(ΩR)i(ΩR) (6.3)

This can be expressed equivalently as

φ = [i(Ω)− πLi(ΩL)− πRi(ΩR)]π(Ω) (6.4)

where πL = Pr(ΩL|Ω) and πR = Pr(ΩR|Ω) are the conditional probabilities
of going to the left and right daughter nodes, respectively, conditional on be-
longing to Ω. To see this, note that π(ΩL) = Pr(ΩL, Ω) = Pr(ΩL|Ω)Pr(Ω) =
πL × π(Ω). Now let

4i(Ω) = i(Ω)− πLi(ΩL)− πRi(ΩR) (6.5)

We note that a split that maximizes φ of Equation (6.2) will also maximize
4i(Ω) since these two functions differ only by the multiplicative factor π(Ω).
The quantity represented by i(Ω) is also commonly referred to as the corre-
sponding node impurity.

One of the simplest measures of node impurity that has been proposed for
this binary trait setting is given by

i(Ω) = min(pΩ , 1− pΩ) (6.6)

where pΩ = Pr(y = 1|Ω) is the probability of being a case given membership
in node Ω. This impurity measure is commonly referred to as the Bayes error,
minimum error or misclassification cost. Consider for example a setting in
which there are equal numbers of cases and controls so that at the root node we
have i(Ω) = min(0.50, 1−0.50) = 0.50. The idea behind this impurity measure
is that a non-informative split would result in a node within which exactly
half of the members are cases and half are controls. In this case, we would
say the node is highly impure. On the other hand, if 80% of the individuals
are cases and 20% controls (that is, pΩ = 0.80), then the node is relatively
homogeneous. In other words, the impurity i(Ω) = 0.20 is relatively low. While
intuitively appealing, the minimum error has some practical limitations. These
drawbacks include that it is common for there to be no single best split from a
given node. In addition, the criterion does not favor trees with further growth
potential. A complete discussion of these limitations is provided in Breiman
et al. (1993).

Another commonly used measure of impurity is the Gini index, also called
the nearest neighbor error, which is defined as

i(Ω) = 2pΩ(1− pΩ) (6.7)

where pΩ is again the probability of being a case, conditional on belonging to
Ω. Intuitively, the Gini index is also appealing since it is simply the sum of
variances of Bernoulli random variables. To see this, note that for y distributed
Bernoulli(p), so that y takes on the value 1 with probability p and 0 with
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Table 6.1. Sample case–control data by genotype indicators

x1 = 1 x1 = 0

Cases: 60 40
Controls: 40 60

Total: 100 100

x2 = 1 x2 = 0

80 20
20 80

100 100

x3 = 1 x3 = 0

50 50
50 50

100 100

Total

100
100

200

probability 1− p, the variance of y is given by Var[y] = p(1− p). Since y can
take on two values (0 or 1), we multiply this quantity by 2 to get the impurity
measure given in Equation (6.7). More generally, for a categorical trait y that
takes on the values 1, . . . ,m, the Gini index is given by

i(Ω) =
∑
r 6=s

p(r|Ω)p(s|Ω) (6.8)

where p(r|Ω) is the probability of being in class r among individuals who fall
into the node denoted Ω, where r = 1, . . . ,m.

Example 6.1 (Applying the Gini index). Consider for example a prospective
study in which there are exactly 100 cases and 100 controls. Further suppose
there are three potential predictor variables x1, x2 and x3 and a binary trait
y. For simplicity of presentation, let xj be a vector of indicator variables for
the presence of a variant allele at the jth SNP under investigation for all
individuals in our sample. The overall impurity based on the Gini index at
the root node is given by i(Ω) = 2p(1 − p) = 2(0.52) = 0.50. The recursive
partitioning algorithm begins by considering all splits of our data into two
groups based on the value of xj for j = 1, 2, 3. Let us suppose our data are as
given in Table 6.1.

From these tables, we see that x2 does a better job at distinguishing be-
tween cases and controls than the other variables shown. This is described
formally by recording a measure of the reduction in the within-node impurity
corresponding to each variable. Let ΩL(xj) and ΩR(xj) be the left and right
daughter nodes resulting from splitting based on the value of xj and let φj
be the corresponding reduction in node impurity resulting from this split. We
have

φ1 = i(Ω)− 0.5 [i(ΩL(x1))]− 0.5 [i(ΩR(x1))]
= 0.50− (0.6)(0.4)− (0.4)(0.6) = 0.02

(6.9)

while φ2 = 0.18 and φ3 = 0. As expected, the variable that maximizes the
reduction in impurity as measured by φ is x2. Based on this information, we
would begin by splitting our data into two groups based on whether a variant
allele is present at SNP 2. This process of selecting the best variable is then
repeated for each of the resulting daughter nodes. �
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While generally acceptable in practice, the Gini index does have some
drawbacks as well. Specifically, it tends to favor splits that result in two nodes
with highly unbalanced sample sizes. Another popular alternative is the en-
tropy function, also referred to as the information index and deviance, given
by

i(Ω) = −pΩ log(pΩ)− (1− pΩ) log(1− pΩ) (6.10)

where again we define pΩ as the conditional probability of being a case, given
membership in node Ω. A motivation for this measure arises from likelihood
theory. Suppose again that y ∼ Bernoulli(p) so that the log likelihood for our
data is given by

logL(p|n1, n2) = n1 log p+ n2 log(1− p) (6.11)

where n1 and n2 are the number of cases and controls, respectively. This
function is maximized at

n1 log
(n1

n

)
+ n2 log

(n2

n

)
= −ni(Ω) (6.12)

where i(Ω) is the entropy function as defined in Equation (6.10). In practice,
the entropy and Gini indexes tend to result in very similar trees for the case
of a binary trait.

In the following example, we demonstrate how to construct a classification
tree. Both the rpart() function of the rpart package and the tree() function
of the tree package allow us to specify the measure of node impurity for tree
fitting. The Gini index is the default, while the information index is given as
an option.

Example 6.2 (Creating a classification tree). In this example, we return to
the Virco data described in Section 1.3.3. Suppose we are interested in identi-
fying polymorphisms within the protease region of the viral genome that are
associated with greater in vitro sensitivity to nelfinavir (NFV) than indinavir
(IDV). That is, we aim to characterize the relationship between mutations in
the variables labeled P1, . . ., P99 and a binary indicator for whether IDV.Fold
is greater than NFV.fold. In this case, we begin by defining a dataframe, enti-
tled VircoGeno, that contains binary indicators for the presence of a mutation
at each of the 99 sites within the protease region:

> attach(virco)

> VircoGeno <- data.frame(virco[,substr(names(virco),1,1)=="P"]!="-")

We then define our trait and construct a classification tree as follows. Note
that we define our trait as a factor variable since we are interested in creating
a classification tree. We additionally specify method="class", though this is
the default setting when the trait is a factor:
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> Trait <- as.factor(IDV.Fold > NFV.Fold)

> library(rpart)

> ClassTree <- rpart(Trait~., method="class", data=VircoGeno)

> ClassTree

n=976 (90 observations deleted due to missingness)

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 976 399 FALSE (0.5911885 0.4088115)

2) P54< 0.5 480 130 FALSE (0.7291667 0.2708333)

4) P76< 0.5 466 116 FALSE (0.7510730 0.2489270) *

5) P76>=0.5 14 0 TRUE (0.0000000 1.0000000) *

3) P54>=0.5 496 227 TRUE (0.4576613 0.5423387)

6) P46< 0.5 158 57 FALSE (0.6392405 0.3607595)

12) P1< 0.5 115 31 FALSE (0.7304348 0.2695652) *

13) P1>=0.5 43 17 TRUE (0.3953488 0.6046512) *

7) P46>=0.5 338 126 TRUE (0.3727811 0.6272189)

14) P10< 0.5 22 7 FALSE (0.6818182 0.3181818) *

15) P10>=0.5 316 111 TRUE (0.3512658 0.6487342)

30) P48< 0.5 278 106 TRUE (0.3812950 0.6187050)

60) P20< 0.5 113 55 TRUE (0.4867257 0.5132743)

120) P76< 0.5 92 40 FALSE (0.5652174 0.4347826) *

121) P76>=0.5 21 3 TRUE (0.1428571 0.8571429) *

61) P20>=0.5 165 51 TRUE (0.3090909 0.6909091) *

31) P48>=0.5 38 5 TRUE (0.1315789 0.8684211) *

A visual representation of this output is generated with the plot() and
text() functions and illustrated in Figure 6.2:

> plot(ClassTree)

> text(ClassTree)

Based on this output, first we see that the overall number of observations
contributing to this analysis is given by n=976. The numbers and characters
in each row of the output are interpreted as follows. The first number repre-
sents a node, and the subsequent expression, entitled split, defines this node.
For example, consider the row denoted 2, in which we have P54 < 0.5. This
indicates that viral particles that are wildtype at site P54 (i.e., P54=0) are as-
signed to the second node. The indentations in the output indicate daughter
nodes, so that node 4 consists of sequences that match the criteria for both
nodes 2 and 4. In other words, sequences in this node are wildtype at both
P54 and P76. The next number, denoted n, is the number of viral particles
within the corresponding node. For example, we have n=480 sequences that
are wildtype at P54 and n=496 sequences that are mutant at this site, as in-
dicated by the rows labeled 2 and 3. The next number, denoted loss, is the
number of observations for which the trait is predicted incorrectly if we let
this predicted value be the majority value within the node. This predicted
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|P54< 0.5

P76< 0.5 P46< 0.5

P1< 0.5 P10< 0.5

P48< 0.5
P20< 0.5

P76< 0.5

FALSE TRUE 

FALSE TRUE FALSE

FALSE TRUE 

TRUE 
TRUE 

Fig. 6.2. Classification tree for Example 6.2

value is given by the following character string. For example, in the second
node, the predicted value is FALSE, or equivalently IDV.Fold < NFV.Fold,
and we see that loss=130 viral particles are predicted incorrectly. Finally,
the corresponding estimated probabilities for each value of the trait are given
in parentheses. For example, in the second node, we see that the proportion
of sequences for which IDV.Fold > NFV.Fold is 130/480 = 0.27, while the
proportion for which this does not hold is 1− 0.27 = 0.73.

By looking at the rows denoted 2) and 3), we see that the most predictive
variable of greater NFV sensitivity is P54. Among viruses with a mutation at
this site, indicated by P54 > 0.5, the estimated probability that IDV.Fold
is greater than NFV.Fold is 0.54. On the other hand, this probability is 0.27
for viruses that are wildtype at this site. The next split in the tree is de-
scribed in rows 4) and 5) of the output. Here we see that, among viruses
that are wildtype at site P54, the most predictive variable is P76. In this case,
the estimated probability of greater IDV than NFV fold resistance is 0.25
among viruses that are additionally wildtype at P76. On the other hand, this
probability estimate is 1 for viruses that are mutant at P76. The final nodes,
also referred to as terminal nodes, are indicated with an asterisk in the out-
put. Importantly, these are the most predictive variables, but we have not yet
assessed whether they are statistically significant or simply chance findings.
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Several additional parameters can be specified within the rpart() func-
tion. A comprehensive description of these options is given in the associated
documentation. In this and subsequent examples, we provide a brief discus-
sion of a few that may be particularly useful. First, we can specify the split
criterion to be used. The default criterion is the Gini index, and the infor-
mation criterion is given as an alternative option. To specify this, we use the
following code:

> rpart(Trait~., method="class", parms=list(split=‘information’),

+ data=VircoGeno)

n=976 (90 observations deleted due to missingness)

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 976 399 FALSE (0.5911885 0.4088115)

2) P54< 0.5 480 130 FALSE (0.7291667 0.2708333)

4) P76< 0.5 466 116 FALSE (0.7510730 0.2489270) *

5) P76>=0.5 14 0 TRUE (0.0000000 1.0000000) *

3) P54>=0.5 496 227 TRUE (0.4576613 0.5423387)

6) P46< 0.5 158 57 FALSE (0.6392405 0.3607595)

12) P1< 0.5 115 31 FALSE (0.7304348 0.2695652) *

13) P1>=0.5 43 17 TRUE (0.3953488 0.6046512) *

7) P46>=0.5 338 126 TRUE (0.3727811 0.6272189)

14) P48< 0.5 299 120 TRUE (0.4013378 0.5986622)

28) P20< 0.5 125 62 FALSE (0.5040000 0.4960000)

56) P76< 0.5 104 44 FALSE (0.5769231 0.4230769) *

57) P76>=0.5 21 3 TRUE (0.1428571 0.8571429) *

29) P20>=0.5 174 57 TRUE (0.3275862 0.6724138) *

15) P48>=0.5 39 6 TRUE (0.1538462 0.8461538) *

Notably, this results in a different tree than we saw above, though the first
several splits are identical. Since splits that are lower down in the tree tend
to be pruned back, as we describe in Section 6.2 below, these differences may
not be relevant.

We are also able to specify relevant criteria regarding the numbers of ob-
servations within nodes. Specifically, the control parameter minsplit allows
us to specify the number of observations that are required in a node in order
to consider additional splits. The parameter labeled minbucket additionally
allows us to indicate the minimum number of observations required in a ter-
minal node. The two parameters are specified as follows:

> rpart(Trait~., method="class", parms=list(split=‘gini’),

+ control=rpart.control(minsplit=150, minbucket=50),

+ data=VircoGeno)

n=976 (90 observations deleted due to missingness)
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node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 976 399 FALSE (0.5911885 0.4088115)

2) P54< 0.5 480 130 FALSE (0.7291667 0.2708333) *

3) P54>=0.5 496 227 TRUE (0.4576613 0.5423387)

6) P46< 0.5 158 57 FALSE (0.6392405 0.3607595) *

7) P46>=0.5 338 126 TRUE (0.3727811 0.6272189) *

Comparing this with the original output in which we applied the Gini index,
we see that further splits of nodes 2, 6 and 7 are no longer included. This
is due to the fact that splits at these nodes all result in daughter nodes that
contain less than the required number of observations, given by minbucket=50.
We return to consideration of additional options for the rpart() function in
subsequent examples. �

Quantitative trait

Now suppose the trait or outcome of interest is a quantitative measure of
disease progression. In this case, the most commonly used measure of node
impurity is the average sum of squared deviations from the mean, also referred
to as the mean square error (MSE) and given by

I(Ω) =
1
nΩ

∑
i∈Ω

(yi − ȳ)2 (6.13)

where ȳ is the mean trait across our sample. Notably, this is the same
as the least squares criterion used to find coefficient estimates in a lin-
ear regression, as described in Section 2.2.3. For a given binary split, the
impurities for the left and right daughter nodes are given respectively by
I(ΩL) = 1/nL

∑
i∈ΩL

(yi − ȳL)2 and I(ΩR) = 1/nR
∑
i∈ΩR

(yi − ȳR)2, where
ȳL and ȳR are the corresponding mean responses and nL and nR are the sam-
ple sizes in ΩL and ΩR, respectively. An example of fitting a regression tree
is given below.

Example 6.3 (Generating a regression tree). Consider the Virco data of Ex-
ample 6.2 and again suppose we are interested in identifying mutations in
the protease region that are associated with a difference in IDV and NFV fold
resistance. In this case, we define a quantitative trait as the difference in these
two values:

> attach(virco)

> Trait <- NFV.Fold - IDV.Fold

Using the VircoGeno matrix created in Example 6.2, we fit a regression tree
as follows:

> library(rpart)

> RegTree <- rpart(Trait~., method="anova", data=VircoGeno)

> RegTree
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n=976 (90 observations deleted due to missingness)

node), split, n, deviance, yval

* denotes terminal node

1) root 976 6437933.00 4.288320

2) P54>=0.5 496 1247111.00 -3.916935

4) P46>=0.5 338 343395.20 -10.567160 *

5) P46< 0.5 158 856789.90 10.309490

10) P58< 0.5 144 110944.10 2.570139 *

11) P58>=0.5 14 648503.60 89.914290 *

3) P54< 0.5 480 5122921.00 12.767080

6) P73< 0.5 422 145579.90 5.706635 *

7) P73>=0.5 58 4803244.00 64.137930

14) P35< 0.5 45 26136.17 8.171111 *

15) P35>=0.5 13 4148242.00 257.869200 *

Notably here we specify method="anova", although this is the default for a
numeric trait. Based on this output, we again see that n=976 observations con-
tributed to this analysis. In this setting, yval corresponds to the mean trait or
predicted value for observations within the corresponding node. For example,
at the root node, the mean difference in NFV and IDV fold resistance is 4.29.
Among sequences that are mutant at P54, this mean difference is −3.92, while
sequences that are wildtype at P54 are predicted to have a difference of 12.77.
The deviance is defined as the sum of the squared differences between the
observed trait and the predictive value over all observations within the cor-
responding node. Dividing this quantity by the within-node value of n yields
I(Ω) of Equation (6.13). �

6.1.3 Defining inputs

In Section 6.1.2 above, we focus on settings in which the predictor variables
are binary. More generally, in the genetic association setting, we have a set
of potential genetic predictor variables that are categorical as well as several
clinical and demographic covariates that are categorical and continuous. The
covariates could be, for example, gender, smoking status, race, weight, height,
etc. In this section, we begin by describing how multilevel categorical and
continuous variables are handled as inputs in a binary splitting tree. We then
give specific attention to covariates and how to incorporate them into tree
fitting when the primary interest is in relating genotypes and a trait. Finally,
we consider composite input variables and discuss model interpretation.

Nominal and ordinal predictors

As described above, the tree-fitting methodology searches through the set of
all predictor variables to identify the one that maximizes the reduction in node
impurity. If a potential predictor x is binary, then there is one possible split of
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individuals into the two daughter nodes based on the value of x. Specifically,
those individuals with x = 1 go to one daughter node, say ΩL, and individuals
for whom x = 0 go to the second node, ΩR. Now let us consider the setting
in which x is nominal, taking on the values 1, . . . ,m. In this case, there are
m∗ =

(
m
2

)
= m(m−1)/2 ways of organizing individuals into two groups based

on the value of x. For example, if m = 3, we have the following possible splits:

(1) i ∈

{
ΩL if x ∈ [1]
ΩR if x ∈ [2, 3]

(2) i ∈

{
ΩL if x ∈ [1, 2]
ΩR if x ∈ [3]

(3) i ∈

{
ΩL if x ∈ [1, 3]
ΩR if x ∈ [2]

(6.14)

Note that we do not distinguish between (1) above and

(4) i ∈

{
ΩL if x ∈ [2, 3]
ΩR if x ∈ [1]

(6.15)

since the direction of the split is irrelevant. Thus, for m = 3 we have m∗ = 3
possible splits given by Equation (6.14). We see that the number of possible
splits, m∗, increases rapidly with m. The CART algorithms consider all of
these possible splits for each of the potential predictors in choosing the best
split. Notably, it is important in constructing a tree in R to specify whether
a predictor variable is indeed nominal or in fact ordinal.

For an ordinal predictor x that takes on m levels, only m − 1 splits are
considered. These are given by

(1) i ∈

{
ΩL if x ∈ [1]
ΩR if x ∈ [2, . . . ,m]

(2) i ∈

{
ΩL if x ∈ [1, 2]
ΩR if x ∈ [3, . . . ,m]

...

(m− 1) i ∈

{
ΩL if x ∈ [1, . . . ,m− 1]
ΩR if x ∈ [m]

(6.16)

The approach to continuous predictors is similar to that for ordinal variables.
Consider for example that we want to include the continuous variable age as
a potential predictor in our tree-fitting procedure. We begin by sorting the
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values of this variable from smallest to largest (or largest to smallest). All
splits into two groups based on this ordered variable are then considered. In
the following example, we illustrate generation of a regression tree for both
ordinal and categorical inputs.

Example 6.4 (Categorical and ordinal predictors in a tree). In this example,
we consider SNPs within the resistin gene and their association with the
percentage change in non-dominant arm muscle strength using the FAMuSS
data. Treating the SNPs as three-level categorical variables, we fit a regression
tree as follows:

> attach(fms)

> Trait <- NDRM.CH

> library(rpart)

> RegTree <- rpart(Trait~resistin_c30t+resistin_c398t+

+ resistin_g540a+resistin_c980g+resistin_c180g+

+ resistin_a537c, method="anova")

> RegTree

n=611 (786 observations deleted due to missingness)

node), split, n, deviance, yval

* denotes terminal node

1) root 611 665669.4 52.85352

2) resistin_c980g=CC,CG 510 491113.4 51.23314 *

3) resistin_c980g=GG 101 166455.3 61.03564 *

Based on this output, we see that resistin c980g is the most predictive
variable of NDRM.CH. Individuals who have the CC or CG genotypes have a
predicted percentage change of 51.2, while individuals having the GG genotype
have a predicted value of 61.0. This approach considers all splits of the three-
level genotype variables into two groups. For example, for resistin 980g, we
consider all three possible splits, given by

(1) =

{
ΩL if resistin c980g ∈ (CC,CG)
ΩR if resistin c980g ∈ (GG)

(2) =

{
ΩL if resistin c980g ∈ (CC)
ΩR if resistin c980g ∈ (CG,GG)

(3) =

{
ΩL if resistin c980g ∈ (CG)
ΩR if resistin c980g ∈ (CC,GG)

(6.17)

Alternatively, we can treat genotype variables as ordinal. In this case, we
only consider splits (1) and (2) above. In order to do this in our tree-fitting
procedure, we define them as numeric variables as follows:
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> RegTreeOr <- rpart(Trait~as.numeric(resistin_c30t)+

+ as.numeric(resistin_c398t)+as.numeric(resistin_g540a)+

+ as.numeric(resistin_c980g)+as.numeric(resistin_c180g)+

+ as.numeric(resistin_a537c), method="anova")

> RegTreeOr

n=611 (786 observations deleted due to missingness)

node), split, n, deviance, yval

* denotes terminal node

1) root 611 665669.4 52.85352

2) as.numeric(resistin_c980g)< 2.5 510 491113.4 51.23314 *

3) as.numeric(resistin_c980g)>=2.5 101 166455.3 61.03564 *

In this case, the interpretation of the output is the same, though we see
that now splits are defined according to whether the numeric version of
resistin c980g, which takes on the values 1, 2 and 3, is above or below
a given threshold. �

The decision to include a variable as ordinal or nominal depends on prior
knowledge about the effects of these variables on the trait. For example, sup-
pose we are considering a quantitative trait Y and a genotype that takes on
the values AA, AT and TT . There may be some prior scientific knowledge
that suggests having one copy of the variant allele, T , cannot be more ex-
treme than having two copies of T in terms of increasing or decreasing Y . In
this case, treating the genotype as an ordinal predictor, so that the possible
nodes are defined by (AA,AT ) and (TT ) or (AA) and (AT, TT ), makes the
most sense. On the other hand, if no prior knowledge is available, we may also
want to consider the split into nodes defined by (AA, TT ) and (AT ).

Approaches to covariates

There are several different approaches to handling clinical and demographic
variables in the context of fitting a tree to data arising from a genetic associ-
ation study. The first and simplest approach is just to ignore the covariates.
That is, we can fit a tree to the trait based only on the genotype variables and
without regard to the covariate information. This approach is similar to fitting
an unadjusted regression model and in many instances can provide valuable
information about disease etiology. The reasonableness of this approach, how-
ever, depends on the true underlying model structure, which is generally not
known.

For example, suppose the covariate of interest is in the causal pathway
between the genotypes under investigation and the disease outcome. One ex-
ample of this might be an investigation of several SNPs and cardiovascular
disease (CVD), where the measured covariate is body mass index (BMI). In
this case, ignoring information about BMI may be reasonable since ultimately
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we are interested in identifying the genetic predictors of disease. On the other
hand, if the covariate is an effect modifier, then ignoring it can result in a
loss of power to detect true associations. For example, suppose the covariate
is exposure to a specific drug, call it Chemical X. It is conceivable that the
SNPs under investigation are predictive of CVD among individuals on Chem-
ical X but the genotype effects are negligible or even in the reverse direction
among individuals that are not exposed to this chemical. In this case, ignor-
ing information on the covariate may lead us to conclude that SNPs are not
informative when in fact they are predictive within specific strata.

Alternatively, we can include the covariates along with the genotype vari-
ables as potential predictors in the model-fitting procedure. That is, sup-
pose Z = (z1, . . . , zm) represents the set of measured covariates, and let
X = (x1, . . . ,xp) be genotype variables. This approach involves searching
through the combined set (Z,X) to identify the best splitting variable at each
node of the tree. This approach may offer an advantage over ignoring the co-
variates if in fact the covariates are effect modifiers or some form of conditional
association exists. Returning to the example above, if exposure to Chemical
X is independently predictive of CVD, then the tree may first split on this
variable. Subsequent splits are then conditional on exposure and the geno-
type variables would likely emerge within the exposed nodes. This approach
is preferable if there is potential for complex structure, such as conditional
associations, that is not known prior to model fitting.

Another approach is to stratify the sample prior to fitting the tree. If we
know that the genotype effects are potentially different for certain levels of a
factor variable, then this approach tends to be preferred. The advantage of a
stratified analysis over including the factor variable as a potential predictor is
that the variable does not need to be more predictive than the other predic-
tor variables in order to be considered. Recall that the tree-splitting approach
splits first on the most predictive variable. If our factor variable does not
meet this requirement, then we may not discover these within-strata associa-
tions by simply including the variable as a potential predictor. On the other
hand, if there is no prior knowledge about the structure of these conditional
associations, then including the variables as predictors can help lead to these
discoveries.

Finally, we can regress the trait on the covariates and then use the residuals
from this model-fitting procedure as the outcome in fitting our tree. Again
suppose our covariates are given by the design matrix Z = (z1, . . . , zm) and we
have a continuous trait y. This approach begins by fitting the multivariable
model

y = α+ Zβ + ε (6.18)

Interaction terms among the covariates can also be included in the model
above. Suppose the final model design matrix is given by Z∗ = (z1, . . . , zr)
and the least squares estimate of the corresponding parameter vector is given
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by β̂∗. The fitted values of y from this model fit are then given by ŷ = Z∗β̂∗

and the corresponding residuals are denoted r = ŷ−y. We now let ỹ = r and
fit a tree with this new response variable and all of the genotype variables
as predictors. The interpretation of the findings from this final approach will
differ from those of the previous approaches. Specifically, in this case our tree
includes the genotype variables that are predictive of the trait after taking
out the effects of all of the covariates. That is, these variables capture in-
formation of the residual variability in y after accounting for the covariates.
This approach may be optimal in the presence of confounding, though further
research in this area is warranted.

Composite predictors

It is important to recognize that the tree structure allows discovery of a specific
form of conditional association but is not well suited for discovering all types
of associations. One subtle but important concept is that the tree algorithm is
not searching specifically for statistical interaction; rather, classification and
regression trees aim to identify conditional association. Consider for example
a setting in which there is a relatively strong independent effect of a binary
variable x1 on y such that the first split of our tree is on this variable. Now
suppose that there is a statistical interaction between x1 and x2 so that the
difference in the effect of x2 on y between x1 = 1 and x1 = 0 is given by the
constant parameter γ > 0. Further suppose there is a predictor variable x3

that has the same effect on y for both levels of x1 and x2. Formally, we write
this as a multivariable model given by

y = β0 + β1x1 + β2x2 + β3x3 + γx1 ∗ x2 + ε (6.19)

After our first split on x1, this model is expressed equivalently as:

y =


β0 + β1 + (β2 + γ)x2 + β3x3 + ε for x1 = 1

β0 + β2x2 + β3x3 + ε for x1 = 0
(6.20)

Now, suppose β3 > β2 + γ and hence β3 > β2 since we assumed γ is positive.
In this case, the second split from both daughter nodes will likely be based
on the value of x3 and not x2 even though only x2 interacts, in a statistical
sense, with x1. That is, the conditional association is more relevant than the
existence of a statistical interaction.

Another important aspect of the tree methodology is that in its original
formulation it splits on a single variable. Thus, if polymorphisms at each of
two genetic loci have an effect on the trait but neither SNP is independently
predictive, the tree model may not uncover this association. One approach to
addressing this limitation is to create composite predictor variables based on
combinations of SNPs. For example, suppose again that there are two binary
predictors, x1 and x2. One approach is to create the new nominal variable
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x(1,2) that is simply a summary of the information in x1 and x2. For example,
we can define

x(1,2) =


1 for x1 = 1,x2 = 1
2 for x1 = 1,x2 = 0
3 for x1 = 0,x2 = 1
4 for x1 = 0,x2 = 0

(6.21)

If indeed there is statistical interaction between x1 and x2, then the tree-
fitting algorithm is likely to split individuals into ΩL = {i : x(1,2),i ∈ [1]}
and ΩR = {i : x(1,2),i ∈ [2, 3, 4]}. Interestingly, this will occur whether or not
there are main independent effects of x1 and x2. On the other hand, if there
are simply additive effects of x1 and x2, then the first split will be ΩL =
{i : x(1,2),i ∈ [1, 2]} and ΩR = {i : x(1,2),i ∈ [3, 4]}. The second splits from
both ΩL and ΩR will be x(1,2) as well. Alternative composite variables, such as
may result from applying a clustering algorithm to the genotype data, are also
tenable. This general approach is called patterning and recursive partitioning
(PRP) and is closely related to multifactor dimensionality reduction (MDR)
and the computational partitioning method (CPM). For additional details,
see Foulkes et al. (2004), Ritchie et al. (2001) and Nelson et al. (2001).

6.2 Optimal trees

In the previous section, we focused on methods for building a tree. In general,
the resulting tree needs to be pruned back into a smaller tree in order to
apply more generally to another sample of data from the same population.
As we include more splits in the tree, the resulting misclassification rate or
mean square error will in general improve. However, at a certain point, these
splits are only relevant to the sample of data under consideration and will not
serve as an improvement in prediction for the population as a whole. This is
similar to the overfitting problem in a regression setting. Recall that including
additional variables in a regression will always improve the MSE; however, the
model with all variables is generally not the optimal model. The best model is
chosen based on the likelihood ratio test or a related procedure that accounts
for the certainty that a variable is truly predictive.

For this reason, once we build a tree, it is important to determine the
optimal subtree. This subtree will be a portion of the original tree and will
provide the best fit to data arising from the general population from which
our sample data were drawn. Extensive discussions of pruning techniques and
the rationale behind different approaches is provided in Breiman et al. (1993)
and Zhang and Singer (1999). Here we focus on two aspects of the pruning
process. First, we discuss a method for arriving at honest estimates of error
associated with a tree and then we describe cost-complexity pruning.
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6.2.1 Honest estimates

Any tree we construct has an associated error that provides a measure of how
well the tree predicts the observed data. Formally, the overall error associated
with a tree T , also referred to as tree impurity , is given by

R(T ) =
∑
τ∈T̃

π(τ)× r(τ) (6.22)

where T̃ is the set of all terminal nodes in T , π(τ) is the probability of
belonging to the node given by τ , and r(τ) is a corresponding measure of error
for this node. In the classification setting, this within-node error is given by the
misclassification rate, while in the regression setting, r(τ) is the mean square
error. One estimate of this error, commonly referred to as the resubstitution
estimate, is based simply on resubstituting the original data into the tree
and calculating the corresponding quantities. As described above, inclusion
of additional splits in a tree will always improve this resubstitution estimate
of the error. In identifying SNPs associated with a disease trait, however, we
want to ensure that an association is not simply a chance finding specific to
the sample of data under consideration. To achieve this, we seek an honest
estimate of the error, defined as one that applies to any sample taken from
the population of interest.

Tenfold cross-validation (CV) is one approach that can be applied to arrive
at an honest estimate of the error associated with a tree, T . This involves
dividing the individuals in our sample into ten approximately equal parts. Let
these subsets be denoted Li for i = 1, . . . , 10. For each i, a tree is constructed
based on the 9/10 of the data excluding Li, which we denote L−i and call
the learning sample. The error resulting from running the individuals in Li,
called the test sample, through the tree is then recorded. Let the resulting
error be denoted Rts(T−i). An honest estimate of the error is then given by
the average of the test sample errors over all i = 1, . . . , R:

RCV (T ) =
1
10

∑
i

Rts(T−i) (6.23)

Note that this is an estimate of the error associated with the tree T con-
structed based on the entire sample, L1 ∪ L2 ∪ . . . ∪ L10.

6.2.2 Cost-complexity pruning

Choosing the right-sized tree is a critical aspect of applying the CART
methodology. One approach to identifying such a tree involves first defin-
ing a measure of tree cost complexity, which takes into account both the error
associated with the tree and the number of terminal nodes, called the size, of
the tree. Formally, the cost complexity is given by
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Rα(T ) = R(T ) + α|T | (6.24)

where R(T ) is defined in Equation (6.22), |T | is the size of the tree T and
α ≥ 0 is termed the complexity parameter. Here the idea is that we are adding
a penalty for the number of nodes in the tree since additional nodes can make
the tree more difficult to interpret. Identifying a right-sized tree is achieved
through a pruning process that involves searching through subtrees to find
the one that minimizes the cost complexity. Here a subtree of T is defined as
a portion of T that excludes a given node and all offspring of that node. The
search process is simplified by a theorem given by Breiman et al. (1993) that
states that for a given value of the cost-complexity parameter, α, there is a
unique smallest subtree of T that minimizes Rα(T ).

For a given internal node τ , we define R(τ) to be the error associated with
node τ and let R(Tτ ) equal the sum of errors associated with all terminal nodes
that are offspring of τ . There is a single value of α for which the corresponding
cost complexities, Rα(τ) and Rα(Tτ ), for these two nested trees are equal. This
is given by

ατ =
R(τ)−R(Tτ )
|Tτ | − 1

(6.25)

Notably, for α such that α ≥ ατ , the subtree with terminal node τ is preferred
to the tree that includes all offspring of τ . In order to arrive at an optimal
set of nested subtrees, we begin by letting α(1) be the minimal ατ over all
internal nodes τ . This node is referred to as the weakest link in the tree. The
first pruned subtree is then defined as the tree that converts all nodes τ to
terminal nodes if ατ ≤ α(1). It is in the application of a cross-validation pro-
cedure, as described below, that multiple nodes may meet this criterion. This
subtree, denoted Tα(1) , is now treated as the full tree, and ατ corresponding
to each internal node is again recorded. That is, we recalculate the errors,
R(τ) and R(Tτ ), for each internal node τ of Tα(1) and again solve for ατ using
Equation (6.25). Now we define α(2) as the smallest ατ over internal nodes of
Tα(1) and define the second pruned subtree as above. This process is repeated
until we arrive at a nested set of optimal subtrees given by

Tα(m) ⊂ Tα(m−1) ⊂ . . . ⊂ Tα(1) ⊂ T (6.26)

and a corresponding sequence of complexity parameters

α(m) > α(m−1) > . . . > α(1) > 0 (6.27)

The best subtree is the one that minimizes the true error associated with
the tree. As described in Section 6.2.1, an honest estimate of this error is
arrived at through application of a cross-validation procedure. Here we de-
scribe how to apply this procedure in the context of cost-complexity pruning.
As in Section 6.2.1, we begin by dividing our sample into ten groups of ap-
proximately equal size and denote these Li for i = 1, . . . , 10. For each leaning
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sample, L−i, we determine the optimal set of subtrees based on the original
complexity parameters, α(1), . . . , α(m), that were derived using the entire set
of data. An estimate of the error associated with each of these subtrees is then
calculated using the test sample, Li. The average error over the i = 1, . . . , 10
cross-validations is then determined for each α(k) and denoted RCV (Tα(k)).
This serves as an honest estimate of the error associated with the subtree
Tα(k) from the full data. Finally, the last step accounts for the variability in
the estimated error. Let sek denote the standard error of RCV (Tα(k)), and
suppose RCV is minimized for α(k∗). Since this error can be large, we select
the best tree as the smallest tree such that the cross-validated estimate of
error is within the interval[

RCV (Tα(k∗))− sek∗ , R
CV (Tα(k∗)) + sek∗

]
(6.28)

An illustration of cost-complexity pruning is provided in the following exam-
ple.

Example 6.5 (Cost-complexity pruning). In this example, we aim to charac-
terize the association between mutations in the protease region of the viral
genome and APV fold resistance based on the Virco data. Rather than di-
chotomizing the genotype data, as we did in Example 6.2, this time we use
complete information on the observed amino acids at each site. We begin with
the following code to generate a tree:

> attach(virco)

> VircoGeno <- data.frame(virco[,substr(names(virco),1,1)=="P"])

> library(rpart)

> Tree <- rpart(APV.Fold~.,data=VircoGeno)

> Tree

n=939 (127 observations deleted due to missingness)

node), split, n, deviance, yval

* denotes terminal node

1) root 939 356632.300 12.946540

2) P54=-,A,L,MI,S,T,TI,TS,V,VA,VI,VIM,VL,X 889 237601.200 10.726550

4) P46=-,ILM,IM,LM,LMI,MI,MIL,ML,V,VIM,X 481 44960.940 4.506653

8) P54=-,T,TI,TS,VI,X 342 4475.893 1.980702 *

9) P54=A,L,MI,S,V,VA 139 32934.020 10.721580

18) P89=-,M,ML 132 24074.510 9.125000

36) P82=-,A,AT,AV,S,T,TS 122 15185.570 7.560656 *

37) P82=C,F,M,TA 10 4948.009 28.210000 *

19) P89=I,V,VL 7 2178.014 40.828570 *

5) P46=I,L,LI,LIM,VL 408 152093.900 18.059310

10) P47=- 340 107235.300 15.332650

20) P84=-,VI 232 56131.660 11.931900

40) P50=-,L 214 37976.750 10.106540
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80) P33=-,I,LF,M,V 167 15681.720 7.290419 *

81) P33=F,FL,IL,MIL 47 16264.770 20.112770 *

41) P50=V 18 8964.740 33.633330 *

21) P84=A,V,X 108 42656.790 22.637960

42) P91=-,A,N,ST,Z 101 34293.240 20.867330

84) P76=- 92 25472.030 18.966300 *

85) P76=V 9 5090.080 40.300000 *

43) P91=S,SA 7 3478.089 48.185710 *

11) P47=A,V,VI 68 29691.790 31.692650

22) P20=-,M,RK,T,TI,TK,VI 35 7891.207 23.125710 *

23) P20=I,R,V 33 16507.440 40.778790

46) P53=L,LF 13 4679.171 26.661540 *

47) P53=- 20 7553.350 49.955000 *

3) P54=LI,M,MIL,VM 50 36749.950 52.418000

6) P20=-,M,R,TK,V 33 21075.000 43.024240

12) P46=- 11 5723.236 20.881820 *

13) P46=I,IM,V,VI 22 7262.030 54.095450 *

7) P20=I,QK,RK,T,VI 17 7110.222 70.652940 *

Pruning this tree involves determining a cost-complexity parameter value.
We do this by considering the output of the printcp() function. A visual
representation is given by applying the plotcp() function similarly and is
illustrated in Figure 6.3:

> plotcp(Tree)

> printcp(Tree)

Regression tree:

rpart(formula = APV.Fold ~ ., data = VircoGeno)

Variables actually used in tree construction:

[1] P20 P33 P46 P47 P50 P53 P54 P76 P82 P84 P89 P91

Root node error: 356632/939 = 379.8

n=939 (127 observations deleted due to missingness)

CP nsplit rel error xerror xstd

1 0.230717 0 1.00000 1.00245 0.080943

2 0.113693 1 0.76928 0.80572 0.066653

3 0.042528 2 0.65559 0.69204 0.058295

4 0.024727 3 0.61306 0.68130 0.057954

5 0.024016 5 0.56361 0.69880 0.060721

6 0.022684 6 0.53959 0.69188 0.061341

7 0.021173 7 0.51691 0.69536 0.061128

8 0.018735 8 0.49574 0.68929 0.061072

9 0.016909 9 0.47700 0.67763 0.060596

10 0.014842 10 0.46009 0.66358 0.058020

11 0.013699 11 0.44525 0.66136 0.058263

12 0.011987 12 0.43155 0.66654 0.058662
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Fig. 6.3. Cost-complexity pruning for Example 6.5

13 0.011050 13 0.41956 0.66042 0.058219

14 0.010462 14 0.40851 0.65628 0.058176

15 0.010000 15 0.39805 0.65099 0.057866

Based on the output and figure, we see that the cross-validated error begins to
increase between three and five splits, corresponding to four and six terminal
nodes. We therefore want to select the tree with four terminal nodes. This is
achieved using the prune() function and specifying, in this example, cp=0.03
as follows:

> pruneTree <- prune(Tree,cp=.03)

> pruneTree

n=939 (127 observations deleted due to missingness)

node), split, n, deviance, yval

* denotes terminal node

1) root 939 356632.30 12.946540

2) P54=-,A,L,MI,S,T,TI,TS,V,VA,VI,VIM,VL,X 889 237601.20 10.726550

4) P46=-,ILM,IM,LM,LMI,MI,MIL,ML,V,VIM,X 481 44960.94 4.506653 *

5) P46=I,L,LI,LIM,VL 408 152093.90 18.059310

10) P47=- 340 107235.30 15.332650 *
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11) P47=A,V,VI 68 29691.79 31.692650 *

3) P54=LI,M,MIL,VM 50 36749.95 52.418000 *

In this example, we see that many of the splits in the original tree are chance
findings. Application of cost-complexity pruning allows us to arrive at a tree
that is likely to reduce error in an independent test sample. �

Problems

6.1. Describe in words the motivation for cost-complexity pruning.

6.2. Using the Virco data, construct and prune a classification tree to deter-
mine whether any mutations within the protease region of the viral genome
are associated with greater APV fold resistance than IDV fold resistance. Here
define the trait as an indicator variable for APV.fold > IDV.fold. Explain
your findings.

6.3. Using the Virco data, construct and prune a regression tree to determine
whether any mutations within the protease region of the viral genome are
associated with a difference in APV and IDV fold resistance. Here define the
trait as APV.fold-IDV.fold. Explain your findings.

6.4. Describe three different approaches to handling covariates in fitting a
classification or regression tree. Give a setting in which one approach may be
preferable.

6.5. Fit a regression tree to the FAMuSS data using SNPs within the actn3
and resistin genes as potential predictor variables and change in non-
dominant arm muscle strength, as measured by NDRM.CH, as the dependent
variable. Fit the tree with and without Race as a potential predictor in the
model. Interpret your findings.
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Additional Topics in High-Dimensional Data
Analysis

In this chapter, we describe several additional approaches that are well suited
to high-dimensional data settings. Three of these, namely random forests
(RFs) (Section 7.1), logic regression (Section 7.2) and multivariable adaptive
regression splines (MARS) (Section 7.3), extend the tree framework outlined
in Chapter 6. Random forests were originally proposed by Breiman (2001),
and logic regression was first described by Kooperberg et al. (2001), Ruczinski
et al. (2003) and Ruczinski et al. (2004). A complete description of the MARS
methodology can be found in Friedman (1991). We also present a brief descrip-
tion of Bayesian variable selection (Section 7.4), with particular emphasis on
fundamental concepts that will guide the reader in further explorations. Addi-
tional readings on Bayesian variable selection methods and related extensions
include George and McCulloch (1993), Chipman et al. (1998), Brown et al.
(2002), West (2003), Lunn et al. (2006) and Hoggart et al. (2008), among oth-
ers. Bayesian variable selection approaches are becoming increasingly popular
in the analysis of high-throughput genotype data for identifying sets of SNPs
that are associated with the trait under investigation. Finally, we end with a
listing of several alternative high-dimensional data tools and their sources that
may provide additional insight in characterizing genotype–trait associations
(Section 7.5).

Random forests are comprised of an ensemble of trees, and with their
application we see a notable paradigm shift from characterizing the struc-
ture of association to quantifying the importance of variables. Logic regres-
sion, on the other hand, provides us with clear rules of association similar to
CART, though these can be more complex and challenging to interpret bio-
logically. Use of variable importance scores in logic regression, as described in
Kooperberg and Ruczinski (2005) and Schwender and Ickstadt (2008a) and
in the original formulation of random forests, may similarly serve as a use-
ful application of this approach. In this chapter, we focus on the application
of these methods as an exploratory tool for identifying SNP–trait associa-
tions warranting further investigations. Assessing the statistical significance
of variable importance measures arising from machine learning algorithms has
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received recent attention in the literature, and the advanced reader is referred
to van der Laan (2006) for a discussion. Multivariable adaptive regression
splines (MARS) involve a recursive partitioning algorithm similar to the one
we saw in Chapter 6 while offering some additional advantages in the context
of alternative models of association. This approach was originally formulated
in the context of continuous predictor variables but performs reasonably well
for categorical inputs. As we will see below, the output of MARS includes
information on both the set of variables that explain variability in the trait
and the nature of their association. Finally, while there are several advanced
Bayesian variable selection approaches, the methodology presented in this
chapter provides for determining a group of potentially relevant predictor
variables, with less emphasis on the precise structure of association.

The methods presented herein are broadly referred to as machine learning
approaches, as they involve computationally intensive algorithms for min-
ing high-dimensional data. The choice of methods is based on their intuitive
appeal, their solid analytic grounding and their growing popularity in the sci-
entific literature for the analysis of SNP–trait associations. This presentation
is not intended to provide a comprehensive overview of data-mining meth-
ods, as offered, for example, in Hastie et al. (2001). Instead, we describe a
few key approaches and their specific applications to population-based asso-
ciation studies as a means of introducing the reader to the inherent value of
more sophisticated, non-standard approaches to analysis.

7.1 Random forests

Random forests (RFs) represent an extension of CART that involves gen-
erating an ensemble of classification or regression trees. This set of trees is
constructed in a manner that addresses some of the limitations of CART. Most
notably, through repeated sampling of sets of predictor variables at the tree-
splitting stage, RFs offer a natural approach to handling collinearity among
SNPs. Unlike in the CART setting, RFs do not yield a clear structure for the
final model of association; i.e., we do not generate a final tree that can be
interpreted as a model for the genotype–trait association. Instead, a measure
of variable importance resulting from application of the approach provides us
with a general measure of the contribution of each potential predictor variable
to the observed variability in the trait under investigation. Further details on
this approach can be found in Breiman (2001), with an application to human
genotype data given in Bureau et al. (2005) and an application to HIV ge-
netic data provided in Segal et al. (2004). In this section, we focus primarily
on methods for generating a random forest and variable importance scores
(Section 7.1.1) as well as missing data considerations (Section 7.1.2). A brief
discussion of how to handle covariates is also provided (Section 7.1.3), though
the reader is referred to Section 6.1.3 for a more thorough discussion of how
to handle varying types of inputs.



7.1 Random forests 183

7.1.1 Variable importance

We begin by reviewing our notation. Let X = (x1, . . . ,xp) be the set of
p potential predictor variables, where xp = (x1p, . . . , xnp)T , and suppose y
is the trait under investigation, where n is the number of individuals in our
sample. Recall that in Chapter 6 we defined several measures of node impurity
that describe the deviations of the observed data from the predicted value
within a node, where a node is defined based on the observed values of X
(see Equations (6.7), (6.10) and (6.13)). For example, in the context of a
quantitative trait, the most common measure of node impurity is given by
the mean square error (MSE), formalized for a node Ω by

I(Ω) =
1
nΩ

∑
i∈Ω

(yi − ȳ)2 (7.1)

where nΩ is the number of individuals in node Ω and ȳ is the mean of the
corresponding elements of y. In this setting, the best split is the one that
maximizes the reduction in node impurity, given by

φ = I(Ω)− I(ΩL)− I(ΩR) (7.2)

where ΩL and ΩR are the left and right daughter nodes of Ω, respectively.
A step-by-step summary of the RF algorithm is given in Algorithm 7.1

below. In the first step of the algorithm, we randomly select approximately
two-thirds of our sample. This is called the learning sample (LS) since it is
used to grow an initial tree. The remaining individuals constitute the out-of-
bag (OOB) data and are used to evaluate how well the tree applies to data
that were not used to generate it. Note that the concept of OOB data is
similar to test-sample data. In the second step of the algorithm, we grow a
tree based on the LS data. Here the methodology of Chapter 6 is applied, with
two notable departures. First, in the context of RFs, we fit an unpruned tree.
Recall that pruning is an important aspect of the tree-fitting methodology
that ensures applicability of the findings to alternative samples from the same
population, as presented in Section 6.2. Evaluating the relative importance of
each predictor variable in independent test samples is instead incorporated in
step 3 of the algorithm.

The second notable difference in fitting the tree at this stage is that for
each node only a subset of the variables are considered as potential predictors.
That is, instead of determining the best split among all potential predictors, a
random sample of these variables (typically about a third of the variables) are
considered as potential splitting variables. A primary advantage of drawing a
random subset of potential predictor variables at each node is that it offers
a natural approach to handling collinearities in the data. Consider the case
in which two SNPs are in high linkage disequilibrium. If a tree splits on one
of these two SNPs, then there may be insufficient variability in the second
SNP among individuals in the resulting daughter nodes to split additionally
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on this SNP. Consideration of surrogate splits in the usual CART framework
allows us to investigate this phenomenon. In the forest setting, by taking a
subset of the SNPs, the expectation is that in some instances the first of
two correlated SNPs will be chosen as a potential predictor, while in other
instances the second SNP will be selected. In theory, the resulting variable
importance scores will then reflect the contribution of each SNP.

The next step of the algorithm involves using the OOB data to evaluate the
importance of each potential predictor variable. First, the overall tree impurity
is measured by running the OOB data through the tree. Tree impurity is
defined simply as the sum of impurity measures over all terminal nodes of
the tree. Variable importance is calculated for each potential predictor as
the difference between this impurity and the overall tree impurity when the
corresponding predictor variables are permuted. Conceptually, the idea here
is that permuting the value of an unimportant variable will lead to no change
in the overall tree impurity, while permuting an influential variable will lead
to an increase in the overall impurity measure. Finally, as noted in steps 4
and 5 of the algorithm, each of the steps just described are repeated multiple
times and the average importance scores are recorded for each variable.

Algorithm 7.1: Random Forests: We begin by initializing b = 1.

1. Randomly sample with replacement n1 (approximately equal to
2n/3) individuals, and call this the learning sample (LS). Let the
remaining n2 = n−n1 individuals represent the out-of-bag (OOB) data.

2. Using the LS data only, generate an unpruned tree by randomly
sampling a subset of the p predictors at each node to be considered as
potential splitting variables.

3. Based on the OOB data only:
a) Record the overall tree impurity, and let this be denoted πb.
b) Permute xj , and record overall tree impurity using the permuted

data for each j = 1, . . . , p. Denote this πbj and define the variable
importance for the jth predictor as δbj = πbj − πb.

4. Repeat steps (1)–(3) for b = 2, . . . , B to obtain δ1j , . . . , δBj for each j.

5. Record the overall variable importance score for x1, . . . ,xp, defined for
the jth predictor as

θ̂j =
1
B

B∑
b=1

δbj (7.3)

Fitting a random forest in R is straightforward using the randomForest
package, as following example illustrates. This package provides a standard-



7.1 Random forests 185

ized measure of variable importance, given by θ̂j/SE(θ̂j), where θ̂j is defined
in Equation (7.3) and SE(θ̂j) is the standard deviation of δbj over the B trees
divided by the square root of B. This measure is denoted %IncMSE in the R
output and referred to as the mean decrease in accuracy. Also provided in this
output is the average over the B trees of the total node impurity explained
by splits based on the corresponding variable. This is also calculated based
on the OOB data but does not involve permutations of the variables. This
latter measure is labeled IncNodePurity in the R output and referred to as
the mean decrease in node impurity.

Example 7.1 (An application of random forests). In this example, we apply
the RF approach to the Virco data, as described in Example 6.3 using the
R function randomForest() in the randomForest package. The quantitative
trait is again given by the difference in NFV and IDV fold resistance, and the
potential predictor variables are indicators for a mutation at each of the 99
amino acids in the protease region. Recall that application of the regression
tree approach in Example 6.3 yielded a tree with splits on the variables P35,
P46, P54, P58 and P73 prior to pruning. We begin by installing and loading
the randomForest package using the following commands:

> install.packages("randomForest")

> library(randomForest)

We then define the trait and a matrix of potential predictor variables, given
by Trait and VircoGeno, respectively, using the same code as in Example 6.3.
The randomForest() function does not permit missing data in the response
variable, and so we next subset our data to include only those individuals
with complete information on the trait:

> attach(virco)

> Trait <- NFV.Fold - IDV.Fold

> VircoGeno <- data.frame(virco[,substr(names(virco),1,1)=="P"]!="-")

> Trait.c <- Trait[!is.na(Trait)]

> VircoGeno.c <- VircoGeno[!is.na(Trait),]

Finally, we fit a random forest and plot the ordered variable importance mea-
sures, given by mean decrease in accuracy (%IncMSE) and mean decrease in
node impurity (%IncMSE), using the randomForest() and varImpPlot() func-
tions. Note that your output may vary slightly since the RF approach involves
randomly selecting individuals to constitute the LS data and OOB data for
each tree and randomly sampling the predictors for consideration at each split
of a tree.

> RegRF <- randomForest(VircoGeno.c, Trait.c, importance=TRUE)

> RegRF

Call:

randomForest(x = VircoGeno.c, y = Trait.c, importance = TRUE)
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Fig. 7.1. Ordered variable importance scores from random forest

Type of random forest: regression

Number of trees: 500

No. of variables tried at each split: 33

Mean of squared residuals: 5745.777

% Var explained: 12.89

> varImpPlot(RegRF)

The resulting plot is given in Figure 7.1. Here we see that the five most
important sites, as measured by the mean decrease in accuracy, are P20, P35,
P54, P73 and P94. Interestingly, P20 and P94 were not identified using the
regression tree approach of Example 6.3. It is also important to emphasize
here that the top-ranked variables are not necessarily statistically significant
predictors of the trait; rather, they represent genotype indicators that are
most predictive among those considered and are thus worthy of further in-
vestigation. Application of the getTree() allows a user to further investigate
the structure of the trees with an RF. However, remember that, depending
on which tree number is specified (given by k in the function call), the results
can vary dramatically, and so interpretation of this structure is tenuous. �
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7.1.2 Missing data methods

In the example above, the genotype data are fully observed, though in a
more general setting we expect to observe some missingness in the predictor
variables. Here we again distinguish between two general types of missing data
in the context of population genetic association studies: (1) data that were
intended to be collected but are missing and (2) unobservable data arising as
a result of ambiguity in allelic phase.

Missing genotype data

We begin by considering the setting in which we have missingness in the
SNP data with complete information on the measured trait. There are sev-
eral simple yet reasonable approaches that can be taken in this setting. If
the missingness is truly random, we can simply remove individuals from our
analysis who have missing genotype data. Practically, however, this is not al-
ways feasible since in the context of a large number of genotype variables it
is common for the majority of individuals to have missingness in at least one
of these variables.

Another approach is to replace each missing value with the genotype that
is most frequent in our sample for the corresponding SNP. Formally, we let xij
represent the genotype for individual i at SNP j and suppose xij is missing.
Suppose further that the observed alleles at site j are gj1 = AA, gj2 = Aa
and gj3 = aa, with sample proportions of π̂j1, π̂j2 and π̂j3, respectively. Single
imputation involves replacing the missing value for xij with the genotype that
is most common at this site. That is, we let

xij =
3∑
k=1

gjk × I [max (π̂j) = π̂jk] (7.4)

where I[·] is the indicator function taking on the value of 1 if its argument is
true and 0 otherwise, and max (π̂j) is the maximum over the set (π̂j1, π̂j2, π̂j3),
where we assume the three estimated proportions are not equal. Genotype
data are similarly substituted for all i and j for which xij is missing. This
step yields a single completed dataframe, as illustrated in the following ex-
ample using the na.roughfix() function within the randomForest package.
Importantly, imputing genotypes should be applied within each racial and
ethnic group separately since genotype frequencies tend to differ by these
self-declared groupings.

Example 7.2 (RF with missing SNP data—single imputation). Suppose we are
interested in characterizing association between 24 AKT1 SNPs, for which we
expect some missing data, and the change in the non-dominant arm muscle
strength before and after exercise training, using the FAMuSS data. For illus-
tration, we focus only on Caucasians and begin by defining our trait variable
and genotype matrix:
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> attach(fms)

> Trait <- NDRM.CH[Race=="Caucasian" & !is.na(Race) & !is.na(NDRM.CH)]

> NamesAkt1Snps <- names(fms)[substr(names(fms), 1, 4)=="akt1"]

> FMSgeno <- fms[,is.element(names(fms), NamesAkt1Snps)][

+ Race=="Caucasian" & !is.na(Race) & !is.na(NDRM.CH),]

Note that in the code above subjects for whom the corresponding trait infor-
mation is missing were also removed. This step is necessary since the current
implementation of random forests in R does not allow missing data on the out-
come. The dimensions of the genotype matrix tell us how many individuals
and SNPs remain under consideration:

> dim(FMSgeno)

[1] 777 24

Recall that the first element in the output above is the number of rows of the
input matrix, in our case the number of individuals, n = 777, and the second
element is the number of columns, in our case the number of SNPs, p = 24.

Using the apply() and is.na() functions, we see that there is 2–8% miss-
ingness across the 24 akt1 SNPs:

> round(apply(is.na(FMSgeno), 2, sum)/dim(FMSgeno)[1],3)

akt1_t22932c akt1_g15129a akt1_g14803t

0.069 0.067 0.021

akt1_c10744t_c12886t akt1_t10726c_t12868c akt1_t10598a_t12740a

0.071 0.075 0.071

akt1_c9756a_c11898t akt1_t8407g akt1_a7699g

0.066 0.069 0.067

akt1_c6148t_c8290t akt1_c6024t_c8166t akt1_c5854t_c7996t

0.021 0.066 0.021

akt1_c832g_c3359g akt1_g288c akt1_g1780a_g363a

0.021 0.021 0.021

akt1_g2347t_g205t akt1_g2375a_g233a akt1_g4362c

0.066 0.066 0.069

akt1_c15676t akt1_a15756t akt1_g20703a

0.021 0.021 0.021

akt1_g22187a akt1_a22889g akt1_g23477a

0.071 0.021 0.021

One approach to handling these missing data in the predictor variables is
single imputation using the na.roughfix() function of the randomForest
package as follows:

> library(randomForest)

> FMSgenoRough <- na.roughfix(FMSgeno)

In the case of factor variables, this function replaces missing data with the
most frequent value of the corresponding variable. For example, consider the
distribution of genotypes for the first SNP, given by
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> table(FMSgeno$"akt1_t22932c")

CC TC TT

3 55 665

Since the TT genotype has the highest frequency, the na.roughfix() function
replaces all missing values for akt1 t22932c with TT. The resulting output
has no missing data, as seen below:

> round(apply(is.na(FMSgenoRough), 2, sum)/dim(FMSgeno)[1],3)

akt1_t22932c akt1_g15129a akt1_g14803t

0 0 0

akt1_c10744t_c12886t akt1_t10726c_t12868c akt1_t10598a_t12740a

0 0 0

akt1_c9756a_c11898t akt1_t8407g akt1_a7699g

0 0 0

akt1_c6148t_c8290t akt1_c6024t_c8166t akt1_c5854t_c7996t

0 0 0

akt1_c832g_c3359g akt1_g288c akt1_g1780a_g363a

0 0 0

akt1_g2347t_g205t akt1_g2375a_g233a akt1_g4362c

0 0 0

akt1_c15676t akt1_a15756t akt1_g20703a

0 0 0

akt1_g22187a akt1_a22889g akt1_g23477a

0 0 0

Finally, we fit a random forest to the imputed data and print the resulting
importance scores:

> RandForRough <- randomForest(FMSgenoRough, Trait, importance=TRUE)

> RandForRough$"importance"[order(RandForRough$"importance"[,1],

+ decreasing=TRUE),]

%IncMSE IncNodePurity

akt1_t10726c_t12868c 230.835721 25870.501

akt1_t8407g 222.902558 17419.779

akt1_g14803t 131.418231 18502.134

akt1_g288c 131.128453 23422.797

akt1_a15756t 111.510235 24609.514

akt1_c6148t_c8290t 109.743902 17091.662

akt1_g15129a 105.979096 14961.767

akt1_c832g_c3359g 97.385668 11066.443

akt1_a22889g 92.513700 27341.961

akt1_g2347t_g205t 87.862083 17249.624

akt1_t10598a_t12740a 87.697216 18646.466

akt1_g22187a 74.891706 22527.999

akt1_c6024t_c8166t 66.268968 9055.988

akt1_c5854t_c7996t 57.670909 18339.356

akt1_a7699g 57.413211 7927.382
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akt1_c9756a_c11898t 49.213650 7750.871

akt1_g23477a 49.025595 20268.004

akt1_g2375a_g233a 48.220095 16762.174

akt1_c15676t 42.744631 21519.880

akt1_g4362c 34.600182 8820.092

akt1_g1780a_g363a 6.348848 3298.015

akt1_g20703a 5.970387 29753.180

akt1_c10744t_c12886t 5.111987 4074.560

akt1_t22932c -0.903492 17343.908

In the code above, we use the order() function to order the importance
scores by the %IncMSE, which is represented by the first column of the
RandForRough$"importance" matrix in our example. Again, repeated ap-
plication of this approach will likely yield slightly different results since the
RF algorithm involves random sampling. �

As noted above, this imputation approach should be applied within racial
and ethnic strata since the corresponding genotype frequencies can vary sub-
stantially. However, once an imputed genotype matrix is generated within
each racial and ethnic group, as given by FMSgenoRough for Caucasians in
the example above, the data can be recombined and subsequent analysis of
association can be performed on the combined data. That is, we can impute
genotypes within each racial and ethnic group and then combine the data
prior to fitting a random forest.

An alternative, more sophisticated approach to handling missing categor-
ical predictor variables is described in Breiman (2003) and implemented with
the rfImpute() function in the randomForest package. A primary difference
between this approach and the single-imputation approach described above is
that the approach of Breiman (2003) uses information about the trait to in-
form the SNP reconstruction. Recall that the single-imputation approach uses
only the observed genotype information to assign a value to missing genotype
data. Secondly, the Breiman (2003) approach involves repeatedly updating the
missing data. A step-by-step summary of this multiple imputation approach
is given in Algorithm 7.2 below.

The first step of this algorithm is the single-imputation approach described
above and illustrated in Example 7.2. The second step involves first fitting
a random forest using Algorithm 7.1 based on these imputed data and
subsequently determining proximity scores between all pairs of individuals.
The proximity score between any two individuals is defined as the proportion
of trees within a forest in which the corresponding pair of subjects falls into
the same terminal node. If there are n individuals in our sample, then the
proximity matrix is the n× n matrix of proximity scores between all pairs of
individuals. By definition, the diagonal elements of the proximity matrix are
equal to 1.

The third step of this approach is to replace each missing value for each in-
dividual with the value of the corresponding variable with the highest average
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proximity score. For example, suppose that after the first imputation the
proximity matrix is given by

P =


p11 p12 . . . p1n

p21 p22 . . . p2n

...
pn1 pn2 . . . pnn

 (7.5)

Further suppose xij , the genotype at the jth SNP for individual i, is missing.
At this step, we determine, within each observed level of this SNP, the average
proximity scores between individual i and all other individuals. For example,
suppose the observed genotypes for SNP j are gj1, gj2 and gg3. Then, for
k = 1, 2, 3, we calculate

p̄k =
1
nk

∑
l(l 6=i)

pil × I[xlj = gjk] (7.6)

where nk is the number of individuals with genotype gjk and I[·] is again the
indicator function. Here we are simply summing the proximity scores between
individual i and all other individuals that have genotype gjk and then dividing
by the number of such individuals. The missing data, xij , are then replaced
by the genotype level, gjk, with the maximum corresponding value of p̄k.

In the context of a continuous predictor, a weighted average of the non-
missing values is used in place of the missing data, where the weights are
equal to the proximity scores. The second and third steps of this algorithm
are repeated a prespecified number of times. Notably, a convergence criterion
is not applied to determine how many repetitions of these steps are necessary
for stability. Finally, a random forest is fit to the final set of imputed data.
This multiple-imputation approach is illustrated in the following example.

Algorithm 7.2: RF with missing SNP data—multiple imputation

1. Replace each missing genotype variable with the value of this variable
that is most frequently observed within the sample; i.e., across all
individuals.

2. Fit a random forest based on Algorithm 7.1 and determine proximity
scores for each pair of individuals.

3. Assign each missing value the value of the corresponding variable with
the highest average proximity score.

4. Repeat steps (2) and (3) multiple times.

5. Fit a random forest to the final imputed dataset.
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Example 7.3 (RF with missing SNP data—multiple imputation). Returning to
Example 7.2, suppose we are again interested in characterizing the association
between the akt1 SNPs and change in the non-dominant arm muscle strength
based on the FAMuSS data. We begin by defining our trait variable and
genotype matrix, excluding all observations with missing trait information:

> attach(fms)

> Trait <- NDRM.CH[Race=="Caucasian" & !is.na(Race) & !is.na(NDRM.CH)]

> NamesAkt1Snps <- names(fms)[substr(names(fms),1,4)=="akt1"]

> FMSgeno <- fms[,is.element(names(fms), NamesAkt1Snps)][

+ Race=="Caucasian" & !is.na(Race) & !is.na(NDRM.CH),]

Next we multiply impute the genotype data as follows. By default, iter=5
imputations are implemented and ntree=300 trees are generated per iteration.

> library(randomForest)

> FMSgenoMI <- rfImpute(FMSgeno,Trait)

| Out-of-bag |

Tree | MSE %Var(y) |

300 | 1253 110.44 |

| Out-of-bag |

Tree | MSE %Var(y) |

300 | 1236 108.96 |

| Out-of-bag |

Tree | MSE %Var(y) |

300 | 1224 107.86 |

| Out-of-bag |

Tree | MSE %Var(y) |

300 | 1227 108.15 |

| Out-of-bag |

Tree | MSE %Var(y) |

300 | 1230 108.42 |

Finally, we fit a random forest with the final imputed genotype data and print
the corresponding ordered importance scores. The first column of the output
of rfImpute() is the trait and is therefore removed in specifying the genotype
data for the randomForest() function:

> RandForFinal <- randomForest(FMSgenoMI[,-1], Trait, importance=TRUE)

> RandForFinal$"importance"[order(RandForFinal$"importance"[,1],

+ decreasing=TRUE),]

%IncMSE IncNodePurity

akt1_t10726c_t12868c 307.145703 26114.672

akt1_t8407g 265.213630 19725.956

akt1_g288c 121.367971 22595.940

akt1_a15756t 119.265290 25032.467

akt1_g15129a 118.072551 14539.725

akt1_c6148t_c8290t 112.527852 14320.644
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akt1_t10598a_t12740a 111.086340 16453.273

akt1_g14803t 109.884890 17827.457

akt1_a22889g 107.288643 29130.354

akt1_c832g_c3359g 91.884698 12015.553

akt1_g2347t_g205t 91.641632 17300.452

akt1_g22187a 77.053093 23320.635

akt1_g2375a_g233a 71.775880 21854.456

akt1_a7699g 70.866588 9456.752

akt1_c6024t_c8166t 65.666912 8284.760

akt1_c9756a_c11898t 54.905616 8634.346

akt1_g23477a 53.646350 19866.228

akt1_c5854t_c7996t 52.970776 19684.519

akt1_g4362c 45.275224 10084.659

akt1_c15676t 38.993791 21298.354

akt1_c10744t_c12886t 22.439268 12000.891

akt1_g1780a_g363a 10.307277 3639.588

akt1_g20703a 2.991968 28032.704

akt1_t22932c -1.287238 18345.782

Interestingly, the SNP with the highest importance score is given by
t10726c t12868c using this approach as well as the single-imputation ap-
proach of Example 7.2; however, the corresponding %IncMSE is greater in this
example. This may be a result of the difference in the completed data result-
ing from the two algorithms. This difference is highlighted by creating a 2× 2
table using the table() function as follows:

> table(FMSgenoMI$akt1_t10726c_t12868c,

+ FMSgenoRough$akt1_t10726c_t12868c)

CC TC TT

CC 599 0 0

TC 6 139 0

TT 24 0 9

From this output, we see that n = 24 subjects are assigned the TT geno-
type using the multiple-imputation approach that incorporates information
on the trait, while they are assigned the most frequent CC genotype using a
single-imputation. An additional n = 6 subjects are assigned the TC genotype
using multiple imputation and the CC genotype using the single imputation
approach. In this example, knowledge about the trait informs the genotype
assignment. We again note that the results may vary upon repeated applica-
tions of this procedure due to the random sampling involved in fitting random
forests. �

Missing haplotype data

Another form of missing data that arises in the context of genetic association
studies is a result of the unobservable nature of allelic phase. A discussion of
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this data-analytic challenge inherent in population-based investigations, the
importance of considering haplotypic phase, and several appropriate analytic
tools are described in detail in Chapter 5. Here we describe one approach,
termed multiple imputation and random forests (MIRF), that draws on the
approaches of Excoffier and Slatkin (1995) and Breiman (2001), as well as the
established statistical theory on multiple imputation as described in Little
and Rubin (2002). Additional details on MIRF can be found in Nonyane and
Foulkes (2007). Notably, unlike the multiple-imputation approach described
above for missing genotype data, the MIRF approach does not incorporate
information about the trait in reconstructing the missing data.

A step-by-step summary of the MIRF approach is given in Algorithm
7.3 below. The first step of this algorithm involves estimating individual-level
haplotype probabilities based on the observed genotype data. That is, for each
pair of haplotypes that is consistent with the observed genotype, we assign
a probability that this pair is indeed the true diplotype. All other haplotype
pairs have an estimated probability of zero since they are not consistent with
the observed data. Here we apply the EM approach of Excoffier and Slatkin
(1995) and described in detail in Section 5.1.1, though other approaches are
tenable.

The second step is to generate a completed dataset based on these esti-
mated posterior probabilities. To do this, we randomly sample a haplotype
pair according to the estimated probabilities derived in step 1 of the algo-
rithm. For example, suppose the observed genotype across two SNPs within a
single gene for a given individual is Aa and Bb. As discussed in Section 2.3.2,
the two possible underlying haplotype pairs for this individual are given by
H1 = (AB, ab) and H2 = (Ab, aB). Suppose the corresponding posterior prob-
abilities are estimated to be p̂1 = 0.60 and p̂2 = 0.40, respectively. At this
stage, we complete our data by sampling one of the two possible diplotypes
with probabilities p̂1 and p̂2. By repeating this for each individual within our
sample, we arrive at a completed dataset.

The third step involves fitting a random forest using the imputed data ac-
cording to Algorithm 7.1 above. The overall importance scores are recorded
for each of the predictor variables. We repeat steps 2 and 3 M times to ar-
rive at importance scores for each predictor variable across multiple imputed
datasets. The repetition allows us to capture the variability resulting from
sampling the haplotype pairs. Finally, the importance scores are then com-
bined in a manner that takes into account the variance within and between
imputations, as described in Section 5.4 of Little and Rubin (2002). Specifi-
cally, we let

θ̄j =
1
M

M∑
m=1

θ̂mj (7.7)

be the average importance score across the M imputations and define
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Tj =
(
θ̄j
)
V
−1/2
j (7.8)

where

Vj = W̄j +
M + 1
M

Bj (7.9)

is a function of the variances within (W̄j) and between (Bj) imputations,
given by

W̄j =
1
M

M∑
m=1

(smj )2 (7.10)

and

Bj =
1

M − 1

M∑
m=1

(
θ̂mj − θ̄j

)2

(7.11)

Algorithm 7.3: Multiple imputation approach to RFs with miss-
ing haplotype data: We begin by initializing m = 1.

1. Estimate posterior diplotype probabilities for each subject and for
each gene using the EM approach of Excoffier and Slatkin (1995),
as described in detail in Section 5.1.1. Denote these individual-level
probabilities by the vector rik, where i indicates individual, k indicates
gene and the elements of this vector correspond to the posterior
probabilities of the diplotypes consistent with the individual’s observed
genotype.

2. For each individual i and gene k, sample a single diplotype with
probabilities rik until a complete dataset is obtained.

3. Fit a random forest according to Algorithm 7.1 using the dataset
imputed in step (2), and record importance scores θ̂mj and correspond-
ing standard errors smj for each predictor variable xj , j = 1, . . . , p.

4. Repeat steps (2) and (3) M times, incrementing m each time, to arrive
at θ̂1

j , . . . , θ̂
M
j and s1

j , . . . , s
M
j .

5. Combine importance scores across multiple imputed datasets.

This approach is demonstrated in the following example using the mirf()
function of the mirf package in R. Again it is important to reconstruct hap-
lotypes within racial and ethnic groups since the approach of Excoffier and
Slatkin (1995) assumes HWE. We can do this by first stratifying our sample
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prior to applying this approach or by specifying the appropriate factor vari-
able in the mirf() function. It is also important to specify the genes to which
the SNPs correspond since haplotypes are defined within genes, as illustrated
in the example below.

Example 7.4 (MIRF). Suppose we are interested in determining which haplo-
types within the actn3 and resistin genes are most associated with change
in non-dominant arm muscle strength before and after muscle training using
the FAMuSS data. We begin by installing and uploading the mirf() package
and attaching the FAMuSS data:

> install.packages("mirf")

> library(mirf)

> attach(fms)

We then specify the SNPs to be used in this analysis and subset the corre-
sponding columns of the fms dataframe:

> genoSNPnames <- c("actn3_r577x","actn3_rs540874","actn3_rs1815739",

+ "actn3_1671064","resistin_c30t","resistin_c398t",

+ "resistin_g540a","resistin_c980g","resistin_c180g",

+ "resistin_a537c")

> FMSgeno <- fms[,is.element(names(fms),

+ genoSNPnames)][!is.na(NDRM.CH),]

The sepGeno function converts this genotype matrix into an object that
includes two columns for each SNP, the input for mirf() as well as the
haplo.em() function within the haplo.stats package.

> Geno <- sepGeno(FMSgeno)

Finally, we specify the trait and apply mirf() to the data with no missing
values for the trait:

> Trait <- NDRM.CH[!is.na(NDRM.CH)]

> mirf(geno=Geno$geno, y=Trait, gene.column=c(8,12),

+ SNPnames=genoSNPnames, M=10)

[1] "iteration=1"

[1] "iteration=2"

[1] "iteration=3"

[1] "iteration=4"

[1] "iteration=5"

[1] "iteration=6"

[1] "iteration=7"

[1] "iteration=8"

[1] "iteration=9"

[1] "iteration=10"

sourceGene haplotype importanceScore haplo.freq

1 actn3 CACA -0.041 0.002
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2 actn3 CACG -0.741 0.007

3 actn3 CATA 0.408 0.004

4 actn3 CATG -0.549 0.014

5 actn3 CGCA 1.557 0.48

6 actn3 CGCG -0.031 0.011

7 actn3 TATA 0.479 0.004

8 actn3 TATG 1.580 0.395

9 actn3 TGCA 1.070 0.076

10 actn3 TGCG NaN 0

11 actn3 TGTA NaN 0.001

12 actn3 TGTG -1.825 0.007

13 resistin CCACCA -0.692 0.033

14 resistin CCACCC NaN 0

15 resistin CCACGA -0.220 0.073

16 resistin CCACGC 0.374 0.007

17 resistin CCAGCA -0.785 0.006

18 resistin CCAGGA 0.277 0.001

19 resistin CCAGGC 0.649 0.001

20 resistin CCGCCA 0.703 0.25

21 resistin CCGCGA -0.081 0.011

22 resistin CCGCGC 0.084 0.037

23 resistin CCGGCA 2.176 0.344

24 resistin CCGGGA 0.025 0.009

25 resistin CCGGGC -0.107 0.004

26 resistin CTACCA 0.311 0.003

27 resistin CTACGA 1.320 0.159

28 resistin CTAGGA -0.595 0.017

29 resistin CTGCCA -0.003 0.006

30 resistin CTGCGA 0.428 0.012

31 resistin CTGCGC -0.162 0.002

32 resistin CTGGCA -0.399 0.008

33 resistin CTGGCC NaN 0

34 resistin CTGGGA 0.355 0.002

35 resistin CTGGGC NaN 0

36 resistin TCACCA 0.116 0.001

37 resistin TCGCCA 0.579 0.011

38 resistin TTAGGA -0.270 0.001

39 resistin TTGCCA -0.204 0.001

Note that, in the mirf() function call, we specify gene.column=c(8,12) to
indicate that the first 8 columns (4 SNPs) of our geno matrix correspond to
one gene and the remaining 12 columns (6 SNPs) correspond to another gene.
We also indicate that we want to perform M = 10 imputations. The resulting
output includes the gene name, corresponding haplotype within that gene,
the variable importance score as defined by the mean decrease in accuracy for
randomForest(), and the estimated haplotype frequencies. Based on the out-
put above, we see that within the resistin gene the most important haplotype
is CCGGCA, with an importance score of 2.176 and an estimated frequency of
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0.344 in our population. Notably, this approach assumes HWE, which may
not be appropriate. Specification of HWE groups is left as an exercise for the
reader. �

7.1.3 Covariates

Finally, there are several different approaches for handling covariates in the
RF setting, as described in Section 6.1.3 in the context of fitting a regression
tree. These include (1) ignoring the covariates in the analysis, (2) including the
covariates as potential predictors, (3) stratifying the analysis based on levels
of the covariates and (4) residualizing the data based on prior model fitting
with the covariates as predictors. Each of these methods is reasonable, and
the best choice will inevitably depend on the specific scientific questions under
consideration as well as the assumed underlying model of association. Impor-
tantly, recent research has illustrated the sensitivity of importance scores to
the scale of the input variables and the need for conditional inference in this
setting (Strobl et al., 2007). Specifically, if both categorical and continuous
predictor variables are used as inputs in an RF, the results may be biased.
The reader is referred to the cforest() function within the party package in
R for appropriate application of RFs in this setting. For additional discussion,
see Nonyane and Foulkes (2008).

7.2 Logic regression

Logic regression is another machine learning algorithm that is well suited to
the analysis of data arising from genotype–trait association studies. General
background on this approach can be found in Ruczinski et al. (2003) and
Ruczinski et al. (2004), with specific applications to SNP data described in
Kooperberg et al. (2001). A further extension for exploratory analysis that
involves Markov chain Monte Carlo model selection is described in Kooper-
berg and Ruczinski (2005). Further extensions of this method, described in
Schwender and Ickstadt (2008a) and Schwender and Ickstadt (2008b), provide
us with the tools for measuring variable importance in a manner similar to
the random forest setting. We begin by describing the logic tree framework
and then discuss variable-importance measures.

Logic regression involves searching for models that consist of sums of
Boolean expressions. That is, models of the form

g(E[y]) = β0 +
t∑

j=1

βjLj (7.12)

are considered, where Lj is a Boolean combination of binary predictor vari-
ables. A Boolean expression takes on the values 0 and 1 and is a logical
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(a) Tree representation

(b) Spatial representation

Fig. 7.2. Example boolean statement in logic regression

function of multiple binary predictor variables. That is, it is a function of
indicators of the predictor variables that involves a series of “and”, “or” and
“not” (also referred to as “complement”) statements.

Consider for example the binary genotype variables x1, . . . ,xp, each repre-
senting an indicator for the presence of one variant allele at the corresponding
sites 1, . . . , p. One example of a Boolean expression is given by

(x1 ∧ x2) ∨ (x3 ∧ xc4) (7.13)

where ∧ indicates and, ∨ indicates or and c denotes not. This expression is
read “both x1 and x2 are equal to one or x3 is equal to one and x4 is equal
to zero”. A visual representation of this expression is given in Figure 7.2(a),
from which we see that the expression of Equation (7.13) can be thought of
as a decision tree. Above the first split, we see the OR statement since we
can either go to the left or the right daughter node. If we follow this tree
to the left, we see an AND statement with the two unshaded boxes for x1

and x2, indicating that both of these must equal 1. The right node of the
tree also leads to an AND statement, with an unshaded box for x3 and a
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shaded box for x4. In this case, we have that x3 equals 1 and x4 is not equal
to 1 (i.e., x4 is equal to 0). A second visual representation of the expression
in Equation (7.13) is given in Figure 7.2(b). Here each circle represents the
space in which the corresponding predictor variable is equal to 1, while the
area outside of each circle is the space in which the corresponding variable is
equal to 0. The darkly shaded regions correspond to the space in which the
Boolean expression of Equation (7.13) is true; that is, either (x1 = x2 = 1) or
(x3 = 1 and x4 = 0).

Consideration of all possible logic expressions is untenable in the context of
a large number of potential predictor variables. As a result, different schemes,
including a greedy search algorithm and simulated annealing, have been de-
scribed. Both approaches involve searching state spaces that involve simple
transitions from the current state. Further details can be found in Ruczinski
et al. (2003). Similar to CART, evaluation of additional variables for inclusion
in a logic tree is based on a scoring function involving the trait under inves-
tigation. For example, the least squares criterion is commonly used to assess
the importance of potential predictors for a quantitative trait. Finally, cross-
validation approaches are applied to determine the most predictive model. An
illustration of applying logic regression is given in the following example.

Example 7.5 (Application of logic regression). In this example, we revisit the
Virco data and consider the same problem described in Example 7.1 of relating
mutations in the protease region of HIV to the difference in NFV and IDV fold
resistance. First, we again define our trait variable and matrix of genotypes:

> attach(virco)

> Trait <- NFV.Fold - IDV.Fold

> VircoGeno <- data.frame(virco[,substr(names(virco),1,1)=="P"]!="-")

> Trait.c <- Trait[!is.na(Trait)]

> VircoGeno.c <- VircoGeno[!is.na(Trait),]

We then install and upload the LogicReg package in R:

> install.packages("LogicReg")

> library(LogicReg)

We then apply logic regression using the logreg() function. Here we first
specify select=1 to fit a single tree model. A plot of the resulting decision
tree is obtained using the plot() function with a logic regression object as
input. The result is illustrated in Figure 7.3 and generated using the R code

> VircoLogicReg <- logreg(resp=Trait.c, bin=VircoGeno.c, select=1)

> plot(VircoLogicReg)

> VircoLogicReg

score 74.654

-261 * ((((not P20) or P36) and ((not P94) and (not P8))) or

(((not P10) or P32) or ((not P93) or P2)))



7.2 Logic regression 201

Parameter = !2*1.4499

P2/ P3* P94 P8 P1/ P32 P93 P2

or and or or

and or

or

tree 1 out of 1

Fig. 7.3. Single logic regression tree from Example 7.5

The result is written formally as

−261.45× { [(P20c ∨ P36) ∧ (P94c ∧ P8c)]
∨ [(P10c ∨ P32) ∨ (P93c ∨ P2)]}

(7.14)

Alternatively, we can specify select=2 to generate multiple trees within
the model. For example, in the code below, we specify ntrees=2, indicating
that we want a model represented by a sum of two logic trees:

> VircoLogicRegMult <- logreg(resp=Trait.c, bin=VircoGeno.c, select=2,

+ ntrees=2, nleaves=8)

> plot(VircoLogicRegMult)

> VircoLogicRegMult

2 trees with 8 leaves: score is 72.769

+ 188 * (P73 and ((not P54) and (P93 and (not P72))))

- 196 * (P36 or (((not P20) or (not P93)) or P2))

This yields a model of the form given in Equation (7.12), where t = 2. For-
mally, this expression is given by
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Parameter = 187.5255

P93 P72

P54 and

P73 and

and

tree 1 out of 2 total size is 8

Parameter = !196.4606

P20 P93

or P2

P36 or

or

tree 2 out of 2 total size is 8

Fig. 7.4. Sum of logic regression trees from Example 7.5

187.53×{[P73 ∧ (P54c ∧ (P93 ∧ P72c))]}
− 196.46× {P36 ∨ [(P20c ∨ P93c) ∨ P2]}

(7.15)

A visual representation of this expression is given in Figure 7.4. �

In the example provided above, a simulated annealing algorithm is ap-
plied to generate the logic tree(s), as described in the original formulation of
logic regression (Ruczinski et al., 2003). One alternative is the integration of a
Markov chain Monte Carlo (MCMC) algorithm in this setting, termed Monte
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Carlo logic regression and proposed by Kooperberg and Ruczinski (2005). This
extension was developed as an exploratory tool, with the goal of identifying
multiple potential models that together offer support of an association. Cov-
erage of the reversible jump MCMC algorithm employed is beyond the scope
of this text; however, we note that application of this approach yields output
that is quite different from what we saw in Example 7.5. Specifically, similar
to the random forest setting, there is a shift from identifying the best model
to identifying the importance of each variable or combination of variables.
In this setting, importance is measured by the proportion of times a SNP is
included in a selected model, among many such models. This is illustrated in
the following example.

Example 7.6 (Monte Carlo logic regression). In this example, we return to
the Virco data and apply Monte Carlo logic regression to determine which
SNPs in the protease region of the viral genome are potentially associated
with Saquinavir (SQV) fold resistance. We begin by uploading the LogicReg
package and the Virco data:

> library(LogicReg)

> attach(virco)

We then define our trait as SQV.Fold, define the genotype matrix and subset
the complete data:

> Trait <- SQV.Fold

> VircoGeno <- data.frame(virco[,substr(names(virco),1,1)=="P"]!="-")

> Trait.c <- Trait[!is.na(Trait)]

> VircoGeno.c <- VircoGeno[!is.na(Trait),]

Finally, we apply the logreg() function in the same manner as in Exam-
ple 7.5, with the additional option select=7 selected to indicate that we
want to employ the MCMC algorithm:

> VircoLogicRegMCMC <- logreg(resp=Trait.c, bin=VircoGeno.c, select=7)

The attribute single of the resulting object is a vector of length equal
to the number of SNPs input and elements equal to the number of selected
models in which the corresponding variable is included. A plot of the sorted
values is illustrated in Figure 7.5 and generated as follows:

> plot(sort(VircoLogicRegMCMC$single), xlab="Sorted SNPs",

+ ylab="Number of selected models")

To identify the variables that stand out in this figure, we print the names of
the ordered variables (results will vary):

> names(VircoGeno)[order(VircoLogicRegMCMC$single)]
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Fig. 7.5. Monte Carlo logic regression results from Example 7.6

[1] "P25" "P40" "P87" "P81" "P56" "P42" "P26" "P17" "P59" "P9" "P41"

[12] "P27" "P94" "P44" "P68" "P75" "P38" "P49" "P31" "P8" "P29" "P65"

[23] "P11" "P51" "P96" "P28" "P78" "P80" "P37" "P66" "P14" "P86" "P30"

[34] "P6" "P83" "P43" "P2" "P19" "P7" "P39" "P21" "P52" "P58" "P85"

[45] "P16" "P22" "P4" "P57" "P89" "P64" "P15" "P18" "P74" "P63" "P5"

[56] "P34" "P69" "P23" "P47" "P82" "P70" "P61" "P36" "P98" "P97" "P50"

[67] "P92" "P99" "P13" "P88" "P91" "P35" "P77" "P45" "P95" "P33" "P62"

[78] "P60" "P20" "P12" "P55" "P67" "P46" "P53" "P76" "P24" "P32" "P72"

[89] "P71" "P93" "P1" "P79" "P3" "P90" "P48" "P73" "P54" "P10" "P84"

Here we see that the top seven variables that, based on Figure 7.5, appear
to have an importance score that is notably higher than the remaining vari-
ables are mutations at sites 3, 10, 48, 54, 73, 84 and 90. Interestingly, if
we compare this with the PI Resistance Notes of the HIV Drug Resistance
Database (http://hivdb.stanford.edu/cgi-bin/PIResiNote.cgi), we see reason-
able concordance with previous findings. Specifically, the Resistance Notes
identify mutations at sites 48, 54, 73, 84 and 90 as associated with reduced in
vitro susceptibility or in vivo virological response to SQV.

This implementation of Monte Carlo logic regression also provides us with
information on the pairs and triplets of mutations that tend to occur in the
same selected model. For example, the double attribute of our logic tree
holds a square matrix with lower diagonal elements equal to the number of
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models selected that include both the corresponding row and column variables.
Similarly, the triple attribute provides information on the number of selected
models that contain each triplet of SNPs. �

In a recent manuscript, Schwender and Ickstadt (2008a) propose an alter-
native bootstrap algorithm, termed logicFS, for generating a logic regression
tree that yields a measure of variable importance for combinations of SNPs
when the trait is dichotomous. This algorithm applies the original simulated
annealing algorithm of Ruczinski et al. (2003) on bootstrap samples of the
original data. Variable importance is defined based on how well the result
tree(s) predict class membership for the out-of-bag (OOB) sample, defined as
those individuals not selected in the current bootstrap. This measure is sim-
ilar to the variable importance described for random forests in Section 7.1.1.
Application of this approach is straightforward using the logicFS package
within Bioconductor.

7.3 Multivariate adaptive regression splines

Multivariate adaptive regression splines (MARS) is an alternative machine
learning approach that is closely related to CART. A complete discussion of
model fitting and pruning is provided in Friedman (1991) and Hastie et al.
(2001). Here we present the general approach and specifically illustrate the
overlap between MARS and CART for the analysis of genotype–trait asso-
ciation. In the context of categorical predictors such as SNPs, we see that
MARS is more conducive than CART to discovery of statistical interaction,
though the two methods are very similar under most other models of asso-
ciation. For simplicity of presentation, we focus on the setting in which the
genotype variables are indicators for the presence of at least one variant allele.
This corresponds to a dominant genetic model, as described in Section 2.3.4,
and may be a reasonable assumption with prior knowledge of functionality.
Notably, if the genotypes are three-level factor variables, they can be equiva-
lently represented by two binary variables and the approach described below
is easily extended.

Throughout this section, we focus on a quantitative trait, though appli-
cation of MARS to the case–control setting is straightforward. Using the
same notation as we have throughout this text, suppose we are interested
in characterizing the association between the set of genotype variables given
by x1, . . . ,xp and a trait, given by y. Each of these are n× 1 vectors, where
n is the number of individuals in our sample. In our setting, MARS begins by
considering the model given by

Y = β0 + β1(xj − t)+ + β2(t− xj)+ + ε ; t ∈ {xij} (7.16)

for each j = 1, . . . , p, where ε is the measurement error, t is an element of
the set of observed values of xj , given by {xij}, and ()+ denotes the positive
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component of the argument within the parentheses. The components of the
set {(xj − t)+, (t− xj)+} are referred to in the MARS literature as reflective
basis functions. In the setting of binary predictors where the xij equal 0 or 1,
we have that t ∈ (0, 1) and thus Equation (7.16) can be expressed as

Y = β0 + β1xj + ε (7.17)

To see this, note that, for t = 0, (xj−t)+ = xj and (t−xj)+ = 0. Furthermore,
for t = 1, we have (xj − t)+ = 0 and (t− xj)+ = 1− xj .

The best predictor x∗j is defined as the variable that leads to the greatest
reduction in the residual sums of squares. Notably, this first step is identical
to the regression tree approach described in Chapter 6. In MARS, a model
setM is then defined as the set of functions (in our case predictors) given by
{1,x∗j}. The next step is to fit models that involve products of the elements of
M and the predictor variables. That is, we next consider models of the form

Y = β0 + β1x∗j + β2xk + ε (7.18)

and

Y = β0 + β1x∗j + β2x∗jxk + ε (7.19)

for k = 1, . . . , p.
The difference between CART and MARS becomes apparent at this stage

since CART does not consider models of the form given by Equation (7.18).
That is, MARS is more conducive to modeling additive structure across pre-
dictors. Again the best predictor is chosen, this time of the form xk or x∗jxk,
and then added to the model set M. The process is repeated recursively to
build a model of both additive and interaction terms. Finally, a backward
deletion procedure is applied to reduce overfitting. MARS is straightforward
to implement using the earth() function within the R package earth, as
demonstrated in the following example.

Example 7.7 (An application of MARS). In this example, we again consider
the Virco data, with the goal of characterizing association between muta-
tions in the protease region of HIV and the difference in NFV and IDV fold
resistance. First, we again define our trait variable matrix of genotypes:

> attach(virco)

> Trait <- NFV.Fold - IDV.Fold

> VircoGeno <- data.frame(virco[,substr(names(virco),1,1)=="P"]!="-")

> Trait.c <- Trait[!is.na(Trait)]

> VircoGeno.c <- VircoGeno[!is.na(Trait),]

We then install and upload the earth package:

> install.packages("earth")

> library(earth)
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Applying MARS is then straightforward using the earth() function. Here we
specify degree=2 to include both main effects and two-way interaction terms
as potential predictors:

> VircoMARS <- earth(Trait.c~., data=VircoGeno.c, degree=2)

> summary(VircoMARS)

Call: earth(formula=Trait.c~., data=VircoGeno.c, degree=2)

Trait.c

(Intercept) -1.49386

P35TRUE 36.98821

P76TRUE -34.95785

P1TRUE * P73TRUE -30.79950

P10TRUE * P35TRUE 29.81243

P10TRUE * P73TRUE 65.50646

P15TRUE * P25TRUE 751.24589

P15TRUE * P35TRUE -34.54019

P15TRUE * P54TRUE 32.95728

P15TRUE * P73TRUE -58.53545

P20TRUE * P35TRUE 47.11367

P20TRUE * P54TRUE -41.71048

P20TRUE * P73TRUE 77.58072

P30TRUE * P70TRUE 158.97600

P30TRUE * P77TRUE 42.81780

P35TRUE * P36TRUE -42.06393

P35TRUE * P54TRUE -33.73524

P35TRUE * P73TRUE 78.73042

P35TRUE * P82TRUE -31.25249

P35TRUE * P84TRUE -59.43351

P35TRUE * P93TRUE 23.76439

P35TRUE * P95TRUE -60.69940

P36TRUE * P54TRUE 30.17810

P36TRUE * P73TRUE -113.98578

P48TRUE * P54TRUE -20.80249

P54TRUE * P72TRUE 24.06139

P54TRUE * P73TRUE -63.96128

P54TRUE * P84TRUE 34.96787

P54TRUE * P93TRUE -18.74152

P54TRUE * P94TRUE 207.51818

P63TRUE * P73TRUE 67.33288

P70TRUE * P73TRUE -103.04692

P72TRUE * P73TRUE -69.71491

P73TRUE * P74TRUE -54.83226

P73TRUE * P76TRUE 101.72366

P73TRUE * P77TRUE -54.40373

P73TRUE * P84TRUE -65.68984

P73TRUE * P93TRUE 49.44217

Selected 38 of 100 terms, and 22 of 99 predictors
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Importance: P15TRUE, P25TRUE, P35TRUE, P36TRUE, P73TRUE, P54TRUE,

P94TRUE, P10TRUE, P77TRUE, P84TRUE, ...

Number of terms at each degree of interaction: 1 2 35

GCV 5155.408 RSS 4113795 GRSq 0.2200334 RSq 0.3610069

The output above includes the coefficients for each term in the final model. It
also indicates that 38 terms were initially selected and 22 remained after prun-
ing (including the intercept). The order of importance of the input variables
is given by applying the evimp() function:

> evimp(VircoMARS)

col used nsubsets gcv rss

P15TRUE 15 1 37 100.000000 1 100.000000 1

P25TRUE 25 1 37 100.000000 1 100.000000 1

P35TRUE 35 1 35 65.189479 1 76.166293 1

P36TRUE 36 1 35 65.189479 1 76.166293 1

P73TRUE 73 1 35 65.189479 1 76.166293 1

P54TRUE 54 1 33 50.930070 1 65.218336 1

P94TRUE 94 1 33 50.930070 1 65.218336 1

P10TRUE 10 1 33 50.071147 1 64.536462 1

P77TRUE 77 1 33 50.071147 1 64.536462 1

P84TRUE 84 1 32 47.785561 1 61.929011 1

P72TRUE 72 1 30 37.117366 1 53.182110 1

P93TRUE 93 1 29 33.045941 1 49.600900 1

P20TRUE 20 1 28 28.885308 1 45.995833 1

P82TRUE 82 1 25 15.890025 1 35.057174 1

P30TRUE 30 1 23 11.377226 1 30.262470 1

P1TRUE 1 1 21 9.000836 1 26.741314 1

P70TRUE 70 1 21 8.952997 1 26.704566 1

P74TRUE 74 1 15 4.663905 1 17.893339 1

P48TRUE 48 1 13 4.491108 1 16.017860 1

P95TRUE 95 1 13 4.103631 1 15.479906 1

P85TRUE-unused 85 0 11 3.526339 1 13.431009 1

P89TRUE-unused 89 0 10 2.924444 1 12.030094 1

P63TRUE 63 1 7 2.587980 1 8.452929 1

P65TRUE-unused 65 0 7 1.777517 1 8.221570 1

P76TRUE 76 1 5 2.175851 0 6.167241 1

P45TRUE-unused 45 0 1 -0.031605 1 1.008404 1

Those variables included in the final model are indicated with a 1 in the
column entitled used. Comparing the MARS results with the results of fitting
RF in Example 7.1 and applying logic regression in Example 7.5 to the same
data reveals the potential for variability in the findings of these three machine
learning algorithms. While many of the same variables stand out across all
three analyses (e.g., P20, P36, P54, P73 and P94), several other variables
appear important based on one analysis but do not according to another
analysis. For example, we see that P10 and P93 are ranked relatively low
using RF compared with both MARS and logic regression. �
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7.4 Bayesian variable selection

In Chapter 5, we introduced Bayesian methods in the context of haplotype
reconstruction. More broadly, Bayesian approaches offer an alternative frame-
work for evaluating a large number of potential models of association between
multiple genotypes and a trait. In this section, we introduce Bayesian variable
selection as described in the seminal paper by George and McCulloch (1993).
A growing body of literature exists that further extends these methods and
is widely applicable to data arising from population-based genetic association
studies. Here we describe fundamental concepts that offer the reader tools for
further explorations.

In the study of genotype–trait associations, our goal is often to identify a
model of the form

yi = x∗i1β1 + x∗i2β2 + . . .+ x∗irβr + εi (7.20)

for i = 1, . . . , n, where (x∗1, . . . ,x
∗
r) is a subset of the potential predictor

variables, y is a quantitative trait and we typically assume the εi’s are inde-
pendent and identically distributed, N(0, σ2). Traditional statistical methods
may involve fitting a series of regression equations, each involving a different
subset, and comparing these models. The number of such models, given by
2p, is large, however, and consideration of all such models is computationally
infeasible in many instances. The goal of Bayesian variable selection (BVS)
is to identify a subset of promising variables that have a high probability of
being associated with the trait and are thus worthy of further consideration.

We begin by writing the full model of Equation (7.20) (that is, the model
with all p potential predictor variables) in matrix notation as

y|β, σ2 ∼MVNn(Xβ, σ2I) (7.21)

where y = (y1, . . . , yn)T , Xn×p = [x1, . . . ,xp] and β = (β1, . . . , βp)T . Notably,
the parameters corresponding to the true underlying predictors (x∗1, . . . ,x

∗
r)

of Equation (7.20) will be non-zero while the parameters corresponding to all
other xj ’s will be identically equal to 0.

We have seen the model of Equation (7.21) in Section 2.2.3, and the reader
will recognize it as the standard linear regression model. The BVS approach
extends this setting by introducing a new component to this model. Namely,
the parameters in the model, given by β and σ2, are treated as random vari-
ables, arising from a known distribution (with potentially unknown param-
eters). Specifically, a normal mixture model is assumed for each βj , given
by

βj |γj ∼ (1− γj)N(0, τ2
j ) + γjN(0, c2jτ

2
j ) (7.22)

where γ = (γ1, . . . , γp) is a latent (unobservable) vector with elements taking
on the values 0 and 1. This is equivalent to assuming βj comes from one of
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two normal distributions with probabilities Pr(γj = 1) = 1−Pr(γj = 0) = pj
and 1 − pj . Here τj is assumed to be small so that βj ∼ N(0, τ2

j ) will be
approximately 0. On the other hand, cj is assumed to be relatively large so
that βj ∼ N(0, c2jτ

2
j ) is non-zero. We similarly make an assumption about the

distribution of the variance parameter from our model. Specifically, we let

σ2|γ ∼ IG(νγ/2, νγλγ/2) (7.23)

In general, interest lies in the posterior distribution of γ given the ob-
served data since this provides us with information about which variables are
predictive of the trait under investigation. That is, our aim is to characterize

π(γ|Y) ∝ f(Y|γ)π(γ) (7.24)

where the right-hand side of Equation (7.24) is derived using Bayes’ rule as
described in Section 5.1.2. Using a Gibbs sampler, we can draw from this
distribution by repeated sampling from the marginal posterior densities of β,
σ and γj . A step-by-step procedure is given by Algorithm 7.4, where we
begin by letting the counter t = 0.

Algorithm 7.4: Gibbs sampler for Bayesian variable selection

1. Initialize β, σ and γ and denote these by β(0), σ(0) and γ(0).

2. Let t = t+ 1 and sample:

• β(t)|y ∼ f(β|y, σ(t−1),γ(t−1))

• σ(t)|y ∼ f(σ|y,β(t),γ(t−1))

3. Randomly select an ordering γ(1), . . . , γ(p) and sample:

• γ
(t)
(1)|y ∼ f(γ(1)|y,β(t), σ(t), γ

(t−1)
(2) , . . . , γ

(t−1)
(p) )

• γ
(t)
(2)|y ∼ f(γ(2)|y,β(t), σ(t), γ

(t)
(1), γ

(t−1)
(3) , . . . , γ

(t−1)
(p) )

...

• γ
(t)
(p)|y ∼ f(γ(p)|y,β(t), σ(t), γ

(t)
(1), . . . , γ

(t)
(p−1))

4. Repeat steps (2) and (3) M times for M large.

Specific forms of the distributions in the sampler above, as well as details on
sensitivities to model specifications, are described in George and McCulloch
(1993). Once a stationary distribution is achieved, the empirical distribution of
γ will approximate the posterior distribution, π(γ|y). Therefore, the variables
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xj for which the corresponding γj has a high frequency of equaling 1 can be
selected to form a promising subset of predictive variables.

A few approaches have been described recently for genome-wide associ-
ation studies that draw on BVS methods. For example, Lunn et al. (2006)
describe a Bayesian toolkit for genome-wide association (GWA) studies, with
associated WinBUGS software, and Schumacher and Kraft (2007) describe a
Bayesian latent class analysis for GWA. The Bayesian additive regression tree
(BART) approach is a further extension described by Chipman et al. (2008)
that can be implemented in R using the BayesTree package. Hoggart et al.
(2008) propose a “Bayesian inspired” approach for simultaneous consideration
of a large set of SNPs potentially associated with a binary trait that applies a
stochastic search algorithm to address the computational challenge of whole
and partial genome-wide association studies.

7.5 Further readings

A broad array of literature exists on data-mining methods that are beyond
the scope of the present text. In this chapter, we described a handful of
well-defined algorithms for exploring high-dimensional data. These methods
were chosen for presentation based on their strong theoretical foundations and
straightforward applications to data arising from genetic association studies,
as illustrated in the examples presented throughout. As indicated, this cov-
erage is not intended to be comprehensive; instead, an introduction to these
methods will hopefully entice the motivated reader to explore these topics fur-
ther. Cogent summaries of these methods for the more advanced reader are
provided in Hastie et al. (2001) and Chapter 16 of Gentleman et al. (2005).

Additional topics that may serve as useful tools in the analysis of genotype–
trait association in population-based investigations include Bootstrap AGGre-
gatING (Breiman, 1996); boosting (Schapire, 1990; Freund, 1990); AdaBoost
(Freund and Schapire, 1997); bump hunting (Friedman and Fisher, 1999); sup-
port vector machines (Christianini and Shawe-Taylor, 2000); ridge regression;
the lasso (Tibshirani, 1996) and elastic net (Zou and Hastie, 2005), among
others. Summaries of the application of several data-mining approaches to
genetic association data are given in Cupples et al. (2005) and Costello et al.
(2003). While these approaches are well described for knowledge discovery, fur-
ther investigation of their applicability to data arising from population-based
investigations is needed. Specifically, careful consideration of the potential in-
terplay among variables, as described in Section 2.1.2, and how these machine
learning algorithms handle such inputs, as well as the reproducibility of any
single analysis is essential to arrive at biologically and clinically interpretable
findings.



212 7 Additional Topics in High-Dimensional Data Analysis

Problems

7.1. Fit a random forest to the Virco data to determine which protease mu-
tations are most highly associated with SQV fold resistance as measured by
SQV.fold.

7.2. Apply logic regression to the Virco data to characterize, with a logic
structure, the association between protease mutations and SQV fold resistance
as measured by SQV.fold.

7.3. Apply Monte Carlo logic regression to the FAMuSS data to characterize
the importance of SNPs in the actn3 and resistin genes in predicting change
in non-dominant arm muscle strength as measured by NDRM.CH.

7.4. Apply a multivariable adaptive regression spline to address the question
of Problem 7.3. Compare and contrast your findings.



Appendix

R Basics

The purpose of this appendix is to introduce the fundamental concepts of
programming in R that will provide sufficient fluency for the reader to under-
stand the examples presented throughout this text. Specifically, we offer an
overview of importing and manipulating data, installing and using R packages,
and writing and applying basic functions. The novice reader is encouraged to
refer to a number of comprehensive texts for a more thorough introduction to
working and programming in R. See for example Gentleman (2008), Venables
and Smith (2008), Spector (2008) and Dalgaard (2002).

A.1 Getting started

R is a free, open-source statistical computing language and environment avail-
able for Windows, Mac OS X, Linux and Unix and licensed under the terms of
the GNU (GNU is Not Unix) General Public License (Free Software Founda-
tion, 2007). R is available on the Comprehensive R Archive Network (CRAN)
website (http://cran.r-project.org/), and installation is straightforward. We
recommend downloading the precompiled binary distribution that is suitable
to your operating system and then following the corresponding instructions.

Java GUI for R (JGR—pronounced “jaguar”) is a graphical user in-
terface (GUI) that is also freely available for download. It is distributed
in binary form for Windows and Mac OS X 10.4.4 (and above) users at
http://jgr.markushelbig.org/Download.html and can be compiled from source
code for other platforms. JGR is not necessary to get started with using R but
may be preferable to users more familiar with Windows-based applications.
JGR has the primary advantage over other available GUIs of being platform
independent. More information on the features and unique attributes of JGR
can be found in Helbig et al. (2005).

213
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Command line

Upon opening R (or JGR), you will see an R console that lists the version
number and other pertinent information, including the current working direc-
tory, as shown below:

R version 2.7.1 (2008-06-23)

Copyright (C) 2008 The R Foundation for Statistical Computing

ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type ’license()’ or ’licence()’ for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type ’contributors()’ for more information and

’citation()’ on how to cite R or R packages in publications.

Type ’demo()’ for some demos, ’help()’ for on-line help, or

’help.start()’ for an HTML browser interface to help.

Type ’q()’ to quit R.

[Workspace restored from /Users/foulkes/.RData]

>

Commands can be typed directly at the prompt, indicated by the > sym-
bol, or saved in an ascii file using any text editor. Since R is an inter-
preter language, each line of code is processed as it is entered. This feature
is similar to alternative statistical programming languages such as STATA
(http://www.stata.com/) and distinguishes R from compiler languages such
as C/C++ and Fortran. Notably, this allows us to transition seamlessly in R
between sourcing text files and typing commands directly at the prompt.

As a user, you have the choice of writing commands directly at the prompt
or storing them in text files that can be sourced. In general, we strongly en-
courage the reader to maintain good programming practices by writing and
saving code in organized, well-documented files. This is essential for gener-
ating reproducible findings, an ethical imperative in medical research studies
involving human subjects. Consider, for example, the canonical “Hello World”
program that simply prints the words “hello world”. One approach in R is to
simply type the command

> print("hello world")

directly at the prompt, which leads to the following output:

[1] "hello world"
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Alternatively, we can create a text file entitled hello world.r, within
which each line represents a command to be executed. For example, this pro-
gram might contain the text print("hello world"). Any lines beginning
with the # symbol within this file are treated as comments and ignored in the
R execution. Suppose this file is saved in the directory ∼/Projects/ASG/.
Using the source() function, we call up this file at the R prompt by submit-
ting

> source("~/Projects/ASG/hello_world.r")

which results in the same output as before:

[1] "hello world"

It is also straightforward to run this program at a Unix or DOS prompt using
the following command line within the directory in which hello world.r is
stored:

$ R CMD BATCH hello_world.r hello_world.out

This results in the creation of a new file entitled hello world.out that con-
tains the R output.

Working directory

At the beginning of an R session, it is important to identify and indicate
the directory in which you want your data to be stored. This will provide
for easy access to these files during subsequent sessions and facilitate work-
ing on multiple projects. It is helpful to use different directories for each
project since creating new objects of the same name will overwrite existing
objects. Once a directory is specified, the data will be stored in a file enti-
tled .RData. Suppose for example that we want our working directory to be
∼/Projects/ASG/Examples/. First we check the current working directory
using the getwd() function as follows:

> getwd()

[1] "/Users/foulkes"

To change the current working directory, we apply the setwd() function:

> setwd("~/Projects/ASG/Examples/")

Any new objects (variables, dataframes, etc.) that you create will be saved in
the workspace entitled .RData within the current working directory. The next
time you begin an R session, this workspace can be loaded using the load()
function as follows:

> load("~/Projects/ASG/Examples/.RData")
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A.2 Types of data objects

There are several different types of objects that you may be creating or ma-
nipulating during an R session, including vectors, factors, matrices, lists and
dataframes. Here we briefly describe the characteristics of each with simple
demonstrations of how they can be created and viewed. In Section A.3, we
describe approaches to reading in data from an existing file.

Assignment operator

A fundamental component of programming in R is the assignment operator.
Suppose, for example, that we want to create a new variable named NewVar
that is equal to 1. We do this using the <- symbol, as demonstrated in the
following code:

> NewVar <- 1

Note that the variable name is on the left-hand side of the assignment arrow
and the value that we want to assign to this variable name is on the right-hand
side. This ordering is not necessary in R but is conventional and recommended.
Alternatively, the = symbol can be used for assignment; however, this is highly
discouraged. The resulting object can be printed using the print() function
as

> print(NewVar)

[1] 1

or more simply

> NewVar

[1] 1

Object class

Every object has an associated class that defines how functions are applied
to it. Two simple classes are numeric and character. For example, the vari-
able NewVar that we just defined is a numeric variable, which we can see by
applying the class() function:

> class(NewVar)

[1] "numeric"

A character variable is created using quotation marks, as shown below:

> CharVar <- "Gene1"

> class(CharVar)

[1] "character"
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Other object classes include factors, matrices and data.frames, each
of which is described below. Throughout this text, we create objects of many
different classes, ranging from linear models generated using the lm() function
in Chapter 2 to trees generated using the rpart() function in Chapter 6. It is
important to keep in mind that the result of applying standard R functions,
such as print() and plot(), will depend on the class associated with the
argument to these functions. For example, in Example 6.2, we use the plot()
function to plot the results of a classification tree, shown in Figure 6.2. We
use the same plot() function in Example 7.5 to plot the results of applying
logic regression, which yields the very different illustration in Figure 7.3.

Vectors

A vector is defined simply as a string of objects and can be generated using
the c() function in R. For example, we can create the vector y = (1, 2, 3)
using the command

> y <- c(1,2,3)

> y

[1] 1 2 3

The dimension of the resulting vector is unspecified, taking on the value 1×3
or 3 × 1 depending on the specific application, as demonstrated below. The
c() function can take as its input both numeric and character objects, though
if both are passed to it simultaneously, they will be coerced to be of the same
type. For example, the command

> c(1,2,3,"gene")

yields

[1] "1" "2" "3" "gene"

In the context of genetic association studies, the trait under investigation
is often represented as a vector. For example, suppose we are interested in
determining the genetic contributors to an abnormal lipid profile. In this case,
the trait might be total cholesterol level and is represented by the n×1 vector
y, where n is the number of individuals in our sample. Each element of this
vector is the cholesterol level for the corresponding individual in our sample.

Factors

A factor object is a type of vector with an associated attribute that describes
the levels of the variable and can be created using the R function factor().
For example, suppose we have a vector of genotypes given by xT1 =(AA, AT,
TT, TT, AT, AT, AA, TT), with each element corresponding to the genotype
of one individual in our sample of n = 8 observations. A detailed description
of genotype data is given in Section 1.3. We can generate a factor object
corresponding to these data using the following code:
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> x1 <- factor(c("AA", "AT", "TT", "TT", "AT", "AT", "AA", "TT"))

> x1

[1] AA AT TT TT AT AT AA TT

Levels: AA AT TT

We see from the output that there are three levels to this variable, given by
AA, AT and TT. Notably, use of factor objects as predictor variables in a re-
gression setting must proceed with caution since interpretation of associated
coefficients is not always straightforward. For example, we typically code gen-
der as a numeric vector with elements equal to 1 for males and 0 for females.
If gender is converted to a factor variable, then it is treated by the lm() func-
tion in R as taking on the values 0.5 and −0.5 in the regression equation.
Calculating predicted responses for males and females based on the output of
this function requires consideration of this alternative coding.

Matrices

A matrix is a two-dimensional array of objects and can be generated in R
in multiple ways. Consider for example the matrix of genotype data given by
X = [x1,x2], where x1 is defined above and xT2 =(GG, GG, GC, CC, GG, CC,
CC, GC). Each row of X represents an individual and each column represents
a site on the genome. This matrix can be created in R using the matrix()
function as follows:

> X <- matrix(c("AA", "AT", "TT", "TT", "AT", "AT", "AA", "TT",

"GG", "GG", "GC", "CC", "GG", "CC", "CC", "GC"), nrow=8)

> X

[,1] [,2]

[1,] "AA" "GG"

[2,] "AT" "GG"

[3,] "TT" "GC"

[4,] "TT" "CC"

[5,] "AT" "GG"

[6,] "AT" "CC"

[7,] "AA" "CC"

[8,] "TT" "GC"

As we see above, the input to the matrix() function is a vector containing
the elements of the matrix, beginning in the top left corner, going down the
first column and then beginning again at the top of the next column. We also
specify nrow=8 to indicate the number of rows in the matrix. Alternatively, we
can generate the vectors x1 and x2 and use the cbind() function, as follows:

> x1 <- c("AA", "AT", "TT", "TT", "AT", "AT", "AA", "TT")

> x2 <- c("GG", "GG", "GC", "CC", "GG", "CC", "CC", "GC")

> X <- cbind(x1, x2)

> X
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x1 x2

[1,] "AA" "GG"

[2,] "AT" "GG"

[3,] "TT" "GC"

[4,] "TT" "CC"

[5,] "AT" "GG"

[6,] "AT" "CC"

[7,] "AA" "CC"

[8,] "TT" "GC"

The characteristics of our resulting matrix can be printed using the
attributes() function. For example, for our genotype matrix X, we have

> attributes(X)

$dim

[1] 8 2

$dimnames

$dimnames[[1]]

NULL

$dimnames[[2]]

[1] "x1" "x2"

This output tells us that the dimension of X is 8 × 2 (eight rows and two
columns) and the names of the two columns are given by x1 and x2, respec-
tively. The names of the rows are not specified, and hence the NULL value
is returned for this parameter. Each attribute can be printed separately by
simply typing attributes(X)$ followed by the name of the attribute. For
example, the dimension of X is given by

> attributes(X)$dim

[1] 8 2

Lists

Another useful object type in R is a list. In fact, the dimnames attribute of X
in the previous example is stored as a list. A list can contain multiple objects
of different types, including vectors, matrices, and lists. For example, using
the list() function, we can generate a list that contains the vector y and the
matrix X that we just created above:

> list(trait=y, genotypes=X)

$trait

[1] 1 2 3

$genotypes
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X1 X2

[1,] "AA" "GG"

[2,] "AT" "GG"

[3,] "TT" "GC"

[4,] "TT" "CC"

[5,] "AT" "GG"

[6,] "AT" "CC"

[7,] "AA" "CC"

[8,] "TT" "GC"

Dataframes

Dataframes are similar to matrices, with the notable exception that they can
have columns of different variable types, including numeric, character and
factor variables. This characteristic makes dataframes extremely useful in the
analysis of population-level data in which both continuous and categorical
variables need to be stored for analysis. As a result, dataframes are used
extensively throughout this text.

A.3 Importing data

All of the examples in this text are based on data that are stored in tab- or
comma-delimited ascii text files. In general, data can be exported from other
programs into this format and then read into R. For example, if your data
are currently in a Microsoft Excel spreadsheet, simply open this file, go to the
File menu and select Save As. Under the Format tab, choose CSV (comma
delimited) or Text (tab delimited). Click Save, and the resulting file can
now be imported into R.

In Section 1.3.3 of this text, we illustrate how to use the read.delim()
and read.csv() functions in R to import tab- and comma-delimited files,
respectively. For example, consider the tab-delimited text file entitled “FMS
data.txt”. We import the data into R using the following commands:

> fmsURL <- "http://people.umass.edu/foulkes/asg/data/FMS_data.txt"

> fms <- read.delim(file=fmsURL, header=T, sep="\t")

The default settings for the read.delim() function are header=T, which
specifies that the first row of the text file consists of variable names, and
sep="\t", which indicates the data are tab delimited. Alternatively, we can
specify header=F, which assumes the first line of the data file is the first pa-
tient record. If the variables are separated by columns, we specify sep=",",
and if they are separated by one or more spaces, we use sep="". Alternatively,
if the data are stored in a SAS export file, the sasxport.get() function of
the Hmisc package can be used to read the data into R. A discussion of how to
install R packages is given below. See documentation for the Hmisc package
on the CRAN website for more details on using the sasxport.get() function
and linking to associated macros.
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A.4 Managing data

R is a powerful and versatile tool for data management. Here we introduce
some useful commands that allow basic data manipulations. Consider first the
following dataframe, consisting of identification numbers, genotypes, genders
and disease statuses of five subjects:

> SampleDat <- data.frame(ID = c(1,2,3,4,5),

+ SNP=c("AA", "AT", "TT", "TT", "AA"),

+ Gender=c("Female", "Male", "Female", "Female", "Male"),

+ DiseaseStatus=c(1, 1, 0, 0, 0))

> SampleDat

ID SNP Gender DiseaseStatus

1 1 AA Female 1

2 2 AT Male 1

3 3 TT Female 0

4 4 TT Female 0

5 5 AA Male 0

We can print data on each variable of the resulting dataframe by using the $
symbol as follows:

> SampleDat$ID

[1] 1 2 3 4 5

> SampleDat$SNP

[1] AA AT TT TT AA

Levels: AA AT TT

Alternatively, we can first apply the attach() function to our dataframe

> attach(SampleDat)

which allows us to use the shorthand notation

> ID

[1] 1 2 3 4 5

> SNP

[1] AA AT TT TT AA

Levels: AA AT TT

The names of all of the variables in our dataframe can be listed using the
names() function:

> names(SampleDat)

[1] "ID" "SNP" "Gender" "DiseaseStatus"
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Now suppose we want to determine the number of individuals and the
number of variables in our dataset. We can do this using the dim() function

> dim(SampleDat)

[1] 5 4

which tells us that we have five individuals (rows) and four variables (columns).
Tabulating the number of males and females is also straightforward using the
table() function:

> table(SampleDat$Gender)

Female Male

3 2

Here we see that the table() function results in a vector with an element
for each level of the input variable. Specifically, this output tells us that there
are three females and two males in the dataset. The frequency of males and
females in our sample is calculated using any of the equivalent commands

> table(SampleDat$Gender)/5

> table(SampleDat$Gender)/dim(SampleDat)[1]

> table(SampleDat$Gender)/sum(table(SampleDat$Gender))

which all yield the following output:

Female Male

0.6 0.4

Several useful aspects of R were applied in the code above. First we note
that we applied division to every element of the vector given by table() by
simply dividing by a scalar, in this case 5. We also see that we can pull out
an element of a vector using [ ] with a corresponding index. Recall that
applying the dim() function yielded a vector with the first element equal to
the number of rows and the second element equal to the number of columns.
By specifying [1], we are pulling out the first element of this vector, which is
again the number 5. We revisit this below. Finally, by applying the function
sum() to our table vector, we get the sum of the elements of this vector, given
in this case by 3 + 2 = 5.

We see from the results above that the gender variable is coded here as
a character variable. We may want to create a new variable for gender that
is coded as a numeric variable, which we can do using the as.numeric()
function:

> GenderNum <- as.numeric(SampleDat$Gender)

> GenderNum

[1] 1 2 1 1 2
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If we want males to be coded as 1 and females to be coded as 0, we simply
subtract 1 from this vector. Again, we can subtract a scalar from a vector and
it will apply to all elements of the vector, as shown below:

> GenderNum-1

[1] 0 1 0 0 1

Subsetting a dataframe can be a useful tool and can be achieved similar to
the example above of pulling out elements of a vector. For example, suppose
we want to print out the first row of our data. We can do this by specifying

> SampleDat[1,]

ID SNP Gender DiseaseStatus

1 1 AA Female 1

Note that the number before the comma within the brackets indicates the
row number. A number after the comma indicates the column number. For
example, we can print the third column using

> SampleDat[,3]

[1] Female Male Female Female Male

Levels: Female Male

Multiple rows and columns can also be printed by replacing the scalar with
a sequence of numbers. For example, we can print the second and fourth
columns by using the following command:

> SampleDat[,c(2,4)]

SNP DiseaseStatus

1 AA 1

2 AT 1

3 TT 0

4 TT 0

5 AA 0

Alternatively, we can indicate one or more rows to be printed by specifying
the level of a variable. For example, suppose we want to print the records for
females. This is achieved as follows:

> SampleDat[SampleDat$Gender=="Female",]

ID SNP Gender DiseaseStatus

1 1 AA Female 1

3 3 TT Female 0

4 4 TT Female 0

Subsetting our data is especially useful if we aim to do a stratified analysis.
For example, suppose we want to tabulate genotypes for those individuals with
disease and those without disease. One approach is to tabulate the data for
the two disease statuses separately. Using the table() function in R, we have
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> table(SampleDat $SNP[SampleDat$DiseaseStatus==1])

AA AT TT

1 1 0

> table(SampleDat $SNP[SampleDat$DiseaseStatus==0])

AA AT TT

1 0 2

Alternatively, we can use the tapply() function to calculate the table means
simultaneously:

> tapply(SampleDat$SNP, SampleDat$DiseaseStatus, table)

$‘0‘

AA AT TT

1 0 2

$‘1‘

AA AT TT

1 1 0

The result is a list with the number of elements equal to the number of levels
of DiseaseStatus and each element representing the result of applying the
table() function to the corresponding subset of the data.

A.5 Installing packages

Throughout this text, we use several R packages that contain useful func-
tions for the analysis of data arising from genetic association studies. Many
of these are not included in a standard download and need to be downloaded
and installed, which can be done using the install.package() function. For
example, suppose we want to use a function within the genetics package. We
simply type

> install.packages("genetics")

Once a prompt appears, select a CRAN mirror in a location near you to down-
load the package and the package will be installed automatically. To access
the functions within the package, we need to use the library() function at
the start of each new R session. For example, to load the genetics package,
we write

> library(genetics)
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Bioconductor is a development project that distributes several R packages
targeted for the analysis of genomic data. Additional information on the aims
and scope of this project as well as its practical applications can be found in
Gentleman et al. (2004) and Gentleman et al. (2005). Initially this project fo-
cused on applications in DNA microarray studies, but it has recently expanded
to include useful tools for the analysis of SNP data. To install Bioconductor
packages, simply type

> source("http://bioconductor.org/biocLite.R")

> biocLite()

This installation can take several minutes. Additional packages can be in-
stalled by specifying the names of the packages within the biocLite() func-
tion

> source("http://bioconductor.org/biocLite.R")

> biocLite(c("pckg1","pckg2"))

where pckg1 and pckg2 are the names of packages. Additional information
about Bioconductor can be found at http://www.bioconductor.org/.

A.6 Additional help

The CRAN website’s FAQs are an excellent source of information for questions
about R. In addition, you can get help on how to use existing commands
using the help() function. For example, if you want more information on the
read.table() function, you can enter

> help(read.table)

The associated help file includes a general description of the function and
how to use it, details on the arguments to be entered in the function call and
the value(s) returned by it. In addition, most documentation includes at least
a simple example illustrating application of the function. Finally, if you do
not know the name of a function, you can use the help.search() command
to search the existing documentation for character strings that match your
input. For example, typing

> help.search("variance")

will yield a list of functions and associated packages that include the term
variance in their documentation.
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Glossary of Terms

admixed population: population in which mating occurs between subgroups
with different allelic distributions, or more loosely a population in which
multiple subgroups are present.

allele: sequence of one or more bases, representing one of several possible
forms for a region of DNA.

allelic phase: alignment of nucleotides on a single homolog.
amino acid: building block for proteins, corresponding to three adjacent

bases.

biallelic: detectable presence of two alleles across a population.
Boolean expression: a logical function of multiple binary predictor variables

that takes on the values 0 and 1.

candidate gene study: an investigation involving multiple SNPs within and
across genes that uses information on linkage disequilibrium (LD) blocks.

candidate polymorphism study: investigation of genotype–trait association
for which there is an a priori hypothesis about functionality.

conditional association: setting in which the effect of a predictor on the out-
come is statistically significant within at least one level of a third variable.

confounder: variable associated with both a potential predictor variable and
the dependent variable.

consensus: amino acid at a given site on the viral genome that is most common
in the general population.

conserved: region of DNA with no observed variability within a population.
contrast: defined for the one-way analysis of variance setting as a linear com-

bination of the means such that the coefficients sum to zero.

diplotype: pair of haplotypes, one inherited from each parental genome.
dominant: describes a type of polymorphism that results in an alteration in

a trait regardless of the value of the second element of the genotype pair.
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effect mediator: a variable that lies in the causal pathway between the pre-
dictor and outcome of interest; used interchangeably with causal pathway
variable.

effect modification: situation in which the effect of a predictor variable on the
outcome depends on the level of a third variable; used interchangeably
with statistical interaction.

eigenvalue: a scalar characteristic of a matrix that is defined as the amount
by which a vector in the direction of the corresponding eigenvector is
stretched or shrunken when acted upon by this matrix.

eigenvector: corresponding to a matrix, a vector that spans the space that,
when acted upon by this matrix is not rotated.

false discovery rate: expected proportion of null hypotheses that are true
among those that are declared significant; abbreviated FDR.

family-wise error under the complete null: probability of rejecting one or more
null hypotheses given that they are all true; abbreviated FWEC.

family-wise error: probability of making at least one type-1 error.
fine mapping study: investigation aimed at identifying, with a high level of

precision, the location of a disease-causing variant.
functional: a polymorphism affecting a trait through a direct causal relation-

ship.

gene expression study: investigation of the relationship between gene prod-
ucts, such as ribonucleic acid (RNA) or proteins, and disease outcomes or
measures of disease progression.

gene: region of DNA that is eventually made into protein or is involved in the
regulation of transcription.

genetic model: a model that describes the biological interaction between al-
leles on homologous chromosomes; includes additive, dominant and reces-
sive.

genome-wide association study: exploratory investigation of genotype–trait
association that involves characterization of a large segment (500–1000
Kb region) of DNA; abbreviated GWAS.

genotype: observed pair of DNA bases, one inherited from each parent, at a
site on the genome, represented by a categorical variable that takes on
values from a predefined set of discrete characters.

genotyping error: a deviation between the true underlying genotype and the
genotype that is observed through the application of a sequencing method.

haplotype tagging SNPs: sites on the genome that capture overall variability
within the gene under consideration and are potentially associated with
disease-causing variants.

haplotype: specific combination of alleles that are in alignment on a single
homolog and tend to be inherited together.
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Hardy-Weinberg equilibrium: state in which allele frequencies are constant
within a population over generations, or equivalently independence of al-
leles at a single site between two homologous chromosomes, also referred
to as random mating; abbreviated HWE.

heterozygous: characteristic of a genotype in which the two observed bases
are different, one variant allele and one wildtype allele.

homolog (homologue): one member of a pair of homologous chromosomes.
homologous chromosomes: chromosomes with potentially different alleles that

carry information on the same trait or feature.
homozygous: characteristic of a genotype in which the two observed bases are

the same, both variant allele or both major widtype.
honest estimate: used in the context of classification and regression trees to

refer to a measure of error that will apply broadly to any sample taken
from the general population.

identical-by-descent: alleles that are derived from the same ancestor.
identical-by-state: alleles with the same DNA composition that may or may

not derive from the same ancestor.
in cis: characteristic of two alleles indicating they are on the same homolog.
in trans: characteristic of two alleles indicating they are on opposite homol-

ogous chromosomes.
integrase: enzyme involved in splicing viral DNA into host cell DNA.
interaction: defined statistically as the situation in which the presence of

some polymorphisms alters the effects of other polymorphisms; used in-
terchangeably with effect modification.

level of test: probability of making a type-1 error, denoted α.
linkage analysis: an approach that aims to identify the location of a specific

gene on a chromosome.
linkage disequilibrium: an association in the alleles present at each of two sites

on a genome; abbreviated LD.
locus: portion of the genome that encodes a single gene or the location of a

single nucleotide on the genome.
loss of heterozygosity: loss of function of an allele in an individual for whom

the second allele is already inactive.

major allele: most common allele in a population; used interchangeably with
wildtype.

marker: proximate SNP at which the genotype tends to be associated with
the genotype at the true disease-causing locus.

meiosis: process by which a germ cell that contains 46 chromosomes, consist-
ing of one homolog from each parent cell, undergoes two cell divisions,
resulting in daughter cells with 23 chromosomes each.

minor allele: less common allele in a population; used interchangeably with
variant allele.
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mitosis: process of cell division that results in the creation of daughter cells
that carry identical copies of a complete set of 46 chromosomes.

model of association: mathematical formulation relating genotype variables
to a trait; includes additive and multiplicative.

multilocus genotype: observed genotype across multiple SNPs or genes.

nucleotide: building block of DNA, consisting of a single DNA base (A, C, T
or G) linked with both a sugar molecule and a phosphate.

p-value: probability of observing something as extreme or more extreme than
the observed test statistic given that the null hypothesis is true.

penetrance: a measure of the extent to which the presence of a disease allele
results in the disease phenotype.

phenocopy: characteristic of an individual who exhibits the disease phenotype
but does not carry the disease allele under study.

polymorphism: genetic variant occurring in greater than 1% of a population.
polyploidy: presence of more than two homologous chromosomes.
population genetics: study of changes in the genetic composition of a popu-

lation that occur over time and under evolutionary pressures.
population stratification: presence of multiple subgroups between which there

is minimal mating or gene transfer; also referred to as population substruc-
ture.

population substructure: presence of multiple subgroups between which there
is minimal mating or gene transfer; also referred to as population strati-
fication.

population-based study: an investigation involving unrelated individuals that
is distinguished from family-based studies, for which correlated data meth-
ods are generally required.

protease: protein cleaving enzyme involved in the life cycle of HIV; abbrevi-
ated Pr.

q-value: expected proportion of false positives among all features that are as
extreme as or more extreme than the feature under consideration.

quasi-species: viral population within a single human host.

recessive: describes a type of polymorphism that results in an alteration in a
trait only in the presence of two copies of the polymorphism.

recombination: the joining of two broken DNA strands, one from the maternal
side and one from the paternal side, that occurs as parental chromosomes
are passed to an offspring.

reverse transcriptase: enzyme involved in reverse transcribing viral RNA into
DNA, abbreviated RT.

single-nucleotide polymorphism: variant at a single site (base pair position)
on the genome; abbreviated SNP.
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single-step adjustment: multiple testing procedure in which a single criterion
is used to assess significance of all test statistics or corresponding p-values.

statistical independence: when the joint probability of two events (alleles) is
equal to the product of the two marginal probabilities.

step-down adjustment: multiple testing procedure that involves ordering test
statistics or p-values and then using a potentially different criterion for
each of the ordered values.

strains: genotypically distinct viruses resulting from multiple infections or
quasispecies that developed over time within the host.

strong control: characteristic of multiple testing adjustment in which the
family-wise error is less than or equal to α under all partial subsets of
null hypotheses.

subset pivotality: when the distribution of test statistics is the same under
any combination of true null hypotheses.

trait: a measure of disease status or disease progression.
type-1 error rate: probability of rejecting the null in favor of an alternative

when in fact the null is true.
type-2 error rate: probability of not rejecting the null in favor of an alterna-

tive when in fact the null is false.

variant allele: less common allele in a population; used interchangeably with
minor allele.

weak control: characteristic of multiple testing adjustment in which the
family-wise error is less than or equal to α under the complete null.

wildtype: most common allele in a population; used interchangeably with
major allele.

zygosity: comparative genetic makeup of two homologous chromosomes.
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gap: package includes several functions for the analysis of genetic data aris-
ing from both population- and family-based studies, including BFDP() for
calculating the Bayesian false discovery probability; gcontrol() and gcon-
trol2() for calculating genomic control statistics; hwe() and hwe.hardy()
for testing Hardy-Weinberg equilibrium using a χ2-test and Monte Carlo
methods, respectively; and hap() and genecounting() for haplotype recon-
struction using sorting and trimming algorithms.

GenABEL: package developed specifically to address the computational chal-
lenges of genome-wide association studies and associated analyses on desk-
top computers. Functions include convert.snp.illumina() for converting
data from Illumuna/Affymetrix platform to genotypic data formatted file;
several data manipulation functions and summary functions, including
snp.data-class(), which provides the number of observed genotypes and
allelic frequencies for each SNP; and methods for quality control check-
ing, including check.marker(), HWE.show() and ibs().

genetics: package includes several functions for genetic association studies,
including but not limited to LD() for calculating and testing pairwise
linkage disequilibrium; HWE.chiq(), HWE.exact() and HWE.test() for
testing for Hardy-Weinberg equilibrium (HWE); genotype(), homozy-
gote(), heterozygote() and allele.count() for coding genotype data; sum-
mary.genotype() and plot.genotype() for summarizing allele and genotype
frequencies; and dieseq.ci() for calculating bootstrap confidence interval
for single-marker disequilibrium.

hapassoc: package for estimating haplotype–trait association, including func-
tions pre.hapassoc() for augmenting genotype data to include “pseudo-
individuals with all possible corresponding haplotypes and hapassoc() for
estimating haplotype effects using an EM algorithm.

haplo.ccs: package that includes the haplo.ccs() function for estimating hap-
lotype relative risks in case–contol data by weighted logistic regression
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and sandcov() for computing the sandwich variance/covariance estimates
of the estimated coefficients.

haplo.stats: package for analysis involving unmeasured (ambiguous) haplo-
types includes haplo.em() for EM approach to computation of haplotype
frequencies; haplo.glm() for general linear model regression of quantita-
tive or categorical trait on ambiguous haplotypes within a single gene;
haplo.score() for calculating the score statistic for association between a
trait and ambiguous haplotypes; and haplo.group() for estimating haplo-
type frequencies within each level of a grouping variable.

LDheatmap: package that includes function LDheatmap() for graphically dis-
playing pairwise linkage disequilibrium (LD) between SNPs.

LDtests: package that includes functions for several different exact tests of
linkage disequilibrium (LD) and Hardy-Weinberg equilibrium (HWE).

LogicReg: Package includes function logicreg() for implementing logic regres-
sion using simulated annealing algorithm or Monte Carlo logic regression.

mirf: package contains mirf() function for applying multiple imputation and
random forests for ambiguous phase haploype–trait analysis and sepGeno()
function for converting genotype matrix into an object with two columns
for each SNP.

qvalue: package includes function qvalue() for estimating q-values based on a
list of p-values.

randomForest: package contains randomForest() function to implement the
random forest algorithm, several additional functions for summarizing and
visualizing results and rfImpute() for handling missing genotype data.

rpart: package includes several functions related to recursive partitioning
methods, including rpart() for fitting a classification or regression tree
and prune.rpart() for applying cost-complexity pruning.

SNPassoc: package designed for whole genome-wide association studies that
includes several functions, including WGassociation() for estimating and
testing association between SNPs and a binary or quantitative trait under
several assumed genetic models; Bonferroni.sig() for determining which
SNPs are statistically significantly associated with the trait after perform-
ing a Bonferroni adjusment; GenomicControl() to give corrected p-values
using genomic controls; LD() for computing pairwise linkage disequilib-
rium; inheritance() for recoding SNPs based on a genetic model; interac-
tionPval() for calculating p-values for all pairwise SNP–SNP interactions
after covariate adjustment using a likelihood ratio testing approach; and
tableHWE() for testing Hardy-Weinberg equilibrium.

snpMatrix: package in the Bioconductor suite that is designed for the analysis
of data from whole genome-wide association studies with several functions,
including single.snp.tests() for applying the Cochran-Armitage trend test
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and Pearson’s χ2-test; snp.rhs.tests() for fitting a generalized linear model
with SNPs as predictors (independent variables); snp.lhs.tests() for fitting
a generalized linear model with SNPs as the outcomes (dependent vari-
ables); ld.snp() for estimating linkage disequilibrium, including D′ and
r2; and snp.imputation() for imputing missing genotype data based on a
training dataset for which SNP data are complete.

tree: package includes the tree() function for fitting a classification or regres-
sion tree and prune.tree() for cost-complexity pruning.
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analysis of variance (ANOVA), 44, 46,
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anti-retroviral therapy (ART), 16
assignment operator, 216
association, see model of association
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bagging, see Bootstrap AGGregatING
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classification and regression trees
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curse of dimensionality, 55
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cells, 14
nodes, 158
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design matrix, 48
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effect
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modification, 35–37

effective number of tests (Meff), 123
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expectation, 32
expectation maximization (EM), 68,
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under a partial null (FWEP), 99
under the complete null (FWEC), 56,

99, 102, 103
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genome-wide association studies
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Hardy-Weinberg disequilibrium (HWD),
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Human Genome Diversity Project
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Human Immunodeficiency Virus (HIV),
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independent
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likelihood
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function, 32–33, 130
ratio test (LRT), 51

link function, 48
linkage

analysis, 65
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disequilibrium blocks, 74–76
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maximum likelihood, 32, 33
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meiosis, 14
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missing data, 58–60
mitosis, 14
mixed effects model, 126–127
model of association, 37, 49, 61
monotonicity, 116
Monte Carlo logic regression, 203
multidimensional scaling (MDS), 89
multifactor dimensionality reduction

(MDR), 173
multilocus genotype, 9
multiple imputation (MI), 142–145, 190

and random forests (MIRF), 193–198
multiplicative model, 51, 61
multiplicity, 55, 88
multivariable model, 49
multivariate, 11
multivariate adaptive regression splines

(MARS), 181, 182, 205–208

nearest neighbor error, 160
node, 158

impurity, 157, 159, 160, 166
non-random mating, 79
nucleotide, 8

null unrestricted bootstrap approach,
120–122

numeric variable, 216

odds ratio, 38
ordinal outcomes, 11
out-of-bag (OOB) data, 183, 184, 205
outcome, 11

p-value, 97, 98, 112–113
parent node, 158
Pearson correlation coefficient, 42
Pearson’s χ2-test, 39, 40, 78–80, 88
penetrance, 59
phase, see allelic phase
phase ambiguity, methods, 129–156
phenocopies, 59
phenotype, 7, 11
phi-coefficient, 42
polymorphism, 2
polyploidy, 60
population

admixture, 34, 60, 82, 83
genetics, 7
stratification, 34, 60, 76–77, 82, 83
substructure, 60, 75, 86, 88

population-based studies, 6
positive false discovery rate (pFDR),

100, 112–114
posterior probabilities, 131
predictor variable, 5, 12
principal components analysis (PCA),

89, 124
principal coordinate analysis, 89
probe quartet, 87
protease (Pr), 16, 18, 23
proteomics, 4
proximity

matrix, 190
score, 190

pruning, see cost-complexity pruning

q-value, 112–114
quantitative trait, 11
quantitative trait loci (QTL), 3
quasi-species, 17

R-squared (r2), 67, 125
random effects model, see mixed effects

model
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random forests (RFs), 157, 181–198
recessive model, 61, 62
recombination, 3, 14, 65
recursive partitioning, 157, 182
repeated measures studies, 6
resampling-based methods, 114–122
resubstitution estimate, 174
reverse transcriptase (RT), 16, 18
ribonucleic acid (RNA), 4, 16, 17
ridge regression, 211
robustly fitted linear model and

Mahalanobis distance (RLMM),
87

root node, 158

significance analysis of microarrays
(SAM), 112

simultaneous test procedure (STP), 97
single-nucleotide polymorphism (SNP),

2, 8
single-step adjustment, 101
site, 9
size, 174
SNP chip, 86
Spearman correlation coefficient, 42
statistical independence, see indepen-

dence
statistical interaction, see interaction
step-down adjustment, 101, 110
strains, 18
stratification, see population stratifica-

tion

strong control, 99
subset pivotality, 114, 115, 120
subtree, 175
support vector machines, 211
survival outcomes, 11

tagging, 74, 75
terminal node, 164, 165, 174, 175, 178,

184, 190
test sample, 174, 183
the lasso, 211
trait, 5, 7, 11–12
transcriptomics, 4
translation, 4
tree impurity, 174, 184
type-1 error, 12, 41, 55, 88, 98, 99
type-2 error, 98, 99

unobservable data, 58

variable importance, 181, 182, 184
variant allele, 10
vector, 217
Virco study, 23, 103, 110, 111, 113, 162,

166, 176, 185, 200

Wald test, 51
weak control, 99
weakest link, 175
wildtype, 23

zygosity, 10
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allele.names(), 45
anova(), 53
apply, 188
as.numeric(), 222
attach(), 20, 221
attributes(), 219

BayesTree, 211
biocLite(), 225

c(), 217
cbind(), 218
cforest(), 198
chisq.test(), 40, 76, 84
class(), 216
Classify(), 87
cmdscale(), 91
coin, 43
combinat, 69
cummax(), 119
cummin(), 110

data.matrix(), 90
dim(), 222
dist(), 90

earth, 206
earth(), 206, 207
epitools, 39
evimp(), 208

fisher.test(), 41
for(), 118, 121, 144

gdata, 69
GENAbel, 87
genetics, 22, 45, 69, 70, 80, 81, 224
genotype(), 22, 69, 80
getTree(), 186
getwd(), 215
glm(), 54, 149
gtools, 69

HapDesign(), 141
HapFreqSE(), 136
haplo.em(), 132, 134, 149, 196
haplo.em.control(), 132
haplo.glm(), 146–149
haplo.stats, 132, 146, 196
help(), 225
Hmisc, 220
HWE.chisq(), 80, 85
HWE.exact(), 81

independence test(), 43
install.package(), 224
is.na(), 188
isoMDS(), 91

LD(), 70, 73, 74
LDheatmap, 71
LDheatmap(), 71
library(), 69, 224
list(), 219
lm(), 47, 52, 62, 217, 218
lme(), 127
load(), 215
LogicReg, 200
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logreg(), 200

MASS, 69, 91
matrix(), 218
mean(), 74
mirf, 195
mirf(), 195–197
modeltools, 43
mt.maxT(), 117
mt.minP(), 117
multtest, 117
mvtnorm, 43, 69

na.roughfix(), 187, 188
names(), 221
nlme, 127
nlme(), 127
normalize Rawfiles(), 87

oddsratio(), 39
ordered(), 43

p.adjust(), 104, 111
party, 198
plot(), 163, 200, 217
plotcp(), 177
print(), 20, 216, 217
printcp(), 177
prune(), 178
pt(), 145
ptukey(), 106

qtukey(), 106
qvalue, 113
qvalue(), 113, 114

randomForest, 184, 185, 187, 188, 190
randomForest(), 185, 197

read.csv(), 20, 23, 220
read.delim(), 20, 23, 220
read.table(), 20
rfImpute(), 190
RLMM, 87
rpart, 162
rpart(), 162, 165, 166, 217
Rserve, 87

sammon(), 91
sasxport.get(), 220
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