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Preface to the Third Edition

When the second edition of this book was nearly exhausted, and orders
were grinding to a halt, Springer urged me to do a third edition. At the age
of 90 I said that was out of the question, but perhaps a co-author could be
found. I spoke to several distinguished demographers, and the general drift
of their replies was that the book was complete and well-rounded (my own
opinion!) and there was nothing that could be usefully added.

We were monumentally wrong. We hadn’t noticed the world of whales
and birds and land animals, i.e., the world of biology. Hal Caswell has
drastically broadened the perspective. Just as Alfred Lotka went far be-
yond the human species, so does Caswell. That wider perspective is fully
incorporated in this third edition. It should not only be of interest to de-
mographers, but to scholars of wide areas of biology. I can’t thank Joel
Cohen enough for realizing this and putting me on to Hal Caswell. His
work on the third edition makes it a very different and much better book.
Without Caswell, the book would have died with the second edition.

Cambridge, Massachusetts, USA Nathan Keyfitz

The request from Nathan Keyfitz that I collaborate on a new edition of
Applied Mathematical Demography came out of the blue. The prospect was
daunting. After all, when I began to study demographic analysis, Keyfitz’s
Introduction to the Mathematics of Population (1968) was the book that
I turned to first. As for Applied Mathematical Demography, it had always
seemed to me to embody a level of analytical insight that I could only envy.
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But I accepted the invitation. Keyfitz’s suggestion that we incorporate some
of my earlier work on matrix population models seemed like a good way to
complement the methods presented in the book, and to expand the range
of their applications.

I am a demographer of plants and nonhuman animals. Some would call
this an oxymoron, since the Greek root demos refers to people, and that’s
us. But there are precedents for taking more inclusive definitions of the
Greek. Ecology and economics, for example, both come from the root oikos,
referring to the household. Interpreting demos as referring to individuals,
whether they are persons or not, lets demography apply across species.
There is a long tradition of such crossover. Alfred J. Lotka is acknowledged
as a founding father of both demography and ecology. Raymond Pearl used
demographic methods to analyze the effects of toxic substances and crowd-
ing on fruit flies. Lee (1987) compared the density-dependence of the vital
rates of human and non-human animals. Today, in studies of senescence,
reproduction, and individual heterogeneity, the boundaries between animal
and human studies are becoming increasingly blurred (Wachter et al. 1997,
Carey 2003, Wachter and Bulatao 2003, Carey and Tuljapurkar 2003).

Matrix population models were developed in the 1940s by Patrick Leslie,
an animal ecologist (Leslie 1945, 1948). They lay fallow until the mid-1960s
when ecologists (Lefkovitch 1963, 1965) and human demographers (Keyfitz
1964, 1967, Rogers 1966) both rediscovered them. Both human demogra-
phers and ecologists needed to go beyond age-classified life table methods,
because factors other than age affect the fates of individuals, regardless of
species. In the 1970s this line of investigation was explored intensively by
plant ecologists because the life cycles of plants, with their plasticity of de-
velopment and multiple modes of reproduction, are particularly ill-suited
to age-classified models. Now, stage-classified matrix population models are
the most widely used framework for plant and animal demography, with
applications in conservation biology, resource management, and pest con-
trol. All these ecological applications have parallels in human demography,
in which the vital rates differ among individuals depending on age and
other properties, and population dynamics depend on those vital rates and
their variation in time and space. Modern mathematical software makes
matrix methods not only theoretically appealing, but also practical tools
for applied demographic analysis.

Much of the material on matrix population models in this book is ex-
tracted from the comprehensive treatment in Matrix Population Models:
Construction, Analysis, and Interpretation, 2d edition (H. Caswell, 2001,
Sinauer Associates, Sunderland, Massachusetts; www.sinauer.com). This
book is referenced here as MPM.

We have made relatively few changes to the text of the second edition.
Some topics have been rearranged, and we have added recent references,
to permit a student access to current developments. We have purposely
not removed many of the old references; they provide a valuable history of
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the development of the ideas, and are interesting in their own right. We
have tried to unify the mathematical notation, we hope without confusing
readers, whether more familiar with human demography or ecology.

On data in Applied Mathematical Demography

Applied Mathematical Demography is not—nor was in its first two
editions—a book about demographic trends and patterns. Instead, it is
a book about the theory underlying, and applied to, population dynam-
ics. The empirical data shown here must be recognized for what they are:
examples of how to apply analyses and interpret the results. Do not take
them for a description of the state of the world.

For example, Section 10.1 analyzes the age distribution, especially the
percentages under 15 and over 65, in three countries (Taiwan, the United
States, and France) in 1965. Even when the first edition was published in
1977, this tabulation would hardly have qualified as even a cursory sum-
mary of age distributions around the world. Certainly the demography of
each of these countries has changed in the last four decades. How would
the comparison look now? How would other countries fit into the picture
in the twenty-first century? The only way to find out would be to repeat
the analysis with contemporary data. The same is true of all the other data
appearing as examples here.

Asking students to conduct such analyses would be an excellent teaching
tool. The exercise would not only help to clarify the theory; it would also
hone two skills that, while critically important, are beyond the scope of this
book. One is obtaining and evaluating demographic data. The other is im-
plementing the calculations on the computer. The latter task has changed
so much since 1985 (to say nothing of 1977) as to be unrecognizable. Math-
ematical software, readily available for personal computers, makes even
complicated analyses easy. One of the best, especially for matrix calcu-
lations, is Matlab r©(The Mathworks, 3 Apple Hill Drive, Natick, MA
01760-2098, USA; www.mathworks.com), which was used for the matrix
calculations in this book.
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Preface to the Second Edition (1985)

What follows is a new edition of the second in a series of three books
providing an account of the mathematical development of demography.
The first, Introduction to the Mathematics of Population (Addison-Wesley,
1968), gave the mathematical background. The second, the original of the
present volume, was concerned with demography itself. The third in the
sequence, Mathematics Through Problems (with John Beekman; Springer-
Verlag, 1982), supplemented the first two with an ordered sequence of
problems and answers.

Readers interested in the mathematics may consult the earlier book, re-
published with revisions by Addison-Wesley in 1977 and still in print. There
is no overlap in subject matter between Applied Mathematical Demography
and the Introduction to the Mathematics of Population. Three new chapters
have been added, dealing with matters that have come recently into the
demographic limelight: multi-state calculations, family demography, and
heterogeneity.

Nathan Keyfitz





Preface to the First Edition (1977)

This book is concerned with commonsense questions about, for instance,
the effect of a lowered death rate on the proportion of old people or the
effect of abortions on the birth rate. The answers that it reaches are not
always commonsense, and we will meet instances in which intuition has to
be adjusted to accord with what the mathematics shows to be the case.
Even when the intuitive answer gives the right direction of an effect, tech-
nical analysis is still needed to estimate its amount. We may see intuitively
that the drop from an increasing to a stationary population will slow the
promotion for the average person in a factory or office, but nothing short
of an integral equation can show that each drop of 1 percent in the rate of
increase will delay promotion to middle-level positions by 2.3 years.

The aim has been to find answers that will be serviceable to those working
on population and related matters, whether or not they care to go deeply
into the mathematics behind the answers. My earlier book, Introduction
to the Mathematics of Population, had the opposite purpose of developing
the theory, and mentioned applications mostly to illuminate the theory.
Because of their different objectives there is virtually no overlap between
the two books.

Population theory has developed at a sufficiently fast rate and in enough
directions that no book of reasonable size can include all of its applications.
A full development of theory ought to recognize not only age-specific rates
of birth and death but also two sexes and two or more species. Age-specific
rates can vary through time, and the theory can be stochastic in allow-
ing to each individual member of the population his own separate risk, or
deterministic in supposing that whatever probability applies to each in-
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dividual is also the fraction of the population that succumbs to the risk.
Thus population theory can be classified into the 16 categories shown in
the accompanying table. By far the largest part of what is taken up in this
book falls into the upper left category: it deals with one sex, usually female,
and one species, man; it takes the age-specific rates of birth and death as
fixed through time; it is deterministic rather than stochastic. This upper
left-hand cell is conceptually the simplest of the 16, and it is mathemati-
cally the most tractable. But are these decisive arguments for its emphasis,
given that real populations include two sexes; human populations interact
with other species; birth and death rates change through time; and all life
is stochastic?

The art of theory construction is to start with simple assumptions
and then to introduce greater realism, which means more complexity, as
required. On the path from simplicity to realism one must stop at a com-
promise point. My taste may not always be that of my readers; they may
often say that a particular model I use is too simple, that they need to take
into account factors that I neglect. This line of criticism is welcome, even
though it leads to further and more difficult mathematics.

Classification of population theory

Fixed rate Changing rate

Deterministic Stochastic Deterministic Stochastic

One sex
One species *
Two or more species

Two sexes
One species
Two or more species

During 10 or more years of work on this book I have incurred more
obligations than I can acknowledge or even remember. Students pointed
out errors and obscurities; they helped in some cases by conspicuously
failing to understand what I was saying and compelling me to think the
matter through afresh. Colleagues looked at drafts and were generous with
comments. Editors and referees of journals were helpful, especially Paul
Demeny. No one is responsible for errors that remain but me.

Among these colleagues, students and correspondents who have been
a source of ideas and a means of correcting errors, I recall especially
William Alonso, Barbara Anderson, Brian Arthur, John C. Barrett, Ans-
ley J. Coale, William Cochrane, Joel E. Cohen, Prithwis Das Gupta, Paul
Demeny, Lloyd Demetrius, James Dobbins, Barry Edmonston, Jamie Eng,
Thomas Espenshade, Noral Federici, Griffith Feeney, Gustav Feichtinger,
Jair Fereira-Santos, James Frauenthal, A. G. Fredrickson, Robert Gardiner,
Campbell Gibson, Noreen Goldman, Antonio Golini, David Goodman, Leo
A. Goodman, Louis Henry, Jan Hoem, Barbara Keyfitz, S. Krishnamoorthy,
Paul Kwong, Juan Carlos Lerda, John Lew, Gary Littman, Robert Lundy,
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James G. March, Robert Mare, George Masnick, John McDonald, David
McFarland, Geoffrey McNicoll, Paul Meier, Jane Menken, Walter Meyer,
George C. Myers, Frank Oechsli, Beresford Parlett, James Pick, Robert G.
Potter, Jr., Samuel H. Preston, Thomas Pullum, Robert Retherford, Roger
Revelle, Andrei Rogers, Normal Ryder, Paul Samuelson, Robert Sembir-
ing, David P. Smith, Leroy O. Stone, Richard Stone, Michael Stoto, Michael
Teitelbaum, Harold A. Thomas, Robert Traxler, James Trussell, Etienne
Van de Walle, Kenneth Wachter, Frans Willekens and Harrison White,
every one of whom has had some effect on this book. To be singled out
especially for their help in the final stages are Noreen Goldman, David P.
Smith, Gary Littman, S. Krishnamoorthy, and Michael Stoto, who read
much of the manuscript and all of the page proof.

The most important acknowledgment is to my wife, who edited and typed
the manuscript, some parts of it many times.

Cambridge, Massachusetts, USA Nathan Keyfitz
February 1977
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A Word About Notation

Throughout the book, matrices are denoted by boldface capital letters (A)
and their elements by lower-case letters (aij). Vectors are denoted by bold-
face lower-case letters (w) and their elements by lower-case letters (wi).
Vectors are column vectors by default. Occasionally, it is necessary to refer
to the elements of subscripted matrices; in such cases, e.g., a

(k)
ij is the (i, j)

element of Ak. The transpose of A is AT. The complex conjugate trans-
pose of A is A∗. The determinant of A is denoted det(A) or |A|. Unless
otherwise specified, all logarithms are natural logarithms.

It has not been possible to develop a completely uniform set of symbols.
Population size, in numbers of individuals, is usually denoted by N (as a
scalar) or n (as a vector). The age distribution as a density function is
usually denoted p(a), so that, for example, the total population would be
given by N =

∫∞
0 p(a)da. Double subscripts (e.g., 5qx) are used to denote

quantities defined by an age (the right subscript) and an age interval (the
left subscript). The example just given is the probability that an individual
aged x will die in the next 5-year age interval; i.e., between ages x and x+5
(see p. 30). There are exceptions, but symbols are always defined in the
context of their use.

Equations are numbered within sections, so (12.2.3) or “equation 12.2.3”
refers to the third numbered equation in Section 12.2.



1
Introduction: Population Without Age

Age is a characteristic variable of population analysis; much of the theory
of this volume will be concerned with the effect of age distribution, either
fixed or changing. But age is not the only characteristic variable, and part
of this book will deal with methods capable of describing the effects of
other variables besides, or in addition to, age. Abstraction is necessary in
demographic as in other theory; is it possible to abstract even from age
and still obtain results of value?

To represent a population as a number varying in time, and in disregard
even of its age composition, is like treating the earth as a point in space—
though too abstract for most purposes, it is useful for some. Partly as an
introduction to the rest of the book, the nine sections of this chapter take
up questions to which answers can be obtained without reference to age.

These topics vary in depth and subtlety. The first deals only with the
use of logarithms in base 2, that is, the number of doublings to go from
one total to a larger total. Such logarithms show dramatically how close
birth rates must have been to death rates throughout human history. Next
comes an aspect of bisexual reproduction, and some of the difficulty it
causes; consideration of one sex at a time is a powerful simplifying device
for understanding demographic mechanisms. Another question concerns a
population made up of a number of subpopulations, each increasing at
a fixed rate; we will see at what increasing rate the total population is
expanding. Attention will be given also to the migration problem, from
which the one-sex population recognizing age will emerge as a special case;
that a proposition concerning age follows directly from one on migration
illustrates the advantage of a formal treatment.
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1.1 Definitions of Rate of Increase

Population change is expressed in terms of rate of increase, a notion differ-
ent in an important respect from the rate of speed of a physical object such
as an automobile. If a country stands at 1,000,000 population at the begin-
ning of the year, and at 1,020,000 at the end of the year, then by analogy
with the automobile its rate would be 20,000 persons per year. To become
a demographic rate this has to be divided by the population, say at the
start of the year; the population is growing at a rate of 20,000/1,000,000
or 0.02 per year. More commonly it is said to be growing at 2 percent per
year, or 20 per thousand initial population per year.

The two kinds of rate are readily distinguished in symbols. The analogue
of the physical rate x′ in terms of population at time t and t + 1, Nt and
Nt+1, is

x′ = Nt+1 − Nt or Nt+1 = Nt + x′,

while the demographic rate x is

x =
Nt+1 − Nt

Nt
or Nt+1 = Nt(1 + x).

Just as x′ is similar to a rate of velocity, so x is similar to a rate of compound
interest on a loan. Both are conveniently expressed in terms of a short time
period, rather than 1 year, and in the limit as the time period goes to zero
they become derivatives:

x′ =
dN(t)

dt
and x =

1
N(t)

dN(t)
dt

.

The rates x′ and x give very different results if projected into the future.
A population continuing to grow by 20,000 persons per year would have
grown by 40,000 persons at the end of 2 years, and by 60,000 persons at
the end of 3 years. One increasing at a rate of 0.02 would be in the ratio
1.02 at the end of 1 year, in the ratio 1.022 at the end of 2 years, and so on.
The latter is called geometric increase, while the fixed increment is called
arithmetic increase.

Thus the very notion of a rate of increase, as it is defined in the study of
population, seems to imply geometric increase. In fact, it implies nothing
for the future, being merely descriptive of the present and the past; rates
need not be positive and can be zero or negative. Moreover, being positive
today does not preclude being negative next year: ups and downs are the
most familiar feature of the population record.

The future enters demographic work in a special way—as a means of
understanding the present. To say that the population is increasing at
2 percent per year is to say that, if the rate continued, the total would
amount to 1.0210 = 1.219 times the present population in 10 years, and
1.021000 = 398,000,000 times the present population in 1000 years. If this
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tells anything, it says that the rate cannot continue, a statement about the
future of a kind that will be studied in Chapter 8.

Still, the conditional growth rate whose hypothetical continuance is help-
ing us to understand the present can be defined in many ways. In particular,
in the example above, it could be an increase of 20,000 persons per year
just as well as of 0.02 per year. Arithmetical and geometrical projections
are equally easy to make; why should the latter be preferred?

The reason for preferring the model of geometric increase is simple:
constancy of the elements of growth translates into geometric increase. If
successive groups of women coming to maturity have children at the same
ages, and if deaths likewise take place at the same ages, and if in- and
out-migration patterns do not change, then the population will increase
(or decrease) geometrically. Any fixed set of rates that continues over time,
whether defined in terms of individuals, families, or age groups, ultimately
results in increase at a constant ratio. That any fixed pattern of childbear-
ing, along with a fixed age schedule of mortality, implies long-run geometric
increase is what makes this kind of increase central in demography. (The
stationary population and geometric decrease can be seen as special cases,
in which the ratios are unity and less than unity, respectively.)

1.2 Doubling Time and Half-Life

The expression for geometric increase gives as the projection to time t,

Nt = N0(1 + x)t, (1.2.1)

where x is now the fraction of increase per unit of time. The unit of time
may be a month, a year, or a decade, so long as x and t are expressed
in the same unit. Any one of N0, Nt, x, or t may be ascertained if the
other three are given. When the quantity x is negative, the population is
decreasing; and when t is negative, the formula projects backward in time.
If x is the increase per year as a decimal fraction, then 100x is the increase
as percentage and 1000x the increase per thousand population.

We are told that the population of a certain country is increasing at
100x percent per year, and would like to determine by mental arithmetic
the population to which this rate of increase would lead if it persisted over
a long interval. Translating the rate into doubling time is a convenience in
grasping it demographically as well as arithmetically.

Since annual compounding looks easier to handle than compounding by
any other period, we will try it first. We will see that it leads to an un-
necessarily involved expression, whose complication we will then seek to
remove.

If at the end of 1 year the population is 1 + x times as great as it was
at the beginning of the year, at the end of 2 years (1 + x)2, . . . , and at the
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end of n years (1+x)n times, then the doubling time is the value of n that
satisfies the relation

(1 + x)n = 2. (1.2.2)

To solve for n we take natural logarithms and divide both sides by log(1+x):

n =
log 2

log(1 + x)
=

0.693
log(1 + x)

. (1.2.3)

The Taylor series for the natural logarithm log(1 + x) is

log(1 + x) = x − x2

2
+

x3

3
− · · · . (1.2.4)

Entering the series for log(1 + x) in (1.2.3) gives for doubling time

n =
0.693

log(1 + x)
=

0.693
x − (x2/2) + (x3/3) − · · · . (1.2.5)

The right-hand expression can be simplified by disregarding terms beyond
the first in the denominator. We could write n = 0.693/x, but for values of x
between 0 and 0.04, which include the great majority of human populations,
arithmetic experiment with (1.2.5) when x is compounded annually shows
that it is, on the whole, slightly more precise to write n = 0.70/x or, in
terms of x expressed as a percentage (i.e., 100x), to write n = 70/100x.

The expression

n =
70

100x
(1.2.6)

is a simple and accurate approximation to (1.2.3). It tells us that a popula-
tion increasing at 1 percent doubles in 70 years, and so forth. For Ecuador
in 1965, 100x was estimated at 3.2 percent, so doubling time would be
n = 70/3.2 = 22 years. The 1965 population was 5,109,000, and if it dou-
bled in 22 years the 1987 population would be 10,218,000; this compares
well with the more exact (5,109,000)(1.032)22 = 10,216,000. Similarly a
further doubling in the next 22 years would give a population in the year
2009 of 20,436,000, as compared with (5,109,000)(1.032)44 = 20,429,000.
The formula n = 70/100x is plainly good enough for such hypothetical
calculations.

The Period of Compounding. All this is based on a definition of x by which
the ratio of the population at the end of the year to that at the beginning of
the year is 1+x. Interest calculations are said to be compounded annually
on such a definition. A different definition of rate of increase simplifies this
problem and others and without any approximation gets rid of the awkward
series in the denominator of (1.2.5).

Suppose that x is compounded j times per year; then at the end of 1 year
the population will have grown in the ratio (1 + x/j)j . Is there a value j
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more “natural” than 1? There is: infinity. When the rate x is compounded
instantaneously, we will call it r. We then have

lim
j→∞

(
1 +

r

j

)j

= er,

where e is the base of natural logarithms and equals 2.71828. [To see how
fast this converges try (1 + r/100,000)100,000 for r = 1 and show that the
results agree with e to five significant figures. To how many does (1 +
r/1,000,000)1,000,000 agree?]

Our calculations from this point will suppose such instantaneous com-
pounding of population, unless otherwise stated; we will take it that a
population increasing at rate r will equal er at the end of 1 year and enr at
the end of n years. Thus, instead of saying that a population is increasing
at 3.20 percent per year compounded annually, we will make the equiva-
lent statement that it is increasing at 3.15 percent per year compounded
continuously. Most formulas are thereby made simpler.

This device would equally simplify financial calculations. Tradition has
caused these to be made on the basis of a variety of compounding periods—
semiannually, quarterly, monthly, daily. If the rate compounded annually is
3.2 percent, the equivalent rates (percents) for other compounding periods
are as follows:

Semiannually 3.1748
Quarterly 3.1623
Monthly 3.1540
Weekly 3.1508
Daily 3.1500
Continuously 3.1499

[Show that in general the rate compounded n times per year equivalent to
the rate x compounded annually is

xn = n
[
(1 + x)1/n − 1

]
,

and verify the above numbers]. To quote interest rates, like rates of
population increase, continuously avoids a good deal of unnecessary
complication.

With r defined as an annual rate compounded continuously, the equation
for the doubling time n becomes enr = 2, whose solution is just n = 0.693/r
or 69.3/100r. For Mexico the rate of population increase is about 3.5 per-
cent per year compounded momently. The population therefore doubles in
69.3/3.5 = 20 years, quadruples in 40 years, . . . , and multiplies by 32 = 25

in 100 years (strictly, 99.02 years).
For decreasing populations the same applies except that now we want

halving time, and so we equate enr to 0.5, and obtain n = −0.693/r. If
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r = −0.01, the n = −0.693/(−0.01) = 69 years, and this is the half-life.
At the level of abstraction of the present section the continuous model of
population is identical with that of radioactive substances.

The expressions are equally usable to find r, given n; if we know that
a population has doubled in n = 100 years, its annual rate of increase
compounded momently must be r = 0.693/100 = 0.00693. In general,
r = 0.693/n.

1.2.1 Application to Human History
The simple apparatus of (1.2.6), or else doubling time = 0.693/r, can be
applied to show how nearly equal birth rates have been to death rates for
most of human history. Our race must have started with a sizable group;
and even if there had been periodic censuses at the time, questions of defi-
nition would have made their interpretation controversial. Suppose for this
example that one human couple living a million years ago has multiplied
to equal the present human total of about 4 billions, and that it has grown
uniformly by geometric increase over the entire period. Since 210 = 1024,
multiplication by 1000 is about 10 doublings, multiplication by 1 billion is
30 doublings, and by 2 billion is 31 doublings. If just 31 doublings have oc-
curred over the last million years, then each must have taken 1,000,000/31
or just over 32,000 years on the average.

But we saw that a population that takes n years to double is increasing at
r = 0.693/n per year. If the doubling time n is 32,000 years, the annual rate
of increase is 0.693/32,000 = 0.000022. In a population closed to migration
(which the earth as a whole must be) the rate of increase must equal the
birth rate (say b) less the death rate d: r = b − d, or b = r + d. Thus, with
a doubling time of 32,000 years, if death rates were 40.000 per thousand
population, then birth rates must have been 40.022 per thousand. Over
the million years birth and death rates must on the average have been this
close.

It is fanciful to average over a million years; consider now the shorter
period from the time of Augustus, with a world population of about 250
million, to the mid-seventeenth century with 545 million people, a ratio of
2.18, or an average rate of increase of log 2.18/1650 = 0.00047. If death
rates were 40.00 per thousand, then birth rates must have been 40.47 per
thousand on the average; again simple arithmetic gives an idea of how close,
on the whole, birth and death rates have been over historical time.

To show further how exceptional is the situation in which death rates
in many places have dropped to 20 per thousand while births stay at 40,
let us see how short a time it would have taken to arrive at the world’s
present 4 billion population with birth rates that are 20 per thousand higher
than death rates. Doubling would take 35 years, so 31 doublings would
take 31 × 35 = 1085 years. A single couple starting two centuries before
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William the Conqueror would have produced more than the present world
population.

Lest anyone think that this argument is original here, consider this quote
from Boldrini’s Demografia, published in Milan in 1956. Given, he says,
one couple and the rate of increase in population in the first half of the
twentieth century of r = 0.0082, how long would it take to attain the world
population of 2438 million? He finds 2567 years, or about the elapsed time
from the founding of Rome (Boldrini 1956, p. 46). [Show that the numbers
given work out to 2551 years if the rate 0.0082 is compounded continuously,
or to 2562 years if it is compounded annually. Minor errors of this kind are
easy to detect with a modern hand calculator.] Boldrini then goes on to
give other variants of the same thought.

Long before Boldrini, Bortkiewicz (1911, pp. 75, 76) showed the useful-
ness of (1.2.2) and the following expressions for doubling time, and he in
turn had precursors. Süssmilch (1788, pp. 291ff) was interested in doubling
time and asked his contemporary, Leonard Euler, about reproduction un-
der some extreme circumstances. Euler provided an account that comes
close to modern stable theory.

1.2.2 Logarithms to Various Bases
The use of doubling time or half-life in such calculations is arbitrary; we
might prefer to do the arithmetic by means of tripling time or one-third-life.
Tripling time is equal to n = (log 3)/r = 1.099/r. Instead of using 2 or 3
for the base of calculation, we might use 10; the time for tenfold increase is
n = (log 10)/r = 2.303/r. A population increasing at 3.5 percent per year
will multiply by 10 in n = 2.303/0.035 = 66 years, by 100 in 132 years, and
so on.

The number of doublings that correspond to a specified ratio of a final
to an initial population is called the logarithm of that ratio to base 2 ;
Thus the logarithm of 1000 to base 2 is the power to which 2 has to be
raised to equal 1000. Since 210 = 1024, we can say approximately that the
logarithm of 1000 to base 2 is 10; multiplication by 1000 is about equivalent
to 10 doublings (more exactly, to 9.97 doublings). Then multiplication by
a million is equivalent to 20 doublings, and by a billion to 30 doublings,
so the logarithms of these numbers to base 2 are 20 and 30, respectively.
For thinking about a steadily increasing population, doubling time is a
more convenient unit than years or centuries, and logarithms to base 2 are
correspondingly valuable.

To translate from number of doublings to number of triplings is to trans-
late from logarithms to base 2 to logarithms to base 3. If x is the number
of doublings and y the number of triplings, then

2x = 3y.
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We take natural logarithms of both sides to obtain

x log 2 = y log 3,

which is the same as

y =
log 2
log 3

x =
0.693
1.099

x = 0.63x. (1.2.7)

If x doublings constitute an increase in any given ratio R, then 0.63x
triplings constitute the same increase. We found that to go from 2 per-
sons to 4 billion persons requires 31 doublings. This is equivalent to
31 × 0.63 = 20 triplings.

In general, if x is the log of R to base a, and y is the log of R to base b,
so that

ax = by,

then taking logarithms to an arbitrary base gives

x log a = y log b,

whatever the base. If the base is b, then, since we know (from the fact that
b1 = b) that logb b = 1, we have

y = x logb a. (1.2.8)

This says that to go from loga to logb we need merely multiply by logb a.
As a particular case of y = x logb a, we put b = e, and obtain

loga R =
loge R

loge a
≡ log R

log a
.

For purposes of calculation one usually starts with logarithms to base e,
designated as log, and this formula changes to an arbitrary base a. For
example,

log2 7 =
log 7
log 2

=
1.946
0.693

= 2.807.

It is convenient also to know that logb a is the reciprocal of loga b. [Prove
this.]

1.2.3 Prospective Possible Doublings
Doubling times provide a quick perspective on future limitations as well
as on past history. We saw that of the 31 doublings from the hypothetical
primeval couple about 4 have occurred since the time of Augustus. Filling
all of the land surface of the planet Earth to the density of Manhattan
would take us to only 10 more doublings from where we are. Spreading
with equal density over the bottoms of the oceans as well would permit
about 2 additional doublings. More realistic considerations suggest that
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the 31 doublings so far vouchsafed to man, with at most one or two more,
are all he will ever have. The number 31, plus or minus one or two, may be
thought of as a constant of nature.

1.3 One-Sex Versus Two-Sex Models: Descendants
of the Pilgrim Fathers

Bisexual reproduction means that each of us has two parents, four grand-
parents, and eight great-grandparents, in general, 2i greati−2-grandparents.
These are outside numbers; there must have been some inbreeding during
the last 30 generations, since 230 is 109 or 1 billion, and this has to be
compared with the number of people on earth 30 generations ago. The
number then living would not have sufficed to provide each of us with 230

distinct great28-grandparents, for going back 30 generations takes us to
about the year A.D. 1200, when the world population was barely half a
billion. Notwithstanding the ultimate unity of the human race, moreover,
the ancestors of each of us since A.D. 1200 must have been a subgroup of
humanity.

From this viewpoint ancestry is simpler to deal with than progeny, for
each of us can have zero, one, two, or more children, but each of us must
have had exactly two parents. Thought of as a branching process, each
step backward in time is a simple bifurcation; forward in time each step
can involve up to 10 or more forkings. But this simplicity of the backward
process is more than offset by intermarriage.

Demography must transcend the detail of family trees, just as macroe-
conomics must aggregate the detail of individual transactions. The various
sections of this book can be thought of as different ways of summarizing
genealogies for the purpose of drawing conclusions on populations. A useful
summarizing device is to consider only one sex at a time.

A large part of our work will treat only the female side of the pop-
ulation, or only the male side. This is not to imply that the other sex
is not necessary, but rather to suppose that it exists in whatever num-
bers are required to produce the growth in the sex being followed. The
present section is intended to show how this device gives clear answers to
questions otherwise indeterminate. We will use the number of descendants
of the Pilgrim fathers—not in itself an important demographic issue—as
an extreme example of the uncertainty introduced when both sexes are
considered simultaneously.

We saw that an increase of 100x percent per year implies a doubling
time of about 70/100x. Evidence from the total population of the United
States and that of French Canada suggests that 2 percent per year, or a
doubling in 35 years, is about right for an American group over the three
and one-half centuries since the landing of the Pilgrims in 1620.
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The population of the United States increased from 3,929,000 in 1790
to 204 million in 1970, or 51.9 times. This is 5.7 doublings, or say 6, and
implies about 180/6 = 30 years per doubling. The increase does include
immigration, however, and 30 years is therefore too short a time for the
doubling of a native group.

A self-contained population that probably had birth rates somewhat
higher than those of the Pilgrims is the French Canadians, including the
Franco-Americans. There were fewer than 10,000 original newcomers, say
of average time of arrival 1700. By 1970 there were about 5,500,000 French
Canadians; over the course of 270 years they had multiplied by 550, which
is 9 doublings and hence also about 30 years per doubling. Their growth
was almost entirely due to excess of births over deaths, with immigration
making only a trifling contribution, but their birth rates continued to be
high long after those of the Pilgrims’ descendants had fallen.

This broadly supports a figure of about 35 years per doubling for the
Pilgrims, which also happens to be convenient for the arithmetic of our
example. Following the male line for each Pilgrim (except that for the few
women Pilgrims we follow the female line) would give 10 doublings in the
350 years from 1620 to 1970. (The male line is sons of sons of sons, etc.; the
female line, daughters of daughters of daughters. In this way of reckoning,
the son of a daughter of Elder Brewster is not taken as a descendant.)

About half the Pilgrims are said to have died during the first hard winter;
let us consider only the survivors, say 50 in number. Then each Pilgrim
would have 210 = 1024 descendants through the line for his own sex, and
all of them together would have 50 × 1024 or somewhat over 50,000 male
descendants of male Pilgrims and female descendants of female Pilgrims.
This would also approximate the present total if the Pilgrims had been a
nuptially isolated group, which is to say their descendants were separated
from the rest of the population and were always able to find spouses from
their own numbers. This would have required an equal number of each sex
from the beginning (or the appointment of a number of honorary female
Pilgrims in the first generation).

More difficult is the question of descendants in view of the fact that
they actually were not isolated. At the other extreme, if they could always
have married spouses who were not descended from Pilgrims, and we count
all their children rather than the line for one sex, the expansion of the
Pilgrim-descended population would be at twice the rate of the preceding
paragraph. Now each would have four descendants in the time supposed for
two above, which is to say that time for doubling would average just one-
half of 35 years. Thus each would have 220 or over 1 million descendants
in the 350 years to 1970, and the 50 Pilgrims surviving through the first
winter would together have over 50 million descendants.

The number of persons now alive who can claim descent from the Pilgrims
is thus at least 50,000 (if they were an isolated subpopulation, and the
fact that the numbers of the two sexes were not equal at the beginning is
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disregarded) and at most 50,000,000 (if they completely avoided marrying
one another). Without data on the extent of intermarriage we have no way
of narrowing the range between 50,000 and 50,000,000 descendants. [What
are some of the difficulties of collecting data on intermarriage?]

The purpose of this account being merely to illustrate the indeterminacy
of a two-sex model, we have simplified the data. A more realistic analysis
would start with the fact that just 23 of the Pilgrims founded continuing
families, and would use historical records to ascertain with more precision
just what their family sizes were in successive generations. Apparently the
Mayflower Descendants Society counts about 15,000 members, all of whom
have proved their descent, but this number is far short of the actual total
of descendants.

That the one-sex problem gives the simple and unique answer of 50,000
on our assumptions, whereas the corresponding two-sex problem leaves us
in the range of 50,000 to 50 million, is only one aspect of the difficulty.
Another is the effect on marriages and births of adding a number of males
to a population, as against the (presumably greater) effect of adding the
same number of females. Hunting female rabbits affects reproduction more
than hunting male rabbits—how much more depends on how actively the
remaining males get around. Satisfactory answers to such questions are
not easily found. They cannot be obtained without facts or assumptions
regarding individual behavior of a more detailed kind than demography
ordinarily introduces.

In most of the following chapters the population will be assumed closed
to migration and will usually appear to consist only of females or only of
males. We will not care how many individuals can trace their ancestry back
to a given origin, but we will want to know how fast a closed population is
increasing, and what determines its age distribution and other features. For
that purpose we will consider the two sexes separately and avoid examining
the availability of mates, a question whose difficulties it is the purpose of
the present section to suggest.

The fact that the one-sex model gives simple answers to difficult ques-
tions, and that under a considerable range of circumstances these answers
are realistic, makes it a positive achievement.

1.4 How Many People Have Lived on the Earth?

The number of people who have lived on the earth can be estimated by
the births at two or more points in time and supposing uniform increase
between these points. First we find the rate of increase r when births are
given.

If in year t1 the births were n1, and in year t2 (later than t1) were
n2, the ratio of increase was n2/n1. In terms of r, the average annual
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rate of growth compounded momently, this same ratio of increase must be
er(t2−t1). Equating these two expressions,

n2

n1
= er(t2−t1),

and taking logarithms of both sides and solving for r gives

r =
log n2 − log n1

t2 − t1
. (1.4.1)

Now we have to find the total births over a long interval of time. If during
the interval from t1 to t2 the rate of increase was at all times exactly r,
in any intermediate year t the births were n1e

r(t−t1), and integrating this
gives the total births as∫ t2

t1

n1e
r(t−t1) dt =

n1

r

[
er(t2−t1) − 1

]
=

n2 − n1

r
, (1.4.2)

using the fact that er(t2−t1) = n2/n1.
We want to express the births over the interval in a way that does not

require explicit knowledge of r. To do so we substitute the value of r from
(1.4.1) in (1.4.2) and so obtain for the births that occurred in the interval,
which is the same as the total persons who lived, the simple result

Persons who lived =
(n2 − n1)(t2 − t1)

log n2 − log n1
. (1.4.3)

A widely quoted article of the Population Reference Bureau (Cook 1962)
estimated annual births at four points in the history of mankind as follows:

t n

600,000 B.C. 1
6000 B.C. 250,000
A.D. 1650 25,000,000
A.D. 1962 110,000,000

For the first of the three intervals between these four points, that between
600,000 B.C. and 6000 B.C., the expression on the right of (1.4.3) gives
persons who lived as

(n2 − n1)(t2 − t1)
log n2 − log n1

=
(250,000 − 1)(600,000 − 6000)

12.4292 − 0
= 11.9 × 109,

and for the other two intervals we have similarly 41.1× 109 and 17.9× 109,
respectively. Adding the three intervals gives 11.9 + 41.1 + 17.9 = 70.9
billion (not 77 billion, as the Population Reference Bureau calculated).

If we had more points at which population could be reasonably assessed,
the estimate would turn out to be different. Assuming a longer stretch of
time than 600,000 years would raise the number, and supposing arithmetic
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rather than geometric increase would raise it greatly. With the high mor-
tality prevailing in most times and places, only about half of those born
lived to maturity, so the number of adults who have ever lived is far less
than the number of persons.

Deevey (1950) has looked into the past and present populations of the
planet in more detail, and makes estimates for 12 points of time from 1
million years ago to the year 2000. He is not satisfied with the exponen-
tial curve, but applies three successive logarithmic curves, one for each of
the three main phases of human evolution—toolmaking, agriculture, and
scientific–industrial. He concludes that 110 billion will be the world total
over all time to the year 2000.

Taking these and other (e.g., Winkler 1959, Fuchs 1951) calculations
together suggests that the nearly 4 billion persons now alive∗ constitute
between 4 and 6 percent of those who have ever lived, a proportion that
would be somewhat smaller if we moved human origins back in time. The
corresponding fraction for adults is greater, and the fraction of those with
specific modern occupations who have ever lived, for instance engineers,
much greater.

We now drop the homogeneity and suppose subpopulations having
different rates of increase.

1.5 A Mixture of Populations Having Different
Rates of Increase

A population of initial size Q growing at rate r numbers Qert at time t,
r being taken as fixed and the population as homogeneous. Now suppose
heterogeneity—a number of subpopulations, of which the ith is initially Qi

growing at rate ri, so that at time t the total number is N(t) =
∑

i Qie
rit.

We will show that the total never stabilizes, that its rate of increase forever
increases, and that the composition constantly changes.

The definition of rate of increase over a finite time δ may be written as

1
N(t)

N(t + δ) − N(t)
δ

,

and in the limit as δ tends to zero this becomes
1

N(t)
dN(t)

dt
. (1.5.1)

Thus at time t the derivative of the total population, dN(t)/dt, when di-
vided by N(t), provides us with the rate of increase, which for our mixture

∗That number is now (2004) six billion; for discussions of the past and future of global
human population growth, see Cohen (1995) and Bongaarts and Bulatao (2000).
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of populations can be written as r̄(t). The derivative of N(t) =
∑

i Qie
rit

is dN(t)/dt =
∑

i Qirie
rit. Hence the rate of increase must be

r̄(t) =
1

N(t)
dN(t)

dt
=
∑

i Qirie
rit∑

i Qierit
,

which is the arithmetic mean of the ri, each weighted by its population at
time t.

The change in this mean rate of change, by the rule for the derivative of
a ratio of two functions u(t) and v(t),

d(u/v)
dt

=
1
v

du

dt
− u

v2

dv

dt
,

is obtained from
du

dt
=
∑

i

Qir
2
i erit and

dv

dt
=
∑

i

Qirie
rit

as

dr̄(t)
dt

=
∑

i Qir
2
i erit∑

i Qierit
−
(∑

i Qirie
rit∑

i Qierit

)2

. (1.5.2)

Equation (1.5.2) informs us that the increase in the mean rate of increase
at time t is equal to the difference between the mean square and the square
of the mean of the rates weighted by the number of people at that time.

Variance is ordinarily defined as the mean square deviation from the
mean: if a variable x takes values x1, x2, . . . , xK , then

x̄ =
∑

xi/K and σ2 =
∑

(xi − x̄)2/K.

But ∑
(xi − x̄)2

K
=
∑

[(xi − x̄)(xi − x̄)]
K

=
∑

[xi(xi − x̄)] −∑[x̄(xi − x̄)]
K

,

and the second summation vanishes to leave

σ2 =
∑

x2
i

K
− x̄2,

because
∑

(xi − x̄) = 0 and
∑

xix̄/K = x̄2. The argument applies equally
well if the xi are weighted, and in particular it applies to our ri weighted
at any moment by their respective populations.

Hence (1.5.2) is the same as the variance among subpopulation rates of
increase:

dr̄(t)
dt

= σ2(t), (1.5.3)
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where σ2(t) is the variance among the ri, each weighted according to its
current subpopulation Qie

rit.
The nonnegative derivative of r̄(t) in (1.5.3) proves that r̄(t) is always

increasing, unless the ri are all the same, in which case the variance is zero,
the derivative of r̄(t) is zero, and r̄(t) is constant.† But, though it keeps
increasing when the rates of increase of the component subpopulations are
not all the same, r̄(t) is bounded above; being an average of the several
ri, it can never be larger than the largest ri. It will approach as close
as we please, however, to the largest ri; to prove this, note that with a
finite number of subpopulations the one that is increasing fastest will come
to have as high a ratio as we please to the one increasing second fastest,
and indeed to the sum of all the other subpopulations. This example of
instability contrasts with the stability described in Section 1.10, where the
operation of fixed rates in homogeneous populations leads to fixed ratios
among ages, regions, and other subgroups of the population.

The foregoing argument is more than adequate to prove that the sum
of the several projections will be greater than the projection of the sum
at the average rate of increase existing at the outset. An alternative proof
requiring no calculus consists in reducing the proposition to the known fact
that the arithmetic mean of distinct positive quantities, say a > 0 and b >
0, a �= b, is greater than their geometric mean; in symbols, (a+b)/2 >

√
ab.

The separate projection of two subpopulations amounts to Q1e
r1t +Q2e

r2t;
the combined projection is

(Q1 + Q2) exp
[(

Q1r1 + Q2r2

Q1 + Q2

)
t

]
.

The sum of the separate projections is greater if

Q1e
r1t + Q2e

r2t

Q1 + Q2
> exp

[(
Q1r1 + Q2r2

Q1 + Q2

)
t

]
.

But the first is the arithmetic mean of er1t and er2t, weighted with Q1 and
Q2, respectively, and the second is the corresponding geometric mean.

The general proof that an arithmetic mean is greater than a geomet-
ric mean can be developed in several ways, and Beckenbach and Bellman
(1961) devote much of Chapter 4 of their book to it. That the inequality
must hold for Q1 = Q2 = 1 we can see at the level of high school algebra.
Plainly

(er1t/2 − er2t/2)2 > 0, r1 �= r2,

and expanding the square gives

er1t + er2t

2
> exp

[(
r1 + r2

2

)
t

]
.

†This is one way of deriving a version of Fisher’s (1930) Fundamental Theorem of
Natural Selection.
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The argument can be extended to n subpopulations by induction; if Q1
of the n are increasing at ri, and so on, the proof then applies to integral
weights Qi; from there it can be carried to real weights Qi. To present this
in detail would carry us too far from demography, which is concerned only
with the result that separate projection of each of the various elements
of a heterogeneous population gives a total greater than is obtained by
projection of the whole population at its average rate.

1.5.1 An Arithmetic Example for Two Subpopulations
To use round numbers for an example of how (1.5.3) operates, we take
the United States population to be 200 million in 1970, increasing at 0.75
percent, and that of Mexico to be 50 million, increasing at 3.5 percent. The
average rate is [(200×0.75)+(50×3.5)]/250 = 1.3 percent, and 250 million
increasing at 1.3 percent for 50 years equals 478,885,000.

Let us now work out the sum of the two trajectories, using for each
of the United States and Mexico, considered subpopulations, its own ex-
ponential (Table 1.5.1). After 50 years at these rates the populations
would be 200,000,000 × e50×0.0075 = 290,998,000 for the United States and
50,000,000 × e50×0.035 = 287,730,000 for Mexico. The total is 578,728,000,
or 100 million more than we had in the single calculation. The combined
rate of increase now would be over 2.1 percent and rising, as column 6 of
Table 1.5.1 shows. By 2020 the increase in the increase, dr̄(t)/dt, would be
(0.021267 − 0.021076) = 0.000191, as given in column 7.

According to (1.5.3), this ought to be the same as the weighted variance
of the rates in 2020. The mean rate is [(291)(0.0075)+(288)(0.035)]/(291+
288) = 0.02118, the weights being the entries in columns 1 and 2 for 2020.
The variance is [291(0.0075 − 0.02118)2 + 288(0.035 − 0.02118)2]/579 =
0.000189, identical except for rounding with the entry in column 7
previously calculated.

In summary, we have calculated the rate of increase of the combined
population by differencing successive years, showing the rate to increase
from 0.021076 in 2019–20 to 0.021267 in 2020–21, an annual increase of
0.000191 in the rate of increase. The separately calculated weighted vari-
ance between the two component rates in 2020 is 0.00189, or virtually
complete agreement.
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1.6 Rate of Increase Changing over Time

We started with a homogeneous population having a fixed rate of increase
r and went on to a heterogeneous population composed of subpopulations
each having a fixed rate of increase. The present section reverts to homo-
geneity, in which there is only one r at any given moment, but now the
increase is time dependent, and to remind ourselves of this we call it r(t).
Our purpose is to determine the population after T years resulting from
the variable increase r(t).

If we divide time into short intervals dt, and for the first short interval
suppose r(t) to be fixed at r0, and if at the start the population numbers
N0, after time dt it will number N0e

r0 dt, for we saw in Section 1.2 that the
ratio of increase over a finite time at rate r compounded momently is equal
to the exponential of the rate times the time. This can be applied to each
of the short intervals dt into which, for this purpose, we divide the scale
of time. Let the rate of increase be approximated by r0, r1, r2, . . . , in those
successive time intervals, each of length dt. Then we have an exponential
for the ratio of increase over each interval, and the population at time T
will be the product of these exponentials:

N(T ) = N0e
r0 dter1 dter2 dt · · ·

= N0e
r0 dt+r1 dt+r2 dt+···,

so that in the limit, as dt tends to zero, the exponent tends to the integral
of r(t):

N(T ) = N0 exp

[∫ T

0
r(t) dt

]
. (1.6.1)

The above derivation of (1.6.1) proves ab initio a proposition of the
integral calculus. Let us avoid this by starting with the definition of the
rate of increase r(t) as given in (1.5.1):

r(t) =
1

N(t)
· dN(t)

dt
. (1.6.2)

The demographic definition can be treated as a differential equation. Its
solution is obtained by separating the variables and integrating both sides
of

r(t) dt =
dN(t)
N(t)

.

This gives ∫ T

0
r(t) dt = log N(t)

∣∣∣T
0

,
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or, on taking exponentials,

N(T ) = N0 exp

[∫ T

0
r(t) dt

]
,

as before.
The result can be checked by calculating r(t) from the trajectory of

population N(T ). Taking logarithms of both sides of (1.6.1) yields

log N(T ) = log N0 +
∫ T

0
r(t) dt,

and then, differentiating with respect to T , we have

1
N(T )

· dN(T )
dT

= r(T ), (1.6.3)

which brings us back to the definition of r(t) in (1.5.1) and (1.6.2).
A convenient way of writing (1.6.1) is in terms of r̄, the arithmetic mean

rate over the interval from zero to T :

N(T ) = N0e
r̄T ,

where

r̄ =
1
T

∫ T

0
r(t) dt.

In words, the numerical effect on the population total of a varying rate of
growth is the same as though the arithmetic average rate applied at each
moment over the time in question.

Special Cases of Changing Rates. We may try various special functions for
r(t). If r(t) is a constant, say r, then (1.6.1) reduces to N(T ) = N0e

rT . If
r(t) is equal to k/t and we start at time 1, then

N(T ) = N1 exp

(∫ T

1

k

t
dt

)
= N1 exp(k log T )

= N1T
k.

With k = 1 this declining rate of increase would give us a linearly rising
population.

As a numerical application of (1.6.1) suppose that the rate of increase
starts at ρ in 1970 and declines to ρ/2 during the 30 years from 1970 to
2000, and that the decline is in a straight line. Then in any intermediate
year t we will have

r(t) =
ρ

60
(2030 − t), 1970 � t � 2000. (1.6.4)

The proof that this r(t) is the one specified is (a) it is linear in t; (b) for
t = 1970 it equals ρ; (c) for t = 2000 it equals ρ/2. Entering (1.6.4) in
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(1.6.1) gives for the population in year n, where 1970 � n � 2000,

Nn = N1970 exp
[

ρ

60

∫ n

1970
(2030 − t) dt

]
,

and for n = 2000 this is equal to

N2000 = N1970e
22.5ρ.

As a further example, suppose that a population in successive years in-
creases at the rates 2, 3, 2.5, 2.7 and 2.3 percent. The arithmetic average
of these rates is

2.0 + 3.0 + 2.5 + 2.7 + 2.3
5

= 2.5 percent.

Hence the population at the end of 5 years is

N5 = N0e
(5)(0.025) = N0e

0.125 = 1.133N0.

This is the same outcome as is obtained by calculating the population year
by year with the given rates (all assumed to be compounded continuously):

N1 = N0e
0.02, N2 = N1e

0.03, . . . ,

and substituting successively,

N5 = N0e
0.02e0.03e0.025e0.027e0.023 = N0e

0.125.

Equation 1.6.1 is worth this extended study because of its important
applications. In particular, when r(t) is interpreted as −µ(a), µ(a) being
mortality at age a, the result carries over to cohorts; a cohort is defined
as a number of individuals born at a particular time and followed through
life. Such a cohort is a peculiar population, in that it never receives new
members after the initial moment, and its initial births die off during the
100 or so years of the cohort’s duration. Equation 1.6.1 tells us that the
survivors to age x, l(x), of a cohort numbering l0 at birth, are equal to

l(x) = l0 exp
[
−
∫ x

0
µ(a) da

]
. (1.6.5)

This expression is useful in discussion of the life table. The decrement µ(a)
may represent death at age a, death from a particular cause, failing the
ath grade at school, or break-up of a marriage in its ath year. Whatever
the nature of the decrement, (1.6.5) translates the several hurdles into a
probability of surviving the course to the xth hurdle.

1.7 Logistic Increase and Explosion

Verhulst (1838) and Pearl and Reed (1920) modified the exponential law
of increase by supposing a fixed ceiling to population, set by nature or
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by the combined limits of nature and human techniques. Fixed growth,
represented by the equation dN(t)/dt = rN(t), of which the solution is
N(t) = N0e

rt, can be modified by writing a further factor, say 1− [N(t)/a],
on the right-hand side to define the logistic function

dN(t)
dt

= rN(t)
[
1 − N(t)

a

]
.

The right-hand side equals zero when N(t) = a, so that must be where
growth stops on the logistic curve. When the factors involving N(t) are
collected and then decomposed into partial fractions, we have[

1
N(t)

+
1

a − N(t)

]
dN(t) = r dt,

which can be readily integrated as log{N(t)/[a − N(t)]} = rt + c, where c
is a constant. Taking exponentials and then solving for N(t), and changing
the constant to t0 = −c/r in order to locate the midpoint of the curve at
t0, we obtain

N(t) =
a

1 + e−r(t−t0)
. (1.7.1)

Pearl and others thought that fitting such a curve to a population time
series would provide realistic short-term forecasts as well as estimates of
the ultimate stationary population a. They were generally encouraged by
predicting the 1930 U.S. Census count with an error that was proba-
bly less than the error of the census itself. But the 1940 Census was a
disappointment—it fell far below the curve, and the logistic was dropped
amid a barrage of criticism no less intense than the earlier enthusiasm. The
fall in the birth rate over most of the last 20 years, however, makes the
logistic look much better, and this, along with visible difficulties in the en-
vironment, has brought the logistic back into fashion in some circles. The
fit to the United States population from 1800 to 1960 shows a = 256.41
million persons, a ceiling not sharply contradicted by current tendencies.

As Pearl expected, the logistic is hardly invariant with respect to the
period over which it is fitted. He saw population as moving toward a ceiling
at any given moment, but from time to time technical advance would create
a new and higher ceiling so that progress would take the form of breaking
into the higher logistic before the course of the earlier one was completed.

No detailed fitting is required merely to find the ceiling a. [If the popu-
lation is N1, N2, and N3 at times t1, t2, and 2t2 − t1, respectively (i.e., at
times that are equidistant), prove that the asymptote will be

a =
1/N1 + 1/N3 − 2/N2

1/N1N3 − 1/N2
2

, (1.7.2)
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and using as data the United States resident population for

1870 40 million
1920 106 million
1970 203 million

verify that the ultimate population will be 324 million.]
The logistic to the censuses from 1800 to 1910 inclusive shows an upper

asymptote of 197 millions; if one accepts the theory behind the logistic, one
would say that the conditions of life and technology had changed during
the course of the twentieth century in such a way as to raise the population
ceiling of the United States by 127 millions. Although this could be true, one
would need considerable confidence in the appropriateness of the logistic
to accept such a conclusion without more evidence.

Even more important than the selection of the time interval over which
a fit is made is the nature of the curve chosen. Consider the United States
population from 1870 to 1970, and fit to it the hyperbola (von Foerster et
al. 1960)

N(t) =
α

te − t
.

The hyperbola contains two constants, of which te is the time of population
explosion, when N(te) = ∞. The time te is easily calculated from observa-
tions at two dates, t1 and t2, where the population is known to be N1 at
time t1 and N2 at time t2; the reader may show that

te =
N2t2 − N1t1

N2 − p1
. (1.7.3)

The 1870 resident population of the United States was 40 million and the
1970 population 203 million, and from (1.7.3) te works out to 1995.

Thus, based on the United States population from 1870 to 1970, the lo-
gistic shows that an upper asymptote of 324 millions would be approached
(about the twenty-first century), whereas the hyperbola shows an explosion
to infinity by 1995. Such experimenting suggests the hazards and perplex-
ities of forecasting by the fitting of curves. [Show that no one need fear
the explosion in hyperbolic form, for it would require toward the end an
infinite birth rate.]

Can one discriminate among curves on the basis of their fits to past data?
Winsor (1932) showed that the logistic is a better fit than the cumulated
normal,

1
σ
√

2π

∫ t

−∞
exp
(

− (x − µ)2

2σ2

)
dx,

where µ and σ are constants to be determined by data from censuses. Either
the logistic or the cumulated normal does better than the arc tangent curve,
which has some resemblance to them. But in general past data are not very
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helpful in selecting from the considerable number of s-shaped curves that
can be devised.

As a means for population forecasting, the logistic has become some-
thing of a museum piece. Any such overall approach, disregarding births,
deaths, migration, and age distribution, is useful only in circumstances
where resources decisively determine population without regard to differ-
ences among individuals. When, on the other hand, births, migration, and
even deaths are socially determined, we are better off to attempt their
separate forecasting, however uncertain this has been shown to be.

1.8 The Stalled Demographic Transition

In a famous article Notestein (1945) wrote about “the stage of transitional
growth . . . in which the decline of both fertility and mortality is well estab-
lished but in which the decline of mortality precedes that of fertility and
produces rapid growth.” His demographic transition refers to the unifor-
mity of change from high to low birth and death rates among the countries
of Europe and those overseas that had developed industrially. They showed
first a decline in death rates, starting at the beginning of the nineteenth
century or earlier, followed after a longer or shorter interval by a decline in
birth rates. In France the fall in births was nearly simultaneous with that in
deaths, whereas in England births did not begin to decline until about 1870,
but all countries resembled one another to some degree (Flieger 1967). Our
first question concerns the difference to the ultimate population of a given
delay in the fall of the birth curve, a question of concern to the countries
of Asia and Latin America whose deaths have now fallen but whose births
remain high.

Suppose the deaths of a population go through a descending curve d(t)
and its births through b(t), as in Figure 1.1. The initial and final conditions
are both of zero increase; that is, the curves coincide at beginning and end.
We seek the ratio of increase in the population between its initial and final
stationary conditions.

Whatever the shape of the two descending curves of Figure 1.1, if they
begin and end together the exponential of the area between them is the total
increase over the time in question. For

∫ T

0 [b(t) − d(t)] dt =
∫ T

0 r(t) dt = A,
say, according to (1.6.1) the ratio of increase in the population must be
exp[

∫ T

0 r(t) dt], or simply eA. This applies for any pair of monotonically
descending curves that start at the same level and end at the same level.

In the special case where the birth and death curves of Figure 1.1 have
the same shape as well, with b(t) lagging L behind d(t), and both dropping
K over the transition, the area A equals KL, that is, the common difference
between initial and final height, multiplied by the time by which the birth
curve lags behind the death curve. For by dividing the interval between
them into horizontal strips, equal in length to the lag L, it is plain that the
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K

L

t

r(t) = b(t) – d(t)

Time

Birth rate
b(t)

Death rate
d(t)

Figure 1.1. Stylized form of transition from high to low birth and death rates.

Table 1.2. Ratio of increase during the course of demographic transition as a
function of the lag in fall of birth rate after fall of death rate

Lag (years) eKL eKL

L (K = 0.02) (K = 0.03)

15 1.35 1.57
30 1.82 2.46
45 2.46 3.86
60 3.32 6.05
75 4.48 9.49

same strips can be arranged as a rectangle of length L and height K. The
ratio of increase in the population of a country, eA = eKL, is a constant
eK taken to the power of the lag in the fall of birth rates.

If K, the common decline of births and deaths, is 0.02, and births follow
deaths downward but with a lag L of 30 years, the population will increase
in the ratio eKL = e(0.02)(30) = 1.82 before constancy is reestablished. If
the lag is 60 years, the ratio will be the square of this, or 3.32; if 90 years,
the cube, or 6.05. Note that this takes no account of a momentum effect
due to age, which, as we will see in Section 8.6, can by itself add 60 percent
or more to the ultimate population. The need for haste in lowering the
birth rate in less developed countries is illustrated in Table 1.2, showing
the effect of lag on the ultimate population, given K = 0.02 and K = 0.03.

This section has covered the general case of curves b(t) and d(t), similar
to each nother but with b(t) lagging behind d(t). We now proceed from lon-
gitudinal to cross-sectional observations, and consider differential fertility
insofar as it is a phenomenon of the demographic transition.
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1.9 Differential Fertility Due to the Demographic
Transition

Books on population treat the demographic transition in one chapter and in
a quite different chapter deal with the differentials of fertility between social
classes, educational groups, and religious denominations. The transition
is thought of as applying to whole countries, and differential fertility as
applying to groups within a country, in which, grosso modo, the better
off, better educated, and urban have the fewest children. There may well
be uncertainty as to how far these classical differentials are permanent,
applying to all societies at all times, and how far they occur in a particular
historical conjuncture, that in which all birth rates are falling but with
different timing. Some observations show a positive relation—the richer the
group, the higher its birth rate—both before the transition and after it has
been passed and birth control techniques made effectively available to all
strata. Much of the economic theory of fertility, summarized by Leibenstein
(1974), Becker (1960), T. W. Schultz (1974), and T. P. Schultz (1973), has
a bearing on this issue. The present section will examine a simple aspect of
the problem: to what degree the different times of entry into the transition
can account for the different levels of fertility among social classes at any
one moment.

We will approximate the birth rate b(t) by a straight line going from
upper left to lower right in the range of interest; the slope or derivative
db (t)/dt is taken as negative. We suppose also that the slope is the same
for all social groups, and that these are distinguished from one another only
by their degree of horizontal displacement.

The sloping line on the right in Figure 1.2 is displaced from the popula-
tion mean by ∆t, say. It represents a social group whose fall in fertility takes
place later by ∆t than the average of all groups in the country in question.
Suppose that because of its lag this group has fertility ∆b higher than the
average at the time when the country as a whole is passing through the
midpoint of its drop from high to low rates. Then the derivative db(t)/dt
common to all the sloping lines serves to relate for the given subgroup of
the population the departure of the birth rate from the mean at a given
moment and the lag in time:

∆b =
db(t)
dt

∆t. (1.9.1)

Now suppose many sloping lines, representing the several groups in the
country, and square and average over these lines on both sides of (1.9.1) to
find

σ2
b =

[
db(t)
dt

]2
σ2

t , (1.9.2)
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∆b

∆t t
Time

Births
b(t)

–db(t)
dt

Average of
all groups

Figure 1.2. Simplified explanation of differential fertility in terms of demographic
transition.

where σ2
b is the variance of birth rates at the time when the population

average goes through the halfway point of decline, and σ2
t is the variance

of the times at which the several groups go through this point. Take square
roots of (1.9.2) to find

σb =
db(t)
dt

σt. (1.9.3)

In this stylized version each statistically identifiable subpopulation has its
own demographic transition and falls according to its own straight line, but
with all the straight lines having the same slope. The result (1.9.3) relates
differential fertility σb to variation in time of undergoing the transition σt.

1.10 Matrices in Demography

1.10.1 A Two-Subgroup Model
Within a population in which there exist statistically recognizable
subpopulations—regions of a country, social classes, educational levels—
we consider now not changes within, but transfers among, such groupings.
Given the rate of growth in each subpopulation and the rates of transfer
among subpopulations, it is possible to describe a trajectory by a set of
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differential or difference equations. For a simple special case, suppose two
subpopulations of sizes n1(t) and n2(t) at time t. If growth of the sub-
populations is accompanied by migration in both directions, change in the
system can be described in terms of constants aij , i = 1, 2, j = 1, 2:

n1(t + 1) = a11n1(t) + a12n2(t)

n2(t + 1) = a21n1(t) + a22n2(t).
(1.10.1)

Equations 1.10.1 are identical to the matrix equation(
n1
n2

)
(t + 1) =

(
a11 a12
a21 a22

)(
n1
n2

)
(t), (1.10.2)

which can be written compactly as

n(t + 1) = An(t), (1.10.3)

where n(t) is the population vector at time t, and A is the matrix of growth
and transfer rates, referred to indifferently as a projection matrix. If the
rates a11, a21, a12, and a22 are fixed over time, (1.10.3) recurrently deter-
mines the population at any arbitrary time subsequent to t. The population
at time t + k equals that at time t successively operated on k times by A:

n(t + k) = A(. . . (A(An(t)) . . .) = Akn(t). (1.10.4)

If a12 = a21 = 0, and a11 �= a22, the argument of Section 1.5 applies; the
two subpopulations never come into a finite, nonzero ratio to each another,
and the subgroup with the higher rate keeps growing relative to the one
with the lower rate. But if a12 and a21 are positive, then, no matter how
different a11 and a22 may be, the two subpopulations will ultimately tend
to increase at the same rate. This stability of the ratio of one population
to the other will of course occur more quickly if a12 and a21 are large in
relation to the difference between a11 and a22.

The aspect of stability referred to above is that in which the ratio of
the sizes of the subpopulations ultimately ceases to depend on time. When
this occurs, it follows that each of the subgroups will increase at a rate
not depending on time, that is to say, in geometric progression. For when
population n2 is c times as large as population n1, for all times, then, from
the first member of (1.10.1)

n1(t + 1) = a11n1(t) + a12n2(t) = (a11 + ca12) n1(t),

which proves that n1(t) is a constant multiple of n2(t). This applies to any
number of subgroups, and shows for the linear model of (1.10.1) that, if
the ratio of the sizes of the subgroups to one another is constant, each
is increasing geometrically. It can then be shown that all the groups are
increasing at the same rate. Conversely, if the subgroups are increasing
geometrically and at the same rate, they are in fixed ratios to one another.

When the process of which (1.10.1) is an example attains stability, not
only are all its subpopulations increasing at the same rate and in fixed
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ratios to one another, but also those ratios are not in any way influenced
by the starting ratios. It could be that n1(0) is 1 million times as large
as n2(0), or that n2(0) is 1 million times as large as n1(0); the two cases
will have the same ultimate ratio of n1(t) to n2(t). This property of the
process, forgetting its past, is a third aspect of stability (see Section 7.2).
Chapter 7 will show how to determine which projection matrices will result
in stability, using life cycle graphs.

There is no moment when stability is suddenly attained. Stability is
a limiting property by which a time can be found when the several
subpopulations increase at rates that are arbitrarily close to one another.

Chapter 5 considers in much detail one case of stability—a population
developing under fixed mortality and rate of increase. To prepare for it
we need to transform raw mortality data into a life table, and this is the
subject of Chapter 2.



2
The Life Table

The main part of this book starts where demography itself started, with
the life table. The life table is couched in terms of probabilities for indi-
viduals, but for populations it is a deterministic model of mortality and
survivorship. That it presents expected values and disregards random vari-
ation is contrary to the way nature works and, in particular, oversimplifies
demographic mechanisms, yet a rich variety of useful results is based on it.
A method is valuable in direct proportion to the substantive conclusions
to which it leads, and in inverse proportion to its complexity.

The life table is mathematically simple and has a large substantive payoff.
First, it answers questions concerning individuals: what is the probability
that a man aged 30 will survive until he retires at 65, or that he will outlive
his wife, aged 27? But it also answers questions concerning cohorts, groups
of individuals born at the same time: what fraction of the births of this year
will still be alive in the year 2000, or how many of them will live to the
age of retirement? Third, it answers population questions: if births were
constant from year to year in a closed population of constant mortality,
what fraction of the population would be 65 and over?

2.1 Definition of Life Table Functions

The probability of surviving from birth to age x is designated as l(x) for a
continuous function of x and as lx for discrete x. Life tables usually present
the probability multiplied by 100,000, which is to say, on a radix, l0, equal
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to 100,000. If lx is a probability, then, strictly speaking, what life tables
show is 100,000lx, but it would be pedantic to repeat the 100,000 each time
one refers to the lx column. When lx is interpreted as surviving members
of the cohort, the radix is arbitrary; and setting l0 = 100,000 enables one
more easily to think of the column as numbers of persons reaching the given
age.

The difference in number of survivors for successive ages, lx − lx+1, is
designated as dx; and, more generally, the difference for ages n years apart,
lx − lx+n, is ndx. This divided by lx is the probability of dying during the
next n years for a person who has reached age x:

nqx =
lx − lx+n

lx
= ndx

lx
.

The total number of years lived during the next n years by those who
have attained age x is

nLx =
∫ x+n

x

l(a) da, (2.1.1)

which is also the number of persons aged exactly x to x+n (or x to x+n−1
at last birthday) in the stationary population. Setting n equal to infinity
or (indifferently) to ω−x, where ω is the highest age to which anyone lives,
gives

∞Lx = Tx =
∫ ω

x

l(a) da.

The quantity Tx is the total number of years remaining to the cohort, when
it reaches age x, until the last member dies at age ω. Dividing by lx gives
the average share in this total per person reaching age x:

o
ex =

Tx

lx
=

∫ ω

x

l(a) da

lx
.

In terms of probabilities
o
ex is the mean of the distribution of years to death

for persons of age x and is called the expectation of life.
The age-specific death rate in the life table population is nmx =

ndx/nLx. This may be compared with the probability nqx = ndx/lx, and
one can think of nqx as something less than n times nmx. It is distinct
from nMx, the observed death rate in a real population; nMx < nmx for
increasing populations at ages beyond about 10.

Theoretical statements on mortality are often expressed most simply in
terms of the age-specific death rate in a narrow age interval dx, designated
as µ(x):

µ(x) = limit
n→0

lx − lx+n∫ x+n

x

l(a) da

=
−1
l(x)

dl(x)
dx

.
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[Show that the solution of this gives (1.6.5).] The age-specific death rate
could also be written as

µ(x) = limit
n→0

nmx = limit
n→0

ndx

nLx
,

if the mixing of continuous and discrete notation can be excused.

Mortality the Same for All Ages. A mathematical form that has often been
used for short intervals of age, is one in which the force of mortality is
constant. If µ(x) = µ, solving the differential equation that defines µ,

µ =
−1
l(x)

· dl(x)
dx

,

gives

l(x) = e−µx.

The probability of living at least an additional n years after one has attained
age x is

lx+n

lx
=

e−µ(x+n)

e−µx
= e−µn.

The expectation of life is

o
ex =

1
l(x)

∫ ∞

0
l(x + t) dt

=
1

e−µx

∫ ∞

0
e−µ(x+t) dt =

1
µ

.

Both the probability of living an additional n years beyond age x and the
expectation of life at age x are constants independent of x. The prospect
ahead of any living person is the same, no matter how old he is, on this
peculiar table. All the columns of the life table are in general derivable
from any one column, and if any column is age-independent all the others
referring to a person’s prospects must be also.

Application of these definitions to other mathematically specified forms
of µ(x) requires more difficult integration to find l(x) and

o
e x. The function

µ(a) = µ0/(ω − a) is applied in Section 4.3. Here we proceed to methods
for constructing a life table from empirical data.

2.2 Life Tables Based on Data

We read that for the United States during the year 1967, 122,672 men aged
65 to 69 years of age at last birthday died, and that the number of men
of these ages alive on July 1, 1967, was 2,958,000. These may be called
observations. We can divide the first figure by the second and find that the
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age-specific death rate for males 65 to 69, denoted as 5M65. was 0.04147,
again straightforward enough to be called an observation. How do these
observations tell us the probability, 1 − (l70/l65), that a man chosen at
random from those aged exactly 65 will die before reaching age 70? This
is the same as asking what fraction of a cohort of men aged 65 would be
expected to die before reaching age 70, and its complement, l70/l65, the
fraction of those aged 65 who survive to age 70. From time period data we
want to know something about a cohort, men moving from age 65 to 70.
This cohort is necessarily hypothetical, for with only one period of obser-
vation the best we can manage is to suppose mortality to be unchanging
through time. No real cohort is likely to exhibit the regime that will be
inferred from 1967 data.

The observations of a given period, the calendar year 1967, are, moreover,
ambiguous because we know nothing about the distribution of exposure
within each 5-year age interval, affected as it is by all the accidents of the
birth curve and of migration.

2.2.1 Assuming Constant Probability of Dying with the Age
Interval

If, in addition to supposing that the probability of dying is invariant with
respect to time, we suppose it to be invariant with respect to age within
the 5-year group, the probability lx can be inferred from the rate 5Mx in a
straightforward manner. We saw in Section 1.6 that a population initially
of size N0 and increasing at constant rate r reaches a total N0e

rt after t
years. If it is decreasing at constant rate µ, as will be the case if it is closed
and subject to a constant death rate µ, and it numbers lx at the start, then
at the end of 5 years it will be lx+5 = lxe−5µ, as in the preceding section.
Identifying 5Mx with µ gives

lx+5

lx
= e−55Mx (2.2.1)

as a first approximation to the desired ratio lx+5/lx. For our data on the
United States in 1967, (2.2.1) is

l70
l65

= e−55M65 = e−5(0.04147) = 0.81274.

This would be exact if either (a) the death rate were constant through the
5-year age interval, or (b) the population exposed to risk were constant
through the 5-year age interval. Neither of these, however, applies in prac-
tice; in general, beyond age 10 the death rate is increasing through the
interval and the population is diminishing.



2.2. Life Tables Based on Data 33

2.2.2 The Basic Equation and a Conventional Solution
Suppose that the age distribution of the exposed population is given by
p(a) within the age interval x to x + 5, and that at exact age a the age-
specific death rate is µ(a). Then the observed rate 5Mx can be identified
with a ratio of integrals:

5Mx =

∫ x+5

x

p(a)µ(a) da∫ x+5

x

p(a) da

. (2.2.2)

Making a life table is a matter of inferring lx+5/lx from (2.2.2). This is
equivalent to inferring the unweighted

∫ x+5
x

µ(a) da from the weighted av-
erage of the µ(a) in (2.2.2), for from (1.6.5) we know that

∫ x+5
x

µ(a) da =
− log(lx+5/lx), so the unweighted average of the µ(a) gives the l(x) column
(Weck 1947).

Basic equation 2.2.2 reminds us that the interpretation of the observed
5Mx depends on the (unknown) distribution of population within the age
interval x to x + n. We must somehow extract

∫ x+5
x

µ(a) da from (2.2.2), a
task that appears hopeless when nothing is known but 5Mx. Yet every life
table based on empirical data in 5-year groups implicitly infers

∫ x+5
x

µ(a) da
from (2.2.2); this is achieved by making assumptions that somehow restrict
p(a).

One common solution of (2.2.2) is to assume p(a) = l(a), and also to
suppose that l(x) is a straight line. The integral under the straight line is∫ x+5

x

l(a) da = 5
2 (lx + lx+5). (2.2.3)

Since
∫ x+5

x
l(a)µ(a) da = lx − lx+5, (2.2.2) may be written as

5Mx =
lx − lx+5

5
2 (lx + lx+5)

, (2.2.4)

from which the value of lx+5/lx may be obtained by dividing numerator
and denominator on the right by lx, and then solving a linear equation for
lx+5/lx to find

lx+5

lx
=

1 − 55Mx/2
1 + 55Mx/2

. (2.2.5)

For United States males aged 65 to 69 this is 0.81213, obtained from 5M65 =
0.04147. This is closer to the corrected value than the 0.81274 of (2.2.1).
From (2.2.5) the probability of dying is

5qx = 1 − lx+5

lx
=

55Mx

1 + 55Mx/2
. (2.2.6)
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2.2.3 A Precise Life Table Without Iteration or Graduation
To improve on (2.2.5) or the exponential (2.2.1), we go a step further in
extracting from (2.2.2) the quantity

∫ x+5
x

µ(a) da. We would expect the
answer to emerge as

∫ x+5
x

µ(a) da = 5(5Mx + C), where it will turn out
that C is a correction easily obtained on the assumption that both the
population p(a) and the death rate µ(a) change linearly within the interval.

We calculate the correction to nMx for a general interval of n years,
starting at age x. First we change variables by writing a = x + (n/2) + t;
(2.2.2) with n in place of 5 becomes

nMx =

∫ +n/2

−n/2
p[x + (n/2) + t]µ[x + (n/2) + t] dt∫ x+n

x

p(a) da

. (2.2.7)

Expanding each of the fractions in the numerator by Taylor’s series to the
term linear in t gives

nMx =

∫ +n/2

−n/2
[p(x + n/2) + tp′(x + n/2)][µ(x + n/2) + tµ′(x + n/2)] dt∫ x+n

x

p(a) da

=

[
tp(x + n/2)µ(x + n/2) +

t3

3
p′(x + n/2)µ′(x + n/2)

]+n/2

−n/2∫ x+n

x

p(a) da

=
np(x + n/2)µ(x + n/2) + (n3/12)p′(x + n/2)µ′(x + n/2)∫ x+n

x

p(a) da

.

(2.2.8)
But this can be translated into known quantities as follows:

1. If p(a) is a straight line in the interval between x and x + n,
then np(x + n/2) is the same as

∫ x+n

x
p(a) da and cancels with the

denominator.

2. If µ(a) is a straight line between x and x + n, then the midvalue
µ(x + n/2) is 1/n of the integral we seek, i.e., is (1/n)

∫ x+n

n
µ(a) da.

3. The integral
∫ x+n

x
p(a) da is the observed population in the age

interval, nNx.
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Thus (2.2.8) becomes

nMx =
1
n

∫ x+n

x

µ(a) da +
n3

12 nNx
p′
(
x +

n

2

)
µ′
(
x +

n

2

)
, (2.2.9)

which after transposing provides the desired
∫ x+n

x
µ(a) da as∫ x+n

x

µ(a) da = nnMx − n4

12nNx
p′
(
x +

n

2

)
µ′
(
x +

n

2

)
. (2.2.10)

All that remains for the application is to express the first derivatives on
the right of (2.2.10) in terms of known quantities. One might make the
natural assumption that the slope within the interval x to x + n is given
by the difference between neighboring intervals:

p′
(
x +

n

2

)
= −nNx−n − nNx+n

2n2

µ′
(
x +

n

2

)
= nMx+n − nMx−n

2n
,

(2.2.11)

and so the calculable value of lx+n/lx is

lx+n

lx
= exp

(
−
∫ x+n

x

µ(a) da

)

= exp
[
−n nMx − n

48nNx
(nNx−n − nNx+n)(nMx+n − nMx−n)

]
= exp [−n(nMx + C)] .

(2.2.12)
[We are grateful to James Frauenthal for his correction of the original ap-
proximation to p′(x + n/2) in (2.2.11), which had n rather than n2 in the
denominator.]

The expression for lx+n/lx in (2.2.12) is the outcome of the search for
a life table that would accord with the data in the sense of having the
same underlying µ(x) as the observations, yet be calculable in one simple
step. It is equivalent to using the simple exponential lx+n/lx = e−nnMx ,
but first raising nMx by the quantity C = (nNx−n − nNx+n)(nMx+n −
nMx−n)/48nNx, a product that is positive whenever the population is
declining with age and the death rate is rising.

The accuracy of (2.2.12) has been impressive in the tests so far done.
Applying it to Swedish males, 1965, at ages 20 to 65, for example, we found
that l65/l20 differed by 0.00001 from the value obtained by interpolating to
fifths of a year separately for deaths and population, constructing the life
table in fifths of a year, and then reassembling into 5-year age groups. It
also differed by about 0.00001 from the more elaborate iterative life table
(Keyfitz 1968, Chapter 1).
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Table 2.1. Example of life table calculation without iteration or graduation,
United States males, 1972
lx+5

lx
= exp[−55Mx − 5

485Nx

(5Nx−5 − 5Nx+5)(5Mx+5 − 5Mx−5)] = exp[−5(5Mx + C)]

Correction to 5Mx; C =
lx+5

lx
= 5qx =

Age 5Nx

1000
10005Mx

(5Nx−5 − 5Nx+5)(5Mx+5 − 5Mx−5)
485Nx

e−5(5Mx+C) 1 − lx+5

lx

x (1) (2) (3) (4) (5)

35 5458 3.017
40 5720 4.623 −0.0000058 0.97718 0.02282
45 5814 7.483 0.0000025 0.96326 0.03674
50 5616 11.367 0.0000388 0.94457 0.05543
55 4828 18.092 0.0000990 0.91306 0.08694
60 4192 27.483 0.0001667 0.87088 0.12912
65 3294 39.958 0.0003802 0.81735 0.18265
70 2330 59.770

In an age of computers ease of calculation is less important than it once
was, but nonetheless Table 2.1 is introduced to show the extreme simplicity
of the arithmetic.

The present method can be adapted to the ages at the beginning and
end of life. However, these ages involve data problems as well as rapidly
changing mortality rates. The reader is referred to Shryock and Siegel (1971,
Chapter 15), Wolfenden (1954), Keyfitz (1968, Chapter 1), or other sources
for ages under 10 and over 80.

A further point due to Kenneth Wachter and Thomas Greville is that
the derivative µ′(x + n/2) cannot strictly be estimated by (nMx+n −
nMx−n)/2n, for the M ’s are weighted averages of the µ’s and in a growing
population will always be too low. We can escape the difficulty by a second
iteration. When an approximate value has been found for the lx, we in effect
have an approximation to the unweighted

∫ x

x−n
µ(a) da = − log(lx/lx−n),

and can enter this divided by n in place of the nMx−n. In short, we would
substitute for nMx+n − nMx−n the quantity (1/n) log(lxlx+n/lx−nlx2n)
obtained on the first iteration.

The numerical effect can be judged from the following values obtained
from Table 2.1:

Age nMx+n − nMx−n
1
n

log
(

lxlx+n

lx−nlx+2n

)
45 0.00674 0.00679
50 0.01061 0.01070
55 0.01612 0.01625
60 0.02187 0.02215

The differences nMx+n − nMx−n are in all cases too low, but the largest
discrepancy is about 1.25 percent. This means that our correction, itself
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of the order of 1 percent of nMx, would be raised by about 1 percent
on the iteration. Few users will regard this correction of the correction as
numerically important.

2.2.4 Greville and Reed–Merrell Methods Derived as Special
Cases

The generality of (2.2.10) can be demonstrated by applying it to derive a
well-known expression due to Greville (1943):∫ n

0
µ(x + t) dt = nnmx +

n3

12 nm2
x(log nmx)′, (2.2.13)

in terms of nmx, the life table death rate defined as ndx/nLx, where the
prime again signifies a derivative.

The demonstration starts by writing l(x) for p(x) in (2.2.10) and noting
that l′(x + n/2) = −l(x + n/2)µ(x + n/2). Thus, when nMx is replaced
with nmx and nNx with nLx (as though the data came from a stationary
rather than an increasing population), (2.2.10) becomes∫ n

0
µ(x + t) dt = nnmx +

n4

12nLx
l
(
x +

n

2

)
µ
(
x +

n

2

)
µ′
(
x +

n

2

)

≈ nnmx +
n3

12 nmxnm′
x,

if we approximate l(x + n/2)/nLx by 1/n and µ(x + n/2) by nmx. Multi-
plying and dividing the correction terms on the right of the last expression
by nmx, and then using the fact that nm′

x/nmx = (log nmx)′, provides
Greville’s result (2.2.13).

Greville expressed his result as (2.2.13) to make use of the virtual con-
stancy of (log nmx)′ through most ages and for most life tables. If this is
taken as (log nmx)′ = 0.096, then (2.2.10) becomes∫ n

0
µ(x + t) dt = nnmx + 0.008n3

nm2
x,

so that the survival probability is

lx+n

lx
= exp

[
−
∫ n

0
µ(x + t) dt

]
= exp(−nnmx − 0.008n3

nm2
x), (2.2.14)

which is the expression derived empirically by Reed and Merrell (1939).
The tabulation of (2.2.14) included in the Reed–Merrell paper has been
used more extensively than any other system for making a life table. It was
indeed convenient in the days before computers were available, but it rests
on two gross assumptions: (1) that the observed population provides the
stationary age-specific rates of the life table; and (2) that the same form,
0.008n3

nm2
x, serves to correct the nmx for all ages and for any life table.

The simple expression 2.2.12 avoids both these restrictions.
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2.2.5 Bounds on Error
All of the above discussion would be superfluous if there were some cor-
rect way to make a life table. Unfortunately ignorance of the distribution
of population and deaths within each 5-year age interval has to be com-
pensated for by more or less arbitrary assumptions. For most populations
single years are sought from the respondent, but the information is pub-
lished only in 5-year intervals, a wise policy on the part of the statistical
authorities in view of the inaccuracy of individual reporting. Whether the
age intervals 5 to 9, 10 to 14, and so on, are the best is another matter;
concentration on multiples of 5 causes these to understate the mean age in
comparison with 3 to 7, 8 to 12, and so on.

The deaths and population can of course be interpolated so finely that
the outcome is unique whatever the interpolation formula. Whole years or
fifths of a year are sufficiently fine since the uncertainty of converting nMx

into nqx decreases with the cube of the interval n. To be convinced of this,
compare two formulas generalized from (2.2.1) and (2.2.6), respectively:

nqx = 1 − e−nnMx and nqx =
nnMx

1 + (n/2)(nMx)
.

Expanding these in powers of n gives

1 − e−n nMx = nnMx − n2
nM2

n

2!
+

n3
nM3

x

3!
− · · ·

and
nnMx

1 + (n/2)(nMx)
= nnMx − n2

nM2
x

2
+

n3
nM3

x

4
− · · · .

The two agree up to the term in n2; then the exponential is lower by the
difference n3

nM3
x/12, disregarding higher-order terms. Thus the difference

in single years is approximately 1/125 of the difference in 5-year age groups.
But interpolation cannot provide a uniquely correct table, since it de-

pends on a choice of formula that is inevitably arbitrary. Iterative methods
also make various assumptions; one such method (Keyfitz 1968, p. 19)
supposes local stability—that the observed population has been increasing
uniformly within 5-year age intervals. The method of the present chap-
ter avoids both interpolation and iteration; its arbitrariness involves the
derivatives for the correction to lx+n/lx = e−nnMx in (2.2.12), calculated
by stretching a straight line between the age intervals below and above
the one of interest, and experimenting has shown that different ways of
calculating the first or higher derivatives make little difference.

Lacking knowledge of the true life table, can we at least set bounds on
it? We can, establishing the higher bound by supposing the population
(and corresponding deaths) within the age group x to x + n to be all
concentrated at the low end. This would mean that the observed death rate
really refers to exact age x, so that what we call nMx is not an average of
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the rates µ(t) from x to x+n, but is really µ(x). If, on the other hand, the
population is all concentrated at the high end, what we observe as nMx

is really µ(x + n). These two opposite possibilities furnish the extreme
bounds; the nMx, and hence the lx column derived from it, could refer
to a population n/2 years younger than stated, or to a population n/2
years older. No logic can demonstrate that either such freak situation is
impossible, improbable though it may be in even a small population.

For the United States life table of 1967,
o
e15 for males was 54.22 years. On

the above-mentioned argument this number could really represent anything
from

o
e12 1

2
to

o
e17 1

2
. Since at these ages

o
ex is declining by about 4.75 years

per 5 years of age, the true
o
e15 could lie approximately in a range from

54.22 − 4.75/2 to 54.22 + 4.75/2, or from 51.84 to 56.60. Such a range is
too wide to be of much practical interest, and yet it is hard to see the logic
by which one can narrow the possibilities. Not only is there no correct life
table, but also there is not even a simple way of establishing a realistic
range of error, analogous to the 0.95 confidence interval that is used where
a probability model applies.

A lower bound to the error of the life table is obtained by supposing that
individuals die independently at random, each with probability nqx for his
age x. The expression for this is easily derived (Keyfitz 1968, p. 341, is a
secondary source with references). But such an error seems as far below
the true error as that of this section is above.

2.3 Further Small Corrections

The method of calculating a life table expressed in (2.2.12) has proved
highly satisfactory in practice, giving negligible departure from graduated
life tables and from iterated tables, without requiring either graduation
or iteration. However, it depends on solving basic equation 2.2.2 for the
integral for µ(a), and therefore some readers may wish to look more closely
at the rationale of (2.2.2).

Measure of Exposure. A diagram, due to Lexis (1875), that displays the
population by age and time will help in this. Each individual at any moment
is represented by a point; the collection of points for any individual is his
life line through time; the end of the line is at the moment and age of his
death.

Figure 2.1 shows the beginning and end of the year 1967, for which the
observations are being analyzed, as horizontal lines, and ages 65 and 70 as
vertical lines. In the rectangle ABCD, 122,672 males lines come to an end
for the United States in 1967. We do not quite know how many lines are
in the rectangle, but it was estimated that 2,958,000 crossed the horizontal
line for July 1, 1967, and this number, 5Nx in general, is commonly used
to estimate exposure; it would be better to use person-years.
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Time

Age

Jan. 1, 1968

Jan. 1, 1967

65 70

A

D

A′

D′

B′

C′

B

C

Figure 2.1. Living and dying population displayed on plane of age and time in
Lexis diagram.

Table 2.2. Population and deaths, United States males, 1972, along with their
first and second differences

Age Population Deaths

x 5Nx ∆5Nx ∆2
5Nx 5Dx 5Mx =

5Dx

5Nx
∆5Mx ∆2

5Mx

50 5,616,000 63,838 0.011367
−788,000 0.006725

55 4,828,000 152,000 87,348 0.018092 0.002666
−636,000 0.009391

60 4,192,000 −262,000 115,208 0.027483 0.003083
−898,000 0.012474

65 3,294,000 −66,000 131,620 0.039957 0.007339
−964,000 0.019813

70 2,330,000 218,000 139,264 0.059770 0.008784
−746,000 0.028597

75 1,584,000 84,000 139,974 0.088367 0.006392
−662,000 0.034989

80 922,000 113,734 0.123356

Other directions of improvement, which the reader may wish to investi-
gate, include the use of higher derivatives in the Taylor expansion of (2.2.8),
and better ways of estimating the first derivative. Differences useful in ap-
proximating to the derivatives are provided in Table 2.2. Their effect on
the correction C of Table 2.1 will be found to be slight.

2.4 Period and Cohort Tables

We have noted that, although in each age group the life table estimates how
much a cohort will diminish by death, the probabilities for the several ages
are chained together in a way that can represent only the period for which
the data are gathered. The result describes what is sometimes referred to
as a synthetic cohort.
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To follow genuine cohorts we can chain together the survival probabilities
of a sequence of periods. In 1919–21 the chance of survival for 5 years for a
male just born was 0.87420 (Keyfitz and Flieger 1968, p. 142); in 1924–26
the chance of survival from age 5 to age 10 was 88,574/89,600 = 0.98855
(p. 144); in 1929–31 from age 10 to age 15 it was 88,814/89,587 = 0.99137
(p. 145); and so on. Chaining these together gives

l0 = 100,000, l5 = 87,420, l10 = 86,419, l15 = 85,673 etc.,

as an estimate of survivorship for a real child born about 1917. Portrayal
on a Lexis diagram suggests that the result is a reasonably good ap-
proximation, provided that mortality does not change abruptly over time.
Refinements of the cohort calculation are being carried out by Michael
Stoto, who has improved estimates of population and deaths in the lozenge
A′B′C ′D′ of Figure 2.1.

2.5 Financial Calculations

Demography has a part of its origin in actuarial calculations, just as
probability sprang from gambling consultancies. The center of gravity of
demography has shifted far from the insurance business, but at least the
style of actuarial calculations is worth exhibiting here, perhaps as a small
contribution toward bringing these disciplines closer together again.

2.5.1 Single-Payment Annuity and Insurance
The present value of a life annuity of 1 dollar per year, paid continuously
starting from age x of the person, is equal to

1
lx

∫ ω−x

0
l(x + t) dt =

o
ex

dollars, if money carries no interest. It needs no mathematics to see that
the expected number of dollars that a person will receive at the rate of 1
for each year of life is the same as the expected number of years he has to
live. If money carries interest continuously compounded at annual rate i,
a payment t years from now has a present value of e−it; hence the present
value of the annuity is

ax =
1
lx

∫ ω−x

0
e−itl(x + t) dt (2.5.1)

dollars. Similarly the present value of an assurance of 1 dollar on a life now
aged x must be

Ax =
1
lx

∫ ω−x

0
e−itl(x + t)µ(x + t) dt (2.5.2)
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dollars, which is the same as (2.5.1) except for the factor µ(x + t) in the
integrand. [Show that, if interest is zero, Ax = 1, corresponding to the fact
that dying is inevitable. Show also that, if i > 0, Ax > exp(−i

o
e x).]

2.5.2 Annual Premiums and Reserves
To find the annual premium Px, note only that the annuity of premiums
must cover the assurance; that is to say, the quantities Pxax and Ax must
be equal. Hence we have for the premium Px = Ax/ax or, written out in
full,

Px =

∫ ω−x

0
e−itl(x + t)µ(x + t) dt∫ ω−x

0
e−itl(x + t) dt

. (2.5.3)

In the early years of the policy, claims will be less than premiums, and
a reserve will accumulate that will be drawn on in later years. After the
policy has been in force for y years the present value of the claims will be
Ax+y, and cannot be covered by the present value of the premiums Pxax+y,
a smaller quantity for the ages at which mortality is rising; the difference
Ax+y − Pxax+y, is the reserve prospectively needed.

2.6 Cause-Deleted Tables and Multiple Decrement

If a person dies of one cause, he cannot die at some later time of another;
the literature speaks of competing causes of death. Since dying of a given
cause avoids exposure to other causes, if we wish to know what the mor-
tality from these other causes would be if the given cause were deleted,
we need upward adjustment to the observed rates. Over a finite interval
of time or age it would be incorrect to delete a cause simply by neglecting
all deaths from this cause and calculating the life table from the remaining
deaths; such a procedure would give too low mortality from the remaining
causes. We need an estimate of exposed population that does not include
persons dead of the deleted cause. To make the estimate it is customary to
assume that the several causes act independently.

2.6.1 Dependence of Causes of Death
Think of a watch or other machine having parts and operating only as long
as all the parts are functioning. Each part has its own life table; the chance
that the ith part will operate for x years is l̄ (i)(x), calculated without
reference to other parts. Then the chance that the watch will still be going
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x years after its birth is

l(x) = l̄ (1)(x) · l̄ (2)(x) · · · l̄ (n)(x), (2.6.1)

a statement true if the mortality of each of the parts is unaffected by its
incorporation in the watch. Then, if

− 1
l̄ (i)(x)

dl̄ (i)(x)
dx

= −d log l̄ (i)(x)
dx

= µ(i)(x),

it follows by taking logarithms and differentiating in (2.6.1) that

µ(x) = µ(1)(x) + µ(2)(x) + · · · + µ(n)(x). (2.6.2)

The additivity of the instantaneous death rates follows from the multiplica-
tivity of the survivorships.

We can think of many ways in which these conditions would not be
fulfilled. The watch might keep going with one part defective but break
down when two are defective. Or else the weakening of one part might put
a strain on other parts; the watch would become “sick,” and its death might
ultimately be attributed to one of the parts that was so subjected to strain
rather than to the part that became weak in the first place. There is no
limit to the number of ways in which independence could be lost.

The parts of the watch might be said to resemble the parts of a person,
and these would be independent if it could be said that he dies if his
liver fails, or if his heart fails, and so on, and these were unrelated. The
probability of each organ continuing to function might be thought of as the
l̄ (i)(x) given in life tables showing the net probabilities of survival for the
several causes. Unfortunately for this argument, human parts depend on
one another more than do watch parts; separate life tables for the various
organs, as though they were interchangeable, are to this degree artificial.

In addition to interrelations of parts, selection operates: the persons who
die in skiing accidents are probably healthier on the average than the gen-
eral population; therefore, if precautions that reduced the number of fatal
accidents were introduced at ski resorts, the death rate from other causes
would also be lowered. The nature of such dependencies is extremely diffi-
cult to establish. As long as we know only that A died of heart disease, B of
kidney failure, and so on, nothing can be said about what would happen if
one of the causes was reduced or eliminated. Faced with no evidence on the
nature of dependencies, it is conventional to treat each cause as indepen-
dent of the others. If parts (of a person or a watch) looked weak or had other
clear symptoms before they failed altogether and brought the machine to
a stop, and if such signs were present exactly y years before they would
prove fatal, then something better could be done regarding dependencies.
But even the most conscientious medical tests pre- and postmortem hardly
provide such information.

It looks as though the analysis of interdependencies of the several organs
will have to await further data. One kind of relevant data will become avail-
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able when parts are commonly and safely replaced or interchanged among
individuals. At present, however, such a possibility belongs to science fiction
rather than to demography.

2.6.2 Method of Calculation
If all causes but the ith were removed, what would be the probability of
surviving? To answer this without further data we suppose that the several
causes act independently of one another, that is to say, that their forces of
mortality are additive:

µ(i)
x + µ(−i)

x = µx, (2.6.3)

where µ(i) is the mortality due to the ith cause, and µ(−i) that due to all
other causes. If the survival probability with only the ith cause acting is
l̄
(i)
x , we have from (1.6.5) and the additivity of the µ

(i)
x , as a converse of

the argument leading to (2.6.2),

lx = l̄ (i)x l̄ (−i)
x .

Thus essentially the same argument can start with the additivity of the
µ

(i)
x and infer the multiplicativity of the l̄

(i)
x , or else start with the latter as

we did in (2.6.1).
Now expression 1.6.5 applies to the l̄

(i)
x just as it does to the lx; hence, as

pointed out by Jordan (1952, p. 258) and Chiang (1968, p. 246), we have

− log
l̄
(i)
x+n

l̄
(i)
x

=
∫ n

0
µ(i)(x + t) dt

=

⎡
⎢⎢⎣
∫ n

0
µ(i)(x + t) dt∫ n

0
µ(x + t) dt

⎤
⎥⎥⎦
∫ n

0
µ(x + t) dt

= R

∫ n

0
µ(x + t) dt,

say, and, on multiplying by −1 and taking exponentials of both sides,

l̄
(i)
x+n

l̄
(i)
x

=
(

lx+n

lx

)R

. (2.6.4)

Once the ordinary life table from all causes together is available, all we need
do is raise its survivorships to the powers represented by the R’s; each is
the ratio for an age group of the integral of the force of mortality for the
ith cause to the corresponding integral for all causes.
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Chiang (1968) takes R to be simply the ratio of the age-specific rates for
the interval:

R = nM
(i)
x

nMx
. (2.6.5)

We will use the technique of Section 2.2 to make a slight improvement on
this. By expanding the µ(i)(x+ t) and µ(x+ t) in a Taylor series about the
midpoint of the n-year interval and then carrying through the integration,
we find

R =

∫ n

0
µ(i)(x + t) dt∫ n

0
µ(x + t) dt

=
µ(i)(x + n/2) + (n2/24)µ(i)′′(x + n/2)

µ(x + n/2) + (n2/24)µ′′(x + n/2)
(2.6.6)

to second derivatives. Replacing the midperiod forces of mortality by the
age-specific rates, using a symmetric estimate of the second derivatives,
and then simplifying gives

R = nM
(i)
x

nMx

[
1 +

1
24

(
nM

(i)
x+n + nM

(i)
x−n

nM
(i)
x

− nMx+n + nMx−n

nMx

)]
. (2.6.7)

The result would still hold with all M ’s replaced by D’s where nD
(i)
x is the

number of deaths observed from the ith cause between exact ages x and
x + n.

In the way such calculations are used, the life table of interest is that in
which one cause is deleted. For instance, on data for United States females
in 1964, the complete expectation of life for females is

o
e0 = 73.78 years; if

heart disease (CVR) is deleted, the
o
e (−CVR)

0 = 90.85 years (Preston, Key-
fitz, and Schoen 1972, p. 771). Deletion of cancer gives

o
e (−cancer)

0 = 76.34
years. The gain by eradicating heart disease is 17.07 years; by eradicating
cancer, 2.56 years.

2.6.3 Multiple Decrement
The probability that a person will die of a certain cause in the presence
of other causes is presented in a multiple-decrement table. If the observed
number dying of the given cause is nD

(i)
x and the life table number dying

of that cause is nd
(i)
x , we want to find how the life table deaths ndx are dis-

tributed among the several causes, given the observed distribution among
causes; given ndx, nDx, and nD

(i)
x , we seek nd

(i)
x . One way (Spiegelman

1968, p. 137) to make the calculation is

nd(i)
x = nD

(i)
x

nDx
ndx, (2.6.8)

but, as before, we try going one step in the refinement of this.
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Table 2.3. Part of a multiple-decrement table applying to cardiovascular disease,
comparing (2.6.9) with iterative and uncorrected methods, United States females,
1964

Age nd
(i)
x nd

(i)
x nd

(i)
x = ndx

nD
(i)
x

nDx

x Iterative From (2.6.9) From (2.6.8)

25 65 64.80 64.71
50 1,067 1,067.56 1,066.41
75 10,173 10,175.53 10,165.27

We have by definition

nD
(i)
x

nDx
=

∫ n

0
p(x + t)µ(i)(x + t) dt∫ n

0
p(x + t)µ(x + t) dt

and applying the Taylor expansion used earlier results in

nd
(i)
x = ndx

nD
(i)
x

nDx

{
1 +

1
48

(
nNx+n − nNx−n

nNx
+ 2nnMx

)

×
[

nMx+n − nMx−n

nMx
− nM

(i)
x+n − nM

(i)
x−n

nM
(i)
x

]}
.

(2.6.9)

Table 2.3 shows that the correction in (2.6.9), as compared with using the
simple nd

(i)
x = ndx[nD

(i)
x /nDx], is trifling. We seem to have reached a point

at which it is usually immaterial whether the correction is made or not.
Nonetheless cases will arise where within an age group one cause is declining
and the others rising, and then correction 2.6.9 will bring improvement.

2.7 The Life Table as a Unifying Technique in
Demography

The painstaking development of a method for inferring probabilities from
observed rates is justified by the fact that the same problem arises in many
fields. The ordinary life table, for which the data consist of the number of
deaths and the exposed population, both by age, is only the best-known
example. Figure 2.2 shows some other applications.
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Associated
(cause–deleted)

single–decrement
table recognizing

age and one
way of exit

Multiple–decrement
table recognizing

age and two or more
ways of exit

Cause
of

death

Leaving
school

Entering
labor
force

Combined table
following
individual
through

successive
companies

Migration Successive
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school
with

dropouts
and

reentry

Labor
force
with

unemployment
and

retirement

Single
population,
nuptiality
and the
married

population

Successive
parities

Death
by

cause

Labor
force
and

death

First
marriage

and
death

Dropping
contraceptive
or becoming

pregnant

Figure 2.2. Some extensions of the life table.



3
The Matrix Model Framework

The life table, which formed the unifying technique for demographic anal-
ysis in Chapter 2, focuses on a very basic dichotomy (alive vs. dead) and
follows individuals as they age. This chapter introduces a different, although
related, unifying framework—that of the population projection matrix. It
extends the dichotomy of the life table to consider individuals that differ
according to many characteristics: age, sex, marital or employment status,
maturity, etc. Over each interval of time, each type of individual has not
only a probability of dying (on which the life table focuses) but also a
probability of moving to another category (as when an unemployed person
becomes employed) or of producing some number of new individuals (as by
reproduction).

Given these probabilities, one can compute the expected population
of each type of individual at the next time interval from that at the
present. This calculation is called a projection of the population. The in-
formation needed for a projection can most easily be written down in the
form of a matrix (called a population projection matrix) from which many
characteristics of population dynamics can be calculated.

We will introduce the matrix model framework in the context of age-
classified populations (here the relation to life table analysis is particularly
close) and then proceed to populations classified by other factors. The
ability of matrix models to classify individuals in many different ways is
important to biologists because of the great diversity of plant and animal
life cycles. Human demographers may not worry about individuals entering
suspended animation, changing sex, shrinking instead of growing, or repro-
ducing by breaking into pieces, but all these things (and more) occur among
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Age-class

2

3

43

4

1

2

0

1
(i)

Age (x)

Figure 3.1. The relation between the continuous age variable x, used in the life
table functions m(x) and l(x), and the discrete age classes i, used in the projection
matrix parameters Pi and Fi.

nonhuman species. Humans too have many important attributes in addi-
tion to age. Attempts to fit these processes into the life table framework
have a strained and unsatisfactory feel, but matrix methods are equally
applicable to all of them (see Chapters 7 and 17, and AMD).

Matrix population models were introduced in the 1940s by Bernardelli
(1941), Lewis (1942), and especially Leslie (1945, 1948), whose name is
associated with them still. Leslie was an ecologist particularly interested in
populations of small mammals (Crowcroft 1991). In addition to his work
on matrix population models, he made the first life table calculation of the
intrinsic rate of increase for any nonhuman species and made significant
contributions to stochastic models and mark-recapture estimation. Matrix
models were largely neglected until the mid-1960s, when both ecologists
(Lefkovitch 1965) and human demographers (Lopez 1961, Keyfitz 1964,
Rogers 1966) rediscovered them.

3.1 The Leslie Matrix

We begin with a model for an age-classified population. We divide the
continuous variable age, which starts at 0, into a discrete set of age classes,
which start at 1. The scheme is shown in Figure 3.1. Age class i corresponds
to ages i − 1 ≤ x ≤ i. According to this convention, the first age class is
number 1. Some authors number the first age class as 0.

Our goal is to project the population from time t to time t+1. We assume
that the unit of time is the same as the age class width. We call this unit
the projection interval; its choice is one of the first steps in constructing a
matrix model. Not surprisingly, a model that projects from year to year will
differ from one that projects from month to month or decade to decade.

Suppose that the projection interval is one year, and that individuals
are classified into three age classes (0–1, 1–2, and 2–3 years). The state of
the population is described by a vector n(t), whose entries ni(t) give the
numbers of individuals in each age class.

The individuals in age classes 2 and 3 at time t + 1 are the survivors of
the previous age classes at time t. That is,

n2(t + 1) = P1n1(t)
n3(t + 1) = P2n2(t),
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Figure 3.2. Classification of matrix population models depending on the kinds of
variability included in the population projection matrix.

where Pi is the probability that an individual of age class i survives for one
year.

The new members of age class 1 cannot be survivors of any other age-
class; they must have originated from reproduction. Thus we write

n1(t + 1) = F1n1(t) + F2n2(t) + F3n3(t), (3.1.1)

where Fi is the per-capita fertility∗ of age class i, that is, the number of
individuals in age class 1, at time t+1, per individual in age class i at time
t.

These equations can be conveniently written in matrix form as⎛
⎝ n1

n2
n3

⎞
⎠ (t + 1) =

⎛
⎝ F1 F2 F3

P1 0 0
0 P2 0

⎞
⎠
⎛
⎝ n1

n2
n3

⎞
⎠ (t) (3.1.2)

or, more compactly,

n(t + 1) = An(t), (3.1.3)

where n is the population vector and A is the population projection matrix.
This special, age-classified version is often referred to as a Leslie matrix. It
is nonnegative (since negative elements would imply negative numbers of

∗We use fertility to describe actual reproductive performance and fecundity to denote
the physiological potential for reproduction; in ecology the definitions are sometimes
reversed.
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individuals), with positive entries only in the first row (fertilities) and the
subdiagonal (survival probabilities).

Matrix population models can be classified by the nature of the pro-
jection matrix A (see Figure 3.2). In the simplest case, the matrix is a
constant. We will spend a lot of time on this case, in spite of the unde-
niable fact that survival and reproduction are not constant. The resulting
model is a linear, time-invariant system of difference equations

n(t + 1) = An(t). (3.1.4)

If A is not constant, it may vary because of external factors independent
of the population (e.g., weather), or because of changes in the internal state
of the population itself. A variable external environment leads to a linear
time-varying model

n(t + 1) = Atn(t), (3.1.5)

where each element of At may be a function of time. The variation may be
deterministic or stochastic; if deterministic, it may be periodic or aperiodic.

Variation due to the population yields a nonlinear model

n(t + 1) = Ann(t), (3.1.6)

where each entry of An may be a function of the population vector n.
Nonlinear models can be divided into density-dependent and frequency-
dependent categories (two-sex models are generally frequency-dependent;
MPM Chapter 17).

It is possible to combine environmental variation and density dependence
or frequency dependence, to yield a system of inhomogeneous nonlinear
equations

n(t + 1) = An,tn(t). (3.1.7)

As you might expect, such models are difficult to analyze.
We will not explore time-varying or nonlinear models here, but they are

treated at length in MPM.

3.2 Projection: The Simplest Form of Analysis

One of the advantages of matrix models is that they are easy to implement
on a computer. Given an initial population n(0), you calculate the entries
in An(0),0, taking into account whatever nonlinearities or time-variation
may be operating. Use this matrix to produce n(1). Repeat the procedure:

n(1) = An(0),0n(0)
n(2) = An(1),1n(1)
n(3) = An(2),2n(2)
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and so on, as long as desired. It is an easy and instructive exercise to
program this repeated multiplication on a small computer (among other
things, writing a program guarantees that you understand the rules for
matrix multiplication). Here, we show the results of some simple projections
of this sort.

Example 3.1 A linear, time-invariant model

Consider the projection matrix

A =

⎛
⎝ 0 1 5

.3 0 0
0 .5 0

⎞
⎠ . (3.2.1)

According to this matrix, the probability of surviving from the first
age class to the second is P1 = 0.3, and the probability of surviving
from the second age class to the third is P2 = 0.5. Individuals in
the three age classes produce F1 = 0, F2 = 1, and F3 = 5 surviving
offspring per projection interval.
Figure 3.3 shows the results of applying this matrix to an initial
population vector

n(0) =

⎛
⎝ 1

0
0

⎞
⎠ .

For the first 15 time intervals, the abundances of the three age classes
fluctuate irregularly, although there appears to be a slight upward
trend. Looking at the results over a longer time scale and on a log-
arithmic abundance scale, reveals that each age class (and thus the
total population) eventually grows exponentially at the same rate.
The relative proportions of the three age classes eventually converge
to constant values.

Example 3.2 Effects of initial conditions

The results in Figure 3.3 are specific to the initial population n(0).
What if this initial population were changed? Figure 3.4 shows the re-
sult of 10 simulations, each with a different, randomly selected initial
age distribution. All 10 eventually grow at the same rate and con-
verge to the same age distribution. They do not, however, all achieve
the same population size at any given time. One might suspect (given
some foresight about the concept of reproductive value, to be intro-
duced in Chapters 8 and 9) that this results from the timing of events
in the life cycle. An initial condition biased toward individuals in age
class 1 is at a disadvantage because these individuals must wait, with
an attendant probability of mortality, one time step before they begin
to reproduce and two time steps before they reach their maximum
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Figure 3.3. Projection of an initial population consisting of a single individual in
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Figure 3.4. Projection of 10 randomly selected initial populations, all with the
same total size, using the projection matrix of (3.2.1).

fertility. An initial condition biased toward age class 3 has an ad-
vantage because these individuals reproduce at their maximum rate
immediately. Such a population has, and maintains, a head start over
the others.

Example 3.3 Effects of perturbations

What happens if the entries in A are changed? Suppose that an envi-
ronmental stress reduces the survival or reproduction of one age class
by 10 percent, leaving all else unchanged. The results of these five
perturbations are shown in Figure 3.5. Reducing survival or fertility



54 3. The Matrix Model Framework

0 10 20 30 40 50 60
0

5

10

15

Time

T
ot

al
 p

op
ul

at
io

n original

 F
2

 F
3

 P
2

 P
1

Figure 3.5. Projections of total population size, comparing the original projection
matrix of Figure 3.3 (dotted line) with the results of reducing each of the vital
rates by 10 percent.

reduces population growth rate (no surprise here), but where in the
life cycle the change happens makes a big difference. A 10 percent re-
duction in F2 reduces the growth rate but leaves it positive. The same
reduction applied to F3, P2, or P1 appears to drive the population to
extinction. It appears that population growth is most sensitive to a
proportional change in P1.

3.2.1 A Set of Questions
The preceding examples have posed the four fundamental questions of
demographic analysis.

Asymptotic analysis. A model describes a set of processes. Asymptotic
analysis asks what happens if those processes operate for a very long
time. What is the long-term behavior of the population? Does it grow
or decline? Does it persist or go extinct? Converge to an equilibrium,
oscillate, or do something more chaotic?

Ergodicity. The dynamics of a population depend not only on the model,
but also on the initial conditions. A model (or the population it
describes) is said to be ergodic if its asymptotic dynamics are inde-
pendent of initial conditions. Ergodic results are useful because they
imply that population patterns might reveal something about pro-
cesses rather than initial conditions. Many scientists, as opposed to



3.3. The Leslie Matrix and the Life Table 55

historians, have a strong belief that processes are important but ini-
tial conditions are historical accidents. On the other hand, if a model
can be shown not to be ergodic, then it may be used to explain dif-
ferences in dynamics in situations where the underlying processes are
apparently the same.

Transient analysis. Short-term dynamics can be very different from
asymptotic dynamics. Transient analysis, focusing on short-term
behavior, may be more relevant than asymptotic analysis in char-
acterizing the response of a population to perturbations.

Perturbation analysis. No matter how carefully it is constructed, a
model always leaves things out, and the data from which parame-
ter values are estimated are always imprecise. Any conclusions that
depend on those exact values are immediately suspect. Furthermore,
we usually want to extrapolate the results to other populations, other
species, or other environments. Thus it is important to know how
sensitive conclusions are to changes in the model. This kind of inves-
tigation is called perturbation analysis or sensitivity analysis. In the
previous examples we applied it to the linear model to see how the
growth rate changed when we modified survival and fertility.

Any study that does not address asymptotic analysis, transient analysis,
ergodicity, and the results of perturbations has not completely explored its
model.

3.3 The Leslie Matrix and the Life Table

The parameters in an age-classified matrix model are derived from the life
table. We begin by distinguishing birth-flow populations, in which births
occur continuously over the projection interval, and birth-pulse popula-
tions, in which reproduction is concentrated in a short breeding season
within the interval (Caughley 1977). Humans are an example of a birth-
flow population, whereas mammals, birds, and many other organisms in
seasonal environments are more accurately described as birth-pulse popu-
lations. These patterns of reproduction produce different distributions of
individuals within age classes, and lead to different approximations for the
survival probabilities and fertilities.

3.3.1 Birth-Flow Populations
3.3.1.1 Birth-Flow Survival Probabilities

Pi is the probability that an individual in age class i will survive from t to
t + 1. This depends on the age of the individual within the age-class; the
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probability of survival from precise age x to x+1 is l(x+1)/l(x). However,
in forming age classes, we have given up all knowledge of age within the age
class. Therefore, we approximate l(x) within each age class by its average
over the interval i − 1 ≤ x ≤ i, so that

Pi =

∫ i+1
i

l(x)dx∫ i

i−1 l(x)dx
. (3.3.1)

In the notation of (2.1.1), this is

Pi = 1Li

1Li−1
, (3.3.2)

which might be crudely approximated as

Pi ≈ l(i) + l(i + 1)
l(i − 1) + l(i)

. (3.3.3)

Here, as is customary in matrix population models, time has been scaled
in terms of the projection interval, so that the 5-year intervals of age and
time in Chapter 2 appear here as 1 projection interval.

Other alternatives are possible. Assuming a constant force of mortality
within the age interval suggests using the geometric rather than arithmetic
mean as the approximation within the interval, in which case

Pi =
(

l(i)l(i + 1)
l(i − 1)l(i)

)1/2

(3.3.4)

=
(

l(i + 1)
l(i − 1)

)1/2

. (3.3.5)

A second alternative would be to calculate the probability of survival for
each age and then average over the age interval:

Pi =
∫ i

i−1

l(x + 1)
l(x)

dx (3.3.6)

≈ 1
2

(
l(i)

l(i − 1)
+

l(i + 1)
l(i)

)
. (3.3.7)

Comparison of (3.3.3), (3.3.5), and (3.3.7) for several life tables suggests
that the differences in the Pi are small (e.g., less than 2 percent in a life
table for United States females using 5-year age classes), and probably
irrelevant for most applications.

3.3.1.2 Birth-Flow Fertilities

The formulae for fertilities depend on the distribution of births and deaths
within an age class (Leslie 1945, Keyfitz 1968). The Fi are defined by the
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first row of the projection matrix:

n1(t + 1) =
∑

i

Fini(t). (3.3.8)

Let B(t,t+1) denote the total number of births in the interval (t, t + 1),
and let n(x, t) be the number of individuals aged (x, x + dx) at time t
(remember that x is a continuous variable). At time t, individuals of age x
reproduce at the rate m(x)n(x, t), where m(x)dx is the expected number
of female offspring produced by a female of age x in the interval (x, x+dx).
Integrating over time and age gives the total offspring production:

B(t,t+1) =
∫ ∞

0
m(x)

∫ t+1

t

n(x, z) dz dx. (3.3.9)

We, however, are ignorant of the detailed dynamics of n(x, t) within the
time interval, so we approximate

∫ t+1
t

n(x, z)dz by the arithmetic mean of
n(x, t) and n(x, t + 1). With this approximation,

B(t,t+1) ≈
∫ ∞

0
m(x)

(
n(x, t) + n(x, t + 1)

2

)
dx. (3.3.10)

Next, we approximate the continuous variables m(x) and n(x, t) by con-
stant values (e.g., their means) mi and ni(t) over the age interval i − 1 ≤
x ≤ i. Given these approximations,

B(t,t+1) ≈ 1
2

∞∑
i=1

mi

(
ni(t) + ni(t + 1)

)
. (3.3.11)

However, ni(t + 1) = Pi−1ni−1(t) for i ≥ 2. Substituting this expression
into (3.3.11) and rearranging terms gives the number of births

B(t,t+1) ≈ 1
2

∞∑
i=1

(mi + Pimi+1) ni(t). (3.3.12)

The number of births is not quite equal to n1(t+1); some of those offspring
will not survive to time t+1. Those born just after t must survive almost an
entire projection interval to be included in n1(t+1). Those born just before
t + 1 are at risk of mortality for only a brief time. An average individual
must survive for one-half of the projection interval, the probability of which
is l(0.5). Thus

Fi = l(0.5)
(

mi + Pimi+1

2

)
. (3.3.13)

If l(0.5) is not known directly, it can be estimated using linear interpolation
(Keyfitz 1968):

l(0.5) ≈ l(0) + l(1)
2

. (3.3.14)
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Most organisms, however, have relatively high neonatal mortality; in such
cases logarithmic interpolation is more accurate. Suppose that µ(x) = µ
for 0 ≤ x ≤ 1. Then l(1) = l(0) exp(−µ) and

l(0.5) = l(0)e−µ/2 (3.3.15)

= l(0)
√

l(1). (3.3.16)

If detailed survival information within the first age class is available, we
can use l(0.5) =

∫ 1
0 l(x)dx (Keyfitz 1968).

According to (3.3.13), the typical individual in age class i produces off-
spring at a rate that is the average of the maternity function for that age
class and the subsequent age class, the latter weighted by the probability of
survival to the subsequent age class. The offspring produced must survive
for one-half time unit to be counted in the population at time t + 1. An
alternative interpretation of (3.3.13) is in terms of a typical individual in
the center of age class i. It spends half of the projection interval producing
offspring at the rate mi, and, if it survives, passes into the next age class
and produces offspring at the rate mi+1 for the rest of the interval.

3.3.2 Birth-Pulse Populations
In an ideal birth-pulse population, individuals reproduce on their birthday;
thus the maternity function is a discontinuous series of delta functions (Fig-
ure 3.6). The age distribution at any time is also a discontinuous series of
pulses (Figure 3.7). The age of these pulses depends on when the population
is counted, relative to the time of the pulse of breeding. Let p (0 < p < 1)
denote the fraction of the time interval that elapses between the pulse of
reproduction and the census. At census time, the age distribution consists
of a series of pulses of individuals aged p, 1 + p, 2 + p, . . . .

In many studies (e.g., birds, large mammals; see Caughley 1977) cen-
suses are carried out either just before or just after breeding. These cases
correspond to the limits as p → 1 and p → 0, and are called prebreeding and
postbreeding censuses, respectively. The formulae for survival and fertility
depend on which kind of census is assumed.

3.3.2.1 Birth-Pulse Survival Probabilities

In calculating birth-pulse survival probabilities, we no longer have to use ap-
proximate survival probabilities for “typical” individuals; every individual
in age class i is identical, aged i − 1 + p. Thus

Pi = P [survival from age i − 1 + p to i + p] (3.3.17)

=
l(i + p)

l(i − 1 + p)
. (3.3.18)
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Figure 3.7. The age distribution at the time of census for a birth-pulse population.
The time of the census is defined by p, the proportion of the time interval elapsing
between the pulse of reproduction and the census.

Thus, as shown in Figure 3.8, the survival probabilities are calculated as

Pi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

l(i)
l(i − 1)

postbreeding (p → 0)

l(i + 1)
l(i)

prebreeding (p → 1)

. (3.3.19)

Mortality during the first age interval (say, the first year) appears in two dif-
ferent forms in prebreeding and postbreeding censuses. For a postbreeding
census, P1 = l(1)/l(0), and includes first-year mortality. For a prebreeding
census, P1 = l(2)/l(1), and excludes first-year mortality; in this case the
missing mortality is incorporated into the fertility coefficients.
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3.3.2.2 Birth-Pulse Fertilities

We begin by calculating the number of births in the interval (t, t+1). These
births occur when the individuals celebrate their next birthday, so

B(t,t+1) =
∞∑

i=1

ni(t) mi φi, (3.3.20)

where mi is the reproductive output of an individual upon reaching its ith
birthday and φi is the probability that an individual in age class i survives
from the census to its next birthday. This probability can be approximated
by assuming a constant force of mortality over the interval (t, t + 1). Since
the probability of survival from t to t+1 is Pi, the probability of surviving
for a fraction 1 − p of a time unit is φi = P 1−p

i . (Detailed information on
seasonal mortality rates within the year could, of course, be used if it were
available.)

Once reproduction has taken place, the offspring must survive a fraction
p of a time unit in order to be counted in n1(t+1). That probability is given
by l(p); it may be estimated by interpolation, as l(0.5) was for birth-flow
populations [Equations (3.3.14) and (3.3.16)]. Thus the fertility coefficient
for a birth-pulse population is given by

Fi = l(p)P 1−p
i mi (3.3.21)

=

{
Pimi postbreeding (p → 0)

l(1)mi prebreeding (p → 1)
. (3.3.22)

Example 3.4 Parameterization of an age-classified matrix

Consider the following hypothetical life table for a population in
which all individuals die by their fourth birthday.

x l(x)
0 1.0
1 0.8
2 0.5
3 0.1
4 0.0

Application of (3.3.3) and (3.3.19) yields the following estimates for
the Pi:
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Birth-pulse

i Birth-flow p → 0 p → 1

1 0.8+0.5
1.0+0.8 = 0.722 0.8

1.0 = 0.800 0.5
0.8 = 0.625

2 0.5+0.1
0.8+0.5 = 0.462 0.5

0.8 = 0.625 0.1
0.5 = 0.200

3 0.1+0.0
0.5+0.1 = 0.167 0.1

0.5 = 0.200 0.0
0.1 = 0

4 0 0 —

Notice that in the prebreeding census (p → 1) there is no survival
from the third to the fourth age class, because individuals in the
fourth age class at the time of the census would be beginning to
celebrate their fourth birthday, but the life table implies that none of
them survives to do so. In the postbreeding (p → 0) case, however,
individuals in the fourth age class have just celebrated their third
birthday; hence P3 > 0.
Given the reproductive outputs for each age class, we can use (3.3.13)
and (3.3.22) to calculate the fertility coefficients Fi:

Birth-pulse

i mi Birth-flow p → 0 p → 1

1 0 0.9
(

0+2(0.722)
2

)
= 0.650 (0.8)(0) = 0 (0.8)(0) = 0

2 2 0.9
(

2+6(0.462)
2

)
= 2.052 (0.625)(2) = 1.250 (0.8)(2) = 1.6

3 6 0.9
(

6+3(0.167)
2

)
= 2.926 (0.200)(6) = 1.200 (0.8)(6) = 4.8

4 3 0.9
(

3+0(0.000)
2

)
= 1.350 (0)(3) = 0 (0.8)(3) = 2.4

The parameterization of the matrix affects the results of the analysis.
For example, the eventual rates of exponential growth (calculated
using the methods of Section 7.1) implied by the three matrices in
this example are

Birth-flow 1.793
Birth-pulse, p → 0 1.221
Birth-pulse, p → 1 1.221

The birth-pulse model yields the same growth rate regardless of the
time of census, but the birth-flow and birth-pulse models predict quite
different dynamics.
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Figure 3.8. The calculation of survival probabilities for a birth-pulse population.
The calculation of P2 is shown; that of survival at other ages is similar. In a
postbreeding census, individuals in age class 2 are just barely 1 year old; to
survive for a year they must live to 2 years of age. In a prebreeding census,
individuals in age class 2 are almost 2 years of age, and to survive a year they
must live to reach 3 years of age.

3.4 Assumptions: Projection Versus Forecasting

Ecologists are, if anything, even more concerned than human demographers
about the logic and assumptions underlying these analyses. So far, we have
made three kinds of assumptions.

• We have assumed that it is appropriate to classify individuals by
age. This is not an innocuous assumption; the demography of many
organisms depends more on size or developmental stage than on age
(for statistical analyses of the relative importance of age and other
state variables see MPM Chapter 3).

• Because the model is discrete, it discards all information on the ages
of individuals within age classes. When we choose age classes (or
any other categories), we implicitly assume that this within-class
information is irrelevant.

• The linear time-invariant model in Example 3.1 projects the popula-
tion without changing the vital rates. This seems to assume that the
fertilities and survival probabilities remain constant over time.
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The third assumption seems absurd. The vital rates of most organisms
vary conspicuously in time and space, and effects of density on population
dynamics are well documented. How, then, can we justify analyses such as
those we have just discussed? Worse yet, how can we justify the even more
complex analyses of equally simple models that will follow in subsequent
chapters?

The answer to this question is fundamental to the interpretation of demo-
graphic analyses. It turns on an important distinction between projection
and forecasting or prediction (Keyfitz 1972a; see Chapter 12). A forecast
predicts what will happen. A projection describes what would happen, given
certain hypotheses. Grammatically speaking, forecasting uses the indicative
mood and projection the subjunctive. For example, a projection matrix A
implies an eventual population growth rate and structure. A population
described by A would eventually grow at that rate with that structure, if
nothing happened to change the vital rates. Ecological use of this purely
analytical result is sometimes criticized as if it asserted that the environ-
ment is constant. However, one must assume a constant environment as a
fact only if the model is being used as a forecast. No such assumption is re-
quired to interpret the growth rate and population structure as answers to
the hypothetical question: how would the population behave if the present
conditions were to be maintained indefinitely?

Population projections reveal something about present conditions (more
precisely, about the relation between present conditions and the population
experiencing them), not about the future behavior of the population. As
Keyfitz (1972a) pointed out, one of the most powerful ways to study present
conditions is to examine their consequences were they to remain as they
are. A speedometer works the same way. A reading of 60 miles per hour
predicts that, in one hour, the car will be found 60 miles in a straight line
from its present location. As a forecast, this is almost always false. But as
a projection, it provides valuable information about the present situation
of the automobile.

So it is with demographic projections. They are particularly revealing be-
cause they integrate the impact of environmental conditions on vital rates
throughout the life cycle. To know the survival probabilities and fertilities
of every age class under a particular set of circumstances is to possess a
great deal of biological information about those circumstances. This in-
formation is most valuable when coupled with a comparative approach,
in which the vital rates are measured under two or more different condi-
tions (e.g., Chapter 13). The use of demographic analysis in these studies
does not depend on assumptions of density independence or environmental
constancy.
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3.5 State Variables and Alternatives to
Age-Classification

Age-specific survival and fertility rates are not always sufficient to de-
termine population dynamics. Even in human populations, for which
age-classified demography was originally developed, factors other than age
(sex, marital status, location) are known to affect the vital rates. In or-
ganisms with more complex life cycles, age is even less adequate, and
demographic models should classify individuals by a more appropriate set
of life cycle stages.

One of the first steps in an analysis is thus to choose a variable in terms
of which to describe population structure. This choice can be understood
in terms of the formal notion of “state” in dynamical system theory. The
“state” of a system provides the information necessary to predict the re-
sponse of the system. In Newtonian mechanics the state of a system is
given by the positions and momenta of its component particles, because
that information is sufficient to determine the response to any force. In
ethology, the ideas of “motivation” or “drive” are used to describe the
state of individual organisms, because they determine the response to a
stimulus. Physiologists characterize individuals by their levels of energy
reserves, lipid storage, hormones, metabolites, and so on. In demographic
models the state of the population is usually given by the distribution of
individuals among a set of categories (e.g., age classes). We will begin by
examining the formal basis for these usually intuitive ideas.

3.5.1 State Variables in Population Models
Formal state theory was introduced into population ecology by Caswell
et al. (1972), Boling (1973), and Metz (1977; see Metz and Diekmann
1986). Because demographic models connect individuals and populations,
Metz and Diekmann (1986) recognized the need to begin with the state
of the individual, which they called an i-state. Examples of i-state vari-
ables include age, size, maturity, developmental stage, and physiological
condition. Papers by Hallam et al. (1990) and Gurney et al. (1990) and the
book by Kooijman (1993) exemplify how much detail can be included in
physiological i-states.

The i-state variable provides the information necessary to predict the
response of an individual to its environment. However, we are interested
in modelling the population and hence need a population state variable,
or p-state variable. Metz and Diekmann (1986, Metz and de Roos 1992)
gave two conditions sufficient to guarantee that the p-state variable can
be written as a distribution of individuals among i-states (e.g., by an age
distribution if individuals are characterized by age).

1. All individuals experience the same environment.
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2. The effect of the population on the environment can be written as
the sum of the contributions of the individuals.

This is an extremely important conclusion. It justifies the practice of
writing p-states as vectors of abundances of individuals in various i-
state categories, which is fundamental to all types of demographic models
(Tuljapurkar and Caswell 1997).

The Metz–Diekmann conditions guarantee that we can test a would-be p-
state variable by testing the adequacy of the corresponding i-state variable.
This can be done by measuring the i-states for a set of individuals, doc-
umenting their responses to a common environment, and quantifying the
information about individual fate provided by the i-state. Loglinear mod-
els (Section 17.6) are now widely used in ecology for this purpose (Caswell
1988, MPM Chapter 3).

The Metz–Diekmann conditions are often satisfied, at least approx-
imately. For instance, in many demographic models, the effect of the
population on the environment is not represented explicitly. Instead, the
vital rates are written as functions of density, assuming some mechanism
by which density is translated into an effect on the environment (e.g., con-
sumption of resources), and hence back to the population. In such models,
the second condition is satisfied automatically.

When the Metz–Diekmann conditions are violated, the state of the pop-
ulation cannot be described by the distribution of individuals among the
i-states. Instead, the state of each individual must be accounted for explic-
itly. Such models are called i-state configuration models (Caswell and John
1992), individual-based models (DeAngelis and Gross 1992, Grimm et al.
1999), or, in the human demographic literature, microsimulation models
(e.g., Ruggles 1993, Wachter 1997).

The conditions are violated when the vital rates are determined by inter-
actions among specific individuals. The most common case involves sessile
organisms where individuals interact only with their immediate neighbors.
In such populations, each individual may experience a different environ-
ment, and the effects of an individual on the environment depend on where
it is located and cannot be written as a sum of individual effects.

3.6 Age as a State Variable: When Does it Fail?

The adequacy of age as a state variable depends on how much information
it provides about the demographically relevant aspects of individual devel-
opment. Several circumstances combine to limit this information and make
other state variables more suitable than age.
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3.6.1 Size-Dependent Vital Rates and Plastic Growth
If the vital rates depend on body size and if growth is sufficiently plastic
that individuals of the same age may differ appreciably in size, then age
will provide little information about the fate of an individual. If the vital
rates depend on developmental stage (e.g., instar) and stage duration varies
among individuals, age will be a poor state variable. Such plasticity is
widespread in plants, fish, and arthropods.

Size-dependent demography is not limited to species with indetermi-
nate growth, however. Sauer and Slade (1987) have documented effects
of body size on survival and reproduction in vertebrates, and they have
used size-based demographic models for small mammals (Sauer and Slade
1985, 1986). Weight and body composition are known to affect the age at
reproductive maturity in humans (Frisch 1984).

Size- or stage-dependent vital rates by themselves are not enough to ren-
der age inadequate as a state variable. If growth is so tightly regulated that
age is a good predictor of size, then even if fecundity and mortality depend
on size, age will work as an i-state variable. Some authors (e.g., Stearns
and Koella 1986) have used this approach to develop models phrased in
terms of size, but using age-classified demography.

3.6.2 Multiple Modes of Reproduction
Many organisms exhibit both sexual and vegetative or clonal reproduction
(Jackson et al. 1985). Sexual and vegetative offspring of the same age may
differ markedly in their demographic properties. Cook (1985), for example,
summarizes data on several clonal plant species showing that the probabil-
ity of successful establishment for vegetative offspring is from 3 to 30 times
higher than the corresponding probability for offspring produced from seed.
To the extent that individuals of the same age have different vital rates,
age is an inadequate i-state variable for such species.

3.6.3 Population Subdivision and Multistate Demography
A third situation leading to inadequacy of age as an i-state variable re-
sults from population subdivision, when the subpopulations are exposed
to different environments. Specification of an individual’s state in such a
population requires specification of its age and its environment. Spatial
subdivision is an obvious example; if individuals migrate between regions
characterized by different vital rates, the age × region distribution is re-
quired to specify the state of the population. There is a large literature on
such “multiregional” models (e.g., Rogers 1975, 1985, 1995). These models
also apply to populations with other kinds of heterogeneity (sex, marital
status, parity, employment). The term “multistate demography” is used
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to describe models in which individuals are classified by multiple i-state
variables (Land and Rogers 1982, Schoen 1988; see Chapter 17).

The choice of an appropriate state variable is a critical step in model
construction. The concepts of i-state and p-state clarify the biological and
statistical issues involved in that choice. They provide criteria for decid-
ing, from studies of individuals, what variables need to be included in a
population model.

3.7 The Life Cycle Graph

We turn now to constructing matrix population models for any discrete
i-state variable; we will refer to these models as “stage-classified.” Age-
classified models are a special case of stage-classified models. We will see
in Chapter 7 that one of the advantages of the matrix formulation is
that results on asymptotic dynamics, ergodicity, transient analysis, and
perturbation analysis apply equally to age- and stage-classified models.

We begin with a simple graphical description of the life cycle, called the
life cycle graph. Figure 3.9 shows two examples. The construction proceeds
as follows.

1. Choose a set of stages (i.e., i-states) in terms of which to describe the
life cycle.

2. Choose the projection interval, defining the time step in the model.

3. Create a node for each stage; number the nodes from 1 through s.
The order of the numbering is irrelevant, but it is often convenient to
assign the number 1 to a stage representing “newborn” individuals.
The symbol Ni denotes node i.

4. Put a directed line or arc from Ni to Nj if an individual in stage i at
time t can contribute individuals (by development or reproduction)
to stage j at time t + 1. If an individual in stage i at time t can
contribute to stage i at t + 1 (e.g., by remaining in the same stage
from one time to the next), put an arc from Ni to itself; such an arc
is called a self-loop.

5. Label each arc by a coefficient; the coefficient aij on the arc from Nj

to Ni gives the number of individuals in stage i at time t + 1 per
individual in stage j at time t. Thus

ni(t + 1) =
s∑

j=1

aijnj(t).
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Figure 3.9. (a) A life cycle graph for an age-classified life cycle, in which the
width of the age classes equals the projection interval. (b) A life cycle graph for
the standard size-classified model. Nodes represent size classes, and an individual
can grow no more than a single size class in the interval (t, t + 1).

These coefficients may be transition probabilities or reproductive
outputs.† Note the order of the subscripts!

Figure 3.9a shows the graph for an age-classified life cycle in which the
age interval and projection interval are identical. Individuals survive, with
probability Pi, to become one unit older, and reproduce, with fertility Fi,
producing new individuals in age class 1. Figure 3.9b shows the graph for a
size-classified life cycle. An individual in size class i may survive and grow
to size class i + 1 with probability Gi, or may survive and remain in size
class i with probability Pi. Reproduction produces new individuals in the
smallest size class. As drawn, this graph asserts that it is impossible for an
individual to shrink, or to grow two or more size classes in a single time
interval.

Figure 3.10 shows a life cycle graph for the killer whale Orcinus orca
(Brault and Caswell 1993). The projection interval was one year, and indi-
viduals were classified as yearlings, juveniles (past their first year but not
mature), mature females, and postreproductive females.

†The life cycle graph as defined here is known technically as the Coates graph of the
matrix A (Chen 1976); its use in demographic analysis is due to Lewis (1972, 1976),
Hubbell and Werner (1979), and Caswell (1982a,b). Some of the results that can be
obtained from the graph will be seen in Chapter 9; see MPM Chapter 7 for details.
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Figure 3.10. A life cycle graph for the killer whale (Brault and Caswell 1993).
Nodes represent stages: N1 = yearlings, N2 = juveniles, N3 = mature females,
and N4 = postreproductive females.

Three things about Figure 3.10 are worth noting. First, because stage
1 is an age class of the same length as the projection interval, individuals
cannot remain in stage 1 from one time to the next. Thus P1 = 0 and
no self-loop has been drawn on N1. The loop could have been drawn and
its coefficient set to zero without changing anything. Second, there is a
postreproductive stage, which does not contribute individuals to any of the
other stages. Third, it includes positive fertility for juvenile females. This
arises because in a birth-flow model it is assumed that some juveniles may
mature during the interval from t to t + 1 and produce offspring at t + 1.

3.8 The Matrix Model

The life cycle graph is more than a handy pictorial description of the life
cycle. It is isomorphic to the population projection matrix A in the equation

n(t + 1) = An(t),

where n(t) is now a vector of stage abundances. The rule for generating
the matrix is simple: the matrix entry aij is the coefficient on the arc from
Nj to Ni in the life cycle graph. Note the order of the subscripts.

The projection matrices corresponding to the two graphs in Figure 3.9
are

Aa =

⎛
⎜⎜⎝

0 F2 F3 F4
P1 0 0 0
0 P2 0 0
0 0 P3 0

⎞
⎟⎟⎠ (3.8.1)

Ab =

⎛
⎜⎜⎝

P1 F2 F3 F4
G1 P2 0 0
0 G2 P3 0
0 0 G3 P4

⎞
⎟⎟⎠ . (3.8.2)



70 3. The Matrix Model Framework

The age-classified graph (Figure 3.9a) yields a Leslie matrix. The matrix
Ab resulting from the size-classified graph (Figure 3.9b) includes positive
elements on the diagonal, corresponding to individuals remaining in the
same size class, as well as on the subdiagonal and the first row.‡ The matrix
for the killer whale from the life cycle in Figure 3.10 is

A =

⎛
⎜⎜⎝

0 F2 F3 0
G1 P2 0 0
0 G2 P3 0
0 0 G3 P4

⎞
⎟⎟⎠ . (3.8.3)

Deciding which properties of individuals to include in the life cycle calls
on all the biological and sociological information available, and is always
a compromise between recognizing the potential importance of even the
tiniest differences and the acknowledging the limitations of the available
data. But once the decision has been made and the projection matrix con-
structed, all manner of population analyses are possible. We return to these
in Chapter 7.

‡This model, called the standard size-classified model, is widely used in ecology [e.g.,
Usher (1966), Pinero et al. (1984) for trees, Hughes and Jackson (1985) for corals, Heppel
et al. (1996) for sea turtles, Doak et al. (1994) for tortoises, Warner and Hughes (1988)
for fish].



4
Mortality Comparisons;
The Male-Female Ratio

The United States in 1975 showed an expectation of life at birth for males
of 68.5 years and for females of 76.4 years, a difference of 11.5 percent. But
male death rates at most ages are at least 50 percent higher than female
rates. The ratio of male to female rates, simply averaged over the ages,
may show males 80 percent higher; the average with living population as
weights may show males 70 percent higher; with deaths as weights males
may be 50 percent higher. Our question is whether male mortality is 10,
50, 80, or 70 percent higher than female. The issue is raised in Sheps (1959)
and Golini (1967).

The same difficulty arises when we compare two countries—the United
States and Italy, or the United States and India—or two parts of the same
country—South and North in Italy, or city and countryside. It arises also
in comparisons through time: has mortality been improving in Europe and
America during recent years, and if so by how much? Essentially the same
issue can be expressed in terms of the conditional future: if mortality is
reduced on an average of 5 percent at each age, what difference will this
make to the expectation of life? The question is of special interest with
respect to cause of death: if deaths from cancer are reduced by 10 percent
on the average of the several ages, what will the effect be on expectation
of life, provided that all other causes are unchanged? A more sophisticated
form of the question is to suppose that deaths from cancer are reduced by
10 percent and to note the effect if cancer mortality is positively correlated
to a given degree with other causes, that is, if those subject to cancer are
somehow more susceptible also to other causes, but this is out of our scope.
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Table 4.1. Ratio of male to female age-specific death rates for four countries

United
States, France, Greece, Mexico,

Age 1967 1967 1968 1966

–1 1.30 1.31 1.11 1.20
1–4 1.25 1.21 1.10 0.95
5–9 1.38 1.50 1.37 1.06

10–14 1.72 1.63 1.55 1.17
15–19 2.51 2.14 1.92 1.25
20–24 2.80 2.31 2.10 1.31
25–29 2.26 2.08 1.78 1.31
30–34 1.81 1.95 1.56 1.40
35–39 1.68 1.89 1.34 1.41
40–44 1.72 2.02 1.51 1.56
45–49 1.79 2.07 1.59 1.50
50–54 1.95 2.09 1.73 1.45
55–59 2.07 2.37 1.69 1.41
60–64 2.10 2.35 1.68 1.21
65–69 1.91 2.19 1.62 1.23
70–74 1.82 1.80 1.32 1.12
75–79 1.56 1.59 1.17 1.08
80–84 1.33 1.41 1.06 0.88
85+ 1.08 1.24 1.15 0.75

Source: Based on Keyfitz and Flieger (1971).

In the simplest aspect of the problem a person saved from death through
one cause at a particular time is rescued only to be exposed to the same
cause and others in the subsequent period. To avoid death from heart
disease at an age typical of the ages at which heart disease occurs can
offer only a brief respite, since overall death rates increase rapidly in later
life. Lower mortality of young and middle-aged females allows them to
survive into ages at which mortality is very high for everyone. That the
curve of death rates by age is concave upward and that populations are
heterogeneous in risk are what give rise to the questions with which the
present chapter deals.

4.0.1 Variation by Age in the Sex Ratio of Mortality
To bring the theory into contact with concrete data we show the ratios of
male to female age-specific death rates for four countries in Table 4.1. The
tendency is toward a characteristic pattern, with peaks around 0, 20, and
60, and troughs around 1, 35, and 85, the pattern being shown clearly by
the United States and less clearly by Mexico.
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4.1 The Multiplicity of Index Numbers

The most familiar comparison of mortality is by direct standardization: how
many deaths would occur in a given population if it had the age distribution
of the (standard) population with which it is being compared, and what is
the ratio of this number to the deaths in the standard population? Kitagawa
(1964) widened the perspective by assimilating the issues to those of price
index numbers. Her formulae can be applied readily to the excess mortality
of males. If the male population is pm

x , the female population pf
x, the male

death rate µm
x , and the female death rate µf

x, the relative mortality at age
x is µm

x /µf
x, and the index in which such relatives are weighted by male

population is

Im
p =

∑
x pm

x (µm
x /µf

x)∑
x pm

x

, (4.1.1)

and by female population is

If
p =

∑
x pf

x(µm
x /µf

x)∑
x pf

x

. (4.1.2)

The index weighted by male deaths is

Im
d =

∑
x pm

x µm
x (µm

x /µf
x)∑

x pm
x µm

x

, (4.1.3)

and by female deaths is

If
d =

∑
x pf

xµf
x(µm

x /µf
x)∑

x pf
xµf

x

=
∑

x pf
xµm

x∑
x pf

xµf
x

. (4.1.4)

To one of these four indices preferred in demography is If
d , the directly

standardized rate (4.1.4). In economics If
d is called an aggregative index,

in which the µx might be prices and the px quantities; f might be the base
period and m the current period in a time comparison.

In addition to the four index numbers of (4.1.1) to (4.1.4) we can ob-
tain four further numbers by using the harmonic means. For the male-
population-weighted harmonic mean Hm

p we have

Hm
p =

∑
pm

x∑
pm

x /(µm
x /µf

x)
,

and similarly for the other three indices obtained by weighting by females
and by deaths.

One might have thought that taking the male death rates as the denomi-
nator and then inverting the result would give additional indices. However,
this merely reproduces in a different order the eight indices described above.
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Geometric averaging does give different results (Schoen, 1970). The male-
population-weighted index would be

Gm
p =

(∏
(µm

x /µf
x)pm

x

)1/
∑

pm
x

and similarly for Gf
p and others.

A further variant is the exponential of the harmonic mean of the
logarithms of the ratios,

HLm
p = exp

[ ∑
pm

x∑
pm

x / log(µm
x /µf

x)

]
,

which gives another four ways of expressing the relation of the given
population to the standard.

We could obtain additional indices by cross-weighting and averaging.

One instance is I =
√

(If
d )(Im

d ), which may well give about as refined a
comparison as any. England and Wales show considerably higher death
rates than the United States at older ages and lower rates at younger ages.
To find how the two countries stand on the whole we can first standardize on
the United States 1960 census age distribution taking both sexes together,
and calculate the intercountry value of (4.1.4), which turns out to be 1.218.
Using the same formula but standardizing on the 1961 census of England
and Wales, we find 1.231. The geometric mean of these quantities is 1.224.

Other compromises between the given and the standard age distributions
are possible, as well as other kinds of averages. However, the conceptual
points raised later in this section will lead to some skepticism about the
usefulness of extreme refinement.

4.1.1 Weighted Index of Male to Female Mortality
The ratios of Table 4.1 (but to more decimal places) were combined in
the four ways designated above as Im

p , If
p , Im

d , If
d , that is, weighting by

male population, female population, male deaths, and female deaths, as in
expressions 4.1.1 and 4.1.4. They were also combined to give the harmonic
mean H, the geometric mean G, and the harmonic mean of the logarithm
HL. The results are shown in Table 4.2 for six countries. Especially for
low-mortality countries weighting by population gives a much higher excess
mortality of males than weighting by deaths. The reason is that deaths are
relatively heavier than population at the oldest ages, where the age-specific
rates of females approach those of males.

Note that the arithmetic ratios are higher than the geometric, which
in turn are higher than the harmonic. Moreover, the geometric ratios are
equal to the means of the corresponding arithmetic and harmonic ratios:

G =
√

(I)(H).
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Table 4.2. Ratio of male to female mortality, United States, 1967, and five other
countries

United West
States, Austria, France, Germany, Greece, Mexico,

Index 1967 1966–68 1967 1967 1968 1966

Im
p 1.871 2.035 1.918 1.879 1.578 1.211

If
p 1.874 1.997 1.912 1.855 1.573 1.218

Im
d 1.732 1.706 1.863 1.649 1.363 1.176

If
d 1.614 1.560 1.669 1.546 1.297 1.144

Hm
p 1.774 1.890 1.847 1.780 1.530 1.186

Hf
p 1.779 1.866 1.840 1.781 1.526 1.192

Hm
d 1.654 1.620 1.775 1.580 1.317 1.142

Hf
d 1.530 1.487 1.589 1.485 1.260 1.105

Gm
p 1.821 1.961 1.884 1.839 1.555 1.198

Gf
p 1.825 1.930 1.878 1.818 1.550 1.205

Gm
d 1.694 1.663 1.820 1.614 1.339 1.160

Gf
d 1.572 1.522 1.628 1.514 1.278 1.125

HLm
p 1.630 1.697 1.703 1.687 1.371 1.374

HLf
p 1.629 1.675 1.699 1.673 1.371 1.375

HLm
d 1.407 1.444 1.631 1.445 1.185 1.960

HLf
d 1.286 1.334 1.470 1.370 1.158 1.359

e
f
0

em
0

1.108 1.102 1.109 1.091 1.052 1.056

For the male-population-weighted case for the United States of 1967 (Table
4.2)

Im
p = 1.871, Hm

p = 1.774,

of which means the geometric mean is 1.822, the same as Gm
p except for

rounding.
The index numbers for the countries of low mortality in Table 4.2 typi-

cally show males to have 50 percent higher mortality than females. On the
other hand, the expectation of life for females is nowhere much more than
10 percent higher than that for males. The ratio of the female to male

o
e 0,

that is,
o
e f

0/
o
em

0 , may be thought of as the ratio of male to female death
rates in the respective stationary populations, and why it is so much lower
than the other indices is investigated in Section 4.3.

4.1.2 Aggregative Indices Versus Averages of Relatives
Suppose one set up the criterion that an index ought to be affected in about
the same amount by a change of one death at one age as at another. At
least, it can be argued, the effect of an added death at one age ought not to
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be 100 times as great as the effect at another age. The addition of a single
death to males at age x raises the death rate by 1/pm

x and thus raises the
numerator of the aggregative index If

d of (4.1.4) by pf
x/pm

x . Insofar as the
ratio of males to females does not vary greatly in absolute numbers among
age groups, the weight given to an extra male death in If

d is approximately
invariant with age.

The same point can be made more generally by considering the effect
of a small change ∆µm

x in a male death rate on If
d ; taking a small finite

difference, we obtain

∆If
d =

pf
x∆µm

x∑
a pf

aµf
a

.

The denominator of this expression is the same regardless of the age x at
which the change occurs; the numerator pf

x∆µm
x is of the order of magnitude

of the additional absolute number of deaths.
Quite different is the effect on the weighted relatives Im

p of (4.1.1), where
the effect of an increment ∆µm

x in the male death rate is

∆Im
p =

pm
x (∆µm

x /µf
x)∑

a pm
a

,

which depends on the reciprocal of the female death rate at the age in
question. Now the numerator contains pm

x (∆µm
x ), which is the number of

additional male deaths, but it also contains the reciprocal of µf
x, which can

be anywhere from 1/0.001 to 1/0.1 or even fall outside this range. That a
small change in male deaths can have an effect on the comparison 10 times
as great at age 20 as at age 70 argues against the index Im

p .

4.2 Should We Index Death Rates
or Survivorships?

Superimposed on the great variation in the above indices is an even greater
variation arising from the choice between death rates and survival rates
for the comparison. Consider the United States versus England and Wales,
each about the time of the last census, and take males aged 70 to 75 as an
example. The probabilities of dying are as follows:

U.S.: 5q70 = 0.2526 versus England and Wales: 5q70 = 0.2915,

so that England and Wales, 1960–62, would have 0.2915/0.2526 = 1.154
times as high a probability of dying as the United States in 1959–61. The
corresponding probabilities of surviving are 5p70 = 1 − 5q70 or

U.S.: 5p70 = 0.7474 versus England and Wales: 5p70 = 0.7085,
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so that the United States has 1.055 times the survival probability of Eng-
land and Wales. We do not know from this whether to say that the United
States is healthier (for the age group in question) than England and Wales
by 5.5 percent, or that England and Wales are more hazardous than the
United States by 15.4 percent.

Without further sharpening of the model, as Sheps (1959) insists, we
must abandon the statement of a percentage excess in either direction and
be satisfied with the difference. The most that can be said is that the
difference in the probability of dying is 0.2915−0.2526 = 0.0389, this being
identical with the difference 0.7474−0.7085 in the probability of surviving.
To say more invites the inconsistencies of the preceding paragraph.

But suppose it were the case (presented here only for illustration) that
Englishmen of this age die of all the causes Americans die of plus some
causes special to them. American mortality, represented by the probability
of dying within a year, is q, say, and English mortality for those who do
not die of the American causes is δ. Then the English probability of dying
is q + (1 − q)δ, and the ratio of this to q is 1 + [(1 − q)/q]δ, an expression
that involves q and δ intertwined in complex fashion. But the American
chance of survival is 1 − q, and the English is (1 − q)(1 − δ), so the ratio
of probabilities of survival is (1 − q)(1 − δ)/(1 − q) = 1 − δ. This involves
δ and omits q altogether. Its complement is simply δ, the pure additional
English mortality, obtainable easily from the ratio of survivorships but not
in any direct way from the probabilities of dying.

Insofar as we adhere to this model, we ought to make an index consisting
of the weighted complements of the age-specific death rates, and then take
the complement of the resultant index. But the argument depends on the
Englishman’s being subject to a source of extra mortality that enters only
if he escapes the American sources. Sheps (1959) raises the point in regard
to smokers and nonsmokers; the former do have a clear added hazard if
they escape all the causes of death to which the latter are liable. It is not
obvious that such a model applies to the whole of intercountry or intersex
comparisons, but it could apply in part. There could be a climatic or other
special hazard in England; there could be some added hazard through heart
disease (or, at younger ages, accident) for males in addition to the dangers
to which women are subject.

Let us take the Sheps model one stage further and suppose some limited
overlap, that is to say, common causes of mortality as well as causes special
to each group. Let both men and women be subject to q; and men in
addition to δm and women in addition to δf , the additional causes being
restricted to individuals who do not die of the common causes. These are the
parts of the model assumed to underlie the observed survival probabilities
for men (Pm) and for women (Pf ). Then we have Pm = (1 − q)(1 − δm)
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and Pf = (1 − q)(1 − δf ); the ratio of survivorships is

Pf

Pm
=

(1 − q)(1 − δf )
(1 − q)(1 − δm)

=
1 − δf

1 − δm
.

This is not bad: the ratio of survivorships taken from the raw data gives
exactly the ratio of the chances of escaping the special female and male
hazards, respectively.

Compare this with the ratio of the probabilities of dying, the comple-
ments of the P ’s, now taken as male to female:

1 − Pm

1 − Pf
=

1 − (1 − q)(1 − δm)
1 − (1 − q)(1 − δf )

=
δm + q(1 − δm)
δf + q(1 − δf )

.

The interpretation of this is straightforward only if q = 0, that is, if there
are no common causes. If, however, there are common causes, the ratio
of observed death rates does not provide the ratio δm/δf of the causes
special to the sexes, but a biased estimate of this ratio. Where q may be
appreciable, the terms in q in numerator and denominator obscure the
δm/δf that it is natural to seek.

Uncertainty as to the overlap of causes, and hence uncertainty as to
whether one ought to be comparing the chances of survival or of death,
constitute a major obstacle to precise comparison of overall rates. In non-
experimental comparisons, this consideration serves as a caution against
excessive refinement in index numbers of the type presented in (4.1.1) to
(4.1.4).

4.3 Effect on
o
e 0 of Change in µ(x)

The index number problem applies as much to changes through time as to
comparisons across space. Given a general initial age schedule of mortality,
suppose a certain kind of change in that schedule and see what the effect
is on the expectation of life. We do this first with a constant increase δ in
µ(x) at all ages, so that µ(x) becomes µ(x) + δ.

When the fixed quantity δ is added to mortality at every age, the prob-
ability of surviving to age x becomes exp[−

∫ x

0 [µ(a) + δ] da] = e−δxl(x),
that is, is altered in the ratio e−δx; if the odd probability was l(x), the new
one is e−δxl(x). Also, the new expectation of life (distinguished by ∗) is the
integral of this through the whole of life:

o
e ∗

0 =
∫ ω

0
e−δxl(x) dx. (4.3.1)
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To find the effect on the expectation of life of the addition δ to the
age-specific death rates we seek the derivative d

o
e ∗

0/dδ:

d
o
e ∗

0

dδ
= −

∫ ω

0
xe−δxl(x) dx = −x̄

o
e 0,

evaluated at δ = 0, if x̄ is the mean age of the stationary population. In
finite terms for δ small,

∆
o
e 0 ≈ −x̄

o
e 0δ or

∆
o
e 0

o
e 0

≈ −x̄δ. (4.3.2)

The relative change in the expectation of life equals minus the change in
the death rate times the mean age in the life table population. Thus, if the
expectation of life is 70 years, 0.001 is subtracted from mortality µ(x) at
every age, and the mean age in the life table population is 35 years, the
fraction added to the expectation is approximately (35)(0.001) = 0.035 or,
in absolute amount, (0.035)(70) = 2.45 years.

4.3.1 A Proportional Difference Uniform at All Ages
However, although the effect of a fixed difference in death rates is express-
ible in simple form, we are more likely to be interested in the effect of
a given proportional difference. Ratios of age-specific mortality rates are
hardly constant between any two groups, but for developed countries the
ratio of male to female mortality ranges from about 1.10 to about 2.80
(Table 4.1); certainly the ratios are closer to constancy than the differences
(not shown), which vary from about 0.002 to 0.0400. The largest ratio is 2
to 3 times the smallest; the largest difference is 200 times the smallest.

Suppose now that the death rate µ(x) is multiplied by 1 + δ, so that
µ∗(x) = (1+δ)µ(x). Then the new probability of surviving to age x becomes

l∗x = exp
[
−
∫ x

0
µ∗(a) da

]
= exp

[
−
∫ x

0
(1 + δ)µ(a) da

]
= l1+δ

x ,

and the new expectation of life is

o
e ∗

0 =
∫ ω

0
l(a)1+δ da. (4.3.3)

The application of this to the special function µ(x) = µ0/(ω − x) is
satisfactorily simple. Integrating and taking the exponential gives l(x) =
[1 − (x/ω)]µ0 . Integrating this in turn gives

o
ex = (ω − x)/(µ0 + 1). Then

we have

o
e ∗

0
o
e 0

=

∫ ω

0
[l(x)]1+δ dx∫ ω

0
l(x) dx

=
µ0 + 1

µ0(1 + δ) + 1
. (4.3.4)
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If mortality at all ages rises by δ, then
o
e ∗

0 declines but by a lesser amount,
as (4.3.4) shows. For males compared with females δ might be 0.43, and µ0

might be 0.30. Then by (4.3.4) the ratio
o
e 0/

o
e ∗

0 equals 1.43/1.30 = 1.10.
Integrating the reciprocal of the expectation of life as the life table death
rate, an excess of 43 percent in all age-specific death rates translates into an
excess of 10 percent in the life table overall death rate, roughly consistent
with Table 4.2.

But this is on a hyperbolic curve for µ(x); in general the proportionate
change of µ(x) does not so easily translate into a change of

o
e 0, and we need

the flexible differential calculus to establish a constant useful for describing
life tables. To find the effect of a small change δ on the expectation of life,
we seek the derivative of the right-hand side of (4.3.3) with respect to δ
and find

d
o
e ∗

0

dδ
=
∫ ω

0
[log l(a)]l(a)1+δ da, (4.3.5)

a quantity that cannot be positive, since l(a) cannot be greater than unity.
In the neighborhood of δ = 0 we have

∆
o
e 0

o
e 0

≈

∫ ω

0
[log l(a)]l(a) da∫ ω

0
l(a) da

δ = −Hδ, (4.3.6)

say, where H is minus the mean value of log l(a), weighted by l(a). (The
measure H is called entropy or information in other contexts, and has
been applied in population biology by Demetrius (1974, 1983); see Tul-
japurkar (1982) for its relation to the rate of convergence to the stable age
distribution.)

The ratio of integrals in (4.3.6) is necessarily negative, so that H is
positive. We can imagine H as low as zero, if all mortality were concentrated
at one age. If, for instance, everyone lives until 70 and then dies, l(a) will
be unity for all ages up to 70, and its logarithm will be zero. At the other
extreme, if mortality µ is the same at all ages, we will have l(x) = e−µx,
o
ex = 1/µ, a constant, and

∆
o
e 0

o
e 0

≈

∫ ω

0
[log 1(a)]l(a) da∫ ω

0
l(a) da

δ

=

∫ ∞

0
−µae−µa da

1/µ
δ = −δ.

In this case H = 1, and the proportional change in the death rates trans-
lates into the same change in the expectation of life, but of course in the
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Figure 4.1. Extreme cases of survivorship curves l(x), and three intermedi-
ate cases, showing how H becomes smaller as survivorship moves toward a
rectangular form.

opposite direction. With H = 1, when the death rates at all ages increase
by 1 percent, the expectation of life diminishes by 1 percent. [Show that
for l(x) a straight line, H = 0.5.]

Figure 4.1 shows the l(x) for the two extreme cases and for intermediate
ones, with corresponding values of H. Deevey (1950) gives a number of
curves for animal species that resemble the several curves of Figure 4.1,
with fruit flies near H = 0, oysters below H = 1, and hydra near H = 1

2 .

4.3.2 Observed Values of the Constant H

For countries of Europe and America with expectations of life around 70
years, H is now of the order of 0.2 for males and 0.15 for females, down from
the 0.3 to 0.4 of about 30 years earlier. Apparently H is a convenient sum-
mary of the degree of concavity in an l(x) column; as mortality improves,
a larger fraction of deaths occurs in the 60s and 70s of age, and the drop
in the value of H measures this tendency; with improvement in mortality
everyone dies at about the same age, and a proportional improvement in
mortality at all ages makes less and less difference in the expectation of
life.

When we are told that, of two countries, or two sexes, one has an ex-
pectation of life in a certain ratio to the other, we can approximate to the
ratio of age-specific death rates, supposing this ratio to be 1 + δ, the same
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at all ages. Taking

o
e ∗

0
o
e 0

=

∫ ω

0
l(x)1+δ dx∫ ω

0
l(x) dx

as a function of δ, say f(δ), and expanding as f(δ) = f(0) + δf ′(0), where
we know that f ′(0) = −H, gives

o
e ∗

0
o
e 0

≈ 1 − δH.

If, for example,
o
e ∗

0/
o
e 0 = 1.10, we can say that

1.10 =

∫ ω

0
l(x)1+δ dx∫ ω

0
l(x) dx

≈ 1 − δH;

and if H is 0.20, we have the equation for δ:

1.10 = 1 − (δ)(0.20),

or

δ =
1 − 1.10

0.20
= −0.50.

The population with 10 percent greater expectation of life has death rates
50 percent lower. This approach can also be tried when the ratio of death
rates is not uniform, and to this situation we proceed.

4.3.3 An Aspect of the Index Number Problem
The theory developed above seeks to find the effect on expectation of life of
a uniform proportional excess in the force of mortality µ(x). What we have
in practice, however, is different proportional increases at the several ages.
One way of answering the question of what is the real average increase—
for example, the real percentage excess of male over female mortality—is
to calculate the proportional increase that, applied uniformly to all ages,
will have the same effect on the expectation of life as the observed set of
increases. In application to the excess mortality for the United States, 1967,
which showed (Table 4.1) a ratio of 1.30 for ages under 1, 1.25 for those 1
to 4, etc., we would ask what uniform excess of male over female mortality
would provide the same ratio of expectations of life as observed. Since we
saw that raising µ(x) in the ratio 1 + δ raises l(x) to the power 1 + δ, we
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would need to solve the equation

o
e m

0
o
e f

0

=

∫ ω

0
l(x)1+δ dx∫ ω

0
l(x) dx

(4.3.7)

for the unknown δ. This can be done directly by computer.
The equation can also be solved approximately in terms of our param-

eter H, along with other derivatives of the numerator of the right-hand
side of the equation. Rewriting l(x)1+δ in (4.3.7) as l(x) exp[δ log l(x)] and
expanding the exponential term in a Taylor series changes the equation to

o
e m

0
o
e f

0

= 1 − Hδ +
H2δ

2

2!
− H3δ

3

3!
+ · · · , (4.3.8)

where

Hi =

∫ ω

0
[− log l(x)]il(x) dx∫ ω

0
l(x) dx

, i = 2, 3, . . . .

Approximating with the linear term only, we have for Italy, 1964, whose
o
e m

0 /
o
e f

0 = 1.081,

δ =

(
o
e m

0 /
o
e f

0

)
− 1

−H
=

(1/1.081) − 1
−(0.207 + 0.163)/2

,

then using H from Table 4.3. (It seems best to average H for males and
females.) The result is

δ =
0.0749
0.185

= 0.405,

or 1 + δ = 1.405. This compares with If
d = 1.441, or an average of If

d and
Im
d of 1.490. [For greater accuracy the reader may wish to experiment with

further terms of (4.3.8).]
Thus, given the expectations of life of two populations, along with an

average H, we can say what uniform excess of mortality of one over the
other accounts for the ratio of expectations. This is the converse of the
way in which H was originally derived—as the ratio of expectations of life
corresponding to a given uniform ratio of death rates.

For the particular hyperbolic form in which

µ(a) =
µ0

ω − a
(4.3.9)

l(a) =
(
1 − a

ω

)µ0

(4.3.10)
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Table 4.3. Values of
o
e 0 and parameter H = − ∫ ω

0 [log l(a)]l(a) da/
∫ ω

0 l(a) da for
males and females, United States, 1919–21 to 1959–61

Male Female
o
e 0 H

o
e 0 H

1919–21 54.59 0.3804 56.41 0.3547
1924–26 56.34 0.3401 59.01 0.3113
1929–31 57.27 0.3272 60.67 0.2942
1934–36 58.53 0.3105 62.58 0.2725
1939–41 61.14 0.2747 65.58 0.2361
1944–46 62.26 0.2632 68.11 0.2087
1949–51 65.28 0.2260 70.86 0.1823
1954–56 66.45 0.2134 72.61 0.1660
1959–51 66.84 0.2083 73.40 0.1594

Source: Computed from data in Keyfitz and Flieger (1968).

o
e a =

ω − a

µ0 + 1
(4.3.11)

H =
µ0

µ0 + 1
(4.3.12)

H tells us considerably more than is indicated by its being the first deriva-
tive. It happens also to give without approximation the value of the increase
in

o
e 0 (or

o
e x for that matter) when µ(a) goes to µ(a)(1 + δ), and when δ

may be large. For the ratio of expectations, we have
o
e m

0
o
e f

0

==
1

1 + δH
,

under the hyperbolic mortality function assumed. In the example given,
with

o
e m

0 /
o
e f

0 = 1/1.081, H = 0.185; hence the equation for δ is

1
1.081

=
1

1 + δ(0.185)
,

or δ = 0.081/0.185 = 0.438. Thus the fact that Italian females of 1964 have
8.1 percent longer expected life than males is the equivalent of their having
43.8 percent as high mortality.

Although this holds exactly only for the special graduation µ(a) =
µ0/(ω − a), it is probably an improvement when δ is substantial for any
life table. Hence the rule for finding the new

o
e 0 when all rates rise by δ is

to divide the old
o
e 0 by 1 + δH, rather than multiplying by 1 − δH as in

the first approximation to (4.3.8).
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4.3.4 Fractional Change in Mortality Due to a Given Cause
Of at least equal interest is to find the effect, not of a change in mortality in
general, but of a change due to a given cause. We might want to investigate,
for example, what would happen to the expectation of life if 10 percent of
the cancer deaths were eliminated at each age, and we would need for this a
cause-specified analogue of the H above. If the chance of surviving against
the risk of cancer deaths alone is l(i)(x), and that against the risk of all
other deaths is l(−i)(x), the probability that a person will still be alive by
age x, l(x), under independence is the product

l(x) = l(i)(x)l(−i)(x).

If we let 100δ represent the percentage change in the death rate due to
cancer, the new expectation of life involves l(i)(x) raised to the (1 + δ)th
power:

o
e ∗

0 =
∫ ω

0
l∗(x) dx =

∫ ω

0
l(i)l+δ(x)l(−i)(x) dx

=
∫ ω

0
l(i)δ(x)l(x) dx.

Again resorting to the derivative, we have

d
o
e ∗

0

dδ
=
∫ ω

0
[log l(i)(x)]l(i)δ(x)l(x) dx.

At the point where δ = 0 we can drop the middle factor in the integrand
and have for the derivative

d
o
e 0

dδ
=
∫ ω

0
[log l(i)(x)]l(x) dx. (4.3.13)

If H(i) is defined as

H(i) =
−
∫ ω

0
[log l(i)(x)]l(x) dx∫ ω

0
l(x) dx

, (4.3.14)

then δ small but finite gives

∆
o
e 0

o
e 0

≈ −H(i)δ. (4.3.15)

From (4.3.14) we see that H(i), like H, is minus a weighted average of
logarithms, the weights being the l(x) column in both cases. The logarithm
of l

(i)
x is closer to zero than the logarithm of lx, so the linear approximation

(4.3.15) is better than (4.3.6).
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The several causes of death show characteristic values of H(i), and these
values are worth studying for what they tell us about the effect on expec-
tation of life of eradication of a small part of each cause. Table 4.4 presents
H(i) values for 12 causes of death, for males and females, in the United
States and Italy, 1930–31 and 1964. Taking, for example, cardiovascular re-
nal diseases (cause 4 in the list assembled by Preston, Keyfitz, and Schoen,
1972), we see that for United States males in 1964 a drop of 1 percent in
CVR deaths uniformly at all ages would result in an increase of 0.0840
percent in the expectation of life, that is, about one-twelfth as much.

Note the additivity of the H(i), in the sense that
∑

i H(i) = H. For from
the fact that l(x) = Πl(i)(x), with l

(i)
0 = 1, it follows that the integral H

defined in (4.3.6) must be the sum of the integrals H(i) defined in (4.3.14).

4.3.5 Comparison of H(i) with
o
e (−i)

0 − o
e 0

A commonly used way of ascertaining the seriousness of a cause of death
is to determine by how much the expectation of life at age zero would be
increased if the cause in question were eliminated: letting

o
e (−i)

0 represent
the expectation of life with this cause eliminated, we find that the increase
in expectation of life equals

o
e (−i)

0 − o
e 0. One trouble with subtracting

o
e 0

from
o
e (−i)

0 is that the latter supposes the total elimination of the ith cause.
What would happen with the total elimination of a cause is of less imme-
diate interest than what would happen with the elimination of 1 percent,
say, of that cause, and the latter is readily calculated from H(i).

Table 4.5 shows several facts about four causes of death for United States
males and females, 1964. These include the years of life that would be added
if the respective causes were eradicated,

o
e (−i)

0 − o
e 0. Thus eliminating neo-

plasms would add 2.265 years for males. Against that we have the fact that
H(neoplasms) is 0.0302. A 1 percent drop in neoplasms at all ages would raise
the expectation of life by −0.01×H(neoplasms)×o

e 0 = 0.01×0.0302×66.905 =
0.0202 year. Since H is applicable only to small uniform percentage changes
at all ages, it is not strictly proper to multiply it by

o
e 0 to find the result

of completely eliminating the given cause. If such a multiplication is car-
ried out for neoplasms, the result is 2.021 years, somewhat less than the
o
e (−i)

0 − o
e 0 = 2.265 of Table 4.5. For some of the causes the agreement is

closer than this. But results for cardiovascular renal diseases are much far-
ther off, both for males and for females; the effect of eliminating 1 percent
is to add far less than 1 percent of the years that would be gained by
complete eradication.

The fact that H(i) is additive is a clear convenience—the reduction of all
causes by δ would increase

o
e 0 by an amount Hδ equal to the sum of the

effects on
o
e 0 of the eliminating of the several causes of death H(i)δ:

Hδ =
∑

H(i)δ.
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Table 4.5. Effects of individual causes of death, United States, 1964; two methods
compared

Cardiovascular Certain
renal degenerative Motor vehicle

Comparison Neoplasms diseases diseases accidents

Males:
o
e 0 = 66.905

Crude rate 0.00170 0.00572 0.00046 0.00036
Added years of life if

eliminated:
o
e (−i)

0 − o
e 0 2.265 13.299 0.627 0.874

H(i) 0.0302 0.0840 0.0090 0.0129
H(i) o

e 0 2.021 5.620 0.602 0.863

Females:
o
e 0 = 73.777

Crude rate 0.00139 0.00448 0.00037 0.00013
Added years of life if

eliminated:
o
e (−i)

0 − o
e 0 2.558 17.068 0.637 0.366

H(i) 0.0308 0.0650 0.0080 0.0049
H(i) o

e 0 2.272 4.796 0.590 0.362

Source: Preston, Keyfitz, and Schoen (1972, pp. 768–771) for
o
e (−i)

0 − o
e 0; Table 4.4

for H(i).

No such statement can be made, however, about
o
e (−i)

0 ; the elimination of
all causes would make the duration of life infinite, whereas the sum of the
increases due to the elimination of 12 groups of causes would be only about
22 years for United States males in 1964. The total of

o
e (−i)

0 − o
e 0 over all

causes depends on what breakdown of causes is recognized, whereas
∑

Hi

is invariant with respect to the grouping of causes.

4.3.6 Interrelations of the Several Causes

The quantity H can be thought of as a second parameter alongside
o
e 0 of

the curve of survivorship. It measures the convexity of the l(x) function;
and though in principle it could vary independently of

o
e 0, among observed

human populations it seems closely related to
o
e 0. Extension of life is due

mostly to mortality declines at younger ages, and much less to changes
beyond age 70; therefore H tends to diminish over time. A similar feature
of life tables arises by a mechanism described in the following piece of
fantasy.

4.4 Everybody Dies Prematurely

A man of 65 is struck by a car while crossing the street and so deprived of
the 13 years of expectation of life that he is credited with by the United
States 1973 life table for males. We extend this notion, recognized in le-
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gal decisions and in common sense, and think of any death, whether from
accident, heart disease, or cancer, as an “accident” that deprives the per-
son involved of the remainder of his expectation of life. To calculate the
number of years of which people are, on the average, deprived by virtue
of the particular circumstances that caused their deaths, we suppose that
everyone is saved from death once, but that thereafter he is unprotected
and is, say, subject to the mortality shown for persons of his age in the
United States 1973 (Krakowski 1972, Cohen 1973).

In life table notation −dl(a) persons die between ages a and a + da at
last birthday. These are deprived of

o
e(a) years each. Hence the average

deprivation is

Dep = − 1
l(x)

∫ ω

x

o
e(a) dl(a) =

1
l(x)

∫ ω

x

∫ ω

a

l(t)µ(a) dt da. (4.4.1)

Consider the very special life table in which the chance of dying is con-
stant at all ages, say µ. Then l(a) = e−µa, and

o
e(a) = 1/µ, a constant for

all ages. In this population the average prospective deprivation for those
aged x is

Dep = − 1
e−µx

∫ ∞

x

1
µ

d(e−µa) =
1
µ

.

Since
o
e 0 also equals 1/µ, this says that in the special case of equal death

rates throughout life the deprivation involves a length of time equal to one’s
initial expectation of life. We can therefore write Dep/

o
e 0 = 1, meaning

that anyone who avoids death has a completely fresh start on this peculiar
schedule of mortality.

At the opposite extreme, suppose that everyone dies at exact age ω.
Then the expectation of life at ω is zero, and death deprives no one of
any expectation. Thus the amount of deprivation depends on the shape
of lx. If µ(x) = µ, a constant, then Dep = 1/µ and Dep/

o
e 0 = 1; at the

other extreme, if everyone dies at the same age, Dep/
o
e 0 = 0; any real life

table would seem likely to fall between these two. At the extreme values
Dep/

o
e 0 is identical with H but is not quite the same in general. However,

Dep/
o
e 0 is identical with H for the hyperbolic life table function introduced

in (4.3.9)–(4.3.12). [Prove that H = µ0/(µ0 + 1) = Dep/
o
e 0 for this case.]

If µ0 = 0.30, as suggested above for females in a contemporary popula-
tion, the deprivation is 0.30/1.30 = 0.23 of the expectation of life at age
zero. This is the fractional extra expectation if one could be excused her
first death. For males it would be higher: 0.43/1.43 = 0.30 on the same
hypothetical table.
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4.4.1 Average Expectation of Life
Similar features of the survivorship curve can be obtained from the average
expectation of life in the stationary population.

E =

∫ ∞

0
l(a)

o
e(a) da∫ ∞

0
l(a) da

.

Again, with µ(a) = µ, a constant, this is equal to
o
e 0; if everyone lives to age

ω, it equals
o
e 0 /2; for intermediate degrees of convexity it varies between

these numbers.
Evaluating E for they hyperbolic life table function (4.3.9) gives its ratio

to
o
e 0 as

E
o
e 0

=
µ0 + 1
µ0 + 2

.

This contrasts with
Dep
o
e 0

= H =
µ0

µ0 + 1
.

Thus the average expectation of life in the life table population is less
sensitive to the shape of the l(x) curve than is H.

The manifestations of convexity in the life table function have by no
means been exhausted in the foregoing discussion. As mortality at younger
ages declines in relation to that at older ages, the mean age in the sta-
tionary population rises. Additional indices could be obtained from this
consideration and others. [Experiment with the joint expectation of two
lives,

∫ ω

0 [l(a)]2 da as a ratio to
o
e 0.]

4.4.2 Oldest Person in Group
Griffith Feeney presents a problem that shows another aspect of the convex-
ity of the survivorship function. A certain tribe has the custom of making
its oldest member king, and he remains king until his death. If the tribe is
stationary and has B births each year, (a) what is the expected length of
time that a given child just born will be king, calculated at the moment of
his birth; (b) what is the probability that he will become king; and (c) what
is the expected tenure at the time of appointment as king? The following
solution is due to S. Krishnamoorthy and Noreen Goldman.

The probability that a given baby will become king is the same as the
probability that he will be alive when all members of the tribe older than
he are dead. Under the rule, those younger than he can be disregarded,
since none can be king while he is alive. In a stationary population with
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B births the number of persons aged x at any moment is Bl(x), and the
chance that all of these will be dead by time t is[

l(x) − l(x + t)
l(x)

]Bl(x)

.

The chance for all ages x is the product of this over x, where we suppose
deaths to be independent. The product can be made to mean something
for the continuous case by taking its logarithm and integrating:

B

∫ ω

0
l(x) log

[
l(x) − l(x + t)

l(x)

]
dx.

The exponential of the above is the probability that all are dead by time t.

(a) The chance that a given baby is still alive at time and age t is l(t).
Hence the expectation at birth of his tenure as oldest person is

E =
∫ ω

0
exp
{

B

∫ ω

0
l(x) log

[
l(x) − l(x + t)

l(x)

]
dx

}
l(t) dt.

(b) The probability, say P , of his attaining the post is the same with µ(t)
in the outer integrand.

(c) The expected tenure once he is appointed is E/P .

To generalize the above from a stationary age distribution to an arbitrary
age distribution in which Bp(a) da persons are between ages a and a + da,
B still being births, replace the first l(x) in the expression for E by p(x),
and do the same for P .

4.4.3 Effect of a Health Improvement
Shepard and Zeckhauser (1975) emphasize that populations are heteroge-
neous in regard to mortality risks, and that the several causes of death are
not independent. The usual ways of calculating the gain through a med-
ical or safety improvement that disregard heterogeneity and dependence
can grossly overstate the benefits to be attained. This applies whether the
improvement be mobile coronary care units, prophylactic hysterectomies,
seatbelts in automobiles, or the equipping of airplanes with sensing devices
that warn the pilot when the plane comes too close to the ground or to an
obstacle (see Chapter 19 for a discussion of heterogeneity).

Professionals have long been aware that to calculate lives saved is too
simple, since a young man saved from death in a motor vehicle accident has
a wholly different expectation thereafter from a man of 85 with a coronary
attack saved by prehospital attention. In no case can death be prevented; at
most it is deferred, and the question is for how long. One way of recognizing
this is to measure the effect of a particular improvement by years added.
For instance (Preston, Keyfitz, and Schoen 1972, p. 769 and Table 4.5), at
rates for the United States in 1964 the elimination of cancer among males
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would have increased the expectation of life by 2.26 years, and of motor
vehicle accidents by 0.87 year; although the number of deaths due to cancer
was almost 5 times that from accidents, the years added are only in the
ratio of 2.6 to 1. The values of H(i) are in the ratio 2.3 to 1.

Although this apparently sophisticated method takes full account of age,
it can still exaggerate the benefit of a health improvement insofar as there is
heterogeneity in the population in respects other than age. Populations are
rarely homogeneous with regard to a risk. Some individuals are hereditarily
subject to cancer; some travel more than others in airplanes. The special
danger of exaggerating a benefit occurs if those subject to the risk that is
diminished are subject also to greater than average risks on other accounts.

Thus allowance for age is not by itself adequate if there are other agelike
differentials of mortality. Suppose that among people of a given age some
are much healthier than others, and a particular improvement saves the
lives of those who are in the worst general condition. Then disregard of
this aspect would exaggerate the benefit of the improvement, in the same
way that disregard of age would overstate for an improvement that affected
old people.



5
Fixed Regime of Mortality and
Fertility: The Uses of Stable Theory

A stable age distribution exists when age-specific birth and death rates
have been constant over a considerable past period. The stable model is
an advance in realism over the stationary population of the life table rep-
resenting the special case of stability in which births are equal to deaths;
although the stable model is restricted, the restriction will turn out to be
acceptable for a number of purposes. Stable theory tells what age distribu-
tion is implied by a given and fixed regime of age-specific rates of birth and
death; conversely, it permits in some instances inferring birth and death
rates from an observed age distribution. It tells the cost of old-age pensions
as a function of the rate of increase in population. For a given life table
and rate of increase, average time of promotion in organizations with some
degree of seniority can be calculated. These and other applications of stable
theory are the subject of the present chapter. Chapter 15 will show how
a regime of mortality and fertility implies kinship numbers. Stable theory
can be generalized in various directions by modifying the assumption of a
fixed regime, as will be seen in Chapter 14.

Lotka (1939, p. 18) applied the term Malthusian to a population with a
given life table and an arbitrary rate of increase. He used the term stable
for the case where the rate of increase is calculated from given and fixed
age-specific birth rates, and in this sense stable populations are first treated
in the present book in Chapter 6. Writers subsequent to Lotka, however,
have not preserved this distinction.
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5.1 Stable Theory

Suppose that the chance of living to age x is l(x), and l(x) is a function
of age but not of time. A population whose births number B, uniformly
spread through each year, where B does not change, and which is closed
to migration will contain just Bl(x) dx individuals between ages x and
x + dx at any given time, where l(x) is normed to the radix l0 = 1. It will
contain B5Lx = B

∫ 5
0 l(x+t) dt individuals between exact ages x and x+5.

This theory could be applied to both sexes together, using a survivorship
function l(x) applicable to whatever mix of men and women is taken to be
present, but the usual practice is to consider one sex at a time.

The stationary population produced by this assumption of fixed annual
births and a fixed life table for each sex is generalized by supposing births
to follow the exponential Bert. It will turn out that even slow growth,
say r = 0.005, affects the age distribution at any one time considerably. To
recognize steady growth requires only a slight complication of the argument
needed for stationarity and fits observed ages better.

Consider the female (or male) part of a large population closed to migra-
tion and subject to a fixed life table, with births increasing exponentially.
These conditions are sufficient to produce a stable age distribution, in which
the number of persons living in each age group, as well as the deaths in
each age group and the total population, are all increasing exponentially
in the same ratio.

If the probability of living to age x is l(x), and the births at time t are
B0e

rt, then, to find the expected number of individuals between ages x and
x + dx we have to go back in time x to x + dx years, when the number of
births was B0e

r(t−x) dx. The fraction of these births that survive to time t
must be l(x); therefore the absolute number of persons aged x to x+ dx at
time t is

B0e
r(t−x)l(x) dx.

The integral of this quantity is the total population at time t, and dividing
by this total gives the fraction of the population aged x to x + dx at time
t, say, c(x) dx:

c(x) dx =
e−rxl(x) dx∫ ω

0
e−rxl(x) dx

= be−rxl(x) dx, (5.1.1)

where B0e
rt has been cancelled out from numerator and denominator, and

b has been written for 1/
∫ ω

0 e−rxl(x) dx.
The result is important enough to be worth deriving by an alternative,

more intuitive means. Still supposing the fixed survivorship schedule l(x),
a birth rate of b per unit population existing now, and a current rate of
increase r compounded each moment, it follows that the fraction of the
births of x years ago that are now alive (and therefore aged x) must be
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l(x). But if the births are increasing in the ratio er each year, that is, at the
annual rate r compounded each moment, then, the births now being in the
ratio b to the population, the births x years ago must have been be−rx as
a fraction of the present population. And of those births the fraction l(x)
would be expected to be still alive. Then the expected number of persons
alive now and aged x to x + dx must be

be−rxl(x) dx,

still reckoned per one of the present population. This compact derivation
of the stable age distribution is essentially due to Euler (1760), and it has
been rediscovered many times since.

Expression (5.1.1) provides the required age distribution c(x) dx =
be−rxl(x) dx for the fraction of the population between ages x and x + dx.
The argument rests on the supposition that the life table l(x) is fixed in
time for all x, and that the births and hence the population are growing
exponentially, which is equivalent to assuming that birth as well as death
rates have remained the same for a long time in the past. Because c(x) dx
is the fraction of the population aged x to x+dx, its total

∫ ω

0 c(x) dx must
be unity; hence ∫ ω

0
be−rxl(x) dx = 1.

This may be treated as an equation in b to obtain what was given in (5.1.1)
as a definition:

b =
1∫ ω

0
e−rxl(x) dx

. (5.1.2)

On (5.1.1) the “radix” or norm, c(0), is b. It could, if we wished, be
taken as c(0) = 1, as is done with the life table. If c(0) is taken as 1, we
replace the above argument by one calculating the present population aged
x per current birth; it will be seen to be e−rxl(x), or a total at all ages of∫ ω

0 e−rxl(x) dx; hence the birth rate must be 1/
∫ ω

0 e−rxl(x) dx.
The several stable age distributions produced by a given life table are

shown in Table 5.1, where the Coale and Demeny model West female life
table with

o
e 0 = 65 is combined with r = −0.010, 0, 0.010, 0.020, 0.030,

0.040. As one goes from columns at the left to columns at the right, the
fall in the proportions becomes steeper and the values at the youngest ages
higher; the proportion 5 to 9 years of age, for example, is 5.18 percent for
1000r = −10 and 16.12 percent for 1000r = 40. The fraction 65 and over
falls from 19.46 to 2.25 percent. Note that the values for ages 20 to 40 first
rise and then fall, and that the percent aged 15 to 44 goes from 37.30 to
a maximum of 43.51 at 1000r = 20 and then declines to 40.16. [Find a
theoretical expression for the interval at which the proportion 15 to 44 at
last birthday peaks.]
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Table 5.1. Percentage age distributions 1005Cx based on life table with
o
e 0 = 65

and various values of 1000r

Age Values of 1000r

x −10.00 0.00 10.00 20.00 30.00 40.00

0 5.01 7.26 9.98 13.11 16.49 20.02
5 5.18 7.14 9.35 11.67 13.97 16.12

10 5.42 7.10 8.84 10.50 11.95 13.12
15 5.66 7.05 8.35 9.44 10.22 10.67
20 5.89 6.98 7.87 8.46 8.71 8.65
25 6.12 6.90 7.40 7.56 7.41 7.00
30 6.34 6.80 6.94 6.74 6.28 5.65
35 6.55 6.69 6.49 6.00 5.32 4.55
40 6.75 6.55 6.04 5.32 4.48 3.65
45 6.91 6.38 5.60 4.68 3.76 2.91
50 6.99 6.15 5.13 4.08 3.12 2.29
55 6.97 5.83 4.63 3.50 2.54 1.78
60 6.76 5.38 4.06 2.92 2.02 1.34
65 6.27 4.74 3.40 2.33 1.53 0.97
70 5.37 3.87 2.64 1.72 1.08 0.65
75 4.06 2.78 1.81 1.12 0.66 0.38
80+ 3.76 2.41 1.46 0.85 0.47 0.25

Total 100.00 100.00 100.00 100.00 100.00 100.00
Average age 42.20 36.96 31.97 27.46 23.54 20.25
Population 10030C15 37.30 40.98 43.09 43.51 42.42 40.16

Ratio 5C0

30C15
0.134 0.177 0.232 0.301 0.389 0.498

Ratio 10C5

∞C5
0.112 0.154 0.202 0.255 0.310 0.366

Dependency 15C0 + ∞C65

50C15
0.719 0.685 0.711 0.793 0.929 1.121

Source: Coale and Demeny (1966), p. 62.

5.1.1 A Discrete Form
Although the stable age distribution is easier to think about in the con-
tinuous version, application requires a discrete form. We need to translate
c(x) dx = be−rxl(x) dx into 5-year age groups to match the population data
as usually provided. Integrating both sides of (5.1.1) between exact ages x

to x + 5 gives for 5Cx =
∫ 5
0 c(x + t) dt,

5Cx = b

∫ 5

0
e−r(x+t)l(x + t) dt

≈ be−r(x+2.5)
∫ 5

0
e−r(t−2.5)l(x + t) dt.

(5.1.3)

The integral here is very close to
∫ 5
0 l(x + t) dt, tabulated in presentations

of the life table as 5Lx. To this approximation

5Cx ≈ be−r(x+2.5)
5Lx. (5.1.4)
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[Work out an expression for the error of (5.1.4).]
Suppose that we are satisfied to integrate by putting a cubic through

lx−5, lx, lx+5, lx+10, which bounds an area between x and x + 5 equal to

5Lx = 65
24 (lx + lx+5) − 5

24 (lx−5 + lx+10). (5.1.5)

[Derive this expression.] In application to Mexico, 1970, females aged 60 to
64, with l0 = 100,000,

5L60 = 65
24 (68,745 + 62,304) − 5

24 (73,836 + 53,058) = 328,488.

Taking r = 0.03395 gives

e−62.5r
5L60 = 39,355

as the stable number per 100,000 current births.
A more precise way to evaluate (5.1.3) is to integrate, not the function

l(x), but the function e−rxl(x). We multiply l60 by e−60r, l65 by e−65r,
and so on. Doing this first and then integrating by the same cubic formula
(5.1.5) gives the stable number 39,449, as opposed to 39,355 from (5.1.4).
The difference between the two methods is usually less than 1 percent.

5.2 Population Growth Estimated from One
Census

Perhaps the most important fact bearing on the future of a population is its
rate of natural increase, and yet for most countries of the world the obvious
way of obtaining this rate—subtracting registered deaths from registered
births—does not offer acceptable precision. The task of installing a modern
registration system in developing countries is difficult, because people have
little use for birth certificates, which become important only under modern
conditions. Proof of date of birth and of citizenship is not required by
immobile peasants, either for themselves or for their children, so these
people do not respond dependably to a law from a distant capital requiring
them to go to the town or village registrar each time a child is born. If
complete vital statistics were the only possible source of information, the
problem of rapid population increase might well be solved before it could
be measured.

Hence indirect methods are called for. Extensive collections of possible
procedures are given in Coale and Demeny (1967) and Brass (1975). The
nature of one group of such methods is examined in this and the next four
sections.

As in Section 2.3, each individual in the population is represented by a
line in the Lexis plane of age and time, starting at the moment of birth
on the time axis and proceeding at a 45◦ angle as simultaneously the per-
son ages and time moves forward. A census provides a count by age that
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Figure 5.1. Relation of census count at ages x and y to birth cohorts x and y
years earlier.

includes all life lines crossing a horizontal line at the date of the census.
Figure 5.1 shows a census taken in 1970, and marks the intervals for indi-
viduals aged 20 and 45 at last birthday as examples. Each cohort born in
a particular year is a band of 1 year: measured vertically 1 calendar year,
measured horizontally 1 year of age. Our problem is, for example, to make
observations of the number of survivors to ages 20 and 45 in 1970 tell us
how fast births were increasing between 1925 and 1950. The density at any
point can be portrayed as an altitude over the age–time plane; a census
gives the profile on a time section.

Expressed in more general terms, the problem is as follows: given the
number of individuals Nx at age x and Ny at age y from a census taken in
the year t, find the rate at which the births were increasing between years
t − y and t − x, where y is greater than x. Call the birth function for the
year preceding time t B(t); if the population is closed to migration, we have

B(t − y)Ly = Ny,

B(t − x)Lx = Nx,
(5.2.1)
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where Lx and Ly are the fractions of each cohort that attain the census
moment t in question; the equations are exact if Lx and Ly reflect the
mortalities of the two cohorts, usually different.

Along with the exactitude of equations (5.2.1) goes their insolubility
on the basis of the data available, which are only Ny and Nx from the
census at time t. They contain two unknown survivorships, as well as the
unknown function B(t). To suppose that the survivorships follow the same
life table, even without knowing what that table is, simplifies the problem
considerably, for we can then disregard the first x years of life and be
concerned only with the mortality between ages x and y. This is apparent
on dividing the second member of the pair by the first, which leaves us
with one equation containing only Ly/Lx:

B(t − y)
B(t − x)

(
Ly

Lx

)
=

Ny

Nx
. (5.2.2)

But we must not forget in application that this disregard of survivorship
at ages less than x is permissible only if the two cohorts have been subject
to the same mortality up to that age, a point that will be reconsidered in
Chapter 14.

We still have trouble; even if the life tables for the two cohorts are the
same and are known, the most that (5.2.2) can do is to trace out the birth
function, given Nx/Lx and Ny/Ly for the several combinations of x and y.
We would like to use it to find a rate of increase—one number that holds
through time. Let us take it that the birth function is an exponential, say
B(t) = B0e

rt. This is true in the circumstance that age-specific birth and
death rates have been unchanged, not only over the interval between times
t − y and t − x, but also before t − y. (If the births were irregular before
that date, so would be the age distribution, and this would affect the birth
rate between t − y and t − x, even with a fixed regime of birth and death
rates in that interval.) Equation (5.2.2) now reduces to

e(y−x)r =
Nx/Lx

Ny/Ly
(5.2.3)

and contains only two unknowns, r and the survivorship Ly/Lx.
If the deaths for the population are known for past times, they can be

made into a life table, which ideally would be a cohort life table applicable
to the common mortality of the two cohorts in question. If the deaths are
known for a current period, the current life table will be applicable to the
cohorts if mortality has not been changing. If even current death data are
lacking, there is no recourse but to select a life table from another source
that will be somehow appropriate. This could be a table for a neighboring
country with presumed similar mortality, but more often one resorts to
a model or reference table. Let us suppose that by some means, however
arbitrary, a value of Ly/Lx has been obtained. Then (5.2.3) is an equation
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Figure 5.2. Given and stationary populations used to measure increase.

for r alone, which readily yields the solution

r =
1

y − x
log
(

Nx/Lx

Ny/Ly

)
. (5.2.4)

This is the simplest of all the ways of using a current age distribution to
provide estimates of the rate of increase.

Figure 5.2, drawn for an increasing population, may help toward an in-
tuitive understanding of (5.2.4). The life table curve is flat, and the stably
increasing population less so; the formula in effect measures the relative
steepness of the increasing population in terms of the steepness of the life
table.

Since one value of the rate of increase r is obtained for each pair of ages,
potentially thousands of values of r are available from one census. Each of
these can be interpreted as an estimate of the (supposedly fixed) rate of
increase, or more realistically as the rate of increase of births between the
two cohorts.

The foregoing argument, whose several assertions may be followed on
the Lexis diagram, has in effect been a listing of the assumptions required
to bring us from the pair of equations (5.2.1), whose solution in general is
hopeless, to (5.2.4), which constitutes an exact answer on the assumptions
given. The database is a census that obtained present characteristics of
persons, in particular their ages. From one point of view, each person enu-
merated in a census is asked to report on a vital event—his own birth—that
took place a long time earlier. This is a special case of retrospective infor-
mation. Unfortunately, knowledge of this retrospective event can genuinely
be lost, say among a people who do not celebrate birthdays or otherwise
keep their ages in mind. In such an instance Nx and Ny are irrecoverable.
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Table 5.2. Values of r for Peru, 1963, computed for selected values of
o
e 0 and

the four model life tables of Coale and Demeny (1966), using 5N25 and 5N35 for
females

o
e 0 West North East South

22.5 0.01015 0.01229 0.01473 0.01482
32.5 0.01708 0.01836 0.01997 0.02028
42.5 0.02187 0.02264 0.02381 0.02415
52.5 0.02543 0.02580 0.02676 0.02721
62.5 0.02848 0.02842 0.02922 0.02958
72.5 0.03100 0.03055 0.03114 0.03125

5.2.1 Effect of Choice of Model Life Table
Let us try a small experiment to find the difference that the choice of life
table makes for the rate of increase in births. For Peru, 1963, the female
population included 5N25 = 405,179 women aged 25 to 29 at last birthday
and 5N35 = 293,494 aged 35 to 39. For several life expectancies, consid-
erably above and below the 62.5 years surmised, (5.2.4) was applied to
these data, employing the four regional model life tables constructed by
Coale and Demeny (1966). For life expectancy 62.5 years Table 5.2 shows
the differences across the four life tables to be satisfactorily small, with the
highest rate only about 4 percent above the lowest. The variation is greater
for smaller

o
e 0.

Within each of the columns, however, the computed r varies considerably
among life expectancies. Assuming high mortality seems to cause Ly/Lx to
absorb some of the r. In the West column the value for Peru at

o
e 0 = 62.5 is

0.02848; a guess of
o
e 0 = 52.5 would bring this down to 0.02543, which is 11

percent lower. Life tables with
o
e 0 between 52.5 and 72.5 list r as between

about 0.025 and 0.031.
Data drawn from the Togo, 1961, female population, in which there were

80,746 women aged 25 to 29 at last birthday and 51,975 aged 35 to 39,
were used to examine the variation for a high-mortality population. Table
5.3 presents computations of r for each of the four regional life tables at
life expectancy 40.0 years. Although rates steadily increase as one proceeds
from West to South, the range of values is again small, less than 8 percent
between the largest and the smallest.

More experimenting is needed to ascertain the sensitivity of the inferred
r to the life table chosen.
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Table 5.3. Values of r for Togo, 1961, computed for
o
e 0 = 40.0 on the regional

model life tables, using 5N25 and 5N35 for females

o
e 0 West North East South

40.0 0.03259 0.03349 0.03475 0.03512

5.2.2 Theory for the Error Arising from Use of an Improper
Life Table

Meanwhile the effect of a wrong life table can be calculated under the
simplified condition that the table is wrong by a given amount, say δ, for
the age-specific rates µ(a) at all ages: the true µ∗(a) equals the guessed
µ(a) plus δ. If µ∗(a) = µ(a) + δ, then l∗(a) = l(a)e−δa, so that, in a slight
rearrangement of (5.2.4),

r∗ =
1

y − x
log
[
Nx/Ny

L∗
x/L∗

y

]
≈ 1

y − x
log
[

Nx/Ny

(Lx/Ly)eδ(y−x)

]

= d
1

y − x

{
log
[
Nx/Ny

Lx/Ly

]
− log[eδ(y−x)]

}
= r − δ.

(5.2.5)

Thus taking a life table based on mortality rates too low by δ for both
cohorts involved causes the estimate of increase to be too high by δ.

A more realistic alternative is to suppose the true µ∗(a) = µ(a)(1 + δ),
so that l∗(a) = l(a)1+δ. Then for the true rate of increase r∗ in terms of r
we have

r∗ =
1

y − x
log
(

Nx/Ny

L∗
x/L∗

y

)
≈ 1

y − x
log
[

Nx/Ny

(Lx/Ly)1+δ

]

= r − δ log(Lx/Ly)
y − x

.

(5.2.6)

Also, as was shown in Section 4.3, the effect of the same error on
o
e 0 is, for

δ small,
o
e ∗

0 =
o
e 0(1 − Hδ),

where H is about 0.20 for modern populations. This gives

δ =
1 − (

o
e ∗

0/
o
e 0)

H
, (5.2.7)

or, for
o
e ∗

0 = 65,
o
e 0 = 60 in the problem with x = 25, y = 35 of Table 5.3,

δ =
1 − (65/60)

0.20
= −0.4;
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with log(L25/L35) = 0.03, r∗ of (5.2.6) comes out to

r∗ = r − (−0.4)(0.03)
10

= r + 0.0012.

Therefore using a life table with
o
e 0 5 years too low produces a rate of

increase that is 0.0012 too low, an error of 0.0012/0.03 = 4 percent. This
is verified by doing the calculation in the West series with

o
e 0 = 60 and

o
e 0 = 65; the values of r obtained differ by about 0.0012.

Stable theory can be applied with two censuses, which permit more sat-
isfactory selection of the life table to be used. It combines with and is
supplemented by other devices, of which extensive selections are given in
Coale and Demeny (1967) and Brass (1975). The purposes of the foregoing
treatment of the simplest method were to show how its assumptions can
be clarified through use of the Lexis diagram and, on the other hand, to
study in a preliminary way its degree of robustness when, as is usually the
case, the assumptions do not apply.

5.3 Mean Age in the Stable Population

An increasing population must be on the average younger than a stationary
population. This is due to children being born more recently than their
elders, so that with constant birth rates the increasing population must
have a larger proportion of children. If the current birth rate is b, the
proportion of children under age α is from (5.1.1),

αC0 =

∫ α

0
e−ral(a) da∫ ω

0
e−ral(a) da

.

(Here, the symbol C stands for the theoretical stable population, N for the
observed population, though the distinction is not always easy to preserve
in attempts to assimilate observations to theory.) To trace this out as a
function of r for given α and l(x) we note that

d(αC0)
dr

= αC0(m − m1),

where m is the mean age of the entire (stationary) population, and m1 the
mean age of the part of it less than α years old. [Prove this formula.] Then
expanding αC0 as a function of r about r = 0 gives

αC0 ≈ αL0
o
e 0

[1 + r(m − m1)],
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αL0/
o
e 0 being the value of αC0 when r = 0, that is, the proportion under

α years of age in the life table. This linear first approximation is suitable
for small values of r.

By how many years is the mean age of the increasing population younger
than that of the stationary population with the same life table? We shall
see that the difference in mean ages is approximately equal to the rate
of increase of the growing population times the variance of ages of the
stationary one. Average age, as observed or as in the stable model, will be
designated by x̄, and where x̄ is low we will speak of the population as
young.

From (5.1.1) it follows that the average age in the stable population is

x̄ =
∫ ω

0
xc(x) dx =

∫ ω

0
xe−rxl(x) dx∫ ω

0
e−rxl(x) dx

;

and on expanding the exponentials and integrating the separate terms in
both numerator and denominator, we find that

x̄ =
L1 − rL2 + (r2L3/2!) − (r3L4/3!) + · · ·
L0 − rL1 + (r2L2/2!) − (r3L3/3!) + · · · , (5.3.1)

where Li =
∫ ω

0 xil(x) dx is the numerator of the ith moment about zero of
the stationary population of the life table. Ordinary long division on the
right-hand side of (5.3.1) gives for x̄ the series L1/L0−[L2/L0−(L1/L0)2]r+
· · ·, which may be written as

x̄ ≈ L1

L0
− σ2r (5.3.2)

to the term in r, where L1/L0 is the mean and σ2 the variance of the age
distribution in the stationary population, both necessarily positive. Hence
x̄ is less than L1/L0 as long as r is greater than zero, supposing that the
subsequent terms are small enough not to interfere.

An exact infinite series for x̄ would be

x̄ =
L1

L0
− σ2r +

κ3r
2

2!
− κ4r

3

3!
+ · · · , (5.3.3)

where κ3 is the third cumulant and κ4 the fourth cumulant of the distri-
bution with density l(x)/L0 (Lotka 1939, p. 22). The third cumulant is the
same as the third moment about the mean:

κ3 = µ3 =
∫ ω

0

(
x − L1

L0

)3
l(x) dx

L0
,

and is associated with skewness. The fourth cumulant κ4 is the fourth
moment about the mean less 3 times the square of the variance, and is a
measure of kurtosis or peakedness, though its visual interpretation is not
straightforward.
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Let us identify the terms of (5.3.3) for Irish males of 1968, using data
given in Keyfitz and Flieger (1971, p. 446). The cumulants of the life table
are as follows:

L1/L0 = 36.678
σ2 = 495.59
κ3 = 2243.9
κ4 = −240,862
r = 0.01889.

Taking four terms in (5.3.3) approximates x̄ by

x̄ ≈ 36.678 − 9.362 + 0.400 + 0.271 = 27.987.

This approximation to x̄, the mean of the stable age distribution, 27.953,
is excellent. But Irish births have fluctuated considerably, and the mean
of the observed age distribution is 31.806, about 4 years higher than the x̄
calculated above.

For Colombia females of 1964 (Keyfitz and Flieger 1968, p. 191), the first
approximation (5.3.2) to the mean x̄ of the stable age distribution is

x̄ =
L1

L0
− σ2r = 37.360 − (539.04)(0.0283)

= 37.36 − 15.25 = 22.11.

In comparison, the stable age distribution shows a mean of 24.13 and the
observed female age distribution a mean of 22.32. More instances would
be needed to obtain a realistic estimate of the error of (5.3.2) as an ap-
proximation to the means of the stable and the observed age distributions,
respectively. Apparently the error increases with mortality and with r.

A growing population tends to be younger than the corresponding sta-
tionary population also within any particular interval of ages. An argument
identical to the one above may be applied to any age interval—we did not
require the limits to be 0 to ω in deriving x̄ ≈ (L1/L0)−σ2r. Thus children
under 15 years of age are slightly younger, and people over 85 are younger,
in the growing than in the corresponding stationary population. With the
obvious redefinition of its constants, (5.3.2) is not restricted to the whole
of life, but is applicable to any age interval.

Demographic Calculations Need Not Start at Age Zero. Various subgroups
can be defined in such fashion that theory developed for whole populations
applies to them. We have already dropped down to one sex and refer to the
“female population,” a useful abstraction but an abstraction nonetheless,
since females cannot go through the process of birth and increase with-
out males. The “population over age 15” could similarly be described as
though it were self-contained. All of stable theory would apply with at most
an alteration in the definitions of symbols. Now “births” would be the in-
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dividuals passing through their fifteenth birthdays; survivorship would be
not lx/l0, which we have been calling lx, but rather lx/l15, x > 15; the
stable fraction between x and x + dx would be

c′(x) dx = b′e−rx l(x)
l15

dx,

where b′ = l15/
∫ ω

15 e−rxl(x) dx, and evidently

c′(x) dx =
e−rxl(x) dx∫ ω

15
e−ral(a) da

.

By a further extension ages beyond 35, say, could be masked out and
an expression developed for the stable population aged 15 to 34 at last
birthday. It would similarly be feasible to recognize ages before birth, and
even, where data on fetal mortality are available, to go back to conception.

5.3.1 Use of Population Mean Age
Relationship (5.3.2) may be applied in the opposite direction—to tell the
rate of increase of a population when we know its mean age and the mean
and variance of the life table applicable to it. This way of estimating the
rate of increase of a population uses the data somewhat differently than
does (5.2.4).

Transposing (5.3.2) into the equivalent

r ≈ (L1/L0) − x̄

σ2 (5.3.4)

provides an approximation to the rate of population increase r, given the
life table mean age L1/L0, the variance of the life table age distribution
σ2, and the observed mean age x̄. Entering the figures for Colombia, 1964,
already used, we find that

r ≈ (L1/L0) − x̄

σ2 =
37.36 − 22.32

539.04
= 0.0279,

as against the observed r = 0.0283.
When the additional parameters κ3 (skewness) and κ4 (kurtosis) are

reliably enough available to be taken into account in estimating r, we can
transform (5.3.3) into

r∗ =
(L1/L0) − x̄

σ2 − (κ3r/2) + (κ4r2/6)
. (5.3.5)

In this iterative form we would start with an arbitrary r on the right-
hand side, obtain the improved r∗, enter it on the right-hand side, obtain a
further improvement, and so continue. The iteration is a way of solving the
cubic equation in the unknown r represented by truncation of (5.3.3) after
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the term in r3. Three or four cycles of iteration suffice for convergence to
considerably more decimal places than are demographically meaningful.

Note that the method requires, not complete knowledge of the life ta-
ble number-living column, but only its mean and other cumulants. In the
absence of a life table we would guess the L1/L0 and σ2 of (5.3.4), per-
haps calculating them from a set of model tables. The less dependent the
outcome on the life table chosen, the more useful is the method. We are
encouraged to find that the mean ages of the life table l(x) vary only about
one-fifth as much as their

o
e 0, the expectation of life at age zero. For in-

stance, the Coale and Demeny (1966, p. 54) model West table for females
with

o
e 0 = 55 shows a mean L1/L0 of 34.95, and that with

o
e 0 = 60 has

L1/L0 = 35.96.
Countries and regions lacking birth data are likely to have inaccurate

censuses, and we want to rely on censuses only at their strongest points.
The art of this work is to take account of what ages are well enumerated and
what ones poorly enumerated, as well as to use the model with the weakest
assumptions. Literally thousands of ways of using the age distribution may
be devised, and ideally one should choose the method least sensitive to
(a) the accuracy of enumeration of ages; (b) the appropriateness of the
life table, which often has to be selected arbitrarily; (c) the assumption of
stability; and (d) possible in- and out-migration. To be able to choose from
among a large stock of methods is an advantage in many instances, and
the following sections continue our partial inventory of this stock.

5.4 Rate of Increase Estimated from the Fraction
Under Age 25

Suppose that a population is underenumerated at ages 0 to 4 because in-
fants are omitted, at 10 to 14 because some children of this age are entered
as 5 to 9, and at 15 to 19 because young adults are mobile and the enu-
merator sometimes fails to find them. Suppose correspondingly that the
numbers 5 to 9 and 20 to 24 are overstated (Coale and Demeny, 1967,
p. 17), and that these errors offset to some degree those mentioned in the
preceding sentence, so that the proportion under age 25, say α, is given
correctly. We would like to use nothing but α from a census, along with a
suitable life table, to estimate the rate of increase r.

Referring to the same stable age distribution (5.1.1), we can construct
an equation in which both the observed α and the unknown r appear.
The proportion of the population under age 25 is

∫ 25
0 be−ral(a) da, where∫ ω

0 be−ral(a) da = 1. The ratio of the first of these integrals to the second
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can be equated to α and the birth rate b canceled out:

α =

∫ 25

0
e−ral(a) da∫ ω

0
e−ral(a) da

. (5.4.1)

The problem now is to solve (5.4.1) for the unknown r, supposing the life
table to be given.

One method is to leaf through a collection of model tables (e.g., Coale
and Demeny 1966) designed for such purposes, and find among those for
the given mortality the one with an α that matches the given α. The r of
that stable population is the solution to (5.4.1).

An alternative is an iterative formula to solve (5.4.1) for r, given l(a):
multiply the numerator and denominator of the expression on the right-
hand side of (5.4.1) by e10r, then multiply both sides of (5.4.1) by e−10r/α,
next take logarithms of the reciprocals of both sides, and finally divide by
10 to obtain

r∗ = 1
10 log

⎡
⎢⎢⎣

α

∫ ω

0
e−r(a−20)l(a) da∫ 25

0
e−r(a−10)l(a) da

⎤
⎥⎥⎦ (5.4.2)

(Keyfitz and Flieger 1971, p. 28). This equation is algebraically identical to
(5.4.1) except that the r on the left has been starred to suggest its use in
iteration. Starting with an arbitrary r on the right, calculating r∗, entering
this on the right in place of r, and repeating, is a process that ultimately
converges to r∗ = r, and whatever r satisfies this is also bound to satisfy
(5.4.1). The multiplication of (5.4.1) by e−10r/α (rather than e−15r/α, say)
is arbitrary, and experiment shows that e−10r provides fast convergence.
[Use the theory of functional iteration (e.g., Scarborough, 1958, p. 209) to
find the optimum multiplier in place of e−10r/α.] This is an example of
how knowledge of the approximate magnitude of the quantities concerned
enables demographers to devise iterative procedures that are simpler than
more general ones such as the Newton–Raphson method.

To apply (5.4.2) we replace the integrals by finite expressions. The usual
rough but serviceable approximation is in 5-year intervals. For example, the
interval from a = 0 to a = 5 contributes to the integral in the numerator
of the logarithm in (5.4.2) the amount∫ 5

0
e−r(a−20)l(a) da ≈ e−r(2.5−20)

5L0

= e17.5r
5L0,
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and similarly for the other 5-year age intervals. Then the iterative formula
becomes

r∗ = 1
10 log

αΣω−5
i=0 e−r(i−17.5)

5Li

Σ20
i=0e

−r(i−7.5)
5Li

(5.4.3)

in terms of the 5Li tabulated in published life tables (except that most life
tables are on radix l0 = 100,000; that is, in terms of the symbols here used
they tabulate 105

5Li). Summations in (5.4.3) are over i’s that are multiples
of 5. With zero as the arbitrary initial value of r, (5.4.3) converges to six
decimal places in from 3 to 10 cycles in most instances.

Method (5.4.3) is easily adapted to a split in the distribution at an age
other than 25, and it can be generalized beyond this to other fractions,
for example, the fraction of the population between ages 10 and 30, as
indicated by examples in Section 5.6.

5.5 Birth Rate as Well as Rate of Increase
Estimated for a Stable Population

We saw in (5.1.1) that in a closed population where birth and death rates
have been constant for a long time the proportion of individuals between
ages x and x+dx is c(x) dx = be−rxl(x) dx. Similarly the proportion of the
population between ages y and y+dy is c(y) dy = be−ryl(y) dy. To adapt to
5-year age intervals we integrated each equation over 5 years to construct

5Cx = be−r(x+2.5)
5Lx

5Cy = be−r(y+2.5)
5Ly.

(5.5.1)

Dividing and taking logarithms, we obtained in Section 5.1

r =
1

y − x
log
(

5Cx/5Lx

5Cy/5Ly

)
. (5.5.2)

Now we go on to find the value of b by eliminating r from the pair (5.5.1):

b =

(
5Cx

5Lx

)(y+2.5)/(y−x)

(
5Cy

5Ly

)(x+2.5)/(y−x) . (5.5.3)

We derived these formulae by defining 5Cx as an integral over a range of
ages in the stable population; we would apply the formulae by entering for
5Cx the observed fraction, from a census or estimate, over that range.
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An alternative form with 10-year intervals is

b = exp

⎡
⎢⎢⎣

log(10Cx/10Lx)
x + 5

− log(10Cy/10Ly)
y + 5

1
x + 5

− 1
y + 5

⎤
⎥⎥⎦ .

Entering the numbers for Colombian females, 1965, in thousands, for ages
5 to 15 and 20 to 30 (Keyfitz and Flieger 1971, p. 366, reproduced in Table
5.6 below) gives

b = exp

⎧⎪⎨
⎪⎩

log[(2575/9125)/8.753]
10

− log[(1401/9125)/8.550]
25

1
10 − 1

25

⎫⎪⎬
⎪⎭ = 0.0476,

or 47.6 births per thousand population.
There is no need to confine the calculation to two ages (Bourgeois-Pichat,

1958). Taking logarithms in (5.5.1) provides a linear equation in r and log b
for each age:

log b − (x + 2 1
2 )r = log

(
5Cx

5Lx

)
. (5.5.4)

Again in application we replace the stable proportions 5Cx by the observed
proportions P . For Colombian females, 1965, the needed quantities in the
six age intervals in the range 0 to 29 are shown in Table 5.4. The least
square line relating x + 2 1

2 and log(5Px/5Lx) is

−3.126 − (x + 2 1
2 )(0.0352) = log

(
5Px

5Lx

)
,

and this identifies log b with −3.126 and r with 0.0352; hence b is esti-
mated at exp(−3.126) = 0.0439, r at 0.0352, and d, the death rate, at the
difference, 0.0087.

The ages to be used are at our disposal; which should we choose? With
only two age intervals x and y, as in (5.5.2), if x and y are equal, neither
(5.5.2) nor (5.5.3) tells us anything, and if they are close to each other the
answers will be sensitive to random errors in the population count identified
with 5Cx and 5Cy. On the other hand, choosing x and y far apart increases
the risk of straddling a substantial change in the birth rates that determine
the cohort sizes, that is, a departure from stability. If the probability of a
change in birth rates between x and y years ago is proportional to y − x,
the length of the interval between them, then for given random errors in
ages there will be an optimum choice of the interval y − x, perhaps in the
neighborhood of 25 years.

Suppose a single change in birth rates in the past, at a known or sus-
pected date D years ago. Making both x and y less than D, or both x and
y greater than D, is clearly advisable. If both x and y are less than D,
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Table 5.4. Data for estimating b and r for Colombia, females, 1965

Observed Life table

x + 2 1
2 5Px 5Lx log

(
5Px

5Lx

)

2 1
2 0.1718 4.54231 −3.275

7 1
2 0.1558 4.39360 −3.339

12 1
2 0.1263 4.35979 −3.542

17 1
2 0.1048 4.33516 −3.722

22 1
2 0.0841 4.29919 −3.934

27 1
2 0.0695 4.25043 −4.113

Source: Keyfitz and Flieger (1971, p. 366).

the more recent rate of increase will be estimated; if they are greater, the
earlier rate.

If nothing is known about shifts in the past birth rate, and we want an
average of all rates that have prevailed during the lifetimes of persons now
alive, we might calculate all possible values of r and average them. The
average would be best weighted, with a maximum weight for y − x = 25
years or thereabouts, and with lower weights as we moved toward y−x = 0
or y − x = 50. The population above 70 provides little information on rate
of increase. Beyond 70 ages are inaccurately reported; the life table is less
precisely known; the survivors have passed through a variety of mortality
conditions; and their number is often too small to disregard sampling error
as we have done throughout.

5.6 Comparison of the Several Ways of Using the
Age Distribution

To summarize and extend the methods described above, still supposing sta-
bility, we extract from an observed age distribution the quantity mNx/nNy,
that is, the ratio of the observed persons x to x+m years of age to those y
to y+n. This ratio may be equated to the corresponding quantity estimated
from a life table and the rate of increase, which is approximately

e−(x+m/2)r/e−(y+n/2)r

nLy/mLx
,

and the equation provides the value for r:

r =
1

y + (n/2) − x − (m/2)
log
[

mNx/mLx

nNy/nLy

]
. (5.6.1)
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Table 5.5. Rate of natural increase as estimated from pairs of age ranges,
Colombia, males, 1965∗

y to (y + n − 1)

x to All
(x + m − 1) ages 5–ω 10–ω 0–69 5–69 10–69

0–14 0.03547 0.03486 0.03567 0.03569 0.03502 0.03589
0–24 0.03286 0.03294 0.03434 0.03290 0.03298 0.03452
0–34 0.03256 0.03278 0.03450 0.03256 0.03281 0.03473
0–44 0.03236 0.03274 0.03482 0.03230 0.03278 0.03512
5–19 0.03513 0.03439 0.03558 0.03548 0.03457 0.03587
5–29 0.03159 0.03231 0.03446 0.03135 0.03229 0.03472
5–39 0.03088 0.03245 0.03518 0.02939 0.03244 0.03563
5–49 0.03289 0.03318 0.03641 0.03270 0.03348 0.03723

∗Programmed by Geoffrey McNicoll.

Where m and n are more than 5 years this approximation will not serve
and an iterative form is needed. Such a form was used to calculate the
entries in Table 5.5 (Keyfitz and Flieger 1971).

A special case is pairs of age intervals that approximately represent ratios
of female children to mothers, where now the y group is 30 years wide. In
Table 5.6, 5N0/30N15 gives r = 0.03066. Again the estimates are mostly in
the range 3.0 to 3.5 percent, and all are greater than the 0.02814 provided
by registrations. The method has been named after William R. Thompson,
one of the pioneers of American demography.

Using age intervals x to x+4 and x+15 to x+44, so that the individuals in
the first group are mostly the children of those in the second group, protects
in some degree against errors due to variation in the rate of increase of the
successive birth cohorts; that is, it protects against the inappropriateness
of the stability assumption. To see this we note that Thompson’s index,

Th = 5Nx/5Lx

30Nx+15/30Lx+15
, (5.6.2)

which is in this special case the contents of the square brackets in (5.6.1),
is an approximation to e27.5r. In fact r = (1/27.5) log Th is one way of
writing (5.6.1) for m = 5, n = 30. In terms of the 5-year age groups of the
mother generation, (5.6.2) breaks down to

Th =

(5Nx+15Fx+15 + 5Nx+20Fx+20 + · · ·)
(5Nx+15 + 5Nx+20 + · · ·)

5Lx

30Lx+15

, (5.6.3)

where Fx+15 and so on are the age-specific rates of childbearing, in 5-
year intervals, counting for this purpose only children that live to the end
of the 5-year period. In effect the N ’s of (5.6.3) are weights on the F ’s.
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Table 5.6. Estimates of rates of increase for Colombia, 1965, females∗ Part (a)

x 5Nx 5Lx

0 1,567,251 454,231
5 1,421,920 439,360

10 1,152,736 435,979
15 956,462 433,516
20 767,534 429,919
25 633,851 425,043
30 545,307 419,014
35 495,077 411,199
40 369,047 401,498
45 309,618 389,415
50 263,402 374,099
55 169,199 351,971
60 181,209 323,465
65 100,134 281,903
70 83,009 230,533
75 45,586 173,813
80 34,442 116,072
85+ 28,852 106,954

Total 9,124,636

1. Local stability (5.5.2) with 5-year age intervals

Age range r

5–9, 15–19 0.03831
10–14, 20–24 0.03927
15–19, 25–29 0.03917
20–24, 30–34 0.03161

2. Bourgeois-Pichat regression (5.5.4) based on 30-year age intervals

Age
range b r

0–29 0.04388 0.03520
5–34 0.04616 0.03706

10–39 0.04210 0.03255
15–44 0.04153 0.03255
20–49 0.04024 0.03185
25–54 0.03973 0.03143
30–59 0.05287 0.03848
35–64 0.04377 0.03367
40–69 0.04636 0.03535

Table continues in part (b)
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Table 5.6. (contd.) Estimates of rates of increase for Colombia, 1965, females∗

Part (b)

3. Rate of increase from Thompson’s Index (5.6.2) by iterative method

Age range r

0–4, 15–44 0.03066
5–9, 20–49 0.03451

10–14, 25–54 0.03271
15–19, 30–59 0.03147

4. Rate of increase from pairs of wide age ranges using iterated version of (5.6.1)

Age All
range ages 5+ 10+ 0–69 5–69 10–69

0–14 0.03415 0.03345 0.03395 0.03430 0.03351 0.03407
0–24 0.03330 0.03269 0.03346 0.03340 0.03269 0.03356
0–34 0.03378 0.03281 0.03370 0.03403 0.03284 0.03385
0–44 0.03356 0.03243 0.03362 0.03392 0.03240 0.03378
5–19 0.03615 0.03441 0.03484 0.03675 0.03462 0.03508
5–29 0.03557 0.03347 0.03431 0.03662 0.03361 0.03455
5–39 † 0.03390 0.03480 † 0.03424 0.03521
5–49 † 0.03423 0.03524 † 0.03508 0.03587

10–24 0.03190 0.03157 0.03312 0.03163 0.03136 0.03323
10–34 † 0.03164 0.03382 0.03084 0.03125 0.03414
10–44 0.03385 0.02770 0.03353 0.03349 0.02204 0.03398
10–54 0.03438 0.04228 0.03237 0.03406 0.03873 0.03243
15–29 0.04068 0.02606 0.03105 0.03883 0.02327 0.03073
15–39 0.03504 † 0.03161 0.03461 0.03994 0.03116
15–49 0.03413 0.03719 0.02928 0.03393 0.03618 0.03561
15–59 0.03411 0.03613 0.03622 0.03395 0.03555 0.03454

∗Programmed by Geoffrey McNicoll.
†Indeterminate.
Source: Keyfitz and Flieger (1971, p. 366).

Under stability 5Nx+20 will be e−5r(5Lx+20/5Lx+15) times as numerous as
5Nx+15; if it is not, the numerator and denominator of the top section of
(5.6.3) are affected in the same direction.

In Table 5.6 the various methods described above are shown in appli-
cation to Colombian females. No single number is trustworthy, but the
collection shows a considerable degree of agreement, especially where wide
intervals are involved. The agreement with results for males as given in Ta-
ble 5.5 is also worth noting. [Show that (5.6.1) with the data in Table 5.6
gives 0.03042 for the first entry under Thompson, and devise an iterative
form that will give the more accurate 0.03066.]

Fortunately these formulae are most applicable to populations of rapid
and fairly steady increase, which happen to be just the ones least pro-
vided with usable vital statistics, though they usually have recent censuses.
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Further work remains to be done on robustness, however, in the face of
inaccurate data and inappropriate assumptions.

5.6.1 Incomplete Population and Deaths
William Brass has suggested (personal communication) that one can make
use of an incomplete census, along with incomplete death statistics, to
ascertain r, the rate of increase of a population, provided only that the
omissions at the several ages are nearly constant and the population is more
or less stable. Although such assumptions may seem strong, the calculation
itself checks them. Several values of r may be produced by the calculation;
and if they are not in agreement, we know that the assumptions are not
met and reject the method for the case in question.

The Brass suggestion requires an expression for c(x), the fraction of
persons at age x, in terms of the population and deaths cumulated from
age x to the end of life, ∞Nx and ∞Dx, respectively. An integration by parts
in the expression for deaths over age x as a fraction of total population will
establish the required relation. The deaths from age x to the end of life as
a fraction of total population are as follows:

∞Dx

N
=
∫ ω

x

be−ral(a)µ(a) da

= −b

∫ ω

x

e−ra dl(a)

= −b

[
e−ral(a)|ωx + r

∫ ω

x

e−ral(a) da

]

= be−rxl(x) − r∞Nx

N

= c(x) − r∞Nx

N
.

Transposing gives the required relation of c(x) to the cumulative population
and deaths:

c(x) =
r∞Nx

N
+ ∞Dx

N
. (5.6.4)

This is interpretable as a flow equation, in which the entrants c(x) into
the age group x and over are equal to the net natural increase r∞Nx/N of
that age group plus the deaths ∞Dx/N , all in terms of ratios to the total
population.

Equation (5.6.4) may be used to calculate r, given the age distribution
and the deaths, but it involves a gratuitous error insofar as the deaths suffer
from more (or less) incompleteness than the population. Brass avoids this
by multiplying and dividing the term on the right, ∞Dx/N , by d = D/N ,
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the death rate, and then treating d as unknown:

c(x) =
r∞Nx

N
+

d∞Dx

D
. (5.6.5)

Now the fact that the population and deaths are incomplete by some un-
known fraction at all ages makes no difference. Any two ages, say x and y,
provide a pair of equations solvable for r and d. With more than two ages
one can fit by least squares, and use the magnitude of departures from
the fitted r and d to check the assumptions of stability and of constant
proportional completeness in population and deaths.

The logic of populations permits modification of this without further
algebra—for instance, if the population and deaths under age 5 are thought
to be especially uncertain; in that case one would reinterpret all the ele-
ments of (5.6.5) on the basis of the population and deaths at 5 years of
age and over: c(x) would be the ratio of those aged x to the population 5
and over, D would be the deaths for ages 5 and over, and N would be the
population aged 5 and over. To find the rate of increase of a long past time
one might consider only the part of the population 60 and over, interpret
c(x) as the ratio of those aged x to the number aged 60 and over, and D
and N as deaths and population, respectively, over 60, and put x equal to
60 and to 70 to obtain two equations.

Taking Mexico, 1966, females as an example, we have as the equation for
x = 0, using all ages,

900
22,029

= r + d,

and, for x = 60

81.8
22,029

= r
1161

22,029
+ d

58,923
198,893

.

Solving these together gives r = 0.0345, d = 0.0064, and b = d+r = 0.0409.
Now suppose that we disregard the first 60 years of life, and use x = 60;

then
81.8
1161

= r + d,

and, for x = 70, still considering population 60 and over,

43.4
1161

= r
448
1161

+ d
41,148
58,923

,

which solve to r = 0.0378 and d = 0.0326. In this formulation the death
rate d does not have the usual meaning, since its denominator is population
60 and over, but r is an estimate of the usual rate of increase.
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5.6.2 Estimates from Two Censuses
When two censuses, say 10 years apart, are available, much more can
be done; not only can assumptions be weakened, but also increased
redundancy permits a better estimate of error.

If the population is closed, and whether or not it is stable, survivorship
rates can be found by comparing the number in a cohort as given by the
two censuses. For instance, the chance of surviving 10 years for those aged
10 to 14 is the ratio of the number 20 to 24 at the later census to that 10
to 14 at the earlier one; if 5N

(t)
10 is the population aged 10 to 14 at time t,

then

5L20

5L10
= 5N

(t+10)
20

5N
(t)
10

.

Having a set of survivorships for pairs of ages 10 years apart, one could
interpolate to construct the life table. Unfortunately the countries less de-
veloped statistically, for which reliable mortality registrations are lacking,
are not likely to have accurate censuses, and inaccuracies in the census
reporting of ages produce a very irregular table. Therefore we must seek a
way to use the survivorships that is less sensitive to their irregularities.

One such way is to match the survivorships to model life tables. Each of
the 10-year survivorships would permit picking a member of the series of
life tables. With perfect data and a series of model tables appropriate to the
underlying mortality of a closed population, the identical life table would
be picked by the several ages. In practice, however, different life tables will
be picked, and if they do not differ too greatly they can be averaged.

Once the life table is available, chosen by the observations rather than
imported more or less arbitrarily as with a single census, one can use either
census for estimating r by the methods outlined above. Again the degree
of agreement among the several estimates of r will inform us as to how far
to trust the results.

A further and obvious resource for calculating r is the intercensus in-
crease. In some cases the accuracy of enumeration is inadequate to provide
survivorships between the censuses for the several cohorts, but is sufficient
to show how fast the total population is increasing; r would be obtained
from the ratio of census totals as r = 1

10 log
[
N (t+10)/N (t)

]
. The value of r

so obtained, taken in conjunction with either age distribution, can provide
a life table. Arriaga (1968) used an observed age distribution along with
a value of r in his study of mortality in Latin America; from (5.1.1) he
obtained l(x) as erxc(x)/c(0).



118 5. Fixed Regime of Mortality and Fertility

5.7 Sensitivity Analysis

The stable model was used in Sections 5.3 to 5.6 to estimate rates of
increase of populations lacking in vital statistics. It can also provide an-
swers to substantive questions concerned, not with data, but with the way
populations—or at least their parameters—behave.

5.7.1 Mean Age as a Function of Rate of Increase
We have prepared the way for one example with (5.3.2), showing how the
mean age of a population is related to its rate of increase:

x̄ ≈ L1

L0
− σ2r.

Insofar as this applies, it tells what a change in r will do to the population
mean age x̄. If in our population r were higher by ∆r, then x̄ would be lower
by σ2 ∆r, on the understanding that the life table remained unchanged.
Essentially the same fact can be expressed by the derivative:

dx̄

dr
≈ −σ2, (5.7.1)

and derivatives are useful in cases where the device by which (5.3.2) was
established is not applicable.

For Canada, 1968, σ2, the variance of women’s ages in the life table
population, was 573.7. Hence we can say from (5.7.1) that a fall of 0.010
in r would raise the mean age by 5.737 years, the life table remaining
unchanged. This touches genuine causation, although it does not say what
would happen in the real world, where many other changes would occur
at the same time. Like any other causal law, it is capable only of telling
what will happen conditionally, provided that its action is not overlaid, or
reversed altogether, by other changes such as migration.

One added qualification is that the effect does not immediately follow
the cause in time. In this section and others presenting sensitivity analysis
it is two ultimate stable conditions that are compared, a device known in
economics as comparative statics.

5.7.2 Pension Cost
Consider a pension scheme in which those over exact age 65 are paid a
pension equal to salary, and salary is unity and the same for all individuals
and at all ages between 20 and 65. If N is the number of persons of all
ages in the population, the total payments by the fund each year will be
N
∫ ω

65 be−rxl(x) dx, and the total receipts of the fund each year will be
Ng
∫ 65
20 be−rxl(x) dx, where g is the premium as a fraction of salary. For
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the fund to remain in balance these two quantities must be equal, so we
have for the premium

g =

∫ ω

65
e−rxl(x) dx∫ 65

20
e−rxl(x) dx

, (5.7.2)

still as a fraction of the uniform annual salary of individuals aged 20 to 65.
Adapting this to salaries and pensions that vary with age, to salaries that
vary at each given age, to cases where increasing numbers of persons are
unable to work as they become older, and to other practical circumstances
complicates the formula somewhat but entails no new principle.

A formula enables us to see how demographic conditions affect pension
arrangements. For the scheme whose premium is given by (5.7.2) we might
ask what difference it makes if mortality improves beyond age 65, if the
age at pension is 60 rather than 65, and if the population increases more
slowly or becomes stationary. The stable model permits pencil-and-paper
experiments to answer such questions; let us consider the last one briefly.

To see what difference it makes if r changes we calculate dg/dr from
(5.7.2). Taking logarithms and using the fact that

d log g

dr
=

1
g

dg

dr

gives immediately, with fixed life table,

d log g

dr
= −

∫ ω

65
xe−rxl(x) dx∫ ω

65
e−rxl(x) dx

+

∫ 65

20
xe−rxl(x) dx∫ 65

20
e−rxl(x) dx

.

The first term on the right is minus the mean age of the pensioners, say M
and the second is the mean age of the contributors, say m. Hence

1
g

dg

dr
= −(M − m). (5.7.3)

According to (5.7.3) a small finite change ∆r in r ultimately causes a
relative change ∆g/g in the premium, i.e.,

∆g

g
≈ −(M − m) ∆r. (5.7.4)

In words, the fractional change in the premium equals minus the differ-
ence of mean ages in the pensioned and working groups times the absolute
change in rate of increase. If the mean M is about 70 years and m about
40 years, M − m is about 30, and we conclude that a decrease in r by 1
percentage point, say from 0.020 to 0.010, increases the fraction of salary to
be paid as premium by −(30)(−0.01) = 0.30. Practically without data we
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have found that a 30 percent increase in premiums for a contributory non-
reserve pension scheme is associated with a fall in the population growth
rate of 0.01. We could sharpen the 30 percent by using observed numbers
for M − m, but 30 years is close enough to suggest how much such finan-
cial calculations depend on the rate of increase of populations. As Thomas
Espenshade pointed out to me, the lower birth rate as r becomes smaller
releases women into the labor force and so, if jobs are available, helps to
pay the premium for the increased fraction of aged persons. With some
additional data the effect of this factor and others may be calculated.

5.7.3 Fraction of Old People
The objective of the preceding pages can be attained more precisely by
employing derivatives and then treating the Taylor expansion as a differ-
ential equation. Suppose we would like to know how the fraction of the
population that is old depends on the rate of increase, and assume that
death rates do not change. The fraction f(r) over age 65 is

f(r) =

∫ ω

65
e−ral(a) da∫ ω

0
e−ral(a) da

. (5.7.5)

Taking logarithms and differentiating both sides gives

1
f(r)

df(r)
dr

= κ1 − k1, (5.7.6)

where κ1 is the mean age of the entire population and k1 of the part of it
65 years of age and over. Integrating (5.7.6) and taking exponentials gives

f(r) = f0e
(κ1−k1)r,

where f0 is the life table proportion 65 and over.
The result is obtainable from the term in r of the difference of two cu-

mulant generating functions, one for the distribution of those 65 and over,
the other for all ages:

log f(r) = log f0 +
(

−rk1 +
r2

2!
k2 − r3

3!
k3 + · · ·

)

−
(

−rκ1 +
r2

2!
κ2 − r3

3!
κ3 + · · ·

)
,

where the k’s are the cumulants of the persons 65 and over and the κ’s of
everyone. Taking exponentials up to the term in r2 gives

f(r) = f0 exp
[
r(κ1 − k1) − r2

2!
(κ2 − k2)

]
. (5.7.7)
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Table 5.7. First and second approximations to the percent over 65 years of age
from (5.7.7), along with the total as taken from Table 5.1

Approximation from (4.7.7)
As totaled

from
r To term in r To term in r2 Table 4.1

−0.01 19.9 19.6 19.46
0 13.8 13.8 13.80
0.01 9.5 9.3 9.31
0.02 6.5 6.1 6.02
0.03 4.5 3.8 3.74
0.04 3.1 2.2 2.25

Experimenting with Table 5.1, and using round numbers for the means
k1 = 72, κ1 = 35, so that κ1 − k1 = −37, and for the variances k2 = 30,
κ2 = 450, so that κ2 − k2 = 420, we have the fraction 65 and over as
0.138e−37r to a first approximation, and as

f(r) = 0.138e−37r−210r2

to a second approximation. Table 5.7 shows that the second approximation
at least is very close. Such discrepancies as exist between the last column
and the preceding column are due to the crude estimates of the first and
second cumulants and to the omission of later cumulants.

It bears repeating that (5.7.7) gives only the ultimate difference between
the original situation and the one with incremented r; it says nothing about
the path by which the second is reached from the first. When the birth rate
declines with unchanged l(x), it requires more than one generation under
the new conditions for the age distribution to stabilize. The projection
techniques of Chapter 12 are capable of showing the actual path of change in
a quantity such as our premium g when birth rates change in any specified
manner. The results are inevitably more complicated than those of stable
theory.

5.8 The Degree to Which Promotion Within
Organizations Depends on Population Increase

In a stationary population the progress of individuals through whatever
hierarchy they belong to, that is, their social and economic mobility, will on
the average be slower than in an increasing population. To show the effect
in its pure form we will disregard the differences in merit, luck, inheritance,
and influence among individuals whereby some move up faster and others
more slowly; our interest is in average rates of promotion. In other words, we
seek the rate of promotion insofar as it is affected by one rate of population
increase as opposed to another (Waugh 1971, Bartholomew 1967).
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The concept of promotion stands out most clearly in a hierarchical or-
ganization that observes some degree of seniority in promotion, and that
permits a certain fraction of its employees to be foremen and above, or
colonels and above, or associate professors and above. Most organizations
do not have exact ratios for the number of those above to those below these
ranks, but the nature of their work and budgets is such that de facto limits
exist on the numbers at higher ranks. We will take as fixed and given the
ratio k of those above the given rank to those below, and we want to find
the age x at which a person on the average reaches the status expressed by
k; we seek x as a function of r, the rate of increase. Suppose as in (5.1.1)
that the population is stable, so that the fraction of individuals between
ages a and a+da is be−ral(a) da. Then the fraction of the population above
the rank in question is the integral of this from x to β, and the fraction
of the population below is the integral from α to x, where α is the age of
recruitment and β the age of compulsory retirement.

The condition is described by an equation in which k is identified with
a ratio of integrals:

k =

∫ β

x

e−ral(a) da∫ x

a

e−ral(a) da

. (5.8.1)

Once the life table, along with k, α, and β, is known, (5.8.1) implicitly
gives the age of promotion x as a function of r.

Equation (5.8.1) cannot be solved in closed form for x, but the theory
of implicit functions enables us to approximate the derivative of x with
respect to r. If the ratio of integrals in (5.8.1) is called u/v, then (5.8.1)
is the same as φ = u − kv = 0. With a few steps of elementary calculus
(details are given in Keyfitz 1973) we find

dx

dr
= − ∂φ/∂r

∂φ/∂x
= − 1

1 + k

⎡
⎢⎢⎢⎣
∫ β

x

e−ral(a) da

e−rxl(x)

⎤
⎥⎥⎥⎦ (M − m), (5.8.2)

where M is the mean age of the group between x and β, and m of the
group between α and x. Evidently dx/dr is negative; as r increases, the
age of promotion declines.

To obtain an idea of how much it declines, suppose the age of recruitment
α to be 20 and the age of retirement β to be 65. Then M − m cannot be
very different from half of the interval from 20 to 65, that is, 22.5. Consider
a rank somewhat above the middle, where the person holding it has one
employee above him for each two below; that is, k = 1

2 . With a small
positive rate of increase r the expression in the square brackets of (5.8.2)



5.8. Promotion Within Organizations 123

Table 5.8. Age x of passing through position k for k = 1 up to k = 0.2, for
r = 0.00 to r = 0.04, based on male life table for the United States, 1968

Value of Value of r

k 0.00 0.01 0.02 0.03 0.04

1.0 40.86 38.55 36.39 34.43 32.71
0.8 43.26 40.91 38.64 36.54 34.66
0.6 46.31 43.97 41.64 39.41 37.35
0.4 50.32 48.14 45.86 43.56 41.33
0.2 55.93 54.27 52.36 50.27 48.08

will be about 15. Then
dx

dr
≈ − 1

1 + 1
2

(15)(22.5) = −225.

This means that, when r falls from 0.02 to stationarity, the age of promotion
to a rank two-thirds of the way up the hierarchy rises by −225× (−0.02) =
4.5 years.

For a more exact result we can solve (5.8.1) numerically for x with r =
0.02 and r = 0.00. This requires interpolation in the 5-year intervals for
which such data are given, including solution of a cubic equation (Keyfitz
1973). Some of the results are shown as Table 5.8 for l(x) from the United
States, 1968, male life table. With k = 0.6 we find x = 46.31 for r = 0.00
and x = 41.64 for r = 0.02, a difference of 4.67 years, or very nearly what
the derivative showed in the preceding paragraph. With k = 1 the difference
from r = 0.04 to r = 0.00 is 40.86 − 32.71 = 8.15 years.

The same calculation has been made on the male life table of Sweden,
1783–87, with

o
e 0 = 33.6 years, representing about the highest observed

mortality for which a life table is available. Such high mortality ought at
least to have the advantage of speeding the promotion of the survivors, and
indeed, at a given r, they show promotion to middle positions about 2 to
3 years younger than the ages in the United States, 1968, table. Thus the
possible effect of high mortality in favoring promotion is 2 to 3 years; the
possible effect of rapid population growth is 8 years. The reason for this is
that the range of recorded human population growth is from − 1

2 percent
through stationary to 4 percent per year. The range of human mortality
averaged over ages 20 to 65 is much narrower, say 1

2 to 2 percent (Table
5.9) or one-third as much.

A Simplification. The theory can be made simpler with only a small sac-
rifice of realism by supposing constant mortality between ages α and β
(McFarland, personal communication). Mortality rises over the age inter-
val, but we are encouraged to suppose constancy by the small effect that
mortality seems to have in any case. If the death rate is fixed at µ, the
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Table 5.9. Average mortality µ for males between ages 20 and 65, where
e−45µ = l65/l20, compared with intrinsic rate on female-dominant model

1000µ 1000r
Country (males) (females)

Austria, 1966–68 8.1 7.8
Canada, 1966–68 7.3 7.4
Ceylon, 1967 6.9 24.6
France, 1967 8.2 8.3
Malaysia (West), 1966 9.5 30.9
Mauritius, 1966 11.3 30.5
Mexico, 1966 10.1 34.6
Norway, 1967 5.7 10.4
Spain, 1967 6.5 10.1
Sweden, 1783–87 20.2 1.4
United States, 1968 9.2 5.9
Venezuela, 1965 8.8 37.6

probability of surviving to age a is l(a) = e−µa, and the equation becomes

k =

∫ β

x

e−rae−µa da∫ x

α

e−rae−µa da

.

Now the right-hand side of this expression lends itself to integrations in
closed form, and we have

k =
e−(r+µ)x − e−(r+µ)β

e−(r+µ)α − e−(r+µ)x ,

which may be solved for x to give

x = − 1
r + µ

log
[
ke−(r+µ)α + e−(r+µ)β

k + 1

]
, (5.8.3)

an expression that is exactly the same function of µ as it is of r. Hence dx/dr
is equal to dx/dµ; population increase and high mortality help promotion
to exactly the same degree.

5.8.1 The Chain Letter Principle
The analogy of the promotion process to a chain letter is easily drawn. In
a chain letter (say of four names in each transmittal) the recipient (Ego)
sends the person at the top of the list he has received a sum, say 1 dollar,
crosses this name off the list, adds his own name at the bottom, reproduces
the letter, and sends it on to four other persons. If four copies are sent on
at each stage, in the short time required for five successive letters to be
mailed and delivered Ego will receive 44 = 256 dollars. With 10 names he
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will receive 1010 dollars. Each individual may be thought of as an ancestor
of those whose names are below his on the list, and the payments are made
by descendants to ancestors.

There is no fallacy in the operation of a chain letter, provided that re-
cipients follow instructions and new people continue to be available to be
brought into the scheme. Once the available population has been brought
in, so that names have to be repeated, however, the scheme breaks down.
And this is certain to happen long before 1010 names are in the process.

Payments by descendants to ancestors, say sons to great-grandfathers,
in analogy to the chain letter with four names, have a very different way of
cumulating than payments by ancestors to descendants, as in the ordinary
passing of property from father to son. With a growing population, equal
inheritance will fractionate property and give successively less to each gen-
eration. Large families and growth of population are a drawback in a regime
of inherited private property, just as clearly as they are an advantage in
the chain letter or promotion. Norman Ryder has emphasized this point in
his lectures.

Whether the institutions of a community are such that benefits flow
upward, as in promotion or the chain letter, or flow downward, as in in-
heritance, is crucial to attitudes on collective growth and to the size of
individual families. It is arguable that the peasants’ preoccupation with
holding property intact in nineteenth century France was associated with
low fertility; a peasant obtained security in his old age by having few chil-
dren and thereby avoiding division of his land. In Java, on the other hand,
wage labor is a main means of livelihood, and the landless laborer wants
many children, whose combined contributions will permit him to subsist in
old age. This supposes appropriate discipline in the children, just as does
the chain letter.

The American pay-as-you-go social security system resembles that of
Java in that the working generation supports the retired one, with the
difference that in the United States the unit is no longer the family but the
entire country. The U.S. system works well when there are many children
to support few old people, as was the case a generation back; it runs into
trouble when many old people have to be supported by few children, as
will be the case early in the twenty-first century. Table 14.4 suggests the
consequences for pay-as-you-go social security of the present decline in U. S.
births.

It would be useful to inventory the situations in which something—
money, supervisory positions, prestige—flows up from the younger gen-
eration to the older, and examine empirically corresponding attitudes on
reproduction; the hypothesis of this section is that they would be found to
be pronatalist. On the other hand, in situations where the flow is from the
older to the younger, of which inheritance of property is the most familiar,
restrictive attitudes toward reproduction would be expected.
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Growth is popular in comparison to mortality: having children is prefer-
able to dying. Moreover, a given amount of growth helps as much as a
given amount of mortality; and since growth varies 3 times as much as
mortality among observed populations, it can accelerate promotion about
3 times as much as even the survivors can expect in a high-death commu-
nity. Cessation of growth has costs and is inevitable, and the question is
what generation ought to incur the cost.



6
Birth and Population Increase from
the Life Table

The stable age distribution of Chapter 5 supposed births growing at fixed
rate r and subject to probability l(a) of survivorship to age a. Various
conclusions were reached by noting how the stable age distribution was
affected by r, treated as an arbitrarily disposable parameter. Now we regard
rate r not as arbitrary but as determined by the joint action of birth and
death rates.

The argument rests on birth rates m(a), where m(a) da is the probability
that a woman who has reached age a will give birth to a girl child before
age a + da, or alternatively that each woman will produce exactly m(a) da
of a child in interval da. A model in which exactly m(a) da of a child is
produced by each woman in any small interval of time da departs consid-
erably from the reality of human reproduction, where children are born,
not continuously, but in units of one child each, with occasional multiple
births, and random variation is conspicuous. Moreover, we will deal with
the female part only of the population, and disregard the contribution of
males to reproduction. (Or, less often, with the male part, but not with
both together.) Such fictional treatment permits some useful conclusions
to be drawn and ought to be exploited to the limit before resorting to more
realistic (and necessarily more complex) models. Although unusable for
families and other small populations, the continuous deterministic model
provides useful answers to many questions concerning mean values in large
populations.
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6.1 The Characteristic Equation

To find an equation for the ultimate rate of increase r by a continuation
of the means developed in Chapter 5, suppose that for a long time the
chance of living to age a is l(a), and that births increase at fixed rate r.
Then the age distribution becomes stable, a proposition proved many times
(Sharpe and Lotka 1911, Lotka 1939, Parlett 1970, Lopez 1961, McFarland
1969) and illustrated in Section 1.10. When stability has been attained,
the fraction of population at ages a to a + da is be−ral(a) da, as shown in
the argument leading to (5.1.1). Since births are calculated by multiplying
exposed population by m(a), the fraction be−ral(a) da of the population
must give rise to be−ral(a)m(a) da births per unit of total population. The
integral of this last expression, from the youngest fertile age α to the highest
β, is

∫ β

α
be−ral(a)m(a) da, the overall birth rate.

But b is the overall birth rate in the population with age distribution
be−ral(a) da, and it may therefore be equated to the integral derived in the
preceding paragraph. This provides the equation∫ β

α

be−ral(a)m(a) da = b, (6.1.1)

or, on dividing by b, ∫ β

α

e−ral(a)m(a) da = 1, (6.1.2)

obtained in more general fashion by Lotka (1939, p. 65; see Section 7.5 of
the present chapter) and called the characteristic equation for the unknown
r. Equation 6.1.2 tells us the ultimate rate of increase implied by l(a) and
m(a) after they have been acting long enough for stability to be attained.

For a general net maternity function l(a)m(a), equation (6.1.2) has an
infinite number of roots, of which only the real root answers the questions
treated in this chapter. The uniqueness of the real root follows from the
fact that

∫ β

α
e−ral(a)m(a) da, say ψ(r), has a negative first derivative [prove

this] and so is a monotonically decreasing function of r, which takes the
value ∞ for r = −∞ and the value 0 for r = ∞ (Figure 6.1). Thus ψ(r)
can only once cross any given horizontal line in the half-plane ψ(r) > 0,
including the line one unit above the r axis, and hence ψ(r) = 1 can have
only one real root. The function ψ(r) crosses the vertical axis at

ψ(0) =
∫ β

α

l(a)m(a) da = R0,

the net reproductive rate.
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R0 1

0 r0 r

�(r) = 1

�(r)

�(r)

Figure 6.1. Values of ψ(r), showing ψ(0) = R0, and root r0 of ψ(r) = 1.

6.1.1 Why Stress the Female Model?
Although the argument leading to (6.1.2) is applicable to either sex, it is
most often applied to females because:

1. Data on age of parent at the birth of a child are more often collected
by the registration authorities for women than for men.

2. Even when the authorities present births by age of father as well as by
age of mother, more cases of unstated age of father occur, especially
for illegitimate births.

3. Women have their children within a narrower and more sharply de-
fined range of ages than do men, say 15 to 50 as against 15 to
80.

4. Both the spacing and number of children are less subject to variation
among women; a woman can have children only at intervals of 1 or
2 years, so she is physiologically limited to a score or so of children,
whereas a man can have hundreds. Under monogamy this asymmetry
of the sexes is of no consequence, but every society allows some de-
partures from strict monogamy, even if only to permit the remarriage
of widowers.

The reasons for the emphasis on females apply over a wide range of
population analysis. Both understanding and prediction must be based on
whatever constancies we can find; that potential variation is less in births
to women than in births to men makes the female model more useful.
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On the other hand, when the age distributions and life tables for males as
well as for females are available, the rate of increase can be estimated from
either sex, and two estimates provide more information than one. When
only one is to be had, we must rest on the fact that usually in the short
run, and always in the long run, the males and females of any population
increase at nearly the same rate.

6.1.2 An Iterative Method for Calculating r

Means of calculating this root are given in several places (Lotka 1939,
p. 70; Coale 1957; Keyfitz 1968, p. 108) and need not be repeated here.
But an iterative method is worth sketching because it is suggestive for
other equations.

If T is an arbitrary age chosen near the mean age of childbearing, multiply
both sides of (6.1.2) by eTr:∫ β

α

e−(a−T )rl(a)m(a) da = eTr, (6.1.3)

then take logarithms of both sides, and divide by T to obtain

r∗ =
1
T

log
∫ β

α

e−(a−T )rl(a)m(a) da. (6.1.4)

The left-hand side of (6.1.4) has been marked with an asterisk to suggest
the use of the equation for iteration. The unknown r enters on the right,
but in a way that does not greatly influence the integral. The extent to
which r influences the right-hand side of (6.1.4) determines the speed of
convergence, and is measured by the absolute value of the derivative dr∗/dr,
a fact demonstrated formally in books on numerical analysis, such as that
of Scarborough (1958, p. 209). If |dr∗/dr| is less than 1 in the neighborhood
of the solution, convergence will occur; if it is much less than 1, convergence
will be rapid. From (6.1.4) dr∗/dr is seen to have a factor 1 − κ/T , where
κ is the mean age of childbearing in the stable population:

κ =
∫ β

α

ae−ral(a)m(a) da.

(Since r satisfies (6.1.2), the denominator of the expression for mean age
κ is unity.) The derivative dr∗/dr seems to be telling us that if we can
put the arbitrary T equal to some number near κ, rapid convergence will
result. In fact we do not know κ before we find r, but κ varies little among
populations and T can be put at 27.5 years.

No direct use can be made of a continuous form like (6.1.4)—it must be
converted to the discrete form for calculations. If T is chosen as 27.5, then
with the customary approximation∫ x+5

x

e−ral(a)m(a) da = e−(x+2 1
2 )r

5LxFx,
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Table 6.1. Second iteration of intrinsic rate of natural increase for the United
States, females, 1968

x 5Lx 1000F ′
x 5LxF ′

x e−(x+2 1
2 −27 1

2 )(0.0056)

15 4.867 67.1 0.327 1.058
20 4.851 167.4 0.812 1.028
25 4.831 140.3 0.678 1.000
30 4.807 74.9 0.360 0.972
35 4.770 35.6 0.170 0.946
40 4.714 10.2 0.048 0.919

Total 2.395

Source: For 5Lx, Vital Statistics of the United States (1968, Vol. 2, Section 5,
pp. 5–7). For F ′

x, Statistical Abstract of the United States (1973, p. 52).

where 5Lx =
∫ x+5

x
l(a) da, and Fx is the observed age-specific fertility rate

for ages x to x + 4 at last birthday. We translate (6.1.4) into calculable
terms as

r∗ =
1

27.5
log(e10r

5L15F15 + e5r
5L20F20 + 5L25F25

+ e−5r
5L30F30 + e−10r

5L35F35 + e−15r
5L40F40).

(6.1.5)

The expression in parenthesis contains six terms if we include births under
15 with the 15 to 19 group and those over 45 with the 40 to 44 group.
Data for United States females in 1968 are shown in Table 6.1, where F ′

x,
the birth rate of children of both sexes, is converted to Fx, the female
birth rate, by multiplying by the fraction of births that were girls in 1968,
that is, 0.487. The calculation of (6.1.5) starting with r = 0 gives r∗ =
log(2.395 × 0.487)/27.5 = 0.00560 and r∗∗ = 0.00587 in two successive
iterations.

The method is applicable to complex as well as to real roots. With com-
plex roots we must check to ensure that the root being approached is the
one sought—the real root being unique, no such precaution is needed. If all
complex roots are sought, one can sweep out each as it is found, after the
ith, by dividing out the polynomial in e−5r; this will prevent the iteration
from converging to any root more than once.

6.1.3 The Intrinsic Rate for Various Kinds of Data
The usual application of (6.1.2) is to the births and deaths of a particular
period, 1 or 3 or 5 calendar years, as when the Statistical Abstract of the
United States (1973) tells us that the intrinsic rate of increase was 0.6
percent for the United States in 1968, with 0.4 percent for White and 1.6
percent for Nonwhite components.

Male Period Intrinsic Rates. The above numbers apply to females; a corre-
sponding calculation can be made by imputing male births to fathers, and
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Table 6.2. Male and female intrinsic rates during the 1960s

1000r

Country and year Male Female

United States
1966 12.82 9.70
1964 17.48 15.70
1963 18.68 17.10
1962 19.81 18.83
1959–61 20.92 20.70

Chile, 1964 23.55 21.05
Hungary, 1964 −2.95 −7.28
England and Wales, 1960–62 9.55 9.77

Source: Keyfitz and Flieger (1968).

in general it produces a different answer. Sometimes the answer is substan-
tially different, as for the United States, 1964, data, where females show
1000r as 15.70, and males as 17.48. The higher male rate is largely due to
fathers being older than mothers on the whole, while numbers of persons
in the main childbearing ages during the 1960s reflected the rising births
during the late 1930s and 1940s. If the men of an age to be fathers come
from earlier smaller cohorts, their rates will be higher for the given number
of births that actually took place, and it is largely this that is reported by
the difference between the male and female intrinsic rates.

Table 6.2 shows some male and female rates; the differences are consid-
erable and larger than can be explained by misstatement of age. For the
United States in particular the steady increase in the gap between male
and female rates seems due to the relative shortage of men of the age to be
fathers in the wake of the baby boom.

Cohort Intrinsic Rate. The same equation (6.1.2) can help interpret the
death and birth rates in a cohort. By following deaths and births to the
individuals born in a given year or 5 years, we obtain a cohort life table
and a set of age-specific birth rates that together determine r. Applied to
the women who were 0 to 4 years of age in 1920 in the United States, and
who therefore were 5 to 9 years of age in 1925, and so forth, they yield
an intrinsic rate of 1.5 per thousand (Keyfitz and Flieger, 1968, p. 601).
This means that the age-specific rates of birth and death were such that, if
they persisted, the cohorts (and incidentally the period cross section) would
ultimately increase at 1.5 per thousand. This value of 1000r is low because
the group in question passed through its principal ages of childbearing in
the late 1930s and early 1940s. Period and cohort influences are confounded
in the concrete historical record.

Intrinsic Rate for One Family. The concept of intrinsic rate can be applied
to a particular family. If a girl child is born at age a1 of the mother and
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another girl at age a2, r is found from

e−ra1 l(a1) + e−ra2 l(a2) = 1, (6.1.6)

which is easily solved for r by the method of (6.1.4) or otherwise. The
meaning of r is that a population in which all women married and bore girl
children at ages a1 and a2 would increase at this rate; the r so calculated
is an interpretation of the fertility behavior of the particular family. Non-
marriage or sterility within marriage can be accommodated by using l(a)
as the probability of surviving and being married and fertile by age a.

Whatever the group to which the characteristic equation 6.1.2 applies,
one of its uses is to find how the rate of increase r depends on various
features of the net maternity function. We will see how this is done for an
increment in the birth rate m(a) at a single age x. More frequently referred
to, however, are the relations between the intrinsic rate and the several
moments of the net maternity function. These relations are easily found
once we express the characteristic equation in terms of the moments.

6.2 A Variant Form of the Characteristic Equation

It happens that ψ(r), the left-hand side of (6.1.2), when divided by R0 is
the moment-generating function of the normalized net maternity function
l(a)m(a)/R0:

ψ(r)
R0

=
∫ β

α

e−ra l(a)m(a)
R0

da.

The sense in which ψ(r)/R0 generates the moments is that it is equivalent
to the infinite series

ψ(r)
R0

= 1 − rR1

R0
+

r2

2!
R2

R0
− · · · ,

where Ri =
∫ β

α
ail(a)m(a) da, so that Ri/R0 is the ith moment about zero

of the distribution l(a)m(a)/R0. But the moments about zero are large; and
even though the series converges, an impractical number of terms would be
required for a good approximation. A rapidly converging series is obtained
by taking the logarithm of ψ(r)/R0, and so generating the functions of the
moments called cumulants (Kendall and Stuart 1958, Vol. 1, p. 70) that
we have already encountered in Section 5.3:

log
ψ(r)
R0

= −rµ +
r2σ2

2!
− r3κ3

3!
+

r4κ4

4!
− · · · . (6.2.1)

The cumulants expressed in terms of the Ri are as follows:

µ =
R1

R0
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σ2 =
R2

R0
−
(

R1

R0

)2

κ3 =
R3

R0
− 3

R2R1

R2
0

+ 2
(

R1

R0

)3

...

and in terms of the moments about the mean,

µi =

∫ β

α

(a − µ)il(a)m(a) da

R0
,

they are

κ1 = µ = µ1

κ2 = σ2 = µ2

κ3 = µ3

κ4 = µ4 − 3µ2
2

κ5 = µ5 − 10µ3µ2
. . . .

Now the characteristic equation is ψ(r) = 1; that is, log[ψ(r)/R0] =
− log R0; or, written out in terms of the cumulants, from (6.2.1) the
equivalent to (6.1.2) is

log R0 = rµ − r2σ2

2!
+

r3κ3

3!
− r4κ4

4!
+ · · · . (6.2.2)

The successive terms diminish rapidly in value, even where the cumu-
lants increase. For the United States in 1967 (1000r = 7.13), we have the
following:

Cumulant Term of (6.2.2)

R0 1.205 0.186
µ 26.28 0.187
σ2 34.98 −0.000889
κ3 127.5 0.0000077
κ4 −120.7 0.000000013

The rate of convergence is slower for populations of higher r, and much
slower for complex roots of (6.2.2).
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6.3 Perturbation Analysis of the Intrinsic Rate

A main use of the foregoing theory is to compare populations that differ
in some birth or death parameter, and note by how much they differ in in-
trinsic rate. For the corresponding calculations for stage-structured matrix
models, see Section 13.1.

6.3.1 How the Intrinsic Rate Varies with the Moments
We are now in a position to find how the intrinsic rate varies with the
several moments. To find, for example, how r in (6.2.2) varies with σ2 we
might first think of solving explicitly for r and noting how σ2 appears in
the solution. Since an explicit solution is impossible, we are fortunate that
it is not necessary: the theory of implicit functions will again provide the
derivative of r with respect to σ2. If σ2 is subject to a small increment, say
∆σ2, and the corresponding change in r is ∆r, then, writing φ(r, σ2) for
the right-hand side of (6.2.2), we have in terms of partial derivatives

∆φ(r, σ2) =
∂φ

∂r
∆r +

∂φ

∂σ2 ∆σ2.

Insofar as φ(r, σ2) is a constant (namely, log R0) for values of r satisfying
the characteristic equation, its change ∆φ(r, σ2) must be zero; therefore

∂φ

∂r
∆r +

∂φ

∂σ2 ∆σ2 = 0,

and solving for ∆r/∆σ2 results in

∆r

∆σ2 = − (∂φ/∂σ2)
∂φ/∂r

. (6.3.1)

In the limit as the increment tends to zero this gives the derivative of r
with respect to σ2 in terms of the two partials, with all other moments
constant.

The partials are readily calculated from (6.2.2) as

∂φ

∂r
= µ − rσ2 +

r2κ3

2
− · · · (6.3.2)

∂φ

∂σ2 = −r2

2
(6.3.3)

Therefore
dr

dσ2 ≈ r2

2(µ − rσ2)
, (6.3.4)

if we truncate after the variance, equivalent to fitting a normal curve to
the net maternity function l(a)m(a)/R0.
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This tells us that if two increasing populations are identical in all mo-
ments, except that one has a larger variance in age of childbearing than
the other, the one with the larger variance will have the higher rate of
increase. If the ages of childbearing are more spread out, apparently the
gain through some children being born earlier more than offsets the loss
through those born later. [What if R0 is allowed to vary?]

Easier to understand is the relation between r and µ, the mean age of
childbearing. The same technique as before gives for the required derivative

dr

dµ
=

−r

µ − rσ2 . (6.3.5)

The term rσ2 in the denominator is relatively small; therefore it seems
that for an increasing population dr/dµ is negative, and the larger µ is the
smaller r is, again with everything else the same. Larger µ implies slower
turnover.

At one time comparison of the United States and Canada showed a
contrast between larger families in Canada, and thus a higher R0, and
younger marriage and childbearing in the United States, and thus a smaller
µ. The smaller µ reversed the effect of the higher R0, and the net outcome
was a higher r for the United States.

Finally, and most obviously, the intrinsic rate is positively related to R0.
Neglecting all but the first two terms on the right-hand side of (6.2.2), we
have

dr

dR0
= − (∂ψ/∂R0)

∂ψ/∂r

=
1

R0(µ − rσ2)
.

If r is small, the intrinsic rate rises with R0 as long as µ − rσ2 is positive,
that is to say, always.

One kind of change can be compared with another and a set of equiva-
lencies found. What increase in R0 exactly offsets an increase of ∆µ in µ
and leaves the rate of increase unchanged? Should effort, say in India, go
into raising the age of marriage or into disseminating birth control within
marriage. India should of course do both, but the question still remains
of where the marginal effort should go. With R0 = 1.77, and µ = 25, if
raising the average age of childbearing by 3 years is easier than lowering
age-specific birth rates by 5.9 percent, the effort should concentrate on age
at marriage. In general if a change from R0 to R∗

0 is to be equivalent to
one from µ to µ∗ then if σ2 does not change much, the equation

log R∗
0

µ
≈ log R0

µ∗
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holds to a close approximation. But this is true only if we can be sure
that a higher rate of childbearing will not take place within the delayed
marriages, and that illegitimacy will not be substantially increased.

Such statements can be made for any of the cumulants. The first three
derivatives from (6.2.2), along with their values for the case of R0 = 2,
µ = 27, and σ2 = 40, so that r = 0.02618, disregarding terms beyond
r2σ2/2, are as follows:

dr

dR0
=

1
R0(µ − rσ2)

= 0.01927

dr

dµ
=

−r

µ − rσ2 = −0.001009 (6.3.6)

dr

dσ2 =
r2

2(µ − rσ2)
= 0.0000132.

Thus a small increase ∆R0 increases r by 0.01927∆R0 and so forth. In
proportions the derivatives are

dr

dR0
:

dr

dµ
:

dr

dσ2 =
1

R0
: −r :

r2

2
.

The influence of successive cumulants of the net maternity function alter-
nates in sign and decreases with the powers of r. As a matter of curiosity
we can extend the series, and find the ratios

dr

dκ3
:

dr

dκ4
:

dr

dκ5
: · · · = −r3

3!
:

r4

4!
: −r5

5!
: · · · .

6.3.2 Change in Births at One Age
Other calculations of the relation of rate of increase to aspects of the net
maternity function depend on the form (6.1.2) of the characteristic equa-
tion. For example, we would like to know whether the use of contraception
by young women will have more effect on the rate of increase than its use
by older women. Suppose that for the 1-year interval around x the value
of m(x) is changed to m(x) + ∆m(x); our problem is to find the value ∆r
by which this modifies r.

The new value r + ∆r is obtained from the characteristic equation 6.1.2
in the form ∫ β

α

e−(r+∆r)al(a)[m(a) + ∆m(x)] da = 1, (6.3.7)

where we have modified m(a) by adding to it the quantity ∆m(x) for the
1 year x. [This unorthodox notation will not cause any trouble if we think
of ∆m(x) as a function of a, defined to be zero everywhere except in the
interval x − 1

2 to x + 1
2 , where it is ∆m(x).] The left-hand side of (6.3.7)
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consists of two additive parts, one an integral, and the other approximately
e−(r+∆r)xl(x)∆m(x). If for e−(r+∆r)a we write e−ra(1 − a∆r) within the
integral, two integrals emerge, of which

∫ β

α
e−ral(a)m(a) da equals unity

by our original equation (6.1.2), and
∫ β

α
ae−ral(a)m(a) da (without denom-

inator) equals κ, the mean age of childbearing in the stable population. If
∆m(x) is small enough that the term involving ∆r∆m(x) may be ignored,
we obtain

∆r ≈ e−rxl(x)
κ

∆m(x). (6.3.8)

Thus the intrinsic rate r is changed by e−rxl(x)/κ times the change
in the age-specific birth rate m(x). Note that the coefficient of ∆m(x) is
proportional to the number of women in the stable age distribution. Thus
the relative effect of changes in rates at the several ages is proportional to
the number of women at these ages. Such sensitivity analysis is a way of
exploiting models to obtain conditional statements of cause and effect in
other instances where the result is less obvious.

An equivalent method of working out the effect of change in a birth or
death rate involves the use of implicit functions. The interested reader can
work out other examples. Here we proceed to a more general case in which
not single ages but groups of ages are considered.

6.4 Arbitrary Pattern of Birth Rate Decline

As the birth rate declines in the United States or any other country, it falls
more rapidly at some ages than at others. For modernizing populations
the initial fall has been greatest at the oldest ages of childbearing, as has
been noted alike for the United States and for Taiwan. The ages that drop
are partially related to the means of population control used: sterilization
applies mostly to the older ages of childbearing; the pill, to younger ages
(at least while it is a novelty); abortion, to all ages. The intrauterine device
(IUD) is not much used by women until they have had a child, suggesting an
aggregate impact on ages intermediate between the pill and sterilization.
Possible cuts g(a) that might be taken out of the birth function m(a)
by these three methods of birth control are suggested in Figure 6.2. The
fertility function that remains is m(a) − kg(a), where k is a constant.

We will first consider an arbitrary function g(a) and see the effect of re-
moving it times some constant k from the birth function m(a). Our analysis
will concentrate on two special cases:

1. The effect on r of deducting kg(a) from m(a), where k is small, as
though one were trying to examine the direction and pace of the first
move toward fertility reduction.
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Figure 6.2. Area kg(a) removed from net maternity function by the several
methods of birth control.

2. The final condition of stationarity that will result from subtraction of
kg(a) from m(a), where now k is large enough to produce stationarity.

The first case is simple because k is small, and the second is simple
because the final condition is stationary; intermediate values of k are more
difficult to handle and will not be discussed here. From the first case we
will know in what direction the system starts to move, and from the second
where it ends; by comparing these two we obtain at least a suggestion of
how the movement is modified as k goes through intermediate finite values.

6.4.1 Effect of Small Arbitrary Change in Birth Function
Suppose an arbitrary function g(a), positive or negative, such as unity for 1
year of age and zero elsewhere, or equal to m(a), the birth function, or some
other variant. We consider deductions from m(a) equal to kg(a), that is to
say, kg(a) is a bite of arbitrary shape taken out of m(a). For purposes of this
part of the argument k is small enough that we can neglect second-order
terms like (∆r)2 and k ∆r, where ∆r is the difference that the deduction
of kg(a) from m(a) makes to r.

To find the value of ∆r that corresponds to kg(a) we have to solve the
equation ∫ β

α

e−(r+∆r)al(a)[m(a) − kg(a)] da = 1, (6.4.1)

where r is defined by (6.1.2). Expanding the exponential e−∆ra ≈ 1 − ∆ra
in (6.4.1), ignoring the term involving k ∆r, and solving for ∆r gives

∆r ≈ −

∫ β

α

e−ral(a)g(a) da

κ
k, (6.4.2)

where κ is the mean age of childbearing in the stable population.
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If g(a) = m(a) for all a, (6.4.2) becomes

∆r = −k

κ
or k = −κ ∆r.

The question might be what fractional change in age-specific rates will
bring the rate of increase down by ∆r; the answer here given is that a
subtraction of 100κ ∆r percent at each age does it. A variety of results,
including (6.3.8), can be obtained as special cases of (6.4.2). The method
is still that of comparative statics: birth rates are taken as m(a) for one
population and as m(a) − kg(a) for another, and the two stable conditions
compared.

6.4.2 Amount of Change Needed for Drop to Bare
Replacement

For bare replacement the net reproduction rate, the expected number of
girl children by which a girl child born now will be replaced,

R0 =
∫ β

α

l(a)m(a) da,

must equal unity. If R0 is to equal unity on the age-specific birth rates
m(a) − kg(a), we must have∫ β

α

l(a)[m(a) − kg(a)] da = 1,

where the solution for k will tell just how much of the change shaped like
g(a) in the age pattern is required for the reduction to replacement. The
answer is evidently

k =
R0 − 1∫ β

α

l(a)g(a) da

.

For g(a) = m(a) this is k = (R0 − 1)/R0, as accords with intuition. For
applications of this logic in epidemiology, where the reproductive rate of
concern is that of the pathogen, see p. 194.

6.4.3 Effect of Uniformly Lower Death Rates
Suppose two populations of which one has the force of mortality µ(a) and
the other µ∗(a) = µ(a) + δ, where δ is the same for all ages. Then the
population with µ(a) + δ will have survivorship

l∗(x) = exp
{

−
∫ x

0
[µ(a) + δ] da

}
= e−δxl(x).
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Its characteristic equation will be∫ β

α

e−r∗al∗(a)m(a) da = 1

or ∫ β

α

e−(r∗+δ)al(a)m(a) da = 1.

But this is identical with the characteristic equation for l(a)m(a), as given
in (6.1.2), except that it has r∗ + δ rather than r. And, since the char-
acteristic equation has a unique real root, it follows that r∗ + δ = r, or
r∗ = r − δ. In words, the solution with the incremented mortality is the
original solution less the increment of mortality.

From this it follows that age distribution is unaffected by a constant
increment of mortality. This is so because the age distribution is propor-
tional to e−rxl(x) dx; and if we change l(x) to l∗(x) = e−δxl(x), so that r
goes to r∗ = r − δ, then e−rxl(x) dx goes to e−(r−δ)xe−δxl(x), that is, it is
unchanged on cancellation of e−δx.

That a change in death rates that is the same at all ages has no effect
on age distribution is true more generally. Suppose an age distribution,
however irregular, and a decline of 0.001 in mortality rates at all ages.
Then exactly one person in a thousand who would have died on the former
regime now survives, age by age. This increases the number at every age
by exactly 0.001, that is, multiplies it by 1.001, and multiplying every age
by 1.001 can have no effect on the age distribution (Coale 1956).

6.5 Drop in Births Required to Offset a Drop
in Deaths

Let us find the fraction by which existing fertility must decline so as to
offset an absolute decrease in mortality equal to k at every separate age.
In symbols, suppose that for women who have reached age a the chance of
dying between ages a and a + da drops from µ(a) da to [µ(a) − k] da, and
this applies with the same k at all ages; by what uniform fraction f at all
ages would women have to lower their birth rates in order for the intrinsic
rate r to remain the same? If the drop in births takes place uniformly at all
ages, the old probability of having a child between ages a and a+ da being
m(a) da, and the new probability being (1 − f)m(a) da, we can determine
the unknown f .

The effect of lowering the death rate by the amount k at each age is equiv-
alent to increasing the survivorship l(a) by the factor eka, for by definition
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the new l∗(a) must be, as before,

l∗(a) = exp
{

−
∫ a

0
[µ(t) − k] dt

}
, (6.5.1)

and carrying out the integration gives l∗(a) = ekal(a). Alongside the old
characteristic equation 6.1.2 we have a new one:∫ β

α

e−raekal(a)(1 − f)m(a) da = 1. (6.5.2)

We will replace eka by 1 + ka, permissible if k is small, take advantage of
(6.1.2) to cancel

∫ β

α
e−ral(a)m(a) da on the left of (6.5.2) against the 1 on

the right, and solve for f as

f =
kκ

1 + kκ
, (6.5.3)

where κ is again the mean age of childbearing in the stable population.
Approximately, the fraction that the births would have to be reduced to
offset a fall of k in the mortality of every age is kκ. For a population whose
κ is 27 years, an absolute fall of 0.001 in the death rate at each separate age
would require a fall of the fraction (0.001)(27)/[1 + (0.001)(27)] = 0.0263
in the birth rates at each age to offset it.

A variant of the same question, left to the reader, asks how much must
be cut off the m(a) curve at its upper end to offset a drop k in the age-
specific death rates. We go on to find the drop in fertility that would offset
the largest possible decrease in mortality—its complete elimination.

6.5.1 The Drop in Fertility That Would Offset a Drop in
Mortality to Zero

The question has been raised how a drop in mortality to zero could be
offset by a change in fertility at all ages of women. In the simplest form,
what value of f , the fractional fall in fertility at all ages, is associated with
an intrinsic rate r that would remain unchanged if mortality to the end of
reproduction were to drop to zero? Putting l(a) = 1 and changing m(a) to
m(a)(1 − f) in (6.1.2) provides the equation that f must satisfy:∫ β

α

e−ram(a)(1 − f) da = 1, (6.5.4)

while r is still subject to (6.1.2). The value of f from (6.5.4) is

f = 1 − 1∫ β

α

e−ram(a) da

. (6.5.5)

A fertility drop by the fraction f at all ages would preserve r, the ultimate
rate of increase, against the hypothetical drop to zero of mortality up to
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age β. A very slightly different problem is to find the fraction f that would
preserve the generation ratio of increase R0, the net reproduction rate,
defined as

R0 =
∫ β

α

l(a)m(a) da.

The required fraction is the solution in f of the equation∫ β

α

m(a)(1 − f) da = R0, (6.5.6)

or

f = 1 − R0∫ β

α

m(a) da

= 1 − R0

G0
, (6.5.7)

the integral in the denominator being the gross reproduction rate G0 (Coale
1973b).

Applying this to developed countries shows that a 3 or 4 percent decline
in births would offset the drop to zero mortality. In 1967 the United States
G0 was 1.26 and the R0 was 1.21 (Keyfitz and Flieger 1971, p. 361). For less
developed countries where mortality is somewhat higher, a 5 to 15 percent
drop in births would suffice. No one need be concerned that a further fall in
the Mexican death rate, for example, will add seriously to the demographic
problem of that country. Mexico’s G0 in 1966 was 3.17, its R0 2.71, and
its birth rate 1000b = 43.96 (Keyfitz and Flieger 1971, p. 345). A drop to
1000b = 37.58 would offset a transition to zero mortality.

The conclusion that further decline in mortality need not provoke any
substantial rise in the rate of population growth probably applies to the
world as a whole. Insofar as mortality up to the end of childbearing is
already very low, further diminution in it can have only a small effect
on the rate of increase, and this small effect is likely to be offset for most
countries by the decline in fertility during the 1970s. The parts of the world
where this conclusion does not yet apply are mostly in tropical Africa.

6.5.2 Diseases of Infancy Versus Heart Disease: Their Effects
on Population Increase

The death rate from cardiovascular renal diseases for females in the United
States in 1964 was 448 per 100,000 population, and that from certain dis-
eases of infancy (as defined) was 26 (Preston, Keyfitz, and Schoen, 1972,
p. 770). Standardized, the numbers were 383 and 26, still a ratio of nearly
15 to 1. Eliminating certain diseases of infancy adds only 0.930 year to
o
e 0, whereas eliminating CVR adds 17.068 years, or 18 times as much. All
indications are that CVR has at least 15 times the effect on mortality of
certain diseases of infancy.
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But no such proportion appears in the effects on overall population in-
crease of eliminating these diseases. Consider first the effect on the net
reproduction rate. Using the life table calculated as though CVR were
eliminated raises the net reproduction rate by 0.002. Eliminating certain
diseases of infancy without altering the other causes raises the net reproduc-
tion rate by 0.018. Heart disease may be 15 times as prevalent as diseases
of infancy, but its long-term effect on increase is only about one-ninth as
great.

6.6 Moments of the Dying Population in Terms
of Those of the Living, and Conversely

If we know the age distribution of the living population of the life table,
we ought to be able to find the age distribution of the dying. Stated in life
table symbols, the problem is simply that of finding the distribution dx in
terms of lx, and the answer is dx = lx − lx+1.

Translating moments of the living into those of the dying is straight-
forward; given the moments of l(x), we proceed to find the moments of
l(x)µ(x), where µ(x) = − 1

l(x)
dl(x)
dx . The result will enable us to find the

mean age, variance, and other parameters of the living from those of the
dying, and vice versa.

One device is to relate the cumulant-generating function of the ages of the
dying to that of the ages of the living. For a general distribution function
f(x), define ψ(r) as the transform

ψ(r) = log
[∫ ω

0
e−rxf(x) dx

]
,

and define the cumulants of f(x) as the coefficients of the powers of r in
the expansion

ψ(r) = −rκ1 +
r2

2!
κ2 − r3

3!
κ3 + · · · . (6.6.1)

For the special case where f(x) is proportional to l(x), the transform is

log

⎡
⎢⎢⎣
∫ ω

0
e−rxl(x) dx∫ ω

0
l(x) dx

⎤
⎥⎥⎦ ,

which will be called ψL(r); the κL are the cumulants of the distribution
l(x)/

∫ ω

0 l(x) dx. In reference to our distribution of population the mean
age is µL, the variance σ2

L, the skewness κ3L, and the kurtosis κ4L. For
deaths the mean is κ1 =

o
e 0, the variance κ2 = σ2, the skewness κ3, and

the kurtosis κ4.
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The exponential of the cumulant-generating function of the ages of the
dying is

exp[ψ(r)] =
∫ ω

0
e−rxl(x)µ(x) dx = −

∫ ω

0
e−rx dl(x),

and on integration by parts we have

−
∫ ω

0
e−rx dl(x) = −e−rxl(x)|ω0 − r

∫ ω

0
e−rxl(x) dx

= 1 − r

∫ ω

0
e−rxl(x) dx.

But the integral here is
∫ ω

0 l(x) dx times the exponential of the cumulant-
generating function of the living. Hence there follows the identity

exp[ψ(r)] = 1 − r
o
e 0 exp[ψL(r)], (6.6.2)

where ψL(r) = log[
∫ ω

0 e−rxl(x) dx/
∫ ω

0 l(x) dx], referring to the living, is
distinguished from ψ(r) = log[

∫ ω

0 e−rxl(x)µ(x) dx], referring to the dying.
Note that

∫ ω

0 l(x)µ(x) dx = 1; therefore we do not need a denomina-
tor for ψ(r), generating the cumulants of the dying, but do require the
denominator

∫ ω

0 l(x) dx =
o
e 0 for ψL(r).

The basic result is (6.6.2); and, subject to conditions of convergence that
do not seem to give trouble in practice, expanding ψ(r) and ψL(r) within
it enables us to find one set of cumulants in terms of the other:

exp
(

− o
e 0r +

σ2r2

2
− κ3r

3

6
+ · · ·

)
=

1 − r
o
e 0 exp

(
−µLr +

σ2
Lr2

2
− κ3Lr3

6
+ · · ·

)
,

or on expanding the exponentials

1 − o
e 0r + (σ2 +

o2

e0)
r2

2
− · · · =

1 − r
o
e 0

[
1 − µLr + (σ2

L + µ2
L)

r2

2
− · · ·

]
.

Equating powers of r, we get
o
e 0 =

o
e 0

σ2 +
o2

e0

2
=

o
e 0µL

κ3 + 3σ2 o
e 0 +

o3

e0

6
=

o
e 0(σ2

L + µ2
L)

2
and so on.
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Thus σ2 = 2
o
e 0µL − o2

e0, identically, and we have without approximation
the variance in the age of dying in terms of the mean age of the living and
o
e 0, all for the life table population. For example, in the case of Colombian
females, 1964, where

o
e 0 = 61.563 and µL = 37.360, the variance in age at

death is

σ2 = 2(61.563)(37.360) − (61.563)2 = 810.0.

Thus the four cumulants of ages in a stationary population given for some
200 populations in Keyfitz and Flieger (1968) provide five cumulants of
ages of the dying for those same populations.

6.6.1 Expectation of Life as a Function of Crude Birth and
Death Rates

If we know only the crude death rate of a population we can say little about
its expectation of life; a crude death rate of 10 can apply to a country with
a life expectation as high as 75 years or as low as 60 years, in the former
case with a rate of increase of 0.005 and in the latter of 0.030. If we are
also told the crude birth rate or the rate of natural increase, we can narrow
this range considerably, as McCann (1973) has shown.

We know that d, the crude death rate in the stable population, is

d =
∫ ω

0
be−ral(a)µ(a) da,

so that, dividing by b and noting that the right-hand side is the exponential
of the cumulant-generating function of the distribution of deaths by age
expressed in terms of −r, we have

d

b
=
∫ ω

0
e−ral(a)µ(a) da,

or log d − log b = ψ(r), and this is the same as

log b − log d = r
o
e 0 − r2σ2

2
+

r3κ3

6
− · · · ,

since in the stationary population the mean age of dying is the expectation
of life

o
e 0. Solving for

o
e 0 gives

o
e 0 =

log b − log d

b − d
+ r

(
σ2

2
− rκ3

6
+

r2κ4

24
− · · ·

)
, (6.6.3)

where r = b − d. Now the expression in parentheses on the right depends
on the life table in a fairly systematic way. With a set of model life tables
we can iterate to the value of

o
e 0, given b and d.

A different approach to the same problem is to start with the identity

1
b

=
∫ ω

0
e−rxl(x) dx,
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divide by
o
e 0 =

∫ ω

0 l(x) dx, take logarithms, and then use the fact that the
right-hand side is the cumulant-generating function of the living:

log(b
o
e 0) = µLr − σ2

Lr2

2
+

κ3Lr3

6
− · · · ,

where now the cumulants are of the distribution of the living in the
stationary population rather than of the dying. Hence we have

o
e 0 =

1
b

exp
(

µLr − σ2
Lr2

2
+ · · ·

)
. (6.6.4)

Applying (6.6.3) to Colombian females, 1964, and dropping terms
involving third and higher cumulants, we obtain

o
e 0 =

log 0.03840 − log 0.01006
0.02835

+
(0.02835)(810.0)

2
= 47.25 + 11.48 = 58.73

against the life table value of 61.56. From (6.6.4), dropping terms, we have

o
e 0 =

eµLr

b
=

e(37.36)(0.02835)

0.03840
= 75.10,

which is a much poorer approximation. But if we take one more term in
the exponential of (6.6.4) with σ2

L = 539.34, this becomes
o
e 0 = 60.47,

which is the best of the three.
These results use the mean and variance of the life table, for which we

are looking. In practice one would not be able to attain them in a single
calculation, but would find them from the

o
e 0 of the previous iteration. The

method can choose an
o
e 0 from a one-parameter set of life tables.

Which of (6.6.3) and (6.6.4) is preferable? The decision depends on which
set of cumulants (that for the living or that for the dying) is more nearly
invariant with respect to

o
e 0, since that determines the number of iterations

required in a given series of model life tables. The answer also depends on
which is more robust with respect to the choice of the series of model tables,
a line of investigation that must be left for another time. (James McCann
and Samuel Preston contributed much of the foregoing argument.)



7
Birth and Population Increase from
Matrix Population Models

7.1 Solution of the Projection Equation

Chapter 6 combined birth and death in the life table framework to arrive
at an analysis of population growth. In this chapter we approach the same
question using the matrix population model

n(t + 1) = An(t), (7.1.1)

where n(t) is the population vector and A is a stage-classified projection
matrix. Instead of using repeated multiplication to generate numerical pro-
jections, as we did in Chapter 3, we turn now to the analytical solution of
(7.1.1). This solution provides the basic tools for demographic analysis. We
will present two derivations, because it may be helpful to see two ways of
getting to the same result (cf. Caswell 1997).

Both derivations use the eigenvalues and eigenvectors of A. We recall that
a vector w is a (right) eigenvector of A and the scalar λ is the corresponding
eigenvalue if

Aw = λw. (7.1.2)

Equation (7.1.2) implies that

(A − λI)w = 0, (7.1.3)

where I is an identity matrix and 0 is a vector of zeros. A nonzero solution
for w exists only if (A − λI) is singular; i.e., if

det(A − λI) = 0. (7.1.4)
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This is the characteristic equation, corresponding to the continuous-time
equation (6.1.2).

Associated with each eigenvalue there is also a left eigenvector v that
satisfies

v∗A = λv∗, (7.1.5)

where v∗ is the complex conjugate transpose of v.
If A is an s × s matrix, the characteristic equation is an sth-order

polynomial and A will have s eigenvalue–eigenvector pairs.

Awi = λiwi (7.1.6)
v∗

i A = λv∗
i (7.1.7)

each of which is a solution to the characteristic equation. The solution
to (7.1.1) depends on them all. We will assume that the eigenvectors are
linearly independent; a sufficient condition for this is that all the eigenvalues
are distinct.

Example 7.1 Characteristic equation for age-classified models

The characteristic equation for age-classified models can be derived
from a small example. Consider a Leslie matrix with four age classes;
its characteristic equation is

det(A − λI) = det

⎛
⎜⎜⎝

F1 − λ F2 F3 F4
P1 −λ 0 0
0 P2 −λ 0
0 0 P3 −λ

⎞
⎟⎟⎠ = 0. (7.1.8)

Expanding this determinant along the first column gives

0 = (F1 − λ) det

⎛
⎝ −λ 0 0

P2 −λ 0
0 P3 −λ

⎞
⎠− P1 det

⎛
⎝ F2 F3 F4

P2 −λ 0
0 P3 −λ

⎞
⎠

= (F1 − λ) (−λ) det
(

−λ 0
P3 −λ

)
− P1F2 det

(
−λ 0
P3 −λ

)

+ P1P2 det
(

F3 F4
P3 −λ

)

= λ4 − F1λ
3 − P1F2λ

2 − P1P2F3λ − P1P2P3F4. (7.1.9)

Dividing both sides by λ4 and rearranging puts the equation into a
more familiar form:

1 = F1λ
−1 + P1F2λ

−2 + P1P2F3λ
−3 + P1P2P3F4λ

−4 (7.1.10)
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or, in general,

1 =
∑

i

⎛
⎝i−1∏

j=1

Pj

⎞
⎠Fiλ

−i. (7.1.11)

This is a discrete form of Lotka’s integral equation for the instanta-
neous population growth rate r

1 =
∫ ∞

0
l(x)m(x)e−rxdx

with
∏i−1

j=1 Pj corresponding to l(x), Fi corresponding to m(x), and
λ−i corresponding to e−rx.

7.1.1 Derivation 1
We turn now to the solution of (7.1.1) for general matrices. We write the
initial population n0 as a linear combination of the right eigenvectors wi

of A:

n0 = c1w1 + c2w2 + · · · + csws (7.1.12)

for some set of coefficients ci yet to be determined. The linear independence
of the eigenvectors guarantees that we can write any n0 in this form.

We find the coefficients ci by writing (7.1.12) as

n0 =
(

w1 · · · ws

)⎛⎜⎝ c1
...
cs

⎞
⎟⎠ (7.1.13)

= Wc (7.1.14)

where W is a matrix whose columns are the eigenvectors wi, and c is a
vector whose elements are the ci. Thus

c = W−1n0. (7.1.15)

Now multiply n0 by A to obtain n(1):

n(1) = An0

=
∑

i

ciAwi

=
∑

i

ciλiwi. (7.1.16)

If we multiply by A again, we get n(2):

n(2) = An(1)

=
∑

i

ciλiAwi
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=
∑

i

ciλ
2
i wi. (7.1.17)

It should not be hard to convince yourself that continuing this process
yields the solution

n(t) =
∑

i

ciλ
t
iwi. (7.1.18)

The solution to (7.1.1) is a weighted sum of s exponentials, the weights
determined by the initial conditions.

7.1.2 Derivation 2
Iterating (7.1.1) leads directly to the solution

n(t) = Atn0. (7.1.19)

The dynamics of the population are determined by the behavior of At.
This is a function of the matrix A, and evaluating functions of matrices is
an important problem in matrix algebra. If A were a diagonal matrix the
answer would be easy:

At =

⎛
⎜⎜⎜⎝

at
11 0 · · · 0
0 at

22 · · · 0
. . .

0 0 · · · at
ss

⎞
⎟⎟⎟⎠ . (7.1.20)

A is not diagonal, but if it has linearly independent eigenvectors, it is
similar to a diagonal matrix Λ whose diagonal entries are the eigenvalues
λi. That is, there exists a nonsingular matrix W such that

W−1AW = Λ (7.1.21)

or, equivalently,

A = WΛW−1. (7.1.22)

Thus

A2 = WΛW−1WΛW−1

= WΛ2W−1 (7.1.23)

and, in general,

At = WΛtW−1 (7.1.24)

= W

⎛
⎜⎜⎜⎝

λt
1 0 · · · 0
0 λt

2 · · · 0
. . .

0 0 · · · λt
s

⎞
⎟⎟⎟⎠W−1. (7.1.25)
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Equation (7.1.21) implies that AW = WΛ; thus the columns of W are
the right eigenvectors wi of A:

W =
(

w1 w2 · · · ws

)
(7.1.26)

[i.e., the same as (7.1.14)]. It also implies that W−1A = ΛW−1. Thus the
rows of W−1 are the complex conjugates of the left eigenvectors vi of A:

W−1 = V =

⎛
⎜⎜⎜⎝

v∗
1

v∗
2
...

v∗
s

⎞
⎟⎟⎟⎠ (7.1.27)

So, we can rewrite (13.3.4) as

n(t) = Atn0 (7.1.28)
= WΛtVn0 (7.1.29)

=
∑

i

λt
iwiv∗

i n0, (7.1.30)

where v∗
i is the complex conjugate transpose of the left eigenvector corre-

sponding to λi. The product wiv∗
i is a matrix; these are sometimes called

the constituent matrices of A. The product v∗
i n0 is a scalar; it is the same

as the coefficient ci given by (7.1.15); see also Chapter 9.

7.1.3 Effects of the Eigenvalues
No matter how you derive it, the long-term behavior of n(t), given by
(7.1.18) and (7.1.30), depends on the eigenvalues λi as they are raised to
higher and higher powers. The eigenvalues may be real or complex. Their
contributions to the solution can be summarized as follows.

• If λi is positive, λt
i produces ex-

ponential growth if λ > 1 and
exponential decay if λ < 1.
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• If −1 < λi < 0, then λt
i exhibits

damped oscillations with a period
equal to 2.
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• If λi < −1, then λt
i produces

diverging oscillations with period
2.
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• Complex eigenvalues produce oscillations. Suppose that λ = a + bi,
and write it in polar coordinates,

λ = |λ|(cos θ + i sin θ),

where |λ| =
√

a2 + b2 is the magnitude of λ and θ = tan−1(b/a) is the
angle formed by λ in the complex plane. Raising λ to the tth power
yields

λt = |λ|t(cos θt + i sin θt). (7.1.31)

Complex eigenvalues come in complex conjugate pairs, so λ̄ = a − bi
will also be an eigenvalue. The solution to the projection equation
will thus contain terms of the form

λt + λ̄t = |λ|t2 cos θt. (7.1.32)

Thus, as a complex eigenvalue is raised to higher and higher powers,
its magnitude |λ|t increases or decreases exponentially, depending on
whether |λ| is greater or less than 1. Its angle in the complex plane
increases by θ each time step, completing an oscillation with a period
of 2π/θ.
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Regardless of whether λi is real or complex, the boundary between
population increase and population decrease comes at |λi| = 1.

Example 7.2 An age-classified population

Keyfitz and Flieger (1971) give an age-classified matrix, with 5-year
age classes and a projection interval of 5 years, for the United States
population in 1966. The entries are

i Fi Pi

1 0 0.99670
2 0.00102 0.99837
3 0.08515 0.99780
4 0.30574 0.99672
5 0.40002 0.99607
6 0.28061 0.99472
7 0.15260 0.99240
8 0.06420 0.98867
9 0.01483 0.98274

10 0.00089

The eigenvalues of this matrix (in decreasing order of absolute mag-
nitude), their magnitudes, and the angle θ (as a fraction of π) defined
in the complex plane by each are

λi |λi| θ/π

1.0498 1.0498 0.0000
0.3112 + 0.7442i 0.8067 0.3739
0.3112 − 0.7442i 0.8067 −0.3739

−0.3939 + 0.3658i 0.5375 −0.7618
−0.3939 − 0.3658i 0.5375 0.7618

0.0115 + 0.5221i 0.5223 0.4930
0.0115 − 0.5221i 0.5223 −0.4930

−0.4112 + 0.1204i 0.4284 −0.9093
−0.4112 − 0.1204i 0.4284 0.9093
−0.0852 0.0852 1.0000
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Figure 7.1. The eigenvalue spectrum for the projection matrix for the United
States population in 1966, plotted in the complex plane. The dominant eigenvalue
is λ1 = 1.0498.

Figure 7.1 shows the eigenvalue spectrum plotted in the complex
plane. (The computation of eigenvalues and eigenvectors is discussed
in Section 7.4.)
The largest eigenvalue is real and positive. The second largest is a
complex conjugate pair at angles of about θ = ±0.37π in the complex
plane. This pair would generate oscillations with a period 2π/θ ≈
5.4 projection intervals. Since the projection interval is 5 years, the
oscillation produced by this pair of eigenvalues has a period of 27
years.

7.2 The Strong Ergodic Theorem

A population is said to be ergodic if its eventual behavior is independent
of its initial state (Cohen 1979a). Ergodic theorems will appear repeatedly
throughout the following chapters. Most linear time-invariant matrix mod-
els are ergodic in a very strong sense of the word. Our understanding of
ergodicity relies on a powerful theorem about the eigenvalues of nonnega-
tive matrices. A matrix is nonnegative if all its elements are greater than
or equal to zero, and positive if all its elements are strictly greater than
zero. All population projection matrices are nonnegative, because negative
entries imply negative organisms, but they are not usually positive.
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Figure 7.2. The properties of nonnegative matrices.

7.2.1 The Perron–Frobenius theorem
A set of results known collectively as the Perron–Frobenius theorem de-
scribes the eigenvalues of nonnegative matrices. Two additional properties
of the matrix are important for this theorem: irreducibility and primitivity.
Nonnegative matrices can be divided into reducible and irreducible matri-
ces; irreducible matrices in turn are divided into primitive and imprimitive
matrices (Figure 7.2).

To define these terms, we need to define some structures in the life cycle
graph. A path from Ni to Nj is a sequence of arcs, traversed in the direction
of the arrows, beginning at Ni and ending at Nj , and passing through no
node more than once. A loop is a path from a node to itself. The length of
a path or a loop is the number of arcs it contains. A self-loop has length 1.
Thus, for example, the life cycle graph in Figure 3.9(a) contains three loops
(of length 2, 3, and 4) and no self-loops. The sequence N1 → N2 → N3 is a
path of length 2 from N1 to N3 . The sequence N1 → N2 → N1 → N2 → N3
is not a path, because it passes through N2 twice.

7.2.1.1 Irreducibility

A nonnegative matrix is irreducible if and only if its life cycle graph contains
a path from every node to every other node (Rosenblatt 1957, Berman
and Plemmons 1994). Such a graph is said to be strongly connected. A
reducible life cycle contains at least one stage that cannot contribute, by
any developmental path, to some other stage or stages. A reducible matrix
can always be rearranged, by renumbering the stages, into a normal form:

A =
(

B 0
C D

)
, (7.2.1)

where the square submatrices B and D are either irreducible or can them-
selves be divided to eventually yield a series of irreducible diagonal blocks
(Gantmacher 1959, Berman and Plemmons 1994).

Most life cycle graphs are irreducible. One common exception (Fig-
ure 7.3a) occurs in life cycles with postreproductive age classes, which
cannot contribute to any younger age class (e.g., the killer whale life cy-
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Figure 7.3. (a) An age-classified population with postreproductive age classes.
The corresponding matrix is reducible, because postreproductive age classes
cannot contribute to any younger age class. (b) A source-sink metapopula-
tion; the resulting matrix is reducible because individuals in Habitat 2 make
no contribution to any stage in Habitat 1.

cle in Figure 3.10). Another exception might arise in spatially structured
populations with one-way dispersal patterns (a “source-sink” model). Fig-
ure 7.3b shows an example; Habitat 1 contributes individuals to Habitat 2,
but not vice versa.

7.2.1.2 Primitivity

An irreducible nonnegative matrix A is primitive if it becomes positive
when raised to sufficiently high powers, i.e., if Ak is strictly positive for
some k > 0. A reducible matrix cannot be primitive, because when the
matrix in (7.2.1) is raised to powers, the upper-right block remains zero.

Primitivity can be evaluated from the life cycle graph; a graph is primi-
tive if it is irreducible and the greatest common divisor of the lengths of its
loops is 1 (Rosenblatt 1957, Berman and Plemmons 1994). An imprimitive
matrix is said to be cyclic, and to have an index of imprimitivity d equal
to the greatest common divisor of the loop lengths in the life cycle graph.
The age-classified graph in Figure 3.9(a) has loops of length 2, 3, and 4; the
greatest common divisor of these lengths is 1, so the corresponding matrix
is primitive.
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Figure 7.4. An imprimitive life cycle graph for an age-classified population with
one fixed age at reproduction. The graph contains only one loop, of length 4.

A sufficient condition for primitivity of an irreducible age-classified ma-
trix is the existence of any two adjacent age classes with positive fertility
(Sykes 1969, Demetrius 1971). For irreducible stage-classified models, a
sufficient condition for primitivity is the presence of at least one self-loop.

Most population projection matrices are primitive. The only significant
exceptions are age-classified matrices with a single reproductive age class,
which might be appropriate for semelparous species such as monocarpic
perennial bamboos (Janzen 1976), periodical cicadas, or Pacific salmon.
The life cycle graph for such an organism (Figure 7.4) contains only one
loop of length d, where d is the age of reproduction. Imprimitive matrices
also arise in models of annual plants (Chapter 13 of MPM).

7.2.1.3 Evaluating Irreducibility and Primitivity Numerically

It is easy to evaluate irreducibility and primitivity of small matrices by
inspection of the life cycle graph, but large matrices can be difficult. Horn
and Johnson (1985, pp. 507–520) summarize several theorems that provide
numerical methods to evaluate irreducibility and primitivity. Suppose that
A is a nonnegative s × s matrix. Then

• A is irreducible if and only if (I + A)s−1 is positive.

• Let c denote the length of the shortest loop in the life cycle graph of
A. Then A is primitive if and only if As+c(s−2) is positive. Since the
exponent increases with c, this result can be applied letting c be the
length of any loop in the life cycle graph.

• A is primitive if and only if As2−2s+2 is positive.

Thus, for example, a 20 × 20 matrix can be checked for irreducibility by
seeing if (I+A)19 is positive. If the graph of A contains a loop of length 4,
A is primitive if and only if A92 is positive. Without knowing the lengths
of any loops, the primitivity of A can be checked by seeing if A342 is posi-
tive. The calculation of powers in these results is made easier by repeated
squaring of the matrix, i.e., calculating A2, A4, A8, etc. The primitivity
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of a 20 × 20 matrix can be evaluated by calculating A512 using only nine
matrix multiplications.

Irreducibility and primitivity are determined by the arrangement of zero
and nonzero entries in the matrix; they are independent of the values of
those entries. Thus it is sometimes convenient to evaluate them using the
adjacency matrix of A, which has zeros in the same locations as the zeros
in A, and ones in those locations where A has positive elements. To avoid
overflow or underflow when raising matrices to high powers, rescale the
matrix to its adjacency matrix after each multiplication.

7.2.1.4 The Perron–Frobenius theorem

The Perron–Frobenius theorem∗ describes the eigenvalues and eigenvectors
of a nonnegative matrix A. Its most important conclusion is that there
generally exists one eigenvalue that is greater than or equal to any of the
others in magnitude. Without loss of generality, we will call this eigenvalue
λ1; it is called the dominant eigenvalue of A.

Primitive matrices: If A is primitive, then there exists a real, positive
eigenvalue λ1 that is a simple root of the characteristic equation. This
eigenvalue is strictly greater in magnitude than any other eigenvalue.
The right and left eigenvectors w1 and v1 corresponding to λ1 are
real and strictly positive. There may be other real eigenvalues besides
λ1, but λ1 is the only eigenvalue with nonnegative eigenvectors.

Irreducible but imprimitive matrices: If the matrix A is irreducible
but imprimitive, with index of imprimitivity d, then there exists a
real positive eigenvalue λ1 which is a simple root of the characteristic
equation. The associated right and left eigenvectors w1 and v1 are
positive.
The dominant eigenvalue λ1 is greater than or equal in magnitude to
any of the other eigenvalues; i.e.,

λ1 ≥ |λi| i > 1

but the spectrum of A contains d eigenvalues equal in magnitude to
λ1. One is λ1 itself; the others are the d − 1 complex eigenvalues

λ1e
2kπi/d k = 1, 2, . . . , d − 1.

For example, if

A =

⎛
⎝ 0 0 5

0.5 0 0
0 0.5 0

⎞
⎠ (7.2.2)

∗For proofs, see Gantmacher (1959), Seneta (1981), or Horn and Johnson (1985).
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Figure 7.5. The eigenvalue spectrum of the 3×3 imprimitive age-classified matrix
(7.2.2) with index of imprimitivity d = 3.

the index of imprimitivity d = 3, and the eigenvalues are λ1 = 1.0772,
λ2 = −0.5389 + 0.9329i, and λ3 = λ2. Figure 7.5 plots these three
eigenvalues in the complex plane.

Reducible matrices: If A is reducible, there exists a real eigenvalue λ1 ≥
0 with corresponding right and left eigenvectors w1 ≥ 0 and v1 ≥ 0.
This eigenvalue λ1 ≥ |λi| for i > 1.

The results of the Perron–Frobenius Theorem are summarized in Figure
7.6.

7.2.2 Population Growth Rate
The dominant eigenvalue λ1 determines the ergodic properties of popula-
tion growth. Consider n(t) from (7.1.18):

n(t) = c1λ
t
1w1 + c2λ

t
2w2 + c3λ

t
3w3 + · · · ,

where the eigenvalues are numbered in order of decreasing magnitude. If
λ1 is strictly greater in magnitude than all the other eigenvalues, it will
eventually dominate all the other terms in (7.1.18). Regardless of the initial
population, the other exponential terms will eventually become negligible
and the population will grow at a rate given by λ1 and with a structure
proportional to w1. Dividing both sides by λt

1 yields

n(t)
λt

1
= c1w1 + c2

(
λ2

λ1

)t

w2 + c3

(
λ3

λ1

)t

w3 + · · · . (7.2.3)
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Figure 7.6. The relations among nonnegative, irreducible, and primitive matrices,
and a summary of the results of the Perron–Frobenius theorem.

If λ1 > |λi| for i ≥ 2, then taking the limit as t → ∞ yields

lim
t→∞

n(t)
λt

1
= c1w1. (7.2.4)

This result is known as the strong ergodic theorem (Cohen 1979a); it
shows that, if A is primitive, the long-term dynamics of the population
are described by the population growth rate λ1 and the stable population
structure w1. The growth rate λ1 is related to the intrinsic rate of increase
r obtained from Lotka’s equation by λ1 = er or r = lnλ1.

The stable population structure is given by w1. Since eigenvectors are
determined only up to a scalar constant, w1 can be scaled as desired, for
example, so that its elements sum to 1 and represent proportions, or so
that they sum to 100 and represent percentages. Writing the coefficients
ci = v∗

i n0, as in (7.1.30), requires that whatever scaling is chosen satisfies
v∗

i wi = 1.

7.2.2.1 The Stable Age Distribution

We can find the stable age distribution directly from the Leslie matrix.
Writing Aw = λw, rows 2–s give

P1w1 = λw2

P2w2 = λw3

P3w3 = λw4

...



162 7. Birth and Population Increase from Matrix Population Models

Ps−1ws−1 = λws.

Since w can be scaled at will, let w1 = 1, and then solve for successive
values. This gives the stable age distribution, with abundances of each age
class measured relative to the abundance of the first:

w1 = 1
w2 = P1λ

−1

w3 = P1P2λ
−2

...
ws = P1P2 · · ·Ps−1λ

−s+1, (7.2.5)

which is directly analogous to (5.1.1),
∏

i Pi corresponding to l(x) and λ−i

corresponding to e−rx.

7.2.3 Imprimitive Matrices
An imprimitive matrix A has d eigenvalues with the same absolute mag-
nitude, where d is the index of imprimitivity. Only one of these eigenvalues
(λ1) is real and positive; the others form angles in the complex plane of
θ = 2π/d, 4π/d, . . . , (d − 1)2π/d, and are thus either complex or, if d = 2,
negative. The common magnitude of this set of d eigenvalues is strictly
greater than the magnitude of any of the remaining eigenvalues, so as
t → ∞ only the d leading eigenvalues have any influence on population
dynamics.

Cull and Vogt (1973, 1974, 1976) and Svirezhev and Logofet (1983) dis-
cuss the resulting dynamics in detail. Because of the complex eigenvalues,
the stage distribution does not converge, but instead oscillates with a pe-
riod d, as does the total population size. Suppose that d = 3, and consider
(7.2.3). The eigenvalues λ2 and λ3 are now complex, and |λ2| = |λ3| = λ1.
Using (7.1.31) for λt

i, the limit (7.2.4) is replaced by

n(t)
λt

1
→ c1w1 + c2(cos θt + i sin θt)w2 + c3(cos θt − i sin θt)w3 (7.2.6)

as t → ∞. Since w2 and w3 and c2 and c3 are complex conjugates, the
imaginary parts of (7.2.6) cancel out, so that n(t) is real, as it should be.

From (7.2.6) it follows that w1 is still a stable stage distribution in the
sense that, if n(0) is proportional to w1, so that c2 = c3 = 0, the population
will remain at that structure for all time. However, w1 is not stable in the
sense that an initial population not proportional to w1 will converge to it.
Instead, the limit in (7.2.6) is periodic, with period d.

Cull and Vogt (1973) show that a running average of n(t), with the
average taken over the period of the oscillation, converges to w1 and grows
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at a rate λ1:

lim
t→∞

1
d

d∑
j=1

n(t + j)
λt+j

1

= c1w1 (7.2.7)

The oscillatory asymptotic dynamics of imprimitive matrices makes in-
tuitive sense in the context of the life cycle graph. The existence of an index
of imprimitivity d > 1 means that there is an inherent cyclicity in the life
cycle; all loops are multiples of some common loop length. This cyclicity is
reflected in the dynamics of the population.

7.2.4 Reducible Matrices
The dynamics generated by a reducible matrix A are affected by initial
conditions. Rewrite A in normal form as

A =
(

B1 0
B21 B2

)
. (7.2.8)

If B1 and B2 are reducible, they are further subdivided until we finally
arrive at

A =

⎛
⎜⎜⎜⎜⎜⎝

B1
B21 B2
B31 B32 B3
...

. . .
Bm1 Bm2 · · · · · · Bm

⎞
⎟⎟⎟⎟⎟⎠ , (7.2.9)

where all the diagonal blocks are irreducible. Except for possible permuta-
tions of the block matrices, this decomposition is unique.

Let Si denote the set of stages in the submatrix Bi. The stages in Si

communicate with each other (because Bi is irreducible), and may com-
municate with stages in Si+1, . . . , Sm, but cannot communicate with the
stages in S1, . . . , Si−1. Since the dynamics of the stages in S1 are indepen-
dent of the stages in any of the other sets, the irreducible matrix B1 can be
analyzed by itself. Sometimes this makes biological sense, as the following
example shows.

Example 7.3 A population with postreproductive age classes

The matrix for a population with postreproductive age classes
(Figure 7.3a) can be put into normal form as

(
B1 0
B21 B2

)
=

⎛
⎜⎜⎜⎜⎝

0 F2 F3 0 0
P1 0 0 0 0
0 P2 0 0 0
0 0 P3 0 0
0 0 0 P4 0

⎞
⎟⎟⎟⎟⎠ . (7.2.10)
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In this case, S1 = {N1,N2,N3} and S2 = {N4,N5}. The irreducible
submatrix B1 is the population projection matrix for the reproductive
age classes, while the submatrix B2 contains the survival probabili-
ties of the postreproductive age classes. An analysis of B1 alone will
give the growth rate of the reproductive part of the population. This
rate is unaffected by the postreproductive age classes, and the strong
ergodic theorem guarantees that the age distribution of this part of
the population will converge to stability.
Human demographers routinely truncate projections of the female
population at the end of the reproductive period. The 10×10 matrix
for the United States population in Example 7.2 is based on 5-year
age classes; it actually represents the submatrix B1, but the vital
rates of postreproductive females (over 50 years old) have no impact
on the eigenvalues.

If you choose instead to analyze the entire matrix A, the long-term
dynamics depend on the initial conditions. The dynamics of the popu-
lation in Example 7.3, for example, depend very much on whether the
initial population consists only of postreproductive females, or includes
some reproductive individuals.

More general cases can be more complicated. The sets of states Si de-
fined by the partition of the life cycle generate a set of invariant subspaces
(Gantmacher 1959):

R1 = S1 + · · · + Sm (7.2.11)
R2 = S2 + · · · + Sm (7.2.12)

... (7.2.13)
Rm−1 = Sm−1 + Sm (7.2.14)

Rm = Sm. (7.2.15)

The subspaces are “invariant” because if the population lies in Ri at time
t, it also lies in Ri at time t + 1. The invariant subspaces are nested, so
Rm ⊂ Rm−1 · · · ⊂ R1.

The existence of more than one invariant subspace means that the pop-
ulation is not, strictly speaking, ergodic. The long-term dynamics are not
independent of initial conditions. A trajectory whose initial condition is
in Rj but not in any of the larger subspaces R1, . . . , Rj−1 is trapped in
Rj . It may or may not grow at the rate given by the dominant eigenvalue
of A. In Example 7.3 a population beginning with only postreproductive
individuals certainly does not do so.

An initial condition that lies in R1, but not in any of the smaller
subspaces R2, . . . , Rm, contains individuals lying in each of the sets of
states S1, . . . , Sm. The trajectory resulting from this initial condition will
eventually grow at the rate given by the dominant eigenvalue of A.
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In practice, when confronted by a reducible matrix, examine the life cycle
structure to see which subspaces are of most biological interest. In a popu-
lation with postreproductive age classes, it is obvious that the reproductive
part of the population dominates the dynamics, and that submatrix is of
main interest. In a metapopulation model the entire matrix is of interest,
and you must take care in interpreting the eigenvalues and eigenvectors.

7.3 Transient Dynamics and Convergence

The dominant eigenvalue of A gives the asymptotic population growth rate.
The population would grow at this rate if present environmental conditions
were maintained indefinitely. That is unlikely to happen, so it is often useful
to calculate measures of the short-term or transient dynamics. The simplest
approach is numerical projection, which shows exactly what happens to the
population from any specific initial condition.

7.3.1 The Damping Ratio and Convergence
The solution (7.1.18) contains information on the rate of convergence to the
stable population structure and the oscillations produced by the subdom-
inant eigenvalues during convergence (e.g., Lefkovitch 1971, Usher 1976,
Horst 1977, Longstaff 1984, Rago and Goodyear 1987). The asymptotic
rate of convergence is governed by the eigenvalue(s) with the second largest
magnitude. From (7.2.3) it is clear that, all else being equal, convergence
will be more rapid the larger λ1 is relative to the other eigenvalues. This
leads to the definition of the damping ratio

ρ = λ1/|λ2|. (7.3.1)

From (7.2.3) it follows that

lim
t→∞

(
n(t)
λt

− c1w1 − c2ρ
−tw2

)
= 0.

Thus, for large t ∥∥∥∥n(t)
λt

1
− c1w1

∥∥∥∥ ≤ kρ−t

= ke−t log ρ (7.3.2)

for some constant k. That is, convergence to the stable structure is asymp-
totically exponential, at a rate at least as fast as log ρ. Convergence could
be faster; for example, an initial population for which c2 = 0 would con-
verge at a rate at least as fast as log(λ1/|λ3|). And, to take the extreme
case, an initial condition that is proportional to w1 has already converged.



166 7. Birth and Population Increase from Matrix Population Models

The time tx required for the contribution of λ1 to become x times as
great as that of λ2 can be calculated as(

λ1

|λ2|

)tx

= x (7.3.3)

from which

tx = log(x)/ log(ρ). (7.3.4)

For a method that considers all the subdominant eigenvalues, see Horst
(1977) and Rago and Goodyear (1987).

7.3.1.1 Entropy and Convergence

Demetrius (e.g., 1974, 1983) introduced a quantity he calls population en-
tropy, H, which is related to the rate of convergence. The derivation of H is
based on subtle connections between the dynamics of the age structure in a
matrix population model and the dynamics of the probability distribution
of “genealogies,” that is, of pathways that an individual, its ancestors, and
its descendants may take through the life cycle graph, and is claimed to
have important evolutionary implications.

The result, for an age-classified model, is defined in terms of the discrete
net fertility function

φi = P1P2 · · ·Pi−1Fi (7.3.5)

Since the characteristic equation (7.1.11) is∑
i

φiλ
−i = 1, (7.3.6)

the quantity φiλ
−i can be treated as a probability distribution, and one

can calculate the entropy

H = −
∑

i

φiλ
−i log(φiλ

−i). (7.3.7)

Demetrius actually uses

H = − 1
T

∑
i

φiλ
−i log(φiλ

−i), (7.3.8)

where T =
∑

i iφiλ
−i is a measure of mean generation length.

H measures the extent to which reproduction is spread through the life
cycle. For a semelparous life cycle, H = 0, while H is maximized by spread-
ing expected reproduction out evenly over the life cycle. For a related index
measuring the curvature of the survivorship curve, see Section 4.3.

Tuljapurkar (1982, 1993) has studied the relations between population
entropy and measures of convergence based on the eigenvalues. He shows
that H gives a lower bound on the rate of convergence to the stable age
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distribution. In the second paper, he discusses the case of an iteroparous
but imprimitive matrix, in which the entropy is nonzero, but the population
does not converge to the stable structure. In these cases, H measures the
rate at which the age distribution converges to the d-dimensional subspace
of the state space within which the oscillating population structure must
lie (Tuljapurkar 1993).

7.3.1.2 Factors Influencing the Damping Ratio

The factors determining ρ in age-classified populations have been studied
by Coale (1972) for humans and Taylor (1979) for insects. Both studies
used Lotka’s continuous time model (7.5.1) for the birth series B(t). They
measured the damping ratio by r1 − u2 where u2 is the real part of the
second root of Lotka’s equation; this measure is equivalent to log ρ.

Human Populations

Coale’s (1972) calculations are based on the net fertility function φ(x) =
l(x)m(x), which gives the age-specific expected reproductive output of a
newborn individual. He assumed that φ(x) is approximately symmetrical,
with mean µ1 (µ1 is a measure of mean generation time; see Section 11.3.5).
He measured the concentration of reproduction near µ1 by the proportion
of φ(x) in the interval 3µ1/4 ≤ x ≤ 5µ1/4, and measured the asymme-
try of φ(x) by the ratio of the median to the mean. Based on 47 human
life tables, he concluded that log ρ was negatively correlated with both
the concentration and the asymmetry of fertility. Thus, populations in
which reproduction is spread out symmetrically over a wide range of ages
should converge to the stable age distribution more rapidly than those
with tightly restricted ages at reproduction, or skewed distributions of age
at reproduction. See Section 14.6 for a more analysis.

Insect Populations

Taylor (1979) carried out an extensive investigation of r1 − u2 in insect
populations. He used an age-classified model after converting calendar time
to units of “degree-days” to compensate for the temperature dependence of
development rate in insects. He used t20, the time required for contribution
of the second root to decline to 5 percent of that of the dominant root [see
(7.3.4)], to measure of the time required for convergence to the stable age
distribution.

Based on statistical models of the l(x) and m(x) functions, Taylor con-
cluded that the time to convergence was most strongly affected by the age at
first reproduction (earlier reproduction leads to more rapid convergence)
and the variance in m(x) (greater variance leads to more rapid conver-
gence). The time to convergence was nearly independent of survivorship
and the amount of reproduction.
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Taylor also calculated t20 from data for 36 populations of 30 species of
insects and mites. He found values of t20 ranging from 280 degree-days
(for the aphid Myzus persicae) to 115,120 degree-days (for each of two
species of moths). Typical figures for the duration of a growing season are
on the order of 1000–3000 degree-days, which would allow 40–70 percent of
the populations Taylor examined to converge to within 5 percent of their
stable age distributions.

Of course, this conclusion assumes constant vital rates during the course
of the growing season. As Taylor notes, variation in the vital rates would
slow down the process of convergence.

Taylor concludes that “the greater part of insect species existing in sea-
sonal environments never experience, or spend a small proportion of their
time in, a stable age distribution” (Taylor 1979, p. 527). This conclusion
may be too strong. There is nothing magical about a 5 percent contribution
of the second root as representing convergence. If a 10 percent threshold
is used instead, 55–75 percent of the populations would have time to con-
verge in a typical growing season. A 20 percent threshold would allow 65–80
percent of the populations to converge.

Carey (1983) provides some additional insight into the process of conver-
gence. He collected information on the stage distribution (egg, immature,
and mature) of a tetranychid mite on cotton plants throughout a growing
season [mites were among the most rapidly converging species in Taylor’s
(1979) tabulation]. He compared these distributions with the stable age dis-
tribution calculated on the basis of laboratory life table experiments. The
laboratory data predicted stable age distributions for increasing, station-
ary, and declining populations differing only in their fertilities. He found
that age distributions of the increasing, stationary, and declining phases of
the field population tended to converge to the predicted stable values. This
indicates that even if populations do not reach a constant stable age distri-
bution, the patterns of convergence to and deviation from that distribution
may provide useful biological information.

Multi-regional and Age-Size Models.

In age-size or multi-regional models individuals are characterized by mul-
tiple criteria. In this context, one can ask whether the age distribution
converges more or less rapidly than the size or region distribution (Liaw
1980, Law and Edley 1990). The answer seems to depend on the details of
the model.

Liaw (1980) found that the age distribution in a multi-regional model for
the human population of Canada converged more rapidly than the region
distribution. He interpreted this in terms of the magnitudes of the subdom-
inant eigenvalues of the matrix. Keyfitz (1980) likened the phenomenon to
the convergence of temperature in a set of interconnected rooms; the higher
rate of mixing homogenizes temperature within each room before the tem-



7.3. Transient Dynamics and Convergence 169

perature differences between rooms can decay. This interpretation depends,
of course, on the fact that migration between regions is generally small.

Law and Edley (1990) draw the opposite conclusion for age-size matrices.
They conclude that the size distribution should converge more rapidly than
the age distribution. This is partly a function of their assumption that all
births take place in the smallest size class. Since all individuals are born at
the same size, each cohort proceeds through the life cycle graph with the
same distribution of size-at-age. Thus, once the individuals in the initial
population have died out, the size distribution no longer changes. This will
not be true in a multi-state model in which individuals may be born into
more than one size class, region, or other state.

7.3.2 The Period of Oscillation
When complex eigenvalues are raised to powers, they produce oscillations
in the stage distribution, the period of which is given by

Pi =
2π

θi
(7.3.9)

=
2π

tan−1
(

�(λi)
�(λi)

) , (7.3.10)

where θi is the angle formed by λi in the complex plane and �(λi) and
�(λi) are the real and imaginary parts of λi, respectively.

The longest-lasting of the oscillatory components is that associated with
λ2. In age-classified models, P2 is approximately equal to the mean age
of childbearing in the stable population (Lotka 1945, Coale 1972). Thus
we would expect that perturbations to the stable age distribution would be
followed by damped oscillations with a period about equal to the generation
time.

In complex life cycles, P2 cannot be identified with the mean age of re-
production, but it still measures the period of the oscillations contributed
by the most important subdominant eigenvalue. Resonance between these
oscillations and environmental fluctuations is an important factor in the dy-
namics of populations in periodic environments (Nisbet and Gurney 1982,
Tuljapurkar 1985).

7.3.3 Measuring the Distance to the Stable Stage Distribution
It is useful to be able to measure the distance between two stage distri-
butions, or between an observed stage distribution and the stable stage
distribution. We will discuss two such measures here; a third (the Hilbert
projective pseudometric) is useful in the study of convergence in variable
environments (Golubitsky et al. 1975; MPM, Chapter 13), but has received
little actual use in demography.
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We wish to measure the distance between n(t) and the stable population
w. Without loss of generality, w can be scaled so that

∑
i wi = 1, and we

can transform n(t) into x(t) = n(t)/
∑

ni(t), so that both vectors describe
the proportions of the population in the different stages.

7.3.3.1 Keyfitz’s ∆

Keyfitz (1968, p. 47) proposed a measure that is equivalent to

∆(x,w) =
1
2

∑
i

|xi − wi|, (7.3.11)

which is a standard measure of the distance between probability vectors. Its
maximum value is 1 and its minimum is 0 when the vectors are identical.

7.3.3.2 Cohen’s Cumulative Distance

Keyfitz’s ∆ measures the distance between n and w independent of the
path by which n would actually converge to w. Cohen (1979b) proposed
two indices that measure the distance between the two vectors along the
pathway by which convergence takes place. We know from (7.2.4) that
n(t)/λt will converge to c1w1. Suppose that n(0) = n0. Cohen’s indices are
obtained by accumulating the differences between n(t)/λt and c1w1:

s (A,n0, t) =
t∑

i=0

(
n(i)
λi

− c1w1

)
(7.3.12)

r (A,n0, t) =
t∑

i=0

∣∣∣∣n(i)
λi

− c1w1

∣∣∣∣ . (7.3.13)

The vector s(t) accumulates the difference between n(t)/λt and c1w1,
whereas r(t) accumulates the absolute value of those differences.

As a measure of the cumulative distance between an initial population
n0 and its eventual limiting distribution, Cohen proposes calculating the
limit as t → ∞ of s(t) and r(t), and then adding the absolute values of the
elements of the vectors.

D1 =
∑

i

lim
t→∞

|si (A,n0, t)| (7.3.14)

D2 =
∑

i

lim
t→∞

|ri (A,n0, t)| . (7.3.15)

Cohen actually proposes scaling these indices by multiplying by a constant
(50 in his example) to make their magnitude comparable to that of ∆, but
this is not necessary.

Cohen gives an analytical expression for the limit in (7.3.14). Let B =
wv′, and let Z = (I + B − A/λ)−1. Then

lim
t→∞

s (A,n0, t) = (Z − B)n0. (7.3.16)
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The limit in D2, however, must be calculated numerically. When n0 = w,
c1 = 1 and D1 = D2 = 0. There is no well-defined upper bound for either
distance.

Example 7.4 Calculation of D1 and D2

Consider the matrix

A =

⎛
⎝ 0.4271 0.8498 0.1273

0.9924 0 0
0 0.9826 0

⎞
⎠ (7.3.17)

(for the 1965 U.S. population with 15-year age intervals, not that it
matters here). The stable age distribution and reproductive value,
scaled so that bov∗

1w1 = 1, are

w1 =

⎛
⎝ 0.4020

0.3299
0.2681

⎞
⎠ v1 =

⎛
⎝ 1.4487

1.1419
0.1525

⎞
⎠ (7.3.18)

and the observed age distribution, which we take as the initial
population, is

n0 =

⎛
⎝ 0.4304

0.3056
0.2640

⎞
⎠ . (7.3.19)

Thus c1 = v′
1n0 = 1.0127.

The cumulative deviation vectors s (A,n0, t) and r (A,n0, t) are

t r (A,n0, t)
T s (A,n0, t)

T

0 0.0232 0.0285 0.0075 0.0232 −0.0285 −0.0075
1 0.0358 0.0476 0.0306 0.0106 −0.0094 −0.0306
2 0.0424 0.0579 0.0461 0.0172 −0.0198 −0.0151
3 0.0457 0.0633 0.0545 0.0138 −0.0144 −0.0235
4 0.0474 0.0660 0.0589 0.0155 −0.0171 −0.0192
5 0.0483 0.0674 0.0611 0.0147 −0.0157 −0.0214
6 0.0487 0.0681 0.0622 0.0151 −0.0165 −0.0203
7 0.0489 0.0685 0.0628 0.0149 −0.0161 −0.0209
8 0.0490 0.0686 0.0631 0.0150 −0.0163 −0.0206
9 0.0491 0.0687 0.0633 0.0149 −0.0162 −0.0207

10 0.0491 0.0688 0.0633 0.0150 −0.0162 −0.0206

By t = 10, both r(·) and s(·) have converged to four decimal places.
The distance indices are D1 = 0.0518 and D2 = 0.1814.
Unlike ∆, both D1 and D2 are functions not only of n0, but also of the
projection matrix A, which determines the pathway by which n(t)
will converge. Consider the following three age-classified projection
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matrices:

A1 =

⎛
⎝ 0.3063 0.6094 0.0913

0.9924 0 0
0 0.9826 0

⎞
⎠

A2 =

⎛
⎝ 0 0.8784 0.1316

0.9924 0 0
0 0.9826 0

⎞
⎠

A3 =

⎛
⎝ 0 0.0641 0.9603

0.9924 0 0
0 0.9826 0

⎞
⎠ .

These matrices all have the same dominant eigenvalue (λ1 = 1) and
the same stable age distribution,

w =

⎛
⎝ 0.3370

0.3344
0.3286

⎞
⎠ , (7.3.20)

but A2 and A3 have reproduction concentrated in the last two and
the last age class, respectively.
Suppose that all three populations begin with the common initial
vector (7.3.19). The distance between n0 and w as measured by ∆ is
∆ = 0.093, regardless of which projection matrix is used. However,
the values of D1 and D2 vary dramatically depending on the pattern
of reproduction:

Matrix D1 D2

A1 0.1995 0.6058
A2 0.1652 1.5646
A3 0.1066 5.6866

When measured by D1, the cumulative distance from n0 to w1 de-
creases as reproduction is concentrated in a single age class. When
measured by D2, the cumulative distance increases as reproduction is
concentrated. This reflects the increasing oscillations in the age distri-
bution as reproduction is concentrated. Since s (A,n0, t) accumulates
positive and negative deviations from the stable distribution, oscilla-
tions tend to cancel each other out. On the other hand, r (A,n0, t)
accumulates the absolute value of the deviations, and the oscillations
are reflected in larger values of D2.

7.3.4 Population Momentum
Consider a population growing subject to a set of vital rates, and imagine
that you instantly and permanently change those rates to a set of stationary
rates; i.e., rates that yield λ1 = 1. The population will eventually stop
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growing, but unless its structure at the moment of the change happens to
match the stable stage distribution of the new vital rates, it will not stop
immediately. Hence, its final size will differ from its size when the vital
rates were changed. Keyfitz (1971b; see Sections 8.6 and 12.3) introduced
the term population momentum to describe this difference.

Let t = 0 denote the instant when the vital rates are changed; the
population vector is n(0) = n0. The momentum M is

M = lim
t→∞

‖n(t)‖
‖n0‖

, (7.3.21)

where ‖n‖ =
∑

i |ni| is the total population size. When M > 1 the popu-
lation stabilizes at a size larger than its size at t = 0. When M < 1, the
population shrinks before stabilizing.

Denote the old and new projection matrices by Aold and Anew, with
eigenvalues λ

(old)
i and λ

(new)
i . Assume that both matrices are primitive.

Since λ
(new)
1 = 1, we know from (7.1.30) that

lim
t→∞

n(t)

λ
(new)
1

= lim
t→∞

n(t)

=
(
v(new)∗

1 n0

)
w(new)

1 .

Thus

M =
eT

(
v(new)∗

1 n0

)
w(new)

1

eTn0
, (7.3.22)

where e is a vector of 1s.
For age-classified models M can be calculated explicitly in terms of the

birth rate, life expectancy, mean age of childbearing, and net reproductive
rate (Section 8.6).

The momentum of declining populations may be of interest in conserva-
tion biology. Consider a declining endangered species (i.e., λ

(old)
1 < 1), and

suppose (optimistically) that a new management strategy instantaneously
brings the vital rates up to replacement level. If M < 1, the population
will continue to decline before stabilizing, and the extent of this decline
might be an important management consideration. It turns out that stage-
classified models can yield results that are surprising from an age-classified
perspective.

Example 7.5 Population momentum in Calathea ovandensis

Calathea ovandensis is a perennial herb that grows in the under-
story of tropical forests. Horvitz and Schemske (1995) reported
size-classified matrices for four sites, over four years, in a Mexican rain
forest. Individuals were classified into eight stages: seeds, seedlings,
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juveniles, pre-adults, and small, medium, large, and extra-large
adults. Only the adult stages reproduce.
Here we focus on two of the 16 matrices reported by Horvitz and
Schemske (Plot 3, 1982–1983 and Plot 3, 1983–1984; we will call them
plots 3-82 and 3-83). The growth rates and net reproductive rates†

are

λ1 R0

Plot 3-82 1.1572 13.7360
Plot 3-83 0.8876 0.5771

The conditions in plot 3-82 support rapid population growth with a
high value of R0. Suppose that, concerned about a population explo-
sion of C. ovandensis, we implemented a pest control strategy that
instantly reduced fertility to replacement level by dividing each fer-
tility by R0. The momentum, calculated from (7.3.22), is M = 0.107.
Rather than continuing to grow, the population would shrink to about
10 percent of its current size before stabilizing.
The conditions in plot 3-83 would, if maintained, lead to a population
decline of almost 12 percent per year and eventual extinction. Sup-
pose that, concerned about this endangered species, we introduced a
conservation strategy that instantly increased fertility to replacement
level. The resulting momentum is M = 5.067. The population would
grow to five times its present size before stabilizing.
These results differ from those familiar in age-classified models be-
cause of the stable stage distributions before and after the change in
the vital rates. These distributions are

Plot 3-82 Plot 3-83

w(old)
1 w(new)

1
old
new w(old)

1 w(new)
1

old
new

0.875 0.737 1.186 0.942 0.971 0.970
0.104 0.102 1.025 0.031 0.028 1.093
0.009 0.010 0.885 0.004 0.001 5.482
0.002 0.003 0.693 0.007 0.000 36.820
0.002 0.008 0.288 0.015 0.000 54.864
0.000 0.002 0.241 0.002 0.000 62.810
0.002 0.039 0.055 0 0 —
0.005 0.099 0.047 0 0 —

In plot 3-82, the old stable stage distribution has too few individuals
in the adult stages (5–8). As a result, the population actually declines
as it converges to stationarity. In contrast, in plot 3-83, the old stable
stage distribution has too many individuals in the adult stages. The

†See Section 11.3.4 for calculation of R0 from stage-classified models.
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reproduction by these individuals generates an increase in population
size once the vital rates change to stationarity.

Dividing fertilities by R0 is not the only way to achieve a set of stationary
vital rates. Changes in survival or transition probabilities could also be
used, and might have different consequences for momentum. It is unlikely
that the vital rates could be changed instantaneously to replacement level.
Li and Tuljapurkar (1997) have considered the more general problem of an
arbitrary change in the vital rates, over some specified period of time, from
the old to the new stationary rates.

7.4 Computation of Eigenvalues and Eigenvectors

The numerical calculation of eigenvalues and eigenvectors is not an easy
problem. In their compilation of numerical recipes, Press et al. (1986) call
it “one of the few subjects covered in this book for which we do not recom-
mend that you avoid canned routines.” See Wilkinson (1965) and Wilkinson
and Renisch (1971) for the details if you really want to try it yourself.

Fortunately, there are now a number of computer packages available for
matrix calculations. By far the best is Matlab.‡ It is available for most
platforms and operating systems, permits both interactive calculations and
the writing of complex programs, contains powerful graphics capabilities,
and is widely used in the mathematics, physics, and engineering commu-
nities. The availability of this software and the power of microcomputers
have revolutionized demographic calculations involving matrices.§

7.4.1 The Power Method
The dominant eigenvalue of A, and the corresponding eigenvectors, can be
easily computed by the power method. If A is primitive,

lim
t→∞

At

λt
1

= w1vT
1. (7.4.1)

For large t, the columns of At are eventually all proportional to w1; the
rows are all proportional to v1. The eigenvalue λ1 can be calculated as the
ratio of any entry of At+1 to the corresponding entry of At.

The entries of At may overflow or underflow the computer for large t.
This can be avoided by rescaling At at each time step (e.g., divide At by

‡The MathWorks, Inc., 3 Apple Hill Drive, Natick MA, 01760, U.S.A.;
http://www.mathworks.com.

§For example, as of this writing, computing all the eigenvalues and eigenvectors of a
100×100 matrix in Matlab takes less than 0.1 seconds on an ordinary laptop computer.
A 500 × 500 matrix takes only 6.5 seconds.
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its maximum entry, so that all values remain between 0 and 1). Wilkinson
(1965, Chapter 9) discusses the extension of the power method to find the
subdominant eigenvalues and their eigenvectors.

7.5 Mathematical Formulations of the Basic
Equation of Population

So far, this book has dealt with what in retrospect can be seen as special
cases of a general analysis. Chapter 2 treated the pure death process of the
life table, in which births, if considered at all, were just equal to deaths.
Chapter 5 used the life table along with an arbitrary rate of increase r to
constitute a stable age distribution. Chapters 6 and 7 ascertained the same
r from equations incorporating age-specific birth rates as well as the life
table.

The general analysis of which all these are parts relates the entire popu-
lation of each generation or period to the preceding. This can be done in the
form of an integral equation, a matrix multiplication, a difference equation,
and a partial differential equation.¶ Because all these methods distinguish
individuals on the basis of some i-state variables, they are referred to in gen-
eral as structured population models; for a discussion with many ecological
examples see the chapters in Tuljapurkar and Caswell (1997).

These mathematical forms look very different from one another, though
they are ultimately equivalent. The purpose of presenting them is not to
exhibit the mathematical virtuosity of their several authors, but to take
advantage of the fact that some applications are easier with one approach,
others with another. This book is not the place to treat the mathematics
in detail; that has been done elsewhere (Coale 1972, Pollard 1973, Keyfitz
1968, Rhodes 1940, Tuljapurkar and Caswell 1997). Here the several ap-
proaches will be presented, and some observations made on their relation
to one another and to the applications that are the subject of this book.

7.5.1 The Lotka Integral Equation
Historically the earliest formulation was in terms of an integral equation

solved by Sharpe and Lotka (1911), whose unknown is the trajectory of
births and which, under the name of the renewal equation, has become
famous in many other contexts. Births B(t) at time t are the outcome of
the births a years earlier, where a ranges from about 15 to about 50, say
from α to β in general. Newborns of a years earlier, numbering B(t − a),

¶There is also a large literature using delay-differential equations for the same purpose
(Nisbet 1997, Gurney and Nisbet 1998) and a small but growing literature on systems
of integrodifference equations (Neubert and Caswell 2000, Easterling et al. 2000).



7.5. Mathematical Formulations 177

have a probability l(a) of surviving to time t: those that do survive have
a probability m(a) da of themselves giving birth in the time interval a to
a + da; the total of these over ages α to β is

∫ β

α
B(t − a)l(a)m(a) da, which

ultimately must equal current births B(t). But any such system has to have
an initial condition to start it off; in the Lotka equation the initial condition
is G(t), the number of births due to the women already born at the start
of the process. The function G(t) is zero for t � β, when all the females
alive at t = 0 have passed beyond childbearing. Entering the known G(t)
and l(a)m(a) in the Lotka integral equation,

B(t) =
∫ β

α

B(t − a)l(a)m(a) da + G(t), (7.5.1)

determines the trajectory B(t).
The method used by Lotka to solve (7.5.1) for B(t) was first to deal with

the homogeneous form, in which G(t) is disregarded, and to try B(t) = ert.
Entering this value for B(t) and corresponding B(t−a) = er(t−a) in (7.5.1)
without G(t) gives the characteristic equation (6.1.2), which has for the
general net maternity function l(a)m(a) an infinite number of roots. This
is a more satisfactory way of deriving (6.1.2) than was used above. The
left-hand side of (6.1.2), say ψ(r), is large for negative r and diminishes
toward zero as r becomes large and positive; we saw that only one of the
roots can be real. Suppose that the roots in order of magnitude of their
real parts are r1, r2, r3, . . . . The complex roots, such as the pair r2, r3,
must be pairs of complex conjugates, say x + iy, x − iy, where x and y are
real; if they are not conjugates, they could not be assembled into the real
equation (6.1.2).

The homogeneous form [i.e., omitting G(t) from (7.5.1)] is linear, and
hence if er1t is a solution so is Q1e

r1t, where Q1 is an arbitrary constant. If
a number of such terms are solutions, so is their sum. These considerations
provide the general solution to the homogeneous form

B(t) = Q1e
r1t + Q2e

r2t + · · · , (7.5.2)

where the r’s are the roots of (6.1.2) and the Q’s are arbitrary constants.
The solution to the nonhomogeneous form (7.5.1) containing G(t) is ob-
tained by selecting values of Q that accord with the births G(t) to the
initial population. Lotka showed that these are

Qs =

∫ β

0
e−rstG(t) dt∫ β

0
ae−rsal(a)m(a) da

s = 1, 2, . . . . (7.5.3)

The constant Q1 attached to the real term will be important in Chapter 6,
where we seek the effect on the trajectory of adding one person aged x.
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A less awkward way to solve (7.5.1) (Feller 1941, Keyfitz 1968, p. 128) is
by taking the Laplace transform of the members. That of B(t), for example,
is

B∗(r) =
∫ ∞

0
e−rtB(t) dt

and similarly for G(t) and l(a)m(a) = φ(a), say. The integral on the right of
(7.5.1) is a convolution, that is to say, the sum of the arguments of the two
functions B(t − a) and l(a)m(a) = φ(a) in the integrand does not involve
a; the transform of a convolution is the product of the transforms of the
two functions. The equation in the transforms (distinguished by asterisks)
is thus

B∗(r) = G∗(r) + B∗(r)φ∗(r),

and is readily solved for the transform B∗(r) of the unknown function B(t):

B∗(r) =
G∗(r)

1 − φ∗(r)
.

To invert the right-hand side, expand in partial fractions, using the factors
of 1 − φ∗(r), obtained from the roots r1, r2, . . . , of φ∗(r) = 1, which is the
same as (6.1.2). Call the expansion of B∗(r)

B∗(r) =
Q1

r − r1
+

Q2

r − r2
+ · · · .

The Laplace transform of er1t is∫ ∞

0
e−rter1t dt =

1
r − r1

,

as appears from integration, so the inverse transform of 1/(r − r1) is er1t.
Using this fact permits writing the solution in the form of (7.5.2), and the
coefficients Qs are the same as before, that is, (7.5.3). Specializing (7.5.3)
to s = 1 gives the constant Q1 for the first term of the solution as

Q1 =

∫ β

0
e−rtG(t) dt

κ
, (7.5.4)

where again κ is the mean age of childbearing in the stable population. The
roots r2, r3, . . . , all have real parts less than r1, so the terms involving them
become less important with time, and the birth curve B(t) asymptotically
approaches Q1e

r1t. This statement holds under general conditions on φ(a)
analogous to those of Section 1.10.

What the solution (7.5.2) amounts to is a real term that is an expo-
nential, plus waves around this exponential, of which the demographically
interesting one corresponds to the pair of complex roots of largest absolute



7.5. Mathematical Formulations 179

value, has the wavelength of the generation, and accounts for the echo ef-
fect: other things being constant, a baby boom in one generation is followed
by a secondary baby boom in the next generation.

7.5.2 The Leslie Matrix
The age-classified Leslie matrix, from which the stage-classified models in
this chapter evolved, can be traced back to Whelpton’s (1936) presentation
of what he called the components method of population projection, in which
an age distribution in 5-year age groups is “survived” along cohort lines,
and births less early childhood deaths are added in each cycle of projection.
The method was also used by Cannan (1895) and Bowley (1924) after him.

The dominant eigenvalue of a Leslie matrix, using a k-year projection
interval, corresponds to ekr1 of the Lotka formulation with time measured
in years. With finite age groups, in the usual finite approximation, the pop-
ulation grows somewhat faster on the Leslie than on the Lotka projection;
for instance, over a 5-year period, using Mexican data for 1966, λ1 was
1.1899 whereas e5r1 was 1.1891. For a low-increase country like the United
States the difference does not show by the fourth decimal place, and it
vanishes altogether when the projection interval is made small. In fact, as
the interval becomes small, the two models become identical (Keyfitz 1968,
Chapter 8).

7.5.3 The Difference Equation
A third way of looking at the population trajectory, developed like the

matrix during the 1930s and 1940s, by Thompson (1931), Dobbernack and
Tietz (1940, p. 239), Lotka (1948, p. 192), and Cole (1954, p. 112), is in
terms of a difference equation. A secondary treatment is found in Keyfitz
(1968, p. 130). Although the approach is now mainly of historical interest,
it is still occasionally used (e.g., Croxall et al. 1990).

Consider one girl baby together with the series expected to be generated
by her at 5-year intervals, say u0, u1, u2, . . . , where u0 = 1. The simplest
way to describe the model is to bunch the person-years lived into points at
5-year intervals. The ui will at first decrease, corresponding to the probabil-
ity that the girl will die during the time before she begins to bear children;
then they will start to increase, and they will increase further with the
approach to u8 just 40 years later, when her children start to bear. The
series generated by the girl now alive includes the probability that she will
live for 15 years and then have a child, say a probability of f3, that she
will live 20 years and then have a child, f4, and so on. After n periods of
5 years the girl’s descendants (including herself if still alive) are un. The
un must be equal to the chance of her living that long and having a child
then, fnu0, plus the chance of her having lived n − 1 periods and having a
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child that would now have given rise to u1, and so on. In sum,

un = fnu0 + fn−1u1 + fn−2u2 + · · · (7.5.5)

for all n. In this series the f are known quantities corresponding to the
l(a)m(a) of the Lotka form, or to the PiFi of the matrix; the u series is the
unknown function corresponding to B(t − a).

Just as the integral equation was solved by the Laplace transform, so
(7.5.5) is solved by generating functions. Multiply (7.5.5) for un by sn, add
all such equations from n = 0 to n = ∞, and then express the result in
terms of

U(s) = u0 + u1s + u2s
2 + · · · ,

F (s) = f0 + f1s + f2s
2 + · · · ,

so that the set of equations 7.5.5 amounts to

U(s) = 1 + U(s)F (s),

which is readily solved to give

U(s) =
1

1 − F (s)
. (7.5.6)

Dividing out the right-hand side would only generate again the series
with which we started. But first finding the roots of 1−F (s) = 0, a further
form of the characteristic equation, using the roots to break down the right-
hand side of (7.5.6) into partial fractions of the type di/(s − si), and then
expanding each of the partial fractions, we get a series in powers of s that
corresponds to (7.5.2) in the Lotka solution.

The descriptions read as though the Lotka model is backward look-
ing, since it finds the relation between the present generation and the
preceding one, whereas the Leslie model and the set of difference equa-
tions are forward looking, portraying the continuance of present rates into
the future. These differences of direction are superficial, however, and the
mathematical outcomes are essentially identical.

7.5.4 The McKendrick–von Foerster Equations
A fourth approach, due to McKendrick (1926, Kermack and McKendrick

1927) and von Foerster (1959), uses partial differential equations, with both
age and time continuous variables. It is most easily visualized in terms of the
Lexis diagram (Figure 2.1), redrawn in the present context as Figure 7.7.
If P (a, t) is the population (say of females) at age a and time t, the female
population of age a+∆a at time t+∆t is P (a+∆a, t+∆t). If ∆a = ∆t the
latter includes the same individuals as were counted in P (a, t), only subject
to deductions for mortality (as well as for emigration if one wishes, but
the present section excludes migration). The equation of change involving
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(a, t)

(a + ∆a, t + ∆ t)

Age

Time

t

 P(0, t)

 P(a, 0)

� �

Reproductive ages

Figure 7.7. Lexis diagram showing boundary distributions P (a, 0) along age axis
given at the outset, and P (0, t) along time axis generated by (7.5.8) and (7.5.9);
(7.5.8) fills out the interior of the quadrant.

mortality µ(a), a function of age but not of time, is

P (a + ∆a, t + ∆t) = P (a, t) − µ(a)P (a, t) ∆t. (7.5.7)

Expanding P (a + ∆a, t + ∆t) by Taylor’s theorem for two independent
variables and canceling P (a, t) from both sides leaves

∂P (a, t)
∂t

∆t +
∂P (a, t)

∂a
∆a = −µ(a)P (a, t) ∆t.

Dividing by ∆a, which is equal to ∆t, we have

∂P (a, t)
∂t

+
∂P (a, t)

∂a
= −µ(a)P (a, t). (7.5.8)

This is the McKendrick–von Foerster partial differential equation for one
sex, for all values of 0 < a < ω, where ω is the oldest age to which anyone
lives.

Births enter as a boundary condition at age zero:

P (0, t) =
∫ β

α

P (a, t)m(a) da, (7.5.9)
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where α is the youngest age of childbearing and β the oldest, and m(a) is
the age-specific birth rate, supposed to be invariant with respect to time.

This derivation assumes that a represents age, but these models have
been extended to classification by size or physiological condition by
Sinko and Streifer (1967, 1969), Oster (1976), and van Sickle (1977a,b).
For density-dependent versions see Gurtin and MacCamy (1974), Oster
and Takahashi (1974), and Oster (1976). The monograph of Metz and
Diekmann (1986) provides a complete but mathematically challenging
treatment; de Roos (1997) provides the best introduction for beginners.

In the general model, let g(a, t) be the “growth rate”, that is, the rate
at which individuals increase in whatever characteristic a represents. Then
(7.5.8) becomes

∂P (a, t)
∂t

+
∂g(a, t)P (a, t)

∂a
= −µ(a)P (a, t). (7.5.10)

For the special age-classified case, g(a) = 1.

7.5.5 A Common Structure
The common structure of the four presentations may not stand out
conspicuously, but each has the following.

1. An initial age distribution.

2. Provision for mortality; in the first three methods this is the sur-
vival probability l(x) or Lx of the life table, while in the von Foerster
method it is the age-specific death rate µ(a); if age and time move for-
ward together we have a cohort, and the partial differential equation
whose solution is

l(x) = exp
[
−
∫ x

0
µ(a) da

]
.

3. Provision for reproduction, presented as the first row of the matrix
A, and as the boundary condition (7.5.9) in the partial differential
equation.

4. A characteristic equation, whose real or positive root is the intrinsic
rate or its exponential, obtained from the birth boundary condition
in the partial differential equation.

5. Right eigenvectors, of which the positive one is the stable age distri-
bution.

6. Left eigenvectors, of which the positive one contains the reproductive
values of the several ages or stages (Chapters 8 and 9).

In principle any property of the deterministic population process under
a fixed regime is obtainable from any of the four forms, and numerical
differences disappear if the interval of time and age is small enough.



8
Reproductive Value from the Life
Table

When a woman of reproductive age is sterilized and so has no further chil-
dren, the community’s subsequent births are reduced. When a woman dies
or otherwise leaves the community, all subsequent times are again affected.
Our formal argument need make no distinction between emigration and
death, between leaving the country under study for life and leaving this
world altogether. A single theory answers questions about the numerical
effect of sterilization, of mortality, and of emigration, all supposed to be
taking place at a particular age x. By means of the theory we will be able
to compare the demographic results of eradicating a disease that affects
the death rate at young ages, say malaria, as against another that affects
the death rate at older ages, say heart disease.

A seemingly different question is what would happen to a rapidly increas-
ing population if its couples reduced their childbearing to bare replacement
immediately. The period net reproduction rate R0, the number of girl chil-
dren expected to be born to a girl child just born, would equal 1 from then
on, and ultimately the population would be stationary. But the history of
high fertility has built up an age distribution favorable to childbearing, and
the ultimate stationary total will be much higher than the total at the time
when the birth rate dropped to bare replacement. The amount by which
it will be higher is calculable, and by the same function—reproductive
value—that is used for problems of migration and changed mortality.



184 8. Reproductive Value from the Life Table

8.1 Concept of Reproductive Value

Without having these particular problems in mind, Fisher (1930, p. 27)
developed a fanciful image of population dynamics that turns out to provide
solutions to them. He regarded the birth of a child as the lending to him of
a life, and the birth of that child’s offspring as the subsequent repayment
of the debt. Apply this to the female part of the population, in which the
chance of a girl living to age a is l(a), and the chance of her having a girl
between ages a and a + da is m(a) da, so that the expected number of
children in the small interval of age specified is l(a)m(a) da. This quantity
added through the whole of life is what was defined as the net reproduction
rate R0 in Section 6.1:

R0 =
∫ β

α

l(a)m(a) da,

where α is the youngest age of childbearing and β the oldest. The quantity
R0 is the expected number of girl children by which a girl child will be
replaced; for the population it is the ratio of the number in one generation
to the number in the preceding generation, according to the given l(a) and
m(a) (see Chapter 9 for the generalization to stage-classified models).

Fisher’s image discounts the future, at a rate of interest equal to the
intrinsic rate r of Section 6.1. The value of 1 dollar, or one child, discounted
back through a years at annual rate r compounded momently is e−ra;
therefore the value of l(a)m(a) da children is e−ral(a)m(a) da, as in the
financial calculations of Section 2.5. The present value of the repayment
of the debt is the integral of this last quantity through the ages to the
end of reproduction. Thus the debt that the girl incurs at birth is 1, and
the discounted repayment is the integral

∫ β

α
e−ral(a)m(a) da. If loan and

discounted repayment are to be equal, we must have

1 =
∫ β

α

e−ral(a)m(a) da,

and this is the same as the characteristic equation (Lotka 1939, p. 65, and
(6.1.2)), from which the r implied by a net maternity function l(a)m(a) is
calculated. The equation can now be seen in a new light: the equating of
loan and discounted repayment is what determines r, r being interpretable
either as the rate of interest on a loan or as Lotka’s intrinsic rate of natural
increase.

The loan-and-repayment interpretation of the characteristic equation
suggests calculating how much of the debt is outstanding by the time the
girl has reached age x < β. This is the same as the expected number of
subsequent children discounted back to age x. Her expected births in the
interval a to a + da, a > x, are [l(a)/l(x)]m(a); and if these births are
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discounted back a − x years, her debt outstanding at age x is

v(x) =
∫ β

x

e−r(a−x) l(a)
l(x)

m(a) da

or, as Fisher (1930) wrote,

v(x) =
1

e−rxl(x)

∫ β

x

e−ral(a)m(a) da, (8.1.1)

where v(x) will be called reproductive value at age x. Evidently v(0) = 1,
and, for x > β, v(x) = 0.

For his studies in genetics Fisher needed to know the extent to which
persons of given age (say x), on the average contribute to the births of future
generations. This seemingly different question is answered by a function
proportional to v(x); its value can be established at v(x)/κ, where, as in
Section 6.1,

κ =
∫ β

α

ae−ral(a)m(a) da; (8.1.2)

that is, κ is the mean age of childbearing in the stable population. The
basic proposition is that the addition of a girl or woman aged x to the
population at time zero adds an expected v(x)ert/κ baby girls at time
t, always supposing the continuance of the same regime of fertility and
mortality. The simplest derivation of this takes off from the real term of
solution 7.5.2 to the Lotka renewal equation. A self-contained version is
provided in Section 8.9.

8.1.1 Reproductive Value from the Lotka Integral Equation
One Woman Aged x. The continuous model of Section 7.5 provides the
curve of descendants of an arbitrary initial age distribution, and its asymp-
totic trajectory is the real term Q1e

r1t of (7.5.2), the value of Q1 being given
by (7.5.4). For a distribution consisting of one woman aged x, disregarding
questions of continuity and of random variation, we find that the children
expected at time t to t+dt are [l(x+ t)/l(x)]m(x+ t) dt, which is therefore
the function G(t). Entering it in (7.5.4), that is, in Q1 =

∫ β

0 e−rtG(t) dt/κ,
we have

Q1 =

∫ β−x

0
e−rt[l(x + t)/l(x)]m(x + t) dt

κ
, (8.1.3)

which except for the divisor κ is identical to v(x) of (8.1.1), giving the
discounted value of the expected future births to a woman aged x. In the
special case of a baby just born, x = 0; and, by virtue of (8.1.3) and the
characteristic equation (6.1.2), Q1 = 1/κ.
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Stable Age Distribution. The same constant Q1 can be readily evaluated for
a population of unity having the stable age distribution be−ral(a). We can
guess in advance from the nature of stability that the asymptotic population
will be ert and the births bert, so Q1 must equal b for this case.

The proof seems simplest if we start by calculating the total expected
reproductive value of a stable population:∫ β

0
be−rxl(x)v(x) dx,

then cancel the e−rxl(x) with the denominator of v(x) of (8.1.1) to find

b

∫ β

0

∫ β

x

e−ral(a)m(a) da dx,

and finally integrate by parts to obtain

b

∫ β

0
ae−ral(a)m(a) da = bκ

as the reproductive value of a population of unity having a stable age
distribution. The constant Q1 is this total reproductive value divided by κ,
that is, bκ/κ = b, as suggested by intuition.

Arbitrary Age Distribution. A more general statement can be made. Let
p(x) be the age distribution as a density function; i.e., so that the number of
individuals between ages a and a+5, say, is 5Na =

∫ a+5
a

p(x)dx. Whatever
the initial age distribution p(x) of a closed population acted on by fixed
rates of birth and death, its births have an asymptotic trajectory Q1e

r1t

where Q1, defined by (7.5.4), is equal to
∫ β

0 p(x)v(x) dx/κ, that is, the
sum of reproductive value in the population divided by the mean age of
childbearing.

To see this, note that the total reproductive value of p(x) is

V =
∫ β

0
p(x)v(x) dx =

∫ β

0
p(x)

∫ β−x

0
e−rt l(x + t)

l(x)
m(x + t) dt dx. (8.1.4)

But this is the same as the numerator of Q1 in (7.5.4), where G(t) is the
number of children expected to be generated by the initial population p(x).
For the number of those children born at time t will be

G(t) =
∫ β

0
p(x)

l(x + t)
l(x)

m(x + t) dx, (8.1.5)

and multiplying by e−rt and then integrating over t gives the double integral
in (8.1.4). This demonstrates that Q1 = V/κ, where V is the number of
women, each weighted by the v(x) for her age x. Once again, 1/κ of the
present value of the balance outstanding by age x in the hypothetical loan
is equal to the contribution of a woman aged x to the ultimate trajectory,
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and both the loan and the trajectory are additive for a group of women of
arbitrary ages.

The foregoing proof depends on the solution of the integral equation.
The proof in Section 8.9, on the other hand, stands on its own feet. The
same result can be derived using matrix formulations, without assuming
age-classification (Chapter 9).

Once we know the effect on the birth trajectory of adding one girl and
assume a fixed birth rate b, we can obtain the effect on the population
trajectory by dividing by b. This is obvious, for since the birth rate b is
B/N , births divided by population, the population must be N = B/b,
births divided by the birth rate. Hence the effect of adding a girl or woman
aged x is to add v(x)ert/κ to ultimate births and v(x)ert/κb to ultimate
population.

To obtain some intuitive feeling for the reason why the effect of one child
just born on the ultimate birth trajectory is to raise it by v0e

rt/κ = ert/κ,
rather than just ert or some other value, suppose that all children are
born at the same maternal age and that this age is κ. Then the birth of
an additional girl child now will result in R0 girl children in κ years, R2

0
children in 2κ years, and Rn

0 in the nth generation, where R0 is, as before,
the net reproduction rate; that is to say, a child born now outlines a birth
curve (Fig. 8.1) rising in the ratio of R0 every κ years, but with births
occurring only at κ-year intervals. In other words, the curve outlined gives
the number of births per κ years resulting from one birth at the outset; it
is reduced to births per year by dividing by κ : ert/κ. This argument is at
best heuristic; the result applies much more generally than to the primitive
model in which all births occur at the same maternal age.

8.1.2 Numerical Calculation
The expression for v(x) in (8.1.1) applies to exact age x, and an approxi-
mation analogous to that customarily made for the stable age distribution
is

vx ≈ e−2 1
2 r

5LxFx + e−7 1
2 r

5Lx+5Fx+5 + · · ·
lx

. (8.1.6)

This, with numerator and denominator multiplied by e−rx, is shown in
Table 8.1 for Mauritius females, 1966. Figure 8.2 shows the curves of v(x)
for Mauritius, the United States, and Hungary, taken from Keyfitz and
Flieger (1971, pp. 315, 361, and 443).

For the average reproductive value for the age interval x to x + 4 at last
birthday the recurrence formula

5Vx = 5
2Fx +

e−5r
5Lx+5

5Lx
( 5
2Fx+5 + 5Vx+5) (8.1.7)
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Figure 8.1. Effect of one birth if all children are born at age κ of mother.
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Mauritius, 1966

U.S., 1967

Hungary, 1967

Figure 8.2. Curves of reproductive value for females of three countries.
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Table 8.1. Calculation of reproductive values for females of exact ages 0, 5, 10, . . . ,
50, Mauritius, 1966; r = 0.0305371

Age 5LxFx e−(x+2 1
2 )r

β−5∑
y=x

e−(y+2 1
2 )r

5LyFy e−rxlx vx

x (1) (2) (3) (4) (5) = (3)/(4)

0 0.92650 1 1 1
5 0.79531 1 0.78463 1.2745

10 0.0014 0.68269 1 0.66822 1.4965
15 0.1858 0.58602 0.99907 0.57152 1.7481
20 0.6236 0.50304 0.89019 0.48700 1.8279
25 0.6061 0.43181 0.57649 0.41212 1.3988
30 0.4730 0.37067 0.31477 0.34841 0.9034
35 0.3239 0.31818 0.13944 0.29392 0.4744
40 0.1201 0.27312 0.03639 0.24719 0.1472
45 0.0146 0.23445 0.00358 0.20816 0.0172
50 0.0008 0.20125 0.00016 0.17341 0.0009

Source: Net maternity function from Keyfitz and Flieger (1971, p. 315).

Table 8.2. Values of 5Vx, the Fisher reproductive value of females aged x to x+4
at last birthday, and 5Vx/(bκ), the coefficient of the amount by which population
at time t is raised by one added person aged x to x + 4 at time zero, Mauritius,
1966

Age 5Vx 5Vx/(bκ)

0–4 1.159 1.092
5–9 1.381 1.301

10–14 1.618 1.524
15–19 1.783 1.679
20–24 1.611 1.517
25–29 1.151 1.084
30–34 0.690 0.650
35–39 0.312 0.294
40–44 0.083 0.078
45–49 0.009 0.008
v0 = 1

v0/(bκ) =
1

(0.03889)(27.30)
= 0.942

Source: Keyfitz and Flieger (1971), p. 315.

provides a reasonable approximation. However, the 5Vx of Table 8.2 was
calculated, not in this way, but by the method (easier if a computer is avail-
able) of finding the left eigenvector of the projection matrix in Sections 7.1
and 7.5; see Section 9.1 for the connection between reproductive value and
eigenvectors.

Evidently total reproductive value of a population of arbitrary age dis-
tribution acted on by a fixed regime increases at rate r in the short as
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well as the long run. Such a statement is conspicuously not true for the
size of the total population, whose increase in the short run depends on
its age distribution. Both births and population acted on by a fixed regime
ultimately go into an exponential trajectory with parameter r; the total of
reproductive values immediately follows an exponential trajectory (Fisher
1930, p. 30).

The above like other pieces of theory in this book can be justified only
by its ability to answer demographic questions. The following section deals
with the first of a series of such questions.

8.2 Ultimate Effect of Small Out-Migration
Occurring in a Given Year

When people leave a crowded island like Barbados or Java, they make life
somewhat easier for those who remain behind, assuming that the rates of
mortality and fertility do not change as a result of their departure.

The age at which they leave determines the effect. Departures of persons
who are already past the ages of reproduction cannot influence the ultimate
population trajectory; the effect of their leaving is only the subtraction of
the person-years they themselves will live from the time of departure to
death.

A one-time departure of a person of reproductive age or below will lower
the expected population trajectory, but cannot change its rate of climb
as long as the age-specific rates of birth and death remain unchanged.
In symbols, if the ultimate trajectory is Qert, a one-time departure of an
individual or a group under age β can lower Q but will not alter r. It follows
from the theory of Section 8.1 that a female of age x leaving reduces the
female births at time t by v(x)ert/κ and the female population at time t
by v(x)ert/(bκ), where we take t to be large. Thus the change in Q for
population due to the departure of one female aged x is ∆Q = −v(x)/(bκ).

We are still on the one-sex model and suppose female dominance, that
is, that births are determined by the number of females at the several ages
and not by the number of males. This would be true if males were in the
majority or polygyny prevailed or artificial insemination were applied. The
extension of the ideas of the present chapter to a genuine two-sex model
depends on behavioral variables not readily incorporable in demographic
theory.

The effect of a one-time bulge in births follows readily. With ∆B extra
births in a given year the birth trajectory would be raised ert ∆B/κ, and
the population trajectory would be raised this amount divided by the birth
rate b.

Does a female of random age affect the ultimate population more or less
than a girl baby? The former, entering at time zero, raises the population
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at time t an expected ert, while the latter raises it by ert/(bκ). The mean
age of childbearing κ is never very far from 27, and the reciprocal of 27 is
0.037. For low-fertility populations b is considerably less than 1/κ ≈ 0.037;
hence a baby has more effect than a female between zero and ω randomly
chosen from the stable age distribution. For high-fertility populations, on
the other hand, b is greater than 1/κ and a baby has less expected effect
than a randomly selected female. Thus for Mexico the departure of a woman
of random age has more effect than averting one birth; for the United States
averting a birth has more effect.

The same technique can be used to find a variety of equivalents. By
what amount, for example, would births have to drop in a particular year
to offset an immigration of 1000 women aged 15 to 19 in the same year?
The population at distant time t resulting from 1000 women aged 15 to 19
is 10005V15e

rt/(bκ). The population from B births at time t is Bv0e
rt/(bκ).

Equating these two expressions, we obtain

B =
10005V15

v0

as the required equivalent number of births. From the Mauritius informa-
tion in Table 8.2 we have, since 5Vx is normed to v0 = 1,

B = 10005V15 = 1783.

In any one year (or other period) a drop of 1783 female births would be
required to offset the immigration of 1000 women aged 15 to 19 at last
birthday.

8.3 Effect of Continuing Birth Control
and Sterilization

Suppose that a few women each year resort to birth control when they
are of age a, and this occurs year after year, so that the birth rate m(a) is
permanently lowered for age a, but all other age-specific birth rates remain
unaltered. If the change in the age-specific birth rate in the single year of age
a is ∆m(a), a quantity that will carry a minus sign for decrease in m(a), the
change in the intrinsic rate of the population is determined by finding the
derivative dr/dm(a) in the characteristic equation

∫ β

α
e−rxl(x)m(x) dx = 1

as in Section 6.3, and for finite increments ∆r and ∆m(a) is approximately

∆r ≈ −e−ral(a) ∆m(a)
κ

, (8.3.1)

the same as (6.3.8). The result depends on ∆m(a) being small enough so
that e−ra, as well as κ, is substantially unaffected. Subject to this same
condition, we can find the combined effect of small increments at two dif-
ferent ages, say a and a+1. The effect on r will be approximately the sum
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of the ∆r for ∆m(a) and that for ∆m(a + 1), and similarly for any other
groups of ages. This type of perturbation analysis of the rate of increase is
expanded on in Chapter 13.

Now suppose a permanent change in m(a) for all a from age x onward,
so that the new birth function is m(a), a < x, and (1 − f)m(a), a � x,
f being a small positive or negative fraction. This could be the result of
sterilization becoming the custom at age x, or of the fraction f of women
at age x turning to conventional birth control in order to avoid all further
children. If f is small we can enter −fm(a) for ∆m(a) in the preceding
display, and find the total effect ∆r by adding the ∆r’s for the several
ages:

∆r = −
f

∫ β

x

e−ral(a)m(a) da

κ
. (8.3.2)

The integral here will be recognized as the same one that turned up in v(x)
of (8.1.1). Entering v(x) makes this

∆r = −fe−rxl(x)v(x)
κ

.

In words, the decrease by the fraction f of fertility rates for all ages above
x lowers the intrinsic rate by v(x) multiplied by fe−rxl(x)/κ. Remembering
that be−rxl(x) is the fraction of the population at age x, where at this point
it is convenient to make x integral and have it represent exact ages x − 1

2
to x + 1

2 , we can say that the decrease in r is f/(bκ) times the fraction of
the population aged x, times the reproductive value at age x. More simply,
the integral in (8.3.2) is the fraction of current mothers aged x and over, so
(8.3.2) tells us that the effect on r is equal to the fraction f dropping out of
childbearing, times the fraction of babies born to women aged x and over,
divided by the mean age of childbearing. Designating by bx the fraction of
births occurring to mothers aged x and over, (8.3.2) can be written

∆r = −fbx

κ
.

Conventional birth control, sterilization, or mortality, if they take place
year after year can lower births to women over age x by a small fraction f ,
and if they do the rate of increase r is reduced by f times the fraction bx

of children born to women aged x and older, divided by the mean age of
childbearing.

The preceding discussion also covers the consequences of a fall in the
death rate. Suppose that the rate at ages x − 1

2 to x + 1
2 goes from µ(x) to

µ(x) + ∆µ(x) and remains at that level, or (what is practically the same)
that ∆µ(x)/δ is permanently added to the density µ(x) over a narrow
age interval δ. Then all the results of this section apply. The derivation
first finds the effect of ∆µ(x)/δ on l(x), using the approximate formula
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e−∆µ(x)/δ ≈ 1 − ∆µ(x)/δ. Thereafter the derivation is the same as for
(8.3.1), since l(a) and m(a) enter symmetrically into the characteristic
equation.

8.4 Large Change in Regime

So far only small changes have been discussed. We now ask the same ques-
tion in reference to an arbitrary, possibly large, change: if birth control is
applied by women aged x and above, what fraction of births must they
avoid in order to change the rate of increase from r to r + ∆r?

Suppose that in every cohort women aged x and higher apply birth con-
trol to the point where they reduce their age-specific rates by the fraction
f of what they were before; sterilization of f of the women reaching age x
would have this effect. The original intrinsic rate of increase was found by
solving for r in the characteristic equation. The equation for the new rate
of increase r + ∆r breaks down into two parts:∫ β

α

exp
[

− (r + ∆r)a
]
l(a)m(a) da

−f

∫ β

x

exp
[

− (r + ∆r)a
]
l(a)m(a) da = 1, (8.4.1)

where we suppose a � x � β. Equation 8.4.1 could be solved for x if f and
r + ∆r were given, or for r + ∆r if x and f were given. A simple explicit
solution is available for f , the fraction of decrease above the given age x
that will suffice to change the intrinsic rate from r to r + ∆r:

f =

∫ β

α

exp
[

− (r + ∆r)a
]
l(a)m(a) da − 1∫ β

x

exp
[

− (r + ∆r)a
]
l(a)m(a) da

. (8.4.2)

Result 8.4.2 depends in no way on ∆r being small. [Find its limiting value
when ∆r is small.]

The numerator of (8.4.2) is bound to be positive for ∆r < 0, correspond-
ing to the birth control formulation in which f is defined as positive and
birth rates go from m(a) to (1 − f)m(a). In the special case where the
desired r + ∆r = 0 we would have the simpler form

f =

∫ β

α

l(a)m(a) da − 1∫ β

x

l(a)m(a) da

=
R0 − 1∫ β

x

l(a)m(a) da

. (8.4.3)

The f of (8.4.3) is the fraction by which women aged x and over must
reduce fertility to bring the rate of population increase r down to zero. The
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age x is arbitrary but is required to stay within certain limits if 0 < f < 1.
For data for Colombia, 1965, one observes that no reduction of fertility
in women 30 and over could bring stationarity if ages under 30 retained
existing rates, for we have R0 = 2.267 and

∫ 50
30 l(a)m(a) da = 1.001, and

hence a drop to R0 = 1 would not occur even if all fertility above age 30
disappeared.∗

One would have thought that a girl child would contribute the same
amount to the ultimate trajectory irrespective of the age of her mother; all
babies start at age zero, after all. The expression ∆r = e−ral(a) ∆m(a)/κ
in (8.3.1) is consistent with this view, for it says that the effect of a small
change ∆m(a) in the age-specific birth rate is proportional to e−ral(a),
that is, proportional to the number of women of that age in the stable
population; this has to be right, in that a given change in the birth rate
will alter the number of babies in proportion to the number of women to
whom the change is applied. The expression for ∆r in (8.3.1) supposes that
∆m(a) is small enough not to affect κ, the mean age of childbearing.

But for the ultimate effect of a large change that takes place generation
after generation, it does make a difference whether women are young or
old when they have their children. Avoiding births at age 40 is not as
effective as avoiding them at age 20, because of the more rapid turnover of
a population in which births occur to younger mothers. This is taken into
account in (8.4.2) and (8.4.3).

8.5 Emigration as a Policy Applied
Year After Year

Each year some inhabitants of Java go to Sumatra under an official trans-
migration program that has been government policy for two-thirds of a
century. The authorities have always recognized that the amount of re-
lief provided to Java depends on the age of the migrants at the time of
their out-migration, and that young couples are the ideal ones to go, but
they have tended to exaggerate the effect. Widjojo (1970) shows realis-
tic population projections under alternative assumptions about the rate of
movement, from which the consequences of different policies can be seen.

∗The net reproductive rate has come to play a central role in modelling epidemic dis-
eases, treated as a problem in pathogen demography. In this context, R0 is the expected
number of secondary cases caused by a single infected individual over its entire infectious
period. Whether R0 is greater or less than 1, when the population consists entirely of
susceptible hosts, determines whether the disease will spread or die out. Calculations
essentially identical to those used here to determine the amount by which fertility must
be reduced in order to stop population growth are used to calculate the level of vaccina-
tion that must be imposed to stop the spread of a disease. See Diekmann et al. (1990),
Anderson and May (1991), and Diekmann and Heesterbeek (2000).
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In this section we will examine one aspect of policy only: the effect of the
age of the migrants on the ultimate rate of increase of the population.

We can express (8.4.2) in terms of a generalization of reproductive value.
In this general reproductive value, say vx,r̄, future children are discounted,
not at the intrinsic rate r of the observed population, but at the rate r̄ at
which the emigration policy is to aim:

vx,r̄ =
∫ β−x

0
e−r̄t l(x + t)

l(x)
m(x + t) dt.

Then the alternative form of (8.4.2) is

fx =
v0,r̄ − 1

e−r̄xlxvx,r̄
. (8.5.1)

The argument of this section pivots on the simple result 8.5.1. If r̄ = 0,
we obtain the fraction fx emigrating out of each cohort for stationarity. In
general, (8.5.1) serves to show how much emigration is required to attain
the demographic objective represented by a rate of increase r̄, given the
continuance of the life table l(a) and the birth rates m(a).

To apply (8.5.1) we need only the net maternity function l(a)m(a). For
Mauritius, 1966, this is given in Table 6.1 in 5-year age intervals. The
intrinsic rate of Mauritius is estimated at 30.54 per thousand. How much
emigration will be required for the modest goal of bringing it down to 20
per thousand? If the emigrants are x = 25 years of age, (8.5.1) tells us that
with r̄ = 0.020 a fraction f25 = 0.417 of each cohort must leave on reaching
this age. If the emigrants are x = 20 years of age, the proportion that will
have to leave is smaller, 0.279.

Thus, to bring about a drop from the actual increase of 30.54 per thou-
sand to one of 20.00 per thousand, the departure of 41.7 percent of each
cohort will be required if the emigrants leave at age 25, and of 27.9 percent
if they leave at age 20. Emigration is not the easiest means of population
control.

To find the amount of emigration that will hold the ultimate rate of
increase down to zero we need the value of fx when r̄ is replaced by zero
in (8.5.1). The integral in the numerator is then R0, the net reproduction
rate, and the integral in the denominator is the part of R0 beyond age x.
Hence we have again (8.4.3),

fx =
R0 − 1∫ β

x

l(a)m(a) da

(8.5.2)

as the fraction of the age x that must emigrate per year to hold the ultimate
population stationary, x again being low enough for fx not to exceed unity.
To see (8.5.2) independently of its derivation as a special case of (8.5.1)
we note that to bring the net reproduction rate down to 1 we need to lose
R0 −1 births per woman from each birth cohort. The number of births per
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woman lost by removing a proportion f of women at age x is

fx

∫ β

x

l(a)m(a) da.

Equating this to R0 − 1 yields (8.5.2).

8.6 The Momentum of Population Growth

The authorities of some underdeveloped countries fear that once birth con-
trol is introduced their populations will immediately stop increasing. Such
fears are misplaced, partly because diffusion takes time, and even when
birth control is available it is not immediately used. But let us leave aside
this behavioral aspect, and consider only the momentum of population
growth that arises because the age distribution of a rapidly increasing
population is favorable to increase. The concept has been introduced in
Section 7.3.4; here we take advantage of the age-classification to explore
what determines population momentum.

Suppose that all couples adopt birth control immediately and drop their
births to a level that permits bare replacement. With U. S. mortality rates
fertile couples need on the average (Section 16.3) 2.36 children to give a
net reproduction rate R0 of unity. An average of 2.36 children covers the
loss of those dying before maturity, the fact that not everyone finds a mate,
and some sterility among couples.

We saw that without any change in birth rates the ultimate birth
trajectory due to p(x) dx persons at age x to x + dx would be
ertp(x)v(x) dx/κ, and for the whole population distributed as p(x) would
be ert

∫ β

0 p(x)v(x) dx/κ. For calculating the effect of the fall to bare re-
placement we want the trajectory based on the existing age distribution
p(x), but with a function v∗(x), corresponding to an intrinsic rate r = 0.
We can arrange this, without changing any other feature of the age inci-
dence of childbearing, by replacing m(x) by m∗(x) = m(a)/R0, which will
ensure that R∗

0 = 1 and r∗ = 0. Then the ultimate stationary number of
births must be ∫ β

0
p(x)v∗(x) dx/κ, (8.6.1)

where κ becomes µ, the mean age of childbearing in the stationary
population because v∗ = 0:

v∗(x)
κ

=
1

µl(x)

∫ β

x

l(a)m(a) da

R0
.

Ascertaining the ultimate stationary total population requires dividing by
b, the stationary birth rate, which is the same as multiplying by

o
e 0, the

expectation of life at age zero.
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Expression 8.6.1 is readily usable. If we have a table of the net ma-
ternity function in 5-year age intervals up to age 49 and the initial age
distribution, then, by cumulating the net maternity function to obtain 5V

∗
x

and multiplying 10 pairs of 5Nx and 5V
∗
x , we have the ultimate stationary

population
o
e 0Σ

β−5
0 5Nx 5V

∗
x /µ, (8.6.2)

where

5V
∗
x =

(5/5Lx)( 1
2 5LxFx + 5Lx+5Fx+5 + · · ·)

R0
.

This calculation will give the same result as a full population projection
with the new m∗(x).

If the initial age distribution p(x) can be taken as stable, the result is
even simpler. Entering p(x) = p0be

−rxl(x) in (8.6.1), where r is the intrinsic
rate before the drop to zero increase, canceling out l(x) in numerator and
denominator, and multiplying by

o
e 0 to produce the stationary population

rather than stationary births, we obtain

(1/p0)
o
e 0

∫ β

0
p(x)v∗(x) dx =

b
o
e 0

µ

∫ β

0

∫ β

x

e−rxl(a)
m(a)
R0

da dx (8.6.3)

as the ratio of the ultimate stationary population to the population at the
time when the fall occurs.

The double integral is evaluated by writing bx for
∫ β

x
l(a)m(a) da/R0 and

integrating by parts in (8.6.3) to obtain

b
o
e 0

µ

∫ β

0
e−rxbx dx =

b
o
e 0

µ

[
e−rx

−r
bx

∣∣∣∣β
0

− 1
r

∫ β

0
e−rx l(x)m(x)

R0
dx

]
.

We find that the right-hand side reduces to

b
o
e 0

rµ

(
R0 − 1

R0

)
(8.6.4)

on applying the fact that b0 = 1 and
∫ β

0 e−rxl(x)m(x) dx = 1. Expression
8.6.4 gives the ratio of the ultimate population to population just before
the fall to zero increase and is the main result of this section.

For Ecuador, 1965, the data are 1000b = 44.82,
o
e 0 = 60.16, 1000r =

33.31, µ = 29.41, and R0 = 2.59. These make expression 8.6.4 equal to
1.69. By simple projection or by (8.6.2), which does not depend on the
stable assumption, we would have a ratio of the ultimate stationary to
the present population of 1.67. This experiment and others show that the
degree of stability in many underdeveloped countries makes (8.6.4) realistic.
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Table 8.3. Values of b
o
e 0/

√
R0, the approximate ratio of the ultimate to the

present population if the birth rate falls immediately from b = 0.045 to that
needed for bare replacement, 1/

o
e 0

Initial
o
e 0

R0 40 50 60

1.5 1.47 1.84 2.20
2.0 1.27 1.59 1.91
2.5 1.14 1.42 1.71

James Frauenthal has pointed out to me that (b
o
e 0/rµ)[(R0 − 1)/R0] of

(8.6.4) is very nearly b
o
e 0/

√
R0. For R0 is approximately erµ, and hence

b
o
e 0

rµ

(
R0 − 1

R0

)
=

b
o
e 0√
R0

[
erµ/2 − e−rµ/2

rµ

]

=
b

o
e 0√
R0

(
1 +

r2µ2

24
+

r4µ4

960
+ · · ·

)
on expanding both the exponentials in powers of rµ. The product rµ is of
the order of unity, so that r2µ2/24 must be close to 0.05. The example of
Ecuador, 1965, gives b

o
e 0/

√
R0 = 1.68 as compared with 1.69 for (8.6.4).

To obtain an intuitive meaning of this, note that the absolute number
of births just after the fall must be 1/R0 times the births just before the
fall. Births will subsequently rise and then drop in waves of diminishing
amplitude, and it seems likely that the curve will oscillate about the mean
of the absolute numbers before and after the fall. If the geometric mean of
1 and 1/R0 applies, the ultimate number of births will be 1/

√
R0 times the

births before the fall. In that case the ultimate population will be
o
e 0 /

√
R0

times the births before the fall, or b
o
e 0/

√
R0 times the population before

the fall.
In words, the approximation b

o
e 0/

√
R0 says that the momentum factor is

proportional to the birth rate and the expectation of life, and inversely pro-
portional to the square root of the net reproduction rate. Table 8.3 suggests
to what degree the factor depends on

o
e 0 and to what degree on R0 for an

initial birth rate of 1000b = 45. The conclusion is that with an immediate
fall in fertility to bare replacement Ecuador and demographically similar
countries would increase by about 50 percent or more before attaining sta-
tionarity. Note that (8.6.4) or b

o
e 0/

√
R0 is a good approximation to the

degree in which the age distribution before the fall is stable. [Using model
tables or otherwise, comment on the consistency of the pattern b = 0.045,
o
e 0 = 60, R0 = 1.5 that gives rise to the ratio 2.20 in Table 8.3.]
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Table 8.4. Deaths from malaria and heart disease, Philippines, 1959 and 1960

nVx

Reproductive
Degenerative value

Malaria, heart disease, for females,
Age Cause B–16, Cause B–26, Philippines,
x to x + n 1959 1959 1960

All ages 913 918
–5 251 12 1.21

5–14 156 7 1.64
15–24 133 37 2.00
25–44 186 198 0.76
45–64 138 322 0
65+ 45 333 0
Unknown 4 9

Total repro-
ductive value
for deaths of
stated age 967 250

Source: United Nations Demographic Yearbook (1961, p. 498); Keyfitz and Flieger
(1971, p. 411).

8.7 Eliminating Heart Disease Would Make Very
Little Difference to Population Increase,
Whereas Eradication of Malaria Makes a Great
Deal of Difference

Age distributions of deaths from malaria and heart disease are shown in
Table 8.4 for the Philippines, 1959. Evidently malaria affects the young
ages, whereas heart disease is negligible before middle life. Although the
two causes are responsible for about equal numbers of deaths, malaria has
a much greater effect on the chance that a child will survive to reproductive
age and on the number of women living through reproduction.

Finding the effect on the population trajectory of eliminating deaths
in any one year requires that each death at age x be evaluated as v(x),
that is to say, we need the sum

∫ β

0 p(x)v(x) dx, where now p(x) dx is the
population removed by death at ages x to x+dx. (The constants b and κ will
not affect the relative positions of the two causes.) The broad age groups
and lumping of the two sexes in Table 8.4 prevent us from attaining high
accuracy. Table 8.4 shows unweighted arithmetic averages of v(x) for the
age groups required. The value of the malaria deaths, if they were female,
would be (251)(1.21) + (156)(1.64) + (133)(2.00) + (186)(0.76) = 967; that
of the heart disease deaths similarly calculated would be 250. In practice
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men and women influence mortality in different degrees, and no easy way
to allow for this suggests itself.

But the complexities that a two-sex model would introduce would not
greatly affect the present conclusion: although absolute numbers of deaths
from heart disease are about equal to those from malaria, malaria has
nearly 4 times the effect on subsequent population.

8.8 The Stable Equivalent

The stable equivalent Q, associated with long-run projections, helps to
interpret an observed past age distribution from the viewpoint of repro-
ductive potential, and so bridges the present chapter and the preceding
one dealing with reproductive value. It is the natural companion of the in-
trinsic rate of natural increase r. The rate r tells us how fast the population
would ultimately increase at present age-specific rates; Q tells us at what
level the ultimate population curve would stand.

8.8.1 Population Projection and the Stable Approximation
Thereto

Most of this chapter has used the continuous renewal equation model
for age-classified populations. Here we shift perspective to the discrete
population projection matrix method. We are given an observed (from a
mathematical viewpoint an arbitrary) age distribution for one sex, which is
arranged as a vertical vector n(0), together with a set of age-specific birth
and death rates arranged in the form of a matrix A. If a 5-year projection
interval, and 5-year age groups to age 85 to 89 at last birthday are rec-
ognized, A has 18 × 18 elements and n(0) has 18 × 1. The first row of A
provides for fertility, and the subdiagonal for survivorship; this is, in fact,
the Leslie matrix of Section 3.1. The age distribution projected through 5t
years is

n(t) = Atn(0). (8.8.1)

An approximation to this projection, called asymptotic because it is
approached as closely as one wishes with sufficiently large t, is

n(t) ≈ qe5rt, (8.8.2)

where the vector q is the stable equivalent of the age distribution.
To calculate q choose a large t and equate the right-hand sides of (8.8.1)

and (8.8.2). If the population were of stable age distribution from the start,
and contained q individuals at the several ages, by time 5t it would grow
to qe5rt. In fact, we know that it is of age distribution n(0), and when
projected it grows to Atn(0) by time 5t. The matrix equation for the



8.8. The Stable Equivalent 201

Table 8.5. Female population total by conventional projection and by contribution
of dominant root, starting from United States, 1960∗ (000s)

Leslie Contribution
projection of positive
with fixed term

Year t 1960 rates Qert

1960 0 91,348 76,840
1970 10 106,220 94,986
1980 20 125,669 117,416
1990 30 150,129 145,144
2000 40 181,464 179,419
2010 50 222,196 221,789
2020 60 273,949 274,164
2030 70 338,990 338,907
2040 80 418,996 418,939

∗Right-hand column is Qert = 76,840e0.0212t.

calculation of q is thus

qe5rt = Atn(0)

or

q =
Atn(0)

e5rt
. (8.8.3)

One way of describing (8.8.3) is to say that n(0), the initial population is
projected forward t periods by the matrix A and backward an equal length
of time by the real root r, that is, by dividing by e5rt. The quantity qert

corresponds to the real term in the solution of the Lotka equation (7.5.2),
but is more complete in providing the several ages of the population rather
than births alone. The total of all ages, written as Q =

∑
qi, is shown in

Table 8.5 for United States females, starting with the 1960 age distribution
and projected by 1960 births and life table.

The intrinsic rate of natural increase for the regime of 1959–61 be-
ing r = 0.0212, and the stable equivalent of the initial population being
Q = 76,840,000, the future female population t years after 1960, if age-
specific rates remained fixed and the stable model applied, would be
76,840,000e0.0212t. Table 8.5 compares this at 10-year intervals with the
full projection, which implicitly uses all terms in the right-hand side of
(7.5.2). By the year 2000 the discrepancy is down to 1.1 percent.

However, between 1960 and 1965 some of the postwar cohorts moved
into childbearing ages, and the age distribution became more favorable, to
the point where the stable equivalent and the observed total practically
coincided, both being just under 99 million (Table 8.6). At the same time
a drastic decline in the birth rates occurred, so that the intrinsic rate fell
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Table 8.6. Female population P0 and stable equivalent number Q, United States,
1919–21 to 1965, adjusted births

Observed
female Stable

Year population equivalent
(000s) (000s)
N (0) Q

1919–21 52,283 55,519
1924–26 57,016 61,442
1929–31 60,757 72,304
1934–36 63,141 78,879
1939–41 65,811 77,279
1944–46 69,875 72,016
1949–51 76,216 68,376
1954–56 83,248 69,535
1960 91,348 76,840
1965 98,703 98,645

Source: Keyfitz and Flieger (1968).

to r = 0.01267. Hence the future from the 1965 vantage point was

98,645,000e0.01267(t−5), (8.8.4)

if t is still measured from 1960.

8.8.2 Application of the Stable Equivalent Q

Table 8.6 shows Q to be considerably above the observed female population
N(0) =

∑
ni(0) for the United States during the 1930s, and below it in

the 1950s. This reflects the tendency for there to be proportionately more
women of the age of motherhood in the population for some years after a
fall in the birth rate. The crude birth rate usually lags behind the intrinsic
birth rate after an upturn or downturn in fertility. The stable equivalent
Q measures the favorability of the age distribution to reproduction, given
the current regime of mortality and fertility.

In Table 8.7 historical data on Q are presented for four other countries.
Again a high Q relative to population after a fall in birth rates appears
for England and Wales between 1901 and 1941, and for Australia and
Canada before 1941. The Netherlands also shows this feature, but to a
more moderate degree.

8.8.3 Relation Between Q and Reproductive Value V

Reproductive value, the discounted future girl children that will be born to
a woman, has a close relation to Q. [Prove that Q, like V but unlike N(t),
has the property of increasing at a constant rate under a fixed regime of
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Table 8.7. Observed female population and stable equivalent, historical data for
four countries

Country Female Stable
and year population equivalent Ratio

(000s) (000s)
N (0) Q Q/N (0)

Australia
1911 2,152 2,395 1.11
1921 2,683 3,013 1.12
1933 3,263 4,267 1.31
1947 3,782 3,501 0.93
1957 4,758 4,215 0.89
1960 5,083 4,494 0.88
1965 5,632 5,659 1.00

Canada
1931 5,001 5,706 1.14
1941 5,608 6,356 1.13
1951 6,751 6,431 0.95
1961 8,794 8,120 0.92
1965 9,479 9,839 1.04

England and Wales
1861 10,324 10,802 1.05
1871 11,695 11,966 1.02
1881 13,373 13,608 1.02
1891 14,989 15,805 1.05
1901 16,845 19,047 1.13
1911 18,655 22,014 1.18
1921 19,816 22,229 1.12
1931 20,839 27,321 1.31
1941 21,515 27,522 1.28
1946 21,979 20,511 0.93
1951 22,751 22,741 1.00
1956 23,150 21,577 0.93
1961 23,820 19,764 0.83

Netherlands
1901 2,615 2,647 1.01
1910 2,960 3,064 1.03
1920 3,419 3,615 1.06
1930 3,954 4,386 1.11
1940 4,437 4,983 1.12
1945 4,619 4,551 0.99
1950 5,074 5,077 1.00
1955 5,395 5,405 1.00
1960 5,766 5,615 0.97
1965 6,081 5,942 0.98

Source: Keyfitz and Flieger (1968).
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Table 8.8. Observed female population, stable equivalent, and reproductive value
(000s)

Observed Ratio of Reproductive
female Stable stable to value in units

Country and Year population equivalent observed of girl babies
N (0) Q Q/N (0) V

Austria, 1964 3,845 3,187 0.83 1,665
Czechoslovakia, 1964 7,198 7,312 1.02 3,253
Denmark, 1964 2,380 2,326 0.98 1,091
Fiji Islands, 1964 219 229 1.04 229
Finland, 1964 2,370 2,540 1.07 1,227
Germany (East), 1964 9,257 7,871 0.85 3,499
Germany (West), 1964 30,980 27,755 0.90 13,124
Netherlands, 1964 6,081 5,942 0.98 3,665
Norway, 1964 1,854 1,649 0.89 914
Puerto Rico, 1964 1,309 1,375 1.05 1,050
Roumania, 1964 9,665 13,250 1.37 4,088
Switzerland, 1964 2,940 2,861 0.97 1,431

Source: Keyfitz and Flieger (1968).

mortality and fertility. The proof involves the fact that (At/e5rt)n(0) is
invariant with respect to t as long as t is large; in particular, At/e5rt is the
same when t + 1 is written for t (Section 8.1).]

In fact, V is a simple multiple of Q. In the continuous representation,
V is exactly equal to Q multiplied by the intrinsic birth rate b and by the
mean age of childbearing in the stable population κ, two constants obtain-
able from the age-specific rates and having nothing to do with the observed
age distribution. The reader may prove this statement by rearranging the
double integral contained in

∫ β

0 N(x)v(x) dx, where v(x) is defined as in
(8.1.1), and showing it to be the same as the numerator of the first co-
efficient Q in the solution (7.5.4) to the Lotka equation. In the present
notation this will prove

Q =
V

bκ
. (8.8.5)

Goodman (1968) shows this result to apply in the discrete case. Values of
N(0), Q, and V are given in Table 8.8 for a number of countries.

A question arises of the degree to which Q, the stable equivalent, is sen-
sitive to the particular set of age-specific birth and death rates used in its
calculation. The first row of Table 8.9 shows Q for the age distribution of
1960, worked out according to the 1960 and 1965 patterns of mortality and
fertility as embodied in the two A’s; the second row shows the correspond-
ing Q’s for the 1965 age distribution. The values obtained for Q depend
greatly on the set of age-specific rates applied as A. But if we study only
the change in Q in the United States between 1960 and 1965, it turns out
that the increase is 11.14 percent on the 1960 A and 10.84 percent on the
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Table 8.9. Stable equivalents Q for United States females in 1960 and 1965, each
calculated with two different matrices A (thousands)

Calculated with matrix A of

1960 1965

Age distribution:
1960 76,912 89,001
1965 85,478 98,645

Percent increase 11.14 10.84

Table 8.10. Stable equivalents Q for the United States and Mexico (thousands)

Calculated with matrix A of

United
States, Mexico,
1962 1962

Age distribution:
United States 82,933 63,395
Mexico 23,388 18,863

Ratio, Mexico to United States 0.282 0.272

1965 A. This way of making a comparison (applied between France and
Italy) is due to Vincent (1945), who noted the virtual invariance with re-
spect to the mortality and fertility patterns used. We are entitled to say
that the age distribution of women in the United States became about 11
percent more favorable to reproduction during the 5 years in question, and
the statement is true almost without regard to the fertility and mortality
patterns used in making this assessment.

As an example of a place comparison, Table 8.10 shows Q values for
Mexico and the United States, both for 1962. The Q for Mexico is 0.282
of that for the United States when the A of the latter is used; it is 0.272
when the A of the former is used. Jeffrey Evans has programmed place
comparisons among five countries which demonstrate the same invariance.

Section 12.3 below uses the stable equivalent to compare the effect on age
distribution of eliminating cancer with that of eliminating heart disease.

8.8.4 A More General Stable Equivalent
Age is merely a special case of the stable equivalent. Any model that
possesses the ergodic property, that is, that tends asymptotically to a distri-
bution unaffected by the initial distribution, is equally capable of analysis
by the methods given above. In fact (8.8.3) remains unchanged; only now
the matrix A and the vector n(0) provide for the two sexes, regions, mar-
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ried and single populations, and any other groups recognized in the model.
For details see Chapter 9 and some applications in Keyfitz (1969).

8.9 Reproductive Value as a Contribution to
Future Births

Section 8.1 appeals to intuition to make it appear likely that the effect of
adding one girl or woman aged x to the population is to raise the number
of births t years hence, where t is large, in proportion to v(x)ert, v(x) being
defined as

v(x) =

∫ β

x

e−ral(a)m(a) da

e−rxl(x)
.

This result can be derived from the Lotka equation of Section 7.5, but here
we examine a demonstration that is self contained, using the familiar device
of calculating the situation at time t from two successive moments near the
present. For purposes of this section v(x) will be defined afresh, in terms
of the ultimate birth trajectory.

Suppose that a woman aged x at time zero contributes v(x)ert to the
births at subsequent time t, where v(x) is to be determined and t is large.
This means that her disappearance would lower the ultimate birth trajec-
tory by v(x)ert. We assume that age-specific birth and death rates are fixed,
so that her descendants will ultimately increase in geometric proportion and
be unaffected by other members of the population.

The woman aged x can, in the next short period of time and age, say ∆,
have a child, and whether or not she has a child can survive to the next
age, x + ∆. The chance of her having a child is m(x)∆, and the chance
of her surviving is l(x + ∆)/l(x). By having a child she would contribute
v(0)er(t−∆) to the births at time t, and by surviving she would convert
herself into a woman of reproductive value v(x + ∆) and so contribute
v(x + ∆)er(t−∆). If the progression of childbearing and aging at the given
rates over the time ∆ is not to affect the ultimate birth trajectory, we can
equate the two expressions for later births:

v(x)ert =
[
m(x)v(0)∆ +

l(x + ∆)
l(x)

v(x + ∆)
]

er(t−∆). (8.9.1)

If we multiply both sides of (8.9.1) by

1
∆

l(x)
v(0)

e−rxe−rt,
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we obtain
1
∆

l(x)
v(x)
v(0)

e−rx = m(x)l(x)e−rxe−r∆

+
1
∆

l(x + ∆)
v(x + ∆)

v(0)
e−r(x+∆).

(8.9.2)

Subtracting the rightmost term from both sides and letting ∆ → 0, we
have directly

− d

dx
l(x)

v(x)
v(0)

e−rx = m(x)l(x)e−rx,

and integrating gives

e−rxl(x)
v(x)
v(0)

=
∫ β

x

e−ral(a)m(a) da, (8.9.3)

so that, if v(0) is set equal to unity, v(x) again comes out as shown in
(8.1.1). No constant of integration is needed, since both sides are unity for
x = 0. Equation (8.9.3) establishes v(x) to within a multiplicative constant.

Let us find the constant v(0) that corresponds to the ultimate effect of
adding one female to the population.

If the initial age distribution is stable, we know that the population at
time t must be ert for each person initially present, and hence the births
at time t are bert. Equating the two values for time t, we have

bert =
∫ β

0
be−rxl(x)v(x) dx ert; (8.9.4)

since from (8.9.3) v(x) may be written as

v(0)
e−rxl(x)

∫ β

x

e−ral(a)m(a) da,

the be−rxl(x) within the integral of (8.9.4), as well as ert outside the
integral, cancels, and we obtain the following equation for v(0):

1
v(0)

=
∫ β

0

∫ β

x

e−ral(a)m(a) da dx. (8.9.5)

The integral on the right-hand side is evaluated by integration by parts
and turns out to be κ, the mean age of childbearing in the stable population.
This proves that for the v(x) function of this section, v(0) = 1/κ, and that
the v(x) function of the main body of the chapter, defined in (8.1.1), gives
the ultimate birth trajectory due to a woman aged x as ertv(x)/κ.



9
Reproductive Value from Matrix
Models

The concept of reproductive value is not limited to age-structured popu-
lations. It also applies to matrix population models for stage-structured
populations, where it appears as an eigenvector of the projection matrix.

9.1 Reproductive Value as an Eigenvector

We begin by returning to the projection equation

n(t + 1) = An(t) n(0) = n0 (9.1.1)

the solution of which (Section 7.1) can be written

n(t) =
∑

i

ciλ
t
iwi, (9.1.2)

where λi and wi are the eigenvalues and right eigenvectors of A and the
scalar constants ci are determined by the initial conditions n0;

c = W−1n0 (9.1.3)
= Vn0. (9.1.4)

The matrix W has the right eigenvectors wi as its columns; W−1 has as
its rows the complex conjugate transposes of the left eigenvectors vi. Thus

ci = v∗
i n0 (9.1.5)

with wi and vi scaled so that v∗
i wi = 1.
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If A is primitive, then

lim
t→∞

n(t)
λt

1
= c1w1. (9.1.6)

The growth rate and stable population structure are independent of n0,
but the size of the population at any (large) time t depends on n0, through
the constant c1. From (9.1.5), c1 is a weighted sum of the initial population,
with weights equal to the elements of v1.

Thus, if we take “the contribution of stage i to long-term population size”
as a reasonable measure of the “value of stage i,” the left eigenvector v1
gives the relative reproductive values of the stages (Goodman 1968, Keyfitz
1968). We must insert the qualifier “relative” because eigenvectors can be
scaled by any nonzero constant. The result c1 = v∗

1n0 holds when v∗
1w1 =

1, but any other scaling can be accounted for by setting c1 = v∗
1n0/v∗

1w1,
and eventual population size is still proportional to v∗

1n0. It is customary
to scale v1 so that its first entry is 1.

Regardless of the scaling imposed on v1, the total reproductive value
of a population, V (t) = v∗

1n(t), increases exponentially at the rate λ1,
regardless of the stage distribution:

V (t + 1) = v∗
1n(t + 1) (9.1.7)

= v∗
1An(t) (9.1.8)

= λv∗
1n(t). (9.1.9)

9.1.1 The Effect of Adding a Single Individual
Suppose that we add a single individual of stage j to the initial population
n0. Let ej be a vector with zeros everywhere except for a 1 in the jth entry.
If we drop the subscripts on λ1, w1 and v1, we have

lim
t→∞

At (n0 + ej)
λt

= v∗ (n0 + ej)w (9.1.10)

= v∗n0w + vjw. (9.1.11)

The total population is v∗n0‖w‖ + vj‖w‖, which differs from (9.1.6) by
vj‖w‖. That is, adding a single individual in stage j increases asymptotic
population size by an amount proportional to the reproductive value of
stage j.

Reproductive Value and Extinction.

Any population is subject to stochastic fluctuations because the vital rates
are probabilities applied to discrete individuals (demographic stochastic-
ity). These fluctuations lead to a nonzero probability of extinction, even
when λ > 1. This probability can be calculated for unstructured popula-
tions from the Galton–Watson branching process (see Section 16.4). The
corresponding probability for structured population is calculated from the
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multi-type branching process (Pollard 1973, MPM Chapter 15). In several
empirical examples (MPM Section 15.4.5), it has been shown that the prob-
ability of non-extinction of a population descended from a single founder
is directly proportional to the reproductive value of that founder. This
suggests, though it does not prove, that the reproductive value of an in-
dividual influences not only long-term population size but also short-term
risk of extinction.

9.1.2 Age-Specific Reproductive Value
We can write down the reproductive value for the age-classified case directly
from the equations defining the eigenvector:

vTA = λvT,

where we have dropped the subscript, and are assuming that v is real.
Suppose there are four age classes, as in Figure 3.9a, and set v1 = 1. Then

(
1 v2 v3 v4

)
⎛
⎜⎜⎝

F1 F2 F3 F4
P1 0 0 0
0 P2 0 0
0 0 P3 0

⎞
⎟⎟⎠ = λ

(
1 v2 v3 v4

)
(9.1.12)

or, writing each equation out

F1 + v2P1 = λ (9.1.13)
F2 + v3P2 = λv2 (9.1.14)
F3 + v4P3 = λv3 (9.1.15)

F4 = λv4. (9.1.16)

From the last equation

v4 = F4λ
−1. (9.1.17)

Substituting this into the next-to-last equation gives

v3 = F3λ
−1 + P3F4λ

−2 (9.1.18)

and then

v2 = F2λ
−1 + P2F3λ

−2 + P2P3F4λ
−3. (9.1.19)

Finally, substituting this into the first equation gives

1 = F1λ
−1 + P1F2λ

−2 + P1P2F3λ
−3 + P1P2P3F4λ

−4 (9.1.20)

which is the characteristic equation (see Example 7.1). In general the age-
specific reproductive value is

vi =
s∑

j=i

(
j−1∏
h=i

Ph

)
Fjλ

i−j−1, (9.1.21)
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3

4
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Figure 9.1. The transformed graphs for two life cycles. Above: an age-structured
model with four age classes. Below: a hypothetical life cycle in which individuals
of stage N2 have two developmental choices, in one of which (N3) they reproduce
only once and in the other of which (N4) they survive with probability P4 and
reproduce repeatedly.

which is the discrete version of Fisher’s formula (8.1.1).

9.1.3 Stage-Specific Reproductive Value and the Life Cycle
Graph

We can understand the correspondence of the left eigenvector and repro-
ductive value in stage-structured models by writing down the eigenvector
directly from the life cycle graph (Caswell 1982a; see Chapter 7 of MPM for
details). Begin by transforming the life cycle graph by replacing each coeffi-
cient aij with aijλ

−1. (This is known as the z-transform of the graph; in our
context, however, the variable usually denoted by z will be the eigenvalue
of A, so we denote it as λ.)

Figure 9.1 shows the transformation of the life cycle graph for the age-
classified model. Comparing this graph with (9.1.17)–(9.1.20), we see that
vi is the sum, over all pathways from Ni to N1, of the product over each
pathway of the transformed life cycle graph coefficients. There are, for
example, two pathways from N3 to N1. The products of the transformed
coefficients on these pathways are F3λ

−1 and P3F4λ
−2; the sum of these is

v3 in (9.1.18).
In other words, vi measures the expected future reproductive contribu-

tion from stage Ni, discounted by the population growth rate and the time



212 9. Reproductive Value from Matrix Models

required for the contribution; e.g.,

v2 = F2λ
−1︸ ︷︷ ︸

1 step

+ P2F3λ
−2︸ ︷︷ ︸

2 steps

+ P2P3F4λ
−3︸ ︷︷ ︸

3 steps

. (9.1.22)

This algorithm gives the left eigenvector for a wide class of life cycles.∗

In the (imaginary) stage-classified life cycle of Figure 9.1b, an individual
in N2 may proceed to a stage (N3) in which it only reproduces once or to
a stage (N4) in which it survives indefinitely with a probability P4. The
resulting reproductive value vector, obtained by summing contributions
from each stage back to the first, is

v1 = 1 (9.1.23)

v2 = F2λ
−1 + P2F3λ

−2 +
R2F4λ

−2

1 − P4λ−1 (9.1.24)

v3 = F3λ
−1 (9.1.25)

v4 =
F4λ

−1

1 − P4λ−1 . (9.1.26)

Each of these values is clearly a measure of future contribution to births,
discounted by the population growth rate.†

Residual Reproductive Value.

Equation (8.9.1) decomposed reproductive value at age x into two compo-
nents, one from reproduction at age x and the other from survival to,
and reproduction at, later ages. These components were called current
reproduction and residual reproductive value by Williams (1966). In the
age-classified case (9.1.12), e.g.,

v2 = F2λ
−1 + P2λ

−1v3, (9.1.27)

where the first term is current reproduction and the second is residual
reproductive value. In the stage-classified example, an individual in N2 has
two possible fates, so

v2 = F2λ−1 + P2λ
−1v3 + R2λ

−1v4. (9.1.28)

The first term is current reproduction and the second two terms together
constitute residual reproductive value.

∗Including any life cycle in which all loops other than self-loops pass through N1.
If there are more complicated loop structures, additional terms are required (Caswell
1982a, MPM Chapter 7).

†The terms
1

1 − P4λ1
= 1 + P4λ−1 + P 2

4 λ−2 + . . .

created by the self-loop on N4 reflect the probability that the individual will remain in
N4 for 1, 2, . . . time steps.
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9.2 The Stable Equivalent Population

The stable equivalent population of Section 8.8 applies to any classification
of individuals (Keyfitz 1969). An initial population n0 with an arbitrary
stage distribution will asymptotically produce an exponentially growing
population of the same size as an initial population of size Q with the
stable stage distribution.

To calculate Q, we scale w so that ‖w‖ = 1, and v so that v∗w = 1.
The population starting at n0 will eventually grow as

lim
t→∞

n(t)
λt

= v∗n0w (9.2.1)

while that starting from n(0) = Qw will grow as

lim
t→∞

n(t)
λt

= Q (v∗w)w. (9.2.2)

Equating the two gives

Q = v∗n0. (9.2.3)

That is, the stable equivalent is just the total reproductive value of the
initial population, when scaled so that ‖w‖ = 1 and v∗w = 1.

We note in passing that the models considered here and in Chapter 8
describe constant environments. Tuljapurkar and Lee (1997) have extended
the stable equivalent concept to models in which the vital rates fluctuate
stochastically in time.

Example 9.1 Stable equivalent for the killer whale

Killer whales (Orcinus orca) live in stable social groups called pods.
A life cycle is shown in Figure 3.10, and a set of vital rates estimated
from an intensively studied population of 18 pods in coastal waters
of Washington and British Columbia is shown in Example 11.1. The
right and left eigenvectors, appropriately scaled, are

w =

⎛
⎜⎜⎝

0.037
0.316
0.323
0.324

⎞
⎟⎟⎠ v =

⎛
⎜⎜⎝

1.142
1.198
1.794

0

⎞
⎟⎟⎠ . (9.2.4)

Each pod has its own observed structure, and Table 9.1 compares the
stable equivalent and the observed population of each. In contrast to
the comparison of the stable and observed population sizes of 12
countries in Table 8.8, which were within a few percent of each other,
among killer whale pods the stable equivalent ranges from 22 percent
smaller to 71 percent larger than the observed population. When Q <
N , the population is biased toward individuals of low reproductive
value, and vice versa.
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Table 9.1. The observed female population (N = ‖n‖) and the stable equivalent
population Q for each of 18 pods of resident killer whales (Orcinus orca) in
Washington and British Columbia.

N Q Q
N

12.93 10.59 0.82
10.30 8.05 0.78
26.23 28.10 1.07
5.77 5.77 1.00
4.20 6.33 1.51
7.73 9.48 1.23
1.23 2.11 1.71
5.10 4.74 0.93
5.63 6.69 1.19

11.53 12.27 1.06
5.13 7.33 1.43
3.07 4.82 1.57
2.50 3.78 1.51
2.30 1.99 0.87
6.37 9.12 1.43
6.13 9.00 1.47
2.93 4.22 1.44
8.47 11.71 1.38

The influence of n0 on eventual population size (and probability of
extinction) is of more than academic interest in conservation biology. In-
vasions of introduced animals and plants create huge environmental and
economic problems around the world. Studies of the determinants of in-
vasion success of birds and mammals in New Zealand (which, because of
its isolation, has been particularly vulnerable to invasions) have shown a
correlation between the size of the introduced population and the success
of the invasion (Veltman et al. 1996, Forsyth and Duncan 2001). The stable
equivalent of the introduced population might be even more relevant.

The effect of initial population also arises in attempts to reintroduce
threatened species to areas from which they have been exterminated. This
is an increasingly frequent task; at this writing, 132 such projects involving
63 species are underway in New Zealand alone. Many of these involve intro-
ductions of individuals to offshore islands from which introduced predators
have been eliminated. All else being equal, it might be useful to try to
maximize the stable equivalent population size in such introductions.
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9.2.1 Other Scalings of the Eigenvectors
Since the time of Fisher (1930) it has been customary to scale reproductive
value so that v1 = 1, as was done in Section 8.8. But if w is also scaled to
sum to 1, this means that Q must be modified to

Q =
v∗n0

v∗w
. (9.2.5)

For age-classified matrix models, it can be shown that, with this scaling of
v and w, the denominator

v∗w = λ−1BA, (9.2.6)

where B is the finite birth rate and A is the mean age of childbearing in
the stable population [the equivalent of κ in (8.1.2)]. Thus (9.2.5) is the
analogue of the continuous-time result (8.8.5); see also Goodman (1968).

It does not appear that the interpretation of v∗w in terms of birth rate
and generation time holds for general stage classifications, so in the general
case it is easier to compute Q by scaling ‖w‖ = 1 and v∗w = 1 and
sacrificing v1 = 1.



10
Understanding Population
Characteristics

To understand a phenomenon we must break it down into simple elements
and then put these elements together again in such a way as to reconstruct
the phenomenon. This was the method Descartes proposed for study of
the physical world, and it can be used to make intelligible the population
characteristics presented as census and other data. Such characteristics as
age, sex, marital status, birthplace, occupation, and industry can be treated
by the Cartesian method, though not all with equal effectiveness.

The transition from one year of age to the next against the hazard of
death, and the population rate of increase, are elements that help to ex-
plain age distribution. The transition from one school grade to the next in
the face of the hazard of dropping out has a bearing both on the grade dis-
tribution of pupils presently in the schools and on the distribution by years
of schooling completed in the population at large. The transition into the
labor force and that into retirement go some distance toward accounting
for the distribution of the population by labor force status. These transi-
tions can be incorporated into models capable of approximating the present
distribution of ages, schooling, and labor force participation.

Explanation involves many levels arranged in an infinite regression. Why
the age distribution or the sex ratio is as it is, is traceable through deeper
and deeper stages, involving fetal mortality and its causes and the causes
of death in young and older people. The present argument can go only one
short step in this regression.
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10.1 Accounting for Age Distribution

10.1.1 Young and Old Populations
In 1976, the United States was celebrating its 200th birthday; France was
older, having gained its independence from Roman colonialism about the
fifth century and having become a unified nation in the seventeenth century;
Taiwan was much younger than either, having been established after World
War II. In the United States the percentage of children under 15 years of
age was 30.9, while in France it was 24.6; Taiwan had a larger proportion
of children, 45.2 percent (all 1965 figures). For these three countries and
for many others, the older the country as a political entity the smaller is
the fraction of its population under 15 years of age. Yet no one could take
seriously an assertion relating political to demographic age. The correlation
can only be called spurious since we have no reason in logic to think that
the fraction of children is related to political youth or age. Chapter 17
shows other weaknesses of a purely empirical approach to demography.

Let us here drop political age and call a country (demographically) young
if it has a large fraction of children and a small fraction of old people.
“Young” and “old” in terms of this definition will be explainable by the
life table and rate of increase. Of 800 age distributions for various countries
and times that are available for examination, that of Honduras in 1965 is
the youngest, with 50.8 percent of its population reported as under 15
years of age. The average age of Honduran males was 19.8 years; of United
States males, 30.8 years; of Swedish males, 36.1 years (again all for 1965).
Demographic youth or age can have direct and traceable consequences.
Other things being equal, if a country has many children to support, it will
be occupied in building houses and schools for them and will have fewer
resources for building factories to increase its future income. This issue will
reappear in Section 17.6.

Our first attempt at explanation will again be Euler’s stable age distri-
bution (5.1.1), by which, under a fixed regime of mortality and fertility
including the probability l(a) of surviving from birth to age a and a rate
of increase r, the population between ages a and a + da is e−ral(a) da per
current birth, and as a proportion this is divided by its integral over the
range zero to ω.

A comparison of (5.1.1) with observed proportions for two age groups
and three countries appears in Table 10.1, all for females. Of the difference
in the under 15 group between France and Taiwan (45.2 − 23.6 = 21.6
percent) about two-thirds (40.2 − 26.5 = 13.7 percent) is accounted for on
the stable model. The stable model accounts for a similar fraction of the
differences in the numbers over 65.

The stable model we have constructed involves nothing but the l(a),
which depend on the present life table, and r, the rate of increase. Since it
is based only on current information on birth and death, and does not take
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Table 10.1. Percentage of females under 15 and over 65 for three countries in 1965

Percentage under 15 Percentage over 65

Country Observed Stable Observed Stable

Taiwan 45.2 40.2 3.1 4.5
United States 29.8 28.4 10.4 10.6
France 23.6 26.5 15.3 12.2

account of migration or of past wars and epidemics, we should be impressed
by its capacity to explain so large a part of the differences among real age
distributions.

10.1.2 Age Distribution as a Function of Rate of Increase
We saw earlier how the fraction of any age in a stable population is ex-

pressible in terms of the rate of increase of the population and the mean
ages of the relevant subgroup. A special case, the fraction of population
65 years of age and over was treated in Section 5.7. In general terms the
fraction between any pair of ages α and β is equal to

β−αCα =

∫ β

α

e−ral(a) da∫ ω

0
e−ral(a) da

. (10.1.1)

By a proposition cited in Section 6.2, log[
∫ ω

0 e−raf(a) da] generates the
cumulants of the density distribution f(a), the first cumulant being the
mean, and the second and third cumulants being moments about the mean.
We may define f(a) as l(a)/

∫∞
0 l(x) dx for the denominator, and the same

for the numerator between α and β, outside of which f(a) = 0. Normalizing
(10.1.1) by dividing by

∫ β

α
l(a) da/

∫ ω

0 l(a) da, taking logarithms of both
sides, and expanding the two cumulant-generation functions of −r gives

log β−αCα = log

(
β−αLα

o
e 0

)
−
[
k1r − k2r

2

2!
+

k3r
3

3!
− · · ·

−
(

κ1r − κ2r
2

2!
+

κ3r
3

3!
− · · ·

)]
,

(10.1.2)

where the k’s are the cumulants of the life table distribution between α
and β, and the κ’s are the cumulants over the whole range of the age
distribution.

Hence to a first approximation, and on taking derivatives and then
entering finite increments,

∆β−αCα ≈ (κ1 − k1)β−αCα ∆r, (10.1.3)
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as was established for special cases in Sections 5.3 and 5.7.
Putting α = 0 and β = 15 shows that the proportion under age 15 goes

up as r goes up, since k1, the mean age of those under 15, is bound to be
less than κ1, the mean age of the whole population. Similar considerations
apply to other age intervals. The relation can be studied as the exponential
of a quadratic or cubic wherever r is large enough to make further terms
important.

The stable model does not always fit. Among 800 populations tested,
that of England and Wales, 1881, comes closest; the Netherlands, 1901, is
second. But even there agreement is not perfect. Females aged 0 to 14 in
the actual population of England and Wales, 1881, comprised 35.5 percent;
in the fitted stable model, 35.0 percent. Discrepancies between the model
and the observed populations invariably demand our attention.

Since in Table 10.1 the 1965 rates of death were the source of the life
table l(a), and the 1965 intrinsic rate of increase was the source of r, one
reason why the model can be at variance with reality is that different rates
of death and increase applied in earlier years. This indeed appears to be
the main source of discrepancy. In Taiwan birth rates have been falling;
the 1965 birth rates are too low to represent the preceding 15 years. A
calculation based on the stable model with 1959–61 birth and death rates
shows 43.6 percent under 15, a value closer to the observed one.

For intervals α to β straddling the mean age, k and κ will not be very
different; (10.1.3) shows that differences in r do not greatly affect the middle
ages. By a similar argument drastic declines in the later ages are associated
with increases in r.

10.1.3 Neutral and Nonneutral Change in Mortality
How do populations that have been subject to different death rates differ

in age? If the difference is the same amount at all ages, it has no effect on
the age distribution. If birth rates are the same and mortality at all ages
has been higher by exactly 0.01 in one population than in the other, the
age distributions will be identical (Coale, 1968).

This seems to be a paradox. A rise in mortality that prevents people from
living to as old an age as they once did ought to make the population consist
to a greater degree of young people, one would think. It certainly makes
the prospect of attaining old age less than it was before for an individual;
why does it not do the same for the community? Here, as in many other
situations, the same rule does not apply to populations as to individuals.

When mortality is higher with fertility unchanged, the rate of increase is
just enough lower to compensate as far as age distribution is concerned for
the change in the life table. The canceling out is a property of exponential
growth dovetailing with the exponential effect on l(x) of an addition to
µ(x).
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If k (e.g., 0.01) is added to the mortality rate µ(x) at each age, so that
it becomes µ∗(x) = µ(x) + k, the probability of surviving to age x is
l∗(x) = e−kxl(x) instead of l(x).

But if the age-specific birth rates are unchanged, the rate of increase
of the population diminishes, and by exactly the same amount, k. The
proof of this statement is that the new rate of increase r∗ must satisfy the
characteristic equation ∫ β

α

e−r∗xl∗(x)m(x) dx = 1

or ∫ β

α

e−r∗xe−kxl(x)m(x) dx = 1

or ∫ β

α

e−(r∗+k)xl(x)m(x) dx = 1.

Since the original r satisfied the same equation that r∗ + k now satisfies,
by virtue of the uniqueness of the real root we have r = r∗ + k, so that
r∗ = r − k; the new rate is exactly k less than the old rate.

Combining the preceding two paragraphs gives, for the new stable
population on a radix of one current birth per year,

e−r∗xl∗(x) = e−(r−k)xe−kxl(x) = e−rxl(x);

hence the number of persons at age x per current birth is the same under
the new regime as under the old.

Changes in mortality that have occurred historically can be distinguished
according to whether they tended to be at younger or older ages, that is,
whether or not they tended to lower the mean age of the stable population
if the birth rate remained the same. We find that the improvements in
England and Wales from 1861 to 1891 were on balance at younger ages,
those between 1891 and 1911 were at older ages; and those from 1911 to
1931 again affected younger ages to a greater degree (Keyfitz 1968, p. 191).

10.1.4 Accounting for Observed Ages
The first part of the analysis of age distributions here outlined is con-
cerned with the regime of mortality and natural increase actually existing;
the second, with trends in the regime during the lifetimes of the current
population; the third, with extraordinary historical events, especially those
that cause short-term fluctuations in birth and death. These events include
wars, which reduce the numbers of males in their twenties; immigration,
which usually consists of young adults; and famines, which especially af-
fect young children. In this third part of the analysis theory does not help
much; we must look at the record to see what happened.
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These results are a special case of perturbation analysis of the right
eigenvector of the population projection operator. A general formula is
available for matrix population models (Section 13.3), but its results rarely
lend themselves to interpretation in the way the approach here does.

10.1.5 Are Birth or Death Rates the Major Influence on Age
Distribution?

The stable model, which can reconstruct an age distribution from a life
table and rate of increase, enables us to compare two populations, say
those of the United States and Madagascar, of which one is old and the
other young, and to explain the difference between them. We know that
the United States has lower birth rates as well as lower death rates; the
question is, how much of the difference in ages is due to the difference in
births, and how much to the difference in deaths?

Without the Cartesian decomposition, through the stable or some other
model, no answer can be given to such a question. The rates of birth and
death of both countries are what they are; their age distributions are what
they are. We cannot even think of an experimental treatment of real pop-
ulations that would answer the question, let alone perform one. But in a
model we can vary one factor and see how the age distribution changes, and
then vary the other and again see how the distribution changes. If the two
kinds of change add up to the total change, we have decomposed the total;
our model has paid off in providing without cost an experiment that tells
the relative effects of birth and death on age when everything else remains
unchanged.

Table 10.2 provides examples of the experimental treatment. For the
stable model, with the female age-specific rates of birth and death observed
in the United States in 1967, it shows 24.5 percent under 15 years of age
(second item in second row). If we now alter the death rates to those of
Madagascar, 1966, leaving the birth rates as they were, we find 22.0 percent
under age 15. The higher death rates of Madagascar lower the proportion
under 15 by 2.5 percentage points.

Now, retaining the death rates of the United States but entering in the
stable model the birth rates of Madagascar, we find the proportion under
age 15 rising from the original 24.5 percent to 48.6 percent. The higher birth
rates of Madagascar raise the proportion under 15 by 48.6 − 24.5 = 24.1
percentage points.

The two preceding paragraphs show that birth rates have about 10 times
as much effect as do death rates on the proportion of a population under
15 years of age. As a check we take the differences in the other direction,
starting with the same 45.2 percent for Madagascar births and deaths,
subtracting 48.6 to find the effect of death rates at −3.4, and subtracting
22.0 to find the effect of birth rates at 23.2, so now births are 7 times as
influential as deaths. The discrepancy is (45.2−22.0)−(48.6−24.5) = −0.9.
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Table 10.2. Features of age distribution and rate of increase obtained by
combinations of female birth and death rates from five countries, stable model

Age-specific birth rates of:

United England
Age-specific Venezuela, States, Madagascar, and Wales, Sweden,
death rates of: 1965 1967 1966 1968 1803–07

Percent under 15: 10015C0

Venezuela 47.7 23.9 47.8 23.6 34.2
United States 48.5 24.5 48.6 24.2 34.8
Madagascar 45.0 22.0 45.2 21.8 32.1
England and Wales 48.5 24.5 48.6 24.2 34.8
Sweden 43.6 21.0 43.8 20.8 31.3

Dependency ratio percent: 100(15C0 + ∞C65)/50C15

Venezuela 102.1 58.8 102.4 58.7 70.3
United States 105.4 61.1 105.6 60.9 72.5
Madagascar 91.3 51.5 91.8 51.3 62.8
England and Wales 105.2 60.3 105.5 60.1 72.1
Sweden 85.6 46.7 86.2 46.6 58.9

Percent 65 and over: 100∞C65

Venezuela 2.8 13.1 2.8 13.3 7.1
United States 2.8 13.5 2.8 13.7 7.3
Madagascar 2.7 12.0 2.7 12.2 6.5
England and Wales 2.8 13.1 2.7 13.3 7.1
Sweden 2.5 10.9 2.5 11.0 5.8

Intrinsic rate of natural increase per 1000: 1000r

Venezuela 38.5 4.9 38.6 4.5 19.5
United States 40.7 7.6 40.8 6.7 21.5
Madagascar 22.3 −11.3 22.5 −11.6 3.8
England and Wales 41.0 7.4 41.1 7.0 21.8
Sweden 24.3 −9.4 24.6 −9.6 6.4

This quantity is the interaction between birth and death: it is the difference
between the effect of births in the presence of Madagascar deaths and the
effect of births in the presence of United States deaths. It measures the
uncertainty in the decomposition, and is small enough in this case not
to affect our assertion that the age difference is due chiefly to the birth
difference.

This may seem obvious for the proportion under age 15, which represents
the births of the last 15 years and therefore ought to be closely related to
the birth rate. More surprising is the outcome of the same analysis for
the fraction of the population 65 years of age and older. Now we have for
United States births and deaths 13.5 percent; a drop of only 1.5 to 12.0 for
Madagascar with the change in deaths alone, and a drop of 10.7 to 2.8 with
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the change in births alone. Again births are the main factor, accounting
for 8 times as much of the change as do deaths.

Similar calculations may be performed on Table 10.2 for the dependency
ratio (15C0 + ∞C65)/50C15, where nCx is the population between exact
ages x and x+n, as well as for the intrinsic rate r. Variation along rows (due
to births with deaths held constant) is everywhere greater than variation
down columns.

One cannot but be puzzled on noting that historically the birth rate
has changed little in the countries of Asia and Africa since the time when
they had a much lower proportion of young people than they now have.
With little change over time in births, and much change in deaths, rates of
increase and age distribution have changed drastically; how is it that Table
10.2 shows births as the cause? The answer is that cross-sectional analysis
need have no relation to longitudinal (see Section 12.4). It is the fact that
people are always born at age zero, whereas they die at all ages, that gives
the birth rate more leverage on age distribution in a cross-sectional analysis
such as that of Table 10.2; the historical trend is mostly determined by the
acceleration of population increase due to falling mortality at young ages.

10.2 Why There Are More Women Than Men
at Older Ages in Modern Populations

On the whole the population of the United States contains more females
than males, but the difference is by no means uniform through the several
ages. Males are in excess to age 20, but from then on there are more females,
with large proportional differences after age 65 (Figure 10.1). Can theory,
combined with known facts of mortality, account for this difference between
male and female age distributions? Specifically, can theory tell why in 1967
there are 2,236,000 men aged 70 to 74 against 2,941,000 women, a sex ratio
of 76 males per 100 females? Why has the ratio of males to females in the
United States declined steadily during the course of the present century?
Essentially the same method of study that worked for age distribution will
help to account for the varieties of sex ratios in observed populations.

Our search, as before, will start with the current age-specific rates of
birth and death, now pertaining to the two sexes separately, from which a
stable model may be constructed. What is left unexplained by the stable
model based on current rates may be referred to trends in the rates in
recent years; what is then still unexplained can be pursued by the study of
migration and sudden changes in death rates due to wars, epidemics, and
other historical events.

To convert the one-sex model used earlier for the analysis of ages into the
(very primitive) two-sex model needed now, one item of data is required:
the sex ratio at birth, say s. If s boys are born for each girl, and B girls are
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Figure 10.1. Male and female populations by age, United States, 1967.

born in the current year, then the number of boys born is sB. By the same
argument as was used for (5.1.1) we can write down the sex–age distribution
if the regime of mortality and fertility is fixed and population is increasing
in a geometrical sequence with a ratio e5r of increase over any 5-year period.
Births, as well as each age–sex group, are all supposed to be increasing in
this ratio; hence, if currently there are B female births per year, on an
approximation to the stable population argument of Section 5.1 there will
be B5L0e

−2 1
2 r females aged 0 to 4, B5L5e

−7 1
2 r aged 5 to 9, and similarly

for later ages. We are here satisfied with the common approximation∫ x+5

x

e−ral(a) da ≈ e−r(x+2 1
2 )
∫ x+5

x

l(a) da = 5Lxe−r(x+2 1
2 ).

The corresponding male births are sB, and male survivors at the end of
the first 5-year period are Bs5L

∗
0e

−2 1
2 r, the same as for females but using

s and the male life table function 5L
∗
0. Thus the number of females is

B5Lxe−(2 1
2+x)r,

and of males is

Bs5L
∗
xe−(2 1

2+x)r,

both in the age group x to x + 4 at last birthday, where we suppose the
two sexes to be increasing at the same rate r.
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Then the sex ratio in the age group is

Bs5L
∗
xe−(2 1

2+x)r

B5Lxe−(2 1
2+x)r

=
s5L

∗
x

5Lx
,

in which everything has canceled but s and the life table survivors.
In application to the United States in 1967, we have s = 1.050, 5L70 =

329,111, and 5L
∗
70 = 225,346, so the stable model gives the sex ratio at age

70 as
(1.050)(225,346)

329,111
= 0.72,

compared with 0.76 observed. The difference arises because the current life
tables have a higher ratio of male to female mortality than the cohort in
question experienced; immigration and other factors also operate.

10.3 Age at Marriage

A curve to describe proportion married with age, backed by a convincing
rationale, is provided by Hernes (1972). In such an age-graded population
it hardly occurs to individuals to marry when most of their contemporaries
are unmarried; but as marriage gets under way after about age 18, each
sees the number of his or her unmarried friends diminishing and begins to
feel left out—experiences, indeed, an increasing pressure to marry. Hence,
argues Hernes, we can take the rate of transfer into the married state as
proportional to the fraction married. But it must also be proportional to
the fraction not yet married; the marrying can come only from the stock
of the unmarried. The result is a logistic curve of which Savage (1973)
provides a generalization.

10.3.1 A Sum of Random Intervals Model
Coale (1971) found by experimenting with a number of observed distribu-
tions of age at marriage that all fitted a standard curve, provided only that
the curve was adjusted for (a) the age at which girls become marriage-
able, (b) the proportion ever marrying by the end of life, and (c) horizontal
scale. If the distributions are presented as risk functions, that is, age-specific
marriage rates for the still-single population but excluding those who never
marry, they take the form for first marriages

r(x) = 0.174e−4.411e−0.309x

, (10.3.1)

where x is the age of the person, measured from the origin for the particular
population. Calculation yields the following values:
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x r(x)

0 0.0021
1 0.0068
2 0.0161
3 0.0304
4 0.0483
5 0.0679
10 0.1424
20 0.1724

This zero-parameter or three-parameter curve, depending on how one looks
at it, gives close fit to data but, as Coale points out, lacks an obvious
behavioral rationale.

Feeney (personal communication) suggested that the marriage curve may
be composed of a random age of entry followed by a random delay. Coale
and McNeil (1972) carried this thought further and developed a distribution
involving three delays.

If the probability that X falls between x and x + dx is fX(x) dx, and
the probability that Y falls between y and y + dy is fY (y) dy; the joint
probability is fX(x)fY (y) dx dy. To find the distribution f(z) of Z = X+Y
we need to integrate this over all x and y such that x + y = z, that is,

fZ(z) =
∫ ∞

−∞
fX(x)fY (z − x) dx. (10.3.2)

This expression for fZ(z) is called a convolution, like (7.5.1), because the
sum of the arguments of the functions in its integrand does not involve x,
the variable of integration. It is readily applied to the sum of two negative
exponential distributions, fX(x) = r1e

−r1x and fY (y) = r2e
−r2y, to obtain

the distribution of Z = X + Y as

fZ(z) =
r1r2

r1 − r2
(e−r2z − e−r1z). (10.3.3)

It may also be applied to more than two exponentials and to a normal
curve followed by three exponentials, as long as independence holds.

This is how Coale and McNeil (1972) proceed to account for the dis-
tribution of marriage ages. They suppose a normal distribution of ages at
which girls become marriageable, followed by three delays, each exponen-
tially distributed. Fitting to data for French couples, they find the mean
age of entry into a state of marriageability as 16.6 years, the mean inter-
val between then and meeting the future husband as 4.02 years, the mean
interval from acquaintance to engagement as 1.53 years, and the mean in-
terval from engagement to marriage as 0.93 year. The closeness of fit of the
convolution to the observed data for this and other populations confirms
their behavioral model.
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10.3.2 Small Marriage Circles
So much for marriage partners in a large population, where random varia-
tion in the time of individual marriage is recognized, but random variation
in the number of men and women of marrying age can have only a minor
effect. If in fact each individual, as he or she comes of age, seeks a marriage
partner from a relatively small circle, some part of nonmarriage can be due
to random differences in the numbers of men and women in these circles.
Henry (1969) has addressed himself to this aspect of the problem.

He asks us to think of a circle containing candidates for marriage, whether
or not they see themselves in that light. A circle may be an office or other
workplace, a social club, or a neighborhood. Suppose that it contains 2n
members, all of such age and disposition as to be candidates for marriage to
one another. Let them be randomly distributed by sex; that is, the proba-
bility of a member being male is 1/2, and of being female 1/2. The expected
number of male candidates would be n, and of females likewise n, so that
in any realization of our hypothetical circle in which these expected values
held all 2n candidates would marry. The task is to find the expected num-
ber of candidates that fail to find mates over all realizations of the circle.
The following solution of Henry’s problem is due to McFarland (1970).

If the chance of each individual being male is 1/2, the chance that of the
2n members the numbers of males is n + k and of females n − k is(

2n

n + k

)(
1
2

)2n

. (10.3.4)

In this situation the nonmarrying males will number 2k = n+k−(n−k), k >
0. Hence the expected number of males not marrying must be n+k−(n−k)
times probability 10.3.4, added through all possible constitutions of the
circle that have males in excess of females:

n∑
1

[(n + k) − (n − k)]
(2n)!

(n + k)!(n − k)!

(
1
2

)2n

=

(
1
2

)2n

(2n)!

[
n∑
1

1
(n + k − 1)!(n − k)!

−
n−1∑

1

1
(n + k)!(n − k − 1)!

]
. (10.3.5)

We have made the upper limit in the right-hand summation k = n − 1,
because k = n gives a zero term owing to the factor n − k. Now note that
the term for k = 2 in the left summation cancels with that for k = 1 on
the right, both being equal to 1/(n + 1)!(n − 2)!. All other terms similarly
cancel, except that for k = 1 on the left, which is equal to 1/n!(n − 1)!.
Hence the required expected number of males left over is(

1
2

)2n

(2n)!
1

(n)!(n − 1)!
= n

(
1
2

)2n (2n)!
n!n!

. (10.3.6)
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The expected number of females left over must be the same by symmetry,
and hence for both sexes we have an expected

2n

(
1
2

)2n (2n)!
n!n!

persons unmarried or, as a fraction of the 2n individuals in the circle,(
1
2

)2n (2n)!
n!n!

. (10.3.7)

McDonald (1965) finds the same result (10.3.7) for the matching of male
and female worms in the spread of certain infestations. For no readily under-
standable reason, the expected fraction of marriage candidates (or worms)
unmatched is the same as the probability that the group is equally divided
between males and females.

Stirling’s approximation to the factorial is n! = nne−n
√

2πn [1+(1/12n)],
omitting terms from 1/n2 onward. Entering this in (10.3.7) gives(

1
2

)2n (2n)2ne−2n
√

4πn
[
1 + (1/24n)

]
{
nne−n

√
2πn

[
1 + (1/12n)

]}2 ,

which after cancellation becomes
1√
πn

1 + 1/(24n)(
1 + 1/(12n)

)2 ≈ 1 − 1/(8n)√
πn

. (10.3.8)

Thus, if a marriage circle containing 2n individuals is considered, the
expected fraction of excess of one sex or the other, that is to say, the average
fraction who cannot marry within the circle, is slightly under 1/

√
πn. For

a group of 20 individuals this is 1/
√

πn = 0.178, reduced to 0.176 by the
factor 1 − 1/(8n) (Table 10.3 and Figure 10.2).

This solution may be extended to a circle having a disequilibrium of the
sexes, in the sense that the probability of a random individual being male
is not 1/2 but some other number; in this case, another device is required
to sum the series.

10.3.3 How Many Households Are Implied by Birth, Death,
and Marriage Rates?

Age-specific rates of birth and death, along with the fraction of women
married at each age, imply an average size of nuclear family (Goodman,
Keyfitz, and Pullum 1974).

For the general case, call the age distribution of women p(a), not nec-
essarily stable, so that

∫ ω

0 p(a) da = Nf , and the fraction married at age
a is q(a); here the total number of married women is

∫ ω

0 p(a)q(a) da. It is
reasonable to attach a separate family to each married woman, where for
this purpose only those currently living with a spouse will be defined as



10.3. Age at Marriage 229

Table 10.3. Values of (2n)!/(22nn!n!) and Stirling approximations

Size of
group

2n (2n)!/(22nn!n!) 1/
√

πn

(
1 − 1

8n

) /√
πn

2 0.5 0.5642 0.4937
4 0.375 0.3989 0.3740
6 0.3125 0.3257 0.3122
8 0.2734 0.2821 0.2733

10 0.2461 0.2523 0.2460
12 0.2256 0.2303 0.2255
14 0.2095 0.2132 0.2094
16 0.1964 0.1995 0.1964
18 0.1855 0.1881 0.1855
20 0.1762 0.1784 0.1762
40 0.1254 0.1262 0.1254
80 0.08893 0.08921 0.08893

120 0.07268 0.07284 0.07268
160 0.06298 0.06308 0.06298
200 0.05635 0.05642 0.05635
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Figure 10.2. Diminishing fraction of expected number without spouse as marriage
circle increases.

married. Then the total number of families is also
∫ ω

0 p(a)q(a) da, and the
mean number of persons per family is

2Nf∫ ω

0
p(a)q(a) da

(10.3.9)
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if the numbers of males and females in the population are equal.
To go from this to the mean size of family implied by age-specific rates

in a stable population, we replace p(a)/Nf by be−ral(a), as in Section 5.1.
Then we have for the mean number of persons per family

2∫ ω

0
be−ral(a)q(a) da

. (10.3.10)

This is different in concept from the average we would derive from the
census itself by counting persons in families and dividing by the number
of families. Our (10.3.10) neglects persons living not in families but in
prisons and other institutions, and implicitly somehow allocates illegitimate
children to married women, but this is a minor divergence from the census.
The main difference is that (10.3.10) gives what is implied by the current
rates rather than by rates that have existed over the lifetimes of the people
counted in a census. To reconcile these two kinds of average would be a
difficult but worthwhile piece of research.

What about the size of the extended family, supposing that a separate
extended family is formed by a married woman if her mother is dead?
We need merely enter in (10.3.10) the probability that a woman aged a
does not have a living mother, a subject to be developed in Chapter 15.
If the probability that a woman aged a has a living mother is M1(a) [an
expression for this is given later as (15.1.4)], the chance that she has not is
1 − M1(a), and from (10.3.9) extended families will average

2Nf∫ ω

0
[1 − M1(a)] p(a)q(a) da

persons, (10.3.11)

or in the stable case
2∫ ω

0
[1 − M1(a)] be−ral(a)q(a) da

persons. (10.3.12)

10.3.4 Intrinsic Rates of Natural Increase: Age, Parity, and
Nuptiality

The intrinsic rate of growth, as defined by Lotka and discussed in Sections
6.1 and 7.2, is that which ultimately results from the continuance of ob-
served age-specific rates of birth and death. The intrinsic rate depends in
no way on the observed age distribution, but is a means of interpreting the
age-specific rates. And yet the choice of age-specific rates was in a sense ar-
bitrary; we could have used other classifications—say rural–urban-specific
rates, classified by age or not. Any characteristic that shows differentials of
birth and death rates is a candidate for providing an intrinsic rate, although
not all characteristics are equally logical candidates.
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Oechsli (1971) has calculated rates intrinsic for age, parity, and nuptial-
ity, and for certain combinations of these. The age–parity rate, for instance,
tells what the increase of the population would be once its age–parity dis-
tribution came to be that resulting without disturbance from the observed
set of rates in the several age–parity groups.

To see the meaning of various directions of adjustment consider the
following five rates (per 1000 population) for United States females in 1960:

Crude Crude rate of natural increase 14.7
A Age intrinsic rate 20.8
A–P Age–parity intrinsic rate 23.0
A–N Age–nuptiality intrinsic rate 18.4
A–N–P Age–nuptiality–parity intrinsic rate 19.6

The rise when we go from the crude rate in the first line to the age
intrinsic rate in the second means that the observed age distribution was
unfavorable to increase—that there was a smaller proportion of women
of childbearing age than are present in the stable condition at 1960 age-
specific rates of birth and death. This is a well-known result of the small
cohorts born in the 1930s.

When we go from the age intrinsic to the age–parity intrinsic rate,
we find a further increase, which can mean only that within age groups
the distribution of observed parities was unfavorable to reproduction. The
highest-bearing parities are the low ones; apparently the stable condition
on 1960 age-parity specific rates would have relatively more individuals of
low parity than the actual situation of 1960.

On the other hand, when we go from the age intrinsic rate to the age–
nuptiality intrinsic rate (from 20.8 to 18.4), we find a decline; this means
that the proportion of married women in the population of 1960 was greater
(in the main ages of childbearing) than the proportion of married women in
the stable condition. If the marriage rates, the age-specific nuptial fertility
rates, and the age-specific mortality rates of 1960 were allowed to work
themselves out, they would result in a lower overall birth rate than would
the age-specific fertility and mortality rates of 1960, disregarding marriage.

The fall from the age–parity to the age–nuptiality–parity says that sep-
aration of the married women in the age–parity analysis brings the rate
down, and the effect is so drastic that we find A–N–P below the simple
age intrinsic rate A. In short, the effect of nuptiality more than offsets the
effect of simple parity. Karmel (1950) suggested in his comment on Whelp-
ton (1946) that the parity correction by itself could be deceptive. Suppose
from one year to the next a rise in marriages, while age–parity rates at
each marriage duration remained the same. The age–nuptiality–parity in-
trinsic rate would be unchanged, whereas both the age intrinsic and the
age–parity intrinsic rates would rise. But the latter would rise more, for
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the higher first births would be divided by zero-parity women rather than,
as in the age-specific rate, being diluted by division by all women.

The rise from the 18.4 in A–N to the 19.6 in A–N–P means that within
the married group, age by age, the parity distribution of the observed pop-
ulation was less favorable to fertility than the parity distribution of the
stable condition.

All of this can be shown on a diagram. The lozenge form brings out the
contrast between the effects of parity and of nuptiality (A = age; P =
parity; N = nuptiality):

Crude
14.7

A
20.8

A – N – P
19.6

A – P
23.0

A – N
18.4

10.3.5 The Life Cycle
According to Glick’s calculation (1955), the following changes in median
ages of various events in American families took place between 1890 and
1950:

Median age of Median age of
husband wife

Event 1950 1890 1950 1890

First marriage 22.8 26.1 20.1 22.0
Birth of last child 28.8 36.0 26.1 31.9
Marriage of last child 50.3 59.4 47.6 55.3
Death of one spouse 64.1 57.4 61.4 53.3
Death of other spouse 71.6 66.4 77.2 67.7

Whereas in 1890 a minority of couples survived until the last child was
married, by 1950 most survived, on the average by about 14 years. A new
demographic element came into existence: husband and wife living together
after their last child had left home—the empty nest. This corresponds to
a new pattern of spatial movement as well; a couple may start out in an
apartment in the city, move to a suburb when their first child is born, and
remain there until their last child has left home. If the husband is middle
class, his income has usually continued to climb, and his earnings are higher
than when the children were at home; moreover, his wife may well take up
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some new kind of paid work or resume an earlier career. The couple no
longer need their suburban home and schools and are in a position to move
into town and pay a substantial rent. Collectively such couples have affected
the skylines of many American cities as new high-rise, high-rent apartments
spring up to accommodate the new demographic element.

The change in life cycle is due to improved mortality, especially for
women, along with earlier marriage in both the older and the younger
generation—a 1-year fall in the age of marriage subtracts 2 years from the
age at which the last child is married, everything else remaining the same.
Moreover the birth rate has fallen so that children are fewer; and, espe-
cially if the wife is eager to resume her career, the children that couples do
have are more closely spaced. To all this is added an increased tendency
for children to leave home before marriage.

We thus know to what factors the changes are due, but we do not know
how much of a particular change is due to each factor. Yet it need not be
difficult to break down any part of the difference. In 1890, for husbands, the
first death of spouse occurred 2 years before the last child was married; in
1950 it was 14 years after. One would like to know how much of the change
was due to improved mortality, how much to earlier marriage, and so on.
These effects would be ascertained by the technique exhibited in Table 10.2.
The first step would be to set up a model, including death rates, marriage
rates, home-leaving rates, birth rates, all by age. Then the model with
the rates for 1890 would be used to generate the 1890 column of Glick’s
table, or an approximation to it. The same would be done for the 1950
column. Then the various elements of the models would be interchanged;
for example, the marriage rates for 1950 would be combined with the other
elements for 1890 to obtain an estimate of the effect of changed marriage
ages. The result would be somewhat more elaborate to interpret than Table
10.2, since it would have several orders of interaction, but no new principle
would be required. See Chapter 13 for other ways to decompose effects of
factors and their interactions on the rate of increase.

This demographic theory of the life cycle needs to be further developed,
and then integrated with the theory of savings and consumption over the life
cycle that has become a standard part of macroeconomics. Stage-classified
matrix population models would certainly be applicable to it.

10.3.6 Married and Divorced
The numbers of married and divorced persons counted in a census, like
those of the several ages and sexes, are related to the country’s previous
history of marriage and divorce. It is necessary to consider the time series
of marriages of preceding years, along with other series on the dissolution
of marriages by death of one spouse or divorce. The present is in principle
explainable by and reconcilable with the past. If the reconciliation and
explanation are in a small local area, one would have to take account of
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immigration and emigration as well as marriages, deaths, and divorces, but
this complication will be disregarded here. The discussion that follows is
due to Preston (1975b).

Still for simplicity, disregard the age of the individuals concerned, and
take account only of duration of marriage. (First marriages fall in a rela-
tively narrow band of ages, and the theory will apply to them more strictly
than to all marriages.) Call µm(x) dx the chance that a marriage that has
been in existence x years will break up during the time x to x+dx through
the death of the husband, µf (x) that it will break up through the death of
the wife, and µd(x) that it will break up through the divorce of the couple.
Then the argument that started in Section 1.6, of which a special case was
the survivorship of an individual in the face of death (Section 2.1), is here
applicable to the survivorship of a couple in the face of the death of either
member or of divorce. It is as though a group of marriages, initially N0 in
number, had to run the gauntlets of death and divorce, and only a certain
fraction survived in each time period. The surviving couples at the end of
t years would be

N(t) = N0 exp
{

−
∫ t

0

[
µm(x) + µf (x) + µd(x)

]
dx

}
. (10.3.13)

The expected number of divorces between time t and t + dt would be
N(t)µd(t) dt, assuming independence, and disregarding remarriage.

These causes of dissolution compete with each other. Higher mortality
lowers the divorce rate, everything else remaining the same. The reason for
this is to be seen in the expression for the number of marriages that will
eventually end in divorce:

D =
∫ ∞

0
N(t)µd(t) dt.

This, divided by the number N0 of marriages that started the cohort off,
gives the fraction expected to end in divorce. If, as between two populations
otherwise similar, mortality is higher at any age in one, N(t) will be lower in
that one for all subsequent ages, so D will also be lower. This is analogous to
the way that deaths from cancer in the multiple-decrement table of Section
2.6 depend on deaths from other causes.

The Current Divorce–Marriage Ratio. The ratio of current divorces to cur-
rent marriages, say for the year 1973, is a convenient measure of the extent
of divorce. This measure is often used, and almost as often criticized on the
ground that current divorces come from the marriages of a period going
back a number of years, and hence the denominator of the ratio ought to be
these marriages. The ideal is a schedule of divorce rates according to dura-
tion of marriage, so that duration-specific divorce rates can be calculated.
But when these are not available and we resort to the current divorce–
marriage ratio, we can apply an interpretation of this ratio that has been
provided by Samuel Preston.



10.3. Age at Marriage 235

Let D(t) be the curve of divorces with time, and M(t) the curve of
marriages. Again let the (unknown) continuous duration-specific force of
divorce be µd(x) for marriages that have lasted x years, and call the prob-
ability of survival of the marriage for x years against the contingencies of
both death and divorce p(x). Then the current number of divorces D(t)
must be

D(t) =
∫ ∞

0
M(t − x)p(x)µd(x) dx, (10.3.14)

and under a fixed rate of increase r the current number of marriages is

M(t) = M0e
rt. (10.3.15)

Therefore, on entering M(t − x) = M0e
r(t−x) in the expression (10.3.14)

for D(t), we have

D(t) =
∫ ∞

0
M0e

rte−rxp(x)µd(x) dx. (10.3.16)

From (10.3.15) and (10.3.16)

D(t)
M(t)

=
∫ ∞

0
e−rxp(x)µd(x) dx. (10.3.17)

How much does this ratio depend on the rate of increase of marriages r?
Taking the logarithm and then differentiating both sides of (10.3.17) gives
the simple result

d

dr

{
log
[

D(t)
M(t)

]}
= −AD, (10.3.18)

where AD is the mean number of years of marriage at the time of divorce,
calculated for the part of the population that ultimately does divorce. One
could confine the argument to first marriage and first divorce, or else to
first marriage and any divorce, but to take all marriages and all divorces
accords with the data most commonly available.

Integrating (10.3.18) gives

log
[

D(t)
M(t)

]
= log

[
D0(t)
M0(t)

]
− rAD,

where D0(t)/M0(t) is the ratio in the stationary population. Taking
exponentials provides

D(t)
M(t)

=
D0(t)
M0(t)

e−rAD , (10.3.19)

which would have been obtained more directly as an approximation to
(10.3.17).

For populations that have not experienced sudden changes in the mar-
riage rate (10.3.19) enables us to infer the ratio in the stationary population,
D0(t)/M0(t), which is the same as the probability that a marriage will end
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in divorce. The mean number of years married for those who divorce was
constant through the 1960s at about 7 (Statistical Abstract for the United
States, 1972, p. 3). Suppose a rate of increase of about 1 percent per year.
Then Preston’s result (10.3.19) can be used to calculate the probability
that a random marriage will end in divorce, assuming values for r and AD

and applying them to the observed D(t)/M(t):

D0(t)
M0(t)

=
D(t)
M(t)

erAD =
D(t)
M(t)

e(0.001)(7) = 1.073
D(t)
M(t)

. (10.3.20)

This result is directly applicable only if birth, marriage, divorce, and
death rates have all been fixed in the past. But even under instability in
these rates (10.3.20) is useful, for the birth rates really do not matter;
what is necessary is that marriages have been increasing in the past at a
reasonably steady and known rate.

10.4 The Foreign-Born and Internal Migrants

The 1970 census gave 9,619,000 foreign-born in the United States, a decline
from previous censuses and considerably less than the 11,595,000 reported
in 1940. If the flow of immigrants (net of those leaving) had been constant
and at constant ages, improvements in mortality would have led to a steady
increase in the number alive to be counted in the census; the reason for the
decline must have been a greater decline in entrants than the increase in
fraction surviving. But the preceding decade’s immigration records had
shown 3,322,000 entrants, the peak to that time in a steady rise from a low
of 528,000 immigrants in 1931–40. The number of immigrants entering the
United States rose sharply in the postwar period; why, then, were fewer
and fewer foreign-born counted in successive censuses?

The answer requires a longer view backward than the postwar period.
The 40 years from 1931 to 1970 showed entrants numbering 7,400,000
against 22,326,000 for the preceding 40 years. This contrast is what was
reflected in the declining immigrant population; the years since the 1930s
had witnessed the dying off of the immigrants from a time earlier in the
century. Immigrants are typically young adults who have on the average 40
or more years to live after their arrival.

Any statistical reconciliation is rendered more difficult yet by the con-
siderable volume of illegal immigrants, who are certainly not included in
the annual official numbers of entrants; some unknown fraction are picked
up by the census.

10.4.1 A Matrix Analysis
The next stage in analysis, beyond the accounting for present numbers of
foreign-born in terms of the preceding stream of immigration, is to project
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the consequences for future population of the present rates of immigration
or of some hypothetical change in them. This is easily done using matrix
population models (Chapter 7) that classify individuals by location instead
of (or in addition to) age. Such models go beyond description and recon-
ciliation of reports into at least a primitive kind of mechanism: the effect
of fixed (or changing) rates on the pattern of residents from abroad, where
“abroad” may mean another country, state, or county.

Rogers (1968; see also 1995) provides an exposition of the theory and
examples of the migration process for the United States. As an example he
considers 1955–60 migration and natural increase between California and
the rest of the United States with the matrix

A =
(

1.0215 0.0127
0.0627 1.0667

)
.

He starts the process with the initial 1955 vector in thousands:

n(1955) =
(

12,988
152,082

)
and finds a 1960 distribution between California and the rest of the United
States equal to

n(1960) =
(

1.0215 0.0127
0.0627 1.0667

)(
12,988

152,082

)
=
(

15,199
163,040

)
.

Continuation of the process, or use of eigenvalues, gives the ultimate ratio
of California to United States population if these rates continue.

10.4.2 Migration and Age
Among other simplifications the models of the preceding paragraphs suffer
from the omission of age. Rogers goes on to show (1968, p. 10) that one
can make each of the aij itself a matrix, with nonzero elements in the first
row and subdiagonal, and so he combines the migration and age effects in
a single large matrix. With 50 states and 18 ages for females the matrix
would be 900 × 900.

Arrangement of the elements within A and n(t) is arbitrary, as long as
the same order is used in both. One could put the states in alphabeti-
cal order or in order of their 1970 populations, and even the ages could
be rearranged with no loss other than inconvenience in remembering the
sequence. Moreover the ages need not be a subdivision of the states; the
states could just as well be a subdivision of the ages. In fact Feeney (1970)
shows the advantage of considering the ages separately, making a block of
the interstate migration for ages 0 to 4, then another block for ages 5 to 9,
and so on. The block matrix for ages is then largely empty, and its proper-
ties are readily worked out. More recently, Hunter and Caswell (2004) have
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shown how to easily construct multiregional models with either classifica-
tion, using an operator called the vec-permutation matrix. Their approach
maintains a useful block-diagonal structure for the projection matrices.

The literature on migration and settlement is too extensive to refer to
here in any complete way, let alone to summarize. Classic papers on the
mathematics are due to Blumen, Kogan, and McCarthy (1955), Goodman
(1961b), and McGinnis (1968). Alonso (1978), Lowry (1964), and Stone
(1971) provide theory on rural–urban movements, and an annotated bib-
liography is due to Price and Sikes (1975). The economics of migration
is treated by David (1974) and Todaro (1969), and geographical aspects
by Berry (1973) and Zelinsky (1971). Rogers (1984) explores important
aspects of the age-dependence of migration.

Of interest as potentially unifying migration theory and integrating it
with multiple decrement life tables, tables of the work force, and tables of
marital status, is the work of Rogers (1975, 1995) and Rogers and Willekens
(1976). Their matrix formulation simplifies and generalizes the work of
Schoen (1975). For other approaches using matrix formulations, see Lebre-
ton and Gonzalez-Davila (1993), Lebreton (1996), and Hunter and Caswell
(2004). Alonso (1978; see de Vries et al. 2000) has developed a general
framework that holds promise of being able to handle nonlinearities that
are important in the real world.

10.5 Human Stocks and Flows

The study of population involves relating stocks to flows, as Richard Stone
(1972) reminds us. Censuses report the stocks, according to the categories
of age, marital status, education, occupation, and other characteristics,
while vital statistics, numbers of graduates provided by schools, and similar
current data report the flow. In contrast to economic data, which are more
plentiful with respect to flows, social statistics are richer and higher in
quality with respect to stocks. Relating the two is important in all fields.

Underlying all social statistics are individuals passing through the sev-
eral states of their life cycles. They begin by being born, as reported in a
flow series, spend some years at home, go into the educational system at
the elementary level, sooner or later move to the intermediate and higher
levels, eventually enter the labor force, where they may stay briefly or long,
perhaps go back to school, and ultimately retire, possibly after several en-
tries into and withdrawals from the labor force. At the same time they
pass from a household of orientation, are married and form a household
of procreation, have children, divorce, remarry, become widowed, and go
through other domestic transitions. If it were useful, we could consider each
economic activity state classified by the several domestic states, but it is
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less demanding of data to avoid this and to use two models in which the
two collections of states are separately treated.

The two sequences outlined above through which individuals go are
referred to by Stone as the active sequence, relating the individual to
production and the market, including schooling and retirement, and the
passive sequence, including the successive types of household of which he
is part, the housing conditions, and his neighborhood and location. A fur-
ther sequence is that of health and medical care, as the individual passes
through the stages of being well and sick, encounters successive medical
practitioners, is hospitalized and released. Some individuals go also through
a sequence of delinquency states, starting with aberrant behavior and its
consequences as they pass through the hands of police, courts, and prisons.
These can all be treated as cases of stage-classification (Chapter 3), and
approached via matrix models.

For each of the states in each of the four sequences mentioned above,
a precise definitional boundary is required for purposes of measurement.
For education it happens to be relatively easy to draw a sharp boundary
around formal full-time schooling, and this is where the boundary is usually
placed for statistical purposes; the important component of home and part-
time learning is neglected. A conflict between precision of measurement and
relevance of concept exists in any empirical science. As another example,
it is sharper to restrict statistically economic production to that which
goes through the market, locating self-transport to place of work and other
do-it-yourself contributions outside the boundary of production.

To introduce the notation and ideas with an uncomplicated example,
consider just two states, alive and dead, and the corresponding flows of
birth and death. The statement is an adaptation of the Leslie (1945) model
to a stationary population. Suppose a matrix S in which the subdiagonal
elements are the probabilities of surviving from one year of age to the next,
so that the first is, in the notation of Chapter 2, L1/L0, the second L2/L1,
and so on; all elements but the subdiagonal are zero. The new population
that enters each year through birth or migration is a vertical vector b.
Suppose also that b consists of the number L0 in its first position and
zeros elsewhere. Then, if the population at time t is (t), also a vertical
vector, we have

n(1) = Sn(0) + b

n(2) = Sn(1) + b = S2n(0) + Sb + b
...

After the process has been going on for a long time, the term in Stn(0)
will have vanished; in fact all powers of S beyond the (m − 1)th, if it is an
m × m matrix, will consist entirely of zeros. Similarly, if t is m or greater,
such terms as Stb will be zero, so we can add them in with impunity. This
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gives us the series

n(t) = b + Sb + S2b + · · · t > m (10.5.1)

= [I + S + S2 + · · ·]b, (10.5.2)

which can be thought of as infinite. The sum of a geometric series of ma-
trices is obtained in the same way as the sum of a series of scalars of which
the common ratio is less than unity. Let the sum be N:

N = I + S + S2 + · · · .
Multiplying N by S gives the same series, except that the I is missing;
hence we have

N = NS + I,

or, on subtracting NS from both sides and factoring out N,

N[I − S] = I,

and, on multiplying on the right by the inverse [I − S]−1,

N = [I − S]−1.

Entering this result in (10.5.2) gives for the population distribution by
age at time t

n(t) = [I − S]−1b. (10.5.3)

The factor multiplying b, which is called the fundamental matrix of the
absorbing Markov chain implied by the matrix S, will appear again in
Chapter 11.

For our particular matrix S giving survivorships as the transitions be-
tween successive ages, the determinant of [I−S] is readily seen to be unity,
and the inverse is the transpose of the cofactors of the elements of I − S;
that is to say, for the jth element of the ith row of the inverse we enter the
determinant obtained by deleting the ith column and jth row of I−S. This
procedure provides the fundamental matrix of the survivorship matrix:

[I − S]−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · ·
L1

L0
1 0 0 · · ·

L2

L0

L2

L1
1 0 · · ·

L3

L0

L3

L1

L3

L2
1 · · ·

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10.5.4)

The elements of the first column provide the probability of attaining the
successive ages, starting at age zero; the elements of the second column
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give the same probabilities, starting at age one, and so on for the several
columns. The totals of the columns are the expectations of further life,
starting in the first age, the second age, and so on. Expressed formally, if e
is the column vector consisting of ones then the ith element of eT[I−S]−1,
is the expectation of further life for a person who has attained the ith
age. (In contrast to most demographic and actuarial work, this way of
developing the subject takes individuals in midstate rather than completed
ages. Unless the states were age intervals much shorter than 1 year, calling
the midstates 1

2 , 1 1
2 , . . . intervals would not make the expectations quite

equal numerically to those calculated in the usual life table. The difference
is of no consequence for the present purpose.)

Merely to arrive at a somewhat inaccurate version of the life table, the
matrix analysis above is cumbersome as well as superfluous. Its advantage
is that it gives stocks (of people) in terms of flows, not only for death but
also for many other conditions, and that it permits a connection to powerful
results on absorbing Markov chains (Chapter 11).

We were able conveniently to sum the powers of S because S vanishes
beyond a certain power. That does not happen in general, but in many situ-
ations the elements of the powers become smaller and smaller in something
like a diminishing geometric progression. They do this when the matrix S
is part of an absorbing chain; our matrix S above is part of an absorbing
chain in the sense that everyone is absorbed by death sooner or later in
the course of his progress through the several ages. See Chapter 11 for a
complete description of these methods.

10.6 The Demography of Organizations

This book deals for the most part with large populations. It presents theory
suited to the understanding of national populations, like those of the United
States or Mexico. But this is an inappropriate restriction; every city ward,
corporation, school, hospital, or seaside resort has its demography. The
operations of communities and institutions depend on a flow of people,
whose entries are analogous to births and their departures to deaths. For
institutions that have relatively well-determined posts, differentiated by age
and sex like a national population and in addition by skills and other role
requirements, a thoroughgoing demography would be an extensive subject,
and the pages that follow are barely an introduction to it. They draw from
contributions due to Bartholomew (1982), Coleman (1973), March (1975),
and Waugh (1971). Their claim to a place in this chapter is the help they
offer in understanding distributions of income and similar variables.

We tackle the sheer size aspect first in political, then in economic,
organizations.
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10.6.1 Loss of Power
One aspect of the number of persons in an organization has been called
by Coleman “loss of power,” the diminishing influence of the individual
as the organization grows in size. This appears clearly in voting, where
the individual has a deciding voice only when his associates are evenly
divided. The probability of such even division can be shown to be inversely
proportional to the square root of the size of the voting group. If there are
100,000 individuals aside from Ego, the chance that they will split evenly
is approximately one-tenth as great as if there were 1000 individuals. This
inverse square root law is easily derived.

With 2n+1 members voting, the chance that Ego’s vote will be decisive
is the same as the chance that the other 2n individuals will split n for and
n against whatever motion is under debate. The number of ways in which
this can happen is the number of ways of putting 2n objects equally into
two boxes, that is, (2n)!/n!n!. The total number of combinations of the 2n
votes is 22n, since each could vote “yes” or “no.” With equal chances or
each vote the probability that the 2n votes will be evenly split is

p =
(

1
2

)2n (2n)!
n!n!

.

The solution happens to be formally identical with that for the fraction
unmarried in (10.3.7).

Entering as before the Stirling first approximation to the factorial n! =
nne−n

√
2πn, we find that everything cancels except 1/

√
πn. With n = 3,

1/
√

πn is 0.3257 against the exact 0.3125; with n = 5, 1/
√

πn is 0.2523
against the exact 0.2461. For higher values of n the error of the approxi-
mation is negligible, as Table 10.3 shows. This establishes the proposition
that a person’s power goes down as the square root of the size of the group
within which he is operating provided he is the last one to vote; in the
symmetrical condition before the voting starts each member can have no
more and no less than 1/n of the power.

10.6.2 Organizing Political Success
As Coleman points out, one means by which an individual can apply social
skill to attain power is by restructuring the electorate. In real life an elec-
torate, whether it be a local boys’ club, a town, a nation, or the Congress
of the United States, is made up of cliques, factions, committees, parties,
and other subgroups. In the smallest cell the probability 1/

√
πn provides

an appreciable chance to the individual. Ego may well gain a sense of power
through having the decisive vote in the clique with relative frequency, even
though the decisions concern small matters such as how the clique as a
whole will vote in a larger contest. If the voting is to be by groups, like an
electoral college, Ego’s chance of being the deciding voter is little different
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from that in individual voting. But evidently a person gains power nearly in
the ratio of

√
2 = 1.41 by being a member of a coalition containing half the

members plus one. He gains if he becomes a member of a coalition of any
size that votes together while others vote individually. Coleman proves that
the size of the coalition that maximizes the person’s power is considerably
less than the 51 percent that gives absolute control.

10.6.3 Economic Hierarchies
Economic organizations often fall naturally into hierarchies by virtue of

the technical requirements of production and decision making. To simplify
a typical organization, assume that there is one head of it, he has s persons
reporting directly to him, and each of these has s persons reporting to him
in turn, where s can be a number like 5 and is called the span of control
(Cramer 1972). If there are n levels then counted from the top downward
the personnel of the organization will be distributed as follows:

Level 1 2 3 · · · n
Number of employees 1 s s2 · · · sn−1

and the total personnel, say at time t, will be N(t) = (sn−1)/(s−1). Then,
if a retirement takes place at the ith level, the chance of promotion for each
individual at the (i+1)th level is 1/si, which is a very small number for the
lower echelons of the hierarchy. The theory here does not have any simple
relation to that relating promotion and age of Sections 5.8 and 14.10.

Note that, as long as s is greater than 1, there are more persons in the
lowest level than in all higher levels together. If seniority in promotion
is maintained, the halfway point between bottom and top will always be
within the lowest level. A person in an organization with s = 5 will be 80
percent of the way to the top by the time he is promoted out of the lowest
level, when the scale is in terms of individuals. But when the scale is in
terms of levels, he will be only 1/n of the way to the top.

Suppose that the organization starts with N0 employees, in k layers; then

N0 = 1 + s + s2 + · · · + sk−1 =
sk − 1
s − 1

;

and if it is growing at rate r, its size at time t can be expressed as N(t) =
N0e

rt. Equating this to the above expression N(t) = (sn − 1)/(s − 1) gives

sn − 1
s − 1

=
(

sk − 1
s − 1

)
ert. (10.6.1)

Even for a small population the error in substituting sn for sn − 1 and
sk for sk − 1 is negligible. The substitution permits solving (10.6.1) for n:

sn = skert,
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so that

n = k +
rt

log s
, (10.6.2)

where k, the initial number of levels, depends only on the initial population
and the span of control. The conclusion is that the creation of new levels
goes on at the steady rate of r/(log s) per unit of time or, equivalently, that
each (log s)/r units of time a new level is created.

A typical entrant who makes a career in a large organization virtually
ensures that he will not rise far above the bottom. With a span s of 5, even
spectacular success, rising above 0.999 of fellow employees, will put him
only at 4.4 levels from the bottom, or in the fifth layer. This is of course
modified for a two-class organization, like the traditional British army, in
which one entered either as an enlisted man, with zero chance of rising
above sergeant, or as an officer, with appreciable chance of rising to the
highest ranks.

The boundaries of an organization are not always well defined; in fact,
they may be determined by the viewpoint of the individual. An orderly
in a hospital is near the bottom of the paid hierarchy; but if he thinks
of patients as part of the hospital, he adds a substantial layer below him.
A teaching assistant in a college is at the bottom or not, depending on
whether students are included in the hierarchy. A faculty member may be
high in her department, but low in the collection of departments in the
country that make up her professional peer group.

Suppose that the rules of an organization call for absolute seniority, so
that everyone has a turn at the top, if only for a short period. In a stationary
condition the fraction of his service that he could have at the top is

1
N

=
s − 1
sn − 1

.

If s = 5, n = 9, he could be boss for 4/(59 − 1) = 1/488,000 of his career,
which works out to 11 office minutes in the 45 years from age 20 to age 65.

But if the situation is hopeless for the mass of people in an organization,
by the same logic the person who has an exceptional endowment of luck,
brains, or influence can very quickly rise to the top. If the organization has
488,000 employees, and everyone in it above the bottom level has 5 people
reporting to him, there are only 9 layers. A person starting at the bottom
need be promoted only once every 3 years to become head of General
Motors before he is 50.



11
Markov Chains for Individual Life
Histories

The passage of an individual through its life cycle, from birth to death,
is marked by various notable events. Some, like maturation or mating or
reproduction, may be optional. Others, like death, are inevitable. A matrix
model contains a great deal of information (or, equivalently, makes many
strong assertions) about these events, their probabilities, and the sequences
in which they tend to occur. This chapter shows how to extract some of
the implications of these assertions. For example, what is the probability of
surviving from birth to maturity in a model where individuals may reach
maturity by many pathways? What is the average time required to mature?
What is the probability of experiencing an event (e.g., a disease, or attack
by a predator) before maturing, or before dying? Such questions can be
answered by describing the individual life cycle as a Markov chain. The re-
sults provide ways to calculate age-specific parameters from stage-classified
models.

11.1 A = T + F: Decomposing the Matrix

Most life cycles permit a distinction between the transitions of living indi-
viduals and the production of new individuals. Thus the projection matrix
can be written

A = T + F, (11.1.1)

where T describes transitions and F describes reproduction. The element
fij of F is the expected number of type i offspring produced by an individual
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in stage j. The element tij of T is the probability that an individual in stage
j at time t is alive and in stage i at time t + 1. This decomposition has
been applied by Cochran and Ellner (1992) to density-independent models
and Cushing (1988, 1997, Cushing and Yicang 1994) to density-dependent
models.

11.1.1 The Life Cycle as a Markov Chain
We will describe the movement of an individual through its life cycle as a
Markov chain. The matrix T describes part of this movement, but it must
be augmented by adding an extra state, “dead.” If there are s stages, the
result is an s + 1 dimensional Markov chain with transition matrix∗

P =
(

T 0
m 1

)
of dimension

(
s × s s × 1
1 × s 1 × 1

)
. (11.1.2)

Here, mj = 1 −∑i tij is the probability of death for stage j. State s + 1
(death) is an absorbing state; once an individual enters this state, it never
leaves.

There is a sizeable literature on Markov chain models for movement
of individuals among social and occupational classes (e.g., Bartholomew
1982), some of which has been applied to demography (see Section 10.5).
Feichtinger (1971, 1973) applied these methods to age-classified models
with multiple absorbing states, first marriage models, and models for mul-
tiple classifications (age and parity, age and marital status). Cochran and
Ellner (1992) independently used Markov chains in an analysis of stage-
classified models. They also considered cases where F is divided into
separate matrices representing birth and fission.

The states in an absorbing Markov chain can be divided into two sets: a
set T of transient states and a set A of absorbing states; in this model

T = {1, 2, . . . , s}
A = {s + 1}.

We will denote the number of elements in the set A by |A| (this is the car-
dinality of A). At this point, |A| = 1, but later we will add more absorbing
states. We assume (it is implicit in calling the set T transient) that there
is a pathway from each of the states in T to one of the states in A. That
is, there are no immortal stages in the life cycle. If there were, they would
appear as another set of absorbing states.

∗To emphasize the parallel with population projection matrices, P has been written
as a column-stochastic matrix. Many texts on Markov chains would write it as a row-
stochastic matrix, equivalent to the transpose of the matrix listed here. Either way is
OK; just be careful to get the proper orientation of formulae presented in such texts.
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Let x be a column vector giving the probability distribution of states,
where 0 ≤ xi ≤ 1 and

∑
i xi = 1. Then

x(t + 1) = Px(t) (11.1.3)

and

x(t) = Ptx(0), (11.1.4)

where

Pt =

(
Tt 0

m
∑t−1

n=0 Tn 1

)
. (11.1.5)

Our assumption that it is possible to reach the state “dead” from every
state in T guarantees that the dominant eigenvalue of T is strictly less
than 1; thus limt→∞ Tt = 0 (Iosifescu 1980, Theorem 2.2). Thus (11.1.3)
leads to the basic result on absorbing Markov chains: No matter what the
initial probability distribution, the probability of the system being in any
state other than an absorbing state eventually approaches zero.

Example 11.1 Markov-chain decomposition for killer whales

The killer whale life cycle graph is given in Figure 3.10. Using vi-
tal rates estimated for the resident population in coastal waters of
Washington and British Columbia (Brault and Caswell 1993), the
decomposition of A yields

T =

⎛
⎜⎜⎝

0 0 0 0
0.9775 0.9111 0 0

0 0.0736 0.9534 0
0 0 0.0452 0.9804

⎞
⎟⎟⎠ (11.1.6)

F =

⎛
⎜⎜⎝

0 0.0043 0.1132 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ . (11.1.7)

Because only one kind of offspring is produced, the fertility matrix F
contains only a single nonzero row. The transition matrix is

P =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0.9775 0.9111 0 0 0

0 0.0736 0.9534 0 0
0 0 0.0452 0.9804 0

0.0225 0.0153 0.0014 0.0196 1.0000

⎞
⎟⎟⎟⎟⎠ . (11.1.8)

Example 11.2 From school to work.

Some of the considerations just mentioned can be illustrated by a
model of the school population and its emergence into the labor force
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Technical5

4 School –
grades 9 to 12

School –
grades 5 to 8

School –
grades 1 to 4

Preschool1

2

3

7

6 College

Labor
force

Figure 11.1. Graph of progress through school system and points of emergence
into the labor force, along with corresponding matrix A, disregarding mortality
and repeating; projection interval = 4 years.

(Keyfitz 1977). Consider only the flows portrayed in the graph of
Figure 11.1. We ignore mortality, but in this model stage N7, the
labor force, is an absorbing state. The transient states are N1–N6. In
this case, there is no reproductive process, and the transition matrix
is

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 p43 0 0 0 0
0 0 0 p54 0 0 0
0 0 0 p64 0 0 0
0 0 1 − p43 1 − p54 − p64 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.1.9)

11.1.2 The Analysis of Absorbing Chains
So far we have only stated the obvious: if every individual can die, every
individual eventually will die. Now we want to know what happens to
individuals en route to that end. The results summarized here are standard
in Markov chain theory; see Iosifescu (1980, Chap. 3) or Kemeny and Snell
(1976, Chap. 3) for full treatments.

Notation alert. If X is any matrix, then Xdg is the matrix with the
diagonal of X on its diagonal, and zeros elsewhere. The row sums of X are
Xe, and the column sums are eTX, where e is a column vector of ones.
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11.1.2.1 The Fundamental Matrix

The (i, j) entry of the matrix Tt is the probability that an individual in
stage j at time 0 will be in stage i at time t, for i, j ∈ T . Since absorption
is certain, these probabilities eventually decay to zero. But an individual
will visit various transient states, various numbers of times, before absorp-
tion happens. Let νij be the number of visits to transient state i before
absorption, given that the individual starts in state j. The expected values
of the νij are given by a matrix(

E (νij)
)

= I + T + T2 + · · · (11.1.10)

= (I − T)−1 (11.1.11)
≡ N. (11.1.12)

The matrix N is called the fundamental matrix of the Markov chain.
The second moments of the νij are(

E
(
ν2

ij

) )
= (2Ndg − I)N (11.1.13)

(Iosifescu 1980). Thus the variance of the number of visits to each state is
given by the matrix(

V (νij)
)

= (2Ndg − I)N − N ◦ N, (11.1.14)

where ◦ denotes the Hadamard, or element-by-element, product.
The fundamental matrix provides information about the time to absorp-

tion (i.e., to death). Let the time to absorption, starting in transient state
i, be ηi. The mean of ηj is the sum of column j of the fundamental matrix
N (i.e., the number of visits to all the transient states)(

E (η1) · · · E (ηs)
)

= eTN. (11.1.15)

Iosifescu shows that the second moments of the ηj are given by(
E
(
η2
1
)

· · · E
(
η2

s

) )
= eTN (2N − I) . (11.1.16)

Thus the variance of time to absorption can be written(
V (η1) · · · V (ηs)

)
= eT

(
2N2 − N

)
− eTN ◦ eTN. (11.1.17)

We can calculate not only the mean but the complete probability distri-
bution of the ηj . The entries of Tt give the probabilities of being in each
of the transient states at time t. Thus the sum of column j of Tt is the
probability that absorption has not occurred by time t, starting from state
j. Thus (

P [η1 > t] · · · P [ηs > t]
)

= eTTt. (11.1.18)
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Since P [ηi = t] = P [ηi > t − 1] − P [ηi > t], we obtain the probability
distribution for the times to absorption(

P [η1 = t] . . . P [ηs = t]
)

= eT(Tt−1 − Tt). (11.1.19)

11.1.2.2 Probabilities of Absorption

So far we have assumed only a single absorbing state (death). It is some-
times useful to consider models with multiple absorbing states, in which
case

P =
(

T 0
M I

)
, (11.1.20)

where M is a matrix whose entries mkj give the probability of moving from
state j ∈ T to the kth absorbing state in A. Every individual will end up
in an absorbing state, but which absorbing state is uncertain. We would
like to calculate the probabilities

bkj = P [absorption in k|starting in j] 1 ≤ k ≤ |A|, j ∈ T . (11.1.21)

We know that if the system starts in transient state j it spends an average
of nij time steps in transient state i (where i ∈ T ). At each of these time
steps, the probability of moving to the kth absorbing state is mki. Thus

bkj =
∑
i∈T

mkinij 1 ≤ k ≤ |A| (11.1.22)

or, in matrix notation

B = MN. (11.1.23)

11.1.2.3 Probabilities Conditional on Absorption

If more than one absorbing state exists, we can calculate probabilities con-
ditional on which of those states an individual ends up in. For example,
we might describe mortality and emigration as absorbing states. We could
compare the properties (e.g., mean time before leaving the population) of
individuals that emigrate versus those that die before emigrating. We do
this by creating a new transition matrix, conditional on absorption in a
particular state.

Suppose we condition on absorption in the kth absorbing state. The state
space of the resulting Markov chain is the set T of transient states plus the
kth absorbing state. The transition matrix for this new conditional Markov
chain is

P(c) =
(

T(c) 0
m(c) 1

)
, (11.1.24)
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where the superscript c denotes the conditional chain. Bayes’ theorem†

implies that the conditional probabilities can be written in terms of the
matrix M and the matrix B calculated from P:

t
(c)
ij =

tijbki

bkj
(11.1.25)

m
(c)
j = mkj/bkj (11.1.26)

or, in matrix notation,

T(c) = DTD−1, (11.1.27)

where, letting bk· denote the kth row of B,

D = diag(bk·) =

⎛
⎜⎝ bk1

bk2
. . .

⎞
⎟⎠ . (11.1.28)

The fundamental matrix for the conditional chain is

N(c) = DND−1. (11.1.29)

It can be used like any fundamental matrix.
We turn now to several important applications of these results.

11.2 Lifetime Event Probabilities

At any stage in its life cycle, an individual is embarking on a developmental
process that will eventually end in death. At each step of that process, the
individual experiences the risk of various events (e.g., contracting a disease,
or attack by a predator). The probability that an event occurs at least once
in the individual’s lifetime may be of interest in a variety of contexts. For
example:

• The plant Lomatium grayi is attacked by a moth called Depressaria
multifidae. Lomatium grows through a series of size classes, alter-
nating between vegetative and flowering condition. The probability
of attack by Depressaria is stage-dependent. Thompson and Moody
(1985) wanted to know the probability that a new seedling will be
attacked by the moth at least once during its lifetime. They inter-
pret this probability as a measure of the “apparency” of the plant to
its herbivore. It has been suggested that apparency should determine
the type of chemical defenses that a plant deploys against a herbivore
(Feeney 1976).

†For any two events X and Y , P [X |Y ] = P [X and Y ]/P [Y ], provided that P [Y ] > 0.
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• The U.S. Department of Justice has calculated the probability that
a 12-year-old American will experience certain kinds of violent crime
in his or her lifetime (Koppel 1987). The probabilities were 0.83 for
all types of violent crime, 0.99 for personal theft, 0.74 for assault,
0.30 for robbery, and 0.08 for rape (the latter figure for women).
These lifetime probabilities are presented as better measures of the
true risk of these crimes than annual incidence statistics (“If the earth
revolved around the sun in 180 days, all our annual crime rates would
be halved, but we would not be safer.” Koppel 1987)

• Bone fractures are a significant health risk to postmenopausal women.
Cummings et al. (1989) found that the lifetime probability of hip
fracture for a 50-year-old U.S. woman was 0.156. The corresponding
probabilities for wrist fractures and atraumatic vertebral fractures
were 0.15 and 0.32. Combining these probabilities with estimates of
the mortality due to these injuries, they concluded that the lifetime
risk of death from hip fracture was comparable to that from breast
cancer. Such comparisons might be useful in comparing the risks and
benefits of therapies designed to reduce osteoporosis.

In each of these cases, the lifetime probability is affected by both the risk
of the event and the demography. The lifetime probability of hip fracture
could be lessened by reducing the risk of falling (e.g., by studying t’ai chi
chuan; Wolf et al. 1996) or by increasing mortality, so that fewer women
survive to ages where falls are more frequent. The former strategy is ob-
viously preferable, but in more complex life cycles the choices might be
less plain. Lomatium grayi might, for example, want to consider whether it
should try to prevent Depressaria attack, or adjust its life cycle to spend
less time in stages particularly vulnerable to attack.

Chiang (1968) shows how to calculate lifetime risks from age-classified
life tables. Here we compute these probabilities from stage-classified models
using the Markov chain description of the life cycle. We begin with the basic
structure (11.1.2) and add an additional absorbing state, “event-before-
death.” Because we are interested only in the probability of experiencing
the event, what happens to an individual after the event is irrelevant (of
course, it may be very relevant for other questions). Thus we can simply
leave individuals who have experienced the event in “event-before-death”
and not worry about them further.

Let αi be the probability that an individual in stage i experiences the
event in the interval (t, t + 1]. Carry out the following procedure.

1. Create a new matrix T′ describing transitions of individuals that
neither die nor experience the event. Its entries are

t′ij = (1 − αj) tij i, j ∈ T . (11.2.1)
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2. Create a new matrix M′ containing the probabilities of transition
from each transient state to the two absorbing states

m′
ij =

{
(1 − αj) mj i = 1, j ∈ T
αj i = 2, j ∈ T (11.2.2)

The new transition matrix is

P′ =
(

T′ 0
M′ I

)
. (11.2.3)

3. Use the methods of Section 11.1.2.2 to compute the probability of
absorption in each of the two states.

B = M′ (I − T′)−1
. (11.2.4)

The lifetime event probability is the probability of absorption in
“event-before-death,” which is given by the second row of B.

11.3 Age-Specific Traits From Stage-Specific
Models

In a stage-classified model, the ages of individuals are not known, but it
is possible to calculate age-specific survivorship and fertility, mean age at
first reproduction, net reproductive rate, generation time, and age-within-
stage distributions directly from the Markov chain describing the life cycle.
We will focus on two examples. One is the stage-structured model for
killer whales (Brault and Caswell 1993; see Example 11.1), because an
independent age-classified analysis exists for comparison (Olesiuk et al.
1990).

The second example is a stage-structured model for teasel (Dipsacus
sylvestris). Teasel is a weedy plant, introduced to North America from
Europe in the late nineteenth century. Seeds germinate to form flattened
rosettes, which grow until they reach a critical size, at which point they
flower and die. Seeds may remain dormant for up to a few years. A variety
of evidence pointed to size as the critical i-state variable, so Werner and
Caswell (1977, Caswell and Werner 1978) developed size-classified models
whose entries corresponded to the life cycle graph of Figure 11.2. Because
the projection interval was one year, reproduction in year t can produce
small, medium, or large rosettes in year t+1. The production of more than
one kind of offspring is not common in human demographic models, but it
might appear in analyses of infant mortality or of family development; it is
not uncommon in ecological applications, and this example will show how
to account for it in calculations.
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Figure 11.2. A life cycle graph for teasel (Dipsacus sylvestris). Stages: N1 =
first-year dormant seeds, N2 = second-year dormant seeds, N3 = small rosettes,
N4 = medium rosettes, N5 = rosettes, and N6 = flowering plants.

Example 11.3 Markov chain decomposition for teasel

The population projection matrix for teasel is composed of transition
and fertility matrices

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0.966 0 0 0 0 0
0.013 0.010 0.125 0 0 0
0.007 0 0.125 0.238 0 0
0.008 0 0.038 0.245 0.167 0

0 0 0 0.023 0.750 0

⎞
⎟⎟⎟⎟⎟⎟⎠ (11.3.1)

F =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 322.388
0 0 0 0 0 0
0 0 0 0 0 3.448
0 0 0 0 0 30.170
0 0 0 0 0 0.862
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠ . (11.3.2)

The sixth column of T is zero because flowering plants all die after
reproduction. The nonzero entries in the sixth column of F give the
production of different kinds of offspring (first-year dormant seeds
and small, medium, and large rosettes). The resulting Markov chain
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transition matrix is

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0.966 0 0 0 0 0 0
0.013 0.010 0.125 0 0 0 0
0.007 0 0.125 0.238 0 0 0
0.008 0 0.038 0.245 0.167 0 0

0 0 0 0.023 0.750 0 0
0.006 0.990 0.712 0.494 0.083 1.000 1.000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

11.3.1 Age-Specific Survival
Basic information on age-specific survival—the mean and variance of the
time spent in each stage, and the mean and variance of the time to
death—is obtained from the fundamental matrix N. For killer whales, the
fundamental matrix is

N =

⎛
⎜⎜⎝

1.00 0 0 0
10.99 11.25 0 0
17.37 17.77 21.46 0
40.05 40.97 49.49 51.02

⎞
⎟⎟⎠ . (11.3.3)

Thus a yearling killer whale spends, on the average, about 11 years as an
immature, 17 years as a reproductive adult, and 40 years as a postreproduc-
tive female. A mature adult, in contrast, spends an average of 21 years in
that stage, and almost 50 years as a postreproductive. These averages are
larger than those for a yearling, because some yearlings spend zero years
as an adult or postreproductive, having died first.

The variance in the amount of time spent in each stage, computed from
(11.1.14), is

(
V (νij)

)
=

⎛
⎜⎜⎝

0 0 0 0
115.5 115.3 0 0
426.4 429.1 439.0 0

2442.7 2461.1 2551.2 2552.1

⎞
⎟⎟⎠ . (11.3.4)

One way to interpret these variances is to compute the coefficient of varia-
tion (the ratio of the standard deviation to the mean) of the time spent in
each stage, which is

(
CV (νij)

)
=

⎛
⎜⎜⎝

0 − − −
0.98 0.95 − −
1.19 1.17 0.98 −
1.23 1.21 1.02 0.99

⎞
⎟⎟⎠ , (11.3.5)

where “−” denotes coefficients of variation that are undefined because both
the mean and the standard deviation are zero. There is considerable vari-
ation in the duration of each stage except the first, with coefficients of
variation on the order of 1.
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The mean and variance of the time ηj to death, given that the individual
starts in stage j are given by (11.1.15) and (11.1.17) with results(

E (ηj)
)

=
(

69.411 69.985 70.947 51.02
)

(11.3.6)(
V (ηj)

)
=
(

3341.4 3308.1 2990.3 2552.1
)
. (11.3.7)

The mean age at death is the life expectancy or expection of life; the life
expectancy of a newborn individual is 69.4 years, with a standard deviation
of 57.8 years. (You might want to add one year to this number to get the
average age at death, calculated from birth instead of from the yearling
stage.)

The mean age at death provides only part of the information about
survival. We can also calculate the age-specific survivorship (i.e., the prob-
ability of survival to age x) for individuals in each stage from the transition
matrix T, using (11.1.18).

The survivorship conditional on starting in stage 1 (newborn) is shown
in Figure 11.3; this corresponds more or less‡ to the classical survivorship
function l(x) starting at birth. The age-specific survivorship function re-
ported by Olesiuk et al. (1990) is shown for comparison. Survivorship from
the stage-classified model does not capture all the changes in age-specific
mortality. No surprise there; it is defined by only four stage-specific sur-
vival probabilities. It does, however, capture the average survivorship from
birth up to 60 or 70 years of age. Survivorship of the oldest individuals is
much higher in the stage-classified model than in the age-classified model,
because the former ignores senescence of post-reproductive females.

11.3.2 Age-Specific Fertility
Age-specific fertility is described by a matrix Φ(x), whose entries φij(x)
are the mean number of type i offspring produced at age x by an individ-
ual starting in stage j at age 0. If stage j corresponds in any sense to a
“newborn” individual, then φij(x) is the age-specific fertility in the usual
sense of the word.

The fertility matrix is calculated from T and F. The (i, j) entry of Tx

is the probability of being in stage i at time x, conditional on starting in
stage j. Dividing each column of Tx by its sum gives the distribution of
individuals among stages at time x conditional on survival to time x:

Tx
(
diag (eTTx)

)−1
. (11.3.8)

‡Individuals in stage 1 (yearlings) do not correspond exactly to “newborn” individuals
in a life table, but more closely to an individual somewhere between 1/2 and 1 year old.
It is probably not worth trying to make the correspondence too exact.
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Left-multiplying this matrix by the fertility matrix F gives the matrix of
fertilities at time x

Φ(x) = FTx
(
diag (eTTx)

)−1
. (11.3.9)

In the case of the killer whale, F contains only a single nonzero row, and
hence so does Φ(x). Thus at x = 1 the fertility is given by

Φ(1) = FT1
(
diag

(
eTT1))−1

(11.3.10)

=

⎛
⎜⎜⎝

0.0043 0.0124 0.1081 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ . (11.3.11)

At x = 20, fertility has increased to

Φ(20) =

⎛
⎜⎜⎝

0.0573 0.0569 0.0503 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ . (11.3.12)

The entry φ11(x) corresponds to the classical notion of age-specific fertility.
The other entries of the first row give fertility at “age” x of an individual
starting life as an immature, mature, or postreproductive female, respec-
tively. Figure 11.4 shows φ11(x) as a function of age. An age-specific fertility
estimate is also shown.§ The stage-classified model captures the overall
shape of the age-specific function, but produces some fertility earlier, and
a lot of fertility later, than does the age-classified analysis. This result is
to be expected, since the stage-classification spreads out the passage of
individuals through the reproductive stage.

When there are multiple types of offspring, there is no exact analogue
of age-specific fertility. Consider the case of teasel (Example 11.3) where
there are four types of offspring. At x = 0, the fertility matrix is

Φ(0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 322.38
0 0 0 0 0 0
0 0 0 0 0 3.45
0 0 0 0 0 30.17
0 0 0 0 0 0.86
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠ . (11.3.13)

§Obtained by multiplying the m(x) figures in Table 14 of Olesiuk et al. (1990) by
their estimate (0.57) of survival to age 1/2.
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This is just F, because only an individual in stage N6 (flowering plants)
can produce any offspring at x = 0. At x = 3, we obtain

Φ(3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

107.95 75.43 158.62 204.02 263.68 NaN
0 0 0 0 0 NaN

1.15 0.81 1.70 2.18 2.82 NaN
10.10 7.06 14.84 19.09 24.68 NaN
0.29 0.20 0.42 0.55 0.71 NaN

0 0 0 0 0 NaN

⎞
⎟⎟⎟⎟⎟⎟⎠ , (11.3.14)

where NaN (“not a number”) is the result of dividing 0 by 0 in Matlab.
Equation (11.3.9) will not work in this case, because the sixth column of

Tx is always zero. Thus diag (eTTx) always has a zero in the (6, 6) position.
Although it is singular, Matlab will happily compute its inverse, but it
returns a matrix of NaNs, because the 0/0 division propagates throughout
the inversion process. A workable alternative is to compute the inverse
matrix as

diag(1./sum(Tˆx))

This produces a matrix Φ(x) with NaN entries only in the last column.
An individual that starts life as a dormant seed (N1) will, at age 3, pro-

duce an average of 108 dormant seeds, 1.15 small rosettes, 10.1 medium
rosettes, and 0.29 large rosettes, provided that it survives to age 3. These
multiple types of offspring can be analyzed independently, or can be
summed to give total numbers of offspring. Cochran and Ellner (1992)
suggested weighting the values by the reproductive value v calculated from
the stage-classified matrix A and then summing them.

The fact that an individual can be “born” in any of four different stages
also complicates matters. At age x = 3 an individual born as a dormant
seed has less than half the reproductive output of an individual of the same
age that was born as a large rosette. Figure 11.5 shows the summed fertility,
as a function of age, for individuals born as dormant seeds and as small,
medium, and large rosettes. Fertility climbs and remains high indefinitely
because this is the fertility of surviving individuals. Very few individuals
survive more than a few years.

11.3.3 Age at First Reproduction
In an age-classified model, the age at first reproduction is simply the first
age x for which the maternity function m(x) is nonzero. It is not a good idea
to apply this approach to Φ(x) calculated from a stage-classified model. We
have just seen that the killer whale model predicts that some individuals
will reproduce at x = 1. A more reasonable measure would be the mean time
from birth (however that is defined) to the first entry into a reproductive
stage (Cochran and Ellner 1992). There may be several such stages, and
individuals may reach them at different ages and by different pathways. We
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Figure 11.3. A comparison of the age-specific survivorship function for killer
whales derived from the stage-classified model of Brault and Caswell (1993) and
from the age-classified analysis of Olesiuk et al. (1990).
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Figure 11.4. Age-specific fertility for killer whales calculated from the
stage-classified matrix model and from the age-specific maternity function m(x)
of Olesiuk et al. (1990).
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want the mean, over all these pathways, calculated from individuals that
do not die first, i.e., the mean conditional on reaching the reproductive
stage before death. This conditional mean is calculated by making the
set of reproductive stages absorbing, creating a new chain conditional on
absorption there, and calculating the mean time to absorption from that
chain.

1. Decide on a set of “reproductive” states; call this set R.

2. Create a new absorbing state, “reproduced-before-dying.”

3. Create a new transition matrix P′ in which an individual that enters
any state in R spends one time step there and then is absorbed in
“reproduced-before-dying”:

P′ =
(

T′ 0
M′ I

)
, (11.3.15)

where

t′ij =
{

tij j /∈ R
0 j ∈ R (11.3.16)

m′
1j =

{
mj j /∈ R
0 j ∈ R (11.3.17)

m′
2j =

{
0 j /∈ R
1 j ∈ R . (11.3.18)

We are interested only in the time required to reach R, not in what
happens afterward. Thus reproductive individuals can be left in the
“reproduced-before-dying” state after they reach R.

4. Calculate the probability of absorption in “reproduced-before-dying”
using (11.1.23),

B′ = M′ (I − T′)−1
. (11.3.19)

The second row, b2·, of B′ gives the probabilities of reproducing
before death.

5. Create a new Markov chain conditional on absorption in “reproduced-
before-dying,” using (11.1.25) and (11.1.26):

P(c) =
(

T(c) 0
m(c) 1

)
, (11.3.20)

where

T(c) = diag (b′
2·) T′ diag (b′

2·)
−1

. (11.3.21)
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6. Generate the mean times to absorption for this conditional chain
using (11.1.15): (

E
(
η
(c)
i

) )
= eT

(
I − T(c)

)−1
. (11.3.22)

For example, in the case of the killer whale model, R = {3} and the
transition matrix is [cf. (11.1.8]

P′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0.9775 0.9111 0 0 0 0

0 0.0736 0 0 0 0
0 0 0 0.9804 0 0

0.0225 0.0153 0 0.0196 1 0
0 0 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠ (11.3.23)

and

B′ =
(

0.1907 0.1721 0 1.0000
0.8093 0.8279 1.0000 0

)
(11.3.24)

Thus, the probability of reaching maturity before death for an individual
starting in stage 1 is 0.8093. Notice that the probability of reproducing
before death is zero for an individual starting as a postreproductive female
(i.e., b′

24 = 0). This means that the conditional transition probabilities for
stage 4 are undefined (you cannot condition on an event of probability zero)
and that calculating

(
diag (b′

2·)
)−1

involves 1/0.
This is not a major problem; it can be solved by inserting an arbitrary

nonzero value (we will use 1.0) for b′
24 and then ignoring the conditional

probabilities for stage 4, since we know that individuals in stage 4 can never
reach stage 3. The resulting conditional transition matrix is

T(c) =

⎛
⎜⎜⎝

0 0 0 −
1.0 0.9111 0 −

0 0.0889 0 −
0 0 0 −

⎞
⎟⎟⎠ . (11.3.25)

The expected time to absorption in “reproduced-before-dying,” conditional
on eventual absorption in that state, is then(

E(η(c)
i )

)
= eT

(
I − T(c)

)−1
(11.3.26)

=
(

13.25 12.25 1.00 −
)
. (11.3.27)
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The mean age at maturity is E
(
η
(c)
1

)
= 13.25 years.¶ This agrees well

with Olesiuk et al.’s (1990) age-classified estimate of 13.1 years for the
mean age at first birth.

11.3.4 Net Reproductive Rate
The net reproductive rate R0 is the mean number of offspring by which
a newborn individual will be replaced by the end of its life, and thus the
rate by which the population increases from one generation to the next.
Since the probability of surviving from birth to age x is l(x) and the rate
of reproduction at that age is m(x), this expectation is given by

R0 =
∫ ∞

0
l(x)m(x) dx (11.3.28)

(Section 6.1).
The discrete equivalent, calculated from an age-classified matrix, is

R0 = F1 + P1F2 + P1P2F3 + · · · (11.3.29)

=
∑

i

Fi

i−1∏
j=1

Pj . (11.3.30)

In age-classified models,

R0 < 1 ⇔ λ1 < 1
R0 = 1 ⇔ λ1 = 1 (11.3.31)
R0 > 1 ⇔ λ1 > 1.

We would like a stage-classified net reproductive rate with all the proper-
ties of the age-classified rate; it should give the per-generation growth rate,
should relate to expected lifetime reproductive output, and should deter-
mine whether λ1 is less than, equal to, or greater than one. This problem
has been attacked independently by Cushing (1988, 1997, Cushing and
Yicang 1994) and Cochran and Ellner (1992).

The fundamental matrix N gives the expected number of time steps
spent in each transient state, and the fertility matrix F gives the expected
number of offspring of each type produced per time step. Thus the matrix

R = FN (11.3.32)

¶Some care is needed in translating between time to absorption and age at entering a
stage. We should subtract 1 from η

(c)
1 , because absorption in “reproduced-before-dying”

happens one time step after entering R. But then we should add 1, because absorption
is measured from stage 1, not from birth.
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has entries rij that give the expected lifetime production‖ of type-i offspring
of an individual starting life in stage j. In the case of the killer whale, the
matrix R is

R =

⎛
⎜⎜⎝

2.0131 2.0595 2.4292 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ . (11.3.33)

A yearling female killer whale can expect to produce 2.01 female offspring
during its life. Thus r11 is an attractive candidate for R0, but the situation
is more complicated when there is more than one type of offspring. For
teasel,

R =

⎛
⎜⎜⎜⎜⎜⎜⎝

3.66 0.27 27.33 103.06 290.26 322.39
0 0 0 0 0 0

0.04 0.00 0.29 1.10 3.10 3.45
0.34 0.03 2.56 9.64 27.16 30.17
0.01 0.00 0.07 0.28 0.78 0.86

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠ . (11.3.34)

A plant starting life as a dormant seed (stage 1) can expect to produce
3.66 dormant seeds, 0.04 small rosettes, 0.34 medium rosettes, and 0.01
large rosettes over its lifetime. A plant starting life as a large rosette (stage
5), however, can expect to produce 290 dormant seeds, 3.1 small rosettes,
27.16 medium rosettes, and 0.78 large rosettes over its lifetime.

To account for multiple types of offspring, consider the following calcu-
lation, inspired by Cushing and Yicang (1994). Let y(0) be a vector giving
the composition of an initial generation at t = 0. The fates of these in-
dividuals at t = 1, 2, . . . are given by Ty(0), T2y(0), . . . . At each time,
the surviving individuals produce offspring according to F ; thus, offspring
production by this generation is Fy(0), FTy(0), FT2y(0), . . . .

Summing this offspring production over the life of the generation gives
the next generation, y(1):

y(1) = Fy(0) + FTy(0) + FT2y(0) + · · · (11.3.35)
= F

(
I + T + T2 + · · ·

)
y(0) (11.3.36)

= F (I − T)−1 y(0) (11.3.37)
= FNy(0) (11.3.38)
= Ry(0). (11.3.39)

Thus, R projects the population from one generation to the next. If R has
a dominant eigenvalue, that eigenvalue will give the rate of growth of the

‖Cushing and Yicang (1994) define R = NF, which does not give expected offspring
production. However, as the eigenvalues of FN and of NF are the same, none of Cushing
and Yicang’s uses of R0 are affected.
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population from one generation to the next.∗∗ Thus we conclude that

R0 = dominant eigenvalue of R. (11.3.40)

When, as in the killer whale, there is only one type of offspring, R has only
a single nonzero row, and the dominant eigenvalue is just r11.

We have shown that R0 calculated as the dominant eigenvalue of R is
the per-generation growth rate. When there is only one offspring type, it is
also the expected number of offspring produced by an individual during its
lifetime. Cushing and Yicang (1994, Theorem 3) proved that R0 calculated
from (11.3.40) also corresponds to λ as in (11.3.31).

11.3.5 Generation Time
There are several measures of generation time in age-classified models
(Coale 1972):

1. The time T required for the population to increase by a factor of R0,
which satisfies λT

1 = R0. Thus

T =
log R0

log λ1
; (11.3.41)

2. The mean age µ1 of the parents of the offspring produced by a cohort
over its lifetime. This is given by the mean of the net fertility schedule
l(x)m(x)

µ1 =

∫∞
0 xl(x)m(x) dx∫∞
0 l(x)m(x) dx

, (11.3.42)

∗∗Actually, this requires not only a dominant eigenvalue, but also convergence to the
corresponding eigenvector. In the case of the population projection matrix A, the strong
ergodic theorem guarantees this convergence. The alert reader may have noticed that
in Section 7.2 we assumed that A was similar to a diagonal matrix, and used that fact
in our proof of the ergodic theorem. A sufficient, but not necessary, condition for this
is that the eigenvalues be distinct, which they usually are for population projection
matrices. The eigenvalues of R, however, are usually not distinct; both the killer whale
and teasel examples have one positive eigenvalue and a repeated eigenvalue of zero.
The following result gives both necessary and sufficient condition for diagonalizability
(Horn and Johnson 1985, Corollary 3.3.8, p.145). Let the distinct eigenvalues of R be
ρ1, . . . , ρm. The matrix R is diagonalizable if and only if

q(R) = (R − ρ1I)(R − ρ2I) · · · (R − ρmI) = 0,

which is true for both the killer whale and teasel models. Even if R is not diagonalizable,
the Jordan canonical form can be used to show that the population will converge to the
dominant eigenvector.
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Figure 11.6. The stable age-within-stage distributions for killer whales, for stages
N2–N4. Stage 1 (yearlings) is composed entirely of individuals in age class 1, and
is not shown.

or, in discrete time

µ1 =

∑
i i
(∏i−1

j=1 Pj

)
Fi∑

i

(∏i−1
j=1 Pj

)
Fi

, (11.3.43)

where we define
∏0

j=1 Pj = 1.

3. The mean age Ā of the parents of the offspring produced by a
population at the stable age distribution:

Ā =

∫∞
0 xe−rxl(x)m(x) dx∫∞
0 e−rxl(x)m(x) dx

, (11.3.44)

or, in discrete time

Ā =

∑
i iλ−i

(∏i−1
j=1 Pj

)
Fi∑

i λ−i
(∏i−1

j=1 Pj

)
Fi

. (11.3.45)

The denominator in both of these equations is the characteristic equa-
tion, and is thus equal to 1. Note that µ1 can be obtained from
(11.3.45) by setting λ = 1. Thus, in a stationary population, µ1 = Ā.

In human populations T ≈ (µ1 + Ā)/2, and all three measures are very
similar (Coale 1972). In species with higher mortality rates and/or rates of
increase farther from 1, the differences among these indices of generation
time are likely to be greater.

The discrete versions of T , µ1, and Ā can be calculated directly from a
Leslie matrix for an age-classified population. The methods of this chapter
let us calculate them from stage-classified models. The time required to
increase by a factor R0 can be calculated directly as T = log R0/ log λ1,
where R0 is calculated according to Section 11.3.4. For example, in the
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killer whale example, R0 = 2.0131 and λ1 = 1.0254, so T = 27.85 years,
which compares well with the value of 24.8 years calculated by Olesiuk et
al. (1990) from an age-classified model.

Both Ā and µ1 can be calculated using the age-specific survival and
fertility values obtained from the stage-classified matrix†† (see Sections
11.3.1 and 11.3.2). In the case of the killer whales, this calculation yields
Ā = 23.67 and µ1 = 32.18. Since the population is increasing, the stable
age distribution is skewed to younger ages than is a cohort; thus Ā < µ1.
Also note that (Ā + µ1)/2 = 27.93, which is close to T = 27.85, as noted
by Coale (1972) for age-classified models for humans.

11.3.6 Age-Within-Stage Distributions
The individuals within a stage may have arrived there by many different
pathways, and thus be of many different ages. We can calculate the stable
age distribution within each stage and the stable stage distribution within
each age class.

Let λ be the dominant eigenvalue of A = T + F and let w be the corre-
sponding right eigenvector. Suppose that the population has been growing
at the rate λ for a long time, so that the age and stage distributions have
stabilized. We observe the population at some time t. Because the stage
distribution is stable, the births at t are proportional to Fw. The births at
time t − a were proportional to λ−aFw. Those individuals are now in age
class a + 1, with a stage distribution proportional to λ−aTaFw.

Create a rectangular array

X =
(

Fw λ−1TFw λ−2T2Fw · · ·
)
.

The columns of X correspond to ages, the rows to stages. Thus row i of
X, normalized to sum to 1, gives the stable age distribution within stage
i. Column j, normalized to sum to 1, gives the stable stage distribution
within age class j.

In the killer whale example, λ = 1.0254 and

w =

⎛
⎜⎜⎝

0.0370
0.3161
0.3229
0.3240

⎞
⎟⎟⎠ .

††These measures are not well defined when there are multiple types of newborn
individuals. Cochran and Ellner (1992) suggest a way to calculate them using fertility
weighted by reproductive value, but it is not clear to me that the resulting model actually
corresponds to that underlying the definitions of Ā and µ1.
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The first few columns of X are given by

Age class
Stage 1 2 3 4 5 · · ·

1 0.0379 0 0 0 0 · · ·
2 0 0.0361 0.0321 0.0285 0.0253 · · ·
3 0 0 0.0026 0.0047 0.0064 · · ·
4 0 0 0 0.0001 0.0003 · · ·

Scaling so that the rows sum to one gives

Age class
Stage 1 2 3 4 5 · · ·

1 1.0000 0 0 0 0 · · ·
2 0 0.1115 0.0991 0.0880 0.0782 · · ·
3 0 0 0.0078 0.0143 0.0195 · · ·
4 0 0 0 0.0004 0.0010 · · ·

Thus all the stage-1 (yearling) individuals are in age class 1, which is to be
expected since they spend only a single time step there. The distributions
for stages N2–N4 are shown in Figure 11.6. They are not unreasonable,
and where they seem a little strange (e.g., mature adults still appreciably
frequent at ages greater than 50, postreproductive females beginning to
appear before age 10) the discrepancies are obvious consequences of the
stage classification. Because there are only three stages before the postre-
productive stage, some individuals will become postreproductive after only
three iterations. Similarly, because there is a self-loop on stage 3, some
individuals will remain there indefinitely.

Boucher (1997) used essentially identical calculations to compare the
stable age-within-stage distributions from 10 models (turtles, trees, killer
whales, herbaceous plants, corals). He found that, as in Figure 11.6, the
age-distribution within later stages becomes lower, more symmetric, and
flatter. The skewness and the kurtosis of the age-within-stage distribution
decreased, roughly exponentially, from early to later stages.



12
Projection and Forecasting

All statistical facts refer to the past. The United States Census of April
1970 counted 203 million of us, but no one knew this until the following
November, and the details of the count were published over the course of
years. The census differs only in degree from stock market prices, which are
hours old before they appear in the daily press. There are no exceptions—
not even statistics of intentions—to the rule that all data are to some degree
obsolete by the time they reach us.

On the other hand, all use of data refers to the future; the business
concern proposing to set up a branch in a certain part of the country
consults the census but is interested in what it tells only as an indication
of what will come in the future. The branch plant, or a school or hospital,
may take 3 years to build and will be in existence over the following 30
years; whether the decision to build was wise depends on circumstances
between 3 and 33 years hence, including the number and distribution of
people over that period.

12.1 Forecasting: Both Unavoidable and
Impossible. Past Data, Present Action, and
Future Conditions of Payoff

That all data refer to the past and all use of data to the future implies a line
between past and future drawn at “now.” Without continuities that make
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possible extrapolation across that line statistical data would be useless,
indeed the very possibility of purposeful behavior would be in doubt.

The separation between a past census and the future in which action will
be implemented is not only the instance of now, but also a finite period
of time that includes the interval from enumeration of the census to pub-
lication of its results, the interval between their publication and the use
of them in making a decision, and the interval between the decision and
its implementation. The slab of time separating past data on population
and the start of operation of a factory or school or telephone exchange
decided upon by projecting these data can easily be a decade or more.
Prediction often consists in examining data extending several decades back
into the past and inferring from them what will happen several decades in
the future, with one decade of blind spot separating past and future.

Since our knowledge of population mechanisms is weak, moreover, pre-
dictions or forecasts, more appropriately and modestly called projections,
must involve some element of sheer extrapolation, and this extrapolation
is from a narrow database. Below the observations is an historical drift in
underlying conditions that makes the distant past irrelevant to the future.
If in the nineteenth century fluctuations in population were caused largely
by epidemics, food scarcities, and other factors, and if now these factors
are under better control but even larger changes in population are caused
by parental decisions to defer or anticipate births, then carrying the series
back through the nineteenth century will not be of much help in present ex-
trapolations to the future. Thus, even supposing the continuity that makes
forecasting possible in principle, the volume of past data enabling us to
make a particular forecast is limited. Moreover, this intrinsic scarcity of
relevant data is in addition to the shortcomings of past statistical collec-
tions. For such reasons some of those who are most knowledgeable refuse
to take any part in forecasting.

Yet ultimately the refusal to forecast is absurd, for the future is implicitly
contained in all decisions. The very act of setting up a school on one side
of town rather than the other, of widening a road between two towns, or
of extending a telephone exchange is in itself a bet that population will
increase in a certain way; not doing these things is a bet that population
will not increase. In the aggregate implicit bets, known as investments,
amount to billions of dollars each year. The question is only who will make
the forecast and how he will do it—in particular, whether he will proceed
intuitively or use publicly described methods. As Cannan (1895) said in
the very first paper using the components method of forecasting, “The
real question is not whether we shall abstain altogether from estimating
the growth of population, but whether we shall be content with estimates
which have been formed without adequate consideration of all the data
available, and can be shown to be founded on a wrong principle.”

In any concrete investment decision, the bet on population is combined
with a bet on purchasing power, on preferences for one kind of goods rather
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than another, on technology as it affects alternative methods of production.
The component of the bet that is our interest in this book, population, is
somehow incorporated into a package of bets.

12.1.1 Heavy Stakes on Simultaneous Lotteries
A school construction program, for example, cannot be based on population
forecasts alone; it requires participation rates as well—what fraction of the
school-age population will want to attend school. These two elements both
change over time. During the 1960s, for example, United States population
and participation rates both rose among youths of college age. Those 20 to
24 years of age numbered 10,330,000 in 1960 and 15,594,000 in 1970, a rise
of 51 percent; the fraction enrolled at school went from 13.1 to 21.5 percent,
a rise of 64 percent over the same decade. The ratio for the population being
1.51, and the ratio for participation 1.64, the combined effect of these two
factors was the product of 1.51 and 1.64 or 2.48, equal to the ratio of 1970
to 1960 enrollment. Planning a school for any future period is in effect
taking out a package of at least two lottery tickets.

Sometimes a movement of one of the factors counteracts a movement of
the other, and in that case one turns out to be better off with the package
bet than one would have been with either component alone. New college
enrollments have started to decline in some parts of the country, while en-
trants are still the cohorts of the 1950s when births were constant or rising.
Thus so far the two offset each other. But if decline in the participation
rate continues through the 1980s, when the college-age cohorts will decline,
the drop in attendance will be rapid.

It is often said that population forecasts should be made in conjunction
with forecasts of all the other variables with which population interacts.
The state of the economy is certainly related to population: marriages, and
hence first births, will be numerous in good times, and will be few when
incomes are low and unemployment high. This is the case in advanced
countries; in poor countries births will fall with the process of economic
development, and the sooner the rise in income the sooner will be the fall
in births, at least on the theory that has been dominant. In both rich and
poor countries shortages of land, energy, minerals, food, and other resources
will, through different mechanisms, restrict population growth.

Our present capacity to discern such mechanisms is embarrassingly lim-
ited, for reasons briefly explored in Section 17.5. At best we can suggest
which factors may be related to which other ones, but even the direction
of effect, let alone quantitative knowledge of the relations, is still largely
beyond us. That is why most of the work reported in this chapter, like most
population projection as practiced, concentrates on demographic variables
alone.
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12.1.2 Projection as Distinct from Prediction
The preceding chapters, mostly based on stable theory, have also been con-
cerned with projection in a population closed to migration, but always with
long-term projection. They answered a variety of forms of such questions
as: what will be the ultimate age distribution if present birth and death
rates continue, or what difference will it make to the ultimate rate of in-
crease if the birth rate to women over 35 drops permanently to half its
present value, everything else remaining unchanged? The long-run answers
are usually simpler than the medium-term ones of population projection.

The questions asked in the preceding chapters were so clearly of the
form, “What will happen if . . . ?” that there was no need to stress the
conditional character of the statements referring to the future. Medium-
term population projection offers the appearance of prediction, but the
detailed reference to the future need not alter the conditional character
of the numbers produced. Section 12.2 begins the treatment of projection,
while Section 12.5 concerns prediction or forecasting, that is, statements
intended to apply to a real rather than to a hypothetical future, but in fact
the two topics are inseparable.

A projection is bound to be correct, except when arithmetic errors make
the numbers constituting its output inconsistent with the assumptions
stated to be its input. On the other hand, a forecast is nearly certain to
be wrong if it consists of a single number; if it consists of a range with a
probability attached, it can be correct in the sense that the range straddles
the subsequent outcome the stated fraction of times in repeated forecast-
ing. A probability can—indeed, should—be attached to a forecast, whereas
a probability is meaningless for a (hypothetical) projection.

The distinction between projection and forecasting (Keyfitz 1972a), has
become critically important in population ecology, where environmental
fluctuations and density-dependence make forecasting even more difficult,
but projection even more useful. In particular, a projection can be inter-
preted as providing information about the current situation rather than
future population (“conditions here and now are such that if they were
somehow held constant, the population would grow at this rate, with this
structure, etc.”). Such conclusions are particularly valuable in comparative
studies (see Section 13.4).

Despite the apparently sharp distinction, projections put forward under
explicit assumptions are commonly interpreted as forecasts applying to the
real future. Does the intention of the authors or the practice of the users
determine whether projection or forecasting has occurred in a particular
instance? Insofar as the assumptions of a projection are realistic, it is in-
deed a forecast. Those making projections do not regard all assumptions as
equally worth developing in numerical terms and presenting to the public,
but at any given moment they select a set regarded as realistic enough to
be of interest to their readers. When they change to a different set, users
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suppose that the old assumptions have become unrealistic in view of cur-
rent demographic events. More will be said later about the dangers and
excitements of forecasting; the section immediately following deals with
projection.

12.2 The Technique of Projection

Projection in demography is calculating survivors down cohort lines of
those living at a given point in time, calculating births in each successive
period, and adding a suitable allowance for migration. Of the various ways
of looking at population dynamics, the one most convenient for the present
purpose is the matrix approach (Chapter 7). Such calculations were used,
before Leslie (1945) expressed them in matrix form, by Cannan (1895),
Bowley (1924), and especially Whelpton (1936).

Survivorship. Within the supposedly homogeneous subpopulation the first
step is to convert the death rates that are assumed to apply at each period
in the future into a life table, or else directly assume a life table for each
future period. The column used for the purpose is the integral

5Lx =
∫ 5

0
l(x + t) dt,

which in general varies over time as well as over age.
If the population at the jumping-off point of the projection is 5N

(0)
x for

ages x = 0, 5, 10, . . . , the population 5 years older and 5 years later may be
approximated as

5N
(5)
x+5 = 5N

(0)
x

(
5Lx+5

5Lx

)
. (12.2.1)

For changing rates a new life table would be assumed operative at each
future 5-year interval and applied as in (12.2.1). By this means the popu-
lation would be “survived” forward until the cohorts of the initial period
were all extinguished.

Expression (12.2.1) is not exact even if the life table is appropriate, un-
less the distribution within the age group (x, x + 5) happens to be exactly
proportional to the stationary population l(x+ t), 0 � t � 5. If the popula-
tion is increasing steadily at rate r, the distribution within the age interval
will be proportional to e−rtl(x+ t); and the greater r is, the more the pop-
ulation will be concentrated at the left end of the age interval. Being on the
average younger within each age interval, it will average somewhat higher
survivorship from one age interval to the next in the part of the span of
life where mortality is rising with age. [Using the Taylor expansion method
of Section 2.2 find a formula for the small addition to (12.2.1) to allow for
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Table 12.1. Population and life table data for estimating survivorship of females
70–74 years of age, England and Wales, 1968

Age 5Nx 5Lx lx

65 1,280,500 391,456 82,172
70 1,033,400 339,660 73,827
75 753,600 265,710 61,324

Source: Keyfitz and Flieger (1971),
pp. 152, 154.

this, and calculate its amount from the data of Table 12.1. A different form
of correction is given as (11.1.16) in Keyfitz (1968, p. 249).]

Reproduction. To estimate the births of girl children to women in each 5-
year age interval we need a set of age-specific birth rates, say Fx, for ages x
to x+4 at last birthday (for brevity omitting the prescript). The Fx might
be obtained from past experience, over 1 calendar year, say, of observed live
female births 5Bx to women of exact age (x, x+5). If midperiod population
corresponding to these births numbered 5Nx, then Fx = 5Bx/5Nx.

In the first time period we begin with 5N
(0)
x women aged x to x+4 at last

birthday and, applying (12.2.1), end with 5N
(0)
x−5(5Lx/5Lx−5) women in this

age class. Within the age class, an estimate of the mean surviving women
(or the average exposure per year during the 5 years) is the average of these
two numbers. Multiplying this average by 5 yields the total female exposure
to conception during the 5 years. Multiplication of the total exposure by
Fx yields the expected births to women aged x to x + 4 (l0 = 1):

5
2

[
5N

(0)
x + 5N

(0)
x−5

(
5Lx

5Lx−5

)]
Fx, x = α, α + 5, . . . , β − 5. (12.2.2)

However, since we are interested in the population aged 0 to 5 rather than
the number of births, we must multiply (12.2.2) by 5L0/5 and sum over all
the fertile ages between α and β:

5N
(5)
0 =

1
2

β−5∑
α

[
5N

(0)
x + 5N

(0)
x−5

(
5Lx

5Lx−5

)]
5L0Fx. (12.2.3)

This corresponds to the calculation of n1(t+1) using an age-classified pop-
ulation projection matrix with fertility defined as in Section 3.3.1. There,
we used this same tactic of calculating the number of women exposed to
the risk of childbearing as the average of the numbers at the beginning and
at the end of the period. This is a slight overstatement of exposure if the
increase is at a steady rate, that is, rising geometrically and so concave up-
ward. The correction for this has been presented elsewhere (Keyfitz 1968,
p. 252) and will here be disregarded.
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Extension to All Ages and Both Sexes. If convenience in arranging the
worksheets were thereby served, we could first confine the calculation to
ages under β, the end of reproduction. The survivorship and birth opera-
tions described above can be repeated for an indefinite sequence of 5-year
cycles in disregard of the population beyond reproduction. Older ages can
be filled in by repeated application of (12.2.1).

Males, like females beyond age β, can be dealt with after the projections
for the female ages under age β are completed. Pending parental control
of the sex of offspring, we can suppose a fixed ratio of males to females
among births. If this ratio is taken as s, ordinarily a number close to 1.05,
then multiplying the girl births by s, or the number of girls under 5 years
of age by s5L

∗
0/5L0 (where 5L

∗
0 refers to the male life table, 5L0 to the

female), will give the corresponding number of boys. The male part of the
projection can then be filled out by repeated application of (12.2.1), using
a life table for males.

The procedure described to this point can alternatively be arranged as
matrix multiplication to secure a numerically identical result. The number
of females in successive age groups is recorded in the top half of a vertical
vector n and the number of males in the bottom half. The vector, containing
36 elements if 5-year age intervals to 85–89 are recognized for each sex, is
premultiplied by a matrix M whose nonzero elements are in its subdiagonal
and its first and nineteenth rows. Population after t cycles of projection at
constant rates will be n(t) = Mtn(0). If fertility ends at age β = 50, the
upper left-hand corner of the matrix will be a 10×10 submatrix containing
birth elements in its first row, and constituting the self-acting portion of
the larger matrix (Table 12.2). Every part of the preceding description can
be readily altered to provide for different rates from one period to another,
and in practical work rates are assumed to change.

The upper left-hand 10× 10 submatrix of M shown in Table 12.2 can be
called A and analyzed with the methods of Chapter 7. By drawing a graph,
we can show A to be irreducible in that its positive elements are so arranged
as to permit passage from any position to any other. Its primitivity—that
there is at least one power k such that all elements of Ak are positive
for that k—follows as long as any two relatively prime ages have nonzero
fertility. Alternatively, the entire matrix M can be analyzed, as long as
the irreducible nature of the matrix is recognized, so that the appropriate
eigenvalues and eigenvectors are used to draw conclusions about future
population (Section 7.2.2).

This description corresponds to the usual execution of the projection in
being female dominant: all births are imputed to females. The same theory
is applicable to a process in which births are imputed to males. With the
prevailing method of reproduction a male and a female are required for each
birth, and with either male or female dominance the other sex is implicitly
taken to be present in whatever numbers are required. Two-sex models
in which neither sex is dominant are nonlinear, with reproductive rates
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Table 12.2. Female-dominant projection matrix A with 36 rows and 36 columns
in 5-year age intervals; l0 = l∗0 = 1; male life table distinguished by asterisk

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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depending on the relative frequencies of males and females of the various
ages or stages. For a review of such models and the dynamics they can
produce, see MPM Chapter 17).

12.2.1 Age Versus Other Variables
As we saw in Chapter 3, the concentration on age in the projection

described above, though it follows a long and honorable tradition, may
be considered arbitrary from a wider viewpoint. We know that mortality
and fertility rates depend on age, but they also depend (though less de-
cisively) on rural and urban residence, education, social class, and many
other variables.

A projection matrix that recognizes rural and urban residence but
disregards age can easily be devised:

An(0) =
(

arr aur

aru auu

)(
nr

nu

)
(0), (12.2.4)

where aru is the fraction moving from rural to urban, and aur that from
urban to rural. If aur and aru were zero, arr and auu would be the change
ratios of rural and urban parts. By repeated application of (12.2.4), the
population at the end of t periods of 5 years is Atn(0). The procedure
would be preferred if a move to an urban area caused a change in natural
increase greater than the change in going from one age group to another.



276 12. Projection and Forecasting

Recognition of rural and urban residence does not preclude recognition of
age. We can make area the primary classification and show the breakdown
by age within each area, as does Rogers (1968, p. 13), or else we can take
age first and show within each age the rural and urban areas, as does Feeney
(1970). Both of these approaches have been used in recent multiregional
matrix models (Rogers 1995, Hastings 1992, Bravo et al. 1995, 1997, Sanz
and Bravo 1999, 2000, Lebreton 1996, Lebreton and Gonzalez-Davila 1993).
Hunter and Caswell (2004) have presented an approach that makes it easy
to move from one to the other.

The usual model of projection recognizes age and sex, sometimes region,
less often rural and urban parts, and in a few countries race. But age and
sex have been the universal dimensions of population projection since the
1940s; no other is accepted as indispensable.

The concentration on age and sex could represent a cultural lag. It might
be that at certain times this breakdown is important, at other times less so.
To see just how much improvement results from recognizing age and sex, as
against not recognizing them, the experiment of Table 12.3 was carried out.
For each of 20 populations a 15-year projection was made by age and sex,
using the age-sex-specific rates of birth and death for the initial moment—
1 year, 3 years, or 5 years, but always symmetrically arranged around the
midpoint of the stated jumping-off year. Except for the constancy of the
rates assumed and the omission of migration, this is the usual projection
by periods and is designated as (b) in the table.

Contrasted with this is the simpler projection in which no account is
taken of age and sex, but the crude or observed rates of birth and death
are made to provide a rate of increase, and that rate is applied to the total
population Nt = ‖n(t)‖ of the jumping-off moment. This method, which
has not been used by demographers in good standing for the last 70 years
or more, is shown as (a) in the table.

The observed population 15 years later is the last column of the table,
and projections (a) and (b) may be compared with it. Our intention, before
seeing the outcome, was to estimate quantitatively how much improvement
is due to the incorporation of age and sex, by seeing how much closer column
(b) was to the subsequent performance. That column (a) would turn out
equally well was never anticipated. In fact, in the slight majority of the
instances (marked with an asterisk) the simple projection (a) comes closer
to the performance than (b), which recognizes age and sex.

There are obvious qualifications in regard to the result. An experiment
involving 20 cases is too small, especially since they are not entirely in-
dependent of one another; when the European birth rate was falling,
somewhat the same influences acted on age distribution in all countries.
(However, a similar experiment on an additional 20 cases, using a 10-year
prediction span, gave a similar result.) The use of fixed rather than chang-
ing rates of birth and death is a handicap equally to methods (a) and (b).
The same is true for the absence of migration, omitted because data are
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Table 12.3. Projections for 20 populations over a 15-year time period, (a) neglect-
ing age and sex, and (b) taking account of age and sex, in both cases neglecting
migration. The projections are compared with observed populations 15 years
later; the closer of (a) and (b) is starred

Rate of
Projected 15 Years

natural By age and
increase Without sex

Population per 1000 age and sex Total of Observed
(000s) population Nte

15r/1000 A3n(t)/1000 time t + 1
Time (t) Nt/1000 1000r (a) (b) Nt+15/1000

United States
1920 106,630 10.93 125,627∗ 123,665 127,252
1945 131,976 11.64 157,153∗ 150,910 179,990

Japan, 1951 84,260 15.71 106,651 106,607∗ 98,859
Belgium, 1935 8,279 3.01 8,661∗ 8,346 8,646
France, 1876 36,824 3.54 38,832 38,447∗ 38,139
Hungary, 1951 9,423 8.76 10,746 10,427∗ 10,179
Netherlands, 1935 8,387 11.70 9,996∗ 9,889 10,114
Norway, 1951 3,296 10.08 3,834 3,674∗ 3,753
Sweden

1780 2,104 8.59 2,393 2,381∗ 2,274
1805 2,418 6.39 2,661∗ 2,666 2,573
1830 2,876 6.70 3,180 3,216∗ 3,296
1855 3,625 9.23 4,163∗ 4,144 4,164
1880 4,572 11.96 5,470∗ 5,485 4,896
1905 5,278 10.68 6,195∗ 6,265 5,876
1930 6,131 3.18 6,431∗ 6,409 6,630
1945 6,636 9.12 7,609∗ 7,287 7,499

Switzerland, 1951 4,749 7.39 5,306∗ 5,118 5,917
England and Wales

1941 38,743 1.41 39,571∗ 38,259 44,667
1946 40,595 7.36 45,333∗ 43,273 46,166

Australia, 1951 8,422 13.61 10,329∗ 9,887 11,550

more difficult to come by, and also because it presents special problems:
should one use the absolute numbers of the jumping-off year or the rates,
and how would they be applied by age and sex?

The conclusion from the experiment is that in some circumstances the
effect of age is important, and in others it is not. The experiments summa-
rized in Table 12.3 are not the only ones in which simple models seem to
outperform models including more demographic detail (Keyfitz 1981, 1982;
see the review by Rogers 1995b). Such results hardly constitute justifica-
tion for abandoning age, especially since we usually need the forecast by
age, but we should not be under the illusion that projection by age and sex
is a powerful technique for discerning the future.

To find which of the other dimensions can provide real gains in accuracy
of forecast will require additional experimenting similar to that of Table
12.3. We ought to be trying to project marriages, and then applying rates of
nuptial fertility; perhaps not age within marriage but duration of marriage
is the superior variable; perhaps first births, second births, and so on are
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more easily extrapolated separately than are births of all orders together,
and so the model ought to be order-specific.

Whatever the variables recognized, their change from period to period
is easily provided for. Each 5-year period would have its own projection
matrix, so that after t periods we would have not Atn(0), but instead, if
Ai−1 is the matrix for the ith period,

n(t) = At−1 · · ·A2A1A0n(0). (12.2.5)

Several different cases of time variation must be distinguished, because dif-
ferent analytical methods are available for each: periodic variation (MPM
Chapter 13), stochastic variation (MPM Chapter 14), and variation due to
nonlinear feedback between the population and its own vital rates (MPM
Chapter 16). Whereas the changing matrix can be symbolically incorpo-
rated into a formula without difficulty, and analyzed with some effort, the
attempt to determine the elements of the matrix, that is, to say what future
mortality and fertility will be, is the most difficult problem of demography,
and will be the subject of Section 12.4.

12.2.2 Projection in a Heterogeneous Population
When a heterogeneous population is projected without recognition of its
subpopulations, the result is always lower than what would have been found
by applying the same projection process to the subpopulations and adding.
This was shown to be true in Section 1.5, without recognizing age. It is true
also for projections by age, but to prove it in general for an arbitrary initial
age vector is difficult.

As an example that will suggest the quantitative effect, the United States
population in 1966 without breakdown by color, as projected with a life
table made from the deaths in that year and the fertility rates implied by
the 1966 births, results in a total population for 1981 of 230,477,000. Rec-
ognizing the two separate groups of Whites and Nonwhites, whose 1966
populations, births, and deaths add exactly to the totals for the United
States, constructing life tables and age-specific birth rates for the two
groups separately, and then projecting each by means of its own life ta-
ble and birth rates, gives 1981 Whites as 199,287,000 and Nonwhites as
31,441,000, which add to 230,728,000. The deficiency of the projection not
recognizing color is 251,000 or, about 1 part in 1000, after 15 years. After
100 years the two separate projections add to 8 percent more than the
projection without breakdown by color.

12.3 Applications of Projection

Projection leads itself to making “if . . . then . . . ” statements; indeed it con-
sists of such statements. If England and Wales have the same age-specific
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birth and death rates as in 1968 for the following 25 years, the total pop-
ulation will grow from the 48,593,000 estimated for 1968 to 54,869,000 in
1993. The increase will average 0.0049 or 4.9 per 1000 per year, less than
the intrinsic rate r of 1968, which was 6.9 per 1000. The slower rate of the
projection is due to an unfavorable 1968 age distribution.

The United States 1967 population, projected at 1967 rates, amounts to
230,109,000 by 1982, an average rate of increase of slightly over 1 percent
per year. In this case the rate of increase is raised by an exceptionally large
proportion of women in childbearing ages; the intrinsic rate r of 1967 was
only 0.74 percent.

12.3.1 Population Dynamics with One Cause of Death
Eliminated

A transparently simple application of projection involves the effect on pop-
ulation growth of eliminating a particular cause of death, say cancer. We
want the effect of this change separate from the effects of all other changes
that may take place. Excluding the effect of the birth rate or of income
incurs no difficulties, but excluding changes in other causes of death raises
a problem if these causes would become more (or less) serious as a direct
result of eliminating cancer. Since we know little about the interrelations of
the several causes, we assume that age by age the others remain unchanged
when cancer is eliminated. (Section 2.6)

A life table was calculated omitting all mortality from cancer, and an-
other omitting all mortality from heart disease, using the technique of
Section 2.6 and data for the United States, 1964. The unaltered table and
each of these two modifications were applied to the 1964 female population
of the United States to separate out the effects of the two causes on the rate
of increase and on the age distribution of the ultimate stable population.
The resulting rates and age distributions are shown in Table 12.4, always
supposing that the birth rates of 1964 continue to prevail.

The intrinsic rate of natural increase is affected by less than 1 part in
200 by omission of heart disease: it rises from 0.01573 to 0.01579. Not
many women are struck down by heart disease at ages before the end of
childbearing. Cancer deaths are fewer in total, but they affect younger ages
in somewhat more cases and so their omission produces a slightly greater
rise in the rate of increase.

To represent the effect on age distribution we have used the stable equiv-
alent q, corresponding to an age distribution, or an age-sex distribution
n(0), obtained in (8.8.3) as

q =
Atn(0)

e5rt
, (12.3.1)

where t is large, say 100 cycles of 5 years, and e5r is the ratio of increase per
cycle as t becomes large. The stable equivalent is the number of persons in
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Table 12.4. Ultimate age distribution and intrinsic rates corresponding to United
States 1964 population, with (a) all causes of death, (b) all causes except heart
disease, and (c) all causes except cancer (thousands of persons)

(a) (b) (c)
All causes Death from heart Death from
of death disease removed cancer removed

Stable equivalent Stable equivalent Stable equivalent

Age Males Females Males Females Males Females

0–4 10,535 10,125 10,537 10,127 10,537 10,126
5–9 9,698 9,329 9,699 9,330 9,700 9,330

10–14 8,943 8,609 8,942 8,608 8,944 8,609
15–19 8,229 7,941 8,227 7,939 8,230 7,940
20–24 7,545 7,317 7,543 7,315 7,546 7,315
25–29 6,910 6,737 6,911 6,737 6,914 6,736
30–34 6,326 6,195 6,332 6,198 6,332 6,197
35–39 5,774 5,682 5,795 5,693 5,786 5,693
40–44 5,238 5,193 5,290 5,216 5,260 5,219
45–49 4,700 4,719 4,808 4,762 4,740 4,768
50–54 4,141 4,249 4,335 4,326 4,212 4,332
55–59 3,547 3,780 3,864 3,906 3,662 3,902
60–64 2,921 3,299 3,390 3,503 3,088 3,463
65–69 2,268 2,788 2,907 3,109 2,485 2,992
70–74 1,629 2,242 2,429 2,721 1,872 2,474
75+ 2,003 3,491 7,833 11,856 2,596 4,168
Total 90,407 91,696 98,842 101,346 91,904 93,264
Total both sexes 182,103 200,188 185,168

Females
15–44
Total

× 100 42.60 38.57 41.92

Female mean age 31.32 36.79 32.03
Intrinsic rates

Birth 0.02348 0.02124 0.02308
Death 0.00774 0.00546 0.00726
Natural increase 0.01573 0.01579 0.01582

Sex ratio
All ages 0.986 0.975 0.985
Ages 75+ 0.574 0.661 0.623

each category of age and sex that could be projected to (distant) time t by
multiplication by ert at all ages, with assurance that the same numbers at
time t would result as from projection of the observed population by the
usual components method described in Section 12.2.

The stable equivalent shown in Table 12.4 is little affected at younger
ages by the omission of heart disease or cancer, and even by age 50 the
increase is less than 5 percent for males and 2 percent for females. At the
very oldest ages of 75 and over, however, the effect of eliminating heart
disease is dramatic: a nearly fourfold rise for men and well over a threefold
increase for women.
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The net result is a rise in the average age of females from 31.32 to 36.79
years with the elimination of heart disease, and to 32.03 with the elimina-
tion of cancer. The percentage of females in the childbearing ages 15 to 44
falls from 43.21 to 39.56 with the elimination of heart disease, and to 42.54
with the elimination of cancer.

The main limitation of the result given in Table 12.4 is the certainty
that if heart disease were eliminated other causes would also be affected.
They would be increased insofar as heart disease selects weaker individuals,
more subject to other ailments than randomly selected members of the
population, an issue raised in Section 4.4.

12.3.2 Effect of Immediate Drop to Replacement Fertility
Continuing with the effort to make population projection perform exper-

iments, we ask another question: “What would be the ultimate stationary
population if birth rates were to drop immediately and permanently to
bare replacement level?” Though a drop to bare replacement would sooner
or later terminate growth, a large concentration of women at childbearing
ages exists as a result of growth in the past, and the ultimate level would
be considerably higher than the present population.

The question may be answered by a population projection, applying the
observed life table and observed age-specific birth rates divided by R0, the
net reproduction rate. We refrain from trying to guess what mortality is
going to do, nor do we suppose changes in the age distribution of child-
bearing. The object is to see the outcome of a drop to replacement fertility
if everything else remains unchanged.

Taking the birth and death rates for the year listed, making a life table
from the death rates, dividing the birth rates by R0, and projecting some
500 years into the future gives the results shown in Table 12.5 for six coun-
tries. Thus Colombia showed 17.993 million people in 1965; the projection
climbed to 29.786 million, a rise of 65.5 percent. Such a projection takes
full account of the initial age distribution.

The results can be compared with the corresponding calculation on the
stable age distribution. We saw in Section 8.6 that the ratio of the ultimate
stationary to the present population, on the assumption of an immediate
drop to bare replacement fertility, is

b
o
e 0

rµ

(
R0 − 1

R0

)
, (12.3.2)

where the birth rate b, the rate of natural increase r, the net reproduction
rate R0, and the mean age µ of childbearing in the stationary population
are all calculated before the fall. Applying (12.3.2) to Colombian females
of 1965 gives 1.59, that is, an ultimate rise of 59 percent over the 1965
population. This is somewhat less than the 66 percent rise on the projection,
so presumably the observed 1965 Colombian sex–age distribution departed
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Table 12.5. Current and ultimate stationary populations, on assumption that
birth rates drop immediately to stationary level, for six countries

PercentNumber (000s)
increase

Population Current Ultimate to ultimate

Chile, 1965 8,584 12,916 50.5
Colombia, 1965 17,993 29,786 65.5
Ecuador, 1965 5,109 8,518 66.7
Italy, 1966 53,128 62,189 17.1
Peru, 1963 14,713 23,080 56.9
United States

1966 195,857 259,490 32.5
1967 197,863 267,096 35.0

from the stable one in a direction favorable to reproduction. However, the
departure could be an artifact due to defects in the statistics. In the face
of inaccurate primary data it is an advantage to have available both the
projection and the stable formula (12.3.2).

A number of such experiments are described by Frejka (1973). He sees
what the ultimate stationary population will be with an immediate drop
and with a drop spread over 25 years. He does not keep other factors
constant at their base values, but supposes that mortality will fall according
to a certain curve. This has the advantage of greater realism if indeed the
projected fall of mortality occurs. On the other hand, it has the drawback
of requiring us to keep in mind a particular fall in mortality rather than
just constancy. Such a conflict between realism and simplicity is typical of
demographic projection.

We have all thought how convenient it would be if we knew the condition
at some distant future and could interpolate between the jumping-off point
and then. Sooner or later the population must cease to grow; and if we
could only guess the date at which it would become stationary, most of
the problem of forecasting would be solved, for the interpolation could not
involve the gross errors to which extrapolation is subject. Frejka’s treatment
is an attempt along this line.

12.4 The Search for Constancies

Any forecasting method, whether naive or sophisticated, depends on some
function being approximately constant. For the short term it may be suf-
ficient to suppose that the absolute number of births of the current year
will be repeated over the next few years, and the same for deaths and
migration. More convincing is to suppose that the crude rates will be con-
stant for the next few years. Insofar as age distribution is changing, the
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rates that are supposed fixed had better be age specific. Insofar as a visible
trend appears in the age-specific rates, one may wish to take year-to-year
differences of the age-specific rates as fixed; if 5M

t
x is the death rate at time

t for the age interval x to x + 4, then 5M
t
x − 5M

t−1
x being constant will

give 5M
t+1
x = 25M

t
x − 5M

t−1
x . If the past trend looks to be exponential,

the logarithm of the numbers in previous years can be supposed to have
fixed first differences.

If the trend in total population can be assumed to be logistic, what is
fixed is the ratio of the difference of reciprocals in successive years; with
Nt standing for the population in year t,

1/Nt − 1/Nt−1

1/Nt−1 − 1/Nt−2

is constant.
Better adapted ways of choosing the entities that are to be held con-

stant are provided by relational methods, which deserve a more detailed
treatment.

12.4.1 Relational Methods
To project mortality or fertility or nuptiality—indeed, any component

that varies with age—we need to determine not only overall trends but
also what is going to happen to the several ages. We could suppose that
all ages are affected in the same way, either adding to all age-specific rates
some constant for each year that goes by, or multiplying them by some
constant. But actual changes are far from being either constant increments
or constant multiples applicable to all ages. We could meet this objection
by extrapolating each age separately, but that would produce gratuitous
errors, as well as inconvenient discontinuities; with most data age distri-
butions would become less and less smooth as we went forward in time on
separate projections for the several ages.

We could observe how past changes have occurred, for instance, how
successive mortality tables for Sweden differ, and use the Swedish trend
as showing the future for countries that are not yet down to the Swedish
level of mortality. Similar possibilities exist for fertility and nuptiality. This
method has been used, but it presents difficulties. The problem is to find
some way of relating the future to the past that involves a small number
of parameters, say two, and that is a sufficiently good fit to all times for
the two parameters extrapolated to produce acceptable curves for future
dates.

Mathematical curves would serve this purpose if any could be found
that fitted closely enough. If the age distribution of childbearing could be
satisfactorily fitted by a normal curve, for example, we could extrapolate
the total, mean age, and variance of ages to find the age distribution of
childbearing at future times. But Lotka’s (1939, p. 70) normal curve does
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not fit past data well enough to justify its use for prediction, nor does
the incomplete gamma function applied by Wicksell (1931) or Hadwiger’s
(1940) more elaborate exponential. (Keyfitz 1968, Chapter 6, is a secondary
source on these.) Murphy and Nagnur (1972) tried a Gompertz curve, long
used for mortality, with some success.

Success in specifying algebraic or transcendental curves has been incom-
plete enough that most workers resort to sets of model tables, for fertility
as well as for mortality. A set of useful model fertility tables has been pub-
lished by Coale and Trussell (1974), which do for this component what the
Coale and Demeny (1966) tables did for mortality.

An alternative is the relational method evolved by Brass (1974) over the
course of some years of experimenting. Instead of aiming at the desirable
but unavailable mathematical curve, or attempting to sum up the entire
range of empirical materials in a set of model tables, the relational method
embraces changes through time in a flexible description involving two (or
at most three) parameters. Let us see how the Brass method fits mortality;
fertility and nuptiality may be treated in a similar way.

Mortality. In the first application, to mortality, Brass found that to go
from one life table to another was easy if both were translated into logits,
that is, their l(x) columns were transformed by

Y (x) = 1
2 log

[
1 − l(x)

l(x)

]
.

If the early table is distinguished by a subscript s, the relation is the linear

Y (x) = α + βYs(x),

or, written out in full,

1
2 log

[
1 − l(x)

l(x)

]
= α +

β

2
log
[
1 − ls(x)

ls(x)

]
.

In forecasting one would take a life table for time ts as ls(x) and fit to it
the table for later time t1, finding the constants α1 and β1, say. A new α2
and β2 would be found on fitting the table for t2 to t1, and α3 and β3 on
fitting the table for t3 to t2. The several fittings would indicate a trend in α
and in β that could then be extrapolated into the future. The extrapolated
α and β for future dates, along with the base life table ls(x), would carry
the life table to the dates in question. Studying mortality trends of the past
half-century in England and Wales, Brass considers it possible that in the
future β may well come close to unity, and α decrease by 0.5 every 40 years.
The trend in α and in β must be worked out for each population on which
the method is tried. The method imports nothing—neither a mathematical
curve nor model tables—from the experience of other populations than the
one under consideration: for England and Wales β and the first difference
of α are constant, but other functions of α and β would be used in other
populations.
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Figure 12.1. Demographic transition for three provinces or other groups
designated as A, B, and C.

12.4.2 Are Longitudinal Relations Demonstrated by
Cross-Sectional Data?

In seeking a constancy of some function of the population variables
through time one is tempted to transfer a relation found in cross-sectional
data. Constancy from place to place at a given time ought to be evidence
of constancy through time. The provinces of India whose mortality is low
seem also to be the ones whose fertility is low; does it not follow that, as
mortality falls in the years ahead for the whole of India, so also will fertil-
ity? And—only a short step further—the low mortality may be argued to
cause the low fertility, among other reasons because parents aim to have
a certain number of children who survive to maturity. These statements
may be true, and if they are they would be very helpful in forecasting. But
other evidence than the cross-sectional relation is required to prove them,
as can be seen from the very simple cases of Figures 12.1 to 12.3.

Figure 12.1 is a stylized illustration of the problem for three provinces
or other population groups, A, B, and C, with deaths in Figure 12.1a and
births in Figure 12.1b. From the birth and death rates of the provinces at
t0, i.e., taking vertical cross sections of the two families of curves at t0, we
can obtain a cross-sectional correlation of birth rates and death rates, and
it would be positive; the provinces are in the same sequence A, B, and C.
On the other hand, we obtain a longitudinal correlation by comparing birth
and death rates through time for any particular province. In Figure 12.1
the longitudinal, like the cross-sectional, correlations of birth and death
rates are positive.

But we could draw the curves differently and obtain the opposite result,
as has been done in Figure 12.2, where deaths are declining and births are
rising. The correlation of birth and death rates through time for any of the
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Figure 12.2. Opposite to demographic transition for three provinces A, B, and
C.
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Figure 12.3. Demographic transition for three provinces with sequence reversed.

provinces A, B, or C would be negative, though that for the cross section
at any given time would again be positive.

Is the cross-sectional correlation even necessary to the correlation in
time? Examine Figure 12.3, drawn in the same way as Figure 12.1, ex-
cept that in Figure 12.3b the births have been labeled differently. In this
diagram the cross-sectional correlation is negative, while the correlation
through time is positive. There is nothing impossible a priori about this
arrangement. The cross-sectional correlation is neither necessary nor suffi-
cient for the longitudinal one (Janowitz 1971). This is part of the elusiveness
of the inference of future trends from past conditions.
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12.5 Features of Forecasting and Forecasting Error

No one expects botanists, geographers, or anthropologists to make declara-
tions regarding the future.∗ Physicists do make predictions, but within an
experimental situation closely protected against interference from outside
events in the real world. Demographers, on the other hand, are expected
to predict future population as it will actually occur. And they respond as
best they can; much of the published literature in demography, and even
more of the unpublished, whether written by amateurs or by professionals,
consist in statements about the future.

We saw that a projection over t units of time can be written as Atn,
where A is a projection matrix and n the initial population vector. If we
know the elements of A and of n, the estimate of the future consists in the
multiplication. We may incorporate in A and n several regions, rural and
urban populations, ethnic and racial groups, or other divisions (Chapter
7). We may admit that the transition probabilities are a function of time
and say (equation 12.2.5) that at time t the population is

n(t) = At−1At−2 · · ·A0n(0).

The preceding paragraph, like Section 12.2, is complicated enough to
have the effect of concealing the logical status of what we are doing. Age
and other distinctions do matter, but their numerical effects are often small
in comparison with the prediction error within any category. Let us drop the
categories and think only of total population projected over one period, say
of 30 years; thus we are back to multiplying scalars rather than matrices and
vectors. For example, the population of the United States was counted in
1970 at 203 million; what will be its number in the year 2000? The ultimate
in simplicity is to say that, if the population increases by 33 percent, it will
number 270 million. Most projections snow us with breakdowns by age, sex,
race, and region, and take a number of time intervals, all of them valuable,
but in their combination causing us to lose perspective on the problem. By
peeling off the breakdown, we arrive at the essence of calculation of future
population in its two aspects of projection and prediction.

Projection is where the 33 percent is hypothetical. All projection con-
sists of such statements as the following: “If (which we do not assert) the
population grows at 33 percent in 30 years, then by the year 2000 it will
have increased to 203 × 1.33 = 270 million.” The projection consists in
performing the multiplication, is conditional on the 33 percent, and is as
unassailable as the laws of arithmetic. No projection risks being in error; it

∗Actually, this statement has become less and less true over time, as problems in con-
servation and resource management have required ecologists to try harder and harder to
predict the future growth of plant and animal populations. This has led them to confront
exactly the same problems of forecasting and forecasting error as human demographers.
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cannot be proved or disproved by what the population actually turns out
to be in the year 2000.

Stated in this stripped-down form, the result is wholly uninteresting. At
most it does the reader the service of performing the multiplication, and in
an age of computers no one would pay much to be told the bare arithmetical
fact that 203 × 1.33 = 270. The demographer’s service surely starts with
his comment on the realism of the 1.33, and with that he enters the field
of forecasting.

Forecasting is where the 33 percent is taken as the real prospective in-
crease: “The population will grow 33 percent in 30 years.” Unless this is
to be soothsaying, we now need evidence for the 33 percent. Such evidence
may be one or another kind of extrapolation; in the simplest case the argu-
ment would be that the next 30 years will show an increase of 33 percent
because the last 30 years showed such an increase. A more sophisticated
version would assert, not that the ratio will be constant, but that the rate
of change in the ratio will be constant. In the most general statement the
forecast asserts that some more complex function, possibly involving eco-
nomic, ecological, psychological, or other variables sufficient to determine
the future population numbers, will remain constant into the future, and
the task of forecasting consists in the search for such a functional invariance.

One circumstance that can make prediction interesting is what makes a
poker game interesting: the fact that the cards, first hidden as the future is
hidden, are later turned face upward on the table, and so test the accuracy
of the forecast. In economic forecasting a frequent span is 6 months or 1
year; such a period is not too long for the predictor to see whether she
guessed right, or at least more accurately than someone else, and to learn
from the experience. But 30 years, which is a typical span for demographic
forecasting, is too long a wait for learning to occur. To wait 30 years to see
the cards removes the interest inherent in the rapid alternation of forecast–
verification–forecast–verification that holds us at the poker table.

12.5.1 Extrapolation Versus Mechanism
Any forecasting that takes itself seriously tries to base itself on the un-

derlying mechanisms, rather than merely extrapolating trends. Yet the
distinction is not always sharp. The components projection on which much
stress is laid is indeed a mechanism, but it still depends on extrapolation
of birth, death, and migration rates.

A mechanism that lends itself to prediction is Easterlin’s model described
in Section 14.11, in which age-specific birth rates depend negatively on the
size of the cohort of an age to marry and bear children at the given time.
In effect it predicts waves of twice the length of generation, so that in
the United States birth rates would be low for the next decade or more,
and only in the 1990s would they pick up again. [Of course, even if the
mechanism is operative exactly as described, the intensity of its operation,



12.5. Features of Forecasting and Forecasting Error 289

measured by the constant γ of (14.11.1), would still have to be ascertained
by extrapolation.]

Other mechanisms are less useful for forecasting. That working women
have fewer children than nonworking women is true without telling us
whether seeking work is primary and lack of children the result, or whether
selection is involved: women who do not have children take jobs. But sup-
pose the first case: that the fall in births during the 1960s was due to more
and more women preferring work outside the home to child raising. Perhaps
they needed the income; perhaps outside work came to carry greater pres-
tige. Certainly women’s liberation will reduce childbearing, at least until
the day when men take over the unpaid work of child raising. To use this
in prediction we would need some way of knowing in advance about the
shifting preferences for work and income versus the satisfactions of moth-
erhood. Will the uptrend in the former continue over the next decade and
so maintain the downtrend in births?

The difficulty of answering this question suggests that the mechanism in
question is an ad hoc explanation of the past, to be retained as long as
women increasingly enter the labor force and the birth rate falls, but to be
quickly dropped and replaced by some other mechanism as soon as births
turn upward. One can imagine, after births do start to rise, articles showing
how inevitable is the reassertion of the durable values of motherhood as
opposed to ephemeral economic interest. Whether such explanations are
true or false, if they come after the fact they are too late to forecast turning
points.

In this difficult situation it is natural to resort to asking women what
their childbearing intentions are—just as people are queried about their
house-buying intentions, and firms their investment plans. Such data help
but only in short-term forecasting. Most of the children born more than 5
years from now will be to mothers who are presently still in their teens,
unmarried, in no position to provide a realistic statement of their futures as
mothers (Ryder and Westoff 1967, Siegel and Akers 1969). For the shorter
term, intentions may predict well; Westoff, Potter, and Sagi (1963) found
that about the best predictor of whether a couple with two children will
have a third is their own statement.

Even for estimating turning points in the birth curve less than 5 years
ahead, however, the statements of wives have not always been borne out.
Women may declare an intention that accords with present rates of child-
bearing, but once the future becomes the present they are influenced by
whatever the fashion is at the time. It is too much to say that current
childbearing influences stated intentions more than intentions anticipate
future childbearing, but some hint of this does appear in the time series of
intentions, on the one hand, and performance, on the other.

We have some evidence (Masnick and McFalls 1976) that women’s at-
titudes toward childbearing are formed (or manifest themselves) early in
their married careers. If they start married life in a time of low fertility
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when contraception is practiced rigorously, they tend to continue to prac-
tice it. Such a fact, if the manner and degree of its operation could be
established, would facilitate forecasting.

12.5.2 Shape of the Projection Fan
If we know the past, and must make estimates of the future, the population
trajectory starts out as a single, somewhat jagged line, and at the moment
where past and future meet fans out into a set of relatively smooth lines
representing the several possibilities. Disregarding for the moment the er-
rors, incompleteness, and delays in statistics on the past, the question is
how the single line or curve, representing more or less certain past knowl-
edge, fans out into the future to make the horn shape familiar in graphical
representations of projection.

If the lines of the fan were straight, each would require only one
parameter—say, the angle made with the time axis—for its full description.
Such straight lines imply that uncertainty increases in equal increments
with time from the present—that if we know in 1970 that the population
for 1980 will be in a certain range with a certain probability, the population
for 1990 will be in twice that range, both expressed in numbers of persons
(Figure 12.4a).

If, on the other hand, one could say that for all future time the (fixed)
rate of increase r would be within the range r1 to r2, the horn would take
the shape of exponentials as in Figure 12.4b. Drawn on semilog paper, this
would be back to the form of Figure 12.4a.

Only slightly more difficult is thinking that the future rate of increase
would be r(t) at time t, drawn from a specified probability distribution.
Since, as in (1.6.1), population at time t is Nt = N0 exp[

∫ t

0 r(τ) dτ ], what
is operative is the sum of r(t). If the increases at the several times in
the future are drawn independently at random, the variance of

∫ t

0 r(τ) dτ

is proportional to the time t, the standard deviation to
√

t. The range
in this case would be a curve like e

√
t, in suitable units. Or under other

circumstances the curve might be of the form exp(
√√

t) (Figure 12.4c). A
priori the possibilities are unlimited.

But now recall that we can predict survivorship better than births. As
time moves on, more and more of the population will have been born since
the jumping-off point, and a smaller and smaller fraction will consist of
survivors from that point. As a larger fraction passes into the group known
less well, the fan widens more rapidly than is shown in any of the three
diagrams of Figure 12.4.

In symbols, suppose that at a given future time f of the population
will have been born since the jumping-off point and will be known with
uncertainty represented by the standard deviation σ, and 1 − f of the
population with uncertainty kσ, where k < 1. Then the accuracy with
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(a)

(b) (c)

Figure 12.4. Shape of the fan under various conditions. (a) Ignorance of popu-
lation increasing with time in equal increments. (b) Ignorance of (fixed) rate of
increase. (c) Future subject to diminishing variation.

which the whole population is known has the standard deviation

σ∗ = σ
√

f2 + (1 − f)2k2.

The spread can be expressed directly in terms of survivors and births.
For ex ante evaluation the population t years hence may be written as

Nt =
∫ t

0
B(τ)l(t − τ) dτ +

∫ ω

0
p(a)

l(a + t)
l(a)

da + It − Et,
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where

B(τ) = the births at time τ ,
l(t − τ) = the probability of survival of a birth to

age t − τ , that is, to time t,
p(a) da = the number of persons age a to a + da

at the jumping-off point where t = 0,
It = the cumulative number of immigrants by time t, as

projected from immigration statistics by a
survivorship function,

Et = the cumulative number of emigrants, also as projected
to time t.

The quantities in the equation are subject to different amounts of error—
current population p(a) is best known, prospective survivorship l(a+t)/l(a)
next best, future births B(τ) only poorly. Emigrants present more difficul-
ties than immigrants in current statistics as well as in the future. Separate
estimates need to be made of the precision of each of these components.
As time goes on from the jumping-off point, the dependence of the fore-
cast on future births increases, and hence the precision decreases. The fan
of projections will correspondingly open out more widely than in straight
lines or exponentials.

These considerations apply to projections using matrix population mod-
els with arbitrary stage classification. If the projection matrix At at time
t is determined by an stationary ergodic stochastic process, and if the ma-
trices are sufficiently well behaved (a stochastic analogue of the primitivity
condition for convergence), then the log of population size is asymptoti-
cally normally distributed with a variance that increases linearly with time
at a rate we can denote by σ2 (Furstenberg and Kesten 1960, Tuljapurkar
and Orzack 1980). Thus the projection fan in this case also increases as
exp(σ

√
t), but matrix methods are required to estimate σ2 (see Tuljapurkar

1990 and MPM Chapter 14).
These results are asymptotic, and apply in stationary stochastic environ-

ments, whereas projections are often short-term and in conditions where
the statistical properties of the vital rates are not constant. For an approach
to such cases, see Lee and Tuljapurkar (1994).

12.6 The Components of Forecasting Error Ex
Ante

The errors that arise in estimates of the future are classifiable under five
headings. Arrangement is in ascending order of difficulty of estimation, and
probably also of magnitude.
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1. There is random variation from the deterministic model on which
the estimate was made. Corresponding to the deterministic model
used for forecasting, one can construct many stochastic models, all
with expected values equal to the forecast. The most obvious of these
stochastic models allows the same probability to act on the several
individuals independently.
In application to a single item, say births numbering B, the coefficient
of variation (standard deviation divided by expectation) can be calcu-
lated as a function of the numbers involved, for example the number
of births B. For large closed populations, assuming statistical inde-
pendence between individuals gives a coefficient of variation equal to
1/

√
B. When births are in millions, the error is trifling; when even as

few as 10,000 births the coefficient of variation is only 1 percent. This
component of forecasting error is important only for populations as
small as a neighborhood or a village.
This type of variation is called demographic stochasticity, to dis-
tinguish it from environmental stochasticity caused by stochastic
temporal fluctuations in the vital rates. Including demographic
stochasticity in matrix population models leads to a multi-type
branching process, an extension of the model described in Section
16.4. The connection between matrix population models and multi-
type branching processes was first studied by Pollard (1966, 1973) for
age-classified models, and was generalized to stage-classified models
in Chapter 15 of MPM.

2. The constants in the models are not known exactly. The projection
may suppose the age-specific rates of birth and death, first differences
of these rates over time, ultimate family size, or something else to be
fixed into the future. If whatever is taken as constant really is constant
but is improperly measured or assessed, the future will to that extent
be incorrectly estimated.
The extent of this uncertainty can be evaluated by associating confi-
dence intervals with projections, based on the sampling distributions
of the parameters on which they are based. This was once difficult
or impossible, but the development of bootstrap resampling methods
(Efron and Tibshirani 1993) now make it a fairly straightforward task
in even complicated matrix population models (MPM Chapter 12).
Estimation errors may be amplified in a forecast, but they still add
little to the other, deeper errors inherent in forecasting and considered
below.

3. The quantities supposed constant, which constitute the parameters
of the model, really vary in time. Only a finite past record, a short
sample of time periods, is available for estimating their paths. Of-
ten the sample of time periods is a single past year or decade. It is



294 12. Projection and Forecasting

hardly a properly drawn sample, yet the forecaster has no other way
of estimating the future values of the needed parameters.

4. Probably more important than any of the foregoing, the model itself
is incorrectly specified. The main fault is not the bad estimates of
parameters, but an altogether inappropriate function supposed to
hold for all time. For example, the period age-specific rates of birth are
held constant, when what is really constant is their first differences,
or else not period rates at all but the average number of children
born to a cohort. The finite past experience that can be brought to
bear has little power to discriminate among models, as can be seen
by experimenting with the logistic and explosion models of Section
1.7. It is not easy to compel the past to inform us which of several
models that fit indifferently well will give the best forecast, yet the
futures given by these models can be very different.
Recent statistical developments, combining information theory and
maximum likelihood estimation, make it possible to objectively as-
sign weights to different competing models, and take account of the
uncertainty of model specification in projections (see Burnham and
Anderson 2002 for a particularly clear account, with many appli-
cations to population biology). This approach is rapidly becoming
standard in some branches of population ecology, and has great
potential for human demography as well.

5. Finally, even perfect use of exact facts regarding a homogeneous past
may be frustrated by the future being genuinely different. The uncer-
tainty about the future is superimposed on projections of past data
at the disposal of the demographer, and such uncertainty does not
lend itself to estimation in advance. In some countries and epochs this
fifth component of error will be small, but the twentieth century is
not such an epoch. This component is wholly distinct from sampling
error and is the characteristic special difficulty of prediction.

Of the five components of error the first four are, at least in principle,
accessible to statistical analysis, and the fifth is not accessible by any means.
A rough technique may be devised for handling the fourth component or,
more strictly, the first four combined. This provides a lower bound for the
overall error ex ante, that is to say, made at the same time as the estimate
itself. This is contrasted below with the error ex post, calculable after the
event predicted, the predictand is known, and which does include all five
sources of error.

In the course of estimating the future many separate decisions have to
be made, and none of these follows uniquely from any accepted principles.
Extrapolation of death rates can proceed from a shorter or longer expe-
rience; it can be done separately for the several age–sex groups or for all
groups together, supposing that mortality will improve according to the
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pattern of a series of model tables. If each time such a decision is made
one or more other reasonable possibilities are also followed through, a large
number of combinations of these alternatives will be available. Extrapola-
tion from short versus long experience of deaths, and from separate ages
versus all ages together following a series of model tables, and similarly for
births, alone gives 16 combinations and therefore 16 forecasts. The variation
among these provides an ex ante estimate of error.

Alternatively, if the calculation is more intuitive than these mechanical
extrapolations, and a 2 percent per year decline in fertility is proposed,
the estimator can ask himself whether 1 percent and 3 percent are also
reasonable, or whether he would bet 19 to 1 odds that the range is limited
to 1 1

2 to 2 1
2 percent. Similarly in regard to mortality and migration. The

aggregation of these sources of error provides upper and lower bounds for
the future population. The aggregation may be based on the assumption
that the several errors act independently, that is to say, their squares are
added, and at the end the square root taken, or more conservatively the
errors may themselves be added.

12.6.1 The Length of the Experience Base
Every forecast works from some period in the past. As a minimum it takes
the population of an initial year as its jumping-off point and assumes that
the age-specific rates of birth, death, and migration of the initial year re-
main constant into the future. To derive a trend in such age-specific rates
requires at least 2 past years; better estimates of trend can be obtained
from 5, 10, or more years, using least squares or other fitting. The longer
base will be of value also in providing an estimate of error of the fit. If the
past were homogeneous, we could never have too much of it, and would
incorporate the whole available statistical record in the forecast.

Since we always suspect heterogeneity in the past, under what circum-
stances is it desirable to use a long experience base and when is a short
base to be preferred (Anderson 1971)? If sudden or sharp changes occur
from time to time, or a gradual drift in relationships is taking place, the
experience base should be confined to the most recent time and be rela-
tively short, in the hope that the part of the past used is homogeneous with
the future. A prediction for the United States today would not be greatly
aided by what happened before World War I, even if we had good data for
that long past time.

The forecaster who would provide a distribution needs data even more
badly than the one content to produce a single figure. He is even more
tempted to go back in time to increase his stock, and also more concerned
about the danger that his results will be distorted by changes in the system
the further back he goes.

To ascertain what part of the past record is relevant to the future being
predicted is a subsidiary but not unimportant subject of investigation.
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12.7 Ex Post Evaluation of Point Estimates

To check on the ex ante estimate of error of a particular forecasting ap-
proach, one can apply the approach to the past, noting, say, the differences
between the population in 1970 as predicted in 1935 and the observed 1970
population now available. Experiments on the experience base should lead
to improved estimates of future population and their variance.

After all justifiable use of the past has been made, concentrated on a
point estimate for a future moment, and after the moment arrives and a
census is taken, one would think that then, at least, we would be in a
position to judge the estimate unambiguously. But further problems arise;
surprisingly, even the possession of the actual population count, with which
the forecast made earlier can be compared to provide an ex post assessment
of its accuracy, leaves some residual difficulties. Statement of the accuracy
of prediction attained is not unambiguous even after the event, at least if
we want to compare two predictions made at different times for the same
future date, and more generally to compare estimates over different time
intervals and in different countries.

For all such purposes a benchmark of some kind is needed, an extension
of the “persistence” (forecasting that tomorrow’s weather will be the same
as today’s) that meteorologists use to see how well their elaborate methods
have served, and that Mosteller et al. (1949, p. 297) have applied to election
polls. The benchmark may be a naive estimate of the kind discussed above,
a standard form of projection by age and sex with fixed rates, or some
other, as will be suggested below.

The Scripps medium projection made in 1935 for the 1970 population of
the conterminous United States was 155 million. The actuality as counted
in the 1970 census was 203 million for the same area. Was 48 million a large
error? The estimate was 76 percent of the true figure, or 24 percent short,
but was this good or bad? If one could predict the national income 35 years
in advance, within 24 percent, he would be doing well; on the other hand,
24 percent error in predicting next year’s federal tax collections would be
decidedly poor. The only way to assess the quality of a point forecast is to
compare it with some standard way of forecasting.

If the quality of a prediction has plainly to be assessed in relation to
some other prediction produced by a standard method that can be taken
as a base or benchmark, it is much less obvious how this base should be
selected. One benchmark corresponds to persistence in weather forecasting:
assume that the population will not change from the 1935 level. The 1935
level was 127 million, so the true increase over the whole period from 1935
to 1970 was the difference between this and the realization: 203− 127 = 76
million. This was the error to which the use of the 1935 figure for 1970
would have been subject.
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Somewhat more formally, the general expression for the quality of a
forecast as measured ex post is

Quality of forecast =
Forecast − Benchmark

Realization − Benchmark
. (12.7.1)

In effect, our first effort was to use a benchmark of zero, giving for 1970

Quality =
155 − 0
203 − 0

= 0.76, (12.7.2)

the complement of which, 24 percent, is one way of describing the error.
The second effort described above, is to use the 1935 observed population

of 127 million as a benchmark, and we find, again for 1970,

Quality =
155 − 127
203 − 127

=
28
76

= 0.37. (12.7.3)

The more precise benchmark provides a more rigorous evaluation, as though
we estimate not the 1970 population but the increase from 1935.

We now proceed to a yet tighter measure of quality. The forecast will
not be credited with the fraction of the increase from the jumping-off point
that it includes, but only the part of it not covered by a projection at 1935
rates of birth and death. Such a projection from 1935 gives 148 million for
1970, so we have

Quality =
Forecast − Projection at rates of 1935

Realization − Projection at rates of 1935

=
155 − 148
203 − 148

=
7
55

= 0.13. (12.7.4)

This last measure of quality in effect recognizes that whoever made the
forecasts in 1935 knew the 1935 population, birth rates, and death rates.
He could have projected with these rates, but used his knowledge and
intuition to improve on them. We will credit him with good judgment only
to the degree that he bettered that fixed-rate forecast.

The same expression (12.7.1) can be applied to assess 1950 and 1960 as
well as 1970, and Table 12.6 shows the results. Note that (12.7.2) seems
to give worse results as one proceeds in time, and so does (12.7.3). Only
(12.7.4) constitutes a measure of quality that is virtually the same for 1950,
1960, and 1970.

Population 10 to 30 years ahead is better predicted than income, demand
for housing, interest rates, unemployment, prices, technology, weather,
earthquakes, or any other common subject of forecasting. But we can-
not take much satisfaction in this superiority. Our sophisticated techniques
are effective only in the degree to which they produce better results than
naive methods. Thus one direction of evaluation of population projections
is how they compare with simple straight-line extrapolation and other naive
methods (Agnew, 1972).
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Table 12.6. Three retrospective or ex post evaluations of the 1935 Scripps Medium
Projection to 1950, 1960, and 1970

Departure from
Estimated increase fixed-rate

Forecast from 1935 as benchmark as
as percent percent of percent of

of census count census increase census departure
Year (8.7.2) (8.7.3) (8.7.4)

1950 94 61 12
1960 84 43 12
1970 76 37 13

Table 12.7. Annual rate of future increase implied by official United States
projections (percents)

Period C D E F

1972–1980 1.26 1.13 0.88 0.76
1972–1990 1.35 1.19 0.92 0.75
1972–2000 1.30 1.12 0.84 0.65

Source: Statistical Abstract of the
United States (1973, p. 6.)

The benchmark is a simple-minded, conventional, stylized standard. It
is intended to judge how good refined methods are, and to compare one
refined method with another. The refined methods can use intuitive ele-
ments that do not have to be justified; the benchmark to judge them must
be entirely objective, so that it can be constructed after the event, the
predictand, is known. If the benchmark is made too good, the forecasts be-
ing judged by it look too bad. Some correspondents have argued that the
benchmark ought to be nothing but the actual population at the jumping-
off point, but this seems to let the forecaster off too lightly, since anyone
can improve on such a benchmark. In principle the benchmark should in-
corporate the minimum knowledge that the forecaster should have taken
into account, and so it records how much more than the minimum skill he
possessed.

12.7.1 Future Percentage Increase
To regard projections in terms of the percentage increase they imply ac-
cords with the wider range of uncertainty in prospective population as we
go forward in time. Table 12.7 shows the angle of climb of the curve ex-
pressed in terms of the average percentage increase from 1972, implied by
the four official projections, C, D, E, and F , for the United States.
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The differences between 1972–80, 1972–90, and 1972–2000 are small com-
pared with the differences between projections C, D, E, and F , and one
can summarize the whole table by its bottom line, which says that the pro-
jected rate of increase is between 0.65 and 1.30 percent. For the increase of
the whole period the C estimate comes out just double the F estimate.

12.8 A Division of Labor

Who ought to estimate future population? Is it true that in a free-enterprise
society the risks of decision are taken by the entrepreneur, that these risks
include the danger of being wrong regarding the future population, and that
if we leave things alone there will be a natural selection of entrepreneurs
favoring those who have, among other talents, a superior ability to forecast
population (or who can hire better demographers)? In this scheme there is
no room for official forecasting of population.

Yet such an austere view has never been held in regard to knowledge
in general, whose officially sponsored diffusion is, rather, part of the in-
frastructure on which a free-enterprise system functions. If there is some
information regarding the future that can serve everyone and improve many
decisions, then let it be assembled, published, and paid for by the public
authorities. This is so notwithstanding the fact that mistakes are made in
forecasting the future; the test is whether forecasts add more to the quality
of decisions than is spent in making them.

Among other difficulties, all users do not want the same forecast. One
user needs a conservative estimate of the future—a figure that she is rea-
sonably sure will be exceeded. Another needs a high figure; he wants to
guard especially against any possibility that the estimate he uses will be
exceeded by the realization. How can we separate the task of forecasting
from the adaptation of the forecast to a particular use? The loss function
does this in a precise way.

12.8.1 The Loss Function Permits a Three-Way Division of
Labor

Only the user can know how much he stands to lose through a projection
being wrong in one direction or the other, or by a certain amount. His loss
function may be strongly asymmetric. Suppose that the future population
of a town is wanted for deciding the capacity of a new water reservoir.
If the reservoir turns out to be too small, another will soon have to be
built, and this will be expensive. If it turns out to be too large, it will be
underutilized, and the loss is only the marginal cost of the excess capacity,
which may be small.
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The logic for arriving at exactly the right prediction x̂ for a particular
use is based on developments in statistics going back to the 1930s, and in
its application to demography is set forth by Muhsam (1956). Suppose that
the user has studied his own application enough to be able to judge how
much loss he would suffer with a particular departure of the estimate x̂ from
the true population x (not knowable until the future date has arrived), and
suppose that he can express this in the form of a loss function L(x̂, x) or,
less generally but more simply, L(x̂ − x).

He is given the population forecast in the form of a probability distribu-
tion P (x) by the official agency mentioned above. Not being able to control
x, the user integrates it out to provide his total expected loss:

R(x̂) =
∫ +∞

−∞
L(x̂ − x)P (x) dx. (12.8.1)

It remains only to choose x̂ so as to minimize the total expected loss R(x̂);
the value of x̂ required is the solution of the equation dR(x̂)/dx̂ = 0,
provided that the functions P (x) and L(x̂ − x) are well behaved.

For a highly simplified numerical example, suppose the official estimate
to be discrete and to have the following form:

Forecast
x Probability

persons P (x)

50,000 0.25
60,000 0.50
70,000 0.25

Now suppose that the user’s loss function is as follows:

Forecast error Loss
x̂ − x L(x̂ − x)

−20,000 $2,000,000
−10,000 500,000

0 0
10,000 100,000
20,000 200,000

Thus, if he uses x̂ = 50, 000 and the performance turns out to be x =
70, 000, he loses $2,000,000, and so on.

We can make a two-way table of loss, L(x − x̂):
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x
x̂ 50,000 60,000 70,000

50,000 0 500,000 2,000,000
60,000 100,000 0 500,000
70,000 200,000 100,000 0

The table can be summarized by the sum
∑

P (x)L(x− x̂) for each possible
forecast x̂:

Forecast Expected loss
x̂

∑
P (x)L(x − x̂)

50,000 $750,000
60,000 150,000
70,000 100,000

The right forecast for the particular purpose is 70,000.

12.9 Interval Estimates as Currently Provided

Ex post we know in what fraction of cases the upper and lower projections
straddle the subsequent performance. If a collection of projections is in
any sense homogeneous, and the method currently in use is similar to the
techniques employed in the collection, the fraction of instances in which
the subsequent census was straddled constitutes a level of confidence for
the present method. A large collection of early projections is available to
be compared with subsequent actuality.

Such material may be used to test various hypotheses about the process
of projection as it has been practiced in the past. One of these is that,
after a steady movement of births and population in a consistent direction
(such as occurred from the 1870s to the 1930s), confidence increases, and
the range of admitted future possibilities narrows—the projection fan is
made smaller. When a sudden change (especially in the birth series) creates
uncertainty the fan is made very large. A second hypothesis is that series
that are abandoned may ultimately turn out unexpectedly well, perhaps
better than those that are continued. Third, the level of births anticipated
may be too sensitive to current birth rates; one could test the hypothesis
that waves in future population estimates correspond to waves in current
births.
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12.9.1 Official Agencies Have Backed into Confidence
Intervals

What has happened as a result of the insistence on neutral projections
rather than forecasts, and on making several so that the user can choose
among them, is that the agencies involved have backed into confidence
intervals. It seems unlikely that any user does what the theory of projections
says she should do—examine the assumptions of the several sets, given more
or less completely in fine print in the introduction, use personal judgment
as to which is right, and only then look at the corresponding projection and
adopt it for use. A user frequently picks the series that seems to give the
right answer, and pays only secondary attention to the fine print describing
the assumptions. Insofar as she does this, the whole theory of projections is
subverted, for she could just as well choose among a set of random numbers.

But users do want the government estimates; they may pick a middle fig-
ure from the assortment presented, or a high or low figure according to their
need, and suppose that the assumptions made by the official demographers
represent the range of reasonable possibilities. This is to say that they are
using the published high and low series as defining a confidence interval.
Like the producer of the series, they do not formally attach a probability
to the range, but even brief experience shows them that there is a finite
chance that the performance can fall outside the range given.

In the 1970s, an informal estimate based on 30 cases suggested that the
confidence attachable to responsible official estimates was about two-thirds.
It seems likely that some such number has implicitly been playing the role
in projection that 0.95 plays in tests of statistical significance. Because the
instruments are much cruder, no one is interested in 95 percent limits for
forecasts; they are apparently too wide for planning purposes. But much
more research is needed, especially ex post studies that look back on earlier
projections and note what fraction turns out to straddle the population
performance.

The need for projections steadily increases, and the demand bears no
relation to accuracy or inaccuracy as demonstrated ex post. The Bureau of
the Census will always be required to make projections, independently of
how good these projections are in an absolute sense: the least bad forecasts
available are what people seek. It can be criticized, not for failing to predict
what subsequently occurs, but only for failure to use sound methods and to
take account of all relevant data (cf. Lee and Tuljapurkar 1994, Bongaarts
and Bulatao 2000).



13
Perturbation Analysis of Matrix
Models

The results of a demographic analysis are functions of the vital rates, and
through them of biological and environmental variables. For many reasons,
the vital rates might have been otherwise, or might be otherwise in the
future, and the results of the analysis would be different. This chapter
introduces methods for perturbation analysis—asking what would happen
to some dependent variable if one or more independent variables were to
change. Perturbation analysis is used in several contexts.

• Predicting the results of future changes in the vital rates. These could
result from natural changes in the environment, be imposed as a
management plan to protect an endangered species or control a pest,
or result from family planning or changes in healthcare.

• Accounting for past changes. Given data from several populations
that differ because of their environments, one may want to know how
much of the resulting change in, say, λ can be attributed to changes
in survival, how much to changes in reproduction, and so forth.

• Predicting the action of natural selection. Selection deals with per-
turbations; it favors changes in the phenotype that increase fitness.
Fitness is a demographic concept (the rate at which a genotype prop-
agates itself), so an essential part of the theory of natural selection
is understanding how changes in the phenotype affect λ.

• Designing sampling schemes. Errors in estimates of the vital rates
produce errors in the estimate of anything calculated from those rates,
for example, λ. The most important errors will be those in the rates
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to which λ is most sensitive; this information can be used to design
sampling procedures that focus on estimating the vital rates where
accuracy matters most.

A Note on Examples.

In this chapter we will use examples to show how calculations work and to
explore patterns that arise from different kinds of life cycles. Most of the
examples are based on the following matrices, which include age-classified,
stage-classified, and size-classified life cycles.

• The age-classified matrix for the human population of the United
States in 1965, given in Example 7.2.

• The stage-classified model for teasel (Dipsacus sylvestris). The life
cycle is shown in Figure 11.2 and the matrix is given in Example 11.3.
This is an example of a model in which, potentially, transitions are
possible between any two stages.

• A size-classified matrix for the desert tortoise (Gopherus agassizii), a
threatened species living in the southwestern U.S. (Doak et al. 1994).
The matrix follows the standard size-classified model (3.8.2), with
seven size classes:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1.30 1.98 2.57
0.716 0.567 0 0 0 0 0 0

0 0.149 0.567 0 0 0 0 0
0 0 0.149 0.604 0 0 0 0
0 0 0 0.235 0.560 0 0 0
0 0 0 0 0.225 0.678 0 0
0 0 0 0 0 0.249 0.851 0
0 0 0 0 0 0 0.016 0.860

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(13.0.1)
This is an example of a model in which the stages have a natural

ordering and individuals may stay in their stage or move to the next
stage; no other transitions are allowed.
The entries in this matrix are expressed in terms of lower-level vital
rates. Let Pi = aii be the probability of surviving and staying in
the same size class (stasis), and Gi = ai+1,i be the probability of
surviving and growing to the next size class (growth). Then

Pi = σi (1 − γi) (13.0.2)
Gi = σiγi, (13.0.3)

where σi is the survival probability and γi the growth probability of
size class i (Caswell 1985).
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13.1 Eigenvalue Sensitivity

13.1.1 Perturbations of Matrix Elements
We begin with the sensitivity of an eigenvalue λ to changes in the ma-
trix elements aij . The functional dependence of λ on the aij is expressed
implicitly in the characteristic equation

det(A − λI) = 0.

When the form of the characteristic equation is known, implicit differenti-
ation can be used to find ∂λ/∂aij (Hamilton 1966, Demetrius 1969, Emlen
1970, Goodman 1971, Keyfitz 1971a, Mertz 1971a). We will use this ap-
proach in Section 13.1.6, but it is limited to cases in which the characteristic
equation is sufficiently simple that implicit differentiation yields a simple
solution.

A general approach, applicable to matrices of any structure, was intro-
duced by Caswell (1978). The formula dates back at least to Jacobi (1846),
and has been rediscovered many times (e.g., Faddeev 1959, Faddeev and
Faddeeva 1963, Desoer 1967). For a complete and rigorous discussion, see
Kato (1982). Cohen (1978, p. 186) presents an alternative approach to
eigenvalue sensitivity.

We begin with the equations defining the eigenvalues and the right and
left eigenvectors:

Awi = λiwi (13.1.1)
v∗

i A = λiv∗
i , (13.1.2)

where v∗
i is the complex conjugate transpose of vi. For the moment, let

us suppress the subscript i; the following formulae apply to any of the
eigenvalues and their corresponding right and left eigenvectors. Taking the
differential of both sides of (13.1.1) yields

A(dw) + (dA)w = λ(dw) + (dλ)w, (13.1.3)

where dA = (daij) is a matrix whose elements are the differentials daij .
Form the scalar product∗ of both sides with the left eigenvector v,

〈A(dw),v〉 + 〈(dA)w,v〉 = λ〈(dw),v〉 + 〈(dλ)w,v〉. (13.1.4)

Expanding the scalar products and cancelling terms leaves

dλ =
〈(dA)w,v〉

〈w,v〉 (13.1.5)

=
v∗dAw
v∗w

. (13.1.6)

∗The scalar product of the vectors x and y is 〈x, y〉 = y∗x.
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Suppose that only one element, aij , is changed, while all the others are
held constant. Then dA contains only one nonzero entry, daij , in row i and
column j, and (13.1.6) reduces to

dλ =
v̄iwj daij

〈w,v〉 , (13.1.7)

where v̄i is the complex conjugate of vi. Dividing both sides by daij and
rewriting the differentials as partial derivatives (since all but one of the
variables of which λ is a function are being held constant), we get the
formula†

∂λ

∂aij
=

v̄iwj

〈w,v〉 . (13.1.8)

That is, the sensitivity of λ to changes in aij is proportional to the
product of the ith element of the reproductive value vector and the jth
element of the stable stage distribution. The scalar product term in the
denominator is independent of i and j, and can be ignored when considering
the relative sensitivities of λ to different elements in the same matrix. Or,
the eigenvectors may be scaled so that 〈w,v〉 = 1, so that the term can be
ignored.

It is easy to calculate a sensitivity matrix S whose entries give the
sensitivities of λ to the corresponding entries of A:

S =
(

∂λ

∂aij

)
(13.1.9)

=
v̄wT

〈w,v〉 . (13.1.10)

The sensitivity is the local slope of λ, considered as a function of aij .

13.1.2 Sensitivity and Age
The sensitivity of λ to changes in age-specific survival and fertility plays
an important role in the theory of senescence (Medawar 1952, Williams
1957, Hamilton 1966, Rose 1984, Wachter and Finch 1997, Carey 2003).
Figure 13.1 shows these sensitivities for four populations (a flour beetle,
a vole, a whale, and humans). Sensitivities of λ to fertility decline nearly
exponentially with age. At early ages, λ is more sensitive to changes in
survival than to changes in fertility. At older ages, the pattern is reversed.
The sensitivities vary by as much as eight orders of magnitude.

†This formula is often written with vi in place of v̄i. This makes no difference in the
analysis of λ1, since v1 is real, but could cause errors in computing sensitivities of other
eigenvalues, and of eigenvectors.
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Figure 13.1. The sensitivity of λ to changes in age-specific fertility Fi and survival
probability Pi for (from left to right) a laboratory population of the flour beetle
Calandra oryzae (Birch 1948), a laboratory population of the vole Microtus orca-
densis (Leslie et al. 1955), the killer whale Orcinus orca (Olesiuk et al. 1990), and
the human population of the United States in 1965 (Keyfitz and Flieger 1968).

Some of these properties can be derived directly from the sensitivity
formula. The eigenvectors w and v for age-classified populations are

w1 = 1 (13.1.11)
wi = P1P2 · · ·Pi−1λ

−i+1 for i > 1, (13.1.12)

and

v1 = 1 (13.1.13)
vi = Fiλ

−1 + Piλ
−1vi+1 for i > 1. (13.1.14)

We can use w and v to show how the sensitivities change with age
(Demetrius 1969, Caswell 1978, 1982c). From (13.1.8) and (13.1.12) it
follows that

∂λ/∂Fj

∂λ/∂Fj+1
=

wj

wj+1
(13.1.15)

=
λ

Pj
. (13.1.16)

Thus the sensitivity of λ to fertility is a strictly decreasing function of
age as long as λ > 1. If the Pj are constant, then the decrease will be
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exponential, as is approximately true in Figure 13.1. Other things being
equal, the sensitivity of λ to changes in fertility falls off with age more
rapidly the greater the value of λ. In a decreasing population, however, the
sensitivity will actually increase from age j to j + 1 if λ < Pj .

The sensitivities of λ to changes in survival at successive ages satisfy

∂λ/∂Pj

∂λ/∂Pj+1
=

wjvj+1

wj+1vj+2
(13.1.17)

=
λ

Pj

(
Fj+1λ

−1 + Pj+1vj+2

vj+2

)
(13.1.18)

= λ
Pj+1

Pj
+

Fj+1

Pjvj+2
(13.1.19)

≥ Pj+1

Pj
if λ ≥ 1. (13.1.20)

Thus the sensitivity of λ to survival decreases monotonically with age pro-
vided λ ≥ 1 and Pj+1 ≥ Pj . If survival were age-independent, then the
sensitivity of λ to changes in survival would decrease monotonically with
age provided λ > 1.

The relative sensitivities of λ to fertility and survival satisfy

∂λ/∂Pj

∂λ/∂Fj
=

vj+1wj

v1wj
(13.1.21)

=
vj+1

v1
. (13.1.22)

Thus λ is more sensitive to survival than to fertility if vj+1 > v1, which is
true at least up to the age of first reproduction. In Figure 13.1, ∂λ/∂Pj >
∂λ/∂Fj for young ages; the inequality is reversed at older ages.

13.1.3 Sensitivities in Stage- and Size-Classified Models
The patterns of sensitivity in size- or stage-classified models can be quite
different from those in age-classified models. Because the stable size distri-
bution may exhibit peaks (as is commonly observed in fish and tree size
distributions), sensitivities need not be monotonic functions of size or stage.

Example 13.1 Size-specific sensitivity in the desert tortoise

Figure 13.2 shows the sensitivity of λ to changes in the Fi, Pi, and
Gi. None of the sensitivities shows a monotonic trend with size. Pop-
ulation growth rate is very sensitive to changes in the vital rates of
size classes 2 and 3, and also size class 7.

Example 13.2 Sensitivity analysis of teasel

In stage-classified models, there may be no variable, like size, against
which sensitivities can be plotted. In this case, it is useful to display
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Figure 13.2. Perturbation analysis of population growth rate for the desert tor-
toise. Left column shows sensitivities, right column elasticities, of λ to Fi, Pi, Gi,
σi, and γi. Calculated from data of Doak et al. (1994), medium-high fertility.

the entire sensitivity matrix S calculated from (13.1.10):

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.067 0.028 0.001 0.007 0.001 0.001
0.002 0.001 0.000 0.000 0.000 0.000
0.421 0.174 0.008 0.046 0.008 0.003
2.442 1.011 0.046 0.265 0.047 0.018

16.432 6.801 0.313 1.786 0.315 0.119
47.475 19.650 0.905 5.160 0.911 0.344

⎞
⎟⎟⎟⎟⎟⎟⎠ . (13.1.23)
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The matrix can be displayed graphically as a surface plot or an image
plot, or by plotting the entries of vecS (Figure 13.3).‡ These plots
all show that λ is most sensitive to changes in entries in the lower-
left corner of the matrix. These entries correspond to growth directly
from seeds to large rosettes and flowering plants. Such growth doesn’t
happen in this species (i.e., these entries of A are all zero), but that
does not change the fact that if those probabilities were changed, the
impact on λ would be considerable.

13.1.4 What About Those Zeros?
The sensitivity (13.1.7) gives the effect on λ of changes in any entry of A,
including those that may, in a given context, be regarded as fixed at zero or
some other value. This is exactly as it should be. The derivative tells what
would happen to λ if aij were to change, not whether, or in what direction,
or how much, aij actually changes (Caswell et al. 2000). The results of
such impossible perturbations may or may not be of interest, but they are
not zero. It is up to you to decide whether they are useful and whether to
display them.

For example, in the projection matrix for teasel, a66 = 0 because flow-
ering plants neither survive nor produce new flowering plants in one year.
But from the sensitivity matrix (13.1.23) we see that

∂λ

∂a66
= 0.344.

If a66 were changed by a small amount ∆a66, the resulting change in λ
would be approximately 0.344∆a66. This bit of information would be of
no interest to someone concerned with environmental perturbations, but
very interesting indeed to someone studying the evolution of annual and
biennial life histories.

13.1.5 Total Derivatives and Multiple Perturbations
The sensitivity (13.1.8) is written as the partial derivative of λ with respect
to aij , holding all other parameters constant. If more than one parameter
is perturbed simultaneously, the net effect on λ is given by the differential

dλ =
∑
k,l

∂λ

∂akl
dakl. (13.1.24)

This result can be used in several ways.

‡The vec operator produces a vector from a matrix by stacking the columns one
above the other.
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Figure 13.3. Three ways of displaying the sensitivity matrix S for teasel (Field
A). The upper graph plots sensitivities as a surface, the middle graph as an
image, and the lower graph as a plot of vecS. In the lower graph, the numbers
are coordinates (i, j) of the entry of S.
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1. Lower-level parameters. Suppose that one or more of the matrix
entries are functions aij(x) of some “lower-level” variable x (e.g.,
allocation of energy to reproduction, which affects both survival and
fertility). Then

dakl =
∂akl

∂x
dx. (13.1.25)

Substituting this expression into (13.1.24) yields the chain rule

d λ

d x
=
∑
k,l

∂λ

∂akl
.
∂akl

∂x
(13.1.26)

2. Physiological or genetic constraints. One vital rate may be function-
ally related to another, for many reasons. Increased fertility may
result in decreased somatic growth, because of allocation of resources.
Increased survival early in life may result in decreased survival later
in life due to pleiotropic effects. We suppose that perturbing one vital
rate aij will affect some or all of the other matrix entries, so that

dakl =
∂akl

∂aij
daij . (13.1.27)

Substituting into (13.1.24), we obtain

d λ

d aij
=

∂λ

∂aij
+
∑

kl �=ij

∂λ

∂akl

∂akl

∂aij
. (13.1.28)

3. A special case of constraints arises when individuals face mutually
exclusive options. Consider seeds that may either germinate or remain
dormant. Clearly, P [germination] = 1 − P [dormancy], and a change
in one must produce a compensatory change in the other.

Example 13.3 Sensitivity to survival and growth in size-classified
models

The parameters Gi and Pi in the standard size-classified model for
the desert tortoise are functions of the survival probability (σi) and
the growth probability (γi) of size class i. From (13.1.26) we have

∂λ

∂σi
=

∂λ

∂Gi

∂Gi

∂σi
+

∂λ

∂Pi

∂Pi

∂σi
(13.1.29)

=
∂λ

∂Gi
γi +

∂λ

∂Pi
(1 − γi) (13.1.30)

=
wi(vi + γi∆vi)

〈w,v〉 , (13.1.31)
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where ∆vi = vi+1 − vi is the change in reproductive value from size
class i to i + 1. Similarly,

∂λ

∂γi
=

∂λ

∂Gi

∂Gi

∂γi
+

∂λ

∂Pi

∂Pi

∂γi
(13.1.32)

= σi

(
∂λ

∂Gi
− ∂λ

∂Pi

)
(13.1.33)

=
σiwi∆vi

〈w,v〉 . (13.1.34)

The sensitivity of λ to growth rate (13.1.34) is negative if vi+1 < vi.
That is, λ is reduced by increasing the growth rate from Ni to Ni+1
if stage i + 1 has a lower reproductive value than stage i.
Applying (13.1.31) and (13.1.34) to the size-classified model for the
desert tortoise yields the results shown in Figure 13.2. This untangles
the survival and growth components of the sensitivities to Pi and Gi.
Changes in the survival of stage 7 would have a major impact on
λ. The sensitivity of λ to γ6 is slightly negative because of a slight
decline in reproductive value from stage 6 to stage 7.

In the desert tortoise, the fertilities Fi were considered independent of
survival and growth. More detailed descriptions of the Fi, however, usually
involve both the σi and γi. In such cases, the sensitivity of λ to the lower-
level parameters must also include their effects on fertility.

13.1.6 Sensitivity to Changes in Development Rate
Population growth rate is sensitive to changes in the timing of events in
the life cycle (e.g., Lewontin 1965, Mertz 1971, Caswell and Hastings 1980,
Caswell 1982c, Hoogendyk and Estabrook 1984, Ebert 1985). In Section
6.3 we saw the effect on the intrinsic rate of increase r = log λ of changes
in the mean µ and variance σ2 of the net maternity function. Increasing µ
corresponds to a delay in development, and an analysis using age-classified
matrices yields the same conclusion as (6.3.5); i.e., that in an increasing
population, delayed reproduction reduces population growth rate.

However, this analysis is based on the transformation of the charac-
teristic equation into a cumulant generating function, and holds only for
age-classified models. What can we say about slowing the rate of transition
in a general stage-classified model?

To answer this question, we start with a transformation of a life cycle
graph (Section 9.1.3). The coefficient on each arrow is multiplied by λ−α,
where α is the number of projection intervals required for the transition.
Once transformed, the graph can be simplified by multiplying the coeffi-
cients on pathways between any two stages (see MPM Chapter 7). Figure
13.4 shows such a graph, focusing on the transition from stage j to stage
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a(λ)

P λ−α

Figure 13.4. A life cycle graph for evaluating the sensitivity of λ to changes in α,
the time required for the transition from stage j to stage i.

i, which requires α projection intervals to complete, with a probability P
of surviving. The other arcs in this graph represent

• a(λ) for all paths between N1 and Nj that do not pass through Ni.

• b(λ) for all paths between Nj and N1 that do not pass through Ni.

• c(λ) for all paths between Ni and N1

• d(λ) for all paths from N1 to Ni which do not pass through Nj

• e(λ) all loops involving neither Ni nor Nj .

We assume that there are no disjoint loops in the graph. The following
method can be extended to life cycles containing such loops, but the results
are more complicated. Since the time (α) required for transition from Nj

to Ni appears explicitly in the transformed life cycle graph, it is possible to
evaluate the sensitivity of λ to changes in development rate between these
two stages.

The characteristic equation can be written down from the graph§ as

1 = a(λ)c(λ)Pλ−α + Φ(λ) (13.1.35)
= F(λ), (13.1.36)

where Φ(λ) = a(λ)b(λ) + c(λ)d(λ) + e(λ). Implicit differentiation of λ with
respect to α gives

∂λ

∂α
=

−∂F/∂α

∂F/∂λ
. (13.1.37)

§By setting equal to 1 the product of the transmissions around all loops in the graph;
see MPM Chapter 7.
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The numerator of (13.1.37) depends on whether P is constant or depends
on α. We consider these two cases separately.

Case 1: Constant P

In this case,

∂F
∂α

= −a(λ)c(λ)Pλ−α log(λ)

= − log λ
(
1 − Φ(λ)

)
. (13.1.38)

We calculate ∂F/∂λ by rewriting the characteristic equation as

1 = F(λ) =
∞∑

i=1

kiλ
−i (13.1.39)

from which

∂F
∂λ

= −λ−1
∞∑

i=1

ikiλ
−i

= −λ−1Ā, (13.1.40)

where Ā is the mean age of the parents in the stable population (see Section
11.3.5). Thus, from (13.1.37)

∂λ

∂α
=

−λ log(λ)
(
1 − Φ(λ)

)
Ā

. (13.1.41)

From this, it follows immediately that ∂λ/∂α < 0 whenever λ > 1; slow-
ing development anywhere in the life cycle of an increasing population
reduces λ. The sensitivity of λ to changes in development rate is inversely
proportional to generation time.

Case 2: P = e−µα

The probability of surviving from one stage to another is unlikely to be
independent of the time required for the transition. If the survival proba-
bility P represents the results of exposure for α time units to a mortality
rate µ, then P = exp(−µα), and the numerator of (13.1.37) becomes

−∂F
∂α

= (log λ + µ)
(
1 − Φ(λ)

)
. (13.1.42)

The denominator, ∂f/∂λ is still given by (13.1.40). Thus

∂λ

∂α
=

−λ(log λ + µ)
(
1 − Φ(λ)

)
Ā

. (13.1.43)

Comparing this with (13.1.41), it is apparent that making survival prob-
ability dependent on development rate makes it even more difficult for an
increase in α to increase λ.
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13.1.7 Predictions from Sensitivities
The sensitivities can be used to predict the response of λ to changes, of
any size, in any or all of the parameters. Let ∆aij be the perturbation (not
necessarily small) of aij and ∆λ the resulting change in λ. From (13.1.24)
we know that the total differential of λ is

dλ =
∑
i,j

∂λ

∂aij
∆aij (13.1.44)

and

∆λ ≈ dλ (13.1.45)

with an error that goes to zero faster than ∆aij . Hence the growth rate
after the perturbation, λ′ = λ + ∆λ is

λ′ ≈ λ +
∑
i,j

∂λ

∂aij
∆aij . (13.1.46)

The approximation (13.1.46) can be made as accurate as desired by making
the ∆aij small enough. It would be exact, regardless of the size of ∆aij ,
if λ were a linear function of the aij . It is not, but experience suggests
that the nonlinearity in λ is not usually severe (e.g., Caswell 2000a, de
Kroon et al. 2000, Levin et al. 1996). So the sensitivities can be used to
explore scenarios involving even relatively large changes in the vital rates.
Of course, if the perturbations are too large, or you need extreme accuracy,
any perturbation scenario can always be simulated.

13.1.8 Another Interpretation of Reproductive Value
Our first interpretation of the left eigenvector v as a measure of repro-
ductive value was in terms of the effects of initial population structure on
asymptotic population size (Chapter 9). The sensitivity formula (13.1.8)
provides another justification for equating reproductive value with v. Con-
sider a stage j that can contribute individuals to two other stages, 1 and
2. Increases in either a1jor a2j will increase λ, and a reasonable measure
of the “value” of stages 1 and 2 is the relative sensitivity of λ to changes
in a1j and a2j :

∂λ/∂a1j

∂λ/∂a2j
=

v1wj

v2wj

=
v1

v2
. (13.1.47)

That is, the relative sensitivity of λ to changes in a1j and a2j is given by
the relative magnitudes of v1 and v2. An individual in stage j, confronted
with the choice of contributing to stage 1 or stage 2 and desiring to increase
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λ, should contribute to the stage with the higher value of vi—that is, to
the more valuable stage.

13.2 Elasticity Analysis

It is often useful to compare perturbations on a proportional scale (what
is the effect of a 10 percent decrease in fertility compared to a 10 percent
decrease in survival?).¶ The proportional response to a proportional per-
turbation is known as elasticity in economics (e.g., Hicks 1939, p. 205).
Caswell et al. (1984) and de Kroon et al. (1986) introduced the calculation
of the elasticity of the eigenvalues to changes in the vital rates.

The elasticity of λ with respect to aij is defined as

eij =
aij

λ

∂λ

∂aij
(13.2.1)

=
∂ log λ

∂ log aij
. (13.2.2)

That is, the elasticity eij is just the slope of log λ plotted against log aij .
Since equal increments on a log scale correspond to equal proportions on
an arithmetic scale, the elasticity measures proportional sensitivity. Elas-
ticities can be calculated only for inherently nonnegative quantities like
λ.
The elasticities can be conveniently calculated and displayed as an elasticity
matrix

E =
(

aij

λ

∂λ

∂aij

)
(13.2.3)

=
1
λ
S ◦ A, (13.2.4)

where S is the sensitivity matrix (13.1.10) and ◦ denotes the Hadamard
(element-by-element) product.

13.2.1 Elasticity and Age
Figure 13.5 shows the elasticity of λ to survival and fertility for four age-
classified populations. They are quite different from the sensitivity patterns
(cf. Figure 13.1). The elasticity of λ to survival probability consistently
declines with age, but the elasticity of λ to fertility first increases and then

¶This is of particular concern to biologists who work with organisms in which transi-
tion probabilities (which may not exceed 1) and fertilities (which may be much greater
than 1) are measured on different scales.
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Figure 13.5. Elasticities of λ to changes in age-specific survival (Pi) and fertility
(Fi) for the four populations whose sensitivities are shown in Figure 13.1.

declines. These are general properties of age-classified models (cf. Section
13.1.2). The elasticity to fertility at successive ages satisfies

e1j

e1,j+1
=
(

Fj

Fj+1

)(
λ

Pj

)
, (13.2.5)

which need not be greater than 1. The elasticity to survival at successive
ages satisfies

ej+1,j

ej+2,j+1
=

Pj

Pj+1

∂λ/∂Pj

∂λ/∂Pj+1
(13.2.6)

= λ +
Fj+1

Pj+1vj+2
(13.2.7)

[cf. (13.1.19)]. This ratio is always greater than 1 when λ ≥ 1.
Equation (13.2.7) implies that the elasticity of λ to survival is the same

for all pre-reproductive age classes.

ej+1,j

ej+2,j+1
=
(

Pj

Pj+1

)
vj+1wj

vj+2wj+1
(13.2.8)

and if Fj = Fj+1 = 0, then vj+1 = Pj+1λ
−1vj+2 and this ratio is equal

to 1. See Heppell et al. (2000) for an application of this result to models
based on limited demographic data.
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Figure 13.6. The contributions to λ, expressed as percentages, of the pathways in
the teasel life cycle (Figure 11.2). Only contributions of more than 1 percent are
shown. Heavy arrows indicate those pathways contributing 5 percent or more of
λ.

13.2.2 Elasticities as Contributions to λ

The elasticities of λ with respect to the aij are often interpreted as the
“contributions” of each of the aij to λ. This interpretation relies on the
fact that the elasticities of λ with respect to the aij sum to 1 (De Kroon
et al. 1986), a result which follows from Euler’s theorem on homogeneous
functions (Mesterton-Gibbons 1993).‖

An eigenvalue is a homogeneous function of degree one of the aij , because
if Aw = λw, then cAw = cλw; i.e., multiplying all the aij by c is equivalent
to multiplying λ by c. Since λ is homogeneous of degree 1,∑

ij

eij =
∑
ij

aij

λ

∂λ

∂aij
= 1. (13.2.11)

Thus, eij can be interpreted as the proportional contribution of aij to λ.
This decomposition of λ is the only expression of the form

λ =
∑
i,j

aijbij ,

‖A function f (x1, . . . , xn) is homogeneous of degree k if, for any real constant c,

f (cx1, . . . , cxn) = ckf (x1, . . . , xn). (13.2.9)

Euler’s theorem states that if f (x1, . . . , xn) is homogeneous of degree k, then

x1
∂f

∂x1
+ · · · + xn

∂f

∂xn
= kf (x1, . . . , xn) (13.2.10)

(e.g., Gillespie 1951).
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where the contributions bij can be written as the product of one term that
is a function only of i and another that is a function only of j (Caswell
1986).

The idea of a “contribution” must be interpreted carefully, since λ is
not actually composed of independent contributions from each of the aij .
Consider the model for the human population of the United States, in which
the elasticity of λ to P2 is 0.19 (Figure 13.5). We would say that survival
of age-class 2 contributes about 20 percent of λ. But if we eliminate this
transition, by setting P2 = 0, we eliminate not 20 percent but 100 percent
of λ. When P2 = 0, no one survives to reproduce and λ = 0. Thus the
“contributions” of the other vital rates to λ depend on the value of P2, and
vice versa.

Example 13.4 Elasticity in the desert tortoise

Figure 13.2 shows the elasticities of λ to changes in Fi, Pi, and Gi

for the desert tortoise (Doak et al. 1994). The total of the fertility
elasticities is only 0.043 (i.e., 4.3 percent). The elasticities to growth
(Gi) sum to 25.8 percent and those to stasis (Pi) sum to 69.9 percent.
The largest elasticity is e77; i.e., the elasticity of λ to the probability
(P7) of surviving and staying in size class 7.

Example 13.5 Elasticity in the teasel life cycle

Figure 13.6 shows the largest elasticities in the teasel life cycle (cf.
Figure 11.2). If the elasticities are interpreted as contributions, only
five arcs, shown by heavy arrows, contribute more than 5 percent to λ.
To a good approximation (73 percent of λ), the growth rate of teasel
can be described in terms of only three transitions: [flowering plants
→ medium rosettes → large rosettes → flowering plants]. Adding the
pathway [flowering plants → dormant seeds → large rosettes] adds
an additional 13 percent of λ.

13.2.3 Elasticities of λ to Lower-Level Parameters
The elasticity of λ to a lower-level variable x is

x

λ

∂λ

∂x
=

x

λ

∑
i,j

∂λ

∂aij

∂aij

∂x
. (13.2.12)

This gives the proportional change in λ resulting from a proportional
change in x, but since there is no reason to expect that λ is a homoge-
neous function of x, the lower-level elasticities do not in general sum to 1,
nor can they be interpreted as contributions to λ.
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Example 13.6 Survival and growth in the desert tortoise

The elasticities of λ to changes in survival and growth in the desert
tortoise can be obtained directly from (13.1.31) and (13.1.34):

σi

λ

∂λ

∂σi
=

σi (1 − γi)
λ

∂λ

∂Pi
+

σiγi

λ

∂λ

∂Gi
(13.2.13)

=
Pi

λ

∂λ

∂Pi
+

Gi

λ

∂λ

∂Gi
(13.2.14)

(i.e., the elasticity of λ to σi is the sum of the elasticities to Pi and
Gi), and

γi

λ

∂λ

∂γi
=

σiγi

λ

(
∂λ

∂Gi
− ∂λ

∂Pi

)
. (13.2.15)

These results are shown in Figure 13.2.

13.3 Sensitivities of Eigenvectors

Perturbations of A change the eigenvectors as well as the eigenvalues. We
have already seen some results on the sensitivity of the stable age distri-
bution to changes in parameters (Sections 5.7 and 10.1). Here we derive
some general sensitivity results (Caswell 1980, following the approach of
Faddeev and Faddeeva 1963 and Desoer 1967).

Denote the eigenvalues, right eigenvectors, and left eigenvectors of A
by λi, wi, and vi, respectively. We assume that the eigenvalues are dis-
tinct, and that the eigenvectors have been scaled so that 〈wi,vi〉 = 1 and
〈wi,vj〉 = 0 for i �= j.

Suppose that we are interested in w1 and v1. As in the derivation of the
eigenvalue sensitivities, we begin with

Aw1 = λ1w1. (13.3.1)

Taking the differential of both sides yields

(dA)w1 + A(dw1) = (dλ1)w1 + λ1(dw1). (13.3.2)

If we consider dλ1 as known, (13.3.2) is a linear equation in the differential
dw1:

(A − λ1I)dw1 = (dλ1I − dA)w1. (13.3.3)

Since (A − λ1I) is singular, (13.3.3) cannot be solved directly for dw1.
However, we can write any solution as a linear combination of the
eigenvectors:

dw1 =
s∑

m=1

kmwm (13.3.4)
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Figure 13.7. The sensitivity of the scaled stable age distribution w to changes in
fertility (F3, F6, and F9) and survival (P3, P6, and P9) for the population of the
United States. The vector w is scaled so that

∑
i wi = 1.
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in fertility (F3, F6, and F9) and survival (P3, P6, and P9) for the population of
the United States. The vector v is scaled so that v1 = 1.
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for some as yet unknown coefficients km. The value of k1 is irrelevant, since
when (13.3.4) is substituted in (13.3.3), k1(A − λ1I)w1 = 0, regardless of
the value of k1. In what follows, we will set k1 = 0; this turns out to be the
only reasonable assumption.

Leaving this expression for dw1 aside for the moment, form the scalar
product of both sides of (13.3.2) with vj , for j �= 1:

〈(dA)w1,vj〉 + 〈Adw1,vj〉 = dλ1〈w1,vj〉 + λ1〈dw1,vj〉. (13.3.5)

The second term on the left-hand side of (13.3.5) simplifies to λj〈dw1,vj〉,
and the first term on the right-hand side is zero if j �= 1. Simplifying yields

〈dw1,vj〉 =
〈(dA)w1,vj〉

λ1 − λj
. (13.3.6)

Now, substitute (13.3.4) for dw1 into (13.3.6) to obtain∑
m�=1

km〈wm,vj〉 =
〈(dA)w1,vj〉

λ1 − λj
. (13.3.7)

Since 〈wm,vj〉 = 0 for j �= m, and equals 1 for j = m, (13.3.7) simplifies
to an expression for kj :

kj =
〈(dA)w1,vj〉

λ1 − λj
. (13.3.8)

When (13.3.8) is substituted into (13.3.4), we obtain the desired expression
for the differential of the right eigenvector w1:

dw1 =
s∑

m�=1

〈(dA)w1,vm〉
λ1 − λm

wm. (13.3.9)

The corresponding expression for the differential of the left eigenvector v1
follows from noting that the left eigenvectors of A are the right eigenvectors
of A∗, so that

dv1 =
s∑

m�=1

〈(dA∗)v1,wm〉
λ̄1 − λ̄m

vm. (13.3.10)

The partial derivatives of w1 and v1 follow from supposing that only
a single entry, say aij , is perturbed. Using superscripts to distinguish the
eigenvectors and subscripts to denote their elements (e.g., w

(m)
j is the jth

element of wm), the resulting expressions are

∂w1

∂aij
=

s∑
m�=1

w
(1)
j v̄

(m)
i

λ1 − λm
wm

= w
(1)
j

s∑
m�=1

v̄
(m)
i

λ1 − λm
wm (13.3.11)
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∂v1

∂aij
= v

(1)
i

s∑
m�=1

w̄
(m)
j

λ̄1 − λ̄m

vm. (13.3.12)

13.3.1 Sensitivities of Scaled Eigenvectors
The stable stage distribution is often scaled so that

∑
wi = 1 (to represent

proportions) or
∑

wi = 100 (to represent percentages). The reproductive
value vector is usually scaled so that v1 = 1, to measure reproductive
value relative to a newborn individual. The sensitivities of these scaled
eigenvectors can be calculated using (13.3.11) and (13.3.12).

Let ||w|| =
∑

i |wi| and suppose the scaled stable stage distribution is
given by w/||w||. Its sensitivity is then given by

∂

∂aij

w
‖w‖ =

∂w
∂aij

||w|| − w
∑
m

∂wm

∂aij

||w||2 . (13.3.13)

If the eigenvector whose sensitivity is being evaluated is already scaled so
that ||w|| = 1, this simplifies to

∂

∂aij

w
‖w‖ =

∂w
∂aij

− w
∑
m

∂wm

∂aij
, (13.3.14)

where ∂w/∂aij is given by (13.3.11).
Similarly, if the scaled reproductive value vector is defined as v/v1, and

if the vector whose sensitivity is being evaluated is already scaled so that
v1 = 1, the sensitivity of the scaled reproductive value vector is

∂

∂aij

v
v1

=
∂v
∂aij

− v
∂v1

∂aij
. (13.3.15)

Example 13.7 An age-classified population

The sensitivities of w and v for the U.S. population are shown in
Figures 13.7 and 13.8. Increasing fertility shifts the age distribution
to younger ages, because it increases λ (fertilities affect the stable age
distribution only through λ). Changes in fertility at young ages have
a greater effect on λ, and hence on w, than do changes at later ages.
An increase in survival at age i increases the representation of age
class i + 1 in the stable age distribution. Since the age distribution is
constrained to sum to 1, this produces a decrease in the representation
of some other classes.
Figure 13.8 shows the sensitivity of reproductive value to changes
in fertility. Increasing Fi increases the vi at all age classes up to
and including i, and reduces vi at later ages (because the values
are all scaled relative to v1). Changes in survival probability have
qualitatively similar patterns. Thus, increasing survival probability
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Figure 13.9. The design of a LTRE. Treatments (T1–TN ) produce environmental
conditions (E1–EN ) that affect all the various vital rates. The vital rates are
collected into population projection matrices A(1)–A(N), from which a variety of
population statistics can be calculated. From Caswell (1996a).

or fertility at a given age increases relative reproductive value at
earlier ages, and decreases it at later ages.

13.4 Comparative Studies and Life Table Response
Experiments

It is often of interest to compare the demography of two or more popula-
tions. Biologists often do so by imposing experimental manipulations and
measuring the resulting vital rates. Because of this, the methods of this
chapter are called life table response experiments (LTREs), but even in bi-
ological applications the word “experiment” must be understood broadly,
including not only designed manipulative experiments but also compara-
tive observations. It is still useful to think in terms of experiments, but to
recognize that the treatments may be applied by nature rather than by the
investigator.

In a LTRE, a life table (or more generally a set of vital rates) is the
response variable in an experimental design or comparative study (Caswell
1989a, 1996a,b, 2000b). Treatments modify the environment and change the
vital rates of individuals (Figure 13.9). The effects on the vital rates are
usually diverse (affecting survival and reproduction and growth, sometimes
in different directions) and stage-specific. Demographic models synthesize
these effects into statistics that quantify the treatment effects at the popu-
lation level. Population growth rate λ is the most frequently used statistic
and the one focused on here, but others can be used.
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The first true LTRE was Birch’s (1953) study of the effects of tempera-
ture, moisture, and food on three species of flour beetles. The approach has
become widely used in studies of chronic exposure to toxic substances; see
Levin et al. (1996) for a recent example and van Straalen and Kammenga
(1998) for a review with additional references.

The relation between λ and treatment shows how the treatments affect
population growth, but it obscures the cause of those effects. Suppose that λ
has been reduced; is it because mortality was increased, or growth impaired,
or reproduction limited? Are these causes all equally responsible for the
effect on λ, or can parts of that effect be attributed to each of them?

To answer these questions requires a decomposition of the treatment
effect on λ into contributions from each stage-specific vital rate. This
decomposition pinpoints the vital rates responsible for the population
level effect of the treatment. It was introduced by Caswell (1989); several
methodological extensions have appeared since (Brault and Caswell 1993,
Caswell 1996a,b, 2000b). Applications include Levin et al. (1987, 1996),
Levin and Huggett (1990), Walls et al. (1991), Silva et al. (1991), Canales
et al. (1994), Brault and Caswell (1993), Caswell and Kaye (2001), Hansen
(1997), Horvitz et al. (1997), and Ripley (1998).

LTREs can be classified by their design, in analogy to analysis of
variance:

1. Fixed designs: the treatments imposed (by the experimenter or by
nature) are of interest in themselves. Examples might include levels
of toxicant exposure or food supply.

(a) One-way designs: comparison of two or more levels of a single
treatment factor.

(b) Factorial designs: two or more levels of each of two or more
treatment factors applied in all possible combinations.

2. Random designs: The treatments are a random sample from some
distribution of treatment levels. Examples might include quadrats
randomly distributed within a region (thereby sampling microhabi-
tat variability), or a sequence of years (randomly sampling climatic
conditions). It is often difficult to decide if a factor is fixed or random.
One way to decide is to ask if you would use the same levels if you
were to repeat the experiment. The answer is probably yes in the case
of toxicant levels in a laboratory bioassay (a fixed factor) and no in
the case of quadrats randomly located within the forest (a random
factor). Random designs come in one-way, factorial, and nested vari-
eties; some of these are only beginning to be explored (Caswell and
Dixon in prep.).

3. Regression designs: The treatments represent levels of some quantita-
tive factor (e.g., concentration of pesticide), and the goal is to explore
the functional dependence of λ on the factor.
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Notation alert. We use superscripts in parentheses to denote treat-
ments, and subscripts to denote matrix elements. Thus A(i) is the
projection matrix obtained under treatment i, λ(i) is its dominant eigen-
value, and a

(i)
kl the (k, l) entry of A(i). Means are denoted by replacing a

superscript by a dot; e.g.,

A(·) =
1
m

m∑
j

A(j), (13.4.1)

where m is the number of levels of the treatment.

13.5 Fixed Designs

The approach to a fixed design LTRE is to write a linear model for λ as
a function of the treatments, and use the sensitivities of λ to obtain the
coefficients in the linear model.

13.5.1 One-Way Designs
Consider a one-way design with treatments T1, . . . , TN producing popu-
lation growth rates λ(1), . . . , λ(N). Choose a reference matrix A(r) as a
baseline against which to measure treatment effects. A(r) might be the
mean matrix A(·) = 1

N

∑
i A

(i), or the matrix for a particular level of the
treatment, often a “control.”

Expanding λ, as a function of the aij , around A(r) gives the population
growth rate in treatment m as

λ(m) ≈ λ(r) +
∑
i,j

(
a
(m)
ij − a

(r)
ij

) ∂λ

∂aij

∣∣∣∣
A†

m = 1, . . . , N, (13.5.1)

where

A† =
(
A(m) + A(r)

)
/2. (13.5.2)

The terms in the summation in (13.5.1) are the contributions of the aij to
the effect of treatment m on population growth.

The sensitivities in (13.5.1) are evaluated at a matrix A† which is “mid-
way” between the two matrices, A(m) and A(r), being compared. This is
not absolutely essential, and other matrices, such as A(m) or A(r), could
be used instead. However, using A† includes some information on the cur-
vature of λ as a function of the aij . The mean value theorem of calculus
guarantees that, for each treatment m, there is a matrix somewhere between
A(m) and A(r) that will make the approximation (13.5.1) exact. Since it is
halfway between, A† has a good chance of being close to this matrix. Using
A† has been shown to give good results, and Logofet and Lesnaya (1997)
have shown that it provides, in a sense, the best approximation.
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Figure 13.10. Survivorship and fertility for the planktotrophic and lecithotrophic
strains of the polychaete Streblospio benedicti. From Levin et al. (1987).

These calculations can easily be implemented by defining a matrix of
differences

D(m) = A(m) − A(r) m = 1, . . . , N

and then calculating a matrix of contributions as

C(m) = D(m) ◦ SA† , (13.5.3)

where ◦ is the Hadamard (element-by-element) product.

Example 13.8 Larval development mode in Streblospio benedicti

Streblospio benedicti is a marine polycheate worm that is capable
of explosive population growth. It reproduces by a planktonic lar-
val stage. Two genetic strains exist; in one the larvae are equipped
with yolk and do not feed (lecithotrophic larvae), in the other the
larvae are not provisioned with yolk, and must feed in the plankton
(planktotrophic larvae); see Levin et al. (1987). Because they invest
so much more in each offspring, the lecithotrophic strain has lower
fertility, but the offspring have higher survival probability (Figure
13.10). We want to know how these life history differences contribute
to differences in λ.
In laboratory experiments, Levin et al. (1987) measured projection
matrices A(l) for lecithotrophs and A(p) for planktotrophs, with rates
of increase λ(l) = 1.319 and λ(p) = 1.205.
We choose the lecithotrophic matrix A(l) as the reference matrix. Fig-
ure 13.11 shows the differences in age-specific fertility Fi and survival
probability Pi; the planktonic strain has a huge fertility advantage,
especially from ages 15–25, and a survival disadvantage early in life.
However, the large fertility differences between 20 and 30 weeks of
age make almost no contribution to the difference in λ. Indeed, all
but a very small proportion of the effect on λ is contributed by fertil-
ity and survival effects occurring before 15 weeks of age. Adding the
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Figure 13.11. (Top row) The differences in age-specific fertility (Fi) and survival
(Pi) between the planktotrophic and lecithotrophic strains of Streblospio bene-
dicti. (Bottom row) The contributions of those differences to the effect of larval
development mode on λ.

fertility contributions (which total 0.1710) and the survival contribu-
tions (which total −0.3315) shows that, while the survival differences
appear less dramatic than the fertility differences, they actually
contribute more to the effect on λ. This analysis quantifies the intu-
itive notion of a “trade-off” between increased fertility and reduced
survival in comparison of larval development modes.
Even though developmental mode has large effects on the vital rates
and on λ in this experiment, the first-order approximation in (13.5.1)
is very accurate. It predicts

λ(p) = λ(l) +
∑
i,j

cij

= 1.1590,

where cij is the contribution of aij . This is within 4 percent of the
actual value of λ(p).

13.6 Random Designs and Variance Decomposition

In a random design, the results are characterized by the variance in λ, and
the goal of the analysis is to decompose this variance into contributions
from the variances in (and covariances among) the matrix entries (Brault
and Caswell 1993, Horvitz et al. 1997).
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Let V (λ) denote the variance in λ among treatments. To first order, V (λ)
can be written

V (λ) ≈
∑
ij

∑
kl

C(ij, kl)sijskl, (13.6.1)

where C(ij, kl) is the covariance of aij and akl, and the sensitivities sij

and skl are evaluated at the mean matrix. Each term in the summation is
the contribution of one vital rate covariance to V (λ). Unless there is good
reason to believe that the vital rates are independent, the covariance terms
in this calculation should not be neglected.

Suppose that there are n stages, and that the mean matrix is Ā. The
contributions can be calculated easily by defining a n2 × n2 covariance
matrix

C = E
(
vec (A)vec (A)T

)
− vec (Ā)vec (Ā)T (13.6.2)

and then computing a n2 × n2 matrix of contributions

V = C ◦
(
vec (S)vec (S)T

)
. (13.6.3)

Contributions to V (λ) can also be calculated in terms of lower-level pa-
rameters. Suppose that the aij are defined in terms of stage-specific growth
probabilities γi, survival probabilities σi, and reproductive outputs mi, for
i = 1, . . . , n. Define a parameter vector

p = (σ1, · · · , σn, γ1, · · · , γn−1, m1, · · · , mn) .

In terms of p, the variance V (λ) is

V (λ) ≈
∑
ij

Cov (pi, pj)
∂λ

∂pi

∂λ

∂pj
, (13.6.4)

where the sensitivities are evaluated by applying (13.1.26) to the matrix
calculated from the mean of the parameters.

Example 13.9 Interpod variance in λ in killer whales

Killer whales (Orcinus orca) live in stable social groups called pods.
Brault and Caswell (1993) developed stage-classified models for each
of the 18 pods of resident killer whales in the coastal waters of Wash-
ington state and British Columbia (Examples 9.1 and 11.1). The
model (Figure 3.10) included four stages: yearlings, juvenile females,
mature females, and senescent females, with a projection matrix

A =

⎛
⎜⎜⎝

0 F2 F3 0
G1 P2 0 0
0 G2 P3 0
0 0 G3 P4

⎞
⎟⎟⎠ .

Pod-specific population growth rates ranged from λ = 0.9949 to λ =
1.0498, with a variance V (λ) = 2.90 × 10−4.
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Figure 13.12. (Left) The interpod covariances of the matrix entries aij for the
killer whale. (Right) The contributions of the covariances to V (λ). The matrix
entries are listed in the order produced by vec (A). Letters identify the most
conspicuous peaks: (a) variance in G1, (b) covariance of G1 and G2, (c) variance
in P2, and (d) variance in F3. From data of Brault and Caswell (1993).
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Figure 13.13. The covariances among the lower-level parameters and their contri-
butions to V (λ) for killer whales. Parameters 1–4 are σ1–σ4, 5–6 are γ2–γ3, and
7 is m. Calculated from data of Brault and Caswell (1993).

Figure 13.12 shows the covariance matrix C and the contribution ma-
trix V for this population. The largest variance is that of G1 (yearling
survival), but this makes no detectable contribution to V (λ). The
largest contribution to V (λ) is from variance in F3 (adult fertility).
There is a large covariance between G1 and G2, but it makes almost
no contribution to V (λ).
Using the lower-level parameters

p =
(

σ1 σ2 σ3 σ4 γ2 γ3 m
)

(γ1 does not appear because it is always 1) gives a clearer picture
of the determinants of V (λ). Figure 13.13 shows the covariances
among these parameters and their contributions to V (λ). The largest
contributions come from V (m), V (σ2), and V (γ3), in that order.
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Figure 13.14. A hypothetical example showing λ as a function of concentration
(x) and the effect of x, measured as the rate of change of λ with respect to x.

13.7 Regression Designs

The goal of a regression design is to describe the response of λ to the level
of some quantitative factor x. In an ordinary linear regression analysis,
the “effect” of the independent variable x on the dependent variable y is
measured by the slope of the regression line. Accordingly, we define the
effect of x on λ as the slope ∂λ/∂x. Unless λ is a linear function of x (and
there is no reason to expect that it will be) the slope will vary with x. Figure
13.14 shows a hypothetical example, in which λ is measured as a function
of the concentration x of some substance. The substance has little effect
at low concentrations, large negative effects at intermediate concentrations
(from x = 2 to x = 4), and little or no effect at high concentrations. This
intuitive interpretation is captured by using the slope of the function as
the measure of effect.

The data for a regression LTRE consist of a set of vital rates aij(x) that
are functions of the treatment variable x. These vital rates generate a set
of matrices A(x) and population growth rates λ(x). The effect of x on λ
can be decomposed into contributions from each of the vital rates using
the chain rule

dλ

dx
=
∑
i,j

∂λ

∂aij(x)
∂aij(x)

∂x
. (13.7.1)

This expression is exact, not an approximation. The derivatives ∂λ/∂aij(x)
are calculated from the matrix A(x). The vital rate sensitivity ∂aij(x)/∂x
comes from the functional relationship between the vital rates and x. This
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relationship can be described in various ways: interpolation of observed val-
ues, fitting parametric relationships (linear or nonlinear), or nonparametric
smoothing (Caswell 1996a).

The terms in the summation in (13.7.1) are the contributions of each
of the vital rates to the treatment effect on λ at a specific value of x.
The contribution can be positive or negative, depending on the sign of
∂aij(x)/∂x. The contribution of aij(x) will be small if aij(x) is not very
sensitive to x, or if λ is not very sensitive to aij(x), or both.

These contributions can be summed in various ways, to describe the con-
tributions of different groups of vital rates. Summing over all fertilities, for
example, would give an integrated contribution of effects on reproduction:∑

j

∂λ

∂Fj(x)
∂Fj(x)

∂x
. (13.7.2)

Summing the contributions of all the aij gives an approximation to the
derivative of λ with respect to x. Integrating this derivative then gives an
estimate of λ(x) that can be compared with the observed response to see
how well the functions aij(x) capture the response of the vital rates to x.
For an example of this analysis applied to a toxicological experiment, see
Caswell (1996a).

13.8 Prospective and Retrospective Analyses

This chapter has avoided discussing the “importance” of the vital rates,
because the term admits two meanings. The aij might be considered “im-
portant” because sij or eij were large, and hence if aij were to be perturbed,
λ would change a lot. On the other hand, aij might be considered “impor-
tant” because the variability in λ is determined more by variability in aij

than by variability in any other rate.
These two definitions are not—nor should they be expected to be—

equivalent, and are distinguished as “prospective” and “retrospective”
perturbation analysis (Caswell 1997, Horvitz et al. 1997, Caswell 2000a).
Prospective analysis looks forward, and asks what will happen if aij is per-
turbed. Sensitivity and elasticity analysis provide the answer. Retrospective
analysis looks back at some observed set of matrices Ai and asks how much
the (co)variance of the aij contributed to the variance in λ. LTRE analysis,
in its various guises, is the appropriate tool.

Prospective analysis is independent of any pattern of variation; indeed, it
will happily and correctly give the results of changes in the vital rates that
are biologically impossible (“What if this annual plant became a perennial;
What if this plant without seed dormancy began to have some; What if
pigs could fly . . . ”). Retrospective analysis, in contrast, is specific to the
observed variation in the vital rates. The contribution of the variance in
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aij to V (λ) can be low either because λ is insensitive to aij or because aij

happened not to vary much in the set of observations at hand, or both.
The distinction is particularly important in conservation, where (over-

simplifying a bit) managers want to increase λ by imposing some policy,
and they want to do so efficiently and economically. All else being equal,
the best choice is a policy that targets those vital rates with highest sen-
sitivity or elasticity; the proper tool is prospective sensitivity analysis. For
a more detailed discussion, see MPM, Chapter 18.



14
Some Types of Instability

A population can be stable in only one way: by the constancy of its birth
and death rates over time, and hence the constancy of its rate of increase.
It can be unstable in infinitely many ways: by falling or rising birth rates,
by falling or rising death rates, by either birth or death rates rising at some
ages and falling at others, by the rise or fall being moderate or rapid, by
its being linear, quadratic, or of higher degree. Any and all of these and
their combinations could be given the same detailed attention as stability.
Needless to say that will not be done here, nor is it likely to be done
anywhere else.

The stable model has been studied in detail because it is more informative
than any single case of instability. The diversity of kinds of instability
distracts attention from the interest in any one kind. To keep down the
complexity in the treatment here, either fertility or mortality will be allowed
to vary, but not both, and populations will be assumed to be closed to
migration as before.

Falling death rates are conspicuous in most of the world today; our first
task is to see how their recognition alters the stable model of Chapter 5.

14.1 Absolute Change in Mortality the Same at
All Ages

Coale (1963) opened up this subject by analyzing the effects of a steady
fall in death rates; he called quasi-stable a population in which birth rates



336 14. Some Types of Instability

remain constant while death rates decline uniformly. The quantitative effect
of this on rates of increase from the stable model was calculated by Coale
and Demeny (1967). The following is an attempt to see the effect in general
terms. In the first example death rates rise or fall by the same absolute
amount at all ages. This is hardly realistic, but it will show the approach.

Suppose a rise each year at all ages equal to the constant k (which would
be negative to provide for a fall, say of magnitude 0.0001, in which case
k = −0.0001; the constant k is restricted to values that leave probability
positive and less than 1 at all ages). After n years the mortality of age
a will not be µ(a), as it was at the beginning, but µ∗(a) = µ(a) + nk.
If the initial probability of survivorship was l(x) = exp[−

∫ x

0 µ(a) da], the
survivorship r years later, subject to µ∗(a) = µ(a) + nk, will be l∗(x) =
exp{−

∫ x

0 [µ(a)+nk] da} = l(x)e−nkx. This is true whether both the initial
µ(a) and the subsequent µ(a) + nk apply to periods or to cohorts.

14.1.1 Inferring the Increase in Births
Apply the cohort case to an observed age distribution to ascertain the rate
of increase in births. If k = 0, the stable assumption for ascertaining the
rate of increase in the population from a census, derived as (5.2.4), gives

r0 =
1

y − x
log
[
B(t − x)
B(t − y)

]
=

1
y − x

log
[
cx/lx
cy/ly

]
, (14.1.1)

where the cx and cy are the fractions in finite intervals around ages x and
y (Figure 14.1) and are to be identified with observed populations. This
is modified to estimate the increase in births between y and x years ago
y > x, (once we abandon stability, we have to specify the time to which
the rate of increase refers). If death rates increase at k per year between
cohorts, and the life table for the cohort born y years ago is given by µ(a)
and that for the cohort born x years ago µ∗(a) = µ(a) + k(y − x), then
l∗x = lxe−k(y−x)x, and the estimate becomes

r1 =
1

y − x
log
(

cx/l∗x
cy/ly

)

=
1

y − x
log

(
cx/
(
lxe−k(y−x)x

)
cy/ly

)
= r0 + kx,

(14.1.2)

on simplifying and expressing the result in terms of (14.1.1).
For y > x and falling mortality (i.e., k < 0), we have r1 � r0. In words,

under a regime of falling mortality use of the customary formula (14.1.1),
which assumes a fixed life table, gives a rate of increase in the earlier
births that is too high by −kx, the fall in mortality since the younger age
group was born. The usual formula (14.1.1) gives too high an r because it
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Figure 14.1. Lexis diagram showing census date and comparison of those
enumerated at age x and y to ascertain increase between x and y years ago.

disregards the fact that the younger age with the life table l∗x originates in
fewer births than the life table lx implies.

Let us generalize this to find the average rate of increase in persons
aged z between the y cohort and the x cohort, where x < z < y. The cy

projected back to age z number cy(lz/ly), and the cx projected forward
to age z number cxe−k(y−x)(z−x)(lz/lx). The average rate of increase rz is
found from

exp[rz(y − x)] =
cxe−k(y−x)(z−x)(lz/lx)

cy(lz/ly)

=
cx/lx
cy/ly

e−k(y−x)(z−x),

or, on solving for rz,

rz = r0 − k(z − x), (14.1.3)

which reduces to (14.1.2) for z = 0. For k negative, the increase in any age
z greater than x will be more rapid than r0, the rate inferred on the stable
model. [Show that the result applies to any z, whether or not it is between
x and y.]
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Increase in Person-Years in Cohort. To proceed from how persons aged z
were changing over some particular interval to rate of increase in popula-
tion, a first approach is to compare person-years in the two cohorts that
are x and y years of age, respectively, at time t. Person-years in a cohort
are births times expectation of life, that is to say, births times the integral
of the survivorship function. This is not the usual way to estimate pop-
ulation increase, but is worth starting with because of its mathematical
convenience. [Prove that the estimate of change is approximately

r2 ≈ r0 − k(ā − x), (14.1.4)

where ā is the mean age.]

14.2 Proportional Change in Mortality

Now instead of a fixed change k at all ages suppose a fractional change—
that mortality for a given cohort (or period) is µ(a), while n years later
it is µ∗(a) = µ(a)(1 + nk). Then that later cohort (or period) will have
survivorship l∗x = l1+nk

x . If k < 0, then l∗x > lx.

Rate of Increase of Births. From the numbers cy enumerated at time t
and age y the births B(t − y) must be B(t − y) = cy/ly, again taking as
the standard life table the cohort passing through age y at census time t.
The table for the younger cohort aged x at the census must have µ∗(a) =
µ(a)(1 + nk), so its survivorship to age x will be l∗x = l1+nk

x = l
1+(y−x)k
x .

Then the number of births B(t − x) from which the cx are the survivors is

B(t − x) =
cx

l∗x
=

cx

l
1+(y−x)k
x

. (14.2.1)

The rate of increase in births between y and x years ago is estimated as

r3 =
1

y − x
log
[
B(t − x)
B(t − y)

]

=
1

y − x
log
[
cx/l∗x
cy/ly

]

= r0 +
1

y − x
log l−(y−x)k

x

= r0 − k log lx.

(14.2.2)

We could have taken our standard µ(a) to apply to the cohort midway
between that aged x and that aged y at the time of the census and obtained
approximately the symmetrical expression

r4 ≈ r0 − k log
√

lxly. (14.2.3)



14.2. Proportional Change in Mortality 339

[Prove this.] Both (14.2.2) and (14.2.3) show that a negative k for declining
mortality, along with log lx or log

√
lxly, which are always negative, gives

a subtraction from the r calculated from (14.1.1); under the conditions of
declining mortality (14.1.1) suffers from an upward bias in estimating the
rate of increase of births.

But once again the historic rate of increase of births is not what we need
most. We want change in population, and the survivorship will more than
offset the correction in (14.2.3). First we review what we know from Section
4.3 of the effect on

o
e 0 of a proportional change in mortality.

Change of
o
e 0. The ratio of expectations of life for populations of differ-

ent periods or cohorts with l(a) changing by fixed fractions will depart
substantially from unity, but never by as much as the ratio of age-specific
mortality (Section 4.3). If one of two populations has mortality µ(a) and
the other µ∗(a) = µ(a)(1 + k), the ratio of the expectation of life of the
second to the first is

o
e ∗

0
o
e 0

=

∫ ω

0
l(a)1+k da∫ ω

0
l(a) da

,

and, on expanding around k = 0 to the first term of a Taylor series, this
becomes

o
e ∗

0
o
e 0

≈

∫ ω

0

[
l(a) + kl′(a)

]
da∫ ω

0
l(a) da

, (14.2.4)

where l′(a) is the derivative of l(a)1+k with respect to k evaluated at k = 0.
Now dl(a)1+k/dk = log l(a)l(a)1+k = l(a) log l(a) at k = 0. Then we have
to the linear approximation

o
e ∗

0
o
e 0

= 1 + k

∫ ω

0
l(a) log[l(a)] da∫ ω

0
l(a) da

= 1 − kH,

(14.2.5)

where the quantity H, defined in Section 4.3, is minus the average log l(a)
weighted by l(a). The parameter H of the life table is shown in Table 4.3 as
about 0.20 for contemporary male populations and about 0.16 for females,
these values being substantially lower than those for a generation earlier.
We will apply (14.2.5) with (y − x)k in place of k, since our assumption is
that mortality increases by k per year.

Increase in Total Cohort Population. To approach the rate of increase in
population rather than in births, we again calculate two cohorts, and com-
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pare the number of person-years lived in the cohort born at time t−y with
the number for that born at time t − x.

For the number of person-years in the cohort we multiply the births
by the expectation of life, as was done for r2 to obtain (14.1.4), and the
outcome reduces to

r5 = r0 − k log lx +
1

y − x
log

(
o
e ∗

0
o
e 0

)
, (14.2.6)

on entering the values of (14.2.2). [Prove this.] On applying (14.2.5) with
(y − x)k in place of k, we obtain

r5 = r0 − k log lx +
1

y − x
log
[
1 − (y − x)kH

]
. (14.2.7)

Approximating with log(1 − α) ≈ −α, this becomes finally

r5 = r0 − k(log lx + H). (14.2.8)

Similarly to the case in which we assumed a constant absolute change in
mortality rates, this will apply a positive correction to r0 when the death
rate is falling (k < 0), whenever x is a young age.

Increase of Persons of Arbitrary Age. For arbitrary z, whether or not x <
z < y, we can find the overall rate of increase by comparing the number of
individuals in the cohort aged y at time t with those in the cohort aged x
at time t. The ratio of the latter to the former is equated to erz(y−x), where
rz is the rate of increase sought. Thus we have the equation in rz, the rate
of increase of persons aged z,

erz(y−x) =
cx(lz/lx)1+k(y−x)

cy(lz/ly)
,

and the solution in rz is

rz = r0 + k log
(

lz
lx

)
, (14.2.9)

for the average increase during time t − y + z to t − x + z. [Use (14.2.9) to
provide an alternative derivation of (14.2.8).]

The correction to r0 is negative for z < x and positive for z > x. The
general form (14.2.9) would be a good starting point for deriving the pre-
vious expressions of this section as well as others that will occur to the
reader. For x = 0, k = −0.01, and r0 = 0.03 this gives the rate of increase
at four ages, with Mexican male mortality of 1966 as the base:

z = 0 rz = 0.0300
20 0.0314
40 0.0323
60 0.0347

The steady rise in the inferred rate of increase with age is clearly exhibited.
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Demeny (1965) comes a step closer to realism by showing the effect of a
decline of mortality (a one-year gain in

o
e 0 per calendar year) that continues

over a limited time (5 years, 10 years, . . . , 40 years). Unfortunately this
effect cannot be expressed analytically.

14.3 Changing Birth Rates

The effect of changing birth rates on the population rate of increase and
on its age distribution is easily determined to a good approximation if the
changes are the same for all maternal ages. The following is a generalization
of stable theory that permits drawing conclusions as to rates of increase
in a population, given its age distribution. In symbols, suppose that the
birth rate for women aged a at time t is m(a, t) = m(a)f(t) (Coale, 1963,
p. 8; Coale and Zelnik, 1963, p. 83). The argument that follows shows how
to infer the rates of birth and natural increase with some relaxation of the
restriction on (5.2.4), though not without specializing f(t).

The homogeneous form of the renewal equation (7.5.1) becomes

B(t) =
∫ β

α

B(t − a)l(a)m(a)f(t) da.

In the birth function B(t − a) under the integral sign, express both time
t and age a as departures from A, the mean age of childbearing, so that
B(t− a) becomes B[(t−A)− (a−A)], and then expand the birth function
as a Taylor series around t − A:

B(t) =
∫ β

α

B [(t − A) − (a − A)] l(a)m(a)f(t) da

=
∫ β

α

[
B(t − A) − (a − A)B′(t − A)

+
(a − A)2

2!
B′′(t − A) − · · ·

]
l(a)m(a)f(t) da.

Dividing by R0 =
∫ β

α
l(a)m(a) da and carrying through the integration

expresses the right-hand side in terms of moments about A, the mean age
of childbearing. The first moment is zero, and the second σ2, the variance
of ages of childbearing. Dividing by B(t − A), taking logarithms, and then
expanding the logarithm of the series of moments, gives, up to second

log B(t) − log B(t − A) = log R0 + log f(t) +
B′′(t − A)σ2

2B(t − A)
. (14.3.1)

Since the term involving the second derivative is only about 2 or 3 per-
cent of the value of the main term, it may be neglected in what follows.
This amounts to the outrageous assumption that all children are born at



342 14. Some Types of Instability

the same age of mother. No argument could show that this assumption
is reasonable, but numerical tests demonstrate that it makes little nu-
merical difference in this particular application. If the assumption seems
objectionable, however, the solution below could be regarded as a first ap-
proximation, B′′(t − A) calculated and entered in (14.3.1), and a more
exact result obtained. (Alternatively, the second derivative could be re-
placed by a second difference.) Adding both sides over every Ath value and
canceling leaves a summation of log f(t) at intervals of A, the mean age of
childbearing:

log B(t) = log B0 +
t

A
log R0 +

∑
log f(t),

and taking exponentials and writing ert for R
t/A
0 , approximately true when

the unit of time is very nearly a generation, gives

B(t) = B0e
rt exp{log f(0) + log f(A) + · · ·

+ log f [(n − 1)A]}.
(14.3.2)

After the particular function f(t) = exp[k1t + k2t(t − A)] is entered, the
summation is evaluated to t = nA as

B(t) = B0 exp
[
rt + k1

t(t + A)
2A

+ k2
t(t2 − A2)

3A

]
. (14.3.3)

The intended application being to an age distribution with typical age a,
we are interested in births at time −a, and these are obtained by putting
t = −a, in (14.3.3) and then dividing by the current population N :

B(−a)
N

= b exp

[
−ra +

k1a(a − A)
2A

− k2a
(
a2 − A2

)
3A

]
, (14.3.4)

where b is the current birth rate. Once an age distribution c(a) is given for
a population that can be assumed to be closed and whose life table is l(a),
B(−a)/N can be estimated by c(a)/l(a). Taking logarithms and fitting to
at least four ages produces the four constants b, r, k1, and k2. A more
detailed derivation of (14.3.4) and the fitting to data are given in Keyfitz
et al. (1967).

If k1 = k2 = 0, (14.3.4) reduces to an equation of Bourgeois-Pichat
(1958), shown in Section 5.5. In the more general case where only k2 = 0,
we have the result due to Coale and Zelnik (1963, p. 83).

Fitting (14.3.4) to an age distribution, when we are given or may assume
a life table, estimates not only the rate of increase and the birth rate but
also the change in the latter as indicated by k1 and k2. Based on four
or more ages, the four constants b, r, k1, and k2 are obtained, and these
permit a reconstruction of the age distribution by multiplying the right-
hand side of (14.3.4) by l(a). The age distribution so obtained can be
compared with the observed age distribution. The fit may be compared with



14.4. Announced Period Birth Rate Too High 343

Table 14.1. Estimates of birth rates and other parameters from (9.3.4) for five
populations, fitted to ages 5 to 74

Country and year 1000b 1000r 1000k1 1000k2

Fiji Islands, 1964 38.7 31.9 −6.0 0
France, 1899–1903 19.3 −4.6 −23.5 −0.3
Honduras, 1965 42.9 34.4 −5.6 0
Japan, 1962 16.8 −3.5 −51.6 −0.5
Netherlands, 1901 31.8 14.7 −12.1 −0.2

that resulting when k2 is put equal to zero, and when k1 = k2 = 0. Unless it
is substantially better, one would avoid the complication of the additional
constants; but if the reconstruction of ages is markedly improved with the
nonstable method here described, so presumably also are the estimates of
b and r.

Table 14.1 gives estimates for certain countries of the four constants
contained in (14.3.4). The usefulness of these is suggested by the fact that
in all five cases the model reproduces their age distribution at ages 5 to
74 appreciably better than does the stable model with k1 = k2 = 0. In
two instances the k2 did not appreciably improve the fit; in the other three
it did, but the calculated k2 was small. Note that k1 always turned out
negative, reflecting falling birth rates.

14.4 Announced Period Birth Rate Too High

When successive cohorts bear children at younger and younger ages, each
period cross section will tend to catch more births than any cohort. The
period births are “too many” in the sense that no one cohort of women
has so high an average; the childbearing of successive cohorts overlaps in
each period. In the early 1940s there were many marriages and hence first
births, and Whelpton (1946) showed from the 1942 registrations that if the
pace continued women would average 1.084 first births each. Conversely,
when couples are having their children later and later, a given period will
catch less than its share of births, that is to say, fewer than pertain to any
cohort.

To prove this and similar propositions requires a formal means of trans-
lating cohort moments into period moments and vice versa. The problem
in its general form has been solved by Ryder (1964). What follows is a
self-contained adaptation of his solution.

If the same life table applies at all times, and the probability at time t of
a woman of age x to x+dx having a child is m(x, t) dx, the net reproduction
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rate R0 is

R0 =
∫ β

α

l(x)m(x, t) dx,

where α and β are the youngest and oldest ages, respectively, of childbear-
ing, and l(x) is the chance that a child just born will live at least to age x.
The R0 is a function of time; the fact that fertility varies with time as well
as with age is what gives rise to our problem.

The nth period moment at time zero about age A chosen arbitrarily is
defined as

Rn(A)
R0

=

∫ β

α

(x − A)nl(x)m(x, 0) dx∫ β

α

l(x)m(x, 0) dx

,

where the R0 does not depend on A. The nth cohort moment is similarly

R∗
n(A)

R∗
0(A)

=

∫ β

α

(x − A)nl(x)m(x, x − A) dx∫ β

α

l(x)m(x, x − A) dx

,

in which R∗
0(A) does depend on A. The cohort moment contains a time

argument x−A, contrived so that m(x, x−A) follows the group of women
born A years before time t down their life lines. It selects out of the period
births as officially published for successive years those appropriate to the
particular cohort (Figure 14.2).

The cohort R∗
n(A) is expressible in terms of Rn(A), Rn+1(A), . . . , by

means of a Taylor expansion of m(x, x − A) about time t = 0. For this
expansion m(x, x − A) is treated for any fixed age x as a simple function
of time, so that for each x,

m(x, x−A) = m(x, 0)+ (x−A)ṁ(x, 0)+
(x − A)2

2!
m̈(x, 0)+ · · · , (14.4.1)

the dots representing differential with respect to time. The accuracy of
approximation by a given number of terms will depend on the smoothness
of whatever changes are taking place in the birth function.

Entering the Taylor expansion (14.4.1) in the expression for R∗
n(A) gives

R∗
n(A)

∫ β

α

(x − A)nl(x)[m(x, 0) + (x − A)ṁ(x, 0) + · · ·] dx. (14.4.2)

To put this into convenient form we have to convince ourselves that the
integral

∫ β

α
(x − A)n+1l(x)ṁ(x, 0) dx is the derivative with respect to time

of the period moment, that is, equals Ṙn+1(A), and similarly for later
terms. The proof consists in representing ṁ(x, 0) as a difference between
two values, m(x,∆) and m(x, 0), divided by ∆. Before letting ∆ tend to
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t Time

0

–A

A
a Age

(A, 0)

Strip for cohort born
at time –A.
Fertility is m(a, a – A)

Density
m(a, t)dadt

Figure 14.2. Cohort and period fertility.

zero, note that the integral
∫ β

α
(x − A)n+1l(x)m(x,∆) dx is Rn+1(A) at

time ∆, say Rn+1(A, ∆), and similarly when ∆ is replaced by zero. The
difference of the two integrals divided by ∆ is

Rn+1(A, ∆) − Rn+1(A, 0)
∆

,

and this becomes Ṙn+1(A, 0) = Ṙn+1(A) as ∆ tends to zero. A similar
proof would show that later terms of (14.4.2) become R̈n+2(A)/2, and so
on. Expressed more briefly, the fact we are using is that the integral of a
derivative equals the derivative of an integral under conditions far more
general than are required for the demographic application.

On incorporating this fact, expansion 14.4.2 leads to the fundamental
result

R∗
n(A) = Rn(A) + Ṙn+1(A) +

R̈n+2(A)
2!

+ · · · , (14.4.3)

which estimates the nth cohort moment in terms of the nth and higher
period moments (Ryder, 1964). The most interesting application of (14.4.3)
will be for n = 0, and, truncating the series at the second term on the right,
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we obtain

R∗
0(A) ≈ R0 + Ṙ1(A)

≈ R0

[
1 +

Ṙ1(A)
R0

]
,

(14.4.4)

the zeroth period moment not depending on the arbitrary A. In words, we
can say that the cohort net reproduction rate is equal to the period net
reproduction rate plus the change over unit time in R1(A).

The theoretical result 14.4.4 can be illustrated arithmetically. To do so,
the net maternity function for United States females in 1967 was graduated
by a Hadwiger function (Keyfitz, 1968, p. 149); then, leaving R0 and the
variance σ2 the same in all periods as in 1967, the mean µ was shifted
upward by 0.1 year per 5-year period. This produces the results shown in
Table 14.2 for 1972 to 2012. It is seen that the period net reproduction
rate remains always at 1.205. A change in the mean of 0.1 year per 5 years
is a change at the rate of 0.02 per year. The right-hand side of (14.4.4) is
therefore 1.205(1 + 0.02) = 1.229.

If we add the diagonals for the three completed cohorts in Table 14.2,
we find R∗

0 = 1.230, different from the 1.229 of (14.4.4) by rounding error
only.

A virtually identical argument expresses the period Rn(A) in terms of
the series of cohort moments R∗

n(A), R∗
n+1(A), . . . :

Rn(A) = R∗
n(A) − Ṙ∗

n+1(A) +
R̈∗

n+2(A)
2!

− · · · , (14.4.5)

the difference from (14.4.3) being that the signs on the right-hand side here
come out alternately positive and negative.

Note that (14.4.3) and (14.4.5) serve quite different purposes. The first is
useful because it can incorporate the latest period information to suggest
how current cohorts are likely to be completed, on which definitive statis-
tics await their members reaching age 50 or so if they are women, older
if they are men. Equation (14.4.5), on the other hand, shows how the co-
horts, considered as the basic units underlying the process, are translated
or distorted in the course of expressing themselves in successive periods.

Among other uses such results provide information on the relative varia-
tion through time of cohort and period fertility. If it were true historically
that when R0 rises R1(A) tends to fall, that is, Ṙ1(A) is negative, and when
R0 falls R1(A) tends to rise, then the variation of R∗

0(A) = R0 + Ṙ1(A)
would be smaller than the variation of R0 by itself. Changes in the pe-
riod net reproduction rate being in these circumstances offset by contrary
changes in the mean age of childbearing, and the cohort R∗

0 being subject
to less variation than the period R0, R∗

0 is useful in predicting future popu-
lation, since all prediction depends on finding functions that are relatively
constant. (Section 12.4)
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Table 14.2. Net maternity function for United States females, 1967, as graduated
by Hadwiger function; later periods supposing increase of 0.1 in mean age µ of
each successive period, with total R0 and variance σ2 fixed at those of 1967

Year 10–14 15–19 20–24 25–29 30–34 35–39 40–44 45–49 Total

1967 0.0095 0.1512 0.3876 0.3656 0.1926 0.0710 0.0208 0.0066 1.205

1972 0.0088 0.1462 0.3846 0.3685 0.1960 0.0727 0.0213 0.0068 1.205

1977 0.0082 0.1413 0.3814 0.3714 0.1995 0.0744 0.0219 0.0071 1.205

1982 0.0076 0.1365 0.3781 0.3742 0.2030 0.0761 0.0224 0.0073 1.205

1987 0.0070 0.1318 0.3746 0.3769 0.2065 0.0778 0.0230 0.0074 1.205

1992 0.0065 0.1271 0.3711 0.3795 0.2100 0.0796 0.0236 0.0076 1.205

1997 0.0060 0.1226 0.3674 0.3821 0.2136 0.0814 0.0242 0.0079 1.205

2002 0.0055 0.1182 0.3636 0.3845 0.2171 0.0833 0.0248 0.0080 1.205

2007 0.0051 0.1138 0.3597 0.3869 0.2207 0.0851 0.0255 0.0082 1.205

2012 0.0047 0.1095 0.3557 0.3891 0.2244 0.0871 0.0261 0.0085 1.205

Note that all totals on rows are 1.205, the period R0; totals on the three complete cohorts
shown are R∗

0 = 1.230. The purpose of this hypothetical table is to show that the cohort
NRR can be constant and different from the period NRR if the timing of fertility undergoes
a steady change.

If we knew that every cohort was aiming at exactly three children,
(14.4.3) and (14.4.5) would not be needed; we would simply deduct the
average number of children already recorded from three, and suppose the
remainder to be distributed over time and age in the future in some suit-
able way. If, on the other hand, cohorts had nothing to do with the matter,
we would treat the births to women of given age in successive periods as
an ordinary series and extrapolate. The theory of this section is especially
useful for the intermediate case in which the R∗

0 for cohorts are shifting,
but less rapidly than the R0 for periods.

We could have gone through the argument with gross reproduction rates
and obtained the same results, simply by omitting the l(x) throughout.
Even more generally, the m(a, t) function and the R’s representing the mo-
ments of m(a, t) could be interpreted, not as childbearing, but as mortality,
marriage, school attendance, income, or some other attribute of individ-
uals. The foregoing relation of periods and cohorts applies to any such
characteristic.
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14.5 Backward Population Projection

One may need to project a population backward, for instance to estimate
age distribution of a period before the first of a series of censuses. Under
stability all ages increase in the same ratio; therefore one can calculate
the number living at the earlier period by dividing by this ratio. With or
without stability one can simply divide the total for an age group by the
probability of surviving to obtain the age group one time period earlier.
This gives the best possible answer in practice for all ages but the last,
to which it is inapplicable. The Leslie matrix is useless for such purposes,
being singular for any population that lives beyond its reproductive span;
it is of rank n − 1, where n is the number of age groups recognized.

An easy way to retrieve the last age interval is to suppose that it has been
increasing at the intrinsic rate of the population. But in some circumstances
one can do better than this by using the generalized inverse, which does
not require the assumption of stability (Greville and Keyfitz 1974).

First we express the projection backward along cohort lines in matrix
form as

X0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
L0

L5
0 0 · · · 0

0 0
L5

L10
0 · · · 0

0 0 0
L10

L15
· · · 0

...
...

0 0 0 0 · · · L5n−10

L5n−5

0 0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which premultiplies the vector (say of females) at time t to provide an
estimate for time t − 1 of all age intervals except the last, say 85 and over.
This contains the main elements of the required backward projection, and
is therefore at least a commonsense inverse of the forward projection A
(Section 3.1).

There are many generalized inverses of a given singular matrix, and the
choice of one from among them depends on the use to be made of it. If A is
the given matrix, it is usual to choose a generalized inverse X that satisfies
at least one and preferably both of the two relations (Rao and Mitra 1971)

AXA = A (14.5.1)

and

XAX = X; (14.5.2)
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the first says that the backward form X must be such that projecting
forward, then backward, and then forward again is equal to projecting
once forward, and an equally obvious interpretation applies to the second.

In fact X0 is a reasonably satisfactory generalized inverse of A. Like A,
it is of order n and rank n − 1. One can easily verify that it satisfies both
(14.5.1) and (14.5.2). A disadvantage of X0, however, lies in the fact that
by its use the population in the oldest age interval at t − 1 always comes
out zero.

This is easily remedied by observing that properties (14.5.1) and (14.5.2)
are retained if the zeros in the bottom row of X0, except the first, are
replaced by arbitrary elements. The last-row elements estimate the number
in the final age interval at time t as some linear combination of the numbers
at time t + ∆t in all age intervals except the youngest.

Of the many ways of arriving at such a linear estimate the most direct is
to use the eigenvalues and eigenvectors of the two matrices. For the classical
inverse of a nonsingular matrix H, if

Hx = λx,

then

H−1x = λ−1x.

In words, we can say that a nonsingular matrix and its inverse have identical
eigenvectors, associated with respective eigenvalues that are reciprocals of
each other. It has been shown (Greville 1968) that something of the same
kind is true of a singular matrix and its generalized inverse.

The three important eigenvalues of the matrix are the real root, say λ1,
and the conjugate pair of complex eigenvalues closest to the real root in
absolute value, denoted as λ2 and λ̄2. The real root is the ultimate ratio of
increase in the population that would result if the mortality and natality
conditions reflected in the Leslie matrix were perpetuated, while the pair
of complex roots is related to the amplitude and period of the oscillations
that would precede the attainment of a stable state.

The real cubic polynomial with leading coefficient unity whose three zeros
are the reciprocals of these three eigenvalues is (λ1 > 0),

q(z) =
(
z − λ−1

1

) (
z − λ−1

2

) (
z − λ̄−1

2

)
= z3 + c2z

2 + c1z + c0. (14.5.3)

To form a polynomial whose roots are the reciprocals of those of a given
polynomial all we need do is reverse the order of the coefficients. [Show
that the roots of

c0z
n + c1z

n−1 + · · · + cn = 0

are the reciprocals of the roots of

cnzn + cn−1z
n−1 + · · · + c0 = 0.
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Then, if λ1 is the real root, and λ2 = a + ib and λ̄2 = a − ib are the main
complex roots, the characteristic equation with these roots is

(z − λ1)(z − λ2)(z − λ̄2) = 0,

or

z3 − (λ1 + λ2 + λ̄2)z2 + (λ1λ2 + λ1λ̄2 + λ2λ̄2)z

−λ1λ2λ̄2 = 0,

or

z3 − (λ1 + 2a)z2 + (2λ1a + a2 + b2)z − λ1(a2 + b2) = 0,

and the equation with the reciprocals of these roots is the same with
coefficients reversed:

λ1(a2 + b2)z3 − (2λ1a + a2 + b2)z2 + (λ1 + 2a)z − 1 = 0.

Hence the coefficients of (14.5.3) are

c2 = −2λ1a + a2 + b2

λ1(a2 + b2)
, c1 =

λ1 + 2a

λ1(a2 + b2)
, c0 = − 1

λ1(a2 + b2)
.

Let pi denote the survival rate from the ith age interval to the (i + 1)th
(which is the ith subdiagonal element of A). Then, if we take X1 to be a
matrix like X0 except that the last three elements of the bottom row are

−c0pn−1pn−2, −c1pn−1, −c2 (14.5.4)

(instead of zeros), it is easily verified that the characteristic polynomial of
X1 is zn−3q(z). Thus the eigenvalues of X1 consist of n − 3 zeros and the
reciprocals of λ1, λ2, and λ3. It is possible to show that A and X1 have in
common the eigenvectors associated with these three eigenvalues.

The rule seems to be that for long-term projection backward one cannot
improve on the dominant root to estimate the oldest age group. For back-
ward projection over a short interval, however, the first three roots often
seem to help. In general, the shorter the interval over which one projects
backward the more possible it is to preserve minor roots without finding
erratically large and impossibly negative populations.

14.5.1 Application
Let us test these suggestions by backward projection of the older United
States female population from 1967: using data from that year only, we will
estimate for 1962. For all age intervals but the last this will of course be
done by the reciprocal of the survival ratio, a procedure whose properties
are straightforward and well known.

From the vital statistics for 1967 the real root is λ1 = 1.0376, and the
roots following are λ2, λ̄2 = 0.3098 ± 0.7374i. The polynomial q(z) of
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(14.5.3) is

q(z) = z3 − z2(1.9323) + z(2.4966) − 1.5065.

The probability of survival into the last age interval is pn−1 = 0.8024, and
into the second-to-last interval is pn−2 = 0.7030. Hence the bottom row of
the inverse matrix ends up with the three numbers(

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 0.8498 −2.0032 1.9323

)
,

and they are to premultiply the last three intervals (75 to 79, 80 to 84,
85+) of the 1967 age distribution:⎛

⎜⎜⎝
· · ·

2198
1286
727

⎞
⎟⎟⎠

expressed in thousands. The inner product of the two triplets of numbers
above constitutes the estimate in this particular way of forming the inverse,
and it turns out to be 696 thousands. The observed 1962 figure was 602
thousands. With the procedure of projecting backward by the reciprocal of
the real root alone we obtain 727/1.0376 = 701, which is a slightly larger
discrepancy.

For some other populations, the superiority of the three roots method
shows more clearly. For example, using data for Belgium, 1960, to estimate
women aged 85 and over for 1955, we find that the three roots method gives
31,323 and one root gives 33,543 against an observed 1955 figure of 27,880.
Bulgaria, 1965, projects backward to 1960 on three roots at 17,550, and
on one root at 23,567, against an observed 15,995. In terms of percentage
error, the three cases show the following results:

Data Three Roots One Root

United States, 1967 15.6 16.4
Belgium, 1960 12.3 20.3
Bulgaria, 1965 9.7 47.3

The idea of using the generalized inverse occurred to Thomas Greville
as a way of formalizing and extending the projection backward along co-
hort lines, sometimes called reverse survival, that is used by demographers.
This method contrasts with projecting backward by truncating the Leslie
matrix at the last age of reproduction and then using its ordinary inverse.
Numerical experiments show no circumstance in which such a method is
comparable in accuracy with reverse survival; working back from an ob-
served age distribution gives large negative numbers from the first or second
5-year period onward. If one starts with the artificial age vector obtained by
projecting forward on the Leslie matrix, it is possible to project backward
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on the inverse of the truncated matrix for a few periods, but this serves no
purpose, except possibly to study the accuracy attained in double precision
by the particular computer in use. All these statements reflect the severely
ill-conditioned nature of the truncated matrix.

Attempts to project the population backward for long periods of time
run afoul of ergodicity. Any two initial age distributions subjected to the
same sequence of vital rates converge toward each other. Thus there are
many historical series of age structures that could have led to any present
structure, and an attempt to work backwards is doomed to failure. His-
torical demographers have had to confront this problem in attempts to
reconstruct demographic trends from limited data on population size and
births and deaths (Lee 1985, 1993).

14.6 The Time to Stability

A baby boom or other irregularity in the time curve of births tends to be
echoed in each later generation insofar as the subsequent age-specific rates
of birth and death are constant. The mechanism, expressed in words, is
that, when the girls born in a baby boom are of reproductive age, mostly
about 20 to 30 years later, there will be more mothers in proportion to the
population, and consequently again more children. Still in commonsense
terms, the narrower and less skewed the range of ages in which women
bear children, the more concentrated will be the echo, and the larger the
ratio to the original disturbance. With a broad range of ages of childbear-
ing, especially one skewed to older ages, the waves would seem likely to
disappear more quickly, again supposing fixed subsequent rates.

Insofar as such fluctuations incur social cost in first overcrowded and then
underutilized facilities such as schools, one is interested in the quickness of
convergence to stable form of a population that has undergone a perturba-
tion. In recent decades the variance of ages of childbearing in the United
States has diminished. Does this mean a slower reversion to stability after
a disturbance? Or does skewness help more than variance to speed the con-
vergence to stability? One way of answering these questions is in terms of
the main complex roots of the Lotka equation. In the matrix model frame-
work, the corresponding analysis is in terms of the subdominant eigenvalue
of the projection matrix (Section 7.3.1).

The literature on time to convergence was initiated by Coale (1968,
1972), and contributions have been made by Sivamurthy (1971), Trussell
(1977), Tuljapurkar (1982, 1993), Schoen and Kim (1991) and others.
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14.6.1 The Criterion of Convergence
Underlying and facilitating all this work is the fact that the real part of the
second largest root in absolute value, r2 in (7.5.2), largely determines the
time to convergence. The magnitude of contribution of the term er2t, which
can be written as e(x+iy)t, depends on ext. The ratio of the asymptotic effect
of the second root to that of the first, as these are projected to t years, is
ext/ert (this is the inverse of the damping ratio defined in Section 7.3.1;
suppose that we want to know when the ratio will be less than ε:

e(x−r)t < ε.

Remembering that x − r is negative, we have

t >
log ε

x − r
. (14.6.1)

Note that this studies convergence in terms of the exponentials in t of
(7.5.2) and takes the constants Q into ε.

14.6.2 Use of the Characteristic Equation
Start with equation 6.1.2,∫ β

α

e−ral(a)m(a) da = 1,

divide both sides by R0, the net reproduction rate, take logarithms, expand
the exponential, and so obtain the series of cumulants

µr − σ2 r2

2!
+ µ3

r3

3!
− · · · − log R0 = 0, (14.6.2)

which is Lotka’s equation 161 (1939, p. 69) and is the same as (6.2.1) if
ψ(r) is put equal to unity. Entering r = x + iy gives for the real part

φ = µx − σ2(x2 − y2)
2

+
µ3(x3 − 3xy2)

6

− κ4(x4 − 6x2y2 + y4)
24

+
κ5(x5 − 10x3y2 + 5xy4)

120

− · · · − log R0 = 0,

(14.6.3)

and for the imaginary part

θ = µy − σ2xy +
µ3(3x2y − y3)

6
− κ4(x3y − xy3)

6

+
κ5(5x4y − 10x2y3 + y5)

120
− · · · = 0.

(14.6.4)

The characteristic equation 6.1.2 is expressed as φ + iθ = 0. Designate
derivatives of the real and complex parts with respect to the second cumu-
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lants as φ2 and θ2, respectively, with respect to the third cumulants as φ3
and θ3, with respect to x as φx and θx, and with respect to y as φy and θy,
and similarly for x and y with respect to the cumulants. In this shorthand
∂x/∂σ2, for example, will be written as x2, and ∂x/∂µ3 as x3. Completely
differentiate the real part, φ = 0, by σ2 and µ3 in turn:

φxx2 + φyy2 + φ2 = 0 (14.6.5)
φxx3 + φyy3 + φ3 = 0, (14.6.6)

and the same for the imaginary part, θ = 0:

θxx2 + θyy2 + θ2 = 0 (14.6.7)
θxx3 + θyy3 + θ3 = 0. (14.6.8)

The first and third of these equations in partial derivatives can be solved
for x2, the derivative of x with respect to variance:

x2 =

∣∣∣∣−φ2 φy

−θ2 θy

∣∣∣∣∣∣∣∣φx φy

θx θy

∣∣∣∣
,

where |X| is the determinant of X. The second and fourth equations can
be solved for x3, the derivative with respect to the third moment:

x3 =

∣∣∣∣−φ3 φy

−θ3 θy

∣∣∣∣∣∣∣∣φx φy

θx θy

∣∣∣∣
,

The denominators are the same for x2 and x3, and we want the ratio

x2

x3
=

∣∣∣∣−φ2 φy

−θ2 θy

∣∣∣∣∣∣∣∣−φ3 φy

−θ3 θy

∣∣∣∣
=

φyθ2 − θyφ2

φyθ3 − θyφ3
.

This simple expression provides the ratio of the effect of σ2 on x to
the effect of µ3 on x, since x2/x3 is shorthand for (∂x/∂σ2)/(∂x/∂µ3).
It assumes that the second and third moments can vary independently of
each other, and that all other moments are fixed, including R0, the net
reproduction rate.

14.6.3 Exact and Approximate Ratios of Partial Derivatives
To evaluate x2/x3 we refer back to the expansions of φ and θ and calculate
the partials:

φx = µ − σ2x +
µ3(x2 − y2)

2
+ · · ·
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φy = = σ2y − µ3xy + · · ·
θx = −σ2y + µ3xy − · · ·

θy = µ − σ2x +
µ3(x2 − y2)

2
− · · ·

φ2 =
y2 − x2

2
θ2 = −xy

φ3 =
x3 − 3xy2

6

θ3 =
3x2y − y3

6
.

Entering these in the expression for x2/x3, we have

x2

x3
=

φyθ2 − θyφ2

φyθ3 − θyφ3

=
(σ2y − µ3xy + · · ·)(−xy) − (µ − σ2x + · · ·)

(
y2−x2

2

)

(σ2y − µ3xy + · · ·)
(

3x2y−y3

6

)
− (µ − σ2x + · · ·)

(
x3−3xy2

6

) , (14.6.9)

which is readily evaluated to as many terms as desired.
Choosing the terms that seem most to affect the answer gives the

approximation

x2

x3
≈ (σ2/µ)(2x) + 1

(σ2/µ)(y2/3) − x
. (14.6.10)

If σ2/µ, the ratio of variance to mean in the net maternity function, is
1.3, and r2 = x + iy is −0.03 + 0.22i, then (14.6.10) works out to 18.

14.6.4 Allowance for Different Ranges of Variance and
Skewness Among Observed Populations

For a typical population with given age-specific rates of birth and death,
we have found that the ratio of the effect of variance to that of skewness,
x2/x3 above, is about 18. Except for the approximations made after in
the interest of ease of calculation, (14.6.9) is an exact result, allowing the
several moments to vary independently of one another, and taking account
of as many moments as are needed for fit to the net maternity function.
But among real populations skewness varies more than variance. Variances
are mostly between 25 and 55, whereas skewnesses are between 50 and 200;
that is, the range of skewness is 5 times that of variance.

Can we escape this difficulty by somehow finding theoretically compara-
ble measures of dispersion and skewness? A change in the scale on which
fertility is measured affects the square root of the variance to the same
degree as the cube root of the skewness. Would we have been better off to
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Table 14.3. Ratio of Effect of Second Moment to That of Third Moment, All
Others Constant: x2/x3 = (∂x/∂σ2)/(∂x/∂µ3)

x2/x3 x2/x3 x∗
2/x∗

3
Country and year (9.6.9) (9.6.10) (9.6.11)

Algeria, 1965 16.670 16.805 2.673
Austria, 1968 12.636 13.052 2.027
Bulgaria, 1968 15.480 16.273 2.137
Canada, 1968 14.740 15.170 2.385
Colombia, 1965 19.708 19.886 3.276
England and Wales, 1968 16.959 17.330 2.952
France, 1967 17.861 18.322 2.893
Germany, West, 1967 18.834 19.146 3.448
Greece, 1968 18.831 19.094 3.699
Honduras, 1966 16.127 16.090 2.970
Ireland, 1967 38.027 37.953 12.340
Jamaica, 1963 15.219 15.438 2.881
Madagascar, 1966 11.419 11.795 1.553
Mexico, 1966 18.777 18.722 3.906
Nicaragua, 1965 16.034 16.147 2.811
Panama, 1966 15.027 15.362 2.275
Puerto Rico, 1965 8.979 9.638 1.142
Taiwan, 1966 36.809 37.195 5.409
Togo, 1961 11.360 11.660 1.663
Trinidad and Tobago, 1967 13.774 14.057 2.237
United States, 1966 13.713 14.183 2.131

Males 16.172 17.249 1.604
Venezuela, 1965 19.292 19.445 3.316

Female populations only, except for the United States.
Based on data in Keyfitz and Flieger, (1968, 1971).

start from the beginning with the standard deviation and the cube root of
the third moment?

It is easy enough to convert our results to what would have been obtained
with that procedure. We write ∂x/∂σ as x∗

2 and ∂x/∂ 3
√

µ3 as x∗
3. Then

x∗
2 =

∂x

∂σ
=

∂x

∂σ2

∂σ2

∂σ
= 2σ

∂x

∂σ2

x∗
3 =

∂x

∂ 3
√

µ3
=

∂x

∂µ3

∂µ3

∂ 3
√

µ3
= 3µ

2/3
3

∂x

∂µ3
,

so that the new ratio, x∗
2/x∗

3, is

x∗
2

x∗
3

=
2σ

3µ
2/3
3

x2

x3
. (14.6.11)

This modifies the result (14.6.9) by an amount easily evaluated and shown
in Table 14.3 for 23 populations, along with (14.6.9) and (14.6.10).
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The preceding pages offer a way of finding the relative influence x2/x3
of the second and third cumulants (or any other pair) on the real part of
the first complex root. It can be used also to find the absolute effect on
the root of any cumulant; this would consist of x2 for the influence of the
second moment, x3 for that of the third, and so on. These methods and
results can now be applied to finding the time to convergence.

14.6.5 Time to Convergence
What determines the time to convergence is not x alone but log ε/(x−r), as
in (14.6.1). We need to know, for comparing the second and third moments,

∂[log ε/(x − r)]
∂σ2

∂[log ε/(x − r)]
∂µ3

=
− log ε

(x − r)2
∂(x − r)

∂σ2

− log ε

(x − r)2
∂(x − r)

∂µ3

=
∂x/∂σ2 − ∂r/∂σ2

∂x/∂µ3 − ∂r/∂µ3
=

x2 − r2

x3 − r3
,

(14.6.12)

in an obvious extension of the earlier notation.
The derivatives of r with respect to the moments are obtained from

equation 14.6.2 involving r, that may be called ψ = 0; by differentiation
we have

r2 =
−ψ2

−ψr
=

r2/2!
µ − rσ2 + µ3(r2/2!) − · · ·

and

r3 =
−ψ3

−ψr
=

r3/6
µ − rσ2 + µ3(r2/2!) − · · · ;

and assembling these with what we found earlier for x2 and x3 gives

∂[log ε/(x − r)]
∂σ2

∂[log ε/(x − r)]
∂µ3

=
x2 − r2

x3 − r3

=
ψr(φyθ2 − φ2θy) − ψ2(φxθy − φyθx)
ψr(φyθ3 − φ3θy) − ψ3(φxθy − φyθx)

,

(14.6.13)

on substituting the previously obtained x2, r2, x3, and r3. This result is
exact, but unfortunately it includes a score or more terms, even if we stop
at squares in r and x and fourth powers in y. To make (14.6.13) tractable
for calculation and thinking about, we need to discard smaller terms. The
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bare minimum appears to be

x2 =
σ2x/µ + 1

2

µ/y2 + σ4/µ
(14.6.14)

x3 =
σ2y2/6µ − x/2
µ/y2 + σ4/µ

(14.6.15)

r2 =
r2

2µ
(14.6.16)

r3 =
r3

6µ
. (14.6.17)

For a population with r = 0.03, x = −0.03, y = 0.22, µ = 27, and σ2 = 35,
the result is

x2 − r2

x3 − r3
=

0.000764 − 0.000017
0.0000422 − 0.0000002

= 17.8

against x2/x3 = 18.1. Apparently even a high rate of increase has little
effect on the time to convergence.

14.6.6 Theoretical Versus Empirical Relations
The effect of each moment on the real part of the second root is also
obtainable from empirical materials. But this, like all correlations taken
from the real world, has a different meaning. It tells what the effect is
when other things vary as they vary. The formulae of the preceding pages
tell what the effect is when other things are held constant. Both kinds of
information are useful for understanding, but they are not the same (cf.
the distinction between prospective and retrospective perturbation analyses
in Section 13.8. The difference between theoretical and empirical facts in
demography is a main subject of Chapter 20).

Proceeding to the implications of instability in financial, economic, and
social matters, we will discuss as a first aspect old-age security.

14.7 Retirement Pensions: Pay-As-You-Go Versus
Actuarial Reserves

The cost of pensions to the wage-earner differs according to whether ac-
tuarial funding is used. On pay-as-you-go each year’s pensions come out of
the same year’s receipts; the receipts are a tax, whose amount is in principle
adjusted to the requirements of the scheme, that is to say, by the number of
pensioners and the average amount of payment to them in relation to the
number of contributors. Actuarial or reserve plans, on the other hand, are
based on calculation of the expected cost to each individual; his premiums
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are cumulated at interest, and their amount is in principle just sufficient to
cover his expected withdrawals from retirement to death. In the actuarial
scheme, the expected costs of each individual are covered, which is another
way of saying that each cohort pays for itself; in pay-as-you-go each period
pays for itself. The two approaches can be compared for cost and equity.

In the stable condition, say with the population growing at rate r, a
payment of unity to pensioners will cost∫ ω

β

e−ral(a) da, (14.7.1)

per current birth, where β is the age of retirement and ω the oldest age to
which anyone lives. Contributions will be equal to

p

∫ β

α

e−ral(a) da, (14.7.2)

where α is the age at which uniform contribution begins, and p is the annual
uniform payment by each person of working age, again per current birth.
Equating (14.7.1) and (14.7.2) and solving for p:

p =

∫ ω

β

e−ral(a) da∫ β

α

e−ral(a) da

, (14.7.3)

and this is the premium for a simple case of pay-as-you-go, in accord with
the argument of Section 5.7.

The above statements apply whether or not money bears interest. A
pay-as-you-go scheme in principle holds no reserves that can accumulate
interest, but dispenses what it takes in year by year.

As we saw in Section 2.5, an actuarial scheme is built on reserves that
draw interest. If the rate is i per annum, compounded momently, so that the
amount of one dollar at the end of t years is eit dollars, then discounting a
benefit of 1 dollar per year back to the moment of birth gives

∫ ω

β
e−ial(a) da.

If this amount is to be paid for by a premium of p dollars per year from
ages α to β, the present value of the premium to the moment of birth must
be p

∫ β

α
e−ial(a) da. Equating the two present values gives for the annual

premium p

p =

∫ ω

β

e−ial(a) da∫ β

α

e−ial(a) da

. (14.7.4)

Note that the two expressions, 14.7.3 and 14.7.4, for the annual cost of
the pension are identical, with the sole difference that one contains the rate
of interest i in the place where the other contains the rate of increase in the
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population. If r is greater than i, the average person will do better in a pay-
as-you-go scheme. To prove this we need only note that p is a decreasing
function to i. In fact, by taking logarithms of both sides of (14.7.4) and
differentiating, we find

1
p

dp

di
= −(mr − mw),

where mr is the mean age of the retired persons and mw is the (necessarily
younger) mean age of the working population. In finite terms

∆p

p
≈ −(mr − mw)∆i; (14.7.5)

and, if mr − mw is about 30 years, each rise of 1 percent in the rate of
interest will lower the premium by 30 percent of itself. This fact is very
little affected by variations in the mortality level prevailing under modern
conditions. Expression 14.7.5 is formally analogous to (5.7.4), though the
two have different content.

When money carries a rate of at least 5 percent and population in-
creases at 0 to 3 percent, why does anyone want a compulsory pay-as-you-go
scheme? The answer is that the rate of interest people have in mind is in
terms of goods, not money, and in times of inflation the two are not the
same. What counts in the comparison of (14.7.3) and (14.7.4) is the increase
in the amount of goods that one can have by temporarily foregoing the use
of his money. If prospective price inflation is 6 percent per year, and money
interest is 5 per cent per year, the goods rate of interest is negative. The
decline of the real rate of bank and bond interest virtually to zero helps
account for the popularity of pay-as-you-go schemes. A further reason is
that the latter are more painless at initiation, when noncontributors can
simply be blanketed in, in effect at the cost of a later generation.

Pay-as-you-go is largely proof against inflation, but has demographic
troubles. These are suggested in Table 14.4, showing the ratio of working
to pensionable ages over a century. In the United States the main pressure
will come after the year 2000, with a rise of 50 percent over the years about
2020. The only thing that could prevent this is a large increase of births
before the year 2000 that would raise the 21st century labor force, which
seems unlikely.

The Social Security scheme can be seen as a way of borrowing from
future generations, like the national debt. Besides lacking a contractual
character, it differs from the national debt in being five times as large.
Martin Feldstein (1976) shows that the scheme reduces private savings:
people do not save as much because they are implicitly promised support
by the next generation when they are old. But at the same time their
smaller savings mean smaller investment than would otherwise occur, so
the incomes of the next generation will be less than with private savings
for retirement or an actuarial reserve scheme. Our children’s having to pay
larger benefits to us out of incomes that are smaller than they otherwise
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Table 14.4. Persons of working and pensionable ages in the United States,
1950–2050

Age Age Percent
Year 21–64 65+ 65+/21–64

1950 85,944 12,397 14.42
1960 92,181 16,675 18.09
1970 103,939 20,085 19.32
1980 122,115 24,523 20.08
1990 137,500 28,933 21.04
2000 148,589 30,600 20.59
2025 146,645 45,715 31.17
2050 147,635 45,805 31.03

Source: U.S. Statistical Abstract, 1975, p. 6.

would be because of our failure to save may be offset by our having paid for
their education; on present trends expenditures on old-age security could
substantially exceed those on education. If, however, as many think, our
children will be much richer than we are, some borrowing from them is
permissible.

But the subject of intergenerational equity is much too big for treatment
here. All we need notice is that fluctuations in births are what bring the
problem to the fore; under stable population growth most of these issues
would not arise (Clark and Spengler 1976).

14.8 The Demography of Educational
Organizations Under Changing Age
Distributions

The 1950s and 1960s, with all their difficulties, attained a happy balance
between graduate teaching and research. At the pinnacle of the academic
profession was the faculty member of a major university, whose teaching
was largely of graduate students and included or even centered on her own
research. Her students were in effect apprentices who would be certified by
doctorates, often at the rate of one every year or two, as qualified to take
posts in other graduate schools, where they would be a prolongation of the
master’s research and teaching. One’s weight in the university depended
on her own discoveries and publications, as well as on former students who
would teach her work and cite her publications. These former students
would in due course replicate the process and send forth their graduates.

We know now that this process of reproduction cannot always be as rapid
as in the 1960s. Even a much slower rate is out of the question in the long
run. If the master is 40 years of age, and she turns out a student aged
25, and does the same again when she is 50 and a third time when she is
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60, and these immediately go into graduate teaching and follow the same
pattern, the population of graduate faculty is approximately trebling each
25 years. Its annual average rate of increase is obtained from the difference
equation

B(t) = B(t − 15) + B(t − 25) + B(t − 35);

to solve this we try B(t) = ert and obtain the characteristic equation:

1 = e−15r + e−25r + e−35r.

For an iterative solution we multiply through by e25r and then take
logarithms:

r∗ = 1
25 log(e10r + 1 + e−10r).

Starting with r = 0 on the right, we find for the successive values of r∗

0.0439, 0.0465, 0.0468, and 0.0468. A rate of 4.68 percent cannot be main-
tained over any long period of time. If the general population increases at
1 percent then the fraction who are graduate school teachers would go up
over 35 times in a century.

Such pencil-and-paper calculations requiring no data could have been
made when the graduate student boom was at its height and would have
shown its temporary character. The basic demographic point is that, in the
stationary condition that is inevitable sooner or later, a faculty member,
in a graduate school or anywhere else, is on the average succeeded by one
faculty member.

The system is very sensitive to the rate of increase. If it is expanding
at 7 percent per year, and the difference in age between a teacher and
his students is 20 years, each teacher is not restricted to one replacement,
but will be succeeded by four tenured members on the average. This is so
because 7 percent increase is a doubling in 10 years, or two doublings in 20
years. With the same rate of increase, if the time in nontenure is 6 years
and in tenure 24 years, then the stable ratio of nontenure to tenure is∫ 6

0
e−0.07x dx :

∫ 30

6
e−0.07x dx

or

1 − e(−0.07)(6) : e(−0.07)(6) − e(−0.07)(30)

which is 1 : 1.56 as against 1 : 4 with the same age limits under stationarity,
disregarding mortality while in service.

In public institutions where staffing is based on fixed student–teacher
ratios, the slowing down of college entrants results in a sharp deceleration
of faculty appointments. And what is true formally in public institutions
is true practically in private ones—as their students stabilize or decline,
so do tuition and other income, with inevitable consequences for faculty
numbers. The greater difficulty of entering college teaching especially is
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felt by women and minorities, who are just beginning to qualify. To hire
them and give them chances for promotion is far harder when the system
is contracting than when it was expanding.

14.9 Two Levels of Students and Teachers

Extrapolation of the trend of the 1950s and 1960s could lead only to the
conclusion that the entire population would attain the Ph.D. and become
college teachers.

A very simple model, recognizing only two levels of education, can avoid
such a nonsensical result (Correa 1967). Suppose that the two levels are
college and graduate school, and the unit of time is 4 years. Let S

(1)
t be

the number of students at time t at the lower level, and S
(2)
t the number of

students at time t at the higher level; let T
(1)
t and T

(2)
t be the corresponding

numbers of teachers at the two levels. If ρ1 and ρ2 are the ratios of teachers
to students at the two levels, then two equations express the demand for
teachers:

T
(1)
t = ρ1S

(1)
t (14.9.1)

T
(2)
t = ρ2S

(2)
t . (14.9.2)

If σ1 is the fraction of the students in level 2 who will become teachers
in level 1, and σ2 the fraction of the students in level 2 who will become
teachers in level 2, we have for the supply of teachers in period t + 1:

T
(1)
t+1 = (1 − µ1)T

(1)
t + σ1S

(2)
t (14.9.3)

T
(2)
t+1 = (1 − µ2)T

(2)
t + σ2S

(2)
t , (14.9.4)

where µ1 and µ2 represent the loss of teachers through death, retirement,
and other causes at the two levels. To complete the model, suppose that a
fraction φ of the students at the lower level go on to the higher level:

S
(2)
t+1 = φS

(1)
t . (14.9.5)

If the unknowns are the students and teachers at the two levels, the
system has four unknowns and five equations; it is overdetermined. The
unknowns can be increased to 5 by supposing that any one of the seven
Greek letter constants is unknown. Not all of the constants are equally
likely candidates for this; we would say that σ1 and σ2, the fractions of
Ph.D. students who become teachers, or else φ, the fractions of college
students who go on to graduate school, should be the first to be examined.
Alternatively, the system could be made solvable by disregarding one of
the equations.

The system ought to be considered as dynamic: some of the variables
drive the others. If the upper level does the driving, that is, if the number
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of Ph.D.s determines the number of teaching positions and the number of
students at the lower level, so that the operative equations are (14.9.2) and
(14.9.4), we have a first-order system, of which the solution is

T
(2)
t =

(
1 +

σ2

ρ2
− µ2

)t

T
(2)
0 . (14.9.6)

The system expands steadily, without oscillations. In this unlikely mode
the number of persons who want to attend graduate school and become
teachers determines the number of undergraduates. It is worth mentioning
here only because it is implicit in some of the educational perspectives of
the 1960s.

Taking the more realistic condition that the students at the lower level
determine the system, we find that cycles in the number of college students
give rise to amplified cycles in the number of new teachers demanded. Any
reasonable way of making the system determine will show that the absolute
demand for Ph.D.s is closely related to the increase in the number of college
students (Correa, 1967).

The model enables us to follow what happens in the wake of a baby
boom. About 17 years after the rise in births comes a rise in the number of
college applicants. Every effort is made to satisfy this demand for entrance:
teachers are asked to defer retirement; somewhat less qualified persons are
given appointments as teachers; newly established colleges take some of the
new students and hire as teachers persons who would no earlier have aspired
to this occupation. In our model the increase of applicants acts initially on
(14.9.1), resulting partly in an immediate expansion of T

(1)
t , and partly in

allowing ρ1, the fraction of teacher per student to become smaller, which is
the same as class sizes becoming larger. Somehow the demand constituted
by the rise in applicants for college entrance is immediately met; applicants
are not ordinarily asked to come back in 8 or 10 years, which could make
the system more stable.

The college teacher shortage at this stage is intense, and graduate schools
receive applications from many who in earlier times would have been satis-
fied to leave school with a B.A. The graduate schools, like the applicants,
perceive a strong demand for Ph.D.s and accept more than they other-
wise would. Even if φ of (14.9.5) were fixed, there would be an increase in
the number of recruits to graduate school the next period; but in fact φ
increases in such times, and the graduate schools expand in higher ratios
than the increase in the number of undergraduates.

Two periods later, that is to say, 8 years after the baby boom has hit the
college level, the first Ph.D.s of the new wave are available. They are seek-
ing jobs in colleges, and particularly in graduate schools, having oriented
themselves to the institutions of highest prestige. The supply of graduate
school teachers is now given by (14.9.4) with a high S

(2)
t . The µ, coefficients

of death and retirement, are small over the short period here involved. The
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timing in this crude representation involves the 17 years from the start
of the baby boom to college entry of the larger cohorts, plus the 8 years
through college and graduate school, a total of 25 years from the first rise
in births to the start of an employment crisis for Ph.D.s. Twenty-five years
is about the interval from the later 1940s to the early 1970s.

14.10 Mobility in an Unstable Population

The mobility model of Section 5.8 exhibited the demographic factor in
promotion, finding it faster for members of populations in rapid growth
than for members of stationary populations. A person will get to a middle-
level position about 9 years earlier in the fastest growing population than
in a stationary one. Mortality also helps (at least for those who survive) but
much less; a very high mortality population (

o
e 0 = 35 years) will advance

its surviving members to middle positions only 2 to 3 years sooner than the
lowest mortality population known (say

o
e 0 = 75 years). High subsequent

birth rates advance a person’s promotion more than do high death rates.
The above results are comparative rather than dynamic—they compare

the age of attaining a given level in a fast- and in a slow-growing population,
but supposing for each that its rates have been fixed and continuing over
a long period. A separate question concerns the slowing down of an actual
population: what difference does it make to individuals now alive that the
United States was growing at 1.5 percent per year in the late 1950s and
is dropping from this rate toward stationarity? Stable population theory,
assuming as it does fixed rates, cannot by its very nature answer a question
about the effect of change in rates over time.

As an introduction to the problem consider the United States age distri-
bution, as of the mid-1970s, in the stylized version of Figure 14.3. Those
approaching retirement at that time were members of the large cohorts
born in the 1920s and earlier. The working population then in its forties
consisted of the very small cohorts born in the 1930s, and new entrants up
to 1975 had been larger, steadily increasing toward the left in Figure 14.3,
up to those born about 1960. Following that came a downturn, so that the
new entrants of the 1980s were fewer and decreasing.

Those in their forties at the time of this diagram were fortunate in two
distinct ways. They were called on to replace the large number of their
elders retiring from senior posts, and they had been drawn upward by the
large number of new entrants who were younger than themselves. Super-
visors and teachers are required in relation to workers and students; the
tests of competence for supervisors and teachers are less stringent in times
when more are required.

Thus those born in the 1930s, having been pushed upward by the young
people coming in behind them, could look forward to further promotion
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Figure 14.3. Stylized representation of the supply of labor in the United States.

as their seniors retired. However, those born at the peak of the baby
boom in the 1950s and early 1960s would never in their later careers be in
such great demand as supervisors and teachers, for they were followed by
sparse cohorts, nor were they drawn up as strongly to fill posts vacated by
retirement, because these were less numerous.

14.11 The Easterlin Effect

The high United States fertility of the 1950s and the subsequent decline
have puzzled observers who believe that there are strong economic de-
terminants of age-specific fertility. The phenomenon could not be due to
prosperity, since income in the 1950s was not as high as in the 1960s. That
children are positively related to income in time series did not seem to help
here, until Easterlin (1961, 1968, 1980) noted that the prosperity of couples
of childbearing age is what we should look for, not general prosperity. He
pointed out that couples of childbearing age in the 1950s, born between the
humps of the 1920s and the 1940s, were located in a hollow similar to that of
Figure 14.3. Not only was their promotion relatively rapid, but also in any
one position, insofar as there is age complementarity in production, they
frequently had the advantage of meeting situations in which they were too
few to do the necessary work, with resulting appreciation of their services.
This was often expressed in material terms and resulted in high wages and
good prospects relative to what people of their age would have been paid
in a different age configuration; hence these people have enjoyed a sense
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of security and well-being. Their confidence is well founded, for they will
spend their whole working lives in the same advantageous position. They
have translated their advantage into childbearing, perhaps projecting their
security into the next generation and feeling that their children will be in
demand just as they are. Macunovich (1998) has compiled a detailed review
of studies on the fertility patterns predicted by Easterlin’s hypothesis.

So strong was this effect in the 1950s that it entirely reversed the ten-
dency of the classical model with fixed age-specific rates of Chapter 6.
Instead of a dip, echoing that of the 1930s, the 1950s showed births at the
highest level in half a century. The 1930s gave a relative advantage to their
children by producing few of them, and these later repaid the advantage
by having many children. Such a mechanism could produce a very stable
result if the rise in birth rates was of just the right amount to compensate
for the few parents. In the actual case, however, the rise overcompensated.

The subsequent steady fall of the birth rate in the 1960s might well have
been due to the entry into childbearing ages of the large cohorts born in
the 1940s. If this was the dominant mechanism operating, we can predict
continued low birth rates at least through the 1970s. Not until about 1990
will the parental generation again be small enough to be encouraged to have
large families. Instead of the waves of generation length in the free response
of the demographic model we find waves two generations in length.

To translate this into quantitative terms we consider females only, and
simply suppose that all children are born at the same age of parent, say 25
years or the mean length of generation. If the “normal” female growth ratio
is R0 per generation, births in the tth generation are Bt = R0Bt−1. The
conditions imply geometric increase and lead to the solution Bt = B0R

t
0.

Suppose now that superimposed on this is a component of births in the
tth generation that depends on how small is the number of couples aged 25
compared with the number of couples aged 50. When the couples aged 25
are relatively few, that is to say, when Bt−1 is less than its “normal,” sup-
pose an additional γ(R0Bt−2 −Bt−1) births in the t generation, γ positive.
These conditions mean that the sizes of cohorts are related by

Bt = R0Bt−1 + γ (R0Bt−2 − Bt−1) , (14.11.1)

where R0 is no longer necessarily the net reproduction rate.
To solve (14.11.1) we try Bt = xt and find

x2 − (R0 − γ) x − γR0 = 0, (14.11.2)

of which the roots are conveniently x = R0 and −γ. Thus the solution of
(14.11.1) is

Bt = k1R
t
0 + k2(−γ)t, (14.11.3)

where k1 and k2 depend on the initial conditions. The term in (−γ)t tells
us that cycles will be generated two generations in length. If the factor for
normal increase R0 is greater than γ, any waves once started will diminish
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as a proportion of the geometric increase. If γ is less than unity, they will
diminish absolutely.

Lee (1968) applied Easterlin’s theory in a much more refined model,
one recognizing individual age groups. He also traced out its historical
antecedents, starting with a quotation from Yule (1906):

If . . . the supply of labour be above the optimum, the supply
of labour being in excess, the birth rate will be depressed, and
will stay depressed until the reduction begins to have some effect
on the labour market. But this effect will not even commence
for fifteen or twenty years, and the labour supply may not be
adjusted to the demand for, say, thirty years. The birth rate
may now have risen again to normal, but the labour supply will
continue to fall owing to the low birth rates formerly prevalent.
The birth rate will therefore rise above normal and continue
above normal so long as the labour supply is in defect, and so
matters will go on, the population swinging about the optimum
value with a long period of perhaps fifty to one hundred years,
and the birth rate following suit.

The germ of this idea is to be found as far back as Adam Smith, who
considered that the supply of labor, like the supply of shoes, was determined
by demand. Smith did not go the one further step of recognizing that the
period of production of labor is longer than the period of production of
shoes, with resulting longer and deeper cycles.

The Easterlin hypothesis is an example of a nonlinear demographic
model, in which the vital rates are functions of the population itself
(“density-dependence” in ecological terminology; see Lee (1987) for a de-
tailed discussion of density effects in human demography). Such models can
generate instability in the form of nonstationary solutions: cycles, quasi-
periodicity, and chaos. Such analyses are beyond the scope of this book,
but general discussions can be found in Cushing (1998) and Chapter 16 of
MPM. Nonlinear phenomena, many of them remarkably subtle, have been
beautifully documented in careful laboratory experiments on populations
of the flour beetles of the genus Tribolium (Cushing et al. 2003).

In the case of human populations, a series of analyses followed Lee’s
(1974) study of the Easterlin effect (Frauenthal and Swick 1983, Wachter
and Lee 1989, Wachter 1991, Chu 1998). Cyclic dynamics are clearly possi-
ble from the model, but whether parameters estimated from United States
demographic data can produce them is not clear.

Some apology is needed for the heterogeneous material contained in the
present chapter, which reflects the fact that populations can be unstable in
many different ways. To write about stable theory in a coherent fashion is
bound to be more straightforward than to attempt to write about every-
thing that is not stable theory. Furthermore, the range of applications here
attempted or recounted is especially wide, including estimating the rate
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of increase of a population when its death rate or its birth rate is falling,
backward projection under instability, finding the time to stability after a
disturbance, old-age pensions under reserve and nonreserve systems, and
the consequences for the educational system, the labor market, and the
birth rate of the baby boom and its aftermath.



15
The Demographic Theory of Kinship

This chapter will extract information on kinship numbers from the age-
specific rates of birth and death of a population. A fixed set of age-specific
rates implies the probability that a girl aged a has a living mother and
great-grandmother, as well as her expected number of daughters, sisters,
aunts, nieces, and cousins. Certain assumptions are required to draw the
implications, some stronger than others. The formulae of this chapter in
effect set up a genealogical table, giving not the names of incumbents in
the several positions but the expected number of incumbents. Those of
Figure 15.1 are based on birth and death rates of the United States in
1965, whose net reproduction rate R0 was 1.395 and

o
e 0 was 73.829, all

for females. They offer a different kind of knowledge from what would be
provided by a kinship census.

Like earlier chapters, this one supposes a population generated by birth
and death with overlapping generations. (Generations do not overlap in
annual plants, where all the parents have disappeared before the children
come to life. This circumstance requires population models that account
for processes both within and between years; see MPM Section 13.2.) The
considerable longevity of human beings, as well as other large mammals
and long-lived birds, after the birth of their offspring produces simultane-
ously living kin of many kinds—not only parents and children, but also
grandparents, nephews, and cousins. Human beings produce most of their
offspring in births of discrete individuals, but this is not recognized in the
present analysis, which supposes m(x) dx of a daughter in each dx of ma-
ternal age. For certain kin this introduces serious qualifications, specified
in Section 15.3. Development of this field is due to Lotka (1931), Burch
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Figure 15.1. Expected number of female kin alive when Ego (hatched circle) is
aged 40, based on birth and death rates of the United States, 1965.

(1970), Coale (1965), Goodman, Keyfitz, and Pullum (1974) and Le Bras
(1973).

Explicit recognition of the several degrees of living and dead kin varies
from one culture to another, and indeed from one family to another. We
disregard here cultural, social, and psychological definitions and deal with
numerical relations among average numbers of biological kin as they are
determined by birth and death rates. To avoid undue complication, all of
the following discussion recognizes female kin only.
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15.1 Probability of Living Ancestors

Deterministic models concern both population numbers and probabilities.
The two perspectives are at least on the surface distinct.

Counting Method. A large population can be seen as developing according
to given rules, and in effect we can make counts of the number of individuals
having the kin relations of interest. This is an extension of the notion that
l0 is the number of births occurring at one moment and l(x) is the number
of those surviving x years later, the cohort conception of the life table l(x)
referred to in Section 2.1. (But we still keep l0 = 1.)

Probability Method. We can start by thinking of an individual and work out
probabilities and expected values for his various kin. This is an extension
of the interpretation of the life table l(x) as the probability that a child
just born will survive for x years.

15.1.1 Living Mother by the Counting Method
Our first approach to finding the probability that a girl aged a has a living
mother is to see how a population would have developed starting from B
girl children born at a moment a + x years ago. At age x of this maternal
generation cohort the survivors were Bl(x), and during the interval x to
x+ dx they could be expected to give birth to Bl(x)m(x)l(a) dx daughters
who would live to age a. Of the mothers who gave birth at age x a fraction
l(x + a)/l(x) would survive over an additional a years; hence the number
of living mothers must be Bl(x)m(x) dx[l(x + a)/l(x)]l(a). A woman is
counted once for each birth that survives.

All this concerns one cohort of the mother generation. But we seek the
probability that a girl aged a, standing before us, has a living mother,
without any knowledge of which cohort her mother belonged to, or indeed
any knowledge other than the regime of mortality and fertility supposed
to apply to all generations and at all times. If births as a function of time
are B(t), and the present is time t, girls born x + a years ago numbered
B(t − a − x), and the number of living mothers (counted once for each
daughter) of all cohorts who gave birth to girls now alive and a years of
age is the integral∫ β

α

B(t − a − x)l(x)m(x)
l(x + a)

l(x)
l(a) dx. (15.1.1)

For the same birth function B(t) the number of daughters, that is, girls
born a years ago and surviving to the present, is

B(t − a)l(a). (15.1.2)

Hence the average number of mothers per daughter at time t is the ratio
of (15.1.1) to (15.1.2).
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Figure 15.2. Cohort of mothers giving birth at age x, and of daughters born at
age x of mother.

Now, if the age-specific rates of birth and death have been in effect for a
long period of time, the births will be growing exponentially, say according
to the curve B0e

rt, where r is determined by (6.1.2). Entering this for the
birth function in each of (15.1.1) and (15.1.2), taking the ratio of the first to
the second, and canceling l(a)B0e

r(t−a) from numerator and denominator
gives

M1(a) =
∫ β

α

l(x + a)
l(x)

e−rxl(x)m(x) dx (15.1.3)

for the probability that a girl aged a has a living mother under the given
regime of mortality and fertility (Lotka 1931).

All of the problems of this chapter can be solved in this way, by following
cohorts through time, then in effect taking a census at a certain moment,
and finding the ratio of one census aggregate to another. This does not of
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course constitute a census of the real population, which would show the
result of changing death rates over time, but is at best a simplified ab-
stract argument devised by analogy to counting population by means of
a census and births by means of registrations. Made possible by the de-
terministic assumption of Section 2.1, it requires no explicit considerations
of probability, yet it is both unnecessarily complicated and unnecessarily
restricted.

15.1.2 Living Mother by Conditional Probability
Alternatively, the life table l(x) column is taken, not as a cohort, but as
the probability of living to age x for a child just born, on the regime of
mortality assumed, with l0 = 1. The corresponding approach will provide
a result for M1(a) identical with (15.1.3).

In seeking the probability that a girl chosen at random out of a popu-
lation with birth rates m(x) and survivorship l(x) has a living mother, we
first note that the conditional case is easily solved. If the mother was a
known x years old when she gave birth to the girl, then the chance that
the mother is alive a years later must be l(x + a)/l(x). This probability,
conditional on the mother’s age at bearing the girl having been x, is the
first part of the solution.

It remains to remove the condition, which is not part of the problem; we
do not care about the age x of the mother at childbearing. To eliminate the
condition we average over all ages x, giving each x a weight proportional
to the number of births occurring at that age of mother under the regime
in question. The number of the stable population of ages x to x + dx per
current birth is e−rxl(x) dx, from Euler’s argument of Section 5.1, and the
births to this fraction are e−rxl(x)m(x) dx, still taken per one current birth.
The last expression is the fraction of births occurring to women aged x to
x + dx; once again, its total over all x is unity by the (6.1.2) defining r.
Hence the unconditional probability that the mother of the girl in question
is still alive is obtained by multiplying e−rxl(x)m(x) dx by the survivorship
l(x + a)/l(x) and totaling over all x.

This is the same expression, derived more compactly, that we obtained
as (15.1.3). Because of its compactness the probability method will be pre-
ferred in what follows. Note that (15.1.3) is more general than appeared
in our interpretation. The derivation did not require the fact that the girl
born a years ago is still alive, but consisted in finding the probability of
survival of the mother a years after a random birth. Whether the girl born
survived does not affect the value of M1(a), given independent regimes.

15.1.3 Probability of Living Grandmother
Now think of the grandmother of the girl aged a; we once again provisionally
take the latter as having been born at age x of her mother. The grandmother
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has to live x + a years after the birth of her daughter (the mother of our
girl aged a) to be alive now. The chance of a woman living x+a years after
the birth of her daughter as calculated above is M1(x + a). This is now to
be seen as the (conditional) probability that the grandmother of the girl
aged a is alive, given that the girl aged a was born when her mother was
x years old. To obtain the unconditional probability we again multiply by
e−rxl(x)m(x) and integrate out x:

M2(a) =
∫ β

α

M1(x + a)e−rxl(x)m(x) dx. (15.1.4)

Note that (15.1.4) again does not require the survival of the mother of the
girl aged a. It is merely the probability that the grandmother of a randomly
selected girl birth of a years ago is now alive.

The procedure supposes not only that the regime is fixed, but also that
successive generations are independently subject to the given mortality and
fertility. Independence of fertility between generations means, for example,
that there is no tendency for daughters born to young mothers themselves
to give birth at a young age, and it also disregards social class and other
differences in mortality and fertility within heterogeneous populations. This
is in addition to requiring birth and death to be independent, both in the
same and in different generations; it excludes the possibility that some
families have both high birth rates and high death rates. Finally, the chance
of a woman having a child at ages x to x+dx is taken as m(x) dx, whether
or not she had a child immediately before this. These several unrealistic
features of the model seem to have only a small effect on the probability
of living ancestors and descendants, though they are important for the
number of sisters, aunts, and nieces.

Once we have M2(a), the chance that a girl aged a has a living
grandmother, we can similarly use it to find the chance of a living great-
grandmother. Again suppose that the mother of the girl aged a was x
years old at the time of childbearing; the question whether a girl aged a
has a living great-grandmother is the probability that the grandmother
of the mother, born x + a years ago, is still alive. That the grandmother
survives x + a years after her granddaughter was born has probability
M2(x + a), so the unconditional probability that a girl aged a has a living
great-grandmother is

M3(a) =
∫ β

α

M2(x + a)e−rxl(x)m(x) dx. (15.1.5)

Once more, this does not require the mother or grandmother of the girl
aged a to be alive. The argument may be readily extended to even more
remote progenitors (Goodman et al. 1974).
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15.1.4 Numerical Examples
These and the other formulae of this chapter have been programmed by
Tom Pullum, and Table 15.1 shows his results for three countries—strictly
speaking, for three regimes of mortality and fertility—the United States,
1967; Venezuela, 1965; and Madagascar, 1966. The first two resemble each
other in mortality and the last two in fertility, as the following standard-
ized rates per thousand population having the United States, 1960, age
distribution show:

Country and year Birth rate Death rate

United States, 1967 16.71 9.12
Venezuela, 1965 41.82 10.97
Madagascar, 1966 44.48 29.10

Thus Venezuela and Madagascar both have about 2.5 times the fertility
of the United States, and Madagascar has about 3 times the mortality of
the United States and Venezuela. We will later seek a more precise way
of connecting the input mortality and fertility with the output kinship
probabilities, but the present comparison is suggestive.

Table 15.1 shows, for example, that the chance that a woman aged 20
has a living mother is about 0.96 for the United States, 0.93 for Venezuela,
and 0.71 for Madagascar. The complements of these numbers, 0.04, 0.07,
and 0.29, are the probability of orphanhood on the mother’s side. It was
in an effort to see how serious was the problem of orphanhood that Lotka
(1931) first developed (15.1.3). The greater difference between Venezuela
and Madagascar than between the United States and Venezuela is to be
expected; the chance of having living ancestors depends much more on
mortality than on fertility rates. Insofar as fertility affects orphanhood,
it is through the age of childbearing rather than through the number of
children born, as will appear in Section 15.6.

15.1.5 Stable Results Versus a Kinship Census
These formulae and the numbers of Table 15.1 have been worked out for
the specified regimes of mortality and fertility, taken as fixed through time
and the same in all generations. They are meant to answer the question:
what probability of having a living mother, grandmother, and so on does
the given schedule of birth and death rates imply?

The fraction of women aged 20 in the United States having living moth-
ers as ascertained by a survey or census would disagree with the result of
calculation by (15.1.3) for several reasons: changing mortality and fertility
over the preceding years, presence of immigrants from countries with dif-
ferent regimes, misstatement of age in the survey and in the vital statistics
on which our calculations are based, or failure of the various independence
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Table 15.1. Probability of living mother, grandmother, great-grandmother, and
great-great-grandmother, for a female aged a = 0, 20, 40, 60, based on mortality
and fertility regimes of the United States, Venezuela, and Madagascar

Ancestor and Age a

country 0 20 40 60

Living mother M1(a)
United States, 1967 1.000 0.959 0.785 0.298
Venezuela, 1965 1.000 0.932 0.707 0.223
Madagascar, 1966 1.000 0.713 0.386 0.061

Living grandmother M2(a)
United States, 1967 0.919 0.653 0.165 0.000
Venezuela, 1965 0.867 0.553 0.112 0.000
Madagascar, 1966 0.600 0.256 0.032 0.000

Living great-
grandmother M3(a)

United States, 1967 0.507 0.090 0.000 0.000
Venezuela, 1965 0.397 0.058 0.000 0.000
Madagascar, 1966 0.164 0.017 0.000 0.000

Living great-great-
grandmother M4(a)

United States, 1967 0.049 0.000 0.000 0.000
Venezuela, 1965 0.030 0.000 0.000 0.000
Madagascar, 1966 0.009 0.000 0.000 0.000

assumptions. Probability of living grandmother M2(a) requires indepen-
dence of two generations, and M3(a) of three generations. We know that
longevity runs in families, as well as being different for social classes, and
experimenting would be required to find the effect of the mortality cor-
relation between generations. All the formulae would become much more
complicated if they took account of such departures from the assumptions
of fixity and independence of the vital rates. One can only repeat that the
kinship implication of fixed and independent rates constitutes a different
kind of knowledge from a kinship census.

15.1.6 An Approximation
Insofar as the net maternity function is concentrated close to the mean age
of childbearing κ, the quantity l(κ + a)/l(κ) ought to be an approximation
to our M1(a). For United States, 1967, females with a = 20 this would
be l(46.281)/l(26.281). The life table shows l(x + 20)/l(x) for x = 25 as
0.96724, and for x = 30 as 0.95122; straight-line interpolation between
these values gives l(46.281)/l(26.281) = 0.963. This compares with the
more precisely calculated M1(20) = 0.959 of Table 15.1; the approximation
l(κ + 20)/l(κ) is slightly high, because the curve of l(x) is at this point
concave below.
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In the same way we would expect that the chance of a living grandmother
would be something like l(2κ + a)/l(κ). For United States women aged 20
the value is

l(2κ + 20)
l(κ)

=
l(72.562)
l(26.281)

=
0.65431
0.96734

= 0.676,

against the M2(20) = 0.653 in Table 15.1, or about 4 percent high. The
greater error for grandmothers than for mothers is due to greater variation
in age for the former.

Most of the difference between the crude and the correct estimate is
accounted for by the concavity of the survivorship curve, along with the
variance of ages of childbearing. To establish this, expand the ratio l(x +
a)/l(x) in M1(a) of (15.1.3) around κ by Taylor’s theorem, writing the
derivative of l(x + a)/l(x) at x = κ as [l(κ + a)/l(κ)]′, and so on:

l(x + a)
l(x)

=
l(κ + a)

l(κ)
+ (x − κ)

[
l(κ + a)

l(κ)

]′

+
(x − κ)2

2!

[
l(κ + a)

k(κ)

]′′
+ · · · ;

(15.1.6)

integrate over x after multiplying by e−rxl(x)m(x), so that the term in
x−κ vanishes; call the variance of ages of mothers σ2; and then factor out
l(κ + a)/l(κ) to obtain

M1(a) ≈ l(κ + a)
l(κ)

⎡
⎢⎢⎢⎣1 +

σ2

2

(
l(κ + a)

l(κ)

)′′

l(κ + a)
l(κ)

⎤
⎥⎥⎥⎦ . (15.1.7)

The correction in square brackets equals 0.9957 for United States females
of 1967, and produces (0.9631)(0.9957) = 0.9590 for M1(20) versus 0.9594
from the printout on which Table 15.1 was based.

For grandmothers the square bracket of (15.1.7) for the correction holds
approximately, but with 2κ in place of κ in each numerator. The correction
then is 0.963, and multiplying by l(2κ + 20)/l(κ) gives 0.651, versus the
true 0.653.

Presenting M1(a) in the form of (15.1.7) serves to show what feature of
the net maternity function mainly determines the probability of a living
grandmother: the mean age of childbearing κ acting through the factor l(κ+
a)/l(κ). The total of the net maternity function is absent, so to the (fairly
close) approximation provided by (15.1.7) the level of fertility has little
effect on probability of living ancestors. The variance of ages of childbearing
has a small effect, whose amount depends mostly on the second derivative
(i.e., the curvature) of l(κ + a)/l(κ). The l(x) curve is for the most part
concave downward up to about age 65, so that its second derivative is
negative. That the survival of mothers is negatively related to the variance
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of ages of childbearing wherever l(κ + a)/l(κ) is concave downward is the
conclusion from (15.1.7), but the effect is small.

Further conclusions from (15.1.7) are drawn in Section 15.6.

15.2 Descendants

To illustrate how this chapter is an extension of standard demographic
techniques the familiar net reproduction rate R0 will be put into a form
suitable for the counting of descendants.

If a cohort of girl births numbers B, born at time zero, the number
of survivors to age x will be Bl(x) on the deterministic model, and in
the interval x to x+ dx these will bear Bl(x)m(x) dx girl babies. The total
number of daughters to which the cohort will give birth during its existence
will be the integral of this last expression over x, and the average number
of daughters will be this integral divided by the girl births B:

R0 =

∫ β

α

Bl(x)m(x) dx

B

=
∫ β

α

l(x)m(x) dx.

(15.2.1)

This, the expected number of girl children to which a girl child will give
birth under the regime l(x)m(x), may be regarded as the ratio of one
generation to the preceding (cf. Section 11.3.4).

For the number of granddaughters we use (15.2.1) in relation to each
of the daughters. Thus, if the average number of girl babies at age x to
the mother cohort is expected to be Bl(x)m(x) dx, and if each of these is
expected to have R0 births, we multiply by R0 and again integrate up to
age β, now to find R2

0 granddaughters. Similarly the average number of
great-granddaughters expected by a girl child will be R3

0.
For incomplete generations the multiple integrals are formed in the same

way, but β is no longer the upper limit. If we want only girl children that
will have been born to a female by the time she is age a, where β � a � α,
the argument gives an expected∫ a

α

l(x)m(x) dx (15.2.2)

girl children. The expected number of granddaughters by the time the
original cohort is aged a � 2α can be obtained by noting that l(x)m(x) dx
daughters would be expected to have been born when the woman aged a
was x � α years of age; since each of these has up to age a − x in which to
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bear children, each would be expected to bear∫ a−x

α

l(y)m(y) dy

daughters in turn. Thus the total number of granddaughters will be the
product of this and (15.2.2) added through the possible x:∫ a

α

l(x)m(x)
∫ a−x

α

l(y)m(y) dy dx. (15.2.3)

All the above concern prospective descendants. Now we want to find the
average number of girl children that have already been born to women
aged a. The same cohort of B births has been followed down from time
zero, and by the time it reaches age a there are Bl(a) survivors. The total
number of children that have been born up to this time is the integral∫ a

α
Bl(x)m(x) dx, but we do not want to include all of them in our average—

we are concerned only with those born to mothers that lived at least to
age a. The fraction of mothers that lived from age x to age a is l(a)/l(x),
and this is the fraction that we will take of the daughters born at age x of
the mothers. Hence we have, for the total daughters expected to be born
to the mothers that survived to age a,∫ a

α

l(a)
l(x)

Bl(x)m(x) dx =
∫ a

α

Bl(a)m(x) dx,

and on dividing this by Bl(a) mothers living at age a we have the average
number of such daughters:

B1(a) =
∫ a

α

m(x) dx. (15.2.4)

This result is obvious when we consider that any woman alive at age
a > α was also alive at age x � a, and that her probability of bearing a
daughter in the interval x to x+dx was m(x) dx. Her total female births to
age a must therefore be given by (15.2.4), in which the l(x) function does
not enter. One minor difficulty is our assumption, unavoidable if existing
fertility tables are to be used, that the m(x) function is the same for women
who survived to age a as for all women.

How many of the
∫ a

α
m(x) dx daughters will still be alive by the time the

mother cohort is aged a? The fraction of daughters born at age x of their
mothers that survive to age a of their mothers, or a − x years, must be
l(a − x). Hence the number of daughters still alive of women aged a must
on the average be

BL1(a) =
∫ a

α

m(x)l(a − x) dx. (15.2.5)

We can build on these results to find expected granddaughters already
born for a woman aged a. Consider a daughter born at age x of the original
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cohort. By the time the original cohort is aged a, the daughter herself will
have averaged

∫ a−x

α
l(y)m(y) dy daughters as in (15.2.3). Integrating over

all daughters born to the original cohort gives us the double integral

B2(a) =
∫ a

α

m(x)
∫ a−x

α

l(y)m(y) dy dx (15.2.6)

for the average number of granddaughters so far born to women aged a.
To find the number of such granddaughters who are still alive we must

multiply within the inner integral by the chance of survival through the
years to the time when the original cohort is aged a (i.e., a − x − y years),
that is, by the factor l(a−x− y). Great-granddaughters and further direct
descendants raise no new problem.

15.3 Sisters and Aunts

To find the number of older sisters that a girl now aged a is expected to
have, we again set the provisional condition that she was born at age x
of her mother, when according to (15.2.4) her mother would be expected
to have had

∫ x

α
m(y) dy children. The condition on x is removed as before

by multiplying by e−rxl(x)m(x) dx and then integrating over x. Thus the
expected number of older sisters, say Sold, still alive or not, is

Sold =
∫ β

α

∫ x

α

m(y)e−rxl(x)m(x) dy dx. (15.3.1)

Because a mother aged x was necessarily alive at ages y younger than x,
we need no allowance for survivorship of the mother. Note that Sold does
not depend on the age a; a girl can hardly acquire additional older sisters
as she ages, and older sisters once born cannot decrease. Some of them,
however, are no longer living; to find older sisters now alive we need only
include the factor l(a + x − y) in the inner integral of (15.3.1), and this
makes the double integral a function of a, the age of the girl with whom
the calculation starts.

Younger sisters ever born require an allowance for survivorship beyond
the birth of the girl aged a, and their number must depend on a. If the
girl aged a was born when her mother was x years old, the chance that the
mother lived on to age x + u and then bore a child is [l(x + u)/l(x)]m(x +
u) du; integrating this over the possible values of u, then multiplying by
e−rxl(x)m(x) dx, and again integrating gives

Syoung
a =

∫ β

α

∫ a

0

[
l(x + u)

l(x)

]
m(x + u) du e−rxl(x)m(x) dx (15.3.2)

for the number of younger sisters. Again this result may be interpreted
more generally as the number of girls expected to be born to the mother
of a random birth in the a years following.
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15.3.1 A Paradox: The Average Girl Seems to Have Too
Many Sisters

We find that the average number of sisters ever born according to the
United States regime of mortality and fertility was 1.251 for a randomly
chosen woman aged a = 60 (Table 15.2), while the average number of girls
in the completed sisterhood or sorority was 1.26, the gross reproduction
rate. The two numbers are very close, yet no allowance has been made for
the woman aged a herself—one would have thought that the gross repro-
duction rate would equal Sold +Syoung

a +1. Have we inadvertently included
the woman as her own sister? An examination of the argument leading to
(15.3.1) and (15.3.2) will satisfy the reader that we have not. Nevertheless,
how can the sisters of a randomly selected girl number 1.251, so that with
her the sisterhood numbers 2.251, whereas the average number of girls ob-
tained as the gross reproduction rate is only 1.26? (Goodman, Keyfitz, and
Pullum 1975).

The answer lies in the manner of selection: the number of daughters of a
randomly selected mother is decidedly smaller than the number of sisters
plus one of a randomly selected girl. Consider the following hypothetical
distribution of total number of daughters (i.e., of completed sororities):

Number of Daughters Proportion of Cases

0 0.79
6 0.21

This would give the same gross reproduction rate of 1.26, but now all girls
have five sisters, as needs no calculation to establish. The mean size of
sororities when a girl is chosen at random is 6, very much larger than
the average of 1.26 when a family is chosen at random. Whenever there is
variation among mothers in childbearing, the estimate of the size of sorority
from a sample of daughters will be larger than the estimate from a sample
of families.

The difference between these two means can be expressed in terms of the
variance. Suppose that of completed sisterhoods fraction f0 is 0, f1 is 1,
and so on in the following scheme:

Table 15.2. Older and younger sisters ever born of a female aged a, birth and
death rates of the United States, 1967

a

Sisters 0 20 40 60

Older Sold 0.610 0.610 0.610 0.610
Younger Syoung

a 0.000 0.625 0.641 0.641
Total Sold + Syoung

a 0.610 1.235 1.251 1.251
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Number of Relative
daughters frequency

0 f0
1 f1
2 f2
...

...

where f0 + f1 + f2 + · · · = 1. Then the gross reproduction rate G is

G = 0f0 + 1f1 + 2f2 + · · · ,
the mean of the distribution, and the variance of the distribution is σ2,
where

σ2 = 12f1 + 22f2 + · · · − G2.

The probability that a randomly chosen girl is a member of a sorority
with zero members is 0, that she is a member of a sorority with one member
is proportional to f1, that she is a member of a sorority with two members
is proportional to 2f2, and so on. This distribution is very different from
the preceding one:

Size of Relative frequency
sorority of girls

0 0
1 1f1
2 2f2
3 3f3
...

...

Now the total frequency is 0 + 1f1 + 2f2 + · · · = G, and the mean is

0 + (1)(1f1) + (2)(2f2) + (3)(3f3) + · · ·
0 + 1f1 + 2f2 + 3f3 + · · · =

σ2 + G2

G

=
σ2

G
+ G, (15.3.3)

without approximation. The number of sisters of a randomly selected girl
equals this minus 1; i.e., S = (σ2/G) + G − 1.

If the random selection were of families, the sorority would average G.
The fact that the selection is of girls adds the term σ2/G, the variance of the
distribution of girls in families divided by the mean. Random selection of a
daughter will always give a larger sorority than random selection of a family,
as long as σ2 > 0, that is, as long as there is any variation in family size. In
the numerical calculation based on the formulae of this chapter the variance
of the distribution is nearly equal to its mean, a relation characteristic of
the Poisson distribution.
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This does not arise from data but from the model. Recall that we made
the probability of birth at any moment independent of births at all other
moments. No heterogeneity was allowed for among women. That is why
we ended with a Poisson distribution. In real populations some women are
sterile and others have many children. Such heterogeneity among women
negates the independence assumption and tends to make the variance
greater than the mean. On the other hand, insofar as a two-child family is
popular in birth-controlling populations, the variance is reduced.

15.3.2 Age Incidence of Childbearing Conditional on Birth
of One Child

Within any homogeneous group expressions 15.3.1 and 15.3.2 are exact if
m(y) in the first and m(x+u) in the second are conditional on the birth of
a girl aged a at age x of the mother. Lacking data showing birth rates at the
several ages for women who have had a birth at each age x, one is tempted
to use overall values of m(y) and m(x+u). Insofar as the chance of another
birth is zero in the months after a birth, a further impropriety is thereby
added to the one discussed in detail above. The notch in the curve allowing
for pregnancy and postpartum sterility would be compensated for in other
parts of the range of mother’s childbearing ages by the conditional m(y)
being higher than the average m(y) for the entire population. Moreover
the selection of mothers implicit in the fact that the ones we are concerned
with are of proven fertility would probably add further to the conditional
m(y) in those ages y where it is nonzero.

The points raised above for sisters apply also to aunts, cousins, nieces,
and other kin that are related through sisters.

15.3.3 Aunts
Sisters are aunts when seen from the viewpoint of the daughter of one of
them. For the number of aunts that are older sisters of the mother the
matter is simple; since Sold in (15.3.1) does not depend on the age of the
girl, it must be invariant when taken in relation to the daughter of the girl.
Thus Sold of (15.3.1) is also the expected number of aunts of a girl aged
a who are older sisters of the mother. Under a fixed regime of birth and
death, the same in both generations, a girl has the same expected number
of older sisters and of maternal aunts older than her mother. This of course
is not true of surviving sisters or aunts.

Aunts who are younger sisters of the mother, say Ayoung
a , are again first

obtained conditionally on the mother having been of age x at the birth of
girl now aged a (Figure 15.3). A mother who was then aged x must now
be aged x + a, if she is alive. The number of younger sisters expected for
a woman aged x + a is Syoung

x+a , entering the argument x + a in (15.3.2). As
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Grandmother of
girl aged a

Mother

Aunt born at
age y + u
of grandmother

Bt–ala
Girl aged a

y x

u

a

Figure 15.3. Lexis diagram for aunt born after mother.

earlier, we can use this result whether or not the mother is now alive. All
that remains is to integrate out the condition that the girl aged a was born
when her mother was aged x:

Ayoung
a =

∫ β

α

Syoung
x+a e−rxl(x)m(x) dx,

or written out in full so as to accord with Figure 15.3,

Ayoung
a =

∫ β

α

∫ β

α

∫ x+a

0

(
l(y + u)

l(y)
m(y + u)

)(
e−ryl(y)m(y)

)

×
(

e−rxl(x)m(x)
)

du dy dx.

The application of the same principles to nieces and first cousins (Figure
15.4) is found in Goodman, Keyfitz, and Pullum (1974). [The reader can
show how to go on to second- and higher-order cousins, as well as great
aunts and other distant relatives.]
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y x

z w

a

Grandmother of
girl aged a

Aunt born at age z < y
of grandmother

Mother of girl aged a

Cousin of girl aged a

Girl aged a

Figure 15.4. Lexis diagram for cousin of a girl aged a through mother’s elder
sister.

15.4 Mean and Variance of Ages

For each kin whose expected number can be calculated, so can the mean
age. Consider the descendants, for example, of daughters already born to
a woman aged a > α. These number

∫ a

α
m(x) dx, and their mean age must

be ∫ a

α

(a − x)m(x) dx∫ a

α

m(x) dx

= a − x̄a, (15.4.1)

where x̄a is the mean age of the childbearing function m(x) up to age a.
The mean age of children still alive to the same woman aged a is∫ a

α

(a − x)m(x)l(a − x) dx∫ a

α

m(x)l(a − x) dx

. (15.4.2)
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The mean age of granddaughters of women aged a > 2α is similarly∫ a

α

l(x)m(x)
∫ a−x

α

(a − x − y)l(y)m(y) dy dx∫ a

α

l(x)m(x)
∫ a−x

α

l(y)m(y) dy dx

. (15.4.3)

One can go to the variance of ages of descendants in the successive gen-
erations. Thus for the variance of ages of living daughters of a woman aged
a we would have

σ2
a =

∫ a

α

(x − ¯̄x)2m(x)l(a − x) dx∫ a

α

m(x)l(a − x) dx

, (15.4.4)

where ¯̄x is the mean age of women up to age a at the birth of their children,
weighted by the survival function l(a − x). Here, as elsewhere, no account
is taken of heterogeneity in ages and rates of childbearing, or of the spac-
ing of children imposed by the sterile period of pregnancy and afterward.
The simplification has negligible consequences for the expected number of
daughters, or for the probability of a living grandmother, but does matter
for expected sisters, aunts, and more distant collateral relatives, as well as
for variances in all kin.

15.4.1 Ascertainment
Such results illustrate the concept of ascertainment, the way information
has been obtained, used in genetics and applied in demography by Mindel
C. Sheps. Consider the expected children of a given person. When the per-
son is a child just born, her expected future daughters are

∫ β

α
l(x)m(x) dx

prospectively; once she has passed age β, they are
∫ β

α
m(x) dx retro-

spectively; the corresponding mean ages are
∫ β

α
xl(x)m(x) dx/R0 and∫ β

α
xm(x) dx/G0, the latter always being greater. The expected grandchil-

dren calculated retrospectively for a woman of 85 differ from the prospective
number of grandchildren of a child just born. In a cohort, individuals may
be ascertained by the occurrence of a “signal” event at some point in their
lives—the signal event may be having a second child, or being caught in a
survey at time t. (Sheps and Menken 1973, p. 341.) Expressions for extended
kin provide further illustrations.

15.5 Changing Rates of Birth and Death

This chapter has been restricted to the stable case, in which we suppose a
fixed regime of mortality and fertility to be in force over a long past period
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and continuing into the present. Yet the theory can be extended to cover
certain kinds of change in the regime.

For an example of how changing rates would be accommodated, let us
reconsider the probability that a woman aged a has a living mother, the
expression M1(a) of (15.1.3). The conditional probability that the mother
is alive, l(x + a)/l(x), must now be determined by the chance of survival
appropriate to the changing death rates actually experienced by the cohort
aged x+a at time t, that is, born at time t−x−a. The ratio l(x+a)/l(x) in
the formula would have to be taken from the appropriate cohort life tables,
a different table for each value of x. This is certainly possible, though
awkward enough that no one is likely to do it.

In addition the distribution of x, the age at childbearing, is affected by
the instability; if, for instance, the actual age distribution is younger than
the stable one, (15.1.3) has to be modified to allow a greater weight to l(x+
a)/l(x) for younger x, thereby increasing the probability that the mother is
still alive. Thus the factor e−rxl(x)m(x) in M1(a) would have to be replaced
by numbers proportional to the actual ages of mothers prevailing a years
earlier, say w(x|t − a). Result 15.1.3 would thus be replaced by

M ′
1(a) =

∫ β

α

l(x + a)
l(x)

w(x|t − a) dx,

where w(x|t − a) is the age distribution of women bearing children a years
ago, or at time t − a.

Analogous considerations permit a straightforward rewriting and reinter-
preting of all the formulae of this chapter in a way that dispenses with the
stable assumption insofar as it affects earlier age distributions. Goodman,
Keyfitz, and Pullum (1974) provide these more general formulae. Interpre-
tation for fixed rates is simple: the given schedules l(x) and m(x) imply
certain mean numbers of kin. The corresponding statement for changing
rates is unavoidably more complicated.

15.6 Sensitivity Analysis

A main use of the kinship formulae here developed is to ascertain the ef-
fect of changes in the demographic variables on kinship. How much does a
younger age of marriage and of childbearing reduce the number of orphans?
What is the effect of a fall in the birth rate on the number of grandchil-
dren of a person of a given age chosen at random? What does a uniform
improvement in mortality at all ages do to the number of living aunts of a
girl of given age?

Merely looking at the formulae does not tell much more than we know
without them. Intuition suggests that the fraction of girls aged a who have
living mothers must depend primarily on death rates (specifically those
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between the time of childbearing and a years afterward) and secondarily
on birth rates—most of all, on whether children are born at young or older
ages of mothers. In a smaller way yet it ought to depend on the overall
rate of increase, because with given death rates and with birth rates in a
given proportional distribution a faster growing population has somewhat
younger mothers. But a quick look at (15.1.3) reveals only that M1(a) is
a function of birth and death rates, without clearly suggesting the amount
or even the direction of the relation.

15.6.1 Decomposition of M1(a), the Probability of a Living
Mother

Once a computer program for an expression such as (15.1.3) for M1(a) is
available, it is possible to make small variations in any part of the input—
add 10 percent to the birth rates at certain ages while leaving the life
table intact, for instance—and see the effect on the probability of a living
mother. Here we will try to see how such variations operate theoretically, by
using the approximation to M1(a) developed as (15.1.7) or, written slightly
differently,

M1(a) ≈ l(κ + a)
l(κ)

+
σ2

2

[
l(κ + a)

l(κ)

]′′
. (15.6.1)

The main effect of raising the mean age of childbearing is to replace
mortality in an interval at the original κ with mortality around a + κ, as
is evident from application of (1.6.5):

l(κ + a)
l(κ)

= exp
[
−
∫ κ+a

κ

µ(t) dt

]
. (15.6.2)

If the death rate is nearly constant with age, or if a is small, M1(a) depends
little on the value of κ. The second term on the right-hand side of (15.6.1)
is negative through most of the life table and is considerably smaller than
the first, unless a is a very old age. The rate of increase of the population
enters only through κ, which for a given life table is younger the higher the
rate of increase.

If mortality µ(x) between κ and κ+a increases by an amount k at every
age, the survivorship l(κ + a)/l(κ) will diminish in the ratio e−ka, and this
is the only effect of a constant mortality addition on M1(a). Hence the
new M1(a) is equal to e−kaM1(a). The reason that the weighting factor
e−rxl(x)m(x) in (15.1.3) remains unaffected is that a uniform change in
mortality causes a change in r that offsets the change in l(x) as far as age
distribution is concerned, a matter discussed in Section 10.1.
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15.6.2 Other Progenitors
If mortality at all ages is increased in the uniform amount k, the probability
of a living grandmother will change to

M2(a) =
∫ β

α

e−k(a+x)M1(a + x)e−rxl(x)m(x) dx, (15.6.3)

which cannot be simplified without approximation. But let x be replaced
in e−k(a+x) by κ′, the mean age at childbearing for the mothers still alive.
Then, taking the exponential outside the integral, we have approximately

M2(a) ≈ e−k(a+κ′)M2(a).

For great grandmothers

M3(a) ≈ e−k(a+κ′+κ′′)M3(a),

where κ′′ is the mean age at childbearing for grandmothers still alive. In
practice we do not have data on κ′ or κ′′ and would suppose them to be
close to κ; hence the outcome in general is

M i(a) ≈ e−k[a+(i−1)κ]Mi(a). (15.6.4)

If k is small, so that e−ka is nearly 1 − ka, we obtain the following finite
approximations for the difference in the several Mi(a) on adding k to the
force of mortality:

∆M1(a) = −kaM1(a)

∆M2(a) = −k(a + κ)M2(a)

∆M3(a) = −k(a + 2κ)M3(a).

With these approximations, if one of two populations has mortality higher
at every age by 0.003, and if κ is 27.5, for women aged a = 20 the chance
of having a living mother is 0.94 as high as in the other population; of
a living grandmother, 0.86; and of a living great-grandmother, 0.78. On
the more precise (15.6.4) the last three numbers become 0.942, 0.867, and
0.799, respectively.

Venezuela has somewhat higher mortality than the United States; we
note from Table 15.1 that for a Venezuelan girl aged 20 the probability
of having a living mother is in the ratio 0.932/0.959 = 0.97; of a living
grandmother, in the ratio 0.85; of a living great-grandmother, in the ratio
0.64, all ratios to the United States. The gradient as one advances to more
remote ancestors is steeper than that of (15.6.4) based on fixed differences
of µ(x).

A more complete analysis would decompose the difference between the
two countries in, say, the probability of a living grandmother into two
components: (1) that due to mortality differences, and (2) that due to differ-
ences in the pattern of births. This is readily accomplished arithmetically,
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once an appropriate computer program is available, simply by permuting
the input data, as was done in Table 10.2.

15.6.3 Effect of Birth Pattern on Living Progenitors
The main variation in M1(a) as far as births are concerned occurs through
the mean age of childbearing κ. We found that

M1(a) ≈ l(κ + a)
l(κ)

;

therefore taking logarithms of both sides and differentiating gives

1
M1(a)

dM1(a)
dκ

= −
[
µ(κ + a) − µ(κ)

]
,

where µ(κ) is the force of mortality at age κ. In finite terms

∆M1(a)
M1(a)

≈ −
[
µ(κ + a) − µ(κ)

]
∆κ;

that is, the proportionate change in the chance of a living mother is minus
the difference in death rates over an a-year interval times the absolute
change in κ. With the death schedule of Madagascar, 1966 (Keyfitz and
Flieger 1971), and its κ of about 27.5, using for µ(27.5) the approximation
5M25 = 0.01740, and for µ(κ + a) = µ(27.5 + 20) = µ(47.5) the rate
5M45 = 0.02189, we have

∆M1(a)
M1(a)

≈ −(0.02189 − 0.01740)∆κ = −0.0045∆κ.

For each year later of average childbearing the chance of a woman of 20
having a living mother is lower by 0.45 percent.

The change with a is found in the same way to be

∆M1(a)
M1(a)

= −µ(κ + a)∆a,

and for a = 20, κ = 27.5, this is

−µ(47.5)∆a = −0.02189∆a.

For a 5-year interval the proportionate decrease in M1(20) ought to be 5
times as great or 0.109. In fact Table IIIa of Goodman, Keyfitz, and Pullum
(1974) shows

M1(25) − M1(15)
2

= −0.7817 − 0.6421
2

= −0.0698;

and as a proportion of M1(20) = 0.7126, this is −0.0698/0.7126 = −0.098,
about as close to −0.109 as we can expect with the crude approximations
used.
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Table 15.3. Effect of changed birth rate on probability of ancestor being alive,
Madagascar females, 1966

Difference in Probability of Having a Living:

Age of Great-
woman Mother Grandmother grandmother
a M 1(a) − M1(a) M 2(a) − M2(a) M 3(a) − M3(a)

After Lowering the Birth Rate for Women 20–24 by 0.01

0 0. −0.00268 −0.00529
20 −0.00025 −0.00423 −0.00109
40 −0.00228 −0.00103 −0.00000
60 −0.00067 −0.00000 −0.00000

After Lowering the Birth Rate for Women 40–44 by 0.01

0 0. +0.00395 +0.00404
20 +0.00109 +0.00345 +0.00057
40 +0.00199 +0.00051 0.00000
60 +0.00036 0.00000 0.00000

To find the effect of a change in fertility at particular ages one can run the
program twice, once with the observed regime of mortality and fertility, and
once with the specific birth rate for age 20–24 lowered by 0.01. Differences
for progenitors are shown in Table 15.3. A drop in fertility at age 40–44
lowers the average age of childbearing and hence raises the chance of a
living grandmother. Other items can be similarly interpreted.

15.6.4 Comparison of Effect of Birth and Death Rates
Robert Sembiring (1978) has experimented to determine whether the num-
bers of particular kin are affected more by birth or by death rates. As an
example of the procedure we consider the number of female cousins that a
girl aged a would be expected to have through her mother’s sister and use
the technique of permuting the input data, as in Section 10.1.

To separate the effects of mortality from those of fertility nine calcu-
lations were made of the curve of expected cousins by age. Three levels
of fertility were used, those of Costa Rica for 1960, the United States for
1959–61, and Sweden for 1958–62, all pertaining to 1960 or thereabout. The
gross reproduction rates of the three countries were 3.891, 1.801, and 1.080,
respectively. Each of these levels of fertility was paired with each of three
levels of mortality taken from the Coale and Demeny West series model
tables, with

o
e 0 values of 70, 55, and 40. The numbers chosen represent ap-

proximately the range of mortality and fertility among human populations.
The resulting nine curves for the average number of living cousins in the
female line (i.e., daughters of maternal aunts) are shown in Figure 15.5.
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Figure 15.5. Expected number of cousins still alive.

The three curves for high (Costa Rican) fertility are above those for in-
termediate fertility, and these again are mostly above those for low fertility.
Apparently fertility has more effect on the number of living cousins than
does mortality. With high fertility the number of cousins reaches a sharp
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Table 15.4. Mean number of living first cousins in the female line of a woman
aged 20, for artificial populations constructed by fertility of Costa Rica, the
United States, and Sweden, about 1960, in all combinations with mortality of
Coale–Demeny model West tables having

o
e 0 values of 40, 55, and 70 years

Fertility

Costa Rica United States Sweden
Mortality G0 = 3.891 G0 = 1.801 G0 = 1.080
o
e 0 = 40 4.7292 1.0998 0.4009
o
e 0 = 55 7.9888 1.8502 0.6789
o
e 0 = 70 11.3518 2.6006 0.9657

peak at ages 25 to 45; with lower fertility and lower mortality the curve
peaks less sharply. Note that no actual population combines a gross repro-
duction of 3.891 with an expectation of life of 70 years; therefore the peak
of 12.633 female maternal parallel cousins is purely hypothetical. The com-
bination of United States or Swedish fertility with this high expectation of
life represent possible real situations.

All of the expressions in this chapter apply to male as well as to female
kin, but with one difference. This difference arises out of the fact that
we know the mother was alive at the birth of her child, but we know
only that the father was alive 9 months before the birth. To apply to
males, the formulae would have to be adjusted for the three-quarters of a
year of additional mortality, which could be appreciable for certain kin in
populations subject to high death rates.

A rough approximation to the total number of first cousins (i.e., of
both sexes) would be obtained by multiplying the material parallel female
cousins here given by 8; this would be improved by making the correspond-
ing calculation for the male line and for mixed lines. An approximation to
the number of cousins implied by other schedules of mortality and fertility
would be obtained by two-way quadratic interpolation, using

o
e 0 and the

gross reproduction rate as indices. This is especially feasible for mortality;
note that the number of cousins for

o
e 0 = 55 is almost exactly the mean

of the numbers for
o
e 0 = 40 and

o
e 0 = 70 (Table 15.4). Interpolation may

be useful even with an available program because of the large amount of
computer time required for the exact calculation.

15.7 The Inverse Problem: Deriving Rates from
Genealogies

The inverse problem is of practical interest to those who must make in-
ferences regarding birth and death rates for areas or times for which
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registration systems are not in existence, or if in existence are grossly in-
complete. For a given genealogy, the problem now is to find the regime of
mortality and fertility.

If one-half of women aged 40 have living mothers in a certain population,
what is the expectation of life? According to Table 15.1, Venezuela showed
a probability of 0.707 and Madagascar of 0.386, and these had

o
e 0 values of

67.7 and 38.5 years, respectively. By straight-line interpolation, supposing
ages at childbearing to be sufficiently similar among all three populations
to leave the answer unaffected, we find

o
e 0 = 48.9 corresponding to our

M1(40) = 0.5.
Looked at formally, what were relatively simple integrals to evaluate

when the regime of mortality and fertility was given become difficult—in
most instances unsolvable—integral equations when the mean number of
kin is known but the regime is unknown. If we observed mean numbers
of the various living kin, we would have a set of equations, most of them
containing multiple integrals, and they would have to be solved as a simul-
taneous set. Thus all of the expressions for different kin might be equated
to observations and solved simultaneously for the unknown rates of birth
and death.

Yet for many practical purposes we can avoid most of the difficulties just
mentioned by supposing that all life tables can be laid out in a straight
line, indexed by the expectation of life at age 0 or age 10, and correspond-
ingly that schedules of childbearing can be arranged according to the gross
reproduction rate G0. All variations in mortality and fertility beyond these
two dimensions will be neglected in this simple method.

If the number of cousins to women aged 20 is represented as a height
above the (G0,

o
e 0) plane, so that the collection of such information re-

garding women aged 20 is a quadratic surface over the plane, an observed
number of cousins can be represented by a plane parallel to the (G0,

o
e 0)

plane and cutting the quadric surface in a second-degree curve, which may
now be projected down onto the (G0,

o
e 0) plane. To make the regime en-

tirely determinate we need some other fact about kin. Continuing to confine
ourselves to age 20 for the sake of this example (though we need not stay
with the same age), we note the fraction of women aged 20 having a liv-
ing mother. This also can be represented as a quadric surface over the
same (G0,

o
e 0) plane, and the given observation as a plane again cutting

the quadric surface in a quadratic. The intersection of the two quadratics
gives the regime of mortality and fertility. The object is to choose kin that
provide curves intersecting as nearly as possible at right angles to each
another. Examples are probability of living mother (or grandmother) and
number of daughters (or granddaughters) ever born.

In practice any one pair of observations will be unacceptable as neglecting
most of the data. Indeed, errors are so pervasive that we will do none too
well using all of the information available. A large number of data pairs will
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each provide a point of intersection, and with given accuracy of enumeration
the precision of any point will be greater the closer the lines defining it come
to making a right angle with each other. The several estimates obtained
from pairs of kin can be weighted by the sine or other suitable function of
the angle that the lines make with each other.

15.8 Incest Taboo and Rate of Increase

An incest taboo has the advantage for the group that adheres to it of com-
pelling biological and social mixing, and of stirring individual initiative in
the search for a mate. In addition, it avoids the confusion that would result
if one’s father were also one’s uncle, these being very different roles in most
societies. It promotes political alliances among families, and it avoids in-
trafamilial conflict over women. Most such advantages are greater the wider
the degree of incest prohibition: a taboo reaching as far as second cousins
will compel more mixing than a taboo against brother–sister matings only.

But a price has to be paid for the advantages—the wider the taboo, the
more individuals will fail to find mates, especially in sparsely settled pop-
ulations. From the viewpoint of reproduction the incest taboo is a luxury,
and the question is how much of it a group can afford. The ideal approach
would be an analysis of trade-offs: find the point at which the advantages
of increased mixing are exactly offset by the lesser reproduction. Unfortu-
nately the elements of this equation are incommensurable, and no theory
seems to exist that will provide a quantitative measure of the net advantage
of mixing.

However, it is possible to deal with one side of the problem: the cost
in rate of increase of various degrees of incest taboo. Though determi-
nate, this is mathematically difficult, as are all questions of population
increase in which the rate of reproduction depends on the size of the group
and the random number of possible mates. Having little hope of finding a
closed solution, Hammel (1972, Hammel et al. 1976, 1979) and his coworkers
addressed the problem by simulation.

They used mortality rates assembled from the Maghreb and ancient
Rome, and fertility rates from the Cocos-Keeling Islands, reduced by 20
percent to be slightly below stationarity without any incest taboo. A group
of 65 individuals with a kinship structure of three generations of genealog-
ical depth was derived from the previous evolution of the model. Five runs
were then made with no incest prohibition, five with a prohibition of one
degree (sibling and parent–child), five with a prohibition of two degrees (up
to first cousin), and five with a prohibition of three degrees (effectively up
to second cousin). All runs covered 100 years.

The outcome, as anticipated, was a more rapid rate of population de-
crease the broader the taboo. With no taboo the mean of the five runs was
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a rate of r = −0.001; with sibling and parent–child exclusion the mean
was −0.006; with exclusion up to first cousin the mean rate was −0.018;
with exclusion up to second cousin the rate was −0.036. The one-degree
prohibition apparently costs 0.005, the two-degree an additional 0.012, and
the three-degree a further 0.018 lowering of r, on this rough model.

Insofar as the rates used were realistic, a breeding group of the order of
65 individuals could not afford any exclusion, not even siblings. However,
as mentioned above, the authors had reduced the Cocos-Keeling fertility
by 20 percent. A group that would increase at 1 percent per year with no
taboo at all could tolerate the sibling and parent–child taboo, which would
reduce it to 0.01− 0.005 = 0.005; but it could not afford to go as far as the
first cousin taboo, which would bring it down to 0.005−0.012 = −0.007, or
a half-life of a century. The calculation suggests that the incest taboo, aside
from its other functions, is capable of holding down the rate of increase in
small dispersed populations.

15.9 The Bias Imposed by Age Difference
on Cross-Cousin Marriage

Among social groups practicing cross-cousin marriage, more instances have
been observed of Ego, a male, marrying his mother’s brother’s daughter
(MBD) than his father’s sister’s daughter (FSD). It is also usual for men
to marry women younger than themselves. The question is whether the age
bias by itself would lead to the bias toward MBDs. A realistic model would
be complicated, but the effect of brides being younger than grooms can be
shown with some simplified arithmetic (Hammel, 1972).

Consider a population in which men marry 5 years older than women,
and children are born to the couple when the husband is age 25 and the
wife age 20. Brothers and sisters are all the same age. Then, if Ego (male)
is age E, his father will be age E + 25, and his father’s sister also E + 25.
His FSD will be E +25−20 = E +5. On the other hand, his mother will be
E+20, his mother’s brother also E+20, and his MBD E+20−25 = E−5.
Thus, of the two kinds of cross-cousins, the FSD is 5 years older than Ego.
If he is seeking a bride 5 years younger, he will find the MBD the right age.

A similar calculation can be made for parallel cousins. Ego’s father being
E + 25 years of age and his father’s brother also E + 25, his FBD is E +
25−25 = E, and similarly for the other parallel cousin, designated as MSD.
Parallel cousins are the same age as Ego on this simple model.

These purely demographic (some would say, merely logical) considera-
tions mean that the tendency for men to marry kinswomen younger than
themselves leads to the MBD marriage. Of the four kinds of cousins only
MBDs are the right age to permit men to be older than their brides
generation after generation.
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Hammel was the first to point out that age preferences for either older
or younger wives would have equivalent effects, and indeed that any heri-
table property would work as well as age. The contribution of Hammel and
Wachter was to show by simulation that the effect remains considerable
even in the face of all the obvious sources of randomness and to study the
dependence of the effect on the size of the age gap. Simulation has been use-
ful here and in other instances where analytic solutions are out of reach.
Kunstadter et al. (1963) used it to find the fraction of individuals who
would have an MBD cousin to marry in a tribe when that was preferred.

The approach in this chapter, via stable population theory, takes a deter-
ministic approach appropriate for large populations. We should, however,
point out two other important approaches, both of which take more account
of individuals and their properties. First, we might recognize that the vital
rates apply as probabilities to discrete individuals. If we suppose that they
do so independently, we are led to stochastic branching process models (a
simple branching process model appears in Section 16.4; see also Chapter
15 of MPM). These models have been used by Pullum (1982, Pullum and
Wolf 1991) to derive entire probability distributions of the numbers of kin
of various kinds, but without taking the age-specificity of the vital rates
into account.

If we take this approach to its limit, we would want to keep track
of each individual, with all of his or her i-state variables (age, marital
status, health, employment, etc.) and relationships to other individuals.
We would then apply to each individual the probabilities of birth, death,
marriage, and any other demographic transitions of interest. Doing so re-
peatedly would project the population forward in time subject to those
rates. Repeating that exercise many times would produce the probability
distribution of population trajectories (including all the information on all
the individuals) implied by the vital rates. Such models are called i-state
configuration models (Caswell and John 1992) or individual-based models
(DeAngelis and Gross 1992, Grimm et al. 1999) in the ecological liter-
ature, and microsimulation models in the human demographic literature
(e.g., Wachter et al. 1997, Wolf 2001). They have been applied to problems
of kinship by, e.g., Hammel et al. (1979), Ruggles (1993), Wachter et al.
(1997), Wachter (1997), and the chapters in Bongaarts et al. (1987).

The approaches of the 15 chapters through this one may be called
macrodemography, following a usage going back through sociology, eco-
nomics, and physics, ultimately to a source in Greek metaphysics.
Microsimulation methods are an example of microdemography, in which
properties of individuals and their random variation are recognized as the
source of change in population aggregates. Chapter 16 introduces some
aspects of microdemography.
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Microdemography

Physics accounts for heat by the motion of molecules, medicine accounts for
disease by the action of germs, and economics accounts for aggregate prices
and production by the activities of individuals seeking to maximize their
utility. The fact that nontrivial problems of aggregation arise, and that
the microelements often turn out on closer examination to be unrealistic
constructions, does not deprive them of explanatory and predictive value.

Microdemography helps us to understand such macrophenomena as birth
rates of regions and nations. How much reduction of the birth rate results
from couples substituting 99 percent efficient contraception for methods 95
percent efficient? If the number of abortions was equal to the number of
births in a country, could we conclude that suppression of abortion would
double the number of births? How can the probability of conception be
measured? What difference does it make to the increase of a population if
parents aim for three children rather than two? These and other questions
of microdemography are the subject of the present chapter.

16.1 Births Averted by Contraception

The theory of birth as a Markov renewal process have been developed by
Sheps (1964, Sheps and Perrin 1963, Sheps and Menken 1973), and Potter
(1970) has shown how this theory can be applied to calculate births averted.
Tietze (1962) was a pioneer in this field and Lee and Isbister (1966) made
important early suggestions.
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In conception and birth models a woman is thought of as going through
pregnancy and birth, and then again pregnancy and birth, in periodic fash-
ion, with a longer or shorter cycle. Our main effort here is devoted to finding
the length of the cycle under various conditions, and to showing how that
tells us the birth rate. First consider a couple who have just married, engage
in intercourse without using birth control, and are fecund. Let the proba-
bility of conception for a nonpregnant woman in any month be p, and of
not conceiving be q = 1−p. Until further notice, all conceptions leading to
miscarriage or stillbirth will be disregarded. Thus p is the probability of a
conception leading to a live birth. The first question is the expected time
to conception.

The probability that the time to conception will be 1 month is p, that
it will be more than 1 month is q, that it will be 2 months is qp, that it
will be 3 months is q2p, and so on. Multiplying the probability of exactly
1 month by 1, of 2 months by 2, and so on, gives t, the mean number of
months of waiting until conception:

t = p + 2qp + 3q2p + · · · .
To evaluate this we replace each p by 1 − q to obtain

t = 1 − q + 2q(1 − q) + 3q2(1 − q) + · · · ,
which permits canceling and leaves only the geometric progression

t = 1 + q + q2 + · · · ,
which converges for q less than 1. To find the sum we multiply by q and
note that the right-hand side is the same infinite series for t, except that
the 1 is missing. This provides the equation qt = t− 1, from which t equals
1/(1 − q), a result familiar in high-school algebra. Hence the mean time
to conception is t = 1/(1 − q) = 1/p. If the chance of conception is zero,
the waiting time is infinite and the argument loses its interest. Hence we
consider fecund women only, defined as those for whom p is a positive
number; the argument does not apply to perfect contraception.

The time to conception is the first of two intervals that make up the con-
ception and birth cycle. The second is the nonfecund period that includes
about 270 days of pregnancy plus postpartum sterility. The length of the
postpartum anovulatory period depends on lactation and other factors, and
we need to be detained by variation and uncertainty regarding its length,
but will simply call the entire expected period of pregnancy and postpar-
tum sterility s. This period also includes any time lost by spontaneous or
voluntary abortion.

Then the average length of the cycle is

w =
1
p

+ s months. (16.1.1)
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Figure 16.1. Hypothetical average cycles of conception and birth for natural
fertility and for contraception of 90 percent efficiency.

Knowing the length of the cycle is the equivalent of knowing the birth
rate for the population; if all women produce a child every w months, the
average monthly birth rate is 1/w and the annual birth rate is 12/w.

To illustrate (16.1.1) numerically, if p = 0.2 and the mean value of s is
17 months, the length of the cycle between births is 22 months, and the
birth rate is 1/[(1/0.2) + 17] = 1/22 per month, or 12/22 per year. The
problem of measuring p will be the subject of Section 16.2; in this section
it is assumed to be known.

The argument resembles that underlying the stationary population in
Chapter 2, except that here no variation in the probability in successive
months is allowed. If the death rate is µ dx from age x to x + dx, µ being
the same for all ages, then the expectation of life at any age, as we saw, is
1/µ years. Month-to-month variation in the probability of conception needs
to be recognized, just as variation with age was recognized for deaths, and
the life table technique applied to conception is discussed in Section 16.2.

The purpose of contraception is to reduce the probability of conceiving,
which has the effect of increasing the time between successive births. We call
the efficiency of contraception e, defined by the reduction in the probability
of conceiving: if probability for a given month is p without protection, a
contraceptive of efficiency e reduces this to p(1−e), say p∗. Conversely, if we
know that the probability of conception without protection is p, and with a
certain contraceptive is p∗, then solving for e in the equation p∗ = p(1 − e)
gives e = 1 − p∗/p. If the probability is p = 0.2 without protection and
p∗ = 0.02 with a given contraceptive, the efficiency is 1 − 0.02/0.2 = 0.90
or 90 percent.

To find w∗, the length of the cycle with contraception, we need not begin
the argument over again, but only multiply p by 1− e in the expression for
w to obtain the new lower probability of conception, and enter this product
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in (16.1.1):

w∗ 1
p(1 − e)

+ s. (16.1.2)

Contraception is considered to have no effect on the sterile period s.
Imagine two groups of women, the first group not practicing contracep-

tion and having length of cycle w = (1/p) + s, and the other practicing
contraception of efficiency e, with length of cycle w∗ as in (16.1.2). Then
w∗/w of the cycles of the first group fit into each of the cycles of the sec-
ond group (Figure 16.1), and this is the ratio of the birth rates for the
two groups. In other words, if the birth rate for the unprotected group is
1/w and for the contracepting group is 1/w∗, the first has a birth rate
(1/w)(1/w∗) = w∗/w times that of the second.

The model is crude in omitting many factors, including end effects that
could dominate if birth rates are very low. But it suffices to show that 90
percent efficient contraception does not lower the birth by 90 percent. For
if, as before, the probability of conception with unprotected intercourse
is 0.2 and the sterile period of pregnancy and afterward is 17 months,
the waiting time will average (1/0.2) + 17 = 22 months. With 90 percent
efficient contraception this increases to 1/[(0.2)(0.1)] + 17 = 67, or just 3
times as long. Ninety percent efficient contraception reduces the birth rate
by only two-thirds, rather than the nine-tenths that would apply if there
were no sterile period. To put the matter intuitively, contraception can
serve no purpose during a time when a woman is sterile anyway.

The technique of comparing two groups of women, one using no contra-
ception and the other using a method of given efficiency, disregards the
facts that women differ from one another in fecundity, that each woman
does not continue to use a particular method indefinitely, and that the
natural fecundity of each woman declines, ultimately to zero around age
50. The model hardly simulates what happens when contraception is used
for a relatively short period of time like a year or two by a heterogeneous
group of women; it offers a way of thinking about the matter that retains
some of the essential features, and it helps to avoid some gross fallacies.

Abstention. One absolutely certain method of contraception is complete
abstention from intercourse, but this is too drastic for general use, and
partial abstention is the utmost that can be aspired to in practice. Suppose
that a couple decide to abstain on every second occasion, without regard to
the time of month. Even this represents a considerable degree of restraint;
what is its effect on births? Insofar as the restraint reduces the probability
of conception by one-half, it is equivalent to a contraceptive of efficiency
e = 0.5. With parameters p = 0.2 and s = 17 months, the ratio of monthly
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birth rate with 50 percent abstention to that with no abstention must be

1/w∗

1/w
=

w

w∗ =
(1/p) + s

[1/p(1 − e)] + s

=
(1/0.2) + 17

[1/(0.2)(1 − 0.5)] + 17
=

22
27

= 0.81.

(16.1.3)

The 50 percent restraint would reduce the birth rate by only about 19
percent. This would be improved if something better than random timing
of intercourse could be arranged.

16.1.1 Births Averted—The Causal Inference
The original inspiration for such models as these was the attempt to relate
activity in the dissemination of the means of contraception to decline in
the birth rate. A typical question concerns the effect on births of inserting
intrauterine devices (IUDs) in 1000 women. First suppose that the IUDs
are of 97 percent efficiency, that they will remain in place indefinitely, and
the women in question have previously been unprotected. With our same
p and s again, the ratio of the new to the old birth rate would be

1/w∗

1/w
=

w

w∗ =
(1/0.2) + 17

[1/(0.2)(1 − 0.97)] + 17

=
22
184

= 0.12,

which tells us that 88 percent of births would be averted from then on-
ward. In absolute numbers, without the IUDs the 1000 women would
have 1000(12/22) = 545 births per year; with the IUDs they would have
1000(12/184) = 65 per year, so that 480 births would be averted.

This calculation may well be correct. Natural fertility is indeed to be
found in some places. But far more common, even in very high fertility
populations with birth rates of 40 per thousand or above, are primitive but
not wholly ineffective means of contraception. Even when the population as
a whole shows a very high birth rate, it can contain some couples practicing
relatively efficient contraception.

The crucial assumption of the above calculation that 88 percent of births
are averted is that the IUDs would take the place of unprotected inter-
course. The question, “How many births would be averted by the insertion
of 100 IUDs?” implies a causal analysis and cannot be answered without
first answering a subsidiary question: “What would the women be doing
in the absence of the IUDs?” If there were a selection of the women who
turned up for insertion of IUDs, by which most were in any case practic-
ing relatively effective birth control, the answer in regard to births averted
would be very different from the 88 percent above.
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To go to an extreme, suppose that the couples were using periodic absten-
tion in the hope of avoiding the fertile period, or condoms, or a combination,
and somehow attaining 90 percent efficiency. This means that in the absence
of the IUDs the probability of conception would be 0.1 of the chance with
unprotected intercourse, and hence the interval between pregnancies, again
supposing p = 0.2 and s = 17 months, would be 1/[(0.2)(1−0.90)]+17 = 67
months.

If the same conditions applied in the future, the birth rate would be 1/67
per month without the IUDs, and 1/{[1/(0.2)(1− 0.97)]+ 17} = 1/184 per
month with them. Now births would be 67/184 = 0.36 of what they would
have been, so 64 percent would be averted. Births per year among the
1000 couples would be 12,000/67 = 179 without the IUDs, and 65 with
them. On these assumptions the credit to the activity of fitting 1000 IUDs
would be 114 births per year. If, however, the alternative that the couples
would use in the absence of IUDs was 95 percent efficient, avoidance of only
103 − 65 = 38 births could be credited to the IUDs.

To suppose that no contraceptive would be used in the absence of the
IUD gives 480 births averted per 1000 insertions; if the alternative to the
IUD is 90 percent efficient contraception, 114 births are averted; if the
alternative is 95 percent efficient contraception, the births averted are 38.
The variation in the apparent effectiveness of the family planning effort
with seemingly small variation in the assumptions is distressing, but any
attempt to get around it must face the basic fact that no birth can be
averted that was not going to occur.

An example of the way the arithmetic operates is given by comparing
two cases: (1) a population using contraception of 50 percent efficiency, and
(2) another population of which half use contraception of perfect efficiency
and the other half use no contraception. The birth rate per month for the
first case is 1/[(1

2p) + s]; for the second, 1
2{1/[(1/p) + s]} + 1

2 (0). With
p = 0.2 and s = 17, the first is 1/27, the second, 1/44. Thus the birth rate
in the first case would be 44/27 times the birth rate in the second, that is,
63 percent higher.

16.1.2 Marginal Effect
One of the applications of this approach is to determine the result of a slight
improvement in efficiency—a better IUD, a superior condom, slightly more
careful use of the condom. Suppose that efficiency is raised from e to e+ δ.
Then average births averted per year are

Births averted
per year per woman =

12
[1/p(1 − e)] + s

− 12
[1/p(1 − e − δ)] + s

.

If f(e) = 12/{[1/p(1 − e)] + s}, the additional births averted are ap-
proximately equal to f ′(e)δ; hence we need the derivative f ′(e), which
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Table 16.1. Birth rates per month with various degrees of contraceptive efficiency,
based on p = 0.2 without protection, and s = 17

e
1

1
p(1−e) + s

0.00 0.04545
0.01 0.04535
0.05 0.04492
0.50 0.03704
0.75 0.02703
0.90 0.01493
0.94 0.00997
0.95 0.00855
0.96 0.00704
0.97 0.00544
0.98 0.00375
0.99 0.00193
1.00 0.00000

is

f ′(e) = −
(

12
{[1/p(1 − e)] + s}2

)(
1

p(1 − e)2

)
.

Thus the additional births averted by a year of increase δ in efficiency, as
a fraction of the number that would otherwise have occurred, are

−f ′(e)δ
f(e)

=
δ

(1 − e)[1 + sp(1 − e)]
. (16.1.4)

The values of this expression for four values of e and p = 0.2, s = 17 are
as follows:

Further
fraction averted

by improvement δ
e in efficiency

0 0.23δ
0.9 7.46δ
0.95 17.09δ
0.97 30.25δ

Evidently to go from no protection to a contraceptive of 1 percent effi-
ciency averts only 0.23δ = (0.23)(0.01) = 0.23 percent of births. On the
other hand, to go from a contraceptive of 97 percent efficiency to one of
98 percent efficiency averts over 30 percent of births. The extra 1 percent
of efficiency is 130 times as effective in lowering pre-existing births at the
97 percent level as at the 0 percent level. [Express the relative efficiency in
terms of possible births.]
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Figure 16.2. Curve of monthly birth rates at various efficiencies of contraception,
p = 0.2 and s = 17 months.

Table 16.1 provides both a verification of these numbers and an illustra-
tion of their meaning. To go from 0 to 0.01 efficiency (a difference δ = 0.01)
decreases the monthly birth rate by 0.04545−0.04535 = 0.00010 on 0.04545,
or 0.0022, which is 0.0022/0.01 or 0.22, and multiplying by δ this is the
same except for rounding as the 0.23δ above. To go from 0.96 to 0.98 ef-
ficiency is to lower the birth rate from 0.00704 to 0.00375, a difference of
0.00329, or 0.00164 per 0.01 of increase in efficiency. As a fraction of births
at 0.97 efficiency (Table 16.1) this is 0.00164/0.00544 = 0.301, or 30.1δ,
since δ = 0.01, in agreement except for slight curvature and rounding with
the 30.25δ given above.

Figure 16.2 shows monthly birth rates as a function of efficiency of contra-
ception for the simple model here used. The numbers in the table following
(16.1.4) give the relative slope at four points in the curve.

16.1.3 Dropping the Contraceptive
We have been considering an IUD, a supply of pills, or other “segment,” as
Tietze and Potter call it, of contraception, and have calculated the effect per
year, as though everyone would use the supply according to instructions and
without interruption. But we know that different individuals continue to be
careful for different lengths of time. A rough way of taking this into account
is to suppose each woman has a probability d of dropping the contraceptive
in each month. During one segment the probability of conception in a given
month is p′ (supposed the same for all women and for all times), and the
probability in any month of dropping the contraceptive for the women who
do not become pregnant while using it is d.

All of the above refers to a particular month, and we suppose that the
women are followed through time until they either become pregnant or drop
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the contraceptive. One of these happening in the first month has probability
p′ + d; its not happening in that month but happening in the next month
has probability (1 − p′ − d)(p′ + d); its happening in the third month for
the first time has probability (1 − p′ − d)2(p′ + d); and so on. If we write q
for 1 − p′ − d, the sequence is

(1 − q), q(1 − q), q2(1 − q), . . . .

The mean number of months of exposure is

(1 − q) + 2q(1 − q) + 3q2(1 − q) + · · · = 1 + q + q2 + · · · =
1

1 − q

=
1

1 − (1 − p′ − d)
=

1
p′ + d

,

before the woman passes out of the group either through becoming pregnant
or dropping the contraceptive.

Among the women who leave the group of nonpregnant contraceptive
users during a particular month, the proportion d/(p′ + d) do so through
dropping the contraceptive, and p′/(p′ + d) do so through becoming preg-
nant. If, in each case, this is the fraction in every single month, it is also
the fraction in all months together. Thus d/(p′ + d) of the original group
of women will sooner or later drop the contraceptive and we suppose that
they revert to natural fertility; their chance of conceiving in any month
becomes p. The model follows all women to pregnancy, either while using
the contraceptive or subsequently. With the same argument, now applied
to p rather than to p′ +d, their mean time to pregnancy after dropping the
contraceptive will be 1/p.

Thus all women average 1/(p′ + d) months until they drop the contra-
ceptive or become pregnant; d/(p′ +d) of them drop the contraceptive, and
these take another 1/p months, on the average, to become pregnant. Then
the expected time to pregnancy for all of the women is

t =
1

p′ + d
+

d

p′ + d

(
1
p

)
. (16.1.5)

The model for births averted once again consists of comparing two groups
of women, one group initially using the contraceptive and the other never
using it, and following through successive segments. Those initially using
the contraceptive will take an average of t months to become pregnant;
those not using it, an average of 1/p months. Suppose again that the non-
fecund time of childbearing plus the postpartum anovulatory period is s
months for all women, and that we count only pregnancies leading to live
births (i.e., disregarding miscarriages and stillbirths). Then those practic-
ing contraception will average a live birth every t+s months, that is to say,
their monthly birth rate will be 1/(t + s). The group not using the contra-
ceptive will average a birth every (1/p) + s months, and the corresponding
rate is 1/[(1/p) + s]. The problem is now solved: the reduction in monthly
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birth rates due to the contraceptive is the difference

1
(1/p) + s

− 1
t + s

,

and as a fraction of the birth rate without the contraceptive this reduces
to

1 − (1/p) + s

t + s
. (16.1.6)

If an IUD is 95 percent efficient and is inserted in each of a group of
women of natural fertility with p = 0.2 chance of a pregnancy leading to
a live birth each month, so that for protected women the chance of an
accidental pregnancy is 0.01 each month, and if the chance of a woman’s
dropping the contraceptive and reverting to natural fertility in any given
month is d = 0.03, and if the nonfecund period of pregnancy and its after-
math is s = 17 months, then t = 28.75 months. Expression 16.1.6 says that
users of the method avert 0.52 of the births that would otherwise occur.

But we should take account of the fact that women do not ordinarily
go directly from natural fertility to modern contraception. The recruits to
an IUD program have ordinarily been restricting their births in one way
or another. Suppose that they have been practicing rhythm with care and
attaining 90 percent efficiency, so that the chance of childbearing if they
did not have the IUD is p = 0.02, and it is to this practice that they revert
if they drop the IUD. Then t = 62.5; and, entering p = 0.02 in place of
p = 0.2 in (16.1.6), we find the fraction of births averted to be 0.16 rather
than 0.52 as in the preceding paragraph.

The above argument, due to Potter (1970), illustrates once more the
general point of causal inference that nothing can be said about the effect
of the IUD without specifying what the couples concerned would be doing
without it. That such specification is important appears from our numbers:
with natural fertility as the alternative to the IUD 52 percent of births are
averted, whereas with 90 percent efficient contraception in the background
only 16 percent are averted.

The above argument emerges in the simplest possible form when we try
to see the effect of abortion on the birth rate.

16.1.4 Why 1000 Abortions Do Not Prevent 1000 Births
in a Population

That the logic of individuals becomes grossly misleading when applied
to populations is implicit in much of the work in this book. The contrast
between individuals and populations is especially sharp in regard to births
averted by abortion. If we think of a woman aborting a pregnancy that
would have led to a live birth, then one abortion has indeed prevented one
birth. But 1000 abortions in a population generally prevent far fewer than
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1000 births. To find how many they do prevent we must reckon in terms of
each woman’s time—how long she takes to have a birth, how long she is tied
up in having an abortion. Once again only conceptions potentially leading
to live births will be considered, that is to say, spontaneous abortions will
be disregarded (Potter 1972).

A woman who has just conceived may decide to have an abortion in
the second month and be sterile for 1 further month, a total time from
conception of 3 months. Suppose that she is then fecund again, with the
same probability 0.2 of conceiving in each month without contraceptive
protection. To arrive at this point from the last previous fecund condition
has taken her the 3 infertile months before and after the abortion, plus the
preceding expected 5 months to pregnancy, 8 months in all. The 8 months
represent the time out from childbearing due to one abortion. Only if this
length of time were sufficient to have a child would one abortion prevent
one birth in the population. If the cycle for having a child is 22 months on
the average, as in this illustration, the abortion has prevented only 8/22 of
a birth. On these assumptions nearly three abortions are required to avert
one birth.

More generally, we can see how many births are prevented by abortions
taking place at such time after the onset of pregnancy that the woman is
infecund for an expected a months. The length of the cycle involving one
abortion averages (1/p)+a, and the length of the cycle involving one birth
averages (1/p) + s; the number of the former that will fit into the latter is

(1/p) + s

(1/p) + a
. (16.1.7)

This being the number of abortion cycles required to fill the time that will
be taken by one birth cycle, it is also the number of abortions that will pre-
vent one birth. The model is deterministic; it compares two women going
through repeated cycles, one involving births and the other involving abor-
tions, without allowing for variation in the length of cycle or in fecundity
among women.

16.1.5 Abortion as a Backup to Contraception
Expression 16.1.7 refers to a population that does not use contraception. In
populations that do practice birth control, the fractional effect of abortion
is much greater, and (16.1.7) can be readily modified to show how much.

To apply the argument to our new problem we write p(1 − e) in place
of p as the probability of conceiving in a particular month and again go
through the whole of the preceding argument. The mean length of time
to pregnancy for fertile couples becomes 1/p(1 − e), and the number of



410 16. Microdemography

abortions that will prevent one birth is now[
1/p(1 − e)

]
+ s[

1/p(1 − e)
]
+ a

. (16.1.8)

Entering p = 0.2, e = 0.95, s = 17 months, and a = 3 months gives

(1/0.01) + 17
(1/0.01) + 3

=
117
103

= 1.14

abortions to prevent one birth.
This is a very different outcome from the no-contraception case. With

unprotected intercourse nearly three abortions are required to prevent one
birth. With 95 percent efficient contraception only about one and one-
seventh abortions are needed to prevent one birth. If the efficiency of
contraception were higher than 0.95, an abortion would have even more
impact.

Although this section has used the length of the conception and birth cy-
cle to obtain birth rate in the context of contraceptive effects, it is relevant
in many other contexts. The interval between births is an important pa-
rameter in such species as whales (e.g., Barlow and Clapham 1997, Caswell
et al. 1999), elephants (Wu and Botkin 1980, Moss 2001), and the great
albatrosses (e.g., Croxall et al. 1990). This interval may change in response
to environmental factors, and the result can be used to project their impact
on the population (Caswell et al. 1999).

The absorbing Markov chain approach of Chapter 11 can be used to
calculate the interbirth interval in complex stage-classified life cycles if
reproducing females are identified as a stage (Fujiwara and Caswell 2001,
Fujiwara et al. 2004). The approach is to make reproduction an absorbing
state and calculate the mean time to absorption in a chain conditional on
reaching that state before death (see Section 11.1.2.2). It could be applied
directly to matrix versions of multistate models of fertility, such as those
of Wood et al. (1994) or Yashin et al. (1998).

16.2 Measurement of Fertility and Fecundity

According to the usual English language definitions, fecundity is the unin-
hibited biological capacity of women to bear children; fertility is the number
of children borne under existing social conditions. Fertility is fecundity
modified by contraception and other kinds of intervention. (Ecologists often
switch the definitions.)

Fertility is directly measurable—the birth of a child is a publicly rec-
ognized event, and its recording is merely a matter of organization and
attention, especially by those, parents and doctors, who are in a position
to observe the event as it occurs and so have the necessary facts about it.
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But the underlying fecundity depends on decidedly private circumstances
not generally known even to the couples concerned. These include viability
of sperm and ovum as this affects the length of the fertile period, and other
factors hidden from direct observation. The problem of measuring these
and their influences on the birth rate will be the subject of this section.

16.2.1 Probability of Conception by Days of the Month
A rough way of calculating probability of conception, making use only of
the frequency of intercourse and the length of the fertile period, is implied
in the work of Glass and Grebenik (1954). Suppose that a couple have
intercourse n times in the menstrual cycle, which includes a fertile period
of f days out of a total of 25 nonmenstruating days per month. Then if
coitus is unplanned in relation to the fertile period, the probability that it
will occur at least once during the f fertile days is the complement of the
probability that it will not occur at all during those days: the chance that
any particular coitus will take place during the nonfertile period is 1−f/25.
If different occurrences of intercourse are independently random, with no
spacing, the chance that all n will take place during the nonfertile period
is this quantity to the nth power: (1 − f/25)n. The chance p that at least
one coitus will take place during the fertile period must be the complement
of this last:

p = 1 −
(

1 − f

25

)n

,

and if ovum and sperm are healthy and behave as expected, this is the
chance of conception during the month in question.

For a given n the probability is increased insofar as there is a degree of
regularity in intercourse, for instance, if it occurs only once in each 24-hour
period (Jain 1969). Divide the nonmenstruating part of the month into 25
separate days, each a 24-hour interval, and suppose that in f of these the
woman is fertile; then the chance of avoiding the first of the f days with
coitus on n (separate) random days is 1 − n/25. The chance of avoiding all
f days with n acts of coitus spread over different days is (1 − n/25)f , and
hence the chance of conception is

p = 1 −
(
1 − n

25

)f

.

We need to allow not only for frequency of intercourse but also for the
moment when intercourse occurs in relation to the moment of ovulation,
using the best knowledge or guesses regarding the probability of conception
for intercourse on the day of ovulation, 1 day earlier, 2 days earlier, or
1 day later. Lachenbruch (1967) set up a model that incorporates these
probabilities and simulated it by computer to obtain numerical results.
For couples using rhythm as a means of contraception and having their
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intercourse in two “humps,” one before and one after ovulation, he found
probabilities of conception of 0.07 to 0.20, and commented that the time
he allowed for intercourse would be too short for most couples. “Bracketed
rhythm,” in which the couple have intercourse on the last “safe” day before
ovulation and the first “safe” day after, leads to a fairly high value of the
probability of conception—0.20 with the assumptions made. A feature of
bracketed intercourse is that the total frequency of intercourse has almost
no effect on conception.

To estimate probabilities on conception on the several days of the cycle,
Barrett and Marshall (1969) followed 241 fertile British couples, mostly
20 to 40 years of age and not using birth control. They obtained from
each couple each month a calendar showing dates of intercourse, and a
temperature chart from whose rise at midmonth the time of ovulation could
be read. Then, if pi is the probability that intercourse on the ith day will
lead to conception, the chance 1 − p that conception did not occur during
a particular month must be the product

1 − p =
∏

i

(1 − pi)xi

taken over the days of the month, where xi is 1 if intercourse took place
on the ith day and 0 if it did not.

One would like to find values of pi such that the above product for 1 − p
comes as close as possible to 1 for the months when conception did not
occur, and to 0 for the months when it did. Barrett and Marshall took the
logarithm of the likelihood and maximized for the whole sample of cycles.
Their estimates for the 5 days before ovulation and the 1 day after it were
as follows:

p−4.5 0.13

p−3.5 0.20

p−2.5 0.17

p−1.5 0.30

p−0.5 0.14

p0.5 0.07

Thus the highest probability of conception, 0.30, was for the day 24 to 48
hours before ovulation. Outside of the above 6-day range the probabilities
were not significantly different from zero.

From these numbers it follows that daily intercourse gives a probability
of conception

p = 1 − (1 − 0.13)(1 − 0.20) · · · = 0.68.

The probability is 0.43 for intercourse every second day, 0.31 for every third
day, and 0.24 for every fourth day (numbers rounded after calculation, and
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without making allowance for the effect of frequency of intercourse on the
production of sperm).

16.2.2 Mean Fecundity from Surveys
The probability p of conceiving in a given month for a group of fertile
women is typically sought in order to compare it with p′, the corresponding
ratio for another group of women. When p applies to women not practicing
contraception, it is an estimate of fecundity or natural fertility; the amount
by which p′, for a group of women practicing contraception, is lower mea-
sures the efficiency of that form of contraception. The most obvious way of
obtaining estimates is by observing waiting times until pregnancy, a sub-
ject to which we proceed.

Homogeneous Populations. The measurement of fertility, either natural or
with contraceptive protection, depends on data for a group of women all
of whom are having intercourse and are nonpregnant; suppose all to be
subject to the same probability p of conceiving in each month, where p is
greater than zero. Suppose that N fertile women, just married, are surveyed
month by month until they become pregnant; as each becomes pregnant,
she drops out of observation. Let the number who become pregnant in
the first month be N1, the number who become pregnant in the second
month N2, and so on. Then the probability of conception in any month,
p, is estimated from the first month’s data as the ratio N1/N . This leaves
N − N1 women starting the second month in a fecund condition, and the
estimate of p from that month’s data is the ratio N2/(N−N1), and similarly
for later months. A series of estimates of p is thus provided

p̂1 =
N1

N

p̂2 =
N2

N − N1

p̂3 =
N3

N − N1 − N2

...

p̂m =
Nm

N − N1 − N2 − · · · − Nm−1
,

where observation stops after the mth month.
To make use of all the information we must average the several values

of p̂1, p̂2, . . . . If the true probability p is the same for all women and for
all months, the right average is one that weights the several months by
their sample sizes: we need to weight our p̂1, p̂2, . . . , p̂m by the number of
exposed women on which each is based. Since p̂1 is based on N women, p̂2
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on N − N1, and so on, the estimate is

Np̂1 + (N − N1)p̂2 + · · · + (N − N1 − N2 − · · · − Nm−1)p̂m

N + (N − N1) + · · · + (N − N1 − N2 − · · · − Nm−1)
,

or, entering the estimates p̂1, p̂2, . . . from above,

N1 + N2 + · · · + Nm

N + (N − N1) + · · · + (N − N1 − N2 − · · · − Nm−1)
, (16.2.1)

supposing that all women are followed to the mth month.
This widely used index, due to Pearl (1939, p. 296), will be referred to

as p̂p. It contains the total number of conceptions during the m months of
observation in its numerator, and its denominator is the number of woman-
months of exposure, if the month of conception is counted into the exposure.
The index is intuitively appealing quite apart from the statistical argument
above. Multiplied by 1200, it gives pregnancies per 100 woman-years of in-
tercourse, and this rate is often calculated and published. Not only does p̂p

seem intuitively reasonable, but also, if all women were equally susceptible,
it would be the correct measure, and we would need to go no further in the
search for a measure of fecundity.

A Heterogeneous Population with Fecundity Constant for Each Woman.
However, we know that some women are more fecund than others, and
we seek from the survey a suitable average of their several p values. The
women who are most fecund will tend to become pregnant first, so the
p̂1, p̂2, . . . for the several months are estimating different quantities. The
estimate for the first month p̂1 = N1/N , refers to unselected women and
is an unbiased estimate of the mean p. Since those who become pregnant
drop out of observation, no later month refers to unselected women. The
ith month, for any i > 1, omits some women selected for their fecundity,
and so the estimate derived from it, Ni/(N − N1 − N2 − · · · − Ni−1), must
be an underestimate of the fecundity of the original N women.

The p values differed from month to month in the sample size on which
they were estimated in the model underlying pp, and they differed in no
other way. With such homogeneous material the correct way to weight a
number of estimates of the same parameter is by the quantity of informa-
tion contained in each estimate, that is, by the size of sample available in
each month. With heterogeneity among women the pregnancy ratios are
genuinely different in the different months, and to weight by the quantity of
information, that is, the sample size, would be incorrect. To avoid consid-
ering two different problems at once we will now suppose that the sample
is large, so that random variation can be disregarded. What is wanted is a
population average, in which each woman counts once, and hence we must
weight the women of a given fecundity class according to the number of
women in that class in the population. (See Chapter 19 for a more general
discussion of heterogeneity.)
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Suppose (Sheps, in Sheps and Ridley 1966) that the N representative
women with whom we start out include Nf(p) dp women of susceptibility
or fecundity between p and p + dp, where dp is small. Among women of
fecundity p we will expect the fraction p to become pregnant in the first
month, 1−p to go on to the second month, and, of these, (1−p)p to become
pregnant then, and so on. In other words, we will expect

Npf(p) dp

women to become pregnant in the first month,

N(1 − p)pf(p) dp

in the second month, . . . , and

N(1 − p)m−1pf(p) dp

in the mth month—all this for a given susceptibility p.
To find the corresponding numbers for all women we add through the

several susceptibility groups, which in the limit is the same as integrating
with respect to p. The total expected conceptions for the ith month will be

N

∫ 1

0
(1 − p)i−1pf(p) dp. (16.2.2)

Expression 16.2.2 shows that for 0 < p < 1 the number of conceptions
steadily decreases with time. Most of the decrease is due to women dropping
out through pregnancy, and there is no provision for bringing them back
in this way of measuring fertility.

The number of conceptions cannot but decline to zero in the course of
time as the entire group drops out through pregnancy.

But aside from this gross fact, which applies to a homogeneous group as
well, there is a selection factor that can be important if the variation in p,
expressed by f(p), is substantial. The pregnancy rate during the ith month
is (16.2.2) divided by the number of women still under observation

pi =

∫ 1

0
(1 − p)i−1pf(p) dp∫ 1

0
(1 − p)i−1f(p) dp

, (16.2.3)

which can be regarded as the mean of p weighted by (1−p)i−1f(p). Because
1−p is less than unity, the weighting function (1−p)i−1f(p) shifts downward
(i.e., to the left on the usual form of chart) as i increases, so pi must decline
steadily with i. This is a selection arising from the removal by pregnancy
of the more fertile women.

The two processes are shown in Table 16.2, with a simple example in
which half the women have p = 0.2 and half have p = 0.3, and q is written
for 1 − p in (16.2.2) and (16.2.3). It shows in column 1 the chance of
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Table 16.2. Example of removal of more fertile women in successive months, using
f(p) = 0.5 for p = 0.2 and f(p) = 0.5 for p = 0.3; that is, half the women are of
fecundability p = 0.2 and half are of fecundability p = 0.3

Probability of
Probability of Fraction of conceiving in
conceiving in women ith month for
ith month for remaining at women who have

all women beginning of not conceived by
entering month (i − 1)th month

Month
∫ 1
0 pqi−1f (p) dp

∫ 1
0 qi−1f (p) dp

∫ 1
0 pqi−1f (p) dp∫ 1
0 qi−1f (p) dp

1 0.25 1.000 0.25
2 0.185 0.750 0.247
3 0.138 0.565 0.243
4 0.103 0.428 0.240
5 0.077 0.325 0.237
6 0.058 0.248 0.234
7 0.044 0.190 0.231
8 0.033 0.146 0.228
9 0.025 0.113 0.226
10 0.019 0.087 0.223
15 0.0054 0.025 0.213
20 0.0016 0.0078 0.207
30 0.00016 0.00079 0.2020
50 0.0000018 0.0000089 0.20014

becoming pregnant in the ith month as forecast for a woman when she
comes under observation in month 1, and also (column 3) the chance of a
pregnancy in the ith month for a woman who has gone through the first i−1
months without becoming pregnant. The rapid decline in the first column
is no surprise, while the third column exhibits the more subtle selection
effect, which is appreciable even with the small variation of our example.
The mean fecundability started at p = 0.25, the mean of 0.2 and 0.3, and
by the tenth month had fallen to 0.223. The drop is more than halfway
to 0.2, to which it would ultimately tend as i became large. The greater
the variation, the more rapid is the decline in average fertility among the
women who remain.

To express (16.2.3) in terms of variation among women, expand (1 −
p)i−1p of the numerator and (1 − p)i−1 of the denominator in a Taylor
series around p̄, the mean

∫ 1
0 pf(p) dp. The constant terms are (1 − p̄)i−1p̄

in the numerator and (1 − p̄)i−1 in the denominator, and the linear terms
vanish, with the result

pi ≈ p̄ − (i − 1)σ2

1 − p̄
, (16.2.4)

on using the fact that 1/(1 + α) ≈ 1 − α for α small.
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In application to the distribution of Table 16.2, consisting of two spikes,
p̄ = 0.25. The general rule is that the standard deviation of two numbers is
half the interval between them; if the numbers are a and b, their variance
is

σ2 =
a2 + b2

2
−
(

a + b

2

)2

=
(

a − b

2

)2

.

In this case a = 0.2 and b = 0.3, so σ2 = 0.0025. Then from (16.2.4) we
have for p10

p10 ≈ p̄ − (i − 1)σ2

1 − p̄

= 0.25 − (9)(0.0025)
0.75

= 0.220,

as opposed to the 0.223 shown in Table 16.2. The difference is due to neglect
of higher moments and other approximations, the effect of which becomes
more serious as i increases.

16.2.3 The Pearl Index Is the Harmonic Mean of the
Distribution

The Pearl index p̂p of (16.2.1) is shown to estimate the harmonic mean of
the several p. For the expected value of N1 is the initial number N times p,
of N2 is Nqp, of N3 is Nq2p, and so on. The denominator of (16.2.1) can
be taken as the numbers of women nonpregnant at the beginning, after 1
month after 2 months, and so on. Entering these for any fixed p and then
integrating over the range of p [overlooking that E(X/Y ) �= EX/EY ]:

pp =

∫ 1

0
pf(p) dp +

∫ 1

0
(1 − p)pf(p) dp + · · ·∫ 1

0
f(p) dp +

∫ 1

0
(1 − p)f(p) dp + · · ·

,

where we suppose that the survey continues until the last woman becomes
pregnant, or, more reasonable, that nonpregnant women left at the end of
the survey are excluded from all of its records. In the numerator again we
change p to 1 − q and assemble the integrals to obtain

pp =

∫ 1
0 [(1 − q) + q(1 − q) + q2(1 − q) + · · ·]f(p) dp∫ 1

0 (1 + q + q2 + · · ·)f(p) dp

=

∫ 1
0 f(p) dp∫ 1

0 (1 + q + q2 + · · ·)f(p) dp



418 16. Microdemography

=
1∫ 1

0 [1/(1 − q)]f(p) dp
=

1∫ 1
0 (1/p)f(p) dp

. (16.2.5)

The quantity pp, of which p̂p given by (16.2.1) is an estimate, is thus
shown to be the harmonic mean of the p’s, a statement that is meaningful
once all infecund women have been removed from the records.

16.2.4 The Gini Fertility Measure
Gini’s (1924) way of providing a measure of fertility that is unbiased in
the face of variation among women is effectively to confine the index to the
pregnancies and exposure of the first month, bound to be unselected for
susceptibility if the sample is unselected. His index is

p̂g =
N1 − Nm+1

N1 + N2 + · · · + Nm
, (16.2.6)

where the denominator totals the women of proven fertility, and the nu-
merator has the relatively unimportant subtraction, if m is large, of those
who become pregnant in the (m + 1)th month.

If one wants to see formally what is happening in p̂g when those not
pregnant by the mth month cannot be neglected, the algebra is only slightly
more involved:

p̂g =
N1 − Nm+1

N1 + N2 + · · · + Nm

is an estimate of

N

∫ 1

0
pf(p) dp − N

∫ 1

0
pqmf(p) dp

N

∫ 1

0
(p + pq + pq2 + · · · + pqm−1)f(p) dp

=

∫ 1

0
p(1 − qm)f(p) dp∫ 1

0
(1 − qm)f(p) dp

.

(16.2.7)
This is the arithmetic mean value of p, not quite in the original dis-
tribution f(p), but in the slightly different distribution proportional to
(1 − qm)f(p) dp

Comparison of Pearl and Gini Estimates. If p does not vary among fer-
tile women, or does not vary greatly, we can be indifferent as to whether
their arithmetic or harmonic mean is estimated. Thus in the homogeneous
case p̂p is the best estimate of the common p in that it has the smallest
sampling error. If, however, p does vary considerably, the harmonic mean
is no substitute for the arithmetic, being always below it, and to use p̂p is
to minimize sampling error at the cost of substantial bias. Take the arith-
metic example of Table 16.2, in which a group of women is equally divided
among those with probability of conceiving 0.2 and those with probability
0.3; then the arithmetic mean of their fecundity is 0.25 and the harmonic
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mean is 0.24, a small difference. For a group equally divided among those
with probabilities of conceiving of 1

6 , 1
4 , and 1

2 , the arithmetic mean is
1
6 + 1

4 + 1
2

3
=

0.917
3

= 0.306.

The harmonic mean is
3

1/ 1
6 + 1/ 1

4 + 1/ 1
2

=
3

6 + 4 + 2
= 0.25,

or about 18 percent low.
Thus mean fecundity is understated by p̂p whenever variation among

women is considerable. The Pearl index, given as pregnancies per 100
woman-years of exposure, if unadjusted for selection will underestimate
the average probability of conception per month for all women in the un-
selected group. In commonsense terms this is so because p̂p puts weight
on later months when the less fecund women are disproportionately repre-
sented. This defect of p̂p is unimportant if couples are followed over a short
period. It is not a defect at all if we are interested in the mean fecundity
over a period of time of a group of initially fecund women, in which those
who become pregnant drop out and are not replaced. Moreover, the mean
waiting time to pregnancy in a heterogeneous group of women will be ap-
proximated by 1/p̂p, so that, if waiting time is the subject of interest, the
harmonic mean implicit in p̂p is the one wanted.

16.2.5 Excursus on Averages
In the present section we have a type of selection to produce pp that lowers
the average below the unselected pg. The opposite occurred in Section 15.3,
where it appeared that choosing a woman at random gave the expected
number of her daughters as the arithmetic mean

∑
i ifi, where fi is the

fraction of women who have i daughters; choosing a girl at random and
asking how many daughters her mother had gave a larger average. It is
worth contrasting the four main kinds of average that enter demographic
work.

If families are chosen with probability proportional to number of daugh-
ters, the expected value is found by weighting by i and dividing by the
total number of daughters (

∑
fi = 1 but

∑
ifi �= 1):∑

(i)(ifi)∑
ifi

=
∑

i2fi∑
ifi

.

This has the old name of contraharmonic mean (according to the Oxford
English Dictionary). If it is designated as C and the arithmetic mean as
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A, the difference is (Section 15.3)

C − A =
∑

i2fi∑
ifi

−
∑

ifi

=
∑

i2fi − (
∑

ifi)2∑
ifi

=
σ2

A
,

where σ2 is the variance of the distribution. Thus C is always greater than
A, except in the trivial case where the numbers being averaged are the
same.

A similar aspect of selection, but over time, appears in Feller (1971, p.
12), who explains why we have to wait so long at a bus stop. Suppose,
for example, that the buses arrive independently at random according to
a Poisson process with constant α, so that the mean time between buses
is 1/α. When a would-be rider shows up at the stop, he ought on the
average to be midway between two buses and have to wait only 1

2 (1/α).
That is one way of calculating. The second is to say that, since the Poisson
process has no memory, and one moment of arrival has the same waiting
prospect as another, the time to the next bus must on the average be 1/α.
Unfortunately the second answer is the correct one. A selection occurs by
which one more often arrives in a long interbus period than in a short one.

A different aspect of waiting times is evident when women are subject to
different chances of having a child. What is the mean interchild period in a
group of women if the probability of pregnancy is pi for the ith woman, say
in a given month? The expected period for the ith woman is 1/pi, and the
mean time to conception (1/n)

∑
(1/pi) months. This is the reciprocal of

the harmonic mean of the probabilities of conception; it is not n/
∑

pi, the
reciprocal of the arithmetic mean. The Pearl index pp is another example
of the same harmonic mean.

The geometric mean turns up in applications of the life table. The chance
of a person surviving from age 30 to age 40, say, is the geometric average
chance of surviving over the 10 years taken to the tenth power. It has to
be a geometric average because the chance of survival is

l40
l30

=

⎡
⎢⎣ 10

√(
l40
l39

)(
l39
l38

)
· · ·
(

l31
l30

) ⎤⎥⎦
10

.

Alternatively, if the chance of dying in the ith of n years is µi, with an
arithmetic average µ̄, the chance of surviving over the period is (e−µ̄)n,
and this is the geometric mean G of the chances of surviving the individual
years.

Thus we have instances of the arithmetic (A), geometric (G), harmonic
(H), and contraharmonic (C) means. For integral variables i with weights
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fi such that
∑

fi = 1, these may be written, respectively, as

A G H C

∑
ifi

∏
ifi

1∑
(fi/i)

∑
i2fi∑
ifi

For N unweighted values Xi, integral or not, these means are∑
Xi

N
N

√∏
Xi

N∑
(1/Xi)

∑
X2

i∑
Xi

Differences are not trifling. For a population with two values, X1 = 1
and X2 = 4, we have for the four averages

2.5, 2, 1.6, 3.4.

[Show that the contraharmonic mean is as much greater than the arithmetic
as the arithmetic is greater than the harmonic; that is, C − A = A − H.
Show also that G =

√
AH. Under what conditions do they hold?]

16.2.6 Graduation Uses Information Efficiently
Given that in practice samples used for fertility studies are small, one would
like to avoid the sampling instability of the Gini index, as well as what is,
from one point of view, the bias of the Pearl index. One would also like
to know something of the variation in fecundity among women that is not
revealed by p̂p or by p̂g. Variance could be inferred from the difference by
solving (16.2.4) for σ2, but this would have substantial error. Fortunately a
graduation due to Potter and Parker (1964) provides variance, along with
low sampling error and absence of bias in the mean.

16.2.7 Mean and Variance Simultaneously Estimated by
Graduation

Potter and Parker (1964) fitted a beta distribution proportional to

pa−1(1 − p)b−1

whose mean fecundity p̄ and variance σ2 are as follows:

p̄ =
∫ 1

0
pf(p) dp =

a

a + b

σ2 =
∫ 1

0
(p − p̄)2f(p) dp =

ab

(a + b + 1)(a + b)2
.

(16.2.8)

The a and b are not directly known, but we do know the mean and variance
of the waiting times of those becoming pregnant in terms of the same
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constants a and b:

w̄ =
a + b − 1

a − 1
, a > 1; σ2

w =
(ab)(a + b − 1)
(a − 1)2(a − 2)

, a > 2.

All that is needed is to solve for a and b in terms of the known w̄ and σ2
w.

After extended but straightforward algebra the estimates

a =
2σ2

w

σ2
w − w̄2 + w̄

, b = (w̄ − 1)(a − 1) (16.2.9)

are reached. Substituting for a and b in (16.2.8) would give the mean and
variance of the probabilities of conceiving (not directly observable) in terms
of the mean and variance of waiting times as observed. In the example used
by Potter and Parker, w̄ = 5.47 months and σ2

w = 89.98, and from (16.2.9)
these provide a = 2.746 and b = 7.806; therefore mean fecundity p̄ is 0.260
and the standard deviation of p among women is σ = 0.129. (A more
detailed secondary account is found in Keyfitz 1968, p. 386.)

Improvements on the moments fitting sketched above have been pub-
lished by Majumdar and Sheps (1970). They develop maximum likelihood
estimators that make more effective use of the data, these data still
consisting of waiting times for the whole group of women followed.

There is a certain arbitrariness in picking a family of probability distri-
butions to represent fecundity on the basis of mathematical convenience
rather than empirical evidence, and then drawing conclusions without at
least trying alternative distributions. This problem arises generally in stud-
ies of heterogeneity (Chapter 19). Recent discussions can be found in Wood
and Weinstein (1990), Wood (1994), and Weinberg and Dunson (2000). Un-
derstanding patterns of heterogeneous fecundity among women and how
they vary among different populations is important in studies of the ef-
fects of heterogeneous fertility on variance in completed family size, or the
relative effects of male and female fecundity within marriage.

The variation among couples is especially great for a contraceptive
method that is ineffective for some users. The ineffective users are selected
out by pregnancy, leaving a residue of effective users whose probability of
conception is very low. For this reason and others, surveys of groups of
women practicing contraception are often tabulated by periods—first year,
second year, and so on, so that the decline in the conception rate can be
traced. Tabulating in periods has the advantage that cases subsequently
lost to follow-up can be included as long as they are observed. The life
table method described below rescues the incomplete records.

16.2.8 Life Table Methods for Fertility
The theory so far has dealt with two cases: homogeneous, where all women
have the same probability of conception p, and heterogeneous, where their
several p values are distributed according to an (unknown) probability dis-
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tribution. In both we supposed that any given woman has an unchanging
probability of conception. If the sample is to be followed for a long pe-
riod, however, we need to allow also for change in individual women, either
because of a decline in fecundity with age or because of increased moti-
vation and skill in using contraception. The life table method in a fashion
embraces both factors. It also allows for the selection effect of pregnancy.

To make the table we first calculate the probability of conception month
by month. Like any life table, that for conception is based on two kinds
of data: number of events, and numbers exposed to risk. In the present
case the events are pregnancies, and the exposed are the women under
observation, for each month. If Pi women are under observation through
the ith month, and Ai (standing for “accident”) conceptions occur among
them, the conception rate for the group in that month is pi = Ai/Pi, and
the probability of not conceiving is 1 − pi (Potter 1967).

We can multiply together the 1 − pi for successive months, and obtain a
column analogous to the life table li that represents the chance of a child
just born surviving to exact age i. The technique is identical to that for
mortality, discussed at length in Chapter 2.

The life table model in which allowance is made for the single decrement
of pregnancy can be extended to provide for other risks, including the
death of the person, divorce of the couple, discontinuance of contraception,
and other contingencies. Among these the possibility that the couple will
drop the contraceptive is of the greatest interest for our analysis. Tietze
(1962) tells us that pregnancy rates for various IUDs during the 2 years
after insertion were considerably lower than discontinuance rates. This is
a standard problem in competing risks, of the kind dealt with in Section
2.6, and any of the methods there used would serve in this case too. But
the refinements useful for mortality are not necessary for conception, where
small samples and biased data are general.

See Weinberg and Dunson (2000) for a discussion of some recent devel-
opments along these same lines, and Chapter 19 for discussion of individual
heterogeneity in general. Life table methods can be generalized to methods
based on hazard functions; these are reviewed in the context of fertility by
Wood et al. (1992) and Wood (1994).

16.2.9 Relation of Micro to Population Replacement
We saw that the replacement of a population, the ratio of girl children in
one generation to girl children in the preceding generation, is given by

R0 =
∫ β

α

l(a)m(a) da.

We can factor m(a) into v(a)f(a), where v(a) is the fraction married at
age a, and f(a) is the marital fertility rate. We can also go one step further
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and say of married fertility that

f(a) =
12

1/{p(a)[1 − e(a)]} + s
,

where p(a) is natural monthly probability of conceiving at age (a), and e(a)
is the efficiency of contraception, both in a particular population. Then we
have for the net reproduction rate

R0 =
∫ β

α

l(a)v(a)
12

1/
{
p(a) [1 − e(a)]

}
+ s

da, (16.2.10)

but this remains purely formal without some source of information on p(a)
and e(a).

16.2.10 How Surer Contraception Reduces the Interval
Between Births

At one time “child-spacing” was a euphemism for contraception, and much
was said about the benefits to the mother’s health if she spaced out her
children. This may have been good public relations at a time when authori-
ties frowned on contraception intended simply to reduce family size. While
the supposed healthful effects of spacing are still referred to in some coun-
tries, yet in fact with the spread of safe and certain contraception women
often reduce the interval between such births as they decide to have. For
the mother who must give up a job in order to look after the family, two or
three children of about the same ages cost less in lost earnings than would
the same number of children spread over her reproductive life.

Whatever the motivation to compress childraising into a small time in-
terval, the couple could not afford to yield to it when contraception was
uncertain. Compromise was necessary; the number of planned children
would be held below what was desired in order to allow for accidents. Even
if the chance of conception in any one month is as low as 0.01, and the
couple have 240 fertile months ahead of them, their expected prospective
children are 2.4, whether they want them or not. If they want 2 or 3 chil-
dren, they cannot afford to have any deliberately. Even if they can achieve
a probability of conceiving in any month as low as 0.003, the chance of an
accidental pregnancy during 240 months is over one half:

1 − (0.997)240 = 0.514.

Thus only perfect contraception, or its equivalent in the form of easy legal
abortion, permits thoroughgoing family planning, and when such planning
is aimed at saving the time of the mother it will space the children as closely
as possible.

The idea of studying fertility in terms of the time required for the dif-
ferent processes involved in conception, pregnancy, lactation, and so on
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has proven fruitful. Recent surveys have gone further and further in the
direction of integrating the underlying biological processes with their demo-
graphic consequences (Campbell and Wood 1994, Wood 1994, Wachter and
Bulatao 2003), including comparisons with some of our near but nonhuman
relatives (Altmann and Alberts 2003).

16.3 Why Three-Child Families Constitute
a Population Explosion, Whereas Two-Child
Families Would Lead to the Extinction
of Mankind

Let us see what three children mean for the growth of a population subject
to United States mortality. There are four steps in the calculation, which we
will carry out for females; the first three steps establish by how many fertile
women a woman past childbearing will be replaced in the next generation.

1. If fertile women surviving through childbearing average three children
in all, they will average 0.488 × 3 or 1.464 girls, the proportion of
United States, 1967, births that were girls being 0.488.

2. Not all of the girls will live to reproduce in turn. Again according to
data for the United States in 1967, the average fraction who survive
to childbearing, that is, the ratio of the net to the gross reproduction
rate, is 0.9665. By multiplying 0.9665 by 1.464 we go from gross to
net reproduction and find 0.9665 × 1.464 = 1.415 = R0.

3. An unknown fraction of girls are physiologically incapable of having
children or do not wish to have them; let us allow 10 percent to cover
these. This brings us to 1.415 × 0.9 = 1.273 as the number of fertile
women by which a fertile woman is replaced on the average.

4. The period over which this replacement ratio applies is one genera-
tion, or 26.14 years for 1967 in the United States, about the same
as the mean age of childbearing. We need the 26.14th root of the
replacement ratio 1.274 to obtain the annual ratio of increase:

1.2741/26.14 = 1.00931,

or, as an annual rate compounded momently, log 1.274/26.14 =
0.00926, either way an increase of 0.0093 or 0.93 percent.

Thus, with the assumptions here made, including that the ages of child-
bearing are the same as those of the United States in 1967, and that 10
percent of women do not have any children, a three-child average for fertile
couples implies an increase of 0.93 percent per year. This works out to a
doubling in 75 years, and a multiplication by 16 in less than 300 years. With
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three-child families from now on the United States would have a population
of about 3 billion within three centuries.

On the other hand, an average of two children per fertile married woman
would not suffice to maintain the population. Calculation similar to that
above shows that the population would ultimately change in the ratio of
2× 0.488× 0.9665× 0.9 = 0.849 per generation, or the 26.14th root of this,
0.9938 per year, which is a decline of 0.62 percent per year. The half-life
would be 111 years, and with two-child families to fertile women the United
States population would fall to 30 million in a little over three centuries.

Interpolation from the above will give the average that would hold the
population stationary. More directly, call the number x, and solve the
equation

x × 0.488 × 0.9665 × 0.9 = 1.

The result is 2.36 children per fertile married women, In summary, with
present United States death rates an average of three children leads to a
population of more than 3 billion in three centuries; what we need is an
average of just 2.36 children.

An average of 2.1 children is often quoted as the bare replacement level.
What is meant is 2.1 children averaged over all women, married and fertile
or not. This is obtained by some such equation for the net reproduction
rate as x × 0.488 × 0.9665 = 1, or x = 2.12, still with United States, 1967,
data. Our 2.36 is the average number of children for couples who will have
children. Its greatest weakness is the 10 percent allowance for celibacy and
sterility.

These numbers show that the average family size over a period of time
must be finely adjusted; even small departures continued for long lead to
intolerable increase or decrease. Our present average for fertile married
women is about two children. This number is less than we want indefinitely,
but we have time to make the adjustment; intolerable changes come only
over the course of generations and centuries.

Countries with high fertility, on the other hand, are not in a position to
wait. Mexico in the late 1960s was an example. Its fertile women averaged
six children each, implying a growth rate of 3.5 percent per year, a doubling
in 20 years, and a multiplication by 16 in 80 years. But as of 2004, Mexico
has a fertility of only 2.49 children per woman, and a growth rate of only
1.14 percent per year.

Patterns of fertility have evolved since this chapter was originally written,
but the importance of the replacement level remains. It is now estimated
that, as of early 2004, more than half of the world population now lives in
countries or regions where fertility is below replacement level (Cohen 2003,
Wilson 2004). The global average is above replacement because the half of
the world with above-replacement fertility averages 3.6 children, while that
with below-replacement fertility averages 1.6 children (Wilson 2004).
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When both mortality and fertility are very high, as they must have been
through most of unrecorded history, say at 40.00 and 40.02 per thousand,
respectively (Section 1.2), an equilibrium mechanism analyzed by Frisch
(1972) could have been operative. Undernourished women reach menarche
later and menopause sooner than well-nourished women. They are also
subject to more gaps in fecundability during the course of their reproductive
lives. Hence periods of severe food scarcity result in lower births, by a purely
biological causation, and when death rates are high this means population
decrease. Although the mechanism does not produce stability in the face
of short-period fluctuations, it can adapt population numbers to long-term
declines or increases in food supplies. Evidently no such mechanism can
produce an optimum population under modern conditions, where the gap
between birth and death rates in many countries has become very wide.

16.4 A Family-Building Strategy to Avoid
Extinction

Common sense suggests that the more children one has the less likely is
the extinction of one’s line of descent. This is only partly true, however, for
extinction depends especially on the variation in the number of children in
later generations, and in particular on the chance of having zero children.
In avoiding the extinction of family lines a high average birth rate does not
necessarily provide an advantage over a low birth rate.

Observing that many of the great men of the past had no living descen-
dants, some writers inferred the deterioration of the race. Galton responded
that before drawing such a conclusion one must know what fraction of peo-
ple in general have no descendants. He initiated branching process theory
(Galton and Watson 1874), which subsequently became a rich field of math-
ematical research with many and diverse applications. The analysis shows
that in an increasing population each member either has zero descendants
or has many—the chance that any of us will have exactly one descendant
after ten generations is remote. For the mathematics to explore this aspect
and others see Harris (1963). For the generalization to processes that dis-
tinguish multiple types of individuals (by age or stage), see Pollard (1973)
and Chapter 15 of MPM. Fortunately it is possible to derive the probabil-
ity of extinction with virtually no theory at all. The exposition below, like
Galton’s statement of the problem, is given in terms of the male line.

Call the probability of having no sons p0, of having one son p1, of having
two sons p2, and so on, these probabilities applying independently to all
males in all generations, and to be interpreted as sons living to maturity.
Designate the chance of extinction of a male line starting with one person
as x. Then the chance of extinction of two separately and independently
developing male lines must be x2, of three lines x3, and so on. If a man has
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0

f (x)

1
x

p0

Figure 16.3. General form of the curve f(x) = p0 +p1x+p2x
2 + · · ·−x, when the

derivative f ′(x) = p1 + 2p2x + · · · − 1 is positive at x = 1, so that mean children
are more than 1, showing f ′′(x) always positive.

no sons his (conditional) chance of extinction is one, if he has one son his
chance of extinction is x, if he has two sons his chance of extinction is x2,
and so on. Thus his whole (unconditional) chance of extinction through his
sons is p0 + p1x + p2x

2 + · · ·, and by definition this must be equal to his
chance of extinction x. Hence the equation for x is

x = p0 + p1x + p2x
2 + · · · . (16.4.1)

If f(x) = p0 + p1x + p2x
2 + · · · − x, we have f(0) = p0, a positive

quantity, and f(1) = 0; f ′′(x) is always positive so f(x) is concave upward.
The question whether f(x) = 0 has a root between 0 and 1 is answered by
whether it approaches 1 on the left from below, the condition for which is
f ′(1) greater than zero or

p1 + 2p2x + 3p3x
2 + · · · − 1 > 0,

and f ′(x) is greater than zero at the point x = 1 if the mean number of
sons is greater than one. Thus, if the mean is greater than one, the curve
is sloping upward toward zero at x = 1, and there will be at least one root
in the interior of the interval between zero and one. In this case the curve
will have the general shape of Table 16.3 and Figure 16.3 and the chance
of extinction is greater than zero and less than one.

Why do irrelevant roots, such as that at x = 1, appear so often in ap-
plied work? The reason can be seen only if we make a distinction between
the substantive problem and its mathematical formulation. In demogra-
phy, as in other fields, the substantive problem facing us is identified with
a mathematical formulation that is somehow broader, and after solving the
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Table 16.3. Values of f(x) = 1
4 + x

4 + x2

4 + x3

4 − x, f ′(x) = 1
4 + x

2 + 3x2

4 − 1, and
f ′′(x) = 1

2 + 3x
2

x f (x) f ′(x) f ′′(x)

0 0.25 −0.750 0.50
0.1 0.178 −0.692 0.65
0.2 0.112 −0.620 0.80
0.3 0.054 −0.532 0.95
0.4 0.006 −0.430 1.10
0.5 −0.031 −0.312 1.25
0.6 −0.056 −0.180 1.40
0.7 −0.067 −0.032 1.55
0.8 −0.062 0.130 1.70
0.9 −0.040 0.308 1.85
1.0 0.000 0.500 2.00
1.1 0.060 0.708 2.15
1.2 0.142 0.930 2.30

mathematical formulation we have to hand-pick among its answers the one
that corresponds to our narrower substantive concern. In a sense we our-
selves unknowingly put extra roots into the mathematical representation,
and we have no easy mathematical way of eliminating them.

Let us try to get some feeling for what it is in the pattern of childbearing
that most affects the chance of extinction of a family line. First the case
(Table 16.3) in which the chance of having no sons surviving to maturity is
0.25, of having one son is 0.25, of having two sons is 0.25, of having three
sons is 0.25. (This would be an easy population to simulate with a pair of
coins.) The equation for x, the probability of extinction, is

x = 0.25 + 0.25x + 0.25x2 + 0.25x3, (16.4.2)

which is

x3 + x2 − 3x + 1 = 0.

The equation is satisfied by x = 1, a root of no demographic interest, so
we divide by x − 1 to obtain the quadratic

x2 + 2x − 1 = 0

containing the other roots. This is solved by completing the square as
x = −1 +

√
2 = 0.414, the negative root being extraneous.

The above hypothetical population has a net reproduction rate of 1.5,
which is somewhere between the values for presently less developed and
more developed countries. Mexico in 1959–61 had much higher fertility,
its net reproduction rate being over 2.5, and yet the chance of extinction
(Keyfitz 1968, p. 409) at 0.4066 was just about as high as that of our
hypothetical population. (The extinction calculation was based on 1960
census data following the female line for Mexico.)
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A population could have even higher fertility than Mexico and yet also
show a greater probability of extinction. Suppose that the chance of having
no sons surviving to maturity is 0.5 and the chance of having six sons is
0.5. This would give a net reproduction rate of 3.0—higher than the values
for recorded populations. But the probability of extinction of a male line
would be the zero of x = 1

2 +x6/2, or x6−2x+1 = 0. A convenient iterative
form for solution is obtained by rearranging the equation as x = (x6+1)/2.
Starting with x = 0 on the right-hand side, the iterates are 0.5, 0.508, and
0.509, the root being 0.50866.

At the opposite extreme, a population in which everyone married and
each couple had exactly one son (and one daughter) surviving to maturity
would be stationary, but the probability of extinction of either line would
be zero.

Couples in the United States and Europe seem (a) to devote much effort
to overcoming sterility, (b) to aim at having two children with a uniformity
unknown in the fertility schedules of the past, and (c) to want to have at
least one boy and one girl child. Whether or not they have such an objective
in mind, couples act as though each is doing its utmost to maintain both its
male and female lines and wants the smallest possible number of children
consistent with a high chance of infinite lines of descent.

16.5 Sex Preference and the Birth Rate

Insofar as parents wish to have at least one boy, or at least one boy and one
girl, and keep having children until they attain their wish, the birth rate
is higher than it would otherwise be. A considerable literature (Goodman
1961a, Repetto 1972, Hatzold 1974, Sheps 1963, McDonald 1973) analyzes
the magnitude of this effect, using observed births to infer preferences, and
assesses by how much the ability to control the sex of children would lower
the birth rate.

If the probability of a boy on a particular birth is p, and of a girl is
q = 1 − p, and we think of couples whose sole aim in family building is to
have at least one boy, the proportion of such couples who will stop after
exactly one child is p, who will stop after exactly two children is qp, who
will stop after exactly three is q2p, and so on. For them the mean number
of children is

p + 2qp + 3q2p + · · · ,
which as we saw in Section 16.1 is

1 − q + 2q(1 − q) + 3q2(1 − q) + · · · ,
or, on canceling

1 + q + q2 + q3 + · · · =
1

1 − q
=

1
p
.



16.5. Sex Preference and the Birth Rate 431

If for example, the chance of a boy is 0.5, couples who continue to have
children until a boy arrives will average two children. (Note the formal
analogy to the number of months to pregnancy in Section 16.1; births have
taken the place of months and a boy takes the place of conception.)

For these couples the fraction of boys is 1 divided by the mean number
of children; that is, 1/(1/p) = p. Just as a gambler cannot influence his
winnings by choosing the time of leaving a fair game, so parents cannot
influence the proportion of boys by a stopping rule. This argument applies
to any target number of children, so long as the couples considered are
homogeneous, in that all have the same chance p of a boy on any birth.

If the couples are not homogeneous, a selective effect can occur in
the population. Suppose that p is distributed according to f(p), where∫ 1
0 f(p) dp = 1, so there are Nf(p) dp couples between p and p + dp. [We

need to suppose that f(0) = 0; that is, no couples incapable of having
boys are included.] Then for the Nf(p) dp couples with a given p the av-
erage number of children is 1/p, as appeared above, so the total number
of children contributed by those between p and p + dp is (N/p)f(p) dp;
adding through the distribution of p gives the grand total of children,
N
∫ 1
0 (1/p)f(p) dp. Since the total number of boys is N , one to each couple

in this problem, the fraction of boys in the population is

N

N

∫ 1

0
(1/p)f(p) dp

= H,

say, which is the harmonic mean of the p’s (Goodman, 1961a).
Since the harmonic mean is less than the arithmetic mean, we have

proved two things about the effect of heterogeneity on the outcome of this
stopping rule: the fraction of boys is H, which is smaller than the fraction
of boys if no stopping rule were used, and the average number of children
per couple is

∫ 1
0 (1/p)f(p) dp = 1/H, and hence is greater than the 1/p that

would occur with homogeneity. Though an individual couple of fixed p can-
not affect the proportion of boys among its offspring by any stopping rule,
a population can: each couple continuing until it attains a boy reduces the
fraction of boys in the population, as though parents were testing them-
selves to see whether they were boy-producers or girl-producers, and only
in the latter case having further children.

As an indication of the numerical effect of this rule, suppose that one-
third of parents have p = 0.25, one-third p = 0.50, and one-third p = 0.75.
Then the harmonic mean is

1
(1/0.25) 1

3 + (1/0.50) 1
3 + (1/0.75) 1

3

=
9
22

= 0.4091,

as against the arithmetic mean of 0.50.
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An Approximation to the Harmonic Mean. For small variations in the p
values pertaining to the several couples in the population we can find a
general expression for the amount by which parents following the rule of
stopping with a boy will decrease the proportion of boys in the population.
We first need an expansion of 1/p (where 0 < p � 1) around the reciprocal
of the mean value p̄. By Taylor’s theorem

φ(p) = φ(p̄) + (p − p̄)φ′(p̄) +
(p − p̄)2

2!
φ′′(p̄),

where we suppose p− p̄ to be small enough that (p− p̄)3 and higher powers
are negligible. Then, if the function φ(p) is 1/p, φ′(p̄) is −1/p̄2 and φ′′(p)
is 2/p̄3. Hence

1
p

=
1
p̄

+ (p − p̄)
(

− 1
p̄2

)
+

(p − p̄)2

2!
2
p̄3 + · · · ,

and, entering the right-hand side in place of 1/p in the expression for the
harmonic mean, we have approximately

1∫ 1

0

f(p)
p

dp

≈ p̄ − σ2

p̄
. (16.5.1)

This follows from the definition of the mean, p̄ =
∫ 1
0 pf(p) dp, and of the

variance, σ2 =
∫ 1
0 (p − p̄)2f(p) dp, the approximation in (16.5.1) requiring

the variation of p to be small.
To test the approximation of the numerical example above, in which par-

ents are equally divided among those having 0.25, 0.50, and 0.75 probability
of producing a boy on each birth, we find that σ2 is 0.04167, and hence that
the estimate of the harmonic mean p̄ − σ2/p̄ is 1

2 − (0.04167/ 1
2 ) = 0.4167,

only 2 percent higher than the 0.4091 above.
What in fact are the sex preferences of parents? We ought to be able to

find out by observing, for example, in what proportion of cases parents with
given constitutions of family go on to further children. The proportions of
first children, of second children, and so on that are boys are out of the
parents’ control and so can tell us nothing about parental preferences; on
the other hand, the proportions of the last child and the second-to-last
child are determinable by parents, even without any ability to determine
a given birth. If couples with one girl go on to a further child in a higher
fraction of cases than those with one boy, this suggests a wish for boys; if
those with one boy and one girl go on to a further child less often than
those with two boys or two girls, this shows a wish for at least one child
of each sex. How subtly do parents play the game? If they conclude, after
having a girl, that they tend to be girl producers, at least some of those
with boy preference will stop at that point.
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Some data that classify children according to birth order and sex are
available, but the complexities of their analysis will not be undertaken here.
Instead we go on to anticipate the time when parents will have a measure
of control over the sex of their offspring. (Some assert that techniques for
this are available now, but their effectiveness is controversial.)

16.6 Family-Building Strategy with Parental
Control over Sex of Children

If parents want at least one son and one daughter and the chance of either
is one-half on a given birth, they have no choice but to proceed at random,
and they will average three children. Suppose that the chance of having a
boy when they are trying for a boy is b and of having a girl when trying for
a girl is g, both b and g being appreciably larger than one-half. A couple
want at least B boys and at least G girls; what should they do to attain
these while exceeding B+G total children by as small a number as possible?
A direct attack on this problem would be complicated; we will see that it
can be made simple by proceeding one step at a time (McDonald 1973).

The problem can be represented on paper as a lattice of points (Figure
16.4), of which the one on the upper right is labeled zero. The several points
represent the number of children needed to attain the target. Thus at the
points on the top, reading from right to left, the couple wants zero, one,
two, . . . boys to complete its (self-determined) total. At the points along the
right, reading from top to bottom, the couple wants zero, one, two, . . . girls
to complete the number sought. At the interior point A the couple want
one boy and one girl, and so on. The problem is then to calculate at each
such point the expected number of further children in total to reach the
desired constitution of the family. One visualizes families climbing toward
the target, one child at a time, and we can take advantage of the additivity
over the several steps of the expected number of children acquired.

Consider the couple that are lacking exactly one girl (point C). Suppose
that they try for a girl and stop as soon as they have one. They stand a
probability g of having a girl first, in which case they add just one child, a
chance (1 − g)g of having first a boy and then a girl (i.e., two children), a
chance (1 − g)2g of having three children, and so on; hence their expected
number of children is

g + 2(1 − g)g + 3(1 − g)2g + · · · ,
or, using the by now familiar device of putting f = 1 − g and then
consolidating terms,

1 − f + 2f(1 − f) + 3f2(1 − f) + · · · = 1 + f + f2 + · · ·

=
1

1 − f
=

1
1 − (1 − g)

=
1
g
.
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Figure 16.4. Distance to target for couples aiming at specified numbers of boys
and girls.

The expected number of children is 1/g, and we have labeled the point
just below the target accordingly (Figure 16.4). With g = 0.7 the expected
number of children is 1/0.7 = 1.43. With g = 0.5, that is, no sex control,
the expected value is 1/0.5 = 2.

Suppose that the couple wants two girls. Now they would be starting at
the second point below zero. If they try for a girl, they stand a chance g of
getting one, which will move them up one point and give them an expected
number of children 1+(1/g), so we can write g[1+ (1/g)] in respect to this
possibility. If they fail to have a girl, they have one more child and still
need two girls, so the expectation for this is (1 − g)(1 + e), where e is the
expected number of children when one is trying for two girls. Then, adding
both possibilities, we have

e = g

(
1 +

1
g

)
+ (1 − g)(1 + e),

or, on solving the simple equation for e,

e =
2
g
.
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We could have anticipated this by noting that to move up one girl takes
on the average 1/g children; hence to move up two girls takes 2/g children.
To move up three girls takes an average of 3/g children, and similarly for
higher numbers. The cells for boys only, across the top of the diagram, are
the same but with b replacing g.

Hence the expectations shown on the right-hand points and across the
top of the diagram; having attached probabilities to these boundary points,
we now turn to the interior. Consider the interior point marked A in Figure
16.5, standing for a couple wishing one girl and one boy, either altogether
or in addition to the children they already have.

Suppose they try for a girl first. Then the chance of moving up in the
diagram is g, and if they succeed they reach the point just above, from
which the expectation is 1/b. If they fail they reach the point at the right,
from which the expectation is 1/g. Hence the total expected number of
children from point A is

Ag = g

(
1 +

1
b

)
+ (1 − g)

(
1 +

1
g

)
,

where 1 has been added within the parentheses to allow for the girl or boy
born in the move. On cancellation this reduces to

g

b
+

1
g
,

and with b = 0.8 and g = 0.7 equals 0.7/0.8 + 1/0.7 = 2.30.
Using the opposite strategy of trying for a boy first (Figure 16.5) would

give

Ab = b

(
1 +

1
g

)
+ (1 − b)

(
1 +

1
b

)
=

b

g
+

1
b
,

or, with our numbers, 0.8/0.7 + 1/0.8 = 2.39. Evidently the right strategy
is to try for a girl first. This suggests a general rule: parents should leave
the more controllable contingency to the last if they seek equal numbers of
boys and girls.

We want always to choose the strategy that gives the minimum number
of total children, for example, that corresponds to

Min
(

g

b
+

1
g
,
b

g
+

1
b

)
.

If b > g, that is, if we are surer to get a boy if we aim at a boy than a girl
if we aim at a girl, it is easily seen by algebra that b/g + 1/b > g/b + 1/g.
This is so because, if b > g > 1

2 , then b− 1
2 > g− 1

2 and (b− 1
2 )2 > (g− 1

2 )2,
or b2 − b > g2 − g; therefore b2 + g > g2 + b, and, on dividing both sides by
bg, b/g + 1/b > g/b + 1/g. If b > g we should try for a girl first to minimize
total children.

The ability of parents to influence the sex of their children will reduce the
average number of offspring for parents targeting on a minimum number of
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Figure 16.5. Enlargement of part of Figure 16.4, showing expected children for
couple wanting one boy and one girl (position A). Trying for a boy first gives an
expected Ab = b(1 + 1/g) + (1 − b)(1 + 1/b) = b/g + 1/b children. Trying for a
girl first gives Ag(1 + 1/b) + (1 − g)(1 + 1/g) = g/b + 1/g children, where b is the
chance of having a boy if the couple try for a boy, and g is the chance of having
a girl if they try for a girl.

boys and of girls. Figure 16.6 shows expected numbers from various points
with b = 0.8, g = 0.7, and in parentheses with b = 0.5, g = 0.5.

Let us see how sensitive the result is to the degree of reliability with
which sex is determined. Table 16.4 shows the cases of parents aiming at
one boy, and at one boy and one girl. Making b = g = 0.5, 0.6, . . . , we
see the average number of children they will have. If b = g = 0.8 rather
than b = g = 0.5, the expected total drops from 2.0 to 1.25 for couples
aiming at one boy, and from 3.0 to 2.25 for couples aiming at one boy and
one girl. In both cases the reliability of 0.8 in sex determination eliminates
three-quarters of the unwanted children.

A number of surveys have asked newly married couples how many boy
and how many girl children they want. One such survey in Hull, England,
showed 45.7 percent wanting one boy and one girl, 15.4 two boys and one
girl, and 12.6 two boys and two girls; the average was 2.55 children. Under
present circumstances, that is to say with b = g = 0.5 approximately,
we find by applying the numbers in parentheses in Figure 16.6 to these
percentages that the average attained would be 3.74 children, or 1.19 more
than wanted (Table 16.5).
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Figure 16.6. Expected number of children for various family objectives from zero
boys and zero girls up to three boys and three girls, when b = 0.8, g = 0.7, and
(in parentheses) when b = g = 0.5.

Table 16.4. Expected number of children born to couples who stop after one boy,
and who stop after one boy and one girl

Expected total stopping after

One boy One boy and one girl

b = g
1
b

g

b
+

1
g

=
b

g
+

1
b

= 1 +
1
b

0.5 2.0 3.0
0.6 1.67 2.67
0.7 1.43 2.43
0.8 1.25 2.25
0.9 1.11 2.11
1.0 1.00 2.00

With b = 0.8, g = 0.7, numbers chosen because they are about halfway
to complete sex control represented by b = g = 1.0, the average would be
2.88 children, or only 0.33 more than wanted.
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A technology that goes halfway to sex control would eliminate nearly
three-quarters of the unwanted children born because of the sex preferences
of parents. Full sex control would reduce the birth rate for these parents
by 32 percent; half sex control would reduce their birth rate by 23 percent.

Five kinds of qualification are required. The least important is that chil-
dren are born one at a time in the model, which has no easy way of taking
account of multiple births. Moreover, not all parents have preferences re-
garding the sex composition of their families, and the model deals only with
parents whose preferences are strong enough to be overriding. In fact, they
must be willing and able to have an infinite number of children if necessary.
The model also supposes that the parental decision regarding composition
is made at the outset rather than in stages, or child by child. It supposes
homogeneity—that all parents have the same chances b and g.

The advent of partial or complete control of the sex of children would
have the effect of changing the sex of the new generation, in some cultures
in favor of boys; in those cultures the advent of a high sex ratio in the new
generation would reduce the number of marriages; when the children came
to childbearing age marriages would be limited by the less numerous sex.
Unwed males would decrease the overall birth rate. But well before that
came about the culture would shift in favor of the initially less favored sex.
Within a decade or so of the birth of a disproportionate number of boys
couples would come to value girls more highly. Perhaps a series of waves
would ensue, not unlike those familiar in a market economy arising from
the interval of time between capital investments and the returns therefrom
(Westoff and Rindfuss 1974). For an insightful analysis of some of the de-
mographic consequences of sex selection in recent China, see Tuljapurkar
et al. (1995).

Table 16.5. Application of average numbers of expected children to sex preferences
of parents in survey in Hull, England

Number of children

Average
Average born with

Parents’ born with b = 0.8,

preferences Percent Wanted b = g = 1
2 g = 0.7

One boy, one girl 45.7 2 3.0 2.304
Two boys, one girl 15.4 3 4.5 3.343
Two boys, two girls 12.6 4 5.5 4.381

Average of survey 2.55 3.74 2.88

Excess with b = g = 1
2 3.74 − 2.55 = 1.19

Excess with b = 0.8, g = 0.7 2.88 − 2.55 = 0.33
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16.7 Mean Family Size from Order-of-Birth
Distribution

Birth certificates almost invariably require that mothers report whether a
particular birth is their first, second, third, and so on. The resultant order-
of-birth tabulations are available for many countries and regions, and one
would like to extract their implication for the mean number of children
born to mothers. The problem was considered by Burks (1933) and others.

The early writers assumed a stationary condition, in which the distribu-
tion of births by order in a calendar year or other period of observation is
the same as in the cohorts of mothers that are passing through the period
in question; the several cohorts are taken as of equal size. Suppose that
the observed number of first births is N1, of second births is N2, and so
on, and that these numbers apply in all periods and for all cohorts. This is
to say that N1 is the total of women who have any children at all, N2 the
number who have two or more children, N3 the number who have three or
more children, for all periods and all cohorts. If we call φ1 the number who
stop with one child, φ2 the number who stop with two children, and so on,
the N ’s are the cumulative sums of the φ’s:

N1 = φ1 + φ2 + φ3 + · · ·
N2 = φ2 + φ3 + · · ·
N3 = φ3 + · · ·

...

and the φ’s are the differences of the N ’s:

φ1 = N1 − N2

φ2 = N2 − N3

φ3 = N3 − N4

...

The mean number of children in a family that has children is

φ1 + 2φ2 + 3φ3 + · · ·
φ1 + φ2 + φ3 + · · · =

N1 + N2 + N3 + · · ·
N1

=
N

N1
=

Total births
First births

.

(16.7.1)

This highly simplified formula applied to United States data for 1933
requires only the fact that births in that year were 74 per thousand native
white women 15 to 44 years old, and first births were 24, making a mean
family size of 3.1 children. For 1956 the corresponding figures were 115, 33,
and a mean family size of 3.5 children; for 1973 the mean was 2.40.
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16.8 Parity Progression and Population Increase

How parents decide the size of their families has been the subject of much
investigation since effective birth control has made that size subject to
deliberate decision. Some may have a concept at the beginning that they
retain throughout—they are fixed on three children, say. The majority,
however, seem to make up their minds as they go along—they have one
child and then, depending on how things look, they decide whether to have
another. The following argument suggested by Norman Ryder formalizes
parental decision in terms of the probabilities of successively proceeding to
each further child.

Disregard time and consider the married couples that have children of
successive orders. Suppose that a certain fraction of women have a first
child; of these a certain fraction have a second child; of those that have two
children a certain fraction go on to a third; and so on. We might take as
the cohort a group of couples that married at the same time, or a group of
women born at the same time. We could include a symbol for the fraction
r0 of the cohort that survives, and another for the fraction that marries,
but simplicity is served by just supposing that r1 of the girls born at a
given moment will grow up and have a first child, of these the fraction r2
will go on to a second child, and so on.

Then the probability that a girl child will have at least one child is r1,
that she will have two children is r1r2, and so on. Suppose that the ratio of
boys to girls among the births of any order is s, so the fraction 1/(1+ s) of
the births are girls. The net reproduction rate of the cohort of which the
girl in question is a member is

R0 =
1

1 + s
(r1 + r1r2 + r1r2r3 + · · ·). (16.8.1)

Due allowance is implicitly made for mortality, nonmarriage, illegitimacy,
and voluntary or involuntary sterility within marriage.

We can enable the notion of parity progression to serve us better by
reducing the parameters in (16.8.1) from one for each child to just two in
all. Ryder found that r1 ≈ r2 = h, say, and that r3 ≈ r4 ≈ r5 ≈ · · · = k,
say. Then (16.8.1) becomes

R0 =
1

1 + s
(h + h2 + h2k + h2k2 + h2k3 + · · ·)

=
1

1 + s

(
h +

h2

1 − k

)
.

Table 16.6 shows values of R0 for various combinations of h and k; the
combinations on the lower right give an increasing population.

With this result we can do experiments of various kinds. We can, in
particular, see how R0 would be modified by lowering k, which is the way
in which fertility change seems largely to have taken place in the United
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Table 16.6. Net reproduction rate corresponding to mothers’ parity progression
ratio, h for first and second child, and k for subsequent children, according to
(16.8.2)

h k

0.40 0.45 0.50 0.55 0.60 0.65 0.70

0.60 0.59 0.61 0.64 0.68 0.73 0.79 0.88
0.65 0.66 0.69 0.73 0.78 0.83 0.91 1.00
0.70 0.74 0.78 0.82 0.87 0.94 1.02 1.14
0.75 0.82 0.86 0.91 0.98 1.05 1.15 1.28
0.80 0.91 0.96 1.01 1.08 1.17 1.28 1.43
0.85 1.00 1.06 1.12 1.20 1.30 1.42 1.59

States. Now, since

R0 =
1

1 + s

(
h +

h2

1 − k

)
, (16.8.2)

we have

dR0

dk
=

1
1 + s

(
h

1 − k

)2

.

Around s = 1.05, h = 0.80, k = 0.65, we have dR0/dk = 2.55, so that each
increase of 0.01 in k produces an increase of 0.0255 in R0, and similarly for
decreases.

To see the effects of successive childbearing decisions on population
growth we need also to take account of timing. The age at which a woman
has her first child, and the successive interbirth intervals, will evidently
make a difference in the rate at which the population grows. Timing is the
one element lacking in the present model. For the effect of its omission,
consider h = 0.80 and k = 0.65, so that R0 = 2.63/2.05 = 1.28. If the
mean age of childbearing (strictly, the length of generation) is 25 years, the
intrinsic rate is 0.0099; if it is 30 years, the intrinsic rate is 0.0082.

16.9 For a Given Probability of Survivors, Lower
Mortality Lowers the Rate of Increase

When mortality is high, a man who wants to have a son who will see him
through his old age requires many children. This point has often been made
before, but we still need clarification of the relation between mortality and
the rate of population increase among people who want a certain assurance
of surviving children. With number of births given, the rate of increase r
goes up as mortality µx goes down; we will see that the relation between
r and µx is reversed if the birth rate is determined by the wish to have
surviving sons.
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Table 16.7. Rate of increase r of populations with values of l30 from 0.5 to 0.9
and probability p of at least one living son of 0.8 and 0.9; tabulation of (16.9.4)

l30 p = 0.8 p = 0.9

0.5 0.0050 0.0169
0.6 0.0017 0.0137
0.7 −0.0022 0.0097
0.8 −0.0074 0.0045
0.9 −0.0155 −0.0035

Call the probability of at least one surviving son p; this must equal one
minus the probability that all sons will die. Consider survivorship to father’s
age 60; then the probability that not all sons will die is

1 − (1 − l60−a1)(1 − l60−a2) · · · (1 − l60−an
) = p (16.9.1)

if the first son is born at age a1 of the father, the second at age a2, . . . , and
the nth at age an.

Now the rate of increase of the population for this particular family, still
on the one-sex model but for males, is the real root in r of the equation

n∑
i=1

e−rai lai
= 1. (16.9.2)

This discrete form of Lotka’s characteristic equation can be solved for r to
tell us what r would be in a population if the mortality and childbearing
patterns of a particular family were general.

Our problem is to find r as a function of the life table la from (16.9.2),
given that the number of children n will be determined by (16.9.1). Even
to define the solution of this would be awkward, so we approximate by
supposing all the children to be born at the same age of the father: a1 =
a2 = · · · = 30, say. Then the first equation, (16.9.1), is

1 − (1 − l30)n = p,

or

n =
log(1 − p)
log(1 − l30)

. (16.9.3)

The second equation, (16.9.2), is

ne−30rl30 = 1;

and substituting n from (16.9.3) and taking logarithms gives

r =
1
30

log
[
l30

log(1 − p)
log(1 − l30)

]
. (16.9.4)

The values of r are shown in Table 16.7, whose most important message
is that each rise in l30 of 0.1 causes a decline in r of 0.003 to 0.008. The
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point seems to be that the improvement in mortality permits a decline in
the number of children sufficiently great that the births drop more than
enough to offset the fall in mortality. Heer (1966) has applied simulation to
this problem, and his more complex model produces an inverted U -curve
in r.

Note that n, being the number of children, ought to be an integer, and if
p is to be assured it ought to be the next higher integer to the expression
on the right-hand side of (16.9.3). For some combinations of high p and low
l30 the n implied in (16.9.3) will be an impossibly large number of children.
This does not apply, however, to the range shown in Table 16.7, for which
1 to 4 male children suffice.

Note that as l30 moves toward unity a discontinuity exists, for r goes
steadily downward with 1 − l30 for any fixed value of p; but we know that
l30 = 1 and r = 0 will provide with certainty the one child living at age 60
of the father. Evidently (16.9.4) is not to be taken seriously as mortality
falls very low, or when other than small positive values of n � 1 are implied.



17
The Multi-State Model

The life table was in use for some centuries before anyone noticed that
the transition from life to death is an instance of much more general
transitions—from well to sick, from school to work, from single to mar-
ried, from working to unemployed, from living in Province A to living in
Province B, from fecund to pregnant. For each of these, and many other
transitions, a decrement table can be made, and the usefulness of doing so
has been recognized in field after field. To study schooling, one routinely
makes life tables of survival in school as against dropping out; to study the
effectiveness of a contraceptive, one makes a life table of those remaining
fecund versus those falling into pregnancy.

The technique could well be applied more extensively. For unemploy-
ment, we ought to know not only the total number at a given moment and
the fraction they are of the labor force, but also the probability that an
unemployed individual will find a job next month, the month after, or the
month after that. With ten percent unemployment in the country, it makes
a great deal of difference whether everyone in the labor force is out of a job
for 5 weeks a year, or one tenth of the labor force is out for 50 weeks. The
life table form would tell a person of certain characteristics who has just
lost his job the chance of being out of work for 1 month, 2 months, etc.

All these would be single decrement life tables, calculable by exactly the
same technique as has been used for the representation of mortality these
last 300 years. There is no need to adapt the life table method to them; the
method is immediately applicable. This chapter goes beyond them into the
realm of multiple contingencies. The person now out of work has a certain
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chance in the next month of finding a job, of moving to another province,
of going back to school, etc.

The matter can become complex: What is the chance that a person who
is now unemployed will be back at work within the year? This would in-
clude the probability that he finds a job next month, then loses it four
months later, finds another in the seventh month, and keeps this to the
end of the year, plus millions of similar combinations. To show the for-
mulae that would take account of all the combinations, but without the
user having to specify any of them, is the purpose of this chapter. The
mathematics is essentially due to Kolmogorov, put into convenient form by
Andrei Rogers (1975, 1995). Schoen (1975) and Schoen and Land (1979)
independently recognized the essential principle and expressed it without
the use of matrices, necessarily in longer formulae. All the methods used for
the ordinary life table turn out to apply, with no modification other than
the replacement of scalars by vectors and matrices, and specification of the
order in which multiplication is carried out. Formulae include expressions
for converting age-specific rates into probabilities of survival to the next
age, successive multiplication of these from the beginning of life to obtain
probabilities that a person born into a certain state will be in (another or
the same) state at successive ages; integration of the survivors to obtain
the stationary population; cumulative adding of the stationary population
from the end of the table backwards to obtain at each age the expectation
of future time in each state.

Most of demography, like the present exposition, starts with transitions
of people from one state at a certain moment to another state 1 year or
5 years later: single to married, married with 1 child to married with 2
children, at school to in the labor force, living to dead. These transitions
have to be calculated from raw statistical data of various forms. Sometimes
individual movements are registered: Robert Jones died at age 51 on April
23, 1984; Mary Henderson, age 28, gave birth to a baby boy on July 17,
1984; Henry Johnson retired at the end of September 1984. The individual
movements are aggregated into groups and published as official statistics:
There were 1372 deaths of males aged 50–54 in 1984; 987 girl babies were
born to women aged 25–29 in 1984. Some of the data are not events but a
count of the individuals in a region: 116,572 males aged 50–54 were living
in a certain area on July 1, 1984. These are stocks, in contrast to the flow
data describing events.

The life table is a transition model in which observed death rates, within
an age interval, are the basis of probabilities of dying and then of the
stationary population, the expectation of life, and other parameters of in-
terest. Migration analysis, on the other hand, often starts from a census
question asking respondents where they were living 5 years earlier. A kind
of transition probability is directly given by the aggregation of the result-
ing answers. With some qualifications one can thus, in a sense, observe
transitions and infer moves from them; the opposite applies in mortality
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statistics, where it is moves that are observed and transitions inferred from
them. That the Jones family lived in Denver in 1980 and in Omaha in 1985
is a transition; the family moved from Denver to Chicago in June 1981 and
from Chicago to Omaha in November 1984.

That there were 1,160,000 divorces in the United States in 1984 tells
a very small part of the story of marriage dissolution; anyone studying
divorce wants to know the probability of divorce, say within 5 years of
marriage, for couples in various categories. Only in that way can proper
comparisons be made over time and between social groups. The original
counts of numbers of divorces year by year do not even tell whether the
propensity to divorce is increasing, let alone by how much.

A couple is provided with some means of birth control—perhaps the wife
is fitted with an IUD. What is the chance that the IUD will still be in place
1 month, 2 months, 3 months later? And how does this compare with the
steadfastness of another couple in using a stock of pills with which they are
provided? What is the chance that a recruit to a particular job will still be
holding on and doing the work 1 year, 2 years, 20 years later?

All the hazards implied above—divorce, failing to retain an IUD, losing
a job—can be represented as hurdles at heights suitably determining the
risks of failure. When we know the runners who fail on the ith hurdle
as a fraction of the number who arrive at it, for all values of i, then the
cumulative product of the probabilities of not failing tells us what fraction
of the number that started the race will still be in the running after the xth
hurdle. This cumulative fraction remaining in the race after the xth hurdle
among those that started is the lx column of the ordinary single-decrement
life table. The average number of hurdles cleared before the runner misses
is the expectation or

o
e 0 column of the same life table.

The works of Fix and Neyman (1951), Mertens (1965), Sverdrup (1965),
Chiang (1960a,b, 1961, 1968), Oechsli (1971), Schoen and Nelson (1974),
Schoen (1975, 1988), Hoem (1975), Hoem and Fong (1976), Schoen and
Land (1979), and especially of Rogers (1975, 1984, 1995), Willekens (1978),
Rogers and Ledent (1976), and Land and Rogers (1982) provide further
expositions and examples of multivariate demography. Al Mamun (2003)
reviews more recent applications, and gives an introduction to the theory in
the context of cardiovascular disease and its risk factors. What follows is an
elementary outline of the theory, stressing the analogy to single decrement.

17.1 Single Decrement and Increment-Decrement

Early in the history of demography two questions were asked: What is the
probability of surving to age x, and what is the average age at death—
the expectation of life? Smith and Keyfitz (1977) provide excerpts from
original papers. The answer, in current notation, is that if the chance of
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dying between age a and a + da for those aged a is µ(a) da, µ(a) being the
force or intensity of mortality, then the probability l(x) of survival to age
x is obtainable by solving the differential equation

dl(x)/dx = −µ(x)l(x), (17.1.1)

which gives l(x) = exp(−
∫ x

0 µ(a) da), and the expectation of life is then
calculated as

o
e(x) =

∫ ω

x

l(a) da/l(x), (17.1.2)

where ω is the oldest age of life. Chapter 2 describes one of the numerous
ways of calculating l(x) and hence

o
e(x) from empirical data.

When births are taken into account as well as deaths, the question arises:
By how many girls will a girl baby be replaced? The answer is given in terms
of the chance l(x) that she will live to age x and then have a girl baby be-
tween age x and x+dx, m(x)l(x) dx, where m(x) is the age-specific fertility
rate. Integrating this over the range of reproductive life gives the required
R0 =

∫ β

α
m(x)l(x) dx, which is the ratio of the size of one generation to the

preceding at the specified rates of birth and death. It gives the implication
for population growth of the prevailing schedule of mortality and fertility,
in disregard of peculiarities of the existing age distribution.

These are just about the most complicated demographic problems that
can be presented and solved in one dimension. Everything else requires two
or more dimensions. To study mortality by itself, or even mortality and
fertility, recognizing age only, is to take a very small part of the demographic
process out of its natural context. What follows will generalize the preceding
formulae to an arbitrary number of dimensions. The result is a theory
that links continuous time or age processes to the discrete-time population
projection matrix approach of Chapters 3 and 7.

17.1.1 Matrix of Inputs
To generalize the original life table theory, we deal not only with the move-
ment from life to death represented by the scalar rate µ(x) but with the
matrix µ(x), standing for the instantaneous rates of movement between
states.

Construction of the µ(x) matrix from actual data, at least to a suitable
approximation, is straightforward. The off-diagonal elements of µ(x) are
each the corresponding observed rate of movement in a small time interval
with sign reversed. Thus −µij(x) dx is minus the chance that a person in
state j transfers to state i during the short period of time and age dx. Each
diagonal element of µ(x) contains the rate µδi of dying, with positive sign,
along with the total of the off-diagonal elements of the column,

∑
i �=j µij ,

also with positive sign. The reason for this is that the column total has to be
conservative—that is, to add zero with respect to movements among units.
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Table 17.1. Matrix µ(x) of moves for the case of three states.

µ(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

µδ1(x) +
n∑

i �=1

µi1(x) −µ12(x) −µ13(x)

−µ21(x) µδ2(x) +
n∑

i �=2

µi2(x) −µ23(x)

−µ31(x) −µ32(x) µδ3(x) +
n∑

i �=3

µi3(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The quantities from the jth state added into the ith state must also be
subtracted from the jth, so an increment to µij , i �= j, has to be subtracted
from µjj . The net total of the column is just the death rate.

The notation is indicated in Table 17.1 for the case of three states, giving
the matrix µ(x) in some detail. The right-hand subscript is state of origin,
the left-hand subscript state of destination. Thus µ23(x) is the movement
from state 3 to state 2 for persons aged x during a given interval. All other
matrices use the same subscripting, essentially that of Rogers (1975). The
matrix M(x) will be the finite approximation to µ(x). It is obtained as raw
data by dividing the transitions from the jth state to the ith state by the
exposure, i.e., the mid-period population times the length of the interval.

Throughout we shall make the one major assumption that is common
to all life tables and to increment-decrement tables and without which
demographic processes cannot be conveniently portrayed. The probability
of an individual making any transition will be taken to depend only on
the state in which he is located at the start of the transition period—the
Markov condition. The chance of a man of 55 dying before the age of 60 in
the ordinary life table depends only on the fact that he is 55 and belongs to
a certain defined population; it does not depend on his health as a baby or
whether he smokes or is a nonsmoker or whether his father died young or
old. If we want to take into account anything beside his age at the beginning
of the interval, we have to do so by dividing up the population—say into
smokers and nonsmokers—and then allowing the same Markov condition
to apply within each of these groups.

Researchers in some fields find this assumption more restrictive than
those in other fields. There is not much complaint about it in the ordinary
life table. On the other hand, for mobility studies the history of the indi-
vidual does seem to be important—for example, the longer a person has
been in a given region, the less likely he is to move away in the next time
interval. Such considerations introduce the history of the person in a way
that precludes the treatment of these pages. We shall always assume that
the entire history of the person is summed up in the state in which he is
found at the beginning of each interval.
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17.2 The Kolmogorov Equation

Identical with equation (17.1.1), except that the elements are now matrices
and vectors, is the basic

dl(x)/dx = −µ(x)l(x), (17.2.1)

which is due originally in this application to Kolmogorov (Krishnamoor-
thy 1978, Willekens 1978). Here l(x) is a column vector in which the ith
element is the number of the population surviving and in the ith category
at age x. In general, where people are going in and out of the several cate-
gories, we cannot say that the elements of l(x) represent probabilities, yet
probabilities are what we seek. Now suppose that in the small interval of
time and age dx no one will be affected by more than one event. We would
like to pass from µ(x) and the vector l(x) to a matrix L(x) whose typical
element is lij(x), the chance that a person born in the jth state will be in
the ith state by age x.

The theory for doing this is available from standard works on linear
differential equations (Coddington and Levinson 1955, Gantmacher 1959,
vol. 2, p. 113). If there are n states, and so the matrix µ(x) is n × n,
and if the n eigenvalues of that matrix are distinct, then there will be
n linearly independent vectors lj(x), j = 1, . . . , n that satisfy equation
(17.2.1). When this is so, the matrix made by setting those vectors side
by side will obviously also satisfy the equation, and it can be shown to be
the complete solution. Call L(x) the matrix made up of the several lj(x)
We shall see how to obtain the elements of L(x) so as to ensure that the
ijth element is the probability that a person born in the jth category finds
himself in the ith category by age x. The procedure is due to Rogers (1975).

17.2.1 The Multiplicative Property
One mathematical property of the L(x) will be important for the demo-
graphic application: its multiplicativity. It may be shown (though not here)
that if the interval from zero to y is broken into two subintervals at any
point, say x < y, then (Gantmacher, 1959, vol. 2, p. 127)

L(y) = L(y|x)L(x), (17.2.2)

where the ijth element of L(y|x) will in our interpretation mean the prob-
ability of being in the ith state at age y given that the person was in
the jth state at age x. Since the interval from x to y may also be split
into subintervals with the same property, we can divide the whole of any
range into sufficiently small intervals (usually 1 or 5 years) that within each
interval µ(x) may be approximated by a matrix whose elements are con-
stants independent of age. This will be the key to the numerical solution
of (17.2.1).
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What we cannot do is calculate directly the exponential of minus the
integral of µ(x), in analogy to what is possible for the one-region life table
solution of equation 17.1.1. The exponential of an integral has meaning only
when the matrix commutes. The relation of exponentials eA+B = eA × eB

requires commutativity, as a fortiori does e
∫
A(x) dx. Only diagonal matrices

and other uninteresting special cases are commutative. We must break
down the interval from zero to x into subintervals short enough, say h in
length, that the µij(x) may be taken as constant within each of them. If in
the interval x, x + h, µij(x) is constant, say mij for all i and j, and Mx is
the array of the mij , then from property 17.2.2 we can write

L(x + h) = e−hMxL(x). (17.2.3)

With an arbitrary radix L(0), equation (17.2.3) permits the construction
of L(x) step by step at intervals of h all the way to the end of life. Al-
ternatively, expanding the exponential in (17.2.3) to its first two terms
gives

L(x + h) = (I − hMx)L(x). (17.2.4)

This approximation can be improved by first premultiplying (17.2.3)
on both sides by exp(hMx/2) and then expanding to obtain the more
symmetric (

I +
hMx

2

)
L(x + h) =

(
I − hMx

2

)
L(x),

or on multiplying by (I + hMx/2)−1 on the left,

L(x + h) =
(
I +

hMx

2

)−1(
I − hMx

2

)
L(x). (17.2.5)

Thus (17.2.3) is an approximation to (17.2.2) for y − x = h, and (17.2.4)
and (17.2.5) are approximations to (17.2.3). The approximation (17.2.5) is
close enough for many kinds of data with intervals of 1 year or even 5 years.
It can always be improved by graduating the original data down to tenths
of a year or smaller, and this was essentially what Oechsli (1971, 1975) did,
using spline functions.

It is possible to escape from the restriction, implicit in (17.2.3) and
(17.2.5), that the rates be constant over the interval h. Willekens (1978)
and Krishnamoorthy (1978) have done this by using the Volterra theory of
integration. As a consequence of (17.2.1),

L(x + h) = L(x) −
∫ x+h

x

µ(t)L(t) dt

=

[
I −
∫ x+h

x

µ(t)L(t)L−1(x) dt

]
L(x).
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With observed or appropriately constructed curves for µ(t) and L(t) within
the interval h, the square bracket can be evaluated.

A third approach is due to Schoen and Land (1979). They obtain flow
equations, the multi-dimensional analogue to lx+h = lx − hdx, representing
relations within the life table. Alongside these are orientation equations,
analogous to hMx = hdx/hLx, where hMx is the observed rate. Finally the
set is completed with numerical integration equations analogous to hLx =
(h/2)(lx + lx+h). As in the single-region case, the solution can be given
explicitly with a straight-line integration formula. With more elaborate
integration formulae iteration is required.

The initial L(0) is arbitrary as far as the differential equation (17.2.1) is
concerned; we shall define it as the identity matrix I. In instances where a
population model is to be constructed rather than a set of probabilities, so
that radices other than I are required, those will be entered by multiplica-
tion: L(x)Q, where Q is a diagonal matrix containing the starting numbers
or births in the several categories recognized.

17.2.2 Probabilities over Long Intervals
The most obvious question to ask is: what is the probability that a person
in the jth state at age x will find himself in the ith state at age y, where the
difference y − x need not be small? Without matrix methods the problem
is difficult and has even been thought unsolvable. It has to take account
not only of movement out of the jth state but also of movement into the
ith state of persons not in the jth state at age x. It may be solved by the
multiplicative property referred to above as applicable wherever the interval
(x, y) can be broken down into subintervals of width h, within each of which
L(x + h)L−1(x) can be calculated by any of the methods cited earlier. If
l(y|x) is the desired set of probabilities, we know that L(y|x)L(x) = L(y),
so multiplying on the right by L−1(x) we get

L(y|x) = L(y)L−1(x), (17.2.6)

where the probability of going from the jth state at age x to the ith state
at age y > x is the jth element of the ith row of L(y|x).

It can be argued that the differential equation (17.2.1) is a background
of mathematical theory used only to provide a context for our symbols
far more general than will be called for by demographic applications. Why
could we not be satisfied to build up the L(x) matrix from the Mx matrix,
step by step, in 5-year age groups starting from the unit matrix L(0) = I,
using (17.2.5) at each step? We could even go through the arithmetic and
obtain every probability required without ever introducing matrix nota-
tion, but the process of tracing individual combinations would be tedious.
Moreover, the general theory assures us of the multiplicativity of the L(x)
matrix, in the sense of (17.2.2), and from this all else follows.
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17.3 Expected Time in the Several States

Beyond probabilities we would like to know the expected time lived between
age x and x + h in the several states, where in the first instance h is small.
Let hCx be a matrix whose (i, j) entry is the time of residence in the ith
state for those initially in the jth state. A straight-line approximation gives

hCx = (h/2) (Lx + Lx+h) ,

and a cubic gives

hCx = (13h/24) (Lx + Lx+h) − (h/24) (Lx−h + Lx+2h) . (17.3.1)

Adding hCx gives the person-years over any interval of age large or small.
Cumulating hCx back from the end of the table gives the expected years
in the ith state from age x to the end of life measured prospectively from
birth in the jth state:

T(x) =
∫ ω−h

x

C(a) =
∫ ω

x

L(a) da.

For an individual just born in the jth state, the probability of being in
the ith state by age x is the ijth element of L(x). And if the expected
number of years beyond age x in the kth state for those who survive to the
ith state by age x is the ikth element of

o
e(x) we must have

T(x) =
o
e(x)L(x), (17.3.2)

where the right-hand side gives for the jth state at birth the number of
years that can be expected if one reaches age x (and is then in the ith
state) times the probability of reaching the ith state by age x.

Consider, for example, those in the second state at birth and let us find
their expectation beyond age x in the first state. The second column of L(x)
gives the chance that the person born in the second state is in the first, the
second, and so forth, state at age x: If residing in the first state at age x, he
has an expected

o
e 11(x) in the first state; if residing in the second, he has

an expected
o
e 12(x) in the first; and so on. In short his total expectation in

the first state, given that he was born in the second, is prospectively from
age zero

o
e 11(x)l12(x) +

o
e 12(x)l22(x) +

o
e 13(x)l32(x) + · · · .

For the whole collection of states, we have

o
e(x)L(x) =

⎛
⎜⎜⎜⎜⎝

o
e 11(x)

o
e 12(x)

o
e 13(x) · · ·

o
e 21(x)

o
e 22(x)

o
e 23(x) · · ·

o
e 31(x)

o
e 32(x)

o
e 33(x) · · ·

...
...

...
...

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

l11(x) l12(x) l13(x) · · ·
l21(x) l22(x) l23(x) · · ·
l31(x) l32(x) l33(x) · · ·

...
...

...
...

⎞
⎟⎟⎟⎠ .
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Note that here as in other expressions indexes are read right to left in
order to use column vectors and the conventional subscripting of matrix
elements.

Multiplying equation (17.3.2) by L−1(x) on the right, we have for the
expectation in the ith state for a person in the jth state at age x the ijth
element of

o
e(x) = T(x)L−1(x). (17.3.3)

An example is Table 17.2, calculated by Frans Willekens from 1967–72
United States data covering both sexes combined. It shows a total expecta-
tion of life of 71.08 years for those born in the Northeast. Of this time they
will spend 13.16 years in the South. On the other hand, those born in the
South will spend only 7.73 years in the Northeast, all on the average and
provided that the rates of the given period, 1967–72, continue to apply.

Note that, on the definitions provided, the ijth element of T(x) is average
time after age x spent in the ith state by those born in the jth state. For
T(0) birth and initial residence are the same; but for any later T(x) they
are different and give rise to two different expectations. Multiplying on the
right by L−1(x), as was done in equation (17.3.3), provides the expectations
of stay in the ith state for each jth state of residence at age x.

To find the expected stay in the ith state for each state of birth requires a
different denominator. The chance that the person born in state j is in state
i at age x is lij(x); the total

∑
i lij(x) of the jth column of this through

all i gives the chance that the person born in state j is still alive at age x,
irrespective of where he lives at that time. If the diagonal matrix of these
totals is called L̄(x), then we have for the expectations

ō
e(x) = T(x)L̄−1(x).

Region of residence at age x has been duly summed out.
The multi-group life table often imposes distinctions not required in the

ordinary life table.

Table 17.2. Life expectancies at birth by region, both sexes together, United
States: 1967–72

Place of birth

North
Place of residence Northeast Central South West

Northeast 41.73 5.84 7.73 6.57
North Central 8.19 39.89 11.95 11.64
South 13.16 14.69 39.52 15.24
West 8.01 10.66 11.30 37.70
Total 71.08 71.08 70.50 71.15

Source: Calculated by Frans Willekens.
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Table 17.3. Fertility expectancies by region, both sexes together, United States:
1967–72

Place of birth

North
Place of residence Northeast Central South West

Northeast 0.74 0.09 0.13 0.10
North Central 0.13 0.74 0.21 0.20
South 0.20 0.23 0.70 0.24
West 0.12 0.16 0.18 0.65
Total 1.19 1.22 1.22 1.19

Source: Calculated by Frans Willekens.

17.3.1 Fertility Expectations
Rogers (1975, p. 106) and Willekens and Rogers (1977) go on to discuss
fertility expectations based on the same data, now relating births to total
population age by age. The result is in effect an average of the male and
female net reproduction rates. Whether for females alone or for both sexes
we can write the age-specific birth rate in the ith region over a short time
interval dx as νi(x), construct the diagonal matrix ν(x), and postmultiply
by L(x):

ν(x)L(x) =

⎛
⎜⎝ν1(x) 0 · · · · · ·

0 ν2(x) · · · · · ·
...

...
...

...

⎞
⎟⎠
⎛
⎜⎝l11(x) l12(x) · · · · · ·

l21(x) l22(x) · · · · · ·
...

...
...

...

⎞
⎟⎠

to obtain ⎛
⎜⎝ν1(x)l11(x) ν1(x)l12(x) · · · · · ·

ν2(x)l21(x) ν2(x)l22(x) · · · · · ·
...

...
...

...

⎞
⎟⎠ ,

whose ijth element gives the probability that a person (or woman) born in
the jth region gives birth to a child (or girl child) in the ith region. When
this is integrated over all x we have the multi-regional net reproduction
rate R0 =

∫ β

α
ν(x)l(x) dx.

That R0 is shown in Table 17.3 for the United States (1967–72). The child
born in the Northeast could expect to have 1.19 babies on the average. Of
these only 0.74 would be born in the Northeast; 0.13 would be born in the
North Central region, and so forth. The table shows the implications of the
data about 1970 for the birthplaces of successive generations, averaging the
sexes. Homogeneity is assumed here as throughout this chapter.

Table 17.4 shows eij for five states: single, once married, widowed, di-
vorced, and in a second or later marriage. Thus the total expected future
lifetime of Canadian males at the mortality levels of 1981 is 52.430 years



17.4. Projection 455

for those single at age 20 and 53.587 for those already married. The single
can expect 11.687 years single, 28.896 + 7.580 = 36.476 years married.

17.4 Projection

A common demographic activity is population projection. If a given set
of probabilities applies, and we know the vector representing the several
categories of population at a certain point of time, the expected numbers at
a later point of time are calculable. Suppose the age interval as well as the
time interval to be h years as before; then for a population that happened
to be concentrated at ages 0, h, 2h, . . . , the matrix L(x + h)L−1(x) would
be appropriate for the projection in all cases where L(x) is nonsingular.
But to approximate the observed population by a series of spikes seems
inferior to approximation by a series of histograms.

We need a ratio corresponding to Sx = hLx+h/hLx of the single-region
case. This is obtained by applying the multiplicative property (17.2.2) to
show that Lx+h = SxLx, and multiplying on the right by L−1

x to obtain
Sx = Lx+hL−1

x , again assuming the inverse of Lx exists. (It does not ex-
ist for a marriage or labor force table prior to age 15 or so, and some
other device is needed.) Now suppose the transitions pertaining to each
given age,perhaps transitions among regions, are assembled into a block.
Such blocks for the several ages x may be assembled into a matrix S with
zero blocks everywhere except in the subdiagonal. The arbitrary (that is,
observed) n(t) is projected to time t + h by

n(t + h) = Sn(t). (17.4.1)

This projects the part of the population already alive, but it gives no
attention to births. To allow for them we need a matrix F, whose nonzero
elements are in its first row of submatrices, so the complete projection with
time-invariant coefficients is (Rogers 1975, Feeney 1970)

n(t + h) = (S + F)n(t). (17.4.2)

Table 17.4. Multi-state life table: expected number of years in each of five states
for Canadian males aged 20; vital statistics of 1981

Once Later
Single married Widowed Divorced marriage

Single 11.687 0 0 0 0
Once married 28.896 36.788 0 0 0
Widowed 1.904 2.182 10.669 2.164 2.182
Divorced 2.363 3.063 2.495 6.765 3.063
Later marriage 7.580 11.554 38.197 44.407 48.342
Total 52.430 53.587 51.361 53.337 53.587

Source: Author’s calculation.
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The procedure described by (17.4.2) permits a certain kind of experi-
mentation with the elements of S and F and serves to ascertain the effects
on future population of marriage ages, migration rates from more to less
fertile regions, and so on. For forecasting purposes, some gains can be ob-
tained by deliberately allowing the coefficients to change according to what
one thinks may be the trends over future time. One must be cautious here;
in more than one case varying the coefficients has produced a less accurate
forecast than fixed coefficients would have done.

17.5 Transition Versus Instantaneous Probability
of Moving

Most data on geographical mobility come in the form of transitions over a
finite period—we know that the person was in state j at one moment of
time and in state i 1 year or 5 years later. The census, for instance, asks
people where they were 5 years ago without inquiring about intermediate
moves. We shall speak of transitions in terms of a P matrix, whose pij is
the probability that a person is in the jth state this year and in the ith
state 1 year or 5 years later, in contrast to the µ matrix, where the chance
of moving from the jth state to the ith in infinitesimal time dx is µij(x) dx.

Although our theory started out in terms of movements in time separated
by an infinitesimal interval dx, it then dropped the µ and took no account
of what happens within the finite interval beyond the probability that a
person in the jth state at the beginning is in the ith state at the end. This
is satisfactory if the time interval is short enough that two moves do not
occur within it—that a person does not move and die in the same specified
h years, for example. But what if the data cover a wide enough interval
that several moves are possible?

Fortunately, the bias does not apply to most of the quantities calculated
from the model. For projecting population according to the spike represen-
tation of the L(x), the observed transitions are obviously the right ones to
use; one wants to omit intermediate transitions (people going from j to i
and back again, all within one time interval) in the future as they have been
omitted in the past. Slightly less obviously, the same applies to projection
by histograms (equation 17.4.2). On the other hand, the expected number
of moves calculated from the model will be understated if multiple moves
occurring within the unit time interval of the data are neglected.

The Markov assumption of our model assigns the same probabilities to
everyone in a given state at the beginning of each interval; no past history
is allowed to influence the chance of transition beyond what is implied by
the state that the person is then occupying. If we suppose this also applies
in all subintervals, then the Markov assumption allows us to capture and
add in those jumps that occur within intervals.
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Table 17.5. Transition probability p, corresponding instantaneous rate µ, and
probability of 0, 1, 2, and 3 moves in two-state model with Pij = Pji = p

Corresponding
Transition instantaneous Probability of
probability rate

(p) (µ) 0 Moves 1 Move 2 Moves 3 Moves

0.001 0.001 0.999 0.001 0.000 0.000
0.050 0.053 0.949 0.050 0.001 0.000
0.100 0.112 0.894 0.100 0.006 0.000
0.150 0.178 0.837 0.149 0.013 0.001
0.200 0.255 0.775 0.198 0.025 0.002
0.250 0.347 0.707 0.245 0.042 0.005
0.300 0.458 0.632 0.290 0.066 0.010
0.350 0.602 0.548 0.330 0.099 0.020

Source: Calculated by Frans Willekens.

Consider transitions of one period between two states, in which pij =
pji = p, so that the fraction of persons initially in the jth state that are
found in the ith state at the end of the unit period is p. Suppose also that
the instantaneous probability of moving (not known) in the time dt is µ dt;
then we can write out in terms of µ what fraction of the individuals initially
in the jth state would be found in the ith state at the end of the period. It
is those who made an odd number of moves, 1 or 3 or 5 or 7, this being as
far as we need to go. If the instantaneous rate is µ, then by integration the
probability of one transition in unit time is µe−µ, the probability of three
transitions is (µ3/3!)e−µ, and so on, and the sum of these can be equated
to p:

p = µe−µ +
(
µ3/3!

)
e−µ + · · ·

=
(
e−µ/2

) (
eµ − e−µ

)
=
(
1 − e−2µ

)
/2. (17.5.1)

Solving for µ gives

1 − 2p = e−2µ

µ = − 1
2 log(1 − 2p).

(We are grateful to Jan Hoem for this form of the solution.)
Table 17.5 gives values of p and the corresponding values of µ. It says,

for example, that if the transition probability from the jth to the ith state
is 0.2, and the transition probability from the ith to the jth is the same
as this, and there are no other states, then an instantaneous rate of 0.255
will produce the 0.200 chance of transition. There will be a probability
e−µ = 0.775 of no moves, µe−µ = 0.198 of one move, (µ2/2!)e−µ = 0.025
of two moves, and so on.

To generalize, if pij is the probability of a transition from state j to state
i in unit time, we would like to find the instantaneous probability µij (fixed
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over the interval) that would provide gross movement but still show a net
of pij . We have discussed only the simple case where pij = pji = p is the
probability of transition in either direction between the two states.

The generalization that follows from the Kolmogorov equation (Kitsul
1978) is the matrix relation P = exp(−µ), or written out:⎛
⎜⎝p11 p12 · · · · · ·

p21 p22 · · · · · ·
...

...
...

...

⎞
⎟⎠ = exp

⎡
⎢⎣−

⎛
⎜⎝µ11 µ12 · · · · · ·

µ21 µ22 · · · · · ·
...

...
...

...

⎞
⎟⎠
⎤
⎥⎦ , (17.5.2)

where the diagonals µii are such as to make the columns sum to zero. If
the matrices have distinct eigenvalues, (17.5.2) may be solved numerically
in either direction.

Let us prove that (17.5.1) is a special case of (17.5.2). Take the matrices
as 2 × 2 and make the µ’s equal to µ or −µ, so that (17.5.2) becomes(

p11 p12
p21 p22

)
= exp

[
−
(

µ −µ
−µ µ

)]
.

To evaluate the right-hand side, we need eigenvalues, eigenvectors, and
spectral components. For eigenvalues,

µ − λ −µ
−µ µ − λ

= 0,

or

µ2 − 2λµ + λ2 − µ2 = 0.

Therefore λ = 0 or 2µ. Left eigenvectors are
(

1 1
)T and

(
1 1

)T, up
to constant factors. Right eigenvectors are

(
1 −1

)T and
(

1 −1
)T.

The spectral components are

Z1 =
1
2

(
1 1
1 1

)
Z2 =

1
2

(
1 −1

−1 1

)
.

Hence

exp(−µ) =
(

e0

2

)(
1 1
1 1

)
+
(

e−2µ

2

)(
1 −1

−1 1

)
.

Multiply by e−µeµ to obtain as the P matrix(
e−µ

2

){
eµ

(
1 1
1 1

)
+ e−µ

(
1 −1

−1 1

)}
.

The lower left element of this is

e−µ

[
eµ − e−µ

2

]
= e−µ

(
µ +

µ3

3!
+

µ5

5!
+ · · ·

)
,

which is identical to (17.5.1).
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Equation 17.5.2 allows us to infer the instantaneous probabilities of move-
ment that are equivalent to a given set of transitions and hence to know
the multiple transitions expected in any finite period. This is based on the
Poisson process in which the probability of moving from the jth to the ith
state is equal for all moments within the unit time period. In the case of
death, a movement is the same as a transition and no reversal is possible;
for other changes, transition in either direction has to be admitted. Under
the stated assumptions, equation 17.5.2 read as an equation in P tells the
transitions that correspond to a given set of movement probabilities; read
as an equation in µ, it tells the movement probabilities that account for
the given transitions.

In a series of papers Singer and Spilerman (1976) have shown how to find
the continuous-time Markov chain of which an observed set of transitions
can be considered the manifestation. Not every series of transitions is em-
beddable in a stationary Markov chain (that is, one with fixed parameters).
They represent the solution of P = e−µ formally as µ = − log P and pro-
ceed to create a suitable definition of log P in terms of the decomposition
of P in spectral components. Because the logarithm has multiple branches,
the result is not unique, and identifying the answer that corresponds to the
problem in hand requires some ingenuity. The reader is referred to Singer
and Spilerman for a highly sophisticated treatment of the relation between
P and µ.

17.6 Stable Population

When we seek probabilities and expected values for individuals, the radix
is taken as L(0) = I. But for stationary populations the radix must be the
number of births into each of the categories. The point does not arise in
tables of the single and married population, nor of the working population
or the school population, because for each of these classifications everyone
starts out in the same state—single, not in the labor force, and not at
school. But the classification by territory is different: Portrayal of station-
ary conditions in the several regions requires that we enter as the radix a
diagonal matrix Q showing the number of equivalent births in each region;
here we use not L(x) but L(x)Q.

Like the usual single-region life table, our multi-group table is not only
suited to provide probabilities and expectations but is also a population
model for such groups as regions, occupations, marital statuses, or years of
schooling. It gives the age and group distribution to which the age-group-
specific rates would lead if they were in operation long enough that the
peculiarities of the original distribution were forgotten.

But for this purpose the stationary model can readily be improved on
by incorporating population increase. In the stable model the people now
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aged x were born x years ago when the population was smaller than it is
now in the ratio e−rx, so the number that would be counted as of age x
would be proportional to the survivors from one birth times e−rx. On a
radix of one birth in each region the stable multi-group population would
show the age and region distribution e−rxl(x); on a basis of qi births in the
ith region it would show

e−rxl(x)Q, (17.6.1)

where Q is the diagonal matrix containing the qi. The jth element of the
ith row of e−rxl(x)Q is e−rxlij(x)qj , which is the number of persons of age
x out of the qj born in the jth region that will be found at stability in
the ith region. The Q is the multi-region analogue of the stable equivalent
(Keyfitz 1968; see Chapter 8).

Such a model mimics observed populations with a closeness that depends
on how nearly constant is the regime of mortality and fertility to which they
have been subject. The model tells the implication of present rates—what
the outcome will be if they continue unchanged for two or three generations.
It tells, for example, where the Northeast would stand with respect to the
rest of the United States if the age-specific rates of 1967–72 continued to
prevail.

Formulae of this chapter have been applied to census and vital records
that profess to cover the whole population. Another way of saying this
is that the errors of such data are not of a random nature, and so the
guarantees of accuracy that probability sampling can offer are not available
for them.

Demographers increasingly gather their own data by sample survey
methods. The results of such enquiries are usually tabulated in exten-
sive cross-classifications, and bring the authors face to face with difficult
questions of statistical significance. The pioneer on searching through con-
tingency tables to find what conclusions can properly be drawn from them
is Leo A. Goodman, whose log-linear methods are now widely used; for
presentations relevant to our applications, see Bishop et al. (1975) and
Fingleton (1984), for applications to the problem of choosing demographic
state variables see Caswell (1988a, MPM Chapter 3).



18
Family Demography

For most purposes of population study there is no need to consider any
unit intermediate between the individual and the larger group consisting
of all the individuals included within some area—state, province, county,
or nation. Recognizing only two units, population and individual, permits
the construction of models that are readily expounded and understood.
Demographers, following in the footsteps of Lotka and other predecessors,
have worked hard to simplify this much-too-complex material.

The choice of unit for demographic (as for any other) analysis depends
on the problem to be solved. For forecasts of total population, of the future
labor force, or of the pension burden, it has seemed sufficient to work with
the individual, and often without characterizing each individual beyond
age and sex. One supposes that individuals give rise to other individuals
over the course of time in a renewal process, irrespective of marriage or
co-residence; individuals are discrete from birth; they live their separate
lives, reproduce, and die.

For some purposes the recognition of an intermediate unit is unavoidable.
Individual demography can tell us little about how the population fits into
the housing stock; it can tell nothing about the kin networks among which
mutual aid and protection take place. It falls short of explaining fertility
change, insofar as the couple rather than the individual is the decision-
making unit. Children are not born to couples independently at random,
but couples take account of the number of children already born to them
and of other aspects of their family situation at any given moment. When
family constitution was stable it attracted less attention from scholars and
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lay people. Enormous changes in family and residential arrangements since
World War II have aroused the current interest in family demography.

18.1 Definitions

This chapter concerns three kinds of unit intermediate between the in-
dividual and the population: the kin group, the residential family, and
the household. The kin group are parents and children, siblings, nephews,
nieces and cousins, irrespective of where they are living. The family, for
census purposes, is not the totality of relatives but only those that live
together in a given household or dwelling. This is the convenient unit of
census enumeration—since the members know one another, the census in-
formation on all can be obtained from whoever answers the door when
the enumerator calls. The members of the kin groups recognized by the
census taker are in the first place the nuclear family—husband, wife, and
children—and then the resident extended family that includes parents and
in-laws of the husband or wife. The household is the persons living in a
given residential unit, however that may be defined—by separate entrance
from the street (i.e., without the need to pass through the premises of some
other household), or full complement of cooking, washing, and other facil-
ities. It is not easy to apply such definitions across cultures; those cultures
in which privacy is important are likely to have more stringent physical
requirements for a living space to be considered a separate household than
those in which less privacy is desired or can be afforded.

Thus the unit for the analysis with which this chapter deals can be:

1. The kin group, irrespective of its living arrangement, and however dis-
persed. In demographic (though not in genealogical) work the data
are confined to living members. As among kin groups one can recog-
nize: (i) the nuclear family, consisting of father, mother, and children;
(ii) the stem family, including ancestors in direct line and children of
all generations; (iii) the extended family that includes all genera-
tions and all collaterals. Individuals belong in general to more than
one family; even on the narrowest definition, individuals are usually
members of a family of orientation, into which they are born, and a
family of procreation, where they in their turn become parents.

2. The residential group, people living in a household, which is to say,
sharing kitchen, bathroom, and other facilities, whether or not they
are related.

3. Those members of a family that live in a given household. This cross
between the kin group and the residential group is the natural object
of census inquiries, and it is widely enumerated and tabulated. But it
omits much; the common case where a couple have parents living in an
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adjacent apartment is unrecognized; for many purposes propinquity
is important and makes for what is in some respects a joint family,
not captured by censuses.

18.1.1 Classifications
The problems of family demography do not end with the definition of the
unit, but go on with the classification of types of that unit, whatever it
may be. For the residential family, i.e., kin members within a household,
the classifications used by censuses are many. The problem is to recognize
the main forms of co-residence without multiplying excessively the number
of types.

One summary solution is to classify by generations. Such a summary
has been used by the Chinese census of 1982 and elsewhere. Comparing
the Chinese material with that for Canada 1981, we find that one-person
families were 20.3 percent of the whole in Canada, against 7.9 percent in
China; one couple with no others, 22 percent in Canada against 4.8 percent
in China. In both countries the biggest group was two generations (typically
a couple and their children with no others) numbering 47.4 percent of the
whole in Canada, 64.8 percent in China. Three or more generations, without
unrelated members were 2.3 percent in Canada, 17.2 percent in China which
accords with the common stereotype.

Trends over time are substantial and unidirectional. The United States
proportion of one-person households was 13.3 percent in 1960, 17.5 percent
in 1970. Three or more generations, with or without unrelated members,
dropped from 4.7 percent to 3.5 percent in the United States in the course
of the 1960s. Over longer periods the differences are dramatic; one-person
households were 4 percent of the whole in 1790 and 23 percent in 1980.

One can speculate on the effect of China’s new marriage law; will requir-
ing children to look after their elderly parents prevent China from following
the evolution of the West toward separate living for old people?

Another equally simple classification is given in the Canadian census of
1981. Five categories in all are recognized, and these are tabulated by age
of wife and other characteristics. Thus we have

Husband-wife, no children 851,000
Husband-wife with children 3,267,000
Husband-wife, empty nest 968,000
Male lone parent 83,000
Female lone parent 464,000

out of a total of 5,632,000 families renting or owning their dwellings. By
using the distribution of these by age of wife it is possible to see in cross-
section the various stages in the family life cycle (Canadian Statistical
Review, September 1984, p. viii).
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Once the unit intermediate between the individual and the population
is defined and enumerated in a census, so that classified counts are avail-
able of the number of households and the number of persons in individual
households, tabulations can be made of the distribution of units by type
(husband and wife and children, widow with child, etc.) according to census
characteristics of individuals (occupation, earnings of senior member) and
of the dwellings that contain them (number of rooms, rent paid).

Beyond these static qualities at the time of the census are family his-
tory materials, portraying longitudinally how individuals circulate through
families over time—arrival of children, their departure 20 or so years later,
the deaths of successive family members. Analysis of typical family histo-
ries and the way a family is transformed from one type to another, i.e.,
following the family through its event history, is the object of extensive
modelling and simulation that will be discussed below. Comparative study
between countries and cultures, as well as between historical epochs, is an
important part of family history.

18.1.2 Theory and Statistical Compilation
The Italian statistician Barberi complained about the shortage of statisti-
cal data on the family, attributing it to the lack of theoretical study of the
family as such (in quanto tale) as against its individual components (Bar-
beri 1972). A statistical agency could not usefully collect data on an entity
whose essential features had not been brought out by theoretical analysis.

On the other hand, the United Nations (1963) says the opposite—that
the lack of theory is due to the lack of statistical information: “The paucity
of demographic studies of families and households is due largely to the lack
of pertinent census and survey data.”

This is the classical problem of the direction of causation that dogs all
social science. Both contentions are right. Theory and data influence each
other reciprocally, and the absence of one is a handicap to the other. But
an underlying factor operates to hamper both—as John Bongaarts (1983)
tells us, the complexity of the subject makes it difficult both to gather data
and to develop rational understanding.

Thus at the meta-level of the discussion of family demography, i.e., be-
fore we get into the subject proper, there lies a problem: does A cause B
(Barberi), does B cause A (United Nations), or are both A and B caused
by C (Bongaarts)?

18.2 Kinship

To see the effect of the flows of mortality, fertility, and divorce on kinship we
need not census-type data but a model in which cross-sectional numbers of
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various kin are expressed in terms of those flows. A number of such models
are given in Chapter 15 above; others in Goodman, Keyfitz, and Pullum
(1974).

All of these formulae assume independence in the births. It requires a
simulation experiment to find how the results must be modified to recog-
nize nonindependence, in particular to impose the condition that after a
birth at least 9 months (in practice usually much longer) must elapse be-
fore there can be another birth. Recently Le Bras (1984) has carried out
such experiments and found that the average number of kin do not come
out very differently with the recognition of dependence between successive
births. Experimenting to ascertain distributions remains to be done; the
microsimulation (or individual-based model) approach discussed in Section
15.9 is available for this.

One can start from the viewpoint of the parents as above and see how
many children they would have alive (for example, after age 65) at given
rates of mortality and fertility, or alternatively one can start with the chil-
dren, and see how many would come into pension still having parents who
are on pension. We saw (Section 15.1) that the probability that a woman
aged α has a living mother is given by first considering the probability
conditional on the child having been born at age x of the mother, in which
case the chance that the mother is alive is l(x + α)/l(x), and then taking
out the condition by averaging this quantity over all the ages of childbear-
ing. The expression for the number of persons who have a living father
is identical, provided we make the definitional modification that ages are
measured from the time of conception (when we know that the father was
alive) rather than from birth, say ages x∗ and α∗, where x∗ ≈ x + 3

4 , etc.
Hence the probability that a person aged α has a living father and mother
is

M1(α)M∗
1 (α∗), (18.2.1)

where we suppose that father’s and mother’s mortality are independent.
We want to translate these probabilities for individuals into a number for

the population. Suppose that the age distribution of the female population
is p(α) dα and of the male population is p∗(α∗), where

∫ ω

0 p(α) dα is the
total female population, etc.

Then the number of individuals, say over 65, who have a living mother
and father is∫ ω

65

∫ ω

65
M1(α)M∗

1 (α∗)
[
p(α) + p∗(α∗)

]
dα dα∗. (18.2.2)

As with other formulae, the use of these is not to estimate the number
of persons in the population with living mother and father (which can be
done much better by a census or survey) but to find how that number varies
with the mortality schedule, when all other variables are constant.
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18.2.1 Inference from Kin Counts
One of the uses of expressions for the number of kin is what may be called
backward inference, going not from the flow inputs—birth rates, etc.—to
the number of kin, but from the numbers of kin as counted to the birth and
other rates. Goldman (1978) showed how kin expressions for the number
of sisters could be used to calculate the rate of increase of a population.
She equates the observed ratio of younger to older sisters to the theoretical
rates.

Suppose that we have a survey, such as an anthropologist might make, in
which women are asked how many older and how many younger sisters were
ever born to their mother, and the ratio of younger to older designated Z.
The ratio of expressions such as those of Section 15.3 above can be equated
to the observed Z and the unknown r, the rate of increase, calculated. An
exact solution to the equation may be found by one iterative process or
another, or else one may resort to approximations.

McDaniel and Hammel (1984) extended the idea to instances where one
enquires not on the number ever born, but only whether the respondent
is the first- or the last-born of her sorority or sibset. This is even easier
for the respondent to recall. The ratio S of those who are youngest to
those who are oldest provides an estimate of the rate of increase r whose
sampling error is slightly greater than r obtained from Goldman’s Z but is
less subject to reporting error. It is hard to think of a survey question less
demanding than whether the respondent is the eldest child, the youngest
child, or somewhere between.

18.2.2 Widowhood
A couple are married at age x of the groom and age y of the bride; after

t years the probability that both husband and wife are still alive is l∗(x +
t) × l(y + t)/l∗(x)l(y), where l∗(x) is the probability of surviving to age x
from birth for a male, and l(y) to age y for a female; we will throughout
distinguish the male life table with an asterisk. The expected future lifetime
together of the couple is the integral of this over t.

We can generalize by making x and y the ages of the couple at any time
subsequent to marriage without needing to change the expression. Thus
when either member has attained age 65 the expected future number of
years together is given by the formula

o
e xy =

∫ ∞

0

l∗(x + t)
l∗(x)

l(y + t)
l(y)

dt, (18.2.3)

where now x and y are the ages of husband and wife at the given later
point in their lives.
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The probability that the wife will die first is∫ ∞

0

l∗(x + t)
l∗(x)

l(y + t)µ(y + t)
l(y)

dt (18.2.4)

and that the husband will die first is the same, but with µ∗(x+ t) replacing
µ(y + t). The sum of these is readily shown to be equal to unity in the
same way that

∫∞
0 l(y + t)µ(y) dy/l(y) is unity. Continuing we can find the

number of years of widowhood as the expected number of years a woman
will live,

o
e y, less the number of years in the marriage,

o
e xy, that is

o
e y − o

e xy,
and of widowerhood similarly

o
e ∗

x − o
e ∗

xy, assuming no remarriage.
Applying such formulae to the United States from 1950 to 1980 Goldman

(1983) explains a large part of the observed increase in the number of
widows as compared with widowers: with current life tables and ages at
marriage the theoretical probability of a wife outliving her husband is about
70 percent. To bring the probability down to 50 percent would require that
brides be about 7 years older than grooms. The 70 percent probability of
the wife outliving her husband translates into an expected three to one
ratio of widows to widowers in the population—partly due to the widow
living longer after the dissolution of the marriage by death than does the
widower, partly to higher remarriage rates for males.

But many marriages are dissolved otherwise than by death. It is not
wholly realistic to neglect divorce, separation, and annulment. If we know
the rate at which these occur we can assimilate it into the preceding for-
mulae by adding it to the death rates of the partners. Call δ(t) the rate
of dissolution otherwise than by death at t years after the marriage (or
more generally t years after the couple are aged x and y, respectively). The
probability of the marriage holding out to time t and then breaking up in
the interval (t, t + dt) is

exp
[
−
∫ t

0
δ(τ) dτ

]
δ(t) dt (18.2.5)

if we abstract from mortality. Including mortality requires entering this last
expression in the preceding integrals. Thus the probability of the marriage
dissolving at time t either by death of the male partner or divorce is

l∗(x + t)
l(x)

l(y + t)
l(y)

exp
[
−
∫ t

0
δ(τ) dτ

] [
µ∗(x + t) + δ(t)

]
dt. (18.2.6)

18.2.3 Theoretical Number of Families in the Population
For the number of families and their ratio to the population, as expressed by
the headship rate, a different approach is available. Suppose that we define
any woman above a certain age who does not have a living mother to be the
head of a household. The problem of finding the number of households in
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the country is then reduced to finding the number of women whose mother
has died.

To derive this we started (Chapter 15) with the (conditional) probability
l(y+α)/l(y) that a woman now aged α who was born at age y of her mother
has a living mother. To remove the condition we averaged over all ages of
childbearing, i.e., weighted by e−ryl(y)m(y), to find

M1(α) =
∫ b

a

l(y + α)
l(y)

e−ryl(y)m(y) dy. (18.2.7)

In terms of M1(α) the fraction of women aged α who are heads of families
must be

1 − M1(α) (18.2.8)

and the total number of families is this weighted by the age distribution
p(α) dα: ∫ ∞

a

[
1 − M1(α)

]
p(α) dα, (18.2.9)

where a is some suitable minimum age.
The formulae are exact, but the model on which they are based is not as

realistic as might be wished. Note that considerable departure from realism
in these and other formulae need not vitiate conclusions drawn from them
by sensitivity analysis. They are primarily used to find how much difference
it makes to family constitution of mortality declines by 100δ percent, or
fertility rises by 100ε percent.

18.2.4 Decomposing Widowhood
Widowhood and widowerhood are not mere consequences of improved
longevity alone, but depend on the profiles of age-specific death rates of
men and women. That a population has high or low mortality does not as
such imply anything about widowhood.

If the peaking of the male curve is earlier than the peaking of the fe-
male curve then this by itself will result in many widows and relatively few
widowers. But another factor is dispersion around the peak. Wide disper-
sion will produce many widows and widowers, even abstracting from the
sex differential, i.e., if the peaks of mortality for men and women coincide.
With little dispersion about the peaks, and peaks coinciding, then there
will be few widows and widowers in the population. The model built on
formula 18.2.4 will permit more precise statements than these, and they
can be verified on the increment–decrement model of Chapter 17.

Calculations of the probability of widowhood that suppose a uniform age
of marriage for men and another for women, i.e., that omit variability in
marriage ages, will underestimate the amount of widowhood and widow-
erhood. The underestimate disappears if the age of marriage of men and
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women is the same and men and women all die at the same age, in which
case there would be no widows or widowers. Allowing variation in the age
of marriage for men and for women would make some widows and some
widowers in the model. Thus one of the components of the amount of wid-
owhood is variability in the age of marriage (a) for men and (b) for women.
If the probability of dying varies among individual males of a given age,
that will add what may be called a frailty component to widowhood.

The general supposition, then, is that the number of survivors at any
given moment of marriages broken by death does not depend much on
whether overall mortality is high or low, but on the difference between
male and female mortality, and the breadth or narrowness of spread of
both the male and female curves. This suggests a decomposition in which
widows and widowers may be attributed to:

(1) Unequal average ages at marriage of men and women.

(2) Variations around that mean age for each of men and women.

(3) Unequal average mortality for men and women.

(4) Variation around that mortality for men and women, on the usual
life table supposition that everyone in the population has the same
chance of dying at any given age, but ages differ.

(5) Variation in frailty—i.e., probability of dying—of individuals of each
sex about the average.

Each of these represents a certain kind of heterogeneity. For example, (2)
is heterogeneity in ages at which individuals marry, and (5) is heterogeneity
around the mean mortality of the person’s sex at given age, unmeasurable
for an individual but very real nonetheless. The full decomposition may be
carried out by microsimulation.

18.3 The Life Cycle

The family, whether of kin or of residence, changes over the course of time.
If one starts with a couple that have just married, then follows through as
they have their children and as the children grow, one sees the residential
family expanding over time to a certain maximum, perhaps 5 to 20 years
after marriage in contemporary America, after which the children leave
home, and the family shrinks back to the original couple, and sooner or later
to only one of them. To compare two populations in regard to residential
family size in effect averages much disparate material; what one should be
comparing is the family sizes of the two populations at given stages as they
go through this evolution.

Paul Glick, a pioneer in this field, made the first serious effort to trace
the family life cycle statistically. His initial work analyzed cross-sectional
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census data; he compared family sizes at different ages of head. Subsequent
work compared real cohorts; Table 18.1 gives an example.

The family life cycle is important in the study of migration. A high
proportion of moves are associated with the beginning of working life, with
marriage, and with retirement (Rogers 1984). A population in which there
is a high proportion of young people will, other things being equal, have
more movers than one in which there are many middle-aged. Those in
which there are many retired persons who have made their move from the
place of work to the place to which they retire will again have few movers.
Movement is considerable for couples that have not had, or have just had,
a child, and less for those with school-age children (Burch 1984, p. 182).

Life cycle theory has been developed in economics to allow for the fact
that persons have some time-related options in regard to expenditures;
within some limits they can advance or delay their purchases, and one can
suppose they time their expenditures so as to maximize total satisfaction,
which means to equalize marginal satisfaction at the various junctures of
the life cycle. Such equalization must be subject to a personal discount
rate. The distribution of expenses over time cannot be understood except
in terms of the formation of a family and later its dissolution. When mar-
rying and setting up a home people often dissave, buying on installment
or borrowing in some other way until they have the “standard package”;
only after that do their savings turn positive. The life cycle can be studied
by demographic models with many states, either directly from a life cycle
graph as in Chapters 3 and 7, or beginning with the multi-state life table
as presented in Chapter 17.

18.3.1 Shape of Family Tree
As birth and death rates decline, the living kin group becomes elongated;
in each generation there are fewer members, but more generations coexist
(Glick 1977, 1979). The old person has fewer children and each of these has
fewer children, but the chain extends further down—even to great grand-

Table 18.1. Comparison of live cycles of two cohorts, showing median ages of
mother*

First marriage about

Median age of mother at 1905 1975

First marriage 21.4 21.2
Birth of first child 23.0 22.7
Birth of last child 32.9 29.6
Marriage of last child 55.4 52.3
Death of one spouse 57.0 65.2

*Source: Paul Glick (1977).
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children. To how many generations the chain extends depends on age at
marriage and childbearing as well as on longevity.

The concept of a family cycle was early presented by Glick (1955, 1977).
Riley et al. (1983) discuss the number of contemporary generations in an
extended family with present longevity as against earlier high mortality.
Probability of orphanhood, number of siblings, probability of three, or even
four, successive generations alive at the same time, are all of importance
and trends in them in relation to the trends in mortality and fertility need
study. The elongation of the chain can be traced using expressions such as
those of Chapter 15 above, developed in Goodman, Keyfitz, and Pullum
(1974). The problem will be to remove some of the restrictive assumptions,
or where this is impossible to estimate their effect on the results.

18.3.2 Headship
Brass (1983) has developed a useful way of tracing the effects of birth,
death, marriage, and divorce. In the real world these are indeed proximate
determinants; in the analysis they are inputs to the representation of family
formation and dissolution. Brass’s approximations show that at the low
levels of mortality now attained it is age at marriage and fertility that
count most for resident family size, with divorce becoming important in
some circumstances.

Brass’s way of doing family demography is to select a “marker” and to
suppose a certain rate at which others attach themselves to this marker.
One can imagine a girl child as a marker, first being born, sooner or later
getting married—i.e., having a spouse attached—then having a child, then
another child, then becoming divorced. Alternatively, one could start the
process with a male marker and proceed similarly to the construction and
ultimately the dissolution of the family unit.

That theory helps relate the resident family to various demographic fac-
tors (Burch 1979, Burch et al. 1983, Bongaarts 1983). In one application of
this theory Brass ascertained the direct influence of fertility: a 10 percent
increase in fertility results in a 4 to 6 percent increase in the size of the
resident family. Using females as the markers for determining the advent of
new resident families, it turns out that an increase of 1 year in the average
age at which females leave home raises the family size by about 2 1

2 to 5
percent for a fixed level of fertility.

18.4 Household Size Distribution

The enormous differences in the size distribution of households are shown
by the successive censuses (Table 18.2, provided by the Population Ref-
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Table 18.2. Household size: 1790–1980
(Percentage distribution of households by number of persons)

Number of persons 1790 1900 1930 1940 1950 1960 1970 1980

Total 100 100 100 100 100 100 100 100
One 4 5 8 7 11 13 17 23
Two 8 15 23 25 29 28 29 31
Three 11 18 21 22 22 19 17 17
Four 14 17 18 18 18 18 16 15
Five 14 14 12 12 10 11 10 8
Six or more 49 31 18 16 10 11 11 6
Average persons

per household 5.79 4.76 4.11 3.67 3.37 3.33 3.14 2.75

Sources: Bureau of the Census, Historical Statistics of the United States,
Colonial Times to 1970, Part 1 (Washington, DC: U.S. Government Printing
Office, 1975) Series A291 and A335–349, p. 42, and “Provisional Estimates of
Social, Economic and Housing Characteristics,” 1980 Census of Population and
Housing, Supplementary Report (Washington, DC: U.S. Government Printing
Office, 1982) Table P-1, p. 3.

erence Bureau). In 1790 just 4 percent of all households consisted of one
person; in 1980, 23 percent were one-person households. In 1790, 49 percent
of households consisted of six or more persons; in 1980, only 6 percent had
six or more persons. During that time the average number of persons went
down from 5.79 to 2.75. The trend to separate living was not uniform over
the period, but seems to have been accelerating, with far more change from
1960 to 1980 than over the entire first century after the founding of this
country.

18.4.1 Separate Living
The liberation to which our age testifies so amply has roots that go back
to the Enlightenment, in ideas of individual worth, as Lesthaege points out
(1983, cited in Burch 1984), and built into this is the liberation from the
need to live with others. Pampel (1983) attempts to find to what degree the
living alone that we observe can be explained by compositional variables,
including age, income, etc. If the increase is fully accounted for by the
fact that there are more old people, that incomes are higher, etc., then we
do not need to search further. However, he finds that these compositional
variables go only part of the way to explaining the observed increase in
living alone.

Various writers have found that factors associated with modernization
are associated with living alone. Correlations are positive between living
alone and income or education and negative between living alone and fer-
tility. Some of this could be due to intermediate variables—if fertility is
lower for the better off, then they are more likely to live alone because they
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have fewer kin. (The effect is opposite to that in many nonwestern societies,
where the joint family represents an upper-class way of living: the family
property is what holds a large number of individuals in one household. The
propertyless more often separate into nuclear families.)

The American positive association of living alone with income seems to
imply that the better off are more isolated. But this is hardly in accord with
many kinds of evidence that the better off are more likely to participate
in social activities of all kinds, that they have more extensive kin and
friendship networks. One can believe, however, that relatives are a larger
fraction of the total social contacts of the poor than of the well off.

The components of the rise in separate living since World War II are
multiple. Young people leave the parental home earlier, setting up separate
households without either marrying or going to college. Retired people
more and more live by themselves instead of with their married children.
Divorce has increased, and both members of the former couple do not
always remarry.

Underlying this is another level of causation, of which the literature
stresses three elements.

(a) People have always wanted the privacy and independence of separate
living, but only now have incomes risen enough to support it. This
applies especially to the old, who have been aided by the growth of
private pensions and social security.

(b) The simple absence of kin. With smaller birth rates there are fewer
relatives in every generation, so a widow is less likely to have a child
with whom she can live. What may be thought of as a narrowing of
the genealogical tree must be a part of any explanation.

(c) Changed preferences. There has been a major change in the culture,
of which one manifestation is the greater value set on privacy. This
explanation has no value without an independent measure of it. With-
out such a measure the expression “wish for privacy” is just another
name for separate living, and we are no further ahead.

Burch (1984) does better than simply telling us that there has been a
cultural change; he argues that there has been a change in age and sex roles.
With women’s liberation and increasing freedom for children has come a
situation where the members of the household are more or less autonomous,
and all tend to resemble one another in their skills and activities. There
is thus less room for a division of labor among them. That means less
differentiation and so less of the solidarity that comes from the division
of labor among differentiated individuals in the social as in the biological
world, and consequently less to be gained from living together.

On the other side, “The young, the old, women, the unmarried, servants,
boarders—all have been accorded more nearly equal ‘rights’ to various
household goods previously reserved to the patriarch or breadwinner.” This
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in effect makes the household more “crowded” in the sense that there is
more competition for scarce, space-related goods. It is as though the democ-
ratization of the family has deprived members of the super- and subordinate
niches that each formerly occupied. Thus on the one side adult numbers
compete with one another for the scarce good of space, and on the other
have little dependence on one another, so they might as well live separately.

18.5 Economic, Political, and Biological Theory

The economic theory of the family has been developed by Gary Becker
(1991). Women have a comparative advantage in work in the home because
it is they who have to bear and raise the children in any case, and while they
are at home doing this they may as well also do the housework. Women
need marriage to protect themselves against being abandoned with children
whom they would not have the means to support. Within the family a
degree of altruism exists: each person’s utility function depends positively
on the utility of others, and the family as a whole can be thought of as
having a collective utility function.

Very different is a political theory of the family by which there is indeed a
division of labor, but it is determined by the power and solidarity of labor,
and not in altruism, but in their having no choice. In exchange for protec-
tion for life they were sheltered from (or kept out of) the world. Traditional
societies could impose an acceptance of this breadwinner–homemaker fam-
ily by suitable indoctrination of girls from earliest ages. Kingsley Davis has
developed this realistic perspective in unpublished work.

A game theory model due to Luce and Raiffa (1957) offers a very persua-
sive explanation of past and present changes. In what they call the Battle
of the Sexes there are two players, A and B. A, the husband, favors activity
I and B, the wife, activity II. That alone would cause them to separate,
except that both prefer activities in common. For A the utility of I is a,
and this is greater than the utility b of II, which in turn is greater than c,
the utility of the couple breaking up. Similarly, with primes, for B, except
that for B the utility of I is b′ and of II is a′, with a′ > b′. That is to
say, A wants to do I and B wants to do II. For the marriage to be stable
c, the utility for A of breaking up the marriage must be less than a or b,
and similarly with primes for B. With this condition the solutions are both
doing I or both doing II. The model admits two ways in which these can be
arrived at: by altruism or by imposition. The outcome depends on which
player is more anxious to avoid separation; until women worked separation
could have been disastrous for the wife, indifferent for the husband. The
observer is hard put to distinguish between the effect of altruism and the
effect of power; the Luce–Raiffa model is convincing because it accepts both
possibilities.
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The utilities in the Luce and Raiffa payoff matrix are

(A) Husband’s choice
I II

(B) Wife’s I a, b′ c, c′ a > b > c,
choice II c, c′ b, a′ a′ > b′ > c′.

(18.5.1)

If a′ > b′ > c′, and c′ > c then the man has power. If c and c′ are more
nearly equal, then the sexes are more equal and the woman has a chance
of attaining her goal. The model applies to a matter as trivial as going out
to dinner versus staying home, as well as to the most solemn decisions that
married couples make.

The implications of a utilitarian or contractual relation have been worked
out in a tradition of thought about the family that runs through Durkheim,
Schumpeter (1950, p. 157), and more recently William Goode. Thus Schum-
peter in a characteristically farsighted phrase speaks of “the heavy personal
sacrifices that family ties and especially parenthood entail under modern
conditions,” and Goode, “If larger part of one’s life benefits are to be de-
rived from job holding, in a social setting where emotional relations can be
fleeting and superficial without incurring social disapproval, then it seems
likely that future investments in the family . . . may be lessened” (p. 79, in
Toqueville Review). The stability of the family was all along based on the
division of labor within it, but this could only be maintained with a con-
centration of authority, almost invariably in the male. Such a view, with
its pessimistic conclusions, is supported by statistics of divorce, of later
marriage, of nonmarriage, of increasing illegitimacy.

More upbeat is the argument that democracy within the family of course
changes its nature, and of course no one can deny that divorce has increased,
but the fact is that most people still marry, and the usual purpose of divorce
is to escape one marriage in order to engage in another. It is almost as
though the very concern about the quality of marriage and family life is
what leads to divorce and trying again. No empirical evidence is likely to
disprove this.

18.6 Family Policy

One test of theories of the family is whether policies based on such theories
work. There has been a good deal of such testing in the United States by
policy analysis and supplementation in recent years, especially in the field
of welfare, and the results are not encouraging (Glazer 1984): “A program
meant to reduce the distress of widows and unmarried mothers and their
children, and designed to maintain them at a minimal but decent level,
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seemed to be accompanied by a rising number of such women. Welfare
assistance was an incentive for mothers to push fathers out of the home.”

The hope had been that mothers and children would have husbands and
fathers, and that with the support of unemployment insurance, old-age
pensions, and full-employment policies the family would be held together,
with the husband-father the principal wage earner and Aid to Families with
Dependent Children (AFDC) a transitory necessity only. But in fact AFDC
became a program for mothers of illegitimate children, and the number of
these increased rapidly, with half of the number being black.

If that incentive system was wrong, then could not ingenuity devise a
better one? Just as the income tax does not deprive people of the incentive
to work, so support should not prevent them from working, provided they
were able to keep some fraction—say half—of their earnings. This applica-
tion of the income tax principle did operate as theory said it should, but it
too had a perverse effect: in repeated trials it raised the divorce rate. Ev-
idently the grant made wives independent and a larger number of couples
took advantage of this to separate or divorce. The Negative Income Tax
could maintain the incentive to work, but only at the cost of increasing
divorce (Hannan et al. 1977).

An example of the perverse way in which policy measures can operate
is shown by the Swedish experience. In the postwar period Sweden experi-
enced a labor shortage, and its response was various measures to encourage
women to enter the labor force. The measures were successful. As among
women with children, 44.6 percent were in the labor force in 1965 and 69.0
percent in 1975. But the longer-run effect was delay of childbearing and a
lower birth rate. As the resultant small cohorts reach maturity the entrants
into the labor force will diminish.

Thus measures to increase the labor force that were successful in the
short run can have the effect of diminishing the labor force in the longer
run.

Boudon (1977) gives other examples of the perversity of social life in the
face of measures to influence it. More specifically in relation to our field,
Henripin (1977) shows how difficult it is to alter demographic trends. Yet
in certain less-developed countries genuine examples of the success of the
policy are apparently to be found.
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Heterogeneity and Selection in
Population Analysis

Heterogeneity in the underlying population places difficulties in the way of
interpretation of all statistical data based on averages. No two persons are
equally likely to die in the next year; no two marriages are equally likely to
be broken up by divorce; no two businesses are equally likely to fail; no two
automobiles are equally likely to break down. That on the average a given
make of automobile will travel 50,000 miles without major repairs offers
little assurance for any particular automobile. Averages can be applied to
individual cases only at great risk. This gross aspect of heterogeneity is not
the subject of the present chapter.

People vary in respect of age, and mortality comparisons between pop-
ulations have attempted to take account of age at least since the time of
John Graunt. More recently, matrix and multi-state methods have made it
straightforward to incorporate measurable sources of heterogeneity other
than, or in addition to, age. Nothing more need be said here beyond the cus-
tomary exhortation to break down aggregates into homogeneous subgroups
for purposes of analysis.

But what about differences among individuals not ordinarily tabulated
in mortality statistics? Mr. A has a heart murmur, or is a heavy drinker,
and these affect his chances of survival. Beyond such differences, that
could be distinguished in the data collection but are usually neglected,
are differences that could not possibly be described. One cannot provide
examples of the indescribable, but one can be certain that two individuals,
even though alike in every possible statistical categorization, do not have
identical probabilities of dying in the next year.
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People thought of heterogeneity as at most affecting the precision of a
mean; now we know that under many conditions it introduces a clear bias in
the mean as customarily estimated. That bias arises because of a selection
effect: in the random process under consideration those persons likely to
die first disappear from the exposed group, leaving the group on average
more robust. This selective effect acts always in the same direction—in the
case of mortality to underestimate the rates to which the average individual
will be subject.

19.0.1 Historical Note
The selection within a heterogeneous population that is our main con-
cern has turned up in various areas of statistics and demography. An early
recognition of the effect is that of Gini (1924) in a two-page paper. In the
1920s, Raymond Pearl followed a group of women from marriage to first
pregnancy, counting the number of pregnancies over a considerable num-
ber of months, and dividing by the total woman-months of exposure. Gini
showed that this gives too low a ratio to represent the pregnancy rate for
an unselected group, because the less fecund women are steadily increasing
their weight among the observations. Only the first month’s observations
provide a meaningful ratio, and one must throw away all the data for later
months as having no reference to an unselected population. Potter and
Parker (1964) tried by means of graduation to rescue these rejected data,
but they were compelled to use strong assumptions on the distribution of
fecundability among women (see also Wood and Weinstein 1990, Wood
1994)

In respect to migration it was observed (Blumen, Kogan, and McCarthy
1955) that to project a population forward through time as though everyone
were subject to the rates of a given period exaggerates the subsequent
movement. It is an improvement to suppose that the population consists of
two kinds of people: those who never move, and those who have the same
chance of moving in each period.

The Gini problem came to life again in the work of Sheps and Menken
(1973). In respect of mortality it was taken up by Vaupel, Manton, and Stal-
lard (1979), Manton, Stallard, and Vaupel (1981), and Vaupel and Yashin
(1985). Shepard and Zeckhauser (1980) showed the issue to be important
for the interpretation of medical trials. Reliability engineers have studied
the question under the heading of mixed distributions (Mann, Schafer, and
Singpurwalla 1974). Automobiles show higher failure rates in the first weeks
of use than later. This is not likely to be due to individual items of equip-
ment becoming better as they are used, the way an organism can gain
strength; most of it must be due to defective machines being repaired or
eliminated.
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19.1 Conditioning and the Interpretation
of Statistical Data

19.1.1 Simpson’s Paradox
Some numbers will illustrate how unrecognized heterogeneity can make
a comparison uncertain, in a situation more general than those discussed
above in that it does not depend on selection over time (Cohen 1986, Simp-
son 1951). This pervasive aspect of heterogeneity deserves more attention
than it has received. It can be summarized in the assertion that every
comparison depends on the variables on which it is conditioned.

There are two regions, A and B, each with a 1,000,000 labor force. In A
there are 100,000 unemployed, in B 90,000. That is, we have

A B

Labor Percent Labor Percent
force Unemployed unemployed force Unemployed unemployed

1,000,000 100,000 10 1,000,000 90,000 9

Apparently, A’s unemployment rate at 10 percent is greater than B’s at
9 percent. Abstracting from sampling error as we do throughout, nothing
would seem more incontestable.

Yet, the obvious conclusion can be wrong. Suppose each of A and B to
break down into two groups, young and old, with the following proportions:

A B

Labor Percent Labor Percent
force Unemployed unemployed force Unemployed unemployed

Young 500,000 75,000 15 300,000 48,000 16
Old 500,000 25,000 5 700,000 42,000 6

For the young, B has the higher unemployment, and likewise for the old.
We have to reverse the conclusion based on the aggregate data; now B’s
unemployment is higher. Might a further breakdown make another reversal?
There is no way of knowing, and the effect of underlying heterogeneity can
only induce modesty in the presentation of the comparison. We have to
visualize a penumbra of uncertainty based on the ever-present possibility
that some unsuspected source of heterogeneity will show up, or exists but
will never show up. It would be useful to develop some theory showing the
bounds of that penumbra.

An actual occurrence of this paradox was observed (Cohen and
Nagel 1934, p. 449) in a comparison of tuberculosis deaths
in New York City and Richmond, Virginia, during the year
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1910. Although the overall tuberculosis mortality rate was lower
in New York, the opposite was observed when the data were
separated into two racial categories; in both the white and non-
white categories, Richmond had a lower mortality rate. (Wagner
1982.)

A more recent real instance appears in the Canadian census of 1976:

Mean number of children
1971–76

French English

Canada 1.85 1.95
Quebec 1.80 1.64
Other provinces 2.14 1.97

Source: Réjean Lachapelle (1980), La situation demolinguis-
tique au Canada: Evolution passee et prospective. L’Institut
de Recherches Politiques.

Average children for the period between 1971 and 1976 were 1.85 for the
population of French mother tongue and 1.95 for the population of English
mother tongue. Should we conclude, then, that English fertility is higher
than French? Not at all: in a breakdown of rates between Quebec and the
rest of Canada, Quebec showed 1.80 for the French and 1.64 for the English.
The same relation held for other provinces, with the French higher at 2.14
as compared with 1.97 for the English. The initial conclusion is vulnerable
to challenge on the basis of heterogeneity.

The paradox can be grasped intuitively as an aspect of weighting. French
speakers in Canada are mostly in Quebec; English speakers are mostly in
the other provinces. Thus the Canada figure for the French is mostly a
reflection of Quebec fertility; for the English it mostly reflects the other
provinces. For the statistician there is no paradox here; he understands
that every comparison depends on the variables on which it is conditioned.

Yet others are likely to feel uncomfortable. The man in the street might
well say, “I am asking the simple question and looking for a yes or no
answer: after all these years of legendary high fertility for the French has
English fertility now come to be higher?” To say that it is literally higher
but that we do not know whether to attribute this to people’s being English
or to their living in a certain part of the country sounds like an evasion. Yet
we have to insist that the simple question is more difficult than it looks.

Extending somewhat an argument due to Colin Blyth (1972), suppose
that we are trying out a new medical treatment in two hospitals and
comparing it with the standard treatment. Suppose also that one of the
hospitals is very famous and attracts the more difficult cases; the other
gets easy cases most of whom would recover however they were handled.
If the new treatment is tried mostly in the hospital with the more diffi-
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cult cases, and the standard one in the hospital with the easy cases, then
the new treatment will show a higher failure rate. What spoils any such
comparison is the correlation between treatments and hospitals; the only
way to escape the difficulty and find out which treatment is really better
is to assign cases to the treatments at random in both hospitals. That is
a recourse we do not have in the French–English fertility question. Ran-
domization enables us to avoid the error that can be called misnaming:
attributing to treatment what is really due to hospital.

Note that the difficulty is not removed when the whole experiment is
done in a single hospital. If the assignment is not made at random there is
always the possibility that some other variable—unobserved and perhaps
unobservable—is influencing the comparison of the way the two hospitals
were doing.

In Colin Blyth’s (1972) notation that expresses the principle in its most
general form, where it is known as Simpson’s paradox, it is possible to have

P (A|B) < P (A|B′) (19.1.1)

and yet both

P (A|BC) > P (A|B′C) (19.1.2)

and

P (A|BC ′) > P (A|B′C ′). (19.1.3)

Here B �= B′ and C �= C ′. In words, the probability of A in the Group B
is less than that in B′, even though within each of two subgroups, say C
and C ′, the probability of A is greater for B than for B′.

Some deep and very general questions of interpretation of statistics are
raised by Simpson’s paradox. The effect of heterogeneity in the unobserv-
ables applies in all comparisons, and so affects nearly any interpretation
of statistical data. The apparent solution, adding additional dimensions
of cross-classification, creates its own problems, because as the number of
categories increases, the data become more and more thinly spread over
the possible combinations. Cohen (1986) refers to this as a demographic
uncertainty principle.

19.2 Heterogeneity and Selection

If we take an unbiased sample of the unemployed and follow the individuals
in it month by month to establish the duration of unemployment, we come
face to face with the selective effect of heterogeneity. For those who are more
capable or more active will find jobs sooner and drop out of observation,
leaving in the observations those less likely to find jobs, and ultimately only
those most difficult to place. Statistics based on this group will exaggerate
the duration of unemployment, as well as the rate of unemployment.
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If everyone had the same chance of finding a job the selective effect
could not exist; the bias is the consequence of variability in that chance,
i.e., of heterogeneity. This effect cannot occur instantaneously; it acts when
a group is followed over time. If the heterogeneity is between observable
categories it can be removed; the unobservable heterogeneity is unremov-
able, though indirect ways of estimating its effect have been suggested.
Matters such as unemployment where the event can occur to an individual
more than once are more tractable than mortality, and indeed one could in
principle work out the “within person” variability of the chance of falling
unemployed. Yet even in this case it is highly uncertain that heterogeneity
as measured for one epoch is the same as heterogeneity for another.

Similar statements can be made about divorce. In most populations the
probability of divorce is low in the first years of marriage, then rises to
a peak (“the seven-year itch”), then falls off. Does that mean that the
chance of a particular marriage breaking up rises to a peak, then declines?
Not necessarily: if, for example, there are two kinds of couples—one with
a low and constant probability of divorce, and one with a steadily rising
probability, then the observations would be accounted for by an argument
similar to that applying to death (Vaupel and Yashin 1985, Hoem 1990).

The subject matter fields affected are numerous: mortality, unemploy-
ment, divorce, risk of conception, migration, mechanical failure, in short
any field where individuals drop out of the observed category when the
contingency in question materializes.

19.3 Application to Mortality

In the usual deterministic life table model, for a person of given age the
probability of surviving a year, say 0.99, is based on the collection of
observed deaths and the corresponding exposed population. We may care-
lessly argue that different probabilities for individuals, being unmeasurable,
have no meaning; after all the person will be alive or dead in the succeed-
ing period—there is no middle possibility. But that argument falls to the
ground when we think of one person in the hospital with a diagnosis of
incurable cancer, and another of the same age, going about his business in
evident good health. The unrealistic assumption of homogeneity has been
thought to be innocent, in that it would not affect the overall conclusions
drawn from the numbers. Differences between individuals, therefore, being
both unmeasurable and inconsequential for averages, can be disregarded.
This is the viewpoint that recent research has shown to be unacceptable.
A person of average health or frailty∗ has something of the order of 1 year

∗The “frailty” of an individual is supposed to measure the susceptibility of the
individual to risks of death, beyond what is determined by age or other measured co-
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less expectation of life than is given by the life tables for the population of
which he is a member.

If an insurance company were to set its rates from population statistics,
and then insure a random subset of the population, it would break even
(abstracting from expenses, etc.). But if its underwriters were to accept as
risks only persons of average robustness, then it would lose.

A medical improvement can save many lives—i.e., it can prevent the
death of persons who without it would have died—and yet raise the overall
death rate in the population. It does this if it changes sufficiently the mix
of frail and robust individuals in the population.

A mix of populations, in both of which mortality is rising steadily and in-
definitely, can show a rise to a peak in the death rate, followed by a decline,
then a further rise. That is to say there would be a period when mortality
at the individual level is actually rising, while the overall statistics, the
“observations” at the population level, show a fall.

This issue has become inescapable in studies of mortality among very
old individuals. Studies of humans, as well as of laboratory populations of
fruit flies, nematodes, and yeast, show mortality curves that decline, or at
least decelerate, at the oldest ages (Vaupel et al. 1998). These data have
been obtained by following huge cohorts (millions or even billions of indi-
viduals) to increase sample sizes among the rare extremely old individuals.
Evolutionary theory predicts that the selective pressure against mortality
should decline with age, so that traits with beneficial effects early in life
and detrimental effects late in life should be favored (e.g., Hamilton 1966).
This should lead to the accumulation of genes that increase mortality late
in life, and to mortality rates that increase with age. The observations of
declining mortality with age could mean that the evolutionary theory has
left something out (e.g., Lee 2003), or that the predicted increase is masked
by heterogeneity. The problem becomes only more acute (and interesting)
as more is learned about the biological determinants of longevity (e.g.,
Wachter and Finch 1997).

19.3.1 A Mixture of Populations Having Different Rates of
Increase

In one sense the mortality application is a special case of changing pro-
portions of subpopulations that applies to overall population increase or
decrease.

A population of initial size Q growing at rate r numbers Qert at time
t, r being taken as fixed and the population as homogeneous. Now suppose
heterogeneity—a number of subpopulations, of which the ith is initially Qi

variates. It could be determined by genetics, physiology, behavior, or the current or past
environment.
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growing at rate ri, so that at time t the total number is P (t) =
∑

i Qie
rit.

We showed (Section 1.5) that the total never stabilizes, that its rate of
increase forever increases, and that the composition constantly changes.

The argument of Section 1.5 leads to the conclusion that the change in
the mean rate of change is σ2(t), the variance among the rates ri, each
weighted according to its current subpopulation Qie

rit. That proves that
with all ri fixed the rate of increase steadily increases, unless the ri are
equal.

For two subpopulations that start out equal with unequal rates of in-
crease the fact that the sum of the separate projections will always be
greater than the combined population projection may be shown as a con-
sequence of the arithmetic–geometric inequality. The sum of the separate
projections from initial values of unity is er1t+er2t and the single projection
is 2e(r1+r2)t/2. The former is greater if

er1t + er2t > 2e(r1+r2)t/2,

i.e., if (√
er1t −

√
er2t
)2

> 0,

which is always the case if r1 �= r2. The central proposition is that when one
projects a heterogeneous population in disregard of the heterogeneity, which
is to say using the average rate of increase for the whole, one underestimates
the subsequent population. To project the population of the United States,
for example, with the parameters of the country as a whole necessarily
gives a lower answer than projecting each state with its own parameters,
and then taking the total for the United States.

19.3.2 Two Classes of Frailty
An especially simple application of the foregoing is where a population with
fixed mortality rates for individuals shows a spurious time-dependence. If
at the outset half of the population suffers mortality rate µ1, and half µ2,
and there are no births, then after x years there will be e−µ1x individuals
of the first type, and e−µ2x individuals of the second type. The mortality
rate will then be:

e−µ1xµ1 + e−µ2xµ2

e−µ1x + e−µ2x

and this is bound to be less than the initial rate (µ1 +µ2)/2. To show that
we note by multiplying up that

e−µ1xµ1 + e−µ2xµ2

e−µ1x + e−µ2x
<

µ1 + µ2

2
if and only if

(µ1 − µ2)(e−µ1t − e−µ2t) < 0
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and this last is bound to be true unless µ1 = µ2. We can prove it if µ1 �= µ2
by trying first µ1 > µ2, then µ1 < µ2. Thus the mixed population in
question with fixed death rates in each of its two subpopulations will show
a spurious fall in its death rate over time.

19.3.3 Numerical Effect on Mortality
Since in its very nature unobserved heterogeneity cannot be measured sta-
tistically, it is not clear how we are to put to practical use the unquestioned
fact that individuals vary in their probability of dying (or of becoming sick,
divorcing, etc.). A person being either alive or dead, neither before nor after
he dies is there any way of ascertaining his individual probability. All the
facts on numbers exposed and dying contribute no information on individ-
ual variability and we are forever unable to make a life table for a single
individual, except in the trivial ex post sense that his probability was unity
of living to any age up to his death, and from then on was zero. Selection
enters whenever we make a table for a group.

Yet we can consider the individual as the limiting case of a group. Sup-
pose we move from the unselected population to those who are active and
at work, to those who jog every day, etc. By projecting the sequence we
obtain at least the order of magnitude of the probability for the individual
least likely to die. And in the other direction, we can move from the uns-
elected to the disabled, sick, in hospital, etc., to find the individual most
likely to die.

Without empirical materials we can at least try out a hypothetical degree
of heterogeneity. Suppose the population in three homogeneous groups, one
with standard mortality, one with mortality of 20 percent of the standard,
and the third with 180 percent of the standard, all taken in relation to a
current life table. This may seem like a wide range, but it corresponds to
a range of expectations of 65.3 to 81.8 years; that is not unbelievable.

Consider then that there is within a population a group whose life expec-
tation is 81.8 years, another whose expectation is 72.10 years, a third whose
expectation is 65.3 years, and suppose that these three groups are initially
numerically equal. Under these conditions, the expectation as observed is
73.09, against 72.10 for the true expectation, i.e., the expectation of the
average individual. The life table as calculated in disregard of heterogeneity
exaggerates expectation by 0.99 years.

Thus a moderate conclusion from what we know now is that the ob-
served expectation for ordinary populations calculated by the usual life
table methods (Chapter 2) is high by about a year in application to the in-
dividual of average frailty at birth. We expect the effect to be much greater
for mobility, divorce, or morbidity, since in these the individual is not re-
stricted to the outcomes of 0 or 1 as for living or dead, but can move, or
divorce, or become sick 0, 1, 2, . . . times.
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19.4 Modelling Heterogeneity

While measured heterogeneity can be incorporated into the life cycle
graph and made part of a demographic model, unmeasured heterogeneity
(sometimes called unobserved or unmeasurable) confronts the analyst with
including the effects of something that he or she hasn’t seen. Not surpris-
ingly, this can be difficult. This section summarizes some of the approaches
used and some of the problems that arise. For more details and extensive
references, see Trussel and Rodŕıguez (1990), Vaupel (1990), Yashin et al.
(1994), Yashin and Iachine (1997), Vaupel and Yashin (1999), and Link et
al. (2002). We will speak in terms of mortality, but the principles apply to
any kind of transition from one state to another.

19.4.1 Continuous Distribution of Frailty
Think of a standard individual, whose frailty at age zero is the mean of that
of the population at age zero, and in the first round disregard any changes
of frailty over the lifetime of a given person (Vaupel and Yashin, 1985). Call
the frailty of that standard individual unity, and the frailty of any other
person z, so that with µ(x) dx the conditional probability of dying between
age x and x+dx for the standard individual, the chance for the individual of
frailty z is zµ(x). We express this assumption as µ(x|z) = zµ(x). To suppose
the frailty fixed through life for any individual simplifies the mathematics
without committing us to any stand on the relative effects of heredity and
environment in the action of mortality.

If for individuals the mortality is zµ(x) then the observed rate at birth
µ̄(0) depends on the distribution of frailty, say f0(z):

µ̄(0) =
∫

f0(z)zµ(0) dz∫
f0(z) dz

= z̄(0)µ(0). (19.4.1)

Following Vaupel and Yashin (1985) we will henceforth use a bar for the
observed mortality, and the unbarred µ for the standard or initially average
individual.

For a later age x the distribution of frailty is no longer f0(z) but
f0(z)l(x|z) when l(x|z) is the probability that an individual of frailty z
survives to age x. We have for the observed mortality at age x

µ̄(x) =
∫

f0(z)l(x|z)zµ(x) dz∫
f0(z)l(x|z) dz

= z̄(x)µ(x). (19.4.2)

In words: the observed death rate is the mean frailty multiplied by the
death rate for the standard individual. This simple but fundamental result
factors µ̄(x) into a part involving z and a part involving µ.

Calculating the derivative of z̄(x) will show that mean frailty steadily
declines through life under all circumstances where mortality is positive.
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In the first place we know that

l(x|z) = exp
[
−
∫ x

0
µ(α|z) dα

]

= exp
[
−
∫ x

0
zµ(α) dα

]

= exp
[
−
(∫ x

0
µ(α) dα

)
(z)
]

=
[
l(x)
]z

.

Entering this in an expression for the mean frailty gives

z̄(x) =

∫
f0(z)

[
l(x)
]z

z dz∫
f0(z)

[
l(x)
]z

dz
. (19.4.3)

To find how z̄(x) changes over successive ages we take the logarithm of
z̄(x) and differentiate to obtain

1
z̄(x)

dz̄(x)
dx

=
[z(x)]2µ(x)

z̄(x)
+ z̄(x)µ(x),

where we write (z(x))2 for the mean square of z(x). The algebra is a further
variant on that employing the arithmetic–geometry inequality. We finally
have

dz̄(x)
dx

= −σ2(z|x)µ(x), (19.4.4)

which is necessarily a negative quantity. We have thus shown that with
positive mortality and positive variance of z mean frailty can only de-
cline. Expression 19.4.4 describes the selection effect as it diminishes frailty
through the life of a cohort. Together with (19.4.1) it shows that the ob-
served µ̄(x) is increasingly biased (relative to the true frailty µ(x) at the
individual level) as the cohort ages.

Note that the results here obtained are applicable starting from any
age, and not only from age zero. The selection that starts to operate in a
cohort just born operates equally in a cohort starting at an arbitrary age.
Even for an advanced age, say 70, whatever distribution of frailties is to
be found will gradually change with differential survival through ages 75,
80, etc. Age zero is a perfectly arbitrary starting point for this as for other
purposes; one could develop a demography for age 15, age 70, or any other
age, disregarding the individuals below that age, and consider a birth to be
the entry into that starting age. One could go the other way and measure
from conception as was done in Chapter 18.

The results in (19.4.1) to (19.4.4) can be extended if we parameterize the
distribution f0(z). A convenient choice is the gamma distribution:

f0(z) =
kkzk−1e−kz

Γ(k)
,
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where k is the reciprocal of the variance σ2. Without assuming anything
about the value of k, Vaupel (1979) shows that with this f0(z) mean frailty
at age x is

z̄(x) =
1

1 + σ2

(∫ x

0
µ(α) dα

) . (19.4.5)

This last tells us that the course of frailty with age is a simple function of
death rates below each age.

As an example of the use of (19.4.5), if mortality is age-invariant, so that
µ(x) = µ, then the course of observed mortality, calculated from (19.4.2),
will be hyperbolic

µ̄(x) =
µ

1 + σ2µx
.

This expression permits calculating the effect numerically knowing only the
variance of the z, assuming a gamma distribution of frailty.

Alternatively, if the baseline mortality follows the Gompertz–Makeham
model

µ(x) = aebx + c (19.4.6)

with a, b, and c constants, then the true mortality of each individual
increases exponentially with age. But the observed mortality will be

µ̄(x) =
aebx

1 + σ2 a
b (ebx − 1)

+ c, (19.4.7)

which is a logistic increase with age, reaching an asymptote of b/aσ2

(Yashin et al. 1994). The effect of selection completely obscures the pattern
of mortality increase at the individual level.

19.4.1.1 Parameter Estimation

Suppose that data are available on a cohort of individuals, followed until
the last one dies. We want to estimate, via maximum likelihood, a set of
parameters defining f0(z) and µ(x). The likelihood of a set of parameter
values is proportional to the probability of observing the data given those
values. The fate of an individual depends on a frailty z specific to that
individual; in a continuous-frailty model, each individual has a unique value
of z. Thus the number of parameters to be estimated appears to exceed
the number of individuals in the sample; this is not promising.

A solution is to focus on the distribution f0(z) rather than on the val-
ues of z realized by the individuals. This treats the individual frailties as
random variables rather than as fixed but unknown constants. This view
is familiar in the Bayesian framework, where all parameters are viewed as
random variables. If we let Y denote the data and θ a vector of parameters,
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then a Bayesian analyst writes

f(θ|Y ) =
P (Y |θ)p(θ)∫
P (Y |θ)p(θ)dθ

, (19.4.8)

where f(θ|Y ) is the distribution of θ after observing the data Y (called
by Bayesians the posterior distribution), P (Y |θ) is the probability of the
data given θ (the likelihood), and p(θ) is the unconditional distribution
of θ before the data Y are obtained (the prior distribution). That is, the
prior distribution of θ is updated, after data are obtained, via the likelihood
function. The posterior distribution shows which values of the parameters
are probable and which are not. The mean or the mode of the posterior
distribution can be used as a point estimate of the parameter if desired.

Bayesian statistics inspires philosophical arguments about the influence
of the prior distribution on the conclusions. Depending on your point of
view, this influence is either good, representing the growth of scientific
knowledge by updating prior beliefs in the light of new data, or bad, cor-
rupting the scientific process by permitting a subjective prior distribution
to influence the conclusions. We can leave the philosophers to their own
devices, however, by taking what is sometimes called an objective Bayesian
approach (e.g., Link et al. 2002). If the prior distribution in (19.4.8) is flat
(or very nearly so), it provides no (or nearly no) information about θ prior
to obtaining the data. The posterior distribution is then proportional (or
nearly so) to the likelihood function. The mode of the posterior distribution
is then the maximum likelihood estimate of θ. Thus Bayesian methods can
be used to arrive at maximum likelihood estimates uninfluenced by prior
beliefs. The advantage is that this includes models where some parameters,
such as individual frailty, are treated as random variables characterized by
their distributions.

The integral in the denominator of (19.4.8) can be extremely difficult to
evaluate, but the so-called Markov chain Monte Carlo (MCMC) algorithm
solves this problem, and powerful software for this purpose is now available
(Spiegelhalter et al. 1999; see Link et al. 2002 for a description in the
context of population biology).

MCMC methods are attracting attention from both human demogra-
phers (e.g., Bolstad and Manda 2001) and population ecologists. As an
example, Cam et al. (2002; see also Link et al. 2002) studied survival and
fertility in the black-legged kittiwake (Rissa tridactyla, a gull of temper-
ate and arctic waters in the Atlantic and Pacific oceans). Over a period of
22 years, some 845 individuals were followed from first reproduction until
death or the end of the study. For each bird, the time it entered the study
and the time of its death are known (unless it survived to the end of the
study), and for each year that it was in the study it is known whether or
not it reproduced. Cam et al. (2002) modelled survival and fertility as

logit
(
φ(i, x, t)

)
= a(t) + b(x) + z

(φ)
i (19.4.9)
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logit
(
β(i, x, t)

)
= c(t) + d(x) + z

(β)
i , (19.4.10)

where x denotes age and t denotes time, and i refers to a particular individ-
ual; the frailties z

(φ)
i and z

(β)
i are random effects on survival and fertility

specific to individual i.
Assuming that the frailties z

(φ)
i and z

(β)
i were fixed, individual-specific

effects would require estimating 845 × 2 = 1690 parameters to account for
inter-individual heterogeneity. However, assuming that the individual frail-
ties were drawn from a bivariate normal distribution with a mean of zero
reduces the number of parameters to 3 (two variances and a correlation).
Flat priors were used for these 3 parameters, as well as the effects of age
and time, and MCMC methods used to compute the posterior distributions
of all the parameters. A variety of models for the time and age effects were
explored; the best-fitting models all included significant individual hetero-
geneity. At the individual level (i.e., the age effect b(x)), survival declined
linearly with age. Because of selection, however, survival at the population
level was nearly age-invariant. The estimated correlation between the in-
dividual effects on survival and reproduction was unambiguously positive,
indicating that, at the level of individual heterogeneity, “frailty” affects
both survival and reproduction in the same way.

19.4.2 Finite Mixture Models
Often there is little theoretical basis for choosing a parametric distribution
of frailty. It is tempting to choose a function on the basis of convenience
(e.g., the gamma distribution, which has support on the non-negative num-
bers), but in at least some circumstances different choices of the distribution
lead to different estimates of the functional relationship between survival
and other (measured) variables (Heckman and Singer 1982). A nonpara-
metric approach based on a mixture of a finite number of frailty classes
may be preferable; it is certainly appropriate when there are really classes
within the population (those with and without some medical condition, for
example). In any case, many of the effects of heterogeneity become apparent
by considering only two groups (Vaupel and Yashin 1985).

Suppose there are N types, with frailties zi, i = 1, . . . , N , and that
p0(zi) = P (z = zi). Then we replace (19.4.1) with

µ̄(0) =
∑

i

p0(zi)ziµ(0) = z̄(0)µ(0). (19.4.11)

The theory proceeds as in the continuous case, but with summations re-
placing integrations (Vaupel and Yashin 1999). Maximum likelihood can
be used to estimate the parameters in the mortality schedule µ(x) and the
probabilities p0(zi). In cases where the follow-up of individuals is less than
perfect, so that an individual may disappear either because of death or be-
cause of imperfect sampling, the heterogeneity can affect not only mortality
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but the likelihood of detection (e.g., Pledger 2000, Pledger et al. 2003). The
choice of the number of groups to include (N) can be based on prior knowl-
edge or on a comparison of models with different numbers of classes. Hoem
(1990), however, reports on a failed attempt to use this approach to study
heterogeneity in the breakup of conjugal unions (married or otherwise) in
Sweden; he found the number of parameters too large and the likelihood
too difficult to maximize. Whether Bayesian MCMC methods would help
is an open question.

19.4.3 Age-Dependent Frailty
The models discussed so far assume that each individual has a fixed frailty,
assigned at birth and kept until death. An alternative conceptualization
assumes that all individuals are born with the same frailty, and that frailty
then changes with age (e.g., Yashin et al. 1994). Suppose there are discrete
frailty states 0, 1, . . . , n, representing increasing levels of frailty, and that
frailty affects mortality as

µ(z, x) = µ0(x) + zµ. (19.4.12)

Here, µ is the rate at which mortality increases with increased frailty. Frailty
changes over time, either increasing according to

P (z(t + dt) = z + 1) = (γ0 + zγ) dt (19.4.13)

P (z(t + dt) = z) = 1 − (γ0 + zγ) dt. (19.4.14)

Here, γ is the rate of increase in frailty.
This model leads to a system of differential equations that can be solved

for the probability distribution of individuals among frailty classes at any
age. From this, as n → ∞, the observed mortality is

µ̄(x) = µ0 +
µγ0
(
1 − e(γ+µ)x

)
µ + γe−(γ+µ)x , (19.4.15)

which produces a logistic pattern of observed mortality (Yashin et al. 1994).

19.4.4 Parameter Identification and Model Discrimination
Not surprisingly, any attempt to estimate the effect of invisible variables
leads to problems with identification and model discrimination.

First, as emphasized by Trussell and Rodŕıguez (1990), there are two
ways to write the mortality rate in the presence of heterogeneity. One is to
specify a distribution of frailty and incorporate it in the formula (19.4.2).
The other is to carry out the integration over levels of frailty in (19.4.2)
and obtain a resulting mortality curve in which the distribution of frailty
is no longer apparent. There is no way to tell, from a mortality schedule
alone, whether it is the result of heterogeneity. Thus observed mortality
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data could follow the logistic age trajectory in (19.4.7) for two reasons.
Each individual in the population might experience the same logistic tra-
jectory of mortality, or each individual might experience the exponentially
increasing Gompertz–Makeham mortality trajectory (19.4.6) modified by
its unique, gamma-distributed, frailty. No observations on mortality alone
can distinguish the two hypotheses, because they lead to exactly the same
mortality trajectory.

The emphasis here must be on “mortality alone,” because it is certainly
possible that additional information could help distinguish the models.
One can reduce heterogeneity (e.g., by conducting experiments on geneti-
cally homogeneous cohorts) and see if it changes the form of the mortality
function. Or one can use information from relatives, whose frailty may be
expected to exhibit some correlation, and see how much heterogeneity is
reduced (e.g., Yashin and Iachine 1997).

It is also impossible, under at least some hypotheses, to distinguish fixed
from age-dependent frailty. Yashin et al. (1994) showed that the parameters
of the age-dependent frailty model (19.4.15) can be put in one-to-one cor-
respondence with the parameters of the gamma–Makeham model (19.4.7).
Thus observations of mortality alone cannot distinguish between a frailty
model where each individual has its own fixed level of frailty assigned at
birth and one where all individuals are born with the same frailty, which
increases stochastically through their lives.

19.5 Experimentation

As an example of the way heterogeneity can distort even a careful medical
trial, consider a population that is heterogeneous, containing two equal
subpopulations, both initially stable, equal in number and increasing at
the same rate r, but with different mortality (and correspondingly different
birth) rates. A procedure is applied that lowers mortality by amount ε at
all ages for one of the subpopulations. Under what circumstances will the
use of this procedure raise the overall crude death rate of the population?

If the initial common rate of increase is r, the two birth rates b∗ and b,
then the initial crude death rate is

(cdr)0 = ((b∗ − r) + (b − r))/2.

Suppose the procedure lowers mortality by ε uniformly at all ages for the
starred subpopulation, increasing its r to r + ε, and having no effect on its
crude birth rate b∗. The combined population that results at time t will
have a weight of eεt for the starred subpopulation and unity for the other,
so its crude death rate will be

(cdr)t = (eεt(b∗ − r − ε) + (b − r))/(eεt + 1).
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Then (cdr)t will be greater than (cdr)0 if and only if

eεt(b∗ − r − ε) + (b − r)
eεt + 1

>
b∗ − r + (b − r)

2
.

Ultimately as t becomes large, the condition becomes ε < (b∗ − b)/2 which
is the same as

ε <
(b∗ − r) − (b − r)

2
. (19.5.1)

This shows that if the decrease in mortality rates affects the subpopu-
lation of higher mortality only, and if the improvement is less than half
the difference between the preceding death rates of the two subpopula-
tions, then the effect of the improvement will be an increase in the overall
mortality rate.



20
Epilogue: How Do We Know the Facts
of Demography?

Demographers know that a slowly increasing population has a higher
proportion of old people than one that is increasing rapidly, and that dif-
ferences in birth rates have a larger influence on the age distribution than
do differences in death rates. They often claim that a poor country whose
population is growing rapidly will increase its per capita income faster if it
lowers its birth rate rather than maintaining it at a high level.

How do demographers know these things? Many readers will be surprised
to learn that in a science thought of as empirical and often criticized for its
lack of theory the most important relations cannot be established by direct
observation, which tends to provide enigmatic and inconsistent reports.
Confrontation of data with theory is essential for correct interpretation of
such relationships, even though on a particular issue it more often generates
an agenda for further investigation than it yields useful knowledge. Much of
this book is devoted to examining the ways in which demographers distill
knowledge from observation and from theory. The present summing up
shows a relatively heavy weight of evidence for theory, illustrated briefly
with an application to economic demography. We thank Paul Demeny for
many improvements and clarifications in this account.

Let no one think that the questions of demography, and the issues of
method for finding answers to them, are remote or purely abstract. The
resolution of major policy issues of our time depends on the answers. How
much of its development effort should a poor country put into birth control
if it deems its rate of population growth excessive? Some would put nothing,
in the expectation that rapid increase of income will by itself bring popula-
tion under control. Once people have automobiles, once their countryside is
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Figure 20.1. Average annual increase of per capita gross national product and of
population for countries with over 20 million population, 1960–72.

paved over with roads, once enough air-conditioned houses are built, they
will lower their fertility. But is this not a circuitous way of getting people
to use pills and IUDs? Surely direct persuasion aimed at lowering fertility
would help to reach desired developmental goals more quickly.

Any answer to such questions must take into account the degree to which
a low rate of population increase promotes development and conversely.
This is no simple matter. Figure 20.1 shows the relation between rates
of population growth and increase of income per capita. Even the most
imaginative viewer would hardly perceive the negative relationship that the
dominant theory (later to be summarized) requires. In the pages ahead, the
irregularity of empirical data as they appear in charts and tables will be
repeatedly contrasted with the clear-cut mathematical relationships of the
theory.

The theoretical approach can be described as “holding unmentioned vari-
ables constant”; the empirical, for example in the form of a regression
between measured variables, as “allowing unmentioned variables to vary as
they vary in actuality.” This distinction is familiar, more so in the natu-
ral than the social sciences, in the context of experiments. An experiment
is, and is intended to be, an artificial situation in which some factors are
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manipulated while others are held constant. The power of experiments is
precisely their ability to draw conclusions about the manipulated factors,
in the context of the factors held constant (or randomized, which has much
the same effect). Theoretical models of the sort considered in this book can
be thought of as mathematical experiments (Caswell 1988b). The princi-
ples of good experimental design are many, but they do not include trying
to duplicate nature, or to manipulate all the relevant factors at once. Still,
the results of an experiment are always conditional on the choice of which
variables to manipulate and which to hold constant, and the ability of an
experiment to predict the behavior of the real world depends on how those
unmentioned variables actually vary.

The contrast between the theoretical and empirical approaches becomes
clear when we look at an example in which we think we know the true
nature of the relationship between two variables.

20.1 Growing Populations Have Smaller
Proportions of Old People

In the late 1960s the population of Mexico grew at 3.5 percent per year;
its proportion of ages 65 and over was about 3 percent. The United States
was growing at less than 1 percent per year; its proportion 65 and over
was about 10 percent. The relation can be expressed as a linear equation.
For 1966 (Keyfitz and Flieger 1971, pp. 344, 354) the four numbers were
as follows:

Variable Mexico United States

Rate of natural increase (percent) 3.44 0.89
Percent aged 65 and over 3.31 9.42

Call the annual percentage rate of increase 100r, and 100P65+ the percent-
age over age 65. Then the straight line from the 1966 information for the
United States and Mexico is

P65+ = 0.116 − 2.40r,

which tells us that for each 1 percent by which the rate of increase is higher
there is a decrease of 2.4 percent in the proportion aged 65 and over. With
zero increase the percentage over 65 would be 11.6; with 3 percent increase
it would be 11.6 − 7.2 = 4.4 percent.

We should be able to obtain a more reliable result with a larger and
more homogeneous group of countries, so let us try those of Latin America
shown in Table 20.1. The regression is P65+ = 0.0846 − 1.63r. Apparently
the more homogeneous group gives a less steep slope than do the United
States and Mexico. Now each 1 percent increase in r is associated with a
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Table 20.1. Proportion aged 65 and over and rate of natural increase, 18 Latin
American countries

Percent Percent rate
aged 65 of natural

Country and over increase
100P65+ 100r

Argentina, 1964 6.05 1.40
Brazil, 1950 2.45 2.80
Chile, 1967 4.47 1.89
Colombia, 1964 3.00 2.85
Costa Rica, 1966 3.18 3.44
Dominican Republic, 1966 3.57 2.85
Ecuador, 1965 3.16 3.25
El Salvador, 1961 3.18 3.81
Guatemala, 1964 2.77 2.89
Honduras, 1966 1.76 3.55
Martinique, 1963 4.96 2.50
Mexico, 1966 3.31 3.44
Nicaragua, 1965 2.90 3.57
Panama, 1966 3.57 3.29
Peru, 1963 3.42 2.83
Puerto Rico, 1965 5.77 2.36
Uruguay, 1963 7.81 1.03
Venezuela, 1965 2.99 3.65

drop of 1.6 in P65+—only two-thirds as much. A scatter diagram (Figure
20.2) shows that we could have chosen two countries that would provide
almost any given slope; if we wanted to show a positive rather than a
negative relation, we could have taken Mexico and Brazil, or else Panama
and Guatemala. Moreover, much of the overall negative correlation is due
to three countries of the southern cap—Argentina, Uruguay, and Chile—
that are culturally distinct from those farther north, along with Puerto
Rico and Martinique. To exaggerate a little, it looks as though countries
fall into two groups, those with low r and high P65+, and those with high
r and low P65+. In short, much of the pertinent information was contained
in the comparison of the United States and Mexico with which we started.

What about taking one country and following changes through time in
the two variables? Sweden provides information over nearly 200 years, and
also yields a very different regression from any obtained cross-sectionally.

The comparisons and regressions summarizing them are highly inconsis-
tent in reporting how much difference in the proportion over 65 is to be
associated with differences in the rate of increase. A large research project
could be undertaken to see why they fail to agree; it might reveal that the
changing mortality over 200 years in Sweden is confounded by the changing
birth rate, or that the more homogeneous the group, the lower the correla-
tion and the lower the slope of regression. It happens that in this instance
no one will undertake such research because a simple theory is available
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Figure 20.2. Relation of proportion of the population over age 65 to the rate of
population increase: 18 Latin American countries.

that provides a better insight into the nature of the relationship between
growth rate and age distribution. Let us use this theory to back off and
take a fresh approach to the question.

20.1.1 Older Population as a Function of Rate of Increase
When All Else Is Constant

The approach is that of Chapter 5. Suppose that the fraction of births
surviving to age x is given by a fixed survival function l(x), and the annual
rate of increase in births is r, so that compared with x years ago the number
of births is now erx greater. Then for each present birth there were e−rx

births x years ago, and of these a fraction l(x) have survived, the survivors
being now aged x. Thus the number of present persons of age x must be
Be−rxl(x), where B is the number of current births. This applies for all
ages and suffices to specify the age distribution, as we saw in Chapter 5.

The expression for persons aged x will tell the relation between a fraction
of the age distribution and the rate of increase r:

P65+ =

∫ ω

65
e−rxl(x) dx∫ ω

0
e−rxl(x) dx

. (20.1.1)
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Table 20.2. Fraction over 65, P65+, tabulated as a function of rate of increase r,
and first and second approximations

r P65+ 0.1379e−40r 0.1379e−40r−135r2

(1) (2) (3) (4)

0.000 0.1379 0.1379 0.1379
0.005 0.1140 0.1129 0.1125
0.010 0.0932 0.0924 0.0912
0.015 0.0753 0.0757 0.0734
0.020 0.0602 0.0620 0.0587
0.025 0.0477 0.0507 0.0466
0.030 0.0374 0.0415 0.0368
0.035 0.0291 0.0340 0.0288
0.040 0.0225 0.0278 0.0224

Based on mortality of Coale and Demeny (1966, p.
20) Model West Females,

o
e 0 = 65

If l(x) is fixed, (20.1.1) establishes P65+ as a function of r and of nothing
else. The equation is not very instructive in this form, for we cannot easily
see whether P65+ increases or decreases with r, let alone by how much.

Taking the logarithm and expanding the exponential provides a series of
cumulants that are a good approximation to the full expression 20.1.1. Up
to the first two terms we have, by the method of Chapter 5,

P65+ =

∫ ω

65
l(x) dx∫ ω

0
l(x) dx

exp
[
−(m2 − m1)r − (σ2

1 − σ2
2)

r2

2

]
, (20.1.2)

where m2 is the mean and σ2
2 the variance of those 65 and over, and m1

the mean and σ2
1 the variance of all, in the stationary population. With

m2 − m1 = 40, and disregarding the square term, we have column 3 of
Table 20.2; including the square term with σ2

1 = 400 and σ2
2 = 130, so that

(σ2
1 − σ2

2)/2 = 135, gives column 4, which is a good fit, and it is based on
little more data than a demographer carries in his head.

Such a theoretical relation largely escapes defects of the data. Another
advantage of the theoretical approach is that we know exactly its assump-
tions. In this instance, our model specifies that the comparison be among
populations closed to migration, with the same life table but different rates
of increase, and that each of them have had births increasing exponentially
during the lifetimes of persons now alive or, alternatively, have had fixed
age-specific birth and death rates over a long past period. Consequently,
this model does not tell anything about the change through time from one
such condition to another; the trajectory from rapid increase to stationar-
ity for a given population requires a more difficult kind of mathematics.
That the theory here, like the comparative statics of economics, permits
the comparison of stable conditions only is both a strength and a weakness.
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Instead of supposing fixed rates in a closed population, the empirical
regression takes into account migration, in whatever proportion it has been
occurring in the populations whose data are included. Insofar as mortality
has been falling, the influence of that fall is also incorporated. Thus it
is a better description of the state of affairs covered by the data; it is a
worse statement of the intrinsic relationship between the stated variables.
If underlying conditions are the same in the future, the regression will
predict more accurately; if they change substantially, the theory will be
more dependable. If an underlying interference is caused by some known
and measurable variable, the empirical regression can partial it out, and in
this degree approach closer to theory.

In another aspect the regression inevitably depends on a data base, and
that base is determined by what data are available. One can hardly apply
sampling notions to it, since whether one takes countries or some other unit,
the number of existing populations that are truly independent is small and
predetermined for the observer, beyond any possibility of his arranging a
randomized design. Moreover, data on many countries are lacking. Even
if each entity describable as a nation could be thought of as providing
independent evidence, and if all had good data, the collection of nations is
not easy to conceptualize as a homogeneous universe.

This simple example shows how uncertain our knowledge would be if
analytical tools like the stable model were not available. One can imagine
methodological controversies, and schools of opinion, some perhaps taking
the view that the relationships were really different for different races or
different continents. One who has been through the theory would no sooner
say that the underlying relationship between increase and age composition
is different for different continents than he would say that the laws of
thermodynamics so differ.

20.1.2 Are Births or Deaths Decisive?
The same stable model can help one to decide whether the age distribution
of a population depends more on its births or on its deaths.

Venezuela in 1965 had a greater proportion of children plus old people
than did Sweden in 1803–07. To compare a contemporary nonindustrialized
country with one in the early nineteenth century reveals an aspect of the
difference in the process of getting development launched then and now.
A high dependency ratio (children under age 15 plus adults over 65 as a
proportion of the number of working ages 15 to 65) is a disadvantage for
development: Venezuela’s dependency ratio in 1965 of 1.021 was 73 percent
greater than Sweden’s in 1803–07 of 0.589. One would like to know to what
extent this was due to Venezuela’s lower death rate and to what extent to
its higher birth rate. No such decomposition is even conceivable, however,
on the observed rates—they show what they show.
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The stable model of Chapter 5, in which the number of persons aged x is
proportional to l(x)e−rx, allows one to synthesize dependency ratios from
various combinations of birth and death rates:

Venezuelan births and Venezuelan deaths 1.021
Swedish births and Venezuelan deaths 0.703
Swedish births and Swedish deaths 0.589

as shown in Table 10.2. The effect of the birth rate when the death rate
is constant is 1.021 − 0.703 = 0.318; the effect of the death rate when the
birth rate is constant is 0.703 − 0.589 = 0.114; of the total difference of
0.432, the part due to births is about 74 percent, and that due to deaths
about 26 percent. The LTRE approach in Section 13.4 extends this kind of
calculation to individual age- or stage-specific vital rates.

We could alternatively have used as the intermediate term in the decom-
position the dependency ratio with Swedish deaths and Venezuelan births,
which is 0.856. The death effect would have been 1.021 − 0.856 = 0.165,
and the birth effect 0.856 − 0.589 = 0.267. Now 62 percent of the differ-
ence is due to births, still the larger part. We can say that between 62 and
74 percent is due to births, the interval between these numbers being an
interaction that cannot be allocated.

Any other feature of age can be similarly analyzed. Sweden’s percentage
under age 15 was 31.3, and Venezuela’s 47.7; the combination of Swedish
births and Venezuelan deaths would produce 34.2 percent. Hence, of the
difference of 16.4 percentage points obtained as 47.7 − 31.3 only 2.9 (=
34.2 − 31.3) is due to deaths and 13.5—over 4 times as much—to births.

20.2 Promotion in Organizations

Everyone knows that in a fast-growing organization promotion is likely to
be faster than in one growing slowly. Neither elaborate empirical data nor
a model is required to demonstrate that bare fact. What one would like to
know is the quantitative relation: in a fast-growing organization does one
advance to a middle position a few months sooner than in a slow-growing
one, or several years sooner?

We can imagine collecting a great volume of data to settle this point.
The survey organizer would have to give attention to the universe of orga-
nizations from which he proposed to sample—perhaps he would settle on
all commercial, transport, and manufacturing firms in the United States.
He would have to define the boundaries of each organization, whether it
included all establishments constituting a firm or whether each establish-
ment was to be considered a separate organization. A lower limit would
have to be set on the size of organization considered, say 100 employees.
One would want to distinguish family-run enterprises, since the conditions
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for promotion in these would certainly be different. If a one-time survey
were to be made, the information on promotion would have to be obtained
retrospectively, with the errors of recollection that this entails. On the
other hand, a succession of surveys that statistically followed careers of in-
dividuals would take time and be expensive. Many decisions would have to
be made to establish the universe and to conduct the sampling operation
within it.

Moreover, when the results were in we would notice that in some or-
ganizations there were many resignations, so that promotion was rapid
for personnel that remained; indeed, this effect might be strong enough
to hide the effect of growth. We would have to classify organizations into
homogeneous groups according to their turnover, or else obtain an index
of turnover for each and use regression analysis to partial it out. This is
only one of many disturbing elements that could be expected to make the
results, so painstakingly obtained, uncertain in interpretation in relation
to the question to which an answer is being sought.

A simpler approach that avoids the errors to which a survey is subject is
to compare the number of employees ahead of a representative individual—
let us call him Ego—in a fast-growing and in a slow-growing organization,
as if promotion depended only on age. Superimposed on individual abil-
ity, assiduity, influence, luck, and all the other elements that determine
promotion in the real world is the pure effect of organizational growth on
individual careers, and that is what we want to ascertain. That effect can
be studied by use of a suitable model as we saw in Section 5.8.

First suppose a given schedule of survival—knowing that the deaths of
his contemporaries help Ego’s promotion, we do not want differences in
mortality to cloud our analysis. Then suppose an age distribution that is
a function only of this survival function and rate of increase, so that the
stable model is applicable. Finally, take as the arbitrary benchmark for
measurement the age at which individuals arrive at a level where one-half
of their fellow-workers are below them and one-half above, say a junior
supervisory position.

After that, the simple mathematics of Section 5.8 shows that, for given
rates of death or resignation, the age x at which Ego reaches such a position
is shortened by two-thirds of a product of three factors:

1. The time from age x to retirement, discounted at the rate of
population increase;

2. The difference between the mean age of the group senior to the point
of promotion considered, and the mean age of those junior to it. This
difference cannot be far from half of the length of working life;

3. Increase of the rate of increase of the population.

With an entry age of 20 and a retirement age of 65, comparison of two
populations whose increase differs by ∆r percent gives for the difference in
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ages

∆x = −
( 2

3

)
(15)(22.5)∆r = −225r.

Thus the time of promotion is delayed by 2.25 years for each 1 percent by
which population growth is lower. This demographic factor is overlaid on
all individual differences of ability, influence, and luck. Although the model
is based on pure seniority, some such effect will apply if any element of
seniority is present. Only if length of service in the organization is wholly
disregarded in promotion will the model be irrelevant.

20.3 No Model, No Understanding

A large volume of data is on hand regarding breast cancer. Despite
stepped-up efforts to deal with it, expensive operations and other forms
of treatment, and widespread publicity urging women to examine them-
selves and to see their doctors at once if there is any suspicion, the increase
in deaths from breast cancer is considerable in North America and Western
Europe, just where the most intensive therapeutic effort is being made. In
the 1980s, breast cancer was the leading cause of death for women aged
35 to 54 and was second only to heart disease for older ages. Some of the
increase may have been due to more awareness and hence more frequent
diagnosis than in the past, and to better diagnosis in America and Europe
than in Asia and Latin America, but apparently this was not the whole
cause. Women who bear children early seem to have a lower risk of breast
cancer, but no one thinks that having children—early or late—can prevent
the disease or account for the differences. Breast cancer is less common
in warm climates and among poor populations, but that warm climate or
poverty is a preventive seems unlikely.

Such statistical differentials will continue to be unsolved puzzles until
someone comes along with a model that explains the differences. In the
meantime, all that can be done is to continue gathering data to discriminate
among proposed models.

The ratio of male to female births is a similar case, in that there is no
obvious model, and no clear-cut result has so far emerged from differentials
and correlations. We know that births to young mothers have a higher
sex ratio (males to females) than births to older ones, that first births to
mothers have a higher sex ratio than later births, and that children of young
fathers have a higher sex ratio than children of older fathers. But among age
of mother, parity of mother, and age of father, which is the effective cause?
The high intercorrelations among the possible causes make it difficult to
distinguish. Mechanisms have been suggested involving the relative activity
and viability of sperm producing male and female babies but until some
such mechanism is shown to be the operative one, our knowledge is tentative
and uncertain.
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20.4 Too Many Models

India and some other countries have raised the legal age of marriage partly
with the aim of lowering the birth rate. Implicit in the thinking of legislators
and others is a theory in which marital fertility age for age is relatively fixed,
and a legal minimum age effectively eliminates the part of the fertility curve
below the age specified. Given the curve, the amount of effect is easily
calculated. Sample survey data for India show that, of 18.14 million births
in 1961, some 3.24 million or 18 percent were to mothers under age 20 years
(Keyfitz and Flieger 1968, p. 659).

This seems a potentially powerful argument for restriction of marriage
supposing it feasible to raise the age as high as 20 for women. But before
one reaches a firm conclusion, it ought to be noted that on an opposite
model raising age at marriage would be wholly ineffective.

Suppose that married couples are not reproducing to the maximum, but
that they want a certain number of children, and will have later what the
law forbids them to have sooner. After all, the birth rate of India (under 40
per thousand) is well below the physiologically possible maximum. Under
these circumstances, the only gain from a legal minimum age for marriage
would be a delay of a few years that would lengthen the time separating
successive generations and hence lower the average annual increase, but
by a small amount. Illegitimacy is also a problem; it is low in India, but
one of the reasons parents want their daughters married early is to avoid
their engaging in premarital sex. If the parents’ fears are not altogether
imaginary, there could be some increase in the number of children born
outside of marriage.

Yet these arguments are in the end unconvincing; one has the impression
that couples that lose time before they are 20 may make up some part of the
lost ground but not all, and that extramarital fertility would remain low.
To determine the net drop in overall fertility as a result of the restriction,
behavioral data would be required. These alone can discriminate between
the competing models and predict the quantitative effects of an induced
change in age at marriage.

20.5 Development and Population Increase

This brief chapter is not the place to consider intricate issues of popu-
lation economics, which is an entire academic discipline having scores of
specialists, a literature running to many hundreds of articles and books,
and its own lines of cleavage and of controversy. It is worth saying here
only enough to show that both theoretical and empirical methods are ap-
plied in this field, and that, notwithstanding their extensive and skilled
use, much remains to be done in disentangling the lines of causation. The
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literature speaks of “development” as the socioeconomic transformation
into the modern condition, and of “income” as sufficiently correlated with
development to be used as a proxy.

20.5.1 The Effect of Development on Population
First, in regard to the effect of development on population, a quick look
at cases suggests a familiar negative relationship, with which theory con-
forms. Development seems sooner or later to have brought a reduction in
population growth in all the instances where it has occurred. All of the rich
countries have low birth rates today, and the very richest are not replacing
themselves. For example, West Germany had fewer births than deaths in
1973, and in 1974 it had fewer births plus net immigrants than deaths, so
that its population actually declined. But the countries of Eastern Europe
are much less rich, and they also have low birth rates, while in Britain the
birth rate first started to fall almost a century after development was under
way. Thus the correlation is not perfect, but still history seems to be saying
that, with more or less lag, industrialization has led to reduced family size.

In theory this may be due to women finding jobs and sources of pres-
tige outside the home, so that they do not need to rely on childbearing
for their standing, and to children being more expensive and, on the other
hand, less directly useful to their parents as income increases, both effects
being related to the decline of the family as a productive unit with the
growth of industry. As contraception is made easier and more available,
relatively weak motivation suffices to cut the birth rate. What we ought
to believe in this matter, summed up in the concept of demographic tran-
sition, is relatively unambiguous because the dominant theories and the
most conspicuous anecdotal evidence all point the same way.

Yet even here, the more closely and systematically scholars have looked
at the data, the less clear they have found the effect of development on fam-
ily size. Taking income as a proxy for development, Adelman (1963) made
“an analysis of fertility and mortality patterns as they are affected by eco-
nomic and social forces.” Her materials, based mostly on national statistics
for 1953, showed a decidedly positive relation between income and fertil-
ity. Friedlander and Silver (1967) partialed out more variables and found
that for developed nations the relation is negative. Heer (1966) calculated
correlations for 41 countries that suggested that the direct effect of eco-
nomic development is to increase fertility, and the indirect effects (through
education, and so on) are to reduce it. But it makes a difference when the
data for the 24 less-developed countries are separated from those for the
17 more developed and more than one point of time is introduced so that
changes rather than levels are correlated. Ekanem (1972) used two points
of time, the 1950 decade and the 1960 decade, but the effect of his greater
care seems to be a less clear-cut result than Heer’s. Again, Janowitz (1971)
followed five European countries and found that variables shifted enough
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through time so that the longitudinal relations, more likely to indicate
causation, are decidedly different from the cross-sectional regressions.

It would be unkind to say that these efforts constitute raw empiricism.
They are oriented by an economic theory: that increased affluence causes
people to buy more of most things, the exceptions being labeled inferior
goods. Since no one considers children inferior goods, many argue that
children and income “really” are positively related, but the relation is con-
cealed by the intervention of other factors. The better off have access to
contraceptives of which the poor are ignorant; the better off have higher
quality (i.e., more expensive) children and so can afford fewer of them
(Becker 1960, Leibenstein 1974).

20.5.2 The Effect of Population Growth on Development
The writers cited above were trying to find the impact of development on
fertility, a situation where, despite some complications and contradictions
causation seems clearer than in the inverse problem: in which direction and
to what extent does rapid population growth affect development. Among
all the questions that demographers seek to answer, this last is the one that
is truly important for policy.

In the classic theory rapid growth means many children—40 percent or
more of the population under age 15. The children have to be fed, clothed,
and educated, and however the cost is divided between parents and the
state, it requires resources that compete with industrial and other invest-
ments. In addition, children grow up and want jobs, and hence growth
requires that a larger labor force be provided with capital goods. Thus a
fast-growing population is doubly handicapped.

So much for the static aspect of the demographic–economic relationship.
In regard to dynamics, when fertility falls from an initially high level, the
dependency ratio begins to shift immediately in an economically favorable
direction. Thus investment can be greater than it was before. Lagging 15 or
20 years behind is a longer-run dynamic effect: a slackening of the growth
of the population in the labor force ages. When relatively fewer children
grow up to enter these ages, there is less competition for productive jobs
and each entrant may have more capital to work with than if the birth rate
had not been cut (Coale and Hoover 1958).

All this is based on the view that development is capital-limited rather
than resource-limited. But if it is resource-limited, population is an even
more serious consideration, although now the absolute level of population is
of concern rather than the birth rate; the more people, the less resources at
the disposal of each, on a theory dating back to John Stuart Mill and ulti-
mately to Malthus. In the most general statement, certain ratios of labor to
the other factors of production—land and capital—are more favorable than
others, and most developing countries are moving away from the optimum
with present population sizes and birth rates.
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How would matters stand if no theory had ever been presented? Let us
try to wipe theory out of our minds, and look at the data with complete
naiveté. Among developing countries, Pakistan is increasing at over 3 per-
cent and India at less than 2.5 percent, yet Pakistan seems to be making
more economic progress. Iran’s rate of population increase is much greater
than Nepal’s, and so is its economic advance. Brazil and Venezuela are
not increasing in population less rapidly than their economically stagnant
neighbors; indeed, Argentina and Chile, with very low birth rates, may be
becoming poorer absolutely. Mexico is advancing economically with an an-
nual population increase of 3.5 percent per year, one of the highest in the
world and higher than that in Paraguay or Bolivia, where economic dy-
namism is absent. On the other hand, sub-Saharan Africa has high rates of
population increase and low income growth. Figure 20.1 depicts the broad
array of relationships between population growth and increase in income
for large countries in the contemporary world. As noted at the start of this
chapter, the relation that theory predicts is not at all evident.

It makes a difference if we compare birth rates rather than natural in-
crease, and for the theory, births less infant deaths might be the best
indicator of the economic impact. But whatever measure is used, the inverse
correlation with economic dynamism simply does not appear.

Of course individual countries can be analyzed, and by making allowance
for such nonpopulation aspects as leadership, political conditions, the edu-
cational system, religion, and the dissolving of patrimonial social relations
as expressed in landholding and other ways, along with resource endow-
ment, we need not be at a loss to account for the observed national
differences. This explanation a posteriori can be made to sustain the the-
ory, but hardly answers a disturbing question: to what extent would naive
examination of population and income data for the poor countries of the
world have revealed any clear effect of population on development? Would
the effect have been as blurred as the effect of population increase on age
distribution?

It is just this incapacity of the raw data to speak for themselves that
permits some to argue that population and its growth do not harm devel-
opment and should be allowed to take care of themselves. One might expect
the facts to silence anyone who could utter such opinions, but as presented
either anecodotally as above or in simple correlations they do not. To make
the facts speak clearly to this issue is not easy.∗

∗Since these words were written, the problem has become no less difficult, but even
more important, as demographers and ecologists explore the inter-relationships of the
environment, development, and population. Keyfitz (1993, 1994, 1996) discusses the
issues and their history.
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20.6 How Nature Covers Her Tracks

The reason for bringing these very difficult matters into the present ex-
position is the hope that their investigation can be aided by going back
to some simpler issues, like the relation between age distribution and the
rate of increase of a population. In that case most would agree that theory
gives the right answer: the rate of increase determines the proportion of
old persons (as well as middle-aged and young) in the population. Where
the relationship is obscured by migration or by changing birth and death
rates, as it commonly is, these are seen as mere disturbances. Such “noise”
could drown out the relationship in the observed data without weakening
our conviction that the relationship is “really” as stable theory says it is.
Up to this point stable theory has the immutability of the laws of logic: if
over a sufficient period of time death rates are the same in two populations,
the one with the higher birth rate will have the lower proportion at older
ages. Belief in this is unshaken by the fact that El Salvador is higher than
Honduras both in rate of population increase and in percentage over age 65.
A supporter of the theory would convincingly argue that the official data
must be wrong (perhaps registration of births is differentially incomplete),
or there has been age-selective migration, or some other reason underlies
the discrepancy between expected and observed relationships.

Although stable theory can never be disproved, it could be deprived of
all interest if in the real world certain things that it assumes constant were
in fact steadily changing. If death rates were always falling at a certain
pace, the proportion of old people would everywhere be different from that
given by stable theory, and a different theory would be required for inter-
preting reality. Any steady change that was universal would make us want
to replace stable theory with its fixed rates by some other, inevitably more
complicated, theory that would have equal force of logic but be more ap-
plicable. In fact, change is not so uniform under different real conditions,
but is rather erratic, a means by which nature covers up her mechanisms,
rendering their interpretation less amenable to a universal theory.

But change, whether steady or erratic, is not the means by which the
mechanisms of nature are most effectively concealed. More deceiving is the
clinging together of variables. Suppose all countries of natural growth were
countries of emigration, so that they lost their young people to countries of
slower growth; then the conclusion derived from the application of stable
theory would be downright misleading. We would want some other theory,
perhaps one on which populations tend to spread out evenly in relation
to resources. Such a view is held regarding internal migration, where free
movement occurs and people go to distant places unless they are attracted
to intervening opportunities (Stouffer 1940).
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20.6.1 The Oblique Use of Data to Challenge Theory
How then can the classical theory that rapid population growth checks
development be challenged? The matter is important because a theory that
is immune to challenge has little value for science.

One way is by declaring that there is a trend toward development ev-
erywhere in the world, as well as a trend toward smaller families, and that
the latter makes no difference to the former. Suppose that the trend to
development occurs everywhere sooner or later and nothing can either stop
it or hasten it. On this comfortable view of development as immanent in
human history no detailed causal theory would be possible, and no policy
measures would be sought or needed. Such a view is not entirely absent
from contemporary discussion, although by its very nature little evidence
can be summoned for or against it.

Another direction of attack is to adduce evidence that enterprising per-
sonalities are more often born into large families and to show quantitatively
that this greater enterprise is sufficient to overcome the capital and land
shortage caused by the large family’s propensity to consume. Or else that
couples with more children have a greater incentive to save and so increase
investment funds. Or else that having many children indeed increases con-
sumption but fathers of large families work correspondingly harder to offset
this. All of these are statements on the individual level that there is a
sticking together of the variables concerned with development—population
growth, motivation to work, and motivation to save. Nothing in logic proves
that such sticking together does not occur, but it is the obligation of anyone
who challenges the theory to adduce evidence.

On the national level, the countries that are developing may be the ones
in which the authorities are development minded and persuade their people
to make sacrifices that more than offset the disadvantages of population
increase. Again, evidence bearing on this specific point would be required.

To take an example that, alas, may not be entirely unrealistic, if dicta-
torial technocratic regimes are effective in producing development, and if
these are lukewarm about population control, the population effect might
be dominated by the dictator effect. But one would give up the classical
theory only if there were shown to be some necessary relationship between
technocratic dictators and development, on the one hand, and dictators
and large families, on the other. Otherwise one would still have to insist
that the dictator was paying a price for population growth, and the price
could be avoided.

Why, then, does the failure of a correlation-type approach to show that
development follows a slowing of population growth present no challenge to
the theory? Certainly a purely cross-sectional analysis can at best be sug-
gestive of propositions concerning longitudinal changes, and prove nothing
concerning them. Aside from this, the major difficulty is that many other
factors affect the correlations. In principle, the disturbing factor of “motiva-
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tion to work” or “making sacrifices” could be partialed out or held constant
while the relation of population to development was examined. Yet, even if
one or two disturbing factors could be identified and measured, many oth-
ers would remain. And to partial out a number of variables simultaneously
raises logical difficulties if any of them is correlated with the independent
variable of interest.

Nonetheless, empirical data have to be applied to verify theory, and such
application is the heart of demography, as of any other science, but data
must be brought to bear in an oblique fashion. If we are going to detect
nature’s hidden mechanisms, we need a subtlety that approaches hers. An
attack by directly correlating the variables of immediate interest is less
promising than a search to determine what other subsidiary variables stick
to them. This applies equally to the analysis of age distribution, the effects
of age at marriage on the birth rate, and population and development.

20.7 The Psychology of Research

A footnote concerning the mental conditions in which research occurs may
help to illuminate the way we get to know the facts of demography. Faced
with a variety of data, the investigator listlessly surveys them, in the hope
of somehow tying them together. He or she is swamped by the multiplicity
of observations and tries to fit them into a scheme, if only to economize his
own limited memory. He becomes more animated when he sees that some
general connections do subsist in the data, and that a model, however crude,
helps him to keep their relationships in mind. The model is much more than
a mnemonic device, however; it is a machine with causal linkages. Insofar
as it reflects the real world, it suggests how levers can be moved to alter
direction in accord with policy requirements. The question is always how
closely this constructed machine resembles the one operated by nature. As
the investigator concentrates on its degree of realism, he more and more
persuades himself that his model is a theory of how the world operates.

But now he is frustrated—he has just turned up an incontrovertible ob-
servation that is wholly inconsistent with his theory. Such an observation is
a stubborn fact, an exception to the theory that cannot be avoided or dis-
regarded. A struggle ensues as the investigator attempts to force the theory
to embrace the exception. As his efforts prove vain, he questions the theory,
and looks back again at the raw data whose complexity he thought he had
put behind him. The intensity of the struggle that follows is one of the
hallmarks of scientific activity and distinguishes it from mindless collecting
of data, on the one hand, and complacent theorizing on the other.

The problem and its possible solutions have now taken possession of the
investigator. In this phase of research his unconscious is enmeshed and is
working on the question day and night. Sleep is difficult or impossible;
eating and the daily round of life are petty diversions. He is irritable and
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distracted. Whatever he does, the contradiction he has uncovered comes
into his mind, and stands between him and any normal kind of life.

During the struggle the investigator is like a person with high fever.
Then with luck he comes on the answer, or his unconscious does. He finds
a model that fits, perhaps nearly perfectly, perhaps only tolerably, but well
enough to provide a handle on the varied data. His tension relaxes, and he
proceeds with the normal and dull work of establishing the details of the fit
and presenting his results. He must indeed revert to a calmer state before
he can hope to communicate his finding to an audience that is perfectly
normal. An immediate test of his result will be whether it makes sense to
his contemporaries; an ultimate test is whether it can predict outcomes
involving data not taken into account in the establishment of the model.

Only with exceptional good fortune will one cycle of feverish concern
produce a final theory and permit immediate relaxation. More often a
long series of false starts and disappointments will precede the resolution.
Sometimes the problem turns out to be unsolvable in the existing state of
knowledge or is beyond the capacity of the investigator, and then he has the
unhappy task of winding himself down without the desired denouement.

None of the psychological accompaniment of scientific production is spe-
cial to demography, but this field may show it in heightened form, at least
in comparison with other social sciences. The abundant data of demogra-
phy cause an inappropriate theory or an erroneous prediction to stand out
more clearly than a corresponding failure in interpreting history or in the
general analysis of society. When the possibility of a sharp rejection by
hard data is lacking, the game of research loses its seriousness—it is like
playing solitaire with rules that are adjustable to the cards that appear.

Mathematical demography (or, as it is sometimes called, formal demog-
raphy) has become too big a field to be covered in one book, or even to
be effectively summarized. Many important themes are omitted altogether
from the foregoing, and many others are treated much too summarily. More
extensive theory is available than has been included, and (a much graver
omission) only a minute fraction of the data bearing on the issues raised has
been brought under examination. What points are made in the book had
best be considered as examples of the ideas and methods of the subject. A
full and systematic account remains to be written.

Formal demography provides the core of the discipline, the framework
within which detailed studies of micro-level individual phenomena can be
interpreted (Lee 2001, Goldstein 2001). This is equally true in human and
nonhuman demography, in both of which the link from the individual to
the population is critical, and is provided by formal demographic mod-
els (Tuljapurkar and Caswell 1997, Lee 2002, MPM). The vital rates that
parameterize all the models in this book are, in the end, properties of indi-
viduals. But the population consequences of those rates become apparent
only when they are linked together in a model that describes stocks and
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flows of those individuals. The ability to do that is the power of applied
mathematical demography.

Some of the directions that demography will take in the near future seem
clear. As more and more types of individual data become available, mod-
els that can classify individuals freely by criteria in addition to age will
become ever more important. In this book we have approached this topic
with methods, rooted in the work of Leslie (1945), that lead to population
projection matrices. Other approaches are also the subject of current re-
search, in both human and non-human demography (e.g., Tuljapurkar and
Caswell 1997, Thieme 2003). Heterogeneity (Chapter 19) will continue to
attract attention. Part of it can be dealt with by incorporating it into i-
state variables, but there is always some left unresolved. The effects of the
latter, on parameter estimation and both short- and long-term dynamics,
are still important problems.

Of the models in Figure 3.2, perhaps none has seen as much important
theoretical development in recent years as those including environmental
stochasticity (Tuljapurkar 1990, MPM Chapter 14). Incorporating stochas-
ticity into population projections, so that the uncertainty of the projection
can be treated as part of the results, rather than as obscuring them, seems
likely to continue to attract attention (e.g., Lee and Tuljapurkar 1994,
Bongaarts and Bulatao 2000).

Nonlinear effects, in which the vital rates depend on the current state
of the population, lead to exciting mathematical behavior (Cushing 1998,
MPM Chapter 16), but have always been difficult to apply because such
models require following the influence of the current population through
often complicated causal pathways back to the vital rates. In human pop-
ulations, where these pathways include social and economic systems that
are themselves extraordinarily complicated (Lee 1987, Keyfitz 1996), the
difficulties will be even greater, and will require both new data and new
models. But the link between demography and the environment is of criti-
cal importance, from the global scale (Cohen 1995, Bongaarts and Bulatao
2000) on down to the local scale.

The links between human demography and biology seem likely to become
closer and intellectually richer. Studies of mortality, lifespan, and fertil-
ity are already benefiting from this link, as are studies of epidemiological
demography, a topic we have not considered here.

The tools of mathematical demography are essential for the study of
populations—of humans and of other species alike—and we hope that this
book will contribute to that study.
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15:457–465.
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Lotka, A.J. 1939. Théorie analytique des associations biologiques. Part
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in solution of projection equation,

148
sensitivity of, 305
subdominant, 165, 166

eigenvector, see left eigenvector, see
right eigenvector

elasticity

matrix, 317
of eigenvalues

as contributions to growth rate,
319
in age-classified models, 317
in desert tortoise, 320, 321
in teasel, 320
to lower-level parameters, 320
to matrix entries, 317

emigration
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forecasting
and projection, 269
extrapolation versus mechanism,

288
fraction of young and old, 217
frailty, 482

age-dependent, 491
continuous distribution of, 486
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fundamental matrix, 240, 249

Galton-Watson process, see branching
process

generalized inverse, 348
generation time, 264
Gini index, 418
Gopherus agassizii, see desert tortoise

H, 80, 102, 339
heterogeneity, 477

in fecundity, 414, 417
and Simpson’s paradox, 479
in frailty, 482
in mortality, 91
in rate of increase, 13, 483
Markov chain Monte Carlo

methods, 489
homogeneous function, 319
household, 462

size distribution, 471
human population

sensitivity of eigenvectors, 324
human populations

damping ratio, 167
eigenvalues of, 154
elasticity of eigenvalues, 317

i-state, 64
imprimitive matrix, 162
insurance, 41
irreducible matrix, 156

Keyfitz’s ∆, 170
killer whale

age-specific survivorship, 256
inter-pod variance in λ, 330
life cycle graph for, 68
life expectancy of, 256
LTRE, 330
Markov chain decomposition, 247
stable equivalent population, 213

left eigenvector
in solution of projection equation,

148
reproductive value, 208

Leslie matrix, 49, see age-classified
model

Lexis diagram, 39, 97
life cycle graph, 67
life table, 29, 55

cause of death eliminated, 42, 279
multi-state, 445
multiple decrement, 45
period and cohort, 40

life table response experiment, see
LTRE

lifetime event probabilities, 251
living father and mother

probability, 465
logistic population growth, 20
logit transform, 284, 489
Lomatium grayi

probability of attack, 251
longitudinal relations

versus cross-sectional, 285
loop, 156
Lotka integral equation, 176
LTRE, 325

fixed design, 327
random design, 329
regression design, 332

Markov chain
absorbing, 248
as model of life cycle, 246
fundamental matrix of, 249

marriage, 227
duration of, 234

Matlab, ix, 175
matrix

diagonalizable, 264
elasticity, 317
fundamental, 249
imprimitive

population growth, 162
irreducible, 156
Leslie, see Leslie matrix
primitive, 157
reducible, 156

population growth, 163
McKendrick–von Foerster equation,

180
mean age of childbearing, 207
microdemography, 399
migration, 237
model fertility tables, 284
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model life table, 95, 101
momentum, 172, 196, 281
mortality

male and female, 72
multi-regional model

convergence, 168
multiregional models, 237

net reproductive rate, 128, 183, 440,
447

multi-regional, 454
stage-classified, 262

node, 67
nonlinear models, 368
notation, xxv

Orcinus orca, see killer whale
organizations

demography of, 241
educational

demography of, 361
promotion in, 121, 365, 501
voting in, 242

p-state, 64
parity progression, 440
partial differential equation, 180
path, 156
Pearl index, 417
pension, 118
pensions, 358
period of oscillation, 169, 179
Perron–Frobenius theorem, 156, 159
perturbation analysis, 55
polychaete

LTRE, 328
population growth rate, see

eigenvalue, see rate of increase
dominant eigenvalue as measure of,

160
population momentum, 172
power method, 175
prediction, see forecast
primitive matrix, 157
projection, 200, 268

age-classified matrix model, 272
and forecasting, 269, 288
backward, 348
errors, 292

longitudinal and cross-sectional,
285

multi-state, 455
multi-state models, 275
relational methods, 283
simple versus complex models, 276
vs. forecasting, 63

projection interval, 49, 67
promotion, see organizations
prospective perturbation analysis, 333

quasi-stable population, 335

R0, see net reproductive rate
rate of increase, 2, see population

growth rate
age,parity, and nuptiality, 231
and age distribution, 494
and parity progression, 440
and promotion, 121
changing over time, 18
continuous and discrete, 179
effect of development, 505
effect of disease, 143
estimated from age distribution,

107
estimation from one census, 97
from characteristic equation, 128
instantaneous, 5
iterative calculation, 130

reducible matrix, 163
reproductive value, 206

age-specific, 185, 210
and extinction, 209
and sensitivity, 316
as an eigenvector, 208
from Lotka integral equation, 185
from the life cycle graph, 212
stage-specific, 211

retrospective perturbation analysis,
333

right eigenvector
age-classified model, 161
as stable population structure, 161
in solution of projection equation,

148

self-loop, 67, 156
senescence, 306



Index 555

sensitivity
of eigenvalues, 305

in desert tortoise, 308
in teasel, 308
of age-classified models, 306
of size-classified models, 308, 312
predictions of λ from, 316
to development rate, 313
to lower-level parameters, 312
to matrix entries, 305
to zero entries, 310

of eigenvectors, 321
of expectation of life

to birth and death rates, 146
of mean age to rate of increase, 118
of rate of increase, 135, see

sensitivity of eigenvalues
to R0, 136
to birth rate, 137
to death rate, 140
to mean age of childbearing, 135
to variance in age of childbearing,
136

of stable age distribution, 219
sex preference, 430
Simpson’s paradox, 479
size-classified model, see standard

size-classified model
size-dependent vital rates, 66
stability

of stage distribution, 160
stable age distribution, 93, 161, 217

and dependency ratio, 223
and rate of increase, 218, 494
effect of births and deaths, 500
effect of mortality, 219
mean age, 103
proportion over 65, 498

sensitivity of, 324
stable equivalent, 200, 213, 279

and reproductive value, 202
and species introductions, 214
killer whale, 213
United States, 202

stable population structure, 161
stable stage distribution, 160
standard size-classified model, 70
state, 64

p-state, 64
i-state, 64

stationary population, 30, 94
stochastic matrix models, 292
stochasticity, see demographic

stochasticity, see environmental
stochasticity

strong ergodic theorem, 155
survivorship, 256

curvature of, 80

t’ai chi chuan, 252
teasel

elasticity of eigenvalues, 320
Markov chain decomposition of,

254
sensitivity of eigenvalues, 308

time to conception, 400
total differential of eigenvalue, 310
transient analysis, 55
transient dynamics, 165
two-sex models, 9

violent crime
probability of, 252

widowhood, 466
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