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Preface

Statistics and demography share important common roots, yet as academic dis-
ciplines they have grown apart. Even a casual survey of leading journals shows
that cross-references are rare. This is unfortunate, because many social problems
call for a multi-disciplinary approach. Both statistics and demography are neces-
sary ingredients in any serious analysis of the sustainability of pension or health
care systems in the aging societies, in the assessment of potential inequities of
formula-based allocations to local governments, in the estimation of the size of
elusive populations such as drug users, in the investigation of the consequences
of social ills such as unemployment, and so forth. This book was written to bring
together much of the basic statistical theory and methodology for estimating and
forecasting population growth and its components of births, deaths, and migration.
Although relatively simple mathematical methods have traditionally been used to
assess demographic trends and their role in the society, use of modern statistical
methods offers significant advantages for more accurately measuring population
and vital rates, for forecasting the future, and for assessing the uncertainty of the
demographic estimates and forecasts.

For statisticians the book provides a unique introduction to demographic prob-
lems in a familiar language. For demographers, actuaries, epidemiologists, and
professionals in related fields the book presents a unified statistical outlook on
both classical methods of demography and recent developments. The book pro-
vides a self-contained introduction to the statistical theory of demographic rates
(births, deaths, migration) in a multi-state setting. The book has a dual character.
On the one hand, it is a monograph that can be consumed by a lone reader. There
are many results that have appeared in journals or working papers only. Some
appear here for the first time. The book is also useful as a classroom text, and
includes exercises and complements to explore special topics in detail without
interrupting the flow of the text. More than half of the book is readily accessible
to undergraduates, but to fully benefit from the complete text may require more
maturity.

Joensuu, Finland Juha M. Alho
Evanston, Illinois, USA Bruce D. Spencer
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Kruskal, Esa Läärä, Jukka Lassila, Ron Lee, Risto Lehtonen, Chijien Lin, Lincoln
Moses, Fred Mosteller, Tom Mule, Jukka Nyblom, Erkki Pahkinen, Päivi Partanen,
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1
Introduction

1. Role of Statistical Demography

The world population exceeded six billion (6,000,000,000) in 1999. According
to current United Nations projections, in 2050 the population is expected to be
9.3 billion, although under plausible scenarios it might be as low as 7.7 billion
or as high as 10.9 billion. In all cases, the increase will intensify competition for
arable land, clean water, and raw materials. Soil erosion and deforestation will
continue in many parts of the world. The increased production of food, housing,
and consumer goods will increase the production of greenhouse gases and, thus,
contribute to climate change.

Underneath the global trends there is a great diversity. In the middle of the
19th century, European women gave birth to five children or more, on average. A
newborn was expected to live 40 years or less. In a matter of a century the average
number of children dropped to two and life expectancy rose to over 60 years.
Many developing countries (notably China) have later followed a similar path, but
a key factor in the uncertainty regarding global trends is whether all developing
countries will go through a similar transition, and if so, at what pace.

Even within the industrialized world a great diversity persists. The average
number of children per woman (as measured by the total fertility rate) varies
from 1.2 children per woman in Italy and Spain, to 2.0 in the United States. The
U.S. value is over 50% higher than that of the primarily catholic Mediterranean
countries that have had a history of relatively high fertility! Yet, all values are
below the level (approximately 2.1) that is needed for population replacement.
Although births currently exceed deaths, this is a temporary phenomenon caused
by an age-distribution that still has relatively many people in the child-bearing
ages. In the near future the situation will change, and the age-distributions of the
industrialized countries will be older than in any national population ever before
on earth. This will put stress on the health care and retirement systems, a stress
whose magnitude is not fully appreciated by decision makers, yet.

The “graying” of the industrialized populations will be accentuated by two
factors. First, the large baby-boom cohorts born after World War II will be retiring
in 2010–2020. This may prove to be a one time phenomenon, but no-one can say

1
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for certain that fertility fluctuations would have come to an end. The second factor
is the continuing increase in longevity. Forecasters have repeatedly assumed that
the decline in mortality cannot continue for more than a decade or two, only to
have been proved wrong by the subsequent development.

Interestingly, populations can be quite heterogeneous with respect to life ex-
pectancy, as well. Women live longer than men, the rich and the well-educated
live longer than the poor and the less-educated, and those in marriage live longer
than those divorced, for example. The elderly are in many ways disadvantaged in
the current industrialized societies. A happier future may lay ahead, if only by se-
lection: it is possible that we will see a well-educated, healthy and wealthy retired
population that is capable of exercising political power for its own benefit.

Since the rate of population growth in the developing countries far exceeds that
of the industrialized countries, the geographic distribution of the world population
will change. For example, the combined population of Europe and North America
is currently 17% of the world population, but since the combined population is
not expected to change by 2050, its share is expected to drop to 11%. A key
social policy issue is to what extent the declining trend is counterbalanced by
immigration from the less developed regions. An influx of immigrants would
probably be advantageous to the elderly, since the immigrants could keep the
economies growing and the “pay-as-you-go” retirement systems solvent. However,
those in working age may reasonably see immigrants as competing in the same
labor market, so racism and xenophobia may also gain ground.

Apart from global issues, demographics has an important role in the day-to-day
decision making of national and local governments. Ever since the biblical times
demographic data have served as a basis of taxation, military conscription, ap-
portionment of political representation, and allocation of funds. Systematic biases
in data may cause inequities across ethnic domains or geographic regions. When
small areas are considered, random variations may cause inequalities in treatment.
Lack of timeliness is always a potential source of systematic bias, but the remedy
of frequent adjustments adds an element of unpredictability in the planning by
local units.

Relatively simple mathematical methods have traditionally been used to assess
demographic trends and their role in the society. The methods have typically
been based on the measurement of demographic rates by age and sex. Summary
measures, such as total fertility rate and life expectancy can then be calculated.
A substantive line of research tries to explain variation in the rates across social
groups, regions, or time, in terms of sociological or economic concepts. Another,
less ambitious line of research tries to elucidate the long-term implications of the
current rates. Classical methods from matrix algebra and differential and integral
equations are used in the latter.

Simple methods have served and, undoubtedly, will continue to serve demogra-
phy well. However, there are three reasons for expanding a demographer’s toolkit
into a statistical direction. First, as noted above, there is considerable interest in
exploring variations in demographic rates in ever finer subpopulations. For ex-
ample, if we find that young widows have an elevated risk of death but numbers
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are small, how can we know that this is not due to chance? Or, if the duration
of unemployment is associated with mortality, how can this be evaluated? Cross
tabulations are a classical, but clumsy, way to study such issues. In epidemiology,
cross tabulations have largely been replaced by statistical relative risk regression
techniques. We believe the same will happen in demography. Apart from simply
adding new techniques to a demographer’s toolkit, a methodological consequence
is that principles of statistical inference, in particular the assessment of estimation
error, should become a standard part of demographic analysis.

Second, many of the issues mentioned above involve forecasting in one way or
another. In econometrics, the standard way to handle forecasting problems is to
use statistical time-series techniques. We believe demographers can also benefit
from the time-series toolkit provided that it is judiciously applied, in a manner that
respects the demographic context. Demographic forecasts can then be made using
data driven techniques, in addition to the judgmental methods that are currently
favored. A methodological consequence of the adaptation of such techniques is
that forecast uncertainty can be handled probabilistically. For example, instead
of merely saying that it is plausible that world population is between 7.7 and
10.9 billion in 2050, we may say that it is within such an interval with a specific
probability. Empirical analyses based on the accuracy of earlier U.N. forecasts
suggest that in this case the probability is roughly 95%.

Third, even though the quality of basic demographic data on population size
is likely to continue to improve, more elusive populations have become of con-
cern. For example, we need information on the spread of drug use to assess its
cost to the society and to determine the success anti-drug policies. Direct enu-
meration is, clearly, out of the question. Or, we need estimates of populations by
health status to anticipate future demands on institutional care and housing that
are accessible to those physically impaired. Such populations present us with com-
plex definitional challenges, and information concerning them must derived via
statistical techniques that may suffer both from biases and sampling error.

After these remarks we are reminded of two characterizations of the demo-
graphic profession. Jim Vaupel has defined a demographer as “someone who
knows Lexis”. Earlier Joel Cohen defined a demographer as “someone who fore-
casts population wrong”, and a mathematical demographer as “someone who uses
mathematics to forecast population wrong”. Perhaps we could define a statistical
demographer as “someone who knows Lexis, forecasts population wrong, but can
at least quantify the uncertainty”.

We have written this book with two types of readers in mind. First, we have
thought of a mathematically oriented demographer, who is interested in learning
the statistical outlook on the familiar problems. We have tried to define all relevant
concepts in the book. However, the exposition is necessarily brief, so previous,
familiarity with basic mathematical statistics, regression analysis, and time-series
analysis is probably necessary for a full understanding of many of the arguments.
Second, we have thought of a statistician, who is interested in working with demo-
graphic problems. We have tried to present the central demographic concepts in
the context of statistical models, and indicate conditions under which the classical
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demographic procedures are optimal. Empirical examples are provided to give a
flavor of what makes demography interesting. In addition to demographers and
statisticians, we have thought of, for example, economists interested in pension and
health care problems, epidemiologists interested in risk assessment, and actuaries
and public health people interested in gerontology as potential readers of the book.

The application of statistical models in demography is not always straight for-
ward, however. Along the way we try to indicate how a blind application of statistics
can lead to unacceptable results. In fact, a central virtue of demographic teach-
ing is a kind of “source criticism”, in which one examines, much like a historian
does, the mechanisms that have produced the data being analyzed. The most fash-
ionable statistical analysis is not worth much if it is applied to data that are not
what they seem. The book points out such issues, so it may be of a more general
methodological interest to statistical readers.

2. Guide for the Reader

The book was originally conceived as a monograph intended for a lone reader.
There are many results that have appeared in journals or working papers only. Some
appear here for the first time. Yet, we have included exercises and complements
to permit the use of the book in classroom. Some of the technical material is
useful for reference (e.g., formulas for estimators and variances), and may be
skipped on a first reading. Guidance is provided throughout the book. Parts of the
earlier versions of the book have been used at the Universities of Joensuu and
Jyväskylä, Finland; Örebro University, Sweden; Max Planck Institute at Rostock,
Germany; and Northwestern University, U.S.A., to teach advanced undergraduate
and graduate students in statistics and demography. For a statistical audience,
additional discussion of the demographic issues has often proved useful. For a
demographic audience, we have spent more time on the basics of statistics.

At least three threads of thought can be distinguished within the book:

* Chapters 2 and 4–6 provide an introduction to Statistical Demography; a shorter
course that might be called Biometrics is obtained from Chapters 2 and 4;

* Chapters 2–4, 10 and 12 provide an introduction the Demographic Data Sources
and their Quality;

* Chapters 4, 6–9 and 11 provide an introduction to Demographic Forecasting; a
shorter course concentrating on Demographics of Pensions and Public Finances
is obtained from sections of Chapters 4, 8–9, and 11.

In each case, other chapters provide supporting material.

3. Statistical Notation and Preliminaries

The remainder of this chapter introduces some notation for random variables and
their distributions emphasizing vector and matrix formulations. We also give a
heuristic review of basic results from maximum likelihood estimation that we
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assume as known in the sequel. Additional reminders/results will appear inter-
spersed in the text, where needed. Some references for this material, at the same
general mathematical level of the text, include Rice (1995), DeGroot (1987), Lind-
sey (1996), Azzalini (1996) and, at a more advanced mathematical level, Rao
(1973), Severini (2000), Bickel and Doksum (2001), and Williams (2001).

The probability of an event A will be denoted by P(A). If X is a random variable
(i.e., a function whose value is determined by a random experiment), its distribu-
tion function or cumulative distribution function (c.d.f.) is F(x) = P(X ≤ x). The
probability that X exactly equals x is P(X = x) = F(x) − limh↘0 F(x − h). Note
that whenever F(.) is continuous this probability is zero. If F(.) is differentiable,
then F ′(.) = f (.) is the density function of X .

Example 3.1. Normal (Gaussian) Distributions. The standard normal distri-
bution N (0, 1) has the expectation 0 and variance 1. Its density is f (x) =
(2π )−

1/2 exp(−x2/2). Suppose X has this distribution, or X ∼ N (0, 1), then
Y = µ + σ X has the normal (Gaussian) distribution N (µ, σ 2) with mean µ and
variance σ 2. The density of Y is f (y) = (2π )−

1/2σ−1 exp(−(y − µ)2/(2σ 2)). ♦

Example 3.2. Bernoulli Distribution. If X takes the value 1 with probability p
and 0 with probability 1 − p, then X has a Bernoulli distribution with parameter
p, or X ∼ Ber(p). In this case P(X = x) = px (1 − p)1−x , where 0 ≤ p ≤ 1 and
x ∈ {0, 1}. ♦

In mathematical demography one typically considers X ≥ 0 and it is often more
convenient to work with survival probabilities p(x) = P(X > x) than with c.d.f.’s.
If p(.) is differentiable, then f (x) = −p′(x).

The joint probability of events A1, . . . , An is P(A1 ∩ . . . ∩ An), but we some-
times write P(A1, . . . , An) for short. The conditional probability of one event
given another is defined as P(A1|A2) = P(A1 ∩ A2)/P(A2), when P(A2) >

0. If X1, . . . , Xn are random variables, their joint distribution function is
F(x1, x2, . . , xn) = P(X1 ≤ x1, X2 ≤ x2, . . , Xn ≤ xn). Writing column vectors
x = (x1, . . . , xn)T and X = (X1, . . . , Xn)T , with T denoting transpose, we may
also write F(x) = P(X ≤ x) where the inequality holds for each component.

The expectation of X is denoted by E[X ]. If X has density f (.), or if X takes
discrete values x1, x2, . . . , then

E[X ] =
∞∫

−∞
x f (x) dx or E[X ] =

∑
i

xi P(Xi = xi ), (3.1)

respectively. If X and Y are random variables and a and b are scalars, then we
have the linearity property E[aX + bY ] = aE[X ] + bE[Y ]. The variance of X
is defined as Var(X ) = E[(X − E[X ])2]. It has the property Var(a + bX ) = b2

Var(X ).
The expectation of a random vector X is defined componentwise, E[X] =

(E[X1], . . . , E[Xn])T . If a is a vector and B is a matrix such that a + BX is
well-defined, then E[a + BX] = a + BE[X]. The covariance between X1 and
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X2 is defined as Cov(X1, X2) = E[(X1 − E[X1])(X2 − E[X2])]. The covariance
matrix of X = (X1, . . . , Xn)T is an n × n matrix Cov(X) whose (i, j) element is
Cov(Xi , X j ). Using vector notation we may write Cov(X) = E[(X − E[X])(X −
E[X])T ]. It has the property Cov(a + BX) = BCov(X)BT.

The conditional expectation of X1 given X2 is denoted by E[X1|X2].
It has the linearity property of the usual expectation. It may be shown
that, when the moments exist, E[X1] = E[E[X1|X2]]. The conditional vari-
ance is Var(X1|X2) = E[X2

1|X2] − E[X1|X2]2. It has the property, Var(X1) =
E[Var(X1|X2)] + Var(E[X1|X2]). Similarly, the conditional covariance is defined
as Cov(X1, X2|X3) = E[X1 X2|X3] − E[X1|X3]E[X2|X3] and has the property
Cov(X1, X2) = E[Cov(X1, X2|X3)] + Cov(E[X1|X3], E[X2|X3]).

Example 3.3. Multivariate Normal Distribution. Suppose a k × 1 vector X
has E[X] = µ and Cov(X) = Σ. It has a multivariate normal distribution,
X ∼ N (µ,Σ), if aT X ∼ N (aTµ, aT Σa) for any k × 1 vector a. If µ = 0 and
Σ = I, the identity matrix, then XT X ∼ χ2 distribution with k ≥ 1 degrees of
freedom. ♦

The multivariate normal distribution is an example of a parametric family of
distributions. Consider n independent observations Xi coming from densities
fi (xi ; �), i = 1, . . . , n, where � is, say, a k × 1 vector of parameters belonging to
some set Θ ⊂ R

k . We do not assume here that the observations are necessarily
identically distributed, because in regression applications of interest they typically
are not. For example, in normal theory regression, if Xi would be the dependent
variable and zi would be a vector of explanatory variables, we would have the
density fi (xi ; �) = (2π )−

1/2σ−1 exp(−(xi − zT
i �)2/(2σ 2)), where � = (�T , σ 2)T.

When viewed as a function of � the probability of the observed data is called
the likelihood function, L(�) = f1(x1; �) · · · fn(xn; �). The natural logarithm of
the likelihood function is the loglikelihood function �(�) = log L(�). The prin-
ciple of maximum likelihood means that we try to determine a value of �
that maximizes L(�), or equivalently �(�). The maximizing value (if one ex-
ists) is called a maximum likelihood estimator (MLE). Define a k × 1 vector of
partial derivatives Si (�) = ∂/∂� log( fi (xi ; �)) for each i = 1, . . . , n. Their sum
S(�) = S1(�) + · · · + Sn(�) is called the score (e.g., Rao 1973, 367), and the
MLE solves the system of k equations S(�) = 0.

Before the observations Xi = xi have been made, the score is a random vari-
able, because its components are random: Si (�) = ∂/∂� log( fi (Xi ; �)). Assuming
that the order of differentiation and integration can be changed, we have that
E[Si (�)] = ∂/∂� ∫ fi (xi ; �) dxi = 0. The latter equality holds because the inte-
gral equals 1 for all �. Therefore, the expectation of the score is E[S(�)] = 0. Write
Cov(Si (�)) = I i (�), i = 1, . . . , n, and define I(�) = I1(�) + · · · + In(�). It
follows that Cov(S(�)) = I(�), because the observations are independent. This is
one form of the so-called Fisher information of the sample. Subject to regularity
conditions on densities fi (xi ; �) (that may involve conditions on both the range of
values of possible explanatory variables and on the tails of the density), none of
components of the score Si (�) take too large a share of the variance of the score,
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so one can appeal to the central limit theorem to assert the asymptotic normality
of the score. Therefore, we have that S(�) ∼ N (0, I(�)) asymptotically.

Example 3.4. Score tests. Consider a hypothesis H0 : � = �0. Under the null hy-
pothesis, aT S(�0) ∼ N (0, aT I(�0)a) for any k × 1 vector a, so depending on the
alternative hypothesis, a large number of the so-called score tests can be con-
structed. ♦

Define a k × k matrix Hi (�) = ∂2/∂�∂�T log( fi (Xi ; �)), for each i = 1, . . . , n.
I.e., this is a matrix whose (r, s) element is ∂2/∂�r∂�s log( fi (Xi ; �)). Their sum
H(�) = H1(�) + · · · + Hn(�) is called the Hessian. By a direct calculation one
can show that E[Hi (�)] = ∂2/∂�∂�T ∫ fi (xi ; �) dxi − E[Si (�)Si (�)T ]. As in the
case of the score, the first term on the right hand side is zero. Using the re-
sult, E[Si (�)Si (�)T ] = Cov(Si (�)) = I i (�), we find an alternative expression for
Fisher information, −E[H(�)] = I(�).

Example 3.5. Fisher Information for Normal Distribution. Consider the normal
distribution N (µ, σ 2). Let � = (µ, σ 2)T . The Fisher information I(�) is given by
the matrix [

1/ σ 2 0
0 1/(2 σ 4)

]
. (3.2)

If instead we take � = (µ, σ )T then the lower diagonal entry of I(�) changes to
2/σ 2. ♦

Suppose �̂ is the MLE. By Taylor’s theorem there is vector �′ between the MLE
and the true value � such that S(�̂) = S(�) + H(�′)(�̂ − �). We get from this that
�̂ − � = −H(�′ )−1 S(�) provided that the inverse exists. Subject to regularity
conditions S(�)/n → 0,1 as n → ∞, and H(�)/n has a limit H*(�) that is a
continuous function of � at least in the neighborhood of the true parameter value. In
this case the MLE also converges to �, so it is consistent. Being essentially a linear
function of the score, the MLE inherits the multivariate normal distribution from
the score and asymptotically Cov(�̂) = I(�)−1. For practical inferential purposes
we may assume, for large n, that �̂ ∼ N (�, −H(�̂ )−1 ). This leads to the so-called
Wald tests.

There is yet a third type of test that naturally arises from the above theory. Con-
sider a hypothesis H0 : � = �0. Using a second order Taylor series development
for �(�) around �̂ and noting that S(�̂) = 0, we get that

2(�(�̂ − �(�0)) = −(�̂ − �0 )T H(�′)(�̂ − �0), (3.3)

where �′ is a point between � and �̂. The asymptotic result given for the Wald tests
shows that the right hand side has a approximate χ2 distribution with k degrees of
freedom. This is one form of the so-called likelihood ratio test. The three tests are

1 This can mean either convergence in probability or almost sure convergence (Rice 1995,
164).
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asymptotically equivalent, but their small sample characteristics may differ (Rao
1973, 415–418).

We conclude with definition of o(.) and O(.) notation. Let {an}∞n=1 and {bn}∞n=1
be two sequences of numbers. We say that an is o(bn) if limn |an/bn| = 0, and
an = O(bn) if |an/bn| is bounded when n is large. To allow continuous arguments
we say that a(x) is o(b(x)) or O(b(x)) as x → L if a(xn) is o(b(xn)) or O(b(xn))
for any sequence {xn}∞n=1 with xn → L . For example, 6x4 is O(x4) and o(x5) as
x → ∞, and 6x4 is O(x4) and o(x3) as x → 0.
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2
Sources of Demographic Data

1. Populations: Open and Closed

We can think of a population size as a process. At any given time t a set of individ-
uals satisfy the membership criterion of the population. In the case of a geographic
area, for example, the criterion is “being in the area”. The population can increase
via births and in-migration. It can decrease via deaths and out-migration.1 Thus,
births, deaths, and migration form the relevant vital processes.

Traditionally, the term vital event is used for births, deaths, marriages and di-
vorces but not for migration (cf., Shryock and Siegel 1976, 20). Although this
usage has an origin in civil registration, the distinction is not useful in statistical
demography and we consider vital processes to include migration. Changes of
marital status can be vital processes, if the population of interest has been defined
in terms of marital status, but so can be such processes as getting a job or becoming
unemployed, if the population is defined in terms of employment status.

In a limiting case we define a population as closed if it has no vital processes. A
closed population is simply a set of individuals. (In demography it is common to call
a population closed even if it experiences births and deaths. We take here a broader
view.) In most demographic applications a population is open in some respects.
For example, in a follow-up study of a fixed set of individuals, the population is
closed with respect to births and in-migration, but it is open with respect to deaths.
Annoyingly from the researcher’s point of view, such a population may, in practice,
be open to out-migration and other forms of attrition or loss from follow-up, as
well.

As discussed below, the distinction between closed and open populations is
important in the design of the data collection for demographic studies. However,
in most parts of this book we have the prototype of national population in mind.
National populations are open to births, deaths, migration etc.

1 A population can also change when its definition changes, e.g., when a country, state, or city
annexes or de-annexes an area. Such changes do not involve vital processes, and analysis
of past data on population change should make allowance for any significant boundary
changes that occurred.

9
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At first thought nothing seems simpler than to define a population. National iden-
tity is so ingrained that a special effort is required to appreciate the conventional as-
pects of the membership criterion. Therefore, consider the following two examples.

Example 1.1. Who Counts in the U.S. Census? The United States Constitution
(Article I, sec. 2) stipulates that “Representatives and direct Taxes shall be ap-
portioned among the several States which may be included within this Union,
according to their respective Numbers, which shall be determined by adding to
the whole Number of free Persons, including those bound to Service for a Term
of Years, and excluding Indians not taxed, three fifths of all other Persons.” Since
nontaxed Indians were not included in these numbers, their coverage in historical
censuses (that started in 1790) is dubious. Slaves were to be counted in a sepa-
rate category in censuses prior to 1870. It seems that slaves were to be counted
in full in the census and then their numbers reduced by two fifths for Federal
apportionment – slaves did not figure into population counts for apportionment of
state legislatures by southern states (cf., Shryock and Siegel 1976, 14–16; Savage
1982; Anderson and Fienberg 1999, 13). ♦

Example 1.2. Who Belongs to the Sami Population? In the mid-1990’s consider-
able controversy was caused in Northern Finland by the question of who belongs to
the Sami (Lapp) population of Lapland. Some advocated a definition emphasizing
the role of Sami language, others the length of family history in the area. Differ-
ent cultures had mixed in Lapland over the centuries, so no clear-cut distinction
between the families could be given. Fueling the controversy was the thought that
the original people of the area may be treated preferentially in future legislation.
In the Law on the Sami Cultural Self-Government from 1995 the following (freely
translated) definition was given:

A person belongs to the Sami population, if he considers himself to be Lapp, provided
that (1) he himself or at least one of his parents or grandparents has spoken Sami as his
mother tongue; or (2) he is a descendant of a person who has been marked as mountain,
forest, or fisher Lapp in the books of land or taxation; or (3) at least one of his parents has
been marked or could have been marked as having the right to vote in the election of Sami
representatives.

In addition, a map of the area within which this definition was to be applied, was
published. ♦

These examples display many of the problems that one encounters in trying
to define a membership criterion for a human population. Economic, cultural,
and administrative considerations are typically involved. Even subjective factors
(“. . . if he considers himself to be Lapp . . . ”) were involved in the very definition
of the Sami population. How can or ought one define the “true size” of the Sami
population at a given point in time? Not only is the definition subjective, but so is
its measurement: a person’s self-identification may vary over time as well as how
the question asking for self-identification is presented.
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A similar issue arises forcefully in the definition and assignment of racial classi-
fications. The American Anthropological Association concluded that “The concept
of race is a social and cultural construction, with no basis in human biology – race
can simply not be tested or proven scientifically.”2 In the U.S., ever since the 1970
census a person’s race is based on self-identification. Since some people identify
with more than one group, the United States began in the 2000 Census to allow for
“multi-race” categories: 63 racial classifications with 6 categories3 for single-race
only and 57 for combinations of races (U.S. Census Bureau 2000). Analysis of
time series statistics for racial groups in the U.S. requires care for allowing for
definition changes pre- and post-2000.

Below, we briefly discuss some aspects of the operational definition of national
and sub-national populations and relate these to the coverage and classification
errors that frequently occur. We next discuss censuses and population registers as
sources of population data. We pay attention to historical aspects of the registration
of the vital events, because analysis of past time series of statistics on vital events
will help us understand the accuracy of forecasts. Similarly we introduce the
concept of the Lexis diagram for insight into the complexities of using grouped
data to estimate vital rates in open populations. After that we consider registers
and cohort and case-control study designs as prototypes of data collection for
specific demographic (or epidemiological) problems. We conclude the chapter by
discussing the role of statistical sampling in population estimation. Sampling more
generally will be discussed in Chapter 3.

2. De Facto and De Jure Populations

At any moment in time any specific geographic area has a de facto population,
which consists of all individuals who are present in the area. This concept is
unequivocal but may not always be highly relevant. Consider the following groups
mentioned in the “Recommendations for the 1990 Censuses of Population and
Housing in the ECE Region” (United Nations 1987, 9–10):

(1) persons usually resident and present;
(2) persons usually resident but absent;
(3) persons temporarily present but usually resident elsewhere.

The de facto population comprises (1) and (3), but excludes (2). Often one is inter-
ested in the usually resident, or de jure, population consisting of (1) and (2). The
distinction may seem simple until one considers the cases frequently encountered
in practice:

2 American Anthropological Association, Press Release/OMB 15, Sept. 8, 1997.
3 American Indian and Alaska Native, Asian, Black or African American, Native
Hawaiian and Other Pacific Islander, Some Other Race, White.
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(a) persons maintaining more than one residence;
(b) students not living with parents;
(c) persons living away from home during work week;
(d) persons in military service;
(e) military personnel who maintain a home elsewhere;
(f) institutional populations such as hospitals, or prisons;
(g) persons intending to return to a former home place;
(h) persons who have arrived a short time ago who consider some other place as

their home;
(i) persons expected to return soon from elsewhere.

Categories (g)–(i) may consist of illegal aliens, nomads, vagrants, military, naval,
or diplomatic personnel and their families. They may include merchant seamen,
fishermen, transients in ships, trains, cars, or airplanes, refugees etc. For different
purposes different choices can reasonably be made concerning which of these
groups are included into the population. In many countries and many subnational
areas these categories may be small and so their operational definitions may not
matter in practice. Sometimes these groups do matter, however.

Example 2.1. Accident Rates in Nordic Countries. A comparison of the rate of
traffic accidents in the cities of Gothenburg, Helsinki, Oslo, and Stockholm from
1990–1994 (Nieminen 1996, 22) shows that Helsinki has had a lower rate of
accidents involving passengers inside vehicles (about 1 passenger accident per
1,000 inhabitants in a year) than the other cities (1.5–2.5 per 1,000), but a higher
rate of accidents involving pedestrians (about 0.5 per 1,000) than the other cities
(0.35–0.5 per 1,000). There can be many causes for such differences, including
possible variations in the completeness of the registration. However, a map of the
locations of the accidents in Helsinki (Nieminen 1996, 13) shows that accidents
concentrate near the central railway station, a major gateway for commuters to
work. Although we cannot determine whether this explains the differences between
the cities, it is clear that while the accidents are tabulated according to the place
of occurrence, the denominator population is the de jure population. This is a
mismatch. A proper denominator for the risk rate would be the de facto population
because many accidents occur to individuals who commute to work. ♦

In the industrialized countries, the official population figures typically rely on
some form of de jure definition (Shryock and Siegel 1976, 50). Once the defini-
tion of the population is agreed upon, it is important to consider the quality of
demographic information. If the analysis of time trends is of interest, have the
definitions remained the same over time? If comparisons between different areas
are of interest, are the definitions the same in the different countries? Finally, if
the definitions are comparable, are the counts and classifications accurate?

Example 2.2. Undercount in U.S. Censuses. Consider the population sizes reported
by U.S. censuses of 1940–2000. The “net undercount” – true size minus census
count – can be estimated by several methods (cf., Chapter 11). To appreciate the
order of magnitude, consider the following estimates of the undercount (in %) by
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race based on “demographic analysis” (Robinson et al. 1993, 1065, and Robinson,
Adlakha, and West 2002, 26):

Non-Black Black
year male female male female
1940 5.2 4.9 10.9 6.0
1950 3.8 3.7 9.7 5.4
1960 2.9 2.4 8.8 4.4
1970 2.7 1.7 9.1 4.0
1980 1.5 0.1 7.5 1.7
1990 1.6 0.6 8.1 3.1
2000 0.2 – 0.8 5.1 0.5

We see that Blacks have higher undercount rates than Non-Blacks, and males have
higher undercount rates than females. Note that the rates show the net effect of both
census misses and census duplications or other erroneous enumerations. By and
large the net undercount rates declined from 1940 to 1980, and increased in 1990. It
is possible that attempts to obtain a complete count may lead to increased erroneous
enumerations, and the 2000 census appears to have overcounted non-black females.
Demographic analysis also shows that net undercount varies markedly by age.
For example, in 1990 Black males in ages 25–60 had the lowest probabilities of
being enumerated in the census whereas non-blacks in ages 15–25 may even have
been overcounted. Clearly, census numbers suffer from problems of comparability
across sex, age, race or ethnic group, and time. ♦

Migration can also lead to surprising conceptual problems. In the case of in-
ternational geographic migration most countries are unable to keep track of emi-
gration, and many countries have difficulty in keeping track of (especially illegal)
immigration. The United States, for example, does not have any statistics con-
cerning emigration, and while it has annual statistics of legal immigration, only
indirect estimates (e.g., Muller and Espenshade 1985, Espenshade 1997) are avail-
able for the much larger illegal immigration. In Europe, the quality of migration
data varies considerably. The Nordic countries with well-functioning population
registers have relatively good data on people moving in, because typically many
aspects of daily life (health care, child care, opening of bank accounts, access to
subsidized public transportation etc.) depend directly or indirectly on their being
registered. It is somewhat harder to keep track of people moving out, unless the
out-movers go to a country with a good register that agrees to supply information
about new migrants received. The European countries that rely on censuses face
problems similar to those of the United States. A practical problem in compiling
statistics on migration is caused by the fact that the countries do not adhere to the
same definition as to who is a (long term) migrant (Poulain 1993, 354). The U.N.
has recommended that an intention of staying at least a year in a country (after
an absence of at least a year) would be required to consider a person a migrant,
but this is not followed by most European countries (Poulain 1993, 355; Eurostat
2004, 151–153). The use of different definitions of migrants implies that a person
may be counted as belonging to the population of two countries at the same time,
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for example. Thus, even if the practices of census taking would agree between two
countries, the definition of the population during intercensal years need not be the
same across countries.

A further problem in published population statistics arises from possible mis-
classifications by age, race, marital status, place of residence etc. Although age
is nowadays accurately known for inhabitants of most industrialized countries, a
self-reported age may be in error. In non-industrialized countries age may have
been less important, especially in the past. For example in the population of Philip-
pines in 1960 showed remarkable digit preference (or age heaping) for multiples
of 5 years. For example, the counts in ages 59, 60, and 61 were 72,206; 275,436;
and 31,299, respectively (cf., Shryock and Siegel 1976, 116).4,5 Where feasible,
such reporting problems may be mitigated by recording year and date of birth as
well as age (to cross-check).

Although demographic methods typically are applied to human populations,
demographic concepts have methodological value more broadly. Some notions
that are basic for the study of human populations can be usefully extended to
populations consisting of other types of elements. Populations of types of consumer
goods (cars, refrigerators, . . . ) or species of animals (rabbits, fish, insects, . . . ) are
obvious examples experiencing births, deaths and migration, and having a changing
age structure. In addition, one can also study interesting populations consisting of
human aggregates such as households and enterprises. Their definition often has
an administrative, de jure basis, but for application one is typically interested in
the de facto numbers.

Example 2.3. What Is a Household? Households can be defined in terms of house-
keeping, or one or more persons live in a housing unit and provide themselves with
food and possibly other necessities of life (cf., Van Imhoff and Keilman 1991, 10).
Housing units often have not only de jure residents but de facto residents as well.
Therefore, the composition of a household may only be revealed by special surveys.
Note that no aspect of kinship is usually involved in the definition of a household
even though many households are familial units also. In addition to births and
deaths, households may also split. ♦
Example 2.4. Corporate Demography. In enterprise or corporate demography (cf.,
Ilmakunnas, Laaksonen, and Maliranta 1999; Carroll and Hannan 2000, 51) data
often are available for individual establishments, such as factories, warehouses,
restaurants, or stores. In some cases, data may exist for departments within estab-
lishments, such as different production lines in a factory. Enterprises, corporations

4 The age heaping was still present to a lesser extent in the 1990 census, where the numbers
for the three ages were 275,560; 322,233; and 205,177, respectively (Hobbs 2004, 137).
5 Similar phenomena occur in other statistics. For example, Breslow and Day (1987, 163)
presented data on smoking from the so-called British Doctors’ study (cf., Example 5.1 be-
low). Smoking status was classified into classes 0, –4, 5–9, . . . , 30–34, 35–40 cigarettes/day.
An estimate of the average number of cigarettes is also given for each class. The averages
are quite close to lower limits of the classes suggesting that the respondents have had a clear
digit preference of multiples of five.
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and other economic organizations with a legally defined (de jure) status may con-
sist of several establishments. Finally, conglomerates consisting of legally separate
corporations may form a unit of analysis. Data on enterprises are usually collected
for some administrative purpose such as taxation or occupational health. Enter-
prises with low level of economic activity may be inadequately surveyed or even
completely omitted by the legal definitions in use. Therefore, the size of the en-
terprise population may be underestimated in official statistics at the same time
that total employee population statistic is relatively accurate. In addition to births,
deaths, and splits, enterprises may also merge. ♦

3. Censuses and Population Registers

In statistics it has become customary to contrast censuses and samples. A census
is a study comprising the whole population of interest, whereas a sample involves
only a part. A population census refers more specifically to a complete count of the
population of an area at a given time. Censuses may be combined with samples in
various ways. Some data (e.g., age) may be collected for 100% of the population
and other data (e.g., income) collected from, say, every 100th unit. A census can be
de facto or de jure based and typically collects such basic information as age, sex,
and, perhaps on a sample basis, marital status, literacy, educational attainment,
occupation, industry, place of usual residence, place of birth (cf., Shryock and
Siegel 1976, 32; United Nations 1987, 5–7). Most countries of the world (including
the Unites States, England, France, China, and India) rely on censuses as the
basic source of population data. In practice, censuses are carried out via mail
questionnaires and door-to-door interviewing. Since population counts are often
used to apportion political power, for military conscription, or for taxation, a census
may not always be an innocuous operation.

Example 3.1. Nigerian Censuses. Prior to the 1991 census the population of
Nigeria was estimated to be 95.7 million in 1985 by the United Nations, 110 mil-
lion in 1988 by the World Bank, and 112 million in 1987 by the Nigerian govern-
ment. Estimates for the year 1991 were in the range 112–123 million (Population
Today, June 1992, No. 6). The history of the Nigerian censuses goes back to the
1860’s but apparently the quality of the results, including that of the previous cen-
sus, in 1973, has been less than satisfactory. Presumably, the ethnic diversity of
the country has played a part in this. With this background it was quite a shock
that the 1991 census count was 88.5 million, or more than 20% less than the esti-
mates. Evidently, any attempt at a statistical analysis of the population of African
countries must somehow account for the uncertainty of the census results. ♦

In countries using censuses a separate system has been in place for the estima-
tion of births, deaths, marriages, migration etc. For example, in the United States
death registration became fairly complete in Massachusetts around 1865 (Shryock
and Siegel 1976, 21). In the year 1900 a “death registration area” was established
comprising the District of Columbia and ten states. A “birth registration area” was
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established in 1915 with the same area included. Complete geographic coverage
was achieved in 1933 although only 90% registration was required for the admis-
sion of a state into the area (Shryock and Siegel 1976, 274). We see that even in
the industrialized world one cannot expect long time-series of known statistical
quality, on vital events.

In contrast to the statistics usage, in demography censuses typically are con-
trasted with population registers. Registers provide continuous information about
all members of the (typically de jure) population. The Nordic countries, Japan, and
Russia are examples of countries with population registers. Although nowadays
population registers are maintained as computerized databases in many countries,
they have a long history. Finland and Sweden have continuous, register based pop-
ulation statistics from the year 1749 onwards. The registers were kept by the church
based on an ecclesiastic law of 1686. Each parish would keep track of the vital pro-
cesses of births, deaths, marriages, and changes of parish. Initially, these registers
developed out of books that were maintained since the 1500’s for the follow-
up of parishioners’ progress in the knowledge of reading, writing, and the Bible
(Nieminen and Markelin 1974). The establishment of the population statistics
around 1750 seems to have occurred in part because estimates compiled by the
Royal Academy in Stockholm showed that the true population was only about
2 million instead of the generally believed figure of 3 million (Teräsvirta 1987, 3),
a situation not unlike the one that occurred much later in Nigeria!

The reliability of the Finnish vital statistics has been studied using parish level
data by Pitkänen (1977), for example. He has shown that many infant deaths were
omitted from the registers during the 18th century, because unbaptized children
were recorded as stillborn, and baptized infants who died young were deliberately
omitted. Pitkänen (1986) also shows that a curious increase in the mortality of the
middle-aged and older men during the first decades of the 20th century may have
been an artifact caused by migration to the United States. Apparently a fairly large
number of deaths that occurred overseas were recorded in the parish registers, even
though the persons themselves had been marked as emigrated. The mis-match of
the numerator and denominator (as in Example 2.1) could have caused an artificial
increase of a few percent in the estimated mortality (Pitkänen and Laakso 1999).

Countries with population registers do conduct censuses every five or ten years to
provide occupational and educational details that are not included in the population
register itself. The situation varies between countries but for example in Finland this
involves the linking of computerized databases rather than door-to-door activities
(Harala and Tammilehto-Luode 1999).

4. Lexis Diagram and Classification of Events

A formal aspect of the recording of the vital events is their classification by age
and time. Much the same way as with defining populations, initially nothing seems
simpler. However, since it is customary to compile statistics on vital events by
discrete time, rather annoying complications arise. To appreciate the problem, we
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Figure 1. Lexis Diagram.

introduce the concept of a Lexis diagram, one of the most useful technical devices
of demography.6

We let horizontal axis refer to time t and vertical axis to age x in Figure 1. For
each person in a well-defined population we may draw a life line that starts at a
time and age when the person enters the population and ends at the time and age
when the person exits the population. Typically the entry would occur at birth and
the exit at death, but entries or exists due to other vital processes (e.g., migration)
may occur at other ages. The line L of Figure 1 is an example of a life line.

The complications referred to above arise from the following. Suppose we are
interested in describing the mortality of the population in age x during year t . We
have three options. (1) We may take those who were in age ∈ [x, x + 1) at exact
time t , and observe their mortality experience during year t . The life lines of these
individuals touch or cross the line AD and the deaths among them occur in the
parallelogram ACED. The problem is that these individuals have their (x + 1)st

birthday during the year, so the deaths occur to both x and x + 1 year-olds. (2) We
may take those whose x th birthday occurs during year t . Their life lines cross the
line AB and their deaths occur in the parallelogram ABFC. The obvious problem is
that the deaths occur in part during year t + 1. (3) We may consider those who are
present in the population in age x during any part of the year t . Their life lines cross
either AB or AD, and the deaths are recorded in the rectangle ABCD. One problem

6 Wilhelm Lexis (1837–1914) was a German statistician and economist who was among
the first users of the diagram in Lexis (1875). Others (e.g., Gustav Zeuner, Karl Becker)
had used similar graphics in the 1870’s also.



P1: MRM/SJS P2: MRM
SVUS004-Alho & Spencer April 29, 2005 12:20

18 2. Sources of Demographic Data

in this approach is that it mixes deaths from two birth cohorts: life lines crossing
AD belong to those born during calendar year t − x − 1; life lines crossing AB
belong to those born during year t − x . Also, unlike the other two approaches, it
is less directly applicable to forecasting because forecasts are typically formulated
in terms of cohorts.

Many countries routinely compile their vital statistics based on the rectangles.
They give rise to period measures (i.e., measures relating to a particular observa-
tion period such as a calendar year) of life expectancy, for example. Since such
calculations combine data concerning different cohorts (mortality experience of
the x + 1 years olds is recorded from the rectangle above DC, for example), one
often thinks of them as referring to synthetic cohorts, whose experience corre-
sponds to those alive during any part of the year t .

A more refined analysis is feasible if continuous-time data are available. Con-
sider the lifeline L’ of Figure 1. Suppose it refers to a woman, whose marriage
is marked by ‘+’, whose first and second children were born at mark ‘◦’. The
analysis of the “waiting times” between the marks is called event history analysis.
Statistical techniques for such analyses will be discussed in Chapters 4 and 5.

In general, the follow-up of cohorts requires that events are classified by the year
of occurrence, age, and birth year. With the triple classification of vital events, the
events of interest can be divided into the triangles of Figure 1, so any of the above
approaches could be implemented. In modern computerized registration systems
triple classification poses no particular problems. However, one should note that in
all countries of the world demographic statistics have earlier been based on separate
tabulations that have been extracted from the primary source materials by hand.
In many countries they still are. In non-automated tabulations the requirement of
triple classification is an additional burden. Consequently, one cannot expect long
time-series based on triple classification in any country in the world.

There is an even more fundamental problem in some demographic and related
statistics. Above, we have taken for granted that the events are classified by the year
of occurrence. However, sometimes events are tabulated by the year of reporting.
This seemingly illogical practice may sometimes be followed because it is desired
to published statistics in a timely fashion. One can argue that if the number of
missed reports during year t equals the number of those reports that actually relate
to events from earlier years, but come in during t , then no error occurs. This
argument is misleading, however, since much of the interest in official statistics is
in changes of trends, and the trends will be distorted if tabulations are made by the
year of reporting.

The timeliness requirement does produce a problem for all statistics, even
those based on the most modern computer systems. For example, it is typical
that information about deaths occurring abroad come into the registration system
months, or years, after the event. For this reason, statistical agencies establish
rules as to how long they wait for reports of the events. Statistics compiled in
this manner may sometimes have to be revised, if the missing events are nu-
merically important. The historical Finnish parish registers discussed above are a
case in point.
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One should also note that there are events of demographic interest for which the
time of occurrence is not easily observable. For example, the onset time of many
cancers, or that of HIV infection, is not directly observable, and the presence of
a disease may only become known when the disease has progressed sufficiently.
In other cases, such as noise-induced hearing loss, the impairment may progress
gradually, and no clear-cut definition is feasible. In such cases the reporting of the
events may depend crucially on the severity of the symptoms and the efficiency of
medical screening. In these cases there may not exist any estimates of actual onset
times, and tabulation by year of reporting is the only practical possibility. Never-
theless, we caution that the statistics thus obtained may misrepresent actual trends.

5. Register Data and Epidemiologic Studies

5.1. Event Histories from Registers

Much of demography deals with data classified by age group, time period etc. With
modern computing power, the analysis of data sets consisting of individual level
data has become feasible. Computerized population registers contain life histories
of all individuals in a population (cf., Harala and Tammilehto-Luode 1999). These
have been supplemented by information from other registers, or from censuses,
to analyze mortality, for example (Valkonen and Martelin 1999). Census data are
entered into databases, and historical parish records have been available in com-
puterized form (e.g., the Umeå Demographic Database at http://www.ddbumu.se,
or the Scanian Demographic Database at http://ddss.nu/Ldd/fortext.htm, both in
Sweden). Social security systems or insurance companies often have highly de-
tailed work histories that are continually updated.

In addition to the administrative data sources mentioned above, computerized
data bases have been created for specific research tasks. For example, cancer
incidence data are available in many countries from specific cancer registries (e.g.,
Teppo and Hakulinen 1999). Some countries, such as Finland, maintain a large
number of other special purpose databases on births, congenital malformations,
occupational diseases, causes of death, abortions, sterilizations, implants, visual
impairments, intellectual disabilities, diabetes, infectious diseases etc. (Gissler
1999)

The strength of the continuously operating administrative and special purpose
registers is their ability, in principle, to provide information on trends. However,
their usefulness may be limited by narrow data content and their information may
be biased for specific research uses because they cover only certain groups of
persons.

5.2. Cohort and Case-Control Studies

Complementing census or register based information, we have increasingly avail-
able databases from large epidemiological studies and from social surveys. These



P1: MRM/SJS P2: MRM
SVUS004-Alho & Spencer April 29, 2005 12:20

20 2. Sources of Demographic Data

databases have the advantage that they have been created with specific research
hypotheses in mind, so, in general, they can be expected to provide superior data
sources for certain kinds of causal research.

In Section 4, we used “cohort” to refer to those born in a given year. More
generally, a cohort consists of those individuals that have experienced a given
event at the same time. Strictly speaking, one can then think of a cohort as a closed
population. In practice, the term is often used in a way that allows for the possibility
that a cohort is depleted by deaths. Or, a cohort can be open with respect to deaths.

In addition to birth cohorts, those entering college during a given semester form a
cohort, women who have given birth on the same day form a cohort, etc. In response
to the increased public interest in effects of environment and individuals’ behavior
on health, governments have funded increasingly many follow-up studies to try to
unravel the causal chains involved. As a result, there is an increasing number of
high quality data sets containing individual-level information on cohorts.

An alternative, case-control (or case-referent) study design in epidemiology
tries to assess relative risk by comparing those who have fallen ill (“cases”) to
those who could have fallen ill, but have not (“controls” or “referents”). Case-
control data typically are collected from an open population by sampling, so its
study design is quite different from that of a cohort study.7

Both designs are much used in epidemiology, and they are both well-suited to
demographic studies. We briefly introduce their basic logic and point out some
possible pitfalls. For a more detailed discussion, Breslow and Day (1980, 1987),
Kleinbaum, Kupper and Morgenstern (1982), Woodward (1999) or dos Santos
Silva (1999) may be consulted.

5.3. Advantages and Disadvantages

A cohort study is based on the idea that one follows a cohort over time, records
the exposures or the occurrence of other potential causal agents, and estimates the
extent to which the subsequent illnesses among the members of the cohort vary by
exposure history. Since specific illnesses typically are rare and may have a long
latency time, cohort studies can be both costly and time consuming.

Example 5.1. British Doctors’ Study. In the famous British Doctors’ Study (Doll
and Peto 1976) the primary objective was to study the lung cancer risk caused by
smoking. In October 1951, all men and women in the British Medical Register who
were believed to be resident in the U.K. were sent a questionnaire. The first analyses
related to the men only. A total of 34,440 men (or 69% of the men alive at the
time) gave their name, address, age, and sufficient information about their smoking
habits to be included in the study. Follow-up started in November 1, 1951, and

7 Increasingly, case-control studies are conducted within cohorts, i.e., both cases and con-
trols are restricted to members of a predefined cohort. The cohort is followed and controls are
selected over time as cases appear. These hybrid designs are called nested case-control, case-
cohort, or case-base designs (cf., Prentice, Self and Mason 1986; Flanders, Dersimonian
and Rhodes 1990).
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continued until October 31, 1971. Repeat questionnaires were sent in 1957, 1966,
and 1972 to collect current information on smoking. The numbers of respondents
(as proportion of those alive in parenthesis) were 31,318 (98.4%), 26,163 (96.4%),
and 23,299 (97.9%), respectively. A total of 10,072 deaths were observed during
the follow-up, with 441 caused by lung cancer. In addition, much information was
obtained concerning other cancers, cardio-vascular diseases and other diseases.
Among the results, one may note that the age-standardized death rate (Section 3.3
of Chapter 5) due to lung cancer was 0.1 per 1,000 person years among the non-
smokers and 1.4 among the cigarette smokers – the relative risk of the smokers is
about 14-fold. Among the latter, the risk increased from 0.78 for those smoking
1–14 cigarettes/day, to 1.27 for those smoking 15–24 cigarettes/day, to 2.51 for
those smoking over 25 cigarettes/day. The evidence on increasing dose-response
was clear. ♦

A case-control study is based on the idea that if we find a group of people with
a specific illness, and select a group of those who could have the illness (i.e., are
at risk) but do not have the illness, then any differences in the earlier exposures of
the two groups may be causally related to the illness. The difficulty in carrying out
the study centers on the investigator’s ability to find controls that can be validly
compared to the cases (Feinstein 1985). No exact rules are available, but if one
can identify the population out of which the cases arose, then a random sample
of the same population are eligible for being controls. (For a lively debate on the
matter, see the 1985 contributions of O. Miettinen, J. Schlesselman, A. Feinstein
and O. Axelsson in Journal of Chronic Disease 38, 543–558.)

Example 5.2. Doll and Hill Study. Prior to the British Doctors’ Study, Doll and
Hill (1950) had used the case-control design to investigate the role of smoking
and atmospheric pollution as risk factors for lung cancer. The study was planned
in 1947. Twenty London hospitals were asked to notify the investigators of all
carcinomas of the lung, stomach, colon, or rectum. The latter three cancers were
investigated to provide a possible contrast to lung cancer. Although complete
notification was not achieved, the authors believe that omissions could not bias
the inquiry by being a select group, since the hospitals did not know the detailed
hypotheses being studied. Between April 1948 and October 1949 a total of 2,370
cancers were reported. It had been decided beforehand that patients 75 years of
age and older would not be admitted, so 150 cases were excluded from the study.
In 80 cases the cancer diagnosis was found to be erroneous, so 2,140 patients were
left. Of these, 408 could not be interviewed due to early discharge (189), being too
ill (116), death (67), deafness (24), being unable to speak English clearly (11). One
case was excluded due to “wholly unreliable” replies. Thus, 1,732 cancer cases
remained. Of these, 709 were lung cancer cases. Despite the exclusions, the authors
claimed that the cases were “a representative sample of the lung-carcinoma patients
attending selected London hospitals”. As controls for the lung cancer cases, the
investigators chose 709 patients at the same hospitals who had come there for some
other illness. For each case, the control had to be of the same sex, within the same
5-year age-group, and have come to the same hospital at about the same time.
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In other words, the controls were individually matched to the cases. Somewhat
more of the cases turned out to live outside London than of the controls, but again
the authors believe that this can hardly influence the results. As one indication
of the excess risk they mention that the odds of never smoking were 2:647 among
the male lung carcinoma patients, whereas the odds were 27:622 among the male
controls. Alternatively, one could say that the odds of cancer were 2:27 among the
non-smokers and 647:622 among the smokers. (I.e., there were 29 non-smokers in
the data set with 2 lung cancers, and 1,269 smokers with 647 lung cancers.) The
resulting odds ratio for cancer is 647:622/2:27 = 14 indicating a similar relative
risk as the one later found in the British Doctors’ Study. (This analysis does not
allow for the matching that was used in the study, however, and the analysis would
now be done in a different way, see Example 7.5 of Chapter 5). ♦

Examples 5.1 and 5.2 suggest the following, simplified characterization of the
merits of the two approaches. The cohort study is often relatively slow and costly,
especially if the illness is rare and the latency time of the illness is long, but the
results are more trustworthy. The case-control study typically is quicker and less
expensive but it may be less reliable if the choice of controls is biased in some way.
We will come back to this issue in Section 2.3 of Chapter 5. Moreover, when cohort
studies are carried out prospectively, the exposures and illnesses both occur after
the study has been initiated.8 In contrast, often a case-control study is retrospective,
so that information on exposures must be obtained from remaining records, or it
must be remembered by the subjects or by other people who have known them.9

Therefore, the exposure information is typically weaker, and possibly biased, and
imperfect controls may also cause bias.

However, the potential gains in efficiency are often seen to outweigh the risk
of bias, and the case-control design has become a standard tool of epidemiologic
investigation. With this background it is surprising that in demography, most in-
vestigations with causal goals have cohort designs.

A very large number of demographic studies are cross-sectional, so they follow
neither paradigm. Since the time element is missing from those designs, they often
lack credibility for causal inferences.

5.4. Confounding

A defining feature of experimental research is that the researcher can manipulate
and control the causal factors of interest. For example, in a study of drug effi-
ciency, groups with precise dosage are formed and subjects are randomized into
them. In many epidemiologic studies, such as those discussed in Examples 5.1 and
5.2, ethical considerations prohibit manipulation of exposures. Similarly, in most
demographic studies (e.g., when investigating the determinants of fertility) the

8 Logically, a retrospective cohort study is also a possibility. In this case one defines a
historical cohort and collects information on it from existing records.
9 In nested case-control studies data collection is usually prospective.
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researcher has no choice but to observe what happens, and to try to make com-
parisons in as valid a manner as possible. We call such studies observational. The
validity of an observational study with causal aims can sometimes be compromised
by unobserved interdependencies of the variables being studied.

Two variables are said to be confounded in a study if their separate effects
cannot be distinguished from each other (Moses 1986, 9–10).10 If one variable has
negligible effects then the possible confounding may not be important (cf., Bailey
1982). There are also a multitude of other ways in which a comparative study may
fail. Yet, possible confounding is often a major concern.

Confounding may be present in an observational study when those subjects
who receive a treatment differ systematically from those who do not. For exam-
ple, when the large-scale randomized (and double-blind placebo-controlled) Salk
vaccine trials were conducted, an observational study was also done to compare
(i) polio incidence rates for second-grade students who were vaccinated and whose
parents gave permission for vaccination with (ii) the rates for first-grade and third-
grade students in the same schools. Comparison with a randomized controlled
experiment showed the risk of contracting polio was confounded with parental
permission – higher income children more readily received permission but had
lower immunity from the disease.

Confounding may also be present even in a randomized controlled experiment
when subjects leave the study or otherwise do not follow protocol for reasons re-
lated to the assignment of the treatment. For example, subjects assigned a placebo or
a treatment may perceive it as inferior and leave the study to pursue other treatment.

For an illustration, consider the artificial data of Figure 2. The aim of the study is
to understand what might explain variations in Y . Two groups are involved: there
are 24 individuals marked with a ‘+’ and 36 individuals marked with a ‘◦’, and
there is one continuous explanatory variable X . Define G = 1, for the individuals
of type ‘+’, and let G = 0 otherwise. The data are well described by the estimated
regression equation

Yi = 1.47 + 6.65Gi + 0.915Xi + ei , (5.1)

where the estimated residuals ei , i = 1, . . . , 50, have the variance 2.192. The co-
efficient of G has a t-value = 10.27 and the coefficient of X has a t-value = 5.90.
With P-values < 0.001, both effects appear highly significantly different from 0.

Suppose now that an investigator has no knowledge of the two types of individ-
uals, and fits a simple linear regression with X alone as an explanatory variable.
The estimated equation is

Yi = 9.94 + 0.192Xi + ei , (5.2)

10 This is a rather general characterization. In particular, it does not include specific assump-
tions concerning the causal roles of the variables. For a review of the many complexities
that arise when the concept is operationalized in an epidemiologic context, see Geng, Guo
and Fung (2002).
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Figure 2. Example of Confounding.

where the residual variance is 3.672. The coefficient of X has a t-value = 0.83 and
a P-value = 0.41, suggesting that X has no influence on Y . The estimated effect
of X is tangled up with the unmeasured group indicator, and the conclusion of the
study is incorrect.

Note that had the researcher restricted his or her study to those of type ‘+’ only,
and regressed Y on X , the estimated slope would have been 0.83 with a P-value
of 0.003, so the correct conclusion would have been reached. The same is true if
only those of type ‘◦’ had been studied (resulting in the estimated slope = 0.99,
and P-value < 0.001). This suggests that restricting the scope of the study by
controlling a variable is one way to avoid confounding.

On the other hand, suppose the investigator was interested in comparing the two
groups, and did not measure X . Using a two-sample t-test, he or she would have
found that a 95% confidence interval for the mean of those of type ‘+’ minus the
mean of those of type ‘◦’ is (3.47, 6.37). The conclusion that those with a ‘+’
have a higher mean would have been correct, but the difference would have been
underestimated by approximately a half due to the confounding of G and X .

Both cohort and case-control designs often give rise to contingency tables whose
analysis can be invalid, if confounding is present. In complements we indicate some
classical procedures for handling suspected confounding via stratified analysis. In
Chapter 5 we show how regression techniques can be used to do the same.

6. Sampling in Censuses and Dual System Estimation

If it were not for the need of geographic detail (for municipalities, city neigh-
borhoods or blocks, etc.), sample surveys would probably have replaced censuses
a long time ago. Samples would be less expensive to carry out and they reduce
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the burden of respondents because only a fraction is included. More extensive
information can be collected by well-trained personnel in a sample survey than
in a census that has to rely on temporary work force. In addition, being based
on deliberate randomization, the precision of statistical sampling can be assessed
based on the sample itself (Chapter 3), whereas errors in a census cannot be eval-
uated based on the census only. These advantages have been used to complement
census information in various ways.11

Sampling has been used in the U.S. decennial censuses since 1940 to collect
part of the information. The so-called long form requesting detailed data on in-
come and other characteristics is given to approximately 10% of the respondents,
the fraction being larger in smaller areas and smaller in larger areas. Major sav-
ings in response burden are achieved by this without unduly compromising data
quality.

Sampling has also been used in the United States to evaluate the accuracy of
the decennial censuses. The “demographic analysis” estimates of Example 2.2
are essentially based on consistency checks between the current census, earlier
censuses, and the recorded vital events. A problem in such estimates is that they
rely on the assumption that such other pieces of earlier information are trustworthy,
an uncertain proposition at best, and they depend on consistency in definitions (e.g.,
racial classification) among the various data sources.

A direct statistical evaluation of the census can be made by redoing the census on
a sample basis in different parts of the country. Suppose the unknown population
of an area is N , with n1 individuals counted in the census. Suppose the second
census count is n2, and one can verify that m individuals were counted in both
censuses. A more refined analysis will be given in Section 5 of Chapter 5, but
let us condition here on n1 and n2. Assume that the two counts are independent,
and that individuals are equally likely to be counted during either occasion. The
probability of counting m individuals in both censuses is equal to the number of
ways of choosing m from the n1 in the first census times the number of ways of
choosing n2 − m from the N − n1 not counted in the first census, divided by the
number of ways of choosing n2 from N . The resulting probability of observing m
can be written as P(m; n1, N − n1, n2), when we first define

P(x ; α, β, γ ) ≡
(

α

x

)(
β

γ − x

)/(
α + β

γ

)
. (6.1)

Here max{0, γ − β} ≤ x ≤ min{α, γ } and P(x ; α, β, γ ) = 0 otherwise
(Exercise 8). This probability distribution is called the hypergeometric distribu-
tion (DeGroot 1987, 247–250) and we can use it to calculate the probability of
observing m when we know N (and n1 and n2). In the census context, we observe
values of n1, n2, and m but we do not know N . One way to formulate a guess

11 The existence of censuses is very important for many sample surveys, because the census
can provide a frame or list from which a probability sample can be drawn. The census can
also provide information adjusting a sample or calibrating estimates based on the sample to
agree with observations on the whole population. We will not pursue these aspects, however.
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(or estimate) of N is to choose the value that makes the observed data as likely
as possible. We view (6.1) as a function of N (a likelihood function) and choose
the value of N that maximizes (6.1) (cf., Feller, 1968, 45–46). The maximizing N
is the maximum likelihood estimator. Here, the MLE is essentially N̂ = n1n2/m
(Exercises 9, 10).

Example 6.1. Underreporting of Occupational Diseases. The Finnish Register of
Occupational Diseases obtains its information from two sources. A suspected case
of occupational disease must be reported by the examining physician to author-
ities (first capture). The case must also be reported to the insurance institution
responsible for compensation (second capture). The following data were obtained
in 1980: n1 = 3,769, n2 = 3,053, and m = 1,591. The total number of cases re-
ported was M = 3,769 + 3,053 − 1,591 = 5,231. In this case N̂ = 3,769 × 3,053/

1,591 = 7,232, or the ratio between the estimated cases to the reported cases would
appear to be c ≡ N̂/M = 1.38. However, it was suspected that the likelihood of
reporting would depend on the diagnosis. The main diagnostic groups were (a)
noise-induced hearing loss with M = 1,856 and c = 1.20, (b) diseases caused by
repetitive or monotonous work with M = 1,448 and c = 2.47, (c) skin diseases
with M = 1,171 and c = 1.23, (d) other diseases with M = 756 and c = 1.34.
Adding the disease specific estimates leads to an overall estimate of 8,258 cases in
1980. The fact that diseases in category (b) are poorly reported is understandable,
because the connection between working conditions and the disease is particularly
hard to establish for them. ♦

Some populations are especially hard to estimate, because their membership
criterion involves illegal activities. Drug use is an example in which users are
expected to be reluctant to reveal their user status (cf., Turner, Lessler and Gfroerer
1992). Yet, a drug user may end up being registered in several administrative
registers. This provides a basis for population estimation.

Example 6.2. Numbers of Drug Users. In Finland, information about heavy drug
use is available through several registers. The most important ones are the Hospital
Discharge Register and the Criminal Report Register. In 2001 there were n1 = 446
reports from the former, n2 = 825 reports from the latter, and m = 53 reports from
both registers, for heavy drug use in the Helsinki Region (Helsinki, Espoo, Vantaa,
Kauniainen). This yields the estimate N̂ = 446 × 825/53 = 6,942. We will come
back to this in Example 3.7 of Chapter 5. ♦

A form of this capture-recapture method was used by Sir Francis Bacon in the
study of wildlife populations around 1650 (Cormack 1968). Laplace applied it to
human populations in the 1780’s. The method has been reinvented many times,
whence the names “Petersen’s method” or “Lincoln index” in ecology. Its modern
use in demography is usually accredited to Chandra Sekar and Deming (1949). In
demography it is often called dual systems estimation (DSE) (Marks, Seltzer, and
Krotki 1974).

Simple as N̂ = n1n2/m may seem, in practice the application of dual systems
estimation to the study of the census is complicated by several factors. First, the
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population may be heterogeneous with respect to the probability of being captured.
If the heterogeneity is observable, it can be modeled by stratification (Chandra
Sekar and Deming 1949) as we did in Example 6.1 or by logistic regression
(Huggins 1989, Alho 1990b). Second, error in n1, n2, and m may arise from data
errors (names, addresses etc.) that should be corrected. Third, actual human pop-
ulations are typically open, so the de facto population of an area may not be the
same during the two counts (cf., Alho et al. 1993). Nevertheless, the dual systems
approach provides a practical way to analyze the coverage of a census (cf., Mulry
and Spencer 1993; Kostanich 2003a,b; U.S. Census Bureau 2004). A more detailed
discussion of population heterogeneity will be taken up in Section 5 of Chapter 5,
and Chapter 10 presents an overview of the whole problem of census evaluation
using dual systems techniques in the U.S. context.

Exercises and Complements (*)

1. Consider (a) your own country, (b) the city you live in. Which is bigger, the de
jure or the de facto population?

2. Digit preference has been quantified in demography using statistics that are
based on comparing the size of the enumerated population to the population one
would expect to see in the absence of digit preference. Define Vx = enumerated
population in age x . Whipple’s index (for digit preference of ages 25, 30, . . . ,
60) is defined as,

8∑
y=1

V20+5y

/
1

5

62∑
x=23

Vx.

This is of the observed/expected form if in reality all Vx ’s are equal. Give some
more general conditions, under which this index still works. (Hint: Consider
5-year intervals [23, 27], [28, 32], . . . and assume that Vx is (a) linear in each
interval, (b) an odd function around the center of the interval: V25−x − V25 =
−(V25+x − V25) for x = 1, 2, etc.) For more information about quantifying
digit preference, see Shryock and Siegel (1976, 116–118).

3. Consider Example 5.2, where an odds ratio for disease (among smokers and
non-smokers has been calculated as 647:622/2:27. (a) Show that the odds ratio
for smoking (among those diseased and non-diseased) has the same value.
Therefore, the value of the odds-ratio does not depend on whether the data
come from a case-control, or a cohort study. (b) Given that the data come
from a case-control study, can one say that the risk of cancer is 2/29 for the
non-smokers and 647/1269 among the smokers?

*4. Suppose the results of either a cohort or a case-control study are presented as
a 2 × 2 table,

Ill Not Total
Exposed a b n1

Not c d n2

Total m1 m2 N
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Here N = n1 + n2 = m1 + m2 is the total number of subjects. The odds ratio
is estimated as OR = ad/(bc) under both study designs. Condition on all the
margins n1, n2, m1, m2. Then, any one element of the matrix defines the others.
Denote the upper left hand corner of the matrix by A and its value in a partic-
ular experiment by a. Under the null hypothesis that the true odds ratio is = 1,
the probability of having a exposed who are ill is P(a; n1, n2, m1) as defined
in (6.1). Thus, E[A] = m1n1/N and Var(A) = m1(n1/N )(n2/N )(N − m1)/
(N − 1) (e.g., DeGroot 1987, 247–250). As discussed by Feller (1968, 194) the
variable X = (A − E[A])/Var(A)

1/2 ∼ N (0, 1) asymptotically, so X2 ∼ χ2

distribution with one degree of freedom. Thus, the null hypothesis is re-
jected at risk level α, if X2 ≥ k1−α , where k1−α is the 1 − α fractile of the
χ2 distribution. Show that the observed value of the test statistic can be
written as

X2 = (N − 1)
(ad − bc )2

n1 n2 m1 m2
.

*5. Continuation. When one wants to control for the values of a potentially con-
founding third variable with values, say, k = 1, . . . , K , then we have K inde-
pendent strata with

Ill Not Total
Exposed ak bk n1k

Not ck dk n2k

Total m1k m2k Nk

Denote the true odds ratio in stratum k by θk . Consider the situation in which
θk ≡ θ for k = 1, . . . , K . Now test H0: θ = 1 against HA: θ �= 1. The famous
Cochran-Mantel-Haenszel statistic for this hypothesis is

X2 =
{

K∑
k=1

(Ak − E[Ak])

}2/ K∑
k=1

Var(Ak),

where the expectation and variance are calculated as in Complement 4 for
each table k = 1, . . . , K (Cochran 1954, Mantel and Haenszel 1959). The
remarkable fact is that asymptotically X2 ∼ χ2 distribution with one degree of
freedom even if the strata are very small (e.g., Nk = 2), as long as K is large.
(For large strata the result is obvious.) Show that the observed value of the test
statistic can be written as

X2 =
{

K∑
k=1

(
akdk − bkck

Nk

)}2/ K∑
k=1

(
n1n2m1m2

N 2
k (Nk − 1)

)
.

*6. Continuation. In the setting of Complement 5, the so-called Mantel-Haenszel
estimator of the common odds ratio is defined (Mantel and Haenszel 1959) as

θ̂ =
K∑

k=1

(
ak dk

Nk

)/ K∑
k=1

(
bk ck

Nk

)
.
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Show that if bkck > 0 for all k = 1, . . . , K , then we can write

θ̂ =
K∑

k=1

wk θ̂k,

where θ̂k = akdk/(bkck), and wk = (bkck/Nk)/
∑

j b j c j/N j .
*7 Continuation. In a matched case-control study in which one case is matched

with one control, each pair forms a stratum k = 1, . . . , K because the matching
criteria may correspond to possible confounders. The results of such a study
are often represented as 2 × 2 table as follows:

Control
Exposed Not

Case Exposed a b
Not c d

This table is a sum of the K stratum specific tables of the type considered in
Complement 5. In this case Nk = 2 for all k = 1, . . . , K because there is one
case and one control in each stratum. There are N = 2K individuals in all.
There are four types of tables: (i) a tables with both the case and the control
exposed, (ii) b tables with the case exposed but the control is not, (iii) c tables
with the case not exposed but the control is, (iv) d tables with neither the case
nor the control exposed. In case (i), for example, the table is of the form

Ill Not Total
Exposed 1 1 2
Not 0 0 0
Total 1 1 2

(a) Verify that in cases (i) and (iv) we have akdk = bkck = 0, in case (ii) akdk =
1, bkck = 0, and in case (iii) akdk = 0, bkck = 1. (b) Show that the Cochran-
Mantel-Haenszel test statistic is then of the form X2 = (b − c)2/(b + c). This
is also known as the McNemar test statistic. (c) Show that the Mantel-Haenszel
estimator of the common odds ratio is θ̂ = b/c. Thus, in both statistics only
the “discordant pairs” matter.

8. Consider the capture-recapture case in which n1 is the number of first captures,
n2 recaptures, and m is the number caught both times. (The traditional notation
used in capture-recapture literature does not follow the usual conventions of
statistics; note that these symbols have here a meaning different from the
one in the previous examples!) Show that the labeling of the censuses as
first or second in Section 6 does not matter, so that P(m; n1, N − n1, n2) =
P(m; n2, N − n2, n1), as defined in (6.1).

9. Show that by equating m to its expected value (that is given in Complement 4)
one obtains the classical estimator, N̂ = n1n2/m.

10. Show that the MLE based on (6.1) is essentially the same as N̂ defined above.
(Hint: show that P(m; n1, N − n1, n2)/P(m; n1, N − 1 − n1, n2) = (N −
n1)(N − n2)/(N − n1 − n2 + m), which is increasing when n1n2/m > N , so
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that (6.1) is increasing for N < n1n2/m and decreasing for N > n1n2/m.
Conclude that the exact MLE is = �n1n2/m�, where �x� is the largest integer
≤ x .)

11. To estimate Var(N̂ ) under the hypergeometric model in which n1 and n2

are fixed, note first that E[m] = n1n2/N and Var(m) = n2(n1/N )((N − n1)/
N )(N − n2)/(N − 1). Since N̂ is a nonlinear function of m we lin-
earize the statistic at E[m] using a Taylor series, or N̂ ≈ n1n2/E[m] −
(n1n2/E[m]2)(m − E[m]). This yields the approximate variance, Var(N̂ ) ≈
(n1n2/E[m]2)2Var(m). Assume that N is large enough so that N − 1 can be
replaced by N in Var(m). Show that by plugging in the estimator N̂ the ap-
proximate variance of the capture-recapture estimator can be estimated by
n1n2u1u2/m3, where u j = n j − m, j = 1, 2. This is an example of the so-
called delta method that will be discussed in more detail in Section 7.2 of
Chapter 3.
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3
Sampling Designs and Inference

Cohort and case-control studies are usually restricted to a carefully selected subset
of the total population, because the possibility of confounding is an overriding
concern. For example, in cohort studies of carcinogenicity one tries to find groups
that differ from each other as much as possible in terms of the exposures of interest
but that are otherwise similar. There is no attempt to cover the population at
large, the assumption being that the causal effect found in the groups under study
will be similar for persons outside the groups. Even with that assumption, the
complementary task of assessing the risk caused by the exposures at population
level requires a “representative sample” from which to estimate the actual pattern
of exposures. The concept of representative sampling is more slippery than might
first appear (Kruskal and Mosteller 1979a–c, 1980), but will be explicitly defined
below. For most studies, we hope to generalize either to the population from which
the sample members (or study subjects) were selected or even more generally
to a larger population, sometimes called a “superpopulation”. Much of the data
used for social, economic, demographic, or epidemiologic analyses comes from
samples.

Although sampling theory is not always viewed as part of demography, we
present selected aspects of the theory here because it plays a central role in the
production of some basic population data. For example, the Current Population
Survey is a stratified multi-stage survey of U.S. households that provides important
data on economic and social activities. As another example, U.S. Post Enumeration
Surveys (PES’s) are conducted after the decennial censuses to assess their accuracy.
Poststratification plays an important role in their analysis. In the 1970s and early
1980s, the World Fertility Survey was carried out in 41 nations in Africa, the
Americas, Asia, and Europe. Our goal is to give enough details of the theory so
that the reader can appreciate the complexities of the relevant large scale surveys
and make inferences appropriately from the survey data. In particular, Section 7
discusses principles of statistical inference in a sampling context.

A sampling design (or sampling procedure or selection procedure) is a rule for
choosing a single sample from the set of possible samples. An individual element is
selected if the chosen sample contains the element. If the rule assigns probabilities
to the possible samples such that each element in the population has a non-zero
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probability of being selected, we say the sample resulting from the rule is a random
sample or a probability sample.

Samples in which nature provides the randomization do not necessarily satisfy
the definition of random sampling. A fortiori, this holds for purposive samples
in which the researcher handpicks “representative elements” (cf., Cochran 1977,
10-11), and for self-selected samples, such as the popular internet surveys in which
any individual with access to internet may have his or her view about a particular
issue recorded. Although inferences can be made from nonrandom samples, the
strength of the inferences can be assessed internally – from the sample itself – only
if additional assumptions are invoked; see Smith (1983). In contrast, if each element
in the sample has a positive selection probability and the selection probability is
known for each element in the sample, then an unbiased estimator of the population
total is available (Section 4.2) – such samples will be called representative samples.
Moreover, if the inclusion probability of every pair of elements is known for every
sampled pair and is positive for every pair in the population, the standard error of
the total can be estimated from the sample (Section 5.3) and the sample is called
a measurable sample.

We take the view that in analyzing data from a sample one should generally
acknowledge the method used to select the sample. Point estimates may be ad-
justed for probabilities of selection, and variance estimates should account both
for unequal probabilities and for dependencies in sample selection. Exceptions
to this rule may be made for certain analyses of well-specified models (Sections
4.4, 7.3) and for analyses in which one is willing to accept bias as a compensa-
tion for reduced variance (Section 4.4). We review some major types of sampling
designs underlying demographic data and discuss how the designs affect analy-
ses of the data. Basic references include Cochran (1977), Lohr (1999), and Levy
and Lemeshow (1999). More recent and very practical references are Korn and
Graubard (1999) and Lehtonen and Pahkinen (2004). More advanced theoretical
treatments include Särndal, Swensson, and Wretman (1992), Thompson (1997),
Skinner, Holt, and Smith (1989), Chambers and Skinner (2003), and the classic
Kish (1965), which provides much practical advice for large scale survey design.
A concise and accessible overview is provided by Frankel (1983).

In past years, only a few specialized software packages were available for car-
rying out statistical analyses that took the sampling design into account. Currently
a number of strong packages are available. Descriptions and links to reviews are
available from the Survey Research Methods Section of the American Statistical
Association1.

1. Simple Random Sampling

The most elementary kind of sample selection is simple random sampling (SRS),
in which each possible sample of n elements from a population of size N elements
has an equal chance of selection. The selection probability for an element of the

1 http://www.fas.harvard.edu/%7Estats/survey-soft/survey-soft.html
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population is the probability that the element is contained in the sample. In simple
random sampling, each individual has the same selection probability, which equals
the sampling fraction f = n/N . In without-replacement sampling, no element is
selected more than once, and in with-replacement sampling an element may be
selected more than once (up to n times).

To select a SRS of n units from a population of size N we need a listing of
the population units, called a sampling frame. Construction and maintenance of
a sampling frame is an important practical matter (e.g., Kish 1965, 53–59), with
attention required to ensure completeness and detect duplications and erroneous
inclusions. A sample of the population can be based on random digit dialing, so
the frame is implicitly formed by the list of all phone numbers. Multi-stage area
samples can be based on maps and database listings of housing units. In both cases,
the frame represents the ideal target population in an approximate sense only. Pop-
ulation counts can be used for controls for ratio estimates of totals (Sections 4.2,
5.4), and those counts may be based on censuses or on postcensal estimates (Chap-
ter 10). In countries that have a population register, the register can be a flexible
source of sampling frames for many uses. However, when the target population
of the sample is defined by some social, economic or educational criteria that are
only available for census years, the register becomes gradually outdated, as time
from the census elapses. Errors caused by the mismatch of the frame and the ideal
target population are typically not assessed in surveys. It would involve completely
different methods - methods of the type that are used in statistical forecasting.

A way to think of drawing a simple random sample of size n is to take a list of
the N elements in the population and randomly permute their order, and then to
take the first n. Forming a random permutation requires care, however.

Example 1.1. The 1970 Draft Lottery in the U.S. During the U.S. participation
in the Vietnam War, concerns about the unfairness of the military draft led to a
decision to randomize the selections. A random permutation of birth dates in the
year would be formed, and those young men who would end up first on the list
would be chosen first, and so forth. In practice, capsules labeled with dates were
put into a bowl to be chosen at random one at a time, so that the date on the i th

selected capsule was assigned draft number i . The capsules were not well mixed
in the bowl, however, which led to a significant negative correlation between birth
date and draft number (Fienberg 1971). A recent analysis of deaths recorded on
the Vietnam Memorial in Washington (Sommers 2003) found a similar negative
association between death rate and draft number. An improved randomization
method, relying on random number tables and physical randomization, was later
used (Rosenblatt and Filliben 1971). ♦

Consider using the sample to estimate the population mean for some numerical
characteristic, or variable. We denote the population values by y1, . . . , yN and
the sample values by y1, . . . , yn . (Other symbols than y may be used as well.)
Although yi in the sample is not the same as yi in the population, it will be
clear from the context which is which. We will use upper-case letters to refer
to population characteristics or summaries and lower-case for sample values of
the variable. The population mean is denoted by Ȳ = (y1 + · · · + yN )/N and the
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sample mean is denoted by ȳ = (y1 + · · · + yn)/n. The population total will be
denoted by TY = NȲ . The “finite-population variance” S2 and the sample variance
s2 are defined as

S2 =
N∑

k=1

(yk − Ȳ )2/(N − 1), s2 =
n∑

k=1

(yk − ȳ)2/(n − 1). (1.1)

Example 1.2. Child Stunting. Burgard (2002) uses household surveys of women in
Brazil and South Africa to analyze child stunting (i.e., stunted or checked growth
in children). For example, if yi is the number of stunted-growth children of women
in household i , the mean of the yi ’s is then the average number of stunted growth
children per household containing a woman. The population total of the yi ’s is the
number of stunted-growth children in households containing women. That total
can be divided by the total number of children in households (say, from census
records) to estimate the proportion of stunted growth children. ♦

Both ȳ and s2 are examples of statistics – functions of the data – with probability
distributions that depend on the population and on the sample design used, which
here is a SRS of size n from the population of size N . In later chapters we may
view population characteristics themselves (e.g., vital rates) as random variables,
as random even though there is no sampling from the population – the population
itself is viewed as stochastic. In this chapter we are conditioning on the population
at hand and regarding the data collection as a random process. We refer to the
probability distribution for a statistic as its sampling distribution.

For without-replacement simple random sampling one can show (Exercise 1)
that

E[ȳ] = Ȳ , (1.2)

Var(ȳ) = (1 − n/N )S2/n, (1.3)

E[s2] = S2. (1.4)

In other words, the mean of the sampling distribution of ȳ is Ȳ , the mean of the
sampling distribution of s2 is S2, and the variance of the sampling distribution of ȳ
is (1 − n/N )S2/n. The standard deviation of a statistic is called the standard error
(SE), for a non-negative variable the ratio of the standard error to the mean (or
to the population value being estimated, which may be different if the statistic is
biased) is called the coefficient of variation (CV), and the square of the coefficient
of variation is called the relative variance.

Thus, the sample mean ȳ is an unbiased estimator of the population mean. Its
variance is the product of three factors: the fraction not sampled, the heterogeneity
in the population, and the reciprocal of the sample size. The first factor 1 − f ,
called the finite population correction, explains why a large sampling fraction
is not needed to obtain high precision. A large sampling fraction helps reduce
variance, but a small sampling fraction does not hurt. Often the sampling fraction
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f is small enough to ignore. Plugging in s2 for S2 in the formula in (1.3) yields an
unbiased estimator of Var(ȳ)

V̂ar(ȳ) = (1 − f )s2/n. (1.5)

To estimate the population total TY we use T̂Y = N ȳ. In general the population
total may be estimated by the sum of the sample values divided by their selection
probabilities. As an illustration notice that T̂Y = y̆1 + · · · + y̆n , with y̆i = yi/ f .
The variance may be estimated by

V̂ar(T̂Y ) = (1 − f )
n

n − 1

n∑
k=1

(y̆k − ¯̆y)2 (1.6)

where ¯̆y = (y̆1 + · · · + y̆n)/n. Although we have emphasized the unbiasedness
property, we do not regard exact unbiasedness as a critical property. Many useful
statistics are not exactly unbiased. For example, although (1.4) holds, we have that
E[s] �= S. Yet, the bias in s does not affect the development of confidence intervals
based on t distribution under the usual normal-theory assumptions. In many other
cases, what is important is that the bias becomes small as the sample size increases,
so that the bias is small relative to the standard error. For example, the coverage
of 95% normal-theory two-sided confidence intervals for the mean is still close to
95% if the ratio of the absolute value of the bias of the estimate of the mean to
standard error of the estimate of the mean is 0.1 or less (Cochran 1977, 14).

2. Subgroups and Ratios

The simplest important nonlinear statistic arises in estimating the population ratio
R of the totals of two variables in a population, say R = TY /TX . If measurements
yi and xi are made for each element in a simple random sample of size n, we may
estimate R by

R̂ =
n∑

i=1

yi

/ n∑
i=1

xi . (2.1)

This statistic is the ratio of two random variables. In Example 1.2, if we wanted
to estimate the proportion of children who were stunted but did not know the total
number of children, we could use (2.1) with yi the number of stunted children
in household i and xi the total number of children in household i . The expected
value of R̂ is not exactly equal to R. The “ratio-estimator bias” does not arise from
problems in the sample but rather from non-linearity of the ratio estimator. To
analyze the mean and variance we will approximate R̂ by a linear statistic. Define
εi = yi − Rxi and notice that

R̂ − R = (ȳ − Rx̄)/x̄ ≈ (ȳ − Rx̄)/X̄ = ε̄/X̄ , (2.2)

if the sample size is large enough that x̄ will be close to X̄ . The approximation will
work well provided the CV of the denominator of (2.1) is small (Complement 3).
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The right hand side of (2.2) is a linear function of the observations, and we use the
mean and variance of the right hand side to approximate the mean and variance
of the left hand side (Cochran 1977, David and Sukhatme 1974). Because the
expectation of the right hand side of (2.2) is zero, we say that the ratio estimator
is approximately unbiased or asymptotically unbiased (for large n). The variable
εi is the residual of yi from the line through the origin with slope R. We estimate
it by ei = yi − R̂xi and use

V̂ar(R̂) = 1 − f

x̄2n
s2

e (2.3)

as an estimator of the variance. Here, s2
e is given by s2 in (1.1) with ei substituted

for yi . If the population mean X̄ is known, it may be used in the denominator of
(2.3), but whether the estimator of variance is improved depends on the relation
of y and x in the population (Cochran 1977, 155–156; Rao and Rao 1971).

Ratio estimators are commonly used when estimating characteristics of a sub-
group whose sample size is random. This occurs often in the context of small area
estimation, or more generally in the estimation of small domains that can also be
defined by criteria other than the geographic. For example, consider using a simple
random sample of size n to estimate the mean and total of a variable for a subgroup
G. Define the indicator variable xi = 1 if element i belongs to the subgroup and
xi = 0 otherwise, i = 1, . . . , N . Define yi to equal the variable of interest if xi = 1
and to equal 0 otherwise (or replace yi by xi yi ). The total for the subgroup is TY

and the size of the subgroup is NG = TX . Therefore, the mean for the subgroup is
equal to R = TY /TX . If nG ≡ x1 + · · · + xn > 0, we can estimate R by R̂ in (2.1),
which equals the mean of interest in the sample. If we consider the conditional
sampling distribution with samples of a fixed size nG > 0 from the subgroup, R̂
is an unbiased estimator of R with (conditional) variance (1 − nG/NG)S2

G/nG ,
which may be estimated by (1 − nG/NG)s2

G/nG , with

S2
G =

N∑
i=1

xi (yi − R)2/(NG − 1) and s2
G =

n∑
i=1

xi (yi − R̂)2/(nG − 1).

(2.4)

3. Stratified Sampling

3.1. Introduction

In stratified sampling, the population is divided into some number H of non-
overlapping strata, with Nh > 0 units in stratum h = 1, . . . , H . Note that N =
N1 + · · · + NH . Samples are taken independently from each of the strata. In fact,
completely different sampling methods may be used in different strata. Stratified
sampling is used for a variety of purposes, including (i) reducing sampling variance,
(ii) ensuring that sample sizes from certain strata do not fall below thresholds, (iii)
controlling cost.
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In stratified simple random sampling, a SRS of size nh ≥ 1 is selected from
stratum h = 1, . . . , H . To estimate the overall population mean, form an estimate
of the mean of each stratum and then take a weighted average of those stratum
means, with weights proportional to Nh . This weighted estimate will not be the
same as the unweighted mean unless the sampling fractions fh = nh/Nh are all
equal. The total sample size is n = n1 + · · · + nH .

Example 3.1. NELS:88 Base-Year School Sample. The National Educational Lon-
gitudinal Study of 1988 (NELS:88) was a survey conducted to provide data on a
cohort of students who were in eight grade in 1988. The purpose was to provide
data to inform policy research on schooling and later behavior and choices by
the students. The base-year sample was taken from schools in the U.S. enrolling
eighth grade students in 1988 (Spencer et al. 1990). Subsamples of the students
were surveyed in successive years in follow-up surveys, allowing for estimation
of growth and change in student attributes (Example 5.2, below). A list of public
and private schools was obtained and used for a sampling frame; the schools in
the frame were believed to contain 99% of the eighth grade students. Strata were
developed in two steps, in order to group schools that were relatively similar in
terms of variables deemed relevant to the survey’s objectives. Superstrata were
formed by cross-classification of school type (for public, private religious, and
other private schools) by geographic region (8 regions for public and 4 aggregate
regions for other schools). Substrata were formed within each superstratum by ur-
ban/suburban/rural location of school and, for public schools only, cross-classified
by percentage of students who were black or Hispanic. The schools were selected
independently from the different superstrata with unequal probabilities set roughly
proportional to the estimated size of the eighth grade class. Within each superstra-
tum, schools were sorted by stratum and within stratum by size (estimated eighth
grade enrollment) and selected with systematic sampling (Section 6). For public
schools, a sample of 817 out of 22,818 in the frame were selected and participated,
compared to 240 out of 16,048 nonpublic private schools; although the sampling
rate for the public schools appears to be larger than for nonpublic schools, the public
schools tended to be much larger than the nonpublic schools, and the size-weighted
sampling fractions were much larger for nonpublic schools. The latter, especially
“other private” schools, were oversampled – selected with greater (size-weighted)
sampling fractions than schools as a whole – to provide sufficient sample sizes
for separate analyses and for comparison of public, private religious, and other
private schools. The number of participating students in the base-year sample was
24,599. ♦

3.2. Stratified Simple Random Sampling

Denote the population value for unit i in stratum h = 1, . . . , H by Yhi , i =
1, . . . , Nh , and denote the sample values by yhi , i = 1, . . . , nh . The population
mean for stratum h is denoted by Ȳh = (Yh1 + · · · + YhNh )/Nh and the sample



P1: MRM/SJS P2: MRM
SVUS004-Alho & Spencer April 21, 2005 16:59

38 3. Sampling Designs and Inference

mean is denoted by ȳh = (yh1 + · · · + yhnh )/nh . The corresponding variances S2
h

and s2
h are obtained from (1.1) by substituting yhi for yi , Ȳh for Ȳ , ȳh for ȳ, Nh for N ,

and nh for n. The overall population mean is a weighted sum of the stratum means,
Ȳ = W1Ȳ1 + · · · + WH Ȳh with the stratum weights defined as Wh = Nh/N . Since
the sample mean in stratum h is an unbiased estimator of the population mean for
the stratum, the weighted mean ȳw = W1 ȳ1 + · · · + WH ȳh is an unbiased estima-
tor of Ȳ .

The variance of ȳw is

Var(ȳw) =
H∑

h=1

W 2
h (1 − fh)S2

h/nh . (3.1)

Notice that the variance depends only on variability within strata. It will be small if
the strata are internally homogeneous. Thus, in the design stage of the survey one
may use prior information about the variability in deciding how to define strata.

If nh ≥ 2 we may unbiasedly estimate S2
h by s2

h , leading to the variance estimator

V̂ar(ȳw) =
H∑

h=1

W 2
h (1 − fh)

s2
h

nh
. (3.2)

If nh = 1, unbiased estimation of variance is not possible. A common fix is to
combine (or “collapse”) strata that are adjacent or similar in some sense and
pretend that the sampling used larger sample sizes in fewer strata (Wolter 1985).

Sample sizes sometimes are chosen proportional to Nh , leading to a sample
distribution across strata identical to the population distribution. This proportional
allocation of a sample typically reduces sampling variance relative to SRS with the
same sample size. The sample allocation may also be chosen to minimize variance
(for a particular statistic) for fixed sample size or (if costs vary across strata)
for fixed cost. Then, one speaks of the so-called optimal allocation or Neyman
allocation. The optimal allocation for one statistic may not be optimal for another,
however, and Neyman allocation can lead to variances greater than SRS for some
statistics. Allocating the sample to achieve thresholds (nh ≥ τh for thresholds τh)
is sometimes called oversampling when the resulting stratum sample sizes exceed
what they would be under proportional allocation ( fNh). Compared to proportional
allocation, oversampling may increase the variance for statistics such as ȳw that
weight each stratum proportional to size (Nh).

3.3. Design Effect for Stratified Simple Random Sampling2

The design effect (deff ) for a statistic under a given sampling design is defined as
the ratio of its variance to what the variance would be for a comparable statistic
under simple random sampling (Kish 1965, 258). For example, the design effect
for the estimate of the mean under stratified sampling is the ratio of (3.1) to (1.3).

2 This is a specialized topic and may be skipped without loss of continuity.



P1: MRM/SJS P2: MRM
SVUS004-Alho & Spencer April 21, 2005 16:59

3. Stratified Sampling 39

Although the numerator (3.1) may be estimated by (3.2), a proper estimator of
deff is not immediately obvious, because s2 in (1.1) typically is not an unbiased
estimate of S2 of (1.1) for sampling designs other than SRS.

Matters are simpler when estimating proportions, however, because if each yi

is 0 or 1, then S2 = Ȳ (1 − Ȳ )N/(N − 1) so (1.3) may be unbiasedly estimated by
(1 − f )ȳw(1 − ȳw)/(n − 1). In this case the estimated deff is

∑H
h=1 W 2

h (1 − fh)ȳh(1 − ȳh)/(nh − 1)

(1 − f )ȳw(1 − ȳw)/(n − 1)
. (3.3)

If proportional allocation is used, the design effect typically is less than 1 (Exer-
cise 6), but the design effect can well exceed 1 if oversampling is used or if optimal
allocation is used to minimize variance for a different statistic than the one we are
analyzing.

Estimates of deff are useful both as summaries of efficiencies (or inefficiencies)
of sample designs and for approximating the sampling variance of a statistic.
For example, suppose that design effects are calculated for a variety of estimated
proportions and have a median value of c, and we have estimated another proportion
by p from a sample of size n. A quick estimate of the sampling variance of p
is c(1 − f )p(1 − p)/(n − 1). This estimate could be off, however, as different
statistics may have quite different design effects, and examination of not just the
median design effect (or average) but also their spread is appropriate.

Example 3.2. Design Effects for NELS:88. Design Effects were calculated for
a large number of base-year questionnaire items in NELS:88. The mean design
effects for school questionnaire items were 1.82 for all schools, 2.23 for public
schools, and 1.40 for private schools (Spencer et al. 1990, 52). The design effects
were greater than 1.0 because the schools were selected with unequal probabilities
across strata (private schools were oversampled) and, more important, within strata
schools were selected with probabilities proportional to estimated eighth grade
enrollment, which is efficient for surveying students but not efficient for estimating
school characteristics based on equal treatment of large versus small schools. ♦

3.4. Poststratification

If an SRS is selected and stratum sizes Nh are known, the sample may be stratified
after the fact and analyzed as if it were stratified initially; this practice is called
poststratification. Poststratification does not cause bias in the estimate of a popula-
tion mean or total if the sample means for the poststrata are conditionally unbiased
(given the sample sizes from the poststrata). Poststratification can cause bias if the
choice of poststrata depends on the observed values of the means, which can be
avoided if the poststrata are chosen prior to analysis of the sample data. Poststrat-
ification improves variance nearly as much as proportional allocation provided
the sample sizes within strata are not too small – Cochran (1977) recommends
nh > 20.
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Example 3.3. Poststratification in the 1990 U.S. Post Enumeration Survey (PES).
Post Enumeration Surveys are used to estimate undercounts and overcounts in
censuses. The rates are known to vary among subgroups defined by variables
such as age, sex, race, geographic location, family type, and housing type. As
discussed in Example 6.1 of Chapter 2, overall estimates will be biased if the
subgroup membership is not taken into account. In the 1990 PES, the U.S. Census
Bureau initially used 1,392 poststrata in calculating the estimates (Example 4.1,
Chapter 10). Excessive sampling variance due to small sample sizes for some of the
poststrata led to a “revised” poststratification using 357 poststrata (Hogan 1993).
The latter poststratification was based in part on analysis of the data. Also, the
PES used cluster sampling and because sample elements from the same cluster
could fall into different poststrata, statistics calculated for different poststrata are
not independent. We continue the discussion in Examples 4.4 and 7.2, below. ♦

The term “poststratification” is used not only to describe stratification after the
fact, but also for calibration of sample weights to sum to known totals (Section 4.2),
to reduce non-response bias (Section 4.3), and to adjust for survey undercoverage or
overcoverage (Chapter 10, Section 5.2). In these other applications, independence
of selections in different poststrata is not assumed.

4. Sampling Weights

4.1. Why Weight?

In many applications, one has a sample of elements that appear in the sample with
unequal probabilities. Sometimes the unequal probabilities occur by design, other
times as a result of nonresponse or nonparticipation (Kish 1965, 425; Kish 1992).
Define indicator random variables Ik = 1 if element k is selected in the sample
and Ik = 0 if it is not. Define the first-order inclusion probability πk = E[Ik] to
be the probability that element k is in the sample. The unweighted sample mean ȳ
typically will be biased. To see this, first reexpress ȳ as

ȳ = 1

n

N∑
k=1

yk Ik (4.1)

and notice that the yk’s are fixed (but unknown except for the sample) and the Ik’s
are random. Take expected values to obtain

E[ȳ] = 1

n

N∑
k=1

ykπk . (4.2)

Define the population covariance between π and Y as

σYπ =
N∑

k=1

ykπk/N − Ȳ
N∑

k=1

πk/N . (4.3)
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Note that π1 + · · · + πN = n (because I1 + · · · + IN = n) and so E[ȳ] =
(N/n)σYπ + Ȳ . This shows that the unweighted sample mean has bias (N/n)σYπ ,
and hence E[ȳ] = Ȳ if and only if the correlation between the selection probabil-
ities and the variable is zero.

In general, if elements are selected with unequal probabilities, there can be no
assurance that unweighted estimates will be approximately unbiased. For example,
the weighted mean in stratified sampling may be written as

ȳw = 1

N

H∑
h=1

nh∑
i=1

whi yhi (4.4)

with whi = Nh/nh = 1/ fh = the reciprocal of selection probability. Suppose H =
2, and we had a sample of 10% from stratum h = 1 and 25% from stratum h = 2,
where the two strata were each half the population (N1 = N2 = N/2) . The un-
weighted mean would be biased unless the means of the two groups were exactly
equal.

4.2. Forming Weights

The basic principle of weighting (as, e.g., in (4.4)) is to set a unit’s weight equal to
the reciprocal of its selection probability. The weights often are called either sample
weights or case weights. If the weights are wk = 1/πk , the Horvitz-Thompson
estimator of the population total is defined as the weighted sum

T̂H T =
n∑

k=1

wk yk, (4.5)

and is unbiased for the population total TY (Exercise 7). Consider the case when
each yk ≡ 1 and notice that the sum of the weights is an unbiased estimator of
N . Correspondingly, if yk = 1 when element k is in a subgroup G and yk = 0
otherwise, then T̂H T is the sum of the weights for the members of G in the sample,
so it is an unbiased estimator of NG . In stratified SRS, the sum of the weights in
stratum h is exactly Nh and the sum of the weights for all sampled elements is N .

Example 4.1. NELS:88 First Followup Schools. In 1990, two years after the
NELS:88 base-year survey, the sampled students were surveyed again (actually,
to save money, subsamples of the more than 24,000 base-year students were sur-
veyed). Most of the students were in tenth grade, and most of the students were in
different schools. For analyses of the schools in the first follow-up survey, school-
level sampling weights were needed. The weights were set inversely proportional
to the probability that a school was in the first follow-up survey. A school had a
positive probability of being selected in the first follow-up if it enrolled at least
one student who was eligible for selection in the base year, and in general that
probability was a function of the numbers of students in the school who in 1988
were eighth grade students, their base-year selection probabilities, and how they
were clustered in different schools in 1988. The probabilities could be estimated
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from specially collected data on what 1988 schools contributed students to the
school in question in 1990 (Spencer and Foran 1991), and weights were set equal
to the reciprocals of those probabilities. ♦

Although the expected value of the sum of the sample weights (wk = 1/πk) is
always N , in many applications the sum of the weights – for the population as a
whole and especially for subgroups – is random. When the sum of the weights is a
random variable (or when non-response or population undercoverage or overcov-
erage is present), adjustments may be imposed so that the weights sum to a known
total or the weights for subgroups sum to known sets of totals. A widely used
adjustment forces the weights to sum to the population size N. Or the calibrated
weight equals sample weight × adjustment factor, that is,

w̃k = 1

πk

N∑n
i=1 1/πi

. (4.6)

The analytical properties of estimators using such calibrated weights are more
complex, but their use does confer some advantages in usual practice. (The com-
plexity arises because the weight w̃k for unit k depends on which other units are
in the sample, a dependence not affecting wk .) If one is estimating a proportion by
a weighted mean, using the weights wk could lead to an estimate greater than 1,
but weights w̃k always lead to estimates between 0 and 1. In many cases esti-
mators based on w̃k will have smaller variance than those based on wk (Särndal,
Swensson, and Wretman 1992, 182–184). Statistical agencies sometimes make ad-
ditional adjustments to weights to force various linear statistics to equal population
values or other control values, via raking (Deming 1964) and its extensions (Haber-
man 1984) or regression models (Deville and Särndal 1992, Deville, Särndal, and
Sautory 1993). A concise discussion is given by Rao (2003, 13–15, 20–21).

Advanced techniques (not recommended for casual use, but often carefully
implemented in public use data files for large-scale surveys) modify the weights
to reduce sampling variance of estimators though at the cost of introducing bias.
Such techniques may involve “trimming” the largest weights or by shrinking all of
the weights (averaging the vector of weights with a vector of constants); see Kish
(1992), Potter (1990), Qian and Spencer (1994), and Kalton and Flores-Cervantes
(2003).

Example 4.2. Extreme Weights in the 1990 U.S. PES. The 1990 PES was a sample
survey conducted to provide data for estimating the gross overcount and gross
undercount in the 1990 U.S. census. The sample consisted of a stratified sample
of more than 5,000 small areas, called clusters. (See Chapter 10, Example 4.1 for
further details.) Within each cluster, the census was essentially redone, and data
were collected to allow for dual-system estimation as described in Section 6 of
Chapter 2 and Section 5 of Chapter 5. The clusters were selected with unequal prob-
abilities, so that areas with small numbers of households (as estimated from pre-
census listings of housing units) had very small selection probabilities, and densely
populated city blocks had larger selection probabilities. Some clusters, however,
had large numbers of housing units but, as a result of errors in the pre-census



P1: MRM/SJS P2: MRM
SVUS004-Alho & Spencer April 21, 2005 16:59

4. Sampling Weights 43

listings, were selected with small probabilities and, when they appeared in the
sample, received very large weights. One such cluster in the sample contributed
0.75 million to the estimate of undercount. The problem arose from a combination
of a large weight and an outlier data value. Zaslavsky, Schenker, and Belin (2001)
discuss the problem and discuss the use of robust methods for treating it. ♦

When using statistical software that accommodates unequal probability samples,
one should be aware that the software may assume that the weights are of the form
wk rather than w̃k . Although one can use variants of (2.3) to estimate the variance
when (4.6) is used, estimating variance when more complex weighting adjustments
are used requires special software or procedures, e.g., Stukel, Hidiroglou, and
Särndal (1996). Unless we construct the adjusted weights ourselves, we may not
have the data to account for the variances in the weights. The effect on variance
estimates of ignoring the complexity in the weights often is not severe in practice
unless the differences between wk and w̃k are large.

4.3. Non-Response Adjustments

Non-response is a common problem in demographic surveys: targeted respondents
may not be located, may be located but not contacted, may be contacted but
not provide usable data. Lohr (1999, Chapter 8) gives an accessible overview
of nonresponse and a recent extensive treatment is provided by Groves et al.
(2001). Unit non-response is said to occur when virtually no data are provided
by the targeted respondent. Often, the unit non-respondents are not treated as
part of the data file and a weighting adjustment is used to allocate the sampling
weight for the unit non-respondent to one or more respondents. Some adjustments
are based on a model that the survey participants are the result of two stages of
random selection, first is probability of selection into the sample and second is a
response propensity or conditional probability of responding given selection. The
propensities are estimated with statistical models for estimating probabilities or
rates (e.g., Section 5 of Chapter 5) and may be used directly (e.g., Alho et al.
1991) or to define weighting cells. Weighting cells are analogous to poststrata,
except that the counts for weighting cells are based not on the whole population
but on sample-weighted numbers of sample selections falling into the cells. The
response propensity for a weighting cell is calculated as the ratio of the sample-
weighted number of respondents to the sample-weighted number of selections in
the cell. The non-response adjustment factor for a respondent is the reciprocal of
the estimated propensity for the respondent. The assumptions or model behind the
weighting will be incorrect to one degree or another, and bias may result. To
assess the degree of error from imperfect non-response weighting adjustments,
alternative weighting methods sometimes are used, but how well the resulting
spread of estimates reflects the error will vary from situation to situation.

Example 4.3. Nonparticipation in a Survey in an STD Clinic. An extreme case of
error from unit response occurred in blood testing of patients at a clinic for treating
sexually transmitted diseases (STD’s). Everyone in the group had given a blood
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sample, and the samples without identifying information were tested for HIV, with
17 positives found. In a survey of the patients, 82 percent agreed to participate, but
only 8 tested positive. Had the survey been able to test the remaining 18% (who
were nonparticipants), an additional 9 would have tested positive. Nonparticipation
caused the survey estimate to be biased downward by a factor of 0.57 (Hull et al.
1988). ♦

Example 4.4. The Dual System Estimator as a Propensity-Weighted Census. Sec-
tion 6, Chapter 2 presented a model-based estimate of population size based on a
census with n1 enumerations and a second, sample survey with n2 enumerations,
of which m were counted in both. The dual-system estimator (DSE) was n1n2/m.
A person not being counted in the census can be viewed as non-response, and we
can consider an individual i to have a response propensity, which we will view
as an enumeration probability πi . If we view m/n2 as an estimate of πi , we can
interpret the MLE as a Horvitz-Thompson estimator with estimated weights,

n1∑
i=1

yi/π̂i , (4.7)

with π̂i = m/n2 and yi = 1. Example 6.1 of Chapter 2 showed how unequal prob-
abilities of enumeration could lead to bias in the DSE, but if the estimates could
be poststratified so that the probabilities were homogeneous within poststrata, the
bias could be corrected. ♦

Item non-response occurs when the targeted respondent’s data are included in the
data file but a variable is missing because the response to one or more questionnaire
items is not available or not usable. A common practice that facilitates data analysis
in the presence of item non-response is to use imputation to predict or fill-in the
missing data item or items. Using imputed values as if they are actual observed
values carries two risks. First, the imputations may be systematically wrong, e.g., if
people with extremely high or extremely low incomes are more prone to non-report
income data (even when other observed characteristics are taken into account),
using reported values to impute non-reported values might bias the median up
and the mean down. Second, variances computed from imputed values treated
as actual observations tend to be too small. For example if a sample of size n
includes some imputations that are used in estimating a mean, s2 may be smaller
in expected value than S2 (depending on how imputations are made) and n will
be larger than the actual number of observations, with the result that s2/n may
tend to underestimate the sampling variance. Methods for estimating the variance
with allowance for randomness in the imputations include multiple imputation and
jackknife methods and is an active area of research; see Rubin (1987, 1996), Fay
(1996), Rao (1996), Rao and Shao (1992) and, for overview, Korn and Graubard
(1999, 211–218). These methods might not be applicable in secondary analysis
of a data file unless details on the imputation are available, including which cases
were used to impute for other cases.



P1: MRM/SJS P2: MRM
SVUS004-Alho & Spencer April 21, 2005 16:59

4. Sampling Weights 45

4.4. Effect of Weighting on Precision

As noted in Section 4.1, unless the covariance σYπ is zero, weighting is needed
to ensure unbiasedness or approximate unbiasedness of estimates of population
means or totals. If the covariance is zero, or sufficiently small, more accuracy may
be attainable without weights. If the covariance is zero, so weighting is unnecessary,
but the weights wk or w̃k are nevertheless used to estimate the population mean, the
weighting multiplies the variance of the estimator by a factor of g = (n/N )W̄ ≥ 1,
where W̄ is the population mean of the wk’s (Kish 1965, Section 11.7; Gabler,
Haeder, and Lahiri 1999; Spencer 2000a). The factor g may be estimated from
the sample by the formula, “one plus the relative variance of the weights” in the
sample as recommended by Kish (1965, 1992). The factor g is often called the
design effect from weighting or the variance inflation factor (Kalton and Flores-
Cervantes 2003).

Given the increase in variance from unnecessary weighting, how can one decide
whether weighting is necessary? It is possible to compare weighted and unweighted
estimates to see if they have the same expected values, and if they do then it is not
unreasonable to use unweighted estimates. DuMouchel and Duncan (1983) and
Fuller (1984) describe hypothesis tests for linear models. Nordberg (1989) pro-
vides tests for generalized linear models to compare weighted versus unweighted
coefficients. Pfefferman (1993) describes use of the Hausman specification test
for additional models. He makes the important points, however, that the null hy-
pothesis in all of those tests asserts that the expected values are the same with
and without weighting, and lack of power in a test can lead one to incorrectly
fail to reject the null hypothesis. Furthermore, even if expected values are equal,
any probability statements could still be incorrect if the error structure is more
complicated than specified under the null hypothesis.

What should one do if the weighted and unweighted estimates appear to have
different expected values? The answer depends on one’s goals and the standard
errors of the estimates. It is possible for weighted estimates to have smaller stan-
dard errors, although often weighted estimates have higher standard errors. If the
difference is caused by outliers that have large weights due to their small sampling
or response probability, we would consider trimming or shrinking the weights, as
mentioned in Section 4.2. In model-based analyses (including many studies with
causal aims), a large difference in estimates of expected values suggests that some
aspects of the models being entertained may be incorrectly specified – in that case,
one can try to revise the model or use weighted estimates, which at least have
the property of estimating the population-level parameters of the model one has
specified.

On the other hand, if the design effect from weighting is quite large despite
weight trimming or shrinkage, some compromise strategy might be appropriate,
even in descriptive studies. For such cases, Korn and Graubard (1999, 1995) recom-
mend modifying the estimand to include variables strongly related to the weights
(or stratum definitions) and using unweighted point estimates or reducing the vari-
ability of the weights as discussed in Section 4.2.
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Example 4.5. Extreme Weights in the Survey of Consumer Finance. The Survey
of Consumer Finances (SCF) collects data on household finances, income, assets,
debts, demographics, attitudes, employment, and other activities. The sample is
selected from two frames. One sample is selected with area-based cluster sampling
and provides data for the population generally. A second sample is selected from
lists of persons who filed individual income tax returns. An index of wealth is
constructed from the tax return data, and individuals are stratified by that index
(Frankel and Kennickell 1995). The second sample provides most of the data on
high-income and high-wealth individuals. In the 1983 SCF, a single respondent in
the list sample had an unusually low selection probability but reported ownership
of a $200 million business; the sample-weighted wealth for the individual “rep-
resented $1 trillion, or about 10 percent of total wealth” (Avery, Elliehausen, and
Kennickell 1986, 20). Later, a reinterview showed that the $200 million datum was
an interviewer error – the business should have been recorded as $2 million. This
underscores the critical importance of data quality in addition to correct statistical
methods (cf., U.S. Federal Committee on Statistical Methodology 2001). ♦

5. Cluster Sampling

5.1. Introduction

Selecting a SRS or stratified SRS may be difficult in practice. A listing of individual
population elements with contact information (e.g., for sample of the national
population) may not be available. Field costs can be high if the sample is spread
out geographically and administrative costs can be high in sampling individuals
from institutions if many institutions (such as hospitals or schools) are in the
sample. A solution to these problems is to group individual elements into clusters
and sample the clusters. Clusters may be geographic or institutional or derived in
other ways. For example, Roberts et al. (2004) applied cluster sampling to estimate
mortality related to the 2003 Iraq war.

In single stage cluster sampling a sample of clusters is chosen (the clusters are
“primary” sampling units, or PSUs) and all elements within the sampled clusters
form the final sample. In a two-stage cluster sample a sample of clusters is first
selected, and then a sample of the elements of the chosen clusters is selected
(“secondary” sampling units). These form the final sample. This readily generalizes
to hierarchical multistage sampling with more than two stages of selection (Kish
1965, 155).

Often, the design effect for a statistic from a cluster sample is greater than 1,
indicating less precision than a SRS of the same size. Indeed, it is possible for the
design effect to be vastly greater than 1, implying that if the clustering is not taken
into account in the variance estimation, the estimated variances could be the wrong
order of magnitude. However, cluster sampling often is more cost-effective than
element sampling, so that the sample may include a larger number of elements
with cluster sampling than with SRS. Thus, the ratio of precision to cost may be
lower even if deff > 1.
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We first consider single stage sampling with replacement. This will turn out to be
of practical importance as an approximation for estimation under more complicated
designs.

5.2. Single Stage Sampling with Replacement

Suppose a sample of size 1 is selected from among A clusters so that cluster α has
probability zα > 0, α = 1, . . . , A, of being selected. Note that z1 + · · · + z A = 1.
Suppose yα is the cluster total of the variable of interest. Let Iα = 1 if cluster α is
selected, and Iα = 0 otherwise. The Horvitz-Thompson estimator of the population
total is then I1 y1/z1 + · · · + IA yA/z A. Since P(Iα = 1) = zα , this is unbiased.
Suppose we independently repeat the selection a times. Let the estimate obtained
in the i th selection be yi/zi , i = 1, . . . , a. Averaging the estimates obtained in this
manner yields the Hansen-Hurwitz estimator

T̂HH = 1

a

a∑
i=1

yi/zi . (5.1)

As an average of unbiased estimators, this is also unbiased for the population total.
To estimate the population mean, simply divide the estimator of the total by N (or
by an estimate of N ). The variance of (5.1) is unbiasedly estimated (Exercise 8) by

V̂ar(T̂HH ) = a

a − 1

a∑
i−1

(y̆i − ¯̆y)2 (5.2)

with y̆i = yi/(azi ), the value of yi inversely weighted by the expected number of
times it appears in the sample, and ¯̆y = y̆1/a + · · · + y̆n/a.

5.3. Single Stage Sampling without Replacement

Consider now that a of the A units are selected without replacement, with πα the
probability that unit α is selected into the sample and παα′ the probability that units
α and α′ are both selected in the sample. In this case a cluster can only be sam-
pled once, so we index the sampled clusters by α. Again, the Horvitz-Thompson
estimator

T̂H T =
a∑

α=1

y̆α (5.3)

with y̆α = yα/πα is unbiased for the population total. (This is really the same
setup as (4.5), if we recognize that each yi in (4.5) is now the total for PSU i .)
However, its variance depends not just on first-order selection probabilities πα but
also on joint selection probabilities παα′ for PSUs α and α′. Without additional
assumptions, unbiased estimation of the sampling variance is possible only when
παα′ > 0 for all pairs of PSUs. This condition is not satisfied by many sample
designs in which the PSUs are selected with systematic sampling (Section 6). In
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addition the παα′ ’s must be known for all pairs of PSUs in the sample, which may
not be the case in secondary analysis of data collected by others.

A practical expedient is to estimate the variance as if the sample were selected
with replacement in a independent draws with draw-by-draw selection probabili-
ties zα = πα/a. With these specified probabilities, the calculation of T̂HT and T̂HH

yield the same results as point estimates, and (5.2) provides a serviceable approx-
imation for the variance. It is reasonable to suppose that the estimated variance
will be conservative (tend to be too large in expected value) because the without-
replacement aspect of the sampling is ignored (Durbin 1953), although just how
conservative depends on the sampling rates.

To estimate the mean for the population or for a subgroup more generally, we
can divide the estimator of the total by the size of the population or subgroup (if
known) or by an estimate. Define xαβ = 1 if element β in PSU α is in the subgroup
and xαβ = 0 otherwise and define yαβ to equal the variable of interest if element
β in PSU α is in the subgroup and yαβ = 0 otherwise (or redefine yαβ as xαβ yαβ).
The total for PSU α is yα = yα1 + · · · + yαB and the size of the subgroup in PSU
α is xα = xα1 + · · · + xαB . Define weighted PSU sample totals by y̆α = wα yα and
x̆α = wαxα with wα = 1/πα and estimate the mean by the ratio of the weighted
totals,

R̂ =
a∑

α=1

y̆α

/ a∑
α=1

x̆α. (5.4)

From the linearization argument of Section 2 we know that this is approximately
unbiased and its variance may be estimated (under the with-replacement assump-
tion) by

V̂ar(R̂) = a

a − 1

a∑
α=1

ĕ2
α

/( a∑
α=1

x̆α

)2

(5.5)

with ĕα = y̆α − R̂x̆α.

Example 5.1. Survey of the Homeless in Chicago. In 1985 and 1986 two sample
surveys were conducted to estimate the number of homeless people in Chicago
and their characteristics. An operational definition of homeless was needed, and
was based on where a person needed to spend the night at the time the survey was
fielded. Homeless people were divided into two groups, those in public shelters and
those “on the street”. A list of public shelters was obtained, stratified by number
of beds, and sampled. (Within shelters, residents were sampled, which is a form of
multi-stage sampling as discussed in the next section.) To sample the homeless on
the street, PSUs were defined as “census blocks, usually identical to residential or
commercial blocks as conventionally understood, but also including open places,
parks, railroad yards, or vacant land. Census blocks are divisions of the entire
area of a city, including all land, whatever the use to which that land may be
dedicated. For the city of Chicago, the 1980 Census defined approximately 19,400
blocks” (Rossi, Fisher, and Willis 1986, 11). A SRS of the blocks would yield few



P1: MRM/SJS P2: MRM
SVUS004-Alho & Spencer April 21, 2005 16:59

5. Cluster Sampling 49

homeless, as the homeless tended to concentrate in certain areas. Stratification of
the blocks was based on the subjective ratings of those members of the Chicago
Police who were closely familiar with the blocks, and disproportionate sampling
was used to minimize variance (based on prior assumptions). Each sampled block
was included in the survey, and a professional interviewer and an off-duty Chicago
policeman as a pair visited each face of the block at a time between midnight and
4 A.M. and attempted to find each person on the street (or parked car, or unlocked
entryway, etc.). The surveys were run for two two-week periods, September 22–
October 4, 1985 and February 22–March 7, 1986. The estimated average daily
numbers of homeless in those periods were 2,344 (735) and 2,020 (275), with
estimated standard errors shown in parentheses. ♦

5.4. Multi-Stage Sampling3

For efficiency purposes, it is common to choose a random subsample of elements
from the sampled PSUs. The subsamples need not be selected by simple random
sampling themselves; e.g., they may be drawn in one or more stages, e.g., in the
U.S., counties or groups of counties may be the PSUs, then cities (or areas outside
cities) may be selected at the second stage, then blocks may be selected at the
third stage, and then housing units may be selected at the fourth stage. Stratified
or systematic sampling may be used as well. Using the “ultimate cluster” method
of variance estimation, we do not need to keep track of all stages of sampling,
but only which selections came from each PSU (or “ultimate cluster”). Let wαβ

denote the sampling weight for element αβ; e.g., if PSU α was selected with
probability πα and the conditional probability that element β was selected given
that the PSU was selected is πβ|α , then the weight is wαβ = 1/(παπβ|α). Let yαβ

denote the value of the variable of interest for element αβ if it is in the subgroup and
yαβ = 0 otherwise, and let xαβ = 1 if element αβ is in the subgroup of interest
and xαβ = 0 otherwise. Form weighted values y̆αβ = wαβ yαβ and x̆αβ = wαβ xαβ

and form weighted PSU sample totals as

y̆α =
bα∑

β=1

y̆αβ and x̆α =
bα∑

β=1

x̆αβ, (5.6)

with bα the number of elements subsampled from PSU α.
To estimate the total for the subgroup we can use the Horvitz-Thompson estima-

tor (5.1) and we can estimate its variance by (5.2) (Complement 9). The variance
estimation method is called the ultimate cluster method.

Alternatively, if the size of the subgroup is known to be, say, TX , we can estimate
the total by the “ratio-estimator of the total”, R̂TX . An estimate of its variance is
provided by T 2

X times (5.5). For practical purposes, we may compute both estimates

3 This is a specialized topic and may be skipped without loss of continuity.
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and their variance estimates and choose the simpler estimate (Horvitz-Thompson)
unless the ratio estimate appears to have appreciably smaller variance.

5.5. Stratified Samples4

Stratification and multistage sampling are often used together. We review here some
of the complexities that arise. Often, the PSUs are stratified, and it is also possible
that cluster sampling will be used in some strata and not others. In some cases,
even if stratification is not explicitly used, some large PSUs may be selected with
certainty, and then the analysis should proceed as each certainty PSU comprised
a separate stratum (and then the secondary sampling units are treated as PSUs
within the stratum) and the remaining sample selections were in another stratum
(or strata, as the case may be).

To estimate the population total T , one may separately estimate the total for each
stratum and then sum the estimates, using say T̂1 + · · · + T̂H , with T̂h an estimate
of the total for stratum h. The latter may be Horvitz-Thompson estimates or ratio-
estimates. The variance of the estimator of the total is estimated as the sum of
the variances of the individual T̂h’s, namely Var(T̂1) + · · · + Var(T̂H). Specifically,
consider sampled element hαβ, i.e., subsampled element β in sampled PSU α

from stratum h. Denote its sampling weight by whαβ , let yhαβ denote the value
of the variable of interest for element hαβ if it is in the subgroup and yhαβ = 0
otherwise, and let xhαβ = 1 if element hαβ is in the subgroup of interest and
xhαβ = 0 otherwise. Form weighted values y̆hαβ = whαβ yhαβ and x̆hαβ = whαβ xhαβ

and define weighted PSU sample totals by

y̆hα =
bhα∑
β=1

y̆hαβ and x̆hα =
bhα∑
β=1

x̆hαβ, (5.7)

with bhα the number of elements subsampled from PSU α in stratum h. The
Horvitz-Thompson estimator of the population total is then

T̂Y,st =
H∑

h=1

ah∑
α=1

y̆hα. (5.8)

If we use the with-replacement estimator of variance from (5.2), we have

H∑
h=1

ah

ah − 1

ah∑
α=1

(y̆hα − ¯̆yh)2 (5.9)

as an estimator of variance of (5.8), where ¯̆yh = ∑ah
α=1 y̆hα .

To estimate the mean, one may use either T̂Y,st/TX , if TX is known, or the ratio
mean

R̂c = T̂Y,st/T̂X,st’ (5.10)

4 The topic is rather specialized so the section may be skipped without loss of continuity.
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with T̂X,st defined analogously to T̂Y,st in (5.8). A linear approximation to the error
in R̂c is

R̂c − R ≈ (T̂Y,st − RT̂X,st )/TX =
H∑

h=1

ah∑
α=1

ε̆hα/TX (5.11)

with ε̆hα = y̆hα − Rx̆hα. To approximate the mean and variance of the left side of
(5.11), we look at the mean and variance of the right hand side, which is 1/TX

times a Horvitz-Thompson “estimator” based on the unobservable ε̆hα. To estimate
the variance, we define ĕhα = y̆hα − R̂c x̆hα and use

V̂ar(R̂c) =
H∑

h=1

ah

ah − 1

ah∑
α=1

(ĕhα − ¯̆eh)2
/

T̂ 2
X,st (5.12)

with ¯̆eh = ∑ah
α=1 ĕhα/ah . The variance of the combined ratio estimate of the mean

may be estimated by (5.12) as stated or with T 2
X used in the denominator.

Example 5.2. NELS:88 Sample of Students. From each school in the base-year
sample in NELS:88 (Example 3.1), a sample of eighth-grade students was selected.
The schools were selected with probability proportional to the estimated number
of eighth-grade students (based on information available for all schools in the
frame), and for any given type of school the proportionality factor was constant,
so that if a constant number of students were sampled in each school and the
estimated numbers of students were correct, each student in a given type of school
would have the same selection probability. The actual number of students selected
per school varied slightly because within the sampled schools, oversamples of
black and Hispanic students were selected with stratified sampling. The fact that
stratified sampling was used within schools does not need to be taken into account
in variance estimation if the collapsed stratum method is used.

A subsample of students in the base-year sample were surveyed again in follow-
ups in 1990, 1992, 1994, and 2000. Students reported on school, work, and home
experiences, activities, and attitudes, and achievement tests were administered as
part of the survey in 1988–1992. Students’ teachers, parents, and school admin-
istrators were also surveyed. (Determining selection probabilities for teachers is
difficult, although if teacher data are analyzed as student attributes the student
weights may be used.) For analysis of student growth over time, it is important to
note that the original PSU – the eighth grade school – remains the PSU for variance
estimation. ♦
Example 5.3. The U.S. Current Population Survey. The Current Population Survey
(CPS) is a stratified multi-stage sample survey of the U.S. population, with a sample
size on the order of 60,000 households per month (although budgetary fluctuations
cause sample sizes to vary from one set of years to another). The sample overlaps
heavily from one month to the next, in a deliberate design known as a rotation
sample. A housing unit is in the sample for 4 consecutive months, is left out for
the next 8, and then it returns into the sample for the following 4 months, after
which it is replaced by a new selection. The rotation design is less expensive than
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sampling independently each month and improves the precision of estimates of
monthly and annual change. Compared to a permanent panel, the rotation design
gives more precise estimates of averages across years and eases response burden as
well. Although its primary purpose is to provide employment data, in some months
(or years) the CPS includes detailed questions on income, fertility, education, and
other topics.

Since there is no list of people (and contact information) in the U.S., the CPS sam-
pling frame is based on geographic areas. The U.S. is partitioned into about 2,000
PSUs, which typically consist of counties or groups of counties in the same state.
Highly populated PSUs are selected with certainty (“self-representing PSUs”) and
each comprises its own stratum; the remaining PSUs are stratified based on number
of male unemployed, number of female unemployed, and household demograph-
ics, for 432 strata in all (as of 1995). One PSU is selected from each stratum. Within
each sample PSU, lists of ultimate sampling units (USUs, typically, clusters of 4
adjacent addresses) are prepared based on the previous census and a systematic
sample (Section 6) is selected. In large USUs, further subsampling may be done.
A sample of building permits supplements the list of USUs to account for recently
constructed housing units. The design is quite sophisticated and has evolved over
many years; a comprehensive reference is U.S. Census Bureau (2002). ♦

6. Systematic Sampling

We consider selecting a systematic sample of n units from a listing of N units such
that each unit has the same selection probability. For simplicity, first suppose k =
N/n is an integer. A systematic sample consists of units r, r + k, r + 2k, . . . , r +
(n − 1)k with r chosen to be an integer between 1 and k. Once r is randomly
picked, the rest of the sample is determined. There are r possible systematic
samples. Alternatively, the procedure may be viewed as choosing 1 of k possible
clusters at random. If the list is in random order, the sampling is equivalent to
random sampling, but more often the list is sorted by some criterion prior to sample
selection. As we have described it, systematic sampling uses equal probabilities
of selection, so the unweighted mean is unbiased.

It is perhaps slightly surprising that the variance of the estimator of the popu-
lation total from a systematic sample can be smaller than that of a single random
sample of the same size. This occurs if the variance of the y values within the
systematic samples is larger than the population level variance of the y values,
or equivalently when the intracluster (or intraclass) correlation within systematic
samples is negative (Cochran 1977, 208–209). Another way of looking at sys-
tematic sampling is to see it as stratified sampling with dependent selections. In
the sampling frame, the first k units are called the first zone, the next k units are
the second zone, and so on until the nth zone consisting of the last k units. If we
selected one unit from each zone, independently across zones, we would have a
stratified sample. In systematic sampling, we select one unit from each zone but
not independently: if we select the j th unit from the first zone, we select the j th unit
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from the every zone. For this reason, zones are often called implicit strata. The
analogy with stratified sampling is helpful for variance estimation. A common
method for estimating sampling variance when there is no replication (i.e., the
sample consists of a single cluster) is to pretend the systematic sampling is equiv-
alent to stratified sampling with one selection per stratum and to use the collapsed
stratum method (Section 3.2) to estimate variance. The success of such variance
estimation methods depends on the sort-order of the population list. Unlike the
other methods of random sampling we have discussed, the sampling variance does
not necessarily decrease as the sample size increases.

Example 6.1. Systematic Sampling of Private Schools in the National Assessment of
Educational Progress. The National Assessment of Educational Progress (NAEP)
is a test given to samples of students in several grades in the U.S. The main
component is a public school sample, but a private school sample is also selected
and is important for analyses comparing public and private student performance.
The private school students are selected in two-stage sampling, rather similar to
NELS:88 (Examples 3.1 and 5.1), with schools selected with systematic sampling
with probabilities proportional to a measure of size of the school. In an investigation
of the properties of variance estimators, Burke and Rust (1995) created a population
of 105 schools that were selected in NAEP for 1994, and assigned a mean score to
each school based on the observed mean from the 1994 student sample from the
school (based on about 30 students per school). The schools were sorted using the
characteristics underlying the NAEP private-school sample design and systematic
samples of various sizes (numbers of schools) were selected. Analysis showed that
the sampling variances (and mean square errors) did not decline monotonically
with the sample size. The variance estimation methods performed well however,
even with small sample sizes. ♦

Implementation of systematic sampling when k = N/n is not an integer is
discussed in texts such as Kish (1965, 115–116). One straightforward method is
to randomly choose a number r ∈ [0, k) and then randomly select units �r + 1 +
j × k�, j = 0, . . . , n − 1, with �x� denoting the largest integer ≤ x . The method
extends to selection of units with unequal probabilities (Cochran 1977, 265–266).

7. Distribution Theory for Sampling

7.1. Central Limit Theorems

Central limit theorems apply to the weighted sample mean and Horvitz-Thompson
estimators from many kinds of complex sample designs used in demographic sur-
veys. The classical central limit theory assumes the sampling is with replacement,
so that selections are made independently, meaning that πi j = πiπ j for units i and
j . Thus, if we select a simple random sample with replacement from a population
of size N with mean Ȳ and variance 0 < S2 < ∞, the distribution of the stan-
dardized sample mean is asymptotically normal N (0, 1). If the units are selected
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with unequal probabilities zi and with replacement, then the unbiased estimator of
the total, T̂HH given by (5.1), is the sample mean of the independent and identically
distributed variates yi/zi and again the classical central limit theorem implies that
the asymptotic distribution of (T̂HH − TY )/

√
Var(T̂HH) is N (0, 1), where the vari-

ance Var(T̂HH) is shown in Exercise 8. A central limit theorem also applies to the
weighted mean from a stratified simple random with-replacement sample with a
fixed number of strata with increasing sample sizes (because a weighted average
of normal random variables is normal) or with the number of strata increasing with
N and the sample sizes in the strata fixed (Krewski and Rao 1981).

Those central limit theorems need modification to apply to sampling without re-
placement, because in that method the individual observations are not independent.
If the sample is selected without replacement, or if number of strata increases with
n, then the concept of n growing without limit requires us to consider N growing
as well, for otherwise the sample would include the whole population (and keep
growing!). Thus, we consider a sequence of sampling situations with increasing
population sizes N and increasing sample sizes n such that lim n/N < 1.

Versions of the central limit theorem have been proved for without-replacement
sampling designs that are similar to simple random sampling in that either

πjk is approximately proportional to πjπk (7.1)

for PSUs i and j or successive sampling is used (Complement 26). For example,
Hájek (1960) and Erdös and Renyi (1959) showed that under some realistic condi-
tions on the population, the standardized sample mean, (ȳ − Ȳ )/(S

√
(1 − f )/n),

is asymptotically normal N (0, 1). The asymptotic normality of the Horvitz-
Thompson estimator in unequal-probability sampling has been established for
single-stage (Hájek 1964, Rosén 1972) and for multi-stage sampling designs whose
PSU-selection probabilities satisfy (7.1) and whose weighted PSU sample totals
in (5.1) satisfy certain moment-like conditions (Sen 1988). Additional conditions
involve the PSU selection probabilities being too small for some units relative to
others, the idea being that no single unit or small number or units contribute too
much to the variance. Asymptotic normality has also been proved for the weighted
mean in stratified simple random sampling when either the stratum sizes or the
number of strata grow with the population sizes and 2 ≤ nh ≤ Nh (Bickel and
Freedman 1984). The results extend to stratified multistage sampling. The results
do not apply to systematic sampling from a fixed population, where the limited
number of possible systematic samples may be an impediment to normality, and
where the variance can only be estimated under assumptions.

The central limit results mentioned above also apply to vectors of means
or Horvitz-Thompson estimators, whose asymptotic distribution is multivariate
normal.

We have not focused on the moment (or similar) conditions for the population
that are required to formally prove the central limit theorem (Thompson 1997).
When we are considering a finite population, practical considerations such as skew-
ness and the presence of extreme values (or extreme sample-weighted values) – in
relation to the sample size – become the most critical considerations. For example,
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a statistic computed from a sample of municipalities can have a highly skewed
sampling distribution, if most units are small but some large cities belong to the
list. Cochran (1977, 39–44) provides useful guidance concerning applicability of
the theory to finite samples, and discusses how the minimum n for the normal
approximation to work varies with the skewness in the underlying population.

7.2. The Delta Method

The delta method is a procedure for approximating random variables and especially
their means, variances, and covariances. We have considered it already in Exercise
11 of Chapter 2 and we used it in a special case to approximate the ratio in (2.2).
In this section we let Tn denote a general statistic (that may, but need not, be an
estimator of a population total). Suppose the sequence Tn, n = 1, 2, . . . is such that
Tn is asymptotically normal, specifically the limiting distribution of

√
n(Tn − θ ) is

N (0, σ 2(θ )). If g(.) is a function with a continuous non-zero derivative at θ, g′(θ ) �=
0, and σ (.) is continuous, then the distribution of

√
n[g(Tn) − g(θ )]

g′(Tn)σ (Tn)
(7.2)

approaches N (0, 1) as n → ∞. The basic idea is that g(Tn) ≈ g(θ ) + g′(θ )(Tn −
θ ) by Taylor’s theorem. For smaller sample sizes, Student’s t distribution may
often provide a better approximation, although the appropriate number of degrees
of freedom depends on the population, the sample design, and on the method used
for variance estimation.

This result generalizes to k-variate statistics Tn = (T1n, . . . , Tkn)T , for example
vectors of weighted means or totals. Suppose we have a sequence of statistics
Tn, n = 1, 2, . . . such that the limiting distribution of

√
n(Tn − �) is multivari-

ate normal N (0,Σ(�)), with Σ(.) a continuous function of �. Suppose further
that we have a function g = (g1, . . . , gq )T from R

k to R
q such that the matrix

of partial derivatives G(�) = (∂gi/∂θ j ) is continuous. Then the distribution of√
n[g(Tn) − g(�)] approaches N(0, G(�)Σ(�)G(�)T ) as n → ∞. Furthermore,

for inferential purposes we may approximate the limiting distribution by N (0,
G(Tn)Σ(Tn)G(Tn)T ) (Rao 1973, 385–389). The latter covariance is called the
linearization estimate, and for practical purposes we may use alternative estimates
of covariance (as discussed in the Section 8) that are asymptotically equivalent.

When the limiting distribution is normal with mean zero, it is customary to
say that the estimator is asymptotically unbiased. This does not necessarily mean
that the bias of the estimator goes to zero. For example, consider x̄ and ȳ to be
sample means and g(x̄, ȳ) = ȳ/x̄ to be the ratio estimator. If x̄ and ȳ are jointly
normally distributed, then one can show that E[g(x̄, ȳ)] does not exist5, although
as sample sizes get large and variances of x̄ and ȳ go to zero, the distribution of
g(x̄, ȳ) − g(E[x̄], E[ȳ]) approaches a normal distribution with mean 0.

5 The only time the mean exists is if ȳ = cx̄ with certainty, for some constant c.
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Example 7.1. Model-Based Variance of the Dual System Estimator (DSE). A hyper-
geometric model for dual system estimation based on a Post Enumeration Survey
(PES) was discussed in Section 6, Chapter 2. The model treated the number of
enumerations in the census, n1, and the number of enumerations in the PES, n2, as
fixed, and the number in both, m, as random. As discussed in Exercise 11 of Chap-
ter 2, a variance estimate of the DSE can be estimated obtained using the delta
method as (n1n2)2m−3(n1 − m)(1 − m/n2) (Chandra Sekar and Deming 1949;
Bishop, Fienberg, and Holland 1975, 233). Wolter (1986) presents some data from
the U.S. Census Bureau’s 1980 Post-Enumeration Program showing, for black
males, (weighted) counts n1 = 11,306,493, n2 = 11,233,060, m = 9,803,540. The
weights are needed because the PES was based on a sample of areas (blocks), so a
DSE based on unweighted counts would only estimate the population size of the
sample of areas. If we divide the counts by the average sampling weight, say w,
we can estimate the population for the sampled area as (n1/w)(n2/w)/(m/w) =
n1n2/(mw). Multiplying this by w to estimate the total population, we have the
usual form of the DSE but based on the weighted counts, or 12,955,169. The
estimated standard error according to the hypergeometric model is 1,809,549. ♦

7.3. Estimating Equations6

We review here some principles of statistical inference in a sampling context.
Consider again a population of size N . Many of the quantities we estimate from
sample surveys can be defined in a roundabout way as solutions to equations.
Denote the population characteristic of interest by θ and note that the population
mean is the solution to

N∑
i=1

(yi − θ ) = 0, (7.3)

the population ratio is the solution to

N∑
i=1

(yi − θxi ) = 0, (7.4)

and the population cumulative distribution function at a point y is the solution to

N∑
i=1

(I(−∞,y](yi ) − θ ) = 0. (7.5)

(Exercise 12). These equations are all of the form ψT (θ ) = 0, with

ψT (θ ) =
N∑

i=1

ψ(yi , xi , θ ). (7.6)

6 The section is somewhat theoretical and may be skipped without loss of continuity.
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As a sum over population values, ψT (θ ) can be thought of as a population total.
For any θ , ψT (θ ) can be unbiasedly estimated by the sample-weighted total

ψs(θ ) =
n∑

i=1

ψ(yi , xi , θ )/πi . (7.7)

A sample estimate, say θ̂ , can be obtained as a solution to the estimating equation
ψs(θ ) = 0.

Vector-valued estimating equations are useful for estimating vectors of char-
acteristics. For example, consider how the least-squares estimates for the linear
regression model satisfy a vector-valued estimating equation. Let yi denote the
variable y for element i and let xi be a q × 1 vector of covariates for element i
in the population. Consider a sample of n observations and write the sample val-
ues as X = (x1, . . . , xn)T and y = (y1, . . . , yn)T . The classical multiple regression
model asserts that yi is random with conditional mean (given xi ) equal to xT

i � for
a q × 1 coefficient vector �. The least-squares estimate of � minimizes the sum
of (yi − xT

i �)2 and can be shown to satisfy the “normal equations” XT y = XT X�.
Alternatively, without resorting to assumptions about a model, we can define � as
the solution to the normal equations when they are based on the N sets of pop-
ulation values. Specifically, define ψ(yi , xi , �) = xi (yi − xT

i �) and note that the
solution to ψT (�) = 0, where

ψT (�) =
N∑

i=1

ψ(yi , xi , �), (7.8)

satisfies the normal equations based on the whole population. The sample-weighted
estimate of �, say �̂, is a solution of ψs(�) = 0, where

ψs(�) =
n∑

i=1

ψ(yi , xi , �)/πi , (7.9)

or XT Dwy = XT DwXθ̂ , where Dw is a diagonal matrix with elements 1/πi .
Suppose the function ψ(y, x, . ) is continuously differentiable for all y and x,

and write H(�) = ∂ψs(�)/∂�T for the matrix of partial derivatives. Then, we may
expand ψs(�) in a Taylor series about ψs(�̂) to yield (Complement 14)

�̂ − � ≈ −H(�)−1ψs(�) ≈ −E[H(�)]−1ψs(θ ). (7.10)

The elements ofψs(�) are weighted sample totals and for large samplesψs(�) typ-
ically is distributed approximately as multivariate normal. The covariance matrix
of the asymptotic normal distribution (cf., Section 3 of Chapter 1) is

E[H(�)]−1Cov(ψs(�))E[H(�)T ]−1. (7.11)

The elements of Cov(ψs(�)) for any fixed � can be estimated in the usual manner
(e.g., (5.2) or (5.9), or using replication methods of Section 8). Evaluating the
estimate at � = �̂ leads to an estimate of the actual covariance under the population
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value of �, say Côvψs
. A consistent estimator of the asymptotic covariance matrix

of �̂ given by (7.11) is

Côv(�̂) = H(�̂)−1Côvψs

(
H(�̂)T

)−1
. (7.12)

We have that, approximately,

θ̂i − θi

σ̂θ̂i

∼ N (0, 1), (7.13)

where σ̂ 2
θ̂i

denotes the i th diagonal element of Côv(�̂).
Much of statistics starts from assumptions about the population. In fact, in many

studies with causal aims there may not exist any finite population of which the
observations are a sample. Instead, the population values are assumed to be drawn
by nature from a density f (y, x|�) that belongs to a parametric family indexed by
�. Then we set ψ(y, x, �) = ∂/∂� log( f (y, x|�)). In this case we can take n = N
so πi = 1. Even if n < N , so an actual sample is selected, but each component of
ψ is uncorrelated with the selection probabilities then (recall Section 4.1) we do
not need to use unequal sampling weights in ψs(�) and we say the sampling is
non-informative or ignorable (Valliant, Dorfman, and Royal 2000, 36–39). In that
case we may also replace 1/πi in (7.9) by 1. (Exercise 15). In these cases the root
of ψs(�) = 0 yields a maximum likelihood estimator, as introduced in Chapter 1.
Recall the definition of the Fisher information asI(�) = −E[H(�)]. Then, we have
that E[n−1ψs(y, x, �)] = N−1ψT (�) ≈ 0 and n−1 Cov(ψs(�)) ≈ I(�), so (7.11)
may be replaced by I(�)−1 (Exercise 15). Instead of (7.12), the covariance of �̂
may be estimated by I(�̂)−1. The latter is an example of a model-based estimator of
covariance, as compared to a design-based estimator of covariance such as (7.12).

Even if the aims of a study are causal and the real target population transcends the
sampling frame, it can be useful to calculate the covariance estimates both ways to
see if there is evidence of possible model mis-specification or informative sampling
(Horowitz 1994). Or, one can include characteristics of the sample design (such as
indicators for clusters or strata) in the model to see if they have explanatory power.
If they do, then the specification of the presumed causal model may be incomplete
in some respect. Furthermore, if estimates of the parameters of interest change
after the inclusion of variables related to the sampling design, then a revision
of the causal assumptions, collection of better data that allows one to address
possible confounding, or both may be called for. For further discussion, see Binder
and Roberts (2003), Korn and Graubard (1999), Chambers and Skinner (2003),
Skinner, Holt and Smith (1989), and Valliant, Dorfman, and Royall (2000).

Example 7.2. Design-Based Variance of the Dual System Estimator (DSE). In
Example 7.1 we considered a model-based estimate of variance of the DSE based
on a hypergeometric model. Such a model is unrealistic, in part because the enu-
meration rates vary by subgroups, and the hypergeometric model assumes equal
enumeration probabilities. Separate DSEs can be constructed for different post-
strata and summed, but the variance of the sum is not equal to the sum of the
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variances because selections in different poststrata are not independent due to the
cluster sampling used in the PES (Example 3.3). In the PES, a stratified sample
of clusters was selected with unequal probabilities. Let n1 denote the weighted
number of census enumerations in the sample clusters, n2 the weighted number
of enumerations in the second, sample enumeration (the “P sample”), and m the
weighted number in both, where the weights are reciprocals of design-based se-
lection probabilities. For simplicity, ignore erroneous enumerations. Consider a
single poststratum. The simple DSE for the poststratum is n1n2/m. We can im-
prove on this using the known total number of census enumerations, N1, to yield
Ñ = N1n2/m. The ratio R̂c = n2/m is called an “adjustment factor”, because
the DSE is equal to the adjustment factor times the census count, N1. The vari-
ance of Ñ for a given poststratum can be estimated by N 2

1 times the quantity
after the first summation sign in (5.12), with ah the number of clusters in stratum
h, ĕhα = y̆hα − R̂c x̆hα, y̆hα = n2 for cluster hα, and x̆hα = m for cluster hα. To
find the covariance between estimates for the poststratum and another poststra-
tum, which we will indicate with a ′, simply replace (ĕhα − ¯̆eh)2/T̂ 2

x,st in (5.12) by
(ĕhα − ¯̆eh)(ĕ′

hα − ¯̆e′
h)/(T̂ 2

x,st T̂ 2
x,st ). Applying this to the estimated number of black

males from the 1980 Post-Enumeration Program (Example 7.1) under a simplifi-
cation of the actual sample design (Wolter 1986, 343–344) yielded an estimated
standard error of 51,000, which is more than twice the model-based standard error.
The differences are due partly to weighting but also to clustering. The clustering
will inflate the variance if the enumeration probabilities have a positive intraclass
correlation, which means that the enumeration probabilities are variable and give
rise to a clustering of census misses (Hengartner and Speed 1993). It is possible that
some of what appears as intraclass correlation is due to interviewer effects or other
operational effects in the PES that were similar within clusters. In a careful analysis
they would be estimated and taken into account where feasible. By themselves,
clusters cannot serve to define poststrata, so although there is some geographic het-
erogeneity in the enumeration probabilities, how to revise the estimation method
to account for the heterogeneity is not obvious. ♦

Although models do not have to be correct to be useful, as John Tukey has noted,
it is important to appreciate that the advantages of using assumptions about the
population distribution do depend on the validity of the assumptions. Note that θ is
implicitly defined by (7.6) and a consistent estimate of θ can be obtained whether
or not the density is correctly specified. Similarly, (7.12) provides automatically
a correct covariance estimator for the implicitly defined parameter even under a
wrong model. However, the usefulness of the estimates depends on the degree of
mis-specification.

Example 7.3. Parameter Interpretation Under An Erroneous Model. Suppose
we assume erroneously that Yi ∼ N (0, θ ), i = 1, . . . , n are independent and take
ψ(yi , xi , θ ) = y2

i − θ , but in reality Yi ∼ N (µ, σ 2). A consistent estimate of θ is
obtained by setting (7.7) to zero, so θ̂ = (y2

1 + · · · + y2
n )/n, but in this case θ =

E[Y 2
i ] = µ2 + σ 2. Any attempt at calculating one-sided prediction intervals for a
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future value is likely to fail if µ2 is not small compared to σ 2. Although two-sided
prediction intervals with nominal coverage levels between 68% and 99% will have
approximate probability α of covering the future value even for |µ/σ | as large
as 0.6 (Cochran 1977, 15), the non-coverage is asymmetric. For example, when
µ = 0.6σ the probability that the future value falls above a nominal 95% interval
is 0.0459 and the probability it falls below the interval is 0.0020. Furthermore,
consider variance estimation via (7.12). In this case H (θ ) = −n, so (7.11) equals
exactly Var(θ̂ ). (Using the properties of the normal distribution one can show
that E[Y 4

i ] = 3σ 4 + 6σ 2µ2 + µ4, so in this case (7.11) equals (2σ 4 + 4σ 2µ2)/n.)
Thus, (7.12) leads to asymptotically correct inferences about mean squared error θ .
The problem is that the user of the mis-specified model believes that the inferences
are about a variance. ♦

Interval estimates can be developed in several ways. Let θ0 denote the root of
ψT (θ ) = 0. One way to produce a two-sided 100(1 − α)% confidence interval for
θ0 is to use (7.13) to obtain the interval θ̂ ± z1−α/2σ̂θ̂ , with z p the pth fractile of the
N (0, 1) distribution for 0 < p < 1. A second way, often but not always applicable,
is to use the approximate normality of ψs(θ ) so that, approximately,

ψs(θ ) − ψT (θ )

σ̂ψ(θ )
∼ N (0, 1). (7.14)

Consider testing the null hypothesis H0 : ψT (θ ) = 0 versus the two-sided alter-
native, HA : ψT (θ ) �= 0. A 100(1 − α)% confidence interval for θ0 is the set of θ

values for which H0 is not rejected, i.e., the set of θ such that

ψs(θ )2/σ̂ 2
ψ(θ ) ≤ z2

1−α/2. (7.15)

Note that z2
1−α/2 is also the 1 − α fractile of the χ2 distribution with one degree

of freedom. This approach leads to alternative confidence limits for the ratio, as
developed by Fieller (1932).

Example 7.4. Fieller Intervals for a Ratio Estimator. Define T̂Y,HT by (4.5) and
define T̂X,H T analogously. The ratio estimator θ̂ = T̂Y,HT/T̂X,HT from an unequal
probability sample is the solution to (7.7) with ψ(yi , xi , θ ) = yi − θxi . To find the
endpoints of the interval for θ such that (7.15) holds, we solve the quadratic equa-
tion obtained by setting ψs(θ )2 = σ̂ 2

ψ(θ )z
2
1−α/2. Note that ψs(θ ) = T̂Y,HT − θ T̂X,HT

and σ̂ 2
ψ(θ ) = Var(T̂Y,HT) − 2θCov(T̂Y,HT, T̂X,HT) + θ2Var(T̂X,HT). After some alge-

bra, we find that the roots and hence the endpoints of the interval are

θ̂
1 − z2

1−α/2cxy ± z1−α/2

√
cyy + cxx − 2cxy − z2

1−α/2(cyycxx − c2
xy)

1 − z2
1−α/2cxx

(7.16)

where the relative variances and relative covariances are cyy = V̂ar(T̂Y,HT)/T̂ 2
Y,HT,

cxx = V̂ar(T̂X,HT)/T̂ 2
X,HT, and cxy = Côv(T̂X,HT, T̂Y,HT)/(T̂X,HTT̂Y,HT). The roots in

(7.16) are imaginary for any sample if we take α small enough, and in this case the
interval is the whole real line. However, for commonly used significance levels, this
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is rare if cxx and cyy < 0.09 (Cochran 1977, 156). For comparison, the confidence
interval obtained from (7.13) is θ̂ (1 ± z1−α/2

√
cyy + cxx − 2cxy). ♦

8. Replication Estimates of Variance

Although the delta method can often be used to derive approximations to the
variances of complex nonlinear statistics, its practical application can be hard.
It can be tedious to determine analytically the partial derivatives needed, and
errors of programming can occur, as the process must be repeated afresh for each
new statistic. The error of approximation is often difficult to assess. The so-called
resampling methods circumvent these problems via brute force computation that is
implemented formally the same way, no matter what the statistic of interest. We will
discuss two such methods, and comment on a shortcut that is sometimes available.

8.1. Jackknife Estimates

Consider a with-replacement sample of n units such that unit i is chosen with
probability zi > 0 (as in Section 5.2) and let θ̂ denote an estimator that is a smooth
function of sample means or totals, e.g., a mean, a ratio, a regression coefficient,
etc. Denote by θ̂(i) the estimate when the i th unit is omitted from the calculation.
A jackknife estimate of variance is defined as

V̂arjack(θ̂ ) = n − 1

n

n∑
i=1

(
θ̂(i) − θ̂(·)

)2
, θ̂(·) = 1

n

n∑
j=1

θ̂( j). (8.1)

This is sometimes called a “delete-1” jackknife. V̂arjack(θ̂ ) reduces to the usual
unbiased one when θ̂ is a linear function of the data, such as T̂HH in (5.1). For
example, if the selections are made with equal probabilities, then V̂arjack(ȳ) = s2/n
(Exercise 19). Therefore, the concept is primarily useful when the statistic of
interest is a nonlinear function of the data.

In multi-stage sampling, if the n sample units are PSUs, we delete all sample
selections within the PSU (i.e., we delete the whole ultimate cluster) when we
obtain θ̂(i). If simple random sampling without replacement is used, V̂arjack(θ̂ )
may be multiplied by the finite population correction factor 1 − f. An alternative
form of the jackknife uses θ̂ in place of θ̂(·) in V̂arjack(θ̂ ). If n is large, we may
reduce computations by randomly sorting the sample into groups and deleting a
group at a time.

If we want to apply the jackknife method to an estimate from a stratified simple
random sample, we may use

H∑
h=1

(1 − λh fh)
nh − 1

nh

nh∑
i=1

(
θ̂(hi) − θ̂(h)

)2
, with θ̂(h) = 1

nh

nh∑
j=1

θ̂(hj), (8.2)

where θ̂(hi) is the estimate calculated without observation i in stratum h; λh = 1 if
the sampling is without replacement and = 0 if with replacement; fh = nh/Nh is
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the sampling fraction, and nh is the number of groups in stratum h. A variety of
alternative jackknife estimators can be obtained by replacing θ̂(h) in (8.2) by θ̂ , by
the unweighted average across strata of θ̂(h)’s, or by the unweighted average of all
of the θ̂(hi)’s (Rao and Wu 1985).

To accommodate without replacement sampling in multi-stages or when selec-
tions are made with unequal probabilities, we need to use modifications of these
methods or special versions of the bootstrap, as in Sitter (1992) and Rao and
Wu (1988). For application of the jackknife (or bootstrap or similar replication
methods) for variance estimation in multiple frame surveys such as the Survey of
Consumer Finance discussed in Example 4.3, see Lohr and Rao (1997).

Many computer programs use the standard deviation of variance estimates from
(8.2) in computing t statistics with degrees of freedom equal to n1 + · · · + nH −
H, but that may be optimistic if the sample allocation is very disproportionate, the
strata have unequal variances, or one is analyzing a subgroup that may be absent
in the sample from numerous PSUs (Cochran 1977, Korn and Graubard 1999,
193ff.).

8.2. Bootstrap Estimates

Again, we begin by considering a with-replacement sample of n units such that
unit i is chosen with probability zi > 0, and let θ̂ denote a smooth estimator (e.g.,
Shao and Tu 1995, 86ff). Keeping the sampled values fixed, draw a simple random
with-replacement subsample of size m from the original sample and compute θ̂

for the subsample; repeat this independently B times and denote the estimates by
θ̂∗1, θ̂∗2, . . . , θ̂∗B . A bootstrap estimate of the variance of θ̂ is

V̂arboot(θ̂ ) =
B∑

b=1

(θ̂∗b − θ̂∗·)2/(B − 1), θ̂∗· = 1

B

B∑
b=1

θ̂∗b. (8.3)

Notice that when the original sample is viewed as fixed, for B < ∞ the bootstrap
estimator (8.3) is still random as its value depends on the subsamples chosen.
Efron and Tibshirani (1993, 50–53) rely on theory and experience to suggest that
B between 50 and 200 usually suffices for estimating variance. The additional
variability from having B at 200, say, rather than ∞ is dwarfed by the variability
from the original sample. The expected value of V̂arboot(θ̂ ) with respect to the sub-
sampling and conditional on the original sample will be denoted by E∗[V̂arboot(θ̂ )].
When θ̂ is a linear statistic, E∗[V̂arboot(θ̂ )] is equal to (n − 1)/m times the usual
unbiased estimator of variance (Exercise 22). For example, if the selection proba-
bilities are equal, then we have that E∗[V̂arboot(ȳ)] = (n − 1)m−1s2/n. Although
many applications of the bootstrap choose subsamples of size n, as in the origi-
nal sample, the resulting variance estimates for linear statistics will be downward
biased by the factor (1 − 1/n). Choosing m = n − 1 eliminates that bias.

To account for without-replacement simple random sampling, one can multiply
V̂arboot(θ̂ ) by the finite population correction factor 1 − n/N . More generally, how-
ever, the bootstrap can be modified to directly account for unequal probability sam-
pling without replacement by with-replacement subsampling from the n(n − 1)
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pairs of sample units with unequal probabilities that reflect the original joint
selection probabilities (Rao and Wu 1988, 237–239).

To account for multi-stage sampling, one can use the ultimate cluster method
(with the simplifications that entails) and subsample whole ultimate clusters
(i.e., all sampled elements in the PSU) and use (8.3). That method parallels the
jackknife treatment in Section 8.1. One can also, however, choose the subsamples
with multi-stage sampling; Sitter (1992, 761–764) and Rao and Wu (1988, 239)
provide details for two-stage sampling.

The simplest way to get a bootstrap estimate of sampling variance in stratified
simple random sampling is to draw a simple random with-replacement subsam-
ple of size mh from stratum h = 1, . . . , H in the original sample, then compute
the bootstrap estimates θ̂∗b, b = 1, . . . , B for independent subsamples, calculate
V̂arboot(θ̂ ) as in (8.3), and sum across strata. If mh = nh − 1 then E∗[V̂arboot(ȳw)]
is equal to (3.2) but without the finite population correction factors 1 − fh . If
the sampling fractions are negligible, this is fine, or if the sampling fractions are
equal, the bootstrap variance estimate may be multiplied by 1 − f . To estimate
sampling variance under stratified multi-stage sampling using the ultimate cluster
method, subsample mh ultimate clusters from the nh in the sample from stratum
h = 1, . . . , H and apply (8.3).

Should one prefer to use the bootstrap or the jackknife for variance estimation?
The bootstrap is better able to accommodate sampling without replacement than
the jackknife, although at the cost of some complexity. The bootstrap can also be
used to obtain one-sided and other asymmetric confidence intervals; see Efron and
Tibshirani (1993). The jackknife can involve less computing, however, and sim-
ulations suggest that in some cases its variance estimates have somewhat smaller
mean square error than those from the bootstrap (Shao and Tu 1995, 251–258). In
terms of the accuracy of the variance estimates, if the ultimate cluster method is
acceptable and the estimator is a smooth function of sample means or totals, either
the jackknife or bootstrap may be used, with the choice based on convenience. For
very small sample sizes, as may occur in highly stratified samples, the jackknife
appears to be preferable to the bootstrap.

8.3. Replication Weights

Replication weights provide a simple method for computing variances for sec-
ondary analysis of data. When preparing a public use data file, some statistical
agencies include with each case a set of r replicate weights. Calculating an esti-
mate using any one of the r replicate weights yields an estimate of the form θ̂∗b (if
the bootstrap is used) or θ̂(i) (if the delete-1 jackknife is used) or something similar
(if other replication methods are used for the variance estimation). The variance
of a statistic can be estimated by a constant c times the sum of squared deviations
of the weighted estimates about their mean or about the full-sample estimate, θ̂ .
The constant c depends on the replication method being used, and guidance is
provided along with documentation for the public use data file. If available, repli-
cate weights are quite useful. They may be derived from more efficient replication
methods than the delete-1 jackknife or the bootstrap, such as balanced repeated
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replication, which allow r to be fairly moderate. The creation of the replicate
weights may also take into account weighting adjustments for poststratification
and other calibration and nonresponse.

Exercises and Complements (*)

1. (a) Derive (1.2). (Hint: Notice that the yk’s are constants, and find the expected
value of ȳ by substituting E[Ik] for Ik in (4.1).) Show that for simple random
sampling, E[Ik] = n/N , and hence E[ȳ] = Ȳ . (b) Use the properties of the
variance of a linear combination to show that the variance of ȳ is

Var(ȳ) = 1

n2

[
N∑

k=1

Var(Ik)y2
k +

N∑
k=1

N∑
l �=k

Cov(Ik, Il)yk yl

]
.

(c) Show that for simple random sampling, Var(Ik) = (n/N )(1 − n/N ) and
Cov(Ik, Il) = −(n/N )(1 − n/N )/(N − 1). Substitute and simplify the alge-
bra to obtain (1.3). (d) Finally, write s2 = [n/(n − 1)]

[∑n
1 y2

i /n − ȳ2
]
. Show

that the expected value of the first term in the square brackets is
∑N

1 Y 2
i /N and

note that E[ȳ2] = Ȳ 2 + Var(ȳ). Substitute and simplify to obtain E[s2] = S2.
2. In with-replacement simple random sampling, elements are selected in n in-

dependent draws with equal probabilities at each draw. Define σ 2 = (N − 1)
S2/N and show that

E[ȳ] = Ȳ , Var(ȳ) = σ 2/n, E[s2] = σ 2, E[s2/n] = Var(ȳ).

*3. The ratio of the absolute bias of R̂ to the standard error of R̂ is less than or
equal to the CV of x̄ . The accuracy of the approximation in (2.2) depends
on x̄ being close to X̄ . In practice, the approximation should be adequate for
typical purposes if the CV of x̄ is less than 0.1 (Cochran 1977). In that case
the bias may be neglected in relation to the standard error. The estimate of
variance (2.3) tends to be biased downward, particularly for n ≤ 12, unless
the CV of x̄ is less than 0.1.

*4. The ratio estimator provides an alternative to estimating Ȳ by the sample
mean, provided that the population mean of X is known. The ratio-estimate
of the mean is R̂ X̄ and the ratio estimate of the total is NX̄R̂. The variances
may be estimated by multiplying (2.3) by X̄2 or N 2 X̄2 respectively. If the
population scatterplot of yi against xi lies close enough to a straight line
through the origin, the ratio-estimate of the mean (or total) will be superior
to that based on the sample mean. A practical guide is to choose R̂ X̄ over ȳ
only if its estimated variance is appreciably smaller than that of ȳ.

*5. The square root of the design effect is abbreviated as Deft. There is some
inconsistency in practice concerning finite population corrections. Some au-
thors define Deft as the ratio of (i) the actual standard error of the statistic,
under the given design with sample size n, to (ii) S/

√
n − without the finite

population correction; e.g. Kish (1995, 56).
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6. Show that the analysis of variance identity holds in a stratified population,

(N − 1)S2 =
H∑

h=1

(Nh − 1)S2
h +

H∑
h=1

Nh(Ȳh − Ȳ )2.

Show that if proportional allocation is used in stratified sampling, then for
large Nh’s

Deff (ȳ) =
∑H

h=1
Nh

N S2
h

S2
≈ 1 −

∑H
h=1

Nh

N (Ȳh − Ȳ )2

S2
≤ 1.

This shows that to a good approximation, proportional allocation helps effi-
ciency (the ratio of sampling variances) if the strata are chosen propitiously
and does not hurt it if the strata are chosen unwisely.

7. Prove that the Horvitz-Thompson estimator (4.5) is unbiased for the popula-
tion total. (Hint: Extend (4.1) to include weights and omit the factor 1/n.)

8. To obtain the variance of (5.1), denote by mα the number of times unit
α is selected in the sample. The joint distribution of the mα’s is given by
the multinomial distribution. Mult(n; z1, . . . , z A). The probability of observ-
ing (m1, . . . , m A) is n!(m1! . . . m A!)−1zm1

1 . . . zm A
A and we have E[mα] =

nzα, Var(mα) = nzα(1 − zα), and Cov(mα, mα′ ) = −nzαzα′ . Write T̂HH =
(m1 y1/z1 + · · · + m A yA/z A)/a and use the moments of mα’s to derive

Var(T̂HH) = a−1
A∑

α=1

zα(yα/zα − NȲ )2

and show that this equals (5.2). Show that (5.1) and (5.2) are unbiased. (Cf.,
Cochran 1977, 253–254.)

*9. Justification of ultimate cluster method of estimating variances. The variance
of the Horvitz-Thompson estimator (5.3) in one-stage cluster sampling may
be expressed as (see e.g., Cochran 1977, 260–261 for the complex details)

Var1(T̂HT) =
A∑

α=1

A∑
α′>α

(παπα′ − παα′ )(y̆α − y̆α′ )2.

Several variance estimators have been derived, including the (“Sen-Yates-
Grundy”) estimator

V̂ar1(T̂HT) =
a∑

α=1

a∑
α′>α

(παπα′ − παα′ )π−1
αα′ (y̆α − y̆α′ )2,

but they are unbiased only if παα′ > 0 for all (not just sampled) pairs of PSUs.
Furthermore, depending on the design used, the unbiased estimators may take
negative values for some samples. In two-stage sampling, let y̆α denote the
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Horvitz-Thompson estimate of the total for PSU α and let V (y̆α) denote its
variance. The variance of (5.3) under two-stage cluster sampling is

Var2(T̂HT) = Var1(T̂HT) +
A∑

α=1

Var(y̆α)/πα.

The estimator V̂ar1(T̂HT) in fact accounts for a good portion of the variance
due to subsampling, and under two-stage sampling its expected value is

Var2(T̂HT) −
A∑

α=1

Var(y̆α).

An unbiased estimator of variance is provided by

V̂ar2(T̂HT) = V̂ar1(T̂HT) +
a∑

α=1

V̂ar(y̆α)/πα.

which typically is only slightly larger than V̂ar1(T̂HT). (This discussion is
based on Särndal, Swensson and Wretman (1992), 135–141; see their pp. 141–
150 for three and higher-stage sampling.)

*10. The separate ratio estimator of the total is

H∑
h=1

R̂h TXh

with TXh the known population total for x in stratum h and

R̂h =
ah∑

α=1

y̆hα

/ ah∑
α=1

x̆hα.

The variance of the separate ratio estimator may be estimated by

H∑
h=1

V̂ar(R̂h)T 2
Xh

with (from (5.5))

V̂ar(R̂h) = ah

ah − 1

ah∑
α=1

ĕ2
hα

/( ah∑
α=1

x̆hα

)2

and ĕhα = y̆hα − R̂h x̆hα. A possible drawback of the separate ratio estimator
is bias, if the coefficients of variation of the denominators of R̂h are not all
small; in that case the variance estimator may well underestimate, leading to
overconfidence in the accuracy of the estimate.

*11. An alternative to the separate ratio estimator is the combined ratio estimator
of the total, R̂cTX , with R̂c defined by (5.10). The variance of the combined
ratio-estimator of the total may be estimated by the numerator of (5.12).
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12. Show that the estimating equation method estimates the population mean by
a weighted sample mean with weights as in (4.6) and that it estimates the
ratio with an estimator of the form (5.4).

*13. If additional information on the population is available, modifications to the
ψ functions may be put in place. Consider, for example, the case of popula-
tion mean that has ψ(yi , xi , θ ) = ψ0(yi − θ ). If the population values were
known to be symmetrically distributed about the mean, we could identify the
population mean by setting (7.6) to zero when ψ0 is any odd function about
zero. For example, take ψ0(z) = z for z ∈ [−k, k], ψ0(z) = k for z > k, and
ψ0(z) = −k for z < −k, for some k > 0. This leads via (7.7) to a Winsorized
estimate of the mean, insensitive to outliers (Lehmann 1983, 376ff.).

14. We consider a linear approximation to the solution from an estimating equa-
tion. Let �̂ denote the estimate and � the population value. Under regu-
larity conditions the estimator is consistent. This justifies using a linear
approximation to ψs as −ψs(�) = ψs(�̂) − ψs(�) ≈ H(�)(�̂ − �). Assum-
ing the inverse exists, we may solve this to yield the first part of (7.10).
Similarly, under regularity conditions, for large samples H(�) is close to
its mean, so H(�)(�̂ − �) ≈ E[H(�)](�̂ − �). This yields the second part.
Binder (1983) and Thompson (1997, 104 ff.) discuss conditions under which
these approximations are valid.

15. Suppose nature selects the N population values from a density f (y, x|�)
that belongs to a parametric family indexed by �. For simplicity ignore x.
Set ψ(y, �) = ∂/∂� log( f (y|�)). Use a law of large numbers to show that
N−1ψT (�) approaches E[∂/∂� log( f (y|�))] as N gets large. In the classical
formulation, one considers an infinite population with

∫
ψT (�)dy = E[∂/∂�

log( f (y|�))]. Recall the discussion of scores in Section 3 of Chapter 1 and
show that if the order of differentiation and integration can be switched,
E[∂/∂� log( f (y|�))] = 0. Next, suppose that non-informative sampling is
used to select a sample of size n. Recall that in the finite population setting
(Section 7.1) both n and N get large, and in the classical formulation the
population is infinite. Consider ψs(�) with weights 1/πi in (7.12) replaced
by 1. Observe that n−1Cov(ψs(�)) ≈ n−1 E[ψs(�)Tψs(�)], which tends to a
matrix whose (i, j) element is E[(∂/∂θi log f (y|�))(∂/∂θ j log f (y|�))]. As
discussed in Section 3 of Chapter 1, conclude that n−1Cov(ψs(�)) ≈ I(�).

16. Show that the population cumulative distribution function at a point y, say
F(y), is the root of (7.5). Let ui = I(−∞,y](yi ) and wi = 1/πi and show that

F̂(y) =
n∑

i=1

wi ui

/ n∑
i=1

wi

is the solution, when one sets (7.7) to zero and ψ(yi , xi , θ ) = ui − θ . If the
denominator in F̂(y) were replaced by its expected value, would the resulting
estimator take all its values on [0, 1]? Note that if the wi ’s vary other than
across strata, then F̂(y) is a ratio of sample totals and its variance may be
estimated as described in (2.3), (5.6), or (5.12), or as in Section 8. Denote the
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variance estimate by σ̂ 2
F̂(y)

and use the delta method to show that an approxi-
mate 100(1 − α)% confidence interval is given by F̂(y) ± z1−α/2σ̂F̂(y).

*17. Population quantiles. We would like to define the pth population quantile, or
the 100pth percentile, say θp, as the solution to F(θp) = p, with F the popu-
lation c.d.f.. An exact solution may not exist, however, if F is not continuous,
and the solution may not be unique if F is not strictly increasing. Even if F
is continuous, however, F̂ is discrete. Lohr (1999, 311–313) and especially
Korn and Graubard (1999, 68–74) discuss problems and solutions for discrete
distributions, including various interpolation methods to define F̂−1. One way
(Woodruff 1952) to develop an approximate 100(1 − α)% confidence interval
for θp is to transform the endpoints of the interval from Exercise 16 using F̂−1.

This leads us to take (F̂−1(p − z1−α/2σ̂F̂(θ̂ (p))), F̂−1(p + z1−α/2σ̂F̂(θ̂ (p)))) as
the interval, with σ̂F̂(θ̂ (p))equal to σ̂F̂(y) evaluated at y = θ̂ (p).

*18. Alternative confidence sets for population quantiles. The quantile θp is ap-
proximately a zero of (7.6) with ψ(yi , xi , θ ) = I(−∞,θ )(yi ) − p. Using (7.16)
we may develop alternative confidence intervals for θp as (Francisco and
Fuller 1991){

θ |F̂(θ ) − z1−α/2σ̂F̂(θ ) < p < F̂(θ ) + z1−α/2σ̂F̂(θ )

}
.

19. Verify that V̂arjack(T̂HH) gives the estimator (5.2) and that if the selections are
made with equal probabilities, V̂arjack(ȳ) = s2/n.

*20. Grouped jackknife. Given a with-replacement sample of n units, we may
randomly assign the sampled units to form groups of (equal or nearly equal)
size d = n/r , and let θ̂(g) denote the value of the statistic θ̂ when the gth group
is omitted. A grouped jackknife estimate of the variance or of the mean square
error of t̂ is

r − 1

r

r∑
g=1

(
t̂(g) − t(·)

)2
.

with t̂(·) the average of the t̂(g)’s or alternatively
*21. In the grouped jackknife, we form the sample into groups at random one

time, and then delete d observations at a time. Let Nd denote the number of
without-replacement subsamples of size n − d, and θ̂(g) denote the value of
the statistic based on the gth subsample, g = 1, . . . , Nd . A delete-d jackknife
estimate of the variance of t̂ is

n − d

Nd

Nd∑
g=1

(
θ̂(g) − θ̂(·)

)2
,

with θ̂(·) the average of the θ̂(g)’s. A consistent estimate of variance of the
sample median is obtained if d > n1/2 and n − d → ∞. Generally, in cases
where the delete-1 jackknife does not give consistent variance estimates but
the delete-d jackknife does, it is necessary that both d and n − d → ∞.
Typically Nd is too large for manageable computing, and a random subsample
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(either with or without replacement) of the Nd subsamples may be used to
estimate the variance. (Shao and Tu 1995, 49–55).

*22. The delete-1 jackknife applies to many statistics, including linear statistics,
ratios and regression coefficients in linear and generalized linear models, and
statistics that are smooth functions of the data (see Shao and Tu 1995, chapter
2, for further information). As described in Complement 21, the delete-1
jackknife does not give good estimates of the variance of the sample median.
The performance of jackknife estimates of variance in stratified and stratified
multi-stage sampling has been studied for statistics that are smooth functions
(having continuous second derivatives) of vectors of population means and
such that the function evaluated at the vector of means is proportional to
the function evaluated at the vector of totals – such statistics include linear
statistics, ratios, and regression coefficients in linear and generalized linear
models. The sampling designs use with-replacement sampling of PSUs and
it is assumed that as n increases, maxh(Nh/N )/(nh/n) remains bounded (this
allows for increasing number of strata or for constant number of strata), and
that as N increases the Wh-weighted averages of within-stratum covariances
are bounded.

*23. If nh = 2 for each stratum, a convenient way to form a jackknife estimator
of variance is to pick one unit from each stratum, say unit h1 from stratum h,
and only delete it. The estimator is then

V̂arjack(θ̂ ) =
H∑

h=1

(
θ̂(h1) − θ̂

)2
.

Balanced repeated replication (BRR) is an alternate method of variance es-
timation that can be used with nh = 2 (and other stratum sizes too but less
easily), in which half of the units are omitted from the calculation of each
replicate, with the half chosen according to a systematic design.

24. Show that E∗[V̂arboot(T̂HH)] is equal to (n − 1)/m times the estimator (5.2).
What is it equal to if the selection probabilities are all equal?

25. To use the bootstrap to estimate variance from a stratified without-replacement
simple random sample, denote the original sample values by yhi , i =
1, . . . , nh , denote the stratum means by ȳh , and denote the values in any
subsample by y∗

hi , i = 1, . . . , mh , all for h = 1, . . . , H . Calculate the es-
timate θ̂∗b not from the y∗

hi , but rather from scaled values ỹhi defined as

ỹhi = ȳh + m1/2
h (nh − 1)1/2(y∗

hi − ȳh), and then estimate the variance with
(8.3). A simple choice for mh is nh − 1, in which case ỹhi = y∗

hi . (Rao and
Wu (1988); see Sitter (1992) for methods based on without-replacement sub-
sampling.)

*26. Successive sampling is a method of drawing a sample of size n with un-
equal probabilities and without replacement from a population of size N . Let
z1, . . . , zN be positive numbers summing to 1. At each draw, choose unit
i if not selected at a previous draw with probability proportional to zi . For
example, at the first draw unit i has probability zi of being selected. If unit
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j was selected at the first draw, the probability that unit i(�= j) is selected at
the second draw is zi/(1 − z j ). Hájek (1981) analyzes this method in detail.

*27. The degrees of freedom for variance estimates from complex sample designs
is a complicated question. The degrees of freedom, say d, may be chosen
so the asymptotic second moment of the variance estimator agrees with the
second moment of a chi-squared random variable on d degrees of freedom.
Cochran (1977, 96) presents a formula for d stratified simple random sam-
pling with nh observations from stratum h = 1, . . . , H , and shows d lies
between min{nh − 1) and n, with n = n1 + · · · + nH . The result assumes
the underlying observations are normally distributed, and if their actual dis-
tribution has heavier tails, the formula will overstate the degrees of freedom.
The approach may be extended to multi-stage samples, in which case sam-
ple sizes refer to numbers of PSUs. As a practical rule, d should not exceed
n − H , which is optimistic but utilized in some software packages.

When one is analyzing data from a sparse subgroup, instead of all H strata
and all n PSUs, it is better to consider only those containing at least one
sample member from the subgroup. Also, when using a replication method to
estimate variance, it is commonly recommended that d should not exceed the
number of replicates minus 1. Rust and Rao (1996) present a clear discussion.
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4
Waiting Times and Their
Statistical Estimation

We will first describe the simplest model for survival data, the exponential distri-
bution. Its demographic significance often goes unnoticed, because it assumes a
constant hazard rate. This is unfortunate, because many of the key issues of demo-
graphic estimation can already be discussed in this simple case. We continue in
Section 2 by treating the classical model for a general waiting time. The emphasis is
on the probability of survival function and its estimation based on individual level
or grouped data. Section 3 discusses the estimation and use of survival probabilities
in forecasting. A probabilistic handling of fertility measures is given in Section 4.
In particular, we will give an introduction to Poisson processes in this setting. In
Section 5 we consider the magnitude of random variability in demographic rates
and the commonly used Poisson assumption. Section 6 discusses the simulation
of waiting times and counts. For a classical presentation, see Pressat (1972).

1. Exponential Distribution

Consider a waiting time until a specified event. The event can be death, so for a
newborn the waiting time is the length of life. The waiting time can also be the
time of appearance of the first cancer, the time between the first and second births,
the time of first marriage, duration of marriage etc. In this section we develop a
simple exponential model for a waiting time. Although the model is a crude one,
it provides a direct way to introduce statistical concepts that are central to more
realistic models. We also obtain optimality results that provide a foundation for
the age-specific estimation of general waiting times.

We let a nonnegative random variable X ≥ 0 represent the waiting time. As
described in Chapter 1, the distribution function of X is F(x) = P(X ≤ x). Sup-
pose F(.) is differentiable, so F ′(.) = f (.) is the density function of X . Then, the
expectation of X is

E[X ] =
∞∫

0

x f (x) dx . (1.1)

71
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In demography, E[X ] may correspond to life expectancy, for example.
The variable X has an exponential distribution with parameter µ > 0, or X ∼

Exp(µ), if its survival function p(x ; µ) = P(X > x) is equal to exp(−µx) for
x ≥ 0. For reasons to be explained in Section 2, µ is called a hazard rate1. In
this case F(x ; µ) = 1 − exp(−µx) and f (x ; µ) = µexp(−µx). When viewed as
a function of µ, f (x ; µ) is the likelihood function of the observation. Integrating
by parts gives us the result E[X ] = 1/µ. In Section 2 we show a simpler way to
calculate the integral.

Example 1.1. Memorylessness of Exponential Waiting Time. The exponential dis-
tribution has the so-called memorylessness property: p(x + t)/p(x) = p(t) for all
x > 0. In words, this means that the probability of surviving an additional time t ,
given survival beyond time x , does not depend on x . It follows that E[X |X > x] =
x + 1/µ, for example. Starting from the equation p(x + t) = p(x)p(t) one can
prove that no other distribution has the memorylessness property (Feller 1968,
459–460). ♦

Example 1.2. Independent Causes of Death. Suppose X1, . . . , Xk are indepen-
dent, exponentially distributed waiting times with parameters µ1, . . . , µk , respec-
tively. Define X = min{X1, . . . , Xk}. Then (Exercise 1), we have that P(X > x)
= exp(−(µ1 + · · · + µk)x) or, in other words, the minimum has also an exponen-
tial distribution with the parameter µ1 + · · · + µk . In demography, X1, . . . , Xk

might represent waiting times to death from k independent causes of death and X
would be the actual duration of life. ♦

The method of moments provides a way to estimate µ. (Complement 3.) Suppose
Xi ∼ Exp(µ), i = 1, . . . , n, are independent and identically distributed (i.i.d.).
Define X̄ = (X1 + · · · + Xn)/n, so E[X̄ ] = 1/µ. The method of moments sets
X̄ = 1/µ̂, giving us µ̂ = 1/X̄ as the estimator of µ. As we discuss next, µ̂ is also
a MLE of µ.

Maximum likelihood estimation can accommodate censoring, which may occur
if individuals exit the population for reasons other than death. For simplicity of
language let us think of the Xi ’s as representing the independent lengths of life
of n individuals. In practice, we may not observe an individual’s full lifetime: if
Xi ≤ ci we will observe Xi but if Xi > ci , then we only know that i died after ci ,
or Xi was censored at time ci . Suppose there are fixed numbers ci > 0 such that
each i is followed only until the censoring time ci . Let m denote the number of
deaths that were not censored, and assume (with no loss of generality) that they
were the ones with the first m indices. The likelihood function of the observed
times of deaths Xi = xi can then be written as

L(µ) =
m∏

i=1

µ exp(−µxi )
n∏

i=m+1

exp(−µci ). (1.2)

1 The word hazard comes from Arabic al zahr meaning dice.
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Define the loglikelihood function as �(µ) = log L(µ). We leave it as an exercise
for the reader to prove that by differentiating �(µ) and setting the derivative to
zero, one obtains the solution,

µ̂ = m

K + K ′ , (1.3)

where K is the number of person years lived by those whose deaths were observed,
and K ′ is the number of person years lived by those who were censored, or

K =
m∑

i=1

xi , K ′ =
n∑

i=m+1

ci . (1.4)

We see that the MLE is of the form: “observed cases divided by person years
lived”. It is customary to call it an occurrence-exposure rate. We will be talking
about o/e rates for short.2 By taking each ci = ∞, we get that m = n, and the
result that the moment estimator is the MLE when there is no censoring. Thus, in
the absence of censoring the estimator µ̂ = 1/X̄ is actually an o/e rate!

Above we have assumed that the censoring variables are fixed numbers. We will
see below that this is an extremely common situation in the age-specific estimation
of waiting times of demography. However, suppose now that the ci ’s are values of
random variables Ci that are independent of the Xi ’s, and have distributions that do
not depend on µ. Let pC1,...,Cm |Cm+1,...,Cn (x1, . . . , xm |cm+1, . . . , cn) denote the con-
ditional probability that the first m censoring times equal or exceed the correspond-
ing x values, given the values of Cm+1, . . . , Cn , and let fCm+1,...,Cn (cm+1, . . . , cn)
denote the joint density of Cm+1, . . . , Cn . Define LC = fCm+1,...,Cn (cm+1, . . . , cn) ×
pC1,...,Cm |Cm+1,...,Cn (x1, . . . , xm |cm+1, . . . , cn). Then, the full likelihood is L(µ) ×
LC . Since LC does not depend on µ, it does not affect the maximum likelihood es-
timation, and µ̂ is also the MLE under general independent censoring. (For more
details about likelihood construction under various censoring mechanisms, see
Klein and Moeschberger 1997, 66–67.) This result is important in demographic
applications, because censoring by migration, or by death, is often independent of
the risk being estimated.

Similarly, if an individual i enters the follow-up after the beginning of the
observation period, say at time di > 0, his or her survival experience is left censored
(as opposed to right censoring considered above). Due to the memorylessness
property of the exponential distribution the late arrivals can be accommodated by
adjusting their entry times to zero, and by defining their time of death as Xi − di ,
and their time of censoring as ci − di . This shows that in the case of exponential
distribution the o/e rate is the MLE under both right and left censoring.

Note that this corresponds precisely to the observational scheme in which the
data are collected from the rectangles of a Lexis diagram (e.g., ABCD in Figure 1
of Chapter 2). Individuals spend varying times in any given rectangle based on the

2 In epidemiology an o/e rate is often called “incidence” or “incidence rate” (e.g., Rothman
1986).
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time of year they were born. This leads to fixed left and right censoring. Other
mechanisms of censoring can often be assumed independent of the waiting time
being studied. Hence, if constant hazard can be assumed to hold in each rectan-
gle, then the exponential model provides a full estimation theory for parameter
estimation, rectangle by rectangle.

Here, we digress to comment on the calculation of person years when the popu-
lation being studied is open. In large populations that are open to migration, person
years lived during a year are typically approximated by the average of the popu-
lation sizes in the beginning and at the end of the year. So, if V (t) is the size of
the population of interest at exact time t , the person years lived during [t, t + 1)
are approximated as K (t) ≈ (V (t) + V (t + 1))/2. Consider two cases. (i) Let the
population of interest be those in age x at exact time t (meaning those whose exact
age is in the interval [x, x + 1) at exact time t). Referring to Figure 1 of Chapter 2
again, let VAD be the number of life lines crossing AD, and let VC E be the num-
ber of life lines crossing CE. Suppose the number of deaths in the parallelogram
ACED is DACDE. Then the o/e rate is approximately DACDE/(VAD + VC E )/2. (ii)
Let the population of interest be those in age x during t. In obvious notation, the
approximate o/e rate is DABCD/(VAD + VBC )/2. Note that it is not easy to express
the latter notion in words, in an unequivocal manner. The difficulty comes up when
individual level data are available, and one wants to use a computer to compute
the person years exactly. The algorithms are surprisingly tricky (e.g., Breslow and
Day 1987, 362), especially if the population is open.3

Returning to inference, we note that classical results of maximum likelihood
estimation can be used to draw inferences concerning µ. Subject to regularity
conditions on censoring, as a MLE the o/e rate, µ̂, is a consistent, asymptotically
normal estimator of µ as the number of cases gets large (e.g., Rao 1973, 365;
also Chapter 1, Section 3). The asymptotic variance of the o/e rate is Var(µ̂) =
−1/�′′(µ). Since �(µ) = mlog(µ) − µ(K + K ′), we have that �′′(µ) = −m/µ2,
and the asymptotic variance is µ2/m. Hence, in large samples (say, when the
expected count m is > 30) we can test, for example, the hypothesis H0: µ = µ0 by
noting that the distribution of the standardized variable Z = m1/2(µ̂ − µ0)/µ0 is
approximately normal N (0, 1) when H0 is true. We leave it as an exercise to show
that confidence intervals can similarly be constructed for µ, and for its monotone
functions such as the survival probability e−µt , t > 0.

As an aside, we note a partial justification of the Poisson model for demographic
events. There is a relation between the estimate of variance of the o/e rate under
the exponential model, and under a Poisson model. Under the exponential model,
we estimate the variance of the MLE µ̂ by µ̂2/m. On the other hand, suppose we
condition on the person years lived, K and K ′, and consider m to have a Poisson
distribution with mean µ(K + K ′), where K + K ′ is assumed to be a known con-
stant. Then, the MLE of µ is formally given by (1.3) and its variance µ/(K + K ′)
is estimated as µ̂2/m. The equality of the estimates under the exponential and

3 Software capable of computing person years is increasingly becoming available, e.g.,
Stata, S+, R, and SAS have such modules.
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Poisson models is of interest, because under the exponential model the count m
does not have an exact Poisson distribution. In fact, when there is no censoring,
m = n with probability one, or m is fixed. The above derivation can be used as a
justification of a Poisson assumption in many demographic settings in which other
arguments cannot be used (cf., Section 5).

In all its simplicity the exponential model may serve as a building block for
more complex models, when population heterogeneity is introduced in one way
or another.

Example 1.3. Cross-Sectional Heterogeneity of Constant Hazard Rates. Suppose
the lifetimes of those born at t > 0 have a constant hazard rate µe−αt , where
µ > 0 and α > 0. Those who are in age x at t , and thus were born at t − x , have
hazard µe−α(t−x) = µe−αt eαx . Notice that the survivors at t are a heterogeneous
population with the hazard increasing exponentially with age x > 0. If the quality
of industrial production improves over time, such a pattern of hazard rates might
be observed in a cross sectional sample of products. It is not unthinkable that
human cohorts adopt increasingly healthier life styles and benefit from public
health improvements. If so, one would expect a similar patterns in human period
mortality. ♦

Example 1.4. Gamma Distribution for Frailty. Again consider that an individual
has a constant hazard, µ, but suppose that µ is heterogeneous in the population.
One convenient model is that µ has probability density function g(µ; α, β) =
βαµα−1e−βµ/�(α) for µ > 0, with α > 0, β > 0, and �(α) = ∫∞

0 xα−1e−x dx .

This distribution is known as the gamma distribution with shape parameter α and
scale parameter β, and it has mean α/β (e.g., DeGroot 1987, 286–290). The gamma
function �(α) is a generalization of the factorial, and satisfies �(n) = (n − 1)!
for positive integer n and �(x + 1) = x�(x) more generally. Suppose we pick
an individual at random. Then, the probability that he is alive in age x >

0 is (βα/�(α))
∫∞

0 e−µxµα−1e−βµ dµ = (β/(x + β))α
∫∞

0 g(µ; α, x + β) dµ =
(β/(x + β))α . (You can check the first equality by substituting in the definition
of g(µ; α, x + β).) Although we do not exploit the fact here, we note also that the
gamma distribution itself serves as a model of lifetimes and includes the exponen-
tial distribution as a special case (α = 1). ♦

The gamma distribution describes the heterogeneity of the population in this
example. The bigger µ is, the higher the hazard is. Therefore, it is called a frailty
distribution. Notice that if we would use the average hazard α/β to assess the
probability of surviving to x > 0, the result would be exp(−(α/β)x). Because
the probability of survival e−µx is a convex function of the hazard µ, it follows
from Jensen’s inequality (Complement 8) that the probability of surviving to x ,
at average hazard, is smaller than the average of the probabilities of survival,
(β/(x + β))α . Since Jensen’s inequality does not depend on the particular form
of the distribution of hazards, the result actually holds for any frailty distribution
with a finite expectation. We will see below that the result can be extended into a
much more general form still.
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2. General Waiting Time

Section 2.1, below, introduces the concept of a hazard function and relates it to
probability of survival function. In Section 2.2, we discuss how to calculate the
expectation of life, given the survival function. We also define life table populations
and stable populations, consider the effect of heterogeneity and change of mortality
on survival, and apply the concepts to pension funding. Section 2.3 discusses
estimation of the survival function and cumulative hazard function from individual
level data. Section 2.4 considers aggregated data.

2.1. Hazards and Survival Probabilities

We derive now a basic identity between hazard rates and survival probabilities.
Many, but not all, of the details of this development will carry over to the analysis
of multistate demographic systems in Chapter 6.

Let X be a nonnegative random variable representing a waiting time. Again, to
simplify language, we will be talking about a length of life. Recall the definition,
p(x) = P(X > x).4 Let us assume that p(0) = 1. Assume also that there is a piece-
wise right-continuous function µ(.) ≥ 0 on [0, ∞) such that P(x < X ≤ x + h|
X > x) = µ(x)h + o(h), where o(h)/h → 0 when h → 0. This a mathematical
way of saying that the conditional probability of dying at or before age x + h,
given survival beyond age x , is approximately proportional to h, with the constant
of proportionality depending on x . The function µ(.) will be called a hazard.5 In
mortality analysis it has traditionally been called force of mortality.

In terms of the survival function p(.) the condition can be written as

p(x) − p(x + h)

p(x)
= µ(x)h + o(h). (2.1)

Dividing both sides by h and letting h → 0, we obtain a differential equation

p′(x)

p(x)
= −µ(x). (2.2)

Since the left hand side equals the derivative d/dx log p(x), we have

p(x) = exp

⎛
⎝−

x∫
0

µ(t) dt + C

⎞
⎠ . (2.3)

4 In demography, survival is traditionally described via a function �(x) defined as 100,000 ×
p(x). The idea is that we follow a cohort of 100,000 individuals, and �(x) gives the expected
number alive at age x .
5 Terms hazard rate, incidence, incidence density, incidence rate, intensity, or instantaneous
probability are also sometimes used for µ(.).
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The constant C must satisfy the boundary condition p(0) = 1, so we must have
C = 0. In summary, we have the representation

p(x) = exp(−�(x)), (2.4)

where

�(x) =
x∫

0

µ(t) dt (2.5)

is the so-called cumulative hazard. Formula (2.4) shows that the distribution of
a general waiting time can be obtained from the exponential distribution with
parameter µ = 1 by transforming the time axis: p(x) at time x > 0 is the same as
the survival probability under the exponential model at time �(x). The estimation
of µ(.), �(.), and p(.) from individual-level data will be discussed in Section
2.3, and estimation from grouped data in Section 2.4. In Section 3, we discuss a
numerical procedure for estimating p(.) given estimates of µ(x) for integer ages x .

Example 2.1. Weibull Distribution. If µ(x) = (β/α)(x/α)β−1 for some α > 0 and
β > 0, then we have a so-called Weibull distribution with �(x) = (x/α)β . We
see from the formula that α influences the scale of the distribution, whereas β

determines its shape. For β > 1 the hazard is increasing, for β < 1 it is decreasing.
Taking β = 1 we get, as a special case, the exponential distribution Exp(1/α). ♦

Example. 2.2. Linear Survival Functions. Consider the ages t ∈ [x, x + 1),
and assume that µ(t) = bx/(1 − bx (t − x)) for some bx < 1. Then,
p(t)/p(x) = 1 − bx (t − x). In other words, the function p(.) is linear on interval
[x, x + 1). On the other hand, if p(t)/p(x) = 1 − bx (t − x) on [x, x + 1), then
µ(t) = −d/dt log p(t) = bx/(1 − bx (t − x)), or it is of the form given. The
linearity of the survival function means that the deaths are expected to be uniformly
distributed over the interval [x, x + 1). This is in contrast to the exponential
model, in which a constant hazard leads to an exponential decline in the numbers
of deaths, as the population at risk is depleted. We see from Figure 2 that this model
is more realistic than the exponential model in ages, say, x > 30. We will show in
Example 2.9 how this model leads to the so-called actuarial estimator of survival. ♦

Example 2.3. Balducci Model for Survival Function. G. Balducci proposed the
following model in 1920. Let t ∈ [x, x + 1), and assume that µ(t) = ax/(1 +
ax (t − x)) for some ax > 0. Then, p(t)/p(x) = 1/(1 + ax (t − x)). In this case the
declining hazard leads to an even faster decline in the numbers of deaths during
the interval [x, x + 1) than the exponential model. We see from Figure 2 that this
model is more realistic than the other two for the youngest ages such as x < 15. ♦

Example 2.4. Competing Risks. Adding demographic realism to Example 1.2,
suppose there are k causes of death with hazards µ1(x), . . . , µk(x) in age x . Then,
the overall hazard of death can be taken as µ(x) = µ1(x) + · · · + µk(x). This is
the classical model of competing risks of death. Forecasts of future mortality are
sometimes formulated in terms of cause-specific death rates. For example, the
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Figure 1. Log of Mortality Hazard for the Married (Dashed Line), Widowed (Dotted Line),
and Single and Divorced (Solid Line) Women in Finland, in 1998.

U.S. Office of the Actuary (1987) has used the following classification: (1) heart
disease, (2) cancer, (3) vascular diseases, (3) violence, (4) respiratory diseases, (5)
diseases of the infancy, (6) digestive diseases, (7) diabetes mellitus, (8) cirrhosis
of the liver, and (9) other diseases. ♦

Mortality can vary by many characteristics of the individual, sometimes in an
unexpected manner.

Example 2.5. Mortality and Marital Status in Finland. Figure 1 shows estimates
of the logarithms of age-specific mortality rates for females in Finland in 1998
by marital status. The rates were calculated from single year of age data provided
by Statistics Finland. The estimates have been smoothed using a robust smoother
(RSMOOTH of Minitab, which applies a carefully selected sequence of moving
averages and running medians to the data). We see that the mortality of those who
are married is the lowest, and the mortality of the singles and the divorced is the
highest. The mortality of the widows is in between, except in young ages. We will
come back to the latter issue in Example 3.2 of Chapter 5. There appears not to
be agreement as to whether marriage lowers mortality hazards by providing a less
risky life style, or whether there is a selection mechanism in operation such that
those who are more “fit” are also more likely to find a spouse (e.g., Gove 1973;
Hu and Goldman 1990; Lillard and Panis 1996). We will consider this problem in
Section 1.5 of Chapter 6, and show that both points of view may have a certain
justification. ♦

Note that the approximate linearity of the log-hazard as function of age x(> 55)
in Figure 1 is not compatible with a Weibull distribution. However, it is com-
patible with the Gompertz model µ(x) = αcx , with α, c > 0, that was introduced
by B. Gompertz in 1825. Note also that the hazards of the three marital statuses
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are roughly parallel in the log-scale in higher ages. This implies that their haz-
ards are equal, up to a multiplicative constant. That is, we have approximately a
proportional hazards situation in the higher ages.

2.2. Life Expectancies and Stable Populations

Instead of relying on parametric models, demographers have traditionally de-
scribed mortality nonparametrically. Starting from o/e rates of the type (1.3) and,
e.g., the linearity hypothesis of Example 2.2, one obtains estimates of p(x) for
x = 0, 1, 2, . . . The resulting estimates are then presented (usually as multiplied
by 100,000) in a tabular form, together with some related quantities.6 This is the life
table. Shryock and Siegel (1976), Chiang (1968, 1984), and Smith (1992) provide
details of the many variants that are in use. With the development of user-friendly
computer programs, tabular representations of the relevant quantities are gradually
becoming obsolete. Nevertheless, life table is a central concept in demographic
theory.

2.2.1. Life Expectancy

The expectation of the general waiting time can be calculated using (1.1). However,
the following result is often simpler. Define I(t) to be the indicator process of a
waiting time X , or I(t) = 1 if X > t , and I(t) = 0 otherwise. It follows that we
can represent X in a roundabout way, as follows:

X =
∞∫

0

I(t) dt. (2.6)

We may call this an integral representation of a waiting time X . Note that the
probability that X > t equals p(t) = E[I(t)]. Take the expectation of both sides
in (2.6), and change the order of expectation and integration (which is permissible
here because I(t) ≥ 0; Chung 1974, 59) to get the formula

E[X ] =
∞∫

0

p(t) dt. (2.7)

Alternative methods of proof that rely on calculus are given in exercises (see also
Çinlar 1975, 24–25).

Proving the result E[X ] = 1/µ for the exponential distribution is a one-step
integration using (2.7).

In demography, special notation is used for life expectancies. The additional life
expectancy, given survival to age x , is denoted by ex . (Sometimes ex is used for
the discrete time version, and e◦

x for continuous time. We will not make the dis-
tinction.) Using our notation this is ex = E[X − x |X > x]. Since the conditional

6 Thus, instead of speaking of a “nonparametric” representation, one could equally well say
that a very high-dimensional parametric model is used!
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probability of surviving to age x + t given survival to age x , is p(x + t)/p(x) =
exp(−(�(x + t) − �(x))), we can also write

ex =
∞∫

0

p(x + z)/p(x) dz.

(2.8)

=
∞∫

0

exp

⎛
⎝−

z∫
0

µ(x + s)ds

⎞
⎠ dz.

Since only weak assumptions are typically made concerning the hazard rate µ(.),
the estimation of p(.), �(.), or µ(.) itself, is difficult. A relatively crude approach
is as follows. If one approximates µ(.) by a piecewise constant function, then the
theory of Section 1 can be used to derive the MLEs of the constant hazards. For
example, if we assume that µ(t) = µx for t ∈ [x, x + h) and we know the total
number of deaths and the total number of person years lived in the population
during age [x, x + h), then µ̂x is simply the o/e rate (1.3). Similarly, if we define
the increment of the hazard as,

�x,h = �(x + h) − �(x), (2.9)

then we can estimate �̂x,h by hµ̂x . If h = 1 and x takes integer values, for example,
the estimate of p(x) would be p̂(x) = exp(−µ̂0 − · · · − µ̂x−1). Under a piece-
wise constant hazard model, we can estimate Var(µ̂x ) ≈ µ̂x

2/mx , where mx is the
number of deaths in age x . Relying on a normal approximation, a 95% confidence
interval for p(x) can be given approximately as p̂(x) exp(±1.96 × (µ̂0

2/m0 +
· · · + µ̂x−1

2/mx−1)1/2), for example. Chiang (1968, 1984) and Smith (1992) pro-
vide extensive variance formulas under several alternative models.

Life expectancy is one of the most widely used summary measures of mortality.
The suggestive terminology may lead some non-demographers to think that life
expectancy at birth, or e0, is a forecast made at the given time for how long a
particular birth cohort might live. However, life expectancy is almost universally
calculated from age-specific data of a given period. Thus it typically refers to a
synthetic cohort rather than an actual cohort. An alternative concept of synthetic
cohort is considered by Coleman (1997) in the context of diffusion of HIV infection
in a social network.

Apart from a limited number of analytical models, numerical integration must
be used to calculate the life expectancies ex in (2.8). Suppose p(x) has been
specified for a set of ages x , say x = 0, 1, 2, . . . The most common approximation
assumes the linearity of p(t) in each interval [x, x + 1). This is equivalent to the
so-called trapezoidal method of numerical integration. It leads to the approximate
formula

ex ≈ 1

2
+

∞∑
t=1

p(x + t)/p(x). (2.10)
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The formula can be used independently of the way p(x) has been estimated. In
particular, it follows from Example 2.2 that (2.10) is compatible with hazards of
the form µ(t) = bx/(1 − bx (t − x)).

2.2.2. Life Table Populations and Stable Populations

Life expectancies and survival probabilities have a peculiar interpretation in de-
mography that appears not to be generally known among statisticians. Suppose
individuals are born into a population at a constant rate of 1 person per unit of
time, and the survival probability of a person aged x is p(x), unchanging over
time. Then, at any given time we expect there to be p(x)dx individuals in the
narrow age interval [x, x + dx]. The expected total size of this population is given
by the right hand side of (2.7) (draw a Lexis diagram!). The function p(.) is then
the density of the expected population. (Note that it integrates to E[X ], not to 1.)
The expected population is called the life table population determined by p(.).
Assume that E[X ] is finite. It follows that in the life table population the expected
person years per new born are specified by the right hand side of (2.7). Thus,
1/E[X ] can be interpreted as an o/e rate. However, as the population size does not
change over time, there must also be one death per year, so the o/e rate 1/E[X ] can
also be interpreted as the (crude) life table mortality rate, calculated as number of
deaths divided by total population size.

As part of classical mathematical demography, the theory of life table popu-
lations is deterministic. It typically assumes a continuous population density and
does not require the size of the total population to be an integer. As shown by Kei-
ding and Hoem (1976), the theory can be reconciled with statistical models of the
type we discuss here. Instead of pursuing those details, we will use the traditional
language when discussing life table populations, stable populations (below), and
later in discussing population renewal.

The population interpretation of life expectancies can be carried further. Suppose
that individuals are born at rate Beρt where ρ is some constant. Consider the
number of people in age x at time t . They were born at time t − x , so their number
is Beρ(t−x) p(x). Let V (t) be the size of the population at time t , or

V (t) = Beρt

∞∫
0

e−ρx p(x) dx . (2.11)

We see that the population grows (or declines) exponentially at rate ρ, and its age
distribution is proportional to e−ρx p(x). Note the effect of growth on age distri-
bution. If ρ is increased, the age distribution becomes younger, if ρ is decreased,
the age distribution becomes older. Exponentially growing populations with un-
changing age distribution are called stable (e.g. Coale 1972). If ρ = 0 we have a
life table population. Since it does not grow, it is called stationary.

Although the assumption underlying stable populations (exponential births, un-
changing mortality schedule, no migration) are highly restrictive, the model can
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Figure 2. Log of the Hazard Increment of Mortality in Finland in 1881-1890 (Upper
Curves) and 1986–1990 (Lower Curves), for Females (Solid line) and Males (Dashed Line).

be valuable in situations in which the data are poor. For example, since the growth
rate, life table population, and age distribution are functionally related, knowing
two of them allows us to guess the third. For a list of relations one can use, see
Keyfitz (1977, 174–185).

2.2.3. Changing Mortality

What happens to life expectancy when mortality changes over time? We consider
first some historical data and then an analytical example.

Figure 2 shows empirical estimates of the logarithm of the hazard incre-
ments (2.9) with h = 1 for x = 0, . . . , 99, based on Finnish data from 1881-
1890, and from 1986–1990. We have calculated the estimates as log(�̂x,1) =
log(− log p(x + 1)/p(x)) based on Tables 4A and 4B of Kannisto and Niemi-
nen (1996) that give the probabilities of death 1 − p(x + 1)/p(x).

The figure shows first that mortality in ages 0 to 45 has decreased dramatically
during the hundred year period. In higher ages the decrease has been much less
pronounced. To appreciate the difference, note that around age 13 the hazard
declined from about e−5.3 ≈ 0.005 to e−8.7 ≈ 0.00017, whereas in age 70 the
decline was from about e−3.2 ≈ 0.041 to e−4.2 ≈ 0.015. In other words, in the
younger ages the earlier hazard was about 30-fold as compared to the rate a century
later, whereas in the older ages is was merely 3-fold. Second, in relative terms,
female life expectancies have remained steadily higher than male life expectancies.
During 1881–1890 we had e0 of 41.3 for males and 44.1 for females, or the female
figure was 7% higher than the male figure. In 1986–1990 we had e0’s of 70.7
and 78.8, respectively, or the female figure was nearly 11% higher. In older ages
the change was even more pronounced. We had e50’s of 19.4 and 21.1 during
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1881–1890, and e50’s of 24.6 and 30.7 during 1986–1990 for males and females,
respectively. Or the female advantage had grown from 9% to 25%.

Past mortality schedules form the basis on which forecasts of future mortal-
ity must be based, in one way or another. To set the reader thinking about the
problem, let us consider two simple (even simplistic!) approaches. Suppose we
assume that life expectancy increases linearly. Since the improvement for males
was 29.4, and for females 34.7 years, during 1890-1990, the linearity assump-
tion would imply a forecast of 100.1 for males and 113.5 for females, in 2090.
On the other hand, let �x,1(t) be the hazard increment of year t , and define
y(x, t) = log �x,1(t). From the data of Figure 2 we get estimates of y(x, 1890)
and y(x, 1990). Consider a year t > 1990. A linear trend extrapolation (in the log-
scale) would assume that ŷ(x, t) = y(x, 1990) + [y(x, 1990) − y(x, 1890)](t −
1990)/100. Taking t = 2090, we get the schedule ŷ(x, 2090), and the correspond-
ing survival probabilities p̂(x, t) = exp[− exp {ŷ(0, 2090)} − · · · − exp {ŷ(x −
1, 2090)}]. The implied life expectancy would be ê0(2090) = 78.7 for males, and
ê0(2090) = 87.2 for females. These forecasts are over twenty years less than those
based on the linearity of the life expectancy itself. The methods that start from
the mortality rates but put more weight on the most recent rates of decline lead to
intermediate values. For example, a recent Finnish forecast puts the median of the
predictive distribution (Section 2 of Chapter 9) of e0 for the males as 83.8 in 2065,
and as 88.2 for the females. In either case the loglinear model leads to an eventual
deceleration in the increase of life expectancy. During the period we are consid-
ering Finnish life expectancy appears to be a slightly concave function of time.

In general, there are infinitely many mortality schedules that correspond to a
given life expectancy. A connection can be established, if mortality is parametrized
in some way.

Example 2.6. Effect of Changes in Hazards on Life Expectancy. Suppose the hazard
of mortality in age x at time t ≥ 0 is of the form µ(x, t) = µ(x) − g(t)δ(x), where
g(0) = 0, δ(x) ≥ 0 for x ≥ 0, and let the corresponding life expectancy at birth be
e0(t). How does e0(t) change over time? One way to investigate that is to calculate
the derivative with respect to t . Recall (2.5) and define

�(x) =
x∫

0

δ(s) ds. (2.12)

Differentiating under the integral sign yields

d

dt
e0(t) = g′(t)

∞∫
0

p(x, t)�(x) dx . (2.13)

For example, if g(t) = t , then g′(t) = 1 and p(x, t) = p(x, 0)e�(x)t . In this case,
as t increases, the derivative of e0(t) increases. Therefore, the graph of e0(t) is
convex if the decline in mortality rates is linear in each age. Of course, linear
decline cannot continue forever. ♦
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2.2.4. Basics of Pension Funding

Suppose a person starts working at age α > 0 and retires at age β > α. During
work the person pays continuously an amount c per year to a fund that earns an
interest r . This entitles the worker to a unit pension (or annuity) per year that is
paid continuously until death. How large should c be? To determine c we discount
both the contributions and the pension payments to time of birth. The discounted
value of all contributions is

C = c

β∫
α

e−r t I(t) dt, (2.14)

where I(t) is the indicator process of time at death, as in (2.6). Suppose the highest
age is ω, so p(ω) = 0. The discounted value of pensions is

A =
ω∫

β

e−r t I(t) dt, (2.15)

Setting E[C] = E[A] yields an equation from which c can be solved as

c =
ω∫

β

e−r t p(t) dt

/ β∫
α

e−r t p(t) dt. (2.16)

In an infinite population the laws of large numbers would guarantee that this value
of c would exactly balance the contributions and payments. In practice, a pension
institution would have to take into account that the number of participants in the
scheme is finite.

Suppose we have n participants. Let Ci be the contribution and Ai the pension
of person i = 1, . . . , n, and define Di = Ci − Ai . Let us determine c so that with
probability 0.999 the fund is sufficient to cover the pensions. Defining

D =
n∑

i=1

Di , (2.17)

the task is to determine c so that P(D ≥ 0) ≥ 0.999. An approximate way of doing
this is to appeal to the central limit theorem (CLT). Suppose the Di ’s are indepen-
dent with common mean E[Di ] = µ and variance Var(Di ) = σ 2, i = 1, . . . , n. It
follows from the CLT that Z = (D − nµ)/(n1/2σ ) ∼ N (0, 1) asymptotically, as
n → ∞. Note that the event {D ≥ 0} is the same as the event {Z ≥ −µn1/2/σ}.
Thus the condition is µn1/2/σ = 3.09, the 0.999 fractile of the N(0, 1) distribution.
Here µ and σ depend on c. We indicate in Exercises 18 and 19 how the solution
can be found.

The system considered thus far is funded meaning that contributions are collected
into a fund from which annuities are later paid. Most current pension systems are
not funded, however. Instead, they are Pay-As-You-Go (PAYG), which means that
current workers pay the pensions of current pensioners. In a defined benefit system
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pension rules determine how much each pensioner is entitled to get and contribution
rates are set so that the needs are met, each year. In a defined contribution system
the contribution rate is fixed and the level of pensions may fluctuate.

Consider, for example, a defined benefit PAYG system under a stable population
(2.11) that grows at the rate ρ. As above, we simplify and assume that contributions
are made at the constant rate c. What value of c produces a unit annuity for each
pensioner? A moment’s reflection shows that we must have

c =
ω∫

β

e−ρx p(x) dx

/ β∫
α

e−ρx p(x) dx . (2.18)

The expression is formally the same as (2.16) but population growth rate replaces
the interest rate. Note that c is a declining function of ρ: the smaller the growth
rate, the higher the contribution rate. Although the stable population model is based
on highly restrictive assumptions, (2.18) indicates correctly the root cause of the
problems that have become acute in many countries at the turn of the millennium.
Populations of many industrialized countries are expected turn into a decline, so
the PAYG principle is becoming unsustainable.

2.2.5. Effect of Heterogeneity

Returning to the problem of heterogeneity (cf., Example 1.4 and the discus-
sion thereafter), suppose ξ > 0 is a measure of a person’s frailty, such that the
person’s hazard is µ(x, ξ ) = µ(x)ξ . The probability of surviving to age x > 0,
p(x, ξ ) = exp(−�(x)ξ ), is a convex function of the frailty ξ . Therefore, by
Jensen’s inequality the probability of survival for a person with average frailty
E[ξ ], or exp(−�(x)E[ξ ]), is smaller than the average probability of survival
E[exp(−�(x)ξ )]. Define life expectancy at frailty ξ as e0(ξ ) = ∫

p(x, ξ ) dx . By
changing the order of integration we have that E[e0(ξ )] = ∫

E[p(x, ξ )] dx ≥∫
p(x, E[ξ ]) dx . Therefore, the life expectancy of a person with average frailty

is smaller than the average life expectancy of a population, whenever frailty in-
fluences the hazard of mortality multiplicatively.

We caution the reader not to misinterpret the above result. For example, a person
with median frailty does have a median life expectancy, because under the assumed
model, life expectancy is a decreasing function of ξ .

2.3. Kaplan-Meier and Nelson-Aalen Estimators

Although our primary interest will be with grouped data, as noted in Section 5
of Chapter 2, individual level data are increasingly becoming available from pop-
ulation registries, epidemiologic databases, and reconstructed historical records.
Kaplan and Meier (1958) discussed an estimator of p(.) using such data, under
censoring.

Consider a cohort of size n. Let Xi be the time until death, and let ci be the
censoring time, for individual i = 1, . . . , n. Define the observable withdrawal
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times Ti = min {Xi , ci } and order them: 0 ≤ T(1) < T(2) < · · · < T(n). Define the
indicators of not being censored: δ(i) = 1 if T(i) corresponds to a death, and δ(i) = 0
if it corresponds to a censoring. Then, we may estimate p(t) for any t ≥ 0 by

p̂(t) =
∏

T(i)≤t

{
n − i

n − i + 1

}δ(i)

. (2.19)

This is the celebrated Kaplan-Meier or product limit estimator. To understand
its rationale, suppose n = 4 and the withdrawal times are 1.0, 1.5, 2.5, and 4.0.
Consider p(t) for 1.5 ≤ t < 2.5, so two withdrawals have occurred by t . If neither
was a censoring, the estimate is (3/4)(2/3) = 2/4, or it is the fraction remaining in
the cohort. If the second withdrawal was a censoring, then we have seen one death
out of four, and the estimate is 3/4. If the first withdrawal was a censoring and the
second was not, then we have seen one death out of three, and the estimate is 2/3.
In general, a death decreases the estimate by the fraction it represents out of those
remaining in the cohort.

Example 2.7. Life Expectancy Calculation from Kaplan-Meier Estimates. Ex-
pected waiting times (such as a life expectancies) can be calculated based on
Kaplan-Meier estimates. Take x = 0 in (2.10), and suppose that in the exam-
ple above we have no censoring. Then, we have p̂(1) = 3/4, p̂(2) = 1/2, p̂(3) =
1/4, and p̂(4) = 0. Therefore, ê0 = 1/2 + 3/4 + 1/2 + 1/4 + 0 = 2. Since the
Kaplan-Meier estimator is a step function, the integral (2.8) can be evaluated
directly as 1.0 × 1.0 + 0.5 × 0.75 + 1.0 × 0.5 + 1.5 × 0.25 = 2.25. This is the
correct value of the integral that avoids the approximation involved in the trape-
zoidal method. In order not to forget first principles, recall that the latter figure must
agree with the simple average of the survival times, when there is no censoring.
And it does: (1.0 + 1.5 + 2.5 + 4.0)/4 = 2.25! ♦

The same principle applies if there are tied waiting times: if r persons are at risk
and d die simultaneously at time t ′, then from t ′ on a factor (r − d)/r is included
in the product (2.19). The only difficulty arises if d deaths and c censorings occur
simultaneously among r who are at risk at t ′. Typically such an event would be an
artifact due to imprecise data collection. If we place the censorings first, then the
term (r − c − d)/(r − c) is included in (2.19) from t ′ on. If we place the deaths
first, then the term (r − d)/r is included. The latter is always bigger. In this way
we can bracket the value of the estimator we would get if the exact withdrawal
times were known.

Example 2.8. Survival Probabilities for Habsburgs. Figure 3 has a graph of
Kaplan-Meier estimates of survival probabilities for the males and females of
the Habsburgs family of Austria. The data relate to 175 members of the main line
of the family through which the throne was passed from generation to the next. The
birth years range from 1218 to 1895. The survival curves are for females and males
separately. Sex was not known for 10 of the members, so those have been left out.
These individuals have typically died very young, so leaving them out exaggerates
survival. We see that after the first year or so, the survival curves are surprisingly
linear. From the right triangle that has height 0.85 at age 1, and the length of the
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Figure 3. Survival Probabilities for Females (Solid) and Males (Dashed) Among the Mem-
bers of the Main Line of the Family of Habsburgs.

base of 85 years, we can estimate that the life expectancy is approximately 36
years. The correct arithmetic result (that includes those whose sex is not available)
is 35 years. More details about the data will be given in Chapter 5, starting from
Example 2.1. ♦

The estimation of the cumulative hazard could be based on the Kaplan-Meier
estimator, by taking �̂(t) = − log p̂(t). However, an alternative that generalizes
more easily to regression settings is as follows. Suppose the interval [0, t] is divided
into short subintervals of length h. If there are n individuals in the population in the
beginning of the interval [x, x + h) and the probability of two or more deaths is
negligible, the probability of exactly one death during the interval is approximately
nµ(x)h. If there is a death, then a moment estimator for the hazard increment is
�̂x,h = 1/n. If there is no death, the moment estimator is = 0. Combining the
estimates from the subintervals we obtain the so-called Nelson-Aalen estimator

�̂(t) =
∑
T(i)≤t

δ(i)

n − i + 1
. (2.20)

This estimator was independently introduced by Nelson (1969) and Aalen (1976).
A comprehensive discussion of the Kaplan-Meier and Nelson-Aalen estimators is
given in Andersen et al. (1993).
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In survival theory literature it has become customary to write the sum in (2.20) as
a stochastic Stieltjes integral (e.g., Klein and Moeschberger 1997, 70–79). Suppose
we follow a cohort of size n. Let Y(t) be the size of the cohort at time t , and let
N(t) be the number of deaths that have occurred during time [0, t]. Then, we have
that

�̂(t) =
t∫

0

d N (s)

Y (s)
, (2.21)

if Y (t) > 0. The denominator Y(s) keeps track of the size of the population that
has neither died nor become censored by s.

2.4. Estimation Based on Occurrence-Exposure Rates

We showed in Section 1 that the o/e rate is the MLE of the hazard rate if the
true hazard is constant. The actuarial method and Balducci hypothesis provide
estimators that are based on more realistic models for various ages. Over the years,
demographers have devised ever more refined methods that attempt to minimize
biases due to an erroneous parametric model. Their motivation is the fact that
because the populations being studied usually are large, random variability in
the counts is small (compared to the expected values of the counts) and hence,
unless models are pushed to extremes, biases from incorrect models can be more
detrimental than random error in estimation of parameters. Also balancing this
tendency away from parametric models is the fact that the data typically are grouped
by year.

A second desideratum involves the intended use of the estimates. Life tables con-
tain various summaries (such as ex ) based on an estimated version of the survival
function p(.). For those purposes, all one needs, roughly speaking, is to be able to
estimate the one-year survival probabilities p(x + 1)/p(x) = exp(−�x,1) for x =
0, 1, 2, . . .

We continue to use mortality as our paradigm case. Consider a one-year age-
interval [x, x + 1), and suppose first that data are available from the rectangles of
the Lexis diagram (e.g., ABCD in Figure 1 of Chapter 2). Let k(t) be the density
of population in age t ≥ 0 at a fixed time. Define

Kx =
x+1∫
x

k(t) dt. (2.22)

If the density of the population remains the same during the year in which the
observations are made, then Kx is the number of person years lived by the x-year
olds during the year. Let us assume this. Suppose the observed o/e rate is Mx and
that we observe Mx ’s and Kx ’s. How then to estimate µ(.)? Using the method
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of moments we equate the observed rate with the expected average hazard of the
population in age x ,

Mx =
x+1∫
x

µ(t)k(t) dt/Kx . (2.23)

Note that k(t)/Kx defines a probability density on [x, x + 1) that integrates to
one and µ(.) is assumed to be continuous. By the mean value theorem of integral
calculus there is some point ξx ∈ [x, x + 1) such that Mx = µ(ξx ). In other words,
the o/e rate estimates µ(.) at some age between x and x + 1, but without additional
assumptions we don’t quite know which.

Keyfitz (1977, 19–21) suggested the following local linearity approximation.
Suppose that the true rate is linear in interval [x, x + 1), say µ(t) = µ0,x +
µ1,x (t − x − 1/2) for some constants µ0,x and µ1,x . Similarly, assume that the pop-
ulation density is piecewise linear, k(t) = k0,x +k1,x (t − x −1/2) for t ∈ [x,x +1).
It follows that Kx = k0,x and �x,1 = µ0,x . By a direct calculation one can show
that the right hand side of (2.23) is equal to µ0,x + µ1,x k1,x/(12k0,x ). Thus, if we
have estimates of the slopes µ1,x and k1,x , we have from (2.23) the estimate

�̂x,1 = Mx − µ̂1,x k̂1,x

12k0,x
. (2.24)

Keyfitz suggested that we estimate the slopes by

µ̂1,x = (Mx+1 − Mx−1)/2, k̂1,x = (Kx+1 − Kx−1)/2. (2.25)

These estimates are available for x = 1, 2, . . . , ω − 1, where ω refers to the
open ended age-group [ω, ∞). One could thus obtain the estimates µ̂(t) = �̂x,1 +
µ̂1,x (t − x − 1/2) for t ∈ [x, x + 1).

Keyfitz’s approach is a reasonable one. It takes care of the first order deviation
from constancy both in µ(.) and k(.). It also has the merit of being non-iterative.
Although the estimates µ̂(t) typically are not continuous, a continuous estimate of
the whole curve µ(.) can be obtained using Keyfitz’s method. Under the assump-
tion of piecewise linearity for µ(.) and k(.), it follows that µ0,x = µ(x + 1/2).
Therefore, the right hand side of (2.24) can also be interpreted as an estimate of
the mid-interval mortality µ(x + 1/2). Having these estimates available we can
use any interpolation method (e.g., splines) to get continuous estimates of the
intermediate values of µ(.). Some bias will inevitably be introduced.

Example 2.9. Actuarial Estimator. The so-called actuarial estimator of survival
is of the form p(x + 1)/p(x) = (2 − Mx )/(2 + Mx ), where Mx is the age-specific
mortality rate of age x . It is probably the most widely used estimator of survival due
to its simplicity. As discussed in Exercise 9, it is based on the linearity assumption
of Example 2.2. ♦

No matter how the intermediate ages are handled, the highest age must be han-
dled separately. It is typically an open-ended age-group such as 100+. Let the
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Figure 4. The Distribution of Life Times of Those Born in 1994, Who Died in Age Zero,
in Finland.

lower end point of the highest age be ω and denote the crude mortality rate in this
age as Mω. Under a constant hazard assumption, the corresponding probability
of surviving for one year would be exp(−Mω), and under a more realistic “uni-
form distribution of death” hypothesis of Example 2.2 the probability would be
(2 − Mω)/(2 + Mω). The numerical effect of the approximation errors can be re-
duced simply by continuing the calculations to sufficiently high ages so that the
populations involved are small. For the purpose of completing a life table, we can
equate observed mortality rate with the life table mortality rate, and solve eω from
the identity Mω = 1/eω.

For later use we also need estimates of the distribution of life times among those
who die during their first year of life.

Example 2.10. Distribution of Death During First Year. Figure 4 has a histogram
of the death times of those who died before reaching their first birthday. The data
are for the cohort of 1994, in Finland. The columns correspond to weeks. A total
of 58% died during the first week, with 23% dying during the first day. A total of
71% died during the first four weeks. The total number of deaths on which these
estimates are based is 291. The total number of live births in 1994 was 65,231,
so the proportion dying during the first year of life was 0.45% for both sexes
combined. For males the proportion dying during the first year of life was 0.5%
and for females it was 0.4%. The average number of days lived by those who died
before reaching their first birthday was 43, corresponding to 0.12 years. ♦

Example 2.11. Proportion of Deaths During First Days. Later on, we will need
estimates of hazards µ(0) and µ(28/365), for example. They can be based on
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parametric models or direct empirical estimates. Consider the data of Example
2.10. The proportion of births dying during the first year of life was 0.0045. Given
the low level of mortality, we can also interpret this as an o/e rate. The proportion of
deaths during the first day of life (out of all deaths before first birthday) was 23.0%.
Therefore, on an annual basis the rate of death is 0.23 × 365 = 84 times the age-
specific rate of age [0, 1). Therefore we can estimate µ(0) = 84 × 0.0045 = 0.378.
For the two-week period of days 22–35 the proportion of deaths was 3.8%, so on
an annual basis we can estimate µ(28/365) as 0.038 × (365/14) = 0.99 times the
age-specific rate of age x = 0. In this case it would be 0.0045. ♦

The concept of hazard that leads to survival probabilities and life tables appears
so self-evident that it is hard to detect the conventional aspects of its adoption.
Although slightly philosophical, we ask the reader to consider the following case
of “randomness or predestination”.

Suppose a waiting time X can take three values 1, 2, 3. Consider two models.
(a) Suppose we toss a die once. If we get 1 or 2, then X = 1; if we get 3 or 4, then
X = 2; and if we get 5 or 6, then X = 3. (b) Suppose we toss a die once. If we
get 1 or 2, then X = 1. Otherwise, we toss again. If we get 1, 2 or 3, then X = 2.
Otherwise X = 3. We interpret (a) as an extreme form of frailty that completely
determines survival – your time of death is set at birth – and (b) as a pure hazard
model with no frailty. Under both models P(X = j) = 1/3, for j = 1, 2, 3, so an
outside observer could not tell which of the two models is valid, even based on a
large number of independent observations. The models are incompatible but the
classical deterministic life table theory does not distinguish between them. If we
could have repeated observations on the “same X” after the first toss, then we
could, in principle, distinguish between the models. A realistic point of view may
be that there are elements of both (a) and (b) in the world we live in. As in (a), some
individuals are better programmed to live long than others, yet as in (b), we all face
outside risks that are unpredictable. A challenge of life table theory is not to lose
sight of either model. We will come back to this topic in Section 8 of Chapter 5
and in Section 1.3.4 of Chapter 6.

3. Estimating Survival Proportions

In population forecasts one needs estimates of the proportions of survivors from
age x to age x + 1, where “age x” refers to the interval [x, x + 1). Here we take
as a starting point estimates of survival probabilities as derived in Section 2.4. Let
k(s, t) denote the density of the actual population aged exactly s at time t . In the
absence of migration, the proportion in question may be written as

x+2∫
x+1

k(s, t + 1) ds

/ x+1∫
x

k(s, t) ds. (3.1)
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Letting 1p(s) denote the probability that an individual aged s at time t survives
1 year, and defining the weight function v(s) = k(s, t)/ ∫x+1

x k(y, t) dy, we may
rewrite (3.1) as a weighted average of the one-year survival rates,

x+1∫
x

v(s)1p(s) ds. (3.2)

The usual way of estimating (3.1) is use the life table survival proportion Lx+1/Lx ,
where

Lx =
x+1∫
x

p(t) dt. (3.3)

(Traditionally, the right hand side of (3.3) is multiplied by 10,000 or by 100,000.
We will not follow this practice.) These integrals are usually evaluated using the
linearity assumption, so

Lx+1

Lx
= (p(x + 2) + p(x + 1))/2

(p(x + 1) + p(x))/2
. (3.4)

Rewrite (3.4) as a weighted average of the one-year survival probabilities,

Lx+1

Lx
= 1p(x + 1)

p(x + 1)

p(x) + p(x + 1)
+ 1p(x)

p(x)

p(x) + p(x + 1)
, (3.5)

where 1p(x) = p(x + 1)/p(x). We note two things. First, if the true population
density k(., t) is not proportional to the density of the life table population whose
age distribution is determined by p(.), then the weights in (3.5) may be incorrect.
Second, a correct survival proportion from age x to age x + 1 can, in principle (by
the mean value theorem of calculus), always be obtained as a weighted average
of the one-year survival probabilities 1p(x) and 1p(x + 1), if the one-year survival
probabilities 1p(x + t) are monotone for t ∈ [0, 1). Alternative, and potentially
more accurate, methods can be devised.

For example, suppose the density of population is piecewise linear, k(t) =
k0,x + k1,x (t − x − 1/2) for t ∈ [x, x + 1). Suppose also that the one-year sur-
vival probabilities 1p(x) = p(x + 1)/p(x) are piecewise linear, 1p(t) =1 p0,x +
1p1,x (t − x − 1/2), t ∈ [x, x + 1). (Note that this linearity assumption involves
one-year survival probabilities rather than probabilities p(x).) Then, instead of
(3.5) the average survival probability is given by

1p(x) = 1p(x)

{
2k(x) + k(x + 1)

3(k(x) + k(x + 1))

}
+ 1p(x + 1)

{
2k(x + 1) + k(x)

3(k(x) + k(x + 1))

}
.

(3.6)

For the unknown densities k(x) and k(x + 1) we can use the estimates k̂(x) =
(Kx−1 + Kx )/2, for example. We would expect to see differences between (3.6)
and (3.5), if (a) one-year survival probabilities 1p(x) change rapidly as a function
of x , and (b) fertility was rapidly changing approximately x years ago.
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Surviving births must be handled separately. Consider the Lexis diagram of
Figure 1 of Chapter 2. Suppose x = 0. The life lines of the births during year t
start in AB, and we are interested in the proportion that cross BC. Suppose that
only data from rectangles are available. Consider all deaths that occur in ABCD,
and let f denote the fraction that occur in the triangle ACD and thus represent
deaths to persons born during year t − 1. This fraction f is called a separation
factor, and it gives more weight to deaths at ages closer to x + 1 than to x . Values
of f have historically been in the range 0.15 to 0.3 (Keyfitz 1977, 11). However, in
the Finnish data of Example 2.10, the fraction was 0.08. This is a reflection of the
low level of infant mortality in Finland. In any case, the probability of surviving
from birth to the end of the year (i.e., survival in triangle ABC) is approximately
L0 ≈ exp(−(1 − f )M0) ≈ 1 − (1 − f )M0.

Note also that if we want to consider cohort survival during the first year of life
(i.e., survival in ABFC), then separation factors can be used to get estimates.

The difficulties encountered in the handling of the surviving births stem from
data collection when information is available only for the rectangles of the Lexis
diagram. However, when triple classified data (by age, year, and cohort) are avail-
able, the most obvious choice is to estimate the proportion of deaths in trian-
gle ABC out of the births in AB (when x = 0). This gives directly an average
probability of survival to the end of the year (provided that net migration is not
large).

A similar remark can be made for the one-year survival probabilities Lx+1/Lx

for x = 0, 1, . . . , ω − 1. Referring again to the Lexis diagram of Figure 1 of Chap-
ter 2, we could assume that the mortality rate Mx has been calculated on a birth co-
hort basis from the parallelogram ACED. Then, a natural estimate of the one-year
ahead survival is exp(−Mx ) for ages in which mortality does not change much. The
actuarial estimator (2 − Mx )/(2 + Mx ) discussed in Example 2.9 and Exercise 9
would be appropriate for ages with increasing mortality hazards (such as x > 30).
Finally, an estimator could also be based on the Balducci model (cf., Example 2.3).
It might be appropriate for ages with declining hazards (such as x < 10).

4. Childbearing as a Repeatable Event

4.1. Poisson Process Model of Childbearing

A statistical model for a repeatable event can be given in terms of counting pro-
cesses. We call a set of random variables {N (t)|t ≥ 0} a counting process (or an
arrival process or a point process – the terms will be used interchangeably), if
N (0) = 0 and N (t) increases by jumps of size one only. Then, N (t) counts the
number of events of interest (or “arrivals”) by time t . In the case of childbear-
ing, each woman starts childless and a counting process can keep track of her
pregnancies that result in one or more live births (e.g., Keiding and Hoem 1976,
Mode 1985). Since a single pregnancy can result in multiple births, we can attach
a “mark” to each arrival indicating how many live births (1, 2, . . .) occurred. In
this case one speaks of a marked counting process.
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A particularly simple arrival process is obtained if we assume that the interar-
rival times are independent and exponentially distributed with some parameter
λ > 0. This defines the so-called Poisson process with intensity parameter
λ, because in this case N (t) ∼ Po(λt), or P(N (t) = k) = e−λt (λt)k/k! for k =
0, 1, 2, . . . (cf., Çinlar 1975, Chapter 4). We give a direct proof of the distribu-
tional result using the properties of the exponential distribution.

Proof of the Poisson distribution property. Let T1 ≤ T2 ≤ · · · be the arrival times
such that T1, T2 − T1, T3 − T2, . . . are independent with exponential distributions
with parameter λ. For the following argument, let pk(t) denote P(Tk > t) for
k = 1, 2, . . . We show first by induction that

pk(t) =
k−1∑
i=0

e−λt (λt )i / i!. (4.1)

This is the survival function of the so-called Erlang-k distribution. Since p1(t) =
e−λt , the equality (4.1) holds for k = 1. Now make the induction assumption that
the result holds for k = j , and consider k = j + 1. A moment’s reflection shows
that the event {Tj+1 > t} occurs if and only if one of two mutually exclusive
events occur, either {Tj > t} or {Tj+1 > t ≥ Tj }. Recall that the density of Tj is the
negative of the first derivative of p j (t), i.e., −p′

j (t). Therefore, we have the equality

p j+1(t) = p j (t) +
t∫

0

−p′
j (s)e−λ(t−s) ds. (4.2)

Integrate by parts and observe that the integral on the right hand side can be
written as the sum of −p j (t) and the right hand side of (4.1) for k = j + 1. This
completes the induction proof of (4.1).

Having proved (4.1), we conclude by noting that {N (t) = k} is equivalent to
{Tk ≤ t < Tk+1}, and we know from the proof of (4.2) that the probability of this
event is P(N (t) = k) = pk+1(t) − pk(t) = e−λt (λt)k/k!. ♦

We note that the Erlang-k distribution defined by (4.1) has many applications
in telecommunications, where it is used in the analysis of incoming phone calls to
a switching board, for example. It could still be of some demographic interest on
its own right, because it can be used to gain intuition on waiting times until the k th

child the k th unemployment spell, the k th relapse of a disease etc.
The Poisson process model is useful in statistical demography because it leads

directly to a MLE of λ. Suppose we observe n independent Poisson processes Ni (t)
with the same parameter λ. Assume that the observation time of the i th process is
ti > 0, and define K = t1 + · · · + tn . Now the total count is N = N1(t1) + · · · +
Nn(tn). It has the distribution Po(λK ), where K is known. The MLE of λ is λ̂ =
N/K , with an estimated variance of λ̂/K . We see that this is an o/e rate of the same
type we considered in the analysis of mortality. A different argument was, neverthe-
less, needed to motivate it in the case of a repeatable phenomenon, such as births.
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Since the birth rate varies considerably by a woman’s age, estimation is typically
carried out by assuming constancy over a one-year or a five-year age interval. The
childbearing ages are often operationally defined to be the ages 15–44, or 15–
49, because outside these ages fertility is low. Fertility rates have also been quite
erratic, and, hence, hard to forecast, during the past century.

Example 4.1. Age-Specific Fertility Rates for Italy and the U.S. The following
table has o/e rate estimates (multiplied by 1,000) of age-specific fertility by 5-year
age-groups in the United States in 1940–1970, and in Italy in 1975–1985.

Age-Specific Fertility Rates in the United States and Italy

United States Italy

Age 1940 1950 1960 1970 1975 1985

15–19 45.3 70.0 79.4 57.4 32.5 12.1
20–24 131.4 165.1 252.8 163.4 129.8 72.5
25–29 123.6 165.1 194.9 145.9 140.2 101.8
30–34 83.4 102.6 109.6 71.9 84.1 65.7
35–39 45.3 51.4 54.0 30.0 40.7 25.2
40–44 15.0 14.5 14.7 7.5 12.6 5.0
45–49 1.6 1.0 0.8 0.7 0.9 0.3
Total 2.23 2.98 3.53 2.39 2.21 1.41

“Total” refers to the total fertility rate that is discussed in more detail below, but
here it is defined simply as 5 × (sum of the five-year age-specific rates)/1,000. In
the U.S. data we see the famous baby-boom of the post-war times. Within a decade,
fertility went up by 1/3, stayed at a high level for a decade, and then dropped by
1/3. Neither the increase nor the decline was anticipated by population forecasters
in the United States. In the mid-1940’s it was believed that total fertility would
decline to 2.06 by 1960 (Whelpton, Eldridge, and Siegel 1947). Ten years later,
in the forecast for 1960–1980 (U.S. Census Bureau 1958) the highest of the four
forecast variants for white total fertility in 1970 was 3.90 and the lowest 2.54. Later,
in Italy, fertility also declined by 1/3 in a decade. This too was not anticipated by
forecasters. In an official Italian forecast published in 1969 (“Tendenze evolutive
della popolazione delle regioni italiana fino al 1981”) the low scenario for the total
fertility rate in 1979 was 2.6 and the high scenario was 2.8. By 1985 the forecasters
had changed their minds, and forecasted a future total fertility of about 1.3. Similar
decreases were observed in other Mediterranean countries. ♦

In causal analyses, birth rates are needed for sub-populations defined by edu-
cation, region etc. A curious problem arises when birth order (first birth, second
birth, etc.) is taken into account. By parity we refer to the number of children
previously borne. Women who have had no children are said to be of parity zero,
for example. Let Bx,i be the number of births of order i = 1, 2, . . . to women in
age x , and let Kx be the person years lived by women in age x , during a given
year. The i th order-specific (or parity-specific) fertility rate is usually defined as
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Bx,i/Kx (cf., Shryock and Siegel 1976, 280). We caution that this is not an o/e
rate, however, since the denominator is not restricted to women of parity i − 1.
The calculation of the measure in this manner can be motivated, however, if the
proper exposure data are not available.7

Alternatively, we may consider parity from the perspective of the interarrival
times of births for a woman. The so-called parity progression ratios, i.e. the ra-
tio of women in parity i that reach parity i + 1, can be illuminating as a tool to
understand changes in childbearing behavior (e.g., Mode 1985, 119–120; Smith
1992, 235–237).8 The meaning of such ratios is rather subtle, however, and multi-
state techniques (Chapter 6) appear to be required for a proper treatment of parity
progression. We will illustrate the problems in Section 4.3.3.

4.2. Summary Measures of Fertility and Reproduction

As seen in Example 4.1, fertility varies considerably within the childbearing ages.
We will apply the Poisson process model to define the most important summary
measures of fertility. A nonstationary Poisson process can be obtained from a
stationary process defined in Section 4.1 by a change of the time scale. Consider an
intensity function λ(.) ≥ 0 for t ≥ 0. In analogy with (2.5) we define a cumulative
intensity

�(x) =
x∫

0

λ(t) dt. (4.3)

Define an arrival process N (x) such that P(N (x) = k) = e−�(x)�(x)k/k!. In other
words, the number of arrivals by time x equals the number of arrivals of a stationary
Poisson process with intensity 1, by time �(x).

We use these concepts in the following way to describe childbearing. Suppose
N (x) counts the number of children a woman has by age x . Then, we call λ(x) the
age-specific fertility rate at exact age x . In human population we would typically
have bounds 0 < α < β such that λ(x) = 0 for x < α and x > β. Then, the interval
[α, β] is said to consist of the childbearing ages. In Example 4.1 we displayed
estimated age-specific fertility rates (for five-year age groups) with α = 15 and
β = 50.

The most important summary measure of fertility is �(β), which is called the
total fertility rate. Notice that E[N (x)] = �(β) for all x ≥ β. Thus, the total
fertility rate can be interpreted as the expected number of children a woman will
have during her lifetime, provided that she survives to the end of the childbearing
ages and the rates do not change with time.

7 In demography, such measures are sometimes called rates of the second kind (e.g., Inter-
national Encyclopedia of the Social and Behavioral Sciences (2001)), 3482–3483.
8 In particular, the so-called “children ever born” methods enjoy wide use in countries with
deficient data (e.g., United Nations 1983, Chapter II).
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Figure 5. Total Fertility Rate in Finland in 1776–1999, and in the United States (Dashed
line) in 1920–1999.

Example 4.2. Finnish Fertility, 1776-1999. Figure 5 has a plot of the Finnish total
fertility rate during 1776–1999. We see that fertility remained high to the beginning
of the 20th century. It then declined until the early 1930’s. The peak of the Finnish
baby-boom was in 1947. Figure 5 has also a plot of the U.S. total fertility rate
in 1921–1998, with a peak in 1957. It is sometimes thought that the baby-booms
were caused by postponement of births during war time and subsequent recovery.
Figure 5 suggests that this cannot be the case, since fertility rose already before
and during the war. We will come back to this issue in Section 4.3.1. ♦

The usual procedure for estimating age-specific fertility treats the intensity λ(.)
as constant over one-year or five-year age-intervals. As in Example 4.1, a total
fertility rate is then obtained by approximating the integrand of (4.3) by the piece-
wise constant estimate of age-specific fertility. If single year data are used, then
an estimate of the total fertility rate is simply the sum of the age-specific o/e rates.
Under a Poisson model for births, an estimate of variance for the estimated total
fertility rate is obtained by summing the variances of the o/e rates.

The reproduction of the population is traditionally measured by the extent to
which the female population reproduces itself. Define κ as the sex-ratio at birth,
i.e., it is the ratio of male births to female births. It follows that the fraction of
female births is 1/(1 + κ). The so-called gross reproduction rate is the total fertility
rate when only female births are considered, or it is defined as �(β)/(1 + κ).

The value of κ varies from one culture to another. The value κ = 1.05 is fairly
typical in industrialized countries, but values in the range 1.01 − 1.08 seem to occur
in populations in which technologies for detecting the sex of a fetus (at an age when
an abortion has been a medically safe option) have not been available (e.g., Shryock
and Siegel 1976, 109). Statisticians might be interested to know that in 1710 John
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Arbuthnot conducted what may have been one of the earliest applications of the
so-called sign-test by calculating the probability that male births would exceed
female births for eighty two consecutive years (1629–1710) in London, provided
that κ = 1. He found this probability to be exceedingly small, thus proving the
operation of Divine Providence (cf., Stigler 1986, 225–226). Karlin and Lessard
(1986) consider the optimality of the sex ratio.

In addition to regional variation, κ may vary by age of mother. We note that
if such variation is numerically important, then gross reproduction rate can be
defined as

∫ β

0 λ(t)/(1 + κ(t)) dt , with the κ(x) the sex-ratio for births to a mother
of age x .

Example 4.3. Time Trends in Sex Ratios in Finland. Sex ratio at birth may also
vary in unexpected ways over time. Figure 6 has a plot of the Finnish ratio from
1751–2000. The actual ratios vary quite a bit around the smoothed curve that was
obtained by running the RSMOOTH procedure of Minitab twice. The variation
is due to random fluctuations in Bernoulli trials. The interesting thing, however,
is the trend of the time series. We will see later that the series is nonstationary
by usual measures, indicating that there have been real changes in the ratio. The
causes of changes have been investigated, but no obvious demographic factor such
as paternal age, maternal age, age difference of parents or birth order can explain
the nonstationarity (Vartiainen, Kartovaara and Tuomisto 1999). ♦

Let T be the waiting time until a woman’s death and define p(x) = P(T > x).
Then, N (T ) is the total number of children she has over her lifetime. (Note how
death may cause censoring here via T .) The expected number of girls she will have
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is E[N (T )]/(1 + κ). This is called the net reproduction rate.9 To evaluate it, note
that conditionally on T = t , a woman is expected to have �(t) children. Recall that
−p′(t) is the density of T and integrate by parts to show that E[N (T )]/(1 + κ)
equals

1

(1 + κ)

∞∫
0

�(t)(−p′(t)) dt = 1

(1 + κ)

β∫
α

λ(t)p(t) dt, (4.4)

because λ(.) vanishes outside [α, β]. The right hand side of (4.4) is the usual
definition given for the net reproduction rate. It can be interpreted as the expected
number of girls a new born baby girl will have over her life time (provided that
fertility and mortality schedules do not change over time). The gross reproduction
rate is the expected number of girls a new born baby girl will have if she survives
to age β. A stationary life table population is obtained if the net reproduction rate
is = 1. As discussed in Section 2.2 of Chapter 6, a growing or declining stable
population is obtained if it is > 1 or < 1, respectively. The integrand λ(.)p(.) is
called the net maternity function.

To determine the growth rate ρ of the stable population corresponding to λ(.) and
p(.), suppose the female births at time t are Beρt and the female population den-
sity at time t is Beρ(t−x) p(x). From the equality Beρt = ∫

Beρ(t−x) p(x)λ(x) dx/

(1 + κ) we get the equation

1 =
∞∫

0

e−ρx λ(x)p(x) dx/(1 + κ). (4.5)

By computing the derivative of the right hand side with respect to ρ we note that
the right hand side is monotone function that declines from +∞ to 0. Therefore,
(4.5) has a unique real root in ρ.

If we would have p(x) = 1 for x < β, then a value 1 + κ ≈ 2.05 of the total
fertility rate would guarantee the reproduction of the population. Due to mortality in
ages < β a somewhat higher value, such as 2.1 is often mentioned as the threshold
value. In countries with a low level of mortality an intermediate value such as 2.07
may be more accurate.

A possible definition for the length of generation is the number of years until the
annual births become multiplied by the net reproduction rate (4.4). If we denote
the generation length by G and the net reproduction rate by N , we then have for
the stable population the equation N = eρG or G = log(N )/ρ. Being determined
by the life table age-distribution and period fertility, ρ is also called an intrinsic
growth rate.

9 The invention of the net reproduction rate is often attributed to Robert R. Kuczynski
(1876–1947) although several authors entertained similar ideas in the 1920’s and 1930’s
(DeGans 1999, 65).
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One measure of the timing of the births is the mean age at childbearing. In
statistical terms, this is an expected value of the age of the mother. There are at
least four logical densities with respect to which the expectation might be taken. (i)
Suppose b(x) is the density of births by mother’s age, α ≤ x ≤ β. We get the actual
mean age if we use b(x). (ii) If we use a density proportional to the age-specific
fertility rate λ(x), we get a hypothetical mean age that would occur if there were
constant past births and no mortality by age β. (iii) If we use a density proportional
to λ(x)p(x), we get a hypothetical mean age that assumes constant past births but
takes into account mortality. (iv) If we use a density proportional to e−ρxλ(x)p(x),
we get a hypothetical mean age that takes into account intrinsic growth. As shown
by Keyfitz (1977, 126), this mean age is close to the length of generation, as defined
above. Usually, mean age is calculated assuming (ii) (Shryock and Siegel 1976,
279). To develop a sense of the practical meaning of the various measures, consider
the data from Finland in 2000.

Example 4.4. Alternative Measures of Mean Age at Childbearing, Finland 2000.
The total fertility rate was 1.73 and the sex ratio at birth was 1.06. Therefore,
the gross reproduction rate was 1.73/2.06 = 0.84. The net reproduction rate was
N = 0.83, so the effect of mortality during childbearing ages on reproduction was
negligible. The mean age at childbearing was approximately 29.9 using definition
(i), and 29.5 using (ii). The reason the actual mean age is higher than that determined
by the age-specific rates is that the cohorts in the youngest childbearing ages are
smaller than those in the older childbearing ages. The other two definitions lead
to slightly lower values lower than 29.5. If the length of the generation would
be G ≈ 29 years, then the corresponding population growth rate would be ρ ≈
log(0.83)/29 = −0.006. ♦

In the Finnish example, the current fertility and mortality rates would imply, in
the absence of migration, a decline at the rate of about 0.6% per year. The low level
of natural reproduction has not been a topic of interest in public debate because
the baby-boom generations have produced large numbers of births during the past
decades. The situation will change when the small generations born after 1970
form the bulk of the child-bearing population, and may be changing already as
underfunding of pensions is increasingly a topic in the news.

As childbearing is largely voluntary activity, but subject to social norms, it is of
interest to consider to what extent the sex distribution of their children can be con-
trolled by the parents, by means other than genetic testing or X-ray determination
of the sex of a fetus and abortion.

Suppose a couple can potentially have some finite number of children. They may
elect to cease childbearing earlier. Let Xi = 1 if the i th potential child is a boy, and
Xi = 0 otherwise. Assume that the Xi are independent and identically distributed
Bernoulli random variables with parameter p, Xi ∼ Ber(p). The number of boys
among the first n potential births, say Sn = X1 + · · · + Xn , has mean np. Define
Yn = Sn − np, with Y0 = 0. Suppose the couple has elected to have n births, and
they are deciding whether to have one more. There are two possibilities. (1) If the
nth birth was the last feasible birth, or if the couple decides not to have further
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births, then the final Y value is Yn . (2) If additional births are available and the
couple decides to continue, then E[Yn+1|Yn] = Yn + E[Xn+1] − p = Yn . In both
cases the expected Y value at the next step is the current value, no matter what
the circumstances. The same argument applies to the previous step, so no matter
what strategy the couple is following, their expected final Y value was then Yn−1.
Continuing in this way we see that their expected final Y value must have been
Y0 = 0. A similar argument can be made for the girls, so that the ratio of the
expected number of boys to the expected number of girls is always p : 1 − p, no
matter what decision rule the couple follows. This is an elementary example of the
celebrated optional sampling theorem of Doob (cf., Chung 1974, 324–327): “No
strategy in a fair game improves your chances.” One implication of this finding
is that in large populations the overall sex ratio does not depend on the strategies
couples use. Although the result, as we have presented it, is straight forward, we
point out additional subtleties in exercises.

4.3. Period and Cohort Fertility
4.3.1. Cohort Fertility is Smoother

The total fertility rate is usually interpreted in terms of a hypothetical (synthetic)
cohort whose evolution is determined by the vital rates of year t . If the population
is stable, the period total fertility rate may also correspond to the experience of
actual cohorts. However, as amply demonstrated by Example 4.1 and Figure 5,
fertility rates have been highly variable in the past. One possibility is that period
fluctuations might be due to changes in the timing of fertility in different cohorts
(cf., Ryder 1956). We will discuss this issue in the context of the baby-boom in
Finland. As discussed in Example 4.2, it is unlikely that it could be explained
simply as a recovery of births postponed during World War II.

In fact, consider the total numbers of (live) births in Finland, in consecutive
five-year periods, during 1925–1954:

years births
1925–1929 384,300
1930–1934 349,200
1935–1939 366,000
1940–1944 372,600
1945–1949 521,300
1950–1954 466,200

We see that the number of births reached a low during the years following the
economic depression of the 1930’s. After that there was a recovery, and during
the five-year period that was most influenced by the war, the recovery continued:
the total number of births was higher during 1940–1944 than during the previous
five-year period of peace. A more plausible explanation can potentially be given
in terms of a longer term postponement caused by both the depression and the war.
This can be investigated by studying completed cohort fertility. The difficulty with
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Figure 7. Approximate Completed Fertility for Birth Cohorts Born in Finland in
1905–1965.

cohort analysis is that it takes 30–35 years to observe the whole completed fertility
of a cohort. Instead, Figure 7 presents the sum of age-specific fertility rates in ages
15–40 for the birth cohorts born in 1905–1965.10 Before analyzing the data, two
technical remarks are in order.

First, the estimates are based on the rectangles of the Lexis diagram rather than
the genuine cohort parallelograms. This can have a notable numerical effect for
some birth cohorts that were born at a time when fertility was rapidly changing from
month to month due to war. The years 1918–1919, 1939–1940, and 1944–1946
are examples of this (Fougstedt 1977, 19).

Second, for the last five cohorts the values have been forecasted by adding
0.16 to the cumulative fertility of ages 15–35. This is the difference observed
for the last available cohort born in 1960. Given that the fertility in ages 40–49
has been approximately 0.05 during the 1940’s and 0.01 recently, the (forecasted)
cumulative sum for the ages 15–40 approximates cohort total fertility rate well.

Turning to Figure 7, completed fertility presents a much smoother picture of the
evolution of fertility than period fertility of Figure 5. This is to be expected, since
fertility is heavily influenced by period factors that tend to compensate for each
other over time for actual cohorts. Nevertheless, completed fertility has changed
during the period we are investigating. It started at level 2.3 for the cohort of 1905
and rose to a high of 2.7 for the cohort of 1919. As argued by Fougstedt (1977,
18), the method of estimation has slightly exaggerated this value and decreased
the low value of the previous year. Perhaps, 2.6 is closer to the actual maximum.
From there, a decline to about 1.8 takes place. In other words, the increase during

10 The authors are grateful to Timo Nikander of Statistics Finland for providing these data.
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the early part of the period is about 0.3 children, and the subsequent decline is
about 0.8 children, or 31%. Therefore, the baby-boom still appears as a reversal
of a declining trend that started in the late 1800’s and continued after the 1950’s.
Although timing has certainly contributed to the creation of the baby-boom in
Finland, it cannot be explained merely by timing. Major changes in completed
cohort fertility also occurred.

In thinking about the possible reasons for a reversal of a long-term decline, it
seems useful to look at other countries, as well. Sweden did not participate in
the war, but had a baby-boom that peaked in 1945, and a smaller peak in 1964.
Great Britain and Belgium had lesser peaks in 1947–1948 and a bigger one in
1964. France and the Netherlands had higher peaks in 1946–1947 and a lesser
one in 1964. The United States and Canada had major peaks in 1957 and 1960,
respectively. (I.N.E.D. 1976, 46–54)

In summary, all the countries appear to have experienced a temporary reversal
of a long time declining trend. Looking for an analogy in physical systems theory,
we may observe that this corresponds to an underdamped system (Box and Jenkins
1976, 344). That is, when such a system is perturbed, its equilibrium state may
change, but this value is only reached after a sequence of oscillations.11

4.3.2. Adjusting for Timing

Although timing cannot explain all of the fluctuations in childbearing we observe,
it can certainly play a role. Therefore, if one has reason to believe that childbearing
is currently being postponed (or that it occurs earlier than before) it is of interest
to see how its effect might be assessed.

Let λ(x, t) be the age-specific fertility rate in exact age x at exact time t and
define the period total fertility rate as

�(t) =
∞∫

0

λ(x, t) dx . (4.6)

Correspondingly, define the cohort total fertility rate of those born at s as

C(s) =
∞∫

0

λ(x, s + x) dx . (4.7)

Assume that λ(x, t) = g(x) for t ≤ 0 and write � = �(0), for short. Let us assume
that g(x) = 0 for x < α and x > β.

Suppose that during t > 0 two things happen. First, all age-specific rates are
multiplied by (1 − r ), where |r | < 1. Second, the schedule g(x) is shifted at a
rate of r per year towards older ages (r > 0) or towards younger ages (r < 0). In
other words, assume that λ(x, t) = (1 − r )g(x − r t) for t > 0. As a result �(t) =
(1 − r )�, so the period total fertility rate is multiplied by (1 − r ).

11 Readers who have ever hit a pothole driving in a car with worn-out shock absorbers have
experienced underdamped systems.
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To see what happens with cohort total fertility, note first that the lowest and
highest ages of childbearing at t are α(t) = α + r t, and β(t) = β + r t, respec-
tively. Consider a cohort born at s ≥ −α. Its lifeline in the Lexis diagram is
L(t) = t − s. Therefore, it enters the childbearing ages when L(t) = α(t), or at
time t = (α + s)/(1 − r ), when its members have age (α + rs)/(1 − r ). Similarly,
the cohort ends childbearing at t = (β + s)/(1 − r ) in age (β + rs)/(1 − r ). We
have that

C(s) =
(β+rs)/(1−r )∫

(α+rs)/(1−r )

(1 − r )g(x − r (s + x)) dx . (4.8)

After a variable change y = (1 − r )x − rs we see directly that C(s) = �. In
other words, the completed total fertility of the cohort born at s ≥ −α equals that
of period t = 0 despite the transformation of the age-specific schedules. Moreover,
a similar argument shows that C(s) = � for all s. The interpretation is that we can
have a level change in period fertility and no change in completed cohort fertility,
if the period level change is suitably matched by a translation type delay in fertility.

If a translation at speed r occurs, then the mean age at childbearing changes
by r each year (if we define mean age with respect to a population whose age
distribution is proportional to λ(x, t), as in definition (ii) preceding Example 4.4).
Conversely, if the mean age at childbearing changes by r per year, then we would
expect period fertility to be multiplied by (1 − r ) if no change in completed cohort
fertility occurs and fertility schedules are simply being translated. Conditionally on
this hypothesis, �(t)/(1 − r ) would be a possible measure of fertility for year t that
would “adjust” for the timing effect observed during t (see Bongaarts and Feeney
1998; and for extensions Van Imhoff and Keilman 2000, Kohler and Philipov 2001).
Of course, the hypothesis may be false. For an alternative statistical formulation,
see Example 3.1 of Chapter 5.

4.3.3. Effect of Parity on Pure Period Measures

Could the argument be pushed further to birth order specific fertility rates discussed
in Example 4.1? Suppose a woman can give up to I births. We can then write

λ(x, t) = ϕ1(x, t) + · · · + ϕI (x, t), (4.9)

where ϕi (x, t), i = 1, . . . I , is the parity-specific fertility rate (defined just after
Example 4.1) or the component of fertility that is due to births of order i. Let
λi (x, t) be the age-specific rate for order i births and let wi (x, t) be the fraction of
women in age x who are at parity i − 1 at t . Then, the components can be written
as ϕi (x, t) = wi (x, t)λi (x, t). Suppose we repeat the argument given above for the
component of total fertility that is due to order i ,

Ti (t) =
∞∫

0

ϕi (x, t) dx . (4.10)
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An adjusted measure would then be Ti (t)/(1 − ri ), where ri is the speed at which the
components ϕi (x, t) have been translated. The sum of the order-specific adjusted
measures would be the adjusted total fertility rate. The reasoning is problematic,
however, since changes in ϕi (x, t) can be due to changes in λi (x, t), wi (x, t), or
both. Moreover, if λi (x, t) changes it necessarily affects wi ′ (x ′, t ′) for x ′ ≥ x, t ′ ≥
t , and i ′ ≤ I (cf., Van Imhoff 2001, and references therein).

From a methodological point of view, a more serious problem is revealed by
the consideration of parity. By a pure period measure one might refer to summary
measures that depend on the transition intensities of the current period only. This
seemingly simple definition depends on the setting, in a surprising way. For exam-
ple, given this definition, the components ϕi (x, t) are not pure period measures,
because the weights wi (x, t) depend on the fertility by birth order before time t .
It follows that the actual age-specific rates λ(x, t) are not pure period measures
either, because they are sums of components that depend on earlier events. Hence,
the measures Ti (t) are not pure period measures, nor is their sum, the “period”
total fertility rate �(t)! A multistate analysis (cf., Chapter 6) can produce a period
measure that takes parity into account, but it is clear that if further disaggregation,
e.g., by economic or social status, were entertained then the same problem would
reappear.

On the other hand, suppose we stick with parity as the only criterion of disag-
gregation beyond age. Although transition intensities from one parity to the next
can depend on any aspect of the past event history of the person, we will here
formulate an example in which only the time of the previous birth has an effect
(cf., Mode 1985, 144). It also serves as an example of a multiple decrement model:
each parity can be left via two routes: death and having an additional birth.

Example 4.5. Parity Progression Ratios. Consider a new-born baby girl with mor-
tality hazard µ(x) in age x . Suppose childbearing ends in age β > 0. Set T0 = 0,
and let 0 < T1 < T2 < · · · be the times of birth of her children. The woman is at
parity i in age x , provided that she is alive in age x , and Ti ≤ x < Ti+1. Suppose
that the hazard of a new birth is of the form P(x < Ti+1 ≤ x + h|woman is alive
in age x , Ti+1 > x ≥ Ti = u) = vi (x, u)h + o(h). Write

�i (x, u) =
x∫

u

(νi (s, u) + µ(s)) ds, (4.11)

for short. Let gi (x) be the density of the entry time to parity i + 1, in age x . Using
(2.4), we get g0(x) = exp(−�0(x, 0))ν0(x, 0) for i = 0. For i = 1, 2, . . . we have
the recursion

gi (x) =
x∫

0

gi−1(u) exp(−�i (x, u)) νi (x, u) du. (4.12)
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The probability of ever entering parity i = 1, 2, . . . is

Gi =
β∫

0

gi−1(x) dx, (4.14)

so the probability of remaining childless is 1 − G1, for example. The parity pro-
gression ratio is Gi+1/Gi , or it is the conditional probability of entering parity
i + 1, given entry to i . This can be estimated from period data based on estimates
of µ(x) and νi (x, u). The interpretation of the ratio is more complex than one
might think, because it depends on the hazards of entering earlier parities j ≤ i
via (4.12). ♦

4.4. Multiple Births and Effect of Pregnancy
on Exposure Time

Apart from the repeatable/nonrepeatable distinction, fertility rates differ from mor-
tality rates because of the possibility of simultaneous multiple births. In addition,
even though a pregnancy is a precondition of a later birth, after fertilization a
woman is essentially incapable of giving birth for nine months or so. This is a
form of censoring from the perspective of the Poisson model. We will show that
neither factor typically has an effect that would invalidate the Poisson process
approximation.

Historical statistics from Finland since the year 1900 show that the fraction of
multiple births increases until age 35–39, but appears to decrease thereafter. The
number of live births resulting in twins has been in the range 1.0–1.5% out of the
total number of live births. The number of live births resulting in triplets has been
approximately 0.01–0.02%, or one tenth of the twins. The fraction of live births
resulting in quadruplets used to be approximately 0.0005%, but since the 1980’s
the fraction has increased to about 0.002, or to one tenth of the triplets. The increase
may have been caused by the introduction of fertility-enhancing drugs that tend
to produce multiple births. In summary, the total number of live born babies is,
therefore, 1–2% higher than the number pregnancies resulting in live births.

Multiple births can be handled via marked counting processes. For example,
for each woman i we can superpose independent Poisson processes Nij(t) for
the arrival of each type of pregnancies ( j = 1 corresponds to a single live birth,
j = 2 corresponds to twins etc.; cf., Çinlar 1975, Section 4.4). The total num-
ber of children born to woman i by age t , is then a (finite) sum of the form
Li (t) = Ni1(t) + 2 × Ni2(t) + 3 × Ni3(t) + · · ·. Due to the independence of the
arrival processes the probabilistic characteristics of the process Li (t) are easily
derived. For example, let us ignore the effect of triplets, quadruplets etc. Sup-
pose the expected number of live births per person year is λ > 0. Then, we get
approximately that Ni1(t) ∼ Po(0.97 × λ) and Ni2(t) ≈ Po(0.015 × λ), because
0.97 + 2 × 0.015 = 1. It follows that Var(Li (t)) ≈ λt(0.97 + 0.015 × 22) =
1.03 × λt . In other words, by ignoring multiple births we would underestimate
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the variance of the births by about 3%. Although this is a topic of considerable
interest in micro demography i.e., the branch of demography dealing with small
groups, families, or individuals (e.g., Sheps and Menken 1973), it has no practical
effect in the analysis of aggregate fertility data usually considered in demography,
where the dominant source of variation is in the expected values λ rather than the
Poisson variance conditional on λ.

The second problem has to do with the fact that the usual duration of pregnancy
is nine months, or 3/4 years. It follows that women who give birth during the period
of observation, or have given birth during the latter 3/4 of the preceding year, do
not actually contribute a whole year of exposure to risk of birth, only a part. This is
in contrast with mortality: everybody is exposed to death while living! The usual
method of calculating person years currently exaggerates the number of person
years of the population exposed to births by 3/4 of the fraction giving birth. We
saw in Example 4.1 that during the baby-boom, 20–25% of women in ages 20–30
gave birth each year. Subsequently, the fraction has declined to 5–15%.

Again, the problem is of interest in micro demography, but in aggregate studies
the calculation of person years is rarely corrected. There are at least two reasons for
this. First, infecundity12 (i.e., physiological inability of a woman in a childbearing
age to conceive or carry a pregnancy to a term) also occurs for reasons unrelated
to births (infections, blocking of Fallopian tubes etc.). Even if a woman is fecund,
she may not be at risk of pregnancy because she is not sexually active, by choice
or by external constraints. Lack of exposure to pregnancy of these types would
remain uncorrected. Second, when fertility statistics are used at an aggregate level,
a possible correction would often cancel out in applications. For example, in
forecasting one would apply a corrected fertility estimate to a risk population that
is smaller than the total population in the age-group of interest.

5. Poisson Character of Demographic Events

For many kinds of demographic events, the distribution of the number of occur-
rences is well approximated by the Poisson distribution. For example, in Section
1 we saw that in the case of censored exponential waiting times, the number of
events can be taken to have a Poisson distribution for inferential purposes. A clas-
sical result for proportions of events says that the distribution of the number of
successes in trials, with a small probability of success but a large number of tri-
als, is approximately Poisson. Specifically, suppose there are n independent trials,
such that the outcome of trial i is “success” with probability pi,n and “failure” with
probability 1 − pi,n . Now consider a sequence of such trials as n → ∞ such that
p1,n + · · · + pn,n → λ > 0 and max{pi,n|i = 1, . . . , n} → 0. Then the distribu-
tion of the number of successes is approximately Poisson Po(λ).

12 In English “fertility” refers to actual realized fertility and “fecundity” refers to physio-
logical ability to have children. In French it is the other way round!
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Proof of asymptotic Poisson distribution property. The following proof is taken
from Feller (1968, 282). Suppose P(Yi,n = 1) = pi,n and P(Yi,n = 0) = 1 − pi,n

for independent Bernoulli variables Yi,n , and define Sn = Y1,n + · · · + Yn,n . The
probability generating function (of argument s) of Yi,n is E[sY i,n] = (1 − pi,n +
pi,ns), so the probabilities generating function of Sn is the product E[sSn] = (1 −
p1,n + p1,ns) · · · (1 − pn,n + pn,ns). Taking the logarithm we get that

log(E[sSn ]) =
n∑

i=1

log(1 − pi,n(1 − s)). (5.1)

The first order Taylor series approximation to the logarithm is log(1 − x) = −x
with the (Lagrange form) remainder term −x2/[2(1 − ξ )2], where ξ is a point
between x and 0. Taking x = (1 − s)pi,n in the i th summand, it follows that as
n → ∞, we have that

log(E[sSn ] = −(1 − s)
n∑

i=1

pi,n −(1 − s )2
n∑

i=1

p2
i,n /2(1 − ξi,n )2

→ −λ(1 − s). (5.2)

This proves that as n → ∞, E[sSn ] → exp(−λ(1 − s)), which is the probability
generating function of the Poisson distribution Po(λ). The convergence of the
generating functions implies the convergence of the corresponding distributions
(Feller 1968, 264, 280). ♦

Feller’s proof shows that we may have both population heterogeneity and dif-
ferent censoring times in a population and still get a Poisson limiting distribution
for a count, provided that the event in question is rare. Section 4.1, on the other
hand, says that if we are dealing with a repeatable event, then a Poisson model
may be appropriate irrespective of the relative frequency of the event, provided that
the interarrival times are exponential. One can show the latter result to agree with
Feller’s result by dividing the time interval into short subintervals. Then, the rarity
assumption can be invoked within each subinterval, and we have an approximate
Poisson distribution within each subinterval. The counts within subintervals will
be independent because of the memorylessness property of the exponential distri-
bution and the fact that no one is removed from exposure by the event of interest.
For additional discussions, see Breslow and Day (1987, 131–135, and references
therein).

When intensities of events are compared across small regions, for example, it is
useful to note that the Poisson model assumes more variability than the binomial
model. In addition, a sum of heterogeneous Bernoulli variables has a smaller
variance than a sum of homogeneous Bernoulli variables. Therefore, the Poisson
model leads to a more conservative inference.

Is Poisson variation important? The coefficient of variation of the Poisson dis-
tribution is λ−1/2. In the early days of stochastic population modeling considerable
interest centered on the so-called branching processes (Galton-Watson processes,
in particular) as models of population growth. This theory is very interesting on
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its own right. However, it is not an adequate descriptor of the actual variability of
the observed vital rates in human populations. Consider a simple example. Annual
changes of several percent are common in age-specific mortality and fertility rates.
However, for a Poisson model the coefficient of variation remains under 0.05 as
soon as the expected count is greater than 400, and it remains below 0.01 when the
expected count is over 10,000. It follows that from the point of view of population
forecasting the Poisson variability and, a fortiori the binomial or Bernoulli vari-
ability, are negligible, unless we are dealing with small populations with expected
counts that are in the hundreds or less (Pollard 1968, Goodman 1968).

6. Simulation of Waiting Times and Counts

Consider a waiting time X ≥ 0 with survival probability p(x) = P(X > x). Sup-
pose first that p(.) is strictly decreasing, so the inverse p−1(.) exists. Let U be a
random variable with a uniform distribution on [0, 1] and define T = p−1(U ).
Then, we have that P(T > x) = P(U < p(x)) = p(x). In other words, T has the
same distribution as X . Several methods are available for the generation of uni-
formly distributed pseudo random numbers (e.g., Ripley 1987). Therefore, this
method can be used to generate observations from any strictly decreasing survival
function: simply generate U and set X = p−1(U ). The method is equivalent to
using the inverse of the distribution function.

Example 6.1. Simulation of Weibull Random Variates. Consider the Weibull dis-
tribution of Example 2.1. that has survival probabilities of the form p(x) =
exp(−(x/α)β), so p−1(u) = α(− log(u))1/β . If we randomly generate U uniform
on (0, 1], X = p−1(U ) will be Weibull with the desired parameters. In the case of
the exponential distribution, or β = 1, we have simply p−1(u) = −α log(u). ♦

More generally, we have p(x) = exp(−�(x)), so if �−1(.) exists, p−1(u) =
�−1(− log(u)). Provided that it is easy to compute the values of the inverse func-
tion, a straightforward way to simulate waiting times is thus available.

Consider counts now. Suppose X has the binomial distribution Bin(n, p). In
that case X is the sum of n independent Bernoulli distributed random variables,
X = Y1 + · · · + Yn , where P(Yi = 1) = p and P(Yi = 0) = 1 − p. If Ui ’s are n
independent random variables that are uniformly distributed on [0, 1], then we
can define Yi = 1, if Ui < p, and define Yi = 0 otherwise. Now X has the desired
distribution. More complex methods are available for large n (cf., Ripley 1987, 92).

One way to simulate observations from a Poisson distribution is to resort to
Poisson processes. Suppose X ∼ Po(λ). Then, X equals the number of arrivals in
a Poisson process with intensity 1 during time λ > 0. Hence, all we need to do is
to generate waiting times from the survival function p(x) = exp(−x), until their
sum exceeds λ. If the nth waiting time brings the sum over the value λ, then we
take X = n − 1. Again, other methods may be faster when λ is large (Ripley 1987,
92). The same methods can be applied to other processes related to the Poisson
process. For example, as in Section 4.2 we may consider the total number of births
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per woman as a sum of Poisson processes bringing her single births, twins, triplets
etc. We stop the processes at the simulated time of death of the woman, or at the
end of childbearing ages, whichever comes first.

Exercises and Complements (*)

1. Show that if X1, . . . , Xk are independent and exponentially dis-
tributed waiting times with parameters µ1, . . . , µk , respectively, and X =
min {X1, . . . , Xk} then P(X > x) = exp(−(µ1 + · · · + µk)x), or the mini-
mum has also an exponential distribution with the parameter µ1 + · · · + µk .
(Hint: the minimum exceeds x if and only if all of the waiting times ex-
ceed x .)

2. Consider two cohorts of N (statistically independent) individuals. Sup-
pose the lifetimes within each cohort have exponential distributions with
parameters µ j > 0, j = 1, 2. How many individuals do you expect to be
alive in age x > 0 in each cohort? Show that the average force of mor-
tality in the population formed by the two cohorts is (µ1 exp(−µ1x) +
µ2 exp(−µ2x))/(exp(−µ1x) + exp(−µ2x)), in age x . How does the force of
mortality change over time if the cohorts are heterogeneous with µ1 > µ2?
For more discussion about population heterogeneity, see Keyfitz (1985),
Chapter 14, or Vaupel and Yashin (1985).

*3. Method of Moments. Suppose X1, . . . , Xn are i.i.d. from some distribu-
tion with a k dimensional parameter θ. The method of moments estimates
µ( j) = E[X j

i ] < ∞ with m( j) = (x j
i + · · · + x j

n )/n. It is an application of es-
timating functions (Chapter 3, Section 7.3): it uses functions ψ(xi ,θ), whose
j th component is ψ j (xi ,θ) = yi

j − µ( j)(θ), j = 1, . . . k.
4. Derive formula (1.3).
5. Consider exponentially distributed waiting times with m units observed and

with µ̂ the o/e rate. Since Z = m1/2(µ̂ − µ)/µ has an asymptotic standard
normal distribution, when µ is the true hazard rate, we have that asymp-
totically Z2 has a χ2

1 distribution. Let kα be the (1 − α) fractile of the χ2
1

distribution. It follows that an approximate (1 − α) level confidence interval
for µ consists of all those values of µ that satisfy the inequality Z2 ≤ kα .
Solve this quadratic equation for µ to get the end points of the confidence
interval.

6. Continuation. Construct a (1 − α) level confidence interval for e−µ.

7. Consider the setting of Example 1.4. Assume α/β = 0.02. Study numeri-
cally the probability of survival to age 0 < x < 80, comparing an individual
with the average hazard to the average probability of survival, for β = 400,
100, 25.

*8. Jensen’s Inequality. If g is a convex function and E[X ] is finite, E[g(X )] ≥
g(E[X ]). The result is geometrically obvious once we note that for a convex
function, g(X ) ≥ g(E[X ]) + s(X − E[X ]), where s is the slope of the tangent
of g(.) at E[X ].
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9. In reference to Example 2.2, assume that p(t) = 1 − bt for t ∈ [0, 1] or equiv-
alently that µ(t) = b/(1 − bt), where we take 0 < b < 1. Then we have that
−p′(t) = b. Note that if there are m deaths in a cohort of n individuals, then
the likelihood of the data is L(b) = bm(1 − b)n−m , and the MLE of b is simply
b̂ = m/n. This is quite reasonable, since b can be interpreted as the prob-
ability of death during the interval. From the latter perspective b̂ can also
be seen to be a moment estimator of b. Note also that the expected num-
ber of person years in the cohort is n(1 − b/2) and the expected number of
deaths is nb. Therefore, in large samples we expect the o/e estimator to be
µ = b/(1 − b/2). One can solve for b from this to derive the actuarial es-
timator for the probability of death b = 2µ/(2 + µ), and for the probability
of survival 1 − b = (2 − µ)/(2 + µ). Neither formula seemed particularly
intuitive to us without the derivation! We see that the actuarial estimator is
reasonable when the force of mortality is well approximated by the formula
µ(t) = b/(1 − bt).

10. Under the Balducci model of Example 2.3 one assumes that µ(t) = a/(1 +
at) for t ∈ [0, 1], where a > 0, so p(t) = 1/(1 + at) (cf., Keyfitz and Beek-
man 1984, 34). In a cohort of n individuals the expected number of deaths
is na/(1 + a) and the expected person years are nlog(1 + a)/a. Therefore,
in a large cohort we would expect the o/e estimator to be µ = a2/[(1 + a)
log(1 + a)]. This is a nonlinear equation that can be solved numerically for a.

11. (a) An alternative proof of (2.7) can be based on double integrals starting
from

∞∫
0

x(−p′(x)) dx =
∞∫

0

x∫
0

−p′(x) dt dx .

(Hint: Change the order of integration.)
(b) Prove (2.7) by partial integration (i.e., integrating by parts), starting from

E[X ] =
∞∫

0

x(−p′(x)) dx .

12. (a) As in 11(b), show by partial integration that

E[X2] = 2

∞∫
0

tp(t) dt.

(b) Prove the result starting from P(X2 > u) = p(u1/2), and making a change
of variable u = t2.

13. Show that cause-specific hazards are additive under an independent compet-
ing risks model (cf., Examples 1.2 and 2.4) by determining first the cumulative
hazard of X = min {X1, . . . , Xk}, and then differentiating.

14. Consider a model of independent competing risks of death with µ(x) = A +
Reαx , where A, R, α ≥ 0. This is the so-called Gompertz-Makeham family of
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hazards. Gavrilov and Gavrilova (1991) present evidence that in many human
populations changes in mortality over time can be described by varying the
term A only. How can this be interpreted? If this were the only way mortality
can be lowered, what would it imply concerning the further reduction of
mortality?

15. (a) Show that the Gompertz model µ(x) = αcx , with α, c > 0, satisfies µ(x +
1)/µ(x) = c. (b) Show that a Gompertz-Makeham model of Exercise 14
satisfies log{(µ(x + 1) − µ(x))/(µ(x) − µ(x − 1))} = α.

16. Derive the approximation (2.10) starting from (2.8).
17. Calculate the expectation of the general Weibull distribution in terms of the

gamma function.
18. Suppose c(t) is an integrable function, let I(t) be the indicator process defined

in Section 2.2.1, and define the random variables

X1 =
β∫

α

c(t)I(t) dt, X2 =
ω∫

β

c(t)I(t) dt.

(a) The expectations of the variables are obtained by changing the order of
integration and expectation, as in (2.6) and (2.7). (b) To calculate the second
moments, note first that

X1 X2 =
β∫

α

c(t) dt

ω∫
β

c(t)I(t) dt,

because X1 X2 = 0 unless I(β) = 1. Now take the expectation under the in-
tegral sign to get E[X1 X2]. (c) To calculate E[X1

2] note first that X1
2 can be

written as

β∫
α

β∫
α

c(s)I(s)c(t)I(t) ds dt = 2

β∫
α

t∫
α

c(s) ds c(t)I(t) dt.

Now take expectation under the integral sign.
19. Apply the results given above to derive expressions for the moments of D

and solve for c, in Section 2.2.4.
20. Consider a cohort of size N with withdrawal times 1.1, 1.5, 2.0, and 2.2.

Draw a graph of the Kaplan-Meier estimator for these data if (a) N = 4, and
all events are deaths, (b) N = 4, and third withdrawal was a censoring, (c)
N = 4, and last withdrawal was a censoring (how does the estimator defined
by (2.19) behave for large t? Is this realistic?), (d) N = 5, and there are
two tied deaths at the third withdrawal time, (e) N = 5, and there is a tied
death and censoring at the third withdrawal time (present an upper and lower
estimate in this case).

21. Continuation. Draw a graph of the Nelson-Aalen estimator in each case.
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*22. An estimate of the variance of the Kaplan-Meier estimator is given by the
formula introduced by Greenwood in 1926,

Var( p̂(t)) = p̂(t )2
∑
T(i)≤t

δ(i)

(n + 1 − i)(n − i)
.

Suppose that there is no censoring, and let the number of cases by time t
be c(t). Note that we then have p̂(t) = (n − c(t))/n. Using this, show that
Greenwood’s formula reduces to p̂(t)(1 − p̂(t))/n (cf., Andersen et al. 1993,
258). For a version applicable to grouped (or tied) data, see Woodward (1999,
203–204). If the Kaplan-Meier estimate is applied to data from a complex
sample, sample-weighted numbers may be used for n and i in (2.19) and
alternative variance estimates may be appropriate, as discussed in the next
complement.

*23. (a) Show that the Nelson-Aalen estimator of the cumulative hazard is equal
to the first order Taylor expansion of the estimator log p̂(t). (Hint: a Tay-
lor expansion yields log((n − i)/(n − i + 1)) ≈ −1/(n − i + 1).) (b) Re-
call that if Y ∼ Bin(N , p), then Var( p̂) = p(1 − p)/N . Suppose we have
N = n − i + 1 individuals at risk just before the i th death and assume
that one dies in a short time interval around the time of death. Given
one death, we would estimate the probability of survival in the interval as
p̂i = (n − i)/(n − i + 1). A Taylor series expansion yields the approxima-
tion Var(log p̂i ) ≈ p̂i

−2Var( p̂i ). Assume that the “trials” consisting of death
times are independent, to arrive at a variance for the Nelson-Aalen estimator
(2.20) as

Var(�̂(t)) =
∑
T(i)≤t

δ(i)

(n − i + 1)(n − i)
.

(c) Derive Greenwood’s formula using the delta method approximation
Var( p̂(t)) = Var(exp(log p̂(t))) ≈ p̂(t)2Var(log p̂(t)). For a rigorous discus-
sion, see Andersen et al. (1993). If the data come from a survey, the sampling
variance of the estimate can be obtained using replication methods (Chapter 3,
Section 8).

24. Derive formula (2.24).
25. Derive a formula for Kx defined by (2.22), when k(t) = Beβt . Suppose the

number of deaths is Dx = Kx Mx . Using (2.20), derive a formula for Dx ,
when hazard is of the Gompertz-Makeham form µ(t) = A + Reαt , with
A = 0.00376, R = 0.0000274, and α = 0.104. (These values correspond to
Swedish male data from 1926–1930; cf., Gavrilov and Gavrilova 1991, 75–
76). Similarly, using (2.9) and (2.5) derive a formula for�x,1. Let B = 10,000,
and β = −0.01. Verify that you get the following table (the number of deaths
is not an integer but this won’t matter),
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x Kx Dx Mx �x,1

70 9851.49 449.692 0.0456471 0.0456580
71 9560.33 480.292 0.0502380 0.0502501
72 9277.78 513.358 0.0553320 0.0553454
73 9003.58 549.077 0.0609843 0.0609992

26. Apply Keyfitz’s method to the table of Exercise 25. For the first age, 70,
use slope estimates µ̂1,70 = M71 − M70 and k̂1,70 = K71 − K70. Similarly for
the last age. Verify that you get the following estimates (2.24): 0.0456584,
0.0502501, 0.0553454, 0.0609986. Calculate the exact values of the hazard
increments based on the Gompertz-Makeham model, and show that for the
two central ages these agree with the values given here.

27. Derive the weights in (3.6).
28. Derive a formula for the expectation of the Erlang-k distribution (a) by inte-

grating pk(t), (b) by using the difinition directly.
29. Consider a couple that continues to have children until they get the first boy,

and then they stop. Suppose the probability of a boy is 0 < p < 1, and let
X denote the number of children the family will have, so 1/X is the frac-
tion of boys. Under our model the family size has the geometric distribution
P(X = k) = p(1 − p)k−1, k = 1, 2, . . . Use it to show that under this strat-
egy E[1/X ] = − log(1 − p). In the case p = 1/2 the expected proportion is
≈ 0.693. For more discussion, see Yamaguchi (1989), or Keyfitz (1985, 335–
344).

30. We have shown in Section 4.2 that a couple cannot influence the ratio of the
expected number of boys they will have to the expected number of girls they
will have. However, Exercise 29 shows that they can influence the expected
fraction of boys in their own family. How can the two facts be reconciled? (a)
Use the geometric distribution to show that in the setting of Exercise 29 the
expected number of girls in the family is (1 − p)/p. Since the couple is certain
to have exactly one boy, the expected number of children is E[X ] = 1/p. (b)
By Jensen’s inequality, E[1/X ] > 1/E[X ] = p. Thus, the discrepancy is
due to nonlinearity (or “ratio bias”). Intuitively, the fraction of boys is larger
(smaller) than expected in small (large) families.

31. Suppose a couple can have at most two children, but they stop at one if they
have a boy. Let the probability of a boy be 0 < p < 1. Let X be the total
number of children they will have. (a) Show that E[X ] = 2 − p. (b) Show
that the expected number of boys is p(2 − p) and the expected number of
girls is (1 − p)(2 − p), so their ratio is p/(1 − p). (c) Show that E[1/X ] =
p(3 − p)/2. (d) Conclude that E[1/X ] > p. This shows that the conclusion
of Exercise 30 was not due to the unrealistic assumption of being able have
an unlimited number of children.

32. Consider an individual exposed to a carcinogenic agent at dose level s > 0.
A one-hit model for carcinogenicity assumes that cells are bombarded by
molecules or by radiation and cancer occurs if there is even a single hit.
Assume that hits arrive as a Poisson process with intensity λs. Show that
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during a period of length L , the probability of at least one hit is 1 − e−αs ,
where α = λL . This probability is ≈ αs for small α and s. Therefore, one
also speaks of a linear dose-response model.

33. Derive formula (4.4).
34. Suppose the age-specific fertility rate of year t is of the form λ(x, t) =

λ0(x) exp(γ (x − M)t), for x = α, . . . , β, where M is the mean age of child-
bearing of the form M = �x xλ0(x)/�xλ0(x). Suppose that at t = T the mean
age at childbearing is M ′. Set up a calculation using Newton’s method to find
a value of γ such that M ′ = �x xλ(x, T )/�xλ(x, T ). This is an example of
loglinear models to be discussed in Chapter 5.

35. The OECD publishes comparative statistics on the “probability” of ever
starting studies in institutions of higher learning (universities, polytech-
nic institutions etc.). For year t , the measure is c(t) = c(α, t)w(α, t) +
· · · + c(β, t)w(β, t), where c(x, t) is the probability that a person of age
x = α, α + 1, . . . , β, who has not started such studies earlier, will do so dur-
ing year t , and w(x, t) is the share of those who have not started such studies
earlier out of the total population in age x (in the beginning of year t). Think
of α as the lowest age in which the studies could be started, and β as some
(conventionally chosen) upper age: α = 16 and β = 44, for example. Show
that this is the life table probability of starting such studies by age β, if c(x, t)
does not depend on t . If this assumption fails, the measure is influenced by
earlier events, and we may even have c(t) > 1!

36. Consider Example 4.5. Define pi (x) = probability that the woman is at parity
i in age x . (a) Show that p0(x) = exp(−�0(x, 0)) for i = 0, and for i =
1, 2, . . .

pi (x) =
x∫

0

gi−1(u) exp(−�i (x, u)) du.

(b) Note that if there were no mortality until age β, then we would have
Gi = pi (β) + pi+1(β) + · · ·.

37. Use simulation to estimate the variance of the Weibull distribution, when
α = 1 and β = 2.

38. Consider exposed and unexposed cohorts of size n, with risks of death p j , j =
1, 2. Suppose the relative risk ρ = p1/p2 is estimated from binomial data
X j ∼ Bin(n, p j ), j = 1, 2, with ρ̂ = p̂1/ p̂2, where p̂ j = X j/n. Use simula-
tion to study the skewness of the distribution of ρ̂ for n = 10, 20, 30, 50, 100,

when p1 = 0.3 and p2 = 0.15 by drawing the histogram of the results. (Note
in programming that ρ̂ is not defined for all data sets.)

39. A non-obvious consequence of the duration of pregnancy is that it creates a
negative autocorrelation into annual data. To evaluate the magnitude of the
negative autocorrelation in births caused by 9-month pregnancy, consider a
population of fixed size N and a constant birth rate f . Assume there are
Bt births during year [t, t + 1). Show that a randomly chosen woman who
gave birth during year t spends an expected time 9/32 of the year t + 1
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in a state of not being able to give birth. The expected loss of due to this
is 9 f Bt/32 births. Using the result Cov(Bt+1, Bt ) ≈ Cov(−9 f Bt/32, Bt ) =
−9 f Var(Bt )/32 show that the autocorrelation must be −9 f/32. For f = 0.1,
we get the approximate numerical value −.03, for example.

40. Consider a Gompertz distribution with µ(x) = αcx , x > 0, c > 1. Show that
we can simulate its values by taking U ∼ U (0, 1] and computing T = log(1 −
log(c) × log(U )/α)/ log(c).
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5
Regression Models for Counts
and Survival

Populations studied in demography are often large. There has been relatively little
need to introduce parsimonious parametric models that are common in other fields
of applied statistics, such as epidemiology. For example, the classical life table
uses one parameter to describe each age. Therefore, it is not unusual that a hundred
or more parameters are estimated from the data. Similarly, age-specific fertility
and mortality rates can be viewed as estimators of age-specific parameters, one
for each age-group. When demographers have used parametric models, the uses
have been to induce smooth changes in the estimates from one age to the next
(e.g., Gompertz-Makeham models for mortality; Lotka, Wicksell and Hadwiger
have introduced analogous graduation models for fertility; cf., Keyfitz 1977). In
contrast, epidemiologists studying the occurrence of diseases often have to resort
to small data sets. The biases that might arise from imperfect parametric models
have been outweighed by the increased precision the models provide. Optimality
of statistical estimation procedures and statistical significance testing have become
an important aspect of epidemiologic inference.

In this chapter we will provide a brief introduction to the most commonly used
statistical models for relative risk, namely logistic regression, Poisson regression,
and Cox regression. It turns out that the estimation theory of all these models
can be viewed from a unified point of view. The likelihoods they lead to are
examples of the so-called generalized linear models. Therefore, we will start by
describing some general features of the theory in Section 1. Then, we proceed
to discuss logistic regression in Section 2, and Poisson regression in Section 3.
Standardization and loglinear models are specifically noted. In Section 4 we discuss
ways of incorporating random effects into these models. Heterogeneity in capture-
recapture data will be considered in Section 5. In Section 6 we consider bilinear
models that have been used both in forecasting and data analysis. In Section 7 we
consider proportional hazards models for survival type data. In Section 8 we discuss
selection by survival. Section 9 discusses some aspects of spatial point patterns.
We conclude in Section 10 by discussing methods for simulating regression data.

117
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1. Generalized Linear Models

1.1. Exponential Family

The exponential family of statistical distributions is a family of parametric dis-
tributions that includes the binomial, Poisson, exponential, normal, beta, gamma,
inverse Gaussian, and other distributions. The exponential family is characterized
by the fact that parametric inferences can be based on a limited set of summary
statistics no matter how large the sample. This leads to an elegant statistical theory
that applies verbatim to most distributions of the family. We will discuss only a
subset of the exponential family below, so as to be able to introduce logistic, Pois-
son, and Cox regression in as direct a way as possible later. The methods provide
tools for analyzing relative risks in slightly varying settings. More details about ex-
ponential families and generalized linear models can be found in Andersen (1980)
and McCullagh and Nelder (1989), for example.

Suppose a random variable Y takes values y and has a density function (or
probability function in the discrete case; we will speak of densities, for short) of
the form

f (y, θ ) = exp(yθ − b(θ ) + c(y)), (1.1)

where θ is the so-called canonical parameter of the distribution, and b(.) and
c(.) are known functions. Densities of the form (1.1) belong to the (1-parameter)
exponential family.

Example 1.1. Exponential Distribution. Suppose Y ∼ Exp(µ) with density
f (y; µ) = µe−µy , where y > 0 and µ > 0. This can be written in the form
f (y; µ) = exp(−µy + log(µ)), so by taking θ = −µ, b(θ ) = − log(−θ ) for θ <

0, and c(y) = 0, we see that the exponential distribution is of the form (1.1).
In this case b′(θ ) = −1/θ . As noted below (2.7) of Chapter 4, E[Y ] = 1/µ, so
E[Y ] = b′(θ ). ♦

Example 1.2. Bernoulli Distribution. Suppose Y ∼ Ber(p) with f (y; p) =
py(1 − p)1−y , where 0 < p < 1 and y ∈ {0, 1}. In this case we can write f (y; p) =
exp(y log(p/(1 − p)) + log(1 − p)). By taking θ = log(p/(1 − p)), b(θ ) =
log(1 + exp(θ )), and c(y) = 0, we see that the Bernoulli distribution belongs to the
1-parameter exponential family (1.1). In this case b′(θ ) = exp(θ )/(1 + exp(θ )), so
again E[Y ] = b′(θ ). We will see below that this is generally true. ♦

Since our interest will primarily be in the modeling of counts, in the following
we will assume that Y takes integer values. Similar arguments go through in the
continuous case, when sums are replaced by integrals. Since f (.; θ ) defines a
probability distribution, we must have∑

y

f (y; θ ) = 1 (1.2)
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for all values of θ . Let us differentiate both sides of (1.2) with respect to θ . The
left hand side can be differentiated termwise provided that the resulting series
converges. Since d/dθ f (y, θ ) = (y − b′(θ )) f (y, θ ), we get the result,

E[Y ] = b′(θ ). (1.3)

In other words, whenever E[Y ] exists, it is given by b′(θ ). Furthermore, dif-
ferentiating (1.2) the second time yields d2/dθ2 f (y, θ ) = −b′′(θ ) f (y, θ ) + (y −
b′(θ ))2 f (y, θ ), so that

Var(Y ) = b′′(θ ). (1.4)

Returning to Example 1.1, we note that in that case Var(Y ) = 1/θ2. In Example
1.2, we get Var(Y ) = b′′(θ ) = exp(θ )/(1 + exp(θ ))2 = p(1 − p).

1.2. Use of Explanatory Variables

Suppose now that we have independent variables Yi , each with a density of type
(1.1), but with individually varying parameters θi , i = 1, . . . , n. The key idea in
the formulation of generalized linear models is that a linear model is assumed
for some function of θi . In the simplest case, suppose there is a vector of ex-
planatory variables Xi = (Xi1, . . . , Xik)T and a vector of unknown parameters
β = (β1, . . . , βk)T , such that

θi = XT
i β. (1.5)

In practice, we usually take Xi1 ≡ 1, i.e., the model has a constant term. This is
not required for the theory to be presented below, however.

McCullagh and Nelder (1989) discuss more complicated mappings between the
canonical parameter θi , and the linear predictor XT

i β. In fact, the usual formulation
is in terms of link functions between the mean b′(θ ) and the linear predictor. Our
formulation corresponds to the special case of a canonical link function that leads
to a linear mapping between the canonical parameter and the explanatory variables.
The generalized linear models were introduced by Nelder and Wedderburn (1972).

1.3. Maximum Likelihood Estimation

The likelihood function of the observed data is

L(β) = exp(UTβ − B(β) + C(Y)), (1.6)

where Y = (Y1, . . . , Yn)T , and

U =
n∑

i=1

Yi Xi ; B(β) =
n∑

i=1

b(XT
i β); C(Y) =

n∑
i=1

c(Yi ). (1.7)

Note that L(β) is the product of two factors, exp(UTβ − B(β)) and exp(C(Y)).
Treating the explanatory variables Xi as known constants, the former involves
the random data only through the summary statistic U, and the latter does not
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involve the parameter β. The Neyman factorization theorem (e.g., Lehmann 1986,
54–55) implies that U is sufficient for β. For inferential purposes, we only need
to pay attention to U. Furthermore, β has k components and the likelihood (1.6)
corresponds to a k-parameter exponential family. As in (1.3), one can show that
E[Uj ] = ∂/∂β j B(β) or, in vector form, E[U] = ∂/∂βB(β).

To estimate β, we use maximum likelihood. Define �(β) = log L(β), and dif-
ferentiate with respect to β. Setting the derivative to 0, we get that U = ∂/∂β
B(β). Hence we have the elegant equation

U = E[U]. (1.8)

Defining the design matrix X = [X1, . . . , Xn]T we may write U = XT Y. Therefore,
(1.8) is equivalent to XT Y = XT E[Y].

As opposed to ordinary linear regression, (1.8) may be a nonlinear equation in
the parameters β that doesn’t admit an explicit, let alone linear, solution. Instead,
the solution has to be found using numerical methods, and it is typically a nonlinear
function of the observations. Instead of exact normality and unbiasedness that we
obtain in normal theory ordinary regression, we get asymptotic normality and
asymptotic unbiasedness (and consistency), when the number of observations n is
large.

1.4. Numerical Solution

Newton’s method is frequently used to solve (1.8). Define the Hessian, or the k × k
matrix of second partial derivatives of the loglikelihood function, as

H = ∂2/∂β∂βT �(β). (1.9)

From (1.6) we see that −H = ∂2/∂β∂βT B(β), and as in (1.4), one can show
that −H = Cov(U). Let E(i)[.] and H(i) refer to the expectation and covariance
as estimated based on the i th iterated value of β, or β(i), and note that Newton’s
method provides the recursion,

β(i+1) = β(i) − H−1
(i) (U − E(i)[U]), i = 0, 1, 2, . . . , (1.10)

that must be started from some initial value β(0) and repeated until convergence.
Although the numerical calculations are carried out using a computer, a closer

look of how Newton’s method works gives us some insight as to the nature of the
solution. Note that −H = Cov(XT Y) = XT WX, where W = Cov(Y), a diagonal
matrix with Var(Yi ) as the i th diagonal element. Equation (1.4) provides a general
formula for computing W, but, e.g., in the binomial and Poisson cases the variances
are known from introductory statistics courses. As noted by Finney (1952) already,
(1.10) can be written as

β(i+1) = (XT W(i)X)−1XT W(i)h(i), i = 0, 1, 2, . . . , (1.11)

where

h(i) = Xβ(i) + W−1
(i) (Y − E(i)[Y]) (1.12)
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is the so-called working variate. The right hand side of (1.11) is a generalized
least squares (GLS) estimator when X is the design matrix, (1.12) is the vector of
observations, and W(i) is the diagonal matrix of weights. This shows that maximum
likelihood estimation for the generalized linear models (of the form described here)
can be carried out by a repeated use of weighted least squares (WLS) (e.g., Thisted
1988, 215ff.).

1.5. Inferences

When the MLE β̂ has been obtained, its variance-covariance matrix can be esti-
mated as

Côv (β̂) = (XT ŴX)−1, (1.13)

where Ŵ is the MLE of W. To compute this in practice, we simply plug the MLE
of β into (1.5), and use the result in (1.4). A heuristic derivation for (1.13) can
be obtained from (1.11) and (1.12). The MLE is (subject to regularity conditions
that typically obtain) consistent, so the essential part of the randomness in (1.12)
comes from Y. Ignoring all other sources we get that the covariance matrix of h(i) in
(1.12) is approximately Ŵ−1, because Cov(Y) = W. Therefore, the approximate
covariance of (1.11) should be (1.13). (See also Section 3 of Chapter 1 and the
discussion related to (7.11) of Chapter 3.)

Often, inferences concerning the parameters utilize Wald tests (Section 3 of
Chapter 1) in which we compare the estimates of the parameters (or their lin-
ear combinations) with their estimated standard errors, as calculated from (1.13).
When the number of observations is large enough and the number of parameters is
moderate, the asymptotic normality of β̂ can be assumed. For example, let λTβ be
a linear combination of interest and consider the hypothesis H0 : λTβ = λTβ0.
Based on (1.13), the estimated standard error of λT β̂ is (λT(XTŴX)−1λ)1/2,
and the test statistic T = λT(β − β0)/(λT(XTŴX)−1λ)1/2 is distributed approx-
imately as N (0, 1) when H0 is true. A 95% confidence interval for λTβ is corre-
spondingly λT(β̂) ± 1.96 × (λT(XTŴX)−1λ)1/2.

If f (β) is a (smooth) nonlinear transformation of the parameters, then a
confidence interval for it can be based on the delta method (Section 7.2.
of Chapter 3). In this case, the approximate 95% interval is f (β̂) ± 1.96 ×
(λT(XTŴX)−1λ)1/2,where λ = ∂ f/∂β.

Both score and likelihood ratio testing can be used as an alternative to Wald tests
in generalized linear models. In the case of likelihood ratio tests it has become
customary to carry out these calculations via a related measure called deviance.
Define a saturated model (or a full model) as a model that has as many parameters
as there are data points. It can fit the data perfectly. The deviance of a regression
model is defined by

2(�∗ − �̂), (1.14)

where �∗ is the loglikelihood of the saturated model and �̂ is the maximum log-
likelihood of the regression model being entertained. The deviance does not, in
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general, have a known distribution, although in special cases approximations are
available. However, the difference in deviance between two nested models yields
the usual likelihood ratio test statistic 2(�̂1 − �̂0) for testing the larger model, which
has loglikelihood �̂1, against the smaller one with loglikelihood �̂0 (cf., Section 3
of Chapter 1).

Specifically, consider a generalized linear model with canonical parameter θ =
(θ1, . . . , θk)T ∈ �, an interval in R

k . Define two subspaces of the form �i =
{θ ∈ � |g1(θ ) = · · · = gmi (θ) = 0}, i = 0, 1, where m0 > m1, and consider two
hypotheses, H0 : θ ∈ �0 and H1 : θ ∈ �1. In this case �0 ⊂ �1, and we say that
H0 is nested in H1. Suppose the “restrictions” g j are subject to mild regularity
conditions (e.g., continuous first partial derivatives and no redundancy, so that one
cannot derive one restriction from the others; e.g., Rao 1973, 416ff.). In this case,
2(�̂1 − �̂0) has an asymptotic χ2 distribution with m0 − m1 degrees of freedom
when H0 is true.

Among other things, these results provide a method for constructing confidence
intervals for the parameters, or their linear combinations. In the simplest case, take
m0 = 1, m1 = 0, and g1(θ) = θk − c, for some c. Denote the maximum of the
log-likelihood, conditionally on θk = c, by �̂0(c). This is the so-called profile like-
lihood. Then, an approximate 95% confidence interval for θk is {c|2(�̂1 − �̂0(c)) <

3.841}, for example. Both analytical considerations (e.g., Jennings 1986; Cox and
Hinkley 1974) and simulations suggest that the likelihood ratio approach may be
preferable to Wald testing in small samples. An illustration is given in Exercise 17.

1.6. Diagnostic Checks

In ordinary linear regression the predicted values are given by Ŷ =
X(XT X)−1XT Y, where X is as above. The matrix X(XT X)−1XT , which converts Y
to Ŷ (“Y hat”), is called the hat matrix. In ordinary least squares (OLS) regression,
the i th diagonal element of the hat matrix gives the so-called leverage of the i th ob-
servation (cf., Exercise 10). Note that leverage depends on the design matrix X but
not on Y. Analogously, in generalized linear models leverage is sometimes mea-
sured by the diagonal elements of the matrix W1/2X(XT WX)−1XT W1/2 based on
(1.11) (cf., Pregibon 1981). Some care is needed when interpreting the leverages,
since the variances in W typically depend on the mean (Hosmer and Lemeshow
2000, 153).

Example 1.3. Leverage in Simple Generalized Linear Model. Consider simple
linear regression, Yi = β1 + β2 Xi + εi , where εi ∼ N (0, σ 2) are independent, i =
1, . . . , n. In this case k = 2, Xi1 = 1, and we have written Xi2 = Xi , for short.
One can show, by a direct calculation, that the i th diagonal element of the hat
matrix equals 1/n + (Xi − X̄ )2/� j (X j − X̄ )2. In other words, the further the
value of the explanatory variable is from the mean, the larger the leverage of the i th

observation. Consider now a simple generalized linear model with θi = β1 + β2 Xi

and Var(Yi ) = Wi , i = 1, . . . , n. Define V = � j W j , X̃ = � j W j X j/V , and S =
� j W j (X j − X̃ )2/V . The details are somewhat tedious, but one can then show that
the leverage of the i th observation is Wi (1 + (Xi − X̃ )2/S)/V . This is harder to
interpret, because Xi can also affect Wi . ♦
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The influence of data points refers to how much the estimates would change
if the data points were omitted. In ordinary regression the most widely used
measure of the influence of the i th observation is the so-called Cook’s distance
(β̂ − β̂(i))T (XT X)(β̂ − β̂(i))/kσ̂ 2, where β̂(i) is the MLE that has been computed
without the i th observation (Weisberg 1985, 119). Defining Ŷ(i) = Xβ̂(i) as the vec-
tor of predictions when observation i is not used in the estimation of β, notice that
the numerator of Cook’s distance equals (Ŷ − Ŷ(i))T (Ŷ − Ŷ(i)). The rationale of
the particular weighting (denominator) used in the definition of Cook’s distance
derives from the sampling distribution of β̂ (cf., Exercise 12). An analogous mea-
sure in generalized linear models is (β̂ − β̂(i))T (XT WX)(β̂ − β̂(i)) (cf., Pregibon
1981).

If the data are obtained with random sampling, one can compare estimated means
and variances from the model with estimates derived using sampling weights (cf.,
Chapter 3). Then, (1.8) would be replaced by a weighted version that incorporates
the inverses of selection probabilities, as in (7.9) of Chapter 3. Similarly H of
(1.9) would be replaced by a version including the weights (cf., Chapter 3, Section
7.3; Hosmer and Lemeshow 2000, 211–221). This is sometimes called a “pseudo
maximum likelihood” approach.

2. Binary Regression

2.1. Interpretation of Parameters and Goodness of Fit

Consider a binomial random variable Y ∼ Bin(n, p). As in Example 1.2, we write
θ = log(p/(1 − p)), or p = exp(θ )/(1 + exp(θ )). Thus, the canonical parame-
ter θ equals the log-odds of the individual trials. Often, the notation logit(p) =
log(p/(1 − p)) is used. Therefore, these models are also referred to as logit mod-
els. Assuming the model (1.5) for θ leads to logistic regression. A detailed intro-
duction to these models is given in Hosmer and Lemeshow (2000), for example.
Here we will first discuss the interpretation of the parameters of the models using
a simple example relating to the probability of death. We then discuss statistical
inference for these models. In Section 2.2 we discuss a series of examples.

Suppose q(x, t) is the probability that an individual in exact age x dies within one
year, if the mortality level of calendar year t applies. Consider two logistic models,

q(x, t) = exp(α0 + α1x + βt)/(1 + exp(α0 + α1x + βt)), (2.1)

and

q(x, t) = exp(αx + βt)/(1 + exp(αx + βt)). (2.2)

It is easy to see that under both models

q(x, t + 1)

1 − q(x, t + 1)

/
q(x, t)

1 − q(x, t)
= exp(β), (2.3)

or the odds-ratio (OR) of death during year t + 1 versus year t equals exp(β),
irrespective of age x . Equivalently, β can be interpreted as a log-odds-ratio. A
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similar interpretation can be given to α1 in (2.1), but under (2.2) logit q(x, t + 1) −
logit q(x, t) = αx+1 − αx . Therefore, model (2.1) is a special case of the analysis
of covariance model (2.2).

Under (2.1) the odds-ratio for those in age x + 1 at t + 1 divided by that for those
in age x at t is exp(α1 + β) = exp(α1) exp(β). Under (2.2) the ratio is exp(αx+1 −
αx ) exp(β). Therefore, time and age affect the odds-ratio multiplicatively.

When the probability of death is small, the left hand side of (2.3) is close to
the relative risk q(x, t + 1)/q(x, t), and it is customary to say that the parameters
of logistic regression models measure relative risk. However, if the probability of
death is large, then this interpretation is not valid, so it is the safest to refer to
odds-ratios at all times. Of course, once a model has been fitted, we can estimate
relative risk q(x, t + 1)/q(x, t) (or, say, risk differences q(x, t + 1) − q(x, t)) by
simply plugging in the estimates of the model parameters. As discussed in 1.5, a
standard error for the measure can be based on the delta method.

One can test model (2.2) against (2.1) using likelihood ratio tests as discussed in
Section 1.5. If both models are applied to ages x = 1, . . . , m, then the test statistic
(1.14) will have an approximate χ2 distribution with m − 2 degrees of freedom,
when (2.1) holds.

Measuring the goodness of fit is possibly the most important difference between
binary regression and ordinary (normal distribution theory based) regression.1 In
the latter a single residual may give important clues as to the possible lack of fit. In
the former, especially in the Bernoulli case (n = 1), we have to group or smooth
the data in some way to see if the group means differ locally more from the pre-
dicted than one would expect under the correct model (e.g., Landwehr, Pregibon,
and Shoemaker 1984; Fowlkes 1987). Hosmer and Lemeshow (2000, 140–145)
have derived approximate critical values for one such test, in which the groups are
formed based on the deciles (or other percentiles) of the predicted probability of
success. Their simulations suggest that if J groups are used one can get approx-
imate critical values from a χ2 distribution with J − 2 degrees of freedom. Of
course, if the data are initially binomial, Y - Bin(n, p) with np moderately large,
then one can study the lack of fit for each binomial separately using the standard
normal approximation to the Pearson residuals (Y − n p̂)/(n p̂(1 − p̂))1/2.

2.2. Examples of Logistic Regression

Logistic regression can be used in a multitude of ways in demographic contexts. We
will here introduce a historical data set, discuss confounding, and analyze attitudes.

Example 2.1. Sex Ratios of the Habsburgs. We consider a data set collected from
Encyclopædia Britannica concerning the Habsburgs of Austria.2 A section of

1 More subtle differences exist. Gail (1986) shows that omitting a covariance that has the
same distribution among the exposed and unexposed biases logistic regression, but not
ordinary regression, for example.
2 The authors would like to thank Prof. Weyss of I.I.A.S.A., who had tables of the Habsburg
family that were in some respects more accurate and complete than those in the Britannica.
Visitors to Vienna may want to visit Kaisergruft in the basement of Kapuzziner Kirche that
houses the graves of many in our data set.
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the family tree begins with Guntram the Rich who lived around 950. Only male
descendants were recorded in the earliest times, so our data set starts from Rudolf
I (1218–1291) who was a German king. He forms our generation 0, his children
are the generation 1 etc. We follow the throne to generation 20 consisting of
Charles I (1887–1922) and Maximilian Eugene (1895–1952). Only the part of the
family tree is included through which the throne went. For example, all of Maria
Theresa’s (1717–1780) sixteen children are included, but out of their descendants
only those of Leopold II (1747–1792) are included, since Leopold’s son Francis I
(1768–1835) inherited the throne. We have already used this data set for Figure 3
of Chapter 4, and we will analyze several aspects of the data later. However, here
we would like to inspect the reliability of the data using regression techniques.

Maria Theresa was the only woman to hold the throne and pass it on to her
children. All other were men. We therefore expect that both the actual and reported
sex-ratio at birth would be tilted in favor of the males among the 20 families. This
is not the case, however. There are a total of 175 individuals in the data set. Sex
is given for all but 10 individuals who have died young. Among the remaining
165 persons, there were 79 males. If all births can be considered to be i.i.d. with
respect to sex, then we have a model Y ∼ Bin(n, p) with n = 165 and Y = 79.

The MLE of the probability of a male is p̂ = 79/165 = 0.479. The common
method of calculating a 95% confidence interval for the proportion of males is
p̂ ± 1.96( p̂(1 − p̂)/n)1/2 = 0.479 ± 0.076. Or, we get the interval [0.403, 0.555]
that easily includes the value 105/205 = 0.512 that we might expect. Overall, we
see no indication of the omission of females from the data set.

As a second step we might wonder whether the fraction of the males has remained
constant over time. We consider the model Yi ∼ Ber(pi ), logit(pi ) = β0 + β1 Xi ,
where Yi = 1 if i is a male and Yi = 0 otherwise, and Xi is the birth year of
individual i = 1, . . . , 165. The MLE is β̂1 = −0.001 with an estimated standard
error of 0.00085. This finding is consonant with the notion that the fraction of
females has increased over the years due to more accurate reporting. However, the
P-value is only 0.244, so the evidence is weak at best. ♦

Example 2.2. Child Mortality Among the Habsburgs. As a second check of the
quality of the Habsburgs data we consider deaths in early age among the children
who did not pass on the crown. We consider the model Yi ∼ Bin(ni , pi ), logit(pi ) =
β0 + β1 Xi , where ni is the number of children in generation i excluding the one
whose descendants formed generation i + 1, Yi is the number of them that died
in age < 2, and Xi is the birth year of the individual founding the generation
i = 1, . . . , 20. The P-value under the hypothesis of zero slope was 0.936, which
does not suggest any systematic change in the fraction of those who have died
young. Therefore, child mortality appears not to have improved in a gradual manner
(although we certainly know from other sources that it has improved in the 20th

century), or if it has, then infant deaths may have been omitted from the data set
in earlier times. ♦

Example 2.3. Testing Effects of Exposure on Illness. Consider an epidemiologic
study of the effect of exposure on the risk of illness. Suppose the following
(artificial) data have been obtained during a follow-up period:
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Ill Not Total
Exposed 36 64 100
Non-Exposed 24 76 100
Total 60 140 200

Let us assume binomial models for the data: Y1 is the number of illnesses among
the exposed with Y1 ∼ Bin(100, p1), Y0 is the number of illnesses among the non-
exposed with Y0 ∼ Bin(100, p0), and Y1 and Y0 are independent. Relative risk
can be measured directly as RR = (36/100)/(24/100) = 1.5, or via the odds ratio
OR = (36 × 76)/(64 × 24) = 1.781. The data can be analyzed in different ways.
For example, we may condition on the number of illnesses (= 60), non-illnesses
(= 140), and the total number of exposed (= 100). Under the null hypothesis
that p1 = p0 the number of those who are ill among the exposed has a hyperge-
ometric distribution and we can calculate the probability of obtaining 36 or more
such cases as P(36; 60, 140, 100) + · · · + P(60; 60, 140, 100) = 0.0446, where
P(x ; α, β, γ ) is as defined in (6.1) of Chapter 2. This probability may be interpreted
as a P-value for the one-sided alternative hypothesis that illness is more likely
among the exposed than the non-exposed, or p1 > p0. This is Fisher’s exact test.

There is no unique method for calculating a P-value corresponding to the two-
sided alternative hypothesis p1 �= p0. Often it is calculated simply by doubling
(the smaller of the two tail probabilities), in this case 2(0.0446) = 0.0892.3 The
results would indicate that there may well be an association. However, we may
also pursue the analysis based on the assumption of two binomial models. Defining
β0 = log(p0/(1 − p0)) and β1 = log([p1/(1 − p1)]/[p0/(1 − p0)]), we can write
p0 = exp(β0)/(1 + exp(β0)) and p1 = exp(β0 + β1)/(1 + exp(β0 + β1)). Defin-
ing X1 = 1 for the exposed group and X0 = 0 for the non-exposed group, we
can write pi = exp(β0 + β1 Xi )/(1 + exp(β0 + β1 Xi )). Now we have a logistic
regression model that can be fitted with any number of statistical packages, but
it is simple enough that we can solve it by hand. The MLE of p0 is 0.24 and the
MLE of p1 is 0.36, and so the MLEs are β̂0 = log(0.24/0.76) = −1.1528 and
β̂1 = log([0.36/0.64]/[0.24/0.76]) = 0.5773. Taking Y = (Y1, Y0)T the matrix
(1.13) is evaluated as

Ĉov

(
β̂0

β̂1

)
=
((

1 1
1 0

)(
23.04 0

0 18.24

)(
1 1
1 0

))−1

=
(

0.05482 −0.05482
−0.05482 0.098227

)
.

3 These values are based on the exact hypergeometric distribution. They are easily obtained
from the program StatXact, for example. If a χ2

1 distribution is used as an approximation,
we get the one-sided P-value of 0.0324 and the two-sided P-value of 0.0649. The StatXact
manual has additional discussion on the various definitions of the two-sided P-values. SAS
sums the probabilities of the possible tables whose probabilities are not greater than the
probability of the observed table (Cox and Hinkley 1974, 106), and Haberman (1978, 107)
sums the probabilities of the possible tables whose cell value deviates from its expectation
by as much or more than the observed table, which yields the exact significance level for
the Pearson chi-square test.
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The estimated standard error obtained from the diagonal of the matrix (1.13)
is 0.3134 = 0.0982271/2, so a Wald test statistic for H0: β1 = 0 gets the value
0.5773/0.3134 = 1.842. Referring this to the standard normal distribution leads
to the same P-value as the χ2

1 approximation to Fisher’s exact test. ♦
Logistic regression is well suited to the study of joint effects of several vari-

ables. In particular, it can be used to assess confounding by factors that have been
measured in the study (cf., Section 5.4 of Chapter 2). Let us continue in the setting
of the previous example.

Example 2.4. Detecting Confounding. Suppose there was a dichotomous third
variable Z such that the 2 × 2 table of Example 2.3 is actually a sum of two 2 × 2
tables as follows:

Overall Z = 1 Z = 0

Ill Not Total Ill Not Total Ill Not Total

Exposed 36 64 100 32 48 80 4 16 20
Non-Exposed 24 76 100 8 12 20 16 64 80
Total 60 140 200 40 60 100 20 80 100

Whereas the previous analysis seemed to suggest that exposure increased the risk
of illness, we now see the relative risk of illness is = 1.0 for those with Z = 1 and
for those with Z = 0! Clearly, exposure does not have any effect, but Z may. In this
(artificially constructed) example it is easy to detect the source of confounding. In
practice, there can be many potential confounders and they may be measured in
continuous scales. Then a tabular analysis becomes very cumbersome. In contrast,
using logistic regression it is easy to study complex patterns of confounding by
simply adding and subtracting explanatory variables from regression. For the case
at hand we might define Xij = 1 for j = 1 and Xij = 0 for j = 0; Zij = 1 for
i = 1 and Zij = 0 for i = 0; and then assume four independent binomial models
the number of those ill, Yij ∼ Bin(nij , pij ), where logit(pij ) = β0 + β1 Xij + β2 Zij

and n00 = n11 = 80, n01 = n10 = 20. ♦
Logistic regression is also suitable for the study of attitudes. The following ex-

ample shows that sometimes attitudes may depend on birth cohort. Some practical
aspects of model choice are also illustrated.

Example 2.5. Choosing the Sword. The University of Joensuu has arranged Doc-
toral Promotions once or twice a decade. This is a festive event in which a Doctor’s
hat and a sword are given to those who have completed their doctorate since the pre-
vious Promotion. Participation is voluntary and some do not. One reason is that the
promotees must pay themselves for the hat, sword, fancy dinner, formal clothing
etc. In 1999, a controversy arose. Some promotees wanted to omit the sword from
the ceremony, because they felt it is a militaristic symbol, and expensive to the bar-
gain. Others said that this would undermine tradition. A compromise was reached,
and the choice was left to the promotees. A total of n = 104 promotees participated
with 70 taking the sword. Can we explain why some did but others did not?
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We know, for each promotee i = 1, . . . , 104, their SEX (= 1, if i is female, oth-
erwise 0), AGE (in years), and SCHOOL (Education, Forestry, Humanities, Nat-
ural Sciences, Social Sciences), and if they took a sword (Yi = 1) or not (Yi = 0).
Define P(Yi = 1) = pi , as before. Beforehand we thought that possibly men are
more likely to take the sword than women, and so might those in natural sciences
be more likely than those in education, humanities, or social sciences.

Treating SCHOOL as a factor (i.e., dummy variables were created for four of the
five categories), and including it as an explanatory variable together with AGE and
SEX, showed that the probability of taking the sword did not depend on SCHOOL
at all: the smallest P-value of the four indicators was 0.48. Omitting SCHOOL
we fitted the equation logit(pi ) = 4.57 − 0.70 × SEXi − 0.086 × AGEi . The es-
timated standard error of the coefficient of SEX was 0.45 corresponding to a
P-value of 0.12 and the estimated standard error of the coefficient of AGE was
0.029 corresponding to a P-value of 0.03. Hence, there was some evidence that
the women were less likely to take the sword, but there was clear evidence that
the older you were the less likely you were to take the sword. The youngest pro-
motee was 26 years old, and the oldest 64 years old, a difference of 38 years, so
the odds-ratio comparing the youngest and oldest (holding SEX constant) would
be exp(0.086 × 38) = 26.3. The 95% confidence interval for that odds ratio is
exp((0.086 ± 1.96 × 0.029) × 38) = (3.0, 228), which does not include 0. Hence
the age effect was not only statistically significant (i.e., too large to plausibly be
due to random error), but implied a large difference in preferences.

As older people would be expected to be more respectful of tradition than
younger ones, the finding appeared puzzling. To examine the relationship between
age and the probability of taking the sword more closely, a factor variable AGE2
was defined corresponding to 10-year age-groups 26–34, . . . , 55–64. Using the
youngest age as a comparison or reference group, the dummy variables of the
three older ages had negative coefficients, but only that of age-group 45-54 was
significant4. Defining just a single dummy A for this age-group and entering it to
the equation with SEX, produced the equation logit(pi ) = 1.35 − 0.82 × SEXi −
0.97 × Ai . The P-values for the two explanatory models are now 0.044 and 0.049
respectively. However, the model does fit the data slightly less well than the original
model using SEX and AGE.

We conclude that women have been less likely than men to choose the sword. The
older promotees have similarly been less likely to take the sword than the younger
ones. In addition, there is some evidence that especially those in ages 45–54 at the
time of the Promotion were reluctant to take the sword. We note that they were
born during 1945–1954 and so most of them belong to the baby-boom cohorts in
Finland. They carried out their university studies 20–30 years later, roughly during
the 1970’s, when student radicalism was fashionable. We speculate that this may
have influenced their preferences. ♦

4 We say that a statistic is “significant” if it is significantly different than zero at some
significance level, which usually is 0.05 unless specifically stated.
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2.3. Applicability in Case-Control Studies

Logistic regression can be applied in a cohort study to explain, in terms of back-
ground characteristics, why an event of interest occurs during follow-up to some
but not to others. It is less obvious that it could be applied in a case-control setting,
because of the outcome selective method of data collection. However, we show
now that the method is valid under certain conditions.

Consider an individual with vector of characteristics X. Define Y = 1 if the
individual is ill, and Y = 0 otherwise. Define S = 1, if the individual is selected
into the study, and S = 0 otherwise. Assume that the logistic model P(Y = 1) =
exp(α + XTβ)/(1 + exp(α + XTβ)) holds, where we have displayed the constant
term separately. The probability that an individual is selected into the study depends
on Y , and we denote the selection probabilities by τ j = P(S = 1|Y = j), j = 0, 1.

We would like to determine the probability of being ill, given that the individual
is selected into the study. Following Breslow and Day (1980, 203), we can use
Bayes’ formula and write

P(Y = 1|S = 1) = P(S = 1|Y = 1)P(Y = 1)

P(S = 1|Y = 1)P(Y = 1) + P(S = 1|Y = 0)P(Y = 0)
.

(2.4)

Substituting in the logistic probabilities, and simplifying, yields the result

P(Y = 1|S = 1) = exp(α∗ + XTβ)

1 + exp(α∗ + XTβ)
, (2.5)

where α∗ = α + log(τ1/τ0). Thus, the same logistic model is valid for the study
of relative risk in both cohort and case-control studies, but unless τ1/τ0 = 1 the
constant term from a case-control study α∗ cannot be interpreted as representing
the risk of those with X = 0.5

Suppose now that τ j = τ j (X), but in such a way that τ1(X) = cτ0(X). We see
from (2.5) that the logistic model is still valid, as long as both selection probabilities
depend in a similar way on X.

However, if the relative risk of selection depends on X and is of the form
τ1(X)/τ0(X) = exp(α′ + XTγ), we have

P(Y = 1|S = 1) = exp(α′′ + XT(β + γ))

1 + exp(α′′ + XT(β + γ))
, (2.6)

where α′′ = α + α′. We note that the coefficients become biased. This conclusion
is of practical importance in studies such as the Doll and Hill study (Example 5.2
of Chapter 2). Suppose all available cases are taken into the study (τ1(X) = 1),
and controls are selected from among patients who have come to a hospital for

5 If prior information about baseline risk (when X = 0) is available, absolute risks can
still be estimated (Neutra and Drolette 1978; King and Zeng 2002 review several of the
alternative formulations).
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reasons other than the disease under study. If similar exposures increase the risk
of both types of disease, then the bias represented by γ in (2.6) is likely to be
present.

There are several variants of the cohort and case-control designs in which the
use of logistic regression may be valid. Keinänen (2002) investigated factors in-
fluencing the recruitment of workers into information technology (IT) branch in
Finland, during 1999. The data source was the employee database of Statistics
Finland (cf., Statistics Finland 2002), which has detailed data on employment his-
tories of everyone employed in Finland. Three random samples were first selected
from among those who were either outside the labor force, in the labor force but
unemployed, and in the labor force but outside the IT sector, in the beginning of the
year. Since recruitment into the IT sector is a rare event, massive samples would
have been necessary to get reliable estimates using this approach alone. However,
a fourth sample was selected from among those who had moved into the IT sector
during 1999.

The use of logistic regression in this setting can be justified much the same way as
above. For example, restrict attention to those who are unemployed in the beginning
of the year. Consider an individual with characteristics X in the beginning of the
year. Let Y = 1 if the individual is employed in IT sector at the end of the year and
let Y = 0 otherwise. Define S = 1 if the individual was selected into the study and
S = 0 otherwise. Assume that P(Y = 1) = exp(α + XTβ)/(1 + exp(α + XTβ)).
Let τ0 be the probability of being selected into the study in the beginning (i.e.,
the first three samples). Let τ2 be the probability of selecting a case into the
study, provided that he or she was not already selected in the beginning, and de-
note the marginal selection probability P(S = 1) by τ1 = τ0 + (1 − τ0)τ2. It fol-
lows that P(S = 1, Y = 0) = τ0/(1 + exp(α + XTβ)), and P(S = 1, Y = 1) =
τ1exp(α + XTβ)/(1 + exp(α + XTβ)). With these conventions the conditional
probability that the individual becomes employed in the IT sector, given that the in-
dividual selected into the study, is given exactly by (2.5). As this was a register based
study, the selections into the samples could be made independently of X. As noted
in Chapter 2, studies of this type are sometimes called case-cohort or case-base
studies.

Both case-control and case-cohort studies may include matching as part of data
collection. We will indicate in Example 7.5 how this changes the likelihood.

3. Poisson Regression

3.1. Interpretation of Parameters

Suppose Y ∼ Po(λ). By taking θ = log(λ), b(θ ) = λ = exp(θ ), and c(y) =
−log(y!), we see that the Poisson distribution belongs to the 1-parameter exponen-
tial family (1.1). In this case the canonical parameter is the log of the expectation.
The Poisson regression model is loglinear, because the expectation is related to the
linear predictor (1.5) in the log-scale. Let Kx,t be the number of person years lived
by those in age x during year t in a population, and let Yx,t be the corresponding
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number of deaths. Suppose λx,t Kx,t is the expected number of deaths6, so λx,t is
the hazard (cf., Chapter 4). Then, a model corresponding to (2.1) would be

λxt = exp(α0 + α1x + βt). (3.1)

It is easy to see that λx,t+1/λx,t = exp(β) irrespective of x . Using hazards as risk
measures, we note that the parameters of the Poisson regression model have an
exact interpretation in terms of the log of relative risk. The same way logistic re-
gression assumed multiplicativity for the odds-ratios, Poisson regression assumes
multiplicativity for the relative risk. Using terminology introduced in Chapter 4,
we note that (3.1) is actually a proportional hazards model.

Once the parameters have been estimated, other measures that can be estimated
including hazard differences (e.g., λx,t+1 − λx,t ) and expected values λx,t Kx,t .
Confidence intervals for them can be derived using the delta method (Section 1.5).

If (3.1) holds, the Poisson expectation is of the form

λxt Kxt = exp(α0 + α1x + βt + log(Kxt )). (3.2)

We see that the person years can be accommodated by incorporating an additional
regression term log(Kx,t ) with a fixed coefficient = 1 to the regression model.
Many computer programs such as GLIM, EGRET, R, S+, SAS and Stata allow
such offset regressors.

Inference concerning Poisson regression can be carried out the same way as for
logistic regression. The goodness of fit of the Poisson models is easier to study,
however, since the deviance is known to have an asymptotic χ2 distribution when
the expectations of the Poisson counts are sufficiently large (cf., Conover 1980,
191). In addition, several more refined tools for diagnostic checking have been
developed (e.g., Bishop et al. 1975, 136–137; Haberman 1978, 77–79). In Section
4 we will also note that count data often display more variability than one would
expect under a strict Poisson assumption. Alternative models are provided for this
situation.

3.2. Examples of Poisson Regression

Poisson regression is a standard tool of demographic analysis. Here we give a few
simple illustrations, and others will appear later in several places.

Example 3.1. Poisson Models for Births. Estimates of age-specific fertility in
Example 4.1 of Chapter 4 are based on a saturated model, where the number of
births in age x = α, . . . , β during year t = 1, . . . , T, is Yxt ∼ Po(λxt Kxt ). More
parsimoniously, consider models of the form log(λxt ) = δx + ηt + γ (x − M)t +
ζ (x − M)2t, where M is the mean age at childbearing at t = 0 (for the various

6 Although Kx,t depends on Yx,t , this dependence can be ignored at least as long as the
expected count is small relative to the person years. In a data set on old-age mortality (Alho
and Nyblom 1997) alternative estimates of relative risk could be calculated using a binomial
model. In this case, the estimates were essentially the same as those obtained from a Poisson
model even though Yxt represented a large proportion of Kxt .
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definitions, see Example 4.4 of Chapter 4). For identifiability, assume that �xδx =
0. If γ = ζ = 0, we have a main effects ( or a “2-way analysis of variance” model)
in which the δx ’s determine the shape of the age-specific fertility schedule and the
ηt ’s determine the level of total fertility. If ζ = 0, then (as discussed in Exercise
34 of Chapter 4) the model incorporates a systematic change in the mean age at
childbearing: for γ > 0 the mean age increases and for γ < 0 it decreases over
time. Finally, if we also have ζ �= 0, it is possible to capture a systematic change
in the spread of fertility around the mean age: for ζ > 0 the spread increases over
time, for ζ < 0 it decreases over time. The role of M is to center the x values, so
a better interpretation for the parameters γ and ζ is obtained. ♦
Example 3.2. Mortality of Young Widows. A notable feature in Figure 1 of Chap-
ter 4 is the high mortality of widows in young ages. Is the effect significant? Con-
sider ages 26–34. The number of deaths among married were Y0 = 35, and the num-
ber of person years were K0 = 145, 651. For the widowed the deaths were Y1 = 3,

and person years were K1 = 663. Assume that Yi ∼ Po(λi Ki ), i = 0, 1, are in-
dependent, and consider the model log(λi ) = µ + αi , with α0 = 0. We obtain the
estimate α̂1 = 2.9355, so an estimate of relative risk is exp(2.9355) = 18.83 with a
95% confidence interval [5.79, 61.2]. Thus, the excess risk appears to be real. The
finding agrees with those of Hu and Goldman (1990, 241) from several countries.
The authors suggest that the circumstances leading to the spouse’s death may also
increase the hazard of the remaining partner. ♦
Example 3.3. Age-Period-Cohort Problem. Model (3.1) treats both age and period
effects linearly (in the log-scale). In many demographic applications it is also of
interest to consider cohort effects. For example, harsh conditions in childhood may
adversely effect later survival. Note, however, that if a term β3(t − x) is added to
the linear predictor, then the model is not identifiable: to any value for β3 there
corresponds a model containing age and period effects only that provides the same
fit. The root cause for the problem is that the three effects are perfectly collinear
in this case. This is the famous age-period-cohort problem. If there is a basis for
deciding which two of the effects are the most important, then the effect of the third
can be determined conditionally on the estimates of the first two. For a review, see
Clayton and Schiffers (1987a,b), and for an example of a potential resolution in a
non-parametric setting, see Ogata et al. (2000). ♦
Example 3.4. Number of the Habsburg Offspring. Continuing in the setting of
Example 2.2, consider the sizes of the generations i = 1, . . . , 20. Let Yi be the
number of children in generation i minus one (i.e., excluding the one who passed
on the throne). A possible model assumes that Yi ∼ Po(λi ), i = 1, . . . , 20 are in-
dependent. To investigate time trends, let us assume the model log(λi ) = α + β Xi ,
where Xi is the birth year of the person generating the generation i . We obtain the
MLE β̂ = 0.000114 and an estimated standard error of 0.000415. We conclude that
there appears to be no overall trend in family size over the observation period. ♦
Example 3.5. Regression Models for Rates of Small Areas. Summary measures
such as life expectancy or total fertility rate are sometimes desired for small areas.
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In Finland, for example the median size of a municipality is 5,000, and the annual
number of births and deaths is of the order of 50. In the U.S., there are more than
40,000 places, municipalities, and minor civil divisions, and the median size is
around 1,000. Even though data by municipality are available, the numbers are
so small that Poisson variation makes the results unreliable. Poisson regression
provides a way to stabilize the estimates by “borrowing strength” in estimation
from neighboring areas. Suppose Yxm ∼ Po(λxm Kxm) is the number of events in
age x in municipality m. Fit a main effects model log(λxm) = αx + βm to data from
several municipalities. This yields the MLEs λ̂xm . Suppose the counts are births.
We can then estimate the age-specific fertility rates for each municipality m by
λ̂xm’s. Similarly, if the counts are deaths, we can estimate age-specific mortality
rates by λ̂xm’s. In an analysis of a few small municipalities we may want to use
external baseline rates in estimation. If the αx ’s are known, this can be effected
by offsetting αx+ log(Kxm), instead of just log(Kxm), in estimation. ♦

3.3. Standardization

Poisson regression has a close connection to standardization, a topic that is central
to classical demography (e.g., Breslow and Day 1987, 128; Hoem 1987). For
concreteness, we consider mortality, but the concepts and results of this section
apply generally. Denote the number of deaths in age x at time t by Yxt and the
corresponding person years of exposure by Kxt for x = 0, . . . , ω and t = 1, . . . , T .
A dot (.) in place of a subscript will denote summation over the subscript,

Yx· =
T∑

t=1

Yxt , Y·t =
ω∑

x=0

Yxt , Y·· =
T∑

t=1

Y·t

Kx· =
T∑

t=1

Kxt , K·t =
ω∑

x=0

Kxt , K·· =
T∑

t=1

K·t . (3.3)

Often we are interested in comparing Y.t across years, but we want to eliminate the
effect of age distributions (Kxt ) varying with t . Denote the age-specific mortality
rates by mxt ≡ Yxt/Kxt , and note that the crude mortality rate of year t can be
written as a weighted average of the age-specific rates,

Y·t
K·t

=
ω∑

x=0

(
Kxt

K·t

)
mxt . (3.4)

The fact that the weights depend on t is problematic – do differences in crude rates
reflect different risks or different weights?

Direct standardization solves the problem by the use of standard weights wx >

0 with w0 + · · · + wω = 1. The directly standardized mortality rate is defined
simply as

ω∑
x=0

wx mxt . (3.5)
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Since (3.5) depends on the chosen weights, standardized rates can generally be used
for comparative purposes only. A common choice is wx = Kx·/K··. For the purpose
of standardizing time series, external standard weights are used (cf., Anderson and
Rosenberg 1998).

Calculation of the directly standardized rate requires knowledge of the indi-
vidual mxt ’s. If only the crude rate is known for time t , an alternative, indirect
standardization may be used. Taking the reference group to be the aggregate over
t , with wx = Kx·/K·· and mx = Yx·/Kx·, notice that the ratio of the direct stan-
dardized rate to the crude rate in the reference group is �x wx mxt/�x wx mx . If we
replace the standard weights wx by Kxt/K·t , that ratio transforms to the standard-
ized mortality ratio (SMR),

Y·t/K·t
ω∑

x=0
(Kxt/K·t )mx

= Y·t
ω∑

x=0
Kxt mx

. (3.6)

Note that (3.6) can be interpreted as an observed/expected ratio. If we multiply the
SMR by the crude rate for the reference group, we obtain the indirectly standardized
mortality rate, (

Y·t∑ω
x=0 Kxt mx

)
Y··
K··

. (3.7)

For additional insight into indirect standardization, suppose that Yxt are mutually
independent and distributed as Po(λxt Kxt ), and consider a main-effects analysis
of variance model as,

λxt = exp(αx + βt ). (3.8)

If we write out the likelihood and apply the factorization criterion, we see that the
vector U = (Y0·, . . . , Yω·, Y·1, . . . , Y·T )T is sufficient for (α0, . . . , αω, β1, . . . , βT )T .
Recalling (1.8), we note that the MLEs are the solution to U = E[U]. Equating
first Yx· = E[Yx·] and setting βt = 0 leads to the estimates

exp(α̂x ) = Yx·/Kx·. (3.9)

In other words, the initial estimates for the αx ’s are the logs of the age-specific
rates when the data have been aggregated across years. If we insert these estimates
into the equations Y·t = E[Y·t ], we get

exp(β̂t ) = Y·t

/ ω∑
x=0

exp(α̂x )Kxt , (3.10)

which is equal to the standardized mortality ratio (3.6). Multiplying exp(β̂t ) by the
crude mortality rate across age and years, we obtain the indirectly standardized
mortality rate (3.7). Upon further iteration the estimates may change, but (3.10)
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shows that the “main effects” model (3.8) can be viewed as a way of carrying out
indirect standardization (Hoem 1987).7

The variance of the directly standardized rate (3.5) is usually calculated under the
assumption that Yxt ∼ Po(λxt Kxt ) are independent. Hence, the estimated variance
(3.5) is

ω∑
x= 0

w2
x Yxt

/
K 2

xt . (3.11)

Statistical inference can then be based on a normal approximation to the distribution
of (3.5).

Example 3.6. Relative Risk of Mortality for Unemployed. To illustrate standard-
ization, let us consider the relative risk of mortality among the unemployed as
compared to the employed in Finland, in 1998. Whereas previously t had referred
to year, now we let t = 1, 2 distinguish employed from unemployed. The deaths
Dxt , the person years in thousands Kxt , and the mortality rates (per thousand) mxt ,
for x = 0, 1, . . . , 5, were the following.

Employed (t = 1) Unemployed (t = 2)
SDPOP SDRATE

Age (x) Yx1 Kx1 mx1 Yx2 Kx2 mx2 Kx ·/K·· mx

(0) 15–19 11 16.7 0.659 24 10.3 2.33 0.021 1.30
(1) 20–29 89 177.7 0.501 113 57.4 1.97 0.185 0.86
(2) 30–39 259 296.1 0.874 246 55.0 4.47 0.277 1.44
(3) 40–49 565 313.8 1.80 526 59.1 8.90 0.294 2.93
(4) 50–59 759 199.2 3.81 555 54.5 10.18 0.200 5.18
(5) 60–69 176 24.3 7.24 51 4.29 11.86 0.023 7.94

Total 1859 1027.8 1.81 1515 240.6 6.3 1.000

The crude mortality rates are Y·1/K·1 = 1859/1028 = 1.81 and Y·2/K·2 =
1515/240.6 = 6.3, so the relative risk appears to be 6.3/1.81 = 3.48, indicat-
ing that mortality among the unemployed is three to four times as high as among
those employed. Can this be due to a difference in age-distribution?

The column SDPOP contains the age-distribution of the whole population,
Kx ·/K··. Multiplying the age-specific rates mxt by the population shares SDPOP
yields the directly standardized rates 6.57 for the unemployed and 1.80 for the em-
ployed. These yield a relative risk of 6.58/1.81 = 3.64. An indirectly standardized
relative risk estimate can be obtained by first calculating the standardized mortal-
ity ratios for both groups. As an observed/expected ratio the standardized mortal-
ity ratio (3.6) equals 1859/2743.0 = 0.678 for the employed and 1515/631.0 =
2.400 for the unemployed. Hence, the relative standardized mortality ratio is

7 The functional iteration we have used to solve the likelihood equations is not identical to
Newton’s method. The latter does not yield the same insight provided by (3.9) and (3.10).



P1: MRM/SJS P2: MRM
SVUS004-Alho & Spencer April 29, 2005 21:31

136 5. Regression Models for Counts and Survival

2.400/0.678 = 3.54. Fitting the main effects model (3.6) log(λxt ) = αx + βt , with
β1 = 0 for identifiability, yields the estimate β̂2 = 1.2795. The standard error of
the estimate is 0.0348. Therefore, the relative risk is exp(1.2794) = 3.59 with a
95% confidence interval of [3.36, 3.85]. In this case the estimates of relative risk
are nearly the same if one uses crude rates, directly standardized rates, indirectly
standardized rates, or Poisson regression estimates. An advantage of the latter is
the easy access to confidence intervals, although they can be calculated for the
other estimates fairly easily.

However, the real power of the regression approach comes from the facility
of elaboration. In this case, many of the age-effects were within sampling error
of the mean age effect. By entering age as a continuous explanatory variable,
log(λxt ) = µ + αx + βt , one obtains a smaller model with a significant age ef-
fect. The deviance of model (3.8) is 99.47 and the deviance of the model with
continuous ages is 125.14. Comparing the difference 125.14 −99.47 = 25.67
to χ2 distribution with 4 degrees of freedom, we find a P-value < 0.0001, so
the smaller model is not adequate. However, there appears to be interaction be-
tween age and employment status. Extending the main effects model to a form
log(λxt ) = αx + βt + γ AGE2(x), where AGE2(x) = x for the unemployed and
AGE2(x) = 0 for the employed, we get the deviance 42.14. This is a major im-
provement on the main effects model, because comparing 99.47 − 42.14 = 57.33
to χ2 distribution with 1 degree of freedom, we find a P-value much below 0.0001.
In this model, the we have β̂2 = 2.1222, and the coefficient of the interaction term
is γ̂ = −0.2608. All age effects, except that of age group 1 are significantly dif-
ferent from the age-group 0. Thus, our estimate of the relative risk of the unem-
ployed as compared to employed, in age group x , is exp(2.1222 − 0.2608x) for
x = 0, 1, . . . , 5, which ranges from 8.3 to 2.3. Due to the interaction, the main
effects model that underlies indirect standardization is not valid, and even direct
standardization is somewhat crude. The more refined analysis reveals that for the
young unemployment is a greater risk factor than suggested by standardization
techniques, whereas for the old the relative risk is less than suggested by the stan-
dardization techniques. A possible explanation for the change in relative risk can
be given in terms of the notion of multiple decrements: those in ill health are
selected out of the labor force before death. ♦

3.4. Loglinear Models for Capture-Recapture Data

There is a large literature on the application of loglinear models to contingency
tables (e.g., Bishop, Fienberg and Holland 1975, Haberman 1978,1979). These
models are of interest to demographers, since demographic data are often collected
as classified by variables such as age, sex, race, or region. Here, we will briefly
show how they can be used to analyze capture-recapture data.

By taking Kxt = 1 in the model of Section 3.3 and generalizing from deaths
to counts more generally, we get formally a contingency table of counts Yxt ∼
Po(λxt ). The model (3.8) is called a main effects model, because it has parameters
αx relating to the ω + 1 rows and parameters βt relating to the T columns. A
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(saturated) model including interactions between rows and columns would be of
the form log(λxt ) = αx + βt + γxt .

Suppose now that a census and a subsequent survey have been conducted for the
same population. Let Yi j ∼ Po(λi j ) be the population counts: Y11 = the number
of those counted on both occasions; Y10 = the number of those counted the first
time but not the second time; Y01 = the number of those counted the second time
but not the first time; Y00 = the number of those not counted at all. The total
population is then N = Y11 + Y10 + Y01 + Y00, where Y00 is unknown. Suppose
we have a main effects model λi j = exp(αi + β j ), where we set β0 = 0 to attain
identifiability. Setting the three observed values equal to their expectation one gets
the estimates α̂1 = log(Y10), β̂1 = log(Y11/Y10), and α̂0 = log(Y10Y01/Y11). The
MLE of the expectation of the unknown count is λ̂00 = Y10Y01/Y11. By a direct
calculation one can show that N̂ = Y11 + Y10 + Y01 + λ̂00 agrees with the classical
dual systems estimator, or N̂ = (Y11 + Y10)(Y11 + Y01)/Y11.

There are several variants of the derivation of the classical estimator. In particu-
lar, one may bypass the Poisson assumption of the counts and resort to multinomial
distribution of the observed counts (Y11, Y10, Y01) (cf., Bishop, Fienberg and Hol-
land 1975; we will apply a similar argument in Section 5). The MLEs are similar,
however, since the multinomial model is obtained from the Poisson model by
conditioning on the observed total Y11 + Y10 + Y01. Moreover, if one conditions
further on the marginals Y1· = Y11 + Y10 and Y·1 = Y11 + Y01, one obtains the hy-
pergeometric model mentioned in Chapter 2 in which Y11 is the only free variable.
All models lead to the same MLEs albeit that their (model-based) variances need
not be the same.

The interest in applying loglinear models in capture-recapture data is not that
it provides yet another derivation of the classical results. However, suppose the
two captures are positively (negatively) dependent, in the sense that having been
captured on the first occasion changes the person in such a way that his or her prob-
ability of capture during the second occasion is higher (lower) than the probability
of capture of those who were not captured during the first occasion. Conditioning
on the marginals Y1· and Y·1, one then expects a larger (smaller) number of those
captured twice, Y11, than under a model of independence. Thus, the classical
estimator is expected to underestimate (overestimate) the true population. Such be-
havioral response to the capture event is essentially impossible to assess based on
two captures, but if three or more captures are available, loglinear models can help.

Suppose Yi jk ∼ Po(λi jk) are the population counts: Y111 = the number of those
counted on all occasions, Y110 = the number of those counted the first two times
but not the last time, etc. In this case Y000 = the number of those not counted
at all, and the total population size to be estimated is N = Y111 + Y110 + Y101 +
Y100 + Y011 + Y010 + Y001 + Y000. A main effects loglinear model would be λi jk =
exp(αi + β j + γk), where β0 = γ0 = 0 for identifiability. However, this is not the
only possibility. A model allowing an interaction between the first two captures, but
keeping the third capture independent of the first two, assumes thatλi jk = exp(αi +
β j + γk + δi j ). Details of the analysis of these models are given in Bishop, Fienberg
and Holland (1975, Chapter 6).
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Examples of the application of triple-systems estimation in the context of the
1990 U.S. census data are given by Zaslavsky and Wolfgang (1993) and Dar-
roch et al. (1993). In this case the three captures are formed by the census, the
post-enumeration survey, and pre-census administrative records from Employment
Security, driver’s license administration, Internal Revenue Service, Selective Ser-
vice, and Veteran’s Administration. There seems to be some evidence that the
capture by administrative records was only weakly, if at all related to capture by
the census or the survey.

We conclude by expanding on Example 6.2 of Chapter 2 on drug use in Finland.

Example 3.7. Triple Systems Estimates of Numbers of Drug Users. In addition
to the Hospital Discharge Register (i = 0, 1) and the Criminal Report Register
( j = 0, 1), there is a Register for Driving Under the Influence of Alcohol and
other Drugs (k = 0, 1) that contain information about drug users. The following
capture data that we analyze under the model Yi jk ∼ Po(λi jk), were obtained in
year 2000:

i 1 0 1 0 1 0 1
j 1 1 0 0 1 1 0
k 1 1 1 1 0 0 0
Captures 3 77 9 87 50 695 384

The total number of captures is 1,305. The model log(λi jk) = αi + β j + γk has
deviance 85.81 (residual d.f. = 3); the model log(λi jk) = αi + β j + γk + δi j has
deviance 27.16 (d.f. = 2); the model log(λi jk) = αi + β j + γk + πik has deviance
81.68 (d.f. = 2); and the model log(λi jk) = αi + β j + γk + ξ jk has deviance 2.30
(d.f. = 2). Thus, the last mentioned model is the best among the ones considered.
In the Poisson case deviance has approximately a χ2 distribution with 2 degrees
of freedom, so we find that it is acceptable based on goodness-of-fit. The estimate
for the expectation of the missing cell is λ̂000 = exp(8.5793) = 5,320. Adding this
to the total number of captures yields the estimate 5,320 + 1,305 = 6,625. This is
about 5% less than the estimate of 6,942 obtained from two registers in Example 6.2
of Chapter 2. A 95% prediction interval for the count of the missing cell is [4,035;
7,015]. This translates into an interval [5,340; 8,320] for the total population. ♦

4. Overdispersion and Random Effects

Consider the model (1.5). As noted in Chapter 4, Section 5, often demographic data
show more variability than can be accounted by the binomial or Poisson model we
may be using. The excess variability is called overdispersion. In Section 4.1 we
will first describe a simple extension of model (1.1) that can be used as a diagnostic
tool to investigate the presence of overdispersion. Then, in Section 4.2 we discuss
two classical marginal models for handling the overdispersion in these settings.
Section 4.3 presents alternative random effect models that are intended for more
general forms of overdispersion.
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4.1. Direct Estimation of Overdispersion

The classical formulation of Nelder and Wedderburn (1972) includes a scale factor
that corresponds to the variance in the case of a normal distribution, for example.
However, we can also use an estimate of the scale as a diagnostic tool to investigate
the possible presence of overdispersion or underdispersion (i.e., the case in which
observed variability is smaller than expected under the chosen model). Suppose we
have independent counts Yi that correspond to person years Ki , i = 1, . . . , n, such
that E[Yi ] = exp(XT

i β)Ki , where Xi is a vector of characteristics of observation
i. Suppose β̂ is a solution to (1.8) under a Poisson assumption for the data. By the
law of large numbers, (1.8) provides a consistent solution for β provided that the
Yi ’s, Ki ’s and Xi ’s are sufficiently well-behaved, even if the Poisson assumption
does not hold (cf., Rao 1973, 112-114, theorems (i) and (iii)). Consider another
estimating equation (cf., Section 7.3 of Chapter 3) for a parameter φ, of the form

n∑
i=1

{(
Yi − exp

(
XT

i β̂
)
Ki
)2

exp
(
XT

i β̂
)
Ki

− φ

}
= 0. (4.1)

Under a Poisson assumption, the laws of large numbers imply that φ = 1 asymp-
totically, but if we have overdispersion, or Var(Yi ) > E[Yi ] for all i , then (under
regularity conditions) the solution to (4.1) is asymptotically φ̂ > 1. Similarly, for
underdispersion we get φ̂ < 1. Thus, (4.1) provides us with a diagnostic tool to
check for possible overdispersion under fairly general conditions (McCullagh and
Nelder 1989). More definite results can be obtained in specific settings.

4.2. Marginal Models for Overdispersion

Suppose Yi ∼ Bin(ni , pi ), i = 1, . . . , n, are conditionally independent given
p1, . . . , pn , but that each pi has been sampled independently from a beta distribu-
tion Be(αi , βi ) with mean µi = αi/(αi + βi ) and variance σ 2

i = αiβi/[(αi + βi )2

(αi + βi + 1)] (cf., DeGroot 1987, 294–296). It follows that E[Yi ] = E[E[Yi |
pi ]] = E[ni pi ] = niµi . Similarly, using the fact that Var(Yi ) = Var(E[Yi |pi ])+
E[Var(Yi |pi )], one can show that Var(Yi ) = niµi (1 − µi ) + ni (ni − 1)σ 2

i . Here
we have binomial variance + an overdispersion term determined by σ 2

i . It is con-
venient to model the overdispersion as being proportional to the binomial variance.
Thus, given 0 < µi < 1 and a single variance parameter σ 2, we can reparametrize
each beta distribution by choosing αi = µi (σ−2 − 1) and βi = (1 − µi )(σ−2 − 1),
which yields E[Yi ] = niµi and Var(Yi ) = niµi (1 − µi )[1 + (ni − 1)σ 2]. In this
parametrization a multiplicative increase in variance due to overdispersion is
assumed. For modeling, we can assume that logit(µi ) = XT

i β, if there is a vector
of explanatory variables Xi available for unit i = 1, . . . n. Maximum likelihood
can then be used to estimate both the regression parameters β and the dispersion
parameter σ 2. This is the so-called beta-binomial model (cf., Williams 1982).
It has been implemented in the program EGRET, for example. To examine
whether the overdispersion specification is appropriate, denote the fitted value
of Yi by Ŷi = ni µ̂i = ni exp(XT

i β̂)/(1 + exp(XT
i β̂)) and plot scaled residuals
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(Yi − Ŷi )/
√

ni µ̂i (1 − µ̂i ) versus ni ; the model implies that the variance of the
residuals should increase approximately as a linear function of ni (McCullagh
and Nelder 1989, 126).

Suppose that Yi ∼ Po(λi ) are independent, i = 1, . . . , n and that each λi has
been sampled independently from a gamma distribution with parameters αi and βi

(cf., Example 1.4 of Chapter 4) that has mean µi = αi/βi and variance σ 2
i = αi/β

2
i

(cf., DeGroot 1987, 258–261). It follows that marginally the Yi ’s have a negative bi-
nomial distribution with expectation E[Yi ] = µi and variance Var(Yi ) = µi + σ 2

i
(cf., Johnson and Kotz 1969, 124–125; these formulas provide the connection to
the parametrization given in Exercise 1). As in the case of beta-binomial distri-
bution, we can reparametrize the negative binomial distribution in terms of the
µi ’s and a single variance parameter σ 2 ≥ 1 that provides a multiplicative in-
crease in the variance. Choosing αi = µi/(σ 2 − 1) and βi = 1/(σ 2 − 1) leads to
E[Yi ] = µi and Var(Yi ) = µiσ

2. A loglinear model log(µi ) = XT
i β can be used

if there is a vector of explanatory variables Xi available for unit i = 1, . . . , n.

Maximum likelihood can be used to estimate the parameters. Such models can be
fitted using the program STATA, for example. As in the beta-binomial situation, to
examine whether the Poisson-gamma overdispersion specification is appropriate,
denote the fitted value of Yi by Ŷi = µ̂i = exp(XT

i β̂) and plot scaled residuals
(Yi − Ŷi )/

√
µ̂i versus µ̂i ; the model implies that the variance of the residuals

should be approximately homoscedastic.

4.3. Random Effect Models

The formulations for the binomial and Poisson case lead to nice, closed form prob-
ability models, for which maximum likelihood is a feasible estimation strategy.
Note, however, that the choice of the beta and gamma distributions is based on
mathematical convenience (they form so-called conjugate families with the bi-
nomial and Poisson distribution, respectively) rather than substantive reasoning.
Unfortunately, no attempt to handle more general cases that we have seen is entirely
free from theoretical complications. There are a number of promising frequentist
methods (e.g., Lee and Nelder 1996, 2001; Durbin and Koopman 2000) and cor-
responding Bayesian methods (e.g., Zeger and Karim 1991, West, Harrison, and
Migon 1985). We will briefly discuss the philosophy of the latter approach and
then present two examples that have been implemented with generally available
software.

In the Bayesian paradigm all unknown parameters are treated as being random,
not just the random effects. Randomness may then interpreted in various ways,
including in subjective terms: a priori we may have a more or less vague idea of
the values of the unknown parameters, and those beliefs are represented by a prior
distribution for the unknown parameters.8 A posteriori – after we have seen the

8 Alternative, non-subjective interpretations include frequency distributions for prior data
and “normative and objective representations of what it is rational to believe about a pa-
rameter, usually in a situation of ignorance” (Cox and Hinkley 1974, 375); see also Berger
(1980).
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data – a more definite, but still not exact, view of their values arises. The conditional
distribution of the parameters, given the data, is called the posterior distribution.
The updating of the views is carried out using the famous Bayes formula (e.g.,
DeGroot 1987, 66; a particular case was used in Section 2.3), which says that the
posterior distribution for the parameters given the data is proportional to the prod-
uct of conditional distribution of the data given the parameters (i.e., the likelihood)
and the prior distribution. Until the 1990’s the numerical implementation of the
Bayes formula was considered a major obstacle in the Bayesian analysis. However,
the phenomenal increase in computing speed together with some theoretical in-
novations has largely removed these problems. For example, Gibbs sampling (cf.,
Gelman et al. 1995, 326–327)9 is a simulation technique that produces a Markov
chain whose invariant distribution (see Exercise 23 of Chapter 6) coincides with the
posterior distribution of the parameters (whence the term Markov Chain Monte
Carlo or MCMC; we will illustrate the method in Chapter 9). This approach is
logically consistent, and produces results to the desired degree of accuracy. The
price one has to pay for the advantages is the increased complexity of the model.
In particular, a joint prior distribution has to be formed for all parameters. There
are routine ways of doing this. For example, one can use priors that are nearly
“non-informative” (Kass and Wasserman 1996). However, if the sample size is
not large, the particular choice may have unintended effects on the results that
are hard to detect. Moreover, in complex situations priors that are thought to be
non-informative may actually put strong constraints on some parts of the model
that are similarly hard to detect.

Experience with Bayesian methods is rapidly increasing, but still limited, in
part because they are not yet routinely available in most statistical packages. In
the past, there has been much debate in statistics about the relative merits of the
Bayesian and frequentist methods. We remain agnostic is this respect: while a
simple analysis is usually preferable to a more complex one, in some cases the
essence of the matter may be lost if too much is simplified.10 The methods must
match the problem. We will now briefly review both frequentist and Bayesian
models that are readily available for the demographic user.

First, Goldstein (2003) reviews the so-called multilevel models that are widely
used in education and other social sciences. Suppose we are modeling mortality
as a function of age x and time t , either via logistic or Poisson regression. In either
case we might model the canonical parameter as θxt = µ + αx + βt, for example.
Under this model there would be a systematic linear time trend and otherwise
a constant age pattern. Due to extra-binomial or extra-Poisson variability, the
model might not fit the data of each year well. A possible extension would be a
1-level model θxt = µ + αx + βt + εxt , where the random effects εxt ∼ N (0, σ 2

1 )
are independent. However, there might be years during which the linear trend

9 J. Willard Gibbs (1839-1903) developed models in statistical physics. A probability dis-
tribution for a random number of interacting particles in different energy states bears his
name.
10 “Things should be made as simple as possible – but no simpler.” A. Einstein.
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would be too high for all ages, and other years for which it would be too low. This
could be represented by a 2-level model θxt = µ + αx + βt + εxt + ηt , where the
annual random effects ηt ∼ N (0, σ 2

2 ) are independent. Such models can be fitted
using the software program MLwiN, for example. The fitting algorithm is based on
an approximation to the likelihood function. The resulting estimates are sometimes
called quasi-likelihood estimates.

Second, Gilks, Richardson, and Spiegelhalter (1995) present several examples
of the so-called hierarchical Bayesian models. As an example, consider the 1-level
model of the previous example. The random effect εxt ∼ N (0, σ 2

1 ) would further
be described by treating the unknown σ 2

1 as random, with some prior distribution. A
common choice is to assume the inverse of the variance, or precision 1/σ 2

1 , to have a
gamma distribution with a large variance. In addition, one would assume that µ ∼
N (0, σ 2

µ), αx ∼ N (0, σ 2
α ) are i.i.d., and β ∼ N (0, σ 2

β ), all with large variances. One
would then use numerical simulation techniques to determine the joint posterior
distribution of the parameters µ, αx , β, and σ 2

1 given the observed data. The 2-
level model can similarly be generalized. For practical calculations, WinBUGS
software can be used (cf., Thomas, Speigelhalter, and Gilks 1992).

Example 4.1. Overdispersion in Habsburg Cohort Sizes. Returning to the Habs-
burgs of Example 2.1, consider the possible time trends in the number of children
per generation i = 1, . . . , 20. Since all families include the child who later became
emperor/empress, define Yi = (number of children in generation i) - 1 as the out-
come variable. As explanatory variable we use Xi = birth year of parent i whose
children are being considered. The values ranged from 1218 to 1865. The outcome
variable had the mean = 7.75 and standard deviation 4.85. Since the variance is
much larger than the mean, and no major time trends are apparent, extra-Poisson
variability is a possibility.

The data were analyzed under three models: (i) negative binomial model; (ii)
a 1-level Poisson model; and (iii) Bayesian hierarchical model with weakly in-
formative priors. The basic model was Yi ∼ Po(λi ), where λi = exp(µi + εi ),
and the linear predictor µi depends on Xi . The following estimates were obtained
(standard errors in parenthesis): (i) µ̂i = 1.85 + 0.00013(0.00078) × Xi and σ̂ 2 =
0.28(0.13); (ii) µ̂i = 1.87 − 0.00007(0.00083) × Xi and σ̂ 2 = 0.38(0.16)); (iii)
µ̂i = 1.85 + 0.00006(0.00084) × Xi and σ̂ 2

1 = 0.39(0.21). In the Bayesian case,
the means of the posterior distributions were used as point estimates, and standard
deviations of the posterior distributions as standard errors. None of the models sug-
gest that there would be a time trend. All models suggest that there is extra-Poisson
variability. ♦

Modelers are sometimes confused about whether random or fixed effects should
be used to represent a particular factor. Econometricians (cf., Hausman 1978) have
even devised ingenious tests to solve the problem. We prefer the advice of Searle
(1971, 376-380) who argues that the choice be made on substantive grounds. If
we are interested in making inferences about only those factors being analyzed,
the corresponding parameters should be viewed as fixed effects. If we are viewing
the factors as being sampled from a larger population, and we are interested in
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generalizing to that population, we want to consider random effects. For example,
in analyses of mortality, dependence on age is almost always of interest, and the
age effects usually would be treated as fixed effects. The rate of decline in mortality
is also typically of interest, but variation around the declining trend need not be. If
we are not specifically interested in those variations, we might consider the yearly
deviations from the trend as random.

Usually, the inclusion of a factor as a random effect tends to increase the standard
errors of the fixed effects. This decreases the risk of overfitting in regression, and
leads to a more conservative statistical analysis. In some cases, inclusion of a factor
as a random effect is necessitated by technical considerations concerning number
of parameters and the number of data points. For example, if we are analyzing data
on individuals and want to include a fixed effect for each individual, the number
of parameters will grow with the sample size and the MLEs may be substantially
biased even in large samples; in such a case we would consider the individual
effects to be sampled from some distributions.

5. Observable Heterogeneity in Capture-Recapture Studies

As discussed in Section 3.4, if capture events are behaviorally correlated on an
individual level, the classical population estimator can be biased. Alternatively,
population heterogeneity may create a population level correlation and cause a
capture-recapture estimator of population size to become biased. We will now
briefly indicate how heterogeneity may be handled statistically, when there are
two capture occasions.

Consider a closed population of unknown size N . For each individual i =
1, . . . , N , define indicator variables uji and mi such that uji = 1 if and only if
i is captured on occasion j only, j = 1, 2; and mi = 1 if and only if i is cap-
tured twice. Otherwise, uji = mi = 0. Define nji = uji + mi as the indicator of
capture on the j th occasion. Let Mi = u1i + u2i + mi indicate capture at least
once. Define the individual capture probabilities as pji = E[nji ], j = 1, 2; and
p12i = E[mi ]. We assume that the first and second captures are independent for
each i , so that p12i = p1i p2i . We now have for each individual Mi ∼ Ber(ϕi ), with
ϕi = p1i + p2i − p1i p2i . For those with Mi = 1 (i.e., for those that have been
captured at least once), we have the multinomial model

(u1i , u2i , mi ) ∼ Mult (1; p1i (1 − p2i )/ϕi , (1 − p1i )p2i/ϕi , p1i p2i/ϕi ) . (5.1)

The classical dual systems estimator is N̂ = n1n2/m, where n j = n j1 + · · · +
njN , j = 1, 2, and m = m1 + · · · + m N . Define p̄j N = (pj1 + · · · + pj N )/N and
define p̄12N = (p11 p21 + · · · + p1N p2N )/N . Consider asymptotics, in which the
limits p̄j N → p̄ j , and p̄12N → p̄12, exist when N → ∞. By the law of large
numbers we have that

N̂/N → p̄1 p̄2/ p̄12, as N → ∞. (5.2)
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For any N , let us formally define the covariance between the probabilities pji

as CN = p̄12N − p̄1N p̄2N . Under the assumptions we have made, there is a limit
CN → C . It follows that

N̂/N → 1 − C/ p̄12. (5.3)

We see that the classical estimator is not consistent, unless C = 0. This asymptotic
bias is called correlation bias.11

Can correlation bias matter? Unfortunately it can. Using a linear Taylor-series
approximation, one can show (e.g., Alho 1994) that the variance of N̂/N is ap-
proximately

Var(N̂/N ) = N−1(1 − p1)(1 − p2)/(p1 p2). (5.4)

Comparing (5.3) and (5.4), we see that the ratio of the bias to the standard error is
of order

√
N . It follows that even a small correlation bias dominates the standard

error in large populations.
In demographic applications, factors that cause a person to be missed in the

first count (e.g., life style, attitude towards authorities, peer pressure etc.) often
cause him or her to missed in the second count. In such cases C > 0, so population
underestimation is the typical direction of bias. To the extent that such explanatory
factors can be measured, they can be accounted for by a statistical analysis.

Suppose now that there are characteristics Xi that explain the probability that
individual i = 1, . . . , N is captured on occasion j = 1, 2 via logistic regression
models

logit(p ji ) = XT
i βj. (5.5)

By a direct calculation one can show that the probabilities appearing in (5.1) are
as follows, p1i (1 − p2i )/ϕi = exp(XT

i β1)/Ki ; (1 − p1i )p2i/ϕi = exp(XT
i β2)/Ki ;

and p1i p2i/ϕi = exp(XT
i β1 + XT

i β2)/Ki , where

Ki = exp
(
XT

i β1
)+ exp

(
XT

i β2
)+ exp

(
XT

i β1 + XT
i β2

)
. (5.6)

We see that model (5.1) belongs to an exponential family. It is also a generalized
linear model, so its parameters can be estimated using the methods of Section 1.
Details of the ML-estimation of β j ’s are given in Alho (1990b).

Once the MLE’s of β j ’s have been obtained, we get MLE’s of ϕi ’s. Using these
we can define a Horvitz-Thompson type estimator for N,

N̂ =
N∑

i=1

Mi/ϕ̂i . (5.7)

The rationale for (5.7) is that E[Mi ] = ϕi , and if the error in ϕ̂i is negligible, (5.7)
is nearly unbiased. We emphasize that only those individuals contribute to the sum

11 In Section 4.1 of Chapter 3 we discussed a similar bias arising from the correlation of
sampling probabilities and the variable of interest. In Section 5.6 of Chapter 10 we will
consider the estimation of correlation bias in a post enumeration survey.
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that have Mi = 1, and covariates Xi are needed only for them. It is shown in Alho
(1990b) that (5.7) reduces to the classical estimator given in Section 6 of Chapter
2, if the population is homogeneous.

Example 5.1. Heterogeneity in Reporting of Occupational Disease. In Example
6.1 of Chapter 2 we pointed out that under reporting of occupational diseases
depended heavily on diagnosis in Finland in 1980. The methods outlined above
were used to study whether the probability of reporting depended on other char-
acteristics, such as age (Alho 1990b). A significant effect was found for insurance
companies’ reporting of noise-induced hearing loss: the older the patient the more
likely the case was reported. Presumably the cases for older workers were more
severe. Interestingly, age did not have an influence on the reports through the other
information channel, so there was no correlation bias (a constant is uncorrelated
with everything!) and the estimate for the total number of cases did not change. ♦

Example 5.2. Heterogeneity in Census Enumeration Probabilities. In an analysis
of the 1990 U.S. census data Alho et al. (1993) applied the conditional regression
techniques to the minority, central city post-strata in various parts of the country.
(A post-stratum is defined as a set of enumerations with specified values of the
covariates Xi ; see Chapter 10, Section 5.2.) Comparison of the characteristics of
those hard-to-enumerate (i.e., those individuals with estimated enumeration prob-
ability < 75%) to the rest of the post-stratum showed that the hard-to-enumerate
typically were young, black, unmarried renters, who lived among similar neigh-
bors in an area of high vacancy and multi-unit housing rates. In many cases the
information concerning them had been reported by an unrelated person. ♦

An alternative and somewhat simpler approach can also be considered. The
local independence assumption p12i = p1i p2i means that p1i = P(mi = 1|n2i =
1), and hence we can use ordinary logistic regression to estimate p1i from data on
those individuals who were captured in the second survey (n2i = 1). Instead of the
estimator (5.7), we can then use

N̂ =
N∑

i=1

n1i/ p̂1i . (5.8)

The estimator (5.8) will be less efficient than (5.7). In certain contexts, such as the
first capture being enumeration in the census and the second capture enumeration
in a far smaller survey, the loss in efficiency may be unimportant compared to the
gain from simplicity.

Estimators (5.7) and (5.8) may be used to provide estimates for subgroups (or
domains or small areas), say, G. The idea is to restrict the summation in (5.7)
or (5.8) to i ∈ G. In census applications (5.8) is especially useful, because p1i is
estimated from a sample, but the estimation of the size of G can be based on the
more precise census count via (5.8).

A methodological issue one has to consider in the application of (5.7) or (5.8)
is that in practice the population being studied may not be closed. Individuals
may enter or exit between the two captures. As discussed by Alho et al. (1993),
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it may still be possible to carry out estimation based on (5.1) and (5.2), using the
following principles: (i) define N as the population of the, say, first capture; (ii)
exclude from the second capture all those who were not present in the area during
the first capture; (iii) define the second capture probability as referring to both
being captured and being in the area. If the logistic model (5.5) still applies, the
estimators given by (5.7) or (5.8) will still be approximately unbiased, although
variance may be increased. The degree to which (5.5) holds for j = 2 now depends
on how well the logistic regression explains not only capture but non-movement.

Above we have assumed that the data are without other errors, besides the
enumeration errors being discussed. As discussed in Chapter 10, this can be far
from reality!

6. Bilinear Models

All models considered thus far have been linear (in the chosen scale). The simplest
nonlinear extension is based on conditional linearity in a sense to be explained
below. The models are closely related to factor analysis.

Consider a two-way table consisting of I rows and J columns with counts Yi j

in the i th row and j th column; this is called a (two-dimensional) contingency table.
As discussed in Section 3.4 such data can arise from a Poisson model for the
counts; from a multinomial model, if we condition on the total Y·· = �i j Yi j ; and it
can arise from a (multivariate) hypergeometric model, if we condition on the row
totals Yi · = � j Yi j , i = 1, . . . , I, and the column totals Y· j = �i Yi j , j = 1, . . . , J.

In fact, it can also arise from I independent multinomials, if we condition on the
row totals only, or from J independent multinomials if we condition on the column
totals.

In any case, define E[Yi j ] = λi j and consider loglinear models for the expec-
tations. Under the main effects model we can write log(λi j ) = µ + αi + β j . In
this case we have that λi j = exp(µ)exp(αi )exp(β j ), so the row and column effects
multiply. For identifiability, we may apply suitable “analysis of variance type”
identifiability conditions �iαi = 0 = � jβ j . Conditioning on Y·· and considering
the Y·· realizations to be mutually independent, we can consider the probability of
the observation falling into cell (i, j). The probability is λi j/λ·· = exp(αi )exp(β j )/
�i j exp(αi + β j ), so the row and column effects are independent under the main
effects model. In fact, the probability of falling into row i is λi ·/λ·· = exp(αi )/
�i exp(αi ) and the probability of falling into column j is λ· j/λ·· = exp(β j )/
� j exp(β j ), under the main effects model.

As noted earlier, including all interaction terms we would have log(λi j ) = µ +
αi + β j + γi j , where � jγi j = 0 for each i = 1, . . . , I , and �iγi j = 0 for each
j = 1, . . . , J. This permits arbitrary patterns of interdependence between rows
and columns. Unfortunately, the model would be saturated and would not really
add to our understanding of the possible dependencies. In case there is a natural
ordering in the categories (as in the case when i is age and j is time), then models
of the type log(λi j ) = µ + αi + β j + γ × ij , where γ is a scalar parameter to be
estimated, and i and j are treated as integers, might be valuable in the study of
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the possible association of the row and column factors. However, there are many
interesting categorical variables for which no such ordering exists. For example,
marital status (never married, married, divorced, widowed), race, or region cannot
be easily thought of in such terms.

A possible intermediate formulation is the so-called association model of Good-
man (1991),

log(λi j ) = µ + αi + β j + ϕνiη j , (6.1)

where ϕ > 0, and the row scores satisfy the conditions �iνi = 0 and �iν
2
i = 1

and column scores satisfy the conditions � jη j = 0 and � jη
2
j = 1. This is a log-

bilinear model, because given the parameters that depend on i , the model is linear
in the parameters that depend on j ; and given the parameters that depend on j , it is
linear in the parameters that depend on I . We will call the model bilinear, for short.
The model adds 1 + (I − 2) + (J − 2) = I + J − 3 new parameters after the
main effects. The model with full interactions adds (I − 1)(J − 1), or the number
of degrees of freedom of the usual χ2-statistic for testing the independence of the
columns and the rows. The model with known integer scores adds only 1 degree of
freedom. Therefore, the bilinear association model can be a useful compromise.

The reason the parameters νi (and η j ) may be called “scores” (not to be confused
with the scores of Section 3 of Chapter 1!) is that they can be used to quantify
the distance between the otherwise categorical rows (columns) of the contingency
table. If two rows have similar values of vi , their dependence on the columns is
similar. In this manner, the rows can be ordered on a line, and presented graphically
(cf., Goodman 1991). The distance between rows i and i ′ is |νi − νi ′ |, and we order
the rows based on their estimated ν values.

The association model can similarly be formulated for the general Poisson re-
gression. Suppose that Yi j ∼ Po(λi j Ki j ) is the number of deaths in age i during
year j , where Ki j is the number of person years lived in age i during year j , and
λi j is the age-specific death rate. Then, (6.1) defines an association model for the
mortality counts.

Example 6.1. Lee-Carter Model for Mortality. If we set β j ≡ 0 and fix µ + αi to
equal the average of the log-mortality rates during j = 1, . . . , J, (6.1) essentially
becomes the model proposed by Lee and Carter (1992) for the forecasting of the
U.S. age-specific mortality. Eklund (1995) investigated the approach of Lee and
Carter with Finnish male and female mortality data for ages 65, 66, . . . , 99 for the
years 1972-1989. The data show quite a bit of random variability in the highest ages
due to the small number of deaths. One consequence of this is that the estimated
model produces non-monotone period mortality patterns in ages over 90. This
suggests that in some circumstances either smoothing, or some further constraint
on the model parameters, may be desirable. Girosi and King (2003) have come to
a similar conclusion using a much larger data set. ♦

The model (6.1) can be generalized further. For example, we can have two sets
of scores so that

log(λi j ) = µ + αi + β j + ϕ1νi1η j1 + ϕ2νi2η j2, (6.2)
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where both scores are similarly normalized as in (6.1), and furthermore
�iν1iν2i = 0 and � jη1 jη2 j = 0. Therefore, the number of new parameters in-
troduced is I + J − 5. Extension to higher order scores is immediate.

In the case of the higher order methods the parameters ϕ1 > ϕ2 > · · · > 0 mea-
sure the importance of the scores in explaining the deviations of from independence
of the rows and the columns. As in ordinary factor analysis, a choice has to be
made, in practice, as to how many terms are included in the model. Methods for
making such a choice on statistical grounds are given in Goodman (1991) for the
contingency table case. In general, it is also useful to consider the interpretation
of the resulting scores. If no sensible interpretation can be given, one may be
overfitting the data.

Models of this general type appear to have been introduced in demography by
Ledermann and Breas (1959) and further developed by Bozik and Bell (1989) and
Bell (1992). The approach of Lee and Carter is particularly elegant, because after
subtracting the mean of the series it uses just a one-dimensional approximation to
describe differences from the mean.

We discuss two approaches to the numerical solution of bilinear models. Sup-
pose first, for definiteness, that we have observed mortality rates mx,t for ages
x = 0, 1, . . . , ω and years t = 1, . . . , T . Define an (ω + 1) × T matrix L with
the (x, t) element equal to log(mx,t ). We can make the so-called singular value
decomposition (cf., Rao 1973, 42–43) L = UΓVT , where Γ is a diagonal matrix of
dimension min{ω + 1, T } that has the nonnegative values γi in decreasing order
and VT V = UT U = I, where I is an identity matrix of dimension min{ω + 1, T }.
Let r denote the rank of L. The first r diagonal elements of � are called the singular
values of L and are the square roots of the eigenvalues of LLT . (Eigenvalues are
discussed in more detail in Chapter 6, Section 2.2.) The i th column vectors of U
and V, Ui and Vi , are called the right and left singular vectors corresponding to
γi . We have a one dimensional approximation L ≈ γ1U1VT

1 . Here U1 represents
the average relative level of mortality by age. Then, the vector γ1VT

1 tells us the
approximate level of log-mortality during years t = 1, . . . , T . A two-dimensional
approximation is of the form L ≈ γ1U1VT

1 + γ2U2VT
2 . One can prove that the

approximations mentioned above are the best one and two dimensional approxi-
mations to the log-mortality rates, under the least squares criterion (e.g., Greenacre
1984, 343-344). Unfortunately, the assumption of homogeneous variances under-
lying OLS is not satisfied in the Poisson setting.

The second approach relies on maximum likelihood. Many bilinear association
models for exponential family observations can be fitted with standard software,
such as GLIM, by starting out from the main effects model and, e.g., the assumption
that the column scores are proportional to j . Fixing the β j ’s, all parameters that
depend on i can be re-estimated, and normalized (for simplicity, one can absorb
ϕ into νi ’s and not require that their squares sum to 1). Then, one can fix the
parameters that depend on i , re-estimate those that depend on j , and normalize
the estimates to satisfy the constraints. However, specialized software for handling
some of these models have also been written. For example, LEM (cf., Vermunt
1997a, 1997b) can handle a wide class under a Poisson assumption. In that program
bilinear models are called “log-multiplicative”.
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Independently of how the likelihood equations are solved it is useful to note
that unlike the SVD based approach, these calculations do not require that we
have observations for all ages for all years of observation. Similarly, the standard
properties of the MLE’s carry over to this case under regularity conditions (e.g.,
that the ϕ’s are non-zero and separated).

Example 6.2. Mortality Among Elderly. To illustrate models (6.1) and (6.2), let
Yxts ∼ Po(λxts Kxts) be the number of deaths in age x = 81, 82, . . . , 101 during
year t = 1991, . . . , 1994 for sex s = M, F, in Finland. Although separate models
could be fitted for the two sexes, a potentially more reliable estimate of time trends
is obtained if the age-effects αxs depend on s but the year-effects βt do not. In
the same vein, we assumed that the association model has the same effects for
males and females. The log-likelihood of the larger model (6.2) was −1153039.4
and that of the smaller model (6.1) was −1153064.1. Therefore, the likelihood
ratio test statistic was 2(−115039.4 + 1153064.1) = 49.4. The larger model has
20 + 14 − 5 = 29 additional free parameters. Based on the χ2 distribution with
29 degrees of freedom, we find the P-value 0.01. ♦

As in the one-dimensional case, under (6.2) one can use graphical displays to
characterize the locations of the rows with respect to each other. A two-dimensional
plot of the points (ϕ1vi1, ϕ2vi2), i = 1, . . . , I, can characterize the way different
rows depend on the columns. The plot shows how close the rows are in the space
spanned by the vectors (η11, . . . , ηJ1) and (η12, . . . , ηJ2). Note that the two vectors
form an orthonormal basis of a 2-dimensional subspace of R

J , the space in which
the rows lie. The plot of the points (vi1, vi2), i = 1, . . . , I, gives similar compara-
tive information, but does not take into account the relative importance of the two
sets of scores (cf., Goodman 1991).

In many applications neither the row categories nor the column categories are of
a dominant interest. In this case, plots of (ϕ1ηj1, ϕ2ηj2), j = 1, . . . , J, can also be
made to compare, how columns differ in their association with rows, in the space
spanned by the orthonormal vectors (ν11, . . . , νI 1) and (ν12, . . . , νI 2).

A final, and slightly controversial question relating to plotting (cf., the discussion
of the paper Goodman 1991), concerns the simultaneous description of rows and
columns. Define the points v i = (νi1, νi2)T , i = 1, . . . , I,η j = (η j1, η j2)T , j =
1, . . . , J, and the matrix ϕ = diag(ϕ1, ϕ2). We see from (6.2) that if vT

i ϕηj

is large, in absolute value, then row i and column j produce a large deviation
from independence in the table. This is an inner product, but weighted with ϕ.
A seemingly reasonable way the represent such data would be to plot the points
ϕ1/2v i , i = 1, . . . , I, and the pointsϕ1/2η j , j = 1, . . . , J into the same plot. Such
plots are examples of the so-called biplots (cf., Gower and Hand 1996). Note, in
particular, that if one simply plots the points v i and η j , then the angle between the
points is not necessarily related to the inner product of interest. We will illustrate
the scores in connection with migration modeling, in Chapter 6.

The discussion we have given is closely related to correspondence analysis
(e.g., Greenacre 1984). The starting point there is a contingency table with counts
Yi j . It is first transformed into empirical probabilities pi j = Yi j/Y··, and they are
normalized to deviations of the form di j = (pi j − pi · p· j )/(pi · p· j )1/2. Note that
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the sum of the squared normalized deviations d2
i j is then the usual χ2-statistic

divided by Y··. Therefore, the deviations also characterize how the assumption
of independence between rows and columns might not hold. A singular value
decomposition is carried out for the matrix of the deviations D = (di j ). If one retains
the first two singular values, one gets formally a bilinear representation of the form
(pi j − pi · p· j )/(pi · p· j )1/2 ≈ vT

i ϕηj , so similar plots as those described above can
be made. A practical advantage of the correspondence analysis formulation is
that software for simple correspondence analysis are available in several general
purpose statistical packages, such as Minitab.

7. Proportional Hazards Models for Survival

Poisson regression provides a basic tool for the analysis of aggregated demographic
data. However, when individual event histories are available, the information can
be handled more efficiently by concentrating on individual waiting times, and
their determinants. We will call the smaller of waiting time and censoring time a
withdrawal time.

Cox (1972) introduced a semiparametric regression model for the hazard func-
tion. Suppose the survival function of an individual is given by (2.4)–(2.5) of
Chapter 4 with hazard of the form

µ(t, X) = µ0(t)g(XTβ), (7.1)

where g(.) > 0 is an increasing function with g(0) = 1, X is a vector of covariates,
and β is a vector of regression parameters to be estimated. Since µ(t, 0) = µ0(t),
the function µ0(.) can be viewed as a baseline hazard. The equation (7.1) defines a
proportional hazards model, because time t and covariates X act multiplicatively
on the hazard. In the so-called Cox regression we take g(.) = exp(.). The model is
semiparametric, because no parametric assumptions are made about the baseline
hazard, but relative risk is represented parametrically.

Example 7.1. A Simple Example of Cox Regression. Consider an epidemiologic
study of the survival of two internally homogeneous groups, those who are exposed
(X = 1) and those who are not exposed (X = 0). Assume a Cox regression model,
so for the exposed we have g(Xβ) = exp(β) and for the non-exposed we have
g(Xβ) = 1. Then the relative risk is simply exp(β). ♦

Although many aspects of ordinary linear regression, logistic regression, and
Poisson regression carry over to (7.1) as such, there are some special aspects that
need to be observed when modeling survival times via (7.1). Suppose T(1) < · · ·
< T(n) are ordered withdrawal times of a cohort of n individuals and let X (i) denote
the covariate vector of the individual who was the i th withdrawal. Let R(i) be the set
of those who were at risk just prior to the i th withdrawal. Hence, R(1) = {1, . . . , n},
and if i = 2 is the first to withdraw, then R(2) = {1, 3, . . . , n}, for example. Suppose
the i th withdrawal is a death. Consider the probability that the individual to die then
is exactly the one who did, given that we know who were at risk just prior to T(i) and
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that exactly one individual died during [T(i), T(i) + h). Recall the definition of haz-
ard in Section 2.1 of Chapter 4. Using those notations we can write the probability as

(µ(T(i), X(i))h + o(h))
∏

j∈R(i+1)

(1 − µ(T(i), X j )h − o(h))

∑
k∈R(i)

(µ(T(i), Xk)h + o(h))
∏

j∈R(i)\{k}
(1 − µ(T(i), X j )h − o(h))

, (7.2)

where if i = n the product in the numerator equals 1. In the denominator R(i)\{k}
is the set of those at risk just before T(i) but excluding k. Although (7.2) looks
complicated, let us divide both the numerator and the denominator by h and then
let h ↓ 0. This gives us the limit

µ(T(i), X(i))∑
k∈R(i)

µ(T(i), Xk)
. (7.3)

Under the proportional hazards model (7.1), we can go one step further and
simplify (7.3) by canceling the baseline risks for the i th death,

L (i)(β) = g
(
XT

(i)β
)

∑
k∈R(i)

g
(
XT

k β
) . (7.4)

A similar probability can formally be written for the censored individuals but we
want to exclude those terms from estimation. Define δ(i) = 0 if the i th withdrawal
was a censoring and δ(i) = 1 otherwise. The part of the likelihood involving only
non-censored individuals and not their exact times of withdrawal is

L(β) =
n∏

i=1

L (i)(β)δ(i) . (7.5)

Example 7.2. A Simple Example of Cox Regression with Censoring. Continuing
Example 7.1, let us suppose that just prior to the i th withdrawal there were n1i

exposed individuals and n0i non-exposed individuals present in the cohort. Then,
the loglikelihood corresponding to (7.5) is of the form

�(β) =
n∑

i=1

δ(i)[X (i)β − log(n1i exp(β) + n0i )], (7.6)

where X (i) = 1 if the i th withdrawn person was exposed, and X (i) = 0 otherwise. ♦
A number of remarks about Cox regression are in order.

(1) The likelihood (7.5) belongs to an exponential family, so the theory of Section
1 applies. However, the numerical implementation requires additional consid-
erations (McCullagh and Nelder 1989, 429).

(2) Since the baseline terms cancel, only relative risks can be studied via (7.5).
(3) Mechanisms related to censoring have been stripped away from (7.5). There-

fore, this likelihood is called a partial likelihood (cf., Cox 1975).
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(4) Since the baseline hazard cancels, the exact times of the withdrawals are not
relevant in estimation, only their order is.

(5) On the other hand, no aspect of the above derivation would change, if we
would let the covariate vectors be functions of time, or X(k) = X(k)(t). The
covariates are evaluated at the times of withdrawals. In this case, as in (3),
a description of the processes that produced changes in the covariates is not
included in (7.5). This is an additional reason for calling it a partial likelihood.
Apart from technicalities, an important thing in the extension is the choice of
covariates in the model. For example, if A influences both B and the hazard,
but B has no influence on survival, then including only B in regression may
lead to an erroneous conclusion that it does. For another example, suppose that
A influences B and B influences the hazard. A may or may not have a direct
influence. Then including both A and B into the model may mask (the possibly
more fundamental role) of A in the process (e.g., Andersen 1986). Example
7.4, below, provides further discussion.

(6) If the covariates X are fixed in (7.1), then the reasoning behind (2.4) in Chapter
4 implies that the survival function p(t, X) ≡ P(lifetime for individual with
covariate X is > t) satisfies the equation − log p(t, X) = log(p(t, 0))g(XTβ).
Therefore, we have that log(− log p(t, X)) = log(− log p(t, 0)) + log g(XTβ).
In other words, the curves t → log(− log p(t, X)) are equidistant for differ-
ent X. This provides a possible way to check the appropriateness of the pro-
portional hazards assumption, if some estimates of the survival curves (e.g.,
Kaplan-Meier) are available for the functions p(., X). We caution that there
are many applications in which the assumption of proportionality is not valid
(e.g., Example 1.4 of Chapter 6). Fully nonparametric models (e.g., Section
1.4 of Chapter 6) may then be used to estimate the hazards.

(7) Although the baseline risk disappeared from (7.5), it is possible to estimate
the baseline risk, once the regression parameters have been estimated. Breslow
(1974) proposed a procedure based on the cumulative hazard (2.5) of Chapter 4.
Recall the definition of the hazard in terms of probabilities in (2.1) of Chapter 4.
In analogy with the derivation of the Nelson-Aalen estimator (2.20) in Chapter
4, we can equate the expected number of deaths with the observed number in
the interval [T(i), T(i) + h) to get the equation

1 =
T(i)+h∫
T(i)

µ0(t)dt
∑

k∈R(i)

g
(
XT

k β̂
)
, (7.7)

where we have taken the sum outside the integral sign. We can solve (7.7)
for the integral on the right hand side. A similar equation can be written for
intervals of length h that contain no deaths. For such intervals the left hand
side would be zero, and the resulting estimate of the integral would be zero, as
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well. Putting together such estimates for a fine enough partition of the interval
[0, x] yields the following estimator,

x∫
0

µ0(t)dt ≈
∑

T(i)≤x

δ(i)∑
k∈R(i)

g
(
XT

k β̂
) . (7.8)

(8) Finally, tied survival times are possible. This complicates both the argument
and the result corresponding to (7.4). In practice, approximations are used to
replace the resulting complicated likelihood by a simpler one (Cox and Oakes,
1984), although methods for efficiently computing the exact likelihood are
becoming available. In formula (7.8) tied observations lead to replacing the 1’s
(i.e., δ(i) = 1) in the numerator by the numbers of deaths.

Example 7.3. Changes in Mortality of the Habsburgs. A question of interest in
connection with the Habsburgs’ data is the possible change in the longevity of
the members of the privileged family. Did mortality change over the centuries and
did gender matter? Since the study population follows the throne, it is selective.
One expects better than average survival among the members. On the other hand,
excluding the person who passed on the crown to his/her children might bias the
sample the other way. In situations like this it is frequently the best to carry out the
analyses both ways to see, if the results change. In addition, the age at death is not
accurately recorded for all children who have “died young”. We consider the effect
of excluding those who did not survive to age 2. The data set contained the life times
of 175 individuals, and for 165 sex was known. The latter form our basic data set.

It is not clear how – if at all – mortality might have changed over the years,
so time-period indicators for the birth centuries 13th through 19th were used in
regression as explanatory variables. In addition, an indicator variable for sex was
used. The coefficient for being male (standard error in parenthesis) was for (a)
the complete data −0.02 (0.16), (b) the data omitting progenitors 0.19 (0.18), (c)
among those who survived to age 2, −0.10 (0.18), and (d) among non-progenitors
who survived to age 2, 0.065 (0.21). Although the sex effect is not significant in
any of the cases, we see that including progenitors probably biases the sample by
exaggerating chances of male survival.

Under data set (c) none of the period indicators are significant. However, under
data sets (a), (b) and (d) the indicator of the 19th century is, indicating a lower
hazard during that period. Defining an indicator for the 19th century alone we get
the following estimates for its coefficient using the four data sets, (a) −0.76 (0.29),
(b) −0.87 (0.34), (c) −0.75 (0.30), (d) −0.89 (0.36). All results are significant.
We conclude that mortality did appear to decline during the 19th century, but no
progress appears to have been made during the previous six centuries. Results on
the effect of sex do not materially change. Given that we have found no evidence
of under reporting of females in the data, the conclusion is that the difference
between the mortality of males and females has been too small to be detectable in
the available data. For additional discussion, see McKeown (1976). ♦
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Example 7.4. Time-Varying Covariates. Consider the effect of smoking on cancer
risk. In a follow-up study one might want to construct a time-varying covariate
X (t) to quantify the amount of smoking. A possible representation is

X (t) =
t∫

0

wt (s)A(s) ds, (7.9)

where A(s) is, say, the number of cigarettes per day at time s, and wt (s) is some
weight function. Taking wt (s) ≡ 1 implies that the total ever smoked is the relevant
risk measure; taking wt (s) = e−α(t−s), α > 0, says the most recent smoking is the
most relevant; taking wt (s) = 1[0,t−a](s) implies there is a latency period of length
a > 0, so that the most recent smoking should not be counted etc. Summarizing
the risk history is quite demanding in practice (cf., Hoel 1985). The problem
also arises in controlled experiments such as the long-term rodent experiments on
carcinogenicity (e.g., Crouch and Wilson 1981, 108). ♦
Example 7.5. Likelihood for Matched Studies. Somewhat surprisingly, the likeli-
hood used in matched studies is formally equivalent to (7.4). Suppose the probabil-
ity of person k falling ill is of a logistic form exp(XT

k β)/(1+ exp(XT
k β)). Suppose

one case i is matched to a set of controls. Together they form a set of individuals
that we denote R(i). Thus, the controls form the set R(i)\{i}. Then, the conditional
probability that the person to have fallen ill among those in R(i) is the one that did,
is given by (7.4), when g(.) = exp(.). A similar result holds for matched cohort
studies, as well. This is the so-called conditional logistic regression model. Epi-
demiologic data sets, such as the lung cancer study described in Example 5.2 of
Chapter 2, would nowadays be analyzed using such methods. ♦

8. Heterogeneity and Selection by Survival

Consider a simple random sample from a homogeneous cohort. We expect that,
within sampling variation, the sample will display similar features as the original
cohort. This intuition may fail in some demographic contexts if the sampling
mechanism has something to do with the measure being studied. We will discuss
two examples in which the sampling mechanism is simply survival and the measure
of interest is life expectancy or the hazard.

Suppose a sample is drawn by picking all those members of the cohort who
survive to age t > 0. At birth all members of the cohort have a life expectancy
E[X ] defined by formula (2.7) of Chapter 4. The life expectancy of the sampled
individuals is E[X |X ≥ t]. It is a simple matter to prove that

E[X |X ≥ t] ≥ E[X ]. (8.1)

In other words, the sampled individuals always have a higher life expectancy than
those of the original cohort. Recall that in Example 1.1 of Chapter 4 we have
shown that in the case of the exponential distribution the left hand side of (8.1) is
t + E[X ], for example.
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In actual populations consisting of individuals with differing probabilities of
survival the method of selection by survival would not produce a simple random
sample. Those with higher probabilities of survival would have a higher probabil-
ities of being included than those with lower probabilities of survival. Therefore,
the inequality (8.1) would hold with even greater force. However, it is important
to understand that if we observe (8.1) to hold empirically for some cohort, then
we cannot conclude that the individuals who have survived to age t > 0 are neces-
sarily “hardier” or “more fit” than those who do not. They may simply have been
lucky!

In some situations the effect of selection by survival can be more subtle. The
introduction to the book by Bienen and Van de Walle (1991, 9) on leadership du-
ration (= X ) describes a theoretical model and empirical findings. The theoretical
model is that

“leaders take a “random walk” through history. A hypothesis that leaders face constant risks
of falling from power could be put forward. Perhaps leaders stand at the edge of a precipice,
which is loss of power. They must initially take a step to the right or the left. The step could
be expressed as policy or personnel choices. If they go the wrong way, they topple. But if,
by chance, their moves take them three steps away from the edge of the cliff, then they can
survive an exogenous shock, say falling commodity prices, which pushes them only one
step back towards the cliff. Leaders are eliminated randomly over time, but a few survive for
long periods through no particular merit of their own. This is not a completely implausible
theory of leadership survival. It will be shown, however, that the risks of falling from power
are not constant but they decline as leaders remain longer in power.”

An important empirical finding is that the risk of losing power peaks in the first
years in power and decreases thereafter. This leads us to back to the “randomness
or predestination” discussion of Section 2.4 of Chapter 4: is the finding a result of
different initial characteristics of the leaders, so that the frail ones fall from power
early and leave the stronger to stay longer, or does staying in power increase a
leader’s power and make longer duration more likely, or both?

It is shown in Spencer (1997a) that the random walk model is actually consistent
with the empirical findings (at least as they are simplistically summarized here).
This shows that the findings can be supported by the hypothesis that differences
in innate characteristics of leaders do not matter. While it is quite plausible that
differences in innate characteristics do matter, such a hypothesis is not necessary
to explain the empirical results if one believes the random walk model is a useful
characterization of leadership duration.

Intuitively the result can be understood as follows. Suppose a leader starts from
point 0, and advances one step up or down at each epoch depending on the success
of his/her actions. Positive rewards can be accumulated without limit, so the leader
may advance upwards without limit. However, suppose there is some lower limit
r < 0, such that if the random walk reaches r , the leader falls from power. The
hazard of falling from power during any epoch n is defined as µ(n) = P(falls from
power during epoch n| has not fallen from power before n). This is the discrete
time version of (2.1) of Chapter 4 with x = n, h = 1, and o(h) = 0. Now, the
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leader has zero probability of falling during the first r − 1 epochs. After that the
probability of falling becomes positive and it may increase for a while. However,
among the leaders who have survived for a long time only a few are close to r , the
less so the larger n. Therefore, the hazard will eventually decrease.12 The details of
the calculations are given in Spencer (1997a) and Carvalho and Spencer (2001).13

In the leadership example, many of those who have managed to survive have been
lucky many times. Although each leader has initially the same chance to survive
to any epoch n, the ones who actually do have become heterogeneous with respect
to their probability of falling from power. Under this model luck may accumulate!

9. Estimation of Population Density

Up to this point we have thought of events as indexed by age or time. Logically,
they can also be indexed by place of occurrence. All difficulties one encounters in
time domain appear in this case. However, new problems are created by the fact
that, unlike time, points in space do not have a unique natural ordering.

Variations in population density or in population characteristics across geo-
graphic locations belong to the domain of geographers. A specialized statistical
literature addressing such issues has developed (e.g., Griffith 1988). Especially
since the introduction of GIS (geographic information systems), one can expect
that micro demographers will increasingly become interested in spatial aspects of
population data. A sophisticated statistical theory involving spatially mapped data
is being developed (e.g., Ripley 1981, Diggle 1983, Cressie 1993, Ghosh and Rao
1994, Wackernagel 1998) that cannot be done justice here. We will briefly consider
population density.

From a spatial perspective, a population of size N can be viewed as a collection
of points xi = (x1i , x2i ) ∈ R

2, i = 1, . . . , N , on a plane. A set14 A ⊂ R
2 can then

be characterized by the number of points n(A) it contains. For example, suppose
a country is partitioned into municipalities A j = 1, . . . , J. Then, n(A j ) would be
the population size of the municipality. Suppose d(A j ) is the area of the set A j .
Then the average population density of A j is the ratio n(A j )/d(A j ).

More generally, let us think of a changing population that is depleted by
deaths, increased by births, and subject to migration. Then the population size

12 Strictly speaking, in the most elementary random walk model we have described here, the
leader can topple only during every other epoch. For example at epoch n = r the smallest
possible values of the process are r + 2 and r , so a survivor who is at r + 2 when n = r
cannot topple at n = r + 1. This artificial aspect can be eliminated by permitting the process
not to move during an epoch, or by considering jumps with continuous distributions, for
example.
13 Although parametric distributions including inverse Gaussian distributions exhibit non-
monotonic hazard functions, generalized linear models based on such distributions did not
give a better fit to the data than Bienen and Van de Walle obtained with Cox regression.
14 More precisely, a Borel set, i.e., a set that can be obtained from rectangles by countable
unions and intersections.
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at any given time can be viewed as a realized value of a random process. In
fact, one may often assume that for any partition into disjoint subsets, the counts
n(A j ) ∼ Po(λ(Aj )d(Aj )), where λ(Aj ) is the expected density of area A j , are inde-
pendent. In this case, one speaks of a spatial Poisson process,15 and the MLE of the
average population density is λ̂(Aj ) = n(Aj )/d(Aj ). Such estimates may have high
sampling variability, so smoother estimates may be desired. Suppose the center of
A j is at z j = (z1 j , z2 j ). We might then have a 1st degree polynomial model for the
density, log λ(A j ) = β0 + β1z1 j + β2z2 j . A 2nd degree polynomial surface would
be of the form log λ(A j ) = β0 + β1z1 j + β2z2 j + β3z2

1 j + β4z2
2 j + β5z1 j z2 j , etc.

The parameters of the models can be estimated using Poisson regression, as de-
scribed in Section 3.

A potential defect of the regression formulation is that the density may not
change in as regular a manner as the simple polynomial, or other parametric, models
assume. If individual level data are available, nonparametric methods provide
feasible alternatives. Suppose the expected population of A is given by an intensity
function λ(x) ≥ 0 for x ∈ R

2. Then, the expected count is of the form

E[n(A)] =
∫
A

λ(x) dx, (9.1)

for a set A ⊂ R
2. Suppose the points xi come from a region B with d(B) finite. In

kernel estimation one chooses a symmetric kernel function κh(.) ≥ 0 that integrates
to 1 and has a smoothing parameter h > 0. For any point x ∈ R

2, one estimates
(cf., Cressie 1993, 600)

λ̃(x) =
N∑

i=1

κh(x − xi )/d(B). (9.2)

For any x, one or more of the N kernels may spread mass outside B. Apart from
these “edge effects”, the integral of (9.2) over x ∈ B, would equal N/d(B), as it
should. By far the most popular choice for a kernel function is the Gaussian kernel
κh(y1, y2) = exp(−(y2

1 + y2
2 )/2h2)/2πh. We see that for small values of h the

points nearest to x are primarily relevant in estimation. If h is increased, the points
further away make increasingly a contribution. A data dependent choice of the
smoothing parameter h can be made using cross-validation (cf., Wahba and Wold
1975, Härdle 1990, Green and Silverman 1994). We will illustrate the method in
Section 1.4 of Chapter 6.

Note that the right hand side of (9.1) is a spatial analogue of the cumulative
intensity ((4.3) of Chapter 4) of a birth process that depends on a two-dimensional
location x rather than a one-dimensional age x . This shows that a kernel estimator
similar to (9.2) is also available to the nonparametric estimation of age-specific
fertility. In fact, most demographic rates can be similarly handled.

15 The term Poisson random measure is also used, since n(A) is a measure of the size of A,
and it takes a random value for each set A.
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The spatial Poisson process is a model of spatial randomness in the sense that if
n(B) = N is given, then the points xi , i = 1, . . . , N , can be viewed as a random
sample from a distribution with density λ(x)/ ∫B λ(x) dx on B. In the case of
constant intensity λ(x) ≡ λ, the density is uniform, and one speaks of complete
spatial randomness (e.g., Diggle 1983, 32). Complex patterns of deviations from
randomness may occur in a spatial setting. In the so-called Cox processes the
intensity λ(x) is a realization of a random process much like the random effects
in Section 4.3. They can serve as models for disease outbreaks, for example. The
so-called Neyman-Scott process is generated by a mechanism that first samples
“mother points” from a Poisson process and then distributes points around them
according to some probability density. This might correspond to housing patterns
in some societies. Spatial interaction processes may display inhibition in which
a point may outright exclude other points in its neighborhood, or at least make
them improbable (cf., Diggle 1983, Chapter 4). Explanatory variables may be
included into the density of such a process, in addition to the distance between the
points. Such processes may well have applications in enterprise demography for
example.

A natural way to understand spatial interaction processes, is in terms of the
conditional distribution of the location of a single point, given the locations of all
other points. Moreover, in regression analyses of other population characteristics
that can be mapped, such as income of families, or crime rates of cities, the so-called
conditional autoregressive models (Whittle 1954) are often used. These models
are also formulated conditionally, by specifying the conditional distribution of
the characteristic at one location given the values of the same characteristic in
all other locations. Such conditional distributions are the foundation of Gibbs
sampling mentioned in Section 4.

10. Simulation of the Regression Models

The basic principles of simulating counts were discussed in Chapter 4. Only minor
additional considerations are needed to apply those techniques to the regression
settings. Consider logistic regression first with Yxt ∼ Bin(nxt , q(x, t)). Knowing
how to simulate a single binomial count as a sum of nxt independent Bernoulli
variables with probability of success q(x, t) is all we need. If q(x, t) is defined
by (2.1), for example, then the only additional programming task is to recalculate
q(x, t) for each x and t . Poisson regression can be handled exactly the same way.
For large expected counts we may want to resort to special methods not discussed
in Chapter 4.

The random effects model requires one additional layer of computation. Suppose
the random effects ε are independent for different values of t , with ε(t) ∼ N (0, σ 2).
Then, we would first generate an effect from N (0, σ 2) for each t , add them to the
fixed (nonrandom) part of the canonical parameter, and generate the Poisson count
after that. Possibly the most widely used method of generating normal random
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variables is the so-called Box-Muller method and its various refinements (Ripley
1987, 54; Press et al. 1992, 289). In its classical form the method generates a pair
of independent standard normal variables via the following steps:

(1) Generate two independent uniformly distributed variables U1 and U2;
(2) Set angle � = 2πU1 and an independent radius R = (−2log(U2))1/2;
(3) Get two independent standard normals X1 = Rcos(�) and X2 = Rsin(�).

The formal proof that this actually produces the desired standard normals is a some-
what tedious exercise in multivariate calculus. However, note that conditionally on
R the pair (X1, X2) is uniformly distributed on a circle with radius R. Therefore,
X1 and X2 are uncorrelated, and their distance from the origin is the square root
of an exponential variable with expectation 2. This exponential distribution is the
same as a χ2 distribution with two degrees of freedom. This no proof, but note that
if X1 and X2 are independent standard normals, then they will have exactly those
properties!

Observations from a spatial Poisson process with a constant intensity can be
easily simulated. Suppose the region of interest is B with the expected count C . One
can then generate a Poisson variable with expectation C, denote the realized value
as n(B). One can enclose B into a rectangle, and generate uniformly distributed
points inside the rectangle, as long as n(B) of them fall into B.

Exercises and Complements (*)

1. Consider an infinite sequence of trials with probability 0 < p < 1 of success.
Let Y be the number of failures before the r th success. Then,

P(Y = y; r, p) =
(

r + y − 1

y

)
pr (1 − p)y, y = 0, 1, 2, . . .

is the negative binomial distribution. The definition can be generalized to non-
integer r > 0 by the same formula (cf., DeGroot 1987, 259). It has expectation
E[Y ] = r (1 − p)/p and variance Var(Y ) = r (1 − p)/p2. If r is known, show
that this belongs to an exponential family.

2. Consider the likelihood (1.6). Show that the Hessian (1.9) does not depend
on random data, so E[H] = H. This simplifies the theory of exponential fa-
milies.

*3. Suppose Y has density f (y; �). A statistic U(Y) is a sufficient for � ∈ � if the
conditional distribution of Y given U = u does not depend on �. Neyman’s
factorization criterion shows that U is sufficient if and only if we can write
f (y; �) = g(y)h(U(y), �). A sufficient statistic U(Y) is minimal sufficient if U
is a function of any other sufficient statistic. Intuitively this means that the set
of values taken by a minimal sufficient statistic is more “coarse” than that of
any other sufficient statistic. Consider, for example, u(x) = x and v(x) = x2

for x ∈ R. Is u(.) a function of v(.) or v(.) a function of u(.)?
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*4. A random variable Y belongs to the exponential family of distributions param-
eterized by � = (θ1, . . . , θk)T if its density f (y; �) (or probability function)
may be expressed as

exp

[ k∑
j=1

u j (y)θ j − b(�) + c(y)

]
.

When might this expression be well-defined? The function b(�) must
be chosen so that the density integrates (or sums) to 1, i.e., b(�) =
log ∫ exp{∑k

j=1 u j (y)θ j + c(y)} dy. The natural parameter space is defined
as � = {� ∈ R

k | − ∞ < b(�) < ∞}. (Cf., Bickel and Doksum 2001, 58–
59).

5. Consider k independent competing risks X j that have exponential distri-
butions with parameters µ j , j = 1, . . . , k. Define the lifetime as Y = min
{X1, . . . , Xk}. Use the representation of the exponential distribution as a
member of the exponential family to calculate the expectation and variance
of Y .

*6. In the case of ordinary regression Y = Xβ + ε, where ε ∼ N (0, σ 2I). The
likelihood is (2πσ 2)−n/2exp(−(Y − Xβ)T (Y − Xβ)/2σ 2). (a) Show that this
can be written in the form exp([YT Xβ − B(β)]/σ 2 + c(Y, σ ) + d(σ )). (b) By
differentiating the log-likelihood show that the MLEs for β solve the normal
equations XT Y = E[XT Y] = XT Xβ. (c) The solution is β̂ = (XT X)−1XT Y,

provided that the inverse exists. This is the ordinary least squares (OLS) es-
timator. It is a linear function of Yi ’s. (d) Show that β̂ ∼ N (β, σ 2(XT X)−1).
(e) The variance σ 2 is usually estimated by σ̂ 2 = (Y − Xβ̂)T (Y − Xβ̂)/
(n − k). Show that this is unbiased.

*7. Continuation. If ε ∼ N (0, σ 2W) for some known positive definite
matrix W, then the likelihood is (2πσ 2)−n/2 |W|−1/2exp(−(Y −
Xβ)T W−1(Y − Xβ)/2σ 2). (a) Show that this can be written in the
form |W|1/2exp([YT W−1Xβ − B(β)]/σ 2 + C(Y, σ ) + d(σ )). (b) A
transformed model W−1/2Y = W−1/2Xβ + W−1/2ε has mean W−1/2Xβ
and errors W−1/2ε ∼ N (0, σ 2I). Deduce that the normal equations are
XT W−1Y = XT W−1Xβ, with solution β̂ = (XT W−1X)−1XT W−1Y (e.g.,
Rao 1973, 221). This is the generalized least squares (GLS) estimator. (c)
Show that the GLS estimator has Cov(β̂) = σ 2(XT W−1X)−1.

8. Newton’s method has the following geometric motivation. Suppose we want
to solve the equation f (x) = 0, and have a guess x0 available. If f (x0) �= 0,

we can try to improve the solution by replacing f (x) with its tangent line
at x = x0, L(x) = f (x0) + f ′(x0)(x − x0). This intersects the x-axis at
x1, L(x1) = 0, so x1 = x0 − f (x0)/ f ′(x0) is an updated guess. In (1.10) we
seek the solution to the vector equation f(β) = 0, where f(β) = U − E[U] =
XT Y − ∂/∂βB(β). The tangent line is replaced by a first-order Taylor series
expansion about a trial value β(i), L(β) = f(β(i)) + ∂/∂βT f(β(i))(β − β(i)).
Setting L(β(i+1)) = 0 we find β(i+1) = β(i)− [∂/∂βT f(β(i))]

−1f(β(i)) =
β(i) + [∂2/∂ββT B(β(i))]

−1(U − E(i)[U]).
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9. Show that (1.11) and (1.12) are equivalent to (1.10).
*10. Show that the hat matrix H = X(XT X)−1XT (not to be confused with the Hes-

sian!), is symmetric (H = HT ) and idempotent (H = H2) and consequently the
i th diagonal element, hii , is between 0 and 1. Let β̂ denote the OLS estimate
of β in the model Y = Xβ + ε, with Var(ε) = σ 2I, and define Ŷ = Xβ̂. Show
that the covariance matrix of the residual vector Y − Ŷ equals σ 2(I − H).
Let β̂(i) denote the OLS estimate when the i th observation is not used in the
fitting, and define Ŷ(i) = Xβ̂(i). Notice that the prediction of Yi is now xi β̂(i),
where xi denotes the i th row of X. Show that Ŷi = (1 − hii )xi β̂(i) + hii Yi ,
so that the derivative of Ŷi with respect to Yi equals hii (Welsch 1983).

11. Derive the leverages mentioned in Example 1.3.
*12. To motivate Cook’s distance, note that numerator of Cook’s distance is (Ŷ −

Ŷ(i))T (Ŷ − Ŷ(i)). Consider Y ∼ N (Xβ,σ2I), where the rank of X is k and
Cov(β̂) = σ 2(XT X)−1. Show that (β̂ − β)T (XT X)(β̂ − β)/σ 2 ∼ χ2 distri-
bution with k degrees of freedom. Therefore, (β̂ − β)T (XT X)(β̂ − β)/kσ̂ 2 ∼
Fk,n−k , the F distribution with k and n − k degrees of freedom.

13. Consider two probabilities 0 < q j < 1, for j = 0, 1. Define RR = q1/q0 and
OR = {q1/(1 − q1)}/{q0/(1 − q0)}. Assume that q1 = 2q0 and plot both RR
and OR as functions of q0 for 0 < q0 < 1/2.

*14. The concept of a “saturated model” is a bit tricky. Suppose we toss a coin
independently n times, and the chance of “heads” is 0 < p < 1. Consider two
cases. First, suppose we only know that the total number of heads is y. Then,
we would base inference on the binomial model Y ∼ Bin(n, p), and assume
that Y = y is the observed value. Second, suppose the outcome of the i th toss
is yi and we know the ordered outcomes (y1, . . . , yn). In this case we would
have a vector of random variables (Y1, . . . , Yn), where the Yi ∼ Ber(p) are
independent, and (Y1, . . . , Yn) = (y1, . . . , yn) is the observed value. The two
models are usually equally informative, but the deviances calculated under
the two models differ, because they correspond to different saturated models.
In the former case �∗ = log{[n!/(y!(n − y)!)](y/n)y((n − y)/n)n−y},
whereas in the latter case �∗ = 0. This shows that deviance is not appropriate
as a general measure of lack of fit.

*15. Consider the model Y ∼ Ber(p). In logistic regression the mean E[Y ] = p
is mapped to the linear predictor XTβ by a canonical link function logit(p) =
XTβ. Alternative mappings are provided by (i) the probit link, �−1(p) =
XTβ, where �(x) = (2π )−1/2 ∫x

−∞ exp(−z2/2) dz; (ii) complementary
log-log link log(− log(1 − p)) = XTβ; (iii) identity link p = XT β, etc. To
motivate (ii), consider a follow-up period [0, 1] and assume that the cumulative
hazard ((2.5) of Chapter 4; and (7.1)) of a waiting time T of an individual
with covariates X is �(1) exp(XTβ) at the end of the period. Define Y = 1,

if T ≤ 1, and Y = 0 otherwise. Show that log(− log(1 − p)) = α + XTβ,

where α = log(�(1)) can be absorbed into the constant term of the
model.

16. Carry out the logistic regression of the two 2 × 2 tables suggested at the end
of Example 2.4. Is an interaction term needed?
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*17. Consider a model Yi ∼ Ber(pi ), where logit(pi ) = α0 + α1xi , i = 1, . . . , n.

Suppose Yi = 1 indicates that i dies (recovers from an illness) and xi is i’s
level of exposure (amount of medicine), so we are modeling a dose-response
relationship. The problem of inverse dose-response asks for a dose x = x(c)
such that the probability of death (recovery) is some predetermined value
0 < c < 1. (a) Write c∗ = logit (c), and deduce that an estimator of the dose
is x̂(c) = (c∗ − α̂0)/α̂1. (b) Note that if x is the true value, then L(x) = α̂0 +
α̂1x − c∗ ∼ N (0, V (x)) asymptotically, where V (x) = v00 + 2xv01 + x2v11

and vi j = Cov(α̂i , α̂ j ), i, j = 0, 1 are the elements of matrix (1.13). Using the
result L(x)2/V (x) ∼ χ2

1 deduce a second degree polynomial in x whose roots
give the 95% confidence interval for x(c). (c) Alternatively, if x is the true
value, we must have α0 + α1x = c∗, so α0 = −α1x + c∗. Thus, we can write
logit(pi ) = c∗ + α1(xi − x), i = 1, . . . , n. This model can be fitted for any x
by offsetting c∗ to get the profile likelihood �̂0(x). Deduce that an alternative
95% confidence interval is of the form {x |2(�̂1 − �̂0(x)) < 3.841}.

18. Show that if we add the term γ (x − t) into the model log(λxt ) = α0 + α1x +
βt, then the model parameters are not identifiable.

19. Consider the data of Example 3.6. Fit a model that has a separate slope for
age for employed and unemployed. Check the residuals of the model. Are
there indications of remaining lack of fit?

20. Consider the following data on the incidence of occupational diseases in
Finland in 1983, by industry and sex:

Reported Cases Population At Risk (in 1000’s)

Industry Males Females Males Females

1. Agriculture 160 183 139 116
2. Forestry 116 2 54 3
3. Man. of Consumer Goods 194 371 49 93
4. Man. of Wood and Paper Prod. 575 167 112 56
5. Metal Industries, Mining 850 211 160 47
6. Other Manufacturing 284 92 70 30
7. Building, Construction 633 20 164 19
8. Trade 87 64 120 148
9. Restaurants, Hotels 2 25 10 47

10. Traffic 212 26 131 49
11. Finance, Real Estate 14 21 51 85
12. Public Admin., Defense 132 42 64 72
13. Other Social Services 75 142 80 315
14. Other Services 59 21 38 45

A topic of concern is whether the risk of occupational diseases differs
among males and females. A comparison of crude rates by sex may be
confounded by the fact that males and females work in different industries.
Use Poisson regression, indirect standardization, (3.6) and (3.7), and direct
standardization (3.5), to study the relative risk between males and females.

21. Suppose the number of deaths in age x = 0, 1, . . . , ω, during year
t = 1, 2, . . . , T are Poisson distributed, Dxt ∼ Po(θtµx Kxt ), where Kxt is
the person years, the µx ’s are a set of known standard mortality rates, and θt

is an unknown relative risk parameter of the year t . A linear estimator of θt

is of the form Yt = �x cx Dxt , where the cx ’s are some weights. The estimator
is unbiased if E[Yt ] = θt . Incorporate the condition of unbiasedness using
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Lagrange multipliers, and show that the minimum variance linear unbiased
estimator of θt is obtained by choosing cx = 1/�uµu Kut for all x . Deduce
then that the standardized mortality ratio is the minimum variance linear
unbiased estimator of the relative risk.

*22. As in Exercise 21, suppose the number of deaths are of the form
Dxt ∼ Po(θtµx Kxt ), where the Kxt ’s are the person years, the µx ’s are
known standard rates, and θt ’s are unknown parameters to be estimated.
Show that Dt = �x Dxt is a sufficient statistic for θt . Conclude with the help
of the Rao-Blackwell theorem (cf., DeGroot 1987, 373) that as a function
of the sufficient statistic, the standardized mortality ratio Yt = Dt/�uµu Kut

is a minimum variance unbiased estimator of θt . This result is stronger than
that of Exercise 21, because no restriction to linear estimators is needed,
and its derivation is simpler, since no real calculations are needed - once one
knows Rao-Blackwell!

*23. Consider the likelihood equation (1.8) in the form XT Y = XT E[Y]. In the
Poisson regression case Yi ∼ Po(exp(XT

i β)Ki ), i = 1, . . . , n, we noted that
they can be solved by resorting to an offset term. Alternatively, define a
vector M with the i th element equal to Yi /Ki , and K = diag(K1, . . . , Kn).
Multiply the likelihood equation from the right by K−1 to get XT M =
XT E[M]. Writing W = diag(E[M]) we get that Cov(M) = WK−1. Thus, an
alternative numerical method is to base the estimation on rates, and multiply
the weights by 1/Ki ’s in iteration.

24. In Finland, the state provides support to municipalities for health and social
care, using allocation formulas. A 1992 law stipulated that support for health
care should be proportional to the product of population size and “level of ill-
ness” in the municipality. As a measure of level of illness, the SMR as defined
in (3.6), was adopted, with x = age and t = municipality. (a) Do you think
mortality is a good measure of illness? (b) Suppose you are in the Municipal
Board. What kind of incentive does this formula give you, if you are consid-
ering whether to improve the health care of the elderly? (c) The median popu-
lation size of a municipality is approximately 5,000. Suppose 1% of the pop-
ulation is expected to die annually. What is the coefficient of variation of the
allocation, from year to year, in a municipality of median size, if deaths from
three consecutive years are used to calculate the SMR? Having considered
the three issues you will understand why the law was subsequently changed.

25. Assume that Yi ∼ Po(µi ), i = 0, 1, are independent, and define Y = Y0 + Y1.
(a) Show that conditionally on Y = y, we have Y0 ∼ Bin(y, µ0/(µ0 + µ1)).
(b) Using this, show that the probability of finding Y0 < 3 in Example 3.2
is 0.9993, provided that H0: λ0 = λ1 holds. This a direct way of confirming
the significance of the excess risk.

26. Derive the ML estimators of the loglinear model parameters for the
capture-recapture experiment discussed in Section 3.4.

27. Continuation. Show by a direct calculation that N̂ = Y11 + Y10 + Y01 + λ̂00

is equal to the classical dual systems estimator, as defined in Section 6 of
Chapter 2.

28. Consider the negative binomial distribution as parametrized in Section 4.
Derive the values of the gamma parameters αi and βi as functions of µi and σ 2.
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29. Equivalently with (5.4), we have Var(N̂ ) = N (1 − p1)(1 − p2)/(p1 p2).
Substitute estimators p̂1 = m/n2, p̂2 = m/n1 into this to get the variance
estimator first derived in Exercise 11 of Chapter 2.

*30. Consider a 2-way contingency table with expected counts E[Yi j ] = λi j . (a)
Under a loglinear main effects model log(λi j ) = µ + αi + β j with conditions
�iαi = 0 = � jβ j the model contains 1 + (I − 1) + (J − 1) = I + J − 1
parameters. Therefore, I J − I − J + 1 = (I − 1)(J − 1) degrees of free-
dom remain. (b) Under a full interaction model log(λi j ) = µ + αi + β j + γi j

with conditions � jγi j = 0 for each i = 1, . . . , I, and �iγi j = 0 for each
j = 1, . . . , J the model becomes saturated, so the number of new additional
parameters must be (I − 1)(J − 1). To see this directly, note that the first set of
conditions introduces I conditions for the γi j ’s and the second set introduces
J additional conditions. However, one of the latter conditions is superfluous,
because the first I conditions already imply that �i jγi j = 0. Thus, the num-
ber of new free parameters introduced is I J − I − J + 1 = (I − 1)(J − 1).
(c) Under the association model log(λi j ) = µ + αi + β j + ϕνiη j with con-
ditions �iνi = 0 = � jη j and �iν

2
i = 1 = � jη

2
j , there are two conditions

for both vi ’s and η j ’s, so (I − 2) + (J − 2) parameters are free to vary. One
more degree of freedom is lost due to ϕ. Hence, the total number of new
free parameters is I + J − 3.

31. Consider the capture-recapture model (5.5). Show that conditioning on n1i =
1, we have u1i = 1 − mi , where mi ∼ Ber(p2i ). Thus, the parameters β2 of
(5.5) can be estimated by applying ordinary logistic regression to first capture.
Correspondingly, taking n2i = 1, we may use mi ∼ Ber(p1i ) to estimate β1.

32. Differentiate the loglikelihood (7.6) with respect to the (scalar) parameter
β. From this expression you can see that each X (i) actually has a Bernoulli
distribution. What is the probability of success? Calculate also the second
derivative and check that it gives the correct Bernoulli variance.

33. Continuation. The so-called log-rank test for the hypothesis H0 : β = 0 can
derived from the results of Exercise 32 by setting β = 0. The (score) test
statistic is �′(0)/(−�′′(0))1/2. Show that it is of the form: sum of independent
Bernoulli variables minus their expectation, divided by the standard deviation
of the sum. Therefore, it has an asymptotic standard normal distribution.

34. Prove the result of Example 7.5.
35. Continuation. Consider matched sets of individuals R(i), i = 1, . . . , n. Sup-

pose a subset Ai ⊂ R(i) has #Ai = ni cases, and R(i)\Ai consists of non-
cases. Such data can arise from a case-control study in which the cases Ai are
matched with some controls, and they together form the set R(i), or it can arise
from a cohort study in which individuals are first matched (e.g., by residence)
into sets R(i) and during the follow-up those in Ai happen to fall ill. Show that
by conditioning on the number of cases in R(i), in both cases the likelihood is

L (i) = exp

(∑
i∈Ai

XT
i β

)/ ∑
Bi ⊂R(i),#Bi =ni

exp

(∑
i∈Bi

XT
i β

)
.



P1: MRM/SJS P2: MRM
SVUS004-Alho & Spencer April 29, 2005 21:31

Exercises and Complements (*) 165

36. (Continuation) Suppose ni = 1 for all sets i with #R(i) = 2, i = 1, . . . , n.

I.e., we have n case-control pairs. Based on the above likelihood, show (the
otherwise mind-boggling result) that conditional logistic regression can be
run using an ordinary logistic regression program by creating a data set in
which there are n observations (data rows), for each observation the outcome
variable is 1 (“success”), the explanatory variables are the differences
between the case’s explanatory variables and the control’s explanatory
variables, and there is no constant term.

*37. Following the notation of Section 7, let Z(i) = k if individual k withdrew
at time T(i). Denote the history up through the i th withdrawal by Hi =
{T(1), Z(1), δ(1), . . . , T(i), Z(i), δ(i)}. The full likelihood is L(Hn). Note that
L(Hi |Hi−1) = P(Z(i)|Hi−1, δ(i), T(i)) × P(δ(i), T(i)|Hi−1), and hence

L(Hn) =
n∏

i=1

L(Hi |Hi−1)1−δi

n∏
i=1

P(δ(i), T(i)|Hi−1)δi

n∏
i=1

P(Z(i)|Hi−1, δ(i), T(i))
δi .

The first product involves censoring only. The second product involves
the times of non-censored withdrawal, which under (7.1) do not provide
information about β. Under (7.1), the components of the last product are
given by (7.4). Assume that the proportional hazards model holds, and show
that the partial likelihood (7.5) is derived by ignoring the first two products
above. If the covariate vectors vary with time, X(k) = X(k)(t), then they can
be included in the definition of Hi and a similar expression can be derived;
see Cox and Oakes (1984, Section 8.4).

38. Consider formula (2.7) of Chapter 4. Prove (8.1) by first splitting the integral
into an integral from 0 to t , and an integral from t to ∞. Then, majorize the
integrand on [0, t] by 1, and on (t, ∞) by p(x)/p(t). Note that the inequality
is strict unless p(t) = 1.

39. Use a computer to generate realizations of a random walk of length 20.
Stop each random walk if it reaches the level r = −5. Calculate the
expectation of the state of the walks that have not been stopped at epochs
n = 1, 5, 10, 15, 20. How do the expectations behave as a function of n?

40. Prove formally that the Box-Muller method produces two independent
variables with standard normal distributions.

41. Simulation of logistic regression. Generate values of explanatory variables
Xi ∼ N (µ, σ 2) for i = 1, . . . , n. Then, generate uniforms Ui ∼ U [0, 1]
and calculate pi = exp(β0 + β1 Xi )/(1 + exp(β0 + β1 Xi ) using, e.g.,
n = 30, β0 = −0.1, and β1 = 1.0. Now generate the observations Yi = 1 if
Ui ≤ pi , otherwise let Yi = 0.

42. Generate a sample from a spatial Poisson process into a unit square such that
the expected number of points is 100. I.e., pick a value Y from Po(100), and
locate Y points into unit square by picking independently each x-coordinate
and each y-coordinate from U [0, 1]. Does the point pattern correspond to
your idea of complete randomness?
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6
Multistate Models and
Cohort-Component Book-Keeping

In this chapter we develop some theory and notation for multistate life tables
and general linear growth models. Life tables are synthetic calculations that are
intended to summarize the overall implications of period transition rates in pop-
ulations with one or more states defined by region, marital status, labor force
participation, etc. We will provide a formulation that takes duration (i.e., time
spent in a state) into account.

As anticipated in Chapter 4, when the generation of births at constant rates of
fertility is added to a life table population, a theory of stable populations follows.
Life table calculations also provide the “engine” on which the cohort-component
population forecasts are based. The matrix model we emphasize is often called a
Leslie model, in honor of Leslie (1945). However, Bernardelli (1941) and Lewis
(1942) had earlier considered the matrix formulation. Cannan (1895) had used
the equivalent arithmetic already, and many European states and the U.S. had
used the arithmetic in the 1920’s and 1930’s (cf., DeGans 1999). Therefore, a
more neutral name seems to be in order, and we will refer to the linear growth
model.

Calculations concerning population evolution are used in economic contexts
such as pension planning, disability insurance, assessment of health care costs
etc. Often, relevant statistics can be calculated from the population numbers and
rates, so they can be viewed as functions of population numbers, or demographic
functionals. Multistate models are also connected to Markov chains that are used
to describe state transitions in many branches of science.

Section 1 presents multistate life tables in a probabilistic context analogous to
that of Chiang (1968). An application to Finnish nuptiality data is described, and
a model for simple disability insurance is formulated. Section 2 defines the linear
growth model and develops aspects of classical stable population theory and the
so-called weak ergodicity. In Section 3 we open the multistate system to external
migration and consider alternate ways of parametrizing migration flows. Section 4
defines the concepts of demographic functional and functional forecasts. In Section
5 we examine some details of the linear growth model and population renewal at
the level of individual ages. In Section 6 we will mention applications of Markov
chains to an ecological population.

166
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1. Multistate Life Tables

1.1. Numerical Solution Using Runge-Kutta Algorithm

Define I (x) = 1 if an individual is alive in age x ≥ 0 and I (x) = 0 otherwise. The
probability of surviving to age x can be written as p(x) = E[I (x)]. In equation
(2.2) of Chapter 4, the probability of survival was shown to satisfy the differential
equation p′(x)/p(x) = −µ(x) in terms of the hazard. The equation was solved
analytically in (2.4). We will show below that (2.2) has an analogue in the multi-
dimensional case. Although the multidimensional case does not allow an explicit
analytical solution, except in special cases, (2.2) can be solved numerically without
recourse to the analytical solution. The solution is based on a standard method for
first order differential equations, the so-called fourth order Runge-Kutta method
(e.g., Press et al. 1992, 710–714), which we now describe.

Consider a differential equation y′ = f (x, y), where y is to be solved as a
function of x subject to a known starting value y0 = y(x0). The simplest method
for getting an approximate numerical solution to the equation is to determine a
step size h > 0, set xn = xn−1 + h, and determine the approximations yn+1 ≈
yn + h f (xn, yn), n = 0, 1, 2, . . . This is Euler’s method. It uses information about
the derivative of y only at the beginning of each interval [xn, xn+1]. One can try
to improve on Euler’s method by getting a better estimate of the derivative in the
interval. The fourth order Runge-Kutta method uses four estimates of the derivative,
one at the beginning, one at the end, and two in the middle. The algorithm is:

yn+1 = yn + (a1 + 2a2 + 2a3 + a4)/6, (1.1)

where a1 = h f (xn, yn), a2 = h f (xn + h/2, yn + a1/2), a3 = h f (xn + h/2, yn +
a2/2), and a4 = h f (xn + h, yn + a3). The coefficients of the ai have been cho-
sen so that the method is accurate to the fourth degree, i.e., the error is O(h5) as
defined in Chapter 1.

Example 1.1. Runge-Kutta Illustration. Suppose µ(x) = µ > 0 for x ≥ 0 and
use the fourth order Runge-Kutta method for solving p′(x) = −µp(x) subject to
p(0) = 1. The exact solution is p(x) = exp(−µx). We have y0 = 1; a1 = −µh;
a2 = −µh(1 − µh/2); a3 = −µh(1 − µh/2 + (µh)2/4); and a4 = −µh(1 −
µh + (µh)2/2 − (µh)3/4). Therefore, y1 = 1 − µh + (µh)2/2! − (µh)3/3! +
(µh)4/4!, or the first step is equal to the fourth order Taylor series approxima-
tion to the true value of exp(−µh). By taking h small enough, we can achieve any
degree of accuracy. ♦

To apply the Runge-Kutta method to (2.2) of Chapter 4, we take y(x) = p(x)
and f (x, y) = −µ(x)p(x). The starting value is p(0) = 1. For most ages we take
h = 1, but for age 0 we may take two steps, first h = 28/365 corresponding
to neonatal mortality, and the second step size is h = 1 − 28/365. The values
µ(1), µ(1.5), µ(2), µ(2.5) can be estimated, e.g., using methods discussed in Sec-
tion 2.4 of Chapter 4. For the first year of life procedures based on Example 2.11
of Chapter 4 may be applied, for example.
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1.2. Extension to Multistate Case

Suppose now that there are J states. An individual is born into a state, and may later
move to another state, move back, etc. For example, a person is born into never
married state and may later marry, become divorced or widowed, remarry, etc.
Labor force participation, migration, and even acquisition of skills and knowledge
are other examples of transition among states. Some basic references to this area
are Rogers (1975), Rees and Wilson (1977), Land and Rogers (1982), ter Heide and
Willekens (1984). More recent contributions include Schoen (1988), Gill and Keil-
man (1990), Van Imhoff (1990), Ekamper and Keilman (1993), and Rogers (1995).

Define an indicator vector I(x) = (I1(x), . . . , IJ (x))T for x ≥ 0 such that
I j (x) = 1 if the individual is in state j at age x and I j (x) = 0 otherwise. De-
fine e j as a J -component column vector of all zeroes except a 1 in the j th

position; for example, e2 = (0, 1, 0, . . . , 0)T . Set p j (x) = E[I j (x)] and p(x) =
(p1(x), . . . , pJ (x))T , so p(x) = E[I(x)] gives the probabilities that the individ-
ual is in each of the states j = 1, . . . , J at age x . We assume that the individual
changes state according to the following rules:

(1) If I(x) = e j , i.e., the individual is in state j at age x , then, independently of
the individual’s earlier history, the probability of moving to state i �= j before
age x + h is νi j (x)h + o(h), where νi j (.) ≥ 0 is continuous.

(2) The probability of two or more transitions in a period of length h > 0 is o(h).

We call the functions νi j (.) hazards or transition intensities.
Consider the probability pi (x + h) that individual is in state i in age x + h. We

can express the probability in terms of the probabilities p j (x). There are three
cases. The individual either was in i already and did not leave, was in some other
state and moved to i , or made two or more transitions. Therefore, we can write,

pi (x + h) =
(

1 −
∑
j �=i

{
ν j i (x)h + o(h)

})
pi (x)

+
∑
j �=i

{
νi j (x)h + o(h)

}
p j (x) + o(h). (1.2)

As in the case of (2.1) of Chapter 4, divide (1.2) by h, rearrange terms, and let
h → 0, to get for each i = 1, . . . , J that

p′
i (x) = −

∑
j �=i

ν j i (x)pi (x) +
∑
j �=i

νi j (x)p j (x). (1.3)

In matrix form (1.3) can be written as

p′(x) = ν(x)p(x), (1.4)

where the left hand side is a vector of the derivatives and ν(x) = (νi j (x)) is a J × J
matrix, where for i �= j the elements νi j (x) are as defined in condition (1) above,
but for i = 1, . . . , J we take

νi i (x) = −
∑
j �=i

ν j i (x), (1.5)
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the negative of the hazard of leaving state i in age x . Notice that (1.4) is the
multistate counterpart of (2.2) of Chapter 4. Let us first consider two special cases.

First, the single cause of death case can be described as a two-state model with
states “alive” ( j = 1) and “dead” ( j = 2). The latter state is absorbing, or it has
ν12(x) = 0 for all x > 0. If we write ν21(x) = µ(x), as before, then we have

ν(x) =
[−µ(x) 0

µ(x) 0

]
. (1.6)

In this case, p1(x) is given by (2.4) and (2.5) of Chapter 4, and p2(x) = 1 − p1(x).
Second, assume that ν(x) ≡ ν. By a direct calculation one can show that

p(x) =
{ ∞∑

i=0

(xν)i/ i!

}
p(0) (1.7)

satisfies the equation p′(x) = νp(x) (e.g., Gantmacher 1959; Schoen 1988, 72–
73). The matrix in brackets on the right hand side of (1.7) actually defines the
exponential function with matrix argument xν.

In fact, a slightly more general case can also be handled analytically. Suppose that
the ν(x) are simultaneously diagonalizable, i.e., we can write ν(x) = Uγ(x)VT ,
where VT U = I, and γ(x) = diag (γ1(x), . . . , γJ (x)) has the eigenvalues of ν(x).
Note that VT = U−1 and the columns of U contain the eigenvectors of ν(x) nor-
malized in some manner (cf., Rao 1973, 42–43). In other words, the spectral
decompositions of the matrices ν(x) are such that the matrices V and U do not de-
pend on x . (We will discuss spectral decomposition further in Section 2.2.) Define,
for j = 1, . . . , J,

� j (x) = exp

⎛
⎝ x∫

0

γ j (s) ds

⎞
⎠ (1.8)

and let Γ(x) = diag(�1(x), . . . , �J (x)). Now, the solution of (1.4) is simply

p(x) = UΓ(x)VTp(0). (1.9)

To confirm that (1.4) is satisfied, note that ν(x)p(x) = Uγ(x)VTUΓ(x)VTp(0) =
Uγ(x)Γ(x)VTp(0) = p′(x).

Returning to the case where ν(x) ≡ ν are constant, write γ(x) = γ. Then we
have � j (x) = exp(γ j x) and Γ(x) = Γ(1)x . We now illustrate how the spectral
decomposition can be used to calculate the right hand side of (1.7) (cf., Hoem and
Funck Jensen 1982, 179).

Example 1.2. A Three-State Labor Force Model. Suppose we have only
three states: Employed ( j = 1), Unemployed ( j = 2), and Dead ( j = 3), with
transition intensities

ν(x) =
⎡
⎣−0.08 0.05 0

0.06 −0.07 0
0.02 0.02 0

⎤
⎦. (1.10)
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In other words, life expectancy is 1/0.02 = 50 years, irrespective of working
status; the probability of becoming unemployed is about 6% each year, and the
probability of getting a job is about 5% for an unemployed, per year. Consider a
person who is employed at the start of the study (or x = 0), so I(0) = (1, 0, 0)T

is the initial state. Note that under (1.10), the third (absorbing) component of the
vector p(x) does not influence the evolution of the first two in (1.4), so it can be
omitted in the following calculation. Using a software package with linear algebra
capabilities, such as Matlab or MATHEMATICA, one can calculate the spectral
decomposition of the 2 × 2 upper left corner of (1.10) as

[−0.08 0.05
0.06 −0.07

]
=
[−0.707107 −0.640184

0.707107 −0.768221

] [−0.13 0
0 −0.02

]

×
[−0.771389 0.642824

−0.710023 −0.710023

]
. (1.11)

The middle matrix on the right has eigenvalues on the diagonal, the columns of
the first matrix on the right are the corresponding eigenvectors, and the last matrix
on the right is the inverse of the first. Using the starting value p(0) = (1, 0)T , the
solution (1.9) gets the form

p(x) =
[

0.545455e−0.13x + 0.454545e−0.02x

−0.545455e−0.13x + 0.545455e−0.02x

]
. (1.12)

In general the decomposition (1.11) might involve complex eigenvalues and eigen-
vectors, but the solution (1.12) is always real. Note that the second component of
(1.12) is a nonmonotone function of x . ♦

Apart from the special cases, there is no analytical solution to (1.4). A formal
solution in terms of the so-called product integral is available (cf., Gantmacher
1959; Andersen et al. 1993, 88–95), but for a numerical solution we can work
directly with (1.4). A number of methods for solving it have been proposed (e.g.,
Schoen 1988, 75). Other than the constant hazards assumption, the most popular is
based on the assumed linearity of the solution. As noted by Rogers (1995, 96), this
can be viewed as a generalization of the linearity assumption in the single region
case (Example 2.2 and Exercise 9 of Chapter 4).

Example 1.3. Hazards Producing a Linear Solution. Suppose that (1.4) has a
solution of the form p(x) = (I + xB)a that has (componentwise) 0 ≤ p(x) ≤ 1
for x ∈ [0, 1]. Then we must have p(0) = a with 0 ≤ a ≤ 1. Also p′(x) = Ba, so
we must have ν(x)(I + xB)a = Ba. As any J linearly independent vectors a with
0 ≤ a ≤ 1 actually span the whole space R

J , it follows that ν(x)(I + xB) = B, or
ν(x) = B(I + xB)−1 provided that the inverse exists. Hence, we have B = ν(0).
The linearity assumption may provide a reasonable numerical approximation in
many situations, but Hoem and Funck-Jensen (1982, 198–200) point out several
short-comings. ♦
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Given that closed-form analytical solutions are not to be had, for practical
computation we will resort to the Runge-Kutta method (1.1). This method will
easily extend to handle time-varying covariates. To solve the system of differen-
tial equations (1.4), in vector notation y′ = f(x, y), we substitute y = p(x) and
f(x, y) = ν(x)p(x). A technical issue that comes up is that the algorithm does not
automatically ensure that 1T p(x) = 1 or that 0 ≤ p(x) ≤ 1. Adjustments to satisfy
these conditions can be made during each round of Runge-Kutta iteration. If the
problems are severe a shorter step size may be adopted.

We note that (1.1) can be started at any age x0 by taking an arbitrary starting
value for p(x0), such as p(x0) = e j for some j , and solving for p(x) when x > x0.
Any life table quantity can thus be obtained. For example, suppose an individual
is born into one of states j = 1, . . . , J with probabilities given by the components
of the vector p(0). In analogy with (2.7) of Chapter 4, the vector of expected years
spent in different states over his or her life time is

e0 =
∞∫

0

p(x) dx, (1.13)

where the integration is performed element by element. In the case of Example 1.2
the life expectancy of 50 years becomes divided into two parts: 26.9 years spent
working and 23.1 years unemployed. To verify, note that the integral of the first
component of (1.12) over x in (0, ∞) equals 0.545455/0.13 + 0.454545/0.02 =
26.9231, for example.

For life table construction we need conditional life expectancies by state. Define
zp j (x) = E[I(x + z)|I(x) = e j ], i.e., it is the vector of probabilities of being in
different states in age x + z, given that the person was in state j at exact age x .
This vector of probabilities can be calculated for any z using Runge-Kutta, taking
0p(x) = e j as the initial value. We can then define the vector of state-specific
remaining life expectancies, conditionally on I(x) = e j , as

e j (x) =
∞∫

0

zp j (x) dz. (1.14)

This is a multi-state generalization of the ex defined by formula (2.8) of Chap-
ter 4.

In multistate forecasting, considerations similar to those discussed in Section
3 of Chapter 4 apply. Let k j (t) be the density of population in age t in state j .
The expected survivors to different states from those who were in state j in age
[x, x + 1) one year earlier are given by

x+1∫
x

1p j (t)k j (t) dt. (1.15)
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Generalizing (3.6) of Chapter 4, we may define the vector of average survival
probabilities to age [x + 1, x + 2) as

1p̄ j (x) = 1p j (x + 1)
2k j (x + 1) + k j (x)

3(k j (x + 1) + k j (x))
+ 1p j (x)

2k j (x) + k j (x + 1)

3(k j (x + 1) + k j (x))
.

(1.16)

Define K j,x as the size of the population of state j who are in age [x, x + 1) at a
given moment. Then, the vector of expected survivors in age x + 1 one year later
is

J∑
j=1

1p̄ j (x)K j,x . (1.17)

For each x we go over the states, and then move to x + 1.

1.3. Duration-Dependent Life Tables

As above, we consider states j = 1, . . . , J with an indicator vector I(x) =
(I1(x), . . . , IJ (x))T , where I j (x) = 1 if an individual is in state j in age x ≥ 0
and I j (x) = 0 otherwise. Defining p(x) = E[I(x)], we have a vector of probabil-
ities of being in different states. A multistate life table is simply a set of tabulated
values of p(x) and some of its functionals, such as (1.14). The overall aim of the
table is to summarize the transition conditions of a chosen time period. Unfortu-
nately, tabulating such probabilities and state-specific expected waiting times is
cumbersome when starting ages and states vary.

Another aspect that sets a multistate life table apart from the single state life
table is the possible presence of population heterogeneity associated with past
event history. Heterogeneity may, in principle, arise from any aspect of past state
transitions, as illustrated in Section 4.3.3 of Chapter 4.

1.3.1. Heterogeneity Attributable to Duration

In this section we will develop a theory that can take certain aspects of duration
into account. By duration we may refer to the total time spent in a given state,
to the length of the last visit in a given state, or more generally, to any positive
functional of the sojourn times in a given state, such as those given by (7.9) of
Chapter 5.

Example 1.4. Remarriage Probability Varies with Time Spent Non-married. Fig-
ure 1 shows how the average relative risk of remarriage is related to duration since
end of marriage for those whose marriage ended due to divorce and for those who
became widowed, among women in Finland in 1998. (Here, the baseline against
which relative risk is measured is average intensity of marriage in a given age;
in Figure 1 average relative risk by duration is obtained by averaging such rela-
tive risk estimates over age.) For the divorced the relative risk of a new marriage
declines rapidly. This is consonant with the notion that finding a new spouse is
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Figure 1. Average Relative Risk of Remarriage Among Widowed (Solid) and Divorced
(Dashed) as a Function of the Duration of Widowhood and Divorce, Respectively.

often a cause of divorce. For the widowed the relative risk is below 1 for short
durations, but increases to about three in durations of 3–4 years, and declines to
one thereafter. That is, the effect of duration is not multiplicative between the two
populations. Although we do not show the details here, we note that among the
widowed the relative risk is roughly the same in each age. However, among the
young divorced the relative risk of a new marriage increases with the duration, so
a multiplicative model incorporating age and duration is not appropriate among
the divorced. These examples illustrate the limitations of the proportional hazards
model. ♦

1.3.2. Forms of Duration-Dependence

It is difficult (but not impossible, cf., Wolf 1988) to accommodate duration effects
into the calculation of life tables analytically, because we have a case of time vary-
ing covariates (cf., Section 7 of Chapter 5). It is easier to resort to simulation. If
proportional hazards are appropriate, one can estimate duration effects via Poisson
regression or via Cox regression (cf., Sections 3 and 7 of Chapter 5). Or, more
general hazard models can be used that allow for the interaction of duration and
age. Given the hazard estimates, one can simulate state transitions individual by
individual. In this manner a collection of state transition paths can be formed. It is
then a matter of simple arithmetic to estimate relevant probabilities and expecta-
tions. We will now describe both some theoretical and practical issues that come
up when implementing a multistate model1.

1 Based on our experiences in developing the C++ program MTABLE at the University of
Joensuu.
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The starting point is the differential equation p′(x) = ν(x)p(x) in (1.4). Define
D(x) = (D1(x), . . . , DJ (x))T as the vector of durations at age x . At least two
possible concepts of duration seem relevant. One can choose D j (x) either as time
ever spent in j by age x or as time spent during the current visit2 in j by age x. The
usual Cox model for the effect of duration assumes that

νi j (x, D(x)) = v0i j (x) exp(βT
ij D(x)), (1.18)

where ν0i j (x) is the baseline intensity of those with D(x) = 0. Note that βi j is
a vector. If only the duration D j (x) of the current sojourn is relevant, then a
general proportional hazards model assumes that there are functions gij (.) ≥ 0 such
that

νi j (x, D(x)) = ν0i j (x)gij (D j (x)). (1.19)

A general duration-dependent intensity model assumes that the intensities are of
the form νi j (x, d) with 0 ≤ d ≤ x, and the intensity for a person with duration
d = D j (x) at age x is νi j (x, D j (x)).

A possible problem in the proportional hazards formulations derives from the
imbalance in the data. To simplify, suppose that only the duration d of current
sojourn matters. Omitting dependency on i and j , the model (1.18) is equivalent to
a main effects log-linear model log ν(x, d) = αx + βd . While this may be a realistic
model in some situations it is good to remember that our intuition from ordinary
2-way analysis of variance does not carry over, as such, to this case, because for
ages x = 0, . . . , ω the possible values of duration are also d = 0, . . . , ω, but we
have to have d ≤ x . Thus, estimates of βd for short durations depend on most ages,
but estimates for long durations depend only on the oldest ages.

1.3.3. Aspects of Computer Implementation

The model (1.4) is in continuous time, so in principle an unlimited number of state
transitions are possible during a time unit. We can always approximate the process
by taking the time unit small enough so that the possibility of more than one transi-
tion can be ignored. Suppose an individual starts at exact age x = 0, 1, . . . , ω − 1,

at state j . First we use the Runge-Kutta method to calculate the vector of probabil-
ities 1p j (x) = E[I(x + 1)|I(x) = e j ]. Then we select the state at x + 1 randomly
using 1p j (x).

If a transition to k from state j occurs, then the time spent in j must be specified.
As a first approximation we may choose the time of transition from a uniform
distribution U [0, 1]. This is equivalent to the assumption of Example 1.3. To
refine, one could use information concerning the derivative of the solution at the
end points of the interval (Exercise 5). If the randomly chosen state at x + 1 is also
j , then one time unit is added to the time spent in j .

Repeating the above procedure we obtain a path consisting of state transitions
and their times of occurrence. One can keep track of such characteristics of the

2 This particular case is a so-called age-dependent semi-Markov model, i.e., transition in-
tensities depend on state, age, and duration of current sojourn (Mode 1985, 244–245).
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paths that are of interest and store them for further processing. Using the output
one might wish to answer following types of questions:

(i) given that the person is in state j in age t , what is the probability that he
or she is in state k at age u > t ;

(ii) given that the person is in state j in age t , what is the distribution of time
the person spends in state k by age u > t ;

(iii) given that the person is in state j in age t , what is the distribution of the
waiting time until next entry to state k;

(iv) given that the person is in state j in age t and enters state k in some age,
what is the probability that he or she exits state k via state h �= k?

In all cases the answer can be numerically determined from a simulated prob-
ability distribution of the variable of interest. Summary measures such as the ex-
pectation, the standard deviation, or tail probabilities can also be calculated based
on the distribution.

1.3.4. Policy Significance of Duration-Dependence

Exposure distributions or duration distributions can have considerable significance
in social policy. Consider long-term unemployment, for example. The chance of
becoming unemployed may depend on population heterogeneity. Some people
may find work (or loose a job) more easily than others because their knowledge,
skills, and attitudes. On the other hand, being unemployed (or getting a job) may
be due to luck. If the chance of finding a new job decreases with the duration
of unemployment, bad luck may accumulate (cf., discussion of “randomness and
predestination” at the end of Section 2.4 of Chapter 4 and Section 8 of Chapter 5).
In the first case, remedial training might be an effective measure for improving
the job opportunities of the unemployed. In the latter case remedial measures may
not help, and the unemployed might be best helped with insurance mechanisms,
as in the case of disability, for example. Exposure distributions from duration-
dependent multistate life tables can show us whether chance alone could explain
the observed exposure distributions.

1.4. Nonparametric Intensity Estimation

The estimation of the transition intensities is challenging because a multistate pop-
ulation with J states can logically have up to J (J − 1) transition flows for each
age. Each flow may have idiosyncratic characteristics (e.g., mortality as compared
to the remarriage of widows). Different methods may turn out to be optimal for
each. For a general discussion, see Hoem and Funck Jensen (1982), and Ander-
sen et al. (1993). We present two nonparametric approaches that rely on local
linearity (Section 2.4 of Chapter 4) and kernel smoothing (Section 9 of Chapter
5). More general graduation methods are discussed by Keyfitz (1977, Ch. 10) and
nonparametrics by Härdle (1990) and Green and Silverman (1994). The nuptiality
example of Section 1.5 provides the background for our discussion of the general
duration-dependency model. Duration refers to duration during current sojourn
and is truncated to the nearest lower integer.
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Let Nij (t, d) be the number of transitions from state j to i , in exact age that
belongs to interval [t, t + 1), given that duration in the beginning of the year was
in [d, d + 1), d = 0, . . . , t. Let K ′

j (t, d) be the number of individuals in the age
× duration category in the beginning of the year and K ′′

j (t, d) the number of indi-
viduals in the age × duration category at the end of the year. Person years can then
be approximated as K j (t, d) = (K ′

j (t, d) + K ′′
j (t, d))/2, and the corresponding

o/e rate is νi j (t, d) = Nij (t, d)/Kj (t, d). Given the large number of pairs (t, d),
the o/e rates may be unstable. Computation of local averages can often provide a
smoother estimate.

Preliminary analyses suggest that in the flows we consider age effects are larger
than duration effects. Therefore, we will adopt a two-stage estimating strategy,
trying first to get the age effects right under as few assumptions as possible. A
separate estimation of duration effects under smoothness assumptions is presented
afterwards. Let us write νi j (t, d) = νi j (t)ψi j (t, d), where

t∑
d=0

ψi j (t, d)Kj (t, d)
/ t∑

d=0

K j (t, d) = 1. (1.20)

Thus, νi j (t) is the average intensity at t , and ψi j (t, d) is the relative risk at duration
d . Define Nij (t) = �d Nij (t, d), so that vi j (t) = Nij (t)/K j (t) is an o/e rate.

Consider exact ages t = 1, 2, . . . , ω − 1. Emulating the approach of Section
2.4 of Chapter 4, consider the interval [t − 1, t + 1). Suppose that the average rate
and the population density are locally linear. One can then deduce (Exercise 8)
that the estimator

ν̂i j (t) = Nij (t − 1) + Nij (t)

K j (t − 1) + K j (t)
− 2(νi j (t − 1) − νi j (t))(K j (t − 1) − K j (t))

3(K j (t − 1) + K j (t))
.

(1.21)

corrects for both linear effects at exact age t . Having estimates available at ex-
act values of t , we can use any interpolation technique (such as the Karup-King
formula, cf. Shryock and Siegel 1976, 554) to estimate the ages t + 0.5.

One way to estimate the relative risk parameters is to use kernel smoothing. Fix
t and d . Using a Gaussian kernel with smoothing parameter h > 0, we obtain the
following estimate for the relative risk at d = 0, . . . , t, as compared to the average
risk at t ,

ψ̂i j (t, d|h)

=
ω∑

s=d

νi j (s, d)K j (s, d) exp

(
− (s − t)2

2h2

)/ ω∑
s=d

ν̂i j (s)K j (s, d) exp

(
− (s − t)2

2h2

)
.

(1.22)

Since νi j (t, d)K j (t) = Nij (t, d), the estimator is of the form “observed count ÷
expected count”, or it is a nonparametric form of indirect standardization (Section
3.3 of Chapter 5). For a given d, (1.22) weights o/e rates in different ages according
to how far they are from t , and by person years. Conditioning on h, a rough
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confidence interval for ψi j (t, d|h) can be obtained by estimating Var(νi j (t, d)) by
νi j (t, d)/K j (t, d).

Cross-validation can be used to choose h (e.g., Härdle 1990). Define predicted
relative risk at t and d , ψ̃i j (t, d|h), by (1.22) with the summation restricted in both
numerator and denominator to s = d, . . . , ω with s �= t. Define the corresponding
predicted residuals as

eij (t, d|h) = Nij (t, d) − ψ̃i j (t, d|h)ν̂i j (t)K j (t, d). (1.23)

A cross-validation estimator of the smoothing parameter is a value of h that min-
imizes the sum of squared predicted residuals for some set of values of (t, d). In
the application of Section 1.5 discussed next we searched for a value h = h(t) for
each t , that minimizes the sum,

t∑
d=0

eij (t, d|h)2, (1.24)

for example.

1.5. Analysis of Nuptiality

What is the probability that a marriage ends in a divorce? As a multiple decrement
process a person’s marriage can end in a divorce or upon death of either spouse.
In popular press, one frequently sees estimates relating the number of divorces to
the number of new marriages in a given year. This practice can be approximate
at best, since (a) current divorces do not come from the same cohorts as the
current marriages, and (b) both past divorces and marriages influence the measure.
Statistical agencies sometimes calculate a “probability of divorce” in year t by
adding the fractions of those marriages formed during each of the years y < t
that ended by divorce during year t . For example, the official statistics of Finland
use this measure, and around year 2000 the probability of a marriage ending in a
divorce is claimed to be about 50%. The measure is a bit analogous to the total
fertility rate (cf., Shryock and Siegel 1976, 346) but, unfortunately, patterns of past
divorces can bias this measure.

We have analyzed the nuptiality of the Finnish women in 1998 (using the pro-
gram MTABLE). The states of the system are Single, Married, Divorced, Widowed,
and Dead (cf., Figure 2).

The total number of person years coming from the four living states were
N = 601,100 + 1,004,000 + 234,800 + 269,000 = 2,108,900. With five states
there are potentially 5 × 4 = 20 flows, but in the case of nuptiality, only nine

Single Married Divorced

Widowed
DeadFigure 2. Possible State Transitions in Nuptiality

Processes.
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Figure 3. Relative Risk of Death Among Married as a Function of the Duration of Marriage:
Average (Solid), in Age 30 (Dashed), in Age 40 (Dotted), and in Age 50 (Dash-Dotted).

are logically possible. Except for the flow from Single to Married, the intensities
may depend separately on age and on duration. As discussed in Example 1.4, a
proportional hazards assumption is not appropriate for all flows. Our results are
based on the general duration-dependent intensity model.

Data on state transitions were available from year 1998, by age x = 17, . . . , 99
and duration d = 0, . . . , x − 17. The estimation consisted of three steps. (1)
Estimates of average intensity were calculated with (1.21) for exact ages x =
17, 18, . . . , 100, based on data from the two neighboring ages, when available. (2)
For each age, estimates of relative risk (1.22) were calculated. The smoothing pa-
rameter was determined by minimizing (1.24) for each age. Values were restricted
to range 2 ≤ h ≤ 10 on a priori grounds. A comparison to estimates obtained with
fixed values h = 5.0 and h = 7.5 showed that the estimates of transition intensities
were insensitive to the exact value of the smoothing parameter. (3) The relative risk
estimates were further smoothed across duration (using RSMOOTH of Minitab)
for each age.

Consider mortality (cf., Figure 1 of Chapter 4). For the divorced and the
widowed the duration effects (not shown) are relatively small, but we see in
Figure 3 that for the married there are systematic effects. Short marriage durations
are associated with high relative risk of mortality. The effect is more pronounced
in older ages than younger ages. Since most of the marriages occur in ages 20–30,
the finding is consonant with the notion that those who marry atypically late
initially experience a relatively high level of mortality which then declines as the
duration of marriage increases.

An analysis of the intensity of widowhood (or equivalently of husband’s death)
has a similar pattern, but the dependency on duration is even stronger (details
not shown). Since spouses are of a roughly similar age, this indicates, that male
mortality is similarly associated with the duration of marriage. We speculate that
marriage can act as a selection mechanism that first tends to select those who are
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Figure 4. Distribution of Time Spent in the Divorced State, if Ever Divorced, for a Single
at Age 17.

relatively healthy, due to genetics or life style, but does not provide much additional
protection. The genetic make-up or life style of those who are left out or divorce
may entail greater risks of a kind that a later marriage may reduce.

Returning to the question of the probability that a marriage ends in a divorce, we
can simply repeatedly begin a nuptiality history in age 17 in the Single state, calcu-
late the number of times entry into Marriage occurs, calculate the number of times
entry into Divorce occurs, and divided the latter by the former. This life table prob-
ability of divorce comes out 39%, considerably less than the official figure of 50%.

To illustrate other statistical characteristics, consider the time a woman will
spend in the divorced state, conditionally on her becoming divorced at all. Fig-
ure 4 has a simulated probability distribution for the time spent in divorce. We see
that the distribution is (essentially) bimodal. This is also a multiple decrement phe-
nomenon, in which the first mode is primarily due to those who remarry soon after
the divorce. The latter mode is primarily due to those who do not remarry, but exit
the state of Divorce via death.

1.6. A Model for Disability Insurance

To indicate the broad applicability of the simulation approach to the multistate
setting, consider a model for disability insurance. For a general discussion see
Haberman (1999); here we consider a highly stylized setting. Suppose there are
J = 4 states: j = 1 Employed; j = 2 Unemployed or outside the labor force but
able to work; j = 3 Disabled; j = 4 Dead. Consider an individual born into state
j = 2 at time t , who is in state I(x) at t + x . Suppose the salary of the individual
in age x is of the form s(x, d) given that he or she has worked d ≤ x years in his or
her life time. A fraction 0 < c < 1 is paid as a premium for disability insurance.
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Instead of a fixed benefit, suppose that the benefit is equal to b(d), if the number
of years worked is d when the entry to the state of disability occurs. How should
c be determined if the interest rate at time t + x is ρ(t + x)?

Suppose the times of entry into Employed are 0 ≤ Y1 < Y2 < · · · with respective
durations Zi . Suppose the cumulative duration or employment before the i th entry
is Hi , with H1 = 0 and Hi = Zi−1 + · · · + Z1 otherwise. At birth, the discounted
value of the entire salary is

S =
∞∑

i=1

Zi∫
0

s(Yi + x, Hi + x) exp

⎛
⎝−

Yi +x∫
Yi

ρ(u) du

⎞
⎠ dx . (1.25)

Similarly, suppose the ages of entry into Disability are 0 ≤ X1 < X2 < · · · . with
durations D1, D2, . . . and H∗

i years worked before the i th entry. Then, the total
value of the discounted benefits is

B =
∞∑

i=1

b(H∗
i )

Xi +Di∫
Xi

exp

⎛
⎝−

x∫
0

ρ(u) du

⎞
⎠ dx . (1.26)

Since the times of entries to and exists from the various states are random, both
S and B are random variables. The integrals involving interest rates in (1.25) and
(1.26) can be evaluated numerically.

To calculate the expectations of S and B, we can independently generate paths
i = 1, . . . , N , calculate the value Si of (1.25) and Bi of (1.26) for each, and then
take the averages S̄ = (S1 + · · · + SN )/N and B̄ = (B1 + · · · + BN )/N . Equating
the two expected values, we can determine the premium as fraction c = B̄/S̄. Much
more complex benefit, salary, and payment schemes can be accommodated in a
similar manner. In addition, we may let the interest rates ρ(x) to be random.

2. Linear Growth Model

2.1. Matrix Formulation

The book-keeping of population change can be based on several slightly different
ways of data collection. Rather than pursue generality, we will give one set of
definitions that will be consonant with the estimation theory of Chapter 4. We
first define how time, age, and region are to be understood. Then, we proceed to
develop the necessary arithmetic in matrix form.

We will assume that the same units are used for age and time. Typically the unit
will be one year. Sometimes forecasters wish to enter less data by using five-year
age groups (or ages 0, 1–4, 5–9, 10–14, . . . ). The theory we present assumes that
such data have been interpolated into one year age-groups. The population of year
t will refer to the population existing at a single point in time. We will assume
this is the beginning of the year, or January 1, year t . (Note that some countries
use the end of the year in their official statistics!) The jump-off population will
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be the population of year t = 0. This is the population that one wishes to treat as
the latest known population. The vital rates of year t (relating to births, deaths,
and migration) will refer to time [t, t + 1). The first forecasted births, deaths, and
migrations will then occur during year t = 0, and the first forecasted population
will be that of year t = 1.

Age x = 0 refers to those whose exact age is in the interval [0, 1), age x = 1
refers to the interval [1, 2) etc. The highest possible age is denoted by ω, and it
refers to the open-ended interval [ω, ∞). Therefore, there are ω + 1 ages in all.
Births are attributed to women only. The lowest age of childbearing is α, and the
highest age of childbearing is β (cf., Section 4.2 of Chapter 4). We will assume
that 0 < α < β < ω.

Population sizes of year t are denoted by a vector of the form

V(t) = (V(0, t)T , . . . , V(ω, t)T )T . (2.1)

Three different interpretations will be given to the vector depending on the context.
First, suppose we have a female population of a single region. In that case V(x, t)
is a scalar giving the number of women in age x . Second, suppose we have a popu-
lation consisting of both males and females. Then, V(x, t) = (V1(x, t), V2(x, t))T ,
where V1(x, t) is the number of females in age x and V2(x, t) is the number of males
in age x . Third, suppose we have a closed system consisting of males and females
from regions j = 1, . . . , J. We can then write V(x, t) = (V1(x, t)T , V2(x, t)T )T ,
where V1(x, t) = (V11(x, t), . . . , V1J (x, t))T and V1 j (x, t) is the number of fe-
males in age x , in region j = 1, . . . , J. In analogy, we write for males V2(x, t) =
(V21(x, t), . . . , V2J (x, t))T .

The cohort-component arithmetic of all three cases can be written in matrix
form as

V(t + 1) = R(t)V(t), (2.2)

once the matrix R(t) has been properly defined. The assumption required for (2.2)
to hold is that, in each case, the population is closed. An extension allowing for
migration will be given below. We will call (2.2) the linear growth model.3

Define R(t) in terms of blocks, R(t) = (R(x, y, t)), where x, y = 0, 1, . . . , ω.
In all cases R(x, y, t) = 0, unless x = 0 and α ≤ y ≤ β; or y = x − 1; or x =
y = ω. In other words, the matrices are of the form (cf., Feeney 1970),

R(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . . . . 0 R(0, α, t) . . . R(0, β, t) 0 . . . 0
R(1, 0, t) 0 . . . . . . . . . . . . . . . . . . . . . 0

0 R(2, 1, t) 0 . . . . . . . . . . . . . . . . . . 0
0 0 R(3, 2, t) 0 . . . . . . . . . . . . . . . 0
...

...
...

...
...

...
...

...
...

...
0 . . . . . . . . . . . . . . . . . . 0 R(ω, ω − 1, t) R(ω, ω, t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2.3)

3 In time series analysis the same term is sometimes used differently, to describe a state-
space model with a linear trend (e.g., Chatfield 1996, 184).
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In the case of female population we would have R(0, x, t) = expected number
of girls, born during t per woman in age x , that survive to the beginning of next
year; R(x, x − 1, t) = proportion of survivors from age x − 1 at t to age x at t + 1;
and R(ω, ω, t) = proportion of survivors in age ω.

If males are included we would have

R(0, x, t) =
[

R1(0, x, t) 0
R2(0, x, t) 0

]
, (2.4)

where R1(0, x, t) = expected number of girls, born during t per woman in age x ,
that survive to the beginning of next year, and R2(0, x, t) = expected number of
boys, born during t per woman in age x , that survive to the beginning of next year.
For survival we would have

R(x, x − 1, t) =
[

R1(x, x − 1, t) 0
0 R2(x, x − 1, t)

]
, (2.5)

where R1(x, x − 1, t) gives the female proportion of survivors from age x − 1
to x during t , and R2(x, x − 1, t) gives the corresponding proportion for males.
R(ω, ω, t) is defined analogously.

Finally, in the multiregional case R(0, x, t) is a 2J × 2J matrix consisting of
four blocks, as in (2.4). Each block is a J × J matrix. The matrix R1(0, x, t) has
the form

R1(0, x, t) =

⎡
⎢⎢⎢⎣

R111(0, x, t) R112(0, x, t) . . . R11J (0, x, t)
R121(0, x, t) R122(0, x, t) . . . R12J (0, x, t)

...
...

...
...

R1J1(0, x, t) R1J2(0, x, t) . . . R1J J (0, x, t)

⎤
⎥⎥⎥⎦ , (2.6)

where R1i j (0, x, t) expected number of girls born to women in age x in region j
during t that are alive in region i at the end of the year. Matrices R2(0, x, t) =
(R2i j (0, x, t)) for boys are similarly defined. The remaining two blocks are J × J
matrices of all zeroes. For survival, 2J × 2J matrices of the form (2.5) are defined
where J × J matrices R1(x, x − 1, t) have the (i, j) elements R1i j (x, x − 1, t) =
proportion of women in age x − 1 in region j at t that survive to region i at the
end of the year, as in (2.6). Definitions for males are similar.

Assuming that we have an estimate of the jump-off population V̂(0) and that we
have forecasts R̂(t) for t = 0, . . . , T − 1, then the cohort-component forecast of
V(T ) is simply

V̂(T ) = R̂(T − 1) · · · R̂(0)V̂(0). (2.7)

We conclude with three comments relating to the generation of births in com-
puter simulations. First, it is common that births are generated using age-specific
fertility rates. In all cases the probability of a child’s survival to the end of the year
must be accounted for. Second, if the forecast is based on o/e rates, then the proper
multiplier is the number of person years during the year rather than the popula-
tion in the beginning of the year. In practice, survival of women can be simulated
and then person years can be calculated. Thus, a correct calculation can be made.
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However, when this is done, (2.2) does not exactly represent the actual calculation.
Third, it is conventional to attribute births to women only. Logically, they could
equally well be attributed to men, but women appear to be preferred for ease of data
collection. From this perspective we are using a so-called female dominance model.
This is a particular solution to the so-called two-sex problem that is particularly
relevant when, instead of births, one considers how the incidence of new marriages
is best to be modeled (e.g., Goodman 1967, McFarland 1972, Pollard 1975, Schoen
1988).4

Example 2.1. Two-Sex Problem. Fix a calender year and let Yxy ∼ Po(λxy Kxy) be
the number of marriages among females of age x and males of age y. Suppose
there are Nx females and My males at risk of marriage. The intensity of mar-
riage in the two ages is estimated as λ̂xy = Yxy/Kxy, but how should we think
about Kxy? Suggestions include Kxy = Nx (female dominance); Kxy = My (male
dominance); Kxy = (Nx + My)/2 (arithmetic mean); Kxy = (Nx My)1/2 (geomet-
ric mean); Kxy = Nx My/(Nx + My) (harmonic mean), etc. No suggestion has
found universal acceptance, however. Empirical evidence shows that there are
“marriage circles” defined by socio-economic factors and adopted life style, within
which spouses are typically found (Henry 1972, Bozon and Heran 1989). This het-
erogeneity is not explicitly considered in the classical proposals. Thus, one model
may be a good approximation in one cultural or geographic setting but another
model may be better in another (Alho, Saari and Juolevi 2000). ♦

2.2. Stable Populations

In Section 2.2.2 of Chapter 4 we introduced the concept of stable population
in connection with life tables. For some purposes, such as forecasting, stable
population theory is relatively unimportant because, unrealistically, it assumes that
the vital rates remain constant over time. Yet, the concepts of asymptotic growth
rate and asymptotic age-distribution are useful for understanding the long-term
implications of current rates. We will now develop the stable population theory in
the multistate case, based on the matrix representation (2.2).

Suppose we have R(t) = R for all t = 0, 1, 2, . . . , where R is a real-valued
m × m matrix of the form (2.3). In case of a female population, m = ω + 1; in
case of a two-sex population we have m = 2(ω + 1); and in case of a J region pop-
ulation we have m = 2J (ω + 1). The matrix R has m eigenvalues γi and m linearly
independent right eigenvectors wi �= 0 that satisfy the equation Rwi = γi wi . Since
R is not symmetric, it has separate linearly independent left eigenvectors ui �= 0
such that uT

i R = γi uT
i . Define Γ = diag(γ1, . . . , γm), W = [w1, . . . , wm], and

U = [u1, . . . , um]. A left and a right eigenvector that correspond to different eigen-
values are orthogonal, and they can be normalized so that UT W = I. It then follows
that R has the spectral decomposition R = WΓUT = γ1w1uT

1 + · · · + γmwmuT
m

(cf., Rao 1973, 43–44; Karlin and Taylor 1975, 540–542). The eigenvalues satisfy

4 The problem is also central in enterprise demography, when mergers of firms are modeled.
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the characteristic equation |R − γ I| = 0. This is a polynomial of order m of γ ,
with m real or complex roots that are the eigenvalues. No special properties are
required of R for these results to hold.

Suppose now that all fertility rates for ages α ≤ x ≤ β and all transition rates
(relating to survival and migration) for ages 0 ≤ x ≤ β are strictly positive. To
carry through the technical argument we now make a detour. For the moment, let
us exclude all males, and all females in ages x > β, from consideration. That is,
we delete all elements relating to them from the vectors V(t) and the matrix R,
so that, e.g., in the case of a single region female population R has β + 1 rows
and columns. Since α < β the strict positivity of the rates implies that from some
power j on, all elements of the reduced matrix Rk, k > j, are strictly positive. The
so-called Perron-Frobenius theorem (Gantmacher 1959, Karlin and Taylor 1975,
542 ff) tells us then that R has a unique, strictly positive eigenvalue, say γ1, such
that γ1 > |γi | for i > 1. The corresponding right and left eigenvectors can also
be chosen real and nonnegative. Using the spectral decomposition one can then
show that (R/γ1)k → w1uT

1 , as k → ∞. It follows that for large k we have the
asymptotic approximation

RkV(0) ∼ γ k
1 w1

{
uT

1 V(0)
}
, (2.8)

where ∼ means that the elementwise ratios of left hand side and right hand side
converge to 1. We see that in the long run the initial population V(0) influences
only the level of population via the scalar uT

1 V(0). The asymptotic age-distribution
is determined by w1 (when normalized so the elements sum to one), and the
annual asymptotic (or intrinsic) growth rate is given by log(γ1). The fact that
the asymptotic age-distribution and growth rate do not depend on the initial age-
distribution is called the ergodicity of the process. Note that the right hand side of
(2.8) defines a stable population, i.e., a population that grows exponentially and
whose age-distribution does not change (cf., Section 2.2.2 of Chapter 4).

Having established the result for the female population in age x ≤ β, we can
extend it to older females by noting that the surviving women in any age x > β are
(in this deterministic treatment) a constant fraction of those in age =β. Hence, their
number will asymptotically also grow/decline exponentially. Assuming that the
female life expectancy is finite, we see that a representation of the form (2.8) holds
for females of all ages. Males can similarly be accommodated because the expected
number of male births is a constant multiple (= κ/(1 + κ)) in terms of the notation
of Chapter 4) of the female births, so they, and the numbers of male survivors, will
also grow exponentially. This completes the proof of the asymptotic behavior of
the population when fertility and mortality rates do not change over time. As shown
by Keiding and Hoem (1976) the results go through in a probabilistic context as
well when proportions are interpreted as probabilities and the average number of
children per woman is interpreted as a statistical expectation.

Although the assumption of unchanging transition rates is crude, the cohort-
component book-keeping, and the corresponding linear growth model, were im-
portant in the theory of population forecasting. Exponential and logistic models
used earlier for the total population had the drawback that they either lead to an



P1: MRM/SJS P2: MRM
SVUS004-Alho & Spencer April 29, 2005 21:32

2. Linear Growth Model 185

increase or to a decrease, forever. In contrast, a population may have unchanging
transition rates, a positive current growth rate, but a negative intrinsic growth rate.

2.3. Weak Ergodicity

It is clear that if the matrices R(t) change over time, there is no guarantee of
a particular long-term growth rate nor that there would necessarily be an age
distribution that the population might tend to. However, a more subtle asymptotic
property does hold. Subject to regularity conditions any two population vectors
will become proportional if subjected to the same sequence of matrices R(t). We
give the main ingredients of the result here, but leave the details into complements.

Suppose we have n × n matrices A(t) = (aij (t)), t = 0, 1, 2, . . . , that all have
a strictly positive element in at least one location on every row. Let two sets of
vectors X(t) = (X1(t), . . . , Xn(t))T and Y(t) = (Y1(t), . . . , Yn(t))T evolve accord-
ing to X(t + 1) = A(t)X(t) and Y(t + 1) = A(t)Y(t) from some strictly positive
starting values X(0) and Y(0). It follows that all elements of X(t)’s and Y(t)’s are
strictly positive for all t . Consider the following ratios Mt = max {Xi (t)/Yi (t)|i =
1, . . . , n} and mt = min {Xi (t)/Yi (t)|i = 1, . . . , n}. Clearly, Mt ≥ mt , but note
that Mt = mt only if the vectors X(t) and Y(t) are proportional. Matrix multipli-
cation by a positive matrix has the following contraction property,

mt ≤ Xi (t + 1)/Yi (t + 1) ≤ Mt , (2.9)

for all i = 1, . . . , n. It follows that Mt ’s form a non-increasing sequence that has
a limit Mt → M as t → ∞, and mt ’s form an non-decreasing sequence with
limit mt → m ≤ M as t → ∞. The limits can be shown to be equal provided,
for example, that the following two conditions hold. First, the positive elements
in the matrices A(t) always occur in the same locations, are bounded from above,
and bounded away from zero. I.e., there are constants 0 < a < A such that for
those elements with aij (t) > 0 we actually have a ≤ aij (t) ≤ A (e.g., LeBras 1977;
Caswell 2001, 375). Second, there is an integer j > 0 such that all elements of
any j-fold product of A(t) matrices are strictly positive.

We can translate this result in demographic terms as follows. Consider the lin-
ear growth model (2.2) and assume that all transition rates and fertility rates are
bounded away from zero and bounded above. Then, two multistate population sys-
tems that are subject to the same sequence of matrices R(t) will have asymptotically
the same distribution by age, sex and region, although the common distribution
may change over time and the population has no fixed asymptotic growth rate.
This is the so-called weak ergodicity property of demography. Intuitively, it can
be interpreted as saying that all populations will eventually “forget” their earlier
age-distributions. The current age-distribution depends on past rates only.

Another way to think about the result is that a product of non-negative matrices
P(t) ≡ R(t) . . . R(0) resembles increasingly a matrix of rank = 1, in the sense
that there is a sequence M(t) of matrices of rank 1 such that the difference P(t) −
M(t) → 0 as t → ∞. (This can happen even though the rank of the product would
be n for all t!) Therefore, the population at t = 0 influences the asymptotic total
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size of the population, but not its age distribution. The age distribution changes as
a function of R(t)’s, as does the rate of growth.

3. Open Populations and Parametrization of Migration

3.1. Open Population Systems

The multistate linear growth model of a closed population system describes all in-
and out-migration flows within the J states. That is, there are J (J − 1) transition
flows by age and sex. Although this is, in principle, the most satisfactory way to
handle state transitions, it is often hard to apply in practice since the number of
flows that must be considered can be very large. Along with the difficulty of data
collection and the lack of international standards, these considerations have led to
the use of a various shortcut procedures.

The simplest way to handle migration is to make assumptions about the net
number of migrants by age and sex, for each future year. The method is appealing
if in-migration is large and out-migration is small. Under those circumstances
changes in population size do not have an important effect on out-migration, so not
much would be gained by considering out-migration via transition intensities. In-
migration typically cannot meaningfully be analyzed via such intensities, because
“the rest of the world” is a very heterogeneous risk population, and changes in its
size and composition may have little to do with migration into the area of interest.

We formulate the net-migration model by opening a system of J regions
to the rest of the world. Parallel to the definition of R in Section 2.1, define
N(x, t) = (N1(x, t)T , N2(x, t)T )T , where N1(x, t) = (N11(x, t), . . . , N1J (x, t))T

and N1 j (x, t) is the net-number of female migrants from the rest of the
world in age x, to region j = 1, . . . , J. Similarly, write for males N2(x, t) =
(N21(x, t), . . . , N2J (x, t))T . Then, define N(t) = (N(0, t)T , . . . , N(ω, t)T )T , and
replace formula (2.2) by

V(t + 1) = R(t)V(t) + N(t). (3.1)

Starting from time t = 0, the evolution of the population system to time T > 0
follows the equation

V(T ) =
{

T −1∏
t=0

R(t)

}
V(0) +

T −1∑
k=0

{
T −1∏

t=k+1

R(t)

}
N(k), (3.2)

where the products are “backward” as in (2.7), and a matrix product with no
elements (this occurs when k = T − 1) is defined as an identity matrix. When
J = 1, the model (3.2) describes a single region, two-sex population that is open
to migration.

3.2. Parametric Models

Consider the internal flows among the J regions. There are several intermediate
models of out-migration rates. Notably, Rogers (1986) has used the so-called
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double exponential model to describe the level and age-structure of migration
intensity using ten parameters. Others have used data-analytic techniques (e.g.,
Van Imhoff et al. 1997, Lin 1999, Willekens 1999). We will briefly outline two
approaches of the latter type.

3.2.1. Migrant Pool Model

The migrant pool model uses out-migration rates that are not destination specific.
One first forecasts the total number (“pool”) of out-migrants from all regions. In-
migrants are then obtained by redistributing the migrant pool back to the regions
according to some forecasted shares. Statistically this means that destination is
independent of the origin, or that we have a log-linear model representation of net
migration from j to i ,

Rsi j (x + 1, x, t) = exp(αsi (x, t) + βs j (x, t)), (3.3)

where s = 1 for females and s = 2 for males. Even simpler versions are obtained
by taking the parameters to be age-independent, for example αs j (x, t) ≡ αs j (t) or
βs j (x, t) ≡ βs j (t). The parameters of the loglinear model can be estimated using
Poisson regression. However, due to the independence assumption one can directly
estimate the outmigration rates, and the shares, and do the multiplication.

The migrant pool model requires J out-migration rates, and J shares, for each
age and sex. If J is large, then a considerable reduction in the number of parameters
is achieved, compared to the full set of J (J − 1) interstate flows. For example,
Finland produces forecasts of the population of approximately J = 450 munici-
palities, so the model of full flows would have about 200,000 parameters for each
age and sex, whereas the pooled model only has 900. On the other hand, if J = 2,

no savings are achieved.

3.2.2. Bilinear Models

It is well-known that the intensity of migration is heavily age-dependent in a way
that is rather similar in most regions. Bilinear models of the type discussed in
Chapter 5 provide a description of age patterns.

Consider the following three (J = 3) regions of Finland: the Helsinki re-
gion (consisting of cities of Helsinki, Espoo, Vantaa, Kauniainen); North-Eastern
Finland (Lappland, North Carelia, and Kainuu); and the remaining West-Central
Finland. Helsinki region has typically gained migrants, and North-Eastern
Finland has lost. There are six flows. For sexes s = 1, 2, consider a bilinear model
of the form

Rsi j (x + 1, x, t) = µsi j (t) + γs(x) + αsi (t)νs(x) + βs j (t)ηs(x) + εsi j (x, t),
(3.4)

where E[εsi j (x, t)] = 0. For interpretation and identifiability, we may as-
sume, for example, that �xγs(x) = �xνs(x) = �xηs(x) = 0; �xγs(x)νs(x) =
�xγs(x)ηs(x) = �xνs(x)ηs(x) = 0; and �xνs(x)2 = �xηs(x)2 = 1 for s = 1, 2
separately. Then, µsi j (t) would determine the overall level of the intensity from
j to i during year t , and γs(x) would determine the dependence of migration in-
tensity on age, and the remaining two terms would represent interactions between
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Figure 5. Average Density of Male Migration in Finland, Across Three Regions, During
1987–1997.

flows and age. Consider the males. Figure 5 provides the average distribution of
migration intensity, across the six flows and 11 years of observation. Principal
components were used to estimate the vectors (or “factors” in the terminology
of factor analysis; e.g., Afifi and Azen 1979, 324–325) (νs(0), . . . , νs(ω))T and
(ηs(0), . . . , ηs(ω))T , see Figure 6. The solid curve depicting νs(x)’s accounts for
67% of the variation around the mean, and the dashed curve depicting ηs(x)’s
adds 6%, for a total of 73%. We see from the solid curve that the most important
aspect of deviations from average, is in terms of how much of migration is concen-
trated in ages 19–29 as opposed to ages < 10, 30–40, and 60–70. A large positive
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Figure 7. Coefficients of Deviations from the Mean for the Six Flows (H = Helsinki,
C N = West-Central, N = North-East), During 1987–1997.

(negative) coefficient for this pattern in a given year for a given flow would indicate
that there were relatively few (many) males in ages 19–29 in that flow. The second
most important way the flows differ is in terms of how many 18–21 year olds have
moved as opposed to 24–27 year olds. The younger age bracket coincides with
the beginning of higher education and/or leaving military service, and the latter
with family formation and seeking of permanent employment. Figure 7 shows the
coefficients (or “factor loadings”) (αi j S(t), βi j S(t)) as points on a plane for years
1987, . . . , 1997, for each of the six flows. Although the evolution of time has not
been indicated in the plot, we note that for some flows the age pattern has changed
in a regular manner (notably flow CN, or the flow from West-Central to North-East)
but in others changes have been more erratic.

4. Demographic Functionals

The notion of a multistate population system is motivated by two types of consid-
erations. First, we may primarily be interested in the size of the total population,
but disaggregating the population by state other than age and sex may be helpful
in formulating the forecasts of the vital rates. For example, we might wish to dis-
aggregate the population by ethnic categories and marital status for the purpose
of analyzing either fertility or survival, if it is known that fertility, mortality, and
migration depend heavily on ethnicity.

Second, the states may be of direct interest by themselves. For example, we
may be interested in marriage patterns on their own right; we may wish to analyze
trends in unemployment, etc. In these applications, the possible differences in the
vital rates of the different states may be of secondary interest, and the states may
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be viewed as functions of the total populations via the prevalence rates of the states
by age and sex.

More generally, we define a demographic functional as a function of either a
population vector or a vector of vital rates. Since both vectors can be viewed as
functions of age, we are speaking of a function of function, or functional. The
function may also be random given the total population vector or vital rates.

Example 4.1. Marriage Prevalence as a Functional. Let πs j (x, t) be the fraction of
those in age x at time t , in region j , of sex s, who belong to a specific subpopulation,
e.g., those in the Married state. Then, πs j (x, t) is called the prevalence of marriage.
The total married female population at time t in region j is then the following
demographic functional,

ω∑
x=0

π1 j (x, t)V1 j (x, t). (4.1)

Forecasting (4.1) involves two sources of uncertainty: how accurately can we
forecast the vector V1 j (t), and how accurately can we forecast the correspond-
ing (random) vector of prevalences π1 j (t). The approach that analyses multistate
problems via prevalence rates is sometimes called Sullivan’s method. For reasons
similar to the ones discussed in Section 4.3.3 of Chapter 4, prevalence rates are
actually complicated functions of past transitions between the states, so care is
needed in their application. ♦

Example 4.2. Life Expectancy as a Functional. The remaining life expectancy
ex , as defined in (2.8) of Chapter 4, is a nonrandom, nonlinear functional of the
age-specific mortality rates. We can view its forecast as a functional forecast. ♦

Example 4.3. Age Dependency Ratio. One of the most useful functions of age-
distributions is the so-called age dependency ratio. It is usually defined as the ratio
of the population in ages <15 or >64 to those who are in ages 15–64. Therefore,
conditionally on the population vector its value is a fixed (i.e., nonrandom), non-
linear function of the population vector. The age dependency ratio gives a rough
indication of how many dependents each person in working age must support. ♦

Example 4.4. A Relation Between Prevalence and Incidence. In the folklore of
epidemiology the following argument concerning prevalence is sometimes given.
Suppose a population of size N is composed of those D who are diseased and
N − D who are not. Let the average duration of the disease be d and let the
incidence of disease be ν. Then, we should have D = (number of new cases per
year) × (average duration) = ν(N − D)d. The prevalence of disease is p = D/N .

Then we have that p/(1 − p) = νd, or prevalence odds = incidence × duration.
For the argument to hold, one has to assume that (i) the population being studied
is stationary, and (ii) incidence and expected duration of illness are uncorrelated
as functions of age (cf., Alho 1992c). Both assumptions may fail (e.g., intensities
of most flows of Section 1.5 depend heavily on age leading to a possible violation
of (ii)), so the formula is a rough approximation only. ♦
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5. Elementwise Aspects of the Matrix Formulation

The matrix formulation of Section 2 is helpful in showing the broad outlines of
population renewal. However, examination of some of the elementwise relation-
ships provides additional insights. We consider first survival in a closed multi-state
setting, and then the renewal of female births in a single state case.

Consider the number of individuals of sex s in region j , who are in age x ≥ t
at time t . They were in age x − t at jump-off time t = 0, so their number is

Vsj (x, t) =
J∑

i0=1

J∑
i1=1

· · ·
J∑

it−1=1

Vs,i0 (x − t, 0) exp{rs,i1,i0 (x − t + 1, x − t, 1)

+ · · · + rs, j,it−1 (x, x − 1, t − 1)}. (5.1)

In later chapters we will treat the elements of the matrices R(t) as random variables.
In the single region case (J = 1) the sum reduces to a single exponential term, so
the stochastic analysis of survival involves merely a sum in the log-scale. However,
when J > 1, we have a sum of J t terms (this can be a large number: e.g., when
J = 2, and t = 50, we have 250 ≈ 1015 summands), and no transformation reduces
(5.1) into a linear form exactly. Taylor-series approximations can be provided, but
loss of accuracy cannot be avoided.

Assume now that J = 1, and consider the youngest female age-group during
year t > β. At that time all women giving birth have, themselves, been born after
the jump-off year. It follows that for j = 1 we can write

V1 j (0, t) =
β∑

x=α

V1 j (0, t − x) exp{r1 j (1, 0, t − x) + · · · + r1 j (x, x − 1, t − 2)

+ r1 j (0, x, t − 1)}. (5.2)

This is called a renewal equation for the youngest age, because it expresses the
value of year t in terms of the values of past years t − x . Under the assumption of
constant vital rates, one can solve the renewal equation to determine the asymptotic
growth rate of the population defined in Section 2.2. (In this case the exponential
terms of (5.2) comprise the net maternity function appearing on the right hand side
of (4.4) of Chapter 4.) We will come back to this in Section 5.1 of Chapter 9.

6. Markov Chain Models

When individuals move from state to state in a multistate demographic system, they
create migration histories that can be described probabilistically. The simplest such
model is the Markov chain in which an individual moves in discrete time among
a finite or countably infinite number of states and the probability of moving at
step n from state j to state k only depends on j and k, and not what states the
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individual had visited prior to n (e.g., Çinlar 1975).5 The theory of Markov chains
is related to the theory of stable populations, as discussed in Section 2.2. Instead
of pursuing those topics we provide an ecological example that uses both Markov
chain ideas and capture-recapture techniques to analyze a multistate population
system.

Example 6.1. Metapopulation of Butterflies. Consider butterflies that live in J
meadows. Each meadow may be too small to sustain a separate population, but
migrants from other meadows may regenerate a population that has become extinct
due to a storm, for example. A population consisting of such communicating sub-
populations is called a metapopulation in ecology. The situation is of ecological
interest, because human intervention may alter the pattern of meadows and forest
land and pose a threat to the butterflies (Wahlberg, Moilanen, and Hanski 1996).
The parameters of ecological interest include the probability of death within a
meadow and the probability of death during migration. These are hard to estimate
because it is impracticable to keep track of all butterflies in an experimental situa-
tion. Instead, ecologists use capture-recapture techniques to study the population.

Assume that during days t = 1, . . . , T a total of N butterflies have been captured
and marked. This generates a capture history of locations s1, . . . , sni and times
t1 < · · · < tni , for each captured butterfly i = 1, . . . , N , where ni is the number
of captures. Movements of butterflies can be viewed as having no memory: the
probability of leaving a meadow for another at time t depends only on the meadow
the butterfly is in, not on the path before t . Therefore, a Markov chain model is
appropriate. Let j = 1, . . . , J correspond to different meadows. Define a J × J
matrix of transition probabilities P = (p( j, k)) with

p( j, k) = P(state is k at time t + state is j at time t). (6.1)

These probabilities depend on mortality during the transition, and mortality while
in a meadow. For each t there is a set of meadows B(t) in which catches were
made with capture probabilities 0 < ρ j (t) < 1 for j ∈ B(t). These probabilities
are primarily influenced by the weather. We omit the complex details, but note
that the probability of the observed path can then be expressed in terms of the
transition matrix P and the capture probabilities ρ j (t). As discussed in Hanski,
Alho, and Moilanen (2000) it is natural to let transition probabilities to depend
on the area of the meadows, their mutual distances, and mortality, via parametric
models. The object is to estimate P and the capture probabilities. In this application
it is impracticable to calculate the derivatives of the likelihood function. However,
the maximization can be carried out using global optimization methods such as
simulated annealing that rely on a stochastic search of the parameter space (Press
et al. 1992, 436ff). In fact, Markov chain theory provides a practical method for
carrying the search (cf., Ripley 1987, 181–182). ♦

5 For example, the random walk model used to describe leadership duration in Section 8 of
Chapter 5 is Markov chain with states {r, . . . , 0, 1, 2, . . . }.
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Exercises and Complements (*)

1. Show that if µ(t) = b/(1 − bt) for t ∈ [0, 1], then the Runge-Kutta method
with h = 1 produces an exact solution for p(1).

2. Use the Runge-Kutta method to solve numerically the value of the survival
function p(t) for t = 0, 1, . . . , 100, when the force of mortality is given by
the Gompertz-Makeham law with A = 0.00376, R = 0.0000274, and α =
0.104. Compare the result to the exact value obtained by integrating the
hazard.

3. Consider a four state system with states employed ( j = 1), unemployed ( j =
2), outside workforce ( j = 3), and dead ( j = 4). Being absorbing, the last
state can be left out. Use the spectral representation to calculate p(t) for
t = 0, 1, . . . , 20 when the constant transition intensities are given by the
matrix ⎡

⎣−0.08, 0.03 0.10
0.02 −0.07 0.10
0.04 0.02 −0.22

⎤
⎦ ,

and the person starts from outside the workforce.
4. Continuation. Calculate the expected years spent in different states (during

[0, 20]) in the setting of Problem 3.
*5. Consider a function y(x), x ∈ [0, 1], such that y(0) = 0, y(1) = 1, y′(0) =

β, and y′(1) = γ . Determine a, b and c so that function z(x) = ax + bx2 +
cx3 has z(x) = y(x) and z′(x) = y′(x) at x = 0, 1. Interpreting y(x) =
E[I (x) = ek |I (0) = e j ]/E[I (1) = ek |I (0) = e j ] the values for β and γ are
available from the Runge-Kutta output. Neglecting the possibility of more
than one transition one might then impute the time of departure from j as
z−1(U ), where U ∼ U [0, 1]. This solution is only feasible if z(x) turns out
to be monotone.

6. Consider the setting of Example 1.3 with p(x) = (I + xB)a andν(x) = B(I +
xB)−1 for x ∈ [0, 1]. Suppose we estimate transition intensities by o/e rates,
say, ν(1/2) = ν̂. Then, deduce from the latter equation the estimate B̂ = (I −
(1/2)ν̂)−1ν̂. Substitute into the first equation to get p̂ = (I − (1/2)ν̂)−1(I +
(x − 1/2)ν̂)a. (cf., Rogers and Ledent 1976).

7. What is the average age at retirement? As in the case of mean age at child-
bearing (cf., Section 4.2 of Chapter 4), different answers to this question can
be given depending on what the goal of the calculation is. First, one can
simply calculate the average age at retirement of those who retire in a given
year. This may be what is wanted, but this average depends on the sizes of the
earlier birth cohorts, and on the earlier transitions to the state of retirement,
so it is certainly not a pure period summary of transition intensities. How can
a multistate model be used to define the concept?

8. Consider a transition j → i , but omit the indices from Nij (t) and K j (t) to sim-
plify the notation. Suppose the density of population is k(s) = k0 + k1(t − s)
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and the average rate is ν(s) = ν0 + ν1(t − s) for s ∈ [t − 1, t + 1). Deduce
that

K (t − 1) + K (t) =
t+1∫

t−1
k(s) ds = 2k0;

N (t − 1) + N (t) =
t+1∫

t−1
ν(s)k(s) ds = 2ν0k0 + 2ν1k1/3.

Use the estimates

ν1 = v(t) − v(t − 1); k1 = K (t) − K (t − 1)

to obtain the estimator (1.21) for ν0.
*9. A “quick and dirty” way to assess the statistical significance of multistate

life table summaries is as follows. Consider (1.13), and suppose first that
we observe a cohort of size N under no censoring. In this case, we estimate
the components of (1.13) by T̄ j = average time spent in j = 1, . . . , J. Let
Vj = variance of the times spent in j , so the standard error is (Vj/N )1/2.
Second, instead of cohort data, suppose we have period data that come from
a stationary population of size N . In this case we could repeatedly gener-
ate samples of size N using the estimated transition intensities, and perform
the same calculations as for a cohort. These bootstrap replications would
give us an estimate of the sampling distribution of (1.13). Our proposal is
to use the above period data procedure, even if the data do not come from
a stationary population, and to call standard errors calculated in this way
stationary equivalent standard errors or SESE’s. In this case we determine
the birth rate of the stationary population underlying simulation so that N =
person years lived in the population from which the data came. (a) Can you
see why T̄ j and Vj can be estimated from any number (�= N ) of simula-
tions rounds? (b) When would you expect SESE’s to be too small, or too
large? (Hint: think of younger and older age-distributions than the stationary
one.)

10. Consider eigenvectors Rwi = γ i wi and uT
j R = γ j uT

j with γ i �= γ j . Show
that uT

j wi = 0.

11. Consider a female population in two regions (J = 2). Suppose the female
population in age x = β is exponentially increasing with rate γ , or

V1 j (β, t) = V1 j (β, 0) exp(γ t),

for j = 1, 2. Suppose the probability that a person in age β in region i survives
to be of age x > β in region j is p ji (x, β) for i = 1, 2 and j = 1, 2. Show
that the V11(x, t) and V12(x, t) also evolve exponentially at rate γ .
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12. Consider a female population, closed to migration, that has constant fertility
and mortality rates. Restrict attention to ages x = 0, . . . , β. Suppose the limits
of childbearing ages are α = 2 and β = 4. The matrix R is of the form

R =

⎡
⎢⎢⎢⎢⎣

0 0 ∗ ∗ ∗
∗ 0 0 0 0
0 ∗ 0 0 0
0 0 ∗ 0 0
0 0 0 ∗ 0

⎤
⎥⎥⎥⎥⎦ ,

where ∗ denotes some strictly positive fertility rate (on first row) or survival
probability (on first subdiagonal). Show that there is a power j such that all
elements of Rk with k > j are strictly positive. (Hint: One way to do this is
to replace ∗ by, e.g., 1, and to carry out the multiplications with a computer.)

13. Consider a matrix R = (rij ) with i = 0, . . . , β and j = 0, . . . , β. Suppose the
elements r0 j = f j are strictly positive for j = α, . . . , β. Similarly, assume
that the elements ri+1,i are strictly positive. All other elements of R are zero.
Consider the eigenvalue problem,

Rw = λw,

where w = (w0, . . . , wβ)T is non-zero vector. Define

px =
x∏

i=1

ri,i−1.

Show first that if λ is an eigenvalue, then the corresponding eigenvector has
the form wx = cpx/λ

x for x = 1, . . . , β and w0 = c is some constant.
14. Using this, show that λ must satisfy the polynomial equation,

λβ+1 =
β∑

x=α

fx pxλ
β−x .

Note that the coefficients fx px on the right hand side are the discrete version
of the net maternity function (provided that only female births are considered
in fx !).

15. By considering values λ > 0, show that a positive, real solution to the poly-
nomial equation of Exercise 13 exists. To show that it is unique requires more
work (cf., Keyfitz 1977, 48).

16. Solve the polynomial equation of Exercise 3 numerically (using the secant
method, Newton’s method, or by using existing software) for a data set of
your country.

17. Exponential population growth. Suppose population at time t is V (t). Assume
that its growth rate satisfies the differential equation V ′(t)/V (t) = r (t). If
V (0) = A, show that for t < 0,

V (t) = A exp

⎛
⎝ t∫

0

r (s) ds

⎞
⎠ .
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18. Logistic population growth. Suppose the population growth rate satisfies the
equation V ′(t)/V (t) = r (t)(M − V (t))/M, where M > 0 is some constant.
Show that if V (0) = A < M, then by defining B = (M − A)/A we get

V (t) = M exp

⎛
⎝ t∫

0

r (s) ds

⎞
⎠
/⎛

⎝B + exp

t∫
0

r (s) ds

⎞
⎠ .

*19. Prove the relationship (2.9) by showing that

Xi (t + 1)/Yi (t + 1) =
n∑

j=1

wi j (t)X j (t)/Y j (t),

where wi j (t) = aij (t)Y j (t)/�haih(t)Yh(t).
*20. Continuation. Suppose the non-zero elements of matrices A(t) are located in

fixed locations in such a way that for some j > 1 any j-fold product A(t +
j − 1)A(t + j − 2) · · · A(t) ≡ B(t) = (bij (t)) has only strictly positive ele-
ments (cf., Exercise 12). Then, (2.9) holds for the subsequences X∗(t + 1) =
A∗(t)X∗(t) and Y∗(t + 1) = A∗(t)Y∗(t), where A∗(t) = (a∗

i j (t)) = B(t j) for
t = 0, 1, 2, . . . , and the starting values are X∗(0) = X(0) and Y∗(0) = Y(0).
I.e., we are picking every j th vector from the original sequences. (a)
Show that if the non-zero elements in A(t) satisfy 0 < a ≤ aij (t) ≤ A,

then there are constants 0 < a∗ < A∗ such that a∗ < a∗
i j (t) < A∗. (b) De-

fine w∗
i j (t) = a∗

i j (t)Y
∗
j (t)/�ha∗

ih(t)Y ∗
h (t), and show that 0 < c∗/n < w∗

i j (t),
where c∗ = (a∗/A∗)2. (Hint: conclude from Y∗(t) = A∗(t)Y∗(t − 1) that
A∗�hY ∗

h (t − 1) > Y ∗
j (t) > a∗�hY ∗

h (t − 1).)
*21. Continuation. Define M∗

t and m∗
t for the X∗(t) and Y ∗(t) processes as for the

original ones.
(a) Show that M∗

t+1 − m∗
t+1 = M ′

t+1 − m ′
t+1, where

M ′
t+1 = maxi

n∑
j=1

(w∗
i j (t) − c∗/n)

X∗
j (t)

Y ∗
j (t)

;

m ′
t+1 = mini

n∑
j=1

(w∗
i j (t) − c∗/n)

X∗
j (t)

Y ∗
j (t)

.

(b) Show first that

M ′
t+1 < M∗

t

n∑
j=1

(w∗
i j (t) − c∗/n) = M∗

t (1 − c∗),

and then that m ′
t+1 > m∗

t (1 − c∗).
(c) Conclude that M∗

t+1 − m∗
t+1 < (M∗

t − m∗
t )(1 − c∗). Since 0 < c∗ < 1,

this proves that the limits of M∗
t and m∗

t , and hence those of Mt and
mt , are equal. This proof of weak ergodicity is due to LeBras (1977).

*22. Consider a single region. An alternative to additive net migration is to use
the so-called census survival rates or census survival probabilities in place
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of ordinary survival proportions. The idea is that one corrects the mortality
rate (and birth rates) to reflect the net effect of migration in each age.

23. Suppose the transition probabilities (6.1) of a Markov chain are given by a
J × J matrix P. Suppose each state can be reached in one step from any state.
Check that a column vector of J ones is a right eigenvector of P corresponding
to eigenvalue 1. Note that the j th row of the product Pk gives the k-step
transition probabilities of the chain. Using the Perron-Frobenius theorem,
show that 1 is the largest eigenvalue and there is a J -vector u = (u1, . . . , u J )
such that u j > 0 is the probability that the chain is in state j for large k
irrespective of the state it has started from. This is an ergodic property of
Markov chains. The uj ’s determine the invariant distribution of the chain
when they are normalized to sum to 1.
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7
Approaches to Forecasting
Demographic Rates

Statistical prediction theory accepts, as a starting point, that error cannot be
avoided. The best forecast is the one that minimizes error according to the chosen
criterion. This is in contrast with the “crystal ball” usage, in which it is assumed
that forecasting is possible only when the future can be seen clearly, without error.
We believe that the statistical outlook has much to offer to demography. In partic-
ular, recognizing uncertainty leads towards its quantification. This aids in decision
making by helping us to prepare for realistic future alternatives in a systematic or
at least thoughtful manner.

In this chapter we develop a conceptual basis for the discussion of statistical
aspects of demographic time series, and provide guidance to the critical use of
time series models in demography. The emphasis will be on simple models rather
than theoretical generality. In Section 1 we discuss the basic building blocks of
time series models. In Section 2 we refine the models by allowing for intermediate
levels of autocorrelation. Section 3 discusses the various ways nonconstant means
can be handled. Then, in Section 4 we discuss models for processes whose variance
changes over time.

1. Trends, Random Walks, and Volatility

A collection of random variables Yt where t belongs to some index set is called a
stochastic process1. Earlier, the assumption of independence was natural in many
applications. For example, in Chapter 5 we used random variables Y1, Y2, . . . , Yn to
represent observations coming from different individuals (or different age-groups,
different sexes etc.). Here, we associate the observed value Yt = yt to time t , so
the random variables can be used as a probabilistic model for a time series. This
creates a natural ordering for the variables, and many forms of dependence can be
entertained.

1 The random variables are assumed to be defined on the same probability space.

198
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If Yt = εt , where ε1, ε2, . . . , εn is an i.i.d. sequence of random variables with
E[εt ] = 0 and Var(εt ) = σ 2

ε , then (especially in engineering literature) one often
speaks of white noise or a white noise process.2

Define Zt = Y1 + · · · + Yt = ε1 + · · · + εt , for t = 1, 2, . . . , n, and Z0 = 0.

This is a random walk. It is characterized by the fact that the first differences,
or increments, Zt − Zt−1 = εt , form an independent sequence. Suppose we have
observed the process Zt for t = 1, . . . , n, and we would like to forecast its future
values. Since the increments εt+1, εt+2, . . . are independent of Zt , t ≤ n, and they
have mean zero, the minimum mean squared error forecast is the latest observed
value of Zn , forever after.

Random walks have long been used as models for stock prices, because in ef-
ficient markets stock prices should be unpredictable (e.g., Bachelier 1900; Taqqu
2001; Bernstein 1998). In continuous time the corresponding model is called Brow-
nian motion. It has been used as a model for the erratic movement of particles in
liquids, where collisions with other particles occur continuously. We will present
evidence in Example 4.1 of Chapter 8 that a random walk also provides a service-
able approximation for the (logarithm of the) total fertility rate in industrialized
countries. This provides us intuition concerning the relationship between period
and cohort fertility.

Example 1.1. Cohort Fertility Is Smoother. Figure 1, dashed line, is a realization
of a process Tt = 1.7 × exp(Zt ), where Zt is a random walk with the standard
deviation of the unit increment σε = 0.06. (Motivation for this particular choice
will be provided in Example 4.1 of Chapter 8.) At t = 0 the process starts at 1.7.
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Figure 1. Hypothetical Cohort (Solid) and Period (Dashed) Fertility Under a Pure Period
Random Walk Model.

2 If made audible via a transmitter, the process sounds like noise you hear in between stations
on radio.
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The process Tt represents the period total fertility rate. The solid curve is moving
average of the series, with weights wi > 0, w15 + · · · + w49 = 1. The weights
used in the graph correspond to the distribution of total fertility to single years of
age, as estimated for 1985 in Italy; cf., Example 4.1. Thus, the solid curve can be
interpreted as the cohort total fertility rate. (For an example of an observed cohort
total fertility series, see Figure 7 of Chapter 4.) The curves have been matched so
that the cohort value has been plotted for the year when the cohort is of age =
28, the mean of the fertility distribution. That is, the solid curve can be defined as
Ct = w15Tt−13 + . . . + w49Tt+21. We find that the cohort curve is much smoother
than the period curve although, by construction, all variation is due to period
effects. ♦

In principle, the example could be turned around so that period fertility would
be represented as a weighted average of cohort fertility. However, in the absence of
period effects it would be difficult to imagine why cohorts in their different phases
of childbearing might coordinate their timing to produce the observed variations
in period fertility.

The example shows that the relative smoothness of the cohort curve is to be
expected even when there are no cohort effects. It is certainly plausible that the
cohort point of view is useful in understanding the childbearing decisions of the
couples. However, in order to be able to capitalize on the regularities of the cohort
fertility in forecasting, more is needed than mere smoothness!

Let us now take µ �= 0, and define first Yt = µ + εt , and then Zt = Y1 + · · · +
Yt = tµ + ε1 + · · · + εt , for t = 1, 2, . . . , n. The Zt process is a random walk with
a drift. For µ > 0 this process tends to wander up and for µ < 0 it tends to wander
down. We see that an assumption of nonzero mean for the increments actually
induces a linear trend into the summed series, E[Zt ] = tµ. In long-term analysis
of stock prices it is necessary to take into account the fact that stocks have appre-
ciated at an average rate of several percent per year. Thus, a rough approximation
of the development of a stock’s price would be to assume that in t years’ time
the current price will be multiplied by a factor exp(tµ + ε1 + · · · + εt ), µ > 0. In
contrast, in the analysis of mortality we typically observe declines that are inter-
rupted by plateaus or even increases. Thus, a model of the same type with µ < 0
may provide a serviceable approximation for many ages. In both cases, it is not
simply the value of µ that is of interest, but also the value of σ 2

ε , or the volatility,
because it determines how much the process tends to wander around the trend. In
fact, since the sum of i.i.d. terms with mean zero and finite variance is (subject to
regularity conditions) approximately normally distributed, the change in value has
an approximate log-normal distribution. Therefore, if the values of µ and σε are
known, and the process starts from value V at t = 0, then the probability is ap-
proximately 95% that the process is within limits V exp(tµ ± 1.96σεt1/2) at t > 0.
This is an example of a prediction interval, i.e., an interval that has a prescribed
probability of containing the value of a random variable. (In contrast, a confidence
interval is a random interval with a prescribed probability of including a constant,
such as a mean.)
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In addition to giving rise to random walks, white noise provides a basis for
simulating arbitrarily correlated variables. To see this, define ε = (ε1, . . . , εn)T a
vector of i.i.d. variables with σ 2

ε = 1. Let Σ be an arbitrary covariance matrix. The
Cholesky decomposition gives us a way to find a lower triangular matrix C such
that Σ = CCT . It follows that a vector Y = Cε has covariance matrix Σ, because
Cov(Y) = CCov(ε)CT = Σ. Note that the lower triangularity implies that any Yt

depends on εi , i = 1, . . . , t, but not on i > t.

Example 1.2. Cholesky Decomposition. Suppose the target covariance Σ and the
Cholesky matrix are of the form

Σ =
⎡
⎣ 1 ϕ ϕ2

ϕ 1 ϕ

ϕ2 ϕ 1

⎤
⎦ , C =

⎡
⎣ c11 0 0

c21 c22 0
c31 c32 c33

⎤
⎦ , (1.1)

where |ϕ| < 1. Write c = (1 − ϕ2)1/2, for short. By a direct matrix multiplica-
tion one can show that a solution is c11 = 1, c21 = ϕ, c31 = ϕ2, c22 = c, c32 = ϕc,
c33 = c. (Note that the decomposition is only unique up the sign of the diag-
onal terms.) Consider the transformed values Y = Cε. We find that Y1 = ε1,

Y2 = ϕε1 + cε2, Y3 = ϕ2ε1 + ϕcε2 + cε3. One consequence of these relationships
is that we can write Yt = ϕYt−1 + cεt for t = 2 and t = 3. This is an example of
the so-called autoregressive processes that will be discussed in more detail in the
next section. ♦

2. Linear Stationary Processes

In the 1920’s, 1930’s, and 1940’s, when demographers were developing the cohort-
component forecasting system, probabilists developed foundations for the so-
called stationary processes. This theory was based on a linear transformation of
white noise, much the same way as the Cholesky decomposition was used above.
Although the main features of the theory were essentially perfected by the begin-
ning of the 1950’s (cf., Doob 1953), their practical application in statistics did not
become standard until the publication of the monograph by Box and Jenkins in
1970 (second edition 1976, third 1994). Early examples of their use in demography
include Saboia (1974, 1977). In this section we will develop the theory with two
primary purposes in mind. First, we want to be able to discuss the strengths and
limitations of basic time series techniques. Second, we will establish a number of
formulas regarding the prediction errors of such processes that will later be useful
in the description of qualitative aspects of errors of different types of forecasts. For
details about practical modeling, and time series analysis in general, we refer to
standard textbooks such as Box and Jenkins (1976), Chatfield (1996), or Harvey
(1989).
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2.1. Properties and Modeling
2.1.1. Definition and Basic Properties

Let . . . , Y−1, Y0, Y1, Y2, . . . be a (doubly infinite) sequence of random variables. As
above, we associate the observed value Yt = yt with time. A particular realization
. . . , y−1, y0, y1, y2, . . . of the process is called a sample path. Suppose the i.i.d.
sequence . . . , ε−1, ε0, ε1, ε2, . . . with E[εt ] = 0 and Var(εt ) = σ 2

ε is white noise.
As in the case of Cholesky decomposition (Example 1.2), let us assume that each
Yt can be written in the form

Yt = ψ0εt + ψ1εt−1 + ψ2εt−2 + · · · , (2.1)

where ψ0 = 1, and the series of the absolute values of ψ j ’s converges. The process
εt is also called an innovation process, because its values generate the Yt ’s.3 The
process (2.1) is called a linear process, because each Yt is a linear function of the
innovation process. Since the expectation of each term on the right hand side of
(2.1) is zero, it follows that E[Yt ] = 0 for all t. In practice, processes (2.1) are
used for centered data (i.e., for variables from which the estimated mean has been
subtracted) so the assumption of mean zero is not a limitation. If the estimated
mean is imprecise, e.g., if the number of observations is too small, the theory is
only an approximate guide.

The variance of Yt is finite, and of the form

Var(Yt ) = σ 2
ε

∞∑
j=0

ψ2
j , (2.2)

for all t. More generally, we have that

Cov(Yt , Yt+k) = σ 2
ε

∞∑
i=0

ψiψi+k (2.3)

for all t, and k ≥ 0.

We have observed that the mean of the process Yt does not change over time.
Moreover, since the autocovariance (2.3) only depends on the lag k (not on t), the
process is called stationary (in the wide sense).

Define γk = Cov(Yt , Yt+k). The autocorrelation function of the process is
given by ρk = γk/γ0 for k = 0, 1, 2, . . . . When data for t = 1, . . . , n are avail-
able, autocovariance is usually estimated by the sample autocovariance ck =
�t (Yt − Ȳ )(Yt+k − Ȳ )/n, where Ȳ = (Y1 + · · · + Yn)/n and the summation is
over t = 1, . . . , n − k. Autocorrelation is estimated by the sample autocorrela-
tion rk = ck/c0.

3 From a mathematical point of view the εt ’s form an orthonormal basis of a vector space
(Hilbert space) on which each of the Yt is defined, with coordinates given by the ψ j ’s. For
most aspects of the theory, an assumption of uncorrelatedness of the innovations would
suffice.
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Autocorrelation is a useful tool in the identification of a linear model. Unfor-
tunately, as a rule of thumb, the standard error of the first sample autocorrelation
is approximately n−1/2 (e.g., Box and Jenkins 1976, 34–36). A time series must
have at least 50–100 observations to allow for a somewhat precise estimate of
the autocorrelations. This in itself is a strong reason for considering parsimonious
models, i.e., models with a small number of parameters.

2.1.2. ARIMA Models

We now define a subclass of linear processes that depend on a small number of
parameters. An advantage is the availability of relatively objective methods of
identifying a model from the class.

Example 2.1. MA(q) Processes. Assume ψq �= 0, and ψ j = 0 for j > q. Then,
(2.1) defines a moving average process of order q , which is usually denoted as
M A(q). Written with the customary symbolism ψ1 = −θ , the MA(1) process is of
the form Yt = εt − θεt−1, for example. Its variance is Var(Yt ) = σ 2

ε (1 + θ2), and
its autocorrelation function is zero except ρ1 = −θ/(1 + θ2). An MA(2) process is
usually written as Yt = εt − θ1εt−1 − θ2εt−2, etc. As a limiting case, taking q = 0
we obtain the white noise discussed in Section 1. ♦

Moving averages are frequently used in demography and economics to smooth
out random variation. Suppose, for example that Dt ∼ Po(µt Kt ) is the number of
deaths in year t (in a given age range, in a given area), where µt is the hazard and
Kt is the number of person years. Define mt = Dt/Kt as the observed mortality
rate. Using 5 years on both sides to estimate the local level for year t we get the
smoothed value

m̂(t) =
5∑

j=−5

w j mt− j , (2.4)

where w j > 0 and w−5 + · · · + w5 = 1. Then the smoothed values are essentially
moving average processes, and as such autocorrelated. To illustrate the possible
consequences of smoothing, suppose that µt ≡ µ and Kt ≡ K for all t. In this
case E[mt ] = µ and Var(mt ) = µ/K . Suppose the deaths during different years
are independent with µ = 0.01 and K = 10,000, so 100 deaths are expected every
year. Let w j = 1/11. Figure 2 has a graph of such a process for t = 1, . . . , 100.

We see that smoothing creates artificial waves in the plot of the estimate even
though the underlying time series values are i.i.d. This is called a Slutsky effect in
recognition of the pioneering work of Slutsky (1927).

Example 2.2. AR(1) Processes. An autoregressive process of order 1, or an AR(1)
process, satisfies the recursive equation,

Yt = ϕYt−1 + εt , (2.5)

where |ϕ| < 1. Using the recursion (2.5) for t − 1, and substituting back in, we
get that Yt = εt + ϕεt−1 + ϕ2Yt−2. Continuing in this manner we get after n steps
that Yt = εt + ϕεt−1 + · · · + ϕnεt−n + ϕn+1Yt−n−1. Since |ϕ| < 1, the last term
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Figure 2. Hypothetical Mortality Rates and a Moving Average Estimate of their Level.

converges to zero, as n → ∞. Thus, an AR(1) process is obtained by taking ψ j =
φ j for all j, in (2.1). Note that the assumption |ϕ| < 1 guarantees that the variance
(2.2) is finite. In fact, Var(Yt ) = σ 2

ε /(1 − ϕ2) and Cov(Yt , Yt+k) = σ 2
ε ϕk/(1 − ϕ2).

It follows that the autocorrelation function is ρk = ϕk for all k = 0, 1, 2, . . . Thus,
in contrast with the MA(1) process, whose autocorrelation is zero after one lag,
the current value of the AR(1) process is correlated with all earlier (and future)
values. We can interpret εt as a one-step ahead prediction error, because if Yt−1 is
known we predict Yt by ϕYt−1. ♦

In analogy with (2.5) one can define the general autoregressive process of order
p, or AR(p), by the recursion, Yt = ϕ1Yt−1 + · · · + ϕpYt−p + εt , where ϕp �= 0.4

To provide a compact description, it is customary to define a back shift (or lag)
operator B such that BYt = Yt−1, B2Yt = Yt−2 etc. We can define a polynomial
operator �(B) = 1 − ϕ1 B − · · · − ϕp B p. Then, the AR(p) process can be written
as �(B)Yt = εt .

To guarantee that such a recursive process has a representation (2.1) (i.e., that
it defines a stationary process with a finite variance) the coefficients ϕ j must be
such that the roots of the polynomial equation �(B) = 0 are strictly greater than 1
in absolute value. For example, when p = 1, we have 1 − ϕB = 0, or B = 1/ϕ,
so the condition is satisfied in Example 2.2. In this case we have (1 − ϕB)Yt = εt ,
or Yt = (1 − ϕB)−1εt = (1 + ϕB + ϕ2 B2 + · · ·)εt .

Define another operator �(B) = 1 − θ1 B − · · · − θq Bq . Then, the MA(q)
process of Example 2.1 can be written as Yt = �(B)εt . An autoregressive
moving average process, or ARMA(p, q) process, is defined by the equation
�(B)Yt = �(B)εt . For example, when p = q = 1, we get the ARMA(1,1) process

4 This notion generalizes further to vector-valued autoregressive (VAR) processes, in which
the coefficients are matrices (cf., Chatfield 1996, Ch. 12).



P1: MRM/SJS P2: MRM
SVUS004-Alho & Spencer May 3, 2005 15:36

2. Linear Stationary Processes 205

Yt − ϕYt−1 = εt − θεt−1. The ARMA(2,2) process is usually written as Yt −
ϕ1Yt−1 − ϕ2Yt−2 = εt − θ1εt−1 − θ2εt−2 etc.

It is clear from the defining recursive equation of the AR(p) processes that εt

can be expressed in terms of the Yt− j ’s for j ≥ 0. To guarantee the same for the
MA(q) processes, and ARMA(p, q) processes in general, we must require that the
roots of the polynomial equation �(B) = 0 are greater than one in absolute value.
Such processes are called invertible. In the case of MA(1) process, this means that
we must have |θ | < 1, for example.

A final piece in the description of ARMA(p, q) processes is to tie up the repre-
sentation �(B)Yt = �(B)εt with (2.1). Define a power series �(B) = 1 + ψ1 B +
ψ2 B2 + · · · , so (2.1) can be written as Yt = �(B)εt . The representation (2.1) of
ARMA(p, q) processes is obtained by equating the two power series �(B) =
�(B)−1�(B). In the case of ARMA(1,1) process we get ψ j = (ϕ − θ )ϕ j−1 for
j > 0, for example. We see that the ARMA(p, q) processes are a subclass of linear
processes such that �(B) is a ratio of two polynomials.

The concept of ARIMA(p, d, q) models, or autoregressive integrated mov-
ing average models, is obtained by assuming that the d-fold difference of the
process follows an ARMA(p, q) model. For example, suppose Yt follows an
ARMA(p, q) model, and define Zt = Y0 + · · · + Yt . In this case Zt is the summed,
or integrated, version of Yt , and we have that (1 − B)Zt = Yt . Therefore, Zt

follows the ARIMA(p, 1, q) model. Furthermore, if Xt = Z0 + · · · + Zt , then
(1 − B)Xt = Zt and (1 − B)2 Xt = Yt , so Xt is an ARIMA(p, 2, q) process etc.

Example 2.3. EWMA Processes. Consider an ARIMA(0,1,1) model of the form
(1 − B)Zt = εt − θεt−1, where 0 < θ < 1. With some algebra, one can show that
Zt = εt + mt−1, where

mt−1 = (1 − θ )(Zt−1 + θ Zt−2 + θ2 Zt−3 + · · ·) (2.6)

can be viewed as the “level” of the process at time t . Since the weights (1 −
θ )θ j , j = 0, 1, . . . sum to 1 and fall off exponentially, this estimate of level is
often called exponentially weighted moving average, or EWMA. We see from
(2.6) that mt = (1 − θ )Zt + θmt−1, so for 0 < θ < 1, the estimate of the level
is updated as a weighted average of the new observation and previous estimate.
Substituting in Zt = εt + mt−1 we see that the updating equation can also be
expressed as mt = (1 − θ )εt + mt−1. This is the so-called error-correction form
of the updating formula. Even before the systematic development of the theory
of ARMA models by Box and Jenkins, the EWMA method had evolved into a
forecasting method on its own right (cf., Muth 1960). In this approach, a forecast
of Zt+1 is mt , because the future error εt+1 has mean zero and is independent
of the past observations. From the error correction form we see that in general,
the forecast is Ẑt+k = mt . In estimating mt one often uses judgment to select the
parameter θ rather than estimate it from the data. In this case it is customary to
call 1 − θ as the smoothing parameter. One way to think about the smoothing
parameter is that it determines the weighting involved in the computation of the
local level (2.6). If we have a (subjective) view of how far back the data are relevant
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in the determination of the local level, then a value may possibly be determined.
Chatfield (1996, 70) notes that values of the smoothing parameter in the range
from 0.1 to 0.3 are often preferred. An illustration will be given in Figure 6. ♦

2.1.3. Practical Modeling

The first step in modeling is to plot the data. This reveals if there are unusual ob-
servations that may have a large influence on estimation. Sometimes the unusual
observations are data errors that should be corrected before proceeding further. At
other times they may be real, but reflect unusual aspects of the process. Examples
include peaks in mortality or fluctuations in fertility caused by wars, epidemics
or famines; level shifts in population data caused by changes in national or other
administrative borders; or discontinuities caused by changes in migration or nat-
uralization policies.

Whether the series varies around a fixed mean with a constant variance often can
be seen from the plot. Note that apart from social, economic, or political factors,
the volatility of a demographic process may change simply as a consequence
of population growth because the variance of a binomial or Poisson variable is
proportional to the expected value of the number of events.

In addition to the plot, one would typically compute the autocorrelation func-
tion. We see from (2.3) that the autocorrelation of all linear processes (2.1) must
eventually converge to zero because the absolute convergence of the series of ψ j ’s
implies that ψ j → 0 as j → ∞. In contrast, if the series has a polynomial trend
then, depending on the length of series, the lag, and the order of the polynomial,
many types of persistent fluctuating patterns can manifest themselves. Thus, if
the autocorrelations do not approach zero quickly, then the series may be best
approximated by a nonstationary model.5

For example, a visual inspection of the sex ratio at birth in Figure 6 of Chap-
ter 4 suggests that the process does not have a constant mean. This shows up in
the autocorrelation function. It starts from 0.52 at lag = 1, and then declines in
roughly monotone manner, but at lag = 51 we still observe a value as high as 0.23.
The latter value appears to be statistically significant because there are n = 250
observations. (If the k th autocorrelation is approximately ϕ|k|, then the variance of
an autocorrelation beyond the first is approximately n−1(1 + ϕ2)(1 − ϕ2)−1 (Box
and Jenkins, 1976, 35), and the estimated standard error is about 0.08.) In con-
trast, the autocorrelations of the first differences begin from −0.41 at lag = 1,
and remain small in absolute value, with one value at 0.15 and the rest much
smaller. A comparison of parsimonious ARIMA(p, 1, q) models shows that an
ARIMA(0,1,1) model provides an approximate representation for the series.

5 Nonlinear models are also an alternative. They are capable of representing different
behavior when the series is at a relatively high level as compared to being at a relatively
low level; when it is increasing as compared to decreasing, etc. (Complement 15) Existing
models appear to have been mostly motivated by economic considerations (e.g., Granger
and Teräsvirta 1993), but they may eventually provide useful alternatives for demographic
data, as well.
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Example 2.4. Vital Processes Appear Nonstationary. We analyzed the logarithm
of white age-specific fertility rates in 1921–1988 in ages 14,15, . . . , 46, and the
logarithm of mortality rates for males and females in 1940–1988 in ages 1, 2, 3,
4, 5–9, 10–14, . . . , 80–84, 85+ in the U.S. Based on plots and the study of au-
tocorrelations we concluded that all series appeared nonstationary (see also Lee
and Tuljapurkar 1994; Lee 1974). The autocorrelations did not approach zero, as
they should for a linear process. We then looked for the smallest d such that the
d-th difference both looked stationary in a plot and had an autocorrelation that
did approach zero fairly quickly. Fertility had to be differenced twice to remove
persistent patterns from autocorrelations in ages 19–44. Mortality had to be differ-
enced twice for stationarity in ages 30–49 for males and in ages 20–49 for females.
For other rates differencing once was sufficient. The sample first-autocorrelations
r1 of the first differences of the U.S. fertility series mentioned above varied from
−0.24 to 0.75. with average = 0.41. For the first differences of the mortality rates
we had −0.39 ≤ r1 ≤ 0.53 with male average −0.02 and female average −0.03.

The analysis indicates that while there are opportunities for ARMA modeling
of the first differences of these series, the representations may be approximate
only. ♦

Once a stationary looking series is found, one tries to identify an ARMA(p, q)
model for it. Although there is no theoretical limit for the values of p and q, it is
relatively rare that demographically meaningful models would have p + q > 3,
when annual data are used. (Monthly data displaying seasonality are a different
matter that will not be discussed here.) Even values p = 3 or q = 3 yield models
that are rarely interpretable, because they imply an independent influence from
year t − 3 on the value of the process at year t , even when one controls for the
values of the process in years t − 1 and t − 2. (This effect can be quantified in terms
of partial autocorrelations; Complement 12.) In any event, it is advisable to fit at
least all of the remaining models and to compare them based on the residual sum
of squares, the significance of the parameter estimates, and estimated residuals,
much the same way ordinary regression models are identified.

Sometimes there is a peak in autocorrelation at a lag k that defies explanation.
Although such peaks can theoretically arise from infinitely many ARMA(p, q)
processes, it sometimes happens that the correlation is due to a small number,
possibly just one, pair of observations k steps apart, (Yt , Yt−k) for some t . Such
pairs may be difficult to detect from the plot of the series itself. A useful diagnostic
tool for investigating this possibility is to make a so-called lag-plot with lag k, i.e.,
a plot of the pairs (Yt , Yt−k) for all t . We will illustrate this in Section 2.2.2.

As a practical example of the application of the ARIMA models we will consider
the annual growth rate of the U.S. population in 1900–1999. The population is
the so-called mid-year population, or the population as of July 1, each year.6 In

6 The data are from Population Estimates Program, Population Division, U.S. Census
Bureau, Internet Release Date: April 11, 2000, Revised date: June 28, 2000, http://
eire.census.gov/popest/archives/pre1980/popclockest.txt.
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Figure 3. The Growth Rate of the U.S. Population in 1900–1999, and Three Forecasts:
AR(1) (dashes) and ARIMA(2,1,0) with (dot-dashes) and without a Constant Term (short
dashes).

1900–1949 the figures exclude Alaska and Hawaii. Thus, there is a level shift from
1949 to 1950. The population comprises the national resident population (or de
jure population) except that in years 1917–1919 and 1940–1979 the armed forces
overseas have been included. This has the effect of smoothing the growth rate,
notably around 1917–1919. Although adjustments could be made, we chose not
to do so because their effect would be minor.

Define Vt as the size of the population in year t . Then, log(Vt+1/Vt ) is the growth
rate from t to t + 1. Figure 3 has a plot of the growth rate of the U.S. population
for 1900–1999, together with three point forecast that will be discussed at the end
of this example. The plot shows that the series has a declining trend. The nonsta-
tionarity shows up in the autocorrelation function, which declines roughly linearly
from 0.85 at lag = 1 to −0.37 at lag = 25. A plot suggests that the first differences
vary around a constant mean. (In Section 4.1 we will see that the variance is not
constant, however.) The first seven autocorrelations are −0.122, −0.372, 0.255,
0.149, −0.248, −0.140, 0.278. Beyond lag = 7 the correlations are < 0.2 in abso-
lute value. Lag-plots (not shown) indicate that the negative autocorrelation at lag
2 and the positive autocorrelation at lag 7 are largely due to outliers (e.g., declines
in 1918–1919 and 1945 coupled with increases in 1920–1921 and 1947). Thus,
the best fitting ARIMA model need not be best model for forecasting purposes.
We will come back to this issue later, but proceed now with the data as they are.

Since the growth rate is the first difference of log population sizes, an
ARMA(p, q) model for the first difference of the growth rate is the same as an
ARIMA(p, 1, q) model for the log population size. Slight differences in numerical
output may occur, however, depending on how the endpoints of the series are han-
dled in estimation. Various ARIMA(p, 1, q) models were fitted. Based on residual
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checks, models ARIMA(0,1,1), ARIMA(1,1,0), and ARIMA(1,1,1) are not accept-
able. ARIMA(2,1,0) fits better than ARIMA(0,1,2), and just about equally well as
ARIMA(0,1,3). Adding autoregressive parameters does not help. Although (as we
will see) the first autoregressive coefficient is not significant, ARIMA(2,1,0) is a
reasonable choice within this class of models.

We used Minitab to carry out the analyses. Let Yt be the rate of change. The esti-
mated model is Yt − Yt−1 = −0.1644(Yt−1 − Yt−2) − 0.3901(Yt−2 − Yt−3) + εt ,
if the mean of the differences is assumed to be zero. The estimated standard error
of both autoregressive parameters is 0.0939, so the two P-values are 0.083 and
0.000, respectively. If we allow a nonzero mean by adding a constant term to the
model, we get the estimates Yt − Yt−1 = −0.0001618 − 0.1687(Yt−1 − Yt−2) −
0.3937(Yt−2 − Yt−3) + εt , instead. (Note that the constant is not the mean of the
differences itself, when the model includes autoregressive terms; Exercise 13.)
The estimated standard error of the constant term is 0.00020 corresponding to a
P-value of 0.430.

In a time series setting, the MLE’s are usually calculated under a normal as-
sumption. Even when the assumption is true the MLE’s are typically biased to
some extent and their estimated standard errors are based on approximations that
may not be accurate in small samples. A version of the bootstrap method discussed
in Chapter 3, the so-called parametric bootstrap can be used to investigate both
aspects once a model has been fit (Efron and Tibshirani 1993; cf. Section 8.2 of
Chapter 3). The maximum likelihood estimation procedure gives us a set of es-
timated residuals. In this application of the parametric bootstrap, we can sample
with replacement from the set of estimated residuals, use the sampled values as
innovations, and generate realizations (sample paths) from the estimated model
with the same number of observations as the original series. (Thus the procedure is
valid even if the normality assumption is not true.) We produced 1,000 such real-
izations and re-estimated the ARIMA(2,1,0) model with the constant for each one.
This produced 1,000 estimates of the constant γ and the autoregressive parameters
ϕ1 and ϕ2 that can be used to estimate the joint sampling distribution of (γ , ϕ1,
ϕ2). The bootstrap estimates of standard errors of the autoregressive parameters
were 0.0935 and 0.0943, so they were essentially identical with the estimate given
by Minitab. Similarly, the bootstrap estimate of the standard error of the constant
term was 0.00020. In this case the two analyses agreed.

Figure 3 also shows three forecasts of the series. Stationary ARMA(p, q) models
do not seem appropriate for the series based on the unacceptable fit, but we have
included a forecast made with an AR(1) model to show the effect of using a
stationary model for a series that obviously is nonstationary. The other two forecasts
are based on an ARIMA(2,1,0) model either with or without a constant term.
We see that the AR(1) based forecast continues smoothly from the last observed
value to the historical (1900–1999) mean. The ARIMA(2,1,0) without a constant
term produces essentially the same forecast as a random walk model. After small
initial wiggles it runs parallel to the time axis. The model with a constant term
estimates the average rate of change in the growth rate, and assumes the linear
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change to continue. We will comment on the difference of the latter two models in
Example 3.3.

2.2. Characterization of Predictions and Prediction Errors
2.2.1. Stationary Processes

Suppose we make a forecast for Yt+k at time t . From (2.1) we can write the future
values as Yt+k = Fk(t) + Ek(t), where

Ek(t) = ψ0εt+k + ψ1εt+k−1 + · · · + ψk−1εt+1, (2.7)

and

Fk(t) = ψkεt + ψk+1εt−1 + · · · (2.8)

If the ψ j ’s are known, then we know the value of Fk(t) at time t for an invertible
ARMA(p, q) process, but Ek(t) is independent of the past and has mean = 0. It
follows that Fk(t) is the minimum mean-squared-error forecast of Yt+k .7 Note that
error = forecast − true value. Hence, Ek(t) is the negative of the forecast error.

Since Ek(t) is independent of Fk(t), its distribution is the same, both condition-
ally given the past of the process until time t , and unconditionally. To put it in
another way, (apart from the problem of identifying and estimating a model for
the process) the accuracy of the forecast is independent of the particular sample
path the process has followed until time t . Intuitively, this means that the “fore-
castability” of the linear process is assumed not to depend on history or to change
over time.

In practice, the ψ j ’s must be estimated from data so Fk(t) is only known up
to estimation and specification error. Although such errors can be large, in this
section they will be ignored.

Letting k → ∞ in (2.8), we see that the forecast function of all stationary
processes of type (2.1) converges to zero (or to the mean when the estimated mean
is added back), because the ψ j ’s converge to zero. This shows that the analysis of
the autocorrelation structure is primarily useful in relatively short term forecasting.
In the longer term the value of the mean is decisive.

Suppose now that we use (2.8) to make two forecasts at time t , one for time
t + k, the other for time t + k + h with k, h ≥ 0. From (2.7) one can deduce that

Cov(Ek(t), Ek+h(t)) = σ 2
ε

k−1∑
j=0

ψ jψ j+h . (2.9)

It follows that, when Fk(t) is known, the covariance structure of the forecast error
does not depend on the time t at which the forecast is made. When this is the case,
we will write Ek instead of Ek(t). In typical applications the mean of a process
must be estimated from the data and the correlation analysis is carried out on

7 Geometrically, we may view Fk(t) as the projection of Yt+k on the subspace spanned by
(εt , εt−1, . . .). The projection is orthogonal, because Fk(t) and Ek(t) are uncorrelated.
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centered data. In forecasting the mean is added back in. Denote the variance of
the mean estimate by σµ

2. In forecasting k steps ahead, we see that Var(Ek)/σ 2
µ →

Var(Yt )/σ 2
µ, as k → ∞, so σ 2

µ is of the same order of magnitude as Var(Ek), and
error in the estimation of the mean always remains a factor of uncertainty for all
lead times.

Example 2.5. Standard Error Under AR(1) Residuals. Estimation error depends
on the autocorrelation structure of the process. Suppose we have observations
Zt = µ + Yt , where Yt = ϕYt−1 + εt . That is, Zt is an AR(1) process
with mean µ. Suppose we have observation at t = 1, . . . , n, and we take
µ̂ = (Z1 + · · · + Zn)/n. What is the standard error of the mean? We have that
Var(Z1 + · · · + Zn) = nσ 2

Z + 2{(n − 1)ϕσ 2
Z + (n − 2)ϕ2σ 2

Z + · · · + ϕn−1σ 2
Z } ≈

nσ 2
Z (1 + ϕ)/(1 − ϕ) for large n, so the standard error is approximately σZ [(1 + ϕ)/

n(1 − ϕ)]1/2. We see that the higher the correlation ϕ, the higher the standard
error. For example, if ϕ = 0.9, then the standard error is over 4 times bigger than
under independent random sampling. ♦

Denote by ρ(X, Y ) the correlation between any two variables X and Y . Then,
(2.9) leads to the well-known result (Box and Jenkins 1976, 160)

ρ(Ek, Ek+h) =
k−1∑
j=0

ψ jψ j+h

/{
k−1∑
i=0

ψ2
i

k+h−1∑
l=0

ψ2
l

}1/2

. (2.10)

Example 2.6. Correlations of Forecast Errors For AR(1) Processes. In the case
of an AR(1) process, ψk+ j = φkψ j , so the forecast of Yt+k is Ŷ t+k = ϕkYt for
k = 1, 2, . . . From (2.9) we see that, if ϕ is known, the theoretical variance of the
forecast error is σ 2

ε (1 − ϕ2k)/(1 − ϕ2). From (2.10) we find that

ρ(Ek, Ek+h) = ϕh

[
1 − ϕ2k

1 − ϕ2k+2h

]1/2

. (2.11)

For large k the correlation is approximately ϕh . For large h the correlation ap-
proaches zero. ♦

2.2.2. Integrated Processes

Consider an integrated process Zt that is related to a stationary process Yt (as
defined in (2.1)) via the first differences Yt = Zt − Zt−1. Suppose we know the
values of Zt+ j for j = 0, −1, −2, . . . and we want to forecast Zt+k , for k =
1, 2, . . . We can always write

Zt+k = Zt + Yt+1 + · · · + Yt+k
(2.12)

= Zt + F1(t) + E1(t) + · · · + Fk(t) + Ek(t).

Therefore, if we ignore the estimation error in the ψ j ’s, the optimal forecast is
Ẑt+k = Zt + F1(t) + · · · + Fk(t), and the negative of the forecast error is Zt+k −
Ẑt+k = E1(t) + · · · + Ek(t) ≡ E(k). Although the error depends on t , its moments
do not, and we suppress the dependency in our notation. We see from (2.7) that



P1: MRM/SJS P2: MRM
SVUS004-Alho & Spencer May 3, 2005 15:36

212 7. Approaches to Forecasting Demographic Rates

the E j ’s are all linear combinations of εt+h’s with h = 1, . . . , k, so the forecast
error is independent of the forecast. A direct calculation yields the result,

Cov(E(k), E(k+h)) = σ 2
ε

k∑
i=1

(
k−i∑
j=0

ψ j

)(
k+h−i∑

l=0

ψl

)
(2.13)

for k, h ≥ 0. Note that both inner sums of the ψ j ’s are bounded in absolute value.
It follows that Var(E(k)) is of the order of magnitude k, or O(k), if the parameter
estimation error is ignored.

Example 2.7. Correlations of Forecast Errors for Integrated AR(1) Processes. Sup-
pose that the first differences follow an AR(1) process. In this case Fk(t) = ϕkYt ,
where Yt = Zt − Zt−1. Therefore, the forecast function Ẑt+k = Zt + ϕ(Zt −
Zt−1)(1 − ϕk)/(1 − ϕ) has the asymptotic value Zt + ϕ(Zt − Zt−1)/(1 − ϕ), as
k → ∞. In demographic forecasting |ϕ| is often small, so the asymptotic value
tends to be close to the current value. The second moments of the forecast error of
are of the form

Cov(E(k), E(k+h)) = σ 2
ε

(1 − ϕ)2

[
k − (ϕ + ϕh+1)

1 − ϕk

1 − ϕ
+ ϕh+2 1 − ϕ2k

1 − ϕ2

]
.

(2.14)

Because the partial sums in (2.13) are all positive for AR(1) first differences, it is
easy to show that the covariance is positive for |ϕ| < 1. We see from (2.14) that
the covariance of the forecast error is asymptotically proportional to the shorter
lead time, k. Hence, in contrast with the AR(1) case of Example 2.6, the variance
increases without a bound. We have ρ(E(k), E(k+h)) → 1, when h is fixed and
k → ∞, and ρ(E(k), E(k+h)) → 0, when k is fixed and h → ∞. As ϕ tends to 0, the
autocorrelations ρ(E(k), E(k+h)) tend to (k/(k + h))1/2, which is the autocorrelation
function of a random walk. ♦

Taken together, Examples 2.4 and 2.7 support the conclusion that the autocor-
relations of the forecast errors of the demographic vital rates must typically be
positive and high. This limits the accuracy of empirical estimates of past forecast
errors.

For another qualitative insight, consider (2.14) with h = 0. Note that under an
AR(1) model for the process increments we have Var(Yt ) = σ 2

ε /(1 − ϕ2), so for
large k we have Var(E(k)) ≈ k × Var(Yt ) × (1 + ϕ)/(1 − ϕ). Thus, an approxima-
tion for the variance of the forecast error can be obtained based on a simple random
walk model, only then the empirical variance of the process of increments must
be multiplied by (1 + ϕ)/(1 − ϕ).

Example 2.8. Standard Error and Random Error. Suppose now that forecasting is
carried out using an estimated mean of the differences Yt . Denote the variance of
the mean estimate by σ 2

µ. The mean of the Yt ’s introduces a linear trend into the
forecast function with a slope equal to the mean. Therefore, the variance of the
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estimated linear trend at lead time k is k2σ 2
µ, or it is O(k2). A comparison with (2.13)

and (2.14) with h = 0 shows that in long-term forecasting based on differenced
series the uncertainty concerning the mean always eventually dominates in the
overall forecasting error. ♦

We omit the details but note that if Zt would be a twice-integrated version of Yt

(or Yt = Zt − 2Zt−1 + Zt−2), then we have the result,

Cov(E[k], E[k+h])

= σ 2
ε

k∑
i=1

(
k−i∑
j=0

(k − i + 1 − j)ψ j

)(
k+h−i∑

l=0

(k + h − i + 1 − j)ψl

)
, (2.15)

where E[k] denotes the forecast error of Zt at lead time k. Thus, the variance
is O(k3) for a twice integrated process compared to O(k) for a once integrated
process. If an estimated nonconstant mean of the second differences is used in
forecasting, then a second degree polynomial trend is introduced into the forecast
function. Its variance is O(k4), so eventually the uncertainty of the trend estimates
exceeds that of the random part, just as for once-integrated processes. For these
models the width of the prediction intervals is O(k2), so the intervals open up like
a trumpet, as compared to the tulip shape we have for random walks, for example.
Unless twice differenced processes are constrained in some way, this result alone
precludes their use in many demographic applications.

Figure 5 of Chapter 4 has a graph of the total fertility rate T (t) of Finland. Here
we analyze the (post demographic transition) period 1920–1996 that is given in
Figure 4, together with 50% prediction intervals for 1997–2025. The series is obvi-
ously nonstationary. This is confirmed by a very slowly declining autocorrelation
function. We took Zt = log(T (t)) as the variable to be analyzed. This guarantees
the positivity of all results, but, more importantly, it transforms changes into rela-
tive scale, which seems reasonable given the large variation in the level of the total
fertility rate. Based on a graph, the first differences Yt = Zt − Zt−1 appear rea-
sonably stationary, except that the zig-zag pattern of the years 1940–1945 visible
in Figure 4 produces a corresponding zig-zag pattern in the first differences. This
war period8 is clearly different from the rest. The first two autocorrelations of the
differenced series are −0.365 and 0.433. Figure 5A has a lag-plot corresponding
to the first autocorrelation. We see that the negative value is due to three outliers.
These relate to the war years. In fact, if the points are removed for which Y (t) has
t = 1941–1944, the first correlation changes from −0.365 to 0.411. In contrast,
Figure 5B shows that while the outliers caused by the war are influential at lag 2
also, they are much more in accordance with positive autocorrelation of the re-
maining values. Removing the points for which Y (t) has t = 1941–1945 actually

8 The war in Finland started in 1939, there was an interim peace from March 1940 to June
1941, and the war continued until 1944.
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Figure 4. Total Fertility Rate of Finland in 1920–1996, and its Forecast for 1997–2021
with 50% Prediction Intervals.

reduces the second autocorrelation from 0.433 to 0.269. It seems clear that identi-
fying an ARIMA model from data that are dominated by war time outliers is not
an appropriate approach to forecasting. Therefore, we smoothed the values of the
war years 1940–1942 using RSMOOTH.

A graph of the first differences of the adjusted series shows that there is still a
large outlier due to the peak of the baby-boom in 1947, but there is no obvious basis
for changing this value. After some experimentation we found that ARIMA(1,1,0)
gives the best fit among parsimonious models although it would still be rejected
on a formal test of the residuals. Thus, we have a model

Zt − Zt−1 = ϕ(Zt−1 − Zt−2) + εt , (2.16)

where ϕ̂ = 0.4984.

Minitab also gives the estimate σ 2
ε = 0.001626 for the innovation variance, esti-

mated from the residuals of the fitted model. Here, we have to pause. Motivated by
forecasting considerations, we have reduced the variability of the process, so using
residuals from the smoothed series underestimate past uncertainty. An alternative
is to use the fitted values of the adjusted series to estimate the innovation variance
from the original observations. Doing this yields the estimate σ 2

ε = 0.002902, or
the estimate is nearly doubled. Which estimate is preferable? There is no unequiv-
ocal answer, but we note that the difference of the two estimates is due to the war
time fluctuations. Conditioning on the assumption that there will be no similar
fluctuations during the forecast period, we may use the smaller estimate in our
illustration.

The last two values of the total fertility rate were T (1995) = 1.81 and T (1996) =
1.76, with logs Z1995 = 0.59333 and Z1996 = 0.56531.Therefore, the last observed
difference was Y1996 = −0.028013. It follows that the point forecast of Z1996+k
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Figure 5. (A) Lag-Plot of the First Differences Y (t) at Lag 1.
(B) Lag-Plot of the First Differences Y (t) at Lag 2.

is Ẑ1996+k = 0.56531 + (−0.028013){0.4984 + 0.49842 + · · · + 0.4984k}. The
point forecast depicted in Figure 4 is T̂ (1996 + k) = exp(Ẑ1996+k) for k =
1, . . . , 25. The variance of forecast error Var(E(k)) has been calculated using for-
mula (2.14) with h = 0, ϕ = 0.4984, and σ 2

ε = 0.001626. The 50% prediction
intervals are of the form exp(Ẑ1996+k ± 0.6745 × Var(E(k))1/2), based on a nor-
mal approximation for the distribution of Ẑ . Although the prediction intervals are
symmetric in the log-scale, the exponentiation transforms them into asymmet-
ric ones. We may note some additional aspects of the prediction intervals. First,
the estimated uncertainty of the one-step-ahead forecast is quite high relative to
the low level of variability observed since the 1970’s. This points to a change in
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volatility. Second, since [0.002902/0.001626]1/2 ≈ 1.34, if we were to use the
larger estimate of innovation variance, the intervals would be approximately 1/3
wider.

2.2.3. Cross-Correlations

For future reference we also need results corresponding to the cross-correlations be-
tween forecast errors of different processes. Suppose, therefore, that in addition to
Yt given by (2.1), there is another stationary process Yt

′ = ψ0
′εt

′ + ψ1
′εt−1

′ + · · ·.
Let the innovation processes εt and εt

′ have correlation ρ(εt , εt
′) = δ and

ρ(εt , εt+k
′) = 0 for k �= 0. The forecast errors Ek and Ek+h

′ of the two processes
have the cross-covariances (cf., (2.9))

Cov(Ek, E ′
k+h) = δσεσ

′
ε

k−1∑
j=0

ψ jψ
′
j+h . (2.17)

It follows from the Cauchy-Schwartz inequality that the correlation between the
prediction errors is less in absolute value than the innovation correlation δ even
for h = 0. Letting k → ∞ in the above formula yields a formula for Cov(Yt , Yt

′).
Hence, an inspection of cross-correlations gives an indication of what the cross-
correlations of prediction errors look like.

Similar formulas for the prediction errors of the once and twice integrated
processes Zt , can be obtained from the autocovariance formulas (2.13) and (2.15),
if we replace σ 2

ε by δσεσε
′ and ψl by ψl

′.
These findings lead us to the following methodological remark. Official de-

mographic forecasts typically assume a perfect (positive or negative) correlation
between the forecast errors of different vital processes. This is a very restrictive
assumption, because even under the current highly simplified setting it can only
be valid if (a) the innovations are perfectly correlated, and (b) the processes have
identical autocorrelation structures. As we will show in more detail in Chapter 8,
in demographic applications neither condition holds.

3. Handling of Nonconstant Mean

Several approaches are available for modeling nonconstant trends. One is differ-
encing the time series one or more times, as we did for the U.S. growth rate and the
Finnish total fertility rate, above. Another is to explicitly estimate a smooth trend
function using parametric functions, splines, or some form of moving averages. A
third possibility is to use a stochastic representation for the trend, and estimate it
based on the model.

3.1. Differencing

We consider here the implications of differencing for the forecasts obtained.
Suppose we find that the series Zt is nonstationary, but the first differences
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Yt = Zt − Zt−1 appear to be stationary around a mean µ �= 0. Let us assume
that Zt is the last observed value, and we want to forecast Zt+k for some k > 0.

We can write Zt+k = Zt + Yt+1 + · · · + Yt+k . Suppose an AR(1) process with pa-
rameter ϕ describes the centered differences Yt+ j − µ well. Then, as shown in
Example 2.6, the best forecast of Yt+ j − µ is ϕ j (Yt − µ). It follows that the best
forecast of Zt+k is

Ẑt+k = Zt + kµ + (Yt − µ)
k∑

i=1

ϕi , (3.1)

where Yt = Zt − Zt−1. We see that the presence of µ produces a linear trend kµ

in the forecast function. The trend eventually dominates, because the sum on the
right hand side converges to ϕ/(1 − ϕ), as k → ∞.

Example 3.1. Forecasting a Random Walk with a Drift. Note that if ϕ = 0, or
the first differences are uncorrelated, then Zt is a random walk process with a
drift (if µ �= 0), and the forecast consists of the jump-off or starting value Zt and
a linear trend kµ. The constant term µ would normally be estimated from the
data. Suppose the observations were made at times 0, 1, . . . , n. Then, the average
of the differences is (Y1 + · · · + Yn)/n = (Zn − Z0)/n, which is the slope of a
line between the first and the last observation. Therefore, the forecast function
(3.1) is simply a line that goes through the first and last data points, (0, Z0) and
(n, Zn). ♦

The above result provides a quick way to produce a forecast that approximates
those obtained from more complex ARIMA(p, 1, q) models that incorporate a
constant. The model has been successfully applied in mortality forecasting by
Lee and Carter (1992), for example. Often, however, when a differenced series is
analyzed its mean is assumed to be zero. We did so in the analysis of the Finnish
fertility, for example. Indeed, Box and Jenkins (1976, 194) suggest that one should
not include a nonzero constant term into the model “unless evidence to the contrary
presents itself”. This may be a wise course in many fields of application but, the
choice can have a major effect on demographic forecasts. In most cases, we suggest
one examine the effect of including a constant, to see how it changes the forecast
function. The decision to include or not to include the constant can be the single
most important aspect of the eventual forecast.

Example 3.2. Trend in Finnish Fertility up to 1930. In Alho (2000) we analyzed the
forecast of the Finnish population made by Modeen (1934). ARIMA modeling was
applied to historical fertility data from 1776–1925 published by Turpeinen (1978).
Modeen did not have access to such data, nor did he have the modern statistical
technology available, but it is of interest to see if that would have made a differ-
ence. The series of the total fertility rate is nonstationary, and an ARIMAH(0,1,1)
model was found to give a serviceable approximation to the data. The constant
term was not significant at a 0.05 level, but its inclusion had a marked effect on
the point forecast. In retrospect we know that including the constant term would
have produced a better forecast for the next 50 years than leaving it out. ♦
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3.2. Regression

An alternate way of handling the mean is to directly estimate it using polynomials
or other smooth functions. We consider a general case here for use in Section 3.3 of
Chapter 8 and in Chapter 9, but note that in practice the most common choice is a
first degree polynomial. Suppose we have observed a process Zt for t = 1, . . . , n,

and we want to forecast it for t = n + 1, . . . , n + m. Let us assume that the trend
of the process is given by a function f (.) such that

Zt = f (t) + ε(t) (3.2)

where E[ε(t)] = 0, at least for t = 1, . . . , n + m. Suppose there are some known
functions f j (.) such that

f (t) =
k∑

j=1

β j f j (t), (3.3)

where the β j ’s are parameters to be estimated. To represent the model in a matrix
form, define first ε1 = (ε(1), . . . , ε(n))T , ε2 = (ε(n + 1), . . . , ε(n + m))T , and ε
= (ε1

T , ε2
T )T , and then Z1 = (Z (1), . . . , Z (n))T , Z2 = (Z (n + 1), . . . , Z (n +

m))T , and Z = ( ZT
1 , ZT

2 )T . Let X1 be an n× k matrix with f j (i) as the (i, j)
element, and let X2 be an m× k matrix with f j (n + i) as the (i, j) element. Define
the matrix X = (XT

1 , XT
2 )T , the vector of parameters β = (β1, . . . , βk)T , and the

covariance matrices �i j = E[εiε j
T ] for i, j = 1, 2. Then, our past and future data

can be written in the form Z = Xβ + ε, where Cov(Z) ≡ Σ is of the form

Σ =
[
Σ11 Σ12

Σ21 Σ22

]
. (3.4)

Suppose (3.4) is known. Then, the minimum variance unbiased prediction of Z2

based on Z1,

Ẑ2 = X2β̂ + Σ21Σ−1
11 (Z1 − X1β̂), (3.5)

where β̂ = (XT
1 �−1

11 X1)−1XT
1 �−1

11 Z1, is the generalized least squares (GLS) pre-
dictor (e.g., Vinod and Ullah 1981; Chapter 5, Complement 7).

In practice the covariance matrix Σ would have to be estimated under a para-
metric model such as ARMA. Then, the prediction may no longer be unbiased or
have minimum variance. Under the assumption of normality it continues to be a
maximum likelihood estimator, provided that maximum likelihood is used to es-
timate the covariance matrix. This can be accomplished in practice by an iterative
application of GLS estimation and ARMA modeling of the residuals.

We can write the forecast (3.5) as LZ1, where

L = X2
(
XT

1 Σ−1
11 X1

)−1
XT

1 Σ−1
11 + Σ21Σ−1

11

(
I − X1

(
XT

1 Σ−1
11 X1

)−1
XT

1 Σ−1
11

)
. (3.6)

Notice that the prediction error can be written in matrix form as Ẑ2 − Z2 =
[L, −I]Z, where I is an m× m identity matrix. It follows that (ignoring the
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estimation error in Σ) we can write the covariance matrix of the prediction er-
ror in the form

Cov(Ẑ2 − Z2) = Σ22 − Σ21LT − LΣ12 + LΣ11LT . (3.7)

We see that (3.7) does not depend on Z1 in any way. Therefore, (apart from
the identification and estimation of Σ) the distribution of the forecast error is
independent of the segment of the sample path we have observed, just as in ARIMA
forecasts. However, if desired, the covariance matrix Σ may be chosen so that the
variance of errors changes over time.

Example 3.3. Alternative Time Series Forecasts of the U.S. Growth Rate. We saw
in Figure 3 that the growth rate of the U.S. population can be reasonably well
modeled with an ARIMA(2,1,0) model. However, whether or not one includes a
constant term has major implications for the forecast. We can produce a forecast
of population based on a starting value (from 1999) and a forecast of the growth
rate, and compare the results to a full cohort-component forecast produced by Lee
and Tuljapurkar (1994). We label the Lee-Tuljapurkar forecast by LT, the AR(1)
forecast that assumes stationarity by AR, the ARIMA(2,1,0) without a constant
term by ARI, and the ARIMA(2,1,0) with a constant term by ARC. For comparison
we include a forecast produced by a simple random walk (RW), and a forecast
obtained by fitting a linear trend to growth rates using ordinary least squares
(REG). In other words, the last model is of type (3.2) with k = 2, f1(t) = 1 and
f2(t) = t, and Σ = I, an identity matrix. The results (in millions) are the following
(they deviate slightly from Table 1 of Alho and Spencer (1997) due to different
data used):

Year LT AR ARI ARC RW REG

2030 336.3 397.3 362.5 343.8 360.4 350.1
2050 371.5 516.5 435.5 379.0 431.5 396.0

Keeping LT as a gold standard, we find that AR forecasts are implausibly high. The
forecasts ARI and RW are almost indistinguishable, and further away from LT
than either ARC or REG. The latter two are close to the much more elaborate LT
forecast. The closeness does not appear accidental, in light of findings by Keyfitz
and Stoto (cf., Section 1.3 of Chapter 8) that simple forecasts often worked as well
as complex ones. ♦

3.3. Structural Models

A third possibility for the handling of nonconstant means is to use so-called struc-
tural models, in which the trend is modeled stochastically (Harvey 1989). We will
illustrate this approach by two examples.
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Example 3.4. Stochastic Local Level Process. Suppose the model is defined via
the equations

Yt = µt + ηt ;

µt = µt−1 + ξt , (3.8)

whereηt ∼ N (0, σ 2
η ) are i.i.d. and independent of the i.i.d. sequence ξt ∼ N (0, σ 2

ξ ).
In this model the “local level” µt is a random walk, so the model represents
a nonstationary series. One way to estimate the “local level” is the following.
Note that (3.8) implies that Yt − Yt−1 = ηt − ηt−1 + ξt . Consider the right hand
side of this as a process indexed by t . Its mean is zero for all t , and its vari-
ance is the same for all t . By our assumptions, observations that are two or more
steps apart are uncorrelated, but two consecutive observations have the correlation
ρ1 = −σ 2

η /(2σ 2
η + σ 2

ξ ). Thus, the right hand side is actually an MA(1) process.
Writing the differences in the MA(1) form: Yt − Yt−1 = εt − θεt−1, we get that
ρ1 = −θ/(1 + θ2). It follows that the signal-to-noise ratio σ 2

ξ /σ 2
η uniquely deter-

mines θ . The converse is also true provided that θ ≥ 0. Provided that one or the
other can be estimated, we can estimate the “local level” at t with the exponential
smoother obtained by substituting our estimate of θ into the definition of mt−1 in
(2.6). This also provides the forecast for all future values. ♦

Example 3.5. Stochastic Linear Trend Process. Consider the model

Yt = µt + ηt ;

µt = µt−1 + βt−1, (3.9)

βt = βt−1 + νt ,

where Yt is the observed value of the process, µt is the “local level” that changes
roughly linearly with the slope βt . The i.i.d. innovation processes ηt ∼ N (0, σ 2

η )
and νt ∼ N (0, σ 2

ν ) are assumed to be independent. As in the previous example,
one can show that this process corresponds to an ARIMA(0,2,2) model. Suppose
we start the process from t = 0 with some initial values for the level µ0 and slope
β0. It follows that we have Yt = µ0 + tβ0 + (tν1 + (t − 1)νt−1 + · · · + νt ) + ηt .
This means that the process is a sum of a deterministic linear trend, an integrated
random walk, and an independent sequence of errors of observation. Even though
such a series is severely nonstationary, it can have demographic applications if σ 2

ν

is small. ♦

4. Heteroscedastic Innovations

As noted in Section 2.2.1, the theoretical forecast error of ARIMA and other
stationary models does not depend on the particular sample path observed so far
nor does it depend on the time at which the forecast is being made. (By theoretical
forecast error we mean (2.8), which is the error when the forecast is (2.7) with
known ψk’s.) Thus, the forecastability of the process does not vary over time
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Figure 6. Absolute First Differences of the U.S. Growth Rate in 1900–1999, and an Ex-
ponentially Smoothed Trend Estimate.

or across sample paths. In stock option trading it has been observed that stock
prices appear to be more variable at some times than at others. In other words,
their volatility changes over time. We will present an example (Figure 6) that
demographic processes also may display changing volatility.

4.1. Deterministic Models of Volatility

We noted in Section 2.1.2, the volatility of the vital processes may change simply
as a consequence of increasing (or decreasing) population size. Other reasons for
change can be traced to improved control over child bearing and ability to alleviate
the effect of bad harvests, weather, or epidemics. Inasmuch as such changes can be
explained it would seem reasonable to acknowledge them in future forecasts. The
simplest way this can be done is in terms of parametric or nonparametric models
of variance.

Figure 6 illustrates the issue with U.S. growth rate data. The absolute values of
the first differences imply that the volatility of the growth process was much higher
during the first half of the century than during the second. In Figure 6 we have
used exponential smoothing (EWMA) to estimate their local level (cf., Example
3.4) with a smoothing parameter = 0.2 (corresponding to θ = 0.8). In long term
population forecasting judgment often is used to assess whether the future will be
more of less volatile than the past. In such applications estimates such as those of
Figure 6 can provide a starting value for the volatility.

The possibility of changing volatility has other implications for practical mod-
eling. Consider a process of the form (2.1) with independent innovations and
E[εt ] = 0, but with Var(εt ) = κtσ

2
ε . To ensure that the variance of the pro-

cess is finite, assume that each of the sets {κt , κt−1, . . . } is bounded for all t .
Define ψk = (ψk, ψk+1, . . .)T for any k = 0, 1, 2, . . . and εt = (εt , εt−1, . . .)T
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for any t = . . . , −2, 1, 0, 1, 2, . . . , so Yt = ψ0
Tεt . Defining a diagonal ma-

trix κt = diag(κt , κt−1, . . .), we can write Cov(Yt , Yt+k) = σ 2
ε ψ0

Tκtψk . Un-
like (2.3) this depends on t . The correlation between Yt and Yt+k is ρt (k) =
ψ0

Tκtψk/[ψ0
Tκtψ0ψ0

Tκt+kψ0]1/2. Formula (2.9) for the prediction error co-
variance gets the form,

Cov(Ek(t), Ek+h(t)) = σ 2
ε

k−1∑
j=0

κt+k− jψ jψ j+h . (4.1)

Hence, the error variances and covariances depend on the time at which the forecast
has been made.

Example 4.1. A Heteroscedastic Process with Time Invariant Autocorrelations.
Suppose the errors are exponentially increasing, κt = eαt for some α ≥ 0. In this
caseκt = eαtκ0 for any s. It follows that ρt (k) = ρ0(k) for any t . It is an example of
a heteroscedastic process that has a constant mean, and an autocorrelation function
that is invariant over time. ♦

We conclude that even though the study of the autocorrelation function is a
useful tool in determining whether or not a process is stationary, Example 4.1
demonstrates that one cannot reliably use the autocorrelation function (nor any
summary statistic that is a function of the autocorrelation function) as the sole
means of making that decision. Plots are essential.

4.2. Stochastic Volatility

The approach of Section 4.1 relies on an unconditional form of heteroscedasticity,
i.e., the variance of the process may change over time but this change is assumed
to be the same for all sample paths. By allowing for path dependency, we may
obtain a vast number of flexible models. Such models have proven to be especially
useful in finance, where massive amounts of time series data must be handled in
real time.

In these models changes of the innovation variance are modeled using some
stochastic process, much the same way structural models can be used to de-
scribe nonconstant means (Engle 1982; for a review, see Bollerslev, Chou, and
Kroner, 1992). We can express the autoregressive conditional heteroscedasticity
(ARCH(q)) model of Engle (1982) in our notation by assuming that the values κt

depend on past squared innovations ε2
t according to

κt = µ + α1ε
2
t−1 + · · · + αqε

2
t−q , (4.2)

where µ > 0, αi ≥ 0. Under (4.2), small (large) squared innovations lead to small
(large) κt , so innovations of a similar size tend to cluster, on a sample path basis.
Still, unconditionally, the processes may have constant variances. These mod-
els have been generalized in many ways, to the so-called generalized ARCH,
or GARCH processes, for example. Although their applicability in demographic
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settings is still an open question, Keilman, Pham, and Hetland (2002) have shown
that they can be used to an advantage in some situations. It is clear that demo-
graphic time-series can be heteroscedastic, but it is not clear what will turn out be
the simplest representation for that.

Exercises and Complements (*)

1. In Example 1.2 we considered a lower triangular Cholesky decomposition.
(a) Derive the corresponding representation for an upper triangular matrix
C. (b) Note that the resulting process for Yt is essentially identical to that of
Example 1.2 but with the time reversed. (c) Note that the same result can be
obtained directly from (1.1) by reversing the order of Yt ’s. This observation
is important in practical modeling because it shows that a linear process
must look similar in all relevant respects whether we let time run forwards
or backwards.

*2. In general, we may think of an n × m matrix C = (ci j ) as a mapping that
relates to any i = 1, . . . , n and any j = 1, . . . , m a number ci j . Matrix op-
erations, such as multiplication, can also be defined in terms of i and j ,
so we can consider infinite dimensional matrices. Suppose C= (ci j ) is such
that on the row i = . . . , −1, 0, 1, 2, . . . and column j = . . . , −1, 0, 1, 2, . . .

we have that ci j = ψi− j for j ≤ i, and ci j = 0 otherwise. Define corre-
spondingly infinite dimensional vectors ε = (. . . , ε−1, ε0, ε1, ε2, . . .)T and
Y= (. . . , Y−1, Y0, Y1, Y2, . . .)T . Then, we can write (2.1) exactly in the
Cholesky form of Example 1.2, or Y = Cε.

3. Show that (2.3) holds.
4. (a) Show that the variance of an MA(1) process is Var(Yt ) = σ 2

ε (1 + θ2). (b)
Show that the autocorrelation function of an MA(1) process is zero except
that ρ1 = −θ/(1 + θ2). (c) Show that an MA(2) process has two non-zero
autocorrelations, and derive their formulas.

5. Consider (2.4). To assess whether or not the “waves” one may detect in a
smoothed series could be due to chance, compute the variance of (2.4) under
the assumption that the process has a fixed mean, or Dt ∼ Po(µKt ). Use
general weights w j . Under a normal approximation we conclude that if the
waves are within ±2 standard deviations from the mean, they may well be
due to the Slutsky effect alone.

6. Derive the variance, autocovariance, and autocorrelation functions of an
AR(1) process.

7. Show that (2.5) holds by substituting for the AR(1) process Yt its representa-
tion (2.1).

8. Show that the ψ j−weights of an ARMA(1,1) are of the form ψ j = (ϕ −
θ )ϕ j−1 for j > 0.

9. (a) Show that if yt = a + bt, then first difference is yt − yt−1 = b, and (b) if
yt = a + bt + ct2, then the second difference (i.e., difference of differences)
is 2c.
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10. Fit an ARIMA model to the logarithm of the total fertility rate of an industri-
alized country (that has at least 50 years worth of data) in a post demographic
transition period.

11. Show that (2.6) holds.
*12. Fitting an AR(k) process to a series should have the last regression coefficient

zero, if there is no independent effect from time t − k to time t , given the
values of the intermediate years. Under stationarity, both the variable to be
explained Yt , and the last explanatory variable Yt−k , can be explained equally
well using the intermediate variables Yt−1, . . . , Yt−k+1. Therefore, the partial
correlation between Yt and Yt−k , when controlling for Yt−1, . . . , Yt−k+1, can
be estimated by regressing Yt on Yt−1, . . . , Yt−k and taking the coefficient
of the last term as the estimate at lag k ≥ 1. This is helpful, especially for
choosing the order of an AR(p) process.

13. Consider an AR(p) process around a mean µ of the form Yt − µ = ϕ1(Yt−1 −
µ) + · · · + ϕp(Yt−p − µ) + εt . Write the model using a constant term γ ,
in the form Yt = γ + ϕ1Yt−1 + · · · + ϕpYt−p + εt . Show that the constant
satisfies the relationship γ = µ(1 − ϕ1 − · · · − ϕp).

*14. Consider the model Yt = µ + ϕYt−1 + εt , for t = 1, . . . , n, where the in-
dependent innovations are normally distributed. Conditioning on Y1 Dickey
and Fuller (1981) considered the hypothesis H0 : µ = 0 and ϕ = 1, or that
the process is a random walk. The principle of likelihood ratio testing (cf.,
Section 3 of Chapter 1) leads one to consider the statistic

R =
n∑

t=2

(Yt − µ̂ − ϕ̂Yt−1)2
/ n∑

t=2

(Yt − Yt−1)2,

where µ̂ and ϕ̂ are the least squares estimators given Y1, and small values
indicate deviation from the null. (An equivalent “F test” type of statistic can
also be used.) The distribution of R can be determined by simulation under H0:
(i) generate i.i.d. values εt ∼ N (0, 1) for t = 2, . . . , n;
(ii) set Y0 = 0, and then Yt = Yt−1 + εt , for t = 2, . . . , n;
(iii) calculate µ̂ and ϕ̂ and store the corresponding R.
Repeating the steps (i)–(iii), say 10,000 times, we can approximate the sam-
pling distribution of R. The value of R computed from the empirically ob-
served data can then be compared to the left hand tail of the distribution to
determine a P-value. This is an example of a so-called unit root test. An
extension in which H0 specifies a random walk with a drift can similarly be
handled (Dickey and Fuller 1981).

*15. Regime switching. Consider a model

Yt = µ + ϕYt−1 + (µ′ + ϕ′Yt−1)�((Yt−1 − µ′′)/σ ) + εt ,

where �(.) is the c.d.f. of N (0, 1) distribution. When Yt−1 − µ′′ → −∞, the
model approaches the form Yt = µ + ϕYt−1 + εt . When Yt−1 − µ′′ → +∞,
the model approaches the form Yt = (µ + µ′) + (ϕ + ϕ′)Yt−1 + εt . Or the
model is capable of representing different behavior when it is at a relatively
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low level and a relatively high level. The parameter σ regulates the speed
of change from one regime to the other. This smooth transition regression is
an example of a nonlinear time series model (Granger and Teräsvirta 1993,
38–39).

16. (a) Verify that in Example 2.6 we have that Ŷ t+k = ϕkYt for k = 1, 2, . . . (b)
Derive (2.11) from (2.10).

17. Show that (2.13) holds, and derive (2.14) by substitution.
18. Consider formula (2.15). Suppose that the second differences of a process are

an independent sequence, so ψ j = 0 for j > 0. Show that we have then

ρ(E[k], E[k+h]) = k(k + 1)(2k + 3h + 1)

[k(k + 1)(2k + 1)(k + h)(k + h + 1)(2k + 2h + 1)]1/2
.

19. Consider two integrated processes. Emulate Example 2.7 to get

Cov(E(k), E(k+h)′ ) = δσεσε′

(1 − ϕ)(1 − ϕ′)

[
k − ϕ(1 − ϕk)

1 − ϕ
− ϕ′(1 − (ϕ′)k+h)

1 − ϕ′

+ (ϕ′)h(1 − (ϕϕ′)k)

1 − ϕϕ′

]
.

Asymptotically the corresponding crosscorrelations are of the form ρ(k, k +
h) = δ(k/(k + h))1/2.

20. Derive the forecast function (3.1).
21. Verify the formula for the first autocorrelation of the differences of the process

(3.8). Solve signal-to-noise ratio in terms of θ , and θ in terms of the signal-
to-noise ratio.

22. Show that the second differences of the process (3.9) form an MA(2) process
and derive equations that connect the variances of the innovation processes
to those of the moving average parameters.

23. Show that (4.1) holds.
24. Consider the model of Example 4.1. Suppose ψ j = ϕ j with |ϕ| < 1. Show

that ψT
0 κtψk = ϕkeαt/(1 − ϕ2e−α), ρ0(k) = (ϕe−α/2)k, and Var(Ek(t)) =

σ 2
ε eα(t+k)(1 − ϕ2ke−αk)/(1 − ϕ2e−α) for k = 1, 2, . . . . We see that the theo-

retical forecast error variance is an exponential function of both the jump-off
time t and the lead time k.

*25. ARIMA models may produce prediction intervals that eventually become too
wide for a vital rate Xt . A logistic transformation Yt = log((Xt − L)/(U −
Xt )) with U > L , constrains Xt to remain in [L , U ]. Assume a random walk
model Yt ∼ N (0, tσ 2). Choose any two values L < L ′ < U ′ < U, and con-
sider the probability that Xt > U ′ or Xt < L ′, or equivalently Yt > U ∗ =
log((U ′ − L)/(U − U ′)) or Yt < L∗ = log((L ′ − L)/(U − L ′)). Show that
P(L∗ < Yt < U ∗) → 0, when t → ∞. Conclude that Xt will eventually be
“absorbed” close to U or L .
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8
Uncertainty in Demographic Forecasts:
Concepts, Issues, and Evidence

Demographic forecasting is historical activity both in terms of methodology and
accuracy: to forecast forward and to predict the accuracy of our forecast, we look
backward. If the vital rates follow closely their past trends, accurate forecasting is
feasible, but increased fluctuations of the rates usually implies rapidly increasing
forecast errors. Consider, for example, the forecasts of the U.S. total fertility rate.
The forecasts assumed that fertility would stay roughly at the latest observed
level. Therefore, those made in the early 1950’s and 1970’s were accurate for a
few years, when the level of fertility remained fairly constant for a decade, whereas
the forecasts made in the 1940’s, when fertility rose, and in the 1960’s, when it
declined, were grossly in error (cf. Figure 5 of Chapter 4). More generally, Stoto
(1983) found that the major determinant of forecast accuracy was the time at
which the forecast was made. Keyfitz (1981, 581–582) credits Lee (1980) with the
following analogy.

“Think of a number of marksmen, all equally competent, facing a target that moves about
erratically. Some will do better than others, not because of differences in competence, but
because they were fortunate enough that the target stood still when they fired, while others
had the bad luck to shoot just before the target moved.”

Although the theoretical models available to the forecaster improve over time,
this does not necessarily lead to substantially more accurate forecasts. For ex-
ample, improved socio-economic analyses have increased our understanding of
determinants of change in mortality, fertility, and migration, and improved sta-
tistical methods allow ever more complicated models to be estimated. Therefore,
controlling for the difficulty of forecasting at any given time, one might expect
the forecast accuracy to improve over time. However, to effectively utilize the
improved theoretical models, one must be able to accurately identify and forecast
the determinants of change, and that has proved challenging.

The recognition of both the varying forecastability and the historical character
of forecasting methodologies has led many to reject the notion of forecasting al-
together. In the United States, for example, the official forecasters of population
talked about “forecasts” in the late 1940’s (Whelpton, Eldridge, and Siegel 1947

226
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and U.S. Census Bureau 1949), but when the gross errors caused by the baby-boom
became evident, the terminology was first switched to “illustrative projections”
(U.S. Census Bureau 1958), and later to “projections” (e.g., U.S. Census Bureau
1964, 1984; Day 1993). Our view of these terminological distinctions is the same
as that of Harold Dorn (1950) who wrote: “Predictions, estimates, projections,
forecasts; the fine academic distinction among these terms is lost upon the user
of demographic statistics. So long as numbers which purport to be possible future
populations are published they will be regarded as forecasts or predictions, irre-
spective of what they are called by demographers who prepare them.” Indeed, it is
difficult to understand, why a national statistical agency would publish anything
but the most likely future alternative as the middle variant of their projection.1

We will follow Dorn in interpreting the forecaster’s task. Producing popula-
tion forecasts that are highly uncertain can still have value, as the forecast may
draw attention to looming public policy issues that would otherwise be neglected.
At the beginning of the 21st century, many industrialized countries have not ade-
quately prepared for the retirement of the baby-boom generations that will occur
during 2015–2025. Even inaccurate forecasts demonstrate the unpreparedness.
The shortfall in retirement funding is uncertain, however, and quantification of
the uncertainty can improve the development of public policy. For example, some
wishing to avoid investment in retirement funding will try to point to low alterna-
tive forecasts and say the problem is small. With an assessment of the probability
distribution of forecast error, the public policy debate can distinguish unlikely alter-
natives from probable ones, and if the forecast is very uncertain, flexible adaptive
strategies can be sought to allow for modification as the real path of the future
unfolds (Chapter 11).

In Chapter 7 we discussed statistical models for demographic time series and
showed how they can be used to quantify forecast uncertainty. Here, we take the
demographic tradition and demographic data as starting points, and try to estab-
lish “stylized facts” or “boundary conditions” for demographic forecasting that
need to be acknowledged. Section 1 discusses how assumptions have been tradi-
tionally formulated in cohort-component forecasting. These principles were first
formulated in a unified way by Pascal K. Whelpton. Section 2 considers dimen-
sionality problems that arise in mortality forecasting. In Section 3 we will discuss
conceptual issues regarding forecast errors. This involves error concepts and clas-
sifications, the interpretation of probabilities, the feedback effects of forecasts,
the role of expert judgment, and conditional forecasting. In Section 4 we discuss
the practical specification of error, including modeling error. We then discuss the
measurement of correlations of vital processes and their forecast errors in Sec-
tion 5. This is a new area of demographic research where relatively little is known
so far.

1 Examples of statistical agencies having tried to avoid such an interpretation by publishing
an even number of variants (e.g., four) have proved dismal. The users have quickly averaged
the middle two to produce the most likely figure!
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1. Historical Aspects of Cohort-Component Forecasting

1.1. Adoption of the Cohort-Component Approach

As discussed in Chapter 6, cohort-component forecasting is an elaboration of the
fundamental book-keeping identity: (population at time t + 1) = (population at
time t) + (births during t) − (deaths during t) + (net-migration during t), in which
the book-keeping is done by age and sex. Cannan (1895) first prepared a cohort-
component forecast for England and Wales. By the end of the 1920’s such forecasts
had also been made for the Soviet Union by Tarasov in 1922 (DeGans 1999, 96),
for the Netherlands by Wiebols (1925), for Sweden by Wicksell (1926), for Italy by
Gini (1926), for Germany by Statistisches Reichsamt (1926), for France by Sauvy
(1928), and for the United States by Whelpton (1928). Many details about the early
forecasts, especially from the Dutch perspective, can be found in DeGans (1999).

One reason for the increased interest in developing new methods of population
forecasting in the early decades of the 20th century appears to have been declining
fertility, especially in cities (Fleischhacker, DeGans, and Burch 2003), although
in the case of the Netherlands, overpopulation was a concern (DeGans 1999, 24).
In Germany, Burgdörfer (1932, 32), an author associated with national socialism,
characterized Berlin as an “infertile city” and predicted that the “two-child sys-
tem” would lead to a population decline. In Sweden, left-leaning social scientists
Myrdal and Myrdal (1934, 87–88, 94) believed that improved contraception was
the cause of declining fertility. They thought that decline would continue in the
foreseeable future. These widely held views posed problems to the earlier methods
of forecasting. For example, in the first forecast of Finland, Modeen (1934) crit-
icized the logistic model introduced by Verhulst (1838) and later popularized by
Pearl and Reed (1920), and Yule (1925), because the logistic model (together with
the simpler exponential model) always predicted growth (or decline), but could
not incorporate a change from growth to decline.

1.2. Whelpton’s Legacy

In the United States the cohort-component method was pioneered by Pascal
K. Whelpton. In a sequence of papers (Whelpton 1928, Thompson and Whelpton
1933, Ch. X, Whelpton 1936, and Whelpton, Eldridge, and Siegel 1947) he devel-
oped a unified program for population forecasting. Whelpton realized that book-
keeping by age and sex would not necessarily make the resulting forecast for the
total population more accurate, but at the very least it would provide more in-
formation to the user. Even more importantly, he articulated many of the central
problems in the methodology of formulating assumptions for the vital rates. This
will be the topic of the remainder of the section. We will use the meticulously
compiled forecast report Whelpton et al. (1947) as the primary source material.
Unless otherwise noted, the quotes below are from the report.

In discussing the “hypothetical mortality trends in the United States, 1945–
2000”, Whelpton decided to make three alternative sets of mortality assumptions,
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designated as “high mortality”, “low mortality”, and “medium mortality”. “The
first represents the smallest declines in the age-specific death rates that seem prob-
able, the second the largest declines that are considered reasonable, and the third
a position approximately midway between the extremes.”

Whelpton’s methodological ideas are well summarized by the following para-
graph that discusses the way the high, middle, and low variants are to be made:

“With each of these assumptions it is possible to extrapolate past trends according to some
formula and arrive at hypothetical death rates for any future year. An alternative procedure
is to consider past trends and the likelihood of future changes, form an opinion as to the
percentage reduction in death rates to be expected by a given future year, and obtain rates for
the intervening years by interpolation. The former method may seem to have the advantage
of being less influenced by personal bias, nevertheless the personal element would remain in
the choice between two or more formulas fitting past trends equally well but giving different
results for the future. More important, the extrapolation of past trends according to such
formulas might lead to future rates which would seem incompatible with present knowledge
regarding causes of death and means of controlling them. After some experimentation with
both methods, the second alternative was chosen as the more desirable for the purpose at
hand.”

We see that Whelpton objects to the use of mathematical extrapolation methods
because they do not rid us of the subjectivity inherent in model choice and because
he fears they may produce results that are contrary to “present knowledge”. This
is essentially the same reasoning most producers of official forecasts still use. For
example, the U.S. Office of the Actuary has followed Whelpton’s ideas almost
literally, in that they have used target values for the reduction of age-specific
mortality rates in their forecasts (Section 2.2).

Whelpton used essentially similar reasoning to reject mathematical extrapola-
tions in the forecasting of fertility. Although these elements of his methodology
have also become standard procedures in many statistical offices, the unfortunate
fact is that Whelpton’s forecast for fertility was among the most erroneous ever
made. He missed the baby-boom. Whelpton assumed that the U.S. total fertility
rate of the white women would decline from 2.42 in 1945 to 2.06 in 1960, but
in reality it rose to 2.90 by 1946 and to 3.53 by 1960! The increase of 0.48 child
per woman during 1945–1946 was the biggest observed during the 20th century.
Recognizing that Whelpton was one of the very best demographers of his time,
we may look at Whelpton’s reasoning more closely, to see if there is anything we
can learn for the future.

To set his fertility variants Whelpton first looked at the historical trends in the
United States. He had native white age-specific fertility series available for 1920–
1945, and nonwhite age-specific series for 1930–1945. He complemented these
short series by statistics on children under 5 years of age per women in age 20–44
years of age for the census years 1800–1940, by nine major statistical divisions
of the United States (New England, Middle Atlantic, East North Central, West
North Central, South Atlantic, East South Central, West South Central, Mountain,
Pacific). Considerable attention was paid to corrections for underenumeration in
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the censuses. He then compared the changes in the number of children ever born
among the white and nonwhite female population by age and marital status in
1910 and 1940. After that he studied annual birth rates of women by parity (years
1920–1945 for whites, 1930–1945 for nonwhites), and changes in age-specific
birth rates in the nine major divisions in 1918–1921, 1929–1931, and 1939–1941.
After the detailed study of the past U.S. trends Whelpton compared the U.S. gross
reproduction rates (see Section 4.2 of Chapter 4) to other countries (Norway,
Sweden, Finland, Denmark, Netherlands, England and Wales, France, Germany,
Czechoslovakia, Austria, Portugal, Italy, Hungary, Poland, Bulgaria, South Africa,
Australia, New Zealand, Japan) during “early years” (mostly 1870’s), “shortly after
World War I” (mostly early 1920’s), and “shortly before World War II” (mostly late
1930’s). Whelpton summarized the experience of Western countries with reliable
data as follows: “A long-time downward trend in fertility has been the almost
universal rule. Upswings have occurred but rarely, and have been relatively small
and of short duration.”

After the historical comparisons Whelpton discussed “causes in the long-time
decrease in fertility in the United States” with a view of formulating opinions
regarding the long-time future trend in fertility. Five hypotheses considered were:
“(1) a less favorable marriage rate, (2) a rise in the proportion of pregnancies
ending in a miscarriage or stillbirth, (3) the greater frequency of illegal abortions,
(4) an increase in sterility or low fecundity, and (5) an increase in the voluntary
limitation of family size”. After a detailed discussion Whelpton concludes that “the
great preponderance of evidence” indicates that the voluntary limitation is the most
significant cause. Whelpton then went on to discuss “causes of short-time changes
in birth rates” that he thought would be “helpful in estimating the probable fertility
during the next few years”. He analyzed the effect of war and economic prosperity
on nuptiality and birth rates. The overall conclusion was that “the factors which
will primarily determine the long-term future trend of fertility will be (1) the speed
with which the pattern of effective family planning is adopted by additional groups
of the population and (2) the number of children that couples decide to have”. So
far, we find no fault in Whelpton’s analyses. On the contrary, their meticulous
detail far surpasses what one commonly sees in more recent forecast reports.

What finally went wrong is related to Whelpton’s assessment of the desired
family size. He believed that the past extension of effective family planning would
rapidly continue as a consequence of war time shifts of population. In particular
“millions of women and girls who might never have sought employment in time of
peace took jobs in offices, stores, and factories. These changes have tended to bring
people with a regional or family background of high fertility into contact with those
having a background of low fertility. Such contacts disseminate more widely the
knowledge of effective measures of family planning and the point of view that leads
to their use.” Clearly, Whelpton believed (like Myrdal and Myrdal in Sweden) that
the forces of modernization connected with urbanization and women’s increased
participation in the labor force were in operation, and would prevail. Whelpton was
misled. Although “a high degree of economic prosperity plus war time psychology
resulted in a substantially larger number of births during 1942–1945 than was
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expected”, Whelpton believed this was a short term fluctuation. We know from
other sources (Beale 2004) that a factor in this assessment was the apparent change
in the timing of births. The observed rise in fertility was disproportionately due
to first births and interpreted as delayed child-bearing deferred during the Great
Depression of the 1930’s. It was thought that this could not continue, but contrary
to the expectation both cohort and period measures of fertility rose rapidly after
the war.

Finally, and most interestingly, Whelpton was one of the first developers of
surveys concerning desired family size (e.g., Whelpton and Kiser 1946, 1947). He
used data collected in by the American Institute of Public Opinion which shows
that in 1941 the desired family size was 2.97 children per family, but in 1945
it was 3.30 children per family. Whelpton wrote: “The change in opinions from
1941 to 1945 could mean that there will be a tendency toward larger families in
the future. It seems more probable, however, that it reflects the psychology and
economic conditions of the war and that a survey a few years later will elicit replies
which are more like those of 1941 than 1945.” Thus, Whelpton used a theoretical
argument to reject some empirical evidence he saw.2

Had Whelpton accepted the desired family size data, his forecast would have
been accurate for about twenty years. Now, even his high forecast variant that
assumed the 1945 level to persist was too low by approximately one child per
woman during the same period. Whelpton’s middle forecast of 1.9 of the total
fertility rate of the year 2000 was much more accurate!

1.3. Do We Know Better Now?

Some forecasters believe that advances in demographic research have led us to
understand changes in childbearing much better than in Whelpton’s time. Examples
include the use of cohort and duration approaches, instead of the period approach
that Whelpton used, as a basis of fertility forecasting. Unfortunately, they have not
led to improvements in accuracy.

Example 1.1. Cohort Approach to Fertility Forecasting. In 1964 the U.S. Census
Bureau started to use completed cohort fertility a basis for forecasting age-specific
fertility. The rationale was that cohort fertility corresponds to actual childbearing
whereas period fertility is a synthetic concept. Characteristically, part of the data
used was compiled by Whelpton earlier. For the year 1980 the high variant of the
1964 forecast for the total fertility rate was 3.44 and the low variant was 2.59. The
actual rate was 1.9. As discussed in Chapter 7 the relative smoothness of the cohort
rate does not mean that it is necessarily the relevant quantity to forecast, because
it needs to be disaggregated into age-specific rates by assumptions concerning the
timing of childbearing, simultaneously in all ages. In addition, one has to consider

2 As noted in Bongaarts and Bulatao (2000, 93) and Hendershot and Placek (1981), fertility
intention data has been of variable predictive value in the forecasting of completed fertility
during the post World War II era.



P1: MRM/SJS P2: MRM
SVUS004-Alho & Spencer April 29, 2005 21:33

232 8. Uncertainty in Demographic Forecasts: Concepts, Issues, and Evidence

cohorts that have just started child bearing, or who will do so in the future. Their
completed fertility will be known in the next 30 years or later, and it may have little
to do with the fertility decisions of those whose completed fertility is known. ♦
Example 1.2. Effect of Marriage Duration on Fertility. Keilman (1990, 65–66)
describes changes in Dutch forecasts of fertility during 1967–1970. Prompted by
the poor results of the 1965 forecast a working group consisting of forecasters of
the Netherlands’ Central Bureau of Statistics, planners of the National Physical
Planning Agency and Central Planning Bureau, and some prominent academic
demographers recommended that fertility be forecasted for marriage cohorts by
the duration of marriage. Presumably, the idea was that child bearing would follow
in some predictable way the life course of a couple. Although the conceptual
analysis underlying the change was sophisticated, the forecasting results were
poor. As a result, in the official forecasts made in the 1980’s marriage duration
was abandoned, and age (retaining the cohort perspective) was reintroduced. More
generally, Keilman and Kučera (1991) found that methodology had little impact on
accuracy of national forecasts by the Netherlands and the Czechoslovak Socialist
Republic. ♦
Example 1.3. Was the Baby-Boom a Unique Phenomenon? It is sometimes thought
that the baby-boom that occurred (depending on the country) from the late 1940’s
until the 1960’s was a unique event and that we should not expect equal surprises
unless something corresponding to World War II were to occur. However, as men-
tioned in Chapter 4 already, the role of war was not at all clear in the creation
of the boom. Moreover, fertility changed in the Mediterranean countries during
1985–1995 from the total fertility rate of over 2 to 1.3–1.4, or in relative terms by
as much as it did during the baby-boom. Just like the baby-boom, this change was
missed by official forecasts. ♦

The examples show that developments in fertility have repeatedly taken even the
best experts by surprise. Surprisingly, forecasting mortality has been of comparable
difficulty.

Example 1.4. Trend Extrapolation Versus Judgment. In Alho (1990c) we compared
the accuracy of official forecasts of mortality to extrapolations based on ARIMA
models. The directly age-standardized female mortality (cf., Section 3.3 of Chap-
ter 5) in the U.S. during 1920–1986 was considered. The rate started from about
0.022 and declined to about 0.006. No segment of the series looked stationary. In
order to prevent the forecasts from being implausibly high or low, it was assumed
that the rate must remain in the interval [0.002, 0.03]. A logit-transformation was
applied to the rate r (t) of year t , so the transformed rate was of the form w(t) =
log((r (t) − 0.002)/(0.03 − r (t))). Simple trend forecasts from an ARIMA(1,1,0)
model with a constant were calculated. Official forecasts up to the year 1986,
with jump-off years 1950, 1955, 1965, and 1977, were matched by ARIMA(1,1,0)
forecasts with data up to the jump-off year. The ARIMA extrapolations were more
accurate in three cases and the official forecast was more accurate for the jump-off
year 1965. For males the first two official forecasts were more accurate, the last
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two less accurate, than the ARIMA extrapolations. Overall, the official forecasts
tended to overshoot the future mortality, whereas the extrapolations tended to be
too low. Lee and Miller (2001) have provided evidence that Lee-Carter method
outperformed the official forecasts for life expectancy. ♦

An entirely different approach to forecasting the vital rates is to consider them in
an economic framework (cf., Schultz 1981). Econometricians (McDonald 1979,
1980, 1981; Butz and Ward 1979) have experimented with dynamic stochastic
models in which a demographic variable (such as yearly births or the total fertility
rate) is explained directly in terms of its correlatedness with economic variables.
Wheeler (1984) has similarly modeled population growth in developing countries.
As noted by Land (1986, 898–899), it has proven difficult to find persistent statis-
tical relationships of this sort and even when such relationships exist it is difficult
to forecast the economic variables with enough accuracy to improve the demo-
graphic forecasts. To illustrate some of the difficulties, we consider the effect of
an extreme economic shock.

Example 1.5. Counterintuitive Data on Economic Shocks and Demographics. In
1991–1993 Finland went through an economic shock comparable to the Great
Depression of the 1930’s. In the following table we present data from 1988–2000,
on the change in gross domestic product (GDP), unemployment rate, total fertility
rate (TFR), male life expectancy (e0), and net migration (NET).

Change in
Year GDP (%) Unemployment (%) TFR e0 NET (1,000)

1988 4.9 4.5 1.69 70.7 1.3
1989 5.7 3.1 1.78 70.9 3.8
1990 0.0 3.2 1.79 70.9 7.1
1991 −7.1 6.6 1.79 71.3 13.0
1992 −3.3 11.7 1.85 71.7 8.5
1993 −1.1 16.3 1.81 72.1 8.4
1994 4.0 16.6 1.85 72.8 2.9
1995 3.8 15.4 1.81 72.8 3.3
1996 4.0 14.6 1.76 73.0 2.7
1997 6.3 12.7 1.75 73.4 3.7
1998 5.3 11.4 1.70 73.5 3.4
1999 4.0 10.2 1.74 73.7 2.8
2000 5.7 9.8 1.73 74.1 2.6

As one would expect, the decrease in production led to an increase in unemploy-
ment, with a lag of approximately two years. If anything fertility rose slightly,
life expectancy increased faster, and net migration was higher during the de-
pression, than at other times. All these developments are counterintuitive from a
common sense point of view, but perhaps less so from a historical perspective, since
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population growth and economic growth appear not to have been systematically
related (Simon 1977, 47). ♦

Keyfitz (1982, 744–746) discusses other reasons preventing theory from further
improving forecasts. He found that simplistic forecasts of population size to be
much less accurate than published official forecasts, but the latter were similar in
accuracy to simple forecasts (Keyfitz 1981, 588–599). Similarly, a large empirical
study focusing on population forecasts prepared by the U.S. Bureau of Census and
by the U.N. using the cohort-component method found that “for projections of total
population size, simple projection techniques are more accurate than more complex
techniques” (Stoto 1983, 13). Thus, although it is easy to choose a forecasting
method that will work poorly in a given situation, once the obviously poor methods
are excluded, it is difficult to choose the best of the remaining, competing methods.
A large empirical study of forecasting methods in a variety of settings concluded
that

“forecasting accuracy depends on the type of data and the forecasting situation consid-
ered . . . As a consequence any monolithic approach to forecasting has been eliminated as
a practical alternative . . . Furthermore, the empirical evidence indicates that forecasting ac-
curacy can often be achieved through simple methods. (Makridakis et al. 1984, vii–viii)

In fact, given the difficulty of model choice, combining forecasts that have been
made based on different principles is an appealing idea (cf., Clemen 1989).

2. Dimensionality Reduction for Mortality

Cohort-component forecasting of population may require forecasts for a hundred
or more age-specific mortality rates for each sex. As noted in Example 2.4 of
Chapter 4, deaths can further be analyzed by cause. To allow for a meaningful
use of time-series techniques, some form of dimensionality reduction is desirable.
Fortunately, there are regularities in mortality change that allow for simplification,
and it turns out that unless causes of death are of interest in themselves, it is often
not necessary to consider them in forecasting. These are the topics we address here.
Classical techniques, not to be discussed, include model life table techniques (e.g.,
United Nations 1983) and actuarial graduation procedures (e.g., Keyfitz 1977,
Heligman and Pollard 1980).

2.1. Age-Specific Mortality

Letµ(x, t) be the age-specific mortality rate in age x during year t ≥ 0 (we suppress
sex in the notation for simplicity). Consider a class of models,

µ(x, t) = exp(α(x) + β(x, t)), (2.1)

where β(x, 0) = 0 for all x . The rate of change for mortality is ∂/∂t log µ(x, t) =
∂/∂t β(x, t). Assume first that β(x, t) = ξ (t). In that case we have a loglinear,
proportional hazards model whose parameters can be estimated under a Poisson
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assumption, for example. A constant rate of change model would take ξ (t) = δt
with ∂/∂t β(x, t) = δ, but we know from Section 2.2.3 of Chapter 4 that such a
simple model is not likely to hold.

A bilinear model uses β(x, t) = δ(x)ξ (t). If ξ (t) = t, then β(x, t) = δ(x)t, and
we can interpret the constant δ(x) as the rate of change in mortality in age x .
The model µ(x, t) = exp(α(x) + δ(x)t) is of a standard loglinear form that can
be estimated via Poisson regression. A forecast for future rates is then simply
µ̂(x, t) = exp(α̂(x) + δ̂(x)t). As discussed in Section 6 of Chapter 5, in the more
general case with β(x, t) = δ(x)ξ (t), maximum likelihood estimation under a
Poisson assumption or a normal assumption (principal components) is still feasible.
Then, the forecast of future mortality would be of the form µ̂(x, t) = exp(α̂(x) +
δ̂(x)ξ̂ (t)), where the forecast ξ̂ (t) would have to be obtained through other means,
such as ARIMA modeling. For an investigation of the accuracy of models of this
type, see Bell (1997).

We conclude with a remark on smoothing. Since the parameters α(x) and δ(x)
are typically estimated from data, they may have to be smoothed before use to avoid
erratic variations in neighboring ages. In particular, suppose δ(x + 1) < δ(x) < 0
for some x . Then, for t large enough we will always have µ(x + 1, t) < µ(x, t)
under the model µ(x, t) = exp(α(x) + δ(x)ξ (t)), regardless of α(x), if ξ (t) → ∞.

For unsmoothed δ(x)’s such effects can appear fairly quickly.

Example 2.1. Rates of Mortality Decline in Europe. Figure 1 plots estimates of
δ̂(x) by age from eleven European countries (Austria, Denmark, Finland, France,
Germany, Italy, Netherlands, Norway, Sweden, Switzerland, U.K) for females and
for males during a 30-year period ending between 1997–2001 for which the data
were available. The average rates of decline were computed from ages 0, 1–4,
5–9, . . . , 95–99. The lower end of the age interval is indicated in the figure. For
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Figure 1. Smoothed Rate of Decline in Age-Specific Mortality for Females and Males and
its Median Across 11 European Countries, for Females (Circle), and for Males (Square).
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forecasting purposes the rates of decline were smoothed (using RSMOOTH) and
restricted to be positive. We make no effort to distinguish the countries here, but
concentrate instead on the median values and the variability around the medians.
Notice that mortality has continued to decline the fastest in the lowest ages. In
those ages in which most of the deaths occur, the decline for females has exceeded
the decline for males. There is a fair amount of variation across the countries and
one has to be concerned that the mortalities of the different countries do not drift
too far apart in a forecast. Based on Figure 2 of Chapter 4 we see that during 1880–
1990 the rate of decline in ages around 70 has been about 0.01 per year in Finland.
Figure 1 shows that in many countries more gains have been made in those ages
during the past 30 years. This suggests that the nature of mortality improvement
has gradually changed. ♦

2.2. Cause-Specific Mortality

Consider deaths as classified by cause k = 1, . . . , K . For example, the U.S. Office
of the Actuary has used K = 9 primary causes of death, with heart diseases, cancer,
and vascular diseases the most important ones (Example 2.4 of Chapter 4). In this
case, the age-specific mortality is the sum of cause-specific mortalities, µ(x, t) =
µ1(x, t) + · · · + µK (x, t). For each cause, the Office of the Actuary has postulated
a target rate of change by cause τk . In a forecast t = 1, . . . , 25 years ahead (Wade
1987) a smooth curve (cf., Andrews and Beekman 1987, 21) was used to connect
the initial rate of change ζk(x) in age x to the target. Define γk(x) = ζk(x) − τk .
Then, the resulting model for cause k = 1, . . . , K can be written as

βk(x, t) = τk t + sgn(γk(x))
t∑

s=1

log(1 + |γk(x)|10(6s−31)/25)10(31−6s)/25, (2.2)

where sgn(z) = 1 for z ≥ 0 and sgn(z) = −1 for z < 0. The complex expression
is designed to lead to a smooth change from the initial rate of change to the target
rate of change. However, (2.2) can actually be approximated fairly well with a
second degree polynomial of t (Alho and Spencer 1990a, 213–214; 1990b, 611).
The targeting approach followed by the Office of the Actuary is quite similar in
spirit to the one suggested by Whelpton (Section 1.2).

The targets used in practice have been much closer to each other both across
age and cause than are the empirical estimates at jump-off time (Alho and Spencer
1990a). This leads one to suspect that the cause-specific analysis has only been
partially relevant for the specification of the forecast. Yet, it is clear that different
causes of death of death could be treated differentially (e.g., Van den Berg Jeths
et al. 2001). We will now discuss both theoretical and practical issues that arise
when this is attempted.

The analysis of trends in cause-specific mortality is complicated by changes
in the International Classification of Diseases (ICD). Although efforts are made
to ensure continuity by dual coding of a single year’s data, or bridge-coding,
inevitable discontinuities and more gradual changes may occur. The revisions
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typically are more refined than their predecessors. For example, in the 10th revision
of the ICD, or ICD-10, there are 8,000 categories for cause of death, whereas there
were 5,000 in ICD-9. For results of a bridge-coding exercise between ICD-10 and
ICD-9, see Anderson et al. (2001).

Apart from the data problems, it is often thought that if the trends of mortality
due to different causes are different, then the causes should be analyzed separately.
To see that this need not be the case, assume that the trend of mortality in a given age
(we suppress age in the notation) during t , due to cause k = 1, . . . , K is of the form

µk(t) =
s∑

j=1

βj (k) fj (t), (2.3)

where the f j (.)’s are known functions and the β j (k)’s are parameters. The
age-specific mortality rate is then of the form

µ(t) =
s∑

j=1

βj fj (t), (2.4)

where βj = βj (1) + · · · + βj (K ). We see that the trend of the sum is of the same
form as the trends of the components. It follows that one would not expect there to
be much difference in the forecast accuracy of the two approaches provided that
the linear models (2.3) hold for each cause. Nevertheless, exceptions may occur.

Example 2.2. Emerging Cause of Death. Assume a polynomial model fj(t) = t j.
If the degree s of the polynomial in (2.3) depends on k, then an emerging cause
with a small current share of deaths may have a high value of s. In such a case we
might erroneously identify a too small value for s when using a model for the total
mortality (2.4). In long term forecasting this could make a difference. ♦

This example illustrates the possible advantage of disaggregation by cause.
However, it can be turned around. Consider a cause of death that represents a small
fraction of all deaths. Suppose the recorded number of deaths is rapidly increasing
for that cause due to improving classification of deaths by cause. Initially, new
diseases are infrequently diagnosed and deaths due to them are allocated to other
causes. With better recognition more cases are found and a rapid spread of the
disease may be predicted. We might call this an early detection bias. When the
diagnostic practices become established, the recorded incidence levels approach
the actual incidence. In the case of AIDS, for instance, these considerations may
have been more relevant than the possibility mentioned in Example 2.2.

From a statistical perspective it is clear that if the data are correct, then one
cannot lose efficiency by analyzing different causes jointly, instead of one by one.
However, even here for the benefits of the joint analysis to materialize, special cir-
cumstances must prevail. Suppose the trends of the cause-specific time series are
of the form (2.3). Assume that their errors are built up of innovations that are con-
temporaneously cross-correlated, so the processes themselves are crosscorrelated
(e.g., as in (2.17) in Chapter 7). Then, the GLS estimators of the parameters βj (k)
are the same whether the causes are analyzed jointly or separately and, similarly,
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the predictions of the future values of the processes are the same (Alho 1991). A
condition that could lead to improvements under joint prediction is essentially that
one of the series serves as a leading indicator for the others, i.e., the innovations
of the series could be used to predict the innovations of the other series. Another
condition would be if judgement could be more effectively used in forecasting
deaths by cause than in forecasting the aggregate.

3. Conceptual Aspects of Error Analysis

3.1. Expected Error and Empirical Error

Recall that error = forecast − true value. We can use the concept of error after
the future has unfolded, and we know how accurate the forecast turned out to be.
However, for an error analysis to be really useful, we need to be able to characterize
future uncertainty beforehand, at the time a forecast is made.

By expected error we refer to error as assessed at the time a forecast is made,
before the future unfolds. By empirical error we refer to errors as assessed after
the future has unfolded and the attained values of the process being forecasted have
become observed.3 The user of population forecasts wants to know the accuracy
ahead of time and so is primarily interested in the expected error of a current
forecast. The empirical errors of past forecasts are primarily useful if they help
us either to improve forecasting methodology or to estimate the expected error. If
future errors can be assumed to be similar (or at least not dramatically larger) than
past errors, then the past errors provide us directly with estimates of the error to
be anticipated in the future.

A key element in expected error is that it is always model based. If we mis-
specify the model, the error assessment may be wrong. If the mis-specification is
due to overfitting, an underestimation of expected error may occur. On the other
hand, consider fitting an ARMA model to a once or twice differenced data series.
Even if the model fits well, and leads to a small residual variance, the severe
nonstationarity of the model can lead to forecast intervals that eventually cover
values that are, in Whelpton’s words, “incompatible with present knowledge”. In
such a case a model-based expected error may exceed empirical error.

3.2. Decomposing Errors
3.2.1. Error Classifications

Hoem (1973) classified sources of forecast inaccuracy into three main categories:
(a) estimation and registration errors; (b) errors due to random fluctuations; and
(c) erroneous trends in the mean vital rates. The first category refers to errors in
parameter estimates, errors in basic data (on jump-off population and vital rates),

3 It is customary to call these as ex ante and ex post errors. According to the Oxford English
Dictionary, “ex post” is an abbreviation of “ex postfacto”, meaning ‘from what is done
afterwards’. The etymology of “ex ante” is hazier.
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and rounding errors. The second comprises the inherent stochasticity of the vital
rates (e.g., binomial or Poisson variation, and random variation in their expec-
tations). The third category involves various forms of model mis-specification
(such as unincorporated gradual change or gross shifts of level). Keilman (1990)
gave a similar list. In Alho (1990c, 523) we looked at the classification from the
perspective of statistical modeling and defined the following four categories:

“(1) model mis-specification: the assumed parametric model is only approximately
correct;

(2) errors in parameter estimates: even if the assumed parametric model would
be the correct one, its parameter estimates will be subject to error when only
finite data series are available;

(3) errors in expert judgment: an outside observer may disagree with our judg-
ments or ‘prior’ beliefs about the parameters of the model;

(4) random variation, which would be left unexplained even if the parameters
of the process could be specified without any error: since any mathemati-
cal model is only an approximation, one would expect there to be random
variation.”

We note that the four sources depend conceptually on each other. For example,
random variation gives rise to estimation error, and errors of judgment may be
equivalent to model mis-specification. Data errors fall in this classification under
category (2). They require separate stochastic modeling. An example of this is the
probabilistic assessment of error in census data that will be given in Chapter 10.
Note also that (3) need not be the only source of error in judgmental forecasts. For
example, estimation errors belonging to category (2) may influence the error of
the forecast during the first years, and the classes (1)–(4) may all be applicable.

In practice, we have found that often the most important category of error is
either model mis-specification or error of judgment. Any forecast must implicitly
or explicitly choose the degree to which the future trend will continue the past
trend, and the degree to which future variation about the trend will resemble past
variation. As summarized by the following example, different choices can lead to
drastically different forecasts.

Example 3.1. Sensitivity to Assumptions. Alternative cohort-component projec-
tions made around 1990, for the U.S. population in 2050, range from about 280
million to 507 million (U.S. Census Bureau 1992), and even 553 million (Ahlburg
and Vaupel 1990). These projections are all scenario-based and their diversity
reflects alternative assumptions rather than residual error or error in estimated
coefficients. Pflaumer (1992) used two alternative ARIMA models for total U.S.
population in 2050. One yielded a point forecast of 402 million, the other 557
million. The sensitivity to assumptions is also indicated by the fact that consecutive
forecasts often show greater variance than the population they are trying to predict.
Thus, the median Census Bureau forecast for 2050 increased in one year from 383
million to 392 million (U.S. Census Bureau 1992; Day 1993), an amount which
exceeds the forecasted annual change even under their highest growth scenario.♦
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3.2.2. Alternative Decompositions

A more precise discussion of the components (1)–(4) is feasible for formal models.
Let µt denote the trend of a time series at time t and let εt denote the random de-
viation of the future value about its trend. The future value can be written as Xt =
µt + εt . Let µt (β) denote a parametric model for µt , and let µt (β̂) be a forecast of
Xt based on estimated values of the parameters. For example, Lee and Carter (1992,
661) used the model µt (β) = β0 + β1t for forecasts of the log of the mortality rate
for a particular age group in the U.S. The forecast error µt (β̂) − Xt is equal to the
sum of three terms, (µt (β) − µt ) + (µt (β̂) − µt (β)) − εt . The first term represents
model mis-specification (1), the second reflects errors in the estimated parameters
of the model (2), and the third reflects random variation (4). Finally, a forecaster
holding other prior views might have derived an estimator β̃ for the parameters.
In that case we could further decompose µt (β̂) − µt (β) = (µt (β̃) − µt (β)) +
(µt (β̂) − µt (β̃)). Here the first term reflects estimation error (2) conditionally on
the other prior views, and the second is due to a difference in judgment (3).

Other decompositions are possible. For example, the sum of the first two terms
is the error in the estimated trend. We have shown in Chapter 7 (Example 2.8
in particular) that random variation is important in the short run, but error in
the estimated trend often dominates in long-range forecasts. In Section 2.2 we
noted that the U.S. Office of the Actuary has used a model approximately equal
to µt (β ′) = β ′

0 + β ′
1t + β ′

2t2. If the Office of the Actuary’s specification were
correct, or µt = µt (β ′), the model error for a linear forecast would be (β ′

0 − β0) +
(β ′

1 − β1)t + β ′
2t2. Even if we had β0 ≈ β ′

0 and β1 ≈ β ′
1, so the two models agreed

for the recent time periods and for the near future, the model error would be
approximately β ′

2t2. The standard error arising from the estimation of β1 is linear
in t in this example, implying that model mis-specification dominates estimation
error in long-range forecasts.

3.3. Acknowledging Model Error

Model error is a central component of forecast error, but it is rarely discussed in
statistics texts. Chatfield (1996) is an exception. In Alho and Spencer (1985) we
applied the approximately linear models of Sacks and Ylvisaker (1978) to demo-
graphic forecasting in order to account for model error in the prediction intervals.
A more ambitious synthesis via model averaging is discussed by Draper (1995),
but see also Tukey (1995). For an application of these ideas in epidemiology, see
Volinsky et al. (1997). Here we discuss the topic in terms that are readily applicable
in demographic forecasting.

3.3.1. Classes of Parametric Models

We discuss first model error in the context of time series regression (Section 3.2
of Chapter 7). Consider a time series Zt = f (t) + ε(t) that has been observed for
t = 1, . . . , n. The goal is to predict the process for t = n + m, for m = 1, 2, . . .

Consider a single value of m. By a model of f (t) for t = 1, 2, . . . , n, n + m, we
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mean a class of functions with the domain Am = {1, . . . , n, n + m}. For example,
(3.3) of Chapter 7 defines such a class: M = all linear combinations of the functions
f1(.), . . . , fk(.). To fix ideas, we begin by assuming n > k.

Consider two cases. First, if f (.) does not belong to M , the model M is erroneous.
The degree of error can be measured in different ways. A simple method is to use
f̃ (t) − f (t) as the model error for prediction at t = n + m, where f̃ (t) is an
estimate of f (t) that would have been obtained if there had been no error ε(t), t =
1, . . . , n. If f̃ (t) is based on least squares fit of M to f (1), . . . , f (n) with n ≥ k,

then we can write f̃ (t) = ( f1(t), . . . , fk(t))(XT
1 X1)−1XT

1 ( f (1), . . . , f (n))T , where
X1 is an n × k matrix with f j (i) as the (i, j) element, as in Section 3.2 of Chapter 7.

Second, if M contains f (.) there is no model error for any lead time m. If we
add functions to M , then the enlarged model, say M1, also contains f (.). However,
if a large number of variables were added relative to the number of observations n,
then eventually k > n, the resulting statistical estimates may become unstable, and
model error reappears. (For an extreme example, if M1 is the class of all functions
with domain Am , there is no model error but the model is useless, as it leads to
the same practical estimates as if we had no model at all.) One could attempt to
measure the degree of model error for prediction by the asymptotic bias in a setting
in which n → ∞ and k → ∞ (e.g., Portnoy 1988), but given our aims, we will
not pursue this matter further.

The above discussion will lead to different measures of model error for different
future years m. One should not be too surprised by this. For example, incorrectly
choosing the order of a polynomial in regression would lead to errors that depend
on m. As noted in Example 2.2, emerging causes can make such a choice especially
difficult in mortality forecasting.

One way to take model error into account in the calculation of prediction inter-
vals is to estimate f (n + m) under alternative plausible models M j , j = 1, . . . , J.

Denote the corresponding estimates by f̂ (n + m; j). Suppose one of the models,
say, M1 is the correct one. Then, f̂ (n + m; 1) is a “model-unbiased” estimate of
f (n + m). It follows that | f̂ (n + m; j) − f̂ (n + m; 1)| is an approximation to the
absolute value of the model error for prediction of M j . Suppose the Mi is the pre-
ferred model. In reality we do not know which model is the correct one, but can use

Bi (m) = max{| f̂ (n + m; j) − f̂ (n + m; i)|| j = 1, . . . , J } (3.1)

as a conservative estimate of bias. The variance estimate V (m) = Var( f̂ (n + m; i))
obtained from the preferred model i could then be replaced by the mean squared
error V (m) + Bi (m)2 in the calculation of two-sided prediction intervals, for ex-
ample (cf., Cochran 1977, 12–15). Although (3.1) depends on the set of plausible
models being entertained, the calculation of (3.1) even under just two alternative
models may be enough to alert the forecaster that model error is a real possibility.

3.3.2. Data Period Bias

Let us continue to assume that we have data from a data period t = 1, . . . , n. A
frequent problem a forecaster may face is, should all the data be used in forecasting.
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There are two complementary points of view to this problem. The first has to do
with length of the data period n relative to the lead time m.

Data on Finnish fertility since 1776 are available (Figure 5 of Chapter 4). In
Section 2.2.2 of Chapter 7 we used only data starting from 1920 because the
earlier part cannot structurally be fit with the same ARIMA model as the latter
part. Some may argue that one should only concentrate on even the shorter period
since 1973 because the nature of the series may have changed again. We would
have no disagreement with that view if the intention were to forecast only 5 years
ahead. However, basing a forecast 25 years ahead on a data period of about 25
years would not be prudent. We can see from the figures that periods of 25 years
have had idiosyncratic features that are only revealed against a longer background.
Thus, models based on a short data period may be seriously in error. To summarize,
our practical advice is that one should always have a longer data period than the
forecast period, and preferably two to three times as long.

The second aspect is that even if the order of magnitude of the base period n
(relative to lead time m) is not at issue, the specific choice can be hard to make.
We suspect that often convenience rather than factors related to series itself dictate
the choice. Still, alternative data periods will lead to alternative forecasts and
alternative assessments of model error. In Alho and Spencer (1997) we introduced
a practical method of taking such data period biases into account. The method
is based on the same idea as (3.1). For concreteness, suppose ARIMA(p, d, q)
models are being entertained. Define M j as the estimate obtained from the data
period t = j, j + 1, . . . , n. Depending on the application we might want to use
different values of p, d and q for different j . Or, we might keep those fixed and
just vary j to get different parameter estimates.

For illustration, consider the U.S. growth rate (Figure 3 of Chapter 7). Concen-
trate on the decline in growth rate. Suppose one believes that the rate declines, but
cannot decide exactly which of the periods starting from j = 1900, 1901, . . . ,

1949, and ending at 1999, to take as a basis. A plausible compromise is to
take the average over the starting years as the preferred estimate. This decline
is = 6.34 × 10−5 per year. It determines “i” in (3.1). A histogram of the absolute
values of (3.1) is given in Figure 2. We see that the maximum error is, in this case,
about three times the size of the point estimate. Consonant with the fact that the
average was used to get the preferred estimate, a less conservative approach is
as follows. Suppose all starting values are viewed as equally likely to be correct.
Then, the histogram would actually represent equally likely values of the bias, and
the mean of the absolute values might be a compromise. In this case the mean of
the absolute errors is 5.64 × 10−5, still almost as big as the point estimate. This
analysis suggests that it is not possible to get a reliable estimate of the future pop-
ulation growth rate by analyzing the growth series alone. For more accuracy, other
information must be brought to bear.

3.4. Feedback Effects of Forecasts

In the previous sections we have not taken into account the possibility that fore-
casts have feedback effects that would directly influence their accuracy. Although
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Figure 2. Distribution of Absolute Errors of Decline in Growth Rate.

decisions concerning additional births, health behavior, or moving from one place
to another, are made by individuals, a classical view is that such decisions de-
pend on social or community level values and economic conditions that have some
coercive force over the individuals (Durkheim 1937). One use of forecasts is to
influence such values. For example, as noted in Section 1, in many European
countries cohort-component forecasts were made in the 1920’s and 1930’s with
the specific motivation of fighting against imminent population decline. In other
words, the intention was to produce a forecast that would make itself false, or
self-defeating.

Self-fulfilling forecasts are also a possibility. In energy policy, for example,
forecasts of increasing demand are used to justify the building of new power plants.
The resulting increase in supply keeps prices in control, thus allowing increased
consumption of energy. In demography, forecasts of increasing net migration may
be used to justify the build-up of infrastructure (e.g., native tongue teaching in
schools, training of social workers, provision of entry-level housing etc.) to receive
future migrants, and this may lead to an increased inflow.

The possibility that forecasts may perform a feedback function from the past
vital processes via behavior modification back to the vital processes are a reason
to question the possibility of a meaningful statistical analysis of demographic
forecasts and forecast errors. We recognize that such feedback mechanisms are
possible, but point out that influencing people in this manner is harder than one
might think. Attempts to influence fertility in the industrialized countries suggests
that the policies typically have had relatively little effect (I.N.E.D. 1976, Ekert
1986).4 Even in the case of immigration, government policies may be changed by

4 Even the pro-natalist policies of the national socialist regime in Germany, in the 1930’s,
had only a temporary effect on fertility.
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external events. In the United States, for example, legislated immigration quotas
have frequently been exceeded when political and economic conditions have led
to an unexpected influx of illegal immigrants.

Example 3.2. Planning Optimism. In the 1970’s, in Europe, there was much opti-
mism about the possibilities of social planning. In Finland, the government decided
to replace “bystander’s forecasts” of population that incorporate no assumptions
about specific policies, by “participant’s forecasts” in which the state would har-
monize social policies on the regional level in such a way that future population
would actually follow a population plan (Väestöennusteryhmä 1973). Conceptual
models for the work were sought from the regional input-output tables and other
planning tools developed in Sweden, Norway, Italy, France, the Netherlands, the
United Kingdom, West-Germany, and the Soviet Union. These models attempted
to give a system-theoretic picture of the regional economies, regional populations
and their change (Talousneuvoston aluejaosto 1972). Despite the enthusiasm of the
planners, and the seeming rationality of the plans, people simply ignored them. As
the discrepancy between plans and subsequent development became large enough,
the whole concept of population plans was abandoned. ♦

Our tentative conclusion is that while forecasts may lead to changes in demo-
graphic behavior, the large scale effects are probably indirect, via long chains of
changes in attitudes, social norms, institutions etc. Empirical examples of signifi-
cant short term feedback influences in national level forecasts are hard to find.

3.5. Interpretation of Prediction Intervals
3.5.1. Uncertainty in Terms of Subjective Probabilities

In philosophical literature it is shown that probabilities can be given numerous
interpretations that sometimes conflict (e.g., Kyburg 1970, Jeffrey 1983). We do not
discuss them in any generality, but note that for the communication of stochastic
population forecasts to users, some intuitively understandable interpretation is
needed.

In general, a forecaster must be prepared to describe a stochastic or probabilis-
tic forecast as representing his or her subjective views of the likelihood of future
developments. Since forecasting is typically a group effort, the forecast must actu-
ally correspond to the consensus view of the group. Moreover, a reputable team of
forecasters typically tries to present evidence and arguments to show that statistical
modeling was done efficiently and provided a good fit to the data, and judgment
was exercised in a defensible manner. Thus, reputable forecasts are constrained
in many ways by peer criticism or the prospect of rejection by potential users.
Whether the “author” of a forecast is an individual or a group, the probabilities
that are published are intended to correspond to the author’s views in a very specific
sense. This will be taken up next, using the machinery of set theory.

Consider a non-empty set � of elements, one and only one of which will occur.
The set of possible events is taken to be a collection F of subsets of � with certain
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properties: (i) the sure thing is an event, i.e., � ∈ F ; (ii) the complement of any
event is also an event, i.e., if A ∈ F then its complement Ac ∈ F ; and (iii) if A
and B are both events, then “either A or B” is an event, i.e., if A ∈ F and B ∈ F ,
then their union A ∪ B ∈ F .5

Referring to Figure 4 of Chapter 7, the subsets could describe childbearing in
2020. For example, if A = “the total fertility rate in year 2020 is > 2.21”, then
Ac = “the total fertility rate in year 2020 is ≤ 2.21”. (Their union � = A ∪ Ac =
“the total fertility rate in year 2020 is > 2.21, or ≤ 2.21” is an event that is certain
to occur.) If B = “the total fertility rate in year 2020 is < 1.32”, then, (A ∪ B)c =
“the total fertility rate in year 2020 is in the interval [1.32, 2.21]” etc. Using the
so-called De Morgan rules, one can show that the intersection can be expressed in
terms of unions and complements. (Note that Ac ∩ Bc = (A ∪ B)c in the example
at hand, for example.) This means that we have a simple set theoretic language
available with operators corresponding to “not” (complement), “or”(union), “and”
(intersection) to form expressions for new events.

If P(A) is the probability of an event A ∈ F , then it satisfies the rules (iv)
P(�) = 1; and (v) if A ∩ B = ∅ for A, B ∈ F then P(A ∪ B) = P(A) + P(B). It
follows from these that P(Ac) = 1 − P(A) for A ∈ F also holds. In our example,
based on the numbers underlying the figure (see page 214), we would have P(A) =
P(B) = 1/4, for example, so P((A ∪ B)c) = 1/2. How should such quantitative
probabilities be interpreted?

Major contributions to the theory of subjective probabilities were Ramsey
(1926), de Finetti (1931, 1937, 1974), and Savage (1954). A textbook treatment
of the theory is given in Fine (1973) and a philosophically oriented but mathemat-
ically rigorous treatment is given in Jeffrey (1983); see also Howson and Urbach
(1993). Continuing with the class F of events that satisfies (i)–(iii), suppose there
is an ordering relationship “�” such that (a) it is not true that � � ∅; (b) compa-
rability holds: either A � B or B � A for any A, B ∈ F ; (c) monotonicity holds:
if A ∩ C = ∅ and B ∩ C = ∅, then A ∪ C � B ∪ C if and only if A � B; (d)
transitivity holds: if A � B and B � C , then A � C for A, B, C ∈ F . Subject to
further conditions one can prove that corresponding to such a relationship there
exists a unique probability P satisfying (iv)–(v) such that A � B if and only if
P(A) ≤ P(B). The conditions are satisfied, for example, if for any n the set � can
be partitioned into n subsets D1, . . . , Dn ∈ F that are equally likely (i.e., both
Di � D j and D j � Di hold for i, j = 1, . . . , n).6

The relationship “�” is intended to correspond to a qualitative (or comparative)
probability: A � B means that “B is at least as likely as A” (e.g., Savage 1954, 30).
The interpretation of (a) is that a certain event should be strictly more likely than an
impossible event. The conditions (b)–(d) can then be interpreted as characterizing
the beliefs or an individual who is “rational” in the sense of being able to compare
any events of interest, thinks of probabilities in an additive manner, and is consistent

5 For technical reasons (iii) is usually given for countable unions.
6 For a discussion and an alternative formulation in terms of “fine” and “tight” conditions,
see Savage (1954, 37–38).
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in thinking. (The notion of rationality will further be discussed in Section 4.2 of
Chapter 12.) The partitioning condition for quantification says that there are equally
likely events that can be used as a yardstick to measure the probabilities of other
events. This would be true if, say, an unlimited number of coin-tossing experiments
could be included into F . If our views of the world are more “coarse” (e.g., so that
a partition is available up to some finite value of n only), it may only be possible
to determine P to some degree of accuracy.

The classical result shows that an individual’s degrees of belief can be rep-
resented in terms of quantitative probability statements. However, as different
individuals may hold conflicting views, this opens up the possibility of conflicting
probability statements that are simultaneously true. This is, indeed, the case. How-
ever, an approximate consensus view can arise under quite general circumstances,
if rational individuals are presented information in an unbiased manner. To indicate
how this can come about, consider the following classical example.

Example 3.3. Achieving Approximate Consensus on Probabilities. Consider two
individuals R and S. R thinks a coin is biased, so a chance of getting heads is about
0.1 and perhaps a lot less. He is not quite sure, however, and the standard deviation
around the expected value could be about 0.1. Define f (p) = pα−1(1 − p)β−1 for
p ∈ [0, 1] and α > 0 and β > 0. Let B(α, β) = ∫

f (p)dp. Then, the beta dis-
tribution Be(α, β) (e.g., DeGroot 1987, 294–296) has the density f (p)/B(α, β).
R’s views can then possibly be represented by, say, Be(1,9), because this distribu-
tion has expectation α/(α + β) = 0.1 and variance αβ/[(α + β)2(α + β + 1)] ≈
0.092. Suppose S has opposite views that can be represented by Be(9,1) with the
mean 0.9. In both cases the probabilities reflect both what the individuals per-
ceive as likely, and their uncertainty about the most likely value. How could one
get them to come to a consensus? Suppose the true probability of heads is ac-
tually p0 = 0.3. We arrange a coin tossing experiment for R and S and observe
X heads in n independent tosses of the coin. The number of heads has a bino-
mial distribution, so the probability is proportional to pX (1 − p)n−X . Given the
prior views Be(α, β) a rational person would compute the posterior distribution
that is proportional to the product of the prior and the likelihood of the data,7

that is, proportional to pX (1 − p)n−X pα−1(1 − p)β−1 = pα+X−1(1 − p)β+n−X−1.
We notice that this integrates to B(α + X, β + n − X ), so the posterior view
must be represented by the distribution Be(α + X, β + n − X ), whose mean
is (α + X )/(α + β + n) = (α/n + X/n)/(α/n + β/n + 1). By the law of large
numbers, X/n → p0 as n → ∞, so the mean converges to the right value. For
the variance we have (α + X )(β + n − X )/[(α + β + n)2(α + β + n + 1)] → 0.

Thus, the individual eventually learns the true value and becomes certain about his
or her belief! Figure 3 gives simulated trajectories of the expected values of for R
and S in one such experiment. ♦

7 This is what an idealized “rational” individual would do. As discussed by Edwards (1982)
and Starmer (2000) opinions can be more resistant to change, in practice.
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Figure 3. Change in the Expected Value for the Probability of Heads in a Sequence of
Coin Tossing Experiments for an Individual with a Prior Expectation of 0.9 (Upper) and an
Individual with a Prior Expectation of 0.1 (Lower).

The classical results involve highly idealized individuals, whose abilities in in-
trospection surpass what we are normally capable of. Techniques of elicitation
have been developed to discover dormant beliefs in a person, who has not con-
sciously thought about a particular matter, or who outright denies being capable
of expressing his or her views in this manner. A popular method is to pose the
problem in terms of betting; for general discussion of other methods see Kadane
and Wolfson (1998) and for a demographic application see Daponte, Kadane, and
Wolfson (1997).

Example 3.4. Elicitation of Probabilities via Betting. Consider the event “the total
fertility rate in year 2020 is in the interval [1.32, 2.21]” that we assign a probability
of 0.5 based on a time-series analysis underlying the intervals in Figure 4 of
Chapter 7. A person who truly believes in the assessment should be willing to
pay 1 unit for a gamble in which he or she would win 2 units or more, in case
the true total fertility is in 2020 is inside the interval, because then: expected
winning – cost ≥ 0.5 × 2 − 1 = 0.8 However, suppose the person thinks that the
chances are p > 0.5 that the future value will be in the interval. Then, he or she
should be willing to pay 1 unit for a gamble that would only pay as little as 1/p.

Conversely, if the person accepts a gamble in which the winnings are 1.5 units

8 Due to risk aversion (e.g., Arrow 1971, Chapter 3) a somewhat higher value than 2 would
often be needed. For example, a person may prefer (and not be indifferent) to receiving 1
unit with certainty rather than accepting a lottery ticket with equal probabilities of payoffs
0 units and 2 units. This topic is discussed in Section 4.2 in Chapter 12.
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or more, then the subjective probability that would make this gamble rational
must be p ≥ 1/1.5 = 2/3. Experiments of this type have been used to assess the
uncertainty of migration forecasts (Alho 1998). ♦

In practice, views of individuals or groups may violate the conditions (b)–(d)
in various ways (e.g., Kahneman and Tversky 1982). This need not invalidate the
general approaches or interpretations outlined here, but care has to be exercised in
any elicitation.

“When we speak of belief in common life, we always mean that we consider the object of
belief more likely than not; the state of mind in which we rather reject than admit, we call
unbelief. When the mind is quite unbalanced either way, we have no word to express it,
because the state is not a popular* one. . .

* Many minds, and almost all uneducated ones, can hardly retain an intermediate state.
Put it to the first comer, what he thinks on the question whether there be volcanoes on the
unseen side of the moon larger than those on our side. The odds are, that though he has
never thought of the question, he has a pretty stiff opinion in three seconds.” (de Morgan
1847, 182–183)

Moreover, empirical evidence using pairwise comparison interview techniques
indicates that there are severe limits to our abilities to maintain transitivity when
questioned repeatedly about a value of an item of interest (e.g., Alho, Kangas, and
Kolehmainen 1996). Although transitivity can always be imposed using a number
of methods, the result may be sensitive to the method used. This suggests that we
may have to satisfied with less precision in the quantification of probabilities than
we might wish.

3.5.2. Frequency Properties of Prediction Intervals

Even if a forecasting group can agree on a particular quantification of the ex-
pected error, users of prediction intervals want the intervals to possess frequentist
interpretations, e.g., 95% prediction intervals should contain the future value in
95% of the cases, not much more, not much less (i.e., the intervals should be
externally calibrated). Unfortunately, due to the high autocorrelations of forecast
errors (cf., Chapter 7), the empirical validation of prediction intervals is difficult.
Autoregressive models provide a simple example.

Example 3.5. Assessing Prediction Intervals for ARIMA Forecasts. Consider an
ARIMA(p, d, 0) model. Its forecast function is determined by the p + d last ob-
servations. Suppose that a forecast k steps ahead is made at time t and a 100(1 − α)
level prediction interval is computed. Define X = 1, if the observation at t + k is
included in the interval, otherwise X = 0. Then, observations during the time seg-
ment [t − p − d + 1, t + k] determine X . The length of the segment is k + p + d.

Suppose also that we have n consecutive, non-overlapping segments available, and
we calculate a k-step ahead forecast for the last observation of the segment using
the k + d first observations in each segment, in turn. Define Xi = 1 if the last ob-
servation was in the interval for segment i = 1, . . . , n and otherwise Xi = 0. Since
the experiments during different segments are independent, the laws of large num-
bers entail that (X1 + · · · + Xn)/n → 1 − α, as n → ∞. Or, in the long run the
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intervals cover the true value with the right frequency. However, in this argument a
data series of length (k + p + d)n is reduced to a sequence of n observations only.
For large k, there may be very few independent observations, or none at all. In prac-
tice, we would use all sequences of length k + p + d to assess the coverage prob-
abilities of the intervals, but the high correlation of the corresponding X indicators
means that the increase in information can be much less than (k + p + d)-fold. ♦

3.6. Role of Judgment
3.6.1. Expert Arguments

A statistical examination of past developments provides a relatively neutral starting
point for a forecast. Although subjectivity is always involved in the choice of a sta-
tistical model, the principles of simplicity or parsimony (cf., Section 2.1.1 of Chap-
ter 7) and consistency with the data often lead to a small set of models that any com-
petent modeler would consider plausible. However, even if a relatively objective
basis for model choice exists, the chosen models may suffer from shortcomings.

First, statistical models do not explicitly include notions of causality or under-
standing.9 As pointed out by Whelpton, it may happen that the models produce
forecasts that conflict with other information we may possess about the vital
processes. For example, a time-series model may lead to forecasts or prediction
intervals (of life expectancy or total fertility rate, for example) that are implausibly
high or implausibly low in view of past experience. An expert may point this out,
and suggest how the analysis should be adjusted in light of such knowledge.

Second, statistical analyses tend to emphasize long-term developments. How-
ever, we may have knowledge of emerging factors that are believed to have an
effect on the trends in the future even though such effects have not been apparent
in the past (cf., Example 2.2). For example, knowledge of changes in smoking
behavior may suggest that mortality trends will change in the future. Again an
expert may point this out, and suggest how the forecast should be adjusted in light
of such knowledge.

Third, statistical models typically assume that the uncertainty of forecasting is
similar in the future to what it has been in the past. Or, if changing volatility is
allowed, one has to specify a mechanism of change that operates in the future as
it did in the past (e.g., Section 4 of Chapter 7). Yet, demographic processes may
undergo periods of relative calm and relative turbulence for reasons that can be
explained. An expert may point this out, and suggest how a forecast should be
adjusted in light of this.

The three cases mentioned above do not exhaust the ways in which judgment
may be exercised to adjust model-based forecasts to better correspond to reality.

9 E.g., the well-known Granger causality says that two time-series do not show causal de-
pendence if knowing the past values of the second series does not help in predicting the
first, in the mean squared sense (Granger 1969; Wiener 1956). Or, the notion of causal-
ity is reduced to a formal property of conditional expectations. For extensions, see, e.g.,
Chamberlain (1982) and Florens and Mouchart (1982).
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However, to preserve the intended interpretation of the forecasts, in all cases a care-
ful argumentation is necessary when adjustments are made. Given the relatively
low predictive power of our social science theories (e.g., Example 1.5 above), such
an argumentation can rarely be conclusive. But if no arguments are given, then
the resulting forecast may appear arbitrary. We give three stylized arguments that
appear legitimate to us.

Example 3.6. Mortality Differences Across Countries. In the early 1950’s the fe-
male life expectancy was 72.4 in Denmark and 73.3 in Sweden. The two countries
were leading the world at that time. In 2002 the corresponding life expectancies
were 79.7 and 82.6. Both countries lagged behind Japan with a female life ex-
pectancy of 84.3. During a 50 year period the advantage of Sweden over Denmark
grew from 0.9 years to 2.9 years. It is thought that life style factors (smoking,
alcohol use) explain much of the change. Since these are factors that can be in-
fluenced by government activities (information, improved health care systems),
it is reasonable to expect that the Swedish advantage will not continue to grow
indefinitely, and it may even begin to shrink. ♦

Example 3.7. Fertility in the Mediterranean Countries. The decline of period
fertility to an unprecedented low level in Italy (1.24 in 2000) and Spain (1.26
in 2000) would lead to a higher level of childlessness than suggested by fertility
surveys. This suggests that some degree of recovery may take place in the coming
10–20 years. ♦

Example 3.8. Migration to Germany. After the fall of Soviet power, and the uni-
fication of East and West Germany, migration into Germany became a practical
possibility for a pool of German speakers who would have liked to migrate even
earlier. As the pool gradually becomes depleted, it is likely that net-migration will
decline to a lower level than that observed in the 1990’s. ♦

The practical difficulties observed in connection with the elicitation of prob-
abilities suggest that it is much harder to come up with meaningful uncertainty
statements using judgment alone than to argue for a particular point forecast. These
difficulties are compounded by the well-known phenomenon of expert overcon-
fidence (Kahneman, Slovic, and Tversky 1982, Part VI). An expert may be in a
particularly tight spot when asked to express his or her uncertainty concerning a
topic he or she is supposed to be an expert on! A possible way to circumvent such
awkward situations is to approach uncertainty in relative terms. In the spirit of Ex-
amples 3.6–3.8, judgment may well be useful in an assessment of whether future
uncertainty should be viewed as being bigger, equal, or smaller than uncertainty
in the past. Statistical modeling can provide an estimate of the past level.

3.6.2. Scenarios

As far as we know, the use of scenarios originates from military applications during
the Cold War, in the 1950’s and 1960’s (cf., Kahn 1962, 150–153; quotations below
are from this source). At that time, scenarios were devised as aids to thinking about
events that are not only “unpleasant” but also “unexperienced”. Among other



P1: MRM/SJS P2: MRM
SVUS004-Alho & Spencer April 29, 2005 21:33

4. Practical Error Assessment 251

things the scenarios “call attention, sometimes dramatically and persuasively, to
the large range of possibilities that must be considered”; “force the analyst to deal
with details and dynamics that he might more easily avoid”; and “illuminate the
interaction of psychological, social, political, and military factors”. To be plausible
they must “relate at the outset to some reasonable version of the present, and must
throughout relate rationally to the way people could behave”. Thus, the scenarios
are very much based on causal thinking, and use ideas of continuity to try to make
the “unthinkable” future analyzable.

Thus, scenarios involve not only what is likely to happen, but also alternatives
we might not otherwise be able to, or might not wish to see. This is very much
in the same spirit as we have approached forecasting. However, while it is clear
that if we contemplate the course of a thermonuclear war, we cannot have much
empirical basis for formulating probabilities concerning the future outcomes, in
demography the situation is different as we have perhaps the longest and most
systematic body of historical evidence of any social science.

3.6.3. Conditional Forecasts

When new policies are contemplated, one might wish to forecast their conse-
quences. In this case we may not have direct evidence upon which to base a
forecast, and we may have to condition on particular actions being taken with
more or less well specified consequences. Although all forecasts are conditional
on what was observed in the past, we define a conditional forecast as a forecast
that is conditional on the occurrence of some future event.

Suppose Y is a criterion variable of interest, such as some demographic intensity
measure (fertility, mortality, migration etc.), and suppose a policy maker wants to
influence its value. Write Y = mY + εY , where E[εY ] = 0 and assume that the
policy maker can create a control variable Z such that the controlled version of Y
is YZ = Y − Z . We call YZ an adaptive scenario, because it explicitly conditions
on a policy being adopted that produces a value for Z in the future (Alho 1997).
Whatever the value of Z , the distribution of YZ can then be interpreted as the
conditional distribution of Y given Z . In the simplest case, we may assume that
Z = α + βεY + ε, where ε is independent of εY with E[ε] = 0. Here α and β are
parameters that the policy maker can choose within some limits. They influence
both the mean and variance of the variable to be controlled. The role of ε is
to represent unexpected disturbances that are caused by the introduction of Z .
Indeed, Var(YZ ) = (1 − β)2Var(Y ) + Var(ε), so the adaptive scenario may even
be more uncertain than the uncontrolled Y . Under this model it is possible to make
assumptions about future policies, incorporate them into forecasts, and still retain
the notion that such scenarios are uncertain.

4. Practical Error Assessment

To assess the uncertainty of future population, we need to look at the past fore-
castability of the vital rates and the accuracy of past forecasts. We do not have to
accept that future forecasts will be exactly as accurate as the past forecasts, but we
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have to be prepared to defend our models and assumptions if we do not so assume.
By looking at the way vital rates have been forecasted in the past, we may learn
a great deal about why errors were made in the past, to what extent they might
be avoided, and how large we might expect them to be in the future. In Section
4.1 we will define commonly used error measures. In Section 4.2 we show how
baseline forecasts can be used to provide error assessments. Section 4.3 discusses
the modeling of errors of the U.N. world forecasts using a random effects model.

4.1. Error Measures

Suppose X > 0 is a random variable representing future population size, the future
level of fertility etc. Let T be its forecast, which is based on past data. Then,
forecast error is ε = T − X. The absolute error is |ε|, the squared error is ε2, and
the relative error is ε/X. To characterize the level of error over a set of forecasts,
one typically conditions on the realized value of X . In this case, the mean absolute
error (MAE) is E[|ε|], the mean squared error (MSE) is E[ε2], the mean relative
error (MRE) is E[ε/X ], and the mean absolute relative error (MARE) is E[|ε|/X ],
for example. The bias of the forecast is B(X ) = E[ε]. The various measures are
estimated from data by their sample averages. For example, if we have a set of
values Xi , i = 1, . . . , n with forecasts Ti , i = 1, . . . , n, then MARE would be
estimated by (1/n)�i |Ti − Xi |/Xi .10

The variance of the forecast error is Var(ε) = E[ε2] − E[ε]2 = E[ε2] − B2, so
the mean squared error is of the form,

MSE = Var(ε) + B2. (4.1)

Other error measures account for bias, as well, but only the mean squared error has
this elegant decomposition. If the interest centers on understanding how past errors
came about, both the variance and the bias are of interest. However, if we intend to
use empirical measures of past errors in an assessment of future uncertainty, then
the future bias would be unknown and using Var(ε), instead of MSE, can lead to
an underestimation of the level of uncertainty. The moments in (4.1) can also be
taken conditionally on either T or X, depending on the desired interpretation.

In his study of Dutch forecast errors Keilman (1990) established several quali-
tative results that have emerged in many other studies since (e.g., Keilman 1998;
Bongaarts and Bulatao 2000, Chapter 2). Perhaps the single most important find-
ing was to show that the MRE of population size has depended heavily on age.
Fertility has been overestimated to the extent that over a 15 year forecast period
the MRE of the age-group 0–4 has been approximately 0.28, or 28%. Similarly,
survival in old-age has been underestimated, especially for females, so that the
MRE of age-group 85+ has been approximately −0.15, or −15%, over a 15 year
ahead forecast period (Keilman 1990, 83). This illustrates how errors in different

10 A frequently used measure is the mean absolute percentage error (MAPE) = 100 ×
MARE that is estimated by 100 × (1/n)�i |Ti − Xi |/Xi .
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age ranges have compensated for each other. The forecast for the total population
has been much more accurate.

Empirical estimates of error typically show that uncertainty increases with lead
time (e.g., Keilman 1990, 105). However, examples such as Whelpton’s forecast
of the U.S. total fertility rate (Section 1.2) show that for a given forecast it may
well happen that the errors first increase and then start to decrease. Occasional
examples of this type occur, if the estimates are based on a small number of
observations. We conclude that some form of error modeling (using time-series
or other statistical models) is preferable to the direct use of error measures if the
intention is to use characterize expected error. This is supported by the fact that
for many countries very few past forecasts are available, and there is no country
for which a statistically reliable estimate of past forecast error is available for lead
times above 50 years. For many applications (e.g., pensions) forecasts up to 50
years or more are, nevertheless, needed.

4.2. Baseline Forecasts

As a potential remedy to the difficulties of empirical error estimation, in Alho
(1990c) we suggested that naive or baseline forecasts be used to obtain omnibus
error assessments, i.e., assessments that capture all sources of error simultane-
ously.11 Consider the total fertility rate during the 20th century. In many European
countries and the U.S. the rate declined until the 1930’s or so. Then, it increased
until the 1950’s and 1960’s and declined after that. As pointed out by Lee (1974)
the available forecasts display a remarkable regularity: the forecast has typically
been very close to the current value. If the total fertility rate were a random walk,
using today’s value for all future times would be optimal.12 Indeed, in industri-
alized countries a graph of these series (e.g., Figure 4 of Chapter 7) often looks
approximately like that of a random walk. We conclude that using the current
value as the forecast is a simple, reasonable baseline forecast for fertility which
conceivably can be improved upon, but which is not easy to beat.

A similar argument is available for mortality. In industrialized countries, we
have seen a steady decline in mortality during this century, with an occasional
plateau in one country or another, but with no major upturns.13 Official forecasts
of mortality have typically assumed that the decline will continue for a while, and
then level off. However, as pointed out in Example 1.4 (recall (3.1) of Chapter 7),
a simple baseline forecast for mortality that would have done as well as (or better
than) the official forecasts is to assume that the recent past rate of decline continues

11 In economics, naive forecasts are routinely used as benchmarks in the assessment of fore-
cast accuracy, cf., Öller and Barot (2000), for example. In fact, the notion is a generalization
of “Theil’s U” (Theil 1966).
12 A wider class of models, the martingales, are defined by the property that today’s value
is the optimal forecast, cf., Chung (1974).
13 In the 1980’s and 1990’s, the countries of the former Soviet Union experienced increases
in mortality that are not compatible with the “stylized facts” we are presenting.
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for the next few decades. Again, this is a simple, reasonable forecast that possibly
can be beat, but not very easily.

In many industrialized countries net migration has behaved in a rather erratic
fashion around a mean, but with many national variations. Thus, a baseline forecast
for net migration that often can be taken as a starting point is to assume that the
recent average number will continue to enter (or leave) the country.

Such baseline or naive forecasts can be useful in the assessment of the expected
error of forecasts, because their empirical accuracy can always be assessed. We
may simply make as many naive forecasts as we have past jump-off years available,
and calculate the empirical errors. These errors should not be smaller than the errors
of the more complex forecasting methods actually used. (If they are, one should
consider changing from the complex method to the naive one!) Therefore, if the
forecastability of the process does not dramatically deteriorate, the empirical error
of the naive forecasts provide useful assessments of the expected error for any
other forecasting method that is not less accurate than the naive method.

Naive forecasts cannot replace model-based error estimates (strictly speaking,
they are based on certain implicit modeling assumptions themselves!), but they can
serve as a useful complement. Since modeling error is an important source of error,
it is useful to have available a non-parametric technique that avoids assumptions
about parameter structure or distributional form.

Example 4.1. Error Estimates for Fertility Forecasts in Europe. Figure 4 displays
empirical estimates of the absolute relative error of naive forecasts for the logarithm
of total fertility in six European countries with data ending in 2000 and starting
between 1751–1900. In the order of size of error, from the largest to the small-
est, they are the Netherlands, Denmark, Norway, Finland, Iceland, and Sweden.
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Figure 4. Median Relative Error of Fertility Forecast as a Function of Lead Time for Six
Countries with Long Data Series, their Average (Circle), and a Random Walk Approxima-
tion.
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Figure 4 also has the mean of the six countries, as smoothed by the RSMOOTH
procedure of Minitab, and the error of a random walk whose volatility closely
matches the mean. If the steps of the random walk are normal (Gaussian) with
variance (volatility) 0.062, then the median of the absolute value of the error is
0.6745 × 0.06 × t1/2, given as the dashed line in Figure 4. To appreciate the order
of magnitude, note that at lead time 30 the mean of the relative errors is approxi-
mately 0.20. This corresponds to an expected absolute error of about 20%. Under
a normal (Gaussian) model of relative error, this corresponds to a relative standard
deviation of about 30%. ♦

A study of the autocorrelation functions of the six countries shows some au-
tocorrelation (0.1–0.3) at short lags (cf., Section 2.2.2 of Chapter 7 for the ef-
fect of war in Finland). The median of the estimated standard deviations of the
first differences is 0.045. An AR(1) process with parameter ϕ ≈ 0.25 provides
a serviceable model of the series. The results of Example 2.7 of Chapter 7 im-
ply that a random walk model produces comparable prediction intervals as an
ARIMA(1,1,0) with this correlation structure, if the standard deviation is multi-
plied by [(1 + 0.25)/(1 − 0.25)]1/2 = 1.29. Or, the matching scale estimate should
be 1.29 × 0.045 = 0.055 ≈ 0.06, a value we arrived at in Example 4.1 via the er-
ror of naive forecasts. Moreover, the overestimation of the level of uncertainty at
short lead times when a random walk approximation is used (see Figure 4) essen-
tially vanishes if ARIMA(1,1,0)-based formula (2.14) of Chapter 7 is used. Thus
a more refined approximation would be an AR(1) model for the first differences
with first autocorrelation = 0.25 and innovation variance 0.0452. We see that error
estimates based on naive forecasts and those deriving from ARIMA models give
similar results for these data.

Given the paucity of data, a corresponding analysis cannot be validly carried
out for countries with time series 40–50 years long. For short lead times, say, up
to 15 years a meaningful analysis can, however, be carried out. One can also argue
that the consideration of the remote past is not as relevant as the most recent past.
Perhaps the level of uncertainty is less if the most recent period alone is considered?
In Europe, the opposite is true, however. During 1960–2000 the errors for 22
European countries are typically larger than the estimates obtained for the subset
of the countries with long data series. For lead time 15 years, the median error
(across countries) is 0.26. This is approximately twice the mean value of Figure 4
for lead time 15. Hence, fertility has been unusually volatile in Europe during the
last 40–50 years. In part, the recent high volatility can be attributed to the decline
that forms the end of the baby-boom. However, another factor is the emergence of
extremely low fertility in Central Europe and the Mediterranean countries.

Example 4.2. Error Estimates for Mortality Forecasts in Europe. In an analysis of
data from nine European countries (Austria, Denmark, France, Italy, the Nether-
lands, Norway, Sweden, Switzerland, and the United Kingdom), we have compared
the volatility of mortality in ages 50–54, 55–59, . . . , 90–94 with data ending in
2000, and starting at various times, the earliest being the United Kingdom in 1841.
The baseline forecast was made by assuming the decline observed during the most
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Figure 5. Median Relative Error of Mortality Forecast as a Function of Lead Time for Nine
Countries with Long Data Series, their Average (Circle), and a Random Walk Approxima-
tion.

recent 15 years to continue indefinitely. The data were aggregated over age-groups
for each country to provide the median level of relative error for each country,
for each lead time. Figure 5 has a plot of the median errors, their average, and a
random walk approximation. Surprisingly, a matching level of error is obtained
with the same volatility 0.062 as for fertility. ♦

From a comparison of Figures 4 and 5 we find that the relative error one can
expect in age-specific mortality forecasts is similar to that for total fertility. How
can this be reconciled with the generally held view that forecasting mortality is
easier? Perhaps a partial answer is that usually survival rather than mortality is
meant. If one makes a large error in forecasting a mortality rate that is of the order
of 1 percent, then the relative error in the number of survivors is 1/100 of that.

4.3. Modeling Errors in World Forecasts14

The U.N., the World Bank, and the U.S. Census Bureau publish cohort-component
forecasts for all countries of the world. We will review simple techniques of error
modeling, and show how, based on past and current forecasts of the U.N., prediction
intervals for the total population size can be derived.

4.3.1. An Error Model for Growth Rates

Let V (t) be the population size in the beginning of the year t . Defining the average
growth rate during [t, t + 1) as ρ(t) = log(V (t)/V (t − 1)), we get that for t > 0,

V (t) = V (0) exp(ρ(0) + · · · + ρ(t − 1)) (4.2)

14 This section reviews Appendix F (http://books.nap.edu/books/0309069904/html/
index.html) of Bongaarts and Bulatao (2000), and presents some unpublished findings.



P1: MRM/SJS P2: MRM
SVUS004-Alho & Spencer April 29, 2005 21:33

4. Practical Error Assessment 257

To match the available data, we index the jump-off years of interest by k =
0, 5, 10, 20 that correspond to calendar years 1970 + k. Our data come in the
form of average growth rates during 5 year intervals. The end points of the inter-
vals will be indexed by m = 5, 10, 15, 20, 25, 30 corresponding to calendar years
1970 + m. The average growth rate during [m − 5, m) is

ρ̄(m) = log(V (m)/V (m − 5))/5. (4.3)

A major advantage of the cohort-component method is that the effect of age-
structure on crude rates can be accounted for. Therefore, assume that the true
growth rate during the year t is of the form

ρ(t) = c(t) + �(0, t) + ξ (t), (4.4)

where c(t) is a function whose values can be forecasted using cohort-component
methods; �(0, t) represents gradual deviation from assumed fertility, mortality,
and migration rates during [0, t); and ξ (t) represents unpredictable annual pertur-
bations in fertility, mortality, or migration. Assume that the ξ (t)’s are i.i.d. with
E[ξ (t)] = 0. For any u < t, define �(u, t) = ψ(u) + · · · + ψ(t) where the ψ(t)’s
are i.i.d. with E[ψ(t)] = 0. This is our basic model of error.

To estimate the model parameters, let Y (k, m) be the estimated error in the
average growth rate for a forecast made at 1970 + k for a 5-year period ending at
1970 + m, where m > k are multiples of 5. This is further influenced by factors
π (k) that are i.i.d. with E[π (k)] = 0, representing error in the assumed jump-off
value of the growth rate at 1970 + k. This can reflect data error, the effect of past
ξ ’s, errors of judgment on the average growth rate etc.

We omit most of the technical details below, and concentrate on issues that have
the greatest numerical influence on the final estimates.

4.3.2. Second Moments

Defining Var(π (t)) = σ 2
π , Var(ψ(t)) = σ 2

ψ , Var(ξ (t)) = σ 2
ξ , and by assuming that

the sources of error are independent of each other, one can deduce (we omit
calculations) the representation

E[Y (k, m)2] = σ 2
π + (m − k − 14/5)σ 2

ψ + σ 2
ξ /5. (4.5)

From these moment equations one can estimate σ 2
ψ and σ 2

π + σ 2
ξ /5 using linear

regression on the squared values Y (k, m)2 with m and k as explanatory variables.
A further calculation shows that

E[(Y (k, m) − Y (k + 5, m))2] = 2σ 2
π + 5σ 2

ψ, (4.6)

so one can make separate estimates of σ 2
π and σ 2

ξ .
Assume that the world has regions i = 1, . . . , I, with countries j = 1, . . . , ni .

All symbols are indexed accordingly, σ 2
π i j = Var(πi j (t)), σ 2

ψi j = Var(ψi j (t)), and
σ 2

ξ i j = Var(ξi j (t)). This specification provides for a large number of variance
components, and some parametrization was deemed prudent. Assume the model
σπ i j = ci jσπ i , σψi j = ci jσψi , and σξ i j = ci jσξ i , where ci j is a country specific
volatility parameter, and the region specific variance components are identified
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via the normalizing condition σ 2
π i + σ 2

ψi + σ 2
ξ i = 1. Since the relative magnitudes

of the normalized components are the same for all countries j within region i ,
the variance of the forecast error increases with lead time the same way for all
countries within a region, but the scales allow different countries within a region
to have different levels of variance.

The region specific components were estimated using the normalized errors
yi j (k, m) = Yi j (k, m)/{�u,vYi j (u, v)2}1/2 as data. The moment equations noted
above were applied to each country within a region, and the estimates of the
country specific variance components were averaged and normalized to sum to
1, which led to estimates of σ 2

π i , σ 2
ψi , and σ 2

ξ i . Let S2
i (k, m) denote the estimate

obtained by substituting these estimates into the right hand side of (4.5). A direct
estimate of the scale is then

ĉi j =
{∑

k,m

Y 2
i j (k, m)

/∑
k,m

S2
i (k, m)

}1/2

. (4.7)

For some countries the period from which our data come from may have been
unusually volatile or calm. An alternative estimator is a composite estimator (cf.,
Rao 2003, 57) of the form

c̃i j = γi ĉi j + (1 − γi )ĉi , (4.8)

where 0 ≤ γi ≤ 1, and

ĉi = 1

ni

ni∑
j=1

ĉi j . (4.9)

Alternative calculations were carried out using γi ≡ γ = 1.0, 0.85, 0.70.

To apply these models, the world was divided into I = 10 regions: Region
around China and India; Middle East; East Asia (excluding China); Pacific Is-
lands; Western Tropical Africa; Non-tropical and Eastern Tropical Africa; North
America and Australia; South and Central America; Southern, Western and North-
ern Europe; and Former Socialist States around Russia. To be able to aggregate
population data across countries in a given region, it was assumed that the correla-
tions are Corr(ψi j (t), ψih(t)) = Corr(πi j (t), πih(t)) = Corr(ξi j (t), ξih(t)) = ρi for
j �= h. It turned out that the correlations within regions were low, with average
0.15. The highest correlation, 0.50, was observed in countries neighboring the
former Soviet Union. The observation period includes the break-up of the Soviet
Union. Since such upheavals may occur in the future, it was deemed prudent to
consider alternative calculations that assume the intraregional correlation to be
ρ = 0.15, 0.375, 0.50.

There were not sufficient data to estimate the possible correlations across the
ten regions. The uncertainty of world forecasts turned out to be very sensitive to
these assumptions, however. For example, a modest interregional correlation of
0.1 had the effect of multiplying the standard error estimates for the world as a
whole by 1.28, as compared to standard errors that assumed independence. Again,
prudence dictates that some allowance for interregional correlation is made.
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4.3.3. Predictive Distributions for Countries and the World

Suppose one makes a new forecast at a time k = K for the year K + t. After some
algebra we find that under our model the ratio of the forecast to the true value for
country j in region i is

V̂i j (K , K + t)

Vi j (K + t)
= exp

[
πi j (K )t +

t∑
n=1

nψi j (K + t − n) +
t−1∑
h=0

ξi j (K + h)

]
.

(4.10)

We see that the ψ’s produce errors whose variance increases with the cube of the
lead time, the π ’s produce errors whose variance increases with the square of the
lead time, and the ξ ’s produce errors whose variance increases proportionally to
the lead time.

If all the variance parameters were known, a priori, the variance of the relative
error would be

c2
i j

{
t2σ 2

π i + (2t + 1)(t + 1)tσ 2
ψi/6 + tσ 2

ξ i

}
. (4.11)

Estimation error for the variance components was incorporated using bootstrap.
As an illustration, we present the quantiles of the predictive distribution of

the world population (in millions) corresponding to γ = 0.85, ρ = 0.375, and
interregional correlation of 0.1. These figures are based on a jump-off year of
1995.

Quantiles
Year 0.025 0.25 0.50 0.75 0.975
2030 7,463 7,910 8,143 8,380 8,900
2050 7,948 8,665 9,050 9,492 10,876

Without an assumption of the interregional correlation of 0.1, a 95% prediction
interval in 2050 would have been [8,184, 10,488]. As mentioned in Chapter 1, a
recent U.N. forecast for the world in 2050 has a high variant of 10.9 billion and
a low variant of 7.7 billion. Therefore, based on the analysis outlined above, the
interval can be considered approximately as a 95% prediction interval.

Even though the U.N. interval for the world as a whole appropriately reflects
the uncertainty of forecasting, this is due to the perfect correlation assumption
implicit in the calculation. The high variant is obtained by adding the high variants
for the countries, and the low variant is obtained by adding the low variants for
all the countries. The high-low intervals for the individual countries have a much
smaller probability of covering the future values. We now present a comparison of
the U.N. forecasts to stochastic forecasts made for the U.S. (Lee and Tuljapurkar
1994), for Austria (Hanika, Lutz and Scherbov 1997), for Norway (Keilman, Pham
and Hetland 2002), for the Netherlands (DeBeer and Alders 1999), for Finland
(Alho 1998), and for Lithuania (Alho 2002a), and to the present estimates. The
estimates used below incorporate estimation error via bootstrap but are not com-
posite.
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To quantify the uncertainty implied by each forecast we calculated the ratio of
the upper end point of a 95% prediction interval to the median forecast, and in the
case of U.N. (2001), the ratio of the high forecast to the middle forecast. Table 1 is
obtained for lead times t = 10, 30, 50, where “U.N. Empirical” refers to estimates
obtained with the methods of this section.

A comparison of the U.N. scenario-driven forecasts and careful stochastic fore-
casts shows that the U.N. intervals are much narrower. They do not give a similarly
realistic assessment of uncertainty for the individual countries as they do for the
world as a whole.

Table 1. The Ratio of the Upper End Point of a 95% Prediction Interval
to the Median Forecast in Stochastic Forecasts (Stochastic), and as
Derived from the Empirical Analysis of the Past U.N. Forecasts (U.N.
Empirical), and the Ratio of the High U.N. Forecast to the Median
Forecast for Lead Times 10, 30, and 50.

Country Lead U.N. Stochastic U.N. Empirical

United States 10 1.017 1.039 1.018
30 1.069 1.154 1.073
50 1.152 1.372 1.151

Austria 10 1.003 1.035 1.023
30 1.024 1.112 1.098
50 1.074 1.232 1.210

Finland 10 1.005 1.030 1.032
30 1.029 1.153 1.142
50 1.087 1.402 1.309

Lithuania 10 1.004 1.047 1.047
30 1.027 1.155 1.234
50 1.087 1.307 1.560

Norway 10 1.005 1.040 1.031
30 1.031 1.190 1.112
50 1.086 1.450 1.224

The Netherlands 10 1.004 1.023 1.011
30 1.029 1.110 1.046
50 1.083 1.200 1.096

A comparison of the careful stochastic forecasts to the present model that uses
the past errors of the U.N. forecasts from 1970–1990 as a basis, shows broad
agreement. For Austria the results are almost identical. However, the data period
appears to have been less volatile for the U.S. and Norway than the much longer
time-series material Lee and Tuljapurkar, and Keilman and co-workers, have used.
This seems to be the case in the Netherlands, as well, where DeBeer and Alders
have viewed the future as more volatile than the past performance of the U.N.
forecasts suggests. The difference for Finland at lead time 50 may be due to the
same thing. In the stochastic forecast of Finland, fertility in the near future was
assumed to have the recent past volatility that is quite low in historical perspective.
Later the volatility was assumed to increase to the historical median levels. In the
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case of Lithuania, the rapidly increasing values of the present analysis may depend
on the other, formerly Soviet countries.

We also note that the stochastic forecasts of Austria and the Netherlands that
have been constructed by primarily judgmental methods show a markedly lower
level of uncertainty than those of the U.S., Norway, Finland and Lithuania that
have primarily relied on statistical time-series techniques.

We conclude that the results of the present analysis reflect a short data period,
and some results may depend on developments the neighboring countries. Yet, the
results have been derived based on a unified empirical methodology that involves
judgment in a minimal way. The broad agreement of the results, despite the very
different methods used, suggest that the stochastic forecasts are relatively robust.
Burdick, Manchester and Bang (2003) come to a similar conclusion in their as-
sessment of stochastic methods in connection with the U.S. Social Security Trust
Fund.

On the other hand, the “U.N. Empirical” estimates appear more variable than
those coming from more complex stochastic analyses, so our comparison also
suggests that composite estimation that borrows strength from regions deemed
similar can be beneficial. Table 2 presents estimates for 27 EU/EEA countries,
including those that joined the EU in 2004 (Cyprus is omitted due to data problems).
The estimates of uncertainty include estimation error and borrowing of strength
using composite estimation. The estimates are based on 10,000 simulations. A
lognormal approximation can be used to arrive at a prediction interval for the total
population, so for example the upper limit of an 80% prediction interval for a lead
time t = 30 for Poland would be obtained by multiplying a point forecast (such
as the one given by the U.N., for example), by exp(1.2816 × 0.071) = 1.095.

The countries have been ordered according to the relative error at lead time
t = 50. We see that uncertainty is related to small size (and possibly to the level
of migration). Taking logarithms of the relative error at t = 50 and of population
size, we obtain a scatter plot that appears roughly bivariate normal. The correlation
between the logged variables is −0.424 (P-value = 0.027), which supports the
conclusion of a negative association.

4.4. Random Jump-Off Values

In practical forecasting data problems can sometimes be a major component of
uncertainty. Chapter 10 is devoted to the modeling of error in census numbers
in the U.S. context. Elsewhere, similar estimates are not typically available and
judgment must be used. In Alho and Spencer (1985) we suggested that random
jump-off values be used to reflect uncertainty of this type. We will illustrate
the issues in the context of a forecast made for Lithuania15, but note that the

15 This section uses material from the report Alho J.M. (2001) Stochastic Forecast of the
Lithuanian Population 2001–2050. The research was undertaken with support from Eu-
ropean Union’s Phare ACE programme 1998, Project P98-1023-R. The reasoning reflects
what was known around 2000–2001.
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Table 2. Composite Estimates (γ = 0.85) of the Standard Deviation of the
Relative Error of the Forecast of the Total Population for 27 EU/EEA Countries
of 2004 for Lead Times t = 10, 30, 50, and Population in 2000.

Lead Time

Country 10 30 50 Pop. in 2000

Belgium 0.013 0.040 0.088 10251
Italy 0.014 0.041 0.090 57536
France 0.014 0.042 0.093 59296
Netherlands 0.014 0.042 0.093 15898
Denmark 0.015 0.043 0.096 5322
Iceland 0.015 0.045 0.099 282
Norway 0.016 0.047 0.103 4473
United Kingdom 0.018 0.052 0.116 58689
Finland 0.019 0.056 0.124 5177
Poland 0.015 0.071 0.149 38671
Greece 0.025 0.073 0.162 10903
Germany 0.026 0.077 0.170 82282
Czech. Rep. 0.018 0.085 0.180 10269
Slovakia 0.019 0.086 0.182 5391
Austria 0.030 0.087 0.193 8102
Sweden 0.031 0.090 0.200 8856
Hungary 0.021 0.098 0.206 10012
Lithuania 0.023 0.107 0.227 3501
Spain 0.036 0.105 0.232 40752
Slovenia 0.024 0.111 0.235 1990
Latvia 0.026 0.119 0.252 2373
Estonia 0.027 0.123 0.260 1367
Portugal 0.043 0.126 0.278 10016
Malta 0.047 0.137 0.304 389
Switzerland 0.047 0.139 0.308 7173
Ireland 0.053 0.156 0.346 3819
Luxembourg 0.070 0.205 0.454 435

specification of randomness in the jump-off values was only completed after the
forecast had been released. We will concentrate on population size and on old-age
mortality.

4.4.1. Jump-Off Population

The jump-off population of our forecast was the January 1, 2000 resident popula-
tion in Lithuania. Official estimates put the total population at 3.699 million, based
on an earlier census and vital registration data. The results of the census of 2001
were not released at the time. However, it had been announced that the enumerated
population on April 1, 2001, was 3.496 million, a difference of 0.203 million (or
5.5% of the official estimates).

In the absence of a post-enumeration survey (cf., Chapter 10), any adjustment
of the census count was deemed speculative, but some reconciliation of the ex-
isting estimates was necessary. Based on discussions with Lithuanian experts, the
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situation was analyzed as follows. First, in 1990–1994 there had been some un-
documented emigration of Slavs. Some had worked in the communist party and
related institutions; some may have feared for new language requirements; some
may have had an economic motive such as cashing in on their newly privatized
apartment; yet others may have left simply to join their family. Thus the official
statistics for year 2000 were assessed as having been roughly 50 thousand too high,
leading to a revised estimate of 3.649 million. On the other hand, it was thought
that the Lithuanian census may have suffered from an undercount of possibly 50
thousand inhabitants. This was 1.4% of the census count, a figure comparable to
pre-2000 non-black undercounts in the United States (Example 2.2 of Chapter 2).
Taking the two factors into account, an adjusted census figure of 3.546 million was
taken as the most credible count for the resident population at census time. Based
on birth and death registration it was determined that the rate of natural increase
was approximately zero during year 2000. It was thought that during the Soviet
years net undercount was low, so the difference, 0.103 million, would consist of
undocumented emigration to West. Most of this was thought to have happened
in 1995–2000. This implied an annual out-migration of about 17,000 inhabitants.
Since the census day was April 1, 2001, the population of January 1,2000, was
thought to have been about 22,000 thousand inhabitants higher. Our final estimate
of the jump-off population was 3.568 million.

How uncertain is the estimate? Under a normal model we could represent the
unknown population size by a distribution N (3.568, σ 2). While the census count
(3.496) could be too high, this seems unlikely. Assuming that the probability is
2.5% that the census is too high, we get σ ≈ (3.546 − 3.496)/2 = 0.025, or 0.7%
of population size. An estimate of this type would then have to be translated into a
model by age and sex. Presumably, the uncertainty would be the greatest in those
ages that would most likely migrate, or most likely be missed in a census count.
Young adult males are one such group.

If an option for a random jump-off population is not available in a computer
program one is using, a quick way to implement a random jump-off value is to
start a stochastic forecast one year earlier and let the uncertainty of survival and/or
migration capture the uncertainty of the estimate. Bias may incur, however, if the
assumptions concerning the autocorrelation of mortality or migration cannot be
tailored to match what is intended.

4.4.2. Mortality

A comparison of the Lithuanian age-specific mortality to that of the Nordic coun-
tries showed that the Lithuanian mortality was higher in ages 0–89 for females and
in ages 0–79 for males, but lower in older ages. For example, in 1999 mortality
(per 1,000) in ages 95+ in Lithuania (= LI), and in the Nordic countries (DK =
Denmark, FI = Finland, NO = Norway, SE = Sweden) was

Country LI DK FI NO SE
Females 240 354 348 391 409
Males 211 453 412 429 495
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In other words, the Lithuanian rates were approximately one half of those of the
Nordic countries. Another peculiarity was that male mortality was lower in Lithua-
nia than female mortality. On the other hand, in 1990 the Lithuanian rates were 373
for females and 409 for males, which was more in line with the rates elsewhere. A
comparison of rates for the highest age might be confounded by variations in the
age distribution. However, we noted that in age 90–94 the Lithuanian mortality
was estimated at 186 for females and 203 for males in 1999, whereas in the Nordic
countries (alphabetical order) the female rates were 212, 227, 221, and 225 for
females, and 272, 277, 278 and 303 for males. A possible bias in the Lithuanian
old-age mortality data might have been caused by underenumeration of deaths,
overestimation of population, or overstatement of age (cf., Section 2, Chapter 2).
The latter may be judged the most credible.

In conclusion, for forecasting purposes it was decided to replace Lithuanian
mortality figures for 2000 by the average of age-specific mortality in the four
Nordic countries in ages 90+ for females, and in ages 85+ for males. This has the
merit of being simple to explain, but the drawback that there is no simple yardstick
for the measurement of uncertainty. An alternative one might have considered is to
use (e.g., polynomial) regression to extrapolate current mortality in the oldest ages
by using rates in younger ages. This would yield an error estimate automatically.

5. Measuring Correlatedness

From a statistical point of view we can think of much of classical demography as
dealing with expected values. Variances are rarely considered and more complex
second order characteristics, correlations, often are loosely treated. We will ad-
dress here three statistical aspects that come up. First, we consider the definition
of correlation in a time-series context, then we consider the necessity of using
modeling assumption to estimate correlations, and third, we consider the effect of
measurement error on estimated correlations.

Consider two time series X (t) and Y (t), and define ρ(X (t), Y (t)) = Cov(X (t),
Y (t))/{Var(X (t))Var(Y (t))}1/2 as their correlation at time t . Since, e.g., Cov(X (t),
Y (t)) = E[(X (t) − E[X (t)])(Y (t) − E[Y (t)])], we see that ρ(X (t), Y (t)) mea-
sures association when the means E[X (t)] and E[Y (t)] have been subtracted.
If the processes are nonstationary, the meaning of the correlation depends on how
the mean is viewed. If the mean is nonconstant (as in a regression model), then
we can have a situation in which, say, in-migration and fertility go up and down
together, but are not correlated if the association is due concomitant changes of
the means. In contrast, if we consider the mean to be constant (e.g., in a random
walk the means would be X (0) and Y (0) if we condition on X (0) and Y (0) and are
interested in values at t > 0) and the fluctuations as purely random, the same data
would lead to a finding of a positive correlation.

The second complication arising in a time-series context is the fact that the
number of correlation parameters increases faster than available data. To appre-
ciate this, note that with n observations X (1), . . . , X (n) there are n variances to
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be considered, but n(n − 1)/2 covariances. Thus, the number of correlation pa-
rameters increases in proportion to the square of the number of observations. It
follows that some modeling assumption has to be made. In fact, one can view the
ARIMA theory of Chapter 7 as an attempt at parametrizing autocorrelations with
a small number of parameters. The following examples show that some simple
parametrizations may provide at least a rough approximation.

Example 5.1. Constant Correlations Across Ages. Consider the logarithms of male
and female mortality in five year age-groups 65–69, 70–74, 75–79, 80–84, and 85+
in the U.S. in 1940–1988. Forecasts were produced using each of the years starting
from 1945 as a jump-off year, in turn. The data until the jump-off year were used
for prediction. The predictions were calculated by fitting an ARIMA(1,1,0) model
with a constant term. We have ten cross-correlations for the forecast errors. They
vary quite a bit by lead time. The minimum and maximum correlations are the
following: 0.35 and 0.60 for lead = 1; −0.08 and 0.55 for lead = 5; −0.14 and
0.47 for lead = 10; 0.26 and 0.91 for lead = 20; −0.06 and 0.78 for lead = 30.
Since the correlation estimates for the different lead times are not independent, it
is not easy to summarize these data. However, it appears that the correlations are
typically positive, with 0.3 or 0.4 the most typical values. A model that assumes a
constant correlation (≈ 0.4) between all ages provides an approximation to these
data. ♦

Example 5.2. Constant Correlations Across Causes of Death. In Alho and Spencer
(1990b, 223–225) we estimated the cross-correlations of the prediction errors of log
mortality rates, between causes of death, for the U.S. data from 1973–1985. The lag
= 0 correlations for males varied from −0.61 to 0.84 with the average 0.24, and for
females they varied from −0.57 to 0.87 with the average 0.18. The distribution of
the correlations between the minimum and maximum values was roughly uniform.
Again a model of constant correlation (≈ 0.25) provides a rough approximation.
(An alternative, however, would be to focus on the aggregate mortality rates rather
than the rates by cause, thereby reducing the number of covariances.) ♦

Example 5.3. Uncorrelated Errors for Different Vital Rates. Keilman (1990, Figure
5.1, 83) has demonstrated that the Dutch fertility and mortality forecasts have both
been too high since the 1960’s. The same is true for many other industrialized
countries, such as the U.S., Canada, and the Nordic countries. The common cause
for both errors appears to be that the demographers had predicted that the future
rates would be close to the existing ones. The forecast errors were determined by the
trends of the vital rates. These both happened to be down, causing the overestimates.
However, during the 1940–1960 period fertility rose rapidly, but mortality declined.
It is clear that nobody was able to correctly forecast the upsurge of fertility at
that time. Therefore, an assumption of zero correlation appears plausible. Further
evidence of the low level of correlation is presented in Keilman (1997) for the
Netherlands and Norway.

It is well known that a negative correlation has existed between mortality and
fertility rates in preindustrial conditions, caused by wars, famines, and epidemics
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(see, e.g., Turpeinen (1978) for the Finnish evidence during 1750–1900). There
can be similar fluctuations in the developing countries today. In industrialized
countries the reasons for a mortality forecast to fail are different from the reasons
for a fertility forecast to fail. This supports an assumption of independence. ♦
Example 5.4. Constant Correlations Across Countries Within a Region. To see
how the same vital rates may behave in different countries in the same region,
we considered fertility in ages 15–19, 20–24, . . . , 40–44, in Denmark, Finland,
Norway, and Sweden, in 1970–1991. The rates for age group 15–19 increased
dramatically in the early 1970’s in all countries. After that they smoothly declined
more than 50% to a level that is a bit lower than in 1970. Using current value
as a naive forecast for all future years at any jump-off year during the period
would have produced highly correlated prediction errors. In age 20–24 relatively
smooth declines were observed in all countries. Again, naive forecasts would have
had highly correlated prediction errors. For age 25–29 the experiences were more
mixed. Finland had an upward trend all through the period, whereas the other
countries had a U-shaped pattern. From 1980 on all forecasts would have been
too low. For earlier jump-off times this would have been true for Finland, but the
other countries would have initially experienced lower fertility than forecasted.
In age 30–34 all countries had a U-shaped pattern that ended up a bit higher in
1991 than it started from in 1970. Again, naive forecasts would have had highly
correlated forecast errors in all countries, especially after 1980. In age 35–39 the
development was U-shaped in Denmark and Norway. In Finland and Sweden the
development was more steadily upward. In age 40–44 all countries experienced
first a decline and then an increase. The turning points were different, so the signs
of the prediction errors of naive forecasts would have depended heavily on the
year they were made. Inasmuch as official demographic forecasts resemble naive
forecasts, we conclude that in the Nordic countries the forecast errors of fertility
can be expected to have positive correlations over the long run, across the countries.
However, in the short run the differential timing of changes may produce a more
mixed picture. For these countries a model of constant correlation across countries
might be appropriate. ♦

A third issue arises when we view trends of vital processes as being random,
and the target of estimation is the correlation between trends. In this case the ob-
servations contain measurement error. For example, suppose that conditionally on
hazards λX and λY , X ∼ Po(λX K X ) and Y ∼ Po(λY KY ) are independent, with K X

and KY the person years. Suppose we are interested ρ(λX , λY ). With only X and Y
available, we base our estimation on the o/e rates m X = X/K X and mY = Y/KY .
Since they are unbiased for the intensities λX and λY , we can write m X = λX + εX

and mY = λY + εY , where E[εX |λX , λY ] = E[εY |λX , λY ] = 0, Var(εX |λX , λY ) =
λX/K X , and Var(εY |λX , λY ) = λY /KY . Here, εX and εY are also independent con-
ditionally on λX and λY . Using the conditional independence we note first that
E[(λX + εX − E[λX + εX ])(λY + εY − E[λY + εY ])] = Cov(λX , λY ). But since
E[(λX + εX − E[λX + εX ])2] = Var(λX ) + E[ε2

X ], and similarly for λY + εY , we
find that estimates of correlations will be systematically biased towards zero (cf.,
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Fuller 1987, 7–11). Thus, in the case of small expected counts, when the coefficient
of variation of the Poisson count is large (cf., Section 5 of Chapter 4), correlation
estimates can be severely biased.

We can attempt to correct the correlation estimate by subtracting the estimated
Poisson variance of the count, e.g., Var(εX ) = λX/K X , from the empirical variance
Var(X ), and similarly for Y . In fact, if we have observed the data (X (t), Y (t)), t =
1, . . . , n, leading to o/e rates m X (t) and mY (t), then an estimator of Var(λX ) is

1

n − 1

n∑
t=1

(m X (t) − m̄ X )2 − 1

n

n∑
t=1

m X (t)/K X (t). (5.1)

This is unbiased if the counts for different t are independent. We caution, however,
that in the case of small expected counts (i.e., when the need for a bias correction
is the greatest) the estimate of the second, bias correction term, can be unstable.
In this case, the only hope may be to impose additional structure on the problem
by assuming a model for the change of rates.

Exercises and Complements (*)

1. Study the cross-correlations of the time series of Example 1.5.
*2. Co-integration. Consider the bilinear model for the mortality in age x of

year t , log µ(x, t) = α(x) + δ(x)ξ (t) + ε(x, t), where ε(x, t) ∼ N (0, σ 2
ε ) are

i.i.d., and ξ (t) is an ARIMA(p, d, q) process for some d > 0. Suppose
δ(x) �= 0 for all x . Then each age-specific series is nonstationary, but they
have a common trend determined by ξ (t). Consider any two ages x �= y. De-
fine a vector-valued process W(t) = (log µ(x, t), log µ(y, t))T and a vector
U = (1/δ(x), −1/δ(y))T . It follows that W(t)T U = α(x)/δ(x) − α(y)/δ(y) +
ε(x, t)/δ(x) − ε(y, t)/δ(y) is an uncorrelated process with a constant mean.
This is a special case of co-integration: a co-integrating vector U removes the
common trend(s) from a vector-valued process W(t) so that the resulting pro-
cess is, roughly speaking, stationary and invertible. For a rigorous discussion,
see Johansen (1995).

3. De Morgan Rules. (a) Prove the rule A ∩ B = (Ac ∪ Bc)c, and (b) deduce
from this that A ∪ B = (Ac ∩ Bc)c. (Hint: define, 1A(x) = 1, if x ∈ A, and
1A(x) = 0 otherwise. Then, 1Ac (x) = 1 − 1A(x), 1A∩B(x) = 1A(x)1B(x).)

4. Consider the total fertility rate, a year from now. A demographer offers you a
gamble that costs 1 unit, and in which you get back 4 units, if fertility is within
±2% of the current value, but if it is outside those limits, you get nothing. Infer
how likely it is, in the demographer’s view, that fertility is within ±2% of the
current value.

*5. Combining forecasts. Consider two forecasts X1 and X2 of some random vari-
able X . Define the forecast errors as ε j = X1 − X, j = 1, 2, and assume that
E[ε j ] = 0. Denote Var(ε j ) = σ 2

j and Cov(ε1, ε2) = ρσ1σ2. Show that any lin-
ear combination of the two forecasts in which the first gets the weight κ and the
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second the weight 1 − κ is also unbiased, with error ε(κ) = κε1 + (1 − κ)ε2.
The error variance is Var(ε(κ)) = κ2σ 2

1 + (1 − κ)2σ 2
2 + 2κ(1 − κ)ρσ1σ2. (a)

Differentiate with respect to κ and set the derivative to zero to find the minimum
at

κ = (
σ 2

2 − ρσ1σ2
)
/
(
σ 2

1 + σ 2
2 − 2ρσ1σ2

)
.

(b) Show that if ρ = 0, then the weights are proportional to the inverses of the
variances. (c) Show that if σ1 = σ2, then κ = 1/2 irrespective of ρ. (d) What
is the minimizing variance?

*6. Consider forecasts of the world population for 2025. I.I.A.S.A. (Lutz 1994),
the U.N. (1993), and the World Bank (1992) offered the following values (in
millions) as the most likely: 8,955; 8,472; 8,345, respectively. Suppose (for
the sake of illustration) that all forecasts have the pairwise correlation of 1/4
and the standard deviation of the error of the I.I.A.S.A. forecast is 1/2 of
that of each of the other two. First combine the U.N. and WB forecasts by
giving them the weight 1/2. Let the common standard deviation of error of
those forecasts be σ . Show that (a) the standard deviation of the error of the
combined forecast is (5/8)1/2σ ; (b) the covariance of the combined forecast and
the I.I.A.S.A. forecast is (1/8)σ 2; (c) the correlation of the I.I.A.S.A. forecast
and the combined forecast is (1/10)1/2; (d) the weight given to the I.I.A.S.A.
forecast is 0.8, so the weights given to the other forecasts are 0.1 each; (e) the
resulting combined forecast for the world population is 8,846.

7. Show that (5.1) is an unbiased estimator of Var(λX ) if the counts are indepen-
dent.
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9
Statistical Propagation of Error
in Forecasting

In the previous two chapters we have discussed the statistical forecasting of time
series as applied to demographic rates. The main goal of this chapter is to show
how the separate pieces can be brought together to form a predictive distribution
of future population. Indeed, a major purpose of the whole book is to provide
sufficient detail about the most important factors needed so that realistic stochastic
forecasts can be produced.

An early and largely unrecognized contribution of Törnqvist to stochastic fore-
casting is discussed first. In Section 2 we define the concept of predictive distri-
bution, and discuss its nature from a frequentist and Bayesian point of view. This
includes an introduction to Markov Chain Monte Carlo techniques in a time-series
setting. Section 3 discusses the formulation of forecasts as databases and their
uses. Some useful parametrizations of the large number of cross-covariances and
cross-lagged covariances of forecast errors of vital rates are discussed in Section 4.
Analytical models for forecast error and an analytical approach to the propagation
of error are presented in Section 5. Section 6 introduces the simulation approach.
We conclude in Section 7 by discussing how the results of a simulation experiment
can be post-processed to allow alternative interpretations of the results.

1. Törnqvist’s Contribution

The first serious attempt to describe population forecasting from a stochastic point
of view is, to the best of our knowledge, due to L. Törnqvist1 (1949) in connection
with a forecast he helped the Central Statistical Office of Finland to produce.
Törnqvist was professor of statistics at the University of Helsinki and his other
work was close to econometrics, notably index number theory (Nordberg 1999)
and an early consideration of cost-benefit analysis for statistical data collection
(Törnqvist 1948).

1 Readers interested in the developments of computer operating systems might be interested
to learn that Leo Törnqvist was grandfather to Linus Torvalds, the creator of the operating
system LINUX. Törnqvist introduced the young Linus to the art of computer programming.

269
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In discussing the reasoning behind the forecast variants, Törnqvist (1949, 69–
70) suggested that one begin by trying to determine such “primary series” whose
values would be constant, apart from random deviations. For example, Törnqvist
logistically transformed mortality in 5-year age-groups, estimated the annual rate
of change for the transformed values, and considered the rate of change as a
primary series. Due to random deviations the observed values of the series had
to be considered as “statistical variables”. Based on past data one could form a
relatively good impression of the deciles of their probability distribution. In order
to limit the analysis of past series for practical reasons, Törnqvist concluded that
“it seems permissible to determine the deciles more or less subjectively”. In some
cases he used data from Sweden to get a view of the development that was not
obscured by events related to world War II.

In the future, the primary series attains values that can be considered as “random
samples” from the distribution. Törnqvist’s point forecast was the median of the
estimated distribution, i.e., the (estimated) probability is 50% that future value of
the process will be below the forecasted value, and the probability is 50% that the
future value will be above the forecasted value. He called this the “most likely
value”. Similarly, he proposed that the low forecast be chosen so the probability
is 10% that the future population will be below it, and the high forecast be chosen
so the probability is 10% that the future population be above it.

Having decided on the forecast variants for the vital rates, Törnqvist discussed
ways of combining them to produce the future population forecast. He thought
it reasonable to try all different combinations, but saw it most useful to combine
high fertility with high life expectancy, and low fertility with low life expectancy.
Although this is in keeping with the practice started by Whelpton and others, it
is characteristic of Törnqvist’s statistical thinking that he realized that the high
forecast would be more “optimistic” for the population size, and the low forecast
would be more “pessimistic” for the population size, than the variants for the
individual vital rates.2,3

A step Törnqvist did not take was to consider methods that would have produced
a prediction interval consisting of, say, the first and ninth decile of the population
size itself. This would have involved carrying out the statistical propagation of
error from the vital rates to the corresponding population size.

Törnqvist did his statistical work at approximately the same time Whelpton was
completing his contributions in a deterministic frame work. The latter have been
very influential while Törnqvist’s efforts have mostly gone unnoticed (Hoem 1973
is an exception). Lack of computing facilities and undeveloped theory for carrying
out the propagation of error may have been one reason. Moreover, little was known

2 A simple example is this is the following. Suppose X and Y are independent random
variables with N (0, 1) distributions. Then the interval [−1, 1] is a 68.3% prediction interval
for both. However, since X + Y ∼ N (0, 2), the interval obtained by combining the high
limits and low limits, or [−2, 2], contains X + Y with probability 84.3%.
3 The interpretation of optimistic and pessimistic is not universal. Some statistical agencies
have called their high forecasts pessimistic and low forecasts optimistic, even though the
latter are associated with higher mortality, because the drain on government pensions is
larger.
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in the 1940’s about the empirical errors of forecasts and about the meager improve-
ments in the accuracy of forecasting from advances in demographic theory.

Finally, how did Törnqvist fare as a forecaster of fertility? The rates of year 1947
were the most recent available to him. This was the peak year of the Finnish baby-
boom, and the estimated total fertility rate was 3.44. Törnqvist assumed that the
rate would rapidly decline, so that for the 5-year period 1951–1955 the most likely
value would be 2.36, with an 80% prediction interval [2.18, 2.54]. Or the width of
the interval was approximately ±7.6% of the point forecast, for a forecast going
approximately 6 years into the future. The interval impressively failed to include
the future value, 2.98, which was more than 26% higher than the point forecast.
After the initial decline, Törnqvist considered it most likely that fertility would
remain roughly constant, so for the period 1996–2000 the most likely value was
also 2.36, with an 80% interval of [1.85, 2.83]. This is a 50-year ahead forecast,
and the width of the interval is approximately ±21.3% of the point forecast. The
observed average value was 1.73, slightly below the 80% range.

Törnqvist thought that the difference between his “optimistic” and “pessimistic”
assumptions concerning future fertility was “relatively large”. Yet, under a random
walk model, both the 6-year ahead forecast and the 50-year ahead forecast would
imply a standard deviation of unit increment of approximately 0.024. As discussed
in Chapter 8, this is a low value, because more recent analyses support standard
deviations as high as 0.06. This explains why the short term intervals were too
narrow.

2. Predictive Distributions

Loosely speaking, a predictive distribution of a future vital rate can be defined as
its conditional distribution given everything we have learned in the past. We have
discussed its interpretation in an informal way in Sections 3.6 and 4.3 of Chapter 8.
To make the concept more concrete, we will here consider three special cases that
are relevant in demographic applications: time series regression, random walks,
and a simple ARIMA model.

In the 1990’s there developed a vast literature on the so-called Markov Chain
Monte Carlo methods (e.g., Liu 2001, Gelman et al. 1995). These methods were
first introduced in physics in the 1940’s and 1950’s (Metropolis N., Rosenbluth,
and Teller 1953). A recursive set of calculations is set up that produces correlated
samples from the joint posterior distribution of all parameters. Sections 2.2 and 2.3
show how a particular method, the Gibbs sampler (Gelman et al. 1995, 326–327),
can be used in conjunction with simple time series models. We note in passing that
similar calculations form the basis of a Bayesian analysis of count data that was
discussed in Section 4.3 of Chapter 5.

2.1. Regression with a Known Covariance Structure

Consider the regression model defined in (3.2), (3.3), and (3.4) of Chapter 7. For
example, we might have Zt = f (t) + ε(t) representing the logarithm of a mortality
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rate with a constant rate of change, f (t) = β1 + β2t. We assume we have a vector
of past observations Z1 = X1β + ε1, and would like to predict future observations
Z2 = X2β + ε2. The GLS estimator β̂ = (XT

1 Σ−1
11 X1)−1XT

1 Σ−1
11 Z1 is the minimum

variance unbiased estimator of β. Under normality β̂ is also the MLE. Formula
(3.5) of Chapter 7 gives the minimum variance unbiased prediction for Z2, with
an error characterized by the covariance matrix (3.7).

If β and Σ were known, the conditional distribution of Z2 given Z1 would be
(e.g., Rao 1973, 522)

Z2|Z1 ∼ N
(
X2β + Σ21Σ−1

11 (Z1 − X1β),Σ22 − Σ21Σ−1
11 Σ12

)
. (2.1)

In this case (2.1) could be viewed as a predictive distribution representing the
alternative future paths given that we have seen Z1. However, when β has to be
estimated, one would have to consider jointly the sampling distribution of β̂ and
the estimated conditional distribution of Z2 given Z1. This is not entirely natural
in many time-series applications in which only one sample path is observed.

The Bayesian approach provides an alternative. The idea is to use the language
of probability theory to express uncertainty about model parameters, in this case
β. Conditionally on β, the density of Z1 is

f (Z1|β) = c × exp
(
− 1

2
(Z1 − X1β)T Σ−1

11 (Z1 − X1β)
)
, (2.2)

where c > 0 is a normalizing constant that makes the density to integrate to 1. Its
exact value will not be needed, and we will use c as a generic symbol in the sequel.
To express our uncertain knowledge about β before having seen Z1 we might, for
example, be willing to act as if there is a vector b and a covariance matrix S such
that β ∼ N (b, S). In this case, the prior density of β is of the form

g(β) = c × exp
(
− 1

2
(β − b)T S−1(β − b)

)
. (2.3)

We pause here to comment on the formulation of the prior. Consider the mortality
setting mentioned in the beginning, where f (t) = β1 + β2t. The difficulty is that
although we may hold prior views about the future level of mortality f(t), it may
be difficult to come up with a two dimensional prior for the parameters (β1, β2).
Therefore, in Alho and Spencer (1985) we represented prior views about f(t) by
specifying an additional “datum” at the target year t = n + m; the strength of
the prior views was reflected in the specification of the variance of the datum,
and the datum was taken to be conditionally independent (given β1, β2) of the
past and future realizations of mortality. This is close to the use of targets that
Whelpton favored, but in our formulation the targets are random. In this case, the
calculations can all be carried out via mixed estimation introduced by Theil and
Goldberger (1961). For an application of this method in old-age mortality, see Alho
and Nyblom (1997). Girosi and King (2003) have come to a similar conclusion in
their extensive study of cause-specific mortality.
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Continuing with the regression example, we note that the conditional den-
sity of β given Z1 is h(β|Z1) = c × f (Z1|β)g(β). This follows from the Bayes’
Theorem. The density happens to be of a multivariate normal form,

h(β|Z1) = c × exp
(
− 1

2
βT
(
XT

1 Σ−1
11 X1 + S−1

)
β + (

Z1Σ−1
11 X1 + bT S−1

)
β + c′

)
, (2.4)

where c′ does not involve β. Therefore, we have that

β|Z1 ∼ N (β̃, M), (2.5)

where the posterior covariance matrix is

M = (
XT

1 Σ−1
11 X1 + S−1

)−1
(2.6)

and the posterior mean is

β̃ = M
(
XT

1 Σ−1
11 Z1 + S−1b

)
. (2.7)

Formulas (2.5), (2.6), and (2.7) define the posterior distribution of β given the
observed data and the prior views expressed in (2.3).

If a point estimate forβ is desired, the posterior mean is a natural candidate. This
is optimal under a quadratic loss function. We see that it is a “matrix weighted
average” of β̂ and b, with weights M(XT

1 Σ−1
11 X1) and MS−1. (This is also the

origin of the term “mixed estimation” mentioned above although the details of the
formulations are slightly different.)

To see how the prior view influences the estimation, write S = κS0, where κ > 0
is a scale parameter. One can show that β̃ → b and M → 0, as κ → 0, so in the
limit we have a case in whichβ is assumed to be completely known, a priori, and Z2

has the distribution (2.1), where β = b. On the other hand, suppose that κ → ∞.
One can show that then β̃ → β̂, the GLS estimator, and M → (XT

1 Σ−1
11 X1)−1. In

this case nearly nothing is assumed about the regression parameters before seeing
the data. The limiting posterior distribution of β is the same as the sampling
distribution of β̂, so the Bayesian and frequentist analyses are equivalent. Only
now β is random rather than β̂! A similar equivalence result holds in many other
settings, as well, when flat priors are used.

More generally, (2.1) gives the conditional distribution of Z2 for any β and Z1.
Therefore, Z2 has the same conditional distribution as a variable of the form

X2β + Σ21Σ−1
11 (Z1 − X1β) + ξ, (2.8)

where ξ ∼ N (0,Σ22 − Σ21Σ−1
11 Σ12) is independent of both β and Z1. We can

uncondition with respect to β by using its posterior distribution (2.5). Since
(2.8) is linear in β the resulting conditional distribution given Z1 is still a nor-
mal distribution, Z2|Z1 ∼ N (E[Z2|Z1], Cov(Z2|Z1)), where E[Z2|Z1] = X2β̃ +
Σ21Σ−1

11 (Z1 − X1β̃) from (2.1), and where

Cov(Z2 | Z1) = (
X2 − Σ21Σ−1

11 X1
)
M
(
XT

2 − XT
1 Σ−1

11 Σ12
)+ Σ22 − Σ21Σ−1

11 Σ12

(2.9)



P1: MRM/SJS P2: MRM
SVUS004-Alho & Spencer April 29, 2005 21:34

274 9. Statistical Propagation of Error in Forecasting

based on (2.8). This is the formal Bayesian predictive distribution of Z2. One can
also show that the covariance (2.9) converges to the covariance (3.7) of Chapter 7
when κ → ∞. Thus, the Bayesian interpretation of the frequentist predictive dis-
tribution is that it corresponds to a formulation in which very little, or nothing is
assumed about the parameters, a priori.

Example 2.1. Posterior of an AR(1) Process with Known Autocorrelations. Con-
sider an AR(1) process around a mean µ, Zt − µ = ϕ(Zt−1 − µ) + εt , with
εt ∼ N (0, σ 2) i.i.d. Suppose the observed values are Z1, . . . , Zn . In this case
we set Z1 = (Z1, . . . , Zn)T , X1 = 1, and Σ11 = (σ 2ϕ|i− j |/(1 − ϕ2)). In other
words, here µ takes the role of β. We have that µ̂ = (1T Σ−1

11 1)−11T Σ−1
11 Z1 is a

weighted average of the observations. Suppose we have a prior µ ∼ N (b, S2).
Define C = (1T Σ−1

11 1 + S−2)−11T Σ−1
11 1. Then, the posterior mean is a sim-

ple weighted average, µ̃ = Cµ̂ + (1 − C)b. In particular, if ϕ = 0, we have
C = (n/σ 2 + S−2)−1n/σ 2 corresponding to the familiar result that the optimal
weights are proportional to the inverses of the variances. The posterior vari-
ance of µ is then (n/σ 2 + S−2)−1. Furthermore, the best prediction of Zn+k is
Ẑn+k = µ̃ + ϕk(Zn − µ̃). ♦

Example 2.2. Conditional Likehood Errors of an AR(1) Process. A slightly mod-
ified version of the AR(1) likelihood is obtained by noting that if ϕ is known,
then the forecast errors one step ahead are Zt − ϕZt−1 i.i.d. ∼ N ((1 − ϕ)µ, σ 2).
Conditioning on Z1 a likelihood for the remaining observations is obtained.
The conditional MLE for µ is simply the average divided by 1 − ϕ, or µ̂ =
{(Zn − ϕZn−1) + · · · + (Z2 − ϕZ1)}/{(n − 1)(1 − ϕ)}. This can be coupled with
a prior, as in Example 2.1. ♦

The Bayesian model and the error classification of Chapter 8, Section 3.2.1
are related. The posterior uncertainty (2.6) represents error in parameter estimates
(2), and the covariance matrix in (2.1) represents unpredictable residual error.
Disagreements concerning the prior (2.3), either in terms of mean, variance, or
distributional form, would be an example of error of expert judgment (3). Note
that the above, highly simplified analysis does not incorporate modeling error at all.

2.2. Random Walks

In the previous section we assumed that the second moments of the processes of
interest were known. Here, we will consider the estimation of variance and mean
simultaneously. The results are classical (e.g., Box and Tiao 1973), but we will
tailor them to a time series context.

Suppose we have i.i.d. observations εi ∼ N (0, σ 2), i = 1, . . . , n. For analytical
convenience it is customary to reparametrize the model via the precision τ = 1/σ 2.
Then, the density of the data is c × τ n/2 exp(−τ�iε

2
i /2). Suppose that the prior

distribution of τ has a density of the form c×τα−1 exp(−τβ), a gamma distribu-
tion G(α, β) with mean α/β and variance α/β2. Then, the posterior density of τ
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is of the form c × τα+n/2−1 exp(−τ (β + �iε
2
i /2)). This is a gamma distribution

G(α + n/2, β + �iε
2
i /2). Using the posterior mean of τ , we get the Bayes estimate

σ̃ 2 = (β/2 + �iε
2
i )/(n + α/2). If n is large relative to α and β, this is close to the

MLE σ̂ 2 = �iε
2
i /n.

Example 2.3. Predictive Distribution of a Random Walk. Consider a random walk
Yt , t = 0, 1, . . . , n, that starts from a known value Y0. Then, Yt − Yt−1 = εt ∼
N (0, 1/τ ) are i.i.d. Assuming τ has a prior density G(α, β), τ has the posterior
distribution given above. To derive numerically the predictive distribution for the
future values Yn+k, k = 1, . . . , m, of the process, we can

(i) sample a value of τ from its posterior distribution G(α + n/2, β +
�iε

2
i /2);

(ii) generate i.i.d. values εn+k ∼ N (0, 1/τ ), k = 1, . . . , m, using the new
value for the variance;

(iii) calculate Yn+k = Yn + εn+1 + · · · + εn+k .

By repeating the steps (i)–(iii), we get a set of simulated vectors (Yn+1, . . . , Yn+m),
so we can estimate the predictive distribution to any degree of accuracy (where we
take the model specifications as given). ♦

Example 2.4. Predictive Distribution of a Random Walk with a Drift. A random
walk Yt , t = 0, 1, . . . , n, with a drift µ has increments Yt − Yt−1 = εt + µ, with
εt ∼ N (0, 1/τ ), that are i.i.d. Suppose we have independent priors µ ∼ N (b, S2)
and τ ∼ G(α, β). Conditionally on the observed increments the precision and
drift are no longer independent. However, suppose we know µ. Then, we can
get the posterior of τ for given µ using the results above by identifying εt =
Yt − Yt−1 − µ. On the other hand, suppose we know τ , then (cf., Example 2.1) we
have that Yt − Yt−1 ∼ N (µ, 1/τ ), t = 1, . . . , n are i.i.d. Therefore, the posterior
of µ for given τ is N (µ̃, (nτ + S−2)−1), where µ̃ = Cµ̂ + (1 − C)b with µ̂ =
(Yn − Y0)/n. In general, a Gibbs sampler can be set up by taking a sample of one
parameter given the others, then taking a sample of the next variable given the first
and the others etc. In our case, we can take samples from the joint posterior of
(τ, µ) by (cf., Williams 2001, 268)

(i) taking a sample τ(1) from the posterior of τ given some arbitrarily chosen
value of µ, such as the mean;

(ii) taking a sample µ(1) from the posterior of µ given τ = τ(1);
(iii) by taking a sample τ(2) from the posterior of τ given µ = µ(1) etc. This

produces a sequence of samples (τ(i), µ(i)), i = 1, 2, . . . A predictive dis-
tribution of the future values of the process can then be generated as in
Example 2.3:

(iv) corresponding to a sampled pair (τ(i), µ(i)) generate a sequence of i.i.d.
innovations εn+k ∼ N (0, 1/τ(i)), k = 1, . . . , m;

(v) calculate the values Yn+k = Yn + µ(i)k + εn+1 + · · · + εn+k .
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Repeating the procedure many times allows us to estimate the predictive distribu-
tion to the accuracy desired. ♦

Like a Markov Chain, the iterative steps (i)–(iii) always start from the most recent
values of the parameter vector. Thus, the approach is called a Markov Chain Monte
Carlo method.

Initially, the values produced by a Gibbs sampler depend on the chosen start-
ing values. However, it is possible to prove that under regularity conditions (cf.,
Robert and Casella 1999, 296) an ergodicity result similar to that of the finite state
Markov chains (or stable populations) holds even in the case of continuous poste-
rior densities. Therefore, the sampler is first run for several hundred or thousand
times during the so-called burn-in period. Only after that can the generated values
be viewed as samples from the joint posterior.

Choosing the length of the burn-in period is a nontrivial problem. Some of the ba-
sic difficulties can be well understood from a demographic perspective. Suppose
we have a multistate model representing municipalities in an archipelago. Suppose
that the probability is low that one moves from one island to another, although
one may move with high probability between municipalities within any given is-
land. Gibbs sampling is analogous to simulating the movement of an individual
from municipality to municipality. A simulated individual may never move out
of the initial island in a finite number of steps, so the individual’s path may end
up describing a single island only. Or, even if a change of island occurs, one or
more islands of the archipelago can still be left without visits by the time the
simulation ends. A practical problem in Gibbs sampling (and other Markov Chain
Monte Carlo methods) is that we may not know the setting well enough to be
sure that our parameter space does not look like an archipelago with hard to reach
islands. Software has been developed to aid in deciding the burn-in period and
studying the convergence to an invariant distribution (e.g., Best, Cowles and Vines
1995).

2.3. ARIMA(1,1,0) Models

Going beyond random walks, possibly the simplest integrated process is
ARIMA(1, 1, 0). The complexity of the details of the predictive distribution cal-
culations increases rapidly when autocorrelation has to be considered. Still, the
basic principles are similar to those we used for random walks.

Consider first a process Yt such that the increments Yt − Yt−1 ≡ Zt form an
AR(1) process around a mean. More precisely, assume that Zt − µ = ϕ(Zt−1 −
µ) + εt , with εt ∼ N (0, 1/τ ) i.i.d. As before, assume we have priors µ ∼ N (b, S2)
and τ ∼ G(α, β) for some constants b, S, α, and β. For the remaining correlation
parameter, assume a uniform prior ϕ ∼ U (−1, 1). Based on the observed values
of Yt , t = 0, 1, . . . , n, we can deduce the increments Zt , t = 1, . . . , n. For sim-
plicity, condition on Z1. Then, a Gibbs sampler can be based on the following con-
ditional distributions. (i) Conditionally on ϕ and τ , the posterior distribution of µ

is N (Cµ̂ + (1 − C)b, ((n − 1)(1 − ϕ)2τ + S−2)−1), where C = (n − 1)(1 − ϕ)2
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τ ((n − 1)(1 − ϕ)2τ + S−2)−1 and µ̂ is as given in Example 2.2. (ii) Condition-
ally on ϕ and µ, the posterior distribution of τ is G(α + (n − 1)/2, β + �tε

2
t /2),

where εt = Zt − µ − ϕ(Zt−1 − µ) for t = 2, . . . , n. (iii) Conditionally on µ and
τ the posterior distribution of ϕ is of the form c × exp(−�t {Zt − µ − ϕ(Zt−1 −
µ)}2τ/2) for ϕ ∈ (−1, 1).

Unlike the other cases, the conditional posterior of ϕ is not immediately obvious.
Rejection sampling (cf., Ripley 1987, 60–62; Press et al. 1992, 290–296) can
be used in this and many other situations. Note first that the summation in the
exponent is a second degree polynomial in ϕ, so for ϕ ∈ (−1, 1) the posterior must
be proportional to the density of N (ϕ̃, W ), where ϕ̃ = �t (Zt − µ)(Zt−1 − µ)/
�t (Zt−1 − µ)2 and W = {τ�t (Zt−1 − µ)2}−1. A value from the posterior can
now be sampled in two steps. First, pick a candidate value ϕ′ from N (ϕ̃, W ). If it
is in (−1, 1), we accept ϕ′. If it is not, we reject ϕ′, and pick another candidate
and check if it can be accepted. We continue until an accepted value is found. The
accepted values obtained in this manner are samples from the posterior of ϕ given
µ and τ .

The approach can be extended to other ARIMA(p, d, 0) processes, but the
details can be complex due to stationarity conditions. For a general approach that
does not rely on a conditional likelihood, see Chib and Greenberg (1994).

3. Forecast as a Database and Its Uses

In the past, population forecasts have typically been published in book form. The
user has had to wade through pages of small print to find the information he
or she is looking for. Having to do this three times (for the middle, high and low
variants) certainly hinders appreciation of the uncertainty of the forecast. The book
format is even less suitable for presentation of a predictive distribution. Quantiles
of the predictive distribution of population aggregates are not simply obtained
from the corresponding quantiles of the distributions of the components that are
not perfectly correlated. In Alho and Spencer (1991) we proposed that population
forecasts should be implemented in a computerized database form, instead.

A database can be defined as a collection of data files and a collection of
computer programs that are capable of storing, updating, and extracting data from
the files. In the case of population forecasting this would mean that sufficient
information concerning the forecast is stored, so that the predictive distribution of
a user’s choice can be output. An important aspect of the database concept is that
one would want to get the answers in real time.

The database approach is intended to bring the predictive distribution to the
user’s desk. This is important in policy settings, where the role of statistical in-
formation is complex. Policy preferences frequently are formed on the basis of
preferences for certain actions, with only a loose relation to the true state of nature
that statistics attempt to estimate or describe. When alternative forecasts are avail-
able but their probabilities are unstated, policy makers are pretty free to choose the
forecast that best agrees their preferred policy and to criticize forecasts opposing
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their preferences. Such criticism deflects the policy debate away from the real is-
sues (different values and different assumptions concerning the relation of policy
choices to outcomes) and towards a supposedly value-free disagreement, namely
what is the future population going to be like. If a predictive distribution shows that
the alternative forecasts are about equally likely, such a debate is unenlightening,
however. If the predictive distributions shows that one forecast is more likely than
the other, then debate might move to consider probabilities of different outcomes,
where the probabilities take into account both the error distribution of the fore-
cast(s) and the probability distribution of the outcome conditional on the policy
choice. Knowing, in real time, a realistic predictive distribution, can expose the
source of the policy disagreement and lead to better argumentation.

Another benefit from predictive distributions is that they emphasize the sequen-
tial revision aspects of policy making. As the future unfolds, more becomes known,
and adjustments to policy may be called for. The need for such revisions may be
anticipated when the expected error of the forecasts is large. Providing an explicit
assessment of uncertainty helps protect against overconfidence in a forecast and
helps protect against the use of low probability scenarios as rebuttals to more
likely forecasts. In many applications, such as the design of pension programs, the
predictive distribution can help one evaluate the riskiness of alternative strategies
(cf., Chapter 11). Population size may be a relatively minor source of uncertainty
in some of those calculations but a major source in others. It may be hard to tell
which situation prevails without a realistic assessment of the uncertainty of the
future population.

Two basic approaches for the construction of a forecast database are available.
In the analytical approach one stores the point forecast and descriptions of forecast
errors. Programs are written that approximate the variances of forecast errors for
the aggregates of the user’s choice using linearizing transformations. This will
be discussed in Section 5. The other approach relies on simulation, in which
samples are taken from the predictive distribution and stored. Other programs can
then read selected stored values and produce statistical summaries from them.
This approach will be discussed in Sections 6 and 7. Under either approach, a
difficulty is presented by the large number of cross-covariances and cross-lagged
covariances. A way around this issue is to parametrize the covariances, as we
discuss next.

4. Parametrizations of Covariance Structure

In Section 4.1 we consider the problem of estimating the variance of a sum of
random variables. Motivated by the general considerations, in Section 4.2 we
define a scaled model of error that is closely linked to simple random walk theory,
for use in propagation of error in population forecasts. Section 4.3 tackles the
issue of models for covariances for errors in migration forecasts; such models
are especially useful because the number possible covariances is large yet the
information for estimating them typically is weak.
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4.1. Effect of Correlations on the Variance of a Sum

In analyzing cohort-component forecasts we continually deal with various sums
of random variables. For example, the total fertility rate of a future year t is a
sum of possibly cross-correlated age-specific fertility rates. The forecast error of
any age-specific vital rate in age x can be viewed as accruing annually, so it is a
sum of autocorrelated annual terms. In cohort survival we calculate sums of age-
specific mortality rates that are correlated over age and time. The population itself
as aggregated over age is a sum. More generally, we may be interested in linear
combinations of variables with positive coefficients, e.g., the disabled population as
aggregated over age according to age-specific prevalence rates. To put the different
types of sums into perspective we start by approaching the problem abstractly.

Let ε1, . . . , εn be random variables with Var(εi ) = s2
i (si > 0) and Cov(εi , ε j ) =

ρi j si s j . Let S2
ind = s2

1 + · · · + s2
n denote the variance of the sum of the εi ’s under

independence, and S2
dep = (s1 + · · · + sn)2 the variance of the sum under perfect

dependence (i.e., ρi j = 1). Finally, let

S2 =
n∑

i, j=1

ρi j si s j (4.1)

be the exact variance. Defining the (weighted) average correlation as

ρ̄ =
∑
i �= j

ρi j si s j

/∑
i �= j

si s j , (4.2)

a simple calculation shows that S2 = (1 − ρ̄)S2
ind + ρ̄S2

dep. Clearly, if ρ̄ is non-
negative, then S2

ind ≤ S2 ≤ S2
dep. If we have a good guess at ρ̄, then we can estimate

S2 by an appropriate linear combination of S2
ind and S2

dep.
Consider now a single age-specific vital rate. In this case the εi ’s may represent

the annual changes of the rate, and the goal is to derive an approximation to the
variance of the rate during a future year n.

Example 4.1. Independence, AR(1), and Perfect Dependence. Suppose the εi ’s have
s2

i = s2 with an AR(1) structure ρi j = ρ|i− j |, where |ρ| < 1. In this case S2
ind =

ns2, S2
dep = n2s2, and one can show that S2 = (2ρn+1 − nρ2 − 2ρ + n)s2/(1 −

ρ)2. Furthermore, ρ̄ = 2ρ(ρn − nρ + n − 1)/[n(n − 1)(1 − ρ)2]. Asymptotically
S2/S2

ind ∼ (1 + ρ)/(1 − ρ), so S2 is much closer to S2
ind than S2

dep. ♦
Example 4.1 can be extended to represent the total fertility rate. In this case, the

εi ’s would correspond to n age-specific fertility rates of a given year, although the
variances of the error terms should then depend on age.

Example 4.2. Error in a Cohort Survival Setting. Consider cohort survival from
age x to age x + n. Let εi be the deviation of the mortality rate from its mean in
age x + i − 1, i = 1, . . . , n. Then, the sum of εi ’s is the relative deviation in the
number of survivors to age x + n. Suppose we have εi = εi1 + · · · + εi i , where
the εi j ’s are the error increments for the age-specific rate of age x + i − 1. Let
us assume that (a) the variances of the increments are homogeneous and equal
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to s2; (b) for a fixed i the εi j ’s are independent; (c) for a fixed j the correlation
between εi j and εk j is ρ |i−k|. The assumptions (a) and (b) imply that s2

i = is2,
so S2

ind = n(n + 1)s2/2. Replacing sums by integrals one gets the approximation
S2

dep ≈ (4/9)((n + 1/2)3/2 − (1/2)3/2)2s2. Therefore, asymptotically S2
dep/S2

ind ∼
8n/9. Using the results of Example 4.1, one can show that S2 = {n(n + 1)(1 −
ρ2)/2 − 2nρ + 2ρ2(1 − ρn−1)/(1 − ρ)}s2/(1 − ρ)2. It follows that in this case
also, asymptotically S2/S2

ind ∼ (1 + ρ)/(1 − ρ). As in Example 4.1, S2
ind is much

closer to the true value than S2
dep. ♦

In many cases, the variance of the sum of the εi ’s can be approximated by the
AR(1) model of Example 4.1 as well as by a constant correlation model. Define

S2
AR(ϕ) =

n∑
i, j=1

ϕ|i− j |si s j . (4.3)

Since S2
AR(0) = S2

ind and S2
AR(1) = S2

dep, there is also a value ϕ = ϕ∗ such that
S2

AR(ϕ∗) = S2, if the average correlation is nonnegative. Similarly, first define
ρi j (δ) = 1 for i = j and ρi j (δ) = δ for i �= j. Then define

S2
CC =

n∑
i, j=1

ρi j (δ)si s j . (4.4)

It follows that there is a δ = δ∗ such that S2
CC(δ∗) = S2, if the average correlation

is nonnegative. Then, the correct variance can be obtained using either an AR(1)
or a constant correlation assumption. In fact, both representations can also be used
for some cases in which the average correlation (4.2) is negative, if it is not too
large in absolute value. Note that if the true model is S2 = S2

CC(δ), then ρ̄ = δ.

4.2. Scaled Model for Error

The preceding discussion may serve as a motivation for a class of relatively sim-
ple stochastic models that are capable of approximating a wide variety of error
structures. The models are designed to handle errors of nonstationary processes
applicable to demographic forecasts. Recalling the problems that derive from limit-
ing the forecast error with fixed bounds (see Complement 25, Chapter 7; Keilman
2002 provides a formulation that uses fixed bounds but does not suffer from a
similar defect), we provide a way to limit the errors stochastically. The following
description is adapted from Alho and Spencer (1997) and Alho (1998).

We will first show how up to time T ≤ ∞ the expected error may be determined
by a model based assessment. Then we indicate how for longer term forecasting
(t ≥ T ) we may specify a subjective structure that continues smoothly from the
earlier part, but remains bounded ad infinitum. The choice of T will depend on
the series. If the forecast errors increase to levels that are considered implausible
by expert demographers, then we may want to switch to a subjective specification
that incorporates such judgment.

Consider error processes X ( j, t), where j = 1, . . . , J may refer to age or region,
for example, and t > 0 is the forecast year. It can always be written in the form
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X ( j, t) = ε( j, 1) + · · · + ε( j, t). To define the process further, we have in mind
that X ( j, t) could be a random walk with a drift (in t), for example. We consider a
more general case, however, and suppose that the error increments are of the form

ε( j, t) = S( j, t)(η j + δ( j, t)). (4.5)

Here, the S( j, t) > 0 are known weights whose specification will be discussed
shortly. Assume that for each j , (a) the variables δ( j, t) are independent over time
t = 1, 2, . . . ; (b) the variables {δ( j, t)| j = 1, . . . , J ; t = 1, 2, . . . } are indepen-
dent of the variables {η j | j = 1, . . . , J }; and (c) that

η j ∼ N (0, κ j ), δ( j, t) ∼ N (0, 1 − κ j ), (4.6)

where 0 < κ j < 1 are known. Thus, if the scales would not depend on t (or,
S( j, t) ≡ S( j)), then we would have a random walk with a random drift for every j .

As discussed in abstract terms in the previous section we may assume that
Corr(ηi , η j ) = ρ

|i− j |
η , or Corr(ηi , η j ) = ρη, for some |ρη| ≤ 1. Similarly,

Corr(δ(i, t), δ( j, t)) = ρ
|i− j |
δ , or Corr(δ(i, t), δ( j, t)) = ρδ for some |ρδ| ≤ 1.

Since the increments are scaled by the S( j, t), or Var(ε( j, t)) = S( j, t)2, we call
this a scaled model for error. Intuitively, allowing the scales to vary with t provides
a way to account for changing volatility (Section 4.1, Chapter 7). The role of the
correlation parameters is to represent the phenomenon that forecast errors of vital
rates in close ages tend to be similar, but in distant ages they may be quite different.

Example 4.3. Autoregressive Model for Correlations Across Age. We considered
the logarithms of the age-specific fertility rates for the white U.S. population in
1921–1988 in ages 14, 15, . . . , 46. We studied the crosscorrelations of the first and
second differences of the series for lag = 0. The correlations involving the youngest
and the oldest ages deviated from the rest, so we will use medians to describe typi-
cal correlations. The median crosscorrelations between ages that are one year apart
was 0.97 for the first differences (0.94 for the second differences); for ages 5 years
apart 0.84 (0.82); for ages 10 years apart 0.63 (0.62); for ages 20 years apart 0.33
(0.31). We see that an autoregressive model (over age) with the first autocorrelation
≈ 0.95 gives a reasonable description of the typical correlations. ♦

Note that κ j = Corr(ε( j, t), ε( j, t + h)) for all h �= 0. Therefore, κ j can be
interpreted as a constant correlation between the error increments. Under a random
walk model the error increments would be uncorrelated, with κ j = 0. Suppose that
we have an increasing sequence of error variances σ ( j, 1)2 < σ ( j, 2)2 < · · · <

σ ( j, T )2 available with Var(X ( j, t)) = σ ( j, t)2. One can show with some algebra
that we can estimate the corresponding increment variances by taking S( j, 1)2 =
σ ( j, 1)2 and

S( j, t) = −κ j s( j ; t − 1) + [
κ2

j s( j ; t − 1)2 + σ ( j, t)2 − σ ( j, t − 1)2
]1/2

, (4.7)

for t > 1, where s( j ; t − 1) = S( j, 1) + · · · + S( j, t − 1). Note that in the case
κ j = 0, (4.7) simplifies to S( j, t)2 = σ ( j, t)2 − σ ( j, t − 1)2.

The key properties of the above model are the following. First, since the choice
of the scales S( j, t) is unrestricted, any sequence of non-decreasing error variances
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can be matched. Second, any sequence of cross-correlations can be majorized using
either of the two correlational models (because at ϕ = 1 or ρ = 1 the sums they
represent reduce to S2

dep). Third, any sequence of autocorrelations for the error
increments can be majorized. This means that we can always find a conservative
approximation to any covariance structure using the model we have introduced.

The scaled model (4.5) can be used to simulate forecast errors. Both empirical
estimates and judgmental factors are, in practice, used to determine the param-
eters of the model (Alho 1998). In particular, the scaled model may provide an
approximation to the errors of an ARIMA forecast. One first derives the covari-
ance structure of the forecast error as given in (2.13) of Chapter 7, and then finds a
suitable approximating sequences of scales S and appropriate correlation param-
eters κ . At the other end of the spectrum, purely judgmental forecasts can also be
accommodated.

Example 4.4. Specifying a Linear Process to Match Judgment. Suppose we have
judgmental forecasts for n successive years and an associated sequence of standard
deviations 0 < S1 < S2 < · · · < Sn . Suppose the process being forecasted is non-
stationary. We may then look for a once-integrated process that would have fore-
cast errors similar to the ones specified. Write �k ≡ ψ0 + · · · + ψk, k = 0, 1, . . . .

Based on (2.13) of Chapter 7 we can write Var(E(k)) = σ 2
ε (�2

0 + · · · + �2
k−1).

Equating Var(E(k)) = S2
k for k = 1, . . . , n yields first σ 2

ε = S2
1 , and then the es-

timates σ 2
ε �2

k−1 = S2
k − S2

k−1 for k = 2, . . . , n − 1. This gives us �k−1 = (S2
k −

S2
k−1)1/2/σε. Knowing the �k’s yields the ψ j ’s via ψk = �k − �k−1. For a given n

there are infinitely many linear processes for which the first n ψj values agree with
the ones obtained, and the judgmental standard deviations are compatible with any
one of them. In any case, ARIMA models can be used to simulate realizations of
these errors. Presenting these to the judge one can try to determine if the judgmen-
tal specification is really as intended. Once a resolution has been found, the scaled
model can be used to implement the judgment in error propagation. ♦

We have noted earlier that the usual time-series methods may produce prediction
intervals that will eventually be too wide. This may happen if the methods do not
incorporate sufficient information about the boundedness of the vital processes.
In Alho and Spencer (1997) we proposed to take such additional information into
account by allowing for modifications in the error structure so that levels of error
that contradict the additional information are excluded. Suppose we judge that the
error structure we have specified yields what should be a maximum variance by
year T . We may then assume that from T on the error structure will follow an
AR(1) process centered around the point forecast that has the standard deviation
Var(X ( j, T ))1/2 and the first autocorrelation Corr(X ( j, T −1), X ( j, T )). We will
consider X (T ) as the first value of the AR(1) process, so there is a smooth transition
from one process to the next.

To provide a theoretical basis for the eventual AR(1) assumption, it is useful to
note that the AR(1) process is the discrete time version of the Ornstein-Uhlenbeck
process of diffusion theory. There, the process is obtained from a Brownian motion
as subjected to an elastic force towards a mean function (Feller 1971, 99, 335–336).
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This notion seems to capture the idea that the errors should be centered around the
point forecast and have a bounded variance in the long run.

4.3. Structure of Error in Migration Forecasts

Characterizing the error of migration forecasts in a multistate setting will yield
approximations that can be used in the specification of error for net migration for
a single state model.

Consider a closed system of J regions with two sexes (s = 1, 2), and ages
x = 0, . . . , ω. Define Msi j (x, t) = number of those of sex s who are at time t in
age x in region j and survive to age x + 1 in region i . Then, we can define the
in-migrants to region i as

Msi .(x, t) =
∑
j �=i

Msi j (x, t), (4.8)

the number of out-migrants from region i as

Ms.i (x, t) =
∑
j �=i

Msji (x, t), (4.9)

the net number of migrants to region i as

Nsi (x, t) = Msi .(x, t) − Ms.i (x, t), (4.10)

and the gross number of migrants as

Gsi (x, t) = Msi .(x, t) + Ms.i (x, t). (4.11)

Suppose we have forecasts M̂si j (x, t) for the out-migrants. Similar notation will
be used for (4.9), (4.10), and (4.11). We assume that the forecast error εsi j (x, t) is
proportional to the forecast, or

Msi j (x, t) = M̂si j (x, t)(1 + εsi j (x, t)). (4.12)

A possible variance components representation for the error is the following,

εsi j (x, t) = ξ (t) + ηi − η j + θsi j (x, t). (4.13)

Here the ξ, η, ζ , and θ terms are assumed to be random and independent of each
other. The role of ξ (t) is to represent unexpected error in the overall level of
migration for all regions. It has been empirically noted that there are times when
migration speeds up, and other times when it slows down. This can be associated
with the level of economic activity in the country, with economic growth being
associated with fast movement of people. A change in speed can occur without any
change in the shares of the regions. In an exaggerated case one can imagine that
there is a fixed number of jobs (or places to live, for example); individuals can only
move when a job (or house) becomes vacant; and during economic boom many
movements occur. The role of ηi is to represent unexpected rise in the economic
potential of region i , which influences the outflow from region i negatively and
the inflow positively. The terms θsi j (x, t) represent uncorrelated residual error.
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To approximate the error of the net migration forecast, let us set the terms θ to
zero. Summing over both sexes we may write the total net migration to region i in
age x during year t as

N.i (x, t) = N̂.i (x, t) + N̂.i (x, t)ξ (t) + Ĝ.i (x, t){ηi − η̄i }, (4.14)

where

η̄i =
∑
j �=i

M̂. j i (x, t) + M̂.i j (x, t)

Ĝ.i (x, t)
η j (4.15)

is a weighted average of the unexpected attractiveness of all the other regions
besides i. We see that the error in (4.14) consists of two pieces. One is proportional
to the forecast of net migration and represents the error in the overall level of
migration. The second piece is proportional to gross migration and represents the
error in the assumed attractiveness of region i relative to all the other regions.
Frequently, net migration is set to zero in forecasts. Thus, even if variations in
overall migration were larger than changes in attractiveness, this source may not be
as important as the latter when it comes to assessing the uncertainty of forecasting
net migration.

5. Analytical Propagation of Error

Initially, analytical propagation of error formulas were derived for population
forecasts for computational reasons (e.g., Sykes 1969, Alho and Spencer 1991;
Lee and Tuljapurkar 1994). However, with the tremendously increased speed of
computers, a primary virtue of analytical propagation of error formulas is that they
may help us see “what is going on”, i.e., how an error in a particular variable or
variables influences other variables of interest. We will consider two cases. The
first one shows how the uncertainty of births can be decomposed into a component
that is due to the uncertainty of past fertility and current fertility. The second
example deals with a general linear growth model.

5.1. Births

Consider a single region female population and assume, for simplicity, that time
is discrete and the uncertainty in mortality can be ignored ( justification for the
assumption is provided in Alho 1992b). Let B(t) = exp(b(t)) be the number of
births during year t , let f (x, t) be the log of the fertility rate in age x during year
t , and let s(x, t) be the log of the probability of surviving from age 0 to be in age
x in the beginning of the year t . In analogy with (5.2) of Chapter 6 we can write

b(t) = log

(
β∑

x=α

exp(b(t − x) + f (x, t) + s(x, t))

)
. (5.1)
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Let B(x, t) be the number of children born to women in age x during year t ,
and define the shares c(x, t) = B(x, t)/B(t). Let b̂(t), ĉ(x, t) and f̂ (x, t) be the
forecasts of b(t), c(x, t) and f (x, t), respectively, and write b(t) = b̂(t) + εb(t)
and f (x, t) = f̂ (x, t) + ε f (x, t). Using a linear Taylor series approximation to
the right hand side of (5.1), around the point forecast, we get that (cf., Lee 1974)

εb(t) ≈ ξ (t) +
β∑

x=α

ĉ(x, t)εb(t − x), (5.2)

where

ξ (t) =
β∑

x=α

ĉ(x, t)εf (x, t). (5.3)

We see that the errors are (approximately) a linear combination of a current error
increment ξ (t) and past errors. In this application the forecast error ξ (t) would be
expected to be a highly autocorrelated process. In fact it should behave approxi-
mately the same way as the relative error of the total fertility rate.

5.2. General Linear Growth

Consider a double sequence of random vectors (Xt , Yt ) for t = 0, 1, 2, . . . , and a
differentiable vector-valued function f(. . . ) such that

Yt+1 = f(Xt , Yt ). (5.4)

We assume that there are point forecasts X̂ for X such that Xt = X̂t + εt , with
E[εt ] = 0, and forecasts Ŷ for Y such that Ŷt+1 = f(Ŷt , X̂t ) and Yt = Ŷt + ηt ,
where ηt is the error. Define the (matrices of) partial derivatives ∂f/∂XT = H,

and ∂f/∂YT = K.

Example 5.1. Representation of a Closed Female Population. Let Yt = V(t) be
a vector representing a closed female population (Section 2.1 of Chapter 6), and
let Xt = (F(t)T , S(t)T )T be a vector that has the age-specific fertility rates of year
t in vector F(t) and the age-specific survival proportions in vector S(t). Let f
correspond to multiplication R(t)V(t). Then, (5.4) represents the linear growth
model (2.2) of Chapter 6.4 In this case K = R(t), for example. ♦

Using a linear Taylor series approximation one can write.

Yt+1 ≈ f(X̂t , Ŷt ) + Htεt + Ktηt , (5.5)

where Ht = H(X̂t , Ŷt ), and Kt = K(X̂t , Ŷt ) are the partial derivatives evaluated
at the point forecast. It follows that we have the approximate recursion for the
error,

ηt+1 ≈ Htεt + Ktηt . (5.6)

4 Similarly, (5.4) can represent the log of the population vector, or it can incorporate external
net migration, as in (3.1) of Chapter 6.
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This shows how the error at t + 1,ηt+1, arises from the past error ηt and the
current forecast error εt . By repeated application of (5.6) one can show that

ηt+1 ≈ Mt,0η0 +
t∑

i=0

Mt,i+1Hiεi , (5.7)

where

Mt,k =
t∏

i=k

Ki , (5.8)

and Mt,t+1 = I. Note the similarity between (5.7) and (3.2) of Chapter 6, where
we opened up the population system to external migration. In both cases there is
a component deriving from the initial vector (here Mt,0η0), and then increments
deriving from each subsequent year t that begin to behave according to the growth
equation: in (5.7) the increments are past forecast errors that begin to propagate
over time according to (5.4), in Chapter 6 they were net migrants. The intuitive
interpretation is that errors are like net migrants!

Formula (5.7) shows how the forecast errors of X for all earlier years influence
the error of Y for year t + 1. The errors consist of both biases that are due to
the nonlinearity of (5.4) and random error. Assuming that the biases are small
enough so they can be ignored, (5.7) provides a direct computational formula for
the approximate covariance of the forecast error. Formula (5.6), on the other hand
shows how a recursive system of calculations can be set up. We have

Cov(ηt+1) ≈
Ht Cov(εt )HT

t + Kt Cov(ηt )KT
t + Ht Cov(εt ,ηt )KT

t + Kt Cov(ηt , εt )HT
t , (5.9)

where the two last covariances can be calculated from

Cov(εt ,ηt ) ≈ Cov(εt ,η0)MT
t−1,0 +

t−1∑
i=0

Cov(εt , εi )HT
i Mt−1,i+1. (5.10)

Note first, that if (unrealistically) the errors εt would be an uncorrelated se-
quence, then the covariances (5.10) would be zero, and (5.9) would be a relatively
simple recursion given that we know the terms Cov(εt ). More generally, (5.10) can
be interpreted as a recursive system in the sense that the set of coefficient matrices
Mt,k can be obtained from the matrices Mt−1,k by left multiplying them by Kt ,
and by adding Kt to the set.

In principle, approximate second moments of the forecast error of a linear growth
model can be calculated using (5.9) and (5.10) if the point forecast and the co-
variance structure of the forecast error of the vital rates is known. However, the
apparent simplicity of the formulas hides the fact that the derivatives Ht and Kt

are complicated functions of the vital rates, so their programming is tedious. An-
other problem in the numerical use of these formulas is that they are approximate:
evaluating the magnitude of the error of approximation is more complicated than
the use of the formulas themselves.
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6. Simulation Approach and Computer Implementation

Stochastic simulation (or Monte Carlo) methods have a history that goes back, at
least, to World War II (Ripley 1987).5 The simulation approach has three primary
advantages over the analytic approach. First, no linearizing approximations are
required to derive the moments of the predictive distribution. Second, although
distributional assumptions are needed for the description of the uncertainty of the
vital rates, no assumption needs to be made concerning the predictive distribution
of the future population vector. The empirical distribution of the future population
computed with respect to the sample of population paths, serves as the estimate
of the predictive distribution of the future population vector. Third, with the sim-
ulations it is easy to handle functional forecasts – a sample path of a functional
forecast is simply the function evaluated on the sample path, and the predictive
distribution is readily estimated by their empirical distribution (as in Sections 2.2.4
of Chapter 4 and 1.6 of Chapter 6).

A drawback is that it may be hard to find out the relative roles of different
error components in the final result without rerunning the whole simulation. The
transparency of some analytical formulations, such as (5.7) may be of help in such
an analysis. Also, while simulation may be used to check the accuracy of moment
calculations based on analytic approximations, analytical formulas may be used
to look for possible errors in the programs used in simulation. Therefore, we view
the two approaches as being complementary.

A brute force way to use simulation as part of the database implementation of a
stochastic forecast is to store all simulated sample paths of the population vector
on a hard disk. Additional programs are used to produce statistical summaries
out of the stored data. This provides the real-time performance required for the
database implementation. This approach would not have been feasible as late as
the early 1990’s. With the availability of fast, inexpensive computers, sample sizes
in simulation are no more a liming factor.

We have implemented a simulation based database forecast in a computer pro-
gram PEP (Program for Error Propagation). It is written in the C++ language, and
it is based on the estimation procedures discussed in Chapter 4, the one region
two-sex linear growth model of Chapter 6, and the scaled model described in Sec-
tion 4.2. A systematic description of PEP is available at http://www.joensuu.fi/
statistics/juha.html. Here, we will summarize the main features as they appear to
the user.

PEP is a menu directed Windows program. The user is required to input such
information as the number of simulation rounds, the number of forecast years,

5 Earlier uses of randomization devices include attempts to determine the value of π by
repeatedly throwing a needle of length L on a plane that has parallel lines at distance
A > L in the latter part of the 1800’s (“Buffon’s needle problem”; cf., Gnedenko 1976,
36–37). Perhaps Gossett’s empirical derivation of the t-distribution from a collection of
several thousand biological measurements around 1908 can also be seen as falling into this
category.
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the lowest and highest child-bearing ages, the highest age, the sex-ratio at birth,
and (if mortality rates from the rectangles of the Lexis diagram are being input) the
separation factor for mortality in age 0. Then, the user is prompted for file names
giving the jump-off population, point forecasts of age and sex-specific mortality,
age-specific fertility, and net-migration by age and sex. In addition to these basic
data, the user is prompted to give the parameters required for the specification of
the scaled models of error for mortality, fertility, and migration. These are partly
given as files (e.g., the scales and the kappas), partly as constants requested by
the program menus. To facilitate the preparation of the input data, there is another
C++ program BEGIN that produces input files that follow some commonly used
approaches for formulating forecast assumptions. PEP checks the input data for
consistency. For example, the input files must conform to the given age ranges and
forecast period. Once the simulation has been carried out, the user is prompted
to specify what kinds of aggregate data he or she might wish to study. In most
uses of forecasts the interest centers on selected age-groups. There is a third C++
program COMBINE that produces similar aggregated output after a PEP run. The
final statistical processing (summary statistics, graphics) is intended to be carried
out by a spreadsheet or statistical program of the user’s choice.

Example 6.1. Storage Space Required by the Database. Consider a forecast of a
population by single years of age for T = 50 years. If the whole population vector
has ages 0, 1, 2, . . . , 99, 100+, by sex, there are 202 components in the vector.
Each sample path of the vector is stored into a file containing a 50 × 202 matrix.
If the number of simulation rounds is, say, N = 3,000, there will 3,000 such files
stored. Together, they take up approximately 300 MB of hard disk space. (The
exact amount depends on the allocation unit used by the computer.) These files
provide the basic material on which everything else is built. PEP automatically
converts the N sample paths into T annual files, each containing a 3000 × 202
matrix. Each column contains N = 3,000 samples from the distribution of a given
component of the population vector for a given forecast year. Together, the annual
files also take about 300 MB of disk space. In a typical run, one is also interested
in summary data concerning user defined age-groups. The amount of space the
results take is proportional to the number of age-sex-groups. In addition, PEP
outputs simulated values for life expectancies. Together with the input files and
the programs the space required by the database after the initial run is of the order
of 650 MB. Increasing the number of forecast years will lead to a proportional
increase in space requirements. For example, a corresponding forecast going 65
years into the future with some added output produced by COMBINE took about
50% more, or some 1,000 MB (or 1 GB) of space. The establishment of the original
database as described above takes minutes or less on current machines. ♦

To establish the PEP database in the first place requires a professional demogra-
pher or statistician capable of understanding both the demographic detail of usual
cohort-component forecast and the specification of the error structure, roughly at
the level of this book. If the user is willing to accept values for the parameters of
the scaled model of error suggested by BEGIN, the demands are comparable to
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those of a traditional cohort-component forecast. The retrieval of aggregate data is
very simple, but the user must be comfortable with some spreadsheet or statistical
program to be able to effectively produce numerical or graphical summaries of the
simulated data.

7. Post Processing

Any propagation of error program (such as PEP) must limit the range of available
models. The primary limiting factor appears not to be the difficulty of imple-
menting probabilistic models of great generality, but rather the user’s difficulty of
providing meaningful input data for complex models. Given the restricted scope
of the program, it is useful in practice to find ways of inferring, from the available
output, results that correspond to alternative specifications. There is no hope that
one could find an acceptable approximation for arbitrary alternatives, only for cer-
tain restricted types. Suppose a forecast database is available that corresponds to
the predictive distribution of the future population. By post processing we refer to
selective uses of forecast database results.

7.1. Altering a Distributional Form

Consider a population characteristic ξ , whose distribution can be estimated from
the database values. In the current version of PEP, life expectancy at birth is stored,
for example, so ξ could be the female or male life expectancy during any given
future year or, say, the average life expectancy over the forecast years. Even if
the desired measure is not stored, a proxy may be available. In Example 7.1 we
illustrate the use of the general fertility rate, i.e., the ratio of births to person years
lived in child bearing ages, as a proxy for the total fertility rate.

Assume that the forecast database is based on N simulation rounds, so we have
the values ξ1, . . . , ξN available. Let the empirical distribution function based on the
simulated values be F(x) = (number of ξi ’s ≤ x)/N . Suppose a user is unhappy
with F(.). This could take many forms, but suppose for the sake of illustration that
the user is satisfied with the distribution up to the median, but thinks that the upper
tail is too long, and wishes that the upper half of the distribution be modified in
a gradual manner so instead of the current decile F−1(0.9) = a we would have a
distribution taking the value b, or F−1(0.9) = b < a, instead. This can be achieved
by selectively removing or rejecting simulated sample paths from the output. A
possible approach (one among many) is as follows.

We exclude the possibility of ties for simplicity of exposition. Let the ordered
data be ξ(1) < · · · < ξ(N ). Define �x�= largest integer ≤ x . Then, the median can be
taken to be F−1(0.5) = ξ(�N/2�) and the 9th decile can be taken to be a = ξ(�9N/10�).
Take B to satisfy ξ(B) ≤ b ≤ ξ(B+1). The simulated values can now be split into three
segments ξ(1) < · · · < ξ(�N/2�); ξ(�N/2�+1) < · · · < ξ(B); and ξ(B+1) < · · · < ξ(N ). A
brute force solution that has the virtue of retaining a maximal number of simulated
values is as follows:



P1: MRM/SJS P2: MRM
SVUS004-Alho & Spencer April 29, 2005 21:34

290 9. Statistical Propagation of Error in Forecasting

(i) Retain simulation rounds corresponding to values ξ(�N/2�+1) < · · · < ξ(B),
there are B − �N/2� of them;

(ii) Retain the fraction f = (B − �N/2�)/4(N − B) of the simulation rounds
corresponding to values ξ(B+1) < · · · < ξ(N ), so (1 − f )(N − B) values
are deleted;

(iii) Delete a total of (1 − f )(N − B) simulation rounds corresponding to
values ξ(1) < · · · < ξ(�N/2�).

The value of f in step (ii) is chosen so that the ratio of the number of retained
rounds with values above the desired 9th decile b(= f (N − B)), to the number
of values above the median but below b(= (B − �N/2�), is 0.1/0.4 = 1/4. Or,
f (N − B)/(B − �N/2�) = 1/4. In the third step the same number are deleted
below the median as were deleted above the median to keep it at its current value.

The remaining number of simulations in the purged database, i.e., a database
that remains after rejection sampling, is thus N ∗ = N − 2(1 − f )(N − B). De-
note distribution function of ξ in the purged database as F∗(.). Any summary
statistics from the purged database can be interpreted as being conditional on the
assumptions made on the distribution of ξ .

In step (iii), it may be preferable to use systematic sampling (based on the ordered
values) to delete the simulated values. (This reduces the role of chance fluctuations,
but whether or not it introduces biases depends on the finer details of the user’s
views.) Systematic random sampling was discussed in Chapter 3, Section 6, and
implementation details may be found in texts such as Cochran (1977, 265–266)
and Kish (1965, 115–116). A simple version of nonrandom systematic sampling
for the current application is the following: Since the fraction to be deleted is g =
(1 − f )(N − B)/�N/2�, we may divide the ordered values into segments of length
�N/2�/g, and delete the observation closest to the middle of the segment from
each segment. Rounding to integers complicates nonrandom systematic deletions
if the segments are small, but the methods of random systematic sampling with
fractional intervals can easily avoid rounding to integers. In step (ii) one may also
delete the fraction 1 − f systematically.

Example 7.1. Stochastic Forecast Database for Finland. Consider a stochastic
forecast database of Finland generated by PEP. The number of simulation rounds
was N = 3,000. Suppose we are interested in the level of fertility. The total fertility
rate is not stored by the program, but we can reason as follows. Since fertility in
ages under 18 and over 40 is low, let us take ξ = (the number of births)/(the female
population in ages 18–40). This gives roughly the average fertility in those 23 ages,
and an estimate of total fertility would be 23 × ξ . Consider a lead time of 35 years.
The median of the simulated values is ξ1500 = 0.0761 and the 90th percentile is a =
ξ2700 = 0.1052. These would correspond roughly to total fertility rates of 1.75 and
2.42, respectively. The distribution is skewed to the right, and suppose we would
like to see the consequence of having the predictive distribution with the 9th decile at
2.20, instead. This corresponds to b = 2.20/23 = 0.0956522. The closest smaller
value is ξ2434 = 0.095631. Thus B = 2434, so we retain the 2434 − 1500 = 934
observations that are above the median and below b. These represent 40% of
the probability mass (the paths between the median and the 90th percentile), so
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Figure 1. Predictive Distribution of a Fertility Measure (Solid) and its Modified Distribu-
tion (Dashed).

N ∗ = 934/0.40 = 2335 will be the size of the purged database. Consider step
(iii). Below the median a we will retain �2335/2� = 1162 of the original 1500
observations. The deletion of 1500 − 1162 = 338 observations can be achieved
by first deleting, 148 times, every 5th observation from the median down (i.e.,
1496, 1491, 1486, . . . , 761), and then, 190 times, every 4th observation (i.e., 757,
753, 749, . . . , 1), for example. This choice enhances smoothness near b slightly.
(Alternatively, using methodology of random systematic sampling we could have
randomly chosen a number r between 0 and k = 1500/338 and deleted observa-
tions �r + j × k�, j = 0, . . . , 337 counting from the median and moving down).
Consider step (ii). Above b we originally have 3000 − 2434 = 566 observations,
but only 2335 − 1162 − 934 = 239 can remain, with 566 − 239 = 327 deleted.
This can be achieved by deleting the top 88 observations (for smoothness near b),
and then every second observation 239 times. The result can be seen in Figure 1.
As an alternative to general fertility, one could use the ratio of observed births
to births expected under the point forecast of fertility and observed numbers of
women in childbearing ages (cf., (3.6) of Chapter 5). ♦

If the fractions to be deleted are large, then the method may lead to notable lack
of smoothness in F∗(.) at the median and at b. Note that the method as described
applies to modify the predictive distribution at one point, but the method may be
repeatedly applied to yield modifications at multiple points. More elaborate steps
of deletion can be devised by defining a probability of deletion for every value
i = 1, . . . , N . This is equivalent to the rejection sampling described above. Using
those techniques we may smooth the effect of deletions near the median and b.
Depending on the details, this may require a larger number of deletions than the
method given above.

Above, we have purged the database according to a fertility related criterion.
As long as fertility and mortality forecast errors are independent in the model
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generating the sample paths, purging will not create dependencies. The situation
would be different if fertility and mortality would have been originally somehow
dependent. It follows that we may carry out a subsequent purge based on a mortality
defined characteristic, such as life expectancy. To compensate for the expected
purges, we may use a larger number N of simulation rounds initially.

7.2. Creating Correlated Populations

A full multistate representation of a population system becomes quite complex in
the stochastic framework. The complexity is caused by the vast number of second
order characteristics of the already large numbers of migration (or transition) flows.
The difficulties are not connected so much with the technicalities of programming,
but rather with the finding parsimonious representations for the covariances and
estimating them from the available data. Post processing provides a way to handle
the cross-region-correlations, if a single region forecast database is available for
each state. We consider two general approaches. One depends on a judicious choice
of seeds in random number generation. The latter is a more genuine post-processing
technique that depends on sorting the output. We concentrate on the correlations
of fertility and mortality, but note that migration can, in principle, be added as a
third criterion. However, in practice we have handled migration via other means
in multistate settings.

7.2.1. Use of Seeds

Suppose there are J regions. As before, this could be a set of countries (say,
the countries of EU), a set of race categories (say, the main racial groups of the
U.S.), etc. We are first interested in creating a given level 0 < ρ < 1 of constant
correlation between any pair of the regions, in terms of one characteristic ξ , say
life expectancy. For definiteness, let ξ j be the life expectancy at birth of region
j = 1, . . . , J, during a given future year.

Suppose the forecasts of the different regions are exactly equivalent in terms
of the number of age-groups, child-bearing ages, and forecast years. Assume that
the correlations across age for the errors of the vital processes are the same (or at
least similar) in all countries. Suppose the generator used to produce the random
numbers always produces the same sequence for the same seed. This is true for the
congruential generator (Ripley 1987, 20–26) used in PEP, for example. This cre-
ates a nearly perfect correlation across countries for the ξ j ’s, except that, as in the
case of life expectancy, both linear and nonlinear transformations may reduce the
correlation to some extent. Suppose too that the desired ρ does not exceed
the maximal correlation that can be achieved in this way, say, ρ∗.6 Let the de-
sired number of simulation rounds be N . Then, the constant correlation ρ can be
achieved approximately as follows:

(i) generate �Nρ/ρ∗� simulation rounds from the same seed; the internal
correlation of these values is (asymptotically) ρ∗;

6 In the case of life expectancy, values ρ∗ > 0.99 have been observed in simulation when
the same correlation structure was applied within two countries.
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(ii) generate an additional number N − �Nρ/ρ∗� simulation rounds from
randomly chosen seeds; the internal correlation of these values is (asymp-
totically) 0.

The method works, because both steps produce observations with the same mean
and variance, and steps (i) and (ii) cause the fraction ρ/ρ∗ of the data to have
correlation ρ∗ and the fraction 1 − ρ/ρ∗ to have correlation 0 for any pair of the
regions. (Should the countries have highly disparate vital rates, then the nonlinear-
ities induced might make pairwise correlations across countries notably different.
In that case the extension immediately following may be of help.)

The simple approach may serve as a building block for more complex, partially
hierarchical patterns. For example, suppose there is a subset J ′ of the regions, for
which a higher constant correlation ρ ′ such that ρ < ρ ′ < ρ∗ is desired. Then, step
(ii) would be replaced by the following:

(ii′) generate an additional number �Nρ ′/ρ∗� − �Nρ/ρ∗� simulation rounds
from the same seed for j ∈ J ′; generate an additional number
�Nρ ′/ρ∗� − �Nρ/ρ∗� simulation rounds from randomly chosen seeds
for j /∈ J ′;

(iii′) generate an additional number N − �Nρ ′/ρ∗� simulation rounds from
randomly chosen seeds for all j .

The approach outlined is not always as useful as might appear initially, because
it creates a corresponding correlation for fertility (and possibly for net-migration),
as well. Thus, its use is limited to situations in which one is willing to make broad
assumptions about the cross-country correlations of the vital processes in general.
Recall, however, that correlation here refers to deviations from the point forecast
rather than deviations from the jump-off value (cf., Section 5 of Chapter 8), so the
use of the method does not imply that the countries need to have the same overall
trends.

7.2.2. Sorting Techniques

We continue in the J region setting of Section 7.2.1. and use life expectancy as the
variable ξ j that we would like to make correlated across regions. Let us assume
now that the country-specific simulations are independent (within the practical
limits imposed by the selected random number generator). Suppose the goal is to
create a constant correlation 0 < ρ < ρ∗ between any pair of countries, based on N
simulation rounds, where ρ∗ is the average maximal cross-country correlation that
can be achieved by sorting the data from all countries into an increasing sequence.
A procedure that accomplishes the task is as follows:

(i) select the number �Nρ/ρ∗� of simulation rounds systematically from the
ordered data; sort these values into an increasing sequence for each region
j ; the internal correlation of these values is (asymptotically) ρ∗;

(ii) sort the remaining N − �Nρ/ρ∗� simulation rounds into a random order,
independently for each country; the internal correlation of these values is
(asymptotically) 0.
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Replacing the original simulation round labels by the re-ordered labels causes the
simulation results of all countries to become correlated in the desired way. This
method works for essentially the same reason as the method (i)–(ii) of Section
7.2.1.

Consider a partially hierarchical pattern, in which there is a subset J ′ of the
regions, for which a higher constant correlation ρ < ρ ′ < ρ∗ is desired, with the
remaining regions {1, . . . , J }\J ′ having correlation ρ. Then, step (ii) would be
replaced by the following:

(ii′) select an additional number �Nρ ′/ρ∗� − �Nρ/ρ∗� of simulation rounds
systematically for j ∈ J ′ and sort them into an increasing sequence; select
an additional number �Nρ ′/ρ∗� − �Nρ/ρ∗� simulation rounds for j /∈ J ′

and sort them into a random order, independently for each country;
(iii′) sort the remaining N − �Nρ ′/ρ∗� simulation rounds into a random order

for all j .

The sorting method differs from the use of seeds in that sorting depends on
the variable of interest only. In our illustration sorting is by life expectancy, for
example. Since fertility is independent of mortality within each country, the fertility
data will remain uncorrelated across countries, even after sorting. Thus, the set of
those simulation rounds whose order has been randomized, can be further sorted
by fertility, if desired. In the method (i)–(ii) the remaining fraction is ρ/ρ∗. In
the case (i), (ii′), (iii′) it is ρ ′/ρ∗ for j ∈ J ′ and ρ/ρ∗ for j /∈ J ′. Having to limit
the second round of sorted values to a fraction of the total means that there is an
upper bound one can achieve during the second sorting. This is where the ability to
use seeds comes into play. Using sorting in combination with the choice of seeds
allows us to achieve a wider range of positive correlations for both mortality and
fertility.

Exercises and Complements (*)

1. Referring to Section 1, if Törnqvist had used a random walk model with
volatility 0.062 (as in Chapter 8), would his 80% interval for the short-term
forecast have included the realized value of 2.98?

2. Multiplying (2.2) and (2.3) show the exponent of (2.4) is of the form given.
3. Show that if (2.5), (2.6), and (2.7) hold, then (2.4) must be of the form

given, and vice versa. (Hint: for the multivariate normal Y ∼ N (µ,Σ)
the exponent is of the form −(Y − µ)T Σ−1(Y − µ)/2 = −YT Σ−1Y/2 +
YT Σ−1µ − µT Σ−1µ/2.)

4. Show that one can view (2.7) as a weighted average of β̂ and b, with “weights”
M(XT

1 Σ−1
11 X1) and MS−1, respectively.

5. Show that (2.9) holds.
6. Show that S2 = (1 − ρ̄)S2

ind + ρ̄S2
dep.

7. Starting from S2 = S2
ind + ρ̄(S2

dep − S2
ind), show that S2 ≤ S2

dep for all ρ̄.
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8. Show that S2
dep ≈ (4/9)((n + 1/2)3/2 − (1/2)3/2)2, when si = i1/2 . (Hint: re-

place the sums by integrals from 1/2 to n + 1/2.)
9. Show that S2 = (2ρn+1 − nρ2 − 2ρ + n)s2/(1 − ρ)2 in Example 4.1.

(Hint: (a) 1 + 2 + · · · n = n(n + 1)/2; (b) define f (x) = 1 + x + x2 + · · · +
xn−1 = (1 − xn)/(1 − x), so 1 + 2x + 3x2 + · · · + (n − 1)xn−2 = f ′(x).)

10. Show that S2 = {n(n + 1)(1 − ρ2)/2 − 2nρ + 2ρ2(1 − ρn−1)/(1 − ρ)}s2/

(1 − ρ)2 in Example 4.2. (Hint: use the result of Exercise 9.)
11. Prove (4.7). (Hint: omitting reference to j , note that under (4.6)

we have Var(X (t)) = σ (t)2 = κs(t)2 + (1 − κ)(S(1)2 + · · · + S(t)2), where
s(t) = S(1) + · · · + S(t). Starting from this, derive the equation S(t)2 +
2κs(t − 1)S(t) + σ (t − 1)2 = σ (t)2. Verify that the solution of this is (4.7).)

12. Show that in Example 5.1, H is an (ω + 1) × (β − α + ω + 2) matrix with
the following structure. Its first row is (V (α, t), . . . , V (β, t), 0, . . . , 0). The
remaining rows have zeros in the first β − α + 1 locations. The last column
is zero except it has V (ω, t) as the last element. The remaining ω × ω block
is a diagonal matrix with V (i − 1, t) as the i th diagonal element.

13. Note that the function f (x1, . . . , xn) = log(�i exp(xi )) has the partial deriva-
tives ∂ f/∂x j = exp(x j )/�i exp(xi ), j = 1, . . . , n. Using this, derive (5.2)
and (5.3).

14. (a) Derive (5.7). (b) Derive (5.9). (c) Show that (5.10) holds.
15. Consider a simple case of (5.4), where f (x, y) = yex ; Y0 = 1, and Xt =

X̂t + εt , where εt ∼ N (0, σ 2) are i.i.d. What is the bias of the forecast relative
to the true mean as a function of t and σ?

16. Show that the methods (i)–(ii) of Sections 7.2.1 and 7.2.2 produce (approxi-
mately) the desired correlation.
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10
Errors in Census Numbers

1. Introduction

Jump-off population numbers typically are based on population registers if avail-
able or on census numbers. Jump-off populations serve not only as the base for
forecasts, but also for the denominators of rates whose numerators are based on
vital registration, such as mortality rates, fertility rates, marriage rates, etc. Jump-
off errors affect vital rates, including mortality rates (Section 2.1), as well as
forecasts (Section 2.2). Jump-off populations are also used in evaluation of past
forecasts or postcensal estimates, and when the evaluations compare the forecasts
to incorrect benchmarks (i.e., census or register results containing error), the eval-
uations can be biased (Section 2.3).

In this chapter we consider the estimation of accuracy in jump-off populations
that are based on censuses. Gross undercount occurs when people are missed en-
tirely or not counted in their appropriate geographic area or as members of their
demographic subgroups (e.g., age groups, racial or ethnic groups, etc). Gross over-
count occurs when people are enumerated multiple times, are enumerated where
they should not have been, or are enumerated when they should not be. The differ-
ence between gross undercount and gross overcount is net undercount. Two main
sources of information concerning undercount and overcount are demographic
analysis (Section 3) and samples (Section 4); Anderson and Fienberg (1999). The
information is used to estimate the net error in the census counts for various
geographic and demographic groups and to adjust the census counts. Whether
adjustment improves accuracy depends both on the accuracy of the adjustments
as well as on the accuracy of the census counts (Mulry and Spencer 1993, Brown
et al. 1999b, and Anderson et al. 2000).

A postcensal estimate refers to a time point since the last census but, unlike a
forecast, the time point is in the past. An intercensal estimate refers to a time point
in between two censuses. Postcensal estimates of population can be interpreted as
the sum of the latest census number plus an estimate of change since the census. At
the national level, the estimate of change may be explicitly estimated as births −
deaths + net migration. At the subnational level, a variety of methods are used. For

296
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example, the housing unit method multiplies an estimate of the current number
of housing units by an estimate of the average number of persons per housing
unit to estimate the population total (e.g., Smith and Mandell 1984). A variety
of regression methods are in use to estimate postcensal change in a local area’s
share of national (or other larger aggregate) population by a function of changes in
administrative data, such as school enrollments, births, automobile registrations,
etc. Methods for allowing the model to change over time have been developed
using data from ongoing large scale sample surveys, where available (Ericksen
1974, Bryan 2004). The form of the postcensal estimators is such that errors in the
last census numbers directly affect the postcensal estimates (Panel on Small Area
Estimates of Population and Income 1980).

The accuracy of postcensal estimates typically is evaluated by comparison to
census numbers for the same time points, or to intercensal estimates for a time point
close to the census (e.g., Moltchanov, Kuulasmaa, and Torppa 1999). The errors
in the consecutive census numbers may affect both the postcensal estimates and
the difference between the postcensal estimate and the concurrent census number,
as in the case of forecasts discussed in Sections 3 and 4, below.

The difficulty in assessing the accuracy of postcensal estimates is that a census
itself must be used as the standard. As we know, censuses have their own errors, and
the analyses of accuracy of postcensal estimates have tended to ignore the errors in
the census. Furthermore, national censuses are taken only infrequently, limiting the
information about accuracy for alternative postcensal intervals. (Complement 1.)
In the U.S., special subnational censuses are occasionally conducted for specific
cities or areas, but only when requested and paid for by the localities. Since local
areas will request a special census only when they think they have something to
gain, e.g., when the area is growing rapidly or the official postcensal estimate is
believed to be too low, the evaluations of postcensal estimates based on special
censuses may understate accuracy.

2. Effects of Errors on Estimates and Forecasts

2.1. Effects on Mortality Rates

Consider an estimated one-year mortality rate of the form (1.3) in Chapter 4. Let
n be the actual number of persons in the population to begin with, let m denote
the number of deaths, let K be the person-years lived in the year by the m persons
who die during the year, and for simplicity ignore migration or births. If we knew
n, we would calculate the rate

µ̂ = m

K + n − m
. (2.1)

If errors from census undercount or postcensal estimation cause us to estimate n
by ñ = (1 − λ)n, we would instead calculate µ̃ = m/(K + ñ − m). Notice that
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µ̃ − µ̂ has the same sign as λ. To a first approximation, the relative error in µ̃

compared to µ̂ is λn/(K + n − m), and this exceeds |λ| in absolute value (Exer-
cise 2).

Error in the past population can also have a second-order effect on postcensal
population estimates that use mortality rates in adjusting for population change
(Exercise 3). If there is net undercount, or λ > 0, not only is the base too low but the
estimated mortality rate is too high. Thus, the estimated probability of survival is
too low, and the effects of the two estimates are compounded, making the estimate
of the surviving population too small. This bias would tend to be present in ages
where mortality is an important component of population change, and it could be
dominated by other factors for other ages.

2.2. Effects on Forecasts

Errors in jump-off populations directly affect population forecasts. Consider the
linear growth model (2.7) of Chapter 6. The population vector is V(T ) = RT V(0),
where we have written RT = R(T − 1)R(T − 2) · · · R(0), for short. The effect
of multiplying the jump-off population vector by a disturbance matrix A is to
change the representation to V(T ) = RT AV(0), and hence to change the future
population by RT (I − A)V(0). The matrix A need not be diagonal, for example,
age misreporting could move counts of people from one age to another. In the
special case where A = (1 − λ)I, the effect is to reduce the forecasted population
by the proportion λ.

Errors in past populations also affect the forecasts through the errors in past
vital rates, which may lead to biases in forecasts of future vital rates. The effect of
errors in past vital rates on forecasts of vital rates may be complex, but generally
if a time series of age-specific vital rates is uniformly off by a factor, the forecasts
of rates will be off by the same factor.

2.3. Effects on Evaluation of Past Population Forecasts

Errors in benchmarks adversely affect estimates of accuracy of past population
forecasts. Let ε(t) denote the actual error in the forecast for time t and let β(t)
denote the error in the benchmark for t . The natural estimate of ε(t) is ε̂(t) defined
as forecast minus benchmark. To see the effect of error in the benchmark, observe
that ε̂(t) = ε(t) − β(t). A similar effect holds for estimates of error in the forecast
of change since jump-off time 0, say �(t). The error typically is estimated by
the difference between the forecasted change and the change in the benchmarks,
say �̂(t). Observe that �̂(t) = �(t) + β(t) − β(0), so that the estimate of �(t)
is confounded by change in the errors in the benchmark. The effect of errors in
the benchmarks can be nontrivial in some situations, such as the evaluation of the
U.N. forecasts that was considered in Section 4.3 of Chapter 8. (Also see Comple-
ment 4.)
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3. Use of Demographic Analysis to Assess
Error in U.S. Censuses

Information about the national extent of net undercount by age, race, and sex is
provided by the method of demographic analysis (DA), which uses administrative
and vital statistics data to construct an alternative estimate of population. In the
United States, selective service registration in October 1940 included more men
of draft age (21-35) than did the 1940 census, and the discrepancy varied by
region and race (Price 1947, Anderson and Fienberg 1999, 29). The first systematic
analysis in the U.S. was the development by Coale (1955) of alternative estimates
of the 1950 population by age, sex, and race (whites and nonwhites). Coale’s
methodology was complex, as it had to cope with incompleteness in birth and death
registrations, especially for the older population. Subtracting the census count from
Coale’s numbers yields estimates of net undercount in the 1950 census by age and
race. For the 1990 census, Robinson et al. (1993) calculated births − deaths +
immigration − emigration by age, race, and sex using data since 1935 to estimate
the population under age 55 in 1990. Administrative data (aggregate Medicare
enrollments, adjusted by estimates for incompleteness of enrollment) were used
to estimate the population 65 and over. To account for incompleteness in earlier
vital statistics, more complex methods were used to estimate the population aged
at least 55 and under 65, although this extra step was not needed for the 2000
census.

The main weakness of DA in many applications is the inaccuracy of emigration
and, especially, immigration numbers. Immigration is the sum of authorized immi-
gration and unauthorized immigration. The Census Bureau estimates numbers of
unauthorized migrants by comparing statistics on legal immigration with numbers
of foreign born reported to the census, interpreting an excess of the latter as an
approximation to the extent of unauthorized immigration (Citro, Cork, and Nor-
wood 2004, 165). When a small quantity is estimated by the difference between
two large quantities, even small relative errors in the latter can cause large error in
the estimate. For example, preliminary DA estimates implied a net overcount of
0.4% in the 1980 census (ESCAP 2001, 18; Passel, Siegel, and Robinson 1982)
but when later revised for undocumented immigration, they showed a net under-
count of 1.2% (Robinson et al. 1993). Redfern (2001) has developed a variant of
DA which avoids relying on migration data. In his application to the 1991 census
of England and Wales, he estimates the number of emigrants by numbers of per-
sons recorded in censuses of other countries as having been born in England and
Wales, and he estimates the number of immigrants from the England and Wales
census. The method is subject to a variety of errors, whose effect he estimates in
a simulation study.

An important contribution from DA is the provision of sex ratios (numbers of
males over numbers of females) by age and race. The DA sex ratios are believed
to be more accurate than the DA numbers of persons (because relative errors
in numbers of males and females are believed highly positively correlated) and
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the ratios provide an important tool for assessing the accuracy of the census and
alternative estimates of population. In the U.S. sex ratios have tended to be lower in
the census than in DA for persons 20 and over, particularly for blacks (Bell 1993,
1110, Table 2; Robinson 2001). This indicates a larger net undercount for males
than for females (cf., Example 2.2 of Chapter 2). The sex ratios from the census
for blacks aged 20–29, 30–44, and 45–64 were only about 90 percent as large as
the ratios from DA. DA estimates are only available at the national level, unless
very strong assumptions are invoked to account for internal migration (as in Siegel
et al. 1977). We regard the accuracy of DA estimates as unknown territory, although
some beginnings of assessment have been made by Robinson et al. (1993), Clogg
and Himes (1993), Passel (1993), and Fay (1974).

4. Assessment of Dual System Estimates of Population Size

In a census, an enumeration is correct if it is not a duplicate enumeration, if it refers
to an actual person who was in-scope (met the inclusion criteria for the census),
and if it classified the person in the correct geographic area. An enumeration is
erroneous if it is not a correct enumeration. An individual person may either be
enumerated or unenumerated (missed) by the census.1

Information for estimating gross overcount (the number of erroneous enumer-
ations) and, to a rough approximation, gross undercount (the number of persons
unenumerated) and for obtaining geographic breakdowns is also provided by a
post-enumeration survey or PES. In the U.S. in 1990 a PES was taken (Hogan
1993) and subjected to a careful though controversial analysis of error; Mulry and
Spencer (1993), Anderson and Fienberg (1999), Brown et al. (1999b), Anderson
et al. (2000), and references therein. A PES was taken again in the U.S. in 2000
(U.S. Census Bureau 2001). We will provide here a schematic discussion of the
PES and the evaluation of accuracy. Although detailed discussion would occupy
a separate book, a schematic analysis at an intermediate detail is of interest. We
include it here for two reasons. First, it is similar in spirit to the study of propa-
gation of error in forecasts, and is a natural component of statistical demography.
Second, the assessment of jump-off error and error in benchmarks is important for
evaluation of forecast accuracy.

Example 4.1. Post Enumeration Surveys in the 1990 and 2000 U.S. Censuses. The
PES consists of an E sample, used primarily to estimate erroneous enumerations,
and a P sample, used to estimate census omissions. The E sample is a sample
of census enumerations and the P sample is like a second census conducted on
a sample of blocks, independently of the original census. The 1990 U.S. PES
was based on a stratified random sample of 5,290 “block clusters”. (A block is

1 The “out-of-scope” enumeration category includes people who according to residency
rules should not be counted and fictitious enumerations, which are essentially fabrications
by enumerators.
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a connected space enclosed by streets or natural boundaries, e.g., a city block.
A block cluster is one or more contiguous blocks.) All the housing units in the
block clusters were to be included, except for the largest block clusters, which
were divided into contiguous groups of housing units and were subsampled. In all,
165,000 housing units were selected. The 1990 PES sample was restricted to the
noninstitutional population, and excluded people living in jails, nursing homes, and
other institutions, military personnel living in barracks or on ships, and homeless
people (Hogan 1993). The PES for 2000 was called the Accuracy and Coverage
Evaluation (A.C.E.) and it was based on a larger and more efficient sample. A
stratified sample of slightly more than 300,000 housing units was selected from a
two-phase stratified sample of more than 11,300 block clusters (Sands and Navarro
2001). The universe for the 2000 A.C.E. included only the population living in
housing units, unlike the 1990 PES which included noninstitutional group quarters
(e.g., college dormitories).

The E sample consists of census enumerations within the sampled block clusters
(or subsamples of the enumerations in the larger blocks), although certain enumer-
ations are excluded. Excluded are enumerations whose characteristics were wholly
imputed (“whole person imputations” or “WPI” cases) and enumerations that were
processed too late for inclusion in the E sample (“late additions” or “LA” cases).
Out of the 273.6 million enumerations in the household population in the 2000
census, there were 5.8 million people WPIs and 2.4 million LAs; in 1990 the latter
two numbers were about 1.9 million and 0.3 million, respectively (Citro, Cork, and
Norwood 2004, 161–162). All enumerations in the E sample were checked to see
whether they are erroneous or not. In checking whether E-sample enumerations
were erroneous or correct, the Census Bureau attempted to match every E-sample
enumeration to the P-sample interview data for cases within the search area. If a
match was made, the person was considered a correct enumeration. Some enu-
merations, called “KE” cases, had too little information to permit a match, i.e.,
the person’s name was missing or incomplete or the person had a valid name but
fewer than two other characteristics (on a specified list) reported. If a match was
not made, a follow-up interview was conducted to obtain additional information
to determine enumeration status (correct or erroneous); if the follow-up inter-
view could not be conducted, interviewers attempted to collect information from
neighbors.

The ratio of erroneous enumerations to total number of enumerations in the E
sample is only a very approximate estimate of the erroneous enumeration rate for
the E sample. The problem is that an estimated 4.8 million enumerations were KE
cases (Feldpausch 2002, 4) and that although they were all classified as erroneous,
some if not the vast majority of the KE cases were really valid enumerations.
That issue aside, the enumeration rate for the E sample is still not the same as the
erroneous enumeration rate for the general population (noninstitutional for 1990
and household in 2000) because the WPI and LA cases are not included, and their
fraction erroneous could well be larger than the general population.

The P-sample survey was conducted in the sample blocks, independently of
the census operations. To ensure the operational independence, a new listing of
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housing units was prepared for each P-sample block independently of the listing
used in the census. Very large blocks were subsampled, as in the E sample, and all
other blocks had 100 percent of their listed housing units included in the P sample.
Interviews were to be conducted in every sampled housing unit to enumerate all
persons living in the housing units at the time of the interview (typically within
four months of the census) and to obtain sufficient information to ascertain whether
they were enumerated in the census. Attempts were made to match each P-sample
enumeration to a census enumeration. Aside from operational errors in assessing
matches, a match will be made if the P-sample person was enumerated in the census
with sufficient information to allow matching (i.e., neither a LA nor WPI nor KE
case). Thus, the non-match rate estimates the fraction of people who were either
omitted from the census, were added late, or were enumerated but with insufficient
information for matching. Although such cases prevent accurate assessment of the
gross numbers of erroneous enumerations and census omissions, they should in
theory cancel out so that the net number of omissions can be ascertained.

The Census Bureau constructed a DSE separately for each poststratum in the
PES (Chapter 3, Examples 3.3 and 7.2) as the product of three factors: the correct
enumeration rate as estimated from the E sample, the reciprocal of the match rate
in the P sample, and the census count excluding WPI and LA cases. For rationale,
note that Census enumerations are of two kinds, (a) correct enumerations of people
in the population, with sufficient information for matching to the P sample, and
(b) all others (WPI cases, LA cases, KE cases, and other erroneous enumerations).
Denote the size of the population by N and the number of type (a) enumerations
by Na . If we knew Na and if we knew the ratio ρ = Na/N , we could estimate N
by Na/ρ. If we estimate Na by the number of non-WPI and non-LA enumerations
× (1− erroneous-enumeration rate) from the E sample and estimate ρ by the match
rate from the P sample, we get what is essentially the estimator used by the Census
Bureau. ♦
Example 4.2. Post Enumeration Survey in the U.K. in 2001. A PES was also taken
in the U.K. in 2001 (Brown et al. 1999a). In contrast to the U.S., the 2001 PES
in the U.K. used a two-stage sample, with a stratified sample of Enumeration
Districts (areas) and then a subsample of Postcodes (smaller areas) within each
selected Enumeration District; all housing units within each selected Postcode
were surveyed. ♦

We will emphasize the accounting of alternative sources of error rather than the
empirical estimation of the moments of the various error components. We will also
simplify in ignoring certain aspects whose complexity outweighs their importance,
such as treatment of movers or the possibility of the so-called contamination bias
(see Complement 16). For treatments that do not make these simplifications, see
Mulry and Spencer (2001, 1993, 1991)2 and Spencer (2000b).

2 The quantitative estimates of error in Mulry and Spencer (2001) were incorrect due to
data problems not understood at that time.
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An alternative to the DSE/PES methodology is the reverse record check that has
been used in Canada and the United Kingdom. The idea in the reverse record check
is to partition the current population into four sampling frames: (i) enumerations in
the previous census, (ii) registered births since the last census, (iii) immigrants since
the last census, and (iv) persons missed in the previous census; Statistics Canada
(1999), Fellegi (1980), Germain and Julien (1993), Burgess (1988). Frame (iv) is
conceptual and practically may be constructed from the results of the reverse record
check for the previous census. Estimation of the size of frame (i) requires tracing
forward in time samples of enumerations from the previous census. Such tracing
may be difficult, e.g., when the U.S. Census Bureau tested tracing methods in the
1980s, it found that the fraction it could not trace exceeded the net undercount
rate (Hogan 1983; Mulry and Dajani 1989). A recent study suggested that use of
administrative records could improve the tracing and hence that the reverse record
check might be useful for the 2010 or 2020 censuses in the U.S. (Cork, Cohen,
and King 2004, 203–204).

5. Decomposition of Error in the Dual System
Estimator3

5.1. A Probability Model for the Census4

Consider a set S0 that represents potential census enumerations for the population.
Suppose a potential enumeration is either correct (C), erroneous (E), or unenumer-
ated (U). For x = E, C, U, and s ∈ S0, define indicators of enumeration status as
δx (s) = 1 if s has status x, and δx (s) = 0 otherwise. Then, the true population is
S = {s ∈ S0|δC (s) + δU (s) = 1}, and the correct population total is

N =
∑
s∈S0

[δC (s) + δU (s)]. (5.1)

Define Se = {s ∈ S0|δC (s) + δE (s) = 1} as the set of actual census enumerations,
with size

Ne =
∑
s∈S0

[δC (s) + δE (s)]. (5.2)

It is useful to consider enumeration statuses as random variables, with proba-
bility functions P(δx (s) = 1) = px (s). Sometimes it is reasonable to consider the
true population size fixed at N , in which case the probabilities px (s) are condi-
tional on N (and perhaps on subgroup sizes as well). Sometimes it is reasonable

3 Sections 5 and 6 are technical and may be skipped without loss of continuity.
4 This section uses a model developed in Haberman, Jiang, and Spencer (1998).
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to condition on the attained census count, Ne (and on counts for subgroups).
Define

A(s) = pC (s) + pU (s)

pC (s) + pE (s)
. (5.3)

If px (s) is known for each s in Se, then N may be estimated by (cf., Complements
5 and 6) ∑

s∈Se

A(s). (5.4)

This is a random variable, since the Se is a random subset of S0.

Example 5.1. Artificial Example of Probability Model for a Census. Suppose that
a census is expected to include 500 enumerations, of which 400 are people who
were enumerated in the correct block as classified by the census, 60 are people who
were not enumerated in the correct block (i.e., outside the E-sample search area),
25 are duplicate enumerations of people, and 15 are out-of-scope enumerations.
In addition, suppose there are expected to be 50 people who are not enumer-
ated at all by the census. The true population thus includes 510 people, with 400
expected correct enumerations, 50 expected misses, and 60 expected erroneous
enumerations due to incorrect classification of area. The expected number of er-
roneous enumerations is 100: 15 fictitious, 60 enumerations in the wrong block,
and 25 duplicates. A variety of probability models may be constructed. For a
simple example, take the number of potential enumerations, N0, to be 610 and set
pU (s) = 110/610, pC (s) = 400/610, and pE (s) = 100/610 for each s in S0. From
(5.3), we obtain a constant value of A(s) = (510/610)/(500/610) = 510/500. To
calculate the expected value of (5.4), multiply A(s) times the expected number of
enumerations and obtain 510, the true size of the population. (Complement 7) ♦

Our probability model specifies marginal probabilities for each potential enu-
meration. To specify joint probabilities, a dependence structure is needed. Census
misses may fail to be independent in a variety of ways. For example, an individ-
ual could be missed if his or her household were missed or if the household was
not missed but the individual was not reported. Clustering of individuals within
households thus leads to a (positive) dependence in whether or not they are missed
(Cowan and Malec 1986). Similarly, effects of individual enumerators could lead
to a positive dependence for individuals in an enumerator’s caseload being missed
or being erroneously enumerated, postal delivery mixups could lead to positive
dependence for events for individuals on the same postal route, etc.

5.2. Poststratification

In practice, we use modeling to estimate the probabilities pE (s), pC (s), and pU (s)
and the resulting A(s). We treat individuals with similar recorded characteristics
as having similar probabilities of being missed, and enumerations with similar
recorded characteristics as having similar probabilities of being erroneous.
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The U.S. Census Bureau estimates A(s) by assuming they are constant within
poststrata although it is known that this is only approximately true. P-sample per-
sons are grouped into poststrata based on age, sex, race/ethnicity, type of metropoli-
tan statistical area, mail return rate, owner or renter, and other variables. Within
each poststratum the sample-weighted fraction of P-sample persons who were
missed in the census is computed; that fraction is used for p̂U (s) if person s be-
longs to the poststratum and if there are no WPI or LA enumerations. (Exercise 8
discusses p̂U (s) if WPI enumerations are present.)

E-sample enumerations are grouped into poststrata and within each poststratum
the estimated fraction of E-sample enumerations that were erroneous is computed;
that fraction is used for p̂E (s) if enumeration s belonged to the poststratum. Recall
that by definition, we have that δC (s) + δE (s) + δU (s) = 1. Therefore, we can
estimate (5.3) by

Â(s) = 1 − p̂E (s)

1 − p̂U (s)
. (5.5)

The poststratified DSE can be written in the form

N̂ =
∑
s∈Se

Â(s). (5.6)

Exercise 9 shows that (5.6) may be computed from grouped data. Thus, defining
Ch to be the number of census enumerations in poststratum h and defining Âh

to equal Â(s) if enumeration s belongs to poststratum h, we may write the post-
stratified DSE as

N̂ =
∑

h

ÂhCh . (5.7)

Exercise 10 shows that p̂U (s) and p̂E (s) do not need to be based on the same
sets of poststrata. Complement 11 discusses logistic regression models as an
alternative to poststratification (see also Section 5 of Chapter 5).

5.3. Overview of Error Components

The estimates Â are based on a sample of housing units in a sample of blocks and as
such are subject to random error and bias. Random sampling error arises because
only a sample is used to develop the estimates. Since the estimates Â involve ratios
of random variables (see, e.g., (5.5)), and the expectation of a ratio typically is
not equal to the ratio of the expectations of the numerator and denominator, the
estimates are subject to “ratio estimator bias” (see Exercise 14 and Section 2 of
Chapter 3). Let Â∗(s) denote the value of Â(s) that we would have if there were
no ratio-estimator bias and let Â∗∗(s) denote the value of Â(s) that we would have
if there were no ratio-estimator bias or bias due to data collection or data process-
ing errors. It follows that Â(s) − A(s) = ( Â(s) − Â∗(s)) + ( Â∗(s) − Â∗∗(s)) +
( Â∗∗(s) − A(s)), where the last component reflects modeling error that arises from
the use of simplified models (cf., Section 3.3 of Chapter 8).
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Each potential enumeration in the population may be considered to be a member
or nonmember of a subgroup, G, for example, persons in a given region who are
male and aged 15–19. Errors can cancel across potential enumerations within any
G, but biases may remain on the group level. Alternative additive decompositions
are feasible, depending on how the interactions of the various types of errors are
handled. We will present a simple analysis.

Consider the true group membership, and define KG(s) = 1 if s ∈ G and
KG(s) = 0 otherwise. An enumeration may be assigned to the correct group or
not; define K̂G(s) = 1 if s is enumerated and recorded as belonging to group G
and K̂G(s) = 0 otherwise. Consider a population subgroup G with size NG ,

NG =
∑
s∈S0

(δC (s) + δU (s))KG(s). (5.8)

In the following, we will condition on the actual population counts, so (5.8) is not
random. The estimator (5.6) for NG is

N̂G =
∑

δe(s)K̂G(s) Â(s), (5.9)

where the summation is over all potential enumerations s ∈ S0, and we have written
δe(s) = δE (s) + δC (s), for short.

Let E[.] denote expectation with respect to sampling as well as probabilis-
tic aspects of behavior in the census and PES, and define pe(s) = E[δe(s)] and
pe,G(s) = E[δe(s)K̂G(s)]. We decompose estimation error first as

N̂G − NG = εG + (E[N̂G] − NG), (5.10)

where

εG = N̂G − E[N̂G] (5.11)

represents random error due to sampling and mis-classification. This may be
reexpressed as

εG =
∑

{δe(s)K̂G(s) Â(s) − pe,G(s)E[ Â(s)|δe,G(s) = 1]}. (5.12)

Further decompositions of (5.12) can be made to see how randomness in enumer-
ation and randomness in group classification influence the error. Continuing with
the second term of (5.10) we define first the ratio-estimator bias as

bR,G =
∑

pe,G(s)bR,G(s) (5.13)

with bR,G(s) = E[ Â(s) − Â∗(s)|δe,G(s) = 1]. The bias from data error involving
the estimation of Â is defined as

bD,G =
∑

pe,G(s)bD,G(s), (5.14)

with bD,G(s) = E[ Â∗(s) − Â∗∗(s)|δe,g(s) = 1]. Model bias is defined as

bM,G =
∑ {

pe,G(s)E
[
Â∗∗(s)|δe,G(s) = 1

] − KG(s)A(s)
}
. (5.15)
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This reflects both the use of simplified models and the use of biased classification
procedures. Notice that N̂G − NG = εG + bR,G + bD,G + bM,G , so that we can
decompose the error in the population estimator for a subgroup G as total error
= random error + ratio-estimator bias + data error bias + model bias. If group
G were the entire population, then K̂G = KG , and the various component biases
depend on the average biases in the estimates of A(s) for s ∈ Se. For more general
G, the component errors also depend on the observed or true group classifications
for the enumerations: sampling error and ratio-estimator bias depend on the actual
classifications (K̂G), the data bias reflects misclassifications (K̂G �= KG), and the
model bias depends on the true classifications (KG).

A total error model is a decomposition of the total error into pieces or compo-
nents that can be estimated or at least bounded. The decomposition is an algebraic
identity, possibly derived under simplifying assumptions, and if the means and
variances and covariances of the components can be estimated, the mean and
variance of the total error can be approximated with some assumptions about the
distributions of the components. Typically, normal distributions have been used
for the total error of the DSE (Mulry and Spencer 1991, 1993). The accuracy of
the estimates of mean and variance of total error depend on the accuracy of the
estimates of the moments of the components.

The variance of the random error (5.11) can be estimated directly by jackknife
replication methods (Chapter 3, Section 8), which also provide estimates of the
first-order approximation to the ratio-estimator bias (5.13). Data error bias is dis-
cussed in Section 5.4, below, and model error is discussed in Section 5.5.

Example 5.2. Error Components in the 1990 PES. Mulry and Spencer (1993,
1082, Tables 1, 2) report estimates of relative error in the national population
estimates in the U.S. based on the 1990 DSE, calculated under the assumption that
no other errors were present. Ratio-estimator bias was estimated at 0.11 percent (of
the true size of the population), the standard error was estimated at 0.19 percent,
and the model bias was estimated at −0.29 percent, with a standard error of 0.09
percent. The net bias was estimated at 0.49 percent. The bias from data error was
not directly reported, but may be inferred to be about 0.60 or 0.70 percent. The
positive bias from data error is thus offset to some extent by downward correlation
bias. ♦
Example 5.3. Error Components in the 2000 A.C.E.. The 2000 PES or A.C.E. for
the U.S. was difficult to evaluate. The initial evaluation occurred in the first quarter
of 2001 to support a decision about whether to adjust the census for undercount for
the purposes of redrawing the boundaries of Congressional districts (Chapter 12,
Section 4.4.2). Law required a decision some time in March, but the evaluations
of data error were not then available. Estimates of data error were made under
assumptions of similarity to those of the 1990 PES, with allowances for changes
in scale, but later study showed the errors to be quite different. At the time, the
Census Bureau (correctly) distrusted those assumptions because the A.C.E. results
differed in unusual ways from census and demographic analysis results. For the
March 2001 evaluation, ratio-estimator bias was estimated at 0.01 percent (of the
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true size of the population), the standard error was estimated at 0.13 percent, and
the model bias was estimated at −0.39 percent (Mulry and Spencer 2001, 80).
Later, additional evaluations based on matching E-sample records to the whole
census and to administrative records indicated that the A.C.E. failed to detect
millions of duplicate and other erroneous enumerations; the 12.5 million erroneous
enumerations estimated from the A.C.E. in March 2001 was increased to 17.2
million in a later revised DSE (known as “A.C.E. Revision II”), and even that figure
may be low (Citro, Cork, and Norwood 2004, 214–217). Correspondingly, although
the DSE reported in March 2001 indicated a net undercount of 1.18 percent, A.C.E.
Revision II indicated a net overcount of 0.49 percent (Citro, Cork, and Norwood
2004, 229). In fact, the discrepancy was even greater than it seems because the
revised DSE incorporated an upward adjustment for correlation bias but the earlier
DSE did not. Without the correlation bias adjustment, the revised DSE would have
been smaller and so would have indicated of a larger net overcount. ♦

5.4. Data Error Bias

To understand how data error and other nonsampling errors affect the DSE, we
consider the representation of the post-stratified DSE in (5.7) and focus on the
“adjustment factor” Âh for poststratum h. The DSE as computed by the U.S.
Census Bureau is quite a complex statistic (U.S. Census Bureau 2004; Kostanich
2003a,b; Citro, Cork, and Norwood 2004), and for insight we will simplify in
several ways (Complements 17, 18). Define the following quantities.

ÊE,h weighted number of erroneous enumerations in in poststratum h in the E
sample;

N̂E,h weighted number of E-sample enumerations in poststratum h
NI,h number of census enumerations in poststratum h that are whole person

imputations or late adds
Ch number of census enumerations in poststratum h as defined below (5.6)

N̂P,h sample estimate of number of people who were enumerated in the P-sample
in poststratum h

N̂CP,h weighted number of P-sample matches in poststratum h to the census

The E sample excludes whole person imputations and census enumerations that
occurred too late for processing in the PES; thus, NI,h equals the expected value of
Ch − N̂E,h . Note that N̂P,h refers to people rather than enumerations, and excludes
estimated P-sample fabrications and adjusts for missing data in the P sample. For s
in poststratum h, estimate pE (s) by ÊE,h/N̂E,h , and pC (s) + pE (s) by N̂CP,h/N̂P,h .
This yields an adjustment factor of the form

Âh = (1 − ÊE,h/N̂E,h)N̂P,h/N̂CP,h (5.16)

Nonsampling errors influence these estimates in several ways.
Define nEE,h as the nonsampling error in estimate of number of erroneous enu-

merations in the census that were included in the E sample in poststratum h.
The error nEE,h arises during the data collection and processing of the E sample
if respondents are misclassified as to whether they are correctly or erroneously
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enumerated in the original enumeration. Some cases are immediately classifiable
but others, the “unresolved”, are assigned an imputed probability being an erro-
neous enumeration.

Define nP,h as the nonsampling error in the estimated size of the P-sample
population in poststratum h. The error arises from whole-household and partial-
household fabrications in the P sample, imperfect weighting adjustments for
whole-household noninterviews and imperfect imputations for missing data, and
misclassification of whether the individual was a resident on Census Day.

Next, define nCP,h to be the nonsampling error in the estimated number of
matches between the P sample in poststratum h and the E sample. This error
arises from several sources, including misreporting of data, clerical matching error,
incorrect imputation for missing data, and imperfect weighting adjustments for
household non-interviews.

An additional source of error is inconsistent assignment of postrata in the P
sample and in the E sample. This error arises because the P-sample match rate,
N̂CP,h/N̂P,h is based on the P-sample data for assigning membership to poststratum
h, but the DSE in (5.7) is based on assignment of postrata from the census, which is
the same as the E sample. The theory for poststratification rests on an assumption
that poststratum membership is defined independently of the sample selection or
survey procedure. This assumption is violated, for example, if the poststratum to
which a unit is assigned depends on the sample that was selected. Thus, if the
E sample and P sample would classify the same person in different poststrata,
perhaps as a result of interviewer error or reporting error, a bias may result. Pre-
liminary analysis suggests that this may be a problem for the 2000 Census in the
U.S. (Farber 2001; Haberman and Spencer 2001; Complement 19).

If there were no data error, the estimate of the adjustment factor would be Ãh =
(1 − (ÊE,h − nEE,h)/N̂E,h)(N̂P,h − nP,h)/(N̂CP,h − nCP,h). Therefore, the net data
error bias in Âh is Âh − Ãh .

Estimation of the expected values of the data errors is based on reinterview
surveys, rematch studies, and other methods for redoing the post-enumeration
survey with higher quality but smaller scale, and possibly on administrative data
as well. The estimates of the data error biases for individual poststrata typically
are imprecise and require some modeling adjustments to reduce variance. The
followup studies for evaluation are themselves imperfect, for example, they may
be conducted only after a significant lapse of time, and attempts to obtain complete
reporting when data in the post-enumeration survey were missing may be largely
unsuccessful.

5.5. Decomposition of Model Bias
5.5.1. Synthetic Estimation Bias and Correlation Bias

Estimators of A(s) depend on at least two kinds of assumptions. One assumption
concerns the dependence structure for captures. The usual poststratified DSE,
such as (5.16), depends on assumptions of independence. Methods for allowing
for certain kinds of dependence have been proposed, but they also depend on



P1: MRM/SJS P2: MRM
SVUS004-Alho & Spencer April 21, 2005 15:49

310 10. Errors in Census Numbers

explicit or implicit assumptions about the dependence structure (Wolter 1990).
Generalizing the usual terminology, we refer to any bias arising from failure of the
assumed dependence structure as correlation bias. A second assumption is used
when we aggregate data across areas or other domains and base the estimate for a
particular area on data from other areas as well. The method of synthetic estimation
assigns to smaller groups the same parameter values held by the larger groups to
which they belong. Some methods, such as empirical Bayes methods, generalize
the assumption of equality of parameters to an assumption that the parameter
values are drawn from a distribution that is structurally the same for all subgroups
(Rao 2003; Ghosh and Rao 1994). The effect of failure of such assumptions is a
form of aggregation bias, but in keeping with the simplest form of modeling, we
refer to it as synthetic estimation bias.

To describe the components of model bias more formally, let Â∗∗∗(s) denote the
value of Â∗∗(s) if, in addition to lack of data bias and ratio estimator bias, there
were no bias due to incorrect allowance for the dependence structure. Let Â∗∗

|G(s)

denote the value of Â∗∗∗(s) if the estimation were based solely on data for group
G. Further details about Â∗∗∗ and Â∗∗

|G are provided in Section 5.5.2 for the simple
poststratified DSE. Define the correlation bias for subgroup G as

bcorr,G =
∑

pe,G(s)bcorr,G(s), (5.17)

with bcorr,G(s) = E[KG(s)( Â∗∗(s) − Â∗∗∗(s))|δe,G(s) = 1]. Define the synthetic
estimation bias for subgroup G as

bsyn,G =
∑

pe,G(s)bsyn,G(s), (5.18)

with bsyn,G(s) = E[KG(s)( Â∗∗∗(s) − Â∗∗∗
|G (s))|δe,G(s) = 1]. The residual model

bias for subgroup G is

bres,G =
∑{

pe,G(s)E
[
K̂e,G(s) Â∗∗∗

|G (s)|δe,G(s) = 1
]− KG(s)A(s)

}
, (5.19)

Observe that the model bias for subgroup G is the sum of correlation bias, synthetic
estimation bias, and residual model bias, bM,G = bcorr,G + bsyn,G + bres,G . Notice
also that the synthetic estimation bias is defined so as not to include the effect of
bias from imperfect modeling of dependence, and the correlation bias is defined
apart from bias that could arise from synthetic estimation.

5.5.2. Poststratified Estimator

In this section we derive expressions for correlation bias, synthetic estimation bias,
and residual bias for the poststratified DSE derived under an independence model.
The results may be useful as guides to other estimators derived under independence
models, such as logistic regression estimators, to the extent that such estimators can
be approximated by a poststratified DSE. Even when the approximations are not
available, the correlation bias and synthetic estimation bias for the poststratified
DSE may serve as useful benchmarks. We will see that for the special case of the
poststratified DSE derived under the independence assumption, (5.16), residual
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model bias is zero and correlation bias and synthetic estimation bias have simple
representations.

To show these results, let H (s) be the poststratum to which potential enumeration
s belongs, let S0h = {s ∈ S0|H (s) = h} denote the set of potential enumerations in
poststratum h, and let N0h denote the size of S0h . Further, let S0hG = S0h ∩ G de-
note the set of potential enumerations in poststratum h and in group G, and let N0hG

denote the size of S0hG . Now let Seh = {s ∈ S0h |δe(s) = 1}, let Neh denote the size
of Seh , let SehG = {s∈S0h |KG(s)δe(s) = 1}, and let NehG denote the size of SehG .

It is useful to extend our probability model to cover the P sample as well.
In analogy with the argument of Section 5 in Chapter 5, the set S0 of potential
enumerations is considered to allow for bivariate outcomes, in the census and in
the P sample in the post-enumeration survey. As before, we write pe(s) = pC (s) +
pE (s) to denote be the probability that potential enumeration s ∈ S0 is included in
the census. Similarly, we let pP(s) denote the probability of s ∈ S0 being included
in the P sample. Let peP(s) denote the probability of s being included in both. For
each x = C, E, U, e, P, eP define the mean probability of enumeration status x
for the part in poststratum h that is in group G, and for the whole postratum h, as

p̄x,hG =
∑

s∈S0hG

px (s)/N0hG, p̄x,h =
∑
s∈S0h

px (s)/N0h . (5.20)

If S0hG or S0h are empty, their respective mean probabilities will be taken to be
zero.

Some simplifying assumptions will be used to analyze the components of model
bias.

(i) We condition on true membership in group G, so that KG(s) is fixed for each
potential enumeration s.

(ii) We assume that NehG is uncorrelated with Â∗∗(s), Â∗∗∗(s), and Â∗∗
|G(s).

Assumption (ii) could hold, for example, if the analysis were conditional on NehG .
The DSE under consideration is developed as if the two enumerations are

independent, or pe(s) = peP(s)/pP(s) and it assumes that pE (s), pe(s), peP(s),
and pP(s) each are constant for all s in the same poststratum. As a re-
sult, Â∗∗(s) has a constant value for all s ∈ S0h , say Â∗∗

h , and E[ Â∗∗
h ] = (1 −

p̄E,h)/( p̄eP,h / p̄P,h). Similarly, Â∗∗∗(s) has a constant value for all s ∈ S0h , say
Â∗∗∗

h . By definition Â∗∗∗ properly accounts for dependence and so E[ Â∗∗∗
h ] = (1 −

p̄E,h)/ p̄e,h = Ah , say. Observe that E[ Â∗∗
h ] − E[ Â∗∗∗

h ] = −(1 − p̄E,h)ψh with
ψh = Cov(pe, peP)/( p̄e,h p̄eP,h) and Cov(pe, peP) = p̄eP,h − p̄e,h p̄P,h . It follows
(Exercise 20) that

bcorr,G = −
∑

h

N0hG p̄e,hG(1 − p̄E,h)ψh . (5.21)

If the enumeration probabilities for either the P sample or the census are constant
within the poststratum, ψh must be zero. Similarly, if there is no dependence, so that
ψh = 0, then there is zero correlation bias. The correlation bias may be interpreted
as a negative weighted sum of ψh terms, with weights equal to the expected number
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of correct enumerations from poststratum h for the subgroup G if the probability
of an enumeration being correct did not depend on the subgroup. Notice that ψh

is defined independently from the subgroup.
Turning attention to synthetic estimation error, note that Â∗∗∗

|G (s) has constant
value, say Â∗∗∗

hG , for all s ∈ S0h , and E[ Â∗∗∗
hG ] = (1 − p̄E,hG)/ p̄e,hG = AhG , say. It

follows (Exercise 20) that the synthetic bias for group G is

bsyn,G =
∑

h

N0hG p̄e,hG(Ah − AhG). (5.22)

This expression shows that if the average census-enumeration probability and
average erroneous enumeration probability within a poststratum differ for group
G versus the rest of the population, synthetic estimation bias will be present. If
group G is the whole population, synthetic estimation bias is zero. If we consider
a set of disjoint groups whose union is the whole population, the sum of synthetic
estimation biases for the groups is zero.

Residual bias bres,G is zero because for s ∈ S0hG the sample means of A(s) and
Â∗∗∗

hG have the same expected value (Exercise 20).

5.6. Estimation of Correlation Bias in a Poststratified
Dual System Estimator

Consider a national population with θs persons of sex s = F,M . Suppose we have
DA estimates Ys and DSE’s Xs for the two population sizes, such that

Xs = θs(1 + βX,s + εX,s), Ys = θs(1 + βY,s + εY,s), (5.23)

where E[εX,s] = E[εY,s] = 0, and βX,s and βY,s are the relative biases. Decompose
the bias in the DSE into correlation bias (“c”) and other bias (“o”):

βX,s = βX,s,c + βX,s,o. (5.24)

Let b̂X,s,o be an unbiased estimator of the “other” bias, E[b̂X,s,o] = θsβX,s,o.

Example 5.4. Estimates of Correlation Bias Based on DA Totals. A simple ap-
proach is to estimate the correlation bias in the DSE by the difference between the
DSE and DA estimates, δs = Xs − Ys . Observe that δs = θs(βX,s − βY,s + εX,s −
εY,s). If there is no error in DA, then Ys is equal to θs and E[δs] = θsβX,s =
θs(βX,s,c + βX,s,o), and Var(δs) = θ2

s Var(εX,s). Should the DSE have no “other”
bias, the expected value of δs would be equal to correlation bias. More gener-
ally, allowing for error in DA, we have E[δs] = θs(βX,s − βY,s) and Var(δs) =
Var(Xs − Ys). Wachter and Freedman (1999) adjusted for other biases in the DSE
and used δ′

s = Xs − b̂X,s,o − Ys to estimate correlation bias in the 1990 U.S. cen-
sus. If we reexpress this as δ′

s = θs(βX,s − θ−1
s b̂X,s,o − βY,s + εX,s − εY,s), we find

that E[δ′
s] = θs(βX,s,c − βY,s) and Var(δ′

s) = Var( Xs − b̂X,s,o − Ys). ♦
The estimates of correlation bias in Example 5.4 are subject to large error if

the DA estimates of totals are inaccurate. As noted earlier, the DA sex ratios are
believed to be more accurate, because errors in DA estimates of male and female
populations are believed to be of similar magnitude. Bell (1993) discusses a variety
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of estimates of correlation bias based on an assumption that some parametric func-
tion of the cross-product ratio θ = p11 p22/(p12 p21) is constant across poststrata,
where the population of unknown size N is assumed to be multinomially dis-
tributed with p11 the probability of being in both the census and the PES, p22 the
probability of being in neither, p12 the probability of being in the census only, and
p21 the probability of being in the PES only.5 A special case is what he calls the
“two group model”, where θ is taken to be 1 for females and θ is estimated for
males from DA sex ratios. In this case, the estimate of correlation bias for males is

γM = X M − RYXF , (5.25)

where RY is the DA-based estimate of sex ratio. This estimate may be re-expressed
as

γM = θM

[
1 + βX,M + εX,M − (1 + βX,F + εX,F )

(1 + βY,M + εY,M )

(1 + βY,F + εY,F )

]
. (5.26)

If RY is equal to Rθ , the true sex ratio, then γM has the same distribution as
θM [(βX,M − βX,F ) + (εX,M − εX,F )], with variance Var(X M − Rθ X F ) and ex-
pected value θM [(βX,M,c − βX,F,c) + (βX,M,o − βX,F,o)]. Thus, if there is no cor-
relation bias for females, the effect of bias other than correlation bias is the same
for males and females, and the DA sex ratio is correct, the expected value of γM

is equal to correlation bias for males. It is possible to adjust this estimate for esti-
mated “other” bias (Complement 21). It is also possible to exploit DA sex ratios
using assumptions other than lack of correlation bias for females; see Elliott and
Little (2000), Wolter (1986, 1990) and Bell (1993).

Example 5.5. Estimates of Correlation Bias Based on DA Sex Ratios. In preparing
its revised estimates of undercount in the 2000 census, the U.S. Census Bureau
incorporated adjustments for correlation bias for adult males.6 The Bureau was
fully aware that “alternative models for correlation bias can be used that are equally
consistent with the data but that produce different subnational estimates” (U.S.
Census Bureau 2003b, 48). Correlation bias was assumed 0 for females and was
not estimated for children. The two group model was used to estimate correlation
bias separately for Blacks and Non-Blacks aged 18–29, 30–49, and 50 and over.
The data were not consistent with an assumption of (negative) correlation bias
for Non-Black males 18–29, and the correlation bias was assumed to be zero for
that group. The two-group model includes Hispanics with Non-Blacks, which is
suspected to slightly overstate the correlation bias for Non-Hispanic Non-Blacks
and greatly understate it for Hispanics. The difficulty is that DA sex ratios are not
available for Hispanics. A “modified two group” method was developed to assign
the estimate of relative correlation bias for Blacks (by age and sex) to Hispanics,
and then to derive the correlation bias adjustment for Non-Hispanic Whites so it

5 The selection probabilities for the PES need to be taken into account, but for insight it
suffices to consider that the PES was a 100% sample of all blocks.
6 The revised estimates were developed in December 2002. Previous estimates of undercount
in the 2000 census did not adjust for correlation bias, as noted in Example 4.5 of Chapter
12.
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Table 1. Estimates of Net Undercount in the 2000 U.S. Census with Various
Adjustments for Correlation Bias

Estimated Net Undercount (%) Estimated Standard Error (%)

Correlation Bias Adjustment Correlation Bias Adjustment

Two Modified Two Modified
Race/Ethnicity None Group Two Group None Group Two Group

Non-Hispanic White −1.53 −1.13 −1.39 0.20 0.20 0.20
Non-Hispanic Black −0.53 1.84 1.84 0.41 0.43 0.43
Hispanic 0.42 0.71 3.17 0.44 0.44 0.49

matched the DA sex ratio for Whites (both Hispanic and Non-Hispanic combined).
The results, shown in the Table 1, more than double the estimate of net undercount
for Hispanics. Data analysis did not quite support the modified two group model
(U.S. Census Bureau 2003b, 52), and the Census Bureau was not willing to make
an unsupported assumption and use the modified two group model. ♦

5.7. Estimation of Synthetic Estimation Bias
in a Poststratified Dual System Estimator

Assessment of synthetic estimation bias (5.22), or more generally (5.18), is diffi-
cult when we lack available highly accurate direct estimates, with the latter term
referring to estimates based solely on data from just the group (or area) in ques-
tion. Several approaches have been tried to estimate synthetic estimation bias (or
SEB for short). One is to estimate the SEB for variables believed correlated at
the smallest area level with the ones of interest, so-called surrogate variables. A
second approach is to compare the synthetic estimates with direct estimates and
make an allowance for error in the direct estimates. A third approach is is to fit
models of the variable of interest that include “effects” for the groups and use the
magnitudes of the estimated effects to assess the SEB. These approaches will be
described in turn.

The idea behind the use of surrogate variables is that one can estimate SEB
by calculating it directly for variables other than the adjustment factors AhG in
(5.22). Such an analysis can be useful if the synthetic error for the surrogate
variables is similar to the synthetic error for the variable(s) of interest. The general
problem with surrogate variables is that they correlate imperfectly with undercount
adjustment factors, and conflicting results (low synthetic estimation bias for some
surrogates, and high for others) are not uncommon. The approach cannot tell
us whether the error from the failure of the synthetic assumption is appreciable
for the variable of actual interest. Although the surrogate variables may show
strong correlations with direct estimates of undercount at the larger area level (i.e.,
ecological correlations), the correlations could be quite different at the block level,
where direct estimates of undercount typically are unavailable except for a sparse
sample of block clusters.
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Example 5.6. Surrogate Variables for Undercount and Overcount in the 2000
U.S. Census. The Census Bureau’s use of the same adjustment factors Ah for
all enumerations in a poststratum h gives rise to synthetic estimation bias when
enumerations from different areas G should have different adjustment factors
(Anderson et al. 2000, Brown et al. 1999b, Freedman and Wachter 1994, Fay
and Thompson 1993). The Census Bureau has estimated synthetic estimation
bias by assuming the distribution of undercount across areas can be derived by
models based on the post-enumeration survey and distributions of surrogate vari-
ables whose geographic dispersion was perfectly known; see Malec and Griffin
(2001, Appendix). Denote the estimated correct-enumeration rate in poststra-
tum h by fCE,h = N̂CE,h/(N̂CE,h + ÊE,h). Now estimate the gross undercount for
poststratum h by N̂u,h = Ch( Âh − fCE,h) and the estimate of gross overcount by
N̂o,h = Ch(1 − fh). Let X denote a surrogate for gross undercount and Y a surro-
gate for gross overcount, with values XhG and YhG for the part of poststratum h
that is in group G and with poststratum totals Xh = ∑

G XhG, Yh = ∑
G YhG . The

artificial population size for poststratum h in group G is defined as

NhG = ChG + (Xhj/Xh)N̂u,h − (Yhj/Yh)N̂o,h (5.27)

with ChG denoting the number of census enumerations in poststratum h and group
G. The artificial population size for group G is

∑
h NhG . The SEB for group G is

estimated by ∑
h

ChG Ah −
∑

h

NhG . (5.28)

Malec and Griffin (2001) considered a variety of surrogate variables and chose
those having the greatest correlations with a direct estimates of net undercount at
the block cluster level (for blocks in the post-enumeration survey). The squared
correlations were weak, however (< 0.08). For similar analyses of SEB in the 1990
U.S. census, see Fay and Thompson (1993), Kim, Blodgett and Zaslavsky (1991),
and Freedman and Wachter (1994). ♦

A nonparametric method for estimating SEB compares synthetic estimates S
with direct estimates D for the individual groups or areas. If the variance of D − S
is estimated by V and if D has negligible bias, then (D − S)2 − V estimates the
squared bias in S (Exercise 22). There are a variety of difficulties with this method.
First, the direct estimates D are subject to ratio-estimator bias, measurement error
bias, and correlation bias. Even if the latter two are assumed equal in D and S, the
ratio estimator bias in D will typically exceed that in S. It is conceivable that DSEs
that are corrected for first-order bias (e.g., by jackknife methods) could be used to
avoid this problem, although use of simulations to verify its accuracy would seem
prudent. A second set of problems in estimating synthetic estimation error for an
area is caused by sample size limitations which prevent calculation of AhG . Even
if a group G or area is represented in the sample, some poststrata that are present
in the population may be empty in the sample or may fail to contain any matches,
preventing calculation of AhG for some h. A possible solution might be to restrict
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attention to poststrata that have a minimum number, say τ , of E-sample members
in the area. (Although this may lead to a slightly biased view by emphasizing
poststrata that have higher enumeration rates, the differences in enumeration rates
are not so large as to make this an overwhelming problem.) The threshold τ should
be chosen so that if there are at least τ E-sample members, there will be at least one
match. (Complement 23 pursues this idea in more detail.) An additional problem
is that even if V and D are unbiased, the estimator (D − S)2 − V may be subject
to large variance. This issue often can be addressed by aggregating results across
large numbers of groups G.

An alternative and more fully parametric approach is to fit models of the variable
of interest that include “effects” for the areas. For example, in the context of the
1990 census in the U.S., Hengartner and Speed (1993) considered block effects
for surrogate variables (the erroneous enumeration rate and gross omissions rate)
in the 1990 PES. For another example, the poststratified DSE can be derived as a
special case of logistic regression models for enumeration and for erroneous enu-
meration; each observation is associated with a single predictor variable, namely
the poststratum (Haberman, Jiang, and Spencer 1998). This model may be ex-
panded to allow for synthetic estimation bias by including an additional parameter
or parameters for each area or group of interest G. A minimal model would include
an extra intercept for each area. Alternatively, the model could include an extra in-
tercept for each major grouping of poststrata, where the major groupings could be
defined (for example) by sex, tenure, age, and minority status. The logistic models
with and without the extra parameters directly give predictions of Ah and AhG .
These may be substituted into (5.22), along with NehG to estimate N0hG p̄e,hG , to
provide an estimate of the SEB.

6. Assessment of Error in Functions of Dual System
Estimators and Functions of Census Counts

For many purposes, accuracy of functions of the population vector may be more
important than accuracy of the population sizes. For example, as will be discussed
in Section 3 of Chapter 12, allocation of benefits such as funds or political represen-
tation may be proportional to the fraction of the population that is associated with
a given group, or what is known as the group’s share. The necessary components
for the estimation of accuracy were discussed in Section 5. Here we sketch how
to combine the components to estimate the bias and variance for functions of the
DSE and how to estimate the bias and MSE of functions of the census. Section 6.1
provides a detailed overview and Section 6.2 discusses computational methods.

6.1. Overview

The MSE is the sum of the variance and the squared bias (cf., (4.1) of Chapter
8). To estimate the squared bias, we need to allow for the variance in the estimate
of bias, because the expectation of the square of a random quantity is equal to its
variance plus the square of its mean. For simplicity of exposition, we will use a
slightly different notation in this section than in earlier sections.
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Let θ denote the vector of true populations for all groups, let D denote the
vector of DSE’s, N the vector of census counts, B = E[D] − θ the bias in D,
and B̂ the estimate of bias in D. Define T = D − B̂, so that T adjusts for known
bias in D. Let f be a real-valued function of the vectors, e.g., f (N) could be
the population share of a given area. Estimates of covariance matrices are needed
for D and T jointly. Under distributional assumptions we can use simulation to
estimate the variances of f (T), f (D), and f (D) − f (T); denote these estimates
by V̂ f (T), V̂ f (D), and V̂ f (D)− f (T), respectively, and denote the estimated covariance
of f (T) and f (D) by Ĉ f (D), f (T). In practice, a multivariate normal distribution is
used; Mulry and Spencer (1991) provide some empirical justification.

The squared error of f (N) is ( f (N) − f (θ))2. Assuming T is unbiased for θ,
we can estimate the squared error by ( f (N) − f (T))2 − V̂ f (T). The MSE of f (D)
is (E[ f (D)] − f (θ))2+ Var( f (D)). We estimate it correspondingly by ( f (D) −
f (T))2 + V̂ f (D) − V̂ f (D)− f (T).

In the U.S., considerable interest has centered on whether the DSE is more
accurate than the census. Denote the excess MSE of the census over the DSE by �.
For a single area, � is equal to ( f (N) − f (θ))2 − (E[ f (D)] − f (θ))2 − V f (D). If
� < 0, the census is more accurate for the area, and if � > 0 then the DSE is more
accurate. In the case of a single area, we estimate � by �̂ = ( f (N) − f (T))2 −
( f (D) − f (T))2 − V̂ f (T) − V̂ f (D) + V̂ f (D)− f (T). This may be more simply written
as ( f (N) − f (T))2 − ( f (D) − f (T))2 − 2Ĉ f (D), f (T). If the dependence between B̂
and D is negligible, we can further simplify the estimate of � to ( f (N) − f (T))2 −
( f (D) − f (T))2 − 2V̂ f (D), which does not involve any correction for the variance
of B̂. The precision of �̂ is still affected by that of B̂, however.

6.2. Computation

We now describe the calculations in more detail. We use “area” as a general
concept, and some care may be needed in practice. For example, if focusing on
numbers in a demographic group in an area, the area should be taken to exclude
the groups not of interest. We use the term “share” to denote a population share or
more generally any function of the population vector.

The following variables are inputs to the calculation process, and are derived
as discussed in Section 5. The census count for area i is denoted by Ni . The
census count for area i , poststratum h = 1, . . . , H is denoted by Cih and the
vector of counts for poststrata is Ci = (Ci1, . . . , CiH )T . The adjustment factor for
poststratum h is Ah and the vector of adjustment factors for poststrata is A =
(A1, . . . , A)T . The estimated bias in Ah is denoted by bh and the vector of bias
estimates across poststrata is b = (b1, . . . , bH )T . The estimated bias in the DSE
for area i is Bi = bT Ci . The estimated H × H covariance matrix of A is ΣA, the
estimated covariance matrix of b is Σb, and the estimated covariance matrix of A
and b is ΣAb. The full covariance matrix for (AT , bT )T is estimated by

Σ =
(

ΣA ΣAb

ΣAb Σb

)
. (6.1)
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The adjusted estimate for area i is Ai = AT Ci . If we adjust the adjustment fac-
tors for estimated bias and multiply by the census counts, we obtain the “target”
estimate for area i, Ti = (A − b)T Ci = Ai − Bi . The “target” adjusts the adjust-
ment factor for estimated bias – the adjustment need not improve accuracy. Finally,
the estimated covariance matrix of A − b is ΣA−b = ΣA + Σb − 2ΣAb.

The estimate of the MSE for Ci , say MC,i , is equal to (Ni − Ti )2 − CT
i ΣA−bCi .

The MSE of the DSE Di is estimated by MD,i = B2
i + CT

i ΣACi − CT
i ΣbCi . To

estimate the MSE’s for nonlinear functions of the population vectors we will use
simulation. As an example, we describe the procedure for population shares.

Consider area i’s share of G, where G is a union of areas. The census share
is N ′

i = Ni/
∑

j∈G N j . The DSE share is D′
i = Di/

∑
j∈G D j . The target share is

T ′
i = Ti/

∑
j∈G Tj . The bias of the DSE share is estimated by B ′

i = D′
i − T ′

i .

For estimating variances of shares, we will generate a set of R replicates of A
and b. The value of R might be initially set at 1,000, and simulation variance can
be calculated to assess whether R needs to be increased.

Generate independently 2H×1 vectors z(r ) = ((x(r ))T , (y(r ))T )T , r = 1, . . . , R,

from N (0,Σ), where the covariance matrix is given in (6.1). Observe that x(r )

is distributed as the random error in A, y(r ) is distributed as the random error
in b, and the covariance between x(r ) and y(r ) is ΣAb. Define replicates of the
adjustment factors A and bias estimates b by A(r ) = A + x(r ) and b(r ) = b + y(r )

for r = 1, . . . , R. Replicates of adjusted estimates of shares and target values of
shares are based on A(r ) and b(r ), and the variances and covariances can be derived
from the replicates.

Specifically, notice that the adjusted share for area i may be written as D′
i =

AT Ci/
∑

j∈G AT C j . The r th replicate of the adjusted share is

A′
i
(r ) = A(r )T

Ci

/ ∑
j∈G

A(r )T
C j . (6.2)

The sample variance among the R values of D′
i
(r ) is used to estimate the variance

of D′
i . Denote the variance estimate by V̂D′

i
.

Similarly, the r th replicate of the target share is defined by

T ′
i

(r ) = (A(r ) − b(r ))T Ci

/ ∑
j∈G

(A(r ) − b(r ))T C j . (6.3)

The sample variance among the R values of T ′
i

(r ) is used to estimate the variance
of T ′

i . Denote the variance estimate by V̂T ′
i
.

The r th replicate of the bias in the adjusted share is defined by B ′
i
(r ) = D′

i
(r ) −

T ′
i

(r )
. The sample variance among the R values of B ′

i
(r ) is used to estimate the

variance of B ′
i . Denote the variance estimate by V̂B ′

i
.

The MSE for the census share for area i is estimated by MC ′
i
= (N ′

i − T ′
i )2 − V̂T ′

i
.

The MSE for the DSE share for area i is estimated by MA′
i
= B ′

i
2 + V̂A′

i
− V̂B ′

i
. (If

there is negligible correlation between A and b, then in MC ′
i

we may replace V̂T ′
i

by the sum, V̂D′
i
+ V̂B ′

i
.)
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Exercises and Complements (*)

*1. Accuracy of Postcensal Estimates. Some empirically based conjectures about
accuracy of U.S. postcensal estimates are that postcensal increase or decrease
is understated, accuracy degrades as the postcensal period increases, and
larger areas tend to be more accurately estimated (in percentage terms) than
smaller areas, whether because of better data sources or some cancellation
of nonrandom but haphazard errors (e.g., Panel on Small-Area Estimates of
Population and Income 1980, Davis 1994).

2. As in Section 2.1, define µ̂ = m/(K + n − m) and µ̃ = m/(K + (1 − λ)n −
m). Observe that (µ̃ − µ̂)/µ̂ equals λn/(K + n − m − λn), which has a first-
order Taylor approximation at λ = 0, say, b = λn/(K + n − m). Show that
K ≤ m and hence |b| = |λ|n/(K + n − m) ≥ |λ|.

3. Consider the survival of an age-group during a unit time. Suppose the hazard
of mortality is constant (cf., Section 1 of Chapter 4). Using the notation
of Exercise 2, denote the postcensal estimate of population, adjusted for
mortality (only), by (1 − λ)n × exp(−µ̃). Note that if there were no error in
the mortality rate due to the base population, the postcensal estimate would
be (1 − λ)n × exp(−µ̂). The difference between the latter and the estimate
obtained with λ = 0 is δ ≈ −λn(1 − µ̂). Show that in general, the error in the
postcensal estimate (when nonzero λ causes a bias in the mortality rate) is,
say, ε ≈ δ − (µ̃ − µ̂)(1 − λ)n. Show that |ε| ≥ |δ| with equality only when
λ = 0.

*4. Let V (t) denote the true population at time t, let V̂ (t) denote the forecast
(or postcensal estimate), and let Ṽ (t) denote the benchmark, e.g., a cen-
sus number. Denote the error in the benchmark by β(t) = Ṽ (t) − V (t),
the forecast error by ε(t) = V̂ (t) − V (t), and the error in the forecast of
change by �(t) = (V̂ (t) − V̂ (0)) − (V (t) − V (0)). Let µ̂(t) = V̂ (t) − Ṽ (t)
and �̂(t) = (V̂ (t) − V̂ (0)) − (Ṽ (t) − Ṽ (0)) denote estimates of ε(t) and
�(t). (i) Show that ε̂(t) = ε(t) − β(t). (ii) Show that �̂(t) = �(t) − β(t) +
β(0). (iii) Denote the undercoverage rates in the benchmarks by u(t) =
(V (t) − Ṽ (t))/V (t) and show that �̂(t) = �(t) + u(0)(V (t) − V (0)) +
V (t)(u(t) − u(0)). Thus, even if the benchmarks at times t and 0 have the
same relative error, the estimate of �(t) can be affected (Spencer 1980b).

*5. Note from (5.3) that A(s) = (1 − pE (s))/(1 − pU (s)). Our model should be
considered to apply only to those individuals with pU (s) < 1. Wachter and
Freedman (1999) speculate that some individuals are impossible to count,
i.e., have p(s) = 1. In this case A(s) is undefined.

*6. If pU (s) < 1 for each s, expression (5.4) has expectation N . Let NU denote
the number of population members s for which pU (s) = 1. Note that the
expectation of (5.4) equals N − NU .

*7. In Example 5.1, assume that the status assignments occur independently with
probabilities pE , pC , and pU . Define NE = erroneous enumerations, NC =
correct enumerations, and NU = N0 − NE − NC . Then, (NE , NC , NU ) ∼
Mult(N ∗; pE , pC , pU ) where N ∗ = NE + NC + NU .
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8. Referring to Section 5.2, show that if there are NI LA or WPI enumerations
out of the C census enumerations in the poststratum, the estimator used by
the Census Bureau in Example 4.1 is equal to the product of (5.5) and (C −
NI)/C . Show that an alternative way to derive the Census Bureau’s estimator
is to use (5.5) but with p̂U (s) in the denominator replaced by (C p̂U (s) −
NI)/(C − NI).

9. Let N̂C,h denote the number of census enumerations in poststratum h and let
Â(s) = Âh if enumeration s belongs to poststratum h. Show that the post-
stratified DSE in (5.6) may be written as (5.7).

10. Using the same poststrata for computing p̂U (s) and p̂E (s) can reduce vari-
ability of estimates, for better or for worse. People who are enumerated in
the wrong place are treated as both erroneous enumerations in their E-sample
poststrata and as census misses in their P-sample poststrata. If the poststrata
are assigned consistently (Complement 19), the errors net out and do not affect
the adjustment factor for the poststratum. On the other hand, it is conceivable
that one could increase homogeneity of p̂U (s) using a set of poststrata indexed
by l, say and homogeneity of p̂E (s) using a different set of postrata, indexed
by k. Define p̂Ul to equal p̂U (s) if enumeration s belongs to poststratum l and
define p̂Ek to equal p̂E (s) if enumeration s belongs to poststratum k. Define
Âkl = (1 − p̂Ek)/(1 − p̂Ul). Let N̂Ckl equal the number of census enumera-
tions in the intersection of poststrata k and l and show that the poststratified
DSE in (5.6) may be written as

N̂ =
∑
k,l

Âkl N̂Ckl .

Such treatment can lead to increased variability of adjustments for areas.
Thus, the U.S. Census Bureau (2003b, 25, Table 10) found that the DSE was
at least 10% under the census count for more than 5% of the jurisdictions
known as “places” (which tend to be small in size and represent about 57%
of the population).

*11. Poststratification and logistic regression. In Example 5.1, the probabilities
were constant for all potential enumerations s ∈ S0. More generally, one
may group enumerations into poststrata within which the probabilities are
assumed constant (Section 5.2). An alternative is to model the probabilities
with logistic regression, which allows covariates to enter additively without
high order interactions and more easily accommodates continuous covariates
(Alho et al. 1993, Haberman, Jiang, and Spencer 1998). Through use of
dummy variables, a poststratification model may be treated as a special case of
a logistic regression. Logistic regression can also be used to define poststrata
by assigning individuals with similar predicted enumeration probabilities into
the same poststratum (R.J.A. Little, quoted in National Research Council
2001, 28).

*12. Logistic regression models can account for the two-stage process by which
the census misses an individual, e.g., the person’s housing unit could be
missed, or the housing unit might be included but not the individual (Cowan
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and Malec 1986). Show that if the conditional probability that a person is
enumerated given that the person’s household was not missed is constant
throughout the poststratum, then the unconditional probability is constant
only if the probability of being missed is constant for each household con-
taining the members of the poststratum. If households contain members of
diverse poststrata, constant probabilities of household misses may be a very
strong condition.

*13. The poststratified DSE (5.7) uses as poststratification variables only those
that are recorded both in the census and in the P-sample. This may lead to
correlation bias if the miss rates vary with a poststratification variable X ob-
served just in the P sample. Marks (1979) suggested a modification allowing
adjustment for variables recorded in the P-sample but not in the census (or
E-sample). Consider a single poststratum and for simplicity ignore erroneous
enumerations. Let X be a categorical variable defined for P-sample respon-
dents and taking values 1, . . . , k. Let fi denote an estimate of the fraction of
the census enumerations for which X = i. Although X may not be measured
outside the P sample, one could, e.g., use P-sample data to estimate the
fi ’s. Let C denote the census count (or weighted E-sample count, as the
case may be). Let Pi denote the weighted size of the P-sample population
with X = i, and let Ci = fi C denote the estimated number of enumerations
with X = i. The number of matches between the P-sample and the census
for persons with X = i is denoted by Mi . Define the modified poststratified
DSE by

k∑
i=1

Ci Pi/Mi .

14. Ratio estimator bias. Consider estimating a ratio R = Y/X by R̂ = Ŷ/X̂ ,

with E[X̂ ] = X and E[Ŷ ] = Y < ∞. Assume that X̂ > c > 0 and hence that
E[R̂] is defined and finite. Show that E[R̂ − R] = −E[R̂(X̂ − X )]/X =
− Cov(R̂, X̂ )/X . Show that the bias is not large relative to the variance
provided the CV of X̂ is small. (Hint: show that |E(R̂ − R)|/V (R̂)1/2 ≥ CV .

Hartley and Ross 1954).
*15 Estimating the variance of the DSE. Notice from (5.7) that N̂ is the sum of

products ÂhCh . An estimate νhk of the covariance between Âh and Âk (or
the variance, if h = k) is obtained, e.g., by the jackknife or delta method,
and Var(N̂ ) is estimated by, say,

ν̂ =
∑

h

∑
k

ν jkChCk .

Any randomness in the census counts Ch arising from the probabilistic
nature of the census (Section 5.1) is treated inconsistently by this method:
the randomness is reflected in covariance estimates ν, but once ν is obtained
Ch’s are treated as fixed in the computation of ν̂. Thus, ν̂ may differ from
variance estimates based directly on N̂ , e.g., jackknife estimates.
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*16. Contamination bias. “Contamination” arises if the selection of a sampling
unit into the PES alters the way the census is conducted there. Let A0(s)
denote the value of A(s) that would pertain if the post-enumeration survey
sample had included the housing unit containing potential enumeration s.
In the absence of contamination, A0(s) = A(s). Also, for persons whose
housing units were sampled in post-enumeration survey, A(s) = A0(s). The
contamination bias is defined as

E

[ ∑
s∈Se∩G

A0(s)

]
− E

[ ∑
s∈Se∩G

A(s)

]
.

Contamination bias was investigated but not detected in the 1990 and 2000
post-enumeration surveys in the U.S.. Show that if A(s) is constant within
each poststratum, that the ratio

E

[ ∑
s∈Se∩G

A0(s)

] /
E

[ ∑
s∈Se∩G

A(s)

]

can be estimated by the ratio of the census count for group G to the sample-
weighted number of census enumerations for group G in the post-enumeration
survey sample. This result leads to the decision that if the latter ratio is suffi-
ciently close to 1, contamination bias is not present. Contamination bias was
believed small in the U.S. A.C.E. in 2000 (Bench 2002a; Hogan 2001, 50–51).

*17. Coping with unresolved enumeration, match, and residency status due to in-
complete data. In the U.S. PES, E-sample cases that cannot with certainty be
classified as erroneous or not are assigned imputed probabilities of being erro-
neous. Similarly, P-sample cases that cannot be resolved as matches and as res-
idents are assigned imputed probabilities of match and residency. The impu-
tations are based on models fitted to cases that can be classified with certainty.
(To be classified with certainty implies there was no ambiguity, but does not
imply that the classification was correct.) Imputation error has two parts. One
is an increase in variance due to use of existing sample data to impute an unob-
served missing value. The imputation is conditional on an implicit or explicit
model, and if the model is incorrect a bias is induced as well. The U.S. Census
Bureau’s variance estimation methods, based on jackknife replication, ac-
count for the variance due to imputation. To estimate the bias is more difficult,
because the model they use is the one they think is the best. Some information
about bias can be gleaned from subsamples of unresolved cases where addi-
tional information was obtained to avoid the need for imputation. The sample
sizes are not large enough to support direct estimation of the vector of biases.
A model-based approach to the problem is to consider the bias in the vector
of poststratum adjustment factors to be chosen at random from a population
of possible bias vectors, independently of the sample. For simplicity, suppose
the population is approximately multivariate normal with some covariance
matrix, say Σ. A possible way to estimate Σ is to conduct a sensitivity anal-
ysis and to look at the empirical covariance matrix of the resulting vectors of
adjustment factors as the imputation model is varied. This raises the question
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of how does one decide what alternatives to use in the sensitivity analysis.
The Census Bureau developed a set of 128 “reasonable alternatives” that were
available for use in the sensitivity analysis, which led to an estimate of 531,751
for the standard deviation of the March 2001 A.C.E. estimate of national pop-
ulation, where the standard deviation reflects uncertainty of the choice of im-
putation model (Kearney 2002) for unresolved erroneous enumeration status
(E sample) and match status and residency status (P sample). For comparison,
the standard error from sampling was 378,222. The question is whether this
set of reasonable alternatives is either too narrow or too wide to provide real-
istic variance estimates for imputation model uncertainty. Partial information
about this is provided by followup surveys that provided additional data for a
large part of a subsample of the cases with unresolved erroneous enumeration
status. Analysis of that data indicated that empirical standard deviation for the
erroneous enumeration rate when calculated on the 128 reasonable alterna-
tives should be increased by a factor of 1.3. The followup survey did not pro-
vide sufficient information about the unresolved match status, and so the 1.3
factor was used to multiply the 531,751 estimate. The analysis did not address
the question of whether the correlations of the empirical estimate of Σ are
realistic.

*18. The description of Â in Section 5.4 is simplified. (i) We assume that any
census enumeration includes enough data to allow for possible matching
to the P sample or for imputation of match status when matching results
are ambiguous. (ii) We do not consider separate treatment of movers and
nonmovers unless they are in separate poststrata.

*19. Effects of inconsistency of poststratum assignments. The adjustment factor
Âh in (5.7) is the product of a factor (≤1) for erroneous enumerations and
a factor (≥ 1) for gross undercoverage. The latter is based on poststratum
assignment in the P sample. The DSE multiplies Âh by the number of
census enumerations classified in poststratum h, Ch . The same person can
be classified in discrepant ways in the P sample and the census if the two
surveys record the person’s characteristics differently. This may cause a bias
in the DSE in (5.7) because the coverage factors for gross undercount are
derived for poststrata based on the P sample and are applied to the poststrata
based on census enumerations, or what we will call E-sample poststrata.

To understand the bias, it is useful to consider that each person enumerated
in the P-sample could be enumerated both ways and assigned to a poststra-
tum two ways, based on either the P-sample data or the census data. Some
imagination is required to describe a person enumerated in the P-sample
but not the census, and we must make some assumptions to estimate what
the E-sample poststratum is for such a person. Let h and k denote P-sample
and E-sample poststrata, respectively, and let f (h|k) denote the proportion
of persons enumerated in P-sample poststratum k but not in the census who
belong to E-sample poststratum k.

Define N̂P(h, k) as the number of P-sample persons in E-sample post-
stratum h and P-sample poststratum k, and define N̂CP(h, k) as the number
of P-sample matches belonging to E-sample poststratum h and P-sample
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poststratum k. The undercount adjustment adjustment factor for poststratum
i is of the form

∑
h N̂P(h, i)/

∑
h N̂CP(h, i), whereas the factor should, to be

unaffected by bias from inconsistent E-sample and P-sample poststratifica-
tion, be

∑
k N̂P(i, k)/

∑
k N̂CP(i, k). The bias in the undercount adjustment

factor for poststratum i from inconsistent poststratification is thus∑
h

N̂P(h, i)

∑
h

N̂CP(h, i)
−

∑
k

N̂P(i, k)∑
k

N̂CP(i, k)
.

To estimate the bias, first define N̂P,nm(h, k) = N̂P(h, k) − N̂CP(h, k), with
the subscript “nm” indicating “nonmatch”. Although we do not observe
N̂P,nm(h, k), we do observe N̂CP(h, k) and N̂P,nm(k) = ∑

h N̂P,nm(h, k). Given
values of the conditional probabilities f (h|k), we can estimate N̂P,nm(h, k)
by f (h|k)N̂P,nm(k). Thus, we can estimate the bias in the undercount
adjustment factor for poststratum i by∑

h
N̂CP(h, i) + f (i |k)N̂P,nm(k)

∑
h

N̂CP(h, i)
−

∑
k

N̂P(i, k)∑
k

N̂CP(i, k)
.

A simple way to estimate f (h|k) is by N̂CP(h, k)/
∑

h N̂CP(h, k), using the
observed joint distribution of matches, but if the number of poststrata is large
then there may be too many conditional probabilities to estimate from even
a large sample. Haberman and Spencer (2002) use log-linear models for es-
timating f (h|k). Either method assumes that the poststratum inconsistencies
for P-sample nonmatches are the same as for P-sample matches, which might
lead to underestimation of the inconsistency. Analyses carried out for the
2000 A.C.E. detected small biases for some poststrata (Bench 2002b, 2003).

20. To derive (5.21), observe that

bcorr,G = E

[ ∑
h

∑
S0h

δe(s)KG(s)
(

Â∗∗(s) − Â∗∗∗(s)
)]

= E

[ ∑
h

{ ∑
S0h

δe(s)KG(s)

}(
Â∗∗

h − Â∗∗∗
h

)]

= E

[ ∑
h

NehG
(

Â∗∗
h − Â∗∗∗

h

)]

=
∑

h

E
[
NehG

]
E

[
Â∗∗

h − Â∗∗∗
h

]
=

∑
h

N0hG p̄e,hG E
[
Â∗∗

h − Â∗∗∗
h

]
,

= −
∑

h

N0hG p̄e,hG(1 − p̄E,h)ψh,
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with the fourth equality following from assumption (ii) in Section 5.5.2.
Show by a similar analysis that the synthetic bias for group G is given by
(5.22) and that bres,G = 0.

*21. It is possible to adjust the estimate of correlation bias (5.21) for “other” bias,
for example by γ ′

M = (X M − b̂X,M,o) − RY (X F − b̂X,F,o). Show that γ ′
M/θM

is equal to

1 + βX,M + εX,M − θ−1
M b̂X,M,o − (

1 + βX,F + εX,F − θ−1
F b̂X,F,o

) (1 + βY,M + εY,M )

(1 + βY,F + εY,F )
.

Show that if RY is equal to Rθ then γ ′
M has the same distribution as

θM
[
(βX,M − βX,F ) + (εX,M − εX,F )

] − (b̂X,M,o − Rθ b̂X,F,o)

and has expected value θM (βX,M,c − βX,F,c) and variance

Var(X M − Rθ X F − b̂X,M,o + Rθ b̂X,F,o).

Show that γ ′
M has the approximate representation

θM
[
βX,M + εX,M − θ−1

M b̂X,M,o − βX,F − εX,F + θ−1
F b̂X,F,o − βY,M

−εY,M + βY,F + εY,F
]
.

and hence that

E[γ ′
M ] ≈ θM

[
βX,M,c − βX,F,c−βY,M + βY,F

]
and

Var(γ ′
M ) ≈ Var(X M − Rθ X F − (b̂X,M,o − b̂X,F,o) − (YM − Rθ YF )).

22. Let D and S estimators such that D is unbiased, S has bias b, and the
variance of D − S is unbiasedly estimated by V . Show that the expected
value of (D − S)2 − V is equal to b2.

*23. Further consideration of nonparametric method of estimating SEB in Section
5.7. Let ChG be the census count and EhG be the (unweighted) E-sample count
in poststratum h and group G and let IhG = 1 if EhG ≥ τ and = 0 otherwise.
Let πhG denote the probability that IhG = 1. (The calculation of πhG is in
principle straightforward, as the census numbers for each poststratum and
each block are known, and the E-sample selection probabilities are known
for all blocks.) Define the relative synthetic estimation bias of area G by

RSEB = E
[ ∑

h(Ah − AhG)ChG IhG/πhG
]

E
[ ∑

h ChG IhG/πhG
] ,

with the convention that if πhG = 0 we set IhG/πhG equal to zero. Estimate
RSEB by substituting in the sample estimates for Ah and AhG , with the
additional convention that if the estimate of AhG is undefined we set
IhG/πhG equal to zero. (Possibly, the E-sample estimates should receive
first-order bias corrections.) Call the resulting estimator R̂1G . (A desirable
simplification may be used if the probabilities πhG can be taken to be
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unrelated to the synthetic estimation error; in that case we may ignore the
π ’s in calculating R̂1G .) In case R̂1G is be subject to large sampling variance,
let B1G and V1G denote jackknife estimates of bias and variance of R̂1G and
define an estimate of the mean square relative synthetic estimation bias by

R̂2G = (R̂1G − B1G)2 − V1G .

The fraction of the population of group G for which synthetic bias can
be estimated is γ = ∑

h IhGChG/
∑

h ChG . In presenting results, it could
be useful to construct a table with the following information for groups
for which γ exceeds some threshold: characteristics of the group (e.g.,
size, region, racial or ethnic composition, etc.), γ , R̂1G, B1G,

√
V1G, R̂2G .

Although R̂1G and R̂2G for a single group G might be imprecise, averages
and standard deviations within groupings possibly might be informative.
Rao (2003, 46–53) provides further discussion and references.

24. Using the notation of Section 6, show that E[�̂] − � = 2(E[ f (D)] −
f (N))(E[ f (T)] − f (θ)) if the variance estimates in �̂ are unbiased.
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11
Financial Applications

Being able to quantify the expected error of demographic forecasts allows us tackle
some economic problems from a fresh angle. We concentrate here on pensions,
and consider how adaptive policies can be used to alleviate problems caused by de-
mographic uncertainty. We also consider how sustainability and intergenerational
equity might be assessed statistically. We will see that changing demographics can
have surprising implications for policies seemingly unrelated to demography.

1. Predictive Distribution of Adjustment for Life
Expectancy Change1

An increase in life expectancy puts a strain on the finances of a defined-benefit
pension system, which we introduced in Section 2.2.4 of Chapter 4. In anticipation
of future gains in life expectancy, Finland passed a law in 2003 that automatically
adjusts pensions if life expectancy changes. The aim was to preserve the present
value of future pensions. Thus, the system shifts part of the risk from future workers
to future retirees.

1.1. Adjustment Factor for Mortality Change

The revised Finnish pension law (enacted in 2003 and taking effect in 2005) set
β = 62 as the base age for pension, ρ = 0.02 as the discount rate such that the
value of a euro received in age β + x is worth e−ρx at age β, and T = 2009 as the
base year of the system. Suppose the pension is paid continuously at the rate of one
euro per year. If p(x) is the probability of surviving to age x , the expected present
value of the pension conditional on survival to age β is (cf., (2.15) of Chapter 4)

ξ =
∞∫

β

e−ρ(x−β) p(x) dx/p(β). (1.1)

1 This section is based on Alho (2003b).

327
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The Finnish law stipulated that present values be estimated from data for the past
five years. Specifically, consider the cohort of individuals who become β years old
during calendar year t ≥ T . For them, data from the period [t − 6, t − 2) would
be used. Let Dx (u) be the number of deaths and Kx (u) be the number of person
years in age x , during year u. The o/e rate (cf., (1.3) of Chapter 4) in age x during
[t − 6, t − 2) is

µ̂x (t) =
t−2∑

u=t−6

Dx (u)
/ t−2∑

u=t−6

Kx (u). (1.2)

Using the actuarial estimator (Example 2.9 of Chapter 4) the probabilities of sur-
vival could be estimated as

p̂(x, t) =
x−1∏
y=0

2 − µ̂y(t)

2 + µ̂y(t)
. (1.3)

The trapezoid method (cf., (2.10) of Chapter 4) yields the approximate expected
present value for year t as

ξ̂ (t) = 1/2 +
∞∑

x=β+1

e−ρ(x−β) p̂(x, t)/ p̂(β, t). (1.4)

Two technical remarks are in order. First, we know from Examples 2.2 and 2.9
of Chapter 4 that the actuarial estimator is based on a hypothesis that p(.) is linear
in the interval [x, x + 1). This contradicts the linearity hypothesis underlying the
trapezoid method (Section 2.2.1, Chapter 4) that leads to (1.4). In Exercise 1
we give a more accurate formulation. Second, an alternative to (1.2) would be to
average the annual rates Dx (u)/Kx (u). We indicate in Complement 2 that the latter
estimator has a higher variance.

If mortality changes, then the expected present values may also change. By
multiplying the pension payout by the adjustment factor

A(t) = ξ (T )/ξ (t) (1.5)

for t ≥ T , the expected present value can be maintained at the level it was in year
T . By the Finnish law the same factor was to be used for both females and males.

We conclude with two comments. First, for each new retirement cohort, A(t)
is calculated using by the most recent mortality data available. This is a period
calculation, i.e., no attempt at forecasting the eventual life expectancy of the cohort
is made. This can be justified on practical grounds, since cohort calculations would
require forecasts going approximately 40 years into the future. Such forecasts and
models underlying them would necessarily be uncertain, and might lead to political
and other disagreements among the various parties involved. Second, despite the
expediency and political realism of the procedure, the pensions will be paid to
actual cohorts. An intriguing problem would be to assess the predictive distribution
of the difference between expected present values as calculated based on cohort
experience, and expected present values as calculated here.
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1.2. Sampling Variation in Pension Adjustment Factors

Even if the underlying forces of mortality were constant over time, the number
of deaths would vary from year to year due to Poisson variation. We will first
determine how the pension adjustment factors would vary if this were the only
source of variation.

As in Section 3.1 of Chapter 5, assume that deaths Dx (u) ∼ Po(µx (u)Kx (u))
are independent over x and u. To simplify, assume that neither the rates nor the
person years change, so that Dx (u) ∼ Po(µx Kx ). In this case,

µ̂x (t) =
t−2∑

u=t−6

Dx (u)
/

5Kx . (1.6)

Ignore the Poisson variation in ξ (T ), and concentrate on years t > T + 6. It is
reasonable to treat ξ (t) as fixed because we are only concerned with uncertainty
after the base year T .

To define the setting, we used the female life table of 2001 to approximate the
combined male and female life table around 2025. Based on the life table we
used (1.4) to estimate ξ (T ) at 17.50 euros. The age-structure was also taken to
correspond to the female life table population of 2001. The size of the population
was fixed at 1,000,000, a close approximation of the size of the age-group 62+
(both sexes combined) in Finland in 2002. The expected number of deaths in this
population is 43,100. A Poisson count with this expectation has a CV of 0.005
(cf., Section 5 of Chapter 4). Thus, with a probability of approximately 95% the
annual deaths are within ±1% of the expected value.

Under unchanging mortality we expect roughly that A(t) = ξ (T )/ξ (t) ≈ 1.

(Since A(t) is a convex function of ξ (t), we have that E[A(t)] ≥ 1 by Jensen’s
inequality (Complement 8 of Chapter 4), but the CV of ξ (t) is small enough that
the bias is small.) Define the change in the adjustment factor for two calender years
that are k = 1, 2, . . . years apart, as

�(k) = A(t + k) − A(t). (1.7)

This is the difference in pensions, per unit earned, between cohorts born k years
apart. We have E[�(k)] ≈ 0 for all k, but we will determine how much variation
one can expect from year to year.

Based on 1,000 simulations, the results are as follows. First, the standard devi-
ation of A(t) is 0.007. Second, the autocorrelations Corr(A(t + k), A(t)) are 0.80,
0.60, 0.43, 0.22 for k = 1, 2, 3, 4. We see from (1.6) that for k ≥ 5 the theoreti-
cal correlation is zero. Third, the standard deviations of the �(k)’s are 0.00042,
0.00060, 0.00072, 0.00084, 0.00097 for k = 1, . . . , 5.

We see that for adjustment factors that are k ≥ 5 years apart, pure sampling vari-
ability induces a standard deviation for (1.7) of 0.1%. Due to the use of 5-year data
periods, adjustment factors that are closer (k < 5) are positively autocorrelated,
so their differences have less variance. In particular, pure sampling variability in-
duces a standard deviation of 0.04% for the difference (1.7) of consecutive years.
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The distributions are approximately normal, so with a probability of 95%, pure
sampling variability induces a difference that does not exceed ±0.08% between
adjustment factors of consecutive years.

In summary, Poisson type sampling variability is small, even in a small country
like Finland. If single-year data were used instead of data from five consecutive
years, then all standard deviations would have to multiplied by approximately
51/2 = 2.24. The use of a five year period has the dual effect of both reducing
variability and smoothing the correction factors over time.

1.3. The Predictive Distribution of the Pension
Adjustment Factor

The essential source of uncertainty concerning the future values of the correction
factors comes from the fact that the future mortality rates µx (t) are unknown.
Empirical estimates derived in Alho (2002b) could be used. Suppose a forecast is
made at jump-off time t0 < T . In Alho (2003b) we took t0 = 2002. Assume that
for t > t0 the rates are of the form

µx (t) = µ̂x (t) exp(Yx (t − t0)), (1.8)

where µ̂x (t) is the point forecast of age-specific mortality u = t − t0 years ahead,
and Yx (t − t0) represents its relative error. The point forecast was specified by
assuming that the rate of decline observed for each age and sex during recent past
would continue indefinitely. For life expectancy this implied a median forecast of
86.7 for females and 81.8 for males, in 2050.

For the uncertainty we used the scaled model of Section 4.2 of Chapter 9 (where
we wrote X ( j, u) for Y j (u)). The scales were estimated from Finnish data from
1900–1994 to match the level of error in naive mortality forecasts (cf., Alho 1998).
To a good approximation the standard deviation (SD) of the relative error was
0.032(0.15u2 + 0.85u)1/2. At u = 30, for example, this implies a CV of 0.41.
This indicates a higher level of uncertainty than that of Figure 4 of Chapter 8,
but corresponds to the actual Finnish experience. The autocorrelation parameters
for the η-terms were 0.945 for males and 0.888 for females. The autocorrelation
parameters for the δ-terms were 0.977 for males and 0.979 for females. One can
deduce that an 80% prediction interval for life expectancy in 2050 would be [83.3,
90.1] and [76.7, 86.4] for females and males, respectively.

To simplify the numerical analysis we used two approximations. First, we as-
sumed that the cross-correlation of error increments between males and females
is equal to 1, instead of the empirically estimated value of 0.795. As discussed in
Exercise 3, this will not inflate standard deviations by more than 5%. The assump-
tion implies that the relative errors of the males and females could be taken to be
the same. Therefore, sex only needs to be considered when computing the point
forecast for the average age-specific mortality of the two sexes. The required sex
ratios in ages x ≥ β were available from the sex ratios of the median forecasts.
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We denote the resulting point forecasts by λ̂x (t), and the resulting model for the
age-specific rate during t > t0 is

λ̃x (t) = λ̂x (t) exp

(
ηx

t−t0∑
u=1

Sx (u) +
t−t0∑
u=1

δx (u)Sx (u)

)
. (1.9)

Second, define K̂x (u) as the median forecast of the person years in age x during
year u. We simplified the calculations by using these values (instead of the random
population values) to weight the random rates in the calculation of net present val-
ues. After the approximations, the average mortality rate needed in the calculation
of the present values for years t ≥ T is

µ̃x (t) =
t−2∑

u=t−6

λ̃x (u)K̂x (u)

/
t−2∑

u=t−6

K̂x (u). (1.10)

These rates lead to probabilities of survival via

p̃(x, t) =
x−1∏
y=0

2 − µ̃y(t)

2 + µ̃y(t)
, (1.11)

to expected present values via

ξ̃ (t) = 1/2 +
∞∑

x=β+1

e−ρ(x−β) p̃(x, t)/ p̃(β, t). (1.12)

and to adjustment factors for t > T via

Ã(t) = ξ̃ (T )/ξ̃ (t). (1.13)

The numerical calculations were carried out by simulation (using Minitab). The
median (M), the first and third quartiles (Q1, Q3), and the first and ninth deciles
(d1, d9), for the predictive distribution of the adjustment factors in 2010–2060 were
as follows:

year d1 Q1 M Q3 d9

2010 0.990 0.992 0.995 0.998 1.001
2020 0.915 0.933 0.953 0.973 0.995
2030 0.863 0.884 0.918 0.951 0.985
2040 0.814 0.842 0.889 0.936 0.983
2050 0.778 0.811 0.865 0.921 0.982
2060 0.751 0.787 0.843 0.905 0.974

We expect the adjustment factor to decline to about 0.87 in 2050, with an 80% pre-
diction interval [0.78, 0.98]. These intervals are valid provided that the volatility
of the trends of mortality during the next 50 years does not exceed the volatility of
mortality during 1900–1994. Figure 1 has the corresponding data for 2010–2060.
We note here that in the preparation of the legislation a number of alternative
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Figure 1. Predictive Distribution of the Adjustment Factor in 2010–2060: Median (Solid),
First and Third Quartiles (Dashed), and First and Ninth Deciles (Dotted).

scenarios were considered. However, although the scenarios were viewed as span-
ning a plausible range of future contingencies, they were essentially within the area
between the median and the third quartile of Figure 1 (i.e., between the second
and third graphs from the top).

2. Fertility Dependent Pension Benefits2

The main earnings-related pension system in Finland is based on the Employees’
Pensions Act (TEL, a Finnish abbreviation) of the year 1962. TEL is a defined-
benefit system, in which the level of future pension evolves according to complex
rules that depend on time worked, type of employment, and level of salary. The
system is mostly PAYG – recall that PAYG means that current workers pay con-
tributions at time t to cover payments to pensioners at time. From the start, partial
prefunding was established, so that part of the contributions are set side into a
fund to cover future pensions. By a pension right we refer to the level of pension a
person is entitled to, for as long as he or she lives, based on his or her work history.
The main rule for the accrual of pension rights was (until the reform of 2005) that
rights accrue in ages 23–64 at the rate of 1.5% of the wage. Part of this, the rights
that accrue in ages 23–54, are prefunded to cover 0.5% of the wage. Specifically,
let p(x, t) denote the probability of surviving to age x according to the life table
used during period t and let ρ be the interest rate. Then,

h(x, t) = 0.005

∞∫
65

e−ρ(y−x) p(y, t) dy/p(x, t) (2.1)

2 This section is draws heavily from Lassila and Valkonen (1999).



P1: MRM/SJS P2: MRM
SVUS004-Alho & Spencer April 30, 2005 0:6

2. Fertility Dependent Pension Benefits 333

is the prefunding in ages x ∈ [23, 55) during year t , for a unit wage. In addition
to h(x, t), contributions are collected from workers at t to cover the benefits that
the pensioners are entitled to at t , but that have not been covered by earlier pre-
funding. This is the source of a possible inequity across cohorts, because if the
cohort of workers is small relative to size of the cohort of pensioners, the workers’
contributions may greatly exceed their own future pension returns.

However, suppose that (2.1) were actually a nominal target of prefunding, but the
actual prefunding would be more or less: small cohorts would prefund less, large
cohorts would prefund more than the target, if we make the actual level depend
on cohort size in suitable way.3 In a stylized fashion, the proposal of Lassila and
Valkonen (1999) can be described as follows. Define B(t) as the density of births
at time t . The ages that are subject to prefunding are in age x ∈ [23, 55). Those in
age x at time t were born at t − x , and we would like to compare B(t − x) to the
density of births later, B(t − y), 0 ≤ y < x, in some way. Define a coefficient

γ (x, t) = B(t − x)

/ x∫
0

w(y, x, t)B(t − y) dy, (2.2)

where the weights w(y, x, t) ≥ 0 integrate (over y) to 1 for each x and t . The
optimal choice of the weights is an open question. One possibility is to choose
w(y, x, t) proportional to the expected number of individuals born at t − y who
are in contributing age at the time of retirement of those who are in age x at t .
In any case, we then have that for large cohorts γ (x, t) > 1 and for small cohorts
0 < γ (x, t) < 1 . The prefunding payment collected would then be γ (x, t)h(x, t)
per unit wage, instead of h(x, t) given by (2.1).

How would such a rule work in practice? The Finnish Overlapping Generations
(FOG) model (developed at the Research Institute of the Finnish Economy) is an
economic equilibrium model of type proposed by Auerbach and Kotlikoff (1987).
From a demographic point of view it is a cohort-component book-keeping system
(cf., Chapter 6), in which one keeps track of the work force by age. Each cohort
optimizes its involvement in the labor market and leisure time, in different ages,
according to a life time plan. The model has markets that clear every period.
Enterprises maximize shareholder value by deciding how much capital and labor
to use during each period, according to the marginal productivity of labor. The
wage rate is determined by equating supply and demand. There is a capital market,
in which saving and investment are balanced by the domestic interest rate. The
model also includes a government with an intertemporal budget constraint.

In a defined-benefit pension system of the Finnish type, pension depends on
earlier wages. Prefunding depends on wages, so the pension system can be made
a part of the FOG model. Given a set of prefunding rules, the model endoge-
nously determines the time paths of wages, prices, contributions, and replacement
rates. Demographic development influences the system via the sizes of the cohorts,

3 This notion of cohort size is similar to relative cohort size in Easterlin’s (1961) theory of
fertility cycles.
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Figure 2. Predictive Distribution of Old-Age Dependency Ratio (Ages 60+/Ages 20–59)
in Finland in 2010, 2030, and 2050. (based on 1500 sample paths.)

mortality, and net migration. The model calculations are based on a perfect fore-
sight hypothesis.

Lassila and Valkonen (1999) used two carefully chosen sample paths of the
population vector produced by PEP (Section 6 of Chapter 9) to provide alternative
scenarios to the base calculation that used the median forecast. The sample paths
were chosen so that they corresponded to the lower and upper end points of the
80% prediction interval of the old-age dependency ratio (in this case the ratio of
those in ages 60+ to those in ages 20–59) in 2030. Figure 2 has a boxplot of the
predictive distribution of the old-age dependency ratio of Finland based on Alho
(1998). The end points of the 80% prediction interval [0.61, 0.78] in 2030 roughly
correspond to the midpoints of the whiskers. The number of simulated sample
paths was 1,500.

The findings came as a shock, since no-one had earlier contemplated, with any
seriousness, alternative population scenarios that would be so different from the
median. In particular, the sample path corresponding to the ninth decile of the
predictive distribution of the old age dependency ratio (0.78) would have dramatic
implications. The possibility of experiencing unexpectedly low fertility with un-
expectedly low mortality had not been sufficiently emphasized in the studies of
aging.

Figure 3 gives the proportion of total pension contributions of the total wages, for
the years 1999–2070, under the high old-age dependency ratio scenario. Initially,
current rules lead to a lower contribution level, but in about 50 years, the adaptive
rule of Lassila and Valkonen (1999) cuts the extreme levels. In contrast, under
the median forecast variant (details not shown) both rules lead to essentially the
same contributions that rise roughly linearly to only 30%, at 2070 (for extensions,
see Alho, Lassila and Valkonen 2005).
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Figure 3. Pension Contributions, as Percent of the Total Wages of the Covered Employees,
in Finland in 1995–2070, Under Current Rules (Solid) and Under a Fertility Dependent Rule
(Dashed), If the Population Follows the High Old-Age Dependency Ratio Variant.

3. Measuring Sustainability4

A well-known definition of the sustainability of fiscal policies is the OECD
view: “Sustainability is basically about good housekeeping. It is essentially about
whether, based on the policy currently on books, a government is headed towards
excessive debt accumulation.” (Blanchard et al. 1990, 8). This means that the gov-
ernment debt should stay below an acceptable level in the long term (cf., Section 5).
In the case of pension systems, sustainability requires contribution rates to remain
sufficiently low and replacement rates sufficiently high that the system remains vi-
able. If the likelihoods of the various risks were known, both the current and future
pensioners and the current and future workers could prepare for them in a rational
manner. Reducing the scope of the unexpected is a natural aspect of sustainability.

Time horizon is also important. Valdés-Prieto (2000) noted that long-term finan-
cial stability can be irrelevant if sufficiently large imbalances will cause a political
intervention. Thus, neither from contributors’ nor pensioners’ point of view can
sustainability be simply viewed in terms of average contributions and average
replacement during any chosen period. It may be that if certain boundaries are
crossed, then the individuals affected will feel sufficiently threatened to try to use
the political process to change the rules.

Using the Lithuanian forecast mentioned in Section 4.4 of Chapter 8 as a back-
drop, we will now consider a proposed reform of the Lithuanian pension system.
The existing system consisted of a basic pension and a supplementary component.
The system was purely PAYG. The pension was fully indexed to the average wage,
so an increase in average wage by p percent was matched by an increase in pensions

4 For a more detailed analysis, see Alho, Lassila and Valkonen (2005).
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Figure 4. Replacement Rate and Contribution Rate Under Full Wages Indexation (o) and
Full Wage-Bill Indexation (+), and an Example of Potential Viable Region {(c, r )|c ≤
0.38, r ≥ 0.28}.

of p percent. The forecast of population indicated that the current age-dependency
ratio would persist for a decade or so, but then would increase rapidly. The pop-
ulation aging would put a heavy burden on the working population. If pensions
could made to depend on wage-bill (i.e., the total sum of wages) instead of average
wage, then the burden of the small future work force might be alleviated.

Partial indexing to wage-bill was considered such that the pensions would follow
the total wage-bill with weight 0 ≤ α ≤ 1, and the average wage with weight
1 − α. As in the previous section, an overlapping generations (OLG) model of
the Lithuanian economy (similar to that of the FOG model) was used to predict
the consequences of the various policy choices. The stochastics derived from the
program PEP produced population paths that were fed to the OLG model. For
each path a different optimal wage, consumption, and savings pattern emerged
that implied a contribution rate c, i.e., the fraction of wages going into the pension
system, and a replacement rate r, i.e., the ratio of average pension to average wage.
How would wage-bill indexation work?

Figure 4 has a plot of the pairs (c, r ) corresponding to 300 population paths. We
see that under wage indexation (α = 0.0) replacement rates are nearly constant
(median = 0.31, SD = 0.004), irrespective of population development, but con-
tribution rates are quite uncertain (median = 0.36, SD = 0.07). Under wage-bill
indexation the replacement rates are reduced and less certain (median = 0.27,

SD = 0.02), but this does lead to contribution rates that are both lower and less
uncertain (median = 0.33, SD = 0.04). Thus, wage-bill indexation does provide
the relief promised.

We see that different degrees of wage-bill indexation have an effect on both
the mean and variance of the outcomes. Thus, variance reducing policies may
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be popular among a risk averse population. Note that current workers are future
pensioners, so in the long term reducing variance should be appealing to everyone.

However, as noted above, studying the moments of the joint distribution of
the pairs (c, r ) may hide some political realities. Under wage-bill indexation both
contribution rates and replacement rates depend on uncertain future demographics.
As an approximation to the complex political process, one can postulate an upper
bound c∗ > 0 such that contribution rates c > c∗ would be considered politically
unacceptable and a lower bound r∗ > 0 such that replacement rates r < r∗ would
be considered politically unacceptable. Thus, the set {(c, r )|c ≤ c∗, r ≥ r∗} is
the viable region of the policy, outside which a political reform is initiated (cf.,
Aubin 1991). The upper left hand corner of Figure 4 provides an illustration with
c∗ = 0.38 and r∗ = 0.28. Although a reform would typically end in a compromise
of some sort, the outcome is uncertain for all involved.

Neither c∗ nor r∗ can be known with any certainty. The value c∗ = 0.38 repre-
sents a 10 percentage points increase in the contribution rate relative to the current
level. Many countries face the prospect of such increases in their payroll taxes, and
it is exactly these projections that have led the experts and decision-makers to pay
attention to the aging problem and seek for ways to avoid such increases. We omit
the details here (see Alho, Lassila and Valkonen 2005) but note that, as one would
expect, the result depends on what r∗ might be. For r∗ = 0.30, the probability
that the pair (c, r ) is within the viable region in 2050 is at most 63%, a value that
is achieved at α = 0.0 (i.e., 63% of the population paths produced by PEP lead
to a pair (c, r ) that was within the region in 2050). For r∗ = 0.20 the probability
of being within the viable region can be made as high as 90%, if full wage-bill
indexation (α = 1.0) is adopted. In the case of Figure 4, the probability is 63% of
staying in the viable region when α = 0.0, 30% when α = 1.0, and (not shown)
the maximum is 72% when α = 0.4.

Other measures for operationalizing sustainability can be developed, based on
the minimal r and maximal c over the forecast horizon (2001–2050), for example.

4. State Aid to Municipalities5

Substantial amounts of funding from national to local governments are determined
by statistical allocation formulas (cf., Chapter 12, Section 3). It has long been
recognized that errors in the data can have an appreciable impact on the allocations
(Spencer 1980a; U.S. Federal Committee on Statistical Methodology 1978; Louis,
Jabine, and Gerstein 2003). Statisticians have paid less attention to the stability
of the system, when the true values themselves change over time (cf., Chapter 12,
Section 3.1.2).

Finland is divided into approximately 450 municipalities that range from
Helsinki with 1/2 million inhabitants to villages of a few hundred people. The me-
dian size of a municipality is 5,000 inhabitants. The municipalities are obligated

5 This section is largely based on Alho and Salo (1998).
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by law to provide basic educational, health, and social services to their inhabitants.
These are financed in part by municipal taxes collected at a flat rate of 15–20%.
In part they are covered by state aid that derives from the national income tax and
other taxes and fees collected by the government. The system is entirely PAYG.
The aid is allocated by statistical formulas that depend primarily on population
size and age structure. We concentrate here on health and social services.

Suppose V (x, t) is the number of people in age x during year t . Suppose s(x)
is the amount of state aid allocated for health and social care per inhabitant in
age x . In 1997 these amounts (in euros) were the sum of the “Health” and “Social”
columns given below:

Age x Health Social Sum

0–6 460 3,775 4,235
7–64 510 255 765

65–74 1,230 460 1,690
75–84 2,315 2,560 4,875
85+ 3,895 7,140 11,035

These are nominal allocations that are based on estimates of past age-specific costs.
Although they are adjusted in various ways to come up with the final allocations,
the basic age-dependence is as indicated: on average a person aged 0–6 or 75+
was allocated about 8 times as much as a person aged 7–74. Define V19−64(t)
as the size of population in ages 19–64 during year t . It follows that C(t) =
�x s(x)V (x, t)/V19−64(t) is a measure of the tax burden posed by the state aid
system on tax payers. Using the year 1997 as a base year we can further define a
standardized burden as D(t) = C(t)/C(1997).

We can investigate the burden both retrospectively, in terms of what it would
have been, had the same legislation been in force earlier, and prospectively, by
calculating what it will be if the legislation continues to be in force. We can use
the stochastic forecast of the population to produce a predictive distribution of
D(t). Figure 5 shows the past hypothetical development of D(t) in 1940–1997 and
prediction intervals for 1998–2050. We see that the past burden would have been
within ± 10% of the level in 1997. However, the predictive distribution shows that
even the first decile rapidly increases after the year 2010, and the burden may very
well increase by a half or more in the coming decades.

The reason for the rapid increase in burden is the strong age-dependence of the
allocations. One can calculate what D(t) would look like, if the allocations would
have been the same in all ages (i.e., s(x) ≡ s for all x). The resulting curve (not
shown) is notably flat in the past, and the median of its predictive distribution
only rises to less than 1.1 (instead of 1.5) by 2050. Figure 5 shows that from
the perspective of this piece of legislation, the change in population age structure
is much more dramatic than anything seen since 1940, even if we use the first
decile of the predictive distribution, let alone the median or a higher quantile, as a
guide. While it is true that actual costs depend on age, we expect that there will be



P1: MRM/SJS P2: MRM
SVUS004-Alho & Spencer April 30, 2005 0:6

5. Public Liabilities 339

205020302010199019701950

2.0

1.5

1.0

0.5

0.0

Year

B
ur

de
n

Figure 5. Relative Burden of Social and Health Care Allocations in 1940–1997 in Finland,
and the Median(*), Quartiles (+), and 1st and 9th Deciles (.) of its Predictive Distribution
in 1998–2050.

continuing debate as to the acceptable level of the burden. This has implications
that have not been seriously considered.

For example, one can show that if the allocations were to be made less age depen-
dent then the winners would be the urban Helsinki region and northern Lappland
(home of the Sami, see Example 1.2 of Chapter 2), an otherwise unlikely sound-
ing alliance! The losers would be the coastal municipalities, many of which have
Swedish speakers as a majority, where mortality is low and populations are, there-
fore, older than elsewhere. Possibly, changing demographics will expand debates
on social and health policy to include discussions of regional and ethnic equity.

Alternatively, the government might decrease allocations across the board. This
might be politically more acceptable, but the cuts would be borne most heavily by
those cohorts that are young (ages 0–6) or old (ages 75+) after 2010, who would
be disadvantaged relative to those who were in such ages before 2010. A problem
of intergenerational inequity (cf., Auerbach, Kotlikoff, and Leibfritz 1997) would
arise. This is the theme of the next section.

5. Public Liabilities6

Part of the inheritance we leave to future generations is the positive or negative
public net wealth. Stochastic forecasts have been used to analyze the solvency of the
Social Security Trust Fund in the United States (cf., Social Security Administration
2004, Burdick, Manchester, and Bang 2003, Lee and Tuljapurkar 1998, Lee 2000,

6 This section is based on a paper presented at the International Meeting on Age Struc-
ture Transitions and Policy Dynamics: The Allocation of Public and Private Resources
Across Generations, in Taipei, December 2001, sponsored by the International Union for
the Scientific Study of Population. For further details, see Alho and Vanne (2005).
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Auerbach and Lee 2001). In the following analysis, we consider the whole of
public sector finances. In fact, we define the public sector in a rather broad manner
(appropriate in the Finnish context) to include not only states and municipalities
but also institutions that manage statutory pensions (such as TEL, discussed in
Section 2) and unemployment and disability insurance. In Finland, many of the
latter institutions are privately owned.

Intertemporal public liabilities (IPL) can be defined as IPL = (current net debt)
+ (discounted future entitlements) − (discounted future taxes) (Raffelhüschen
1999). The uncertainty of future demographics influences the IPL via future pop-
ulation size and age-structure. To simplify, we assume that the uncertainty of the
future economy influences the IPL via three processes. First, the value of govern-
ment debt varies according to the real interest rate of government bonds. Second,
the value of stocks held by the government varies like a large portfolio of publicly
traded stocks.7 Third, the tax rates and the entitlements follow the productivity of
labor. Finally, we assume that the evolution of future demographics is independent
of the evolution of the economic variables.

All economic calculations below are inflation adjusted.

5.1. Economic Series

Using the time-series models of Chapter 7, the economic series were analyzed
as follows. First, the German real interest rate series from 1955–2000 was used
to estimate a model for the future interest rates of the government bonds. The
series looks roughly stationary with mean 0.038 (SE = 0.0032). Deviations from
the mean can be approximated by an AR(1) process: ρt = 0.62ρt−1 + ε1,t , where
ε1,t ∼ N (0, 0.00822).

The Dow-Jones stock index series from 1949–2000 was used to model stock
returns. The series has a mean of 0.054 (0.019), and a standard deviation of 0.134.
The series displays some positive autocorrelations, but in general a stock index
series such as this should be close to an uncorrelated series. This was assumed.

Productivity was measured via the real Gross Domestic Product (GDP) per
capita series from Finland in 1860–2000 (Hjerppe 1989, Statistics Finland 2001). It
reflects both productivity per person, labor force participation, and unemployment
rate, for males and females. The series varies around a mean 0.022 (standard error
0.005). It is reasonably well approximated by an MA(1) process γt = ε3,t + 0.32 ×
ε3,t−1, where ε3,t ∼ N (0, 0.0452).

5.2. Wealth in Terms of Random Returns and Discounting

Putting the various money flows on an equal footing at jump-off time requires an
assumption about the way the government portfolio is managed. Assuming, as we
do, that the government maintains a fixed value portfolio leads to a solution that

7 In Finland the government has negative debt that derives from the prefunding of the
pension system and from government owned stocks in companies it has helped to found.
Another country with negative debt is Norway, due to oil revenues.
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is similar in spirit to the assumptions made in generational accounting (Auerbach,
Gokhale, and Kotlikoff 1991, Auerbach, Kotlikoff, and Leibfritz 1997). Under this
policy, if the stocks change in value, then enough are sold or bought, so that the
value of the holdings does not change (inflation adjusted). A meaningful discount
rate for any future income or out-payments is the expected real interest rate of
bonds, or 0.038.

The wealth W at t = 2000 can be written as W = W1 + W2, where W1 is the debt
owed primarily in terms of bonds, and W2 represents the wealth owned primarily as
stocks. Both can be viewed as a discounted sum of the income and out-payments
they generate, if held at current level. As discussed in Alho and Vanne (2005),
we can then write W1 = −0.323 × (1 + X1) in the units of the year 2000 GDP,
where E[X1] = 0 and Var(X1)1/2 = 0.111. Similarly, W2 = 0.913 × (1.39 + X2),
where E[X2] = 0 and Var(X2)1/2 = 0.684. In this example the wealth in stocks is
six times more volatile than the debt owed in bonds.

The two components were taken to be independent, and W had an approxi-
mate normal distribution with the expectation E[W ] = −0.323 + 1.272 = 0.950,

and standard deviation Var(W )1/2 = ((0.323 × 0.111)2 + (0.913 × 0.684)2)1/2 =
0.626. The conclusion is that with probability 95% the value of the current wealth
is in the range [−0.28, 2.18], in the units of the GDP of year 2000, under a constant
portfolio policy.

5.3. Random Public Liability

To include the future net taxes into the calculation, let V (x, s, t) be the population
in age x , who are of sex s = M, F, at time t . Let Ŝ(x, s) and T̂ (x, s) be the
entitlements and taxes, at t = 2000. We assumed that the entitlements and taxes
grow with productivity. The difference in the discount rate and the growth rate
of the GDP is 0.038 − 0.022 = 0.016, so the discounted entitlements were of the
form

S =
∑
x,s

∞∑
u=1

V (x, s, t + u)Ŝ(x, s) exp

(
−0.016u + u(µ − 0.022) +

u∑
k=1

γt+k

)
.

(5.1)

Here the role of µ ∼ N (0.022, 0.0052) is to represent the uncertainty in the mean
rate of increase in productivity, and γ is an MA(1) process of the type considered
at the end of Section 5.1. Replacing Ŝ in (5.1) by taxes T̂ gives the formula for the
discounted taxes.

We can now define the random public liability as

L = S − T − W. (5.2)

This random version of the IPL has a probability distribution that it inherits from
S, T , and W .

Combining population sample paths from PEP with simulated paths of the eco-
nomic processes, simulated values of S, T , and W were obtained. Truncating the
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calculation of S and T after year 2100, we obtained the following statistics for the
predictive distribution,

Mean Median Q1 Q3 SD

S − T 1.01 0.70 0.08 1.59 1.50
−W −0.95 −0.95 −1.36 0.53 0.62

L 0.07 −0.18 −0.95 0.75 1.63

In terms of standard deviations, the uncertainty of the future primary balances
S − T is 2.5 times as high as the uncertainty of the current wealth W . The un-
certainty of the future liability L approximately equals that of the future primary
balances.

In addition, we can decompose the variance in S − T into a component deriving
from the uncertainty of future population development and a component deriving
from the uncertainty in future productivity. The result is (details omitted) that the
share of demographics out of Var(L) is 30%. The rest is due to economics and
possible interactions. The share of uncertain future taxes and entitlements is 54%.
The remainder, or approximately 15%, is due to uncertainty in W , under the fixed
value portfolio policy. Or, contrary to the generally held view, demographics is a
major component of uncertainty in the evaluation of the fiscal soundness of the
public sector.

Exercises and Complements (*)

*1. Assume that p(x + y) = px + (px+1 − px )y for y ∈ [0, 1), so p(.) is linear
on [x, x + 1) with p(x) = px and p(x + 1) = px+1. By a direct calculation
one can show that

x+1∫
x

p(z)e−ρz dz = e−ρx
{

px (1 − e−ρ)/ρ + (px+1 − px )(1 − ρe−ρ − e−ρ)/ρ2
}
.

This leads to an alternative to (1.4). Verify that in the case ρ = 0.02, the
formula gets the form

ξ ′ = 0.496683 + 1.00003
∞∑

x=β+1

p̂(x)e−0.02(x−β)/ p̂(β).

*2. Assume that D(u) ∼ Po(mK(u)) are independent, and define

m̂ =
n∑

u=1

D(u)
/ n∑

u=1

K (u), m̃ = 1

n

n∑
u=1

D(u)/K (u).
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Show that,

Var(m̂) = m
/ n∑

u=1

K (u), Var(m̃) = m

n2

n∑
u=1

1/K (u).

The first variance is smaller because, by Jensen’s inequality, we have that

1
/1

n

n∑
u=1

K (u) ≤ 1

n

n∑
u=1

1/K (u),

with equality only if K (1) = · · · = K (n). Why is Jensen’s inequality applica-
ble here?

3. Suppose Var(X1) = 1, Var(X2) = c2, 0 < c ≤ 1, with correlation
ρ(X1, X2) = ρ. Then, Var(X1 + X2) = 1 + c2 + 2ρc. If ρ = 1, the variance
is (1 + c)2. Define f (c) = (1 + c2 + 2ρc)/(1 + c)2. Show that the minimum
is at c = 1, with f (1) = (1 + ρ)/2. If ρ = 0.795 show that assuming ρ = 1
does not inflate the standard deviation of the sum by more than 5%, no matter
what c is.
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12
Decision Analysis and Small
Area Estimates

1. Introduction

Now that we are equipped with methods to assess the accuracy of estimates of
current or future demographic quantities, we consider questions related to the
importance of accuracy.

Does it matter in practice whether demographic estimates are accurate? Is the
accuracy of the estimates acceptable? If not, can the accuracy be improved with
the expenditure of more money (or resources more generally) on data, analysis,
research, and interpretation?

How might you want to modify your use of the estimates given knowledge of
their accuracy? For example, if consequences of underestimates are more severe
than overestimates, should one choose estimates with asymmetric error distribu-
tions? If forecasts are highly uncertain, should one attempt to make flexible plans
(such as those discussed in Sections 1 and 2 of Chapter 11) that can adapt over
time?

Should one spend more money (or less money) for development of the estimates?
How can one find an optimal or at least satisfactory balance between consequences
of errors in estimates and costs of improving accuracy of the estimates?

Statistical decision theory provides a framework for thinking about such ques-
tions in a systematic way. To apply the theory one must take careful account of
the context of the uses of the data. Some uses are not easily tied to actions, for ex-
ample uses of demographic data in social science research. Other uses are directly
tied to allocations, such as uses of U.S. census data to apportion the House of
Representatives and Electoral College and to allocate government moneys among
states and local governments (Section 4 of Chapter 11; Louis, Jabine, and Gerstein
2003). Such uses depend on estimates for “small areas”, which we will take to
be any geographic level below the national level. Allocative uses of data tend to
be relatively easy to know, at least in principle, when the allocations are based on
a specified formula. Some related uses are difficult to analyze, however, such as
drawing of legislative districts with equal population size, where changes in esti-
mates at very small geographic levels lead to changes in the shape of the district,
and the mapping between the (high-dimensional) set of population estimates and

344



P1: NFT/SJS P2: MRM
SVUS004-Alho & Spencer April 29, 2005 21:35

2. Small Area Analysis 345

the set of possible shapes of districts is determined partly by a computer program
and partly by back room negotiations. Other uses are intermediate in specificity
between scientific inference and allocative uses, and include uses of data for plan-
ning purposes (e.g., public and private pension funding, understanding the need
for new public works) and public policy interventions (e.g., to change population
growth rates from fertility or from net immigration).

In Section 2 we discuss some aspects of estimation for small areas. Such esti-
mates are important for formula-based allocations of public benefits (Section 3). A
brief introduction to statistical decision theory (Section 4) allows us to separate the
analysis of uncertainty in the estimates (as in prior chapters) from the assessment
of consequences of errors in estimates by means of what is called a loss function.
Decision theory allows us to jointly consider uncertainty in the estimates and con-
sequences of errors by looking at the expected value of the loss function. We can
also compare the expected losses of alternative estimators, specifically estimates
of census population based on the census alone or supplemented by estimates of
coverage error, so-called “unadjusted” and “adjusted” estimates, respectively, to
see which has more accuracy for certain kinds of uses (Section 5). That informa-
tion can be used in a schematic decision analysis for choosing whether to adjust
the census or not (Section 6). Finally, by comparing changes in the expected loss
with changes in cost of developing estimates, we can conduct cost-benefit analysis
of demographic data (Section 7). This is enormously difficult in practice, but the
analysis can provide useful insight nonetheless.

2. Small Area Analysis

Methods for demographic estimation for small areas tend to differ from methods for
national estimates, due to differences in data availability and underlying population
dynamics. A distinction is made between “direct” and “indirect” estimates. A direct
estimate for an area depends only on data for the area itself, e.g., fertility estimates
depend only on fertility data for the area and not on fertility in other areas. An
indirect estimate relies on data for other areas, e.g., fertility estimates are based on
data aggregated across areas deemed similar. Methods for subnational forecasts
are discussed by Smith, Tayman, and Swanson (2001) and methods for postcensal
estimates are described by Rao (2003, Chapter 3) and in the U.K. context by Rees,
Norma, and Brown (2004).

For example, if the postcensal population estimate for an area is based on a
housing unit method (Chapter 10, Section 1), where the average number of persons
per housing unit in the area is estimated from the latest census and the total number
of housing units is estimated from current data on utility connections, the estimate
is a direct estimate. If the average number of persons per housing unit is based on
a regression analysis applied to current survey data from an aggregation of areas,
the estimate would be an indirect estimate. Other examples of indirect estimation
are the use of Poisson regression for the estimation of counts in municipalities
and other small areas (Example 3.5 of Chapter 5), and the synthetic estimates that
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adjust for net undercount in a census (Chapter 10). These examples highlight the
fact that some small areas (here, municipalities) are truly “small” in the sense that
Poisson type variability is an important concern, and others may actually be quite
large (states or large cities).

The important distinction for our purposes is the dependence on a model –
indirect estimates depend on assumptions of homogeneity of one sort or another,
whereas direct estimates may rely on different assumptions to overcome limitations
in the data or else may be subject to greater errors due to data limitations, e.g.,
increased sampling variability. Sometimes even direct estimates are partly affected
by external data, e.g., state estimates may be calibrated to sum to a national estimate,
for a so-called “modified direct” estimator (Rao 2003).

From the point of view of accuracy, we need to recognize that either direct or in-
direct estimates may be affected by sampling variability, by biases in the statistics
used to develop the estimates (e.g., biases in administrative data or nonsampling
errors in survey statistics), and biases arising from model imperfection. For indirect
estimates, some of the latter will arise from aggregation across areas, but model
error may well be present in direct estimates as well. Two approaches for evaluat-
ing the accuracy of the estimates include consideration of the various sources of
error and their propagation, as we have done for national population forecasts in
Chapter 9, as well as examination of past performance of the estimates (along
the lines of Keyfitz 1981, Stoto 1983, Keilman 1990, 1997, 1998). While the
same kinds of methods we have discussed for analyzing accuracy in national es-
timates may apply to small area estimates, the empirical findings may of course
differ. For example, Smith and Tayman (2003) found different age-patterns of
errors for national and subnational forecasts in the U.S. Bryan (2004) summa-
rizes some evaluations of postcensal estimates for small areas, including gen-
eral findings that the magnitude of relative error varies inversely with the size of
the area and that population change (positive or negative) tends to be underesti-
mated.

3. Formula-Based Allocations

3.1. Theoretical Construction

Formulas often are used by governments and large organizations to determine the
amounts of benefits or costs to be shared among members. Currently, the federal
government in the U.S. allocates more than $250 billion to state and local gov-
ernments via formulas depending on statistics such as population, income, and
tax revenues (Louis, Jabine, and Gerstein 2003), and state and local governments
allocate yet additional monies via their own formulas, e.g., state educational fund-
ing for school districts. Smith, Rice, and Carr-Hill (2001) describe the use of
formulas to allocate large amounts of funds in the United Kingdom. In Finland
formulas are used to allocate funds to municipalities (cf., Complement 24, Chap-
ter 5 and Section 4, Chapter 11) and to fund universities (Alho and Salo 1998).
Formulas are also used by international organizations such as the United Nations
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(Suzara 2002) and the European Unition to allocate the organization’s costs among
its members.

3.1.1. Apportionment of the U.S. House of Representatives

The U.S. Constitution provided for a Congress consisting of a Senate with two
members from each state and a House of Representatives with membership “ap-
portioned among the several States which may be included within this Union,
according to their respective Numbers”. The Constitution included explicit con-
straints that each state have at least 1 representative and the number of representa-
tives does not exceed 1 for every 30,000 people, thereby setting upper and lower
bounds on the number of representatives. The question of who counts as a person
(and how much) was settled as a result of political compromise. Originally, the
“numbers” included women and children even though they did not vote, excluded
Indians not taxed (who were then viewed as outside the scope of U.S. law) and,
as a compromise, included only three fifths of the number of slaves (Chapter 2,
Example 1.1).1 The question of whether illegal immigrants should be included in
the numbers remains contentious to this day (Citro, Cork, and Norwood 2004, 38).

Given a set of population numbers, there exist many different methods to deter-
mine House apportionment. Let h denote the number of seats to be allocated, let
pi denote the population in state i , let p denote the sum of the state populations,
and define ai = hpi/p. If there were no constraints on the apportionments, state i
would receive ai seats in the House. To accommodate the constraints noted above
and the implicit constraint that the apportionments be integer, one might consider
rounding each ai up or down to the nearest integer.2 For example, one might re-
quire that any ai < 1 gets rounded up to 1 and remaining ai ’s be rounded up or
down, perhaps based on ranking the remainder ri = ai − ai� or the relative size
ri/ai , etc. The former method was advocated by Secretary of the Treasury Alexan-
der Hamilton based on the results from the first U.S. census in 1791. Although
Congress passed a law to enact the apportionment, it was vetoed by President
Washington. Ultimately a method advocated by Thomas Jefferson of Virginia was

1 In 1868 the 14th Amendment to the Constitution eliminated the 3/5 treatment of slaves.
Also, it stipulated reduction in the count for a state to the degree that voting rights were
denied to male inhabitants (females could not vote until 1920). “Representatives shall be
apportioned among the several states according to their respective numbers, counting the
whole number of persons in each state, excluding Indians not taxed. But when the right to
vote at any election for the choice of electors for President and Vice President of the United
States, Representatives in Congress, the executive and judicial officers of a state, or the
members of the legislature thereof, is denied to any of the male inhabitants of such state,
being twenty-one years of age, and citizens of the United States, or in any way abridged,
except for participation in rebellion, or other crime, the basis of representation therein shall
be reduced in the proportion which the number of such male citizens shall bear to the whole
number of male citizens twenty-one years of age in such state.”
2 Randomization provides one statistical solution to the problem: randomly allocate the ri ’s
among the states so that each state’s expected allocation would equal ai ; this does not seem
politically acceptable.
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chosen3, with the result that larger states were favored over small (Balinski and
Young 1982, 126).

The choice of apportionment method was based partly on fairness considera-
tions, so that the apportionments did have to be proportional to population, but
some latitude existed concerning choice of a metric (or loss function, cf., Section
4.4) for measuring proportionality and choice of h. Historically, both have been
chosen to benefit the party in power, although h has been fixed by law at 435 since
1935. For example, in 1941 President Franklin D. Roosevelt reported to Congress
two alternative apportionments based on the 1940 census, which differed for two
states: Arkansas received one more seat than Michigan under the so-called Hill
method (or “equal proportions”) and one fewer seat under the so-called Webster’s
method (“method of major fractions”). As Arkansas was a strongly Democratic
state and Michigan was viewed as Republican, the Democratic Congress chose
Hill’s method. Later that year Hill’s method was set into law and has been used
ever since. Hill’s method has the property that it can round by more than a whole
seat – the number of seats allocated to state i can differ from ai by more than
1 – although such a transgression has not occurred yet. Balinski and Young (1982)
present a lively history and elegant mathematical treatment Saari (1995, Chapter V)
presents a novel point of view.

The U.S. President is not directly elected by the popular vote but by the Electoral
College. Each of the 50 states sends as many electors as it has senators and repre-
sentatives. The District of Columbia sends the minimum number of electors of any
state, currently 3. The total number of electors is thus 2 × 50 + 435 + 3 = 538. In
the 2000 presidential election, Albert Gore won the majority of the popular vote
but George W. Bush won the majority in the Electoral College and was elected
President. Had Hamilton’s method been used to apportion the House, and the
popular vote remained unchanged, there would have been a tie in the Electoral
College – Gore would have won the Electoral College vote and become President
if Jefferson’s method had been used (Jenkins 2004).

3.1.2. Rationale Behind Allocation Formulas

One may interpret an allocation formula in various ways. One interpretation holds
that the formula specifies legislative intent, which reflects the will of the people.
From this perspective, if perfect data are input into the formula, perfect allocations
will result. This interpretation ignores the political give and take involved in the
development and enactment of the formula.

At the other extreme is a view that the formula is simply a parametric approxi-
mation to data points – legislators look at alternative formulas to see the resulting
vectors of allocations as shown on computer printouts and choose the formula that
best approximates the compromise allocation numbers, subject to constraints of fair
or rational appearance. From this perspective, the fact that the formula stays fixed
while data change over time (and hence allocations change) may be undesirable;

3 Jefferson’s method is also known as “method of greatest divisors”, and the “method of
d’Hont”. It works by finding a divisor x such that the sum of hi = pi/x� equals h, and
then taking hi as the apportionment for state i .
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formulas often contain “hold harmless” provisions to limit or even prevent de-
creases in fund allocations over time as new statistical series are used to compute
the allocations (Louis, Jabine, and Gerstein 2003). In fact, correction of errors
in the statistics underlying the printouts may also be undesirable to the extent that
the resulting allocations depart from the compromise numbers. On the other hand,
the legislators may not know the exact results of the formula even when they are
voting on it. For example, the emergence of a complicated formula for General
Revenue Sharing, a very large fund allocation program in the U.S. in the 1970s,
was described by one of the Representatives James C. Corman: “We finally quit,
not because we hit on a rational formula, but because we were exhausted. And
finally we got one that almost none of us could understand at the moment. We
were told that the statistics were not available to run the [computer] print on it. So
we adopted it, and it is here for you today”(Congressional Record, June 22, 1972
Daily Edition, p. H5949).

The political reality is that the development of a formula allows coalitions
to form and achieve political compromise that might not be otherwise achieved
(Melnick 2002). Legislative goals behind the formulas are often vaguely enough
stated to achieve widespread support, while the votes and compromises focus
on the numerical allocations. Appearance is important, and so formulas include
proxies for need, capability, and effort – even if the elements cancel each other
out and lead to allocations that are essentially per capita, because a pure pop-
ulation formula does not appear to address particular problems (Spencer 1982,
525).

3.2. Effect of Inaccurate Demographic Statistics

Formula-based allocations that depend on demographic statistics are to some de-
gree sensitive to changes in the statistics. The apportionments described in Section
3.1.1 are highly sensitive for certain data configurations – at some point, a change in
population count of a single person must lead to a gain or loss of a House seat. The
apportionments, being integer, are not continuous functions of the data. Most fund
allocations do change continuously with data values, although use of data-based
thresholds to determine eligibility may imply discontinuities (Zaslavsky and
Schirm 2002). For example, an area may be eligible for funds only if its population
size, its growth rate, its computed allocation, etc. exceeds a given threshold.

Some allocation rules are expressed in words in legislation but are so complex
that they only have been expressed as iterative algorithms rather than as analyti-
cal formulas. For example, the General Revenue Sharing allocations to more than
39,000 local governments were based on an iterative algorithm that was not guar-
anteed to converge (Spencer 1980a, Ch. 5). Such complexity makes it difficult to
apply approximations such as the delta method in error analysis.

When allocation formulas divide a fixed total, such as a fixed number of seats or
a fixed sum of money, they often involve population shares, or the ratio of an area’s
population to the total. If all areas experience the same proportional change in their
population, their allocations may remain unchanged. This fact too often is ignored
by local governments in calculating how much funding they are shortchanged due
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to errors in population counts. The most reliable way to assess the sensitivity of the
allocation to changes in the data is to compute the allocations under alternative data
configurations, as in a sensitivity analysis. Such analysis will show how changes
in the data cause changes in the allocations.

To say how changes in data affect errors in the allocations is a different matter,
because a discussion of error presumes the existence of a target value. Often,
one can define the target value as the value of the allocations that would result if
error-free data were input into the existing allocation formula (cf., the discussion
of estimating equations in Chapter 3). In some cases this principle does not yield
an unambiguous definition. For example, as discussed in Chapter 2 there may
exist alternative conceptual definitions of population, not to mention different
concepts of income or employment status. Therefore, we cannot casually assume
that published statistics are valid, i.e., that the concept they measure is appropriate
for the allocative uses they are put. But, assuming that particular statistics are
valid, we may say that error-free statistics arise if there is no sampling error or
non-sampling error in the measurements as applied to the operational definitions
for the statistics.

Most formulas for allocating monies involve more than just a single data series.
Reducing error in one data series is not guaranteed to reduce overall errors in
allocations, unless the errors in the different series are independent with zero
means. In fact, it is possible that eliminating error in one series may increase the
error in the allocations.

3.3. Beyond Accuracy

In addition to validity, timeliness and the level of detail are important aspects of
data quality. In many countries population estimates are used that are years out of
date and, as discussed in Section 4 of Chapter 2, for some types of events it may
not be possible to collect timely statistics at all. Level of geographic, economic, or
educational detail is an issue of aggregation. In many countries, statistical agencies
have a more difficult time producing statistics for smaller areas as compared to
larger areas, due to data availability and the inherent unstability of genuinely small
domains. Legislators may want more detail than the statistical system can readily
handle, which presents both a problem and an opportunity for statistical agencies.

For example, during the development of the General Revenue Sharing formulas,
legislative staff needed to decide whether the allocations should be made to states
and large cities or to smaller jurisdictions as well. At the time the Census Bureau
was not producing postcensal estimates for very small areas (with population sizes
of 200 and below), which is a difficult challenge for a statistical agency, but impor-
tance of General Revenue Sharing presented an opportunity for increased funding
and decreased bureaucratic barriers so that the small area estimation program could
be strengthened.

Assuring timeliness in data used for allocations seems generally desirable. This
does not mean that the most recent data should always be used as such. Local
governments as well as individuals on government pensions need to be able to
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predict what their allocations will be from one budget period to the next. Therefore,
some form of averaging recent past data may be desirable to prevent the allocations
from fluctuating too much (e.g., Alho and Salo 1998).

Stability may even be important enough to warrant a decision to not correct the
statistical series for errors that are discovered (and corrected in various revisions
of data series). For example, the Consumer Price Index (CPI), which measures
inflation, is composed of sub-indexes measuring inflation in costs of food, housing,
etc. While the U.S. government publishes changes from such revisions to the
component price indexes, it generally does not publish retroactive changes to the
overall CPI because of the significant role the CPI plays in setting cost-of-living
increases contracts and fund allocations (U.S. Federal Committee on Statistical
Methodology 1982, 2).

4. Decision Theory and Loss Functions

4.1. Introduction

Consider a decision maker who will choose an action based on available infor-
mation. The action might be to choose how much money to set aside for future
pensions (Chapter 11), to choose which set of alternative estimates of current
population to publish for apportioning the U.S. House of Representatives (Sec-
tion 3.1.1), or deciding how much money to spend on research and production of
statistical information (Spencer 1980a, Savage 1975, Törnqvist 1948). The con-
sequences of each alternative action may vary in different ways depending on the
state of nature, such as the true population size, and the consequences need not be
symmetric.

Common methods of estimation such as maximum likelihood do not allow for
such distinctions. Although the usual Neyman-Pearson methods for hypothesis
testing can account for asymmetrical consequences in hypothesis testing by varying
the probabilities of rejecting the null hypothesis when it is true and failing to reject
it when false, researchers and decision makers too often simply set the first type
of error probability at 0.05 and allow the second type to be whatever it might be
(Exercise 1).

Example 4.1. Asymmetric Consequences of Forecast Error. A government agency
is forecasting total national population. Suppose the future population size is θ1,
and the forecast is normally distributed with mean θ1 and variance θ2. An error in
the forecast leads to a cost or loss proportional to the error, but the loss from an
underestimate is λ times as severe as the loss from an overestimate. See Muhsam
(1956) for a more detailed example in the context of planning for future water
supply. ♦

We consider that a decision maker is to choose among a set of actions, A, called
the action space. In Example 4.1 the action is a guess at the future population, so
A = {0, 1, 2, . . . }, the set of positive integers. We assume that the action space is
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pre-specified, i.e., it does not depend on which element in the sample space was
realized. This is an “uninformativeness” assumption concerning the action that
does not always hold in practice. For example, an action may lead to new insights,
a rethinking of strategies, and a formulation of new alternative actions.

The consequences of an action depend on the state of the world, θ , which belongs
to a state space or parameter space, �. In Example 4.1, � = {(θ1, θ2)T |0 < θ1, 0 <

θ2}. Partial information about the state of the world is provided by an estimate
whose possible values lie in the sample space, S. Typically, in statistical decision
theory, the set of possible probability distributions over S is specified so it depends
on the state space. In Example 4.1, the possible distributions for the estimate were
N (θ1, θ2).

The consequences of an action depend on the state of nature, and the relative
valuations of consequences are represented by a real-valued loss function l defined
on � × A such that (θ, a) is at least as good as (θ, a′) if and only if l(θ, a) ≤
l(θ, a′). In Example 4.1, the loss function is of the “linear” form (Raiffa and
Schlaifer 1972) and only depends on the error in estimating the first component
of θ

l(θ, θ̂1) ∝
{

c(θ̂1 − θ1) if θ̂1 > θ1

λc(θ1 − θ̂1) if θ̂1 ≤ θ1.
(4.1)

The proportionality constant c > 0 can be interpreted as translating the estimation
error to monetary loss, for example.

A decision rule d: S → A tells us which action to take after seeing the estimate.
The decision d(s) for s ∈ S is a random variable with a conditional probability
distribution given any θ ∈ �. (It is possible that θ is a vector.) We define the
risk of the decision rule as R(θ, d) = Es[l(θ, d(s))|θ ]. Suppose that in advance
of seeing the estimate we have a probability distribution, or a prior distribution,
over �. Then, we define the Bayes risk of the decision rule as the expected risk,
or B(d) = E[l(θ, d(s))] = Eθ [R(θ, d)]. In the case of Example 4.1, the forecast
equals the estimate s, and the decision rule is simply d(s) = s for s ∈ S = A.

The decision-theoretic framework allows one to choose among decision rules.
If R(θ, d1) ≤ R(θ, d2) for all θ and R(θ ′, d1) < R(θ ′, d2) for some θ ′, then we say
that d1 dominates d2. If neither rule dominates the other, then the unknown state of
nature θ determines which has a smaller risk. If a prior distribution for θ is avail-
able, we can compare the Bayes risks, and choose d1 over d2 if B(d1) ≤ B(d2).
A Bayes rule minimizes the Bayes risk. For insight concerning the nature of a
Bayes rule, consider the posterior risk Eθ [l(θ, d(s))|s]. Observe that the Bayes
risk B(d) = Es[Eθ [l(θ, d(s))|s]] is minimized by a decision rule d that mini-
mizes the posterior risk for each s (provided that one exists). This means that
once s is observed, i.e., once the estimate is produced, we choose the action
a = d(s) that minimizes Eθ [l(θ, a)|s]. For example, if l(θ, a) = (θ − a)2, we have
that Eθ [l(θ, a)|s] = Eθ [(θ − a)2|s] = Eθ [(θ − Eθ [θ |s])2|s] + (Eθ [θ |s] − a)2 ≥
Eθ [(θ − Eθ [θ |s])2|s]; the lower bound is attained when a = Eθ [θ |s], the posterior
mean of θ .
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Example 4.2. Posterior Risk Under Linear Loss. Suppose θ1 has a posterior prob-
ability density function f and posterior c.d.f. F and the loss function (4.1) applies.
The posterior risk of the action x is

c

x∫
−∞

(x − t) f (t) dt + λc

∞∫
x

(t − x) f (t) dt

= cx F(x) − c

x∫
−∞

t f (t) dt − λcx(1 − F(x)) + λc

∞∫
x

t f (t) dt. (4.2)

The derivative with respect to x is (after simplification) cF(x) − λc(1 − F(x)).
The second derivative is positive, so a minimum occurs when the first derivative
is zero, or when F(x) = λ/(λ + 1). If λ = 1, the optimal forecast is the median
of the posterior distribution of θ1. When λ > 1, so that underestimates are more
consequential than overestimates, we see that the optimal forecast is greater than
the median. If the posterior distribution is N (s, σ̂ 2), the optimal forecast x satisfies
�((x − s)/σ̂ ) = λ/(λ + 1), where � is the c.d.f. of a N (0, 1) random variable, so
x = s[1 + (σ̂ /s)�−1(λ/(λ + 1))]. The proportional shift in x from s is equal to
the product of the CV, σ̂ /s, and �−1(λ/(λ + 1)). If the CV is 0.1, the proportional
shift ranges from 4% to 13% as λ ranges from 2 to 10, but if the CV is 0.5, it ranges
from 22% to 67% as λ ranges from 2 to 10. The shift can exceed 100% if the CV
is large. ♦

4.2. Decision Theory for Statistical Agencies

In many developments of statistical decision theory, the decision maker is assumed
to be an individual person with preferences that satisfy certain postulates of “ratio-
nal behavior” (cf., Section 3.5.1 of Chapter 8), and under those conditions one can
show that the decision maker can represent uncertainty with a probability distribu-
tion and will seek to minimize the expected value of the loss function l or, equiv-
alently, maximize the expected value of a utility function defined as −l (Savage
1954)4. Even for an individual, the postulates of rational behavior often are more
normative than descriptive of actual behavior under uncertainty. For example, the
postulates do not take into account the cost of information processing and they as-
sume people know their preferences, will choose from a prespecified set of possible
actions, and will represent uncertainty by a probability distribution (March 1978).

In many applications of statistical demography, decisions are made not by in-
dividuals working alone or representing just themselves, but by committees or
agency heads within bureaucracies. As such the decisions are affected by many
actors in complex ways. If the decision making process can be represented by
a decision rule d: S → A, if the decision maker is willing to adopt a particular

4 Formally, this means that l(θ, a′′) = pl(θ, a) + p′l(θ, a′), where a′′ is the randomized act
(in A) equal to a with probability p and a′ with probability p′ = 1 − p.
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function l as an optimization criterion, and if uncertainty can be reflected by spec-
ifications of probability distributions, then the decision goal can be represented as
minimization of the expected value of l and we may sidestep the question of postu-
lates of rational behavior for organizations and the issue of whose preferences are
under consideration. This representation is simplistic and certainly not descriptive
of much of organizational behavior (e.g., March 1994), but it does have some
benefits. By simplifying, it allows one to understand the major components of the
decision problem. The representation may thus lead to some useful insights. In
fact, much of the value of the analysis may even be in setting up the representation
of the decision problem and identifying how and why errors in statistics may lead
to adverse consequences.

There should be some restrictions on the loss function l used by statistical
agencies. Note that comparison of two alternative decision rules on the basis of
risk is unaffected if the loss function l(θ, a) is modified to l(θ, a) − c(θ ), because
the difference in loss for decision d(s) and decision d ′(s) is l(θ, d(s)) − l(θ, d ′(s))
in either case. Consideration of c(θ ) = infal(θ, a) suggests that there is no loss
of generality in assuming that l(θ, a) ≥ 0 and that l(θ, d) = 0 if infal(θ, a) is
attained for some action a ∈ A. In this case the loss function measures the excess
loss relative to the optimal attainable (or limit thereof); such a loss function is called
a regret function. When a statistical agency (e.g., a government agency or other
agency concerned with a reputation for honesty) is using statistical decision theory
in developing an estimate, it is important that the decision theoretic analysis guide
it towards truth. In formal terms, this means that if θ is a quantity being estimated
and l is a regret function, then l(θ, θ ) must equal zero. This requirement is called
Fisher-consistency. If a loss function is not Fisher-consistent, the optimal value of
the estimate will be one with error!

Example 4.3. When Policy Makers Prefer Error to Accuracy. (a) If the national
government policy is to move the actual total fertility rate τ to a target τ0, the top
decision maker(s) in the government may view the loss in an estimate τ̂ as having
a minimum when τ̂ = τ0, regardless of the actual value of τ From a formalistic
point of view, the optimal estimate would then be τ̂ = τ0, irrespective of what
data analysis indicates. A statistical agency or research group that simply reported
τ̂ = τ0 would lose credibility, however. Such credibility issues are common in
forecasts of the national budget surplus or deficit and energy supply and demand,
with different parties (and more neutral observers) developing forecasts that differ
widely. (b) Jabine and Schwartz (1974) developed a loss function for determin-
ing optimal sample size for data collection in the Supplemental Security Income
program that distributed U.S. federal government monies to the states according
to sample estimates θ̂i of population characteristics θi of state i . They adopted
the federal government’s point of view, which they took to “minimize losses from
estimates which result in overpayments to the States” (p. 104), and they defined a
loss function equivalent to (4.1) but with λ = 0. The optimal estimate is then to
take θ̂i as small as possible, which violates Fisher-consistency. (To avoid such an
implication, they imposed additional constraints of unbiasedness.) ♦
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Some developments of decision theory seek to take an objective view and avoid
reliance on subjective probabilities and subjective utilities or loss functions. To
formulate the loss function, one would evaluate consequences of data error for
making wrong decisions, misallocating public benefits, or misguiding research.
For example, Wald (1947) suggested that

“In industrial problems, [the loss function] may be thought of as expressing the financial loss
caused by taking the [wrong] action, [with loss equal to zero for] a correct decision . . . . The
determination of these [loss] functions cannot be regarded as a statistical problem. They
will be chosen on the basis of practical considerations in each particular problem.”

The losses attributable to errors in statistics produced by government agencies are
not merely financial but may involve changes in social welfare. Unfortunately, we
know but few uses of the estimates; even known allocative uses – Congressional
apportionment is one example – resist empirical estimation of the consequences of
perturbations in allocations that arise from errors in the statistics, let alone objective
valuation of alternative consequences. Thus, such an approach is not feasible for
multi-purpose large scale demographic statistics.

A practical approach is to view a loss function as an abstract optimization
criterion and to select a criterion whose use in other, similar situations has resulted
in good practices. The loss function typically will involve as its action either
choice of an estimator (as in apportionment or allocation problems, decisions
about whether to adjust for census undercount, and which point forecast to feature
as the middle variant) or aspects of the design of a data program (such as how
much money to spend on a census or survey and how to allocate a sample). In
either situation, attention will be paid to estimation of a population characteristic
or parameter, say θ. Although abstract, the criterion should be generally related to
the uses of the statistics and one should define θ to represent those uses in a general
way. Consider a statistical agency. For planning purposes and general information,
including the development of denominators for demographic rates, population
totals are important. Thus, θ could be defined in terms of total population of
areas or groups. For many allocative uses, θ should reflect population shares. For
example, to reflect uses of population estimates to apportion the U.S. House of
Representatives, it would be appropriate to set θ to be the proportion of the U.S.
population that is in each state – the state “share” of the population – instead
of setting θ to be the (integer) allocation of seats that would occur if the true
population were known; analysis of the latter is more difficult technically than the
former. For another example, consider the allocations that would occur if a fixed
sum of money were allocated to areas or subgroups proportionally to population.
If the fixed total is allocated nationally, θ should refer to population share relative
to the nation; if the allocation is within a state, then the population share is relative
to the state population; if the allocation is to all units of a given type, the share is
relative to the sum for all units.

The matter of representing uncertainty with probability distributions is another
concern for statistical agencies. We have discussed the penchant of forecasters
to avoid specifying forecast uncertainty with probability distributions and instead
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to produce alternative scenario-based “projections” (Chapters 7, 8), and we have
shown how the intervals constructed from the latter do not have consistent proba-
bilistic interpretations (Chapter 9). The postulates of rational behavior imply that
if probabilities are unknown, people will formulate subjective probabilities and act
according to those subjective probabilities. Some experiments of Ellsberg (1961)
presented people with a set of choices between gambles with known probabil-
ities and gambles with unknown probabilities and found that people showed a
preference for the lotteries with known probabilities and a preference against the
“ambiguous” lotteries with undetermined probabilities. The results of the exper-
iment if taken at face value show violations of postulates of rational behavior
(Complement 2).5 The issue is compounded in use of decision theory by a sta-
tistical agency, where it is unclear whose preferences or subjective probabilities
dominate. An actor in a bureaucracy might find the information compelling enough
to justify a personal decision (indeed, given sufficiently strong preferences, the per-
son might hardly need any information), but if the decision must be justified to
others then stronger information may be needed (Boruch 1990). We have observed
situations where statistical agencies are unwilling to act on the basis of statistical
models whose assumptions cannot be validated, even though lack of action may
correspond to implicit use of a statistical model demonstrated to be false.

Example 4.4. Non-Adjustment of Undercount Estimates for Correlation Bias. As
discussed in Chapter 10, Section 5.6, DA sex ratios may be used to provide a variety
of adjustments for correlation bias. The dual systems estimates of undercount in
the 1990 U.S. census and the March 2001 estimates of undercount in the 2000
U.S. census did not adjust for correlation bias, in large part because there was
no unambiguous way to choose one method over another and the impact would
be appreciable. Although not a statistical argument, such considerations are quite
important for public confidence in the government. Another major consideration
was a desire that the estimates of net undercount have the correct sign, even if
the estimates were pulled in towards zero (U.S. Census Bureau 2003a, 50). This
attitude is consistent with the notion that a sin of commission is worse than a sin
of omission, or “do no harm”. ♦

Example 4.5. Adjustment for Correlation Bias for Hispanics in the 2000 U.S.
Census. In March 2003 the U.S. Census Bureau published its A.C.E. Revision II
estimates of net undercount in the 2000 census, which unlike previous estimates
included adjustments for correlation bias. Whereas the March 2001 estimate of
net undercount for the 2000 census was 1.18%, the March 2003 estimate was a
net undercount of −0.49% (i.e., a net overcount), and if a correlation bias ad-
justment had not been made the estimated net undercount would have been yet
more negative, at −1.12% (U.S. Census Bureau 2003a, 2, 5). As discussed in

5 Daniel Ellsberg became famous for leaking the Pentagon Papers to the New York Times
in opposition to the U.S. involvement in war in Vietnam. Kadane (1992) suggests that the
subjects in the experiments did not trust the experimenter, and is unconvinced that the
postulates of rational behavior were violated.
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Example 5.5 of Chapter 10, the Census Bureau did not have demographic data
to support a correlation bias adjustment for Hispanics that was different than the
adjustment for Non-Blacks as a group. Ethnographic studies have supported a view
that Hispanics would be more prone to correlation bias than other Non-Blacks, but
there is no straightforward statistical basis to support any one of the alternative
estimates of correlation bias for Hispanics. ♦
Example 4.6. Alternative Estimates of Population. Despite evidence of very large
errors in the 2000 census – 17. 2 million erroneous enumerations and 15.9 mil-
lion census omissions for a census count of 281.4 million (National Academy of
Sciences 2004, 253), the U.S. Census Bureau ultimately decided not to adjust the
2000 census for undercount. The Census Bureau noted that although the adjusted
numbers might have been more accurate “on average”, it could not “be confident
of improvements in accuracy at the levels of geography for which estimates are
produced” (U.S. Census Bureau 2003a, 2). The Bureau identified four particular
sources of concern, notably the uncertainty in the estimates of correlation bias,
and an independent review by the National Academy of Sciences (Citro, Cork,
and Norwood, 2004, 256–258) shared the Bureau’s concern for correlation bias,
among others. In our view, it is quite plausible that one could have several alterna-
tive estimates of population, each derived under a different model for correlation
bias and each more accurate than the census count, yet because there would be
no clear basis for choosing one over the other, the Census Bureau would reject
them all in deference to the census counts, despite the lower accuracy of the
latter. ♦

4.3. Loss Functions for Small Area Estimates

To develop a loss function for small area estimates, we proceed in two steps, first
developing component loss functions for individual areas and then forming a sum-
mary of the components. If θ̂i denotes an estimate of the population characteristic
θi for area or subgroup i , we will consider the component loss function li (θi , θ̂i )
or more generally li (θ, θ̂) to measure the discrepancy between θ̂i and θi . The ex-
pected value of the component loss function will be called the component risk
function. Examples of widely used measures of risk in this context are standard
deviation, RMSE, CV, and their squares. The measure of risk provides a summary
of the accuracy of a statistic or, more generally, of the statistical program giving
rise to the statistic. In some cases, the measures are most useful for comparative
purposes, i.e., for comparing the accuracy of one program or statistic with another.

Moving from a measure of a statistic’s accuracy for a single area or group to
a summary measure of accuracy for a set of areas or groups requires some value
judgements concerning the importance of one set relative to another (Spencer
1980c). We define an aggregate loss function as a weighted sum of component loss
functions,

l(θ, θ̂) =
∑

i

wi li (θ, θ̂), (4.3)
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with wi > 0. Value judgments cannot, of course, be derived completely on tech-
nical grounds. Furthermore, value judgements may vary over time and among
different people. The loss function, which serves to rank alternative choices of
multivariate distributions of θ̂, represents a social convention (Keyfitz 1979). Thus,
there is an advantage to having flexibility in how the aggregate loss function is
constructed, and there is an advantage to using several loss functions, e.g., with
alternative choices of wi in (4.3). If the alternative loss functions give different
rankings among alternative decisions (e.g., sample allocations or estimators), then
the choice will depend on values. We find that clarity is advanced when we can
separate technical issues from political judgements, and the decision-theoretic
framework provides a means for doing so. We do not regard the results of a formal
decision analysis as necessarily providing “the” answer to a complicated question,
but rather we find that the exercise of carrying out the analysis leads to greater
understanding of the issues.

Example 4.7. Value Judgements in Sample Allocation. For example, in the context
of designing a stratified sample, suppose sample allocation A leads to a CV of 1%
for every local government, and allocation B leads to a CV of 0.1% for every
local government with more than 5000 population and a CV of 3% for the others.
The latter provides more accurate estimates for most of the people, and the former
provides more accurate estimates for most of the local governments. Thus, neither
allocation is uniformly more accurate for all areas. To say that one allocation (or
sample design, more generally) estimator is, overall, more accurate than the other
reflects a value judgement concerning what kinds of accuracy are more important.
Suppose further that the small areas each have 1,000 population and the large areas
each have 35,000, and suppose 70% of the areas are small and the rest are large.

CV (%) for AllocationType of Population Percent of
Area per Area All Areas A B

Large 35,000 30% 0.1% 1.0%
Small 1,000 70% 3.0% 1.0%

If the expected aggregate loss is the average of the coefficients of variation, the
expected loss for sample allocation A is 0.02 and the expected loss for B is 0.01,
and so B is more accurate. If, on the other hand, the expected aggregate loss is the
weighted sum of the coefficients of variation, with weights equal to population size,
then the expected losses for A and B are proportional to 31.5 and 112, respectively,
and so A is more accurate.

To see how this is reflected by alternative weightings of loss functions, let λ

denote the weight given to the loss function for small areas, and 1 − λ the weight
for the loss function for large areas, with 0 ≤ λ ≤ 1. The overall expected loss
function for sample allocation A is 0.001(1 − λ) + 0.03λ and the overall expected
loss function for B is 0.01 (= 0.01(1 − λ) + 0.01λ). If λ < 0.31 then the expected
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loss is smaller for A than B, and so A is more accurate. If λ > 0.31 then the expected
loss is larger for A than B, and so B is more accurate. The choice of λ represents a
value judgement. Such issues played a role in the A.C.E. sample design for 2000
Census in the U.S. (Schindler 1998), where the goal was to achieve CVs for the
dual system estimates of 0.5% in all states and standard errors of about 60,000 in
the larger states. ♦

Aggregate loss functions commonly used in statistical decision problems in-
volving small areas include a weighted sum (U.S. Federal Committee on Statistical
Methodology 1978)

l(θ, θ̂) =
∑

i

wi |θ̂i − θi |α, (4.4)

where α > 0. Choosing α = 2 leads to the commonly used squared error loss
function. Consider θi as the population share or population size of state i . Setting
wi ’s constant gives unweighted squared error loss; setting wi inversely propor-
tional to θi gives the so-called weighted squared error loss, and setting wi inverse
to the square of θi gives the so-called relative squared error loss. In application, θi

is unknown and empirical comparisons based on (4.4) will be based on an estimate.
If the various loss functions give different rankings among the alternative sample
allocations, then neither allocation is clearly superior to the other.

Loss functions of the form (4.4) are based on a sum of individual “losses” to the
areas or groups, consistent with a utilitarian view of social welfare measurement
(Spencer 1985b, 816–817). Depending on its notion of fairness, an agency may
require that minimization of aggregate expected loss not be attained at the cost
an excessively large component loss (Rawls 1971, Efron and Morris 1971). It is
possible that the sum of the losses is smaller for one choice of θ̂ but the expected
loss for a particular unit is quite large and larger than under an alternative choice
of θ̂. In contrast, loss functions of the form maxi {li (θ,θ̂)}are concerned with the
maximum component loss. The expected values of the maximum are difficult
to estimate, however, and a more tractable criterion to check that no individual
component loss is excessive is

max
i

{E[li (θ, θ̂)]}. (4.5)

It seems reasonable that in practice aggregate loss functions of the form (4.3) or
(4.4) should be used subject to the restriction that (4.5) is not excessively large.

4.4. Loss Functions for Apportionment and Redistricting
4.4.1. Apportionment

If θi = hpi is the number of House seats times the population share of state i
and θ̂ i is the integer apportionment, then the apportionments that minimize (4.4)
with wi = 1 are obtained from Hamilton’s method of apportionment (Section
3.1.1; Birkhoff 1976). Websters’s method and Hill’s method minimize (4.4) for
α = 2 when wi equals 1/θi and 1/θ̂i , respectively. Adams’s method and Jefferson’s
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method minimize (4.5) when li (θ, θ̂) equals θi/θ̂i and θ̂i/θi , respectively. (Balinski
and Young 1982)

4.4.2. Redistricting

Consider that the population of a large area such as a nation is partitioned into
mutually exclusive states, and an integer number ni of districts is set for each
state. Each state is to be partitioned into ni districts such that each district is of
equal size. In the U.S., the number of Congressional districts equals the number
of House seats determined in the apportionment (Section 3.1.1) and law requires
that districts be constructed so all districts in any state i have the same estimated
share of the state population, 1/ni . Ideally, the true district shares would all be
equal within each state.

A simple measure of inequality is the average within-state variance among
the true population sizes of the districts. Let Pi j denote the true population size
of congressional district j = 1, . . . , ni in state i , and define n = �i ni . Let Pi =
� j Pi j be the total population of state i , let P̄i = Pi/ni be the average district size
in state i , let θi j = Pi j/Pi be the fraction of state i population that is in district j ,
and let θ̄i = ∑

j θi j/ni = 1/ni be the average fraction. The within-state variance
among the true population sizes of the districts is σ 2

i = ∑
j (Pi j − P̄i )2/n, and

the overall mean squared deviation from the state means is σ 2 = ∑
i

∑
j (Pi j −

P̄i )2/n = ∑
i (ni/n)σ 2

i .

Let P̂i j denote the estimate of Pi j on which the district boundaries were con-
structed, P̂i = ∑

j P̂i j , and θ̂i j = P̂i j/P̂i . By construction, θ̂i j = 1/ni = θ̄i j , so
one can show (Exercise 3) that

σ 2 =
∑

i

P2
i

∑
j

(θi j − θ̄ i )
2/n

=
∑

i

P2
i

∑
j

(θ̂i j − θi j )
2/n. (4.6)

This is of the form (4.4), where the summation runs over all n districts and the
weights are P2

i /n for any district j in state i . Given an estimate V̂ i j of the mean
squared error of the estimated population share θ̂i j of district j in state i , we can
estimate σ 2 by σ̂ 2 = ∑

i P̃2
i

∑
j V̂ i j/n, where P̃i is some estimate of Pi . (If we

are comparing σ̂ 2 for alternative estimators, we will want to use the same P̃i ’s for
each; otherwise we may take P̃i = P̂i .)

Example 4.8. Expected Loss of Adjusted and Unadjusted 2000 U.S. Census for
Redistricting. The U.S. Census Bureau was prohibited by law from using the
sample-based DSE to adjust the 2000 census for undercount, but it had the option
of providing adjusted numbers in March of 2001 for use in redistricting. The
Census Bureau developed estimates of the difference between the expected values
of (4.6) for adjusted and unadjusted estimates population based on the 2000 U.S.
census (Mulry and Spencer 2001), using the methods described in Chapter 10,
Section 6. Although the formal analysis suggested that adjustment would improve
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accuracy of redistricting (Hogan 2001, Table 6; Navarro and Asiala 2001, Table
1.A), time pressures for the decision analysis meant that much of the evaluation
data for estimating non-sampling errors in the DSE were not yet available, and
the analysis assumed that the patterns of error were similar to those in 1990.
That assumption turned out to be incorrect. The Census Bureau, concerned that
errors were not being accurately estimated (Chapter 10, Example 5.3), decided
not to adjust at that time. To permit additional time for developing evaluations
of the non-sampling errors in future DSE’s, the National Academy of Sciences
has recommended possible extension of the deadline for producing population
numbers for redistricting (Citro, Cork, and Norwood 2004, 346–347). ♦

4.5. Loss Functions and Allocation of Funds

The choice of a loss function for the effect of data error on allocation of funds
should depend on the decision problem at hand. If one really views an allocation
formula as optimal in some sense, then one could consider quantifying the social
benefits accruing from more accurate statistics in the formula. In such a case, for
example, if demographic statistics were part of a formula for allocating government
monies for education, one might consider the increase in test scores that would
arise from use of more accurate statistics to determine the fund allocations. Such
an analysis seems hopelessly difficult. In light of the discussion in Section 4.2,
we thus urge that transparency and tractability should be strong considerations.
If the problem involves choice of one set of estimators rather than another, a
loss function of the form (4.4) with α = 2, i.e., squared error, should suffice. Use
of other choices of α presents analytical problems for estimating moments of
θ̂ k , particularly when biases are estimated with non-negligible variances; Mulry
and Spencer (1993, 1084) and Fay (1992) discuss difficulties with α = 1 in this
context.

If the decision problem at hand concerns spending more money or less money on
statistics for use in allocating funds, we recommend a loss function of the form (4.4)
with α = 1. Such loss functions are simple to interpret (Section 4.5.1). Also, such
loss functions lead to decisions to spend less money on data when the allocation
formulas are very far from optimal, if the nonoptimality is acknowledged (Sec-
tion 4.5.2).

4.5.1. Effects of Over- and Under-Allocation

To a good approximation, many allocation formulas can be viewed as distributing
a fixed amount of funds (or other benefits). First consider the formula’s allocations
if there were no error in the statistics used to compute them, and let θi denote the
amount for recipient i . When imperfect data are used, the amount for recipient i
is, say, θ̂i . If the error in the allocation, θ̂i − θ, is positive (an overpayment), the
recipient is really receiving a benefit! Thus, consider relaxing our requirement that
the component losses be non-negative, so that if the error is positive, θ̂i − θ > 0,

the loss to the recipient is negative, and if the error is negative (an underpayment)
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then the loss is positive. Taking an underpayment to be more significant than an
overpayment of the same magnitude and taking the loss to be linear leads us to
the component loss function li (θ, θ̂) = a(θi − θ̂i )+ − b(θ̂i − θi )+, with a, b > 0
and where we define (x)+ = max {0, x} . Summing li over recipients then yields
the aggregate loss function (4.3). If θ = θ̂ then l(θ, θ̂) = 0. The requirement of
Fisher-consistency implies, however, that if θ �= θ̂ then l(θ, θ̂) > 0, and that in
turn implies (Exercise 4)

1 ≤ maxi {wi }
mini {wi } <

a

b
. (4.7)

If we were to take wi to be some measure of the size of recipient i , we would
typically find that ratio a/b will be much closer to 1 than (4.7) would allow. As a
result, it is reasonable to take wi = 1 in (4.3). In the (common) case of allocating
a fixed amount,

∑
i (θi − θ̂i ) = 0, and (4.3) then simplifies to

∑
i

c|θ̂ i − θi | (4.8)

with c = (a − b)/2 > 0. Spencer (1980a, Chapter 1 and 1980c) provides further
discussion.

The assumption of piecewise linear loss can be derived from more general con-
siderations. If we take the component loss from an overallocation to be a constant
times the component loss from an underallocation, we obtain the component loss
function li (θ, θ̂) = ag((θi − θ̂i )+) − bg((θ̂i − θi )+), where g(0) = 0 and it is nat-
ural to take g to be increasing. Considering the aggregate loss function to be given
by (4.3), requiring Fisher-consistency, i.e., l(θ, θ̂) ≥ l(θ,θ) to hold, and consider-
ing both the number n of areas or recipients to be arbitrary and allowing all possible
vectors of errors in allocations θ̂ − θ such that

∑
i (θ̂i − θi ) = 0, we may show

that there exist constants A and B not depending on n such that B < g(x)/x < A
for all x ≥ 1 (Spencer 1980a, 43–45). This implies that g(.) cannot be far from
linear for large misallocations x .

4.5.2. Formula Nonoptimality

It is only realistic to recognize that many allocation formulas are imperfect, both for
reasons of political compromise (Section 3.1.2) and the fact that the statistics used
as inputs into the allocation formulas may be only crude proxies for the concepts
of need, capability, and effort that are reflected in so many allocation formulas
(Louis, Jabine, and Gerstein 2003, 35–39, Spencer 1982b). Here we will consider
modifying the loss function to account for the nonoptimality while at the same
time preserving Fisher-consistency. Let θ̂ denote the vector of allocations and θ
denote the vector of allocations if the statistics used to compute the allocations
were error-free. In addition, let θ∗ be the vector of “ideal allocations” that would
occur if the formula were optimal and data were perfect and define η = θ − θ∗,
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so that ηi denotes the amount of nonoptimality in the formula’s allocation for
recipient i . To reflect the non-optimality in the loss function, we modify (4.4) to

l(θ, θ̂) =
∑

i

wi |θ̂i − θi + ηi |α. (4.9)

If the ηi ’s were known, then (4.9) would not lead one to estimate θi by θ̂i . To
preserve Fisher-consistency, we will consider the ηi ’s to be random variables
symmetrically distributed about 0 and independent of θ̂ given θ (Spencer 1985a).
This implies that the loss l(θ, θ̂) is random even for fixed θ̂ and θ. We will consider
implications of (4.9) in Example 7.1, below.

4.5.3. Optimal Data Quality with Multiple Statistics and Uses

Statistics produced by government agencies are multi-purpose. Even among al-
locative uses of statistics, the same population estimates may be used in a myriad of
programs and in quite different ways. For some, an area will receive more money
if its population estimate increases whereas for others, an area with declining pop-
ulation will receive more money if its population decreases (and its population
decline thus becomes larger). In principle, one could develop a separate loss func-
tion for each allocation program that uses the data and then construct an overall
loss function by summing the loss functions for the individual programs.6,7 (At-
tention would need to be paid to scale factors for the loss functions for individual
programs.) Kish (1987, 228–229) discusses such formal analysis in the context of
the design of the World Fertility Survey.

Moving beyond uses for allocations to consider uses for decisions and research
makes construction of a loss function far more difficult although not completely
impossible (Panel on Methodology for Statistical Priorities 1976, Spencer 1982a).
Still, we are lacking a convincing analysis of whether accuracy of demographic
statistics for allocation should outweigh the need for accuracy for research and
other less superficially obvious uses. Comparing the importance of allocative uses
with non-allocative uses is challenging (Keyfitz 1979).

5. Comparing Risks of Adjusted and Unadjusted
Census Estimates

In several countries, including the U.S., Australia, and the U.K., considerable at-
tention has focused on whether the census population numbers should be left as
reported or whether attempts should be make to “correct” them for estimates of

6 One might think that the allocations to an area from the diverse allocation programs
should be summed, and the loss function based on the net allocation. Such an analysis is
not necessarily better, however, because the allocation programs often are targeted within
areas, and because such an analysis would be enormously complex.
7 Alternatively, one could look at a sample of allocation programs and estimate the overall
loss function from the sample’s loss functions.
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net undercount, leading to so-called “adjusted” estimates. A key consideration is
whether adjustment will improve accuracy. Given the large number of areas and
subgroups, there is a question of how to measure accuracy for such highly multi-
variate statistics. Judgments concerning relative importance of errors in different
statistics may be far from unanimous. We believe that decision making will be
more transparent if such concerns, which are inherently political, can be separated
from technical questions of error assessment. The political priorities concerning
different statistics can be reflected in a weighted aggregate loss function, as dis-
cussed in Section 4.3. Once the form of the loss function, or loss functions if
several are to be used, is set, attention can focus separately on estimates of bias
and variance of the alternative estimates of population.

Whether the change in expected loss from adjustment is positive or negative
depends critically on the biases and variances of the adjusted and unadjusted
estimates. The adjusted estimate has both bias and variance resulting from the
sources of error discussed in Chapter 10, Section 5. The net effect of the sources
of error is estimated in a process called total error modeling (e.g., Chapter 10,
Section 5.3). The unadjusted census is viewed as having bias (net undercount)
but negligible variance. The bias can be estimated by comparing the census to the
adjusted estimates, and allowing for bias and variance in the adjusted estimates.

Here we discuss estimation of the difference in expected loss based on (4.4)
with α = 2, θi = population size or share in area i , and θ̂i equal to the estimate of
θi , based on the census, say θ̂i,c, or adjusted census numbers, say θ̂i,a . In the rest
of Section 5, let us condition on the realized census results θ̂i,c, so θi and θ̂i,c are
fixed and only θ̂i,a are random. To estimate the difference in expected loss we will
need to estimate �i = (θ̂i,c − θi )2 − E[(θ̂i,a − θi )2]. We may interpret �i as the
excess MSE of the census over the adjusted numbers. The difference in expected
losses based on (4.4) is thus a weighted sum of �i , say

� =
∑

i

wi�i . (5.1)

5.1. Accounting for Variances of Bias Estimates

Estimation of �i is not entirely straightforward because the components of error are
estimated with error. If the first two moments of the estimates of error components
are known, they can be taken into account, as we now show.

Let us write Ui = θi − θ̂i,c, for short. We estimate it by Ûi = θ̂i,a − θ̂i,cwhose
expectation is E[Ûi ] = Ui + Bi , where Bi denotes the bias in θ̂i,a, and whose vari-
ance is VU,i = Var(Ûi ). Suppose we have an estimator of the bias B̂i with variance
VB,i = Var(B̂i ), and covariance Cov(B̂i , Ûi ) = CBU,i . Next we assume that we
have available estimators of the second moments V̂U,i , V̂B,i , and ĈBU,i . Observe
that E[(θ̂i,a − θi )2] = B2

i + VU,i , so that �i = U 2
i − (B2

i + VU,i ). Suppose for the
moment that B̂i , V̂U,i , V̂B,i , and ĈBU,i are all unbiased. It follows (cf., (4.1) of Chap-
ter 8) that (Ûi − B̂i )2 − (V̂B,i + V̂U,i − 2ĈBU,i ) is an unbiased estimator of Ui

2.

Similarly, (B̂i
2 − V̂B,i ) + V̂U,i is an unbiased estimator of Bi

2 + VU,i . By subtract-
ing the latter from the former we get that �̂i = (Ûi − B̂i )2 − B̂i

2 − 2V̂Ui + 2ĈBU,i
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is an unbiased estimator of �i . Differences in expected loss based on (4.4) with
α = 2 can be estimated by weighted sums, �̂ = ∑

i wi�̂i .

5.2. Effect of Unmeasured Biases on Comparisons
of Accuracy

A problem with the preceding analysis is that the estimate of bias in Ûi , namely
B̂i , may itself be biased. For example, estimates of correlation bias in the U.S.
PES can be flawed (e.g., Alho et al. 1993 show that there is residual heterogeneity
in poststrata that are treated as being homogeneous), and estimates of synthetic
estimation error are speculative (Chapter 10, Section 5.7). To allow for the possi-
bility that B̂i is biased, write E[B̂i ] = Bi − βi . The unmeasured bias βi affects the
estimates of accuracy of both the adjusted and the unadjusted estimates, and it can
cause the comparison of expected loss, �̂, to be biased upward or downward. The
bias in �̂i can be shown to be E[�̂i − �i ] = 2βi E[Ûi ], and hence the bias in �̂ is

E[�̂ − �] = 2
∑

i

wiβi E[Ûi ]. (5.2)

This shows formally the fact that omitting components of bias in the adjusted
estimate from the loss function analysis can be to tilt the analysis in favor of
adjustment or non-adjustment, here depending on the sign of the right hand
side of (5.2). This explains why analyses of synthetic estimation bias based on
surrogate variables (as discussed in Chapter 10, Example 5.6) can give conflicting
results. For different choices of surrogate variables, E[Ûi ] will be fixed but βi

will vary, and the sign of the right hand side of (5.2) can vary. Thus, some choices
of surrogate variables (or other assumed models for synthetic estimation bias)
suggest that the effect of omitting synthetic estimation bias from B̂ increases �̂

and other choices suggest that the omission decreases �̂.

6. Decision Analysis of Adjustment for Census Undercount

Censuses contain error and post-enumeration surveys and demographic analysis
provide information about the census error. A fundamental statistical question is
whether and how to use the additional information to adjust the census numbers
in such a way as to improve their accuracy. Comparisons of expected loss provide
quantitative summaries concerning the relative accuracy of the alternative esti-
mates. The estimates of expected loss are imperfect, as they depend on estimates
of bias and variance that are themselves imperfect to a greater or lesser degree.

Example 6.1. Expected Loss of Adjusted and Unadjusted 1990 U.S. Census. Mulry
and Spencer (1993) present estimates of the expected values of (4.4) for adjusted
and unadjusted estimates of state shares of total population based on the 1990 U.S.
census. The weights wi were based on the unadjusted census counts in each case.
The loss function with wi = 1 and α = 1 is called absolute error loss.
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Expected Loss for State Shares Unadjusted Est. Adjusted Est.

Squared Error (× 106) 7.2 0.5
Weighted Squared Error (× 10−4) 1.2 0.1
Absolute Error (× 103) 9.7 2.8
Expected sum of errors in apportionment 1.8 0.5
of House seats

Estimation of the expected value of absolute error loss is difficult due to uncer-
tainty in the bias estimates and variance estimates for the adjusted and unadjusted
estimates (Mulry and Spencer 1993, 1084). Estimates of the expected value of
squared error loss tend to be inflated, but the inflation is constant for each esti-
mator and the differences in expected values across the two sets of estimators are
unaffected (Section 5.1). The estimates of variance of the adjusted estimate are
understated to some degree, and biases due to synthetic estimation error are not
taken into account. The latter omission biases the comparison of expected losses
but not in a known direction (Section 5.2). For a critique of the analysis, see Brown
et al. (1999b) and Anderson et al. (2000) and references therein. ♦

Example 6.2. Expected Loss of Adjusted and Unadjusted 2000 U.S. Census, A.C.E.
Revision II. Mulry and ZuWallack (2003) report estimates of expected loss for the
adjusted and unadjusted census estimates based on (4.4) with α = 2 and wi = 1/θi .
For comparison purposes, in computations wi was set proportional to the reciprocal
of the census count for unit i . A total of 10 loss functions were considered, 5 with
θi based on population size (or “level”) and 5 based on population share, and the
5 variants within each group considered geographic breakouts, e.g., states, coun-
ties, and places of various sizes. With the exception of the loss function based on
population level for places with more than 100,000 population, the expected loss
was smaller for the adjusted estimates. Sensitivity analyses were run with various
assumptions about errors, including synthetic estimation error (Griffin 2002) and
the results were essentially unchanged. A significant limitation of the analysis was
that, unlike previous DSE’s, the A.C.E. Revision II estimates incorporated adjust-
ments for most of the nonsampling biases, including correlation bias. Estimates of
the remaining bias after those adjustments, e.g., adjustments for correlation bias
and for coding error, were not available and were not included in the estimates
of expected loss nor in the sensitivity analyses. The U.S. Census Bureau (2003b)
decided that the apparent improvement in accuracy as shown in the loss function
analyses could not be trusted, a decision affirmed by the National Academy of
Sciences (Citro, Cork, and Norwood 2004, 254–258). ♦

Given sufficient time and resources, it is possible at least in principle to develop
confidence intervals (or regions, more generally) or other prediction intervals for
the difference in expected loss. The sensitivity analyses mentioned in Example
6.2 are a step in that direction. Given that the results of total error modeling,
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and their summarization in terms of comparison of expected loss for alternative
estimators, are imperfect and potentially misleading, should the analysis still be
done? If one wants to quantify the accuracy of the estimates, we do not see any
good alternative. It may well be, however, that even if the evidence is clear cut
that adjustment improves accuracy, a statistical agency might decide not to adjust
because assumptions lacked an unambiguous basis (as discussed in Example 4.6).

7. Cost-Benefit Analysis of Demographic Data

In a formal cost-benefit analysis for a data program, we compare the costs of
alternative data programs (e.g., censuses with different levels of effort to reduce
differential net undercoverage among areas) with differences in their benefits. In
this context, benefit can be quantified as the negative of the Bayes risk, when the loss
functions reflect data uses. To compare costs and benefits most directly, it is useful
to quantify benefits in the same units as costs, e.g., dollars. When such a comparison
is not feasible, one should not try to force the issue but instead one should simply
prepare summaries showing what benefits are attainable at what costs.

Censuses are expensive programs and, other things being equal, data quality
can increase or decrease if the expenditure on the census increases or decreases.
For example, in the U.S. the decennial census costs, on a per household basis and
adjusted for inflation, increased from $13 in 1970 to $24 in 1980, $32 in 1990, and
$56 in 2000; total census costs in billions increased even more, from $0.9 in 1970
to $2.2 in 1980, $3.3 in 1990, and $6.6 in 2000 (Citro, Cork, and Norwood 2004).

Example 7.1. Decennial Census. Spencer (1980a) carried out a cost-benefit anal-
ysis of two alternative versions of the 1970 U.S. census: the census as conducted
and an improved version that incorporated a coverage improvement program. The
coverage improvement program was projected to cost an additional $12.7 million
(in 1970 dollars) and to multiply undercount differentials by 0.65. This would
have reduced the expected sum of errors in allocations under a large government
program, General Revenue Sharing (GRS), by $224 million. Let θi in (4.8) denote
the GRS allocation to recipient i if all statistics used by the allocation formula
were perfect, and let θ̂i denote the allocations under the actual data. Thus, if the
loss function is (4.8) with c = 1, the expected loss is $244 million. Was the extra
cost justified? The answer depends on the magnitude of c and on how much of
the additional census cost needs to be justified by the GRS program. A choice of
c = 0.01 seemed reasonable (Spencer 1980a, 33), which meant that GRS could
justify about 18% of the cost of the improved census data. Given the extent of
other uses, the data improvement program appeared to be justified in cost-benefit
terms. Similar explicit cost-benefit analyses were not conducted for the subse-
quent decennial censuses. For sensitivity analysis of the cost-benefit comparison,
see Spencer (1994, 22–24).

We now consider some implications of the parameter α in (4.4) and the effect of
the presence of errors in many other statistics used to compute the GRS allocations.
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The estimate of a $224 million reduction of errors in allocations took into account
the presence of errors in many other statistics used to compute the GRS allocations.
If those errors had not been present, the expected reduction would have been much
greater than $224 million, and a more expensive data improvement program could
have been justified. Alternatively, if we had used α = 2 in (4.4) instead of α = 1,
we would find that the optimal expenditure on the census would be unrelated to
the extent of the other errors if they had mean zero and were independent of the
census errors. For insight, suppose we model the effect of those other errors by
η in (4.9), which we take to be independent of the errors in the census. Spencer
(1985a) showed (under regularity conditions met by the example at hand) that if
α < 2, as the variance of η increases, the optimal expenditure on data decrease. If
α = 2, the optimal expenditure is unaffected by the variance of η or the presence
of other data errors. If α > 2, the presence of other data errors implies that the
optimal expenditure on data needs to increase to compensate for those errors.
In determining the needed data quality for allocation uses, we think that α = 1
gives the most plausible relationship between optimal data expenditure and the
imperfections of the allocations due to other statistical error or to the approximate
nature of the allocation formula. ♦

Example 7.2. Mid-Decade Census. In the U.S., legislation requiring a mid-decade
census has been in effect since 1976, but funding has not been provided to carry out
a mid-decade census in 1985, 1995, or 2005 (Edmonston and Schultze 1995, 163–
164). Was the decision not to fund it rational? A schematic cost-benefit analysis of
a mid-decade census in the U.K. was carried out by Redfern (1974). To compare
benefits and costs, he assumed that an allocation program was to distribute money
to areas in proportion to their population and that the cost of the mid-decade census
was to be funded by the allocation program itself. To allow for uses of the data
other than for allocations, we could specify that if the mid-decade cost increased
by x , the amount to be distributed would decrease by λx , where λ reflects the
portion of the costs to be borne by the allocation program. Redfern’s analysis did
not appear to support a mid-decade census (Spencer 1980a, 13–17). ♦

We do not believe that the optimal expenditure on a data program can be deter-
mined from a cost-benefit analysis, and we caution against over-reliance on formal
analyses. The loss functions in use are simply too approximate. We do believe that
carrying out such analyses can improve decision making for the design of demo-
graphic data programs, however (Törnqvist 1948, 265). Conducting cost-benefit
analyses focuses attention on how the data are used and what aspects of data quality
are important or not important.

Exercises and Complements (*)

1. Consider the statistical problem of testing the null hypothesis that the means of
two groups are equal. Suppose that we have an estimate δ̂ of the true difference,
δ, between the means, and δ̂ ∼ N (δ, σ 2/n), where n is a measure of the sample



P1: NFT/SJS P2: MRM
SVUS004-Alho & Spencer April 29, 2005 21:35

Exercises and Complements (*) 369

size and for we assume the n and σ 2 are known. Consider a test that rejects the
null hypothesis if |δ̂/(σ/

√
n)| > c, where c is chosen so that the significance

level, i.e., the probability of rejecting the null hypothesis when δ = 0, is α. Let β
denote the probability of a failing to reject the null hypothesis, when δ �= 0. One
can show that when the true difference in the means is δ, we have the approx-
imate relation 1 ≈ σ 2/n

δ2 (z1−β + z1−α/2)2, where z p denotes the pth quantile of
a N (0, 1) distribution. Thus, any four of the quantities σ 2, δ, n, α, and β deter-
mine the fifth. This implies that choosing α = 0.05 can lead to large values of β

when n is small, for any fixed σ 2 and δ. (Snedecor and Cochran 1967, 111–113)
2. Following Ellsberg (1961), consider two urns containing 100 balls each, with

each ball colored red or black. The composition of urn I is unknown but urn II
has 50 red and 50 black balls. Consider four gambles:
A: a ball is picked at random from urn I and if it comes out red you win 100$;
B: a ball is picked at random from urn I and if it comes out black you win

100$;
C: a ball is picked at random from urn II and if it comes out red you win 100$;
D: a ball is picked at random from urn II and if it comes out black you win

100$.
A person is inquired about his or her preferences as to which gamble to choose:

(i) Do you prefer A or B or are you indifferent?
(ii) Do you prefer C or D or are you indifferent?

(iii) Do you prefer A or C or are you indifferent?
(iv) Do you prefer B or D or are you indifferent?
Suppose that a person is indifferent between A and B in (i) and between C and
D in (ii). Suppose further that the person does have a preference, one way or
the other, in (iii) or in (iv). Show that the person’s preferences are inconsistent
with existence of a prior probability, p, for the probability of selection of a red
ball from Urn I. (Hint: Observe that if, say, C is preferred in (iii) then p < 1/2.)
What do you conclude if the same urn is preferred in (iii) and (iv)?

3. Show that (4.6) holds.
4. Show that (4.7) holds. (Hint: assume the maximum and minimum wi ’s are

for i = 1 and i = 2 consider errors in allocations x = (θ̂1 − θ1) = −(θ̂2 −
θ2) > 0 and θ̂i = θi = 0, i > 2. Notice that 0 < l(θ, θ̂) = −b maxi {wi }|x | +
a mini {wi }|x |.)

*5. In Section 4.5.2, we considered the loss function to be a random variable.
Sometimes it is reasonable to view the use of the data as a random variable. For
example, consider the design of a study for evaluation of a government program
to affect the total fertility rate. If the measured effect exceeds a threshold τ , the
program is considered a success and will be continued, and otherwise funding
will be cut. The measurement accuracy can be improved if more money is spent
on the evaluation, but the optimal amount to spend on the evaluation depends
on τ . Although the optimal threshold τ can be developed using statistical
decision theory (e.g., reflecting social losses from wrong decisions of either
kind), the actual threshold is not optimal but reflects transient priorities and
political compromises. How should one decide how much money to spend on
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the evaluation study, and hence how accurate it will be? One possibility is to
consider τ to be a random variable with a prior distribution, and then to derive
the Bayes rule for optimal expenditure on the study. The optimal expenditure
is not necessarily greatest when the optimal threshold is used (Spencer and
Moses 1990).

6 To derive (5.2), note that

E[�̂i − �i ] = E
[(

Ûi − B̂i
)

2 − B̂i
2 − 2V̂U,i + 2ĈBU,i

]− (
Ui

2 − Bi
2 − VU,i

)
= E[Ûi − B̂i ]

2 + Var(Ûi − B̂i ) − E[B̂i ]
2 − Var(B̂i ) − 2VU,i

+ 2CBU,i − Ui
2 + Bi

2 + VU,i

= (Ui + βi )
2 − (Bi − βi )

2 − Ui
2 + Bi

2

= 2βiUi + 2βi Bi

= 2βi E(Ûi ).

Show that if
∑

i Ûi is fixed, as in the case of estimating population shares, that
E[�̂ − �] is proportional to the cross-area correlation between βi and E[Ûi ].
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Hájek J. (1981) Sampling from a finite population. New York: Dekker.
Hanika A., Lutz W. and Scherbov S. (1997) Ein probabilistischer Ansatz zur
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Teräsvirta, T. 16, 206, 225
Teukolsky, S.A., 159, 167, 192, 277
Theil, H., 253, 272
Thisted, R.A., 121
Thomas, A., 142
Thompson, J.H., 315
Thompson, W.S., 228
Thompson, M., E., 54, 67, 32
Tiao, G.C., 274
Tibshirani, R., 62, 63, 209, 359
Törnqvist, L., 269, 270, 271, 294, 351, 368
Torppa, J., 297
Tourangeau, R., 37, 39
Tu, D., 62, 63, 69
Tukey, J.W., 59, 240

Tuljapurkar, S., 207, 219, 259, 260, 284,
339

Tuomisto, J., 98
Turner, C.F., 26
Turpeinen, O., 217, 266
Tversky, A., 248, 250

U.S. Census Bureau, 11, 27, 52, 95, 226,
227, 231, 239, 256, 300, 303, 305, 308,
313, 314, 320, 356, 357, 360, 366

U.S. Federal Committee on Statistical
Methodology, 46, 337, 351, 354, 359

Ullah, A., 218
United Nations, 11, 15, 96, 234
Urbach, P., 245
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