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lessons concerning the negative effects of Eurocentrism.
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The map on the cover shows the relative area of Africa which is larger than China, the U.S.A., India, what is commonly referred to as "Europe," Argentina, and New
Zealand combined. This picture generally surprises people because the map most of us are familiar with greatly distorts land areas, enlarging "Europe" and North
America and shrinking South America and Africa. Since any two-dimensional map of our three-dimensional earth must contain distortions, the choice of a map cannot
be a "neutral" decision. Instead, map choice involves political struggle about which of these distortions is acceptable to us and what other understandings of ours are
distorted by these false pictures.
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FOREWORD
It is an honor to be invited to write this foreword and it gives me much pleasure to do so.

Writing a foreword always gives one the opportunity to be personal. I am writing this foreword twelve years after the initial proposal for creating the International
Study Group on Ethnomathematics (ISGEm), which followed the Fifth International Congress on Mathematics Education in Adelaide, Australia. I think my opening
plenary talk in that meeting was influential; it marked the beginning of a new drive towards ethnomathematics. Although much was already going on, the intensity of
what happened since then is impressive.

We cannot mistake recognizing the importance of this when we see the growth of ethnomathematics and its challenge to Eurocentrism, the spelling out of
criticalmathematics education,' and the central position of mathematics in the trend towards multicultural education. All these fields of inquiry are essentially a new
reflection on education, in particular, mathematics education and its social and cognitive implications; on history, in particular, the history of mathematics; on
epistemology, in particular, epistemology of mathematics; and on mathematics itself.

The word ethnomathematics has been used for some time, mostly concerning mathematics practiced in "cultures without written expression," identified with cultures
called "primitive." However, there is now a broader use of the word "ethnomathematics," which is given expression in this book. We see different attempts at defining
and even proposals for alternative names, all of which is normal and indeed reaffirms the emergence of a new area of studies. The undeni-

1. Editor's note: This refers to another emerging area in mathematics education. An attempt to coordinate the development of these ideas is the Criticalmathematics Educators
Group (CmEG). For a copy of this group's newsletter, contact one of the editors of this book.
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able fact is that nowadays we search for a new, broader view of mathematics and its social implications. This collection represents an expression from a
criticalmathematics education perspective of such a search.

Ethnomathematics was forged in the cauldron of experiences, reflections, delusions, and hopes of the uses of modem science, particularly mathematics, for a better
quality of life for the entire human species. We all share the dream of equity and dignity in the relation of every human being to the other, of understanding our place in
the cosmic reality, of achieving inner peace, and of finding a relation of equilibrium with other species and with nature as a whole. Some of our colleagues may still
come with the question: "But what do mathematics and mathematics education have to do with all this." And they may go even further: "These are the domains of the
social and political sciences, of philosophy and religion, of psychology and psychoanalysis, of environmental sciences and ecology, not of mathematics and
mathematics education.”

I see ethnomathematics as a way of going back to basics. Of course, basics in the broad sense mentioned above, with the global objectives that constitute our
common dream. Some people still may not see what this has to do with such a specific mode of thought as mathematics, which has its own codes, norms, rules, and
values—including rigor, precision, non-contradiction—identified with what some call "positivistic rationality." However, it is indeed conceivable to ask about other
codes, norms, rules, and values belonging to alternative rationalities.

The complexity of every society, so different one from another, is responsible for the generation of codes, norms, rules, and values in the direction of organizing,
classifying, comparing, and ordering the action of its individuals. Instances of these codes, norms, rules, and values are instruments of analyses, of explanations, and of
actions, such as more or less, small and big, few or many, near and far, and in and out. These codes, norms, rules, and values—for instance, cardinality and ordinality,
counting and measuring, and sorting and comparing—take different forms according to the cultures in which they were generated, organized, and accepted. To
recover these forms and behaviors in different cultural environments has been the main thrust of ethnomathematics, which has found a common ground with the
objectives of intellectual movements in psychology and anthropology.

The discovery of the other in the human species has been a major step towards social life. How does the recognition of the other manifest in our everyday behavior?
What kind of relations do we establish



Page xvii

with the other, present or remote in time and space? Communications is seen as the main instrument in these relations. Language and music, drawings and paintings,
artifacts and constructions, arts and religions, divinations and sciences are all efforts to relate to the immediate environment or to transcend in space and in time—going
back to the past or foreseeing and foretelling the future.

In the last three centuries, we have witnessed the development of new modes of property and of production, new ways of organizing daily life in urban communities,
new relations in family and in society at large. Each of these developments carry their own specificities that connect to the dominating Eurocentric conception of
mathematics. Since colonial times, this conception was imposed globally and later accepted as the pattern of "rational" human behavior. The results of this intended
globalization under the control of the imperialist powers are far from being acceptable.

The concept of ethnomathematics comes, consciously or unconsciously, from these reflections. More than just learning about the styles of knowing and doing of
marginalized cultures, both in nations of the periphery as well as in so-called developed countries, we are also concerned with the reasons why the behavior of human
beings towards fellow human beings became so despicable: people burnt and gassed in concentration camps, cities bombed, human dignity reduced to mere rhetorics,
human beings tortured by other human beings, and cultural acts censored and repressed. All of these acts have been performed officially by countries that fete a large
number of Nobel laureates and boast the highest degree of scientific development—hence rationality—validated by good mathematics. For what reasons has humanity
gone so low? As a mathematician, [ was always in search of the humanitarian values implicit in my specialty. Couldn't we, as mathematicians, see ourselves as heralds
of a new era for humankind. Why not? But for this we need to recognize the ethical components in science and mathematics. Of course, the values of mathematics are
always spelled out. Even a humanist like Bertrand Russell would say that "Mathematics possesses . . . supreme beauty—a beauty cold and austere, like that of
sculpture." Naturally, everyone learns in school the fundamentals of mathematics—the basics!—that have, in such a cold and austerely precise way, produced bombs
and destructive technology. Ethnomathematics may help us in our quest for the affection and love in this sculpture.

I felt the need for a broader view of the history of science and mathematics, as part of the history of ideas, to help us understand why mathematics became so central
in building up modem thought
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and modern society. It is thus natural to look into the history of mathematics to bridge our understanding of the natural, the social, the political, the economical, the
religious, and many other influences on the styles and motivations in the development of mathematics.

It is not enough to say that the Romans refused Greek philosophy because they had a practical sense, that the European Middle Ages were the ages of the darkness,
that modem mathematics is a result of the thoughts of a few academicians of the Renaissance and Modem Age who captured the Greek message that was preserved
and conveyed by the Arabs. It is so naive to accept these as explanations.

We are naturally led to ask much broader questions: Is it possible to understand Greek mathematics without reading and interpreting Quintus Curtius Rufus' History of
Alexander. And how can we talk about Medieval mathematics without an analysis of Vitruvius and of the urbanization of Europe? But how can we talk about
urbanization without referring to Machu Pichu? How can we appreciate the construction of cathedrals without seeing them as intimately related to the developments of
Medieval geometry. But how can we talk about cathedrals and ignore the big mosques of Mopti and Djenne? Of course, an analysis of the social and political
construction of Europe is needed to understand the steps towards mathematical knowledge in the Middle Ages. This is why it is indeed relevant for us to learn of the
Arthurian epics, which is closely related to the atmosphere created in the English monasteries that paved the way for Roger Bacon, Ockham, and others. Of course,
Cambridge and Oxford are related to this. But the epic of Sundyatha is at least as impressive as that of Arthur, and this has to do with the emergence of the Masa.
Naturally, the importance of the medieval university at Tombouctou is related to this.

A string of questions are fundamentally important to understand the cultural dynamics of the encounters. Who were the intellectuals who met the conquerors in
Africa—and can we use a similar line of questioning concerning Asia and Latin America? How did these intellectuals, all having the search for explanations as their
leitmotiv, succeed in organizing a colloquium? Of course, a colloquium is the outcome of every authentic intercultural encounter. If these colloquia did not happen—
which is inconceivable—why was it so?

Let us consider the "heroes" of modern times. Napoleon, Sir Cecil Rhodes, and many others who are in just about every encyclopedia. But only a few encyclopedias
list Samory Toure and Pancho Villa, and when they do these heroes appear as bandits—or at best rebels.
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The way history has been manipulated is disgusting. This is no less true with the history of mathematics.

Broadening our view of history has everything to do with understanding the role of mathematics and mathematics education in our society. This broadened view
contributes to my views of ethnomathematics as a program in the history, epistemology, and pedagogy, in particular, of mathematics.

We are now looking at ethnomathematics as focusing these issues from within. Of course, many still try to ignore the questions mentioned above that shape this
approach. About twenty years ago | was asked by a colleague: "But what can Nietzsche say about the objectives of mathematics education? And who is this Paulo
Freire?" Questions of this kind are recurrent. People frequently ask what do Sartre and Foucault, and Flaubert and Musil, and Dr. Kevorkian, and O. J. Simpson have
to do with mathematics education?

These questions may come because these people are afraid, not of ethnomathematics, but of themselves since ethnomathematics questions what is ingrained in most
scientists, particularly science educators, and in a very special way, mathematicians and mathematics educators: their absolute belief in what they practice and teach.
Many exercise their profession without questioning the why and, even worse, without sharing the knowledge and views of their students, captives in the process.

There was a great transformation in the world about the same time when the word mathematics began to be used in a sense similar to what we have today, which goes
back to the fourteenth and fifteenth centuries. This is no coincidence. Since then, new modes of explanation, of production and of property were imposed on all of
humanity. New concepts of space and of time and new perceptions of big and small emerged.

It is impossible to understand the history of ideas without understanding the complexity of concepts and perceptions, of possibilities and difficulties, of desires and
ambitions, of costs and rewards of new thinking. How can we talk about the history of mathematics without analyzing these general and broad categories?

From the conceptualization of a global world through the development of means for effective globalization, we see the major steps in the development of modem
science and mathematics. The concept of a global world is intimately related to the emergence of religions of conversion, essentially the Christian and Islamic faiths.
But indeed globalization is made possible with the intensification of the means of
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mass transportation—ships, trains, automobiles, and airplanes—and of communication—telephone, radio, and television. Indeed modern science and mathematics are
intrinsic to the world as it is today. The same as Greek geometry was intrinsic to Greek thought. The same as each culture's mathematics is intrinsic to the
corresponding cultural environment. If we question the current world order, there is no way of avoiding questioning the mode of thought par excellence of modem
times, science and mathematics. Thus, the need to look into the political dimensions of science and mathematics.

We all are concerned with the future. But not only the more immediate times. Our concern is the future that we will not see; the future that induces us to write, to
produce art, books, and knowledge; the future in which we want our name to be remembered with respect and affection and our person to be referred to as a good
example. The same future that induces others to amass fortunes and build power. Among these concerns we find reasons for the multiple driving forces in the life of
every human being. As educators we have to go in another direction. We walk into the future led by the hands of the new generations. Thus, our concern is the future
of our children, of our students and their children, of our grandchildren and their children. Hence, education is an act of love. Mathematics education is no different.
Why should it be odd to discuss these items, to bring love into our reflections, when we are talking about mathematics?

A look at history will show that these issues have been relevant to science and mathematics. However, they were gradually removed in the name of an ethics based on
a set of values intrinsic to mathematics, such as rigor, precision, resilience, and others of the same kind. Yet, I am also concerned with an ethics of respect, solidarity,
and cooperation. In fact, we know that so much is involved in the acquisition of knowledge. Knowledge results from the complexity of sensorial, intuitive, emotional,
and rational components. s this incompatible with mathematics? If not, how do they relate?

Ethnomathematics has everything to do with all this. As a research program, ethnomathematics invites us to look into how knowledge was built throughout history in
different cultural environments. It is a comparative study of the techniques, modes, arts, and styles of explaining, understanding, learning about, and coping with the
reality in different natural and cultural environments. An etymological abuse leads me to use the words, respectively, ethno and mathema for their categories of
analysis and fics (from techne).

In historical terms, this is an analysis of the generation of knowledge, of its intellectual and social organization, and of its diffusion.
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These phases in analyzing knowledge are usually studied in isolation one from another and are identified with disciplines labeled cognition, epistemology, history,
sociology, and education. The holistic approach looks primarily into the interrelations of all these phases in the analysis of knowledge.

Where does ethnomathematics stand at this moment? Much work has been done. Some doctoral theses have been submitted, several books have been published, and
new research is going on in several parts of the world. This book is a particularly important contribution because it brings together in one collection a diverse group of
articles relating to ethnomathematics. Powell and Frankenstein's organization and analysis in extensive section introductions show how these classic articles have made
significant contributions to the field. As a result, the field is moved forward, the emerging discipline of ethnomathematics is strengthened. Ethnomathematics still has for
many the connotations of a non-academic practice and of an anti-science theory. Contributions, such as this book, show ethnomathematics in its true dimension as an
holistic and transdisciplinary view of knowledge.

UBIRATAN D'AMBROSIO
SAO PAULO
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INTRODUCTION
Arthur B. Powell and Marilyn Frankenstein
Perhaps the most telling point to mention in discussing an educational challenge to Eurocentrism is that

Geographically, Europe does not exist, since it is only a peninsula on the vast Eurasian continent . . . Europe has always been a political and cultural definition. . .. Before the 19th
century, geographers generally referred to it as "Christendom." When colonialism began to spread Western culture and religion to all corners of the globe, some British and
German geographers began to delineate the eastern boundaries of a European continent. What they were actually doing was trying to draw the eastern limits of "western
civilization" and the white race (Grossman, 1994, p. 39).

This is an important illustration of how false "facts" become part of our taken-for-granted knowledge of the world. That assumed "knowledge" extends beyond the
mere creation of this fictitious geographic entity to proclaiming Europe's centrality in the creation of knowledge and the development of "civilization." In the Eurocentric
account, Europe (and "Europeanized" areas like the U.S.A.) has always been and currently is the superior Center from which knowledge, creativity, technology,
culture, and so forth flow forth to the inferior Periphery, the so-called underdeveloped countries.

Of course, there are significant intellectual challenges to Eurocentrism. Amin (1989) argues against this account by showing the central contributions of the Arab-
Islamic cultures to world knowledge, and by showing how the Eurocentric version of "humanist universalism . . . negates any such universalism. For Eurocentrism has
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brought with it the destruction of peoples and civilizations who have resisted its spread" (p. 114). Diop (1991) demonstrates that the Greek foundations of European
knowledge are themselves founded upon Black Egyptian civilization. Bernal (1987) illustrates how Eurocentrism developed in eighteenth-century Europe as the
rationale for various forms of European slavery and imperialism. Blaut (1993) further shows that the successful conquest of the Americas and the spread of European
colonialism, actions which were responsible for the selective development of Europe and underdevelopment of Asia, Africa, and Latin America, "is not to be explained
in terms of any internal characteristics of Europe, but instead reflects the mundane realities of location" (p.2).

In spite of this scholarship, the Eurocentric myth persists and influences school curricula, even in a supposedly neutral discipline like mathematics. This book challenges
the particular ways in which Eurocentrism permeates mathematics education: that the "academic" mathematics taught in schools worldwide was created solely by
European males and diftused to the Periphery; that mathematical knowledge exists outside of and unaffected by culture; and that only a narrow part of human activity
is mathematical and, moreover, worthy of serious contemplation as "legitimate" mathematics. This challenge has brought together knowledge from mathematics,
mathematics education, history, anthropology, cognitive psychology, feminist studies, and studies of the Americas, Asia, Africa, White America, Native America, and
African America to create a new discipline: ethnomathematics. This book also attempts to organize the various intellectual currents in ethnomathematics, from an anti-
Eurocentric, liberatory perspective. We are critically selective, not just interested, for example, in the mathematics of Angolan sand drawings, but also in the politics of
imperialism that arrested the development of this cultural tradition, and in the politics of cultural imperialism that discounts the mathematical activity involved in creating
Angolan sand drawings.

This book is organized into sections that focus on specific challenges to Eurocentrism in mathematics education. Each section begins with an extensive introduction,
followed by contributions we judge to be path-breaking to the development of that area of ethnomathematics. The first section, "Ethnomathematical knowledge,"
defines the field and points to other challenges to Eurocentrism. The second section, "Uncovering distorted and hidden history of mathematical knowledge," challenges
the historiographic project of Eurocentrism. The third section, "Considering interactions between culture and mathematical knowledge," inquires into who does
mathematics and how various practices influence mathematical activity. The fourth sec-
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tion, "Reconsidering what counts as mathematical knowledge," examines non-academic sources of mathematical knowledge. The fifth section, "Ethnomathematical
praxis in the curriculum," discusses possibilities for incorporating broader notions of mathematics into traditional and nontraditional educational settings. Finally, section
six, "Ethnomathematical research," analyzes research activity in the field and provides an example of a methodological approach that enables political challenges to the
politics of silence and poverty.

A theme that emerges throughout these various directions of ethnomathematical thought concerns the need to reconsider the discrete categories common in academic
thought. Asante (1987) argues that an underlying theoretical tenet of an Afrocentric perspective is that "oppositional dichotomies in real, every day experience do not
exist" (p.14). For Freire (1970, 1982) this means breaking down the dichotomy between subjectivity and objectivity, between action and reflection, between teaching
and learning, and between knowledge and its applications. For Fasheh (1989) and Adams (1983) this means that thought which is labeled "logic" and thought which is
labeled "intuition" continuously and dialectically interact with each other. For D'Ambrosio (1987) this means that the notion that "there is only one underlying logic
governing all thought" is too static. For Diop (1991) this means that the interactions between "logic" and "experience" change our definition of "logic" over time
(p.363). For Lave (1988) this means understanding how "activity-in-setting" is seamlessly stretched across persons acting." For Diop (1991) this means that the
distinctions between "Western," "Eastern," and "African" knowledge distort the human process of creating knowledge which result from interactions among humans
and with the world. Throughout this book, we emphasize that underlying all these false dichotomies is the split between practical, everyday knowledge and abstract,
theoretical knowledge. Understanding these dialectical interconnections, we believe, leads us to connect mathematics to all other disciplines, and to view mathematical
knowledge as one aspect of humans trying to understand and act in the world. We see ethnomathematics as a powerful and insightful vehicle for conceptualizing these
connections.
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SECTION 1
EHTNOMATHEMATICAL KNOWLEDGE

Arthur B. Powell and Marilyn Frankenstein

Ethnomathematics emerged as a new conceptual category from the discourse on the interplay among mathematics, education, culture, and politics. Naturally, it has
various definitions and associated perspectives; each definition and perspective and the term itself, has been debated and then rejected or embraced in scholarly
journals and in other academic forums. ! Among recent, written efforts to define and describe the terrain of ethnomathematics, two dominant positions are represented
by the ideas of Ascher and Ascher (1986; Ascher 1991), and D'Ambrosio (1985/reprinted here as chapter 1, 1987, 1988, 1990).

Ascher and Ascher (1986/reprinted here as chapter 2) define ethnomathematics as "the study of the mathematical ideas of nonliterate peoples” (p. 125). While
acknowledging that mathematical ideas exist in all cultures, Ascher (1991) points out that this does not imply that, across cultures, mathematical ideas are the same.

In Western culture and among the Tshokwe of Africa, the cultural surroundings of the graph theoretical ideas are not the same, nor should we expect that they would be. The strip
patterns that we see around us, those of the Incas, and those of the Maori are quite different in style, in usage, and in their other cultural linkages. Shared is the creation of strip
patterns and an interest in them, but not necessarily shared is the motivation for their creation, nor the world view or aesthetic that leads to the particular strip that results (p. 186).

... [Mathematical] ideas exist in all cultures, but which ones are emphasized, how they are expressed, and their particular contexts will vary from culture to culture (p. 187). ..
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... The differences, however, are not the ability to think abstractly or logically. They are in the subjects of thought, the cultural premises, and what situations call forth which
thought processes (p. 190).

These statements reveal the anthropological and mathematical roots and concerns of the Aschers' project. Their project also has ideological concerns: They intend to
challenge Eurocentric historical and anthropological notions about the locus of mathematical ideas, including pernicious statements in the mathematical literature
concerning the value of the mathematical ideas of nonliterate, non-Western peoples. 2 As they point out, most statements about nonliterate peoples are usually (1) in
preliminary chapters in histories of mathematics or in texts on the spirit of the subject, and (2) theoretically and factually flawed (1986, p. 125). Nonliterate peoples are
thought of as primitive or existing earlier along a linear evolutionary path. As such, their ideas are placed at the beginning of discussions of mathematics. In contrast,
Ascher and Ascher (1975, 1981, 1986) and Ascher (1983, 1987, 1988a, 1988b, 1990, 1991), have demonstrated that certain notions of nonliterate peoples are
akin to and as complex as those of modern, "Western" mathematics; they have broadened the history of mathematics by imbuing it with a multicultural, global
perspective. However, circumscribing the terrain of ethnomathematics to the mathematical ideas of nonliterate, non- Western peoples, we insist, is too small a circle.
The radius should be longer since much lies in the complement of the circle.

To discover the complement requires a broader perspective of ethnomathematics. Insightfully, D'Ambrosio (1985/reprinted here as chapter 1), the founder and most
significant theoretician of the ethnomathematics program, points out that belief in the universality of mathematics can limit one from considering and recognizing that
different modes of thought or culture may lead to different forms of mathematics, radically different ways of counting, ordering, sorting, measuring, inferring, classifying,
and modeling. That is, once we abandon notions of general universality, which often cover for Eurocentric particularities, we can acquire an anthropological awareness:
different cultures can produce different mathematics and the mathematics of one culture can change over time, reflecting changes in the culture. For D'Ambrosio
ethnomathematics, existing at the crossroads of the history of mathematics and cultural anthropology, overcomes the Egyptian and Greek distinction between scholarly
and practical mathematics, a distinction rooted in socioeconomic class differentia-
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tion (pp. 44-45). Now in the twentieth century; this distinction is manifested in the contrast between the "academic" mathematics that is taught in schools, which allows
an elite to assume management of a society's productive forces, and the "everyday" mathematics, which allows individuals to function effectively in the world. On the
other hand, ethnomathematics is

the mathematics which is practised among identifiable cultural groups, such as national-tribal socieries, labor groups, children of a certain age bracket, professional classes, and so
on. Its identity depends largely on focuses of interest, on motivation, and on certain codes and jargons which do not belong to the realm of academic mathematics. We may go
even further in this concept of ethnomathematics to include for example much of the mathematics which is currently practised by engineers, mainly calculus, which does not
respond to the concept of rigor and formalism developed in academic courses of calculus (D'Ambrosio 1985, p. 45).

Here we have a conception of ethnomathematics which embraces a broader spectrum of humanity than the previous one. Within this conception, cultural groups within
Western societies also have an ethnomathematics. Moreover, D'Ambrosio (1987) argues that we should neither minimize nor ignore the influence of cultural
atmosphere and motivation. As with the production of other cultural products, music, for example, mathematical ideas take shape within particular contexts and which
ideas are produced is connected to contextual content.

This calls for a somewhat different way of looking into the History of Science and the epistemological foundations of scientific knowledge. It calls for an ethnological
interpretation of mental processes and the recognition of different modes of thought, as well as different logics of explanation, which depend upon experiential background of the
cultural group being considered. Thus we are led to disclaim the assertion that there is only one underlying logic governing all thought (p. 3).

Here, then, different cultural groups—industrial engineers, children, Peasants, computer scientists, for example—have distinct ways of reasoning, of measuring, of
coding, of classifying, and so on. Consequently each group has their own ethnomathematics, including academic mathematicians. Further, it is the informal and ad hoc
aspects of ethnomathematics that broaden it to include more than academic mathematics. This point has been aptly elaborated by both Borba (1990/reprinted here as
chapter 12) and Mtetwa (1992). For instance,
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stating that ethnomathematics is "[m]athematical knowledge expressed in the language code of a given sociocultural group," Borba points out that this implies that “[e]
ven the mathematics produced by professional mathematicians can be seen as a form of ethnomathematics . . ." (p. 40). Further, he echoes the critique of universality:

Although academic mathematics may be international in that it is currently in use in many parts of the world, it is not international in that only a small percentage of the population
of the world is likely to use academic mathematics (p. 40). . . .

Hence ethnomathematics should not be misunderstood as "vulgar" or "second class" mathematics, but as different cultural expressions of mathematical ideas (p. 41).

Beyond critiquing the imperialism of academic mathematics, Borba argues for a recognition of diverse expressions of mathematical ideas instead of one
ethnomathematics dominating another. The genesis of ethnomathematical ideas depends on the cognitive practices of a culturally differentiated group, and those ideas
maintain, evolve, or disappear according to the dynamics of the group and its relation to other cultural groups. At some stage, a professional class of mathematicians
may decide to theorize an aspect of ethnomathematical knowledge; they appropriate it and later return it in a codified version. In this context, D'Ambrosio writes:

We may look for examples in mathematics of the parallel development of the scientific discipline outside the established and accepted model of the profession. One such example
is Dirac's delta function which, about 20 years after being in full use among physicists, was expropriated and became a mathematical object, structured by the theory of
distributions (1985, p. 47).

D'Ambrosio's broader view of ethnomathematics accounts for the dialectical transformation of knowledge within and among societies. Moreover, his epistemology is
consistent with Freire's (1970, 1973) in that D' Ambrosio views mathematical knowledge as dynamic and the result of human activity, not as static and ordained.
Necessarily, this conception of ethnomathematics admits a critique of the historiography of mathematics (D'Ambrosio, 1988). That is, there are mathematical notions
of peoples that written history has hidden, frozen, or stolen. Including these ideas makes it clear that what is labeled "Western" mathematics is more accurately called
"world mathematics" (Anderson, 1990/reprinted here as chapter 14). We argue
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that ethnomathematics includes the mathematical ideas of peoples, manifested in written or non-written, oral or non-oral forms, many of which have been either
ignored or otherwise distorted by conventional histories of mathematics. We and other mathematics educators are pushing the boundaries of both ethnomathematics
and academic mathematics so that the two fields merge to encompass all of the intellectual enterprises and other actions of everyday life having to do with
mathematics. 3 Fasheh goes so far as to define the underlying project of ethnomathematics as "working hard to understand the logic of other peoples, of other ways of
thinking,"

Notes

1. One such forum is the newsletter of the International Study Group on Ethnomathematics (ISGEm). To subscribe or receive further information, contact Gloria
Gilmer, 9155 North 70th Street, Milwaukee, WI 53223, U.S.A.

2. Joseph's work (1987/reprinted here as chapter 3, 1991), particularly the latter one, The crest of the peacock: The non-European roots of mathematics,
represent other recent, significant challenges to Eurocentric historiography.

3. For example, see Ascher (1983), Crowe (1971, 1975), Gattegno (1988), Gerdes (1986, 1988a/reprinted here as chapter 11, 1988b), Harris (1987), Ginsburg
(1986/reprinted here as chapter 6), Joseph (1991, 1993), and Zaslavsky (1973, 1990, 1991, 1992, 1996).

4. Fasheh made this remark during his panel presentation—"Mathematics Education in the Global Village: What can we expect from ethnomathematics?"—at the Sixth
International Congress on Mathematics Education in Budapest, Hungary, July 1988.
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Chapter 1
Ethnomathematics and its Place in the History and Pedagogy of Mathematics

Ubiratan D'Ambrosio

Editors's comment: In agreement with Gerdes (see chapter 16), we consider Ubiratan D'Ambrosio, a Brazilian mathematician and philosopher of mathematics education, "the
intellectual father of the ethnomathematics program." Since the mid-1970s, he has presented his ethnomathematics program in both English and Portuguese in a variety of forums
throughout the world. This chapter represents the first comprehensive, theoretical treatment in English of ethnomathematics. These ideas have stimulated the development of the
field. This chapter first appeared in For the Learning of Mathematics 5(1): 41-48, in 1985. He has a more updated statement in Portuguese in D'Ambrosio (1990). At the end of the
present version, the author includes a brief update.

Introductory Remarks

In this paper, we will discuss some basic issues which may lay the ground for an historical approach to the teaching of mathematics in a novel way. Our project relies
primarily on developing the concept of ethnomathematics.

Our subject lies on the borderline between the history of mathematics and cultural anthropology. We may conceptualize ethnoscience as the study of scientific and, by
extension, technological phenomena in direct relation to their social, economic, and cultural backgrounds. ! There has been much research already on ethnoastronomy,
ethnobot-
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any, ethnochemistry, and so on. Not much has been done in ethnomathematics, perhaps because people believe in the universality of mathematics. This seems to be
harder to sustain, for recent research, mainly carried on by anthropologists, shows evidence of practices which are typically mathematical, such as counting, ordering,
sorting, measuring and weighing, done in radically different ways than those which are commonly taught in the school system. This has encouraged a few studies on the
evolution of the concepts of mathematics in a cultural and anthropological framework. But we consider this direction to have been pursued only to a very limited and—
we might say—timid extent. A basic book by R. L. Wilder which takes this approach and a recent comment on Wilder's approach by C. Smorinski 2 seem to be the
most important attempts by mathematicians. On the other hand, there is a reasonable amount of literature on this by anthropologists. Making a bridge between
anthropologists and historians of culture and mathematicians is an important step towards recognizing that different modes of thoughts may lead to different forms of
mathematics; this is the field which we may call "ethnomathematics."

Anton Dimitriu's extensive history of logic? briefly describes Indian and Chinese logics merely as background for his general historical study of the logics that originated
from Greek thought. We know from other sources that, for example, the concept of "the number one" is a quite different concept in the Nyaya- Vaisesika
epistemology: "the number one is eternal in eternal substances, whereas two, etc., are always non-eternal," and from this proceeds an arithmetic (p. 119).4 Practically
nothing is known about the logic underlying the Inca treatment of numbers, though what is known through the study of the "quipus" suggests that they used a mixed
qualitative-quantitative language.’

These remarks invite us to look at the history of mathematics in a broader context so as to incorporate in it other possible forms of mathematics. But we will go further
than these considerations in saying that this is not a mere academic exercise, since its implications for the pedagogy of mathematics are dear. We refer to recent
advances in theories of cognition which show how strongly culture and cognition are related. Although for a long time there have been indications of a close connection
between cognitive mechanisms and cultural environment, a reductionist tendency, which goes back to Descartes and has to a certain extent grown in parallel with the
development of mathematics, tended to dominate education until recently, implying a culture-free cognition. Recently a holistic recognition of the interpenetra-
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tion of biology and culture has opened up a fertile ground of research on culture and mathematical cognition. ¢ This has clear implications for mathematics education, as
has been amply discussed in my books Socio-cultural Bases for Mathematics Education,” and Several Dimensions of Science Education.

A Historical Overview of Mathematics Education

Let us look very briefly into some aspects of mathematics education throughout history. We need some sort of periodization for this overview which corresponds, to a
certain extent, to major turns in the sociocultural composition of Western history. (We disregard for this purpose other cultures and civilizations.)

Up to the time of Plato, our reference is the beginning and growth of mathematics in two dearly distinct branches: what we might call "scholarly" mathematics, which
was incorporated in the ideal education of Greeks, and another, which we may call "practical" mathematics, reserved to manual workers mainly. In the Egyptian origins
of mathematical practice, there was the space reserved for "practical" mathematics behind it, which was taught to workers. This distinction was carried on into Greek
times and Plato dearly says that “all these studies [ciphering and arithmetic, mensurations, relations of planetary orbits] into their minute details is not for the masses but
for a selected few," (Laws VII, 818)” and "we should induce those who are to share the highest functions of State to enter upon that study of calculation and take hold
of'it, . . . not for the purpose of buying and selling, as if they were preparing to be merchants or hucksters" (Republic VII 525b).1° This distinction between scholarly
and practical mathematics, reserved for different social classes, is carried on by the Romans with the "trivium" and "quadrivium" and a practical training for laborers. In
the Middle Ages, we begin to see a convergence of both in one direction: that is, practical mathematics begins to use some ideas from scholarly mathematics in the
field of geometry. Practical geometry is a subject in its own right in the Middle Ages. This approximation of practical to theoretical geometry follows the translation
from the Arabic of Euclid's Elements by Adelard of Bath, (early twelfth century). Dominicus Gomdissalinus, in his classification of sciences, says that "it would be
disgraceful for someone to exercise any art and not know what it is, and what subject matter it has, and
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the other things that are premised of it," as cited in (p. 8). ! With respect to ciphering and counting, changes start to take place with the introduction of Arabic
numerals; the treatise of Fibonnaci (p. 481)2 is probably the first to begin this mixing of the practical and theoretical aspects of arithmetic.

The next step in our periodization is the Renaissance when a new labor structure emerges: changes take place in the domain of architecture since drawing makes plans
accessible to bricklayers, and machinery can be drawn and reproduced by others than the inventors. In painting, schools are found to be more efficient and treatises
become available. The approximation is felt by scholars who start to use the vernacular for their scholarly works, sometimes writing in a non-technical language and in
a style accessible to non-scholars. The best known examples may be Galileo, and Newton, with his “Optiks."

The approximation of practical mathematics to scholarly mathematics increases in pace in the industrial era, not only for reasons of necessity in dealing with increasingly
complex machinery and instruction manuals, but also for social reasons. Exclusively scholarly training would not suffice for the children of an aristocracy which had to
be prepared to keep its social and economical predominance in a new order in note 12 (p. 482). The approximation of scholarly mathematics and practical
mathematics begins to enter the school system, if we may so call education in these ages.

Finally, we reach a last step in this rough periodization in attaining the twentieth century and the widespread concept of mass education. More urgently than for Plato
the question of what mathematics should be taught in mass educational systems is posed. The answer has been that it should be a mathematics that maintains the
economic and social structure, reminiscent of that given to the aristocracy when a good training in mathematics was essential for preparing the elite (as advocated by
Plato), and at the same time allows this elite to assume effective management of the productive sector. Mathematics is adapted and given a place as "scholarly
practical" mathematics which we will call from now on, "academic mathematics," that is, the mathematics which is taught and learned in the schools. In contrast to this,
we will call ethnomathematics the mathematics which is practiced among identifiable cultural groups, such as national-tribal societies, labor groups, children of a
certain age bracket, professional classes, and so on. Its identity depends largely on focuses of interest, on motivation, and on certain codes and jargons which do not
belong to the realm of academic mathematics. We may go even further in this concept of ethnomathematics to include much of the mathematics which
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is currently practised by engineers, mainly calculus, which does not respond to the concept of rigor and formalism developed in academic courses of calculus. As an
example, the Sylvanus Thompson approach to calculus may fit better into this category of ethnomathematics. And builders and well-diggers and shack-raisers in the
slums also use examples of ethnomathematics.

Of course this concept asks for a broader interpretation of what mathematics is. Now we include as mathematics, apart from the Platonic ciphering and arithmetic,
mensuration and relations of planetary orbits, the capabilities of classifying, ordering, inferring and modeling. This is a very broad range of human activities which,
throughout history; have been expropriated by the scholarly establishment, formalized and codified and incorporated into what we call "academic mathematics," but
which remain alive in culturally identified groups and constitute routines in their practices.

Ethnomathematics in History and Pedagogy and the Relations between Them

We would like to insist on the broad conceptualization of mathematics which allows us to identify several practices which are essentially mathematical in their nature.
And we also presuppose a broad concept of ethno-, to include all culturally identifiable groups with their jargons, codes, symbols, myths, and even specific ways of
reasoning and inferring. Of course, this comes from a concept of culture as the result of an hierarchization of behavior, from individual behavior through social behavior
to cultural behavior.

The concept relies on a model of individual behavior based on the cycle . . . reality—individual—action—reality . . ., schematically shown as figure 1-1. In this holistic
model we will not enter into a discussion of what is reality, or what is an individual, or what is action. We refer to. 13 We simply assume reality in a broad sense, both
natural, material, social and psycho-emotional. Now, we observe that links are possible through the mechanism of information (which in-dudes both sensorial and
memory, genetic and acquired systems) which produces stimuli in the individual. Through a mechanism of reification these stimuli give rise to strategies (based on
codes and models) which allow for action. Action impacts upon reality by introducing facti into this reality, both artifacts and "mentifacts." (We have
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introduced this neologism to mean all the results of intellectual action which do not materialize, such as ideas, concepts, theories, reflections, and thoughts.) These are
added to reality, in the broad sense mentioned above, and dearly modify it. The concept of reification has been used by sociobiologists as "the mental activity in which
hazily perceived and relatively intangible phenomena, such as complex arrays of objects or activities, are given a factitiously concrete form, simplified and labeled with
words or other symbols" (p. 380). ¥ We assume this to be the basic mechanism through which strategies for action are defined. This action, be it through artifacts or
through mentifacts, modifies reality, which in turn produces additional information which, through this reificative process, modifies or generates new strategies for
action, and so on. This ceaseless cycle is the basis for the theoretical framework upon which we base our ethnomathematics concept.

Individual behavior is homogenized in certain ways through mechanisms such as education to build up societal behavior, which in turn generates what we call "culture."
Again a scheme such as figure 1-2 allows for the concept of culture as a strategy for societal action. Now, the mechanism of reification, which is characteristic of
individual behavior, is replaced by communication, while information, which impacts upon an individual, is replaced by history; which has its effect on society as a
whole. We will not go deeper here into this theoretical framework; this will appear somewhere else.)

As we have mentioned above, culture manifests itself through jargons, codes, myths, symbols, utopias, and ways of reasoning and inferring. Associated with these we
have practices such as ciphering
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and counting, measuring, classifying, ordering, inferring, modeling, and so on, which constitute ethnomathematics.

The basic question we are then posed is the following: How “theoretical” can ethnomathematics be? It has long been recognized that mathematical practices, such as
those mentioned in the end of the previous paragraph, are known to several culturally differentiated groups; and when we say "known" we mean in a way which is
substantially different from the Western or academic way of knowing them. This is often seen in the research of anthropologists and, even before ethnography became
recognized as a science, in the reports of travelers all over the world. Interest in these accounts has been mainly curiosity or the source of anthropological concern
about learning how natives think. We go a step further in trying to find an underlying structure of inquiry in these ad hoc practices. In other terms, we have to pose the
following questions:

1. How are ad hoc practices and solution of problems developed into methods?
2. How are methods developed into theories?
3. How are theories developed into scientific invention?

It seems, from a study of the history of science, that these are the steps in the building-up of scientific theories. In particular, the history of mathematics gives quite
good illustrations of steps 1, 2, and 3, and research programs in the history of science are in essence based on these three questions.
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The main issue is then a methodological one, and it lies in the concept of history itself, in particular of the history of science. We have to agree with the initial sentence
in Bellone's excellent book on the second scientific revolution: "There is a temptation hidden in the pages of the history of science—the temptation to derive the birth
and death of theories, the formalization and growth of concepts, from a scheme (either logical or philosophical) always valid and everywhere applicable. . .. Instead of
dealing with real problems, history would then become a learned review of edifying tales for the benefit of one philosophical school or another" (p. 1). 'S This tendency
permeates the analysis of popular practices such as ethnoscience, and in particular ethnomathematics, depriving it of any history. As a consequence, it deprives it of the
status of knowledge.

It is appropriate at this moment to make a few remarks about the nature of science nowadays, which is regarded as a large scale professional activity. As we have
already mentioned, it developed into this position only since the early nineteenth century. Although scientists communicated among themselves, and scientific
periodicals, meetings, and associations were known, the activity of scientists in earlier centuries did not receive any reward as such. What reward there was came
more as the result of patronage. Universities were little concerned with preparing scientists or training individuals for scientific work. Only in the nineteenth century did
becoming a scientist start to be regarded as a professional activity. And out of this change, the differentiation of science into scientific fields became almost
unavoidable. The training of a scientist, now a professional with specific qualifications, was done in his subject, in universities or similar institutions, and mechanisms to
qualify him for professional activity were developed. And standards of evaluation of his credentials were developed. Knowledge, particularly scientific knowledge, was
granted a status which allowed it to bestow upon individuals the required credentials for their professional activity. This same knowledge, practiced in many strata of
society at different levels of sophistication and depth, was expropriated by those who had the responsibility and power to provide professional accreditation.

We may look for examples in mathematics of the parallel development of the scientific discipline outside the established and accepted model of the profession. One
such example is Dirac's delta function which, about twenty years after being in full use among physicists, was expropriated and became a mathematical object,
structured by the theory of distributions. This process is an aspect of the internal dynamics of knowledge vis-a-vis society.
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There is unquestionably a timelag between the appearance of new ideas in mathematics outside the circle of its practitioners and the recognition of these ideas as
"theorizable" into mathematics, endowed with the appropriate codes of the discipline, until the expropriation of the idea and its formalization as mathematics. During
this period of time the idea is put to use and practiced: it is an example of what we call "ethnomathematics" in its broad sense. Eventually it may become mathematics in
the style or mode of thought recognized as such. In many cases it never gets formalized, and the practice continues restricted to the culturally differentiated group
which originated it. The mechanism of schooling replaces these practices by other equivalent practices which have acquired the status of mathematics, which have been
expropriated in their original forms and returned in a codified version.

We claim a status for these practices, ethnomathematics, which do not reach the level of mathematization in the usual, traditional sense. Paraphrasing the terminology
of T. S. Kuhn, we say they are not "normal mathematics" and it is very unlikely they will generate "revolutionary mathematics." Ethnomathematics keeps its own life,
evolving as a result of societal change, but the new forms simply replace the former ones, which go into oblivion. The cumulative character of this form of knowledge
cannot be recognized, and its status as a scientific discipline becomes questionable. The internal revolutions in ethnomathematics, which result from societal changes as
a whole, are not sufficiently linked to "normal ethnomathematics." The chain of historical development, which is the spine of a body of knowledge structured as a
discipline, is not recognizable. Consequently ethnomathematics is not recognized as a structured body of knowledge, but rather as a set of ad hoc practices.

It is the purpose of our research program to identify within ethnomathematics a structured body of knowledge. To achieve this it is essential to follow steps 1, 2, and 3
above.

As things stand now, we are collecting examples and data on the practices of culturally differentiated groups which are identifiable as mathematical practices, hence
ethnomathematics, and trying to link these practices into a pattern of reasoning, a mode of thought. Using both cognitive theory and cultural anthropology we hope to
trace the origin of these practices. In this way, a systematic organization of these practices into a body of knowledge may follow.
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Conclusion

For effective educational action not only an intense experience in curriculum development is required, but also investigative and research methods that can absorb and
understand ethnomathematics. And this dearly requires the development of quite difficult anthropological research methods relating to mathematics, a field of study as
yet poorly cultivated. Together with the social history of mathematics, which aims at understanding the mutual influence of sociocultural, economic, and political factors
in the development of mathematics, anthropological mathematics, if we may coin a name for this specialty, is a topic which we believe constitutes an essential research
theme in Third World countries, not as a mere academic exercise, as it now draws interest in the developed countries, but as the underlying ground upon which we can
develop curriculum in a relevant way.

Curriculum development in Third World countries requires a more global, clearly holistic approach, not only by considering methods, objectives, and contents in
solidarity, but mainly by incorporating the results of anthropological findings into the three-dimensional space which we have used to characterize curriculum. This is
quite different than what has frequently and mistakenly been done, which is to incorporate these findings individually in each coordinate or component of the
curriculum.

This approach has many implications for research priorities in mathematics education for Third World countries and has an obvious counterpart in the development of
mathematics as a science. Clearly the distinction between Pure and Applied Mathematics has to be interpreted in a different way. What has been labeled Pure
Mathematics, and continues to be called such, is the natural result of the evolution of the discipline within a social, economic, and cultural atmosphere which cannot be
disengaged from the main expectations of a certain historical moment. It cannot be disregarded that L. Kronecker ("God created the integers—the rest is the work of
men"), Karl Marx, and Charles Darwin were contemporaries. Pure Mathematics, as opposed to Mathematics, came into consideration at about the same time, with
obvious political and philosophical undertones. For Third World countries this distinction is highly artificial and ideologically dangerous. Clearly, to revise curriculum
and research priorities in such a way as to incorporate national development priorities into the scholarly practices which characterizes university research is a most
difficult thing to do. But all the difficulties should not disguise the
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increasing necessity of pooling human resources for the more urgent and immediate goals of our countries.

This poses a practical problem for the development of mathematics and science in Third World countries. The problem leads naturally to a close for the theme of this
paper: that is, the relation between science and ideology.

Ideology, implicit in dress, housing, titles, so superbly denounced by Aimé Césaire in La Tragédie du Roi Christophe, takes a more subtle and damaging turn, with
even longer and more disrupting effects, when built into the formation of the cadres and intellectual classes of former colonies, which constitute the majority of so-
called Third World countries. We should not forget that colonialism grew together in a symbiotic relationship with modem science, in particular with mathematics and
technology.
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Chapter 2
Ethnomathematics

Marcia Ascher and Robert Ascher

Editors's comment: Marcia Ascher, a mathematician, and Robert Ascher, an anthropologist, challenge the idea that nonliterate peoples have only "primitive” mathematical ideas.
Their work, directed toward professional mathematicians, has provided detailed evidence of sophisticated mathematical ideas among nonliterate peoples, ideas akin to and as
complex as those of modern, "Western" mathematics. As such, this chapter, which first appeared in History of Science, 14: 125-144, in 1986, played a significant role in introducing
ethnomathematics to the English-reading mathematical community.

Authors' Note 1995: This article was written in the early 1980s but did not find journal acceptance for several years. Hence, it reflects our earliest thinking on ethnomathematics.
Since then we have clarified our thoughts on two most important points. First of all, we subsequently articulated what we meant by the term "mathematical ideas” which occurs in
the first sentence but underlies the entire discussion. To us, mathematical ideas include those involving number, logic, spatial configuration and, more significant, the combination
or organization of these into systems and structures. Second, we used the term "nonliterate" to counter the outmoded usage of "primitive” in the mathematics literature. But, in
defining the scope of ethnomathematics, that term is too limited. The term "traditional" is better although no single word is sufficient. An entire chapter of Ethnomathematics: A
Multicultural View of Mathematical Ideas (Belmont, CA: Brooks/Cole, 1991) is devoted to a detailed elaboration of what we see as the scope and implications of ethnomathematics
as well as its relationship to other fields of endeavor.
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Ethnomathematics is the study of mathematical ideas of nonliterate peoples. We recognize as mathematical thought notions that in some way correspond to that label in
our culture. For example, all humans, literate or not, impose arbitrary orders on space. Particular orders develop within cultural contexts and their form and content
will necessarily be expressive of the culture in which they arise.

A fair number of statements about nonliterate peoples are found in mathematical literature, usually in a preliminary chapter in histories of mathematics or in books that
offer an introduction to the spirit of the subject. Most of the presentations are theoretically and factually flawed. Here we show that it is time to revise these statements
and urge toward an ethnomathematics appropriate to contemporary thought.

11

We choose the term "nonliterate” for people that are elsewhere called "primitive." In so doing, we raise an issue that is much more than quibbling about a word.
"Primitive" as applied to people is a product of the theory of classical evolution. ! Crucial in this largely nineteenth-century paradigm is the assumption that nonliterate
peoples are the earliest living representatives along a straight evolutionary path that led from savagery to civilization in a series of predestined stages.? Nonliterate
peoples were called "primitive" because they were thought to be original, early; ancient, primeval. It may be common knowledge that "primitive," when applied to the
ethnographic present, is a theoretical anachronism but its use continues in mathematical texts. Thus, the ideas of living or recently extinguished nonliterate peoples are
erroneously placed at the beginning of chronologically organized discussions of mathematics.

For the classical evolutionists, the mathematical thought of non-literate peoples was confined to number. It could be nothing more if, as was the case, it was taken for
granted that nonliterate peoples were living ancestors and that mathematics began with numeration. E. B. Tylor, the most highly regarded member of the school,
devoted one chapter of his Primitive Culture to the "The art of counting."* Some
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twenty-two years later, the mathematician L. L. Conant wrote his influential book The Number Concept: Its Origin and Development. * The book, which is
pervaded by the ideas of the classical evolutionists and in particular by the ideas of Tylor, continues to be followed today.5 For current mathematicians too,®
mathematical thought of nonliterate peoples centers on number using number words as data. Discussions emphasize body parts referred to in the number words, how
words are formed, how high number words go, and whether different number words are used for different categories of objects. Records of counts, if they occur, are
1-1 assemblages of pebbles, notches on sticks, or knots on strings. Differences in ideas are associated with the needs of the different economies of hunting and
gathering or herding or commerce. And sometimes nonliterate number comprehension is compared to a number sense found in other animals.” These notions require
examination.

The fact that the same word is used for a number and a body part tells us nothing about number as number In every language, words for numbers, just as words for
anything else, are coined freely in several ways. If a word is adopted from an already existing word, it soon takes on a meaning appropriate to its new context. For
example, when an English speaker says "a foot" in the context of measurement, no English hearer thinks he is thinking of a body part. If in a nonliterate culture, we hear
a word for a body part in the context of number, there is no reason to presume otherwise. For speakers within both language communities, the circumstances of the
coinage are irrelevant.

How high number words go reflects only how high people in a language community wish to count and is unrelated to intelligence or ability to formulate abstractions.
The flexibility and expendability of all languages permit the addition of higher number words as and if they are needed.® The concept of counting is universal.” What is
universally being recognized, and what the large variety of number words have in common, is that there is an equal amount from one to the next. In short, all number
words are names given to 1, 1+1, 1+1+1, and so forth. New names are created when they are needed, but their presence or absence implies nothing new about the
number concept. Kronecker's "God made the integers . . ." and the properties being captured by the Peano postulates are perhaps yet another way of saying the same
thing,

The study of language is also mainly responsible for our insights into the diversity and richness of the ways in which the world is categorized in different cultures.!® The
use of different number words
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for different categories of objects is often erroneously cited in mathematical texts as evidence for the lack of an abstract concept of number. For example, Tsimshians
are said to have seven distinct sets of number words with one set for flat objects and animals, one for round objects and divisions of time, one for men, one for long
objects, one for canoes, and one for counting when no definite object is referred to. ' Mathematicians should, but apparently do not, recognize that these categories
are neither mutually exclusive nor exhaustive and wonder what word a Tsimshian uses for round flat objects or objects such as stars. The use of sets of number words
or numerical classifiers is widespread and still eludes conclusive analysis.'? Let us accept for the moment the simple statement that some groups have different number
words for objects that are living and dead and diagram it as

L ] L )
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Figure 2-1.

in figure 2-1a. The concept of 3, does not detract from either the concepts of 3 or the concept of living. It is their intersection. In figure 2-1b, only the labels are
changed. Someone, not privy to either diagram, hearing only A, B, C, D might think them quite distinct. The hearer might brand them a product of concrete thinking,
while in actuality, the ability to simultaneously carry both dimensions makes the idea rather subtle. In mathematical writing, Blackfeet are said to use different sets of
numbers for the living and the dead.'® All that can be concluded is that they insist on this fundamental opposition. We might speculate on the effect of such a distinction
if introduced into applications of Western mathematics. Perhaps when a mathematical model is constructed from a realistic problem, it would be better to retain with
the variables the knowledge that they refer to living or nonliving objects. They could be dealt with as variables with re stricted domains as is the case with Diophantine
equations. Somewhere in the now conventional story of number, there are shifts from the area of language to the visual-tactile. Artifacts are in-



Page 29

troduced—pebbles, notched sticks, knotted cords. The often emphasized aspects of artifacts—the material from which they are made—is of no mathematical
importance. Knotted cords, for example, can be 1-1 tallies, or they can be as sophisticated as the logical-numerical system of the Incas, ! just as chalkboards can be
records of 1—1 tallies or complex integrals. A 1—1 tally is a step-by-step matching process in which individual objects, be they pebbles, strokes, or whatever, are
associated, one at a time, with other individual objects creating for some purpose a tractable set of signs. A number symbol, on the other hand, regardless of the
medium, is a representation of whatever is subsumed by the meaning of the number. Having a set of number symbols implies having some organized concept of
numbers and their relationships. Stressed as often as the material is the motivation for the creation and use of number symbols. It is depicted in terms of the property
and business needs of the individual hunter or herder. Clearly, to be other than a private code, a symbolic system must be shared, spread, and reiterated by a group of
users.

The conventional wisdom is well encapsulated in an anecdote that is repeated wholly or in part with such frequency that it must have special appeal. The anecdote tells
of an exchange between a native African Demara sheepherder and someone else variously described as an explorer, trader, scientist, anthropometrist, or ethnologist.
It is intended to show that the herder cannot comprehend the simple arithmetic fact that 2+2(or 2x2)=4. It describes how the herder agrees to accept two sticks of
tobacco for one sheep but becomes confused and upset when given four sticks of tobacco after a second sheep is selected!s Of course, the problem is not that the
shepherd doesn't understand arithmetic, it is rather that the scientist/ trader doesn't understand sheep. Sheep are not standardized units. Since the Demara herder
finally agreed to the trade, his confusion could be attributed to the trader's willingness to pay an equal amount for the second, different animal.

Other than demonstrating two people talking past each other, the anecdote raises the issue of the difference between a mathematical concept and its application. When
inferring mathematical ideas from concrete usage, one is always dealing with applications. It is recognized, for example, that 2+2=4 does not apply when discussing
combining volumes of gases or combining elements of overlapping sets.'® Even more important, as was recognized as early as 1912 by Wertheimer,'” the applicability
of even the simplest of mathematical models becomes a question of cultural categorization. We say, for example, that 2 apples + 2 pears = 4 fruit, but 2 pants + 2
jackets =2



Page 30

suits. A while ago we might have said that 2 men + 2 women = 2 couples, but now we are careful to say that 2 men + 2 women = 4 people. Further, we believe there
is meaning in 2 in. X 2 in. =4 sq. in. but not in 2 apples X 2 apples =4 sq. apples. A question that has been posed by Western scholars when trying to determine the
universality of mathematics, '8 is whether or not 2 + 2 always equals 4. Once 4 is recognized as the name for 2 + 2, the question becomes, as it is here, whether or not
the model applies. That question can have different answers in different cultures and even different answers within the same culture.'

While discussion of mathematical ideas of nonliterate peoples centers on number, the presumptions and conclusions extend to logic and thought. Nonliterate peoples
are often explicitly characterized as simpleminded or childlike, as only capable of concrete thought and not of abstraction or generalization, as of lesser intelligence, as
incapable of analytic thought, and as without formal reasoning or logic.?” In any context these descriptions are heavily judgmental; in the context of mathematics, they
are condemning.

To examine this characterization, we pick up the thread of intellectual history. For the classical evolutionists, the "psychic unity of mankind" was fundamental.?! This
tenet was challenged in the highly influential writings of Lévy-Briihl.?2 In place of "psychic unity," he erects a divided world of thought—nonliterate people are
"prelogical ”; we are logical, where logical is intended in the broad sense of all thought and thought processes. Once again going over the issue of number but now
paying attention to thought, Lévy-Briihl reconsiders Conant's findings claiming that he can account for them for the first time in a satisfactory way. He says that Conant,
believing 5 should be the most “natural" base, was puzzled by the diversity of bases he found in nonliterate cultures. But there is no puzzle, says Lévy-Briihl, if one
understands that the minds of primitives do not function as ours do, that they are mystical rather than logical and that they know almost nothing of abstraction—how
then, for them, can one base be more "natural” than another®® The line that Lévy-Briihl drew between himself and the classical evolutionist is not as hard and fast as
he would have us believe. They needed the notion of psychic unity for their evolutionary hypothesis but contradicted it at almost every turn as the racial and class
prejudices of their culture and times overshadowed their science.?* For example, they characterized nonliterate peoples as childlike and meant two things by it. Used
one way, childlike stood for an early stage in a human life, just as primitives were an early stage in the evolution of culture. Alternatively, childlike
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meant that primitives thought like children. 2° In effect, a Victorian prejudice of the evolutionists became philosophy in the works of Lévy-Brriihl. 26

Within a few years of the 1910 publications of How Natives Think, the ideas of Lévy-Briihl had entered the mathematical literature in a lengthy, uncritical manner,?’
they are found with force in Menninger, and continue a generation later in the works of others.?® The myth of the childlike, prelogical primitive persists in spite of a host
of anthropologists from Durkheim to Lévi-Strauss who have inveighed against it.? Why is this so? One answer is that there is political, social, economic, and ideational
value in maintaining that most of the people in the world are our intellectual inferiors. Another answer is found in the belief that higher technology goes with higher
intelligence. Its persistence within scholarly disciplines did not evaporate because it is difficult to deal with any statement so broad as to encompass all non-literate
peoples and so incisive as to pinpoint a mode of thought. Nevertheless, beginning about fifteen years ago, scholars with diverse perspectives have turned directly to the
question.

One argument important for us addresses the specific ethnographic examples relating to number used by Lévy-Briihl. He noted, for example, that certain numbers and
numbers that are multiples or divisors of them play an important role in Veddic religion, rituals, and legends. In this context, on occasion, 3, 7, or 9 are substituted for
each other. From this, Lévy-Briihl concludes "this equivalence, an absurdity to logical thought, seems quite natural to prelogical mentality, for the latter, preoccupied
with the mystic participation, does not regard these numbers in abstract relation to other numbers, or with respect to the arithmetical laws in which they originate."
But a recent field study of the numerical ideas and arithmetic abilities of the Kédang, who also have this type of substitution, enables a different conclusion.?! Their use
of numbers in practical arithmetic contexts and their use of numbers in non-arithmetic contexts do not contradict or detract from each other. When used in symbolic
contexts, odd numbers are associated with life and even numbers with death. Substitutions within these classes are possible if circumstances require it. If, for example,
a ceremonial period of four days is stipulated but cannot be met, two days will do but three would be a serious infringement. Four and two are members of the same
class and so are equivalent in that sense in this context. The formation of these equivalence classes is, we think instead an example of an abstract idea about number.

Other counters to Lévy-Briihl address logical processes specifically. None of the hundreds of languages studied so far lacks the abil-
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ity to handle the logical connectors and, not, or, if . . . then, and iff. 3* Natural discourse, however, need not be explicitly structured as formal logic. Commonly held
beliefs more often are presumed than stated as premises. Thus, some grasp of the beliefs of a given culture are needed so that the course of inference may be
followed. An outsider, lacking such understanding, can too easily fall into the mistaken notion that what is heard is somehow irrational or illogical.3* There is, as is
posited by some philosophers, a universal "natural rationality" that enables learning through inferences made from experience with the diversity of conclusions stemming
from different frameworks of concepts and beliefs in different cultures.>* Further, the forms of human thought deemed logical are now viewed more broadly and
include inferences about the plausibility of statements and three-valued logic.3¢ In a similar vein, such areas as heuristics, circumscription,*” and fuzzy-logic3® are being
explored by computer scientists who are concerned with artificial intelligence and are trying to formalize human-like processes.

The use of syllogisms for investigating the reasoning ability of nonliterate people was recently reexamined by cognitive psychologists.? The study probed more deeply
reasoning that respondents used to arrive at what were formerly viewed as unsatisfactory responses. Here is one example in which a Kpelle respondent would not
reply to the question.

All Kpelle men are rice farmers. Mr. Smith is

Question: not a rice farmer. Is he a Kpelle man?

One part of the response: If you know a person, if a question comes up
about him you are able to answer. But if you
do not know the person, if a question comes
up about him, its hard for you to answer.4?

Although the syllogism posed by the questioner has gone unanswered, the ability to reason and to think hypothetically has been demonstrated. What has also been
demonstrated is that the Kpelle respondent and his Western questioner have different views on talking about people whom you do not know. Another question can be
summarized as:

if A or B then C,
given not A and B,
is C true?
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and the answer as:

if A then Q,

if B then not Q,

if not Q then not C,

given not A and B,

the conclusion is not C. #!

Here again the logic is fine but the respondent has explicitly substituted statements consistent with his world view. Comparing several similar studies with Kpelle, Vai,
Yucatecans, and North Americans, it was concluded that the level of schooling seemed to be most significant in eliciting the responses expected by the Western
questioner.#? But this is as it should be since in formal Western-style education, one learns the school culture which emphasizes "playing along" with the questioner
Additionally, some psychologists are convinced that tests used on Western children and the developmental stages they define are invalid when used on adults and
children in other cultures.* Piaget and others modified their positions to note that even within Western culture there are differences in results when questions more
closely mirrored the life experiences of those tested.*

There is not one instance of a study or restudy that upon close examination supports the myth of the childlike primitive. What the studies do show might be summarized
in these words: "Cultural differences in cognition reside more in the situations to which particular cognitive processes are applied than in the existence of a process in
one cultural group and its absence in another."4 No longer can non-literate peoples be thought to be childlike. Indeed, the approach of many contemporary
anthropologists is to think of themselves as children.*® After all, an outsider, from the perspective of the people visited, is the one who is childlike and is often told so
because he does not know, for example, how to address an elder, the proper way to hold a utensil or, perhaps, that different words mus¢ be used to count the living
and the dead.

111

Mathematical ideas of nonliterate people must be drawn from ethnographic literature with the understanding that the task will not be easy. Most anthropologists were
limited in their understanding of
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mathematics and have seldom asked relevant questions. 47 Ideas that might have been delved into more deeply or recorded more specifically by someone with an
interest in mathematics, may well have not been seen for what they were. Fortunately, at least some anthropologists included information, sometimes even
unbeknownst to them, that can be used, and some recent studies have been specifically concerned with related ideas. Also, in some cases, there are available
ethnohistorical accounts as well as artifacts. The category mathematics is our own, and so we cannot expect to find anything so labelled by other peoples. Moreover,
because they have no professional classes particularly devoted to the doing of mathematics, there is no explicit mathematics. Mathematical ideas will have to be found
implicit in other areas and activities. Their context in a culture will depend on what the culture thinks about and on how it thinks about what it thinks about.

Specific studies within ethnomathematics require detailed investigation and analysis. As with any serious endeavor, the results will be more than anecdotal. Substantial
studies are already available on, for example, the logical-numerical system of the Incas*® and Maya calendrics* with their cultural ramifications. Here, however, we
continue with instances isolated from their full cultural elaboration to indicate possibilities and problems. Expanding beyond number and numeracy, we contrast some
impositions of order on space and cite some conceptual models for which the users are clearly aware of and concerned with logical structures and drawing inferences
from them.

For a long time in Western culture, it was believed that our Euclidean geometry was describing truths about the physical world rather than being an elaboration of a
mental construct. Our most fundamental concepts were then recognized as arbitrary, but some illustrations from other cultures will emphasize just how arbitrary they
are. Points, lines, right angles, rectangles, and planar surfaces are essential to the world we have constructed around us. This, of course, influenced the course of
Western mathematics, but mathematics, in turn, reinforced their importance through our art, architecture, measuring and mapping schemes, ways of seeing and
describing, and even our aesthetic sense. What could be more natural than looking up at the sky, spotting particular stars, mentally connecting the star-points with
straight line segments, and creating constellations that are seen by generation after generation? Apparently in keeping with their spatial ideas, native Andean peoples
see other constellations far more irregularly shaped made up of darker and lighter blotches (clouds of interstellar dust) in the sky.>® Just before he died in the 1930s,
Black Elk, an Oglala
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Sioux, spoke about his life and thoughts. His statement about the cirde (below, right) is presented in contrast to a statement about the line (below, left) which appeared
in a recently highly lauded work by two American professors of mathematics. While they differ on the geometric form, the writers share their degree of conviction in
the rightness of their ideas and support their view with nature, God, achievement of goals, and proper human development. Black Elk and the Sioux, however, were
forcibly made to realize that their view was not shared by other cultures.

... in every human culture that we will
ever discover, it is important to 8o from
one place to another, to fetch water or dig
roots. Thus, human beings were forced to
discover—not once, but over and over
again, in each new human life—the
concept of the straight line, the shortest
path from here to there, the activity of
going directly towards something.

In raw nature, untouched by human
activity, one sees straight lines in primitive
form. The blades of grass or stalks of corn
stand erect, the rock falls down straight,
objects along a common line of sight are
located rectilinearly. But nearly all the
straight lines we see around us are human
artifacts put there by human labor. The
ceiling meets the wall in a straight line, the
doors and windowpanes and tabletops are
all bounded by straight lines. Out the
window one sees rooftops whose gables
and corners meet in straight lines, whose
shingles are layered in rows and rows, all
straight.

[continued on next page]

... I am now between Wounded Knee
Creek and Grass Creek. Others came
too, and we made these little gray
houses of logs that you see, and they are
square. It is a bad way to live, for there
can be no power in a square.

You have noticed that everything an
Indian does is in a circle, and that is
because the Power of the World always
works in circles, and everything tries to
be round. In the old days when we were
a strong and happy people, all our power
came to us from the sacred hoop of the
nation, and so long as the hoop was
unbroken, the people flourished. The
flowering tree was the living center of the
hoop, and the circle of the four quarters
nourished it. The east gave peace and
light, the south gave warmth, the west
gave rain, and the north with its cold and

mighty wind gave strength and endurance.

This knowledge came to us from the
outer world with our religion. Everything
the Power of the World does is done in a

[continued on next page]
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circle. The sky is round, and I have

The world, so it would seem h?s ) heard that the earth is round like a ball
compelled us to create the straightline so 1.4 <5 are all the stars. The wind. in its
as to optimize our activity, notonly by the  oreqtest power, whirls. Birds make their
problem of getting from here to there as  jagrq i circles, for theirs is the same
quickly and easily as possible but by other  rejigion as ours. The sun comes forth and
problems as well. For example, when one goes down again in a circle. The moon
goes to build a house of adobe blocks, 0ne  §,aq the same. and both are round.
finds quiclfly enough that if they are to ﬁt Even the seasons form a great circle in
together mcely, their S}des must b.e st.re.ught. their changing, and always come back
Thus, the idea of a straight line is intuitively  goain to where they were. The life of a
rooted in the kinesthetic and the visual man is a circle from childhood to
imaginations. We feel in our muscles what  i1dhood. and so it is in everything

itis to go straight toward our goal, we can  \poro power moves. Our tepees were
see with our eyes whether someone else is 1 14 Jike the nests of birds. and these

going straight. The interplay of these two  were always set in a circle, the nation's
sense intuitions gives the notion of straight hoop, a nest of many nests, where the
b »

line a solidity thatenables us to handle it et Spirit meant for us to hatch our
mentally as if it were a real physical object  pijdren.

that we handle by hand.

But the Waischus (white-men) have put
By the time a child has grown up to us in these square boxes. Our power is
become a philosopher, the concept of a gone and we are dying, for the power is
straight line has become so inrinsic and not in us any more. You can look at our

fundamental a part of his thinking thathe  poys and see how it is with us. When we

may imagine it as an Eternal Form, part of  yere living by the power of the circle in
the Heavenly Host of Ideals which he the way we should, boys were men at
recalls from before birth. Or, if his name be twelve or thirteen years of age. But now it
not Plato but Aristotle, he imagines that the  takes them very much longer to mature.
straight line is an aspect of Nature, an

abstraction of a common quality he has Well, it is as it is. We are prisoners of war
observed in the world of physical objects. ~ while we are waiting here. But there is

St another world.5?
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Sharply contrasting with both of these views are the Avilik (Inuit) spatial concepts studied by Edmund Carpenter, an anthropologist whose particular concern is the
interconnectedness of media and thought. 5 He concludes that they do not separate space and time, but join them into a dynamic process in which space itself is never
a static enclosure but "direction in operation." He relates this to their environment which he sees as vast with few permanent reference points. For orientation the Avilik
rely on wind direction and changing snow and ice forms and relationships. Ramifications of this basic concept are seen in their art and ways of seeing and describing.
In carving ivory, for example, a figure is sketched until the limit of the surface is reached and then it is turned over and the figure completed on the other side. Each
independent figure has its own horizon and orientation. Sometimes groups of figures are all the same figure but shown from several different perspectives or they may
depict an event that requires the passage of time. Also, if an Avilik wishes to show what is inside or behind something, he or she draws the objects as if they were
transparent. Carpenter makes the analogy to "an engineer's sketch of the moving parts of an engine, all relevant elements are shown, in spite of the fact that they could
never be observed from a single vantage point" or in a single moment.> The most important feature is that no single orientation seems to be assumed in drawing or
viewing. Carpenter reports that the children poked fun at what they found to be his odd behavior of turning surfaces or his head in order to look at pictures. Some of
the children, when taught our mode of perspective drawing in school, instead made the parallel lines converge as they approach the viewer, which served to open out
instead of close the space, while others used the bottom of the paper as the closest visual points and higher positions for points more distant.

Continuing with the ordering and representation of space, we turn to the construction and use of a spatial model. It is an example of an application—the goal is to
navigate from one place to another throughout the Caroline Islands, a chain that extends for about 1,500 miles. Its users do not believe it to be a statement of reality.
As with most mathematical models, it is an abstraction from physical reality from which relations and logical implications can be derived in order to deal with all
possible journeys rather than only journeys already taken. The model is used to organize fixed data, incorporate realistic cues, and make decisions accordingly.S Its
use is standardized throughout the Caroline Islands and requires a long, intensive period of learning, much of which takes place in lectures on land. The lectures are
augmented by diagrams sketched in the sand. The naviga-



Page 38

tor's knowledge includes much more than this model, but the model is central to navigation. Leaving an island and getting started in the right direction, keeping a
straight course by combining the angles of three sets of prevalent wave types, and homing in on the destination once within about twenty miles of it are also important,
but the model is essential for knowing where you are when out of sight of any land.

The model consists, first of all, of a "compass" which is thirty-two points irregularly spaced around the horizon. The points are the rising and setting positions of
different stars and, as part of a mental construct, do not depend on the visibility of the stars during a journey. The paths of these stars, other stars, and all known
islands are positioned within this framework. The region is sufficiently latitudinally confined so that the star rising and setting points are essentially the same throughout.
To each pair of origin and destination islands, there is associated a third island, well out of sight of the course, which is used as a reference point during a journey. The
boat is conceived of as stationary and the island as moving. The direct course of the journey passes the sationary boat as the reference island passes consecutive star
positions (figure 2-2). 56 Meanwhile, of course, tacking

STAR POSITIONS

EFERENCE
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Figure 2-2.
A journey.

and responding to particular circumstances are detours that need be correlated with the direct course.5” With this model, the navigators know just where they are while
sailing and are able to successfully reach landfall targets hundreds of miles from their starting point which subtend as little as 5°-7°.58



Page 39

Ordering human relationships is certainly as fundamental as imposing order on space. In our culture, interest in the logical structuring of kinship is minimal; in others, it is
a much more elaborated and dynamic element in daily life. There is, of course, no particular structure that is any more correct than any other. Each system contains an
arbitrary set of rules which must be consistent and must lead to the desired outcomes which incorporate the values and world view of the culture. Most important is
that the members of the culture share the model and constantly draw inferences from it about their relationships to whomever they encounter and the appropriate
behavior towards them. The logic of relations, in mathematics, is more recent than the Aristotelean logic of classes and propositions. While it has no necessary
connection to kin structuring, it is not uncommon to find Western-kin terms used as illustrative examples. For example, spouse of is used to illustrate a symmetric
relationship, mother of to illustrate an asymmetric relationship, father of and uncle of are nonintersecting relations (with the exception of some few religious sects),
and grandfather of is the relative product of father of and mother of. 3 The relations being stated explicitly are implicit in the definition of the kin relationships. More
complex kin structures have more complex logical relations implicit in them.

Let us examine the kin relationships found among the Aranda of Australia. Each person is in one of eight marriage classes. Each must marry a person from a specified
class and their children are in another class which depends on the class of the mother (figure 2-3). The
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Figure 2-3.
Aranda marriage classes: 1. An equal sign
indicates marriage partners. The arrow points
from the mother's class to the child's class.

representation in figure 2-3 raises an important problem. It conveys the rules but does not display the underlying logical structure. Each descriptive organization we
create brings out those aspects of the structure we believe to be important. But it may be we are superim-



Page 40

posing our own views while missing what is important to the Aranda. Looking at two additional representations, we will begin to see the logical richness of the system
and some of the effects of using data collected, translated, and presented by others. Figure 2-4 dis-

oY

Figure 2-4.

N

Aranda marriage classes: 2. An equal sign
indicates marriage partners. The arrow points
from the mother's class to the child's class.

plays the presence of two nonoverlapping matricycles, each of length four, and, although somewhat less blatently, four nonoverlapping particycles each of length two.
0 One of the primary features of the kin structure, which echoes an important feature of Aranda world view, and, in general, native Australian cosmology, is that in
these cycles, past and future are drawn together into the present.®! The author of the much more elaborate representation in figure 2-5 notes that the
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Figure 2-5.

Aranda marriage classes: 3. Capitals indicate females, small
letters indicate males. Terminating points of horizontal lines
are marriage partners. Vertical lines connect parents to children.
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right and left sides should be contiguous and the top and bottom should be contiguous. He further notes that the diagram should be on the surface of a torus. ¢ Here
the unified nature of time and both the matricycles are patricycles are made visual. The unified nature of blood ties is also made visible: the lesser blood ties on either
side are drawn together into the closest blood ties. While the rules are stated in terms of the class of the person one marries, by implication, they also specify the
individuals one cannot marry. A man, for example, cannot marry his mother, aunt, sister, first cousin, or daughter.

It would, of course, be possible for people to memorize rules and never conceive of the system abstractly or as a whole. There is, at least in one case, dramatic
evidence that this is not so. In the 1920s, well before anthropologists had as sophisticated an understanding of kinship structures as they now do,® a young
anthropologist, A. Bernard Deacon, was investigating the regulation of marriage in Ambrym, New Hebrides. Another who had studied it without conclusion noted later
that "class systems of relations were but little known" and what there was in the scholarly literature contained too many details and too few diagrams obscuring the
simple main principles.** The drama of Deacon's findings was in the way he learned of it: ". . . the older men explained the system to me perfectly lucidly, I could not
explain it to anyone better myself. It is perfectly clear that the natives (the intelligent ones) do conceive of the system as a connected mechanism which they can
represent by diagrams [which they drew for Deacon on the sand]. . .. The way they could reason about relationships from their diagrams was absolutely on a par with
a good scientific exposition in a lecture room."% Deacon, as is clear from other materials he collected, had a broader view than many of his colleagues and an interest
in information that others ignored. His letter to his mentor continues: "I have collected in Malekula, too, some cases of a remarkable mathematical ability. I hope, when
I get my material together, to be able to prove that the native is capable of pretty advanced abstract thought." Most unfortunately, less than a month later, Deacon
was stricken with blackwater fever and died. His edited field notes, however, were published posthumously.

In the explanation given to Deacon,®’ the elder first drew three long lines arranged as equally spaced spokes of a wheel to represent men from each of three bwelem.
The three men married, which was indicated by appending a short line to each of the long lines. Each couple had a boy and a girl who are of the same bwelem as the
father, but the other "line," so longer lines, coming together at the center, were added and the children placed on the other side of them. The
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diagram, so far, is shown in figure 2-6. %8 The wives were from another bwelem, as indicated by arrows added to show where they came from.
'
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Figure 2-6.

Marriage rules in Ambrym: 1.
For explanation see text.

But, the elder emphasized, marriage moves in both directions. The males on the diagram yet without wives would, therefore, marry the sisters of the men who had
married their sisters. This was shown by adding three short lines and arrows from them. The final diagram is figure 2-7.%° Two aspects of the diagram that are

particularly notewor-
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Figure 2-7.
Marriage rules in Ambrym: 2.
For explanation see text.

thy are its parsimony and the early interchanging of the positions of the male and female symbols in the first and second "lines" of each bwelem, which results in a final
diagram without any crossing lines. But even more important mathematically is that a conceptual model and the relationships between its elements have been explicitly,
consistently and effectively transformed into a planar model. The system itself has interesting features: the "line" of a woman and her female
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descendants remain the same, but their bwelem form a cycle of length three with the cycle for one "line" being a permutation of the cycle for the other; whereas the
bwelem of a man and his male descendants remain the same, but their "lines" form a cycle of length two. Again, the system does not permit the marriage of a man and
his mother, sister, aunt, or daughter. One of the original sources of confusion about the marriage rules was that the people of Ambrym were referring to the class of an
individual, while the anthropologists were taking it concretely to mean the individuals themselves. In the description, for example, the word mistaken for blood sisters
actually means classificatory sisters, which is made dear by the symbols and their placement in a diagram. The fact that logical inferences are drawn from the model
was born out by the elder explaining, before being asked, that two or three kin words were misleading; they did not exactly reflect the model. One word, for example,
was used by a man for his wife's mother and his father's sister, although they are not in the same class. Another elder explained the matricycles and patricycles
explicitly with a different diagram on the sand. He placed three stones "to form the apices of an equilateral triangle" 7 saying each represented a bwelem, and that a
woman of the first married a man of the second, her daughter in the second married a man of the third, and her daughter's daughter of the third married a man of the
first again who would be in the line of the first woman's father. In yet another explicit statement, it was explained that the mother's mother's mother "came back" to a
man's bwelem and "line."

v

With this interplay of conceptual models and diagrams, cycles superimposed on other cycles, and rules and their logical implications, we come to the close of our
discussion. Number systems, spatial ordering, and kinship structures are of particular interest because they are fundamental. Elsewhere we have briefly described
interest of several cultures in tracing dosed figures without lifting the finger or crossing lines.”” Whether a children's puzzle part of a myth about death or speculation on
being able to take a Sunday walk on K&-nigsberg's bridges, the fact that many share this concern can only make our Western solutions richer. Ethnomathematics is
not a part of the history of Western mathematics although we will, of necessity,
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need to use Western terminology in discussing it. As Westerners, we are confined in what we can see and what we can express to ideas in some way analogous to our
own. The ideas of non-Westerners belong, as do ours, in the global and ongoing history of mathematics always keeping in mind that there is no single linear ordering
and no necessary route that all must follow. At the very least, ethnomathematics can lead to an appreciation of the intellectual endeavors of others.

The late Raymond L. Wilder, the primary mathematical spokesman for the importance of relating mathematics and culture, used his understanding to describe the
processes of mathematical development in the West. 72 Claudia Zaslavsky increased our sensitivity to developments in Africa.”® Some other mathematicians and
philosophers, such as Keyser, Kline, Spengler, and Wittgenstein, also realized that mathematics has a cultural context but stopped short of probing other cultures.” As
time passed, our culture and world view gave rise to different philosophies of mathematics, none of which seems quite satisfactory now.”> An understanding of what is
universal and what is not, a better understanding of the mathematical ideas of nonliterate peoples, and acceptance of the fact that they are not our early history are
essential to the emergence of a philosophy of Western mathematics fitting our times and our culture.
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SECTION 11
UNCOVERING DISTORTED AND HIDDEN HISTORY OF MATHEMATICAL KNOWLEDGE

Arthur B. Powell and Marilyn Frankenstein

Freire (1970, 1973) insists that in our struggle toward human liberation, the "culture of silence" represents a major obstacle. Through its mechanisms, the oppressed
participate in their own domination by internalizing views of oppressors and by not speaking or otherwise acting against those oppressive views. In the United States,
this culture of silence surrounding mathematical knowledge is fueled by the ideology of "aptitudes"—the deep-seated belief that "a difference in essence among human
beings . . . predetermines the diversity of psychic and mental phenomena" (Bisseret, 1979, p. 2). Particular individuals, and various communities believe, speak and act
as if they have nonmathematical minds. In the case of women, researchers have explored the structural, emotional, and culturally conditioned cognitive factors that lead
women to believe men have more mathematical "aptitude." Tobias (1978) and Dowling (1990) discuss research into hidden messages about gender, race, and class in
the content and images of mathematics textbooks; Beckwith (1983) summarizes studies of media influence on children's perception of alleged superior mathematics
abilities of boys. Ernest (1976) concludes that these beliefs are "the result of many subtle (and not so subtle) forces, restrictions, stereotypes, sex roles, parental-
teacher-peer group attitudes, and other cultural and psychological constraints” (p. 11). We argue that another significant reason for the silence around mathematics of
so many women and people of color proceeds from the widespread myths presented in Western "his-stories" of mathematics.

The prevailing Eurocentric, and male-centric, myth, expressed
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and believed by many Western mathematicians, such as Kline (1953), is that:

[mathematics] finally secured a firm grip on life in the highly congenial soil of Greece and waxed strongly for a short period. . .. With the decline of Greek civilisation, the plant
remained dormant for a thousand years . . . when the plant was transported to Europe proper and once more imbedded in fertile soil (pp. 10-11).

This and other myths permeate so deeply the history of mathematics that even the images of mathematicians presented in textbooks, such as Euclid, who lived and
studied in Alexandria, are "false portraits . . . which portray them as fair Greeks not even sunburned by the Egyptian sun." There are no actual pictures of Euclid and
no evidence to suggest that he was not a black Egyptian (Lumpkin, 1983, pp. 104-105/reprinted here as chapter 5). Joseph (1987/reprinted here as chapter 3)
discusses the cosmopolitan, racially diverse nature of Alexandrian society, "a meeting place for ideas and different traditions . . . [involving] continuing cross-fertilisation
between different mathematical traditions, notably the algebraic and empirical traditions of Babylonia and Egypt interacting with the geometric and antiempirical
traditions of classical Greece" (p. 18). African, Egyptian, Alexandrian society created the environment in which some of its citizens (and probably their students)—for
example, Euclid, Archimedes, Apollonius, Diophantus, Ptolemy, Heron, Theon, and his daughter Hypatia—contributed to the development of mathematics.

We gain further insight into why such myths were created and perpetuated, denying communities and cultures their history, when we examine how racism, sexism, and
philosophical or ideological perspectives have impacted academic research, the historiography of mathematics, and foundational issues of mathematics itself. For
example, European scholars arbitrarily, yet purposefully, changed the date of the origination of the Egyptian calendar from 4241 to 2773 s.c., claiming that, "such
precise mathematical and astronomical work cannot be seriously ascribed to a people slowly emerging from neolithic conditions" (Struik, 1967, pp. 24-25, quoted in
Lumpkin, 1983, p. 100). ! For another example, the name of a key researcher in the theory of the elasticity of metals—the research which made possible the
construction of such remarkable engineering feats as the Eiffel Tower—was not listed among the seventy-two scientists whose names are inscribed on that structure.
They are all men, and the contribution



Page 53

of Sophie Germain remains unrecognized (Mozans, quoted in Osen, 1974, p. 42). This is just a small example of a much larger historical picture that obliterated
knowledge that, in spite of sexism, women did contribute to the mathematical sciences.

Often the historiography of mathematics reveals philosophical and even ideological biases. Yet histories that almost exclusively privilege the mathematics traditionally
taught in a "Western" conception neglect important variants. Within "Western" schools of thought on the foundations of mathematics and, in particular, controversies
surrounding the calculus, historians and mathematicians "fail" to recognize that radically distinct philosophical and political perspectives generate decidedly different
ideas about the nature of the calculus. Aside from professional mathematicians, others worried and wrote seriously about the calculus and its philosophical and
theoretical foundations. One such thinker was Karl Marx, whose philosophical ideas on the calculus and alternative theoretical formulations were only first discussed in
English by Struik (1948/reprinted here as chapter 8). 2 Still in the current North American effort to update and to create a lean structure and lively pedagogy for the
calculus, we still find no account of Marx's ideas on the calculus.

We gain additional insight into the complexity of the eurocentric myth when we note that, although Euclid is adamantly described as "Greek," Ptolemy (circa A.D. 150)
whose work dominated astronomy until replaced by Copernicus's theory around 1543, is often described as "Egyptian." Ptolemy's more "practical," applied work
could be contrasted to Euclid's more "theoretical" contributions (Lumpkin, 1983, p. 105). Classically, dominant cultures employ a supposed intellectual hierarchy to
differentiate their valuation of the products of the oppressed as practical in contrast to their own "theoretical" products. Harris (1987/reprinted here as chapter 10)
shows that this distinction continues to denigrate women's knowledge. Diop (1991) discusses a number of cases in which European scholars used this practical-
theoretical hierarchy to deny the sophisticated mathematical knowledge of the ancient Egyptians. For example, in discussing the Egyptian formula for the surface area
of asphere (s=4 2 demonstrated in problem 10 of the Papyrus of Moscow), Diop shows how Peet (1931) "lets his imagination run its course" in a "particularly
whimsical effort" to avoid attribution of this mathematical feat to the Egyptians. Instead, Peet tries to demonstrate that problem 10 represents the formula for the
surface of a half-cylinder, knowledge which is consistent with the less sophisticated mathematics he believed the Egyptians understood:
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The conception of the area of a curved surface does not necessarily argue a very high level of mathematical thought so long as that area is one which, like that of the cylinder, can
be directly translated into a plane by rolling the object along the ground. (quoted in Gillings, 1972, p. 198)

To transform this information in the Papyrus, Peet, "who does not recoil from this difficulty," explains that only one datum 3 is given in problem 10 because the diameter
and height of the cylinder were equal, so the one datum represents both values! In addition, Peet supposes that the scribe in charge of recopying the Papyrus must
have made a mistake and omitted a statement about the second missing datum (Diop, p. 253). Further, Diop points out that even Gillings, who argued forcefully for
the sophisticated mathematical knowledge of the ancient Egyptians, gets caught up in the practical-theoretical dichotomy. After accepting the interpretation of problem
10 as the formula for the curved surface area of a hemisphere, 1500 years ahead of Archimedes, Gillings speculates that:

Whether the scribe stumbled upon a lucky close approximation or whether their methods were the results of considered estimations over centuries of practical applications, we
cannot of course tell. . .. [From murals and other art, one can conclude that] the art of the basket maker or weaver must have been one of some consequence in the Egyptian
economic world. When one is weaving baskets which are roughly hemispherical one requires a quantity of material for the circular plane lid that is about half that required for the
basket itself. Since the calculation of the area of a circle was a common place operation to the scribes (problem 50 of the Rhind Mathematical Papyrus), over a period of years it
could have come to be equally commonplace that the curved area of the hemispherical basket was double that of the circular lid (pp. 200-201).

Diop comments on how absurd it is to think that solely empirical observation, without any theoretical reasoning, could lead to such complex mathematical knowledge.
Finally, Diop (1991) remarks how curious it is that

[i]f the ancient Egyptians were merely vulgar empiricists who were establishing the properties of figures only through measuring, if the Greeks were the founders of rigorous
mathematical demonstration, from Thales onwards, by the systemization of "empirical formulas"
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from the Egyptians they would not have failed to boast about such an accomplishment (p. 255).

Bernal (1992/reprinted here as chapter 4) argues forcefully against the denial of the centrality of ancient Egyptians in the development of mathematical and scientific
knowledge. For instance, he cites research that "the notion that the Egyptians were better geometers [than the Mesopotamians] fits both with their unparalleled
architectural achievement and with their reputation among the Greeks as the founders of geometry and their teachers in it" (p. 605). In another instance, Bernal cites
another scholar, de Santillana, who argues against the skepticism with which contemporary historians of science treat ancient Greek writers who claimed Egyptian
mathematics and astronomy were superior to their own: "We are asked to admit, then, that the greatest mathematician of Greece [Eudoxos] learned Egyptian and tried
to work on astronomy in Egypt without realizing that he was wasting his time" (p. 606).

In another example, Bernal (1987, pp. 272-280) details how this practical-theoretical split was used, in yet another feat of intellectual gymnastics, to resolve the
"tensions" around the discoveries of the mathematical knowledge embedded in the structure of the pyramids. If the Greeks were the first "true" mathematicians, how
could European scholars explain that such extraordinary mathematical precision, including measurements that lead to important relations suchas , , and
Pythagoras's triangle, had been built into the pyramids by the ancient African Egyptians (described by classical Greek scholar Herodotus as having black skins and
woolly hair)? 4 Using sarcasm, Bernal describes how this tension

is made still more unbearable by the fact that the Greeks had been told about many of the Pyramids extraordinary features and that they believed the Egyptians to have been the
first mathematicians and astronomers. Finally, there is the problem that so many of the Greek mathematicians and astronomers had studied in Egypt (p. 277).

Bernal further shows how the simplest resolution—"believe the Greeks and accept . . . that there was an . . . 'axial age' around 3000 s.c.," followed a few centuries
later by a sophisticated knowledge of mathematics, built into the pyramids, retained by later Egyptians and passed on by them to visiting Greeks—was "not available
to conventional scholars at the height of imperialism" (p. 278). The rejection of
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this simpler solution persisted in spite of the fact that there is nothing to back the alternative hypothesis—that the Greeks achieved a sudden, qualitative intellectual
breakthrough in the fourth century 8.c —"approximating to the actual achievements of the Pyramids and the consistent ancient tradition of a superior Egyptian
mathematics" (p. 278). The foundation supporting the alternative "Greek hypothesis" was the argument that the mathematical knowledge embedded in the Pyramids
were "chance qualities that had remained totally unsuspected to the constructors . . . [purely the result of] intuitive and utilitarian empiricism" (Lauer, quoted in Bernal,
1987, p. 277-278)—practical, not theoretical.

The above discussion provides some detailed examples of the interaction and intersection of racism 5 and sexism as well as philosophy and ideology with intellectual
elitism, which, in part is fueled by the different values attributed to practical and to theoretical work. For the dichotomy in work and value assigned to theory are what
Anderson (1990/reprinted here as chapter 14) theorizes as key factors in the alienation that results from capitalist modes of production which "distances people from
their creative source and their creativity . . . and allows capital to extract more surplus value from human labor and gain more control over our minds and socio-
political activities" (p. 352). Instead, if we understand the creation and development of mathematics as inextricably linked to the material development of society; we
can correct and uncover its hidden history.

In ancient agricultural societies, the needs for recording numerical information that demarcated the times to plant, gave rise to the development of calendars such as
that on the Ishango bone, approximately 25,000 years old (Marshack, 1991), found at a fishing site of Lake Edwards in Zaire (Zaslavsky, 1983, pp. 111-112; De
Heinzelin, 1962, June). And, as African women, for the most part, were the first farmers, they were most probably the first people involved in the struggle to observe
and understand nature, and therefore, to contribute to the development of mathematics (Anderson, 1990, p. 354). Then, as societies evolved, the more complex
mathematical calculations that were needed to keep track of trade and commerce gave rise to the development of place-value notation by Babylonians (circa 2000
B.c.) (Joseph, 1987, p. 27/reprinted here as chapter 3). And this continues to the present day when for example, military needs and funding drive the development of
artificial intelligence (Weizenbaum, 1985).
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Notes

1. Lumpkin goes on to report that new discoveries caused Struik to reconsider. In a personal communication to her, he states that "[a]s to mathematics, the
Stonehenge discussions have made it necessary to rethink our ideas of what Neolithic people knew. Gillings (1972) has shown the ancient Egyptians could work with
their fractions in a most sophisticated way."

2. Translated and published in English in 1993, Marx's Mathematical Manuscripts are available from New Park of London, England. Years after Struik's article,
Gerdes (1983/1985) wrote the first popular account of portions of Marx's manuscripts.

3. Only one datum, the diameter, is needed in the formula for the surface of a sphere; both the diameter and height are needed in the formula for the surface of a
cylinder.

4. See Diop (1991, pp. 103-108) for archeological evidence and hieroglyphic analysis to support the thesis that the ancient Egyptians were black peoples descended
from Southern Africans who migrated north.

5. The Eurocentric myth is tenacious, pernicious, and silencing, distorting perspective and inducing myopic vision. This ideological message of the dominant culture
becomes internalized by the oppressed. In the United States, for example, a distinguished mathematician, one of the first African- Americans to earn a Ph.D. in
mathematics, in a prestigious publication of the Mathematical Association of America, a vehicle for reform in collegiate mathematics education, stated that within the
Black community "the tradition of mathematics and science study has never been very strong" (Newman, 1989, p. 4, emphasis added). This position disregards the
historical contributions of Africans and African Americans to mathematics. His statement also ignores the structural role that the political economy of the United States
plays in the mathematical underdevelopment of African Americans. Further, along with hundreds of others, such as Thomas Fuller, Benjamin Banneker, Elbert Frank
Cox, Marjorie Lee Browne, and Evelyn Boyd Granville, this mathematician is a sterling example of how, in spite of social and institutional racism, the African-
American community produces contributors to the mathematical sciences.

For social and biographical information on Fuller, see Fauvel and Gerdes (1990) and, on Banneker, see Bedini (1972). Concerning biographical information on
Cox, Browne, Granville, and Newman, see Newell, Gibson, Rich, and Stubble field (1980). Also see Giles-Giron (1991) for sketches of Browne, Granville, and

Cox.

6. In summarizing recent paleontological and genetic evidence, Stringer (1990) contends that "modem demographic patterns most probably began
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with the dispersal of early modern humans from Africa within the past 100,000 years" (p. 101).
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Chapter 3
Foundations of Eurocentrism in Mathematics

George Gheverghese Joseph

Editors's comment: George Gheverghese Joseph, a mathematical statistician, provides an important challenge to Eurocentricism through * this overview and critical analysis of the
dominant historiography of mathematics. Joseph has heavily revised his original article of the same name that appeared in Race and Class, 28 (3): 13-28, in 1987, published in
England by the Institute of Race Relations. He further elaborates issues raised in this chapter, including specific examples of the mathematics of different cultures, in The Crest of the
Peacock.’ Non-European Roots of Mathematics (London: Penguin Books, 1992) and in Multicultural Mathematics (London: Oxford University Press, 1993).

Introduction

There exists a widespread Eurocentric bias in the production, dissemination, and evaluation of scientific knowledge. And this is in part a result of the way people
perceive the development of science over the ages. For many Third World societies, still in the grip of an intellectual dependence promoted by European dominance
during the past two or three centuries, the indigenous scientific base that may have been innovative and self-sufficient during precolonial times is neglected or often
treated with a contempt that it does not deserve. An understanding of the dynamics of precolonial science and technology of these societies is essential in formulating a
strategy of mean-
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ingful adaptation of the indigenous forms that remain to present-day scientific and technological requirements.

Now an important area of concern for anti-racists is the manner in which European scholarship has represented the past and potentialities of nonwhite societies with
respect to their achievement and capabilities in promoting science and technology. The progress of Europe and its cultural dependencies ! during the last four hundred
years is perceived by many as inextricably—or even causally—Ilinked with the rapid growth of science and technology during that period. In the minds of some,
scientific progress becomes a uniquely European phenomenon that can be emulated by other nations only if they follow a specifically European path of social and
scientific development.

Such a representation of societies outside the European cultural milieu raises a number of issues that are worth exploring, however briefly. First, recent studies of India,
China, and parts of Africa, contained, for example, in the work of Dharampal (1971), Needham (1954), and Van Sertima (1983), would suggest the existence of
scientific creativity and technological achievements long before the incursions of Europe into these areas. If this is so, we need to understand the dynamics of
precolonial science and technology in these and other societies and to identify the material conditions that produced these developments.

Second, there is the issue of who "makes" science and technology. In a material and non-elitist sense, each society, impelled by the pressures and demands of its
environment, has found it necessary to create a scientific base to cater for its material requirements. The perceptions of what are the particular requirements of a
society would vary according to time and place, but it would be wrong to argue that the capacity to “make* science and technology is a prerogative of one culture
alone.

Third, if one attributes all significant historical developments in science and technology to Europe, then the rest of the world can impinge only marginally either as an
unchanging residual experience to be contrasted with the dynamism and creativity of Europe or as a rationale for the creation of academic disciplines congealed in
subjects such as development studies, anthropology, orientalism, sinology, and indology. These subjects then serve as the basis from which more elaborate Eurocentric
theories of social development and history are developed and tested.

One of the more heartening aspects of academic research in recent years is that the shaky foundations of these "adjunct” disciplines
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are being increasingly exposed by scholars, a number of whom originate from countries that provide the "raw materials" of these disciplines. In a recent contribution,
Edward Said (1985) points to a number of examples of "subversive" analyses, inspired by similar impulses as his seminal anti-orientalism critique (1978), which are
aimed at nothing less than the destruction of the existing Eurocentric paradigmatic norms. For example the growing movement towards promoting a form of indigenous
anthropology that sees its primary task as questioning, redefining and, if necessary rejecting particular ideas that grew out of colonial experience in Western
anthropology, is well examined in Fahim (1982). In a similar vein, I propose to show that the standard treatment of the history of non- European mathematics exhibit a
deep-rooted historiographic bias in the selection and interpretation of facts, and that mathematical activity outside Europe had as a consequence been ignored,
devalued, or distorted. 2

The Historical Development of Mathematical Knowledge
The "Classical" Eurocentric Trajectory

Most histories of mathematics that were to have a great influence on later work were written in the late nineteenth or early twentieth century. During that period, two
contrasting developments were taking place that had an impact both on the content and the balance of the books produced on both sides of the Atlantic. Exciting
discoveries of ancient mathematics on papyri in Egypt and clay tablets pushed back the origins of written mathematical records by at least 1,500 years. But a far
stronger adverse influence was the culmination of European domination in the shape of political control of vast tracts of Africa and Asia. Out of this domination arose
the ideology of European superiority which permeated a wide range of social and economic activities, with traces to be found in the histories of science that
emphasized the unique role of Europe in providing the soil and spirit of scientific discovery. The contributions of the colonized were ignored or devalued as part of the
rationale for subjugation and dominance. And the developments in mathematics before the Greeks—notable in Egypt and Mesopotamia—suffered a similar fate,
dismissed as unimportant to the later history of the subject. In his book, Black Athena (1987), Martin Bernal has shown how the respect for an-



Page 64

cient Egyptian science and civilization, shared by ancient Greece and pre-nineteenth-century Europe alike, was gradually eroded, leading eventually to a Eurocentric
model with Greece as the source and Europe as the inheritor and guardian of the Greek heritage.

Dark : x
Discovery | Renaissance | Eyrone and her

Ages
Greece .___V__' af Greek :D cultural
leaming dependencies

Figure 3-1.

Figure 3-1 presents the "classical" Eurocentric view of how mathematics developed over the ages. This development is seen as taking place in two sections, separated
by a period of stagnation lasting over a thousand years; Greece (from about 600 B.c. to a.p. 300) and post-Renaissance Europe from the sixteenth century to the
present day. The intervening period of inactivity was the "Dark Ages"—a convenient label that expressed post-Renaissance prejudices about its immediate past and
the intellectual self-confidence of those who saw themselves as the true inheritors of the "Greek miracle” of two thousand years earlier.

Two passages, one by a well-known historian of mathematics writing at the turn of the century and the second by a contemporary writer whose books are still widely
referred to on both sides of the Atlantic, show the durability of this Eurocentric view and its imperviousness to new evidence and sources:

The history of mathematics cannot with certainty be traced back to any school or period before that of the Ionian Greeks (Rouse Ball, 1908, p. 1). . ..

[Mathematics] finally secured a firm grip on life in the highly congenial soil of Greece and waxed strongly for a short period. . .. With the decline of Greek civilization the plant
remained dormant for a thousand years . . . when the plant was transported to Europe proper and once more imbedded in fertile soil (Kline, 1953, pp. 9-10).

The first statement is a fair summary of what was popularly known and accepted as the origins of mathematics then, except for the neglect of the early Indian
mathematics contained in the Sul-
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basutras (The Rules of the Cord), belonging to the period between 800 and 500 s.c., which would make them at least as old as the earliest known Greek
mathematics. Thibaut's translation of these works, published around 1875, were known to historians of mathematics at the turn of the century.

The second statement, however, ignores a substantial body of research evidence pointing to the development of mathematics in Mesopotamia, Egypt, China, pre-
Columbian America, India, and the Arab world. Mathematics is perceived as an exclusive product of white men and European civilizations. And that is the central
message of the Eurocentric trajectory described in figure 3-1.

But this comforting rationale for European dominance became increasingly untenable for a number of reasons. First, there is the fulsome acknowledgment given by
ancient Greeks themselves of the intellectual debt they owed to the Egyptians and Babylonians. There are scattered references from Herodotus (fl. 450 s.c.) to Proclus
(fl. ap. 400) of the knowledge acquired from the Egyptians in fields, such as astronomy, mathematics, and surveying, while some commentators even considered the
priests of Mempbhis to be true founders of science.

To Aristotle (fl. 350 B.c.), Egypt was the cradle of mathematics. His teacher, Eudoxus, one of the notable mathematicians of the time, had studied in Egypt before
teaching in Greece. Even earlier, Thales (d. 546 s.c.), one of the earliest and greatest of Greek mathematicians, were reported to have travelled widely in Egypt and
Mesopotamia and learnt much of their mathematics from these areas. Some sources even credit Pythagoras (fl. 500 s.c.) with having travelled as far as India in search
of knowledge, which may explain some of the close parallels between Indian and Pythagorean philosophy and religion. 3

A second reason why the trajectory described in figure 3-1 was found to be untenable arose from the combined efforts of archaeologists, translators, and interpreters
who unearthed evidence of a high level of mathematics practised in Mesopotamia and in Egypt at the beginning of the second millennium s.c., providing further
confirmation of Greek reports. In particular, the Babylonians (a generic term that is often used to describe all inhabitants of ancient Mesopotamia) had invented a place
value number system, knew different methods of solving quadratic equations (which would not be improved upon until the sixteenth century a.n.) and knew the
relationship between the sides of a right-angled triangle which came to be known as the "Pythagorean theorem."*

The neglect of the Arab contribution to the development of Euro-
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pean intellectual life in general and mathematics in particular is another serious drawback of the "classical" view. The course of European cultural history and the history
of European thought are inseparably tied up with the achievement of Arab scholars during the Middle Ages and their seminal contributions to mathematics, natural
sciences, medicine, and philosophy. In particular, we owe to the Arabs in the field of mathematics the bringing together of the technique of measurement, evolved from
its Egyptian and Babylonian roots to its final form in the hands of Greeks and Alexandrians, with the remarkable instrument of computation (our number system), which
originated in India, and the supplementing of these strands with a systematic and consistent language of calculation which came to be known by its Arabic name,
"algebra." An acknowledgment of this debt by certain books contrast sharply with a failure to recognize other Arab contributions to science. 3

Finally, in discussing the Greek contribution, there is a need to recognize the difference between the classical period of Greek civilization (i.e. from 600 to 300 s.c.)
and the post-Alexandrian dynasties (i.e. from the third century s.c. to the third century a.p.). In early Euro-centric scholarship, the Greeks of the ancient world were
perceived as ethnically homogeneous and originating from areas which were mainly within the geographical boundaries of present-day Greece. It was part of the
Eurocentric mythology that from the mainland of Europe had emerged a group of people who had created, virtually out of nothing, the most impressive of all civilization
of ancient times. And from that civilization had sprung not only the cherished institutions of the present-day Western culture, but also the mainspring of modem science.
The reality, however, is more complex.

The term "Greek," when applied to times before the appearance of Alexander (356-323 s.c.), really refers to a number of independent city-states, often at war with
one another, but exhibiting close ethnic or cultural affinities and, above all, sharing a common language. The conquests of Alexander changed the situation dramatically,
for at his death his empire was divided among his generals, who established separate dynasties. The two notable dynasties from the point of view of mathematics were
the Ptolemaic dynasty of Egypt and the Seleucid dynasty which ruled over territories that included the earlier sites of the Mesopotamian civilization. The most famous
center of learning and trade became Alexandria in Egypt, established in 332 s.c. and named after the conqueror. From its foundation, one of its most striking features
was its cosmopolitanism—ypart Egyptian, part Greek, a liberal sprinkling of Jews, Persians, Phoenicians, and Babylonians,
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and even attracting scholars and traders from as far away as India. A lively contact was maintained with the Seleucid dynasty. Alexandria thus became the meeting-
place for ideas and different traditions. The character of Greek mathematics began to change slowly, mainly as a result of the continuing cross-fertilization between
different mathematical traditions, notably the algebraic and empirical basis of Baby-Ionian and Egyptian mathematics interacting with the geometric and anti-empirical
traditions of the early Greek mathematics. And from this mixture came some of the greatest mathematicians of antiquity—notably Archimedes and Diophantus. It is,
therefore, misleading to speak of Alexandrian mathematics as Greek, except in so far as the term shows that Greek intellectual and cultural traditions served as the
main inspiration and the Greek language as the medium of instruction and writing in Alexandria. In that sense, our use of the term "Greek" is closely analogous to the
use of the term "Arab" to describe a civilization which contained a number of ethnic and religious groups, but all of whom were imbued with the Arabic culture and
language.

A Modified Eurocentric Trajectory

Figure 3-2 below takes on board some of the objections raised about the "classical" Eurocentric trajectory. The figure acknowledges that there is some awareness of
the existence of mathematics before the Greeks, and of their debt to earlier mathematical traditions, notably those of Babylonia and Egypt. But this awareness is all too
likely to be tempered with dismissive rejections of their importance compared to Greek mathematics: "the scrawling of children just learning to write as opposed to
great literature" (Kline, 1962, p. 14).

The differences in character of the Greek contribution before and after Alexander are recognized to a limited extent in figure 3-2 by the separation of Greece from the
Hellenistic world (in which the Ptolemaic and Seleucid dynasties became the crucial instruments of mathematical creation). There is also some acknowledgement of the
Arabs, but mainly as custodians of Greek learning during the Dark Ages in Europe. ¢ Their role as transmitters and creators of knowledge is ignored. So are the
contributions of other civilizations—notably those of China and India. They are perceived either as borrowers from Greek sources, or having made only minor
contributions to mainstream mathematical development (i.e. developments eventually culminating in modem mathematics).” More recently, histories of mathe-
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matics carry separate chapters, serving as "residual" dumps, entitled "Oriental" mathematics or "Indian/Chinese" mathematics, which are of marginal relevance to the
mainstream themes pursued in these books. This marginalization of non- European mathematics is reflected in the nature of the scholarships that characterizes the
treatment of these subjects in successive textbooks. An openness to more recent research findings, especially in the case of Indian and Chinese mathematics, is sadly
missing. As a consequence, paraphrases of the contents of earlier texts or quotes from individuals whose scholarship or impartiality have been seriously questioned are
reproduced in each succeeding generation of textbooks.

Figure 3-2 therefore remains a flawed representation of how mathematics developed: it contains a series of biases and remains quite impervious to new evidence and
arguments. With minor modifications, it remains the model to which many recent books on the history of mathematics conform. It is interesting that a similar
Eurocentric bias exists in other disciplines as well: for example, diffusion theories in anthropology and social geography indicate that "civilization" spreads from the
Center (i.e., "Greater" Europe) to the Periphery (i.e., to the rest of the world). And the theories of modernization or evolution developed within some Marxist
frameworks are characterized by a similar type of Eurocentrism. In all such conceptual schemes, the development of Europe is seen as a precedent for the
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way in which the rest of the world will follow—a trajectory whose spirits is not dissimilar to the one suggested in figures 3-1 and 3-2.
An Alternate Trajectory for the Dark Ages

If we are to construct an unbiased alternative to figures 3-1 and 3-2, the guiding principle should be to recognize that different cultures in different periods of history
have contributed to the world's stock of mathematical knowledge. Figure 3-3 presents such a trajectory of mathematical development, but confines itself to the period
between the fifth and fifteenth centuries a.0.—the Period represented by the arrow labelled in figures 3-1 and 3-2 as the "Dark Ages" in Europe. The choice of this
trajectory as an illustration is deliberate: it serves to highlight the variety of mathematical activity and exchange between a number of cultural areas that went on while
Europe was in deep slumber.

Western
Eurape

Hellenistic

Sigily  petf— world
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Figure 3-3.

The role of the Arabs is brought out in figure 3-3. Scientific knowledge which originated in India, China, and the Hellenistic world was sought out by Arab scholars
and then translated, refined, synthesized, and augmented at different centers of learning, starting
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with Jund-i-shapur in Persia around the sixth century (even before the coming of Islam), and then moving to Baghdad, Cairo and finally to Toledo and Cordoba in
Spain, from where this knowledge spread into Western Europe. Considerable resources were made available to the scholars through the benevolent patronage of the
caliphs—the Abbasids (the rulers of the Eastern Arab Empire with its capital at Baghdad) and the Ummayads (the rulers of the Western Arab Empire with its capital
first at Damascus and later at Cordoba).

The role of the Abbasid caliphate was particularly important for the future development of mathematics. The caliphs, notably al-Mansur (754-775), Harun al-Rashid
(786-809) and al-Mamun (a.0. 809-833), were in the forefront of promoting the study of astronomy and mathematics in Baghdad. Indian scientists were invited to
Baghdad. When Plato's Academy was closed in 529, some of its scholars found refuge in Jund-i-shapur, which a century later became part of the Arab world. Greek
manuscripts from the Byzantine Empire, the translations of the Syriac schools of Antioch and Damascus, the remains of the Alexandrian library in the hands of the
Nestorian Christians at Edessa were all eagerly sought out by Arab scholars, aided and abetted by the rulers who had control over or access to men and materials
from the Byzantine Empire, Persia, Egypt, Syria and places as far east as India and China.

Caliph al-Mansur built at Baghdad a Bait al-Hikma (House of Wisdom) which contained a large library for manuscripts collected from various sources; an
observatory which became a meeting place of Indian, Babylonian, Hellenistic, and probably Chinese astronomical traditions; and a university where scientific research
continued apace. A notable member of this institution Mohammed ibn-Musa al-Khwarizmi (fl. a.p0. 825) wrote two books which were of crucial importance to the
future development of mathematics. One of the books, the Arabic text of which is extant, is entitled Hisab al-djabr wa-al muqabala (which may be loosely translated
as the Calculation by Restoration and Reduction). The title refers to the two main operations in solving equations: "restoration," the transfer of negative terms from
one side of the equation to the other, and "reduction," the merging of like terms on the same side into a single term. In the twelfth century the book was translated into
Latin under the title Liber Algebrae Et Almucabola, thus giving a name to a central area of mathematics.

Al-Khwarizmi wrote a second book, of which only a Latin translation is extant: Algorithmi De Numero Indorum, which explained the Indian system of numeration.
While al-Khwarizmi was at pains to point out the Indian origin of this number system, subsequent transla-
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tions of the book attributed not only the book but also the numerals to the author. Therefore in Europe any scheme using these numerals came to be known as an
algorism or later algorithm (a corruption of the name of al-Khwarizmi) and the numerals themselves as Arabic numerals.

Figure 3-3 shows the importance of two areas of southern Europe in the transmission of mathematical knowledge to Western Europe. Spain and Sicily were the
nearest points of contact with Arab science and had been under Arab hegemony, Cordoba succeeding Cairo as the center of learning during the ninth and tenth
centuries. Scholars from different parts of Western Europe congregated in Cordoba and Toledo in search of both ancient and contemporary knowledge. It is reported
that Gherardo of Cremona (c. 1114-1187) went to Toledo after its recapture by the Christians, in search of Ptolemy's A/magest, an astronomical work of great
importance produced in Alexandria during the second century a.o. He was so taken by the intellectual activity there that he stayed over twenty years, during which he
is reported to have copied or translated eighty manuscripts of Arab science or Greek classics, which were later disseminated across Western Europe. Gherado was
just one of a number of European scholars, including Plato of Tivoli, Adelard of Bath, and Robert of Chester, who flocked to Spain in search of knowledge.

The main message of figure 3-3 is that it is dangerous to characterize mathematical development solely in terms of European developments. The darkness that was
supposed to have descended over Europe for a thousand years before the illumination that came with the Renaissance did not interrupt mathematical activity
elsewhere. Indeed, the period saw great activity in other parts of the world, a discussion of which will be found in Joseph (1992).

There are two additional features of mathematical knowledge that figure 3-3 could serve to highlight. First, it is not generally recognized that practically all topics taught
in school mathematics today are directly derived from the mathematics originating outside Western Europe before the fifteenth century a.o. The failure to recognize this
fact is partly a function of the heavily Eurocentered nature of school curricula and partly due to the unwarranted neglect of history (and particularly non-Eurocentric
history) of mathematics in a typical mathematics classroom. Second, figure 3-3 shows the one-way traffic of mathematical knowledge into Western Europe up to the
fifteenth century. Thus, the Arab mathematical renaissance between the eighth and twelfth centuries shaped and determined the pace of developments in the subject for
the next five hundred years.
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The Anatomy of Eurocentric Bias

The Eurocentric historiography of mathematics exhibits certain features which may explain the biases that result. First, there is a general disinclination to locate
mathematics in a materialist base and thus link its development with economic, political, and cultural changes. Second, there is a tendency to perceive mathematical
pursuits as confined to an elite, a few who possess the requisite qualities or gifts denied to the vast majority of humanity. This is a view prevalent even today in the
classroom and thus determines what is taught and who benefits from learning mathematics. Third, there is a widespread acceptance of the view that mathematical
discovery can only follow from a rigorous application of a form of deductive axiomatic logic, which is perceived as a unique product of Greek mathematics. As a
consequence "intuitive" or empirical methods are dismissed as of little relevance in mathematics. Finally, the presentation of mathematical results must conform to the
formal and didactic style following the pattern set by the Greeks over 2,000 years ago. And, as a corollary, the validation of new additions to mathematical knowledge
can only be undertaken by a small, self-selecting coterie whose control over the acquisition and dissemination of such knowledge through journals has a highly
Eurocentric character today.

As an illustration of how the features listed above can create Eurocentric bias, let us examine the status ascribed to mathematical pursuits which do not conform to the
criteria mentioned in the last paragraph, notably in Egypt and Mesopotamia before the emergence of Greek mathematics.

A commonly expressed view is that, before the Greeks, there was no mathematics in the sense of the characteristic intellectual activity which goes under that name
today. The argument goes: pre-Greek mathematics had neither a well-defined idea of "proof” nor any perception of the need for proof. Where the Egyptians or
Mesopotamians were involved in activities which could be described as "mathematics," these activities were purely utilitarian, such as the construction of calendars,
parcelling out land, administration of harvests, organization of public works (e.g., irrigation or flood control), or collection of taxes. Empirical rules were devised to
help undertake these activities, but there is no evidence of any overt concern with abstractions and proofs which form the core of mathematics. In any case, the
argument continues, the only evidence that we have to assess the mathematics of these two civilizations amounts to little more that the exercises that
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school children of today are expected to work out, which merely involve the application of certain rules or procedures; they are hardly "proofs" or results which have
universal application.

The word "proof" has different meanings, depending on its context and the state of development of the subject. To suggest that because existing documentary evidence
does not exhibit the deductive, axiomatic, logical inference characteristic of much modem mathematics, these cultures did not have an idea of proof, would be
misleading. Generalizations about the area of a circle and the volume of a truncated pyramid are found in Egyptian mathematics. Checking the correctness of a division
by a subsequent multiplication or verifying the solutions of different types of equation by the method of substitution are found in Babylonian mathematics. A method in
common use in Europe until about a hundred years ago for solving linear equations is generally known as the method of "false position." ® This method was in common
use to solve practical problems such as finding the potency of beer or obtaining optimal feed mixtures for cattle and poultry in Egyptian and Babylonian mathematics.
As Gillings (1972) has argued, Egyptian "proofs" are rigorous without being symbolic, so that typical values of a variable are used and generalization to any other value
is immediate. Or again, generalizations of the methods used in solving problems contained in the Ahmes papyrus (c. 1650) and the Moscow papyrus (c. 1850 B.c.)
two of the most important mathematical documents from Egypt, involve applications of the same procedure to one example after another. To illustrate, consider one of
the "lesson texts" dating back to the time of the first Babylonian Dynasty of Hammurabi (c. 1700 s.c.), translated and interpreted by Neugebauer (1935). For the sake
of simplicity, I have converted the quantities expressed in base 60 (i.e., sexagesimal) system to our base 10 (i.e., decimal system).

Problem
Length (ush), breadth (sag). I have multiplied length and breadth, thus obtaining the area (asha). Then I added to the area the excess of length over breadth: 183 (was the result).
Then I added length and breadth: 27. Required (to obtain) length, breadth and area.

Solution
Given: 27 and 183, the Sums.
Result: 15 length, 12 breadth, 180 area.

Method
One follows this method: [step 1]27 + 183 =210; 2 +27 =29

Take one half of 29 and square it: [step 2] (14.5)2 =210.25
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Subtract 210 from the result: [step 3] 210.25 -210=0.25

Take the square root of 0.25 [step 4] Square root of 0.25 =0.5
Then, length =14.5+0.5=15

breadth = (14.5 - 0.5) -2 =12

area=15x12=180

Solution using present-day notation
Let length = x and breadth = y. Then the problem is solved by evaluating the two equations:

xy +x—y =183 (1a)
x+y=27 (1b)
Now define a new variable y* such that y* =y+2
Then (1a) and (1b) can be re-written as:

xy =27+183=210 (22)

x+y =2+27=29 (2b)

[Note: The transformations of (la) and (1b) to (2a) and (2b) are shown by step1]
The general system of equations of which (2a)-(2b) is a particular case is:

*
Xy =p
*
Xty =s
And the solution is:

x=12s+w (3a)

vy =12s-w (3b)

where w = square root of [(1/23)2 -p
Substituting p =210, s = 29 gives w = 0.5, which can then be used to evaluate x = 15, y = y* -2 =12 and area = 180.

What the Babylonian method involved was the step-by-step application of the general formula, expressed in modem algebraic symbolism, given in (3a) and (3b) to
numbers. The Sumerian symbols us/ and sag, for length and width respectively, serve the same purpose as our algebraic symbols x and y. And instead of providing a
formula for the solutions of this type of problem, the Babylonians gave one example after another, just as an elementary school textbook may do today to ensure that
the method is correctly applied. Such a demonstration may be as effective as formal "proofs" in problems of this nature.

This problem is also indicative of the level of sophistication
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reached by Babylonian mathematics. To dismiss such a work as "scrawlings of children just learning to write" (Kline, 1962) is more a reflection of the author's
prejudices than an objective assessment of the real quality of such mathematics.

A further criticism levelled against Egyptian and Babylonian mathematics is that their mathematics was more a practical tool than an intellectual pursuit. This criticism is
symptomatic of a widespread attitude, again originating with the Greeks, '* that mathematics lacking a utilitarian bent is in some sense a finer or better mathematics.
This attitude has even percolated right across the mathematics curriculum in schools and colleges.! As a consequence, there is both a sense of remoteness and
irrelevance associated with the subject among many who study it, and an ingrained elitism among those who teach it. This elitism is translated at a classroom level into
a view, often implicit and not spoken, that real mathematics as opposed to "doing sums" is an activity suited for a select few—which when extended provides the
broader argument that mathematics is a unique product of European culture. Thus, elitism in the classroom is ultimately linked to the form of intellectual racism that
have described as Eurocentrism.

Countering Eurocentrism in the Classroom

The foregoing analysis illustrates the need to confront and then counter Eurocentrism in mathematics. A commonly expressed view of the educational establishment in
this country [England, editors's note] is that while a correction of the Eurocentric bias in history may be a worthwhile exercise, it has little relevance to mathematical
activities within the classroom. I have stated elsewhere why I think this is a misconceived view and how an unbiased historical perspective can enrich the quality of
mathematical activity in the classroom as well as provide a valuable input into anti-racist education generally. (Joseph, 1984; 1985; 1986; 1994, and Nelson et al.,
1993). It would be useful to restate these arguments in the context of the themes explored here.

First, mathematics is shown to have flourished all over the world, with its internal logic providing a point of convergence for different mathematical traditions, without
being constrained by geography, gender'? (see Osen, 1974) or race. Yet within this unity there is an interesting diversity which could serve to entertain and educate at
the same time. By bringing to the attention of the students differences in the language and structure of counting systems found across the world, by showing how
different calendars and eras operate, or by
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examining different spatial relations contained in, say, traditional African designs, Indian rangoli patterns and Islamic art, they could serve both as useful examples of
applied mathematics as well as increase their awareness of cultural diversity. '3

Second, a historical approach may, if handled carefully, provide a useful materialistic perspective in evaluating contributions made by different societies. The implied
myth of the "Greek" miracle in explaining the origins of mathematics will give way to a more balanced assessment of the nature of early mathematical accomplishments.
Thus, the Ishango bone, found on a fishing site by the banks of Lake Edward in Zaire dating back about twenty thousand years, was first thought of as a permanent
numerical record of unknown objects. A closer study of the notches on it revealed that it may have been a six-month calendar of the phases of the moon.'* Similarly,
an American quipu found in Peru was first thought of as an art object consisting of an intricate pattern of woven knots. But it was later recognized that the artefact
contained the record of a whole population census, where the knots of varying sizes stood for different numerical magnitudes and different color coding used to show
characteristics such as sex and age. In a predominantly pastoral or simple agricultural economy, such ingenious devices were invented to satisfy the main mathematical
requirements—the recording and preservation of such information as was required to keep track of the passage of time or predict seasons for planting seed or the
coming of rains. But as societies evolved, mathematical demands became more varied and sophisticated, leading, for example, to the discovery of the place value
notation by Babylonians (c. 2000 8.c.) for more complex computations, and the eventual adoption 3,000 years later, where mechanical contrivances such as the
abacus or rod numerals were no longer sufficient, of our number system (developed by the Indians about 2,000 years ago), when written calculations became essential
for trade and commerce. Both the Babylonian invention and the Indian numerals were momentous discoveries at the time, but are taken for granted today.

Finally, if we accept the principle that teaching should be tailored to children's experience of the social and physical environment in which they live, mathematics should
also draw on these experiences, which would include in contemporary Britain the presence of different ethnic minorities with their own mathematical heritage. Drawing
on the mathematical traditions of these groups, showing that these cultures are recognized and valued, would also help to counter the entrenched historical devaluation
of them. Again, by promoting such
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an approach, mathematics is brought into contact with a wide range of disciplines, including art and design, history and social studies, which it conventionally ignores.
Such a holistic approach would serve to augment, rather than fragment, a child's understanding and imagination.

Notes

1. The term "cultural dependencies" is used here to describe those countries—notably the United States, Canada, Australia, and New Zealand—which are mainly
inhabited by populations of European origin or with similar historical and cultural roots. For the sake of brevity, the term "Europe" is used from now on to include these
areas as well.

2. A concise and meaningful definition of mathematics is virtually impossible. In the context of this article, the following aspects of the subject are particularly
highlighted. Mathematics is a global activity which has developed into a worldwide language, with a particular kind of logical structure. It contains a body of
knowledge relating to number and space, and prescribes a set of methods for reaching conclusions about the physical world. And it is an intellectual activity which
calls for both intuition and imagination in reaching conclusions. Often it rewards the creator with a strong sense of aesthetic satisfaction.

3. These parallels include: (a) a belief in transmigration of souls; (b) the theory of five elements making up matter, (c) the reasons for not eating beans; () the structure
of the religio-philosophical character of the Pythagorean fraternity which resembled Buddhist monastic orders; and (e) the contents of the mystical speculations of the
Pythagorean school which bear a remarkable resemblance to Upanishads. According to Greek tradition, Pythagoras, Thales, Empedocles, Anaxagoras, Democritus,
and others undertook journeys to the East to study philosophy and science. While it is farfetched to assume that all these individuals reached India, there is a strong
historical possibility that some of them became aware of Indian thought and science through Persia.

4. The statement and demonstration of the so-called Pythagorean theorem is found in varying degrees of detail all over the world. A variety of evidence is now
available on the widespread practical use of the theorem among the Babylonians (c1800-1600 s.c.). The Chinese provided a proof of the theorem in their oldest
extant mathematical text entitled Chou Pei (c. 1000-800 s.c.). The earliest known Indian work on geometry, Sulbasutra (c. 800-600 s.c.), contains a discussion of
the theorem and its application to construction of altars. It is also worth noting that even though the theorem is universally associated with the name of Pythagoras,
there is no evidence that Pythagoras
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had either stated or proved the theorem. The earliest Greek proof, which is still to be found in school geometry texts was given by Euclid (fl. 300 s.c.).

5. They include: (a) an earlier description of pulmonary circulation of the blood by ibn al-Nafis, usually attributed to Harvey, though there are records of an even
earlier explanation in China; (b) the first known statement of the refraction of light by ibn al-Haytham, usually attributed to Newton; (c) the first known scientific
discussion of gravity by al-Khazin, again attributed to Newton; (d) the first dear statement of the idea of evolution by ibn Miskawayh, usually attributed to Darwin; and
(e) the first exposition of the rationale underlying the "scientific method" found in the works of ibn Sina, ibn al-Haytham and al-Biruni but usually credited to Francis
Bacon.

6. In a review article, Nisbet (1973) has pointed out how much the myth of a Renaissance occurring in Europe between the fifteenth and sixteenth centuries has
persisted, in spite of overwhelming evidence to indicate that there was continuous intellectual development taking place in Europe from the twelfth century.

7. Chinese, Japanese, or Mayan mathematics are often ignored on the grounds that they fall outside the main line of mathematical development that culminated in the
European advance of the subject. In the case of other traditions, Eurocentric histories remain largely silent. A notable exception is a recent book by Katz (1993). Its
coverage is global and its examination of non- Western mathematical traditions is dear and thorough.

8. One individual who is frequently quoted by historians as an authority on Indian mathematics is G. R. Kaye who was in the service of the Raj at the turn of the
century. His interpretations both with regard to dating certain mathematical documents (notably Sulbasutra and the Bakhshali Manuscript), which he generally
tended to put much later than other scholars, usually on fairly flimsy grounds, as well as his tendency to attribute anything significant in Indian mathematics to a Greek
origin, have been criticized by notable scholars of ancient Indian mathematics (see for example Datta and Singh, 1935 and 1938, Sarasvati Amma 1979,
Srinivasiengar 1967) without apparently making much impression on those who continue to write histories of mathematics in Europe and her cultural dependencies.
Hellonocentrism still prevails. For example, Pingree (1981) has prepared a chronology of Indian astronomy notable for the absence of any Indian presence and the
ever presence of Greek influences!

x
+o=24
5

9. To solve for x in equation * will equal 6. So to obtain the required 24, we need to multiply 6 by 4. Or the correct x value is 20.
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10. An important distinction running right across Greek thought has been arithmetica, the study of the properties of pure numbers, and logistica the use of numbers
in practical applications. The cultivation of the latter discipline was to be left to the slaves. A legend has it that when Euclid (fl. 300 s.c.) was asked what was to be
gained from studying geometry, he told his slave to toss a coin at the inquirer.

11. There is, however, a discernible movement towards "utilitarian" mathematics in the modem classroom. So the tide may be turning.

12. The contribution of women mathematicians has also been neglected in standard histories of early mathematics, except for the occasional mention of Hypatia (d.
AD. 415) whose cruel death at the hands of a Christian mob is taken by some to represent the end of Alexandrian mathematics.

13. It is not my intention here to enter the controversy regarding the precise meaning of the culture. The relationship between a people who possess a culture and the
culture itself is highly complex and very germane to the point under discussion. The term "culture" is used here in an anthropological sense to describe a collection of
customs, rituals, beliefs, tools, mores, and so forth, possessed by a group of people who may be related to one another by factors such as a common language,
geographical contiguity, or class.

14. Marshack (1972) has argued, on the basis of a close fit observed between the numbers in each group of notches and the astronomical lunar periods, that the
Ishango bone offers possible evidence of one of man's earliest intellectual activities, devising sequential notation based on a six-month lunar calendar for activities such
as tattooing, decorating, gaming, or ceremonial festivals.

References

Ball, W. W.R. (1908). 4 short account of the history of mathematics. Reprint. New York: Dover, 1960.
Boyer, C. R. (1978). 4 history of mathematics. Princeton, NJ: Princeton University.

Datta, B. B. and Singh, A. N. (1962). History of hindu mathematics. 2 Vols. Bombay: Asia Publishing House.
Eves, H. (1983). An introduction to the history of mathematics. 5th ed. Philadelphia: Holt, Rinehart and Winston.

Fahim, H. (1982). Indigenous anthropology in non-western countries. Chapel Hill, NC: University of North Carolina Press.



Page 80

Gillings, R. J. (1972). Mathematics in the time of the pharaohs. Cambridge, MA: MIT.

Joseph, G. G. (1984). "The multicultural dimension." Times Educational Supplement, Mathematics Extra (5 October).

. (1985). A historical perspective. Times Educational Supplement, Mathematics Extra (11 October).

——— (1986). A non-Eurocentric approach to school mathematics. Multi-cultural Teaching 4 (2): 13-14.

. (1987). Foundations of Eurocentrism in mathematics. Race and Class 28, (3): 13-28.

. (1992) The crest of the peacock: Non-European roots of mathematics. London: Penguin.

———— (1994). The politics of anti-racist mathematics. European Education Journal. Vol. 26: 67-74.

. (1994). Different ways of knowing: Contrasting styles of argument in Indian and Greek mathematical traditions. In Mathematics, Education and
Philosophy: An International Perspective. Edited by P. Ernest. London: Falmer, pp. 194-204.

——— (1995). 'Cognitive encounters in India during the age of imperialism. Race and Class 36 (3): pp. 39-56.
Katz, V. J. (1993). 4 history of mathematics: An introduction. New York: Harper Collins.

Kline, M. (1962). Mathematics: A cultural approach. Reading, MA: Addison Wesley.

. (1953). Mathematics in western culture. New York: Oxford University.

Marshack, A. (1972). The Roots of Civilisation. London: Weidenfeld and Nicolson.

Needham, J. (1954). Science and civilisation in China. Vol. 1. Cambridge, England: Cambridge University.
Nelson, D. Joseph, G. G., Williams, J. (1993). Multicultural mathematics. Oxford, England: Oxford University.
Neugebauer, O. (1935). Mathematics Keilschrift-text. Vol. 2. Berlin: Springer Verlag.

Nisbet, R. (1973). 'The myth of the renaissance'. Comparative Studies in Society and History 15 (4 October).

Osen, L. M. (1974). Women in mathematics, Cambridge MA: MIT.



Page 81

Pingree, D. (1981). History of mathematical astronomy in India. In Dictionary of Scientific Biography. Vol. 15 (Suppl.); C. C. Gillespie, ed. New York: Charles
Scribner's Sons.

Said, E. (1985). Orientalism reconsidered. Race and Class. Vol. 26, No. 2.

. (1978). Orientalism. New York and London: Vintage Books.

Sarasvati Amma, T. A. (1979). Geometry in ancient and medieval india. Delhi: Motilal Banarsidass.

Scott, J. E (1958). A history of mathematics from antiquity to the beginning of the nineteenth century. London: Taylor and Francis.
Srinivasiengar, C. N. (1967). The history of ancient indian mathematics. Calcutta: World Press.

Van Sertima, 1. (1983). Blacks in science. New Brunswick, NJ: Transaction Books.



Page 83

Chapter 4
Animadversions on the Origins of Western Science

Martin Bernal*

Editors's comment: Martin Bernal, a professor of government and Near Eastern studies, reviews and then challenges specific claims made for the originality of Greek science, such
as the alleged lack of original or abstract ideas among the Egyptians. As in Black Athena: The Afiroasiatic Roots of Classical Civilization, New Brunswick, NJ: Rutgers University
(1987), he provides an invaluable account of how Eurocentric ideology has distorted the history of the development of scientific and mathematical knowledge. This chapter first
appeared in ISIS, 83: 596-607, in 1992.

I spent the first fifty years of my life trying to escape from the shadow of my father John Desmond Bernal, and hence, among other things, from science and the history
of science. Therefore, the trepidation that is proper for anyone who is neither a scientist nor a historian of science writing for Isis is multiplied manyfold in my case.
Nevertheless, I am grateful for the invitation to put forward my views on the origins of Western science.

Any approach to this question immediately stumbles over the definition of "science." As no ancient society possessed the modern concept of 'science" or a word for it,
its application to Mesopotamia, Egypt, China, India, or Greece is bound to be an arbitrary imposition. This lack of clarity is exacerbated by the dash between
historians, like David Pingree, who are concerned with "sciences" as "functioning systems of thought" within a particular society and those who apply

* 1 could not have begun, let alone completed, this paper without many years of patient help and encouragement from Jamil Ragep, who, it should be pointed out, is far from
accepting all my conclusions.
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transhistorical standards and see "science" as "the orderly and systematic comprehension, description and/or explanation of natural phenomena . . . [and] the tools
necessary for the undertaking including, especially, mathematics and logic." ! T should add the words "real or imagined" after "natural phenomena."

Pingree denounces the claims of what he calls "Hellenophilia" that "science" is an exclusively Greek invention owing little or nothing to earlier civilizations and that it was
passed on without interference to the Western European makers of the "scientific revolution." Puzzlingly, the work of Otto Neugebauer—and his school, including
Pingree himself—on the extent and sophistication of Mesopotamian astronomy and mathematics and Greek indebtedness to it, as well as M. L. West's demonstration
of the Near Eastern influences on the pre-Socratic cosmologies, appears to have left this kind of thinking unscathed.?

There are still defenders of the claim that "Thales [seen as a Greek] was the first philosopher scientist” the word "scientist" being used here in the positivist sense.
According to G. E. R. Lloyd, the Greeks were the first to "discover nature," "practice debate," and introduce such specifics as the study of irrational numbers (notably
vZ and geometrical modeling for astronomy. Lloyd sees the discovery of nature as "the appreciation of the distinction between 'natural' and 'supernatural,' that is the
recognition that natural phenomena are not the products of random or arbitrary influences but regular and governed by determinable, sequences of cause and effect."3
However, it is clear that at least by the second millennium s.c. Mesopotamian astronomy and Egyptian medicine, to take two examples, were concerned with regular
and, if possible, predictable phenomena with relatively little supernatural involvement.*

It is true that Egyptian medicine contained some religion and magic. At one point even the "scientific" Edwin Smith Papyrus on surgery turns to magical charms.
However, E. R. Dodds and others have shown how isolated the natural philosophers' criticism was against the widespread Greek belief in the efficacy of magic.’ Even
Hippocratic medicine, which is generally regarded as highly rational, was institutionally centered on the religious cult of Asclepius and his serpents, which laid great
emphasis on the religious practice of incubation. Both the cult and the practice, incidentally, had clear Egyptian roots.®

On the question of the alleged uniqueness of Greek "scientific" debate, as we can see from those in Gilgamesh, "debates" are at least as old as literature. Some, such as
the "Dispute between a man and
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his Ba," which dates back to Middle Kingdom Egypt, contain quite profound philosophy. It is also clear that different Mesopotamian, Syrian, and Egyptian cities had
not merely different gods but distinct cosmogonies, most of which involved abstract elements or forces without cults, of which the priesthoods of the others were
aware. There were also attempted and actual syncretizations, suggesting that there had been debates. 7 This situation resembles that plausibly reconstructed for the
cosmological disputes of the pre-Socratics.

Later Greek philosophical and scientific debates dearly owed a great deal to the Sophists, who came from the Greek tradition of "persuasion," with its close
association with legal disputes. Oratory, persuasion, and justice are highly valued in nearly all cultures, but, interestingly, they received particular emphasis in Egypt.
The central scene in Egyptian iconography is the judicial weighing of the soul of the dead person, and the legal battle between Horus and Seth is a central episode in its
mythology. One of the most popular Egyptian texts was that of The Eloquent Peasant, which its most recent translator into English, Miriam Lichtheim, describes as
"both a serious disquisition on the need for justice and a parable on the utility of fine speech."

I have written elsewhere on the centrality of the image of Egyptian justice to both Mycenaean and Iron Age Greece, and there is no doubt that Greeks of the Classical
and Hellenistic periods saw Egyptian law as the ultimate basis of their own. As Aristotle wrote at the end of the Politics: "The history of Egypt attests the antiquity of
all political institutions. The Egyptians are generally accounted the oldest people on earth; and they have always had a body of law and a system of politics. We ought
to take over and use what has already been adequately expressed before us and confine ourselves to attempting to discover what has already been omitted."?

While the first attestation of written law in Egypt comes from the tomb of Rekhmire in the fifteenth century s.c., there is no reason to doubt that it existed much
earlier.!’ In any event, the Egyptian New Kingdom is sufficiently old by Greek standards. It is clear that what Aristotle was recommending had not hitherto been
carried out. Nevertheless, it would seem likely that Aristotle was conventional in his belief that, even though Egyptian and Greek laws were very different in his own
day, the true foundation of Greek law and justice lay in Egypt.

The emphasis on law is important both because of its promotion of argument and dialectic and because of the projections of social law into nature and the
establishment of regularities.!! There is no doubt that the Egyptian M3't (Maat: "truth," "accuracy," "justice') was cen-
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tral to both social and natural spheres in the same way as the Greek Moira, which derived from it. Similarly, it is clear that the Egyptians applied the "justice" of scales
to social and legal life at least as early as the Middle Kingdom. 12

To return to some of the specific claims made for the originality of Greek science, there is now no doubt that Babylonian scholars were concerned with ¥2 the cubit.!3
Thus, the irrational number par excellence was employed in Egypt from the beginning of the second millennium s.c. at the latest; whether or not its irrationality was
proved in Euclidean fashion, its use provides circumstantial evidence that Egyptian scribes were aware of the incommensurability of the side and diagonal.

Modern scholars have poured scorn on the widespread ancient tradition holding that Egyptians had known of the "Pythagorean" triangle. However, the very cautious
Gay Robins and Charles Shute maintain that knowledge of it is shown by the use in Late Old Kingdom pyramids of a seked of 5 palms, which imposed "a half-base
width to height of 3:4 and so could have been modeled on a 3:4:5 right angled triangle."'*

I shall discuss the strong possibility that geometry, thought to be typically Greek, came from Egypt. However, at this point it would seem difficult to argue that before
the second half of the fourth century B.c. any aspect of Greek "science"—with the possible exception of axiomatic mathematics—was more advanced than that of
Mesopotamia or Egypt.

‘Was Neugebauer Right to Dismiss Ancient Traditions of Egyptian Science?

In this section, I should like to take it as given that R. O. Steuer, J. B. de C. M. Saunders, and Paul Ghalioungui have established not merely that Egyptian medicine
contained considerable "scientific" elements long before the emergence of Greek medicine, but that Egyptian medicine played a central role in the development of
Greek medicine.'s Similarly, the work of Neugebauer and his school has made it impossible to deny that some Mesopotamian mathematicians and as-
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tronomers were "scientific" in the positivist sense and that Mesopotamian "science" in these areas was crucial to the creation of Greek mathematics and astronomy.
However, I should like to challenge these scholars' dismissal of claims that there was an Egyptian mathematics that could have had a significant influence on Greek
thinkers.

Despite his early passion for ancient Egypt and his considerable work on Egyptian astronomy, throughout his long life Neugebauer insisted that the Egyptians had no
original or abstract ideas and that mathematically and scientifically they were not on the same level as the Mesopotamians. He claimed that the accurate astronomical
alignments of the pyramids and temples in Egypt and the use of  and could all be explained as the results of practical knacks rather than of profound thought. An
example of this approach is the following: "It has even been claimed that the area of a hemisphere was correctly found in an example of the Moscow papyrus, but the
text admits also of a much more primitive interpretation which is preferable." 1

In his Exact Sciences in Antiquity, Neugebauer did not argue with the pyramidological school; he simply denounced it, recommending that those interested in what
he admitted to be "the very complex historical and archaeological problems connected with the pyramids" read the books by 1. E. S. Edwards and J. E Lauer on the
subject.!”

While Edwards does not involve himself with the pyramidologists and their calculations, the surveyor and archaeologist Lauer did, in the face of opposition from
Egyptologists, who were "astonished that we should give so much importance to the discussion of theories which have never had any credit in the Egyptological
world." Lauer's work had a certain contradictory quality. He admitted that the measurements exhibited by the pyramids do have some remarkable properties; that one
can find such relations as , , and Pythagoras's triangle from them; and that these facts generally bear out the claims Herodotus and other ancient writers made for
them. On the other hand, he denounced the "fantasies" of pyramidologists and claimed that the formulas according to which the pyramids were aligned and the
extraordinary degree of sidereal accuracy they exhibited were purely the result of "intuitive and utilitarian empiricism."8

A conflict between the acceptance of the extraordinary mathematical precision of the Great Pyramid and a "certainty" that the Greeks were the first "true"
mathematicians runs throughout Lauer's many writings on the subject. The strain is made still harder to bear by Lauer's awareness that some Greeks had been told
about many of this pyramid's extraordinary features and that they believed the Egyptians to have been the first mathematicians and astronomers.
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Moreover, there was the problem that so many of the Greek mathematicians and astronomers had studied in Egypt. Lauer's honest attempt to deal with these
difficulties was the following:

Even though up to now, no esoteric Egyptian mathematical document has been discovered, we know, if we can believe the Greeks, that the Egyptian priests were very jealous of
the secrets of their science and that they occupied themselves, Aristotle tells us, in mathematics. It seems then reasonably probable that they had been in possession of an
esoteric science erected, little by little, in the secrecy of the temples during the long centuries that separate the construction of the pyramids, towards the year 2800 [I should put it
two hundred years earlier] to the eve of Greek mathematical thought in the sixth century B.C. As far as geometry is concerned, the analysis of buildings as famous as the Great
Pyramid would take a notable place in the researches of these priests; and it is perfectly conceivable that they could have succeeded in discovering in it, perhaps long after their

erection, chance qualities that had remained totally unsuspected to the constructors. 19

The question of when Egyptians developed this sophisticated mathematical knowledge is not directly relevant to the topic of this article. However, apart from the
precision and intricacy of many of the architectural constructions of the Old Kingdom, there is another argument for the existence of relatively "advanced" mathematics
in the first half of the third millennium s.c. This is that although the two great mathematical texts that have survived, the Moscow and the Rhind papyri, come from the

Middle Kingdom in the twentieth and nineteenth centuries 8.c., some of the problems set in them use measures that belong to the Old Kingdom, which had been
discarded by the later period.?’

Lauer's solution still allowed some later Egyptians to have been capable of relatively advanced thought. He continued:

For the whole length of the three thousand years of her history, Egypt thus, little by little, prepared the way for the Greek scholars who like Thales, Pythagoras, and Plato came to
study, then even to teach, like Euclid at the school in Alexandria. But it was in their philosophic spirit, which knew how to draw from the treasure amassed by the technical

positivism of the Egyptians, that geometry came to the stage of a genuine science.?!

Even this degree of recognition was too much for Neugebauer. As he put it at one point: "Ancient science was the product of a very
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few men and these few happened not to be Egyptians." In 1981, he published his note "On the Orientation of Pyramids," in which he showed how accurate alignments
could be made without sophisticated astronomy, simply by measuring and turning the shadow of a model pyramid or the capstone over a period of some weeks.
There is no evidence, one way or the other, whether this was the method used, but it would seem plausible, if only because pyramids appear to have had solar rather
than stellar cultic associations. Nevertheless, the requirement of what Neugebauer concedes to be "remarkable accuracy of . . . orientation of the Great Pyramid," a
structure of extraordinary sophistication, indicates very serious religious and theoretical concerns. 2> Thus, Neugebauer's choice of the word "primitive" to describe the
alignment seems inappropriate, the word is—as we shall see—indicative of his general opinion of the ancient Egyptians.

There is little doubt that this modern view of the Egyptians' lack of mathematics and science has been influenced by a distaste for the theology and metaphysics in
which much of Egyptian—and Platonic—knowledge was embedded and by progressivist views that no one who lived so early could have been so sophisticated. It
may also have been reinforced by assumptions, almost universal in the nineteenth and early twentieth centuries, that no Africans of any sort could have been capable of
such great intellectual achievements.

An indication that such attitudes may have had an impact even on such a magnificent champion of liberalism and foe to racism as Neugebauer comes in one of his
bibliographical notes, where the first book he recommended "for a deeper understanding of the background that determined the character of Egyptian arithmetic" was
Lucien Lévy-Briihl's Fonctions Mentales Dans Les Sociétés Inferieures. Lévy-Briihl was far from the worst of his generation. Nevertheless he belonged to it, and it
was appropriate that his work was translated into English as How Natives Think.®

Having said this, there is no doubt that Neugebauer had some substantial arguments to back his case. The strongest of these were his claims that none of the surviving
mathematical papyri from pharaonic Egypt contained what he believed to be sophisticated calculations and that the Egyptians' systems of numbers and fractions were
too crude for profound mathematical and astronomical thought of the kind that had been attributed to them. There are seven major arguments against this position.

1. The strong possibility that—pace Neugebauer—the surviving Egyptian papyri do contain "advanced" mathematics.
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2. Parallels from Mesopotamia and Ptolemaic Egypt showing that one can not rely on the papyrological record to gauge the full range of pharaonic Egyptian
"science."

3. The general agreement that Egyptian geometry was equal to or better than that of Mesopotamia, in conjunction with the conventional wisdom that one of the
chief contributions of the Greeks to Mesopotamian "arithmetic" was geometric modeling, which suggests that the geometrical input may well have come from
Egypt.

4. The coordination of sophisticated geometry and computation in Egypt with extraordinary practical achievements.
5. The Greek insistence that they learned mathematics—and medicine—not from Mesopotamia but from Egypt.
6. The Greek adoption of an Egyptian rather than a Mesopotamian calendar.

7. The facts that much of Hellenistic and Roman science took place in Egypt, not Greece, and that although they wrote in Greek some of its practitioners, including
the astronomer Ptolemy, were Egyptian.

The first argument is buttressed by the fact that, as we have seen, Neugebauer preferred "more primitive interpretations" and therefore could have overlooked
evidence of more sophisticated work. Thus, we must allow for the possibility that the surviving texts contain or refer to elements that are more sophisticated than he
and some other twentieth-century historians of science have supposed. There is little doubt about the employment of irrational numbers, mentioned above, and the use
of arithmetical and geometrical progressions in the Rhind Papyrus problems 40 and 79. 24

The Soviet scholar V. V. Struve, who was the first to study the Moscow Mathematical Papyrus, was much more respectful than Neugebauer. He wrote, for instance,
that "we must admit that in mechanics the Egyptians had more knowledge than we wanted to believe." He was convinced that this papyrus and the Rhind Mathematical
Papyrus demonstrated a theoretical knowledge of the volume of a truncated pyramid, and he has been followed in this interpretation by later scholars. Given the many
pyramids successfully constructed during the Old and Middle Kingdoms, this would not in itself seem unlikely. Archimedes, however, maintained in the third century
B.c. that the volumes of pyramids were first measured by Eudoxos of Knidos a hundred years earlier.?S

Here, as in some other instances, Archimedes was knowingly or
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unknowingly mistaken. Even so, it is possible that Eudoxos was the first to transmit the formulas to Greece. Eudoxos spent many years in Egypt and was reported to
have learned Egyptian and to have made translations, some of which may well have come from the Book of the Dead, into Greek. As Giorgio de Santillana pointed
out, it is unlikely that Eudoxos translated these texts merely for their entertainment value; it is much more probable that he believed that they contained esoteric
astronomical information. 26 This raises the important suggestion that Egyptian religious and mystical writings and drawings may well contain esoteric mathematical and
astronomical wisdom.

To return to earth with the particular case of the measurement of the surface area of either a semicylinder or a hemisphere in the Moscow Papyrus: Richard Gillings,
who believes the measurement refers to the latter, describes the Egyptian operations and writes:

If this interpretation . . . is the correct one then the scribe who derived the formula anticipated Archimedes by 1,500 years! Let us, however, be perfectly dear [that] in neither case
has any proof that either Acinge: = tdh o Apemisphere = 2 1 been established by the Egyptian scribe that is at all comparable with the clarity of the demonstrations of the Greeks
Dinostratos and Archimedes. All we can say is that, in the specific case in hand, the mechanical operations performed are consistent with these operations which would be made
by someone applying these formulas even though the order and notation might be different.?’”

In general, it is dear that the specifically mathematical papyri give considerable indications of sophisticated operations. As Struve put it in the conclusion of his study of
the Moscow Papyrus:

These new facts through which the Edwin Smith and Moscow papyri have enriched our knowledge, oblige us to make a radical revision of the evaluation made up to now of
Egyptian "science" [Wissenschaft]. Problems such as the research into the functions of the brain or the surface area of a sphere do not belong to the range of practical "scientific"
questions of a primitive culture. They are purely theoretical problems.

Or earlier:

The Moscow Papyrus . . . confirms in a striking way the mathematical knowledge of the Egyptian scholars and we no longer have any reason to reject the claims of the Greek
writers that the Egyptians were the teachers of the Greeks in geometry.28



Page 92

Objections by Neugebauer and others to Struve's specific interpretation of the surface area of a hemisphere have now been answered. 2° Similarly, as mentioned
above, claims for the use of "Pythagorean" triangles and the sophistication of the measurement of the volume of the truncated pyramid have both survived earlier
skepticism. If these bases of Struve's general case still stand, should one accept Neugebauer's dismissal of it?

Even if one were to concede Neugebauer's argument that the mathematics contained in these papyri is merely practical and primitive, there is the second argument: the
strong likelihood that more sophisticated work was recorded on others that have not been preserved. Lauer raised the point that all reports indicate that the Egyptian
priests were secretive about their writings; therefore there would have been few copies and the chances of their survival would have been slim. It should be
emphasized that relatively few papyri of any kind have survived. This is very different from Mesopotamia, where the baked clay tablets are remarkably durable and
hundreds of thousands of them have been discovered. The problem with Mesopotamian texts is not a lack of them but the difficulty of finding enough Assyriologists to
read and publish them. Even here, however, there are gaps in what exists. Neugebauer points out that the "great majority" of mathematical tablets come from one of
two periods, the Old Babylonian period—of two hundred years—in the first half of the second millennium s.c. and the Seleucid period. Continuities between the two
sets of texts make it clear that sophisticated mathematics was carried out in the twelve or more centuries that intervened. However, there is no record of this.3

The situation is far worse in Egypt, and there is no doubt that most of the papyri written and all of those that have survived were texts used for teaching scribes
techniques that were useful for practical accounting rather than "state of the art" advanced mathematics.3' An instructive parallel can be seen in the Ptolemaic period.
Many more mathematical papyri have been found from these few centuries than from the whole pharaonic period, yet none of these go beyond Book 1 of Euclid or
give any indications of the extraordinary sophistication of the work we know from textual transmission to have been taking place in Hellenistic Egypt. Thus, the
argument from silence, which should always be applied sparingly, should be used with particular caution in evaluating the absence of textual proof of advanced
Egyptian mathematics.

Against this, it is argued that the few texts that do exist show a consistency of techniques and notation that makes it impossible for
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the Egyptians to have produced sophisticated mathematics. This brings us to the third argument against skepticism: Egyptian numerical notation may not have been as
flexible and helpful as that of the Mesopotamians, but it was, if anything, better than that in the Greeks wrote their sophisticated formulas. There is no doubt that
Egyptian mathematics was based on very simple principles; on the other hand, the existing papyri show that extraordinarily elaborate mathematical structures were
erected upon them.

Neugebauer admits that while the Egyptians were not as good in their arithmetic as the Babylonians, their geometry was equally good; and if we are to believe other
scholars' interpretations of the Moscow Papyrus, Egyptians were able to carry out geometrical operations that were beyond those of the Mesopotamians. The notion
that the Egyptians were the better geometers fits both with unparalleled architectural achievements and with their reputation among Greeks as the founders of geometry
and their teachers in it. 3

Given this concern with geometry, it is not surprising that there are direct and indirect proofs that Egyptians relied on plans for their architectural constructions. Struve
may have been exaggerating when he wrote, "The Egyptian plans are as correct as those of modern engineers."*? Nevertheless, there is no reason to suppose that they
were inferior to those of the Greeks and Romans.

According to the Egyptians, the tradition of making plans went back to Imhotep, at the beginning of the third dynasty, circa 3000 s.c., but most modern scholars have
understood this claim merely as a mythical projection on to deified prototype of all architects. However, it is now proven that architectural plans were used during the
Old Kingdom and that Imhotep did design the Step Pyramid and the elaborate complex of buildings around it. Furthermore, a nostracon found at the Step Pyramid
does contain measurements for a vault.34

This coordination of geometry and computation with architecture constitutes the fourth argument against modern denials that the Egyptians possessed a superior
mathematics. While the textual evidence for such knowledge can be construed as ambiguous, the case for it is greatly strengthened by the architectural evidence. In
addition to the pyramids there were temples, granaries, and irrigation networks on huge scales that required extraordinary planning and the ability to visualize these
structures in advance on writing or drawing surfaces.

The fifth reason for supposing that the Egyptians had sophisticated mathematics is that the Greeks said so. Writers on the subject were unanimous that Egyptian
mathematics and astronomy were su-
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perior to their own and that while only two Greek mathematicians were supposed to have studied in Mesopotamia, the majority of Greek scientists, astronomers, and
mathematicians had studied or spent time in Egypt.

These reports are treated with skepticism by modern historians of science, who know that there was no Egyptian science or mathematics worth studying. However, as
de Santillana wrote about Eudoxos, who undoubtedly studied in Egypt: "We are asked to admit, then, that the greatest mathematician of Greece learned Egyptian and
tried to work on astronomy in Egypt without realizing that he was wasting his time." 3

There is little doubt that after the Assyrian and Persian conquests the mathematics and astronomy of Egypt drew from both Egyptian and Mesopotamian sources.
However, the Greek belief that it was all Egyptian tradition strengthens the case that the native component was significant.

The sixth argument against the skeptics is the fact that the Greeks adopted an Egyptian rather than a Mesopotamian calendar. Apart from the greater convenience of
the Egyptian calendar, this adoption is indicative of what seems to have been a wider Greek tendency to draw from nearby Egypt rather than more distant
Mesopotamia.

The final argument is that in Hellenistic times, while Athens remained the center of Greek philosophical studies, nearly all "Greek" science took place in Egypt. This was
partly the result of Ptolemaic patronage, but if we are to believe Greek and Roman sources, the "scientists" also drew and built on Egyptian wisdom. It is striking that
Euclid worked in Egypt at the very beginning of the Ptolemaic period, that is to say a mere fifty years earlier Eudoxos had felt the need to learn Egyptian in order to
study mathematics and astronomy. Thus, it would seem more accurate to view Euclid's work as a synthesis of Greek and Egyptian geometry than as an imposition of
the Greek rational mind on muddled oriental thinking.

While it is true that Babylonian mathematics and astronomy flourished under the Seleucids, as already noted, most of the great "Greek" scientists wrote in Greek but
lived in Egypt, and some indeed may have been Egyptian. For possible examples of this, there are the inventor Heron, the \ Diophantos and the astronomer Ptolemy,
who was known in early Arabic writings as an Upper Egyptian.3¢

It seems to be generally accepted that the great Greek contribution to mathematics and astronomy was the introduction of geometric modeling, in particular the
transposition of Mesopotamian arithmeti-
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cal astronomical cycles into rotating spheres. 3" However, the Greeks themselves believed that geometry developed in Egypt, a view supported by Egyptian
architectural sophistication and the mathematical papyri. Furthermore, those most responsible for the Greek view of the heavens as spinning spheres, Plato and
Eudoxos, were reported to have spent time in Egypt and were known for their deep admiration of Egyptian wisdom. 3

We have seen how particularly close Eudoxos's association was with Egyptian priests, and it was precisely Eudoxos who established the new astronomy of complex
concentric spheres.

I believe that these seven arguments present a very strong case indeed that there were rich mathematical—particularly geometrical—and astronomical traditions in
Egypt by the time Greek scholars came in contact with Egyptian learned priests. After the Assyrian conquest of Egypt, in the seventh century B.c., Egyptian
mathematics and astronomy were substantially influenced by Mesopotamian "scientific" thought, a process which continued in Ptolemaic and Roman Egypt.3* The
Egyptian medical tradition appears to have been less affected by Mesopotamia. In general the "scientific" triumphs of Hellenistic Egypt would seem to the result of
propitious social, economic, and political conditions and the meeting of three "scientific" traditions, those of Egypt, Mesopotamia, and Greece. However, the two
former were much older than the third, reaching back to the third millennium or beyond, and more substantial. It should also be noted that the point at which the
Greeks "plugged into" Near Eastern "science" was Egypt; this was the reason that the Greeks always emphasized the depth and extent of Egyptian wisdom.

The arbitrariness of the application of the word "science" to ancient civilizations was noted at the beginning of this essay. I suppose, like Humpty-Dumpty we can use
words more or less as we please. However, the only way to claim that the Greeks were the first Western scientists is to define "science" as "Greek science." If less
circular definitions are used, it is impossible to exclude the practice and theory of some much earlier Mesopotamians and Egyptians.

Notes

1. For Pingree see "Hellenophilia versus the History of Science," a lecture originally presented at the department of history of science, Harvard University, 14
November 1990, and now published in this special section. For
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York: Collier, Macmillan, 1962), p. 15.
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Clarendon, 1971)—pace John Vallance, "On Marshall Clagett's Greek Science in Antiquity,” Isis (1990) 81:713-721, on p. 715. See also G. S. Kirk, "Popper on
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Chapter 5
Africa in the Mainstream of Mathematics History

Beatrice Lumpkin

Editors's comment: Beatrice Lumpkin, a mathematics educator, presents specific examples to demonstrate the centrality of African contributions to the development of mathematics
knowledge. This chapter was first published in I. Van Sertima (Ed.), Blacks in science: Ancient and modern, New Brunswick, NJ: Transaction, pp. 100-109, in 1983. In a postscript,
written for this volume, she includes a brief update, discussing recent scholarship and addressing criticisms made since her chapter was first published. Elsewhere, along with
Dorothy Strong, she has applied these and other examples to the teaching of mathematics in Multicultural Science and Math Connections: Middle School Projects and Activities
(Portland, ME: Walch, 1992).

Summary: For thousands of years, Africa was in the mainstream of mathematics history. This history began with the first written numerals of ancient Egypt, a culture whose African
origin has been reaffirmed by the most recent discoveries of archaeology. With a longer period of scientific work than any other area of the world, progress in mathematics
continued on the African continent through three great periods, ancient Egyptian, Hellenistic, and Islamic. The language changed from Egyptian to Greek to Arabic. But the
tradition of African science continued, despite a change of language. The Renaissance in Europe was triggered by the science and mathematics brought to Spain and Italy by the
Moors of North Africa. Although all peoples and continents have played a role in the history of mathematics, the contributions of Africa are still unacknowledged by European and
North American historians.
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One of the earliest examples of writing were the hieroglyphs on Narmer's palette, named for the first king of upper and lower Egypt, who was also known as Menes.
The numerals used cited thousands of heads of cattle and thousands of prisoners, indicating that numerals and hieroglyphs already had a long history in Egypt. ! It has
recently been learned from the findings of the International Nubian Rescue Mission, which salvaged ancient artifacts and monuments before the Aswan Dam flooded
the Nubian area, that pharaonic kings and hieroglyphic writing were known south of the first cataract generations before Menes.

These findings have reaffirmed the African origin of the great ancient civilization. From this region, in the interior of Aftica, has come evidence of the earliest known
cultivation of grain.2 With this new evidence, the date of the Egyptian calendar must also be reconsidered. Originally thought to date back to 4241 s.c. when first
analyzed by European scholars, its apparent date was arbitrarily changed to 2773 s.c. It was claimed that "Such precise mathematical and astronomical work cannot
be seriously ascribed to a people slowly emerging from Neolithic conditions."* The internal evidence is consistent with either date, based on the Sothic cycle of about
1,468 years.* Struik, himself, has kept an open mind on light that could be shed by new discoveries. In correspondence with this author, he wrote: "As to mathematics,
the Stonehenge discussions have made it necessary to rethink our ideas of what Neolithic people knew. Gillings has shown that the ancient Egyptians could work with
their fractions in a most sophisticated way."S

The early beginnings of algebra and geometry in ancient Egypt are briefly covered in many history books. But the full scope and depth of ancient Egyptian mathematics
have been largely overlooked because the first judgement of the European translators of the papyri dismissed this mathematics as "primitive."® It is only in the last ten
years that a full-length study of this mathematics was published. It is often not realized that African contributions did not end with the ancient Egyptians but continued
through the Hellenistic and Islamic Empires. Indeed, Africa continued in the mainstream of mathematics for thousands of years, fight up to the European Renaissance.

Any unprejudiced view of world history must acknowledge that many different peoples and races on every continent have made great mathematical discoveries. The
Maya’ of Central America used a zero hundreds of years before a.p. 876, its earliest known use in India. And the ancient Chinese, almost 2,000 years ago, solved
systems of equations with a method similar to the modern elementary transfor-
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mations of matrices. ? But it was through Africa that the science, mathematics, and knowledge of the entire Eastern world reached Europe. This was true in the time of
the classical Greeks and continued through the Middle Ages when Islamic scholars dominated the intellectual life of Europe, Africa, and the western and central parts
of Asia.

Very different from the above is the theory of history now taught at most North American universities and accepted as "fact" by thousands of practicing mathematicians
and teachers. They teach the purely European origin of mathematics. According to this version of history; mathematics began in Greece in the fifth century s.c. With the
decline of the Greek Empire, no further progress was made until Europe, the hue home of mathematics, was ready to advance again during the Renaissance.!® To
those, such as Kline, who dismiss all mathematics before the Greeks as less than "true" mathematics, George Sarton, the encyclopedist of science, replies: "It is childish
to assume that science began in Greece. The 'Greek miracle' was prepared by millennia of work in Egypt, Mesopotamia and possibly other regions. Greek science
was less an invention than a revival."!!

Three great periods of African mathematics will be briefly considered in this article. They are: The ancient Egyptian mathematics of the pyramids, obelisks, and great
temples,? the African participation in classical mathematics of the Hellenistic period, and the African participation in Islamic mathematics. Other periods and locales of
mathematics on the African continent are not described although future research may well show that these played an important role in the history of mathematics. This
vast subject, not covered here, includes the mathematical games so widespread in Africa,'® the systems of measurement used in the African forest kingdoms, and the
mathematics used in building the great stone complexes of Zimbabwe. Perhaps now that Zimbabwe has its own government, more information will become available
and new chapters in the history of mathematics will be written.

The great accuracy of the dimensions of the pyramids! still gives rise to wonder. Geometry, literally the measurement of the land, required a high technology in
addition to theoretical mathematics. The famous "rope stretchers" to whom Democritus compared himself, used special ropes, twisted of many fine strands to assure
high stability and constant length. The accuracy of the Egyptian value for  (the constant ratio of circumference to diameter of any circle) was probably a result of
theoretical analysis of "squaring a circle"!® and confirmation of experiment and accurate measurement. The Egyptian value for ~ was 3.16, much closer to the modern
3.14 than the biblical value, 3.0.
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Contrary to the reports that the ancient Egyptians did not derive any general principles and limited themselves to specific examples, many of the problems in the
mathematical papyri ended with general statements. For example, in the papyrus written by the scribe Ahmose (Rhind Mathematical Papyrus 61B) the solution was
followed by: Behold! Does one according to the like for every uneven fraction which may occur. Gillings lists over ten such statements in this papyrus. ¢

In his book, Mathematics in the Time of the Pharaohs, Gillings tries to discover methods that may have been used by the ancient Egyptian scribes to derive their
often amazing results. By approaching the subject without prejudice, with the keenness of a mathematical detective, Gillings investigated the terse clues left by the
scribes and has revealed some unsuspected achievements. These include formulas for the summation of arithmetic and geometric series and the measurement of the
area of a curved surface. An efficient irrigation technology, efficient central administration, and the skill of the farmers of ancient Egypt made possible a large food
surplus, enough to support the mathematicians, teachers, and other intellectuals. In turn, these ancient African mathematicians contributed to production by developing
methods of measuring the land through formulas for the areas of rectangles, triangles, circles, and even the area of a curved dome. Properties of similar triangles were
known and some trigonometry, the equivalent of our co-tangent, helped assure a constant slope for the faces of pyramids.

Their very system of measurement shows knowledge of some "Pythagorean" triads. An area measured in cubits was doubled if cubits were replaced by double remens
while the shape remained similar.!” Alone of the ancients, the Egyptians knew the correct formula for the volume of a truncated pyramid, thus stumping the modern
experts who wonder "How did they do it?" First and second degree equations were solved by the method of false position, a method that continued in use up to this
century. But perhaps it was in their use of arithmetic and geometric series that the Egyptians' work has almost a modern ring. Indeed the formula used for the sum of n
terms of an arithmetic series is the equivalent of one we use today,

Sometimes these ancient problems seemed pure mathematical fun. For what practical significance could there have been in problem
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79 of the Ahmose papyrus which seems to anticipate this Mother Goose rhyme by 3,500 years,

"As I was going to St. Ives,
I met a man with 7 wives.
Each wife had 7 sacks,
Each sack had 7 cats . . ."

Compare with:

Houses 7

Cats 49

Mice 343

Spelt 2,401;
(ears of grain)

Hekats 16,807

(measures of grain) 18

Egyptian fractions were, perhaps, the most important application of mathematics in those times because they were used for the extensive bookkeeping needed for
large public works such as pyramid construction. These were unitary fractions using 1 as the numerator. For example, instead of 2/5 they wrote the equivalent 1/3 +
1/15. These fractions remained in use in Europe until fairly recent times when they were replaced by the decimal fractions which the Moors had introduced. With their
fractions, the Egyptians could add, multiply, divide, and take square roots.

Alexandrian Mathematics

Egyptian contributions to science and mathematics did not end with the conquest by the Macedonian, Alexander the Great. Attracted by the great wealth and learning
of Egypt, Alexander, in 332 8.c., ordered the construction of Alexandria, a city which became the intellectual center of the Greek speaking world. In Alexandria, the
products and ideas of the city-states of North Africa, Asia Minor, Greece, India, and China mingled and took firm root on African soil. A great museum and library
attracted the best scholars and educated many generations of Egyptian students.

It was in the fourth century before our era'” that Greek mathe-
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maticians developed the deductive, axiomatic method, establishing the logical foundation on which mathematics so proudly rests today. As Struik wrote, "This again
may be connected with the fact that mathematics had become a hobby of a leisure class which was based on slavery, indifferent to invention, and interested in
contemplation." 20

Of course, no modern scholar has tried to belittle this great Greek accomplishment because it rested on an economic base of slavery. Contrast this with the case of
Egypt, where slavery played a much lesser role. Yet Hollywood movies and popular texts claim that the greatness of the pyramid period is lessened because slave
labor was used.

Up to the fourth century s.c., according to Neugebauer, Greek mathematics was similar to, and no doubt an outgrowth of Egyptian and Babylonian. He cautions that
"if modern scholars had devoted as much attention to Galen or Ptolemy as they did to Plato and his followers, they would have come to quite different results and they
would not have invented the myth about the remarkable quality of the so-called Greek mind to develop scientific theories without resorting to experiments or empirical
tests."?!

It was in Egypt that Hellenistic mathematics reached its peak. Struik attributes this flowering of mathematics to the central position that Egypt occupied during the
Ptolemaic period as the intellectual and economic center of the Mediterranean world.?? Who were the people of Alexandria? They were the African people of Egypt
with a few immigrants from Greece, western Asia and neighboring African countries. Sarton reminds us that "Greek emigrants were too few in pre-Christian times and
too little interested in science and scholarship to affect and change Eastern minds."?® The ruling class, itself, was mixed from the first days of Alexandria because
Alexander, the Macedonian, ordered his officers to marry and mix with the local population.

Nonetheless, although no pictures have come down to us of any of the great men and women of Alexandria, false portraits have been published which portray them as
fair Greeks, not even sunburned by the Egyptian sun. This misleading practice is decried by George Sarton, in an article on "Iconographic Honesty" in which this dean
of science history declares "I do not believe there is a single ancient scientist of whose lineaments we have any definite knowledge; thus to publish "portraits' of
Hippocrates, Aristotle or Euclid is, until further notice, stupid and wicked."?4

In the case of Euclid, best known of the Alexandrian mathematicians, there is not a shred of evidence to suggest that he was anything
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other than Egyptian. Euclid's fame is based on his thirteen major texts, The Elements, a strictly logical deduction of theorems from accepted definitions and axioms.
For over 2,000 years these books dominated the teaching of mathematics to the delight of mathematicians and the discomfiture of students. In a similar manner, The
Almagest, written by another Egyptian, Claudius Ptolemy, c. A.p. 150, dominated astronomy until finally replaced by Copernicus' theory of a sun-centered planetary
system, c. 1543.

The Almagest (the greatest in Arabic) contains in its thirteen books the foundations of spherical trigonometry, a catalogue of 1,028 stars and the epicycle system of an
earth-centered astronomy. By some peculiar racial reasoning, Ptolemy is often described as Egyptian only because his work was of a practical, applied nature,
differing in this respect from the strictly theoretical work of Euclid. The fact is that both were Alexandrians and therefore it is highly probable that they were Africans.
In Ptolemy's time, Alexandria was already 400 years old and very much a part of Egypt.

Of Heron, another Alexandrian who wrote Metrica on geometric measurement, and Pneumatica, a book about machines, Howard Eves says "There are reasons to
suppose he was an Egyptian with Greek training." 25 Another great mathematician of that time, Diophantus, of the Alexandria of the third century, continued the
tradition of Egyptian algebra. His Arithmetica on number theory marks the author as a genius in his field?® and introduced brief symbols to simplify algebraic
expressions (syncopation) in place of the long, wordy formulations then in use (rhetorical algebra.)

All of these Alexandrian mathematicians wrote their books in Greek. Their use of Greek makes them no more European than the use of English by Nigerians today
changes that nationality. To this very incomplete list of Egyptian mathematicians who worked in Alexandria must be added Theon and his daughter Hypatia, whose
memory still inspires women to become mathematicians.

African Mathematics During the Islamic Empire

In the lengthy period between the decline of the Greek and Roman Empires to the eve of the Renaissance, a period of almost 1,000 years, Europe disappears from
the mainstream of the history of mathematics. That is, with the exception of Moorish mathematicians in
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Spain and Italy who came from North Africa and brought with them 4,000 years of African- Asian mathematics. In Moorish Spain, "Cordoba, in the tenth century,
was a great centre of learning, where one could walk for several miles in a straight line by the light of the public lamps." 27 A whole series of new inventions became
available during this period: steel, silk, porcelain, and paper. African papyrus paper was still used and appreciated for its fine qualities, but pulp paper from China was
coming into wider use.?

Struik, who has read the Islamic mathematicians in the Russian translations (unfortunately much of this work is still not available in English) stresses their continuity of
culture under Arabic rule. "The ancient native civilizations had even a better chance to survive under this rule than under the alien rule of the Greeks."?

In North Africa, the Arabs, as the Greeks before them, intermarried with the African people of these countries and quickly absorbed the culture and learning of Egypt.
The rapid physical expansion of the Islamic Empire had its intellectual parallel in the exchange of knowledge among Egypt, Persia, India, and China.

From the eighth century until the fifteenth, Arabic was the language of mathematics and science. About 773 Al-Fazari translated the Indian Siddhanta to Arabic,
popularizing the Hindu decimal system; the zero is believed to have come into use later. Thabit ibn Qurra and his school produced excellent Arabic translations of
Euclid, Appolonius, Archimedes, Ptolemy, and Theodosius and made important additions of their own (826-901). To this day, most of these classics are known to us
only through the Arabic translations, the original Greek versions having been lost. But one book, more than any other, was the vehicle for introducing Europe to
Islamic algebra and the Hindu- Arabic numerals and arithmetic, al-Kh-warizmi's A/-jabr wa'l mugabalah. From the author's name we get the common mathematical
term, "algorithm." From the title, al-jabr, we get the modern term, "algebra."

Some of the greatest scholars of this time came to Egypt to work, where they could enjoy support for the full scope of their research. Among them was the
outstanding mathematician-physicist Ibn al-Haytham (Alhazen). Although born in Basra, his productive life was spent in Egypt, pioneering in optics and geometry.3
Ibn al-Haytham is the first of three Islamic mathematicians who opened the door to non-Euclidean geometry. Through his work and that of his successors, Umar al-
Khayyami and Nasir al-Din al-Tusi, European mathematicians hundreds of years later were inspired to create new geometries.
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Islamic Mathematics Reaches Europe

The main routes of transmission of Islamic learning were from North Africa to Spain, also to Sicily and southern Italy, where Moorish rule lasted for many generations.
The Europeans who appear in the mathematical history of the time had studied with Islamic scholars. Constantine the African (d. 1087), a merchant from Carthage,
brought a precious cargo of manuscripts to Salerno where a school was founded to translate and study the Arabic works. Adelard of Bath (1116-1142) made a long
voyage to Arab countries and translated Arab classics into Latin. Fibonacci (Leonardo Pisano) (1170-1240) got his start in mathematics during his long residence in
the North African coastal city where his father was a merchant. 3!

In short, as summarized by Haskins, "The full recovery of this ancient learning, supplemented by what the Arabs had gained from the Orient and from their own
observation, constitutes the scientific renaissance of the Middle Ages."*

Interrupted Progress

The period which follows the European Renaissance and brings us down to the modern era saw the pillaging of Africa, Asia, and the Americas by European
colonialism. Slavery depopulated Africa and drastically interrupted African progress. But it is no mere academic exercise to reconstruct without prejudice the
thousands of years of history during which Africa contributed to the mainstream of mathematics. World science will become much richer when the former colonial
peoples take their place, once more, in the mainstream of mathematics and science.
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Postscript

When this article first appeared in September 1980, it received a favorable response from many who wanted to restore Africa to its rightful place in history. In the
years since 1980, there has been a growing awareness of African contributions to mathematics and science.

Several articles in this volume have contributed to this increased awareness. However, there has also been much adverse criticism of the article's main theme, that
Africa was in the mainstream of mathematics history, and that school mathematics owes a lot to ancient African mathematicians. This concept seems to have touched
anerve among those who insist on staying with the Eurocentric approach that "mathematics began in Greece."

In view of recent scholarship, some additions and corrections to this article are appropriate at this time. Although the summary of the article states that the history of
mathematics in Africa began "with
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the first written numerals of ancient Egypt," mathematics in Africa started much earlier Even if history is taken in the narrow sense of written history, numbers were
recorded in Africa long before the development of Egyptian numerals. The discovery of tally marks on a fossilized baboon bone, found in Border Cave between South
Africa and Namibia, pushes the date of number records back to at least 35,000 B.c.e. ! Long before 3100 B.c k., the approximate date of the earliest known Egyptian
numerals,? the Ishango bone was carved in the Lakes region of Central Africa. Recent work dates the Ishango fossil to between 23,000—18,000 s.c.. The bone is
inscribed with tallies that show a complex array of values.?

Wendorf and Schild et al., who published a paper on a South Egyptian location for the "earliest known cultivation of grain," have withdrawn their paper. They now
believe that the domesticated barley they found was a later intrusion into the 14,000-year old site. However, the age of the harvesting tools reported in their paper
remains unchanged, even if the grain that was harvested was probably wild. Moreover, other investigators at the same site have found evidence that grain was made
into a mash for infants 19,000 years ago, possibly for weaning.*

Since the article was published, there have been many attempts to refute Sarton's position for a mostly Egyptian origin of the population of Alexandria. It has been
claimed that early Alexandria was strictly a Greek enclave. But the question has not been addressed, "Why was the scientific center of the Mediterranean world
established in Egypt instead of Greece?" It is this author's opinion that the synthesis of the new Alexandrian science was a synthesis of cultures, and that the genetic
origin of the people of Alexandria is irrelevant to this issue. The magnetic pull of ancient Egyptian culture on Greek scholars has been well established.

This update will cite some sophisticated mathematical achievements that were not included in the original article. These concepts occur in the context of construction
plans and bookkeeping applications, not in the "mathematical" papyri. In the sense that this mathematics was practiced outside the formal school setting, it could be
called "Ethnomathematics." Perhaps that explains why the achievements described below do not appear in the "History of Mathematics" textbooks. However, one
cannot help but wonder what part racial prejudice played in their omission from textbooks. The following examples were well known to founders of Egyptology such
as Petrie, Gardiner, Reisner, Borchardt, and Scharff.
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1. Rectangular Coordinates, c. 2700 B.C.E.

An architect's plan on a limestone ostracon, found at the Saqqgara pyramid complex, is dated c. 2700 s.c k. This artifact shows an architect's drawing for a curved
section of a temple roof. The drawing shows horizontal coordinates spaced 1 cubit apart. For these horizontal coordinates, heights are given for points which define a
curve. The curve in the sketch exactly matches the curve of the temple roof near the spot where the ostracon was found. The vertical coordinates are given in Egyptian
numerals that are easy to read. Start at the upper left. Under the outstretched arm, the hieroglyph for cubits, the number three is shown as 1 I 1. Under the 3 cubits, 3
palms and 2 fingers are shown. Since there are 7 palms / cubit, and 4 fingers / palm, this coordinate is equivalent to 98 fingers.

This architect's plan shows the earliest known use of rectangular coordinates. It is possible that the concept of coordinates grew out of the Egyptian use of square grids
to copy or enlarge artwork, square by square. It needs just one short, important step from the use of square grids to the location of points by coordinates. Clarke and
Engelbach recognized the architect's plan as "of great importance.” * But no history textbook has picked up this "important" example.

Figure 5-1.
Architect's diagram giving coordinates for a curve,
¢. 2700 B.C.E., Saqqara, du Service XXV. Clarke and
Engelbach, 1930, from Annales du Service XXV.
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2. The Egyptian Zero Symbol, Two Applications

It is true that a zero placeholder was not used (or needed) in the Egyptian hieroglyphic or hieratic numerals because these numerals did not have positional value. But
the zero concept has many other applications. Only a few historians such as Boyer ¢ and Gillings have reported any use of the zero concept in ancient Egypt. But
Gillings added, "Of course zero, which had not yet been invented, was not written down by the scribe or clerk; in the papyri, a blank space indicates zero."” In this
statement, Gillings was repeating the conventional wisdom. He was not aware that Egyptians had, in fact, invented a zero symbol. The ancient Egyptian zero symbol
was the same as the hieroglyph for beauty, an abstraction of a human windpipe, heart, and lungs. The consonantal values were nfr; the vowel sounds are unknown.
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Figure 5-2.
Diagram of leveling lines from a tomb at Meidum.

Horizontal leveling lines were used to guide the construction of pyramids and other large structures. These massive stone structures required deep foundations and
careful leveling of the courses of stone. One of these leveling lines, sometimes at pavement level, was used as a reference for the other levels, and was labeled "nft," or
"zero." Other horizontal leveling lines were spaced 1 cubit apart and labeled as "1 cubit above nft," "2 cubits above nft," or "1 cubit, 2 cubits, 3 cubits," and so forth,
below nff. Here zero was used as a reference for a system of directed or signed numbers.?®
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A number of examples of these leveling lines are still visible at pyramid and tomb sites. In 1931, George Reisner described the zero reference for leveling lines at the
Myecerinus (Menkure) pyramid at Giza built c. 2600 s.c.e. He gave the following list collected earlier by Borchardt and Petrie from their study of Old Kingdom
pyramids. °

zero (Note the w suffix added to nfr for

nfiw grammatical reasons. )
zero line

m tp n nfiw
above zero

hr nfrw
below zero

md hr n nfrw

Zero Balance in Bookkeeping

The same nfr symbol was also used to express zero remainders in a monthly account sheet from the Middle Kingdom dynasty 13, c. 1770 s.c.e. The bookkeeping
record looks like a double entry account sheet with separate columns for each type of goods. At the end of the month, the account was balanced. For each item,
income was added, then disbursements were totaled. Finally, the disbursement total for each column was subtracted from total income for the column. Several
columns had zero remainders, shown by the nfr symbol.!® The Egyptian use of the same symbol for two different applications of the zero concept is of more than
passing interest. Also, the ancient Egyptian penchant for making tables and organizing data is worthy of note.

3. Egyptian Cipherization of Numerals

Carl Boyer credited the Egyptians with introducing the idea of cipherization when they invented hieratic numerals. Hieratic script, generally speaking, was a cursive
form of the hieroglyphs. Hieratic numerals, however, were different from the hieroglyphic numerals. The hieratic numerals used ciphers, as Boyer explained, "for each
of the first nine integral multiples of integral powers of ten." He called the hieratic numeral system, "decimal cash-register cipherization," referring to old-style cash
registers, which sent up a flag for each decimal place. Boyer added that, "The introduction by the Egyptians of the idea of cipherization constitutes a decisive step in
the development of numeration."!!



Page 116

For example, a number such as 19,607 written in hieroglyphs would require twenty-three symbols, but in hieratic would need only four symbols. The four hieratic
ciphers would be the equivalent of 10,000; 9,000; 600; and 7. (See the last line in Figure 5-3.) Both the hieroglyphic and the hieratic numeral systems did not use

positional value and did not need a zero "placeholder." Ionic numerals, as Boyer showed, also used "decimal cash-register cipherization," yet another example of
Egyptian influence on Greek mathematics.
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Figure 5-3.

Center: Hieroglyphic numerals. Right: Hieratic
Numerals. Read Egyptian numerals from right to left.

Adapted from Arnold Buffum Chace, The Rhind mathematical papyrus (Reston, VA: NCTM, 1979), 137.
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SECTION III
CONSIDERING INTERACTIONS BETWEEN CULTURE AND MATHEMATICAL KNOWLEDGE

Arthur B. Powell and Marilyn Frankenstein

In his educational practice, Freire initiates the process by first considering who creates culture. This is done to clarify that all people, whether literate or illiterate, are
cultural actors. Toward this end, he emphasizes an anthropological concept of culture. In the following quote he indicates signposts of a definition of culture:

the distinction between the world of nature and the world of culture; the active role of men [and women] in and with their reality; the role of mediation which nature plays in
relationships and communications among men [and women]; culture as the addition made by men [and women] to a world they did not make; culture as the result of men's [and
women's] labor, of their efforts to create and re-create; the transcendental meaning of human relationships; the humanist dimension of culture; culture as systematic acquisition of
human experience (but as creative assimilation, not as information-storing); the democratization of culture; the learning of reading and writing as the key to the world of written
communication. In short, the role of man [and woman] as Subject[s] in the world and with the world (1973, p. 46).

The salient points for our discussion are that cultural products are the creation of people and that transformations of nature are made by all people. Mathematics is a
cultural product and, therefore, is created by humans in the interconnected midst of culture. ! The interactions are dialectical: people's daily practice, language, and
ideology effect and are effected by their mathematical knowledge. Bishop (1990), and other mathematics educators, reviewing anthropological
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studies and investigating mathematical activities in different cultures, view mathematics as a "pan-cultural phenomenon . . . a symbolic technology, developed through
engaging in various [integrated] environmental activities" which can be classified as

counting: the use of a systematic way to compare and order discrete objects . . . locating: exploring one's spatial environment, and conceptualising and symbolising that
environment, with models, maps, drawings, and other devices . . . measuring: quantifying qualities like length and weight, for the purposes of comparing and ordering objects . . .
designing: creating a shape or a design for an object or for any part of one's spatial environment . . . playing: devising, and engaging in, games and pastimes with more or less
formalised rules that all players must abide by . . . explaining: finding ways to represent the relationships between phenomena (pp. 59-60).

Further Gattegno (1970, 1988) argues that mental functionings, or structures, needed to learn to speak a language are akin to those used in doing mathematics. The
implication that he draws is that anyone who succeeds in learning a language has already mathematized his or her linguistic domain and, therefore, capable of
mathematizing other domains. Not only does he posit that mathematics is a birthright, but also that mathematical structures are developed through a specific cultural
activity: learning to speak a language.

Observers of less universal cultural contexts also narrate how people acquire "unschooled" knowledge of mathematics. Considerable research documents that
unschooled individuals, in their daily practice, develop accurate strategies for performing mental arithmetic. For example, the Dioula, an Islamic people of Cote
D'lIvore, have traditionally engaged in mercantile activities. Ginsburg, Posner, and Russell (1981) discovered that unschooled Dioula children develop similar
competence in mental addition as those who attended school. These researchers hypothesize that this is a result, at least in part, of the daily experiences of children
working in marketplaces. Further, studying Brazilian children who worked in their parents' markets, Carraher, Carraher and Schliemann (1985) conclude that
"performance on mathematical problems embedded in real-life contexts was superior to that on school-type word problems and context- free computational problems
involving the same numbers and operations" (p. 21). Through interviews with the youngsters, these investigators learned that in the marketplace the children reasoned
by mental calculations, whereas in the formal test they usually relied on paper and pencil, school-taught algorithms.
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Mistakes often occur as a result of confusing the algorithms. Moreover, there is no evidence, once the numbers are written down, that the children try to relate the obtained
results to the problem at hand in order to assess the adequacy of their answers. . .. The results [of this study] support the thesis . . . that thinking sustained by daily human sense
can be—in the same subject—at a higher level than thinking out of context (p. 27).

We do not interpret this work as suggesting that these youngsters cannot do school mathematics. Carraher, Carraher and Schliemann (1985) conclude just that the
school mathematics curriculum should start from the mathematical knowledge that the children already have (p. 28). Further, Ginsburg (1982) reflects on this issue
cross-culturally:

although culture clearly influences certain aspects of cognitive style (i.e., linguistic style), other cognitive systems seem to develop in a uniform and robust fashion, despite
variation in environment or culture. Children in different social classes, both black and white, develop similar cognitive abilities, including basic aspects of mathematical thought
(pp. 207-208).

In the same study, he also concludes that "upon entrance to school virtually all children possess many intellectual strengths on which education can build. . ..
Elementary education should therefore be organized in such a way as to build upon children's already existing cognitive strengths." He further argues that the reason
why poor children do not do "well" in school

may include motivational factors linked to expectations of limited economic opportunities, inadequate educational practices, and bias on the part of teachers . . . [therefore] reform
efforts must not be limited to the psychological remediation of the poor child. They must also focus on teaching practices, teachers, and the economic system (pp. 208-209).

Analyzing studies on interactions between culture and cognition as well as ethnographic data of adults in the United States engaged in supermarket and weight-
watching activities, Lave (1988) argues against considering mathematical knowledge and context separately. Rather, she theorizes that "activity-in-setting [is]
seamlessly stretched across persons-acting' and that the context often shapes the mathematical activity, becoming the calculating device, rather than merely the place in
which the mathematical calculations are applied (p. 154). Scribner (1984) found that this occurs when dairy workers invent
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their own units (full and partial cases) to solve, on-the-job, problems of product assembly. In another example, Lave (1988) describes how a shopper who found, in a
bin, a surprisingly high-priced package of cheese investigated for error by searching through the bin for a similar-sized package and checking to see whether there was
a price discrepancy (p. 154). If instead, the problem were solved as a textbook problem rather than as a calculation shaped by the setting, the shopper would have
divided weight into price and compared that quotient with the price per pound printed on the label. Lave uses, in both senses of the term, the phrase "dissolving
problems" for discussing what happens in practice. Mathematics problems "disappear into solution with ongoing activity rather than "being solved." Such
transformations pose a challenge to scholastic assumptions concerning the bounded character of math problem solving as an end in itself" (p. 120).

Lave then theorizes about the societal reasons why so many shoppers attend to arithmetic. School mathematics, she contends, is filled with shopping applications, so
that money becomes a value-free, "natural" term, just a form of neutral school arithmetic. When adults go shopping their choices are first made qualitatively. That is, an
item may be the best buy mathematically but is rejected because the package is too big to fit on their pantry shelf. However, they fall back on arithmetic calculations
when there is no other criteria for choice. This provides a basis for believing that their decision is rational and objective. Thus, as Lave argues, "price arithmetic
contributes more to constructing the incorrigibility of 'rationality' than to the instrumental elaboration of preference structures" (p. 158). 2

Focusing on the linguistic construction of this kind of mathematical rationality, Walkerdine (1988) argues that a key way in which this "mathematically precise,"
positivist rationality gets constructed is through the suppression of the multiple meanings of lexical terms in different practices. One set of meanings, one path to
cognitive development is chosen as true, as "normal." By analyzing transcripts of children using and learning basic mathematical concepts such as size relations, she
indicates how the meaning of these mathematical terms is shaped by social relations constituting the practice in which those words are used. Schools, she contends,
ignore these multiple significations and, therefore, make judgments about the conceptual development of children which produce a particular set of behaviors and
which then are considered the rational path to intellectual development. For instance, in asking children questions that involve comparing the sizes of "daddy, mommy
and baby bear," teachers tend to
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ignore how the power relations in their families add another signification to the terms "big, bigger, biggest." For instance, in the life of a child, daddy may be the biggest
physically but mommy may be the biggest power figure. Children may answer the school mathematical question incorrectly because the "bear story" context is
confused with the meanings of size in their family practices, not because they are "unready" to learn the size concepts of the curriculum. Formal academic mathematics
is "built precisely on a bounded discourse in which the practice operates by means of suppression of all aspects of multiple signification. The forms are stripped of
meaning, and the mathematical signifiers become empty" (p. 97). Walkerdine goes on to suggest that to learn school mathematics, children must learn to treat all
applications, all practices as undifferentiated aspects of a value-free, neutral, and rational experience.

Even other supposedly more value-free mathematical concepts are shaped by specific philosophical and ideological orientations. For example, Martin (1988 /
reprinted here as chapter 7) cites Forman who analyzed how the intense antagonism to "rationality" which existed in the German Weimar Republic after World War [
resulted in a particular interpretation of a mathematical construction.

Forman suggests that this pressure led the quantum physicists to search for . . . a mathematical formalism which could be interpreted as non-causal. In crude terms, the acausal
Copenhagen interpretation and its associated mathematical framework was adopted because they looked good publicly. . .. In the decades since the establishment of the orthodox
or Copenhagen interpretation, a number of alternative interpretations have been put forth. Some of these use the same mathematical formulations, but interpret their physical
significance differently, while others use different mathematical formulations to achieve the same or different results. . .. [So] the interpretation of the equations of quantum theory
as supporting indeterminism was not required by the equations themselves. Furthermore, it seems possible that many of the achievements of the theory might have been
accomplished using a somewhat different mathematical formulation which could well have been difficult to interpret inderterministically (pp. 210-211).

On other occasions, philosophy and ideology have prompted variant interpretations of fundamental mathematical concepts and techniques. For instance, the dialectics
and historical materialism of Karl Marx, along with his project to elaborate the principles of political economy; between 1873 and 1881, led him to study; criticize, and
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develop an alternative theoretical foundation for the differential calculus (Marx, 1983). Struik (1948 / reprinted here as chapter 8) was the first to reveal to the English
speaking world that Marx engaged in this mathematical struggle. Marx's critique of prevailing methods for deriving the derivative of a function was twofold: (1) the
derivative of a function was always present before the actual differentiation occurred, and (2) none of the methods accounted for the dialectical nature of motion and
change to which a function is subjected in the process of differentiation (Powell, 1986, p. 120). Out of touch with professional mathematicians and unaware of
Cauchy's work on the calculus and limits, Marx overcame his critique of the theoretical foundations of the calculus by developing both a conceptual formulation and a
technique for differentiation that captured symbolically the vexing problematic that was the impulse behind the method of Newton and Leibniz: motion and change.
Indeed, his discoveries, stimulated and informed by his philosophical and ideological framework, represented rediscoveries and, in some instances, anticipated future
conceptual and philosophical developments (Gerdes, 1985; Powell, 1986).

Grounded in a cultural praxis—the conceptual mathematical description of dynamics—Marx attempted to undergird the calculus with a cultural construct—
dialectics—which was part of the philosophical and ideological perspective of an identifiable cultural group. Mathematical knowledge seems unconnected to cultural
context since, in isolation and at historical moments distant from their genesis, particular mathematical ideas, such as the derivative, may appear detached from a
specific cultural interpretation or application. Ideas, however, do not exist independent of social context. Moreover, as some critical theorists and realist philosophers
remind us, our categories, concepts, and other ideas are essentially dependent on objective reality or nature. In a critique of anti-realist epistemology, Johnson (1991)
rightly argues that

... all these (social) things are materialized in, and dependent on, that which is essentially mind-independent, namely: the natural world. The very human activity of "cutting up"
the world into [for example] hammers and chairs presupposes a world of naturally existing things (like trees and iron ore) capable of being fashioned into tools. In other words, the
essential independence goes one way: nature is essentially independent of mind, but mind (and all its products) is not essentially independent of nature (1991, p. 25).
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The social and intellectual relations of individuals to nature or the world and to such mind-dependent, cultural objects as productive forces influence products of the
mind that are labeled mathematical ideas. Further, though there are recognized philosophical variants to the foundations of mathematics, the seemingly non-ideological
character of mathematics is reinforced by a history which has labeled alternative conceptions as "non-mathematical” (Bloor, 1976, as cited in Martin, 1988, p. 210).

Notes

1. Rotman (1988) refers to Hegel and Marx to explain why both mathematicians and popular culture thinks of mathematical objects and 'the semiotic basis of
mathematical persuasion” (p. 29) as "'out there,' waiting independently of mathematicians, to be neither invented nor constructed nor somehow brought into being by
human cognition, but discovered as planets and their orbits are discovered" (p. 29). He argues that Hegel elaborates how

human products frequently appear to their producers as strange, unfamiliar, and surprising; that what is created need bear no obvious or transparent markers of its human
(social, cultural, historical, psychological) agency, but on the contrary can, and for the most part does, present itself as alien and prior to its creator.

Marx, who was interested in the case where the creative activity was economic and the product was a commodity, saw in this masking of agency a fundamental source of
social alienation, whereby the commodity appeared as a magical object, a fetish, separated from and mysterious to its creator; and he understood that in order to be bought
and sold commodities had to be fetishized, that it was a condition of their existence and exchangeability within capitalism. Capitalism and mathematics are intimately related:
mathematics functions as the grammar of techno-scientific discourse which every form of capitalism has relied upon and initiated. So it would be feasible to read the
widespread acceptance of mathematical Platonism in terms of the effects of this intimacy, to relate the exchange of meaning within mathematical languages to the exchange of
commodities, to see in the notion of a "timeless, eternal, unchangeable" object the presence of a pure fetishized meaning, and so on; feasible, in other words, to see in the
realist account of mathematics an ideological formation serving certain (techno-scientific) ends within twentieth-century capitalism.

... Whether one sees realism as a mathematical adjunct of cap-
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italism or as a theistic wish for eternity, the semiotic point is the same: what present-day mathematicians think they are doing—using mathematical language as a transparent
medium for describing a world of pre-semiotic reality—is semiotically alienated from what they are, according to the present account, doing, namely, creating that reality
through the very language which claims to describe it (p. 30).

2. Borba (199?), in a manuscript on the politics intrinsic to "academic" mathematics, argues that the use of mathematics in everyday life not only makes our choices
seem more "rational," but also serves to end the discussion. Once we use mathematics to justify a decision, no one can question that discussion—after all, it is now
"scientifically proved." Making another point, Frankenstein (1987) also contends that the shopping applications of school arithmetic curricula contribute to the
appearance of "naturalness" in the way our social and economic structures are organized. Her adult students often find it ludicrous to think of restructuring society
where food was free, for example, where eating was a civil right not a paid for commaodity.
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Chapter 6
The Myth of the Deprived Child:
New Thoughts on Poor Children

Herbert P. Ginsburg

Editors's comment: Herbert Ginsburg, a cognitive psychologist and mathematics education researcher, evaluates psychological research, conducted from about 1970 to 1985, on
the intellectual development and education of poor children. He documents that people of various cultural backgrounds—even from different socioeconomic classes—develop the
requisite cognitive structures to do mathematics even before they attend school. This chapter first appeared in The school achievement of minority children: New perspectives (V.
Neisser (ed.), pp 169-189, Hillside, NJ: Lawrence Erlbaum, 1986). The present version provides a brief update in a postscript.

Introduction

The aims of this chapter are to evaluate the past ten or fifteen years' psychological research on the intellectual development and education of poor children. Although
much original work in this area was misguided, some insights have been gained into the intellectual functioning of the poor. In general, research suggests that poor
children as a group do not suffer from massive intellectual deficiency. Their school failure—at least in the first several years of school—cannot be explained primarily in
terms of cognitive developmental deficit. Hence, research on poor children and their education must take new directions. In the second part of the chapter, I offer
speculations on the types of research we should undertake.
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The Myth of the Deprived Child

In evaluating previous research on poor children, it is useful to begin by describing the political and social climate of the late 1960s and early 1970s, a period of
considerable ferment and conflict. One major force at the time was a kind of liberal environmentalism. In 1964, Lyndon Johnson proclaimed the war on poverty. On
the assumption that education is the gateway to middle-class prosperity, one of the major campaigns of that war was to be the education of poor children, especially
blacks. The task for the government, then, was to provide adequate education for those lacking it. Doing this required both legal and psychological remedies. Legal
battles over desegregation were fought and sometimes won. But the liberals decided early on that desegregation was not sufficient. Poor children, especially blacks,
did not perform adequately in the public schools, even when segregation was no longer in place. To remedy this situation, the Johnson administration leaned heavily on
the advice of social scientists, who recommended, among other things, the creation of Head Start and the funding of psychological and educational research. The
government offered considerable support for social science generally, including educationally oriented research (e.g., Project Literacy), and work on poor children in
particular. The general aim of the research was to be the understanding of the problems of poor children, so that appropriate remedies could be developed. The re-
suits of this work were of two types: a body of research on poor children's cognitive functioning, and various attempts at "compensatory education," programs
designed primarily to remedy intellectual deficiencies in preschoolers and prepare them for schooling.

Clearly, the liberal environmentalist approach was well intentioned. And in the political climate of the 1980s, that is no small compliment. Yet, several of us were
dissatisfied on a number of grounds with the liberal environmentalist position. In the early 1970s, I wrote The Myth of the Deprived Child (Ginsburg, 1972), the aim
of which was to offer a critique and analysis of existing work on poor children's intellect and education. The book made a number of points, and from them, I have
selected a few major themes that are useful as stepping points for an analysis of the situation today.

The book began by stating the obvious, namely, that poor children as a group were doing badly in public schools and that the educational system required drastic
improvement. The question then became: what do we know about poor children's intellectual capacities,
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and how can that knowledge be used to improve education? The bulk of the book focused on an analysis of psychological knowledge concerning poor children's
intellect. The argument was roughly as follows: Liberal environmentalists (e.g., Hunt, 1969) believe that poor children develop in a deprived environment that stunts
their intellectual growth. The environment fails to provide sufficient stimulation or provides the wrong kind of stimulation. As a result, poor children suffer from cognitive
deficits. Nativist theory also postulates a cognitive deficit, but offers a different explanation of its origins. Jensen (1969) proposes that lower class children, and blacks
in particular, suffer from a specific cognitive deficit, an inability to engage in "conceptual learning," and this inability is a result of genetic inheritance. According to both
the environmentalists and the nativists, the cognitive deficit (Whatever its origins) prevents poor children from learning the conceptual material taught in school.

I argued that both views, and a good deal of the research stemming from them, were misguided, and proposed an alternative view of "cognitive difference." The
reasoning behind the argument was something like this.

First, much of the empirical evidence supporting the deficit view could not be believed, largely on methodological grounds. As Labov (1972) pointed out at the time,
many of these studies—like those of Bereiter and Englemann (1966), and Deutsch (1967)—employed rigid methodologies and were not based on an understanding of
children in general or poor children in particular It is easy to get poor children to do badly on some standard test; it is much harder to employ methods sensitive to their
true competence. Anyone who had real contact with poor children, I felt, would realize that much of the psychological research was insensitive, narrow minded, and
wrong.

Second, the cognitive deficit research seemed to ignore important cognitive universals. In the 1960s, cognitive theory was not well understood or accepted. I felt that,
from a Piagetian perspective, the important point was not that poor children produced fewer Peabody correct responses than middle-class children, but that all
children, poor- and middle-class alike, were probably capable of the concrete operations and even formal operations as well. The essence of the matter was
commonalities in basic aspects of mental functioning, not individual differences. At the time, there was little empirical support for this position, aside from the work of
Labov (1972) on black English. The main theoretical foundations were in Piaget's theory and Lenneberg's (1967).

Third, a third argument stressed possible cultural differences.
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The general point was that poor children are not so much deficient as they are distinctive. Presumably; in response to the unique demands of their distinctive
environments, they develop special kinds of adaptations—skills not possessed by middle-class children. Again, there was very little evidence to support this intuition.
Labov's work on black English was again cited, as were anecdotes—perhaps apocryphal or even stereotypic—about black children's knowledge of arithmetic being
expressed in numbers-running in Harlem.

Fourth, another theme was that poor children did not have to be instructed in basic intellectual skills; they were quite capable of learning on their own. A good deal of
development takes place in a natural and spontaneous fashion. This position was partly a reaction against behaviorist theories of learning, some of which were still
taken seriously at the time, and particularly work on cognitive socialization, like that of Hess and Shipman (1967). These researchers claimed essentially that (a) poor
mothers did not know how to train their children in basic cognitive skills, and (b) by implication, if the cognitive skills were not trained, they would not develop. The
counter argument was that many Piagetian-type skills develop independently, on their own, and that parents do not even know that the skills exist, let alone attempt to
teach them. Hence, I stressed self-directed learning, and this position led to some recommendations concerning the implementation of "open schools," which were felt
to provide a solution to the education of the poor.

Fifth, finally; I argued that it is necessary to examine what is meant by "success in school." Usually; school success is defined in terms of performance on standard
achievement tests, which in turn conceptualize academic knowledge in limited, often trivial ways. Standard tests—and many educators and psychologists who use
them—conceive of academic knowledge in terms of correct responses, quantitative traits (e.g., "verbal ability"), and the regurgitation of pre-packaged knowledge. Yet
we know from cognitive theory that knowledge is complex: it involves construction; it must be conceptualized in terms of process and strategy; and the least interesting
aspect is the surface response. Thus, the conventional conception of school success was superficial, missing the heart of the matter, namely; the cognitive analysis of
children's concepts and strategies in particular areas of academic work. In the absence of such cognitive analyses, it was not possible to discuss intelligently what
children, poor or otherwise, did or did not know or need to know in the school context.

1 believe that my assessment of the situation in the early 1970s was not too far off the mark. The empirical research of both environ-
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mentalists and nativists was, indeed, insensitive and unconvincing. Both the environmentalist and the nativist theories were basically wrong. The "cognitive difference"
view offered some useful insights. Let us see what events in the subsequent ten or fifteen years have to say about these matters.

First, consider the social context. Over the past fifteen or twenty years, the political situation has changed drastically. Federal concern with problems of poverty has
diminished steadily, so that the war on poverty seems light years away. Indeed, in the 1980s, the Reagan Administration seemed to be conducting a war on the poor,
rather than on poverty, so that one positively yearns for the follies of the liberals. These comments on Politics are not a digression; psychological research is heavily
influenced by the political climate. The result of the political retreat from a concern with poverty is a correlated decrease in psychological research on the topic. With a
few notable exceptions, the recent past has given us little research on poor children's intellect and education. An unanticipated benefit is that we do not have to
contend with volumes of misguided research, but the general outcome is that psychological problems of poverty are being swept under the rug. With some notable
exceptions, for example, the work of Yando, Seitz, and Zigler, 1979; Ogbu, 1978; and Feagans and Farran, 1982, research on poor children is no longer a popular
topic in developmental psychology.

At the same time, some recent work does shed light on key aspects of the cognitive difference position and opens up important questions for future research and
theory. Some of this work derives from the direct study of poor children; most of it stems from work in related areas.

1. Methodology.

In the early 1970s, it seemed clear that much of the data purporting to demonstrate cognitive deficits in poor children were simply unbelievable. The research
techniques employed were not sensitive enough to uncover the true extent of poor children's competence. Since that time, several developments have reinforced the
basic point. Many cross-cultural researchers have become dissatisfied with standard methods. Traditional cross-cultural research relied on standard Western
techniques, like translated intelligence tests, to investigate cognition in "primitive" peoples. The general, and perhaps predictable, finding was that non- Westerners lack
whatever cognitive skills were under investigation. Cole and Scribner (1974), providing a strong critique of this approach, showed that standard, traditional techniques
often yield absurd results concerning tradi-
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tional people's competence. Western tasks are not always interpreted in the way intended; they may be misunderstood, with the result that standardization often
precludes validity. One alternative is to make every effort to discover tasks that are relevant for individuals in the context of the local culture. One task may be suitable
for tapping competence in one culture, whereas an objectively distinct task may be suitable for measuring the same skill in another culture. Although the tasks are
objectively different (dissimilar instructions, materials, etc.), they may be subjectively equivalent in tapping the same cognitive processes. Conversely, the identical task
may be subjectively inequivalent between cultures. The key for measuring competence is not necessarily objective identity, but subjective equivalence.

The implications for methodology are enormous. Standardization often makes no sense and defeats the purposes for which it was intended. Extending the argument,
we may think of children as analogous to cultures. Each child, or at least each developmental level, has its own perspective (culture). For subjective equivalence to be
achieved, objective identity often needs to be abandoned and tasks adapted to each perspective.

If cross-cultural work suggests sensitivity to individual cultures or to the cultures of individuals, recent developments in cognitive research also point to flexibility of
method. A good deal of the Newell and Simon (1972) research on complex problem solving in adults employs the talking aloud method, in which individuals say
"everything that comes into their head" as they are grappling with a difficult problem. The experimenter occasionally asks questions, but for the most part the data are
essentially introspections. Several considerations lead these investigators to eschew simple quantifiable measures such as those usually obtained in the laboratory. One
is that the investigators are interested in complex intellectual activities, which often cannot be expressed in simple ways. Another is that introspection can indeed be
valuable at least for certain aspects of cognitive study. In any event, the use of the talking aloud procedure shows that serious psychologists are exploring flexible and
nontraditional methods in the investigation of cognitive processes. (For further discussion of this point see Ginsburg, Kossan, Schwartz, & Swanson, 1983.)

A third example is even more directly pertinent to the question of poor children. Over the past ten years, the clinical interview technique has played a very important
role in research on mathematical thinking. Most investigators have come to make a commonsensical distinction between competence and performance in intellectual
functioning: it seems obvious that often children do not demonstrate in
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their performance the true extent of their knowledge. Young children in particular often know much more than they reveal. Often, too, standard tests fail to tap much
more than the surface performance. Consequently, contemporary researchers often find it useful to employ the clinical interview method to assess competence. In this,
they are indebted to Piaget, who recognized early on (1929) that the assessment of true competence often requires flexible questioning—ques-tioning that is contingent
on the child's response, that employs techniques like counter-suggestion, that deliberately manipulates phrasing, and that generally attempts to discover means for
getting the child to perceive the problem in the manner intended. The clinical interview is deliberately nonstandardized; that is its strength for the purpose of assessing
competence (Ginsburg, Kossan, Schwartz, and Swanson, 1983).

Following is an example showing how the clinical interview technique can be used to reveal unsuspected competence in a child who is performing poorly in arithmetic.
Butch was in the third grade of an upstate New York elementary school. His teacher identified him as having severe problems in learning elementary school arithmetic.
Both his grades and his achievement scores were low, in arithmetic as well as other school subjects, and he was a candidate for repeating third grade. He was not
retarded or severely emotionally disturbed. Outside of the classroom, in the playground, he was lively and boisterous; his everyday behavior seemed to reveal at least
average intelligence. Yet in the classroom he was quiet and obviously had considerable trouble learning arithmetic. Wanting to know why Butch was having problems
in arithmetic, the teacher requested a diagnosis, which she hoped would produce an understanding of Butch and identify those factors responsible for his failure to
learn.

In a clinical interview the following conversation took place. Asked what he was doing in school, Butch said he was working with fractions.

Interviewer: Fractions? Can you show me what you are doing with
fractions?

Butch writes: B 116

Interviewer: OK. So what does that say?

Butch: 8, 16.

Interviewer: What do you do with it?

Butch: You add it up and put the number up there.

Interviewer: OK. What is the number?

23
Butch writes: & 116
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Several features of the interview are notable. First, the interviewer allowed Butch to determine the topic for discussion, so that she could explore the issues that
concerned him. The aim was to let Butch determine the agenda, not to impose on him a preconceived plan of interviewing. Second, the interviewer tried to get Butch
to explain in his own words what he was doing. The questions were designed to be open ended, like "What do you do with it?", so that Butch could answer them in a
way that would reveal his mental processes. In short, the interview aimed at discovering the child's approach: what are his concerns and how does he operate? These
central features of clinical interviewing distinguish it sharply from normative, standardized testing.

To this point, the interview shows that Butch is doing something unusual. He confuses fractions with division and cannot calculate the simple division. He seems to lack
an understanding of school arithmetic and engages in highly irregular procedures. What is going on? The next excerpt clarifies some of these matters and illustrates the
power of clinical interviewing.

Interviewer: How did you do that?
Butch: T went, 16, 17, 18, 19, 20, 21, 22, 23. I added from 16.

It was clear that Butch got the answer 23 just as he earlier had said he did: "You add them up." The interview also revealed that Butch did this adding by counting on
from the larger number. Thus, in this brief excerpt, the interviewer learned that Butch used the word "fractions" but wrote a division problem, solved a written division
problem by addition, and did addition by counting! The clinical interview showed that Butch was not wrong simply because of stupidity, poor conceptual ability or the
like. Instead, there were clear reasons for his mistakes, and he possessed surprising skill in mental calculation. Further, the information was provided by Butch himself,
prodded by clinical interview techniques.

We all know intuitively that clinical interviewing is a sensible way to proceed. Even hard-nosed experimentalists use it. Before starting an experiment, investigators
often use the clinical method (calling it pilot work) to find out what to do in the experiment. Then, if the experiment does not work, the experimentalist uses the clinical
method to find out what went wrong. The actual experiment may be something of a formality. And, of course, college professors use the clinical method. Even though
they may find it convenient to use standardized methods like multiple choice tests to assess the performance
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of large numbers of freshmen, they employ something like the clinical interview in examining doctoral candidates, when things are really serious. What professor would
conduct a doctorate exam in a multiple choice format? In any event, the clinical interview is increasingly popular in research on mathematical thinking and often reveals
surprising competencies in children who perform poorly in school arithmetic.

These recent methodological developments strengthen the earlier arguments concerning the irrelevance of much research on cognitive deficits in poor children because
it was based on standard methods of limited sensitivity. Moreover, these developments have influenced as least two recent studies of poor children's intellectual
functioning. R. Yando, V. Seitz, and E. Zigler (1979) made serious attempts to employ flexible methods in their research, and so did Russell and I in our studies of
preschool and kindergarten children's mathematical thinking (Ginsburg and Russell, 1981). In our research, we could not engage in extensive clinical interviewing,
because the children were so young. Consequently, we spent many hours devising and revising experimental tasks so that children would understand them. Often,
some minor change in wording or procedure made an immense difference, and it usually took many hours to discover these minor variations. For example, we began
with what we thought was an easy task designed to measure the child's ability to determine the sum of two visible collections of objects. We presented a story in which
the child was required to find the union of two static sets. For example: "Turtle has three nuts and owl has two nuts. That's three and two. How many do they have
altogether?" When the task was presented in this manner, inner city children performed quite badly on the average. We revised the task, using problems that stressed
the active combining of sets. Thus: "Puppet has two pennies. He's walking to the store and finds one more penny. How many pennies does he have altogether?" With
this apparently minor change in the semantics of the problem, inner-city children's performance levels improved, and class and race differences did not achieve
statistical significance.

In brief, flexible methodology is at the heart of research on intellectual competence. Much cognitive deficit research has not used this kind of methodology and hence is
irrelevant. Recent research, using flexible methods, uncovers important areas of competence in poor children. It is to some of these competencies that we turn next.

2. Universals.

Ten years ago, there was a bit of evidence suggesting that poor children are characterized by certain "cognitive univer-
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sals," like the Piagetian concrete operations or basic syntactic processes. Recent research, most of it in the cross-cultural tradition, attests to the basic validity of this
point of view. For example, a recent review of cross-cultural Piagetian research (Dasen and Heron, 1981) suggests that virtually all cultures examined seem to possess
the capability for concrete operational thinking, although the evidence concerning formal operations is by no means clear Similarly; the research of Cole and Scribner
(1974) and their colleagues generally demonstrates that nonliterate West Africans show basic competencies in reasoning, memory, and the like, although these
competencies may not be expressed in typically Western fashion. Thus, the Kalahari bush-men (Tulkin and Konnor, quoted by Flavell, 1977) demonstrate the
capability for scientific thinking as they engage in the tracking of animals. At the same time, they would no doubt find it impossible to deal with such Piagetian formal
operational tasks as the combining of chemicals.

Our own research (Ginsburg, Posner, and Russell, 1981a, 1981b, 1981c) examines the development of mathematical thinking in unschooled and schooled West
Africans in two different cultures. One of these groups in the Ivory Coast, the Baoulé, is an animist, agricultural group, placing no particular emphasis on mathematics.
Our research was conducted in areas where some Baoulé children attended schools, while others did not. The second group, the Dioula, are Muslims who have
traditionally engaged in mercantile activities and are scattered throughout West Africa. The Dioula, although often illiterate, need to employ calculational processes in
the course of commerce. Like the Baoulé, some Dioula subjects attended school and others did not. The two African groups provided a useful contrast in terms of
hospitality to mathematical ideas and procedures. We used these groups to investigate the effects of schooling and culture on the development of informal mathematical
skills.

One basic finding was that unschooled African children from both cultures possess fundamental informal concepts of mathematics, like more, equivalence, and adding.
Posner (1982) found that Baoulé and Dioula children ranging from four or five years of age to nine or ten years of age perform about as well as Americans on the
elementary concept of more. Young children in both African cultures” . . . possess the basic notion of inequality; by the age of 9-10, regardless of schooling or ethnic
background, they display a high level of accuracy. Moreover their methods for determining the greater set are similar to those of American children . . . suggesting . . .
a universal capacity" (Posner, 1982). Although they may acquire this concept at a later
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age than Americans, the Africans do acquire it, without the benefit of schooling or middle-class American culture. Posner also investigated elementary addition and
found that both schooled and unschooled Dioula are extremely skilled in this area, and that schooled Baoulé are also adept. Only unschooled Baoulé, members of the
agricultural society, did relatively badly, perhaps because their culture places little emphasis on counting. In any event, the important finding is that unschooled Dioula
children are competent in elementary addition using counting and other effective strategies, and that even the unschooled Baoulé achieve some success in this area.

Ginsburg, Posner, and Russell (1981a) investigated more complex forms of addition in schooled and unschooled Dioula children and adults, and in American children
and adults. In general, unschooled Dioula children eventually exhibit a high degree of competence in the solution of verbally presented addition problems. The young
Dioula begin with elementary counting procedures, but older Dioula switch to the extensive utilization of regrouping methods (e.g., 23+42= 20+40+3+2), which are
more efficient, particularly in the case of larger numbers. At first, the Dioula do not employ the strategies with great accuracy but with age become increasingly
proficient in their use, learning to discriminate among different types of problems and to apply different strategies where appropriate. Moreover, the strategies
employed by the Dioula are essentially the same as those observed in American children. Schooling and American culture are not necessary for the development of
mental addition strategies. Other cross-cultural researchers like Saxe (Saxe and Posner, 1983) find similar results. Apparently, illiterate children growing up in what we
would consider the abject poverty of traditional cultures nevertheless manage to develop some fundamental cognitive concepts and skills.

Poor children in our own culture develop similar skills. That was the hypothesis of ten years ago, and it is even more reasonable today. Basic cognitive skills should be
no less prevalent in lower-class Americans than in unschooled Africans or middle-class Americans. Our research in the Washington, D.C. ghetto (Ginsburg and
Russell, 1981) was designed to investigate the development of informal mathematical notions in lower- and middle-class children, both black and white, at the
prekindergarten and kindergarten levels. Each child, seen individually, was given a large number of mathematical thinking tasks (17 in all), many derived from our work
in Africa and from the work of investigators like Gelman. The tasks ranged from such informal skills as the perception of more, the understanding of addition
operations,
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simple enumeration, and addition calculation, to such school-taught notions as the representation and writing of numbers.

In general, we found no social class differences and at most statistically insignificant trends favoring middle-class over lower-class children. In the vast majority of
cases, children of both social classes demonstrated competence on the various tasks and used similar strategies for solving them. If these competencies and strategies
were not evident at the preschool level, they emerged by kindergarten age in all groups. For example, middle- and lower-class children made effective use of counting
strategies to solve addition calculation problems involving concrete objects. In general, the only large differences involved age: developmental changes from preschool
to kindergarten far outweigh social class differences in this area. Furthermore, the research showed fewer racial than social class differences. Race has only trivial
associations with early cognitive function. Jensen's (1969) notion that lower-class and black children exhibit weaknesses in abstract thought is wrong, at least with
respect to early mathematical cognition. Many of the tasks employed in our study were prime examples of abstract thought (e.g., the understanding of addition
operations) and yet were not associated with racial or social class differences. Our overall conclusion was that, at least at the age of four or five, poor children, black
or white, possess fundamental competencies in early mathematical thinking; there is little evidence of pervasive cognitive deficit.

3. Cognitive Difference.

Ten years ago, a number of us hypothesized that poor children were characterized by cognitive differences, not deficits (e.g., Cole & Bruner, 1971). The major
evidence was Labov's work, showing that black English is different on the surface, but employs the same basic syntax as standard English. The basic argument was
that cognitive differences were an expression of distinctive adaptations to unique environments.

While the argument was largely conjectural, there is some recent cross-cultural evidence shedding light on the question of cognitive differences. We know in a general
way that cultures develop distinctive techniques for dealing with distinctive problems. Thus, the Puluwat islanders develop clever methods for navigating without special
instruments (Gladwin, 1970). Our own research in the Ivory Coast examined the development of mathematical thinking within the contexts of two very different
cultures, one Moslem and mercantile and the other animist and agricultural. The Dioula traditionally engage in commerce and have wide experience in dealing with the
money econ-
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omy. By contrast, the Baoulé often do not. We encountered Dioula adults who engaged in complex forms of mental arithmetic, and even understood basic
mathematical principles in a practical fashion (Petitto and Ginsburg, 1982). Research makes it clear that cultural groups sometimes develop distinctive patterns of
cognition in response to local environmental demands. Unfortunately, we know little more than this; we have virtually no solid information concerning the distinctive
cognitive activities of subgroups within our own culture. More about this below.

4. Cognitive Socialization.

My earlier critique stressed spontaneous development and downgraded the role of cognitive socialization. I argued that poor children can learn on their own, that
cognitive socialization as carried on by the middle class is not necessary to instruct poor children in the basic intellectual skills that will later form the basis for school
learning. In some ways the critique was accurate and in some ways a mistake. It was accurate in pointing out that children's learning—including that of poor children—
is often spontaneous and does not always depend on adult instruction. Some aspects of cognition do indeed develop in a more or less self-directed fashion, without
the necessity for parental involvement. Infants probably develop object permanence, action schemes, and perceptual skills on their own, without parental help or
knowledge. Preschool children develop methods for addition and concepts of equivalence on their own, without explicit instruction (although parents or other agents of
culture must of course directly or indirectly provide the basic counting numbers). We probably underestimate the extent to which children spontaneously develop basic
concepts, skills, and sensible views of the world.

The critique was also accurate in pointing out that much of the early cognitive socialization research was badly conceived and executed. For example, the influential
studies of Hess and Shipman (1967) gave an oversimplified view of cognitive socialization and studied it poorly. These investigators conceived of cognitive
socialization as a one-way process in which parents shape children's intellectual development. Such theorizing does not do justice to the self-directed aspects of human
development and to the complex interactions between parents and children. Also, Hess and Shipman examined the parent-child interaction of lower-class families in a
laboratory setting that required mothers to instruct children in an artificial task This situation may have been comfortable for middle-class mothers and children, but for
their lower-class peers it may have been uninterest-
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ing, and even threatening and condescending. For this group, the laboratory task appears to be culturally biased and lacking in ecological validity. Little can be learned
from research of this type.

At the same time, even though my critique may have been reasonable, I probably underestimated the extent to which cognitive socialization is important and necessary
for the development of basic intellectual skills. Perhaps I was too much of a Piagetian. Piaget never really understood the role of the social-cultural environment. But
Vygotsky did. And recent research in the Vygotsky tradition (e.g., Greenfield, 1984; and Rogoff & Gardner, 1984), illustrates the subtle and important ways in which
parent-child interaction shapes early cognitive development. Children do not learn everything on their own; parents seem to play a major role in shaping certain key
elements of children's cognition.

What does this mean for the understanding of poor children? Probably it is still correct to maintain that they acquire certain intellectual skills on their own, in a self-
directed fashion. In these cases, cognitive socialization may be beside the point. At the same time, cognitive socialization may be crucial for the development of some
intellectual and other skills that may later play a major role in schooling. Hence, we need to use sensitive methods and sophisticated theories to learn more about
cognitive socialization in general and in poor children in particular.

5. Academic Knowledge.

Ten or fifteen years ago we seemed to know virtually nothing about academic knowledge and needed to know much more if we were going to say anything sensible
about poor children's performance in school. Since then, we have made enormous strides in our understanding of schooled cognition. Now we can go far beyond our
earlier intuition that achievement test scores do not tell the whole story. Now we have had more than a decade of serious research into such matters as reading (both
decoding and comprehension), expository writing, and mathematical thinking. Having recently edited a book on the subject (Ginsburg, 1983), I am familiar with the
latest research on mathematical thinking. We now know a good deal about early counting activities and their role in early calculation (Fuson & Hall, 1983); the mental
numberline and subsequent concepts of base ten (Resnick, 1983); the role of systematic strategies in the generation of calculational errors (VanLehn, 1983); the
semantics and syntactics of word problem solving (Riley, Greeno, & Heller, 1983); and the basic strategies of algebraic problem solving (Davis, 1983). Children's
knowledge of academic mathematics in-
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volves complex cognitive activities, whose nature and extent we are just beginning to understand.

One benefit of the work on academic knowledge is that we are now in a position to perform sensible and informative studies of school learning—on

"excellence" (Edmonds, 1986). When we relied solely on achievement tests as the dependent measure, this was not possible. In the absence of an adequate theory of
academic knowledge, it was impossible to come to a sound understanding of what children really learn in school. Now, however, we can begin to understand these
issues, and this should be of great benefit in dealing with poor children's education.

In particular, the new contributions to the theory of academic knowledge allow us to come to at least a preliminary understanding of school failure. The desire to
ameliorate school failure was the motivating force behind the early studies of poor children's intellect; now we have research that sheds light on the nature of school
failure and hence on the school performance of many poor children. Russell and Ginsburg (1984) conducted a study of cognitive factors underlying low achievement in
school mathematics. The study included both middle- and lower-class children at the third and fourth grade levels. (By implication, the study is especially relevant to
understanding poor children, because they are disproportionately represented in the ranks of school failures). Our general aim was to determine whether fourth-grade
children who scored at least one year below the norm on standard mathematics achievement tests displayed unusual patterns of thinking in several different areas of
mathematical cognition. We wished to know whether the low achievers displayed weaknesses in the areas of: (a) informal mathematical thinking, (b) abstract thought,
(c) calculational aspects of arithmetic, and () basic concepts (e.g., knowledge of base ten). We tested each child individually; again using clinical interview techniques
and large number of tasks developed over many years. Several findings are relevant for our concerns. First, the mathematics difficulty (MD) children possess
fundamental informal concepts like the mental numberline and procedures like mental addition and estimation. They are capable of basic enumeration skills and even
concepts of place value as applied to written numbers. They display insight into some structured tasks and can solve basic word problems. They make more errors, by
definition, than do normal children, but the errors are the results of common "bugs" (Brown & Burton, 1978) or error strategies; MD children make errors for the
same reasons as normally achieving children. Our general conclusion was that MD children are essentially normal with re-
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spect to basic mathematical thinking. They are capable of abstract thought and do not display cognitive processes of an unusual nature.

Of course, there are a number of cautions that must be raised in respect to this study. For one thing, we did not study all cognitive processes, so that our conclusions
are necessarily limited to the particular measures employed. Second, we obtained some results that were incongruous and difficult to explain, for example, MD
children have particular difficulty with elementary number facts. They had a harder time remembering that 2 + 2 is 4 than they did in performing some rather
complicated mental addition strategies. This result is probably just the reverse of what Jensen would expect; in his view, poor children have special talent for rote
memory and cannot handle conceptual tasks. The result contradicts Jensen's view, but I have no easy way of explaining it either.

Our results at present are inconclusive, and a good deal of research needs to be done. On the basis of clinical experience with children failing in school, I predict that
research results would support the view that low-achieving children as a group do not suffer from serious cognitive deficiencies like inability to understand abstractions.
Furthermore, in at least the first several grades of school low-achieving children are not likely to display unusual patterns of academic cognition. They may get many
wrong answers, but their basic understanding of school related work is not qualitatively different from that of normal achieving children. At the same time, there must
eventually be a cumulative deficit that puts these children further and further behind. Thus, children who fail to learn simple addition and subtraction will be at a dear
disadvantage in learning more complicated topics in arithmetic (like the long division algorithm). Thus, there must come a point where children who fail in school are
really "out of it," and their academic cognition must eventually become deficient. But this does not reflect basic cognitive difficulties.

If the hypothesis is basically correct, that school failure does not originally derive from deficient cognition (but may eventually produce it), why do children exhibit
school failure in the first place? The question leads us into areas like education, motivation, and style. With respect to education, it should be abundantly clear that
many schools teach badly, and this is likely the major cause of children's academic failure. There is no evidence that under stimulating conditions poor children cannot
learn quite well. Another factor is motivational: children prone to school failure may experience some form of distress that prevents them from exhibiting their capability
or realizing their potential. And of course, once these children fall behind, the
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prophecy becomes self-fulfilling. Finally, there is the factor of style: some children's learning style or cognitive style may not mesh effectively with the teaching
environment of the schools.

In brief, over recent years, we have made important advances in our understanding of appropriate methodology, in our understanding of basic and perhaps universal
cognitive processes, in our knowledge of distinctive cognitive adaptations in response to unique environments, in our views of cognitive socialization, and in our
conceptualization of academic knowledge. Most of these advances are indirectly relevant to the understanding of poor children, but importantly relevant nonetheless.
In general, the findings support the hypothesis that poor children do not suffer from massive cognitive deficiencies. Poverty of intellect cannot explain their failure in
school.

Needed Research

Cognitive developmental psychology is moving in new directions that can inform the study of poor children. Researchers are beginning to go "beyond the purely
cognitive" (Schoenfeld, 1983) to propose new perspectives on issues of intellectual development. Some of these new ways of looking at mind may provide insights
into poor children's intellectual growth and education.

1. Learning Potential.

For the most part, cognitive psychologists have focused attention on a narrow aspect of mental life—the current cognitive structure of the individual. Traditional
research has focused on such issues as the nature of concrete operations at ages X vs. Y, or the counting strategies of young children. So-called developmental studies
typically examine process A (e.g., egocentric communication) in different groups of children at ages X, Y, and Z. Even the few studies employing as subjects the same
children at different age levels typically examine existing cognitive structures in a static fashion and do not focus on the developmental process itself. To be sure, there
are exceptions to the situation I have described; some developmentalists have focused on development and learning. For example, after many years' exploring
cognitive structures (concrete operations, formal operations, etc.) the school of Piaget turned in the 1970s to the examination of issues of equilibration (as in Inhelder,
Sinclair, & Bovet, 1974). Yet most cognitive developmental psychology is not directly con-
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cerned with the process of development, but with the characterization of differences in current structures at various age levels.

For the purposes of education—whether of poor children or anyone else—the perspective of this kind of developmental psychology is valuable but at the same time
has shortcomings. As I argued previously, it is important to understand the structure of academic knowledge—to analyze its concepts and processes. It is valuable to
determine, for example, that at the preschool level, poor children possess certain informal addition concepts and procedures (Ginsburg & Russell, 1981), or that
mathematical errors are generated by common error strategies (Ginsburg, 1981). Yet, for purposes of education, it is even more important to know how one can build
on the informal knowledge or eliminate the bugs; learning potential and development are the crux of the matter, not current cognitive structure. The focus is on
becoming more than on being. Indeed, Papert (1980) even suggests that a focus on current cognitive structure may be counterproductive:

The invention of the automobile and airplane did not come from a detailed study of how their predecessors, such as horse-drawn carriages, worked or did not work. Yet, this is the
model for contemporary education research. . .. There are many studies concerning the poor notions of math or science students acquire from today's schooling. There is even a
very prevalent "humanistic" argument that "good" pedagogy should take these poor ways of thinking as its starting point. . . .

Nevertheless, I think that the strategy implies a commitment to preserving the traditional system. It is analogous to improving the axle of the horse-drawn cart. But the real
question, one might say, is whether we can invent the "educational automobile." (p. 44)

Applying Papert's perspective to the case of poor children, we might argue that it is less important to know what informal knowledge poor children possess at age four
or why third graders in the current schools make addition errors than it is to discover what poor children can do under more nearly ideal circumstances. Current
cognitive structures, as they are shaped by the typical school environment, may be almost irrelevant to the issue of learning in more stimulating circumstances. Whether
the poor child can or cannot count at age four or employs some error strategy may not be of great relevance for what he or she can accomplish in the atypical
classroom.

Much of the literature on radical educational reform supports this point. Many years ago, educators like Kohl (1967), showed that unusual classrooms could produce
atypically fine learning in poor
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children. More recently, Papert (1980) and his colleagues have shown that the Loco computer environment can produce dramatic learning in physically handicapped
children, some of whom are even judged to be retarded in ordinary classrooms. Edmonds (1986) shows that reading problems can be remedied even in children who
might be considered learning disabled. It is clear that the existence theorem has been dearly proven: poor children (and various handicapped children as well) can
learn under unusual conditions. The potential exists even if the effective educational environment is rare. Psychological theories of learning disabilities should be treated
with great skepticism; they describe only what exists under current conditions, not what can occur.

Psychologists should focus more on the issue of learning potential and less on the description of cognitive structure conceived in static terms. For many years, the
psychological study of learning was dull and irrelevant; perhaps there were good reasons for abandoning it. But now it seems to be time, as Brown and French (1979)
have suggested, to return to this ancient but still central topic.

2. Noncognitive Factors.

Motivation plays a fundamental role in education. We are all familiar with children who make great intellectual strides when they get "turned on," when there is interest
in and passion for learning. The latest cultural phenomenon of this type is children who get hooked on computers and without the benfit of formal instruction—or
despite it—become expert in their use. We are all familiar with other children who are frightened of learning, for example, fear of mathematics, or contemptuous of it,
or affaid to exhibit to peers signs of intellectual interest. Ogbu's analysis (1986) focuses on the motivations, beliefs, and expectancies produced by the caste system in
this country: some children do not learn in school because they perceive no social or economic benefits from doing so. Clinicians are familiar with children whose
failure to learn is rooted in their neurotic character structure. For instance, the teacher's disapproval may be linked to the parent's, and subtraction in arithmetic may be
seen as an instance of the "taking away" of love. Such aberrations may be more common than we think.

It is not enough to say, as Piaget seems to, that the cognitive structures are the source of their own motivation ("'functional assimilation"). Certainly there is, can be,
should be "intrinsic motivation," but many other forms of motivation are at the heart of education as well. Indeed, I would make two speculations. One is that most
cases of learning problems or low achievement in the schools can be ex-
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plained primarily on motivational grounds rather than in terms of fundamental cognitive deficit. Most children fail in school not because they are stupid (cognitively
deficient, lacking in "formal operations", etc.) but because they are afraid, turned off, and the like. I think academic psychologists are out of touch with reality when
they take so seriously the role of basic cognitive factors (i.e., intelligence, conceptual thought, Piagetian operations) in school failure. Of course, it's easier to measure
cognitive variables than motivation and personality.

A second speculation is that understanding motivation may be at least as useful for educational practice—for remediation—as knowledge of cognitive structure or
process. No doubt, as Brown, Palinesar, and Purcell (1986) have shown, focused intervention based on cognitive analysis (diagnosis) of disruptions in process can
provide successful remediation. But it may also be true that motivating poor achievers in new ways, without paying much attention to their cognitive processes, may
also dramatically improve their learning. The evidence for this is largely anecdotal: these are cases of children who read poorly until for some reason they "decide" to
read, whereupon they learn very rapidly, without the benefit of tutorial help based on profound cognitive analysis.

Motivation is central to learning, just as is cognition. It is foolish to argue about which is more important. Both are vital. But we developmental and educational
researchers have tended to slight the motivational.

3. Cognitive Style.

As I tried to illustrate in the foregoing, poor children probably do not suffer from fundamental cognitive deficits. Instead, there is evidence for the existence of universal
basic cognitive processes. At the same time, poor children—or any children—may develop distinctive intellectual adaptations to the special demands of their
environments. This is the cognitive difference view, usually put in opposition to the deficit theory.

An important research question for the future has to do with the nature and extent of such cognitive differences and their role in education. One way of conceptualizing
the differences may be in terms of cognitive style. This concept has a long and checkered history, originating in psychoanalytic theory but eventually becoming
entombed in psychometric practice. The basic idea seems to be that intellect, like other aspects of psychological functioning, has a personality, a style. Intellect can be
impulsive, or defensive, or vivacious, or dull, just as our social behavior can be. In an informal study of letters of recommendation, I found that professional
psychologists relied heavily on
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style concepts in evaluating their students and colleagues. Hardly anyone spoke of g; many described "independence of mind."

One research issue concerns the extent to which poor children exhibit distinctive cognitive styles that interfere with school work. Boykin (1979) has suggested that
blacks exhibit a "verve" of intellect that may clash with the expectations of the middle-class school. (For a recent review, see Shade, 1982). The personality of intellect
seems basic to cognitive function; we need to know much more about the role of cognitive style in poor children's intellect and education.

4. The Individual in the Social System.

Intellect and personality are embedded in social life; they cannot be fully understood in isolation. We need a genuine ecological psychology that interprets behavior and
cognition in the context of the larger social-political system. Johnny fails in school not solely or primarily because he is dumb, but because of the motivation linked to
his implicit beliefs concerning his place in the class and caste system, because of the way in which he is treated by teachers whose choice of profession is itself
influenced by the class system and by social expectations concerning sex roles, and because of political-economic factors beyond his control that place him in a jobless
family with few material resources. Education is a social-political phenomenon as much as a psychological issue. The espousal of a narrowly psychological perspective
is naive.

Although over the past several years psychologists have become increasingly aware of the need for an ecological psychology (Bronenbrenner, 1979; Neisser, 1976;
Ogbu,1986), a good deal of theoretical work needs to be done to make it a reality.

Conclusion

We have made progress in our understanding of poor children's intellect and education. The old myths of cognitive deficit are even less credible now than before. At
the same time, we require more research and thinking about learning potential, motivation, cognitive style, and the role of social-political factors. To make progress,
we need to supplement (or transform?) our cognitive notions with genuinely psychological and ecological considerations. This should lead to improved understanding
of poor children, to reform of the educational system, and to the progress of psychology generally.
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Postscript

From the vantage point of 1996, my roughly ten year old paper does not seem terribly dated in some respects. It spoke of the need to employ more flexible methods
to examine poor children's intellectual development; to consider issues of cultural difference and distinctiveness as opposed to cognitive or cultural "deprivation" or
"deficit"; to examine academic knowledge and motivation in detail; to focus on learning potential, on what is possible, rather than on the educational status quo; and to
develop more genuinely ecological theories of development. Over the past ten years or so, researchers have in fact begun to conduct work along these lines (e.g.,
Brown & Campione, 1994; McLloyd, 1990; Moll, Amanti, Neff, & Gonzalez, 1992; Natriello, McDill, & Pallas, 1990), and in so doing have added greatly to our
knowledge.

But in other respects, the paper seems to come from another world, a world more innocent than today's. The current landscape of poverty includes both an underclass
whose suffering is almost unimaginable and a staggering array of ethnic groups struggling to find a home in the United States. The children of the underclass are not
merely poor: they bear terrible burdens of violence, drugs, and an absence of social support. The children of ethnic groups bring a bewildering variety of differences to
the educational system. Although Latinos are becoming one of the largest minorities in the U.S., the school system understands them poorly. And other groups, too
numerous to mention— Vietnamese, Russians, Caribbeans—bring their styles and values to schools ill-prepared to appreciate them. Today the challenges for
researchers and for educators—and for the body politic—are even more daunting than they were ten or twenty-five years ago.
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Chapter 7
Mathematics and Social Interests

Brian Martin

Editors's comment: Brian Martin, originally a theoretical physicist and now working in science and technology studies, presents an overview of how mathematical knowledge is
not neutral and discusses the ways in which mathematical knowledge is shaped by cultural influences. This chapter first appeared in Search, 19(4): 209-214 in 1988.

Mathematics is a product of society and it can both reflect and serve the interests of particular groups. The connection between mathematics and interest groups can
be examined by looking at the social construction of mathematical knowledge and by looking at the social system in which mathematics is created and used.

Scientists have long believed that scientific knowledge is knowledge about objective reality. They commonly distinguish their enterprise from religious or political belief
systems, seeing scientific truth as unbiased. This belief system has always had difficulties with certain applications of science such as nuclear weapons. The usual way in
which the belief in the purity of science is maintained is by distinguishing between scientific knowledge and its applications. Scientific knowledge is held to be pure
while its applications can be for good or evil. This is known as the use-abuse model.

This standard picture came under attack in the late 1960s and early 1970s. Radical critics argued that science is inevitably shaped by its social context. For example,
funding of pesticide research by the chemical industry arguably influences not only what research topics are treated as important, but also what types of ecological
models are considered relevant for understanding agricultural systems. Many
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critics argued that the key motive behind science is profit and social control (Rose & Rose 1976a, b; Arditti et al. 1980).

The political critics of science drew on and stimulated dramatic changes in the study of the history, philosophy, and sociology of science. Thomas Kuhn (1970) opened
the door with his concept of paradigms, which are essentially frameworks of standard ideas and practices within which most scientific research proceeds. When a
paradigm is overthrown in the course of a scientific revolution, the criteria for developing and assessing scientific knowledge change. The implication is that there is no
overarching rational method to decide what is valid knowledge: scientific knowledge depends, on some level on the vagaries of history and culture.

Sociologists studying scientific knowledge have developed and filled out this picture. They have examined not only the large-scale political and economic influences on
scientific development but also the micro-processes by which scientists "negotiate" what is scientific knowledge (Barnes, 1974, 1977, 1982; Bloor, 1976; Latour and
Woolgar, 1979, Mulkay, 1979; Knorr, et al. 1980).

Most of this analysis has been communicated using social science jargon in specialist journals and has had relatively little impact on practising scientists. The only
philosopher of science taken note of by many scientists is Karl Popper, and even his ideas are used more as a "resource" in struggles over knowledge than as
methodological aids (Mulkay & Gilbert 1981). Nowhere is this more true than in mathematics.

What does it mean to talk about the relationship between mathematics and social interests? It can refer to the impact of social factors—such as sources of funding,
possible applications or prevalent beliefs in society—on the content and form of mathematical knowledge, such as on the choice of areas to study, the formulation of
methods of proof and the choice of axioms. Alternatively, it can refer to the role mathematics plays in applications, from actuarial work to industrial engineering.
Finally, it can refer to the social organization of the production of mathematics: the training of mathematicians, patterns of communication and authority in mathematical
work, professionalisation, specialization and power relations.

"Interest" here refers to the stake of an individual or social group in particular types of actions or social arrangements. An interest can be small-scale, such as the
personal advantage to a mathematician in publishing a paper to gain tenure, or large-scale, such as the strategic advantage to a military force in using an algorithm for
tracking missiles. "Social interests" are those associated with major social group-
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ings such as social classes, large organizations, occupational or ethnic groups.

My aim here is to survey some ideas bearing on mathematics and social interests. I approach the problem from two directions. The first is via the sociology of
knowledge. Can sociological examination be applied to the creation and elaboration of mathematical knowledge? What does it mean to talk of the social shaping of
mathematics? There are some provocative studies in this area, but in my view they do not lead by themselves to a comprehensive picture which can be used to
evaluate the role of mathematical work in contemporary society.

The second path involves looking at the system of production and application of mathematical knowledge, and in particular at the use of expertise in modern society
and at the relationship between mathematical theory and application.

Path One: Sociology of Knowledge

The sociology of knowledge attempts to explain the origin and evolution of knowledge using the same sorts of analysis which are applied to other phenomena, both
natural and social. The dynamics of knowledge involve social, economic, political, religious, biological, and all sorts of other factors. Rather than assuming that the
content and structure of knowledge is "given" by logic or the nature of reality—a transcendental explanation of knowledge—the sociology of knowledge looks for
more mundane explanations.

David Bloor (1976) is a leading proponent of the "strong program in the sociology of science," which aims to investigate all knowledge using sociological methods. The
key features of the strong program according to Bloor are that knowledge be explained in casual terms, that explanations be impartial and symmetrical with respect to
the truth or falsity of the beliefs being explained, and that the theory be applied to itself.

Bloor adopts an approach to mathematics based on improving John Stuart Mill's view that all mathematics is ultimately based on physical models and human
experiences, such as the manipulation of pebbles which can be seen as a motivation for arithmetic with natural numbers (Bloor 1976, Ch. 5). The traditional obstacles
to Mill's view is F. L. G. Frege's point that mathematics seems to be "objective": mathematical reasoning has a compulsion about it which cannot always be
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attributed to a link with physical models. To extend Mill's theory, Bloor observes that Frege's definition of objectivity is equivalent to social convention: mathematicians
have institutionalized a set of beliefs about the ways to proceed with the symbols they work with. These institutionalized beliefs are rather like rules in a game: they
must be adhered to. Bloor's extension of Mill's perspective is that physical situations provide models for certain steps in mathematical reasoning (usually the more
basic features) while mathematical convention gives an obligatory aspect to these steps and extensions of them. Mathematics thus deals not with physical reality but
with social creations and conventions.

Bloor's reconstruction of Mill's position provides a powerful basis for the sociological investigation of mathematics. Since the "law-like" features of mathematical
reasoning are based on conventions, then it is natural to investigate how these conventions are created, sustained, and overturned.

Bloor investigates the history of mathematics to see what happened to alternative conceptions of mathematics, dealing with issues such as whether one is a number,
Diophantine equations, and Pythagorean and Platonic numbers (Bloor 1976, ch. 6). His conclusion is that alternative concepts did exist, but that historians have
relegated them to the historical rubbish bin of "non-mathematics." In this way only "genuine mathematics" remains part of the history of mathematics, which thus seems
to be cumulative and without significant deviations or alternatives.

Bloor also examines the ways in which mathematical reasoning is socially "negotiated," namely, the practices through with mathematicians develop agreed-upon ways
of using and interpreting the symbols and tools of their trade, including criticism, argumentation, re-classification and consensus (Bloor 1976, ch. 7). Bloor gives among
other examples the case of the negotiation, over the years, of the proof of the formula E +2 =V + F relating the number of edges, vertices, and faces of a polygonal
solid.

Bloor's program is a powerful one. It opens the foundations of mathematics to sociological examination by allowing the "objectivity" of mathematical reasoning to be
seen as fundamentally social in nature. But Bloor does not extend his analysis to address the relation between mathematics and social interests. Even if it is accepted
that the formula E + 2 = V + F depends on somewhat arbitrary agreements among mathematicians rather than being inherent in the nature of polygonal solids (or the
mathematical concepts of polygonal solids), that does not provide much insight into whether the social
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negotiation of the formula owes much or provides special benefits to particular groups in society.

At this stage it is worthwhile to spell out the different channels through which the form and content of mathematics can be shaped by society. Social interests can be
connected with the choice of areas of mathematics to study, the interpretation of mathematics, and the development of mathematical frameworks.

The Choice of Mathematical Areas to Study

Differential funding or the availability of applications can affect the opening of branches of study and the prestige of different subjects. For example, the field of
operations research grew out of military applications of mathematics during World War II and the strength of the field is maintained by continuing military interest.

Luke Hodgkin (1976) argues that the great surge in the "mathematics of computation," which encompasses numerical analysis and parts of computer science, is
connected to the development of the needs of contemporary capitalism plus the availability of suitable technology for computing (such as transistors and now chips).
He points out that the mathematics of computation is not a simple "reflection" of the economic system, as a simplistic Marxist account might suggest. Instead, the
influence of the system of economic production is mediated through the social institutions of science, whose organization predated the great growth of computational
mathematics.

Choice in mathematical research is also involved at the detailed level of application. Partial differential equations can be applied to many problems; the particular sets
of equations which are selected out for formulation and solution can be influenced by applications, which in turn are linked to social interests.

The Interpretation of Mathematics

In many cases, especially in applied mathematics, mathematical constructions are chosen because they have desirable physical or social interpretations. An example
here is Paul Forman's (1971) study of the effect of Weimar culture on the development of quantum theory. The most important strides in quantum theory occurred in
Germany
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in the decade after World War 1. Forman documents the intense antagonism to rationality which prevailed then in the Weimar Republic. Since causality was identified
with rationality, physicists came under pressure to renounce their traditional allegiance to causality. Forman suggests that this pressure led the quantum physicists to
search for, or at least latch on to, a mathematical formalism which could be interpreted as non-casual. In crude terms, the acausal Copenhagen interpretation and its
associated mathematical framework were adopted because they looked good publicly.

Forman's study is quite relevant to mathematics, since theoretical physics constitutes the foremost application of mathematics. The case of quantum theory is intriguing
because, in the decades since the establishment of the orthodox or Copenhagen interpretation, a number of alternative interpretations have been put forth. Some of
these use the same mathematical formulations, but interpret their physical significance differently, while others use different mathematical formulations to achieve the
same results.

The statistical interpretation favored by Einstein uses the same mathematics (Ballentine 1970). . . .

The hidden variable interpretation, a determinist approach, formulates the equations somewhat differently and, optionally, can give different results from the orthodox theory by
addition of an extra parameter (Bohm 1952; Cushing 1994). . ..

The splitting universe interpretation is a different interpretation of the same mathematics (DeWitt 1970). . . .

The "realist" interpretation, which gets rid of the indeterminist element in quantum theory entirely, uses a different mathematical approach to achieve some of the same basic
results (Landé 1965).. ..

The existence of these interpretations or reformulations of quantum theory adds support to Forman's analysis. At the least, the interpretation of the equations of
quantum theory as supporting indeterminism was not required by the equations themselves. Furthermore, it seems possible that many of the achievements of the
theory might have been accomplished using a somewhat different mathematical formulation, which could well have been difficult to interpret indeterministically.

So strong was the commitment to indeterminism that physicists accepted without question John von Neumann's proof in the 1930s that no hidden variable theory could
be constructed. Although Bohm
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demonstrated such a theory in 1952, it was not until the 1960s that the flaw in von Neumann's proof was exposed (Pinch 1977).

In my experience, most physicists do not worry greatly about what quantum theory "means" but simply use mathematics in a pragmatic fashion. Indeed, one of the
"crisis points" commonly experienced by physics students is when they give up their increasingly uncomfortable attempts to understand what the theory really means
and instead just accept it, usually by sweeping their doubts under the carpet. Most historians and textbook writers have accommodated this process, as Bloor has
argued about mathematics history, by exorcising alternative interpretations as unsuccessful, irrelevant or nonexistent.

The Development of Mathematical Frameworks

The choice of axioms, the types of theorems, the style of proofs and a host of other facets of mathematics can be shaped by factors such as views about the nature of
social reality.

An example here is game theory, a mathematical theory which deals with conflict situations, originally developed to model economic systems (Martin 1978). Key
concepts of the theory include the "players" in a game, each of which has a number of "choices," followed by "payoffs." The mathematical theory of games is built
around determining the optimal strategies for making choices. The players, choices and payoffs are usually assumed to be fixed; competition is built in; payoffs tend to
be quantifiable. Hence, game theory is especially suited for applications which assume and reinforce individualism and competition.

Game theory has been applied in many areas, such as international relations. What often happens in practice is that the values of the modelers are incorporated into the
game theoretic formulation, which usually ensures that the game gives results which legitimate those very same values. Game theory in this situation provides a
"mystifying filter": values are built into an ostensibly value- free mathematical framework, which thus provides "scientific" justification for the decision desired. Arguably,
game theory has become popular because its mathematical framework makes it easy to use in this way.

The above-mentioned studies and others (Thomas 1972; Ogura 1974; Bos & Mehrtens 1977; MacKenzie 1978; Mehrtens 1987; for a comprehensive survey and
analysis see Restivo 1983) show how the social context, such as economics or belief systems, can influence the
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areas of mathematics that are opened up and made fashionable, the types of theories that are developed, and the particular mathematical formalisms that are
formulated and used. These are examples of the impact of social factors on mathematical knowledge, but they hardly establish that all mathematics is influenced in
these sorts of ways. To establish this would require many studies in the line of Bloor's strong program, in an attempt to whittle down the areas of apparent autonomy of
mathematical knowledge. Only if the range of sociological studies was very broad could the burden of proof be put on those who claim that there are areas of
mathematics free of such formative influences.

Even if the strong program could be so developed, what would it say about mathematics and social interests? The existence of influences on the creation and adoption
of mathematical knowledge does not automatically mean that knowledge preferentially serves particular groups in society.

The studies in the sociology of knowledge initiate the case that mathematics is connected with social interests, by refuting the view that mathematical knowledge
always springs antiseptically from the nature of logic, from physical reality or from mathematicians' heads. The limits of sociological examination of mathematics remain
to be tested. Some such as Bloor (1981) think the prospects are good while others disagree (Laudan 1981). In any case, since most of the sociology of knowledge
studies deal with influences on the origin and development of mathematical knowledge in earlier eras, they only partially address concerns about the uses of present-
day mathematics. To pursue the case further, I turn to the second path.

Path Two: The Mathematics-Society System

This approach to looking at mathematics enters not at the level of mathematical knowledge but at the level of the social systems in which that knowledge is created and
applied. The social system of science refers to patterns of employment, funding, communication, training, authority; decision making, and so forth. The aim here is to
look at the way systems of production and application of mathematics relate to social interests. To do this, I select out some salient features of the social systems
associated with mathematical expertise.
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Sources of Patronage

Most of the money for mathematics research—which is largely for salaries, but also for offices, libraries, computing and travel—comes from governments and large
corporations. The source of funding inevitable has an influence on the areas of mathematics studied and the types of mathematical applications undertaken. As argued
by Hodgkin (1976), much of the stimulus for work in computational mathematics also comes from actual or potential military applications.

At the detailed level of application, the formulation of mathematical problems is strongly influenced by funding and opportunities for application. In manufacturing
industry, mathematical problems grow out of the need to cut costs, improve technologies, or control labor. A mathematical model for the rapid cooling of a metal bar
without cracking is tied to an immediate problem. The mathematics of light transmission in optical fibres is driven by interest in application in telecommunications. The
number of examples is endless.

What happens in many cases is that a practical problem, such as modeling air pollution dispersion or the trajectories of missiles, leads to a more esoteric mathematical
project in numerical analysis or differential equations. The applications, and thus the funding, in these cases have an indirect influence on the type of mathematical
problems studied and thought to be "interesting." That particular types of parabolic partial differential equations become whole fields of study in themselves is not due
simply to some abstract mathematical significance of these equations, but to their significance in practical applications, even if at several stages removed.

Professionalization

Today, most mathematicians—taking a mathematician to be a person who creates or applies mathematical knowledge at a high level—are full-time professionals,
working for universities, corporations or governments. There are few amateurs, nor do many mathematicians work for trade unions, as farmers, in churches, or as
freelancers. Mathematics, like the rest of science, has been professionalized and bureaucratized. The social organization of mathematics influences the ways that
ambitious mathematicians can pursue fame and fortune (Collins & Restivo 1983)

Mathematicians have a vested interest in their salaries, their con-
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ditions of work, their occupational status, and their self-image as professionals. Their preferences for types and styles of mathematics are influenced by these factors.

Judith Grabiner (1974) argues that there have been "revolutions in thought which changed mathematicians' views about the nature of mathematical truth, and about
what could or should be proved." Grabiner examines one particular revolution, the switch from the 1700s when the main aim of mathematicians was to obtain results
to the 1800s when mathematical rigor became very important. Of the various reasons for this which Grabiner canvasses, one is worth noting here. Only since the
beginning of the 1800s have the majority of mathematicians made their living by teaching. Rather than just obtaining mathematical results for applications or to impress
patrons, teachers need to provide a systematic basis for the subject, to aid students but also to establish a suitable basis for demarcating the profession and excluding
self-taught competitors from jobs. This is an example of how the social organization of the profession of mathematics can affect views about the nature of mathematical
truth.

Gert Schubring (1981) has argued that in the professionalization of mathematics in Prussia in the early 1800s, the "meta-conception" of pure mathematics played an
important role. By defining "mathematics" as separate from externally defined objectives, the mathematicians oriented the discipline to internal values that they could
control. To do this, support from the state had to be available first. Given state patronage for academic positions, the mathematicians could proceed to establish a
discipline by establishing training which channelled students into the new professional orientation, reducing the number of self-taught mathematicians obtaining jobs in
the field and socializing students into the meta-conception of pure mathematics. This account meshes nicely with that of Grabiner.

This process continues today. Especially in universities, the home grounds of pure mathematics, mathematicians stake their claims to autonomy and resources on their
exclusive rights, as experts, to judge research in mathematics. This is no different from the claims of many other disciplines and professions (Larson 1977). The point is
that if mathematicians emphasized application as their primary value, their claims to status and social resources would be dependent on the value of the application.
The conception of "pure" mathematics enables an exclusive claim to control over the discipline to be made.

Herbert Mehrtens (1987, p. 160) develops the thesis that "a scientific discipline exchanges its knowledge products plus political loyalty in return for material resources
plus social legitimacy." He shows
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how German mathematicians in the 1930s were able to accommodate the imperatives of the Nazis, especially by providing useful tools to the state. The adaptability of
the German mathematics community grew out of its social differentiation, specifically the different functions of teaching, pure research, and applied research. Mehrtens'
study provides an excellent model for analyzing the interactive dynamics of the two factors of patronage and the structure of the profession.

Male Domination

Most mathematicians are men, and mathematics like the rest of natural science is seen as masculine: a subject for those who are rational emotionally detached,
instrumental, and competitive. Mathematicians are commonly thought, especially by themselves, to have an innate aptitude for mathematics, and claims continue to be
made that males are biologically more capable of mathematical thought than females. The teaching of pure mathematics as concepts and techniques separated from
human concerns, plus the male-dominated atmosphere of most mathematics research groups, make a career in mathematics less attractive for those more oriented to
immediate human concerns, especially women.

Male domination of mathematics is linked with male domination of the dominant social institutions with which professional mathematical work is tied, most notably the
state and the economic system, through state and corporate funding and through professional and personal contacts (Bowling & Martin 1985).

The high status of mathematics as a discipline may be attributed in part to its image as a masculine area. Mathematical models gain added credibility through the image
of mathematics as rational and objective—characteristics associated with masculinity—as opposed to models of reality that are seen as subjective and value-laden.

Specialization

There are various ways in which mathematicians shape and use their expert knowledge to promote their interests vis-a-vis other social groups. If mathematical
knowledge was too easy to understand by others—both non-mathematicians and other mathematicians—the claims by mathematicians for social resources and
privilege would be
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harder to sustain. Specialization enables enclaves of expertise to be established, preventing scrutiny by outsiders. In applications work, specialization ensures that only
particular groups are served. In all cases, specialization plus devices such as jargon prevent ready oversight by anybody other than other specialists. Since hiring
professionals to understand specialist bodies of knowledge can be afforded on a large scale only by governments and large corporations, specialization serves their
interests more than those of the disabled or the unemployed, for example.

The role of these factors is particularly obvious in mathematical modeling. A mathematical model may be a set of equations, which is thought to correspond to certain
aspects of reality. For example, most of theoretical physics, such as elementary theory for projectiles or springs, can be considered to consist of mathematical models.
In most parts of physics, the models are considered well established, and physicists work by manipulating or adapting the existing models. But in other areas the
choice of models is open. Various parts of reality may be chosen as significant, and various mathematical tools may be brought to bear in the modeling process.

Many people who have been involved in mathematical modeling will realize the great opportunities for building the values of the modeler into the model. I have seen
this process at work in a variety of areas, including mathematical ecology, game theory, stratospheric chemistry and dynamics, voting theory, wind power, and
econometrics.

A good example is the systems of difference equations used in the early 1970s to determine the "limits to growth." The choice of equations and parameters more or
less ensured that global instability would result (Cole et al., 1973). When different assumptions were used by different modelers, different results—for example, that
promotion of global social equality would prevent global breakdown—were obtained, nicely compatible with the values of the modelers. Another example is the
values built into global energy projections developed at the International Institute for Applied Systems Analysis (Keepin & Wynne 1984).

Mathematical models are socially significant in two principal ways: as practical applications of mathematics and as legitimations of policies or practices. Most models
are closely tied to practical applications, such as in industry. The narrow specialization involved in the modeling ensures that few other than those developing or funding
the application would be interested in or capable of using the model. This sort of applied mathematics is closely linked to the social interests making the specific
application. Whether the application is telecommunications satellites, anti-personnel weapons or solar house de-
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sign, one may judge the mathematics by the same criteria used to judge that application. It is not adequate to say that the killer is guilty while the murder weapon is
innocent, for in these sorts of applications the mathematical "weapon" is especially tailored for its job. Certainly applied mathematicians cannot escape responsibility for
their work by referring to "neutral tools," whether this refers to their mathematical constructions or to themselves.

Models serving as legitimations are involved in a more complicated dynamic. In many cases such as limits-to-growth studies the models do no more than
mathematicise a conclusion which would be obvious without the model. But the models are seen as important precisely because they are mathematical, thus drawing
on the image of mathematics as objective. A mathematics-based claim also has the advantage of being the work of professionals. Anyone can make a claim, but if a
scientist does so, relying on the allegedly objective tools of mathematics, that is much more influential. Although exercises in mathematical modeling are often shot
through with biases, for public consumption this often is overlooked; the modelers draw on an aura of objectivity which is sustained by the more esoteric researches of
pure mathematicians.

What then of pure mathematics? There are two major ways in which a link to social interests can be made. First is potential applications. These are not always easy
to assess, but a good guess often can be obtained by looking at actual applications in the same or related specialities. If any new application turns up, it is likely to be
in the same areas and to be used by the same groups.

It is a debatable point whether mathematics should ever be evaluated separately from applications. Arguably, the study of nature is the primary motivation for the
development of and importance of mathematics, and the "correctness" of pure mathematics should be judged by its ultimate applicability to the physical world (Kline
1959, 1980). The primary reason for the ascension of pure mathematics, namely, mathematics which is isolated from application, is the social system of modern
science.

This system—including funding, professionalization, male domination and specialization—in which claims to sole authority over areas of knowledge are used to claim
resources, is the second way that pure mathematics is connected with social interests. Even if some bit of pure mathematical research turns out to have no application,
it is still usually the case that social resources have been expended to support professional workers who are mostly male and who produce intellectual results of
interest only to a handful of others like themselves. Furthermore, the work of pure mathematicians, and indeed
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their very existence, helps legitimate the claims of mathematics to objectivity.

Conclusions

The question, "What is the link between mathematics and social interests?", is usually answered in advance by assumptions about what mathematics really is. If
mathematics is taken to be that body of mathematical knowledge which sits above or outside of human interests, then by definition social interests can only be involved
in the practice of mathematics, not in mathematics This Platonic-like conception sees mathematics as value-free, but is itself a value-laden conception: it serves to
deflect attention from the many links between mathematics and society.

Most people would agree that nuclear weapons have not been constructed to serve all people equally; particular social interests are involved in designing building
testing and deploying nuclear weapons. But what of the uranium, plutonium, iron, and other atoms contained in nuclear weapons? Are these atoms "value-laden?" A
reasonable stance in my view is that the atoms in themselves are not linked to any particular groups—except the plutonium atoms which were manufactured by
humans—but that the connection enters through the humanly constructed configuration of atoms. The idea of a value-free atom in isolation is all very well, but that is
not what we encounter in human constructions.

Elements of mathematical knowledge can be likened to atoms, except that all mathematical concepts have been created by humans. In isolation, the mathematical
concepts of an integral or a ring seem not to be associated with the interests of particular groups in society. But mathematical concepts do not exist in isolation. They
are organized together for particular purposes, very narrowly for detailed applications, more generally for teaching. The more specialized and advanced ideas are
mostly restricted to a small segment of the population, which claims social resources and status due to its expertise.

The belief that mathematics is a body of truth independent of society is deeply embedded in education and research. This situation, by hiding the social role of
mathematics behind a screen of objectivity, serves those groups which preferentially benefit from the present social system of mathematics. Exposing the links between
mathematics
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and social interests should not be seen as a threat to "mathematics" but rather as a threat to the groups that reap without scrutiny the greatest material and ideological
benefits from an allegedly value- free mathematics.
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Chapter 8
Marx and Mathematics

Dirk J. Struik

Editors' comment: In our conception of ethnomathematics, "ethno" not only refers to a specific ethnic, national, or racial group, gender, or even professional group, but also to a
cultural group defined by a philosophical and ideological perspective. The social and intellectual relations of individuals to nature or the world and to such mind-dependent,
cultural objects as productive forces influence products of the mind that are labeled mathematical ideas. In this chapter, Dirk J. Struik, an eminent mathematician and historian of
Mathematics, indicates how a particular perspective—dialectical materialism—decisively influenced Marx's theoretical ideas on the foundation of the calculus. This chapter first
appeared in Science and Society 12(1): 181-196, in 1948. At the end of the present version, the author includes a brief update in a postscript.

Marx received his early training in mathematics at the Gymnasium of Trier (Treves), the Rhineland city where he was born. At his graduation, in 1835, his knowledge
of mathematics was considered adequate. This means that he started his career with some knowledge of elementary arithmetic, algebra to the quadratic equations, and
plane and solid geometry. He also may have had trigonometry, and a little higher algebra, analytical geometry and calculus.

There are no indications that he showed any interest in mathematics during the turbulent years before and after 1848, in which he and Engels developed their outlook
on the world. The first token that Marx had returned to his study of mathematics is from the period in which he settled in London and was working on his great
scientific projects. In a letter to Engels of January 11, 1858, ! he wrote:
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During the elaboration of the economic principles I have been so damned delayed by computational errors that out of despair I undertook again a quick scanning of the algebra.
Arithmetic was always alien to me. Via the algebraic detour, however, I catch up quickly.

From this period until his death in 1883, Marx showed continued interest in the study of mathematics, often returning to it as a diversion during his many days of illness.
His study of algebra was followed by that of analytical geometry and the calculus. In a letter to Engels of July 6, 1863, he reported progress:

In my spare time I do differential and integral calculus. Apropos, I have plenty of books on it and I will send you one if you like to tackle that field. I consider it almost necessary

for your military studies. It is also a much easier part of mathematics (as far as the purely technical side is concerned) than for instance the higher parts of algebra. Aside from

knowledge of the common algebraic and trigonometric stuff no preparatory study is needed except general acquaintance with the conic sections.

It seems therefore that Marx found algebra easier than arithmetic and the calculus easier than algebra. But he was not so much interested in the technique of the
calculus. He was irresistibly drawn to the age-old question of the foundation of the calculus, the more so, since in the books which he consulted on this subject, the
calculus was treated in a most unsatisfactory and occasionally in a controversial way. Marx, like so many dialectical thinkers before and after him, found unending
fascination in the different definitions of the derivative and the differential, as is shown by a large amount of manuscript material which was found among his papers.

In the years after 1870, Marx even tried to develop his own views. Engels reports on this phase in the preface to the second volume of Capital:

After 1870 an intermission set in again, mainly due to sickness. The content of the many notebooks with abstracts of this period consists of agronomy, American and especially
Russian agrarian relations, money, market and banking systems, and finally natural science, geology and physiology, and especially independent mathematical papers.3

Marx, in the later days of his life, cast some of his reflections concerning the differential calculus into a readable form and dis-
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patched the manuscript to Engels. A letter of August 18, 1881 shows that Engels had studied them:

Yesterday I found at last the courage to study your mathematical manuscripts even without reference to textbooks, and I was glad to see that I did not need them I compliment you
on your work. The matter is so perfectly dear (sonnenklar) that we cannot be amazed enough how the mathematicians insist upon mystifying it. 4

Engels continues to present Marx' viewpoint in his own words and to compare it with Hegel's views, with which both he and Marx were thoroughly familiar. He ends
with the words:

The matter has taken such a hold of me that it not only turns around in my head the whole day, but that also last week in a dream I gave a fellow my shirt buttons to differentiate
and this fellow ran away with them [und dieser mir damit durchbrannte].5

Marx, who at that time was preoccupied with his wife's sickness—she died in December of the same year—did not, it seems, return to the subject in his subsequent
correspondence. When, however, Engels reported to Marx (November 21, 1882) on an exchange of letters between him and their friend Sam Moore on the subject
of Marx' mathematical theories, Marx made a prompt reply the next day. We return to this correspondence later in this article.

Marx died before he could add anything more to his ideas. Engels later thought of publishing Marx' mathematical manuscripts together with his own on the dialectics of
nature. In the preface to the second edition of the Anti-Diihring (1885), he mentions his own studies in mathematics and the natural sciences, and adds that he had to
discontinue them after the death of Marx. He concludes: "there will perhaps later be an opportunity to collect and to publish the obtained results, together with the
posthumous, and very important, manuscripts of Marx."®

Engels did not find the time to accomplish this work, and the papers of Marx and Engels dealing with the exact sciences remained in the archives. The German Social
Democrats, who inherited the papers of Marx and Engels, were unable to appreciate the dialectics of mathematics, physics, and chemistry. Understanding had to wait
until the Russians began to show the fundamental importance of Marx' and Engels' philosophical work. Lenin's Materialism and Empirio-criticism (1908) was a trail
blazer, but it did not become known outside of strictly Russian circles until it was published in German, long after
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the revolution of 1917. Later the Russians published Engels' Dialectics of Nature, first in Russian, then (1927) in the original German.
Both Lenin's and Engels' books are now available in English, Lenin's in a translation of 1927, Engels' in a translation of 1940.

Still later some of the most characteristic of Marx' mathematical manuscripts were published, but only in a Russian translation. 7 Our study is based on the papers
published by the Russians. It is to be hoped that all of his mathematical note books will eventually be published not only in Russian, but also in the original German.

The extent of Marx' interest in mathematics is shown by the fact that the Marx-Engels-Lenin Institute in Moscow has obtained, since 1925, photographic copies of
about 900 pages of Marx' mathematics manuscripts, all of which have been deciphered and put in order.® They consist essentially of abstracts of textbooks, studied by
Marx, often with notes, of comprehensive accounts of special subjects, and of independent investigations, expressing different stages in Marx' studies, from preliminary
sketches to finished manuscripts probably prepared for the benefit of Engels. Only a few pages, hardly twenty-four are devoted to computational work.

By far the most voluminous of these manuscripts deal with algebra, which Marx studied from Lacroix', Maclaurin's and perhaps from other texts. Most of this algebra
deals with the solution of equations of higher degree, but Marx also showed an interest in series, notably divergent series. There are also abstracts dealing with analytic
geometry, notably from a book by Hymers.

Other manuscripts contain Marx' reflections on the differential calculus. There are again plenty of abstracts and comprehensive accounts based on the textbooks of
Lacroix, Boucharlat, and Hind, supplemented by those of Hall and Hemming, all popular school texts from the early decades of the nineteenth century. This work
deals mainly with the conception of function and of series, of limit and of derivative, the series of Taylor and Maclaurin, and the determination of maxima and minima.
Marx showed particular interest in Lagrange's famous use of the Taylor series for the "algebraic" foundation of the calculus, and compared the different definitions of
the derivative and the differential in the various texts. Marx, in one of his own notes, reproduces the derivation of the binomial theorem from Taylor's theorem, and
remarks that "Lagrange, on the contrary, derives Taylor's theorem from the binomial theorem," a fact which he often repeats and to which he devotes some thought.
One of his manuscript papers is entitled "A somewhat modified development of Taylor's theorem on purely algebraic base according to Lagrange,"
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others have such significant headings as: "Taylor's theorem—is based on the translation from the algebraic language of the binomial theorem into the differential way of
expression," and "Maclaurin's theorem is also only translation from the algebraic language of the binomial theorem into the differential language." Two notebooks,
probably dating from a later period in Marx' life, contain examples of the method of differentiation which Marx eventually preferred, as well as a paper on the
differential and a historical sketch of the methods of differentiation used by Newton, Leibniz, D'Alembert, and Lagrange. These notebooks present the position which
Marx seems to have placed before Engels. They also contain a long paper on the integral calculus, which contains a critical analysis of Newton's "Analysis per
aecquationes numero terminorum infinitas." Their published contents form the subject of the present article.

Marx studied the calculus from textbooks which were all written under the direct influence of the great mathematicians of the late seventeenth and the eighteenth
centuries, notably of Newton, Leibniz, Euler, D'Alembert, and Lagrange. He was not so much interested in the technique of differentiation and integration as in the
basic principles on which the calculus is built, that is, in the way the notions of derivative and differential are introduced. He soon found out that a considerable
difference of opinion existed among the leading authors concerning these basic principles, a difference of opinion often accompanied by confusion. This confusion only
increased in the school textbooks written by the minor authors. !° Different answers were given on such questions as whether the derivative is based on the differential
or vice versa, whether the differential is small and constant, small and tending to zero, or absolutely zero, and so forth. Marx felt the challenge offered by a problem
which had attracted some of the keenest minds of the past and which dealt with the very heart of the dialectical process, namely, the nature of change. Not finding any
satisfying answer in the books, he tried to reach an answer for himself in his own typical way: by going to the sources, comparing the results, and forging beyond them
into new regions. It may perhaps strike the reader that among the sources studied by Marx there seems to be no reference to Augustin Cauchy—at any rate as far as
we can judge from the published material. Cauchy's work, which underlies the exposition of the foundation of the calculus in our present day textbooks, could have
been available to Marx.!"! The reason that Marx took no notice of Cauchy may be that Cauchy's ideas only slowly penetrated into textbooks, so that they might have
escaped Marx, who did not move among professional mathematicians.'> A more
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likely reason is that Cauchy's way of defining the derivative was essentially that of D'Alembert, so that Marx did not consider his method a new one.

Whatever Marx' reasons were to ignore Cauchy's work, his feeling of dissatisfaction with the way the calculus was introduced was shared by some of the leading
younger professional mathematicians of his day. In the same year (1858) in which Marx resumed his study of mathematics, Richard Dedekind at Ziirich felt similar
dissatisfaction, in his case while teaching the calculus. Writing in 1872, he first stated that in his lessons he had recourse to geometrical evidence to explain the notion of
a limit; then he went on:

But that this form of introduction into the differential calculus can make no claim to being scientific, no one will deny. For myself this feeling of dissatisfaction was so
overpowering that I made the fixed resolve to keep meditating on the question till I should find a purely arithmetic and perfectly rigorous foundations for the principles of

infinitesimal calculus. '

This led Dedekind to a new axiomatic approach to the conception of continuum and irrational number, which was one of the great pioneering efforts in what we call
the "arithmetization of mathematics." Some years later one of the other pioneers of the new methods of rigor in mathematics, Paul Du Bois Reymond, exclaimed:

What mathematician would deny that—especially in its published form—the conception of limit and its closest associates, the conception of the limitless, the infinitely large and
the infinitely small, the irrational, etc., still lack rigor? The teacher in write and word is used to hurry quickly through this questionable entrance to analysis, in order to roam the

more comfortable on the well blazed roads of the calculus.'

It was not until the last decades of the nineteenth century, under the influence of Dedekind and Du Bois Reymond, as well of Weierstrass and Cantor that the thorough
overhauling of the principles of the calculus took place, which underlies modern methods, and has shown that Cauchy's approach can lead to full rigor This work
appeared too late to influence Marx and Engels.! The result is that Marx' reflections on the foundations of the calculus must be appreciated as a criticism of
eighteenth-century methods. We feel, however, that his work, developed contemporaneously with but independently of the leading mathematicians of the second half
of the nineteenth
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century, even now contributes to the understanding of the meaning of the calculus.

We should never forget, of course, that Marx never published his material, and that there is not even an indication that he intended publication, even though Engels
seems to have played with the idea. Marx worked on mathematics in spare hours, for relaxation, often in hours of sickness, guided by some books which he happened
to have in his library, such as Boucharlat's, which introduced the principles of differentiation in an unsatisfactory way. He looked for elucidation in the sources quoted
in Boucharlat and similar books, which led him to Newton, Leibnitz, D'Alembert, and Lagrange. His notes were in the first place intended for his own clarification,
after reading those classics in attempts to understand the often obscure texts. Struck by the unsatisfactory formulations in these books, he tried in a characteristic way
to straighten out the difficulties for himself.

The difficulties which Marx tried to overcome are at present as real as in his time, even if our formal apparatus is more carefully elaborated and practically foolproof.
These difficulties axe as old as Zeno of Elea and as young as the latest philosophical or physiological attempt to understand how rest can pass into motion, and how
motion can lead to rest. This is the reason why Marx studied so carefully the conception of the derivative of a function and the related conception of the differential. He
found that there are three main methods by which these conceptions have been developed. Marx classified them, called them the mystical, the rational and the
algebraic method (connected with the names of Newton-Leibnitz, D'Alembert, and Lagrange respectively), and then opposed to them his own mode of understanding
the derivative, the differential, and the calculus in general. Let us explain the difficulty by differentiating the function y = x? in the different ways criticized by Marx.

(1) Newton-Leibnitz. ("The mystical differential calculus") '—x changes into x + it in Newton, into x + dx in Leibnitz; we follow Leibnitz. Then y changes into y,
=y+dyandy =y +dy =(x + dxy’ = x7 + 3x%dx + 3x(dx)* + (dx)*. Since (dx)* and (dx)’ are infinitesimal as compared with 3x?dx, they may be dropped, and
we obtain the correct formula

dy = 3x%dx

This is highly mysterious, and the mystery does not disappear if we first divide dy by dx
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dy/dx = 3x% = 3xdx + (dx)?

and then let # = dx be zero. It is true that we obtain the right formula
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but as Marx remarks:

the nullification of h is not permitted before the first derived function, here 3x2, has been liberated from the factor h by division, hence (y, - y)/h = 3% + 3xh + . Only then can

we annul (aufheben) the finite difference. The differential coefficient dy/dx = 3x? must therefore also originally be developed before we can obtain the differential dy = 3x7d.

In other words, we knew in advance what the answer must be, and build up some reasoning to make it plausible. It was this loose way in which Newton and Leibnitz
usually founded the calculus which led Bishop Berkeley to his famous criticism in The Analyst of 1734. Here he asked whether the dx are zero or not zero, called
them "Ghosts of departed quantities" and concluded that no mathematician who believed these absurdities could reasonably object to the miraculous tenets of religion.
It has not been the only case in which foundation difficulties in science have been exploited for idealist and obscurantist reasons.

Mathematicians felt the difficulty and tried to cope with it by suggesting more exact ways of founding the calculus. '7 The most important contributions were those of
D'Alembert and Lagrange.

(2) D'Alembert ("The rational differential calculus").!® In Marx' words: D'Alembert starts directly from the starting point of Newton and Leibnitz
xx=+dx

but he makes immediately the fundamental correction x, =x + x, that means, x becomes an undetermined, but prima facie finite increment, which he calls /. The

transformation of this / or As into dx (he used the Leibnitz notation, like all Frenchmen) is only found as the last result of the development or at least just before closing
hour (knapp vor Torschluss), while it appears as starting point with the mys-
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tics and the initiators of the calculus:
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dy
Now, by placing / = 0, the expression [f(x+h)-f(x)]/h changes into dx

0 dy _

o 3 = fx)
The way in which D'Alembert differentiates is very much akin to Cauchy's method. We write at present with Cauchy

dy . fx+H)—-fx)
Fris P

Marx' objection to this method is that though it is formally correct, the derivative f’(x) is already present in 3x? + 3x/ + A2, that is, before differentiation. It is simply

the first term of a sum, 3x? + 2xA + A%, and D'Alembert's method only consists in devising a way in which to get rid of the member (or members) of the sum which

follows 3x Marx calls this "Loswicklung" (separation); while the correct method should be Entwickiung (development):

The derivation therefore is the same as in Leibnitz and Newton, but the ready-made derivative is in strictly algebraic way separated from its further context. 1 There is no

development but a separation of the/(x),z ? here 3x° from its factor h and the members which appear next to it in the other members marching on in rank and file. What has really
developed is the left hand symbolic side, namely, dx, dy and their ratio, the symbolic differential coefficient dy/dx or 0/0 (rather in the other way 0/0=dy/dx), which in its turn again
provoked some metaphysical shudders, though the symbol was mathematically derived. D'Alembert had, by stripping the differential calculus from its mystical garb, made an
enormous step ahead.

Marx' evaluation of D'Alembert's work as "an enormous step ahead" still stands. This is the more remarkable, since even modem historians of mathematics have a way
of glossing over it. Marx next proceeds to Lagrange.
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(3) Lagrange ("The purely algebraic differential calculus").
y=/x)=x’

¥, = +hy =x3+3x°h + 3xh? + I’

= flx) = 32

Lagrange simply defines the coefficient of h as the derivative: dr , or more generally by Taylor's theorem for a general f(x):

2
h=Re+ k)= y(orfr)+—-h+——+

Marx then paraphrases Lagrange's method in the words: In the first method (1), as well as in the rational one (2), the required real coefficient is fabricated ready made by the
binomial theorem and can be found already as second term of the series expansion, hence in the term which necessarily contains 4. The whole further differential procedure, be it
as in (1) or be it as in (2), is therefore luxury. Let us therefore shed the useless ballast. We know once and for all from the binomial expansion that the first real coefficient is the
factor of 4, the second one that of hz, etc. These real differential coefficients are nothing but the derived functions of the original function in x, expanded binomially in succession.

.. The whole real problem reduced itself to the finding of methods (algebraic ones) of expanding all kinds of functions of x + h into integral ascending powers of 4, which in many
cases cannot be effected without great prolixity of operations. u Up to now there appears nothing in Lagrange, but what can be found directly from D'Alembert's method (since
this also includes the whole development of the mystics).

The objection which Marx raised against the classical writers was that all four had the derivative already prepared before the process of differentiation really begins.
Marx wanted a method which actually followed the process of variation of the variable and in this process itself defined the derivative as 0/0, in which case it can be
endowed with a new symbol dy/dx. The derivative, he claimed, should be derived by a process of differentiation, not be produced from the beginning by the binomial
theorem.

Whether we start falsely from x + dx or correctly from x + 4, if we substitute this undetermined binomial into the given algebraic function of x, we change it into a binomial of a
definite degree, e.g. (x +
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h)2 instead of x*, and this in a binomial in which in one case dx, in the other case A, figures as its last member. Hence it also figures in the expansion only as a factor, with which the
functions, derived from the binomial, are externally affected. 2

This lack of internal development can be avoided in the method which Marx suggests, say for y = x*:

y=fx)=x’

) —fx) = —y=x—x" =(n — e +xx,+ 57}
flzd—fin) _ -y

= =7+ xy + 3
-x X —x

When x =x , or x - x, =0, we obtain:

0 dy _
ﬁ_E_:;'2+:Uc+1r2—3:r2_

In this method, writes Marx, we obtain first a preliminary derivative, namely; ¥ + xx, + x% and this passes by x = x , into the definite derivative. This passing
form s, to x does away with any "infinitesimal" approximation, it shows that the derivative is actually 0/0, obtained when x - x, is actually zero:

Here we see in striking form:

Firstly; to obtain the derivative we must place x =x , hence x - x, =0 in the strict mathematical sense, without a trace of only infinitesimal approximation. Secondly: Though the

fact that x, has been placed = x hence x - x, = 0, nothing symbolic enters into the "derivative." The quantity x,, originally introduced by the variation of x, does not disappear, it is
only reduced to its minimal boundary x. It remains an element introduced as new into the original function, which by its combination partly with itself, partly with the x of the
original function produces at the end the "derivative," that is the preliminary "derivative" reduced to its minimum value. . .. The transcendental or symbolic accident (0/0 = dy/dx =

3x2) occurs only on the left hand side, but it has already lost its terror, as it appears now only as the expression of a process that already has shown its real content on the right
hand side of the equation.23

At the moment that x = x, the quotient Ay/Ax becomes 0/0. Since in this expression 0/0 every trace of its origin and of its mean-
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ing has disappeared it is replaced by the symbol dy/dx, in which the finite differences Ay and Ax appear in symbolical form as liquidated (aufgehobene) or vanished
(verschwundene) differences. At this moment algebra disappears and the differential calculus, which operates with the symbols dy/dx, begins.

In order to understand Marx' intentions better, we translate here part of the letter which Engels wrote him August 18, 1881, after he had read Marx' manuscript:

When we say that in y = f(x) the x and y are variables, then this is, as long as we do not move on, a contention without all further consequences, and x and y still are, pro tempore,
constants in fact. Only when they really change, that is inside the function, they become variables in fact. Only in that case is it possible for the relation—not of both quantities as
such, but of their variability—which still is hidden in the original equation, to reveal itself. The first derivative Ay/Ax shows this relation as it occurs in the course of the real
change, this is in every given change; the final derivative dy/dx shows it in its generality, pure. hence we can come form dy/dx to every Ay/Ax while this itself (Ay/Ax) only covers
the special case. However, to pass from the special case to the general relationship the special case has to be liquidated as such (als solcher aufgehoben werden). Hence, after the

function has passed through the process from x to x' with all its consequences, x' can be quietly allowed to become x again, it is no longer the old x, which was only variable in
name, it has passed through real change, and the result of the change remains, even if we liquidate it again itself (auch wenn wir sie selbst wieder aufheben).

We see here at last clearly, what many mathematicians have claimed for a long time, without being able to present rational masons for it, that the derivative is the original, the
differentials dx and dy are derived.

The difference between Marx' method and D'Alembert's method (and also that of Cauchy) should not be misunderstood and rejected as trivial or insignificant (x - x' =
h versus x' = x + h). Marx, as I see it, was perfectly satisfied that D'Alembert's method is formally correct. However, he wanted to come to an understanding of the
process of differentiation itself. Is the derivative obtained by letting x (and y) pass through a sequence of constant values, or is it necessary to let x (and y) really
change? Thus understood, we see the old "paradox" of Zeno emerging: can the motion of a point be obtained by following a sequence of positions of this point at rest?
Zeno showed
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that a sequence of such positions will never produce motion; he also showed by a similar reasoning that Achilles will never reach the tortoise. D'Alembert's methods,
Marx claimed, represents a mode of thought which does not do justice to the actual event which happens when a function is differentiated. What happens is a real
change, and this is better understood when we first write Ay/Ax as a function of x and an entirely new x', and then let x = x". Moreover, 4 = x' - x does not only
approach zero, h becomes zero. Emphasis is placed on the fact that the derivative only appears when both §y and Sx are absolutely zero. This never became clear
with the "mystics" Leibnitz-Newton, and appeared as an accidental thing in D'Alembert-Lagrange 4. It is so little understood that in some popular texts, such as
Hogben's Mathematics for the Million, the impression is given that the process of differentiation is only approximately true. But even in our modem textbooks,
though they use a formal apparatus which is unimpeachable, some of the thought behind the apparatus is not fully clarified.

Let us take, as an example, the textbook Pure Mathematics of G. H. Hardy; who is one of our greatest living mathematicians. The derivative is explained in the
Cauchy-D'Alembert way:

) =t SETI )
A0 h
which means that { (x + /&) - (x)}/h tends to a limit when h tends to zero. What does this mean? We are told that () tends to the limit / as y tends to zero, if, when
any positive number , however small, is assigned, we can choose y,( ) sothat| (y)-/ whenOy y,( ).

This definition is exact, in the sense that we have a correct and subtle criterium to test any limit. But (y) always hovers near the limit, since we are told that y "tends"
to zero. Similarly, (x) is defined by means of an / which "tends" to zero. The question is, is the event /2 = 0 ever reached? Marx not only affirms it, he stresses it. The
usual modem textbook definition does not take this question seriously, because it is satisfied with a pragmatic criterium which allows us to recognize a limit when it
appears.26

The result is that much teaching of the elements of calculus proceeds as follows—and I confess to it myself in my own teaching. First, it is shown that a limit can be
approached as closely as we like, but never reached. Then the derivative is defined with the aid of this conception of limit. And then suddenly we begin to work with
this
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derivative, which could never be reached (as we have before demonstrated) as if it actually had been reached. The case i = 0, x' = x, though present in the formal
apparatus, is somehow obscured in the reasoning. An exception is found in the work of Moritz Pasch, who in his very careful analysis of the derivative develops a
formal apparatus in which there is full room for the case # = 0. 27

Marx therefore belonged to that school of thinkers who insist on utmost clarity of thought in interpreting a formal apparatus. His position contrasts sharply to that of
those mathematicians or mathematical physicists who believe that the formal apparatus is the only thing that matters. Marx' position was that of the materialist, who
insists that significant mathematics must reflect operations in the real world.

It is interesting to notice that the differences between Marx' and D'Alembert's formal apparatus diminish when we consider more complicated functions. For the case y
=sin x the derivative, in the D'Alembert way of differentiation, is still obtained by separation (Loswicklung), but by y =log x the derivative can only be obtained from
Ay/A by letting h pass through a real change.

As soon as dy/dx is established as the result of a real change, it becomes itself the subject of a calculus, the differential calculus. Marx, in a manuscript on the meaning
of the differential, derived as one of the first formulas of this calculus, that the derivative of y = uz, u and z functions of x, is given by

When uz = f(x), then dy/dx can be written f(x) and "the /'(x) stands opposed to dy/dx as its own symbolic expression, as its double or symbolic equivalent."

The symbolic differential coefficient has become an independent starting point, whose real equivalent has first to be found. The initiative has been moved form the fight hand
pole, the algebraic one (in dy/dx = f(x)) to the left hand one, the symbolic one. With this, however, the differential calculus appears also as a specific kind of computation,
operating already independently on its own territory. Its starting points du/dx, dz/dx are mathematical quantities which belong exclusively to this calculus and characterize it. And
this reversal (Umschlag) of the method resulted here form the algebraic differentiation of uz. The algebraic method changes automatically into its opposite, the differential method.
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dy _du iz
Now, by removing in the equation (a), & 24 1 ¥ & the com-common denominator dx, we obtain (b), d(uz) = dy = udz + zdu in which every trace of its origin

from (a) has been removed.

It (b) is therefore valid in the case that # and z depend on x as well as in the case that they only depend on each other without any relation to x. It is from the beginning a symbolic
equation and can serve from the beginning as a symbolic operational equation.

The differential is therefore a symbolic form—we would say an operational form—dy = f'(x)dx appears as just another form of dy/dx = f'(x) and is always
convertible into the differential form. Modem mathematicians will have no fault to find with this method, and V. Glivenko has specially shown 2 how Hadamard, the
French mathematician, had stressed the operational character of the differential. Marx does not mention, however, the now common interpretation that dy should be
f(x)Ax, obtained by arbitrarily placing dx = Ax. This way of representing dy, which dates back to Cauchy, may have escaped Marx (he criticizes Boucharlat for his
introduction of the differential, but Boucharlat's methods is an antiquated one). We believe however that Marx would in any case have objected to this equation dx =
Ax, which established an identity between two conceptions with an entirely different operational meaning. The interpretation of dy by Cauchy, which has found its way
in all our texts, is mechanical and can only be justified by the use to which the formula dy = f'(x)dx can be put as an approximation to certain changes of a constant x
into an equally constant x + Ax.? And the fact that this difference between dx and Ax dy and Ay can be neatly represented in a figure would not have impressed
Marx and Engels, whose interest was in the arithmetical-algebraic relationship of the symbols of the calculus with the real process of change. This may be shown from
the following correspondence between Marx and Engels after Sam Moore had written his opinion on the manuscript material of Marx:

Enclosed first a mathematics attempt by Moore. The result that "the algebraic method is only the differential method disguised" refers of course only to his own method of
geometrical construction and is there also relatively correct. I have written to him that you do not care about the way in which the matter is represented in the geometrical
construction, the application to the equation of the curves is indeed sufficient (reiche ja hin). Moreover, the fundamental difference between you and the old method is that you
make x change into x',
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hence make them really vary, while the other one departs form x + 4, which is always only the sum of two quantities, but never the variation of a quantity. Your x therefore, even
when it has passed through x' and has again become x, is yet another than before; while x remains constant during the period when 4 is first added to x and later again subtracted.
However, every graphical representation of the variation is necessarily the representation of the past process, of the result, hence of a quantity which became constant, the line x;
its complement is represented as x + /, two segments of a line. From this already follows that a graphical representation of how x becomes x’and x’ again becomes x is impossible

(Engels to Marx, Nov. 21, 1882) 30
Marx' answer followed the next day:

Sam, as you have seen immediately, criticizes the analytical method which I have used by simply pushing it aside, and instead keeps himself busy with the geometrical application,
to which I did not devote one word.

I could in the same way get rid of (konnte damit abspeisen) the development of the proper so-called differential method—beginning with the mystical method of Newton and
Leibnitz, then continuing with the rationalist method of D'Alembert and Euler, and finishing with the strictly algebraic method of Lagrange (which however always starts fro the
same original principle as Newton-Leibnitz)—I could get rid of this whole historical development of analysis by saying that practically nothing essential has changed in the

geometrical application of the differential calculus, that is, in the geometrical representation ( Versinnlichttng).31

This last remark of Marx shows affinity with that of Dedekind, who also endeavored to build up the calculus independent of the geometrical representation of the
derivative. We can consider this as one of the characteristics of Marx' analysis, in which it agreed with our modem approach. Another important feature was his
insistence on the operational character of the differential and on his search for the exact moment where the calculus springs form the underlying algebra as a new
doctrine. "Infinitesimals" do not appear in Marx' work at all. In his insistence on the origin of the derivative in a real change of the variable he takes a decisive step in
overcoming the ancient paradox of Zeno—Dby stressing the task of the scientist in not denying the contradictions in the real world but to establish the best mode in
which they can exist side by side.?? Here his position is directly opposite to that taken by Du Bois Reymond, who thought that
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the increments dx, dy have to be taken as being at rest, invariable 33, or of the modem mathematician Tarski, who denies the existence of variable quantities
altogether.* Marx' position in this respect will be appreciated by most mathematicians.

We believe that this survey of Marx' opinions on the origin of the calculus demonstrates that publication of his other mathematical manuscripts is also desirable.
Postscript

After this paper was published in 1948, the collected mathematical works of Marx were published in Moscow, the original German text together with a Russian
translation and introduction: K. Marks, Matematiceskie* rukopisi (1968, 640 pp). A partial English translation exits: The mathematical manuscripts of Karl Marx
(London, New Park, 1983). See the review by D. J. Struik in the Archives Internationales d'histoire des sciences 97 (1976) 343; H. Kennedy, "Karl Marx and
the foundations of differential calculus," Historia Mathemtica 4 (1977): 303-318, and E Gerdes, Marx demystifies calculus (translated from Portuguese by Beatrice
Lumpkin), MEP Publications, Minneapolis, 1983, with extensive bibliography.
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translation, ed. 1889, p. 76).

32. Marx-Engels Gesamtausgabe, Abt. 111, Bd. IV, p. 572. Compare Marx, Capital, Part I, ch. 3, Section 2: "The Metamorphosis of Commodities," (Engl.
translation, ed. 1889, p. 76).

33. Du Bois Reymond, Die allgemeine Funktionentheorie, I, (1882), p. 141, states his dislike for the conception of dx as a ""é évanouissante,"
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since he disapproves (geht mir entschieden wider den Mann) quantities which begin to move only when we look at the formulas: "As long as the book is closed,
profound rest previals. As soon as I open it, the race to zero begins of all quantities provided with the d. " Marx, without coming to Du Bois Reymond's
conclusion, might have shared his criticism, since he wanted to express not only a change on paper, but a change in reality.

34. A. Tarski, Introduction to Logic (New York: 1941), p. 4.
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SECTION IV
RECONSIDERING WHAT COUNTS AS MATHEMATICAL KNOWLEDGE

Arthur B. Powell and Marilyn Frankenstein

In a French mathematics education study, a seven-year-old was asked the following question: "You have ten red pencils in your left pocket and ten blue pencils in
your right pocket. How old are you?" When he answered: "twenty years old," it was not because he didn't know that he was really seven, or because he did not
understand anything about numbers. Rather it was, as Pulchalska and Semadeni (1987) conclude, because the unwritten "social contract" between mathematics
students and teachers stipulates that "when you solve a mathematical problem . . . you use the numbers given in the story. . .. Perhaps the most important single reason
why students give illogical answers to problems with irrelevant questions or irrelevant data is that those students believe mathematics does not make any sense" (p.
15).

As this situation described by Pulchalska and Semadeni reveals, we can observe the split between "everyday" mathematical knowledge and "school" mathematics in
many different contexts. Earlier, we noted that D'Ambrosio (1985/reprinted here as chapter 1) traces the historical development of this split to the social stratification
of Egyptian and Greek societies. In a contemporary context, Frankenstein (1989) finds that working-class adult students in the United States are often surprised to
learn that the decimal point is the same point used to write amounts of money. Similarly, Spradbery (1976) worked with sixteen-year-old students in England who

had failed consistently to master anything but the most elementary aspects of school Mathematics. . .. They had received, and remained unhelped by, considerable "remedial"
teaching and, finally, they left
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school "hating everyfink what goes on in maffs." Yet in their spare time some of these same young people kept and raced pigeons . . .. Weighing, measuring, timing, using map
scales, buying, selling, interpreting timetables, devising schedules, calculating probabilities and averages . . . were a natural part of their stock of commonsense knowledge (p. 237).

Besides social and class divisions, Harris (1987/reprinted here as chapter 10) shows that sexism also underpins the dichotomy between "school" mathematics and
one's stock of commonsense knowledge and perverts what counts as mathematical knowledge. For example, a problem about preventing the lagging in a right-angled
cylindrical pipe from inappropriately bunching up and stretching out, is labeled engineering and considered to be "mathematics," whereas the identical domestic
problem of designing the heel of a sock is called "knitting" and not considered to have mathematical content. We, instead, classify both the engineering and domestic
problems as examples of ethnomathematics. Further, Gerdes (1988/reprinted here as chapter 11) and his students raise questions about how imperialism might have
been responsible for arresting the development of various "abstract" geometrical and algebraic ideas inherent in traditional Mozambican material culture.

The mathematical knowledge embedded in the activity of adults handling money, students racing pigeons, and women knitting socks is not fragmented from the
knowledge of each of these activities; rather, it is created and recreated in praxis. However, the academically enforced disjuncture between "practical” and "abstract"
mathematical knowledge contributes to students feeling that they do not understand or know any mathematics. Further, Joseph (1987/reprinted here as chapter 3)
considers that this disjuncture fuels the intellectual elitism that regards mathematical discovery as following only "from a rigorous application of a form of deductive
axiomatic logic." Moreover, this elitism, combined with racism, considers nonintuitive, nonempirical logic a unique product of European, Greek mathematics. This
Eurocentric view dismisses Egyptian and Mesopotamian mathematics as merely the "application of certain rules or procedures . . . [not] "proofs" of results which have
universal application" (pp. 22-23). Joseph disputes this biased definition of proof, arguing that

the word "proof™" has different meanings, depending on its context and the state of development of the subject . . .. To suggest that because existing documentary evidence does
not exhibit the deduc-
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tive axiomatic logical inference characteristic of much of modern mathematics, these cultures did not have a concept of proof, would be misleading. Generalizations about the area
of a circle and the volume of a truncated pyramid are found in Egyptian mathematics. . .. As Gillings [1972, pp. 145-6] has argued, Egyptian "proofs are rigorous without being
symbolic, so that typical values of a variable are used and generalization to any other value is immediate" (pp. 23-24).

Henderson (1990) argues that formal, academic mathematics "masquerades" as real mathematics. He believes "no formal definition can capture all aspects of our
experience [of a mathematical entity]" and further, a more "real" concept of proof is "something which is sufficient to convince a reasonable skeptic" (p. 3). Henderson
(1996) informs his geometry students that "[a] proof as we normally conceive of it is not the goal of mathematics—it's a tool—a means to an end. The goal is
understanding. Without understanding we will never be satisfied—with understanding we want to expand that understanding and to communicate it to others." Further,
Hersh (1991) argues that although "rigorous" proofs are infallible in principal, many of them are fallible in practice:

The difference maybe negligible for computations of a few lines. It's not so negligible for computations of a few dozen pages. In fact, a simple probabilistic argument shows that if
the probability of error in each line has magnitude "epsilon," then the probability of error in sufficiently many lines has magnitude "one minus epsilon." In other words, a
sufficiently long computation is practically sure to contain errors (pp. 25-26).

He goes on to state that "additional grounds for confidence in our conclusions . . . [such as] examples and special cases, analogies with known results, an expected
symmetry or an unexpected elegance . . . "are what convinces us that our conclusions "must be true" (p. 26).

An illustration of points that Henderson and Hersh make and one that also challenges the "Greek deductive" model of proof from within academic mathematics is the
computer demonstration of topology's famous four-color conjecture. Gardner (1980) discusses how this proof, "buried in printouts that resulted from 1200 hours of
computer time" forces us to rethink what counts as a proof and what distinctions we make between empirical science and theoretical mathematics. He summarizes
Tymoczko (1979) who makes the point that this computer proof is "a program for attacking the [four-color] prob-
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lem by computer along with the results of an 'experiment' performer on the computer . . . [blurring] the distinction between mathematics and natural science and
[lending] credibility to the opinions of those contemporary philosophers of science such as Hilary Putnam who see mathematics as a 'quasi-empirical' activity" (p. 14).

The Eurocentric bias that denies the rigor of Egyptian mathematics also considers to be "childlike" and "primitive" the mathematical knowledge of traditional, non-
literate cultures. Ascher and Ascher (1986) argue that "there is not one instance of a study or restudy that upon close examination supports the myth of the childlike
primitive' (p. 131). They provide examples that not only support this point, but also reveal how false assumptions about the mathematical knowledge of others and
lack of respect for the logic of others intersects with racism when one considers what counts as mathematical knowledge For instance, they discuss a well-known
anecdote about a trade between an African sheep herder and an explorer The herder agrees to accept two sticks of tobacco for one sheep but becomes confused and
upset when given four sticks of tobacco for two sheep. The story is supposed to show that the herder cannot comprehend that 2 +2 = 4. ! An alternative
interpretation, respecting the herder's knowledge "raises the issue of the difference between a mathematical concept and its application. . .. Sheep are not standardized
units." So it is logical that a second, different animal would not also be worth two sticks of tobacco. "[T]he applicability of even the simplest of mathematical models
becomes a question of cultural categorization” (p 128). For another example, the Aschers quote Lévy-Briihl, an anthropologist who felt that the occasional substitution
of 3,7, or 9 for each other in Veddic religion, rituals, and legends was "an absurdity in logical thought . . . quite natural to prelogical mentality, for the latter
preoccupied with the mystic participation, does not regard these numbers in abstract relation to other numbers, or with respect to the arithmetical laws in which they
originate" (1910, p. 211). They counter his conclusion with information from a recent field study of the Kédang who also use this kind of number substitution

When used in symbolic contexts, odd numbers are associated with life and even numbers with death. Substitutions within these classes are possible if circumstances require it. If,
for example, a ceremonial period of four days is stipulated but cannot be met, 2 days will do but 3 would be a serious infringement. . .. The formation of these equivalence classes is
an example of an abstract idea about numbers (p. 130).
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An example that shatters the notion of a dichotomy between concrete and abstract thought and demonstrates the subjective, culturally determined nature of "abstract"
categories is provided by Glick (as cited in Rose 1988, p. 291) in recounting the frustrations of researchers working with a group of people whom "academic
anthropologists" would label "primitive." The investigators had twenty objects, five each from four categories: food, clothing, tools, and cooking utensils. When asked
to sort the objects, most of the people produced ten groups of two, basing their sorting on practical connections among the objects (for example, "the knife goes with
the orange because it cuts it").

[the people] at times volunteered "that a wise man would do things in the way this was done." When an exasperated experimenter asked finally, "How would a fool do it?" he was
given back groupings of the type . . . initially expected—four neat piles with foods in one, tools in another.

Walkerdine (1990/reprinted here as chapter 9) rites an encounter which illuminates the creation of the categories "concrete" and "abstract." She describes two
observations: a mother and her sons arguing about buying drinks they could not afford; and, a father and his son making a game out of calculating change—"what if I
bought . . .?" She contrasts the concrete material necessity in the conversation between the mother and sons with the imaginary constructions in the dialogue between
the father and son. She asks intriguing questions about these exchanges:

What is the effect of relative poverty and wealth on the way in which certain problems can be presented as "abstract" versus "concrete," or, as [ would prefer to put it, problems
of practical and material necessity versus problems of "symbolic control"? And what is the relationship between the classic concrete/abstract distinction and the one between a
life in which it is materially necessary to calculate for survival and a life in which calculation can become a relatively theoretical exercise? Might calculation as a theoretical exercise
have become the basis of a form of reasoning among imperial powers which depended for the accumulation of their capital on the exploitation of the newly discovered colonies?
Do theoretical concepts come with wealth and what, if so, does this mean for economic and psychological theories of development and underdevelopment? (p. 52)
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She goes on to argue that to describe the interaction between the father and son as "abstracted" from everyday practices is misleading because the imaginary
calculation "exists as a discursive relation in a new set of practices, namely, those of school mathematics, with its own modes of regulation and subjection” (p. 54).
Rather than dichotomizing concrete versus abstract, Walkerdine speaks for viewing the different conversations as shifting from "one discursive practice to another."

The kind of linear thinking that puts knowledge into separate categories of "practical" and "abstract" not only limits our conceptions of what are mathematical ideas in
everyday life, but also in academic settings. For example, Bigum (1990) theorizes that the Eurocentric conception of "rational thought," based on Newtonian
determinism, results in linear numeracy being considered the underlying foundation of academic mathematical knowledge. This limits the concept of mathematical
applications to the sphere of "linear predictability and control: the mathematics of reason. . .. In our rational constructions, Newton's system of the world is long
forgotten, what remains is the illusion of controlling, knowing, and accessing the world: history collapses" (pp. 4-5). Diop (1991) argues that the discoveries and
conceptions of modem physics have changed our concept of "reason" and "called into existence a new logico-mathematical formalism that will raise, for the first time in
the history of the sciences, "doubt," "uncertainty" at the level of logical value" (p. 363). Bigum (1990) suggests a more appropriate foundation for an academic
mathematics that can apply to comprehending our post-modem, quantum existence. It would be rooted in the unpredictability of chaotic nonlinear mathematics that
"has proven that even simple questions can have answers so complicated that they contain more information than man's [sic] entire logical system" (Ford, cited in
Bigum, p. 7). Moreover, a more appropriate foundation would also be grounded in the self-referential logic of Kurt Godel's Incompleteness Theorem that asserts the
impossibility of completely describing or deciding the veracity or falsity of all questions within a given system, which "reflects, perhaps, the unfinished character of
mathematical logic" (Diop, 1991, p. 365).

Note

1. Zaslavsky (1973) relates that this tale was first told by Sir Frances Galton after he visited Africa (p. 289). Galton, who coined the term "eugenics" in 1883,
considered measurement "the primary criterion of a scientific study." In
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essence, he tried to 'standardize" anything that might possibly be measured, including prayer, beauty, and boredom—the latter by "counting the number of [a
person's] fidgets." He further believed that nearly everything he could measure was inheritable. When his cousin Charles Darwin pointed out that "men did not
differ much in intellect, only in zeal and hard work," Galton countered that "the aptitude for work is heritable like every other faculty." So, it is not surprising that
Galton could not see a more sophisticated reason for the sheepherder's confusion. Moreover, an important note for the politics of knowledge is that Galton was
considered a leading intellect of his time and his "scholarship' had significant influence on the development of mental measurements such as the IQ test (Gould,
1981, pp. 75-77).
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Chapter 9
Difference, Cognition, and Mathematics Education”

Valerie Walkerdine

Editors's comment: Through her argument against pre-social models of cognition, Valerie Walkerdine, a cognitive psychologist and mathematics education researcher, questions
distinctions between practical and theoretical knowledge as it applies to the learning of mathematics. In our analysis, this lays the groundwork for reconsidering what counts as
mathematical knowledge. This chapter first appeared in For the Learning of Mathematics 10(3): 51-56, in 1990.

It seems apt, when our conference takes place in the so-called Third World, with participation of academics from the old European imperial powers and the newer
ones north of the border, to discuss how understandings of difference might affect our analyses of cognition and mathematics education. To explore these issues, |
want to discuss some implications of my research on cognitive development, class, and gender, the analysis of mathematics education as discursive practice, and the
approaches to practices of mathematics in formal and informal settings as in, for example, the work of Lave (1988), Scribner (1984), and Carraher (1988).

My aim is to speak generally, to open up a debate by examining some basic questions concerning how and why the issues that are raised are characterized in a
particular way. In "The Mastery of Reason" (1988), I set out some ways in which I felt that post-structuralist theories might help us to understand the issues of context
and transfer. I argued in that volume that there were some major problems

* An invited talk given at the International Group for the Psychology of Mathematics Education, Mexico City, July 1990.
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with the way in which context and transfer were theorized, stemming from a view of context as something grafted onto a single model of cognitive development. I
suggested that the problem lay within the theory itself and that simply adding on context was not enough. I proposed a theory of practices in which, instead of a
unitary, fixed model of the human subject possessing skills in contexts, linked to models of learning and transfer, we might understand subjectivity itself as located in
practices, examining the discursive and signifying methods through which a person becomes "subjected" in each practice. It is that analysis which I want to draw on
here in suggesting that we might approach the issue of context and transfer differently in order to propose a theoretical account which deals adequately with the social
and historical. To do this, I suggest, we need to abandon our view of the pre-given subject with skills and pre-social models of human cognition altogether. Such a
view is, of course, not new, but I do want to suggest one theoretical pathway which might aid in this endeavor.

Let me begin by examining certain assumptions about childhood which are made in so-called First World theory. I vividly remember attempting to write some notes
for a review of Lave's book sitting outside a cafe in the fashionable Coyoacan district of Mexico City. Of course there were the ubiquitous small children selling things:
here artisanias, elsewhere Chiclets, and in some comers of the Third World, themselves. It would be easy to imagine a research project which aimed to examine the
advanced calculating skills of such children of tender years and to compare this with school performance. But what would it mean and what would we be doing it for?
I also remember that, just as I was watching a small boy trying to sell toys, a little boy of about the same age, but clearly from an entirely different class, cycled past on
his tricycle with his mother. It was this child who embodied the classical bourgeois idea of "child." Of course, one could argue that these two children represented
difference, or rather cultural differences and strengths, one in informal mathematics perhaps, the other in formal. But to approach the problem of difference in this way
would be socially and politically a problem—for the two little boys are not "equal but different." They differ also in the type and extent of their exploitation and
oppression. What I want to do here is to sketch out what might be the beginnings of a way of understanding psychologically and socially how difference is lived. When
we concentrate solely on the cognitive aspects of performance we fail to engage with certain central aspects of the way in which oppression is experienced. That is, as
in the above example, the child selling on the
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street is earning money which is likely to be a central plank in his family's survival. He has to learn to calculate then as if (to use an English phrase) "his life depended on
it."" Meanwhile we might point to the way in which such calculation is "low level" (a very common complaint in research on girls and mathematics, for example, see
Walkerdine et al (1989) for a discussion) compared to the so-called "higher order reasoning" which the middle class boy might be able to perform. We might add that
the first child is deprived and that this explains his poor performance at higher level tasks. But what [ want to do here is to question this very line of argument. What is
higher level and how can we make sense of an argument like this outside certain historical and social questions about the nature of mathematics and mathematics
education itself? My claim is that if we begin to address these questions we set up our psychological arguments in a completely different way.

Let me cite another example. I remember sitting in a seaside cafe watching a mother and her sons negotiating the buying of drinks. The boys wanted cokes and the
mother argued that these were too expensive and that they should have "a warming cup of tea." By contrast, | watched a father and son sitting in a cafe in a park in
central London making a game out of calculating change: "What if I bought . . ."?", and so on. There was no economic necessity at stake here. Now, although it might
look at first sight as though these two examples were similar, I would argue that there are some important differences. What does it mean that the father and son in the
park are constructing imaginary problems as opposed to the material problems faced by the mother trying to regulate her sons' consumption of expensive
commodities? What is the effect of relative poverty and wealth on the way in which certain problems can be presented as "abstract" versus "concrete," or, as I would
prefer to put it, problems of practical and material necessity versus problems of "symbolic control?" And what is the relationship between the classic concrete/abstract
distinction and the one between a life in which it is materially necessary to calculate for survival and a life in which calculation can become a relatively theoretical
exercise? Might calculation as a theoretical exercise have become the basis of a form of reasoning among imperial powers which depended for the accumulation of
their capital on the exploitation of the newly discovered colonies? Do theoretical concepts come with wealth and what, if so, does this mean for economic and
psychological theories of development and underdevelopment?

How do our ideas of "real mathematics" and of mathematical "truth" become incorporated into the "truth" about the human sub-
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ject which is used in the regulation of the social. The "truth" of reason and reasoning, of the world as a book written in the language of mathematics, become important
aspects of historically specific regimes of truth. Carraher (1989) discusses this issue, but Foucault's idea of “truth* is useful because it allows us to link that
mathematical "truth" with the "truths" in forms of management and government which aim to regulate the subject. So, for example, when Carraher tells us that Brazilian
street children did not solve a problem by one-to-one correspondence we are left little option but to pathologize them since we have no other (socially and historically
specific) theories on offer.

Historically, European accounting practices, for example, shifted in complexity when they introduced double entry bookkeeping. The money economy introduced in
relation to mercantile capitalism a system of positive and negative integers. The transformations of "gold," into a commodity is accomplished by means of a number of
transformations of signification in which the same signifier, "gold", becomes a different sign (Walkerdine, 1986, 1988). Many people chart the fact that shifts within
psychology and mathematics are related to particular social and political events and practices. How do these issues get caught up in fantasy; the kind of fantasy which
other classes and groups have of each other? Samantha, a white middle class English four-year-old is asking her mother why the window cleaner will get paid for
cleaning the windows of her home. She is puzzling over the exchange relation between work and money and goods. Tizard and Hughes (1984) cite this example as
showing the "power of the puzzling mind" of the four-year-old. Here they use a generic concept, and yet they point out that many of the working-class four-year-olds
in their study did not puzzle over the exchange relation. It was made painfully clear to the children: they were often told, for example, that they could not have certain
things because money was scarce, and indeed that money was earned through labor. Why then do Tizard and Hughes assume that such a specific issue, which clearly
relates to poverty and wealth, reflects a "general state of mind?" Are there indeed any general states of mind at all?

When poor children fantasize they may often dream of wealth, of fantasies of plenty in which they have, as one nursery school child put it in her domestic play;
"chicken and bacon and steak." Or, like the seven-year-olds I cited in "The Mastery of Reason," they may find a shopping game that they are playing very pleasurable
because, while they are supposed to be counting change and subtracting small amounts of money from ten pence, they actually laugh at the disjunc-
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tion between prices and goods (a yacht for two pence, for example) and pretend to be wealthy shoppers, put on middle class accents and generally have a good time.
However, they do not get better at maths. The fantasies of poverty are wealth, the fantasies of mathematicians, according to Brian Rotman (1980), are of an ordered
world. He calls mathematics "Reason's Dream," a dream in which "things once proved stay proved forever," a dream of order outside the confines of time and space.
And the dream of developmental psychologists? Certainly for a specific configuration of developmental psychology and education that I shall go on to describe, there
is a dream of a classroom as a natural environment with pain and oppression left outside the classroom door.

Mathematics and Discursive Practices

Theories of cognitive development, at least those stemming from the work of Piaget, have their roots in theories of evolution. They offer us generic theories of the
development of a "species being" in interaction with an object world, ontogeny recapitulating phylogeny. Indeed, the development of the human species, at home with
a mother, is often taken to be at the highest point of the evolutionary scale. In this view, there is little room for history or for the social, except a social which is grafted
on or which regulates rates of development according to a fixed sequence. This fixed sequence takes us from pre-logical to logico-mathematical reasoning which is at
first concrete and then abstract. The assumed pinnacle of abstract reasoning is rarely if ever questioned. And yet, of course, it is precisely this which various groups are
routinely accused of not being able to reach: girls, working-class children, blacks, third-world children, and so forth. And what I am putting forward is the germ of a
suggestion that this simple sequence is itself a historical product of a certain world view produced out of European models of mind at a moment in the development of
European capitalism dependent on the colonization and domination of the Other, held to be different and inferior. It was the European aristocratic and bourgeois male
who was to become the model of a rationality founded upon a life-style in which economic necessity was not an issue and in which the domination of the Other was to
become to a certain extent justified by a reading of difference as inferiority. That the position of those Others, the work-
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ing classes and the colonized peoples, for example, was produced by their oppression and exploitation, their poverty, their appalling working conditions, letting a few
of them slowly into education in order that European and colonial administration might eventually be undertaken by members of the dominated groups themselves, is a
feature which is rarely brought into question when attempting to understand the production of psychological aspects of development.

Here I am referring to the way in which certain colonized peoples and members of the European working class were "educated out" for entry into the middle class, but
that this meant effectively that regulators did not need to be applied by colonizers or the upper and middle classes because oppressed peoples could be taught to
regulate the less educated members of their own groups. This made the whole thing more complex, and sedimented the idea that "the normal" was something that such
peoples could aspire to and was something which they were not. Such concepts of normality and pathology could then become central planks of recognition and self-
regulation that people took into themselves.

In order to set out some of the ways in which we might begin to understand this, I want to outline very briefly the place of theories of cognitive development in British
mathematics education and then go on to examine the idea, as set out in "The Mastery of Reason," that we might understand mathematics education in terms of
discursive practices. The idea of child development as a central plank of the early education of children in Europe generally; and in Britain in particular, has a long
history, especially in relation to debates about childhood as a natural state associated with the idea of an education according to nature. The idea that reasoning is a
natural phenomenon was to become the centerpiece of the new "scientific pedagogy," using psychology, promoted from the end of the nineteenth century onward
(Walkerdine, 1984). The promotion of reasoning can be understood as part of what Foucault (1980) has described as the new modes of government, based as they
were on the necessity for the production of scientific knowledge in the population, with particular emphasis on the new urban proletariat. Child study societies were set
up in England around the turn of the century and many people followed Darwin's example of monitoring the development of his infant son. The idea of mapping
development was taken to mean that education could be scientifically controlled according to an idea of stages of development. There was an overwhelming emphasis
on the idea of the norm and normality, through which the regulation of the population was to be assured (Rose, 1985). In the early twentieth century;
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following the work of Itard and Seguin in France with Victor, the wild boy of Aveyron, which implied that humanity could be taught, Maria Montessori applied their
methods to the education of children from Italian slums. It is here, then, that the idea that from the feral child to the child of the Other (working class, colonized) is just
a short step, begins to take shape. Normal development can be monitored, humanness can be trained. The Other can be regulated by attempting to render him/her
normal and by monitoring the pathology of development to try to put it right. The idea of development is, of course, presented as though it were a matter of "nature";
but this nature is very particular indeed. Many authors have noted that the model for reasoning normality is that of a white, bourgeois male (e.g. Sayers, 1982; Le
Doeff, 1979). It should be noted, therefore, that the idea of normal development carries with it a very oppressive model of the natural, in which the idea of a normal
course of development is used as a regulative device. While such ideas were incorporated into pedagogic experiments in the early decades of the twentieth century, it
was not until the postwar period that they really began to come into their own in state education. The climate was ready in the 1930s, but the war intervened and it
was not until the expansive years of the 1960s that "childcentredness," as it became known, became incorporated in a large way in curriculum development.
Mathematics education was rather slower than other curriculum areas to take up these ideas, but there were two reports in the 1950s and 1960s, one by the
Mathematical Association (1956) and one by the Schools Council (1965) which advocated the "new pedagogy." In doing so, the central idea of mathematics as
reason became enshrined within the curriculum. This was widely interpreted to mean that logico-mathematical principles could be used to code all activities, and this
became translated into a kind of commonsense understanding in which everything became potentially mathematics. There was an inherent confusion because it was
assumed that children were unable to recognize that mathematics is everywhere. In this analysis, representation was grafted on to an unproblematic base of action. In
"The Mastery of Reason," I challenged these central notions, arguing that "mathematical" signs are produced within specific practices and that these practices are
always discursive.

Let me give some examples. I analyzed the way in which so-called mathematical signifiers, such as "more" and "less," were produced within domestic settings in the
homes of a sample of thirty four-year-old girls and their mothers (Tizard and Hughes, 1984; Walkerdine and Lucey, 1989). While it is commonly assumed in early
edu-
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cation that "less" is more complex than "more" and that the two form a pair, a contrastive opposition, describing the comparison of quantities, analysis of the mother-
daughter exchanges revealed that, although there were plenty of examples of the comparison of quantities, these were not described using the word pair "more/less,"
and that while "less" was not used at all, "more" was used frequently, but in the context of the regulation by the mothers of their daughters' consumption of
commodities. For example, a mother might tell her daughter that she could have no more of a particularly expensive commodity or that she could not have more food
until she had eaten what was on her plate. The contrastive pair here was not "more/less" but something more like "more/no more." It will come as no surprise that such
terms were used more frequently by mothers in working-class families, so that such little girls would be more likely to understand their mothers as more regulative and
to have very strong negative associations with the terms "more." (In Walkerdine (1990), I cite an example from my own history: my mother's use of the phrase "much
wants more.")

‘What then will such children make of the use of the term “more* to describe the comparison of quantities in early mathematics? I argue that this may be the same
signifier as in the practices of the home, but it is not the same sign. This difference is crucial for it suggests a more complex issue than existing practice might suggest.
argue further that such signifiers are made to signify when united with a signified within a particular practice, from which they take their meaning. Such practices are
discursively regulated with the participants positioned in particular ways. The idea of the production of mathematical signs within practices renders them at once both
socially and historically specific and links them to the nonrational noncognitive axis by the use of Lacan's (1977) transformation of Freud's theory of unconscious chains
of association into chains of signifiers.

I further analyzed the ways in which domestic practices are discursively different from or similar to school mathematical ones. Although the analysis of "mathematics is
everywhere" stresses the similarity between practices, such an analysis glosses over important differences. This discourse stresses the idea of transfer and the sense
that all experiences can be analyzed logico-mathematically. My analysis stresses why and how practices are made to signify and suggests that the relation between
family and school practices is far more complex than is suggested by the notion of doing mathematical examples in familiar contexts. I examined examples of mothers
and daughters cooking together and asked when and how cooking could be said to
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have become mathematics. Certain quite specific discursive transformations took place when cooking became mathematics. In every case, the discourse moved away
from the product of the task, something to be cooked, towards a mathematical string, with a particular linguistic form, in which all external reference was removed
from the string itself (as for example in the string 2 + 3 = 5). I argued that cooking could not be said to be mathematics, only to act as a foil for it, until this
transformation had occurred. This concentration on the mathematical string for its own sake, moving away from a product, is typical of the mathematical tasks which I
observed in early education. Indeed, the analysis of the shopping game to which I referred earlier, makes it dear that one of the problems for the group of seven-year-
olds was that this game was represented as shopping but that the regulation of the game was quite distinct from that of shopping practices. For example, each child
had to choose a card with an item to be bought and an amount of money less than ten pence. They had to work out what change from ten pence they would get if they
bought the item using plastic coins and to record the calculation on paper As I have explained, the group found the disjunction between the game prices and "real"
prices the basis for considerable humor and fantasy. They also had a fresh ten pence piece each time so that their money never decreased as it would have in real
shopping, and their end-product was a calculation written on a piece of paper and not a number of purchases. In other words there was absolutely no exchange.
Now, this is the issue that I referred to right at the beginning of the paper. The calculation has apparently become abstracted from its insertion in everyday practices.
Yet to use the term abstracted is misleading, for the new calculation exists as a discursive relation in a new set of practices, namely, those of school mathematics, with
its own modes of regulation and subjection. The child moves from the position of a shopper to that of a student, for example. What I am trying to establish is that this
move is not best described as a shift from concrete to abstract but as a move from one discursive practice to another Second, what comes to be valorized as a higher
order activity might have everything to do with attempts to regulate and control through reason in a social order which finds its norm in a bourgeois subject who does
not need to calculate to survive. Third, the new discursive practice of school mathematics has its own mode of regulation and subjectification. By this I mean that each
child becomes positioned as a subject in a new way. That way may be similar to or different from the patterns of subjectification in other practices, but evidence
suggests that for oppressed groups the patterns are substan-



Page 210

tially different. This may have important affective consequences. All of this suggests that the idea of children and adults possessing different skills in different contexts
can be shown in a new light. Scribner and Carraher's subjects, for example, are not bourgeois subjects: they are oppressed and exploited groups—working-class men
in the U.S.A. and children from the Brazilian lumpen proletariat.

1 should like to end, then, by attempting to exemplify the ways in which oppressed subjects may live the different positioning from practice to practice. This disturbs the
cozy picture of the rational unitary subject (Henriques et al. 1984), the "natural child" of developmental psychology, and substitutes an account which is specific to time
and place and against which Reason's Dream looks like one more colonial fantasy.

Splitting the Difference

How do children manage the transition from one practice to another? Although it is common in psychological accounts, especially from the 1960s and 1970s, to
suggest that it is good mothering that prepares children for success in school (see Walkerdine and Lucey, 1989 for a review) such accounts are problematic in that
they imply that the problems experienced by children from oppressed groups are the result of inadequate mothering. Such accounts deny the complexity of the pain of
moving from subjectification in one practice to another which appears to have a completely different set of rules and expectations. How might children from oppressed
groups cope with and defend themselves against the pain? Althusser (1971) in his famous Ideological State Apparatuses paper used Lacan's theory of the mirror stage
to argue that schools interpellated children as subjects, creating imaginary identities for them. Lacan used the idea of the mirror to suggest that the child's first view of
itself as whole and unitary was the first ideological illusion. Now, while the identity created by the school may well be a fiction, it has powerful effects. While Lacan
may be quite correct in asserting the illusory nature of the idea of a coherent identity, it is undoubtedly the case that subjects from oppressed groups experience more
keenly a disabling sense of fragmentation (Mama, 1987).

The title of this section refers to the psychoanalytic term "splitting," which is one of the mechanisms of defense against extreme
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anxiety. While Freud (1951) and Melanie Klein (1975) use this term in rather different ways, both refer to the way in which the unconscious defends itself (see
Walkerdine, 1985; Hollway, 1984; and Urwin, 1987 for further discussion). Although on the surface some children may appear to be dealing with the transition from
one practice to another in a detached manner, it is precisely this detachment which psychoanalytic accounts suggest is a key to extreme distress. Super-rationality may
be a defense against extreme anxiety. One of the six-year-old girls in a study which I conducted presented in class the appearance of extreme stupidity. She could not
follow a simple instruction and was extavagantly vague. It later became clear that her vagueness was her best defense, the way in which she routinely cut off from the
fact that her mother was being systematically physically abused by her father Her violent feelings only emerged in an incident in which she had broken the heads off
some dolls in the Wendy House.

Patsy is a working-class girl who at the age of four was part of the Tizard and Hughes (1984) study. We (Walkerdine and Lucey, 1989) saw her at ten. At four she
was, like many other girls in the study, having difficulty coming to terms with being a "big girl." However, if her mother positioned her as a "clever girl" she was willing
and able to carry out certain tasks. The positioning as her mother's clever girl was important. She also scored high on an IQ test. However, at ten she was certainly not
positioned by her teacher as "clever". Rather the teacher categorized her as "nowhere near as bright as the rest (of the class)." She said that Patsy resorted to infantile
behavior and that basically she had no saving graces. How come this "clever" little girl became stupid and infantile at ten?

It is a shocking fact that three other working class girls in the sample who gained high IQ scores at four were also regarded as stupid at ten and they all, like Patsy,
positioned themselves as victims. While many girls mentioned the violence of others, especially boys, these girls saw themselves as the target of that violence. Using the
psychoanalytic discourse, which I have discussed, it is possible to see this as a defensive response to unendurable pain. What if Patsy and these other girls felt
frightened in an alien world that they did not understand and which did not understand them? They could not easily unleash their anger against those who they needed
desperately to call them "clever," to make them feel safe and at home. To project their violent emotions into others and to present themselves as victims as reminiscent
of some of the symptoms displayed by colonized peoples as described by the psychiatrist Franz Fanon (1967) when talking about the Algerian War. Sometimes to
learn to split is to learn
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to survive and to long to be loved in an alien world in which it is all too easy to be rejected. Another defense, of course, is to do the rejecting first, so as to make the
pain of failure more bearable. Sociologists have tended to describe such strategies as anti-school resistance (e.g. Willis, 1977).

For all of these children, crossing the boundaries from one practice to another cannot be easy. In Walkerdine et al (1989) we pointed out that no girls cross the
boundary from home to school as an easy transition from dependency to autonomy. When girls enter school they are classified, categorized. The readings of their
behaviors and performance are highly gender-specific. We presented ample evidence to support the view that even when girls displayed the characteristics valorized in
boys this did not mean they were judged as being successful. Often, precisely these designations rendered them pathological when viewed in relation to femininity. We
argued that it was necessary to understand how highperforming girls came to be designated as "only hardworking" when poorly achieving boys could be understood as
"bright" even though they presented little evidence of high attainment. Poorly achieving girls in the study, quite simply, were never designated bright (see for example,
Walkerdine et al, 1989, page 102).

In other words, we presented a whole system of subjectifications through which girls are judged. That these subjectifications have little empirical foundation in relation
to the girls' performance further points to the importance of the sense that some fiction is being created to account for what it is necessary to prove time and time again:
the inferiority of the Other The Other constantly threatens the dominant group and no end of fantasies and fictions are employed to position the oppressed subject as
Other, pathological. We argued further that since Reason has to be understood as the possession of "man," there will always be a push to prove Otherness as "lack." It
is indeed the paranoias of the powerful that are at stake here: the fear that the oppressed might be able to take away their position of dominance. It is our contention
that this dominance has to be assured by a number of social and psychic strategies for constituting the oppressed groups as Other and so pathologizing them.

Such issues bring us back full circle to the pathologization of difference. It is my contention that any psychological approach to the issue of difference and mathematical
performance must deal with the complex psychic issues raised above. The fantasies of the colonizer are inscribed in the regulation of colonial subjects (Bhabha, 1984);
they become the "truths" through which development and perfor-
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mance are understood. Those fantasies and the attempts at regulation are inscribed in the very history of the insertion of theories of reason and reasoning into
mathematics education, and wherever we find the Other, the working class, the peasant, the black, the girl, there we find claims of the proof of abnormality, of
irrationality. My argument finally is then that in order to address these issues properly we need to construct accounts which move away from the stagewise
progressions of most First World developmental models to an understanding of development as specific to social and historical circumstances. Only then, I suggest,
will we be able to engage with oppression as something other than individual pathology.
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Chapter 10
An Example of Traditional Women's Work as a Mathematics Resource

Mary Harris

Editors's comment: Mary Harris presents a specific cultural activity usually considered women's work and reconsiders it as mathematical activity. This chapter first appeared in For
the Learning of Mathematics 7(3): 26-28, in 1987.

"Ex Africa semper aliquid novi" Pliny is supposed to have written: "There is always something new from Africa."

Part of the newness of Paulus Gerdes' work in Mozambique (Gerdes, 1986a) is that he offers "non-standard problems," easily solved by many illiterate Mozambican
artisans, to members of the international mathematics education community—who cannot (at first) do them. They have trouble in constructing angles of 90, 60, and 45
degrees and regular hexagons out of strips of paper, problems which are no trouble at all to people for whom the intellectual and practical art of weaving is a
necessary part of life.

Recently I have been offering to experienced teachers and teachers in training, some of the "non-standard problems" that are easily solved by any woman brought up
to make her or her family's clothes. Many of the male teachers are so unfamiliar with the construction and even shape and size of their own garments that they cannot
at first perceive that all you need to make a sweater (apart from the technology and tools) is an understanding of ratio and all you need to make a shirt is an
understanding of right angles and parallel lines, the idea of area, some symmetry, some optimization and the ability to work from two-dimensional plans to three-
dimensional forms.

What makes the problems non-standard is the viewpoint of those
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who set the standards. Gerdes' work, and the work of others in the field of ethnomathematics offer a rather threatening confrontation to the traditional standard setters.
Gerdes is up against a number of factors that until recently have tried to determine the education, or previous lack of it, in his country. The freshness of his work is his
illustration of the mathematics that already exists in Mozambican culture and how he is setting about "defrosting" it.

It is interesting to take Gerdes' analysis and his energy and commitment and to apply them worldwide and in the different context of women's culture. There will be
those who will maintain that "women" is too wide a term to allow of a single culture, but the "set of women who make and use textiles in home-making" would certainly
seem to fit the definition of culture used by Wilder (1981) in his Mathematics as a Cultural System.

In mathematical activity, women lose out in two ways. Until very recently, in most histories of mathematics, women mathematicians barely got a mention. Throughout
Western history, as Alic (1986) shows, the work of women mathematicians and scientists has been "ignored, robbed of credit and forgotten." Better that they should
stay at home and do their needlework, a harmless, practical and nonintellectual activity. Many women do their needlework in factories; indeed, in the textiles industry,
women are at the "cutting edge" (Chapkis and Enloe 1983). Here their lowly status is rationalized by all the usual tales: they "are said to have patience, a tolerance for
monotony, nimble fingers, attention to detail, little physical strength, no mechanical aptitude" and so on. In a world where there is little pre-disposition to take women's
intellectual work seriously, the potential for giving them any credit for thought in their practical work, at home or in the factory, is severely limited.

The social distinction between the practical mathematics considered appropriate for an artisan class and the theoretical mathematics of ¢lites is older than Plato
(D'Ambrosio 1985). Yet "practical, scientific, aesthetic, and philosophical interests have all shaped mathematics" (Kline 1953). Nowadays practical mathematics is
nearly always seen in terms of the application of theoretical mathematics learned in the formal context of school. It often still carries the stigma of being particularly
suitable for Low Attainers. Women doing practical mathematics really are at the bottom of the pile.

In fact a single activity can, by its nature, generate more mathematics than the application of the theory to a particular case. A recent conference of about 240
mathematics teachers offers an example. The teachers were given an activity posed not as a mathematical one but
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in the form of an internal memo to his visualization team of the managing director of an expensive design company, asking for some more than usual ingenuity of design
for a pack for a single sports ball, for a company he wished to impress. The teachers worked in groups and produced an impressive array of packs together with a list
of mathematics they had found themselves involved in, which ran to three pages. Most significant though was the behaviour of the groups. Those who perceived the
problem as just a mathematical one and only attempted it theoretically, found themselves confined to the very limited range of mathematics they had chosen. Those
who set about the task in a practical way, however, continually came up with further problems both of construction and design which in turn generated more problems
and more mathematics. In short, it was the theoreticians who limited themselves by their "theory and applications" approach. The practitioners found themselves
involved not only with wider, but also with deeper mathematics as it emerged from the task itself. Of course, the practitioners were mathematics teachers and therefore
knew what to look for, but there is no doubt at all that they surprised themselves.

Perhaps the role of school mathematics teachers in such circumstances should not be to teach some theory and then look for application but to analyze and elucidate
the mathematics that grows out of the students' activity. Gerdes uses the term "frozen" for mathematics hidden in cultural artifacts, and it is a good one, but there is the
danger that a pre-perception of what is there to be frozen could limit what is defrosted. We need a term that implies hatching or germination of undefined potential, as
well as defrosting, because much of the mathematical thinking that has become frozen in an artifact has been put there by someone who has not been reared on North
American textbooks or standard Western mathematics education with all its attitudes and prejudices. Traditional North American and Western mathematics has
ignored it until now (Islamic mathematics has always re-veiled in it), though weavers have always known that weaving is an intellectual activity. A glance at any piece of
traditional weaving reveals a huge range of obvious geometry to anyone who chooses to notice. How could it have got there without mathematical thinking? Why do
people choose not to notice?

A student studying symmetry in a Western school might be congratulated by his teacher on producing the design in figure 10- 1, after an investigation starting with an
isosceles triangle and involving translation and rotation. The same teacher might draw the attention of the rest of the class to such a pattern and suggest the class

analyze
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Figure 10-1.

together some of the things that have happened to the original triangle; thus, synthesis and analysis could take place over one activity, one student's thinking could be
revealed to others, and further thought developed.

Y/: S A
N/

Figure 10-2.
Figure 10-2 is a sketch of a motif worked on a Turkish flat woven rug, a kilim in the possession of the writer The motif is one of many on the rug and it is sketched in

such a way that the lines of a background grid would represent generally the warp and weft threads. Unlike figure 10-1 where a student can "plant" a triangle
anywhere
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on squared paper and work outwards from it, the weaver has to work under several constraints both of design and construction. The motif has to be placed exactly in
relation to other motifs, in relation to the symmetrical border of the rug and the symmetrical center panel within a wide border, so that the whole rug itself'is
symmetrical. Construction constraints mean that the weaver works from right to left and left to right on a grid already defined and confined by the number of warp
threads. The length of the rug is determined by the design, so that the weaver finishes it when the whole thing is symmetrical.

For reasons which need to be closely examined, figure 10-1 seems to count as mathematics, figure 10-2 does not. Most of the reasons suggested to the writer so far,
do not stand up to much examination. A summary of them is that figure 10-2 is simply not taken seriously as mathematics because first the weaver has had no
schooling and is illiterate and second, she is a girl. It has even been stated by more than one mathematics educator that the weaver "is not thinking mathematically," to
which the immediate response must be: "How do you know? Have you asked her what her thinking was?" It seems that the whole question as to whether figures 10-1,
and 10-2, neither, or both are mathematical is hedged about with not much more than attitude. The weaver is simply assumed not be capable of thinking
mathematically.

Figure 10-3.

Take another example, this time from industry, the problem of lagging a right-angled cylindrical pipe in a factory (figure 10-3). The problem is to prevent the lagging
from bunching up at the inside of
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the angle at A and thus developing a hot spot and stretching out at B, thus developing a cold spot. The factory is a chemical works and the lagging problem is
compounded by the fact that the right angle has to open out on occasion to about 180 degrees. So as well as being inefficient in crucial places, the lagging will soon
wear out. In industry this is just the sort of problem to which mathematical thinking would be brought.

Why is it that this industrial problem is considered to be inherently mathematical whereas the identical domestic problem, that of the design of the heel of a sock, is
not? Dare it be suggested that the reason is that socks are traditionally knitted by Granny—and nobody expects her to be mathematical. What, dear old Gran?

Turn heel as follows: —

Istrow - K.12 [14, 16], sl.1, K.1, psso., K.1, turn.

2nd row - P.6 [6, 8], P.2 tog., P.1, turn.

3rd row - K. to last 6 [8, 8] sts., sl.1, K.1, psso, K.1, turn.
4th row - P. to last 6 [8, 8] sts., P.2 tog., P.1, turn.

5th row - K. to last 4 [6, 6] sts., sl.1, K.1, psso, K.1, turn.
6th row - P. to last 4 [6, 6] sts., P.2 tog., P.1, turn.

Figure 10-4.



Page 221

Or is there really some mathematical reason like the problem not being capable of general solution? But the way experienced knitters actually work is to a general
solution. Sock instructions are tediously written out row by row as in figure 10-4, but only the most in experienced or unskilled worker would actually use them like
this. The normal procedure for an experienced person is to follow the pattern only for as long as it is necessary to get the feel of the way the thing is shaping. Women
who make socks for families of children often work to their own general solution (there are several), modifying them for a particular child who has grown.

Why, when we take children to look at the environment so that we can draw out the mathematics, do we always show them the man-made environment: cranes,
bridges, paving slabs, brick patterns? Why do we choose not to look at the closer environment, the one we carry with us? How many men who wear ties are aware
of the interesting geometry that is going on literally under their noses?

So what is it about the sock problem that ensures that it will not be taken seriously? Why is it non-standard? Is it simply that it is not normal to couch it in mathematical
jargon? Very well then, here it is formally: "Derive a general expression for the heel of a sock."

And as to whether you still wonder if it is mathematics or not, to quote Gerdes again, "Please answer for yourself."
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Chapter 11
On Culture, Geometrical Thinking and Mathematics Education

Paulus Gerdes

Editors's comment: Paulus Gerdes, a Mozambican mathematician and mathematics educator, has been a leading researcher in uncovering mathematical ideas embedded in African
cultural practices and artifacts and in presenting these findings to the mathematical community. In this chapter, he demonstrates an alternative construction of certain "Euclidean”
geometrical ideas by reconsidering the mathematics inherent in traditional Mozambican culture. Consequently, this chapter raises questions concerning the origins of these
geometrical ideas. Finally, he demonstrates how ethnomathematical research into Mozambican material culture can create an empowering curriculum for Mozambican students.
This chapter first appeared in Educational Studies in Mathematics, Dordrecht 19(3): 137-162, in 1988. It has also been published in Bishop, A. (Ed.). Mathematics education and
culture. Dordrecht: Kluwer, 1988, 137-162; and in Gerdes, P. Ethnomathematics and education in Africa. Stockholm: University of Stockholm Institute of International Education,
1995, 30-52.

"Colonization is the greatest destroyer of culture that humanity has ever known. . . Long-suppressed manifestations of culture have to regain their place . . ."
—Samora Machel, 1978.

"Education must give us a Mozambican personality which, without subservience of any kind and steeped in our own realities, will be able, in contact

This article is dedicated to Samora Machel, President of Mozambique, who died on the 19th October 1986, the day I finished this chapter.
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with the outside world, to assimilate critically the ideas and experiences of other peoples, also passing on to them the fruits of our thought and practice."
—Samora Machel, 1970.

Some Social and Cultural Aspects of Mathematics Education in Third World Countries
In most formerly colonized countries, post-independence education did not succeed in appeasing the hunger for knowledge of its people's masses.

Although there had occurred a dramatic explosion in the student population in many African nations over the last twenty five years, the mean illiteracy rate for Africa
was still 66 percent in 1980. Overcrowded classrooms, shortage of qualified teachers, and lack of teaching materials contributed towards low levels of attainment. In
the case of mathematics education, this tendency has been reinforced by a hasty curriculum transplantation from highly industrialized nations to Third World
countries. ! With the transplantation of curricula their perspective was also copied: "(primary) mathematics is seen only as a stepping stone towards secondary
mathematics, which in turn is seen as a preparation for university education."? Mathematics education is therefore structured in the interests of a social elite. To the
majority of children, mathematics looks rather useless. Maths anxiety is widespread; especially for sons and daughters of peasants and laborers, mathematics enjoys
little popularity. Mathematics education serves the selection of elites: "Mathematics is universally recognized as the most effective education filter," as El Tom
underlines.? Ubiratan D'Ambrosio, president of the Interamerican Committee on Mathematics Education agrees: ". . . mathematics has been used as a barrier to
social access, reinforcing the power structure which prevails in the societies (of the Third World). No other subject in school serves so well this purpose of
reinforcement of power structure as does mathematics. And the main tool for this negative aspect of mathematics education is evaluation."*

In their study of the mathematics learning difficulties of the Kpelle (Liberia), Gay and Cole (1967) concluded, that there do not exist any inherent difficulties: what
happened in the classroom, was that the contents did not make any sense from the point of view of
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Kpelle-culture; moreover the methods used were primarily based on rote memory and harsh discipline. 3 Experiments showed that Kpelle illiterate adults performed
better than North American adults, when solving problems, like the estimation of number of cups of rice in a container, that belong to their "indigenous mathematics."®
Serious doubts about the effectiveness of school mathematics teaching are also raised by Latin American researchers. Eduardo Luna (Dominican Republic) (1983)
posed the question if it is possible, that the practical mathematical knowledge that children acquired outside the school is "repressed" and "confused" in the school.”
Not only possible, but this happens frequently, as shown by the Brasilians Carraher and Schliemann (1982): children, who knew before they went to school, how to
solve creatively arithmetical problems which they encountered in daily life, for example, at the marketplace, could, later in the school, not solve the same problem, that
is, not solve them with the methods taught in the arithmetic class.® D'Ambrosio concludes that "learned’ matheracy eliminates the so-called 'spontaneous’
matheracy," that is, “An individual who manages perfectly well numbers, operations, geometric forms, and notions, when facing a completely new and formal
approach to the same facts and needs creates a psychological blockade which grows as a barrier between the different modes of numerical and geometrical
thought".1® What happens in the school, is that "the former, let us say, spontaneous, abilities (are) downgraded, repressed, and forgotten, while the learned ones (are
not being) assimilated, either as a consequence of a learning blockage, or of an early dropout."!! For this reason, "the early stages of mathematics education (offer) a
very efficient way of instilling the sense of failure, of dependency in the children."!> How can this psychological blockade be avoided?

How can this "totally inappropriate education, leading to misunderstanding and sociocultural and psychological alienation"'® be avoided? How can this "pushing aside"
and "wiping out" of spontaneous, natural, informal, indigenous, folk, implicit, non-standard, and / or hidden (ethno)mathematics be avoided?'

Gay and Cole (1967) became convinced that it is necessary to investigate first the "indigenous mathematics," in order to be able to build effective bridges from this
“indigenous mathematics" to the new mathematics to be introduced in the school: ". . . the teacher should begin with materials of the indigenous culture, leading the
child to use them in a creative way,"!S and from there advance to the new school mathematics. The Tanzanian curriculum specialist Mmari stresses, that: ". . . there are
traditional mathematics methods still being used in
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Tanzania. . .. A good teacher can utilize this situation to underline the universal truths of the mathematical concepts." '* And how could the good teacher achieve this?
Jacobsen answers: "The (African) people that are building the houses are not using mathematics; they're doing it traditionally . . . if we can bring out the scientific
structure of why it's done, then you can teach science that way."!” For D'Ambrosio, (1984) it becomes necessary ". . . to generate ways of understanding, and
methods for the incorporation and compatibilization of known and current popular practices into the curriculum. In other words, in the case of mathematics,
recognition and incorporation of ethnomathematics into the curriculum."® ", . . this. . .. requires the development of quite difficult anthropological research methods
relating to mathematics; . . . anthropological mathematics. . . constitutes an essential research theme in Third World countries . . . as the underlying ground upon
which we can develop curriculum in a relevant way.""®

Towards a Cultural-Mathematical Reaffirmation

D'Ambrosio stressed the need for incorporation of ethnomathematics into the curriculum in order to avoid a psychological blockade. In former colonized countries as
Mozambique, there exists also a related cultural blockade to be eliminated. "Colonization—in the words of Samora Machel, first President of Mozambique—is the
greatest destroyer of culture that humanity has ever known. African society and its culture were crushed, and when they survived they were coopted so that they could
be more easily emptied of their content. This was done in two distinct ways. One was the utilization of institutions in order to support colonial exploitation. . . . The
other was the 'folklorizing' of culture, its reduction to more or less picturesque habits and customs, to impose in their place the values of colonialism." "Colonial
education appears in this context as a process of denying the national character, alienating the Mozambican from his country and his origin and, in exacerbating his
dependence on abroad, forcing him to be ashamed of his people and his culture."?® In the specific case of mathematics, this science was presented as an exclusively
white men's creation and ability; the mathematical capacities of the colonized peoples were negated or reduced to rote memorization; the African and American-Indian
mathematical traditions became ignored or despised.
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A cultural rebirth is indispensable, as Samora Machel (1978) underlines: ". . . Long-suppressed manifestations of culture (have to) regain their place." 2! In this
cultural rebirth, in this combat of racial and colonial prejudice, a cultural-mathematical-reaffirmation plays a part: it is necessary to encourage an understanding that
the peoples of the Third World have been capable of developing mathematics in the past, and therefore regaining cu/tural confidence?’—will be able to assimilate and
develop the mathematics we need; mathematics does not come from outside the African, Asian, and American-Indian cultures.

We may conclude that the incorporation of mathematical traditions into the curriculum will—probably—contribute not only to the elimination of individual and social
psychological blockade, but also of the related cultural blockade. Now, this raises an important question: which mathematical traditions? In order to be able to
incorporate popular (mathematical) practices, it is first of all necessary to recognize their mathematical character. In this sense, D'Ambrosio (1985) speaks about
the need to broaden our understanding of what mathematics is.2> Ascher and Ascher (1981) remark in this connection "Because of the provincial view of the
professional mathematicians, most definitions of mathematics exclude or minimize the implicit and informal; . . . involvement with concepts of number, spatial
configuration, and logic, that is, implicit or explicit mathematics, is panhuman."**

Broadening our understanding of what mathematics is, is necessary, but not sufficient. A related problem is how to reconstruct mathematical traditions, when probably
many of them have been—as a consequence of slavery, of colonialism. . —wiped out. Few or almost none (as in the case of Mozambique) written sources can be
consulted. Maybe for number systems and some aspects of geometrical thinking, oral history may constitute an alternative. What other sources can be used? What
methodology ?

We developed a complementary methodology that enables one to uncover in traditional, material culture some hidden moments of geometrical thinking. It can be
characterized as follows. We looked to the geometrical forms and patterns of traditional objects like baskets, mats, pots, houses, fishtraps, ad so forth and posed the
question: why do these material products possess the form they have? In order to answer this question, we learned the usual production techniques and tried to vary
the forms. It came out that the form of these objects is almost never arbitrary, but generally represents many practical advantages and is, quite a lot of times, the only
possible or optimal solution of a production problem. The traditional form reflects accu-
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mulated experience and wisdom. It constitutes not only biological and physical knowledge about the materials that are used, but also mathematical knowledge,
knowledge about the properties and relations of circles, angles, rectangles, squares, regular pentagons and hexagons, cones, pyramids, cylinders, and so forth.

Applying this method, we discovered quite a lot of "hidden" or "frozen" mathematics. 25 The artisan, who imitates a known production technique, is, generally, doing
some mathematics. But the artisans who discovered the techniques, did and invented quite a lot of mathematics, were thinking mathematically. When pupils are
stimulated to reinvent such a production technique, they may be encouraged to do and learn mathematics. Hereto they can be stimulated only if the teachers
themselves are conscious of hidden mathematics, are convinced of the cultural, educational, and scientific value of rediscovering and exploring hidden mathematics,
are aware of the potential of "unfreezing" this "frozen mathematics." Now we shall present some of our experiences in this necessary "cultural conscientialization" of
future mathematics teachers.

Examples of ""Cultural Conscientialization" of Future Mathematics Teachers
Study of Alternate Axiomatic Constructions of Euclidean Geometry in Teacher Training

Many alternate axiomatic constructions for euclidean geometry have been devised. In Alexandrov's construction,? Euclid's famous fifth postulate is substituted by the
"rectangle, axiom":
L C D <

A B A B

that is, if AD =BC and A and B are right angles, then AB = DC and C and D are also right angles. In one of the classroom sessions of an
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introductory geometry course, we posed the following provocative question to our future mathematics teachers—many of whom are sons and daughters of peasants—
:"Which 'rectangle axiom' do the Mozambican peasants use in their daily life?" The students' first reactions were rather sceptical in the sense of "Oh, they don't know
anything about geometry." Counterquestions followed: "Do the peasants use rectangles in their daily life?". "Do they construct rectangles?" Students from different parts
of the country were asked to explain to their colleagues how their parents construct, for example, the rectangular bases of their houses. Essentially, two construction
techniques are common:

(a) In the first case, one starts by laying down on the floor two long bamboo sticks of equal length.

—

Then these first two sticks are combined with two other sticks also of equal length, but normally shorter than the first ones.

—

Now the sticks are moved to form a closure of a quadrilateral.

One further adjusts the figure until the diagonals—measured with a rope—become equally long. Then, where the sticks are now



lying on the floor, tines are drawn and the building of the house can start.

(b) In the second case, one starts with two ropes of equal length, that are tied together at their midpoints.
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A bamboo stick, whose length is equal to that of the desired breadth of the house, is laid down on the floor, and at its end-points pins are hit into the ground. An endpoint of each

of the ropes is tied to one of the pins.

Then the ropes are stretched and at the remaining two endpoints of the ropes, new pins are hit into the ground. These four pins determine the four vertices of the house to be

built.
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"[s it possible to formulate the geometrical knowledge, implicit in these construction techniques, into terms of an axiom?" "Which 'rectangle axiom' do they suggest?"
Now the students arrive at the following two alternate "rectangle axioms":

B cC 3] <

11
L] T T

A B A B

that is, if AD =BC, AB =DC and AC =BD, then A, B, C and D are right angles. In other words, an equidiagonal parallelogram is a rectangle.

D C D C

I
T Tt ]

if Jthen 4 +

ul 1 I
A B A B

that is, if M = AC « BD and AM = BM = CM = DM, then A, B, C and D are right angles, AD = BC and AB = DC. In other words, an equisemidiagonal
quadrilateral is a rectangle. "After all, our peasants know something about geometry," remarks a student. Another, more doubtful: "But these axioms are theorems,
aren't they?" This classroom session leads to a more profound understanding by the student of the relationships between experience, the possible choices of axioms,
between axioms and theorems at the first stages of alternate axiomatic constructions. It prepares the future teachers for discussions later in their study on which
methods of teaching geometry seem to be the most appropriate in our cultural context. It contributes to cultural-mathematical confidence.
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An Alternate Construction of Regular Polygons

Artisans in the north of Mozambique weave a funnel in the following way. One starts by making a square mat ABCD, but does not finish it: with the strands in one
direction (horizontal in our figure), the artisan advances only until the middle.

D FE C -
H
° T

A B

Then, instead of introducing more horizontal strips, he interweaves the vertical strands on the right (between C and E) with those on the left (between F and D). In this
way; the mat does not remain flat, but is transformed into a "basket." The center T goes downwards and becomes the vertex of the funnel. In order to guarantee a
stable rim, its edges AB, BC, and AC are rectified with little branches. As a final result, the funnel has the form of a triangular pyramid. So far about this traditional

production technique.
C C
o A
A B A *B

We posed our students the following question: "What can we learn from this production technique?" "The square ABCD has been transformed into a triangular
pyramid ABC.T, whose base ABC is an equilateral triangle.

Maybe a method to construct an equilateral triangle?" . . .. Some
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reacted sceptically: "A very clumsy method to do so." Counterquestions: "Avoid overhasty conclusions! What was the objective of the artisan? What is our objective?"
"Can we simplify the artisans' method if we only want to construct an equilateral triangle?' "How to construct such a triangle out of a square of cardbord paper?" An

answer to these questions is given in the following diagrams:

D C D C
. "x"
T M "T"\‘
A B ALS 5B
folding the diagonals
F
D (3
Al B
folding FT
D N & .:} C 3] L: e nj C
5 F
A B A B

join the triangles DFT and CFT until C and D coincide,

F goes up, T goes down



A B % *B
fix the "double triangle" DFT to the face ATC, e.g. with a paperclip

"Can this method be generalized?" "Starting with a regular octagon, how to transform it into a regular heptagonal pyramid?" "How to fold a regular octagon?"
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F goes up, T goes down and A, and Ag approximate until they coincide

"How to transform the regular heptagonal pyramid into a regular hexagonal pyramid?" As 2"-gons are easy to fold (by doubling the central diagonals when one starts
with a square) and each time that the simplified "funnel-method" is applied, the number of sides of a regular polygon (or of the regular polygonal base of a pyramid)
decreases by 1, it can be concluded that all regular polygons can be constructed in this way. 2% Once arrived at this point, it is possible to look back and ask: "Did we
learn something from the artisans who weave funnels?" "Is it possible to construct a regular heptagon using only a ruler and a compass?" "Why not?" "And with our
method?"

"What are the advantages of our general method in relation to the standard Euclidean ruler and compass constructions?" "What are its disadvantages?" "Which method
has to be preferred for our primary schools?" "Why?"

From Woven Buttons to the ""Theorem of Pythagoras'?®

By pulling a little lassoo around a square-woven button, it is possible to fasten the top of a basket, as is commonly done in southern parts of Mozambique. The square
button, woven out of two strips, hides some remarkable geometrical and physical considerations. By making them explicit, the interest in this old technique is already
revived. But much more can be made out of it, as will now be shown.

‘When one considers the square-woven button from above, one



observes the pattern (a) or the pattern obtained (b) after rectifying the slightly curved lines and by making the hidden lines visible:
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In its middle there appears a second square. Which other squares can be observed, when one joins some of these square-woven buttons together? Do there appear
other figures with the same area as (the top of) a square-woven button?

Yes, if you like, you may extend some of the line segments or rub out

some others.
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What do you observe? Equality in areas?

Hence A=B+C:
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that is, one arrives at the so-called "Theorem of Pythagoras."
The teacher-students themselves rediscover this important theorem and succeed in proving it. One of them remarks: "Had Pythagoras—or somebody else before
him—not discovered this theorem, we would have discovered it". . .. Exactly! By not only making explicit the geometrical thinking "culturally frozen" in the square-
woven buttons, but by exploiting it, by revealing its full potential, one stimulates the development of the above mentioned necessary cultural-mathematical (self)
confidence. "Had Pythagoras not . . . we would have discovered it."The debate starts. "Could our ancestors have discovered the 'Theorem of Pythagoras'?" "Did

they?" . .. "Why don't we know it?"'. . .. "Slavery, colonialism . . .. "By "defrosting frozen mathematical thinking" one stimulates a reflection on the impact of
colonialism, on the historical and political dimensions of mathematics (education).

From Traditional Fish traps to Alternate Circular Functions, Football, and the Generation of (Semi)regular Polyhedra

Mozambican peasants weave their light transportation baskets "Litenga" and fishermen their traps "Lema" with a pattern of regular hexagonal holes. One way to
discover this pattern is the following. How can one fasten a border to the walls of a basket, when both border and wall are made out of the same material? How to

wrap a wallstrip around the borderstrip?

What happens when one presses (horizontally) the wallstrip? What is the best initial angle between the border- and wallstrip?
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In the case that both strips have the same width, one finds that the optimal initial angle measures 60°. By joining more wallstrips in the same way and then introducing
more horizontal strips, one gets the "Litenga" pattern of regular hexagonal holes.

By this process of rediscovering the mathematical thinking hidden in these baskets and fishtraps—and in other traditional production techniques—the future teachers
feel themselves stimulated to reconsider the value of their cultural heritage: in fact, geometrical thinking was not and is not alien to their culture. But more than that. This
"unfreezing of culturally frozen mathematics" can serve, in many ways, as a starting point and source of inspiration for doing and elaborating other interesting
mathematics. In the concrete case of this hexagonal-weaving-pattern, for example, the following sets of geometrical ideas can be developed.

A. Tiling Patterns and the Formulation of Conjectures.

Regular hexagonal and other related tiling patterns can be discovered by the students.
hexagonal

OO0 OO0
OO0 - -GO0
OO0 SO0
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pentagonal rhombic triangular

With the so-found equilateral triangle, many other polygons can be built. By considering these figures, general conjectures can be formulated, for example,

* the sum of the measures of the internal angles of a n-gon is equal to 3(n - 2) 60°

A [T A

* areas of similar figures are proportional to the squares of their sides;

A 1

e=1, A=1 3

c=2 A=14

c=3 A=9

side=1; area=1=1? side=2; area=4=2? side=3; area=9=3>



Page 241

* the sum of the first n odd numbers is n%.
Once these general theorems are conjectured, there arises the question of justifying, how to prove them.
B. An Alternate Circular Function.

Let us return to the weaving of these "Litenga" baskets. What happens when the "horizontal" and "standing" strips are of different width, for example, 1 (unity of
measurement) and a?

One finds a semi-regular hexagonal pattern. How does the optimal angle
a depend on a?
a=hex(a)

How does a vary? Both a and a can be measured. One finds:

30 60 on  degrees

We have here a culturally integrated way to introduce a circular function. After the study of the "normal" trigonometric functions, their relationships can be easily
established, for example,
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= L P

a = hex foe) =
C. Footballs and Polyhedra

The faces and edges of the "Lema" fishtrap display the regular-hexagonal-hole-pattern. At its vertices the situation is different. The artisans discovered that in order to
be able to construct the trap, "curving" the faces at its vertices, it is necessary, for example, at the vertices A, B, and C to reduce the number of strips. At these points,
the six strips that "circumscribe" a hexagon, have to be reduced to five. That is why one encounters at these vertices little pentagonal holes.

What can be learnt from this implicit knowledge? What types of baskets can be woven, that display at all their vertices pentagonal holes?

It comes out that the smallest possible "basket," made out of six strips, is similar to the well-known modern football made out of pentagonal and hexagonal pieces of
leather.

woven ball football

When one "planes" this ball, one gets a truncated icosahedron, bounded by 20 regular hexagons and 12 regular pentagons. By ex-
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tending these 20 hexagons, one generates the regular. On the other hand, when one extends the 12 pentagons, the regular dodecahedron is produced.

What type of "baskets" can be woven, if one augments their "curvature?" Instead of pentagonally woven "vertices," there arise square-hole-vertices. By planing the
smallest possible "ball," one gets a truncated octahedron, bounded by 6 squares and 8 regular hexagons. Once again, by extension of its faces, new regular polyhedra
are discovered, this time, the cube and the regular octahedron. When one augments still more the curvature of the "ball," there appear triangular-hole-vertices and by
"planing" the "ball," one gets a truncated tetrahedron, bounded by 4 regular hexagons and 4 equilateral triangles. By extension of its hexagonal or triangular faces one
obtains a regular tetrahedron.

woven truncated icosahedron truncated icosahedron

Many interesting questions can be posed to future teachers, for example,

* is it possible to "weave" other semi-regular polyhedra? Semi-regular, in what sense?
* did we generate all regular polyhedra? Why?

* what happens if one, instead of reducing the material at a

vertex of the basket, augments it?

Concluding Remarks

Of the struggle against "mathematical underdevelopment" and the combat of racial and neo-colonial prejudice, a cultural-mathemati-
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cal reaffirmation makes a part. A "cultural conscientialization" of future mathematics teachers, for example, in the way we described, seems indispensable.

Some other conditions and strategies for mathematics education to become emancipatory in former colonized and (therefore) under-developed countries have been
suggested elsewhere. 3
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Notes

1. Cf. e.g. Eshiwani (1979), Nebres (1983) and E1 Tom (1984).
2. Broomes and Kuperes (1983, p. 709).

3. E1 Tom, 1984, p. 3.

4. D'Ambrosio (1983, p. 363).

5. Gay and Cole (1967, p. 6).

7. Gay and Cole (1967, p. 66).

8. Luna (1983, p. 4).

8. Carraher a.o. (1982).

9. D'Ambrosio (1984, p. 6). Cf. D'Ambrosio (1985b).

10. D'Ambrosio (1984, p. 6), italics E G.

11. D'Ambrosio (1984, p. 8), italics E G.

12. D'Ambrosio (1984, p. 7).

13. Pinxten (1983, p. 173).

14. These terms are used by different authors, among them are D'Ambrosio: spontaneous; Carraher, D., Carraher, T.; and Schliemann, A,: natural; Posner, Ascher:
informal; Gay and Cole: indigenous; Mellin-Olsen: folk;



Page 245
Ascher and Ascher: implicit; Carraher, D., Carraher, T., and Schlieman: nonstandard; Gerdes: hidden, "frozen;" D'Ambrosio: ethno-.
15.Gay and Cole (1967, p. 94).
16.Mmari (1978, p. 313).
17.Quoted by Nebres (1984, p. 4).
18.D'Ambrosio (1984. p. 10).
19.D'Ambrosio (1985a, p. 47).
20.Machel (1978, p. 401).
21.Machel (1978, p. 402).
22.Cf. Gerdes (1982, 1985a).
23.D'Ambrosio (1985, p. 45).
24.Ascher and Ascher (1981, p. 159), italics P. G.; cf. Gerdes (1985b, §2).

25. The first results are summarized in Gerdes (1985b). Cf. Gerdes (19864, f). By bringing to the surface geometrical thinking that was hidden in very old production
techniques, like that of basketry, we succeeded in formulating new hypotheses on how the ancient Egyptians and Mesopotamians could have discovered their formulas
for the area of a circle [cf. Gerdes (1985b,c, 1986d)] and for the volume of a truncated pyramid [cf. Gerdes (1985"b)]. It proved possible to formulate new
hypotheses on how the so-called Theorem of Pythagoras could have been discovered [cf. Gerdes (1985b, 1986c¢, ¢)].

26. Experimental course developed for secondary schools in the USSR (1981) by a team directed by the academician A. Alexandrov.
27. The implicit geometrical knowledge that it reveals, is analyzed in Gerdes (1985b).

28. For more details, see Gerdes (1986b).

29. Another "culturally integrated" introduction to the "Theorem of Pythagoras" is presented in Gerdes (1986c, g).

30. Cf. e.g. Gerdes (1985a, 1986a), D'Ambrosio (1985b) and Mellin-Olsen (1986).
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