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Preface

In many realities, the lifetime of a given subject could be difficult to measure
or obtain because of longevity and/or failures caused by unexpected cumulative,
random shocks. In such situations, if a cumulative degradation characteristic related
to lifetime can be observed, then the reliability or lifetime percentile can be
modeled through these degradation measurements. In recent years, degradation
data analysis has played an important role in widely varied disciplines such as
reliability, public health sciences, and finance. For instance, reliability information
for a highly reliable product can be obtained through analyzing degradation
data. Statistical modeling and inference techniques have been developed based on
different degradation measures.

Our aim in creating this book was to provide a venue for the timely dissemination
of research on the statistical aspects of the analysis of degradation data and to
promote further research and collaborative work in this area. The book strives to
bring together experts engaged in statistical modeling and inference to present and
discuss the most recent important advances in degradation data analysis and related
applications. The authors have made their data and/or computer programs publicly
available, thus making it possible for readers to replicate the model development or
data analysis presented in each chapter as well as to readily apply these new methods
in their own research.

The 17 chapters are organized into three parts. Part I includes six chapters
that present a review of the theoretical framework of degradation data. Part II
comprises four chapters with a common focus on modeling and experimental design
in degradation. Part III is composed of seven chapters that outline applications in
degradation data analysis. All chapters underwent a rigorous peer-review process.

v



vi Preface

Part 1: Review and Theoretical Framework (Chaps. 1, 2, 3, 4,
5, and 6)

Chapter 1 presents a general methodology for stochastic degradation models
based on a generalized cumulative damage approach. In this chapter, Park uses
a generalized cumulative damage approach with a stochastic process to describe
degradation and provides stochastic accelerated degradation models that handle
failure data analysis with both soft and hard failures.

In Chap. 2, Bae and Yuan propose a hierarchical Bayesian change-point regres-
sion model to fit two-phase nonlinear degradation data. The authors have developed
a Gibbs sampling algorithm for the inference of the parameters in the change-point
regression model.

In Chap. 3, Hu, Li, and Hu provide a comprehensive review of the different
kinds of modeling and analytic approaches for residual life prediction. The authors
illustrate their discussion using a practical field application example and discuss
over related issues in model selection and initial product performance incorporation.

Chapter 4 focuses on shock models with Poisson and generalized Poisson shock
processes. Finkelstein and Cha derive the corresponding survival probabilities
and demonstrate relevant stochastic analysis of the conditional characteristics. In
addition, the authors consider some applications of these models.

In Chap. 5, Peng and Ye review degradation-based reliability modeling and
assessment of complex systems in dynamic environments using a progressive three-
stage framework: Stage 1, one-dimensional degradation process under dynamic
environments; Stage 2, multiple degradation processes under static environments;
and Stage 3, multiple degradation processes under dynamic environments. Peng and
Ye also present additional research from both theoretical and practical perspectives.

Chapter 6 provides a general survey of the modeling and applications on non-
destructive and destructive degradation tests. Authors Tsai, Lin, and Balakrishnan
discuss the practical applications of burn-in and acceptance tests and provide other
examples from the literature.

Part 2: Modeling and Experimental Designs (Chaps. 7, 8, 9,
and 10)

Chapter 7 presents a degradation test plan for a nonlinear random coefficient model.
In this chapter, Kim and Bae develop a design for a cost-efficient degradation
test plan in the context of a nonlinear random coefficient model while satisfying
precision constraints for the failure-time distribution. The proposed method is
applied to degradation data of plasma display panels, and a sensitivity analysis is
provided to show the robustness of the proposed test plan.

In Chap. 8, Tsai, Lio, Jiang, Ng, and Chen overview a statistical inference of
the lifetime percentiles of light-emitting diodes (LED) based on lumen degradation
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Preface vii

measurements collected by the constant-stress accelerated degradation testing
method with the stress loadings of ambient temperature and drive current. The
discussion focuses on the process of reaching a compromise between the experi-
mental budget and estimation precision of reliability inference when implementing
a constant-stress accelerated degradation test.

In Chap. 9, Balakrishnan, Tsai, and Lin discuss the inferences and optimal design
of gamma degradation models. Additionally, they review the corresponding optimal
designs for efficiently conducting degradation experiments on burn-in tests, which
are used for classifying a unit as either typical or weak before products reach
consumers.

Chapter 10 presents model misspecification analysis of inverse Gaussian and
gamma degradation processes. In this chapter, Tseng and Yao first review results
of model misspecification analysis. Then, motivated by stress relaxation data, the
authors investigate the effect of misspecification on the prediction of a product’s
mean lifetime, when an increasing degradation model is not correctly specified.

Part 3: Applications (Chaps. 11, 12, 13, 14, 15, 16, and 17)

Chapter 11 addresses the practical application of Fréchet Shock-degradation models
for system failures. Authors Lee and Whitmore present a wide variety of data
structures for which this model is suitable and illustrate the estimation methods
through three case applications.

In Chap. 12, Xie and Hong present the statistical methods for thermal index
(TI) estimation based on accelerated destructive degradation test data. The authors
provide a comprehensive review of the three methods and illustrate ways of
estimating TI based on different models. The chapter includes comprehensive
simulation studies that demonstrate the properties of different methods.

Chapter 13 addresses the remaining useful life estimation, a core concept in
health management and research in the field of reliability. Ling, Ng, and Tsui
present the inference on the remaining useful life under gamma degradation models
with random effects. A Monte Carlo simulation study is carried out to evaluate the
performance of the developed method using real data on the light intensity of LED
lights.

Chapter 14 illustrates the R package “ADDT” for the analysis of accelerated
destructive degradation test data. In this chapter, Xie and Hong provide a detailed
description of the uses and functions of the R package ADDT for performing
least squares, parametric, and semiparametric analyses of accelerated destructive
degradation test data.

Chapter 15 centers on CD4 data, a critical laboratory indicator of the strength of
the human immune system and a predictor of the progress of HIV. In this chapter,
He, Liu, and Wang focus on modeling and inference of CD4 data and illustrate
functional data analysis using a smoothing technique to extract the form of the
underlying random function.
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Chapter 16 discusses the remaining useful life prediction for rechargeable
batteries. In this chapter, Wang and Tsui propose several state space models based
on prognostic methods to predict battery remaining useful life. The authors then use
these models to design a method for predicting battery life at different discharge
rates.

Chapter 17 examines system identification for accelerated destructive degrada-
tion testing of nonlinear dynamic systems. In this chapter, Crous, Wilke, Kok,
Chen, and Heyns develop three methods and conduct tests using simulated data.
The authors demonstrate the superiority of a prototype bootstrapping strategy; using
400,000 data points generated by this strategy, the input signals were predicted with
mean square errors of 5.08e-4.

As a general note, the references for each chapter immediately follow the chapter
text. We have organized the chapters as self-contained units so readers can more
easily and readily refer to the cited sources for each chapter. To facilitate readers’
understanding of the methods presented in this book, the corresponding data and
computing program can be requested from the chapter authors.

The editors are deeply grateful to the many who have supported the creation
of this book. We first thank the authors of each chapter for their contributions
and their generous sharing of their knowledge, time, and expertise. Second, our
sincere gratitude goes to all the chapter reviewers for their expert reviews of each
chapter of this book, which substantially improved the quality of this book. We
gratefully acknowledge the professional support of Hannah Qiu (Springer/ICSA
Book Series coordinator) and Wei Zhao (associate editor) from Springer Beijing
that made publishing this book by Springer a reality.

We welcome readers’ comments, including notes on typos or other errors, and
look forward to receiving suggestions for improvements to future editions. Please
send comments and suggestions to any of the editors listed below.

Chapel Hill, NC, USA Ding-Geng (Din) Chen
Vermillion, SD, USA Yuhlong Lio
Dallas, TX, USA Hon Keung Tony Ng
New Taipei City, Taiwan Tzong-Ru Tsai
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Chapter 1
Stochastic Accelerated Degradation Models
Based on a Generalized Cumulative
Damage Approach

Chanseok Park

Abstract A general methodology for stochastic degradation models is introduced
that allows for both hard and soft failures to be taken into account when conducting
parametric inference on lifetimes. Due to the development of engineering and
science technology, modern products have longer lifetimes and greater reliability
than ever before. Thus, it often takes more time to observe failures under normal-
use conditions. Accelerated tests have been developed in order to deal with this
lifetime-to-failure increase. Accelerated tests decrease the strength or lifetime to
failure by exposing the specimens or products to harsh conditions. This exposure
results in earlier breakdowns. Modelling these accelerated tests requires the use of
stochastic degradation models with accelerating explanatory variables. By using
a generalized cumulative damage approach with a stochastic process describing
degradation, we develop stochastic accelerated degradation models which handle
failure data consisting of both hard and soft failures.

Keywords Accelerated life test • Cumulative damage • Degradation process •
First passage time • Stochastic process

1.1 Introduction

Many systems, products and materials age, wear or degrade over time before they
experience breakdown or failure. Degradation measurements can provide additional
valuable information that can be used to supplement the actual failure observations.
Thus, both degradation measurements (soft failures) and actual failure observations
(hard failures) should be considered in statistical inference procedures. By using
a generalized cumulative damage approach with a stochastic process describing
degradation, a general methodology that incorporates both hard and soft failures
is developed.

C. Park (�)
Department of Industrial Engineering, Pusan National University, 46241, Busan, South Korea
e-mail: cpark2@gmail.com; cp@pusan.ac.kr

© Springer Nature Singapore Pte Ltd. 2017
D.-G. (Din) Chen et al. (eds.), Statistical Modeling for Degradation Data,
ICSA Book Series in Statistics, DOI 10.1007/978-981-10-5194-4_1
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4 C. Park

Statistical inference about the reliability of a product or system is generally based
on lifetime testing. With the development of engineering and science technology,
many products have longer lifetimes and greater reliability than ever before.
Thus, degradation measurements and actual failure observations under normal-use
conditions take more time than they used to. Also, the increase in measurements and
observations is costly. Since it is both costly and time-consuming to obtain hard or
soft failure observations under normal-use conditions, the use of accelerated tests
in order to obtain observations in a more timely fashion is becoming much more
important in practice.

Accelerated life tests decrease the strength or lifetime to failure by exposing
the products or specimens to higher levels of stress conditions than normal-use
conditions. The exposure increase results in earlier breakdowns or failures. In
the afore-mentioned situations, it is necessary to develop useful and appropriate
statistical models for statistical inference on the lifetime of the products or
specimens under study. Such statistical models should appropriately incorporate the
accelerating variables and degradation measurements as well as any actual failures
observed.

Traditional acceleration rules such as the power rule or Arrhenius reaction rate
rule are widely used in engineering in order to incorporate an accelerating variable.
However, these rules are based on the assumption that only a single accelerating
variable exists. In the case of models with two accelerating variables, specific
link functions have been developed such as the generalized Eyring relationship
model [1]. Unfortunately, the restriction to two accelerating variables limits the use
of these models in practice. In many situations, the use of more than two accelerating
variables can be useful in fitting accelerated test models because this often leads to
improve prediction accuracy of device reliability under normal-use conditions.

Park and Padgett [2, 3] also extended existing results by developing more
general models based on the use of a hyper-cuboidal volume approach as an overall
acceleration measure. This approach, which will be discussed in depth in Sect. 1.4,
can incorporate several accelerating variables and, at the same time, allow for the
use of both hard and soft failures in statistical inference procedures.

Several authors have studied degradation models and accelerated test models
for statistical inference in reliability. For example, Nelson [4–6] references results
on degradation models and accelerated tests. The books by Bagdonavicius and
Nikulin [7] and Meeker and Escobar [8] provide a good overview of degradation
models and accelerated tests. Degradation models based on Brownian (or also
known as Wiener) processes and related processes have been proposed by several
authors including Doksum and Normand [9], Lu [10], Whitmore [11], Whitmore
and Schenkelberg [12], Whitmore et al. [13], Pettit and Young [14], and Padgett
and Tomlinson [15]. Degradation models based on gamma processes have been
investigated by Bagdonavicius and Nikulin [16], Lawless and Crowder [17], and
Lin et al. [18].

Specifically with respect to stochastic accelerated degradation models, Park and
Padgett [2, 3] constructed a general class of accelerated testing models which
include other existing models as special cases. One notable special case are the
Brownian-motion-based models proposed by Lu [10] Padgett and Tomlinson [15],
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and Li et al. [19]. Other cases include the geometric Brownian motion process
models and gamma motion process models considered by Bagdonavicius and
Nikulin [16] and Lawless and Crowder [17]. The methodology in Park and
Padgett [2, 3] is general in that it easily allows for various assumptions about the
stochastic processes underlying the degradation process.

Regression-type methods for modelling general degradation path also have
been studied by Meeker and Escobar [8], Lu and Meeker [20], Boulanger and
Escobar [21], Hamada [22], and Meeker et al. [23] among others. Meeker and
Escobar [8], Carey and Koenig [24], and Yanagisawa [25] illustrate the use of
degradation models with accelerated testing in practical engineering applications.
Recently, Bayesian methods are also incorporated into accelerated degradation
problems by several authors including Wang et al. [26], Guan et al. [27], and Fan
and Chen [28]. Recent works by Ye et al. [29] and Ye and Xie [30] also provide a
good overview of stochastic degradation modelling and analysis.

1.2 Basic Properties for Stochastic Cumulative
Damage Process

Suppose that the lifetime of a system or the strength of a material can be
described by a stochastic model. The stochastic model is advocated by many
authors including Doksum and Normand [9], Lu [10], Whitmore [11], Whit-
more and Schenkelberg [12], Pettit and Young [14], Padgett and Tomlinson [15],
Bagdonavicius and Nikulin [16], Lawless and Crowder [17], Bhattacharyya and
Fries [31], Desmond [32], Padgett [33], Durham and Padgett [34], and Park and
Padgett [2, 3, 35–38] among others.

An additive damage model for failure of a system or a material was originally
developed by Desmond [32]. The basic idea of this model is as follows. As the
tensile load on the specimen is increased, the amount of cumulative damage after
n C 1 increments of stress is

XnC1 D Xn C�n; (1.1)

where �j for j D 0; 1; 2 : : : are independent and identically distributed (iid)
damages to the system at each increment. A multiplicative damage model also has
been proposed by Padgett [33], where the cumulative damage is given by

XnC1 D Xn C�nXn:

Alternatively, one can assume that the lifetime of a system or the strength of
a material is under an increasing stress level or tensile load and the cumulative
damage XnC1 after .nC1/ increments of stress can then be described by a stochastic
cumulative damage model. Thus, it is appropriate to represent this damage by

XnC1 D Xn C�n h.Xn/; (1.2)
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where �j for j D 0; 1; 2 : : : are iid damages and h.�/ is the damage model
function. This cumulative damage model was originally proposed in Durham and
Padgett [34]. Damage models above can be generalized to an even greater degree
by using a damage accumulation function which was proposed by Park and
Padgett [35]

c.XnC1/ D c.Xn/C�n h.Xn/; (1.3)

where c.�/ is the damage accumulation function. A continuous version of the
generalized cumulative damage model in (1.3) can be expressed in a differential
form

d c.Xt/ D h.Xt/ d Dt; (1.4)

which leads to the following stochastic integral equation

Z t

0

1

h.Xt/
d c.Xt/ D Dt � D0: (1.5)

For more details on the stochastic integral, the reader is referred to Jacod and
Shiryaev [39]. Since we assume that �j for j D 0; 1; 2 : : : are iid in (1.2) and (1.3),
it is reasonable to assume that the stochastic process fDt; t � 0g should satisfy the
basic properties of random processes:

(i) D0 D 0.
(ii) fDt; t � 0g has stationary increments (time-homogeneity).

(iii) fDt; t � 0g has independent increments.

By selecting a damage accumulation function c.�/ along with an accompanying
damage model function h.�/ with the stochastic process fDt; t � 0g above, it
becomes straightforward to develop general models which include previously well-
known models [2, 10, 14, 15] as special cases. Using this generalized approach, a
degradation model based on a Brownian motion process is illustrated in [10, 14, 15]
and degradation models based on geometric Brownian and Gamma processes are
developed in [2]. We briefly summarize these models in Table 1.1.

A well-known difficulty with the Brownian motion process model [10, 14, 15]
is that it is not strictly increasing and not strictly positive. Therefore, at some point
in time, the degradation measurement can take on a negative value which clearly

Table 1.1 Developed models with damage accumulation and model functions with stochastic
process

c.�/ h.�/ fDt; t � 0g Degradation model

c.u/ D u h.u/ D 1 Brownian Brownian motion process model [10, 14, 15]

c.u/ D ln u h.u/ D 1 Brownian Geometric Brownian motion process model [2]

c.u/ D u h.u/ D 1 Shifted gamma Gamma motion process model [2]
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lacks a physical interpretation. The geometric Brownian motion process is always
positive but not strictly increasing. Thus, at some point in time before degradation is
measured, the degradation value can become larger than the measurement itself.
Although this can be interpreted as a healing process, it is often an unrealistic
physical assumption in certain situations. On the other hand, the gamma motion
process is strictly positive and strictly increasing and avoids the problems associated
with Brownian motion and geometric Brownian motion. This is a simple example
of how one can select the appropriate stochastic model by considering the physical
phenomenon underlying the application.

1.3 The Distribution of the Failure Time and the
Degradation

1.3.1 Degradation Model Based on Brownian Motion Process

First, we consider the degradation model based on the Brownian motion process.
Suppose that we have the following cumulative damage function of the system at
time t,

Xt � X0 D Dt;

where fDt; t � 0g is a Brownian motion process with mean ˛t and variance ˇ2t. We
assume that the process started at X0 D x0. Then it is straightforward to show that Xt

is normally distributed with mean x0 C ˛t and variance ˇ2t. The probability density
function (pdf) of Xt is given by

f .xjx0; t/ D
1

ˇ
p

t
�
�x � x0 � ˛t

ˇ
p

t

�
; (1.6)

where �.�/ is the pdf of the standard normal distribution.
Next, suppose that we assume that the damage threshold level for failure is a

known positive constant, C > 0. Then the failure time of the system is the first
passage time to the threshold C which is given by S D infft > 0 W Xt � Cg. It is
well known that under the Brownian motion process, the first passage time is given
by the inverse Gaussian distribution [40] with pdf

g.sjx0;C/ D

p
�

p
2�s3

exp
�

�
�.s � �/2

2�2s

�
; (1.7)

where s > 0,� D .C�x0/=˛ and � D .C�x0/2=ˇ2. Then the pdf of the degradation
measurements can be obtained as follows. As described in Fig. 1.1, any sample path
over the interval .0; t/ with the initial value X0 D x0 and terminal value Xt D x
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First Passage

Sample path does not exceed Sample path passes

XtXt

x0x0

CC

CC

AAA AcAcAc

t0(= 0)t0(= 0) tt

Fig. 1.1 Degradation path and the first passage under the Brownian motion process

either never exceeds the threshold at C (we denote this event by A), or only passes
once through the threshold at C (we denote this by Ac).

It is immediate from the law of total probability that the pdf f .xjx0; t/ in (1.6) can
be written in terms of the events A and Ac as

f .xjx0; t/ D fA.xjx0; t/C fAc.xjx0; t/: (1.8)

Note that the support of the sub-density fA.�/ is .�1;C/ and that of the sub-density
fAc.�/ is .�1;1/. We need to derive the pdf of the degradation level which is given
by the conditional pdf of Xt given the event A

f .xjA; x0; t/ D
fA.xjx0; t/

P.A/
: (1.9)

We first derive fAc.xjx0; t/ since it is easier to derive fAc.xjx0; t/ than fA.xjx0; t/. The
sub-density fAc.xjx0; t/ is obtained by deriving the marginal of the joint pdf of S and
Xt whose pdf’s are given in (1.6) and (1.7). Thus we have

fAc.xjx0; t/ D

Z t

0

g.sjx0;C/f .xjC; t � s/ ds

D f .xjx0; t/ � exp
n

�
2.C � x0/.C � x/

ˇ2t

o
; (1.10)

where �1 < x < 1. Substituting (1.10) into (1.8) results in

fA.xjx0; t/ D f .xjx0; t/

�
1 � exp

n
�
2.C � x0/.C � x/

ˇ2t

o�

D
1

ˇ
p

t
�
�x � x0 � ˛t

ˇ
p

t

�
�

�
1 � exp

n
�
2.C � x0/.C � x/

ˇ2t

o�
; (1.11)
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where �1 < x < C.
Since

R C
�1 f .xjA; x0; t/dx D 1, it is immediate from (1.9) that

P.A/ D

Z C

�1

fA.xjx0; t/dx:

This probability is obtained by Park and Padgett [3] and is given by

P.A/ D ˚
�C � x0 � ˛t

ˇ
p

t

�
� ˚

��C C x0 � ˛t

ˇ
p

t

�
� exp

n2˛.C � x0/

ˇ2

o
: (1.12)

Note that if C is very large or t is very small, then P.A/ � 1. Thus, in that case, we
can ignore P.A/. Otherwise, P.A/ should be included in the likelihood function.

1.3.2 Degradation Model Based on Geometric Brownian
Motion Process

Next, we consider the damage accumulation function c.Xt/ D ln Xt and the damage
model function h.Xt/ D 1 with fDt; t � 0g being a Brownian motion process with
mean ˛t and variance ˇ2t. We assume that the process started at X0 D x0. It is
immediate from (1.4) that we have the following cumulative damage function of the
system at time t,

ln Xt � ln X0 D Dt:

Thus, the system degradation Xt becomes a geometric Brownian motion process
with pdf

f .xjx0; t/ D
1

ˇ
p

t x
�
� ln x � ln x0 � ˛t

ˇ
p

t

�
; (1.13)

where x > 0. This degradation model was originally proposed by Park and
Padgett [2]. The damage threshold level for failure is assumed to be a known positive
constant C and the initial value of the process Xt is given by X0 D x0. The derivations
for the geometric Brownian motion process are similar to those used in the case of
the Brownian motion process. Next, we derive the first passage time to the threshold
C which is given by S D infft > 0 W Xt � Cg. Since

infft > 0 W Xt � Cg D infft > 0 W ln Xt � ln Cg

and ln Xt is normally distributed with mean ln x0 C ˛t and variance ˇ2t, it is
immediate upon using the result in (1.7) that the pdf of the first passage time S
is obtained as
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g.sjx0;C/ D

p
�

p
2�s3

exp
�

�
�.s � �/2

2�2s

�
; (1.14)

where s > 0, � D .ln C � ln x0/=˛ and � D .ln C � ln x0/2=ˇ2.
Then, using the law of total probability, the pdf f .xjx0; t/ in (1.13) can be written

in terms of the events A and Ac as

f .xjx0; t/ D fA.xjx0; t/C fAc.xjx0; t/:

It should be noted that for this case, the support of the sub-density fA.�/ is .0;C/ and
that of the sub-density fAc.�/ is .0;1/. Using (1.11) along with the fact that ln Xt is
normally distributed, we have

fA.xjx0; t/D
1

ˇ
p

t x
�
� ln x � ln x0 � ˛t

ˇ
p

t

��
1�exp

n
�
2.ln C � ln x0/.ln C � ln x/

ˇ2t

o�
;

where 0 < x < C. Finally, we can obtain P.A/ using (1.12)

P.A/ D ˚
� ln C � ln x0 � ˛t

ˇ
p

t

�
� ˚

�� ln C C ln x0 � ˛t

ˇ
p

t

�
�
�C

x0

�2˛=ˇ2
:

1.3.3 Degradation Model Based on Shifted Gamma Motion
Process

As mentioned previously, the geometric Brownian motion process is always positive
but not strictly increasing. Thus, at some point in time before the degradation value
is measured, the value can become larger than the measurement itself. Although this
can be interpreted as a healing process, it is often an unrealistic assumption in most
applications. Generally speaking, except in a few special cases, it is desirable that a
degradation process always be positive and strictly increasing.

Park and Padgett [2] considered a shifted gamma process as a degradation
process Xt which is always positive and strictly increasing. Assuming that the
damage model function h.u/ D 1 and the damage accumulation function c.u/ D u,
we have the following cumulative damage of the system at the time t,

Xt � X0 D Dt:

We assume that the stochastic process fDt; t � 0g is a gamma process with positive
shape coefficient ˛t and scale ˇ and that the process started at X0 D x0. This implies
that the system degradation Xt is a shifted gamma process with pdf
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f .xjx0; t/ D
1

� .˛t/ˇ˛t
.x � x0/

˛t�1 exp
�

�
x � x0
ˇ

�
; (1.15)

where x0 < x < 1.
Let S be the first passage time of the gamma process Xt to the threshold C. If

the initial value of the process Xt is x0 and the threshold value is a known positive
constant C, then Xt � x0 is distributed as gamma with shape parameter ˛t and scale
ˇ. Since Xt is strictly increasing in t, the probability of S > t is the same as that of
x0 < Xt < C, that is,

PŒS > t� D PŒx0 < Xt < C�:

Using (1.15), we have

PŒS > t� D

Z C

x0

1

� .˛t/ˇ˛t
.x � x0/

˛t�1 exp
�

�
x � x0
ˇ

�
dx

D

Z C�x0

0

1

� .˛t/ˇ˛t
x˛t�1 exp

�
�

x

ˇ

�
dx

D
1

� .˛t/

Z Cˇ

0

	˛t�1e�	 d	;

where Cˇ D .C � x0/=ˇ. Thus, we obtain the distribution of S

G.sjx0;C/ D PŒS � s�

D 1 �
1

� .˛s/

Z Cˇ

0

	˛s�1e�	 d	

D
1

� .˛s/

Z 1

Cˇ

	˛s�1e�	 d	

D
� .˛s;Cˇ/

� .˛s/
;

where � .a; z/ is the incomplete gamma function defined as

� .a; z/ D

Z 1

z
	a�1e�	d	:

Given the distribution of S, the derivation of the pdf of S requires the use of some
complex and tedious calculus and algebra which is not shown here. The resultant
pdf of S is shown below
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g.sjx0;C/ D
d

ds

�
� .˛s;Cˇ/

� .˛s/

�

D ˛
n
‰.˛s/ � ln Cˇ

on
1 �

� .˛s;Cˇ/

� .˛s/

o
C

˛

� .˛s/

C˛s
ˇ

.˛s/2
� 2F2; (1.16)

where

2F2 D 1C

1X
kD1

� ˛s

˛s C k

�2 .�Cˇ/k

kŠ
:

For more details on these derivations, the reader is referred to Park and Padgett [2].
Although the pdf provided in (1.16) is the exact pdf of S, it is quite complex and
extremely difficult to compute in practice. In order to avoid this computation, the
approximate distribution of S is derived in [2, 38] and is found to be a type of
Birnbaum-Saunders distribution [41]

G.sjx0;C/ � ˚

"
1

˛�

�r s

ˇ�
�

r
ˇ�

s

�#
; (1.17)

where ˛� D 1=
p

Cˇ , ˇ� D Cˇ=˛, and Cˇ D .C � x0/=ˇ. If Cˇ=
p
˛ � Cˇ=˛ (i.e.,p

˛ � 1), then the above distribution is known to be quite similar to the inverse
Gaussian distribution with parameters � D Cˇ=˛ and � D C2

ˇ=˛. For more details,
see Chhikara and Folks [40].

Next, we find the sub-density of Xt with the event A. The event A is defined as the
event that any sample path within the interval .0; t/ with the initial value X0 D x0
has a terminal value Xt D x that does not exceed the threshold C. The probability of
the event A becomes

P.A/ D PŒS > t� D P
�

max
0<u�t

Xu < C
�
:

Since the shifted gamma process Xu is strictly increasing in u, we have

max
0<u�t

Xu D Xt:

Therefore, we have P.A/ D PŒx0 < Xt < C�. Using the law of total probability, we
have

f .xjx0; t/ D fA.xjx0; t/C fAc.xjx0; t/

D f .xjA; x0; t/P.A/C f .xjAc; x0; t/P.A
c/

D f .xjx0; t/I.x � C/C f .xjx0; t/I.x > C/;
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where I.�/ is the indicator function. Notice that the support of fA.xjx0; t/ is .x0;C/
and that of fAc.xjx0; t/ is .C;1/. This results in the sub-density of Xt

fA.xjx0; t/ D
1

� .˛t/ˇ˛t
.x � x0/

˛t�1 exp
�

�
x � x0
ˇ

�
; (1.18)

where x0 < x < C. Notice that the support of the sub-density in (1.15) is .x0;1/

while the support of the pdf in (1.18) is .x0;C/. Hence, the pdf conditional on the
event A is given by

f .xjA; x0; t/ D
fA.xjx0; t/

P.A/
;

where x0 < x < C and P.A/ D
R C

x0
fA.xjx0; t/dx. It should also be noted that, similar

to the previous cases, P.A/ can be ignored in the likelihood function when C is very
large or t is very small.

1.3.4 General Likelihood for Hard and Soft Failures

We assume that we observe n (hard or soft) failures from independent units. Suppose
that there are p hard failures denoted by sk with k D 1; 2; : : : ; p and q soft failures,
where n D p C q. The q soft failures are obtained with the q sets of degradation
measurements

˚
xl;0; xl;1; : : : ; xl;Ml

�
;

where l D 1; 2; : : : ; q and the degradation measurements xl;m with m D 1; 2; : : : ;Ml

are obtained at the corresponding times tl;m with t0;m D 0 in general. In the reliability
literature, the degradation measurements above are referred to as the degradation
path data.

The likelihood function for p units which result in hard failures at sk is given by

Lhard.�/ /

pY
kD1

g.skjxk;0;Ck/;

where � denotes the vector of parameters. In addition, the likelihood function for q
units which result in q sets of degradation path measurements is given by

Lsoft.�/ /

qY
lD1

MlY
mD1

f .xl;mjA; xl;m�1; �tl;m/;
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where �tl;m D tl;m � tl;m�1. Since we assume that failures are obtained from n
independent units, the general likelihood function for both hard and soft failures on
n units is obtained as

L.�/ / Lhard.�/ � Lsoft.�/:

1.4 Degradation Models with Several Accelerating Variables

As explained previously, accelerated tests have been developed in order to obtain
hard or soft failures in a more timely fashion. They decrease the strength or lifetime
to failure by exposing the specimens or products to harsh conditions. Modelling
these accelerated tests requires the use of stochastic degradation models along with
accelerating explanatory variables. Traditional acceleration rules such as the power
rule or Arrhenius reaction rate rule are widely used in engineering in order to
incorporate an accelerating variable. However, traditional rules such as these are
usually based on a single accelerating variable.

Let us assume that the parameter ˛ in the Brownian motion, geometric Brownian
motion and shifted gamma processes depends on several accelerating variables (say,
L1;L2; : : : ;Lp) through an acceleration (link) function. For the case of p D 1

(i.e. a single accelerating variable), there are a variety of well-known acceleration
functions relating the model coefficients and the single accelerating variable.
These functions yield a large family of inverse-Gaussian-type models (see [42])
with an accelerating variable that can be incorporated with hard and soft failure
observations. For more details regarding accelerated tests using link functions, the
reader is referred to Mann et al. [43], Nelson [4], Meeker and Escobar [8], and
other references therein. Well-known traditional acceleration functions with a single
accelerating variable are summarized in Table 1.2.

In order to improve upon the models that handle one accelerating variable,
other specific link functions have been developed for two accelerating variables.
One of them is the generalized Eyring relationship rule [1]. However this is also
of somewhat limited use in practice because of their two-variable restriction. To
overcome the two-variable limitation, Park and Padgett [37] suggest a hyper-
cuboidal volume approach as an overall accelerating measure which can incorporate
several accelerating variables in a straightforward fashion. This idea is essentially an

Table 1.2 Acceleration
functions with a single
accelerating variable

Model Acceleration function

Power rule ˛L D 	L


Arrhenius reaction rate rule ˛L D 	e
=L

Inverse-log rule ˛L D 	.ln L/


Exponential rule ˛L D 	e
L

Inverse-linear rule ˛L D 	 C 
L
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extension of the weakest-link concept in one dimension which is originally attributed
to Peirce [44]. For example, suppose that we have a situation where failure depends
on the size of the specimen under test and that there are two accelerating variables
denoted as L and A, respectively. Then one can view the two-dimensional size of
the specimen as L � A. Thus, it is reasonable to use V D L � A as an accelerating
volume or cuboidal measure.

Similarly, if there are p accelerating variables L1;L2; : : : ;Lp, the two-dimensional
rule can be further generalized by using the hyper-cuboidal volume obtained as
the product of the respective accelerating variables. Note that, in order to add
more flexibility, these variables can be power-transformed by generalizing the
one-dimensional power-law rule. Thus, with p accelerating variables, the overall
accelerating measure which generalizes two-dimensional “specimen size” can be
expressed as

V D

pY
�D1

fT.L�/g

� ;

where T.�/ is any monotone function. Through the use of this overall accelerating
measure, one can use the following generalized acceleration function

˛V D 
0

pY
�D1

fT.L�/g

� :

This acceleration function includes the first four acceleration functions in Table 1.2
as special cases. The inverse-linear rule is the one exception of an acceleration
function in Table 1.2 that cannot be handled as a special case of the generalized
acceleration function. In order to deal with this exception, rather than using
traditional inverse-linear rule, one can use the generalized version below

˛V D 
0

pY
�D1

.1C 
�L�/:

It should also be noted that, aside from the inverse linear rule, the other four
rules in Table 1.2 can be rewritten in the power rule form by simply transforming
the accelerating variable. For example, the Arrhenius reaction rate model is obtained
from the power rule ˛V D 	V
 with V D e1=L. The exponential rule is obtained from
the power rule with V D eL. Similarly, the shifted inverse-log rule is obtained from
the power rule with V D 1C ln L while the original inverse-log rule is obtained with
V D ln L. However, when the original inverse-log rule is used with L D 1 (typical
value for a normal-use condition), this results in infinite values of � D .C � x0/=˛
in (1.7), � D .ln C � ln x0/=˛ in (1.14) and ˇ� D Cˇ=˛ in (1.17). In order to avoid
this pitfall, one can use a shifted version.
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Note that the hyper-cuboidal volume approach can be incorporated into other
existing models that only use one accelerating variable so that several accelerating
variables can be conveniently handled. For example, Park and Padgett [3] apply the
hyper-cuboidal volume approach to models based on the weakest-link theory. For
recent work on weakest-link theory, the reader is referred to Wolstenholme [45]. The
hyper-cuboidal volume approach of Park and Padgett [3] extends the weakest-link
model so that it can handle several accelerating variables. The extension includes
the power-law Weibull model [46, 47] as a special case. It is also noteworthy that
Park and Padgett [3] show that a proportional hazard model [48] can be viewed as
an extended weakest-link model with hyper-cuboidal volume.

1.5 Likelihood Construction with Accelerating Variables and
Model Selection

In this section, we describe how to construct a general likelihood function. Park
and Padgett [3] provide likelihood function constructions for the case of two
accelerating variables with hard and soft failures. This can be easily extended
to more complex cases with more accelerating variables. We briefly review their
likelihood construction in what follows.

Consider two accelerating variables denoted as .L1;L2/. Suppose that accelerated
lifetime tests are performed under all accelerating levels of .L.i/1 ;L

.j/
2 / for i D

1; 2; : : : ; I and j D 1; 2; : : : ; J. At each of the levels of .L.i/1 ;L
.j/
2 /, there are N.i;j/

units under testing. The P.i;j/ hard failures, denoted as s.i;j/k , k D 1; 2; : : : ;P.i;j/, are

observed with the threshold denoted as C.i;j/
k . In addition to the P.i;j/ hard failures,

for each unit under testing at the accelerating levels of .L.i/1 ;L
.j/
2 /, the Q.i;j/ soft

failures are also observed up to the termination time, which result in degradation
measurements x.i;j/`;m at corresponding times t.i;j/`;m for m D 0; 1; 2; : : : ;M.i;j/

` and
` D 1; 2; : : : ;Q.i;j/. Note that P.i;j/ C Q.i;j/ D N.i;j/. The soft failures on the `th
unit at the accelerating levels of .L.i/1 ;L

.j/
2 / are obtained as

n
x.i;j/`;0 ; x.i;j/`;1 ; : : : ; x.i;j/

`;M�

o

with M� D M.i;j/
` for brevity. Note that if x.i;j/`;m is being measured at t.i;j/`;m , then t.i;j/

`;M�

is the termination time of the unit being observed.
Given the framework described, it is easily shown that the log-likelihood function

due to hard failures is given by

lhard.�/ D

IX
iD1

JX
jD1

P.i;j/X
kD1

ln g.s.i;j/k jx.i;j/k;0 ;C
.i;j/
k /; (1.19)



1 Stochastic Accelerated Degradation Models 17

where � denotes the vector of parameters. Using a similar argument, the log-
likelihood function for the degradation path measurements is given by

lsoft.�/ /

IX
iD1

JX
jD1

Q.i;j/X
`D1

M
.i;j/X̀

mD1

ln f .x.i;j/`;m jA; x.i;j/`;m�1; �t.i;j/`;m /; (1.20)

where �t.i;j/`;m D t.i;j/`;m � t.i;j/`;m�1. Clearly, given (1.19) and (1.20), the general log-
likelihood function for hard and soft failures is given by

l.�/ / lhard.�/C lsoft.�/: (1.21)

Given the log-likelihood function, the issue of model selection becomes impor-
tant. A well-known model selection criteria, quite popular in the statistics and
engineering literature is the Akaike information criterion (AIC) [49, 50]. The AIC
is defined as:

AIC D �2l. O�/C 2�;

where O� is the maximum likelihood estimate under consideration and � is the
number of independent model parameters. Note that the second term in the AIC
is viewed as the likelihood penalty contribution which arises due to the fact that
an increase in the number of parameters, �, will always result in an increase the
likelihood.

As a measure of a good model fit, the model with a smaller AIC is preferred. For
more details, the reader is referred to Burnham and Anderson [51]. Thus, if there
are several competing models, the model with the smallest AIC among them is the
selected model. Alternatively, it is shown in Park and Padgett [38] that one can use
the mean square error (MSE) as the criterion for comparing several potential models.
Although the MSE is an attractive criterion in that it is straightforward to compute,
it is unfortunately limited to the case where there are only hard failure observations.

1.6 Concluding Remarks

In this article, we have provided a general methodology for developing stochastic
accelerated degradation models with hard and soft failures. By selecting the
appropriate damage accumulation function c.�/ and the appropriate damage model
function h.�/, several useful stochastic degradation models were derived. The
generality of the methodology allows one to choose these respective functions
accordingly so that new stochastic accelerated degradation models can be developed
and existing stochastic degradation models can be viewed as special cases.
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Regarding future areas of research related to the stated studies, we believe that
there are several ways that would be explored as stated below. In the particular
case of the stochastic accelerated degradation model based on the shifted gamma
motion process, the exact distribution of the first passage time has been derived.
However, due to the difficulties with calculating the exact distribution numerically,
an approximate distribution is recommended. This approximation has the form of a
Birnbaum-Saunders distribution. In practical applications where a more accurate
model is needed, one can use a better approximation through the use of more
delicate numerical methods.

Several stochastic degradation models were developed by using Brownian,
geometric Brownian and gamma motion processes. We could utilize other motion
processes satisfying stationary increments and independent increments along with
the generalized cumulative damage model. Currently, from a theoretical perspective,
the use of the AIC criterion is the most appropriate methodology for model
selection. One area of research that has not yet been explored is an investigation
in the empirical performance of the AIC method as a means of model selection for
stochastic accelerated degradation models. It may be the case that other less-known
criterion may be useful in practice. By using Monte Carlo simulation techniques,
it should be possible to investigate the usefulness of the AIC criterion as well as
competing criterion such as BIC and others.

To the best of our knowledge, the development of stochastic accelerated degrada-
tion models by solving the stochastic integral equations in (1.5) has not been an area
of emphasis in reliability research. Interesting and challenging future work would
involve derivations of the solutions to these stochastic integral equations in order to
develop other useful stochastic accelerated degradation models.

In the construction of the log-likelihood function in (1.21) for both hard and
soft failures, we assumed that we observe failures from independent units and we
separated failures into hard and soft failures. Thus, when a hard failure occurs,
we should ignore its corresponding degradation measurements although we would
obtain them along with a hard failure. Because of the independence assumption,
we could not use this additional information. Thus, there is an information loss. To
make the most use of this information, we need to consider the correlation between a
hard failure and its corresponding degradation measurements to construct the more
general likelihood function.

Acknowledgements This work was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (No. NRF-2017R1A2B4004169). We appreciate
the valuable comments from anonymous referees which led to an improvement of the article. The
author also wishes to dedicate this work to the memory and honor of Professor Byung Ho Lee in
the Department of Nuclear Engineering at Seoul National University.



1 Stochastic Accelerated Degradation Models 19

References

1. Glasstone S, Laidler KJ, Eyring HE (1941) The theory of rate processes. McGraw-Hill,
New York

2. Park C, Padgett WJ (2005) Accelerated degradation models for failure based on geometric
Brownian motion and gamma processes. Lifetime Data Anal 11:511–527

3. Park C, Padgett WJ (2006) Stochastic degradation models with several accelerating variables.
IEEE Trans Reliab 55:379–390

4. Nelson W (1990) Accelerated testing: statistical models, test plans, data analyses. John Wiley,
New York

5. Nelson W (2005) A bibliography of accelerated test plans. IEEE Trans Reliab 54:194–197
6. Nelson W (2005) A bibliography of accelerated test plans part II – references. IEEE Trans

Reliab 54:370–373
7. Bagdonavicius V, Nikulin M (2002) Accelerated life models, modeling and statistical analysis.

Chapman & Hall/CRC, Boca Raton
8. Meeker WQ, Escobar LA (1998) Statistical methods for reliability data. John Wiley, New York
9. Doksum K, Normand S-LT (1995) Gaussian models for degradation processes – part I: methods

for the analysis of biomarker data. Lifetime Data Anal 1:135–144
10. Lu J (1995) Degradation processes and related reliability models. Ph.D. thesis, McGill

University
11. Whitmore GA (1995) Estimating degradation by a Wiener diffusion process subject to

measurement error. Lifetime Data Anal 1:307–319
12. Whitmore GA, Schenkelberg F (1997) Modelling accelerated degradation data using Wiener

diffusion with a scale transformation. Lifetime Data Anal 3:27–45
13. Whitmore GA, Crowder MJ, Lawless JF (1998) Failure inference from a marker process based

on a bivariate Wiener model. Lifetime Data Anal 4:229–251
14. Pettit LI, Young KDS (1999) Bayesian analysis for inverse Gaussian lifetime data with

measures of degradation. J Stat Comput Simul 63:217–234
15. Padgett WJ, Tomlinson MA (2004) Inference from accelerated degradation and failure data

based on Gaussian process models. Lifetime Data Anal 10:191–206
16. Bagdonavicius V, Nikulin M (2000) Estimation in degradation models with explanatory

variables. Lifetime Data Anal 7:85–103
17. Lawless J, Crowder M (2004) Covariates and random effects in a gamma process model with

application to degradation and failure. Lifetime Data Anal 10:213–227
18. Ling MH, Tsui KL, Balakrishnan N (2015) Accelerated degradation analysis for the quality of

a system based on the gamma process. IEEE Trans Reliab 64(1):463–472
19. Li J, Wang Z, Zhang Y, Fu H, Liu C, Krishnaswamy S (2017) Degradation data analysis based

on a generalized Wiener process subject to measurement error. Mech Syst Signal Process
94:57–72

20. Lu CJ, Meeker WQ (1993) Using degradation measures to estimate a time-to-failure distribu-
tion. Technometrics 35:161–174

21. Boulanger M, Escobar LA (1994) Experimental design for a class of accelerated degradation
tests. Technometrics 36:260–272

22. Hamada M (1995) Analysis of experiments for reliability improvement and robust reliability.
In: Balakrishnan N (ed) Recent advances in life testing and reliability. CRC Press, Boca Raton

23. Meeker WQ, Escobar LA, Lu CJ (1998) Accelerated degradation tests: modeling and analysis.
Technometrics 40:89–99

24. Carey MB, Koenig RH (1991) Reliability assessment based on accelerated degradation: a case
study. IEEE Trans Reliab 40:499–506

25. Yanagisawa T (1997) Estimation of the degradation of amorphous silicon cells. Microelectron
Reliab 37:549–554

26. Wang L, Pan R, Li X, Jiang T (2013) A Bayesian reliability evaluation method with integrated
accelerated degradation testing and field information. Reliab Eng Syst Saf 112:38–47



20 C. Park

27. Guan Q, Tang Y, Xu A (2016) Objective Bayesian analysis accelerated degradation test based
on Wiener process models. Appl Math Model 40(4):2743–2755

28. Fan T-H, Chen C-H (2017) A Bayesian predictive analysis of step-stress accelerated tests in
gamma degradation-based processes. Qual Reliab Eng Int. doi:10.1002/qre.2114

29. Ye Z-S, Chen N, Shen Y (2015) A new class of Wiener process models for degradation analysis.
Reliab Eng Syst Saf 139:58–67

30. Ye Z-S, Xie M (2015) Stochastic modelling and analysis of degradation for highly reliable
products. Appl Stoch Model Bus Ind 31(1):16–32

31. Bhattacharyya GK, Fries A (1982) Fatigue failure models – Birnbaum-Saunders vs. inverse
Gaussian. IEEE Trans Reliab 31:439–440

32. Desmond AF (1985) Stochastic models of failure in random environments. Can J Stat 13:
171–183

33. Padgett WJ (1998) A multiplicative damage model for strength of fibrous composite materials.
IEEE Trans Reliab 47:46–52

34. Durham SD, Padgett WJ (1997) A cumulative damage model for system failure with
application to carbon fibers and composites. Technometrics 39:34–44

35. Park C, Padgett WJ (2005) New cumulative damage models for failure using stochastic
processes as initial damage. IEEE Trans Reliab 54:530–540

36. Park C, Padgett WJ (2006) A general class of cumulative damage models for materials failure.
J Stat Plan Inference 136:3783–3801

37. Park C, Padgett WJ (2007) Cumulative damage models for failure with several accelerating
variables. Qual Technol Quant Manag 4:17–34

38. Park C, Padgett WJ (2008) Cumulative damage models based on gamma processes. In: Ruggeri
F, Faltin F, Kenett R (eds) Encyclopedia of statistics in quality and reliability. Wiley, Chichester

39. Jacod J, Shiryaev AN (1987) Limit theorems for stochastic processes. Springer, New York
40. Chhikara RS, Folks JL (1989) The inverse Gaussian distribution: theory, methodology, and

applications. Marcel Dekker, New York
41. Birnbaum ZW, Saunders SC (1969) A new family of life distributions. J Appl Probab 6:

319–327
42. Onar A, Padgett WJ (2000) Inverse Gaussian accelerated test models based on cumulative

damage. J Stat Comput Simul 66:233–247
43. Mann NR, Schafer RE, Singpurwalla ND (1974) Methods for statistical analysis of reliability

and life data. Wiley, New York
44. Peirce FT (1926) Tensile tests for cotton yarns: “the weakest link” theorems on the strength of

long and of composite specimens. J Text Inst 17:355–368
45. Wolstenholme LC (1995) A nonparametric test of the weakest-link principle. Technometrics

37:169–175
46. Padgett WJ, Durham SD, Mason AM (1995) Weibull analysis of the strength of carbon fibers

using linear and power law models for the length effect. J Compos Mater 29:1873–1884
47. Smith RL (1991) Weibull regression models for reliability data. Reliab Eng Syst Saf 34:55–77
48. Cox DR (1972) Regression models and life tables. J R Stat Soc B 34:187–220
49. Akaike H (1993) Information theory and an extension of the maximum likelihood principle.

In: Petrov BN, Czáki F (eds) Second international symposium on information theory 1973,
Budapest. Akademiai Kiadó, pp 267–281. Reprinted in Kotz S, Johnson NL (eds) Break-
throughs in statistics, vol 1. Springer, pp 610–624

50. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control
19:716–722

51. Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical
information-theoretic approach. Springer, New York

http://dx.doi.org/10.1002/qre.2114


Chapter 2
Hierarchical Bayesian Change-Point Analysis
for Nonlinear Degradation Data

Suk Joo Bae and Tao Yuan

Abstract Degradation data for some products tends to present two-phase patterns
during testing periods. It is caused by defects or contaminants remaining after
manufacturing processes. The change-point of the two-phase degradation path
represents the time when a burn-in related phase transits to an inherent degradation
phase with a slower and more stable rate. This chapter discusses a hierarchical
Bayesian change-point regression model to fit the two-phase degradation patterns.
A Gibbs sampling algorithm is developed for the inference of the parameters in the
change-point regression model. The results indicate that reliability estimation can
be improved substantially by using the change-point model to account for product
burn-in. Based on the hierarchical Bayesian change-point degradation model,
degradation-based burn-in tests are devised according to a reliability criterion or
a cost criterion.

Keywords Change-point regression • Degradation • Gibbs sampling • Hierar-
chical Bayesian modeling • Lifetime distribution

2.1 Introduction

Degradation analysis is an attractive alternative to the traditional failure-time
analysis for highly reliable products in that it can improve reliability inference
and provide additional information related to failure mechanisms [14]. In real
applications of the degradation test and analysis, it has been observed that the
degradation paths of some products exhibit two-phase patterns over the test periods.
For example, Gebraeel et al. [11] observed that the vibration-based signals for
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Fig. 2.1 Observed degradation paths of six PDPs: relative luminosity vs. measurement time

bearings showed a two-phase pattern, which was caused by the generation of fatigue
defects. Before the fatigue defects occur, the degradation signals during the first
phase are constant and stable. After the fatigue defects occur, the degradation path
enters the second, unstable phase. Another example is the two-phase luminosity
degradation of plasma display panels (PDPs) reported by Bae and Kvam [3] as
shown in Fig. 2.1. After a rapid decrease in PDP luminosity at the first phase,
the decrease in luminosity slowed and stabilized in the second phase. The two-
phase degradation pattern of PDPs was due to nano-sized impurities unnecessarily
produced during manufacturing processes. PDP manufacturers execute a burn-in
procedure (called “aging” in the industry) to burn off the impurities. However,
with an incomplete burn-in procedure, some impurities may remain in the products
and cause the two-phase degradation pattern. Some other examples of products
exhibiting two-phase degradation paths include direct methanol fuel cells [2],
lithium-ion batteries [18], and organic light-emitting diodes (OLEDs) [17].

There have been attempts to model the two-phase degradation patterns. Bae
et al. [1, 4] used, respectively, a bi-exponential model and a change-point regression
model to fit the observed two-phase degradation paths of PDPs. The change-point
regression model was also employed by Chen and Tsui [8] to analyze the two-phase
degradation signals of bearings reported by Gebraeel et al. [11]. In this chapter, we
will discuss the hierarchical Bayesian change-point degradation model developed
by Bae et al. [4]. The PDP degradation data shown in Fig. 2.1 will be used as an
illustrative example.
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Based on the hierarchical Bayesian change-point regression model, this chapter
will also discuss a degradation-based burn-in optimization problem studied by Yuan
et al. [29]. Burn-in is a screening test to identify weak or defective products before
shipping them to customers [13]. The burn-in test is usually conducted by stressing
the products for a pre-determined duration under designed or accelerated stress
conditions [9]. In traditional failure-based burn-in tests, products are subject to
life tests and weak or defective products are identified by observing their failures
during the tests. For highly reliable products, the failure-based burn-in tests may
be ineffective because long burn-in durations may be needed in order to observe
failures [28]. The degradation-based burn-in tests, which subject the products to
degradation tests, are being considered as a promising alternative to the failure-
based burn-in tests [24].

Tseng and Tang [23] proposed a cost-optimal burn-in policy using a Wiener
process to describe the degradation pattern of the burn-in population. The burn-
in decision variables were a burn-in duration and a cutoff point. At the end of
the burn-in test, if a unit’s degradation level exceeded the cutoff point, it was
classified as a weak item. There have been extensions of this study to various
directions [21, 22, 24]. Some studies considered simultaneous optimization of burn-
in and preventive maintenance [10, 19, 26, 27]. In all those studies, it is assumed
that there exists some proportion of weak products in the population, and the major
purpose of the degradation-based burn-in tests is to weed out the weak products.
Yuan et al. [29] recently considered a different type of degradation burn-in test for
display products exhibiting two-phase degradation patterns. The major purpose of
this burn-in (“aging”) test is to eliminate the initial rapid degradation phase before
shipping the display products to customers, while early failures of weak products
(i.e., infant mortality) is not a major concern in terms of luminosity degradation.
This chapter will discuss the Bayesian burn-in planning problem based on the
hierarchical Bayesian change-point degradation model.

The reminder of this chapter is organized as follows. Section 2.2 presents
the hierarchical Bayesian change-point degradation model developed to describe
two-phase degradation paths. Section 2.3 discusses the degradation-based burn-in
planning method based on the degradation model presented in Sect. 2.2. Section 2.4
discusses results of the proposed methodologies applied to the PDP degradation data
shown in Fig. 2.1. Finally, Sect. 2.5 concludes this chapter.

2.2 Degradation Analysis Using Change-Point Regression

This section first reviews different forms of change-point regression models, then
presents the hierarchical Bayesian change-point degradation model for two-phase
degradation patterns, and finally derives the failure-time distribution of a unit
randomly selected from the population. The PDP degradation is used as an example
to illustrate the methods. The response variable y in the PDP example is the
logarithm-transformed relative luminosity.
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2.2.1 Change-Point Regression

This section reviews the change-point regression models that involve one change-
point. A general change-point regression model with one change-point has the
form of

yj D

	
˛1 C ˇ1tj C �j; j D 1; : : : ; ;

˛2 C ˇ2tj C �j; j D  C 1; : : : ; n;
(2.1)

where y and t are the response variable and predictor, respectively, n is the number
of observations, and the change occurs in the interval Œt ; tC1/. The random error
terms �j are generally assumed to be independent and identically distributed normal
random variables with mean zero and variance �2. The mean function of the
change-point regression model (2.1) includes two linear functions, where ˛1 and
ˇ1 are, respectively, the intercept and slope of the linear function before the change-
point, and ˛2 and ˇ2 are the intercept and slope of the linear function after the
change-point, respectively. The mean regression function may be continuous or
noncontinuous at the change-point. Let � be the intersection point of the two linear
lines, i.e., � D .˛1 � ˛2/=.ˇ2 � ˇ1/. A continuity constraint may be specified as
� 2 Œt ; tC1/. For the continuous model, � is actually the change-point separating
the two linear functions. Beem [6] developed a software package Segcurve for
fitting the change-point regression model with or without the continuity constraint.
Carlin et al. [7] considered the change-point regression model without the continuity
constraint within the Bayesian framework and used the Gibbs sampling algorithm
to inference the model parameters .˛1; ˇ1; ˛2; ˇ2; ; �2/. Bae and Kvam [3] applied
the change-point regression model (2.1) with the continuity constraint to fit the
two-phase degradation paths of PDPs, while Chen and Tsui [8] did not impose the
continuity constraint when studying the two-phase degradation signals of bearings.

An alternative form of the change-point regression model that explicitly includes
the continuity constraint is given by [25]

yj D

	
˛ C ˇ1.tj � �/C �j; tj � �;

˛ C ˇ2.tj � �/C �j; tj > �;
(2.2)

where ˛ is the expected response at the change-point � . Muggeo [15] considered
another change-point regression model given by

yj D

	
˛ tj C �j; tj � �;

˛ tj C ˇ.tj � �/C �j; tj > �;
(2.3)

where ˛ and .˛ C ˇ/ are, respectively, the slope of the linear function before
the change-point � and the slope of the linear function after the change-point.
Model (2.3) also imposes the continuity constraint and assumes the expected
response at time t D 0 is zero. We re-parameterize Model (2.3) as
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yj D g.tjI �/C �j D

	
˛ tj � ˇtj C �j; tj � �;

˛ tj � ˇ� C �j; tj > �;
(2.4)

where g.tjI �/ denotes the expected actual degradation path with a set of parameters
� 	 .˛; ˇ; �/. .˛ � ˇ/ and ˛ are, respectively, the slopes of the linear function
before and after the change-point, respectively. Specifying ˛ < 0 and ˇ > 0 yields
the desired degradation pattern of the PDPs.

The change-point regression model (2.4) can be re-written as a standard regres-
sion form

y D X.�/# C �; (2.5)

where # 	 .˛; ˇ/, and y, X.�/, and � are defined, respectively, as

y D

2
64

y1
:::

yn

3
75 ; X.�/ D

2
6666666664

t1 �t1
:::

:::

t �t
tC1 ��
:::

:::

tn ��

3
7777777775
; and � D

2
64
�1
:::

�n

3
75 : (2.6)

MLEs of the model parameters .˛; ˇ; �; �2/ can be obtained by maximizing the
likelihood function given by

L.�; �2/ / .�2/�n=2 exp

�
�
.y � X.‚/#/0.y � X.‚/#/

�2

�
: (2.7)

When the Bayesian method is used, prior distributions are needed for � and
�2. This study considers the case in which there is a change-point in the interval
.0; �/, and specifies a truncated trivariate normal prior for � , i.e., � 	 .˛; ˇ; �/ 


N3.�; ˙ /I
f˛<0;ˇ>0;0<�<�g, where N3.�; ˙ / denotes the trivariate normal distribution

with the mean vector � and the covariance matrix ˙ . The parameter �2 is assumed
to have an inverse-gamma (IG) prior distribution with parameters a� and b� , i.e.,
�2 
 IG.a� ; b� /, which is the conjugate prior for �2, and this prior distribution for
�2 is assumed to be independent of the prior for � .

Given the observed data d, the joint posterior distribution of the model parame-
ters can be derived according to Bayes’ formula

f .�; �2jd/ / f .dj�; �2/f .�/f .�2/

/ ��n exp

�
�
.y � X.�/#/0 .y � X.�/#/

2�2

�
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� exp

"
�
.� � �/0 ˙ �1 .� � �/

2

#

�


�2
��a��1

exp

�
�

b�
�2


If˛<0;ˇ>0;0<�<�g; (2.8)

where f .�/ represents a probability density function herein and hereafter, f .�; �2jd/
is the joint posterior distribution, f .dj�; �2/ is the likelihood, and f .�/ and f .�2/
are the prior distributions for � and �2, respectively. Gibbs sampling technique
is employed to draw random samples from the marginal posterior distribution of
each parameter [12]. Marginal posterior distributions of functions of the model
parameters, such as the expected degradation path g.tI �/ and the failure-time
distribution, can also be conveniently sampled. Point or interval estimation of the
model parameters and their functions can be computed using the sample statistics.

2.2.2 Hierarchical Bayesian Change-Point Degradation Model

This section introduces the hierarchical Bayesian change-point regression model for
the degradation paths of multiple units. In the hierarchical Bayesian model, the jth
response measured on the ith unit is modeled by

yi;j D g.ti;jI � j/C �i;j D

	
˛j ti;j � ˇj ti;j C �i;j; ti;j � �j;

˛j ti;j � ˇj �j C �i;j; ti;j > �j;
(2.9)

for j D 1; 2; : : : ;N, where yi;j is the jth response on the ith unit, measured at time
ti;j, ni is the number of measurements on the ith unit, N is the number of test units.
The errors �i;j are assumed to be independent and identically distributed N.0; �2/
random variables.

A three-stage hierarchical Bayesian degradation model for multiple units is
constructed as follows.The first stage models the observed two-phase degradation
path of each test unit by the change-point regression model (2.9), which can be
written equivalently as

yj D Xj.�j/# j C �j; (2.10)

for j D 1; 2; : : : ;N, where # j 	 .˛j; ˇj/, and yj, Xj.�j/, and �j are defined similarly
as in (2.6).

The second-stage model describes the unit-to-unit variability by assuming that
all coefficient vectors � j 	 .˛j; ˇj; �j/ form a random sample from a multivariate
distribution whose probability density function is denoted by f .�j�/ with a
parameter vector �. Specially, we assume this multivariate distribution is a truncated
trivariate normal distribution, that is



2 Hierarchical Bayesian Change-Point Analysis for Nonlinear Degradation Data 27

� j 
 N3.�; ˙ /I
f˛j<0;ˇj>0;0<�j<�g; j D 1; 2; : : : ;N: (2.11)

Herein � 	 .�; ˙ /.
In the third stage of the hierarchical model, prior distributions are specified for

�, ˙ , and �2. For �2, the conjugate prior IG.a� ; b� / is employed. For the mean
vector �, a multivariate normal prior distribution with a mean vector � and a
covariance matrix C is used, i.e., � 
 N.�; C/. The multivariate normal distribution
is the conditional conjugate prior for the multivariate normal mean vector. For the
covariance matrix ˙ , the scaled inverse-Wishart prior discussed in [5] is adopted.
The covariance matrix ˙ is decomposed into variance and correlation components
as ˙ D �Q�, where the diagonal matrix � D diag.ı1; : : : ; ı�/ with ık > 0, and
Q is a � � � symmetric positive definite matrix. Herein � D 3 is the dimension of
the vector � . Then independent Gamma priors, G.ak; bk/, are assumed for ık, for
k D 1; 2; : : : ; �, and an inverse-Wishart prior, IW.�;S/, is adopted for Q, where �
is the degrees of freedom, and S is a � � � symmetric positive-definite scale matrix.

Applying Bayes’ formula, we can derive the joint posterior distribution of
all model parameters, including the first-stage parameters �1; �2; : : : ; �N and the
second-stage parameters �;Q; ı1; : : : ; ı�; �2, conditioning on the data d as follows

f .�1; : : : ;�N ;�;Q; ı1; : : : ; ı�; �2jd/

/
QN

iD1
1
�ni exp

h
� .yi�Xi.�i/# i/

0.yi�Xi.�i/# i/

2�2

i
If˛i<0;ˇi>0;0<�i<�g

�ŒP.�;˙ /��N j�j�N=2jQj�N=2j�j�N=2 exp
h
�
PN

iD1.� i��/0��1Q�1��1.� i��/

2

i

� exp
h
� .���/0C�1.���/

2

i
� jQj�.�C�C1/=2 exp

h
� tr.SQ�1/

2

i

�
Q�

kD1 ı
ak�1
k exp.�bkık/ � .�2/�.a�C1/ exp



� b�
�2

�
;

(2.12)
where ŒP.�;˙ /� is a normalizing constant that is attributable to the truncation in
the second-stage model (2.11). A Gibbs sampling algorithm is developed to fit the
three-stage hierarchical Bayesian change-point regression model and draw random
samples from the marginal posterior distributions such as f .�2jd/, f .�jd/, f .�jd/,
f .˙ jd/, and f .� jjd/, for j D 1; 2; : : : ;N.

2.2.3 Deriving the Failure-Time Distribution

This section derives the failure-time distribution of a unit randomly selected from
its population. The failure time T of a random unit is defined as the first hitting
time at which the expected actual degradation path g.tI �/ reaches a pre-determined
degradation level y�. For display products, a unit is considered to have failed when
its luminosity falls below 50% of its initial luminosity. Therefore, we will assume
y� D ln.0:50/ for the PDP example. Conditioning on � 	 .�;˙ /, the failure-time
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cumulative distribution function is defined as

FT.tj�/ D Pr.T � tj�/ D
R

�
PrŒg.tI �/ � y��f .�j�/d�

D
R

�
PrŒg�1.y�I �/ � y��f .�j�/d�:

(2.13)

where f .�j�/ is probability density function of the truncated trivariate normal
distribution specified in the second-stage model (2.11). Because FT.tj�/ is a
function of �, we can derive the marginal posterior distribution of the failure-time
cumulative distribution function, f .Ft.t/jd/, from the joint posterior distribution of
�, i.e., f .�jd/ via transformation of random variables. However, it is impossible to
obtain a closed-form expression for f .Ft.t/jd/. Instead, we developed a simulation-
based procedure and embedded it in the Gibbs sampling algorithm. In brief, at each
iteration of the Gibbs sampling algorithm, a sample vector for � and a sample
matrix for ˙ are drawn from their conditional posterior distributions, respectively.
Then, we randomly generate L � vectors according to the truncated trivariate normal
distribution f .�j�/, and compute the expected failure times by g�1.y�j�/. Finally,
a sample value for FT.t/ is estimated by the fraction of failure times that are less
than or equal to t. Once the Gibbs sampling algorithm is executed, we obtain a
set of FT.t/ values that can be regarded as random sample drawn from the marginal
posterior distribution f .Ft.t/jd/. Please refer to [4] for the detailed steps of the Gibbs
sampling algorithm.

2.3 Degradation-Based Burn-in Optimization

This section presents the proposed Bayesian degradation-based burn-in method. The
PDP example is again used as an illustrative example. A three-stage hierarchical
Bayesian degradation model is employed to describe the burn-in population. The
first-stage model assumes that the expected actual degradation path of the logarithm
transformed relative luminosity of a random unit from the burn-in population is
described by the mean function, g.tI �/, of the change-point regression model (2.4),
that is,

g.tI �/ D

	
˛ t � ˇt; t � �;

˛ t � ˇ�; t > �;
(2.14)

The second-stage model accounts for the unit-to-unit variability in the burn-in
population by assuming the � to be random following a multivariate distribution
f .�j�/ with the parameter vector �. Finally, the third-stage model specifies a joint
prior distribution for �, whose probability density function is denoted by f .�/.

The mission reliability, R.tm/, is the probability that a random unit released to
field operation will survive a pre-specified mission duration tm. Conditioning on a
given �, the mission reliability without burn-in is defined as
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R.tmj�/ D Pr.T > tmj�/ D

Z
�

PrŒg.tmI �/ > y��f .�j�/d�: (2.15)

Because � is a random vector, R.tm/, as a function of �, is also a random variable.
The prior distribution for the mission reliability R.tm/, denoted by fRm.r/, can be
derived from the prior distribution of �, i.e., f .�/, via transformation of random
variables according to Eq. (2.15). Then, the prior mean mission reliability EŒR.tm/�
is defined as

EŒR.tm/� D

Z 1

0

rfRm.r/dr D

Z
�

�Z
�

Pr.g.tmI �/ > y�/f .�j�/d�


f .�/d�:

fRm.r/ and E.Rm/ have no closed-form expressions, and Monte Carlo simulation
methods can be used to estimate them.

2.3.1 Reliability Criterion

The initial rapid degradation phase caused by impurities significantly reduces the
mission reliability perceived by customers. Removing the rapid degradation phase
through burn-in is crucial to the improvement of field reliability and customer
satisfaction. This section presents a mission reliability criterion for planning the
degradation-based burn-in test.

Assume all units in the burn-in population are subject to a degradation-based
burn-in test at the designed operation conditions, and the burn-in duration is
denoted by tb. Upon completion of the burn-in degradation test, a unit is released
to customers if its end-of-burn-in relative luminosity does not fall below a cutoff
percentage 
b.

Conditioning on a given �, the mission reliability of a unit that passed the burn-in
test is defined as

R.tmjtb; 
b;�/ D Pr.T > tm C tbjT > tb;�/ (2.16)

D

Z
�

Pr


g.tm C tbI �/ � g.tbI �/ > y� jg.tbI �/ > ln.
b/

�
f .�j�/d�;

where T > tb indicates that a unit is released to customers after the burn-in test
because its end-of-burn-in relative luminosity does not fall below the cutoff value 
b,
i.e., g.tbI �/ > ln.
b/. Note that we take the logarithm for 
b because the function
g.�/ models the expected actual degradation path of the logarithm-transformed
relative luminosity. The time-to-failure for a random unit released to field operation
after the burn-in test is defined when the relative luminosity g.tm C tbI �/� g.tbI �/

is less than y� because the initial luminosity perceived by the customers is the
luminosity at the end of the burn-in test. The prior mean mission reliability after
burn-in is, then, defined by
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EŒR.tmjtb; 
b/� D

Z
�

R.tmjtb; 
b;�/f .�/d� (2.17)

D

Z
�

�Z
�

Pr


g.tm C tbI �/ � g.tbI �/ > y� jg.tbI �/ > ln.
b/

�
f .�j�/d�

�
f .�/d�:

The reliability criterion EŒR.tmjtb; 
b/� defined in Eq. (2.17) does not have a closed-
form expression, but can be evaluated using the following Monte Carlo simulation
algorithm:

1. Simulate many � vectors from f .�/;
2. For each � vector obtained in Step (i), simulate a � vector from f .�j�/;
3. For all � vectors obtained in Step (ii), compute the ratio between the number of

� vectors satisfying both g.tm C tbI �/� g.tbI �/ > y� and g.tbI �/ > ln.
b/ and
the number of � vectors satisfying only g.tbI �/ > ln.
b/. This ratio provides an
estimate of the EŒR.tmjtb; 
b/� criterion.

If the search space contains finite number of candidate plans, it may be possible
to enumerate all candidate plans, compute their EŒR.tmjtb; 
b/� values, and, then,
choose the desired plan. If it is infeasible to enumerate all candidate plans, the
surface smoothing technique proposed by Muller and Parmigiani [16] may be used.
This technique chooses a set of candidate plans that spread over the search space,
compute the planning criterion values for these selected plans, fit a smooth surface
using the method of kernels, and finally search for the desired plan on that smoothed
surface. Other optimization techniques, such as the genetic algorithms, may also
be used.

2.3.2 Cost Criterion

In this section, a cost criterion for planning degradation-based burn-in tests based on
the change-point degradation model is presented. We adopt and extend the general
cost model discussed in [20, 30] for planning failure-based burn-in tests. There are
three types of costs: costs of the burn-in procedures, costs associated with rejecting
weak units after burn-in, and costs for failures in field operations during the warranty
period, tw. Let Cbs, Cbv , Cbf , and Cwf denote the fixed burn-in cost per unit, the
variable burn-in cost per unit per unit time, the burn-in rejection cost per unit, and
the failure cost per unit during field operation. The expected cost per burn-in unit
conditioning on a given � can be expressed by

E.Cjtb; 
b;�/ D Cbs C Cbvtb C Cbf Pr.T < tbjtb; 
b;�/C

CCwf Pr.T > tbjtb; 
b;�/Pr.T < tb C twjT > tb; tb; 
b;�/

D Cbs C Cbvtb C Cbf Pr.T < tbjtb; 
b;�/

CCwf Pr.tb < T < tb C twjtb; 
b;�/;
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where T < tb indicates that a unit is rejected at the end of the burn-in test because
g.tbI �/ < ln.
b/. Pr.T < tbjtb; 
b;�/ and Pr.tb < T < tb C twjtb; 
b;�/ are
defined as

Pr.T < tbjtb; 
b;�/ D

Z
�

PrŒg.tbI �/ < ln.
b/�f .�j�/d�; (2.18)

and

Pr.tb < T < tb C twjtb; 
b;�/ DR
�

PrŒg.tbI �/ > ln.
b/ \ .g.tb C twI �/ � g.tbI �// < y��f .�j�/d�;
(2.19)

respectively.
The prior uncertainty in the parameter vector � is measured by its prior

distribution f .�/, and, hence, the prior expected cost is defined as

E.Cjtb; 
b/ D

Z
�

E.Cjtb; 
b;�/f .�/d� (2.20)

D Cbs C Cbvtb C Cbf Pr.T < tbjtb; 
b/C Cwf Pr.tb < T < tb C twjtb; 
b/;

where Pr.T < tbjtb; 
b/ D
R

�
Pr.T < tbjtb; 
b;�/f .�/d�, and Pr.tb < T <

tb C twjtb; 
b/ D
R

�
Pr.tb < T < tb C twjtb; 
b;�/f .�/d�. The Monte Carlo

simulation algorithm presented in Sect. 2.3.1 can be modified to evaluate these
two probabilities. In the step 3, Pr.T < tbjtb; 
b/ is estimated by the fraction of
simulated � vectors that satisfy g.tbI �/ < ln.
b/, and Pr.tb < T < tb C twjtb; 
b/

is estimated by the fraction of simulated � vectors satisfying both g.tbI �/ > ln.
b/

and .g.tb C twI �/ � g.tbI �// < y�.

2.3.3 Incorporation of Pre-burn-in Data

The Bayesian approach can update the prior distribution f .�/ with the addition
of pre-burn-in data. Let d denote the available pre-burn-in data. The hierarchical
Bayesian change-point degradation model presented Sect. 2.2.2 can be applied to
analyze the data and obtain the posterior distribution of �, that is, f .�jd/. Then
we can replace the prior distribution f .�/ in the prior mean mission reliability
criterion (2.17) with the posterior distribution f .�jd/ to obtain the posterior mean
mission reliability after the burn-in test

EŒR.tmjtb; 
b;d/�

D

Z
�

�Z
�

Pr


g.tm C tbI �/ � g.tbI �/ > y� jg.tbI �/ > ln.
b/

�
f .�j�/d�

�

f .�jd/d�: (2.21)
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Similarly, the prior expected cost criterion (2.20) can be modified to obtain the
posterior expected cost criterion

E.Cjtb; 
b;d/

D Cbs C Cbvtb C Cbf Pr.T < tbjtb; 
b;d/C Cwf Pr.tb < T < tb C twjtb; 
b;d/;

(2.22)

where Pr.T < tbjtb; 
b;d/ D
R

�
Pr.T < tbjtb; 
b;�/f .�jd/d�, and Pr.tb < T <

tb C twjtb; 
b/ D
R

�
Pr.tb < T < tb C twjtb; 
b;�/f .�jd/d�. The step 1 of the

Monte Carlo simulation algorithm presented in Sect. 2.3.1 needs to be modified by
generating � vectors from the posterior distribution f .�jd/, which can be done using
the Gibbs sampling technique.

2.4 Results and Discussion

This section presents the results of the proposed methodologies applied to the PDP
degradation data. The degradation measurement y is the logarithm of the relative
luminosity, and t is the measurement time (in thousand hours).

2.4.1 Degradation Modeling and Failure-Time Distribution
Estimation

For the purpose of comparison, a simple linear degradation model and a bi-
exponential model are considered as alternatives. The simple linear degradation
model is given by

yj D h.tjI �/C �j D �tj C �j; j D 1; 2; : : : ; n; (2.23)

where �j 
 N.0; �2h /. The bi-exponential model is given by [1]


j D q.tjI '/ D q.tjI�; �1; �2/C �j D � exp.��1tj/C .1 � �/ exp.��2tj/C �j;

(2.24)

for j D 1; 2; : : : ; n, where �j 
 N.0; �2q /, 0 < � < 1 denotes the initial proportion of
impurities, and �1 > 0 and �2 > 0 represent the degradation rates of the impurities
and phosphors, respectively. The response 
 is the relative luminosity, i.e., 
 D

exp.y/.
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Table 2.1 Maximum likelihood estimates for the parameters in the change-point degradation
model (2.4) and the simple linear degradation model (2.23)

Change-point model Linear model

PDP Ǫ Ǒ O� (103 h) O�2 .�10�4/ O� O�2h .�10
�2/

#1 �0.0584 0.3189 0.5641 3.889 �0.1259 0.941

#2 �0.0602 0.4632 0.5346 5.077 �0.1534 1.814

#3 �0.0608 0.4088 0.5774 4.644 �0.1493 1.580

#4 �0.0620 0.4033 0.5410 4.539 �0.1440 1.404

#5 �0.0523 0.1656 0.7340 2.220 �0.0981 0.363

#6 �0.0649 0.2689 0.4536 2.572 �0.1130 0.536

2.4.1.1 Individual Degradation Modeling

First, we fitted the six individual degradation paths with the change-point regression
model (2.4) and the simple linear degradation model (2.23) using the maximum
likelihood method. Maximum likelihood estimates (MLEs) of the model parameters
of those two models listed in Table 2.1. The likelihood ratio test was employed to
compare the simple linear degradation model (the null model) and the change-point
degradation model (the alternative model), and yielded p-value � 0 for all six PDP
degradation paths, strongly supporting the two-phase degradation model.

Next, we fitted the six individual degradation paths with the change-point
degradation model (2.4), the simple linear degradation model (2.23), and the bi-
exponential degradation model (2.24) using the Bayesian method. Due to an absence
of prior knowledge, we adopted non-informative priors with � D .0; 0; 0/0, ˙ D

diag.106; 106; 106/, a� D 1, and b� D 0:0001. In addition, we assumed � D tn
to reflect our prior assumption that there is one change-point in the test period
.0; tn/. The Gibbs sampling algorithm was run for 100,000 iterations and the first
50,000 iterations were discarded. Convergence were monitored and verified by
running multiple chains from dispersed initial values [12]. Table 2.2 summarizes the
posterior medians of the parameters in the change-point degradation model (2.4),
along with the 95% Bayesian confidence intervals (in parentheses). Tables 2.1
and 2.2 indicate that the Bayesian method and the maximum likelihood method
provided very similar results. This is because non-informative priors were used in
the Bayesian analysis and the Bayesian inference was largely based on the data
information contained in the likelihood function.

Bayesian fitting algorithms using non-informative priors were also developed
for the simple linear degradation model (2.23) and the bi-exponential degradation
model (2.24). For the simple linear degradation model, the prior distributions are
� 
 N.0; 106/I

f�<0g
and �2h 
 IG.1; 0:0001/. For the bi-exponential degradation

model, the prior distributions are ' 	 .�; �1; �2/ 
 N3.0; 106I3/I
f0<�<1;�1>0;�2>0g

and �2q 
 IG.1; 0:0001/. Figure 2.2 compares the posterior medians of the expected
relative luminosity predicted by the three different models, i.e., exp.g.tI �//,
exp.h.tI �//, and q.tI '/. The linear model fails to capture the luminosity degrada-
tion, whereas the bi-exponential model and the change-point model can effectively



34 S.J. Bae and T. Yuan

Table 2.2 Bayesian inference for the parameters in the individual change-point degradation
model (2.4)

˛ median ˇ median � (103 h) median �2 (�10�4) median

PDP (95% interval) (95% interval) (95% interval) (95% interval)

#1 �0.05831 0.3160 0.5694 4.334

(�0.06726, �0.04919) (0.2556, 0.4076) (0.2556, 0.4076) (2.534, 8.315)

#2 �0.06185 0.4855 0.5021 5.592

(�0.07264, �0.05170) (0.4079, 0.6259) (0.3688, 0.6197) (3.282, 10.670)

#3 �0.06037 0.4019 0.5887 5.108

(�0.06992, �0.05069) (0.3417, 0.4728) (0.4795, 0.7208) (2.955, 9.792)

#4 �0.06241 0.4068 0.5351 5.038

(�0.07180, �0.05298) (0.3407, 0.5061) (0.4058, 0.6636) (2.949, 9.629)

#5 �0.05198 0.1646 0.7461 2.517

(�0.06105, �0.04283) (0.1395, 0.2083) (0.4945, 0.9648) (1.437, 5.029)

#6 �0.06401 0.2594 0.4734 2.921

(�0.07234, �0.05404) (0.1960, 0.3608) (0.3116, 0.7337) (1.676, 5.766)

Table 2.3 Average of squared residuals of the change-point degradation model (2.4), the simple
linear degradation model (2.23), and the bi-exponential model (2.24)

Subject Change-point model Linear model Bi-exponential model

PDP #1 0.0056 0.1381 0.0020

PDP #2 0.0068 0.2479 0.0022

PDP #3 0.0061 0.2136 0.0019

PDP #4 0.0059 0.1951 0.0030

PDP #5 0.0035 0.0566 0.0016

PDP #6 0.0034 0.0819 0.0015

capture the two-phase degradation pattern. Table 2.3 compares the average of the
squared residuals of the three models. The residual is defined as the deviation of
an observed relative luminosity from the posterior median of the expected relative
luminosity predicted by a model. Table 2.3 indicates that the bi-exponential model
and the change-point degradation model fit the PDP degradation data better than
the simple linear degradation model. The bi-exponential model provides a better
fit to the data than the change-point degradation model. However, the change-point
degradation model can provide additional information related to incomplete burn-in
through the change-point estimation.

2.4.1.2 Hierarchical Bayesian Degradation Modeling

We, then, analyzed the six observed degradation paths using the three-stage
hierarchical Bayesian change-point degradation model presented in Sect. 2.2.2 and
derived the failure-time distribution of a random unit from the population according
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Fig. 2.2 Posterior medians of the expected degradation paths of relative luminosity estimated by
different models: —: change-point degradation model (2.4); � � �: simple linear degradation
model (2.23); � � �: bi-exponential degradation model (2.24); ı: measurement. (a) PDP #1. (b)
PDP #2. (c) PDP #3. (d) PDP #4. (e) PDP #5. (f) PDP #6

to the method outlined in Sect. 2.2.3. In the third stage of the hierarchical model, we
assigned the following non-informative priors:

� 
 N.0; 106I3/; Q 
 IW.4; I3/; �2 
 IG.1; 0:0001/; and ıi 
 G.1; 0:0001/;
(2.25)

for i D 1; 2; 3, and additionally, we assumed � D 5 (thousand hours). The failure
threshold is y� D ln.50%/. Figure 2.3 shows the posterior median of the failure-time
cumulative distribution function. The number of simulated degradation coefficients,
L, was selected to be 3,000. A hierarchical Bayesian linear degradation model and
a hierarchical Bayesian bi-exponential degradation model were also developed in
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Fig. 2.3 Posterior medians of the failure-time distribution FT .t/ predicted by different models

this study (not presented in this article). Their predicted failure-time distributions
are also plotted in Fig. 2.3. The failure threshold for the bi-exponential model is

� D 50%. The hierarchical Bayesian linear degradation model underestimates
the reliability of the PDPs, which is consistent with the results shown in Fig. 2.2.
Because the derivation of the failure-time distribution requires extrapolation beyond
the range of the observed data, different model assumptions may cause significantly
different predictions for the failure-time distribution. The hierarchical Bayesian
change-point and the hierarchical Bayesian bi-exponential degradation model pro-
vide reasonably consistent predictions for the failure-time distribution.

2.4.2 Burn-in Test Planning

This section presents the results of the burn-in test planning method according to
the posterior mean mission reliability criterion (2.21) and the posterior expected
cost criterion (2.22). We consider two scenarios of the cutoff value 
b. In the
first scenario, 
b is fixed at 0%, which means that there is no end-of-burn-in
inspection and all units are released to customers after the burn-in test. This scenario
eliminates the rapid initial degradation phase. The burn-in duration tb is the only
decision variable in the burn-in planning problem. In the second scenario, the burn-
in duration tb and the cutoff point 
b are both decision variables. In this scenario,
the purposes of the burn-in degradation test are to eliminate the rapid degradation
phase and reject weak units.
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Fig. 2.4 The posterior mean mission reliability after burn-in EŒR.tmjtb; 
b;d/� vs. the burn-in
duration tb when the cutoff value 
b D 0

2.4.2.1 Planning Burn-in Without Inspection

First, we assume that there is no-end-of-burn-in inspection and all units are released
to customers. In this scenario, 
b is fixed at 0%, and the burn-in duration tb is the
only decision variable. We assume the search space for tb is from 0 to 1,000 h with an
increment of 1 h and enumerate all candidate tb values in the search space. Figure 2.4
plots the posterior mean mission reliability EŒR.tmjtb; 
b;d/� vs. the burn-in duration
tb, assuming a mission duration tm D 10;000 h. When tb D 0, the mean mission
reliability is less than 20%. EŒR.tmjtb; 
b;d/� increases as tb increases, and tends to
saturate when tb is above around 600 h. This is consistent with the results shown in
Table 2.2. The posterior median of the change-point of the PDPs are around 600 h.
Therefore, when the burn-in duration is around 600 h, we expect the initial rapid
degradation phase to be effectively eliminated. Figure 2.4 can be used to obtain the
minimum burn-in duration necessary to achieve a requirement for the mean mission
reliability. For example, when the mean mission reliability is required to be 90%,
the minimum burn-in duration is 445 h.

Next, we plan the burn-in test according to the posterior expected cost criterion
E.Cjtb; 
b;d/ (2.22). For illustration purpose, we assume Cbs D 10, two different
values for Cbv (0.10 and 0.18), two different values for Cwf (200 and 300), and
tw D tm D 10;000 h. Because Cbs does not affect the optimal burn-in duration, only
one value is assumed for Cbs. Since the burn-in rejection cost is not considered,
Cbf D 0. Figure 2.5 plots E.Cjtb; 
b;d/ as a function of the burn-in duration tb for
the combination of Cwf D 300 and Cbv D 0:10. The cost-optimal burn-in plan is a
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Fig. 2.5 The posterior expected cost E.Cjtb; 
b;d/ vs. the burn-in duration tb when the cutoff
value 
b D 0% and the cost coefficients are Cwf D 300 and Cbv D 0:10

Table 2.4 Cost-optimal burn-in duration t�b for different cost coefficients, when 
b D 0

Cbv Cwf Cbv=Cwf t�b (h) Pr.t�b < T < t�b C twjt�b ; 
b;d/

0.10 300 0.0003 528 0.037

0.10 200 0.0005 514 0.043

0.18 300 0.0006 497 0.052

0.18 200 0.0009 476 0.069

trade-off between the burn-in cost and the warranty cost. Table 2.4 summarizes the
optimal burn-in durations for different cost coefficients.

The cost-optimal burn-in duration t�b depends on the relative relationship between
Cbv and Cwf . As the ratio Cbv=Cwf increases, the burn-in costs increases, which
results in a reduction in the optimal burn-in duration. Additionally, as the burn-in
duration increases, the field failure probability after burn-in Pr.t�b < T < t�b C

twjt�b ; 
b;d/ decreases, which is consistent with the results presented in Fig. 2.4.

2.4.2.2 Planning Burn-In with Inspection

This section considers the case with end-of-burn-in inspection. A unit is rejected if
its end-of-burn-in relative luminosity is below the cutoff percentage 
b. Figure 2.6
shows the posterior mean mission reliability as a function of the burn-in duration
for different values of 
b. As shown in this figure, for the same burn-in duration,
increasing the cutoff value improves the mission reliability after the burn-in test.
If a mean mission reliability of 90% is required, the minimum burn-in durations
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Fig. 2.6 The posterior mean mission reliability after burn-in EŒR.tmjtb; 
b;d/� vs. the burn-in
duration tb for different cutoff values 
b

Table 2.5 Minimum burn-in duration to achieve the desired mission reliability for different cutoff
values


b Minimum burn-in duration, tb, (h) Pr.T < tbjtb; 
b;d/

0:00 445 �

0:75 428 0.06

0:85 370 0.37

0:95 197 0.81

are listed in Table 2.5. When the cutoff value 
b increases, the minimum burn-in
duration to achieve the 90% mission reliability reduces. However, this reduction of
burn-in duration is achieved by rejecting more units after burn-in as shown in the
Pr.T < tbjtb; 
b;d/ column of Table 2.5. This may incur unnecessarily high burn-in
rejection cost.

Next, we obtain the cost-optimal burn-in duration and cutoff values by minimiz-
ing the posterior expected cost E.Cjtb; 
b;d/. We assume that the candidate values
for 
b are from 0% to 100% with an increment of 1%. Two different values (100
and 150) are assumed for the burn-in rejection cost Cbf . Table 2.6 lists the optimal
burn-in test plans .t�b ; 


�
b / for the eight combinations of Cbv , Cbf , and Cwf values.

We have observed the following trends. Firstly, t�b and 
�
b are negatively correlated,

that is, a longer burn-in duration tends to have a lower cutoff value. This is because
the expected actual degradation path of PDPs is a monotonic decreasing function.
Secondly, for the same Cbf value, the optimal burn-in duration t�b again depends on
the ratio Cbv=Cwf , and a higher ratio results in a lower burn-in duration. Finally, for
the same set of Cbv and Cwf values, a higher Cbf value causes the optimal burn-in
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Table 2.6 Cost-optimal burn-in plans (t�b ; 

�

b / for different cost coefficients

Cbf Cbv Cwf t�b (h) 
�

b Pr.T < t�b jt�b ; 

�

b ;d/ Pr.t�b < T < t�b C twjt�b ; 

�

b ;d/

100 0.10 200 509 0.42 0.0007 0.0456

100 0.18 200 457 0.62 0.0052 0.0793

100 0.10 300 533 0.54 0.0037 0.0360

100 0.18 300 495 0.49 0.0012 0.0512

150 0.10 200 501 0.36 0.0003 0.0478

150 0.18 200 465 0.45 0.0004 0.0735

150 0.10 300 524 0.42 0.0006 0.0386

150 0.18 300 495 0.43 0.0007 0.0524

plan to lower the burn-in rejection probability Pr.T < t�b jt�b ; 

�
b ;d/. To lower this

burn-in rejection probability, the optimal cutoff value is reduced.

2.5 Conclusion

Some products were found to present two-phase degradation patterns where an
initial rapid degradation phase followed by a slower and more stable degradation
phase. In this chapter, we demonstrated that the change-point regression is a
reasonable model to describe the observed two-phase degradation paths. For the
PDP example, although the bi-exponential model provides a better fit to the
degradation paths, a major advantage of the change-point regression model is
the estimation of the change-point between the two degradation phases, and it
may provide valuable information to the manufacturers to determine the necessary
duration of burn-in process in order to eliminate the initial rapid degradation phase
before shipping the products to the customers. Based on the change-point regression
model, this chapter also discussed the degradation-based burn-in planning according
to a cost criterion or a reliability criterion. The Bayesian approach was employed in
order to incorporate the available prior knowledge and/or pre-burn-in data.
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Chapter 3
Degradation Modeling, Analysis,
and Applications on Lifetime Prediction

Lirong Hu, Lingjiang Li, and Qingpei Hu

Abstract Degradation signals provide more information for product life status than
failure data, when specific degradation mechanism can be identified. Modeling and
analysis with the degradation signal is helpful to extrapolate for product lifetime
prediction. In this chapter, comprehensive review has been conducted for different
kinds of modeling and analysis approaches, together with the corresponding lifetime
prediction results. Furthermore, discussions over related issues like product initial
performance are presented.

Keywords Degradation models • Acceleration models • Parameter estimation •
Lifetime prediction • Initial performance

3.1 Introduction

With the rapid development of technology, products of high-quality gradually
appear in a wide range of areas including electronic communications, weapons
manufacturers, aerospace industries, and so on. As a result, reliability evaluation
on those products has been brought to the forefront in recent decades.

We may assess whether a product is of high-quality from various views, such
as its appearance and its multiformity of function. However, nobody will regard
an unreliable product as a high-quality one. What’s reliability? Reliability is the
probability of a product or a system performing its intended function without failure
for a specified period of time under specific condition [1].
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3.1.1 Traditional Reliability Analysis

Traditionally, reliability analysis is based on failure-time data. A product’s failure
time is the time it failed. Generally, there’re two modes of failure: soft failure and
hard failure. Soft failure happens when the performance of a product which do not
fail catastrophically, reach a specified level of degradation. For example, Wang and
Chu [2] defined the failure time of an LED-based light bar as the time required for
its light output to achieve 50% lumen maintenance. Hard failure is caused by sudden
accidents, and products always lose all their functionality when hard failure occurs.

In reliability analysis, we’re supposed to get product’s lifetime distribution from
failure-time data. Assume that Ti 
 F(•; � )(i D 1, 2, : : : , n) where T1 , T2 , : : : , Tn

is a set of lifetimes of the product. The distribution type may not be known at the
very beginning, however, we can use the probability plot to assess which distribution
type the failure-time data fit best. And we may find in many applications, product’s
lifetimes usually fit a Weibull or lognormal distribution. After the form of F(•; � ) is
known, maximum likelihood method can be used to estimate the parameter � .

3.1.2 Degradation Data

In many cases, we may find it difficult to observe the failure time of a highly reliable
product. Therefore, looking for an alternative way to do reliability analysis is urgent.
As a result, researchers started to use degradation data.

It is easy to find out that degradation data can be collected only soft failures
occur. Generally, degradation can be defined as the reduction in performance. And
the degradation phenomenon is very common in everyday life, for example, battery
level of telephone will decrease under using condition. When the degradation of a
product can be measured, we can regard it as a function of time, and we can take
measurements on it at different points of time to obtain degradation data.

Comparing with failure-time data, degradation data can provide more informa-
tion. On one hand, degradation data record the failure process of the product while
failure-time data only record the failure time. On the other hand, it’s difficult to
obtain failure time of a highly reliable product even under severe conditions, as a
result, reliability analysis based on failure-time data can’t go on smoothly.

Nevertheless, there’re also some limitations of degradation data. For one thing,
hard failures can’t be traced to degradation, only failure-time data is available.
For another, in some applications, measurements on degradation data are difficult
to obtain or the measurement is destructive. For example, Nelson [1] discussed a
special situation in which the degradation measurement is destructive. And Escobar
et al. [3] introduced an important class of models for accelerated destructive
degradation data. In such case, failure-time data still play an important role in
reliability analysis.
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3.1.3 Accelerated Degradation Testing

In normal use conditions, a degradation process may be slow, and it will bring
difficulties in degradation data gathering. For that reason, accelerated degradation
tests (ADTs) appear in reliability analysis, and this kind of tests is applied
by increasing the level of acceleration variables, such as vibration amplitude,
temperature, corrosive media, load, voltage, pressure [4, 5].

3.1.3.1 Three Types of ADTs

Degradation data can provide much more information than failure-time data, as a
result, accelerated degradation tests are designed to gather reliability information of
product. The accelerated degradation test is widely used in reliability analysis. A
well-planned accelerated degradation test can lead to the most accurate estimation.
The plan variables include test stress, sample size, measurement times and termi-
nation time. There’re three types of accelerated degradation tests: constant-stress
ADTs, step-stress ADTs and progressive stress ADTs.

In a constant-stress ADT, several stress levels are divided, and each stress level
requires a number of samples. For new developing products, it’s not an easy task
to determine suitable stress levels. Thus, conducting a constant-stress ADT can be
very costly. Zhang et al. [6] used luminance decaying models under three groups
of constant stress accelerated degradation tests to acquire the life information
of OLED. Guan et al. [7] provided a constant-stress ADT in assessing product
reliability based on a Wiener process. Pan et al. [8] proposed a bivariate constant-
stress accelerated degradation model for product’s lifetime inference.

Comparing with constant-stress ADT, the step-stress ADT is an economical
and flexible test plan. The stress is increased in steps under a step-stress ADT.
As a result, the step-stress ADT do not require a large sample size, and it can
avoid sudden stress shocks leading to a sudden failure of the product. Wan et al.
[9] found it is more efficient by carrying out ADT with step-down stress than
constant stress. Pan and Sun [10] designed an efficient step-stress ADT plan for
the products with multiple performance characteristics based on Gamma process.
Ge et al. [11] presented a method to optimal design for step-stress ADT based on
D-optimality.

Process-stress ADT is similar to the step-stress ADT, except that the stress of
the test is increased with time at some constant rate. However, increasing stress at
a specific rate is difficult. Therefore, there are lots of problems on the application
of process-stress ADT. Guo [12] proposed an online degradation model based on a
process-stress ADT. Peng and Tseng [13] proposed a progressive-stress accelerated
degradation test for highly reliable products with very few test units.
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3.1.3.2 Accelerated Degradation Models

In order to get product’s lifetime distribution using degradation data, the core step
is to set up a model describing the degradation process. And under accelerated
degradation tests, this kind of model is called an accelerated degradation model.

An accelerated degradation model is the combination of an accelerated model
and a degradation model. And accelerated degradation models include the physic
based models and the statistics based models. Boulanger and Escobar [14] reviewed
accelerated degradation models in details. Park and Padgett [15] provided some
accelerated degradation models for failure based on the geometric Brownian
motion or Gamma process. Tang et al. [16] discussed accelerated degradation tests
modelling based on the nonlinear Wiener process. Sang and Kim [17] used an
accelerated degradation model to estimate the life of elevator wire rope. Liu [18]
proposed a Gauss-power law accelerated degradation model for electronic products.
Yang et al. [19] used several accelerated degradation models for prediction of
the time-to-failure of smart electricity meter (SEM). Hayes et al. [20] discussed
accelerated degradation models as ways to characterize the interaction between
disability and the functional decline of aging.

3.1.4 Overview

The remainder of this paper is organized as follows: Section 3.2 reviews acceleration
models for reliability analysis, and it focuses on three types of widely used
acceleration models. In Sect. 3.3, two types of degradation model are introduced,
and they are general path models and stochastic models. Furthermore, three
common methods of parameter estimation are also discussed in Sect. 3.3.3. Section
3.3.4 describes methods of lifetime distribution evaluation, including approximate
accelerated degradation analysis. Section 3.4 shows the initial performance is often
nonzero and it is random. And mixed-effect general path models are set up to
describe the relationship between initial performance and the degradation rate. A
short conclusion is given in Sect. 3.5, as well as discussions on future study.

3.2 Acceleration Models

This paper will focus on three types of widely used acceleration models: the
usage rate acceleration models, the temperature acceleration models and the voltage
acceleration models.
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3.2.1 Usage Rate Acceleration Models

Running the product at a higher usage rate is a way to accelerate degradation. Yang
and Zaghati [21] increased the usage rate of the product in an accelerated life testing.
Yellamati et al. [22] used vacuum fluorescent displays (VFD) heat sink temperatures
under worst-case by accelerating the usage rate. Hwang et al. [23] developed the
usage rate acceleration model using the degradation data. Assuming the degradation
is usage rate independent, there are usually two ways of doing such accelerated test.

One way is to run the product faster. For example, in many applications, it’s
common to increase the rotate speed of a rolling bearing. The acceleration factor
can be written as AF(UR) D UR/UR0, where UR0 is the operating usage rate of the
product. Another way is to increase the operating frequency or reduce the off time of
the product. Some products, such as the washing machine, run about an hour a day,
however, they can run 24 hours a day under accelerated testing. The acceleration
factor can also be written as AF(UR) D UR/UR0, where UR0 is the operating usage
rate of the product.

3.2.2 Temperature Acceleration Models

As we mentioned before, temperature is one common cause of degradation. For
example, increasing temperature can speed up many chemical reactions. Arrhenius
and Eyring relationship are two widely used models when the accelerated variable
is thermal.

3.2.2.1 Arrhenius Relationship

The Arrhenius relationship is probably the most common model used in accelerated
testing. It has been widely used when the accelerated variable is temperature. Shen
et al. [24] used the Arrhenius accelerated aging model to estimate the product
lifespan. Cooper [25] used the Arrhenius equation for analysis of product’s life
test data. Zhou et al. [26] converted the failure data to normal stress employing
acceleration factors of Arrhenius model. The Arrhenius relationship is derived from
the Arrhenius reaction rate equation, and it can be expressed as:

RAr.temp/ D �0 � exp

�
�Ea

kb � temp


D �0 � exp

�
�Ea � 11605

temp


: (3.1)

Where R is the reaction rate; �0 is a constant depending on product or material
characteristics; Ea is the activation energy; kb D 8.6171 � 10�5 D 1/11605 is the
Boltzmann’s constant; temp is the ambient temperature in degrees Kelvin.
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The Arrhenius acceleration factor is:

AFAr.temp/ D
RAr.temp/

RAr .temp0/
D exp

�
Ea

kb

�
1

temp0
�

1

temp

�
: (3.2)

Where temp0 is the operating temperature of the product under test. From the Eq.
(3.2), when temp > temp0, we have AF(temp) > 1; and when temp < temp0, we have
AF(temp) < 1.

3.2.2.2 Eyring Relationship

Just like the Arrhenius reaction rate equation, the Eyring equation describes the
temperature dependence of reaction rate. Dai et al. [27] built the degradation
model with the theoretical description of side reaction based on Eyring equation.
Endicott et al. [28] discussed the relation between the Eyring model and the Weibull
distribution for both progressive and constant stress tests. The Eying relationship is
given by:

REy.temp/ D �0 � A.temp/ � exp

�
�Ea

kb � temp


D A.temp/ � RAr.temp/: (3.3)

Where A(temp) is a function of Kelvin temperature temp. In a lot of applications,
the function A(temp) is usually denoted as A(temp) D tempm with a constant m.

The Eyring acceleration factor is:

AFEy.temp/ D
A.temp/

A .temp0/
� AFAr.temp/: (3.4)

When A(temp) D tempm, the Eyring acceleration factor can be written as:

AFEy.temp/ D

�
temp

temp0

m

� AFAr.temp/: (3.5)

3.2.3 Voltage Acceleration Models

For products like light bars and heaters, increasing voltage is a simple way to
accelerate degradation. Voltage is defined as the difference in electrical potential
between two points, and physically it can be thought of as the amount of pressure
behind an electrical current [29]. Rohner et al. [5] proposed the intrinsic voltage
acceleration model to describe the evolution of the post breakdown conductivity. Wu
and Sune [30] proposed three independent experimental methodologies applicable
to the investigation of voltage acceleration models of time to breakdown for
dielectric breakdown. Hu et al. [31] presented a voltage-acceleration lifetime model
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to predict the product’s lifetime distribution. And the most frequently used model
for voltage is the inverse power relationship. Padgett et al. [32] applied the inverse
power law model to carbon composite materials.

The inverse power relationship can be expressed as:

T.V/ D
T .V0/

AF.V/
D

�
V

V0

ˇ1
� T .V0/ ; (3.6)

where T(V) and T(V0) are failure time of the product under the general voltage V0

and the operating voltage V; generally, we have ˇ1 < 0.
The acceleration factor is:

AF.V/ D
T .V0/

T.V/
D

�
V

V0

�ˇ1

: (3.7)

When V > V0 and ˇ1 < 0, we have AF(V) > 1.

3.2.4 Other Acceleration Models

Generally, an acceleration model is suitable for a single degradation process. If the
failure of a product involves simultaneous degradation processes, each process will
require its own acceleration model. However, there’re some accelerated tests which
choose acceleration models with more than one accelerated variables. Escobar and
Meeker [33] reviewed this kind of acceleration models well, including generalized
Eyring relationship, temperature-voltage acceleration models, temperature-current
density acceleration models and temperature-humidity acceleration models.

3.3 Degradation Modeling and Analysis

Acronym Df Failure Threshold
PDF Probability Density Function " Measurement Error
CDF Cumulative Distribution Function n Sample Size
Symbol mi Measuring Times of Sample i

� Sampling Frequency
B(•) Standard Brown Motion D(•) Real Value of Performance
T Failure Time Y(•) Measured Value of Performance
Mi Degradation Modeli � (˛) Gamma Function
fT PDF of Failure TimeT � (a, z) Incomplete Gamma Function
FT CDF of Failure Time T ˚(•) Standard Normal Distribution Function
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One objection of reliability analysis is to make predictions about the product
lifetime. When the product follows a soft failure, its lifetime can be defined as the
first time that degradation reaches a specified level. In order to make connections
between degradation data and the product lifetime, it’s essential to establish a proper
probability model to describe the behavior of the collected degradation data.

For degradation test, if all product units along with their test conditions and
environment were identical, the lifetimes would be the same. However, in reality,
there are some variables in degradation test. First, it is almost impossible that the
product units are exactly the same, for instance, its initial degradation level can be
different from each other. Second, we shouldn’t ignore the difference between each
unit in test conditions and environment. For example, environmental temperature
often changes slightly over time, and this change may affect the degradation process
of the units. Next, measurement errors of degradation can be reduced, but they
cannot be totally avoided.

Two types of degradation model are commonly used in real applications, and they
are general path models and stochastic models. When referring stochastic process
models, this paper will discuss three frequently-used types: Wiener process, Gamma
process and the inverse Gaussian process.

3.3.1 General Path Models

The fundamental notion under the general degradation path models is to limit
the sample space of the degradation process and assume all sample functions
admit the same functional form but with different parameters. In the degradation
model, a unit’s actual degradation path over time is denoted by D(t), which is
a monotone function. A soft failure occurs when D(t) reaches a threshold value
Df . The degradation level of unit i at time tj, obtained from measurements, can be
expressed as:

yij D Dij C "ij D D


tjI'; �i

�
C "ij; i D 1; : : : ; n; j D 1; : : : ;mi; (3.8)

where "ij follows a normal distribution N(0, "2), and it is measurement error for
unit i at time tj; ® is the vector of fixed-parameter which is identical for all units;
� i is the vector of random parameter which vary from unit to unit; "ij and � i

(i D 1, : : : , n, j D 1, : : : , mi) are independent of one another. If we know that the
cumulative distribution function (CDF) of � i is ˚� (•), and D(t) is a monotone
increasing function, then the CDF of lifetime T can be expressed as:

FT.t/ D P fT � tg D P
˚
D.t/ � Df

�
D FT



tI';˚� .�/ ;Df ;D

�
: (3.9)
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3.3.1.1 Two Basic Methods of Model Application

There are two basic methods to process the degradation data, which the general path
model is used. One of them is degradation path fitting method, where a path model is
built for the performance of product under test, such as the luminous flux of a LED
bar. Zuo et al. [34] presented the general path model to fit parameters of the model as
functions of time. The other is degradation amount distribution method. Sometimes,
the degradation can be taken as a random process, that is to say the degradation level
follows a random distribution class with time-dependent parameters. For example,
assume that the degradation level y(t) obtained from measurements obeys the normal
distribution with mean value �y(t) and variance �2y .t/, and the distribution pattern of
y(t) do not change with time. Then, if the actual degradation path D(t) is a monotone
increasing function, the reliability function can be described as:

R.t/ D 1 � F.t/ D 1 � P
˚
y.t/ � Df

�
D ˚

�
Df � �y.t/

�y.t/


: (3.10)

Thus, the core problem of this situation falls into setting up path models with
mean value �y(t) and variance �2y .t/. Wang et al. [35] proposed a lifetime prediction
approach to predict degradation amount distribution of products using a composite
time series modeling procedure based on degradation data.

3.3.1.2 Incorporation of Accelerated Models

This section will use a simple example to introduce the way of incorporation
accelerated models into general path models. Assume that a product’s degradation
path under operating stress s0 can be written as:

D .tI s0/ D �0 C �1t C "; (3.11)

where �0 is the vector of fixed-parameter which is identical for all units; �1 is a
vector of random parameter; and " is measurement error which is independent of
time t. The failure time of the product can be defined as:

T .s0/ D
Df � �0

�1
: (3.12)

Then according to accelerated model, the failure time of the product under stress
level s can be defined as:

T .s/ D
T .s0/

AF .s/

Df � �0

�1 � AF .s/
; (3.13)
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where AF(s) is the acceleration factor. Then, correspondingly, the product’s degra-
dation path under stress level s can be written as:

D .tI s/ D �0 C �1 � AF.s/ � t C "

D �0 C h.s/ � t C ";
(3.14)

where h(s) D �1 � AF(s) is a function of stress s.
From (3.14), when incorporating accelerated models into general path models,

we can regard some of the model parameters as a function of covariate s which
is called link function. And the link function is related to the type of accelerated
model. For instance, in the example above, if the covariate is temperature and the
type of accelerated model is Arrhenius relationship, then the link function can be
express as:

h.s/ D �1 � AFAr.s/ D �1 �
RAr.s/

RAr .s0/

D
�1

RAr .s0/
� �0 � exp

�
�Ea

kb � s



D ˇ0 � exp

�
�
ˇ1

s


;

(3.15)

where ˇ0 D �1
RAr.s0/

� �0 is a vector of random parameter; ˇ1 D Ea
kb

is the vector of
fixed-parameter.

3.3.2 Stochastic Processes Models

The general path model is a type of simplified model for degradation data, and
this kind of model can be used when all units are tested under a particular
homogenous environment. Ye and Xie [36] pointed out that the randomness in the
unobserved environmental factors will convert to unexplained randomness in the
observed degradation, and stochastic processes are a natural choice for modeling
the randomness in degradation processes caused by inherent randomness and
unexplained randomness due to environmental factors.

The Wiener process, the gamma process and the inverse Gaussian process are
three common stochastic processes which have received lots of applications in
degradation modeling. Tseng et al. in paper [37] used a Wiener process to model
the light intensity of LED lamps. Joseph and Yu [38] used a Wiener process model
for reliability improvement. Si et al. in [39] developed a Wiener-process-based
degradation model with a recursive filter algorithm to estimate the RUL from the
observed degradation data. Wang et al. [40] considered the gamma process with a
time transformation and random effects for lifetime prediction. Iervolino et al. [41]

http://xueshu.baidu.com/s?wd=author%3A%28Iunio%20Iervolino%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
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used a gamma distribution to model damages which is produced by earthquakes.
Noortwijk [42] surveyed the application of gamma processes in maintenance. Wang
and Xu [43] proposed an inverse Gaussian process model to fit laser data. Peng [44]
proposed a degradation model based on an inverse normal-gamma mixture of an
inverse Gaussian process. Ye et al. [45] discussed the accelerated degradation test
planning when the underlying degradation follows the inverse Gaussian process.

3.3.2.1 The Wiener Process

In many practical cases, degradation path of product performance is the result of
joint action by a large number of external environmental factors. From the central
limit theorem, the increments�D(t) D D(t C�t) � D(t) should approximately obey
the normal distribution. And the increments of degradation path in Wiener process
exactly obey normal distribution, so the Wiener process is commonly used in the
field of reliability analysis.

1. Wiener Process with Drift Parameter

Before introduction of Wiener process with drift parameter, a standard Wiener
process is given as follow first. fD(t), t � 0g is known as Wiener process or Brownian
motion, if

① D(0) D 0;
② fD(t), t � 0g has stable independent increments, it is to say, the increments
�D(t) D D(t C�t) � D(t) are independent;

③ 8t > 0, D(t) follow a normal distribution N(0, �2t).

Let � be 1, then fD(t), t � 0g is called a standard Wiener process or standard
Brownian motion process.

Here comes the one variable Wiener process with drift parameter. fD(t), t � 0g is
called a Wiener process with drift parameter � and volatility parameter � > 0 [36,
46, 47], if

① D(0) D 0;
② the increments �D(t) D D(t C�t) � D(t) are independent;
③ 8t > 0, D(t) follow a normal distribution N(��(t), �2�(t)).

Where �(t) is the scales time, and it is a continuous monotone increasing function.
Let B(•) be a standard Brownian motion, according to the definition above, the
degradation path in a Wiener process is often expressed as

D.t/ D �ƒ.t/C �B .ƒ.t// : (3.16)

Because D(t) obeys a normal distribution N(��(t), �2�(t)), the coefficient of
variation is given as
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CV .D.t// D

p
Var .D.t//

E .D.t//
D

�

�
p
�.t/

: (3.17)

And it is a reduction function of time, which shows that with the increase of time,
sample degradation path of D(t) gradually move closer to the mean curve.

One important property of Wiener process is that the increments
�D(t) D D(t C�t) � D(t) are independent, and they have a normal distribution with
mean ���(t) D��(t C�t) ���(t) and variance �2��(t) D �2�(t C�t) � �2

�(t). The PDF of �D(t) is

f .�D.t/I��.t/; �; �/ D
1

�
p
2� ���.t/

� exp

(
�
.�D.t/ � ���.t//2

2�2��.t/

)
:

(3.18)

The failure time T is defined as the first time that D(t) reaches the threshold value
Df . In Wiener process, the failure time T follows a transformed inverse Gaussian

distribution, that is ƒ.T/ 
 IG

�
Df

�
;

D2f
�2


. Thus, we can induce the CDF of �(T) is

given by

Fƒ.T/.x/ D ˆnor

0
@
s

D2
f

�2x

�
�x

Df
� 1

1
A

C exp

�
2�Df

�2


�ˆnor

0
@�

s
D2

f

�2x

�
�x

Df
C 1

1
A :

(3.19)

And E .ƒ.T// D
Df

�
, Var .ƒ.T// D

Df �
2

�3
.

2. Wiener Process with Measurement Errors

Although the Wiener process (3.16) can express inner randomness of the perfor-
mance degradation process, it is difficult to show measurement error in degradation
test. The existence of measurement error may due to imperfect measuring tool, and
the randomness of external environmental factors may also affect the measured
values of product performance. In fact, measurement error is very common,
especially when the data are obtained in an indirect way. For example, in many
cases, current probe and sensor are used to measure the product performance. As a
result, when using Wiener process, measurement error is often taken into account.

Wiener process with measurement error can be expressed as

Y.t/ D D.t/C "; (3.20)



3 Degradation Modeling, Analysis, and Applications on Lifetime Prediction 55

where Y(t) is measured value of product performance at time t; D(t) represent
the model (3.16); and " is measurement error which is independent of time t. Li
et al. [48] provided a Wiener process model for accelerated degradation analysis
considering measurement errors.

3. Wiener Process with Random Effects

It is common to find differences among degradation path for product units from
the same population. This kind of differences is very likely to be the result of
unobservable random effects, such as the distribution of bacteria in the test. Based
on this, it is necessary to discuss Wiener process with random effects.

Considering unobservable random effects, it is common to allow one or more
model parameters being unit-specific when Wiener process applied. And a Wiener
process will be set if a certain parametric distribution is given. For example, we
can let drift parameter � in model (3.16) be unit-specific and follow a normal
distribution, while the volatility parameter � > 0 be a constant.

Here are two common Wiener process with random effects.

Random Effects Model 1

D.t/ D ˇt C �B.t/: (3.21)

Where drift parameter ˇ is a random variable, which describes the difference
of individual degradation rate; volatility parameter � is a constant for all product
units. In particularly, the drift parameter ˇ can be considered to follow a normal

distribution N
�
�ˇ; �

2
ˇ

�
.

Random Effects Model 2

D.t/ D ˇt C �B.t/: (3.22)

Let V D ¢2, and ˇ , V be both random variable. Because V > 0, V�1 > 0. Due
to the flexibility of gamma distribution, V�1 can be assumed to obey a gamma
distribution. Then V obeys an inverse gamma distribution, and its PDF can be
expressed as

f .VI˛1; ˛2/ D
˛2
˛1

� .˛1/
V�˛1�1e�

˛2
V ; V > 0; ˛1 > 0; ˛2 > 0; (3.23)

where ˛1 is shape parameter and ˛2 is rate parameter.
Furthermore, the drift parameter ˇ can be considered to follow a normal

distribution N(v, 
V) under the condition of a given V.
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4. Incorporation of Accelerated Models

Environmental stress factors may affect performance degradation process, for
instance, the rise of junction temperature can accelerate the degradation of LED
bars. And common environmental factors include voltage, temperature, humidity,
vibration, sample size and so on. These stress factors are known as covariates.
When covariate is measurable, then an acceleration model can be used to integrate
covariate into Wiener process.

The most common way of incorporating acceleration model into Wiener process
is to regard some of the model parameters as a function of covariate, which is
called link function. And the choice of function form should depend on the way
acceleration factor influent model parameters. Tang et al. [49] regarded volatility
parameter � > 0 as a constant, and drift parameter � as a linear function of covariate
s, which can be expressed as �(s) D�0 C�1s. Padgett and Tomlinson [50] regarded
the drift parameter � as a power function of covariate s, which can be expressed as
�.s/ D �0s�1 .

3.3.2.2 The Gamma Process

In the process of accelerated degradation tests, the degradation path of product
performance is not necessarily monotonous. For many products, their performance
degradation is often irreversible, at this time the monotonicity of degradation path
becomes a necessary condition. Compared with the Wiener process, the gamma
process can be used when the degradation path is monotone. From another aspect,
a lot of product failure is caused by the impact of the external random factors.
These kinds of random factors tend to be very small, and their impact time follows
a compound Poisson distribution. In this case, Gamma process is a good choice
because it precisely obeys a compound Poisson distribution.

A process fD(t); t � 0g is called a gamma process, if:

① the increments �D(t) D D(t C�t) � D(t) are independent;
② the increments �D(t) follow a gamma distribution Ga(�,�
(t)), where � is the

scale parameter, and the shape function 
(•) is a given, monotone increasing
function.

If 
(0) D 0 and D(0) D 0, then D(t) follows the distribution Ga(�, 
(t)), and its
PDF and CDF can be expressed as:

PDF W g .xI�; 
/ D
��


� .
/
� x
�1 � exp

	
�

x




�
I (3.24)

CDF W G .xI�; 
/ D

Z x

0

g .xI�; 
/ dx: (3.25)
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The CDF of the failure time can be expressed as:

FT.t/ D P fT � tg D P
˚
D.t/ � Df

�
D 1 � G



Df I�; 


�
: (3.26)

Similar to Wiener process, gamma process with covariates and gamma process
with random effects can also be set up. Lawless and Crowder [51] regarded the
scale parameter � as a function of covariates when setting up gamma process with
covariates, and assumed � to be unit-specific which follows a gamma distribution
when setting up gamma process with random effects.

In addition, the measurement error is also hard to avoid in the product degra-
dation process. Generally, the measurement error " obeys the white noise. If D(t)
represents the gamma process, " represents the measurement error, then gamma
process with measurement errors can be expressed as Y(t) D D(t) C ". Kallen and
Noortwijk [52] took the measurement errors of degradation into account in the
gamma process.

3.3.2.3 The Inverse Gaussian Process

There are many degradation paths that the Wiener process and the gamma process
fail to model, Wang and Xu [43] introduced the inverse Gaussian process as an
alternative. A process fD(t); t � 0g is called an inverse Gaussian process, if

① the increments �D(t) D D(t C�t) � D(t) are independent;
② the increments �D(t) follow a IG distribution IG(�
(t), 	(�
(t))2), where 	

is the scale parameter, and the mean function 
(•) is a nonnegative, monotone
increasing function.

Let 
(0) D 0 and D(0) D 0, then D(t) denotes the distribution IG(
(t), 	
2(t)), and
its PDF and CDF can be expressed as:

PDF W fIG


xI 
; 	
2

�
D

s
	
2

2�x3
� exp

 
�
	.x � 
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2x

!
; x > 0I (3.27)
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The CDF of the failure time can be expressed as:

FT.t/ D P fT � tg D P
˚
D.t/ � Df

�
D 1 � FIG

�
xI 
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2

�

D ˚nor
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C Df

��
:

(3.29)
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And when 	 • 
(t) is large enough, especially when t is large enough, D(t)
approximately obeys a normal distribution with mean 
(t) and variance 
(t)/	 . At
this time, the distribution function of failure time T can be expressed as

FT.t/ � 1 � ˚

0
B@ l � 
.t/q


.t/
	

1
CA D ˚

 p
	 � 
.t/ �

l
p
	p

.t/

!
: (3.30)

In Wiener process, the failure time T follows a transformed inverse Gaussian

distribution, that isƒ.T/ 
 IG

�
Df

�
;

D2f
�2


. If there are a series of threshold l indexed

by t, we can gain corresponding transformed failure times �T(t). Then �T(t)
follows an IG process �T(t) 
 IG(� l(t),�l2(t)), where � D 1/� and �D 1/�2. As
a result, the IG process is very flexible in setting up IG process with covariates and
IG process with random effects. That is to say, when it exists a way to integrate
covariates and random effects into Wiener process, there is a corresponding way to
integrate covariates and random effects into IG process.

3.3.3 Estimation of Model Parameters

In the field of reliability analysis, there are three most commonly used methods of
parameter estimation: maximum likelihood method, the least squares approach and
Bayesian methods.

Maximum likelihood method is one of the most widely-used methods in
reliability analysis. There’re two primary reasons for using maximum likelihood
method [53]. First, there are hardly any statistical problems where the maximum
likelihood method can’t be used. Second, the maximum likelihood method is known
to be optimum in large samples under mild conditions. The principle of maximum
likelihood method is actually choosing a parameter which can make test result to
have the greatest probability. Meeker and Escobar [29] proposed the parametric
maximum likelihood in Chap.11. Hu et al. [54] gave a log-likelihood function of
parameters from the N test units. Escobar et al. [3] used likelihood-based methods
to infer both the degradation and the lifetime distributions.

The least squares approach is a standard approach in regression analysis to the
approximate solution of overdetermined systems, and the least squares problems
include linear least squares and non-linear least squares. It also has wide application
in reliability analysis. Lu and Meeker [55] provided a least-squares-based two-stage
method to estimate a time-to-failure distribution using degradation data. Wu and
Shao [56] used the linear least squares methods for degradation analysis.

Bayesian methods are closely related to the likelihood methods. Ignoring the
philosophical differences in the theory of statistical inference, Bayesian methods
can be viewed as an extension of likelihood-based methods, where one com-

http://dx.doi.org/10.1007/978-981-10-5194-4_11
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Overdetermined_system
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bines prior information, in the form of a prior probability distribution, with the
likelihood [53]. In the Bayesian estimation, the parameter to be estimated is
often regarded as random variable which obeys a prior distribution. Robinson
and Crowder [57] explored a Bayesian approach for a growth curve degradation
model with repeated measures. Wakefield et al. [58] proposed a Bayesian EM
algorithm to estimate parameters of pharmacokinetics. Peng et al. [59] conducted a
Bayesian analysis of inverse Gaussian process models for degradation modeling and
inference.

3.3.4 Lifetime Prediction

In degradation analysis, a path model D(t;®, � ) and a threshold value Df is usually
assumed, where ® is the vector of fixed-parameter and � is the vector of random
parameter. Usually, the inference on lifetime distribution can be induced from the
degradation model parameters, see equation:

FT.t/ D P .T � t/ D P


D .tI'; �/ � Df

�
: (3.31)

The Eq. (3.31) shows that the lifetime distribution depends on the random
parameter � . In some simple situations, if the functional form of the distribution
of random parameter � is assumed, we can induce the lifetime distribution FT (t)
with a closed-form expression.

However, for some complex situation, it is not an easy task to obtain the
lifetime cumulative distribution function (CDF) FT (t) with a closed-form expres-
sion. And when there is more than one random parameter in the model, the
situation will become more complicated. Thus, other methods of evaluating FT (t)
are needed.

Approximate accelerated degradation analysis is an alternative method of ana-
lyzing accelerated degradation data. Generally, there are two steps in conducting
the approximate method. In the first step, we should predict the failure time for
each sample path, the obtained n failure times T1 , : : : , Tn are called pseudo failure
times. In the second step, the pseudo failure times T1 , : : : , Tn can be analyzed
using the methods of traditional reliability analysis to estimate FT (t).

Chen and Zheng [60] used the degradation data to derive predictive intervals
of individual lifetimes first, then an imputation algorithm is invoked to obtain the
estimate of the lifetime distribution. Lu and Meeker [55] used a non-linear mixed-
effects model and developed methods based on Monte Carlo simulation to obtain
point estimates and confidence intervals for reliability assessment. Bae et al. [61]
explored the link between degradation model and the resulting lifetime model, and
found out that seemingly innocuous assumptions of the degradation path create
surprising restrictions on the lifetime distribution.

http://xueshu.baidu.com/s?wd=author%3A%28Weiwen%20Peng%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson


60 L. Hu et al.

3.4 Initial Degradation Levels

Initial degradation level is product’s degradation performance at time zero. In
degradation analysis, most studies regarded initial degradation level as zero, and
focused on the degradation increments when stochastic models are used. For
example, Hu et al. [54] assumed that the degradation path under standardized stress
level xi follows a Wiener process denoted as Wi(t) D 
it C �B(t) , t � 0.

However, the initial degradation is often nonzero and it is random. Bae and
Kvam [62] proposed a degradation model which reflects the variation in initial
luminosity of VFDs, and further analysis revealed that the initial performance of
VFDs is a random coefficient. Furthermore, plenty of studies showed that the initial
degradation always correlates with the degradation rate.

3.4.1 Motivating Examples

Here we use the example of sliding metal wear application in Chap. 21 of [29]
to support the view intuitionally. In the experiment, the wear resistance is tested
among metal pieces of different weight. Measurements of the scar width are taken
at different points in time, which are shown in Fig. 3.1. And this example shows that
the low initial degradation level of scar width indicates a lower degradation rate.

There also exist some examples that the initial degradation is negatively corre-
lated with the degradation rate. Weaver et al. [63] introduced an example involving
inkjet printer heads. Figure 3.2 shows the scatterplot of print head migration data,
and from the figure we can see that when the initial degradation level is low, the
corresponding degradation rate can be high. That implies the degradation rate can
be roughly estimated using the initial performance data.

3.4.2 Mixed-Effect General Path Model

In order to make use of the initial degradation as well as its correlation with a
degradation rate when doing acceleration degradation test, a mixed-effect general
path model is usually used. For unit i(i D 1, 2, : : : , n) the mixed-effect degradation
path can be described as following form:

yi D Xi' C Zi‚i C "i; i D 1; : : : ; n: (3.32)

Where yi D .yi1; : : : ; yimi/
0 denotes the vector of the degradation measurement data;

®D (®0,®1, : : : ,®p � 1)
0

is the coefficient corresponding to the fixed-effect covari-
ates Xi; Xi is a mi � p matrix with each row denoted by xij D (1 , tij , xij2, : : : , xij , p � 1),
j D 1 , : : : , mi; ‚i D (� i1, : : : , � iq)

0

is the coefficients corresponding to the

http://dx.doi.org/10.1007/978-981-10-5194-4_21
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Fig. 3.1 Scar width data of metal alloy

Fig. 3.2 Scatterplot of print head migration data
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random-effect covariates Zi; Zi(mi � q) is a sub-matrix of Xi, and each row can be
denoted as zij D (zij1, : : : , zijq); and "i D ."i1; : : : ; "imi/

0 denotes the measurement
errors.

Without loss of generality, let

xij D


1; tij; xij1; xij2tij

�
; j D 1; : : : ;miI (3.33)

' D .0; 0; '1; '2/
0I (3.34)

zij D


1; tij

�
; j D 1; : : : ;miI (3.35)

‚i D .�0; �1/
0: (3.36)

Then the model (3.32) can be simplified as:

y D x1�1 C x2�2t C �0 C �1t C ": (3.37)

Where the term x1®1 denotes how the initial degradation levels change with
accelerating variable x1; x2®2 denotes how the degradation rate changes with
accelerating variable x2; �0 and �1 describe the unit-to-unit variability in the initial
performance and degradation rate; " 
 N



0; �2"

�
denotes measurement errors.

In many cases, the random in the initial degradation levels is often modelled by a
normal distribution, and it often has a strong correlation with the degradation data.
As a result, we usually assume that parameter �0 and �1 follow a bivariate normal
distribution, which can be described as (�0, �1 )

0


 BVN(ˇ, V). Where ˇ D (ˇ0,ˇ1)
0

is the mean vector, and V is the covariance matrix expressed as

V D

�
�20 ��0�1
��0�1 �21


(3.38)

Yuan and Pandey [64] used the model (3.37) to describe the flow accelerated
corrosion in pipes, and found the correlation coefficient in the wall thinning data
of carbon steel pipes is as high as �0.91. Lu et al. [65] used a transformed
model y D �0 C �1 log(t) C " to describe the HCI degradation data, and found the
correlation coefficient between �0 and �1 is �D � 0.62. Weaver and Meeker [66]
introduced an example of carbon-file resistors using model (3.37), and in the
example �D 0.628.
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3.5 Discussions on Future Study

There are two types of general degradation model which have been widely used,
general path models and stochastic models. Above have already introduced them in
details, including the general path model, the Wiener process, the Gamma process
and the inverse Gaussian process. However, the degradation of a product is often
very slow, so it is common to use harsh test conditions such as high temperature and
usage rate. For that reason, three types of acceleration models are presented, and
they are the usage rate acceleration models, the temperature acceleration models
and the voltage acceleration models. This paper also discussed the accelerated
degradation test (ADT) analysis, including the estimation methods for the ADT
model parameters, and the methods of evaluation of failure time distribution.

As we come across more accelerated degradation problems, we will find that
above knowledge is far from enough. For example, the initial status of a product
at time zero is usually not quite consistent, and it always correlates with the
degradation rate. As a result, we cannot ignore the initial degradation when we
perform an acceleration degradation test, and this refers to the strategic allocation
of test units which can be further discussed.
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Chapter 4
On Some Shock Models with Poisson and
Generalized Poisson Shock Processes

Ji Hwan Cha and Maxim Finkelstein

Abstract We consider systems subject to shocks that follow the generalized
Polya process (GPP), which has been recently introduced and characterized in the
literature. Distinct from the nonhomogeneous Poisson process that has been widely
used in applications, the important feature of this process is the dependence of
its future behaviour on the number of previous events (shocks). We consider the
delayed events model and the corresponding shot noise process governed by the
GPP. We also present some results on the preventive maintenance for systems with
failure/repair times following the GPP.

Keywords Generalized Polya process • Extreme shock model • Imperfect
repair • Preventive maintenance

4.1 Introduction

The goal of this paper is to present a new useful tool for reliability analyses of
technical systems. The most popular point processes that are used in reliability
analysis are the Poisson process (homogeneous and non-homogeneous) and the
renewal process. In reliability, renewal processes are mostly applied in repair
and maintenance modelling, whereas Poisson processes are effective when, e.g.,
modelling an effect of environment in the form of shocks and in other applications.
It is well known that the Poisson process possesses the property of independent
increments, which leads to the corresponding Markov property. Thus the past, or
the history that describes operation of technical systems cannot influence the future
reliability characteristics, which is not the case in numerous reliability application.
The history of the renewal process (time since the last renewal) is useful in models of
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repair and maintenance, however, considering even this simplest history can create
certain difficulties in the corresponding mathematical description.

The generalized Polya process that was recently introduced and fully character-
ized in [6], on one hand allows for the ‘richer’ history and on the other hand, presents
tractable solutions for probabilities of interest that can be applied in practice. We
will present a short overview of some of the developed results on the GPP modelling
in reliability and discuss some of the recent findings in this direction. Hopefully, it
will bring this new modelling tool into attention of the wider audience of specialists
in stochastic modeling.

In various engineering applications, by a shock we usually mean a ‘point’
potentially harmful event (see, e.g., [14] and references therein). Each shock from
a stochastic process of shocks can be fatal (failure) or just result in the decrease in
operational characteristics of a system. As the third option it can be also harmless
thus showing a resistance of an object to this event. An example of a shock process
can be voltage peaks over a threshold in an electrical system, earthquakes effecting
the infra-structure of a large territory, insurance claims, etc.

Various shock models have been intensively studied in the literature (see, e.g.,
[7, 12, 14, 20, 22, 23] and references therein). In reliability studies, the most popular
model is, probably, the so-called, extreme shock model, where each shock can result
in a system failure with the specified probability and a system survives it with the
complementary probability. It should be noted that survival probabilities of systems
subject to shock processes for extreme shock model can be obtained explicitly only
for the Poisson process of shocks (see, e.g., [9]). Even for the renewal processes
of shocks, everything becomes more cumbersome and asymptotic or approximate
methods should be used for the corresponding calculations.

Assume for simplicity that shocks constitute the only cause of failure of a system.
In applications, we are usually interested in the probability of survival in Œ0; t/.
Denote this probability by P.t/. The simplest model is when an item is subject to the
homogeneous Poisson process (HPP) of shocks with the constant rate r; it survives
each shock with probability q and it fails with the complementary probability
p D 1 � q (extreme shock model). It is well known that the probability of survival
in Œ0; t/ in this case (an item has survived all shocks) is

P.t/ D expf�rtg
1X

iD0

.rt/i

iŠ
qi D expf�prtg; (4.1)

whereas for the nonhomogeneous Poisson process (NHPP) with rate r.t/ and time-
dependent p.t/; q.t/, this expression turns to [4, 13].

P.t/ D exp

8<
:�

tZ

0

p.u/r.u/du

9=
; : (4.2)
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Obviously, when r.t/ D r and p.t/ D p, (4.2) reduces to (4.1). The GPP process,
as will be shown in the next sections, presents a useful and practically important
generalization to (4.2) and to other characteristics that describe performance of
technical systems subject to shocks.

As was mentioned, we assume for simplicity that shocks constitute the only
failure mode for the affected systems. All results can be trivially generalized to
the case when there are other independent failure modes. However, the dependence
between the process of shocks and other failure mechanisms can create numerous
interesting problems to be addressed in the future research.

4.2 Definition of the GPP

A new counting process, called the ‘Generalized Polya Process’ (GPP) has been
recently described and studied in detail in [6]. Its definition to follow is based on
the notion of stochastic intensity, therefore, let us first briefly discuss this notion in
a way suitable for further presentation.

Let fN.t/; t � 0g be a point process, where N.t/ denotes the number of events
(points) in Œ0; t�. Let Ht� 	 fN.u/; 0 � u < tgbe the history of this process in
Œ0; t/, i.e., the set of all point events in Œ0; t/. The history Ht�can be defined by the
number of events in Œ0; t/ denoted byN.t�/ and the sequential arrival times of events
T0 	 0 � T1 � T2 � : : : � TN.t�/ < t. It is well known that the rate of the orderly
point process is defined by the following expectation

r.t/ D lim
�t!0

EŒN.t; t C�t/�

�t
;

where N.t1; t2/, t1 < t2, represents the number of events in Œt1; t2/. However, the rate
does not fully characterize the point processes and the appropriate characterization
should be employed. Point processes can be conveniently and mathematically
described by using the concept of stochastic intensity �t, t � 0 [2]. This stochastic
process is often also called the intensity process. For a process fN.t/; t � 0g, the
stochastic intensity is defined as the following limit (see, e.g., [14]):

�t D lim
�t!0

PrŒN.t; t C�t/ D 1jHt��

�t
D lim

�t!0

EŒN.t; t C�t/jHt��

�t
: (4.3)

Obviously, for the NHPP with rate r.t/, the stochastic intensity is deterministic and
equal to r.t/. Specifically, for HPP �t D r; t � 0. Note that the stochastic intensity
for the renewal process is

�t D �F.t � TN.t//;
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where �F.t/ is the failure rate of the governing distribution for the renewal process
and TN.t/ is the notation for the time of the last before t renewal.

The formal definition of the GPP, via its stochastic intensity is given in [6] as

Definition 1 (Generalized Polya Process (GPP)) A counting process fN.t/; t �

0g is called the Generalized Polya Process (GPP) with the set of parameters
.�.t/; ˛/; ˛ � 0; ˇ > 0, if

(i) N.0/ D 0I

(ii) �t D .˛N.t�/C ˇ/�.t/:

Thus, when ˛ D 0 the GPP reduces to the NHPP with rate r.t/ D ˇ�.t/ and,
accordingly, the GPP can be understood as a generalized version of the NHPP. A
similar model has been recently studied in [1] (see also [3, 17]). However, the
focus of these papers was different, mostly considering the corresponding issues
of statistical inference and related frailty modeling, whereas here we will mostly
concentrate on different results with respect to shock modeling and related aspects.
It follows from the definition that the increments of this process are dependent, as
probability of an event occurrence in the next infinitesimal interval of time depends
on the number of the previous events.

The NHPP, due to its simplicity and possibility to derive the probabilities of
interest in the explicit form, is the most popular and convenient point process in
reliability applications, specifically, in shocks modeling. However, it possesses the
property of independent increments (and therefore, it is a Markov process), whereas
in real life the probabilities of events to follow most often depend on history.
The GPP as the simplest point process with history, can effectively deal with this
problem, which makes it the useful tool in many practical reliability applications.
Most of the applications to be considered in this paper will be related to shock
modeling, but the following introductory meaningful example deals with the model
of imperfect repair.

Example 1 Imperfect repair. Consider the specific GPP process (�.t/ D �) of
imperfect repairs defined by the following stochastic intensity:

�t D .˛N.t�/C 1/�: (4.4)

The time to the first failure (and instantaneous repair) is described by the Cdf 1 �

expf��tg. The first imperfect repair increases the initial failure rate from � to �.1C

˛/ and that is why it is called ‘imperfect’. Therefore, the Cdf of the duration of
the second cycle is 1 � expf��.1 C ˛/tg. On the third cycle, the failure rate is
�.1 C 2˛/ and the Cdf is 1 � expf��.1 C 2˛/tg, etc. Thus it increases the failure
rate as compared with that on the previous cycle and can be considered as a useful
model for imperfect repair. Note that, we define imperfect repair as the repair when
each consecutive cycle is stochastically smaller (in a suitable stochastic sense) then
the previous one.

It is shown in [6] and [1] that probabilities of occurrence of n events in Œ0; t/ for
the GPP can be described by the corresponding negative binomial distribution:
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P.N.t/ D n/ D
�.ˇ=˛ C n/

�.ˇ=˛/nŠ
.1 � exp f�˛ƒ.t/g/n .exp f�˛ƒ.t/g/

ˇ
˛ ;

n D 0; 1; 2; : : : (4.5)

where ƒ.t/ 	
tR
0

�.u/du:

See also [6] for relationships for other probabilities of interest (e.g., P.N.t; t C

h/ D n/. It immediately follows from (4.5) that

EŒN.t/� D

nX
1

nP.N.t/ D n/ D
ˇ

˛
.expf˛ƒ.t/g � 1/ : (4.6)

Therefore, the rate of the GPP can be obtained as the corresponding derivative

r.t/ D
d

dt
EŒN.t/� D ˇ�.t/ expf˛ƒ.t/g: (4.7)

Thus, for example, for the constant baseline function, �.t/ D �, the rate of the
process of shocks is exponentially increasing which reflects the cumulative effect of
the previous events on the probability of occurrence of an event at the current instant
of time.

4.3 Extreme Shock Model

Let our system be subject to the GPP process of external shocks and assume,
for simplicity, that shocks constitute the only cause of its failure. Consider the
corresponding extreme shocks model when a system survives each shock with
probability q.t/ and fails with the complementary probability p.t/ D 1 � q.t/.
Denote by T the time to failure of a system. The extreme shock model with the
NHPP of shocks (4.2) was generalized in [10] to the following result (ˇ D 1, for
convenience).

The survival function for an object exposed to the GPP of shocks in the described
extreme shock model is

P.T > t/ D
1�

1C
tR
0

˛p.v/�.v/ expf˛ƒ.v/gdv

 1
˛

; (4.8)

whereas the corresponding failure rate is
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�S.t/ D �
dP.T > t/

P.T > t/
D

p.t/�.t/ expf˛ƒ.t/g�
1C

tR
0

˛p.v/�.v/ expf˛ƒ.v/gdv

 : (4.9)

Example 2 Consider the specific case

p.t/ 	 pI �.t/ 	 �:

Then (4.9) becomes:

�S.t/ D
p�e˛�t

1C p.1 � e˛�t/
: (4.10)

There are two parameters in this model, i.e., parameter � describes some general
properties. On the other hand, ˛ can be interpreted as an aging parameter (extent of
aging), i.e., the increase in ˛ results in a more pronounced influence of the history
of the corresponding GPP.

4.4 Delayed Failures and Shot-Noise Processes

Let, as previously, N.t/; t � 0 be an orderly point process (without multiple
occurrences) of some ‘initiating’ events (IEs) with arrival times T1 < T2 < T3 < : : :.
Assume now that each event from this process triggers the ‘effective event’ (EE),
which occurs after a random time (delay) Di; i D 1; 2; : : : since the occurrence of
the corresponding IE at Ti [8]. The sequence of EEs fTiCDig; i D 1; 2; : : : form now
a new point process. This setting can be encountered in many practical situations,
when, e.g., initiating events start the process of developing the non-fatal faults in
a system and we are interested in the number of these faults in Œ0; t/: For instance,
the initiation of cracks in a material was modelled by the nonhomogeneous Poisson
process (NHPP), where Di; i D 1; 2; : : : were assumed to be i.i.d random variables
(see [16] and [5]) for the NHPP case. Alternatively, each EE can result in a fatal,
terminating failure and then one can be interested in the survival probability of a
system. Therefore, the latter setting means that the first EE results in the failure of
our system. Obviously, a failure (the first EE) should not necessarily correspond
now to the first IE. This setting in a slightly more generality was considered in
[8], however, also only for the case of the NHPP. Note that the IEs can often be
interpreted as some external shocks affecting a system, and, for convenience, we
will use this term (interchangeably with the “IE”).

It was proved in [16] that when the process of imitating events is the NHPP, the
process of effective events is also NHPP. This is a rather unique property. Indeed,
denote the rate of the IEs of a general ordinary process by r.t/. Then the rate of the
point process with delays (EEs) is
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rD.t/ D

tZ

0

r.x/g.t � x/dx; (4.11)

where ‘D’ stands for “delay” and g.t/ .G.t// is the pdf (Cdf) of the i.i.d. Di; i D

1; 2; : : :. For instance, for the HPP with r.t/ D �, the rate of the NHPP of EEs,
rD.t/ D �G.t/ just follows the shape of the distribution of the delay and is increasing
asymptotically to �.

We will focus now on the corresponding survival model and relevant properties
of the delayed model when the process of imitating events is GPP. Consider a system
subject to the GPP (with the set of parameters .�.t/; ˛// of IEs N.t/; t � 0, to be
called, for convenience, shocks. Let the corresponding arrival times be denoted as
T1 < T2 < T3 : : :. The sequence of EEs fTi C Dig; i D 1; 2; : : : form now a new
point process, fNE.t/; t � 0g, where Di; i D 1; 2; :: are i.i.d., non-negative random
variables with the pdf (Cdf) g.t/ .G.t//. Denote also the time to the first event in
this process, which is the survival time if the EEs are fatal, by TS. Thus, in this case,
TS is considered as the time to failure of our system. The following result for the
distribution of the NE.t/ (for each fixed t/ and the survival function of the time to
the first EE can be obtained in the spirit of [6] generalizing [8]. The latter paper
considered the corresponding delay model for the NHPP of shocks, whereas the
formulated result is already for the GPP process of shocks.

Under the given assumptions, the survival function that corresponds to the time
to the first effective event and the corresponding failure rate are given respectively
by

P.TS > t/ D

0
@1C

tZ

0

G.t � x/˛�.x/ expf˛ƒ.x/gdx

1
A

� 1
˛

: (4.12)

�S.t/ D

tR
0

g.t � x/�.x/ expf˛ƒ.x/gdx

�
1C

tR
0

G.t � x/˛�.x/ expf˛ƒ.x/gdx

 : (4.13)

These formulas can be effectively used for obtaining reliability characteristics
for the described models.

We will discuss now the corresponding shot noise process governed by the GPP.
Denote by T the lifetime of a system subject to a shot noise process X.t/ and
assume, for simplicity, that it is the only cause of the system’s failure. Recall that
the ‘standard’ shot noise process X.t/ is defined in the literature as (e.g., [19, 21]):

X.t/ D

N.t/X
jD1

Djh.t � Tj/;
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where Tj is the j-th arrival time in the point (shock) process fN.t/; t � 0g,
Dj; j D 1; 2; : : : are the i.i.d. magnitudes of shocks and h.t/ is a nonnegative and
non-increasing deterministic function for t � 0 and h.t/ D 0 for t < 0. Throughout
this paper, we assume that fN.t/; t � 0g and fDj; j D 1; 2; : : :g are independent.
Obviously, if Dj 	 1, h.t/ 	 1; then X.t/ D N.t/. Note that the simplified version

X.t/ D

N.t/X
jD1

h.t � Tj/

can be loosely considered as the generalization of the counting process fN.t/; t � 0g

(although, strictly speaking, X.t/ is not a counting process) in the sense that when
h.t/ is decreasing, it gives different, time-dependent weights to the previous events
(counts) in the process, i.e., the larger the time elapsed since the event, the smaller
is its input.

Obviously, X.t/ does not possess the independent increments property. It should
be noted that, in most of the applications of the shot noise processes, it is assumed
that the underlying shock process fN.t/; t � 0g is Poisson (homogeneous or
nonhomogeneous), whereas, in real life, shock processes usually do not possess the
independent increments property. For instance, the incidence of the subsequent heart
attack depends on how many heart attacks the patient had experienced previously.
Similar considerations can be true, e.g., for earthquakes. Therefore, a more adequate
model will be the one that takes into account the history of the shock process in the
form of the number of the previously occurred events. The GPP perfectly conforms
to this intention. Moreover, it can be shown that this process possesses a positive
dependent increments property, which means that the susceptibility of the event
occurrence in an infinitesimal interval of time increases as the number of events
in the previous interval increases. Thus, in what follows we will assume that our
system is subject to the GPP of shocks fN.t/; t � 0g with the set of parameters
.�.t/; ˛/ and will describe some properties of the shot noise process X.t/ before
addressing the corresponding survival model.

The cumulative impact of external shocks modeled by the shot noise process X.t/
can be probabilistically described in different ways. In this paper, we follow the
meaningful approach of [18] by assuming that the corresponding failure (hazard)
rate process [15] (on condition that fN.t/;T1;T2; : : : ;TN.t/g and fD1;D2; : : : ;DN.t/g

are given) is proportional to X.t/. This is a reasonable assumption that describes the
proportional dependence of the probability of failure of a system in the infinitesimal
interval of time on the level of stress, i.e.,

rt 	 kX.t/ D k
N.t/X
jD1

Djh.t � Tj/; (4.14)

where rt stands for the corresponding failure (hazard) rate process and k > 0 is the
constant of proportionality. In general, the survival probability of an item described
by the hazard rate process rt is given by the following expectation with respect to
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this process

P.T > t/ D E

2
4exp

8<
:�

tZ

0

rtdt

9=
;
3
5 :

The following result generalizing the corresponding NHPP model for the GPP of
shocks [10] can be obtained using approached developed in [6].

The system survival function and the failure rate function when fN.t/; t � 0g is
GPP are given by

P.T > t/ D

0
BBB@

1

exp f˛ƒ.t/g �
1R
0

tR
0

exp f�kuH.t � x/g˛�.x/ expf˛ƒ.x/gdxfD.u/du

1
CCCA

1
˛

;

(4.15)
and

�S.t/ D

1R
0

tR
0

kuh.t � x/ exp f�kuH.t � x/gˇ�.x/ expf˛ƒ.x/gdxfD.u/du

exp f˛ƒ.t/g �
1R
0

tR
0

exp f�kuH.t � x/g˛�.x/ expf˛ƒ.x/gdxfD.u/du

;

(4.16)

where ƒ.t/ D
tR
0

�.u/du; H.t/ D
tR
0

h.u/du.

4.5 GPP for the Preventive Maintenance Model

As was mentioned before, the most attractive feature of this process is that it
combines probabilistic tractability of the NHPP with a more realistic description
of the process of failures (i.e., it takes into account the corresponding history). As
another meaningful and practical example, we will show now the usefulness of the
GPP for modeling the processes of failures/repairs.

Let each failure of an item which arrives in accordance with the GPP and is GPP-
type repaired, meaning that the next cycle of an item’s operation after the repair is in
accordance with the next cycle of the GPP process. An item is replaced at t D T and
the process restarts. Denote the cost of the GPP repair by CGPP. Thus, the long-run
mean cost rate function for this case can be obtained as

C.T/ D
CGPPEŒN.T/�C Cr

T
; (4.17)
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where EŒN.T/� is given by (4.6) and we can find the optimal T that minimizes this
function. The following result was proved in [6]:

Let

�0.x/C c�1�2.x/ > 0; t � 0: (4.18)

Then there exists the unique, finite optimal T that minimizes C.T/ in (4.17).
It is important to note that for the existence of the optimal PM time for the NHPP

case the failure rate should be an increasing function, however, in (4.18) it can even
decrease. Let us consider the ‘marginal case’ when �.x/ D 1=t (the integral of this
function in Œ0;1/ is still infinity, i.e., it cannot decrease as a power function faster
than 1=t in order the corresponding distribution to be proper). Then (4.18) is satisfied
for c�1 D ˛ > 1. Thus, GPP brings additional deterioration, which is creating the
possibility for PM.

Let now each failure be classified as a minor failure with probability q.t/ (and
then GPP-repaired) or as a major failure with probability p.t/ D 1 � q.t/ (and then
an item is replaced). The cost structure is as follows: the cost of the PM and the
failure are Cr (repair) and Cf (failure), respectively, whereas the cost of the GPP
repair is CGPP and Cf > Cr > CGPP. The PM is scheduled at t D T and the length
of a cycle is defined either by T , or the time of a major failure, whichever comes
first. The distribution of time to a major failure/replacement (in the absence of the
truncating T) in this case is given by (4.8), whereas the corresponding failure rate
function is given by (4.9).

Note, that the rate of the GPP process of repairs is �.t/ expf˛ƒ.t/g, where
ƒ.t/ D

R t
0
�.u/du. However, we need the rate (in fact, the integral of the rate,

which is the mean number of events) of the conditional process on condition
that the major failure did not occur. For the NHPP, this rate was q.t/�.t/ and
EŒN.t/� D

R t
0

q.x/�.x/dx. This quantity for the GPP was also obtained in [10] as

E
�
Nq.t/jNp.t/ D 0

�
D

tR
0

q.u/�.u/ expf�˛.ƒ.t/ �ƒ.u//gdu

1 �
tR
0

˛q.u/�.u/ expf�˛.ƒ.t/ �ƒ.u//gdu

: (4.19)

For the sake of notation, denote the right hand side of (4.19) by G.t/. Thus, similar
to the NHPP case, we are able now to define the mean long-run cost rate and obtain
the optimal time of replacement as,

Cp.T/ D
NF.T/ .Cr C CGPPG.T//C

R T
0



Cf C CGPPG.u/

�
f .u/du

�Tp
; (4.20)

where �Tp D
R T
0

NFp.x/dx and f .t/ D F0.t/. To find the optimal value of T that
minimizes Cp.T/, consider C0

p.T/ D 0, which can be written after simple algebra as
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.�S.T/�Tp � Fp.T//

C
CGPP.G0.T/�Tp � . NFp.T/G.T/C

R T
0

G.u/fp.u/du//

Cf � Cr
D

Cr

Cf � Cr
:

(4.21)

It is easy to verify via considering the corresponding derivative that the left hand
side of (4.21) is increasing when for all T � 0,

.Cf � Cr/�
0
S.T/C CGPPG.T/0 > 0: (4.22)

It can be easily shown that, e.g., when p.t/ 	 p, (22) holds for our assumptions (we
assume that �.t/ is increasing). In order to cross the line y D Cr=.Cc � Cr/ and
to ensure a single, finite optimal T , the left hand side of (21) (that is equal to 0 at
T D 0/ should obey the following condition (at T D 1/:

�S.1/C
CGPPG0.1/

Cf � Cr
C

CGPP

1R
0

G.u/fp.u/du

�p.Cf � Cr/
>

Cf

.Cf � Cr/�p
: (4.23)

It is clear that when, e.g., limt!1 �S.t/ D 1, this condition is always met and we
have a single finite solution for optimal T .

In the following example, the baseline �.t/ is set to be a constant, however,
�S.t/ is increasing, although counter-intuitively not to infinity, which is due to
heterogeneity induced by the history of the corresponding GPP [11].

Example 3 Suppose that �.t/ D � D 1, p.t/ D 0:18t � 0, ˛ D 1:2, Cf D 12,
Cr D 4, CGPP D 1:5. Then the corresponding calculations show that there exists the
unique optimal solution T � 1:63.

4.6 Concluding Remarks

The most popular and well-studied point processes in reliability are the renewal and
Poisson processes. Although asymptotic properties of the renewal process are quite
simple and applied in many reliability problems (e.g., in optimal maintenance), the
finite time solutions are usually rather cumbersome and involve numerical methods
in applications. On the other hand, models involving NHPP of point events can
be usually described mathematically in a close, tractable form. However, the main
deficiency of a Poisson process is that it assumes the independent increments for the
occurrence of the relevant events. Therefore, in this paper, we discuss a meaningful
generalization of the NHPP, the generalized Polya process (GPP). This process that
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was recently introduced in the literature, on one hand, allows for a more ‘rich’
history and on the other hand, presents tractable solutions for probabilities of interest
that can be applied in practice.

In this paper, we have briefly reviewed and discussed some of the GPP models in
reliability. The focus was on shock modelling, however in Sect. 8.5, the correspond-
ing optimal preventive maintenance problem was also considered. We hope that it
will attract some attention of the wider audience of specialists to this process as real
applications usually imply the dependence of events of interest on the history. The
GPP presents a tractable and mathematically clear tool for that.
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Chapter 5
Degradation-Based Reliability Modeling
of Complex Systems in Dynamic Environments

Weiwen Peng, Lanqing Hong, and Zhisheng Ye

Abstract Benefiting from the intimate link and the sufficient information conveyed
by the degradation-threshold failure mechanism, degradation analysis has gradually
become a hot topic in reliability engineering, which has been investigated exten-
sively in the recent two decades. Various degradation models have been introduced
to facilitate the reliability modeling and assessment of modern products, especially
for highly reliable products. As the continual evolving of these models, there is
a growing trend of investigation of reliability modeling and assessment based on
degradation analysis. However, modern complex systems are characterized as multi-
functional and subject to dynamic environments. Two aspects are indispensable
for the investigation of degradation based reliability modeling and assessment of
modern complex systems: (1) how to deal with complex systems with more than
one degradation indicators, and (2) how to incorporate the effects of dynamic
environments. To advance the research on degradation modeling and analysis of
complex systems, this paper presents a summary of the state of the arts on the
research of reliability modeling of complex systems by taking account of these
two aspects. In this paper, the review is delivered in two progressive stages:
multiple degradation processes under static environments, and multiple degradation
processes under dynamic environments. Some discussion on further research topics
from both theoretical and practical perspectives are presented to conclude the paper.
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5.1 Introduction

Continually evolving paces of technology advances and ever-increasing
requirements of system performance have made modern systems become more and
more complex. Reliability engineers are encountered with paradoxical situations
of reliability modelling of complex systems, for which the situation introduced
by limited failure time data is an inevitable challenge [1], however this situation
is contradicted by the growing reality that reliability data are stepping into big
data situation [2], which is enhanced by the gradual availability of the system
performance data, system operating profile, and working environment information.
To facilitate the reliability analysis of complex system with limited failures under
big data situation, degradation based reliability modeling and assessment has
gradually become a hot topic, benefiting from the intimate link and the sufficient
information conveyed by the degradation-threshold failure mechanism [3]. For the
degradation based reliability analysis, the failure process of a complex system
is reflected by degradation processes of some performance indicators, where
the system fails when these degradation processes reach predefined thresholds.
Accordingly, the failure time distribution can be determined through the degradation
analysis of system performance data together with the system operating profile and
working environment information, which provides a promising solution to the
difficulty introduced by limited failure time data.

In recent two decades, degradation based reliability modelling has been investi-
gated extensively. Classical examples include, but not limited to the works presented
recently by Pan and Balakrishnan [4], Wang and Pham [5], Kharoufeh et al. [6],
Liao and Tian [7], Wang et al. [8], Bian and Gebraeel [9], Si et al. [10], Ye and
Xie [11], Hong et al. [12], Peng et al. [13], and Xu et al. [14]. Generally, two
critical assumptions are used in the degradation based reliability analysis, which
include the assumptions of (1) single degradation indicator, and (2) constant external
factors. For complex systems under dynamic environments, these two assumptions
are challenged greatly. These challenges are raised from the growing awareness that
complex systems are composed of multiple components with multiple functional-
ities, and these systems are subject to various operating profiles under dynamic
working conditions. The failure process of a complex system generally relates to
degradation processes of multiple performance indicators, which are often presented
with various characteristics. Moreover, the degradation processes are affected by
the operating profiles and working conditions, which lead to the indicator-to-
indicator dependency within the multiple degradation processes, and the unit-to-unit
variability among the system population group. A classic example is the multivariate
dependent degradation analysis of one type of heavy duty lathes presented in Peng
et al. [15]. Within this study, the heavy duty lathes are founded subject to two types
of gradually-evolving failures: losing of machining accuracy, and accumulation of
lubrication debris, which are critical to the reliability of these lathes. In addition, by
summarizing operating and maintenance records, these types of failures are found to
vary from factories to factories, which is caused by differences of loading profiles
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and environmental conditions experienced by the heavy duty lathes. Accordingly,
two critical aspects arise for the degradation based reliability modelling of complex
systems under dynamic environments: (1) how to deal with complex systems with
more than one degradation indicators, and (2) how to incorporate the effects of
dynamic operating profile and time-varying working environments.

To facilitate the research on degradation based reliability analysis, this paper
devotes to the review of degradation based reliability modelling of complex systems
under dynamic environments. There are excellent review papers on degradation
based reliability modelling over the past few decades, such as the reviews by
Singpurwalla [16], Lee and Whitmore [17], Bae et al. [18], Si et al. [19], and Ye and
Xie [11]. These review papers have covered various aspects of degradation based
reliability modelling. However, the challenges introduced by multiple degradation
processes and dynamic environments are still underdeveloped. Therefore, this paper
is to highlight the state of arts on multiple degradation analysis under dynamic
environments through two progressive categories: multiple degradation processes
under static environments, and multiple degradation processes under dynamic
environments.

The remainder of this paper is organized as follows. Section 5.2 describes the
characteristics and modelling of dynamic environments encountered by complex
systems. Section 5.3 reviews the degradation based reliability modelling of complex
systems with multiple degradation process models under static environments.
Section 5.4 reviews the degradation based reliability modelling through multiple
degradation processes under dynamic environments. A short discussion on further
research topics is presented in Sect. 5.5 to conclude the paper.

5.2 Dynamic Environments

Degradation processes of a complex system are closely related to the system’s
operation profile and working environments. This is because failure processes of
a complex system are often driven or affected by the factors and stresses originated
from the dynamic environments experienced by the system. The rates and the modes
by which the system degrades are closely related to what type of missions the system
is fulfilling, and which kind of environments is experienced. Take a manufacturing
system as an example, the system can fulfill the missions of turning, drilling, and
milling with different working speeds and depths on various types of materials.
These parameters consist of the basic operational profile of the manufacturing
system, for which a specific mission with particular working loads on one specific
working piece determine the basic degradation rate and mode of the manufacturing
systems. In addition, the temperature, humidity, and vibration condition experienced
by the manufacturing system consist of the basic working environments, which
further modify or change the degradation rate or even degradation mode of the
system.
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The dynamic environments experienced by a system is generally composed by
its operational profile and working environment. The operating profile is composed
of the variables that can be modified or determined by the operators or users to
fulfill different missions. The working environment mainly refers to the factors
that can hardly be controlled and are mainly determined by natural forces. The
differentiation of these two groups is aimed to highlight the effect introduced by
different types factors, and to deliver the notion that some variables can be well
modeled and incorporated into the degradation modelling yet some factors can
hardly be well characterized or integrated. As a result, two aspects are critical for the
handling of dynamic environments within the degradation based reliability analysis:
(1) how to characterize the dynamic environments, and (2) how to incorporate them
in degradation modelling.

5.2.1 Characterization of Dynamic Environments

The characterization of dynamic environments is implemented based on the avail-
ability of environmental information and the capability of mathematical models
[16, 20]. General methods for the characterization of dynamic environments include
the time-varying deterministic function [22], probability distribution model [23],
stochastic processes model [24, 29], time series models [2, 12], and so on.

Time-varying deterministic function is generally used for the situation where
environmental variables are well controlled and their dynamic behavior follows
specific patterns, such as accelerated degradation tests [25, 26]. The probability
distribution model is used to model the environmental variables which are presented
as shocks with random strengths, such as vibration shocks for mechanical systems
[27, 28]. The stochastic processes model is often adopted for the situation where
the environmental variables are evolved stochastically with temporal variability and
epistemic uncertainty, such as different operating speeds for a rotational machine
[24, 29]. The time series model is used for the situation where the environmental
variables have highly variable behaviors with periodicity and autocorrelations, such
as the solar radiation and temperature for organic coatings [12, 30].

These methods for the characterization of dynamic environments are mainly used
for the environmental variables that can be well identified and collected, where
system operating/environmental data highlighted by Meeker and Hong [2] can be
obtained for the corresponding model derivation and parameter estimation. There
are situations that environmental variables cannot be identified or collected, such as
the micro-shock for a micro-electromechanical system. This kind of environmental
variables and their effect are lumped together and incorporated into the degradation
modelling through a random effect or frailty term [31–34].
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5.2.2 Incorporation of Dynamic Environments

The incorporation of dynamic environments into degradation modelling is carried
out based on the availability of influence mechanism and the flexibility of mathe-
matical models. General methods for the incorporation of dynamic environments
include the covariate method [20–23] and cumulative damage method [6, 24, 35].

The covariate method has been used extensively to incorporate the effect of
environmental factors into degradation modelling. The environmental factors are
represented as explanatory variables, and their effects are modelled through a
covariate-effect function. The covariate-effect function is further used to modify
the model parameters, which are related to the degradation rate, shape, mode
or diffusion of a degradation process model. The covariate-effect function is
generally determined based on the physical, chemical, and engineering knowledge,
such as Arrhenius relationship, Eyring relationship, power low relationship, linear
relationship, inverse-logit relationship and exponential relationship [3]. Classical
examples of covariate method for incorporation of dynamic environments are the
works presented by Ye et al. [11] and Lawless and Crowder [23] separately for
Wiener process and gamma process models.

The cumulative damage method is introduced for the situation that the degra-
dation rate of the degradation process is dominated by random environmental
factors. The environmental factors are characterized as stochastic processes, such
as the Wiener process [16], continuous-time Markov chain process [6], and Semi-
Markov process [24]. The degradation rate of the degradation process is modelled
through a functional relationship of the environmental factors. The degradation at a
specific point is the accumulation result of the degradation increments throughout
the time interval from the beginning to this specific point, where the degradation
increments within an infinitesimal time interval is dominated by the specific
environmental factors within that interval. This method is generally used for the
situation that the degradation process of a system cannot be directly observed,
however the environmental factors that dominate the degradation process can be
observed and their relationship is well understood. Classical example of cumulative
damage method for incorporation of dynamic environments can refer to the method
introduced by Bian et al. [29] and Flory et al. [36].

5.3 Multiple Degradation Processes Under Static
Environments

The premise of degradation based reliability assessment of complex system is to
choose a proper model to characterize the degradation process of the complex
system, based on the its performance indicators and dynamic environments. Various
types of multiple degradation processes models have been introduced in the recent
decade, which can be categorized into two types, that is, the models for multiple
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degradation process models under static environments and the models for multiple
degradation process models under dynamic environments. This section devotes to
the first type under static environments, including the multivariate Gaussian distri-
bution based model, the bivariate Birnbaum-Saunders distribution based model, the
degradation rate interaction model, and the copula based multivariate degradation
process model.

5.3.1 Multivariate Gaussian Distribution Based Model

The multivariate Gaussian distribution based model is introduced out of the
consideration that a system may have multiple degradation paths and the distribution
of the degradation observations of these paths at a specific time point can be
described by a joint multivariate Gaussian distribution [37]. Within this model,
each degradation path is described by a marginal Gaussian distribution from the
joint multivariate Gaussian distribution. The dependency among the degradation
paths is characterized by the variance-covariance of the joint multivariate Gaussian
distribution.

Suppose a product has L performance indicators. Let Yl(t) with l D 1 , : : : , L
denote the degradation process of the lth performance indicator. The joint distribu-
tion of the L performance indicators, Y(t) D (Y1(t), : : : , YL(t))T, at a specific time
point t is given as follow.

f .y1.t/; : : : ; yL.t// D
1q

.2�/L j†j

exp

�
�
1

2
.y.t/ � �.t//T†�1 .y.t/ � �.t//



(5.1)

where y(t) D (y1(t), : : : , yL(t))T, �(t) D (�1(t), : : : ,�L(t))T with �l(t) denoting
degradation mean function of the lth performance indicator, and † is the covariance
matrix and j†j is the determinant of †.

The degradation mean function is a description of the average degradation obser-
vation of the performance indicator, such as �l(t) D at indicating linear degradation
path of the lth performance indicator. The covariance matrix is a description of the
variance and correlation among the degradation processes. Let Var(Yl(t)) denote the
variance of Yl(t), and Cov(Yl � 1(t), Yl(t)) denote the covariance of Yl � 1(t) and Yl(t).
The general form of the covariance matrix † is given as

† D

2
6664

Var .Y1.t// Cov .Y1.t/;Y2.t// � � � Cov .Y1.t/;YL.t//
Cov .Y2.t/;Y1.t// Var .Y2.t// � � � Cov .Y2.t/;YL.t//

:::
:::

: : :
:::

Cov .YL.t/;Y1.t// Cov .YL.t/;Y2.t// � � � Var .Yn.t//

3
7775 (5.2)
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Generally, it’s difficult to specify the functional forms of Var(Yl(t)) and
Cov(Yl � 1(t), Yl(t)). The assumption of time-invariant variance and covariance is
adopted for the application of this model [37]. Under the time-invariant assumption,
the covariance matrix † is constant over time, where the variance and covariance
are given as Var .Yl.t// D �2l and Cov(Yl � 1(t), Yl(t)) D �l � 1 , l� l � 1� l with �l � 1 , l

indicating the relevance between Yl � 1(t) and Yl(t). The parameters within the
covariance matrix † are greatly reduced under the time-invariant assumption. In
addition, the marginal distribution of the degradation path for the lth performance
indicator is given as Yl.t/ 
 N



�l.t/; �2l

�
, and its degradation increments is

�Yl.t/ 
 N


��l.t/; �2l

�
. The model is simplified to a great extent. The temporal

variability within the degradation process is missing under the time-invariant
assumption due to the time invariant variance Var .�Yl.t// D �2l .

The failure time T of the product is defined as the first time point that any of the L
degradation processes reaches its degradation threshold Dl with l D 1 , : : : , L. The
reliability function of the product is then given as

R.t/ D Pr .Y1.t/ � D1; : : : ;YL.t/ � DL/

D

Z D1

0

� � �

Z DL

0

f .y1.t/; : : : ; yL.t// dy1.t/ � � � dyL.t/

D ˆL .D1; : : : ;DLI �.t/;†/

(5.3)

where ˆL(•; �(t), †) is the cumulative distribution function (CDF) of L dimension
multivariate Gaussian distribution with mean �(t) and covariance matrix †.

The multivariate Gaussian distribution based model does not receive wide appli-
cation in degradation data analysis. However, this idea has roused the investigation
on degradation analysis with multiple performance indicators, such as the works
presented by Pan and Balakrishnan [4], Bian and Gebraeel [9], Sari et al. [38] and
Peng et al. [15], which are serving as key stones for the following developed multiple
degradation process models.

5.3.2 Multivariate Birnbaum-Saunders Distribution Based
Model

The multivariate Birnbaum-Saunders distribution based model is introduced by
taking the idea that the failure time distribution derived for the one-dimensional
degradation can be approximated closely by Birnbaum-Saunders distribution [39].
The multivariate Birnbaum-Saunders distribution and its marginal distributions are
then adopted to construct a multivariate degradation process model by Pan and
Balakrishnan [4] and Pan et al. [40]. Within this model, the marginal degradation
processes are modelled by gamma processes. The dependency between these degra-
dation processes is constructed by assuming that the degradation increments of the
multivariate degradation process within the same time interval are dependent, where
a time-invariant correlation coefficient is used to characterize this dependency.
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For a product with L performance indicators, the degradation process of the
lth performance indicator is modelled as a gamma process, Yl(t) 
 Ga(�lt, � l)
with l D 1 , : : : , L. The degradation process Yl(t) has independent and gamma-
distributed increments as �Yl(t) 
 Ga(�l�t, � l), where �Yl(t) D Yl(t C�t) � Yl(t).
The probability density function (PDF) of the degradation increment �Yl(t) is
given as

f .�yl.t/j�l�t; �l/ D
1

� .�l�t/ ��l�t
l

.�yl.t//
�l�t�1 exp

�
�
�yl.t/

�l


(5.4)

The degradation increments of different performance indicators at the same time
interval are dependent, which is further described by time-invariant correlation
coefficient as Corr(Yl � 1(t), Yl(t)) D �l � 1 , l. However, the degradation increments at
different time intervals are assumed independent. To further describe the depen-
dence among the performance indicators, a random variable is introduced by
normalizing the degradation increments as Xl.t/ D .�Yl.t/ � �l�t�l/ =


p
�l�t�l

�
,

and all the observation intervals are assumed having the same length . In addi-
tion, the dependency among the performance indicator is further described as
Corr(Xl � 1(t), Xl(t)) D �l � 1 , l. Given the degradation threshold of all the perfor-
mance indicators as Dl with l D 1 , : : : , L, the reliability function of the product
is given as follows by utilizing the central limit theorem [40].

R.t/ D Pr .Y1.t/ � D1; : : : ;YL.t/ � DL/
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(5.5)

where † the covariance matrix with the correlation coefficient between different
performance indicators includes, which is given as



5 Degradation-Based Reliability Modeling of Complex Systems in Dynamic. . . 89

† D

2
6664

1 �12 � � � �1L

�21 1 � � � �2L
:::

:::
: : :

:::

�L1 �L2 � � � 1

3
7775 (5.6)

By extending the bivariate Birnbaum-Saunders distribution introduced by Kundu
et al. [41], Pan et al. [40] further derived that the lifetime time distribution of the
product, F(t) D 1 � R(t) can be expressed by the multivariate Birnbaum-Saunders
distribution of a L-dimensional vector and all its marginal distributions.

Compared with the multivariate Gaussian distribution based model, the multi-
variate Birnbaum-Saunders distribution based model is derived from the perspective
of degradation increments of performance indicators, where the distribution and
dependence of degradation increments are highlighted, and the degradation process
of performance indicators are monotonic. The temporal variability within each
performance indicator is also characterized by the gamma process. However, due
to the assumptions made in the derivation, the multivariate Birnbaum-Saunders
distribution model is limited to the situation that the shape function of the gamma
process should be linear as �(t) D �lt. Parameter estimation method for this model
is investigated by Pan et al. [40]. The application of this model for bivariate
degradation analysis has also been presented by Pan and Balakrishnan [4] and Pan
et al. [42].

5.3.3 Degradation Rate Interaction Model

The degradation rate interaction model is introduced from the perspective of a
multi-component product by leveraging the idea of degradation rate modelling
[9]. The product is composed of multiple components, and these components
are associated with multiple dependent performance indicators. The dependence
is represented through the consideration that the degradation process of one
component can be affected by the deterioration of other components. This effect
is characterized through the modelling of the degradation rate function, which
consists of two separated parts of the inherent degradation rate of the component
and the inductive degradation rate by contributing components. A multivariate
degradation process model is constructed by separately integrating the degrada-
tion rate function and associating a stationary Brownian motion noise for each
component.

Suppose a product is composed of L components, and each component has a per-
formance indicator described by the degradation process Yl(t) with l D 1 , : : : , L.
Let rl(t) denote the degradation rate associated with the degradation process Yl(t).
To incorporate the dependence among the degradation processes, a general form of
degradation rate rl(t) is given as rl(t) D rl(t; �(t), h(Y(t))) [9]. The degradation rate
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is defined on t and further determined by the functional relationship of �(t) and
h(Y(t)), for which �(t) is the inherent degradation rate of the component without
the interaction of other components, and h(Y(t)) is the inductive degradation rate
by taking account of the effect from other components. A simplified form of the
degradation rate is given as follows [43].

rl.t/ D �l C
X
l¤k

ılkyk.t/ (5.7)

where a time invariant inherent degradation rate � l, and a linear combination of
inductive degradation rates ılkyk(t) with constant coefficient ılk is used.

Based on the degradation rate function, the degradation process Yl(t) can be given
as follows.

Yl.t/ D

tZ

0

rl .uI �.u/; h .Y.u/// du C "l.t/ (5.8)

where "l(t) is an error item for capturing the measurement noise and unidentified
uncertainty, which is generally given as a white noise process or a stationary
Brownian motion process.

It is difficult to derive the failure time distribution of the product under the
degradation process model given in Eq. 5.8. By assuming a simplified form of
the degradation rate as given in Eq. 5.7 and a stationary Brownian error item, a
approximated failure time distribution is obtained by Bian & Gebraeel [43], where
the degradation processes of the product are reconstructed as

dY.t/ D .› C • � Y.t// dt C d© (5.9)

where › D (�1, : : : , �L), © D ("1, : : : , "L) which follows a multivariate normal
distribution MVN(0, ¢2t) with ¢2 D diag



�21 ; : : : ; �

2
L

�
, and • 2R

L � L with non-
diagonal entries ılk and diagonal entries ıll D 0.

The stochastic differential equations given in Eq. 5.9 with initial condition
Y(0) D Y0 has been demonstrated to have a closed-form as Y(t)�(›, ¢2), which
follows a multivariate normal distribution with mean vector �0(t)�(›, ¢2) and
covariance matrix †0(t)�(›, ¢2) as follow [43]

�0.t/ j


›;¢2

�
D exp .t•/ � Y0 C

tZ

0

exp ..t � u/ •/ � ›du (5.10)

†0.t/ j


›;¢2
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D

tZ

0

exp ..t � u/ •/ � ¢2 � exp ..t � u/ •/Tdu (5.11)
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Given the degradation thresholds of the L performance indicators, the reliability
function of the product can be approximated as follows.

R.t/ D Pr .Y1.t/ � D1; : : : ;YL.t/ � DL/

� ˆL


D1; : : : ;DLI �0.t/j



›;¢2

�
;†0.t/j



›;¢2

��
(5.12)

The calculation of the reliability function depends on the solution of the
multidimensional integrals given in Eqs. 5.10 and 5.11, which can be obtained using
mathematical software. Analytical solutions of Eq. 5.12 have been obtained by Bian
and Gebraeel [43] for two special cases, that are the case with • being a diagonal
matrix, and the case with • being a diagonalizable matrix.

Compared with the models introduced above, the degradation interaction model
is introduced from the perspective of a multi-component system, where the depen-
dence is originated from the mutual influences of components’ deteriorations.
A degradation interaction function and a linear system of stochastic differential
equations are used to construct the multivariate degradation process model. If the
characteristics of the systems, such as the structure, functionality, operating condi-
tions, failure mechanism, and interaction patterns of components are well studied,
the degradation rate interaction model is more suitable for degradation modelling
and reliability analysis than the models presented above. However, limited by the
availability of the product characteristic for determining the degradation interaction
parameter •, the degradation rate interaction has not received wide application in
degradation based reliability modelling of the modern system.

5.3.4 Copula Based Multivariate Degradation Process Model

The copula based multivariate degradation process model is introduced by taking
the copula based multivariate degradation process model is introduced by taking
the advantage of the copula theory [44] for constructing multivariate probability
distributions. By adopting a copula function, the dependence structure of random
variables can be characterized separately from their marginal distribution functions.
Within the copula based multivariate degradation process model, the degradation
processes of performance indicators are separately modelled by marginal degrada-
tion processes with independent degradation increments, such as Wiener process,
gamma process, and inverse Gaussian process. Their dependency is characterized
by a copula function by assuming that their degradation increments of the multiple
performance indicators at the same time interval are dependent. As a result,
the characteristics of each performance indicator are described by its marginal
degradation process. And their dependency is modelled by a copula function.
This kind of multivariate degradation process model can facilitate the degradation
modelling, parameter estimation, and reliability assessment, which has been widely
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investigated, such as the works presented by Sari et al. [38], Pan et al. [45], Wang
and Pham [5], Wang et al. [46], and Peng et al. [13].

For a product with L performance indicators, let Yl(t) denote the degradation
process of the lth performance indicator, which is modelled by a stochastic
process. Let �Yl(tj) D Yl(tj) � Yl(tj � 1) denote the degradation increment within
the time interval [tj � 1, tj], which follows a probability distribution with CDF
Fl(�yl(tj)) under the specific stochastic process chosen for the marginal degrada-
tion process. The dependence among the degradation processes is characterized
through their degradation increments. It is assumed that the degradation increments
	Yl(tj) D (�Y1(tj), : : : ,�YL(tj)) for the L performance indicators within the same
time interval [tj � 1, tj] are dependent. The degradation increments in disjoint time
intervals are independent, e.g., Yl(tj) � Yl(tj � 1) and Yl(tj � 1) � Yl(tj � 2) separately
in [tj � 1, tj] and [tj � 2, tj � 1] are s-independent. The joint probability distribution of
	Yl(tj) within the same time interval is characterized by leveraging a multivariate
copula function as follow.

F


	y



tj
��

D C


F1


�y1



tj
��
; : : : ;FL



�yL



tj
��

I ™Cop� (5.13)

where 	y(tj) D (�y1(tj), : : : ,�yL(tj)) and C(u1, : : : , uL; ™Cop) is a L-dimensional
multivariate copula function with parameters ™Cop and ul 
 Uniform(0, 1).

Under the dependency structure given in Eq. 5.13, the CDF of each degradation
increment Fl(�yl(tj)) is the marginal distribution of the joint CDF F(	y(tj)). This
characteristic makes the modeling of dependence among performance indicators
separated from the modeling of marginal degradation process of each performance
indicator. Such separation makes the construction of multivariate degradation model
with different marginal degradation models feasible. In general, under the multiple
degradation processes model presented in Sects. 5.3.1, 5.3.2, and 5.3.3, the marginal
degradation models for the performance indicators are from the same stochastic
model family, such as the normal distribution, Wiener process and gamma process.
However, the performance indicators of a product may have different deterioration
characteristics, which need different types of stochastic model families [15]. This
practical requirement can be fulfilled through the copula based multivariate degra-
dation process model. For instance, the performance indicators can be separately
modelled by Wiener processes, gamma processes, inverse Gaussian process and so
on, and their dependence under different stochastic processes can be constructed
through Eq. 5.13.

Since the performance indicator is assumed following a stochastic process with
independent degradation increments, the multivariate degradation process model
based on copula function is constructed as follows.
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(5.14)



5 Degradation-Based Reliability Modeling of Complex Systems in Dynamic. . . 93

where PRO


�y1 .tk/ I ™Mar

l

�
is the distribution of degradation increment of the

lth performance indicator, which is determined based on the stochastic process
chosen for the modelling of this performance indicator. The stochastic processes
generally used for degradation modelling include the Wiener process, gamma
process and inverse Gaussian process [3], which separately giving rise to the
PRO



�y1 .tk/ I ™Mar

l

�
presenting as the normal distribution, gamma distribution, and

inverse Gaussian distribution.
The multivariate copula function in Eq. 5.14 is a multivariate distribution

with uniformly distributed marginal distributions on [0, 1]. A group of CDFs of
degradation increments (F1(�y1(tj)), : : : , FL(�yL(tj))) is a sample from the mul-
tivariate copula function. Accordingly, when the CDFs of degradation increments
are available, the choice of copula function to model their dependency can be
implemented through the methods for multivariate probability distribution selection.
Qualitative method such as the scatter plots presented in Wu [47], and quantitative
method such as Bayesian model selection introduced by Huard and Evin [48], both
can be adopted to choose the right copula function for multivariate degradation
modelling. In bivariate degradation processes, there are various types of copula
functions can be used for degradation modelling, which are listed as follows.

1. Gaussian copula
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(5.15)

2. Frank copula

C .u1; u2/ D �
1

˛
ln

�
1C

.e�˛u1 � 1/ .e�˛u2 � 1/

e�˛ � 1


; ˛ ¤ 0 (5.16)

3. Gumbel copula

C .u1; u2/ D exp
�
�..� ln u1/

˛ C .� ln u2/
˛/
1=˛
�
; ˛ 2 Œ1;1/ (5.17)

4. Clayton copula

C .u1; u2/ D max
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u�˛
1 C u�˛

2 � 1
��1=˛

; 0
�
; ˛ 2 Œ�1;1/ n0 (5.18)
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In the multivariate degradation process, the multivariate Gaussian copula [49],
the multivariate t-copula [50], and the vine copula [51] are commonly used in
various literature.

Given the degradation thresholds of the L performance indicators, the reliability
function of the product is given as follows.

R.t/ D Pr

	
sup
s�t

Y1.s/ < D1; : : : ; sup
s�t

Yl.s/ < Dl; : : : ; sup
s�t

YL.s/ < DL

�
(5.19)

It’s often difficult to calculate the reliability function due to the unavailability of
the analytical solution. Simulation method is generally used to obtain the reliability
of the product based on the model in Eq. 5.14 [13]. When all the parameters for
the copula function and the marginal degradation processes are available, a group
of random samples, ŒQu1; : : : ; QuL�, are firstly generated from the copula function,
C(u1, : : : , uL; ™Cop). By calculating the inverse CDF of degradation increments
based on the generated samples, the degradation increments for marginal degrada-
tion processes at a specific time interval are obtained as �Qyl .tk/ D F�1

l



QulI ™Mar

l

�
.

The marginal degradation process at a specific time point is obtained based the
degradation increments of the passed time intervals as Qyl



tj
�

D
Pj

kD2�Qyl .tk/. The
failure time point of the product can then be obtained by comparing the simulated
observations of the marginal degradation processes with their respective degradation
thresholds. By repeating the simulation process above, a group of samples of failure
time points is obtained, and the reliability function can be statistically summarized
from these generated failure time samples.

The copula based model has been investigated extensively for bivariate degrada-
tion processes modeling, which can be summarized in the following three groups
according to the stochastic processes incorporated, i.e., bivariate Wiener process
model, bivariate gamma process model, and bivariate inverse Gaussian process
model. Bivariate degradation processes model based on Wiener process and copula
function has been studied by Pan et al. [45], Wang et al. [52], and Jin and
Matthews [53]. In detail, Pan et al. [45] presented a Bayesian method based on
Markov chain Monte Carlo method to facilitate parameter estimation and reliability
assessment. Wang et al. [52] further introduced a Bayesian method for residual
life estimation under this kind of bivariate degradation process model. Jin and
Mathews [53] introduced a method for degradation test planning and measurement
plan optimization for products modelled by the bivariate Wiener process and copula
function.

Bivariate degradation process model based on gamma process and copula
function has been investigated by Pan and Sun [54], Hong et al. [55], and Wang
et al. [46]. Wang et al. [46] introduced a two-stage method to estimate the parameter
of a bivariate non-stationary gamma degradation process, for which the residual
life estimation can be implemented in an adaptive manner. Pan and Sun [54]
presented a method for step-stress accelerated degradation test planning under the
bivariate degradation model based on gamma process and copula function. Hong
et al. [55] investigated the condition-based maintenance optimization for products
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with dependent components deteriorations, where the dependent deteriorations were
characterized by gamma process and copula function.

Bivariate degradation process models based on inverse Gaussian process and
copula function have been studied by Liu et al. [56] and Peng et al. [13]. Within
these studies, Liu et al. [56] incorporated time scale transformation and random drift
into the bivariate inverse Gaussian process model to account for the nonlinear of
degradation process and heterogeneity within a product population. Peng et al. [13]
introduced a two-stage Bayesian parameter estimation and reliability assessment
method to deal with the incomplete degradation observations for products modelled
by the bivariate inverse Gaussian process and copula function.

According to the literature review presented above, it can be found that most of
the models are introduced for bivariate degradation processes. Limited exceptions
are the works presented by Peng et al. [15], Pan and Sun [54] and Wang et al.
[57]. Although the copula based model given in Eq. 5.14 is flexible for constructing
multivariate degradation process models, the study on copula based multivariate
degradation process model is still limited and deserves more investigation on both
the utilization of multivariate copula function and the applications. There is also a
strong imperative to advance investigation on residual life assessment, degradation
test planning, optimal maintenance decision based on the copula based multivariate
degradation process models.

5.4 Multiple Degradation Processes Under Dynamic
Environments

The model for the degradation process under dynamic environments is aimed to
deal with the two critical aspects highlighted above for degradation modelling
of complex systems under dynamic environments. Various methods and models
have been summarized above to deal with the two critical aspects, which include
the modelling of multiple degradation process and the incorporation of dynamic
environmental effect. However, the research on multiple degradation modelling for
complex system under dynamic environments has not been well studied. There
are generally two types of models having been introduced, which are the multiple
degradation process and random shock models [5, 58, 59], and the multiple
degradation process and dynamic covariate model [15].

5.4.1 Multiple Degradation Process and Random Shock
Models

The multiple degradation process and random shock models have been introduced
for the situation where a system is subject to degradation processes and random
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shocks [5]. The degradation processes are associated with the inherent failure
mechanism of the system, and the random shocks are related to the exterior
environmental effects. The dependence among degradation processes can be either
from the inherent dependent failure mechanism of the system, or from the exterior
effect of the random shocks, or both. The inherent dependent failure mechanism
of the system is characterized through the copula function [5], which is similar to
the copula based multivariate degradation process model. The random shocks intro-
duced dependence is characterized through instantaneous degradation increments
[58, 59] or degradation rate acceleration or both [5], where the effect of random
shocks is incorporated.

Suppose a product has L degradation processes Yl(t) with l D 1 , : : : , L, and
the arrival of random shocks experienced by the product follows a Poisson process
N(t). To facilitate the derivation, a simple model for the degradation process Yl(t) is
often used, such as a multiplicative path function as Yl(t) D Xl
l(t) with Xl being a
random variable [5]. The effect of the random shocks on the degradation processes
is characterized into two types, i.e., (1) the cumulative degradation increments
as Sl.t/ D

PN.t/
kD1!lk with ! lk denoting the instantaneous degradation increment

introduced by the kth random shock, and (2) the degradation rate acceleration, which
is incorporated into Yl(t) through the idea of accelerated degradation modelling,
such as the scaling of t into teGl.t/ with Gl.t/ D �1N.t/ C �2

PN.t/
kD1!k [5]. By

considering both effects of the random shocks, the degradation process model of
the lth degradation process is presented as

Ml.t/ D Yl .tI Gl.t//C Sl.t/ (5.20)

The marginal distribution of the degradation process Ml(t) can be derived based
on the model for the degradation process Yl(t), the model for random shocks N(t),
and the model for the instantaneous degradation increment ! lk. For instance, assume
Yl(t) D Xl
l(t) with FXl .xl/ being the distribution of random parameter Xl, N(t)
follows a homogeneous Poisson process with occurring rate �, and !lk follows an
exponential distribution with mean �l, the distribution of Ml(t) can be derived as

Fl .ml.t// D Pr .Ml.t/ < ml.t// D Pr .N.t/ D 0/ Pr .Yl.t/ < ml.t//
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(5.21)

The dependency among M(t) D (M1(t), : : : , ML(t)) mainly originates from two
parts, which are the dependency introduced by the dependence of the inherent
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degradation processes Y(t) D (Y1(t), : : : , YL(t)), and the dependency originated
from the series of random shocks. Assume the instantaneous degradation increments
! lk with l D 1 , : : : , L and k D 1 , : : : , N(t) are independent, the dependence
among M(t) can be characterized through the joint distribution of M(t) as

F .m1.t/; : : : ;mL.t// D Pr .M1.t/ < m1.t/; : : : ;ML.t/ < mL.t//
D
PC1

nD0 C .F1 .m1.t/jN.t/ D n/ ; : : : ;FL .mL.t/jN.t/ D n// Pr .N.t/ D n/
(5.22)

where C(F(m1(t)j N(t) D n), : : : , F(mL(t)j N(t) D n)) is a copula function used to
model the dependence originated from the inherent dependence of degradation
processes Y(t), and Fl(ml(t)j N(t) D n) is the marginal distribution of degradation
process Ml(t) condition on N(t) D n, which can be derived similarly to Eq. 5.22.

Given the degradation thresholds of the degradation processes, the reliability of
the product is given as

R.t/ D Pr fM1.t/ < D1; : : : ;ML.t/ < DLg D F .D1.t/; : : : ;DL.t// (5.23)

By substituting the degradation thresholds into Eq. 5.22, the reliability function
of the product can be obtained. However, it is often difficult to obtain an analytical
solution for the reliability function. Wang and Pham [5] derive the reliability bounds
for the reliability of product with bivariate degradation processes and random
shocks. A two-stage parameter inference method and a comparison of the reliability
under the model introduced above with constant copulas and time-varying copulas
have also been studied by Wang and Pham [5]. Song et al. [58] investigated the
reliability of multi-component systems with multiple degradation processes and
random shocks, where the model presented above is simplified without considering
the effect of degradation rate acceleration by the random shocks. The maintenance
modeling and optimization under the multiple degradation process and random
shock model has been studied by Song et al. [58]. Song et al. [59] further extended
the model introduced above into a more advanced model, where the dependency
of transmitted shock sizes to hard failure process, and shock damages to specific
degradation processes (soft failure processes) for all components have been studied.

Compared with the degradation process model under static environments, the
multiple degradation process and random shock model introduced in this section
successfully incorporates the effect of dynamic environments through the modeling
of the random shocks and the dependency caused by the effect of random shocks.
However, more assumptions need to be assumed to derive the model, which requires
a deep understanding of the failure mechanism of the degradation processes, the
arrival of random shocks, and their influences on the degradation processes as well.
A limit on the models used for the marginal degradation processes is necessary to
facilitate the calculation of the reliability as given in Eq. 5.23, where a multiplicative
path function or a degradation path model is generally applicable. In addition,
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methods for parameter estimation, degradation analysis and residual life prediction
with this kind of multiple degradation process and random shock model has not
been sufficiently studied.

5.4.2 Multiple Degradation Process and Dynamic Covariate
Models

The multiple degradation process with dynamic covariate model is introduced by
utilizing the idea of dynamic covariate and copula function. The dynamic covariate
is used to incorporate the dynamic environments into degradation process models.
The copula function is used to model the dependency among the degradation
processes. This kind model is similar to the copula based multivariate degradation
process models introduced in Sect. 5.3.4. Major difference is that the marginal
degradation processes used in Sect. 5.3.4 are substituted with marginal degradation
processes with dynamic covariates.

Suppose a product has L degradation processes Yl(t) with l D 1 , : : : , L, and
the dynamic environments experienced by the product are summarized into the
external factors XE. Under the effect of the external factors, the marginal degra-
dation processes Yl(t) are modelled using stochastic process models with dynamic
covariates. Following the methods and models summarized in Sect. 5.2, the baseline
stochastic process models Yl(t) are modified into Yl(t; XE), such as the Wiener
process model Yl(t) D 
l(t) C � lB(t) with B(t) being a standard Brownian motion
and the inverse Gaussian process model Yl.t/ 
 IG



ƒl.t/; �lƒ

2
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a nonnegative and monotonically increasing function are separately modified into
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Let �Yl(tj; XE) D Yl(tj; XE) � Yl(tj � 1; XE) denote the degradation increment
within the time interval [tj � 1, tj], which follows a probability distribution
with CDF Fl(�yl(tj); XE) under the specific stochastic process chosen for the
marginal degradation process. The dependence among the degradation processes
is characterized through their degradation increments. It is assumed that the
degradation increments 	Yl(tj) D (�Y1(tj), : : : ,�YL(tj)) for the L performance
indicators within the same time interval [tj � 1, tj] are dependent. Similar to
the copula based multivariate process model presented in Sect. 5.3.4, the joint
probability distribution of 	Yl(tj; XE) within the same time interval is characterized
by leveraging a multivariate copula function as
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where 	y(tj) D (�y1(tj), : : : ,�yL(tj)) and C(u1, : : : , uL; ™Cop) is a L-dimensional
multivariate copula function with parameters ™Cop and ul 
 Uniform(0, 1).

The multiple degradation process and dynamic covariate model, which is based
on the modified marginal degradation process and copula function is constructed as
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where PRO


�y1 .tk/ I XE; ™Mar

l

�
is the distribution of degradation increment of the

lth performance indicator with the external factors incorporated.
Given the degradation thresholds of the L performance indicators, the reliability

function of the product is given as
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It is generally to obtain the analytical solution to the reliability function,
simulation based method is needed to implement the calculation. To facilitate the
degradation analysis of complex systems under a dynamic environment with the
multiple degradation process and dynamic covariate model, Peng et al. [15] intro-
duced a Bayesian parameter estimation method and a simulation based degradation
inference, reliability assessment and residual life prediction method. However, their
method is limited to the situation that the external factors XE are assumed available
during the degradation analysis, where no probabilistic model is constructed for
these external factors. A more general model with external factors modelled as
random variables or stochastic processes deserves further investigation.

Compared with the multiple degradation process and random shocks model,
the model based on dynamic covariates and copula function is more flexible
for incorporating external factors and characterizing degradation processes. There
are various types of stochastic models, covariate models and copula functions
available for constructing the multivariate degradation process model as given in
Eq. 5.25. The Bayesian parameter estimation method and degradation analysis
method presented by Peng et al. [15] can also be extended to the model with
more general assumptions. More advanced methods for parameter estimation and
residual life predication still deserve further investigation. In addition, the study on
maintenance modeling and optimization and system health management under this
kind of multivariate degradation process model has not been presented yet.

5.5 Conclusions

In this paper, a summary of the state of arts on the researches of reliability modelling
of complex system under dynamic environments is presented by highlighting
two critical aspects, i.e., (1) modelling multiple degradation processes, and (2)
characterizing dynamic environments effects. We mainly focused on the various
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types of multivariate degradation process models because these models are critical
for reliability modelling of modern complex system with multiple performance
indicators or composed by multiple components. In addition, the characterization
of dynamic environments and the methods for incorporating dynamic environments
into reliability models has been discussed due to the consideration that the effects
of environments are often simplified or omitted in general degradation modelling.
Through these two aspects, the paper is organized into two progressive sessions, i.e.,
multiple degradation processes under static dynamic environments, and multiple
degradation processes under dynamic environments.

For the multiple degradation processes under static environments, the multi-
variate degradation process models based on multivariate Gaussian distribution
and multivariate Birnbaum-Saunders distribution, the degradation rate interaction
model, and the models based on copula function and stochastic processes are
reviewed. Among these models, the copula based multivariate degradation process
model has the capability of modelling various types of degradation processes while
keeping the model simple enough for model construction and parameter estimation.
However, limited by the utilization of multivariate copula function in reliability
engineering, most of the models are bivariate degradation process model. More
research is needed to extend the research on multiple degradation processes under
dynamic environments.

For the multiple degradation processes under dynamic environments, the mul-
tiple degradation process and random shocks models and the multiple degradation
processes and dynamic covariates models are summarized. There is not too much
research published on this topic, partially due to the limitation of real case
examples, the unavailability of physical mechanism, and unjustifiability of complex
models. Within the proposed model, the multiple degradation process with random
shocks model is basically an extension of the degradation-threshold-shock model,
which has been studied for one-dimensional degradation process. The multiple
degradation process with dynamic covariate model is a combination of the copula
based multivariate degradation model and dynamic covariate models, which has
been investigated extensively for one-dimensional degradation process and failure
time models. There is a strong imperative for more investigation on multivariate
degradation modelling with dynamic environments incorporated. In addition, meth-
ods for parameter estimation, residual life predication, degradation test planning,
maintenance strategy optimization, and model comparison and selection, are major
open area deserving extensive investigations under the multivariate degradation
modelling with dynamic environments highlighted.
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Chapter 6
A Survey of Modeling and Application
of Non-destructive and Destructive
Degradation Tests

Chih-Chun Tsai, Chien-Tai Lin, and N. Balakrishnan

Abstract These days, most products are highly reliable which makes it very
difficult or even impossible to obtain failure data on such products within a
reasonable period of time prior to product release. Degradation tests are one way to
overcome this obstacle by collecting degradation data (measurement of degradation)
on such products. Based on different measurement processes, degradation tests can
be divided into non-destructive and destructive degradation tests. In this chapter, we
discuss a number of these two types of degradation models that have been developed
in the literature to describe the degradation paths of products. In addition, some
applications of degradation models of these two classes are also discussed.

Keywords Highly reliable products • Quality characteristics • Degradation data •
Linearized and nonlinear degradation paths

6.1 Introduction

As technology advances, the consumers pay more attention to quality of products
that they purchase and so have higher requirements on the reliability of products.
Due to strong pressure from markets, manufacturers are often required to provide
information on the reliability of their products (such as the mean-time-to-failure
or the 100pth percentile of the lifetime distribution) to their customers. However,
for highly reliable products, it is often difficult to obtain the product’s lifetime
through traditional life tests within a reasonable period of time. Methods such as
accelerated life tests (ALT) or step-stress accelerated life tests (SSALT) have been
developed in reliability analysis for this reason. They are meant to expedite failures
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during test intervals by stressing or step-stressing the product (for example, at
elevated temperatures or voltages) beyond its normal use conditions. These methods
indeed help to obtain in more information if the link between the accelerated test
environment and the regular use environment is known.

In many situations, it is difficult to perform ALT or SSALT, especially when
just few or no failures are recorded, thus providing little or no information
about reliability. In such cases, if there exists a quality characteristic (QC) whose
degradation over time can be related to reliability of the product, then the product’s
lifetime can be estimated well through the use of such degradation data. Based
on measurement processes, different degradation tests have been developed in the
literature and they can be broadly classified into two categories: non-destructive and
destructive degradation tests.

In the case of non-destructive degradation tests, one is able to directly measure
the degradation of a physical or mechanical characteristic over time as, for example,
with the wear of brake pads, propagation of crack size, or degradation of a
performance characteristic over time such as the voltage of a battery or the luminous
flux of a light emitting diodes (LED) bulb or lamp. The degradation measurements
can be taken on each test unit over time during the degradation test. Hence,
regression models or stochastic processes are more commonly applied to analyze
this type of degradation data.

In contrast, for some components or materials, degradation measures might not
be possible without destructive measurement techniques (e.g., destructive strength
tests) or disruptive measurement techniques (e.g., disassembly and reassembly of a
device) that have the potential to affect the subsequent performance of the product;
therefore, only one degradation measurement becomes possible in such cases. As
a result, degradation measurements for multiple samples are required at different
points of time in order to develop inference in this case. A test with such degradation
data is called a destructive degradation test. In practice, destructive degradation
tests are often conducted in order to gain insight into the structural performance or
material behavior of products over time. Hence, it is quite suitable for objects which
will be mass-produced and the cost of destruction of units becomes economical in
this case. A typical example is dielectric breakdown test. During the test, test voltage
that exceeds normal operating condition is applied to an electrical component such
as circuit boards, appliances and electric motors. The test voltage is then increased
until the insulating material fails or breaks down. Such a test can be used to
determine if a component’s insulation is adequate enough to protect the user from
an electric shock.

In this chapter, we will provide a brief background about the models used in
the literature for estimating reliability using either degradation data from non-
destructive or destructive degradation tests. Models of the first type include fixed
or random effect, Wiener process, gamma process, inverse Gaussian (IG) process,
and some other degradation models. Next, we survey the destructive degradation
models with linearized and nonlinear degradation paths. Finally, applications of
these models to burn-in, maintenance as well as acceptance tests are described.
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The rest of this chapter is organized as follows. In Sect. 6.2, we describe
non-destructive degradation models. Section 6.3 presents linearized and nonlinear
destructive degradation models. In Sect. 6.4, we describe some applications and
modeling these two types of degradation data. Finally, some concluding remarks
are made in Sect. 6.5.

6.2 Nondestructive Degradation Model

In the literature, two major aspects of modeling for non-destructive degradation
data have been considered. One approach is to consider general statistical models.
Degradation in these models is then modeled by a function of time and some
possibly multidimensional random variables. These models are called general
degradation path models with fixed and random effects. An alternative approach is to
use a stochastic process to describe the degradation path. The advantage of random
effect formulation is that it can account for the heterogeneity of degradation paths.
Moreover, stochastic processes can adequately describe time-dependent variations
in degradation data. However, when the unit-to-unit variations are not significant,
and variations in degradation data can not completely described by time-dependent
stochastic processes, neither formulation is suitable for use. For this reason, several
authors have considered the inclusion of both random effects and stochastic process
formulations in their degradation model. We now review some existing models and
their applications.

6.2.1 Fixed or Random Effect Degradation Model

Motivated by a fatigue-crack-growth data, Lu and Meeker [26] used a general
random effect model to describe the degradation paths, which is given by

Li.tj/ D f .tjI ‚i;�/C "ij; i D 1; : : : ; n; j D 1; : : : ;m
‚i

� m; (6.1)

where Li.tj/ and f .tjI ‚i;�/ denote the sample and actual degradation paths of
the ith unit at time tj, respectively; ‚i is the vector of the ith unit random-effect
parameters, representing individual unit characteristics; � is the vector of fixed-
effect parameters, common for all tested units; "ij is the measurement error with
constant variance �2" ; ‚i and "ij are independent of each other .i D 1; 2; : : : ; nI j D

1; 2; : : : ;m
‚i
/; m is the total number of possible inspections in the experiment;

and m
‚i

is the total number of inspections on the ith unit, a function of ‚i. They
assumed that ‚i follows a multivariate distribution function G‚.�/, and that the
product’s lifetime T can be suitably defined as actual degradation paths f .tjI ‚i;�/

crossing a critical value !. Then, the cumulative distribution function (cdf) of T , the
failure time, can be written as
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FT.t/ D P.T � t/ D FT.tI �; !;G‚.�//:

Since the parameters appear nonlinearly in the path model, full maximum likeli-
hood estimation (MLE) of random-effect parameters is, in general, algebraically
intractable and computationally quite difficult. So, they proposed a two-stage
method to estimate the model parameters, and applied a bias-corrected percentile
parametric bootstrap (or simulation) method to obtain pointwise confidence inter-
vals for FT.t/.

Tseng and Yu [66] proposed an on-line and real-time termination rule to
determine an appropriate stopping time of a degradation experiment for LED data.
They used a linearized degradation model to describe the degradation paths as
follows:

ln.ln.Li.t/// D ln.˛i/C ˇi ln.t/C "i.t/; t > 0;

where Li.t/ denotes the degradation path of the ith device and "i.t/ is the measure-
ment error of device i at time t.

Yu and Tseng [89] dealt with the optimal design of the inspection frequency, the
sample size, and the termination time for a degradation experiment. Based on real
applications to LED lamps, they considered the degradation model given by

ln.Li.t// D �ˇt˛ C "; t > 0; (6.2)

where ˛ is fixed effect parameter and ˇ is a random effect parameter following
a lognormal distribution. It can be seen that the product’s lifetime T follows a
lognormal distribution as well. Under the constraint that the total experimental
cost does not exceed a pre-fixed budget, they determined the optimal decision
variables by minimizing the variance of the estimated 100pth percentile of the
lifetime distribution of the product.

There are several applications relating to the models in (6.1) and (6.2). Wu
and Chang [78] used the general degradation path model in (6.1) to determine the
number of units to test, inspection frequency, and termination time of a degradation
test under a determined cost of experiment such that the variance of the estimator of
a percentile of the failure time distribution is minimum. Yu and Chiao [88] proposed
a systematic approach to the identification problem with respect to fractional
factorial degradation experiments under the model in (6.2). By considering the
criterion of minimizing the total cost of experiment, they obtained the optimal test
plan of inspection frequency, the sample size, and the termination time at each run
by solving a nonlinear integer programming model such that the correct probability
of identifying these factors exceeds a pre-specified level. Yu [86] followed the work
of Yu and Tseng [89] to discuss the optimal test plan for an accelerated degradation
test (ADT) using degradation model in (6.2). In his work, the location parameter
of the random effect is assumed to have a relationship with the stress level, and the
criterion for optimal combination of the sample size, inspection frequency and the
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termination time at each stress level is to minimize the mean-squared error of the
estimated 100pth percentile of the product’s lifetime distribution at the use condition
subject to the constraint that the total experimental cost does not exceed a pre-fixed
budget. Yu [87] further extended this work to develop optimal ADT based on a linear
degradation path model with a reciprocal Weibull-distributed rate.

The nonlinear random-coefficients modeling, which is more appropriate in
handling complicated forms of degradation paths, is appealing and widely adopted
by many authors. Bae et al. [2] used a bi-exponential model with random coefficients
to describe the nonlinear degradation paths caused by nano-contamination in
plasma display panels. Liu and Tang [24] developed a single-path power-law
statistical degradation model with nonlinear stress-life relationships, and formulated
a Bayesian optimal ADT design problem by minimizing the expected pre-posterior
variance of a quantity of interest at use condition. Park and Bae [31] used the nonlin-
ear random-coefficients model for estimating lifetime distributions at use condition
from ADT data sets including a real application of commercial organic light-
emitting diodes (OLED). They specifically proposed three methods, namely, delta
approximation, multiple imputation of failure-times, and the lifetime distribution-
based method, to develop direct inference on the lifetime distribution without
invoking arbitrary assumptions on the degradation model. Pan and Crispin [28]
considered both the unit-to-unit variability and measurement variability to develop a
hierarchical approach to construct degradation model. Kim and Bae [17] suggested
a cost-effective optimal degradation test plan for the degradation data of alloy-A
fatigue cracks and plasma display panels by minimizing the total experimental cost
in the context of a nonlinear random-coefficients model. Guida et al. [13] proposed
an empirical random-effects regression model of polynomial type for describing the
three components of variability (voltage decay over time for each single cell, voltage
variability among cells, and noise variability) observed in long-term solid oxide
fuel cells (SOFC) degradation tests. They also discussed inferential procedures for
some performance measures, such as the future degradation growth, the reliability
function and the cell-to-cell variability in SOFC stacks.

6.2.2 Stochastic Process Degradation Models

Stochastic processes are useful for describing products’s failure mechanisms when
the operation environment is dynamic over time and the products degrade to failure.
Let L.t/ denote the degradation path of the product, where t � 0 and L.0/ D 0.
Then, the product’s lifetime T can be suitably defined as the first passage time when
L.t/ crosses a failure threshold level !; that is,

T D infftjL.t/ � !g: (6.3)

Singpurwalla [47] gave an overview of approaches to failure modeling under
the dynamic operating conditions based on stochastic processes. In the following
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subsections, we will review some important degradation models based on stochastic
processes such as Wiener process, gamma process, and IG process.

6.2.2.1 Wiener Process

Assume that the degradation path of a product, L.t/, follows a Wiener process. Then,
it can be expressed as

L.t/ D 
t C �B.t/; (6.4)

where 
 is the drift parameter, � > 0 is the diffusion parameter, and B.�/ is the
standard Brownian motion. It is well-known that the distribution of the first passage
time in (6.3) is an IG distribution.

Wiener processes have received wide applications in degradation data analysis.
Based on constant-stress ADT (CSADT) data, Liao and Elsayed [19] used model
(6.4) to develop a statistical inference procedure to predict field reliability by
considering the stress variations. Wang et al. [69] used Bayesian approach to
integrate the product’s reliability information from both the ADT and field-use
conditions. Liao and Tseng [20] dealt with the optimal design in a step-stress ADT
(SSADT) experiment. Under the constraint that the total experimental cost does not
exceed a pre-fixed budget, they determined the optimal settings of the sample size,
measurement frequency, and the termination time by minimizing the asymptotic
variance of the estimated 100pth percentile of the product’s lifetime distribution.
Tang and Su [51] used the intermediate Wiener degradation data (the first-passage
times of the test units over certain nonfailure thresholds during the early stage of
a degradation test) to obtain uniformly minimum variance unbiased estimator and
uniformly most accurate confidence interval for the mean lifetime. Wang et al. [70]
established an adapted Brownian motion-based approach with a drifting parameter
to predict the residual life via the expectation-maximization (EM) algorithm.

In contrast to the work of Liao and Tseng [20], Lim and Yum [21] developed the
optimal ADT plans under the constant-stress loading by determining the test stress
levels and the proportion of test units allocated to each stress level by minimizing
the asymptotic variance of the MLE of the pth quantile of the lifetime distribution
at the use condition. Tseng et al. [65] discussed the optimal sample size allocation
under D-optimality, A-optimality, and V-optimality criteria for an ADT model. They
derived analytical results of the optimal sample size allocation formula when the
number of stress levels equals 2. Moreover, when the number of stress levels is at
least 3, they demonstrated that the optimal sample size allocation should assign test
units at the lowest stress and the highest stress levels. Note that, under the Wiener
degradation model with a drift parameter being a linear function of the (transformed)
stress level, Hu et al. [15] recently proved that a multi-level SSADT plan will
degenerate to a simple SSADT plan under many commonly used optimization
criteria and with some practical constraints.
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Recent applications have focused on the use of threshold information, multi-
sensor information, and calibrations for the estimation of failure time distribution
and remaining useful life prediction. Based on the cumulative damage data from
a two-variable constant-stress loading ADT, Tsai et al. [58] proposed a general
inferential procedure, which involves threshold information in the derivations of
the MLE of distribution parameters as well as of percentiles, to analytically find
an approximate lower confidence bound (LCB) of a lifetime percentile. They
assumed that the drift parameter in the Wiener diffusion process can be expressed
as an exponential function in terms of two standardized stress variables via a
generalized Eyring model (GEM). Wei et al. [75] considered an on-line multi-
sensor information based approach to get the remaining useful life prediction
analytically with anticipated performance subject to a latent Wiener degradation.
They used a distributed Kalman fusion filtering recursively to identify the hidden
degradation process, and applied a two-stage method including the EM algorithm
simultaneously to update all unknown parameters. Tamborrino [50] considered a
Wiener process with exponentially decaying threshold to model the neuronal spiking
activity and provided a method to approximate the density of the first passage
time. Cui et al. [8] developed two degradation models based on Wiener processes
under pre-specified periodical calibrations. They presented stochastic process-based
method and partial differential equation method to derive the system reliability and
moments of lifetimes of systems.

6.2.2.2 Gamma Process

A gamma process has the following properties:

(1) non-overlapping increments are independent, that is, the increments �L .t/ D

L.t C�t/ � L.t/ are independent;
(2) with ˛.�/ being a given, monotone increasing function with ˛.0/ D 0, for fixed

t and �t,

�L.t/ 
 Ga.ˇ;�˛.t//; (6.5)

where�˛.t/ D ˛.tC�t/�˛.t/ and ˇ are shape (function) and scale parameters
of the gamma distribution, respectively, and with probability density function
(pdf) as

f�L.t/.y/ D
y�˛.t/�1e�y=ˇ

ˇ�˛.t/�.�˛.t//
; y > 0: (6.6)

Because gamma process is strictly increasing, the cumulative distribution function
(cdf) of T can be readily expressed as
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FT.t/ D P.T � t/ D P.L.t/ � !/ D
�.˛.t/; !=ˇ/

�.˛.t//
;

where �.a; z/ is the incomplete gamma function defined by

�.a; z/ D

Z 1

z
xa�1e�xdx:

Motivated by a problem in hydrological engineering, Singpurwalla [48] gave an
overview on gamma processes and their generalizations and also described some of
their features such as decomposition and representation. Guida et al. [12] suggested
a generalization of the non-stationary gamma process, a time discretization of the
extended gamma process, to describe age dependent degradation processes with a
non-constant variance-to-mean ratio. Wang et al. [73] proposed the change-point
gamma and Wiener processes to capture a two-stage degradation process of liquid
coupling devices (LCD) and used the Bayesian method to evaluate the real-time
reliability of the product. Ling et al. [23] studied the degradation of light intensity
of LED based on a time-scale transformed gamma process with power acceleration
laws, and also proposed methods for estimating the remaining useful life, given
the information on current time and the degradation level. Bordes et al. [3] and
Pulcini [39] considered the gamma process perturbed by a Brownian motion as a
degradation model.

Much work has been done on the determination of the optimal design for a
gamma degradation experiment. Under the constraint that the total experimental
cost does not exceed a pre-specified budget, Tseng et al. [64] determined the
optimal settings for the sample size, measurement frequency, and termination time
for a gamma degradation process by minimizing the approximate variance of the
estimated meantime-to-failure (MTTF) of the lifetime distribution of the product.
Pan and Balakrishnan [29] discussed multiple-steps SSADT based on gamma
processes, in which the stress level is elevated when the degradation value of a
product crosses a pre-fixed value. Their work has been further extended by Amini
et al. [1] with a different assumption that the stress level is elevated as soon as
the measurement of the degradation of one of the test units, at one of the specified
times, exceeds the threshold value. Tsai and Lin [52] developed a procedure for
selecting the most reliable design among several competing ones when degradation
paths of these designs follow gamma processes with common scale parameter. In
this regard, they first proposed a selection rule and then derived the optimal test
plan for each of the competing designs by minimizing the total experimental cost
subject to a constraint that the selection precision is not lower than a pre-fixed level.
Chiang et al. [6] and Tsai et al. [59] investigated the optimal ADT strategy with the
loadings of two stress variables and GEM.
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6.2.2.3 Inverse Gaussian Process

Although the Wiener and gamma processes have received intensive applications
in degradation data analysis, it is obvious that the two models cannot handle all
degradation data in practice. Another attractive degradation model with monotone
paths is the IG process. Compared to the gamma process, the IG process has many
interesting and useful properties when dealing with covariates and random effects
(Ye and Chen [80]).

Let L.t/ be the IG process. Then, it has the properties of non-overlapping
independent increments, that is, the increments �L .t/ follows an IG distribution
IG.�ƒ.t/; �ƒ2.t// with pdf

f�L.t/.y/ D

�
�ƒ2.t/

2�y3

1=2
exp

�
�
�ƒ2.t/.y � �ƒ.t//2

2y.�ƒ.t//2


; y > 0; (6.7)

where ƒ.t/ is nonnegative and monotone increasing. Then, by the monotonicity
property, the cdf of the product’s lifetime can be obtained as

FT.t/ D P.T � t/ D P.L.t/ � !/

D ˆ

 r
�

!

�
ƒ.t/ �

!

�

!
� e

2�ƒ.t/
� ˆ

 
�

r
�

!

�
ƒ.t/C

!

�

!
;

where ˆ.�/ is the cdf of the standard normal distribution.
Ye et al. [79] investigated the optimal CSADT plan based on IG processes.

They determined the optimal stress levels and the number of units allocated to
each stress level by minimizing the asymptotic variance of the pth percentile under
use conditions. Subsequently, Zhang et al. [92] proposed a mixed IG process to
describe the degradation paths of the products. They presented a decision rule for
classifying an item as a weak or a normal unit, and used a cost model to determine
the optimal burn-in duration and the optimal cut-off level. Peng et al. [37] developed
a coherent bivariate degradation analysis with incomplete degradation observations
based on IG processes and copula functions. They suggested a two-stage Bayesian
estimation method to cope with the parameter estimation problem for both complete
and incomplete degradation observations.

6.2.3 Mixed Random Effect and Stochastic Process

6.2.3.1 Random-Effect Wiener Process

Wiener processes with mixed effects have been investigated by many authors. Peng
and Tseng [34] investigated the mis-specification analysis of linear degradation
models by incorporating the random effects in the drift coefficient and measurement
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errors in a Wiener process. Extensions of their model have been done by Si
et al. [46] and Peng and Tseng [35]. Si et al. [46] used a non-linear degradation
model to estimate the remaining useful life of a system and derived an analytical
approximation for the distribution of the first passage time of the transformed
process. Peng and Tseng [35] suggested a similar degradation model by relaxing
the normality assumption of the random effect (drift rate) with a skew-normal dis-
tribution, and derived analytical expressions for the product’s lifetime distribution.
Ye et al. [83] discussed Wiener processes with measurement errors. They explored
the traditional Wiener process with positive drifts compounded with independent
Gaussian noises, and improved its estimation efficiency compared to the existing
inferential procedure. Furthermore, they developed a Wiener process with a mixed
effects model subject to measurement errors, and investigated some basic properties
of this degradation model. Wang et al. [68] presented a remaining life prediction
method based on Wiener processes with ADT conjugate prior information. They
established a data extrapolation method to extrapolate the accelerated data from the
accelerated stress levels to the normal use stress level using acceleration factors, and
then applied EM algorithm to estimate hyper-parameters from the prior information.
Wang et al. [72] studied the problem of model mis-specification based on a nonlinear
Wiener process with random effects in which the product-to-product variability and
the temporal uncertainty of the degradation were both incorporated. In their work,
the unknown parameters in the degradation models were obtained by using the two-
step MLE method, while the effects of model mis-specification on the MTTF of the
product were measured by relative bias and variability. Paroissin [32] proposed a
randomly delayed Wiener process in which sample paths are assumed to be observed
at the same regular instants (random time), and then discussed statistical inference
and some asymptotic results of this degradation model.

6.2.3.2 Random-Effect Gamma Process

Lawless and Crowder [18] modeled the data on crack growth by constructing a
tractable gamma-process model incorporating a random effect. They carried out
the corresponding goodness-of-fit tests and developed prediction calculations for
failure times defined in terms of degradation level passages. Based on the same
model, Wang [71] proposed a pseudo-likelihood method to estimate the unknown
model parameters. Tsai et al. [56] discussed the problem of optimal design for
degradation tests based on a gamma degradation process with random effects.
Under the constraint that the total experimental cost does not exceed a pre-fixed
budget, they determined the optimal decision variables (the sample size, inspection
frequency, and measurement numbers) by minimizing the asymptotic variance of
the estimate of the pth percentile of the lifetime distribution of the product. Ye
et al. [85] addressed the semiparametric inference on gamma process with random
effects. They applied the EM algorithm to obtain the MLE of the unknown model
parameters and used bootstrap method to construct confidence intervals. In addition,
they developed a score test to examine the existence of random effects under the
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semiparametric scenario. Guida and Penta [11] used a gamma process with non-
stationary independent increments for each specimen to model the time to reach any
given crack size in fatigue testing.

6.2.3.3 Random-Effect Inverse Gaussian Process

Wang and Xu [74] studied the maximum likelihood estimation of an IG process
model with random effects and covariates. They used the EM algorithm to estimate
the unknown model parameters and developed a simple graphical method to assess
the goodness of fit of different models. Qin et al. [40] and Zhang et al. [94]
used an IG process that was formulated in a hierarchical Bayesian framework to
characterize the growth of the depth of metal-loss corrosion defects on oil and
gas steel pipelines. Liu et al. [25] studied the dependence modeling for systems
using IG process and copulas. They first used the IG process with random drift and
time scale transformation to model the monotonic degradation process, and then
employed the copula method to fit the joint distribution of multiple degradation
processes. In their work, the EM algorithm with two-stage procedure was used to
estimate the model parameters. Peng et al. [36, 38] conducted a Bayesian analysis
of IG process models for degradation modeling and inference. Specifically, Peng
et al. [36] investigated a simple IG process model and three IG process models
with random effects. They made a comprehensive sensitivity analysis of prior
distributions and sample sizes through Monte Carlo simulations. Peng et al. [38]
discussed the optimal design of degradation tests based on the average pre-posterior
variance of reliability and addressed the issue of uncertainty in the planning values.
They also investigated a trade-off between sample size and number of degradation
observations in the degradation test planning, and quantified the effects of priors
on the optimal designs and on the value of prior information. Ye and Chen [80]
showed that the IG processes is a limiting compound Poisson process and developed
some random effects models by linking the IG process to the Wiener process.
Under the assumption of the natural conjugate distribution, Peng [33] proposed a
degradation model based on an inverse normal-gamma mixture of an IG process
with random effects and time-independent explanatory variables. He then presented
some properties of the lifetime distribution and used the EM-type algorithm to
obtain the MLE of model parameters. In addition, he also provided a simple model-
checking procedure to assess the validity of different stochastic processes.

6.2.4 Other Degradation Models

Shiau and Lin [45] proposed a nonparametric regression accelerated degradation
model for ADT data wherein stress levels affect only the degradation rate, but
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not the shape of the degradation curve. They proposed an algorithm to estimate
the components of the model and conducted a simulation study to explore the
effectiveness of the proposed model. Park and Padgett [30] developed a general
model formulation for accelerated-test-type data on tensile strength of materials.
Their approach assumed that initial damage exists in a material specimen which
reduces its theoretical strength and can be modeled by a stochastic process such as
Brownian motion, geometric Brownian motion, and the gamma process, and addi-
tive and multiplicative cumulative damage functions that result in the distribution
of the specimen’s initial strength. Hsieh and Jeng [14] used a non-homogeneous
Weibull compound Poisson model with accelerated stress variables to assess the
device reliability. They provided a general maximum likelihood approach for the
estimates of model parameters and derived the breakdown time distributions. Ye
et al. [82] used the cumulative hazard and the hazard potential of the natural lifetime
to represent the degradation and shock mechanisms of the system. They assumed the
lifetime of a degradation-oriented failure to belong to some distributional family, the
shocks arrive according to a non-homogeneous Poisson process, and the destructive
probability depends on the transformed remaining resource of the system. Under
these assumptions, they developed the statistical inference for the single failure
time model where the system is not repairable upon failure, and the recurrent
event model where the system can be minimally repaired for shock failures and
is discarded when natural failure occurs. Su and Shen [49] presented a multi-
hidden semi-Markov model with multivariate feature variables for degradation
identification and remaining useful life forecasting of a system. They used a new
variable combined with forward and backward variables to depict similarities of
the feature and applied modified Viterbi algorithm to identify the degradation
state, in which the linear function was used to describe the contribution of each
feature to the state recognition, and the weight coefficients were rectified by using
the dynamic adjustment method when missing feature problem happens. Compare
et al. [7] employed a four-state continuous-time semi-Markov process with Weibull
distributed transition times to model oxidation degradation mechanism in gas
turbine nozzles. They developed a numerical approach to obtain the MLE of the
model parameters, which can be further utilized to compute the probabilities of
occupying the four degradation states over time and the corresponding uncertainties,
and characterize the related uncertainty and the probabilities of occupying the
different states over time. By minimizing the asymptotic variance of the estimated
pth quantile of the product’s lifetime, Tseng and Lee [60] analytically derived
the optimal allocation rules for two-level and three-level exponential dispersion
ADT allocation problems whether the testing stress levels are prefixed or not. In
particular, they showed that all test units for a three-level allocation problem should
be allocated into two out of three stresses, depending on certain specific conditions.
They also demonstrated that a three-level compromise plan with small proportion
allocation in the middle stress, in general, is a good strategy for ADT allocation. Lin
et al. [22] considered importance indices of components within multi-component
systems by taking into account the influence of multiple competing degradation
processes, degradation dependency and maintenance tasks. They used a piecewise-
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deterministic Markov process to describe the stochastic process of degradation of
the component under these factors, and developed a method for the quantification
of the component importance measure based on the finite-volume approach.

6.3 Destructive Degradation Model

In some applications, the degradation measurement process would destroy the
physical characteristic of units when tested at higher than usual stress levels of an
accelerating variable such as temperature, so that only one measurement can be
made on each tested unit during the degradation testing. An accelerated degradation
test giving rise to such a degradation data is called an accelerated destructive
degradation test (ADDT).

Let L.t/, denoting the measured QC of the product at time t during the
degradation experiment, be

L.t/ D f .tI �/C "; t > 0; (6.8)

where � is fixed but unknown parameter vector, and the random error term " follows
a distribution. The product’s lifetime T is suitably defined as the time when L.t/
crosses the critical level !. Then, the cdf and the 100pth percentile of the lifetime
of the product can be obtained by using the result that the probability of failure at a
given time is simply equal to the probability of the product’s QC crossing the critical
level ! at that time. For decreasing degradation, the lifetime cdf is F.t/ D P.T �

t/ D P.L.t/ � !/.
There have been a number of interesting studies on ADDT. Nelson [27] was

the first to introduce methods for using accelerated destructive degradation test
(ADDT) data to analyze the degradation and related failure time distributions
for dielectric breakdown strength of insulation specimens. Escobar et al. [10]
provided an important class of models for accelerated destructive degradation data,
and used likelihood-based methods for inference on both the degradation and the
induced failure-time distributions of the adhesive bond. Shi et al. [44] described
methods to find the optimal ADDT test condition and proportional allocations
by minimizing the asymptotic variance of the estimated 100pth percentile of the
lifetime distribution at use condition. Because the optimal plans can be sensitive
to mis-specification of model assumptions, they also proposed a more robust and
useful compromise plan and used the general equivalence theorem (GET) to verify
the optimality of test plans. Jeng et al. [16] derived the large-sample approximate
mean square error of the MLE of the product’s lifetime quantile to address the effect
of model mis-specification when the distribution is misspecified in a degradation
model. Shi and Meeker [42] presented Bayesian test planning methods for ADDT
problems under an important class of nonlinear regression models when prior
information is available on the model parameters. They used a Bayesian criterion
based on the estimation precision of a failure-time distribution quantile at use
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conditions to find optimal test plans, and examined the effects of changing the
amount of prior information and sample size on conducting the Bayesian test plan.
Shi and Meeker [43] suggested methods for planning ADDT for applications with
more than one type of failure. They gave unconstrained and constrained optimal
ADDT plans under a given test optimization criterion, and applied a modification
of the GET to verify the optimality of this test plan. Doganaksoy et al. [9] discussed
the use of ADDT on the issues of model building, test plan, parameter estimation,
and assessment of model adequacy for seal strength.

All the models mentioned above assume a linearized relationship for an ADDT
model, i.e., the relationship between the mean transformed degradation path and the
transformed time is linear at each level of the accelerating variable. In a different
direction, Tsai et al. [57] determined the optimal choices of total sample size,
measurement frequency, and the number of measurements at each stress level for
a nonlinear ADDT model by minimizing the asymptotic variance of the estimated
100pth percentile of the lifetime distribution under use condition subject to the
total experimental cost not exceeding a pre-fixed budget. Tsai and Lin [53] further
proposed a nonlinear ADDT model wherein the measurement error follows a skew-
normal distribution, and addressed the effects of model mis-specification when the
skewness parameter of measurement error is wrongly specified.

Noting that none of the above methods have considered degradation initiation
times, Zhang and Liao [90] pointed out that ignoring degradation initiation times
in DDT makes reliability estimates less accurate, especially when degradation
initiation times are random and unobservable. For this reason, Zhang and Liao
[90] developed two delayed-degradation models based on DDT data to evaluate the
reliability of a product with an exponentially distributed degradation initiation time.
For homogeneous and heterogeneous populations, they considered fixed-effects and
random-effects gamma processes, respectively, in modeling the actual degradation
of units after degradation initiation. They used EM algorithm to estimate unobserved
degradation initiation times and MLE method to estimate the model parameters.

6.4 Applications on Degradation Model

Burn-in test is a useful tool to eliminate latent failures or weak components during
the manufacturing process before the products are sent to customers. Tseng and
Tang [62] first used degradation data instead of failure data to discuss an optimal
burn-in policy. They proposed a decision rule for classifying an unit as a typical or a
weak unit, and used an economic model to determine the optimal termination time
of a burn-in test through a Wiener degradation process. Tseng et al. [63] discussed
the same decision rule and presented a two-stage procedure to determine the optimal
burn-in time and the median of the residual lifetime of the passed units. Tseng and
Peng [61] studied an efficient burn-in policy based on an integrated Wiener process
for the cumulative degradation of the QC of the product. Wu and Xie [77] suggested
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the use of receiver operating characteristic analysis to select optimal approaches to
distinguishing weak from strong components in a population, and determined the
optimal time for burn-in to remove the weak population when precise information
about the life distribution of sub-populations, and mis-classification costs in the
entire population might not be available. Tsai et al. [55] presented a decision rule
for classifying a tested unit as typical or weak based on a mixed gamma process.
They derived analytically the optimal cutoff point at each time by minimizing the
total cost function, and examined the effect of wrongly treating a mixed gamma
process as a mixed Wiener process. Ye et al. [84] developed a degradation-based
burn-in planning framework for products with independent competing risks through
gamma process with random effect and a catastrophic mode. Zhang et al. [93]
investigated the optimal burn-in strategies under two different cost models through
the Wiener process with Gaussian measurement errors. The first model involved
the misclassification cost during burn-in, while the second considered the burn-
in implementation cost and field failure cost. Through analytical analysis, they
showed the intimate relationship between the two models and proposed an accurate
approximation method to approximate the second model, which greatly simplifies
subsequent analysis.

Maintenance is a necessary operation applied to a system in companies so
that the system can work properly. Noortwijk [67] gave an overview of the most
important statistical and mathematical properties of gamma processes, and surveyed
the application of gamma processes for optimizing time-based and condition-based
maintenance. Ye et al. [81] used a Wiener process with linear drift to develop two
joint degradation-based burn-in and maintenance models under the age- and block-
based maintenances, respectively. They minimized the long run average cost per
unit time to determine the optimal burn-in settings and the preventive replacement
intervals. Zhang et al. [91] considered a non-stationary Wiener process to develop
an imperfect maintenance model for systems. Shafiee et al. [41] modeled the length
of a crack using a gamma process, and proposed an optimal opportunistic condition-
based maintenance policy for a deteriorating multi-bladed wind turbine system.
Caballe et al. [4] addressed a condition-based maintenance strategy for a system
by assuming that degradation processes start at random times following a non-
homogeneous Poisson process and their growths are modeled by using a gamma
process. Wu et al. [76] suggested a random-effect exponential degradation model
with error term that follows a Markov process with independently distributed incre-
ments to discuss degradation-based maintenance strategy under imperfect repair.
They determined an optimal interval of condition monitoring and the degradation
level after imperfect preventive repairs by minimizing the total cost of imperfect
degradation-based maintenance. Chen et al. [5] discussed an optimal condition-
based replacement policy with optimal inspection interval when the degradation
paths follows an IG process with random-effects drift.

Acceptance test is extremely important stage for ensuring products to meet
customer’s requirements. Motivated by a resistor data, Tsai et al. [54] used a
Wiener degradation model to discuss an accelerated-stress acceptance test to
shorten the acceptance testing time. By minimizing the asymptotic variance of the
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estimated optimal accelerated-stress acceptance testing time subject to the total
experimental cost not exceeding a pre-fixed budget, they determined the optimal
test plan, including the total sample size, measurement frequency, and the number
of measurements, for an accelerated-stress acceptance test.

6.5 Concluding Remarks

Non-destructive and destructive degradation models have become important ana-
lytic tools for complex systems. Following the work of Nelson [27], a number
of non-destructive and destructive degradation models have been developed to
capture the degradation dynamics of a system and to assist in the subsequent
decision-making. This chapter provides a brief background about the models used
in the literature for estimating reliability using either degradation data from non-
destructive tests (NDT) or destructive degradation tests (DDT). The discussed
non-destructive degradation models are classified into four classes, namely, fixed or
random effect models, stochastic process models including Wiener process, gamma
process and inverse Gaussian (IG) process, mixed random effect and stochastic
process models including random-effect Wiener process, random-effect gamma
process and random-effect IG process, and some other models in addition to these
classes. Several destructive degradation and accelerated destructive degradation
models with linearized and nonlinear degradation paths have been highlighted.
In addition to introducing these models, applications of these models in burn-in,
maintenance and acceptance tests have also been described. This chapter is intended
to help readers gain a broad understanding of various developments on the NDT and
DDT models and their applications.
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Chapter 7
Degradation Test Plan for a Nonlinear
Random-Coefficients Model

Seong-Joon Kim and Suk Joo Bae

Abstract Sample size and inspection schedule are essential components in
degradation test plan. In practice, an experimenter is required to determine a certain
level of trade-off between total resources and precision of the degradation test. This
paper develops a design of cost-efficient degradation test plan in the context of a
nonlinear random-coefficients model, while satisfying precision constraints for the
failure-time distribution derived from the degradation testing data. The test plan
introduces a precision metric to identify the information losses due to reduction
of test resources, based on the cost function to balance the test plan. In order to
determine a cost-efficient inspection schedule, a hybrid genetic algorithm is used
to solve a cost optimization problem under test precision constraints. The proposed
method is applied to degradation data of plasma display panels (PDPs). Finally,
sensitivity analysis is provided to show the robustness of the proposed test plan.

Keywords Degradation test • Fisher information matrix • Nonlinear random-
coefficients model • Reliability

7.1 Introduction

Intense global competition in the high-technology industry forces manufacturers
to evaluate product reliability within shorter testing times, along with limited
resources. Recently, (accelerated) degradation tests have replaced traditional (accel-
erated) life tests when the failure data are supplemented by degradation data as
measurements of product wear available at one or more time points during the
reliability test. Degradation data not only lead to improved reliability analysis
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[11], but they also provide additional information related to failure mechanisms for
testing units.

To conduct a degradation test, three experimental factors must be specified
a priori: a threshold level of failure (or soft failure), an inspection schedule
for degradation measurements including termination time, and the total number
of testing units. In non-acceleration degradation test, Yu and Tseng proposed a
degradation test plan to determine decision variables such as the sample size,
inspection frequency, and termination time for a power degradation model [25], and
a reciprocal Weibull degradation rate [26]. Marseguerra et al. [14] proposed a multi-
objective genetic algorithm for designing degradation experiments. In accelerated
degradation test (ADT), Boulanger and Escobar [4] proposed an optimal ADT plan
for a nonlinear degradation process as a function of temperature. Yu and Tseng
[24] suggested an online procedure to determine an appropriate termination time
for ADT. Tseng and Wen [19] proposed a step-stress accelerated degradation test
to reduce experimental costs in the assessment of the lifetime distribution of light
emitting diodes (LEDs).

In practice, two additional issues must also be considered in a degradation
experiment so that the degradation test can be efficient in terms of testing cost and
experimental precision: limited experimental budget including both tangible and
intangible costs (e.g., sample cost, operation cost, labor cost, etc.) and the esti-
mation precision of interest in the experiment (e.g., pth quantile of failure-time
distribution). The size of budget affects the decisions on the total number of testing
units, the number of inspections, and termination time, hence it affects estimation
precision of failure-time distribution. Accordingly, proper allocation of such limited
resources helps keep a balance between testing cost and estimation precision of
the experiment. Wu and Chang [21] suggested optimal combinations of the three
decision variables minimizing the variance of quantiles of failure-time distribution
from a degradation experiment, mainly based on the nonlinear mixed-effect model
proposed by Lu and Meeker [10], the parameters of which were estimated using the
least squares (LS) method.

However, most degradation test plans are derived based on simple degradation
models like a linear degradation model or a power degradation model. Recently,
a complicated degradation model (i.e., bi-exponential model) was proposed to
describe nonlinear degradation paths of plasma display panels (PDPs) [2], and
those of organic light emitting diodes (OLEDs) [17]. The bi-exponential model has
precedence in analyzing longitudinal data from biological and pharmacokinetics
systems [12, 13].

This research proposes an optimal degradation test plan which minimizes total
experimental cost in the context of a nonlinear random-coefficients model. Under
the degradation test plan, we seek to meet some precision constraints for failure-time
distribution derived from the modeling of nonlinear degradation paths. Furthermore,
we reflect industries’ endeavor for meeting time-to-market by assigning higher
values of cost at latter measurements in the testing period. We try to quantify
information losses incurred by reducing the test resources through the probability of
false decisions (i.e., Type I error and Type II error), and explicitly incorporate it into
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both the cost functions and the precision constraints. Unlike existing degradation
test plans, the test plan permits an experimenter to select proper quality level of the
degradation test by adjusting Type I and Type II errors with acceptable estimation
precision.

7.2 The Degradation Model

7.2.1 Nonlinear Random-Coefficients Model

Random-coefficients models provide a flexible and powerful tool for analyzing
repeated-measurement data that arise in various fields of application. Random-
coefficients models are intuitively appealing because they allow for various
variance-covariance structures of the response vector. Each individual product
can experience a different source of variation during fabrication. Therefore,
a degradation model with a random degradation rate is more appropriate to
capture item-to-item variability of the degradation process for individual items.
By introducing a random-coefficients model, we can easily incorporate individual
variability into the degradation model.

A nonlinear random-coefficients (NRC) model for the jth response on the ith
individual item is defined as

yij D 



tij;� i

�
C �ij; j D 1; : : : ; ni; i D 1; : : : ;M (7.1)

where yij is the jth response for the ith individual, tij is jth measurement time for the
ith individual, 
 .�/ is a nonlinear function of tij and parameter vector � i, and �ij is a s-
normally distributed random error term. We assume that 
 .�/ is a twice differentiable
continuous function. By letting yi, and �i be the .ni � 1/ vectors of responses and
random within-individual errors for individual i, respectively, the model (7.1) can
be written as

yi D 
 .� i;� i/C �i; (7.2)

where 
 .� i;� i/ is the .ni � 1/ vector of mean responses for the ith individual item,
which depends on � i D .ti1; : : : ; tini/

T and the .p � 1/ individual-specific model
parameter � i. We assume that �i has a multivariate normal distribution with mean
of zeros and variance-covariance matrix ˙ i. In many practical applications, within-
individual heteroscedasticity and correlation are dominated by between-individual
variation, thus may be negligible. Therefore, we define ˙ i D �2Ini , the common
specification of uncorrelated within-individual errors with constant variance. The
parameter vector � i can be considered as the sum of the fixed and random effects
vectors because it can vary from item to item. This is incorporated into the model as
an additive model by writing � i as

� i D Aiˇ C Bibi; bi 
 MN s .0;D/ (7.3)
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where ˇ and bi are the .r � 1/ and .s � 1/ vectors of the fixed and random effects,
respectively, Ai and Bi are known design matrices of size .p � r/ and .p � s/
corresponding to ˇ and bi, respectively, and D is a .s � s/ variance-covariance

matrix of the random effects. Let � D


ˇT ; d1; : : : ; ds; d12; : : : ; ds�1;s; �

2
�T

be
the vector of all model parameters, where dk represents the variance of the kth
component for k D 1; : : : ; s, and dij represents the covariance component .i; j/ in
the variance-covariance matrix of the random effects.

7.2.2 The Fisher Information Matrix

The Cramer-Rao theorem provides a lower bound on the variance-covariance matrix
of unbiased parameter estimates. The (elementary) Fisher information matrix is
given by

I .� ij� / D �E

�
@2l .� ij� /

@�@� T

�
; i D 1; 2; : : : ;M (7.4)

where l .� ij� / is the log-likelihood with respect to the inspection schedule vector � i.
When the function 
 is nonlinear in bi, the likelihood function does not have a

closed-form expression, nor does the resulting Fisher information matrix. Several
approximation methods have been proposed to estimate the likelihood function
of the NRC model. Mentre et al. [15] developed the expression of the Fisher
information matrix using a first-order Taylor expansion of the model around the
random effects. Bae and Kvam [1] introduced four different methods to approximate
the likelihood function of the NRC model: a first-order (FO) method [18], Lindstrom
and Bates’ algorithm [9], adaptive importance sampling, and adaptive Gaussian
quadrature. Delyon et al. [5] and Kuhn and Laville [8] applied a stochastic
approximation expectation-maximization (SAEM) algorithm to approximate the
likelihood function of the NRC model.

In this work, we choose the FO method, which linearizes the NRC model around
the expectation of random effects with a closed-form expression for the Hessian,
and the simulation-based first-order conditional estimate (FOCE) method [3], which
linearizes the NRC model around empirical estimates of random effects.

7.2.2.1 The FO Method

The linearization of the NRC model was first proposed by Sheiner et al. [18] in the
parameter estimation problem. Through a first-order Taylor expansion of the NRC
model around a mean value Nb of the random effects, the degradation model (7.2)
can be written as
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y D 
.�;Aˇ C B Nb/C
@
.�;Aˇ C B Nb/T

@b
.b � Nb/C R.b/; (7.5)

where R.b/ is the remainder of the Taylor series. The marginal expectation and
variance of y around Nb D 0 can be approximated as, respectively,

� � 
.�;Aˇ/; and V �
@
.�;Aˇ/T

@b
D
@
.�;Aˇ/

@b
C �2In;

and, the approximated log-likelihood function is then given as

l .�j� / � �
1

2

�
n � ln.2�/C ln jVj C .y � �/T V�1 .y � �/

�
: (7.6)

The Fisher information matrix can be derived from the approximated log-likelihood
function (7.6).

Let � be the population inspection scheme with Q.� M/ distinct inspection
schedules, f�1; � � � ; �Qg: Each of these schedules �q consists of nq sampling times
and they are conducted in Mq test units for q D 1; : : : ;Q. A general expression of
the population inspection scheme � can be denoted by

� D
˚
Œ�1;M1� I : : : I

�
�Q;MQ

��
where M D

QX
qD1

Mq:

A population Fisher information matrix I .� j� / that incorporates the (elemen-
tary) Fisher information matrix is expressed as

I .� j� / D

QX
qD1

Mq � I


�qj�

�
: (7.7)

7.2.2.2 Simulation-Based FOCE Method

Because we do not have actual degradation data for individual items in the phase of
degradation test design, empirical estimates of random effects cannot be evaluated.
Thus, the Fisher information matrix is computed via Monte Carlo simulation
to mimic the FOCE method. Simulated random effects Nbs are generated from
MN s .0;D/, and the Fisher information matrix I



�; Nbsj�

�
is computed based

on the following expectation and variance, respectively,

�s � 
.�;Aˇ C B Nbs/ �
@
.�;Aˇ C B Nbs/

T

@b
Nbs;



132 S.-J. Kim and S.J. Bae

Vs �
@
.�;Aˇ C B Nbs/

T

@b
D
@
.�;Aˇ C B Nbs/

@b
C �2In:

The approximated Fisher information matrix is computed by

I


�q;

Nbs j�
�
�
1

S

SX
sD1

I


�q;

Nbsj�
�
;

then the population Fisher information matrix is obtained by

I


� ; Nbsj�

�
D

QX
qD1

Mq � I


�q;

Nbsj�
�
: (7.8)

7.3 Failure-Time Distribution

After pre-specifying the critical level 
c, the failure-time T is defined as the time
at which the mean degradation path 
 .t;�/ reaches the critical threshold 
c. For
a monotonically decreasing degradation path (MDDP), a failure occurs when the
degradation level decreases below the threshold 
c, i.e., 
 .t;�/ � 
c, and when

 .t;�/ � 
c for a monotonically increasing degradation path (MIDP). Suppose that
the 
 is irreversible, continuous, and twice differentiable for ˇ and b, thus the 
 is a
strictly monotonic function over time t. Furthermore, by assuring that 
 .t;�/ D 
c

has a unique and finite solution for any given parameters, P Œlimt!0 
.t;�/ � 
c� D

0 and P Œlimt!1 
.t;�/ � 
c� D 1 for an MDDP, and P Œlimt!0 
.t;�/ � 
c� D 1

and P Œlimt!1 
.t;�/ � 
c� D 0 for an MIDP. Based on those assumptions, there
exists an inverse function 
�1 .t;�/.

Under the NRC model (7.1), the failure-time distribution at a given degradation
level and the distribution of degradation at a specific time are closely related. Let
F
 .yjt/ be the conditional cumulative degradation distribution of 
 .t;�/ at a given
time t, and FT .tjy/ be the conditional cumulative failure-time distribution of T given
degradation level y. The relationship between F
 .yjt/ and FT .tjy/ is [20]:

F
 .yjt/ 	 Pr Œ
 .t;�/ � y� D Pr
�
T � 
�1 .y;�/

�
	 FT .tjy/ : (7.9)

Using the relationship (7.9), the failure-time distribution for the MDDP at a
threshold level 
c is

FT.tj
c/ D Pr ŒT � tj
c� D Pr
�
T � 
�1.
c;�/

�

D Pr ŒY � 
c� D F
 .
cjt/ D ˚

 

c � � .tI �/p

V .tI �/

!
; (7.10)
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where � .tI �/ and V .tI �/ are the mean and variance of the degradation data at a
specific time t, respectively. Here, ˚ .�/ is the cumulative distribution of a standard
normal. For the MIDP, the failure-time distribution is

FT.tj
c/ D 1 � F
 .
cjt/ D 1 � ˚

 

c � � .tI �/p

V .tI �/

!
:

The precision of the pth quantile (denoted by tp) of the failure-time distribution
is the main concern of reliability analysis. From (7.10), tp for the MDDP is obtained
by solving the following equation:


c D � .tI �/C ˚�1 .p/
p

V .tI �/ 	 h .tI p;�/ ; (7.11)

and similarly, 
c D � .tI �/C ˚�1 .1 � p/
p

V .tI �/ 	 h .tI p;�/ for the MIDP.
For h .tI p;�/, the pth quantile of the degradation at t for a strictly monotonic

function, there exists a unique inverse function h�1 .
cI p;�/ satisfying tp D

h�1 .
cI p;�/ for a given � . As a measure of design precision, the asymptotic
variance of the pth quantile for the failure-time distribution is

Var


tp
�

	 �2p .� / D
@h�1 .
cI p;�/T

@�
I �1 .� j� /

@h�1 .
cI p;�/

@�
; (7.12)

where I .� j� / is the .2p � 2p/ upper-left population Fisher information matrix.
The precision of tp depends on the information matrix via the population inspection
scheme � .

7.4 Optimal Degradation Test Plan Under Cost Functions

The accuracy of reliability estimation for the products depends highly on the
experimental design, especially when degradation paths are nonlinear. This section
proposes an efficient degradation test plan in terms of cost while meeting experi-
mental precision requirements. To reduce the experimental cost, we have generally
allocated less experimental time and resources than the maximum capacity values.
This incurs a loss of information, resulting in an increase in the prediction variabil-
ity. Limited experimental resources and the demands of qualified experiments force
us to solve a cost-effective optimization problem, which requires a balance between
cost and precision.
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7.4.1 Specification of the Degradation Test

The experimental cost and precision of the pth quantile of the failure-time dis-
tribution are two main concerns that require a trade-off balance. The important
factors in conducting a degradation test are the population inspection schedule˚
�1; : : : ; �Q

�
where �q D .tq1; : : : ; tqnq/; q D 1; : : : ;Q and the number of testing

units fM1; : : : ;MQg where M D
PQ

qD1 Mq. Because the precision of the pth quantile
has a direct connection to the information loss, we relate the information loss to
Type I error and Type II error. The question is how to determine the appropriate
decision rule associated with the precision of the pth quantile. The use of an ideal
experimental plan with all of available testing units and without cost consideration
will allow for the determination as to whether to accept various cost-effective plans
by comparing them to the ideal experimental plan in terms of cost and information
loss. We assume that the pth quantile and its precision in the ideal plan are true
values. To derive the cost-effective plan, we use the following assumptions:

• The maximum number of available units Mmax, number of elementary design
Q, and corresponding number of inspection times nq, q D 1; : : : ;Q are pre-
determined by the experimenter.

• Without cost consideration, an ideal inspection scheme � I satisfying the D-
optimality criterion and the Mmax testing units will achieve the maximum
attainable precision Var



Qtp
�

D �2p .� I/ for unbiased expectation of the pth
quantile, Qtp. Let TI be the true pth quantile obtained from the ideal plan.

• We select M of the Mmax testing units and determine the cost-effective inspection
scheme � C. Because of measurement errors and sampling errors, the observed
pth quantile TC from the cost-effective plan differs from the true value TI.

• For a given experimental variability limit !, if the pth quantile for the cost-
effective plan is outside of the acceptance region



Qtp � !; Qtp C !

�
, then we

conclude that the experiment is rejected; otherwise, the experiment is accepted.

tp in (7.11) and Var


tp
�

in (7.12) are used to establish the formulation for
quantifying the information loss. The pth quantile of the failure-time distribution
for the ideal experiment (TI) follows a normal distribution with mean Qtp and variance
�2p .� I/. Because we hypothetically assume that M units are randomly selected from
the Mmax testing units, the pth quantile for the cost-effective plan TC depends on TI.
Let us assume that the conditional distribution of TC given TI D tI, say g .tCjtI/,
is a normal with mean tI and variance �2p .� C/. This implies that the pth quantile
estimated from the cost-effective experiment is unbiased, and its variance �2p .� C/

is independent of TI. For clarity, we simply express �2p .� I/ and �2p .� C/ as �2pI and
�2pC hereinafter, respectively. The joint density function of TC and TI is

f .tC; tI/ D g .tCjtI/ � k .tI/ ;
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where

g .tCjtI/ D
1

p
2��pC

exp

 
�
.tC � tI/

2

2�2pC

!
; and k .tI/ D

1
p
2��pI

exp

 
�



tI � Qtp

�2
2�2pI

!
:

Define Type I error as ˛ and Type II error as ˇ. Type I error is the probability of
falsely rejecting the experiment which has to be accepted. In this context, the ˛ is
evaluated as

˛ .!; �pC/ D

Z QtpC!

Qtp�!

Z Qtp�!

�1

f .tC; tI/ dtCdtI C

Z QtpC!

Qtp�!

Z 1

QtpC!

f .tC; tI/ dtCdtI

D 2

�
˚

�
!

�pI


� 0:5

�
�

Z QtpC!

Qtp�!

k .tI/ � pg .!; �pC/ dtI; (7.13)

where

pg .!; �pC/ D

Z QtpC!

Qtp�!

g .tCjtI/ dtC D ˚

�
Qtp C ! � tI

�pC


� ˚

�
Qtp � ! � tI

�pC


:

Similarly, Type II error is the probability of falsely accepting the experiment which
has to be rejected. Here, the ˇ is evaluated as

ˇ .!; �pC/ D

Z Qtp�!

�1

Z QtpC!

Qtp�!

f .tC; tI/ dtCdtI C

Z 1

QtpC!

Z QtpC!

Qtp�!

f .tC; tI/ dtCdtI

D

Z 1

�1

k .tI/ � pg .!; �pC/ dtI �

Z QtpC!

Qtp�!

k .tI/ � pg .!; �pC/ dtI: (7.14)

The information losses caused by reducing the experimental time and resources are
quantified by the probabilities of false decision, ˛ and ˇ.

7.4.2 Cost Functions

The total cost of an experiment can be assessed in terms of experimental cost and the
cost of information loss. Experimental costs are related to direct expenses required
to conduct a degradation test such as sample costs and inspection (measurement)
costs. The termination time of the degradation test, also affecting the experimental
cost, is a type of user-defined factor depending on the testing situation. The cost
of information loss is incurred by wrong decisions (i.e., false rejection and false
acceptance costs). We use the probabilities of false rejection and false acceptance to
predict and quantify the information loss.
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7.4.2.1 Experimental Cost

An important issue in the degradation test is how to reduce testing time. The
operation cost can be formulated as a function of termination time in the inspection
schedule. Park et al. [16] considered both production delay cost and opportunity
costs which might be incurred by testing for longer time and assigned exponentially
increasing penalty cost after a critical time point to the total testing cost. Following
their approach to reflect real characteristics of experimental circumstances, we
introduce the following operational cost function

CT.t/ D

(
c1 C c2 � t 0 � t � ta

Œc1 C c2 � ta� � ec3.t�ta/ t > ta;
(7.15)

where c1 is a fixed cost, c2 is an operating cost per unit time and c3 is a delay-penalty
coefficient for the critical time ta. Generally, if time-to-market (denoted by ta) for
new products cannot be satisfied, the opportunity cost will increase nonlinearly.
Combining all factors related to experimental cost results in the function

EC .� / D M

0
@Cs C

QX
qD1

CT.tqnq/

1
AC M

QX
qD1

nq � CI (7.16)

where nq is the number of inspections, CI is an inspection cost, Cs is a sample cost,
and tqnq is the final inspection time for schedule q.

7.4.2.2 Information Loss Cost

Reconsider the probabilities of false decision ˛ and ˇ, both of which are functions
of ! and �pC, representing the information loss caused by reducing experimental
time and resources. If the experiment is rejected even though it should be accepted,
then Type I error ˛ is noted. The cost spent in conducting the experiment will then
be sunk cost and other incidental costs that may arise to conduct a new experiment
must also be considered. If the experiment is accepted even though it should be
rejected, then Type II error ˇ is noted. In this case, the reliability prediction is
biased, incurring excessive quality costs when the experimental results are used in
product design or developing a quality assurance policy. In this paper, we introduce
penalty cost coefficients for wrong decisions, C˛ and Cˇ , which are multiplied by
the probability of false decision.

Finally, the total cost function considering the experimental cost and the cost of
information loss is given by

TC .� ; !/ D EC .� / �
�
1C ˛ .!; �pC/ � C˛ C ˇ .!; �pC/ � Cˇ

�
: (7.17)

This establishes a trade-off between experimental resources and experimental
precision via the pth quantile for the failure-time distribution.
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7.4.3 The Cost Optimization Problem

The objective of the problem is to determine the optimal combination of decision
variables that minimizes the total cost. The optimization model can be formulated as

Minimize TC .� ; !/ (7.18)

Subjectto ˛ .!; �pC/ � ˛B;

ˇ .!; �pC/ � ˇB;

where ˛B and ˇB are permissible Type I error and Type II error, respectively. Note
that �pC is a function of � C. ! is pre-determined by the experimenter. Without loss
of generality, assume Q D 1 to simplify the model; that is, � D Œ�;M�. However,
the total cost function has a highly complex solution space in evaluating the Fisher
information matrix in the nonlinear random-coefficients model, Thus, determination
of the optimal combination of decision variables �� D



t�1 ; : : : ; t

�
n

�
and M� is a type

of nonlinear, mixed continuous/integer optimization problem, hence we propose the
following procedure:

Step 0: Initialize the problem parameters.
Step 1: Calculate the ideal design � I D Œ�I ;Mmax� to evaluate the information

loss of a cost-effective design. Set M D 2.
Step 2: Find a minimum total cost design � C D Œ�C;M� subject to constraints

for a given number of samples M. Let G.M/ D TC .� C; !/.
Step 3: Update M D M C 1. If M � Mmax return to Step 2, else go to Step 4.
Step 4: Find the cost-effective design � �

C D Œ��
C;M

�� that has a minimum total
cost. That is, G.M�/ D min2�M�Mmax G.M/.

To determine the cost-effective design with experimental quality constraints for
a fixed number of samples, we use a modified elite-based hybrid genetic algorithm
(GA), which was first proposed by Yen et al. [23]. The hybrid algorithm utilizes a
local search technique within a elite-based genetic algorithm to compensate for the
drawback of each method. In the proposed hybrid algorithm, a local search is applied
to top elite chromosomes that are guided by a genetic algorithm. We modified the
hybrid GA proposed by Yen et al. [23] to adapt for use in this research problem.
This modified method uses the Nelder-Mead simplex method and a slightly different
hybrid rule. Please see Kim and Bae [7] for details of the modified hybrid simplex-
genetic algorithm.

7.5 Practical Application: PDP Example

In the PDP degradation analysis in [2], brightness is the main characteristic
concern for the PDP degradation and industry standards identify a failure when the
brightness of the display device falls below 50% of its initial brightness. Bae et al.
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[2] proposed a bi-exponential model to describe the degradation paths of PDP
brightness by incorporating two distinct causes of degradation phenomena, i.e.,
contamination effects of the impurities on the PDP electrode and the inherent
degradation characteristic of phosphors. The bi-exponential degradation model is
of the form

y.t/ D ˇ1exp .�exp .ˇ2/ � t/C ˇ3exp .�exp .ˇ4/ � t/ t � 0:

Based on the analytical results in Bae et al. [2], we set the parameters in the bi-
exponential degradation model as

yij D .19C b1i/ exp


�exp .�6C b2i/ � tij

�
C .80C b3i/ exp



�exp .�10C b4i/ � tij

�
C �ij; (7.19)

where bD D Diag .17; 0; 21; 0/, and the variance of random error is O�2 D 1. We
round the estimated parameter values in [2] to integers to easily compare and
analyze the design results.

7.5.1 The Cost-Effective optimal plan for PDP Degradation
Test

PDP is generally too expensive to allocate a large number of units, especially
during the developing phase. The maximum number of available units Mmax is
assumed to be 20. As aforementioned previously, there is one elementary inspection
schedule, Q D 1. Ermakov and Melas [6] showed useful properties of D-optimal
designs for exponential regression models such as the bi-exponential model. First,
the number of inspection points of a D-optimal design is equal to the number of
parameters in the model. They called this a saturated optimal design. Second, a
saturated D-optimal design is always unique and has equal weights at its inspection
points. The number of inspection times nq is assumed to be 4, which is the
same as the number of fixed effects. Set p D 0:1, 
c D 50, ˛eB D 0:1 and
ˇeB D 0:01, and Qt0:1 is estimated to be 8878.6 under prior model parameters. An
ideal inspection scheme � I is Œ	I D .0; 388:8; 2397:6; 25762:8/, Mmax D 20�

and its corresponding �pI is 409.9. An experimenter may impose restrictions on
�pC to calculate !. The experimental variability limit ! can then be determined
from (7.13) and (7.14) given the parameters ˛eB, ˇeB, and �pC. If the experimenter
allows the �pC can be twice as large as �pI, i.e., �pC D 2�pI � 820, then ! D

maxf!j˛e.!; 820/ D 0:1; ˇe .!; 820/ D 0:01g D maxf1507:335; 928:231g. Thus,
we select 1500 as ! for an acceptable variability range. Initial cost values are

set as:
�

Cs;CI;C˛e;Cˇe; c1; c2; c3; ta
�

D (100, 10, 4, 40, 0, 0.2240, 9:3165 � 10�4,

4464). For example, if the time-to-market limitation ta is 6 months, we can set
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ta D 24 � 31 � 6 D 4464. Similarly, c2 D 1000=.24 � 31 � 6/ D 0:224 denotes the
operation cost of the experiment which linearly increases to 10 times the sample cost
after 6 months, and c3 D log2=.24 � 31/ represents a double penalty imposed every
month after ta. In practice, the penalty costs associated with the mis-classification
errors are unknown. When such information is not available, the receiver operating
characteristic (ROC) analysis [22] can be used to select optimal decisions. However,
if the mis-classification costs C˛e and Cˇe are assumed to be unknown, the cost
optimization problem (7.18) becomes a complex problem to be solved. Therefore,
we first assumed that the mis-classification costs are known a priori. The ROC
analysis for the mis-classification costs might be done after determining the values
of � to search for the area under the ROC curve (see Wu and Xie [22] for more
details).

Using the proposed degradation test plan under the FO method, the total cost
of degradation testing was calculated as 10,267.64, including the cost-effective
inspection scheme f	�

FO D .0, 222.5, 1376.1, 4036.6/; M�
FO D 7g. Under the FOCE

method via the simulation of 100 individuals, the total cost and corresponding
inspection scheme are 10,267.17 and f	�

FOCE D .0; 359:69; 1327:24; 4002:26/,
M�

FOCE D 7g, respectively. The input parameters and resulting decision variables
under the cost-effective degradation test plan are summarized in Table 7.1. The
contour plots for the total cost evaluated using the FO and FOCE method, with
respect to t2 and t3, are given in Fig. 7.1a, b, respectively, for fixed t1 and t4. Note
that the total cost and the required number of testing samples are similar under the
two different approximation methods.

To evaluate the effectiveness of the proposed degradation plan, we compared it
with three heuristic inspection strategies that have been commonly used in practice:
equal degradation (ED) plan, equal log-spacing (EL) plan, and equal spacing (ES)
plan. The first two heuristic plans were introduced in [4] to derive an optimal design
in accelerated degradation test. Table 7.2 summarizes the results of termination
times and total costs under fixed numbers of testing samples at the initial cost values.
Note that all of the results satisfy permissible error levels, ˛eB D 0:1 and ˇeB D 0:01,
except for cells marked with an asterisk. We confirmed that ˇe.!; �pC/ from all of
the inspection schemes lies within the permissible Type II error ˇeB. The proposed
degradation test plan with the FOCE method provides the shortest test duration,

Table 7.1 Input parameters and decision results for a PDP example

Input parameters Decision results

.Cs;CI ;C˛;Cˇ; c1; c2; c3; ta/,

.!; ˛B; ˛B/ Plan type � D .�;M/ Total cost

Proposed FO=f.0; 222:5; 1376:1; 4036:6/ ; 7g 10,268

FOCE=f.0; 359:7; 1327:2; 4002:3/ ; 7g 10,267

.100; 10; 4; 40; 0; 0:2240; ED f.0; 295:2; 1126:5; 4118:0/ ; 7g 10,588

9:317e-4; 4464/;

.1500; 0:1; 0:01/

EL f.0; 19:9; 396:9; 7906:1/ ; 6g 209,495

ES f.0; 1468:9; 2937:8; 4406:8/ ; 9g 14,390
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Fig. 7.1 Contour plot for the total cost evaluated using (a) the FO and (b) the FOCE method

while the EL plan requires the longest test duration to compensate for information
losses, and incurs the largest total cost by exceeding the critical time ta D 4464.
Table 7.2 also indicates that both the FO and FOCE methods provide similar total
cost and termination time according to the number of testing samples. From a design
point of view, we consider only the FO method in the following sensitivity analysis
because the FOCE method requires computationally intensive simulation work.
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Table 7.3 Cost-effective
degradation plan under
various cost values (Cs, ta)

.Cs; ta/ Total cost 	� D .t1; t2; t3; t4/ M�

.10; 2976/ 12,296.03 .0; 215:4; 1369:5; 2996:4/ 12

.10; 4464/ 9382.74 .0; 221:5; 1375:4; 4036:6/ 7

.10; 5952/ 9382.72 .0; 222:5; 1372:4; 4036:6/ 7

.100; 2976/ 13,762.37 .0; 216:0; 1284:7; 3103:4/ 11

.100; 4464/ 10,267.64 .0; 222:5; 1376:1; 4036:6/ 7

.100; 5952/ 10,264.07 .0; 239:5; 1407:6; 4811:6/ 6

.1000; 2976/ 25,776.76 .0; 218:8; 1345:5; 3654:0/ 8

.1000; 4464/ 19,116.99 .0; 298:6; 1154:8; 4205:4/ 7

.1000; 5952/ 17,849.24 .0; 239:6; 1407:4; 4811:6/ 6

7.5.2 Sensitivity Analysis

It is necessary to estimate the unknown model parameters and determine the
optimization parameters (i.e., the values of cost functions, !, and permissible levels)
a priori to plan the cost-effective degradation testing scheme. We consider three
cases for sensitivity analysis to examine the impacts of those parameters on the
proposed degradation test plan.

7.5.2.1 The Effect of Cost Factors

The factors Cs and ta are key in the trade-off between the number of samples and
the inspection schedule in the degradation experiment. We varied the values of Cs

as 10, 100, and 1000, and the values of critical time ta as 4, 6, and 8 months to
investigate their effects on the required size of testing samples and termination time.
Table 7.3 lists the cost-effective degradation plans for PDPs under various values of
the cost factors .Cs; ta/ with a total of four inspection points. The results show that
the termination time t4 is more sensitive to the changes in the critical time ta than is
the sample cost Cs. It can be also observed that the required size of testing samples
is more affected by the ta than is Cs. Note that, as the critical time ta increases,
the requisite testing duration increases, while the required size of testing samples
decreases.

7.5.2.2 The Effect of Estimated Model Parameters

In the bi-exponential model, the most influential parameters in the evaluation of
failure-time distribution are ˇ4, b4, and �2 because they determine the long-term
degradation paths in the model. We consider nine different scenarios with respect
to ˇ4, b4 and �2 to examine the sensitivity of the degradation inspection scheme.
We determine the ranges of those parameters to be �10:25 � ˇ4 � �9:75, 0 �

b4 � 0:01, and 0:99 � �2 � 1:01, respectively. Table 7.4 compares results of the
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proposed degradation plan and the traditional heuristic plans in various scenarios,
given the settings of cost values in Sect. 5.2.1. Let TC� be the total cost evaluated
by the propose degradation plan using the model parameter values in (7.19). The
relative cost bias is defined by

jTC�
spe � TC�

orij

TC�
ori

� 100 .%/

where TC�
ori and TC�

spe are the total cost from the cost-effective degradation test plan
with the original parameter values in (7.19) and that with the specified parameter
values in Table 7.4, respectively. The proposed degradation test plan provides more
cost-effective results than does the traditional heuristic test plans. As for the relative
cost biases, the EL and ES plans are highly sensitive to the changes in the model
parameter values. Especially, the requisite sample size M� in the two heuristic test
plans is highly sensitive to ˇ4.

7.5.2.3 The Effect of pth Quantiles

The pth quantile for the failure-time distribution and its variance are used to
establish the formulation for quantifying the information loss. The cost-effective
plans for various pth quantiles of interest are given in Table 7.5. The results indicate
that the total cost from the degradation testing plan and requisite sample size greatly
increase when the p deviates from 0.5. Meanwhile, the inspection schedule 	� is
fairly robust to the p values. Summarizing the results in Tables 7.4 and 7.5, the cost-
effective degradation plan mainly compensates for information losses by increasing
the size of samples rather than by changing the inspection schedule.

Table 7.5 Cost-effective degradation test plan under various pth quantiles

p
	�

M� Total costt1 t2 t3 t4
0.01 0 227.77 1278.40 3163.81 19 26,385.85

0.05 0 233.41 1365.50 4033.08 8 13,426.19

0.1 0 222.52 1376.13 4036.56 7 10,267.64

0.2 0 218.54 1407.89 4438.54 5 7942.39

0.5 0 213.22 1409.97 4255.48 5 7581.44

0.7 0 214.48 1434.90 4535.42 5 8462.32

0.9 0 217.57 1423.63 4270.08 8 12,287.67

0.95 0 217.83 1438.06 4462.35 9 14,393.80

0.99 0 220.54 1433.04 4308.67 14 22,157.05
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7.6 Conclusion

Determining the number of samples and the inspection schedule under limited
testing time and resources is an important issue in a degradation test. In this
article, we propose a cost-effective degradation test plan under the precision
constraint for the pth quantile of the failure-time distribution in the context of
a nonlinear random-coefficients model. By relating degradation distribution to its
failure-time distribution, the pth quantile for the failure-time distribution and its
precision are directly calculated. We propose the method to quantify the information
losses incurred by reducing testing resources. An optimization framework is then
established to minimize total cost while keeping a balance between total cost and
precision of the failure-time distribution. Unlike existing works on degradation test
plann, the proposed approach has the following characteristics:

1. We introduce an ideal experimental plan satisfying D-optimality as a standard
of comparison so that we can easily determine the precision limit of the cost-
effective degradation test plan through the probability of false decisions.

2. In minimizing the total experimental cost while meeting certain precision
constraints, we explicitly consider the time-to-market requirement in the cost
function, as well as the trade-off between termination time and sample size.

3. A proposed degradation test plan for a nonlinear random-coefficients model does
not depend on specific types of degradation models. In the proposed framework,
we do not devise the optimal design for only the bi-exponential model used
in this research, but also for other degradation models widely used in practice.
In particular, for complicated degradation models with random-coefficients, the
proposed framework is a novel approach for the design with cost-minimization
objective and precision constraints.
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Chapter 8
Optimal Designs for LED Degradation Modeling

Tzong-Ru Tsai, Yuhlong Lio, Nan Jiang, Hon Keung Tony Ng,
and Ding-Geng (Din) Chen

Abstract The lifetime information of highly reliable products is usually very
difficult to be obtained within an affordable amount experimental time through
using traditional life testing methods. Because the benefit of lower manufacturing
cost for many highly reliable products, manufacturers can offer more highly
reliable products for implementing an accelerated degradation test under constant-
stress loading conditions. In this chapter, lumen degradation measurements of high
power light emitting diodes based on their cumulative damage are studied. The
measurements are collected by the constant-stress accelerated degradation testing
method with the stress loadings of ambient temperature and drive current. Each
cumulative damage process is model by a Wiener process, of which drift parameter
depends on the two stress loadings. General statistical inference of the model
parameters and percentiles of the lifetime distribution of light emitting diodes is
addressed, and approximate lower confidence bounds of the lifetime percentiles
are evaluated using the Fisher information of maximum likelihood estimators.
Based on the obtained maximum likelihood estimates of the model parameters, an
optimal strategy for implementing a constant-stress accelerated degradation test is
established. The optimal strategy can reach a compromised decision between the
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experimental budget and estimation precision of reliability analysis. An algorithm
is provided to search for the proposed optimal strategy. The proposed method is
illustrated with an example of light emitting diodes.

Keywords Cumulative exposure model • Fisher information • Gamma process •
Inverse Gaussian distribution • Wiener process

8.1 Introduction

Because of the rapid advances of manufacturing technology and sustained quality
improvement effort, modern products have high reliability and prolonged lifetimes.
For highly reliable products or devices, lifetime information usually is difficult
to obtain by using traditional life testing methods, such as censored life testing
experiments or truncated life tests, within an affordable amount time. In such case,
engineers and experimenters are encouraged to use accelerated life test methods
to overcome this difficulty. However, it is still possible that only a few failures of
highly reliable products could be observed at the end of a life test even though the
products are tested under accelerated conditions. Therefore, a modern accelerated
degradation test (ADT) is introduced as an alternative to assess the lifetime
characteristics of highly reliable products. ADT allows engineers to assess the
potential life span of highly reliable products based on the degradation information
because the degradation measurements provide lifetime characteristics of highly
reliable products. Hence, both degradation and failure information obtained from
ADTs could be used in reliability analysis.

To implement an ADT for highly reliable products, the first step is to choose
proper stress variables for the test. Then, engineers need to select proper stress
loading methods and a degradation model to start the degradation test and gather
the degradation information over time. Temperature and voltage (or current) are
two commonly used stress variables for many ADTs. Traditionally, the Arrhenius
law model, power law model or exponential law model could be applied to connect
the stress variables and the degradation parameters. A comprehensive discussion
on the use of stress variables can be found in [14]. The stress loading method
determines how the stress conditions should be applied for test units over time.
The stress loading can be broadly classified into constant-stress loading, step-
stress loading and progressive-stress loading conditions. A degradation model
describes the behavior of the degradation characteristics as a function of time. The
general degradation path model and the stochastic process model are two typical
degradation models in practical ADT applications. Detailed information for these
two degradation models can be found in [12, 36]. The practice of using the constant-
stress ADT (CSADT) method or step-stress ADT (SSADT) method for reliability
inference has been studied by many authors over the past few decades, for example,
[8, 10, 12, 19–23, 25–27, 29–35]. The applications of SSADT method could save
test resource. However, inferences on the lifetime distribution parameters under the
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SSADT method usually developed under the assumption of cumulative exposure
model, CEM.

The CEM assumes that the residual life of a test unit in a SSADT depends only
on the cumulative exposure the unit has experimented with no memory of how this
exposure was accumulated, see [6, 15]. This assumption is valid only when the
degradation of the component quality characteristics can be well controlled under
specific accelerated conditions. Modern products are more reliable through well
manufacturing efforts. When an ADT involves highly reliable products as test units,
their quality characteristics may degrade slowly even undergoing accelerated condi-
tions. Engineers are forced to apply higher stress levels to accelerate the degradation
speed of test units. Tsai et al. [26] mentioned that the quality degradation of highly
reliable products could not be well controlled under higher stress loading conditions
in an ADT. Hence, the CEM assumption cannot be validated in this situation. It
becomes unrealistic to ignore the exposure effect that has accumulated from the
former set-up stress conditions under the step-stress loading design. Therefore, the
CEM assumption would be doubtful and might make the reliability analysis of
highly reliable products inaccurate.

Light emitting diode (LED) is one of the highly reliable products developed in
the past few decades. Significant advances have been reached for the manufacturing
technologies of LED. Because of the low-energy consumption benefit, LEDs have
been successfully applied as an indicator for lighting devices recently. Nowadays,
LED lighting products are successfully replacing legacy lighting products. However,
the reliability of LED is difficult to be evaluated due to the long lifetime of LED.
The lumen of LED is highly dependent upon the LED lifetime and hence it can
be a good surrogate variable for implementing the reliability evaluation of LED.
Manufacturers or engineers are interested in studying the reliability evaluation
method using the degradation information based on the lumen of LED.

When high power LED is used under an ADT experiment, engineers would like
to use high stress conditions to accelerate lumen degradation speed for accumulating
degradation information. It becomes unrealistic to ignore the cumulative exposure
effect from previous stress levels over time. Moreover, the experimental setting for
statistical inference about possible interaction between stress variables is difficult
in a SSADT practically. The degradation of test unit is usually more sensitive
to the changes of high accelerated conditions, but less sensitive to the changes
of low accelerated conditions. Reliability analysis based on the degradation and
failure information under higher accelerated conditions only may be biased due
to the concern of over-stress. If the test time and the cost of test equipments are
affordable, it is better to implement an ADT with lower and higher accelerated
conditions separately, such that the degradation measurements contain sufficient
information for reliability analysis.

Another problem raised from some existing ADT methods is to predict the poten-
tial lifetimes of highly reliable products through extrapolation. Detailed information
about this problem was provided by [4, 5]. Since an ADT is usually terminated
much earlier than the mean-time-to-failure (MTTF) of test units, engineers need
to use extrapolation with the degradation information to predict the MTTF for a
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given threshold of degradation level. Extrapolation is easy to implement, but it
could result in a serious prediction error. Another feasible method to tackle this
prediction problem is to estimate a lifetime percentile using the maximum likelihood
estimation method based on a stochastic process model.

Traditionally, the statistical models for such a stochastic process ignore the
threshold level of degradation and only involves the threshold information to
evaluate the lower confidence bound of a lifetime percentile, see [10]. However,
the threshold information is important and associated with the estimation quality. It
is more reasonable to include the threshold information to obtain reliable MLE of
the distribution parameters, and then using these MLEs to develop an approximate
lower confidence bound of a lifetime percentile for reliability analysis.

To conduct an ADT, a well planned strategy is necessary to reach a compromised
decision between the experiment budget and the estimation precision on the
reliability inference. Some recent studies about the optimal ADT design methods
can be found in [9–11, 24, 25, 31–33, 37]. Onar and Padgett [17] suggested a
general approach based on locally penalized D-optimality, called LPD-optimality,
for ADT designs. The LPD-optimality approach can simultaneously minimize
the variances of the model parameter estimators. Using Bayesian Markov chain
Monte Carlo method, [18] provided an efficient estimation method to obtain the
MLEs of the multiple-step SSADT models based on Wiener and gamma processes,
respectively. The ADT designs studied by [17, 18] were developed under one
accelerating variable SSADT model. However, highly reliable products are often
subject to multiple loading stresses and a pitfall in SSADT model is the memoryless
assumption of the CEM. To incorporate several accelerating variables into ADT
methods, [21, 22] provided hyper-cuboidal volume approaches for different CSADT
models with several accelerating variables, but these methods did not cover the
interaction effect of stress variables.

In these days, the manufacturing cost of LED has been significantly reduced.
The low manufacturing cost of LED enables engineers to have a potential to
use more LEDs for conducting CSADTs. The CSADT and SSADT are two
major ADTs in practice. A SSADT usually uses less test units than a CSADT,
however, a SSADT works under the memoryless assumption of the CEM. The
CEM assumption could not be realistic for multiple-variable ADTs. Following the
same approach by [26], we discuss an inference approach with the CSADT that
incorporates both accelerating variables of ambient temperature and current as well
as the interaction effect term, for the modeling of the lumen degradation of LED
under the Wiener process. A general statistical inference procedure involving the
threshold information is introduced and the MLEs of distribution parameters and
percentiles are obtained. Moreover, an approximate lower confidence bound of
a lifetime percentile is studied. The method is easily implemented and allows a
flexible testing schedule with inconsistent inspection times or different termination
times among experimental runs. The proposed method does not require the use of
the extrapolation to predict the failure time of test unit. Planning ADT strategies
under the CSADT model are also discussed in this chapter, such that the asymptotic
variance of the 100pth lifetime percentile estimator is minimized subject to a budget
constraint.
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The rest of this chapter is organized as follows. The CSADT model under
the Wiener process is provided in Sect. 8.2. In Sect. 8.3, an optimal design of the
CSADT are established by using the maximum likelihood estimation method and
Fisher information. Moreover, an algorithm is provided to search an optimal ADT
plan. An example regarding the lumen degradation of LED is used in Sect. 8.4 for
illustrating the application of the proposed method. Finally, concluding remarks are
given in Sect. 8.5.

8.2 Constant-Stress Accelerated Degradation Model

Let the damage process start at x0 and be terminated at level x at time t, which can
be denoted by level xt under a loading level L. The damage increment xt � x0 is
assumed to be a Wiener process with positive diffusion ˇ2 and drift �L, which is a
function of L. It can be shown that .xt � x0/ has a normal distribution with mean �Lt
and variance ˇ2t. The probability density function (pdf) of xt can be defined by

f .xtI x0; t/ D
1

ˇ
p

t
�

�
xt � x0 � �Lt

ˇ
p

t


; xt > 0: (8.1)

The failure time, defined as the first passage time (S) for xS over the threshold C,
has an inverse Gaussian distribution with pdf

fS.sI �; ˇ/ D
C � x0

ˇ
p
2�s3

exp

	
�
.C � x0 � �Ls/2

2ˇ2s

�
; s > 0: (8.2)

Let �L denote the MTTF of test units under loading level L. Then �L can be
expressed as �L D .C � x0/=�L. Using the results from [13], which extend the
conditioning argument of [3] for the position of a Gaussian process given the process
below the threshold C, it can be shown that the pdf of xt conditional on xt < C
at t � 0 could be represented as the pdf of a truncated Wiener process as the
following [19]:

fX.xtI t/ D
1

ˇ
p

t
�

�
xt � x0 � �Lt

ˇ
p

t

�
1 � exp

	
�
2.C � x0/.C � xt/

ˇ2t

��
;

x0 < xt < C: (8.3)

Assume that n units are randomly selected and put on a degradation tests
simultaneously at the initial time t0 D 0 until the termination times prescribed to
n experimental units, respectively, are reached. Let the degradation model on the
quality characteristics follow a Wiener cumulative damage process with x0 D 0,
simultaneously. A failure of test unit is defined as the accumulated damage passes
over the threshold C. Let the number of failed units be p and the number of survival
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units be q at the end of ADT, i.e., n D p C q. When an ADT is well developed, it is
commonly assumed that the drift parameter of the Wiener process is affected only
by the stress conditions. The higher the stress loading level, the higher the value
of �L. In other words, a shorter MTTF for products is found under a higher stress
loading level, or failures are expected to occur more frequently under the higher
stress loading level.

Assumptions for implementing the ADT

(A1) The absolute ambient temperature (L0
1i) and the drive current (L0

2i) are used
as the acceleration variables for the ADT to accelerate the degradation of
LED lumen over time for i D 1; 2; � � � ; k.

(A2) ni units are allocated to the ith stress loading level L0
i of the ADT, where

L0
i D .L0

1i;L
0
2i/ and i D 1; 2; � � � ; k.

(A3) The two components, .L0
1i;L

0
2i/, of each stress loading level L0

i, are standard-
ized, respectively, according to

L1i D
1=L0

10 � 1=L0
1i

1=L0
10 � 1=L0

1M

and L2i D
log.L0

2i/ � log.L0
20/

log.L0
2M/ � log.L0

20/
; i D 1; 2; � � � ; k;

where L0
10 and L0

20 are normal stress loading levels, and L0
1M and L0

2M are the
highest stress loading levels before standardization. Therefore, L10 D L20 D

0, L1M D L2M D 1, 0 < L1i � 1 and 0 < L2i � 1, i D 1; 2; � � � ; k.
(A4) For the jth unit among qi survival units under the stress loading level Li, the

accumulative damage levels are observed at times tijh(tij.h�1/ < tijh), h D

1; 2; � � � mij and denoted by xij1; xij2; � � � xijmij , which follow a Wiener process
with the drift parameter �Li and diffusion parameter ˇ for j D 1; 2; � � � ; qi,
i D 1; 2; � � � ; k.

(A5) The drift parameter can be expressed in terms of the standardized loading
levels via the generalized Eyring model (GEM),

�Li D 	 expf�1L1i C �2L2i C �3L1iL2ig; i D 1; 2; � � � ; k; (8.4)

where 	 D exp.�0/.
(A6) Let tij0 D 0 and xij0 D 0 for all test units under ADT. The cumulative

damage for a failed unit is defined in terms of the percentage loss of LED
lumen.

The GEM in (8.4) involves the Arrhenius law model, power law model and
exponential law model as special cases if only one acceleration variable is utilized
in ADT. Note that the GEM in (8.4) contains the interaction term [2, 26] and it is
not a special case of the hyper-cuboidal volume approach in [21].
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8.3 Statistical Inference

The lifetime of a test unit is defined as the first passage time for the cumulative
damage over a given threshold C. Assume that pi failed units have been observed
with lifetimes, sil, l D 1; 2; � � � ; pi, respectively, in the run i and qi units still survive
at the termination time of run i for i D 1; 2; � � � ; k. Hence, ni D pi C qi, i D

1; 2; � � � ; k. Let ntot D
Pk

iD1 ni, � D .�0; �1; �2; �3; ˇ/, 4xijh D xijh � xij.h�1/,
4tijh D tijh � tij.h�1/ and yijh D .C � xijh/.C � xij.h�1//=4tijh for all i; j; h. The log-
likelihood function for the failed units and damage measurements are respectively
given by

`F.�/ D

kX
iD1

piX
lD1

log fS.silI �L; ˇ/; (8.5)

and

`D.�/ /

kX
iD1

qiX
jD1

mijX
hD1

log fX.xijhI xijh�1;4tijh/: (8.6)

The log-likelihood function based on all failed units and survival units `.�/ D

`F.�/C `D.�/ can be expressed by

`.�/ / �ntot logˇ �

kX
iD1

piX
lD1

.C0 � �Li sil/
2

2ˇ2sil

�

kX
iD1

qiX
jD1

mijX
hD1

�
.4xijh � �Li4tijh/2

2ˇ24tijh
� log

�
1 � e�2yijh=ˇ

2
��
: (8.7)

The justification of (8.7) is that the degradation scheme for ceasing observation
depends only on the unit’s previous degradation measurements (i.e. stopping time).
For more information, reader can refer [1, 7, 21].

The MLEs of �0, �1, �2, �3 and ˇ, labeled by O�i for i D 0; 1; 2; 3 and Ǒ,
respectively, can be obtained by solving the equations of @`.�/=@�i D 0 for
i D 0; 1; 2; 3 and @`.�/=@ˇ D 0, simultaneously, where

@`.�/

@�0
D

1

ˇ2

kX
iD1

8<
:

piX
jD1

.C � �Li sil/C

qiX
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.4xijh � �Li 4tijh/

9=
; �Li ; (8.8)
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piX
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.C � �Li sil/C

qiX
jD1

mijX
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9=
; �Li L1i; (8.9)
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and

@`.�/

@ˇ
D �

ntot

ˇ
C

1

ˇ3

kX
iD1

 piX
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2
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e2yijh=ˇ2 � 1
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Suppose the expected Fisher information matrix of the MLEs is I./, the asymp-
totic variances and covariances of the MLEs can be obtained from the entries of
I�1./. Unfortunately, the exact closed forms of the entries of the inverse of the
expected Fisher information matrix are difficult to obtain. Therefore, we consider
the observed Fisher information matrix, OI. O/ D f�@2 log L./=@�i@�jgjD O ,
i; j D 1; 2; 3; 4; 5. Given the values of pi and qi, i D 1; 2; � � � ; k, we have

OI. O/ D

2
64

a1 a2 a3 a4 0
a2 a5 a6 a7 0
a3 a6 a8 a9 0
a4 a7 a9 a10 0
0 0 0 0 a11

3
75 : (8.13)

The entries of OI. O/ and the entries of the Fisher information matrix I./ can be
evaluated through using the following equations:
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Since E.sil/ D �Li D C=�Li , and E.4xijh/ D �Li4tijh. Then E.C � 2�Li sil/ D �C,
and E.4xijh � 2�Li4tijh/ D ��Li4tijh. The entries of OI. O/ and the entries of the
Fisher information matrix I./ can be obtained as
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Analogy to inference procedure proposed by [16], the 100pth percentile of test
units can be approximately obtained by

sL.p/ D

h
zpˇ C

q
z2pˇ

2 C 4C�L

i2
4�2L

; (8.14)
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where zp is the 100pth percentile of the standard normal distribution. Because �L0 D

exp.�0/ for the normal use condition, the MLE of sL0 .p/ for the normal use condition
can be given by

OsL0 .p/ D

�
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Ǒ C

q
z2p Ǒ2 C 4Ce O�0

�2

4e2 O�0
: (8.15)

The asymptotic variance of OsL0 .p/ can also be obtained by using the Fisher
information matrix and denoted by

Q�2.OsL0 .p// D �TI�1.�/�; (8.16)
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8.4 Optimal Strategy

To implement an ADT, engineers are interested in developing an optimal strategy
that determines the sample size and termination time of each run. The length of the
measuring time interval for all units in the run i, denoted by ıi, can be determined
according to the operation schedule. In practice, a constant length of the measuring
time interval with ıi D ı is preferred due to administrative convenience. Based
on the previous ADT experience for collecting the LED data set used by [26], the
total cost contains three components, fixed cost, total operating cost and variable
cost. The fixed cost is c0 � ntot, where c0 is the fixed cost per unit. Total operating
cost can be presented by cop

Pk
iD1 ti, where cop is the operating cost per unit time.

The variable cost is based on the fact that using different stress loading on the test
units in the laboratory incurs a different cost. It is assumed that an addition of one
degree in temperature beyond the normal use temperature costs cL1 dollars per unit
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time and an addition of one milliampere in current costs cL2 dollars per unit time
for each test unit. Thus, variable cost in the ADT experiment can be presented as
cL1

Pk
iD1 ti.L0

1i�L0
10/CcL2

Pk
iD1.ni�ti�L0

2i/. In reference of the fixed cost, operating
cost and variable cost for the total cost function, the total cost can be expressed as

TC D c0 � ntot C cop

kX
iD1

tj C cL1

kX
iD1

ti.L
0
1i � L0

10/C cL2

kX
iD1

.ni � ti � L0
2i/: (8.17)

In some cases, the variable cost may contain different components from the
proposed cost model. For example, the variable cost could include operating cost,
labor cost and cost incurred under different combinations of stress levels. The total
cost model needs to be re-formulated if any composition of fixed cost, operating
cost or variable cost is different from the proposed one. For some experiments, the
unit cost of testing electronic device could vary with different mA levels due to the
difficulty to control the lower current in the mA level. It requires more sophisticated
and precision instruments to generate the current and maintain the stability of the
current at a lower mA level. In such cases, the unit current cost could be changed
with respect to the current level. A multiple-level current cost function is suggested
for those situations.

Oftentimes, the scheduled time to finish the reliability analysis of highly reliable
products via ADT is tight because manufacturers would like to promote products
into the market as early as possible. Hence, an upper bound of experimental time,
labeled by tU , would be preassigned. Let n D .n1; n2; � � � ; nk/, t D .t1; t2; � � � ; tk/
and Q�2.n; t/ 	 Q�2.OspL0 /. The optimal settings of .n�; t�/ can be determined such
that Q�.n; t/ is minimized, subject to a given total budget, say �0. It is reasonable to
assume that all units in each experimental run need to be measured at least once.
Then, the optimal test plan .n�; t�/ can be obtained through solving a constraint
optimization problem, such as System (8.18). Without loss of generality, let tU be
a positive multiple of the length of the measuring time interval, ı. The optimum
scheduled experiment times for all k runs can be set up such that ı � t1; t2; � � � ; tk �

tU . For example, if an engineer wants to have the ADT containing 6 runs for the LED
example in Sect. 8.5 to be implemented and ended by 36 weeks with ı D 6 weeks
or 1008 h to collect the degradation information. In this case, tU is 36 weeks or
6048 h. The optimal experimental times schedule for the ADT can be determined
from the set f1008 � t1; t2; � � � ; tk � 6048g through solving the following constraint
optimization problem:

Minimize Q�.n; t/ (8.18)

Subject to

TC � �0;

ı � t1; t2; � � � ; tk � tU;

ni � 1; i D 1; 2; � � � ; k;

n1 C � � � C nk D ntot:
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Let Bt be the set of all possible combinations of .t1; t2; � � � ; tk/ such that the
conditions of fı � t1; t2; � � � ; tk � tUg and TC � �0 are satisfied. The interval
Œı; tU� is divided into subintervals with equal length ı. Then, the partition points are
ı; 2ı; � � � ; tU . The collection of all possible subsets of fı; 2ı; � � � ; tUg is labeled
as Bt, defined by Bt D ftjı � t1; t2; � � � ; tk � tU and TC � �0g. Global searching
from all possible solutions in order to obtain an optimal strategy on .n�; t�/ is time
consuming and very difficult. We provide an simple algorithm to find the optimal
ADT plan on .n�; t�/ if the equal number of highly reliable units are allocated for all
experimental runs, that is, n�

i D n�, i D 1; 2; � � � ; k. Such design is easily operated
by engineers to implement an ADT. Based on this setting, the optimal ADT plan

.n�; t�/ can be reduced to .n�; t�/. For each t.i/ D
�

t.i/1 ; � � � ; t
.i/
k

�
in Bt, an upper

bound of sample size, denoted by nU;t.i/ , can be obtained by using the inequality,
TC < �0, in System (8.18). We then have

nU;t.i/ D

$
�0 � cop

Pk
jD1 t.i/j � cL1

Pk
jD1 t.i/j .L

0
1j � L0

10/

k � c0 C cL2

Pk
jD1.t

.i/
j � L0

2j/

%
; (8.19)

where bxc denotes the largest integer less than or equal to x. Let

�.n�
t.i/ jt

.i// D min
nD1;2;��� ;n

U;t.i/
Q�.n; t.i//; i D 1; 2; � � � ; nBt ; (8.20)

and

�.n�; t�/ D min
iD1;2;��� ;nBt

�.n�
t.i/ jt

.i//; (8.21)

where n�
t.i/

is the optimal sample size at times t.i/. Then the optimal ADT plan,
.n�; t�/, can be obtained through the following algorithm:

Algorithm

1. Determine the set Bt.
2. Find nU;t.i/ and �.n�

t.i/
jt.i// via Eq. (8.19) for each t.i/ in Bt and Eq. (8.20),

respectively.
3. The optimal ADT plan .n�; t�/ is the solution such that Eq. (8.21) is satisfied.

8.5 Illustration Example

An ADT experiment with accelerating variables, the absolute ambient temperature
in Celsius degree (oC) and the driven current in milliampere (mA), had been
conducted on transistor outline can (TO-can) packaged LEDs from 2010 to 2011 in a
laboratory of Taiwan. Measurements of luminous flux of LED source were collected
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Table 8.1 The experimental
design of ADT for LED

i Runs oC mÅ L1 L2 ni pi qi

1 AC0 25 350 0.0000 0.0000 10 0 10

2 AC1 45 650 0.4377 1.0000 10 0 10

3 AC2 60 650 0.7315 1.0000 10 0 10

4 AC3 75 450 1.0000 0.4060 10 0 10

5 AC4 75 550 1.0000 0.7301 7 1 6

6 AC5 75 650 1.0000 1.0000 10 2 8

using KEITHLEY 2430 pulse source current meter with integrating sphere OL500
and a spectroradiometer CAS140B during the ADT. In this ADT experiment, the
normal use condition was set at 25oC and 350 mA for LED units. Six experimental
runs with the following stress loading combinations of two variables, (25, 350), (45,
650), (60, 650), (75, 450), (75, 550) and (75, 650) in (oC, mA), shown in Table 8.1
were used for the ADT. The collected lumen degradation data set had been studied
by [26, 27]. Because the confidentiality agreement with the research institute,
the original degradation measurements could not be reproduced. In this section,
manipulative lumen degradation measurements for LED units under the same setting
of the ADT experiment in the laboratory of Taiwan were generated for modeling and
optimal strategy illustration. The manipulative lumen degradation measurements,
under each stress loading combination of absolute ambient temperature and driven
current shown in Table 8.1, are displayed in Fig. 8.1. In this study, the parameters
of data inputs are k D 6, pi D 0, and qi D 10 for i D 1; 2; 3; 4; and p5 D 1,
p6 D 2, q5 D 6 and q6 D 8. All stress loading levels are taken as the settings given
in Table 8.1.

8.5.1 Statistical Inference

It should be noticed that with nonlinear Model (8.4) and Model (8.7), the likelihood
Eq. (8.8), (8.9),(8.10), (8.11) and (8.12) are no longer a generalized linear model.
Hence, even if the capacity of test equipment is sufficient to generate more
observations, there is no statistical test for the interaction effects available for
model Eq. (8.4). After converting the ambient temperatures into the absolute
temperatures, the loading levels for absolute temperature and drive current are
standardized according to the assumption (A3), respectively. The corresponding
standard values for each pairs of stress-loadings from the six combinations are
presented in Table 8.1. The normal use loading condition pairs is labeled by AC0
and the other five pairs of stress loading conditions are denoted by AC1-AC5,
respectively. Moreover, according to the discussions in [27], the parameters used
for modeling are �i, for i D 0; 1; 2; 3 and ˇ. All degradation measurements are used
to find MLEs for model parameters. Define r as the indicator for the 100.1 � r/%
loss of the total luminous flux of LED source, where r = 0.5 and 0.7 are considered
here.
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Fig. 8.1 Cumulative damage measurements of LED for experimental runs: (a) AC0, (b) AC1 (c)
AC2, (d) AC3 (e) AC4, (f) AC5. Each line represents a degradation of a unit

Table 8.2 The MLE and estimated MTTF

r O�0 O�1 O�2 O�3 Ǒ OsL0 .0:1/ MTTF

0.7 �4.0476 0.8045 0.9898 �0.3956 0.2999 24,390.79 41,226.24

0.5 �4.0476 0.7456 0.7954 0.0325 0.3954 40,206.78 68,710.53

Based on the manipulative lumen degradation measurements for LED units under
six runs displayed in Fig. 8.1, the MLEs, O�i, of �i for i D 0; 1; 2; 3 and the MLE, Ǒ,
of ˇ were obtained and presented in Table 8.2. The tenth percentile of the lifetime
distribution, sL0 .0:1/, and the MTTF under the normal use loading condition can
be estimated in hours by using the MLEs O�i, i D 0; 1; 2; 3 and Ǒ and they are also
displayed in Table 8.2. It can be seen that under the normal use loading condition,
the MLE OsL0 .0:1/ D 24390:79 h for r D 0:7 and OsL0 .0:1/ D 40206:78 h for r D 0:5.
The MTTF of LEDs is estimated by 41226.24 h for r D 0:7 and 68710.53 h for
r D 0:5.
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8.5.2 Optimal Strategy

In practice, an ADT is often implemented to meet the time schedule for the
introduction of the products in the market with an optimal level of the estimation
precision from the reliability inference subject to a budget constraint. Engineers
would like to reach a compromised design of the ADT. In this study, we consider
that the length of the measuring time interval is taken as ı D 1008 h, and the ADT
will be ended at the 6048 h. The scheduled measuring times will then be in the
interval [1008, 6048]. To implement the searching procedure for an optimal ADT
strategy provided in Sect. 8.4, the interval [1008, 6048] is divided into 5 subintervals
of length 1008. Hence, the partition points are 1008, 2016, 3024, 4032, 5040 and
6048. It follows that Bt D ftj1008 � t1; � � � ; t6 � 6048 and TC � �0g.

It is assumed that a LED is classified as failure if 30% luminous flux is lost
from the initial amount. The model parameters, �0, �1, �2, �3 and ˇ in the lifetime
distribution are replaced by their MLEs, O�0, O�1, O�2, O�3 and Ǒ, respectively. In
addition, the costs of experimentation are taken as cL2 D 0:001, cL1 D d1 � cL2 ,
d1 D 5; 10, c0 D 50, cop D 0:6 with lot sizes ND D 1000, 5000, experiment budgets
�0 D 10,000, 20,000, and the reference lifetime percentiles of p D 0.1 and p D 0.5
for the ADT, respectively. Optimal ADT strategies are obtained via the algorithm
proposed in Sect. 8.4. The results are presented in Table 8.3. From Table 8.3, it can
be seen that Q�.n�; t�/ is decreased if a larger experiment budget is available for the
ADT. Hence, the optimal ADT strategy would be established so that a total cost is
close to the experiment budget if it is possible. Table 8.3 shows that increasing the

Table 8.3 Optimal ADT strategies on 10th and 50th percentiles

p ND d1 �0 n� t�1 t�2 t�3 t�4 t�5 t�6 TC Q�.n�; t�/

0.1 1000 5 10,000 31 252 168 126 126 42 42 9990.25 146.81

20,000 64 252 84 252 42 42 42 19,996.95 102.18

10 10,000 31 252 168 126 42 42 42 9973.30 146.82

20,000 64 252 252 42 42 42 42 19,998.44 102.18

5000 5 10,000 31 252 168 126 126 42 42 9990.15 146.81

20,000 64 252 84 252 42 42 42 19,996.95 102.18

10 10,000 31 252 168 126 42 42 42 9973.30 146.82

20,000 64 252 252 42 42 42 42 19,998.44 102.18

0.5 1000 5 10,000 31 252 126 42 210 42 42 9957.76 333.69

20,000 64 252 168 42 126 42 84 19,998.12 232.24

10 10,000 31 252 84 42 126 84 42 9955.28 333.69

20,000 64 252 84 42 126 42 84 19,983.25 232.24

5000 5 10,000 31 252 126 42 210 42 42 9957.76 333.69

20,000 64 252 168 42 126 42 84 19,998.12 232.24

10 10,000 31 252 84 42 126 84 42 9955.29 333.69

20,000 64 252 84 42 126 42 84 19,983.25 232.24
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sample size in each experiment run could decrease the value of Q�.n�; t�/ if a higher
experiment budget is allowed.

The optimal ADT strategies provide a more accurate estimate (i.e., Q�.n�; t�/)
for the 100pth percentile with smaller p compared to larger p. The difference of
total costs for estimating the 10th and the 50th percentiles is insignificant. Finally,
Table 8.3 reveals that the total cost with d1 D 5 is slightly larger than the total
cost with d1 D 10 under the condition of �0 D 10;000. However, the total cost
with d1 D 5 is little bit smaller than that with d1 D 10 under the budget condition
of �0 D 20;000. The difference between two total costs for different values of d1
is insignificant. Hence, the effect of increasing the variable cost on unit absolute
ambient temperature 5 times or higher over the variable cost on unit driven current
is insignificant.

8.6 Conclusion and Discussion

In this chapter, modeling the lumen degradation of LED via Wiener diffusion
process are discussed. The drift parameter in Wiener process is expressed as an
exponential function in terms of two standardized stress variables via a GEM,
which is different from the one proposed by [19] and slightly different from the
hyper-cuboidal volume approach by [21] for modeling fatigue crack growth and
cumulative damage. It should be mentioned that the degradation process can be
very slow for highly reliable product such as the LED system. Therefore, any two
consecutive degradation measurements from a unit of LED had been taken at two
widely separated time schedules in the laboratory. The flaw in using the Wiener
assumption is that the process increment follows a normal distribution and could
possibly generate negative damage value, see [20]. However, it could be convinced
that the probability of negative increment can be negligible based on the setting
of degradation measurement time schedules for each test unit in the laboratory.
Regardless of the pitfall of Wiener process due to negative increment, the current
modeling of the lumen degradation using Wiener process has provided satisfactory
results on the estimations of lower percentiles of lifetimes and MTTF based on the
discussions with LED engineers. Next, a drawback of using a Wiener process is
the possibility of getting a negative cumulative damage. A planning strategy under
Gamma stochastic processes with warranties can be applied. More detail had been
investigated by [28]. R source codes are provided in the Appendix to search an
optimal ADT plan with plug-in MLEs of the model parameters. User can use these
codes to generate the optimal ADT plans in the Table 8.3.

Optimal strategies under different combinations of cost components and two
percentiles of concern have been constructed and summarized in Table 8.3 for
reference. The proposed method can provide a reasonable planning strategy for the
accelerated degradation testing procedure proposed by [26]. Nowadays, warranties
are important for marketing highly reliable products since a good warranty policies
make the products more competitive in the market. Considering a warranty cost
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for the planning strategy of the accelerated degradation testing experiment is
an important consideration for manufacturers. Investigations related to warranty
analysis will be an interesting future research direction.

Appendix

####################################################
## The optimal design of an ADT using plug-in MLEs
####################################################

rm(list=ls(all=TRUE))
library(SuppDists)

##
## Define parameters and cost components
##

m=k=6 ## all test units are survival in 6 runs
C=(1-0.70)*100 ## failure defined by 30% luminous loss
pp=0.1 ## 100*0.1 percentile
tim.u=24 ## time unit per day
phi_0=10000
US=1
d1=5
c_L2=0.001/US
c_L1=d1*c_L2
c_0=50/US
N_D=1000
c_op=0.6/US
pi=c(0,0,0,0,0.1,0.2)
delta=2
L11o=c(25,45,60,75,75,75)+273.15
L22o=log(c(350,650,650,450,550,650))
L11=(1/L11o[1]-1/L11o)/(1/L11o[1]-1/L11o[6]);
L22=(L22o-L22o[1])/(L22o[6]-L22o[1])
L1=L11[1:6]; L2=L22[1:6]

zp=qnorm(pp) ## (100*pp)th percentile of N(0,1).
ta=c(1008,2016,3024,4032,5040,6048)/tim.u

##
## The MLEs
##

r0=-4.0476; r1=0.8045; r2=0.9898; r3=-0.3956
be=0.2999 ## for failure defined by 30% luminous loss
## be=0.3954 ## for failure defined by 50% luminous loss
lam=C^2/be^2
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nu=exp(r0+r1*L1+r2*L2+r3*L2*L1)

muLi=C/nu; muL0=muLi[1]

## Define functions

tE=expand.grid(ta,ta,ta,ta,ta,ta)
t=matrix(NA,(length(ta)^6),6)
for(i in 1:(length(ta)^6)){
for(j in 1:6) {t[i,j]=tE[i,j]}
}

##
########## Function of AS(n,t)
##
AS=function(nn,tt){
p=round(nn*pi)
q=nn-p
a1=(1/(be^2))*( sum(p*C*nu)+sum(nu^2*tt*q) )
a2=(1/(be^2))*( sum(p*C*nu*( L1 ))+sum(nu^2*tt*q*( L1 )) )
a3=(1/(be^2))*( sum(p*C*nu*( L2 ))+sum(nu^2*tt*q*( L2 )) )
a4=(1/(be^2))*( sum(p*C*nu*( L1*L2 ))

+sum(nu^2*tt*q*( L1*L2 )) )
a5=(1/(be^2))*( sum(p*C*nu*( L1^2 ))

+sum(nu^2*tt*q*( L1^2 )) )
a6=a4
a7=(1/(be^2))*( sum(p*C*nu*( L1^2*L2 ))

+sum(nu^2*tt*q*( L1^2*L2 )) )
a8=(1/(be^2))*( sum(p*C*nu*( L2^2 ))

+sum(nu^2*tt*q*( L2^2 )) )
a9=(1/(be^2))*( sum(p*C*nu*( L1*L2^2 ))

+sum(nu^2*tt*q*( L1*L2^2 )) )
a10=(1/(be^2))*( sum(p*C*nu*( L1^2*L2^2 ))

+sum(nu^2*tt*q*( L1^2*L2^2 )) )

EInv=array()
for(i in 1:m){
integrandEInv=function(x) {((C-nu[i]*x)^2/x)

*dinvGauss(x,muLi[i],lam)}
EInv[i]=integrate(integrandEInv,lower = 0,upper=Inf)$value}

mij=ceiling(tt/delta)
N=sum(p)+sum(mij*q)
a11=-N/be^2+3/be^4*sum(p*EInv+q*mij*be^2)
#---
F.mat=array(c(a1,a2,a3,a4,0,a2,a5,a6,a7,0,a3,a6,a8,a9,0,a4,

a7,a9,a10,0,0,0,0,0,a11), dim=c(5,5))
F.mat=round(F.mat,4)

a.inv=solve(F.mat)
pc=( (zp*be+sqrt(zp^2*be^2+4*C*exp(r0)))*

((2*C*exp(r0))*(zp^2*be^2+4*C*exp(r0))^(-1/2)
-(zp*be+sqrt(zp^2*be^2+4*C*exp(r0)))) )/(2*exp(2*r0))

pb=((zp*be+sqrt(zp^2*be^2+4*exp(r0)*C))
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*(zp*(1+zp*be*(zp^2*be^2+4*exp(r0)*C)^(-1/2))))
/(2*exp(2*r0))

Avar=matrix(c(pc,0,0,0,pb),1,5)%*%a.inv
%*%matrix(c(pc,0,0,0,pb),5,1)

sqrt(Avar)
}

##
## The function to reach an optimal plan
## of (n_{tot},t1,\ldots,tk,TC,sigma(n,t))
##
OA=function(phi_0){
ans2=array(Inf)
for(B in 1:nrow(t)){
tk=min(t[B,])
nU=floor((phi_0-c_op*sum(t[B,])-c_L1*sum(t[B,]

*(L11o-(25+273.15))))/(k*c_0+c_L2*sum(t[B,]*L22o)))
ans1=array(0)

for(inu in 1:nU){
{if(inu<=0){next}}
ans1[inu]=AS(inu,t[B,])
}

minn1=which.min(ans1)
varCost=sum(t[B,]*(c_L1*(L11o-(25+273.15))

+minn1*c_L2*L22o))
TC=k*minn1*c_0+c_op*sum(t[B,])+varCost
ans2=rbind(ans2,c(minn1,t[B,],TC,ans1[minn1]))
}
dataMN=which(ans2[,9]==min(ans2[,9]))
ans2[dataMN,] ## print all solution sets
}

##
## Print the output
##

cat("p=",pp, "N_D=", N_D, "d1=", d1, "\n", "\n")
OA(phi_0)
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Chapter 9
Gamma Degradation Models: Inference
and Optimal Design

N. Balakrishnan, Chih-Chun Tsai, and Chien-Tai Lin

Abstract During the past two decades, degradation analysis has been widely used
to assess the lifetime information of highly reliable products. Usually, random
effect models and/or Wiener processes are well suited for modelling stochastic
degradation. But in many situations, such as materials that lead to fatigue, it is more
appropriate to model the degradation data by a gamma degradation process which
exhibits a monotone increasing pattern. This article surveys the theoretical aspects as
well as the application of gamma processes in degradation analysis. Some statistical
properties of degradation models based on gamma processes under different tests
are also given. Furthermore, the corresponding optimal designs for conducting the
degradation experiments efficiently are reviewed. Finally, some extensions and their
applications of gamma-process degradation model are presented.

Keywords Accelerated degradation test • Burn-in test • Degradation data •
Gamma process • Inspection and maintenance • Quality characteristics • Step-
stress accelerated degradation tests

9.1 Introduction

These days, people worldwide have a good quality of life partly due to high quality
of consumable/usable products that come from a highly competitive global market.
At the same time, demand for digital multimedia products has grown rapidly,
with the focus shifting to 3C (computing, communication, and consumer) and IA
(information application) related products, and the parts in electrical cars. It takes a
long time for the company to build up the reputation for their products, but just needs
a short period of time to be branded as unreliable makers after shipping a flawed
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product. It would certainly become a catastrophic problem if failures of products
cause any injury and/or loss of life and consequent major lawsuits that arise as a
result. For this reason, a careful assessment of the product reliability information,
such as the mean time to failure (MTTF) or the p-th percentile of the lifetime within
a reasonable life-testing time, becomes of great importance.

Traditional assessment of lifetimes of products uses conventional life tests that
record only time-to-failure (complete or censored data) in order to quantify the life
characteristics of products by assuming specific parametric lifetime distributions,
such as Weibull and lognormal distributions. But in many situations, it is very
difficult to collect such failure data under normal operating conditions due to very
long lifetimes of modern day products. One way of obtaining additional information
about the reliability of the products is to accelerate the lifetimes of units by testing
them at higher levels of stress (e.g., elevated temperatures or voltages). This results
in the so-called accelerated life tests (ALT). Some key references for theory and
applications of ALT include Nelson [21], Bagdonavicius and Nikulin [2], Yang [46],
Hsu and Fan [9, 10], and Balakrishnan and Ling [3].

Unfortunately, for some highly reliable products, the above methods provide little
assistance as very few failures are likely to occur within the test duration. In such a
situation, if there exists a quality characteristic (QC) whose degradation over time
can be related to reliability, then the product’s lifetime can be estimated well through
the use of such degradation data. Generally, degradation models are constructed
based on the formulations of random effects or Wiener process. Detailed discussions
on these degradation models and their applications can be found in Singpurwalla
[33], Chao [5], Meeker and Escobar [20], Doksum and Hóyland [7], Doksum and
Normand [8], Whitmore and Schenkelberg [45], Yu and Tseng [51], Tseng et al.
[39], Tang and Su [34], Peng and Tseng [29, 30], Si et al. [32], and Ye et al. [47, 48].

But, in many cases like in the case of crack growth of fatigue data shown
in Lu and Meeker [18], the degradation paths of some specific products may
display a monotone behavior which violate the standard assumptions made in
Wiener processes. In order to properly model the degradation paths with monotone
increasing patterns, we must rely on other stochastic processes. For the stochastic
modelling of monotonic and gradual deterioration, the gamma process is quite
appropriate.

In this chapter, we first review and address some degradation models based on
gamma processes. As different ways of conducting the degradation experiments,
degradation tests (DT), accelerated degradation tests (ADT), and step-stress accel-
erated degradation tests (SSADT) are then discussed. Moreover, the corresponding
optimal designs are addressed in such a way that timely information of product’s
reliability can be provided efficiently to customers. Finally, some extensions and
their applications of gamma degradation models are presented.

The rest of this chapter is organized as follows. In Sect. 9.2, we introduce the
definition of gamma process and then present expressions of the distribution of the
product’s lifetime under the gamma degradation model as well as under a gamma
process with random effects. In Sect. 9.3, we review some optimal designs and
methods for estimating the parameters of the model based on a gamma process
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under degradation tests, accelerated degradation tests, and step-stress accelerated
degradation tests. In Sect. 9.4, we describe some extensions and their applications of
gamma degradation models. Finally, some concluding remarks are made in Sect. 9.5.

9.2 Degradation Model Based on Gamma Process

We first present the definition of a gamma process and the expressions of the
distribution of the product’s lifetime under a gamma degradation model as well as
under a gamma process with random effects.

9.2.1 Definition of Gamma Process

Let L.t/ denote the degradation path of the product, where t � 0, and L.0/ D 0.
Then, the degradation path of the product is said to follow a gamma process if the
following properties hold:

(1) non-overlapping increments are independent, that is, the increments �L .t/ D

L.t C�t/ � L.t/ are independent;
(2) for a given monotone increasing function 
.t/ with 
.0/ D 0, and for fixed t

and �t,

�L.t/ 
 Ga.ˇ;�
.t//; (9.1)

where �
.t/ D 
.t C �t/ � 
.t/ and ˇ are the shape (function) and scale
parameters of the gamma distribution, respectively, having its probability
density function (pdf) as

f�L.t/.y/ D
y�
.t/�1e�y=ˇ

ˇ�
.t/�.�
.t//
; y > 0: (9.2)

It is then evident that

E.L.t// D 
.t/ˇ

and

Var.L.t// D 
.t/ˇ2: (9.3)
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9.2.2 Distribution of Product’s Lifetime

The product’s lifetime T can be suitably defined as the first passage time when L.t/
crosses a failure threshold level !; that is,

T D infftjL.t/ � !g: (9.4)

Because L.t/ is strictly increasing in t, the cumulative distribution function (cdf) of
T in (9.4) can be expressed as

FT.t/ D P.T � t/ D P.L.t/ � !/ D
�.
.t/; !=ˇ/

�.
.t//
; (9.5)

where �.a; z/ is the upper incomplete gamma function defined by

�.a; z/ D

Z 1

z
xa�1e�xdx:

When the mean degradation path is linear, that is, 
.t/ D ˛t, Park and Padgett
[26] obtained the exact pdf of the lifetime as

fT.t/ D
dFT.t/

dt
D ˛ Œ .˛t/ � log.!=ˇ/�

�
1 �

�.˛t; !=ˇ/

�.˛t/

�

C
˛

�.˛t/

.!=ˇ/˛t

.˛t/2

 
1C

1X
kD1

�
˛t

˛t C k

2
.�!=ˇ/k

kŠ

!
;

where  .z/ D d
dz log.�.z// is the digamma function.

However, the computation of this pdf is too complicated for practical examples.
Therefore, Park and Padgett [26] proposed the following cdf and pdf of the
Birnbaum-Saunders distribution to approximate the exact cdf and pdf of the lifetime
of products:

FT.t/ D ˆ

"
1

˛�

 r
t

ˇ�
�

r
ˇ�

t

!#
;

fT.t/ D
1

2˛�t

 r
t

ˇ�
C

r
ˇ�

t

!
�

"
1

˛�

 r
t

ˇ�
�

r
ˇ�

t

!#
; t > 0;

where �.�/ and ˆ.�/ are the pdf and cdf of the standard normal distribution,
respectively, and ˛� D

p
ˇ=! and ˇ� D !=.˛ˇ/ are the shape and scale parameters

of the Birnbaum-Saunders distribution.
In degradation modelling and analysis, there is substantial heterogeneity between

the degradation paths of different individuals or units, which can not be duly
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accounted for just by conditioning on explanatory variables. It is common in this
case to incorporate unit-specific random effects or covariates to model such vari-
ability; for example, see Lu and Meeker [18] for growth curve models with random
coefficients. Lawless and Crowder [14] constructed a tractable gamma process by
incorporating random effects into the scale parameter ˇ in (9.1). Specifically, they
assumed that ˇ�1 follows a gamma distribution Ga.r�1; ı/ with pdf

g.�/ D
�ı�1rıe�r�

�.ı/
; � > 0: (9.6)

In this setting, they showed that ıL.t/=.r
.t// has an F-distribution whose cdf is
denoted by F2
.t/;2ı.x/, and L.t/=.r C L.t// has a beta distribution Beta.
.t/; ı/.

From these results, Tsai et al. [37] gave the expression of the cdf of the lifetime
T as

FT.t/ D 1 � F2
.t/;2ı

�
ı!

r
.t/


D

B. !
!Cr I 
.t/; ı/

B.
.t/; ı/
; (9.7)

where B .xI a; b/ D
R 1

x za�1.1 � z/b�1dz is the upper incomplete beta function,
and B.a; b/ is the complete beta function, i.e., B.a; b/ D B.0; a; b/. Moreover,
by assuming that 
.t/ D ˛t, they derived an exact expression for the pdf of the
product’s lifetime as

fT.t/ D ˛W

�
!

! C r
; ˛t; ı


;

where

W.x; a; b/ D
xa

aB.a; b/

"�
 .a/ �  .a C b/ � ln.x/C

1

a


2F1.fa; 1 � bg; f1C agI x/

�
x.1 � b/

.1C a/2
3F2.f2 � b; 1C a; 1C ag; f2C a; 2C agI x/

#
;

with gFh being the confluent hypergeometric function defined by

gFh.fc1; � � � ; cgg; fd1; � � � ; dhgI x/ D

1X
kD0

.c1/k � � � .cg/k

.d1/k � � � .dh/k

xk

kŠ
;

Pochhammer symbol .c/k D �.c C k/=�.c/, and .c/0 D 0.
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9.3 Design and Inference of Degradation Experiment

We now review some optimal designs and methods for estimating the parameters of
the model based on gamma process under degradation tests, accelerated degradation
tests, and step-stress accelerated degradation tests.

9.3.1 Degradation Tests

Suppose n units are randomly selected for conducting a degradation test, and the
measurements of each unit are made at times t0; t1; : : : ; tm, with t0 D 0. Let Li.tj/
denote the sample path of the i-th tested unit at time tj, where 1 � i � n and
1 � j � m. Let � be the unknown model parameter vector, and Yij D Li.tj/�Li.tj�1/,
�
.tj/ D 
.tj/ � 
.tj�1/, for 1 � i � n and 1 � j � m. Then, by the s-independent
increment property of the gamma process, the likelihood function under gamma
process, without random effect, can be expressed as

L.�/ D

nY
iD1

mY
jD1

y
�
.tj/�1
ij

�


�
.tj/

�
ˇ�
.tj/

exp

�
�

yij

ˇ


: (9.8)

Similarly, from (9.6), the likelihood function for gamma process, with random
effects, is given by

L.�/ D

nY
iD1

0
@
Z 1

0

mY
jD1

y
�
.tj/�1
ij ��
.tj/

�


�
.tj/

� exp


��yij

� �ı�1rı
� .ı/

exp .�r�/ d�

1
A

D

rnıf�.ı C 
.tm//gn
nQ

iD1

mQ
jD1

y
�
.tj/�1
ij

 
�.ı/

mQ
jD1
�.�
.tj//

!n �
nQ

iD1
.yim C r/


.tm/Cı ; (9.9)

where yim D Li.tm/.
It is clear that optimization of these likelihood functions requires the knowledge

of the parametric form of 
.�/, such as an exponential law or a power law. The work
of van Noortwijk [41] provided an overview of parametric inferential methods for
gamma process including methods of moments, maximum likelihood, and Bayesian
inference. Recently, Lu et al. [19] made use of the Genz transform and a quasi-
Monte Carlo method to maximize the likelihood function. They found that the
performance of estimation in this case is much more effective than under the direct
maximization method. Tsai et al. [35] used the approach of White [44] to investigate
the effect on the estimated product’s MTTF when the true model comes from a
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gamma degradation process, but is wrongly assumed to be a Wiener degradation
process. Their numerical results demonstrated that the effects on the accuracy and
precision of the product’s MTTF prediction for a laser data, taken from Meeker
and Escobar [20], become critical when the shape and scale parameters of the
gamma degradation process become large. Park and Kim [28] used the gamma
process model for describing the nature of gradual and continuous performance
degradation of light emitting diode (LED) lamps by assuming the shape function
to be 
.t/ D atb. Their experiments indicated that the service and warranty lifetime
at the high temperature test conditions were estimated to be about a third of what
they would be under normal temperature test conditions.

In many cases, the physical degradation process can be considered as monotone
while the observed process is a perturbation of the degradation process which yields
the monotone phenomenon. In this setting, Bordes et al. [4] considered a perturbed
gamma degradation process L.t/ as

L.t/ D Y.t/C B.t/; (9.10)

where Y.t/ follows a homogeneous gamma process as given in (9.1) and B.t/ is
a standard Brownian motion which is assumed to be independent of the gamma
process. When  D 0, this model simply reduces to a gamma degradation process.
Moreover, when E.Y.t// tends to a positive constant and Var.Y.t// tends to 0, this
model converges weakly to a Brownian motion with positive drift. For this reason,
the role of Brownian motion in model (9.10) can be interpreted as measurement
error. Based on independent copies of the perturbed gamma process observed at
irregular instants, Bordes et al. [4] then used the method of moments for estimating
the unknown parameters of the model and discussed the asymptotic properties of
these estimators.

Usually, as pointed out by Pulcini [31], the measurement errors are assumed to
be statistically independent of the hidden process when the process is modeled by
a gamma process. However, in some situations, it is plausible that the measurement
errors are statistically dependent on the actual degradation (or usage) level of the
hidden process. For this reason, Pulcini [31] proposed a new perturbed gamma
process L.t/, which includes the gamma process Y.t/ together with a statistically
state-dependent measurement error ".t/, in the following form:

L.t/ D Y.t/C ".t/; (9.11)

where the error ".t/ is assumed to be normally distributed with mean zero and
standard deviation that depends on the actual level, �.Y.t//. Based on the trend
of the empirical estimate of the variance-to-mean ratio of the perturbed process,
a graphical check is then used to recognize both the nature of the measurement
errors and a suitable functional form for the standard deviation of its distribution.
In addition, an estimation procedure, based on the maximum likelihood method
and Monte Carlo integration, is suggested. When the inspections are invasive or
destructive and the error standard deviation depends on the actual level in a linear
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way, an approximate maximum likelihood estimation procedure that avoids the use
of numerical or Monte Carlo integration has also been proposed.

If suitable prior information is not available about the parametric form of the
shape function, a semiparametric estimation is preferred. Because 
.�/ is estimated
nonparametrically, direct optimization of the likelihood function becomes extremely
difficult as there are too many parameters to estimate. When the observation times
differ from unit to unit, the number of parameters would become even larger. Wang
[42] discussed semiparametric inference for the model of Lawless and Crowder
[14]. A pseudo-likelihood method, which ignores the dependence between the
degradation measurements at successive observation times, is proposed to estimate
the unknown parameters. Although the maximum pseudo-likelihood estimator is
consistent, there is a substantial loss in efficiency as compared to the full likelihood
method. Ye et al. [50] showed that the maximum likelihood estimates (MLE) of the
parameters can be obtained through the expectation-maximization (EM) algorithm
by converting these two estimation problems to missing data problems, and then
made use of the nonparametric percentile bootstrap method to construct confidence
intervals for � .

9.3.2 Accelerated Degradation Tests

For some highly reliable products, degradation path may degrade very slowly and it
is therefore impossible to obtain a good estimate within a reasonable test duration.
To overcome this problem, the reliability information at the normal use condition
can be extrapolated by collecting degradation data under higher stress levels such
as elevated temperatures or voltages. This is called an accelerated degradation test
(ADT).

Suppose there are N D
Pk

lD1 nl test units available for conducting an ADT with
k stress levels, S0 � S1 � � � � � Sk, where S0 is the use condition, and nl items
are randomly assigned for a degradation test at stress level Sl, for 1 � l � k. For
stress level Sl, the inspections are made ml times and the degradation measurements
of each unit are available at times t1; � � � ; tml

. Then, the product’s lifetime in this test
can be suitably defined as the first passage time when the degradation path under
use condition L.tjS0/ crosses the threshold level !. Hence, the product’s lifetime T ,
under use condition S0, can be expressed as

T D infftjL.tjS0/ � !g: (9.12)

For 1 � i � nl, 1 � j � ml , and 1 � l � k, let Li.tjjSl/ denote the sample
degradation path of ith test unit at time tj under the stress level Sl, and assume that
the degradation path L.tjSl/ under stress level Sl follows a gamma process with
shape function 
.tI Sl/ D ˛lt and scale parameter ˇ, where the parameters ˛l and
stress level Sl are assumed to have a relationship given by
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ln.˛l/ D �0 C �1A.Sl/: (9.13)

Two commonly used expressions for A.Sl/ are as follows:

A.Sl/ D

	
1=.273:15C Sl/; Arrhenius model;
ln Sl; Inverse-power model:

(9.14)

Park and Padgett [26] studied the accelerated degradation models for a single
accelerating variable to a general class of models that included Gaussian process
models, geometric Brownian motion models, and gamma process models as special
cases. In their class of models, both failures and degradation measurements
are incorporated for inferential purposes. It should be noted that some popular
acceleration functions such as power rule model, Arrhenius reaction rate model,
inverse-log model, exponential model, and inverse-linear model can handle only
one accelerating variable. Other specific link functions have been developed for two
accelerating variables, such as the generalized Eyring model (GEM), but these are
of somewhat limited use for specific physical situations (Park and Padgett [27]).
Hence, by assuming that there are h accelerating variables `1; `2; : : : ; `h, Park and
Padgett [27] proposed the following generalized acceleration function

�.`1; `2; : : : ; `h/ D �0

hY
iD1

f�.`i/g
�i ;

where �.�/ is any monotone function, and �0; : : : ; �h are unknown model param-
eters, to investigate stochastic degradation models. They also provided the exact
likelihood functions for the degradation paths, and discussed maximum likelihood
estimation of the model parameters. The MLEs are shown to outperform the
estimates of Park and Padgett [26] described earlier.

Under the assumption that the relationship between the parameter ˛l and the
stress level Sl is an Arrhenius model, Guan and Tang [11] discussed the optimal
constant-stress ADT (CSADT) plans for the test stress levels and the proportion of
units allocated to each stress level based on D-optimality and V-optimality criteria.
More precisely, they sought to find a test plan � D .x1; x2; : : : ; xk; �1; �2; : : : ; �k/

which consists of k standardized test stress levels x1; x2; : : : ; xk, where

xl D

�
1

273:15C S0
�

1

273:15C Si


=

�
1

273:15C S0
�

1

273:15C Sk


; (9.15)

such that the experimental region of xl; l D 1; : : : ; k, is in the range Œ0; 1�, and the
corresponding proportions of test units �1 D n1=N; �2 D n2=N; : : : ; �k D nk=N
satisfying

Pk
lD1 �l D 1, maximize the determinant of the Fisher information

matrix I.�/ (the negative of the expected value of the second derivative of the total
log-likelihood function), and minimize the approximate variance of the estimated
MTTF at the use stress S0, AVar.M̂TTF0j�/. Applying the general equivalence
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theorem (Whittle [43]), they verified that these two optimized test plans are globally
optimum. In addition, they used a simple grid search method to study ADT
compromise test plans with three stress levels for practical applications.

Lim [16] developed the optimal CSADT plan for a single accelerating variable
with Arrhenius model, power model, or exponential model when k D 2. Under
the constraint that the total experimental cost does not exceed a pre-fixed budget,
the decision variables such as the number of measurements, measurement times,
test stress levels and number of units allocated to each stress level are optimally
determined by minimizing the approximate variance of the MLE of the p-th
percentile of the lifetime distribution at the use condition. In other words, by
assuming that ml D m 8l; and tj � tj�1 D �t 8j, the optimal test plan
�� D .x�

1 ; x
�
2 ; n

�
1 ; n

�
2 ;�t�/ is obtained by

min
�

AVar.Otpj�/; (9.16)

subject to

TC.�/ D Copm�t C Cmea Nm C Cit N � Cb; (9.17)

where TC.�/ is the total cost of conducting the ADT experiment, AVar.Otpj�/ denotes
the approximate variance of the estimated p-th percentile of the lifetime, Cb denotes
the total budget for conducting the experiment, and Cop, Cmea and Cit denote the
unit cost of operation, measurement and item, respectively. From the simplicity in
the constraint structure and the integer restriction on the decision variables except
the stress levels, Lim [16] presented a computational algorithm for determining the
optimal solution. In addition, he developed a compromise plan with three stress
levels for checking the adequacy of the assumed acceleration function.

Tsai et al. [38] investigated the optimal CSADT strategy with the loadings of two
stress variables (temperature and current) and the GEM in the gamma process. Let
k be the total number of combinations of two stress variables. They assumed that
the relationship between ˛l and standardized lth stress-loading level .x1l; x2l/ can be
expressed as

˛l D exp.�0 C �1x1l C �2x2l C �3x1lx2l/;

for l D 1; : : : ; k. Their optimal ADT procedure was established to minimize the
asymptotic variance of the MLE of the MTTF of a product subject to a given
budget. That is, the optimal test plan �� D .n�

1 ; n
�
2 ; : : : ; n

�
k ; t

�
m1; t

�
m2; : : : ; t

�
mk/ can

be obtained as

min
�

AVar.M̂TTF0j�/; (9.18)
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subject to

TC.�/ � Cb; ı � tm1; tm2; : : : ; tmk � tU;
kX

lD1

nl � nu;

where tU is the upper bound of the measurement time to implement an ADT, ı is
measurement frequency in all runs, nu is an upper bound on the total sample size,
TC.�/ is the total operating cost which includes the fixed cost, operating cost, and
variable cost, and Cb is as defined in (9.17). To achieve the optimal ADT plan on the
sample size and termination time for each run in the ADT at a constant measurement
frequency, they proposed a grid search-type algorithm by splitting the space of
termination times into a set of discrete points such that the optimal ADT plan
can be found over a domain with a finite number of combinations from candidate
parameters to prevent the computational algorithm from diverging. Using Monte
Carlo simulations, they studied the sensitivity of the MLE of model parameters to
the sample size for different numbers of measurement times. Similar simulation
results can also be found in Chiang et al. [6].

Ling et al. [17] discussed accelerated degradation analysis that characterizes
the health and quality of systems with monotonic and bounded degradation. In
particular, they studied the degradation of light intensity of LED lamps based on a
gamma process, time-scale transformation, and a power link function for associating
covariates. They developed inferences for different lifetime characteristics such as
the reliability, the mean and median lifetimes, the conditional reliability, and the
remaining useful life of systems under normal use conditions, and presented approx-
imate confidence intervals for these quantities of interest by using the observed
Fisher information matrix. Their methods can be used for some other applications
such as maintenance of roads, railways, bridges, buildings, and industrial plants.

9.3.3 Step-Stress Accelerated Degradation Tests

Although ADT is an efficient life-test method, it may not be possible to have enough
test units for conducting such a life test for a newly developed product, or an
expensive product. In this case, a CSADT will no longer be useful for assessing the
lifetime distribution of highly reliable products at use condition. Hence, a step-stress
ADT (SSADT) is suggested to handle this problem, especially when the available
test items are few.

In a SSADT experiment, an item is first tested, subject to a pre-fixed stress
level for a specified length of time. If it does not fail, it is tested again at a higher
stress level for another fixed length of time. The stress on the specimen is thus
increased step by step until an appropriate termination time is reached. Specifically,
the experiment can be described as follows. Let S0 be the normal stress level and
S1; : : : ; Sm denote m higher stress levels such that S0 � S1 � � � � � Sm. Suppose
there are n test units subject to a degradation test (with a measurement frequency
per f units time) under stress S1, and the duration time of degradation test under the
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Fig. 9.1 The relationship
between stress and time
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2S

mS

3S

t1 t3t2 tm
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t1mt0

stress S1 is t1; next, we increase the stress level to S2, and the duration time under S2
is up to t2, and so on until the stress is up to Sm, and the experiment is terminated at
time tm. Thus, the testing stress, S, of an SSADT experiment can be expressed as

S D

8̂
<
:̂

S1 if 0 � t < t1;
:::
:::

Sm if tm�1 � t < tm:

Figure 9.1 shows the relationship between stress and time.
Tseng et al. [40] first dealt with the optimal SSADT plan (including the optimal

settings for the sample size, measurement frequency, and termination time) for a
gamma degradation process. In their work, they assumed that the increments under
stress Si 8i D 1; � � � ;m; �L.tjSi/ 
 Ga.ˇ; ˛i�t/, and that there exists a relationship
between ˛i and stress Si as given in (9.13).

Let Lss.t/ be the degradation path of a SSADT with a gamma degradation model.
Then, under the stress S1, and for t 2 Œ0; t1/, we have

Lss.t/ D L.tjS1/ 
 Ga.ˇ; ˛1t/; 0 � t < t1:

When we increase the stress up to S2 at time t1, by the additive property with respect
to shape parameter of the gamma distribution, the degradation path for t 2 Œt1; t2/
becomes

Lss.t/ D L.t1jS1/C L ..t � t1/jS2/ 
 Ga .ˇ; ˛2.t � t1/C ˛1t1/ :

Similarly, for general j � 1, tj�1 < t < tj, and t0 D 0, we obtain

Lss.t/ D L.t1jS1/C L ..t2 � t1/jS2/C � � � C L


.t � tj�1/jSj

�


 Ga

 
ˇ; ˛j.t � tj�1/C

j�1X
iD1

˛i.ti � ti�1/

!
: (9.19)
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Fig. 9.2 Illustration of a degradation path of Lss.t/ with m D 3

Figure 9.2 gives an illustration of a degradation path of Lss.t/ with m D 3, when
the mean degradation paths under each stress follow a gamma process with linear
pattern.

For 1 � i � m, let li denote the total number of measurements under stress
Si. Then, ti D f � .

Pi
kD1 lk/. Tseng et al. [40] determined the optimal setting of

�� D .n�; f �; fl�i gm
iD1/ by solving the following optimization problem:

min
�

AVar.M̂TTF0j�/; (9.20)

subject to

TC.�/ D Cop f
mX

iD1

li C Cmea n
mX

iD1

li C Cit n � Cb; n; f ; l1; � � � ; lm 2 N;

where AVar.M̂TTF0/ denotes the approximate variance of M̂TTF0, TC.�/ denote
the total cost of conducting a SSADT experiment, and Cop, Cmea, Cit, and Cb are as
defined in (9.17).

Pan and Balakrishnan [22] indicated that the number of products is relatively few
in the SSADT experiment, and so the test control to the products should be done
more carefully. Thus, by considering the differences in products, they suggested
that multiple-steps step-stress accelerated degradation models based on Wiener and
gamma processes, respectively, in which the times of stress level elevating are
random and vary from product to product., i.e., the ith product’s testing stress can
be expressed as

S D

8̂
<
:̂

S1 if 0 � t < ti;1;
:::
:::

Sm if ti;m�1 � t < ti;m;
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for i D 1; : : : ; n. Note that, given pre-specified degradation values ! D

.!1; : : : ; !m�1/, the stress will be changed to SlC1 when the degradation value
of a product reaches !l, and the corresponding time is ti;l. It can be seen that

4ti;l D ti;l � ti;l�1 D infftjL.tjSl/ � !l � !l�1g; !0 D 0:

For a gamma process, the exact pdf of 4ti;l is quite complicated. So, by using
the approach of Park and Padgett [26], they obtained the likelihood function
approximately. Because this likelihood function is analytically intractable and is
therefore difficult to use numerical search algorithms for determining the MLE
directly, they applied the Bayesian Markov chain Monte Carlo (MCMC) method
to estimate the parameters of the model efficiently.

Amini et al. [1] extended the model of Pan and Balakrishnan [22] to a more
economic plan. They assumed that the times of stress level elevating in the
new model are identical for all products, and that the new method does not
require continuous inspection of the degradation by the experimenter or electronic
sensors. The advantage of such a plan is that it uses only one chamber (oven) for
testing all test units and consequently decreases the cost of measurement. In their
SSADT model, they assumed that M measurements are made for each unit with
a measurement frequency per f unit of time. Also, under the lth stress level Sl,
l D 1; : : : ;m, the stress level is elevated as soon as a new measurement of the
degradation of at least one of the test units exceeds the threshold value !l. Hence,
the testing stress of the ith unit, i D 1; : : : ; n, can be expressed as follows:

S D

8̂
<
:̂

S1 if 0 � �1f ;
:::
:::

Sm if �m�1f � t < Mf ;

where

�j D min
n
M;
j t.1/;j

f

ko
; j D 1; : : : ;m � 1;

with the notation bxc standing for the ceiling of the real number x, and

t.1/;j D minfti;jI i D 1; : : : ; ng; j D 1; : : : ;m � 1:

Then, under the constraint that the total experimental cost does not exceed a
pre-fixed budget, the optimal setting of �� D .n�; f �;M�; !�

1 ; : : : ; !
�
m�1/ can be

obtained by solving the following optimization problem:

min
�

AVar.Otpj�/; (9.21)
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subject to

TC.�/ D Cop fM C Cmea nM C Cit n � Cb; n; f ;M 2 N;

where AVar.Otp/ denotes the approximate variance of the estimated pth percentile of
the lifetime under use condition, and Cop, Cmea, Cit, and Cb are as defined in (9.17).

Li et al. [15] proposed the Bayesian optimal design of SSADT based on a gamma
process and relative entropy. Under the framework of Bayesian theory, relative
entropy can be used to measure the information gained between the prior and the
posterior distribution. The goal is to maximize the expectation of relative entropy
between the prior and the posterior distribution. That is, for fixed m, n and f , the
optimal stress levels and inspection number scheme �� D .fS�

i ; l
�
i gm

iD1/ can be
determined by solving the following optimization problem:

min
�

Ex.I1 � I0/; (9.22)

subject to

S0 < S1 < S2 < : : : < Sm � Su; l1 � l2 � : : : � lm;

where I0 is the information contained in the prior distribution, I1 is the total amount
of information obtained from the posterior distribution, Ex is the mathematical
expectation of the sample space information (the increment of degradation paths),
and Su is the upper bound of stress levels. Compared with the asymptotic theory
or the D optimization method, they found that the relative entropy could compre-
hensively utilize sample information and prior information from the products under
ADT, which can make the results more accurate.

9.4 Extensions and Some Applications

Other than the models discussed above, there are many other models available for
degradation modelling in the literature. In this section, we review the models with
more than one quality characteristic, and also some applications of gamma processes
in inspection models, maintenance decisions, and burn-in test.

9.4.1 Multiple Quality Characteristics

Many highly reliable products have multiple components with more than one quality
characteristic that are dependent on each other due to their complex structure. In
such situations, a bivariate or multivariate degradation model is needed to estimate
the reliability of products. This analysis is needed not only for design and technical
purposes, but also for making managerial decisions.
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Pan and Balakrishnan [23] introduced the degradation model with two dependent
quality characteristics by assuming that their degradation can be modeled by gamma
processes. They used a bivariate Birnbaum-Saunders distribution and its marginal
distributions to approximate the reliability of the product, and applied the Bayesian
MCMC method for developing the corresponding inference.

An extension of this work can be seen in Pan et al. [24, 25]. Pan et al. [25]
discussed the lifetime distribution and associated inferential method of systems
with multiple degradation measurements by assuming that all the degradation
paths of the components are governed by gamma processes as shown in (9.1)
with 
.t/ D ˛t. They used a multivariate Birnbaum-Saunders distribution and
its marginal distributions to approximate the reliability of the system. Later, by
following the approach of Pan and Balakrishnan [23], Pan et al. [24] studied the
reliability model for parallel and series systems with two dependent degrading
components. They specifically used a bivariate Birnbaum-Saunders distribution to
approximate the reliability of a parallel system, and used a bivariate Birnbaum-
Saunders distribution and its marginal distributions to approximate the reliability of
a series system.

9.4.2 Inspection Model and Maintenance Decision

The gamma process is largely used in deterioration modelling for determining
optimal inspection and maintenance of the products. Kallen and van Noortwijk [12]
gave a short review of inspection models based on the gamma process for the period
1987 to 2002. However, none of these works deal with imperfect inspections. So,
they used gamma process to model the uncertain reduction of wall thickness due
to corrosion and proposed an adaptive Bayesian decision model to determine these
optimal inspection plans by minimizing the expected average cost per year. van
Noortwijk [41] gave an overview of the most important statistical and mathemat-
ical properties as well as methods for estimation (such as maximum likelihood,
method of moments, Bayesian updating, and expert judgement), approximation,
and simulation of gamma processes. He also surveyed models for time-based and
condition-based maintenance under gamma-process deterioration. Here, time-based
preventive maintenance is carried out at regular intervals of time, whereas condition-
based maintenance is carried out at times determined by inspecting or monitoring
a structure’s condition. Khanh et al. [13] constructed a deterioration model using
a non-homogeneous gamma process with Gaussian noise as shown in (9.10). They
considered a two-stage procedure to estimate the remaining lifetime distribution.
In this procedure, they used the Gibbs sampling technique to approximate the
hidden degradation states in the first stage, and applied the stochastic expectation-
maximization (EM) algorithm to estimate the model parameters in the second stage.
Then, based on the results of the remaining lifetime estimation, they proposed a
maintenance decision rule to prevent system’s failure.
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9.4.3 Burn-In Test

Burn-in test is a manufacturing process applied to products to eliminate latent
failures or weak components in the factory before the products get delivered to
customers. For highly reliable products with monotone degradation, the optimal
burn-in policies can be determined through a gamma process. Often, optimal burn-
in policies are determined by employing one of four criteria: (i) maximization of
the mean residual lifetime (MRL) of the product, (ii) achievement of a prescribed
mission reliability, (iii) minimization of cost, or (iv) optimization of an objective
function subject to some constraints.

Motivated by laser data, Tsai et al. [36] proposed a mixed gamma process to
describe the degradation path of the product, which can be expressed as follows:

L.t/ 


	
Ga.ˇ1; 
1.t// for weak group,
Ga.ˇ2; 
2.t// for typical group,

(9.23)

where 
1.t/ˇ1 > 
2.t/ˇ2 > 0, 
1.t/ ¤ 
2.t/ > 0, and ˇ1 ¤ ˇ2 > 0, 8t > 0. Note
that the condition 
1.t/ˇ1 > 
2.t/ˇ2 stipulates that an item in the weak group will
degrade faster on an average than an item in the typical group at time t. Hence, it
can be seen that an unit is classified as a typical unit if L.t/ is relatively small. Let
�.t/ denote a cutoff point for L.t/ between the typical and weak units. Then, they
presented the following decision rule for classifying an unit as typical or weak:

R W An item is classified into the typical group at time t iff L.t/ � �.t/: (9.24)

They then used a cost model to determine the optimal termination time of a
burn-in test. Let n denote the total number of units subject to a burn-in test, and
p denote the proportion of weak units. Then, the total misclassification cost can be
expressed as

MC.�.t/; t/ D C'n.1 � p/'.t/C C#np#.t/;

where C' (C# ) denotes the unit cost of misclassifying a typical (weak) item as a
weak (typical) item, and '.t/ (#.t/) is the probability of type-I (type-II) error, of
misclassifying a typical (weak) item as a weak (typical) item. For a fixed t, they
determined the optimal cutoff point ��.t/ by minimizing the total misclassification
cost MC.�.t/; t/; that is,

��.t/ D arg min
	.t/

MC.	.t/; t/; (9.25)

In addition to the misclassification cost, they also considered test costs that
include the cost of conducting the degradation test, and of measuring the data.
Suppose t D 0; t1; � � � ; tl are the check points of a burn-in test; then, the total number
of data collection points at tb is b C 1 for 1 � b � l. Hence, the total cost of
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Fig. 9.3 Illustration of the procedure on burn-in test

conducting a burn-in test up to time tb can be expressed as

TC.��.tb/; tb/ D MC.�.tb/; tb/C Copntb C Cmean.b C 1/;

where Cop and Cmea are as defined in (9.17). For a fixed burn-in time tb, they deter-
mined the optimal burn-in time by substituting ��.tb/ in (9.25) into TC.�.tb/; tb/,
and further determined the optimal burn-in time t�b by minimizing TC.��.tb/; tb/,
i.e.,

t�b D arg min
ftbgl

bD1

TC.��.tb/; tb/:

An illustration of the two-step procedure on burn-in test is shown in Fig. 9.3.
Many products are prone to multiple failure modes. According to the failure

mechanism, a failure mode can be either a degradation-threshold failure or a
catastrophic failure. A degradation-threshold failure occurs when a measurable
physical degradation reaches a critical threshold level, which is often specified by
industrial standards, while a catastrophic failure causes instant product failure. Both
kinds of failure modes may be subject to infant mortality. To identify and eliminate
units with infant mortality, engineers often resort to burn-in by activating all infant
mortality failure modes during the test for a certain duration; see, for example, Ye
et al. [49].
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Motivated by two real-life examples, Ye et al. [49] considered a general
burn-in planning framework for products with independent competing risks. This
framework is able to differentiate between normal and infant mortality failure
modes and recommends degradation-based burn-in approaches. Particularly, they
assumed that the degradation-threshold failure mode is subject to an infant mortality,
and the degradation path L.t/ is a gamma process with random effect as shown
in Sect. 2.2.3. In addition to this failure mode, the product is also prone to a
catastrophic failure, which is a normal failure mode. Their decision rule during the
burn-in test is as follows: After burn-in with a duration of b, the QC of tested unit
is measured nondestructively. If the QC exceeds a predetermined cutoff level �b, the
unit is discarded. The per-unit burn-in cost includes setup cost Cs and the burn-in
operational cost Co per time unit of burn-in. If an unit has failed at the end of the
burn-in period (e.g., due to the catastrophic failure), it is discarded with a cost of
Cdis. Otherwise, its degradation is measured with a measurement cost of Cmea. If the
degradation exceeds the cutoff level �b, the unit is rejected with a disposal cost of
Cd. An accepted unit will be put into field operation. If it fails within the mission
time tU , some handling and administrative cost of Cf is incurred. Otherwise, a gain
of K is generated.

Based on this framework, they developed three degradation-based burn-in mod-
els (burn-in model for products with only a single (degradation-threshold) failure
mode, a normal failure mode but only the degradation-threshold mode is activated
during burn-in, and a catastrophic failure mode that is normal but has to be activated
during burn-in), and derived the optimal cutoff degradation level ��

b and burn-in time
b� by minimizing the associated mean total cost for each model.

9.5 Concluding Remarks

Since the introduction of gamma process in the area of reliability in 1975, it has
been used extensively to model the degradation process. This article surveys the
theoretical aspects as well as the application of gamma processes in degradation
analysis. Some of the inferences and optimal designs for conducting the degra-
dation experiments efficiently under different tests (DT, ADT, and SSADT) are
reviewed. By aggregating the information of merits of each model, this review paper
provides the key notes about circumstances and conditions for choosing optimal
test plans. The developments on models under gamma-process deterioration with
more than one quality characteristic, and the application of gamma processes in
inspection models, maintenance decisions, and burn-in test with multi-component
and multi-failure-mode models including their statistical dependencies, have also
been highlighted.
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Chapter 10
Misspecification Analysis of Gamma with
Inverse Gaussian Degradation Processes

Sheng-Tsaing Tseng and Yu-Cheng Yao

Abstract Degradation models are widely used to assess the lifetime information
of highly reliable products. In this study, motivated by a stress relaxation data,
we investigate the misspecification effect on the prediction of product’s mean
time to failure (MTTF) when the degradation model is wrongly fitted. Assuming
the true model comes from gamma degradation process, but wrongly treated as
inverse Gaussian degradation process, we first derive an analytic expression for
the asymptotic distribution of quasi maximum likelihood estimate (QMLE) of the
product’s MTTF. Next, the penalty for the model misspecification is addressed
comprehensively. The result demonstrates that the effect on the accuracy of the
product’s MTTF prediction strongly depends on the ratio of critical value to the
scale parameter of the gamma degradation process.

Keywords Degradation model • Gamma process • Inverse Gaussian process •
Quasi maximum likelihood estimate • Misspecification analysis

10.1 Introduction

Assessing the reliability information (e.g., the mean time to failure (MTTF) or
the pth-quantile of lifetime distribution) of products is an essential task in the
continual enhancement of a product’s quality and reliability. For highly reliable
products, however, it is difficult to assess the lifetime using traditional life tests,
which only record time-to-failure. Even the technique of adopting an accelerated test
with higher levels of stress, including elevated temperatures or voltages, is of little
help, since no failures are likely to occur over a reasonable period of time. In this
case, if the products have quality characteristics (QCs) whose degradation over time
is related to reliability, then collecting degradation data or accelerated degradation
data can provide timely lifetime information for highly reliable products.
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Bagdonavicius and Nikulin [2], Lawless [5], Meeker and Escobar [7], Nelson
[8] and Tseng and Yu [15] have all described approaches of assessing reliability
information via degradation data. Stochastic process formulations are well-known
for this problem in the literature, and [12] has provided a survey on these stochastic
processes for describing failure-mechanisms. Among them, Wiener process is one of
the prominent ones and has been studied rather extensively. Doksum and Normand
[4] presented Wiener process to describe the relationship between biomarker process
values at random time points and a vector of covariates in a HIV study. Whitmore
and Schenkelberg [19] proposed a time-transformed Wiener process for modeling
the resistance of self-regulating heating cables. Yu and Tseng [22] used a Wiener
process for addressing the problem of choosing the optimal settings of variables that
are influential in the correct identification of significant factors and the experimental
cost. Tseng et al. [16] described the linearized light intensity of LED lamps of
contact image scanners by a Wiener process. Tang and Su [13] proposed the first-
passage times of the test units over certain predetermined non-failure thresholds
during the early stage of Wiener degradation process.

From the definition of a Wiener process, it is known that the degradation path is
not a strictly increasing function. Generally speaking, a gamma process or inverse
Gaussian process (possessing monotone increasing pattern) is more suitable for
describing the degradation path of some specific products that display a monotone
behavior such as in the case of crack growth. Bagdonavicius and Nikulin [1]
modeled degradation paths by a gamma process, and included possibly time-
dependent covariates. Lawless and Crowder [6] constructed a tractable gamma
process incorporating a random effect, and also discussed a goodness-of-fit test
for testing the validity of the model. Park and Padgett [9] provided several new
degradation models that incorporate an accelerated test variable based on stochastic
processes such as gamma process. Crowder and Lawless [3] used a gamma
process to illustrate their single-inspection policy for the maintenance of automobile
brakepads. Wang and Xu [17] studies the maximum likelihood estimation of a class
of inverse Gaussian process models for degradation data and investigate the subject-
to-subject heterogeneity and covariate information which can be incorporated into
the model in a natural way. Zhang et al. [23] describes an inverse Gaussian process-
based model formulated in a hierarchical Bayesian framework to characterize the
growth of the depth of corrosion defects on underground energy pipelines based on
inspection data.

Pascual and Montepiedra [10] and Yu [21] discussed lognormal and Weibull
accelerated life test (ALT) plans under the misspecification of lifetime distribution.
Both ALT and degradation models are standard approaches for assessing reliability
information of highly reliable products. Hence, the effect of model misspecification
on the accuracy and precision of the lifetime prediction becomes an important issue.
Peng and Tseng [11] proposed a general formulation of linear degradation path
based on Wiener process and addressed the effects of model misspecification on the
prediction of products MTTF. Clearly, a gamma process or inverse Gaussian is better
suited for modeling a degradation behavior that has a strictly increasing pattern. Tsai
et al. [14] derived an expression for the asymptotic distribution of quasi maximum
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likelihood estimate (QMLE) of the products MTTF when the true model comes
from gamma degradation process, but is wrongly assumed to be Wiener degradation
process and carry out a Monte Carlo simulation study to examine the effect of the
corresponding model misspecification for reverse problem.

However, model misspecification between Weiner and gamma process with
degradation path of some specific products that display a monotone behavior is not
reasonable. Gamma and inverse Gaussian process are usually treated to each other,
which makes the model misspecification problem become interesting and important.
In the following, motivated by a stress relaxation data, we use the approach of [18]
to address the effect of such a model misspecification on the products pth-quantile
prediction between gamma and inverse Gaussian processes.

The rest of this paper is organized as follows. Section 10.2 uses an example to
describe the motivation of this work. With a known power-linearization function,
Sect. 10.3 discusses the effects of model misspecification on the accuracy and
precision of the products pth-quantile prediction when the true degradation model
comes from a gamma process, but is wrongly treated as an inverse Gaussian
process. Section 10.4 also discusses the misspecification problem between gamma
and inverse Gaussian process with an unknown power-linearization parameter.
Section 10.5 uses the motivating example presented earlier to examine the effects
of model misspecification. Finally, some concluding remarks are made at the end of
this paper.

10.2 A Motivating Example

In the following, we adopt a stress relaxation data (from [20]) to illustrate the
motivation of this study. Stress relaxation is the loss of stress in a component
subjected to a constant strain over time (in 3%). Due to excessive stress relaxation,
the contacts of electrical connectors often fail and a connector is considered to be
failed when its stress relaxation exceeds a pre-defined failure level ! (say ! D 30).
Figure 10.1 shows the plot of stress relaxation over time for 6 tested units for
temperature 85ıC.

The degradation path showed in Fig. 10.1 seems to be a nonlinear function of
time, t. However, based on the relationship of stress relaxation and aging time
described in [20], the suggestion of a monotonic transformation is �.tI ı/ D tı

satisfied the initial condition �.0I ı/ D 0.
If the degradation path is treated as a gamma degradation model, then the

following process can be used to model the degradation path of the stress relaxation
data:

MG W Y.t/ 
 Ga.˛�.tI ı1/; ˇ/; (10.1)

where Ga.˛; ˇ/ is gamma distribution with shape parameter ˛ and rate parameter
ˇ Similarly, if the degradation path is treated as an inverse Gaussian degradation
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Fig. 10.1 Degradation paths
for stress relaxation data
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Fig. 10.2 Gamma
degradation paths for stress
relaxation data with
transformed time
(ı D 0:3889)
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model, then the following process can also be used to model degradation path of the
stress relaxation data:

MIG W Y.t/ 
 IG.��.tI ı2/; ��
2.tI ı2//; (10.2)

where IG.�; �/ is inverse Gaussian distribution with location parameter � and
shape parameter �. By using MLE, we can obtain Oı1 D 0:3889 and Oı2 D 0:3823.
Figures 10.2 and 10.3 show the degradation path with transformed aging time which
is plugged MLEs of ı1 and ı2 in for gamma and inverse Gaussian degradation
models, respectively. The results demonstrate that both two models are appropriate
to describe the stress relaxation degradation data.
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Fig. 10.3 Inverse gaussian
degradation paths for stress
relaxation data with
transformed time
(ı D 0:3823)
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Table 10.1 Estimations of
pth-quantile of time to failure

p Gamma IG RB RV

0.5% 3432.89 2727.81 20.54% 1.39

1.0% 3828.79 3177.58 17.01% 1.41

5.0% 5082.16 4634.10 �8.82% 1.43

10.0% 5862.46 5555.10 �5.24% 1.42

50.0% 9336.29 9684.28 3.73% 1.33

90.0% 14143.70 15328.62 8.38% 1.25

95.0% 15790.00 17229.19 9.11% 1.23

99.0% 19257.51 21174.82 9.96% 1.20

99.5% 20658.54 22747.29 10.11% 1.19

Table 10.1 also shows the corresponding relative bias (RB) and relative variabil-
ity of products pth-quantile under various combinations of q D 0:5%, 1%, 5%, 10%,
50%, 90%, 95%, 99% and 99:5% if the true degradation model comes from Gamma
process.

Most of all products pth-quantile, lower-percentile especially, have significant
difference. The pth-quantile of time to failure can be affected by model misspecifi-
cation, which turns out to be an interesting research topic. We now state the decision
problem as follows: How do we address the effects of model misspecification on
accuracy and precision of estimating products pth-quantile when MG is misspecified
as MIG.
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10.3 Misspecifying Gamma Process as Inverse Gaussian
Process When • Is Known

In some basic engineering applications, the relationship between degradation path
of the products QC and aging time calculated by physical property and mechanism
is well-known, which can support that monotonic transformation is independent of
unknown parameter. Hence, we first assume ı is known for bringing out the effects
of model misspecification based on a products pth-quantile of time to failure. For
the above mentioned two models: MG and MIG we will address the effects of model
misspecification. More specifically, we first apply the result of [18] to derive an
expression for the asymptotic distribution of QMLE of the products pth-quantile
of time to failure when the true degradation model is MG, but is fitted wrongly
by model MIG. The effect of this model misspecification can then be addressed
sequentially.

Assume that n units are tested, and the degradation measurements of each unit are
available at time t1, t2,. . . , tm. Set �Gjı D .˛; ˇ/ and � IGjı D .�; �/ are parameters
of MG and MIG respectively. When ı is known, �.tI ı/ can be simply treated as
�.t/. The sample path of the ith unit at time tj is given by

Yi.tj/ 
 Ga.˛�.tj/; ˇ/; 1 � i � n; 1 � j � m:

For fixed �Gjı let ��
Gjı be the value of �Gjı that minimizes the expected negative

log-likelihood EMG.� ln L.� IGjı// with respect to MG that is,

��
IGjı D arg min

� IGjı

EMG.� ln L.� IGjı//:

Let

Zij D Yi.tj/ � Yi.tj�1/;

and

�.tj/ D �.tj/ ��.tj�1/:

By the independent increment property of the inverse Gaussian process, the log-
likelihood function under model MIG can be expressed as follows:

L.� IGjı/ D

nY
iD1

mY
jD1

s
��2.tj/

2�z3ij
e

�
�.zij���.tj//

2

2�2zij : (10.3)

Then, we have

EMG.� ln L.� IGjı// / �
1

2
nm ln�C k0; (10.4)
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where

k0 D
�n˛�.tm/

2�2ˇ
�

n�

2

0
@2�.tm/

�
�

mX
jD1

ˇ�2.tj/

˛�.tj/ � 1

1
A :

By minimizing EMG.� ln L.� IGjı//with respect to� and � , we obtain the following:

��
IGjı D .��; ��/ D

0
B@˛
ˇ
;

m

ˇ

0
@ mX

jD1

�2.tj/

˛�.tj � 1/
�
�.tm/

˛

1
A

�1
1
CA : (10.5)

Now, let

A.�Gjı W ��
IGjı/ D

 
� n���.tm/

��3 0

0 � mn
2��2

!
; (10.6)

B.�Gjı W ��
IGjı/ D

�
B11 B12
B12 B22


; (10.7)

where

B11 D
n��2˛�.tm/

��6ˇ2

B12 D �
n��

2��3

0
@�.tm/

˛
C

mX
jD1

�2.tj/

1 � ˛�.tj/

1
A ;

B22 D
nˇ2

4

0
@ mX

jD1

�4.tj/

.˛�.tj/ � 1/2.˛�.tj/ � 2/
C k1

1
A ;

k1 D
�.tm/

˛3
C

2

˛2

mX
jD1

�2.tj/

1 � ˛�.tj/
;

and

C.�Gjı W ��
IGjı/ D A�1.�Gjı W ��

IGjı/ � B.�Gjı W ��
IGjı/ � A�1.�Gjı W ��

IGjı/:

Let Otp;IGjı denote the QMLE of the product’s pth-quantile of time to failure when
the true model is MG Then

Otp;IGjı D tp;IGjı. O� IGjı/; (10.8)
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where O� IGjı is QMLE of � IGjı obtained by maximizing the likelihood function
L.� IGjı/ in (10.3), and tp;IGjı.� IGjı/ satisfies

˚

 r
�

!

�
z0 �

!

�

!
� e

2�z0
� ˚

 
�

r
�

!

�
z0 C

!

�

!
D p

where z0 D �.tp;IGjı.� IGjı// Then, by theorem 3.2 of [18] and the use of delta-
method, we obtain the following result.

Theorem 10.1

Otp;IGjı 
 N.t�p;IGjı; �.�Gjı W ��
IGjı//; (10.9)

where

t�p;IGjı D tp;IGjı.�
�
IGjı/; (10.10)

�.�Gjı W ��
IGjı/ D .rtp;IGjı.�

�
IGjı//

T � C.�Gjı W ��
IGjı/ � rtp;IGjı.�

�
IGjı/;

and

rtp;IGjı.� IGjı/ D

�
@tp;IGjı

@�
;
@tp;IGjı

@�

T

:

Let ABias.Otp;IGjı j MG/ denote the approximate bias of using Otp;IGjı to estimate
tp;IGjı when the true model is MG. From (10.9), we get

ABias.Otp;IGjı j MG/ D E.Otp;IGjı/ � tp;Gjı D t�p;IGjı � tp;Gjı; (10.11)

where tp;Gjı D tp;Gjı.�Gjı/ is the product’s pth-quantile of time to failure respect to
the true model MG, satisfying

� .˛�.tp;Gjı/; ˇ!/

� .˛�.tp;Gjı//
D p; (10.12)

� .˛; z/ is the incomplete gamma function defined by

� .˛; z/ D

Z 1

z
x˛�1e�xdx;

and � .˛/ D � .˛; 0/.
Now, we define the following criterion to measure the relative bias of model

misspecification:



10 Misspecification Analysis of Gamma with Inverse Gaussian Degradation Processes 201

�IGjG;ı D
ABias.Otp;IGjı j MG/

tp;Gjı

: (10.13)

Similarly, let AMSE.Otp;IGjı j MG/ denote the approximate mean square error of
Otp;IGjı when it is used to estimate the product’s pth-quantile of time to failure when
the true model is MG. From (10.9) and (10.11), we obtain

AMSE.Otp;IGjı j MG/ D �.�G W ��
IG/C .t�p;IGjı � tp;Gjı/

2: (10.14)

The approximate mean square error takes into account two types of errors – the
random sampling error and the estimation bias.

To measure the relative variability of model misspecification, we use the
following criterion:

'IGjG;ı D
AMSE.Otp;IGjı j MG/

AMSE.Otp;Gjı j MG/
: (10.15)

Note that AMSE.Otp;Gjı j MG/ D AVar.Otp;Gjı/ and

AVar.Otp;Gjı/ D .rtp;Gjı.�Gjı//
T � I�1

Gjı.�Gjı/ � rtp;Gjı.�Gjı/; (10.16)

where IGjı.�Gjı/ is Fisher information matrix of gamma process, and

rtp;Gjı.�Gjı/ D

�
@tp;Gjı

@˛
;
@tp;Gjı

@ˇ

T

:

10.4 Misspecifying Gamma Process as Inverse Gaussian
Process When • Is Unknown

The relationship between degradation path of the product’s QC and aging time,
in general, is unknown, but can be described by a power-function transformation
with an unknown parameter ı such as �.tI ı/ D tı . Assuming that ı is unknown,
the parameters �G and � IG in MG and MIG can be extended to �G D .˛; ˇ; ı1/

and � IG D .�; �; ı2/ respectively. Moreover, �.tjI ı/ is redefined as �.tjI ı/ D

�.tjI ı/��.tj�1I ı/. From (10.3), the log-likelihood function under model MIG can
be expressed as follows:

EMG.� ln L.� IG// / �
1

2
nm ln�C k2; (10.17)
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where

k2 D
�n˛�.tmI ı1/

2�2ˇ
�

n�

2

0
@2�.tmI ı2/

�
�

mX
jD1

ˇ�2.tjI ı1/

˛�.tjI ı1/ � 1

1
A :

By minimizing EMG.� ln L.� IG// with respect to � and �, we obtain the following:

��
IG D .��; ��; ı�

2 / D

�
˛�.tmI ı1/

ˇ�.tmI ı2/
; g�.ı

�
2 I˛; ˇ; ı1/; ı

�
2


; (10.18)

where

g�.ı
�
2 I˛; ˇ; ı1/ D

m

ˇ

0
@ mX

jD1

�2.tjI ı2/

˛�.tjI ı1/ � 1
�
�2.tmI ı2/

˛�.tmI ı1/

1
A

�1

;

and ı�
2 satisfies

1

m

mX
jD1

@

@ı�
2

ln�.tjI ı
�
2 / D �

1

2

@ ln g�.ı�
2 I˛; ˇ; ı1/

@ı�
2

:

Now, set

A.�G W ��
IG/ D EMG

�
@2 ln L.� IG/

@�IGr@�IGs

ˇ̌
ˇ̌
� IGD��

IG

; (10.19)

B.�G W ��
IG/ D EMG

�
@ ln L.� IG/

@�IGr

@ ln L.� IG/

@�IGs

ˇ̌
ˇ̌
� IGD��

IG

; (10.20)

and

C.�G W ��
IG/ D A�1.�G W ��

IG/ � B.�G W ��
IG/ � A�1.�G W ��

IG/;

where �IGr is the rth element of � IG.
Let Otp;IG denote the QMLE of the product’s pth-quantile of time to failure when

the true model is MG Then

Otp;IG D tp;IG. O� IG/; (10.21)

where O� IG D . O�; O�; Oı2/ is QMLE of � IG and tp;IG.� IG/ satisfies

˚

 r
�

!

�
z1 �

!

�

!
� e

2�z1
� ˚

 
�

r
�

!

�
z1 C

!

�

!
D p
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where z1 D �.tp;IG.� IG/I ı2/ Then, by theorem 3.2 of [18] and the use of delta-
method, we obtain the following result.

Theorem 10.2

Otp;IG 
 N.t�p;IG; �.�G W ��
IG//; (10.22)

where

t�p;IG D tp;IG.�
�
IG/; (10.23)

�.�G W ��
IG/ D .rtp;IG.�

�
IG//

T � C.�G W ��
IG/ � rtp;IG.�

�
IG/;

and

rtp;IG.� IG/ D

�
@tp;IG
@�

;
@tp;IG
@�

T

:

Let ABias.Otp;IG j MG/ denote the approximate bias of using Otp;IG to estimate tp;IG
when the true model is MG. From (10.22), we get

ABias.Otp;IG j MG/ D E.Otp;IG/ � tp;G D t�p;IG � tp;G; (10.24)

where tp;G D tp;G.�G/ is the product’s pth-quantile of time to failure respect to the
true model MG, satisfying

� .˛�.tp;GI ı1/; ˇ!/

� .˛�.tp;GI ı1//
D p: (10.25)

Now, we define the following criterion to measure the relative bias of model
misspecification:

�IGjG D
ABias.Otp;IG j MG/

tp;G
: (10.26)

Similarly, let AMSE.Otp;IG j MG/ denote the approximate mean square error of Otp;IG
when it is used to estimate the product’s pth-quantile of time to failure when the true
model is MG. From (10.22) and (10.24), we obtain

AMSE.Otp;IG j MG/ D �.�G W ��
IG/C .t�p;IG � tp;G/

2: (10.27)

To measure the relative variability of model misspecification, we use the
following criterion:

'IGjG D
AMSE.Otp;IG j MG/

AMSE.Otp;G j MG/
: (10.28)
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Note that AMSE.Otp;G j MG/ D AVar.Otp;G/ and

AVar.Otp;G/ D .rtp;G.�G//
T � I�1

G .�G/ � rtp;G.�G/; (10.29)

where IG.�G/ is Fisher information matrix of gamma process, and

rtp;G.�G/ D

�
@tp;G
@˛

;
@tp;G
@ˇ

;
@tp;G
@ı1

T

:

10.5 Data Analysis

Example 1 (the case when ı known) Given ı D 0:33 assume that there are 20
samples (n D 20) with measurement time .t1; : : : ; t8/ D .1; 2; 4; 8; 16; 32; 64; 128/

and the true degradation process follows a gamma process with parameter

�Gjı D .˛; ˇ/ D .15; 450/: (10.30)

Now, if the model is misspecified as inverse Gaussian process, then we have

��
IGjı D .��; ��/ D .0:0333; 0:4299/: (10.31)

Given a critical value ! D � log.0:5/ and p D 0:01 substituting (10.30)
into (10.12) and (10.31) into (10.10), we have t:01;Gjı D 6515:59 and t�

:01;IGjı
D

6242:05 respectively. Now from (10.11) and (10.13), we estimate the relative bias
as

�IGjG;ı D
ABias.Ot:01;IGjı j MG/

t:01;Gjı

D �4:20%:

Also, substituting the same parameter settings into (10.14) and (10.16), we have
AMSE.Ot:01;IGjı j MG/ D 398413 and AMSE.Ot:01;Gjı j MG/ D 323951 Hence,
the relative variability 'IGjG;ı is 398413/323951 = 1.23. From the relative bias and
the relative variability, the effects of the model misspecification here seems to be
intensely serious.

These results demonstrate that the effect of model misspecification on the
accuracy and precision of the product’s 1% of time to failure prediction is serious
under the parameter setting of simulated data, and it is seen that the product’s pth-
quantile of time to failure affect the relative bias and relative variability. In the
following, we will discuss the sensitivity analysis of the relative bias and relative
variability for the product’s pth-quantile of time to failure.

As the same as previous parameters setting, Fig. 10.4 shows that the sensitivity
analysis of relative bias �IGjG;ı for the product’s pth-quantile of time to failure. From
Fig. 10.4, we observe that the relative bias is far away 0 at tail-quantile. Furthermore,
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Fig. 10.4 The sensitivity
analysis of relative bias,
�IGjG;ı
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Fig. 10.5 The sensitivity
analysis of relative variability,
'IGjG;ı
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Fig. 10.5 presents the plot of the sensitivity analysis of relative variability 'IGjG;ı .
The result shows that the relative variability become pretty large when p goes to 0
or 1. Hence, the effects on the accuracy and precision of the product’s pth-quantile
of time to failure prediction become critical when p closes to 0 or 1.

Example 2 (the case when ı unknown) Next, we use the stress relaxation data in
motivating example (where the power functions for each unit are different) for
evaluating the effects of the model misspecification. In this example, we assume
that the true model is MG. The MLE of �G can be determined to be

O�G D . Ǫ ; Ǒ; Oı1/ D .1:6030; 1:8590; 0:3889/: (10.32)

In the following, we treat the above estimate O�G as the true parameter �G. In
addition, based on real data shown in Fig. 10.1 .n D 6; .t1; : : : ; t10/= (46, 108, 212,
344, 446, 626, 729, 927, 1005, 1218)), and substituting �G into (10.18), we can
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Fig. 10.6 The sensitivity
analysis of relative bias, �IGjG
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��
IG D .��; ��; ı�

2 / D .1:0031; 1:0473; 0:3697/: (10.33)

Given a critical value ! D 30 and p D 0:01 substituting (10.32) into (10.25)
and (10.33) into (10.23), we have t:01;G D 3828:74 and t�:01;IG D 2537:35

respectively. Now from (10.24) and (10.26), we estimate the relative bias as

�IGjG D
ABias.Ot:01;IG j MG/

t:01;G
D �33:73%:

Also, substituting the same parameter settings into (10.27) and (10.29), then
we have AMSE.Ot:01;IG j MG/ D 1697277 and AMSE.Ot:01;G j MG/ D 788210

Therefore, the relative variability 'IGjG is 1697277/788210 = 2.15. From the relative
bias (RB) and the relative variability (RV), the effects of the model misspecification
in relaxation data seems to be quite serious. These results demonstrate that the effect
of model misspecification on the accuracy and precision of the product’s 1% of
time to failure prediction is serious under the parameter setting of relaxation data.
Furthermore, Figs. 10.6 and 10.7 also show the sensitivity analysis of RB (�IGjG)
and RV ('IGjG) for the product’s pth-quantile of time to failure, where 0 � p � 1

respectively. From the results, it demonstrates that the RB is very serious at the
tailed-quantile. The same situation also happened to the RV shown in Fig. 10.7.

10.6 Conclusions

Motivated by a real stress-relaxation data, we discuss the effects of model mis-
specification when the true degradation model is a gamma process and an inverse
Gaussian process with an unknown linearization transformation parameter, but is
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Fig. 10.7 The sensitivity
analysis of relative variability,
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misspecified as an inverse Gaussian process. The relative bias and relative variability
are used to measure the effects of such a model misspecification. The results
demonstrate that the effects on the accuracy and precision of the product’s pth-
quantile prediction become critical when p is close to 0 or 1. Finally, one remark is
addressed. The dual problem of this study what is the misspecification effect when
the true degradation model is an inverse Gaussian process; but wrongly misspecified
as gamma degradation process shall also be an interesting and challenging topic for
future research.
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Chapter 11
Practical Applications of a Family
of Shock-Degradation Failure Models

Mei-Ling T. Lee and G. A. Whitmore

Abstract Many systems experience gradual degradation while simultaneously
being exposed to a stream of random shocks of varying magnitude that eventually
cause failure when a shock exceeds the residual strength of the system. This failure
mechanism is found in diverse fields of application. Lee and Whitmore Shock-
degradation failure processes and their survival distributions. Manuscript submitted
for journal publication, 2016) presented a family of system failure models in which
shock streams that follow a Fréchet process are superimposed on a degrading system
described by a stochastic process with stationary independent increments. They
referred to them as shock-degradation failure models. In this article, we discuss
applications of these models and investigate practical issues and extensions that
help to make these models more accessible and useful for studies of system failure.
This family has the attractive feature of defining the failure event as a first passage
event and the time to failure as a first hitting time (FHT) of a critical threshold
by the underlying stochastic process. FHT models have found use in many real-
world settings because they describe the failure mechanism in a realistic manner and
also naturally accommodate regression structures. This article discusses a variety of
data structures for which this model is suitable, as well as the estimation methods
associated with them. The data structures include conventional censored survival
data, data sets that combine readings on system degradation and failure event times,
and data sets that include observations on the timing and magnitudes of shocks. This
assortment of data structures is readily handled by threshold regression estimation
procedures. Predictive inferences and risk assessment methods are also available.
This article presents three case applications related to osteoporotic hip fractures in
elderly women, divorces for cohorts of Norwegian couples, and deaths of cystic
fibrosis patients. This article closes with discussion and concluding remarks.
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11.1 Introduction

Many systems experience gradual deterioration while being exposed simultaneously
to a stream of random shocks of varying magnitude that eventually cause failure
when a shock exceeds the residual strength of the system. This basic situation is
found in many fields of application as illustrated by the following examples:

1. An equipment component experiences normal wear and tear during use but is also
exposed to mechanical shocks from random external forces of varying intensity.
The weakening component finally fails when a sufficiently strong shock arrives
to break it.

2. A new business may experience gradual financial erosion or strengthening
through time while experiencing shocks or disturbances from economic events
that impact its business sector. The business fails if an external shock forces it
into bankruptcy.

3. The human skeleton weakens with age and disease but is also exposed to
occasional traumatic events such as blunt force injuries, stumbles or falls. The
skeleton ‘fails’ when the trauma produces a skeletal fracture.

4. Many lung diseases such as chronic obstructive pulmonary disease (COPD)
or cystic fibrosis involve a progressive deterioration of lung function. The
time course of these diseases is punctuated by occasional acute exacerbations,
brought on by infections or other assaults, that create moments of life-threatening
crisis for the patient. A sufficiently weak patient dies when an exacerbation
overwhelms the body’s defenses.

5. The cohesion of a marriage may gradually weaken or strengthen through time
while simultaneously being subjected to stresses or disturbances of varying
severity, such as financial problems, alcoholism or infidelity. The marriage fails
if a shock is sufficient to break the marriage bond.

In this article, we consider practical applications of a family of shock-degradation
failure models that were initially described in [7]. This family is one in which shock
streams are superimposed on a degrading underlying condition for the system and
failure occurs when a shock causes the weakened system to fail. The family of
models has already found several applications, which will be introduced later. These
shock-degradation models have the attractive feature of defining the failure event
and failure time as the first hitting time (FHT) of a threshold by the underlying
stochastic process. Such FHT models are useful in practical applications because,
first, they usually describe the failure mechanism in a realistic manner and, second,
they naturally accommodate regression structures that subsequently can be analyzed
and interpreted using threshold regression methods. The family encompasses a wide
class of underlying degradation processes, as demonstrated in [7]. The shock stream
itself is assumed to be generated by a Fréchet process that we describe momentarily.
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11.2 Shock-Degradation Failure Models

We now describe the two principal components of this family of shock-degradation
failure models.

11.2.1 The Shock Process

The kind of shocks that impact a system require careful definition so the potential
user of the model will know if it is suitable for a particular application or may
require some extension or modification (of which there are many). As illustrated
by the examples presented in the introduction, a shock refers to any sudden and
substantial force applied to the system. The shock may be a sharp physical force,
a sudden and significant economic disturbance, a physiological reaction to trauma
or assault, or an instance of major emotional distress, depending on the context. We
consider only shocks that create a momentary negative excursion or displacement
in the condition of the system, with the system returning to its previous state or
condition after the shock is absorbed. The shocks are therefore not cumulative in
their impact. For example, if a fall doesn’t produce a bone fracture then there is no
lasting damage. The shock is also concentrated at a ‘moment in time’. This moment
may be a few minutes, hours or days depending on the time scale of the application.
For example, a COPD exacerbation may work itself out over a few days or weeks
but this interval is just a ‘moment’ when considered over a life span of years.

To define a Fréchet shock process, we start with any partition of the open time
interval .0; s� into n intervals .0; t1�; : : : ; .tn�1; tn�, where 0 D t0 < t1 < � � � < tn D

s. The largest interval in the time partition is denoted by � D maxj.tj � tj�1/. Let
Vj be a positive value associated with interval .tj�1; tj�. Assume that the sequence
V1; : : : ;Vn is a set of mutually independent draws from the following cumulative
distribution function (c.d.f.):

P.Vj � v/ D G.v/tj�tj�1 for each j D 1; : : : ; n: (11.1)

Here G.v/ is the cumulative distribution function (c.d.f.) of a Fréchet distribution,
which has the following mathematical form [3]:

G.v/ D exp
h
� .˛=v/ˇ

i
for v > 0; ˛ > 0; ˇ > 0: (11.2)

The Fréchet process fV.t/; 0 < t � sg associated with the generating distribution
in (11.2) is the limiting sequence of V1; : : : ;Vn as the norm of the time partition �
tends to 0 (and n increases accordingly). The process can be extended analytically
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to the whole positive real line by allowing s to increase without limit. At its essence,
the process fV.t/g describes a steam of local maxima in the sense that the maximum
of V.t/ for all t in any open interval .a; b� has the c.d.f. G.v/b�a. Thus, the process
is defined by:

P

�
max
2.0;t�

V./ � v

�
D G.v/t for all v > 0; t > 0: (11.3)

Lee and Whitmore [7] pointed out a number of properties of the Fréchet shock
process. Importantly, they noted that scale parameter ˛ is the exp.�1/th fractile or
37th percentile of the maximum shock encountered in one unit of time, irrespective
of the value of shape parameter ˇ. They also show that larger values of ˇ tighten
the distribution of shock magnitudes about this fixed percentile.

11.2.2 The Degradation Process

The shock-degradation model assumes that the system of interest has an initial
strength y0 > 0 and that this strength degrades over time. The system strength
process is denoted by fY.t/; t � 0g and the degradation process is denoted by
fW.t/; t � 0g. The model assumes fW.t/g is a stochastic process with stationary
independent increments and initial value W.0/ D 0. It also assumes that the
degradation process has a cumulant generating function (c.g.f.) defined on an open
set Z , denoted by �.u/ D ln EfexpŒuW.1/�g. The system strength process at time t
is Y.t/ D y0 expŒW.t/�. This type of degradation process is one in which the system
strength changes in increments that are proportional to the residual strength at any
moment. As a result, the system strength Y.t/ never reaches a point of zero strength
but may approach it asymptotically. Therefore, in this model setting, the system
cannot fail through degradation alone. The failure occurs when a shock exceeds the
residual strength.

Lee and Whitmore [7] considered the following two families of stochastic
processes that possess stationary independent increments as important illustrations
of the class:

Wiener diffusion process. A Wiener diffusion process fW.t/; t � 0g, with
W.0/ D 0, having mean parameter �, variance parameter �2 � 0 and c.g.f.:

�.u/ D ln EfexpŒuW.1/�g D u.�C u�2=2/: (11.4)

Gamma process. A gamma process fX.t/; t � 0g, with X.0/ D 0, having shape
parameter � > 0 and scale parameter 
 > 0. Define W.t/ as the negative of
X.t/, that is, W.t/ D �X.t/ in order to assure that the sample paths of fW.t/g
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are monotonically decreasing. The c.g.f. of W.t/, as a negative-valued gamma
process, has the form:

�.u/ D ln EfexpŒuW.1/�g D � ln

�




C u


for 
C u > 0: (11.5)

Lee and Whitmore [7] also considered the following family of models in which
degradation has a smooth deterministic trajectory:

Deterministic exponential process. System strength follows a deterministic
exponential time path of the form Y.t/ D y0 exp.�t/ where � denotes the
exponential rate parameter.

This family is simple but an adequate practical representation for some important
applications.

11.2.3 The Shock-Degradation Survival Distribution

Lee and Whitmore [7] showed that their shock-degradation model has the following
survival distribution:

F.s/ D EC ŒP.S > sjC /� D EC fexp Œ�cQ.s/�g ; (11.6)

where S denotes the survival time,

c D

�
˛

y0

ˇ
and Q.s/ D

Z s

0

e�ˇW.t/dt: (11.7)

The notation EC denotes an expectation over the set of degradation sample paths
C D fW.t/ W 0 � t � s;W.0/ D 0g. The random quantity Q.s/ is seen to be a
stochastic integral of the strength process, raised to power �ˇ, over time interval
.0; s�. The authors went on to show how the survival function can be expanded
in a series involving expected moments of Q.s/ and derive exact formulas for
these moments. Both a Taylor series expansion and an Euler product-limit series
expansion are considered. The authors pointed out that conditions for the Fubini-
Tonelli Theorem, governing the interchange of integration and expectation operators
for the infinite series implicit in (11.6), fails to hold. Thus, they proposed the use of
the following finite expansions as approximations for the survival function F.s/:

Taylor series kth-order expansion

Fk.s/ D exp.�cm1/

"
kX

`D0

.�1/`
c`

`Š
m�
`

#
: (11.8)
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Euler product-limit kth-order expansion

Fk.s/ D exp.�cm1/

"
kX

`D0

.�1/`
kŠ

`Š.k � `/Š

�c

k

�`
m�
`

#
: (11.9)

Here m1 D EC ŒQ.s/� is the expected first moment of Q.s/ and m�
` D

EC ŒQ�.s/`�; ` D 0; 1; 2; : : : ; are the expected central moments of Q.s/, with
Q�.s/ D Q.s/ � m1. By definition, m�

0 D 1 and m�
1 D 0.

Lee and Whitmore [7] also showed that the following log-survival function is a
lower bound for the logarithm of the exact survival function (11.6):

ln FL.s/ D exp.�cm1/ D exp f�cEC ŒQ.s/�g D �c

�
e�s � 1

�

�
(11.10)

where � is short-hand for �.�ˇ/, the c.g.f. evaluated at �ˇ. This lower bound is
quite tight for degradation processes with modest variability, especially for survival
time below the median. Note that this lower-bound survival function is the leading
expression exp.�cm1/ found in approximations (11.8) and (11.9).

As pointed out by Lee and Whitmore [7], both the exact survival function (11.6)
and its lower bound in (11.10) are over-parameterized when they are estimated from
censored survival data alone. Such data cannot be informative about every feature
of the degradation and shock processes. Readings on the underlying degradation
process fW.t/g or shock process fV.t/g individually are needed to estimate and
validate the full model. This insight is completely reasonable because survival
outcomes alone have limited information content when it comes to separating the
influences of degradation and shocks in the failure mechanism.

A number of simple extensions for the shock-degradation model make it quite
adaptable to practical application. The model can be modified to include a power
transformed time scale, an analytical time scale or an exogenous cure rate, as
may be required by a particular application. For example, a geometric Wiener
degradation model can have an endogenous cure rate if the underlying process is
one of growing strength rather than degrading strength (as in the social context of
marriage dissolution, for example, or the survival of a business organization). An
exogenous cure rate, on the other hand, recognizes that a subgroup of individuals
under study may not be susceptible to failure. Our case applications demonstrate
a power transformed time scale as well as cure rates of both the exogenous and
endogenous variety.

Next, we present a few properties of the lower bound for the survival function
given in (11.10) that are useful in understanding the behavior of the shock-
degradation model where the degradation process is not highly variable.

Hazard function. The hazard function corresponding to the lower-bound sur-
vival function (11.10) is:

hL.s/ D c exp.�s/: (11.11)
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Thus, the hazard is increasing, constant or decreasing exponentially according to
whether � is positive, 0 or negative, respectively. As hL.0/ D c D .˛=y0/ˇ , we
see quite reasonably that the initial risk of failure depends on ˛=y0, the ratio of
the 37th percentile shock to the initial strength of the system, modulated by the
shock shape parameter ˇ.
Probability density function. The probability density function (p.d.f.) of the
lower-bound survival function (11.10) is:

ln fL.s/ D ln hL.s/C ln FL.s/ D ln.c/C �s � c

�
e�s � 1

�

�
: (11.12)

The density function has a positive density of c at the origin and steadily declines
as s increases if � � c. If � > c, the density function has a single mode at
ln.�=c/=�.
Cure rate. The lower-bound survival function in (11.10) has a positive probabil-
ity of never failing if parameter � < 0; specifically, ln P.S D 1/ D c=�.

11.3 Data Structures

Practical applications of shock-degradation models present a wide variety of data
structures. We now elaborate on some of these data structures and their associated
measurement and observation challenges.

11.3.1 Direct Readings on the Degradation Process

We first consider the topic of obtaining direct readings on the degradation process.
As pointed out by Lee and Whitmore [7], readings on their shock-degradation
process are unlikely to be disturbed significantly by the shock process when the
readings are gathered over brief moments of time. Put differently, large shocks
occur so infrequently in the time continuum that they are rarely encountered when
making one or a few observations on the underlying degradation process in a limited
observation period. As a practical illustration, a patient suffering from COPD may
only have an acute exacerbation a few times each year so the patient’s lung condition
on any random day of the year is likely to be close to its chronic stable level.
Moreover, in actual clinical practice, a patient visit for spirometric testing is usually
only scheduled when the patient’s condition is known to be stable.

To see the point mathematically, equation (11.1) gives the following probability
for the maximum shock V observed in a time interval of length �t > 0:

P.V � v/ D G.v/�t D exp
h
��t .˛=v/ˇ

i
: (11.13)
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For fixed values of ˛, ˇ and v > 0, this formula gives a probability that approaches
1 as �t approaches zero. Thus, in this limiting sense, the probability of a material
shock is vanishingly small if the process is observed at any arbitrary moment of
time and, moreover, the probability of any material shock remains vanishingly
small if shocks are observed for any finite number of such moments. Relaxing
this theoretical statement to accept that �t may not be vanishingly small, the
mathematics implies that no shock of practical significance will be present in
any finite number of observation intervals if each interval is sufficiently short.
To illustrate the point numerically, consider a shock level v equal to ˛, the 37th
percentile, and set ˇ to 1. If the unit time is, say, one calendar year and�t D 1=365

(representing one day) then P.V � v/ D 0:997. Thus, on only 3 occasions in 1000
will the maximum shock on that day exceed the 37th percentile maximum shock
for a year. The practical lesson of this result is that significant shocks in a shock-
degradation process occur sparingly and are rarely discovered at random moments
of observation.

11.3.2 Observations on Failure Times, System Strength and
Shocks

The preceding section has focussed on the survival function, which is an essential
mathematical element for analyzing censored survival data for systems. Yet, actual
applications frequently offer opportunities to observe and measure the underlying
strength or degradation of the system at time points prior to failure, at failure, or
at withdrawal from service or end of study. Observations on the strength process
refer to measurements of the intrinsic strength of the system at moments of relative
stability which are little influenced by shocks, as we noted earlier. Thus, in general,
applications may involve censored survival data that are complemented by periodic
readings on the underlying condition of the system.

To expand on the types of observation on degradation that may be available,
we mention that degradation readings might be feasible for all systems under
study. Alternatively, they may be available only for survivors because failure may
destroy the system and make any reading on residual strength of the failing system
impossible. In contrast, readings may be available only for failing items because
measurement of residual strength may require a destructive disassembly of a system,
which will not be feasible for systems still in service.

Our model assumes that strength and, therefore, degradation follows a one-
dimensional process with failure being triggered when system strength is forced to
zero by a shock. In reality, however, strength is usually a complex multidimensional
process. Moreover, readings on the underlying strength may be unavailable. Rather,
investigators may only have access to readings on a marker or surrogate process
so that only indirect measurements of degradation are at hand. The marker process
might be highly correlated with the actual degradation process but a high correlation
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is not assured. For example, electromigration of metallic material in the presence of
an electrical field is a spatially complex degradation process that can cause failure of
electronic components such as integrated circuits. This degradation process might
be monitored by a single performance measure (for example, transported mass) that
only captures the phenomenon in a crude manner. An alternative scenario is one in
which we estimate a surrogate strength process that is a composite index (a linear
regression function, say) constructed from readings on one or more observable
marker processes that can be monitored through time. The practical realities of
the context determine what can be done to produce an adequate model for the
degradation process in the actual application.

Opportunities occasionally arise to observe and measure shocks in a variety
of ways. For example, in COPD, various markers describe the magnitude of an
acute exacerbation including severity of symptoms, recovery time, and the like.
As a practical matter, however, shocks are often not observed if they are minor.
In this situation, it is a left-truncated shock distribution that is observed and the
truncation point may need to be estimated from the data. Again, considering COPD
exacerbations as an illustration, these may not be measured unless they are above a
threshold of severity; for instance, severe enough to require prescription medication
or hospitalization.

The most general data situation encountered in practical application is one in
which survival times and readings on degradation are jointly observed for individual
systems. The data record for each individual system is a longitudinal one that
consists of a sequence of readings (none, one, two, or more) on the strength or
degradation process, gathered at irregularly spaced time points, together with a
survival outcome (either a censoring time or a failure time). The readings on the
strength or degradation process may be observations on the actual process or on
one or more marker processes. A regression structure can be introduced if the
setting provides data on relevant covariates for system parameters. In this situation,
maximum likelihood estimation can be used. The evolving state or condition of
a system often possesses the Markov property, which allows a tidy handling of
longitudinal data under the threshold regression approach. Published methods for
threshold regression with longitudinal data found in [5] have immediate application
in this situation, as one of our later case applications will demonstrate. Applications
that involve joint observation of survival and degradation require mathematical
extensions of previous results [6, 8]. In the next section, we summarize pertinent
results from [7].

11.4 Joint Observation of Survival and Degradation

We now consider the data elements found in a longitudinal record consisting of
periodic readings on system degradation, ending with either a failure event or a
survival event (that is, a right-censored failure event). Our line of development
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follows the method of Markov decomposition proposed in [5]. We limit our study
now to the lower-bound survival function in (11.10). The likelihood function for
a longitudinal record will be a product of conditionally independent events of two
types. The first type is a failure event. In this event, the system has an initial strength,
say y0, and then fails at time s later. The likelihood of this event is given by a p.d.f.
like that in (11.12). The second type is a survival event; more precisely, an event
in which the system has an initial strength, say y0, survives beyond a censoring
time s (that is, S > s) and has a recorded strength at time s of, say, y > 0.
Note that y D Y.s/ D y0 expŒW.s/� D y0 exp.w/, where w denotes the amount
of degradation corresponding to strength y. Thus, this second event involves the
following set of strength sample paths: C � D fY.t/ W 0 � t � s;Y.0/ D y0;Y.s/ D

y D y0 exp.w/g; in other words, the sample paths are pinned down at two end
points but are otherwise free to vary. The likelihood of this second type of event
is P fS > s;W.s/ 2 Œw;w C dw�g. This probability can be factored into the product
of a conditional survival probability and the p.d.f. for degradation level w at time s,
as follows:

P fS > s;W.s/ 2 Œw;w C dw�g D P.S > sjw/g.w/dw D F.sjw/g.w/dw: (11.14)

The p.d.f. g.w/ is known from the specified form of the degradation process. The
conditional survival function F.sjw/ is less straightforward and has yet to be derived
in a general form for the shock-degradation model. Lee and Whitmore [7] presented
a more limited but very useful mathematical result which we now employ. For a
degradation process with modest variability, they noted that a lower bound on the
survival function is quite tight. For a pinned degradation process, they showed:

ln F.sjw/ D ln EC � fexp Œ�cQ.sjw/�g � �cEC � ŒQ.sjw/� D ln FL.sjw/; (11.15)

where c and Q.s/ are defined as in (11.7). Expectation EC � ŒQ.sjw/� does not
have a general closed form for the family of degradation processes with stationary
independent increments. However, Lee and Whitmore [7] derived a closed form for
ln FL.sjw/ in the important case where the degradation process is a Wiener process.
The derivation builds on properties of a Brownian bridge process. Their formula for
the lower bound of the survival function for a pinned Wiener process is as follows:

ln FL.sjw/ D �c

s
2�s

ˇ2�2
exp.z21=2/ Œ˚.z2/ � ˚.z1/� ; (11.16)

where

z1 D
w � ˇ.�2=2/s

p
�2s

; z2 D
w C ˇ.�2=2/s

p
�2s

;
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and ˚.�/ denotes the standard normal c.d.f.. The p.d.f. of the degradation level W.s/
at time s in the Wiener case is given by

g.w/ D
1

p
2��2s

expŒ�.w � �s/2=2�2s�: (11.17)

Thus, (11.16) and (11.17) are the two components required for evaluating the joint
probability in (11.14) for lower-bound survival of a system beyond a censoring time
S > s and having the degradation level w at time s.

11.5 Case Applications

We next present three case applications of shock-degradation models. The first
application concerns osteoporotic hip fractures and has been published elsewhere.
We summarize it briefly to demonstrate the wide range of potential applications.
The second application looks at Norwegian divorces. It has not been published
previously so we present more details on its development and findings. The third
application considers survival times for cystic fibrosis patients. A deterministic
version of the shock-degradation model was previously published for this case.
We present an extension of the published model that incorporates explicitly the
stochastic time course of patient lung function.

11.5.1 Osteoporotic Hip Fractures

Osteoporotic hip fractures in elderly women were studied by He et al. [4] using this
shock-degradation model in conjunction with threshold regression. They studied
times to first and second fractures. The underlying strength process in their model
represented skeletal health. The shock process represented external traumas, such
as falls and stumbles, which taken together with chronic osteoporosis, might trigger
a fracture event. Threshold regression was used to associate time to fracture with
baseline covariates of study participants.

The system strength model used by He et al. [4] is the deterministic exponential
process that we described in Sect. 11.2.2, for which the log-survival function is:

ln F.s/ D

�
˛

y0

ˇ �e�ˇ�s � 1

ˇ�

�
: (11.18)

The authors equated parameters ln.y0/ and � to linear combinations of covariates
while fixing the remaining parameters. The data set consists of censored times to
first and second fractures. The models were fitted by maximum likelihood methods
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using (11.18). Technical details and discussion of the study findings can be found in
the original publication.

11.5.2 Norwegian Divorces

Extensive data on the durations of marriages contracted in Norway are found in [9].
The data for the 1960, 1970 and 1980 marriage cohorts were presented and carefully
analyzed by Aalen et al. [1]. They used the data to demonstrate various statistical
concepts, models and techniques related to time-to-event data analysis. We use the
same cohort data here to demonstrate the shock-degradation model. In this example,
only censored survival data for the marriages are available. The data set has no
longitudinal measurements on the strength of the marital unions themselves. Recall
our explanation in the introduction that marriage might be viewed as a shock-
degradation process in which some marriages actually tend to strengthen through
time. In our model, a marriage is subjected to a stream of minor and major shocks
and, if the marriage fails, the failure will occur at the moment of a shock that exceeds
the residual strength of the marital bond. The data appear in Table 5.2 of [1]. The
marriage duration numbers represent completed years of marriage. The midpoints of
the yearly intervals are taken as the durations for divorces that occurred in the year.
The marriage cohorts ignore cases lost to follow-up because of death or emigration.
Marriages lasting more than 35, 25 and 15 years for the 1960, 1970 and 1980 cohorts
are censored. The respective sample sizes are 23,651, 29,370 and 22,230 for these
three cohorts.

We use the maximum likelihood method to estimate our model. We assume at
the outset that the degradation process is a Wiener diffusion process for which � D

�.�ˇ/ D �ˇ�Cˇ2�2=2. We use the lower-bound log-survival function (11.10) and
its corresponding log-hazard function (11.11) in the sample likelihood calculation.
We expected this bound to be reasonably tight to the actual survival function in
this application and our sensitivity analysis discussed shortly justifies the approach.
We incorporate regression functions for model parameters. Parameters are made to
depend on linear combinations of covariates with logarithmic link functions being
used for positive-valued parameters. As only censored survival data are available,
some parameters of the process model cannot be estimated. Referring to the survival
function in (11.10) for the Wiener case, we see immediately that � and � for the
process cannot be estimated separately. Hence, we can only estimate the parameter
	 D � � ˇ�2=2. Further, the survival function depends on ˛ and y0 only through
the ratio ˛=y0. In terms of logarithms, the ratio becomes ln.˛/� ln.y0/. Thus, these
two logarithmic regression functions cannot be distinguished mathematically and
are not estimable by maximum likelihood unless the regression functions depend
on different sets of covariates. This mathematical result points out the practical
reality that censored survival data cannot separate the effect of a covariate on
the degradation process from its effect on the scale parameter ˛ of the shock
process when the covariates act multiplicatively, as implied by the use of log-linear
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regression functions. We therefore do not estimate ˛ but rather set its value to 1.
As ˛ is the 37th percentile of the shock distribution irrespective of ˇ, setting ˛ to
1 makes this percentile the unit measure for the latent degradation process. Even
with ˛ set to 1, parameters ˇ, y0 and 	 cannot be independently estimated from
censored survival data if all three have intercept terms. We therefore fix one more
parameter and choose to set 	 D 0:001. A positive value is chosen in anticipation
that some marriages are not prone to fail. The magnitude 0.001 is chosen to produce
a convenient scaling of the parameter values. In the end, therefore, only parameters
ˇ and y0 will be estimated for the principal model. In addition, however, we also
wish to extend the model using a power transformation of the time scale, that is,
a transformation of form s D t� with � > 0. We estimate power exponent �
using a logarithmic link function. The power transformation implies that marriage
breakdown occurs on a time scale that is accelerating or decelerating relative to
calendar time depending on the value of exponent � .

Given the preceding specifications for the model, the sample log-likelihood
function in this case application has the form:

ln L.�/ D
X
i2N

.˛=y0/
ˇ Œexp.�ˇ	si/ � 1� =.ˇ	/

C
X
i2N1

ˇ ln.˛=y0/ � ˇ	si C ln.�/C .� � 1/ ln.ti/: (11.19)

Here � denotes the vector of regression coefficients. Index set N includes all couples
in the sample data set and index set N1 is the subset of couples for whom divorce
durations are observed. The observed or censored marriage duration for couple i
is denoted by ti and si D t�i is the power-transformed duration. The terms in the
first sum of (11.19) are log-survival probabilities. Those in the second sum are log-
hazard values, taken together with the values ln.�/C .� � 1/ ln.ti/ which represent
the log-Jacobian terms for the power transformation. The log-survival probabilities
and log-hazard values are based on formulas for the lower-bound found in (11.10)
and (11.11), respectively.

Table 11.1 presents the threshold regression results for the Norwegian marriage
duration data. The parameters ˇ and � are made to depend on indicator variables for
the marriage cohort through log-linear regression functions. The assumption is that
socio-economic trends in Norway may have changed marriage stability over these
three decades. The estimate for the initial marital strength y0 is 3.871. This value is
in units of the 37th percentile annual maximum shock. In other words, the initial
marital strength is just under four modest shocks away from divorce. Estimates
of ˇ, the shape parameter for shocks, vary slightly (but significantly) across the
cohorts, being 4.967 in 1960, 4.655 in 1970 and 4.744 in 1980. The magnitudes of
this parameter suggest that modest shocks are numerous but extreme shocks that
threaten a marriage are rare. For example, given the estimate for ˇ in 1960 (4.967),
the initial marital strength of 3.871 represents the 99.9th percentile of the maximum
annual shock. Estimates of the power exponent � for the time scale transformation
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Table 11.1 Threshold
regression estimates for the
shock-degradation model
applied to duration data for
Norwegian marriage cohorts
from 1960, 1970 and 1980.
The 1960 cohort serves as the
reference

Parameter Estimated
and covariate reg. coef. Std. err. P-value

ln.y0/

intercept 1.354 0.0588 0.000

ln.ˇ/

1970 cohort �0.065 0.0042 0.000

1980 cohort �0.046 0.0039 0.000

intercept 1.603 0.0375 0.000

ln.�/

1970 cohort 0.031 0.0096 0.001

1980 cohort 0.218 0.0091 0.000

intercept 0.527 0.0098 0.000

also vary moderately (but significantly) across the cohorts, being 1.693 in 1960,
1.746 in 1970 and 2.106 in 1980. The estimates indicate an accelerating analytical
time. The implication is that shock patterns will occur on a more compressed time
scale as the marriage lengthens, for those marriages that eventually end in divorce.
Interestingly, the power exponent is increasing with the decade, suggesting that the
shock patterns are accelerating across cohorts (so extreme shocks of given size occur
more frequently in calendar time). Finally, the proportions of marriages that would
eventually end in divorce if the time horizon were extended indefinitely (and spousal
deaths are ignored) are 0.215 for 1960, 0.326 for 1970 and 0.290 for 1980. We
looked at asymptotic correlation coefficients for parameter estimates for suggestions
of multicollinearity. The output shows one large correlation coefficient, namely,
�0:998 for the intercepts of ln.ˇ/ and ln.y0/. This large value indicates that the
magnitudes of errors in these two estimates are almost perfectly offsetting; in other
words, the pattern of shocks and initial marital strength are mathematically difficult
to distinguish when only censored survival data are available.

Figure 11.1 compares the Kaplan-Meier plots and the fitted shock-degradation
survival functions for marriage duration in the Norwegian marriage cohorts. The
fits are quite good, considering that only covariates for the marriage cohort are
taken into account. The slight lack of fit that does appear for the shock-degradation
model may be produced in part by administrative artifacts that cause the timing of
a divorce decree to deviate from our theoretical survival model. Under Norwegian
law, a divorce can be granted under several conditions. Spouses can divorce after
legal separation for one year or without legal separation if they have lived apart for
two years. Divorce can also be granted in cases of abuse or if spouses are closely
related. These laws have the effect of lengthening the recorded marriage duration
beyond the first hitting time for the threshold. Likewise, administrative and judicial
delays may further delay divorce decrees and, hence, lengthen duration. We do not
try to model these administrative influences.
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Fig. 11.1 Comparison of Kaplan-Meier plots and fitted shock-degradation survival functions for
marriage duration in three Norwegian marriage cohorts

We conducted a sensitivity analysis on the model to see if the variance parameter
�2 of the Wiener process might differ from zero and could be estimated. As the
model is already parameter rich for a case application that uses only censored
survival data, we take the fit of the lower-bound survival model as a starting
point. We then fix the regression coefficients for the ˇ parameter at their lower-
bound fitted values. Next, we set aside the fixed value of 0.001 for 	 and allow
� and � to vary in the model (recall that 	 D � � ˇ�2=2). A 4th-order Euler
product-limit approximation for the true survival function is used. Starting with
� D 0:001 and � D 0, the sample log-likelihood begins to decline slowly as �
increases away from zero, which indicates that the lower-bound fitted model cannot
be improved. Specifically, the sample log-likelihood for the fitted lower-bound
model in Table 11.1 is �94; 783:6. This log-likelihood declines to �94; 787:2 as
� increases from 0 to 0.009. The estimate of � simultaneously increases from 0.001
to 0.00117. Estimates of the other parameters, ln.y0/ and the regression coefficients
for ln.�/, change little as � and � change. As anticipated by the theoretical analysis
in Lee and Whitmore [7], the numerical analysis reaches a breakdown point as the
variability of the degradation process increases. In this case, the breakdown occurs
just beyond � D 0:009, which is a modest level of variability in this case setting.
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11.5.3 Survival Times for Cystic Fibrosis Patients

Aaron et al. [2] used the shock-degradation model, together with threshold regres-
sion, to assess one-year risk of death for cystic fibrosis (CF) patients. Their data
were drawn from the Canadian registry of cystic fibrosis patients. They used the
version of the model having a deterministic exponential degradation trajectory. The
authors developed a CF health index comprised of risk factors for CF chronic health,
including clinical measurements of lung function. This CF health index was the
strength process in their model. The shock process represented acute exacerbations,
both small and large, to which CF patients are exposed. Death is triggered when an
exacerbation overwhelms the residual health of a CF patient. The authors’ modeling
focussed on short-term risk of death and produced a risk scoring formula that could
be used for clinical decision making.

We extend the model in Aaron et al. [2] and consider the estimation of a
stochastic degradation process for cystic fibrosis. For this task, we have created
a synthetic data set that imitates data from a CF registry sufficiently well to
demonstrate the technicalities of our modeling approach. Briefly, our synthetic data
set has 2939 cystic fibrosis patients who have lung function measured during regular
clinic visits that are usually about one year apart. Patients are assumed to be stable
during these scheduled visits, that is, they are not experiencing an acute exacerbation
at the time of the visit. Our synthetic data set has 40,846 scheduled clinic visits
for all patients combined and includes 532 patient deaths. As shown by Aaron
et al. [2], the health status of a cystic fibrosis patient is affected by many risk
factors but the most important by far is the lung measurement forced expiratory
volume in one second (FEV1), expressed as a fraction or percentage of the same
measurement for a healthy person of the same height, age and sex. We refer to
the fractional value as FEV1pred, which stands for FEV1 predicted. We take the
patient’s FEV1pred as our strength measure and assume that its logarithm follows
a Wiener diffusion process. Again, following Aaron et al. [2], we note that each
patient has a longitudinal record of regular lung function measurements. We use
the Markov decomposition approach to decompose each longitudinal record into a
series of individual records as described in [5]. At each scheduled clinic visit, the
patient either survives until the next scheduled visit or dies before the next visit.
We therefore can estimate our Wiener shock-degradation model using maximum
likelihood methods incorporating both censored survival times and degradation
readings. We use the lower-bound results found in (11.16) and (11.17) to implement
the maximum likelihood estimation, imitating the procedure in [2]. The parameters
to be estimated by threshold regression methods for this shock-degradation model
include ˛ and ˇ for the shock process and � and � for the Wiener degradation
process. Note that y0 and w are known because strength process Y.t/ is equated with
the patient’s evolving FEV1pred levels.
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Table 11.2 Threshold regression estimates for a shock-degradation model applied to survival
times of cystic fibrosis patients for a synthetic data set. The regression functions have no covariates

Parameter Estimate Std. err.

ln.˛/ �2.042 0.0154

ln.ˇ/ 1.313 0.0188

� �0.0448 0.0012

ln.�/ �1.445 0.0035

The log-likelihood function to be maximized in this case application is the
following:

ln L.�/ D
X
i2N0

�
ln FL.sijwi/C ln g.wi/

�
C
X
i2N1

ln fL.si/: (11.20)

Here � D .˛; ˇ; �; �/ denotes the vector of parameters to be estimated. Index set
N0 includes all clinic visits i in which the patient survives until the next scheduled
clinic visit at time si and has a log-FEV1pred reading of wi on that next visit. Index
set N1 is the set of clinic visits i in which the patient dies at time si after the visit (and
before the next scheduled visit). Quantities ln FL.sijwi/ and ln g.wi/ are calculated
from formulas (11.16) and (11.17), respectively. Quantity ln fL.si/ is calculated from
formula (11.12).

Table 11.2 presents the parameter estimates. The sample size is n D 40; 846

clinic visits. The table shows logarithmic estimates for ˛, ˇ and � . The maximum
likelihood estimates for ˛ and ˇ are 0.130 and 3.72, respectively. As ˛ represents
the 37th percentile of maximum annual shocks for a Fréchet process, our estimate
for ˛ suggests that cystic fibrosis patients have acute exacerbations that are more
severe than a decline of 13% points in FEV1pred in about 2 of every 3 years on
average. Given the estimates for both parameters, one can calculate from (11.2) that
the 90th percentile of the most severe annual exacerbation of a cystic fibrosis patient
is about 24% points of FEV1pred. The estimate of � for the Wiener degradation
process suggests that FEV1pred declines about 4.48% annually in cystic fibrosis
patients. The estimate for � is 0.236. This value indicates that log-FEV1pred varies
annually by this amount, which is equivalent to average annual variation of about
27% in FEV1pred. Finally, our estimation routine also generates an estimate of the
asymptotic correlation matrix of the parameter estimates (not shown). The matrix
is helpful in checking for multicollinearity. The only correlation coefficient that is
moderately large is that for the estimates of ln.˛/ and ln.ˇ/, which happens to be
0.65. The number shows that estimation errors for these parameters tend to lie in the
same direction, that is, tending to be positive or negative together.
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11.6 Discussion and Concluding Remarks

As we have illustrated, many systems in diverse fields of application degrade with
time, asymptotically approaching a point of zero strength. These systems are often
simultaneously exposed to a stochastic stream of shocks that momentarily weaken
the system as they arrive. These systems ultimately fail when an incident shock
exceeds the residual strength of the system. Thus, degradation is a contributing
factor to failure but it is a shock that delivers the coup de grâce. Our illustrations
also show that in certain circumstances a system that is strengthening rather than
deteriorating with time may also fail because a sufficiently severe shock overwhelms
its strength.

The survival function in (11.6) is based on a system strength process whose
logarithm has stationary independent increments. This model formulation happens
to be mathematically conjugate with the Fréchet process and, hence, yields a tidy
mathematical form. If the geometric aspect is dropped in favor of a strength process
that itself has stationary independent increments then some tractable forms of
the survival function can be derived. For example, a deterministic linear strength
process is a simple example. We do not develop or explore this alternative class of
models here.

The shock stream assumed in our stochastic model does not produce cumulative
damage, by assumption. In reality, however, there are shock systems that generate
cumulative damage, such as fluctuating stresses that produce crack propagation
in materials. A practical approximation to a cumulative damage process can be
obtained within our modeling approach by assuming that the degradation process
itself in our model is a monotone stochastic process, like the gamma process
for example. Again, however, it would be a shock, superimposed on cumulative
damage, that causes failure.
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Chapter 12
Statistical Methods for Thermal Index
Estimation Based on Accelerated Destructive
Degradation Test Data

Yimeng Xie, Zhongnan Jin, Yili Hong, and Jennifer H. Van Mullekom

Abstract Accelerated destructive degradation test (ADDT) is a technique that is
commonly used by industries to access material’s long-term properties. In many
applications, the accelerating variable is temperature. In such cases, a thermal index
(TI) is used to indicate the strength of the material. For example, a TI of 200 ıC
may be interpreted as the material can be expected to maintain a specific property
at a temperature of 200 ıC for 100,000 h. A material with a higher TI possesses
a stronger resistance to thermal damage. In literature, there are three methods
available to estimate the TI based on ADDT data, which are the traditional method
based on the least-squares approach, the parametric method, and the semiparametric
method. In this chapter, we provide a comprehensive review of the three methods
and illustrate how the TI can be estimated based on different models. We also
conduct comprehensive simulation studies to show the properties of different
methods. We provide thorough discussions on the pros and cons of each method.
The comparisons and discussion in this chapter can be useful for practitioners and
future industrial standards.

Keywords Degradation path • Long-term properties • Material durability •
Material reliability • Monotonic splines • Semiparametric methods

12.1 Introduction

12.1.1 Background

Polymeric materials are common in various industrial applications. In current indus-
trial practice, a thermal index (TI) is often used to rate the long-term performance
of polymeric materials. As specified in industrial standard UL 746B [1], the TI of a
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polymeric material can be considered as a measure of the material’s ability to retain
a specific property (e.g., physical or electrical properties) under exposure to elevated
temperatures over a prolonged period of time (e.g., 100,000 h). The interpretation
of the TI is as follows. A material with a TI value of 200 ıC is expected to maintain
the specific property for exposure to a temperature of 200 ıC for 100,000 h. Thus, a
material with a higher TI rating is expected to demonstrate a stronger resistance to
thermal exposure as compared to those with a lower TI rating. The TI can also be
used to determine suitability for a particular application, and for comparing multiple
materials. When a material is introduced to a field, its TI can be compared to a list
of similar materials with known TI values, which can give insights for the long term
performance of the new material. Therefore, estimating the TI for a material is an
important task in evaluating material performance.

To estimate the TI, data that track the material property over time need to be
collected. Such data are referred to as degradation data. However, the degradation
of the material performance is often gradual and can take years to observe
deterioration. To collect information in a timely manner, accelerated degradation
test (ADTs) are often used. In the setting of TI estimation, temperature is the
accelerating variable. When measuring the material performance, such as the tensile
strength, the sample will be stretched until it breaks. Because the sample is destroyed
in the testing procedure, only one measurement can be collected from one sample.
Such type of ADT is called an accelerated destructive degradation test (ADDT).
Due to the nature of the testing, ADDT is a commonly used technique for evaluating
long-term performance of polymeric materials. Examples of ADDT data include the
Adhesive Bond B data in [2], the Polymer data in [3], the Seal Strength data in [4],
and the Formulation K data in [5].

To use the ADDT data for the TI estimation, a statistical method is needed. In the
literature, there are three methods available to estimate the TI based on ADDT data,
which are the traditional approach based on the least-squares method, the parametric
approach based on maximum likelihood (ML) method, and the semiparametric
approach based on splines method. The traditional procedure is the one that is
currently specified in the industrial standards UL 746B [1], which is commonly
used to evaluate material in applications. The traditional approach is a two-step
approach using polynomial fittings and least-squares methods. In the statistical
literature, the parametric method is also commonly used to model the ADDT data,
and the ML method is used for parameter estimation. Recently, a semiparametric
method was proposed to analyze ADDT data in Xie et al. [5]. The basic idea
of the semiparametric method is to use monotonic splines to model the baseline
degradation path and use a parametric method to model the effect of accelerating
variable.

The objective of this chapter is to provide a comprehensive review of the three
methods and illustrate how the TI can be estimated based on different methods.
We also conduct comprehensive simulation studies to show the properties of
different methods. Then, we provide thorough discussions on the pros and cons
of each method. The comparisons and discussions in this chapter can be useful for
practitioners and future industrial standards.
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12.1.2 Related Literature

Degradation data were used to access products and material reliability in early
work such as Nelson [6, Chapter 11], and Lu and Meeker [7]. There are two types
of degradation data: repeated measures degradation test (RMDT) data and ADDT
data. For RMDT data, multiple measurements can be taken from the same unit. For
ADDT data, only one measurement can be taken from the same unit, due to the
destructive nature of the measuring procedure. Different types of methods are used
to analyze RMDT and ADDT data. The majority of the degradation literature is on
RMDT data analysis, features two major classes of models: the general path model
(e.g., [8] and [9]) and stochastic process models (e.g., [10, 11], and [12]). A review
of statistical degradation models and methods are available in Meeker et al. [13],
and Ye and Xie [14].

This chapter focuses on the analysis of ADDT data and their corresponding TI
estimation procedures. Regarding ADDT analysis, the traditional approach for TI
estimation using the least-squares method is described in UL 746B [1]. Parametric
models are quite common in ADDT analysis, for example, in Escobar et al. [2], Tsai
et al. [3], and Li and Doganaksoy [4]. King et al. [15] applied both the traditional and
parametric approaches to ADDT data analysis and TI estimations. King et al. [15]
also did comprehensive comparisons for the two approaches in TI estimations. Xie
et al. [5] developed a semiparametric approach for ADDT data analysis, in which the
monotonic splines are used to model the baseline degradation path and the Arrhenius
relationship is used to describe the temperature effect. However, the TI estimation
procedure was not developed in [5].

In this chapter, we develop the TI estimation based on the semiparametric
method after providing a review of the existing methods in TI estimations. We
also conduct comprehensive simulations to compare the three methods. In terms
of software implementation, Hong et al. [16] implements the three methods and
their corresponding TI estimation procedures into an R package “ADDT”. Details
and illustrations of the R package ADDT is available in Jin et al. [17].

12.1.3 Overview

The rest of this chapter is organized as follows. Section 12.2 introduces the
concept of ADDT, examples of ADDT data, and the concept of TI. Section 12.3
presents the three different methods that can be used to model ADDT data and
their corresponding procedures for TI estimation. The three different methods are
the traditional method, the parametric method, and the semiparametric method.
Section 12.5 conducts extensive simulations to compare the performance of the
estimation procedures. Section 12.6 provides a comprehensive discussion on the
pros and cons of each method and suggestions for practitioners.
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12.2 Accelerated Tests and Thermal Index

In this section, we give a more detailed introduction to ADDT and TI.

12.2.1 Test Plans

The test plan of an ADDT consists of the temperature levels, the measuring time
points, and the number of samples allocated to each combination of the temperature
levels and measuring time points. Table 12.1 illustrates a test plan for an ADDT.
Four elevated temperature levels are considered in the test, which are 250 ıC,
260 ıC, 270 ıC, and 280 ıC. There are five measuring time points considered in
this plan, which are 552, 1008, 2016, 3528, and 5040 h. At the initial time (time
zero), there are ten sample units tested under the normal temperature level to serve
as the baseline. For each combination of temperature level and time points, there
are five sample units tested to obtain the measurements for the material property.
To measure some properties like tensile strength, the unit will be destroyed after
the measurement. Note that equal sample allocation is used in Table 12.1. However,
unequal sample size allocation is also seen in practice. See King et al. [15] for more
detailed discussion on the test plans.

12.2.2 Data and Notation

The ADDT data record the material property (e.g., the tensile strength of the
material) for each unit. Here, we use the Adhesive Bond B example in Escobar
et al. [2] to illustrate the ADDT data. Figure 12.1 shows a scatter plot of the
Adhesive Bond B data. In general, we observe that there is a decreasing trend over
time, while for higher temperature level, the rate of decreasing is faster than those
under lower temperature levels.

Here we introduce some notations to the ADDT data that will be necessary for
the development of the statistical methods. Let n be the number of temperature levels
and ni be the number of measuring time points for temperature level i. The value of

Table 12.1 Illustration of
sample size allocation for an
ADDT

Temperature Measuring points (hours)

(ıC) 0 552 1008 2016 3528 5040

– 10

250 5 5 5 5 5

260 5 5 5 5 5

270 5 5 5 5 5

280 5 5 5 5 5
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Fig. 12.1 Scatter plot of the Adhesive Bond B data. The x-axis is time in hours and the y-axis is
strength in Newtons

the ith temperature level is denoted by Ai. The corresponding time points are denoted
by tij, j D 1; � � � ; ni. Note that it is possible that the measure time points are different
from different temperature levels. Let nij be the number samples tested at time tij for
temperature level i. Note that the number of samples tested at each time point tij can
also vary. We denote the degradation measurement by yijk for the kth sample at level
i of the temperature level i and measuring time tij, i D 1; � � � ; n, j D 1; � � � ; ni, and
k D 1; � � � ; nij. The total number of measured samples are N D

Pn
iD1

Pni
jD1 nij.

12.2.3 Thermal Index

In this section, we introduce the general concept of the thermal index (TI). In the
following, we will use the tensile strength as the interested material property. In a
common framework of degradation modeling, the failure time is defined as the first
time when the degradation level passes the failure threshold. For example, a failure
is said to have occurred when the tensile strength of a sample reaches a certain
percentage (e.g., 50%) of the original tensile strength.
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For degradation processes that are accelerated by temperature, the Arrhenius
relationship is widely used to model the relationship between the degradation and
temperature. In particular, the Arrhenius model uses the following transformed
temperature,

h.A/ D
�11605

A C 273:16
; (12.1)

where A is the temperature value in degrees Celsius, the constant 11605 is the
reciprocal of the Boltzmann’s constant (in units of eV). Note that the constant
273.16 is for converting the Celsius temperature scale to the Kelvin temperature
scale. For the convenience of modeling, we define,

x D
1

A C 273:16
; and xi D

1

Ai C 273:16
:

Through the modeling of the degradation data, which will be detailed in Sect. 12.3,
the mean time to failure at x can be described by a relationship m.x/. For targeted
time to failure td (e.g., td D 100;000 h), the corresponding temperature level R can
be obtained by solving xd from m.xd/ D td. Because

xd D m�1.td/ D
1

R C 273:16
;

we obtain the corresponding temperature value R as

R D
1

m�1.td/
� 273:16: (12.2)

The temperature level R in (12.2) is defined as the TI for the material. Figure 12.2
illustrates the temperature-time relationship based on the Arrhenius relationship and
the corresponding TI.

Note that the targeted time to failure is not required to be fixed at 100;000 h. For
example, if there is an existing material with a known TI (e.g., 220 ıC), its targeted
time to failure told

d can be obtained. For a new material, its TI can be obtained by
using told

d as the targeted time. In this case, the TI for the new material is called the
relative TI because it compares to an existing material; see King et al. [15] for more
details.

12.3 Statistical Methods for Thermal Index Estimations

This section covers the statistical methods for the TI estimation. We first review the
traditional and the parametric methods as described in King et al. [15]. Then, we
derive the TI estimation based on the semiparametric model in Xie et al. [5].
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Fig. 12.2 Illustration of temperature-time relationship and TI. The x-axis is temperature A on the
scale of 1=.A C 273:16/, and the y-axis is time in hours on base 10 logarithm scale

12.3.1 The Traditional Method

The traditional method is the methodology that is described in UL 746B [1],
which is the currently accepted standard for ADDT data analysis in industry. The
procedure essentially is a two-step approach. The basic idea is to find an appropriate
model to link the time to failure to the level of degradation, and then estimate the
parameters by applying the least-squares technique. The estimated failure time is
done by interpolating the fitted curves. If there is no material-specific knowledge
on the degradation relationship, the UL standards recommend using a third-order
polynomial fitting.
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Specifically, for temperature level i, one first computes the points ftij; yij�g, j D

1; � � � ; ni, where

yij� D
1

nij

nijX
kD1

yijk

is the average of the batch of observations at time tij for temperature level i. A third
order polynomial a0i C a1it C a2it2 C a3it3 is used to fit the data points ftij; yij�g,
j D 1; � � � ; ni, separately for each temperature level. Here, .a0i; a1i; a2i; a3i/

0 are the
polynomial coefficients to be estimated by the least-squares method.

After obtaining the estimates of .a0i; a1i; a2i; a3i/
0, the mean failure time mi for

temperature level i can be obtained through interpolation. In particular, one needs to
solve,

a0i C a1imi C a2im
2
i C a3im

3
i D yf ;

where yf is the failure threshold. The failure threshold is usually set at 50% of the
initial strength, though different values may be set according to the specification of
different applications.

Through the polynomial interpolation, a set of data points fxi;mig; i D 1; � � � ; n
are obtained where xi is the transformed temperature as defined in (12.1). The least-
squares method is used again to fit a straight line to data points fxi; log10.mi/g; i D

1; � � � ; n. That is, to fit the following model,

log10.mi/ D ˇ0 C ˇ1xi; i D 1; � � � ; n;

to obtain the estimates of ˇ0 and ˇ1. Note that the base 10 logarithm is used here
because it is more popular in engineering literature. In the traditional method the
temperature-time relationship is represented as

log10Œm.x/� D ˇ0 C ˇ1x: (12.3)

With the fitted temperature-time relationship in (12.3), the TI based on the tradi-
tional method is obtained as

R D
ˇ1

log10.td/ � ˇ0
� 273:16 :

where td is the target time and td D 100;000 is often used.
The traditional method is fairly intuitive and straightforward to compute, which is

an advantage. Here we provide some other considerations for the traditional method.
The interpolation based method requires the degradation level to reach the failure
threshold so that mi can be obtained for level i. Otherwise, all data collected at level
i can not be used for analysis. The number of temperature levels for the ADDT is
usually small (i.e., around 4). Thus only a few number of observations are available
to fit the model in (12.3). Furthermore, the two-step approach detailed in the current
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standard does not specify a method to quantify the statistical uncertainty associated
with the TI estimation. For ADDT data, one would expect higher temperature levels
to yield shorter lifetimes. Due to randomness in the data and the flexibility of
polynomials, the traditional method can produce estimated failure times that are
not monotonically increasing with temperature, which would usually be unrealistic.
With parametric models, most of the concerns are avoided.

12.3.2 The Parametric Method

In statistical literature, parametric methods are prevalent in ADDT data analysis
such as in [2, 3], and [4]. In the parametric method, the primary method for
estimation and inference is based on a parametric model and maximum likelihood
theory. Here, we give a brief description for the parametric method summarized in
King et al. [15].

In this setting, the parametric model for the degradation measurement is
represented as

yijk D �.tijI xi/C �ijk; (12.4)

where �.tijI xi/ is the underlying degradation path and �ijk is an error term. Since the
tensile strength is decreasing over time, the function�.tI xi/ is specified as a decreas-
ing function of t. Consequently, a higher temperature usually lead to a higher rate of
degradation. The function �.tI xi/ is also a decreasing function of the temperature.

For a specific x, the mean time to failure m.x/ can be solved from�Œm.x/I x� D yf ;

leading to the temperature-time relationship as m.x/ D ��1.yf I x/: The TI can be
solved from m.xd/ D td, which is equivalent to solving for xd in �.tdI xd/ D yf : The
TI can be computed from the solution xd. That is,

R D
1

xd
� 273:16:

To proceed with the modeling, one needs to be specific about the form of �.t; x/.
For polymer materials, the parametric form in [18] is often used. In particular,

�.tI x/ D
˛

1C

�
t


.x/

�� ; (12.5)

where ˛ is the initial degradation level, 
.x/ D exp.�0C�1x/ is the scale factor based
on the Arrhenius model, and � is the shape parameter determining the steepness of
the degradation path.

Let p D yf =˛ be the proportion of decreasing for the failure threshold from the
initial degradation level. Based on the model in (12.5), the mean time to failure at
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x, m.x/, is obtained by solving �Œm.x/I x� D p˛. Specifically, the temperature-time
relationship is

log10Œm.x/� D ˇ0 C ˇ1x;

where

ˇ0 D
�0

log.10/
C

1

� log.10/
log

�
1 � p

p

�
; and ˇ1 D

�1

log.10/
:

When p D 1=2, ˇ0 reduces to �0= log.10/. The TI at td can be computed as

R D
ˇ1

log10.td/ � ˇ0
� 273:16: (12.6)

The model in (12.4) is estimated by the ML method. The error term is modeled
as

"ijk 
 N.0; �2/; and Corr."ijk; "ijk0/ D �; k ¤ k0: (12.7)

The parameter � represents the within-batch correlation. The unknown parameters
is denoted by � D .�0; �1; ˛; �; �; �/

0. The likelihood is

L.�/ D
Y
i;j

.2�/�
nij
2 j˙ijj

� 1
2 exp

	
�
1

2
Œyij � �.tij; xi/�

0˙�1
ij Œyij � �.tij; xi/�

�
; (12.8)

where yij D .yij1; � � � ; yijnij/
0 is the corresponding vector of degradation measure-

ments which follows the multivariate normal distribution with mean vector �.tijI xi/,
an nij � 1 vector of �.tijI xi/’s, and covariance matrix ˙ij, an nij � nij matrix with
�2 on the diagonal entries and ��2 on the off-diagonal entries. The parameter
estimates b� are obtained by maximizing (12.8). The estimate of R is obtained by
evaluating (12.6) at the estimateb� .

The parametric model can overcome the shortcoming of the traditional method,
and allows for statistical inference. However, for the parametric method, one needs
to find an appropriate form for �.tijI xi/.

12.3.3 The Semiparametric Method

Xie et al. [5] proposed the following semi-parametric functional form for �.tijI xi/

for the model in (12.4). That is,

�.tijI xi/ D g
�

i.tijIˇ/I �

�
; (12.9)



12 Statistical Methods for Thermal Index Estimation 241


i.tIˇ/ D
t

exp.ˇsi/
; si D xi � xmax:

Here, g.�/ is a monotonic decreasing function with parameter vector � , and ˇ is the
parameter for the temperature effect. The quantity xmax D 1=.maxifAigC273:16/ is
the transformed value of the highest level of temperature. At the highest temperature
level, smax D xmax � xmax D 0; then �.tI xmax/ D g.tI �/: Thus, the function g.�/ is
interpreted as the baseline degradation path. The advantage of using the maximum
temperature level as the baseline is that its degradation level will reach the failure
threshold in most ADDTs. The g.�/ is constructed nonparametrically by monotonic
splines, which is the nonparametric component of the model. The use of the
monotonic splines retains the physical meaning of the degradation mechanism (i.e.,
monotonicity), and it is also flexible because one does not need to find a parametric
form for the degradation paths. The Arrhenius model is used for describing the
acceleration effect, which is the parametric component of the model. Thus, the
model in (12.9) is called a semiparametric model.

The distribution of the error terms "ijk is specified in (12.7). Let � D .� 0; ˇ; �; �/0

be the vector containing all of the unknown parameters. The estimation of � is
through an iterative procedure that maximizes the loglikelihood function. The
details of monotonic spline construction and parameter estimation are given in Xie
et al. [5].

Here we derive the TI estimation based on the semiparametric model in (12.9).
Let g0 D g.0/ be the initial degradation level and p be the proportion reducing from
the initial degradation (i.e., p D yf =g0). The mean time to failure for the temperature
level x is denoted by m.x/, which can be solved from

g

�
m.x/

expŒˇ.x � xmax/�

�
D pg0:

We obtain the temperature-time relationship as, m.x/ D g�1.pg0/ expŒˇ.x � xmax/�;

which is equivalent to

log10Œm.x/� D ˇ0 C ˇ1x:

Here,

ˇ0 D log10Œg
�1.pg0/� �

ˇxmax

log.10/
; and ˇ1 D

ˇ

log.10/
:

The TI is computed as,

R D
ˇ1

log10.td/ � ˇ0
� 273:16: (12.10)

The estimates of the TI R can be obtained by substituting the estimate of �

into (12.10).
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12.4 An Illustration of Thermal Index Estimation

In this section, we provide an illustration of TI estimation using the Adhesive Bond
B data in Escobar et al. [2]. The computing was done by using the R package ADDT
by Hong et al. [9].

12.4.1 Degradation Path Modeling

We apply the traditional method, the parametric method, and the semiparametric
method to the Adhesive Bond B data. For the traditional method, Fig. 12.3 shows the
polynomial interpolation for the Adhesive Bond B data, when the failure threshold
is set to p D 50%. For the temperature level 50 ıC, the degradation level has not
reached the failure threshold yet. The estimated time to failure m50 is not available.
Thus, data from this level is discarded from the analysis. In contrast, all data can be
used in the parametric and semiparametric methods.
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Fig. 12.3 Polynomial interpolation for the traditional method for the Adhesive Bond B data. The
failure threshold is p D 50%
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Fig. 12.4 Fitted degradation paths using the parametric method for the Adhesive Bond B data.
The x-axis is time in hours and the y-axis is strength in Newtons

Figure 12.4 shows the fitted degradation paths using the parametric method
for the Adhesive Bond B data, while Fig. 12.5 shows similar results based on the
semiparametric method. Both methods provide good fits to the data. The results in
Xie et al. [5] show that the semiparametric method tends to have a better fit to the
degradation data.

12.4.2 TI Estimation

For illustrations, we compute the TI based on the three methods presented pre-
viously. Table 12.2 shows the estimated parameters for the temperature-time
relationship, and the corresponding TI for the Adhesive Bond B data. In the
computing, we use td D 100;000 and p D 50%. Figure 12.6 shows the fitted
temperature-time relationship lines using the three methods and the corresponding
estimated TI for the Adhesive Bond B data. The results based on the parametric
method and semiparametric method are quite close to each other, while the results
from traditional method is different from these two methods. Section 12.5 will
conduct a simulation study to evaluate the estimation performance.
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Fig. 12.5 Fitted degradation paths using the semiparametric method for the Adhesive Bond B
data. The x-axis is time in hours and the y-axis is strength in Newtons

Table 12.2 Estimated parameters for the temperature-time relationship and TI based on the
traditional method (TM), the parametric method (PM), and the semiparametric method (SPM)
for the Adhesive Bond B data, when td D 100;000 and p D 50%

Methods ˇ0 ˇ1 TI

TM �21.05 8128.4 39

PM �16.18 6480.4 33

SPM �16.81 6697.1 34

12.5 Simulation Studies

In this section, simulations are carried out to compare the performance of the
traditional method, the parametric method, and the semiparametric method in terms
of estimating the TI. We will consider two settings, under which the parametric
model is correctly specified, or the parametric model is incorrectly specified.
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Fig. 12.6 Fitted temperature-time relationship lines using the traditional method (TM), the
parametric method (PM) and the semiparametric method (SPM), and the corresponding estimated
TI for the Adhesive Bond B data

12.5.1 Simulation Settings

For the first setting (Setting I), we generate degradation data from the parametric
model in (12.5), and for the parametric method, we still use the same model
in (12.5) to fit the data, which is corresponding to the case that the model is
correctly specified. For model (12.5), the parameter values used in the simulation
are ˛ D 9000; �0 D �16; �1 D 12500, � D 2, � D 1000, and � D 0. The
failure threshold was set to be p D 50% of the initial degradation level and we used
td D 100; 000 h. Under this configuration, the true TI is R D 181 ıC. The correlation
in Setting I is � D 0, to speed up the simulations.
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Table 12.3 The temperature levels and measuring time points for the eight simulation scenarios

Scenarios Temperature levels (ıl) Time points (hours)

1: Temp. 3, Time 4 250 260 270 552 1008 2016 3528

2: Temp. 4, Time 4 250 260 270 280 552 1008 2016 3528

3: Temp. 4, Time 4 240 250 260 270 552 1008 2016 3528

4: Temp. 5, Time 4 240 250 260 270 280 552 1008 2016 3528

5: Temp. 3, Time 5 250 260 270 552 1008 2016 3528 5040

6: Temp. 4, Time 5 250 260 270 280 552 1008 2016 3528 5040

7: Temp. 4, Time 5 240 250 260 270 552 1008 2016 3528 5040

8: Temp. 5, Time 5 240 250 260 270 280 552 1008 2016 3528 5040

For Setting II, we examine model misspecification by generating degradation
data from a parametric model that is different from (12.5), but we fit the model
in (12.5) for the parametric method. In particular, the following model was used to
generate data for Setting II,

�.tI x/ D ˛ exp

	
�

�
t


.x/

��
; (12.11)

which was used in Li and Doganaksoy [4] to describe the degradation of polymer
strength. Here, 
.x/ D exp.�0 C �1x/. For model (12.11), the parameter values
were set to ˛ D 9000, �0 D �15:6, �1 D 12471, � D 1000, and � D 0. Those
values were chosen to match the mean time to failure under 270 ıC and the true TI
R D 181 ıC to Setting I so that the results from both settings are comparable.

For each setting, eight scenarios were considered. For each scenario, we vary the
number of time points and the temperature levels. Table 12.3 lists the configuration
for each scenario. We considered both four time points and five time points to check
the sensitivity to time constraints. The number of temperature levels is from three to
five to check the sensitivity to temperature factors. We also considered the range of
temperature levels with either higher or lower temperature levels to check the effect
of temperature level in terms of distance from use levels. A similar simulation study
design was used in King et al. [15].

12.5.2 Results Under the Correct Model

Table 12.4 shows the estimated mean, bias, standard deviation (SD), and root of
mean squared error (RMSE) of the TI estimators for the traditional method (TM),
the parametric method (PM), and the semiparametric method (SPM) for Setting
I: the parametric model is correctly specified. Figure 12.7 visualizes the results in
Table 12.4. We observe that those scenarios with more time points and temperature
levels tend to have better precision in estimating TI for all methods. Testing at higher
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Table 12.4 Estimated mean, bias, SD, and RMSE of the TI estimators for the traditional method
(TM), the parametric method (PM), and the semiparametric method (SPM) for Setting I: the
parametric model is correctly specified

True
TI

Mean Bias SD RMSE

Scenarios TM PM SPM TM PM SPM TM PM SPM TM PM SPM

1: Temp. 3, Time 4 181 170 179 179 11 2 2 14 9 9 18 9 9

2: Temp. 4, Time 4 181 178 180 181 3 1 1 8 6 6 8 6 6

3: Temp. 4, Time 4 181 171 181 181 11 0 0 13 5 6 17 5 6

4: Temp. 5, Time 4 181 178 181 181 4 0 0 8 4 4 9 4 4

5: Temp. 3, Time 5 181 179 179 179 2 2 2 9 9 9 10 9 9

6: Temp. 4, Time 5 181 182 180 181 1 1 0 5 5 6 5 5 6

7: Temp. 4, Time 5 181 177 180 181 4 1 1 6 5 5 7 5 5

8: Temp. 5, Time 5 181 180 181 182 1 1 0 4 4 4 4 4 4
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Fig. 12.7 Plot of the estimated mean, bias, SD, and RMSE of the TI estimators for the traditional
method (TM), the parametric method (PM), and the semiparametric method (SPM) for Setting I:
the parametric model is correctly specified
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Table 12.5 Estimated mean, bias, SD, and RMSE of the TI estimators for the traditional method
(TM), the parametric method (PM), and the semiparametric method (SPM) for Setting II: the
parametric model is incorrectly specified

True
TI

Mean Bias SD RMSE

Scenarios TM PM SPM TM PM SPM TM PM SPM TM PM SPM

1: Temp. 3, Time 4 181 178 180 179 3 1 2 16 11 12 17 11 12

2: Temp. 4, Time 4 181 179 180 180 1 1 1 10 7 8 10 8 8

3: Temp. 4, Time 4 181 176 180 179 4 0 1 17 7 8 17 7 8

4: Temp. 5, Time 4 181 178 180 180 2 0 1 10 5 6 10 5 6

5: Temp. 3, Time 5 181 179 178 178 2 2 3 12 10 11 12 10 12

6: Temp. 4, Time 5 181 178 179 180 3 2 1 8 7 7 9 7 7

7: Temp. 4, Time 5 181 179 181 180 2 0 1 8 6 6 8 6 6

8: Temp. 5, Time 5 181 178 180 180 3 0 0 6 4 5 6 4 5

temperature levels tends to provide better precision for all the methods. Among
the three methods, the traditional method tends to perform worse than the other
two methods. This observation for the traditional method is consistent with the
findings in King et al. [15]. The performance of the newly added semiparametric
is comparable to the parametric method.

12.5.3 Results Under a Misspecified Model

Table 12.5 shows the estimated mean, bias, SD, and RMSE of the TI estimators
for the traditional method, the parametric method, and the semiparametric method
for Setting II: the parametric model is incorrectly specified. Figure 12.8 visualizes
the results in Table 12.5. We observe similar patterns to Setting I. That is, those
scenarios with more time points and temperature levels tend to have better precision
in estimating TI for all methods, and the traditional method tends to perform worse
than the other two methods, which is also consistent with the findings in King
et al. [15]. Surprisingly the parametric method performs well even under model
misspecification. Similarly, the performance of the newly added semiparametric
method is comparable to the parametric method.

12.6 Discussions

In literature, there are three methods available to estimate the TI based on ADDT
data, which are the traditional method, the parametric method, and the semipara-
metric method. In this chapter, we provide a comprehensive review of the three
methods and illustrate how the TI can be estimated based on different models. We
also conduct a simulation study to show the properties of different methods. The
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Fig. 12.8 Plot of the estimated mean, bias, SD, and RMSE of the TI estimators for the traditional
method (TM), the parametric method (PM), and the semiparametric method (SPM) for Setting II:
the parametric model is incorrectly specified

comparisons and discussion in this chapter can be useful for practitioners and future
industrial standards.

Here, we provide a summary on the pros and cons of each method.

• Regarding estimation performance, if there are fewer temperature levels or
number of time points, the traditional method tends to not performance well.
When there are five temperature levels and five time points, the traditional
method works well. Both the parametric and semiparametric methods perform
better than the traditional methods and their performance are comparable to each
other.

• Regarding model assumptions, the traditional method does not require specific
forms for the underlying degradation path because it uses polynomial interpola-
tion. The semiparametric method does not require a specific form but assumes
that the underlying path is monotone and smooth. The parametric method
assumes a specific form, which requires the strongest assumption. However, the
simulation study shows that the parametric model used here is flexible to some
extent under model misspecification.
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• Regarding data use, both the parametric and semiparametric methods use all of
the data for analyses, including those have not yet reached the failure threshold.
The traditional method will discard the data from the temperature which has not
reached the failure threshold yet.

• Both the parametric and semiparametric methods can quantify the uncertainties
in the estimation (see King et al. [15], and Xie et al. [5] for details). Because
the traditional method requires two steps to estimate the TI, it is challenging to
quantify the statistical uncertainties.

• The semiparametric method is the most computationally intensive method, and
the parametric method is in the middle in term of computational time. All the
three methods is implemented in the R package ADDT. The chapter in [17] gives
a detailed illustration for the use of the package.

In summary, it is of advantages to use the parametric and semiparametric
methods in the ADDT analysis and TI estimation. In practice, one can compare
the model fitting of both the parametric and semiparametric methods (e.g., AIC
values) to determine which models can provide a better description to the ADDT
data. The practitioner should also weigh the pros and cons discussed in this section
in conjunction with the minimum AIC model for final model selection. Details of
model comparisons can be found in Xie et al. [5].
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Chapter 13
Inference on Remaining Useful Life Under
Gamma Degradation Models with Random
Effects

Man Ho Ling, Hon Keung Tony Ng, and Kwok-Leung Tsui

Abstract Prognostics and system health management becomes an important topic
in modern reliability study. In prognostics and system health management, remain-
ing useful life is one of the vital indexes to yield an advance warning of impending
failure in a system, thereby helping in executing preventive actions prior to failure
occurrence and helping in making maintenance decisions. To obtain precise sta-
tistical inference on the remaining useful life, we consider degradation models that
incorporate unit-specific random effects that model heterogeneity in the degradation
of distinct systems, and propose a parametric bootstrap confidence interval for the
remaining useful life of each system. A Monte Carlo simulation study is carried
out to evaluate the performance of the proposed methodology. To illustrate the
suggested model and inferential methods, a real data set of light intensity of light
emitting diodes is analyzed.
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13.1 Introduction

Nowadays, as many powerful sensors and signal processing techniques appear,
prognostics and system health management (PHM) becomes an important topic in
reliability study. PHM is a systematic approach for failure prevention by monitoring
the health/status of products and systems, predicting failure progression, yielding
an advance warning of impending failure in a system, and mitigating operating
risks through repair or replacement [14], thereby helping in making maintenance
decisions and executing preventive actions prior to failure occurrence to extend
system life. Therefore, many applications of PHM can be found in a variety of fields
including electronics, smart grid, nuclear plant, power industry, aerospace and mil-
itary application, fleet industrial maintenance, and public health management [14].

Remaining useful life (RUL), defined as the length from current time to the end
of the useful life, is one of the vital indexes in PHM. RUL has been commonly
used in reliability studies with practical applications. In reliability studies, multiple
degradation features can be extracted for degradation detection and quantification.
While the application of health/status monitoring is established, degradation data
that describe quality characteristics over time are measured, one can estimate
the RUL for making a timely maintenance decision for failure avoidance. As
RUL estimation is one of the critical assessments in PHM and condition-based
maintenance, it is of interest in developing efficient statistical inferential procedures
for the RUL. Si et al. [15] provided a comprehensive review on RUL estimation
based on different statistical models. Gebraeel and Pan [9] discussed a Bayesian
approach for computing and updating the estimate of RUL of bearings. Recently,
Fan et al. [8] developed the physics-of-failure based damage models to predict the
RUL of light emitting diodes (LEDs). However, unit-to-unit variation has not been
taken into account in these existing studies. Therefore, we aim to propose a model
that incorporates unit-specific random effects in this paper.

Since time-to-failure can be viewed as the first-passage time of passing a
specified threshold in a degradation process, there exists a comprehensive literature
on statistical inference based on degradation models and their applications. For
instance, Singpurwalla [16] used degradation models with covariates for modeling
the product lifetime in a dynamic environment. Ebrahimi [6] proposed degradation
models for fatigue cracks in a system. Wang [17, 18] considered the gamma
degradation models for degradation data of bridge beams and carbon-film resis-
tors. Ling et al. [11] considered accelerated degradation models for LEDs. The
first-passage time of a Wiener process is known to follow an inverse Gaussian
distribution; see Chhikara and Folks [4]. On the other hand, the first-passage time
of a gamma process can be approximated by using a two-parameter Birnbaum-
Saunders distribution; see Park and Padgett [13]. The estimation of reliability
function and mean time-to-failure (MTTF) have been discussed in the literature
[1]. However, these lifetime characteristics may not take the information from
the current degradation data into account. In contrast, the RUL uses the current
degradation data for making a timely maintenance decision for failure avoidance,
which can provide an advance warning of impending failure in a system.
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For degradation data analysis, three of the popular degradation models, Wiener,
inverse Gaussian, and gamma processes, are often used in engineering literature.
Due to some attractive properties of the normal distribution, Wiener process has
been commonly used to model the degradation process of a product. Wiener process
can be used to represent the performance of a product that increases and decreases
over time. Readers may refer to articles [5, 12, 19, 20] for details on modeling
degradation data using a Wiener process. However, Wiener process is useful for
some specific datasets, but it may not be appropriate for modeling item with
monotonic degradation. In such cases, it is more reasonable to consider the inverse
Gaussian process or the gamma process for modeling the degradation data. Ye and
Chen [21] pointed out that the inverse Gaussian process is flexible in incorporating
random effects and covariates that account for heterogeneities in degradation data.
In this paper, we aim to show that the gamma process degradation model is also
flexible in incorporating random effects for the statistical inference of RUL.

This article is organized as follows. In Sect. 13.2, we describe the gamma
degradation model with random effects. In Sect. 13.3, we derive the unit-specific
RUL based on the proposed gamma degradation model and the corresponding
expected value and variance. Then, in Sect. 13.4, we discuss the statistical inference
of the RUL and propose a bootstrap procedure to construct confidence interval
for unit-specific RUL. A Monte Carlo simulation study is used to evaluate the
performance of the proposed methodology in Sect. 13.5. In Sect. 13.6, an illustrative
example based on a real degradation data on LEDs is used to demonstrate the
statistical inferential procedures studied in this paper. Finally, some concluding
remarks are provided in Sect. 13.7.

13.2 Gamma Degradation Model with Random Effects

Gamma degradation models with random effects are motivated by a degradation
data of light intensity of LEDs [3]. Twelve LEDs were run at electrical current
of 35 mA and the outputs of the light intensity of the LEDs were measured at
5 inspection times. Ling et al. [11] presented a gamma degradation model with
time-scale transformation to analyze the degradation data. In degradation analysis,
there can be a substantial heterogeneity among degradations of different items. It
is therefore of great interest to consider a degradation model with unit-specific
random effects that model heterogeneity in degradation of distinct systems. The
data obtained from [11] are presented in Fig. 13.1.

Suppose that n items are placed under a multiple levels of constant stress
experiment and these items are inspected at times 0 D t0 < t1 < t2 < � � � < tm:
Let yi;j D yi.tj/ represent the measured degradation of the i-th item and inspected
at time tj: Since the quality of a system is quantified in terms of the percentage
to the initial value, and so yi;0 	 1 for i D 1; 2; : : : ; n. Moreover, due to the
fact that the degradation for each item is bounded between 0 and 1, we can
consider the logarithmic (log-) transformation of the degradation measures. We
further assume that an increment in the logarithm of the degradation measure,
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Fig. 13.1 Degradations of
light intensity of 12 LEDs at
electrical current of 35 mA

gi;j D log.yi;j�1/ � log.yi;j/ has a gamma distribution with shape parameter ˛j D

�.tj � tj�1/ > 0, and scale parameter z > 0: To incorporate the unit-specific random
effects, under the setting presented in [10], we assume that z has an inverse gamma
distribution with shape parameter ı > 2 and scale parameter � > 0:

Based on this model, we have the corresponding conditional density function of
g given z and the marginal density function of z as

fgjz.gjz/ D
g˛j�1

�.˛j/z˛j
exp

�
�

g

z


; g > 0; (13.1)

and

fz.z/ D
z�ı�1�ı

�.ı/
exp

�
�
�

z


; z > 0; (13.2)

respectively. Lawless and Crowder [10] showed that the marginal density function
f .g/ is then given by

fg.g/ D

Z 1

0

fgjz.gjz/fz.z/dz D
�ı

B.˛j; ı/

g˛j�1

.g C �/˛jCı
; g > 0; (13.3)

where B.p; q/ D �.p/�.q/=�.p C q/ is the beta function. They also found that
w1 D gı=.˛j=�/ has a F distribution with degrees of freedom d1 D 2˛j and d2 D 2ı

and w2 D g=.g C �/ has a beta distribution with parameters ˛j and ı.
As �; ı and � are positive, we can define � D exp.a/; ı D exp.b/ and � D

exp.c/:Under this setting, the log-likelihood function based on the degradation data,
yi;j, i D 1; 2; : : : ; n, j D 0; 1; : : : ;m, can be expressed as

`.�/ D
X

ı log.�/�log.B.˛j; ı//C.˛j�1/ log.gi;j/�.˛jCı/ log.gi;jC�/; (13.4)
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where
P

D
Pn

iD1

Pm
jD0 and � D .a; b; c/. The maximum likelihood estimates

(MLEs) of the parameter vector � D .a; b; c/ can be obtained by maximizing the
log-likelihood function `.�/ with respect to � . Iterative numerical methods, such
as the Newton-Raphson method, are required to obtain the MLEs of the model
parameters. In our study, the nonlinear programming solver fminsearch in MATLAB
is used to obtain the MLEs of the model parameters. The MATLAB code for
obtaining the MLEs of � based on the degradation data can be obtained from the
authors upon request.

13.3 Remaining Useful Life

Suppose Di is the time-to-failure of the i-th system at which the degradation crosses
a pre-specified threshold, : By using the property that the sum of gamma random
variables with the same scale parameter is again gamma distributed, we readily
obtain G.djzi/ D � log.y.djzi// 
 Ga.�d; zi/: Park and Padgett [13] derived
the exact distribution of Di based on the gamma process, and also provided an
approximation to EŒDi� by using a two-parameter Birnbaum-Saunders distribution;
see Birnbaum and Saunders [2]. As RUL is defined as the length from the current
time, t�; to the time-to-failure based on the current degradation y.t�/, �G D

log.y.t�// � log.y.D// is of interest in this study. It follows that, conditional on
zi; �G has a gamma distribution with shape parameter �x > 0 and scale parameter
zi > 0; where x D d � t�: Furthermore, as y.d/ D ; we have the conditional
probability that the degradation crosses the threshold before time x, given the current
degradation yi.t�/, as follows:

Pr.Xi < xjg�; zi/ D Pr.�G > g�jx; zi/

Š 1 �ˆ

�
g� � �xzi

p
�xzi



D ˆ

�
1

pi

�r
x

qi
�

r
qi

x

�
; (13.5)

where g� D log.y.t�//�log./; pi D
p

zi=g� and qi D g�=.zi�/: This result enables
us to develop statistical inference on the RUL for an individual item. In addition,
conditional on zi, the remaining useful life Xi D Di � t� follows a Birnbaum-
Saunders distribution, BS.pi; qi/, approximately. It follows that, given g�, the RUL
can be estimated by its expected value as

�i D EŒXi� D
g�ı

��
C

1

2�
: (13.6)

In addition, conditional on zi; the remaining useful life Xi D Di � t� has a
Birnbaum-Saunders distribution, BS.pi; qi/; where pi D

p
zi=g�; qi D g�=.zi�/
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and g� D log.y.t�// � log./: The variance of the remaining useful life is then
given by

VŒXi� D
g2�ı

�2�2
C

g�ı

�2�
C

5

4�2
: (13.7)

The derivations of the above expressions of the expected value and variance are
presented in the Appendix.

13.4 Statistical Inference on Remaining Useful Life

Given � D .a; b; c/; the 100.1 � ˇ/% asymptotic confidence interval for the
remaining useful life for the i-th system, �i; is then given by

�
O�i � zˇ=2bse.�i/; O�Czˇ=2bse.�i/

�
; (13.8)

where zˇ=2 is the 1 � ˇ=2 quantile of the standard normal distribution and bse.�i/ Dq
OVŒXi� is the standard error of �i:

As � is unknown, � can be estimated based on the degradation data. However,
the sampling distribution of the estimate of �i is intractable. Here, we propose using
a parametric bootstrap procedure [7] to approximate the sampling distribution of
the estimate of �i and to obtain percentile bootstrap confidence interval of the RUL.
An approximate 100.1 � ˇ/% bootstrap confidence interval for the RUL of the i-th
system, �i; can be constructed as follows:

1. Find the MLE of the vector of model parameters, O�; from the original degradation
data.

2. Obtain the r-th bootstrap sample fQg.r/i;j ; i D 1; 2; : : : ; n; j D 1; 2; : : : ;mg based on
O� and the inspection times ftj; j D 1; 2; : : : ;mg:

3. Find the r-th bootstrap estimate of � based on the r-th bootstrap sample, denoted
by Q�.r/:

4. For k D 1; 2; : : : ; 99; compute the r-th sequence of 99 bootstrap estimates of �i;

denoted by �.r/i;k D O�i � zk=100bse.�i/; based on Q�.r/:

5. Repeat steps 2 to 4 B times to approximate the distribution of the estimate of �i:

6. Discard all the bootstrap estimates of �.r/i;k � 0:

7. Sort the remaining bootstrap estimates �.r/i;k in ascending order, denoted by

�
Œb�
i ; b D 1; 2; : : : ;M; where M � 99B:

Consequently, a 100.1�ˇ/% parametric bootstrap confidence interval for the RUL
of the i-th system, �i is given by

�
�
ŒMˇ=2�
i ; �

ŒM.1�ˇ=2/�
i

�
: (13.9)
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13.5 Monto Carlo Simulation Study

To evaluate the performance of the proposed methodology, a Monte Carlo simula-
tion study is carried out to estimate the biases and root mean square errors (RMSE)
of the point estimates of the model parameters and the RUL as well as the coverage
probabilities (CP) and average widths (AW) of 95% confidence intervals (CI) of
the model parameters and the RUL based on n D 10 (small sample size), n D 30

(moderate sample size), and n D 100 (large sample size). Suppose the experiment
was terminated at time tm D 250; and the degradation of each specimen was
measured at inspection times tj D tm.j=m/; where j D 0; 1; : : : ;m: Consider the
inspection frequency m D 5 and 10, and let a D �3 and .b; c/ D .3; 0/ (low
variability of random effect), .b; c/ D .1:5; 2/ (moderate variability of random
effect), and .b; c/ D .0:8;�3/ (high variability of random effect). Given the
threshold  D 0:5; the procedure to generate the degradation data of the i-th system,
yi;j; at the inspection time tj and the failure time, di; are described as follows:

1. Given � D .a; b; c/; compute � D exp.a/; ı D exp.b/ and � D exp.c/:
2. Generate zi from a gamma distribution with scale ı and shape �:
3. Generate gi;s from a gamma distribution with scale zi and shape �; for s D

1; 2; : : : ; 5000:

4. Compute yi;j D yi.tj/ D exp
�
�
Ptj

sD1 gi;s

�
:

5. Obtain di D argmin
sDf1;2;:::;5000g

yi.s/ < :

The results based on 1,000 Monte Carlo simulations are summarized in Tables 13.1,
13.2, 13.3, 13.4, 13.5, and 13.6.

The simulation results show that the performance of the percentile parametric
bootstrap confidence interval is satisfactory for estimation of the remaining useful
when the sample size is sufficiently large .n � 30/, as the coverage probabilities

Table 13.1 Biases and root mean square errors (RMSE) of the MLEs of the model parameters and
the remaining useful life with high variability of random effect (VŒZ� D 7:30� 10�3) for different
sample sizes n and different numbers of inspections m

a D �3:0; b D 0:8; c D �3:0

Bias RMSE

m D 5 n D 10 n D 30 n D 100 n D 10 n D 30 n D 100

a 0.878 0.059 0.012 3.578 0.717 0.180

b 1.802 0.239 0.045 4.854 1.058 0.231

c 0.974 0.210 0.031 6.386 1.477 0.447

� �85.250 �99.490 �100.622 298.463 304.979 306.597

m D 10 n D 10 n D 30 n D 100 n D 10 n D 30 n D 100

a 0.021 �0.001 �0.002 0.260 0.144 0.075

b 1.358 0.184 0.049 4.033 0.501 0.211

c 1.385 0.213 0.060 4.212 0.695 0.320

� �88.411 �99.510 �101.018 297.670 301.941 302.632
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Table 13.2 Biases and root mean square errors (RMSE) of the MLEs of the model parameters
and the remaining useful life with moderate variability of random effect (VŒZ� D 6:08� 10�4) for
different sample sizes n and different numbers of inspections m

a D �3:0; b D 1:5; c D �2:0

Bias RMSE

m D 5 n D 10 n D 30 n D 100 n D 10 n D 30 n D 100

a 0.414 0.028 �0.001 2.283 0.263 0.130

b 3.246 0.635 0.101 6.898 2.478 0.341

c 2.851 0.612 0.108 7.504 2.633 0.486

� �40.118 �45.447 �46.323 145.656 145.260 143.997

m D 10 n D 10 n D 30 n D 100 n D 10 n D 30 n D 100

a 0.028 �0.001 0.000 0.211 0.113 0.065

b 3.146 0.526 0.071 6.608 2.165 0.308

c 3.135 0.539 0.075 6.749 2.243 0.400

� �41.369 �45.648 �47.370 141.578 143.704 144.733

Table 13.3 Biases and root mean square errors (RMSE) of the MLEs of the model parameters and
the remaining useful life with low variability of random effect (VŒZ� D 1:51� 10�4) for different
sample sizes n and different inspection numbers of inspections m

a D �3:0; b D 3; c D 0:0

Bias RMSE

m D 5 n D 10 n D 30 n D 100 n D 10 n D 30 n D 100

a 0.247 0.040 0.014 1.435 0.181 0.092

b 3.884 2.700 1.017 7.708 6.173 3.685

c 3.609 2.654 1.001 7.959 6.249 3.730

� �4.600 �6.839 �9.277 38.196 38.343 38.832

m D 10 n D 10 n D 30 n D 100 n D 10 n D 30 n D 100

a 0.038 0.016 0.006 0.159 0.088 0.050

b 3.216 2.237 0.936 6.920 5.668 3.382

c 3.160 2.218 0.928 6.962 5.708 3.413

� �4.769 �7.039 �7.461 38.333 38.558 38.504

are close to the nominal level of 95%, regardless of variability of random effect.
However, the proposed bootstrap method does not provide satisfactory confidence
intervals for the model parameters, especially in the case of low variability of
random effect (b D 3:0; c D 0:0), in terms of the coverage probability. When
the variability of random effect is low, the log-likelihood function of c is often a
flat curve. Figure 13.2 shows that the MLE of c is far away from the true value
of the parameter c D 0. This explains why the biases, root mean square errors
and coverage probabilities of the parameters b and c are not satisfactory when the
variability of random effect is low (Tables 13.3 and 13.6). However, from Eq. (6),
ı=� D exp.b � c/, the poor performance of the estimation of parameters b and c
does not influence the performance of the proposed interval estimation method for
the RUL.
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Table 13.4 Coverage probabilities (CP) and average widths (AW) of the 95% confidence intervals
for the model parameters and the remaining useful life with high variability of random effect
(VŒZ� D 7:30� 10�3) for different sample sizes n and different numbers of inspections m

a D �3:0; b D 0:8; c D �3:0

CP AW

m D 5 n D 10 n D 30 n D 100 n D 10 n D 30 n D 100

a 0.902 0.954 0.948 10.750 3.210 0.728

b 0.776 0.865 0.919 15.290 4.648 0.917

c 0.862 0.903 0.936 25.942 8.091 1.789

� 0.915 0.929 0.932 952.069 860.381 839.207

m D 10 n D 10 n D 30 n D 100 n D 10 n D 30 n D 100

a 0.951 0.935 0.950 1.504 0.543 0.297

b 0.759 0.860 0.932 14.658 3.501 0.865

c 0.835 0.875 0.935 16.320 4.284 1.316

� 0.914 0.927 0.933 928.946 844.421 820.014

Table 13.5 Coverage probabilities (CP) and average widths (AW) of the 95% confidence intervals
for the model parameters and the remaining useful life with moderate variability of random effect
(VŒZ� D 6:08� 10�4) for different sample sizes n and different numbers of inspections m

a D �3:0; b D 1:5; c D �2:0

CP AW

m D 5 n D 10 n D 30 n D 100 n D 10 n D 30 n D 100

a 0.939 0.961 0.953 6.960 1.487 0.529

b 0.798 0.880 0.908 13.856 10.492 1.772

c 0.787 0.926 0.930 20.534 12.060 2.390

� 0.923 0.931 0.935 476.330 449.425 430.299

m D 10 n D 10 n D 30 n D 100 n D 10 n D 30 n D 100

a 0.941 0.950 0.940 0.893 0.447 0.248

b 0.791 0.879 0.904 13.492 9.305 1.423

c 0.794 0.895 0.914 14.290 9.868 1.766

� 0.916 0.929 0.933 470.197 440.612 432.184

13.6 Illustrative Example: LED Degradation Data

In order to illustrate the proposed model and methodology in this paper, we
perform a degradation analysis on the data of light intensity of 12 LEDs. The
data are presented in Fig. 13.1 under the proposed heterogeneity model. A failure
is defined as the light intensity degrades below a threshold of 50% of the initial
value. Table 13.7 presents the estimates of the model parameters and the unit-
specific remaining useful life estimates for each LED, along with the corresponding
95% bootstrap confidence intervals. Figure 13.3 displays the 95% confidence
intervals for the remaining useful life of each LED. The variance of the random
effect is
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Table 13.6 Coverage probabilities (CP) and average widths (AW) of the 95% confidence intervals
for the model parameters and the remaining useful life with low variability of random effect
(VŒZ� D 1:51� 10�4) for different sample sizes n and different numbers of inspections m

a D �3:0; b D 3:0; c D 0:0

CP AW

m D 5 n D 10 n D 30 n D 100 n D 10 n D 30 n D 100

a 0.894 0.904 0.915 3.384 0.646 0.300

b 0.666 0.766 0.887 5.865 4.920 3.776

c 0.300 0.296 0.329 8.178 4.975 3.759

� 0.954 0.954 0.951 173.784 164.338 161.861

m D 10 n D 10 n D 30 n D 100 n D 10 n D 30 n D 100

a 0.922 0.934 0.918 0.575 0.317 0.173

b 0.724 0.799 0.884 3.794 3.394 2.878

c 0.188 0.208 0.263 3.502 3.231 2.803

� 0.954 0.954 0.953 172.322 164.144 161.970

Fig. 13.2 Log-likelihood
function with respect to the
variable c

VŒZ� D
�2

.ı � 1/2.ı � 2/
D

exp.2c/

.exp.b/ � 1/2.exp.b/ � 2/
� 1:57 � 10�5;

which indicates that the random effect could be neglected and the degradation model
with random effect seems to perform slightly better in the remaining useful life
estimation.

13.7 Concluding Remarks

In this paper, we proposed a heterogeneity gamma degradation model that incor-
porates unit-specific random effects in the gamma process. A percentile parametric
bootstrap method is suggested for interval estimation for the unit-specific remaining
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Table 13.7 Estimates of the
model parameters and the
remaining useful life for 12
LEDs, along with the
corresponding 95%
parametric bootstrap
confidence interval

Model parameters

a b c (1�10�5)

�2.97 3.72 �4.12

(�3.24, �2.57) (3.39, 4.18) (�4.52, �3.98)

Remaining useful life

LED #1 LED #2 LED #3

245.20 318.92 423.77

(93.08, 407.44) (139.52, 511.66) (206.78, 658.14)

LED #4 LED #5 LED #6

379.28 393.7 291.61

(177.98, 596.02) (187.35, 616.15) (122.02, 473.32)

LED #7 LED #8 LED #9

276.44 252.52 299.67

(112.37, 451.76) (97.57, 417.88) (127.21, 484.59)

LED #10 LED #11 LED #12

332.23 331.13 301.96

(147.90, 530.37) (147.20, 528.83) (128.66, 487.79)

useful life. The proposed model and methodology are illustrated by the analysis of
the degradation data of 12 LEDs. In the illustrative example, we showed that the
random effect could be neglected and the degradation model with random effect
seems to perform slightly better in the remaining useful life estimation. Moreover,
the results from a Monte Carlo simulation study show that the percentile parametric
bootstrap technique successfully yields accurate estimates of the remaining useful
life. For future research direction, it will be interesting to develop models and
estimation methods for individual effect based on degradation data. We are currently
working on this problem and hope to report the findings in a future paper.
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Appendix

Suppose that, conditional on z, X has a Birnbaum-Saunders distribution, BS.p; q/,
where p D

p
z=g�; q D g�=.z�/: It is well-known that the conditional mean and

variance of X, given z, are



Fig. 13.3 Inference on remaining useful life for the 12 LEDs



13 Remaining Useful Life Under Gamma Degradation Models 265

EŒXjz� D q

�
1C

p2

2


(13.10)

and

VŒXjz� D .pq/2
�
1C

5p2

4


; (13.11)

respectively. Thus, we have

EŒXjz� D q

�
1C

p2

2


D

g�

z�
C

1

2�
; (13.12)

and

EŒX2jz� D VŒXjz�CEŒXjz�2 D q2C2p2q2C
3p4q2

2
D

g2�
z2�2

C
2g�

z�2
C

3

2�2
: (13.13)

As z follows an inverse gamma distribution with shape ı and scale �; it implies
that z�1 follows a gamma distribution with shape ı and scale ��1: Also, we have
EŒz�1� D ı=� and EŒz�2� D ı.ı C 1/=�2: Therefore, we obtain

EŒX� D EzŒEŒXjz�� D

Z 1

0

�
g�

z�
C

1

2�


fz.z/dz D

g�ı

��
C

1

2�
; (13.14)

and

EŒX2� D Ez ŒE ŒXjz�� D

Z 1

0

�
g2�

z2�2
C
2g�

z�2
C

3

2�2


fz.z/dz

D
g2�ı.ı C 1/

�2�2
C
2g�ı

�2�
C

3

2�2
: (13.15)

Consequently, the variance of X is given by

VŒX� D EŒX2� � EŒX�2 D
g2�ı

�2�2
C

g�ı

�2�
C

5

4�2
: (13.16)
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Chapter 14
ADDT: An R Package for Analysis of Accelerated
Destructive Degradation Test Data

Zhongnan Jin, Yimeng Xie, Yili Hong, and Jennifer H. Van Mullekom

Abstract Accelerated destructive degradation tests (ADDTs) are often used to
collect necessary data for assessing the long-term properties of polymeric materials.
Based on the data, a thermal index (TI) is estimated. The TI can be useful for
material rating and comparisons. The R package ADDT provides the functionalities
of performing the traditional method based on the least-squares method, the para-
metric method based on maximum likelihood estimation, and the semiparametric
method based on spline methods for analyzing ADDT data, and then estimating the
TI for polymeric materials. In this chapter, we provide a detailed introduction to the
ADDT package. We provide a step-by-step illustration for the use of functions in the
package. Publicly available datasets are used for illustrations.

Keywords Degradation path • Long-term properties • Material durability •
Material reliability • Monotonic splines • Semiparametric methods

14.1 Introduction

Accelerated destructive degradation tests (ADDTs) are commonly used to collect
data to access the long-term properties of polymeric materials (e.g., [1]). Based
on the collected ADDT data, a thermal index (TI) is estimated using a statistical
model. In practice, the TI can be useful for material rating and comparisons. In
literature, there are three methods available for ADDT data modeling and analysis:
the traditional method based on the least-squares approach, the parametric method
based on maximum likelihood estimation, and the semiparametric method based
on spline models. The chapter in Xie et al. [2] provides a comprehensive review
for the three methods for ADDT data analysis and compares the corresponding TI
estimation procedures via simulations.

The R package ADDT in Hong et al. [3] provides the functionalities of performing
the three methods and their corresponding TI estimation procedures. In this chapter,

Y. Xie • Z. Jin • Y. Hong (�) • J.H. Van Mullekom
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we provide a detailed introduction to the ADDT package. We provide a step-by-step
illustration for the use of functions in the package. We also use publicly available
datasets for illustrations.

The rest of the chapter is organized as follows. Section 14.2 introduces the
three methods, the corresponding TI procedures, and the implementations in the
R package. The Adhesive Bond B data ([4]) is used to do a step-by-step illustration.
Section 14.3 provides a full analysis of the Seal Strength data ([5]) so that users
can see a typical ADDT modeling and analysis process. Section 14.4 contains some
concluding remarks.

14.2 The Statistical Methods

14.2.1 Data

In most applications, an ADDT dataset typically includes degradation measure-
ments under different measuring time points, and accelerating variables such as
temperature and voltage. In the ADDT package, there are four publicly available
datasets ready for users to do analysis, which are the Adhesive Bond B data
in [4], the Seal Strength data in [5], the Polymer Y data in [6], and the Adhesive
Formulation K data in [7]. Users can load those datasets by downloading, installing
the package ADDT and appropriately calling the data function. The following gives
some example R codes.

>install.packages("ADDT")
>library(ADDT)
>data(AdhesiveBondB)
>data(SealStrength)
>data(PolymerY)
>data(AdhesiveFormulationK)
>AdhesiveBondB
>SealStength

Table 14.1 shows the Adhesive Bond B dataset. The first column is the
acceleration variable, temperature in Celsius. Time points that used to measure the
degradation and the degradation values are listed in columns 2 and 3 correspond-
ingly. We illustrate the Adhesive Bond B data in Fig. 14.1. To use the R ADDT
package, users need to format the data in the same form as the dataset shown in
Table 14.1.

Another dataset that has been frequently used is the Seal Strength data where the
strength from ten different seals were measured at five different time points under
four different temperature levels. Seal Strength data is shown in Table 14.2. We will
use the Adhesive Bond B data and Seal Strength data to illustrate the use of the
ADDT package.
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Fig. 14.1 Graphical representation of the Adhesive Bond B dataset. The x-axis stands for the time
in hour while y-axis represents the degradation values

14.2.2 The Traditional Method

The traditional method using the least-squares approach is widely accepted and used
in various industrial applications. The traditional method is a two-step approach that
uses polynomial fittings and the least-squares method to obtain the temperature-
time relationship. The TI can be obtained by using the fitted temperature-time
relationship. In particular, for each temperature level, indexed by i, we find the mean
time to failure mi satisfies the following equation.

a0i C a1imi C a2im
2
i C a3im

3
i D yf ; i D 1; � � � ; n;

where yf is the failure threshold and .a0i; a1i; a2i; a3i/
0

are coefficients. Here n is the
number of temperature levels. The temperature-time relationship is expressed as

log10.mi/ D ˇ0 C ˇ1xi; i D 1; � � � ; n; (14.1)
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Table 14.1 The Adhesive Bond B data from Escobar et al. [4], which contains the testing of
results of an ADDT for the strength of Adhesive Bond B

TempC TimeH Response TempC TimeH Response TempC TimeH Response

50 0 70.1 50 2016 62.5 60 2688 37.1

50 0 76.7 50 2016 73.8 60 2688 44.3

50 0 84.5 50 2016 75.9 70 336 35.8

50 0 88.0 50 2688 39.2 70 336 44.1

50 0 88.9 50 2688 49.0 70 336 45.2

50 0 90.4 50 2688 51.1 70 336 45.7

50 0 91.9 50 2688 61.4 70 336 59.6

50 0 98.1 50 2688 62.0 70 672 32.3

50 336 77.8 50 2688 70.9 70 672 35.3

50 336 78.4 50 2688 73.6 70 672 37.9

50 336 78.8 60 336 51.7 70 672 38.6

50 336 80.5 60 336 61.5 70 672 39.4

50 336 81.7 60 336 69.9 70 672 46.9

50 336 83.3 60 336 73.7 70 1008 28.0

50 336 84.2 60 336 76.8 70 1008 29.2

50 336 89.2 60 336 87.1 70 1008 32.5

50 1008 62.7 60 1008 43.2 70 1008 32.7

50 1008 65.7 60 1008 54.4 70 2016 20.6

50 1008 66.3 60 1008 56.7 70 2016 21.0

50 1008 67.7 60 1008 59.2 70 2016 22.6

50 1008 67.8 60 1008 77.1 70 2016 23.3

50 1008 68.8 60 2016 34.3 70 2016 23.4

50 1008 72.6 60 2016 38.4 70 2016 23.5

50 1008 74.1 60 2016 39.2 70 2016 25.1

50 2016 45.5 60 2016 48.4 70 2016 31.6

50 2016 54.3 60 2016 64.2 70 2016 33.0

50 2016 54.6 60 2688 28.5

50 2016 61.4 60 2688 33.1

which is based on the Arrhenius relationship to extrapolate to the normal use
condition. With the parameterizations in this temperature-time relationship, the TI,
denoted by R, can be estimated as:

R D
ˇ1

log10.td/ � ˇ0
� 273:16 :

where ˇ0 and ˇ1 are the same with the coefficients from equation (14.1), and td is
the target time (usually td D 100;000 is used).
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In the R package ADDT, we implement the traditional method by using:

>addt.fit.lsa<-addt.fit(Response~TimeH+TempC,data=Adh
esiveBondB, proc="LS", failure.threshold=70)

The addt.fit function in ADDT package fits the traditional model automatically when
users specify proc = “LS” argument. In function addt.fit, other arguments include:

• formula: We use Response 
 TimeH+TempC to represent the model formula.
The Response, TimeH, and TempC specify the response, time, and temperature
columns in the dataset, respectively. Note that the order of TimeH and TempC can
not be exchanged in the formula.

• data: The name of the dataset for analysis. The dataset should have the same
layout as the Adhesive Bond B in Table 14.1. Specifically, the order of the three
columns should be the same as Adhesive Bond B, which is TempC, TimeH, and
Response.

• initial.value: We need response measurements at time point 0 to compute the
initial degradation level in the model. If the data do not contain that information,
the user must supply the initial.value. Otherwise, the function will give an error
message.

• failure.threshold: This argument sets the failure threshold. The default value
of the soft failure threshold is 70% of the initial value in the ADDT package
examples. Note that in industrial standards such as UL 746B [1], the failure
threshold is usually 50%.

• time.rti: The addt.fit function allows users to specify the expected time associated
with the TI. The default value for time.rti is td D100,000 h.

• method: This argument specifies the method that is used in the optimization
process. Details can be found in optim function in R. The default value is
“Nelder-Mead”.

• subset: This argument allows the users to specify a subset of the dataset for
modeling.

The above arguments are the basic model inputs to run addt.fit, when proc=“LS”.
Other methods, proc =“ML” (the parametric method) and proc =“SemiPara”
(the semiparametric method) also require the same arguments. However, there are
additional arguments for the other two methods and we will introduce them in
Sects. 14.2.3 and 14.2.4.

We store the model fitting results in the addt.fit.lsa in this example. Users can
print the model summary table and plots upon appropriate call. Examples are listed
below:

> summary(addt.fit.lsa)

Least Squares Approach:
beta0 beta1

-13.7805 5535.0907
est.TI: 22



14 ADDT: An R Package for Analysis of Accelerated Destructive Degradation. . . 275

0 500 1000 1500 2000 2500

0
5

10
0

15
0

Time (hours)

R
es

po
ns

e 
(R

el
at

iv
e 

%
)

T_50=2063
T_60=797
T_70=206

0 500 1000 1500 2000 2500

0
50

15
0

Time (hours)

R
es

po
ns

e 
(R

el
at

iv
e 

%
)

T_50=2063
T_60=797

Fig. 14.2 Plot of the fitted polynomial curves for each temperature level, and the corresponding
interpolated time to failures. The horizontal dark line presents the failure threshold. The y-axis
shows the relative value of material strength

Interpolation time:
Temp Time

[1,] 50 2063.0924
[2,] 60 797.1901
[3,] 70 206.1681

The summary function for proc =“LS” provides the parameter estimates and
interpolated mean time to failure for the corresponding temperature levels. In the
Adhesive Bond B example, the parameter estimates are Ǒ

0 D �13:7805 and Ǒ
1 D

5535:0907 for the temperature-time relationship. Estimated mean time to failure for
temperature level at 50 ıC, 60 ıC, and 70 ıC, are 2063.092, 797.190 and 206.168 h,
respectively. The estimated TI is 22 ıC in this example. Figure 14.2 shows the fitted
polynomial curves for each temperature levels and the corresponding interpolated
mean time to failure, according to least-squares method. The R code that is used to
plot the results is shown below.

>plot(addt.fit.lsa, type="LS")
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14.2.3 The Parametric Method

Different from the two-step approach in the traditional method, for the parametric
method, one uses a parametric model to describe the degradation path. The
maximum likelihood (ML) method is then used to estimate the unknown parameters
in the model. In particular, we assume that degradation measurement yijk at time tij
for temperature level i follows the model:

yijk D �.tijI xi/C �ijk; i D 1; � � � ; n; j D 1; � � � ; ni; k D 1; � � � ; nij;

where

xi D
1

TempCi C 273:16
;

TempCi is the temperature level, the value 273:16 is used to convert the temperature
to Kelvin temperature scale. Here n is the number of temperature levels, ni is the
number of time points for level i, and nij is the number samples tested under the
temperature time combination and �ijk is the error term. For polymer materials,
the following parametric assumption for �.tI x/ (e.g., [8]) is used

�.tI x/ D
˛

1C Œ t

.x/ �

�
; (14.2)

where ˛ represents the initial degradation, and � is a shape parameter. Here,


.x/ D exp.�0 C �1x/:

is the scale factor that is based on the Arrhenius relationship. By the parametric
specification, the ML method is then used to estimate the parameters. King et al. [9]
performed a comprehensive comparison between the traditional method and the
parametric method. Xie et al. [2] performed a comprehensive comparison among
the three methods in term of TI estimation.

For the model in (14.2), the TI is calculated as follows:

TI D
ˇ1

log10.td/ � ˇ0
� 273:16;

where ˇ0 and ˇ1 are defined as:

ˇ0 D
�0

log.10/
C

1

� log.10/
log

�
1 � p

p

�
; and ˇ1 D

�1

log.10/
:

To fit the parametric model, one can use the following command:

> addt.fit.mla<-addt.fit(Response~TimeH+TempC,data=Adh
esiveBondB,proc="ML", failure.threshold=70)
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Similar to the “LS” case, here we provide an example of ML method based on the
parametric method implemented in R. Using the same dataset Adhesive Bond B, we
now change the proc argument to proc =“ML” so that the parametric model is used.
The model results are stored in addt.fit.mla. Argument setups are almost the same
as those in addt.fit for the case of proc = “LS” except for additional arguments:
“starts” and “fail.thres.vec”. In particular,

• starts: It provides a set of starting values for the ML estimation procedure. If this
value is not supplied, the function will use the least-squares method to estimate
for a set of starting values for the ML estimation.

• fail.thres.vec: If the user does not specify starts argument, the user may instead
provide a vector of two different failure.thresholds. The least-squares procedure
is then used for the two different failure thresholds to produce starting values for
the ML procedure.

For the model results in addt.fit.lma, we not only have the parameter estimates as
in the LS example, but also have confidence intervals for the model parameters and
the TI. The following shows the summary information of the model fitting.

> summary(addt.fit.mla)

Maximum Likelihood Approach:
Call:
lifetime.mle(dat = dat0, minusloglik = minus.loglik.ki
netics, starts = starts, method = method, control =
list(maxit = 1e+05))

Parameters:
mean std 95% Lower 95% Upper

alpha 87.2004 2.5920 82.2653 92.4315
beta0 -37.2360 4.6450 -46.3401 -28.1318
beta1 14913.1628 1561.1425 11853.3235 17973.0022
gamma 0.7274 0.0870 0.5753 0.9195
sigma 8.2017 0.6405 7.0377 9.5581
rho 0.0000 0.0003 -0.0006 0.0006

Temperature-Time Relationship:
beta0 beta1

-16.6830 6478.5641

TI:
est std 95% Lower 95% Upper

25.6183 3.0980 19.5465 31.6902

Loglikelihod:
[1] -288.9057
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By applying summary function to the addt.fit results, we have the ML estimates for
˛; �0; �1; �; � , and � along with their standard deviation as well as the associated
95% confidence intervals based on large-sample approximations. The log-likelihood
values for the final model is also printed for model comparisons.

The summary table will perform the TI estimates and confidence interval cal-
culation automatically by assigning the default confidence level as 95%. Users can
change the confidence level to other values by using the function addt.confint.ti.mle
and specifying the desired value for conflevel. In particular,

> addt.confint.ti.mle(addt.fit.mla, conflevel = 0.99)

provides an example of customizing confidence level for TI estimates. It shows that
the 99% confidence interval for TI and the confidence interval is wider than using
95% as the confidence level. The results are shown as follows.

est. s.e. lower upper
25.618 3.097 17.638 33.598

Similar to the LS method, we can visualize the model fitting results. For the ML
method, one can plot the fitted lines along with the data by employing plot.addt.fit.
Figure 14.3 shows the illustration of the fitting results of plot.addt.fit.

> plot(addt.fit.mla, type="ML")

14.2.4 The Semiparametric Method

Different from the traditional method and the parametric method that are introduced
in Sects. 14.2.2 and 14.2.3, the semiparametric method is applicable to different
materials with a nonparametric form for the baseline degradation path. In addition,
the parametric part of the model (i.e., the Arrhenius relationship) retains the
extrapolation capacity to the use condition. Similarly to the parametric model, we
model the degradation measurement as follows,

yijk D �.tij; xiI �/C �ijk;

where

xi D �
11605

TempCi C 273:16
;

and � stands for all the parameters in the model. We use the semiparametric model
structure to describe the degradation path. In particular, the degradation path is
modeled as

�.tij; xi/ D gŒ
i.tijIˇ/I ��; (14.3)
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Fig. 14.3 Plot of the original dataset of Adhesive Bond B as well as the fitted degradation paths
based on the parametric model. The black line with “ı”, red line with “

�
” and green line with “C”

stand for fitted lines at 50, 60 and 70 degree, respectively

and the scale factor is


i.tIˇ/ D
t

exp.ˇsi/
; (14.4)

with acceleration parameter ˇ. In equation (14.4), we define si D xmax � xi where
xmax is the transformed value of the highest level of temperature. We assume the
error terms follow normal distribution with variance �2 and the correlations between
two error terms are �. That is,

�ijk 
 N.0; �2/;

and

Corr.�ijk; �ijk0/ D �: (14.5)

We assume that k ¤ k0 in the error terms correlations in (14.5). In (14.3), g.�/ is
a monotonically decreasing function modeled by splines with parameter vector � .
See Xie et al. [7] for more details on the semiparametric method.
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As a more flexible method designated to a wide variety of materials, the
nonparametric component is used to build the baseline degradation path. With
inner knots d1 � d2 � � � � � dN and boundary knots d0, dNC1, the l-th B-spline
basis function with a degree of q can be expressed at z by recursively building the
following models:

B0;l.z/ D 1.dl � z � dlC1/Bq;l.z/

D
z � dl

dlCq � dl
Bq�1;l.z/C

dlCqCq � z

dlCqC1 � dlC1
Bq�1;lC1.z/:

The degradation can be expressed as follows.

yijk D

pX
lD1

�lBq;lŒ
i.tijIˇ/�C �ijk;

where 
.tIˇ/ accounts for the parametric part while g.�/ is the nonparametric
component which is constrained to be monotonically decreasing to retain the
meanings of the degradation process.

Similarly to the “LS” and “ML” methods, we implement the semiparametric
model in R. In addt.fit, proc=“SemiPara” enables users to fit a semiparametric
model to the degradation data as we discussed above. In particular,

>addt.fit.semi<-addt.fit(Response~TimeH+TempC,data=Adh
esiveBondB,proc="SemiPara",failure.threshold=70)

Other than the arguments we introduced for proc = “LS” and proc = “ML”, there is
an other unique option in the addt.fit when proc = “SemiPara” is called. That is:

• semi.control: This argument contains a list of control parameters regarding the
SemiPara option. Users can specify the model assumptions like correlation rho.
In semi.control = list(cor = F, . . . ), the default value is to exclude the correlation
term in the model (i.e., � D 0). If cor = T, then there will be a correlation term
in the semiparametric model.

Summary results of the semiparametric model object given by addt.fit include Ǒ,
O�, knots that were used by the model, log-likelihood and AICc for the final model,
which are both model evaluation quantities. Note that in the example shown below,
we use the default set up for semiparametric model fit on the Adhesive Bond B data.

> summary(addt.fit.semi)

Semi-Parametric Approach:

Parameters Estimates:
betahat
1.329
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TI estimates:
TI.semi beta0 beta1
26.313 -17.363 6697.074

Model Evaluations:
Loglikelihood AICC

-288.135 586.269

B-spline:
Left Boundary knots Right Boundary

0.00 180.66 2016.00

We can also call plot.addt.fit to present model fitting results.

plot(addt.fit.semi, type="SEMI")

Figure 14.4 shows the plot of the original dataset of Adhesive Bond B data as well
as the fitted degradation mean values using the semiparametric model. Here we
assume that there is no correlation � between two error terms. Note that for plot.addt
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Fig. 14.4 Plot of the original dataset of Adhesive Bond B data as well as the fitted degradation
mean values using the semiparametric model
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Fig. 14.5 Fitted temperature-time relationship lines for the Adhesive Bond B data from the least-
squares, maximum likelihood, and the semiparametric methods. The failure threshold of 70%

function, type argument should be compatible with the addt.obj, meaning that type
used in plot function should be the same with proc argument in the function addt.fit,
otherwise error messages will be generated.

We illustrate the comparisons among the least-squares, maximum likelihood and
semiparametric methods in terms of TI estimation in Fig. 14.5. Temperature-time
relationship lines are plotted for all three methods in black, red and blue lines
correspondingly.
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14.3 Data Analysis

In this section, we present a complete ADDT data analysis using the Seal Strength
data to illustrate the use of functions in Sect. 14.2. The details of the Seal Strength
data is available in Li and Doganaksoy [5]. The first ten observations are listed
below. Note that in the Seal Strength data, temperatures at time point 0 are modified
to 200 degrees while those in the original Seal Strength dataset in Table 14.2 are
100 degrees. Changing temperatures at time point 0 to the lowest temperature is a
computing trick that will not affect fitting results, because at time 0, the temperature
effect has not kicked in yet.

>head(SealStrength, n=10)
TempC TimeH Response

1 200 0 28.74
2 200 0 25.59
3 200 0 22.72
4 200 0 22.44
5 200 0 29.48
6 200 0 23.85
7 200 0 20.24
8 200 0 22.33
9 200 0 21.70
10 200 0 27.97

A graphical representation of the data is useful for users to obtain a general
idea of the degradation paths. Using the addt.fit.mla object from addt.fit with
proc=“ML”, one can plot the degradation paths using option type=“data”.

>plot(addt.fit.mla, type="data")

Figure 14.6 shows the plot of the Seal Strength data, in which the degradations
were measured at six different time points under three different temperatures. For
Seal Strength data, we observe a decreasing trend in degradation measurements as
time increases. Degradation measurements decrease with the accelerating variable,
temperature as well.

Three different addt.fit models can be fitted, which are proc =“LS”, proc =
“ML”, and proc= “SemiPara”.

>addt.fit.lsa<-addt.fit(Response~TimeH+TempC,data=Seal
Strength,proc="LS",failure.threshold=70)

>addt.fit.mla<-addt.fit(Response~TimeH+TempC,data=Seal
Strength,proc="ML",failure.threshold=70)

>addt.fit.semi<-addt.fit(Response~TimeH+TempC,data=Seal
Strength,proc="SemiPara",failure.threshold=70)
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Fig. 14.6 Plot of the Seal Strength data. Degradations were measured at six different time points
under three different temperatures

Alteratively, users can specify all three methods via one call of addt.fit by setting
proc = “All”. The returned object for the three methods is stored in addt.fit.all.

> addt.fit.all<-addt.fit(Response~TimeH+TempC,data=Seal
Strength,proc="All",=failure.threshold=70)

To view the results of all three models, users can call the summary function:

> summary(addt.fit.all)
Least Squares Approach:

beta0 beta1
0.1934 1565.1731

est.TI: 52
Interpolation time:

Temp Time
[1,] 200 2862.3430
[2,] 250 2282.3303
[3,] 300 509.2084
[4,] 350 622.0857
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Maximum Likelihood Approach:
Call:
lifetime.mle(dat = dat0, minusloglik = minus.
loglik.kinetics, starts = starts, method =
method, control = list(maxit = 1e+05))

Parameters:
mean std 95% Lower 95% Upper

alpha 30.5898 3.4550 24.5152 38.1697
beta0 0.2991 1.7013 -3.0355 3.6337
beta1 3867.7170 899.5312 2104.6360 5630.7981
gamma 1.6556 0.4171 1.0105 2.7127
sigma 5.5456 0.6521 4.4041 6.9831
rho 0.7306 0.0664 0.6004 0.8607

Temperature-Time Relationship:
beta0 beta1

-0.0942 1680.4055

TI:
est std 95% Lower 95% Upper

56.6920 28.1598 1.4997 111.8842

Loglikelihood:
[1] -555.0169

Semi-Parametric Approach:

Parameters Estimates:
betahat
0.282

TI estimates:
TI.semi beta0 beta1
32.768 0.362 1418.833

Model Evaluations:
Loglikelihood AICC

-639.206 1288.412

B-spline:
Left Boundary knots knots knots knots

0.00 268.60 527.17 840.00 1394.55
Right Boundary
4200.00
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Fig. 14.7 Plot of the Seal Strength parametric lines with the least-squares method. The black line
with “ı”, red line with “

�
”, green line with “C”, and blue line with “�” represent 200, 250, 300

and 350 ıC interpolated curves, respectively

Results shown here are the same when users call summary for three different
models separately. The add.fit.all and summary for addt.fit.all provides an alterna-
tive way to analyze the data simultaneously.

Similar to Sect. 14.2, we illustrate the results from the least-squares, the
maximum likelihood, and the semiparametric methods in Figs. 14.7, 14.8, 14.9,
and 14.10, respectively. Note that in Figs. 14.9 and 14.10, we show the results for
models without � and with �, respectively.

In addition, users can specify the semi.control argument in the SemiPara fit
option. The semi.control contains a list of arguments that regards the SemiPara
option in the model. For example, whether or not to include a correlation � in the
model. When semi.control = list(cor = T), the model will fit the correlation model
with �. Otherwise, when default value semi.control = list(cor = F) or semi.control
is not specified, the no-correlation model will be fitted. Note that for the option
SemiPara in the function addt.fit, including the correlation � in the model may
require more computing time, but potentially it will provide a better fit.

Here we compare the model results from the traditional method, the parametric
method, and the semiparametric method for the Seal Strength data. In the results
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Fig. 14.8 Plot of the fitted mean function using maximum likelihood method for the Seal Strength
data. The 200, 250, 300 and 350 ıC estimated curves are represented. The black line with “ı”, red
line with “

�
”, green line with “C”, and blue line with “�”, respectively

from summary, TI estimates are 52 ıC, 56 ıC and 47 ıC, respectively. With ˇ0 and
ˇ1 estimates, the TI plot is presented in Fig. 14.11. The black line is the TI from
the traditional model, the red line is the parametric model TI estimates, and the blue
line stands for the results from the semiparametric method.

In the results from two methods, without and with the correlation �, Ǒ are 0.282
and 0.323, while TI estimates are 32.768 and 47.338, respectively. The differences
come from the assumption of � in the model. From the AICc value, the model with
correlation provides a better fit to the data because it provides a smaller AICc value.
The details of the model outputs are shown as follows.

>addt.fit.semi.no.cor<-addt.fit(Response~TimeH
+TempC,data=SealStrength,proc="SemiPara",
failure.threshold=70)

>addt.fit.semi.cor<-addt.fit(Response~TimeH
+TempC,data=SealStrength,proc="SemiPara",
failure.threshold=70, semi.control = list(cor=T))
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Fig. 14.9 Plots of fitted lines using the semiparametric method for the Seal Strength data, for the
model without �

• Model without correlation �:

> summary(addt.fit.semi.no.cor)

Semi-Parametric Approach:

Parameters Estimates:
betahat
0.282

TI estimates:
TI.semi beta0 beta1
32.768 0.362 1418.833

Model Evaluations:
Loglikelihood AICC

-639.206 1288.412
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Fig. 14.10 Plots of fitted lines using the semiparametric method for the Seal Strength data, for the
model with �

B-spline:
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• Model with correlation �:

> summary(addt.fit.semi.cor)

Semi-Parametric Approach:

Parameters Estimates:
betahat rho
0.323 0.714

TI estimates:
TI.semi beta0 beta1
47.338 -0.087 1630.282
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Fig. 14.11 Fitted temperature-time relationship lines for Seal Strength data using the traditional,
maximum likelihood, and semiparametric methods. The failure threshold is 70%

Model Evaluations:
Loglikelihood AICC

-552.662 1117.323

B-spline:
Left Boundary knots knots knots knots

0.00 265.59 520.02 840.00 2483.29
Right Boundary
4200.00
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14.4 Concluding Remarks

In this chapter, we provide a comprehensive description with illustrations for the
ADDT methods implemented in the ADDT package. Functions such as the addt.fit
and summary are illustrated for the traditional method, the parametric method, and
the semiparametric method. We also show R examples using the Adhesive Bond
B data and the Seal Strength data under various function options like proc and
semi.control. Results from three different models are discussed. Users can consult
the reference manual [3] for further details regarding the software package.
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Chapter 15
Modeling and Inference of CD4 Data

Shuang He, Chuanhai Liu, and Xiao Wang

Abstract CD4+ T lymphocyte cell count serves as a surrogate marker of human
immunodeficiency virus (HIV) disease progression as it indicates how healthy the
immune system is. It is well known that total CD4 counts degrade as the disease
progress, so that the CD4 data can be treated as a special type of degradation
data. It is also critical to identify HIV-resistant subjects with non-decreasing
CD4 curves, i.e., the HIV/AIDS nonprogressors. In this paper, we propose a
comprehensive statistical analysis strategy motivated and designed specifically to fit
unique characters of the CD4 count data, which includes steps such as exploratory
data analysis, modeling, and statistical inference. We formulate the problem into a
simultaneous hypothesis testing problem. The inferential model (IM), a new prior-
free probabilistic inference framework, is applied to locate HIV nonprogressors
with the uncertainty characterization. We compared it with the classical Benjamini-
Hochberg procedure for controlling false discovery rate (FDR).

Keywords Exploratory data analysis • FDR • Functional data analysis • Inferen-
tial model

15.1 Introduction

As one of the most important prognostics of the infections of human immunod-
eficiency virus (HIV), CD4 count has been investigated by many scientists from
different aspects. It is well known that total CD4 counts degrade as the disease
progress, so that the CD4 data can be treated as a special type of degradation
data. Biologists make use of a wide range of well-established statistical methods,
including but not limited to, univariate and multivariate regression, categorical data
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analysis and longitudinal data analysis, to model the CD4 count data and draw
practical conclusions [1, 3, 5, 6]. In particular, some scientists are interested in
studies the association between the time to developing AIDS and the baseline
CD4 counts immediately after HIV infections, while others are interested in
investigate the effectiveness of antirevtoviral therapy by looking at the slope of the
change of CD4 counts. For example, [10, 11] developed mechanistic models using
mathematical differential equations in succession to summarize dynamic changes
of CD4 counts after antiretroviral treatment. Statisticians [4, 12, 14] used the CD4
count data to validate the capability and efficiency of intuitive methodologies
designed specifically for sparse longitudinal data with measurement errors. In this
paper, our objective is to identify HIV-resistant subject with non-decreasing CD4
curves, i.e., the HIV/AIDS nonprogressors. We propose a comprehensive statistical
analysis strategy motivated and designed specifically to fit unique characters of the
CD4 count data, which includes steps such as exploratory data analysis, modeling,
and statistical inference.

Statistical modeling is an iterative process. It is fully reflected in this study
focusing on investigating the CD4 data, which is a longitudinal data set with a
random number of sparsely distributed repeated measurements of the CD4 counts
taken at non-equal time intervals for each sample object. Tools of functional
data analysis (FDA) are first employed to explore features of the CD4 data,
both numerically and visually. In particular, we apply the nonparametric repeated
Hanning method [13] to smooth the CD4 percentage, which is the sample CD4 count
as compared to the whole number of lymphocyte cells. The amount of smoothing is
determined when the estimated autocorrelation coefficients are stable or negligible
[7]. By doing so, we have obtained conditionally independent CD4 percentage
measurements and uncovered the real shape of CD4 curves by removing the random
errors. After the CD4 percentage trend has been shown to be linear after smoothing,
a simple linear model is fitted for each subject. A simultaneous multiple hypotheses
of testing is formulated to test whether the CD4 slopes are positive or negative,
with the intention to locate HIV-resistant subjects with non-decreasing CD4 curves,
i.e., the HIV/AIDS nonprogressors. The inferential model (IM) [8], a new prior-
free probabilistic inference framework, is applied to identify HIV nonprogressors
with the uncertainty characterization. We compared it with the classical Benjamini-
Hochberg procedure [2] for controlling false discovery rate (FDR).

This paper is organized as follows. In Sect. 15.2, we apply various exploratory
data analysis techniques to understand, clean, and summarize the CD4 data. In
Sect. 15.3, we make simultaneous inference on the slopes using both the IM and
the well-know Benjamini-Hochberg procedure. The paper ends with conclusions in
Sect. 15.4.
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Fig. 15.1 Spaghetti plot of curves of the logit scale of the CD4 percentages over visits in years,
stratified by age groups and smoke. The top panels and the bottom panels stand for smokers and
nonsmokers, respectively

15.2 Exploratory Data Analysis

The CD4 dataset is a longitudinal collection of 1817 observations from 283 HIV-
infected volunteers followed for up to 5.9 years. For each volunteer with a unique,
arbitrary assigned id, the follow-up time in year post infection (visit), the smoking
status of this id (smoke), the age of the id at the beginning of the study, the post-
infection CD4 percentage (precd4), the CD4 percentage at the current visit (cd4), the
time in year when the last CD4 count measurement taken (lt), the time in year when
current CD4 count measurement taken (rt), and the CD4 percentage at previous
visit were recorded. Among the 283 individuals, 68 (about one third) of them were
smokers, and the youngest one and the oldest one were 18 years old and 60 years
old at the time of HIV infection, respectively. The post-infection CD4 percentage
ranged from 15 to 69, while at the end of the follow-up period for this CD4 data,
the CD4 percentage decreased to the range of 7 to 61. The scatter plot of the data
under different age and smoke status groups is shown in Fig. 15.1. To uncover the
true function shapes of these curves, they have to be deconvoluted. For this purpose,
we need to smooth the curves of the CD4 percentages over visits for each volunteer
separately. As 3 is the minimum number to capture the pattern of a simple curve, id’s
with less than 3 visits are excluded from this study, resulting a sample size of 1766
visits from 223 unique id’s. In addition, it is natural to apply a logit transformation
on the CD4 percentage. The logit transformation will be particularly helpful later
on when we performing simulation in that it won’t be difficult to randomly generate
the CD4 percentage values in a logit scale and ensure their values in the Euclidean
space restricted between 0 and 1. In the following, whenever we mention the CD4
percentage, it stands for the logit scale of it.
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The repeated Hanning method [13] was used for nonparametric smoothing due to
its simplicity and flexibility. For volunteer with id j .j D 1; 2; : : : ; 223/, denote CD4
percentages measured at visit i .i D 1; 2; : : : ; nj/ as .y0j;1; y

0
j;2; : : : ; y

0
j;nj
/ and smooth

it by repeated weighted averaging using the following formula

ym
j;i D 0:25ym�1

j;i�1 C 0:5ym�1
j;i C 0:25ym�1

j;iC1 (15.1)

at the mth iteration, where the two endpoints are arbitrarily set as

ym�1
j;0 D ym�1

j;1 ; ym�1
j;njC1

D ym�1
j;nj

: (15.2)

On average, the CD4 percentages at visit 0, visit 1 and the last visit were 42,
35 and 26, respectively, suggesting a decreasing trend. In order to visualize the
details of this decreasing trend, we first generated a spaghetti plot of curves of
CD4 percentages over visits for each individual volunteers (Fig. 15.1). Volunteers
were assigned into 9 age groups, including 15 to 20, 21 to 25, 26 to 30, 31 to
35, 36 to 40, 41 to 45, 46 to 50, 51 to 55 and 56 to 60, to stratify the change
of CD4 percentage among volunteers with different ages. At the first impression,
an overwhelming majority of the volunteers exhibited jagged decreasing curves of
the CD4 percentages, while only a small amount of them remained flat or even
increased. It is nearly impossible to tell whether these curves changed differently
among different age groups and/or between smokers and nonsmokers from the
spaghetti plot of raw CD4 percentage curves.

It is critical to denoise as much as possible to reveal the underlying functional
form. On the other hand, we do not want to smooth too much in the way that some
features of the function would be lost. Therefore, we borrow the concept of the
conditional independence [7]. Let .sj;1; sj;2; : : : ; sj;nj/ be the means of the observed
CD4 percentages .yj;1; yj;2; : : : ; yj;nj/ at each visit i for each id j, then the conditional
independence is satisfied when

Prfyj;1; yj;2; : : : ; yj;nj jsj;1; sj;2; : : : ; sj;njg D

njY
iD1

Prfyj;ijyj;1; yj;2; : : : ; yj;njg: (15.3)

To find the smallest number of iterations that ensure conditional independence, the
first 5 sample autocorrelation coefficients are calculated and plotted against the
Hanning iteration number. Iteration procedures were terminated whenever the first
sample autocorrelation coefficient increased to positive. The maximum number of
iterations required for this study was 164. Figures 15.1 and 15.2 are the spaghetti
plots of the raw curves and the smoothed curves of the logit scale of the CD4
percentages over visits in years. As shown in Fig. 15.2, the spaghetti plot of the
smoothed curves suggests a linear trend of the change of the CD4 percentage. While
most of the linear curves are decreasing, it is still easy to identify some of lines
which are flat or even increasing. However, it is not straightforward to quantify such
assertions.
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Fig. 15.2 Spaghetti plot of the logit scale of the smoothed curves of CD4 percentages over visits in
years, stratified by age groups and smoke. The top panels and the bottom panels stand for smokers
and nonsmokers, respectively

Fig. 15.3 QQ plot (a), histogram (b), density plot (c), index plot (d), time series plot (e) and plot
of autocorrelation function (f) of residuals from smoothing the logit scale of the CD4 percentage
against visit using the repeated Hanning Method. The average of the residuals are confirmed to
be 0 (panel b, panel c, panel d and panel e). No sequential correlations among residuals (panel d,
panel e and panel f) are observed
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Figure 15.3 summarizes the distribution of the smoothing residuals, which are
the differences between the logit scale of the CD4 percentage and their smoothed
counterparts. Although it is not stringent to check the pooled residuals from all
223 id’s, as the variance of errors could be different from individual to individual,
Fig. 15.3 provides useful information regarding the CD4 data. As expected from
the nature of the smoothing technique and conditional independence, this is a
bell-shaped symmetric distribution with mean zero (panel B and panel C), and no
obvious series dependency is observed (panel D, panel E and panel F). We observe
a heavy tail of the smoothing residuals (panel A), suggesting the existence of some
extreme values, which is also reasonable as the measurements of CD4 percentage
values vary from people to people.

Based on the exploratory data analysis, we have reasoned that the linear function
is appropriate to represent the degradation change of the CD4 percentage over time
for each HIV-infected participant. We are moving forward to using the simple
linear model to obtain the slope estimate for each linear function, so that we
can make inference about HIV non-progressors by identifying those with non-
negative slopes of the linear function. For a volunteer with id j .j D 1; 2; : : : ; 223/,
denote the repetitive measurements of CD4 percentages at the ith visit at year
xj D .xj;1; xj;2; : : : ; xj;i; : : : ; xj;nj/ as the vector yj D .yj;1; yj;2; : : : ; yj;i; : : : ; yj;nj/. Then
a simple linear model can be written as the follows

yj;k D ˇj0 C ˇj;1xj;k C �j;k; k D 1; : : : ; nj; (15.4)

where ˇj D .ˇj;0; ˇj;1/ are intercept and slope, respectively, and �j D

.�j;1; �j;2; : : : ; �j;nj/ is a vector of i.i.d. normally distributed errors with mean zero
and equal variance �2j . The slope ˇj;1 and the intercept ˇj;0 can be estimated by,
respectively,

Ǒ
j;1 D

OCov.xj; yj/

OVar.xj/
; Ǒ

j;0 D Nyj � Ǒ
j;1 Nxj: (15.5)

The residuals �j;1; �j;2; : : : ; �j;nj can be obtained by

O�j;i D yj;i � . Ǒ
j;0 C Ǒ

j;1xj;i/; (15.6)

for each i D 1; 2; : : : ; nj. The marginal distribution of intercept and that of slope are
plotted in left and middle panels of Fig. 15.4 respectively. On one hand, intercept is
symmetrically distributed about �0.5. The distribution of slope is skewed to the left,
with a median of �0.128, showing that the majority of the HIV-infected volunteers
experienced a decrease in the plasma CD4 count measurement during the follow-up
period of the study, which is consistent with the smoothed Spaghetti curves shown in
Fig. 15.2. Figure 15.4 also reflects the fact that a small portion of the CD4 percentage
remained non-decreasing or even increasing during the study. The right panel of
Fig. 15.4 shows the joint distribution of estimated intercepts and estimated slopes.
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Fig. 15.4 Left: The marginal distribution of the estimated intercepts without 4 outliers. Middle:
The marginal distribution of the estimated slopes without 4 outliers. Right: The joint distribution
of the estimated slopes and the estimated intercepts without 4 outliers. The red dashed line is
the LOWESS fitted curve and the black dashed line is the straight line fitted by a simple linear
regression model

It is statistically significant that the slope is negatively correlated with the intercept,
i.e., the higher the post-infection CD4 percentage, the slower the decreasing of
the CD4 percentage. This reflects an implicit time misalignment phenomenon, that
is, the time a patient’s blood sample was confirmed to be infected by HIV in the
lab was later than the true time. Since HIV/AIDS is a slow progression disease
and usually shows no peculiar symptom other than a flu-like illness, a volunteer
usually did not notice that he already infected by HIV. In fact, the true event of HIV
infection could happen any time between visit 0 and the visit before visit 0, i.e.,
the true time after HIV infection should be longer than the recorded visit time. In
general, the longer the disease had progressed before visit 0, the smaller the number
of the intercept, which is the post-infection CD4 percentage. However, this time
misalignment problem does not affect the inference of our objective in this study.
We are interested in identifying nonprogressors whose CD4 count measurements
remained nondecreasing during the clinical latency phase of the natural course of
HIV/AIDS progression.

15.3 Statistical Inference

We have elaborated the validity of using a linear function to model the curve of
CD4 percentage. The objective of identifying HIV/AIDS nonprogressors can be
converted into a statistical simultaneous multiple testing problem for each slope
of the CD4 percentage curve. Specifically, for each HIV-infected volunteer with id
j .j D 1; 2; : : : ; n/, assume a simple linear regression model

yj;i D ˇj;0 C ˇj;1xj;i C �jZj;i (15.7)

for each visit i .i D 1; 2; : : : ; nj/ and assume Zj;i follows a N.0; 1/ distribution
i.i.d. Note that �j’s do not need to be equal, allowing measurement errors for each
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id to have different variances. Let ˇ D .ˇ1;1; : : : ; ˇn;1/. Our objective is to make
simultaneous inference for n assertions

Aj D fˇ W ˇj;1 < 0g; j D 1; : : : ; n: (15.8)

15.3.1 Inferential Model

It has been a long debate regarding valid statistical inference between frequentist
and Bayesian. While one can argue that the frequentist’s point estimate is mean-
ingfulness, others can question that the noninformative Bayesian prior is actually
informative. Many statisticians have tried to propose alternative approaches to
generate probabilistic inference without using a prior. However, none of them can
provide a solution of easy interpretation.

Recently, [8] have developed a new framework of probabilistic prior-free statisti-
cal inference, known as the inferential model (IM), through a three-step construction
[9]. Let X be the observable data and � be the unknown parameter of interest, the
IM starts with introducing a random auxiliary variable U with a probability measure
PU and define the association X D a.U; �/. The form of the probability measure
PU is flexible. While we are sampling u from PU , a collection of sets of candidate
random values, �x.u/ can be obtained through each possible pair of .x; u/ and the
association a, i.e.,

�x.u/ D f� W x D a.u; �/g: (15.9)

Then a predictive random set (PRS) S.U/ is employed to predict u� followed by the
third step, which is to combine the association X D a.U; �/, the observed X D x,
and the PRS S.U/ to transform the available information about u� to the parameter
space. Finally the inference about � can be made by calculating the probability that
the expanded set�x.S/ D [u2S�x.u/ is a subset of the assertion A, which is defined
as the belief function

belx.A/ D PSf�x.S/ � Aj�x.S/ ¤ Øg: (15.10)

Note that belx.A/ is not an ordinary additive probability measure, i.e., belx.A/ C

belx.Ac/ � 1 with equality if and only if �x.S/ is a singleton with probability 1.
The related plausibility function is introduced as the following definition

plx.A/ D 1 � belx.A
c/ D PSf�x.S/ � Acj�x.S/ ¤ Øg: (15.11)

From Eqs. (15.10) and (15.11), it is easy to conclude that the value of belx.A/ is
always no bigger than that of plx.A/. In other words, the belief function summarizes
the evidence supporting A, while the plausibility function summarizes the evidence
against Ac. If the sum of these two numbers does not equal to 1, the left represents
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the “don’t know”. In together, the belief function belx.A/ and the plausibility
function plx.A/ provide a post-data, prior-free, probabilistic-adjusted measure of
uncertainty of the assertion.

Let Yj be the vector of .yj;1; yj;2; : : : ; ynj/
T and Xj 2 R

2�nj be the design matrix of
the above regression model. The hat matrix is Hj D XT

j .XjXT
j /

�1Xj. Define

Sj D
k.I � Hj/Yjk2p

nj � 2
; Bj D .XT

j Xj/
�1XT

j Yj (15.12)

to be the least squares estimates of �j and ˇj D .ˇj;0; ˇj;1/, respectively. Set

Mj D
k.I � Hj/Zjk2p

nj � 2
; Tj D

.XT
j Xj/

�1XT
j Zj

Mj
: (15.13)

It is known that Mj and Tj are independent and .nj � 2/Mj
2 follows a chi-square

distribution with nj�2 degrees of freedom and Tj follows a 2-d Student-t distribution
with the scale matrix .XT

j Xj/
�1 and nj � 2 degrees of freedom. We may write the

equivalent association

Bj D ˇj C SjTj; Sj D �jMj: (15.14)

Therefore, we focus on the association

Bj;1 D ˇj;1 C SjTj;1; j D 1; 2; : : : ; n: (15.15)

For simplicity, we rewrite Eq. (15.15) as Bj D ˇj C SjTj, j D 1; 2; : : : ; n. For each id
j, consider the association

Bj D ˇj C SjFj
�1.Uj/; (15.16)

where the .Bj; Sj/ are observables, the unknown parameter ˇ D .ˇ1; ˇ2; : : : ; ˇn/
T 2

R
n, U1;U2; : : : ;Un are i.i.d. uniform auxiliary variable on Œ0; 1�, and Fj is the

cumulative distribution function of the Student t-distribution with nj � 2 degrees
of freedom.

If U1;U2; : : : ;Un are known, the values of ˇj are determined by

ˇj D Bj � SjFj
�1.Uj/: (15.17)

So it is very critical to predict these unknown quantities U1;U2; : : : ;Un. Under the
frame work of IM, we use the predictive random set (PRS) to predict Uj’s. The
criterion to choose PRS is to balance across multiple assertions [8]. The optimal
PRS satisfying the balance condition is the square PRS:

& D fu 2 Œ0; 1�n W maxfju1j; : : : ; junjg � maxfjU1j; : : : ; jUnjgg: (15.18)
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Table 15.1 Nonprogressors
identified by the IM, as
compared by the
Benjamini-Hochberg
procedure at level ˛ D 0:05

j id bel.Aj/ pl.Aj/ ph.Aj/

13 1631 0.00 1.00 0.00

70 3708 0.23 1.00 0.00

87 4122 0.00 1.00 0.00

106 4868 0.99 1.00 0.01

119 5208 0.00 1.00 0.00

151 7143 0.00 1.00 0.00

161 7317 0.00 1.00 0.00

162 7398 0.00 1.00 0.00

185 8341 0.00 1.00 0.00

211 9451 0.00 1.00 0.00

where U1;U2; : : : ;Un are i.i.d. with Unif .0; 1/. With this PRS, let

�.&/ D fˇ W ˇj D Bj � SjFj
�1.Uj/; j D 1; 2; : : : ; ng: (15.19)

If we are willing to accept that the PRS & is satisfactory for predicting U, then�.&/
will do equally well at capturing ˇ. For a common PRS & , IM results are given by
the set of the n belief functions and n plausibility functions for each Aj. For any
given ˇ 2 R

n, the belief function and the plausibility function are given by

bel.Aj/ D Pr& .�.&/ � Aj/ (15.20)

and

pl.Aj/ D Pr& .�.&/ � Ac
j /; (15.21)

respectively. There is no closed form to compute bel.Aj/ or pl.Aj/ directly from
the above two equations. Instead, we randomly generated 10;000 n-dimensional
samples u 2 Œ0; 1�n to construct a realization of the PRS & and then calculate
the corresponding �.&/. Next, we calculate the belief functions bel.Aj/’s and
the plausibility functions pl.Aj/’s by constructing 1000 realizations of �.&/ and
computing the proportion of simulated �.&/’s with all elements no less than 0
and the proportion of simulated �.&/’s with at least one element less than 0,
respectively. All bel.Aj/’s are less than or equal to pl.Aj/’s. providing the lower
probabilities and the upper probabilities to evaluate the uncertainties of assertion
Aj’s. Among all of the ids, 8 of them, including 1631, 4122, 5208, 7143, 7317, 7398,
8341 and 9451, are identified as nonprogressors by evaluating their belief functions
bel.Aj/ � ˛ D 0:05 (Table 15.1).
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15.3.2 False Discovery Rate (FDR)

Benjamini and Hochberg [2] proposed a less conservative definition of the error
rates, the false discovery rate (FDR), and described the procedure of how to obtain
the FDR. The FDR procedure has been shown to associated with greater power,
though, at the meanwhile, it also inflates the rates of false discoveries. The FDR,
which is defined as the expected proportion of false positives among all rejected
null hypotheses, has been widely applied in multiple testing problems, particularly
in those high-throughput data. The reason for the prevalence of FDR is that it
is associated with greater power as compared to the classical approaches that
controlling the family-wise error rate, which is the rate of reject even a single true
null hypothesis by mistake. The FDR was proven less or equal to the significance
level ˛. In this section, we elaborate the use of the Benjamini and Hochberg
procedure to identify HIV/AIDS nonprogressors.

Define V and R the number of false positives and the number of total rejected
null hypothesis, then the FDR is defined as

FDR D EŒ
V

R
�; (15.22)

where V
R D 0 when R D 0. For n independent hypotheses Hm .m D 1; 2; : : : ; n/,

the Benjamini-Hochberg procedure controls the FDR at a given level ˛ through
the following steps: (1). Order the p-values for each test as p.1/; p.2/; : : : ; p.n/; (2).
Find the largest k such that p.k/ � k

m˛; (3). Reject all null hypotheses with p.i/ for
i D 1; : : : ; k. It is proved that FDR � n0

n ˛ � ˛.
For each HIV-infected volunteer with id j.j D 1; 2; : : : ; n/, we first conducted the

one-sided test of slope

H0;j W ˇj � 0 vs Ha;j W ˇj > 0: (15.23)

The observed values of the test statistic tobs;j D Bj=Sj and the corresponding p-values
pj based on its asymptotic Student-t distribution with .nj � 2/ degrees of freedom
are computed. We applied the Benjamini-Hochberg procedure by first ordering the
p-values for each test as p.1/; p.2/; : : : ; p.n/, and then calculate the adjusted p-values
by

ph.Aj/ D minf1; cummin.np.j/=j/g: (15.24)

Ten out of all HIV-infected volunteers, including those with id equal to 1631,
3708, 4122, 4868, 5208, 7143, 7317, 7398, 8341 and 9451, are identified as
nonprogressors at significance level ˛ D 0:05, i.e., ph.Aj/ � ˛ D 0:05 (Table 15.1).

It is observed that the n FDR corrected p-values ph.Aj/’s are always no less than
the belief functions bel.Aj/’s and no bigger than the plausibility functions bel.Aj/’s
(Table 15.1). The belief functions bel.Aj/’s, the plausibility functions pl.Aj/’s,
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Fig. 15.5 Spaghetti plots of the CD4 percentages (in original scale, not logit scale) of HIV/NIDS
nonprogressors identified by IM and/or FDR. All 8 curves in black were nonprogressors identified
by using both the IM procedure and the Benjamini-Hochberg procedure. The curve in red and the
curve in green show the 2 nonprogressors, with id D 4868 and id D 3708, respectively, stand
for nonprogressors identified by the Benjamini-Hochberg procedure as nonprogressors, but not the
IM procedure. Visualization of this plot confirms that all the 10 nonprogressors identified by IM
and/or FDR express increasing CD4 percentages

and the FDR corrected p-values ph.Aj/’s are also reported for the 10 HIV/AIDS
nonprogressors identified using FDR with level ˛ D 0:05 (Table 15.1). The
plausibility functions of all 10 of them were all 1. The belief functions of 8 patients
including 1631, 4122, 5208, 7143, 7317, 7398, 8341 and 9451, were less than 0.05.
In fact, they were all equal to 0.00. The rest two of them, with id D 3708 and id D

4868, have the values of the belief functions equaled to 0.23 and 0.99, respectively.
If we also choose level ˛ D 0:05 to identify HIV/AIDS nonprogressors based on the
plausibility function, similar but not exactly the same conclusions would be drawn
as compared to the Benjamini-Hochberg procedure. That is, the 8 id’s mentioned
above were also identified by the Benjamini-Hochberg procedure. However, the
Benjamini-Hochberg procedure identified two extra volunteers as nonprogressor.
The CD4 percentage of the above 8 plus 2 HIV/AIDS nonprogressors was plotted
in black and red in Fig. 15.5, respectively. All of them show increasing trends of
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their CD4 percentage curves. The key difference between the IM and the FDR
is that the IM always provides a way of measuring uncertainties of the assertion
directly through the belief functions and the plausibility functions, while as a post
hoc adjustment of multiple p-values, the FDR procedure does not provide any
uncertainty justification.

15.4 Conclusion

This paper comprises of two main parts, the data and objective driven analysis
strategy and the application of the inferential model in functional data analysis.
As illustrated in this study, a good exploratory data analysis, along with a thorough
background study, can not only help understand the data structure, visualize the
distribution of random variables and check model assumptions, but also be able
to reveal the problems such as missing value and curve registration. In addition,
the exploratory data analysis is even more important in functional data analysis,
particularly in that the application of nonparametric smoothing techniques is critical
in both uncovering the underlying function of curves and hence affecting the
selection of data analysis and inference methods.

The construction of the inferential model is novel in the way that intrinsically,
both observations and parameters are fixed and auxiliary variables count for the
source of randomness, so that we are not arbitrarily coerce the sample and/or the
parameter to be random. The thinking of IM is more of the nature of statistical
inference. Furthermore, it is easy to see from the construction of the IM that it targets
on the scientific problem directly and provides the uncertainties about multiple
assertions simultaneously, through the lower and upper probabilities, belx.A/ and
plx.A/. It separates the uncertainty and decision. Scientists will make the decision,
not statisticians. On the other hand, the Benjamini-Hochberg procedure is a post hoc
correction for multiple p-values controlling the false discovery rate, which is not a
direct evaluation of the probability of uncertainty itself. Other advantages of the IM
include, but not limited to, that the IM is finite sample inference which comes from
data with a prior-free probabilistic calibration. In a word, the IM provides a post-
data and prior-free probabilistic measure of the uncertainty of an assertion or a set
of assertions simultaneously.

There are many potentials to other extensions, including: (1) Identifying long-
term nonprogressors, also known as elite progressors, by applying to a larger CD4
data set which contains longer duration of follow-up, with or without medical
intervention; (2) Investigating the associations between HIV/AIDS nonprogressors
with a variety of demographical, socioeconomics, and/or health variables as the
independent variables by performing a logistic regression with nonprogressors as
the dependent variable and other covariates as independent variables.
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Chapter 16
State Space Models Based Prognostic Methods
for Remaining Useful Life Prediction
of Rechargeable Batteries

Dong Wang and Kwok-Leung Tsui

Abstract Rechargeable batteries are widely used in many electronic products and
systems to provide power sources. Because of the influence of charge/discharge
cycling and some significant battery degradation factors, such as discharge rate,
temperature, depth of charge, etc., on battery health condition, battery degrades
over time. In this chapter, several state space models based prognostic methods are
proposed to predict battery remaining useful life. Firstly, a particle filtering based
state space model for battery remaining useful life prediction at a constant discharge
rate is introduced. Secondly, to improve particle filtering and its application to
battery prognostics, spherical cubature Kalman filtering is introduced to provide
an importance function for the use of particle filtering at a constant discharge
rate. Thirdly, to extend battery prognostics at a constant discharge rate to battery
prognostics at different discharge rates, a more general battery degradation model is
presented. Based on the developed model, a battery prognostic method at different
discharge rates is designed. Some discussions are made at last.

Keywords Prognostics and health management • Rechargeable batteries • State
space model • Remaining useful life • Filtering • Degradation

16.1 Introduction

Prognostics and health management (PHM) is an enabling discipline that aims to
predict the time when a component or system will no longer satisfy its functionality
required by users, to schedule a necessary maintenance and to keep the high
reliability of the component or system [1, 2]. Being different from traditional
handbooks based reliability prediction methods, the PHM incorporates timely mea-
surements collected from the component or system to update parameter distributions
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of empirical degradation models established from historical data or physical models
provided by domain knowledge, and to infer remaining useful life (RUL) of the
product or system [3]. Here, the RUL [4] is defined as the period from the current
time to the end of useful lifetime. Rechargeable batteries, especially lithium-ion
batteries, are one of the most common energy storage devices used in electronic
vehicles, electronic products, unmanned aerial vehicles, etc. [5, 6, 7]. Battery
failures may cause unexpected system breakdowns, increase economic losses and
even catastrophe. To ensure the high reliability of rechargeable batteries, their RUL,
namely remaining battery capacity or remaining charge/discharge cycles, should be
accurately and immediately predicted before their failures [8].

At the very early beginning, Burgess [9] experimentally investigated the float
service life of a valve regulated lead acid battery and found that it has two distinct
stages. The former stage of the float service life of the valve regulated lead acid
battery has a relatively small battery capacity loss, while the latter stage of the float
service life of the valve regulated lead acid battery has a linear battery degradation
trend that can be modeled by using a linear and Gaussian state space model. Then,
Burgess used Kalman filtering [10] to solve the linear and Gaussian state space
model and predicted RUL of the valve regulated lead acid battery. However, for
many other different types of rechargeable batteries, such as lithium-ion batteries,
battery degradation trends are not purely linear and they can not be well modeled
by the linear and Gaussian state space model, which limits the use of Kalman
filtering for battery prognostics. To solve this problem, Saha et al. [11] combined
relevance vector machine with particle filtering (a general sequential Monte Carlo
method) to predict RUL of lithium-ion batteries. To show the superiority of their
proposed method, comparisons with autoregressive integrated moving average and
extended Kalman filtering were conducted. In their finding, particle filtering has
higher prediction accuracies than the other prognostic methods [12]. The main idea
of particle filtering [13] is to use an amount of random particles sampled from an
importance function and their associated weights to estimate posterior distributions
of parameters or states. Consequently, particle filtering is more flexible than Kalman
filtering and its variants for solving nonlinear and non-Gaussian state space models.
Since the work of Saha et al. was reported for battery prognostics, particle filtering
based prognostic methods became popular in the research community of diagnostics
and prognostics [14, 15]. He et al. [16] used the sum of two exponential functions,
namely a bi-exponential function, as an empirical battery capacity degradation
model to fit battery degradation data and employed particle filtering to predict
RUL of lithium-ion battery. However, it should be noted that the sum of the
two exponential functions is too flexible to fit many degradation data and thus
may cause an overfitting problem that connotes poor prediction accuracies [17].
Following the work of He et al., Xing et al. [18] employed the combination of an
exponential function and a polynomial function with an order of 2 to fit battery
degradation data and used particle filtering to predict battery RUL. Even though
a new empirical battery degradation model was developed, no evidence can be
used to support that such new empirical battery degradation model can be applied
to general battery degradation data. Xian et al. [19] combined a Verhulst model,
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particle swarm optimization and particle filtering to predict battery RUL. Li and
Xu [20] mixed Gaussian process models with particle filtering to predict battery
RUL. Dong et al. [21] used support vector regression to resample particle filtering
to predict battery RUL. Liu et al. [22] employed autoregressive model and particle
filtering to predict battery RUL. Hu et al. [23] used kernel smoothing to increase
the diversity of random particles used in particle filtering for battery prognostics.
Besides the above work, a recent comparison [24] showed that particle filtering is
able to provide higher prediction accuracies than unscented Kalman filtering and
non-linear least squares for battery prognostics [25]. Although particle filtering has
proven a good prediction ability in battery prognostics [11, 12, 16, 18–22, 24], it
is often assumed that its importance function is equal to a prior distribution that
does not consider the recent battery capacity degradation data to update its own
distribution and the weights of random particles [26]. Moreover, it should be noted
that the above prognostic methods can only work at a fixed operating condition,
such as a fixed discharge rate. In other words, the authors of the above works
did not propose a unique prognostic model that is able to work at different or
varying discharge rates. In real applications, the unique prognostic model working
at different or varying discharge rates is more preferable because many electric
and hybrid electric systems, such as electric vehicles, require different or varying
discharge rates. Consequently, it is necessary to develop such unique prognostic
model for battery prognostics.

For the rest of the book chapter, three cutting-edge state space models based
prognostic methods are introduced to predict battery RUL and to solve the two
challenging problems mentioned in the previous paragraph. In Sect. 16.2, based
on historical battery degradation data, a state space model is presented to describe
battery degradation over cycle. How to solve the state space model is then detailed
by using particle filtering. Extrapolations of the determined state space model to a
soft failure threshold are used to infer battery RUL. Here, the soft failure threshold
is a flexible failure threshold defined by users according to historical degradation
data. A case study is investigated to illustrate how the presented prognostic method
works for battery RUL prediction. However, even though the particle filtering based
prognostic method is effective in predicting battery RUL, as mentioned in the
previous paragraph, an important function must be properly designed so that the
recent battery degradation data can be incorporated to update the weights of random
particles for battery RUL prediction. In Sect. 16.3, spherical cubature Kalman
filtering is introduced to provide a proper importance function for use of particle
filtering. Based on this idea, a spherical cubature particle filtering based prognostic
method is presented to predict RUL of lithium-ion batteries. Comparisons with the
particle filtering based prognostic method are conducted to demonstrate that the
proper selection of an importance function is able to enhance prediction accuracy
of battery RUL. In Sect. 16.4, besides the two prognostic methods that can only
work at a constant discharge rate, a state space model based prognostic method
is presented to predict battery RUL at different discharge rates. In other words, the
third prognostic method is able to use a unique state space model to represent battery
capacity degradation at different discharge rates, which is much more attractive in
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practice because electric products and systems work at different or varying discharge
rates. Some discussions are made in Sect. 16.5. Conclusion remarks are given at last.

16.2 A Particle Filtering Based State Space Model for
Battery Remaining Useful Life Prediction at a Constant
Discharge Rate

Before particle filtering is introduced to predict battery RUL at a constant discharge
rate, a state space model should be developed to describe battery degradation over
cycle. In this section, the capacity degradation samples used by Park et al. [27] are
investigated in this section. 26 lithium-ion batteries were randomly chosen from
manufactured lots and they went through cycle-life tests of 400 cycles under a
constant-current/constant-voltage mode at a room temperature. The capacity of each
battery was calculated by integrating current over time in the battery discharge
process. The normalized capacities (NC) of 26 battery degradation samples are
plotted in Fig. 16.1, where the 26 battery degradation samples are divided into
training samples (blue dots) and testing samples (red stars). The training samples are
used to establish an empirical battery degradation model and construct a state space
model for battery degradation assessment. The testing samples are used to validate
the effectiveness of the particle filtering based prognostic method for battery RUL
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Fig. 16.1 26 lithium-ion batteries capacity degradation samples under a constant discharge rate
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Table 16.1 Goodness of fit of the exponential function for the 20 training samples

Training sample
number

R-squared
value

Training sample
number

R-squared
value

Training sample
number

R-squared
value

1 0.98 8 0.97 15 0.96
2 0.98 9 0.97 16 0.96
3 0.98 10 0.97 17 0.94
4 0.98 11 0.96 18 0.96
5 0.97 12 0.96 19 0.96
6 0.97 13 0.96 20 0.99
7 0.98 14 0.94

prediction. Because only 6 samples are able to reach a soft failure threshold of 0.85,
the 6 capacity degradation samples are used as the testing samples.

In Fig. 16.1, we observe that these battery capacity degradation samples have
similar degradation trends along with different degradation rates. A simple and
useful function, namely an exponential model with the amplitude a and the slope
b, is used to fit the training samples and describe the battery capacity degradation.
The goodness of fit of the exponential model is indicated by the R-square values
tabulated in Table 16.1, where we observe that the exponential function can describe
the 20 training samples well. Thus, we can treat the exponential function as part
of a measurement function used in a state space model. The boxplots of the fitted
amplitudes and slopes of the exponential function are plotted in Fig. 16.2, in which
we observe that different battery degradation samples have different amplitudes and
slopes. To describe the diversity of the fitted exponential functions, the amplitude
a and the slope b should be the two states/parameters used in a state space
model. Considering the above two points, the state space model consisting of the
measurement function (the nonlinear exponential function f (�) plus a noise term)
and the two states is constructed as follows:

NCk D f .k/C v1 D ak � ebk�k C v1: (16.1)

ak D ak�1 C v2; (16.2)

bk D bk�1 C v3; (16.3)

where v1, v2 and v3 follow additive Gaussian noises with zero means and standard
deviations �1,�2 and �3, respectively; and NCk is the kth measured normalized
capacity as mentioned in introduction of the experiment in this section. The initial
states a0 and b0 are calculated as 0.9692 and �0.3028, respectively, by taking the
medians of the a and b values shown in Fig. 16.2. �1 , �2 and �3 are set to 5 � 10�3,
1 � 10�3 and 1 � 10�6, respectively, by considering the scales and uncertainties of
the normalized capacities, and the a and b values shown in Fig. 16.2.
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Fig. 16.2 Boxplots of the two states/parameters obtained by fitting the 20 training samples with
the exponential function: (a) the parameter a; (b) the parameter b

Once the state space model is initialized, its states including the amplitude and
slope of the exponential function should be posteriorly updated when a new battery
capacity measurement is available. Therefore, Bayesian filtering, such as particle
filtering, is able to posteriorly estimate the distribution of the states used in the state
space model. The main idea of particle filtering is to use some random particles
sampled from an importance function and their associated weights to represent a
posterior probability density function. We will introduce how to use particle filtering
to estimate the posterior distribution of the states of the exponential function in the
following paragraphs.

Step 1. Generate Ns initial random particles
˚
ai
0

�Ns

iD1 and
˚
bi
0

�Ns

iD1 from the prior
Gaussian distributions p .a0/ D N



a0; �22

�
, and p .b0/ D N



b0; �23

�
, respectively.

Ns is artificially equal to 100 here. As the number of random particles increases,
an approximation to a true posterior state distribution is improved. Nevertheless,
associated computational time also increases. It is necessary to make a tradeoff
between approximation accuracy and computational time. Then, each of the

˚
! i
0

�Ns

iD1
is set to 1/Ns and their sum is equal to 1. The random particles and their associate
weights are able to approximate the prior distributions of the amplitude a and slope
b. According to the theory of particle filtering [25], once a new measurement NC1,
namely the first measured normalized capacity, is available, the weight updating is
calculated by:
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: (16.4)

where p


ai
1

ˇ̌
ai
0

�
and p



bi
1

ˇ̌
bi
0

�
are the state transition probability density functions

established by Eqs. (16.2) and (16.3); q


ai
1; b

i
1 jNC1 ; ai

0; b
i
0

�
is the importance

function designed by users; and p


NC1

ˇ̌
ai
1; b

i
1

�
is the measurement probability

density function. The random particles and their associated weights provided by Eq.
(16.4) are able to express the posterior distributions of the amplitude a and slope b.
Here, it should be noted that ! i

1 can not be calculated if ai
1 and bi

1 are not predicted
from ai

0 and bi
0 according to Eqs. (16.2) and (16.3), respectively. This is because

! i
1 is posteriorly and iteratively updated. If the importance function is chosen as the

prior state transition probabilities, Eq. (16.4) is simplified as:

! i
1 D

! i
0p


NC1

ˇ̌
ai
1; b

i
1

�
PNs

iD1 !
i
0p


NC1

ˇ̌
ai
1; b

i
1

� : (16.5)

It should be noted that the importance function used in Eq. (16.5) does not
consider the recent battery degradation data NC1 to update the weights of random
particles. According to the size of ! i

1, a systematic resampling [28] is used to

re-draw random particles
˚
ai
1

�Ns

iD1 and
˚
bi
1

�Ns

iD1 from the posterior distributions of
the amplitude a and slope b. First, construct the cumulative distribution function
of the weights ! i

1; i D 1; 2; : : : ;Ns. Let c1 D 0 and ci D ci-1 C ! i
1. Draw a

starting point d1 from a uniform distribution U
�
0;N-1

s

�
. For each increased point

dj D d1 C N�1
s .j � 1/ ; j D 1; 2; : : : ;Ns moving along the cumulative distribution

function of the weights, if dj � ci is satisfied, i D i C 1; and then, aj
1 D ai

1 and
bj
1 D bi

1. After the systematic resampling is conducted, each of the weights is set to
1/Ns. The posterior probability density functions of the amplitude a and slope b at
iteration 1 are respectively expressed as follows:

p .a1 jNC1 / �
PNs

iD1 •


a1 � ai

1

�
=Ns

p .b1 jNC1 / �
PNs

iD1 •


b1 � bi

1

�
=Ns

; (16.6)

where •(�) is the Kronecker Delta and it is equal to 1 if two integers in the Kronecker
Delta are equal to each other; and 0 otherwise.

Step 2. Generate Ns random particles
˚
ai

k�1

�Ns

iD1 and
˚
bi

k�1

�Ns

iD1 from
p .ak�1 jNC1Wk�1 / D N



ak�1; �

2
2

�
, and p .bk�1 jNC1Wk�1 / D N



bk�1; �

2
3

�
,

respectively. According to the theory of particle filtering [25], once a new
measurement NCk, namely the kth measured normalized capacity, is available,
the weight updating is calculated by:
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where p
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k
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k�1
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and p
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k
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�
are the state transition probability density

functions established by Eqs. (16.2) and (16.3); q
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is the

importance function; and the probability density function of the measurement
p
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ai
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i
k

�
. In a number of applications related to battery prognostics [16, 18,

29], the importance function is often selected as a prior distribution so as to simplify
Eq. (16.7):
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It should be noted that the importance function used in Eq. (16.8) does not
consider the recent battery degradation data NCk to update the weights of random
particles. According to the size of ! i

k, the same systematic resampling [28]

previously introduced in this section is used to re-draw random particles
˚
ai

k

�Ns

iD1

and
˚
bi

k

�Ns

iD1. After the systematic resampling is conducted, each of the weights is
set to 1/Ns. The posterior probability density functions of the amplitude a and slope
b are respectively expressed as follows:

p .ak jNC1Wk / �
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iD1 •


ak � ai

k
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=Ns

p .bk jNC1Wk / �
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iD1 •


bk � bi

k

�
=Ns

: (16.9)

Step 3. Let k D k C 1 and return to Step 2 until k > Mis satisfied. Here, M is the
length of the available normalized capacity degradation data for a specific lithium-
ion battery. At iteration M, the posterior probability density functions of the two
parameters are given as follows:

p .aM jNC1WM / �
PNs

iD1 •


aM � ai

M

�
=Ns

p .bM jNC1WM / �
PNs

iD1 •


bM � bi

M

�
=Ns

: (16.10)

Extrapolations of the nonlinear function f (�) with the parameters distributions
provided by (16.10) to a specified failure threshold, such as 0.85 used in Sects. 16.2
and 16.3, are used to calculate the probability density function RUL(cM) of the RUL
of lithium-ion batteries at cycle M:

RUL .cM/ D

NsX
iD1

•
�

cM � inf
�

k 2 int W ai
M � ebi

M�k � 0:85
�

C M
�

Ns
; (16.11)
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where the int is the set of all integers and the inf takes the greatest lower bound of a
set. The prediction of RUL and its lower and upper bounds are 50th, 5th, and 95th
percentiles of Eq. (16.11), respectively. Moreover, the failure probability density
function (FPDF) is calculated by removing the constant term M from Eq. (16.11).

16.3 A Spherical Cubature Particle Filtering Based State
Space Model for Battery Remaining Useful Life
Prediction at a Constant Discharge Rate [30]

It should be noted that the importance functions used in Eqs. (16.5) and (16.8) only
depend on the current system states and does not incorporate the recent battery
degradation data, such as the recent battery degradation data. When the recent bat-
tery degradation data has tangible influences on the importance function, Eqs. (16.5)
and (16.8) for updating the weights become inaccurate and unreliable. Therefore,
the recent battery degradation data should be explicitly incorporated in the design of
the importance function. To achieve this goal, spherical cubature Kalman filtering is
used in particle filtering to design a proper importance function which incorporates
both the previous system states and the recent battery degradation data. When a new
NC is available, the posterior probability density functions of the amplitude a and
slope b are iteratively updated by the following steps.

Step 1. Generate Ns initial random particles
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distributions p .a0/ D N



a0; �22

�
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�
, respectively. Each of˚
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iD1 is set to 1/Ns and their sum is equal to 1. For each random particle, an
initial distribution for the use of the spherical cubature Kalman filtering is p
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�
. The initial mean vector m0 and the initial covariance

matrix P0 can be constructed by using the means and standard deviations stated in
Sect. 16.2. Recalling spherical cubature integration, only four sigma points �

j
0 D

m0 C
p
2 .P0 C Q/uj;j D 1 , : : : , 4, are propagated to the nonlinear function f (�):

Yj
0 D f

�
�

j
0

�
; j D 1; : : : ; 4; (16.12)

where Q is a noise covariance established by standard deviations of additive
Gaussian state noises.

The predicted mean u0U, the predicted covariance S0U, and the cross-covariance
C0U of the predicted state and the predicted measurement are calculated as follows:
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: (16.13)
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The q
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�
is approximated by the multi-dimensional Gaussian

distribution with the updated mean vector m1 and the updated covariance matrix P1:
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where C0U


S0U
��1

is the filtering gain used in the Kalman filtering. Equations (16.12),
(16.13), and (16.14) are called the spherical cubature Kalman filtering. The equation
for the calculation of the weight used in the spherical cubature Kalman filtering is
derived as
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: (16.15)

According to the size of ! i
1, the same systematic resampling [28] introduced

in the previous section is used to re-draw random particles. Then, each of the
associated weights equals to 1/Ns. Resulting posterior probability density functions
of the two parameters are derived as
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: (16.16)

Step 2. Generate Ns random particles
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k�1
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iD1 and
˚
bi

k�1
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iD1 from Eq. (16.16).
Suppose that the posterior probability density function q
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at iteration k-1 is

estimated by using the spherical cubature Kalman filtering. Only four sigma points
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j
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p
2Pk�1 C Quj;j D 1 , : : : , 4, are used to calculate the mean and

the covariance of the nonlinear function f (�):
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; j D 1; : : : ; 4: (16.17)

The predicted mean uk�1
U , the predicted covariance Sk�1

U , and the cross-covariance
Ck�1

U of the predicted state and the predicted measurement are calculated as follows:
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(16.18)

Once a new NCk is available, the q
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is approximated by a

multi-dimensional Gaussian distribution with the mean vector mk and the covariance
matrix Pk:
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The weight updating formula is derived as
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According to the size of ! i
k, the same systematic resampling is conducted to re-

draw random particles from the posterior probability density function. After that, all
of their associated weights are equal with each other.

Step 3. Let k D k C 1 and return to Step 2 until k > Mis satisfied. Here, M is the
length of the available capacity degradation data for a specific lithium-ion battery.
At iteration M, the posterior probability density functions of the two parameters are
given as follows:
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=Ns
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: (16.21)

Extrapolations of the nonlinear function f (�) with the parameters distributions
provided by Eq. (16.21) to a specified failure threshold, such as 0.85 used in this
section, are used to calculate the probability density function of the RUL of lithium-
ion batteries at cycle number M:

RUL .cM/ D

NsX
iD1

•
�

cM � inf
�

k 2 int W ai
M � ebi

M�k � 0:85
�

C M
�
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; (16.22)
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Fig. 16.3 RUL prediction of testing sample 5 by using the proposed spherical cubature particle
filtering based prognostic method at the 50% of the AL. (a) Predicted capacity values and
extrapolated capacity paths; (b) the probability density function of battery RUL

The prediction of RUL and its lower and upper bounds are 50th, 5th, and 95th
percentiles of Eq. (16.22), respectively.

In this section, RUL of lithium-ion batteries is predicted at the 50%, 75% and
90% of the actual life (AL) of lithium-ion batteries. Here, the AL is defined as the
cycle time to the capacity reaching the failure threshold of 85% of an initial capacity
value.

Taking testing sample 5 for example, at the 50% of the actual life, the predictions
of the RUL are plotted in Fig. 16.3. In Fig. 16.3a, we observe that the predictive
values estimated by the spherical cubature particle filtering track the true (normal-
ized) capacities well (extrapolations of the nonlinear function are represented by the
green dash lines). The PDF of the RUL is shown in Fig. 16.3b, where 5th, 50th and
95th percentiles of the RUL are 183, 198 and 211 cycles, respectively. Note that the
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Fig. 16.4 RUL prediction of testing sample 5 by using the proposed spherical cubature particle
filtering based prognostic method at the 90% of the AL. (a) Predicted capacity values and
extrapolated capacity paths; (b) the probability density function of battery RUL

absolute error between the predicted RUL and true RUL is 3 cycles. The prognostic
results obtained by using the spherical cubature particle filtering at the 90% of the
AL are presented in Fig. 16.4, respectively. From the results shown in Fig. 16.4a,
we observe that the predictive normalized capacities are well matched with the true
normalized capacities. At the prediction cycle of the 90% of the actual life, the 5th,
50th and 95th percentiles of the RUL are 37, 45 and 55 cycles, respectively. The
absolute error between the predicted RUL and true RUL is 6 cycles. In this instance,
the prediction accuracies are high because the capacity degradation curve of sample
5 has a good accordance with the exponential function as used in the state space
model.

The prediction results by using the particle filtering based prognostic method
and the spherical cubature particle filtering based prognostic method for all the
testing samples 1 to 6 are respectively tabulated in Table 16.2. The differences of
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the absolute errors of the two prognostic methods in the last column of Table 16.2
are almost less than 0, which means that, in all the instances, the spherical cubature
particle filtering based prognostic method improves the prediction accuracies of the
particle filtering based prognostic method. On the other hand, it is found that the
prediction accuracies for the testing samples 1 to 3 are lower than those for the
testing samples 4 to 6. This is caused by the relatively large fluctuation of the testing
samples 1 to 3 in Fig. 16.5. Specifically, due to some sudden changes inside the cells,
such as surface temperature increasing, internal resistance dropping, together with
battery-to-battery variations, the capacity degradation samples 1 to 3 in Fig. 16.5a
are fluctuated. Compared with those testing samples in Fig. 16.5a, testing samples
4 to 6 in Fig. 16.5b have moderate fluctuations. Therefore, if predictions are made
at these unexpected fluctuated capacity degradation points, the prediction results of
testing samples 1 to 3 are not as good as those of testing samples 4 to 6 because
battery capacity degradation does not well follow the exponential function used in
the state space model.

16.4 A Particle Filtering Based State Space Model for
Battery Remaining Useful Life Prediction at Different
Discharge Rates [31]

In Sects. 16.2 and 16.3, two prognostic methods have been proposed to predict
battery RUL at a constant discharge rate. In this section, we will introduce another
particle filtering based prognostic method working at different discharge rates,
which is more attractive in practice because many electronic products work at
different discharge rates. Before the proposed prognostic method will be introduced,
we will illustrate our battery experiment designs and how to collect battery
degradation data at different discharge rates. In our experiments, four cylindrical
BK 18650 batteries rated with 1 Ah were tested using an Arbin BT2000 tester. The
battery test bench shown in Fig. 16.6a composed of the Arbin BT2000 tester, a
host computer with an Arbin MITS Pro Software, and a computer with the Matlab
R2012b Software. An operating profile for each battery was made of a sequence of
repetitive C/2, 1C, 3C, and 5C constant current discharge regimes to a 2 V cutoff
voltage. Here, C is a measure of the rate at which a battery would be discharged.
1 C means that a battery’s rated capacity would be delivered in 1 h. Each of the
four batteries was recharged with a schedule recommended by manufacturer, which
comprised a 1C constant current charging step to 3.6 V followed by a constant
voltage step until a cutoff current of C/20 was reached. Figure 16.6b shows the
measured current and voltage profile at a four-cycle rotation interval. In the Arbin
testing system, the discharge current was denoted as a negative value, vice versa.
For the rest of this book chapter, cycle is used instead of rotation for battery
RUL prediction. The relationship between the discharge curve and the accumulated
capacity is plotted in Fig. 16.6c, where the maximum releasable capacities at
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Fig. 16.5 Capacity degradation curves of samples 1–6 from cycles 180 to 350. (a) Testing samples
1–3; (b) Testing samples 4–6

different discharge rates are different. The four testing batteries were named as
batteries 1 to 4, respectively and their associated degradation profiles are plotted
in Figs. 16.7a–d, respectively, where the increasing capacities at some initial cycles
are removed because they are not useful to describe battery degradation. Besides, it
should be noted that the battery capacity degradation data at discharge rate 5 C are
more fluctuated than those at discharge rates 0.5 C, 1 C and 3 C, which is caused by
a high battery temperature in the case of a high discharge rate.

In terms of Fig. 16.7, it is not difficult to find that battery degradation data are
totally dependent on different discharge rates. Therefore, it is necessary to propose
a discharge rates-dependent state space model based prognostic method before
battery RUL prediction at the different discharge rates is conducted. Firstly, we need
to use historical degradation data to find the relationship between the discharge
rates-dependent state space model and different discharge rates. In this section,
lithium-ion batteries 1 to 3 are used as historical degradation data and lithium-ion
battery 4 is used as testing degradation data. Moreover, a soft failure threshold is
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defined as the 80% of the maximum capacity of a battery. Consequently, only the
capacity data from the very early beginning to the cycle reaching the soft failure
threshold are used for our analyses. Being similar with Sects. 16.2 and 16.3, we
found that a simple exponential function with the amplitude a and the slope b is
able to fit the battery capacity degradation at different discharge rates. To validate
such conclusion, goodness of fit is also used here. The boxplots of the estimated
parameters of the exponential function for fitting battery degradation data 1 to 3
at different discharge rates and their associated R-squared values are plotted in
Figs. 16.8a–c, respectively, where most of R-squared values approach to 1 and they
connote that all capacity degradation data at the different discharge rates are well
fitted by the exponential function.

To establish a unique degradation equation for battery degradation at the different
discharge rates, a discharge rates-dependent exponential function is proposed. The
main idea of the discharge rates-dependent exponential function is to correlate
the amplitude and slope of the exponential function with the different discharge
rates. The estimated amplitudes and slopes at the different discharge rates for the
three batteries are plotted in Figs. 16.9a–f, in which we observe that the amplitude
and the slope have a linear relationship with the discharge rate, respectively. As
a result, a simple linear function is used to describe the relationship between
the amplitude/slope and the different discharge rates. The specific formulas for
the linear relationships for the three different batteries are given in Figs. 16.9a–f,
respectively.
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Fig. 16.7 Lithium-ion battery degradation data at different discharge rates 0.5C, 1 C, 3C and 5C:
(a) battery 1; (b) battery 2; (c) battery 3; (d) battery 4

From the aforementioned analyses, the following discharge rates-dependent state
space model is proposed:

a1i D a1i�1 C v1
a2i D a2i�1 C v2
b1i D b1i�1 C v3
b2i D b2i�1 C v4
xi D a.D/ � eb.D/�i C v5 D .a1i C a2i � D/ � e.b1iCb2i�D/�i C v5;

(16.23)

where a(D) D (a1i C a2i � D) is used to express the relationship between the
amplitude a and the discharge rate D; b(D) D (b1i C b2i � D) is used to express the
relationship between the amplitude b and the discharge rate D; each of thev1, v2,
v3, v4 and v5 follows a Gaussian distribution with a zero mean and its associated
deviation �1, �2, �3, �4 and �5, respectively; xi is the current capacity degradation
data at cycle i. Here, xi is not normalized and it is different from the normalized
capacity used in the previous two sections because the influence of different
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discharge rates on battery capacity degradation is considered in this section. The
initialization of Eq. (16.23) can be established by taking the mean of the estimated
amplitudes and slopes as shown in Fig. 16.9. Specifically, a10, a20, b10 and b20

are respectively equal to 1.1026, �0.0231, �2.6503 � 10�4 and �4.19 � 10�5.
According the scale of each of the parameters used in Eq. (16.23), the �1, �2, �3,
�4 and �5 are empirically set to 10�4, 10�4, 10�5, 10�5, and 10�2, respectively.

For a specific battery, given its historical measurements up to date
X(0 : M) D fx0 , x1 , : : : , xi, : : : , xMg and a specific discharge rate D D d, such
as d D 0.5 C or 1 C or 3 C or 5 C, the parameters � D [a1i, a2i, b1i, b2i] and their
distributions should be posteriorly estimated by solving Eq. (16.23). Here, M is
the length of the available battery degradation data. The specific details how the
proposed prognostic method works at different discharge rates are illustrated in the
following paragraphs.

Step 1. Ns D 2000 random particles
˚
a1k

0

�Ns

kD1
,
˚
a2k

0

�Ns

kD1
,
˚
b1k

0

�Ns

kD1
and

˚
b2k

0

�Ns

kD1

are initially drawn from the Gaussian distributions p .a1 jx0 / D N


a10; �21

�
,

p .a2 jx0 / D N


a20; �22

�
, p .b1 jx0 / D N



b10; �23

�
and p .b2 jx0 / D N



b20; �24

�
,

respectively. Compared with the number of random particles used in Sects. 16.2 and
16.3, the number of random particles used in this section increases because more
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Fig. 16.9 The amplitudes and slopes of an exponential function at the different discharge rates in
the case of lithium-ion batteries 1, 2 and 3: (a) the relationship between the amplitude a and the
different discharge rates in the case of battery 1; (b) the relationship between the slope b and the
different discharge rates in the case of battery 1; (c) the relationship between the amplitude a and
the different discharge rates in the case of battery 2; (d) the relationship between the slope b and
the different discharge rates in the case of battery 2; (e) the relationship between the amplitude a
and the different discharge rates in the case of battery 3; (f) the relationship between the slope b and
the different discharge rates in the case of battery 3. (Note: D is the symbol used for representing a
discharge rate)

random particles are required to track battery degradation at different discharge
rates. Additionally, all random particles have the same initial weights

˚
!k
0

�Ns

kD1
of 1/Ns. According to the fundamental theory of particle filtering [25] and the
specification of Eq. (16.23), the formula for updating each weight at iteration i D 1
is provided as follows:
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(16.24)

From Eq. (16.24), it is not difficult to find that only random particles which
produce better estimated capacity values for x1 have higher weights. After several
iterations, most of the weights will become negligible and the variances of the
weights increase. To alleviate such problem, the same systematic resampling
algorithm [32] introduced in the previous two sections is used here when the
following condition is satisfied:

 
NsX

kD1
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i

�2!�1

< 0:9 � Ns: (16.25)

Step 2. Suppose that the posterior distributions of a1i � 1, a2i � 1, b1i � 1 and b2i � 1

at iteration i � 1 are available. Ns D 2000 random particles
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(16.26)

Conduct the same systematic resampling algorithm with those used in the
previous sections, if Eq. (16.25) is satisfied.

Step 3. Increase i D i C 1 and repeat Step 2 until i > M. The posterior distributions
of a1M , a2M , b1M and b2M at iteration M are represented as follows:
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Given a failure threshold xthreshold, such as the 80% of the maximum capacity of a
battery, the historical measurements up to date X(0 : M) D fx0 , x1 , : : : , xi, : : : , xMg,
and the specific DCR D D d, the probability density function of the battery RUL is
predicted by using the following equation:
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(16.28)

Consequently, the prediction of RUL and its lower and upper bounds are 50th,
5th, and 95th percentiles of Eq. (16.28), respectively.

Additionally, the failure probability density function of the battery is defined as
follows:
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��
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k D 1; 2; : : : ;Ns:

(16.29)

At last, capacity degradation data oflithium-ion battery 4 at the different dis-
charge rates are used to validate the effectiveness of the proposed discharge
rates-dependent state space model based prognostic method. Firstly, it is necessary
to define the actual life (AL) of battery 4 as the lifetime from an initial cycle
to the cycle associated with the capacity reaching the 80% of its maximum
capacity, namely the soft failure threshold. Secondly, we make RUL predictions
at the 50%, 75% and 90% of the AL of battery 4 at the different discharge rates.
Once the capacity degradation data and a specific discharge rate are available, the
probability density function of the battery RUL can be calculated by using the
proposed discharge rates-dependent state space model based prognostic method.
To visualize the prognostic results, the raw capacity degradation data, predicted
capacity, FPDF, predicted capacity degradation paths and PDFs of RUL at the
different discharge rates and prediction cycles are plotted in Fig. 16.10. It is
observed that the predicted capacity degradation paths well cover the raw capacity
degradation data (blue dots). Specifically, 50th, 5th, and 95th percentiles of RUL
for predictions at the different discharge rates and prediction cycles are tabulated in
Table 16.3, where the prediction accuracies at discharge rate 5 C are not as good
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Fig. 16.10 RUL prediction at the different discharge rates by using the proposed discharge rates-
dependent state space model based prognostic method in the case of battery 4: (a) RUL prediction
at 50% of the AL and discharge rate 0.5 C; (b) RUL prediction at 50% of the AL and discharge
rate 1 C; (c) RUL prediction at 50% of the AL and discharge rate 3 C; (d) RUL prediction at 50%
of the AL and discharge rate 5 C

as the prediction accuracies at discharge rates 0.5 C, 1 C and 3 C because the raw
capacity degradation data at discharge rate 5 C are more fluctuated. According to
our literature review, because RUL predictions at the different discharge rates are
seldom reported, no fair comparisons with other prognostic methods are conducted.
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16.5 Discussions

Regardless of our prognostic methods introduced in Sects. 16.3 and 16.4, in which
the two problems of the state space model based battery prognostics, including the
design of a proper importance function for the use of particle filtering and the RUL
prediction at the different discharge rates, were partly solved, there remain many
important challenges.

Firstly, a physical battery capacity degradation model rather than empirical
battery capacity degradation models generated by fitting historical battery degra-
dation data should be proposed to well describe battery capacity degradation. The
main reason is that an empirical battery capacity degradation model may be only
suitable to specific battery capacity degradation data generated from specific battery
types rather than general battery capacity degradation data generated from many
other battery types. Even though an empirical battery capacity degradation model
with more parameters, such as the sum of two exponential functions, is able to
fit various battery degradation data, it suffers from the overfitting problem and
causes inaccurate battery RUL prediction. On the other hand, if the physical battery
capacity degradation model is difficult to be established, it is necessary to fix a
specific battery type and investigate which empirical degradation model is the best
choice for the specific battery type at some significant degradation factors, such as
discharge rates, temperatures, charge rates, depth of discharge and time intervals
between full charge cycles. Only in this way, we can know how good an empirical
model for a specific battery type is for such battery prognostics.

Secondly, how to systematically and automatically initialize state space models is
not addressable. Initialization of state space models include initial state parameters,
initial state noises variances and initial measurement noise variances. If initial
parameters are improperly set, it is difficult to timely track the current battery
capacity degradation. For example, if a large measurement noise variance is used,
the convergence to true measurements is difficult to achieve; if a small state
noise variance is used, the convergence to true states is very slow. Moreover, it
is necessary to investigate whether these noise variances should be posteriorly
updated over cycles and these posterior estimates are beneficial to battery RUL
prediction.

Thirdly, battery prognostics should take different operating conditions, such as
different discharge rates and different temperatures, into consideration. In other
words, a unique prognostic model at different operating conditions should be built.
For example, a unique model at different discharge rates and a fixed temperature
could be built as a preliminary battery prognostic model. Indeed, such prognostic
model matches with real applications, such as electric vehicles and hybrid electric
vehicles, in which different or varying discharge rates are used. Consequently, our
research strategy is given as follows: prognostic models at fixed operating conditions
➔ prognostic models at different operating conditions ➔ prognostic models at
varying operating conditions. Here, different operating conditions mean some
discrete operating conditions, such as different discharge rates at 0.5 C, 1 C, 3 C
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and 5 C. Varying operating conditions represent more general operating conditions,
such as varying discharge rates from 0.5 C to 5 C with an increment of 0.1 C.

From the discussions made in this section, it is not difficult to see that there are
many gaps required to be filled in the research community of battery prognostics.

16.6 Conclusion Remarks

In the introduction, many works highly related to battery prognostics were reviewed.
Based on our literature review, the two unsolved problems in the research commu-
nity of battery prognostics were pointed out. To solve these two problems, three
state space model based prognostic methods for the battery RUL prediction at the
constant and different discharge rates were respectively introduced in Sects. 16.2,
16.3, and 16.4, where all battery degradation data were well fitted by the exponential
function. Consequently, the exponential function was used as the empirical battery
degradation model. In Sect. 16.2, the particle filtering based state space model
was developed to predict battery RUL at a constant discharge rate. Because the
importance function used in the particle filtering did not consider the recent battery
degradation data to update the weights of random particles used in the particle
filtering, the importance function might reduce battery RUL prediction accuracies
in some cases, where battery degradation data had tangible influences on the
importance function. To solve this problem, in Sect. 16.3, the importance function
provided by the spherical cubature Kalman filtering was introduced to the particle
filtering so as to form the spherical cubature particle filtering. The comparisons
between the particle filtering based prognostic method and the spherical cubature
particle filtering based prognostic method were conducted. The results showed
that for all the testing samples, the spherical cubature particle filtering based
prognostic method has higher RUL prediction accuracies, which connoted that the
importance function provided by spherical cubature Kalman filtering was able to
improve battery RUL prediction accuracy. In Sect. 16.4, the third prognostic method
was proposed to predict battery RUL at the different discharge rates, including
0.5 C, 1C, 3C and 5C. According to the analyses of our experimental battery
degradation data at the different discharge rates, we found the relationship between
the amplitude/slope of the exponential function and the different discharge rates
was linear. This finding was useful and interesting because we could establish the
unique state space model called the discharge rates-dependent state space model to
describe the battery degradation data at the different discharge rates. Then, particle
filtering was introduced to solve the discharge rates-dependent state space model for
the battery RUL prediction. The testing results showed that our new discharge rates-
dependent state space model based prognostic method is able to predict battery RUL
at the different discharge rates. At last, we made more discussions in the research
community of battery prognostics and pointed out our future research direction.
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Chapter 17
On System Identification for Accelerated
Destructive Degradation Testing of Nonlinear
Dynamic Systems

Jacq Crous, Daniel Nicolas Wilke, Schalk Kok, Ding-Geng (Din) Chen,
and Stephan Heyns

Abstract Accelerated destructive degradation testing is considered with the objec-
tive of reproducing high fatigue incidents for a severely nonlinear system in a lab
environment. In the lab, a test specimen is mounted on servo hydraulic actuators
which are then used to induce the same response in the system as was measured in
field tests. Finding the inputs to the actuators that accurately induce the measured
response in the system is crucial to the integrity of the testing procedure. The
problem is an inverse problem, and often exhibits ill-posed characteristics. To this
end a new method for system identification from time series data is developed
and is shown to outperform current methods such as different variants of NARX
and Hammerstein-Wiener models. From the results obtained it is concluded that
an alternative method of data generation for accelerated destructive degradation on
severely nonlinear systems in a lab context is required. Three methods are developed
and tested on simulated data and it is shown that a prototype bootstrapping strategy
is superior: using 400,000 data points generated by this strategy the input signals
were predicted with mean square errors of 5.08e-4.
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17.1 Introduction

Accelerated testing is ubiquitous in engineering manufacturing and certification to
rapidly obtain reliability information. Numerous approaches to achieve this have
been developed depending on the application under consideration. These include
use-rate acceleration, aging-rate acceleration and increased intensity acceleration
[14].

Use-rate acceleration is particularly applicable to systems that are either not
continuously used or in continuous use but only exposed to discrete events that
significantly affect the life of the system. To accelerate this scenario a lab scale test
that can be used to expose a system more frequently to these events is often required.
This approach is valid as long as the time-scale and cyclic rate through these events
do not affect the cycles-to-failure distribution. Although use-rate acceleration is
a well established technique in industry it may present challenges, particularly
when the required input to the lab scale test is unknown or needs to be identified.
Accurately reproducing the measured response of these discrete events that degrade
a system is crucial to accurately assessing the degradation induced in the system
by these events. An additional complexity often encountered in certification is that
small sample sizes or even single products need to be tested, which commences one
the product is set up in the lab. This lab test rig then needs to be identified before the
actual accelerated degradation testing can commence. Since, system identification
degrades the system, it is important to ensure that efficient and accurate approaches
are considered when identifying the required input to a lab experiment. The aim of
this study is to develop an approach that meet these demands.

Accelerated destructive degradation (ADD), particularly in this work refers to
accelerating the process of degradation in the system by reproducing discrete events
that contribute significantly to the degradation of the system. These discrete events
are considered as high fatigue incidents which cause destructive degradation if
the system is repeatedly subjected to it. In practice ADD testing is preformed by
taking the system into a lab environment where servo hydraulic actuators are used
to reconstruct measured responses corresponding to high fatigue incidents in the
system. Accurately reproducing the measured conditions in the system is crucial
to accurately assessing the degradation process of the system [20]. To this end the
process of ADD can be divided into two distinct phases: Firstly a mathematical
model is constructed given available data which is then used to determine the
actuator loadings that will generate the desired response in the system. In general
ADD testing is applied to a wide range of specimens, even within the same
laboratory. For this reason black box models, which require no a priory information
about the system to construct the required mathematical model, are used. Secondly
the constructed model is used in conjunction with control strategies in order to trace
the desired response profile by the system [8].

The mathematical modelling of dynamic systems assists in understanding their
dynamic characteristics and predicting their development over time. For this purpose
mathematical modelling of dynamic systems has been of great interest in system
identification (SI) over the past few decades (see [13] and references). This interest
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has developed beyond academic problems to real life systems which exhibit
complicated nonlinear behaviour [23]. There are two distinct motivations for SI:
the first is to identify the system in order to gain further insights into the workings
of the system. This requires the model constructed by the SI algorithm to consist
of parameters that can be traced to physical variables that capture the system’s
behaviour. The second motivation is to describe the system dynamics over time
in order to make accurate predictions of the system’s behaviour. The identification
problem of a model to be used for response reconstruction is a more relaxed problem
as there is no need to require physically justifiable model parameters or even that
the model parameters are unique [3]. These approaches are not always necessarily
different. In this study, both motivations are important, since both accurate response
reconstructing and understanding the behaviour of the system when subjected to
events discussed before are pertinent. To this end an alternative approach to time
series analysis is developed to yield both accurate predictions and interpretability of
the fitted mathematical model.

SI for nonlinear systems is often an example of an inverse problem which is ill-
posed. This problem arises due to trying to find the inputs that would produce the
observed responses, which may either not exist or not be unique [12, 21]. In the case
of ADD the uniqueness of the solution is not of concern; rather it is the accuracy of
the responses induced in the system that is pertinent [8]. The life cycle of a system
is determined by low cycle high fatigue incidents [20]. In this work the in-service
time of the system and the equivalent test time for a given event is the same. For
this reason the severity levels of the measured field responses must be reproduced
as accurately as possible [17].1

This work is concerned with time-domain methods, where the input-output data
are time series. Hence, time domain-methods are considered, of which NARX
(Nonlinear Auto-regression with eXogenous input) and NARMAX (nonlinear Auto-
regression with Moving Averages and eXogenous input) are the most versatile
in modelling nonlinear dynamics [13]. For this reason NARX and Hammerstein-
Wiener (HW) models are used as benchmarks to evaluate the performance of the
developed approach to SI.

In this work two sets of time series data are employed: The first data set is
virtual dataset, obtained by simulating a nonlinear quarter car model driving along
an irregular road profile. The input space consists of road profiles (these road profiles
are generated randomly from the power spectral density prescribed by the ISO 8608
standard [1]) and the output space consists of the unsprung mass’ response to the
input. The second data set is an experimental data set where the physical system
consists of a monoshock swing-arm motorcycle rear suspension where the motion of
the platform on which the wheel rests is controlled by a servo hydraulic actuator. The
actuator simulates an irregular road profile. As before the input space is numerous
randomly generated road profiles, while the strain on the suspension is measured to
constitute the output space of the data set [8].

1Method 514.6 Annex A.
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17.2 System Identification

Black-box modelling of a dynamic system does not use prior knowledge of the
system to choose a model structure, rather a family of structures are used which
have been shown to be successful in the past [24]. Given input, u.t/, and output,
y.t/, data the object is to construct an estimation of the system response that has the
general form

y.t/ D g.�.t/; �/C v.t/; (17.1)

where � is the regression vector, and is constructed by mapping the past input
and output observations to the fixed dimensional regression vector up to time t.
In general the estimated output is a vector, but in the case of a single input single
output system y.t/ is a scalar. The finite dimensional parameter vector � is used to
parametrise the model structure. An additional term, v, is added to the estimation
which represents the part of the response that is not based on past observations and
is assumed to be small. The black-box SI process can thus be decomposed into two
problems: construction of the regression vector � and construction of the mapping
from the regression vector to the output space.

17.2.1 NARX Models

The NARX method uses the measured input and output data as regressors. The
number of observations that are used are selected beforehand. Various ways of
building the nonlinear mapping, investigated by Kerschen et al. [13], Sjöberg
et al. [24] and Aguirre and Letellier [2], include wavelet networks, neural networks
and tree propagation algorithms. These approaches have also been implemented in
the MATLAB system identification toolbox and are used to benchmark our work.

The general form of the NARX methods is given by

y.k/ D FŒy.k � 1/; y.k � 2/; : : : ; y.k � ny/;

u.k � d/; u.k � d � 1/; : : : ; u.k � d � nu/�C e.k/;
(17.2)

where F is a nonlinear functional and, e.k/, the error term. The error term is
considered to be an independent sequence and thus all cross terms between the
polynomial and error terms are neglected [3].

It has been shown that any input-output process can be expressed as in Eq. (17.2)
[15, 16]. A system whose non-linearities are of a polynomial nature can be
accurately modelled at all levels of excitation [13].
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f (u(t)) L (w(t)) g (x(t))
u(t) w(t) x(t) y(t)

Fig. 17.1 Graphical representation of HW model structure. f and g are the input and output
nonlinearities respectively and L is the linear regressor

17.2.2 Hammerstein-Wiener Models

The HW model uses two nonlinear mappings, one for the inputs f and the other
on the outputs g. These two mappings are the so-called input and the output
nonlinearity. A linear regression model, L , is used to map the transformed input
space to the transformed output space. The HW structure is illustrated in Fig. 17.1.
This is also called a static nonlinear model. The input and output mappings can be
built with a wide variety of mapping techniques. The nonlinear mappings however
are memoryless and therefore these techniques are static nonlinear identification
techniques. It can be shown that based on the models selected for the input
nonlinearity and the linear regression model, either a NARX or Voltera model can
be recovered [19].

17.3 Data Set Generation

In this section we outline the two systems that were used to generate the datasets
used in this study.

17.3.1 Road Profile Generation

ISO 8608 (Mechanical Vibration – Road surface profiles – Reporting measured
data) provides a means to classify road profiles according to different damage
levels. Using these guidelines as a starting point it is possible to backtrack from
the specifications given and reconstruct a road profile that adheres to a specified
road profile class. The road profile classes specify the lower and upper limits of the
values of the Power Spectral Density (PSD) for a specific class of road.

To generate the artificial road profile one uses a stochastic representation, which
is a function of the PSD of vertical displacements. This PSD is obtained through
a Fourier Transform of the auto-correlation function of the stochastic process
describing the road profile [1]. The artificial road profile, h.x/, can then be generated
from the following equation:

h.x/ D

NX
iD1

p
�n2k10�3

 
n0
in

!
cos



2� i�nx C �i

�
; (17.3)
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where x 2 Œ0;L�, where L is the total length of the road, � denotes a random phase
angle drawn from a uniform distribution over the interval �� and � , and k is a
constant that depends on the class of the road profile, and varies (discretely) between
3 to 9 corresponding to class A to H. The road profile is sampled at equally spaced
distances over its length at a frequency of �n D 1

L . n is the spacial frequency and
n0 are the number of cycles per meter sampled.

17.3.2 Nonlinear Quarter Car Model

The vertical vibrations of a car can be approximated by means of a reduced model
termed the quarter car model. The vehicle model consists of a two body system,
a sprung and unsprung mass with two springs and a damper to represent the
suspension of the car as well as the elasticity of the wheel [22]. A schematic of
the system is shown in Fig. 17.2. This is an approximation of the quarter vehicle
road simulator. In this work road profiles with unrealistically large amplitudes are
generated. This is done specifically to ensure that a large degree of nonlinearity is
manifested by the model.

For the nonlinear case the spring and damper between the sprung and unsprung
masses are assumed to be nonlinear. For this case the damper was assumed to be a
quadratic damper and the spring was chosen to be third order stiffening. This kind

Fig. 17.2 Schematic of
quarter car model. This model
can be made nonlinear by
replacing the spring, kA, and
damper, bA, with their more
realistic nonlinear
counterparts
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of spring is used with the Duffing oscillator [18]. The equations of motion for a
nonlinear quarter car model are as follows:

MA RxA C bA.PxA � PxR/
2 C kA.xA � xR/C kNL.xA � xR/

3 D 0

(17.4a)

MR RxR � bA.PxA � PxR/
2 � kA.xA � xR/ � kNL.xA � xR/

3 C kR.xR � xroad/ D 0;

(17.4b)

where the parameter kNL can be used to tune the severity of the spring’s nonlinearity.
In this work the spring was chosen to be highly nonlinear. This produces a severely
nonlinear system [3]. The non-linear system in Eq. (17.4) was solved using an exact
Newton’s method with variable time scaling [4]. For more detail regarding severely
nonlinear system and the parameters of the quarter car model associated with it
we refer the interested reader to the book by Billings et al. and the article by
Agostinacchio et al. both cited in this work.

17.3.3 Quarter Vehicle Road Simulator

The quarter vehicle road simulator consist of a monoshock swing-arm motorcycle
rear suspension. The frame of the simulator is fitted with rigidly connected dummy
weights. This setup is shown in Fig. 17.3. Driving signals are generated from a PSD,
as described in Sect. 17.3.1, and sent to a 40 kN linear actuator which excites the
specimen. The data used in this work were the system response measured at the
shock’s lower bracket connection to the swing-arm. The measurements were taken
with a 0ı–90ı rosette strain gauge. A/D and D/A conversions were done with 24
and 16 bit National Instrument systems respectively [8].

The quarter vehicle road simulator is a severely nonlinear system. The nonlinear-
ities in the system are three fold: the damper and spring are both nonlinear. Secondly
the geometry of the suspension introduces further nonlinearities. Finally when the
system is tested for high fatigue, sudden impacts on the system causes the wheel to
lose contact with the actuator.

17.4 Spanning Basis Transformation Regression for Time
Domain System Identification

In this section the Spanning Basis Transformation Regression (SBTR) technique is
introduced and strategies of applying SBTR to time series data are then discussed.
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Fig. 17.3 Picture of a quarter
vehicle road simulator driven
by a servo hydraulic actuator

17.4.1 SBTR

The SBTR algorithm constructs a mapping from the principal components of the
input space to the principal components of the output space [6]. In order to transform
a component in the input space to a component in the output space a scaling
and rotation transformation is applied to the components of the input space. Let
X 2 R

p�N and Y 2 R
p�N be input and output data, where N are the number

of observations and p the number of variables per observation. SBTR solves the
following optimisation problem:

min
R;S

jjZx � RSZyjj
2
F;

such that RRT D I:
(17.5)

The optimization problem solves for R, an orthogonal rotation matrix and S, a
diagonal scaling matrix. Note that k � k2F is the Frobenius norm.The matrices Zx and
Zy are composed of the eigenvectors of XXT and YYT respectively. These principal
components can be interpreted as eigenfeatures [27]: Eigenfeatures are events in
the time series that explain the highest amount of variance. Therefore the aim of a
regression strategy is to find events in the time series data that have high variance.
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Fig. 17.4 Diagram of applying SBTR to time series data

These events then become features that are ranked according to the variance in the
data set they explain. The regression algorithm then attempts to reconstruct a desired
output based on these identified events.

The problem is therefore twofold: First the eigenvectors of XXT and YYT are
found. Secondly these eigenfeatures of the input space are then regressed onto the
eigenfeatures of the output space by means of a set of rotations and scalings.

In the context of system identification, the regressors are the eigenfeatures of the
input and output spaces and the mapping is constructed by a series of scaling and
rotation matrices.

The SBTR algorithm transforms one set of eigenfeatures into another. A diagram
showing the general structure of SBTR and how it transforms the eigenfeatures of
the input space to the eigenfeatures of the output space is shown in Fig. 17.4.

This application is based on recognising that eigenvectors and their correspond-
ing eigenvalues change from the input to the output space for a nonlinear system.
Therefore a series of rotation and scaling transformations can be used to map the
input space’s principal components to the corresponding output space’s principal
components. To this end a series of rotation and scaling transformations are sought
that would map the data to the principal components in the input and output
spaces respectively. In addition, a mapping is sought that would transform the
aforementioned mapping in the input space to the corresponding mapping in the
output space. Once all these mapping have been found a new mapping can be
obtained that maps the principal components in the input space directly to the
principal components in the output space.

In order to find the principal components of the input and output space a singular
value decomposition (SVD) is performed on both of them. The SVD of a matrix is
defined as follows [9]: Let X 2 R

m�n, then the SVD of X decomposes it as:

X D U˙VT (17.6)
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where U 2 R
m�m and V 2 R

n�n are orthogonal matrices and˙ 2 R
m�n is a diagonal

matrix, composed of the so-called singular values. The principal components of the
matrix, X, is given by Px D U˙ and their corresponding eigenvalues are given
by the square root of the singular values. After the principal components of the
input and output spaces, Px and Py respectively, have been found, the input and
output spaces can be reconstructed from these principal components given a set of
transformations. These transformations are given by VT

x and VT
y (this follows simply

from the definition of the SVD presented in Eq. (17.6)). Since by definition VT
x and

VT
y are orthogonal matrices, it follows that these matrices are rotation matrices [27].

Since both these sets transform the principal components into their respective spaces
by means of a set of rotations, it follows that a mapping can be found from VT

x to
VT

y . This is done by multiplying these rotation matrices with one another to yield a
relative rotation: this single rotation applied to a set of data transforms the data in
the same way as when first applying VT

x followed by VT
y . This is the first part of the

algorithm as described on the left hand side of Fig. 17.4.
The mapping from VT

x to VT
y forms the basis of the algorithm, since this mapping

is used to predict what the output space transformation should be based on the input
space transformation found by reconstructing the input target from Px. This last step
is shown on the right hand side of Fig. 17.4.

17.4.2 An Alternative View of Time Series Data

This section presents an alternative view of time series data. The benefits of this
alternative view are not restricted to accurate predictions, but also an intuitive way
of viewing time series data: instead of viewing it as two long strings of data we
divide the data into short events within the data. This is illustrated in Fig. 17.5.

Fig. 17.5 Deriving eigenfeatures from time series data by breaking a long signal into shorter time
signals
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Once the data has been divided into features/events the object is to find
reoccurring events which can then be used to describe the behaviour of the system,
and these are called eigenfeatures. These are the principal components in the feature
space and therefore correspond to the events that describe the largest amount of
variance in the event space (event space is used here synonymously with feature
space). Once the data has been processed as outlined above, Reduced-Rank Linear
Discriminant Analysis can be used to project the data to low dimensions in order to
obtain an informative view of the data [11].

17.4.3 Feature Lengths and Regularisation

The selection of the feature length has a significant impact on the performance of
the regression algorithm. The feature length can be related to the properties of the
physical system as follows: if the mechanical system has little damping, the effect of
past events take longer to dampen out, and in order to account for this larger feature,
lengths need to be selected such that the largest part of the feature is not affected
by previous events. On the other hand for highly damped mechanical systems the
aforementioned effect is minimal and hence shorter features are selected. Although
relating the physical characteristics of the system to the feature length in this
way, it does not give a direct estimation of the feature length, but does show the
general vicinity of where one should look for the feature lengths in order to obtain
meaningful results from the regression. Once the general vicinity of the feature
length has been determined Cross-Validation can be used to determine the optimal
feature length. Figure 17.6 shows the average cross validation error as a function
of feature length. The optimal feature length in this case was 250. The number of
components retained in using SBTR was determined by k-fold cross validation [11].

Feature Length
100 200 300 400 500 600 700 800 900

M
S

E

0.15

0.2

0.25

0.3

Fig. 17.6 Average Cross-Validation error as a function of feature length for the data generated by
the nonlinear quarter car model
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17.4.4 Visualising Model Performance

For a linear system represented by some function, f , there exists a corresponding
matrix, A, which represents the mapping f [28]. Following the definition of linear
maps it can be shown that the eigenvalues and eigenvectors of the input space will
be the same as that of the output space: The eigenvalues and eigenvectors of a
space are invariant under linear transformations. This however is no longer true for
nonlinear mappings, and both the eigenvectors and their corresponding eigenvalues
are allowed to change. This therefore gives a way to visualise the effect of the
nonlinear mapping on the structure of the space on which it is operating.

When working with non-rectangular matrices the way to find the eigenvalues and
their eigenvectors is by SVD. The left and right singular vectors are the principal
components of the property and sample spaces respectively [27]. Thus in order to
track the change in the singular values, which can be interpreted as the change in
the participation of each principal component in reconstructing a given response,
we define:

�S D ˙x �˙y: (17.7)

Here the diagonal matrices ˙x and ˙y are the diagonal matrices obtained from
the SVD of the input space and output space respectively. These diagonal matrices
contain the singular values of the input and output spaces respectively. If the rank
of the one of the spaces exceeds that of the other the number of singular values will
not be the same. In this case �S is computed the corresponding singular values of
each space, the remaining singular values are then unused.

The nonlinear quarter car model discussed in Sect. 17.3.2 was used with a high
degree of nonlinearity brought about by a third order stiffening spring and quadratic
relationship for the damping. One hundred road profiles, with 1000 data points each,
were generated as discussed in Sect. 17.3. The principal component participation of
the system and the corresponding modes constructed by NARX, HW and SBTR are
shown in Fig. 17.7.

Secondly the principal components of the output property space YYT , which are
also called the property eigenvectors, are compared among the fitted models. The
properties of the actual response is thus compared to the predicted properties. The
first to third property eigenvectors are shown in Figs. 17.8, 17.9, and 17.10.

The change in mode participation gives information related to the severity and
characteristics of the nonlinearity of the system. The difference between the output
space property eigenvectors gives an indication as to how well the model is able to
capture the response characteristics, and this in turn is related to how well the model
will generalise. When comparing the MSE of the property eigenvectors and that of
the testing MSE a direct correlation is seen. It is clearly seen from Figs. 17.8, 17.9,
and 17.10 that SBTR performs better in capturing the properties of the response in
the output space.



17 ADD Tests of Nonlinear Dynamic Systems 347

Number of Singular Values
5 10 15 20 25 30 35 40 45 50

Δ 
S

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Target
SBTR
NARX
HW

Fig. 17.7 The difference between the singular values of the input and output space, this gives an
indication of the change in mode participation due to the nonlinearity in the system
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Fig. 17.8 First Property mode plotted for the System and NARX, SBTR and HW models

17.5 System Identification for Nonlinear Systems

After the quarter vehicle road simulator has been setup as depicted in Fig. 17.3,
constructing a plant model of the system commences. When conducting ADD
testing, one is presented with a twofold dilemma: on the one hand data is needed
in order to construct an accurate plant model of the system, and on the other hand
generating data in order to identify the system causes fatigue on the system thus
compromising the integrity of the destructive degradation test objective.
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Fig. 17.9 Second Property mode plotted for the System and NARX, SBTR and HW models

Feature Length
10 20 30 40 50 60 70 80 90 100

M
od

e 
A

m
pl

itu
de

-0.3

-0.2

-0.1

0

0.1

0.2 Target
SBTR
NARX
HW

Fig. 17.10 Third Property mode plotted for the System and NARX, SBTR and HW models

Generating data for system identification is inevitable. Current strategies for
data generation have been adopted from linear system identification [8]: this is
based on generating a Power Spectral Density (PSD) distribution of the system that
encapsulates the frequency content of the responses. This approach goes hand in
hand with linear control where the frequency space is used to design controllers
[25]. These linear methods are well established and are powerful tools for analysis.
Therefore a reasonable first attempt to the problem is to ascertain if these methods
can be adapted to a nonlinear setting [13].
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Fig. 17.11 Linear and slightly nonlinear systems’ responses from PSD generated input data

To this end we consider a slightly nonlinear quarter car model configuration by
appropriate choices for the stiffness and damping parameters. Figure 17.11 presents
a plot of the responses of the slightly nonlinear system and a linear system from
PSD generated input data.

Data for the system identification process was generated by randomly sampling
the PSD to generate a random pulse in the frequency domain. Using an inverse Fast
Fourier Transform (iFFT) the time series signal is derived. Each pulse has a duration
of 30 s and is sampled at 1 kHz, thus each pulse consists of 30,000 data points. Six
pulses were generated, five were then used to construct a plant model using HW,
NARX and SBTR, and finally the last pulse was used for predicting and evaluating
the model performance.

The HW model had a wavelet network with one unit for the input mapping and
a piecewise linear output map consisting of 10 linear output maps. For the NARX
model a sigmoid network with 10 hidden nodes was found to perform the best. The
NARX model used 4 inputs and 2 outputs as the regressors, the delay between input
and output was one data point. The feature length selected, using cross-validation,
for the SBTR model was 100. Figure 17.12 shows the estimation made by each of
the models for the entire pulse while Fig. 17.12 shows the estimation made between
12 and 13 s.

The time to compute the estimation was two orders of magnitude faster for
SBTR compared to NARX and HW. The accuracy of the estimations were seen
to be roughly the same, while NARX gives the best estimation when considering
the application of destructive degradation. For the slightly nonlinear system the
adoption of a linear approach to data generation was thus successful. The main
benefit gained from the alternative approach to system identification discussed in
this work is the computational time required to compute the estimation (Fig. 17.13).
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Fig. 17.12 NARX, SBTR and HW estimation of the entire input signal for a slightly nonlinear
quarter car. The data used to construct the models were generated from a PSD. The mean square
error for each of the models were: 0.0199, 0.0193, 0.0186 for NARX, SBTR and HW respectively.
The runtime for each of the models were 30.5, 0.282, 45.21 seconds for NARX, SBTR and HW
respectively
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Fig. 17.13 NARX, SBTR and HW estimation of the input signal of the slightly nonlinear system
between 12 and 13 s driven by PSD generated data
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A similar conclusion was made when comparing linear system identification
methods to the proposed alternative approach for linear systems [5].

The main point of interest though is not linear nor slightly nonlinear system, since
high fatigue incidents usually occur when looking at real world system subjected
to large displacements or forces. At this point we turn to the quarter vehicle road
simulator which is a severely nonlinear system [3]. Following the approach outlined
discussed in Sect. 17.4.4 the nonlinearity of the quarter vehicle road simulator is
visualised in Fig. 17.14.

The results that follow are presented similarly to the results of the slightly
nonlinear system. Figure 17.15 shows the estimated inputs for the entire time
domain and Fig. 17.16 shows the estimated input between 12 and 13 s.

Figure 17.17 shows the change in mode participation due to the nonlinearity in
the system, and the change in mode participation as traced by each of the algorithms
are also presented.

In Figs. 17.18, 17.19, and 17.20 the first to third property modes are shown. It is
quite clear from these figures that both NARX and HW are unable to capture the
underlying characteristics of the system.

In the case of a severely nonlinear system the proposed technique, SBTR, is
seen to be both computationally more efficient and more accurate. The issue when
working with linear to moderately nonlinear systems is that collinearity in the data
reduces the amount of information available in the data. Collinearity is a particularly
prominent issue when the amplitude varies significantly through the time series data,
as is the case with the pulse data generated from the PSD. In a nonlinear system
more information is available since the system’s response varies nonlinearly with
amplitude [13]. Although more information is available in the data more data is
also required to construct an adequate nonlinear model due to the higher complexity
of the underlying structure. As a whole more information is available about the
system but much less information is available for the various amplitudes at which
the system is operating. Due to the amplitude changing the characteristics of the
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Fig. 17.14 A plot of the difference between the input space singular values and the output space
singular values. The SVD was computed using feature lengths of 100. The plot clearly shows that
the quarter vehicle road simulator is a severely nonlinear system
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Fig. 17.15 NARX, SBTR and HW estimation of the entire input signal for the quarter vehicle road
simulator. The data used to construct the models were generated from a PSD. The mean square
error for each of the models were: 0.0687, 0.0320, 0.0664 for NARX, SBTR and HW respectively.
The runtime for each of the models were 561.2, 1.052, 67.1, seconds for NARX, SBTR and HW
respectively
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Fig. 17.16 NARX, SBTR and HW estimation of the input signal of the system between 12 and
13 s for the quarter vehicle road simulator. The data used for this estimation was generated by PSD
data

system’s response the feature space is much larger than that of a linear system. For
this reason the data in the feature space is sparse and fitting nonlinear models to
it does not yield sufficiently accurate results. This is remedied in the current work
by means of more sophisticated control strategies that use the crude plant model
and attempts to trace the desired target signal. To this end various machine learning
strategies have been incorporated into control systems [7, 8, 10, 26]. The success
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Fig. 17.17 Difference between the input and output space singular values for the data generated
from the quarter vehicle road simulator
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Fig. 17.18 The first property mode for the quarter vehicle road simulator and the estimated
properties by NARX, SBTR and HW models respectively

of these methods varies according to the application. One advantage of the problem
at hand, that differs from the cited work, is that we are presented with the desired
signal that is to be reconstructed. Therefore an alternative means of data generation
is sought that will generate relevant data: by relevant data we mean data that falls in
the operating conditions of the target signal.
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Fig. 17.19 The second property mode for the quarter vehicle road simulator and the estimated
properties by NARX, SBTR and HW models respectively
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Fig. 17.20 The third property mode for the quarter vehicle road simulator and the estimated
properties by NARX, SBTR and HW models respectively

17.6 Data Generation Strategies

In this section we look at three distinct strategies for generating the data that can be
used to perform system identification for the quarter vehicle road simulator. These
strategies however were developed using the severely nonlinear quarter car model
discussed in Sect. 17.3.2. The only a priory information available is the response that
is to be reconstructed of the system. Therefore the data generation strategies proceed
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as follows: an initial signal is generated that sweeps a large range of amplitudes
in order to determine the amplitude of the input signal that generated the target
response. Once this is known the identified subspace within the feature space is
to be populated with data in order to construct a plant model of the system for
that particular subspace. Three distinct strategies for populating the aforementioned
subspace are presented and evaluated.

The data used in this section was sampled at a higher rate than the data generated
from the quarter vehicle road simulator. The data set used in this section each
contained 400,000 sampled point in both the input and the output space respectively.
The data generated from the quarter vehicle road simulator has 180,000 sampled
points in both the input and output spaces respectively.

17.6.1 Initial Data Generation Signal

In order to construct an initial estimate of the input signal that will generate
the desired response an initial signal is generated as follows: the servo hydraulic
actuator used in the laboratory is able to excite 2.5 tons up to 100 Hz. Therefore we
generate a signal by uniformly sampling the frequency domain from 0 to 100 Hz. A
time signal can be generated from this using an iFFT. In order to produce a signal
that is similar to the road profiles generated earlier we note that Eq. (17.3) weighs
low frequency content higher than high frequency content. A similar approach is
adopted here: low frequency content is weighted higher producing a low frequency
trajectory which is perturbed by the high frequency content. Figure 17.21 presents
the generated input signal the systems response.
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Fig. 17.21 Initial input signal generated with its corresponding response. These signals are used
to compute an initial estimate of the input signal
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This initial signal is divided into features which constitute the initial input
and output feature spaces. This initial data is used with SBTR as described in
Sect. 17.4.1.

17.6.2 Nonparametric Bootstrapping

A nonparametric bootstrapping strategy is a straight forward way to populate the
input space after the initial estimation was computed. Since the amplitude of the
desired input is known from the initial estimation, the approach is to generate more
signals using Eq. (17.3) but scaled according to the amplitude range determined
from the initial estimation. Therefore after each iteration the input and output spaces
are supplemented with:

• Randomly generated signals using Eq. (17.3).
• The estimation made from the previous iteration with its corresponding response.

The convergence rate is slow as depicted in Fig. 17.22 for this crude approach.
The error residuals are determined by comparing the actual desired input signal with
the estimated signal and by comparing the actual desired response with the response
from the estimated input signal.

The final MSE with 95% confidence bounds for the output generated from the
estimated input signal was .3:278˙ 0:326/ � 10�3 The dataset at the final iteration
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Fig. 17.22 Residual plot generated by comparing the estimated inputs and the corresponding
response of the system to the target input. The data was generated using a nonparametric
bootstrapping approach
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Fig. 17.23 Estimated input signal with the target input signal. Estimation was computed using
data that was generated using the nonparametric bootstrap strategy
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Fig. 17.24 The systems response to the estimated input signal with the desired output signal.
Estimation was computed using data that was generated using the nonparametric bootstrap strategy

was 4000 by 100 (4000 is the number of observations and 100 the feature length).
The data set size was the same for each of the three methods at the final iteration. The
final estimation of the desired inputs are shown in Fig. 17.23 and the corresponding
response of the system is shown in Fig. 17.24.
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17.6.3 Parametric Bootstrapping

Parametric bootstrapping attempts to utilise the current estimation by using pertur-
bations of the current estimates to supplement the input and output data sets. The
current estimates are divided into features with feature lengths of 250. Therefore
multiple estimates are presented in the feature space. A perturbation is generated by
using Eq. (17.3) and scaling the generated signal to have a maximum amplitude of
5% of the maximum amplitude in the estimated signal. This random signal is then
added to the current estimate in order to obtain a random perturbation of the current
estimate which can then be used as a new input. Therefore at each iteration the input
and output spaces are supplemented with:

• A set of randomly perturbed features based on the current estimate.
• The estimation made from the previous iteration with its corresponding response.

The MSE errors for the desired input and responses are plotted in Fig. 17.25.
The final MSE for the output generated from the estimated input signal with 95%

confidence bounds were .3:074 ˙ 0:457/ � 10�3. The residual is also seen to start
rising after the initial improvements made by supplementing the data. An important
factor to the success of the Parametric bootstrapping approach is the number of
components retrained in the SBTR algorithm. This implies that regularization is
very important. This is not surprising as the initial estimates are rough and as more
data becomes available the amount of information that SBTR is able to extract from
the data increases. The number of components were selected at each iteration using
k-fold cross validation.
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Fig. 17.25 Residual plot generated by comparing the estimated inputs and the corresponding
response of the system to the target input. The data was generated using a parametric bootstrapping
approach
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Fig. 17.26 Estimated input signal with the target input signal. Estimation was computed using
data that was generated using the parametric bootstrap strategy

A further difficulty of the problem can also be seen from Figs. 17.22 and 17.25:
One is able to estimate the input much more accurately than the corresponding
response. This is the nature of ill-pose inverse problems [29], small changes in the
inputs can generate large changes in the output. This can clearly be seen in both the
nonparametric and parametric bootstrapping approaches when comparing the trace
of the input target and the output target (Fig. 17.26).

Various amplitudes for the perturbations around the estimates were used and in
this case a 5% of the maximum amplitude of the estimated input was seen to give the
best results for perturbations between 2% to 15%. Although the parametric bootstrap
approach proved only slightly more successful in estimating the input signal than
the nonparametric strategy further improvements can be made by recognising the
following concept: construct important centroids that represent a neighbourhood of
data and sampling the feature space around these centroids (Fig. 17.27).

17.6.4 Prototype Bootstrapping with K-means Clustering

The prototype bootstrapping problem is an unsupervised learning problem where
feature prototypes are constructed to represent a cluster of features. In this particular
application the features describe events that explain important behaviours of the
system. These prototypes would be an initial estimate of these features that
are present in the target input signal. This approach can be viewed as a more
sophisticated version of the parametric bootstrapping approach with one important
difference: the prototypes are computed at every iteration, thus they are shifted
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Fig. 17.27 Response of the estimated input signal with the target response signal. Estimation was
computed using data that was generated using the parametric bootstrap strategy

in the feature space after each iteration. This allows for greater movement of the
centres around which is sampled and thus avoids the problem faced in the parametric
bootstrapping case where new data is being generated around poor centres.

In order to compute the prototypes K-means clustering is used. K-means
clustering uses a distance metric to find centroids to clusters such that total cluster
variance is minimised. This optimisation problem can be written as [11]:

min
C;fmkgK

1

KX
kD1

Nk

X
C.i/Dk

jjxi � mkjj
2; (17.8)

where C is a cluster assignment, and mk is the current mean for cluster k. The
centroids of each cluster becomes a prototype and thus these centroids are perturbed
in order supplement the data.

Clustering the features occurs in a much higher dimensional feature space. The
feature lengths for generating the data was 1000 variables each. The reason for
working in this higher dimensional space is that fewer clusters are needed to cluster
the data and fewer targets exist in this space. Once the centroids have been perturbed
the features are reshaped into the same feature lengths as was used for estimation in
the previous case. Therefore at each iteration:

• The prototypes for the data is determined by K-means clustering in high
dimensional feature space.

• Once the prototypes are determined they are perturbed. These input signals
and their corresponding responses are added to the input and output data sets
respectively.



17 ADD Tests of Nonlinear Dynamic Systems 361

Number of Iterations
100 101

M
S

E

10-3

10-2 Output Target Error
Input Target Error

Fig. 17.28 Residual Plot generated by comparing the estimated inputs and the corresponding
response of the system to the target input. The data was generated using a prototype bootstrapping
approach
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Fig. 17.29 Estimated input signal with the target input signal. Estimation was computed using
data that was generated using a prototype bootstrapping approach

• The estimation made from the previous iteration with its corresponding response
is added to the data set.

The residual for this approach is shown in Fig. 17.28.
Figure 17.28 shows both types of residuals are monotone decreasing. Therefore

each iteration of the prototype bootstrapping approach supplements the data sets
with meaningful data. Figures 17.29 and 17.30 show the estimated input and the
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Fig. 17.30 Response of the estimated input signal with the target response signal. Estimation was
computed using data that was generated using a prototype bootstrapping approach

corresponding response of the system respectively. The MSE for response generated
from the system when the estimated input was used with 95% confidence bounds
were found to be .5:0785 ˙ 0:8763/ � 10�4. Compared to the nonparametric and
parametric bootstrapping approaches this is almost an order of magnitude better
with a 84.5% and 83.4% improvement respectively.

It was shown that when using a prototype approach for data generation accurate
estimations could be made with much less data. The aim of constructing a plant
model for a nonlinear system is to describe the plant model accurately enough
such that simple control strategies can be employed to trace the desired response.
Therefore the main nonlinearity of the system is to be captured by the plant model,
after which the variations around the estimated responses are small enough to be
considered linear. The plant model is therefore used to obtain an estimate that is
sufficiently close to the desired response such that linearisation can be applied.

17.7 Discussion and Conclusion

The integrity of ADD testing is dependent on how well the actual environmental
conditions can be reconstructed in a test specimen in the laboratory. The environ-
ments of interest in this work induces high levels of stress in the system which
in turn cause destructive degradation in the system. Reconstructing these events
in the laboratory environment is vitally important in conducting reliable ADD
testing. To this end an alternative approach to nonlinear SI is presented in this work.
Comparing the proposed method, SBTR, with HW and NARX models on highly
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nonlinear models it is shown that prediction accuracy is improved by 52% and 53%
respectively. The reason for this is that SBTR is able to reconstruct the properties of
the responses better than HW or NARX models are able to do.

For SI to be successful sufficient data is required to construct an adequate
mathematical model to represent the system. The data generation techniques used
for linear models can be adopted when working with slightly nonlinear systems.
This however no longer holds true for highly nonlinear system. To this end three
new data generation strategies were implemented, and compared. It is shown that
a prototype bootstrapping strategy outperformed nonparametric and parametric
bootstrapping strategies.

Further development of the prototype bootstrapping strategy is required, these
include: looking at alternative ways of constructing prototypes and using an optimi-
sation approach to perturb the prototype in the optimal way given the observed data.
Finally this approach is to be implemented on the quarter vehicle road simulator in
order to evaluate the performance of this strategy for real world systems.
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