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Preface

Over the last two decades, advancements in computer technology have enabled
accelerated research and development of Monte-Carlo computational methods. This
book is a compilation of invited papers from some of the most forward-thinking
statistical researchers. These authors present new developments in Monte-Carlo
simulation-based statistical modeling, thereby creating an opportunity for the
exchange ideas among researchers and users of statistical computing.

Our aim in creating this book is to provide a venue for timely dissemination
of the research in Monte-Carlo simulation-based statistical modeling to promote
further research and collaborative work in this area. In the era of big data science,
this collection of innovative research not only has remarkable potential to have a
substantial impact on the development of advanced Monte-Carlo methods across
the spectrum of statistical data analyses but also has great promise for fostering new
research and collaborations addressing the ever-changing challenges and opportu-
nities of statistics and data science. The authors have made their data and computer
programs publicly available, making it possible for readers to replicate the model
development and data analysis presented in each chapter and readily apply these
new methods in their own research.

The 18 chapters are organized into three parts. Part I includes six chapters that
present and discuss general Monte-Carlo techniques. Part II comprises six chapters
with a common focus on Monte-Carlo methods used in missing data analyses,
which is an area of growing importance in public health and social sciences. Part III
is composed of six chapters that address Monte-Carlo statistical modeling and their
applications.
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Part I: Monte-Carlo Techniques (Chapters “Joint Generation of
Binary, Ordinal, Count, and Normal Data with Specified
Marginal and Association Structures in Monte-Carlo
Simulations”–“Quantifying the Uncertainty in Optimal
Experiment Schemes via Monte-Carlo Simulations”)

Chapter “Joint Generation of Binary, Ordinal, Count, and Normal Data with
Specified Marginal and Association Structures in Monte-Carlo Simulations” pre-
sents a unified framework for concurrently generating data that include the four
major types of distributions (i.e., binary, ordinal, count, and normal) with specified
marginal and association structures. In this discussion of an important supplement
to existing methods, Hakan Demirtas unifies the Monte-Carlo methods for specified
types of data and presents his systematic and comprehensive investigation for
mixed data generation. The proposed framework can then be readily used to sim-
ulate multivariate data of mixed types for the development of more sophisticated
simulation, computation, and data analysis techniques.

In Chapter “Improving the Efficiency of the Monte-Carlo Methods Using
Ranked Simulated Approach”, Hani Samawi provides an overview of his devel-
opment of ranked simulated sampling; a key approach for improving the efficiency
of general Monte-Carlo methods. Samawi then demonstrates the capacity of this
approach to provide unbiased estimation.

In Chapter “Normal and Non-normal Data Simulations for the Evaluation of
Two-Sample Location Tests”, Jessica Hoag and Chia-Ling Kuo discuss
Monte-Carlo simulation of normal and non-normal data to evaluate two-sample
location tests (i.e., statistical tests that compare means or medians of two inde-
pendent populations).

Chapter “Anatomy of Correlational Magnitude Transformations in Latency and
Discretization Contexts in Monte-Carlo Studies” proposes a general assessment of
correlational magnitude changes in the latency and discretization contexts of
Monte-Carlo studies. Further, authors Hakan Demirtas and Ceren Vardar-Acar
provide a conceptual framework and computational algorithms for modeling the
correlation transitions under specified distributional assumptions within the realm
of discretization in the context of latency and the threshold concept. The authors
illustrate the proposed algorithms with several examples and include a simulation
study that demonstrates the feasibility and performance of the methods.

Chapter “Monte-Carlo Simulation of Correlated Binary Responses” discusses
the Monte-Carlo simulation of correlated binary responses. Simulation studies are a
well-known, highly valuable tool that allows researchers to obtain powerful con-
clusions for correlated or longitudinal response data. In cases where logistic
modeling it used, the researcher must have appropriate methods for simulating
correlated binary data along with associated predictors. In this chapter, author Trent
Lalonde presents an overview of existing methods for simulating correlated binary
response data and compares those methods with methods using R software.
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Chapter “Quantifying the Uncertainty in Optimal Experiment Schemes via
Monte-Carlo Simulations” provides a general framework for quantifying the sen-
sitivity and uncertainty that result from the misspecification of model parameters in
optimal experimental schemes. In designing life-testing experiments, it is widely
accepted that the optimal experimental scheme depends on unknown model
parameters, and that misspecified parameters can lead to substantial loss of effi-
ciency in the statistical analysis. To quantify this effect, Tony Ng, Yu-Jau Lin,
Tzong-Ru Tsai, Y.L. Lio, and Nan Jiang use Monte-Carlo simulations to evaluate
the robustness of optimal experimental schemes.

Part II: Monte-Carlo Methods for Missing Data
(Chapters “Markov Chain Monte-Carlo Methods for Missing
Data Under Ignorability Assumptions”–“Application of Markov
Chain Monte-Carlo Multiple Imputation Method to Deal
with Missing Data from the Mechanism of MNAR
in Sensitivity Analysis for a Longitudinal Clinical Trial”)

Chapter “Markov Chain Monte-Carlo Methods for Missing Data Under Ignorability
Assumptions” presents a fully Bayesian method for using the Markov chain
Monte-Carlo technique for missing data to sample the full conditional distribution
of the missing data given observed data and the other parameters. In this chapter,
Haresh Rochani and Daniel Linder show how to apply these methods to real
datasets with missing responses as well as missing covariates. Additionally, the
authors provide simulation settings to illustrate this method.

In Chapter “A Multiple Imputation Framework for Massive Multivariate Data of
Different Variable Types: A Monte-Carlo Technique”, Hakan Demirtas discusses
multiple imputation for massive multivariate data of variable types from planned
missingness designs with the purpose to build theoretical, algorithmic, and
implementation-based components of a unified, general-purpose multiple imputa-
tion framework. The planned missingness designs are highly useful and will likely
increase in popularity in the future. For this reason, the proposed multiple impu-
tation framework represents an important refinement of existing methods.

Chapter “Hybrid Monte-Carlo in Multiple Missing Data Imputations with
Application to a Bone Fracture Data” introduces the Hybrid Monte-Carlo method as
an efficient approach for sampling complex posterior distributions of several cor-
related parameters from a semi-parametric missing data model. In this chapter, Hui
Xie describes a modeling approach for missing values that does not require
assuming specific distributional forms. To demonstrate the method, the author
provides an R program for analyzing missing data from a bone fracture study.

Chapter “Statistical Methodologies for Dealing with Incomplete Longitudinal
Outcomes Due to Dropout Missing at Random” considers key methods for handling
longitudinal data that are incomplete due to missing at random dropout. In this
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chapter, Ali Satty, Henry Mwambi, and Geert Muhlenbergs provide readers with an
overview of the issues and the different methodologies for handling missing data in
longitudinal datasets that result from dropout (e.g., study attrition, loss of
follow-up). The authors examine the potential strengths and weaknesses of the
various methods through two examples of applying these methods.

In Chapter “Applications of Simulation for Missing Data Issues in Longitudinal
Clinical Trials”, Frank Liu and James Kost present simulation-based approaches for
addressing missing data issues in longitudinal clinical trials, such as control-based
imputation, tipping-point analysis, and a Bayesian Markov chain Monte-Carlo
method. Computation programs for these methods are implemented and available in
SAS.

In Chapter “Application of Markov Chain Monte-Carlo Multiple Imputation
Method to Deal with Missing Data from the Mechanism of MNAR in Sensitivity
Analysis for a Longitudinal Clinical Trial”, Wei Sun discusses the application of
Markov chain Monte-Carlo multiple imputation for data that is missing not at
random in longitudinal datasets from clinical trials. This chapter compares the
patterns of missing data between study subjects who received treatment and study
subjects who received a placebo.

Part III: Monte-Carlo in Statistical Modellings and Applications
(Chapters “Monte-Carlo Simulation in Modeling for Hierarchical
Generalized Linear Mixed Models”–“Bootstrap-Based LASSO-
type Selection to Build Generalized Additive Partially Linear
Models for High-Dimensional Data”)

Chapter “Monte-Carlo Simulation in Modeling for Hierarchical Generalized Linear
Mixed Models” adds a discussion of Monte-Carlo simulation-based hierarchical
models, taking into account the variability at each level of the hierarchy. In this
chapter, Kyle Irimata and Jeffrey Wilson discuss Monte-Carlo simulations for
hierarchical linear mixed-effects models to fit the hierarchical logistic regression
models with random intercepts (both random intercepts and random slopes) to
multilevel data.

Chapter “Monte-Carlo Methods in Financial Modeling” demonstrates the use of
Monte-Carlo methods in financial modeling. In this chapter, Chuanshu Ji, Tao
Wang, and Leicheng Yin discuss two areas of market microstructure modeling and
option pricing using Monte-Carlo dimension reduction techniques. This approach
uses Bayesian Markov chain Monte-Carlo inference based on the trade and quote
database from Wharton Research Data Services.

Chapter “Simulation Studies on the Effects of the Censoring Distribution
Assumption in the Analysis of Interval-Censored Failure Time Data” discusses
using Monte-Carlo simulations to evaluate the effect of the censoring distribution
assumption for interval-censored survival data. In this chapter, Tyler Cook and
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Jianguo Sun investigate the effectiveness and flexibility of two methods for
regression analysis of informative case I and case II interval-censored data. The
authors present extensive Monte-Carlo simulation studies that provide readers with
guidelines regarding dependence of the censoring distribution.

Chapter “Robust Bayesian Hierarchical Model Using Monte-Carlo Simulation”
uses Monte-Carlo simulation to demonstrate a robust Bayesian multilevel item
response model. In this chapter, Geng Chen uses data from patients with
Parkinson’s disease, a chronic progressive disease with multidimensional impair-
ments. Using these data, Chen illustrates applying the multilevel item response
model to not only deal with the multidimensional nature of the disease but also
simultaneously estimate measurement-specific parameters, covariate effects, and
patient-specific characteristics of disease progression.

In Chapter “A Comparison of Bootstrap Confidence Intervals for Multi-level
Longitudinal Data Using Monte-Carlo Simulation”, Mark Reiser, Lanlan Yao, and
Xiao Wang present a comparison of bootstrap confidence intervals for multilevel
longitudinal data using Monte-Carlo simulations. Their results indicate that if the
sample size at the lower level is small, then the parametric bootstrap and cluster
bootstrap perform better at the higher level than the two-stage bootstrap. The
authors then apply the bootstrap methods to a longitudinal study of preschool
children nested within classrooms.

Chapter “Bootstrap-Based LASSO-Type Selection to Build Generalized
Additive Partially Linear Models for High-Dimensional Data” presents an
approach to using a bootstrap-based LASSO-type selection to build generalized
additive partially linear models for high-dimensional data. In this chapter, Xiang
Liu, Tian Chen, Yuanzhang Li, and Hua Liang first propose a bootstrap-based
procedure to select variables with penalized regression and then apply their pro-
cedure to analyze data from a breast cancer study and an HIV study. The two
examples demonstrate the procedure’s flexibility and utility in practice. In addition,
the authors present a simulation study that shows, when compared with the
penalized regression approach, their variable selection procedure performs better.

As a general note, the references for each chapter are included immediately
following the chapter text. We have organized the chapters as self-contained units
so readers can more easily and readily refer to the cited sources for each chapter.

To facilitate readers’ understanding of the methods presented in this book,
corresponding data and computing program can be requested from the first editor by
email at DrDG.Chen@gmail.com.

The editors are deeply grateful to many who have supported the creation of this
book. We thank the authors of each chapter for their contributions and their gen-
erous sharing of their knowledge, time, and expertise to this book. Second, our
sincere gratitude goes to Ms. Diane C. Wyant from the School of Social Work,
University of North Carolina at Chapel Hill for her expert editing and comments of
this book which substantially uplift the quality of this book. We gratefully
acknowledge the professional support of Hannah Qiu (Springer/ICSA Book Series
coordinator) and Wei Zhao (associate editor) from Springer Beijing that made
publishing this book with Springer a reality.

Preface ix



We welcome readers’ comments, including notes on typos or other errors, and
look forward to receiving suggestions for improvements to future editions of this
book. Please send comments and suggestions to any of the editors listed below.

October 2016 Ding-Geng (Din) Chen
University of North Carolina, Chapel Hill, USA

University of Pretoria, South Africa

John Dean Chen
Credit Suisse, New York, NY, USA
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About the Book

This book brings together expert researchers engaged in Monte-Carlo
simulation-based statistical modeling, offering them a forum to present and dis-
cuss recent issues in methodological development as well as public health appli-
cations. It is divided into three parts, with the first providing an overview of
Monte-Carlo techniques, the second focusing on missing data Monte-Carlo meth-
ods, and the third addressing Bayesian and general statistical modeling using
Monte-Carlo simulations. The data and computer programs used here will also be
made publicly available, allowing readers to replicate the model development and
data analysis presented in each chapter, and to readily apply them in their own
research. Featuring highly topical content, the book has the potential to impact
model development and data analyses across a wide spectrum of fields, and to spark
further research in this direction.
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Part I
Monte-Carlo Techniques



Joint Generation of Binary, Ordinal, Count,
and Normal Data with Specified Marginal
and Association Structures in Monte-Carlo
Simulations

Hakan Demirtas, Rawan Allozi, Yiran Hu, Gul Inan and Levent Ozbek

Abstract This chapter is concerned with building a unified framework for con-
currently generating data sets that include all four major kinds of variables (i.e.,
binary, ordinal, count, and normal) when the marginal distributions and a feasible
association structure are specified for simulation purposes. The simulation paradigm
has been commonly employed in a wide spectrum of research fields including the
physical, medical, social, and managerial sciences. A central aspect of every simula-
tion study is the quantification of the model components and parameters that jointly
define a scientific process. When this quantification cannot be performed via deter-
ministic tools, researchers resort to random number generation (RNG) in finding
simulation-based answers to address the stochastic nature of the problem. Although
many RNG algorithms have appeared in the literature, a major limitation is that they
were not designed to concurrently accommodate all variable types mentioned above.
Thus, these algorithms provide only an incomplete solution, as real data sets include
variables of different kinds. This work represents an important augmentation of the
existing methods as it is a systematic attempt and comprehensive investigation for
mixed data generation. We provide an algorithm that is designed for generating data
of mixed marginals, illustrate its logistical, operational, and computational details;
and present ideas on how it can be extended to span more complicated distributional
settings in terms of a broader range of marginals and associational quantities.

H. Demirtas (B) · R. Allozi · Y. Hu
Division of Epidemiology and Biostatistics (MC923), University of Illinois at Chicago,
1603 West Taylor Street, Chicago, IL 60612, USA
e-mail: demirtas@uic.edu
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Department of Statistics, Middle East Technical University, Ankara, Turkey

L. Ozbek
Department of Statistics, Ankara University, Ankara, Turkey
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D.-G. Chen and J.D. Chen (eds.), Monte-Carlo Simulation-Based Statistical
Modeling, ICSA Book Series in Statistics, DOI 10.1007/978-981-10-3307-0_1
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4 H. Demirtas et al.

1 Introduction

Stochastic simulation is an indispensable part and major focus of scientific inquiry.
Model building, estimation, and testing typically require verification via simulation
to assess the validity, reliability, and plausibility of inferential techniques, to evaluate
how well the implemented models capture the specified true population values, and
how reasonably these models respond to departures from underlying assumptions,
among other things. Describing a real notion by creating mirror images and imper-
fect proxies of the perceived underlying truth; iteratively refining and occasionally
redefining the empirical truth to decipher the mechanism by which the process under
consideration is assumed to operate in a repeated manner allows researchers to study
the performance of their methods through simulated data replicates that mimic the
real data characteristics of interest in any given setting. Accuracy and precision mea-
sures regarding the parameters under consideration signal if the procedure works
properly; and may suggest remedial action to minimize the discrepancies between
expectation and reality.

Simulation studies have been commonly employed in a broad range of disciplines
in order to better comprehend and solve today’s increasingly sophisticated issues. A
core component of every simulation study is the quantification of the model compo-
nents and parameters that jointly define a scientific phenomenon. Deterministic tools
are typically inadequate to quantify complex situations, leading researchers to uti-
lize RNG techniques in finding simulation-based solutions to address the stochastic
behavior of the problems that generally involve variables of many different types on
a structural level; i.e., causal and correlational interdependencies are a function of a
mixture of binary, ordinal, count, and continuous variables, which act simultaneously
to characterize the mechanisms that collectively delineate a paradigm. In modern
times, we are unequivocally moving from mechanistical to empirical thinking, from
small data to big data, from mathematical perfection to reasonable approximation to
reality, and from exact solutions to simulation-driven solutions. The ideas presented
herein are important in the sense that the basic mixed-data generation setup can be
augmented to handle a large spectrum of situations that can be encountered in many
areas.

This work is concerned with building the basics of a unified framework for con-
currently generating data sets that include all four major kinds of variables (i.e.,
binary, ordinal, count, and normal) when the marginal distributions and a feasible
association structure in the form of Pearson correlations are specified for simulation
purposes. Although many RNG algorithms have appeared in the literature, a funda-
mental restriction is that they were not designed for a mix of all prominent types of
data. The current chapter is a systematic attempt and compendious investigation for
mixed data generation; it represents a substantial augmentation of the existing meth-
ods, and it has potential to advance scientific research and knowledge in ameaningful
way. The broader impact of this framework is that it can assist data analysts, practi-
tioners, theoreticians, and methodologists across many disciplines to simulate mixed
data with relative ease. The proposed algorithm constitutes a comprehensive set of
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computational tools that offers promising potential for building enhanced computing
infrastructure for research and education.

We propose an RNG algorithm that encompasses all four major variable types,
building upon our previous work in generation of multivariate ordinal data (Demirtas
2006), joint generation of binary and normal data (Demirtas and Doganay 2012),
ordinal and normal data (Demirtas and Yavuz 2015), and count and normal data
(Amatya and Demirtas 2015) with the specification of marginal and associational
parameters along with other related work (Emrich and Piedmonte 1991; Demirtas
and Hedeker 2011, 2016; Demirtas et al. 2016a; Ferrari and Barbiero 2012; Yahav
and Shmueli 2012). Equally importantly, we discuss the extensions on nonnormal
continuous data via power polynomials thatwould handle the overwhelmingmajority
of continuous shapes (Fleishman 1978; Vale and Maurelli 1983; Headrick 2010;
Demirtas et al. 2012; Demirtas 2017a), count data that are prone to over- and under-
dispersion via generalized Poisson distribution (Demirtas 2017b), broader measures
of associations such as Spearman’s rank correlations and L-correlations (Serfling
and Xiao 2007), and the specification of higher order product moments. Conceptual,
algorithmic, operational, and procedural details will be communicated throughout
the chapter.

The organization of the chapter is as follows: In Sect. 2, the algorithm for simulta-
neous generation of binary, ordinal, count, and normal data is given. The essence of
the algorithm is finding the correlation structure of underlying multivariate normal
(MVN) data that form a basis for the subsequent discretization in the binary and
ordinal cases, and correlation mapping using inverse cumulative distribution func-
tions (cdfs) in the count data case, where modeling the correlation transitions for
different distributional pairs is discussed in detail. Section3 presents some logistical
details and an illustrative example through an R package that implements the algo-
rithm, demonstrating how well the proposed technique works. Section4 includes
discussion on limitations, future directions, extensions, and concluding remarks.

2 Algorithm

The algorithm is designed for concurrently generating binary, ordinal, count, and
continuous data. The count and continuous parts are assumed to follow Poisson
and normal distributions, respectively. While binary is a special case of ordinal, for
the purpose of exposition, the steps are presented separately. Skipped patterns are
allowed for ordinal variables. The marginal characteristics (the proportions for the
binary and ordinal part, the rate parameters for the count part, and the means and
variances for the normal part) and a feasible Pearson correlation matrix need to be
specified by the users. The algorithmic skeleton establishes the basic foundation,
extensions to more general and complicated situations will be discussed in Sect. 4.

The operational engine of the algorithm hinges upon computing the correlation
matrix of underlying MVN data that serve as an intermediate tool in the sense that
binary and ordinal variables are obtained via dichotomization and ordinalization,
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respectively, through the threshold concept, and count variables are retrieved by
correlation mapping using inverse cdf matching. The procedure entails modeling the
correlation transformations that result from discretization and mapping.

In what follows, let B, O , C , and N denote binary, ordinal, count, and normal
variables, respectively. LetΣ be the specified Pearson correlationmatrix which com-
prises of ten submatrices that correspond to all possible variable-type combinations.

Required parameter values are p’s for binary and ordinal variables, λ’s for count
variables, (μ, σ 2) pairs for normal variables, and the entries of the correlation matrix
Σ . These quantities are either specified or estimated from a real data set that is to be
mimicked.

1. Check if Σ is positive definite.
2. Find the upper and lower correlation bounds for all pairs by the sortingmethod of

Demirtas and Hedeker (2011). It is well-known that correlations are not bounded
between −1 and +1 in most bivariate settings as different upper and/or lower
bounds may be imposed by the marginal distributions (Hoeffding 1940; Fréchet
1951). These restrictions apply to discrete variables as well as continuous ones.
Let Π(F, G) be the set of cdf’s H on R2 having marginal cdf’s F and G.
Hoeffding (1940) and Fréchet (1951) proved that in Π(F, G), there exist cdf’s
HL and HU , called the lower and upper bounds, having minimum and max-
imum correlation. For all (x, y) ∈ R2, HL(x, y) = max[F(x) + G(y) − 1, 0]
and HU (x, y) = min[F(x), G(y)]. For any H ∈ Π(F, G) and all (x, y) ∈ R2,
HL(x, y) ≤ H(x, y) ≤ HU (x, y). If δL , δU , and δ denote the Pearson correlation
coefficients for HL , HU , and H , respectively, then δL ≤ δ ≤ δU . One can infer
that if V is uniform in [0, 1], then F−1(V ) andG−1(V ) aremaximally correlated;
and F−1(V ) and G−1(1 − V ) are maximally anticorrelated. In practical terms,
generating X and Y independently with a large number of data points before
sorting them in the same and opposite direction give the approximate upper and
lower correlation bounds, respectively. Make sure all elements of Σ are within
the plausible range.

3. Perform logical checks such as binary proportions are between 0 and 1, proba-
bilities add up to 1 for ordinal variables, the Poisson rates are positive for count
variables, variances for normal variables are positive, themean, variance, propor-
tion and rate vectors are consistent with the number of variables,Σ is symmetric
and its diagonal entries are 1, to prevent obvious misspecification errors.

4. For B-B combinations, find the tetrachoric (pre-dichotomization) correlation
given the specified phi coefficient (post-dichotomization correlation). Let X1, X2

represent binary variables such that E[X j ] = p j andCor(X1, X2) = δ12, where
p j ( j = 1, 2) and δ12 (phi coefficient) are given. LetΦ[t1, t2, ρ12] be the cdf for a
standard bivariate normal random variable with correlation coefficient ρ12 (tetra-
choric correlation). Naturally, Φ[t1, t2, ρ12] = ∫ t1

−∞
∫ t2
−∞ f (z1, z2, ρ12)dz1dz2,

where f (z1, z2, ρ12) = [2π(1 − ρ2
12)

1/2]−1 × exp
[

− (z21 − 2ρ12z1z2 + z22)/

(2(1 − ρ2
12))

]
. The connection between δ12 and ρ12 is reflected in the equation
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Φ[z(p1), z(p2), ρ12] = δ12(p1q1 p2q2)
1/2 + p1 p2

Solve for ρ12 where z(p j ) denotes the pth
j quantile of the standard normal dis-

tribution, and q j = 1 − p j . Repeat this process for all B-B pairs.
5. For B-O and O-O combinations, implement an iterative procedure that finds

the polychoric (pre-discretization) correlation given the ordinal phi coefficient
(post-discretization correlation). Suppose Z = (Z1, Z2) ∼ N (0,ΔZ1Z2), where
Z denotes the bivariate standard normal distribution with correlation matrix
ΔZ1Z2 whose off-diagonal entry is δZ1Z2 . Let X = (X1, X2) be the bivari-
ate ordinal data where underlying Z is discretized based on corresponding
normal quantiles given the marginal proportions, with a correlation matrix
ΔZ1Z2 . If we need to sample from a random vector (X1, X2) whose marginal
cdfs are F1, F2 tied together via a Gaussian copula, we generate a sample
(z1, z2) from Z ∼ N (0,ΔZ1Z2), then set x = (x1, x2) = (F−1

1 (u1), F−1
2 (u2))

when u = (u1, u2) = (Φ(z1),Φ(z2)), whereΦ is the cdf of the standard normal
distribution. The correlationmatrix ofX, denoted byΔX1 X2 (with an off-diagonal
entry δX1X2 ) obviously differs fromΔZ1Z2 due to discretization.More specifically,
|δX1X2 | < |δZ1Z2 | in large samples. The relationship between δX1X2 and δZ1Z2 can
be established via the following algorithm (Ferrari and Barbiero 2012):

a. Generate standard bivariate normal data with the correlation δ0Z1Z2
where

δ0Z1Z2
= δX1X2 (Here, δ

0
Z1Z2

is the initial polychoric correlation).
b. Discretize Z1 and Z2, based on the cumulative probabilities of the marginal

distribution F1 and F2, to obtain X1 and X2, respectively.
c. Compute δ1X1X2

through X1 and X2 (Here, δ1X1X2
is the ordinal phi coefficient

after the first iteration).
d. Execute the following loop as long as |δv

X1X2
− δX1X2 | > ε and 1 ≤ v ≤ vmax

(vmax and ε are the maximum number of iterations and the maximum toler-
ated absolute error, respectively, both quantities are set by the users):
(a) Update δv

Z1Z2
by δv

Z1Z2
= δv−1

Z1Z2
g(v), where g(v) = δX1X2/δ

v
X1X2

. Here,
g(v) serves as a correction coefficient, which ultimately converges to 1.
(b) Generate bivariate normal data with δv

Z1Z2
and compute δv+1

X1X2
after dis-

cretization.

Again, one should repeat this process for each B-O (and O-O) pair.
6. For C-C combinations, compute the corresponding normal-normal correlations

(pre-mapping) given the specified count-count correlations (post-mapping) via
the inverse cdf method in Yahav and Shmueli (2012) that was proposed in the
context of correlated count data generation. Their method utilizes a slightly
modified version of the NORTA (Normal to Anything) approach (Nelsen 2006),
which involves generation of MVN variates with given univariate marginals and
the correlation structure (RN ), and then transforming it into any desired distri-
bution using the inverse cdf. In the Poisson case, NORTA can be implemented
by the following steps:
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a. Generate a k-dimensional normal vector ZN from MV N distribution with
mean vector 0 and a correlation matrix RN .

b. Transform ZN to a Poisson vector XC as follows:
i. For each element zi of ZN , calculate the Normal cdf, Φ(zi ).
ii. For each value of Φ(zi ), calculate the Poisson inverse cdf with a

desired corresponding marginal rate λi , Ψ −1
λi

(Φ(zi )); where Ψλi (x) =
∑x

i=0
e−λλi

i ! .

c. XC = [
Ψ −1

λi
(Φ(zi )), . . . , Ψ

−1
λk

(Φ(zk))
]T

is a draw from the desired multi-
variate count data with correlation matrix RP O I S .

An exact theoretical connection between RN and RP O I S has not been established
to date. However, it has been shown that a feasible range of correlation between
a pair of Poisson variables after the inverse cdf transformation is within [ρ =
Cor(Ψ −1

λi
(U ), Ψ −1

λ j
(1 − U )), ρ = Cor(Ψ −1

λi
(U ), Ψ −1

λ j
(U ))], where λi and λ j

are the marginal rates, and U ∼ Uni f orm(0, 1). Yahav and Shmueli (2012)
proposed a conceptually simple method to approximate the relationship between
the two correlations. They have demonstrated that RP O I S can be approximated
as an exponential function of RN where the coefficients are the functions of ρ

and ρ.
7. For B-N/O-N combinations, find the biserial/polyserial correlation (before dis-

cretization of one of the variables) given the point-biserial/point-polyserial cor-
relation (after discretization) by the linearity and constancy arguments pro-
posed by Demirtas and Hedeker (2016). Suppose that X and Y follow a bivari-
ate normal distribution with a correlation of δXY . Without loss of generality,
we may assume that both X and Y are standardized to have a mean of 0
and a variance of 1. Let X D be the binary variable resulting from a split on
X , X D = I (X ≥ k). Thus, E[X D] = p and V [X D] = pq where q = 1 − p.
The correlation between X D and X , δX D X can be obtained in a simple way,
namely, δX D X = Cov[X D ,X ]√

V [X D ]V [X ] = E[X D X ]/√pq = E[X |X ≥ k]/√pq . We can
also express the relationship between X and Y via the following linear regression
model:

Y = δXY X + ε (1)

where ε is independent of X and Y , and follows N ∼ (0, 1 − δ2XY ). When we
generalize this to nonnormal X and/or Y (both centered and scaled), the same
relationship can be assumed to hold with the exception that the distribution of ε

follows a nonnormal distribution. As long as Eq.1 is valid,

Cov[X D, Y ] = Cov[X D, δXY X + ε]
= Cov[X D, δXY X ] + Cov[X D, ε]
= δXY Cov[X D, X ] + Cov[X D, ε] . (2)

Since ε is independent of X , it will also be independent of any deterministic
function of X such as X D , and thus Cov[X D, ε] will be 0. As E[X ] = E[Y ] =
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0, V [X ] = V [Y ] = 1, Cov[X D, Y ] = δX DY
√

pq and Cov[X, Y ] = δXY , Eq. 2
reduces to

δX DY = δXY δX D X . (3)

In the bivariate normal case, δX D X = h/
√

pq where h is the ordinate of the nor-
mal curve at the point of dichotomization. Equation3 indicates that the linear
association between X D and Y is assumed to be fully explained by their mutual
association with X (Demirtas and Hedeker 2016). The ratio, δX DY /δXY is equal
to δX D X = E[X D X ]/√pq = E[X |X ≥ k]/√pq . It is a constant given p and
the distribution of (X, Y ). These correlations are invariant to location shifts and
scaling, X and Y do not have to be centered and scaled, their means and vari-
ances can take any finite values. Once the ratio (δX D X ) is found, one can compute
the biserial correlation when the point-biserial correlation is specified. When X
is ordinalized to obtain X O , the fundamental ideas remain unchanged. If the
assumptions of Eqs. 1 and 3 are met, the method is equally applicable to the
ordinal case in the context of the relationship between the polyserial (before
ordinalization) and point-polyserial (after ordinalization) correlations. The eas-
iest way of computing δX O X is to generate X with a large number of data points,
then ordinalize it to obtain X O , and then compute the sample correlation between
X O and X . X could follow any continuous univariate distribution. However, here
X is assumed to be a part of MVN data before discretization.

8. For C-N combinations, use the count version of Eq.3, which is δXC Y = δXY δXC X

is valid. The only difference is that we use the inverse cdf method rather than
discretization via thresholds as in the binary and ordinal cases.

9. For B-C and O-C combinations, suppose that there are two identical standard
normal variables, one underlies the binary/ordinal variable before discretiza-
tion, the other underlies the count variable before inverse cdf matching. One
can find Cor(O, N ) by the method of Demirtas and Hedeker (2016). Then,
assume Cor(C, O) = Cor(C, N ) ∗ Cor(O, N ). Cor(C, O) is specified and
Cor(O, N ) is calculated. Solve for Cor(C, N ). Then, find the underlying N-N
correlation by Step 8 above (Amatya and Demirtas 2015; Demirtas and Hedeker
2016).

10. Construct an overall, intermediate correlation matrix, Σ∗ using the results from
Steps 4 through 9, in conjunctionwith theN-N part that remains untouchedwhen
we compute Σ∗ from Σ .

11. Check if Σ∗ is positive definite. If it is not, find the nearest positive definite
correlation matrix by the method of Higham (2002).

12. Generatemultivariate normal datawith ameanvector of (0, ..., 0) and correlation
matrix ofΣ∗, which can easily be done by using the Cholesky decomposition of
Σ∗ and a vector of univariate normal draws. The Cholesky decomposition ofΣ∗
produces a lower-triangular matrix A for which AAT = Σ∗. If z = (z1, ..., zd)

are d independent standard normal random variables, then Z = Az is a random
draw from this distribution.

13. Dichotomize binary, ordinalize ordinal by respective quantiles, go from normal
to count by inverse cdf matching.
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3 Some Operational Details and an Illustrative Example

The software implementation of the algorithm has been done in PoisBinOrdNor
package (Demirtas et al. 2016b) within R environment (R Development Core Team
2016). The package has functions for each variable-type pair that are collectively
capable of modeling the correlation transitions. More specifically, corr.nn4bb
functionfinds the tetrachoric correlation inStep4,corr.nn4bn andcorr.nn4on
functions compute the biserial and polyserial correlations for binary and ordinal vari-
ables, respectively, in Step 7, corr.nn4pbo function is used to handle B-C and
O-C pairs in Step 9, corr.nn4pn function is designed for C-N combinations in
Step 8, and corr.nn4pp function calculates the pre-mapping correlations in Step
6. In addition, polychoric correlations in Step 5 are computed by ordcont function
inGenOrd package (Barbiero and Ferrari 2015). correlation bound check (Step 2) as
well as the validation of the specified quantities (Step 3), assembling all the interme-
diate correlation entries into Σ∗ (Step 10), and generating mixed data (Steps 12 and
13) are performed by validation.specs, intermat, and genPBONdata
functions, respectively, in PoisBinOrdNor package. Positive definiteness checks
in Steps 1 and 11 are done by is.positive.definite function in corpcor
package (Schaefer et al. 2015), finding the nearest Σ∗ is implemented by nearPD
function inMatrix package (Bates andMaechler 2016), andMVNdata are generated
by rmvnorm function in mvtnorm package (Genz et al. 2016).

For illustration, suppose we have two variables in each type. Operationally, Pois-
BinOrdNor package assumes that the variables are specified in a certain order. Let
Y1 ∼ Poisson(3), Y2 ∼ Poisson(5), Y3 ∼ Bernoulli(0.4), Y4 ∼ Bernoulli(0.6),
Y5 and Y6 are ordinal P(Y j = i) = pi , where pi = (0.3, 0.3, 0.4) and (0.5, 0.1, 0.4)
for i = 0, 1, 2 for j = 5 and 6, respectively, Y7 ∼ N (2, 1), and Y8 ∼ N (5, 9). The
correlation matrix Σ is specified as follows under the assumption that columns (and
rows) represent the order above:

Σ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0.70 0.66 0.25 0.41 0.63 0.22 0.51
0.70 1 0.59 0.22 0.37 0.57 0.20 0.46
0.66 0.59 1 0.21 0.34 0.53 0.19 0.43
0.25 0.22 0.21 1 0.13 0.20 0.07 0.16
0.41 0.37 0.34 0.13 1 0.33 0.12 0.27
0.63 0.57 0.53 0.20 0.33 1 0.18 0.42
0.22 0.20 0.19 0.07 0.12 0.18 1 0.15
0.51 0.46 0.43 0.16 0.27 0.42 0.15 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The intermediate correlationmatrixΣ∗–after validating the feasibility ofmarginal
and correlational specifications and applying all the relevant correlation transition
steps– turns out to be (rounded to three digits after the decimal)
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Σ∗ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0.720 0.857 0.325 0.477 0.776 0.226 0.523
0.720 1 0.757 0.282 0.424 0.693 0.202 0.466
0.857 0.757 1 0.336 0.470 0.741 0.241 0.545
0.325 0.282 0.336 1 0.186 0.299 0.089 0.203
0.477 0.424 0.470 0.186 1 0.438 0.135 0.305
0.776 0.693 0.741 0.299 0.438 1 0.216 0.504
0.226 0.202 0.241 0.089 0.135 0.216 1 0.150
0.523 0.466 0.545 0.203 0.305 0.504 0.150 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Generating N = 10, 000 rows of data based on this eight-variable system yields the
following empirical correlation matrix (rounded to five digits after the decimal):

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0.69823 0.67277 0.24561 0.40985 0.63891 0.22537 0.50361
0.69823 1 0.59816 0.21041 0.36802 0.57839 0.21367 0.45772
0.67277 0.59816 1 0.20570 0.32448 0.55564 0.20343 0.42192
0.24561 0.21041 0.20570 1 0.12467 0.20304 0.06836 0.17047
0.40985 0.36802 0.32448 0.12467 1 0.32007 0.12397 0.26377
0.63891 0.57839 0.55564 0.20304 0.32007 1 0.17733 0.41562
0.22537 0.21367 0.20343 0.06836 0.12397 0.17733 1 0.15319
0.50361 0.45772 0.42192 0.17047 0.26377 0.41562 0.15319 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The discrepancies between the specified and empirically computed correlations
are indiscernibly small and the deviations are within an acceptable range that can
be expected in any stochastic process. If we had repeated the experiment many
times in a full-blown simulation study, the average differences would be even more
negligible. We have observed the similar trends in the behavior of the marginal
parameters (not reported for brevity), which lend further support to the presented
methodology. The assessment of the algorithm performance in terms of commonly
accepted accuracy and precision measures in RNG and imputation settings as well
as in other simulated environments can be carried out through the evaluation metric
developed in Demirtas (2004a, b, 2005, 2007a, b, 2008, 2009, 2010), Demirtas and
Hedeker (2007, 2008a, b, c), Demirtas and Schafer (2003), Demirtas et al. (2007,
2008), and Yucel and Demirtas (2010).

4 Future Directions

The significance of the current study stems from three major reasons: First, data
analysts, practitioners, theoreticians, and methodologists across many different dis-
ciplines in medical, managerial, social, biobehavioral, and physical sciences will
be able to simulate multivariate data of mixed types with relative ease. Second, the
proposed work can serve as a milestone for the development of more sophisticated
simulation, computation, and data analysis techniques in the digital information,
massive data era. Capability of generating many variables of different distributional
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types, nature, and dependence structuresmay be a contributing factor for better grasp-
ing the operational characteristics of today’s intensive data trends (e.g., satellite data,
internet traffic data, genetics data, ecological momentary assessment data). Third,
these ideas can help to promote higher education and accordingly be instrumental in
training graduate students. Overall, it will provide a comprehensive and useful set
of computational tools whose generality and flexibility offer promising potential for
building enhanced statistical computing infrastructure for research and education.

While this work represents a decent step forward in mixed data generation, it may
not be sufficiently complex for real-life applications in the sense that real count and
continuous data are typically more complicated than what Poisson and normal distri-
butions accommodate, and it is likely that specification of parameters that control the
first two moments and the second order product moment is inadequate. To address
these concerns, we plan on building a more inclusive structural umbrella, whose
ingredients are as follows: First, the continuous part will be extended to encompass
nonnormal continuous variables by the operational utility of the third order power
polynomials. This approach is a moment-matching procedure where any given con-
tinuous variable in the system is expressed by the sum of linear combinations of pow-
ers of a standard normal variate (Fleishman 1978; Vale and Maurelli 1983; Demirtas
et al. 2012), which requires the specification of the first four moments. A more elab-
orate version in the form of the fifth order system will be implemented (Headrick
2010) in an attempt to control for higher order moments to cover a larger area in the
skewness-elongation plane and to provide a better approximation to the probability
density functions of the continuous variables; and the count data part will be aug-
mented through the generalized Poisson distribution (Demirtas 2017b) that allows
under- and over-dispersion, which is usually encountered in most applications, via
an additional dispersion parameter. Second, although the Pearson correlation may
not be the best association quantity in every situation, all correlations mentioned in
this chapter are special cases of the Pearson correlation; it is the most widespread
measure of association; and generality of the methods proposed herein with different
kinds of variables requires the broadest possible framework. For further broadening
the scale, scope, and applicability of the ideas presented in this chapter, the proposed
RNG technique will be extended to allow the specification of the Spearman’s rho,
which is more popular for discrete and heavily skewed continuous distributions, will
be incorporated into the algorithm for concurrently generating all four major types of
variables. For the continuous-continuous pairs, the connection between the Pearson
and Spearman correlations is given in Headrick (2010) through the power coeffi-
cients, and these two correlations are known to be equal for the binary-binary pairs.
The relationship will be derived for all other variable type combinations. Inclusion
of Spearman’s rho as an option will allow us to specify nonlinear associations whose
monotonic components are reflected in the rank correlation. Third, the expanded fifth
order polynomial systemwill be further augmented to accommodate L-moments and
L-correlations (Hosking 1990; Serfling and Xiao 2007) that are based on expecta-
tions of certain linear combinations of order statistics. The marginal and product
L-moments are known to be more robust to outliers than their conventional counter-
parts in the sense that they suffer less from the effects of sampling variability, and
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they enable more secure inferences to be made from small samples about an under-
lying probability distribution. On a related note, further expansions can be designed
to handle more complex associations that involve higher order product moments.

The salient advantages of the proposed algorithm and its augmented versions are
as follows: (1) Individual components are well-established. (2) Given their compu-
tational simplicity, generality, and flexibility, these methods are likely to be widely
used by researchers, methodologists, and practitioners in a wide spectrum of sci-
entific disciplines, especially in the big data era. (3) They could be very useful
in graduate-level teaching of statistics courses that involve computation and sim-
ulation, and in training graduate students. (4) A specific set of moments for each
variable is fairly rare in practice, but a specific distribution that would lead to these
moments is very common; so having access to thesemethods is needed by potentially
a large group of people. (5) Simulated variables can be treated as outcomes or pre-
dictors in subsequent statistical analyses as the variables are being generated jointly.
(6) Required quantities can either be specified or estimated from a real data set. (7)
The final product after all these extensions will allow the specification of two promi-
nent types of correlations (Pearson and Spearman correlations) and one emerging
type (L-correlations) provided that they are within the limits imposed by marginal
distributions. This makes it feasible to generate linear and a broad range of nonlinear
associations. (8) The continuous part can include virtually any shape (skewness, low
or high peakedness, mode at the boundary, multimodality, etc.) that is spanned by
power polynomials; the count data part can be under- or over-dispersed. (9) Ability
to jointly generate different types of data may facilitate comparisons among existing
data analysis and computation methods in assessing the extent of conditions under
which available methods work properly, and foster the development of new tools,
especially in contexts where correlations play a significant role (e.g., longitudinal,
clustered, and other multilevel settings). (10) The approaches presented here can
be regarded as a variant of multivariate Gaussian copula-based methods as (a) the
binary and ordinal variables are assumed to have a latent normal distribution before
discretization; (b) the count variables go through a correlationmapping procedure via
the normal-to-anything approach; and (c) the continuous variables consist of poly-
nomial terms involving normals. To the best of our knowledge, existing multivariate
copulas are not designed to have the generality of encompassing all these variable
types simultaneously. (11) As the mixed data generation routine is involved with
latent variables that are subsequently discretized, it should be possible to see how
the correlation structure changes when some variables in a multivariate continuous
setting are dichotomized/ordinalized (Demirtas 2016; Demirtas and Hedeker 2016;
Demirtas et al. 2016a). An important by-product of this research will be a better
understanding of the nature of discretization, which may have significant implica-
tions in interpreting the coefficients in regression-type models when some predictors
are discretized. On a related note, this could be useful in meta-analysis when some
studies discretize variables and some do not. (12) Availability of a general mixed
data generation algorithm can markedly facilitate simulated power-sample size cal-
culations for a broad range of statistical models.
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Improving the Efficiency of the Monte-Carlo
Methods Using Ranked Simulated Approach

Hani Michel Samawi

Abstract This chapter explores the concept of using ranked simulated sampling
approach (RSIS) to improve the well-known Monte-Carlo methods, introduced by
Samawi (1999), and extended to steady-state ranked simulated sampling (SRSIS)
by Al-Saleh and Samawi (2000). Both simulation sampling approaches are then
extended to multivariate ranked simulated sampling (MVRSIS) and
multivariate steady-state ranked simulated sampling approach (MVSRSIS) by
Samawi and Al-Saleh (2007) and Samawi and Vogel (2013). These approaches have
been demonstrated as providing unbiased estimators and improving the performance
of some of the Monte-Carlo methods of single and multiple integrals approximation.
Additionally, the MVSRSIS approach has been shown to improve the performance
and efficiency of Gibbs sampling (Samawi et al. 2012). Samawi and colleagues
showed that their approach resulted in a large savings in cost and time needed to
attain a specified level of accuracy.

1 Introduction

The termMonte-Carlo refers to techniques that use random processes to approximate
a non-stochastic k-dimensional integral of the form

θ =
∫

Rk

g(u)du, (1.1)

(Hammersley and Handscomb 1964).
The literature presents many approximation techniques, including Monte-Carlo

methods. However, as the dimension of the integrals rises, the difficulty of the inte-
gration problem increases even for relatively low dimensions (see Evans and Swartz
1995).Given such complications,many researchers are confused aboutwhichmethod
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to use; however, the advantages and disadvantages of each method are not the pri-
mary concern of this chapter. The focus of this chapter is the use of Monte-Carlo
methods in multiple integration approximation.

The motivation for this research is based on the concepts of ranked set sampling
(RSS), introduced by McIntyre (1952). The motivation is based on the fact that the
i th quantified unit of RSS is simply an observation from f(i), where f(i) is the density
function of the i th order statistic of a random sample of size n. When the underlying
density is the uniform distribution on (0, 1), f(i) follows a beta distribution with
parameters (i, n − i + 1).

Samawi (1999) was the first to explore the idea of RSS (Beta sampler) for inte-
gral approximation. He demonstrated that the procedure can improve the simulation
efficiency based on the ratio of the variances. Samawi’s ranked simulated sampling
procedureRSIS generates an independent random sampleU(1),U(2), . . . ,U(n), which
is denoted byRSIS,whereU(i) ∼ β(i, n − i + 1), {i = 1, 2, ..., n} and β(., .) denotes
the beta distribution. The RSIS procedure constitutes an RSS based on random sam-
ples from the uniform distribution U (0, 1). The idea is to use this RSIS to compute
(1.1) with k = 1, instead of using an SRS of size n from U (0, 1), when the range
of the integral in (1.1) is (0, 1). In case of arbitrary range (a, b) of the integral
in (1.1), Samawi (1999) used the sample: X(1), X(2), ..., X(n) and the importance
sampling technique to evaluate (1.1), where X(i) = F−1

X (U(i)) and FX (.) is the dis-
tribution function of a continuous random variable. He showed theoretically and
through simulation studies that using the RSIS sampler for evaluating (1.1) substan-
tially improved the efficiency when compared with the traditional uniform sampler
(USS).

Al-Saleh and Zheng (2002) introduced the idea of bivariate ranked set sampling
(BVRSS) and showed through theory and simulation that BVRSS outperforms the
bivariate simple random sample for estimating the population means. The BVRSS
is as follows:
Suppose (X,Y ) is a bivariate random vector with the joint probability density func-
tion fX,Y (x, y). Then,

1. A random sample of size n4 is identified from the population and randomly
allocated into n2 pools each of size n2 so that each pool is a square matrix with
n rows and n columns.

2. In the first pool, identify the minimum value by judgment with respect to the first
characteristic X , for each of the n rows.

3. For the n minima obtained in Step 2, the actual quantification is done on the pair
that corresponds to the minimum value of the second characteristic, Y , identified
by judgment. This pair, given the label (1, 1), is the first element of the BVRSS
sample.

4. Repeat Steps 2 and 3 for the second pool, but in Step 3, the pair corresponding to
the second minimum value with respect to the second characteristic, Y , is chosen
for actual quantification. This pair is given the label (1, 2).

5. The process continues until the label (n, n) is ascertained from the n2th (last) pool.
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The procedure described above produces aBVRSSof sizen2. Let [(X [i]( j),Y(i)[ j]),
i = 1, 2, . . . , n and j = 1, 2, . . . , n] denote the BVRSS sample from fX,Y (x, y)
where fX [i]( j) ,Y(i)[ j](x, y) is the joint probability density function of (X [i]( j)Y(i)[ j]).
From Al-Saleh and Zheng (2002),

fX [i]( j) ,Y(i)[ j](x, y) = fY(i)[ j](y)
fX( j) (x) fY |X (y|x)

fY[ j](y)
, (1.2)

where fX( j) is the density of the j th order statistic for an SRS sample of size n from
the marginal density of fX and fY[ j](y) be the density of the corresponding Y− value

given by fY[ j](y) =
∞∫

−∞
fX( j) (x) fY |X (y|x)dx, while fY(i)[ j](y) is the density of the i th

order statistic of an iid sample from fY[ j](y), i.e.

fY(i)[ j](y) = c.(FY[ j](y))
i−1(1 − FY[ j](y))

n−i fY[ j](y)

where FY[ j](y) =
y∫

−∞
(

∞∫

−∞
fX( j) (x) fY |X (w|x)dx)dw.

Combining these results, Eq. (1.2) can be written as

fX[i]( j) , Y(i)[ j](x, y) = c1(FY[ j] (y))
i−1(1 − FY[ j] (y))

n−i (FX (x)) j−1(1 − FX (x))n− j f (x, y)
(1.3)

where

c1 =
(

n!
(i − 1)!(n − i)! )(

n!
( j − 1)!(n − j)!

)

.

Furthermore, Al-Saleh and Zheng (2002) showed that,

1

n2

n∑

j

n∑

i

fX [i]( j),Y(i)[ j](x, y) = f (x, y). (1.4)

For a variety of choices of f (u, v), one can have (U, V ) bivariate uniform
with a probability density function f(u, v); 0<u, v<1, such that U ∼ U (0, 1) and
V ∼ U (0, 1) (See Johnson 1987). In that case, [(U[i]( j), V(i)[ j]), i = 1, 2, . . . , n and
j = 1, 2, . . . , n] should have a bivariate probability density function given by

f( j),(i)(u, v) =
[

n!
(i − 1)!(n − i)!

] [
n!

( j − 1)!(n − j)!
]

[FY[ j] (v)]i−1[1 − FY[ j] (v)]n−i [u] j−1

[1 − u]n− j f (u, v).
(1.5)

Samawi and Al-Saleh (2007) extended the work of Samawi (1999) and Al-Saleh
and Zheng (2002) for the Monte-Carlo multiple integration approximation of (1.1)
when k = 2.
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Moreover, to further improve some of the Monte-Carlo methods of integration,
Al-Saleh and Samawi (2000) used steady-state ranked set simulated sampling
(SRSIS) as introduced by Al-Saleh and Al-Omari (1999). SRSIS has been shown to
be simpler and more efficient than Samawi’s (1999) method.

In Samawi and Vogel (2013) work, the SRSIS algorithm introduced by Al-Saleh
and Samawi (2000) was extended to multivariate case for the approximation of
multiple integrals using Monte-Carlo methods. However, to simplify the algorithms,
we introduce only the bivariate integration problem; with this foundation, multiple
integral problems are a simple extension.

2 Steady-State Ranked Simulated Sampling (SRSIS)

Al-Saleh and Al-Omari (1999) introduced the idea of multistage ranked set sampling
(MRSS). To promote the use of MRSS in simulation and Monte-Carlo methods, let
{X (s)

i ; i = 1, 2, . . . , n, } be an MRSS of size n at stage s. Assume that X (s)
i has

probability density function f (s)
i and a cumulative distribution function F (s)

i . Al-
Saleh and Al-Omeri demonstrated the following properties of MRSS:

1.

f (x) = 1

n

n∑

i=1

f (s)
i (x), (2.1)

2.

If s → ∞, then F(s)
i (x) → F(∞)

i (x) =
⎧
⎨

⎩

0 i f x < Q(i−1)/n

nF(x) − (i − 1) i f Q(i−1)/n ≤ x < Q(i)/n

1 i f x ≥ Q(i)/n

,

(2.2)
for i = 1, 2, . . . , n, where Qα is the 100αth percentile of F(x).

3. If X ∼ U (0, 1), then for i = 1, 2, ..., n, we have

F (∞)
i (x) =

⎧
⎨

⎩

0 i f x < (i − 1)/n
nx − (i − 1) i f (i − 1)/n ≤ x < i/n

1 i f x ≥ i/n
, (2.3)

and

f (∞)
i (x) =

{
n i f (i − 1)/n ≤ x < i/n
0 otherwise.

(2.4)

These properties implyX(∞)
i ∼ U ( i−1

n , i
n ),when the underlying distribution function

is U(0, 1).
Samawi and Vogel (2013) provided a modification of the Al-Saleh and Samawi

(2000) steady-state ranked simulated samples procedure (SRSIS) to bivariate cases
(BVSRSIS) as follows:
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1. For each (i, j), j = 1, 2, . . ., n and i = 1, 2, . . ., n generate independently

a. (Ui( j)from U
(

j−1
n ,

j
n

)
and independent W(i) j from U

(
i−1
n , i

n

)
, i = 1,

2, ..., n).

2. Generate Y(i) j = F−1
Y (W(i) j ) and Xi( j) = F−1

X (Ui( j)) from FY (y) and FX (x)
respectively.

3. To generate (X [i]( j),Y(i)[ j]) from f (x, y), generate U ′
i( j)from U

(
j−1
n ,

j
n

)
and

independent W ′
(i) j from U

(
i−1
n , i

n

)
, then

X [i]( j)|Y(i) j = F−1
X |Y (U ′

i( j)|Y(i) j ) and Y(i)[ j]|Xi( j) = F−1
Y |X (W ′

(i) j |Xi( j)).

The joint density function of (X [i]( j),Y(i)[ j]) is formed as follows:

f (∞)
X [i]( j)Y(i)[ j]

(x, y) = f (∞)
X [i]( j) (x) f

(∞)
Y i |X [i]( j) (y|X [i]( j)) = n2 fX (x) fY |X [i]( j) (y|X [i]( j)),

QX ( j−1)/n ≤ x < QX ( j)/n, QY (i−1)/n ≤ y < QY (i)/n ,

where QX (s) and QY (v) are the 100 sth percentile of FX (x) and 100 vth percentile of
FY (y), respectively.However, for the first stage, both Stokes (1977) andDavid (1981)
showed that FY |X [i]( j) (y|x) = FY |X (y|x). Al-Saleh and Zheng (2003) demonstrated
that joint density is valid for an arbitrary stage, and therefore, valid for a steady state.
Therefore,

f (∞)
X[i]( j)Y(i)[ j]

(x, y) = f (∞)
X[i]( j) (x) f

(∞)
Y i |X[i]( j) (y|X[i]( j)) = n2 fX (x) fY |X (y|x) = n2 fY,X (x, y),

QX ( j−1)/n ≤ x < QX ( j)/n, QY (i−1)/n ≤ y < QY (i)/n .
(2.5)

Thus, we can write:

1

n2

n∑

i=1

n∑

j=1

f (∞)
X[i]( j)Y(i)[ j]

(x, y) =
n∑

i=1

n∑

j=1

fY,X (x, y).I [QX ( j−1)/n ≤ x < QX ( j)/n ]I [QY (i−1)/n ≤ y < QY (i)/n ]

= f (x, y),

(2.6)

where I is an indicator variable. Similarly, Eq. (2.5) can be extended bymathematical
induction to the multivariate case as follows:

f (∞)(x1, x2, ..., xk) = nk f (x1, x2, ..., xk), QXi ( j−1)/n ≤ xi < QXi ( j)/n, i = 1,
. . . , k and j = 1, 2, .., n.. In addition, the above algorithm can be extended for k>2
as follows:

1. For each (il , l = 1, 2, ..., k), il = 1, 2, ..., n generate independently

Uil (is )from U

(
is − 1

n
,
is
n

)

, l, s = 1, 2, . . . , k and il , is = 1, 2, . . . , n.
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2. Generate Xil (is ) = F−1
Xil

(Uil (is ))l, s = 1, 2, . . . , k and il, is = 1, 2, . . . , n, from
FXil

(x), l = 1, 2, . . . , k, respectively.
3. Then, generate the multivariate version of the steady-state simulated sample by

using any technique for conditional random number generation.

3 Monte-Carlo Methods for Multiple Integration Problems

Very good descriptions of the basics of the various Monte-Carlo methods have
been provided by Hammersley and Handscomb (1964), Liu (2001), Morgan (1984),
Robert andCasella (2004), and Shreider (1966). TheMonte-Carlomethods described
include crude, antithetic, importance, control variate, and stratified sampling approaches.
However, when variables are related, Monte-Carlo methods cannot be used directly
(i.e., similar to the manner that these methods are used in univariate integration prob-
lems) because using the bivariate uniform probability density function f (u, v) as a
sampler to evaluate Eq. (1.1) with k = 2, f (u, v) is not consistent. However, in this
context it is reasonable to use the importance sampling method, and therefore, it fol-
lows that other Monte-Carlo techniques can be used in conjunction with importance
sampling. Thus, our primary concern is importance sampling.

3.1 Importance Sampling Method

In general, suppose that f is a density function on Rk such that the closure of the set
of points where g(.) is non-zero and the closure set of points where f (.)is non-zero.
Let [Ui i = 1, 2, ..., n] be a sample from f (.). Then, because

θ =
∫

g(u)

f (u)
f (u)du,

Equation (1.1) can be estimated by

∧
θ = 1

n

n∑

i=1

g(ui )

f (ui )
. (3.1)

Equation (3.1) is an unbiased estimator for (1.1), with variance given by

Var(θ̂) = 1

n
(

∫

Rk

g(u)2

f (u)
du − θ2).



Improving the Efficiency of the Monte-Carlo Methods … 23

In addition, from the point of view of the strong law of large numbers, it is clear that
θ̂ → θ almost surely as n → ∞.

A limited number of distributional families exist in amultidimensional context and
are commonly used as importance samplers. For example, the multivariate Student’s
family is used extensively in the literature as an importance sampler. Evans and
Swartz (1995) indicated a need for developing families of multivariate distribution
that exhibit a wide variety of shapes. In addition, statisticians want distributional
families to have efficient algorithms for random variable generation and the capacity
to be easily fitted to a specific integrand.

This paper provides a new way of generating a bivariate sample based on the
bivariate steady-state sampling (BVSRSIS) that has the potential to extend the exist-
ing sampling methods. We also provide a means for introducing new samplers and
to substantially improve substantially the efficiency of the integration approximation
based on those samplers.

3.2 Using Bivariate Steady-State Sampling (BVSRSIS)

Let

θ =
∫

g(x, y)dx dy. (3.2)

To estimate θ , generate a bivariate sample of size n2 from f(x, y), which mimics
g(x, y) and has the same range, such as [(Xi j ,Yi j ), i = 1, 2, ..., n and
j = 1, 2, ..., n]. Then

θ̂ = 1

n2

n∑

i=1

n∑

j=1

g(xi j , yi j )

f (xi j , yi j )
. (3.3)

Equation (3.3) is an unbiased estimate for (3.2) with variance

Var(θ̂) = 1

n2
(

∫ ∫
g2(x, y)

f (x, y)
dx dy − θ2). (3.4)

To estimate (3.2) usingBVSRSIS, generate a bivariate sample of size n2, as described
in above, say [(X [i]( j), Y(i)[ j]), i = 1, 2, ..., n and j = 1, 2, ..., n]. Then

θ̂BV SRSI S = 1

n2

n∑

i=1

n∑

j=1

g(x[i]( j), y(i)[ j])
f (x[i]( j), y(i)[ j])

. (3.5)

Equation (3.5) is also an unbiased estimate for (3.2) using (2.5). Also, by using (2.5)
the variance of (3.5) can be expressed as
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Var(θ̂BV SRSI S) = Var(θ̂) − 1

n4

n∑

i=1

n∑

j=1

(θ
(i, j)
g/ f − θg/ f )

2, (3.6)

where, θ(i, j)
g/ f =E[g(X [i]( j),Y(i)[ j])/ f (X [i]( j), Y(i)[ j])], θ=

g/ f E[g(X,Y )/ f (X,Y )] = θ.

The variance of the estimator in (3.6) is less than the variance of the estimator in
(3.4).

3.3 Simulation Study

This section presents the results of a simulation study that compares the perfor-
mance of the importance samplingmethod described above usingBVSRSIS schemes
with the performance of the bivariate simple random sample (BVUSS) and BVRSS
schemes by Samawi andAl-Saleh (2007) as introduced by Samawi andVogel (2013).

3.3.1 Illustration for Importance Sampling Method When Integral’s
Limits Are (0, 1)x(0, 1)

As in Samawi and Al-Saleh (2007), illustration of the impact of BVSRSIS on impor-
tance sampling is provided by evaluating the following integral

θ =
1∫

0

1∫

0

(1 + v). exp(u(1 + v)) du dv = 3.671. (3.7)

This example uses four bivariate sample sizes: n= 20, 30, 40 and 50. To estimate
the variances using the simulation method, we use 2,000 simulated samples from
BVUSS and BVSRSIS. Many choices of bivariate and multivariate distributions
with uniform marginal on [0, 1] are available (Johnson 1987). However, for this
simulation, we chose Plackett’s uniform distribution (Plackett 1965), which is given
by

f (u, v) = ψ{(ψ − 1)(u + v − 2 uv) + 1}
{[1 + (u + v)(ψ − 1)]2 − 4ψ(ψ − 1)uv}3/2 , 0 < u, v < 1, ψ > 0.

(3.8)
The parameterψ governs the dependence between the components (U, V )distributed
according to f . Three cases explicitly indicate the role of ψ (Johnson 1987):

ψ → 0 U = 1 − V,

ψ = 1 U and V are independent,
ψ → ∞ U = V,
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Table 1 Efficiency of estimating (3.7) using BVSRSIS relative to BVUSS and BVRSS

n\ψ 1 2

20 289.92 (8.28) 273.68 (9.71)

30 649.00 (12.94) 631.31 (13.06)

40 1165.31 (16.91) 1086.46 (18.60)

50 1725.25 (21.67) 1687.72 (23.03)

Note Values shown in bold were extracted from Samawi and Al-Saleh (2007)

Table1 presents the relative efficiencies of our estimators using BVRSIS in compar-
ison with using BVUSS and BVSRSIS relative to BVUSS for estimating (3.7).

As illustrated in Table1, BVSRSIS is clearly more efficient than either BVUSS
or BVRSIS when used for estimation.

3.3.2 Illustration When the Integral’s Limits Are Arbitrary
Subset of R2

Recent work by Samawi and Al-Saleh (2007) and Samawi and Vogel (2013) used an
identical example in which the range of the integral was not (0, 1), and the authors
evaluated the bivariate normal distribution (e.g., g(x, y) is the N2 (0, 0, 1, 1, ρ)

density.) For integrations with high dimensions and a requirement of low relative
error, the evaluation of the multivariate normal distribution function remains one of
the unsolved problems in simulation (e.g., Evans and Swartz 1995). To demonstrate
how BVSRSIS increases the precision of evaluating the multivariate normal distri-
bution, we illustrate the method by evaluating the bivariate normal distribution as
follows:

θ =
z1∫

−∞

z2∫

−∞
g(x, y) dx dy, (3.9)

where g(x, y) is the N2(0, 0, 1, 1, ρ) density.
Given the similar shapes of the marginal of the normal and the marginal of the

logistic probability density functions, it is natural to attempt to approximate the
bivariate normal cumulative distribution function by the bivariate logistic cumulative
distribution function. For the multivariate logistic distribution and its properties, see
Johnson and Kotz (1972). The density of the bivariate logistic (Johnson and Kotz
1972) is chosen to be

f (x, y) = 2! π2e−π(x+y)/
√
3(1 + e−π z1/

√
3 + e−π z2/

√
3)

3(1 + e−πx/
√
3 + e−πy/

√
3)3

, − ∞ < x < z1; − ∞ < y < z2.

(3.10)
It can be shown that the marginal of X is given by
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f (x) = πe−πx/
√
3(1 + e−π z1/

√
3 + e−π z2/

√
3)√

3 (1 + e−πx/
√
3 + e−π z2/

√
3)2

, − ∞ < x < z1. (3.11)

Now let W = Y +
√
3

π
ln(1 + e−πX/

√
3 + e−π z2/

√
3). Then it can be shown that

f (w|x) = 2 π e−πw/
√
3

√
3

(
1+e−πx/

√
3

1+e−πx/
√
3+e−π z2/

√
3
+ e−πw/

√
3
)3 ,

− ∞ < w < z2+

√
3

π
ln

(
1 + e−πx/

√
3 + e−π z2/

√
3
)
.

(3.12)

To generate from (3.10) proceed as follows:

1. Generate X from (3.11).
2. Generate W independently from (3.12)
3. Let Y = W −

√
3

π
ln(1 + e−πX/

√
3 + e−π z2/

√
3).

4. Then the resulting pair (X,Y ) has the correct probability density function, as
defined in (3.10).

For this illustration, two bivariate sample sizes, n = 20 and 40, and different
values of ρ and (z1,z2) are used. To estimate the variances using simulation, we use
2,000 simulated samples from BVUSS, BVRSIS, and BVSRSIS (Tables2 and 3).

Notably, when Samawi andVogel (2013) used identical examples to those used by
Samawi and Al-Saleh (2007), a comparison of the simulations showed that Samawi
and Vogel (2013) BVSRSIS approach improved the efficiency of estimating the
multiple integrals by a factor ranging from 2 to 100.

As expected, the results of the simulation indicated that using BVSRSIS substan-
tially improved the performance of the importance sampling method for integration

Table 2 Efficiency of using BVSRSIS to estimate Eq. (3.9) relative to BVUSS

(z1, z2) n = 20 n = 40
ρ =
± 0.20

ρ =
±0.50

ρ =
±0.80

ρ =
±0.95

ρ =
±0.20

ρ =
±0.50

ρ =
±0.80

ρ =
±0.95

(0, 0) 5.39
(6.42)

9.89
(21.70)

5.98
(144.31)

49.65
(171.22)

9.26
(12.2)

22.50
(63.74)

15.80
(526.10)

158.77
(612.50)

(−1, −1) 22.73
(75.82)

29.43
(182.27)

22.48
(87.42)

95.10
(23.71)

55.99
(255.75)

90.24
(688.59)

69.85
(336.58)

380.87
(100.40)

(−2, −2) 148.30
(200.46)

133.21
(143.62)

125.37
(30.45)

205.99
(42.75)

506.63
(759.81)

408.66
(568.77)

411.19
(128.94)

802.73
(45.55)

(−1, −2) 173.07
(91.08)

281.60
(42.89)

216.86
(08.47)

24.11a 714.92
(382.01)

1041.39
(148.16)

882.23
(43.19)

98.76a

Note Values shown in bold are results of negative correlations coefficients
aValues cannot be obtained due the steep shape of the bivariate distribution for the large negative
correlation
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Table 3 Relative efficiency of estimating Eq. (3.9) using BVRSIS as compared with using BVUSS

(z1, z2) n = 20 n = 40
ρ = 0.20 ρ = 0.50 ρ = 0.80 ρ = 0.95 ρ = 0.20 ρ = 0.50 ρ = 0.80 ρ = 0.95

(0, 0) 2.39 3.02 2.29 3.21 3.80 4.85 3.73 5.66

(−1, −1) 4.73 4.30 4.04 3.79 7.01 8.28 7.83 7.59

(−2, −2) 8.44 8.47 8.73 5.65 15.69 15.67 16.85 11.02

Source Extracted from Samawi and Al-Saleh (2007)

approximation. BVSRSIS also outperformed the BVRSIS method used by Samawi
and Al-Saleh (2007). Moreover, increasing the sample size in both of the above
illustrations increases the relative efficiencies of these methods. For instance, in the
first illustration, by increasing the sample size from 20 to 50, the relative efficiency
of using BVSRSIS as compared with BVUSS to estimate (3.10) is increased from
289.92 to 649.00, with the increase dependent on the dependency between U and
V . A similar relationship between sample size and relative efficiencies of these two
methods can be demonstrated in the second illustration.

Based on the above conclusions, BVSRSIS can be used in conjunction with other
multivariate integrationprocedures to improve the performanceof thosemethods, and
thus providing researchers with a significant reduction in required sample size. With
the use of BVSRSIS, researchers can perform integral estimation using substantially
fewer simulated numbers. Since using BVSRSIS in simulation does not require
any extra effort or programming, we recommend using BVSRSIS to improve the
well-knownMonte-Carlo method of numerical multiple integration problems. Using
BVSRSIS will yield an unbiased and more efficient estimate of those integrals.
Moreover, this sampling scheme can be applied successfully to other simulation
problems. Last, we recommend using the BVSRSIS method for integrals with a
dimension no greater than 3. For higher dimensional integrals, other methods in
the literature can be used in conjunction with independent steady ranked simulated
sampling.

4 Steady-State Ranked Gibbs Sampler

Many approximation techniques are found in the literature, including Monte-Carlo
methods, asymptotic, and Markov chain Monte-Carlo (MCMC) methods such as the
Gibbs sampler (Evans and Swartz 1995). Recently, many statisticians have become
interested in MCMC methods to simulate complex, nonstandard multivariate distri-
butions. Of the MCMC methods, the Gibbs sampling algorithm is one of the best
known and most frequently used MCMC method. The impact of the Gibbs sampler
method on Bayesian statistics has been detailed by many authors (e.g., Chib and
Greenberg 1994; Tanner 1993) following the work of Tanner and wong (1987) and
Gelfand and Smith (1990).
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To understand the MCMC process, suppose that we need to evaluate the Monte-
Carlo integration E[f(X)], where f (.) is any user-defined function of a random vari-
able X . The MCMC process is as follows: Generate a sequence of random variables,
{X0, X1, X2, . . .}, such that at each time t ≥ 0, the next state Xt+1 is sampled from
a distribution P(Xt+1|Xt ) which depends only on the current state of the chain, Xt .
This sequence is called a Markov chain, and P(.|.) is called the transition kernel
of the chain. The transition kernel is a conditional distribution function that repre-
sents the probability of moving from Xt to the next point Xt+1 in the support of X .
Assume that the chain is time homogenous. Thus, after a sufficiently long burn-in
of k iterations, {Xt ; t = k + 1, . . . , n} will be dependent samples from the station-
ary distribution. Burn-in samples are usually discarded for this calculation, given an
estimator,

f̄ ≈ 1

n − k

n∑

t=k+1

f (Xt ). (4.1)

This average in (4.1) is called an ergodic average. Convergence to the required
expectation is ensured by the ergodic theorem. More information and discussions on
some of the issues in MCMC can be found in Roberts (1995) and Tierney (1995).

To understand how to construct a Markov chain so that its stationary distribution
is precisely the distribution of interest π(.), we outline Hastings’ (1970) algorithm,
which is a generalization of the method first proposed by Metropolis et al. (1953).
The method is useful for obtaining a sequence of random samples from a probability
distribution for which direct sampling is difficult. The method is as follows: At
each time t , the next state Xt+1 is chosen by first sampling a candidate point Y
from a proposal distribution q(.|Xt ) (ergodic). Note that the proposal distribution
may depend on the current point Xt . The candidate point Y is then accepted with
probability α(Xt ,Y ) where

α(Xt ,Y ) = min

(

1,
π(Y )q(Xt |Y )

π(Xt )q(Y |Xt )

)

. (4.2)

If the candidate point is accepted, the next state becomes Xt+1 = Y . If the candi-
date is rejected, the chain does not move, that is, Xt+1 = Xt . Thus the Metropolis–
Hastings algorithm simply requires the following:

Initialize X0; set t = 0.

Repeat {generate a candidate Y from q(.|Xt )

and a value u from a uniform (0, 1), if

u ≤ α(Xt ,Y ) set Xt+1 = Y

Otherwise set Xt+1 = Xt

Increment t}.
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Aspecial case of theMetropolis–Hastings algorithm is theGibbs samplingmethod
proposed byGeman andGeman (1984) and introduced byGelfand and Smith (1990).
To date, most statistical applications of MCMC have used Gibbs sampling. In Gibbs
sampling, variables are sampled one at a time from their full conditional distributions.

Gibbs sampling uses an algorithm to generate random variables from a marginal
distribution indirectly, without calculating the density. Similar to Casella and George
(1992), we demonstrate the usefulness and the validity of the steady-state Gibbs
sampling algorithm by exploring simple cases. This example shows that steady-state
Gibbs sampling is based only on elementary properties of Markov chains and the
properties of BVSRSIS.

4.1 Traditional (standard) Gibbs Sampling Method

Suppose that f (x, y1, y2, . . . , yg) is a joint density function on Rg+1 and our purpose
is to find the characteristics of themarginal density such as themean and the variance.

fX (x) =
∫

. . .

∫
f (x, y1, y2, . . . , yg)dy1, dy2, . . . , dyg (4.3)

In cases where (4.3) is extremely difficult or not feasible to perform either analyt-
ically or numerically, Gibbs sampling enables the statistician to efficiently generate
a sample X1, . . . , Xn ∼ fx (x), without requiring fx (x). If the sample size n is large
enough, this method will provide a desirable degree of accuracy for estimating the
mean and the variance of fx (x).

The followingdiscussionof theGibbs samplingmethoduses a two-variable case to
make the method simpler to follow. A case with more than two variables is illustrated
in the simulation study.

Given a pair of random variables (X,Y ), Gibbs sampling generates a sample from
fX (x) by sampling from the conditional distribution, fX |Y (x |y) and fY |X (y|x), which
are usually known in statistical models application. The procedure for generating a
Gibbs sequence of random variables,

X ′
0,Y

′
0, X

′
1,Y

′
1, . . . , X

′
k,Y

′
k, (4.4)

is to start from an initial value Y ′
0 = y′

0, (which is a known or specified value) and
obtaining the rest of the sequence (4.4) iteratively by alternately generating values
from

X ′
j ∼ fX |Y (x |Y ′

j = y′
j )

Y ′
j+1 ∼ fY |X (y|X ′

j = x ′
j ).

(4.5)
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For large k and under reasonable conditions (Gelfand and Smith 1990), the final
observation in (4.5), namely X ′

j = x ′
j , is effectively a sample point from fX (x).

A natural way to obtain an independent and identically distributed (i.i.d) sample
from fX (x) is to follow the suggestion of Gelfand and Smith (1990) to use Gibbs
sampling to find the kth, or final value, from n independent repetitions of the Gibbs
sequence in (4.5). Alternatively, we can generate one long Gibbs sequence and use a
systematic sampling technique to extract every rth observation. For large enough r ,
thismethodwill also yield an approximate i.i.d sample from fX (x). For the advantage
and disadvantage of this alternate method see, Gelman and Rubin (1991).

Next, we provide a brief explanation of why Gibbs sampling works under reason-
able conditions. Suppose we know the conditional densities fX |Y (x |y) and fY |X (y|x)
of the two random variables X and Y, respectively. Then the marginal density of X ,
fX (x) can be determined as follows:

fX (x) =
∫

f (x, y)dy,

where f (x, y) is the unknown joint density of (X,Y ). Using the fact that fXY (x, y) =
fY (y). fY |X (x |y), then

fX (x) =
∫

fY (y). fY |X (x |y)dy.

Using a similar argument for fY (y), then

fX (x) =
∫ [∫

fX |Y (x |y) fY |X (y|t)dy
]

fX (t)dt =
∫

g(x, t) fX (t)dt, (4.6)

where g(x, t) = ∫
fX |Y (x |y) fY |X (y|t)dy As argued by Gelfand and Smith (1990),

Eq. (4.6) defines a fixed-point integral equation for which fX (x) is the solution and
the solution is unique.

4.2 Steady-State Gibbs Sampling (SSGS): The Proposed
Algorithms

Toguarantee anunbiased estimator for themean, density, and thedistribution function
of fX (x), Samawi et al. (2012) introduced two methods for performing steady-state
Gibbs sampling. The first method is as follows:

In standard Gibbs sampling, the Gibbs sequence is obtained using the conditional
distribution, fX |Y (x |y) and fY |X (y|x) , to generate a sequence of random variables,

X ′
0,Y

′
0, X

′
1,Y

′
1, . . . , X

′
k−1,Y

′
k−1, (4.7)
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starting from an initial, specified value Y ′
0 = y′

0 and iteratively obtaining the rest of
the sequence (4.7) by alternately generating values from

X ′
j ∼ fX |Y (x |Y ′

j = y′
j )

Y ′
j+1 ∼ fY |X (y|X ′

j = x ′
j ).

(4.8)

However, in steady state Gibbs sampling (SSGS), the Gibbs sequence is obtained as
follows:

One step before the kth step in the standard Gibbs sampling method, take the last
step as

X ′
i( j) ∼ F−1

X |Y (Ui( j)|Y ′
k−1 = y′

k−1)

Y ′
(i) j ∼ F−1

Y |X (W(i) j |X ′
k−1 = x ′

k−1),

X [i]( j) ∼ F−1
X |Y (U ′

i( j)|Y ′
(i) j = y′

(i) j )

Y(i)[ j] ∼ F−1
Y |X (W ′

(i) j |X ′
i( j) = x ′

i( j))

(4.9)

where {Ui( j),U ′
i( j)} fromU

(
j−1
n ,

j
n

)
and {W(i) j ,W ′

(i) j } fromU
(
i−1
n , i

n

)
as described

above. Clearly, this step does not require extra computer time since we generate the
Gibbs sequences from uniform distributions only. Repeat this step independently for
i = 1, 2, . . . , n and j = 1, 2, . . . , n to get an independent sample of size n2, namely
[(X [i]( j),Y(i)[ j]), i = 1, 2, . . . , n and j = 1, 2, . . . , n]. For large k and under reason-
able conditions (Gelfand and Smith 1990), the final observation in Eq. (4.9), namely
(X [i]( j) = x[i]( j),Y(i)[ j] = y(i)[ j]) is effectively a sample point from (2.5). Using the
properties of SRSIS, [(X [i]( j),Y(i)[ j]), i = 1, 2, . . . , n and j = 1, 2, . . . , n], will pro-
duce unbiased estimators for the marginal means and distribution functions. Alterna-
tively, we can generate one long standard Gibbs sequence and use a systematic sam-
pling technique to extract every rth observation using a similar method as described
above. Again, a SSGS sample will be obtained as

X ′
i( j) ∼ F−1

X |Y (Ui( j)|Y ′
r−1 = y′

r−1),

Y ′
(i) j ∼ F−1

Y |X (W(i) j |X ′
r−1 = x ′

r−1),

X [i]( j) ∼ F−1
X |Y (U ′

i( j)|Y ′
(i) j = y′

(i) j ),

Y(i)[ j] ∼ F−1
Y |X (W ′

(i) j |X ′
i( j) = x ′

i( j)),

(4.10)

where {Ui( j),U ′
i( j)} from U

(
j−1
n ,

j
n

)
and {W(i) j ,W ′

(i) j } from U
(
i−1
n , i

n

)
to obtain

an independent sample of size n2, that is, [(X [i]( j),Y(i)[ j]), i = 1, 2, . . . , n and j =
1, 2, . . . , n].
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Using the same arguments as in (4.1), suppose we know the conditional densi-
ties fX |Y (x |y) and fY |X (y|x) of the two random variables X and Y, respectively.
Equation (4.6) is the limiting form of the Gibbs iteration scheme, showing how sam-
pling from conditionals produces a marginal distribution. As in Gelfand and Smith
(1990) for k → ∞, X ′

k−1 ∼ fX (x) and Y ′
k−1 ∼ fY (y) and hence F−1

Y |X (W(i) j |x ′
k−1) =

Y ′
(i) j ∼ f ∞

Y(i)
(y) , F−1

Y |X (Ui( j)|x ′
k−1) = X ′

(i) j ∼ f ∞
X( j)

(x)whereW(i) j ∼ U
(
i−1
n , i

n

)
and

Ui( j) ∼ U
(

j−1
n ,

j
n

)
. Therefore,

F−1
X |Y ′

(i) j
(U ′

i( j)|Y ′
(i) j ) = X [i]( j)|Y ′

(i) j ∼ f ∞
X [i]( j)|Y ′

(i) j
(x |Y ′

(i) j ) and

F−1
Y |X ′

i( j)
(W ′

(i) j |X ′
i( j)) = Y(i)[ j]|X ′

i( j) ∼ f ∞
Y(i)[ j]|X ′

i( j)
(y|X ′

i( j)).

This stepproduces an independent bivariate steady-state sample, [(X [i]( j),Y(i)[ j]), i =
1, 2, . . . , n and j = 1, 2, . . . , n], where some characteristic of the marginal distrib-
utions are to be investigated. To see how to apply this bivariate steady-state sample
Gibbs sampling, using (2.5) we get

fX [i]( j)(x) =
Q (i)

n∫

Q (i−1)
n

n2 fY (y). fX |Y (x |y)dy =
Q (i)

n∫

Q (i−1)
n

n fX |Y (x |y)n
Q ( j)

n∫

Q ( j−1)
n

fX (t) fY |X (y|t)dtdy

=
Q ( j)

n∫

Q ( j−1)
n

⎡

⎢
⎢
⎣

Q (i)
n∫

Q (i−1)
n

n fY |X (y|t) fX |Y (x |y)dy

⎤

⎥
⎥
⎦ n fX (t)dt (4.11)

=
Q ( j)

n∫

Q ( j−1)
n

⎡

⎢
⎢
⎣

Q (i)
n∫

Q (i−1)
n

n fY |X (y|t) fX |Y (x |y)dy

⎤

⎥
⎥
⎦ fX [i]( j)(t)dt.

As argued by Gelfand and Smith (1990), Eq. (4.11) defines a fixed-point integral
equation for which fX [i]( j)(x) is the solution and the solution is unique.

We next show how SSGS can improve the efficiency of estimating the sample
means of a probability density function f (x).

Theorem 4.1 (Samawi et al. 2012).Under the same conditions of the standardGibbs
sampling, the bivariate SSGSsample above [(X [i]( j),Y(i)[ j]), i = 1, 2, . . . , n and j =
1, 2, . . . , n] from f (x, y) provides the following:

1. Unbiased estimator of themarginalmeans of X and/or Y .Hence E(X̄ SSGS) = μx ,
where μx = E(X).

2. Var(X̄ SSGS) ≤ Var(X̄), where X̄ =
n2∑

i=1
Xi

n2 .
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Proof Using (2.5),

E(X̄ SSGS) = 1

n2

n∑

i=1

n∑

j=1

E(X[i]( j)) = 1

n2

n∑

i=1

n∑

j=1

QY (i)/n∫

QY (i−1)/n

QX ( j)/n∫

QX ( j−1)/n

x f (∞)
X[i]( j)Y (i)[ j] (x, y)dxdy

= 1

n2

n∑

i=1

n∑

j=1

QY (i)/n∫

QY (i−1)/n

QX ( j)/n∫

QX ( j−1)/n

xn2 f (x, y)dxdy

=
n∑

j=1

QX ( j)/n∫

QX ( j−1)/n

x fx (x)dx
n∑

i=1

QY (i)/n∫

QY (i−1)/n

fY |X (y|x)dy = E(X) = μx .

Similarly,

var(X̄ SSGS) = 1

n4

n∑

i=1

n∑

j=1

Var(X[i]( j)) = 1

n4

n∑

i=1

n∑

j=1

QY (i)/n∫

QY (i−1)/n

QX ( j)/n∫

QX ( j−1)/n

(x − μx[i]( j) )
2 f (∞)X[i]( j)Y (i)[ j](x, y)dxdy

= 1

n4

n∑

i=1

n∑

j=1

QY (i)/n∫

QY (i−1)/n

QX ( j)/n∫

QX ( j−1)/n

(x − μx[i]( j) ±μx )
2n2 f (x, y)dxdy

= 1

n2

n∑

i=1

n∑

j=1

QY (i)/n∫

QY (i−1)/n

QX ( j)/n∫

QX ( j−1)/n

[(x − μx ) − (μ[i]( j) − μx ]2 f (x, y)dxdy

and,

var(X̄ SSGS) = 1

n2

n∑

i=1

n∑

j=1

QY (i)/n∫

QY (i−1)/n

QX ( j)/n∫

QX ( j−1)/n

{(x − μx )
2 − 2(x − μx )(μx[i]( j) − μx )

+ (μx[i]( j) − μx )
2} f (x, y)dxdy

=
1

n2

n∑

i=1

n∑

j=1

QY (i)/n∫

QY (i−1)/n

QX ( j)/n∫

QX ( j−1)/n

(x − μx )
2 f (x, y)dxdy − 1

n2

n∑

i=1

n∑

j=1

QY (i)/n∫

QY (i−1)/n

QX ( j)/n∫

QX ( j−1)/n

2(x − μx )(μx[i]( j) − μx ) f (x, y)dxdy

+ 1

n2

n∑

i=1

n∑

j=1

QY (i)/n∫

QY (i−1)/n

QX ( j)/n∫

QX ( j−1)/n

(μx[i]( j) − μx )
2 f (x, y)dxdy

= 1

n2

n∑

i=1

n∑

j=1

QY (i)/n∫

QY (i−1)/n

QX ( j)/n∫

QX ( j−1)/n

(x − μx )
2 f (x, y)dxdy − 1

n2

n∑

i=1

n∑

j=1
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QY (i)/n∫

QY (i−1)/n

QX ( j)/n∫

QX ( j−1)/n

(μx[i]( j) − μx )
2 f (x, y)dxdy

= σ 2
X

n2
− 1

n2

n∑

i=1

n∑

j=1

QY (i)/n∫

QY (i−1)/n

QX ( j)/n∫

QX ( j−1)/n

(μx[i]( j) − μx )
2 f (x, y)dxdy ≤ V (X̄) = σ 2

X

n2
,

where σ 2
X = Var(X). Similar results can be obtained for the marginal mean of

Y and the marginal distributions of X and Y . Note that as compared with using
standard Gibbs sampling, using SSGS not only provides a gain in efficiency by but
also reduces the sample size required to achieve a certain accuracy in estimating the
marginal means and distributions. For very complex situations, the smaller required
sample size can substantially reduce computation time. To provide insight to the gain
in efficiency by using SSGS, we next conduct a simulation study.

4.3 Simulation Study and Illustrations

This section presents the results of a simulation study comparing the performance
of the SSGS with the standard Gibbs sampling methods. To compare the perfor-
mance of our proposed algorithm, we used the same illustrations as Casella and
George (1992). For these examples, four bivariate samples of sizes, n = 10, 20, and
50 and Gibbs sequence length k = 20, 50 and 100 and r = 20, 50, and 100 in the
long sequence Gibbs sampler. To estimate the variances of the estimators using the
simulation method, we completed 5,000 replications. Using the 5,000 replications,
we estimate the efficiency of our procedure relative to the traditional (i.e., standard)

Gibbs sampling method by eff(θ̂ , θ̂SSGS) = Var(θ̂ )

Var(θ̂SSGS)
, where θ is the parameter of

interest.

Example 1 Casella and George (1992).
X and Y have the following joint distribution, f (x, y) ∝ (m

x

)
yx+α−1(1 − y)m−x+β−1,

x = 0, 1, . . . ,m, 0 ≤ y ≤ 1. Assume our purpose is to determine certain character-
istics of the marginal distribution f (x) of X. In Gibbs sampling method, we use
the conditional distributions f (x |y) ∼ Binomial(m, y) and f (y|x) ∼ Beta(x +
α,m − x + β).

Tables4 and 5 show that, relative to the standard Gibbs sampling method, SSGS
improves the efficiency of estimating the marginal means. The amount of improve-
ment depends on two factors: (1) which parameters we intend to estimate, and (2)
the conditional distributions used in the process. Moreover, using the short or long
Gibbs sampling sequence has only a slight effect on the relative efficiency.
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Table 4 StandardGibbs samplingmethodcomparedWith theSteady-StateGibbsSampling (SSGS)
method (Beta-Binomial distribution)

m = 5, α = 2, and β = 4

n2 k Sample
mean
Gibbs
sampling
of X

Sample
mean
SSGS of
X

Relative
efficiency

Sample
mean
Gibbs
sampling
of Y

Sample
mean
SSGS of
Y

Relative
efficiency

100 20 1.672 1.668 3.443 0.340 0.334 3.787
50 1.667 1.666 3.404 0.333 0.333 3.750

100 1.667 1.666 3.328 0.333 0.333 3.679

400 20 1.666 1.666 3.642 0.333 0.333 3.861
50 1.669 1.667 3.495 0.333 0.333 3.955

100 1.668 1.667 3.605 0.333 0.333 4.002

2500 20 1.666 1.666 3.760 0.333 0.333 4.063
50 1.668 1.667 3.786 0.333 0.333 3.991

100 1.667 1.667 3.774 0.333 0.333 4.007

m = 16, α = 2, and β = 4

100 20 5.321 5.324 1.776 0.333 0.333 1.766
50 5.334 5.334 1.771 0.333 0.333 1.766

100 5.340 5.337 1.771 0.334 0.334 1.769

400 20 5.324 5.327 1.805 0.333 0.333 1.811
50 5.333 5.333 1.816 0.333 0.333 1.809

100 5.330 5.331 1.803 0.333 0.333 1.806

2500 20 5.322 5.325 1.820 0.333 0.333 1.828
50 5.334 5.334 1.812 0.333 0.333 1.827

100 5.334 5.333 1.798 0.333 0.333 1.820

Note The exact mean of x is equal to 5/3 and the exact mean of y is equal to 1/3 for the first case

Example 2 Casella and George (1992).
Let X and Y has the following conditional distributions that are exponential dis-
tributions, restricted to the interval (0, B), that is f (x |y) ∝ ye−yx , 0 < x < B <

∞ and f (y|x) ∝ xe−yx , 0 < y < B < ∞.

Similarly, Table6 shows that SSGS improves the efficiency of marginal means
estimation relative to standard Gibbs sampling. Again, using short or long Gibbs
sampler sequence has only a slight effect on the relative efficiency.

Example 3 Casella and George (1992).
In this example, a generalization of the joint distribution is f (x, y,m) ∝ (m

x

)
yx+α−1

(1 − y)nx+β−1, e−λ λm

m! , λ > 0, x = 0, 1, . . . ,m, 0 ≤ y ≤ 1,m = 1, 2, . . . .
Again, suppose we are interested in calculating some characteristics of the mar-

ginal distribution f (x) of X . InGibbs samplingmethod,we use the conditional distri-
butions f (x |y,m) ∼ Binomial(m, y), f (y|x,m) ∼ Beta(x + α,m − x + β) and
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Table 5 Comparison of the Long Gibbs sampling method and the Steady-State Gibbs Sampling
(SSGS) method (Beta-Binomial distribution)

m = 5, α = 2, and β = 4

n2 r Sample
mean
Gibbs
sampling
of X

Sample
mean
SSGS of
X

Relative
efficiency

Sample
mean
Gibbs
sampling
of Y

Sample
mean
SSGS of
Y

Relative
efficiency

100 20 1.667 1.666 3.404 0.333 0.333 3.655
50 1.665 1.665 3.506 0.333 0.333 3.670

100 1.668 1.667 3.432 0.334 0.333 3.705

400 20 1.667 1.667 3.623 0.333 0.333 4.014
50 1.666 1.666 3.606 0.333 0.333 3.945

100 1.667 1.667 3.677 0.333 0.333 3.997

2500 20 1.667 1.666 3.814 0.333 0.333 4.011
50 1.667 1.667 3.760 0.333 0.333 4.125

100 1.667 1.667 3.786 0.333 0.333 4.114

m = 16, α = 2, and β = 4

100 20 5.338 5.338 1.770 0.334 0.334 1.785
50 5.335 5.334 1.767 0.334 0.334 1.791

100 5.335 5.334 1.744 0.334 0.333 1.763

400 20 5.332 5.332 1.788 0.333 0.333 1.820
50 5.337 5.336 1.798 0.333 0.333 1.815

100 5.332 5.333 1.821 0.333 0.333 1.820

2500 20 5.332 5.332 1.809 0.333 0.333 1.821
50 5.335 5.335 1.832 0.333 0.333 1.827

100 5.333 5.333 1.825 0.333 0.333 1.806

Note The exact mean of x is equal to 5/3 and the exact mean of y is equal to 1/3

f (m|x, y)∞e−(1−y)λ [(1−y)λ]m−x

(m−x)! ,m = x, x + 1, . . .. For this example, we used the
following parameters: m = 5, α = 2, and β = 4.

Similarly, Table7 illustrates the improved efficiency of using SSGS for marginal
means estimation, relative to standard Gibbs sampling. Again using a short or long
Gibbs sampling sequence has only a slight effect on the relative efficiency. Note that
this example is a three-dimensional problem, which shows the improved efficiency
depends on the parameters under consideration.

We show that SSGS converges in the same manner as in the standard Gibbs
sampling method. However, Sects. 3 and 4 indicate that SSGS is more efficient than
standard Gibbs sampling for estimating themeans of the marginal distributions using
the same sample size. In the examples provided above, the SSGS efficiency (versus
standard Gibbs) ranged from 1.77 to 6.6, depending on whether Gibbs sampling
used the long or short sequence method and the type of conditional distributions
used in the process. Using SSGS yielded a reduced sample size, and thus, reduces
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Table 6 Relative efficiency of Gibbs sampling method and Steady-State Gibbs Sampling (SSGS)
method (Exponential Distribution)

Standard Gibbs Algorithm B = 5

n2 k Sample
mean
Gibbs
sampling
of X

Sample
mean
SSGS of
X

Relative
efficiency

Sample
mean
Gibbs
sampling
of Y

Sample
mean
SSGS of
Y

Relative
efficiency

100 20 1.265 1.264 4.255 1.264 1.263 4.132
50 1.267 1.267 4.200 1.265 1.264 4.203

100 1.267 1.267 4.100 1.263 1.265 4.241

400 20 1.263 1.264 4.510 1.266 1.265 4.651
50 1.265 1.265 4.341 1.262 1.263 4.504

100 1.263 1.264 4.436 1.265 1.265 4.345

2500 20 1.264 1.264 4.461 1.264 1.264 4.639
50 1.264 1.264 4.466 1.265 1.265 4.409

100 1.265 1.264 4.524 1.265 1.264 4.525

Long Gibbs Algorithm

n2 r B = 5

100 20 1.265 1.265 4.305 1.264 1.265 4.349
50 1.267 1.264 4.254 1.261 1.264 4.129

100 1.264 1.265 4.340 1.265 1.265 4.272

400 20 1.265 1.264 4.342 1.263 1.264 4.543
50 1.265 1.265 4.434 1.265 1.265 4.446

100 1.266 1.265 4.387 1.264 1.264 4.375

2500 20 1.264 1.264 4.403 1.264 1.264 4.660
50 1.265 1.265 4.665 1.264 1.264 4.414

100 1.265 1.265 4.494 1.264 1.264 4.659

computing time. For example, if the efficiency of using SSGS is 4, then the sample
size needed for estimating the simulation’s distribution mean, or other distribution
characteristics, when using the ordinary Gibbs sampling method is 4 times greater
than when using SSGS to achieve the same accuracy and convergence rate. Addi-
tionally, our SSGS sample produces unbiased estimators, as shown by theorem 4.1.
Moreover, the bivariate steady-state simulation depends on n2 simulated sample size
to produce an unbiased estimate. However, in k dimensional problem, multivariate
steady-state simulation depends on nk simulated sample size to produce an unbiased
estimate. Clearly, this sample size is not practical and will increase the simulated
sample size required. To overcome this problem in high dimensional cases, we can
use the independent simulation method described by Samawi (1999) that needs only
a simulated sample of size n regardless of the number of dimensions. This approach
slightly reduces the efficiency of using steady-state simulation. In conclusion, SSGS
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performs at least as well as standard Gibbs sampling and SSGS offers greater accu-
racy. Thus, we recommend using SSGS whenever a Gibbs sampling procedure is
needed. Further investigation is needed to explore additional applications and more
options for using the SSGS approach.
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Normal and Non-normal Data Simulations
for the Evaluation of Two-Sample Location
Tests

Jessica R. Hoag and Chia-Ling Kuo

Abstract Two-sample location tests refer to the family of statistical tests that com-
pare two independent distributions viameasures of central tendency, most commonly
means ormedians. The t-test is themost recognized parametric option for two-sample
mean comparisons. The pooled t-test assumes the two population variances are equal.
Under circumstances where the two population variances are unequal, Welch’s t-test
is a more appropriate test. Both of these t-tests require data to be normally distrib-
uted. If the normality assumption is violated, a non-parametric alternative such as the
Wilcoxon rank-sum test has potential to maintain adequate type I error and appre-
ciable power. While sometimes considered controversial, pretesting for normality
followed by the F-test for equality of variances may be applied before selecting a
two-sample location test. This option results in multi-stage tests as another alterna-
tive for two-sample location comparisons, starting with a normality test, followed by
either Welch’s t-test or theWilcoxon rank-sum test. Less commonly utilized alterna-
tives for two-sample location comparisons include permutation tests, which evaluate
statistical significance based on empirical distributions of test statistics. Overall, a
variety of statistical tests are available for two-sample location comparisons. Which
tests demonstrate the best performance in terms of type I error and power depends
on variations in data distribution, population variance, and sample size. One way to
evaluate these tests is to simulate data that mimic what might be encountered in prac-
tice. In this chapter, the use of Monte Carlo techniques are demonstrated to simulate
normal and non-normal data for the evaluation of two-sample location tests.
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1 Introduction

Statistical tests for two-sample location comparison include t-tests, Wilcoxon rank-
sum test, permutation tests, and multi-stage tests. The t-test is the most recognized
parametric test for two-sample mean comparison. It assumes independent identically
distributed (i.i.d) samples from two normally distributed populations. The pooled t-
test (also called Student’s t-test) additionally assumes the equality of variances while
the Welch’s t-test does not. Other tests such as Wilcoxon rank-sum test (also called
Mann-Whitney test) and Fisher-Pitman permutation testsmake no such distributional
assumptions; thus, are theoretically robust against non-normal distributions. Multi-
stage tests that comprise preliminary tests for normality and/or equality of variance
before a two-sample location comparison test is attempted may also be used as
alternatives.

When the normal assumption is met, t-tests are optimal. The pooled t-test is also
robust to the equal variance assumption, but only when the sample sizes are equal
(Zimmerman 2004). Welch’s t-test does not alter the type I error rate regardless of
unequal sample sizes and performs as well as the pooled t-test when the equality
of variances is held (Zimmerman 2004; Kohr and Games 1974), but it can result in
substantial type II error under heavily non-normal distributions and for small sample
sizes, e.g. Beasley et al. (2009). Under circumstances of equal variance with either
equal or unequal sample sizes less than or equal to 5, De Winter recommended the
pooled t-test overWelch’s t-test, provided an adequately large population effect size,
due to a significant loss in statistical power associated withWelch’s t-test (de Winter
2013). The power loss associated with Welch’s t-test in this scenario is attributed to
its lower degrees of freedom compared to the pooled t-test (de Winter 2013).

In samples with known non-normal distributions, the Wilcoxon rank-sum test is
far superior than parametric tests, with power advantages actually increasing with
increasing sample size (Sawilowsky 2005). TheWilcoxon rank-sum test, however, is
not a solution to heterogeneous variance. Simply, heterogeneous variance ismitigated
but does not disappear when actual data is converted to ranks (Zimmerman 1996). In
addition to the Wilcoxon rank-sum test, permutation tests have been recommended
as a supplement to t-tests across a range of conditions, with emphasis on samples
with non-normal distributions. Boik (1987), however, found that the Fisher-Pitman
permutation test (Ernst et al. 2004) is no more robust than the t-test in terms of type
I error rate under circumstances of heterogeneous variance.

A pretest for equal variance followed by the pooled t-test or Welch’s t-test, how-
ever appealing, fails to protect type I error rate (Zimmerman 2004; Rasch et al.
2011; Schucany and Tony Ng 2006). With the application of a pre-test for normal-
ity (e.g. Shapiro-Wilk Royston 1982), however, it remains difficult to fully assess
the normality assumption—acceptance of the null hypothesis is predicated only on
insufficient evidence to reject it (Schucany and Tony Ng 2006). A three-stage pro-
cedure which also includes a test for equal variance (e.g. F-test or Levenes test)
following a normality test is also commonly applied in practice, but as Rash and
colleagues have pointed out, pretesting biases type I and type II conditional error
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rates, and may be altogether unnecessary (Rochon et al. 2012; Rasch et al. 2011).
Current recommendations suggest that pretesting is largely unnecessary and that the
t-test should be replaced with Welch’s t-test in general practice because it is robust
against heterogeneous variance (Rasch et al. 2011; Welch 1938).

In summary, the choice of a test for two-sample location comparison depends on
variations in data distribution, population variance, and sample size. Previous studies
suggestedWelch’s t-test for normal data andWilcoxon rank-sum test for non-normal
data without heterogeneous variance (Ruxton 2006). Some recommended Welch’s
t-test for general use (Rasch et al. 2011; Zimmerman 1998). However, Welch’s t-test
is not a powerful test when the data is extremely non-normal or the sample size is
small (Beasley et al. 2009). Previous Monte Carlo simulations tuned the parameters
ad hoc and compared a limited selection of two-sample location tests. The simulation
settings were simplified by studying either non-normal data only, unequal variances
only, small sample sizes only, or unequal sample sizes only.

In this chapter, simulation experiments are designed to mimic what is often
encountered in practice. Sample sizes are calculated for a broad range of power based
on the pooled t-test, i.e. assuming normally distributed data with equal variance. A
medium effect size is assumed (Cohen 2013) as well as multiple sample size ratios.
Although the sample sizes are determined assuming normal data with equal variance,
the simulations consider normal and moderately non-normal data and allow for het-
erogeneous variance. The simulated data are used to compare two-sample location
tests including parametric tests, non-parametric tests, and permutation-based tests.
The goal of this chapter is to provide insight into these tests and how Monte Carlo
simulation techniques can be applied to demonstrate their evaluation.

2 Statistical Tests

Capital letters are used to represent random variables and lowercase letters rep-
resent realized values. Additionally, vectors are presented in bold. Assume x =[
x1, x2, .., xn1

]
and y = [

y1, y2, ..., yn2
]
are two i.i.d. samples from two independent

populations with means μ1 and μ2 and variances σ 2
1 and σ 2

2 . Denote by x̄ and ȳ the
sample means and s21 ands22 the sample variances. Let z = [

z1, ..., zn1 , zn1+1, ...,

z(n1+n2)
]
represent a vector of group labels with zi = 1 associated with xi for

i = 1, 2, ..., n1 and z(n1+ j) = 2 associated with y j for j = 1, 2, ..., n2. The com-
bined x’s and y’s are ranked from largest to smallest. For tied observations, the
average rank is assigned and each is still treated uniquely. Denote by ri the rank
associated with xi and si the rank associated with yi . The sum of ranks in x’s is given
by R = ∑n1

i=1 ri and by S = ∑n2
i=1 si for the sum of ranks in y’s.

Next,the two-sample location tests considered in the simulations are reviewed.
The performance of these tests are evaluated by type I error and power.
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2.1 t-Test

The pooled t-test and Welch’s t-test assume that each sample is randomly sampled
from a population that is approximately normally distributed. The pooled t-test fur-
ther assumes that the two variances are equal (σ 2

1 = σ 2
2 ). The test statistic for the

null hypothesis that the two population means are equal (H0 : μ1 = μ2) is given by

tpooled = x̄ − ȳ

sp
√

1
n1

+ 1
n2

, (1)

where s2p = (n1−1)s21+(n2−1)s22
n1+n2−2 . When the null hypothesis is true and n1 and n2 are

sufficiently large, tpooled follows a t-distributionwith degrees of freedom n1 + n2 − 2.
Welch’s t-test allows for unequal variances and tests against the null hypothesis by

twelch = x̄ − ȳ
√

s21
n1

+ s22
n2

. (2)

The asymptotic distribution of twelch is approximated by the t-distribution with
degrees of freedom,

v =
(
s21
n1

+ s22
n2

)2

s41
n21(n1−1)

+ s42
n22(n2−1)

. (3)

Alternatively, the F-test based on the test statistic,

F = s21
s22

, (4)

can be applied to test the equality of variances. If the null hypothesis is rejected,
Welch’s t-test is preferred; otherwise, the pooled t-test is used.

2.2 Wilcoxon Rank-Sum Test

The Wilcoxon rank-sum test is essentially a rank-based test. It uses the rank data to
compare two distributions. The test statistic to test against the null hypothesis that
the two distributions are same is given by

U = n1n2 + [n2(n2 + 1)] /2 − R . (5)

Under the null hypothesis,U is asymptotically normally distributedwith themean
(n1n2)/2 and the variance n1n2(n1 + n2 + 1)/12.
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2.3 Two-Stage Test

The choice between t-test and Wilcoxon rank-sum test can be based on whether the
normality assumption is met for both samples. Pior to performing the mean compar-
ison test, the Shapiro-Wilk test (Royston 1982) can be used to evaluate normality.
If both p-values are greater than the significance level α, t-test is used; otherwise,
Wilcoxon rank-sum test is used. The chosen t-test here isWelch’s t-test for its robust-
ness against heterogeneous variance. Since the two normality tests for each sample
are independent, the overall type I error rate (i.e. the family-wise error rate) that at
least one hypothesis is incorrectly rejected is thus controlled at 2α. When α = 2.5%,
it results in the typical value 5% for the family-wise error rate.

2.4 Permutation Test

Let the group labels in z be shuffled for B times. Each produces a new vector of
group labels, zk = (

zk1, ..., zkn1 , zk(n1+1), ..., zk(n1+n2)
)
, for k = 1, 2, ..., B where zk j

is the new group label for x j if j ≤ n1 and for y( j−n1) if j > n1. Given the k-th per-
muted data set, xk and yk , where xk = {{x j , j : zk j = 1, j = 1, 2, ..., n1}, {y j , j :
zk(n1+ j) = 1, j = 1, 2, ..., n2}} and yk = {{x j , j : zk j = 2, j = 1, 2, ..., n1}, {y j ,
j : zk(n1+ j) = 2, j = 1, 2, ..., n2}}, Welch’s t-test and Wilcoxon rank-sum test are
applied and the test statistics and p-values are calculated. Denoted by stk and swk the
test statistics and qt

k and qw
k the p-values at the k-th permutation associated with

Welch’s t-test and Wilcoxon rank-sum test, respectively. Similarly, denote by sto and
swo the observed test statistics and pto and pwo the observed p-values, calculated using
the observed data, x and y. Define mk(ptk, p

w
k ) as the minimum of ptk and pwk . The

permutation p-values of Welch’s t-test and Wilcoxon rank-sum test are given by

pp.welch = 2

B
min

{
B∑

k=1

I (stk ≤ sto),
B∑

k=1

I (stk > sto)

}

, (6)

and

pp.wilcox = 2

B
min

{
B∑

k=1

I (swk ≤ swo ),

B∑

k=1

I (swk > swo )

}

, (7)

where I (·) = 1 if the condition in the parentheses is true; otherwise, I (·) = 0. Sim-
ilarly, the p-value associated with the minimum p-value is given by

pminp = 1

B

B∑

k=1

I
(
mk(p

t
k, p

w
k ) ≤ mo(p

t
o, p

w
o )

)
. (8)
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Overall, 10 two-sample location tests are compared including t-tests, Wilcoxon
rank-sum test, two-stage test, and permutation tests. For convenience, when pre-
senting results, each test is referenced by an abbreviated notation, shown below in
parentheses.

• t-tests: pooled t-test (pooled), Welch’s t-test (welch), permutation Welch’s t-test
(p.welch), robust t-test (robust.t, F-test for the equality of variances followed by
pooled t-test or Welch’s t-test)

• Wilcoxon rank-sum tests:Wilcoxon rank-sum test (wilcox), permutationWilcoxon
rank-sum test (p.wilcox)

• two-stage tests: two-stage test with the first-stage α level at 0.5%, 2.5%, and 5%
(2stage0.5, 2stage2.5, 2stage5)

• minimum p-value: minimum p-value of permutationWelch’s t-test andWilcoxon
rank-sum test (minp)

3 Simulations

Simulated data were used to test the null hypothesis H0 : μ1 = μ2 versus the
alternative hypothesis H1 : μ1 �= μ2. Assume x = {x1, ..., xn1} was simulated from
N (μ1, σ

2
1 ) and y = {y1, ..., yn2}was simulated from N (μ2, σ

2
2 ). Without losing gen-

erality, let σ1 and σ2 be set equal to 1. Letμ1 be zero,μ2 be 0 under the null hypothesis
and 0.5 under the alternative hypothesis, the conventional value suggested by Cohen
(2013) for a medium effect size. n1 is set equal to or double the size of n2. n1 and
n2 were chosen to detect the difference between μ1 and μ2 for 20, 40, 60, or 80%
power at 5% significance level. When n1 = n2, the sample size required per group
was 11, 25, 41, and 64, respectively. When n1 = 2n2, n1 =18, 38, 62, 96 and n2 was
half of n1 in each setting. The same sample sizes were used for null simulations, non-
normal, and heteroscedastic settings. Power analysis was conducted using G*Power
software (Faul et al. 2007).

Fleishman’s power method to simulate normal and non-normal data is based on
a polynomial function given by

x = f (ω) = a + bω + cω2 + dω3, (9)

where ω is a random value from the standard normal with mean 0 and standard
deviation 1. The coefficients a, b, c, and d are determined by the first four moments
of X with the first two moments set to 0 and 1. For distributions with mean and
standard deviation different from 0 and 1, the data can be shifted and/or rescaled
after being simulated. Let γ3 denote the skewness and γ4 denote the kurtosis. γ3 and
γ4 are both set to 0 if X is normally distributed. The distribution is left-skewed if
γ3 < 0 and right-skewed if γ3 > 0. γ4 is smaller than 0 for a platokurtotic distribution
and greater than 0 for a leptokurtotic distribution. By the 12 moments of the standard
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normal distribution, we can derive the equations below and solve a, b, c, and d via
the Newton-Raphson method or any other non-linear root-finding method,

a = −c (10)
b2 + 6bd + 2c2 + 15d2 − 1 = 0 (11)

2c
(
b2 + 24bd + 105d2 + 2

)
− γ3 = 0 (12)

24
[
bd + c2

(
1 + b2 + 28bd

)
+ d2

(
12 + 48bd + 141c2 + 225d2

)]
− γ4 = 0 (13)

One limitation of Fleishman’s power method is that it does not cover the entire
domain of skewness and kurtosis. Given γ3, the relationship between γ3 and γ4 is
described by the inequation, γ4 ≥ γ 2

3 − 2 (Devroye 1986). Precisely, the empirical
lower bound of γ4 given γ3 = 0 is -1.151320 (Headrick and Sawilowsky 2000).

By Fleishman’s power method, three conditions were investigated: (1) heteroge-
neous variance, (2) skewness, and (3) kurtosis. Each was investigated using equal
and unequal sample sizes to achieve a broad range of power. μ1 = μ2 = 0 under
the null hypothesis. μ1 = 0 and μ2 = 0.5 when the alternative hypothesis is true.
Other parameters were manipulated differently. For (1), normal data was simulated
with equal and unequal variances by letting σ1 = 1 and σ2= 0.5, 1, 1.5. For (2),
skewed data was simulated assuming equal variance at 1, equal kurtosis at 0, and
equal skewness at 0, 0.4, 0.8. Similarly, for (3), kurtotic data was simulated assuming
equal variance at 1, equal skewness at 0, and equal kurtosis at 0, 5, 10. To visualize
the distributions from which the data were simulated, 106 data points were simu-
lated from the null distributions and used to create density plots (see Fig. 1). To best
visualize the distributions, the data range was truncated at 5 and −5. The left panel

Fig. 1 Distributions to simulate heteroscedastic, skewed, and kurtotic datawhen the null hypothesis
of equal population means is true (left: normal distributions with means at 0 and standard deviations
at 0.5, 1, and 1.5;middle: distributions with means at 0, standard deviations at 1, skewness at 0, 0.4,
and 0.8, and kurtosis at 0; right: distributions with means at 0, standard deviations at 1, skewness
at 0, and kurtosis at 0, 5, and 10)
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demonstrates the distributions for the investigation of heterogeneous variance. One
sample is simulated from the standard normal (green). The other sample is simulated
from the normal with mean 0 and standard deviation 0.5 (red) or 1.5 (blue). For
skewness and kurtosis, the two distributions were assumed to be exactly the same
under the null hypothesis. Although these distributions are for null simulations, the
distributions for power simulations are the same for one sample and shifted from 0
to 0.5 for the second sample.

The number of simulation replicates was 10,000 and 1,000 for null simulations
and power simulations, respectively. The number of permutation replicates for the
permutation tests at each simulation replicate was 2,000, i.e. B = 2000. The signif-
icance level for two-location comparison was set to 0.05. All the simulations were
carried out in R 3.1.2 (Team 2014). The Fleishman coefficients (a, b, c, and d) given
the first fourmoments (the first twomoments 0 and 1) were derived via the R function
“Fleishman.coef.NN” (Demirtas et al. 2012).

4 Results

The simulation results are presented in figures. In each figure, the type I error or
power is presented on the y-axis and the effective sample size per group to achieve
20%, 40%, 60%, and 80%power is presented on the x-axis assuming the pooled t-test
is appropriate. The effective sample size per group for two-sample mean comparison
is defined as

ne = 2n1n2
n1 + n2

. (14)

Each test is represented by a colored symbol. Given an effective sample size, the
results of

1. t-tests (pooled t-test, theoretical and permutation Welch’s t-tests, robust t-test)
2. Wilcoxon rank-sum tests (theoretical and permutation Wilcoxon rank-sum tests)

and the minimum p-value (minimum p-value of permutation Welch’s t-test and
Wilcoxon rank-sum test)

3. two-stage tests (normality test with theα level at 0.5, 2.5, and 5% for both samples
followed by Welch’s t-test or Wilcoxon rank-sum test)

are aligned in three columns from left to right. The results for n1 = n2 are in the left
panels and those for n1 = 2n2 are in the right panels. In the figures that present type
I error results, two horizontal lines y = 0.0457 and y = 0.0543 are added to judge
whether the type I error is correct. The type I error is considered correct if it falls
within the 95% confidence interval of the 5% significance level (0.0457, 0.0543).
We use valid to describe tests that maintain a correct type I error and liberal and
conservative for tests that result in a type I error above and under the nominal level,
respectively.
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Fig. 2 Null simulation results for normal data with equal or unequal variances. y = 0.0457 and
y = 0.0543 are added to judge whether the type I error is correct. The type I error is considered
correct if it falls within the 95% confidence interval of the 5% significance level (0.0457, 0.0543).
The tests are grouped into three groups from left to right for result presentation, (1) t-tests: pooled
t-test (pooled), theoretical and permutation Welch’s t-tests (welch and p.welch), robust t-test
(robust.t), (2) Wilcoxon rank-sum test (wilcox), permutation Wilcoxon rank-sum test (p.wilcox)
and the minimum p-value (minp), (3) two-stage tests: two-stage tests with the first stage α level at
0.5, 2.5, 5% (2stage0.5, 2stage2.5, 2stage5)

4.1 Heterogeneous Variance

The null simulation results are presented in Fig. 2. All tests maintain a correct type
I error when the sample sizes are equal. Wilcoxon rank-sum tests and the minimum
p-value have a slightly inflated type I error when the variances are unequal and
relatively small (σ1 = 1 and σ2 = 0.5). When the sample sizes are unequal, all tests
are valid as long as the variances are equal.When the variances are unequal, however,
neither the pooled t-test nor the Wilcoxon rank-sum test maintain a correct type I
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Fig. 3 Power simulation results for normal data with equal or unequal variances. The tests are
grouped into three groups from left to right for result presentation, (1) t-tests: pooled t-test
(pooled), theoretical and permutationWelch’s t-tests (welch and p.welch), robust t-test (robust.t),
(2) Wilcoxon rank-sum test (wilcox), permutation Wilcoxon rank-sum test (p.wilcox) and the min-
imum p-value (minp), (3) two-stage tests: two-stage tests with the first stage α level at 0.5, 2.5, 5%
(2stage0.5, 2stage2.5, 2stage5)

error. Both exhibit a conservative type I error when σ1 = 1 and σ2 = 0.5 and a
liberal type I error when σ1 = 1 and σ2 = 1.5. The pooled t-test in particular is
more strongly influenced than the Wilcoxon rank-sum test. The minimum p-value
involves Wilcoxon rank-sum test and is thus similarly affected but not as severely as
the Wilcoxon rank-sum test alone. The robust t-test and permutation Welch’s t-test
behave similarly when the sample size is small. Welch’s t-test and two-stage tests
are the only tests with type I error protected for heterogeneous variance regardless
of sample sizes.

The power simulation results are presented in Fig. 3.Unsurprisingly, the settings of
σ1 = 1, σ2 = 0.5 result in higher power than σ1 = 1, σ2 = 1, and than σ1 = 1, σ2 =
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Fig. 4 Null simulation results for skewed data. y = 0.0457 and y = 0.0543 are added to judge
whether the type I error is correct. The type I error is considered correct if it falls within the 95%
confidence interval of the 5% significance level (0.0457, 0.0543). The tests are grouped into three
groups from left to right for result presentation, (1) t-tests: pooled t-test (pooled), theoretical and
permutation Welch’s t-tests (welch and p.welch), robust t-test (robust.t), (2) Wilcoxon rank-sum
test (wilcox), permutation Wilcoxon rank-sum test (p.wilcox) and the minimum p-value (minp),
(3) two-stage tests: two-stage tests with the first stage α level at 0.5, 2.5, 5% (2stage0.5, 2stage2.5,
2stage5)

1.5. All the valid tests have similar power. Tests with an inflated type I error tend to
be slightly more powerful. In contrast, tests that have a conservative type I error tend
to be slightly less powerful.
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Fig. 5 Power simulation results for skewed data. The tests are grouped into three groups from
left to right for result presentation, (1) t-tests: pooled t-test (pooled), theoretical and permutation
Welch’s t-tests (welch and p.welch), robust t-test (robust.t), (2) Wilcoxon rank-sum test (wilcox),
permutation Wilcoxon rank-sum test (p.wilcox) and the minimum p-value (minp), (3) two-stage
tests: two-stage tests with the first stage α level at 0.5, 2.5, 5% (2stage0.5, 2stage2.5, 2stage5)

4.2 Skewness

The two sample size ratios result in similar patterns of type I error and power. All tests
maintain a correct type I error across the spectrumof sample size and skewness except
2stage0.5, which has an inflated type I error when the sample size is insufficiently
large and the skewness is 0.8 (Fig. 4). A similar pattern for power is observed within
groups (three groups in three columns).With an increase in skewness, the power of t-
tests (pooled t-test, theoretical and permutationWelch’s t-test, robust t-test) remains
at the level as planned and is slightly lower than other testswhen the skewness reaches
0.8 (Fig. 5).
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Fig. 6 Null simulation results for kurtotic data. y = 0.0457 and y = 0.0543 are added to judge
whether the type I error is correct. The type I error is considered correct if it falls within the 95%
confidence interval of the 5% significance level (0.0457, 0.0543). The tests are grouped into three
groups from left to right for result presentation, (1) t-tests: pooled t-test (pooled), theoretical and
permutation Welch’s t-tests (welch and p.welch), robust t-test (robust.t), (2) Wilcoxon rank-sum
test (wilcox), permutation Wilcoxon rank-sum test (p.wilcox) and the minimum p-value (minp),
(3) two-stage tests: two-stage tests with the first stage α level at 0.5, 2.5, 5% (2stage0.5, 2stage2.5,
2stage5)

4.3 Kurtosis

Based on Fig. 6, all tests maintain a correct type I error when the effective sample size
is equal or greater than 25. When the effective sample size is small, e.g. ne = 11, and
the kurtosis is 10, t-tests (with the exception of permutation Welch’s t-test) exhibit a
conservative type I error—the type I error of permutation Welch’s t-test is protected
with consistently similar power to other t-tests. Figure7 displays tests within groups
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Fig. 7 Power simulation results for kurtotic data. The tests are grouped into three groups from
left to right for result presentation, (1) t-tests: pooled t-test (pooled), theoretical and permutation
Welch’s t-tests (welch and p.welch), robust t-test (robust.t), (2) Wilcoxon rank-sum test (wilcox),
permutation Wilcoxon rank-sum test (p.wilcox) and the minimum p-value (minp), (3) two-stage
tests: two-stage tests with the first stage α level at 0.5, 2.5, 5% (2stage0.5, 2stage2.5, 2stage5)

(three groups in three columns) with similar power. While not apparent when the
sample size is small, t-tests are not as compelling as other tests when the skewness
is 5 or greater. Wilcoxon rank-sum tests are the best performing tests in this setting,
but the power gain is not significant when compared to the minimum p-value and
two-stage tests.
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5 Discussion

The goal of this chapter was to conduct an evaluation of the variety of tests for two-
sample location comparison usingMonteCarlo simulation techniques. In conclusion,
heterogeneous variance is not a problem for any of the tests when the sample sizes are
equal. For unequal sample sizes, Welch’s t-test maintains robustness against hetero-
geneous variance. The interaction between heterogeneous variance and sample size
is consistent with the statement of (Kohr and Games 1974) for general two-sample
location comparison that a test is conservative when the larger sample has the larger
population variance and is liberal when the smaller sample has the larger population
variance. When the normality assumption is violated by moderately skewed or kur-
totic data, Welch’s t-test and other t-tests maintain a correct type I error so long as
the sample size is sufficiently large. The t-tests, however, are not as powerful as the
Wilcoxon rank-sum test and others.

As long as the effective sample size is 11 or greater, distributions ofWelch’s t-test
and the Wilcoxon rank sum test statistics are well approximated by their theoretical
distributions. There is no need to apply a permutation test for a small sample size
of that level if a theoretical test is appropriately applied. A permutation test is not a
solution to heterogeneous variance but may protect type I error when the normality
is violated and the sample size is small.

An extra test to test for equality of variance or for normality may fail to protect
type I error, e.g. robust.t for heterogeneous variance and 2stage0.5 for skewed data
when the sample size is insufficiently large. While t-tests are not sensitive to non-
normal data for the protection of type I error, a conservative normality test with α

as low as 0.5% can lead to a biased type I error. In simulations, the two-stage tests
perform well against heterogeneous variance, but this is only the case because the
simulation settings assume both distributions are normal and the two-stage tests in
fact are Welch’s t-test most of the time. The two-stage tests are meant to optimize
the test based on whether the normality assumption is met. These tests do not handle
heterogeneous variance. Under circumstances of non-normal distributions and het-
erogeneous variance, it has been shown by Rasch et al. that two-stage tests may lead
to an incorrect type I error and lose power (Rasch et al. 2011).

The literature and these simulation results reveal that the optimal test procedure
is a sensible switch between Welch’s t-test and the Wilcoxon rank sum test. Multi-
stage tests such as robust t-test and two-stage tests are criticized for their biased
type I error. The minimum p-value simply takes the best result of Welch’s t and
Wilcoxon rank-sum tests and is not designed specifically for heterogeneous variance
or non-normal data distributions. While it shares the flaw of multi-stage tests with no
protection of type I error and secondary power, the minimum p-value is potentially
robust to heterogeneous variance and non-normal distributions.

A simple way to protect type I error and power against heterogeneous variance
is to plan a study with two samples of equal size. In this setting, Wilcoxon rank-
sum test maintains robustness to non-normal data and competitive with Welch’s
t-test when the normality assumption is met. If the sample sizes are unequal, the
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minimum p-value is a robust option but computationally more expensive. Otherwise,
heterogeneous variance and deviation from a normal distribution must be weighed
in selecting between Welch’s t-test or the Wilcoxon rank-sum test. Alternatively,
Zimmerman and Zumbo recommended that Welchs t-test performs better than the
Wilcoxon rank sum test under conditions of both equal and unequal variance on data
that has been pre-ranked (Zimmerman and Zumbo 1993).

Although moderately non-normal data has been the focus of this chapter, the con-
clusions are still useful as a general guideline. When data is extremely non-normal,
none of the tests will be appropriate. Data transformation may be applied to meet
the normality assumption Osborne (2005, 2010). Not every distribution, however,
can be transformed to normality (e.g. L-shaped distributions). In this scenario, data
dichotomization may be applied to simplify statistical analysis if information loss is
not a concern (Altman and Royston 2006). Additional concerns include multimodal
distributions which may be a result of subgroups or data contamination (Marrero
1985)—a few outliers can distort the distribution completely. All of these consid-
erations serve as a reminder that prior to selecting a two-sample location test, the
first key to success is full practical and/or clinical understanding of the data being
assessed.
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Anatomy of Correlational Magnitude
Transformations in Latency
and Discretization Contexts
in Monte-Carlo Studies
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Abstract This chapter is concerned with the assessment of correlational magnitude
changes when a subset of the continuous variables that may marginally or jointly
follow nearly any distribution in amultivariate setting is dichotomized or ordinalized.
Statisticians generally regard discretization as a bad idea on the grounds of power,
information, and effect size loss. Despite this undeniable disadvantage and legitimate
criticism, its widespread use in social, behavioral, and medical sciences stems from
the fact that discretization could yield simpler, more interpretable, and understand-
able conclusions, especially when large audiences are targeted for the dissemination
of the research outcomes. We do not intend to attach any negative or positive con-
notations to discretization, nor do we take a position of advocacy for or against it.
The purpose of the current chapter is providing a conceptual framework and compu-
tational algorithms for modeling the correlation transitions under specified distribu-
tional assumptions within the realm of discretization in the context of the latency and
threshold concepts. Both directions (identification of the pre-discretization correla-
tion value in order to attain a specified post-discretization magnitude, and the other
way around) are discussed. The ideas are developed for bivariate settings; a natural
extension to the multivariate case is straightforward by assembling the individual
correlation entries. The paradigm under consideration has important implications
and broad applicability in the stochastic simulation and random number generation
worlds. The proposed algorithms are illustrated by several examples; feasibility and
performance of the methods are demonstrated by a simulation study.
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1 Introduction

Unlike natural (true) dichotomies such as male versus female, conductor versus insu-
lator, vertebrate versus invertebrate, and in-patient versus out-patient, some binary
variables are derived through dichotomization of underlying continuous measure-
ments. Such artificial dichotomies often arise across many scientific disciplines.
Examples include obesity status (obese versus non-obese) based on bodymass index,
preterm versus term babies given the gestation period, high versus low need of social
interaction, small versus large tumor size, early versus late response time in sur-
veys, young versus old age, among many others. In the ordinal case, discretization
is equally commonly encountered in practice. Derived polytomous variables such
as young-middle-old age, low-medium-high income, cold-cool-average-hot tem-
perature, no-mild-moderate-severe depression are obtained based on nominal age,
income, temperature, and depression score, respectively. While binary is a special
case of ordinal, for the purpose of illustration, integrity, and clarity, separate argu-
ments are presented throughout the chapter. On a terminological note, we use the
words binary/dichotomous and ordinal/polytomous interchangeably to simultane-
ously reflect the preferences of statisticians/psychometricians. Obviously, polyto-
mous variables can normally be ordered (ordinal) or unordered (nominal). For the
remainder of the chapter, the term “polytomous” is assumed to correspond ordered
variables.

Discretization is typically shunned by statisticians for valid reasons, the most
prominent of which is the power and information loss. In most cases, it leads to a
diminished effect size as well as reduced reliability and strength of association. How-
ever, simplicity, better interpretability and comprehension of the effects of interest,
and superiority of some categorical datameasures such as odds ratio have been argued
by proponents of discretization. Those who are against it assert that the regression
paradigm is general enough to account for interactive effects, outliers, skewed distri-
butions, and nonlinear relationships. In practice, especially substantive researchers
and practitioners employ discretization in their works. For conflicting views on rel-
ative perils and merits of discretization, see MacCallum et al. (2002) and Farrington
and Loeber (2000), respectively. We take a neutral position; although it is not a
recommended approach from the statistical theory standpoint, it frequently occurs
in practice, mostly driven by improved understandability-based arguments. Instead
of engaging in fruitless philosophical discussions, we feel that a more productive
effort can be directed towards finding answers when the discretization is performed,
which motivates the formation of this chapter’s major goals: (1) The determina-
tion of correlational magnitude changes when some of the continuous variables that
may marginally or jointly follow almost any distribution in a multivariate setting
are dichotomized or ordinalized. (2) The presentation of a conceptual and compu-
tational framework for modeling the correlational transformations before and after
discretization.
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A correlation between two continuous variables is usually computed as the com-
mon Pearson correlation. If one or both variables is/are dichotomized/ordinalized
by a threshold concept of underlying continuous variables, different naming con-
ventions are assigned to the correlations. A correlation between a continuous and
a dichotomized/ordinalized variable is a biserial/polyserial and point-biserial/point-
polyserial correlation before and after discretization, respectively. When both vari-
ables are dichotomized/ordinalized, the correlation between the two latent continuous
variables is known as the tetrachoric/polychoric correlation. The phi coefficient is
the correlation between two discretized variables; in fact, the term phi coefficient is
reserved for dichotomized variables, but for lack of a better term we call it the “ordi-
nal phi coefficient” for ordinalized variables. All of these correlations are special
cases of the Pearson correlation.

Correlations are naturally altered in magnitude by discretization. In the binary
case, there is a closed form, double numerical integration formula that connects
the correlations before and after dichotomization under the normality assumption
when both variables are dichotomized (Emrich and Piedmonte 1991). Demirtas and
Doganay (2012) enhanced this Gaussian copula approach, along with the algebraic
relationship between the biserial and point-biserial correlations, in the context of
joint generation of binary and normal variables. Demirtas and Hedeker (2016) fur-
ther extended this correlational connection to nonnormal variables via linearity and
constancy arguments when only one variable in a bivariate setting is dichotomized.
Going back to the scenario where the dichotomization is performed on both vari-
ables, Demirtas (2016) proposed algorithms that find the phi coefficient when the
tetrachoric correlation is specified (and the other way around), under any distri-
butional assumption for continuous variables through added operational utility of
the power polynomials (Fleishman 1978; Vale and Maurelli 1983). In the ordinal
case, modeling the correlation transition can only be performed iteratively under
the normality assumption (Ferrari and Barbiero 2012). Demirtas et al. (2016a) aug-
mented the idea of computing the correlation before or after discretization when the
other one is specified and vice versa, to an ordinal setting. The primary purpose of
this chapter is providing several algorithms that are designed to connect pre- and
post-discretization correlations under specified distributional assumptions in simu-
lated environments. More specifically, the following relationships are established:
(a) tetrachoric correlation/phi coefficient, (b) biserial/point-biserial correlations,
(c) polychoric correlation/ordinal phi coefficient, and (d) polyserial/point-polyserial
correlations, where (a)–(b) and (c)–(d) are relevant to binary and ordinal data, respec-
tively; (b)–(d) and (a)–(c) pertain to situations where only one or both variables
is/are discretized, respectively. In all of these cases, the marginal distributions that
are needed for finding skewness (symmetry) and elongation (peakedness) values for
the underlying continuous variables, proportions for binary and ordinal variables,
and associational quantities in the form of the Pearson correlation are assumed to be
specified.

This work is important and of interest for the following reasons: (1) The link
between these types of correlations has been studied only under the normality
assumption; however, the presented level of generality that encompasses a com-



62 H. Demirtas and C. Vardar-Acar

prehensive range of distributional setups is a necessary progress in computational
statistics. (2) As simulation studies are typically based on replication of real data
characteristics and/or specified hypothetical data trends, having access to the latent
data as well as the eventual binary/ordinal data may be consequential for exploring a
richer spectrum of feasible models that are applicable for a given data-analytic prob-
lem involving correlated binary/ordinal data. (3) The set of techniques sheds light
on how correlations are related before and after discretization; and has potential to
broaden our horizon on its relative advantages and drawbacks. (4) The algorithms
work for a very broad class of underlying bivariate latent densities and binary/ordinal
data distributions, allowing skip patterns for the latter, without requiring the identical
distribution assumption on either type of variables. (5) The required software tools
for the implementation are minimal, one only needs a numerical double integration
solver for the binary-binary case, a computational platform with univariate random
number generation (RNG) capabilities for the binary/ordinal-continuous case, an
iterative scheme that connects the polychoric correlations and the ordinal phi coef-
ficients under the normality assumption for the ordinal-ordinal case, a polynomial
root-finder and a nonlinear equations set solver to handle nonnormal continuous vari-
ables. (6) The algorithmic steps are formulated for the bivariate case by the nature
of the problem, but handling the multivariate case is straightforward by assembling
the correlation matrix entries. (7) The collection of the algorithms can be regarded
as an operational machinery for developing viable RNG mechanisms to generate
multivariate latent variables as well as subsequent binary/ordinal variables given
their marginal shape characteristics and associational structure in simulated settings,
potentially expediting the evolution of the mixed data generation routines. (8) The
methods could be useful in advancing research in meta-analysis domains where vari-
ables are discretized in some studies and remained continuous in some others.

The organization of the chapter is as follows. In Sect. 2, necessary background
information is given for the development of the proposed algorithms. In particular,
how the correlation transformationworks for discretized data through numerical inte-
gration and an iterative scheme for the binary and ordinal cases, respectively, under
the normality assumption, is outlined; a general nonnormal continuous data gener-
ation technique that forms a basis for the proposed approaches is described (when
both variables are discretized), and an identity that connects correlations before and
after discretization via their mutual associations is elaborated upon (when only one
variable is discretized). In Sect. 3, several algorithms for finding one quantity given
the other are provided under various combinations of cases (binary versus ordinal,
directionality in terms of specified versus computed correlation with respect to pre-
versus post-discretization, and whether discretization is applied on one versus both
variables) and some illustrative examples, representing a broad range of distributional
shapes that can be encountered in real applications, are presented for the purpose of
exposition. In Sect. 4, a simulation study for evaluating the method’s performance
in a multivariate setup by commonly accepted accuracy (unbiasedness) measures in
both directions is discussed. Section5 includes concluding remarks, future research
directions, limitations, and extensions.
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2 Building Blocks

This section gives necessary background information for the development of the
proposed algorithms in modeling correlation transitions. In what follows, correlation
type and related notation depend on the three factors: (a) before or after discretiza-
tion, (b) only one or both variables is/are discretized, and (c) discretized variable is
dichotomous or polytomous. To establish the notational convention, for the remain-
der of the chapter, let Y1 and Y2 be the continuous variables where either Y1 only
or both are discretized to yield X1 and X2 depending on the correlation type under
consideration (When Y’s are normal, they are denoted as Z , which is relevant for the
normal-based results and for the nonnormal extension via power polynomials). To
distinguish between binary and ordinal variables, the symbols B and O appear in the
subscripts. Furthermore, for avoiding any confusion, the symbols BS, T ET , PS, and
POLY are made a part of δY1Y2 and δZ1Z2 to differentiate among the biserial, tetra-
choric, polyserial, and polychoric correlations, respectively. For easier readability,
we include Table1 that shows the specific correlation types and associated notational
symbols based on the three above-mentioned factors.

2.1 Dichotomous Case: Normality

Borrowing ideas from the RNG literature, if the underlying distribution before
dichotomization is bivariate normal, the relationship between the phi coefficient
and the tetrachoric correlation is known (Emrich and Piedmonte 1991; Demir-
tas and Doganay 2012; Demirtas 2016). Let X1B and X2B represent binary vari-
ables such that E[X jB] = p j = 1 − q j for j = 1, 2, andCor [X1B, X2B] = δX1B X2B ,
where p1, p2, and δX1B X2B are given. Let Z1 = Y1 and Z2 = Y2 be the corre-
sponding standard normal variables, and let Φ be the cumulative distribution func-

Table 1 Terminological and notational convention for different correlation types depending on the
three self-explanatory factors

When Discrete data
type

Discretized Name Symbol

Before Dichotomous Y1 only Biserial correlation δY1Y BS
2

After Point-biserial correlation δX1BY2

Before Both Y1 and Y2 Tetrachoric correlation δY1Y T ET
2

After Phi coefficient δX1B X2B

Before Polytomous Y1 only Polyserial correlation δY1Y PS
2

After Point-polyserial correlation δX1OY2

Before Both Y1 and Y2 Polychoric correlation δY1Y POLY
2

After Ordinal phi coefficient δX1O X2O
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tion for a standard bivariate normal random variable with correlation coefficient
δZ1ZT ET

2
. Obviously, Φ[z1, z2, δZ1ZT ET

2
] = ∫ z1

−∞
∫ z2
−∞ f (z1, z2, δZ1ZT ET

2
)dz1dz2, where

f (z1, z2, δZ1ZT ET
2

) = [2π(1 − δ2
Z1ZT ET

2
)1/2]−1 × exp

[
− (z21 − 2δZ1ZT ET

2
z1z2 + z22)/

(2(1 − δ2
Z1ZT ET

2
))

]
. The phi coefficient (δX1B X2B ) and the tetrachoric correlation

(δZ1ZT ET
2

) are linked via the equation

Φ[z(p1), z(p2), δZ1ZT ET
2

] = δX1B X2B (p1q1 p2q2)
1/2 + p1 p2 (1)

where z(p j ) denotes the pthj quantile of the standard normal distribution for j = 1, 2.
As long as δX1B X2B is within the feasible correlation range (Hoeffding 1940, Fréchet
1951; Demirtas and Hedeker 2011), the solution is unique. Once Z1 and Z2 are
generated, the binary variables are derived by setting X jB = 1 if Z j ≥ z(1 − p j )

and 0 otherwise for j = 1, 2. While RNG is not our ultimate interest in this work,
we can use Eq.1 for bridging the phi coefficient and the tetrachoric correlation.

When only one of the normal variables (Z1) is dichotomized, i.e., X1B = I (Z1 ≥
z(1 − p1), it is relatively easy to show that δX1B Z2/δZ1Z BS

2
= δX1B Z1 = h/

√
p1q1

where h is the ordinate of the normal curve at the point of dichotomization (Demirtas
and Hedeker 2016).

Real data often do not conform to the assumption of normality; hence most sim-
ulation studies should take nonnormality into consideration. The next section inves-
tigates the situation where one or both continuous variables is/are nonnormal.

2.2 Dichotomous Case: Beyond Normality

Extending the limited and restrictive normality-based results to a broad range of dis-
tributional setups requires the employment of the two frameworks (an RNG routine
for multivariate continuous data and a derived linear relationship in the presence of
discretization), which we outline below.

We first tackle the relationship between the tetrachoric correlation δY1Y T ET
2

and
the phi coefficient δX1B X2B under nonnormality via the use of the power polynomials
(Fleishman 1978), which is a moment-matching procedure that simulates nonnormal
distributions often used in Monte-Carlo studies, based on the premise that real-life
distributions of variables are typically characterized by their first four moments. It
hinges upon the polynomial transformation, Y = a + bZ + cZ2 + dZ3, where Z
follows a standard normal distribution, and Y is standardized (zero mean and unit
variance).1 The distribution of Y depends on the constants a, b, c, and d, that can
be computed for specified or estimated values of skewness (ν1 = E[Y 3]) and excess
kurtosis (ν2 = E[Y 4] − 3). The procedure of expressing any given variable by the
sum of linear combinations of powers of a standard normal variate is capable of

1We drop the subscript in Y as we start with the univariate case.
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covering a wide area in the skewness-elongation plane whose bounds are given by
the general expression ν2 ≥ ν2

1 − 2.2

Assuming that E[Y ] = 0, and E[Y 2] = 1, byutilizing themoments of the standard
normal distribution, the following set of equations can be derived:

a = −c (2)

b2 + 6bd + 2c2 + 15d2 − 1 = 0 (3)

2c(b2 + 24bd + 105d2 + 2) − ν1 = 0 (4)

24[bd + c2(1 + b2 + 28bd) + d2(12 + 48bd + 141c2 + 225d2)] − ν2 = 0 (5)

These equations can be solved by the Newton-Raphson method, or any other
plausible root-finding or nonlinear optimization routine.More details for theNewton-
Raphson algorithm for this particular setting is given by Demirtas et al. (2012). The
polynomial coefficients are estimated for centered and scaled variables; the resulting
data set should be back-transformed to the original scale by multiplying every data
point by the standard deviation and adding the mean. Centering-scaling and the
reverse of this operation are linear transformations, so it does not change the values
of skewness, kurtosis, and correlations. Of note, we use the words symmetry and
skewness interchangeably. Similarly, kurtosis, elongation, and peakedness are meant
to convey the same meaning.

Themultivariate extension of Fleishman’s powermethod (Vale andMaurelli 1983)
plays a central role for the remainder of this chapter. The procedure for generat-
ing multivariate continuous data begins with computation of the constants given
in Eqs. 2–5, independently for each variable. The bivariate case can be formulated
in matrix notation as shown below. First, let Z1 and Z2 be variables drawn from
standard normal populations; let z

′
be the vector of normal powers 0 through 3,

zj
′ = [1, Z j , Z2

j , Z
3
j ]; and let w

′
be the weight vector that contains the power func-

tionweightsa,b, c, andd,wj
′ = [a j , b j , c j , d j ] for j = 1, 2.Thenonnormal variable

Y j is then defined as the product of these two vectors, Y j = wj
′
zj. Let δY1Y2 be the

correlation between two nonnormal variables Y1 and Y2 that correspond to the nor-
mal variables Z1 and Z2, respectively.3 As the variables are standardized, meaning
E(Y1) = E(Y2) = 0, δY1Y2 = E(Y1Y2) = E(w

′
1z1z

′
2w2) = w

′
1Rw2, where R is the

expected matrix product of z1 and z
′
2:

R = E(z1z
′
2) =

⎡

⎢
⎢
⎣

1 0 1 0
0 δZ1Z2 0 3δZ1Z2

1 0 2δ2Z1Z2
+ 1 0

0 3δZ1Z2 0 6δ3Z1Z2
+ 9δZ1Z2

⎤

⎥
⎥
⎦ ,

2In fact, equality is not possible for continuous distributions.
3δY1Y2 is the same as δY1Y T ET

2
or δY1Y POLY

2
depending on if discretized variables are binary or ordinal,

respectively. For the general presentation of the power polynomials, we do not make that distinction.
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where δZ1Z2 is the correlation between Z1 and Z2. After algebraic operations, the
following relationship between δY1Y2 and δZ1Z2 in terms of polynomial coefficients
ensues:

δY1Y2 = δZ1Z2(b1b2 + 3b1d2 + 3d1b2 + 9d1d2) + δ2Z1Z2
(2c1c2) + δ3Z1Z2

(6d1d2) (6)

Solving this cubic equation for δZ1Z2 gives the intermediate correlation between the
two standard normal variables that is required for the desired post-transformation
correlation δY1Y2 . Clearly, correlations for each pair of variables should be assembled
into amatrix of intercorrelations in themultivariate case. For a comprehensive source
and detailed account on the power polynomials, see Headrick (2010).

In the dichotomization context, the connection between the underlying nonnormal
(δY1Y2 ) and normal correlations (δZ1Z2 ) in Eq.6, along with the relationship between
the tetrachoric correlation (δZ1ZT ET

2
) and the phi coefficient (δX1B X2B ) conveyed in

Eq.1, is instrumental in Algorithms-1a and -1b in Sect. 3.
To address the situation where only one variable (Y1) is dichotomized, we now

move to the relationship of biserial (δY1Y BS
2
) and point-biserial (δX1BY2 ) correlations

in the absence of the normality assumption, which merely functions as a starting
point below. Suppose that Y1 and Y2 jointly follow a bivariate normal distribu-
tion with a correlation of δY1Y BS

2
. Without loss of generality, we may assume that

both Y1 and Y2 are standardized to have a mean of 0 and a variance of 1. Let
X1B be the binary variable resulting from a split on Y1, X1B = I (Y1 ≥ k), where
k is the point of dichotomization. Thus, E[X1B] = p1 and V [X1B] = p1q1 where
q1 = 1 − p1. The correlation between X1B and Y1, δX1BY1 can be obtained in a simple
way, namely, δX1BY1 = Cov[X1B ,Y1]√

V [X1B ]V [Y1] = E[X1BY1]/√p1q1 = E[Y1|Y1 ≥ k]/√p1q1.
We can also express the relationship between Y1 and Y2 via the following linear
regression model:

Y2 = δY1Y BS
2
Y1 + ε (7)

where ε is independent of Y1 and Y2, and follows N ∼ (0, 1 − δ2
Y1Y BS

2
). When we

generalize this to nonnormal Y1 and/or Y2 (both centered and scaled), the same
relationship can be assumed to hold with the exception that the distribution of ε
follows a nonnormal distribution. As long as Eq.7 is valid,

Cov[X1B,Y2] = Cov[X1B, δY1Y BS
2
Y1 + ε]

= Cov[X1B, δY1Y BS
2
Y1] + Cov[X1B, ε]

= δY1Y BS
2
Cov[X1B,Y1] + Cov[X1B, ε] . (8)

Since ε is independent of Y1, it will also be independent of any deterministic
function of Y1 such as X1B , and thus Cov[X1B, ε] will be 0. As E[Y1] = E[Y2] = 0,
V [Y1] = V [Y2] = 1, Cov[X1B,Y1] = δX1BY

√
p1q1 and Cov[Y1,Y2] = δY1Y BS

2
, Eq. 8

reduces to
δX1BY2 = δY1Y BS

2
δX1BY1 . (9)
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In the bivariate normal case, δX1BY1 = h/
√
p1q1 where h is the ordinate of the normal

curve at the point of dichotomization. Equation9 indicates that the linear association
between X1B and Y2 is assumed to be fully explained by their mutual association
with Y1 (Demirtas and Hedeker 2016). The ratio, δX1BY2/δY1Y BS

2
is equal to δX1BY1 =

E[X1BY1]/√p1q1 = E[Y1|Y1 ≥ k]/√p1q1, which is a constant given p1 and the
distribution of (Y1,Y2). These correlations are invariant to location shifts and scaling,
Y1 andY2 donot have to be centered and scaled, theirmeans andvariances can take any
finite values. Once the ratio (δX1BY1 ) is found (it could simply be done by generating
Y1 and dichotomizing it to yield X1B), one can compute the point-biserial (δX1BY2 ) or
biserial δY1Y BS

2
correlation when the other one is specified. This linearity-constancy

argument that jointly emanates from Eqs. 7 and 9, will be the crux of Algorithm-2
given in Sect. 3.

2.3 Polytomous Case: Normality

In the ordinal case, although the relationship between the polychoric correlation
(δY1Y POLY

2
) and the ordinal phi correlation (δX1O X2O ) can be written in closed form,

as explained below, the solution needs to be obtained iteratively even under the nor-
mality assumption since no nice recipe such as Eq.1 is available. In the context of
correlated ordinal data generation, Ferrari and Barbiero (2012) proposed an iterative
procedure based on a Gaussian copula, in which point-scale ordinal data are gener-
ated when the marginal proportions and correlations are specified. For the purposes
of this chapter, one can utilize their method to find the corresponding polychoric
correlation or the ordinal phi coefficient when one of them is given under normal-
ity. The algorithm in Ferrari and Barbiero (2012) serves as an intermediate step in
formulating the connection between the two correlations under any distributional
assumption on the underlying continuous variables.

Concentrating on the bivariate case, supposeZ = (Z1, Z2) ∼ N (0,ΔZ1Z2), where
Z denotes the bivariate standard normal distribution with correlation matrix ΔZ1Z2

whose off-diagonal entry is δZ1Z POLY
2

. Let X = (X1O , X2O) be the bivariate ordi-
nal data where underlying Z is discretized based on corresponding normal quan-
tiles given the marginal proportions, with a correlation matrix ΔZ1Z2 . If we need to
sample from a random vector (X1O , X2O) whose marginal cumulative distribution
functions (cdfs) are F1, F2 tied together via a Gaussian copula, we generate a sam-
ple (z1, z2) from Z ∼ N (0,ΔZ1Z2), then set x = (x1O , x2O) = (F−1

1 (u1), F
−1
2 (u2))

when u = (u1, u2) = (Φ(z1),Φ(z2)), where Φ is the cdf of the standard normal
distribution. The correlation matrix of X, denoted by ΔX1O X2O (with an off-diagonal
entry δX1O X2O ) obviously differs from ΔZ1Z2 due to discretization. More specifically,
|δX1O X2O | < |δZ1Z POLY

2
| in large samples. The relationship betweenΔX1O X2O andΔZ1Z2

is established resorting to the following formula (Cario and Nelson 1997):

E[X1O X2O ] = E[F−1
1 (Φ(Z1))F

−1
2 (Φ(Z1))] =

∫ ∞
−∞

∫ ∞
−∞

F−1
1 (Φ(Z1))F

−1
2 (Φ(Z1)) f (z1, z2)dz1dz2 (10)
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where f (z1, z2) is the bivariate standard normal probability function (pdf)with corre-
lation matrixΔZ1Z2 , which implies thatΔX1O X2O is a function ofΔZ1Z2 . If X1 and X2

are ordinal random variables with cardinality k1 and k2, respectively, Eq. 10 reduces
to a sum of k1 × k2 integrals of f (z1, z2) over a rectangle, i.e., k1 × k2 differences
of the bivariate cdf computed at two distinct points in �2, as articulated by Ferrari
and Barbiero (2012).

The relevant part of the algorithm is as follows:

1. Generate standard bivariate normal data with the correlation δ0
Z1Z POLY

2
where

δ0
Z1Z POLY

2
= δX1O X2O (Here, δ0

Z1Z POLY
2

is the initial polychoric correlation).
2. Discretize Z1 and Z2, based on the cumulative probabilities of the marginal dis-

tribution F1 and F2, to obtain X1O and X2O , respectively.
3. Compute δ1X1O X2O

through X1O and X2O (Here, δ1X1O X2O
is the ordinal phi coeffi-

cient after the first iteration).
4. Execute the following loop as long as |δvX1O X2O

− δX1O X2O | > ε and 1 ≤ v ≤ vmax

(vmax and ε are the maximum number of iterations and the maximum tolerated
absolute error, respectively, both quantities are set by users):
(a) Update δv

Z1Z POLY
2

by δv
Z1Z POLY

2
= δv−1

Z1Z POLY
2

g(v), where g(v) = δX1O X2O/δvX1O X2O
.

Here, g(v) serves as a correction coefficient, which ultimately converges to 1.
(b) Generate bivariate normal data with δv

Z1Z POLY
2

and compute δv+1
X1O X2O

after dis-
cretization.

Again, our focus in the current work is not RNG per se, but the core idea in Ferrari
and Barbiero (2012) is a helpful tool that links δY1Y POLY

2
and δX1O X2O for ordinalized

data through the intermediary role of normal data between ordinal and nonnormal
continuous data (Sect. 2.4).

When only one of the normal variables (Z1) is ordinalized, no nice formulas such
as the one in Sect. 2.1 given in the binary data context are available. The good news is
that a much more general procedure that accommodates any distributional assump-
tion on underlying continuous variables is available. The process that relates the
polyserial (δZ1Z PS

2
) and point-polyserial (δX1O Z2 ) correlations is available by extend-

ing the arguments substantiated in Sect. 2.2 to the ordinal data case.

2.4 Polytomous Case: Beyond Normality

When both variables are ordinalized, the connection between the polychoric correla-
tion (δY1Y POLY

2
) and the ordinal phi coefficient (δX1O X2O ) can be established by a two-

stage scheme, in which we compute the normal, intermediate correlation (δZ1Z POLY
2

)
from the ordinal phi coefficient by the method in Ferrari and Barbiero (2012) (pre-
sented in Sect. 2.3) before we find the nonnormal polychoric correlation via the
power polynomials (Eq.6). The other direction (computing δX1O X2O from δY1Y POLY

2
)

can be implemented by executing the same steps in the reverse order. The associated
computational routines are presented in Sect. 3 (Algorithms-3a and -3b).
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The correlational identity given in Eq.9 holds for ordinalized data as well when
only one variable is ordinalized (Demirtas and Hedeker 2016); the ordinal version
of the equation can be written as δX1OY2 = δY1Y PS

2
δX1OY1 . The same linearity and

constancy of ratio arguments equally apply in terms of the connection between the
polyserial (δY1Y PS

2
) and point-polyserial (δX1OY1 ) correlations; the fundamental utility

and operational characteristics are parallel to the binary case. Once the ratio (δX1OY1 )
is found by generating Y1 and discretizing it to obtain X1O , one can easily compute
either of these quantities given the other. This will be pertinent in Algorithm-4 below.

The next section puts all these concepts together from an algorithmic point of
view with numerical illustrations.

3 Algorithms and Illustrative Examples

Wework with eight distributions to reflect some common shapes that can be encoun-
tered in real-life applications. The illustrative examples come frombivariate datawith
Weibull andNormalmixturemarginals. Inwhat follows,W and NM stand forWeibull
and Normal mixture, respectively. TheW density is f (y|γ, δ) = δ

γδ yδ−1exp(−(
y
γ
)δ)

for y > 0, and γ > 0 and δ > 0 are the scale and shape parameters, respec-
tively. TheNM density is f (y|π,μ1,σ1,μ2,σ2) = π

σ1
√
2π
exp

( − 1
2 (

y−μ1

σ1
)2

) + (1−π)

σ2
√
2π

exp
( − 1

2 (
y−μ2

σ2
)2

)
, where 0 < π < 1 is the mixing parameter. Since it is a mixture, it

can be unimodal or bimodal. Depending on the choice of parameters, both distribu-
tions can take a variety of shapes.Weuse four sets of parameter specifications for each
of these distributions: ForW distribution, (γ, δ) pairs are chosen to be (1, 1), (1, 1.2),
(1, 3.6), and (1, 25), corresponding to mode at the boundary, positively skewed,
nearly symmetric, and negatively skewed shapes, respectively. For NM distribu-
tion, the parameter set (π,μ1,σ1,μ2,σ2) is set to (0.5, 0, 1, 3, 1), (0.6, 0, 1, 3, 1),
(0.3, 0, 1, 2, 1), and (0.5, 0, 1, 2, 1), whose shapes are bimodal-symmetric, bimodal-
asymmetric, unimodal-negatively skewed, and unimodal-symmetric, respectively.
These four variations of the W and NM densities are plotted in Fig. 1 (W/NM:
the first/second columns) in the above order of parameter values, moving from
top to bottom. Finally, as before, p1 and p2 represent the binary/ordinal propor-
tions. In the binary case, they are single numbers. In the ordinal case, the marginal
proportions are denoted as P(Xi = j) = pi j for i = 1, 2 and j = 1, 2, ...ki , and
pi = (pi1, pi2, ..., piki ), in which skip patterns are allowed. Furthermore, if the users
wish to start the ordinal categories from0 or any integer other than 1, the associational
implications remain unchanged as correlations are invariant to the location shifts. Of
note, the number of significant digits reported throughout the chapter varies by the
computational sensitivity of the quantities.

Algorithm-1a: Computing the tetrachoric correlation (δY1Y T ET
2

) from the phi coef-
ficient (δX1B X2B ): The algorithm for computing δY1Y T ET

2
when δX1B X2B , p1, p2, and the

key distributional characteristics of Y1 and Y2 (ν1 and ν2) are specified, is as follows:
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Fig. 1 Density functions of Weibull (first column) and Normal Mixture (second column) distribu-
tions for chosen parameter values that appear in the text

1. Solve Eq.1 for δZ1ZT ET
2

.
2. Compute the power coefficients (a, b, c, d) for Y1 and Y2 by Eqs. 2–5.
3. Plug all quantities obtained in Steps 1–2 into Eq.6, and solve for δY1Y T ET

2
.

Suppose Y1 ∼ W (1, 1), Y2 ∼ NM(0.5, 0, 1, 3, 1), (p1, p2) = (0.85, 0.15), and
δX1B X2B = 0.1. Solving for δZ1ZT ET

2
in Eq.1 (Step 1) yields 0.277. The power coeffi-

cients (a, b, c, d) in Eqs. 2–5 (Step 2) turn out to be (−0.31375, 0.82632, 0.31375,
0.02271) and (0.00004, 1.20301,−0.00004,−0.07305) for Y1 and Y2, respec-
tively. Substituting these into Eq.6 (Step 3) gives δY1Y T ET

2
= 0.243. Similarly, for

(p1, p2) = (0.10, 0.30) and δX1B X2B = 0.5, δZ1ZT ET
2

= 0.919 and δY1Y T ET
2

= 0.801.
The upper half of Table2 includes a few more combinations.

Algorithm-1b: Computing the phi coefficient (δX1B X2B ) from the tetrachoric corre-
lation (δY1Y T ET

2
): The quantities that need to be specified are the same as inAlgorithm-

1a , and the steps are as follows:

1. Compute the power coefficients (a, b, c, d) for Y1 and Y2 by Eqs. 2–5.
2. Solve Eq.6 for δZ1ZT ET

2
.

3. Plug δZ1ZT ET
2

into Eq.1, and solve for δX1B X2B .

With the same pair of distributions, where Y1 ∼ W (1, 1) and Y2 ∼ NM(0.5, 0, 1,
3, 1), suppose (p1, p2) = (0.85, 0.15) and δY1Y T ET

2
= −0.4. After solving for the
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Table 2 Computed values of the tetrachoric correlation (δY1Y T ET
2

) or the phi coefficient (δX1B X2B )
when one of them is specified, with two sets of proportions for Y1 ∼ W (1, 1) and Y2 ∼
NM(0.5, 0, 1, 3, 1)

p1 p2 δX1B X2B δZ1ZT ET
2

δY1Y T ET
2

0.85 0.15 −0.6 −0.849 −0.755

−0.3 −0.533 −0.472

0.1 0.277 0.243

0.10 0.30 −0.2 −0.616 −0.540

0.3 0.572 0.502

0.5 0.919 0.801

p1 p2 δY1Y T ET
2

δZ1ZT ET
2

δX1B X2B

0.85 0.15 −0.4 −0.456 −0.246

0.2 0.227 0.085

0.6 0.685 0.173

0.10 0.30 −0.5 −0.570 −0.192

0.1 0.114 0.052

0.7 0.801 0.441

Fig. 2 δX1B X2B versus
δY1Y T ET

2
for Y1 ∼ W (1, 1)

and Y2 ∼ NM(0.5, 0, 1,
3, 1), where solid, dashed,
and dotted curves represent
(p1, p2) = (0.85, 0.15),
(0.10, 0.30), and
(0.50, 0.50), respectively;
the range differences are due
to the Fréchet-Hoeffding
bounds
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1
Y
2T

E
T

power coefficients (Step 1), Steps 2 and 3 yield δZ1ZT ET
2

= −0.456 and δX1B X2B =
−0.246, respectively. Similarly, when (p1, p2) = (0.10, 0.30) and δY1Y T ET

2
= 0.7,

δZ1ZT ET
2

= 0.801 and δX1B X2B = 0.441. The lower half of Table2 includes a few
more combinations. More comprehensively, Fig. 2 shows the comparative behav-
ior of δX1B X2B and δY1Y T ET

2
when the proportion pairs take three different values, with

the addition of (p1, p2) = (0.50, 0.50) to the two pairs above, for this particular
distributional setup.
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Table 3 Computed values of ĉ1 = δX1BY1 and ĉ2 = δX2BY2 that connect the biserial (δY1Y BS
2

) and
point-biserial correlations (δX1BY2 or δX2BY1 ), where Y1 ∼ W (1, 1.2) and Y2 ∼ NM(0.6, 0, 1, 3, 1)

p1 or p2 ĉ1 ĉ2

0.05 0.646 0.447

0.15 0.785 0.665

0.25 0.809 0.782

0.35 0.795 0.848

0.45 0.760 0.858

0.55 0.710 0.829

0.65 0.640 0.772

0.75 0.554 0.692

0.85 0.436 0.585

0.95 0.261 0.392

Algorithm-2: Computing the biserial correlation (δY1Y BS
2
) from the point-biserial

correlation (δX1BY2 ) and the other way around: One only needs to specify the distri-
butional form of Y1 (the variables that is to be dichotomized) and the proportion (p1)
for this algorithm (See Sect. 2.2). The steps are as follows:

1. Generate Y1 with a large number of data points (e.g., N = 100, 000).
2. Dichotomize Y1 to obtain X1B through the specified value of p1, and compute the

sample correlation, δX1BY1 = ĉ1.
3. Find δX1BY2 or δY1Y BS

2
by δX1BY2 /δY1Y BS

2
= ĉ1 by Eq.9.

In this illustration, we assume that Y1 ∼ W (1, 1.2), Y2 ∼ NM(0.6, 0, 1, 3, 1), and
δY1Y BS

2
= 0.60. Y1 is dichotomized to obtain X1B where E(X1B) = p1 = 0.55. After

followingSteps 1 and 2, ĉ1 turns out to be 0.710, and accordingly δX1BY2 = ĉ1δY1Y BS
2

=
0.426. Similarly, if the specified value of δX1B ,Y2 is 0.25, then δY1Y BS

2
= δX1BY2/ĉ1 =

0.352. The fundamental ideas remain the same if Y2 is dichotomized (with a pro-
portion p2) rather than Y1. In that case, with a slight notational difference, the new
equations would be δX2BY2 = ĉ2 and δX2BY1 /δY1Y BS

2
= ĉ2. Table3 shows ĉ1 and ĉ2 val-

ueswhen p1 or p2 ranges between0.05 and0.95with an increment of 0.10.We further
generated bivariate continuous data with the above marginals and the biserial corre-
lations between −0.85 and 0.90 with an increment of 0.05. We then dichotomized
Y1 where p1 is 0.15 and 0.95, and computed the empirical point-biserial correlation.
The lower- and upper-right graphs in Fig. 3 the plot of the algorithmic value of ĉ1 in
Step 2 and δY1Y BS

2
versus δX1BY2 , respectively, where the former is a theoretical and

δX1BY2 in the latter is an empirical quantity. As expected, the two ĉ1 values are the
same as the slopes of the linear lines of δY1Y BS

2
versus δX1BY2 , lending support for how

plausibly Algorithm-2 is working. The procedure is repeated under the assumption
that Y2 is dichotomized rather than Y1 (lower graphs in Fig. 3).

Algorithm-3a: Computing the polychoric correlation (δY1Y POLY
2

) from the ordinal
phi coefficient (δX1O X2O ): The algorithm for computing δY1Y POLY

2
when δX1O X2O , p1,
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Fig. 3 Plots of ĉ1 (upper-left), ĉ2 (lower-left), empirical δX1BY2 versus δY1Y BS
2

(upper-right), and
δX2BY1 versus δY1Y BS

2
for p1 or p2 is 0.15 (shown by o) or 0.95 (shown by *), where Y1 ∼ W (1, 1.2)

and Y2 ∼ NM(0.6, 0, 1, 3, 1)

p2 and the key distributional characteristics of Y1 and Y2 (ν1 and ν2) are specified, is
as follows:

1. Use the method in Ferrari and Barbiero (2012), outlined in Sect. 2.3 for finding
δZ1Z POLY

2
.

2. Compute the power coefficients (a, b, c, d) for Y1 and Y2 by Eqs. 2–5.
3. Plug all quantities obtained in Steps 1–2 into Eq.6, and solve for δY1Y POLY

2
.

SupposeY1 ∼ W (1, 3.6),Y2 ∼ NM(0.3, 0, 1, 2, 1), (p1, p2) = ((0.4, 0.3, 0.2, 0.1),
(0.2, 0.2, 0.6)), and δX1O X2O = −0.7. Solving for δZ1Z POLY

2
in Step 1 yields −0.816.

The power coefficients (a, b, c, d) in Eqs. 2–5 (Step 2) turn out to be (−0.00010,
1.03934, 0.00010,−0.01268) for Y1 and (0.05069, 1.04806,−0.05069,−0.02626)
for Y2. Substituting these into Eq.6 (Step 3) gives δY1Y POLY

2
= −0.813. Similarly,

for (p1, p2) = ((0.1, 0.1, 0.1, 0.7), (0.8, 0.1, 0.1)) and δX1O X2O = 0.2, δZ1Z POLY
2

=
0.441 and δY1Y POLY

2
= 0.439. The upper half of Table4 includes a few more combi-

nations.
Algorithm-3b:Computing the ordinal phi coefficient (δX1O X2O ) from the polychoric

correlation (δY1Y POLY
2

): The required quantities that need specification are the same
as in Algorithm-3a, and the steps are as follows:
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Table 4 Computed values of the polychoric correlation (δY1Y POLY
2

) or the ordinal phi coef-
ficient (δX1O X2O ) given the other, with two sets of proportions for Y1 ∼ W (1, 3.6) and Y2 ∼
NM(0.3, 0, 1, 2, 1)

p1 p2 δX1O X2O δZ1Z POLY
2

δY1Y POLY
2

(0.4, 0.3, 0.2, 0.1) (0.2, 0.2, 0.6) −0.7 −0.816 −0.813

−0.3 −0.380 −0.378

0.4 0.546 0.544

0.6 0.828 0.826

(0.1, 0.1, 0.1, 0.7) (0.8, 0.1, 0.1) −0.6 −0.770 −0.767

−0.4 −0.568 −0.566

−0.1 −0.167 −0.166

0.2 0.441 0.439

p1 p2 δY1Y POLY
2

δZ1Z POLY
2

δX1O X2O

(0.4, 0.3, 0.2, 0.1) (0.2, 0.2, 0.6) −0.8 −0.802 −0.686

−0.2 −0.201 −0.155

0.5 0.502 0.368

0.7 0.702 0.511

(0.1, 0.1, 0.1, 0.7) (0.8, 0.1, 0.1) −0.8 −0.802 −0.638

−0.2 −0.201 −0.122

0.5 0.502 0.219

0.7 0.702 0.263

1. Compute the power coefficients (a, b, c, d) for Y1 and Y2 by Eqs. 2–5.
2. Solve Eq.6 for δZ1ZT ET

2
.

3. Solve for δX1O X2O given δZ1ZT ET
2

by the method in Ferrari and Barbiero (2012).

With the same set of specifications, namely, Y1 ∼ W (1, 3.6), Y2 ∼ NM(0.3, 0, 1,
2, 1), and (p1, p2) = ((0.4, 0.3, 0.2, 0.1), (0.2, 0.2, 0.6)), suppose δY1Y POLY

2
= 0.5.

After solving for the power coefficients (Step 1), Steps 2 and 3 yield δZ1Z POLY
2

= 0.502
and δX1O X2O = 0.368. Similarly, when (p1, p2) = ((0.1, 0.1, 0.1, 0.7), (0.8, 0.1,
0.1)) and δY1Y POLY

2
= 0.7, δZ1Z POLY

2
= 0.702 and δX1O X2O = 0.263. The lower half

of Table4 includes a few more combinations. A more inclusive set of results is
given in Fig. 4, which shows the relative trajectories of δX1O X2O and δY1Y POLY

2
when

the proportion sets take three different values, with the addition of (p1, p2) =
((0.25, 0.25, 0.25, 0.25), (0.05, 0.05, 0.9)) to the two sets above.

Algorithm-4: Computing the polyserial correlation (δY1Y PS
2
) from the point-

polyserial correlation (δX1OY2 ) and the other way around: The following steps enable
us to calculate either one of these correlations when the distribution of Y1 (the vari-
able that is subsequently ordinalized) and the ordinal proportions (p1) are specified
(See Sect. 2.4):
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Fig. 4 δX1O X2O versus
δY1Y POLY

2
for Y1 ∼ W (1, 3.6)

and Y2 ∼ NM(0.3, 0, 1,
2, 1), where solid, dashed,
and dotted curves represent
(p1, p2) = ((0.4, 0.3,
0.2, 0.1), (0.2, 0.2, 0.6)),
((0.1, 0.1, 0.1, 0.7), (0.8,
0.8, 0.1)), and ((0.25, 0.25,
0.25, 0.25), (0.05, 0.05,
0.9)), respectively; the range
differences are due to the
Fréchet-Hoeffding bounds
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1. Generate Y1 with a large number of data points (e.g., N = 100, 000).
2. Ordinalize Y1 to obtain X1O through the specified value of p1, and compute the

sample correlation, δX1OY1 = ĉ1.
3. Find δX1OY2 or δY1Y PS

2
by δX1OY2 /δY1Y PS

2
= ĉ1 by Eq.9.

For illustrative purposes, we assume that Y1 ∼ W (1, 25), Y2 ∼ NM(0.5, 0, 1,
2, 1), and δY1,Y PS

2
= 0.6. Y1 is ordinalized to obtain X1O , where p1 = (0.4, 0.3, 0.2,

0.1). After following Steps 1 and 2, ĉ1 turns out to be 0.837, and accordingly
δX1OY2 = ĉ1δY1Y PS

2
= 0.502. Similarly, if the specified value of δX1OY2 is 0.3, then

δY1Y PS
2

= δX1OY2/ĉ1 = 0.358. The core ideas remain unchanged if Y2 is dichotomized
(with a proportion p2) instead of Y1, in which the new equations become δX2OY2 = ĉ2
and δX2OY1 /δY1Y PS

2
= ĉ2. Several ĉ1 and ĉ2 values are tabulated for corresponding p1 or

p2 specifications in Table5. Figure5 provides a comparison between the theoretical
(suggested by Algorithm-4) and empirical point-polyserial correlations (δX1OY2 ) for
specified polyserial correlation (δY1Y PS

2
) values in the range of−0.95 and 0.95 (upper

graph) and the scatter plot of the differences between the two quantities (lower graph)
are given. We first generated bivariate continuous data using the above distributional
assumptions, then ordinalized Y1, computed the empirical post-discretization cor-
relations, and made a comparison that is shown in the two graphs in Fig. 5, which
collectively suggest that the procedure is working properly.

Some operational remarks: All computingwork has been done inR software (R
Development Core Team, 2016). In the algorithms that involve the power polynomi-
als, a stand-alone computer code in Demirtas and Hedeker (2008a) was used to solve
the system of equations. More sophisticated programming implementations such as
fleishman.coef function in BinNonNor package (Inan and Demirtas 2016),
Param.fleishman function in PoisNonNor package (Demirtas et al. 2016b),
and Fleishman.coef.NN function in BinOrdNonNor package (Demirtas et al.
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Table 5 Computed values of ĉ1 = δX1OY1 and ĉ2 = δX2OY2 that connect the polyserial
(δY1Y BS

2
) and point-polyserial correlations (δX1OY2 or δX2OY1 ), where Y1 ∼ W (1, 25) and Y2 ∼

NM(0.5, 0, 1, 2, 1)

p1 p2 ĉ1 ĉ2

(0.4, 0.3, 0.2, 0.1) – 0.837 –

(0.1, 0.2, 0.3, 0.4) – 0.927 –

(0.1, 0.4, 0.4, 0.1) – 0.907 –

(0.4, 0.1, 0.1, 0.4) – 0.828 –

(0.7, 0.1, 0.1, 0.1) – 0.678 –

– (0.3, 0.4, 0.3) – 0.914

– (0.6, 0.2, 0.2) – 0.847

– (0.1, 0.8, 0.1) – 0.759

– (0.1, 0.1, 0.8) – 0.700

– (0.4, 0.4, 0.2) – 0.906
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Fig. 5 The plot of the theoretical (x axis) versus empirical (y axis) point-polyserial correlations
(δX1OY2 ) given the specified polyserial correlation (δY1Y PS

2
) values (upper graph) and the scatter

plot of the differences between the two quantities (lower graph), where Y1 ∼ W (1, 25) and Y2 ∼
NM(0.5, 0, 1, 2, 1)

2016c) can also be employed. The root of the third order polynomials in Eq.6 was
found by polyroot function in the base package. The tetrachoric correlation and
the phi coefficient in Eq.1 was computed by phi2tetra function in psych pack-
age (Revelle 2016) and pmvnorm function inmvtnorm package (Genz et al. 2016),
respectively. Finding the polychoric correlation given the ordinal phi coefficient and
the opposite direction were performed by ordcont and contord functions in
GenOrd package (Barbiero and Ferrari 2015), respectively.



Anatomy of Correlational Magnitude Transformations in Latency … 77

4 Simulations in a Multivariate Setting

By the problem definition and design, all development has been presented in bivariate
settings. For assessing how the algorithms work in a broader multivariate context and
for highlighting the generality of our approach, we present two simulation studies
that involve the specification of either pre- or post-discretization correlations.

Simulation work is devised around five continuous variables, and four of these are
subsequently dichotomized or ordinalized. Referring to theWeibull andNormal mix-
turedensities in the illustrative examples, the distributional forms are as follows:Y1 ∼
W (1, 3.6), Y2 ∼ W (1, 1.2), Y3 ∼ NM(0.3, 0, 1, 2, 1), Y4 ∼ NM(0.5, 0, 1, 2, 1),
and Y5 ∼ NM(0.5, 0, 1, 3, 1). Y1, ...,Y4 are to be discretized with proportions
p1 = 0.6, p2 = 0.3, p3 = (0.4, 0.2, 0.2, 0.2), and p4 = (0.1, 0.6, 0.3), respectively.
Two dichotomized (Y1 and Y2), two ordinalized (Y3 and Y4), and one continuous (Y5)
variables form a sufficient environment, in which all types of correlations mentioned
in this work are covered. For simplicity, we only indicate if the correlations are pre-
or post-discretization quantities without distinguishing between different types in
terms of naming and notation in this section. We investigate both directions: (1) The
pre-discretization correlation matrix is specified; the theoretical (algorithmic) post-
discretization quantities were computed; data were generated, discretized with the
prescription guided by the proportions, and empirical correlations were found via
n = 1000 simulation replicates to see how closely the algorithmic and empirical val-
ues are aligned on average. (2) The post-discretizationmatrix is specified; correlation
among latent variables were computed via the algorithms; data were generated with
this correlation matrix; then the data were dichotomized or ordinalized to gauge if
we obtain the specified post-discretization correlations on average. In Simulation 1,
the pre-discretization correlation matrix (Σpre) representing the correlation structure
among continuous variables, is defined as

Σpre =

⎡

⎢
⎢
⎢
⎢
⎣

1.00 0.14 −0.32 0.56 0.54
0.14 1.00 −0.10 0.17 0.17

−0.32 −0.10 1.00 −0.40 −0.38
0.56 0.17 −0.40 1.00 0.67
0.54 0.17 −0.38 0.67 1.00

⎤

⎥
⎥
⎥
⎥
⎦

,

where the variables follow the order of (Y1, ...,Y5). Let Σ[i, j] denote the cor-
relation between variables i and j , where i, j = 1, ..., 5. The theoretical post-
discretization values (under the assumption that the algorithms function prop-
erly and yield the true values) were computed. More specifically, Σpost [1, 2] was
found by Algorithm-1b, Σpost [1, 5] and Σpost [2, 5] by Algorithm-2, Σpost [1, 3],
Σpost [1, 4], Σpost [2, 3], Σpost [2, 4], and Σpost [3, 4] by Algorithm-3b, Σpost [3, 5]
and Σpost [4, 5] by Algorithm-4. These values collectively form a post-discretization
correlation matrix (Σpost ), which serves as the True Value (TV). The empirical post-
discretization correlation estimateswere calculated after generating N = 1, 000 rows
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Table 6 Results of Simulation 1 (the reported quantities are defined in the text)

Parameter Σpre T V (Σpost ) AE RB PB SB

Σ[1, 2] 0.14 0.08942 0.08934 0.00008 0.09 0.03

Σ[1, 3] −0.32 −0.22936 −0.23385 0.00449 1.96 1.40

Σ[1, 4] 0.56 0.38946 0.39128 0.00182 0.47 0.72

Σ[1, 5] 0.54 0.43215 0.43425 0.00210 0.49 0.84

Σ[2, 3] −0.10 −0.07420 −0.07319 0.00101 1.36 0.32

Σ[2, 4] 0.17 0.12175 0.12073 0.00102 0.84 0.33

Σ[2, 5] 0.17 0.13681 0.13883 0.00202 1.48 0.65

Σ[3, 4] −0.40 −0.31908 −0.31922 0.00014 0.04 0.05

Σ[3, 5] −0.38 −0.34082 −0.34671 0.00589 1.73 2.15

Σ[4, 5] 0.67 0.58528 0.58773 0.00245 0.42 1.28

of multivariate latent, continuous data (Y1, ...,Y5) by the specifiedΣpre, followed by
discretization of (Y1, ...,Y4). The whole process was repeated for n = 1, 000 times.

We evaluated the quality of estimates by three commonly accepted accuracy
measures: (a) Raw Bias (RB), (b) Percentage Bias (PB), and (c) Standardized
Bias (SB) (Demirtas 2004a, 2007a, b, 2008). They all are functions of the aver-
age estimate (AE), and their definitions are well-established: When the parame-
ter of interest is δ, RB = |E[δ̂ − δ]| (absolute average deviation), PB = 100 ∗
|E[δ̂ − δ]/δ| (absolute average deviation as a percentage of the true value), and
SB = 100 ∗ |E[δ̂ − δ]|/V [δ̂]1/2 (absolute average deviationwith respect to the over-
all uncertainty in the system). A procedure is typically regarded as working prop-
erly if RB < 5 and SB < 50 (Demirtas et al. 2007). In Table6, we tabulate Σpre,
T V (Σpost ), AE , RB, PB, and SB. All the three accuracy quantities demonstrate
negligibly small deviations from the true values; they are within acceptable limits,
suggesting that the set of algorithms provides unbiased estimates.

In Simulation 2, we take the reverse route by specifying the post-discretization
correlation matrix (Σpost ), which serves as the True Value (TV), in the following
way:

Σpost =

⎡

⎢
⎢
⎢
⎢
⎣

1.00 0.24 0.18 0.10 0.38
0.24 1.00 0.20 −0.11 0.42
0.18 0.20 1.00 −0.07 0.29
0.10 −0.11 −0.07 1.00 −0.16
0.38 0.42 0.29 −0.16 1.00

⎤

⎥
⎥
⎥
⎥
⎦

The corresponding pre-discretization matrix was found via the algorithms. The
theoretical Σpre[1, 2] was computed by Algorithm-1a, Σpre[1, 5] and Σpre[2, 5]
by Algorithm-2, Σpre[1, 3], Σpre[1, 4], Σpre[2, 3], Σpre[2, 4], and Σpre[3, 4] by
Algorithm-3a, Σpre[3, 5] and Σpre[4, 5] by Algorithm-4. These values jointly form
a pre-discretization correlation matrix (Σpre). The empirical post-discretization
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Table 7 Results of Simulation 2 (the reported quantities are defined in the text)

Parameter TV (Σpost ) Σpre AE RB PB SB

Σ[1, 2] 0.24 0.40551 0.24000 0.00000 0.00 0.00

Σ[1, 3] 0.18 0.24916 0.17727 0.00273 1.52 0.90

Σ[1, 4] 0.10 0.14551 0.10041 0.00041 0.41 0.13

Σ[1, 5] 0.38 0.47484 0.38022 0.00022 0.06 0.08

Σ[2, 3] 0.20 0.29496 0.20729 0.00729 3.64 2.44

Σ[2, 4] −0.11 −0.15954 −0.10601 0.00399 3.63 1.27

Σ[2, 5] 0.42 0.52188 0.43347 0.01347 3.21 5.50

Σ[3, 4] −0.07 −0.08884 −0.07001 0.00001 0.01 0.01

Σ[3, 5] 0.29 0.32334 0.29443 0.00443 1.53 1.58

Σ[4, 5] −0.16 −0.18316 −0.16004 0.00004 0.02 0.01

correlation estimates were calculated after generating N = 1, 000 rows of multivari-
ate latent, continuous data (Y1, ...,Y5) by the computed Σpre before discretization of
(Y1, ...,Y4). As before, this process is repeated for n = 1, 000 times. In Table7, we
tabulate T V (Σpost ),Σpre, AE , RB, PB, and SB. Again, the discrepancies between
the expected and empirical quantities are minimal by the three accuracy criteria,
providing substantial support for the proposed method.

These results indicate compelling and promising evidence in favor of the algo-
rithms herein. Our evaluation is based on accuracy (unbiasedness) measures. Pre-
cision is another important criterion in terms of the quality and performance of the
estimates (Demirtas et al. 2008; Demirtas and Hedeker 2008b; Yucel and Demirtas
2010). We address the precision issues by plotting the correlation estimates across
all simulation replicates in both scenarios (Fig. 6). The estimates closely match the
true values shown in Tables6 and 7, with a healthy amount of variation that is within
the limits of Monte-Carlo simulation error. On a cautious note, however, there seems
to be slightly more variation in Simulation 2, which is natural since there are two
layers of randomness (additional source of variability).

5 Discussion

If the discretization thresholds and underlying continuous measurements are avail-
able, one can easily compute all types of correlations that appear herein. The scale
of the work in this chapter is far broader, as it is motivated by and oriented towards
computing the different correlationalmagnitudes before and after discretizationwhen
one of these quantities is specified in the context of simulation and RNG, in both
directions.

The set of proposed techniques is driven by the idea of augmenting the normal-
based results concerning different types of correlations to any bivariate continuous
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Fig. 6 The trace plot of correlation estimates for Simulation 1 (left graph) and Simulation 2 (right
graph) across n = 1, 000 replicates; they closely match the true values shown in Tables6 and 7

setting. Nonnormality is handled by the power polynomials that map the normal and
nonnormal correlations. The approach works as long as the marginal characteristics
(skewness and elongation parameters for continuous data and proportion values for
binary/ordinal data) and the degree of linear association between the two variables
are legitimately defined, regardless of the shape of the underlying bivariate contin-
uous density. When the above-mentioned quantities are specified, one can connect
correlations before and after discretization in a relatively simple manner.

One potential limitation is that power polynomials cover most of the feasible sym-
metry-peakedness plane (ν2 ≥ ν2

1 − 2), but not entirely. In an attempt to span a larger
space, one can utilize the fifth order polynomial systems (Demirtas 2017; Headrick
2002), although it may not constitute an ultimate solution. In addition, a minor con-
cern could be that unlike binary data, the marginal proportions and the second order
product moment (correlation) do not fully define the joint distribution for ordinal
data. In other words, odds ratios and correlations do not uniquely determine each
other. However, in overwhelming majority of applications, the specification of the
first and second order moments suffices for practical purposes; and given the scope
of this work, which is modeling the transition between different pairs of correlations,
this complication is largely irrelevant. Finally, the reasons we base our algorithms
on the Pearson correlation (rather than the Spearman correlation) are that it is much
more common in RNG context and in practice; and the differences between the two
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are negligibly small in most cases. Extending this method for encompassing the
Spearman correlation will be taken up in future work resorting to a variation of the
sorting idea that appeared in Demirtas and Hedeker (2011), allowing us to capture
any monotonic relationship in addition to the linear relationships. On a related note,
further expansions can be imagined to accommodate more complex associations that
involve higher order moments.

The positive characteristics and salient advantages of these algorithms are as
follows:

• They work for an extensive class of underlying bivariate latent distributions
whose components are allowed to be non-identically distributed. Nearly all contin-
uous shapes and skip patterns for ordinal variables are permissible.

•The required software tools for the implementation are rather basic, usersmerely
need a computational platform with numerical double integration solver for the
binary-binary case, univariate RNG capabilities for the binary/ordinal-continuous
case, an iterative scheme that connects the polychoric correlations and the ordi-
nal phi coefficients under the normality assumption for the ordinal-ordinal case, a
polynomial root-finder and a nonlinear equations set solver to handle nonnormal
continuous variables.

•The description of the connection between the two correlations is naturally given
for the bivariate case. The multivariate extension is easily manageable by assembling
the individual correlation entries. The way the techniques work is independent of the
number of variables; the curse of dimensionality is not an issue.

• The algorithms could be conveniently used in meta-analysis domains where
some studies discretize variables and some others do not.

• Assessing the magnitude of change in correlations before and after ordinaliza-
tion is likely to be contributory in simulation studies where we replicate the speci-
fied trends especially when simultaneous access to the latent data and the eventual
binary/ordinal data is desirable.

• One can more rigorously fathom the nature of discretization in the sense of
knowing how the correlation structure is transformed after dichotomization or ordi-
nalization.

• The proposed procedures can be regarded as a part of sensible RNG mecha-
nisms to generate multivariate latent variables as well as subsequent binary/ordinal
variables given their marginal shape characteristics and associational structure in
simulated environments, potentially expediting the development of novel mixed
data generation routines, especially when an RNG routine is structurally involved
with generating multivariate continuous data as an intermediate step. In conjunc-
tion with the published works on joint binary/normal (Demirtas and Doganay 2012),
binary/nonnormal continuous (Demirtas et al. 2012), ordinal/normal (Demirtas and
Yavuz 2015), count/normal (Amatya and Demirtas 2015), and multivariate ordinal
data generation (Demirtas 2006), the ideas presented in this chapter might serve as
a milestone for concurrent mixed data generation schemes that span binary, ordinal,
count, and nonnormal continuous data.

• These algorithms may be instrumental in developing multiple imputation strate-
gies for mixed longitudinal or clustered data as a generalization of the incomplete
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data methods published in Demirtas and Schafer (2003), Demirtas (2004b, 2005),
and Demirtas and Hedeker (2007, 2008c). Concomitantly, they can be helpful in
improving rounding techniques in multiple imputation (Demirtas 2009, 2010).

Wrapping it up, this work is inspired by the development of algorithms that are
designed to model the magnitude of change in correlations when discretization is
employed. In this regard, the proposed algorithms could be of working functionality
in identifying the relationships between different types of correlations before and
after discretization, and have noteworthy advantages for simulation purposes. As a
final note, a software implementation of the algorithms can be accessed through the
recent R package CorrToolBox (Allozi and Demirtas 2016).
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Monte-Carlo Simulation of Correlated
Binary Responses

Trent L. Lalonde

Abstract Simulation studies can provide powerful conclusions for correlated or
longitudinal response data, particularly for relatively small samples forwhich asymp-
totic theory does not apply. For the case of logistic modeling, it is necessary to have
appropriate methods for simulating correlated binary data along with associated
predictors. This chapter presents a discussion of existing methods for simulating
correlated binary response data, including comparisons of various methods for dif-
ferent data types, such as longitudinal versus clustered binary data generation. The
purposes and issues associated with generating binary responses are discussed. Sim-
ulation methods are divided into four main approaches: using a marginally specified
joint probability distribution, using mixture distributions, dichotomizing non-binary
random variables, and using a conditionally specified distribution. Approaches using
a completely specified joint probability distribution tend to be more computationally
intensive and require determination of distributional properties.Mixturemethods can
involve mixtures of discrete variables only, mixtures of continuous variables only,
and mixtures involving both continuous and discrete variables. Methods that involve
discretizing non-binary variables most commonly use normal or uniform variables,
but some use count variables such as Poisson random variables. Approaches using a
conditional specification of the response distribution are the most general, and allow
for the greatest range of autocorrelation to be simulated. The chapter concludes with
a discussion of implementations available using R software.

1 Introduction

Correlated binary data occur frequently in practice, across disciplines such as health
policy analysis, clinical biostatistics, econometric analyses, and education research.
For example, health policy researchers may record whether or not members of a
household have health insurance; econometriciansmaybe interested inwhether small
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businesses within various urban districts have applied for financial assistance; higher
education researchers might study the probabilities of college attendance for students
from a number of high schools. In all of these cases the response of interest can be
represented as a binary outcome, with a reasonable expectation of autocorrelation
among those responses. Correspondingly, analysis of correlated binary outcomes
has received considerable and long-lasting attention in the literature (Stiratelli et al.
1984; Zeger and Liang 1986; Prentice 1988; Lee and Nelder 1996; Molenberghs and
Verbeke 2006). The most common models fall under the class of correlated binary
logistic regression modeling.

While appropriately developed logistic regressionmodels include asymptotic esti-
mator properties, Monte-Carlo simulation can be used to augment the theoretical
results of such large-sample distributional properties.Monte-Carlo simulation can be
used to confirm such properties, and perhaps more importantly, simulation methods
can be used to complement large-sample distributional properties with small-sample
results. Therefore it is important to be able to simulate binary responses with speci-
fied autocorrelation so that correlated binary data models can benefit from simulation
studies.

Throughout the chapter, the interest will be in simulating correlated binary out-
comes, Yi j , where i indicates a cluster of correlated responses and j enumerates the
responses. It will be assumed that the simulated outcomes have specified marginal
probabilities,πi j , and pairwise autocorrelation, ρi j,ik . The term “cluster” will be used
to refer to a homogenous group of responses known to have autocorrelation, such
as an individual in a longitudinal study or a group in a correlated study. For many
of the algorithms presented in this discussion, a single cluster will be considered for
simplicity, in which case the first subscript of the Yi j will be omitted and Yi , πi , and
ρi j will be used instead. Some methods will additionally require the specification of
joint probabilities, higher-order correlations, or predictors.

1.1 Binary Data Issues

There are a number of important factors to consider when developing or evaluating a
correlated data simulation technique. Common issues include computational feasi-
bility or simplicity, the incorporation of predictors or covariates, variation of parame-
ters between and within clusters, and the ability to effectively control expectations,
variation, and autocorrelation. For binary data in particular, there are a number of
additional concerns that are not relevant to the more traditional normal, continuous
data generation. Simulation of binary responses is typically based on a probability
of interest, or the expectation of the Bernoulli distribution. Many authors have noted
that the pairwise joint probabilities for binary data, πi, j = P(Yi = 1,Y j = 1), are
restricted by the marginal probabilities, according to,

max(0, πi + π j − 1) ≤ πi, j ≤ min(πi , π j ),
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which imposes restrictions on joint distributions according to the desired marginal
probabilities. In addition, it is necessary to properly account for the inherent mean-
variance relationship associatedwithBernoulli data,Var(Yi ) = πi (1 − πi ), imposing
further restrictions on higher-order moments based on the desired marginal proba-
bilities.

Manymethods of simulating correlated binary data suffer from restricted ranges of
produced autocorrelation, which should typically span (−1, 1). For correlated binary
outcomesY1, . . . ,YN withmarginal expectationsπ1, . . . , πN , Prentice (1988) argued
that the pairwise correlation between any two responses Yi and Y j must lie within
the range (l, u), where

l = max
(
−√

(πiπ j )/(1 − πi )(1 − π j ),−
√

(1 − πi )(1 − π j )/(πiπ j )
)

,

u = min
(√

πi (1 − π j )/π j (1 − πi ),
√

π j (1 − πi )/πi (1 − π j )
)

,

(1)

to satisfy the requirements for the joint distribution. This implies that, depending
on the desired marginal probabilities, using a fully specified joint probability distri-
bution can lead to simulated values with restricted ranges of pairwise correlation.
The restrictions of Eq. 1 can be counterintuitive to researchers who are used to the
unconstrained correlation values of normal variables.

Some methods of simulating correlated binary outcomes struggle to control
changes in probabilities across clusters of correlated data. Due to the typically non-
linear nature of the relationships between response probabilities and predictors,many
methods also fail to incorporate predictors into data simulation. These issues, among
others, must be considered when developing and selecting a method for simulating
correlated binary data.

This chapter presents a thorough discussion of existing methods for simulating
correlated binary data. The methods are broadly categorized into four groups: cor-
related binary outcomes produced directly from a fully specified joint probability
distribution, from mixtures of discrete or continuous variables, from dichotomized
continuous or count variables, and from conditional probability distributions. The
oldest literature is available for fully specified joint probability distributions, but often
thesemethods are computationally intensive and require specification of higher-order
probabilities or correlations at the outset.Mixture approaches have been used to com-
bine products of binary variables to induce the desired autocorrelation, while other
mixtures involving continuous variables require dichotomization of the resulting val-
ues. Dichotomizing normal or uniform variables is a widely implemented approach
to producing binary data, although less well-known approaches have also been pur-
sued, such as dichotomizing counts. Conditional specification of a binary distribution
typically makes use of “prior” binary outcomes or predictors of interest, and tends
to lead to the greatest range of simulated autocorrelation. Each of these methods for
generating correlated binary data will be discussed through a chronological perspec-
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tive, with some detail provided and some detail left to the original publications. The
chapter concludes with general recommendations for the most effective binary data
simulation methods.

2 Fully Specified Joint Probability Distributions

Themethod for simulating correlated binary outcomeswith the longest-tenured pres-
ence in the literature, is full specification of a joint probability distribution for cor-
related binary variates. The joint pdf can either be written explicitly in closed form,
or derived by exhaustive listing of possible outcomes and associated probabilities.
In all cases the generation of data relies on the method of Devroye (1986).

2.1 Simulating Binary Data with a Joint PDF

Given a joint probability density function for any type of binary data, correlated or
independent, Devroye (1986) described an effective method for generating appropri-
ate sequences of binary outcomes. Assume a joint pdf has been fully specified for the
binary random vector YT = (Y1, . . . ,YN ), such that marginal probabilities can be
calculated for any combination of binary outcomes. For finite N , probabilities can be
calculated for all 2N possible outcome vectors, denoted p0, . . . , p2N−1. Realizations
for the random vector Y can be generated according to the following algorithm.

Generating Binary Values with a Joint PDF

1. Order the probabilities from smallest to largest, p(0), . . . , p(2N−1).
2. Define cumulative values z j according to:

z0 = 0,

z j = z j−1 + p( j),

z2N−1 = 1.

3. Generate a standard uniform variate U on (0, 1).
4. Select j such that z j ≤ U < z j+1.
5. The random sequence is the binary representation of the integer j .

The method is relatively simple, relying on calculating probabilities associated with
all possible N -dimensional binary sequences, and generating a single random uni-
form variable to produce an entire vector of binary outcomes. Devroye (1986) has
argued that this method produces appropriate binary sequences according to the pdf
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provided, and themethod is relied on extensively in situations inwhich a joint pdf can
be constructed. In fact, relying on this algorithm,many authors have pursuedmethods
of constructing a joint pdf as a means to generate vectors of binary responses.

2.2 Explicit Specification of the Joint PDF

Simulation of correlated binary outcomes is generally thought to begin with Bahadur
(1961). Bahadur (1961) presented a joint pdf for N correlated binary random vari-
ables as follows. Let yi indicate realizations of binary variables, π = P(Yi = 1)
represent the constant expectation of the binary variables, all equivalent, and ρi j

be the autocorrelation between two variables Yi and Y j . Then the joint pdf can be
written,

f (y1, . . . , yN ) = 1 +
∑

i �= j
ρi j (−1)(yi+y j )π(2−yi−y j )(1 − π)(yi+y j )

π(1 − π)
.

While Bahadur (1961) expressed the joint pdf in terms of lagged correlations for
an autoregressive time series, the idea expands generally to clustered binary data. In
practice it is necessary to estimate range restrictions for the autocorrelation to ensure
f (y1, . . . , yN ) ∈ (0, 1). These restrictions depend on values of π , and are typically
determined empirically (Farrell and Sutradhar 2006). Using the algorithmofDevroye
(1986), the model of Bahadur (1961) can be used to simulate values for a single
cluster or longitudinal subject, then repeated for additional clusters. This allows the
probability π to vary across clusters, however, π is assumed constant within clusters,
reducing the ability to incorporate effects of covariates. Most crucially, the pdf given
by Bahadur (1961) will become computationally burdensome for high-dimensional
data simulations (Lunn and Davies 1998; Farrell and Sutradhar 2006).

2.3 Derivation of the Joint PDF

Instead of relying on the joint pdf of Bahadur (1961), authors have pursued the
construction of joint probability distributions not according to a single pdf formula,
but instead by using desired properties of the simulated data to directly calculate all
possible probabilities associated with N -dimensional sequences of binary outcomes.
Often these methods involve iterative processes, solutions to linear or nonlinear
systems of equations, and matrix and function inversions. They are computationally
complex but provide complete information about the distribution of probabilities
without using a closed-form pdf.

Lee (1993) introduced a method that relies on a specific copula distribution, with
binary variables defined according to a relationship between the copula parameters
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and the desired probabilities and correlation for the simulated binary responses.
A copula (Genest and MacKay 1986a, b) is a multivariate distribution for random
variables (X1, . . . , XN ) on the N -dimensional unit space, such that each marginal
distribution for Xi is uniform on the the domain (0, 1). The variables X1, . . . , XN

can be used to generate binary variables Y1, . . . ,YN by dichotomizing according to
Yi = I (Xi > πi ), where πi is the desired expectation of the binary variable Yi and
I () takes the value of 1 for a true argument and 0 otherwise. However, Lee (1993)
did not use a simple dichotomization of continuous variables.

In order to extend this idea to allow for autocorrelation, Lee (1993) proposed
using the copula with exchangeable correlation, the Archimidian copula proposed
byGenest andMacKay (1986a). Use of such a copula will induce Pearson correlation
between any two random binary variables Yi and Y j given by,

ρi j = π0,0 − πiπ j√
πiπ j (1 − πi )(1 − π j )

, (2)

where π0,0 is the joint probability that both variables Yi and Y j take the value 0.
Because of the restriction that π0,0 ≤ min(πi , π j ), it follows that π0,0 > πiπ j and
therefore the induced Pearson correlation will always be positive when this method
is applied. The method of Lee (1993) requires the correlation of Eq.2 to be constant
within clusters.

Constructing the Joint Distribution by Archimidian Copula

1. For a single cluster, determine marginal probabilities π1, . . . , πN for cor-
related binary variables Y1, . . . ,YN with desired constant autocorrelation
ρ.

2. A value for the Archimidian copula distribution parameter � can be cal-
culated based on the values of πi and ρ. The parameter � takes values
on (0, 1], where a value of 1 indicates independence, while as � → 0 the
Kendall correlation converges to 1.

3. Using the Archimidian copula distribution, solve linearly for the joint
probabilities of Y1, . . . ,YN with respect to the binary representation of
each integer j , where 0 ≤ j ≤ 2N − 1,

Pj = P(Y1 = j1, . . . ,YN = jN ), (3)

where j1 . . . jN is the binary representation of j . Calculation of this prob-
ability using the Archimidian copula has closed form but requires compu-
tation of the inverse of a CDF-like function.

4. Given the probabilities P0, P2N−1, simulate a binary sequence according
to the algorithm of Devroye (1986).

5. Repeat for additional clusters.
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The method of Lee (1993) allows inclusion of predictors when determining the
marginalπi ,which clearly allows these probabilities to varywithin clusters.However,
the method is restricted to positive, exchangeable autocorrelation that cannot vary
within groups, and requires the solution to numerous systems of equations and the
inverse of a CDF-like function.

Kang and Jung (2001) discussed an alternative to this method such that the prob-
abilities Pj can be obtained by solving a nonlinear system of equations relating Pj

to the first two desired moments, πi and the correlation Corr(Yi ,Y j ) = ρi j . How-
ever, the necessity of solving a system of nonlinear equations does not decrease the
computational complexity of the algorithm as compared to the copula approach.

The method of Gange (1995) simplifies the method of Lee (1993) but can add
computational complexity. Suppose that, in addition to specifying the desired mar-
ginal probabilities πi associated with the correlated binary variables, Yi , pairwise
and higher-order joint probabilities are also specified. That is, joint probabilities
πi, j = P(Yi = yi ,Y j = y j ) and higher-order joint probabilities πi1,...,ik = P(Yi1 =
yi1 , . . . ,Yik = yik ) can be specified, up to order k. Given such probabilities, a full
joint probability density function is constructed through the Iterative Proportional
Fitting algorithm.

The main idea of the Iterative Proportional Fitting algorithm is to equate deriva-
tion of the joint pdf to fitting a log-linear model to a contingency table of order 2N ,
including interactions up to order k. Each pairwise or higher-order joint probability
is treated as a constraint on the implicit contingency table, and has an associated
nonlinear equation. Solving this system of nonlinear equations corresponding to the
higher-order joint probabilities is equated to the standard likelihood-based solution
to log-linear model fitting. Predicted values from the log-linear model give the prob-
abilities associated with all possible outcome combinations.

Constructing the Joint Distribution using the Iterative Proportional Fit-
ting Algorithm

1. For a single cluster, specify the desired marginal probabilities πi , pairwise
probabilities πi, j , and up to k-order joint probabilities πi1,...,ik .

2. Construct a log-linear model with interactions up to order k corresponding
to the constraints specified by the probabilities up to order k.

3. Fit the log-linear model to obtain estimated probabilities corresponding to
the joint marginal pdf.

4. Simulate binary values according to the algorithm of Devroye (1986).
5. Repeat for additional clusters.

The method of Gange (1995) allows for covariates to be included in determining ini-
tial probabilities and pairwise or higher-order joint probabilities, and Gange (1995)
describes how the pairwise probabilities can be connected to the working correlation
structure of the Generalized Estimating Equations, allowing for specific correlation
structures to be derived. However, specific correlation structures are not explicitly
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exemplified by Gange (1995). Further, this method requires an iterative procedure to
solve a system of nonlinear equations, which can become computationally burden-
some with increased dimension of each cluster.

3 Specification by Mixture Distributions

Many approaches to simulating correlated binary variables rely on the properties
of random variables defined as mixtures of other random variables with various
distributions. Authors have pursued mixtures of discrete distributions, continuous
distributions, and combinations of discrete and continuous distributions. Methods
relying solely on mixtures of continuous distributions tend to struggle to represent
correlated binary responses.

3.1 Mixtures Involving Discrete Distributions

Many attempts to circumvent the computational burden of the methods of Bahadur
(1961), Lee (1993), and Gange (1995) have turned to generating binary responses
through mixtures of discrete random variables. Kanter (1975) presented a method
that directly uses autoregression to simulate properly correlated binary outcomes.
Suppose it is of interest to simulate a series of binary values Yi with constant expec-
tation π . Kanter (1975) proposed to use the model,

Yi = Ui
[
Yi−1 ⊕ Wi

] + (1 −Ui )Wi ,

where⊕ indicates additionmodulo 2,Ui can be taken to beBernoulli with probability
πU and Wi can be taken to be Bernoulli with probability πW = (π(1 − πU ))/(1 −
2ππU ). Assuming Yi−1, Ui , and Wi to be independent, it can be shown that all Yi
have expectation π and that the autocorrelation between any two outcomes is

Corr(Yi ,Y j ) =
(

πU (1 − 2π)

1 − 2ππU

)|i− j |
.

The method of Kanter (1975) requires πU ∈ (0,min((1 − π)/π, 1)), and includes
restrictions on the autocorrelation in the simulated data based on the probabilities
used. In particular, Farrell and Sutradhar (2006) showed that no negative autocor-
relation can be generated with any probability π chosen to be less than or equal to
0.50. In addition, this method does not allow for easy variation of probabilities within
clusters or series.

Use of a mixture of binary random variables was updated by Lunn and Davies
(1998), who proposed a simple method for generating binary data for multiple clus-
ters simultaneously, and for various types of autocorrelation structure within groups.
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Suppose the intention is to simulate random binary variables Yi j such that the expec-
tation of each is cluster-dependent, πi , and the autocorrelation can be specified. First
assume a positive, constant correlation ρi is desired within clusters. Then simulate
binary values according to the equation,

Yi j = (1 −Ui j )Wi j +Ui j Zi , (4)

where Ui j can be taken to be Bernoulli with probability πU = √
ρi , and both Wi j

and Zi can be Bernoulli with success probability πi , all independent. Then it can be
shown that E[Yi j ] = πi andCorr(Yi j ,Yik) = ρi . Lunn andDavies (1998) explain how
to adjust their method to allow for additional correlation structures within clusters,
by changing the particular mixture from Eq.4,

Yi j = (1 −Ui j )Wi j +Ui j Zi (Exchangeable),

Yi j = (1 −Ui j )Wi j +Ui jYi, j−1 (Autoregressive),

Yi j = (1 −Ui j )Wi j +Ui jWi, j−1 (M-Dependent).

This algorithm requires constant outcome probabilities within clusters. In order to
accommodate varying probabilities within clusters, Lunn and Davies (1998) pro-
posed a simple transformation of generated binary responses,

Ỹi j = Ai jYi j ,

where Ai j is taken to be Bernoulli with success probability αi j , independent of all
other simulated variables. Then the Ỹi j satisfy the previous distributional require-
ments with E[Ỹi j ] = αi jmax(πi ). Lunn and Davies (1998) acknowledge that this
multiplicative transformation imposes an additional multiplicative correction to the
correlation between generated binary values. While this transformation allows the
probabilities to vary within clusters, it does not easily incorporate predictors into
this variation, instead accommodating known success probabilities that may differ
across responses within clusters.

Generating Binary Values using a Binary Distribution Mixture
1. For a single cluster i , determine the desired probability πi and autocorre-

lation structure, along with cluster-dependent correlation ρi .
2. Depending on the autocorrelation structure, generate Ui j , Wi j , and possi-

bly Zi .
3. Calculate Yi j using the appropriate mixture.
4. If necessary, transform Yi j to Ỹi j to accommodate varying probabilities

within-cluster.
5. Repeat for other clusters.
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The issue of allowing within-cluster variation of success probabilities was
addressed by Oman and Zucker (2001) in a method that is truly a combination
of mixture variable simulation and dichotomization of continuous values. Oman and
Zucker (2001) argued that the cause of further restricted ranges of autocorrelation in
simulated binary data, beyond the limits from Eq.1 given by Prentice (1988), is the
combination of varying probabilities within clusters and the inherent mean-variance
relationship of binary data. Assume the interest is in simulating binary variables Yi j
with probabilities πi j , varying both between and within clusters. To define the joint
probability distribution of any two binary outcomes Yi j and Yik , define

P(Yi j × Yik = 1) = (1 − ν jk)πi jπik + ν jkmin(πi j , πik), (5)

where ν jk is chosen to reflect the desired correlation structure within groups, as fol-
lows. The joint distribution specified by Eq.5 allows the correlation between any two
responses within a cluster, denoted ρ jk , to be written ρ jk = ν jk × max(ρst ), where
the maximum is taken over all values of correlation within cluster i . The process
of generating binary values is constructed to accommodate this joint distribution as
follows. Define responses according to

Yi j = I (Zi j ≤ θi j ),

where θi j = F−1(πi j ) for any continuousCDF F , and Zi j is defined as an appropriate
mixture. Similarly to the method of Lunn and Davies (1998), Oman and Zucker
(2001) provide mixtures for common correlation structures,

Zi j = Ui j Xi0 + (1 −Ui j )Xi j (Exchangeable),

Zi j = Ui j Xi, j−1 + (1 −Ui j )Xi j (Moving Average),

Zi j = Ui j Zi, j−1 + (1 −Ui j )Xi j (Autoregressive),

where Ui j can be taken to be Bernoulli with probability πU = √
ν jk , and all Xi j are

independently distributed according to the continuous distribution F . The different
correlation structures are induced by both adjusting the mixture as given above and
also by defining ν jk accordingly. For example, constant ν across all i, j with the first
mixture will produce exchangeable correlation among the binary outcomes, while
choosing νi j = γ | ji− j2| with the thirdmixturewill produce autoregressive correlation.

Generating Binary Values using Binary and Continuous Distribution
Mixture
1. For a single cluster i , determine the marginal probabilities πi j .
2. Decide the target correlation structure.
3. Based on the target correlation structure, select ν jk and the mixture func-

tion accordingly.
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4. Generate Ui j as Bernoulli, Xi j according to continuous F , and calculate
Zi j and θi j .

5. Define each outcome as Yi j = I (Zi j ≤ θi j ).
6. Repeat for additional clusters.

Oman and Zucker (2001) noted that covariates can be incorporated by defining
θi j = xTi jβ as the systematic component of a generalized linear model and taking
F−1 to be the associated link function. It is an interesting idea to use the inverse link
function from a generalized linear model to help connect predictors to the determina-
tion of whether the binary realization will be 0 or 1. However, the method described
continues to suffer from restricted ranges of autocorrelation, most notably that the
correlations between binary responses must all be positive.

3.2 Mixtures Involving Continuous Distributions

Instead of using proper binary distributions, non-normal values can be simulated
using linear combinations of standard normal variables to represent the known
moment-based properties of the desired data distribution. Many such methods are
based on the work of Fleishman (1978), and later extended (Headrick 2002a, 2010,
2011). In general, the idea is to simulate any non-normal distribution as a polynomial
mixture of normal variables,

Y =
m∑

i=1

ci Z
(i−1),

where Y indicates the desired random variable, Z is a standard normal random
variable, and the ci represent coefficients chosen according to the desired distribution
of Y . Fleishman (1978) derived a system of nonlinear equations that, given the target
distribution mean, variance, skewness, and kurtosis, could be solved for coefficients
c1, c2, c3, and c4 to produce the third-order polynomial approximation to the desired
distribution. The intention is to use an expected probability π to estimate those
first four moments for the Bernoulli distribution, and approximate accordingly using
standard normals. This process has been extended numerous times, including to
multivariate data (Vale and Maurelli 1983), to higher-order polynomials (Headrick
2002a), to using percentiles in place of standard moments to reflect instead the
median, the inter-decile range, the left-right tail-weight ratio, and the tail-weight
factor (Karian and Dudewicz 1999), and to control autocorrelation in multivariate
data (Koran et al. 2015).

The Fleishman process and similar methods derived from it suffer from some
consistent issues. First, the systems of nonlinear equations have a limited range of
solutions for the necessary coefficients, and consequently can only be used to rep-
resent limited ranges of values for moments or percentile statistics. Therefore the
ranges of probabilities and correlation values in the simulated data will be limited.
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Secondly, the resulting mixture random variable is a power function of standard nor-
mal variables, which generally will not reflect the true mean-variance relationship
necessary for binary data.While the values ofmean and variance using the Fleishman
method can in some cases reflect those of an appropriate sample, the dynamic rela-
tionship between changing mean and variation will not be captured in general. Thus
as the mean changes, the variance generally will not show a corresponding change.
Finally, themethod does not readily account for the effects of predictors in simulating
responses. In short, such methods are poorly equipped to handle independent binary
data, let alone correlated binary outcomes.

4 Simulation by Dichotomizing Variates

Perhaps the most commonly implemented methods for simulating correlated binary
outcomes are those that involve dichotomization of other types of variables. Themost
frequent choice is to dichotomize normal variables, although defining thresholds for
uniform variables is also prevalent.

4.1 Dichotomizing Normal Variables

Many methods of dichotomizing normal variables have been proposed. The method
of Emrich and Piedmonte (1991), one of the most popular, controls the probabilities
and pairwise correlations of resulting binary variates. Assume it is of interest to
simulate binary variablesYi with associated probabilitiesπi and pairwise correlations
given byCorr(Yi ,Y j ) = ρi j . Begin by solving the following equation for the normal
pairwise correlation, δi j , using the bivariate normal CDF Φ,

Φ(z(πi ), z(π j ), δi j ) = ρi j

√
πi (1 − πi )π j (1 − π j ) + πiπ j ,

where z() indicates the standard normal quantile function. Next generate one N -
dimensional multivariate normal variable Zwith mean 0 and correlation matrix with
components δi j . Define the correlated binary realizations using

Yi = I (Zi ≤ z(πi )).

Emrich and Piedmonte (1991) showed that the sequence Y1, . . . ,YN has the appro-
priate desired probabilities πi and correlation values ρi j .
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Generating Binary Values by Dichotomizing Normals

1. For a single cluster, determine the marginal probabilities πi and autocor-
relation values ρi j .

2. Using the bivariate normal CDF, solve for normal pairwise correlation
values δi j .

3. Generate one N -dimensional normal variable Z with correlation compo-
nents given by δi j .

4. Define the binary values as Yi = I (Zi ≤ z(πi )), where z() is the standard
normal quantile function.

5. Repeat for additional clusters.

This method is straightforward and allows probabilities to vary both within and
between clusters. A notable disadvantage of this method is the necessity of solving
a system of nonlinear equations involving the normal CDF, which increases compu-
tational burden with large-dimensional data generation.

4.2 Iterated Dichotomization

Headrick (2002b) proposed a method of simulating multiple clusters of correlated
binary data using JMASM3, an iterative method of dichotomizing two sets of binary
variables in two steps. This method is unique in that it allows for autocorrelation
both within and between clusters of binary data.

Assume it is of interest to simulate N clusters of binary data with correlation
within clusters denoted by ρYi j ,Yik , and correlation between clusters by ρYi j ,Ykl . Given
probabilities π1, . . . , πN , correlated binary variables X1, . . . , XN can be defined
using random uniform variables U1, . . . ,UN as follows. Define X1 = I (U1 < π1).
Define successive Xi as

Xi =
⎧
⎨

⎩

X1, Ui < πi

X1 + 1, Ui > πi and X1 = 0
1 − X1, Ui > πi and X1 = 1.

This generates a cluster of binary values, each correlated with X1. Next simulate
binary values Yi j , where i indicates the cluster and j indicates individual outcomes,
as follows, where the Ui j are independent uniform variables on (0, 1),

Yi j =
⎧
⎨

⎩

Xi , Ui j < πi j

Xi + 1, Ui j > πi j and Xi = 0
1 − Xi , Ui j > πi j and Xi = 1.
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Headrick (2002b) shows that the threshold values πi j can be obtained by solving
a nonlinear system in terms of the specified correlation values ρYi j ,Yik and ρYi j ,Ykl .
The order of the nonlinear system corresponds to the number of correlation values
specified at the outset. Headrick (2002b) also provides expressions for the marginal
probabilities P(Yi j = 1) in terms of the first-stage probabilities πi and the second-
stage thresholds πi j ; however, it is not clear that these marginal probabilities can be
controlled from the start.

Generating Binary Values by Iterated Dichotomization

1. Determine the autocorrelation desired within and between N clusters of
binary responses, and select first-stage probabilities π1, . . . , πN .

2. Simulate X1 as I (U1 < π1), whereU1 is a random uniform realization on
(0, 1).

3. Generate the remaining first-stage binary outcomes Xi according to X1

and corresponding random uniform variables Ui .
4. Solve for the second-stage thresholds, πi j , given the desired within and

between correlation values, ρYi j ,Yik and ρYi j ,Ykl , respectively.
5. Generate the second-stage binary outcomes Yi j according to Xi and cor-

responding random uniform variables Ui j .

The iterated dichotomization algorithm allows for control of autocorrelation both
within and between clusters, and does not require complete specification of the
joint probability distribution. However, it does not clearly accommodate predictors
or reduce in complexity for common correlation structures; it does not allow easy
specification of themarginal binary outcomeprobabilities; and it requires the solution
of a potentially high-dimensional system of nonlinear equations.

4.3 Dichotomizing Non-normal Variables

The method of Park et al. (1996) simulates correlated binary values using a
dichotomization of counts, and in the process avoids the necessity of solving any
system of nonlinear equations. Assume an interest in generating N correlated binary
variables Y1, . . . ,YN , with probabilities π1, . . . , πN and associated pairwise correla-
tions ρi j . Begin by generating N counts Z1, . . . , ZN using a collection of M Poisson
random variables X1(λ1), . . . , XM(λM), as linear combinations,
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Z1 =
∑

i∈S1
Xi (λi ),

Z2 =
∑

i∈S2
Xi (λi ),

...

ZN =
∑

i∈SN
Xi (λi ).

Notice that each count Zi is a combination of a specific set of the Poisson ran-
dom variables, denoted by Si . The number of Poisson variables, M , the associated
means, λi , and the sets used in the sums, Si , are all determined algorithmically based
on the desired probabilities and correlations. Each binary value is then defined by
dichotomizing, Yi = I (Zi = 0).

Park et al. (1996) describe the determination of M , λi , and Si as follows. The
Poisson means λi can be constructed as linear combinations of parameters αi j , 1 ≤
i, j ≤ N . The αi j can be calculated based on the desired probabilities and pairwise
correlations,

αi j = ln
(
1 + ρi j

√
(1 − πi )(1 − π j )/(πiπ j )

)
.

Given all of the αi j , define λk to be the smallest positive αi j , i, j ≥ k, until the first
mean λL matches the magnitude of the largest positive αi j . Then set M = L , let each
mean λi remain as determined by the αi j , and define each summation set Si as those
means composed of positive αi j (Park et al. (1996).

Generating Binary Values by Dichotomizing Linear Poisson Mixtures
1. For a single cluster, determine the individual probabilities πi and pairwise

correlations ρi j .
2. Using the probabilities and correlation values, calculate the parameters

αi j .
3. Using the parameters αi j , determine the number of Poisson variables, M ,

the Poisson means, λi , and the summation sets, Si , for each count variable
Zi .

4. Calculate Z1, . . . , ZN , and define the binary responses as Yi = I (Zi = 0).
5. Repeat for additional clusters.

The method of Park et al. (1996) is computationally efficient and does not require
solving systems of nonlinear equations. It allows for varying probabilities and cor-
relation values within and between clusters, and can be adjusted to incorporate
covariates into the probabilities. However, there is still a restriction on the range
of correlations available through this algorithm.



100 T.L. Lalonde

5 Conditionally Specified Distributions

Recent attention has been paid to conditionally specifying the distribution of corre-
lated binary variables for the purposes of simulation. While the mixture distributions
can be viewed as conditional specifications, in such cases discussed Sect. 3 the mix-
tures were defined so that the marginal distributions of the resulting binary variables
were completely specified. In this section the discussion focuses on situations with-
out full specification of the marginal outcome distribution. Instead, the distributions
are defined using predictor values or prior outcome values.

5.1 The Linear Conditional Probability Model

Qaqish (2003) introduced a method of simulating binary variates using
autoregressive-type relationships to simulate autocorrelation. Each outcome value
is conditioned on prior outcomes, a relationship referred to as the conditional lin-
ear family. The conditional linear family is defined by parameter values that are
so-called reproducible in the following algorithm, or those that result in conditional
means within the allowable range (0, 1).

Suppose the interest is in simulating correlated binary variables Yi with associ-
ated probabilities πi , and variance-covariance structure defined for each response by
its covariation with all previous responses, si = Cov([Y1, . . . ,Yi−1]T ,Yi ). Qaqish
(2003) argued that the expectation of the conditional distribution of any response Yi ,
given all previous responses, can be expressed in the form,

E[Yi |[Y1, . . . ,Yi−1]T ] = πi + κT
i

([Y1, . . . ,Yi−1]T − [π1, . . . , πi−1]T
)

= πi +
i−1∑

j=1

κi j (Y j − π j ),

(6)

where the components of κ i are selected corresponding to the desired variance-
covariance structure according to

κ i = [Cov([Y1, . . . ,Yi−1]T )]−1si .

The correlated binary variables are then generated such that Y1 is Bernoulli with
probability π1, and all subsequent variables are random Bernoulli with probability
given by the conditional mean in Eq.6. It is straightforward to show that such a
sequencewill have the desired expectation [π1, . . . , πN ]T and autocorrelationdefined
by the variance-covariance si . Qaqish (2003) provides simple expressions for κi j to
produce exchangeable, auto-regressive, and moving average correlation structures,
as follows,
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κi j = ρ

1 + (i − 1)ρ

(
Vii

Vj j

)1/2

(Exchangeable),

λi = πi + ρ(yi−1 − πi−1)

(
Vii

Vi−1,i−1

)1/2

(Autoregressive),

κi j = β j − β− j

β−i − β i

(
Vii

Vj j

)1/2

(Moving Average),

where Vii represents diagonal elements of the response variance-covariance,
λi = E[Yi |[Y1, . . . ,Yi−1]T ] represents the conditional expectation, and β = [(1 −
4ρ2)1/2 − 1]/2ρ with ρ the decaying correlation for autoregressive models and the
single time-lag correlation for moving average models.

Generating Binary Values by the Linear Conditional Probability Model

1. For a single cluster, determine the individual probabilities πi .
2. Select the desired correlation structure, and the corresponding constants

κ i and conditional means λi .
3. Generate the first response, Y1, as a random Bernoulli with success prob-

ability π1.
4. Generate subsequent responses according to the appropriate conditional

probability.
5. Repeat for additional clusters.

An interesting property of the method presented by Qaqish (2003) is the nature of
including prior binary outcomes. The terms κi j (Y j − π j ) show that a binary response
variable is included relative to its expectation and transformed according to a constant
related to the desired autocorrelation. While this method does not explicitly include
predictors in the simulation algorithm, predictors could be included as part of each
expected value πi . Themethod clearly allows for both positive and negative values of
autocorrelation, unlike many other proposed methods, but restrictions on the values
of the autocorrelation remain as discussed by Qaqish (2003).

5.2 Non-linear Dynamic Conditional Probability Model

The most general method in this discussion is based on the work of Farrell and
Sutradhar (2006), in which a nonlinear version of the linear conditional probability
model proposed by Qaqish (2003) is constructed. Themodel of Farrell and Sutradhar
(2006) is conditioned not only on prior binary outcomes in an autoregressive-type
of sequence, but also on possible predictors to be considered in data generation.
This approach allows for the inclusion of covariates in the conditional mean, allows
for the probabilities to vary both between and within clusters, and allows for the
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greatest range of both positive and negative values of autocorrelation. However, the
nonlinear conditional probability approach of Farrell and Sutradhar (2006) does not
explicitly provide methods for controlling the probabilities and correlation structure
at the outset of data simulation.

Assume an interest in simulating correlated binary variables, Yi , where each out-
come is to be associatedwith a vector of predictors, xi , through a vector of parameters,
β. Farrell and Sutradhar (2006) proposed using the non-linear conditional model,

E[Yi |[Y1, . . . ,Yi−1], xi ] =
exp(xTi β +

i−1∑

k=1
γkYk)

1 + exp(xTi β +
i−1∑

k=1
γkYk)

. (7)

Instead of beginning with desired probabilities and pairwise correlations or an asso-
ciated correlation structure, the method of Farrell and Sutradhar (2006) focuses on
the model relating predictors to the conditional response probability. This allows
the greatest flexibility in producing values of correlation at the expense of control
of the correlation structure. Farrell and Sutradhar (2006) show that, for a simple
auto-regression including only the immediately previous response Yi−1, the mar-
ginal expectation and correlation can be calculated based on the nonlinear dynamic
model,

μi = E[Yi ] = P(Yi = 1|Y0 = 1) + E[Yi−1]
[
P(Yi = 1|Y1 = 1) − P(Yi = 1|Y0 = 1)

]
,

Corr(Yi , Y j ) =
√

μi (1 − μi )

μ j (1 − μ j )

∏

k∈(i, j]

[
P(Yk = 1|Y1 = 1) − P(Yk = 1|Y0 = 1)

]
.

Because the conditional probabilities P(Yk = 1|Y1 = 1) and P(Yk = 1|Y0 = 1) can
vary within (0, 1), Farrell and Sutradhar (2006) argue that the marginal correlation
can vary unrestricted between −1 and 1.

Generating Binary Values by the Nonlinear Dynamic Conditional
Probability Model
1. For a single cluster of correlated binary data, select predictors xi , coeffi-

cients β, and autoregressive coefficients γk .
2. Simulate Y1 as Bernoulli with probability π1 = (exp(xTi β))/(1 + exp

(xTi β)).
3. Simulate subsequent Yi according to the conditional probability E[Yi |

[Y1, . . . ,Yi−1], xi ].
4. Repeat for additional clusters.

The intuition behind such an approach is that the predictors xi and also the previous
outcome variables Y1, . . . ,Yi−1 are combined linearly but related to the conditional
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mean through the inverse logit function, as in Eq.7. The inverse logit function will
map any real values to the range (0, 1), thus avoiding the concern of reproducibility
discussed by Qaqish (2003).

6 Software Discussion

Few of the methods discussed are readily available in software. The R packages
bindata and BinNor utilize discretizations of normal random variables, but not
according to Emrich and Piedmonte (1991). The method of Emrich and Piedmonte
(1991) is implemented in the generate.binary() function within the MultiOrd pack-
age, and also within the functions of the mvtBinaryEP package.

The rbin() function in theSimCorMultRes package explicitly uses threshold values
to transform continuous values into binary values (Touloumis 2016). Touloumis
(2016) proposed defining the marginal distribution of each binary value according
to a CDF applied to the systematic component associated with a model,

P(Yi j = 1) = F(xTi jβ),

where F is a cumulative distribution function of a continuous random variable, and
xTi jβ is a linear combination of predictors and parameter values. Each binary outcome
is then defined according to Yi j = I (ei j ≤ xTi jβ), where ei j ∼ F and is independent
across clusters. While the method of Touloumis (2016) does clearly accommodate
predictors and allow probabilities to vary within clusters, it is not clear the limitations
on the range of autocorrelation, nor can the autocorrelation be easily controlled, as
with other methods.

The package binarySimCLF implements the method of Qaqish (2003). Authors
have individually implemented the methods of Park et al. (1996), Fleishman (1978),
and publications include code for various software, such as with Lee (1993) and
Headrick (2002b). However, there is a clear bias in available software: users prefer
dichotomization of normal or uniform random variables to produce binary data.

Table1 provides a brief summary of the simulation methods considered, along
with some common advantages and disadvantages of each class of algorithms.Meth-
ods requiring the full specification of the joint probability distribution, while allow-
ing complete control of the simulated data properties, tend to be complicated and
computationally expensive. Alternatively, the mixture methods tend to have sim-
pler algorithms and computational burden, and generally allow the user to specify
correlation structures at the outset. The method of Oman and Zucker (2001) would
seem to be the ideal such approach. Dichotomizing normal and uniform variables
remain the most commonly implemented methods for simulating correlated binary
outcomes, but most require computations involving systems of nonlinear equations.
The approach of Emrich and Piedmonte (1991) remains prevalent and, accepting the
computational burden, is an understandable method that allows easy control of cor-
relation structures. Methods involving conditionally defined distributions are more
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Table 1 Advantages and disadvantages of methods of correlated binary outcome simulation

Simulation type Prominent example

Fully specified joint distribution Lee (1993), using the Archimidian copula

Advantages

Control of probabilities, correlation, and higher-order moments

Disadvantages

Computationally expensive, nonlinear systems, function/matrix
inversions

Mixture distributions Oman and Zucker (2001), using a mixture of binary and
continuous variables

Advantages

Simple algorithms, controlled correlation structures

Disadvantages

Constant probabilities within clusters, no predictors

Dichotomizing variables Emrich and Piedmonte (1991), using dichotomized multivariate
normals

Advantages

Short algorithms, probabilities vary within clusters,

Correlation between clusters

Disadvantages

Nonlinear systems, computationally expensive

Conditional distributions Qaqish (2003), using the linear conditional probability model

Advantages

Widest range of correlations, controlled correlation structures,
predictors

Disadvantages

Complicated algorithms, requiring conditional means and
covariances

recent, and allow for the greatest range of correlations to be simulated. The algorithm
of Qaqish (2003) is an ideal example, with few disadvantages other than a slightly
limited range of correlation values, but allowing the inclusion of predictors, prior
outcomes, and easily specified common correlation structures.

References

Bahadur, R. R. (1961). A representation of the joint distribution of responses to n dichotomous
items. Stanford Mathematical Studies in the Social Sciences, 6, 158–168.

Devroye, L. (1986). Non-uniform random variate generation (1st ed.). Springer, New York.
Emrich, L. J., & Piedmonte, M. R. (1991). A method for generating high-dimensional multivariate
binary variates. The American Statistician: Statistical Computing, 45(4), 302–304.



Monte-Carlo Simulation of Correlated Binary Responses 105

Farrell, P. J., & Sutradhar, B. C. (2006). A non-linear conditional probability model for generating
correlated binary data. Statistics & Probability Letters, 76, 353–361.

Fleishman, A. I. (1978). A method for simulating non-normal distributions. Psychometrika, 43,
521–532.

Gange, S. J. (1995). Generating multivariate categorical variates using the iterative proportional
fitting algorithm. The American Statistician, 49(2), 134–138.

Genest, C., & MacKay, R. J. (1986a). Copules archimediennes et familles de lois bidimenionnelles
dont les marges sont donnees. Canadian Journal of Statistics, 14, 280–283.

Genest, C., & MacKay, R. J. (1986b). The joy of copulas: Bivariate distributions with uniform
marginals. The American Statistician, 40, 549–556.

Headrick, T. C. (2002a). Fast fifth-order polynomial transforms for generating univariate and mul-
tivariate non normal distributions. Computational Statistics & Data Analysis, 40, 685–711.

Headrick, T. C. (2002b). Jmasm3: A method for simulating systems of correlated binary data.
Journal of Modern Applied Statistical Methods, 1, 195–201.

Headrick, T. C. (2010). Statistical simulation: Powermethod polynomials and other transformations
(1st ed.). Chapman & Hall/CRC, New York.

Headrick, T. C. (2011). A characterization of power method transformations through l-moments.
Journal of Probability and Statistics, 2011.

Kang, S.H.,& Jung, S.H. (2001).Generating correlated binary variableswith complete specification
of the joint distribution. Biometrical Journal, 43(3), 263–269.

Kanter, M. (1975). Autoregression for discrete processes mod 2. Journal of Applied Probability,
12, 371–375.

Karian, Z. A., & Dudewicz, E. J. (1999). Fitting the generalized lambda distribution to data: A
method based on percentiles. Communications in Statistics: Simulation and Computation, 28,
793–819.

Koran, J., Headrick, T. C., & Kuo, T. C. (2015). Simulating univariate and multivariate no normal
distributions through the method of percentiles.Multivariate Behavioral Research, 50, 216–232.

Lee, A. J. (1993). Generating random binary deviates having fixed marginal distributions and spec-
ified degrees of association. The American Statistician: Statistical Computing, 47(3), 209–215.

Lee, Y., & Nelder, J. A. (1996). Hierarchical generalized linear models. Journal of the Royal
Statistical Society, Series B (Methodological), 58(4), 619–678.

Lunn, A. D., & Davies, S. J. (1998). A note on generating correlated binary variables. Biometrika,
85(2), 487–490.

Molenberghs, G., & Verbeke, G. (2006). Models for discrete longitudinal data (1st ed.). Springer.
Oman, S. D., & Zucker, D. M. (2001). Modelling and generating correlated binary variables. Bio-
metrika, 88(1), 287–290.

Park, C. G., Park, T., & Shin, D. W. (1996). A simple method for generating correlated binary
variates. The American Statistician, 50(4), 306–310.

Prentice, R. L. (1988). Correlated binary regression with covariates specific to each binary obser-
vation. Biometrics, 44, 1033–1048.

Qaqish, B. F. (2003). A family of multivariate binary distributions for simulating correlated binary
variables with specified marginal means and correlations. Biometrika, 90(2), 455–463.

Stiratelli, R., Laird, N., & Ware, J. H. (1984). Random-effects models for serial observations with
binary response. Biometrics, 40, 961–971.

Touloumis, A. (2016). Simulating correlated binary andmultinomial responses with simcormultres.
The Comprehensive R Archive Network 1–5.

Vale, C. D., & Maurelli, V. A. (1983). Simulating multivariate no normal distributions. Psychome-
trika, 48, 465–471.

Zeger, S. L.,&Liang,K.Y. (1986). Longitudinal data analysis for discrete and continuous outcomes.
Biometrics, 42, 121–130.



Quantifying the Uncertainty in Optimal
Experiment Schemes via Monte-Carlo
Simulations

H.K.T. Ng, Y.-J. Lin, T.-R. Tsai, Y.L. Lio and N. Jiang
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analysis. Moreover, the determination of the optimal experiment scheme is always
relying on asymptotic statistical theory. Therefore, the optimal experiment scheme
may not be optimal for finite sample cases. This chapter aims to provide a general
framework to quantify the sensitivity and uncertainty of the optimal experiment
scheme due to misspecification of the lifetime model. For the illustration of the
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evaluate the robustness of the optimal experiment scheme for progressive Type-II
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1 Introduction

In designing life-testing experiments for industrial and medical settings, experi-
menters always assume a parametric model for the lifetime distribution and then
determine the optimal experiment scheme by optimizing a specific objective func-
tion based on the assumed model. In most applications, the optimal experimental
design is model dependent because the optimality criterion is usually a function of
the information measures. Therefore, prior information about the unknown model
derived from physical/chemical theory, engineering pre-test results, or past experi-
ence with similar experimental units is needed to determine the optimal experiment
scheme in practice. However, this prior information may not be accurate and hence
the optimal experiment scheme may not perform as well as one expected. In other
words, the objective function may not be optimized when the optimal experiment
scheme based on inaccurate prior information is used. In addition, to determine the
optimal experiment scheme,we rely on the asymptotic statistical theory inmost cases.
For instance, A-optimality is developed to minimize the variances of the estimators
of the model parameters while these variances are always replaced by the asymp-
totic ones during the process of optimization. There is no guarantee that the optimal
experiment scheme obtained based on asymptotic theory can be more efficient than
a non-optimal experiment scheme in finite sample situations.

For these reasons, it is important to have a systematic procedure to quantify the
sensitivity and uncertainty of the optimal experiment scheme due to model misspec-
ification. It will be useful to see whether a proposed experiment scheme is robust
to model misspecification. If a design is indeed robust, it would then assure the
practitioners that misspecification in the model would not result in an unacceptable
change in the precision of the estimates of model parameters. In this chapter, we
discuss the analytical and Monte-Carlo methods for quantifying the sensitivity and
uncertainty of the optimal experiment scheme and evaluate the robustness of the
optimal experiment scheme.

Let θ be the parameter vector of lifetime distribution of test items. The com-
monly used procedures for the determination of the optimal experiment scheme
are described as follows: A-optimality, that minimizes the trace of the variance-
covariance matrix of the maximum likelihood estimators (MLEs) of elements of θ ,
provides an overall measure of variability from the marginal variabilities. It is par-
ticularly useful when the correlation between the MLEs of the parameters is low. It
is also pertinent for the construction of marginal confidence intervals for the para-
meters in θ .D-optimality, that minimizes the determinant of the variance-covariance
matrix of the MLEs of components of θ , provides an overall measure of variability
by taking into account the correlation between the estimates. It is particularly useful
when the estimates are highly correlated. It is also pertinent for the construction of
joint confidence regions for the parameters in θ . V -optimality, that minimizes the
variance of the estimator of lifetime distribution percentile.

In Sect. 2, we present the notation and general methods for quantifying the
uncertainty in the optimal experiment scheme with respect to changes in model.
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Then, in Sect. 3, we focus on progressive Type-II censoring with location-scale fam-
ily of distributions. The procedure for determining the optimal scheme with progres-
sive censoring and some commonly used optimal criteria are presented in Sects. 3.1
and 3.2, respectively. In Sect. 3.3, some numerical illustrations via analytical and
simulation approaches based on extreme value (Gumbel), logistic, and normal dis-
tributions are discussed. Discussions based on the numerical results are provided
in Sect. 3.4. A numerical example is presented in Sect. 4. Finally, some concluding
remarks are given in Sect. 5.

2 Quantifying the Uncertainty in the Optimal Experiment
Scheme

In a life-testing experiment, let the lifetimes of test items follow a family of statistical
model M . We are interested in determining the optimal experiment scheme that
optimizes the objective function Q(S,M0), where S denotes an experiment scheme
andM0 denotes the true model. In many situations, the determination of the optimal
experiment scheme requires a specification of the unknown statistical model M
and hence the optimal experiment scheme depends on the specified model M . For
instance, in experimental design of multi-level stress testing, (Ka et al, 2011) and
Chan et al. (2016) considered the extreme value regression model and derived the
expected Fisher information matrix. Consequently the optimal experiment schemes
obtained in Ka et al (2011) and Chan et al. (2016) are specifically for the extreme
value regression model, which may not be optimal for other regression models.
Here, we denote the optimal experiment scheme based on a specified model M
as S∗(M ). In the ideal situation, the model specified for the optimal experimental
scheme is the truemodel, i.e.,Q(S∗(M0),M0) = inf

S
Q(S(M0),M0) and S∗(M0) =

arg inf
S
Q(S(M0),M0).

On the other hand, in determining the optimal experiment scheme, experimenter
always relies on the asymptotic results which are derived based on the sample size
goes to infinity. Nevertheless, in practice, the number of experimental units can be
used in an experiment is finite and thus the use of the asymptotic theory may not
be appropriate. For instance, for A-optimality, the aim is to minimize the variances
of the estimated model parameters. This is always attained through minimizing the
trace of the inverse of the Fisher information matrix or equivalently, the trace of the
asymptotic variance-covariance matrix of MLEs. However, the asymptotic variance-
covariance matrix may not correctly reflect the true variations of the estimators
when the sample size is finite, and hence the optimal experiment scheme may not
be optimal or as efficient as expected in finite sample situations. Therefore, large-
scale Monte-Carlo simulations can be used to estimate the objective functions and
evaluate the performance of the optimal experiment scheme. For quantifying the
sensitivity and uncertainty of the optimal experiment scheme S∗(M ), we describe
twopossible approaches by comparing experimental schemes and objective functions
in the following subsections.
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2.1 Comparing Experimental Schemes

Let the specified model for obtaining the optimal experiment scheme be M ∗, then
the optimal experiment scheme is

S∗(M ∗) = arg inf
S
Q(S(M ∗),M ∗).

To quantify the sensitivity of the optimal experiment scheme S∗(M ∗), we consider
a different model M and establish the optimal experiment scheme based on M as

S∗(M ) = arg inf
S
Q(S(M ),M ).

Comparing the experimental scheme S∗(M ∗) and S∗(M ) will provide us some
insights on the sensitivity of the optimal experiment scheme S∗(M ∗). If S∗(M ∗) is
insensitivity to the change in the modelM , then S∗(M ∗) and S∗(M )will be similar
to each other. Depending on the nature of the life-testing experiments, different
measures of similarity of two experimental schemes can be considered to quantify
the sensitivity of the optimal experiment scheme S∗(M ∗).When apply this approach,
evaluation of the optimal experiment scheme for different models is needed.

2.2 Comparing Values of Objective Functions

To quantify the sensitivity of the optimal experiment scheme S∗(M ∗), another
approach is to compare the objective function of the optimal experiment scheme
S∗(M ∗) under the model (M ) which is believed to be the true model. Specifi-
cally, we can compute the objective function when the experiment scheme S∗(M ∗)
is adopted but the model is M , i.e., to compute Q(S∗(M ∗),M ). If the optimal
experiment scheme S∗(M ∗) is insensitivity to the change in the model M , then
Q(S∗(M ∗),M ∗)will be similar toQ(S∗(M ∗),M ) orQ(S∗(M ),M ). When apply
this approach, evaluation of the objective function Q(S∗(M ∗),M ) is needed.

3 Progressive Censoring with Location-Scale Family
of Distributions

In this section, we illustrate the proposed methodology through the optimal progres-
siveType-II censoring schemes (see, for example,Balakrishnan andAggarwala 2000;
Balakrishnan 2007; Balakrishnan and Cramer 2014). We consider that the underline
statistical model, M , used for this purpose is a member of the log-location-scale
family of distributions. Specifically, the log-lifetimes of the units on test have a
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Table 1 Examples of functional forms of g(·) and G(·)
Extreme value (EV) Logistic (LOGIS) Normal (NORM)

g(z) exp[z − exp(z)] exp(−z)/[1 + exp(−z)]2 1√
2π

exp(−z2/2)

G(z) 1 − exp[− exp(z)] 1/[1 + exp(−z)] ∫ z
−∞

1√
2π

exp(−x2/2)dx

location-scale distribution with probability density function (p.d.f.)

fX(x;μ, σ) = 1

σ
g

(
x − μ

σ

)

, (1)

and cumulative distribution function (c.d.f.)

FX(x;μ, σ) = G

(
x − μ

σ

)

, (2)

where g(·) is the standard form of the p.d.f. fX(x;μ, σ) and G(·) is the standard form
of the c.d.f. FX(x;μ, σ) when μ = 0 and σ = 1. The functional forms g and G are
completely specified and they are parameter-free, but the location and scale parame-
ters, −∞ < μ < ∞ and σ > 0 of fX(x;μ, σ) and FX(x;μ, σ), are unknown. Many
well-known properties for location-scale family of distributions had been established
in the literature (e.g., Johnson et al. 1994). This is a rich family of distributions that
include the normal, extreme value and logistic models as special cases. The func-
tional forms of g(·) and G(·) for extreme value, logistic and normal, distributions
are summarized in Table1.

A progressively Type-II censored life-testing experiment is described in order.
Let n independent units be placed on a life-test with corresponding lifetimes T1,
T2, . . ., Tn that are independent and identically distributed (i.i.d.) with p.d.f. fT (t; θ)

and c.d.f. FT (t; θ), where θ denotes the vector of unknown parameters. Prior to
the experiment, the number of complete observed failures m < n and the censoring
scheme (R1,R2, . . . ,Rm), where Rj ≥ 0 and

∑m
j=1 Rj + m = n are pre-fixed. During

the experiment, Rj functioning items are removed (or censored) randomly from the
test when the j-th failure is observed. Note that in the analysis of lifetime data,
instead of working with the parametric model for Ti, it is often more convenient to
work with the equivalent model for the log-lifetimes Xi = logTi, for i = 1, 2, . . . , n.
The random variables Xi, i = 1, 2, . . . , n, are i.i.d. with p.d.f. fX(x;μ, σ) and c.d.f.
FX(x;μ, σ).
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3.1 Maximum Likelihood Estimation

Let the m completely observed (ordered) log-lifetimes from a progressively Type-II
censored experiment be Xi:m:n, i = 1, 2 . . . ,m and their observed values be xi:m:n,
i = 1, 2, . . . ,m. The likelihood function based on xi:m:n(1 ≤ i ≤ m) is

L(μ, σ ) = c′
m∏

i=1

fX(xi:m:n;μ, σ) [1 − FX(xi:m:n;μ, σ)]Ri ,

x1:m:n < x2:m:n < · · · < xm:m:n, (3)

where c′ is the normalizing constant given by

c′ = n(n − R1 − 1) · · · (n − R1 − R2 − · · · − Rm−1 − m + 1).

The MLEs of μ and σ are the values of μ and σ which maximizes (3). For location-
scale family of distributions described in Eqs. (1) and (2), the log-likelihood function
can be expressed as

�(μ, σ ) = ln L(μ, σ )

= ln c′ − m ln σ +
m∑

i=1

g

(
xi:m:n − μ

σ

)

+
m∑

i=1

Ri ln

[

1 − G

(
xi:m:n − μ

σ

)]

.

We denote the MLEs of the parameters μ and σ by μ̂ and σ̂ , respectively. Computa-
tional algorithms for obtaining the MLEs of the parameters of some commonly used
location-scale distributions are available in many statistical software packages such
as R (R Core Team 2016), SAS and JMP.

The expected Fisher information matrix of the MLEs can be obtained as

I(μ, σ ) = −

⎡

⎢
⎢
⎣

E
(

∂2�(μ,σ )

∂μ∂μ

)
E

(
∂2�(μ,σ )

∂μ∂σ

)

E
(

∂2�(μ,σ )

∂μ∂σ

)
E

(
∂2�(μ,σ )

∂σ∂σ

)

⎤

⎥
⎥
⎦ =

⎡

⎣
Iμμ Iμσ

Iμσ Iσσ

⎤

⎦ . (4)

Then, the asymptotic variance-covariance matrix of the MLEs can be obtained by
inverting the expected Fisher information matrix in Eq. (4) as

V(μ, σ ) = I−1(μ, σ ) =
[

Var(μ̂) Cov(μ̂, σ̂ )

Cov(μ̂, σ̂ ) Var(σ̂ )

]

= σ 2

[
V11 V12

V12 V22

]

. (5)
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The computational formulas of the elements in the Fisher information matrix of
(4) can be found in Balakrishnan et al. (2003), Ng et al. (2004) and Dahmen et al.
(2012). For fixed values of n and m and a specific progressive censoring scheme
(R1,R2, . . . ,Rm), we can compute the expected Fisher information matrix and the
asymptotic variance-covariance matrix of the MLEs from Eqs. (4) and (5).

3.2 Optimal Criteria

To determine the optimal scheme under progressive Type-II censoring , we consider
the following optimal criteria:

[1] D-optimality
For D-optimality,we search for the censoring scheme that maximizes the deter-
minant of the Fisher information matrix, det(I(μ, σ )). For a given censoring
scheme S = (R1,R2, . . . ,Rm) with a specific model M , the objective function
is

QD(S,M ) = IμμIσσ − I2μσ . (6)

Wedenote the optimal experiment scheme forD-optimalitywith a specificmodel
M as S∗

D(M ).
[2] A-optimality

ForA-optimality,we aim tominimize the variances of the estimators of themodel
parameters. This can be achieved by designing an experiment that minimizes
the trace of the asymptotic variance-covariance matrix, tr[V(μ, σ )]. For a given
experiment scheme S = (R1,R2, . . . ,Rm)with a specificmodelM , the objective
function is

QA(S,M ) = V11 + V22. (7)

We denote the optimal experiment scheme for A-optimality with a specified
model M as S∗

A(M ).
[3] V -optimality

For V -optimality, we aim to minimize the variance of the estimator of 100δ-th
percentile of the log-lifetime distribution, 0 < δ < 1, i.e.,

q̂δ = μ̂ + σ̂G−1(δ).

For a given censoring scheme S = (R1,R2, . . . ,Rm) with a specific model M ,
the objective function is

QVδ
(S,M ) = Var(q̂δ) = Var(μ̂ + σ̂G−1(δ))

= V11 + [G−1(δ)]2V22 + 2G−1(δ)V12, (8)
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where G−1(·) is the inverse c.d.f. of the standard location-scale distribution. We
denote the optimal experimental scheme for V -optimality with a specifiedmodel
M as S∗

Vδ
(M ).

When the values of n and m are chosen in advance, that depend on the availability of
units, experimental facilities and cost considerations, we can determine the optimal
censoring scheme (R1,R2, . . . ,Rm). In the finite sample situation, we can list all
possible censoring schemes and compute the corresponding objective functions, and
then determine the optimal censoring schemes, respectively, through an extensive
search.

3.3 Numerical Illustrations

For illustrative purpose, we consider the true underline lifetimemodel of the test units
to beWeibull (i.e., the log-lifetimes follow an extreme value distribution,M0 = EV )
and we are interested in investigating the effect of misspecification of the underline
lifetime model as log-logistic (i.e., the log-lifetimes follow a logistic distribution,
M ∗ = LOGIS). We also consider the case that the true underline lifetime model for
the test units to be lognormal (i.e., the log-lifetimes follow a normal distribution,
M0 = NOR) and we are interested in investigating the effect of misspecification of
the underline lifetime model as Weibull (M ∗ = EV ).

3.3.1 Analytical Approach

In this subsection,we evaluate the sensitivities of the optimal progressiveType-II cen-
soring scheme analytically based on the expected Fisher information matrix and the
asymptotic variance-covariance matrix of the MLEs. For the specific modelM ∗, we
determine the optimal progressive Type-II censoring schemes under different optimal
criteria, S∗

D(M ∗), S∗
A(M

∗), S∗
V.95

(M ∗) and S∗
V.05

(M ∗) fromEqs. (4) to (8). For the true
model M0, we also determine the optimal progressive Type-II censoring schemes
under different optimal criteria, S∗

D(M0), S∗
A(M0) and S∗

V.95
(M0) and S∗

V.05
(M0).

Then, we can compare these experimental schemes S∗(M ∗) and S∗(M0). In addi-
tion, we compute the objective functions based on the optimal censoring scheme
under the specified model M ∗ while the true underline model is M0, i.e., we com-
pute QD(S∗

D(M ∗),M0), QA(S∗
A(M

∗),M0), and QVδ
(S∗

Vδ
(M ∗),M0) for δ = 0.05

and 0.95. The results for n = 10, m = 5(1)9 with (M ∗ = LOGIS, M0 = EV ) and
(M ∗ = EV , M0 = NOR) are presented in Tables2 and 3, respectively.
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3.3.2 Simulation Approach

In this subsection, we use Monte-Carlo simulation to evaluate the performance of
the optimal censoring scheme by comparing the objective functions based on the
asymptotic variance-covariance matrix and the simulated values. Moreover, we can
also evaluate the sensitivities of the optimal censoring schemes when the model is
misspecified based on Monte-Carlo simulation. In our simulation study, 20,000 sets
of progressively Type-II censored data are generated from the true modelM0 = EV
and the MLEs of the parameters μ and σ are obtained. The simulated values of the
objective functions for the progressive censoring schemes (n = 10,m = 5(1)9) in
Tables2 and 3 are presented in Table4.

3.4 Discussions

3.4.1 Comparing Experimental Schemes

From Tables2 and 3, we can compare the optimal censoring schemes under models
M ∗ = LOGIS and M0 = EV . While comparing the optimal censoring schemes
of the same optimal criterion under these two models, we can see that these two
optimal censoring schemes are different except the case when n = 10, m = 9 for V -
optimality with δ = 0.95. In some cases, the two optimal censoring schemes can be
very different from each other. For example, when n = 10, m = 7 for A-optimality,
the optimal censoring scheme under modelM ∗ = LOGIS is (0, 0, 0, 0, 0, 0, 3) while
the optimal censoring scheme under model M0 = EV is (0, 0, 3, 0, 0, 0, 0). These
results indicate that when the model is misspecified, the optimal censoring scheme
based on logistic distribution may not be optimal under the true model (i.e., extreme
value distribution).

Nevertheless, the analytical approachproposedherewill be useful for practitioners
to choose an appropriate censoring scheme which is robust with respect to model
misspecification. For instance, from Table2 with n = 10, m = 5 for D-optimality, if
one believes that the model isM ∗ = LOGIS but also suspects that the model might
be M0 = EV , then from Table2, it may not be the best option to use the optimal
censoring scheme (0, 0, 0, 0, 5) with optimal objective function det(I) = 45.05
because there is a substantial loss in efficient if the underline model is M0 = EV
(det(I) = 32.89 compared to the optimal value 54.52 under M0 = EV in Table3).
In this situation, it may better to use a non-optimal censoring scheme such as (0,
3, 0, 0, 2) which gives objective function det(I) = 44.64 under M ∗ = LOGIS and
det(I) = 47.09 under M0 = EV .
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3.4.2 Comparing Values of Objective Functions

By comparing the values of the objective functions Q(S∗(M ∗),M0) with
Q(S∗(M ∗),M ∗) and Q(S∗(M0),M0), we can observe that the model misspeci-
fication has a more substantial effect for V -optimality and a relatively minor effect
forA-optimality. For instance, we compareQ(S∗(M ∗),M0) andQ(S∗(M0),M0) by
considering n = 10 and m = 5, the optimal censoring scheme for V -optimality with
δ = 0.95underM ∗ = LOGIS is (4, 0, 0, 0, 1)withQV.95(S

∗(LOGIS),EV ) = 0.3211
(Table2), while the optimal censoring scheme under M0 = EV is (0, 0, 0, 0, 5)
with QV.95(S

∗(EV ),EV ) = 0.2585 which gives 19.50% loss of efficient. In con-
trast, consider n = 10 and m = 5, the optimal censoring scheme for A-optimality
underM ∗ = LOGIS is (0, 3, 0, 0, 2) withQA(S∗(LOGIS),EV ) = 0.3071 (Table2),
while the optimal censoring scheme under M0 = EV is (0, 5, 0, 0, 0) with
QA(S∗(EV ),EV ) = 0.2918 (Table3) which gives 4.98% loss of efficient. We have
a similar observation when we compare the objective functions Q(S∗(M ∗),M ∗)
and Q(S∗(M ∗),M0). For example, in Table3, when n = 10, m = 6, the optimal
censoring scheme for V -optimality with δ = 0.95 underM ∗ = EV is (0, 0, 0, 0, 4)
with QV.95(S

∗(EV ),EV ) = 0.2546. If the censoring scheme (0, 0, 0, 0, 4) is applied
when the true model is normal (M0 = NOR), the asymptotic variance of the esti-
mator of 95-th percentile is Var(q̂0.95) = 0.4633, which is clearly not the minimum
variance that can be obtained because the censoring scheme (4, 0, 0, 0, 0) yields
Var(q̂0.95) = 0.3684. Based on the results from our simulation studies, one should
be cautious when the quantity of interest is one of those extreme percentiles (e.g.,
1-st, 5-th, 95-th, 99-th percentiles) because the optimal censoring schemes could be
sensitive to the change of the model.

Based on the simulation approach, we observe that the optimal censoring schemes
determined based on asymptotic theory of the MLEs may not be optimal even when
the underline model is correctly specified. Since the Monte-Carlo simulation is a
numerically mimic of the real data analysis procedure in practice, the results are
showing that when the analytical value of the objective function of the optimal cen-
soring scheme and the values of the objective functions of other censoring schemes
are closed, it is likely that those non-optimal censoring schemes will perform better
than the optimal censoring scheme.Wewould suggest the practitioners to useMonte-
Carlo simulation in comparing with other progressive censoring schemes and choose
the optimal one. However, since the number of possible censoring schemes can be
numerous when n and m are large, it will not be feasible to use Monte-Carlo simu-
lation to compare all the possible censoring schemes. Therefore, in practice, we can
use the analytical approach to identify the optimal censoring scheme and some near
optimal censoring schemes, then Monte-Carlo simulation can be used to choose the
best censoring schemes among those candidates. This approach will be illustrated in
the example which will be presented in the next section.
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4 Illustrative Example

R Core Team (2016) presented a progressively Type-II censored sample based on
the breakdown data on insulating fluids tested at 34 kV from Nelson (1982). The
progressively censored data presented in R Core Team (2016) has n = 19 andm = 8
with censoring scheme (0, 0, 3, 0, 3, 0, 0, 5). Suppose that we want to re-run the
same experiment with n = 19 and m = 8 and we are interested in using the optimal
censoring scheme that minimizing the variances of the parameter estimators (i.e.,
A-optimality) or minimizing the variance of the estimator of the 95-th percentile of
the lifetime distribution (i.e., V -optimality with δ = 0.95). We can first identify the
top k optimal censoring schemes based on the asymptotic variances and then use
Monte-Carlo simulation to evaluate the performances of those censoring schemes.

Since R Core Team (2016) discussed the linear inference under progressive Type-
II censoring when the lifetime distribution is Weibull and used the breakdown data
on insulating fluids as a numerical example, we assume here the underline lifetime
distribution to beWeibull and determine the top ten censoring schemes subject to the
A-optimality and V -optimality with δ = 0.05. To study the effect of model misspec-
ification to the optimal censoring schemes, we compute the objective functions for
these censoring schemes when the true underline lifetime distribution is lognormal.
Then, we also use Monte-Carlo simulation to evaluate the performances of these
censoring schemes. To reduce the effect of Monte-Carlo simulation errors, we used
100,000 simulations to obtain the simulated variances. These results are presented
in Tables5 and 6 for A-optimality and V -optimality with δ = 0.95, respectively.

As we illustrated in the previous section, the optimal censoring scheme under a
particular model may not be optimal if the model is misspecified. The same observa-
tion is obtained in this numerical example. For A-optimality, from Table5, instead of
choosing the optimal censoring scheme (0, 11, 0, 0, 0, 0, 0, 0) based on asymptotic
variances, the censoring scheme (1, 9, 1, 0, 0, 0, 0, 0) can be a better option based
on the simulation results. For V -optimality with δ = 0.95, from Table6, instead of
choosing the optimal censoring scheme (0, 0, 0, 0, 0, 0, 11, 0) based on asymptotic
variances, one may adopt (0, 0, 0, 0, 2, 0, 9, 0) as the censoring scheme because it
gives a smaller simulated Var(q̂0.95) and the performance of this censoring under
M0 = NOR is better than (0, 0, 0, 0, 0, 0, 11, 0).

5 Concluding Remarks

In this chapter, we propose analytical and simulation approaches to quantify the
uncertainty in optimal experiment schemes systematically. The robustness of the
optimal progressive Type-II censoring scheme with respect to changes of model is
studied. We have shown that the optimal censoring schemes are sensitive to misspec-
ification of models, especially when the V -optimal criterion is under consideration.
In practice, we would recommend the use of Monte-Carlo simulation to verify if the
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optimal censoring schemes are delivering significant superior results compared to
other censoring schemes.

The current study is limited to the progressive Type-II censoring; it will be of inter-
est to apply the proposed approaches to other optimal experiment design problems
and to study the effect of model misspecification. Moreover, the methodologies and
illustrations presented in this chapter are mainly focused on misspecification of the
underlying statistical model. In the case that the determination of the optimal experi-
ment scheme on the specified value of parameters, the methodologies developed here
can be applied as well. For instance, in experiment design of multi-level stress testing
with extreme value regression under censoring (Ka et al. 2011 and Chan et al. 2016),
the expected Fisher information matrix depends on the proportions of observed fail-
ures which are functions of the unknown parameters, and consequently the optimal
experimental scheme also depends on the unknown parameters. Quantifying the
uncertainty of the optimal experimental scheme due to parameter misspecification
can be proceed in a similar manner as presented in this chapter.

R function for compute the objective functions for a specific progressive Type-II
censoring scheme for extreme value distribution

##############################################
## Function to compute the objective ##
## functions for a specific progressive ##
## Type-II censoring scheme ##
##############################################

#######################################
# Input values: #
# nn: Sample size #
# mm: Effective sample size #
# ir: Censoring scheme (length = mm) #
#######################################

###################################################
# Output values: #
# dfi: Determinant of Fisher information matrix #
# tvar: Trace of variance-covariance matrix #
# vq95: Variance of the MLE of 95-th percentile #
# vq05: Variance of the MLE of 5-th percentile #
###################################################

objpcs <- function(mm, nn, ir)
{
rr <- numeric(mm)
cc <- numeric(mm)
aa <- matrix(0, mm, mm)
epcos <- numeric(mm)
epcossq <- numeric(mm)
rpcs <- numeric(mm)
gg <- numeric(mm)

##Compute rr##
for (jj in 1:mm)
{rr[jj] <- mm - jj + 1 + sum(ir[jj:mm])}
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##Compute cc##
cc (?) <- rr (?)
for (ii in 2:mm)
{cc[ii] <- cc[ii-1]*rr[ii] }

##Compute aa##
for (jj in 1:mm)
{for (ii in 1:jj)
{aa[ii,jj] = 1
for (kk in 1:jj)
{if (kk != ii) {aa[ii,jj] <- aa[ii,jj]/(rr[kk] - rr[ii])}
} }}

##Compute E(Z_i:m:n) and E(Z_i:m:n∧2) ##

for (ii in 1:mm)
{psum <- 0
psumsq <- 0
for (ll in 1:ii) {psum <- psum + aa[ll,ii]*(digamma(1) -
log(rr[ll]))/(rr[ll])}
for (ll in 1:ii) {psumsq <- psumsq + aa[ll,ii]*(
(digamma(1)∧2) - 2*digamma(1)*log(rr[ll])
+ log(rr[ll])*log(rr[ll]) + pi*pi/6)/rr[ll]}
epcos[ii] <- cc[ii]*psum
epcossq[ii] <- cc[ii]*psumsq }

##Elements of Fisher Information Matrix##

i22 <- sum(1 + 2*epcos + epcossq)
i12 <- -sum(1 + epcos)
i11 <- mm

dfi <- det(matrix(c(i11, i12, i12, i22), 2, 2))
vcov <- solve(matrix(c(i11, i12, i12, i22), 2, 2))
inv05 <- log(-log(0.95))
inv95 <- log(-log(0.05))

tvar <- vcov[1,1] + vcov[2,2]
vq95 <- vcov[1,1] + inv95*inv95*vcov[2,2] + 2*inv95*vcov[1,2]
vq05 <- vcov[1,1] + inv05*inv05*vcov[2,2] + 2*inv05*vcov[1,2]
out <- c(dfi, tvar, vq95, vq05)
names(out) <- c("dfi", "tvar", "vq95", "vq05")
return(out)}

## Example: n = 10, m = 5, censoring scheme = (5,0,0,0,0)

objpcs(5, 10, c(5,0,0,0,0))
dfi tvar vq95 vq05
54.2144581 0.2947966 0.3473800 0.9247358
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Markov Chain Monte-Carlo Methods
for Missing Data Under Ignorability
Assumptions

Haresh Rochani and Daniel F. Linder

Abstract Missing observations are a common occurrence in public health, clinical
studies and social science research. Consequences of discarding missing observa-
tions, sometimes called complete case analysis, are low statistical power and poten-
tially biased estimates. Fully Bayesian methods using Markov Chain Monte-Carlo
(MCMC) provide an alternative model-based solution to complete case analysis by
treating missing values as unknown parameters. Fully Bayesian paradigms are natu-
rally equipped to handle this situation by augmentingMCMCroutineswith additional
layers and sampling from the full conditional distributions of the missing data, in
the case of Gibbs sampling. Here we detail ideas behind the Bayesian treatment
of missing data and conduct simulations to illustrate the methodology. We consider
specifically Bayesianmultivariate regression with missing responses and themissing
covariate setting under an ignorability assumption. Applications to real datasets are
provided.

1 Introduction

Complete data are rarely available in epidemiological, clinical and social research,
especially when a requirement of the study is to collect information on a large num-
ber of individuals or on a large number of variables. Analyses that improperly treat
missing data can lead to more bias and loss of efficiency, which may limit gener-
alizability of results to a wider population and can diminish our ability to under-
stand true underlying phenomena. In applied research, linear regression models are
an important tool to characterize relationships among variables. The four common
approaches for inference in regression models with missing data are: Maximum like-
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lihood (ML), Multiple imputation (MI), Weighted Estimating Equations (WEE) and
Fully Bayesian (FB) (Little and Rubin 2014). This chapter focuses on FB methods
for regression models with missing multivariate responses and models with miss-
ing covariates. The Bayesian approach provides a natural framework for making
inferences about regression coefficients with incomplete data, where certain other
methods may be viewed as special cases or related. For instance, the maximum a
posteriori (MAP) estimate from a FB approach under uniform improper priors leads
toML estimates; thereforeML can be viewed as a special case of Bayesian inference.
Moreover, in MI the “imputation” step is based on the sampling from a posterior pre-
dictive distribution. Overall, FB methods are general and can be powerful tools for
dealing with incomplete data, since they easily accommodate missing data without
having extra modeling assumptions.

2 Missing Data Mechanisms

For researchers, it is crucial to have some understanding of the underlying missing
mechanism for the variables under investigation so that parameter estimates are accu-
rate and precise. Rubin (1976) defined the taxonomy of missing data mechanisms
based on how the probability of a missing value relates to the data itself. This tax-
onomy has been widely adopted in the statistical literature. There are mainly three
types of missing data mechanisms:

Missing Completely At Random (MCAR):-

MCAR mechanisms assume that the probability of missingness in the variable of
interest does not depend on the values of that variable that are either missing or
observed.We begin by denoting the data as D and M as the missing indicator matrix,
which has values 1 if the variable is observed and 0 if the variable is not observed.
For MCAR, missingness in D is independent of the data being observed or missing,
or equivalently p (M |D, θ) = p (M |θ), where θ are the unknown parameters.

Missing At Random (MAR):-

A MAR mechanism assumes that the probability of missingness in the variable
of interest is associated only with components of observed variables and not on
the components that are missing. In mathematical terms, it can be written as
p (M |D, θ) = p (M |Dobs, θ).

Missing Not At Random (MNAR):-

Finally, anMNARassumption allowsmissingness in the variable of interest to depend
on the unobserved values in the data set. In notation, it can bewritten as p (M |D, θ) =
p (M |Dmiss, θ).
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3 Data Augmentation

Data augmentation (DA) within MCMC algorithms is a widely used routine that
handles incomplete data by treating missing values as unknown parameters, which
are sampled during iterations and then marginalized away in the final computa-
tion of various functionals of interest, like for instance when computing posterior
means (Tanner andWong 1987). To illustrate how inferences from data with missing
variables may be improved via data augmentation, we first distinguish between com-
plete data, observed data and complete-cases. Complete data refers to the data that
are observed or intended to be observed, which includes response variables, covari-
ates of interest and missing data indicators. Conversely, the observed data comprise
the observed subset of complete data. Furthermore, complete-cases comprise of the
data after excluding all observations for which the outcome or any of the inputs
are missing. In a Bayesian context, for most missing data problems, the observed
data posterior p (θ|Dobs) is intractable and cannot easily be sampled from. However,
when Dobs is ‘augmented’ by assumed values of Dmiss , the resulting complete data
posterior, p (θ|Dobs, Dmiss) becomesmuch easier to handle. ForDA, at each iteration

t , we can sample
(
D(t)

obs, θ
(t)

)
by

1. D(t)
miss ∼ p

(
Dmiss |Dobs, θ

(t−1)
)

2. θ(t) ∼ p
(
θ|Dobs, D

(t)
miss

)

where θ may be sampled by using one of the various MCMC algorithms discussed
in the previous chapters of this book. A stationary distribution of the above transition
kernel is p (θ, Dmiss |Dobs) where upon marginalization over the imputed missing
values one arrives at the desired target density p (θ|Dobs). In the following section,
we detail how these ideas may be implemented with missing multivariate responses
in the context of Gibbs sampling.

4 Missing Response

It is quite common to have missing responses in multivariate regression models,
particularly when repeated measures are taken and missing values occur at later
follow up times. In this section, we focus on the multivariate model with missing
responses, in which the missingness depends only on the covariates that are fully
observed. For some literature dealing with the missing response scenario, see (Little
and Rubin 2014; Daniels and Hogan 2008; Schafer 1997)
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4.1 Method: Multivariate Normal Model

In this section, we consider regression models where we have n subjects measured at
(d) occasions with the same set of (p) predictors. For instance, this would be the case
for subjects with baseline levels of a predictor and responses measured over time, or
clusters in which predictors are measured at the cluster level. Suppose y1, y2, . . . yd
are d possibly correlated random variables with respective means μ1,μ2, . . .μd and
variance-covariance matrix �. In terms of matrix notation, we denote the n × d
response matrix as (Y) and the n × p design matrix as (X), which can be expressed
as

Y =

⎡

⎢
⎢
⎢
⎣

Y11 Y12 Y13 . . . Y1d
Y21 Y22 Y23 . . . Y2d
...

...
...

. . .
...

Yn1 Yn2 Yn3 . . . Ynd

⎤

⎥
⎥
⎥
⎦

X =

⎡

⎢
⎢
⎢
⎣

X11 X12 X13 . . . X1p

X21 X22 X23 . . . X2p
...

...
...

. . .
...

Xn1 Xn2 Xn3 . . . Xnp

⎤

⎥
⎥
⎥
⎦

Ourmultivariate regressionmodel for response vectorY i = (Yi1,Yi2, . . . ,Yid)
� with

covariate vector Xi = (
Xi1, Xi2, . . . , Xip

)
can be written as Y i |Xi

ind∼ N (
μi ,�i

)
,

whereμi is a d × 1 vector and� is a d × d matrix. Furthermore, μi j = E (Y i |Xi ) =
Xiβ where β is a p × 1 vector of regression coefficients. The key assumption for
this particular model is that the measured covariate terms Xik are the same for each
component of the observations Yi j where 1 ≤ j ≤ d. Additionally, since we are
assuming that β ∈ R

p, the mean response for observation i is the same for each 1 ≤
j ≤ d. Both the assumption of common baseline covariates and a vectorβ can easily
be extended to time varying covariates and a matrix of coefficients β ∈ R

d×p with
only minor changes to notation; however, we use the current scenario for illustration
purposes. Since we are only focusing on the ignorable missing mechanism, we will
consider the scenario where missing in Y depends on non-missing predictors.

We define, Y i(obs) = (Yi1,Yi2, . . . ,Yid∗)� and Y i(miss) = (
Yi(d∗+1),Yi2, . . . ,

Yid)
�, where d∗ < d. The variance-covariance matrix, �, can be partitioned as

� =
(

�(obs) �(obs,miss)

��
(obs,miss) �(miss)

)

For the Bayesian solution to the missing data problem, after we specify the com-
plete data model and noninformative independence Jeffreys’ prior for parameters,
p(β,�) ∝ |�|− d+1

2 , we would then like to draw inferences based on the observed
data posterior p (β,�|Y obs, X). However, as discussed previously, the complete data
posterior p (β,�|Y , X) is easier to sample from than the observed data posterior. In
this particular situation, full conditional distributions for complete data and parame-
ters of interest are easy to derive. For posterior sampling using data augmentation,

at each iteration t , samples from
(
Y (t)

(miss),β
(t),�(t)|Y obs, X

)
can be obtained by

first sampling Y (t)
i(miss)| · · · ∼ p

(
Y i(miss)|Y i(obs),β

(t−1),�t−1), X
)
for 1 ≤ i ≤ n and
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then sampling
(
β(t),�(t)

) | · · · ∼ p
(
β,�|Y (t)

(miss),Y (obs), X
)
. In the data augmen-

tation step, p
(
Y i(miss)|Y i(obs),β

(t−1),�(t−1), X
)
is a normal density with mean μ∗

i
and variance-covariance matrix �∗

i , where

μ∗
i = vec(Xiβ

(t−1))d−d∗ +
(
�

�(t−1)
(obs,miss)�

−1(t−1)
(obs)

)
vec

(
Y i(obs) − Xiβ

(t−1))
d∗

�∗
i = �

(t−1)
(miss) − �

�(t−1)
(obs,miss)�

−1(t−1)
(obs) �

(t−1)
(obs,miss)

and vec(x)d denotes the scalar value x stacked in a vector of length d. Samples

from p
(
β,�|Y (t)

(miss),Y (obs), X
)

can be obtained by Gibbs sampling since the

full conditional posteriors for each parameter are analytic and can be written as
p (β|. . . ) ∼ N (

μβ, V β

)
and p (�| . . . ) ∼ W−1 (nd + d,ψ), where

μβ =
(

∑

i

(X�
i �−1X i )

)−1 [
∑

i

(X�
i �−1Y i )

]

V β =
(

∑

i

(X�
i �−1X i )

)−1

ψ =
∑

i

(Y i − X iβ)(Y i − X iβ)
�

In the above notation, the bold symbol X i represents the d × p matrix with rows Xi ,
N denotes a multivariate normal density and W−1 the inverse Wishart density.

4.2 Simulation

A simulation study was conducted to compare the bias and root mean squared
error (RMSE) of regression coefficients (β) for complete case analysis and the
FB approach under a MAR assumption for our multivariate normal model. Data
augmentation using Gibbs sampling was performed to compare the performance of
the estimators by using various proportions of missing values in the multivariate
response variable as shown in Tables1 and 2. In the simulation, at each iteration,
three covariates (X1, X2, X3) were generated, in which X1 was binary, and X2, X3

were continuous. X1 was sampled from the binomial distribution with success prob-
ability of 0.4, while X2 and X3 were sampled from the normal distribution with mean
= 0 variance= 1. Furthermore, the multivariate response variable, Y , was generated
from N (β0 + β1x1 + β2x2 + β3x3,�) where

� =
⎛

⎝
4 2 4
2 4 2
2 2 4

⎞

⎠
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Table 1 Bias comparison of regression coefficients for complete-cases and data augmentation

Missing % Complete cases Data augmentation

y1 y2 y3 β1 β2 β3 β1 β2 β3

5 5 5 0.0194 0.0045 0.0001 0.0208 0.0002 0.0008

10 5 5 0.0009 0.0022 0.0033 0.0058 0.0047 0.0038

20 5 5 0.0006 0.0036 0.0015 0.0020 0.0007 0.0026

20 5 5 0.0006 0.0036 0.0015 0.0020 0.0007 0.0026

5 10 5 0.0053 0.0084 0.0018 0.0090 0.0130 0.0002

5 10 5 0.0068 0.0190 0.0086 0.0147 0.0151 0.0067

10 10 5 0.0253 0.0033 0.0053 0.0266 0.0061 0.0081

10 10 5 0.0069 0.0047 0.0001 0.0005 0.0088 0.0002

20 10 5 0.0047 0.0244 0.0039 0.0017 0.0067 0.0025

5 20 5 0.0099 0.0057 0.0001 0.0235 0.0067 0.0032

5 20 5 0.0270 0.0085 0.0057 0.0198 0.0044 0.0021

10 20 5 0.0043 0.0155 0.0045 0.0029 0.0129 0.0029

10 20 5 0.0148 0.0119 0.0055 0.0132 0.0010 0.0019

20 20 5 0.0105 0.0052 0.0012 0.0234 0.0071 0.0091

5 5 10 0.0052 0.0055 0.0042 0.0068 0.0027 0.0039

5 10 10 0.0250 0.0186 0.0082 0.0175 0.0139 0.0065

10 10 10 0.0032 0.0132 0.0028 0.0066 0.0111 0.0013

20 10 10 0.0042 0.0156 0.0004 0.0017 0.0075 0.0058

5 20 10 0.0227 0.0056 0.0042 0.0073 0.0047 0.0010

10 20 10 0.0268 0.0009 0.0046 0.0110 0.0037 0.0014

20 20 10 0.0264 0.0036 0.0144 0.0176 0.0095 0.0072

20 5 20 0.0347 0.0064 0.0006 0.0164 0.0092 0.0015

5 10 20 0.0240 0.0081 0.0045 0.0069 0.0021 0.0037

10 10 20 0.0016 0.0039 0.0083 0.0028 0.0038 0.0006

20 10 20 0.0097 0.0046 0.0033 0.0079 0.0001 0.0043

5 20 20 0.0236 0.0093 0.0052 0.0223 0.0054 0.0041

10 20 20 0.0158 0.0080 0.0016 0.0093 0.0047 0.0010

20 20 20 0.0146 0.0034 0.0003 0.0164 0.0034 0.0050

β0 = 0 and β1 = β2 = β3 = 1. The sample size for each iteration was 100. Various
proportions of missing values were created in Y1, Y2 and Y3 that depend only on
non-missing X = (X1, X2, X3) in order to simulate a MAR missing mechanism. To
model themissing probability for the variableY1; Pr (Yi1 = missing|X), we consider
the logistic model as follows;

Pr (Yi1 = missing|X) = exp (γ0 + Xi1 + Xi2 + Xi3)

1 + exp (γ0 + Xi1 + Xi2 + Xi3)
= pi .
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Table 2 RMSE comparison of regression coefficients for complete-cases and data augmentation

Missing % Complete cases Data augmentation

y1 y2 y3 β1 β2 β3 β1 β2 β3

5 5 5 0.1396 0.0910 0.0440 0.1424 0.0797 0.0419

10 5 5 0.1514 0.0962 0.0461 0.1332 0.0824 0.0441

20 5 5 0.1613 0.1065 0.0521 0.1428 0.0833 0.0368

20 5 5 0.1613 0.1065 0.0461 0.1428 0.0833 0.0368

5 10 5 0.1441 0.0922 0.0516 0.1421 0.0831 0.0438

5 10 5 0.1515 0.0849 0.0461 0.1420 0.0797 0.0399

10 10 5 0.1740 0.0899 0.0491 0.1513 0.0778 0.0400

10 10 5 0.1688 0.0859 0.0477 0.1530 0.0788 0.0438

20 10 5 0.1816 0.1032 0.0555 0.1704 0.0802 0.0441

5 20 5 0.1604 0.0882 0.0456 0.1519 0.0847 0.0428

5 20 5 0.1700 0.0963 0.0515 0.1396 0.0711 0.0434

10 20 5 0.1666 0.1026 0.0562 0.1603 0.0889 0.0465

10 20 5 0.1578 0.0982 0.0539 0.1389 0.0748 0.0424

20 20 5 0.1850 0.0976 0.0507 0.1631 0.0775 0.0473

5 5 10 0.1624 0.0887 0.0428 0.1514 0.0741 0.0362

5 10 10 0.1561 0.0876 0.0428 0.1515 0.0713 0.0368

10 10 10 0.1634 0.1086 0.0457 0.1470 0.0887 0.0403

20 10 10 0.1714 0.0848 0.0477 0.1266 0.0771 0.0368

5 20 10 0.1756 0.0957 0.0539 0.1498 0.0737 0.0420

10 20 10 0.1579 0.0957 0.0504 0.1307 0.0727 0.0394

20 20 10 0.2012 0.1043 0.0589 0.1502 0.0815 0.0433

20 5 20 0.1857 0.1082 0.0533 0.1355 0.0782 0.0444

5 10 20 0.1561 0.0998 0.0546 0.1391 0.0848 0.0458

10 10 20 0.1745 0.0985 0.0528 0.1432 0.0864 0.0385

20 10 20 0.1794 0.1049 0.0495 0.1532 0.0725 0.0464

5 20 20 0.2022 0.1054 0.0570 0.1628 0.0809 0.0457

10 20 20 0.1853 0.1156 0.0556 0.1493 0.0856 0.0459

20 20 20 0.2067 0.1159 0.0593 0.1652 0.0924 0.0414

Based on this probability, we generated a binary variable to indicating whether Yi1
was missing: Ii ∼ Bernoulli (1, pi ). If Ii = 1 then we deleted the corresponding
value of Yi1. This process ensures that missingness in Y1 depends on the X which
are fully observed. We generated missing values in Y2 in a similar manner. Inference
for β = (β0,β1,β2,β3) in the complete case analysis was performed by using the
complete data posterior mean. The complete case posterior, p (β,�|Y , X), was
sampled via the Gibbs sampling algorithm (Geman and Geman 1984) as discussed
in the previous section. Table3 shows that the bias for regression coefficients are
negligible under both complete case analysis and data augmentation for various
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Table 3 Bias comparison of regression coefficients for complete-cases and data augmentation

Missing % Complete cases Data augmentation

x1 x2 β1 β2 β3 β1 β2 β3

5 5 0.0029 0.0003 0.0026 0.0122 0.0263 0.0042

5 10 0.0112 0.0086 0.0010 0.0231 0.0273 0.0017

5 15 0.0008 0.0048 0.0105 0.0110 0.0393 0.0143

5 20 0.0032 0.0025 0.005 0.0094 0.0489 0.0088

10 5 0.0045 0.0088 0.0038 0.0206 0.0327 0.0145

10 10 0.0007 0.0021 0.0041 0.0218 0.0398 0.0164

10 15 0.0062 0.0055 0.0022 0.0282 0.0377 0.0052

10 20 0.0114 0.0008 0.0015 0.0172 0.0511 0.0133

15 5 0.0075 0.0035 0.0012 0.0376 0.0232 0.0237

15 10 0.0102 0.0045 0.0016 0.0222 0.0380 0.0298

15 15 0.0025 0.0042 0.0045 0.0264 0.0396 0.0289

15 20 0.0078 0.0034 0.0045 0.0240 0.0478 0.0221

20 5 0.0146 0.0005 0.0008 0.0529 0.0290 0.0325

20 10 0.0137 0.0026 0.0023 0.0426 0.0296 0.0381

20 15 0.0103 0.0042 0.0035 0.0423 0.0430 0.0456

20 20 0.0011 0.0028 0.0033 0.0257 0.0573 0.0406

proportions of missing values of the response variable. However, the RMSEs are
smaller for DA as compared to the complete case analysis under different proportions
of missingness in the response variable (Table 2).

4.3 Prostate Specific Antigen (PSA) Data

This section focuses on a real data application of the fully Bayesian approach for
analyzing the multivariate normal model as discussed in the previous section. We
will illustrate the application by using the prostate specific antigen (PSA) data which
was published by Etzioni et al. (1999). This was a sub study of the beta-carotene
and retinol trial (CARET) with 71 cases of prostate cancer patients and 70 controls
(i.e. subjects not diagnosed with prostate cancer by the time of analysis, matched to
cases on date of birth). In the PSA dataset, in addition to baseline age, there were
two biomarkers measured over time (9 occasions): free PSA (fpsa) and total PSA
(tpsa). For illustrative purposes, we investigate the effect of baseline age on the first
three fpsa measurement in patients. There were missing values in the fpsa variable at
occasion 2 and 3 for 14 patients in the study. Under the assumption of missingness
being dependent only on the fully observed baseline age, we can obtain estimates
of the regression coefficient for age

(
βage = 0.0029

)
with SE = 0.00026 using the

fully Bayesian modeling approach. A similar model fit with complete-case analysis
gives estimates for baseline age as 0.0061 with SE = 0.00033.
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5 Missing Covariates

In addition tomissing outcomes being a common occurrence in experimental studies,
missing covariates are frequently encountered as well. In this section, we focus on
missing covariates in which the missingness depends on the fully observed response.
We specialize our analysis to the normal regressionmodel.We direct the reader to the
multiple methods proposed in the literature for handling missing covariates (Ibrahim
et al. 1999a, 2002; Lipsitz and Ibrahim 1996; Satten and Carroll 2000; Xie and Paik
1997).

5.1 Method

Let Yi be the i th response and Xi j be the j th covariate for i th subject. A missing
value in the j th covariate for the i th subject can be represented as a parameter, Mi j .
Let Ri be the set that indexes covariates which are observed for the i th subject. The
normal regression model with missing covariates can be represented as

μi =
∑

j∈Ri

Xi jβ j +
∑

j∈Rc
i

Mi jβ j (1)

whereYi ∼ N (
μi ,σ

2
)
. Our goal is to estimate regression coefficients in the presence

of missing data. For notation purposes, we can write the collection of missing data as
the parameter,M = (

Mi1,Mi2 . . .Mip
)
, with corresponding prior p(M). Each of the

missing parameters, Mi j , will be assigned a prior distribution p
(
Mip

)
. The complete

data posterior p
(
β,σ2,M|Y , X)

can be determined by Bayes rule as follows:

p
(
β,σ2,M|Y , X) = p

(
β,σ2,M

)
L

(
Y |β,σ2,M, X

)

∫
p

(
β,σ2,M

)
L

(
Y |β,σ2,M, X

)
dβdσ2dM

(2)

The posterior in Eq.2 depends on the missing covariate parameters M. However,
our main interest is in posterior inference about β and σ2, and the desired posterior
distribution p

(
β,σ2|Y , X)

can be obtained by

p
(
β,σ2|Y , X) =

∫
p

(
β,σ2,M|Y , X)

dM (3)

In general, Eq. 3 involvesmulti-dimensional integralswhich do not have closed forms
and will be high-dimensional even for low fractions of missing covariate values. In
fact, the dimension of the integration problem is the same as the number of missing
values. Posterior sampling can be performed based on variousMCMCmethods, such
as via the Gibbs sampler after specifying full conditionals or using a random walk
Metropolis algorithm discussed in Chap.1 of this book.

http://dx.doi.org/10.1007/978-981-10-3307-0_1
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An important issue in our current setting is the appropriate prior specification for
missing covariates. There are many ways to assign missing covariate distributions;
however, some modeling strategies, especially in presence of large fractions of miss-
ing data, can lead to a vast number of nuisance parameters. Hence, MCMC methods
to sample posteriors can then become computationally intensive and inefficient even
if the parameters are identifiable. Thus, it is essential to reduce the number of the nui-
sance parameters by specifying effective joint covariate distributions. Ibrahim et al.
(1999b); Lipsitz and Ibrahim (1996) proposed the strategy of modeling the joint
distribution of missing covariates as a sequence of one-dimensional distributions,
which can be given by

p
(
Mi1, . . .Mip|α

) =p
(
Mip|Mi1 . . .Mip−1,αp

)

×p
(
Mip−1|Mi1 . . .Mip−2,αp−1

)
. . . . . .

×p (Mi2|Mi1,α2) p (Mi1|α1) (4)

where α = (
α1,α2, . . .αp

)T
. In specification of one dimensional conditional dis-

tributions in Eq.4, suppose we know that X = (
Xi1, Xi2, . . . , Xip

)
contains all

continuous predictors, then a sequence of univariate normal distributions can be
assigned to p

(
Mip|Mi1 . . .Mip−1,αp

)
. If X contains all categorical variables, say

binary, then the guideline is to specify a sequence of logistic regressions for each
p

(
Mip|Mi1 . . .Mip−1,αp

)
. One can consider the sequence of multinomial distribu-

tions in the case where all variables in X have more than two levels. Similarly, for all
count variables, one can assign Poisson distributions. With missing categorical and
continuous covariates, it is recommended that the joint covariate distribution should
be assigned by first specifying the distribution of the categorical covariates condi-
tional on continuous covariates. In some special circumstances, when Xip is strictly
positive and continuous, a normal distribution can be specified on the transformed
variable log(Xip). If log(Xip) is not approximately normal then other specifications
such as an exponential or gamma distribution are recommended.

5.2 Simulation

A simulation study was conducted to determine the bias and mean squared error
(MSE) of estimating β with various proportions of missing covariates under a MAR
assumption. The data augmentation procedure for estimating β and MSEs was com-
pared to a complete case analysis. In the simulation, at each iteration, three covariates
(X1, X2, X3), in which X1 is binary and X2, X3 are continuous, were generated. X1

was generated from the binomial distribution with a success probability of 0.3, X2

was simulated from a normal distribution with mean = 0 variance = 1 and X3 was
generated from a normal distribution with mean= 1 and variance= 2. Furthermore,
the response variable Y was generated from N (

β0 + β1x1 + β2x2 + β3x3,σ2 = 1
)

with β0 = 0 and β1 = β2 = β3 = 1. The sample size for each iteration was 100.
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Various proportions of missing values were created in X1 and X2, which depended
on non-missing X3 in order to simulate the MAR missing mechanism. To model the
missing probability for the variable X1; Pr (Xi1 = missing|Xi3), we consider the
logistic model as follows;

Pr (Xi1 = missing|Xi3) = exp (γ + Xi3)

1 + exp (γ + Xi3)
= pi .

Based on this probability, we generated the binary variable indicating whether Xi1

is missing: Ii ∼ Bernoulli (1, pi ). If Ii = 1 then we deleted the corresponding value
of Xi1. This process ensures that missingness in X1 depends only on the X3 which is
fully observed. Similarly, we generated missing values in X2, which depend on the
fully observed covariate X3. In addition to this, we have a fully observed response
variable Y . Inferences about β = (β0,β1,β2,β3) from the complete data poste-
rior p

(
β,σ2,Mi1,Mi2|Y, X

) ∝ p
(
β,σ2,Mi1,Mi2

)
L

(
Yi |β,σ2,Mi1,Mi2, X

)
can

be obtained by using the random walk Metropolis algorithm (Metropolis and Ulam
1949;Metropolis et al. 1953;Hastings 1970). The jointmissing covariate distribution,
p (Mi1,Mi2|α1,α2,α3,α4), is modeled as a sequence of one-dimensional distribu-

tions p (M1i |M2i ,α1,α2) ∼ Bernoulli (1,Ci )where log
(

Ci
1−Ci

)
= α1 + α2Mi1 and

p (M2i |α3,α4) ∼ N (α3,α4). In this simulation study, we placed the following prior
distributions on the four regression parameters and hyper-parameters of the missing
covariate distributions:

p (β0) , p (β1) , p (β2) , p (β3) ∼ N (0, var = 10)
p (α1) , p (α2) , p (α3) ∼ N (0, var = 10)

p (α4) , p
(
σ2

) ∼ gamma (2, 2)

Bayesian linear regression was fit by using the above described complete data like-
lihood, missing data model assumptions and prior distributions to estimate β and
variances. Bayesian linear regression was also implemented for the complete cases
to estimate β and variances. This process was repeated 500 times to evaluate the
performance of the estimators in terms of bias and MSE for the regression para-
meters in order to compare complete case analysis to data augmentation. Tables3
and 4 demonstrate the results from our simulation study comparing the bias and
MSEs. Table3 shows that complete case analysis has negligible biases for various
combinations of the proportions of the missing data on X1 and X2, while with data
augmentation the regression coefficients have slight biases away from the null when
missingness in covariates is independent of the outcome given the covariates. How-
ever, the MSEs from Table4, for both complete-case analysis and data augmentation
in estimating the regression coefficients for missing covariates (β1&β2) are very
similar and the MSE for the non-missing covariate, β3, are significantly smaller for
DA compared to complete-cases under various proportions of missing values, as
shown in Table4. Moreover, when the the missingness in covariates depends on the
outcome, then complete-case estimates are biased towards the null, while data aug-
mentation had negligible bias (Results are not shown here). For detailed discussion
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Table 4 MSEs comparison of regression coefficients for complete-cases and data augmentation

Missing % Complete cases Data augmentation

x1 x2 β1 β2 β3 β1 β2 β3

5 5 0.0484 0.0110 0.0044 0.0464 0.0109 0.0038

5 10 0.0610 0.0122 0.0053 0.0564 0.0123 0.0045

5 15 0.0627 0.0132 0.0078 0.0579 0.0146 0.0062

5 20 0.0730 0.0150 0.0092 0.0621 0.0170 0.0070

10 5 0.0527 0.0134 0.0060 0.0489 0.0136 0.0044

10 10 0.0610 0.0148 0.0078 0.0599 0.0150 0.0057

10 15 0.0642 0.0142 0.0089 0.0607 0.0137 0.0067

10 20 0.0689 0.0138 0.0119 0.0579 0.0155 0.0085

15 5 0.0557 0.0139 0.0071 0.0530 0.0136 0.0056

15 10 0.0659 0.0158 0.0094 0.0601 0.0160 0.0072

15 15 0.0663 0.0161 0.0110 0.0656 0.0157 0.0072

15 20 0.0719 0.0173 0.0151 0.0646 0.0187 0.0084

20 5 0.0644 0.0136 0.0083 0.0648 0.0124 0.0056

20 10 0.0772 0.0174 0.0133 0.0747 0.0155 0.0074

20 15 0.0764 0.0159 0.0162 0.0680 0.0156 0.0085

20 20 0.0915 0.0179 0.0198 0.0815 0.0188 0.0089

about the bias and efficiency of multiple imputation compared with complete-case
analysis for missing covariate values, see (White and Carlin 2010; Chen et al. 2008).

5.3 BRFSS Data

We applied the FB approach to the Behavioral Risk Factor Surveillance System
(BRFSS) data. BRFSS is theworld’s largest ongoing random-digit dialed (RDD) tele-
phone survey, and is conducted by health departments in the United States. BRFSS
collects state level data about US residents, inquiring about their health-related risk
behaviors and events, chronic health conditions and use of preventive services brf
(2015). The survey is conducted each year, having begun in 1984. For illustration pur-
poses, we used the Georgia 2013 BRFSS data for the month of January. This dataset
has 336 variables and 518 observations. To demonstrate the fully Bayesian approach
for missing covariates, we selected the variable, Reported weight in pounds, as our
response variable. Reported height in inches and participated in any physical activity
or exercises in the past month (1 = Yes, 0 = No) were considered as covariates in
our analysis. Because of non-response, some of the subjects are missing values for
the physical activity (PA) variable. There were a total of 34 subjects who did not
respond to the question of participating in physical activity in the past month. To fit
the fully Bayes model, we used the random-walk Metropolis-Hastings algorithm for



Markov Chain Monte-Carlo Methods for Missing … 141

Table 5 Regression coefficients and SEs for BRFSS data

Coefficients Bayesian approach Complete-cases

βPA –7.6668 –7.8990

(2.5760) (2.5062)

βht 3.4302 3.3865

(0.1346) (0.1379)

posterior sampling and use posterior means to estimate the regression coefficients
for the covariates, reported height and participated in any physical activity in past
months. The results are reported in Table5.

6 Discussion

In this chapter, we have illustrated how a fully Bayesian regression modeling
approach can be applied to incomplete data under an ignorability assumption. It
is well known that the observed data are not sufficient to identify the underlying
missing mechanism. Therefore, sensitivity analyses should be performed over var-
ious plausible models for the nonresponse mechanism (Little and Rubin 2014). In
general, the stability of conclusions (inferences) over the plausible models gives
an indication of their robustness to unverifiable assumptions about the mechanism
underlying missingness. In linear regression, when missingness on Y depends on
the fully observed Xs (MAR), DA has negligible bias and smaller MSEs compared
to the complete-cases. When missingness in Xs depends on other Xs which are
fully observed then the CC analysis has negligible bias and very similar MSEs com-
pared to the DA for missing covariates. Furthermore, when missingness in covariates
depends on the response, DA will perform better than CC. Because of these biases,
the choice of the method should come from a substantive basis. In summary, a FB
modeling approach enables coherent model estimation because missing data values
are treated as parameters, which are easily sampled within MCMC simulations. The
FB approach takes into account uncertainty about missing observations and offers
a very flexible way to handle the missing data. In conclusion we remark that for
missing covariates we have used a default class of priors to make inferences. How-
ever, for some studies, historical data may be available allowing for construction
of informative priors that may further improve inference. For more details, Ibrahim
et al. (2002) proposed a class of informative priors for generalized linear models
with missing covariates.



142 H. Rochani and D.F. Linder

References

Behavioral risk factor surveillance system. Retrieved July 5, 2015, from http://www.cdc.gov/brfss.
Chen, Q., Ibrahim, J. G., Chen, M. -H., & Senchaudhuri, P. (2008). Theory and inference for
regression models with missing responses and covariates. Journal of multivariate analysis, 99(6),
1302–1331.

Daniels, M. J., & Hogan, J. W. (2008).Missing data in longitudinal studies: Strategies for Bayesian
modeling and sensitivity analysis. CRC Press.

Etzioni, R., Pepe, M., Longton, G., Chengcheng, H., & Goodman, Gary. (1999). Incorporating
the time dimension in receiver operating characteristic curves: A case study of prostate cancer.
Medical Decision Making, 19(3), 242–251.

Geman, S., &Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the bayesian restora-
tion of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.

Hastings, K.W. (1970).Monte-Carlo samplingmethods usingmarkov chains and their applications.
Biometrika, 57(1), 97–109.

Ibrahim, J. G., Chen, M. -H., Lipsitz, & S. R., (1999a). Monte-Carlo em for missing covariates in
parametric regression models. Biometrics, 55(2), 591–596.

Ibrahim, J. G., Lipsitz, S. R., &Chen,M. -H. 1999b.Missing covariates in generalized linearmodels
when themissing datamechanism is non-ignorable. Journal of theRoyal Statistical Society: Series
B (Statistical Methodology), 61(1), 173–190.

Ibrahim, J. G., Chen, M. -H., & Lipsitz, S. R. (2002). Bayesian methods for generalized linear
models with covariates missing at random. Canadian Journal of Statistics, 30(1), 55–78.

Lipsitz, S. R., & Ibrahim, J. G. (1996). A conditional model for incomplete covariates in parametric
regression models. Biometrika, 83(4), 916–922.

Little, R. J. A., & Rubin, D. B. (2014). Statistical analysis with missing data. Wiley.
Pepe, M. S. (2003). The statistical evaluation of medical tests for classification and prediction.
USA: Oxford University Press.

Metropolis, N., & Ulam, S. (1949). The Monte-Carlo method. Journal of the American statistical
association, 44(247), 335–341.

Rosenbluth,M.N., Teller,A.H.,&Teller, E. (1953). Equation of state calculations by fast computing
machines. The journal of Chemical Physics, 21(6), 1087–1092.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581–592.
Satten, G. A., & Carroll, R. J. (2000). Conditional and unconditional categorical regression models
with missing covariates. Biometrics, 56(2), 384–388.

Schafer, J. L. (1997). Analysis of incomplete multivariate data. CRC press.
Tanner, M. A., & Wong, W. H. (1987). The calculation of posterior distributions by data augmen-
tation. Journal of the American statistical Association, 82(398), 528–540.

White, I. R., & Carlin, J. B. (2010). Bias and efficiency of multiple imputation compared with
complete-case analysis for missing covariate values. Statistics in Medicine, 29(28), 2920–2931.

Xie, F., & Paik,M. C. (1997).Multiple imputationmethods for themissing covariates in generalized
estimating equation. Biometrics, 1538–1546.

http://www.cdc.gov/brfss


AMultiple Imputation Framework
for Massive Multivariate Data of Different
Variable Types: A Monte-Carlo Technique

Hakan Demirtas

Abstract The purpose of this chapter is to build theoretical, algorithmic, and
implementation-based components of a unified, general-purpose multiple imputa-
tion framework for intensive multivariate data sets that are collected via increasingly
popular real-time data capture methods. Such data typically include all major types
of variables that are incomplete due to plannedmissingness designs, which have been
developed to reduce respondent burden and lower the cost associatedwith data collec-
tion. The imputation approach presented herein complements the methods available
for incomplete data analysis via richer and more flexible modeling procedures, and
can easily generalize to a variety of research areas that involve internet studies and
processes that are designed to collect continuous streams of real-time data. Planned
missingness designs are highly useful and will likely increase in popularity in the
future. For this reason, the proposed multiple imputation framework represents an
important and refined addition to the existing methods, and has potential to advance
scientific knowledge and research in ameaningfulway.Capability of accommodating
many incomplete variables of different distributional nature, types, and dependence
structures could be a contributing factor for better comprehending the operational
characteristics of today’s massive data trends. It offers promising potential for build-
ing enhanced statistical computing infrastructure for education and research in the
sense of providing principled, useful, general, and flexible set of computational tools
for handling incomplete data.

1 Introduction

Missing data are a commonly occurring phenomenon in many contexts. Determining
a suitable analytical approach in the presence of incomplete observations is a major
focus of scientific inquiry due to the additional complexity that arises throughmissing
data. Incompleteness generally complicates the statistical analysis in terms of biased
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parameter estimates, reduced statistical power, and degraded confidence intervals,
and thereby may lead to false inferences (Little and Rubin 2002). Advances in com-
putational statistics have produced flexible missing-data procedures with a sound
statistical basis. One of these procedures involves multiple imputation (MI), which
is a stochastic simulation technique in which the missing values are replaced by
m > 1 simulated versions (Rubin 2004). Subsequently, each of the simulated com-
plete data sets is analyzed by standard methods, and the results are combined into a
single inferential statement that formally incorporatesmissing-data uncertainty to the
modeling process. MI has gained widespread acceptance and popularity in the last
few decades. It has some well-documented advantages: First, MI allows researchers
to use more conventional models and software; an imputed data set may be ana-
lyzed by literally any method that would be suitable if the data were complete. As
computing environments and statistical models grow increasingly sophisticated, the
value of using familiar methods and software becomes important. Second, there are
still many classes of problems for which no direct maximum likelihood procedure
is available. Even when such a procedure exists, MI can be more attractive due to
fact that the separation of the imputation phase from the analysis phase lends greater
flexibility to the entire process. Lastly, MI singles out missing data as a source of
random variation distinct from ordinary sampling variability.

These days most incomplete data sets involve variables of many different types
on a structural level; causal and correlational interdependencies are a function of a
mixture of binary, ordinal, count, and continuous variables as well as nonresponse
rates and mechanisms, all of which act simultaneously to characterize the data-
analytics paradigms under consideration. The use of digital data is growing rapidly
as researchers get more capable of collecting instantaneous self-reported data using
mobile devices in naturalistic settings; and real-time data capture methods supply
novel insights into determinants of how real-life processes are formed.Mobile phones
are becoming ubiquitous and easy to use, and thus have the capacity to collect data
quickly from large numbers of people and transfer this information to remote servers
in an unobtrusiveway.As these procedures yield relatively large number observations
per subject, planned missing data designs have been developed to reduce respondent
burden and lower the cost associated with data collection. Planned missing data
designs include items or groups of items according to predetermined probabilis-
tic sampling schemes. These designs are highly useful and will likely increase in
popularity in the future.

The purpose of this work is to build theoretical, algorithmic, and implementation-
based components of a unified, general-purpose multiple imputation framework,
which can be instrumental in developing power analysis guidelines for intensivemul-
tivariate data sets that are collected via increasingly popular real-time data capture
(RTDChereafter) approaches. Such data typically include allmajor types of variables
(binary, ordinal, count, and continuous) that are incomplete due to planned missing-
ness designs. Existing MI methodologies are restrictive for RTDC data, because
they hinge upon strict and unrealistic assumptions (multivariate normal model for
continuous data, multinomial model for discrete data, general location model for a
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mix of normal and categorical data), commonly known as joint MI models (Schafer
1997). Some methods can handle all data types with relaxed assumptions, but lack
theoretical justification (Van Buuren 2012; Raghunathan et al. 2001). For massive
data as collected in RTDC studies, a novel imputation framework that can accommo-
date all four major types of variables is needed with a minimal set of assumptions.
In addition, no statistical power (probability of correctly detecting an effect) and
sample size (number of subjects, measurements, waves) procedures are available for
RTDC data. The lack of these tools severely limits our ability to capitalize on the
full potential of incomplete intensive data, and a unified framework for simultane-
ously imputing all types of variables is necessary to adequately capture a broad set
of substantive messages that massive data are designed to convey. The proposed MI
framework represents an important and refined addition to the existing methods, and
has potential to advance scientific knowledge and research in a meaningful way; it
offers promising potential for building enhanced statistical computing infrastructure
for education and research in the sense of providing principled, useful, general, and
flexible set of computational tools for handling incomplete data.

Combining our previous random number generation (RNG) work for multivariate
ordinal data (Demirtas 2006), joint binary and normal data (Demirtas and Doganay
2012), ordinal and normal data (Demirtas and Yavuz 2015), count and normal data
(Amatya and Demirtas 2015a), binary and nonnormal continuous data (Demirtas
et al. 2012;Demirtas 2014, 2016)with the specification ofmarginal and associational
parameters; our published work on MI (Demirtas 2004, 2005, 2007, 2008, 2009,
2010, 2017a; Demirtas et al. 2007, 2008; Demirtas and Hedeker 2007, 2008a, b, c;
Demirtas and Schafer 2003; Yucel and Demirtas 2010), along with some related
work (Demirtas et al. 2016a; Demirtas and Hedeker 2011, 2016; Emrich and Pied-
monte 1991; Fleishman 1978; Ferrari and Barbiero 2012; Headrick 2010; Yahav and
Shmueli 2012), a broad mixed data imputation framework that spans all possible
combinations of binary, ordinal, count, and continuous variables, is proposed. This
system is capable of handling the overwhelming majority of continuous shapes; it
can be extended to control for higher order moments for continuous variables, and to
allow over- and under-dispersion for count variables as well as the specification of
Spearman’s rank correlations as the measure of association. Procedural, conceptual,
operational, and algorithmic details of the published, current, and future work will
be given throughout the chapter.

The organization of the chapter is as follows: In Sect. 2, background information
is provided on the generation of multivariate binary, ordinal, and count data with
an emphasis on underlying multivariate normal data that form a basis for the subse-
quent discretization in the binary and ordinal cases, and correlation mapping using
inverse cumulative distribution functions (cdfs) in the count data case. Then, differ-
ent correlation types that are relevant to the work are described; a linear relationship
between correlations before and after discretization is discussed; and multivariate
power polynomials in the context of generating continuous data are elaborated on.
In Sect. 3, operational characteristics of MI under normality assumption are articu-
lated. In Sect. 4, an MI algorithm for multivariate data with all four major variable
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types is outlined under ignorable nonresponse by merging the available RNG and
MI routines. Finally, in Sect. 5, concluding remarks, future research directions, and
extensions are given.

2 Background on RNG

The proposedMI algorithm has strong impetus and computational roots derived from
some ideas that appeared in the RNG literature. This section provides salient fea-
tures of multivariate normal (MVN), multivariate count (MVC), multivariate binary
(MVB), and multivariate ordinal (MVO) data generation. Relevant correlation struc-
tures involving these different types of variables are discussed; a connection between
correlations before and after discretization is established; and the use of power poly-
nomials, which will be employed at later stages to accommodate nonnormal contin-
uous data, is explained.

MVN Data Generation: Sampling from the MVN distribution is straightforward.
Suppose Z ∼ Nd(μ, �), whereμ is themean vector, and� is the symmetric, positive
definite, d × d variance-covariancematrix. A random draw from aMVNdistribution
can be obtained using the Cholesky decomposition of � and a vector of univariate
normal draws. The Cholesky decomposition of� produces a lower-triangular matrix
A forwhich AAT = �. If z = (z1, ..., zd) are d independent standard normal random
variables, then Z = μ + Az is a random draw from the MVN distribution with mean
vector μ and covariance matrix �.

MVC Data Generation: Count data have been traditionally modeled by the Poisson
distribution. Although a few multivariate Poisson (MVP) data generation techniques
have been published, the method in Yahav and Shmueli (2012) is the only one that
reasonably works (allowing negative correlations) when the number of components
is greater than two. Their method utilizes a slightly modified version of the NORTA
(Normal to Anything) approach (Nelsen 2006), which involves generation of MVN
variates with given univariate marginals and the correlation structure (RN ), and then
transforming it into any desired distribution using the inverse cdf. In the Poisson
case, NORTA can be implemented by the following steps:

1. Generate a k-dimensional normal vector ZN from MV N distribution with mean
vector 0 and a correlation matrix RN .

2. Transform ZN to a Poisson vector X POI S as follows:

(a) For each element zi of ZN , calculate the Normal cdf, �(zi ).
(b) For each value of �(zi ), calculate the Poisson inverse cdf with a desired

corresponding marginal rate θi , �
−1
θi

(�(zi )); where �θi (x) = ∑x
i=0

e−θθi

i ! .

3. X POI S = [
�−1

θi
(�(zi )), . . . , �

−1
θk

(�(zk))
]T

is a draw from the desired MV P
distribution with correlation matrix RPOI S .
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An exact theoretical connection between RPOI S and RN has not been estab-
lished to date. However, it has been shown that a feasible range of correlation
between a pair of Poisson variables after the inverse cdf transformation is within
[ρ = Cor(�−1

θi
(U ),�−1

θ j
(1 −U )), ρ = Cor(�−1

θi
(U ),�−1

θ j
(U ))], where θi and θ j

are the marginal rates, and U ∼ Uni f orm(0, 1). Yahav and Shmueli (2012) pro-
posed a conceptually simple method to approximate the relationship between the
two correlations. They have demonstrated that RPOI S can be approximated as an
exponential function of RN where the coefficients are the functions of ρ and ρ. Once
all the elements of RN (that would correspond to RPOI S after correlation mapping)
are approximated, the NORTA method can be used to generate draws from MVP
distribution.

MVB Data Generation: Out of several correlated binary data simulation routines
that have appeared in the literature (see Qaqish 2003 and references therein), the one
that fits into our framework was proposed by Emrich and Piedmonte (1991) who
introduced a method for generating correlated binary data. Let X1, ..., X j rep-
resent binary variables such that E[X j ] = p j and Cor(X j , Xk) = δ jk , where p j

( j = 1, ..., J ) and δ jk ( j = 1, ..., J − 1; k = 2, ..., J ) are given, and where J ≥
2. Let �[t1, t2, ρ] be the cdf for a standard bivariate normal random variable
with correlation coefficient ρ (tetrachoric correlation). Naturally, �[t1, t2, ρ] =∫ t1
−∞

∫ t2
−∞ f (z1, z2, ρ)dz1dz2, where f (z1, z2, ρ) = [2π(1 − ρ2)1/2]−1 × exp[

− (z21 − 2ρz1z2 + z22)/(2(1 − ρ2))
]
. We can generate multivariate normal out-

comes (Z ’s) whose correlation parameters are obtained by solving the equation

�[z(p j ), z(pk), ρ jk] = δ jk(p jq j pkqk)
1/2 + p j pk, (1)

for ρ jk ( j = 1, ..., J − 1; k = 2, ..., J ) where z(p) denotes the pth quantile of the
standard normal distribution, and q = 1 − p. As long as δ jk (phi coefficient) is within
the feasible range, the solution is unique.Repeating this numerical integration process
J (J − 1)/2 times, one can obtain the overall correlation matrix (say �) for the d-
variate standard normal distribution with mean 0. To create dichotomous outcomes
(X j ) from the generated normal outcomes (Z j ), we set X j = 1 if Z j ≥ z(1 − p j )

and 0 otherwise for j = 1, ..., J . This produces a vector with the desired properties.

MVO Data Generation: A few multivariate ordinal data simulation routines have
been published. The method proposed by Demirtas (2006) relies on simulating cor-
related binary variates as an intermediate step. After collapsing the specified ordinal
levels to the binary ones, corresponding binary correlations are computed via simu-
lation in a way to ensure that re-conversion to the ordinal scale delivers the specified
distributional properties. In a similar operational logic to Demirtas (2006), Ferrari
and Barbiero (2012) introduced a more direct routine in which an iterative com-
putational procedure is implemented in an attempt to find the relationship between
specified ordinal correlations and the correlations of the underlying normal variates
that are assumed to be ordinalized through thresholds determined by the marginal
ordinal proportions. Of note, unlike binary data, the correlations and odds ratios do
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not uniquely determine each other in the ordinal case, so marginal distributions and
correlation structure constitute a partial specification (i.e., the first two moments do
not fully specifyMVOdata), which is adequate inmost applications. Inwhat follows,
the MVO data part of our algorithm will be based on Ferrari and Barbiero (2012), as
it best conforms to our conceptual framework.

Different Correlation Types: A correlation between two continuous variables is usu-
ally computed as the common Pearson correlation. If one or both variables is/are
dichotomized/ordinalized by a threshold concept of underlying continuous vari-
ables, different naming conventions are assigned to the correlations. A correlation
between a continuous and a dichotomized/ordinalized variable is a biserial/polyserial
and point-biserial/point-polyserial correlation before and after discretization, respec-
tively. When both variables are dichotomized/ordinalized, the correlation between
the two latent continuous variables is known as the tetrachoric/polychoric correla-
tion. The phi coefficient is the correlation between two discretized variables; in fact
the term phi coefficient is reserved for dichotomous variables, but for lack of a bet-
ter term we also use it for ordinalized and count variables. In addition, we employ
the same terminology for ordinal and count variables in what follows. All of these
correlations are special cases of the Pearson correlation.

Relationships of Correlations in Discrete-Continuous and Continuous-
Continuous Cases: Suppose that X and Y follow a bivariate normal distribution
with a correlation of δXY . Without loss of generality, we may assume that both
X and Y are standardized to have a mean of 0 and a variance of 1. Let XD be
the binary variable resulting from a split on X , XD = I (X ≥ k), where k is the
point of dichotomization. Thus, E[XD] = p and V [XD] = pq where q = 1 − p.
The correlation between XD and X , δXD X can be obtained in a simple way, namely,
δXD X = Cov[XD ,X ]√

V [XD ]V [X ] = E[XDX ]/√pq = E[X |X ≥ k]/√pq . We can also express
the relationship between X and Y via the following linear regression model:

Y = δXY X + ε (2)

where ε is independent of X and Y , and follows N ∼ (0, 1 − δ2XY ). When we gener-
alize this to nonnormal X and/or Y (both centered and scaled), the same relationship
can be assumed to hold with the exception that the distribution of ε follows a non-
normal distribution. As long as Eq.2 is valid,

Cov[XD,Y ] = Cov[XD, δXY X + ε]
= Cov[XD, δXY X ] + Cov[XD, ε]
= δXYCov[XD, X ] + Cov[XD, ε] . (3)

Since ε is independent of X , it will also be independent of any deterministic
function of X such as XD , and thus Cov[XD, ε] will be 0. As E[X ] = E[Y ] = 0,
V [X ] = V [Y ] = 1, Cov[XD,Y ] = δXDY

√
pq and Cov[X,Y ] = δXY , Eq. 3 reduces

to
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δXDY = δXY δXD X . (4)

In the bivariate normal case, δXD X = h/
√
pq where h is the ordinate of the

normal curve at the point of dichotomization. Equation4 indicates that the linear
association between XD and Y is assumed to be fully explained by their mutual
association with X (Demirtas and Hedeker 2016). The ratio, δXDY /δXY is equal to
δXD X = E[XDX ]/√pq = E[X |X ≥ k]/√pq . It is a constant given p and the dis-
tribution of (X,Y ). These correlations are invariant to location shifts and scaling, X
and Y do not have to be centered and scaled, their means and variances can take any
finite values. Once the ratio (δXD X ) is found, one can compute the point-biserial or
biserial correlation when the other one is specified.

When X is ordinalized to obtain XO , the fundamental ideas remain unchanged.
As long as the assumptions of Eqs. 2 and 4 are met, the method is equally applicable
to the ordinal case in the context of the relationship between the polyserial (before
ordinalization) and point-polyserial (after ordinalization) correlations. The easiest
way of computing δXO X is to generate X with a large number of data points, then
ordinalize it to obtain XO , and then compute the correlation between XO and X .
X could follow any continuous univariate distribution. However, for the purpose
of the more general algorithm presented in Sect. 4, X is assumed to be a part of a
MVN distribution before discretization. Similarly, in the Poisson case, δXPOI SY =
δXY δXPOI S X is valid. The only difference is that we use the inverse cdf method rather
than discretization via thresholds as in the binary and ordinal cases.

Power Polynomials: Fleishman (1978) presented a moment-matching procedure that
simulates nonnormal distributions often used in Monte-Carlo studies. It is based
on the polynomial transformation, Y = a + bZ + cZ2 + dZ3, where Z follows a
standard normal distribution, and Y is standardized (zero mean and unit vari-
ance). The distribution of Y depends on the constants a, b, c, and d, that can be
computed for specified or estimated values of skewness (ν1 = E[Y 3]) and kurtosis
(ν2 = E[Y 4] − 3). This procedure of expressing any given variable by the sum of
linear combinations of powers of a standard normal variate is capable of covering a
wide area in the skewness-elongation plane whose bounds are given by the general
expression ν2 ≥ ν2

1 − 2.
Assuming that E[Y ] = 0, and E[Y 2] = 1, by using the moments of the standard

normal distribution, the following set of equations can be derived:

a = −c (5)

b2 + 6bd + 2c2 + 15d2 − 1 = 0 (6)

2c(b2 + 24bd + 105d2 + 2) − ν1 = 0 (7)

24[bd + c2(1 + b2 + 28bd) + d2(12 + 48bd + 141c2 + 225d2)] − ν2 = 0 (8)
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These equations can be solved by theNewton-Raphsonmethod, or any other plausible
root-finding or nonlinear optimization routine.More details for the Newton-Raphson
algorithm in this particular setting is given by Demirtas et al. (2012), and a com-
puter implementation can be found in Demirtas and Hedeker (2008a). Note that the
parameters are estimated under the assumption that the mean is 0, and the standard
deviation is 1; the resulting data set should be back-transformed to the original scale
by reverse centering and scaling. It is well-known that linear transformations such
as centering and scaling do not change the correlation value. The standardization
does not affect the skewness and kurtosis values either, and hence it is merely a
computational convenience for our purposes. Since a = −c, it reduces to solving the
following equations:

g =
⎡

⎣
g1 = b2 + 6bd + 2c2 + 15d2 − 1

g2 = 2c(b2 + 24bd + 105d2 + 2) − ν1
g3 = 24[bd + c2(1 + b2 + 28bd) + d2(12 + 48bd + 141c2 + 225d2)] − ν2

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦ .

The first derivative matrix is given by

H =
⎡

⎣
g

′
1(b) g

′
1(c) g

′
1(d)

g
′
2(b) g

′
2(c) g

′
2(d)

g
′
3(b) g

′
3(c) g

′
3(d)

⎤

⎦ ,

where g
′
1(b) = 2b + 6d, g

′
1(c) = 4c, g

′
1(d) = 6b + 30d

g
′
2(b) = 2c(2b + 24d), g

′
2(c) = 2(b2 + 24bd + 105d2 + 2), g

′
2(d) = 2c(24b +

210d)

g
′
3(b) = 24(d + 2bc2 + 28c2d + 48d3), g

′
3(c) = 24(2c + 2b2c + 56bcd + 282cd2)

g
′
3(d) = 24(b + 28bc2 + 24d + 144bd2 + 282c2d + 900d3) .

Updating equations in Newton-Raphson are

⎡

⎣
b(t+1)

c(t+1)

d(t+1)

⎤

⎦ =
⎡

⎣
b(t)

c(t)

d(t)

⎤

⎦ − H−1g .

Fleishman’s method has been extended in several ways in the literature. One
such extension is a multivariate version proposed by Vale and Maurelli (1983),
which plays a central role in this chapter. The procedure for generating multivari-
ate continuous data begins with computation of the constants given in Eqs. 5–8,
for each variable independently. The multivariate case can be formulated in matrix
notation as shown below. First, let Z1 and Z2 be variables drawn from standard
normal populations; let w

′
be the weight vector that contains the power function

weights a, b, c, and d, w
′ = [a, b, c, d]; and let z

′
be the vector of powers zero

through three, z
′ = [1, Z , Z2, Z3]. The nonnormal variable Y is then defined as

the product of these two vectors, Y = w
′
z. Let δY1Y2 be the correlation between

two nonnormal variables Y1 and Y2 corresponding to the normal variables Z1 and
Z2, respectively. As the variables are standardized, meaning E(Y1) = E(Y2) = 0,
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δY1Y2 = E(Y1Y2) = E(w
′
1z1z

′
2w2) = w

′
1Rw2, whereR is the expected matrix prod-

uct of z1 and z
′
2:

R = E(z1z
′
2) =

⎡

⎢
⎢
⎣

1 0 1 0
0 δZ1Z2 0 3δZ1Z2

1 0 2δ2Z1Z2
+ 1 0

0 3δZ1Z2 0 6δ3Z1Z2
+ 9δZ1Z2

⎤

⎥
⎥
⎦ ,

where δZ1Z2 is the correlation between Z1 and Z2. After algebraic operations, the
following relationship between δY1Y2 and δZ1Z2 in terms of polynomial coefficients
ensues:

δY1Y2 = δZ1Z2(b1b2 + 3b1d2 + 3d1b2 + 9d1d2) + δ2Z1Z2
(2c1c2) + δ3Z1Z2

(6d1d2) (9)

Solving this cubic equation for δZ1Z2 gives the intermediate correlation between the
two standard normal variables that is required for the desired post-transformation
correlation δY1Y2 . Clearly, correlations for each pair of variables should be assembled
into amatrix of intercorrelations that is needed inmultivariate normal data generation.
Subsequently, the specified nonnormal variables are simulated through the respective
normal components and polynomial coefficients for each variable. For a definitive
source and in-depth coverage of the Fleishman polynomials, see Headrick (2010).
We now briefly discuss our published RNG work that will serve as building blocks
for the proposed approach.

Joint Generation of Different Types: In what follows, in addition to the abbrevia-
tions MVN,MVB, MVO, andMVC that were introduced earlier, NCT andMVNCT
denote nonnormal continuous, and multivariate nonnormal continuous, respectively.
In RNG for the MVB-MVN combination (Demirtas and Doganay 2012), the under-
lying mechanism comes from a combination of three well-known data generation
routines. It assumes that all variables in the system jointly follow a multivariate nor-
mal density originally, but some of the components are dichotomized. The two sets
of correlations are naturally altered with this operation: (1) the correlations among
dichotomized variables, and (2) the correlations among normal and dichotomized
variables. The magnitude of the first change needs to be computed through a series
of double numerical integrations (Eq.1), and that of the second change comes from
Eq.4. Once these transitions are performed, one can form an overall correlation
matrix for a multivariate normal distribution that would lead to the specified corre-
lations after dichotomizing some of the variables via thresholds that are determined
by marginal proportions. In RNG for the MVO-MVN combination (Demirtas and
Yavuz 2015) and the MVC-MVN combination (Amatya and Demirtas 2015a), the
same logic applies with some operational differences. The connection of correlations
before and after ordinalization/inverse cdf matching for the O-O/C-C pairs can be
found by an iterative procedure (Demirtas 2006; Ferrari and Barbiero 2012) and by
the method in Yahav and Shmueli (2012), respectively. The link between polyserial
and point-polyserial correlations is established via the ordinal/count versions of Eq.4
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for the O-N/C-N pairs. Generation of MVN data with an overall correlation matrix
that has three components (O-O, O-N, and N-N pairs) is followed by ordinalization
via thresholds for the discrete part. In the count case, the inverse cdfmatching replaces
the threshold concept. In RNG for the MVB-MVNCT combination (Demirtas et al.
2012), the NCT-NCT pairs are handled through multivariate power polynomials.
B-B correlations (phi coefficients) are transformed to tetrachoric correlations via
Eq.1. The procedure for carrying out the B-NCT part is a special case of the MVO-
MVC-MVNCT combination we elaborate on in Sect. 4. These methods are capable
of generating data that are consistent with the specified linear association structure
for all variables, proportions of the binary and ordinal variables, Poisson rates for
the count variables, and mean, variance, skewness, and peakedness behavior for the
continuous variables.

3 Missing Data and MI

The properties of missing-data methods vary depending on the manner in which data
became missing; every missing-data technique makes implicit or explicit assump-
tions about the missing-data mechanism.Manymissing-data procedures in use today
assume thatmissing values aremissing at random (MAR) (Rubin 1976).UnderMAR,
missingness is related to the observed data, but conditionally independent of themiss-
ing data. A special case of MAR is missing completely at random (MCAR). Under
MCAR, nonresponse is independent of observed and unobserved data; a weaker ver-
sion of theMCAR assumption allows dependence on fully observed covariates. If the
response probabilities depend on unobserved data; in this case, the missing values
are said to be missing not at random (MNAR). A missing-data mechanism is said to
be ignorable if the missing data are MAR or MCAR, together with a minor technical
condition called distinctness. MI is a Monte-Carlo technique in which the missing
values are replaced by a set of simulated versions of them. These simulated values are
drawn from a Bayesian posterior predictive distribution for the missing values given
the observed values and the missingness indicators. Carrying out MI requires two
sets of assumptions. First, one must propose a model for the data distribution which
should be plausible and should bear some relationship to the type of analysis to be
performed. The second set of assumptions pertains to type of missingness mecha-
nism. An assumption of MAR is commonly employed for MI. However, the theory
of MI does not necessarily require MAR; MI may also be performed under nonig-
norable models. For the purposes of this chapter, ignorable nonresponse is assumed.
The key idea of MI is that it treats missing data as an explicit source of random
variability to be averaged over. The process of creating imputations, analyzing the
imputed data sets, and combining the results is a Monte-Carlo version of averaging
the statistical results over the predictive distribution of the missing data. In practice,
a large number of multiple imputations is not required; sufficiently accurate results
can often be obtained with several imputations. Once the imputations have been
created, the completed data sets may be analyzed without regard for missing data;
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all relevant information on nonresponse is now carried in the imputed values. Once
the quantities have been estimated, the several versions of the estimates and their
standard errors are combined by simple arithmetic. MI under normality assumption
is central to this chapter as it forms a basis to MI for nonnormal continuous data as
well as discrete data. Its operational details are given below. With the utility of MI,
we can potentially reduce the number of observations per subject in RTDC studies
with planned missingness (and subsequently reduce participant burden and study
costs).

Let yi j denote an individual element of Y , i = 1, 2, ..., n, j = 1, 2, ..., p. The
i th row of Y is yi = (yi1, yi2, ..., yip)T . Assume that y1, y2, ..., yn are independent
realizations of a random vector, denoted as (Y1,Y2, ..., Yp), which has a multi-
variate normal distribution with mean vector μ and covariance matrix �; that is
y1, y2, ..., yn|θ ∼ N (μ, �), where θ = (μ, �) is the unknown parameter and �

is positive definite. The complete-data likelihood with this setting is proportional
to |�|− n

2 exp
{ − 1

2

∑n
i=1(yi − μ)T�−1(yi − μ)

}
. The maximum likelihood estima-

tors for μ and � are well-known: μ̂ = ȳ = n−1
n∑

i=1
yi and �̂ = S = n−1

n∑

i=1
(yi − ȳ)

(yi − ȳ)T . When imputations are created under Bayesian arguments, MI has a nat-
ural interpretation as an approximate Bayesian inference for the quantities of inter-
est based on the observed data. MI can be performed by first running an EM-type
(expectation-maximization) algorithm (Dempster et al. 1977), and then by employing
a data augmentation procedure (Tanner andWong 1987). The EM algorithm is useful
for two reasons: it provides good starting values for the data augmentation scheme,
and it gives us an idea about the convergence behavior. Data augmentation using the
Bayesian paradigm has been perceived as a natural tool to create multiply imputed
data sets. A brief description of theMI process using data augmentation is as follows.
When bothμ and� are unknown, the conjugate class for themultivariate normal data
model is the normal inverted-Wishart family.When a p × pmatrix X has an inverted-
Wishart density (W−1(k, �)) with degrees of freedom parameter k and inverse-
scale parameter �, the density is proportional to |X |−(

k+p+1
2 )exp

{ − 1
2 tr(�

−1X−1)
}

for k ≥ p. Bayesian inference for θ = (μ, �) proceeds with the formulation of
prior distributions: Suppose that μ|� ∼ N (μ0, τ

−1�), where the hyperparame-
ters μ0 and τ > 0 are fixed and known; and � ∼ W−1(k, �), where p ≤ k and
� > 0. The prior density for θ is then f (θ) ∝ |�|−(

k+p+2
2 )exp

{ − 1
2 tr(�

−1�−1)
}
exp{ − τ

2 (μ − μ0)
T�−1(μ − μ0)

}
, and after somealgebraicmanipulations the complete-

data likelihood can be re-expressed as ∝ |�|− n
2 exp

{ − n
2 tr(�

−1S)
}
exp

{ − n
2

(ȳ − μ)T�−1(ȳ − μ)
}
. Multiplying the prior and likelihood, the posterior dis-

tribution P(θ|Y ) has also a normal inverted-Wishart form with new values for
(τ , k,μ0, �). In other words, the complete-data posterior is normal inverted-Wishart:
μ|�,Y ∼ N (μ∗

0, (τ
∗)−1�); and �|Y ∼ W−1(k∗, �∗), where the updated hyperpa-

rameters are τ ∗ = τ + n, k∗ = k + n, μ∗
0 = (

n
τ+n

)
ȳ + (

τ
τ+n

)
μ0, and �∗ = [

�−1 +
nS + (

τn
τ+n

)
(ȳ − μ0)(ȳ − μ0)

T
]−1

. When no strong prior information is available

about θ, one may apply Bayes’ theorem with the improper prior f (θ) ∝ |�|−
(

p+1
2

)
,
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which is the limiting form of the normal inverted-Wishart density as τ → 0, k → −1
and �−1 → 0, reflecting a state of relative ignorance. Initial estimates for θ are
typically obtained by the EM algorithm. Let Ymis and Yobs denote the missing and
observed parts of data, respectively. Then, data augmentation scheme is implemented
as follows: First, a value of missing data from the conditional predictive distribu-
tion of Ymis , Y

(t+1)
mis ∼ P(Ymis |Yobs, θ(t)), is drawn. Then, conditioning on Y (t+1)

mis , a
new value of θ from its complete-data posterior, θ(t+1) ∼ P(θ|Yobs,Y (t+1)

mis ) is drawn.
Repeating these two steps from a starting value θ(0) yields a stochastic sequence
(θ(t),Y (t)

mis) : t = 1, 2, ... whose stationary distribution is P(θ,Ymis |Yobs), and the
subsequences θ(t) and Y (t)

mis have P(θ|Yobs) and P(Ymis |Yobs) as their respective dis-
tributions. For a reasonably large number of iterations, the convergence to these
stationary distributions is achieved. Since the complete-data likelihood is assumed
to follow a multivariate normal distribution, drawing from conditional distributions
above is relatively straightforward and can be performed by applying sweep operators
to subsets of the vector μ and the matrix �.

4 Connecting RNG and MI, Outline of a Unified MI
Algorithm for Mixed Data

RNG and MI are intricately related under the assumption of ignorable nonresponse
(MCAR and MAR), where an explicit model for missingness does not have to be
posited for inferential purposes, and there are no residual relationships betweenmiss-
ingness and outcomes once we take an appropriate account for observed data (i.e.,
missing values behave like a random sample of all valueswithin subclasses defined by
observed data). Both paradigms hinge upon a procedure that has substantially similar
underlying rationale under ignorability.RNG/MI involveswith producing/preserving
marginal and associational trends using the specified/estimated quantities. Ignora-
bility is known to hold for planned missingness designs (Schafer 1997). While there
are typically other reasons for missingness (subject unable/unwilling to respond,
device not with subject etc.), such missing values are assumed to be ignorable. The
possibility of nonignorable missingness cannot be ruled out, however, MI litera-
ture favors rich imputation models, and the presence of many variables in the data
sets, some of which are measured repeatedly, lead us to believe that MAR assump-
tion is not implausible in the sense that causes or correlates of missingness and/or
outcomes are likely to be included in the observed data. Let O, C, N, and NCT cor-
respond to the ordinal, count, normal, and nonnormal continuous parts, respectively.
As a binary variable is a special case of an ordinal variable, combinations that are
involved with ordinal data inherently include binary data as well. First, the marginal
features (proportions for binary and ordinal variables, the first four moments [mean,
variance, skewness and kurtosis] of the continuous variables, and rate parameters
for the count variables) and correlation matrix (based on all available information)
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among all variables should be found using the observed data (Yobs). The skeleton of
the MI algorithm is as follows.

1. Compute the polychoric correlations for the O-O pairs using the method in
Ferrari and Barbiero (2012), separately for each ordinal pair.

2. Compute the polychoric correlations for the C-C pairs using themethod inYahav
and Shmueli (2012), separately for each count pair.

3. Store the means and standard deviations of the continuous variables (needed
in Step 21), and work with the centered and scaled versions of the continuous
variables. Note that correlations remain unchanged with a linear transforma-
tion. Estimate the power coefficients (a, b, c, d) for each continuous variable by
Eqs. 5–8 given corresponding ν1 and ν2 values.

4. For each NCT-NCT pair, using the constants in Step 3, find the intermediate
correlation by solving Eq.4.

5. For each O-NCT pair, assume that there are two identical standard normal (N)
variables, one is the normal component of the continuous variable and the other
underlies the ordinal variable before discretization. Compute Cor(O, N ) by the
ordinal version of Eq.3.

6. Solve for Cor(NCT, N ) assuming Cor(O, NCT ) = Cor(O, N ) ∗ Cor
(NCT, N ), so that the linear association between O and NCT is assumed
to be fully explained by their mutual association with N. In this equation,
Cor(O, NCT ) is specified, and Cor(O, N ) is found in Step 5.

7. Compute the intermediate correlation between NCT and N by Eq.9. Notice
that for standard normal variables, b = 1 and a = c = d = 0. So the interme-
diate correlation is the ratio, Cor(NCT, N )/(b + 3d), where b and d are the
coefficients of the nonnormal continuous variable.

8. For each C-NCT pair, assume that there are two identical standard normal (N)
variables, one is the normal component of the continuous variable and the
other underlies the count variable before the inverse cdf matching. Compute
Cor(C, N ) by the count version of Eq.4.

9. Solve for Cor(NCT, N ) assuming Cor(C, NCT ) = Cor(C, N ) ∗ Cor
(NCT, N ), so that the linear association between C and NCT is assumed
to be fully explained by their mutual association with N. In this equation,
Cor(C, NCT ) is specified, and Cor(C, N ) is found in Step 8.

10. Compute the intermediate correlation between NCT and N by Eq.9, which is
Cor(NCT, N )/(b + 3d), as in Step 7.

11. For eachO-C pair, suppose that there are two identical standard normal variables,
one underlies the ordinal variable before discretization, the other underlies the
count variable before the inverse cdf matching. Find Cor(O, N ) by Eq.3. Then,
assume Cor(O,C) = Cor(O, N ) ∗ Cor(C, N ). Cor(O,C) is specified and
Cor(O, N ) is calculated. Solve for Cor(C, N ). Then, find the underlying N-N
correlation by Eq.4.

12. Construct an overall correlation matrix, �∗ using the results from Steps 1–11.
13. Check if �∗ is positive definite. If it is not, find the nearest positive definite

correlation matrix by the method of Higham (2002).
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14. Randomly assign a normal score to each of the binary and ordinal measure-
ment using normal quantiles in the appropriate range dictated by the marginal
proportions.

15. Randomly assign a normal score to each countmeasurement based on the equiva-
lence of cdfs of Poisson and normal distribution in the appropriate range dictated
by the rate parameters.

16. Compute a normal score for each continuousmeasurement by finding the normal
root in the Fleishman equation.

17. PerformMI under MVN assumption for the data that are formed in Steps 14–16
with the correlation matrix �∗.

18. Obtain ordinal variables using the thresholds determined by the marginal pro-
portions using quantiles of the normal distribution.

19. Obtain count variables by the inverse cdf matching procedure.
20. Obtain continuous variables by the sum of linear combinations of standard nor-

mals using the corresponding (a, b, c, d) coefficients.
21. Transformback to the original scale for continuous variables by reverse centering

and scaling.

In other words, the marginal and associational quantities are obtained by the
examination of observed data; a new data set is formed whose marginals are nor-
mal via discretization, inverse cdf matching, and extracting the normal components
for binary/ordinal, count, and nonnormal continuous parts, respectively; and finally
an overall MVN correlation matrix is to be assembled. Subsequently, one can create
imputed data sets by taking advantage of well-accepted BayesianMI procedures with
normalized scores and this intermediate correlation matrix, as explained in Sect. 3.
Then, afterMI,we can go back to the original types using the threshold concept for the
binary and ordinal variables, and quantile transformation for the count variables, and
as for the continuous variables, normal variates should be transformed to the original
nonnormal continuous data by Y = a + bZ + cZ2 + dZ3, then reverse centering
and scaling completes the process. Obviously, this whole procedure needs to be
repeatedm > 1 times to adequately account for missing data uncertainty. This novel
imputation model encompasses all major variable types (binary, ordinal, count, con-
tinuous) to test the predictive effects of subject-level (time-static) and within-subject
(time-varying) parameters. The proposed flexible and broad imputation approach
allows us to address many research questions in RTDC studies, by adequately cap-
turing the real incomplete-data trends.

The implementation of the above algorithm can be performed by adding Bayesian
MI capabilities into our existing R packagesOrdNor, BinNor,MultiOrd, PoisNor
(Amatya and Demirtas 2015b, 2016a, b, c, respectively),BinNonNor, PoisBinOrd,
PoisBinNonNor (Inan and Demirtas 2016a, b, c, respectively), PoisBinOrdNor
(Demirtas et al. 2016b), PoisBinOrdNonNor (Demirtas et al. 2016c), PoisNonNor
(Demirtas et al. 2016d), and BinOrdNonNor (Demirtas et al. 2016e).
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5 Some Remarks and Discussion

Building upon our published and current work, the future steps are as follows: First,
the third order polynomials can be extended to the fifth order system (Headrick 2002)
for the continuous part in the spirit of controlling for higher order moments to cover
a larger area in the skewness-elongation plane and to provide a better approxima-
tion to the probability density functions of the continuous variables; and the count
data part will be augmented through the generalized Poisson distribution (Demirtas
2017b) that allows under- and over-dispersion, which is usually encountered in most
applications, via an additional dispersion parameter. The computational pieces are
to be put together for the general-purpose MI algorithm that can routinely be applied
to intensive data with planned missingness. Second, the algorithm can be extended
to accommodate the Spearman correlation. Although the Pearson correlation may
not be the best association quantity in every situation, all correlations mentioned in
this chapter are special cases of the Pearson correlation; it is the most widespread
measure of association; and generality of the methods proposed herein with differ-
ent kinds of variables requires the broadest possible framework. In an attempt to
further broaden the scope and applicability of the ideas presented herein, the pro-
posed MI approach can be extended to allow the specification of the Spearman’s
rho, which is more popular for discrete and heavily skewed continuous distribu-
tions. For the continuous-continuous pairs, the connection between the Pearson and
Spearman correlations is given in Headrick (2010) through the power coefficients,
and these two correlations are known to be equal for the binary-binary pairs. The
relationship will be derived for all other variable type combinations. Inclusion of
Spearman’s rho as an option will allow us to specify nonlinear associations whose
monotonic components are reflected in the rank correlation. Third, statistical power,
sample size, and measurement frequency guidelines (currently unavailable to the
best of our knowledge) can be developed. This may be very helpful in designing
future RTDC studies with planned missingness as well as in many other contexts.
Power is a function of the sample size, measurement frequency, standardized effect
size, directionality of hypotheses, Type I error rate, mode of analysis, missing data
rate, degree of associations among successive measurements and parameter(s) under
consideration. For example, these power and sample size guidelines may be used
to determine the minimal number of recruitable subjects for an RTDC study with
a certain budget, proportion of missing prompts that can be accommodated and/or
the number of prompts per day, the number of days are needed to attain a specified
power level under a well-defined model with associated hypotheses.

The key advantages of the proposed tools are as follows: (1) Individual compo-
nents are well-established; our published and current studies suggest that the goals
are achievable. (2) Given their computational simplicity, flexibility, and generality,
these methods are likely to be widely used by researchers, methodologists, and prac-
titioners in a wide spectrum of scientific disciplines. (3) They could be very useful in
graduate-level teaching of statistics courses that involve computation and simulation,
and in training graduate students. (4) Having access to these methods is needed by
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potentially a large group of people. (5) Imputed variables can be treated as outcomes
or predictors in subsequent statistical analyses as the variables are being imputed
jointly. (6) Required quantities can either be specified or estimated from a real data
set. (7) We allow the specification of the two prominent types of correlations (Pear-
son and Spearman correlations). This makes it feasible to generate linear and a broad
range of nonlinear associations. (8) The continuous part can include virtually any
shape (skewness, low or high peakedness, mode at the boundary, multimodality,
etc.) that is spanned by power polynomials; the count data part can be under- or
over-dispersed. (9) Ability to simultaneously imputing different types of data may
facilitate comparisons among existing data analysis and computation methods in
assessing the extent of conditions under which available methods work properly, and
foster the development of new tools, especially in contexts where correlations play
a significant role (e.g., longitudinal, clustered, and other multilevel settings). (10)
The approaches presented here can be regarded as a variant of multivariate Gaussian
copula-based methods as (a) the binary and ordinal variables are assumed to have a
latent normal distribution before discretization; (b) the count variables go through
a correlation mapping procedure via the anything-to-normal approach; and (c) the
continuous variables consist of polynomial terms involving normals. (11) Availabil-
ity of a general mixed data imputation algorithm can markedly facilitate simulated
power-sample size calculations for a broad range of statistical models.

The following possible questions can be posed: (1) We have enough data in such
studies, why do we want more through imputation? (2) In the presence of massive
data, do we really need to be concerned about statistical power? Intensive data are
typically analyzed with complicated statistical models with many parameters that are
assumed to govern the process that differentiates population-averaged (similarities)
and subject-specific (differences) effects, as well as cross-sectional (time-invarying)
and longitudinal (time-varying) trends. These massive data are collected to poten-
tially address a wide range of research questions; complex data are designed for
complex set of hypotheses, a situation which is generally associated with a rich set of
parameters for which more information is necessary for modeling purposes. In addi-
tion, researchers could recruit a larger group of participants with the same resources
as subjects are asked to respond a subset of questions or prompts in planned miss-
ingness designs where MI can only help in drawing statistically sound conclusions
in the sense that –more subjects, fewer observations per subject– type of settings,
by which more questions can be answered, become more feasible. Same arguments
equally apply to the statistical power and sample size context.

Examples from many application areas can be given. Modern data collection pro-
cedures, such as real-time data captures yield relatively large numbers of subjects
and observations per subject, and data from such designs are sometimes referred to
as intensive longitudinal data (Walls and Schafer 2006). For instance, in subjective
well-being and quality of life studies, data are collected on people’s material con-
ditions such as income, health, education, environment, personal safety, and social
connections, as well as subjects’ momentary positive and negative affects as mea-
sured by individual mood items such as feeling happy, relaxed, cheerful, confident,
accepted by others, sad, stressed, and irritable, etc. One such study that the author
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has been involved focused on adolescent smoking in the context of modeling the
determinants of the variation in the adolescents’ moods (Hedeker et al. 2008, 2009,
2012; Demirtas et al. 2012). Subjects carried the hand-held computers with them at
all times during a seven consecutive day data collection period and were trained to
both respond to multiple random prompts from the computers throughout the day
and to event record smoking episodes. Questions included ones about place, activity,
companionship, mood, and other subjective items. The proposed approach can be
used to impute a large number of variables of all major types in a way that preserves
the marginal and correlational features for such data.

All in all, the proposed MI framework could be a useful addition to the litera-
ture for the following major reasons: First, theoreticians, practitioners, data analysts,
and methodologists across many different fields in social, managerial, behavioral,
medical, and physical sciences will be able to multiply impute intensive multivariate
data of mixed types with ease. Second, the proposed work can serve as a milestone
for the development of more sophisticated data analysis, computation, and program-
ming techniques in the digital information domains. Capability of accommodating
many incomplete variables of different distributional nature, types, and dependence
structures could be a contributing factor for better comprehending the operational
characteristics of today’s massive data trends. Third, the work can be helpful in
promoting higher education in the form of training graduate students. Overall, it
offers promising potential for building enhanced statistical computing infrastructure
for education and research in the sense of providing principled, useful, general, and
flexible set of computational tools for handling incomplete data.
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Hybrid Monte-Carlo in Multiple Missing
Data Imputations with Application
to a Bone Fracture Data

Hui Xie

Abstract In this chapter we introduce Hybrid Monte-Carlo (HMC) as an efficient
method to sample from complex posterior distributions of many correlated parame-
ters froma semi-parametricmissing datamodel. TheHMCenables a distribution-free
likelihood-based approach to multiple imputation of missing values. We describe the
modeling approach for modeling missing values that does not require assuming any
specific distributional forms. We then describe the use of the HMC sampler to obtain
inferences and generate multiple imputations under the model, and touch upon var-
ious implementation issues, such as choosing starting values, determining burn-in
period, monitoring convergence, deciding stopping times. An R program is provided
for analyzing missing data from a Bone Fracture study.

1 Introduction

Missing data occur often in health studies. Multiple imputation (MI) becomes a very
popular approach to dealwithmissing data problems. Software programs implement-
ing popular MI methods are widely available in SAS and R (Little and Rubin 2002;
Harel and Zhou 2007; Horton and Lipsitz 2001; Ibrahim et al. 2005; Kenward and
Carpenter 2007; Rubin 1987; Raghunathan et al. 2001; Yu et al. 2007). Chen et al.
(2011) proposed a novel method for multiple imputation based on conditional semi-
parametric odds ratio models. The approach overcomes some important limitations
of the extant multiple imputation methods. By using the conditional semi-parametric
odds ratio modeling framework, we can simultaneously address both the issue of the
inflexibility of theMImethods employing the joint normal model and the issue of the
possible incompatibility of the chained fully conditionalmodels (Gelman andRaghu-
nathan 2001; Gelman and Speed 1993, 1999; Buuren et al. 1999; Buuren 2007). As
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a multiple imputation procedure, the approach of Chen et al. (2011) eliminates the
need to evaluate intractable multiple integrations with respect to missing data. A
major challenge in the approach is the difficulty to sample from the complex poste-
rior distribution of many correlated parameters in the semi-parametric complete-data
model. The task demands the utilization of the state-of-the-art Monte-Carlo methods
for efficient posterior distribution sampling. Chen et al. (2011) address this issue by
using the hybrid Monte-Carlo (HMC) method.

The purpose of this book chapter is not to propose a new methodology that is
different from Chen et al. (2011), but to give a more detailed description of the issues
when implementing the HMC to facilitateMI, and to illustrate the efficiency of HMC
to sample from complex posterior distributions. We describe the use of the HMC
sampler to obtain inference under the model, and touch upon various implementation
issues, such as choosing starting values, determining burn-in period, monitoring
convergence, and deciding stopping times. This chapter presents an application of the
state-of-the-art Monte-Carlo sampling methods for statistical modeling and analysis.
Data and computer programs are publicly available in order for readers to replicate
model development and data analysis presented in the chapter by interested readers
in their research.

2 The Bone Fracture Data

A hip fracture is a serious injury that can be life-shortening and costly. It frequently
requires surgery, replacement or months of physical therapy. Barengolts et al. (2001)
conducted a population-based case-control study to identify risk factors for hip frac-
ture occurrence. The study collected data on the hip fracture outcome and a set of
potential risk factors for hip fracture for a sample of male veterans. There were 218
cases (subjects with hip fracture) who are matched with controls based on age and
race on a 1:1 ratio with a total sample size of 436 subjects.

Table1 presents the two group comparisons between cases and controls for the
nine predictors suggested as potentially important for predicting risk factors from
preliminary exploratory data analysis. These predictors are a mixture of continuous
and binary variables. Means and standard deviations are presented for continuous
variables and proportions of “yes” are presented for the binary variables in Table1.As
is typical with such population studies, there exists various amounts of missingness
for these variables as shown in Table1.

Figure1 plots the missing data pattern. The missing data pattern is arbitrary and
non-monotone. Although the proportion of missingness ranges from 3.2% for the
variable “Dementia” to 23.9% for the variable “Albumin”, there were only about
50% complete cases (237 out of 436 subjects). Therefore the common logistic regres-
sion software used for analyzing this type of data will exclude about a half of the
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Table 1 Summary statistics of predictors.

Variable MissingPortion (%) Control Case P-value

Etoh 10.1 31.5% 60.9% 5.3e−9

Smoke 12.4 37.6% 68.6% 1.7e−9

Dementia 3.2 4.6% 22.1% 10.0e−8

Antiseiz 5.3 2.3% 16.8% 4.0e−7

LevoT4 9.2 5.2% 5.9% 0.77

AntiChol 10.8 20.1% 5.4% 1.5e−5

Albumin 23.9 3.83(0.54) 3.40(0.70) 7e−10

BMI 10.3 27.07(5.62) 22.56(4.72) 2e−16

log(HGB) 12.2 2.59(0.14) 2.47(0.18) 7e−14

The table presents summary statistics for the nine predictors using observed data, stratified by
the hip fracture outcomes (i.e. cases and controls). Proportions of “Yes” are presented for binary
variables (the first six variables in the table) and means (standard deviations) are presented for the
continuous variables (Albumin, BMI, log(HGB)). The column “P-value” presents P-values from
the chi-square tests and two-sample t-test for the binary and continuous predictors, respectively.
The column “MissingPortion” presents the proportion of missingness for each variable
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Fig. 1 Missing data pattern in the bone fracture data. The x-axis represents the observation index.
The color “red” denotes the missing values

original sample. Such complete case analysis can substantially reduce effective sam-
ple size and introduce potentially significant selection bias for the identification of
risk factors.
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3 Imputation Modeling and Inference

3.1 Multiple Imputation to Missing Data Problems

We consider multiple imputation to the general missing data problems where the
ideal complete data form a rectangular dataset with rows coming from independent
and identically distributed draws from amultivariate probability distribution denoted
as fθ (Y) and the data for a row is denoted as Y = (Y1, . . . ,Yt). Let R = (R1, . . . ,Rt)

denote themissing data indicator forY .Rj = 1 ifYj is observed, andRj = 0 otherwise.
We consider arbitrary missing data patterns as illustrated in the bone fracture data.
Let Y = (YO,YM) where YO and YM denote the observed and missing components
in Y , respectively. There are three types of missing data mechanisms as defined in
Rubin (1976) and Little and Rubin (2002). They are missing completely at random
(MCAR) when fφ(R|Y) does not depend on Y , missing at random (MAR) when
fφ(R|Y) = fφ(R|YO), and missing not at random (MNAR) when fφ(R|Y) depends on
the missing values.

Multiple imputation replaces YM with D(D > 1) plausible values from the pos-
terior predictive distribution of missing data, i.e., f (YM |YO,R). In practice, it is
often easier to make draws from the joint distribution of all model unknowns
f (YM , θ, φ|YO,R), where

f (YM , θ, φ|YO,R)∝ π(θ, φ)fθ (Y
M ,YO)fφ(R|YM ,YO) (1)

In practice, the standard analysis typically makes the assumptions of ignorability
and prior independence of θ and φ, where the ignorability holds for likelihood-based
inference when missingness is MAR and the parameters θ and φ are unrelated to
each other (i.e., parameter distinctness). Under the above assumptions, fφ(R|YM,YO)

contains no information about YM and θ and can be ignoredwhen the primary interest
are on the posterior distribution of YM and θ . That is, the above posterior joint
distribution can be factorized as the product of two parts:

f (YM , θ, φ|YO,R)∝ f (YM , θ |YO)f (φ|R,YO) (2)

Although the MI approach of Chen et al. (2011) is general and can be applied to
both ignorable and nonignorable missing data situations, a very challenging issue
when dealing with potential nonignorable missing data involves positing models for
missing data mechanisms and the associated model identifiability issues (Xie 2008,
2009). We therefore present the standard analysis of the bone fracture data under the
ignorability assumption below.
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3.2 Odds Ratio Models for Complete Data

As shown above, a key component in multiple imputation of missing data with
arbitrary missingness pattern is to specify a joint model for the complete data. Let
the density of Y under a product of Lebesgue measures and/or count measures be
decomposed into consecutive conditional densities as

f(yt, . . . , y1) =
t∏

j=1

fj(yj|yj−1, . . . , y1).

Below we review the semi-parametric odds ratio models as employed in Chen et
al. (2011) for imputation modeling of each consecutive conditional density function
above. Let (yt0, . . . , y10) be a fixed point in the sample. For a given conditional
density fj(yj|yj−1, . . . , y1), define the odds ratio function relative to (yj0, . . . , y10) as

ηj{yj; (yj−1, . . . , y1)|yj0, . . . , y10} = fj(yj|yj−1, . . . , y1)fj(yj0|y(j−1)0, . . . , y10)

fj(yj|y(j−1)0, . . . , y10)fj(yj0|yj−1, . . . , y1)
.

For notational simplicity, we use ηj{yj; (yj−1, . . . , y1)} to denote ηj{yj; (yj−1, . . . ,

y1)|yj0, . . . , y10}. Chen (2004) shows that the conditional density can be rewritten as

fj(yj|yj−1, . . . , y1) = ηj{yj; (yj−1, . . . , y1)}fj(yj|y(j−1)0, . . . , y10)∫
ηj{yj; (yj−1, . . . , y1)}fj(yj|y(j−1)0, . . . , y10)dyj

.

In general, the choice of the fixed point can be arbitrary. In practice, certain choices,
such as the center of the data points, maymake computation numericallymore stable.

In the following,wemodel the odds ratio function parametrically,whichwedenote
by ηj{yj; (yj−1, . . . , y1), γj}, and we model fj(yj|y(j−1)0, . . . , y10) nonparametrically,
which we denote by fj(yj). For notational convenience, we assume that η1(y1) ≡ 1.
The joint model under this framework becomes

f (yt, . . . , y1|γ2, . . . , γt; f1, . . . , ft) =
t∏

j=1

ηj{yj; (yj−1, . . . , y1), γj}fj(yj)∫
ηj{yj; (yj−1, . . . , y1), γj}fj(yj)dyj . (3)

Many different parametric models can be used for the odds ratio function. The
most convenient model is perhaps the bilinear form for the logarithm of the odds
ratio function. That is,

log ηj{yj; (yj−1, . . . , y1)} =
j−1∑

k=1

γjk(yj − yj0)(yk − yk0).
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As illustrated in Chen et al. (2011), all generalized linear models with a canonical
link function have this form of odds ratio function. In general, high-order terms may
be introduced into the model as

log ηj{yj; (yj−1, . . . , y1), γj} =
j−1∑

k=1

Mk∑

mk=1

L∑

l=1

γjlkmk (yj − yj0)
l(yk − yk0)

mk , (4)

which reduces to the bilinear form when Mk = L = 1 for k = 1, . . . , j − 1. But we
restrict ourselves to (4)with knownL andM in this article. Note that if we allowL and
M to be estimated, (4) can approximate any log-odds ratio function smoothly enough.
We assume from now on that odds ratio functions are specified up to an unknown
parameter γ , where γ = (γ2, . . . , γt) and γj is the parameter for ηj, j = 2, . . . , t.

To enhance modeling robustness, notice that fj(yj) = fj(yj|y(j−1)0, . . . , y10) con-
ditions on the fixed reference point and thus behaves like a marginal distribution.
By analogy to using the empirical distribution to estimate a marginal distribution,
below fj(yj) is modeled nonparametrically like a marginal distribution. Specifically,
let (yj1, . . . , yjKj ) be the unique observed values in the dataset for Yj. A nonparametric
model for fj(yj) assigns probability mass pj = (pj1, . . . , pjKj ) on these unique data
points as

Prob(Yj = yjk|yj−1,0, . . . , y10) = pjk, k = 1, . . . ,Kj, (5)

subject to
Kj∑

k=1

pjk = 1, and 0 < pjk < 1,∀ l. (6)

Like the empirical marginal distribution estimates, a reasonably large sample size is
needed so that the observed values cover the important range of the sample space.
To relax the constraint in Eq. (6), we reparameterize pj as λj = (λj1, . . . , λjKj ), such

that λjk = ln(pjk/pjKj ) for k = 1, . . . ,Kj. Thus, pjk = exp(λjk)/
∑Kj

u=1 exp(λju).

Prior Specification

Since θj = (γj, fj), j = 1, . . . , t, are, respectively, parameters from different condi-
tional distributions, we assume that the priors for them are independent. Further, for
any given j, the priors for (γj, fj) can be reasonably assumed independent because γj
resembles a location parameter and fj resembles a scale parameter. More specifically,
we assume the prior distribution for γj has the density ψj(γj). For convenience, we
set ψ1(θ1) ≡ 1. The prior distribution for fj is assumed to be a Dirichlet process as
Dj(cjFj), where cj > 0 and Fj is a probability distribution for Yj for j = 1, . . . , t. In
practice, we choose cj and Fj, and the hyperparameter inψj such that they yield rela-
tively noninformative priors. To ease the computation, we can use a Dirichlet process
prior with the mean distribution having probability mass on the observed data points
only, which becomes a Dirichlet prior D(αj1, . . . , αjKj ). As shown in Chen et al.
(2011) the use of the Dirichlet prior is approximately correct for a relatively large
sample size. Since we are dealing with a relatively large sample size, the difference
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in using different Fj disappears because the prior has little influence on the posterior
in large samples (i.e. n � cj).

3.3 Multiple Imputation Under the Framework

The joint posterior distribution of model unknowns (YM , θ) is sampled through the
MCMCalgorithm that iteratively samples themissing data YM andmodel parameters
θ as described below.

1. Initialize the parameter vector θ = (θ1, . . . , θt), where θj = (λj, γj), j = 1, . . . ,
t. A set of readily available starting values can be obtained by assuming that
the variables in the data matrix are independent of each other. That is, γ 0

j are
zeros, and the set of λ0

j values will then produce the empirical distribution of each
variable.

2. Impute Ymis. Given draws of the model parameters, we can impute the missing
values in Y . One strategy is to impute missing values one component at a time.
Suppose that the jth variable of Yi, Yij, is missing for the ith observation. Then by
the Bayes rule, Ymis

ij is drawn from the following multinomial distribution on the
unique observed values of this variable denoted as (Yj1, . . . ,YjKj ):

Ymis
ij |(Yi1, . . . ,Yi(j−1), Yi(j+1), . . . , Yik, YiA) ∼ multinomial([Pij1, . . . ,PijKj ]),

where the kth component in the multinomial probability vector [Pij1, . . . ,PijKj ],
for k = 1, . . . ,Kj, is given as

Pijk = fθ (yi1, . . . , yi(j−1), yjk, yi(j+1), . . . , yit)
Kj∑

k′=1
fθ (yi1, . . . , yi(j−1), yjk′ , yi(j+1), . . . , yit)

=
fθj (yjk|Yij)

t∏

m=j+1
fθm(yim|Yim(yjk))

Kj∑

k′=1
fθj (yjk′ |Yij)

t∏

m=j+1
fθm(yim|Yim(yjk′))

,

where Yij = (yi1, . . . , yi(j−1)) denote the set of conditioning variables for mod-
eling yij, Yim(yjk) = (yi1, . . . , yi(j−1), yij = yjk, yi(j+1), . . . , yi(m−1)) in which the
missing value for yij is replaced with yjk . When imputing data for Ymis

ij ,
all the missing values in YM

i except the jth component take the imputed values in
the previous iteration.

3. Draw θ = (θ1, . . . , θt). Once missing values in YM are imputed, we can make
draws from the full conditional distributions of these model parameters. Note
that when independent priors for θ1, . . . , θt are assigned, their full conditional
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distributions are also independent. Each set of parameters in θ1, . . . , θt can then
be sampled independently from each other using the hybrid Monte-Carlo (HMC)
algorithm described below.

4. The iteration is then repeated until convergence and enough imputations aremade.

4 Hybrid Monte-Carlo

The Random-Walk Metropolis-Hasting (RW-MH) is found to be inefficient to sam-
ple from the posterior distribution of the model parameters θ given the complete
data since there are a relatively large number of parameters, which tend to be highly
correlated. We adopt the Hybrid Monte-Carlo (HMC) method to sample for this pos-
terior distribution. The HMCmethod is introduced by Duane et al. (1987), described
in detail in Liu (2001), and adopted in Qian and Xie (2011) for handling miss-
ing covariates in marketing models. The HMC sampler uses the idea of Molecular
Dynamic (MD) to propose newdraws,which is followed by aMetropolis acceptance-
rejection method to sample from a target distribution. Because the MD exploits the
local dynamics of the target distribution, it suppresses the randomness of making
proposal draws in the RW-MH algorithm. As a result, the HMC can substantially
increase the acceptance rate of aMarkov chain while maintaining a fast mixing of the
chain. To sample from the posterior distribution, the HMC augments the parameter
θ = (λ, γ ) with a vector of invented momentum variables p and q, which has the
same dimension as θ which defines the Hamiltonian function H as described below.

Note that the sampling distribution for (λj, γj) appears as in Chen et al. (2011)

P(γj, λj) ∝
⎧
⎨

⎩

n∏

i=1

ηj{Yi
j ; (Yi

j−1, . . . ,Y
i
1), γj}

∑Kj

k=1 ηj{yjk; (Yi
j−1, . . . ,Y

i
1), γj}eλjk

⎫
⎬

⎭
ψj(γj)

Kj∏

k=1

exp{(δjk + ajk − 1)λjk}

where δjk denotes counts on yjk and αjk = cj/n. Let

U(λj, γj) = −
Kj∑

k=1

(δjk + ajk − 1)λjk − logψj(γj) −
n∑

i=1

log η(Yi
j ; Yi

j−1, . . . , Y
i
1, γj)

+
n∑

i=1

log

⎧
⎨

⎩

Kj∑

k=1

ηj{yjk; (Yi
j−1, . . . ,Y

i
1), γj}eλjk

⎫
⎬

⎭
.

and

H{(λj, γj), (pj, qj)} = U(λj, γj) + 1

2

⎧
⎨

⎩

Kj−1∑

k=1

p2jk
mjk

+
Dj∑

k=1

q2jk
njk

⎫
⎬

⎭
.
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For given (pj, qj) and (mj, nj), an approximate molecular dynamic algorithm gener-
ating a candidate sample of (λj, γj) can be carried out by a given number of leap-frog
approximations as follows (Duane et al. 1987). Let (λold

j , γ old
j ) be the current values

of (λj, γj). Let (λ0
j , γ

0
j ) = (λold

j , γ old
j ). Draw p′

j from the normal distribution with
mean 0 and variance diag(mj1, . . . ,mj(Kj−1)), and draw q′

j from the normal distrib-
ution with mean 0 and variance diag(nj1, . . . , njDj ). Then the initial momentum p0j
and q0j have their elements given as follows:

p0jk = p′
jk − Δ

2

∂U

∂λjk

{
λ0
j , γ

0
j

}

q0jk = q′
jk − Δ

2

∂U

∂θjk

{
λ0
j , γ

0
j

}

From the initial phase space (λ0
j , γ

0
j , p0j , q

0
j ) of the system, we run the leap-frog

algorithm in S steps to generate a new phase space (λS
j , γ

S
j , pSj , q

S
j ) where for the s

step

λs
jk = λs−1

jk + Δ
ps−1
jk

mjk

γ s
jk = γ s−1

jk + Δ
ps−1
jk

mjk

psjk = ps−1
jk − Δs

∂U

∂λjk

{
λs
jk, γ

s
jk

}

qsjk = qs−1
jk − Δs

∂U

∂γjk

{
λs
jk, γ

s
jk

}

where s = 1, ..., S, Δs = Δ for s < S and Δs = Δ
2 if s = S, Δ is the user-specified

stepsize, and

∂U

∂λjk
= −(δjk + αjk − 1) +

n∑

i=1

ηj{yjk; (Yi
j−1, . . . ,Y

i
1), γj}eλjk

∑Kj

k=1 ηj{yjk; (Yi
j−1, . . . ,Y

i
1), γj}eλjk

∂U

∂γjk
= − ∂

∂γjk
logψj(γj) −

n∑

i=1

∂

∂γjk
log ηj{Yi

j ; (Yi
j−1, . . . ,Y

i
1), γj}

+
n∑

i=1

∑Kj

k=1
∂

∂γjk
ηj{yjk; (Yi

j−1, . . . ,Y
i
1), γj}eλjk

∑Kj

k=1 ηj{yjk; (Yi
j−1, . . . ,Y

i
1), γj}eλjk

.

Let the current sample and the candidate sample obtained from S-iterations of
the leap-frog approximation from the current sample be respectively denoted by
(λold

j , γ old
j ) and (λnew

j , γ new
j ). The candidate sample is then accepted with the prob-

ability
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min
(
1, exp[−H{(λnew

j , γ new
j ), (pnewj , qnewj )} + H{(λold

j , γ old
j ), (poldj , qoldj )}]) .

If the candidate sample is accepted, (λnew
j , γ new

j ) is taken as the new current sample.
Otherwise, (λold

j , γ old
j ) remains to be the current sample.

5 Implementing HMC for Model Fitting

5.1 Assigning Prior Distributions

We assign relatively noninformative priors for model parameters.We assign the prior
for γj as ψj(γj) = N(0, v2

j Inj×nj ) where nj is the length of γj and vj, the SD in the
prior distribution for γj, is assigned a large value. As long as vj is sufficiently large,
the term logψj(γj) in the above equation forU(λj, γj)will be negligible and the prior
will become noninformative relative to data. In our analysis of bone fracture data,
we assign vj = 103. Further increasing values of vj leads to negligible change in the
results. In our analysis of bone fracture data, we choose cj = 1 that corresponds to a
uniform prior. As discussed in the “prior specification” paragraph in Sect. 3, even if
cj is not close to zero, as long as it is relatively small compared with the sample size
n, the prior has little effects on the posterior inference.

5.2 Tuning Proposal Distribution

In the analysis of the bone fracture data, we set mjk = 1 and njk = 1 for all j and k,
the number of steps S = 50. StepsizeΔwas set to be 0.03 in the data analysis. Under
these settings the resulting chain has about 60% acceptance rate. We tune the HMC
sampler to have an acceptance rate at a level between 60 and 70%. The practice is
supported by the recent theoretical work by Beskos et al. (2013) showing that the
acceptance rate under the optimal tuning of a HMC sampler is 0.651. The relatively
high acceptance rate under the HMC sampler while still maintaining a good mixing
chain demonstrates the high efficiency of the HMC sampling method.

5.3 Starting Values

In order to speed the convergence, the starting parameter values were set as the
maximum likelihood estimates (MLEs) of the semi-parametric odds ratio model
parameters using one imputed dataset obtained from MICE, the R package for per-
forming multiple imputations through chained equations. Using the set of starting
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Fig. 2 Sample traceplots of the odds ratio function parameters for the BMI variable

values helps reduce the burn-in period relative to starting from parameter values
estimated under the independence assumption.

5.4 Determining Burn-In

We use both the method by Geweke (1992) and the time series plots for convergence
diagnosis on the Markov chains. The diagnosis suggests that the Markov chains
converge to the stationary distributions within 1000 burn-in iterations for all test
runs.As representative examples, Figs. 2 and 3present sample trace plots andGeweke
diagnostic plots for the odds ratio function parameters in the model for the variable
“BMI”. To be cautious, we use 2000 burn-in cycles in the analysis of bone fracture
data.

5.5 Determining Iteration Intervals to Obtain Imputed Values

The autocorrelation plots show that the lag-50 draws are effectively uncorrelated.
As representative samples, Fig. 4 provides autocorrelation plots for the odds ratio
function parameters in the model for the variable “BMI”. The plots shows that the
lag-25 draws are effectively uncorrelated. To be cautious, we use 150 iterations
between imputations in the data analysis.
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Fig. 3 Sample Geweke-Brooks diagnostic plots of the odds ratio function parameters for the BMI
variable

5.6 Determining Stopping Time

After the chain reached the stationary distribution, when to stop the chain was deter-
mined primarily by the numbers of imputations and the iteration intervals between
imputations. Therefore when we choose 150 iterations between imputations and 20
imputations, we stop the MCMC at 3000 iterations.

5.7 Output Analysis

At convergence, twenty imputed complete datasetswere generated.When conducting
MI for the bone fracture data, consecutive conditional odds ratio models are used
in the imputation model. The order of the conditioning in the imputation model is
age, race, etoh, smoke, dementia, antiseiz, levoT4, antichol, albumin, bmi, log(hgb),
fracture. This means that we model age, race conditional on age, etoh conditional
on race and age, and so on. In the analysis step, the imputed datasets are analyzed
using the logistic regression model for fracture. Rubin’s rule for result pooling is
then applied to the estimates from the multiply imputed datasets. Note that by using
the flexible odds ratio functions as described in Sect. 3 a semiparametric odds ratio
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Fig. 4 Sample ACFs for the odds ratio parameters for the BMI variable

model compatible with the parametrically specified model for data analysis almost
always exists.

For comparison purpose, we include the following alternative analysis. The first
analysis is the complete case analysis. The second method is imputation based on
the joint normal (JN) model, or its variant, termed the conditional Gaussian model
(CGM). The CGM uses the location-scale model for a mixture of discrete and con-
tinuous outcomes. In the location-scale model, the log-linear model is used to model
the categorical variables, and a conditional joint normal model is used to model
the remaining continuous outcomes. We use the function impCgm in the missing
data library of Splus 8.0 (Insightful Corp.), which implements the method. The third
method is multiple imputation using fully conditional specifications. We use the R
packageMICE for thismethod. Given all the other variables at current values, the fol-
lowing default imputation methods are used to sequentially impute each variable in
MICE: predictivemeanmatching for numeric data and logistic regression imputation
for binary data.

The results on the analyses of the imputed datasets are listed in Tables2 and 3
along with the results from complete-case analysis and the estimates from the other
two MI methods. Table2 reports the results without any interaction term among
predictors in the model for hip fracture outcome. All multiple imputation methods
show that the LevoT4 is insignificant in contrast to the result from the complete-case
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Table 2 Analysis of the imputed bone fracture data without Interaction

Variable Method

CC MICE CGM IMPA IMPB

Etoh 1.39(0.39) 1.23(0.31) 1.18(0.30) 1.26(0.30) 1.22(0.29)

Smoke 0.93(0.40) 0.62(0.30) 0.51(0.29) 0.62(0.30) 0.70(0.29)

Dementia 2.51(0.72) 1.61(0.47) 1.54(0.45) 1.54(0.47) 1.54(0.45)

Antiseiz 3.31(1.06) 2.51(0.64) 2.44(0.60) 2.54(0.64) 2.38(0.63)

LevoT4 2.01(1.02) 0.92(0.64) 0.88(0.55) 0.95(0.60) 1.00(0.60)

AntiChol −1.92(0.77) −1.49(0.59) −0.91(0.48) −1.59(0.54) −1.61(0.52)

Albumin −0.91(0.35) −1.03(0.28) −1.01(0.26) −1.07(0.27) −1.03(0.29)

BMI −0.10(0.04) −0.10(0.03) −0.11(0.03) −0.11(0.03) −0.11(0.03)

log(HGB) −2.60(1.20) −3.39(0.93) −3.18(0.88) −3.19(0.92) −3.20(0.92)

CCComplete-case analysis;MICEmultiple imputationusing theChainedEquations;CGMmultiple
imputation using the conditional Gaussian model; IMPA imputation estimator based on 20 imputed
datasets; IMPB imputation estimate based on 5 imputed datasets. Standard error estimates are in
parentheses

Table 3 Analysis of the imputed bone fracture data with Interaction

Variable Method

CC MICE CGM IMPA IMPB

Etoh 1.41(0.40) 1.13(0.29) 1.15(0.30) 1.20(0.32) 1.32(0.33)

Smoke −9.21(5.69) −5.32(4.34) −3.05(4.52) −3.41(4.48) −3.84(4.47)

Dementia 2.80(0.79) 1.69(0.47) 1.54(0.47) 1.59(0.48) 1.60(0.47)

Antiseiz 4.12(1.29) 2.45(0.62) 2.51(0.63) 2.55(0.65) 2.54(0.66)

LevoT4 3.15(1.34) 0.41(0.65) 1.03(0.63) 0.97(0.69) 1.01(0.79)

AntiChol 5.08(4.15) −0.72(1.99) −1.26(2.34) −2.42(2.39) −2.50(2.27)

Albumin 5.90(4.04) −3.07(3.40) 2.53(2.97) 2.85(3.23) 3.19(4.21)

BMI −0.12(0.04) −0.12(0.03) −0.11(0.03) −0.11(0.03) −0.11 (0.03)

log(HGB) 4.60(5.99) −7.56(4.80) 1.02(4.35) 1.60(4.69) 2.18(6.00)

Smoke* loghgb 4.05(2.28) 2.40(1.74) 1.40(1.79) 1.68(1.77) 1.84(1.76)

AntiChol*albumin −2.36(1.40) 0.02(0.55) 0.07(0.62) 0.26(0.66) 0.30(0.63)

Albumin*loghgb −2.67(1.67) 0.95(1.35) −1.43(1.19) −1.60(1.31) −1.75 (1.71)

CCComplete-case analysis;MICEmultiple imputationusing theChainedEquations;CGMmultiple
imputation using the conditional Gaussian model; IMPA imputation estimator based on 20 imputed
datasets; IMPB imputation estimate based on 5 imputed datasets. Standard error estimates are in
parentheses

analysis. The results from all three MI methods are comparable to each other for this
analysis.

Table3 reports the analysis for logistic regression analysis with three interaction
terms in the hip fracture outcome model. In order for the imputation model to be
compatible with the analysis model, the three interaction terms are added into the
odds ratio functions in our approach and to the logistic imputation model for the
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hip fracture in the MICE approach. In CGM, the interaction terms are combined
with first-order terms to form a new data matrix, in which the missing values are
multiply imputed in the imputation step. All multiple imputation methods show that
the LevoT4 is insignificant in contrast to the result from the complete-case analysis.
The imputation estimates based on five imputed datasets are mostly close to those
based on 20 imputed datasets. However, the estimates for some of the variables,
such as LevoT4, have a relatively large change in magnitude, which may suggest
that more than five imputed datasets are needed for this example. There are large
numerical differences between some parameter estimates among the three multiple
imputation methods. In particular, the signs of the estimates for log(hgb), albumin,
and albumin*log(hgb) are opposite for MICE when compared to those from CGM
and our proposed MI method.

As noted in the literature and demonstrated through systematic simulation studies
(Chen et al. 2011), imputations based on the JN model (or CGM) or the MICE
can perform well in models without interactions. But they can perform poorly in
accommodating interactions in the models. This explains that in the bone fracture
data all three MI approach have similar results when no interactions are considered
but substantial difference are found when interaction terms are considered in the
analysis model. The bone fracture analysis results suggest that incorrect imputation
models can induce substantial bias, and our approach provides a flexible and robust
imputation method to correct for such bias.

6 Conclusion

With the advancement in computational power, the computationally-intensiveMonte-
Carlo methods has been increasingly finding their way to statistical methods and
applications. Hybrid Monte-Carlo (HMC) has its unique advantage of increasing the
efficiency of sampling from complex posterior distributions with many correlated
parameters by utilizing the local information of likelihood functions. This chapter
presents recent progress made in the application of state-of-the-art Monte-Carlo
methods to powerful statistical models for missing data analysis.

One unique advantage of multiple imputation is that it separates the imputation
stage from the analysis stage. Researchers who perform multiple imputations and
who perform data analysis on the imputed datasets can be different and can have
access to different levels of software and hardware capabilities. It is often the case
that people who conduct the imputations are more statistically sophisticated and
have access to more computational resources. Therefore more flexible models and
computation-intensive methods are well suited for the MI approach to deal with
missing data issues. We expect more research on the further development of flexible
MI methods, enabled by the advancement in Monte-Carlo techniques.



178 H. Xie

References

Barengolts, E., Karanouh,D.,Kolodny, L.,&Kukreja, S. (2001). Risk factors for hip fractures in pre-
dominantly African-American veteran male population. Journal of Bone and Mineral Research,
16, S170.

Beskos, A., Pillai, N., Roberts, G., Sanz-Serna, J., & Stuart, A. (2013). Optimal tuning of the hybrid
Monte-Carlo algorithm. Bernoulli, 19, 1501–1534.

Chen, H.Y., Xie, H., & Qian, Y. (2011). Multiple imputation for missing values through conditional
semiparametric odds ratio models. Biometrics, 10–13.

Chen, H. Y. (2004). Nonparametric and semiparametric models for missing covariates in parametric
regressions. Journal of the American Statistical Association, 99, 1176–1189.

Duane, S., Kennedy, A. D., Pendleton, B. J., & Roweth, D. (1987). Hybrid Monte-Carlo. Physics
Letters B, 195(2), 216–222.

Gelman, A., & Raghunathan, T. E. (2001). Discussion on “conditionally specified distributions: An
introduction”. Statistical Science, 15, 268–269.

Gelman, A., & Speed, T. P. (1993). Characterizing a joint probability distribution by conditionals.
Journal of the Royal Statistical Society. Series B, 55, 185–188.

Gelman, A., & Speed, T. P. (1999). Corrigendum: Characterizing a joint probability distribution by
conditionals. Journal of the Royal Statistical Society. Series B, 61, 483.

Geweke, J. (1992). Evaluating the accuracy of sampling–based approaches to calculating posterior
moments. In J. M. Bernado, J. O. Berger, A. P. Dawid&A. F.M. Smith (Eds.), Bayesian Statistics
4. Oxford: Clarendon Press.

Harel, O., & Zhou, X. H. (2007). Multiple imputation: Review of theory, implementation and
software. Statistics in Medicine, 26, 3057–3077.

Horton, N. J., & Lipsitz, S. R. (2001). Multiple imputation in practice: Comparison of software
packages for regression models with missing variables. American Statistician, 55, 244–254.

Ibrahim, J. G., Chen, M. H., Lipsitz, S. R., & Herring, A. H. (2005). Missing-data methods for
generalized linearmodels: A comparative review. Journal of the American Statistical Association,
100, 332–346.

Kenward, M. G., & Carpenter, J. (2007). Multiple imputation: Current perspectives. Statistical
Methods in Medical Research, 16, 199–218.

Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing values. New York: Wiley.
Liu, J. S. (2001). Monte-Carlo strategies in scientific computing. New York: Springer.
Qian, Y., & Xie, H. (2011). No customer left behind: A distribution-free Bayesian approach to
accounting for missing Xs in regression models. Marketing Science, 30, 717–736.

Raghunathan, T. E., Lepkowski, J. M., van Hoewyk, J., & Solenberger, P. (2001). A multivariate
technique for multiply imputing missing values using a sequence of regression models. Survey
Methodology, 27, 85–95.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 92–581.
Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York: Wiley.
Schafer, J. L. (1997). Analysis of incomplete multivariate data. London: Chapman and Hall / CRC
Press.

van Buuren, S. (2007). Multiple imputation of discrete and continuous data by fully conditional
specification. Statistical Methods in Medical Research, 16, 219–242.

van Buuren, S., Boshuizen, H. C., & Knook, D. L. (1999). Multiple imputation of missing blood
pressure covariates in survival analysis. Statistics in Medicine, 18, 681–694.

Xie, H. (2008). A local sensitivity analysis approach to longitudinal non-Gaussian data with non-
ignorable dropout. Statistics in Medicine, 27, 3155–3177.

Xie, H. (2009). Bayesian inference from incomplete longitudinal data: A simple method to quantify
sensitivity to nonignorable dropout. Statistics in Medicine, 28, 2725–2747.

Yu, L. M., Burton, A., & Rivero-Arias, O. (2007). Evaluation of Software for multiple imputation
of semi-continuous data. Statistical Methods for Medical Research, 16, 243–258.



Statistical Methodologies for Dealing
with Incomplete Longitudinal Outcomes
Due to Dropout Missing at Random

A. Satty, H. Mwambi and G. Molenberghs

Abstract Longitudinal studies are based on repeatedly measuring the outcome of
interest and covariates over a sequences of time points. These studies play a vital role
in many disciplines of science, such as medicine, epidemiology, ecology and public
health. However, data arising from such studies often show inevitable incompleteness
due to dropouts or even intermittent missingness that can potentially cause serious
bias problems in the analysis of longitudinal data. In this chapter we confine our
considerations to the dropout missingness pattern. Given the problems that can arise
when there are dropouts in longitudinal studies, the following question is forced
upon researchers: What methods can be utilized to handle these potential pitfalls?
The goal is to use approaches that better avoid the generation of biased results.
This chapter considers some of the key modelling techniques and basic issues in
statistical data analysis to address dropout problems in longitudinal studies. The
main objective is to provide an overview of issues and different methodologies in
the case of subjects dropping out in longitudinal data for both the case of continuous
and discrete outcomes. The chapter focusses on methods that are valid under the
missing at random (MAR) mechanism and the missingness patterns of interest will
be monotone; these are referred to as dropout in the context of longitudinal data. The
fundamental concepts of the patterns and mechanisms of dropout are discussed. The
techniques that are investigated for handling dropout are: (1) Multiple imputation
(MI); (2) Likelihood-based methods, in particular Generalized linear mixed models
(GLMMs); (3) Multiple imputation based generalized estimating equations (MI-
GEE); and (4) Weighted estimating equations (WGEE). For each method, useful
and important assumptions regarding its applications are presented. The existing
literature in which we examine the effectiveness of these methods in the analysis
of incomplete longitudinal data is discussed in detail. Two application examples are
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presented to study the potential strengths and weaknesses of the methods under an
MAR dropout mechanism.

Keywords Multiple imputation GEE · Weighted GEE · Generalized linear mixed
model (GLMM) · Likelihood analysis · Incomplete longitudinal outcome ·Missing
at random (MAR) · Dropout

1 Introduction

Longitudinal studies play a vital role in many disciplines of science including medi-
cine, epidemiology, ecology and public health. However, data arising from such
studies often show inevitable incompleteness due to dropouts or lack of follow-up.
More generally, a subject’s outcome can be missing at one follow-up time and be
measured at the next follow-up time. This leads to a large class of dropout patterns.
This chapter only pays attention to monotone dropout patterns that result from attri-
tion, in the sense that if a subject drops out from the study prematurely, then on that
subject no subsequent repeated measurements of the outcome are obtained. These
commonly include studies done by the pharmaceutical industry as contained in pro-
tocols for many conditions where data are not collected after a study participant
discontinues study treatment. This is highlighted in a recent report on the prevention
and treatment of dropout by the National Research Council (Committee on National
Statistics Division of Behavioral and Social Sciences and Education, http://www.
nap.edu). A summary of the report was provided by Little et al. (2012). However,
even in these studies, there typically is both unplanned and planned dropout. A pre-
dominately monotone pattern for missing outcome data is less common in clinical
outcome studies and in publically-funded trials which are more of a pragmatic nature
(e.g., trials in which the intention-to-treat estimand is the primary objective).

Given the problems that can arise when there are dropouts in longitudinal studies,
the following question is forced upon researchers. What methods can be utilized to
handle these potential pitfalls? The goal is to use approaches that better avoid the
generation of biased results. The choice of statistical methods for handling dropouts
has important implications on the estimation of the treatment effects, depending
on whether one is considering a more of a pragmatic nature analysis or a more
exploratory analysis. In case of a pragmatic analysis (intention-to-treat analysis), the
goal of the clinical trial researchers is to produce a pragmatic analysis of the data.
However, for incomplete longitudinal clinical trials, the dropouts complicate this
process as most of the methods to be used when dealing with the dropout problem
produce an exploratory analysis in nature rather than a pragmatic perspective. The
literature presents various techniques that can be used to deal with dropout, and these
range from simple classical ad hocmethods tomodel-basedmethods. Thesemethods
should be fully understood and appropriately characterized in relation to dropouts
and should be theoretically proven before they are used practically. Further, each
method is valid under some but usually not all dropout mechanisms, but one needs

http://www.nap.edu
http://www.nap.edu
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to realize that at the heart of the dropout problems it is impossible to identify the
dropout mechanism (will be discussed later). Thus, it is important to address the
mechanisms that govern dropouts. In this chapter, we present some of the various
techniques to address the dropout problem in longitudinal clinical trials. The main
objective is to investigate various techniques, and to discuss the most appropriate
techniques for handling incomplete longitudinal data due to dropouts. The structure
of the chapter is as follows. Section2 presents the key notation and basic concepts
used in the entire chapter but when new notation arises it will be explained at the
point where it occurs. In Sects. 3 and 4, we give an overview of the various statistical
methods in handling incomplete longitudinal studies due to dropout. Two application
examples are provided for both cases, continuous and binary outcomes. The dropout
generation schemes are also discussed. In addition, full analysis and results of the
applications are also given. Finally, the chapter endswith a discussion and conclusion
in Sect. 5.

2 Notation and Basic Concepts

Some notation is necessary to describe methods for analyzing incomplete longi-
tudinal data with dropout. We will follow the terminology based on the standard
framework of Rubin (1976), Little and Rubin (1987) in formulating definitions for
data structure and missing data mechanisms. Let Yi = (Yi1, ...,Yini )

′ = (Yo
i ,Ym

i )′ be
the outcome vector of ni measurements for subject i, i = 1,...,n, where Yo

i represents
the observed data part and Ym

i denotes the missing data part. Let Ri = (Ri1, ...,Rini )
′

be the corresponding missing data indicator vector of the same dimension as Yi,
whose elements are defined as

Rij =
{
1 if Yij is observed,
0 otherwise.

(1)

Complete data refers to the vector Yi of planned measurements. This is the outcome
vector that would have been recorded if no data had been missing. The vector Ri

and the process generating it are referred to as the missingness process. In our case
the Ri are here restricted to represent participant dropout, and so it has a monotone
pattern (Verbeke and Molenberghs 2000). Thus the full data for the ith subject can
be represented as (Yi,Ri) and the joint probability for the data and missingness can
be expressed as: f (yi, ri | Xi,Wi, θ, ξ) = f (yi | Xi, θ)f (ri | yi,Wi, ξ), where Xi and
Wi are design matrices for the measurements and dropout mechanism, respectively,
θ is the parameter vector associated with the measurement process and ξ is the
parameter vector for the missingness process. According to the dependence of the
missing data process on the response process, Little and Rubin (1987), Rubin (1976)
classified missing data mechanisms as: missing completely at random (MCAR),
missing at random (MAR) and not missing at random (MNAR). The missingness
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process is defined as MCAR if the probability of non-response is independent of
the response; that is, f (ri | yi,Wi, ξ) = f (ri | Wi, ξ) and the missingness process is
defined as MAR when the probability of non-response depends on the observed
values of the response; that is, f (ri | yi,Wi, ξ) = f (ri | yoi ,Wi, ξ). Finally, the miss-
ingness process is defined asMNAR if neither theMCAR nor theMAR assumptions
hold, meaning that dependence on unobserved values of the response cannot be ruled
out. That is, the probability of nonresponse depends on the missing outcomes and
possibly on the observed outcomes. Our main focus is on the MAR mechanism for
the dropout process.

When missingness is restricted to dropout or attrition, we can replace the vector
Ri by a scalar variable Di, the dropout indicator, commonly defined as

Di = 1 +
n∑

j=1

Rij. (2)

For an incomplete dropout sequence, Di denotes the occasion at which dropout
occurs. In the formulation described above, it is assumed that all subjects are observed
on the first occasion so thatDi takes values between 2 and n + 1. Themaximumvalue
n + 1 corresponds to a complete measurement sequence. If the length of the com-
plete sequence is different for different subjects then we only need to replace n with
ni. However a common n holds where for example by design all subjects were
supposed to be observed for an equal number of occasions or visits. Accord-
ingly, an MCAR dropout mechanism implies f (Di = di | yi,Wi, ξ) = f (Di = di |
Wi, ξ), MAR dropout mechanism, f (Di = di | yi,Wi, ξ) = f (Di = di | yoi ,Wi, ξ)
andMNARdropoutmechanism, f (Di = di | yi,Wi, ξ) = f (Di = di | Ym

i ,Yo
i ,Wi, ξ).

There are parameters associated with the measurement process but suppressed for
simplicity. Note that the MCAR mechanism can be seen as a special case of MAR.
Hence the likelihood ratio test can be used to test the null hypothesis that the MCAR
assumption holds. However it is not obvious to say amodel based on theMARmech-
anism is a simplification of a model based on the MNAR assumption. This assertion
is supported by the fact that for any MNAR model there is a MAR counterpart that
fits the data just as good as the MNAR model (Molenberghs et al. 2008).

3 Dropout Analysis Strategies in Longitudinal Continuous
Data

Much of the literature involving missing data (or dropout) in longitudinal studies
pertains to the various techniques developed to handle the problem. This section is
devoted to providing an overview of the various strategies for handling missing data
in longitudinal studies.
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3.1 Likelihood Analysis

An appealing method for handling dropout in longitudinal studies is based on using
available data, and these only, when constructing the likelihood function. This
likelihood-based MAR analysis is also termed likelihood-based ignorable analy-
sis, or direct likelihood analysis Molenberghs and Verbeke (2005). Direct likelihood
analysis uses the observed data without the need of neither deletion nor imputation.
In other words, no additional data manipulation is necessary when a direct likelihood
analysis is envisaged, provided the software tool used for analysis is able to handle
measurement sequences of unequal length (Molenberghs and Kenward 2007). To do
so, under valid MAR assumption, suitable adjustments can be made to parameters
at times when data are prone to incompleteness due to the within-subject correla-
tion. Thus, even when interest lies in a comparison between two treatment groups
at the last measurement time, such a likelihood analysis can be conducted without
problems since the fitted model can be used as the basis for inference. When a MAR
mechanism is valid, a direct likelihood analysis can be obtained with no need for
modelling the missingness process. It is increasingly preferred over ad hoc meth-
ods, particularly when tools like the generalized linear mixed mixed effect models
(Molenberghs and Verbeke 2005) are used. The major advantage of this method is
its simplicity, it can also be fitted in standard statistical software without involving
additional programming, using such tools as SAS software, procedures MIXED,
GLIMMIX and NLMIXED. The use of these procedures has been illustrated by Ver-
beke andMolenberghs (2000), Molenberghs and Verbeke (2005). A useful summary
for these procedures is presented by Molenberghs and Kenward (2007). Despite the
flexibility and ease of implementation of direct likelihood method, there are funda-
mental issues when selecting a model and assessing its fit to the observed data, which
do not occur with complete data. The method is sensible under linear mixed models
in combination with the assumption of ignorability. Such an approach, tailored to the
needs of clinical trials, has been proposed by Mallinckrodt et al. (2001a, b). For the
incomplete longitudinal data context, a mixed model only needs missing data to be
MAR. According to Verbeke and Molenberghs (2000), these mixed-effect models
permit the inclusion of subjects with missing values at some time points for both
missing data patterns, namely dropout and intermittent missing values. Since direct
likelihood ideas can be used with a variety of likelihoods, in the first application
example in this study we consider the general linear mixed-effects model for contin-
uous outcomes that satisfy the Gaussian distributional assumption (Laird and Ware
1982) as a key modelling framework which can be combined with the ignorability
assumption. For Yi the vector of observations from individual i, the model can be
written as follows

Yi = Xiβ + Zibi + εi, (3)

where bi ∼ N(0,D), εi ∼ N(0, �i) and b1, ..., bN , ε1, ..., εN are independent. The
meaning of each term in (3) is as follows. Yi is the ni dimensional response vector
for subject i, containing the outcomes at ni measurement occasions, 1 ≤ i ≤ N , N
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is the number of subjects, Xi and Zi are (ni × p) and (ni × q) dimensional matrices
of known covariates, β is the p-dimensional vector containing the fixed effects, bi
is the q-dimensional vector containing the random effects and εi is a ni dimensional
vector of residual components, combining measurement error and serial correlation.
Finally, D is a general (q × q) covariance matrix whose (i, j)th element is dij = dji
and �i is a (ni × ni) covariance matrix which generally depends on i only through
its dimension ni, i.e., the set of unknown parameters in �i will not depend upon i.
This implies marginally Yi∼ N(Xiβ, ZiDZ ′

i + �i). Thus if we write Vi = ZiDZ ′
i + �i

as the general covariance matrix of Yi, then f (yi,β, Vi) = (2�)
−n
2 |Vi| −1

2 exp{−(yi −
Xiβ)′V−1

i (yi − Xiβ)/2} from which a marginal likelihood involving all subjects can
be constructed to estimate β. In the likelihood context, Little and Rubin (1987) and
Rubin (1976) showed that when MAR assumption and mild regularity conditions
hold, parameters θ and ξ are independent, and that likelihood based inference is
valid when the missing data mechanism is ignored. In practice, the likelihood of
interest is then based on the factor f (yoi | ξ) (Verbeke and Molenberghs 2000). This
is referred to as ignorability.

3.2 Multiple Imputation (MI)

Multiple imputation was introduced by Rubin (1978). It has been discussed in some
detail in Rubin (1987), Rubin and Schenker (1986), Tanner and Wong (1987) and
Little and Rubin (1987). The key idea behind multiple imputation is to replace each
missing value with a set of M plausible values (Rubin 1996; Schafer 1997). The
resulting complete data sets generated via multiple imputation are then analyzed by
using standard procedures for complete data and combining the results from these
analyses. The technique in its basic form requires the assumption that the miss-
ingness mechanism be MAR. Thus, multiple imputation process is accomplished
through three distinct steps: (1) Imputation—create M data sets from M imputa-
tions of missing data drawn from a different distribution for each missing variable.
(2) Analysis—analyze each of the M imputed data sets using standard statistical
analysis. (3) Data pooling—combine the results of the M analyses to provide one
final conclusion or inference. To discuss these steps in detail, we will follow the
approach provided by Verbeke and Molenberghs (2000). Recall that we partitioned
the planned complete data (Yi) into Yo

i and Ym
i to indicate observed and unobserved

data, respectively.Multiple imputation fills in themissing data Ym
i using the observed

data Yo
i several times, and then the completed data are used to estimate ξ. If we know

the distribution of Yi = (Yo
i ,Ym

i ) depends on the parameter vector ξ, then we could
impute Ym

i by drawing a value of Ym
i from the conditional distribution f (ymi | yoi , ξ).

Because ξ̂ is a random variable, wemust also take its variability into account in draw-
ing imputations. In Bayesian terms, ξ̂ is a random variable of which the distribution
depends on the data. So we first obtain the posterior distribution of ξ from the data,
a distribution which is a function of ξ̂. Given this posterior distribution, imputation
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algorithm can be used to draw a random ξ∗ from the distribution of ξ, and to put
this ξ∗ in to draw a random Ym

i from f (ymi | yoi , ξ∗), using the following steps: (1)
Draw ξ∗ from the distribution of ξ, (2) Draw Ym∗

i from f (ymi | yoi , ξ∗), and (3) Use
the complete data (Yo,Ym∗) and the model to estimate β, and its estimated variance,
using the complete data, (Yo,Ym∗):

β̂m = β̂(Y) = β̂(Yo,Ym∗), (4)

where the within-imputation variance is Um = ˆVar(β̂). The steps described above
are repeated independentlyM times, resulting in β̂m andUm, form = 1, ...,M. Steps
1 and 2 are referred to as the imputation task, and step 3 is the estimation task.
Finally, the results are combined using the following steps for pooling the estimates
obtained after M imputations (Rubin 1987; Verbeke and Molenberghs 2000). With
no missing data, suppose the inference about the parameter β is made using the dis-
tributional assumption (β − β̂) ∼ N(0,U). The overall estimated parameter vector
is the average of all individual estimates:

β̂∗ =
∑M

m=1 β̂m

M
, (5)

with normal-based inferences for β based upon (β̂ ∗ −β) ∼ N(0, V ) (Verbeke and
Molenberghs 2000). We obtain the variance (V ) as a weighted sum of the within-
imputation variance and the between-imputations variability:

V = W +
(
M + 1

M

)

B, (6)

where

W =
∑M

m=1 Um

M
(7)

defined to be the average within-imputation variance, and

B =
∑M

m=1(β̂m − β̂∗)(β̂m − β̂∗)′

M − 1
(8)

defined to be the between-imputation variance (Rubin 1987).

3.3 Illustration

To examine the performance of direct likelihood and multiple imputation methods,
four steps were planned. The steps were as follow: First, a model was fitted to the
full data (no data are missing), thus producing what we refer to as true estimates.
Second, we generated a dropout rate of 10, 15 and 20% in the outcome (selected
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at random) variable using defined rules to achieve the required mechanism under
MAR assumption. Third, the resulting incomplete data was analyzed using the two
different methods using multiple imputation and direct likelihood. Fourth, results
from the complete and incomplete data analysis were compared. The actual-data
results were presented and used as references. The study aims to investigate how
direct likelihood and multiple imputation compare to each other and to the true
analysis.

Data Set—Heart Rates Trial

This data set was used in Milliken and Johnson (2009) to demonstrate analyses of
repeated measures designs and to show how to determine estimates of interesting
effects and provide methods to study contrasts of interest. The main objective was to
investigate the effects of three treatments involving two active treatments and a con-
trol (AX23, BWW9 andCTRL) on heart rates, where each treatment was randomized
to female individuals and each patient observed over four time periods. Specifically,
each patient’s heart rate was measured 5, 10, 15 and 20 min after administering the
treatment. The only constraint is that the time intervals are not randomly distributed
within an individual. In our case, we use the data to achieve a comparative analysis
of two methods to deal with missing data. A model which is used to describe the
data is similar to a split-plot in a completely randomized design. The model is

Hijk = μ + Timej + δi + Drugk + (Time ∗ Drug)jk + εijk, (9)

where Hijk is the heart rate of individual i at time j on drug k, i = 1, ..., 24, j =
1, 2, 3, 4 and k = 1, 2, 3. The model has two error terms: δi represents a subject
random effect, and εijk represents a time error component. The ideal conditions
for a split-plot in time analysis is that: (1) the δi are independently and identically
N(0,σ2

δ ), (2) the εijk are independently and identically N(0,σ2
ε ), and (3) the δi and

εijk are all independent of one another. The main purpose of this example is to
investigate the effects of the three drugs. Thus, the type III tests of fixed effects
and the differences between effects were the quantities of interest in the study. The
primary null hypothesis (the difference between the drug main effects) will be tested.
The null hypothesis is no difference among drugs. The significance of differences
in least-square means is based on Type III tests. These examine the significance of
each partial effect; that is, the significance of an effect with all the other effects in
the model. In analysis results we present the significance of drug main effects, time
main effects and the interaction of time and drug effects.

3.4 Simulation of Missing Values

Since there are nomissing values in the example data set described above, it provides
us with an opportunity to design a comparative study to compare the two methods
to deal with missing data using the results from the complete data analysis as the



Statistical Methodologies for Dealing with Incomplete Longitudinal Outcomes … 187

reference. We carry out an application study to generate the data set with dropouts.
In this application, we distinguish between two stages: (1) The dropout generation
stage. (2) The analysis stage.

3.4.1 Generating Missing Data

In the first stage, we use the full data set to artificially generate missing values by
mimicking the dropout at random mechanism. From the complete data, we draw
1000 random samples of size N = 96. The incomplete data was generated with
10, 15 and 20% dropout rate. We assume that the dropout depends only on the
observed data. Furthermore, a monotone dropout pattern was imposed in the heart
rate (outcome of interest); that is, if Hij is missing, then His is missing for s ≥ j. The
explanatory variables drug, time and interaction between drug and time are assumed
to be fully observed. In addition, in order to create the dropout model, we assume
that dropout can occur only after the first two time points. Namely, dropout is based
on values of H, assuming the H is fully observed in the first two time (time = 1,
2), while for the later times (time = 3, 4) some dropouts may occur. We assume
an MAR mechanism for the dropout process and the dropout mechanism depends
on individual previously observed values of one of the endpoints. For the MAR
mechanism, H was made missing if its measurements exceeded 75 (the baseline
mean for heart rate) the previous measurement occasion, beginning with the second
post baseline observation. Thus in the generation, the missingness at time = 3, 4
was dependent on the most recently observed values. This was done to achieve the
required mechanism under the MAR assumption.

3.4.2 Computations and Handling Missing Data

After generating the missing data mechanism and thus generating the data set with
dropout, the next step was to deal with dropout. Handling dropout was carried out
using direct likelihood analysis and multiple imputation methods with functions
available in the SAS software package. Ultimately, likelihood, multiple imputation
and analysis results from the fully observed data set can be compared in terms of
their impact on various linear mixed model aspects (fixed effects and least squares
means). The proposed methods dealt with the dropout according to the following:

• Imputing dropouts using multiple imputation techniques. This was achieved using
proceduresMI,MIXED andMIANALYZEwith an LSMEANS option. The impu-
tation model is based on model (9) which assumes normality of the variables. For
the dropout under MAR, the imputation model should be specified (Rubin 1987).
Thus, in the imputationmodel,we included all the available data (including the out-
come, H) to predict the dropouts since they were potentially related to the imputed
variable as well as to the missingness of the imputed variable. This means we
used variables in the analysis model, variables associated with missingness of the
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imputed variable and variables correlated with the imputed variable. This was
done to increase the plausibility of the MAR assumption, as well as to improve
the accuracy and efficiency of the imputation. Once the multiple imputation model
is chosen, the number of imputations must be decided. PROC MI was applied to
generate M=5 complete data sets. We fixed the number of multiple imputations
atM=5, since relatively small numbers are often deemed sufficient, especially for
parameter estimation from normally distributed data (see, Schafer andOlsen 1998;
Schafer 1999). PROC MIXED was used to set up effect parameterizations for the
class variables and we used the ODS statement output to create output data sets
that match PROCMIANALYZE for combining the effect mean estimates from the
5 imputed data sets. While PROCMIANALYZE cannot directly combine the least
square means and their differences to obtain the effect means of drug and contrasts
between drug groups from PROC MIXED, the LSMEANS table was sorted dif-
ferently so that we enabled the use of the BY statement in PROC MIANALYZE
to read it in.

• For comparison, the data was analyzed as they are, consistent with ignorability
for direct likelihood analysis implemented with PROC MIXED with LSMEANS
option. The REPEATED statement was used, in order to make sure the analysis
procedure takes into account sequences of varying length and order of the repeated
measurements. Parameters were estimated using RestrictedMaximum Likelihood
with the Newton-Raphson algorithm (Molenberghs and Verbeke 2005).

3.5 Results

A few points about the parameter estimates obtained by the proposed methods may
be noted in the resulting tables. In Table1, due to the similarities in the findings under
the three dropout rates, the results for type III tests of fixed effects under 20 and 30%
dropout rates are not presented but are available from the authors. Through the two
evaluation criteria in Table2, the largest bias, also the worst, are highlighted. For the
efficiency criterion, the widest confidence interval, also the worst, 95% interval are
highlighted.

The results that show the significance of the effects using direct likelihood and
multiple imputation to handle dropout are presented in Table1. Compared with the
results based on the complete data set, we see that type III tests of fixed effects show
that both direct likelihood and multiple imputation methods yielded statistically
similar results. The analysis shows that the drug effect has significant p-values as
its p-values, around 0.004, indicating a rejection of the null hypothesis of equal
drug means. The p-value of the drug effect under multiple imputation (0.0043) was
slightly higher in comparison to that of the direct likelihood analysis (0.0040), but
both methods indicate strong evidence of significance compared to the p-value of
0.0088 for the original complete data set. Evidently, there are no extreme differences
between the direct likelihood andmultiple imputationmethods. However, the p-value
for the drug effectwas significantly reduced by about 50%compared to the actual data
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Table 1 Statistical test for drug, time and drug × time effects of complete data, direct likelihood
and multiple imputation, under 15% dropout rate

Effect Type III tests of fixed effects

Num df Den df F-value Pr > F

Actual-data drug 2 21 5.99 0.0088

time 3 63 12.96 <0.001

drug × time 6 63 11.80 <0.001

Direct likelihood drug 2 17.1 7.78 0.0040

time 3 15.8 18.13 <0.001

drug × time 6 15.8 25.74 <0.001

Multiple imputation drug 2 21 7.14 0.0043

time 3 447 84.15 <0.001

drug × time 6 447 76.00 <0.001

Table 2 Bias and efficiency of MI and direct-likelihood, under different dropout rates: MIXED
least squares means—(interaction terms are not shown)

Dropout rate Effects Bias Efficiency

MI Direct-
likelihood

MI Direct-
likelihood

10% AX23 0.08 0.09 0.97 0.98
BWW9 −0.06 −0.08 0.95 0.97
CTRL 0.09 0.05 0.88 0.89
time1 0.00 0.00 0.99 0.99

time2 0.00 0.00 0.99 0.99

time3 0.07 0.09 0.97 0.98
time4 0.06 0.04 0.94 0.96

20% AX23 0.11 0.10 0.93 0.94
BWW9 0.08 0.10 0.94 0.97
CTRL 0.14 0.16 0.94 0.97
time1 0.00 0.00 0.98 0.98

time2 0.00 0.00 0.98 0.98

time3 0.09 0.11 1.27 1.54
time4 0.08 0.06 1.27 1.34

30% AX23 0.24 0.26 1.08 1.09
BWW9 0.14 0.15 1.08 1.11
CTRL 0.19 0.20 1.09 1.10
time1 0.00 0.00 0.97 0.97

time2 0.00 0.00 0.98 0.97

time3 0.15 0.17 1.55 1.68
time4 0.13 0.12 1.58 1.66

Note The largest bias and efficiency for each given estimate presented in bold. MI = multiple
imputation; Direct-likelihood
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p-value. This indicates a real problem with dropout, both multiple imputation and
direct likelihoodmay lead to rejection of the null hypothesis with a higher probability
than would be the case if the data were complete. The test of significance for time
effect in type III tests of fixed effects produced significant p-values of<0.0001 in both
methods. The test for the interaction between drug and time effects gave a p-value
of <0.0001 in both methods, indicating a strong evidence of time dependence on
the drug effects. Generally, the proposed methods presented acceptable performance
with respect to estimates of p-values in all cases when compared to that based on
actual data. In two cases, namely p-values of time effect and interaction drug× time,
the methods yielded the same results as those for complete data.

The results of MI and direct likelihood analysis in terms of bias and efficiency,
under three dropout rates are presented in Table2, which shows the results for the
least square means. Note that, again due to similarities in the findings, we do not
show full output, as the results of interactions terms are excluded. Examining these
results we find the following. For 10% dropout rate, in terms of the biasedness
of the estimates, the performance of both methods unsurprisingly yielded equally
good performance. However, the benefits of MI over a direct likelihood are clearly
evident. In some cases (estimates of time 1, time 2), the methods offered the same
estimates as compared to the estimates from complete data. Such results are expected
considering the fact that the first and second time points contained observed data for
all patients considered in the analysis. An examination of the efficiency suggested
that the estimates from MI were typically lower than those from direct likelihood.
Nevertheless, the corresponding MI estimates estimates did not differ significantly
from those of direct likelihood. Differences in efficiency estimates were never more
than 0.03.

Considering the 20% dropout rate, the results revealed that direct likelihood
slightly produces higher biases (the only exceptions to this rule occurred for estimate
ofAX23 and time 4). Regarding efficiency, both theMI and direct likelihoodmethods
yielded estimates similar to each other, and in general, MI tends to have the small-
est estimates. A comparison of 30% dropout rate again suggested that the estimates
associated with MI were less biased than for direct likelihood, except for time 4.
Efficiency results based on both methods were generally similar to their results with
10 and 20% dropout rates. Furthermore, between the two methods, the MI estimates
were slightly different from those obtained by direct likelihood, although the degree
of these differences was not very large. Overall, the performance of both methods
appeared to be independent of the dropout rate.

One would ideally need to compare various means with each other. If there is no
drug by time interaction, then we will often need to make comparisons between the
drug main effect means and the time main effect means. Since the interaction effect
mean is significant (as shown in Table1), we need to compare the drugs with one
another at each time point and/or times to one another for each drug. Comparisons
of the time means within a drug are given in Fig. 1. Since the levels of time are quan-
titative and equally spaced, orthogonal polynomials can be used to check for linear
and quadratic trends over time for each drug. The linear and quadratic trends in time
for all drugs reveal that drug BWW9 shows a negative linear trend, and drug AX23
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Fig. 1 a The heart rate data—Means over time for each drug for the heart rate data. b Direct
likelihood—Means over time for each drug for the heart rate data. c Multiple imputation—Means
over time for each drug for the heart rate data

shows a strong quadratic trend in all methods. Evidently, the differences occurred
with drug CTRL in graphs (b) and (c) for direct likelihood andMI, respectively. Both
methods yielded slightly different linear trends as compared to that from actual data.
The graph in Fig. 1 displays these relationships.

4 Dropout Analysis Strategies in Longitudinal Binary Data

There is a wide range of statistical methods for handling incomplete longitudinal
binary data. The methods of analysis to deal with dropout comprise three broad
strategies: semi-parametric regression, multiple imputation (MI) and maximum like-
lihood (ML). Inwhat follows,weutilize three common statisticalmethods in practice,
namelyWGEE, MI-GEE and GLMM. First, we compare the performance of the two
versions or modifications of the GEE approach, and then show how they compare to
the likelihood-based GLMM approach.
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4.1 Weighted Generalized Estimating Equation (WGEE)

Next, we follow the description provided by Verbeke andMolenberghs (2005) in for-
mulating the WGEE approach, thereby illustrating how WGEE can be incorporated
into the conventional GEE implementations. Generally, if inferences are restricted
to the population averages, exclusively the marginal expectations E(Yij) = μij can
be modelled with respect to covariates of interest. This can be done using the model
h(μij) = x′

ijβ, where h(.) denotes a known link function, for example, the logit link
for binary outcomes, the log link for counts, and so on. Further, the marginal vari-
ance depends on the marginal mean, with Var(Yij) = v(μij)�, where v(.) and �

denote a known variance function and a scale (overdispersion) parameter, respec-
tively. The correlation between Yij and Yik , where j �= k for i, j = 1, 2, ..., ni, can
be given through a correlation matrix Ci = Ci(ρ), where ρ denotes the vector of
nuisance parameters. Then, the covariance matrix Vi = Vi(β, ρ) of Yi can be decom-
posed into the form �A1/2

i CiA
1/2
i , where Ai is a matrix with the marginal variances

on the main diagonal and zeros elsewhere. Without missing data, the GEE estimator
for β is based on solving the equation

S(β) =
N∑

i=1

∂μi

∂β ′ (A
1/2
i CiA

1/2
i )−1(yi − μi) = 0, (10)

in which the marginal covariance matrix Vi contains a vector ρ of unknown para-
meters. Now, assume that the marginal mean μi has been correctly modeled, then it
can be shown that using Eq. (10), the estimator β̂ is normally distributed with mean
equal to β and covariance matrix equal to

Var(β̂) = I−1
0 I1I

−1
0 , (11)

where

I0 =
(

N∑

i=1

∂μ′
i

∂β
V−1
i

∂μi

∂β′

)

, (12)

and

I1 =
(

N∑

i=1

∂μ′
i

∂β
V−1
i V ar(yi)V

−1
i

∂μi

∂β′

)

. (13)

For practical purposes, in (13), Var(yi) can be replaced by (yi − μi)(yi − μi)
′ which

is unbiased on the sole condition that the mean is correctly specified (Birhanu et al.
2011). Note that GEE arises from non-likelihood inferences, therefore “ignorabil-
ity” discussed above, cannot be invoked to establish the validity of the method when
dropout is under MAR hold (Liang and Zeger 1986). Only, when dropout is MCAR;
that is, f (ri | yi,Xi, γ) = f (ri | Xi, γ) will estimating equation (10) yield consistent
estimators (Liang and Zeger 1986). Under MAR, Robins et al. (1995) proposed the
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WGEE approach to allow the use of GEE under MAR. The weights used in WGEE,
also termed inverse probability weights, reflect the probability for an observation
of subject to be observed (Robins et al. 1995). Therefore, the incorporation of these
weights reduces possible bias in the regression parameter estimates. Based onMolen-
berghs and Verbeke (2005), we discuss the construction of these weights. According
to them, such weights can be calculated as

ωij ≡ P[Di = j] =
j−1∏

k=2

(1 − P[Rik = 0 | Ri2 = ... = Ri,k−1=1]) ×

P[Rij = 0 | Ri2 = ... = Ri,j−1 = 1]I{j≤ni}, (14)

where j = 2, 3, ..., ni + 1, I{} is an indicator variable, andDi is the dropout variable.
The weights are obtained from the inverse probability provided the actual set of
measurements are observed. In terms of the dropout variable Di, the weights are
written as

ωij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(Di = j | Di ≥ j) for j = 2

P(Di = j | Di ≥ j)
j−1∏

k=2

[1 − P(Di = k | Di ≥ k)] for j = 3, ..., ni

ni∏

k=2

[1 − P(Di = k | Di ≥ k)] for j = ni + 1.

(15)

Now, from Sect. 2 recall that we partitioned Yi into the unobserved components (Ym
i )

and the observed components (Yo
i ). Similarly, the mean μi can be partitioned into

observed (μo
i ) and missing components (μm

i ). In the WGEE approach, the score
equations to be solved are:

S(β) =
N∑

i=1

ni+1∑

d=2

I(Di = d)

ωid

∂μi

∂β ′ (d)(A1/2
i CiA

1/2
i )−1(d)(yi(d) − μi(d)) = 0, (16)

where yi(d) andμi(d) are the first d − 1 elements of yi andμi respectively. In Eq. (16),
∂μi

∂β′ (d) and (A1/2
i CiA

1/2
i )−1(d) are defined analogously, in line with the definitions of

Robins et al. (1995). Provided that the ωid are correctly specified, WGEE provides
consistent estimates of the model parameters under a MAR mechanism (Robins et
al. 1995).
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4.2 Multiple Imputation Based GEE (MI-GEE)

An alternative approach that is valid under MAR is multiple imputation prior to gen-
eralized estimating equations, or, as we will term it in the remainder of this article,
MI-GEE. The primary idea of the combination of MI and GEE comes from Schafer
(2003). He proposed an alternative mode of analysis based on the following steps.
(1) Impute the missing outcomes multiple times using a fully parametric model, such
as a random effects type model. (2) After drawing the imputations, analyze the so-
completed data sets using a conventional marginal model, such as the GEE method.
(3) Finally, perform MI inference on the so-analyzed sets of data. As pointed out by
Beunckens et al. (2008), MI-GEE comes down to first using the predictive distribu-
tion of the unobserved outcomes, conditional on the observed ones and covariates.
Thereafter, when MAR is valid, missing data need no further attention during the
analysis. In terms of the dropout mechanism, in the MI-GEEmethod, the imputation
model needs to be specified. This specification can be done by an imputation model
that imputes the missing values with a given set of plausible values (Beunckens et al.
2008). Details of this method can be found in Schafer (2003), Molenberghs and
Kenward (2007) and Yoo (2009). In closely related studies, Beunckens et al. (2008)
studied the comparison between the two GEE versions (WGEE and MI-GEE), and
Birhanu et al. (2011) compared the efficiency and robustness ofWGEE,MI-GEE and
doubly robust GEE (DR-GEE). In this paper, however, we restrict attention to study
how the two types of GEE (WGEE and MI-GEE) compared to the likelihood-based
GLMM for analyzing longitudinal binary outcomes with dropout.

In the previous section, GEE, a special case of inverse probability weighting, was
described as a useful device for the analysis of incomplete data, under anMARmech-
anism. In this section, MI was described, and this suggests an alternative approach
to handlingMARmissingness when using GEE: use MAR-basedMI together with a
final GEE analysis for the substantivemodel. This emphasizes the valuable flexibility
that this facility brings toMI, and can be considered as an example of using unconge-
nial imputation model. The term uncongenial was introduced by Meng (1994) for an
imputation model that is not consistent with the substantive model, and it is for this
reason that MI has much to offer in this setting. Further, Meng (1994) stated that it is
one of the great strength ofMI that these twomodels (substantive and imputation) do
not have to be consistent in the sense that the two models need not be derived from
an overall model for the complete data. GEE is one of the examples of situations
in which such uncongenial imputation models might be of value (Molenberghs and
Kenward 2007). As noted above GEE is valid under MCAR but not MAR. An alter-
native approach that is valid under MAR isMI prior to GEE, in which the imputation
model is consistent with the MAR mechanism, but not necessarily congenial with
the chosen substantive model. The population-averaged substantive model does not
specify the entire joint distribution of the repeated outcomes, particularly the depen-
dence structure is left unspecified, and so cannot be used as a basis for constructing
the imputation model. Since we consider the MI-GEE method, the M imputed data



Statistical Methodologies for Dealing with Incomplete Longitudinal Outcomes … 195

sets combined with GEE on the imputed data is an alternative technique to likelihood
inference and WGEE. It requires MAR for valid inferences.

4.3 Generalized Linear Mixed Model (GLMM)

An alternative approach to deal with dropout under MAR is to use likelihood-
based inference (Verbeke andMolenberghs 2000). A commonly encountered random
effects (or subject-specific) model for discrete longitudinal data is the generalized
linear mixedmodel (GLMM)which is based on specifying a regressionmodel for the
responses conditional on an individual’s random effects and assuming that within-
subject measurements are independent, conditional on the random effects. The mar-
ginal likelihood in the GLMM is used as the basis for inferences for the fixed effects
parameters, complemented with empirical Bayes estimation for the random effects
(Molenberghs and Kenward 2007). As pointed out by Alosh (2010), the random
effects can be included as a subset of the model for heterogeneity from one indi-
vidual to another. Integrating out the random effects induces marginal correlation
between the responses through the same individual (Laird andWare 1982). Next, we
briefly introduce a general framework for mixed effects models provided by Jansen
et al. (2006) andMolenberghs andKenward (2007). It is assumed that the conditional
distribution of each Yi, given a vector of random effects bi can be written as follows

Yi | bi ∼ Fi(θ, bi), (17)

where Yi follows a prespecified distribution Fi, possibly depending on covariates,
and is parameterized via a vector θ of unknown parameters common to all individ-
uals. The term bi denotes the (q × 1) vector of subject-specific parameters, called
random effects, which are assumed to follow a so-called mixing distribution Q. The
distributionQ depends on a vector of unknown parameter, say ψ; that is, bi ∼ Q(ψ).
In terms of the distribution of Yi, the bi reflect the between unit-heterogeneity in the
population. Further, given the random effects bi, it is assumed that the components Yij
in Yi are independent of one another. The distribution function (Fi) provided inmodel
(17) becomes a product over the ni independent elements inYi. Inference based on the
marginal model for Yi can be obtained across their distributionQ(ψ), provided one is
not following a fully Bayesian approach. Now, assume that the fi(yi | bi) represents
the density function and corresponds to the distribution Fi, while q(bi) represents the
density function and corresponds to the distribution Q. Thus, the marginal density
function of Yi can be written as follows

fi(yi) =
∫

fi(yi | bi)q(bi)dbi. (18)

The marginal density is dependent on the unknown parameters θ and ψ. By assum-
ing the independence of the units, the estimates of θ̂ and ψ̂ can be obtained using
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the maximum likelihood function that is built into model (18). The inferences can
be obtained following the classical maximum likelihood theory. The distribution Q
is assumed to be of a specific parametric form, for example a multivariate normal
distribution. The integration in model (18), depending on both Fi and Qi, may or
may not be analytically possible. However, there are some proposed solutions based
on Taylor series expansions of either fi(yi | bi) or on numerical approximations of
the integral, for example, adaptive Gaussian quadrature. Verbeke and Molenberghs
(2000) noted that for the classical linear mixed model, E(Yi) equals Xiβ, meaning
that the fixed effects have a subject-specific as well as a population-averaged inter-
pretation. However, for nonlinear mixed models, the interpretation of random effects
has important ramifications for the interpretation of the fixed effects regression para-
meters. The fixed effects only reflect the conditional effect of covariates, and the
marginal effect is difficult to obtain, as E(Yi) is given by

E(Yi) =
∫

yi

∫
fi(yi | bi)q(bi)dbidyi. (19)

In GLMM, a general formulation is as follows. It assumes that the elements Yij of
Yi are conditionally independent, given a (q × 1) vector of random effects bi, with
density function based on a classical exponential family formulationwith conditional
mean depending on both fixed and random effects. This leads to the conditional mean
E(Yij | bi) = a′(ηij) = μij(bi), and the conditional variance is assumed to depend on
the conditional mean according to Yij | bi = �a′′(ηij). One needs a link function,
say h (for binary data, a canonical link is the logit link), and typically uses a linear
regression with parameters β and bi for the mean, i.e., h(μi(bi)) = Xiβ + Zibi. Here,
we note that the linear mixed model is a special case with an identity link function.
The random effects bi are again assumed to be sampled from a multivariate normal
distribution, with mean 0 and (q × q) covariance matrix. The canonical link function
is usually used to relate the conditional mean of Yij to ηi; that is, h = a′−1, such that
ηi = Xiβ + Zibi. In principle, any suitable link function can be used (Fitzmaurice et
al., 2004). In considering the link function of the logit form and assuming the random
effects to be normally distributed, the familiar logistic-linear GLMM follows. For
a more detailed overview, see, Jansen et al. (2006) and Molenberghs and Verbeke
(2005).

4.4 Simulation Study

Note that the parameters in a marginal model, such as GEE, and a hierarchical
model, such as GLMM, do not have the same interpretation. Indeed, the fixed effects
in the latter are to be interpreted conditional upon the random effect. While there
is no difference between the two in the linear mixed model, this is not the case
for non-Gaussian outcomes, in particular for binary data. Fortunately, as stated in
Molenberghs and Verbeke (2005) and references therein, the GLMM parameters can
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be approximately transformed to their marginal counterpart. In particular, when the
random-effects structure is confined to a random intercept bi, normally distributed
with mean 0 and variance σ2, then the ratio between the marginal and random effects
parameter is approximately equal to

√
1 + c2σ, where c = 16

√
3/(15π). This ratio

will be used in our simulation study to make the parameters comparable.

4.4.1 Design

The main objective of this study was to compare WGEE, MI-GEE and GLMM for
handling dropoutmissing at random in longitudinal binary data. To do so, we used the
following steps: (1) A complete longitudinal binary data set was generated, and the
marginal logistic regression was fitted to the data to derive the parameter estimators.
(2) Once the complete dataset was generated, 100 random samples of N = 250 and
500 subjects were drawn. (3) MAR dropout was created, for various dropout rates.
(4) The above methods were applied to each simulated data set. The results from the
simulated data were then compared with those obtained from the complete data. (5)
The performances of WGEE, MI-GEE and GLMM were evaluated in terms of bias,
efficiency and mean square error (MSE). The GLMM estimates were first adjusted
for comparability before this evaluation of performance.

4.4.2 Data Generation

Simulated datawere generated in order to emulate data typically found in longitudinal
binary clinical trials data. The longitudinal binary data with dropout were simulated
by first generating complete data sets. Then, 100 random samples of sizes N = 250
and 500 subjects were drawn. We assumed that subjects were assigned to two arms
(Treatment = 1 and Placebo = 0). We also assumed that measurements were taken
under four time points (j = 1, 2, 3, 4). The outcome (Yij) which is the measurement
of subject i, measured at time j, was defined as 1 if the measurement is positive, and
0 if otherwise. The two levels of the outcome can represent a specific binary health
outcome, but generally we labeled one outcome “success, i.e., 1” and the other
“failure, i.e., 0”. Then, we looked at logistic regression as modeling the success
probability as a function of the explanatory variables. The main interest here is in the
marginal model for each binary outcome Yij, which we assumed follows a logistic
regression. Consequently, longitudinal binary data were generated according to the
following logistic model with linear predictor

logitE(yij = 1|Tj, trti, bi) = β0 + bi + β1Tj + β2trti + β3(Tj ∗ trti), (20)

whereβ = (β0,β1,β2,β3), and the randomeffects bi’s are assumed to account for the
variability between individuals and assumed to be i.i.d. with a normal distribution,
i.e., bi ∼ N(0,σ2). In this model, fixed categorical effects include treatment (trt),
times (T) and treatment-by-time interaction (T ∗ trt). For this model, throughout, we
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fixed β0 = −0.25, β1 = 0.5, β2 = 1.0 and β4 = 0.2. We also set a random intercept
bi ∼ N(0, 0.07). For each simulated data set, dropouts were created in the response
variable, Yij, chosen stochastically. We assumed that the dropout can occur only after
the second time point. Consequently, there are three possible dropout patterns. That
is, dropout at the third time point, dropout at the fourth time point, or no dropout.
The dropouts were generated at time j and the subsequent times were assumed to be
dependent on the values of outcome measured at time j − 1. Under model (20), we
simulated a case where the MAR specification was different for the two outcomes
(positive and negative). In particular, for time point, j = 3, we retained the criterion
that if the dependent variable (Yij)was positive (i.e.,Yij = 1), then the subject dropped
out at the next time point, i.e., j + 1. Dropouts were selected to yield approximate
rates of 10, 20 and 30%. A monotone missing pattern (i.e., data for an individual
up to a certain time) was considered, thus simulating a trial where the only source of
dropout was an individual’s withdrawal.

4.5 Analysis

In the analysis, different strategies were used to handle dropout: by weighting, by
imputation and by analyzing the data with no need to impute or weight, consistent
with MAR assumption, for WGEE, MI-GEE and GLMM, respectively.

4.5.1 WGEE

As discussed above, theWGEEmethod requires a model for the dropout mechanism.
Consequently, we first fitted the following dropout model using a logistic regression,

logitP(Di = j | Di ≥ j) = γ0 + γ1yi,j−1 + γ2trti, j = 3, 4. (21)

where the predictor variables were the outcomes at previous occasions (yi,j−1), sup-
plementedwith genuine covariate information.Model (21) is based on logistic regres-
sion for the probability of dropout at occasion j for individual i, conditional on the
individual still being in the study (i,e., the probability of being observed is modeled).
Note that mechanism (21) allows for the one used to generate the data and described
in above only as a limiting case. This is because our dropout generating mecha-
nism has a deterministic flavor. Strictly speaking, the probabilities of observation in
WGEE are required to be bounded away from zero, to avoid issues with the weight.
The effect of our choice is that WGEE is subjected to a severe stress test. It will be
seen in the results section that, against this background,WGEE performs rather well.
To estimate the probabilities for dropout as well as to pass the weights (predicted
probabilities) to be used for WGEE, we used the “DROPOUT” and “DROPWGT”
macros described in Molenberghs and Verbeke (2005). These macros could be used
without modification. The “DROPOUT” macro is used to construct the variables
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dropout and previous. The outcome dropout is binary and indicates if individual had
dropped out of the study before its completion, whereas, the previous variable refers
to the outcome at previous occasions. After fitting a logistic regression, the “DROP-
WGT” macro is used to pass the weights to the individual observations in WGEE.
Such weights, calculated as the inverse of the cumulative product of conditional
probabilities, can be estimated as wij = 1/(λi1 × ... × λij), where λij represents the
probability of observing a response at time j for the ith individual, conditional on the
individual being observed at the time j − 1. Once the dropout model (21) was fitted
and the weight distribution was checked, we merely included the weights by means
of the WEIGHT statement in SAS procedure GENMOD. As mentioned earlier, the
marginal measurement model for WGEE should be specified. Therefore, the model
that we considered takes the form of

logitE(yij) = β0 + β1Tj + β2trti + β3(Tj ∗ trti). (22)

Here, we used the compound symmetry (CS) working correlation matrix. A random
intercept bi was excluded when considering WGEE.

4.5.2 MI-GEE

The analysis was conducted by imputing missing values using the SAS procedure
MI, which employs a conditional logistic imputation model for binary outcomes.
For the specification of the imputation model, an MAR mechanism is considered;
that is, the imputation model comprises two-level covariate (i.e., treatment versus
placebo classification) as well as longitudinal binary outcomes values at times j =
1; 2; 3; 4. To be precise, for the imputation model, we used a logistic regression with
measurements at the second time point as well as the two-level covariate to fill in the
missing values that occur at the third time point. In a similar way, the imputation at the
fourth timepoint is done using themeasurements at the third timepoint including both
imputed and observed, as predictors, as well as the measurements at the second time
point which is always observed and the two-level covariate. Note that we describe
here multiple imputation in a sequential fashion, making use of the time ordering of
the measurements. Therefore, the next value is imputed based on the previous values,
whether observed or already imputed. This is totally equivalent to an approach where
all missing values are imputed at once based on the observed sub-vector. This implies
that the dropout process was accommodated in the imputation model. It appears that
there is potential for misspecification here. However, multiple imputation is valid
under MAR. Whether missingness depends on one or more earlier outcomes, MAR
holds, so the validity of the method is guaranteed (Molenberghs and Kenward 2007).
In terms of the number of the imputed data sets, we used M = 5 imputations. GEE
was then fitted to each completed data set using SAS procedure GENMOD. TheGEE
model that we considered is based on (22). The results of the analysis from these 5
completed (imputed) data sets were combined into a single inference using Eqs. (5),
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(6), (7) and (8). This was done by using SAS procedure MIANALYZE. Details of
implementation of this method are given in Molenberghs and Kenward (2007) and
Beunckens et al. (2008).

4.5.3 GLMM

Conditionally on a random intercept bi, the logistic regression model is used to
describe the mean response, i.e., the distribution of the outcome at each time point
separately. Specifically, we considered fitting model (20). This model assumed that
there is natural heterogeneity across individuals and accounted for the within-subject
dependence in the mean response over time. Model (20) was fitted using the likeli-
hoodmethod by applying theNLMIXEDprocedure in SAS software. This procedure
relies on numerical integration and includes a number of optimization algorithms
(Molenberghs and Verbeke 2005). Given that the evaluation and maximization of the
marginal likelihood for GLMMneeds integration, over the distribution of the random
effects, the model was fitted using maximum likelihood (ML) together with adaptive
Gaussian quadrature (Pinheiro andBates 2000) based on numerical integrationwhich
works quite well in procedure NLMIXED. This procedure allows the use of Newton-
Raphson instead of a Quasi-Newton algorithm to maximize the marginal likelihood,
and adaptive Gaussian quadrature was used to integrate out the random effects. The
adaptive Gaussian quadrature approach makes Bayesian approaches quite appeal-
ing because it is based on numerical integral approximations centered around the
empirical Bayes estimates of the random effects, and permits maximization of the
marginal likelihoodwith any desired degree of accuracy (Anderson andAitkin 1985).
An alternative strategy to fitting the GLMM is the penalized quasi-likelihood (PQL)
algorithm (Stiratelli et al. 1984). However, in this study this algorithm is not used
as it often provides highly biased estimates (Breslow and Lin 1995). Also, we ought
to keep in mind that the GLMM parameters need to be re-scaled in order to have
an approximate marginal interpretation and to become comparable to their GEE
counterparts.

4.5.4 Evaluation Criteria

In the evaluation, inferences are drawn on the data before dropouts are created and
the results used as the main standard against those obtained from applying WGEE,
GLMM and MI-GEE approaches. We evaluated the performance of the methods
using bias, efficiency, andmean square error (MSE). These criteria are recommended
in Collins et al. (2001) and Burton et al. (2006). (1) Evaluation of bias: we defined
the bias as the difference between the average estimate and the true value; that is,

π = (
¯̂
β − β)where β is the true value for the estimate of interest, ¯̂

β = �S
i=1β̂i/S, S is

the number of simulation performed, and β̂i is the estimate of interest within each of
the i = 1, ..., S simulations. (2) Evaluation of efficiency: we defined the efficiency as
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the variability of the estimates around the true population coefficient. In this chapter,
it was calculated by the average width of the 95% confidence interval. The 95%
interval is approximately four times the magnitude of the standard error. Therefore,
a narrower interval is always desirable because it leads to more efficient methods. (3)
Evaluation of accuracy: the MSE provides a useful measure of the overall accuracy,
as it incorporates both measures of bias and variability (Collins et al. 2001). It can be

calculated as follows:MSE=(
¯̂
β − β)2+(SE(β̂))2, where SE(β̂) denotes the empirical

standard error of the estimate of interest over all simulations (Burton et al. 2006).
Generally, small values of MSE are desirable (Schafer and Graham 2002).

4.5.5 Simulations Results

The simulations results of WGEE, MI-GEE and GLMM in terms of bias, efficiency
and MSEs, under N=250 and 500 sample sizes are presented in Table3. A few
points about the parameter estimates obtained by the proposed methods through
the three evaluation criteria may be noted for each estimate in Table3. First, the
largest bias, also the worst, are highlighted. Second, for the efficiency criterion, the
widest confidence interval, also the worst, 95% interval are highlighted. Third, for
the evaluation of MSEs, the greatest values, also the worst, are highlighted. As we
will see, the findings in general favoured MI-GEE over both WGEE and GLMM,
regardless of the dropout rates.

By looking at this table, we observed that for 10% dropout rate, bias was least in
the estimates of MI-GEE than in both WGEE and GLMM. In particular, the worst
performance of WGEE and GLMM on bias permeated through the estimates of β2

and (β0,β1,β3), respectively, indicating a discrepancy between the average and the
true parameter (Schafer and Graham 2002). Between the two MI-GEE and WGEE
methods, the WGEE estimates were slightly different from those obtained by MI-
GEE, although the degree of these differences was not very large. The efficiency
performance was acceptable for both methods and comparable to each other, but low
for most parameters under WGEE. The efficiency estimates associated with GLMM
were larger than with WGEE and MI-GEE. In terms of MSEs, both WGEE and
MI-GEE outperformed GLMM as they tend to have smallest MSEs. Overall, they
yielded MSEs much closer to each other, however under 500 sample size, MI-GEE
gave smallest MSEs.

Considering the 20% dropout rate, the results revealed that in most cases, GLMM
consistently produced the most biased estimates. The only exception occurred for
estimates of β2 under 250 sample size as well as β2 and β3, under 500 sample size.
For estimating all parameters, efficiency estimates by WGEE and MI-GEE were
similar to each other and smaller than GLMM’s estimates, except for β3 under 500
sample size. In comparison with WGEE and MI-GEE, GLMM gave larger MSEs in
magnitude than the two, except for estimate of β0 and β2 under 250 and 500 sample
sizes, respectively. Comparing WGEE and MI-GEE, the MSEs associated with both
methods were closer to each other and in one case—MSE of β3 under 250 sample
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Table 3 Bias, efficiency and mean square error of the WGEE, MI-GEE and GLMM Methods,
under MAR mechanism over 100 samples: N = 250 and 500 subjects.
Dropout
rate

Parameter Bias Efficiency MSE

WGEE MI-
GEE

GLMM WGEE MI-
GEE

GLMM WGEE MI-
GEE

GLMM

N = 250

10% β0 0.094 0.061 0.099 0.005 0.012 0.018 0.028 0.018 0.041

β1 −0.099 −0.030 −0.107 0.003 0.013 0.084 0.018 0.086 0.097

β2 0.053 0.039 0.050 0.004 0.004 0.011 0.051 0.093 0.107

β3 0.018 0.012 0.023 0.002 0.004 0.005 0.007 0.008 0.015

20% β0 0.047 0.006 0.052 0.012 0.012 0.031 0.027 0.060 0.031

β1 0.033 0.139 0.141 0.012 0.014 0.028 0.048 0.020 0.052

β2 0.131 0.122 0.130 0.005 0.011 0.017 0.051 0.091 0.102

β3 −0.076 −0.038 0.080 0.006 0.007 0.009 0.008 0.008 0.016

30% β0 −0.065 −0.036 −0.085 0.026 0.003 0.041 0.071 0.072 0.087

β1 0.167 0.143 0.169 0.023 0.011 0.013 0.089 0.035 0.044

β2 0.178 0.171 0.182 0.015 0.005 0.019 0.069 0.032 0.073

β3 0.033 0.104 0.079 0.013 0.005 0.016 0.025 0.014 0.047

N = 500

10% β0 0.043 0.011 0.051 0.156 0.144 0.162 0.019 0.016 0.059

β1 −0.179 −0.242 −0.249 0.057 0.054 0.068 0.048 0.044 0.053

β2 0.221 0.211 0.220 0.093 0.086 0.129 0.097 0.082 0.101

β3 0.047 0.010 0.056 0.036 0.032 0.034 0.009 0.009 0.017

20% β0 0.080 0.078 0.091 0.154 0.138 0.161 0.130 0.111 0.145

β1 −0.195 −0.139 −0.201 0.068 0.053 0.073 0.052 0.037 0.082

β2 0.265 0.293 0.289 0.099 0.089 0.153 0.120 0.118 0.119

β3 0.067 0.020 0.064 0.041 0.032 0.034 0.009 0.007 0.014

30% β0 0.136 0.117 0.121 0.131 0.164 0.173 0.139 0.193 0.198

β1 −0.232 −0.218 −0.243 0.072 0.048 0.074 0.066 0.061 0.091

β2 0.342 0.184 0.351 0.084 0.093 0.107 0.186 0.136 0.193

β3 0.067 0.066 0.064 0.097 0.029 0.068 0.012 0.010 0.012

Note The largest bias, efficiency and mean square error for each given estimate presented in bold.
MI-GEE = multiple imputation based generalized estimating equation; WGEE = weighted general-
ized estimating equation; LMM = linear mixed model; GLMM = generalized linear mixed model;
MSE = mean square error

size—they gave the same values. As was the case for 10% under 500 sample size,
MSEs by WGEE tended to be larger than those obtained by MI-GEE.

A comparison of 30% dropout rate again suggested that the results based on
GLMM typically displayed greater estimation bias than did WGEE and MI-GEE,
indicating a difference between the average estimate and the true values. Efficiency
by MI-GEE appeared to be independent of the sample size in most cases, meaning
theMI-GEEmethod yieldedmore efficient estimates across both sample sizes. Thus,
MI-GEE was more efficient than WGEE, yet more efficient than GLMM. The latter
yielded the largest values in most cases. With respect to MSEs, results that are
computed by GLMM yielded largest values, showing no substantial improvement
over GLMM under different sample sizes when compared with the results computed
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byWGEE andMI-GEE. Under 500 sample size, it can also be observed that in terms
of the estimate of β3, the MSE value for WGEE was equal to that based on GLMM,
and they gave larger MSEs than did MI-GEE, whereas compared to WGEE, the
MI-GEE still resulted in smaller MSEs. Generally, with increasing sample size, the
performance of MI-GEE was better than that for WGEE and GLMM.

4.6 Application Example: Dermatophyte Onychomycosis
Study

These data come from a randomized, double-blind, parallel group, multi-center study
for the comparison of two treatments (we will term them in the remainder of this
article, active and placebo) for toenail dermatophyte onychomycosis (TDO). Toenail
dermatophyte onychomycosis is a common toenail infection, difficult to treat, affect-
ing more than 2% of population. Further background details of this experiment are
given in De Backer et al. (1996) and in its accompanying discussion. In this study,
there were 2 × 189 patients randomized under 36 centers. Patients were followed
12 weeks (3 months) of treatment. Further, patients were followed 48 weeks (12
months) of total follow up. Measurements were planned at seven time points, i.e.,
at baseline, every month during treatment, and every 3 months afterward for each
patient. The main interest of this experiment was to study the severity of infection
relative to treatment of TDO for the two treatment groups. At the first occasion, the
treating physician indicates one of the affected toenails as the target nail, the nail that
will be followed over time. We restrict our analyses to only those patients for which
the target nail was one of the two big toenails. This reduces our sample under consid-
eration to 146 and 148 patients, in active group and placebo group, respectively. The
percentage and number of patients that are in the study at each month is tabulated in
Table4 by treatment arm. Due to a variety of reasons, the outcome has beenmeasured
at all 7 scheduled time points for only 224 (76%) out of the 298 participants. Table5
summarizes the number of available repeated measurements per patient, for both
treatment groups separately. We see that the occurrence of missingness is similar
in both treatment groups. We now apply the aforementioned methods to this data
set. Let Yij be the severity of infection, coded as yes (severe) or no (not severe), at
occasion j for patient i. We focus on assessing the difference between both treatment
arms for onychomycosis. An MAR missing mechanism is assumed. For the WGEE
and MI-GEE methods, we consider fitting Model (22). For the GLMM method, the
above mentioned ratio is used. A random intercept bi will be included in Model (22)
when considering the random effects models. The results of the three methods are
listed in Table6. It can be seen from the analysis that the associated p-values for the
main variable of interest, i.e., treatment are all nonsignificant, their p-values being
all greater than 0.05. Such results should be expected considering the fact both mar-
ginal and random effect model may present similar results in terms of hypothesis
testing (Jansen et al. 2006). However, when compared to WGEE and MI-GEE, the
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Table 4 Number and percentage of patients with severe toenail infection at each time point, for
each treatment arm separately

Baseline 1 month 2 month 3 month 6 month 9 month 12 month

Active
group

Number
severe

54 49 44 29 14 10 14

N% 146 141 138 132 130 117 133

(%) 37.0 34.7 31.9 22.0 10.8 8.5 10.2

Placebo
group

Number
severe

55 48 40 29 8 8 6

N% 148 147 145 140 133 127 131

(%) 37.2 32.6 27.6 20.7 6.0 6.3 4.6

Table 5 Toenail data: Number of available repeated measurements for each patient, by treatment
arm separately

Number of observed Active group Placebo group

N % N %

1 4 2.74 1 0.68

2 2 1.37 1 0.68

3 4 2.74 3 2.03

4 2 1.37 4 2.70

5 2 1.37 8 5.41

6 25 17.12 14 9.46

7 107 73.29 117 79.05

Total 146 100 148 100

Table 6 Toenail data: (parameter estimates; standard errors) and p-values for WGEE, MI-GEE
and GLMM

Effect Parameter WGEE MI-GEE GLMM

Intercept β0 (−0.301; 0.216)
(0.4613)

(−0.051; 0.233)
(0.4016)

(0.421; 3.981)
(0.5400)

trti β1 (−0.201; 0.069)
(0.1211)

(−0.309; 0.039)
(0.0998)

(0.432; 0.251)
(0.1312)

Tij β2 (0.511; 0.442)
(0.0073)

(0.025; 0.301)
(0.0008)

(0.705; 0.487)
(0.0410)

trti ∗ Tij β3 (−0.118; 0.164)
(0.8004)

(−0.044; 0.063)
(0.7552)

(0.401; 0.222)
(0.6602)
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GLMM method provided different results. Namely, its estimates were much bigger
in magnitude. This in line with previous study conducted by Molenberghs and Ver-
beke (2005). In addition, the parameter estimates as well as the standard errors are
more varied for GLMM than in the WGEE and MI-GEE methods.

5 Discussion and Conclusion

In the first part of this chapter, we have compared two methods applied to incom-
plete longitudinal data with continuous outcomes. The findings of our analysis in
general suggest that both direct likelihood and multiple imputation performed best
under all three dropout rates, and they are more broadly similar in results. This
is to be expected as both approaches are likelihood based and Bayesian analysis,
respectively, and therefore valid under the assumption of MAR (Molenberghs and
Kenward 2007). The result of direct likelihood are in line with the findings that
likelihood-based analyses are appropriate for the ignorability situation (Verbeke and
Molenberghs 2000; Molenberghs and Verbeke 2005; Mallinckrodt et al. 2001a, b).
Because of simplicity, and ease of implementation using many statistical tools such
as the SAS software procedures MIXED, NLMIXED and GLIMMIX, direct likeli-
hood might be adequate to deal with dropout data when the MARmechanism holds,
provided appropriate distributional assumptions for a likelihood formulation of the
data also hold. Moreover, a method such as multiple imputation can be conducted
without problems using statistical software such as the SAS procedures MI and
MIANALYZE, and if done correctly, is a versatile, powerful and reliable technique
to deal with dropouts that are MAR in longitudinal data with continuous outcomes.
It would appear that the recommendation of Mallinckrodt et al. (2003a), Mallinck-
rodt et al. (2003b) to use direct likelihood and multiple imputation for dealing with
incomplete longitudinal data with continuous outcomes is supported by the current
analysis. At this point, we have to make it clear that the scope of this study is limited
to direct likelihood and multiple imputation strategies. We note that there are several
other strategies available to deal with incomplete longitudinal data with continuous
outcome under ignorability assumption, however these methods are not covered in
this study.

From the second part of the chapter that is based on dealing with binary outcomes,
the results in general favouredMI-GEE over bothWGEE and GLMM. ThisMI-GEE
advantage is well documented in Birhanu et al. (2011). However, the current analysis
differs from that based on Birhanu et al. (2011) as their analysis compared MI-GEE,
WGEE and Doubly robust GEE in terms of the relative performance of the singly
robust and Doubly robust versions of GEE in a variety of correctly and incorrectly
specifiedmodels. Furthermore, the bias forMI-GEEbased estimates in this studywas
fairly small, demonstrating that the imputed values did not produce markedly more
biased results. This was to be expected as many authors, for example, Beunckens
et al. (2008) noted that the MI-GEEmethod may provide less biased estimates than a
WGEE analysis when the imputation model is correctly specified. From an extensive
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small and high sample sizes (i.e., N=250 and 500) simulation study, it emerged
that MI-GEE is rather efficient and more accurate than other methods investigated
in the current paper, regardless of dropout rate which also shows that the method
does well as the dropout rate increases. Overall, the MI-GEE performance appeared
to be independent of the sample sizes. However, in terms of efficiency, in some
cases, it was less efficient than WGEE, yet more efficient and accurate than GLMM.
This was specially true for WGEE when the rate of dropout was small and the
sample size was small as well. In summary, the results further recommended MI-
GEE over WGEE. However, both MI-GEE and WGEE methods may be selected
as the primary analysis methods for handling dropout under MAR in longitudinal
binary outcomes, but convergence of the analysis models may be affected by the
discreteness or sparseness of the data.

Molenberghs and Verbeke (2005) stated that the parameter estimates from the
GLMM are not directly comparable to the marginal parameter estimates, even when
the random effects models are estimated through a marginal inference. They also
transformed the GLMM parameters to their approximate GEE counterparts, using
a ratio that makes the parameter estimates comparable. Therefore, an appropriate
adjustments need to be applied to GLMM estimates in order to have an approximate
marginal interpretation and to become com- parable to their GEE counterparts. Using
this ratio in the simulation study, the findings showed that, although all WGEE, MI-
GEE and GLMM are valid under MAR, there were slight differences between the
parameter estimates and never differed by a large amount, in most cases. As a result,
it appeared that for both sample sizes, the GLMM based results were characterized
by the larger estimates for nearly all cases, although the degree of the difference in
magnitude was not very large. In addition, it did not appear that the magnitude of
this difference differed between the three dropout rates.

Although there was a discrepancy between the GLMM results on the one hand,
and both the WGEE and MI-GEE results on the other, there are several important
points to consider in the GLMM analysis of incomplete longitudinal binary data.
The fact is that the GLMM may be applicable in many situations and offers an
alternative to the models that make inferences about the overall study population
whenone is interested inmaking inferences about individual variability to be included
in the model (Verbeke and Molenberghs 2000; Molenberghs and Verbeke 2005).
Furthermore, it is important to realize that GLMM relies on the assumption that the
data are MAR, provided a few mild regularity conditions hold, and it is as easy to
implement and represent as it would be in contexts where the data are complete.
Consequently, when this condition holds, valid inference can be obtained with no
need for extra complication or effort, and the GLMM assuming an MAR process,
is more suitable (Molenberghs and Kenward 2007). In addition, the GLMM is very
general and can be applied for various types of discrete outcomes when the objective
is to make inferences about individuals rather than population averages, and is more
appropriate for explicative studies.
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As a final remark, recall that MI-GEE has been the preferred method for analy-
sis as it outperformed both the WGEE and GLMM estimations in the simulation
study results. Despite this, the current study has focussed on handling dropout in the
outcome variable, the MI-GEE can be well conducted in terms of the missingness
in the covariates in the context of real-life, and can yield even more precise and
convincing results since the choice for the WGEE method is not that straightfor-
ward. This can be justified by the fact that in the imputation model, the covariates
that are conditioned on the analysis model are not included. The other available
covariates can be included in the imputation model without being of interest in the
analysis model, therefore yielding better imputations as well as wider applicability.
Additionally, multiple imputationmethods such asMI-GEE avoid some severe draw-
backs encountered using direct modeling methods such as the excessive impact of
the individual weights in the WGEE estimation or the poor fit of the random subject
effect in the GLMM analysis. For further discussion, see Beunckens et al. (2008).

Lastly, we submit that the scope of the second part of thus chapter is limited to
three approaches. This work is not intended to provide a comprehensive account
of analysis methods for incomplete longitudinal binary data. We acknowledge that
there are several methods available for incomplete longitudinal binary data under the
dropouts that are MAR. However, these methods are beyond the scope of the study.
This article exclusively deals with the WGEE, MI-GEE and GLMM paradigms that
represent different strategies to deal with dropout under MAR.
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Applications of Simulation for Missing Data
Issues in Longitudinal Clinical Trials

G. Frank Liu and James Kost

Abstract Missing data handling in longitudinal clinical trials has gained consider-
able interest in recent years. Although a lot of research has been devoted to statis-
tical methods for missing data, there is no universally best approach for analysis.
It is often recommended to perform sensitivity analyses under different assump-
tions to assess the robustness of the analysis results from a clinical trial. To evaluate
and implement statistical analysis models for missing data, Monte-Carlo simula-
tions are often used. In this chapter, we present a few simulation-based approaches
related to missing data issues in longitudinal clinical trials. First, a simulation-based
approach is developed for generating monotone missing data under a variety of miss-
ing datamechanism,which allows users to specify the expected proportion ofmissing
data at each longitudinal time point. Secondly, we consider a few simulation-based
approaches to implement some recently proposed sensitivity analysis methods such
as control-based imputation and tipping point analysis. Specifically, we apply a delta-
adjustment approach to account for the potential difference in the estimated treatment
effects between the mixed model (typically used as the primary model in clinical
trials) and the multiple imputation model used to facilitate the tipping point analysis.
We also present a Bayesian Markov chain Monte-Carlo method for control-based
imputation which provides a more appropriate variance estimate than conventional
multiple imputation. Computation programs for these methods are implemented and
available in SAS.

1 Introduction

Handling missing data in longitudinal clinical trials has gained considerable interest
in recent years among academic, industry, and regulatory statisticians alike.Although
substantial research has been devoted to statisticalmethods formissing data, no single
analytic approach has been accepted as universally optimal.A common recommenda-
tion is to simply conduct sensitivity analyses under different assumptions to assess
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the robustness of the analysis results from a clinical trial. For decades, the gold
standard for longitudinal clinical trials has been using mixed-models for repeated
measures (MMRM, see e.g., Mallinckrodt et al. 2008). However, the MMRM analy-
sis requires the assumption that all missing data are missing at random (MAR),
an assumption which cannot be verified, and might even be considered as unlikely
for some study designs and populations. The current expectation is that regulatory
agencies will require sensitivity analyses to be conducted to evaluate the robustness
of the analytic results to different missing data assumptions (European Medicines
Agency 2010; National Academy of Sciences 2010). Clinical trial statisticians are
thus well-advised to understand the ramifications that various missing data mech-
anisms (MDMs, see e.g., Little and Rubin 1987) have on their proposed analyses,
most notably on bias, type I error control, and power. To that end, Monte-Carlo
simulations are often used to conduct trial simulations under different MDMs for
evaluating statistical analysis models.

In this chapter, we present three simulation-based approaches related to missing
data issues in longitudinal clinical trials. First, a simulation-based approach is devel-
oped for generating monotone missing multivariate normal (MVN) data under a
variety ofMDMs (i.e., missing-completely-at-random [MCAR],MAR, andmissing-
not-at-random [MNAR]), which allows users to specify the expected proportion of
missing data at each longitudinal time point. Second, a simulation-based approach is
used to implement a recently proposed “tipping-point” sensitivity analysis method.
Specifically, a delta-adjustment is applied to account for the potential difference
in the estimated treatment effects between the mixed model (typically used as the
primary model in clinical trials) and the multiple imputation model used to facilitate
the tipping point analysis. Last, a Bayesian Markov chain Monte-Carlo (MCMC)
method for control-based imputation is considered that provides a more appropriate
variance estimate than conventional multiple imputation. Computation programs for
some of these methods are made available in SAS.

In practice, there are two types of missing data. The first type is intermittent
missing where the missing data of a subject is followed by at least one timepoint at
which data are observed. The second type is monotone missing, which is typically
caused by study attrition (i.e., early drop out of a subject). Common reasons for
intermittent missing data include missed subject-visits, data collection errors, or data
processing (e.g., laboratory) errors. Because these errors are unlikely to be related
to the value of the data itself (had that value been observed), an assumption that the
intermittent missing data are MAR, or even MCAR, is often appropriate. Therefore,
it may be considered reasonable to first impute the intermittent missing data under
MAR before performing the analysis (e.g., Chap. 4, O’Kelly and Ratitch 2014).
With this consideration, the discussion that follows focuses primarily on monotone
missing data. Although caution should be exercised because intermittent data might
be MNAR for some studies in which the disease condition is expected to fluctuate
over time.
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2 Generation of Study Data with a Specified MDM
and Cumulative Drop-Out Rates

Whether the clinical trial statistician wants to investigate novel approaches in the
analysis of missing data or simply wants to compute power for an upcoming study, it
is often useful to generateMVNdata (givenmeanμ and covariancematrix�) under a
specificMDM,with specified expected cumulative drop-out rates at each longitudinal
timepoint. This section presents amethod for generatingmonotonemissing data,with
a simple process outlining how to add intermittent (i.e., nonmonotone) missing data
provided at the end of this section.

It is of interest to generate longitudinal MVN data, given μ and �, with expected
cumulative drop-out rates (CDRs) over time under a given monotone MDM. For the
MCAR MDM, this step is easily accomplished by first generating a subject-specific
U(0,1) random-variate, and then comparing that variate to the target CDR at each
timepoint. Starting with the first postdose timepoint, if the random variate is smaller
than the target CDR, then that subject can be considered as having dropped out, with
the data at that timepoint and all subsequent timepoints set to missing.

The approach for the MAR and MNAR MDMs is more complicated because the
missingness for these MDMs depends on the data itself. Analytic or closed-form
solutions are not yet available for a general MDM specification. As opposed to the
unconditional approach used for the MCAR MDM, the subjects who have already
dropped out need to be accounted for. Specifically, the conditional probability needs
to be calculated for each individual who will drop out at Time t given that the subject
is still in the study at Time t–1. Defining CDRt, t = 1 to T, as the desired postdose
expected cumulative droprate at Time t, this conditional proabability is expressed
as (CDRt-CDRt−1)/(1-CDRt−1). For the purposes of this chapter, the baseline time
point is assumed to be nonmissing (i.e., CDR0 = 0).

Let Ytjk ∼ N(μk, �), with t = 0 to T, j = 1 to n, and k = 1 to K, for T total
timepoints, n total observations, and K total groups (e.g., treatment arms). As noted,
the baseline measurement, Y0jk, is assumed to be nonmissing. Let ptj represent the
estimated conditional probability of dropping out at postdose time t for subject j,
conditioned on subject j not having already dropped out. Finally, let � represent
one or more tuning parameters governing the effect of Y values on ptj, with the
designation of a positive (negative) value of � indicating that higher (lower) values
of Y are more likely to result in drop out.

Specifically, a logistic model, logit(ptj) = f(Yj, α, �) is considered, with the
tuning parameter(s)� pre-specified by users based on the desired MDM. The vector
α = (α1, . . ., αt) is then estimated based on Monte-Carlo simulations such that the
resulting missing data are sufficiently close to the specified CDRs (per the user-
defined tolerance parameter ε). Without loss of generality, consider the following
MDM,which follows a simpleMARprocess, wheremissingness at a given timepoint
is solely a function of the observation at the previous timepoint (conditioned on the
subject having not already dropped out). To simplify notation, the subject indicator
j for ptj and ytj is supressed in the following formulas:
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logit(pt) =
∑t

i=1
αi + ψ yt−1, t = 1, 2, . . .,T. (1)

The αi are solved in a stepwise manner, first solving for α1 using logit(p1) =
α1 + ψ y0, such that p1 is sufficiently close to CDR1.

Next, solve for α2 using logit(p2) = α̂1 + α2 + ψ y1, such that p2 is sufficiently
close to (CDR2 − CDR1)/(1 − CDR1), where α̂1was estimated from the previ-
ous step. Prior to iteratively solving for α2, it is required to identify and exclude
data from those subjects in the simulated dataset that have dropped out. This step
is accomplished by comparing a subject-specific (and timepoint-specific) U(0, 1)
variate with the subject-specific value of p1 (which is, in part, a function of the
recently solved α̂1). This process is continued through to time T.

Each αt is solved using a bisectional approach in conjunction with a large random
sample drawn from the specifiedMVNdistribution, with convergence for αt declared
when

|p̂t − (CDRt − CDRt−1)/(1 − CDRt−1)| < ε,

where ε is a user-defined convergence criterion and p̂t is a function of Y, �, and
α̂t . The detailed steps for calculating these α̂t are provided in the section that follows.

General Algorithm to Solve forα

A bisectional approach is used to solve for each αt sequentially as follows:

0. Generate a large dataset of observations (e.g., 100000), Y, comprised of Yk ∼
N(μk, �), with the proportion of observations following the distribution of Yk

equal to πk, as determined by the treatment ratio per the study design.

Do Steps 1–9 for t = 1, …, T:

1. Initialize αL = −10000, αC = 0, αU = 10000, DONE = 0, COUNTER = 0
2. If t ≥ 2, then simulate the missingness of observations at earlier timepoints by

using the previously computedα. Delete any subjects who are simulated as having
dropped out.

3. For each remaining observation in Y, compute an estimate of ̂f (αtj) (= f(Y, α,
�)), which is a function of the previously estimated α, αC, and some function of
the y and � (depending on the MDM model).

4. Compute p̂tj = (1+ exp(− ̂f (αtj))
−1 for each remaining observation in Y.

5. Compute p̂t as the mean of the p̂tj.
6. Compute DIFF = p̂t−(CDRt− CDRt−1)/(1 − CDRt−1), a measure of how accu-

rate this guess at αt(=αC) is.
7. (a) If |DIFF| < ε then DONE = 1 (We are satisfied with αC).

(b) else if DIFF > 0 then αU = αC and αC = (αL + αC) / 2 (i.e., search lower).
(c) else if DIFF < 0 then αL = αC and αC = (αU + αC) / 2 (i.e., search higher).

8. COUNTER = COUNTER+1; If COUNTER = 50 then DONE = 1. (the value
of COUNTER may be adjusted by users to avoid an endless loop due to noncon-
vergence, though COUNTER = 50 is likely sufficient.)

9. If Not DONE then Go to Step 3; if DONE, set α̂t = αC
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After the α vector has been estimated, the actual missing data of interest can be
simulated by randomly generating the complete MVN dataset (Y), followed by the
determination of missingness. Based on α, �, the MDM model, and the randomly
generated complete dataset Y, subject-specific cutpoints p̂tj are computed. These cut-
points represent the probability that Subject j will drop out of the study at timepoint
t (conditioned on not already having dropped out). For each timepoint, a uniform
variate is generated and compared to the appropriate cutpoint to determine whether
the subject drops out at that timepoint. The process starts at the first postdose time-
point, and proceeds sequentially up to last time point T. As noted above, this process
is actually required in the stepwise generation of the α values themselves (Step 2 in
the algorithm above).

We note that the proposed algorithm is set up to handle a mixed distribution, with
the CDRs at each timepoint defined over all treatments arms. Of course, the different
treatment arms will presumably still have different CDRs as a function of the μk. If
different defined CDRs are desired for each treatment arm (as opposed to defining
the CDRs over all treatment arms and letting the μk provide differentiation between
the treatment droprates), then the algorithm would need to be run once for each such
arm (or group of arms), yielding a different α vector for each.

In the absence of historical treatment-specific drop-out information, one could
take a two-step approach in specifying the CDRs. The first step involves running the
algorithm assuming a CDR (perhaps corresponding to placebo data from literature)
over all treatment arms and letting the assumed efficacy (i.e.,μk) drive the treatment-
specific drop-out rates. One could then use available safety information on the drug
(and placebo) to fine tune those treatment-specific CDRs, thus generating a separate
α vector for each treatment group.

The process described above can also be used to generate study data with MNAR
MDM. For example, the model logit(pt) = ∑t

i=1αi + ψ yt−1 can be replaced with
two options: (a) logit(pt) = ∑t

i=1αi + ψ yt, inwhich themissing probability depends
on themissing data; or (b) logit(pt) = ∑t

i=1αi + ψ1yt−1 + ψ2 yt, inwhich pt depends
on both observed yt−1and the missing data yt. In all these models, the tuning para-
meters ψ, ψ1, and ψ2 are prespecified by users.

One might also wish to add intermittent (i.e., nonmonotone) missing data. This
can be accomplished by generating a vector (one for each postdose timepoint) of
independent uniform variates for each subject and then comparing that vector to
cutpoints (timepoint-specific, as desired) corresponding to the missing probability at
each timepoint (e.g., 0.01). Presumably, this process would be applied in conjunction
with themonotone process, with themonotone processmeant to emulatemissingness
due to subject-drop out and the intermittent process meant to emulate an MCAR
process. In such a case, the process used to generate the intermittent missing data is
applied independently of the process used to generate monotone missing data, with a
given observation designated as missing if either process determines that observation
is missing. The overall probability of missing would clearly be higher than the level
specified for either process on its own, thus requiring some downward adjustment of
the defined drop-out probabilities of one or both processes.
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Example: Power and Bias Evaluation for a Longitudinal Study
with Missing Data

For sample size and power calculations, analytic approaches are available when
missing data are MAR (e.g., Lu et al. 2008, 2009). In general, power loss stemming
from missing data in a longitudinal trial depends on the proportion and timing of
the missing data; that is, the cumulative drop-out rates (CDRs), as a function of the
different effective information yielded from the observations over time. For example,
one would expect that a study with drop outs occurring gradually over time would
have less power than a study in which all of the drop outs occurred between the
second-to-last and the last (presumably primary) timepoint.

Despite the available analytic approaches, power calculations for longitudinal
clinical trials are often conducted via simulations, given the extreme flexibility that
simulations afford. The use of simulations is especially common in trials with com-
plicating factors such as (a) interim analyses for futility or for overwhelming efficacy,
(b) multiplicity approaches covering multiple timepoints/endpoints, or (c) adapta-
tions built into the designs (e.g., dropping an arm or adjusting the randomization
ratio as a function of the accruing data). Of course, power calculations can also be
simulated for relatively straightforward clinical trial designs.

The following simulation study investigates the effect that different methods of
generating randomMVNdata, primarilywith respect toMDMs, have on both the bias
of the parameter estimates and the corresponding power calculations. The assumed
parameters are based on data obtained from an actual clinical trial. The results from
10,000 simulation runs are summarized in Table1.

The simulations used the following assumptions (four postdose timepoints):
α = 0.050;
N/per arm = 120.
μPbo = (0.00, 0.46, 0.92, 1.37, 1.83);μAct = (0.00, 0.23, 0.46, 0.69, 0.92);

(Higher means represent lower efficacy).
A functional form was used for the variance-covariance matrix, with σi = ci * σ0,

with σ0 = 0.860, and c = 1.288; i = 1, . . ., 4; and ρij = r*b|j−i|−1, with r = 0.748
and b = 0.832; i, j = 0, . . ., 4.

Notably σ 2
0 = 0.740, σ 2

4 = 5.616, and ρ0,4 = 0.431, with Var(Y4 − Y0) = 4.6.
CDR = (0.086, 0.165, 0.236, 0.300), with a 30% CDR at Timepoint 4 (T4).
The following missing data patterns (MDPs) were considered (with � = �1 =

�2 = 0.5).

• MDP0: No missing data.
• MDP1: MCAR
• MDP2:Data areMCARbut only the baseline and last timepoint values are included
in the analysis (Completers Analysis).

• MDP3: MAR with logit(pt) = ∑t
i=1αi + ψ yt−1

• MDP4: MNAR with logit(pt) = ∑t
i=1αi + ψ yt

• MDP5: Mixture of MAR and MNAR with logit(pt) = ∑t
i=1αi + ψ1yt−1 + ψ2 yt
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Although the simulations were conducted by defining a 30% drop-out rate over
the two treatment arms, readers should note that the two treatment arms still have
different drop-out rates for the MAR and MNAR MDMs. This difference is a result
of higher efficacy over time in the drug test group as compared with the placebo
group. In the data simulations, we use � = �1 = �2 = 0.5 such that a higher value
(worse) of observed (in MDP3) or unobserved (in MDP4 and MDP5) response will
result in a high probability of drop out. This simulates common drop out in clinical
trials due to lack of efficacy.

In going from MDP2 to MDP1, a modest gain in power is observed as a result of
using the partial data from subjects that dropped out prior toT4. This gain underscores
the importance of using the full longitudinal dataset when calculating power, as
opposed to considering only the final timepoint.

Focusing on the completers only, clear bias can be observed for the MAR and
MNAR scenarios (MDP3 to MDP5); this fact is important to note when powering
a study based on simple summary statistics from completers, as is often done when
using results from the literature. As expected, the MMRM is unbiased for all of the
MCARscenarios (MDP0 to MDP2), as well as for the MAR scenario (MDP3), since
MMRMs assume that all missing data is MAR. Conversely, bias is present in the
MMRM analysis for both of the MNAR scenarios (MDP4 and MDP5). Since this
bias is to the detriment of the drug under study (i.e., leads to a diluted estimate of
the treatment effect), these scenarios result in roughly 2% lower power. Compared
with the results from completers, the MMRM analysis had relatively smaller bias.

3 Tipping Point Analysis to Assess the Robustness
of MMRM Analyses

As mentioned in Sect. 1, the MMRM, which is often used as the primary analysis
model, assumes that all missing data are MAR—an assumption that cannot be veri-
fied. Both the clinical trial sponsor and government regulatory agencies are interested
in assessing the robustness of any conclusions coming from an MMRM analyses
against deviations from the MAR assumption. Given this interest, many methods
for sensitivity analysis have been proposed and developed (see e.g., NRC, 2010
and references therein). Some of the more notable proposed methods include selec-
tion models, pattern-mixture models, and controlled-imputation models (see, e.g.,
Carpenter et al. 2013; Mallinckrodt et al. 2013; O’Kelly and Ratitch 2014). Another
method, which has recently gained attention is the so-called tipping point approach.
At a high level, a tipping point analysis varies the imputed values for the missing
data (usually for the treatment arms only) by the exact amount needed to make a
significant result turn nonsignificant.

Ratitch et al. (2013) have proposed three variations of tipping point analyses using
pattern imputation with a delta adjustment. Our discussion considers the variation in
which standard multiple imputation is performed first, and then a delta-adjustment
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(δ) is applied simultaneously to all imputed values in the treatment group. The goal
is to find the smallest δ that will turn the significant p-value (as calculated from the
primary MMRM model) to a nonsignificant value. In addition to being relatively
straightforward to interpret, this approach has the attractive quality of returning a
quantitative result that is directly comparable on the scale of interest, which can then
be put into clinical context. The following steps provide details for a bisectional
procedure to solve for this tipping point δ.

General Algorithm to Solve for Tipping Point δ

Note the definitions of the following algorithm variables:

• m: the number of imputations to be used in the multiple imputation procedure
(a value should be prespecified in the study protocol).

• d: the difference between the maximum and minimum values for the vari-
able/endpoint under investigation (i.e., the maximum allowable shift)

• df: degrees of freedom
• ptarget: Target probability (e.g., type-I error)
• ttarget: t-value corresponding to ptarget . If lower values ofY represent higher levels of
efficacy, then this value must be negated in the search algorithm because the target
t-value needs to be negative. (Note that the corresponding degrees of freedom (df)
are actually a function of the data, as defined in Step 5 below).

• ε: A tolerance level, on the t-scale, under which convergence can be declared (e.g.
0.001).

• pprim: p-value from the primary model

Given a dataset with intermittent missing data, the basic algorithm to conduct the
tipping-point analysis is outlined below; instructions for procedures conducted in
SAS refer to SAS version 9.3 or later.

0. Initialize δL = −d, δC = 0, δU = d, DONE = 0, COUNTER = 0.
1. Using a Markov Chain Monte-Carlo method (see e.g., Schafer 1997), make

the observed dataset monotone-missing. This step can be accomplished for
each treatment group using proc mi within SAS by using the option mcmc
chain=multiple impute=monotone in conjunction with all covariates
(excluding treatment) included in the primary analysis model. This step will gen-
erate m monotone-missing datasets. Note that the study protocol should specify
the random seed used in this step.

2. Applying parametric regression to the m monotone-missing datasets, impute the
missing values in a stepwise fashion starting with the first postdose timepoint.
This step can be accomplished for each treatment group using proc mi in SAS
using the monotone reg option in conjunction with all covariates (exclud-
ing treatment) included in the primary analysis model. This step will generate
m complete datasets (one imputed dataset for each of the m monotone-missing
datasets).
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Do Steps 3–9 while Not DONE

3. Subtract δC from each of the imputed values of the test drug treatment arms (to
the detriment of test drug).

4. Analyze eachof thempost-imputation complete datasets using the primarymodel,
obtaining point estimates for the parameter of interest (e.g., mean change-from-
baseline treatment difference at the last timepoint) and the associated variance.

5. Using the proc mianalyze procedure in SAS, combine the m means and
variances from the m analyses to obtain the final test statistic and p-value, tδc and
pδc , respectively (Rubin 1987). The final test statistic Q̂ / (V(1/2)) is approximately
distributed as tν , where Q̂. is the sample mean of the m point estimates, V = Û+
(m + 1) (B/m), Û is the sample mean of the m variance estimates, and B is
the sample variance of the m point estimates. The degrees of freedom, ν, are
computed as follows (Barnard and Rubin 1999): ν = [(ν1)−1 + (ν2)−1]−1, where
ν1 = (m −1) [1 + (Û/(1 + m−1) B)]2 and ν2 = (1 − γ ) ν0(ν0 +1) / (ν0 + 3),
with γ = (1 + m−1) B/V and where ν0 represents the complete-data degrees of
freedom.

6. Compute DIFF= tδc–ttarget.
7. (a) if |DIFF| < ε then DONE = 1 (We are satisfied with δC)

(b) else if (DIFF > 0) then δL = δC; δC = (δC + δU)/2; (subtract larger δ)

(c) else if (DIFF < 0) then δU = δC; δC = (δC + δL)/2; (subtract smaller δ)

8. If Not DONE, then COUNTER =COUNTER+1;
9. If COUNTER = 50, then DONE = 1; (guard against endless loop due to non-

convergence)

The final δ can be interpreted as the detrimental offset needed to apply to each
imputed observation to change a significant result to a nonsignificant result. Confi-
dence in the primary results stem from a large value of δ, relative to (a) the assumed
treatment difference, (b) the observed treatment difference per the primary model,
and/or (c) a widely accepted clinically meaningful difference. For example, in a
trial of an anti-depressant drug in which a clinically meaningful difference might be
around 2–3 points, a trial result could be considered as robust if we were to subtract
δ ≥ 3 points from every imputed value in the treatment arm and still maintain a
statistically significant result.

Conventionally, MMRM analysis is based on restricted maximum likelihood
while the tipping point methodology is implemented using multiple imputation (MI)
analysis. Ideally, applying δ = 0 to the MI analysis would yield the p-value from the
MMRM analysis (pprim). More important, setting ptarget = pprim would ideally yield
a solution of δ = 0. If the δ obtained does not equal 0, then the value of δ obtained
when setting ptarget = αwill be biased, per the intended interpretation. Unfortunately,
simulation results indicate that the abovemethodwill not always yield a δ value equal
to 0 when setting ptarget = pprim. This inconsistency might be due to additional vari-
ation in the analysis of multiple imputation as compared to the restricted maximum
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likelihood analysis. To overcome this discrepancy, we advise running the above
algorithm twice and in the following order: first, with the setting ptarget = pprim, and
then with the setting ptarget = α, yielding δprim and δα. The final δ is then computed as
δ = δα − δprim. The value δprim can be thought of as a calibration factor in going from
theMMRM to theMImodel, accounting for the methodological differences between
the two, as well as for the inherent randomness in the MI process. Simulation results
indicate that t-values and p-values arising from the MMRM and MI models (δ = 0)
are highly similar, providing reassurance that the δ (i.e., δα − δprim) obtained using
the MI model translates well to the MMRM model.

As might be expected, higher values of m will yield results with greater stabil-
ity. This stability applies not only to the estimates produced by the MI approach,
but also to the adjusted degrees of freedom (df). The adjustment for the df was first
proposed by Barnard and Rubin (1999), and has subsequently gained widespread
use (e.g., adopted in SAS). The major impetus for the adjustment, as compared
to the initial proposal for a df adjustment as cited in Rubin (1987), was to guard
against the possibility that the df used for the MI approach would exceed the df
present in the original MMRM for the complete data. However, this df adjustment
might be very conservative in certain situations, particularly for smaller sample sizes
when low numbers of imputations are used. This characteristic of the df adjustment
might have the effect of producing abnormally large δ values since the respective
t-values from the original MMRM and from theMI approach will be based on differ-
ent t-distributions. A simple fix is to ensure that a sufficient number of imputations
are used in the MI.

The following simulation study investigates (a) the variation of the df for the MI
approach at δ = 0 for different values of m, (b) the differences between the MMRM
and theMI approach (at δ = 0) for the t-values and p-values, (c) the variation of δprim
for different values ofm, and (d) the variation of δ = δα − δprim for various treatment
effect sizes and CDRs.

Unless otherwise noted, the assumptions used in the simulation study for Sect. 2
were also used for all simulations in Sect. 3. For ease of interpretability, a simple
MAR mechanism (MDP3 from Sect. 2) was assumed for the missing data.

Assessing the variation of thedf atδ = 0

Moderate-to-large differences in df between the original MMRM and the MI model
could cause convergence issues or unreliable results when attempting to solve for the
tipping point δ. Table2 shows the summary of dfs from the MMRM and MI model
using 1,000 simulations. For the case of MDP3, the trial had about 80% power with
about 30% missing data at Time 4. The tipping point analysis was performed for
about 800 simulated cases for which the MMRM results were significant. The dfs
from the MMRM analyses varied between 150 and 204. However, the dfs for MI
varied from 7 to 232 for m = 5, and from 47 to 199 for m = 20. Since the adjusted
df are a direct function of the data itself, it is challenging to provide absolute general
guidance as to how many imputations, m, are enough. For the scenario considered
in this section, it appears as though m = 100 is sufficient to have relatively small
variation for the df under consideration.
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Table 2 Summary of Variation for the df under MI approach (at δ = 0) by m (based on 1,000
simulations)

# Sig df

MMRM MI

m Mean p00, p25, p50, p75, p100 Mean p00, p25, p50, p75, p100

5 800 179 150, 174, 179, 184, 201 63 7, 27, 46, 84, 232

20 800 179 154, 173, 179, 184, 204 113 47, 95, 111, 129, 199

50 811 179 153, 174, 179, 184, 197 144 91, 133, 144, 155, 195

100 825 179 151, 173, 179, 185, 203 158 122, 150, 158, 166, 194

250 777 179 154, 174, 179, 184, 201 168 137, 162, 168, 174, 192

NoteMMRM = mixed-methods for repeated measures. MI = multiple imputation

Table 3 Summary of differences between the MMRM and the MI approach (at δ = 0) for the
t-values and p-values by m (based on 1,000 simulations)

m #
sig

t-value difference (MI-MMRM) p-value difference (MI-MMRM)

Mean p00, p25, p50, p75, p100 Mean p00, p25, p50, p75, p100

5 800 −0.05 −1.13, −0.30, −0.06, 0.19, 1.23 0.005 −0.034, 0.000, 0.000, 0.004, 0.114

20 800 −0.03 −0.59, −0.14, −0.03, 0.08, 0.58 0.000 −0.018, 0.000, 0.000, 0.000, 0.037

50 811 −0.01 −0.53, −0.07, −0.01, 0.06, 0.37 0.000 −0.015, 0.000, 0.000, 0.000, 0.027

100 825 0.01 −0.26, −0.04, 0.01, 0.06, 0.30 0.000 −0.010, 0.000, 0.000, 0.000, 0.017

250 777 0.01 −0.19, −0.02, 0.01, 0.04, 0.17 0.000 −0.011, 0.000, 0.000, 0.000, 0.000

NoteMI = multiple imputation. MMRM = mixed-methods for repeated measures

Assessing the variation of δprim

As discussed above, an adjustment (δprim) is needed to account for the differences
between the primary MMRM and the MI analysis used in the tipping point proce-
dure. The following simulation study examines the variation of δprim as well as the
differences of the t-values and p-values between the primary MMRM and the MI
approach with δ = 0 for various values of m. The tolerance level for convergence of
the t-values was set at ε = 0.005.

The simulation results in Table3 indicate that the differences of both the t-values
and the p-values between the MMRM and the MI model at δ = 0 are typically small,
particularly form ≥ 100. This finding provides general confidence that theMImodel
adequately approximates the MMRM.

Due to the extensive computation required to estimate δprim, only 100 simula-
tions were conducted to investigate the variation of δprim as a function of m. Table4
indicates that the variation of δprim generally decreases as m increases, with the
pencentiles generally shrinking to values closer to 0 as m increases. However, this
trend cannot be expected to continue as m → ∞, because some differences due to
methodology will persist. For the examined scenario, no clear improvement was seen
moving from m = 100 to m = 250.
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Table 4 Summary of δprim by m (based on 100 simulations)

m # sig δprim

Mean p00, p25, p50, p75, p100

5 81 0.48 −0.93, −0.26, 0.30, 0.95, 3.67

20 79 0.20 −0.34, −0.08, 0.19, 0.46, 1.02

50 79 0.17 −0.30, −0.09, 0.21, 0.40, 0.79

100 81 0.14 −0.16, −0.05, 0.16, 0.32, 0.56

250 85 0.18 −0.16, −0.04, 0.21, 0.37, 0.79

Assessing the Variation of the Final Tipping Point δ = δα − δprim

The effect of various treatment differences and CDRs on the distribution of δ was
examined using the same simulation assumptions as before, but fixingm = 100. Note
that μPbo = (0.00, 0.46, 0.92, 1.37, 1.83) is held constant, while μAct is set equal to
(1 − θ)μPbo, θ = 0.35 and 0.50, with larger values of θ resulting in larger efficacy
(since higher values of μ represent lower efficacy). Cumulative drop-out rates of
(0.054, 0.106, 0.154, 0.200) and (0.086, 0.165, 0.236, 0.300) were considered.

As shown in Table4, the offset δprim needed to align the results between the
MMRM and the MI model is non-ignorable across the scenarios. Focusing on the
scenario with a 30% CDR at T4 and θ = 0.50, we note that the mean value of δprim
needed to calibrate the two models was estimated as 0.14, with observed values
ranging from −0.16 to 0.56. As a frame of reference, the true treatment difference
at T4 is (1 − θ)μPbo − μPbo = −0.5(1.83) = −0.92.

Staying with the same scenario, the mean value of δ is equal to −1.34. That is, on
average, all of themissing values in the treatment armwould need to be detrimentally
adjusted 1.34 points in order to make the significant p-value obtained become
non-significant (i.e., equal to 0.05). Assuming these results were obtained for a
single study, and in the context of an observed (or assumed) treatment difference of
−0.92, such a δ can be considered as evidence of a fairly robust treatment effect.

Conclusions across scenarios are best drawn by focusing on the estimated mean
and quartiles (as opposed to the more variable quantities of the simulated minimum
and maximum values). As expected, Table5 demonstrates that larger detrimental
values have to be applied to the imputed data from the treatment arms as (a) the
drop-out rate goes down and (b) the true treatment effect goes up.

Without going into great detail, one technical point bearsmentioning.When apply-
ing δ to the imputed values, it seems reasonable to not allow adjusted values past
the minimum or maximum allowable value of the endpoint. However, this restriction
might need to be relaxed when applying the convergence algorithm.
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4 Monte-Carlo Approaches for Control-Based Imputation
Analysis

Control-based imputation (CBI) has recently been proposed as an approach for
sensitivity analysis (Carpenter et al. 2013), in which different imputation methods
are used for the treatment and control groups. The missing data in the control group
are imputed under the assumption of MAR, while the missing data in the treatment
group are imputed using the imputation model built from the control group. One of
the primary assumptions in this CBI approach is that the true post-discontinuation
efficacy response in the test drug group is similar to the efficacy response of those
subjects continuing in the trial in the control group. This control-based imputation
model might be reasonable when no rescue or other active medications are taken
by patients who drop out (Mallinckrodt et al. 2013). In general, this CBI can pro-
vide a conservative estimate of the treatment effect in superiority trials. Recently,
these methods have become more attractive because the assumptions are transparent
and understandable for clinical trial scientists. The methods address an attributable
treatment effect (estimand) under the intent-to-treat principle but exclude the poten-
tial confounding effect of rescue medications (Mallinckrodt et al. 2013). Thus, the
estimand captures the causal-effect outcomes for the test therapy.

The three most commonly used CBI methods (Carpenter et al. 2013) are defined
by specifying the mean profile after drop out in the treatment group using the profile
in the control group as follows:

I. Copy Increments in Reference (CIR): The increment mean change from the
time of drop out for a patient in the treatment group will be the same as the
increment mean change for a patient in the control group. Namely, the mean
profile after drop out for the treatment group will be parallel to the mean profile
of the control group.

II. Jump to Reference (J2R): The mean profile after drop out for the test drug
group will equal the mean profile of the control group. That is, the mean profile
for the test drug group has a ‘jump’ from the mean of test drug before drop out
to the mean of control after drop out.

III. Copy Reference (CR): the mean profile for a drop-out patient in test drug group
will equal the mean profile for the control group for all time points, including
the time points before drop out.

These CBI approaches can be implemented using multiple imputation. Several
SASmacros to implement this methodology have been developed by the Drug Infor-
mation Association (DIA) Missing Data Working Group (macros are available at
www.missingdata.org.uk).

Consider a response vector for patient i, Y i = {Yij, j = 1, . . . , t}, and assume

Y i|Xi ∼ N
(
μi,Σ

)
.

www.missingdata.org.uk
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Let μij represent the mean for patient i at timej, with the MMRM specified as

μij = αj + βjDi + γ ′
jXi., (2)

where βj is the mean treatment difference from control at time j after adjusting for
the covariates Xi, Di is an indicator for treatment (1 for treatment and 0 for control),
and γ i is a vector of coefficients for the covariates. The following steps can be used
to implement the CBI analysis,

1. Fit the MMRM thus yielding the estimates α̂j, β̂j, γ̂ j and �̂;
2. Assume non-informative priors for the parameters, and draw a sample for these

parameters from their posterior distribution, denoted by αj, βj, γ j and Σ . Note
that the DIA Missing Data Working Group macros used SAS PROC MCMC to fit
the MMRM model and draw these parameters.

3. For a patient who dropped out at time j, draw a sample from the conditional
distribution to impute the missing vector, i.e.,

4.

ymis|yobs,X,μ, � ∼ N(μm + �mo�
−1
oo (yobs − μo) ,�mm − �mo�

−1
oo �om)

(3)
where

μ =
(

μo

μm

)

, � =
(

�oo �om

�mo �mm

)

are split into sub-vectors and block matrices with dimensions corresponding to
the observed (indicated with ‘o’) and missing data (indicated with m) portions
of the response vector. The patient and time indicators i and j are omitted in the
formulas for simplicity. To implement the CBI, if a patient is in placebo group,
the μo and μm for the placebo group will be used. Otherwise, the means will be
modified as specified per the chosen CBI approach. Specifically, a patient in the
treatment group who dropped out after time j will have

a.

μd
m =

⎧
⎪⎨

⎪⎩

μ
p
m + μd

j − μ
p
j for CIR

μ
p
m for JR

μ
p
m + �mo�

−1
oo (μd

o − μ
p
o) for CR

(4)

b. where the superscripts d and p are used to indicate the mean vector for drug
or placebo.

5. Repeat Steps 2 and 3 for the number of imputed datasets;
6. Analyze each imputed dataset using the primary model (e.g., ANCOVAmodel at

last visit) to get estimated treatment difference and its standard error;
7. Combine the results using Rubin’s rule for final statistical inference (Rubin 1987).
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Simulation studies show the estimated variances for the treatment differences
using the regular MI techniques are always larger than the corresponding empiri-
cal variances. This phenomenon has been noticed for the copy-reference imputation
method by Lu (2014) and Ayele et al. (2014). Lu (2014) proposed an analytical
approach to get the correct variance estimate using the delta method. However, that
approach is available only for copy-reference imputation and requires special pro-
gramming for each specific analysis model.

Liu and Pang (2015) proposed methods to get more appropriate variances for the
CBI estimates. One of their approaches is a Bayesian MCMC-based method that
accounts for the pattern of missing data and obtains the estimates for the treatment
difference and its variance from empirical MCMC samples. Based on the mean
profile specified in equation (3), the overall treatment difference at the last time point
under CBI can be written as a weighted average over the missing data patterns, that
is

θCBI =
∑t

j=1
πjμ

d
tj − μ

p
t

where μd
tj is the mean at last time point t under missing data pattern j as given in (3)

and the {πj, j = 1, ..., t} are the proportions of patients in the missing data patterns
for the drug group. As

∑t
j=1πj = 1, we have

θCBI =
⎧
⎨

⎩

∑t
j=1πj(μ

d
j − μ

p
j ) for CIR

πt(μ
d
t − μ

p
t ) for J2R∑t

j=1πj(μ
d
tj − μ

p
t ) for CR

(5)

whereμd
j andμ

p
j are themeans at time j for drug and placebo, respectively. Therefore,

the treatment effect under CBI can be expressed as a linear combination of the
parameters of MMRM and the proportions of patients in each pattern of missing
data. We note this approach is a special pattern-mixture model (PMM) where the
missing data are handled differently by the pattern of missing data only for the
treatment group. The missing data in the placebo group are all sampled assuming a
MAR process.

To account for the uncertainty of the proportions ofmissing data {πj, j = 1, ..., t},
random proportions are also drawn from a Dirichlet distribution in the Bayesian
MCMC process, which corresponds to a posterior distribution for the proportions
with a Jefferys prior. The empirical distribution and statistical inference for θCBI are
obtained from theMCMCsamples. Specifically, the following steps are implemented
in the process:

1. Specify flat priors for αj, βj, γ j and �, for example, use N(0, σ, 2 = 10000)
for αj, βj, and each of the element of γ j, and an inverse Wishart distribution IW
(t + 1, I), where I is an identity matrix of dimension t.We used SAS PROC MCMC
to fit the MMRM model, specifically:
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a. Use conjugate sampling to draw a sample for �;
b. Use random walk Metropolis to draw samples for αj, βj, γ j;
c. For a patient who dropped out at time j, PROC MCMC will draw a sample

for the missing vector ymis from conditional distribution as specified in (2)
with the parameters from above;

d. Draw {πj, j = 1, . . . , t} from the Dirichlet (m1 + 0.5, . . . ,mt + 0.5),
where mj is the number of drop-out patients at time j+1 in treatment group,
and mt is the number of completers;

e. Evaluate θCBI with the formula (4).

2. The above process will be run with a burn-in, then repeat Steps a through e to
obtain an empirical posterior distribution for θCBI .

Note that this Bayesian MCMC process is a simulation based approach. It is
important to check the convergenceof theMCMCsamples.Usually, the trace-plot can
be examined visually, or some statistical measures can be checked such as Geweke
or Raftery-Lewis that are provided by SAS PROC MCMC procedure.

We apply the regularMI analysis andBayesianMCMCapproach to an antidepres-
sant drug trial dataset created by theDIAMissingDataWorkingGroup (Mallinckrodt
et al. 2013). The dataset was constructed from an actual clinical trial and made avail-
able by theWorking Group (see www.missingdata.org.uk). The dataset contains 172
patients (84 in the treatment arm, 88 in the placebo control arm). Repeated measures
for Hamilton Depression 17-item total scores were taken at baseline and Weeks 1, 2,
4, and 6, post-randomization. The Week 6 measurements were completed by about
76% of the treatment group patients and about 74% of the the control group patients.
The analysis dataset included one patient record with intermittent missing data; in all
analysis methods, the missing data for this patient were imputed under the assump-
tion of MAR. The monotone missing data were imputed under CBI methods of CIR,
CR, or J2R.

In the analysis of this dataset, we noticed that the MCMC sampling had high
autocorrelation. To increase the stability of the results, we used 200 imputations in
the conventional MI analysis, and used 2,000 iterations for turning, 2,000 iterations
for burn-in, and 200,000 in the main sampling, keeping one from every 10 samples
(with option THIN=10 in PROC MCMC) to get a total of 20,000 samples for the
posterior mean and standard deviation. Table6 shows the analysis results. Compared
with the mixed model analysis, the Bayesian MCMC under MAR produced very
similar results. As compared to the results from the mixed model, the CBI analyses
based on regular MI are conservative. With CBI, the point estimates are shrunk
toward 0 but the standard errors (SEs) are very similar to the SEs from the MAR
analysis. As such, the CBI analyses with regular MI have large p−values compared
to the primary analysis under MAR. In fact, the result of the J2R analysis becomes
insignificant. With the Bayesian MCMC approach, the CBI analysis results have
similar point estimates as the CBI analysis with regular MI but have smaller SEs. As
a result, the p-values from CIR, CR, and J2R all maintained significance.

www.missingdata.org.uk
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Table 6 Primary and sensitivity analysis results for an anti-depressant trial

Method θ̂ (SE) 95 % CI p-value (%)

Primary analysis under MAR

Mixed Model −2.80(1.12) [−5.01,−0.60] 1.3

Bayesian MCMC −2.80(1.13) [−5.03,−0.57] 1.4

CBI using regular MI

CIR −2.46(1.10) [−4.65,−0.28] 2.7

CR −2.38(1.11) [−4.57,−0.20] 3.3

J2R −2.12(1.13) [−4.36, 0.12] 6.3

CBI using MCMC approach

CIR w MCMC −2.43(1.01) [−4.39,−0.44] 1.7

CR w MCMC −2.34(0.99) [−4.25,−0.53] 1.9

J2R w MCMC −2.10(0.86) [−3.77,−0.42] 1.5

Note CI = confidence intervals for mixed model and regular multiple imputation (MI), credible
interval for Bayesian MCMC (Markov chain Monte-Carlo method) approach. MAR = missing
at random. CBI = control-based imputation. CIR = copy increments in reference. CR = copy
reference. J2R = jump to reference

To check the convergence of the MCMC sampling, Fig. 1 shows the diagnostics
plots for both the Bayesian MCMC samples for the primary analysis under MAR
and the CR analysis. The trace-plots for both parameters show good mixing and
stabilization. With the option of THIN=10, the autocorrelation decreases quickly.
The posterior density curves are estimated well from the 20,000 samples.

5 Discussions and Remarks

In many clinical trials, missing data might be unavoidable. We have illustrated some
applications of Monte-Carlo simulation methods for handling of missing data issues
for longitudinal clinical trials. Simulation-based approaches to dealing with missing
data can be extremely useful in the conduct of clinical trials; most notably in the
design stage to calculate needed sample size and power, as well as in the final analy-
sis stage to conduct sensitivity analyses. We described a method to generate MVN
longitudinal data under different assumed MDMs with specified CDRs. As a sen-
sitivity analysis, we applied a δ -adjustment approach to account for the potential
difference between the MMRM (typically used as the primary model in clinical
trials) and the MI model used to facilitate the tipping point analysis, and to propose
an adjustment to the final tipping point calculation. Depending on the number of
imputations used, the inferential statistics produced by the MMRM and MI mod-
els can differ, due in part to differences in the approximated degrees of freedom.
A sufficient number of imputations should be used to reduce this variation. The
appropriate number of imputations to be used should be confirmed via simulation
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Fig. 1 Diagnostics plots for Bayesian MCMC under MAR and for Copy Reference Imputation
Method
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by the statistician during the analysis planning stage. We also presented a Bayesian
MCMC method for CBI that provides a more appropriate variance estimate than
regular multiple imputation.

The methods presented are only a few applications of simulation methods for
missing data issues. Of course, many other simulation-based methods are available
that can be used for missing data. For example, we considered only a logistic model
for the MDM, noting that other models such as a probit model can also be used. In
addition, the missing probabilities defined by the example MDMs depended only
on the current time point and/or the next time point. Other MDMs may be defined
allowing for the incorporation of additional time points. In the CBI approaches, we
considered a Bayesian MCMC approach, although other avenues might also be used
such as bootstrapping to obtain the appropriate variance for CBI methods. Although
we considered only continuous endpoints, simulation-based methods can also be
very useful in dealing with missing data for other types of endpoints such as binary,
categorical, or time-to-event data.

One drawback for simulation-based methods is the random variation from the
simulations. It is critical to assess the potential variation and/or monitor the con-
vergence. When using simulation-based method for analysis of clinical trials, the
analysis plan should pre-specify all the algorithms, software packages, and random
seeds for the computation. Naturally, the analysis should use a sufficient number
of imputations or replications in order to reduce the random variation. Of course,
simulations examine only the statistical properties under the assumptions used in
those simulations. Whenever possible, theoretical or analytic methods should be
considered over simulations.
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Application of Markov Chain Monte-Carlo
Multiple Imputation Method to Deal with
Missing Data from the Mechanism of MNAR
in Sensitivity Analysis for a Longitudinal
Clinical Trial

Wei Sun

Abstract Missing data in clinical trials could potentially arise from the mechanism
of Missing Not At Random (MNAR). In order to understand the impact on a lon-
gitudinal clinical trial findings from missing data under the MNAR assumption, the
sensitivity analyses could be carried out by multiple imputations. By progressively
decreasing the treatment differences in those treated subjectswho fell into an assumed
MNAR pattern, the departure from Missing At Random (MAR) assumption could
be investigated. This chapter aims to apply Markov Chain Monte-Carlo (MCMC)
Multiple Imputation method to investigate that, under an MNAR assumption, that
the missing data pattern of subjects who receive clinical trial treatment are similar
to, worse than, or better than those of subjects who receive placebo with similar
observed outcomes for two scenarios of early discontinuation: (1) discontinuation
due to lack of efficacy and non-disease progression related Adverse Events (AEs);
(2) discontinuation due to any reason. We also demonstrate how to apply MCMC
multiple imputation method without assuming the data to have normal distribution.

Keywords Missing data ·Multiple imputation ·Markov ChainMonte-Carlo · Lon-
gitudinal clinical trial · Missing not at random · Early discontinuation · Sensitivity
analysis · ANCOVA · Wilcoxon rank-sum test

1 Introduction

The reasons of missing data in randomized clinical trials include early discontin-
uations to the investigated medication (dropouts), skipped visits, and etc. A report
from the National Research Council (2010) provides an excellent overview of the
strengths and weaknesses of different methods to deal with missing data in a clinical
trial (National Research Council 2010).
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From a typical longitudinal clinical trial, a variable of interest is measured at base-
line and fixed post-baseline time points from each randomized subject. To understand
the impact on the findings in the trial frommissing data under theMNARassumption,
we can analyze the incomplete longitudinal data as sensitivity analysis through mul-
tiple imputation (MI) (Rubin 1987). With this approach, multiple completed datasets
are generated by imputing the missing values using an imputation model, and every
completed dataset with imputed data is analyzed using the method that would have
been used for a dataset without missing data. Then, parameter estimates and cor-
responding standard errors generated from each imputed dataset are combined in
a final step to get the overall inference, which is accounted for uncertainty in the
distribution of the imputed data.

There are several options for choosing the appropriate model to impute missing
values. Markov Chain Monte-Carlo (MCMC) is a method to create pseudo-random
samples from multidimensional and intractable probability distributions. Markov
Chain Monte-Carlo of multiple imputation (MCMC MI) approach can be particu-
larly useful for longitudinal data with missing values if the unknown missing data
mechanism is missing not at random (MNAR), that is, when the missing depends on
specific conditions related to the data observation or measurement. In the context of
sensitivity analyses to evaluate how uncertainty in model inputs affects the model
outputs, it has been acknowledged that models to deal with MNAR may be useful
(Rubin 1987; Galbraith 2012; Verbeke and Molenberghs 2000).

This chapter aims to demonstrate the steps of applying MCMCMI to investigate
that, under an MNAR assumption, that the missing data pattern of subjects who
receive active treatment are similar to, worse than, or better than those of subjects
who receive placebo with similar observed outcomes for two scenarios of early dis-
continuation: (1) discontinuation due to lack of efficacy and non-disease progression
related Adverse Events (AEs); (2) discontinuation due to any reason, with the data
from a simulated hypothetical longitudinal clinical trial.

Some continuous responses do not appear to follow a normal distribution. Near-
normality can sometimes be obtained via a suitable data transformation (often loga-
rithm), but that is not always possible, for example, the percent change from baseline
of pain in a clinical trial for a medication to control pain. We probably observe neg-
ative percent changes. Importantly, regardless of whether the response of interest is
intended to be analyzed on the original or a transformed scale, we often have out-
liers at the overall subject or single observation level in the analysis datasets from a
longitudinal clinical trial. Therefore, later, after the section for the data of primary
efficacy endpoint with normal distribution, we extend the demonstration, and also
show how to apply MCMC multiple imputation method without assuming the data
to have normal distribution.

The whole chapter is organized as follows. First, the approach suggested for deal-
ing with the missing data withMultiple Imputation method is introduced. The details
of imputation schemes employed to apply MCMC Multiple Imputation method to
investigate the impact of missing data, under an MNAR assumption, are described
in this section as well. Then, the design of a hypothetical longitudinal clinical trial
is described. The results of two scenarios of early discontinuation are presented in
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this section as well. We also demonstrate how to apply MCMC multiple imputa-
tion method without assuming the data to have normal distribution in this section.
Discussion for the research is provided in the last section.

2 Multiple Imputation to Deal with Missing Data

In a longitudinal clinical trial, let the underlying continuous measurement, collected
at multiple time points, be denoted by Yit for subject i at time point t for t = 1,
…, T. Consider a randomized clinical trial with two treatment groups, A and P,
where A denotes the active treatment and P the control. Let Aidenote the treatment
(either A or P) for subject i.

Suppose that there are n subjects, then the matrix with n observations and T
measurements can be written as:

D =

⎛

⎜
⎜
⎜
⎜
⎝

X1

.

.

.

Xn

⎞

⎟
⎟
⎟
⎟
⎠

=
⎛

⎜
⎝

x1 · · · x1T
...

. . .
...

xn · · · xnT

⎞

⎟
⎠

Missing values are an issue in a substantial number of statistical analyses in
longitudinal clinical trials. It is common that some subjects may drop out of the trial
before reaching the primary time point. While analyzing only complete cases has its
simplicity, the information contained in the incomplete cases is lost. This approach
also ignores possible systematic differences between the complete cases and the
incomplete cases, and the resulting inference may be not applicable to the population
of all cases, especially with a smaller number of complete cases. For longitudinal
clinical trials with missing data, the sensitivity analyses are very important to assess
how sensitive results are to reasonable changes in the assumptions that are made for
the missing data.

There are several approaches to handling missing data in sensitivity analyses.
One approach is single imputation, in which a value is substituted for each missing
value. This approach treatsmissing values as if theywere known in the complete-data
analyses. Last Observation Carried Forward (LOCF) is one of the populous single
imputation methods. The primary shortcoming associated with the single imputation
schemes is the inability to accommodate variability/uncertainty. Single imputation
does not reflect the uncertainty about the predictions of the unknown missing values,
and the resulting estimated variances of the parameter estimates are biased toward
zero.

Multiple imputation is another populous approach to handle missing data for
continuous responses in a longitudinal clinical trial. MI was proposed by Rubin
(1987), and it accounts for missing data not only by restoring the natural variability
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in themissing data, but also by incorporating the uncertainty caused by the estimation
process.

There are general two methods: (1) the classic MI method, proposed by Rubin
(1987) and based on a Bayesian paradigm, in which the model parameters are inde-
pendently drawn from the posterior distribution for each imputed data set; (2) the
frequentist MI method (Wang and Robins 1998) with the fixed model parameters at
themaximum likelihood estimates for all imputed data sets. Once themissing data on
the underlying continuous responses have been imputed, the completed data sets are
then analyzed separately by standard methods, and the results are later combined to
produce estimates and confidence intervals that incorporate missing data uncertainty.

Multiple imputation does not attempt to estimate each missing value through
simulated values, but rather to represent a random sample of the missing values.
This process results in valid statistical inferences that properly reflect the uncertainty
that results from missing values, such as valid confidence intervals for parameters.

The general procedure of the MI scheme consists of:

• The missing data are imputed using an appropriate model to generate m complete
data sets.

• The m complete data sets are analyzed.
• The results from the m complete data sets are combined for the inference using
Rubin’s Rules Rubin (1987).

2.1 Multiple Imputation via MCMC

There are some options for choosing the appropriate model to generate a complete
data set. The MCMC method is one of the popular one, which is useful in both
Bayesian and frequentist statistical inference. It consists of a class of algorithms
for sampling from probability distributions based on constructing a Markov chain
that has the desired distribution as its stationary distribution. It combines the Monte-
Carlo method for sampling randomness and the Markov chain method for sampling
independence with its stationary distribution.

MCMC can be used to generate pseudo-random samples from multidimensional
and otherwise intractable probability distributions viaMarkov chains (Schafer 1997).
AMarkov chain, which converts the sampling schema into a time-series sequence, is
a sequence of random values whose probabilities in a time interval depend upon the
value of the number from a previous time point. The controlling factor in a Markov
chain is the transition probability. It is a conditional probability for the system to go
to a particular new state, given the current state of the system. Since theMarkov chain
is in a time-series format, the sample independence by examination of sample auto-
correlation can be checked. As time interval increases toward infinite, the Markov
chain converges to its stationary distribution. Assuming a stationary distribution
exists, it is unique if the chain is irreducible. Irreducible means any set of states can
be reached from any other state in a finite number of moves.
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MCMC imputation is one of the features provided in the SAS Procedure MI in
SAS/STAT® system. Procedure MI in SAS can be used for arbitrary missing data
imputation or random sample data set simulation based on the complete input data
set as prior information.

Assuming that the data are from a multivariate normal distribution, data augmen-
tation is applied with missing data by repeating the two steps: the imputation step
and the posterior step.

The imputation step simulates the missing values for each observation indepen-
dently with the estimated mean vector and covariance matrix. That is, if the variables
with missing values for observation i are denoted by Yi(mis) and the variables with
observed values are denoted by Yi(obs), then the imputation step draws values for
Yi(mis) from a conditional distribution Yi(mis) given Yi(obs). The posterior step simu-
lates the posterior population mean vector and covariance matrix from the complete
sample estimates. These new estimates are then used in the imputation step.

The two steps are iterated long enough for the results to be reliable for a multiply
imputed data set (Schafer 1997). The goal is to have the iterates converge to their
stationary distribution and then to simulate an approximately independent draw of
the missing values. That is, with a current parameter estimate θ

(t) at tth iteration, the
Imputation step draws Y (t+1)

mis from p(Ymis | Yobs, θ(t)) and the Posterior step draws

θ
(t+1) from p(θ |Yobs, Y

(t+1)
mis .). This creates a Markov chain (Y (1)

mis ., θ
(1)), (Y (2)

mis ., θ
(2)),

..., which converges in distribution to p(θ | Ymis, θ | Yobs).

2.2 Combining Inferences from Imputed Data Sets

With m imputations, m different sets of the point and variance estimates for a para-
meter Q can be obtained. Let Q̂i and Ûi be the point and variance estimates from
the ith imputed data set, i = 1, 2, …, m. Then the point estimate for Q from multiple
imputations is the average of the m complete-data estimates:

Q̄ = 1

m

∑m

i=1
Q̂i

Let Ū be the within-imputation variance, which is the average of the m complete-
data estimates

Ū = 1

m

∑m

i=1
Ûi

and B be the between-imputation variance

B = 1

m − 1

∑m

i=1
(Q̂i − Q̄)2
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Then the variance estimate associated with Q̄ is the total variance

T = Ū + (1 + 1

m
)B

The statistic (Q − Q̄)T−1/2 approximately distributed as a t-distribution with vm
degrees of freedom (Rubin 1987), where

vm = (m − 1)[1 + Ū
(
1 + m−1

)
B

]2

When the complete-data degrees of freedom v0 is small and there is only a modest
proportion of missing data, the computed degrees of freedom, vm, can bemuch larger
than v0, which is inappropriate. Barnard and Rubin (1999) recommended the use of
an adjusted degrees of freedom, v∗

m .

v∗
m = [ 1

vm
+ 1

v̂obs
]−1

where

v̂obs = v0 + 1

v0 + 3
+ v0(1 − ′ϒ)

′ϒ = (1 + m−1)

T
B

Similar to the univariate inferences, multivariate inferences based onWald’s tests
can also be derived from the m imputed data sets.

3 Example of Clinical Trial and Sample Data

The data used in this paper are for illustration purposes only. In this chapter, to
introduce the application of MCMC multiple imputation method to deal with miss-
ing data from the mechanism of MNAR, we assume the data are from a simulated
hypothetical longitudinal clinical trial.

3.1 Introduction of a Simulated Longitudinal Clinical Trial

In our example, a double blind, randomized, placebo-controlled, parallel group clini-
cal trial will be simulated for an activemedication used in relieving persistent chronic
pain. The clinical trial schema, presented in, Fig. 1 depicts the hypothetical design for
this clinical trial. In the double blind randomization period, the eligible subjects will
be randomly allocated to one of the investigational medicinal product (IMP; either
active medication or placebo) using an IVRS and commence the treatment period.



Application of Markov Chain Monte-Carlo Multiple … 239

Fig. 1 Study design and
treatment schema

We assume two types of primary endpoints separately for the trial: one has the
normal distribution, which is the change from the baseline to the end of treatment
in a 0–10 numerical rating scale (NRS) average pain score in the simulated trial.
And ANCOVA model will be applied with baseline measurement as covariate and
treatment as main effect in the primary analysis. The other primary endpoint doesn’t
have normal distribution, which is the percent improvement from the baseline to the
end of treatment in NRS average pain score in the simulated trial. And Wilcoxon
rank-sum test will be applied as the primary analysis. No multiplicity issues will be
considered in this research.

In the simulated analysis data set from this trial, we have 5 weekly measurements
of NRS Average Pain Score (ranges from 0 to 10 with 0 = “no pain” and 10 = “pain
as bad as you can imagine”) in double blind treatment period after randomization
from 122 subjects in the active medication arm and 126 subjects in the placebo arm
(Tables1 and 2).

The majority of missing data in this hypothetical clinical trial could be expected
to be caused by subjects who dropped out of the clinical trial before completion.
Based on the simulated data, the pattern of drop out were summarized below for
each treatment group and primary reasons for discontinuation.

The simulated 0–10 NRS average pain scores at baseline and its change from
baseline by week are presented in the table below.

3.2 Assuming Data of Primary Efficacy Endpoint to Have
Normal Distribution

Let’s first assume the primary endpoint is the change from the baseline to week 5 in
NRS average pain score in the simulated clinical trial, and we don’t need to consider
multiplicity issues. The assumption that the data of the primary endpoint have the
normal distribution is reasonable.
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ANCOVA was applied on the change of baseline at Week5 in NRS average pain
scores (LOCF) with the baseline value as a covariate and treatment group as a factor.
Themean change from baseline based on the Least Squares (LS) method, differences
between least squares (LS) mean change, 95%CI for the difference and p-value were
presented below in Table3.

The primary analysis showed the significant treatment differences in the primary
endpoint, the change from baseline to week 5 in NRS average pain scores (p =
0.0051).

Missing data in the double blind period in this trial could potentially arise from the
mechanism of MNAR. In order to understand the impact on the trial findings from
missing data under the MNAR assumption, multiple imputations will be carried out
for the ITT Sample in this hypothetical trial on the endpoint, the mean difference
at end of treatment visit in the randomized period. We assume the data with normal
distribution first.

Rubin showed that in many applications as few as 5 times of imputation can
provide efficient estimate based on multiple imputation. Given the advance in com-
putation speed, 100 times of imputation have been used and considered appropriate.

Intermittent missing values for intermediate visit before the withdrawal visit will
be imputed using theMCMCmethod in PROCMIwith an IMPUTE =MONOTONE
statement for 100 times for drug and placebo treatment groups, respectively. The
resulting 100 partially imputed datasets will have a monotone missing pattern and
will be further imputed under an MNAR assumption that the missing data pattern of
subjects who receive drug are similar to, worse than, or better than those of subjects
who receive placebo with similar observed outcomes for the following 2 scenarios:

(1) MNAR assumed for missing values resulting from discontinuation due to lack
of efficacy (LOE) and non-disease progression related AEs (excluding those
subjects who withdraw from treatment or die before the end of treatment visit
of double blind treatment period for reasons related to underlying disease pro-
gression) from 10 subjects in the active medication arm and MAR for others,
including the subjects in placebo arm;

(2) MNAR assumed for missing values resulting from discontinuation due to any
reason (excluding those subjects who withdraw from treatment or die before the
end of treatment visit of double blind treatment period for reasons related to
underlying disease progression) from 24 subjects in the active medication arm
and MAR for others, including the subjects in the placebo arm.

For each of these 2 scenarios, imputation will be carried out once on each of the
100 imputed datasets using PROCMI (with the 100 imputed datasets included in the
BY statement of PROC MI) as follows:

• Step 1: Monotone missing data under the Missing At Random (MAR) assump-
tion at time point t will be imputed by means and covariance from the observed
endpoint at baseline and at all weekly post-baseline time points up to time point t
(in chronological order) in their corresponding treatment groups (i.e., subjects in
active medication arm whose missing data are assumed to be MAR and all sub-
jects in placebo arm). The imputation will be realized using the PROCMI with the
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MONOTONE REG option for each treatment group separately. The imputation
model will include baseline value and its weekly measurement at all post-baseline
time points up to time point t (in chronological order).

• Step 2:With the data imputed fromStep 1,monotonemissing data of subjects in the
drug group under the MNAR assumption will be imputed. At each post-baseline
time point t, the input dataset for PROC MI will include all placebo subjects
and those subjects from the active medication arm that have values missing under
MNAR at that time point. The imputationmodel will include baseline value and its
weekly values at all post-baseline time points up to time point t (in chronological
order). After the sequential imputation is completed for all time points, the imputed
values at time point t plus a sensitivity parameter k× standard error of the observed
change frombaseline inweekly values in the placebo armat the corresponding time
point will then form the final imputed values. The sensitivity parameter k (where
k = 0, ±0.5, ±1.0, ±1.5) will be used to explore the robustness of the estimated
treatment difference to the degree of decrease or increase (positive values of k
represent decrease and negative values represent increase) in efficacy from the
placebo response pattern that is assumed for subjects with missing data under
MNAR.

After missing values at all the time points are imputed, the change from baseline
to Week 5 in the randomized period will be analyzed using the same ANCOVA
model as specified for the primary efficacy analysis. For each value of k, results of
the ANCOVA analysis on the 100 imputed datasets will be combined to derive an
overall result using PROC MIANALYZE. The increment in the positive value of k
will stop once the overall p-value is greater than a specified value. The decrease in
the negative values of k will continue until the overall p-value becomes smaller than
the p-value from the primary efficacy analysis.

Since the primary analysis in the simulated trial showed the significant treatment
differences in the primary endpoint (p = 0.0042), the sensitivity parameter k was
increased to make that the missing data pattern of subjects who receive drug were
worse than those of subjects who receive placebo, which is assumed for subjects with
missing data underMNAR. The treatment differences between activemedication and
placebo arms becomes smaller, and the increment of k stops once the overall p-value
is greater than 0.05.

The final results from the 2 scenarios are presented in Tables4 and 5.
The sensitivity analysis of the primary endpoint, the change from baseline to week

5, employing MNAR imputation for missing values due to AE related withdrawals
(excluding withdrawals or deaths related to disease progression) in the active med-
ication arm showed that without any alteration of the sensitivity parameter (K = 0)
the mean change from baseline in NRS average pain score difference was negative;
the active medication was significantly different from placebo (p = 0.0052). From the
results in Table4, we also know that the study conclusion from ANCOVA (LOCF)
is reversed when the sensitivity parameter is 14 (p = 0.0500). Thus, if the sensitivity
parameter 14, for MNAR assumption for missing values from discontinuation due



Application of Markov Chain Monte-Carlo Multiple … 245

Ta
bl
e
4

C
ha
ng

e
fr
om

ba
se
lin

e—
IT
T
(m

ul
tip

le
im

pu
ta
tio

n
w
ith

M
N
A
R
as
su
m
ed

fo
r
m
is
si
ng

va
lu
es

fr
om

di
sc
on

tin
ua
tio

n
du

e
to

A
E
s
in

A
C
T
M
E
D
gr
ou

p)

Se
ns
iti
vi
ty

pa
ra
m
et
er

K
a

T
re
at
m
en
t

gr
ou
p

n
M
ea
n

SD
E
st
im

at
e

SE
95
%

C
I

P-
va
lu
e

L
ow

er
lim

it
U
pp

er
lim

it

0
A
C
T
M
E
D

12
2

–1
.2
93

1.
65
3

–0
.5
83
7

0.
20
8

–0
.9
92

–0
.1
75

0.
00
52

Pl
ac
eb
o

12
6

–0
.7
37

1.
54
7

1
A
C
T
M
E
D

12
2

–1
.2
81

1.
64
9

–0
.5
71
6

0.
20
8

–0
.9
80

–0
.1
63

0.
00
61

Pl
ac
eb
o

12
6

–0
.7
37

1.
54
7

2
A
C
T
M
E
D

12
2

–1
.2
69

1.
64
5

–0
.5
59
5

0.
20
8

–0
.9
68

–0
.1
51

0.
00
73

Pl
ac
eb
o

12
6

–0
.7
37

1.
54
7

3
A
C
T
M
E
D

12
2

–1
.2
57

1.
64
3

–0
.5
47
3

0.
20
8

–0
.9
55

–0
.1
39

0.
00
86

Pl
ac
eb
o

12
6

–0
.7
37

1.
54
7

4
A
C
T
M
E
D

12
2

–1
.2
45

1.
64
2

–0
.5
35
2

0.
20
8

–0
.9
43

–0
.1
27

0.
01
02

Pl
ac
eb
o

12
6

–0
.7
37

1.
54
7

...
...

13
A
C
T
M
E
D

12
2

–1
.1
37

1.
67
6

–0
.4
26
2

0.
21
0

–0
.8
39

–0
.0
13

0.
04
31

Pl
ac
eb
o

12
6

–0
.7
37

1.
54
7

14
A
C
T
M
E
D

12
2

–1
.1
25

1.
68
4

–0
.4
14
1

0.
21
1

–0
.8
28

0.
00
0

0.
05
00

Pl
ac
eb
o

12
6

–0
.7
37

1.
54
7

a S
en
si
tiv

ity
pa
ra
m
et
er

re
pr
es
en
ts
th
e
de
gr
ee

of
de
cr
ea
se

or
in
cr
ea
se

(p
os
iti
ve

va
lu
es

re
pr
es
en
td

ec
re
as
e
an
d
ne
ga
tiv

e
va
lu
es

re
pr
es
en
ti
nc
re
as
e,

in
th
e
un
it
of

S.
E
.)
in

nr
s
sc
or
e
fr
om

th
e
im

pu
te
d
m
is
si
ng

va
lu
es

ba
se
d
on

th
e
pl
ac
eb
o
re
sp
on
se
.

b
nu

m
be
r
of

ra
nd

om
iz
ed

su
bj
ec
ts
.

N
ot
e
Pa
in

sc
or
e
ra
ng

es
fr
om

0
to

10
w
ith

hi
gh

er
sc
or
e
fo
r
m
or
e
se
ve
re

pa
in

(l
ar
ge
r
re
du

ct
io
n
fr
om

ba
se
lin

e
re
pr
es
en
ts
gr
ea
te
r
im

pr
ov
em

en
t)
.

sd
:s
ta
nd
ar
d
de
vi
at
io
n;

se
:s
ta
nd
ar
d
er
ro
r



246 W. Sun

Ta
bl
e
5

C
ha
ng

e
fr
om

ba
se
lin

e
to

w
ee
k
5
(m

ul
tip

le
im

pu
ta
tio

n
w
ith

M
N
A
R
as
su
m
ed

fo
r
m
is
si
ng

va
lu
es

fr
om

di
sc
on

tin
ua
tio

n
du

e
to

an
y
re
as
on

s
in

A
C
T
M
E
D

gr
ou
p)

Se
ns
iti
vi
ty

pa
ra
m
et
er

K
a

T
re
at
m
en
t

gr
ou
p

n
M
ea
n

SD
E
st
im

at
e

SE
95
%

C
I

P-
va
lu
e

L
ow

er
lim

it
U
pp

er
lim

it

0
A
C
T
M
E
D

12
2

–1
.2
17

1.
67
7

–0
.5
08
9

0.
21
6

–0
.9
33

–0
.0
85

0.
01
87

Pl
ac
eb
o

12
6

–0
.7
37

1.
54
7

0
A
C
T
M
E
D

12
2

–1
.1
88

1.
68
1

–0
.4
79
9

0.
21
6

–0
.9
04

–0
.0
55

0.
02
68

Pl
ac
eb
o

12
6

–0
.7
37

1.
54
7

2
A
C
T
M
E
D

12
2

–1
.1
60

1.
68
8

–0
.4
50
9

0.
21
6

–0
.8
76

–0
.0
25

0.
03
78

Pl
ac
eb
o

12
6

–0
.7
37

1.
54
7

3
A
C
T
M
E
D

12
2

–1
.1
31

1.
69
6

–0
.4
21
9

0.
21
7

–0
.8
48

0.
00
5

0.
05
26

Pl
ac
eb
o

12
6

–0
.7
37

1.
54
7

a S
en
si
tiv

ity
pa
ra
m
et
er

re
pr
es
en
ts
th
e
de
gr
ee

of
de
cr
ea
se

or
in
cr
ea
se

(p
os
iti
ve

va
lu
es

re
pr
es
en
t
de
cr
ea
se

an
d
ne
ga
tiv

e
va
lu
es

re
pr
es
en
t
in
cr
ea
se
,i
n
th
e
un
it
of

S.
E
.)
in

N
R
S
sc
or
e
fr
om

th
e
im

pu
te
d
m
is
si
ng

va
lu
es

ba
se
d
on

th
e
pl
ac
eb
o
re
sp
on
se
.

b
nu

m
be
r
of

ra
nd

om
iz
ed

su
bj
ec
ts
.

SD
St
an
da
rd

D
ev
ia
tio

n;
SE

St
an
da
rd

E
rr
or



Application of Markov Chain Monte-Carlo Multiple … 247

to AEs in the active medication arm, is plausible, the conclusion from ANCOVA
(LOCF) is questionable.

Conducting the same analysis but imputing MNAR for withdrawals for any rea-
son (excluding withdrawals or deaths related to disease progression) also showed a
negative, and significant, mean difference without alteration of the sensitivity para-
meter (K = 0) (p = 0.0187). From the results in Table5, the study conclusion from
ANCOVA (LOCF) is reversed when the sensitivity parameter is 4 (p = 0.0526). Thus,
if the sensitivity parameter 4, forMNAR assumption for missing values from discon-
tinuation due to any reasons in the active medication arm, is plausible, the conclusion
from ANCOVA (LOCF) is questionable.

3.3 Not Assuming Data of Primary Efficacy Endpoint
to Have Normal Distribution

If we change the primary endpoint to the percent improvement from the baseline
to the end of treatment in NRS average pain score in the hypothetical clinical trial,
the data of the primary endpoint don’t have the normal distribution. In the primary
analysis, they will be compared between treatment groups using Wilcoxon rank-
sum test and estimate of the median difference between new treatment and placebo,
together with approximate 95% CI, will be calculated using the Hodges-Lehmann
approach.

The results from the primary analysis are presented in Table6 asmedian difference
between groups, where a positive value would indicate a treatment difference in favor
of the active medication, and 95% CIs; both determined using Hodges-Lehmann.
Statistical significance was determined using Wilcoxon rank-sum test to yield p-
value.

Subjects in the active medication arm had a median percent improvement from
baseline of 13.3% compared with 5.4% in the placebo arm; the difference between
groups was statistically significant (median difference = 8.00; CI: 2.93, 13.4; p =
0.0020).

The impact of missing data under the MNAR assumption will be assessed via
sensitivity analyses with multiple imputations on weekly percent improvement in
NRS average pain score from baseline.

We will apply the same steps introduced before for the data to have normal distri-
bution to get imputed data for missing data. After missing values at all the time points
are imputed, percent improvement from baseline to Week 5 from the fully imputed
datasets will be calculated as 100% × (baseline—Week 5 mean)/baseline and it will
then analyzed using the same model as specified for the primary efficacy analyses.
For each value of k, the Hodges-Lehmann estimates of the median difference and
asymptotic standard error from 100 imputed datasets will be analyzed using PROC
MIANALYZE to derive overall median difference and 95% confidence interval.
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The SAS code to utilize PROC NPAR1WAY to get the median difference and
asymptotic standard error from each imputation and use PROC MIANALYZE to
derive overall median difference and 95% confidence interval will be as below:

proc npar1way data=indata wilcoxon hl(refclass=1 or 2);
class TRT;
by _imputation_;
var PIMP;
ods output WilcoxonTest=wilcox HodgesLehmann=hl;

run;
proc mianalyze data=hl;
modeleffects shift;
stderr stderr;
ods output ParameterEstimates=Overall_hl;

run;

The results of the Wilcoxon rank-sum test on the 100 imputed datasets will be
combined to derive an overall p value. The test statistic for making inference will
be based on the method provided by Rubin and a modified macro from Mogg and
Mehrotra (2007). The increment in the positive value of k will stop once the overall
p-value is greater than 0.05. The decrease in the negative values of k will continue
until the overall p-value becomes smaller than the p-value from the primary efficacy
analysis.

As what we introduced in before, since the primary analysis in the simulated trial
showed the significant treatment differences in the primary endpoint (p = 0.0042),
the increment of sensitivity parameter k will stop once the overall p-value is greater
than 0.05.

The sensitivity analysis of the primary endpoint, the percent improvement from the
baseline to the end of treatment in NRS average pain score, using the sameWilcoxon
ranksum test, and employingMNAR imputation for missing values due to AE related
withdrawals (excluding withdrawals or deaths related to disease progression) in the
activemedication arm, showed thatwithout any alteration of the sensitivity parameter
(K = 0) the median difference was positive; active medication was significantly
different from placebo (median difference = 9.51; 95% CI: 3.26, 15.76; p = 0.0032)
(Table7). From the results in this table, we also know that the study conclusion from
Wilcoxon rank-sum test is reversed when the sensitivity parameter is 33 (p = 0.0512).
Thus, if the sensitivity parameter 33, for MNAR assumption for missing values from
discontinuation due to AEs in the active medication arm, is plausible, the conclusion
from Wilcoxon rank-sum test is questionable.

Conducting the same analysis but imputing MNAR for withdrawals for any rea-
son (excluding withdrawals or deaths related to disease progression) also showed a
positive, significant, median difference without alteration of the sensitivity parame-
ter (K = 0) (median difference = 7.93; 95% CI: 1.55, 14.32; p = 0.0158) (Table8).
Significant treatment differences were noted in weekly percent improvement from
baseline in average pain 0–10 NRS score when analyzed using MMRM (Table8).
From the results in Table8, the study conclusion from Wilcoxon rank-sum test is
reversed when the sensitivity parameter is 4 (p = 0.0538). Thus, if the sensitivity



250 W. Sun

Ta
bl
e
7

Pe
rc
en
ti
m
pr
ov
em

en
tf
ro
m

ba
se
lin

e
to

en
d
of

tr
ea
tm

en
t—

IT
T
(m

ul
tip

le
im

pu
ta
tio

n
w
ith

m
na
r
as
su
m
ed

fo
r
m
is
si
ng

va
lu
es

fr
om

di
sc
on
tin

ua
tio

n
du
e

to
A
E
s
in

ac
tiv

e
tr
ea
tm

en
tg

ro
up
)

Se
ns
iti
vi
ty

pa
ra
m
et
er

K
a

T
re
at
m
en
t

gr
ou
p

N
b

M
ea
n

M
in

Q
1

M
ed
ia
n

Q
3

M
ax

H
od

ge
s-
L
eh
m
an
n
es
tim

at
e

W
ilc

ox
on

ra
nk

su
m

te
st
P-
va
lu
e

M
ed
ia
n
di
ff
.

95
%

C
I

0
A
C
T
M
E
D

12
2

21
.2

–4
5.
3

3.
9

16
.0

37
.9

10
1.
1

9.
51

(3
.2
6,

15
.7
6)

0.
00

32

Pl
ac
eb
o

12
6

11
.0

–5
2.
1

–4
.2

6.
5

22
.3

72
.6

1
A
C
T
M
E
D

12
2

21
.0

–4
6.
4

3.
9

16
.0

37
.8

10
0.
7

9.
36

(3
.1
2,

15
.6
0)

0.
00

35

Pl
ac
eb
o

12
6

11
.0

–5
2.
1

–4
.2

6.
5

22
.3

72
.6

2
A
C
T
M
E
D

12
2

20
.8

–4
7.
9

3.
4

15
.8

37
.7

10
0.
4

9.
21

(2
.9
5,

15
.4
7)

0.
00

39

Pl
ac
eb
o

12
6

11
.0

–5
2.
1

–4
.2

6.
5

22
.3

72
.6

3
A
C
T
M
E
D

12
2

20
.6

–4
9.
8

3.
0

15
.6

37
.7

10
0.
2

9.
06

(2
.7
6,

15
.3
6)

0.
00

45

Pl
ac
eb
o

12
6

11
.0

–5
2.
1

–4
.2

6.
5

22
.3

72
.6

4
A
C
T
M
E
D

12
2

20
.4

–5
2.
1

2.
5

15
.4

37
.7

10
0.
0

8.
91

(2
.6
3,

15
.2
0)

0.
00

50

...
...

32
A
C
T
M
E
D

12
2

14
.8

–1
44
.7

0.
0

13
.8

36
.2

10
0.
0

6.
52

(–
0.
05

,1
3.
09

)
0.
04

92

Pl
ac
eb
o

12
6

11
.0

–5
2.
1

–4
.2

6.
5

22
.3

72
.6

33
A
C
T
M
E
D

12
2

14
.6

–1
48
.3

0.
0

13
.8

35
.8

10
0.
0

6.
48

(–
0.
10

,1
3.
05

)
0.
05

12

Pl
ac
eb
o

12
6

11
.0

–5
2.
1

–4
.2

6.
5

22
.3

72
.6

a S
en
si
tiv

ity
pa
ra
m
et
er

re
pr
es
en
ts
th
e
de
gr
ee

of
de
cr
ea
se

or
in
cr
ea
se

(p
os
iti
ve

va
lu
es

of
K
re
pr
es
en
td

ec
re
as
e
an
d
ne
ga
tiv

e
va
lu
es

re
pr
es
en
ti
nc
re
as
e)

in
ef
fic

ac
y

b
N
um

be
r
of

IT
T
su
bj
ec
ts
.

Sc
en
ar
io

1
M
N
A
R
as
su
m
ed

fo
r
m
is
si
ng

va
lu
es

re
su
lti
ng

fr
om

di
sc
on
tin

ua
tio

n
du
e
to

A
E
S
(e
xc
lu
di
ng

th
os
e
su
bj
ec
ts
w
ith

dr
aw

fr
om

tr
ea
tm

en
to

r
di
ed

be
fo
re

th
e
en
d
of

w
ee
k
5
fo
r
re
as
on
s
re
la
te
d
to

un
de
rl
yi
ng

di
se
as
e
pr
og
re
ss
io
n)

in
th
e
ac
tm

ed
gr
ou
p
an
d
M
A
R
fo
r
ot
he
rs



Application of Markov Chain Monte-Carlo Multiple … 251

Ta
bl
e
8

Pe
rc
en
ti
m
pr
ov
em

en
t
fr
om

ba
se
lin

e
to

en
d
of

tr
ea
tm

en
t—

IT
T
(m

ul
tip

le
im

pu
ta
tio

n
M
N
A
R
as
su
m
ed

fo
r
m
is
si
ng

va
lu
es

fr
om

di
sc
on

tin
ua
tio

n
du

e
to

an
y
re
as
on
s(
*)

in
ac
tiv

e
tr
ea
tm

en
tg

ro
up
)

Se
ns
iti
vi
ty

pa
ra
m
et
er

K
a

T
re
at
m
en
t

gr
ou
p

N
b

M
ea
n

M
in

Q
1

M
ed
ia
n

Q
3

M
ax

H
od

ge
s-
L
eh
m
an
n
es
tim

at
e

W
ilc

ox
on

ra
nk

su
m

te
st
P-
va
lu
e

M
ed
ia
n
di
ff
.

95
%

C
I

0
A
C
T
M
E
D

12
2

19
.7

–4
2.
9

1.
7

14
.5

36
.6

10
2.
2

7.
93

(1
.5
5,

14
.3
2)

0.
01

58

Pl
ac
eb
o

12
6

11
.0

–5
2.
1

–4
.2

6.
5

22
.3

72
.6

1
A
C
T
M
E
D

12
2

19
.2

–4
4.
6

1.
1

14
.1

36
.2

10
1.
4

7.
47

(1
.1
1,

13
.8
4)

0.
02

15

Pl
ac
eb
o

12
6

11
.0

–5
2.
1

–4
.2

6.
5

22
.3

72
.6

2
A
C
T
M
E
D

12
2

18
.7

–4
6.
6

0.
8

13
.6

36
.1

10
0.
7

7.
06

(0
.6
6,

13
.4
7)

0.
02

95

Pl
ac
eb
o

12
6

11
.0

–5
2.
1

–4
.2

6.
5

22
.3

72
.6

3
A
C
T
M
E
D

12
2

18
.2

–4
8.
8

0.
6

13
.4

35
.9

10
0.
2

6.
67

(0
.2
5,

13
.1
0)

0.
04

17

Pl
ac
eb
o

12
6

11
.0

–5
2.
1

–4
.2

6.
5

22
.3

72
.6

4
A
C
T
M
E
D

12
2

17
.7

–5
1.
4

–0
.1

13
.2

35
.9

10
0.
0

6.
28

(–
0.
20

,1
2.
75

)
0.
05

53

Pl
ac
eb
o

12
6

11
.0

–5
2.
1

–4
.2

6.
5

22
.3

72
.6

a S
en
si
tiv

ity
pa
ra
m
et
er

re
pr
es
en
ts
th
e
de
gr
ee

of
de
cr
ea
se

or
in
cr
ea
se

(p
os
iti
ve

va
lu
es

of
K
re
pr
es
en
td

ec
re
as
e
an
d
ne
ga
tiv

e
va
lu
es

re
pr
es
en
ti
nc
re
as
e)

in
ef
fic

ac
y

b
nu
m
be
r
of

IT
T
su
bj
ec
ts

*M
N
A
R
as
su
m
ed

fo
r
m
is
si
ng

va
lu
es

re
su
lti
ng

fr
om

di
sc
on
tin

ua
tio

n
du
e
to

an
y
re
as
on
s
ex
cl
ud
in
g
su
bj
ec
td

ie
d
or

di
sc
on
tin

ue
d
du
e
to

di
se
as
e

pr
og
re
ss
io
n
be
fo
re

th
e
en
d
of

w
ee
k
5
in

th
e
ac
tm

ed
gr
ou
p
an
d
M
A
R
fo
r
ot
he
rs



252 W. Sun

parameter 4, for MNAR assumption for missing values from discontinuation due to
any reasons in the active medication arm, is plausible, the conclusion fromWilcoxon
rank-sum test is questionable.

4 Discussion

Missing data are common in clinical trials. To understand the impact on the findings
from missing data under the MNARSignificant treatment differences were noted
assumption, the sensitivity analyses could be carried out by applying MCMCMulti-
ple Imputation method. To investigate the departure from MAR assumption, we can
conduct sensitivity analysis by progressively decreasing the treatment differences
in those treated subjects who fell into an assumed MNAR pattern, That is, making
the missing data pattern of subjects who receive active medication similar to, worse
than, or better than those of subjects who receive placebo for different scenarios of
early discontinuation.

The sensitivity parameter is used to explore the robustness of the estimated treat-
ment difference to the degree of decrease or increase in efficacy from the placebo
response pattern that is assumed for subjects with missing data under MNAR. It
starts from 0 and increases or decreases, until conclusion from the primary analysis
is overturned (it is called tipping point analysis), or it becomes clinicallymeaningless
to go even higher. Note that when 0% is used, the MI procedure would produce an
analysis which is essentially MAR.

The example in this chapter demonstrated that the sensitivity analyses with
MCMC MI method to deal with missing data from the mechanism of MNAR are
appropriate to evaluate robustness of conclusions to a range of conditions in a lon-
gitudinal clinical trial.
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Monte-Carlo Simulation in Modeling
for Hierarchical Generalized Linear
Mixed Models

Kyle M. Irimata and Jeffrey R. Wilson

Abstract It is common to encounter data that have a hierarchical or nested
structure. Examples include patients within hospitals within cities, students within
classes within schools, factories within industries within states, or families within
neighborhoodswithin census tracts. These structures have become increasingly com-
mon in recent times and include variability at each level which must be taken into
account. Hierarchical models which account for the variability at each level of the
hierarchy, allow for the cluster effects at different levels to be analyzed within the
models (Shahian et al. in Ann Thorac Surg, 72(6):2155–2168, 2001). This chapter
discusses how the information from different levels can be used to produce a subject-
specific model. However, there are often cases when these models do not fit as addi-
tional random intercepts and random slopes are added to the model. This addition
of additional parameters often leads to non-convergence. We present a simulation
study as we explore the cases in these hierarchical models which often lead to non-
convergence. We also used the 2011 Bangladesh Demographic and Health Survey
data as an illustration.

1 Introduction

Hierarchical logistic regressionmodels consist of inherent correlation due to different
sources of variation. At each level of the hierarchy, we have random intercepts and
sometimes random slopes as well as the appropriate fixed effects. We have done
extensiveworkwith theGLIMMIX andNLMIXEDprocedures in fitting hierarchical
models and have noted the trials and tribulations in computing regression estimates
and covariance estimates associated with hierarchical models in SAS, as attested by
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others. We have had several occasions when our models do not converge. In some
cases, we found that the convergence criterion was satisfied, but the standard error
for the covariance parameters was given as “.” This problem has gained the attention
of many (Hartzel et al. 2001; Wilson and Lorenz 2015 to name a few). We do not
know with certainty why certain convergence problems exist. As such we provide
some understanding and make some suggestions based on our own work as well as
work done by others. We also provide the steps and results of a simulation study
which can be expanded upon for further exploration of the problem and its remedies.

In this chapter, we discuss the use of two-level and three-level hierarchical models
for binary data, although it is possible to analyze higher level data. We discuss the
use of models with effects at level 2 and level 3 representing random intercepts
and random slopes. These random effects are added into the model to account for
unobservable effects that are known to exist but were not measured or cannot be
measured. We also discuss the use of simulations as a means of investigating issues
or irregularities. This process is presented as an exercise in simulating hierarchical
binary data, which for simplicity is restricted to the two-level case, although the
techniques discussed can be readily expanded for higher levels. These simulated
models have incorporated a random intercept and a random slope at level 2. We
implement a hierarchical model using the GLIMMIX procedure in SAS, to identify
factors that contribute to AIDS knowledge in Bangladesh and investigate models that
do and do not converge based on the number of fixed effect predictors.

2 Generalized Linear Model

The birth of the generalized linear models unified many methods (Nelder and
Wedderburn 1972). These models consist of a set of n independent random vari-
ables Y1 . . . ..Yn, each with a distribution from the exponential family. We define
a generalized linear model as having three components: the random component,
the systematic component, and the link component. We define the log-likelihood
function based on unknown mean parameters, a dispersion parameter, and a weight
parameter, denoted by θi,ϕ, and ωi respectfully, and of the form (Smyth 1989),

l(φ−1
i ,ωi : yi) =

∑

i

{ωiφ
−1
i [yiθi − b(θi)] − c(yi,ωiφ

−1
i )

with φi unknown and assume that

c(yi,ωiφ
−1
i ) = ωiφ

−1
i a(yi) − 1

2
s(−ωiφ

−1
i ) + t(yi)
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Thus we have a generalized linear model for the mean such that

μi = E(Yi) = b′(θi) = x′
iβ

where x′
i = (x1, . . . .., xp)′ is the vector of covariates and β is the vector of regression

parameters. The functions a (y) and b (θi) are known functions. We also present the
generalized linear model as

Y = Xβ + ε

where the random component belongs to the exponential family of distributions,
while in the marginal form we present g(E(Y)) = Xβ. However, when the set of
outcomes from the outcomes Yi are not independent, then the generalized linear
model in its pure form is no longer appropriate and we must use generalized linear
mixed models.

3 Hierarchical Models

It is common in fields such as public health, education, demography, and sociology to
encounter data structures where the information is collected based on a hierarchy. For
instance, in health studies, we often see patients nested within doctors and doctors
nested within hospitals. In these types of cases, there is variability at each level of
the hierarchy, resulting in intraclass correlation due to the clustering. As a result of
the correlation at each level inherent from these hierarchical structures, the standard
logistic regression is inappropriate (Rasbash et al. 2012). Ignoring these levels of
design while researching the outcome is sure to lead to erroneous results unless the
intraclass correlation is of an insignificant size (Irimata and Wilson 2017). Others
have demonstrated that ignoring a level of nesting in the data can impact variance
estimates and the available power to detect significant covariates (Wilson and Lorenz
2015).When seeking to appropriately analyze these types of correlated data, wemust
extend the generalized linear models by accounting for the association among the
responses.

Hierarchical models, also referred to as nested models or mixed models are sta-
tistical models that extend the class of generalized linear models (GLMs) to address
and account for the hierarchical (correlated) nesting of data (Hox 2002; Raudenbush
and Bryk 2002; Snijders and Bosker 1998). We will refer to these as the hierarchical
generalized linear models (HGLMs). This approach incorporates a random effect,
usually according to the normal distribution, although non-normal random effects
can also be used. The extension required in HGLMs is not as involved when the out-
comes follow a conditional normal distribution and the random effects are normally
distributed. However, when dealing with outcomes that are not normally distributed
(i.e. binary, categorical, ordinal), the extension is not as straightforward. In these
cases, we often use a link other than the identity and must specify an appropriate
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error distribution for the response at each level.We thus present the conditional mean
explanation rather than the marginal mean.

While most work have concentrated on random intercepts, we have often been
confronted with data requiring multiple random intercepts and even random slopes.
When using the GLIMMIX procedure in SAS, we often find that models which
include multiple random intercepts or even one random intercept with one random
slope may not converge. Therefore, this chapter introduces the reader to hierarchical
models with dichotomous outcomes (i.e., hierarchical generalized linear models),
and provides concrete examples of non-convergence and possible remedies in these
situations.

We present hierarchical models as

Y = Xβ + Zθ + ε

where the random effects θ have a multivariate normal distribution with mean vector
zero and covariance matrix G, with the distribution of the errors ε as normal with
mean vector 0 and covariance matrix R. The X matrix consists of the fixed effects
with vector of regression parameters β while the Z matrix consists of columns, each
representing the random effects with vector of parameters θ. Researchers refer to
this as compensating for the correlation through the systematic component. Thus we
often write in the conditional response form as

g(E[Y| θ]) = Xβ + Zθ

where θ ∼ N (0,G). The unconditional covariance matrix for Y, is

var(Y) = A1/2RA1/2 + G

and the conditional covariance matrix, given the random effects is given by

var(Y|θ) = A1/2RA1/2 = V.

Thus, it is common in literature to refer to the G-side and R-side effects, which refer
to the covariance matrix of the random effects, and the covariance matrix of the
residual effects, respectfully.

In SAS, the GLIMMIX procedure distinguishes between the G-side and R-side
effects and can model the random effects as well as correlated errors. This procedure
fits generalized linear mixed models based on linearization and relies on a restricted
pseudo-likelihood method of estimation. We revisit the method here as it helps us to
understand the problems regarding non-convergence. This estimation is essentially
based on the following.
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Consider the conditional mean as

E[Y| θ] = g−1(Xβ + Zθ)

and using Taylor series expansion we linearize g−1 (Xβ + Zθ) about the points β̃

and θ̃ which gives

g−1 (Xβ + Zθ) ∼= g−1
(
Xβ̃ + Zθ̃

)
+ ∂g−1 (Xβ + Zθ)

∂β

(
β − β̃

)

+ ∂g−1 (Xβ + Zθ)

∂θ
(θ − θ̃)

g−1 (Xβ + Zθ) ∼= g−1
(
Xβ̃ + Zθ̃

)
+ �|β̃θ̃X

(
β−β̃

)
+ �|β̃θ̃Z(θ − θ̃)

where �|β̃ and �|θ̃ denote the matrix of derivatives evaluated at β̃ and θ̃ respectively.
Thus

�|β̃θ̃ {g−1 (Xβ + Zθ)}
∼= �|β̃θ̃

−1{g−1
(
Xβ̃ + Zθ̃

)
} + X

(
β − β̃

)
+ Z(θ − θ̃)

So

�|β̃θ̃ {g−1 (Xβ + Zθ)} − �|β̃θ̃
−1{g−1

(
Xβ̃ + Zθ̃

)
}

∼= Xβ + Zθ − (Xβ̃ + Zθ̃)

and

Xβ + Zθ ∼=
(
Xβ̃ + Zθ̃

)
+ �|β̃θ̃

−1{g−1 (Xβ + Zθ)}
− �|β̃θ̃

−1{g−1
(
Xβ̃ + Zθ̃

)
}

Xβ + Zθ ∼=
(
Xβ̃ + Zθ

)
+ �|β̃θ̃

−1{(E[Y| θ]) − {g−1
(
Xβ̃ + Zθ̃

)
]}

Hence we consider the approximation and use the similar structure denoted by
Xβ̃ + Zθ̃ to represent the matrix of fixed effects multiplied by a beta-like term
and Z matrix of random effects multiplied by a theta-like term and we denote

�|β̃θ̃
−1

{
(E[Y| θ]) − {g−1

(
Xβ̃ + Zθ̃

)}
= ζ as an error-like term. So we can think

of the approximation as a linear term and defined as

Yapprox = Xβ + Zθ + ζ
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with the variance

var[Yapprox| θ] = var[{(E [Y| θ])] = �|β̃θ̃
−1A1/2RA1/2�|β̃θ̃

−1

As such this can be seen as a linear approximation, given by Yapprox with fixed effects
β, and random effects θ and variance of ζ given by var[Yapprox| θ].

3.1 Approaches with Binary Outcomes

Binary outcomes are very common in healthcare research, amongstmany other fields.
For example, one may investigate whether a patient has improved or recovered after
discharge from the hospital or not. For healthcare and other types of research, the
logistic regression model is one of the preferred methods of modeling data when the
outcome variable is binary. In its standard form, it is a member of a class of gener-
alized linear models specific to the binomial random component. As is customary
in regression analysis, the model makes use of several predictor variables that may
be either numerical or categorical. However, a standard logistic regression model
assumes that the observations obtained from each unit are independent. If we were
to fit a standard logistic regression to nested data, the assumption of independent
observations is seriously violated. This violation could lead to an underestimation
of the standard errors, which in turn can lead to conclusions of a significant effect,
when in fact it is not.

Multilevel approaches for nested data can also be applied to analysis of dyadic
data to take into account the nested sources of variability at each level (Raudenbush
1992). Many researchers have explored the use of these two-level approaches with
binary outcomes (see for example McMahon et al. 2006).

4 Three-Level Hierarchical Models

In the analysis of multilevel data, each level provides a component of variance that
measures intraclass correlation. For instance, consider a hierarchical model at three
levels for the kth patient seeing the jth doctor in the ith hospital. The patients are
at the lower level (level 1) and are nested within doctors (level 2) which are nested
within hospitals at the next level (level 3). We consider the hospital as the primary
unit, doctors as secondary unit, and patients as the observational unit. These clusters
are treated as random effects. We make use of random effects as we believe there
are some non-measurable influences on patient outcomes based on the doctor and
also based on the hospital. Some effects may be positive and some effects may be
negative, but overall we assume their average effects are zero.
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4.1 With Random Intercepts

At level 1,wemay take responses fromdifferent patients,while noting their age (Age)
and length of stay (LOS). The outcomes are modeled through a logistic regression
model

log

[
pijk

1 − pijk

]

= γoij + γ1ijAgeijk + γ2ijLosijk (4.1)

where γoij is the intercept, γ1ij is the coefficient associated with the predictor Ageijk,
and γ2ij is the coefficient associated with the predictor Losijk (length of stay) for
k = 1, 2, . . ., nij patients; j = 1, 2, . . ., ni doctors and i = 1, . . ., n; hospitals. Each
doctor has a separate logistic model. If we allow the effects of Age and LOS on the
outcome to be the same for each doctor, but allow the intercept to be different on
the logit scale, we have parallel planes for their predictive model. The γoij intercept
represents those differential effects among doctors.

At level 2, we assume that the intercept γoij (which allows a different intercept
for doctors within hospitals) depends on the unobserved factors specific to the ith
hospital, the covariates given as associated with the doctors within the ith hospital,
and a random effect uoij associated with doctor j within hospital i. Thus,

γoij = γoi + γ1iExperienceij + uoij (4.2)

where Experienceij is the experience for the jth doctor within the ith hospital. Simi-
larly, hospital administration policies may have different effects on doctors. At level
3, the model assumes that differential hospital policies depend on the overall fixed
intercept β0 and the random intercept uoi associated with the unmeasurable effect for
hospital i. Thus,

γoi = β0 + uoi (4.3)

By successive substitution into the expression for γoi in (4.3) into (4.2), and then
by substituting the resulting expression for γoij into (4.1), we obtained

log

[
pijk

1 − pijk

]

= β0 + γ1iExperienceij + γ1ijAgeijk + γ2ijLosijk + uoi + uoij (4.4)

The combination of random and fixed terms results in a generalized linear mixed
model with two random effects; hospitals denoted by uoi ∼ N (0, σ2

ui) and doctors
denoted by uoij ∼ N (0, σ2

uij) with covariance σuoi,uoij . From Eq. (4.4), the model con-
sists of the overall mean plus experience of doctors plus age of patient, length of stay
plus effects due to hospitals and effects due to doctors for each individual. Hence,
we have a subject-specific model.
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4.2 Three-Level Logistic Regression Models with Random
Intercepts and Random Slopes

Consider the three-level random intercept and random slope model consisting of a
logistic regression model at level 1,

log

[
pijk

1 − pijk

]

= γoij + γ1ijAgeijk + γ2ijLosijk (4.5)

where both γoij and γ2ij are random, for k = 1, 2, . . ., nij; j = 1, 2, . . ., ni ; and
i = 1, . . ., n. So each doctor has a different intercept and the rates of change with
respect to length of stay are not the same for all the doctors. However, there are
some unobserved effects related to LOS that impact remission. There are factors
associated with LOS and the doctors’ impacts on patients vary as LOS varies. The
intercept represents a group of unidentifiable factors that impact the overall effect of
the doctor on the patient’s success, while the slope represents the differential impact
that the particular variable (LOS) has that results in differences among patients.

So, at level 2, γoij and γ2ij are treated as response variables within the model,

γoij = γoi + γ1iExperienceij + uoij (4.6)

γ2ij = γ2i + u2ij (4.7)

where γoi and γ2i are random effects. Equation (4.6) assumes the intercept γoij for
doctors nested within hospital j, depends on the unobserved intercept specific to the
ith hospital, the effects associated with the doctor’s experience in the hospital, and
a random term uoij associated with doctor j within hospital i. The slope γ2ij depends
on the overall slope γ2i for hospital i and a random term u2ij.

At level 3, the model shows that the hospitals vary based on random effects

γoi = β00 + uoi (4.8)

γ2i = β22 + u2i (4.9)

The intercept γoi depends on the overall fixed intercept β00 and the random term
uoi associated with the hospital i , while the hospital slope γ2i depends on the overall
fixed slope β22 and the random effect u2i associated with the slope for hospital i. By
substituting the expression for γoi and γ2i into (4.7) and (4.8), and then substituting
the resulting expression for γoij and γ2ij into (4.9), we obtained

log

[
pijk

1 − pijk

]

= β00 + γ1ijAgeijk + γ1iExperienceij + uoi + uoij+
(
β22 + u2i + u2ij

)
Losijk (4.10)
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Thus, we have a generalized linear mixed model with random effects uoi, uoij, γ1i

and γ1ij. Therefore, Losijk is associated with both a fixed and random part. We take
advantage of this regrouping of terms to incorporate the random effects and their
variance-covariance matrix, so that uoi, uoij, γ1i and γ1ij are jointly distributed nor-
mallywith ameanof zero and a covariancematrix reflecting the relationships between
the random effects.

4.3 Nested Higher Level Logistic Regression Models

For higher than three level nested we can easily present the model, though executing
the necessary computations may be tedious. Imagine if we had the data with another
level, hospitals nested within cities (level 4 denoted by h). Cities may have their
own way of monitoring healthcare within their jurisdiction. We also believed that the
number of beds within the hospital is a necessary variable. For such data, we will
have the kth patient nested within the jth doctor which is nested within ith hospital
which is nested in the hth city. Then the model is:

log

[
phijk

1 − phijk

]

= β00 + γ1hijAgehijk + γ1hiExperiencehij+
γ1hBedhi + uoh + uohi + uohij +

(
β22 + u2hi + u2hij

)
Loshijk (4.11)

5 Possible Problems with Hierarchical Model

5.1 Issues in Hierarchical Modeling

We found that convergence of parameter estimates can sometimes be difficult to
achieve, especially when fitting models with random slopes or higher levels of nest-
ing. Some researchers have found that convergence problems may occur if the out-
come is skewed for certain clusters or if there is quasi or complete separation. Such
phenomena destroy the variability within clusters which is essential to obtaining the
solutions. In addition, including toomany randomeffectsmay not be computationally
possible (Schabenberger 2005).

We also found what other researchers did; for hierarchical logistic models for
nested binary data, it is often not feasible to estimate random effects for both inter-
cepts and slopes at the same time in a model. Newsom (2002) showed that we
can have models with too many parameters to be estimated given the number of
covariance elements included. Others found that such models can lead to severe con-
vergence problems, which can limit the modeling. Before fitting these conditional
models, McMahon et al. (2006) suggested that one should determine whether there is
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significant cluster interdependence to justify the use of multilevel modeling. Irimata
and Wilson (2017) through simulation gave some further guidance.

Regardless of the number of clusters, Austin (2010) found that for all statistical
software procedures, the estimation of variance components tended to be poor when
there were only five subjects per cluster. The number of clusters on the mean number
of quadrature points was negligible. However, when the random effects were large,
Rodriquez and Goldman (1995) found substantial decreases in the estimation of
fixed effects and/or variance components. They also found that there was bias in the
estimation when the number of subjects per cluster was small.

These hierarchical models can be fitted through SAS with the GLIMMIX or
NLMIXED procedure as well as in SPSS and R. Maas and Hox (2004) claimed that
only one randomstatement is supported in theNLMIXEDprocedure so that nonlinear
mixed models cannot be assessed at more than two levels. However, Hedeker et al.
(2008), Hedeker et al. (2012) showed how more than one random statement can be
used for continuous data in the NLMIXED procedure with more than two-levels.

5.2 Parameter Estimations

The conditional joint distribution of the responses and the distribution of the ran-
dom effects provide a joint likelihood which cannot necessarily be readily written
down in closed form. However, we still need to estimate the regression coefficients
and the random components. In so doing, it is imperative for us to use some form
of approximations. Sometimes researchers have used the quasi-likelihood approach
through a Taylor series expansion to approximate the joint likelihood. The approxi-
mate likelihood is maximized to produce maximized quasi-likelihood estimates. The
disadvantage which many researchers have pointed out with this approach is the bias
involved with quasi-likelihoods (Wedderburn 1974). Other researchers have resorted
to numerical integration, split up into quadratures, to obtain approximations of the
true likelihood. More integration points will increase the number of computations
and thus impede the speed to convergence, although it increases the accuracy. Each
added random component increases the integral dimension. A random intercept is
one dimension (one added parameter), a random slope makes that two dimensions.
Our experience is that the three-level nested models with random intercepts and
slopes often create problems regarding convergence.

5.3 Convergence Issues in SAS

We spent considerable time overcoming the challenges of the GLIMMIX procedure.
We reviewed available literature and discussed with those with experience using
SAS. Although there are by nomeans guarantees that there will not be challenges, we
provide in this chapter our experiences, underscored by others, as well as suggestions
for improving the performance of this procedure.
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Non-convergence in the GLIMMIX procedure can be identified by looking at
the output and the log. The most obvious indication of issues is in the convergence
criterion, which is provided below the iteration history. When convergence is not
obtained, SAS will provide the following warning: “Did not converge”.

A successful convergence message does not itself necessarily guarantee that the
model converged. In some cases, the convergence criterion will be satisfied, but
the standard error for one or more of the (non-zero) covariance parameters will be
missing. When this occurs, the standard error will be given by a “.” instead of an
actual estimate. In these cases, the output may look similar to the following:

Covariance Parameter Estimates
Cov Parm Subject Estimate Standard Error
Intercept div 0.09097 .
urban div 0.01127 .

When there is non-convergence, there are a number of possible remedies. Many
authors, such as Kiernan et al. (2012) have offered a number of possible solutions.
Researchers using the GLIMMIX procedure may choose to:

• Drop certain variables
• Relax the convergence criterion
• Increase the value of ABSCONV =
• Change the covariance structure using TYPE =
• Adjust the quadrature using QUAD =
• Utilize different approximation algorithms such as TECH = NRRIDG or TECH =
NEWRAP, in the NLOPTIONS statement.

• Increase the number of iterations using MAXITER = in the NLOPTIONS
statement

• Control the number of outer iterations using the INITGLM option
• Increase the number of optimizations using the MAXOPT = option
• Rescale data values to reduce issues relating to extreme values
• Utilize an alternative approach, such as the %HPGLIMMIX MACRO (Xie and
Madden 2014)

For a more thorough discussion of the procedure itself, Ene et al. (2015) provided
a thorough introduction to the use and interpretation of the GLIMMIX procedure in
SAS.

6 Simulation of Data

The IML procedure in SAS was used to simulate two-level data following a general-
ized linear mixed model with random intercepts and random slopes. In this example,
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we explored the effects of including an increasing number of fixed effects when
using the GLIMMIX procedure to fit a logistic regression model with one random
intercept and one random slope. The approaches discussed in this section can readily
be expanded to simulate data with more than two levels, although only two levels
are discussed for ease of interpretation and understanding.

6.1 Simulation Setup

Here we set the parameters for the simulation. We will assume that our random
intercept has variance σ 2

I NT=7 and that the random slope has variance σ 2
SLOPE=15.

We also assume that there are six continuous fixed effects. Each of the fixed effects
has a mean of 1, with some random noise added such that the means are not all
equal. The fixed effects are assumed to independent of one another and also pairwise
independent of the random slope. The simulated data will include 15 clusters of
observations, eachwith a randomly chosen number of observations between 2 and 40.

proc iml;
*Set the variance of the random slope; 
sigInt = 7; 
sigSlope = 15; 
*Set the coefficients; 
Bcont = 0.09; 
*Set the observation level parameters; 
*Set the means for 6 continuous fixed effects, and one 
random slope; 
means = {1,1,1,1,1,1,6};
*Slightly alter the means; 
noise = normal(j(7,1));
noise[7]=0;  
means = means+noise; 
*Set the covariance of the fixed and random predictors; 
R=I(7);
*Select the number of clusters; 
b = 15; 
*Randomly select the number of observations in each clus-
ter;
randobs = j(b,1);
call randgen(randobs, "Uniform"); 
*Transform to be between 2 and 40; 
n = 2 + floor((41-2)*randobs);
*Calculate the overall total number of observations; 
ntot = sum(n);

Once the parameters for the simulation are chosen, the cluster level data are
created. Each of the random (cluster) intercepts are chosen according to independent
random standard normal distributions with mean of 0 and standard deviation of 1.
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The random (cluster) slope coefficients are also chosen according to independent
random normal distributions with our specified variance and a mean of -1. In effect,
each of the 15 clusters is assigned a unique cluster level intercept and slope term.
Our design matrix is created using these random values.

*Create cluster level data;
*Cluster IDs; 
cid = (1:b)`;
*Cluster random intercepts; 
cint = randnormal(b,0,1);
*Cluster random slopes; 
cslope = randnormal(b,-1,sigSlope);
*Loop through to create the design matrix; 
cluster = j(ntot, 3);
startindex = 1;
do i=1 to b; 

1;
1] = cid[i]; 
2] = cint[i]; 
3] = cslope[i]; 

endindex = startindex + n[i] - 
cluster[startindex:endindex,
cluster[startindex:endindex,
cluster[startindex:endindex,
startindex = endindex + 1;

end;

Once the cluster level data are created, we can generate the observation level data.
We create a matrix of independent normal realizations to serve as the observations
for each of the six continuous fixed as well as the random slope variables. The
realizations of each variable are created using a multivariate random normal. The
fixed effect predictors are also transformed for better model fitting.

*Create observation level data;
X = randnormal(ntot, means, R); 
*Apply some changes to the observation level data; 
X[,1:6] = (X[,1:6]/1.6 + 5.1)*10;2] = bin(X[,2],cuts) - 1;

We combine our simulated data to create two matrices. The first matrix is used to
combine all fixed and random effects information, while the second matrix provides
a reduced set of information for use in simulation of the response. This secondmatrix
removes information on the true random slope coefficient and the true cluster ID and
thus contains information on the six fixed effects and the random intercept term.

*Create matrix of both cluster and observation level data;
alldat = X || cluster; 
*Final data for simulation, excluding the random slope 
predictor and cluster ID; 
keepind = {1,2,3,4,5,6,9};
simdat = alldat[,keepind];
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The coefficients for the fixed effect predictors are set according to those specified
at the start of the simulation. The cluster level (random) intercept is assigned a
coefficient equal to the square root of the random intercept variance term; since the
random intercepts were originally simulated from a standard normal distribution, this
coefficient introduces the specified variance into the simulation. These coefficients
are also standardized based on the standard deviation of the respective observations.

*Set coefficients;
beta = j(7,1);
beta[1:6]=Bcont;
beta[7] = sqrt(sigInt); 
*Standardize betas by the standard deviation; 
datadev = STD(simdat); 
beta = beta / datadev`; 

We create our response as a function of these covariates. The simulated data
are multiplied by the coefficients and the effect of the random slope is added in.
The resulting value is then converted into a probability and used to create a binary
response according to the Bernoulli distribution. This response is then combinedwith
a “blinded” data matrix which has the value of the cluster intercept and the random
slope coefficients removed. The final matrix is then output to a SAS data set with
specified variable names.

*Create the response with the random slope effect added;
xb = simdat * beta + cluster[,3] # alldat[,7];
probs = 1 / (1 + exp(-xb)); 
y = rand("Bernoulli",probs); 
*Create the final data with the cluster intercept removed; 
outdat = y || alldat[,1:8];
*Output to a data set; 
create SimData from

outdat[colname={"Y" "X1" "X2" "X3" "X4" "X5" "X6" 
"Xclust" "CID"}]; 
append from outdat; 
close SimData; 
*Quit IML; 
quit;

The outputted data set is then analyzed using the GLIMMIX procedure in SAS.
Each of the fixed effect predictors is added to the model one by one to determine the
point at which this procedure will fail, if at all. A partial example of these analyses
are shown below.
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*Analyze the data using glimmix;
*One fixed effect; 
proc glimmix data=SimData1; 

class CID; 
model Y(event="1") = X1 Xclust / dist=binary 

link=logit;
random intercept Xclust / type=vc subject=CID; 

run;
*Two fixed effects; 
proc glimmix data=SimData; 

class CID; 
model Y(event="1") = X1 X2 Xclust / dist=binary 

link=logit;
random intercept Xclust / type=vc subject=CID; 

run;
[…]

*Six fixed effects; 
proc glimmix data=SimData; 

class CID; 
model Y(event="1") = X1 X2 X3 X4 X5 X6 Xclust / 

dist=binary link=logit; 
random intercept Xclust / type=vc subject=CID; 

run;

6.2 Simulation Results

Although the GLIMMIX procedure is a powerful tool for fitting generalized linear
models, it is not uncommon to find that the procedure fails to provide results. We
utilized a simulation study similar to the one utilized in the previous section to
investigate the effect of the number of predictors on the failure rates in theGLIMMIX
procedure. A SAS macro was implemented to run the simulation across a variety of
conditions and the GLIMMIX procedure was used to analyze the data under each
condition for 1000 replications per condition. Each simulated data set contained
information on a binary outcome, an identifier label for cluster number, one (random)
cluster level predictor, and six fixed effect predictors. For each simulated data set,
the GLIMMIX procedure was used to analyze the data set six times, where each call
to the procedure included one additional fixed effect predictor.
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Table 1 Failure rates for the GLIMMIX procedure (three clusters)

Variances Number of predictors

Beta Intercept Slope 1 2 3 4 5 6

Weak Low Low 1 0.773 0.783 0.786 0.799 0.844

Moderate Low Low 1 0.760 0.784 0.804 0.798 0.815

Strong Low Low 1 0.780 0.785 0.807 0.817 0.821

Weak Low Medium 0 0.418 0.638 0.743 0.858 0.941

Moderate Low Medium 0 0.501 0.706 0.856 0.903 0.934

Strong Low Medium 0 0.325 0.506 0.675 0.788 0.893

Weak Low High 0 0.423 0.577 0.684 0.793 0.877

Moderate Low High 0 0.549 0.689 0.820 0.898 0.911

Strong Low High 0 0.450 0.629 0.703 0.826 0.865

Weak Medium Low 0 0.492 0.644 0.751 0.823 0.912

Moderate Medium Low 0 0.399 0.518 0.675 0.811 0.885

Strong Medium Low 0 0.322 0.488 0.641 0.745 0.817

Weak Medium Medium 0 0.459 0.604 0.698 0.820 0.899

Moderate Medium Medium 0 0.423 0.607 0.760 0.856 0.923

Strong Medium Medium 0 0.428 0.537 0.648 0.761 0.846

Weak Medium High 0 0.422 0.610 0.716 0.844 0.902

Moderate Medium High 0 0.367 0.557 0.725 0.846 0.910

Strong Medium High 0 0.393 0.543 0.636 0.788 0.831

Weak High Low 0 0.463 0.565 0.712 0.791 0.877

Moderate High Low 0 0.392 0.515 0.662 0.845 0.885

Strong High Low 0 0.364 0.509 0.664 0.743 0.851

Weak High Medium 0 0.529 0.701 0.777 0.880 0.956

Moderate High Medium 0 0.413 0.602 0.684 0.854 0.915

Strong High Medium 0 0.356 0.511 0.669 0.769 0.845

Weak High High 0 0.324 0.519 0.661 0.779 0.839

Moderate High High 0 0.327 0.484 0.656 0.831 0.869

Strong High High 1 0.376 0.581 0.738 0.808 0.842

In particular, the conditions examined were the number of data clusters, the
strength of the variance of both the random intercept and slope and strength of
fixed effect coefficients. The simulation took into account data sets with either 3, 15
or 45 clusters of data. The random effect variances we investigated included all com-
binations of low, medium and high variances for the random intercept and random
slope—yielding a total of nine different variance combinations. The fixed effects
also took three levels of strength—weak, moderate or strong.

The results of this simulation are given in Tables1, 2 and 3 and are also displayed
graphically in Fig. 1. These displays provide the failure rates for the 1000 simulations
conducted for each of the specified conditions, thus higher values indicate poorer
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Table 2 Failure Rates for the GLIMMIX Procedure (fifteen clusters)

Variances Number of predictors

Beta Intercept Slope 1 2 3 4 5 6

Weak Low Low 0 0.413 0.400 0.404 0.414 0.396

Moderate Low Low 0 0.415 0.424 0.433 0.434 0.422

Strong Low Low 0 0.441 0.430 0.431 0.418 0.428

Weak Low Medium 0 0.138 0.180 0.337 0.484 0.610

Moderate Low Medium 0 0.182 0.272 0.387 0.493 0.579

Strong Low Medium 0 0.121 0.199 0.273 0.378 0.459

Weak Low High 0 0.152 0.281 0.401 0.509 0.635

Moderate Low High 0 0.200 0.269 0.355 0.459 0.545

Strong Low High 0 0.131 0.239 0.332 0.370 0.473

Weak Medium Low 0 0.171 0.251 0.321 0.449 0.567

Moderate Medium Low 0 0.148 0.258 0.445 0.570 0.613

Strong Medium Low 0 0.093 0.157 0.222 0.328 0.411

Weak Medium Medium 0 0.148 0.243 0.325 0.411 0.530

Moderate Medium Medium 0 0.167 0.294 0.406 0.514 0.573

Strong Medium Medium 0 0.118 0.189 0.284 0.348 0.455

Weak Medium High 0 0.214 0.304 0.396 0.459 0.627

Moderate Medium High 0 0.220 0.295 0.399 0.478 0.590

Strong Medium High 0 0.158 0.238 0.305 0.404 0.489

Weak High Low 0 0.092 0.191 0.324 0.404 0.531

Moderate High Low 0 0.157 0.252 0.366 0.440 0.552

Strong High Low 0 0.085 0.141 0.249 0.351 0.446

Weak High Medium 0 0.129 0.217 0.347 0.446 0.532

Moderate High Medium 0 0.122 0.227 0.335 0.503 0.605

Strong High Medium 0 0.133 0.194 0.272 0.359 0.437

Weak High High 0 0.140 0.232 0.329 0.470 0.541

Moderate High High 0 0.093 0.173 0.258 0.369 0.505

Strong High High 0 0.129 0.199 0.266 0.332 0.465

performance as a higher proportion of the calls to the GLIMMIX procedure failed
to provide results. Tables1, 2 and 3 divide the results of the simulations based on
the number of clusters in each simulation, where Table1 summarizes the simulations
with 3 data clusters each, Table2 summarizes the simulations with 15 data clusters
each and Table3 summarizes the simulations with 45 data clusters each. The first
column in each of the tables provides the strength of the fixed effects predictor (weak,
moderate or strong). The second and third columns denote the simulation settings for
the variance of the random intercept and slope, respectively,where each variance term
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Table 3 Failure Rates for the GLIMMIX Procedure (forty-five clusters)

Variances Number of predictors

Beta Intercept Slope 1 2 3 4 5 6

Weak Low Low 0 0.243 0.247 0.245 0.236 0.235

Moderate Low Low 1 0.236 0.246 0.249 0.255 0.244

Strong Low Low 0 0.298 0.303 0.305 0.296 0.303

Weak Low Medium 0 0.055 0.090 0.123 0.159 0.184

Moderate Low Medium 0 0.051 0.098 0.127 0.163 0.243

Strong Low Medium 1 0.038 0.073 0.108 0.141 0.189

Weak Low High 1 0.035 0.073 0.099 0.140 0.197

Moderate Low High 1 0.038 0.061 0.101 0.157 0.214

Strong Low High 0 0.041 0.052 0.081 0.139 0.197

Weak Medium Low 0 0.060 0.089 0.134 0.169 0.223

Moderate Medium Low 0 0.061 0.093 0.127 0.189 0.215

Strong Medium Low 0 0.045 0.069 0.096 0.134 0.185

Weak Medium Medium 0 0.027 0.054 0.088 0.163 0.209

Moderate Medium Medium 0 0.062 0.104 0.139 0.168 0.208

Strong Medium Medium 0 0.071 0.099 0.118 0.146 0.187

Weak Medium High 0 0.041 0.088 0.130 0.177 0.209

Moderate Medium High 0 0.050 0.066 0.112 0.143 0.169

Strong Medium High 0 0.026 0.052 0.089 0.126 0.169

Weak High Low 0 0.031 0.057 0.080 0.141 0.209

Moderate High Low 0 0.031 0.061 0.104 0.139 0.187

Strong High Low 0 0.032 0.046 0.092 0.156 0.192

Weak High Medium 0 0.050 0.094 0.139 0.206 0.263

Moderate High Medium 0 0.068 0.111 0.161 0.182 0.259

Strong High Medium 0 0.030 0.068 0.101 0.129 0.173

Weak High High 0 0.038 0.086 0.139 0.170 0.235

Moderate High High 0 0.081 0.123 0.179 0.244 0.300

Strong High High 0 0.053 0.080 0.125 0.149 0.202

takes one of three levels (low, medium, high). The remaining six columns contain
the failure rates as a proportion for the GLIMMIX procedure with a given number
of fixed effects predictors. For instance, we can see from Table1, in the first data
row, in the last column that of the 1000 simulations with three clusters, weak fixed
effects, low intercept variance and low slope variance, 84.4% of the models with six
fixed effect predictors failed to converge.
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Fig. 1 Failure rates for the GLIMMIX procedure

Figure1 provides a graphical representation of the same simulated data presented
in Tables1, 2 and 3. Each individual plot contains three lines representing the failure
rates for each of the three strengths of the fixed effects. The blue line represents the
simulations with weak predictors, the red line represents the simulations with mod-
erate predictors and the green line represents the simulations with strong predictors.
The vertical (Y) axis of each individual plot denotes the failure rates as a percent-
age, where higher values indicate higher rates of failure. The horizontal (X) axis
within each of the individual plots represents the number of fixed effects included in
the model for those simulations. The individual plots are also organized into three
columns according to the number of data clusters in those simulations. The individ-
ual plots are further grouped into nine rows according to the strength of the random
effects for those simulations. For example, in the individual plot in the last column
of the first row contains information on the 1000 simulations in which there were 45
clusters, with weak fixed effects predictors, low random intercept variance and low
random slope variance.
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In general, as the number of predictors increased, the failure rates also increased.
Notable exceptions include the case where there is very little variance in the random
effects. For instance, in the case of low random intercept variance and low random
slope variance, the failure rates may actually decrease, or increase only slightly. We
can also see that the effect of increasing the number of predictors is also suppressed
when there are more data clusters. In general, the GLIMMIX procedure is more
successful in analyzing datawithmore clusters as illustrated by the lower failure rates.
Similarly, data with overall stronger random effect variance is also less susceptible
to failure as the number of predictors in the model increases. This holds true with
respect to both the random intercept variance as well as the random slope variance.

7 Analysis of Data

7.1 Description

A subset of data from the 2011 Bangladesh Demographic and Health Survey is used
in this study. This subset contains information on 1000 women between the ages of
10 and 49, living in Bangladesh. The data in this study are hierarchical in nature
in that each of the women is nested within one of seven different districts, which
correspond approximately to administrative regions in Bangladesh (NIPORT 2013).
A simplified version of this structure is represented as Fig. 2.

The outcome of interest in this data set is a binary variable representing the
woman’s knowledge of AIDS. The variable takes one of two values representing
knowledge of AIDS (1) or no knowledge of AIDS (0). In addition to this outcome,
the data set also includes information on the woman’s wealth index, age, number of
living children as well as whether or not the woman lives in an urban or rural setting.
Wealth index had five possible levels representing the quintile to which the woman
belonged. Age represented the woman’s age at the time of survey while number of
living children represented how many living children the woman had at the time of
survey. The urban/rural variable was a district level predictor as the value of this
predictor were partially driven by the administrative region.

Please note to use the included DHS subset data, you must register as a DHS
data user at: http://www.dhsprogram.com/data/new-user-registration.cfm. This sub-
set data must not be passed on to others without the written consent of DHS
(archive@dhsprogram.com). You are required to submit a copy of any reports/
publications resulting from using this subset data to: archive@dhsprogram.com.

http://www.dhsprogram.com/data/new-user-registration.cfm
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Fig. 2 Hierarchical
structure in 2011 DHS Study
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7.2 Data Analysis

We fit a logistic regression model with one random intercept and one random slope
for the urban/rural variable. For these data, the random effects were used to address
the clustering present due to districts. Each of these models was fitted using the
GLIMMIX procedure in SAS. The first model included one fixed effect predictor for
wealth index.

log

[
pjk

1 − pjk

]

= β0 + γ1Urbanj + γ1jWealthjk + uoj

As in the data simulation section, these data can be analyzed in SAS using code
similar to the example given below. Note that additional fixed effects predictors can
be included in the model statement to fit additional models.

proc glimmix data=bang;
class div urban wealth; 
model aids(event="1") = urban wealth / dist=binary 

link=logit;
random intercept urban /type=vc subject=div; 

run;

The convergence criterion noted that the GLIMMIX procedure converged suc-
cessfully and that we are also provided with standard errors for our random effects.
Therefore, we see the procedure was successful in fitting the model.
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Iteration History
Iteration Restarts Subiterations Objective Function Change Max Gradient

0 0 4 4562.1081534 2.00000000 0.00012
1 0 3 4679.3151727 0.37988319 0.000023
2 0 2 4718.2025244 0.05445086 0.000019
3 0 1 4720.2027844 0.00248043 0.000042
4 0 1 4720.2171672 0.00004268 1.244E-8
5 0 0 4720.2172745 0.00000000 5.905E-6

Convergence criterion (PCONV=1.11022E-8) satisfied.

Fit Statistics
-2 Res Log Pseudo-Likelihood 4720.22
Generalized Chi-Square 973.41
Gener. Chi-Square / DF 0.98

Covariance Parameter Estimates
Cov Parm Subject Estimate Standard Error
Intercept div 0.1149 0.1102
urban div 0.05142 0.09565

Type III Tests of Fixed Effects
Effect Num DF Den DF F Value Pr > F
urban 1 6 1.48 0.2692
wealth 4 982 21.92 <.0001

We also fit the model which included fixed effects for both wealth and age.

log

[
pjk

1 − pjk

]

= β0 + γ1Urbanj + γ1jWealthjk + γ2jAgejk + uoj

In this case, we can similarly see that the convergence criterion is satisfied and that
estimates of the standard errors of the random effects are provided. Thus, we see that
the GLIMMIX procedure was successful in fitting a model.
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Iteration History
Iteration Restarts Subiterations Objective Function Change Max Gradient

0 0 4 4565.1551673 2.00000000 0.000164
1 0 3 4759.8377085 0.81042673 0.00017
2 0 2 4808.4720043 0.11542518 0.000114
3 0 1 4811.3231643 0.00580829 0.000136
4 0 1 4811.3435049 0.00011603 5.451E-8
5 0 1 4811.3434869 0.00000132 5.917E-9
6 0 0 4811.3434867 0.00000000 1.381E-7

Convergence criterion (PCONV=1.11022E-8) satisfied.

Fit Statistics
-2 Res Log Pseudo-Likelihood 4811.34
Generalized Chi-Square 973.16
Gener. Chi-Square / DF 0.98

Covariance Parameter Estimates
Cov Parm Subject Estimate Standard Error
Intercept div 0.1152 0.1059
urban div 0.03594 0.08961

Type III Tests of Fixed Effects
Effect Num DF Den DF F Value Pr > F
urban 1 6 1.70 0.2403
wealth 4 981 22.06 <.0001
age 1 981 43.47 <.0001

We added a third predictor for number of living children to our mixed model.

log

[
pjk

1 − pjk

]

= β0 + γ1Urbanj + γ1jWealthjk + γ2jAgejk + γ3jChildrenjk + uoj

With the inclusion of this third predictor, we see that the GLIMMIX procedure fails
to converge and consequently does not provide estimates of the standard errors of
the random effects. Hence, we see that, although SAS is able to fit the model with
two fixed effects, the inclusion of a third fixed effect leads to failure.
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Iteration History
Iteration Restarts Subiterations Objective Function Change Max Gradient

0 0 4 4583.476774 2.00000000 3.121596
1 0 3 4788.3397625 2.00000000 6.129E-6
2 0 2 4842.5826312 0.36041184 0.000157
3 0 1 4846.0866446 0.19708062 0.000187
4 0 1 4847.0951336 0.16428366 1.49E-7
5 0 1 4848.0956362 0.14098626 2.589E-9
6 0 1 4849.0959182 0.12352732 7.98E-9
7 0 1 4850.096021 0.10993349 4.498E-8
8 0 1 4851.0960586 0.09904095 6.01E-11
9 0 0 4852.0960724 0.09011439 4.282E-6
10 0 0 4853.0960785 0.08266460 5.821E-6
11 0 0 4854.0960808 0.07635276 6.385E-6
12 0 0 4855.0960816 0.07093651 6.594E-6
13 0 0 4856.0960819 0.06623786 6.674E-6
14 0 0 4857.0960819 0.06212302 6.687E-6
15 0 0 4858.0960828 0.05848863 6.683E-6
16 0 0 4859.0960811 0.05525857 6.782E-6
17 0 0 4860.0960789 0.05236722 6.898E-6
18 0 0 4861.0960963 0.04974318 5.95E-6
19 0 0 4862.0961081 0.04737287 7.581E-6

Did not converge.

Covariance Parameter Estimates
Cov Parm Subject Estimate Standard Error
Intercept div 0.09097 .
urban div 0.01127 .

Althoughwe do not explore its use in depth here, the%hpglimmixmacro provides
an alternative approach in SAS for fitting generalized linear mixed models (Xie
and Madden 2014). This macro offers improvements in memory usage as well as
processing time and supports the fitting of more complicated models as compared to
the GLIMMIX procedure. Although this macro does not currently provide standard
errors of the covariance parameter estimates or Type III test results, it can be useful
when alternative approaches fail to resolve convergence issues in the GLIMMIX
procedure. We fit the previously discussed model, which includes three fixed effects
predictors as well as one random intercept and one random slope for the Bangladesh
data. After loading the macro into the current SAS session, the model can be run
using code similar to the following.
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%hpglimmix(data=bang,
stmts=%str( 

class div urban wealth children; 
model aids = urban wealth age children / solu-

tion ; 
random int urban / subject=div solution; 

), 
error=binomial, maxit=50,
link=logit 

);

Though this model fails to converge in the GLIMMIX procedure, we see that
%hpglimmix provides results for the model which includes three fixed effect pre-
dictors.

Iteration History
Iteration Evaluations Objective Function Change Max Gradient

0 4 4892.189763 . 6.524357
1 5 4892.1622318 0.02753122 5.886723
2 3 4892.1566979 0.00553391 5.959108
3 3 4892.1564908 0.00020710 5.957165
4 5 4892.0850182 0.07147255 3.174453
5 4 4892.0847449 0.00027336 3.145538
6 4 4892.0726771 0.01206780 0.563614
7 4 4892.0726558 0.00002129 0.569235
8 4 4892.0726553 0.00000047 0.568549
9 5 4892.0724006 0.00025469 0.41386

10 4 4892.0721478 0.00025279 0.01987

Convergence criterion (GCONV=1E-8) satisfied.

Covariance Parameter Estimates
Cov Parm Subject Estimate
Intercept div 0.09138
urban div 0.01301
Residual 0.9905

Fit Statistics
-2 Res Log Likelihood 4892.07215
AIC (smaller is better) 4898.07215
AICC (smaller is better) 4898.09666
BIC (smaller is better) 4897.90988
CAIC (smaller is better) 4900.90988
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Another possible remedy in this case is found in theNLMIXEDprocedure in SAS.
This procedure utilizes likelihood-based approaches to fitmixedmodels for nonlinear
outcomes (Wolfinger 1999). This procedure is readily available in SAS software and
provides similar techniques to those available in the GLIMMIX procedure. Although
the models that can be fit in both procedures are similar, it is worth noting that the
two procedures use different techniques for estimation and thus the results may vary
between the two approaches. However, because different estimation techniques are
employed there are also cases in which the NLMIXED procedure will converge,
while the GLIMMIX procedure will not.

The NLMIXED procedure is implemented differently as compared to many other
procedures in SAS software. In particular, one must provide starting values for each
of the parameters of interest, which can be estimated in a number of ways. In this
example, we first used the logistic procedure to obtain estimates of the fixed effects
parameters and specify a generic value of ‘1’ for the variance of each of our ran-
dom effects (intercept and slope). We also specified an equation with respect to our
parameters and observed predictor values, and use this equation in the specification
of our model statement through the calculation of our probability using the logit
link. Finally, each of the random effects as well as the corresponding distribution is
specified, and the subject assigned.

proc logistic data=bang;
model aids_knowledge(event="1") = urban wealth age 

children/ link=logit; 
run;
proc nlmixed data=bang; 

parms b0=0.6916 b1=0.3335 b2=0.5921 b3=-0.0287 b4=-
0.2616 s2u = 1 s2r = 1;

xb = b0 + u + (b1+rb1)*urban + b2*wealth + b3*age + 
b4*children;

p = exp(xb) / (1+exp(xb));
model aids_knowledge ~binary(p); 
random u rb1 ~ normal([0,0],[s2u,0,s2r]) sub-

ject=div;
run;

We found that the NLMIXED procedure converges successfully and also pro-
vides solutions for both our fixed and random effects for the model which includes
three fixed effects predictors. Wolfinger (1999) provides a good introduction to the
NLMIXED procedure and its usage, as well as some of the underlying calculations.
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NOTE: GCONV convergence criterion satisfied.

Fit Statistics
-2 Log Likelihood 972.1
AIC (smaller is better) 986.1
AICC (smaller is better) 986.2
BIC (smaller is better) 985.7

Parameter Estimates
Parameter Estimate Standard Error DF t Value Pr > |t | Alpha Lower Upper Gradient
b0 0.6547 0.3339 5 1.96 0.1072 0.05 –0.204 1.5131 –0.0001
b1 0.3267 0.2801 5 1.17 0.2960 0.05 –0.393 1.0468 0.00032
b2 0.6156 0.06906 5 8.91 0.0003 0.05 0.4381 0.7931 –0.0004
b3 –0.0296 0.01113 5 –2.66 0.0448 0.05 –0.058 –0.001 0.00999
b4 –0.2567 0.06031 5 –4.26 0.0080 0.05 –0.412 –0.102 0.0018
s2u 0.03178 0.04894 5 0.65 0.5450 0.05 – 0.094 0.1576 0.00059
s2r 0.2798 0.2937 5 0.95 0.3846 0.05 –0.475 1.0349 –0.0001

In general, we found that the results of our data analysis are in agreement with our
findings based on the simulation study. The GLIMMIX procedure was successful in
analyzing the models with fewer fixed effects predictors. However, once we included
additional fixed effects, we saw that the GLIMMIX procedure failed to converge.
In these cases, we may choose to investigate only the smaller subset of predictors
in order to get successful analyses. Alternatively, if the larger number of predictors
is of interest, we can utilize the %hpglimmix macro, which is able to achieve
convergence, although the output is reduced. We may also utilize the NLMIXED
procedure, which utilizes different methods for estimation.

8 Conclusions

Fitting hierarchical logistic regression models to survey binary data is common in a
number of disciplines. These models are useful in analyzing survey data in the pres-
ence of clustering or correlation, which otherwise would make standard approaches
inappropriate due to the lack of independence amongst the outcomes. Although there
are a number of powerful approaches for fitting these models, such as the GLIMMIX
and NLMIXED procedures in SAS, the computational complexity of the algorithms
can often lead to failures in convergence.

Through the use of simulations, we obtained useful information for exploring the
reasons for non-convergence, as well as steps to avoid these issues. In particular,
when using the GLIMMIX procedure, researchers should be careful in selecting
predictors to include in the model. The inclusion of too many predictors can lead
to convergence issues, regardless of whether these predictors are fixed or random.
When many predictors must be included due to research or knowledge constraints
and if the GLIMMIX procedure failures to converge, other options can be explored to
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fit similar models. Because it utilizes different approaches, the NLMIXED procedure
is a viable option for obtaining convergence in the mixed model setting when the
GLIMMIX procedure fails. Recent advances, such as the %hpglimmix macro can
also be utilized as a remedy.

While we concentrated and presented results applicable only to the convergence
issue in the GLIMMIX procedure for two-level hierarchical logistic regression mod-
els, we believe that these approaches can be readily adapted and expanded to explore
different or more complex problems. In general, Monte-Carlo simulation offers a
fast, and inexpensive avenue for investigating problems such as convergence, as well
as appropriate solutions.
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Monte-Carlo Methods in Financial Modeling

Chuanshu Ji, Tao Wang and Leicheng Yin

Abstract The last decade has witnessed fast growing applications of Monte-Carlo
methodology to a wide range of problems in financial economics. This chapter con-
sists of two topics: market microstructure modeling and Monte-Carlo dimension
reduction in option pricing. Market microstructure concerns how different trading
mechanisms affect asset price formation. It generalizes the classical asset pricing
theory under perfect market conditions by incorporating various friction factors,
such as asymmetric information shared by different market participants (informed
traders, market makers, liquidity traders, et al.), and transaction costs reflected in
bid-ask spreads. The complexity of those more realistic dynamic models presents
significant challenges to empirical studies formarketmicrostructure. In this work, we
consider some extensions of the seminal sequential trade model in Glosten and Mil-
grom (Journal of Financial Economics, 14(1), 71–100, 1985) and perform Bayesian
Markov chain Monte-Carlo (MCMC) inference based on the trade and quote (TAQ)
database in Wharton Research Data Services (WRDS). As more and more security
derivatives are constructed and traded in financial markets, it becomes crucial to price
those derivatives, such as futures and options. There are two popular approaches for
derivative pricing: the analytical approach sets the price function as the solution
to a PDE with boundary conditions and solves it numerically by finite difference
etc.; the probabilistic approach expresses the price of a derivative as the conditional
expectation under a risk neutral measure and computes it via numerical integration.
Adopting the second approach, we notice the required integration is often performed
over a high dimensional state space in which state variables are financial time series.
A key observation is for a broad class of stochastic volatility (SV) models, the con-

C. Ji (B)
Department of Statistics and Operations Research, University of North Carolina,
Chapel Hill, NC 27599-3260, USA
e-mail: cji@email.unc.edu

T. Wang
Bank of America Merrill Lynch,
Bank of America Tower, One Bryant Park, New York, NY 10036, USA

L. Yin
Exelon Business Services Company, Enterprise Risk Management,
Chase Tower 10 S. Dearborn St, Chicago, IL 60603, USA

© Springer Nature Singapore Pte Ltd. 2017
D.-G. Chen and J.D. Chen (eds.), Monte-Carlo Simulation-Based Statistical
Modeling, ICSA Book Series in Statistics, DOI 10.1007/978-981-10-3307-0_14

285



286 C. Ji et al.

ditional expectations representing related option prices depend on high-dimensional
volatility sample paths through only some 2D or 3D summary statistics whose sam-
ples, if generated, would enable us to avoid brute force Monte-Carlo simulation for
the underlying volatility sample paths. Although the exact joint distributions of the
summary statistics are usually not known, they could be approximated by distribu-
tion families such as multivariate Gaussian, gammamixture of Gaussian, log-normal
mixture of Gaussian, etc. Parameters in those families can be specified by calculat-
ing the moments and expressing them as functions of parameters in the original SV
models. This method improves the computational efficiency dramatically. It is par-
ticularly useful when prices of those derivatives need to be calculated repeatedly as
a part of Bayesian MCMC calibration for SV models.

1 Hierarchical Modeling in Market Microstructure Studies

The research in financial economics becomes more necessary after the financial
crisis, with statistics playing an important role in such studies. Several milestones in
modern finance, such as capital asset pricing model (CAPM), Black-Scholes-Merton
derivatives pricing, hold under certain perfect market conditions, i.e. the market is
fully efficient with no taxes, no transaction costs, no bid-ask spreads, unlimited
short-selling, and all market participants sharing the same information, to name just
a few. Those assumptions are clearly violated in real financial markets, evidenced
by many empirical studies. Market microstructure concerns friction factors, aims to
understand how asset price formation is affected by various trading mechanisms.

In this work, we will focus on two aspects of market microstructure that attract
most attentions from financial economists: asymmetric information and bid/ask
spreads. We will follow the model-based approach in the seminal work of Glosten
andMilgrom (1985), referred to asG-Mmodel inwhat follows. It is a sequential trade
model assuming risk neutrality and a quote-driven protocol. The market maker posts
bid and ask prices in every (discrete) time unit based on which traders place their
orders. There are certain informed traders among other uninformed traders in the
market, and the proportion of informed traders is represented by a parameter α. The
information asymmetry induces adverse selection costs that force the market maker
to quote different prices for buying and selling, leading to the bid-ask spread. The
spread is a premium the market maker demands for trading with informed traders. A
special feature in G-M model is to present explicitly how bid and ask prices change
over time and are influenced by different trading orders.

Our research concerns empirical studies for G-M model and its extensions using
real market data. Due to the complexity of many market microstructure models such
as G-M, systematic model-based empirical studies are relatively lacking compared
to the development of theoretical models and model-free descriptive data analysis.
A noticeable contribution is Hasbrouck (2009) which considers an extension of Roll
model (cf. Roll 1984) and uses theGibbs sampler to estimate the effective trading cost
and trading direction. To validate the method, a high correlation 0.965 is calculated
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between the Gibbs sampler estimates of the effective cost and the descriptive esti-
mates based on high frequency TAQ data. The sophisticated hierarchical dynamic
structure in G-M model presents a challenge to model-based inference using real
market data. Little has been done in this direction. Das (2005) takes a useful step by
presenting an algorithm for computing approximate solutions to the bid/ask prices
and runs a simulation study under a modified G-M model. It helps us learn from the
market maker’s perspective, and paves a road for further studies.

In this work, we consider further extensions of G-Mmodel and perform Bayesian
MCMC inference based on the TAQ database in WRDS. Both the asymmetric infor-
mation and bid-ask spread issues are addressed. To the best of our knowledge, our
work is the first attempt at inference on market microstructure models of G-M type
based on intra-day data. Since the main focus of this chapter is implementation of
MCMC algorithms, some other useful results we developed along this line are not
included here, such as incorporation of GARCH (1,1) model for the volatility of asset
returns which furthermore improves the model fitting. More details are available in
Tao Wang’s Ph.D. thesis (cf Wang 2014) upon request.

1.1 The Model

The following setting for market microstructure is assumed:

• Let Vt denote the true underlying value (logarithmic share price) of a stock at time
t = 0, 1, ... The stock dynamics follows a randomwalk Vt = Vt−1 + εt , where the
innovations ε1, ε2, ... are iid N (0, σ 2) random variables with parameter σ > 0.

• A single market maker sets the ask price At and the bid price Bt for one share of
the stock at t .

• Traders enter the market sequentially. Each of them can buy the stock at the price
At , or sell the stock at Bt . There are two types of traders: uninformed and informed.
An uninformed trader (assumed not knowing Vt ) will place a buy or sell order with
equal probability η, or choose not to trade with probability 1 − 2η. An informed
trader, who is assumed to know Vt , will place a buy order if Vt > At or a sell order
if Vt < Bt , or no trade order if Bt ≤ Vt ≤ At .

• When setting At and Bt at each t , the market maker, knowing neither the type of
the trader nor the true value V , will face an informed trader with probability α or an
uninformed one with probability 1 − α, and receive an order placed by that trader,
based onwhich hewill update his belief in such away as defining At = Et (V |Buy)
and Bt = Et (V | Sell). Here Et (·) denotes the conditional expectation given the
market maker’s information up to t , with “Buy/Sell” inserted in the condition to
reflect the most recent order type.

• Denote the observed bid/ask prices by Pb
t and Pa

t respectively and assume
Pb
t ∼ N (Bt , δ

2) and Pa
t ∼ N (At , δ

2), where δ > 0measures pricing errors (small
perturbation).
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Following Bayes’ formula we get

Et [V |Sell] =
∫

v pt (v|Sell)dv

=
∫

v
Pt (Sell|v) ft (v)

Pt (Sell)
dv, (1)

where ft (v) is the normal density of Vt and Pt (Sell), the probability of receiving a
sell order at time t , is given by

Pt (Sell) = α

∫ Bt

−∞
ft (v)dv + (1 − α)η. (2)

Therefore,

Bt = 1

Pt (Sell)

∫ ∞

−∞
vPt (Sell|v) ft (v)dv

= 1

Pt (Sell)

(

α

∫ Bt

−∞
v ft (v)dv + (1 − α)ηV0

)

. (3)

Similarly, the ask price is given by

At = 1

Pt (Buy)

(

α

∫ ∞

At

v ft (v)dv + (1 − α)ηV0

)

, (4)

where Pt (Buy) is given by

Pt (Buy) = α

∫ ∞

At

ft (v)dv + (1 − α)η. (5)

Note that determination of Bt amounts to solving (3) numerically since Bt appears
on both sides of (3). Similarly, At is found by solving (4) numerically.

1.2 Bayesian Inference via MCMC Algorithms

The paradigm of Bayesian hierarchical modeling appears applicable for the market
microstructure study in this work. The variables (called unknowns in Bayesian terms)
can be classified in three layers: parameter θ = {α, η, σ 2, δ2} (top layer); observed
data Pa,b = {(Pa

t , Pb
t ), t = 1, ..., T } (bottom layer); unobserved latent variables

V = {Vt , t = 0, 1..., T } (middle layer). The presence of latent variable V hinders
the traditional maximum likelihood estimation (MLE) for θ , which could be tackled
by E-M algorithms (cf. Dempster et al. 1977; Meng and van Dyk 1997). We adopt
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the Bayesian approach due to its flexibility of using conditional probabilities. The
data Pa,b is treated as given and the focus will be on the (joint) posterior distribution
π(θ, V | Pa,b) which is intractable analytically. Thanks to a rich class of MCMC
computational algorithms, we can generate samples from a Markov chain with the
state space for {θ, V } and the limiting distribution π(θ, V | Pa,b). The key is to
design the transition probability mechanism judiciously such that (i) the resulting
chain converges to the target distribution π(θ, V | Pa,b) rapidly (weak convergence
issue); (ii) statistical parameters (as various functions of θ ) can be estimated by cor-
responding sample statistics based on the observed MCMC sample paths accurately
(variance reduction issue). There is a huge literature for MCMC. See Robert and
Casella (2004), Brooks et al. (2011) for an in-depth coverage of basic MCMC theory
and many related issues in applications.

Inwhat follows, several elements in the proposedMCMCalgorithm are described.
See Appendix 1 for more details in implementation.

1.2.1 Priors

Assume the four components of θ are independent under the prior π . For α, a con-
jugate beta prior is adopted with its mode close to 0.1 because the proportion of
informed traders in the market is relatively small. A uniform prior over the interval
(0, 1/2) for η is adopted, i.e. no information other than the restriction 0 < 2η < 1
is used. For the volatility parameter σ 2, either a conjugate inverse gamma prior or
uniform prior is used. For δ2, we use a uniform prior over a small interval. Having
specified the prior, the posterior distribution can be derived accordingly.

1.2.2 Metropolis-Hastings Within Gibbs

MCMC is a repertoire of algorithms among which Metropolis-Hastings algorithm
(M-H) and the Gibbs sampler (GS) are the most popular ones. GS reflects a natural
divide-and-conquer strategy when the state space is multi-dimensional. A one step
transition of theMCMC chain amounts to cycling through a sequence of partitioning
blocks of the state space, where each block can contain just a single variable or be a
vector of several components. When updating one block, the states of other blocks
remain fixed. M-H is an acceptance-rejection sampling scheme applied to Markov
chains. It is very useful when direct sampling from a probability density becomes
intractable, and it also has an advantage that we only need to know the density up to
a normalizing constant factor. Although GS is shown to be a special case of M-H
mathematically, most people in theMCMCcommunity still consider them separately
because they really represent very different ideas. We apply Metropolis-Hastings
within Gibbs (MHwGS) to our setting. Using superscripts for MCMC iterations, the
transition from step n to step n + 1 will follow
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GS step: Partition the state space into k disjoint blocks and express the state
variable as x = {x1, ..., xk}. Without loss of generality, let the updating follow a
natural order x1 → x2 → · · · → xk in one iteration. Having done the updating
x (n)
j → x (n+1)

j for blocks j < i , we are to update x (n)
i to x (n+1)

i by sampling from

the conditional density f (·| x (n+1)
j , j < i; x (n)

j , j > i).

M-H step: When sampling directly from f (·| x (n+1)
j , j < i; x (n)

j , j > i) is diffi-

cult, we generate y from a proposal density g(·| x (n+1)
j , j < i; x (n)

j , j > i) first,

then use the M-H ratio as a probability of accepting y and assigning x (n+1)
i = y;

otherwise stick to x (n)
i without a change and move forward to updating x (n)

i+1, etc.

In this work, we simply let each of α, η, σ 2, δ2; V1, ..., VT be a block by itself (with
T + 4 blocks in total). Choosing the proposal density g is an art. See Appendix 1 for
more details.

1.2.3 Diagnostics for Convergence

Although the mathematical aspect of MCMC convergence is addressed by Marlov
chain theory, an indispensable part of MCMC implementation in practice is to deter-
minewhen shouldwe stop running a chain and how shouldwe use the samples to esti-
mate various numerical characteristics of the target distribution. Herewe only present
two commonly used MCMC convergence diagnostic criteria. As many MCMC con-
tributors commented in the literature, no single criterion can guarantee convergence
and each one has its own pros and cons. A general suggestion is to use several criteria
for each problem at hand.

Gelman-Rubin Method

The proposal by Gelman and Rubin (1992) consists of the following steps:

• Run m > 1 parallel chains of length 2n with over-dispersed starting values.
• Disregard the first n samples in each chain.
• Select a dynamic variable of interest, say x , and calculate its within-chain and
between-chain sample variances.

• Compute the estimated variance as a weighted sum of within-chain and between-
chain variances.

• Calculate the shrink factor.

The within-chain variance is given by W =
∑m

j=1 s
2
j

m , where s2j =
∑n

i=1(xi j−x̄ j )
2

n−1 is

the sample variance for j th chain and x̄ j =
∑n

i=1 xi j
n . The between-chain variance

is given by B = n
m−1

∑m
j=1(x̄ j − ¯̄x)2, where ¯̄x =

∑m
j=1 x̄ j

m . B can be viewed as the

variance of chain means multiplied by n. Then the estimated variance iŝVar(x) =
(1 − 1

n )W + 1
n B and the shrink factor is R̂ =

√
̂Var(x)

W whose value, if substantially
above 1, would indicate lack of convergence. This criterion is easy to use but
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appearsmore necessary than sufficient in the sense that itmay indicate convergence
prematurely if the shrink factor happens to be close to 1 by chance. A remedy is
to calculate the shrink factor at several points in time (gelman.plot in R package
CODA) to see whether the shrink factor is really settled or still fluctuating.

Geweke method

The procedure proposed by Geweke (1992) is based on a test for equality between
means of the first and last parts of aMarkov chain (by default the first 10%and the last
50%). If the samples are drawn from the stationary distribution of the chain, the two
means are equal andGeweke statistic follows the distribution N (0, 1) asymptotically.

The test statistic is a standard Z-score: the difference between the two sample
means divided by its estimated standard error. The standard error is estimated from
the spectral density at zero so as to take into account any autocorrelation. Hence
values of Z-score that fall in the extreme tails of N (0, 1) suggest that the chain has
not fully converged.

IfGeweke’s diagnostic indicates that the first and last parts sampled fromaMarkov
chain are not drawn from the same distribution, it may be useful to discard the first
few iterations to see if the rest of the chain has “converged”. The geweke.plot in R
package CODA shows what happens to Geweke’s Z-score when successively larger
numbers of iterations are discarded from the beginning of the chain. To preserve
the asymptotic conditions required for Geweke’s diagnostic, the plot never discards
more than half the chain.

The first half of theMarkov chain is divided into several segments, then Geweke’s
Z-score is repeatedly calculated. The first Z-score is calculated with all iterations in
the chain, the second after discarding the first segment, the third after discarding the
first two segments, etc. The last Z-score is calculated using only the samples in the
second half of the chain.

1.3 Simulation Study

In order to test whether our MCMC algorithms work well, we do simulation study
first. In the simulation study, we specify α = 0.1, η = 0.25, σ 2 = 0.25, δ2 = 0.09.
Based on themarket model in Sect. 1.1, we calculated the bid and ask prices, and then
use these synthetic data to estimate the four parameters in the model by our MCMC
algorithms.We run twoMCMC chains, each containing 50,000 samples, and discard
10,000 burn in samples. After the burn in stage, we retain one in every 20 samples
as a new path. Table1 examines the effectiveness of the estimation strategy, showing
the true value, posterior summary statistics of those parameters. We could use the
posterior mean or posterior median as an estimation of the parameter.
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Table 1 Summary statistics of the posterior samples for all four parameters in simulation study

Parameter True value Min Median Mean Max Standard
error

α 0.10 0.003 0.15 0.15 0.51 0.001

η 0.25 0.00 0.23 0.25 0.50 0.002

σ 2 0.25 0.05 0.21 0.25 1.67 0.002

δ2 0.09 0.07 0.10 0.10 0.43 0.001
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Fig. 1 Trace plot of the posterior samples in simulation study, green is chain 1 and red is chain 2

Figures1, 2, 3 and 4 show the related convergence results of theMCMCalgorithm.
Trace plots give us a direct insight of what values the posterior samples take at

each iteration.
The autocorrelation plots show us how the autocorrelation changes with the

increase of lag. From the autocorrelation plot, we can see except for σ 2, the autocor-
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Fig. 2 Autocorrelation of the posterior samples in simulation study

relations for the other 3 parameters are near 0 at any lag. For σ 2, the autocorrelation
decreases to 0 as the lag increases.

FromGelman-Rubin plot, we can see that the shrink factors for all four parameters
converge to 1 after some iterations. Also, from Geweke plot, most of the Z-scores
for all parameters are between−1.96 and 1.96. Both the Gelman-Rubin and Geweke
plots show good MCMC convergence results.

The similarities between the posterior estimates and true values of the parameters
and other convergence results indicate that our MCMC algorithm works well. Next
step is to conduct empirical studies using real high frequency data.
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Fig. 3 Gelman-Rubin plots in simulation study. Convergence is suggested when the medians and
the 97.5 percentiles approach 1

1.4 Empirical Study

1.4.1 Data

The data we used are the bid and ask prices of Microsoft stock in April, 2013 from
TAQ database. TAQ contains intraday transactions data for all securities listed on
the New York Stock Exchange (NYSE) and American Stock Exchange (AMEX), as
well as Nasdaq National Market System (NMS) and SmallCap issues.

The data set has around 28,000,000 observations in total: over 900,000 observa-
tions on each trading day, and about 13 tradings at each time spot. There are a couple
of major problems if we use raw bid and ask prices. One is computational budget
constraint. The heavy computational burden would limit the sample to a relatively
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Fig. 4 Geweke plot in simulation study. Convergence is suggested when most of the Z-scores are
between −1.96 and 1.96

short time horizon. Another issue is: too much noise in the original high frequency
data would cause microstructure bias in inference. Therefore, our empirical study
begins with some data processing:

• Missing data are deleted.
• The mean of all observations at the same trading time spot is used.
• since tradings are heavier at the beginning and the end of a trading day, while
lighter around lunch time, we partition each day into 5 periods: 9:30 to 10:00,
10:00 to 11:30, 11:30 to 2:30, 2:30 to 3:30, 3:30 to 4:00 and use averages of
bid/ask prices during each period.

Figure5 shows the bid and ask prices for the cleaned data. From Fig. 1, it is hard
to see the difference between the bid and ask prices since they only differ by 1 or 2
cents. Figure6 shows a zoom-in version of Fig. 5, that plots only the first 10 bid and
ask prices to help the visual effect.
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Fig. 5 Bid and ask prices
for 22 consecutive trading
days, x-axis represents the
trading time after
aggregation (5 trades per day
after the aggregation of data)
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Fig. 6 Bid and ask prices for
the first 2 consecutive trading
days, x-axis represents the
trading time after
aggregation (5 trades per day
after the aggregation of data)
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1.4.2 Summary Statistics and MCMC Convergence

Table2 shows the summary statistics of the posterior samples for the four parameters.
Again, we could use posterior mean or posterior median as a point estimate for each
parameter.

Figures7, 8, 9 and 10 show the convergence results of the MCMC algorithm,
similar to the analysis in the Simulation Study.
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Table 2 Summary statistics of the posterior samples in empirical study

Parameter Min Median Mean Max Standard error

α 0.0015 0.0856 0.0997 0.4415 0.0008

η 0.00004 0.2449 0.2477 0.5007000 0.0018

σ 2 0.0588 0.2141 0.2510 2.275 0.0019

δ2 0.00006 0.2502 0.2509 0.4999 0.0018
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Fig. 7 Trace plot of the posterior samples in empirical study

1.5 Economic Interpretation

There are at least three sources for bid-ask spread: the adverse selection costs arising
with asymmetric information, the inventory costs, and the order processing cost,
which is associated with handling transactions. G-M model focuses on the first one.
The extended G-M model we studied in this work also helps addressing the related
issues. Besides the numerical evidence shown in Fig. 11, we also proved theoretically
that the average bid-ask spread is an increasing function of α (see Wang 2014), i.e.
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Fig. 8 Autocorrelation of the posterior samples in empirical study

the spread can be considered a premium that market makers demand for trading
with agents with superior information. Another result developed in Wang (2014) is
that under the extended G-M model, the bid-ask spread tends to zero at a certain
rate as the number of trades go to infinity. However, this has not been shown in
our empirical study, due to the limited time horizon used in the data. In addition,
the bid-ask spread reflects the market maker’s belief about asymmetric information.
The degree of informed trading among market participants may not change in the
short time period, at least from the market maker’s viewpoint. This implies that the
market maker makes no inference when he sees the total order imbalance at tick
level. He may shift the whole bid-ask band rather than change the spread itself.
Figure12 shows the bid-ask spread for the cleaned data based on which we do not
see much change of the spread over a short time period. More careful and thorough
post-modeling analysis is still our ongoing project in which both in-sample (e.g.
residual analysis) and out-of-sample (cross-validation) diagnostics are conducted.
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Fig. 9 Gelman-Rubin plots in empirical study. Convergence is suggested when the medians and
the 97.5 percentiles approach 1

The extended G-M has conceivably made a number of unrealistic assumptions, such
as the constant α for the proportion (or the impact) of informed traders in the market,
and the constant trading volume associated with each trade. Modifications of those
assumptions require more hard work in both theoretical and empirical studies.

1.6 Appendix 1

We provide more details of the MCMC algorithm here.
The hyperparameters in the prior distributions are set as follows:

in the beta prior for α: αα = 2, βα = 10;
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Fig. 10 Geweke plot in empirical study. Convergence is suggested when most of the Z-scores are
between −1.96 and 1.96

in the inverse gamma prior for σ 2: ασ = 3, βσ = 1;
in the uniform prior for σ 2: u1σ = 0, u2σ = 0.5;
in the uniform prior for δ2: u1δ = 0, u2δ = 0.5.

Note that subscripts t = 1, ..., T stand for real time in the model and superscripts
n = 1, ..., N represent the MCMC computational time.
Initialize α(0), η(0), σ 2(0), δ2(0), V (0)

1 , . . . , V (0)
T , which can be assigned or sampled

from the prior. A complete transition from the (n − 1)th generation to the nth gen-
eration consists of the following steps:

Step 1: Update the latent variable V (n)
t

For t = 2, 3, . . . , T − 1,
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Fig. 11 The mean bid-ask
spread versus α in the
simulation study, the y-axis
is the mean of bid-ask
spreads across time using
different α values
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versus time for the cleaned
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f (V (n)
t |V (n−1), V (n)

1 , . . . , V (n)
t−1, θ

(n−1), Pa, Pb)

∝ f (V (n)
t |V (n)

t−1, θ
(n−1)) f (V (n−1)

t+1 |V (n)
t , θ (n−1))

∝ exp

[

− (V (n)
t −V (n)

t−1)
2

2σ 2(n−1) − (V (n−1)
t+1 −V (n)

t )2

2σ 2(n−1)

]

∝ exp

{

−[V (n)
t − V (n)

t−1+V (n−1)
t+1

2 ]2
2(σ (n−1)/

√
2)2

}

∼ N

(
V (n)
t−1+V (n−1)

t+1

2 , σ 2(n−1)

2

)

where V (n) = (V (n)
1 , . . . , V (n)

T ), and θ(n) = (α(n), η(n), σ 2(n), δ2(n)). Given all the

other variables, we just sample from a normal distribution with mean
V (n)
t−1+V (n−1)

t+1

2

and variance σ 2(n−1)

2 to get V (n)
t .

For t = 1, generate V (n)
1 ∼ N (V (n−1)

2 , σ 2(n−1)).
For t = T , generate V (n)

T ∼ N (V (n)
T−1, σ

2(n−1)).

Step 2: Update σ 2(n)

If the prior is IG(ασ , βσ ) (inverse gamma), then

f (σ 2(n)|V (n), α(n−1), η(n−1), δ2(n−1), Pa, Pb)

∝
T∏

t=2

f (V (n)
t |V (n)

t−1, α
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t−1)
2

2
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)

.

If the prior is Unif(u1σ , u2σ ), then

f (σ 2(n)|V (n), α(n−1), η(n−1), δ2(n−1), Pa, Pb)

∝
T∏

t=2

f (V (n)
t |V (n)

t−1, α
(n−1), η(n−1), δ2(n−1), Pa, Pb) f (σ 2(n))

∝ (σ 2(n))−
T−1
2 exp

[

−
∑T

t=2(V
(n)
t − V (n)

t−1)
2

2σ 2(n)

]

I{σ 2(n)∈(u1σ ,u2σ )}.
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The posterior distribution is not in a closed form, hence we need MHwGS. The
procedure is as follows:

• Simulate a sample yσ from a proposal density qσ , which is chosen to be the
prior Unif(u1σ , u2σ ) here.

• Denote the posterior distribution of σ 2 by fσ , compute the acceptance prob-
ability (M-H ratio) ρσ = min(1, fσ (yσ )qσ (σ (n−1))

fσ (σ (n−1))qσ (yσ )
).

• Let σ 2(n) = { yσ with probability ρσ

σ 2(n−1) with probability 1 − ρσ
.

Step 3: Update α(n)

f (α(n)|V (n), σ 2(n), η(n−1), δ2(n−1), Pa, Pb)

∝
T∏

t=1

exp

[

− (Pa
t − At )

2

2δ2(n−1)
− (Pb

t − Bt )
2

2δ2(n−1)

]

(α(n))αα−1(1 − α(n))βα−1

where Bt , At is given by (3) and (4) with η, α replaced by η(n−1) and α(n) respec-
tively. Again, we need MHwGS:

• Simulate a sample yα from a proposal density qα , which is chosen to be the
prior Beta(αα, βα).

• Denote the posterior of α by fα , compute the acceptance probability ρα =
min(1, fα(yα)qα(α(n−1))

fα(α(n−1))qα(yα)
).

• Let α(n) = { yα with probability ρα

α(n−1) with probability 1 − ρα
.

Step 4: Update η(n)

f (η(n)|V (n), σ 2(n), α(n), δ2(n−1), Pa, Pb)

∝
T∏

t=1

exp

[

− (Pa
t − At )

2

2δ2(n−1)
− (Pb

t − Bt )
2

2δ2(n−1)

]

I{η(n)∈(0,1/2)}

where Bt , At is given by (3) and (4)withη, α replaced byη(n) andα(n) respectively.
Similarly, MHwGS is applied here:

• Simulate a sample yη from a proposal density qη, which is chosen to be the
prior distribution Unif(0, 1/2).

• Denote the posterior distribution of η by fη, compute the acceptance proba-

bility ρη = min(1, fη(yη)qη(η
(n−1))

fη(η(n−1))qη(yη)
).

• η(n) = { yη with probability ρη

η(n−1) with probability 1 − ρη
.
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Step 5: Update δ2(n)

f (δ2(n)|V (n), σ 2(n), α(n), η(n), Pa, Pb)

∝ (δ2(n))−T exp

[

−
T∑

t=1

(Pa
t − At )

2 + (Pb
t − Bt )

2

2δ2(n)

]

I{δ2(n)∈(u1δ ,u2δ)}.

Here the needed MHwGS is given by

• Simulate a sample yδ from a proposal density qδ , which is chosen to be the
prior Unif(u1δ, u2δ).

• Denote the posterior density of δ as fδ , compute the acceptance probability
ρδ = min(1, fδ(yδ)qδ(δ

2(n−1))

fδ(δ2(n−1))qδ(yδ)
).

• Let δ2(n) = { yδ with probability ρδ

δ2(n−1) with probability 1 − ρδ
.

Step 6: Now go to Step 1 for the updating in the next iteration of transition.

2 Monte-Carlo Strategies in Option Pricing for SABR
Model

In finance, an option is a contract which gives the buyer the right, but not the obliga-
tion, to buy or sell an underlying asset or instrument at a specified strike price on or
before a specified date, depending on the form of the option. Because valuation of
option contracts depends on a number of other variables besides the underlying asset,
it is a complex task and becomes a central topic in mathematical finance. For valua-
tion of options, cases with closed-form pricing formulas are rare with exceptions of
Black-Scholes-Merton model, Hestons model, just name a few. In general, numer-
ical computation and approximation techniques are almost always required. There
are basically two approaches. The analytical approach sets the price function as the
solution to a PDE with boundary conditions, which are often solved by numerical
methods such as finite difference etc. The probabilistic approach expresses an option
price as the conditional expectation under a risk neutral measure which needs to be
computed using numerical integration. Such integration is often performed over a
high dimensional state space in which state variables are time series of underlying
assets or volatilities. In this situation, Monte-Carlo simulation appears inevitable.

SABR (abbreviation for stochastic αβρ) model enjoys the popularity in the study
of stochastic volatility with applications in asset pricing and riskmanagement. Major
references include Antonov and Spector (2012), Hagan et al. (2002) and (2005),
Paulot et al. (2009), Rebonado et al. (2011), among others. The main feature of the
SABR model, compared to some previous models, is its capability in reproducing
the dynamic behavior of volatility smiles and skews, and thus in yielding more
stable results for pricing and hedging. SABR assumes that the volatility of the asset
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(e.g. stock or forward) follows a geometric Brownian motion, and is correlated to
the underlying forward price (leverage effect). So far almost all cited works for
SABRhave adopted the analytical approach using singular perturbation of the pricing
function. In contrast, we take the probabilistic approach for pricing options under
SABR.

The basic idea of our approach is Monte-Carlo dimension reduction using certain
probability approximation schemes. Note that brute force Monte-Carlo for option
pricing begins with Euler approximation that discretizes sample paths of the asset
and volatility, followed by calculating the option payoff along each path then taking
averages. In doing so, small steps in the discretization are needed to reduce the bias,
but that would require a far greater number of simulated sample paths to reduce
the variance. To alleviate the computational intensity, we observe that many pricing
functionals of interest only depend on the volatility sample paths through two or three
summary statistics. Therefore, it would suffice to know the joint distribution of those
2D or 3D summary statistics when calculating the option price. Our strategy will
naturally be finding good approximations for the joint distribution when the exact
form is not available.

After introducing SABR model and the option pricing formula, the probability
approximation scheme boils down to expressing moments of some key summary
statistics as functions of original model parameters. We have done this by exact
analytical calculation, and obtained good results for all different ranges of parameter
β, because three cases β = 1 (generalized Black-Scholes model), β = 0 (Gaussian
model) and 0 < β < 1 give rise to different pricing formulas. Since the basic idea is
the same, we will only present the case β = 1 in this chapter and refer to the Ph.D.
thesis Yin (2016) for the other two cases and the technical details.

2.1 SABR Model and Option Pricing for the Case β = 1

The risk-neutral dynamics of general SABR model is given by SDEs

dF(t) = r F(t)βdt + σ(t)F(t)βdW1(t), (6)

dσ(t) = α σ(t)dW2(t), (7)

with the underlying asset value F(t) (e.g. LIBOR forward rate, or forward swap rate,
or stock price) and the volatility σ(t), where r is the risk-free interest rate,W1(t) and
W2(t) are two correlated standard Brownian motions with correlation coefficient ρ,
i.e.

dW1(t) dW2(t) = ρ dt. (8)

As we mentioned, the three model parameters α > 0, 0 ≤ β ≤ 1 and −1 ≤ ρ ≤ 1
give the reason for using the abbreviation SABR — stochastic αβρ model, and by
changing their values, a variety of interesting market behaviors can be mimicked.
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The value of a European call option is defined by the expected value of discounted
option payoff at maturity tex , i.e.

C(F0, K ) = e−r tex E
{
Eσ

{
max(F(tex ) − K , 0)

}}
, (9)

where F0 = F(0) is the present asset value, K is the strike price and Eσ (·) denotes
the conditional expectation given the path σ(t), 0 ≤ t ≤ tex .

Consider the case β = 1 [called the generalized BLack-Scholes (B-S) model in th
literature] and rewrite (6), (7), (8) as an equivalent form

dF(t) = r F(t)dt + σ(t)F(t)[
√
1 − ρ2dB1(t) + ρdB2(t)] (10)

dσ(t) = ασ(t)dB2(t) (11)

where B1(t) and B2(t) are two independent standard Brownian motions and all other
notations remain the same as defined before. We will use this form of SABR model
in what follows.

Define

�2 =
∫ tex

0
σ(u)2du, (12)

X1 =
∫ tex

0
σ(u)dB1(u), (13)

X2 =
∫ tex

0
σ(u)dB2(u). (14)

Conditioning on the volatility path σ(t), 0 ≤ t ≤ tex , we have

Eσ

{
max

(
F(tex ) − K , 0

)} = (15)

F0 exp{r tex + ρX2 + 1
2 (1 − ρ − √

1 − ρ2 − ρ2)�2}�(d1)

−K �(d2),

where � is the cdf of N (0, 1), and d1 and d2 are given by

d1 = d2 +
√
1 − ρ2 �, (16)

d2 = ln( F0
K ) − 1

2 (ρ + √
1 − ρ2) �2 + ρX2 + r tex

√
1 − ρ2�

. (17)

Therefore, it suffices to compute the option price C(F0, K ) in (9) as the expected
value under the joint distribution of (�2, X2) without simulating the entire volatility
path on [0, tex ].
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2.2 Approximating the Distribution of (�2, X2)

There are a couple of factors taken into account when choosing an approximate
distribution for (�2, X2). Firstly, �2 is positive and often has a skewed density.
Secondly, X2 is a martingale with respect to the time tex , and conditioning on
(σ (t), 0 ≤ t ≤ tex ), X2 ∼ N (0, �2). Hence we propose a gamma mixture of nor-
mals for the distribution of (�2, X2). Having decided the distribution family, we
relate the two parameters of gamma density for �2 to the first and second moments
of (�2, X2), which in turn can be calculated analytically as closed forms of the origi-
nal model parameters. That leads to specification of the parameters in gamma family
as functions of parameters in SABRmodel. Similar results in using an inverse gamma
mixture of normals and log-normal mixture of normals are given in Yin (2016).

Moments as functions of SABR model parameters

Denote σ(0) = σ0, we have

E
{
�2} = σ 2

0

α2
(eα2tex − 1),

E
{
(�2)2

} = 2σ 4
0

5α4
(
1

6
e6α

2tex − eα2tex + 5

6
),

E
{
(�2)3

} = σ 6
0

315α6
(e15α

2tex − 7e6α
2tex + 27eα2tex − 21).

for every n = 1, 2, ...,

E
{
Xn
2

} = σ n
0

αn

n∑

k=0

(−1)n−k

(
n

k

)

e
1
2 k(k−1)α2T .

in particular,

E
{
X2

} = 0,

E
{
X2
2

} = σ 2
0

α2
(eα2tex − 1).

moreover,

Cov(�2, X2) = σ 3
0

3α3
(e3α

2tex − 3eα2tex + 2).

Connections between parameters in the gamma mixture of normals and
moments of (�2, X2)

For convenience, denote the needed moments by
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E(X2
2) = E(�2) � S,

E[(�2)2] � ,

Cov(�2, X2) � �,

where the first equality is due to Ito’s isometry, and S ≥ �2 follows from Cauchy-
Schwarz inequality.

Now we have

Proposition 14.1 Let �2 ∼ Gamma(κ, θ) and X2 ∼ N (a0 + a1�2, b�2) condi-
tioning on the path {σ(t), 0 ≤ t ≤ tex } where the constants a0 ∈ IR, a1 ∈ IR, b > 0
and the parameters κ , θ are given by

κ = S2

 − S2
,

θ =  − S2

S
,

a0 = −S�

 − S2
,

a1 = �

 − S2
,

b = 1 − �2

S( − S2)
.

Therefore, the gamma mixture of normals is fully specified by α, σ0 and tex in the
SABR.

2.3 Numerical Experiments and Empirical Calibration
of SABR

All pricing methods require the SABRmodel parameters as inputs, which are set for
empirical studies in what follows. Now let us introduce the data we use.

For different underlying asset types, there are different channels to obtain
related option contracts information. Trading information for equity can be found
on YAHOO! Finance channel. As for other underlying asset types such as energy,
foreign exchange, interest rates and weather, option contracts in trading are often
listed on CME Group website. In our study, we will use Microsoft stock, MSFT, as
an example for equity, and iShare 20+ years treasury bond ETF, TLT, as an example
of fixed income product. We will price the European options on these assets as of
March 28th 2016 that will expire on May 20th 2016.

Figures13 and 14 show option chains of MSFT and TLT on March 28th 2016
that expire on May 20th 2016. An option chain is simply a sequence of call and put
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Fig. 13 Microsoft stock option chain

Fig. 14 iShare 20+ year treasury bond option chain

option strike prices along with their premiums for a given maturity period (cf. Harris
2003).

To fully describe the SABR model, we need an initial volatility and a risk-free
interest rate.We use the historical volatility up to the as-of-date as a proxy of volatility
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Fig. 15 Historical volatilities

initialization. This piece of information is provided by Option Strategist website to
each traded underlying asset.

In Fig. 15, each underlying asset has three historical at-the-money volatilities
based on the window length used to calculate that volatility. For example, there
are three historical volatilities associated with MSFT, 24, 31 and 26%, which are
calculated from 20, 50 and 100 days historical volatility respectively as of March
24th 2016. And the volatility of MSFT on that day is 20.82%.

Risk-free interest rate is the minimum rate of return an investor should expect for
any investment. In practice, three-month U.S. Treasury bill is often used as a proxy of
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Fig. 16 Daily treasury yield curve rates

risk-free interest rate. U.S. Department of the Treasury releases daily treasury yield
curves on its website, where we quote our risk-free interest rate. See Fig. 16.

Fitting SABR model parameters is not always straight forward because some of
them are not observable frommarket. Therefore, we determine reasonable ranges for
each of α and ρ, and simulate European call option prices in scenarios with different
price-volatility correlation ρ and vol of vol α combinations.

Tables3 and 4 specify SABR model parameters for MSFT and TLT respectively.
Table5 shows MSFT option prices computed by the brute-force Monte-Carlo

(Monte-Carlo column), and by dimension reduction methods we proposed using dif-
ferent distributions for (�2, X2), i.e. gamma mixture of normals (Gamma column),
inverse-gamma mixture of normals (Inverse Gamma column) and log-normal mix-
ture of normals (Log Normal column) respectively. As an option price is not known
a priori at the time of pricing, we assume the brute-force MC gives a benchmark
price. As for computational efficiency, the proposed approximation methods with
different distributions all turn out to be much faster than the brute-force MC, and
the results they produced also fall into a satisfactory range of accuracy. Figures17
and 18 demonstrate pricing errors (see the caption of Fig. 17 for the definition) by
using gamma mixture of normals. Note that the quality of the proposed approxima-
tion scheme depends on the parameter values. It is observed that the pricing is less
accurate when ρ is near −1 than when ρ is near zero due to the leverage effect. And
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Table 3 Model parameters microsoft stock

Item Symbol Value

Strike price K $52.50

Closing price F0 $53.54

Initial volatility σ0 26.56%

Time to maturity tex 39

Risk-free interest rate r 0.29%

Correlation ρ [−1, 0]
Vol of Vol α [0, 1]

Table 4 Model Parameters iShare 20+ years Treasury Bond ETF

Item Symbol Value

Strike price K $125.00

Closing price F0 $130.12

Initial volatility σ0 11.27%

Time to maturity tex 39

Risk-free interest Rate r 0.29%

Correlation ρ [−1, 0]
Vol of Vol α [0, 1]

Table 5 β = 1 SABR model prices comparison

α ρ Monte-Carlo Gamma Inverse
gamma

Log normal

0.10 −0.05 2.86 2.86 2.85 2.86

0.10 −0.15 2.85 2.89 2.85 2.90

0.10 −0.25 2.83 2.90 2.92 2.86

0.10 −0.35 2.86 2.84 2.90 2.84

0.10 −0.45 2.84 2.92 2.89 2.89

0.10 −0.55 2.83 2.80 2.84 2.91

0.10 −0.65 2.84 2.79 2.87 2.99

0.10 −0.75 2.83 2.86 2.69 2.74

0.10 −0.85 2.85 2.77 2.83 2.69

0.10 −0.95 2.88 2.90 3.00 2.72

0.20 −0.05 2.85 2.86 2.86 2.86

0.20 −0.15 2.88 2.87 2.86 2.86

0.20 −0.25 2.85 2.89 2.92 2.97

(continued)
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Table 5 (continued)

α ρ Monte-Carlo Gamma Inverse
gamma

Log normal

0.20 −0.35 2.88 2.88 2.87 2.92

0.20 −0.45 2.87 2.94 2.90 2.83

0.20 −0.55 2.86 2.92 2.87 2.88

0.20 −0.65 2.86 2.82 2.92 2.83

0.20 −0.75 2.85 2.78 2.83 2.93

0.20 −0.85 2.86 2.87 2.92 2.79

0.20 −0.95 2.87 3.37 3.22 2.99

0.30 −0.05 2.84 2.87 2.87 2.87

0.30 −0.15 2.85 2.89 2.89 2.86

0.30 −0.25 2.87 2.89 2.92 2.83

0.30 −0.35 2.86 2.98 2.90 2.96

0.30 −0.45 2.86 2.90 2.93 2.87

0.30 −0.55 2.88 2.93 2.81 2.80

0.30 −0.65 2.87 2.93 2.83 2.93

0.30 −0.75 2.86 2.87 2.89 2.69

0.30 −0.85 2.86 2.63 2.87 2.95

0.30 −0.95 2.88 2.71 2.81 3.01

0.40 −0.05 2.86 2.87 2.87 2.87

0.40 −0.15 2.85 2.87 2.88 2.89

0.40 −0.25 2.86 2.87 2.91 2.89

0.40 −0.35 2.86 2.90 2.93 2.88

0.40 −0.45 2.84 2.88 2.88 3.00

0.40 −0.55 2.86 3.00 2.90 2.93

0.40 −0.65 2.86 2.99 3.03 2.89

0.40 −0.75 2.86 2.96 3.03 2.92

0.40 −0.85 2.89 2.77 3.00 3.07

0.40 −0.95 2.90 2.75 2.80 2.71

0.50 −0.05 2.87 2.88 2.86 2.88

0.50 −0.15 2.88 2.89 2.88 2.87

0.50 −0.25 2.86 2.88 2.86 2.89

0.50 −0.35 2.85 2.88 2.86 2.89

0.50 −0.45 2.87 2.89 2.92 2.86

0.50 −0.55 2.87 2.95 2.97 2.84

0.50 −0.65 2.84 2.77 2.84 2.89

0.50 −0.75 2.86 2.92 2.98 2.77

0.50 −0.85 2.91 2.82 2.80 2.96

0.50 −0.95 2.89 2.86 2.69 3.08

0.60 −0.05 2.87 2.86 2.88 2.87

(continued)
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Table 5 (continued)

α ρ Monte-Carlo Gamma Inverse
gamma

Log normal

0.60 −0.15 2.85 2.89 2.89 2.90

0.60 −0.25 2.87 2.90 2.90 2.92

0.60 −0.35 2.88 2.95 2.92 2.90

0.60 −0.45 2.88 2.81 2.95 3.00

0.60 −0.55 2.89 2.89 2.99 2.86

0.60 −0.65 2.87 2.92 2.88 2.88

0.60 −0.75 2.87 2.92 2.76 3.13

0.60 −0.85 2.89 2.80 2.83 2.80

0.60 −0.95 2.88 3.02 3.09 2.90

0.70 −0.05 2.86 2.86 2.88 2.89

0.70 −0.15 2.86 2.90 2.90 2.89

0.70 −0.25 2.89 2.92 2.93 2.90

0.70 −0.35 2.87 2.92 2.93 2.93

0.70 −0.45 2.88 3.03 2.89 2.95

0.70 −0.55 2.89 2.94 2.88 2.91

0.70 −0.65 2.88 2.82 2.91 2.91

0.70 −0.75 2.90 2.99 2.73 2.90

0.70 −0.85 2.87 2.93 2.91 2.97

0.70 −0.95 2.88 2.89 2.82 2.97

0.80 −0.05 2.89 2.91 2.87 2.91

0.80 −0.15 2.89 2.90 2.90 2.90

0.80 −0.25 2.90 2.94 2.88 2.91

0.80 −0.35 2.86 2.91 2.91 2.93

0.80 −0.45 2.88 2.94 2.86 2.87

0.80 −0.55 2.89 2.91 2.93 2.83

0.80 −0.65 2.88 2.97 2.95 2.89

0.80 −0.75 2.90 2.92 2.80 2.87

0.80 −0.85 2.89 3.03 2.98 2.87

0.80 −0.95 2.89 2.78 2.71 2.60

0.90 −0.05 2.88 2.87 2.90 2.87

0.90 −0.15 2.90 2.91 2.91 2.91

0.90 −0.25 2.89 2.93 2.93 2.92

0.90 −0.35 2.90 2.94 2.90 2.90

0.90 −0.45 2.91 2.98 2.98 2.94

0.90 −0.55 2.90 2.96 2.91 2.94

0.90 −0.65 2.89 3.11 2.97 3.00

0.90 −0.75 2.89 2.87 2.84 2.84

0.90 −0.85 2.90 2.83 2.75 2.89

(continued)
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Table 5 (continued)

α ρ Monte-Carlo Gamma Inverse
gamma

Log normal

0.90 −0.95 2.88 2.81 2.82 2.78

1.00 −0.05 2.89 2.90 2.87 2.88

1.00 −0.15 2.87 2.91 2.92 2.91

1.00 −0.25 2.86 2.94 2.92 2.92

1.00 −0.35 2.89 2.98 2.91 2.93

1.00 −0.45 2.90 3.02 2.90 2.93

1.00 −0.55 2.91 2.95 2.86 2.87

1.00 −0.65 2.90 2.88 2.85 2.92

1.00 −0.75 2.90 2.86 2.80 2.95

1.00 −0.85 2.91 2.91 2.83 2.87

1.00 −0.95 2.89 2.96 2.81 3.04

Fig. 17 Pricing error for the case β = 1, dimension reductionMC using gammamixture of normal
versus brute-force MC: let PDR = option price computed using the dimension reduction MC, and
PBF = option price computed using the brute-force MC, then (y-coordinate)/100 = PDR−PBF

PBF
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Fig. 18 Top view of Fig. 17: the large light blue area contains pairs (α, ρ) that yield small pricing
errors compared to areas of other colors

greater values of α (volatility of volatility) tends to yield a better result, perhaps due
to a greater degree of “mixing” in Monte-Carlo simulation. Table5 covers a wide
spectrum of combinations between α and ρ. Moreover, results using the other two
approximate distributions, although not presented in this chapter, are in fact more
stable. See Yin (2016) for detailed accounts.
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Abstract One problem researchers face when analyzing survival data is how to
handle the censoring distribution. For practical convenience, it is often assumed that
the observation process generating the censoring is independent of the event time of
interest. This assumption allows one to effectively ignore the censoring distribution
during the analysis, but it is clearly not always realistic. Unfortunately, one cannot
generally test for independent censoring without additional assumptions or informa-
tion. Therefore, the researcher is facedwith a choice between usingmethods designed
for informative or non-informative censoring without knowing the true nature of the
censoring. This uncertainty creates a situation where the reliability of estimation and
testing procedures is unknown as the assumptions are potentially violated. Fortu-
nately, Monte-Carlo simulation methods can be very useful for exploring these types
of questions under many different conditions. This chapter uses extensive simulation
studies in order to investigate the effectiveness and flexibility of two methods devel-
oped for regression analysis of informative case I and case II interval-censored data
under both types of censoring. The results of these simulation studies can provide
guidelines for deciding between models when facing a practical problem where one
is unsure about the informativeness of the censoring distribution.
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1 Introduction

Many different disciplines deal with time-to-event data. Perhaps the most common
example of survival data can be found in clinical trials, where doctors might be
interested in studying something such as tumor onset time in a group of patients.
Unfortunately, patients often drop out of the study for a variety of reasons. This causes
a type of incomplete data because the exact time of tumor onset will be unknown for
patients who leave the study. This problem of censoring is the hallmark characteristic
of survival analysis, and it requires the development of special techniques.

Several unique types of censoring are seen in survival analysis. This chapter
deals with a fairly general class of censoring called interval censoring. As the name
suggests, one only knows that the event time of interest belongs to some interval
of observation times with this type of data. Here, we will examine both case I and
case II interval-censored data. With case I interval censoring, each subject is only
observed once, and for this reason, the data are also often referred to as current status
data. As a consequence of the data structure, the researcher only knows that the event
time occurs before or after the observation time. Case II interval censoring usually
involves multiple observation times. Here, at least one interval will be above zero
and finite. This type of interval censoring is very frequently seen in medical studies
where patients are scheduled for reoccurring follow-up visits.

Another aspect of censoring needing attention is the possible relationship between
the observation time and the event time. It is often assumed that these two times
are unrelated, and when this is the case, the censoring is called non-informative. It
would be reasonable to assume that the censoring is non-informative if, for example, a
patient drops out of a clinical trial because theyneed tomove to a different city in order
to start a new job. This assumption is attractive because it makes the analysis much
less difficult. In fact, with current status data, non-informative censoring implies that
the survival time and observation time are independent. However, this is clearly not
always realistic. Say a patient drops out of a study due to illness. It is plausible that
this censoring time has information related to tumor onset time, so it should not be
ignored. This type of censoring is called informative censoring, and it is significantly
more troublesome to handle.

When faced with a practical problem, the researcher will typically not know
whether the censoring is informative or non-informative. Also, it is generally not
possible to test this condition without additional knowledge or assumptions. This
creates a slight dilemma when planning what method to use for data analysis. On the
one hand, the researcher can choose to assume that the censoring is non-informative.
This will make the analysis relatively straightforward, but it could tarnish the results
when this seemingly naive assumption does not hold. On the other hand, one could
assume that the censoring is informative. This might be more realistic, but increases
the complexity of the analysis. Moreover, there is currently a lack of information for
how these methods developed for informative censoring performwhen the censoring
is actually non-informative. This conundrum is the motivation for the research in this
chapter. We are interested in exploring the flexibility of two methods developed for
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regression analysis of case I and case II interval-censored data under both informative
and non-informative censoring. The goal of this research is to have a clearer picture
of the performance of these methods when their assumptions are violated. This can
provide insight into deciding between methods when working with a real dataset. To
accomplish this, extensive Monte-Carlo simulation studies will be performed. The
Monte-Carlo framework is ideal for investigated model performance and reliability
because it allows one to investigate a wide range of specified conditions.

Survival analysis has a long history and a wide array of techniques for it are avail-
able in the literature. Many different approaches exist for handling problems involv-
ing case I interval-censored data. Several authors, including Peto (1973), Turnbull
(1976) and Groeneboom and Wellner (1992), have proposed methods for nonpara-
metric maximum likelihood estimation of the survival time distribution function.
Nonparametric options also exist for treatment comparison, such as those described
in Anderen and Ronn (1995) and Sun (1999). A wide range of models have also
been suggested for regression analysis of current status data. Among them, the pro-
portional hazards model was explored in Huang (1996), Lin et al. (1998) studied the
use of the additive hazards model, and the proportional odds model was investigated
in Rossini and Tsiatis (1996). Less work, however, has been done on current status
data with informative censoring. Some examples exist in the context of tumori-
genicity experiments. A three-state Markov model was discussed in Dewanji and
Kalbfleisch (1986), and Lagakos and Louis (1988) proposed a method that utilizes
known tumor lethality information. A more general process using latent random
effects was described in Zhang et al. (2005). A similar number of options exist for
case II interval-censored data. Many have considered the well-known proportional
hazardsmodel. Leading thewaywas the influentialwork of Finkelstein (1986),which
used a maximum likelihood approach. Other models have also been explored. For
example, the proportional odds model was examined by Huang and Wellner (1997)
and Betensky et al. (2001) utilized the accelerate failure time model. Again, the
informative censoring setup has attracted significantly less work. Notable examples
include: Finkelstein et al. (2002) and Betensky and Finkelstein (2002) where general
interval-censored data with informative censoring was considered. One limitation of
the method of Betensky and Finkelstein (2002) is the requirement of follow-up after
the event time. The method proposed by Zhang et al. (2007) for regression analysis
of data with informative interval censoring avoids this issue and uses frailty terms to
model dependence. An early comprehensive overview of theory and methodology
for interval-censored data can be found in Sun (2006), and an up-to-date text on
methodology and applications can be found in Chen et al. (2012).

The remainder of this chapter is outlined as follows. Section2 describes the pro-
posed models and parameter estimation techniques for the methods under investi-
gation. Next, Sect. 3 presents the results from the extensive Monte-Carlo simulation
studies. Finally, Sect. 4 summarizes and discusses the conclusions from the work in
this chapter.
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2 Methodology

In this section, we will describe the details for the methods under investigation for
both case I and case II interval-censored data. First, the necessary notation andmodels
will be introduced. Then, a summary of the parameter estimation procedure is given.

2.1 Case I

Herewe outline the procedure proposed byZhang et al. (2005) for regression analysis
of informative current status data. Thismethodwas chosen for a number of reasons. It
uses the additive hazards and proportional hazards models, which are two of the most
well known and most often used models in survival analysis. A similar procedure
for non-informative case I interval-censored data was proposed by Lin et al. (1998).
That procedure had a relatively straightforward and simple estimation procedure,
and the work of Zhang et al. (2005) shares many of those attractive characteristics.
Also, Zhang et al. (2005) proposed to account for the informative censoring by using
random effects, and this tool has been used in several other contexts including right-
censored data (Huang and Wolfe 2002) and longitudinal data (Wang and Taylor
2001).

2.1.1 Notation and Models

Suppose that we have a survival study with n independent subjects, and define the
following variables: the survival time of interest Ti , the observation time Ci , and
a p-dimensional vector of possibly time-dependent covariates Zi , for i = 1, . . . , n.
It will be assumed that the relationship between Ti and Ci can be modeled using
an arbitrary mean zero random effect bi (t), which could also depend on time. The
dependence between the survival and observation times can then be characterized by
the specification of their respective hazard functions.

More specifically, we will assume that the Ti ’s follow the additive hazards frailty
model, meaning the hazard function at time t is defined as:

λi (t |Zi (s), bi (s), s ≤ t) = λ1(t) + β ′Zi (t) + bi (t) (1)

given {Zi (s), bi (s), s ≤ t}. Here λ1(t) is an unknown baseline hazard function, and
the covariate effect on the survival time is represented by β, a p-dimensional vector
of regression parameters. The Ci ’s will be assumed to follow a proportional hazards
frailty model given {Zi (s), bi (s), s ≤ t}. That is, the hazard function at time t is
given by:

λc
i (t |Zi (s), bi (s), s ≤ t) = λ2(t) exp(γ

′Zi (t) + bi (t)) , (2)
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where λ2(t) is another unknown baseline hazard function, and γ represents the
covariate effect on the observation times.

2.1.2 Parameter Estimation

Now we will consider the estimation of regression parameters. For simplicity, we
will first examine the case where there are no informative censoring times. Assume
that the survival study gives rise to the following observed data {(Ci , δi = I (Ci ≤
Ti ), Zi (t), t ≤ Ci ); i = 1, . . . , n}. Define the counting process Ni (t) = δi I (Ci ≤
t) = I (Ci ≤ min(Ti , t)) and letΛ j (t) = ∫ t

0 λ j (s)ds, j = 1, 2. Note that this count-
ing process only jumps once if Ci = t and Ti ≥ t , and it can be shown (Zhang et al.
2005) that the probability for dNi (t) = 1 is given by

d Pr{Ti ≥ t,Ci = t |Zi (s), s ≤ t}
= E{e−Λ1(t)−Bi (t)−β ′Z∗

i (t)λ2(t)e
γ ′Zi (t)+bi (t)dt} = eγ ′Zi (t)−β ′Z∗

i (t)dΛ∗
0(t), (3)

where dΛ∗
0(t) = e−Λ1(t)E{ebi (t)−Bi (t)}dΛ2(t), Bi (t) = ∫ t

0 bi (s)ds, and Z∗
i (t) = ∫ t

0
Zi (s)ds.

This is an interesting result because Eq. (3) is essentially what one would get
from a standard proportional hazards model. Therefore, one can define the following
martingales:

M∗
i (t) = Ni (t) −

∫ t

0
Yi (s)e

γ ′Zi (s)−β ′Z∗
i (s)dΛ∗

0(s) ,

where Yi (t) = I (Ci ≥ t), and then use the well-known partial likelihood approach
for estimation and inference concerning β and γ .

To be more specific, define

S(0)(β, γ, t) = 1

n

n∑

i=1

Yi (t)e
γ ′Zi (t)−β ′Z∗

i (t) ,

S(1)(β, γ, t) = 1

n

n∑

i=1

Yi (t)Z
∗
i (t)e

γ ′Zi (t)−β ′Z∗
i (t) ,

and

S(2)(β, γ, t) = 1

n

n∑

i=1

Yi (t)Zi (t)e
γ ′Zi (t)−β ′Z∗

i (t) .

Now one can estimate β and γ by solving the estimating equations Uβ(β, γ ) = 0
and Uγ (β, γ ) = 0, where
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Uβ(β, γ ) =
n∑

i=1

∫ ∞

0

{

Z∗
i (t) − S(1)(β, γ, t)

S(0)(β, γ, t)

}

dNi (t) ,

and

Uγ (β, γ ) =
n∑

i=1

∫ ∞

0

{

Zi (t) − S(2)(β, γ, t)

S(0)(β, γ, t)

}

dNi (t) .

Zhang et al. (2005) pointed out thatUβ(β, γ, t) andUγ (β, γ, t) are the partial score
functions. Therefore, the estimates obtained from this approach are the maximum
partial likelihood estimates. A main advantage of this method is that one is not
required to estimate either of the two baseline hazard functions. Let θ̂ = (β̂ ′, γ̂ ′)′
represent the obtained estimates of θ = (β ′, γ ′)′. Then θ̂ is a consistent estimator
and has asymptotically an approximately normal distribution.

This method can be easily extended to the case with censoring times on the Ci ’s.
Suppose that there exists a censoring time Cc

i , which is independent of Ti and Ci ,
and C∗

i = min(Ci ,Cc
i ) is what is observed. Next, let ξi = I (C∗

i = Ci ) and define
a new counting process N ∗

i (t) = ξi Ni (t) = I {Ci ≤ min(Ti ,Cc
i , t)}. Estimation now

proceeds as described above by solving the partial score functions, with the exception
that we now define Yi (t) = I (C∗

i ≥ t). The desirable results of consistency and
asymptotic normality also hold for this situation.

2.2 Case II

Now we will discuss regression analysis of informative case II interval-censored
data. For this data type, we will investigate the performance of the method proposed
in Zhang et al. (2007). This method uses the popular proportional hazards model,
and defines frailty terms to handle the dependence between the observation times
and the failure time. As discussed in the previous section, similar approaches have
proved successful in other contexts. Also, unlike Betensky and Finkelstein (2002),
the method of Zhang et al. (2007) does not require follow-up times after the event
time has occurred, which is a nice benefit.

2.2.1 Notation and Models

As before, consider a survival study with n independent subjects and let Ti denote the
failure time for subject i = 1, . . . , n. Suppose that there exist two additional random
variables Ui and Vi such that Ui ≤ Vi and that one knows only whether Ti is less
than or equal to Ui , between Ui and Vi , or greater than Vi . Also suppose that there
exists a p × 1 vector of covariates Zi for each subject and define Wi = Ui − Vi , the
gap time between the two observation times.
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Itwill be assumed that the failure time and observation times are related through an
unobserved random vector bi = (b1i , b2i , b3i )′. The relationship among the variables
is then modeled using the following hazard functions for Ti , Ui and Wi as

λ
(T )
i (t |Zi , bi ) = λt0(t) exp(β

′
t Zi + b1i ) , (4)

λ
(U )
i (t |Zi , bi ) = λu0(t) exp(β

′
u Zi + b2i ) , (5)

λ
(W )
i (t |Zi , bi ) = λw0(t) exp(β

′
wZi + b3i ) , (6)

respectively, where βt , βu and βw are p × 1 vectors of regression parameters, and
λt0(t), λu0(t) and λw0(t) are unknown baseline hazard functions.

In addition, it will be assumed that the latent random vector bi follows a multi-
variate normal distribution such that bi ∼ N(0,Σ), where

Σ =
⎛

⎝
σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

⎞

⎠ .

The values of the various σ ’s in the covariance matrix describe the relationship
between the failure time and observation times. For example, if σ12 = 0, then the
failure time Ti is independent of the first observation time Ui , given Zi .

Next we will describe the construction of the likelihood function. Note that the
exact value of Ti is not known since we have interval-censored data and the observed
data can be expressed by {Ui , Vi , δ1i , δ2i , Zi } for i = 1, . . . , n, where δ1i = I (Ti ≤
Ui ) and δ2i = I (Ui < Ti ≤ Vi ) are indicators identifying the interval containing Ti .
Define

(Li , Ri ] =

⎧
⎪⎨

⎪⎩

(0,Ui ] if δ1i = 1

(Ui , Vi ] if δ2i = 1

(Vi ,∞] otherwise ,

and let 0 = s0 < s1 < · · · < sm = ∞ be the set of times containing each Li and
Ri . Also, consider Λt0(t) = ∫ t

0 λt0(u)du and γ j = log Λt0(s j ). Finally, now also let
γ = (γ1, . . . , γm−1)

′, θ = (β ′
t , β

′
u, β

′
w, γ ′, σkl , 1 ≤ k ≤ l ≤ 3)′, and Δi = (δ1i , δ2i ).

One can now build the likelihood function of the observed data. Note that conditional
on (Ui ,Wi , Zi , bi ), the likelihood for subject i is given by

LΔi |Ui ,Wi ,bi (θ) =
m∑

j=1

αi j [exp{−exp(β ′
t Zi + b1i + γ j−1)} − exp{−exp(β ′

t Zi + b1i + γ j )}],

where αi j = 1 if (s j−1, s j ] is a subset of (Li , Ri ] and 0 otherwise. The likelihood
functions for Ui and Wi , conditional on (Zi , bi ), have the forms

LUi |bi (θ) = λu0(Ui ) exp{β ′
u Zi + b2i } exp{−exp(β ′

u Zi + b2i )Λu0(Ui )},
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and

LWi |bi (θ) = {λw0(Wi ) exp{β ′
wZi + b3i } exp{−exp(β ′

wZi + b3i )Λw0(Wi )}}Ψi ,

where Λu0(t) = ∫ t
0 λu0(u)du, Λw0(t) = ∫ t

0 λw0(u)du, and Ψi = I (Wi < ∞). Also
define Oi = {Δi , Ψi ,Ui ,Wi , Zi } to be the full observed data from subject i , and let
O = {O1, . . . , On} denote the combined data from all subjects. We can now write
the full likelihood as

LO(θ) =
n∏

i=1

Li (θ; Oi ) =
n∏

i=1

∫
LΔi |Ui ,Wi ,bi (θ)LUi |bi (θ)LWi |bi (θ) f (bi ;Σ)dbi ,

where f (bi ;Σ) is the density function of bi .

2.2.2 Parameter Estimation

The maximization of the likelihood function above is not straightforward since
the bi ’s are unknown. Therefore, the authors proposed using the EM algorithm
in order to estimate the unknown parameters. The complete data is defined to be
{(Oi , bi ), i = 1, . . . , n}, and in typical fashion, one alternates between calculating
the expectation of the log-likelihood, and then updating the estimate by maximizing
the complete data likelihood. Variance estimation is achieved using Louis’ formula.
The procedure is quite complex, and a detailed discussion including recommenda-
tions for implementing the algorithm can be found in Zhang et al. (2007).

3 Simulation Studies

This section describes in detail the Monte-Carlo simulation studies that were per-
formed in order to evaluate the performance of the models under a wide range of
different conditions. As in the previous section, current status data will be examined
first. Then follows the analysis of case II interval-censored data.

3.1 Case I

The majority of the simulations performed closely mirror those in the original work
of Zhang et al. (2005). Several key model components change from simulation to
simulation, but many remain constant. Specifically, the baseline hazard functions,
λ1(t) and λ2(t), were set equal to one in all of the simulations. Also, each setup
considered the situation with no censoring, 20% censoring, and 40% censoring.
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This was achieved by setting Cc
i = τ , where τ is a constant used to determine the

percentage of censored observations. Each study used a sample size of n = 200 with
1000 replications.

Results are presented in tables that display the means of β̂ and γ̂ for several differ-
ent combinations of true values for β and γ . Also, each table shows the means of the
estimated standard deviations of β̂ and γ̂ (SEE) as well as the sample standard devi-
ations of the point estimates (SE). Finally, the 95% empirical coverage probabilities
are calculated.

3.1.1 Informative Censoring

First, we examine the case with informative censoring. This serves as a confirmatory
analysis, and gives results that can be used for comparison with the other situations.
The setup is the same as in the original paper except here we are only considering the
discrete covariate case. Specifically, Z was generated from a Bernoulli distribution
with success probability equal to 0.5. Exponential distributions were used for both
the survival and observations times with hazards defined in (1) and (2), respectively.
Time-independent random effects were generated from a standard normal distribu-
tion.

Tables1, 2, and 3 show the results for these simulations. It is clear that as expected,
the method seems to be performing well. The means of the parameter estimates
are close to their true values, and the variance estimates are close, which suggests
that the variance estimation procedure is valid. Also, the empirical 95% coverage
probabilities are all fairly close to the desired level. The variance estimates grow as
the censoring percentage increases. This can be expected since less information is
observed with increased censoring.

Table 1 Case I informative censoring with discrete covariate and no censoring

γ β γ̂ β̂

Mean SE SEE CP Mean SE SEE CP

0 0 0.003 0.291 0.282 0.950 0.028 0.407 0.389 0.958

0.5 0.007 0.311 0.306 0.949 0.562 0.514 0.500 0.967

1 0.035 0.341 0.331 0.946 1.145 0.661 0.647 0.966

0.2 0 0.181 0.282 0.276 0.948 –0.020 0.418 0.403 0.954

0.5 0.219 0.291 0.297 0.948 0.533 0.513 0.511 0.961

1 0.229 0.341 0.322 0.941 1.113 0.695 0.651 0.953

0.5 0 0.490 0.279 0.276 0.953 –0.026 0.471 0.442 0.951

0.5 0.507 0.292 0.292 0.957 0.524 0.565 0.552 0.954

1 0.522 0.326 0.313 0.945 1.084 0.735 0.685 0.946
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Table 2 Case I informative censoring with discrete covariate and 20% censoring

γ β γ̂ β̂

Mean SE SEE CP Mean SE SEE CP

0 0 0.015 0.313 0.316 0.957 0.025 0.569 0.560 0.953

0.5 0.003 0.329 0.331 0.953 0.548 0.651 0.636 0.956

1 0.007 0.355 0.348 0.960 1.033 0.766 0.740 0.957

0.2 0 0.194 0.318 0.313 0.953 –0.015 0.594 0.594 0.959

0.5 0.209 0.333 0.325 0.950 0.532 0.691 0.668 0.953

1 0.211 0.351 0.341 0.950 1.098 0.825 0.776 0.945

0.5 0 0.495 0.311 0.309 0.949 0.006 0.666 0.655 0.954

0.5 0.509 0.313 0.320 0.962 0.546 0.728 0.729 0.960

1 0.517 0.319 0.332 0.967 1.076 0.829 0.824 0.962

Table 3 Case I informative censoring with discrete covariate and 40% censoring

γ β γ̂ β̂

Mean SE SEE CP Mean SE SEE CP

0 0 0.003 0.373 0.370 0.959 –0.027 0.961 0.928 0.949

0.5 0.027 0.382 0.381 0.956 0.592 1.013 0.996 0.956

1 –0.003 0.393 0.391 0.953 1.061 1.106 1.081 0.953

0.2 0 0.197 0.381 0.367 0.951 0.025 1.055 1.009 0.950

0.5 0.191 0.375 0.375 0.955 0.509 1.089 1.065 0.946

1 0.222 0.394 0.385 0.958 1.085 1.164 1.141 0.953

0.5 0 0.480 0.363 0.367 0.961 –0.041 1.145 1.142 0.961

0.5 0.495 0.394 0.375 0.946 0.498 1.210 1.199 0.955

1 0.508 0.390 0.381 0.953 1.069 1.346 1.272 0.951

3.1.2 Non-informative Censoring

The second situation considers the case with non-informative censoring. Using the
proposed model, independent censoring is achieved by setting the latent random
effects bi ’s equal to zero. Then the survival and observation timeswere both generated
from exponential distributions using the hazards defined in (1) and (2). Here we
investigated the performance with both a discrete and continuous covariate. For the
discrete case, it was assumed that Z followed a Bernoulli distribution with success
probability 0.5, and a uniformdistribution over [0, 1]was used for Z in the continuous
case.

Tables4 and 5 show the simulation results for a discrete and continuous covariate,
respectively, with no censoring. These results display a number of important charac-
teristics. Overall the point estimates for β and γ seem to be unbiased for both types
of covariates. In general, the SE and SEE are reasonably close, which indicates that
the variance estimates are sensible. Moreover, the coverage probabilities are largely



Simulation Studies on the Effects of the Censoring … 329

Table 4 Case I non-informative censoring with discrete covariate and no censoring

γ β γ̂ β̂

Mean SE SEE CP Mean SE SEE CP

0 0 –0.006 0.290 0.290 0.952 –0.001 0.457 0.435 0.952

0.5 0.019 0.332 0.313 0.946 0.550 0.585 0.537 0.947

1 0.026 0.329 0.336 0.949 1.110 0.679 0.669 0.971

0.2 0 0.226 0.294 0.286 0.94 0.007 0.471 0.448 0.96

0.5 0.217 0.304 0.306 0.953 0.547 0.556 0.553 0.968

1 0.218 0.329 0.325 0.954 1.100 0.709 0.675 0.959

0.5 0 0.505 0.290 0.282 0.945 0.06 0.508 0.491 0.956

0.5 0.512 0.305 0.299 0.954 0.553 0.624 0.593 0.955

1 0.534 0.320 0.319 0.955 1.120 0.733 0.722 0.959

Table 5 Case I non-informative censoring with continuous covariate and no censoring

γ β γ̂ β̂

Mean γ̂ SE SEE CP Mean β̂ SE SEE CP

0 0 –0.017 0.510 0.507 0.955 –0.012 0.784 0.754 0.947

0.5 –0.002 0.504 0.536 0.967 0.521 0.863 0.888 0.960

1 0.071 0.599 0.566 0.944 1.147 1.092 1.048 0.943

0.2 0 0.189 0.482 0.492 0.968 –0.013 0.756 0.763 0.968

0.5 0.200 0.523 0.522 0.945 0.529 0.936 0.909 0.955

1 0.216 0.554 0.550 0.952 1.050 1.080 1.057 0.953

0.5 0 0.502 0.489 0.480 0.953 0.004 0.835 0.823 0.956

0.5 0.480 0.499 0.503 0.957 0.491 0.952 0.947 0.960

1 0.480 0.540 0.526 0.940 0.970 1.134 1.082 0.946

accurate. Results with 20 and 40% censoring for both the discrete and continuous
case can be found in Tables6, 7, 8 and 9. These additional results mainly tell the
same story. Estimates for both the discrete and continuous case tend to be unbiased,
and the coverage probabilities are all quite close to the desired size. The important
difference that can be seen is in the variance estimates. Specifically, the variance
tends to increase for both types of covariates as the censoring percentage increases.

3.1.3 Multivariate Random Effects

The next simulation study investigated the performance when the structure of the
random effects is misspecified. The proposed method assumes that the hazard func-
tions for the survival and observation times share a random effect bi . We examined a
more general case where the relationship between the survival and observation times
are characterized by an arbitrary random vector, bi (t) = (b1i (t), b

2
i (t)), with mean
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Table 6 Case I non-informative censoring with discrete covariate and 20% censoring

γ β γ̂ β̂

Mean SE SEE CP Mean SE SEE CP

0 0 –0.003 0.331 0.321 0.944 0.021 0.605 0.576 0.958

0.5 –0.006 0.346 0.335 0.955 0.523 0.672 0.652 0.966

1 0.036 0.362 0.352 0.95 1.110 0.772 0.759 0,962

0.2 0 0.211 0.308 0.316 0.961 0.027 0.608 0.609 0.961

0.5 0.207 0.342 0.329 0.938 0.548 0.702 0.684 0.956

1 0.238 0.346 0.344 0.949 1.140 0.835 0.790 0.953

0.5 0 0.513 0.321 0.213 0.945 0.037 0.694 0.668 0.949

0.5 0.507 0.323 0.322 0.954 0.529 0.757 0.741 0.962

1 0.525 0.344 0.336 0.952 1.090 0.871 0.841 0.956

Table 7 Case I non-informative censoring with continuous covariate and 20% censoring

γ β γ̂ β̂

Mean SE SEE CP Mean SE SEE CP

0 0 –0.021 0.558 0.554 0.954 –0.026 1.024 0.986 0.944

0.5 0.024 0.584 0.578 0.954 0.578 1.153 1.102 0.951

1 –0.001 0.618 0.598 0.944 1.024 1.262 1.230 0.955

0.2 0 0.170 0.571 0.547 0.940 –0.039 1.110 1.051 0.950

0.5 0.208 0.583 0.567 0.944 0.519 1.202 1.163 0.951

1 0.239 0.602 0.586 0.954 1.118 1.361 1.288 0.951

0.5 0 0.496 0.541 0.537 0.959 –0.063 1.187 1.161 0.954

0.5 0.541 0.558 0.552 0.956 0.600 1.289 1.260 0.956

1 0.515 0.572 0.571 0.958 0.987 1.369 1.379 0.956

Table 8 Case I non-informative censoring with discrete covariate and 40% censoring

γ β γ̂ β̂

Mean SE SEE CP Mean SE SEE CP

0 0 0.012 0.372 0.371 0.949 0.032 0.915 0.919 0.962

0.5 0.001 0.396 0.382 0.949 0.479 1.060 0.994 0.945

1 0.011 0.398 0.394 0.953 1.120 1.100 1.080 0.956

0.2 0 0.185 0.366 0.368 0.954 –0.037 1.010 0.996 0.959

0.5 0.191 0.383 0.377 0.947 0.491 1.110 1.050 0.949

1 0.210 0.391 0.386 0.963 1.050 1.180 1.140 0.955

0.5 0 0.509 0.388 0.369 0.947 0.005 1.190 1.140 0.942

0.5 0.522 0.384 0.377 0.956 0.558 1.280 1.200 0.948

1 0.517 0.379 0.384 0.962 1.060 1.280 1.26 0.950
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Table 9 Case I non-informative censoring with continuous covariate and 40% censoring

γ β γ̂ β̂

Mean SE SEE CP Mean SE SEE CP

0 0 –0.019 0.607 0.639 0.960 –0.077 1.609 1.590 0.956

0.5 0.008 0.681 0.659 0.946 0.518 1.783 1.699 0.939

1 –0.020 0.701 0.678 0.943 0.945 1.847 1.815 0.955

0.2 0 0.163 0.625 0.636 0.960 –0.108 1.769 1.719 0.943

0.5 0.202 0.639 0.650 0.963 0.496 1.761 1.815 0.966

1 0.214 0.659 0.667 0.957 1.043 1.953 1.940 0.940

0.5 0 0.522 0.643 0.633 0.948 0.003 1.976 1.950 0.946

0.5 0.534 0.653 0.644 0.954 0.573 2.063 2.053 0.956

1 0.540 0.714 0.658 0.936 1.078 2.296 2.152 0.944

zero. The hazard functions for the survival and observation times, respectively, are
now defined as:

λi (t |Zi (s), b
1
i (s), s ≤ t) = λ1(t) + β ′Zi (t) + b1i (t) , (7)

λc
i (t |Zi (s), b

2
i (s), s ≤ t) = λ2(t) exp(γ

′Zi (t) + b2i (t)) , (8)

where λ1(t), λ2(t), β, and γ are the same as in (1) and (2).
For this case, we created current status data by first generating time-independent

random effects assuming bi ∼ MVN(0,Σ) with

Σ =
(
1 ρ

ρ 1

)

,

where ρ, representing different levels of correlation between the random effects, was
set to 0.3 and 0.5. For this situation only the discrete covariate was considered with Z
coming from a Bernoulli distribution with success probability equal to 0.5. Finally,
survival and observation times were generated from exponential distributions using
the hazards defined in Eqs. (7) and (8).

Results for these simulation studies with no censoring are presented in Tables10
and 11. Table10 shows outcomes with ρ = 0.3 and Table11 has the results when
ρ = 0.5. Once again, additional simulations with 20 and 40% censoring can be
found in Tables12, 13, 14 and 15. It is clear from the results that the existence of a
multivariate random effect causes serious problems for parameter estimation at both
levels of correlation. The estimates for β and γ are biased in all cases. The coverage
probabilities vary widely and are not close to the desired size. Similar conclusions
can be seenwhen censoring is present, and once again the variance estimates increase
as the censoring percentage increases.
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Table 10 Case I multivariate random effect with ρ = 0.3 and no censoring

γ β γ̂ β̂

Mean SE SEE CP Mean SE SEE CP

0 0 –0.001 0.249 0.247 0.964 0.005 0.348 0.315 0.979

0.5 –0.074 0.260 0.257 0.942 0.169 0.411 0.359 0.740

1 –0.129 0.282 0.272 0.915 0.450 0.512 0.448 0.602

0.2 0 0.170 0.261 0.244 0.932 0.047 0.392 0.340 0.968

0.5 0.095 0.259 0.252 0.927 0.191 0.438 0.371 0.754

1 0.036 0.257 0.267 0.913 0.483 0.534 0.462 0.630

0.5 0 0.401 0.245 0.239 0.914 0.076 0.413 0.364 0.973

0.5 0.328 0.248 0.248 0.896 0.254 0.475 0.408 0.806

1 0.302 0.260 0.261 0.867 0.571 0.561 0.501 0.731

Table 11 Case I multivariate random effect with ρ = 0.5 and no censoring

γ β γ̂ β̂

Mean SE SEE CP Mean SE SEE CP

0 0 –0.006 0.263 0.238 0.940 0.052 0.400 0.298 0.942

0.5 –0.176 0.275 0.255 0.900 0.061 0.383 0.343 0.643

1 –0.224 0.267 0.265 0.840 0.366 0.417 0.397 0.541

0.2 0 0.142 0.274 0.236 0.920 –0.038 0.381 0.315 0.940

0.5 –0.031 0.247 0.247 0.920 0.124 0.492 0.375 0.620

1 0.035 0.244 0.260 0.900 0.562 0.419 0.434 0.664

0.5 0 0.492 0.230 0.232 0.940 0.150 0.334 0.352 0.981

0.5 0.259 0.258 0.242 0.840 0.167 0.258 0.385 0.847

1 0.301 0.271 0.256 0.860 0.654 0.673 0.490 0.643

Table 12 Case I multivariate random effect with ρ = 0.3 and 20% censoring

γ β γ̂ β̂

Mean SE SEE CP Mean SE SEE CP

0 0 0.002 0.295 0.284 0.941 0.034 0.544 0.566 0.973

0.5 –0.074 0.289 0.292 0.963 0.213 0.667 0.601 0.907

1 –0.059 0.311 0.302 0.925 0.733 0.704 0676 0.932

0.2 0 0.196 0.297 0.281 0.952 0.119 0.638 0.618 0.991

0.5 0.103 0.294 0.289 0.927 0.244 0.682 0.635 0.928

1 0.073 0.294 0.297 0.933 0.610 0.750 0.681 0.874

0.5 0 0.427 0.251 0.278 0.965 0.106 0.670 0.679 0.956

0.5 0.317 0.270 0.280 0.883 0.350 0.688 0.691 0.940

1 0.339 0.310 0.289 0.938 0.681 0.722 0.743 0.925
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Table 13 Case I multivariate random effect with ρ = 0.3 and 40% censoring

γ β γ̂ β̂

Mean SE SEE CP Mean SE SEE CP

0 0 0.033 0.373 0.338 0.930 0.049 1.233 1.101 0.940

0.5 –0.065 0.344 0.344 0.970 0.180 1.090 1.120 0.942

1 –0.180 0.3877 0.349 0.900 0.243 1.218 1.147 0.883

0.2 0 0.169 0.396 0.341 0.910 0.162 1.279 1.232 0.971

0.5 0.150 0.307 0.342 0.990 0.370 1.170 1.241 0.986

1 0.119 0.363 0.347 0.940 0.742 1.325 1.250 0.940

0.5 0 0.409 0.311 0.333 0.980 –0.015 1.348 1.351 0.960

0.5 0.389 0.305 0.339 0.950 0.500 1.271 1.358 0.991

1 0.326 0.386 0.342 0.850 0.763 1.547 1.383 0.954

Table 14 Case I multivariate random effect with ρ = 0.5 and 20% censoring

γ β γ̂ β̂

Mean SE SEE CP Mean SE SEE CP

0 0 –0.046 0.284 0.285 0.980 –0.029 0.666 0.587 0.926

0.5 –0.029 0.327 0.295 0.940 0.247 0.614 0.624 0.921

1 –0.013 0.326 0.302 0.920 0.588 0.711 0.657 0.867

0.2 0 0.142 0.289 0.282 0.960 –0.07 0.502 0.605 0.983

0.5 0.090 0.260 0.283 0.940 0.352 0.534 0.630 0.982

1 0.019 0.279 0.294 0.940 0.548 0.733 0.686 0.922

0.5 0 0.374 0.238 0.278 0.940 0.103 0.607 0.674 0.960

0.5 0.356 0.338 0.282 0.880 0.218 0.747 0.699 0.901

1 0.321 0.342 0.291 0.860 0.666 0.861 0.740 0.922

Table 15 Case I multivariate random effect with ρ = 0.5 and 40% censoring

γ β γ̂ β̂

Mean SE SEE CP Mean SE SEE CP

0 0 –0.070 0.330 0.343 0.980 –0.185 1.057 1.110 0.961

0.5 –0.058 0.349 0.348 0.960 0.200 1.131 1.152 0.942

1 –0.043 0.372 0.353 0.940 0.781 1.239 1.154 0.943

0.2 0 0.139 0.364 0.336 0.940 –0.071 1.267 1.164 0.967

0.5 0.137 0.435 0.341 0.860 0.238 1.503 1.219 0.925

1 0.073 0.385 0.350 0.880 0.790 1.406 1.262 0.908

0.5 0 0.510 0.341 0.337 0.980 0.581 1.879 1.375 0.927

0.5 0.415 0.263 0.337 0.960 0.494 1.165 1.331 0.981

1 0.306 0.335 0.341 0.940 0.639 1.335 1.395 0.920
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Table 16 Case I additive hazards model for observation times with no censoring

γ β γ̂ β̂

Mean SE SEE CP Mean SE SEE CP

0 0 0.070 0.241 0.232 0.940 0.001 0.202 0.161 0.988

0.5 0.031 0.280 0.281 0.952 0.624 0.438 0.415 0.953

1 0.050 0.318 0.314 0.957 1.197 0.684 0.637 0.953

0.2 0 0.130 0.236 0.239 0.947 –0.206 0.234 0.223 0.899

0.5 0.113 0.278 0.267 0.933 0.446 0.406 0.359 0.877

1 0.130 0.293 0.302 0.946 1.032 0.603 0.580 0.919

0.5 0 0.314 0.260 0.248 0.876 –0.363 0.342 0.305 0.763

0.5 0.177 0.238 0.239 0.694 0.072 0.280 0.230 0.406

1 0.231 0.293 0.284 0.808 0.738 0.504 0.498 0.822

3.1.4 Model Misspecification

The final simulation study examined the casewhere the hazard function for the obser-
vation times ismisspecified. Unlike Zhang et al. (2005), where a proportional hazards
frailty model is assumed, we investigated the situation where the observation times
follow an additive hazards frailty model, i.e. the hazard function for the observation
times is given by:

λc
i (t |Zi (s), bi (s), s ≤ t) = λ3(t) + γ ′Zi (t) + bi (t) , (9)

where λ3(t) is an unspecified baseline hazard function, and γ once again denotes the
covariate effect on the observation times.

As with the last case, we focused only on the situation where Z was generated
from a Bernoulli distribution with success probability 0.5. Here, current status data
were created by first generating the bi ’s from a standard normal distribution. Then,
survival and observation times were produced from exponential distributions with
hazards given by (1) and (9), with λ3(t) = 1.

Table16 shows the simulation results for this setup with no censoring. Upon
inspection, it seems that the results in this case are mixed. The method performs
adequately for certain parameter combinations and poorly for others. When γ is
equal to zero, the bias for β̂ and γ̂ is small, and the coverage probabilities are fairly
accurate. However, the results deteriorate as γ increases. Bias increases for both
parameters and coverage probability drops. This could possibly be explained by the
fact that the additive hazards model and proportional hazards model are similar for
certain parameter values. Analysis of the results with censoring, which can be found
in Tables17 and 18, shows a similar outcome. The results are reasonable when γ

is equal to zero and got worse as γ increases. Also it can be seen that the variance
estimates increase as the censoring percentage increases.
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Table 17 Case I additive hazards model for observation times with 20% censoring

γ β γ̂ β̂

Mean SE SEE CP Mean SE SEE CP

0 0 0.012 0.301 0.303 0.956 0.010 0.552 0.536 0.966

0.5 0.009 0.321 0.317 0.959 0.543 0.641 0.629 0.968

1 0.020 0.356 0.335 0.944 1.131 0.839 0.765 0.953

0.2 0 0.162 0.318 0.303 0.950 –0.177 0.600 0.585 0.952

0.5 0.099 0.336 0.313 0.922 0.420 0.684 0.638 0.940

1 0.106 0.325 0.327 0.949 0.977 0.785 0.751 0.939

0.5 0 0.320 0.303 0.301 0.917 –0.352 0.659 0.641 0.918

0.5 0.222 0.312 0.307 0.852 0.197 0.674 0.643 0.925

1 0.259 0.332 0.321 0.881 0.822 0.784 0.749 0.933

Table 18 Case I additive hazards model for observation times with 40% censoring

γ β γ̂ β̂

Mean SE SEE CP Mean SE SEE CP

0 0 –0.010 0.372 0.363 0.945 –0.023 1.065 1.042 0.952

0.5 0.019 0.378 0.375 0.952 0.556 1.173 1.127 0.951

1 0.003 0.406 0.385 0.945 1.015 1.306 1.213 0.943

0.2 0 0.149 0.396 0.364 0.929 –0.119 1.195 1.120 0.945

0.5 0.089 0.393 0.370 0.928 0.360 1.228 1.150 0.940

1 0.127 0.393 0.381 0.944 1.022 1.314 1.238 0.938

0.5 0 0.315 0.356 0.364 0.929 –0.344 1.269 1.230 0.939

0.5 0.233 0.377 0.368 0.881 0.200 1.261 1.207 0.947

1 0.268 0.378 0.376 0.906 0.851 1.350 1.290 0.951

3.1.5 Efficiency Comparison

It is also interesting to compare the efficiency of the method of Zhang et al. (2005)
with one designed for independent censoring when the censoring is in fact non-
informative. This could help a researcher determine which approach to use when
it is either known, or assumed, that the censoring is non-informative. In order to
accomplish this, another simulation study was conducted under the setup described
in Lin et al. (1998). This method was chosen for comparison because the model
specification is the same as that in Zhang et al. (2005) except for the frailty term.
Specifically, the failure times and observation times were generated according to
exponential distributions with the following hazards

λi (t |Zi (s), bi (s), s ≤ t) = λ1(t) + β ′Zi (t) , (10)
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Table 19 Case I efficiency comparison with method of Lin (1998)

n=100 n=200

λc,0 = 0.5 1.0 1.5 λc,0 = 0.5 1.0 1.5

Bias 0.04 0.03 0.02 0.02 0.02 0.01

SE 0.38 0.42 0.50 0.25 0.29 0.33

SEE 0.38 0.41 0.49 0.25 0.28 0.33

95% CP 0.95 0.96 0.95 0.95 0.95 0.95

Bias 0.07 0.05 0.01 0.04 0.02 0.01

SE 0.65 0.74 0.92 0.42 0.49 0.60

SEE 0.61 0.72 0.87 0.40 0.48 0.58

95% CP 0.96 0.96 0.95 0.95 0.95 0.95

and
λc
i (t |Zi (s), bi (s), s ≤ t) = λ2(t) exp(γ

′Zi (t)). (11)

This represents the case where the censoring is independent. The baseline hazard
function for the failure times was set to be λ1(t) = 1, and the baseline hazard for
the censoring times took the values λ2(t) = 0.5, 1.0, and 1.5. The true value of β

was taken to be 0.5 and the covariate was generated from a uniform distribution
over (0,

√
12). Samples sizes of n = 100 and n = 200 were investigated. 10,000

iterations were used for each combination of parameters.
The results for this simulation experiment can be found in Table19. The top half

of the table shows the original results from Lin et al. (1998). The bottom portion
shows the outcomes using the method of Zhang et al. (2005). Bias and coverage
probabilities are very close for both methods. However, the method of Lin et al.
(1998) does have smaller SE and SEE. This indicates that it might be preferred to
use their method when one believes the censoring is truly non-informative. This
result makes sense since the approach of Lin et al. (1998) was developed for this
type of censoring.

3.2 Case II

As was the case with current status data, many of the simulations for case II interval-
censored data are similar. For simplicity, the baseline hazard functions λt0(t), λu0(t)
and λw0(t) were set equal to one in each setup. Also the diagonal elements of the
covariance matrix were all set equal to 0.04 with the off-diagonal elements being
0.03. This produces correlation coefficients of 0.75 among b1i , b2i and b3i . Covariates
were generated for both the continuous and discrete case. The Zi ’s were generated
either fromauniformdistributionover [−1, 1]or aBernoulli distributionwith success
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Table 20 Case II Informative censoring

Parameter Continuous covariate Discrete covariate

Bias SE SEE CP Bias SE SEE CP

βt –0.0224 0.1846 0.1856 0.955 0.0210 0.1485 0.1473 0.948

βu –0.0266 0.1454 0.1401 0.939 –0.0185 0.1620 0.1570 0.941

βw –0.0251 0.1463 0.1400 0.937 –0.0133 0.1586 0.1570 0.948

probability of 0.5. Each simulation used a sample size of n = 200with 1000 iterations
unless otherwise noted.

Again, results are summarized in tables using several different statistics. The bias
in estimatingβt ,βu andβw is calculated by taking themean of the parameter estimates
minus the true value. Each table also shows the sample standard deviation of the point
estimates (SE) as well as the mean of the estimated standard errors (SEE). Finally,
95% empirical coverage probabilities are calculated.

3.2.1 Informative Censoring

The first setup was a confirmatory simulation with dependent censoring. These sim-
ulations verify the original results and serve as a point of comparison for all the
new cases. Here the data were generated according to the assumptions of the paper.
Survival times were generated from an exponential distribution with hazard func-
tion given by (4). The first observation time and gap time were also generated from
exponential distributions with hazards (5) and (6), respectively. In accordance with
the original paper, we set βt = βu = βw = 1.

The dependent censoring results for both a continuous covariate and a discrete
covariate are in Table20. Both results look very good. The bias is small for all three
parameters. The variance estimates are all similar, and each coverage probability is
around the specified 95%. Also, all of these outcomes closely match the correspond-
ing results found in Zhang et al. (2007).

3.2.2 Non-informative Censoring

The next simulations investigated the performance when the censoring is indepen-
dent. This setup can be obtained from the proposedmodel by setting the latent random
effects equal to zero for each subject, i.e. b1i = b2i = b3i = 0 for all i . Next, the sur-
vival time, first observation time, and gap time were generated from exponential
distributions with hazards defined according to Eqs. (4), (5) and (6), respectively.
Also, the true parameter values used here are βt = βu = βw = 1.

Table21 shows the outcomes for these simulations. The results seem to indicate
that the proposedmethod does well for the case of independent censoring. Bias for all
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Table 21 Case II non-informative censoring

Parameter Continuous covariate Discrete covariate

Bias SE SEE CP Bias SE SEE CP

βt –0.0044 0.1836 0.1858 0.947 0.0238 0.1330 0.1463 0.965

βu 0.0059 0.1430 0.1410 0.950 0.0105 0.1648 0.1583 0.940

βw 0.0075 0.1442 0.1411 0.947 0.0216 0.1522 0.1585 0.957

three parameters is reasonably small for both the continuous and discrete covariate.
The SE and SEE are always quite close, implying that the variance estimation is
doing a good job, and the 95% coverage probabilities are also fairly close to the
desired values. Moreover, these results are comparable to the dependent censoring
setup in Table20.

3.2.3 Model Misspecification

The next simulation studies examined cases where the hazard functions were mis-
specified. The proposed method assumes that all three hazard functions follow the
proportional hazards model, and wewere interested in evaluating the effectiveness of
this approach when these assumptions are violated. To achieve this, the proportional
hazardsmodelwas replacedwith the additive hazardsmodel in various combinations.

The first setup was a worst-case scenario where all three hazard functions were
misspecified. That is, the hazard functions for Ti , Ui and Wi were defined as:

λ
(T )
i (t |Zi , bi ) = λt0(t) + β

′
t Zi + b1i , (12)

λ
(U )
i (t |Zi , bi ) = λu0(t) + β

′
u Zi + b2i , (13)

λ
(W )
i (t |Zi , bi ) = λw0(t) + β

′
wZi + b3i , (14)

where once again βt , βu and βw are p × 1 vectors of regression parameters, and
λt0(t), λu0(t) and λw0(t) are unknown baseline hazard functions.

The values for Ti ,Ui andWi were again generated from exponential distributions,
but the hazard functions were specified using Eqs. (12), (13) and (14). The true values
for βu and βw were always equal to 1, and βt took the values 0, 0.5, and 1.

The results for these simulations with βt = 1 can be found in Table22. It is clear
from these simulations that the method performed poorly under these conditions.
The bias is very large for all three parameters with both the continuous and discrete
covariates, and the coverage probabilities are terrible. The results are similar when βt

is 0 and 0.5. The only exception is that the results forβt improve asβt decreases for the
uniform covariate. This could possibly be explained by the fact that the proportional
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Table 22 Case II additive hazard model for T, U, and W with βt = 1

Parameter Continuous covariate Discrete covariate

Bias SE SEE CP Bias SE SEE CP

βt –0.2424 0.1766 0.1866 0.738 –0.2796 0.1441 0.1463 0.496

βu –0.2916 0.2563 0.2514 0.795 –0.2817 0.1492 0.1510 0.510

βw –0.2652 0.2636 0.2518 0.795 –0.2651 0.1512 0.1515 0.549

hazards model and additive hazards model behave alike under these conditions. The
full table with results for all parameter values are in Table23.

Next, we considered the situation where only the hazards for U and W were
misspecified. The survival times were generated from an exponential distribution
using the correct proportional hazards model given by Eq. (4). The values for U
and W are also from an exponential distribution, but the hazards are defined using
the additive hazards model and Eqs. (13) and (14), respectively. Once again the true
values for βu and βw are set equal to 1, and βt takes the values 0, 0.5, and 1.

Table24 summarizes the outcomes of these simulations with βt = 1. There are
still serious problems with the estimates for βu and βw in terms of bias and coverage
probability. This can be expected since U and W were generated with incorrect
hazard functions. However, the results are interesting because the estimation for βt

is quite good for both cases. The bias is small, the variance estimates are close, and
the coverage probabilities are right around 95%. Results are nearly identical when
βt is equal to 0 and 0.5, and once again these additional results can be found in
Table25. This is promising since the primary goal is to estimate the covariate effect
on the survival times. However, more research should go into explaining this curious
outcome. It is possible that the variances and covariances of the random effects are
small enough that they behave as if they are independent.

The last setup for these simulations tested the case where only the survival time
hazard function is misspecified. Therefore, Ti was generated from an exponential
distribution with the hazard function given by Eq. (12), while Ui and Wi were gen-
erated from exponential distributions using the hazards defined in (5) and (6). We
investigated an extensive range of possible values forβt ,βu , andβw for both covariate
types.

The results for the continuous covariate are displayed in Table26. Table27 has the
results when Zi follows a Bernoulli distribution. Since the influence of the covariates
on Ti is the main focus of the analysis, we only present the information for βt in order
to reduce potential confusion, and make the table easier to digest. Here we can see
that these simulations had a mixed outcome. It seems that the estimation procedure
is performing well only for certain parameter combinations. This could possibly be
explained by the fact that the proportional hazards model and additive hazards model
are similar for some values. Nevertheless, the results become significantly worse as
βt gets larger. Also, the omitted data for βu and βw indicate that the model performs
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Table 24 Case II additive hazard model for U, and W with βt = 1

Parameter Continuous covariate Discrete covariate

Bias SE SEE CP Bias SE SEE CP

βt 0.0118 0.1801 0.1901 0.962 0.0115 0.1485 0.1511 0.953

βu –0.2786 0.2667 0.2519 0.777 –0.2704 0.1528 0.1513 0.563

βw –0.2701 0.2468 0.2520 0.814 –0.2599 0.1524 0.1515 0.590

well in estimating these parameters. This conclusion is not too surprising since U
and W were properly specified with the proportional hazards model.

The previous results motivated one final model misspecification simulation. The
setup is nearly identical except the sample size is increased to n = 400, and the
only parameter combinations examined were those that exhibited large bias in the
preceding simulation. A summary of this simulation study can be found in Table28.
Increasing the sample size unfortunately did not lead to a reduction in bias. The
variance estimates did get smaller but this resulted in the coverage probabilities
becoming far worse.

4 Conclusions and Discussion

This chapter investigated the behavior of themethods developed for regression analy-
sis of informative interval-censored survival data under circumstances beyond their
original intended scopes. Extensive Monte-Carlo simulation studies were conducted
in order to answer many questions about the flexibility of these methods. Of par-
ticular interest was how reliable these models are when the censoring is actually
non-informative.

Several interesting outcomes were observed. Most importantly, for both case I
and case II interval-censored data, these methods performed quite well with non-
informative censoring. This suggests that these techniques can be appropriate or
reasonable choices when the true nature of the censoring is unknown, provided the
other assumptions hold.

The first results with non-informative censoring were positive, but overall the
results were mixed. The procedures were not malleable enough to handle a number
of other situations that violated their assumptions. There were issues discovered with
the methods for both case I and case II interval-censored data.

For current status data, problems arose when there was a bivariate random effect
and amisspecified hazard function for the observation times. In these cases, themodel
performed poorly both in terms of bias and empirical coverage probabilities. Conse-
quently, a researcher would be wise to check the proportional hazards assumption on
the observation times. Fortunately, the observation times are either exactly known
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Table 26 Case II additive hazard model for T with continuous covariate

βt βu βw Bias β̂t SE SEE CP

0 0 0 –0.0115 0.1847 0.1934 0.962

0.5 –0.0254 0.1857 0.1911 0.959

1 –0.0143 0.1844 0.1914 0.957

0.5 0 –0.0065 0.1851 0.1922 0.958

0.5 –0.0264 0.1877 0.1899 0.953

1 –0.0230 0.1837 0.1905 0.956

1 0 –0.0249 0.1877 0.1951 0.964

0.5 –0.0288 0.1848 0.1946 0.961

1 –0.0139 0.1946 0.1954 0.952

0.5 0 0 –0.0728 0.1816 0.1974 0.960

0.5 –0.0715 0.1845 0.1944 0.944

1 –0.0769 0.1811 0.1923 0.943

0.5 0 –0.0730 0.1843 0.1920 0.955

0.5 –0.0746 0.1866 0.1879 0.934

1 –0.0764 0.1789 0.1871 0.942

1 0 –0.0798 0.1772 0.1929 0.949

0.5 –0.0699 0.1794 0.1880 0.946

1 –0.0731 0.1785 0.1876 0.944

1 0 0 –0.2412 0.1895 0.2061 0.793

0.5 –0.2415 0.2078 0.2004 0.733

1 –0.2367 0.1960 0.1985 0.763

0.5 0 –0.2464 0.1921 0.1958 0.757

0.5 –0.2436 0.1823 0.1911 0.754

1 –0.2365 0.1887 0.1887 0.758

1 0 –0.2404 0.1833 0.1933 0.767

0.5 –0.2385 0.1763 0.1881 0.766

1 –0.2461 0.1868 0.1848 0.734

or right-censored, and there exist many well-known techniques for model-checking
with this type of data.

The procedure for case II interval-censored data also had issues with a misspeci-
fied hazard function, as might be expected. Here, generating data using the additive
hazards model caused bias in the estimation of the corresponding parameters. Inter-
estingly, the results were not all negative. Bias only seemed to exist for the parameters
associated with the variables that had improperly specified hazard functions. This
is somewhat surprising, and explaining why this happens remains an open question
that could warrant further investigation.
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Table 27 Case II additive hazard model for T with discrete covariate

βt βu βw Bias β̂t SE SEE CP

0 0 0 –0.0095 0.1442 0.1478 0.957

0.5 –0.0129 0.1526 0.1474 0.948

1 –0.0105 0.1473 0.1494 0.965

0.5 0 –0.0186 0.1479 0.1471 0.948

0.5 –0.0192 0.1476 0.1475 0.952

1 –0.0182 0.1497 0.1510 0.955

1 0 –0.0219 0.1514 0.1516 0.957

0.5 –0.0212 0.1546 0.1533 0.951

1 –0.0340 0.1615 0.1601 0.946

0.5 0 0 –0.0789 0.1508 0.1522 0.915

0.5 –0.0872 0.1502 0.1498 0.915

1 –0.0840 0.1512 0.1507 0.913

0.5 0 –0.0798 0.1474 0.1471 0.920

0.5 –0.0934 0.1447 0.1453 0.900

1 –0.0828 0.1456 0.1464 0.928

1 0 –0.0871 0.1463 0.1481 0.924

0.5 –0.0833 0.1468 0.1467 0.913

1 –0.0962 0.1437 0.1495 0.919

1 0 0 –0.2665 0.1604 0.1614 0.599

0.5 –0.2587 0.1577 0.1586 0.597

1 –0.2757 0.1613 0.1572 0.578

0.5 0 –0.2750 0.1538 0.1531 0.537

0.5 –0.2751 0.1480 0.1489 0.525

1 –0.2707 0.1609 0.1486 0.532

1 0 –0.2808 0.1535 0.1508 0.516

0.5 –0.2849 0.1465 0.1467 0.492

1 –0.2938 0.1463 0.1461 0.460

Table 28 Case II additive hazard model for T with continuous covariate, n = 400

βt βu βw Bias β̂t SE SEE CP

1 0 0 –0.2444 0.1321 0.1402 0.590

0.5 –0.2333 0.1285 0.1363 0.595

1 –0.2278 0.1300 0.1353 0.613

0.5 0 –0.2416 0.1226 0.1337 0.548

0.5 –0.2421 0.1229 0.1306 0.528

1 –02384 0.1172 0.1289 0.540

1 0 –0.2502 0.1202 0.1315 0.513

0.5 –0.2529 0.1200 0.1284 0.474

1 –0.2426 0.1249 0.1268 0.508
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It is important to understand the circumstances under which a model performs as
expected, and also beneficial to have an idea when amodel might not be reliable. This
knowledge is useful for a researcher working on a real-world data analysis problem,
and can also motivate the formulation of new methodologies. Unfortunately, it is
not feasible to address every possible situation one might encounter. Therefore, the
work in this chapter could still be taken in a number of different directions to answer
other questions that still exist. For example, here we only examined one method for
each data type, and other techniques have been proposed in the literature to analyze
interval-censored data. Also, we focused on the methods that utilize the proportional
hazards assumption. These same unknowns could be investigated for procedures
assuming a different modeling framework for the hazard functions. Regardless of
what comes next, it is certain that Monte-Carlo simulations studies can play a key
role in finding answers to these questions.

Finally, it is worth noting that in this chapter, we only touched a few methods
developed in the literature for regression analysis of interval-censored failure time
data with informative censoring, and more recently several new methods have been
proposed for the same topic. For example, Ma et al. (2015, 2016) developed some
sievemaximum likelihood approacheswith the use of copulamodels for cases I and II
interval-censored data, respectively, arising from the proportional hazards model. In
contrast, Zhao et al. (2015a, b) gave some similar estimation procedures for the data
arising from the additive hazards model. Furthermore, Wang et al. (2016) discussed
regression analysis of case K interval-censored failure time data in the presence of
informative interval censoring, and Liu et al. (2016) investigated the same problem
but also with the presence of a cured subgroup.
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Abstract Many clinical trials collect information on multiple longitudinal out-
comes. Depending on the nature of the disease and its symptoms, the longitudinal
outcomes can be of mixed types, e.g., binary, ordinal and continuous. Clinical studies
on Parkinson’s disease (PD) are good examples of this case. Due to the multidimen-
sional nature of PD, it is difficult to identify a single outcome to represent the overall
disease status and severity. Thus, clinical studies that search for treatments for PD
usually collect multiple outcomes at different visits. In this chapter, we will intro-
duce the multilevel item response theory (MLIRT) models that account for all the
information frommultiple longitudinal outcomes and provide valid inference for the
overall treatment effects. We will also introduce the normal/independent (NI) distri-
butions, which can be easily implemented into the MLIRT model hierarchically, to
handle the outlier and heavy tails problems to produce robust inference. Other data
features such as dependent censoring and skewness will also be discussed under the
MLIRT framework.
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Many clinical trials collect information on multiple longitudinal outcomes. Depend-
ing on the nature of the disease and its symptoms, the longitudinal outcomes can
be of mixed types, e.g., binary, ordinal and continuous. In these clinical studies, the
multiple outcomes could be used as co-primary endpoints or a mixture of primary
and secondary endpoints. The methods that handles the multiple outcomes may vary
depending on the studies and nature of the diseases. Researchers may analyze the
outcomes individually, combine them using certain rules or algorithms as a com-
posite outcome, or analyze them simultaneously and draw inferences on the overall
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treatment effects. Each method have their own advantages and disadvantages. While
analysingmultiple outcomes individually could be a straightforward approach, prob-
lems may appear when the conclusions from individual outcomes do not agree with
each other, especially when the outcomes serve as co-primary endpoints. Combin-
ing outcomes together as a composite outcome may fixed this issue, however, how
to combine the outcomes and the interpretation of the composite outcome could
be potential debating points. In this chapter, we will introduce a statistical method
that handles multivariate longitudinal outcomes and draw inference on the overall
treatment effects using latent variables. First, we will set the scene using Parkin-
son’s disease as an example. Then we will introduce our method, the multilevel item
response theory (MLIRT) model, and explain how it works for the multivariate lon-
gitudinal data of mixed types. In addition, outliers exist in almost every clinical trial
data and sometimes we cannot delete them just because they are influential points. In
the following sections, we will introduce the normal/independent (NI) distribution
family and demonstrate how the NI distributions are incorporated into the MLIRT
model and how they tackle the outliers issues. Bayesian inference and some model
selection criteria will be summarized. Brief simulation and data analysis results will
be discussed. Other data features, such as dependent censoring and skewness, will
also be discussed in the extended modeling section. Now let’s start with the contexts
that motivated the method development.

1 Parkinson’s Disease as an Example

Clinical trials studies are often conducted by pharmaceutical companies and research
institutes with the goal of finding treatments for certain diseases. Statistics play key
roles in these research activities, from design, monitoring, interim decision making,
to the final analysis and reporting. Normally, a clinical trial study will enroll multiple
patients (or subjects), and patients will receive randomized treatments and will be
followed for a period of time. Longitudinal information will be collected over time
at each visit. Depending on the nature of the disease and its symptoms, many clini-
cal trial studies collect information on multiple longitudinal outcomes. In addition,
the multiple longitudinal outcomes can be of mixed types, e.g., binary, ordinal and
continuous. Parkinson’s disease (PD), for example, is a good representation of this
case.

Parkinsons disease (PD) is a chronic neurodegenerative disease with multidimen-
sional impairments. It is multidimensional because the symptoms of PD are mani-
fested in many ways, e.g. tremors, stiffness, slowness of movements, and loss of cog-
nitive functions (Cummings 1992; Fahn et al. 2004).Measurements such asQuality of
life (QoL),Unified ParkinsonsDiseaseRating Scale (UPDRS) total score, Hoehn and
Yahr scale (HY), and Schwab and England activities of daily living (SEADL) etc. are
often used. QoL measures patients’ activities of daily life and motor and non-motor
syndrome (Luo et al. 2013). The UPDRS total score evaluates patients’ mentation,
behavior, and activities of daily life (Bushnell and Martin 1999). HY measures the
disability level in daily activities (Müller et al. 2000). SEADL assesses patients’
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daily activities and functional impairment (McRae et al. 2000). Each outcome mea-
surement evaluate some aspects of PD but it is difficult to identify a single measure
to represent the overall disease severity (Huang et al. 2005). As a result, clinical trial
studies that search for treatment to slow down the progression of PD symptoms usu-
ally collect information on multiple outcomes across visits. For example, Deprenyl
and tocopherol antioxidative therapy of parkinsonism (DATATOP) study (Parkinson
Study Group 1989), Tolvaptan Efficacy and Safety in Management of Autosomal
Dominant Polycystic Kidney Disease and its Outcomes (TEMPO) study (Parkinson
Study Group 2002), Earlier versus Later Levodopa Therapy in Parkinson Disease
(ELLDOPA) study (Fahn et al. 2004) and Neuroprotection Exploratory Trials in
Parkinson’s Disease (NET-PD) study (Elm and The NINDS NET-PD Investigators
2012).

The multiple outcome measures collected at different visits lead to a multivari-
ate longitudinal data structure, which contains three sources of correlations within
and between outcomes for a patient: (i) different outcome measures at the same
visit (intersource), (ii) same outcome measures at different visits (longitudinal)
and (iii) different outcome measures at different visits (cross correlation). Analy-
sis approaches that aim to provide inference on the overall progression of the PD
need to take account for all three sources of correlations.

Many approaches have been developed to analyze multivariate longitudinal data
in clinical trials. In this chapter, we are not trying elaborate each approaches nor
to discuss the advantage and disadvantage of the existing methods, but rather we
introduce aMonteCarlo simulation basedBayesian hierarchicalmodelwhichmodels
the overall PD progression by using a latent variable.

2 MLIRT Model

The multilevel item response theory (MLIRT) models have been increasingly used
in many diseases such as PD disability, Alzheimer’s disease, Huntington’s disease,
and dementia, to to analyze multivariate longitudinal data (Weisscher et al. 2010;
Luo et al. 2012; Snitz et al. 2012; Vaccarino et al. 2011; Miller et al. 2012). The
model consists two levels and the two levels of models are linked via latent variables.
Thefirst levelmodel describes the relationship between the outcomemeasures and the
latent variable, while the second level model describes the relationship between the
latent variable and the covariate of interest. If we use PD as an example, the outcome
measures in the first level model would be QoL, UDPRS etc., the latent variable
would be the unobserved overall disease severity, and the covariate of interest in the
second level model could be the treatment assignment as well as disease duration
and time.

Now let’s define themodel in statistical language. Let yijk be the observed outcome
k (k = 1, . . . ,K) for patient i (i = 1, . . . ,N) at visit j (j = 1, . . . , Ji), where j = 1 is
baseline. yijk can be binary, ordinal and continuous. Let yij = (yij1, . . . , yijk, . . . , yijK)

′

be the vector of observation for patient i at visit j and let yi = (yi1, . . . , yiK)
′
be the

outcome vector across visits. Let θij be the continuous latent variable that denote the
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unobserved PD disease severity for patient i at visit j with higher value representing
more severe disease status. In the first level model, we model the outcome mea-
sures as a function of the subject-specific latent variable θij and the outcome-specific
parameters. Specifically, we model the binary outcomes using a two-parameter sub-
model (Fox 2010), the cumulative probabilities of ordinal outcomes using a graded
response sub-model (Samejima 1997), and the continues outcomes using a common
factor sub-model (Lord et al. 1968).

logit
{
p(yijk = 1|θij)} = ak + bkθij, (1)

logit
{
p(yijk ≤ l|θij)

} = akl − bkθij, with l = 1, 2, . . . , nk − 1, (2)

yijk = ak + bkθij + εijk, (3)

where ak and bk are the outcome-specific parameters. ak is the “difficulty” parameter
and bk is the “discriminating” parameter that is always positive and describes the
ability that outcome k discriminates between patients with latent disease severity θij.
Moreover, for ordinal outcome inmodel (2), suppose outcome k has nk categories and
nk − 1 thresholds ak1, . . . , akl, . . . , aknk−1 that satisfy the order constraint ak1 < · · · <

akl < · · · < aknk−1 . The probability that patient i being in category l on outcome k at
visit j is p(yijk = l|θij) = p(yijk ≤ l|θij) − p(yijk ≤ l − 1|θij). For continuous outcome
in model (3), the random error εijk ∼ N(0,σ2

k )with σ2
k denote variance of continuous

outcome k. The first level model provides great flexibility of handling the three types
of outcomes. But it is not necessary to have all three types of outcomes in your study
to use the model.

In the second level model, the latent variable θij, which represent the overall
PD disease severity, is regressed on predictors of interest (e.g., treatment, disease
duration, and time) and subject-specific random effects.

θij = Xi0β0 + ui0 + (Xi1β1 + ui1)tij, (4)

where Xi0 and Xi1 are the design matrix that contain the covariate of interests, they
may share all or part of covariates depending on the content andpurpose of the studies.
ui0 and ui1 are the subject-specific random intercept and random slope, respectively.
In the context of PD, ui0 is the random interceptwhich determines the subject-specific
PD disease severity and ui1 is the random slopewhich determines the subject-specific
PD disease progression rate.

To better understand second level model (4), we use a simple example to fur-
ther explain the model. Suppose there is no covariate in Xi0 and only one variable,
treatment assignment, is included in Xi1, then model (4) simplifies to

θij = ui0 + [β10 + β11Ii(trt) + ui1]tij, (5)

where I(·) is an indicator function (1 if treatment and 0 otherwise). In the simplified
second level model (5), β10 and β10 + β11 denote the PD disease progression rates
for placebo and treatment patients, respectively. And β11 represent the change in
disease progression rate due to treatment. If we are testing the null hypothesis of no
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overall treatment effect, that is H0 : β11 = 0, the significant negative coefficient β11

would indicate that the treatment slows down the disease progression.
It is well-known that the item-responsemodels are over-parameterized (Samejima

1997) and some constraints need to be imposed to make the models identifiable.
One way we may handle this issue is to set Var(ui0) = 1 to ensure model identifi-
ability. Other approaches, such as setting the akl = 0, was also explored (Luo and
Wang 2014). Let the random effects vector ui = (ui0, ui1)

′
and assume ui0 ∼ N(0, 1),

ui1 ∼ N(0,σ2
u), and corr(ui0, ui1) = ρ. Under the local independence assumption

(i.e., conditional on the random effects vector ui, all outcome measures for each
patient are independent) (Fox 2010), the full likelihood of patient i across all visits is

L(yi,ui) =
⎡

⎣
Ji∏

j=1

K∏

k=1

p(yijk|ui)
⎤

⎦ p(ui). (6)

To this end, we have introduced the “plain” version of the MLIRT model for the
analysis of multivariate longitudinal data and we refer the model as Indep-N model.
We called the current model as the “plain” version because we can add more features
to it to account for more advanced data structures. In the following Sects. 3 and 7,
we will discuss the outliers and dependent censoring as well as skewness and how
to incorporate the data features into the MLIRT model under Bayesian framework.
Due to the limited space, we will focus on the simulation and analysis results that
address the outlier issues as an example of how the work was performed.

3 MLIRT Model with NI Distribution

Normal distributions are usually assumed for the continuous outcomes as well as the
random effects in MLIRT model. However, the parameter estimation may be biased
due to outliers and heavy tails in the continuous outcomes and/or random effects.
Many approaches have been developed to handle outliers and heavy tails. For exam-
ple, detection and elimination of influential data points and data transformation are
two methods that are often used. However, in clinical trial studies, especially for
primary efficacy analysis, the intent-to-treat (ITT) principle is often required to fol-
low. Under the ITT principle, the analysis has to include all randomized individuals
which exclude the method that eliminating the outliers from the analysis data. Data
transformation methods (e.g., log, square-root and Box-Cox) might generate distrib-
utions close to normality but the disadvantages are also clear: (1) the interpretation of
the results on the transformed scale may be difficult for some studies; (2) the trans-
formation scheme usually is not universal and need to be tailed to each variables
and datasets; (3) the outlier issue is further complicated when the random effects are
also “departure from normality” (Lachos et al. 2011), and the transformation of the
random effects may not be straightforward. In this section, we introduce a robust
distribution, normal/independent distribution, to account for the outliers and heavy
tailed situation on both continuous outcomes and random effects.
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3.1 NI Distribution

The normal/independent (NI) distribution is a family of symmetric distributions
with heavier tails. Extensive discussion about the NI distributions can be found in
the literatures (Lange and Sinsheimer 1993; Liu 1996; Rosa et al. 2003; Lachos et al.
2011; Luo et al. 2013; Baghfalaki et al. 2013). Since our purpose is to incorporate
the NI to the MLIRT model, without emphasizing too much on the densities and
properties of NI distribution, here we use the univariate version of NI as an example.

An element of the univariate NI family y is defined as the distribution of random
variable

y = μ + e/
√

ω,

where μ is a location vector, e is random error and is normally distributed with mean
zero and variance σ2, ω is a positive weight variable which has density function
p(ω|ν)with tuning parameter ν and is independent of random error e. The key of the
NI distribution is the wight ω, and ω can be estimated during modeling and can be
further used for outlier identification. How the NI distribution works for the outliers
is that the impact of the outliers to the overall inference is control by stochastically
assigning lower weights ω to the influencing points (Lange and Sinsheimer 1993).
If the estimate of ω is close to 0, it indicates that the corresponding observation can
be a potential outlier.

Given ω, y follows a normal distribution N(μ, ω−1σ2). The marginal density of
y is given by NI(y|μ,σ2, ν) = ∫

p(y|μ,σ2,ω)p(ω|ν)dω. In addition, when ω → 1
(or equivalently when ν → ∞), NI(y|μ,σ2, ν) → N(μ, σ2) (Lange and Sinsheimer
1993; Rosa et al. 2003).

Now back to our MLIRT model. We keep the univariate version of the NI and
use the continuous outcome yijk in model (3) as an example. When a univariate NI
distribution is applied to model (3), we now have

yijk = ak + bkθij + ε
′
ijk,

where ε
′
ijk = εijk/

√
ωi with εijk ∼ N(0,σ2

k ). The weight variable ωi has density func-
tion p(ωi|ν) with positive tuning parameter ν.

TheNI distributions provide a family of symmetric heavy-tailed distributionswith
different density specification for ωi:

• ε
′
ijk follows a Student’s-t distribution when ωi ∼ Gamma(ν/2, ν/2) with parame-
ter ν being the degree of freedom,

• ε
′
ijk follows a slash distribution when ωi ∼ Beta(ν, 1) with tuning parameter ν,

• ε
′
ijk follows a contaminated normal (CN) distribution when ωi takes one of the two
discrete values with pdf p(ωi|ν) = νI(ωi=γ) + (1 − ν)I(ωi=1), where 0 < ν ≤ 1 and
0 < γ ≤ 1.

The specifications for Student’s-t distribution and slash distribution are straightfor-
ward. For contaminated normal (CN) distribution, ν can be viewed as the proportion
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of contamination, in another words, the percentage of outliers deviating from the nor-
mal distribution; γ can be viewed as the scale of contamination, that is, how severe
the outliers deviate from the normal distribution with smaller γ denoting stronger
deviation. When ωi = 1, then p(ωi|ν) = 1 − ν and ε

′
ijk ∼ N(0,σ2

k ) with probability

1 − ν; when ωi = γ, then p(ωi|ν) = ν and ε
′
ijk is contaminated with probability ν

and ε
′
ijk ∼ N(0,σ2

k/γ) (Lange and Sinsheimer 1993; Rosa et al. 2003). Essentially,

the CN distribution ε
′
ijk follows is a two-component mixture distribution with pdf

p(ε
′
ijk) = νN(0,σ2

k/γ) + (1 − ν)N(0,σ2
k ).

3.2 NI Distribution in MLIRT Model

Consider the general scenario that we have outliers in both continuous outcome and
random effects. In this section, we apply the NI distributions to the random error εijk
for continuous outcome in model (3) and the random effects vector ui = (ui0, ui1)

′

in model (4).
There are twoways of applyingNI to theMLIRTmodels: (i) assume sharedweight

ωi between the continuous outcomes and random effects as suggested by Lachos et
al. (2011, 2013). and (ii) assume different weights between the continuous outcomes
and random effects.

We first introduce the method using shared weight ωi. Assume that (ui, εi) ∼
NI(0, {(Σu, 0), (0,σ2)},ωi), whereΣu is the variance-covariancematrix for random
effects vector ui, and εi is the random error of a continuous outcome for patient i for
i = 1, . . . ,N . Please note that ui and εi are conditionally independent given ωi, but
not marginally independent.

Specifying the model with NI directly may not be easy. But one of the advantages
in Bayesian framework is that they can be specified the parameters hierarchically.
We may specify ui, εijk and ωi as:

ui|ωi ∼ N(0, ω−1
i Σu),

εijk|ωi ∼ N(0, ω−1
i σ2

k ),

ωi ∼ p(ωi|ν).

As introduced in Sect. 3.1, by changing the distribution of ωi, we can now have
Student’s-t, slash and contaminated normal distribution for both ui and εijk . And
now the continuous outcome yijk follows yijk|ui,ωi ∼ N(ak + bkθij, ω−1

i σ2
k ). The

full likelihood of patient i across all visits is

L(yi,ωi,ui) =
⎡

⎣
Ji∏

j=1

K∏

k=1

p(yijk|ui,ωi)

⎤

⎦ p(ωi)p(ui). (7)

We refer to this model as model Dep-NI because ui and εijk are marginally dependent
on ωi.
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In the second method, we assume different weights for continuous variable and
random effects. It is generally a more flexible method since we do not apply any
assumptions to the weights. The assumption that continuous variable and random
effects vector share the same level of outliers and heavy tails might be reasonable for
some studies, it may not always be true and may have negative impact to the model
inference. Here we assume that ui and εijk are scaled by different weight variables:
ui ∼ NI(0, Σu, ω1i),and εijk ∼ NI(0, σ2

k , ω2ijk), where ω1i is a subject-specific
weight variable for ui, and ω2ijk is a patient-visit-outcome specific weight variable
for continuous outcome yijk , and ω1i and ω2ijk are independent.

Similarly we use hierarchical specifications and apply the NI distribution to the
MLIRT model. The specification of ui, εijk , ω1i, and ω2ijk are

ui|ω1i ∼ N(0, ω−1
1i Σu),

εijk|ω2ijk ∼ N(0, ω−1
2ijkσ

2
k ),

ω1i ∼ p(ω1i|ν1),
ω2ijk ∼ p(ω2ijk|ν2).

Then the continuous outcome yijk follows yijk|ui,ω2ijk ∼ N(ak + bkθij, ω−1
2ijkσ

2
k ). Let

ωi=(ω1i,ω2i), whereω2i = {ω2ijk} for j = 1, . . . , Ji and k = 1, . . . ,K . The full like-
lihood of patient i is

L(yi,ωi,ui) =
Ji∏

j=1

[
K∏

k=1

p(yijk|ui,ω2ijk)p(ω2ijk)

]

p(ω1i)p(ui). (8)

We refer to this model as model Indep-NI because ui and εijk are marginally inde-
pendent.

4 Bayesian Inference and Model Selection Criteria

Bayesian approach based on MCMC posterior simulations was used to analyze the
multivariate longitudinal data using MLIRT models. The fully Bayesian inference
has many advantages. First, MCMC algorithms can be used to estimate exact poste-
rior distributions of the parameters, while likelihood-based estimation only produces
a point estimate of the parameters, with asymptotic standard errors (David 2007).
Second, Bayesian inference provides better performance in small samples compared
to likelihood-based estimation (Lee and Song 2004). In addition, it is more straight-
forward to deal withmore complicatedmodels using Bayesian inference viaMCMC.
Themodel fitting is conducted using theBUGS language implemented in OpenBUGS
(OpenBUGS version 3.2.3).

We assume vague priors for all the parameters of interests. For example, the
prior distribution of all parameters in β is N(0, 100), we use the prior distribution
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Gamma(0.001, 0.001) for σu and for all components in b to ensure positivity, and use
Uniform[−1, 1] for ρ. Multiple chains with dispersed initial values are run. To assess
convergence, we use the history plots to ensure there are no appearance of trend for
all parameters. In addition, we use Gelman-Rubin diagnostic statistics to ensure the
scale reduction R̂ of all parameters are smaller than 1.1 (Gelman et al. 2013). To
facilitate easy reading and implementation of the proposed models, a sample BUGS
code for fitting model Indep-NI when using contaminated normal distribution will
be available with the book.

There are various model selection methods available in Bayesian inference, for
example, the log pseudo-marginal likelihood (LPML), the deviance information
criterion (DIC), the expected Akaike information criterion (EAIC), the expected
Bayesian information criterion (EBIC) and Bayes factor (BF) to assess model per-
formance.

The computation of LPML is based on Conditional predictive ordinate (CPO).
CPO is a cross-validation predictive method that evaluates the predictive distribution
of the model conditioning on the data but with single data point deleted (Geisser
1993; Carlin and Louis 2011; Lachos et al. 2009; Chen et al. 2000). Let y be the full
observed data and y(i) be the data with subject i deleted. Then the CPO for subject i
is defined as CPOi = p(yi|y(i)) = ∫

p(yi|θ)p(θ|y(i))dθ. Large CPO implies that the
data for subject i can be well predicted by the model based on the data from all the
other subjects. Thus lager CPO means a better fit for the model. Because there is no
close form for CPOi in MLIRT model, a Monte Carlo estimation can be obtained
from the posterior distribution p(θ|y). Since the function of CPOi can be further
derived as CPOi = p(yi|y(i)) = p(y)/p(y(i)) = 1/

∫
p(θ|y)/p(yi|y(i),θ)dθ, let M be

the total number of post burn-in samples, then a harmonic-mean approximation
of CPOi is ̂CPOi = ( 1

M

∑M
t=1

1
p(yi|y(i),θ

(t))
)−1 = ( 1

M

∑M
t=1

1
p(yi|θ(t))

)−1 (Luo et al. 2013;

Chen et al. 2000). A summary statistics of CPOi is log pseudo-marginal likelihood
(LPML), defined as LPML = ∑N

i=1 log( ̂CPOi). A larger value of LPML implies a
better model fitting.

The deviance information criterion (DIC) assesses model fittings based on the
posterior mean of the deviance and a penalty on the model complexity (Spiegelhalter
et al. 2002). The deviance statistics is defined asD(θ) = −2 log f (y|θ) + 2 log h(y),
where f (y|θ) is the likelihood of the observed data y given parameter vector θ, h(y) is
a standardized function of the data alone and have no impact on the assessment of the
model fitting. Let D̄(θ) = Eθ|y[D(θ)] be the posterior mean of the deviance and let
D(θ̄) = D(Eθ|y[θ]) be the deviance evaluated at the posterior mean of the parameter
vector θ. The DIC is defined as DIC = D̄(θ) + pD, where pD = D̄(θ) − D(θ̄) is
the number of effective parameters and it captures the complexity of the model.
A smaller value of DIC implies better fit of the model. Moreover, the expected
Akaike information criterion (EAIC) and the expectedBayesian information criterion
(EBIC) (Carlin and Louis 2011) are defined as EAIC = D̄(θ) + 2p and EBIC =
D̄(θ) + p logN , respectively, where p is the total number of parameters used in the
model and N is the sample size. Smaller values of EAIC and EBIC imply better fit
of the model.
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Furthermore, Bayes factor (BF) is a standard Bayesian solution (an alternative
to p value) to the hypothesis testing for competing models. The BF quantifies the
the degree to which whether the observed data support a hypothesis (Lavine and
Schervish 1999; Lewis and Raftery 1997). Let two competing models beM1 andM2.
Then for observed data y, BF in favor of model M1 over M2 is defined as

BF(M1;M2) = f (y|M1)

f (y|M2)
=

∫
f (y|θ1,M1)f (θ1|M1)dθ1∫
f (y|θ2,M2)f (θ2|M2)dθ2

,

where θi is the parameter vectors for modelMi for i = 1, 2; f (y|θi,Mi) is the likeli-
hood ofmodelMi; and f (θi|Mi) is the posterior density of θi for modelMi (Lewis and
Raftery 1997;Gelman et al. 2013). The direct computation of the integration involved
in the BF is not straightforward, so the Laplace-Metropolis estimator based on nor-
mal distribution is used to approximate the marginal likelihood f (y|Mi) (Lewis and
Raftery 1997). Specifically, the f (y|Mi) ≈ (2π)di/2|Σi|1/2f (y|θ̄i,Mi)f (θ̄i|Mi), where
di is the number of parameters in θi, Σi is the posterior covariance matrix of θi, θ̄i is
the posterior mean of θi, f (θ̄i|Mi) is the prior probability of parameters evaluated at
θ̄i, and f (y|θ̄i,Mi) is the likelihood evaluated at the posterior mean θ̄i (He and Luo
2013; Lewis and Raftery 1997). The interpretation of the BF is summarized by Kass
and Raftery (1995). In paticular, when BF is greater than 100, decisive evidence is
shown in favor of Model M1 over M2.

5 Monte Carlo Simulation Scheme and Some Results

Up until this section, we have been introducing all the theoretical works. Often times
in Bayesian analysis, simulation studies are conducted to demonstrate the advan-
tages/benefits of the proposed methods. For methods that have potential applications
to clinical trial studies, ideally the simulation studies should be close to the real life
settings or similar to some historical trial data. Here we summarize the simulation
scheme for MLIRT modeling using NI distribution as an example. The complete
simulation settings can be found in Chen and Luo (2016).

Recall that we refered the “plain” version of the MLIRT model as Indep-N model
(Sect. 2), the model with shared weight NI distribution for continuous outcomes and
random effects as Dep-NI model (Sect. 3.2) and the model with independent weights
as Indep-NI model (Sect. 3.2). The purpose of the simulation study is to show that the
performance of the MLIRT model with NI is better than the the “plain” model with
Indep-NI performs better than Dep-NI. So the simulation basically contains three
parts. In the first part, we assume there is no outliers in the continuous outcomes and
random effects, that is the Indep-Nmodel is the true model. The simulation results in
this part demonstrates that under the normality assumptions, the performance of the
MLIRTmodelswithNI distributions (Indep-NI andDep-NI) is very similar to the true
model (Indep-N) despite the extra parameters from the NI distributions. The first part



Robust Bayesian Hierarchical Model Using Monte-Carlo Simulation 357

of the simulation could sometime get ignored or forgotten, because the simulation
does not show advantages of the proposed methods. However, it is very important
to show the proposed methods work well under regular assumptions not only under
special cases (datawith outliers in this case). In part two of the simulation, 5%outliers
were generated for both continuous outcomes and the random effects. The results
show that Indep-NI and Dep-NImodel performs better over Indep-N in terms of bias,
SD, SE and coverage probability (CP) on the parameter estimations. Furthermore,
in the third part of the simulation, the results desmonstrated that among the three NI
distributions (Student’s t, slash and contaminated normal), the contaminated normal
distribution works best for both Indep-NI and Dep-NImodel with Indep-NI performs
better than Dep-NI.

Overall, the simulation study conveyed the message that Indep-NI model is a
more general model that work under both regular conditions (continuous outcomes
and random effects follow normality assumptions) and cases when there are outliers
present in both the outcomes and random effects. Note that, since under simulation
settings, we know the underlining true values for each parameters, we may compare
the methods directly using bias and coverage probabilities. For the analysis using
real trial data, we will need to use the model selection criteria to help make decisions
and conclusions.

6 Application to Trial Study Data

Analysis method innovations and improvements in the medical or biomedical field
are often motivated by clinical trial study data. The introduced MLIRT models with
NI distributions were motivated by the PD trial study DATATOP. The DATATOP
study was a double-blind, placebo-controlled, multi-center clinical trial. A 2 × 2
factorial design was used to test the hypothesis that patients with early Parkinson’s
disease with deprenyl 10mg/d and/or tocopherol (vitamin E) 2000 IU/d will delay
the time until the application of levodopa therapy. Eight hundred eligible patients
were enrolled and randomized to one of the four treatment arms: active deprenyl
alone, active tocopherol alone, both active deprenyl and tocopherol, and double
placebo. Longitudinal outcomes such as Unified Parkinson’s Disease Rating Scale
(UPDRS), Hoehn and Yahr scale (HY), and Schwab and England activities of daily
living (SEADL) were collected at baseline and months 1, 3, 6, 9, 12, 15, 18, 21, and
24. In the DATATOP study, only deprenyl was found to be effective in delaying the
time until the need of levodopa therapy (Parkinson Study Group 1989, 1993). The
levodopa therapy provided temporary relief of PD symptoms and may significantly
change the outcomes for a short period.

One of the best ways to understand the results is through data visualization meth-
ods, e.g. plots and figures. Without replicate the analysis from Chen and Luo (2016),
wewould like to cite a fewfigures to re-emphasise how theMLIRTmodelwithNI dis-
tributions work for the DATATOP data (Chen and Luo 2016. Copyright Wiley-VCH
Verlag GmbH & Co. KGaA. Reproduced with permission). Figure1 is a spaghetti
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Fig. 1 Longitudinal profile
of the outcome UPDRS.
Numbers 105, 108, 621, and
749 denote four patients
(Reproduced with
permission from Chen and
Luo (2016))
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Fig. 2 Standardized
residuals of the UPDRS
measurements for all patients
at each visit when fitting
model Indep-N. The dashed
lines are horizontal lines at
−2 and 2 and the solid lines
are horizontal lines at −3
and 3. Numbers 105, 108,
621, and 749 denote four
patients (Reproduced with
permission from Chen and
Luo (2016))
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plot that shows the longitudinal profile of the observed outcome UPDRS for all
patients in DATATOP before any analysis is performed. The highlighted numbers
105, 108, 621 and 749 represent the UDPRS profile for four patients. As mentioned
before, PD is a slow progression disease, UPDRS profile such as patient 621 is often
observed. UPDRS profile with unexpected sudden changes, such as patient 105, 108
and 749 at visit 3, 6 and 12month, respectively, could be potential outliers.

Figure2 shows the standardized residuals (SRs) of UPDRS for all patients at each
visit, after applying the “plain” version MLIRT model, Indep-N. For the same four
patients in Fig. 1,while patient 621maintains lowSRs value, patient 105, 108 and 749
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Fig. 3 Estimates of the weight variable ωijk for patients 105, 108, 621, and 749 at certain visits
from model Indep-CN (Reproduced with permission from Chen and Luo (2016))

have hight SRs values (with absolute value larger than 3) at visit 3, 6 and 12month,
respectively, indicating that they are outliers in the Indep-Nmodel. To account for the
outliers, the Indep-NI model using contaminated normal distributions (Indep-CN)
is applied to the DATATOP data and the results are demonstrated in Fig. 3. Clearly,
low weights (around 0.19) are estimated and assigned for patient 105, 108 and 749,
while high weight (0.91) is estimated for patient 621. The impact of the outliers are
attenuated by the stochastically assigned lower weights during modeling. If we look
at the overall performance of the models for DATATOP using the model selection
criteria, not surprisingly, the the overall performance of the Indep-CNmodel (Indep-
NImodel usingCNdistribution) is better than the Indep-Nmodel as shown in Table1.
The Indep-CN model had the best fit in terms of LPML and BF values. The BFs of
Indep-CN over models Dep-CN and Indep-N are much larger than 100, suggesting
decisive evidence in favor of the Indep-CN model.
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Table 1 Model comparison statistics for the DATATOP dataset from models Indep-N, Dep-CN,
and Indep-CN. The best fitting model is highlighted in bold

LPML BF

Indep-N −27312.50 	100

Dep-CN −26930.44 	100

Indep-CN −26873.84 Ref

Reproduced with permission from Chen and Luo (2016)

7 More Extended Modeling

Besides outliers and heavy tails, other data feature such as dependent censoring and
skewness, can also be considered and incorporated into theMLIRTmodel framework.
In the following Sect. 7.1, we will briefly introduce the joint MLIRT model that
accounts for the dependent censoring. In Sect. 7.2, we introduce a nice extension to
the NI distribution family, the SNI distribution, which accounts for both skewness
and heavy tails.

7.1 Joint MLIRT Model

In addition to outlier and heavy tail problem, the scheduled visits or follow-up of
patients in longitudinal clinical studies may be stopped by terminal events. The
terminal events could be noninformative such as study termination or informative
such as death or dropout due to disease progression. When the terminal events are
related to patients’ disease conditions, the unobserved outcomes are non-ignorable.
The dependent terminal event time is usually named as informative censoring or
dependent censoring. It has been shown that ignoring dependent censoring leads to
biased estimates (Henderson et al. 2000).

Figure4 shows the mean UPDRS values for DATATOP patients with follow-up
time less than 9month (solid line), 9–15month (dashed line), andmore than 15month
(dotted line), respectively. Patients with shorter follow-up time have higher (worse)
UPDRS values, suggesting that there is a strong association between the longitudinal
outcomes and time to the initiation of levodopa therapy.

Joint modeling of the dependent terminal event time and the longitudinal out-
comes provide consistent estimates (Henderson et al. 2000). In theMLIRTmodeling
framework,Wang et al. proposed a joint model to analyzemultiple-item ordinal qual-
ity of life data in the presence of death (Wang et al. 2002). He and Luo developed a
joint model for multiple longitudinal outcomes of mixed types, subject to outcome-
dependent terminal events (He and Luo 2013). Luo further relaxed the proportional
hazard (PH) assumption and developed a joint modeling framework replacing the
PH model by various parametric accelerated failure time (AFT) models (Luo 2014).
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Fig. 4 Mean UPDRS values
for patients with follow-up
time less than 9months
(solid line), 9–15months
(dashed line), and more than
15months (dotted line)
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Without exhaust all the existing methods, here we introduce the joint model using
the Cox proportional hazard model for dependent terminal event time.

Let ti be the time to a terminal event ζi for subject i. Let Xi denote the vector of
potential risk factors. Then the Cox proportional hazard model can be written as

h(ti) = h0(ti)exp(Xiγ + η0ui0 + η1ui1), (9)

where γ is the unknown parameter for the potential risk factors Xi, η0 and η1 mea-
sure the association between the Cox proportional hazard model and the MLIRT
model. The dependent censoring issue is addressed by jointly modeling the MLIRT
model and the survival model. The shared random effects ui0 and ui1 account for
the correlation between the survival time and longitudinal outcomes. To allow dif-
ferent baseline hazard rates at different time periods, we adopt the piecewise con-
stant function to approximate the baseline hazard function h0(t) and assume that
the hazard rate is constant within each given time period. Given a set of time
points 0 = τ0 < τ1 < · · · < τm, the baseline hazard h0(t) and the baseline haz-
ard vector g = g0, g1, . . . , gm−1, the piesewise constant hazard function can be
defined as h0(t) = ∑m−1

l=0 glIl(t), where Il(t) is a indicator function with Il(t) = 1
if τl ≤ t < τl+1 and 0 otherwise.

Under the local independence assumption (i.e., conditional on the random effects
vector ui, all outcome measures for each patient are independent) (Fox 2010), the
full likelihood of subject i across all visits is
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L(yi,ui) =
⎡

⎣
Ji∏

j=1

K∏

k=1

P(yijk|ui)
⎤

⎦ · h(ti)ζi S(ti) · P(ui), (10)

where the survival function S(ti) = exp[∫ ti
0 h(s)ds] and p(ui) is the density function

for random effects ui.

7.2 MLIRT Model with Skew-Normal/Independent (SNI)
Distributions

In previous sections, we have considered the outlier issues. But the outlier, or in
general, departure form normality may due to skewness, outliers, or both. The skew-
normal/independent (SNI) distribution is an nice extension to the NI distribution
family. SNI is a class of asymmetric heavy-tailed distributions that includes skew-t
(ST), skew-slash, and skew-contaminated normal distributions. In this section we
focus on the ST distribution, while the application of other SNI distributions is
straightforward. Similar to the properties of NI distributions, the ST distribution
reduces to the skew-normal distribution (SN, asymmetric but not heavy-tailed) when
degree of freedom is large and further reduce to normal distribution when the skew-
ness approaches to zero. Here we consider the ST and SN distributions introduced
by Sahu et al. (2003), which have the stochastic representation and are suitable for a
Bayesian computation.

For simplicity, we illustrate the implementation of the univariate ST distribution
to the continuous outcome k in model (3). Let δ be the skewness parameter for
continuous outcome yijk , and ν be the degree of freedom for the ST distribution,
following Sahu et al. (2003), the stochastic representation of the ST distribution for
yijk is given by

yijk|ak, bk, θij,σ2
k ,ωijk, zik, δ, ν ∼ N(ak + bkθij + δzik, σ2

k/ωijk),

zik ∼ N(0, 1)I(zik > 0),

δ ∼ N(0, Γ ),

ωijk ∼ Gamma(ν/2, ν/2),

where the weight variable ωijk is a positive random variable with density p(ωijk|ν),
with ν > 0 represents degree of freedom, zik is a subject-specific variable for outcome
k that follows a truncated standard normal distribution. The skewness parameter δ
indicates the skewness of outcome k, with positive δ representing a right skewed
distribution and negative δ representing a left skewed distribution. The parameter Γ

determines the prior variance information for δ. It is worth to mention that when the
degree of freedom ν → ∞, the distribution Gamma(ν/2, ν/2) degenerates to 1, i.e.,
ωijk ≡ 1. In this case, the ST distribution reduces to the SN distribution. Moreover,
when the skewness parameter δ = 0, the ST distribution reduces to the symmetric
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and heavy-tailed student-t distribution. The parameters ν and δ can be estimated from
the data during modeling, and small ν and large δ in absolute value are indications
of heavy tails (outliers) and skewness, respectively.

After incorporating the ST distribution to the likelihood in (6), the full likelihood
becomes

L(yi, ui, ωijk, zik, δ) =
Ji∏

j=1

⎡

⎣
K∏

k=1

p(yijk |ui, ωijk, zik, δ)p(ωijk)p(zik)

⎤

⎦ p(ui). (11)

8 Discussions

In this chapter, we introduced the application of latent variable based multilevel
item response theory (MLIRT) models to clinical trial studies. The characteristics of
the MLIRT model make it a great fit for analyzing longitudinal data with multiple
endpoints of mixed types. The advantages of the MLIRT model include but not
limited: (1) it uses the full longitudinal information and accounts for the three sources
of correlations within subject via the subject-specific random effects; (2) it has a
better reflection to the multilevel data structure; and (3) it simultaneously estimates
the measurement-specific parameters, the covariate effects, as well as the subject-
specific disease progression characteristics (Maier 2001; Kamata 2001; He and Luo
2013). The ability of the MLIRT model being able to provide overall treatment
inference through multiple outcome measures lead to a great potential that the model
can be applied to a wide range of therapeutic areas in clinical studies.

The underlying linear disease progression assumption in model (4) can be further
relaxed by adding quadratic or higher-order term of time t to accommodate the
possible disease fluctuation over time, for example, θij = Xi0β0 + ui0 + (Xi1β1 +
ui1)tij + (Xi2β2 + ui2)t2ij, where Xi0, Xi1 and Xi2 may contain the same or different
sets of covariates of interest. The choice of the form ofmodel (4) could be determined
by (a) the natural history or characteristics of the disease or (b) statistics techniques
such as goodness-of-fit or Bayes factor (BF) in Bayesian framework. In addition,
given a distribution assumption for the latent variables θij, the MLIRT models are
equivalent to nonlinear mixed models (Rijmen et al. 2003).

In sum, due to the flexibility of the MLIRT model and the fairly straightfor-
ward hierarchical specifications under Bayesian framework, we introduced the nor-
mal/independent(NI) distributions and incorporated theNI distribution to theMLIRT
model framework to tackle the commonly-encountered outliers and heavy tails prob-
lems. We demonstrated how the NI distribution account for the outliers and attenu-
ate their impact to the overall inference by assigning lower weights to those outlier
patients. It is noteworthy that models Dep-NI and Indep-NI when using CN distribu-
tions are Bayesian mixture models because the CN distribution is a two-component
mixture distribution. Gelman (2013) and Fox (2010) have discussed the identifia-
bility issues called label switching in Bayesian mixture models. Basically the label



364 G. Chen and S. Luo

switching problem is that the posterior distribution is invariant to permutations in
the labeling of mixture components. Jasra et al. (2005) offered an excellent review
of the label switching problem and provided some solutions. However, the MLIRT
models using CN distribution do not have the identifiability issue because of the
increasing order of the variances of the two component distributions, i.e., σ2

k/γ ≥ σ2
k

as 0 < ν ≤ 1. The fact that all parameters can be successfully recovered in all these
models suggest that the proposed models are identifiable.

As discussed in Sect. 7, data features such as dependent censoring and skewness
can also be considered and incorporated into the MLIRT model. In addition, many
trials, especially phase 3 trials, often use multiple research center or institute to
recruit and enroll patients. There is a potential center or clustering effect due to
the care provider, environment and the population around it. Luo and Wang has
developed methods to take into account the center effects (Luo and Wang 2014). As
for joint models approach, besides Cox proportional model, the accelerated failure
time (AFT) model is also consider (Luo 2014). We may also consider developing a
nonparametric model within theMLIRTmodel framework to define and estimate the
time dependent treatment effect. Furthermore, for the analysis methods introduced,
the posterior Bayesian inference is only drawn for current data. If we have large data
to properly train the model, the predictive inference could be another area we could
explore further.

It might seem that the models are getting more complicated and convoluted, but
remember that making complex models is not the purpose but rather a way to better
fit the data structure with more flexible model assumptions.
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A Comparison of Bootstrap Confidence
Intervals for Multi-level Longitudinal Data
Using Monte-Carlo Simulation
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Abstract Longitudinal investigations, where subjects are followed over time, have
played an increasingly prominent role in medicine, health, and psychology in the
last decades. This chapter will address inference for a two-level mixed model for a
longitudinal study where observational units are clustered at both levels. Bootstrap
confidence intervals for model parameters are investigated under the issues of non-
normality and limited sample size of the original data. A one stage case-resampling
bootstrap will be established for constructing confidence intervals by sampling clus-
ters with replacement at the higher level. A two-stage case-resampling bootstrap will
be developed by sampling clusters with replacement at the higher level and then
sampling with replacement at the lower level also. Monte-Carlo simulations will be
utilized to evaluate the effectiveness of these bootstrap methods with various size
clusters for the mixed-effects model in terms of bias, standard deviation and confi-
dence interval coverage for the fixed effects as well as for variance components of
the random effects. The results show that the parametric bootstrap and cluster boot-
strap at the higher level perform better than the two-stage bootstrap. The bootstrap
methods will be applied to a longitudinal study of preschool children nested within
classrooms.
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1 Introduction

Longitudinal study refers to an investigation where participant outcomes and possi-
bly treatments or exposures are collected at multiple follow-up times. This type of
study has played an increasingly prominent role in medicine, health and psychol-
ogy over the past few decades (Fitzmaurice and Laird 2004; Carpenter 2003). The
study of longitudinal data is to characterize the change of response over time and to
characterize the factors that will affect the response, which would provide a model
to assess how within-individual patterns change over time. Since a single individual
has repeated observations, there will be some correlation among the measurements
taken on the same unit. Many standard statistical techniques have been proposed to
analyze longitudinal studies. For example, the full multivariate model (Beale and
Little 1975) can be applied if the design is balanced and a two-stage random effects
models can be applied to the unbalanced situation (Laird and Ware 1982).

In this studyof longitudinal data, the linearmixed-effectmodelwill be investigated
to fit repeatedmeasurements on level-one units which are clustered in level-two units.
Hence, clusters are nested within clusters. Units within the same level-two cluster are
also correlated due to some common effect such as children nested under the same
teacher or patients nested under the same physician. The mixed effects model makes
specific assumptions about the variation in observations attributable to the variation
within a subject and to variation among subjects. The model takes into account the
fixed effects, which are parameters related to the entire population, and random
effects, which are associated with clusters sampled from a population (Pinheiro and
Bates 2000). The parameter estimator in the linearmixed-effectsmodel is obtained by
maximum likelihood (ML) method or the restricted maximum likelihood (REML)
method. The differences between ML and REML is small in a large sample, but
there is slightly more bias and poorer coverage rate withML for the estimation of the
variance components in a sparse design (Patterson and Thompson 1971; Thai 2013),
which may due to the feature that REML takes into account the loss of the degrees of
freedom in the correlated data (Verbeke andMolenberghs 2000). The REMLmethod
will be explored in our study.

Re-sampling can be an approach to investigate the properties of any statistic of
interest when the sample size is limited and some distributional assumptions are not
satisfied. Many bootstrap techniques (Efron and Tibshirani 1993; Scherman 1997)
have been proposed since 1979 when Efron first introduced the bootstrap method
(Efron 1986) for independent and identically distributed observations. It is imple-
mented by re-sampling the observed data repeatedly to obtain resampled data and
then fitting the model to the resampled data to obtain an empirical distribution of the
estimates. It is more complicated to bootstrap correlated data because the standard
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bootstrap method relies on the iid assumption. In this chapter, the parametric boot-
strap, a case bootstrap at higher level, and a two-stage bootstrap for two levels will
be compared. The case bootstrap consists of re-sampling clusters with replacement
and keeps the entire observations within the cluster unchanged (Shieh 2002). The
parametric bootstrap is realized by obtaining the residuals from the parametric distri-
bution, and the parameters are estimated from the original data (Benton 2002). The
two-stage bootstrap consists of case-resampling bootstrap at two levels. In our study,
we first sample at the upper level with replacement and then within these clusters,
we sample with replacement at the lower level to obtain the bootstrap sample. The
mixed-effects model is then fit to each bootstrap sample.

In this chapter, we examine different bootstrap approaches to the linear mixed
effects model.Wewill have a brief description of the two-level random effects model
in Sect. 2. In Sect. 3, the details of different bootstrap methods will be introduced,
including the parametric bootstrap, case bootstrap and two-stage bootstrap. The sim-
ulation settings and the results of the simulation study will be shown in Sect. 4. In
Sect. 5, we will apply the bootstrap methods to a longitudinal study of preschool
children nested within classrooms.

2 Linear Mixed Effects Model

2.1 Statistical Models

The linear mixed effects model can be applied to repeated measures or longitudi-
nal studies where data are clustered. The linear mixed model is considered to be an
extension of the classical linear model. This model takes into account the correlation
among units or observations within clusters and considers the clusters as a random
sample from the common population, which may be more realistic in many applica-
tions. In this section, we utilize the ideas introduced by Harville (1997) and the work
of Laird and Ware (1982) to define the model for the linear mixed effects model.

First, consider a multi-level design such as students nested within classrooms. In
a multi-level model with repeated measures, there are at least two types of cluster
effects. For example, repeated measures on the level-one unit (students) constitute a
cluster of correlated observations, and then responses from different students in the
same classroom (the level-two unit) constitute another cluster of correlated obser-
vations. Let ni(k�) represent the number of repeated observations on level-one unit i
nested within second-level cluster k within treatment �, i = 1, 2, . . . , nk , where nk
is the number of level-one units in level-two cluster k; k = 1, 2, . . . , K1 in treatment
level 1, k = 1, 2, . . . , K2 in treatment level 2, and K = K1 + K2, where K is the
total number of level-two clusters; j , j = 1, 2, . . . , ni is an index for time point, ti j ;
and �, � = 1, 2, is an index for treatment condition, i.e., control versus treatment.
N = ∑

k

∑
� nk(�) is the number of level one clusters, and H = ∑

i

∑
k

∑
l ni(k�) is



370 M. Reiser et al.

the total number of observations. Let Y be the response variable, then the linear
mixed-effects model can be stated as

Yi jk� = β0 + β1X1kl + β2ti j + β3t
2
i j + β4X1kl ti j + β5X1k�t

2
i j + b0i + ukl + b1i ti j + εi jk� (1)

where X1 is a dummy variable for the treatment, b0i denotes the random intercept
for student i , b1i is the random slope for student i , uk� is the random intercept for
classroom k within treatment l. And

⎛

⎝
b0i
b1i
uk�

⎞

⎠ ∼ MV N3

⎛

⎝0,

⎛

⎝
σ 2
b0

σb0b1 0
σb0b1 σ 2

b1
0

0 0 σ 2
c

⎞

⎠

⎞

⎠ . (2)

Let Y i = (Yi1,Yi2, . . . ,Yini )
′ represent the vector of measurements at level one. The

linear mixed effects model can be stated in matrix notation as
⎧
⎨

⎩

Y i = X iβ + Zi bi + εi

bi ∼ N (0, Gi )

εi ∼ N (0, σ 2 Ini )
(3)

X i is a (ni × p) design matrix of the p fixed effect variables. Zi , with size (ni × q),
is the designmatrix for the q random effects.β is a (p × 1) column vector of the fixed
effects regression parameters, and bi is a vector containing the random effects with
size (q × 1). Here we assume that the random effects are normally distributed with
mean zero and covariance matrix Gi . εi refers to residual errors for cluster i , and are
assumed to be normal with mean zero and variance Ri = σ 2 Ini . For simplicity, we
assume that random effects and residual errors are uncorrelated with cov(bi , εi ) = 0
for all i . V i , the ni × ni covariance matrix of the ni observations on level-one unit i ,
has diagonal elements σ j j = σ 2

b0
+ 2ti jσb0b1 + t2i jσ

2
b1

+ σ 2
c and off-diagonal elements

σ j j ′ = σ 2
b0

+ (ti j + ti j ′ )σb0b1 + ti j ti j ′ σ
2
b1

+ σ 2
c .

Under the model given above, all observations within a level-two unit, such as a
classroom, are correlated due the uk� random effect. So Y i and Y i ′ within level-two
unit k(�) are correlated. Let Zk represent the model matrix for random effects at level
two, the classroom level:

Zk =

⎛

⎜
⎜
⎜
⎝

1 t 0 0 0 0 · · · 1
0 0 1 t 0 0 · · · 1
...

...
...

...
...

...
. . .

...

0 0 0 0 1 t · · · 1

⎞

⎟
⎟
⎟
⎠

, (4)

where 0, 1, and t are vectors of length ni , and let

Σ b =
(

σ 2
b0

σb0b1

σb0b1 σ 2
b1

)

, (5)
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then Gk = (I ⊗ Σ b) + σ 2
c ee

′
, where ⊗ is Kronecker’s product and e = (0, 0, . . . ,

0, 1)
′
. The parameter space is θ , θ = {θ : β ∈ RM , σ 2

ε > 0, and Gk

non-negative definite}. The covariance matrix for the observations within a clus-
ter at the second level is given by V k = ZkGkZ

′
k + Rk , where Rk = σ 2

ε I and I is
has dimension nink . V k has diagonal block V i , which are ni × ni and off-diagonal
blocks σ 2

c J , where J is ni × ni ′ . The H -dimensional vector Y is assumed to have
a multivariate normal distribution with covariance matrix VY , which has diagonal
blocks V k and, due to the independence of the level-two units, off-diagonal blocks 0.

2.2 Estimation Methods

The parameters of the linear mixed effects models can be estimated by the maximum
likelihood method (ML) and the restricted maximum likelihood method (REML).
The REML estimator is derived from the estimator of ML to correct the loss of
the degrees of freedom involved in estimating the fixed effects. If we consider the
model in the general balanced case, we assume that the scores of the students Yk at
the classroom level within treatment � have a multivariate normal distribution. Let
α = (σ 2

b0
, σ 2

b1
, σb0b1 , σ

2
c , σ

2
ε )

′
, then the REML function is defined as

LREML (α) =
K∏

k=1

{(2π)−0.5|V k |−0.5|X ′
kV

−1
k Xk |−0.5 exp(−1

2
(Y k − Xkβ)′V−1

k (Y k − Xkβ))}
(6)

β can be profiled out of this likelihood function, and then the estimates of variance
components σ 2

b0
, σ 2

b1
, σb0b1 , σ 2

c and σ 2
ε are the solutions of REML equation using

Fisher Scoring Algorithm with certain conditions. Let

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

X1

X2

X3
...

XK

⎞

⎟
⎟
⎟
⎟
⎟
⎠
and Z =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Z1

Z2

Z3
...

ZK

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (7)

Then GLS estimator for fixed effects parameters given VY is given by

β̂ = (XV−1
Y X)−1X

′
V−1

Y Y (8)

When the variance components are unknown, REML estimates of the variance com-
ponents are used to obtain Ĝk , V̂ k and V̂ Y , and then the EGLS estimator of β is
given by

β̂ = (XV̂
−1
Y X)−1X

′
V̂

−1
Y Y (9)
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The asymptotic distribution of β̂ is multivariate normal with covariance matrix

Cov(β̂) = (
X

′
V−1

Y X
)−1

(10)

Let P = V−1
Y − V−1

Y X(X
′
V−1

Y X)−1X
′
V−1

Y and let α̃ be a solution to the REML
equations, then the asymptotic covariance matrix of α̃ is 2Ω−1, where element ( f, g)
of the q × q matrix Ω is given by tr(PZ f Z

′
f PZgZ

′
g), and where Z f and Zg are

columns of Z for f = 1, 2, . . . , q and g = 1, 2, . . . , q.
To construct parametric confidence intervals for β, the REML estimates of vari-

ance components are used to obtain V̂ Y which can be substituted for VY to obtain
̂Cov(β̂), and then appropriate multiples of the estimated asymptotic standard error
can be used to form the interval. Other methods such as profile-likelihood intervals
are available (Demidenko 2013). There is a large literature on confidence intervals
for variance components. The Wald method is available, using estimated asymptotic
standard errors from̂Cov(α̃), but it is well known that the performance of thismethod
is not very good for intervals on variance components. Searle et al. (1992) present a
number of methods, including ANOVA and maximum likelihood methods. Burdick
and Graybill (1988) review several methods for intervals on variance components.

Parametric confidence intervals for the parameters of a linear mixed model per-
form well in large samples even if Y does not follow a multivariate normal distri-
bution. In the remainder of this chapter, we examine the performance of bootstrap
confidence intervals for a multi-level mixed model when the sample size is not large
and when Y may or may not be distributed multivariate normal.

3 Bootstrap Methods

Consider a generic scalar parameter θ . The bootstrap principle is simple (Efron 1986;
Boos 2003). In the real world, Y = (Y1, . . . ,Yn) is an observed random sample
which is sampled from an unknown probability distribution F(·), and the statistic of
interest is a function of Y : θ̂ = s(Y). In the bootstrap world, Y ∗ = (Y ∗

1 , . . . ,Y ∗
n ) is

an observed bootstrap sample which is sampled from the empirical distribution F̂(·),
where F̂(A) = 1

n

∑n
i=1 1A(Yi ), for A ⊆ R, and the statistic is θ̂∗ = s(Y ∗). Instead

of evaluating the statistical properties (bias, standard errors, etc.) of θ̂ based on the
sampling distribution of θ̂ , we mimic this process by evaluating these properties of
θ̂∗ based on the bootstrap sampling distribution of θ̂∗. The benefit of doing so is
we do not actually need to compute the exact bootstrap sampling distribution of θ̂∗,
we can use Monte-Carlo methods to obtain an approximation: draw B independent
bootstrap samples Y ∗(1), . . . ,Y ∗(B) from F̂ , compute θ̂∗ for each bootstrap sample,
and finally compute the estimated bias, standard errors and confidence intervals from
̂θ∗(1), . . . , ̂θ∗(B). An important assumption is that resampled cases in the bootstrap
samples are i.i.d .
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The bootstrap principle relies on two asymptotic results : (1) The empirical dis-
tribution from the sample, F̂(·), converges almost surely to F(·), the unknown theo-
retical distribution, assuming i.i.d observations, and (2) the distribution of θ̂∗, from
the bootstrap distribution around θ̂ converges to the distribution of θ̂ around θ .

For longitudinal data, bootstrappingwill bemore complicated due to the clustering
of observations. In this chapter, we will explore the parametric bootstrap, the cluster
bootstrap and a two-stage bootstrap.

3.1 Bootstrap Estimates

As in the previous section, the statistic of interest is a function of Y : θ̂ = s(Y) to
which we will assign an estimated standard error. Let σ(F) be the standard error of
θ̂ , indicating a function of the distribution F . Then σ(F) = (VarF (s(Y)))

1
2 , and we

define the bootstrap estimate of standard error as σ̂B = σ(F̂).
In most cases, it is difficult to calculate the function σ(F̂); however, since we

notice that a bootstrap sample is just the random sample of size n drawnwith replace-
ment from the original data Y = (Y1, . . . ,Yn), we can use a Monte-Carlo algorithm
approach to σ(F̂). Assume the statistics calculated from each bootstrap sample are
̂θ∗(1), . . . , ̂θ∗(B) the sample standard deviation of the ̂θ∗(b), b = 1, 2, . . . , B is

σ̂ ∗
B =

√√
√
√ 1

B − 1

B∑

b=1

{θ̂∗(b) − θ̂∗(·)}2 (11)

where

θ̂∗(·) = 1

B

B∑

b=1

θ̂∗(b) (12)

It is easy to see that as B → ∞, σ̂ ∗
B gets closer to σ̂ ∗ = σ(F̂), and it has been shown

by Efron that the difference between σ̂ ∗
B and σ̂ ∗ can be ignored once B is adequately

large (50–200).
For the non-bootstrap case, based on the definition of bias, the bias of the

statistic of interest θ̂ = s(Y) for estimating parameter θ is Bias(θ̂) = EF (s(Y) −
θ(F)) = EF (s(Y) − θ(F), where E represents expectation with respect to the prob-
ability distribution F . For the bootstrap case, the bootstrap estimate of bias is
̂Bias(θ̂∗) = EF̂ (s(Y ∗) − θ(F)) = EF̂ (s(Y ∗) − θ(F), where E represents expecta-
tion with respect to the probability distribution F̂ .

As for the bootstrap estimate of standard error, we can apply a Monte-Carlo
algorithm approach to obtain an estimate of the bias:
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̂Bias(θ̂∗) = 1

B

B∑

b=1

θ̂∗(b) − θ(F̂) (13)

As B → ∞,̂Bias(θ̂∗) → ̂Bias(θ̂).

3.1.1 Parametric Bootstrap

The parametric bootstrap requires strong assumptions about the model and the dis-
tributions of the errors because it depends on the model and the distribution of the
errors. First for the the model of interest, which is the mixed-effects model in Sect. 2,
parameter estimates (β̂, σ̂ 2

ε , Ĝk) are obtained by a chosen method of estimation.
For the model of Sect. 2, REML estimation will be used. The parametric bootstrap
then proceeds as follows:

1. Simulate ε∗
i jk� from N (0, σ̂ 2) and simulate the randomeffects from thedistribution

MNV (0, Ĝk).
2. Generate bootstrap sample data by setting

Y ∗
i jk� = β̂0 + β̂1X1kl + β̂2ti j + β̂3t

2
i j + β̂4X1k�ti j + β̂5X1k�t

2
i j + b∗

0i + u∗
kl + b∗

1i ti j + ε∗
i jk�
(14)

3. Refit the model of interest to the new bootstrap sample from step 2, and obtain
bootstrap estimates (β̂

∗
, σ̂ 2∗

ε , Ĝ
∗
k )

4. Repeat steps 1–3 B times to obtain B sets of bootstrap estimates

Then calculate bootstrap standard errors, bias, and confidence intervals from the
bootstrap distribution. In some literature, including the R package lme4, there is
a distinction between a parametric bootstrap where only ε∗

i jk� is simulated and a
parametric bootstrapwhere all randomeffects are simulated.The former is sometimes
called the parametric residual bootstrap.

3.1.2 Cluster Bootstrap

The cluster bootstrap is a nonparametric method which does not depend on assump-
tions about the distribution of the response variable Y . The cluster bootstrap has
been studied by Field (2007). With repeated measures in a multi-level model, there
are two (or more) cluster levels, and clusters are nested within clusters. The simple
cluster bootstrap would take a cluster at only one level as the resampling unit. In an
application where children are nested within classrooms, for example, with repeated
measurements on the children, case-resampling at the child level is a type of cluster
bootstrap, but it completely ignores the correlation among children within a class-
room and thus does not meet the assumption of resampling i.i.d units. Resampling at
the level-two unit, which would be the classroom, would satisfy the assumption of
i.i.d units, but it would not take advantage of resampling also at the level-one unit.
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Re-sampling level-two clusters instead of case-resampling level-one observations
can preserve the dependence of the data within each cluster and independence of
observations at the cluster level. The actual steps for the cluster bootstrap are the
same as described at the introduction to this section, but the units to be resampled
are the clusters: (Y k, Xk, Zk). The bootstrap sample will have the same number of
level-two units as the original sample, but if the study design is unbalanced, then
the total number of observations in the bootstrap sample may not match the total
number of observations in the original sample unless bootstrap sampling is stratified
by cluster size. Stratified sampling by cluster size may be impractical.

3.1.3 Two-Stage Bootstrap

The Monte-Carlo two-stage bootstrap adds another step to the algorithm described
at the beginning of this section in order to include resampling at the level-one unit in
addition to resampling at the level-two unit. The multi-level bootstrap has been stud-
ied by Field and Welsch (2008). Under the mixed-effects model in Sect. 2, level-one
units within the same level-two unit are not independent, but they are conditionally
independent given the cluster. Some two-stage algorithms use residual resampling
at the lower-level unit. In the results to be reported below, we use case-resampling
within the level-two unit. Hence for each level-two cluster sampledwith replacement,
(Y k, Xk, Zk), we sample nk level-one clusters, (Y i , X i , Zi ), with replacement. If the
application is children nested within classrooms, for each classroom sampled with
replacement, we sample nk children within that classroom with replacement. If the
cluster sizes, nk are small, then resampling within a cluster may not be beneficial,
and could be detrimental, since Monte-Carlo bootstrap is known to not work well
with small samples. Due to resampling with small nk , degenerate bootstrap samples
for which estimation of the mixed-effects model in Sect. 2 will not converge becomes
a larger issue.

3.2 Bootstrap Confidence Intervals

Three bootstrap confidence interval methods are explored in this chapter, which are
the percentile method, Bias Corrected Accelerated (BCa) method and Bootstrap-t
method (Efron 1987; Thomas and Efron 1996). For the percentile method, suppose
B bootstrap replications of θ̂∗, are denoted by (θ̂∗1, θ̂∗2, . . ., θ̂∗B). After ranking from
the bottom to the top, the empirical order statistics are written as (θ̂∗(1), θ̂∗(2), . . .,
θ̂∗(B)). Then the bootstrap percentile method with 95% level of confidence interval
is given by

θ̂∗(0.025∗B) ≤ θ ≤ θ̂∗(0.975∗B) (15)

Then
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P̂(θ̂∗ ≤ θL(percentile)) = 1

B

B∑

b=1

1{̂θ∗(b) ≤ θL(percentile)} ≈ 1

2
α (16)

and

P̂(θ̂∗ ≥ θU (percentile)) = 1

B

B∑

b=1

1{̂θ∗(b) ≥ θU (percentile)} ≈ 1

2
α (17)

The interval is not necessarily symmetric around θ̂ .
TheBCamethod is an improvement over the percentilemethod because it attempts

to shift and scale the percentile bootstrap confidence interval to compensate for bias
and nonconstant variance η θ̂ . There are two parameters involved in calculating the
BCa confidence interval. One parameter, z0, attempts to correct bias and another, a,
is the acceleration factor. z0 is defined as

z0 = Φ−1(G(θ̂)) = Φ−1{#(θ̂
∗
b < θ̂)

B
}. (18)

G is the cumulative bootstrap sample distribution of statistic θ̂∗, that is G(t) =
(#(θ̂∗

b < θ̂)) ÷ B, (b = 1, 2, . . . , B), G−1(·) is the corresponding quantile function
from the bootstrap distribution.Φ−1(·) is the quantile function from the standard nor-
mal distribution. The acceleration factor is a jackknife estimate obtained by deleting
observation Xi from the original data (X1, X2, . . ., Xn) and then fitting the model to
produce the deleted statistics θ̂−i , where n is the number of observations. Then the
acceleration factor is

a =
∑n

i=1(θ̃ − θ̂−i )
3

6(
∑n

i=1(θ̃ − θ̂−i )2)1.5
(19)

where

θ̃ =
∑n

i=1 θ̂−i

n
(20)

Therefore, the lower and upper limit of the confidence interval can be stated as
follows:

θLBCa = G−1{Φ(z0 + z0 + zα/2

1 − a(z0 + zα/2)
)} (21)

and
θUBCa = G−1{Φ(z0 + z0 + z1−α/2

1 − a(z0 + z1−α/2)
)} (22)

where θ̂ is the estimate from the original data. If a = 0, the confidence interval is
called bias corrected percentile confidence interval (BC). And if a = 0 and z0 = 0,
the interval is the same as percentile confidence interval.

Finally, the bootstrap-t confidence interval is also considered in our study. The
bootstrap-t takes the same form as the normal confidence interval except that instead
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of using the quantile from a t-distribution (or a normal distribution), a bootstrapped
t-distribution is constructed from which the quantiles are computed:

t∗b = θ̂∗(b) − θ̂

s.e.(θ̂∗(b))
(23)

where the standard error of the bootstrap estimate s.e.(θ̂∗(b)) are computed on each
bootstrap sample. Then based on these quantiles, the 95% bootstrap-t percentile
confidence interval is

θ̂ − t∗0.975 ∗ S ≤ θ ≤ θ̂ − t∗0.025 ∗ S (24)

where t∗0.025 and t∗0.975 are percentile of the t∗(b) distribution and S is the estimated
standard deviation for θ̂ .

There is also a percentile-t confidence interval:

P̂(t∗b ≤ tL(percentile)) = 1

B

B∑

b=1

1{t∗b ≤ tL(percentile)} ≈ 1

2
α (25)

and

P̂(t∗b ≥ tU (percentile)) = 1

B

B∑

b=1

1{t∗b ≥ tU (percentile)} ≈ 1

2
α (26)

The multilevel bootstrap is more complicated than the ordinary bootstrap. In the
next section, we present simulation results using the parametric bootstrap and case
bootstrap at one level and two levels. The parametric bootstrap generates the bootstrap
samples after modeling, which assumes that the model is correctly specified. The
case-resampling bootstrap draws bootstrap samples before the model is fit, which is
more robust to model misspecification.

4 Monte-Carlo Simulation Study

Monte-Carlo simulations are used to model two-level longitudinal data to examine
the property of the bootstrap methods applied for this setting.

4.1 The Simulation Design

The simulation design is inspired from an original study where preschool children
were nested within classrooms. Classroom is the level-two unit, and child is the
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level-one unit. The original study was conducted to assess a treatment for devel-
opmental delay in speech and language, and classrooms were randomly allocated
to either treatment or control. The original study was not quite balanced at the
classroom level, and we replicate this imbalance in our simulations. The number
of children per classroom was quite small, with about nk = 5 children per class-
room on average. Simulation results are reported below for five children per class-
room and also, for comparison, 15 children per classroom. First we generate 500
Monte-Carlo data sets with 92 classrooms where each classroom has either five or
15 students and each student has six observations at time points 1, 2, 3.5, 6, 7.3, and
8.8 (weeks). Pseudo data are generated under the model given in expression (1) For
the generated data, the random effects are standard normal, and the random error
is standard normal. The fixed effects are treatment condition, time and quadratic
time. Parameter estimates obtained from fitting the linear mixed-model to the orig-
inal study data were used as the parameter values for the simulations. The values
are β = (4.87, −0.98, 0.92, −0.015, 0.8989, −0.015)

′
, σβ0 = 6.63, σβ1 = 0.78,

ρβ0β1 = −0.27, σc = 3.02, and σε = 1.685.
In order to run the simulations effectively, parallel computing is essential. For

example, to perform a simulation using 500 Monte-Carlo samples with five children
per classroom and 1000 bootstrap samples per Monte-Carlo sample, nearly 18 h is
needed when parallel computing is run on 8 cores, about 47 h for 15 students per
classroom, but almost 135 h is needed to run the simulation with five students in
each classroom running on a single core. Simulations were run using the lme4 Bates
et al. (2015) package in the R systemwith the foreach and dorng packages for parallel
computing.

In addition to the three bootstrap methods described above, parametric bootstrap,
cluster bootstrap at classroom level and two-stage bootstrap, we also include a simu-
lation without bootstrapping. As mentioned above, we also vary the classroom size.
In Fig. 1, which are the figures of data sets, we find some response values are nega-
tive, because the random variables and random errors are generated from the normal

Fig. 1 Simulated data for five students (left) and 15 students (right)
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distribution, which can result in good performance of the simulated data. These val-
ues will be kept in the simulation, because the simulations are not to provide realistic
results but to evaluate the bootstrap methods. The value for the intercept can be set
to a larger value to produce fewer negative response. The bootstrap methods will be
comparedwith respect to the bias, standard deviation and coverage rate of confidence
intervals. The coverage rate of the 95% bootstrap confidence interval is the percent-
age of intervals that contain the true value. The coverage rate of the 95% confidence
interval will be considered to be good (90–100%), low (80–90%), or poor (<80%).

4.2 Simulation Results Five Students per Classroom

We first present simulation results with respect to the mean of bias, the mean of
standard deviation and the coverage rate for five students per classroom. In the
following tables, β0 stands for the intercept parameter, β1 for condition, β2 for linear
time trend, β3 for quadratic time trend, β4 for interaction of condition and linear time
trend, β5 for interaction of condition and quadratic time trend. σε is the standard
deviation of the residual term, σβ0 and σβ1 are the standard deviation of the random
intercept and random slope for at the child level, respectively. ρβ0β1 is the correlation
of random intercept and random slope, and σc is the standard deviation of the random
intercept at the classroom level. TID is a reference to the classroom (teacher) level.
In Table1, the coverage rates of bootstrap-t are not available for the random effects.
From the table, we find that the coverage rate for the fixed effects parameters for
these four methods are all near to 95%, but for the standard deviations of the random
intercept at the child level (σβ0 ) and the random intercept at the classroom level (σc),
the coverage rates are lower than 90% for the two-stage bootstrap with percentile and
BCa confidence intervals. Thismay be in the two-stage bootstrap,where observations
at the student level are resampled, the classroom sample size is too small, which
affects the random effects more than the fixed effects. To investigate the reason for
these results, we look at the bias and standard error of the parameter estimates.
Here we use the mean of the bias to compare the methods. From Table2, the bias
for the fixed effects are small, which is in accordance of the coverage rate around
95%. It is interesting to note that the parametric bootstrap can achieve the smallest
bias among the three methods, especially for the random effects, which suggests
that the model is a good fit for the data. The bias of random effects for the cluster
bootstrap at classroom level are larger than the parametric bootstrap, which may be
due to re-sampling producing some degenerated bootstrap samples with only five
students per classroom. The bias of the cluster bootstrap at the classroom level are
smaller than the two-stage bootstrap. The two-stage bootstrap always has the largest
bias among the three methods for the random effects. Furthermore, the bias of the
standard deviations of the random intercept at the student level (σβ0 ) and random
intercept at the classroom level (σc) are quite large in the two-stage bootstrap, which
may contribute to the low coverage rate of confidence intervals. Table3 is the average
standarddeviations of the parameter estimates. It is interesting tofind that the standard
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deviations of the cluster bootstrap at the classroom level and parametric bootstrap
are similar. Furthermore, the two-stage bootstrap has the largest standard deviation,
which may due to the resampling the small number of observations at the student
level. We also find that the standard deviation σβ0 and σc have the largest difference
compared to other parameter estimates for the threemethods, which is the reasonwhy
the coverage rates of σβ0 and σc are relative smaller than other random effects. Thus
in terms of bias, standard deviation and coverage rate, we find that the parametric
bootstrap and cluster bootstrap at classroom level perform better than the two-stage
bootstrap.

4.3 Simulation Results 15 Students per Classroom

In this section, we present results with respects to coverage rate, bias and standard
deviationwhen the simulation design has 15 students per classroom.Other conditions
for the simulations match the conditions for the simulations with five students per
classroom. Performance of the two-stage bootstrap my improve with 15 students per
classroom. In Table4, we find almost the same pattern of results as in the simulations
for five students per classroom. The coverage rates for fixed effects are around 95%
and the random effects are all good except for σε and σc. The coverage rates for σβ0

and σc in the two-stage method improved compared to five students per classroom.
The bootstrap bias with 15 students shown in Table5 are fairly small for all the
parameter estimates except σβ0 and σc for the two-stage bootstrap, but the bias for
the two-stage bootstrap has improved compared to five students per classroom,which
is the reason why the coverage rates for σβ0 and σc with 15 students per classroom are
greater compared to five students per classroom. For the bootstrap standard deviation
resultswith 15 students per classroom inTable6, the standard deviations of the cluster
bootstrap at classroom level and parametric bootstrap provide similar results, while
the two-stage bootstrap shows the largest standard deviations. All of the standard
deviations are smaller compared to five students per classroom.

4.4 Comparison of Simulation Results for Five Students per
Classroom and 15 Students per Classroom

Wecan see some distinctions for the two conditions of classroom cluster size from the
tables of coverage rate, bias and standard deviations. To make the comparison more
straightforward, we present some plots to compare the bias and standard deviation
of the parameter estimates from two designs. In these plots, sdcor1 is σβ0 , sdcor3 is
σβ1 , sdcor2 is ρβ0β1 , sdcor4 is σc, and sdcor is σε.
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Fig. 2 Comparison of cluster size effect for parametric bootstrap (Left 5 students per classroom,
Right 15 students per classroom) for fixed effect estimates

4.4.1 Comparisons of Results for Cluster Size for the Parametric
Bootstrap

Simulation results for both 5 students and 15 students per classroom show the cov-
erage rate about 95% for confidence intervals for all parameters. To analyze the
difference, we present some figures to show the difference between the two condi-
tions with respect to bootstrap bias and standard deviation.

In the simulation results, we see the bias for β2, β3, β4, β5 are very small in Fig. 2,
but for β0 and β1, the bias and standard deviation are larger than for other fixed
effect estimates. The bias in the condition with 5 students per classroom have wider
distribution than in the condition with 15 students per classroom, which shows the
same pattern as the standard deviations. Also, the bootstrap standard deviations of the
parameter estimates with 5 students per classroom are larger than with 15 students
per classroom, even though some are not noticeable in the figure. So increasing the
number of level-one units in each level-two cluster can reduce the bootstrap standard
error and bias of the fixed effect estimators in the parametric bootstrap method.

For the bias and standard deviation of variance component estimates in Fig. 3, the
bias of σβ1 , ρβ0β1 and σε are close to zero, but the values of σβ0 and σc are highly
skewed and have outliers far away from zero. The condition with 5 students has
higher bias and standard deviation than the condition with 15 students. So more
level-one units in each level-two cluster can reduce the bootstrap bias and SD of the
parameter estimates.
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Fig. 3 Comparison of cluster size effect for parametric bootstrap (Left 5 students per classroom,
Right 15 Students per classroom) for variance component estimates

4.4.2 Comparisons of Results for Cluster Size for Cluster Bootstrap at
the Classroom Level

For the cluster bootstrap at the classroom level in Fig. 4, we have the same patterns
for the fixed effect parameter estimates when comparing the condition with 5 Stu-
dents per classroom and 15 students per classroom. The condition with 5 students per
classroom has more bias and standard deviation than the condition with 15 students
in each classroom, especially for β0 and β1 estimates. Also, the median bias with 15
students per cluster is closer to zero than 5 students in the figure. The results are the-
oretically plausible, as the sample size increases, the biases and standard deviations
become smaller. For the variance components in Fig. 5, the condition with 15 stu-
dents per classroom has less outliers, less bias and smaller standard deviation when
compared with the condition with 5 students in each classroom. So from the aspects
of the bias and standard deviation, more level-one units per cluster is beneficial.

4.4.3 Comparisons of Results for Cluster Size for Two-Stage Bootstrap

In Fig. 6, effects estimates in the condition with 5 students per classroom are larger
compared to 15 students, which shows the same pattern as parametric and classroom
bootstrap. So the estimator for intercept and condition have more bias and standard
deviation than the other fixed-effect parameter estimators.
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Fig. 4 Comparison of results for cluster size for cluster bootstrap (Left 5 students per classroom,
Right: 15 students per classroom) for variance component estimates

Fig. 5 Comparison of results for cluster size for cluster bootstrap (Left 5 students per classroom,
Right 15 students per classroom) in terms of variance component estimates
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Fig. 6 Comparison of results for cluster size for two-stage bootstrap (Left 5 students per classroom,
Right 15 students per classroom) for fixed-effect estimates

Fig. 7 Comparison of results for cluster size for two-stage bootstrap (Left 5 students per classroom,
Right 15 students per classroom) for variance component estimates
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In Fig. 7, the comparison of variance component estimation for the two cluster size
conditions are presented. As before, the standard deviation of random intercept at the
student level (σβ0 ) and random intercept at the classroom level (σc) show high bias
and high bootstrap standard deviation. The bias in the two-stage bootstrap are much
larger than the bias in the parametric and classroom-cluster bootstrap. For example,
the median bias of σc for 5 students per classroom in the two-stage bootstrap is
approximate 0.5, whereas it is about 0.25 for classroom-level bootstrap. So based on
the biases, standard deviations and the coverage rates for the parameter estimates, the
parametric bootstrap and the cluster bootstrap at the classroom level perform better
than the two-stage bootstrap with cluster sizes five and 15.

5 Application

Themixed-effectsmodel and cluster bootstrapmethodswere applied to a randomized
study of the TELL curriculum for speech and language delayed preschool children
(Wilcox and Gray 2011). This study was designed to assess a treatment of speech
and language delay in preschool children. Classrooms were randomly assigned to
treatment or control, and on average therewere 5.4 childrenwith developmental delay
per classroom.Measurements were taken at six time points across the preschool year
on several skills, and for this application we are looking at a skill called Letter Sound
Identification. The scores range from zero to 26.

Before applying the bootstrap methods to the scores, we analyzed the distribution
of the Letter Sound Identification responses. There may be floor and ceiling effects
in the scores, and we found heavy tails in the original data set, as Fig. 8 shows.
Then,the distribution of the empirical residuals from fitting the mixed-effects model
were examined and a non-normal distribution was confirmed by the Shapiro-Wilk
normality test with p-value less than 2.2e-16.We can also see some heavy-tail outliers
from the QQ plot of the residuals in Fig. 8. So from these aspects, we know that

Fig. 8 Left QQ plot for the original data. Right QQ plot of the empirical residuals
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the original data are not normally distributed and have several outliers. To fit the
model, the bootstrap method can be a good candidate to find the proper model in
this situation. So we will compare parametric confidence intervals obtained from
fitting the linear mixed-effects model to confidence intervals obtained by using the
parametric bootstrap, cluster bootstrap at classroom level and the two-stage bootstrap.

The original data has some missing observations, but the proportion missing was
low, and we assume MAR. We fitted the model with the original data, and obtained
confidence intervals by the three bootstrap methods discussed earlier. We examine
the results in terms of parameter estimates, bias and standard deviation. In Tables7,
8 and 9, the parameter estimates and the standard deviations obtained by the para-
metric bootstrap provide similar values as the parametric linear mixed-effects model
on original data. However, there are some differences for the estimation of standard
deviation among the three methods. The standard deviation from parametric boot-
strap always gives smallest value, while the two-stage bootstrap has highest standard
deviation and highest bias except for σc. It is interesting to see that the two-stage
bootstrap produces the smallest standard deviation but highest bias for σc, which
maybe due to the small cluster size.

Heat maps of the absolute value of bias and standard deviations for the parameter
estimates for the three methods are shown in Figs. 9 and 10, where the individual
values are represented as colors. In Fig. 9, the bias of the parameter estimates are
small, and for each bootstrap the estimates for intercept and treatment condition
have more bias than other fixed effects. Also, the bias of standard deviation of the
variance component for intercept at the classroom level (σc) and random intercept
at the student level (σβ0 ) are larger than other variance components. Overall, the
two-stage bootstrap has more bias than the other methods, and the bias of σβ0 and σc

are larger than for other parameter estimates.
Heatmaps of standard deviations for the parameter estimates are shown in Fig. 10.

The plot shows that the quadratic time trend, the interaction of condition andquadratic
time trend, random slope for student, the correlation of random intercept and ran-
dom slope, as well as the residual term have relative small standard deviation. The
standard deviation of parameter estimates for intercept and the treatment condition
have relative large standard deviations. In addition, the two-stage bootstrap presents
larger standard deviations than the other methods. The special case is the standard
deviation of random intercept from the bootstrap of level-two units is larger than the
two-stage bootstrap.

Figures11, 12 and 13, show histograms of the parameter estimates for the three
bootstrap methods, where the red lines are the parameter estimates obtained from the
linear mixed-effects model on the original data. From the plots, most of the estimates
are centered around the red lines except σβ0 and σc in the two-stage bootstrap. Also,
the distribution of estimates for the two-stage bootstrap are wider than the parametric
and cluster bootstrap at classroom level, except forσc, which is the reason the standard
deviations for the two-stage bootstrap are larger than the other methods. However the
standard deviation of the random intercept for classroom is smaller than the standard
deviation in parametric bootstrap and the cluster bootstrap at classroom level. These
features are in accordance with the result in Tables7, 8 and 9.
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Fig. 9 Heatmap of absolute value of bias for parameter estimates

Confidence intervals to evaluate the model are presented in Table10. Under the
null hypothesis H0: βi = 0 for the fixed effects, we would reject the null hypothesis
if zero is not within the confidence interval from the bootstrap methods. Different
bootstrap method and confidence intervals provide similar results in this study; for
example, there is significant linear time trend in themodel and insignificant quadratic
time trend. While the linear mixed-model and parametric bootstrap suggest signif-
icant interaction of condition and time, the cluster bootstrap at classroom level and
the two-stage bootstrap indicate the interaction is not significant by the percentile
confidence interval and BCa confidence interval.

For the parameter estimates and confidence intervals for variance components,
different confidence intervals from the methods show similar results, and all the
covariance estimates are significant. However, the confidence intervals of σβ0 and σc
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Fig. 10 Heatmap of standard deviations of parameter estimates

for the two-stage bootstrap arewider and the covariance estimates are largely different
from the other two methods. It is also interesting to see that the BCa confidence
intervals of σβ0 and σc do not contain the maximum likelihood parameter estimates,
maybe because the parameter estimates for σβ0 and σc have large bias, which can
explain why the coverage rates of σβ0 and σc for the two-stage bootstrap are less
than 95%. But our data set is small size, not balanced, and the data are not normally
distributed, so we have higher probability to find the maximum likelihood parameter
estimates are not included in the bootstrap confidence interval (Tables10 and 11).
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Fig. 11 Histograms of parameter estimates from parametric bootstrap

Fig. 12 Histograms of parameter estimates from cluster bootstrap

Fig. 13 Histograms of parameter estimates from two-stage bootstrap
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6 Conclusions

In this chapter, we studied several different bootstrap methods (parametric boot-
strap, cluster bootstrap at level-two and two-stage bootstrap) applied to multilevel
longitudinal data. Monte-Carlo simulations were used to evaluate the three bootstrap
methods. In terms of the coverage rate, bias and standard deviation of the parameter
estimates, the simulations suggested that the three bootstrap methods gave us sim-
ilar results for the fixed effects, and the parametric bootstrap as well as the cluster
bootstrap at level-two provide better intervals than the two-stage bootstrap. The two-
stage bootstrap may produce large bias and large standard deviation of the parameter
estimates because the re-sampling of a small number of level-one units may pro-
duce degenerate bootstrap samples. With a larger number of level-one units in each
level-two cluster, we could obtain smaller bias, smaller standard deviation and larger
coverage rate for the bootstrap methods. Simulation results not reported here show
that resampling of the level-one units ignoring the level-two clusters produces very
poor performance for confidence interval coverage. The results are not a surprise
because the level-one units are not i.i.d. ignoring the level-two units. Finally, we
applied the three bootstrap methods to the scores of preschool students. The appli-
cation results follow the same patterns as the simulations. Due to the large bias of
the two-stage bootstrap, we can sometimes obtain maximum likelihood parameter
estimates outside the bootstrap confidence interval. Simulations with a larger num-
ber of level-one units per level-two cluster may show better results for the two-stage
bootstrap.
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Bootstrap-Based LASSO-Type Selection
to Build Generalized Additive Partially
Linear Models for High-Dimensional Data

Xiang Liu, Tian Chen, Yuanzhang Li and Hua Liang

Abstract Generalized additive partially linear model (GAPLM) is a flexible option
to model the effects of covariates on the response by allowing nonlinear effects of
some covariates and linear effects of the other covariates. To address the practical
needs of applying GAPLM to high-dimensional data, we propose a procedure to
select variables and therefore to build a GAPLM by using the bootstrap technique
with the penalized regression. We demonstrate the proposed procedure by applying
it to analyze data from a breast cancer study and an HIV study. The two examples
show that the procedure is useful in practice. A simulation study also shows that the
proposed procedure has a better performance of variable selection than the penalized
regression.

1 Introduction

Nowadays, many datasets involving a large number of measurements (such as
genetic, gene expression, proteomics and other -omic data) are produced with the
hope to reveal the relation between the measurements and the phenotype and con-
sequently the disease mechanism. For example, a dataset from a breast cancer study
published by van’t Veer et al. (2002) contains the observations of 97 lymph-node
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negative patients, 46 among which developed distant metastases within 5 years while
the rest 51 patients remained to be disease-free after a follow-up period of at least
five years. In the study, gene expression levels were measured on thousands of genes.
One research interest is to explore the relationship between genes and breast cancer
and consequently to build a model to predict the outcome using gene expression data.

Logistic regression model, a special case of generalized linear models (GLM,
McCullagh and Nelder 1989), is a popular method to analyze binary outcome. How-
ever, linearity is only an assumption of themodel but not necessarily a property of the
data. An initial exploration of the marginal effect of each gene on breast cancer sug-
gests that some genes’ effects are nonlinear (see Fig. 1 and more details in Sect. 4.1).
Generalized additive partially linear models (GAPLM, Härdle et al. 2004) can be
used for remedying in the situation. GAPLM extends GLM by modeling the effects
of some predictors through a linear function and the effects of the other predictors
through additively smooth functions. Fitting a GAPLM can be simplified by approxi-
mating the smoothing functions using polynomial splines and the statistical property
of the estimation has been studied (Wang et al. 2011). Considering the situation of
high-dimensionality in which the number of predictors p is greater than the sample
size n as in the breast cancer study, fitting a GAPLMwith all predictors in it is impos-
sible and therefore one needs to apply some variable selection method. Traditional
subset selectionmethod suffers from the intensive computational cost due to the large
number of predictors. Penalized regression, such as the least absolute shrinkage and
selection operator (LASSO) (Tibshirani 1996), has become an important alternative
to subset selection. Tibshirani proposed the LASSO (Tibshirani 1996) by adding the
L1-penalty on coefficients into the objective function in a linear regression model,
which shrinks some small coefficients to zero and therefore fulfills the purpose of
variable selection. A tuning parameter controls the magnitude of the penalty and is
chosen by cross-validation in common practice. The idea of the penalized regression
has been applied to various models including GLM (Fan and Li 2001) and GAPLM
(Wang et al. 2011), and various penalty functions have been proposed (Fan and Li
2001; Zou andHastie 2005; Zou 2006). Algorithms via coordinate descent (Friedman
et al. 2010) makes the penalized regression computationally fast and affordable.

We have applied the LASSO technique for a GAPLM with spline-approximation
(Wang et al. 2011) to analyze the gene expression data. As a result, 27 genes are
selected with 10 genes in the nonparametric part (see Table1 and more details in
Sect. 4.1). However, the number of selected genes is still too large to build a predic-
tive GAPLM from the gene expression data. Therefore, a practically useful variable
selection method to build GAPLMs for high-dimensional data is needed. In addition,
we often find that the set of selected predictors from penalized regression is not stable
in real data analysis. Some perturbation of the data or a slight change of the tuning
parameter can result in quite a different set of selected predictors. Research (Zhao
and Yu 2006; Zou 2006; Yuan and Lin 2007; Meinshausen and Bühlmann 2006) on
the consistent variable selection of the LASSO shows that there are strong assump-
tions on the design matrix that need to be satisfied for consistent variable selection.
Decaying schemes of the tuning parameter have been studied (Zhao and Yu 2006;
Meinshausen and Bühlmann 2006; Bach 2008) and it is shown that under specific
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settings, LASSO selects the relevant variables with probability one and the irrele-
vant variables with a positive probability less than one, provided that the number of
observations tends to infinity. If several samples were available from the underlying
data distribution, irrelevant variables could be removed by simply intersecting the set
of selected variables for each sample. Bach proposed the Bolasso algorithm (Bach
2008) by providing such datasets using the bootstrap method (Efron et al. 2004).
The Bolasso algorithm (bootstrapped enhanced lasso) requires the relevant variable
to be selected in all bootstrap runs and it leads to consistent variable selection. The
algorithm had been applied in practice (Guo et al. 2015) and had also been stud-
ied for binary data using logistic regression (Strobl et al. 2012). Meinshausen and
Bühlmann proposed stability selection Meinshausen and Bühlmann (2010), which
also uses subsampling technique to improve the variable selection of LASSO. Sta-
bility selection generates a stability path which is the probability for each variable
to be selected by LASSO when randomly subsampling from the data against the
tuning parameter. If the maximum of the probabilities for a variable over the tuning
region is higher than a threshold, then the variable is selected. An upper bound on
the expected number of falsely selection variables has been proven for the stabil-
ity selection (Meinshausen and Bühlmann 2010, Theorem 1). However, the bound
appears to be too conservative for deriving a cut off for the threshold in practice
(discussion by Sylvia Richardson, (Meinshausen and Bühlmann 2010, p. 448).

Motivated by the aforementioned practical demands, we propose an easy-to-
implement procedure of applying the idea of bootstrapped enhanced lasso to build
generalized additive partial linear models for high-dimensional data. The require-
ment of the relevant variables to be selected in all bootstrap runs is too strict in
practice and we consider a soft version of it to reduce the set of candidate predictors.
One additional round of variable selection will be performed to build a predictive
GAPLM. In our procedure, the bootstrap technique is applied with the penalized
regression for GAPLM. The set of candidate predictors is then narrowed down by
selecting a predictor if it is chose in at least a fraction of the bootstrap replicates and
the best subset selection can be conducted afterwards.We use two real data examples
and a simulation study to illustrate our proposed procedure. The remainder of the
article is organized as follows. In Sect. 2, we introduce the detailed framework of
the procedure to build GAPLM. Section3 gives the technical details of the spline
approximation and the penalized regression for GAPLM. In Sect. 4, we apply the
proposed procedure to analyze data from the breast cancer study (van’t Veer et al.
2002) and an HIV study. In Sect. 5, we provide the results of a simulation study in
which we have investigated the performance of the procedure. Section6 concludes
the article with a summary and discussion.

2 Framework of the Procedure to Build GAPLM

Let’s denote the covariates/predictors in the nonparametric part asW , the covariates
in the parametric part as X and the response as Y . The technical details of GAPLM
are given in Sect. 3. A general and flexible procedure to build generalized additive
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partial linear models to analyze high-dimensional data is proposed and is described
as follows.

1. Perform m (e.g., m = 500) bootstrap replications as follows

a. Drawabootstrap sample consistingn observations {(W ∗
1 , X∗

1,Y
∗
1 ), (W ∗

2 , X∗
2,

Y ∗
2 ), …, (W ∗

n , X∗
n,Y

∗
n )} from the original dataset {(W1, X1,Y1), (W2, X2,

Y2), …, (Wn, Xn,Yn)} with replacement;
b. Apply the penalized regression of GAPLM to the bootstrap sample and

record the selected covariates. The details of the penalized regression for
GAPLM are described in Sect. 3.

2. Calculate the selection rates of covariates r = (rW1 , rW2 , . . . , rWp1
, rX1 , rX2 , . . . ,

rX p2
) across the B bootstrap replications and construct a reduced set of covariates

whose selection rates are higher than some threshold (C)
3. Perform the best subset selection of GAPLM on the reduced set and choose the

best models according to certain criterion, such as Akaike Information Criterion
(AIC) or Bayesian Information Criterion (BIC)

The Bolasso algorithm requires the relevant variables to be selected in all boot-
strap runs. This requirement is too strict in real data analysis and even more when
a complicated semi-parametric model such as GAPLM is used. A threshold C is
introduced in Step 2 to relax the requirement and to get a reduced set of covariates.
An additional model selection such as best subset selection can be conducted to get
a sparse model (Step 3). The value of C should be able to reduce the number of
candidate covariates to make the best subset selection practically feasible. The value
can be fixed (e.g., C = 0.5) or be data-driven based on the sample mean and the
sample standard deviation of the selection rates (e.g., C = mean(r) + sd(r)).

3 Generalized Additive Partial Linear Models

Let Y be the response, whose distribution belongs to the exponential family
McCullagh and Nelder (1989), and its conditional expectation given the covariates
W = (W1, . . . ,Wp1)

� and X = (X1, . . . , X p2)
� is defined via a known link function

g by an additive partial linear function

μ = E(Y |W, X) = g−1

⎧
⎨

⎩

p1∑

j=1

α j (Wj ) +
p2∑

j=1

X jβ j

⎫
⎬

⎭
, (1)

where α(·) = (α1(·), . . . , αp1(·))� and β = (β1, . . . , βp2)
� are the nonparametric

components and the coefficients of the parametric components, respectively. The
variance is assumed to be a function of the mean given by

Var(Y |W, X) = σ 2V (μ), (2)
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where V (·) is a known function. Note that the value of σ doesn’t play any role in
the specification of the quasi-likelihood later and therefore we can assume σ = 1
without loss of generality. When g−1(x) = ex/(1 + ex ) and V (μ) = μ(1 − μ), we
obtain the additive partial linear logistic regression model. For identifiability of the
models, we assume that Eα j (Wj ) = 0.

3.1 Spline Approximation

For simplicity, we assume that the covariate Wj is distributed on a compact interval
[a j , b j ], j = 1, . . . , p1, andwithout loss of generality,we take all intervals [a j , b j ] =
[0, 1], j = 1, . . . , p1. Under some smoothness assumptions (Wang et al. 2011), the
nonparametric components α j (Wj )’s can be well-approximated by spline functions.
Let τ0 = 0 < τ1 < · · · < τK ′ < 1 = τK ′+1 be a partition of [0, 1] into subintervals
[τk, τk+1), k = 0, . . . , K ′ with K ′ internal knots. Equally spaced knots or data-driven
knots (sample quantiles of the observed covariate values) can be used. A polynomial
spline of order u is a function satisfying the following two conditions:

(i) it is a polynomial of degree u − 1 on each of the subintervals;
(ii) for u > 2, it is globally u − 2 times continuously differentiable on [0, 1].
The collection of splines with a fixed sequence of knots has a B-spline basis
{B1(x), . . . , BK̃ (x)} with K̃ = K ′ + u. Because of the centering constraint Eα j

(Wj ) = 0, we instead focus on the subspace of spline functions S0j := {s : s(x) =
∑K̃

k=1 a jk Bk(x),
∑n

i=1 s(Wi j ) = 0}with a normalized basis {Bjk(x) = √
K (Bk(x) −

∑n
i=1 Bk(Wi j )/n), k = 1, . . . , K = K̃ − 1} (the subspace is K = K̃ − 1 dimen-

sional due to the empirical version of the constraint). Using spline expansions, the
nonparametric components can be approximated as

α j (x) ≈
∑

k

a jk B jk(x), 1 ≤ j ≤ p1.

The quasi-likelihood function is defined by Q(μ, y) = ∫ y
μ

(y − t)/V (t) dt, and
thequasi-likelihoodof i.i.d. observations (Wi , Xi ,Yi )(i = 1, . . . , n,Wi = (Wi1, . . . ,

Wip1)
� and Xi = (Xi1, . . . , Xip2)

�) is

n∑

i=1

Q(g−1(

p1∑

j=1

α j (Wi j ) +
p2∑

j=1

Xi jβ j ),Yi ) ≈
∑

i

Q(g−1(Z�
i a + X�

i β),Yi ),

where Zi = (B11(Wi1), . . . , B1K (Wi1), . . . , Bp1K (Wip1))
� and a = (a�

1 , . . . ,

a�
p1)

� = (a11, . . . , ap1K )�.
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3.2 Penalized Regression

Variable selection can be achieved by penalized regression. The penalized regression
estimates the coefficients via maximizing the penalized quasi-likelihood as follows,

(â, β̂) = argmax
a,β

{
n∑

i=1

Q(g−1(Z�
i a + X�

i β),Yi ) − nPλ(a, β)}, (3)

where the penalty Pλ(a, β) shrinks some coefficients to zero and consequently elim-
inates the corresponding parametric and/or nonparametric components. The LASSO
penalty (Tibshirani 1996) or other penalties, such as the SCAD penalty (Fan and Li
2001; Zou 2008) and the adaptive LASSO penalty (Zou 2006), can be used for the
penalty function Pλ(·). In addition, the group LASSO penalty (Yuan and Lin 2006)
is applicable if we treat the coefficients from each additive component as a group.

Specifically, we here investigate the following penalized regression based on the
LASSO penalized quasi-likelihood,

(â, β̂) = argmax
a,β

{
n∑

i=1

Q(g−1(Z�
i a + X�

i β), Yi ) − nλ1

p1∑

j=1

K∑

k=1

|a jk | − nλ2

p2∑

j=1

|β j |},

(4)
and the group LASSO penalized quasi-likelihood,

(â, β̂) = argmax
a,β

{
n∑

i=1

Q(g−1(Z�
i a + X�

i β), Yi ) − nλ1

p1∑

j=1

√
K‖a j‖2 − nλ2

p2∑

j=1

|β j |},

(5)

where λ1 and λ2 are the regularization parameters controlling the shrinkage of the
coefficients in the nonparametric and parametric components. In Eq. (5), the group
LASSO penalty is applied on the coefficients in each nonparametric component as a
group and itmakes them simultaneously zero or non-zero group-wise. In comparison,
the LASSO penalty is applied on individual coefficients and it doesn’t have the
property of group selection. The regularization parameters can be chosen by cross-
validation, AIC or BIC.

4 Real Data Examples

We have applied the proposed procedure to analyze data from the breast cancer study
described in Sect. 1 and an HIV study. We have conducted 500 bootstrap replications
(Step 1, a) and have considered both the LASSO penalty and the group LASSO
penalty in the penalized regression (Step 1, b). We have used AIC as the criterion
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in the best subset selection (Step 3). As a comparison, we have also applied the
penalized regression (i.e., the regular penalized regression without bootstrapping).

Cubic splines (spline order u = 4) are used to approximate the nonparametric
components and knots are put at the sample quartiles. We use the function bs in the
splines package inR to calculate the spline basis of cubic splineswith 2 knots. Several
packages in R are available to fit the LASSO-penalized logistic regression (e.g., glm-
net Friedman et al. 2010) and the group LASSO-penalized logistic regression (e.g.,
grplasso Meier et al. 2008 and SGL Simon et al. 2013) for binary outcomes. We use
the glmnet package for the LASSO-penalized logistic regression and the SGL pack-
age for the group LASSO-penalized logistic regression as both use the algorithm via
coordinate descent to calculate the regularization paths. The two-dimensional grid
search of the regularization parameters is computational intensive. Therefore, we
treat the parametric and the nonparametric components equally by making the regu-
larization parameters the same to reduce computational cost. The tuning parameters
are chosen by 10-fold cross-validation.

4.1 Breast Cancer Data

The gene expression data in the breast cancer study van’t Veer et al. (2002) are
pre-processed to remove genes with more than 30% missing measurements. For the
remaining genes, the missing values are imputed by the median value for that gene
across all samples and the 200 genes that exhibit the highest correlations with the
responses were kept in the analysis. We have tested the linearity of each gene’s
marginal effect on the response by fitting a nonparametric logistic model using the
R function gam. The nonlinearity of 65 genes’ marginal effects are statistically
significant (at the level of 0.05). Among these genes, 34 genes still have statistically
significant nonlinear effect when the extreme values (i.e., minimum and maximum)
of the genes are excluded. After a further check on the plots of the marginal effects,
17 genes are included in the nonparametric part and the rest 183 genes are in the
parametric part of GAPLM. The marginal effects of the 17 genes on the response are
plotted in Fig. 1 and the p value of the linearity test is shown on the top of each plot.

The genes being selected by the bootstrapped penalized regression and the penal-
ized regression are marked in Table1. Using the LASSO penalty, the bootstrapped
penalized regression has selected 4 genes in the nonparametric part and 6 genes in the
parametric part, while the penalized regression has selected 6 additional genes in the
nonparametric part and 11 additional genes in the parametric part. Using the group
LASSO penalty, the bootstrapped penalized regression has selected no genes in the
nonparametric part and 11 genes in the parametric part, while the penalized regres-
sion has selected 11 additional genes in the parametric part. The genes selected by
the bootstrapped penalized regression have the selection rates over the 500 bootstrap
replications greater than C = 0.5 and the selection rates are also given in Table1.
Overall, the penalized regression with the group LASSO penalty has selected more
genes in the parametric part and fewer genes in the nonparametric part than that



412 X. Liu et al.

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

NM_006201; p=0.009

NM_006201

s(
N

M
_0

06
20

1,
2.

38
)

0.0 0.2 0.4 0.6 0.8 1.0

−1
5

−1
0

−5
0

NM_001786; p=0.046

NM_001786

s(
N

M
_0

01
78

6,
2.

57
)

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

−5
0

NM_016426; p=0.025

NM_016426

s(
N

M
_0

16
42

6,
2.

27
)

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

−6
−2

0
2

AF112213; p=0.024

AF112213

s(
A

F1
12

21
3,

2.
43

)

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

−6
−4

−2
0

2

NM_015932; p=0.007

NM_015932

s(
N

M
_0

15
93

2,
2.

42
)

0.0 0.2 0.4 0.6 0.8 1.0

−1
5

−1
0

−5
0

NM_018131; p=0.015

NM_018131

s(
N

M
_0

18
13

1,
3.

15
)

0.0 0.2 0.4 0.6 0.8 1.0

−1
5
−1

0
−5

0
5

Contig31378_RC; p=0.032

Contig31378_RC

s(
C

on
tig

31
37

8_
R

C
,3

.4
5)

0.0 0.2 0.4 0.6 0.8 1.0

−2
0

−1
0

0
10

NM_000017; p=0.018

NM_000017

s(
N

M
_0

00
01

7,
3.

49
)

0.0 0.2 0.4 0.6 0.8 1.0

−8
−6

−4
−2

0
2

NM_005744; p=0.001

NM_005744

s(
N

M
_0

05
74

4,
2.

45
)

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

−6
−4

−2
0

2

Contig31288_RC; p=0.003

Contig31288_RC

s(
C

on
tig

31
28

8_
R

C
,2

.6
2)

0.0 0.2 0.4 0.6 0.8 1.0

−8
−6

−4
−2

0
2

AF161553; p=0.017

AF161553

s(
A

F1
61

55
3,

2.
38

)

0.0 0.2 0.4 0.6 0.8 1.0

−2
0

−1
0
−5

0

AL137514; p=0.007

AL137514

s(
A

L1
37

51
4,

4.
04

)

0.0 0.2 0.4 0.6 0.8 1.0

−8
−6

−4
−2

0
2

Contig58471_RC; p=0.046

Contig58471_RC

s(
C

on
tig

58
47

1_
R

C
,2

.1
3)

0.0 0.2 0.4 0.6 0.8 1.0

−6
−4

−2
0

2
4

NM_003239; p=0.019

NM_003239

s(
N

M
_0

03
23

9,
4.

28
)

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

−5
0

5

Contig46421_RC; p=0.015

Contig46421_RC

s(
C

on
tig

46
42

1_
R

C
,8

.0
9)

0.0 0.2 0.4 0.6 0.8 1.0

−6
−2

0
2

4
6

AF073519; p=0.025

AF073519

s(
A

F0
73

51
9,

2.
68

)

0.0 0.2 0.4 0.6 0.8 1.0

−6
−4

−2
0

2

NM_003683; p=0.01

NM_003683

s(
N

M
_0

03
68

3,
2.

26
)

Fig. 1 The marginal effects of 17 genes estimated using the GAM analysis for the breast cancer
data. The p-value of the test for linearity is displayed on the top of each plot
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Table 1 Genes selected by the penalized regression (PR) and the bootstrapped penalized regression
(Bootstrapped PR) using the LASSO penalty or the group LASSO penalty in the breast cancer
example. Upper panel gives the genes in the parametric part and the middle panel gives the genes
selected in nonparametric part. Symbol “X” marks the covariate that is selected and the selection
rate is given in parentheses for the bootstrapped penalized regression. The total number of selected
genes is in the lower panel

LASSO penalty Group LASSO penalty

(a) PR (b) Bootstrapped
PR

(c) PR (d) Bootstrapped
PR

Contig35148_RC X X

AL080059 X X(94.2%) X X(98.2%)

Contig47544_RC X X(88.6%) X X(92.8%)

Contig5816_RC X

NM_020244 X X X(52.4%)

NM_003147 X X(58.0%) X X(64.2%)

Contig64861_RC X X X(63.2%)

NM_014003 X X

D13540 X X(63.8%) X X(68.8%)

AB018337 X X(55.0%) X X(67.4%)

Contig38438_RC X X X(55.8%)

NM_000127 X X(56.2%) X X(61.8%)

Contig32718_RC X X

Contig22253_RC X X

Contig53488 X X X(53.8%)

Contig31839_RC X

Contig15355_RC X X

NM_013438 X

NM_020123 X X(63.8%)

NM_016448 X

Contig42563_RC X

Contig38726_RC X

NM_018313 X

AB033032 X

NM_006201 X

NM_015932 X X(74.2%)

NM_016426 X

NM_005744 X

Contig31288_RC X

AF161553 X

AL137514 X X(69.8%)

Contig58471_RC X X(56.4%)

NM_003239 X X(75.0%)

NM_003683 X

Total 27 10 22 11
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Table 2 Models built by the proposed procedure in the breast cancer example. Model 1 is the
model having the smallest AIC among all the potential subsets on List (d) in Table1. Models 2 and
3 are the top twomodels with the smallest AIC among all the potential subsets on List (b) in Table1.
Upper panel gives the estimates and the p-values of the coefficients in the parametric part and the
middle panel gives the p-values of the nonparametric components in the GAPLM. The lower panel
gives AIC and AUC (area under the ROC curve) for each model

Model 1 Model 2 Model 3

Est. (s.e) p Est. (s.e) p Est. (s.e) p

Intercept −20.84
(7.37)

0.005 −17.79
(5.05)

<0.001 −23.89
(6.34)

<0.001

AB018337 21.01
(7.76)

0.007 15.77
(4.86)

0.001 9.86 (3.65) 0.007

AL080059 19.18
(6.41)

0.003 14.48
(3.56)

<0.001 15.23
(4.62)

<0.001

Contig38438RC −8.99
(4.10)

0.028

Contig47544RC 14.58
(5.33)

0.006 11.36
(3.59)

0.002 14.97
(4.29)

<0.001

Contig53488 8.07 (4.06) 0.047

NM_000127 14.83
(5.09)

0.004 13.57
(3.94)

<0.001 16.00
(5.11)

0.002

NM_003147 −15.05
(5.49)

0.006 −10.84
(3.90)

0.006

Contig58471RC 0.051

NM_003239 0.050

AIC 41.30 49.63 52.73

with the LASSO penalty. The bootstrapped penalized regression has reduced the set
of genes selected by the penalized regression and made the best subset selection
feasible.

Best subset selection has been conducted on the lists of genes from the boot-
strapped penalized regression with the LASSO penalty and with the group LASSO
penalty (Lists (b) and (d) in Table1) respectively. All potential models under the
restriction that all p-values should be smaller than 0.1 (in order to exclude over-
fitting) have been considered. The model having the smallest AIC (Model 1) among
all potential subsets on List (d) in Table1 and the top two models having the smallest
AIC (Models 2 and 3) among all potential subsets on List (b) in Table1 are pre-
sented in Table2. Models 1 and 2 are nested linear logistic models and the latter
is significantly better than the former (likelihood ratio test, p = 0.002). Model 3
is a partially linear logistic regression model with two nonparametric components
(plotted in Fig. 2). The gene Contig58471RC(SLC27A1) in the nonparametric part
maps to chromosome 19p13, which is a region highly susceptible to triple negative-
specific breast cancer (Stevens et al. 2012). The receiver operating characteristic
(ROC) curves of the three models are plotted in Fig. 3. In comparison, the ROC curve
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Fig. 2 Plot of the nonparametric components in Model 3 in the breast cancer example

of the model (Model 4, AIC= 95.62) fitted using the top 7 genes (NM_003862, Con-
tig14882_RC, NM_020120, AL080059, AL050227, NM_003875 and NM_016448)
according to p values of test for association with the outcome by the univariate GAM
analysis is also plotted in Fig. 3. In summary, the three models built by the proposed
procedure are comparable in terms of ROC (or area under the curve (AUC)) and
better than Model 4.

4.2 HIV Data

The dataset includes 59 measurements on 42 HIV infected patients from a HIV
study. The measurements include 51 serum neutralizing covariates on B cells, 4
serum autoreactive antibodies and 4 clinical covariates including age, time since
diagnosis (years), CD4 cell count and HIV viral load (copy/per mL). The response
variable is IC50, halfmaximal inhibitory concentration,which indicates howmuch of
a particular substance is needed to inhibit a given biological process by half. When
IC50 values are below the limit of quantification (LOQ), the exact IC50 values
cannot be quantified. About 30% (14 out of 42) of the IC50 values are below the
limit of quantification and therefore the response variable is dichotomized as 0 if the
IC50 value is below or equal to LOQ and 1 otherwise. Logarithm transformation
and standardization have been performed on HIV viral load, serum autoreactive
antibody, CD4 cell counts and B cell counts to make their distributions less skewed.
Highly correlated pairs of serum neutralizing covariates exist in the dataset and one
out of each pair with correlation coefficient greater than 0.96 has been removed in
the analysis. As a result, 49 out of 59 measurements/covariates have been kept for
analysis.
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Fig. 3 ROC curves and AUCs (the Area Under the Curve) of the models built in the breast cancer
example. Model 1 is the model having the smallest AIC among all the potential subsets on List (d)
in Table1. Models 2 and 3 are the top two models with the smallest AIC among all the potential
subsets on List (b) in Table1. Model 4 is the model fitted using the top 7 covariates according to
p-values of test for association using the univariate GAM analysis

We first tested the linearity of each covariate’s marginal effect on the response
by fitting a nonparametric logistic regression using the R function gam. 7 covariates
(time, Bcell37, Bcell38, Bcell45, antibody1, antibody2 and antibody3) have statis-
tically significant (at the level of 0.05) nonlinear effects on the response. The effect
of Bcell38 is influenced by one observation in the dataset and the nonlinearity dis-
appears after excluding the observation. The marginal effect of antibody2 looks like
piecewise linear and modeling it in a nonparametric way is not appropriate due to
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Fig. 4 The marginal effects of 5 covariates estimated using the GAM analysis in the HIV example.
The p-value of the test for linearity is displayed on the top of each plot

large variance. Therefore, 5 covariates (time, Bcell37, Bcell45, antibody1 and anti-
body3) are included in the nonparametric part and the rest 44 covariates are included
in the parametric part of the GAPLM. The marginal effects of the 5 covariates on the
response are plotted in Fig. 4 and the p-value of the test for linearity is shown on the
top of each plot.

The covariates being selected by the bootstrapped penalized regression and the
penalized regression are marked in Table3. Using the LASSO penalty, the boot-
strapped penalized regression has selected five covariates (age,antibody2 and Bcells
20, 41, 49) in the parametric part and three covariates (time, antibody1 andBcell37) in
the nonparametric part, while the penalized regression has selected Bcell20 instead
of Bcell8 in the parametric part and hasn’t selected Bcell37 in the nonparametric
part. Using the group LASSO penalty, the bootstrapped penalized regression has
selected almost the same covariates as the bootstrapped lasso-penalized regression
has selected except for the covariate Bcell37 in the nonparametric part. The group-
lasso-penalized regression has selected five covariates (Bcells 8, 20, 41, 49 and
antibody2) in the parametric part and none in the nonparametric part. The covariates
selected by the bootstrapped penalized regression have selection rates greater than
C = 38.7%and 41.8% for theLASSOpenalty and the groupLASSOpenalty, respec-
tively. The selection rates are given in Table3. The cutoff C is the sum of the mean
and standard deviance of all covariates’ selection rates. Overall, the bootstrapped
penalized regression has expanded the set of covariates selected by the penalized
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Table 3 Covariates selected from the penalized regression (PR) and the bootstrapped penalized
regression (Bootstrapped PR) using the LASSO penalty or the group LASSO penalty in the HIV
example. Upper panel gives the covariates in the parametric part and the middle panel gives the
covariates in the nonparametric part. Symbol “X” marks the covariate that is selected and the
selection rate is given in parentheses for the bootstrapped penalized regression. The total number
of selected covariates is in the lower panel

LASSO penalty Group LASSO penalty

(a) PR (b) Bootstrapped
PR

(c) PR (d) Bootstrapped
PR

age X X(51.4%) X(54.8%)

antibody2 X X(76.0%) X X(80.0%)

Bcell8 X(41.0%) X X(62.2%)

Bcell20 X X

Bcell41 X X(45.8%) X X(56.2%)

Bcell49 X X(84.2%) X X(93.6%)

time X X(74.8%) X(61.6%)

antibody1 X X(48.8%) X(46.2%)

Bcell37 X(44.0%)

Total 7 8 5 7

regression to include more covariates except for the covariate Bcell20, whose selec-
tion by the penalized regression seems to be by chance as its selection rate in the
bootstrapped penalized regression is low.

Best subset selection has been conducted on the lists of covariates from the boot-
strapped lasso/group-lasso penalized procedure (Lists (b) and (d) in Table3) and
also the list of covariates from the lasso-penalized regression (List (a) in Table3) as
putting all the covariates in a model overfits the data (all p-values are close to 1).
All potential models under the restriction that all p-values should be smaller than
0.5 (in order to exclude over-fitting) have been considered. The models with the
smallest AIC from all potential subsets of the three lists are the same (Model 1) and
is presented in Table4. Model 1 is a GAPLM with one nonparametric component of
the covariate time, which is plotted in Fig. 5. The model fitted with all the covariates
in the list (List (c) in Table3) selected by the group LASSO-penalized regression
(Model 2) is also presented in Table4. The ROC curves of the two models are plotted
in Fig. 6. As a comparison, the ROC curve from a model (Model 3, AIC= 41.40) fit-
ted using the top 5 covariates (time (in nonparametric part), Bcell8, Bcell24, Bcell41
and Bcell49) according to the p values of test for association with the outcome from
the univariate GAM analysis is also plotted in Fig. 6. In conclusion, the model built
by the proposed procedure is better than the other two models considering AIC and
also the area under the ROC curve (AUC).
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Table 4 Models built in the HIV example. Model 1 is the model with the smallest AIC among all
the potential subsets on List (d) in Table3. Model 2 is the model fitted with the covariates selected
by the of group LASSO-penalized regression (List (c) in Table3). Upper panel gives the estimates
and the p-values of the coefficients in the parametric part. The middle panel gives the p-values for
the nonparametric components. The lower panel gives AIC for each model

Model 1 Model 2

Est. (s.e) p Est. (s.e) p

Intercept −6.17 (4.13) 0.135 −4.62 (3.66) 0.207

age 6.87 (3.43) 0.045

antibody2 4.76 (2.91) 0.102 2.58 (1.94) 0.183

Bcell8 −4.11 (2.63) 0.118

Bcell20 1.53 (2.35) 0.514

Bcell41 10.36 (6.51) 0.112 5.33 (3.27) 0.103

Bcell49 −6.50 (3.68) 0.078 −5.85 (2.69) 0.030

time 0.376

antibody1

AIC 37.95 40.26

Fig. 5 Plot of the
nonparametric component in
Model 1 in the HIV example
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5 A Simulation Study

To evaluate the performance of variable selection by the bootstrapped penalized
regression and compare it to the penalized regression,wehaveperformed a simulation
study with 500 runs. We only consider the LASSO penalty in the simulation study
because the computation of the bootstrapped group LASSO-penalized regression
with 500 bootstrap replicates is too time-consuming. It took about 3 h when using
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Fig. 6 ROC curves and AUCs (area under the curve) of the models in the HIV example. Model 1
is the model with the smallest AIC among all the potential subsets on List (d) in Table3. Model 2
is the model fitted with the covariates selected by the group LASSO-penalized regression (List (c)
in Table3). Model 3 is the model fitted using the top 5 covariates according to p-values of test for
association with the outcome by the univariate GAM analysis

the group LASSO penalty in the bootstrapped penalized regression while using the
LASSO penalty in it only took 1min in the real data examples.

We use the data on the covariates in the HIV dataset andModel 1 in Table4 to gen-
erate the response. Specifically, in each simulation run, we generated the response for
each observation from a Bernoulli distribution with the probability being calculated
as follows,
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Fig. 7 Percentages of the covariates selected by the bootstrapped penalized regression and the
penalized regression in the simulation study. The five covariates on the left are the covariates in the
simulation model (6)

E(Y = 1) = logit−1 {−6.17 + s(time) + 6.87 ∗ age + 4.76 ∗ antibody2

+ 10.36 ∗ Bcell41 − 6.50 ∗ Bcell49} , (6)

where s(t ime) is plotted in Fig. 5. Then, we applied the bootstrapped lasso-penalized
regression with 500 times of resampling on the simulated dataset. 10-fold cross-
validation was used to select covariates in each bootstrapping replication and the
reduced set of covariates from the bootstrapped process were those with selection
rates higher than a cutoff. The cutoff was the mean plus one standard deviation of
selection rates across all covariates. As a comparison, the LASSO-penalized regres-
sion was also applied on each simulated dataset and covariates were selected by
10-fold cross-validation.

The percentages of the covariates selected by the penalized regression and the
bootstrapped penalized regression among the 500 simulation runs has been plotted
in Fig. 7. Among the five true covariates (time, age, antibody2, Bcell41 and Bcell49)
on the left in Fig. 7, the percentages (i.e., the true positive rates) of the first three
covariates being selected by the bootstrapped process (90.0%, 78.0% and 91.0%
respectively) are higher than those by the LASSO-penalized regression (87.8%,
71.8% and 88.4% respectively). For the other two covariates, the true positive rates
by the bootstrapped process (65.2% and 95.4% respectively) are close to but a little
bit lower than those from the one round of the LASSO-penalized regression (68.2%
and 97.0% respectively). For the rest covariates, which are not in the simulation
model (Eq.6), the percentages (i.e., the false positive rates) from the bootstrapped
process are lower or at least equal to those from the one round LASSO-penalized
regression except for one covariate Vload. The false selection rates of Vload are
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relatively high for both methods (43.4% by the penalized regression and 47.0% by
the bootstrapped process). Overall, the bootstrapped procedure boosts 3 out of 5
true positive selection rates while controls down 43 out of 44 false positive rates
comparing to the LASSO-penalized regression in the simulation study.

6 Summary and Discussion

Generalized additive partially linear model is an attractive method to analyze real
data by allowing some covariates to have nonlinear effects while some others to have
linear effects on the response. To address the practical need of building a GAPLM
for high-dimensional data, we have proposed a procedure by using the bootstrap
technique with the penalized regression to select variables for GAPLM. We have
demonstrated the application of the proposed procedure to two datasets and we have
applied both the lasso penalty and the group-lasso penalty. The group-lasso penalty
is more strict than the lasso penalty to select nonlinear terms in the GAPLM. In
addition, the bootstrapped group-LASSO regression is much more time-consuming
than the bootstrapped LASSO regression. Therefore, we would suggest using the
lasso penalty in real data analysis. We have also showed that the proposed procedure
with the lasso penalty has a better performance of variable selection than the regular
lasso-penalized regression in the simulation study.

Bootstrap is a useful technique to gauge model stability. It has been used to
determine the tuning parameter in the LASSO type estimation for linear regression
models (Hall et al. 2009;Chatterjee andLahiri 2011). Recently, the technique has also
been used to compute standard errors and confidence intervals of estimators in model
selection Efron (2014). The stability selection (Meinshausen and Bühlmann 2010)
proposed by Meinshausen and Bühlmann uses subsampling technique to estimate
the structure, such as variable selection, graphical modeling or cluster analysis. The
important feature of the stability selection for LASSO is the error control, where an
upper bound has been provided for the expected number of falsely selection variables
(Meier and Bühlmann 2007, Theorem 1). Shah and Samworth have proposed a
variant of the stability selection (Shah and Samworth 2013), using complementary
pairs when resampling, which is claimed to improve the error control in the stability
selection. It would be interesting to investigate the theoretical property of applying
the stability selection to select variables for GAPLMs, especially the theoretical
aspects of the false discovery rates in the future.
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