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Preface

This book is a compilation of invited presentations and lectures that were presented
at the Second Symposium of the International Chinese Statistical Association—
Canada Chapter (ICSA—-CANADA) held at the University of Calgary, Canada,
August 4-6, 2015 (http://www.ucalgary.ca/icsa-canadachapter2015). The Sympo-
sium was organized around the theme “Embracing Challenges and Opportunities of
Statistics and Data Science in the Modern World” with a threefold goal: to promote
advanced statistical methods in big data sciences, to create an opportunity for the
exchange ideas among researchers in statistics and data science, and to embrace the
opportunities inherent in the challenges of using statistics and data science in the
modern world.

The Symposium encompassed diverse topics in advanced statistical analysis
in big data sciences, including methods for administrative data analysis, survival
data analysis, missing data analysis, high-dimensional and genetic data analysis,
and longitudinal and functional data analysis; design and analysis of studies
with response-dependent and multiphase designs; time series and robust statistics;
and statistical inference based on likelihood, empirical likelihood, and estimating
functions. This book compiles 12 research articles generated from Symposium
presentations.

Our aim in creating this book was to provide a venue for timely dissemination
of the research presented during the Symposium to promote further research and
collaborative work in advanced statistics. In the era of big data, this collection
of innovative research not only has high potential to have a substantial impact on
the development of advanced statistical models across a wide spectrum of big data
sciences but also has great promise for fostering more research and collaborations
addressing the ever-changing challenges and opportunities of statistics and data
science. The authors have made their data and computer programs publicly available
so that readers can replicate the model development and data analysis presented
in each chapter, enabling them to readily apply these new methods in their own
research.

vii
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viii Preface

The 12 chapters are organized into three sections. Part I includes four chapters
that present and discuss data analyses based on latent variable models in data
sciences. Part IT comprises four chapters that share a common focus on lifetime data
analyses. Part III is composed of four chapters that address applied data analyses in
big data sciences.

Part I Data Analysis Based on Latent or Dependent Variable Models (Chaps. 1,
2,3,and 4)

Chapter 1 presents a weighted multiple testing procedure commonly used and
known in clinical trials. Given this wide use, many researchers have proposed
methods for making multiple testing adjustments to control family-wise error rates
while accounting for the logical relations among the null hypotheses. However, most
of those methods not only disregard the correlation among the endpoints within the
same family but also assume the hypotheses associated with each family are equally
weighted. Authors Enas Ghulam, Kesheng Wang, and Changchun Xie report on
their work in which they proposed and tested a gatekeeping procedure based on
Xie’s weighted multiple testing correction for correlated tests. The proposed method
is illustrated with an example to clearly demonstrate how it can be used in complex
clinical trials.

In Chap.2, Abbas Khalili, Jiahua Chen, and David A. Stephens consider
the regime-switching Gaussian autoregressive model as an effective platform
for analyzing financial and economic time series. The authors first explain the
heterogeneous behavior in volatility over time and multimodality of the conditional
or marginal distributions and then propose a computationally more efficient regu-
larization method for simultaneous autoregressive-order and parameter estimation
when the number of autoregressive regimes is predetermined. The authors provide
a helpful demonstration by applying this method to analysis of the growth of the US
gross domestic product and US unemployment rate data.

Chapter 3 deals with a practical problem of healthcare use for understanding
the risk factors associated with the length of hospital stay. In this chapter, Cindy
Xin Feng and Longhai Li develop hurdle and zero-inflated models to accommodate
both the excess zeros and skewness of data with various configurations of spatial
random effects. In addition, these models allow for the analysis of the nonlinear
effect of seasonality and other fixed effect covariates. This research draws attention
to considerable drawbacks regarding model misspecifications. The modeling and
inference presented by Feng and Li use the fully Bayesian approach via Markov
Chain Monte Carlo (MCMC) simulation techniques.

Chapter 4 discusses emerging issues in the era of precision medicine and the
development of multi-agent combination therapy or polytherapy. Prior research has
established that, as compared with conventional single-agent therapy (monother-
apy), polytherapy often leads to a high-dimensional dose searching space, especially
when a treatment combines three or more drugs. To overcome the burden of
calibration of multiple design parameters, Ruitao Lin and Guosheng Yin propose
arobust optimal interval (ROI) design to locate the maximum tolerated dose (MTD)
in Phase I clinical trials. The optimal interval is determined by minimizing the
probability of incorrect decisions under the Bayesian paradigm. To tackle high-



Preface ix

dimensional drug combinations, the authors develop a random-walk ROI design
to identify the MTD combination in the multi-agent dose space. The authors of
this chapter designed extensive simulation studies to demonstrate the finite-sample
performance of the proposed methods.

Part II Lifetime Data Analysis (Chaps. 5, 6, 7, and 8)

In Chap.5, Longlong Huang, Karen Kopciuk, and Xuewen Lu present a new
method for group selection in an accelerated failure time (AFT) model with a
group bridge penalty. This method is capable of simultaneously carrying out feature
selection at the group and within-group individual variable levels. The authors
conducted a series of simulation studies to demonstrate the capacity of this group
bridge approach to identify the correct group and correct individual variable even
with high censoring rates. Real data analysis illustrates the application of the
proposed method to scientific problems.

Chapter 6 considers issues around Case I interval censored data, also known
as current status data, commonly encountered in areas such as demography,
economics, epidemiology, and medical science. In this chapter, Pooneh Pordeli and
Xuewen Lu first introduce a partially linear single-index proportional odds model to
analyze these types of data and then propose a method for simultaneous sieve max-
imum likelihood estimation. The resultant estimator of regression parameter vector
is asymptotically normal, and, under some regularity conditions, this estimator can
achieve the semiparametric information bound.

Chapter 7 presents a framework for general empirical likelihood inference of
Type I censored multiple samples. Authors Song Cai and Jiahua Chen develop
an effective empirical likelihood ratio test and efficient methods for distribution
function and quantile estimation for Type I censored samples. This newly developed
approach can achieve high efficiency without requiring risky model assumptions.
The maximum empirical likelihood estimator is asymptotically normal. Simulation
studies show that, as compared to some semiparametric competitors, the proposed
empirical likelihood ratio test has superior power under a wide range of population
distribution settings.

Chapter 8 provides readers with an overview of recent developments in the
joint modeling of longitudinal quality of life (QoL) measurements and survival
time for cancer patients that promise more efficient estimation. Authors Hui Song,
Yingwei Peng, and Dongsheng Tu then propose semiparametric estimation methods
to estimate the parameters in these joint models and illustrate the applications of
these joint modeling procedures to analyze longitudinal QoL measurements and
recurrence times using data from a clinical trial sample of women with early breast
cancer.

Part IIT Applied Data Analysis (Chaps. 9, 10, 11, and 12)

Chapter 9 presents an interesting discussion of a confidence weighting model
applied to multiple-choice tests commonly used in undergraduate mathematics and
statistics courses. Michael Cavers and Joseph Ling discuss an approach to multiple-
choice testing called the student-weighted model and report on findings based on
the implementation of this method in two sections of a first-year calculus course at
the University of Calgary (2014 and 2015).
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Chapter 10 discusses parametric imputation in missing data analysis. Author
Peisong Han proposes to estimate and subtract the asymptotic bias to obtain
consistent estimators. Han demonstrates that the resulting estimator is consistent
if any of the missingness mechanism models or the imputation model is correctly
specified.

Chapter 11 considers one of the basic and important problems in statistics: the
estimation of the center of a symmetric distribution. In this chapter, authors Pengfei
Li and Zhaoyang Tian propose a new estimator by maximizing the smoothed
likelihood. Li and Tian’s simulation studies show that, as compared with the existing
methods, their proposed estimator has much smaller mean square errors under
uniform distribution, t-distribution with one degree of freedom, and mixtures of
normal distributions on the mean parameter. Additionally, the proposed estimator is
comparable to the existing methods under other symmetric distributions.

Chapter 12 presents the work of Jingjia Chu, Reg Kulperger, and Hao Yu in which
they propose a new class of multivariate time series models. Specifically, the authors
propose a multivariate time series model with an additive GARCH-type structure
to capture the common risk among equities. The dynamic conditional covariance
between series is aggregated by a common risk term, which is key to characterizing
the conditional correlation.

As a general note, the references for each chapter are included immediately
following the chapter text. We have organized the chapters as self-contained units
so readers can more easily and readily refer to the cited sources for each chapter.

The editors are deeply grateful to many organizations and individuals for their
support of the research and efforts that have gone into the creation of this collection
of impressive, innovative work. First, we would like to thank the authors of
each chapter for the contribution of their knowledge, time, and expertise to this
book as well as to the Second Symposium of the ICSA—-CANADA. Second, our
sincere gratitude goes to the sponsors of the Symposium for their financial support:
the Canadian Statistical Sciences Institute (CANSSI), the Pacific Institute for the
Mathematical Sciences (PIMS), and the Department of Mathematics and Statistics,
University of Calgary; without their support, this book would not have become a
reality. We also owe big thanks to the volunteers and the staff of the University
of Calgary for their assistance at the Symposium. We express our sincere thanks
to the Symposium organizers: Gemai Chen, PhD, University of Calgary; Jiahua
Chen, PhD, University of British Columbia; X. Joan Hu, PhD, Simon Fraser
University; Wendy Lou, PhD, University of Toronto; Xuewen Lu, PhD, University
of Calgary; Chao Qiu, PhD, University of Calgary; Bingrui (Cindy) Sun, PhD,
University of Calgary; Jingjing Wu, PhD, University of Calgary; Grace Y. Yi,
PhD, University of Waterloo; and Ying Zhang, PhD, Acadia University. The editors
wish to acknowledge the professional support of Hannah Qiu (Springer/ICSA Book
Series coordinator) and Wei Zhao (associate editor) from Springer Beijing that made
publishing this book with Springer a reality.
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University of North Carolina at Chapel Hill Ding-Geng (Din) Chen, MSc, PhD
Chapel Hill, NC, USA

University of British Columbia Jiahua Chen, MSc, PhD
Vancouver, BC, Canada

University of Calgary Xuewen Lu, MSc, PhD
Calgary, AB, Canada

University of Waterloo Grace Y. Yi, MSc, MA, PhD
Waterloo, ON, Canada

Western University Hao Yu, MSc, PhD
West Ontario, ON, Canada

July 28,2016



Contents

PartI Data Analysis Based on Latent or Dependent Variable

Models
The Mixture Gatekeeping Procedure Based on Weighted

Multiple Testing Correction for Correlated Tests............

Enas Ghulam, Kesheng Wang, and Changchun Xie

Regularization in Regime-Switching Gaussian

Autoregressive Models .....................o

Abbas Khalili, Jiahua Chen, and David A. Stephens

Modeling Zero Inflation and Overdispersion in the Length
of Hospital Stay for Patients with Ischaemic Heart Disease
Cindy Xin Feng and Longhai Li

Robust Optimal Interval Design for High-Dimensional

Dose Finding in Multi-agent Combination Trials............

Ruitao Lin and Guosheng Yin

PartII Life Time Data Analysis

5

Group Selection in Semiparametric Accelerated Failure

Time Model............oooii i

Longlong Huang, Karen Kopciuk, and Xuewen Lu

A Proportional Odds Model for Regression Analysis of

Case I Interval-CensoredData .................................

Pooneh Pordeli and Xuewen Lu

Empirical Likelihood Inference Under Density Ratio
Models Based on Type I Censored Samples: Hypothesis

Testing and Quantile Estimation...............................

Song Cai and Jiahua Chen

Xiii



Xiv

Contents

Recent Development in the Joint Modeling of Longitudinal

Quality of Life Measurements and Survival Data from

Cancer Clinical Trials................. 153
Hui Song, Yingwei Peng, and Dongsheng Tu

PartIII Applied Data Analysis

9

10

11

12

Confidence Weighting Procedures for Multiple-Choice Tests ......... 171
Michael Cavers and Joseph Ling

Improving the Robustness of Parametric Imputation.................. 183
Peisong Han

Maximum Smoothed Likelihood Estimation of the Centre
of a Symmetric Distribution.......................... 195
Pengfei Li and Zhaoyang Tian

Modelling the Common Risk Among Equities:

A Multivariate Time Series Model with an Additive

GARCH StruCture...... ..ottt e e 205
Jingjia Chu, Reg Kulperger, and Hao Yu



Contributors

Song Cai School of Mathematics and Statistics, Carleton University, Ottawa, ON,
Canada

Michael Cavers Department of Mathematics and Statistics, University of Calgary,
Calgary, AB, Canada

Jiahua Chen Big Data Research Institute of Yunnan University and Department of
Statistics, University of British Columbia, Vancouver, BC, Canada

Jingjia Chu Department of Statistical and Actuarial Sciences, Western University,
London, ON, Canada

Cindy Xin Feng School of Public Health and Western College of Veterinary
Medicine, University of Saskatchewan, Saskatoon, SK, Canada

Enas Ghulam Division of Biostatistics and Bioinformatics, Department of Envi-
ronmental Health, University of Cincinnati, Cincinnati, OH, USA

Peisong Han Department of Statistics and Actuarial Science, University of Water-
loo, Waterloo, ON, Canada

Longlong Huang Department of Mathematics and Statistics, University of Cal-
gary, Calgary, AB, Canada

Abbas Khalili Department of Mathematics and Statistics, McGill University,
Montreal, QC, Canada

Karen Kopciuk Department of Cancer Epidemiology and Prevention Research,
Alberta Health Services, Calgary, AB, Canada

Reg Kulperger Department of Statistical and Actuarial Sciences, Western Univer-
sity, London, ON, Canada

Longhai Li Department of Mathematics and Statistics, University of Saskatchewan,
Saskatoon, SK, Canada

XV



XVi Contributors

Pengfei Li Department of Statistics and Actuarial Science, University of Waterloo,
Waterloo, ON, Canada

Ruitao Lin Department of Statistics and Actuarial Science, The University of
Hong Kong, Hong Kong, China

Joseph Ling Department of Mathematics and Statistics, University of Calgary,
Calgary, AB, Canada

Xuewen Lu Department of Mathematics and Statistics, University of Calgary,
Calgary, AB, Canada

Yingwei Peng Departments of Public Health Sciences and Mathematics and
Statistics, Queens University, Kingston, ON, Canada

Pooneh Pordeli Department of Mathematics and Statistics, University of Calgary,
Calgary, AB, Canada

Hui Song School of Mathematical Sciences, Dalian University of Technology,
Dalian, Liaoning, China

David A. Stephens Department of Mathematics and Statistics, McGill University,
Montreal, QC, Canada

Zhaoyang Tian Department of Statistics and Actuarial Science, University of
Waterloo, Waterloo, ON, Canada

Dongsheng Tu Departments of Public Health Sciences and Mathematics and
Statistics, Queens University, Kingston, ON, Canada

Kesheng Wang Department of Biostatistics and Epidemiology, East Tennessee
State University, Johnson City, TN, USA

Changchun Xie Division of Biostatistics and Bioinformatics, Department of
Environmental Health, University of Cincinnati, Cincinnati, OH, USA

Guosheng Yin Department of Statistics and Actuarial Science, The University of
Hong Kong, Hong Kong, China

Hao Yu Department of Statistical and Actuarial Sciences, Western University,
London, ON, Canada



Part I
Data Analysis Based on Latent
or Dependent Variable Models



Chapter 1

The Mixture Gatekeeping Procedure Based
on Weighted Multiple Testing Correction
for Correlated Tests

Enas Ghulam, Kesheng Wang, and Changchun Xie

Abstract Hierarchically ordered objectives often occur in clinical trials. Many
multiple testing adjustment methods have been proposed to control family-wise
error rates while taking into account the logical relations among the null hypotheses.
However, most of them disregard the correlation among the endpoints within the
same family and assume the hypotheses within each family are equally weighted.
This paper proposes a gatekeeping procedure based on Xie’s weighted multiple test-
ing correction for correlated tests (Xie, Stat Med 31(4):341-352,2012). Simulations
have shown that it has power advantages compared to those non-parametric methods
(which do not depend on the joint distribution of the endpoints). An example is given
to illustrate the proposed method and show how it can be used in complex clinical
trials.

1.1 Introduction

In order to obtain better overall knowledge of a treatment effect, the investigators
in clinical trials often collect many endpoints and test the treatment effect for each
endpoint. These endpoints might be hierarchically ordered and logically related.
However, the problem of multiplicity arises when multiple hypotheses are tested.
Ignoring this problem can cause false positive results. Currently, there are two
common types of multiple testing adjustment methods. One is based on controlling
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family-wise error rate (FWER), which is the probability of rejecting at least one true
null hypothesis, and the other is based on controlling false discovery rate (FDR),
which is the expected proportion of false positives among all significant hypotheses
(Benjamini and Hochberg 1995; Benjamini and Yekutieli 2001). The gatekeeping
procedures we consider here belong to the type of FWER control.

Consider a clinical trial with multiple endpoints. The hypotheses associated with
these endpoints can be grouped into m ordered families, Fy, ..., F,,, with ki, ..., ky,
hypotheses respectively.

When the endpoints are hierarchically ordered with logical relations, many
gatekeeping procedures have been suggested to control FWER including serial gate-
keeping (Bauer et al. 1998; Maurer et al. 1995; Westfall and Krishen 2001), parallel
gatekeeping (Dmitrienko et al. 2003) and their generalization called tree-structured
gatekeeping (Dmitrienko et al. 2008, 2007). In serial gatekeeping procedure, the
hypotheses in F; are tested only if all hypotheses in the previously examined family,
F;_ are rejected. Otherwise, the hypotheses in F; are accepted without testing. In
parallel gatekeeping procedure, the hypotheses in F; are tested only if at least one
hypothesis in the previously examined family, F;_; is rejected. In the tree-structured
gatekeeping procedure, a hypothesis in F; is tested only if all hypotheses in one
subset (called a serial rejection set from F1, ..., F;_|) are rejected and at least one
hypothesis in another subset (called a parallel rejection set from Fi, ..., Fi_p) is
rejected. Recently, Dmitrienko and Tamhane (2011) proposed a new approach for
gatekeeping, based on mixture of multiple testing procedures.

In this paper, we use the mixture method with Xie’s weighted multiple testing
correction, which is proposed for a single family of hypotheses, as a component
procedure. We call the resulting mixture gatekeeping procedure as WMTCc-based
gatekeeping procedure. Xie’s WMTCc was proposed for multiple correlated tests
with different weights and is more powerful than weighted Holm procedure. Thus
the proposed new WMTCc-based gatekeeping procedure should have an advantage
over the mixture gatekeeping procedure based on Holm procedure, including
Bonferroni parallel gatekeeping multiple testing procedure.

1.1.1 WMTCc Method

Assume that the test statistics follow a multivariate normal distribution with known

correlation matrix ¥. Let py, ..., p, be the observed p-values for null hypotheses
H(()l), o ,H(()m) respectively and w; > 0, i = 1,...,m be the weight for null

hypothesis H(()i). Note that we do not require that ) ., w; = 1 because it can be
seen from Egs. (1.2) or (1.3) below that the adjusted p-values only depend on the
ratios of the weights. Foreachi = 1, ..., m, calculate ¢; = p;/w;. Then the adjusted
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p-value for the null hypothesis H(()i) is

Padj_i = P(minj qj < QL)

1—P(allg; > g)

(1.1)
1—P(ﬂ}"=1aj =X = bj)

=1—-P@ll p; > pw;/w),

where X;, j = 1,..., m are standardized multivariate normal with correlation matrix
Y and
—1 [ PiWj -1 piwj
=@ , =o' 1- 1.2
aj ( 2W,’ ) / ( 2W,’ ) ( )
for the two-sided case and
aj=—oco, b= (1 - piwf) (1.3)
Wi

for the one-sided case.

Therefore the WMTCc is to first adjust the m observed p-values for multiple
testing by computing m adjusted p-values in (1.1). If P, ; =< «, reject the
corresponding null hypothesis H(()i) . Suppose k; null hypotheses have been rejected,
we then adjust the remaining m — k; observed p-values for multiple testing after
removing the rejected k; null hypotheses, using the corresponding correlation matrix
and weights. Continue the procedures above until there is no null hypothesis left
after removing the rejected null hypotheses or there is no null hypothesis which can
be rejected.

1.1.2 Single-Step WMTCc Method

The single-step WMTCc is to adjust the m observed p-values for multiple testing by
computing m adjusted p-values in (1.1). If P,4; ; < «, reject the corresponding null
hypothesis Hé’) . It does not remove the rejected null hypotheses and calculate the
adjusted p-value again for the remaining observed P-values as the WMTCc does.
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1.2 Mixture Gatekeeping Procedures

Following Dmitrienko and Tamhane (2011), we consider a mixture procedure P
from P; and P, for testing the null hypotheses in family F = F; U F,. Let K} =
{,2, . ki}, Ky =tk +1,...,k}, K =K, UK, = {1,...,k} be the index sets of
null hypotheses in Fy, F, and F, respectively. Let H(I) = Nje/Hj, where I = I, U,
inwhich I; C K;, i = 1, 2. Let m; and m, be the number of null hypotheses in /; and
I, respectively. Suppose P; is single-step WMTCc and P; is the regular WMTCc
procedure. The single-step WMTCc tests and rejects any intersection hypothesis
H(I)) atlevel « if pi (1) = min]Z, P,q; ; < c. The regular WMTCc tests and rejects
any intersection hypothesis H(l) at level « if p>(l>) = min;2, Pug ; < .

¢1(p1(1h), p2(l2)) = min(p (1), c(lI?f,(Ilzzl)a))’ (1.4)

where 0 < c¢(I}, I;|o) < 1 and must satisfy the following equation:

Plgi(pi1(1h),p2()) < alH(D)} = Pipi(l) <«
or pz([z) < C(Il,IQIO{)(){|H(I)} = . (1.5)

The package mvtnorm (Genz et al. 2009) in the R software environment (Team
2013) can be used to calculate c(/}, I|«). If we assume the hypotheses within family
F;, i = 1,2 are correlated, but the hypotheses between families are not correlated,
c(Iy, b|@) can be defined as 1 —e; (I |a)/a, where e (I1|@) = P{p1(I}) < «|H(I,)}.
Note c(/;, I>|a) is independent of I,.

1.3 Simulation Study

In this section, simulations were performed to estimate the family-wise type I error
rate (FWER) and to compare the power performance of the two mixture gatekeeping
procedures: Holm-based gatekeeping procedure and the proposed new WMTCc-
based gatekeeping procedure. In these simulations, two families are considered.
Each family has two endpoints.

We simulated a clinical trial with two correlated endpoints and 240 individuals.
Each individual had probability 0.5 to receive the active treatment and probability
0.5 to receive a placebo. The two endpoints from each family were generated from
a multivariate normal distribution with p chosen as 0.0, 0.3, 0.5, 0.7, and 0.9. The
treatment effect size was assumed as (0,0,0,0), (0.4,0.1,0.4,0.1), (0.1,0.4,0.1,0.4)
and (0.4,0.4,0.4,0.4), where the first two numbers are for the two endpoints in the
family 1 and the last two numbers are for the two endpoints in the family 2. The
corresponding weights for the four endpoints were (0.6, 0.4, 0.6, 0.4) and (0.9,
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0.1, 0.9, 0.1). The observed p-values were calculated using two-sided t-tests for the
coefficient of the treatment, § = 0, in linear regressions. The adjusted p-values
in Holm-based gatekeeping procedure were obtained using weighted Bonferroni
method for family 1 and Weighted Holm method for family 2. The adjusted p-
values in the proposed WMTCc-based gatekeeping procedure were obtained using
the single-step WMTCc method for family 1, and the regular WMTCc method
for family 2 where the estimated correlations from simulated data were used for
both families. We replicated the clinical trial 1,000,000 times independently and
calculated the family-wise type I error rate, defined as the number of clinical trials
where at least one true null hypothesis was rejected, divided by 1,000,000. The result
is shown in Table 1.1.
From these simulations, we can conclude the following:

1. Both Holm-based gatekeeping procedure and the proposed WMTCc-based
gatekeeping procedure can control the family-wise type I error rate very well.
The proposed WMTCc-based gatekeeping procedure keeps the family-wise type
I error rate at 5% level when the correlation (between endpoints) increases.
However, the family-wise type I error rate in Holm-based gatekeeping procedure
decreases, demonstrating decreased power when the correlation increases.

2. The proposed WMTCc-based gatekeeping procedure has higher power of reject-
ing at least one hypothesis among the four hypotheses in the two families
compared with the Holm-based gatekeeping procedure, especially when the
correlation between endpoints is high.

3. The proposed WMTCc-based gatekeeping procedure has a power advantage over
the Holm-based gatekeeping procedure for each individual hypothesis in family
1, especially when the correlation between endpoints is high.

4. The proposed WMTCc-based gatekeeping procedure has an advantage over the
Holm-based gatekeeping procedure for each individual hypothesis in family 2,
especially when the correlation between endpoints are high.

1.4 Example

Following Dmitrienko and Tamhane (2011)’s example of the schizophrenia trial.
Assume that the sample size per dose group (placebo, low dose and high dose) is
300 patients and the size of the classifier-positive subpopulation is 100 patients per
dose group. Further assume that the t-statistics for testing the null hypotheses of
no treatment effect in the general population and classifier-positive subpopulation
are given by t; = 2.04, t, = 2.46,t3 = 2.22 and t4 = 2.66 with 897 d.f., 8§97
d.f., 297 d.f. and 297 d.f., respectively. We calculate two-sided p-values for the
four null hypotheses computed from these t-statistics instead of one-sided p-values
considered by Dmitrienko and Tamhane (2011). The p-values are p; = 0.042, p, =
0.014, p3 = 0.027 and p4 = 0.008. Dmitrienko and Tamhane (2011) considered
un-weighted procedures, however, for illustration purposes only, we give different
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Table 1.2 Adjusted p-values produced by the WMTCc-based mixture gatekeeping procedure and
the Holm-based mixture gatekeeping procedure in the schizophrenia trial example with parallel
gatekeeping restrictions

Null Adjusted p-value
Family | hypothesis | Weight |p Raw p-value | Holm-based | WMTCc-based
F H, 0.8 0.5 [0.042 0.052 0.049

H, 0.2 0.014 0.070 0.066
F, H; 0.8 0.027 - 0.033

Hy 0.2 0.008 - 0.039

weights to different tests and use the weighted Holm-based mixture gatekeeping
procedure and the proposed WMTCc-based mixture gatekeeping procedure. The
results are given in Table 1.2. With FWER = 0.05, the weighted Holm-based
mixture gatekeeping procedure does not reject any of the four hypotheses while
the proposed WMTCc-based mixture gatekeeping procedure rejects the 1st, 3rd and
4th hypotheses.

1.5 Concluding Remarks and Discussions

In this paper, we proposed the WMTCc-based mixture gatekeeping procedure.
Simulations have shown that the proposed WMTCc-based gatekeeping procedure
using estimated correlation from the data can control the family-wise type I error
rate very well as summarized in Table 1.1.

The proposed WMTCc-based gatekeeping procedure has a power advantage over
the Holm-based gatekeeping procedure for each individuals hypothesis in the two
families, especially when the correlation p is high.

In conclusion, our studies show that the proposed WMTCc-based mixture
gatekeeping procedure based on Xie’s weighted multiple testing correction for
correlated tests outperforms the non-parametric methods in multiple testing in
clinical trials.
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Chapter 2
Regularization in Regime-Switching Gaussian
Autoregressive Models

Abbas Khalili, Jiahua Chen, and David A. Stephens

Abstract Regime-switching Gaussian autoregressive models form an effective
platform for analyzing financial and economic time series. They explain the het-
erogeneous behaviour in volatility over time and multi-modality of the conditional
or marginal distributions. One important task is to infer the number of regimes and
regime-specific parsimonious autoregressive models. Information-theoretic criteria
such as AIC or BIC are commonly used for such inference, and they typically
evaluate each regime/autoregressive combination separately in order to choose the
optimal model accordingly. However, the number of combinations can be so large
that such an approach is computationally infeasible. In this paper, we first use a
computationally efficient regularization method for simultaneous autoregressive-
order and parameter estimation when the number of autoregressive regimes is
pre-detertermined. We then use a regularized Bayesian information criterion (RBIC)
to select the most suitable number of regimes. Finite sample performance of the
proposed methods are investigated via extensive simulations. We also analyze the
U.S. gross domestic product growth and the unemployment rate data to demonstrate
this method.

2.1 Introduction

A standard Gaussian autoregressive (AR) model of order g postulates that
Yt=90+91Y[_1+"'+9th_q+8[ (21)

for a discrete-time series {Y;;t = 1,2,...}, where (Y;—1,Y—2,...,Y—,) and &
are independent and &, ~ N(O, 02). Under this model, the conditional variance,
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or volatility, of the series is var(¥;|Y,—1,...,Y,—,) = o2, which is a constant with
respect to time. In some financial and econometrics applications, the conditional
variance of the time series clearly changes over time. ARCH (Engle 1982) and
GARCH (Bollerslev 1986) models were subsequently motivated to accommodate
the volatility changes. However, the time series may also exhibit heterogeneity
in conditional mean or conditional (or marginal) distribution. Such non-standard
behaviours call for more flexible models beyond (2.1), ARCH and GARCH.

Wong and Li (2000) introduced finite mixture of Gaussian autoregressive (MAR)
models to accommodate the above non-standard behaviour. A MAR model combines
K stationary or non-stationary Gaussian AR processes to capture heterogeneity
while ensuring stationarity of the overall model. Due to the presence of several
AR processes, a MAR model is also termed as the regime-switching Gaussian
autoregressive model. MAR models generalize the Gaussian mixture transition
distributions of Le et al. (1996) which were designed to model time series with
non-Gaussian characteristics such as flat stretches, bursts of activity, outliers,
and change points. Wong and Li (2000) used the expectation-maximization (EM)
algorithm of Dempster et al. (1977) for maximum likelihood parameter estimation
in MAR models when the number of regimes is pre-determined. They examined the
performance of information-theoretic criteria such AIC and BIC for selection of the
number of AR regimes and the variable/model selections within each regime through
simulations.

A parsimonious AR model can be obtained by setting some of {0;, 6>, ...,0,}
in (2.1) zero. Such variable selection is known to lead to more effective subsequent
statistical inferences. Information-theoretic criteria such AIC or BIC are widely
used to choose the best subset of {0, 6s,...,60,}. They typically evaluate 2¢
possible AR submodels in an exhaustive calculation. When ¢ is large, this is
a formidable computational challenge. The straightforward application of AIC,
BIC or other information criteria to MAR model selection poses even a greater
computational challenge. To overcome the computational obstacle, Jirak (2012)
proposed simultaneous confidence intervals for parameter and order estimation;
Wang et al. (2007) and Nardi and Rinaldo (2011) used the least absolute shrinkage
and selection operator (LASSO) of Tibshirani (1996).

Regularization techniques such as the LASSO by Tibshirani (1996), the smoothly
clipped absolute deviation (SCAD) by Fan and Li (2001), the adaptive LASSO by
Zou (2006) have been successfully applied in many situations. In this paper we first
present a regularized likelihood approach for simultaneous AR-order and parameter
estimation in MAR models when the number of AR regimes is predetermined.
The new approach is computationally very efficient compared to existing methods.
Extensive simulations show that the method performs well in a wide range of finite
sample situations. In some applications, the data analysts must also decide on the
best number of AR regimes (K) for a data set. We propose to use a regularized BIC
(RBIC) for choosing K. Our simulations show that the RBIC performs well in various
situations.
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The rest of the paper is organized as follows. In Sect. 2.2, the MAR model and the
problems of model selection and parameter estimation are introduced. In Sect. 2.3,
we develop new methods for the problems of interest. Our simulation study is given
in Sect.2.4. We analyze the U.S. gross domestic product (GDP) growth and U.S.
unemployment rate data in Sect. 2.5. Finally, Sect. 2.6 contains some discussion and
conclusions.

2.2 Terminology and Model

Consider an observable time series {Y; : t = 1,2, ...} with corresponding realized
values {y, : t = 1,2,...}, and a latent stochastic process {S; : t = 1,2, ...} taking

values in {1,2,...,K} with K being the number of regimes underlying the time
series. In a mixture of Gaussian autoregressive (MAR) model, {S; : t = 1,2,...}
is an iid process, and the conditional distribution of Y;|(S; = k,yi—1,...,y1—q) is

presumed normal with variance cr,? and mean
ik = Oko + Okty—1 + ...+ Ogyi—g s k=1,2,... K. (2.2)

Here g is the maximum order that is thought to be reasonable across all K AR
regimes. Let ®x = (my,7m2,...,7x,0%,07,...,0%,01,0,,...,0k) denote the
vector of all parameters, where 6, = (6, Ok1, - .-, qu)T is the coefficient vector
of the kth AR regime. As in the usual finite mixture formulation, in a MAR model
the conditional distribution of Y;|(y;—1, . .., yi—¢) is a Gaussian mixture with density

K
FOYte Y @) = D 7 SO ak- OF) (2.3)

k=1

where Pr[S; = k] = @ € (0,1) are mixing proportions that sum to one, and
& (-5 pux, 07) is the density function of N(u,x, 07).

We assume that in the true MAR model underlying the data some elements of
the vectors 8 (except the intercepts 6y9) are zero, which is referred to as a MAR
submodel as formally defined below.

Subset-AR models — where, in formulation (2.1), parameter vector § =

(60, 64,..., Qq)T contains zeros — are often used in time series literature (Jirak
2012). For each subset I < {1,2,...,q}, we denote its cardinality by |J]|,
introduce column vector y,_ g = {l,y—; : j € 3T and coefficient sub-vector

0[3] = {60, 6,.j € 33T, We denote it as 6;[3;] when applied to the kth regime.
The regime-specific conditional mean is then (6[3;]) "y,_«. Each combination of
1, 32, . . . Sk specifies a MAR submodel with the conditional density function

K
f351 803 O V2 Vg BK) = Y T d (i ek (S0). OF (24)
k=1
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where

ir(30) = O3 Ty, = o + > Oy,
jE%k

Let (Y1, Y2,...,Y,) = Y}, be a random sample from a MAR model (2.3), with a
joint density function that may be factorized as fi (y1, 2, ..., Y )2 (g1, - - - Yuly1,
¥2,...,Yq). As a standard approach in time series, we work with conditional density
/f>(+), and the (conditional) likelihood function in a MAR model is given by

ln(¢K) 10g{f2(yq+ls---synlylvst---syq)}

> loglf Gilyit. Y2 Vg P&))}

1=g+1
n K
= > log{an ¢(.Vt;ﬂt,ka0k2)§ : 2.5)
1=q+1 k=1

In principle, once K is selected, we could carry out maximum (conditional)
likelihood estimation of @ by maximizing [,(®g). However, since all of the
estimated AR coefficients would be non-zero, such an approach does not provide
a MAR sub-model as postulated. Instead, we may use the information-theoretic
approaches such as AIC and BIC, based on (2.5), to select a MAR submodel (2.4) out
of 2K*4 possible candidates that best balances the model parsimony and goodness of
fit of the data. The K itself may be chosen over a set of possible values {1,2, ..., 7}
for an upper bound %  specified empirically. The difficulty with this strategy,
however, is that the total number of MAR submodels is given by 21?;1 2Kxa  1f
AIC and BIC are used, one would have to compute the criterion for each separate
model. The computational cost will explode even for moderate sized %" and ¢. This
observation motivates us to investigate the regularization methods in later sections.

2.3 Regularization in MAR Models

2.3.1 Simultaneous AR-Order and Parameter Estimation when
K is Known

In the following sections, we investigate regularization of the conditional likeli-
hood (2.5), and study effective optimization procedures.

A penalty on the mixture component variances: Similar to conventional Gaus-
sian mixture models with unequal component variances o;’s, the conditional
log-likelihood /,(® k) in (2.5) diverges to positive infinity when some component
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variance akz goes to 0. This can be avoided by introducing a penalty function as in
Hathaway (1985) and Chen et al. (2008):

K
(k) = 1L(PK) = Y palo}) (2.6)

k=1

where p,(c?) is a smooth penalty function of 02, such that p,(67) — +00, as o —
0 or 4+-00. We refer to (2.6) as the adjusted conditional log-likelihood. Specifically,
we follow Chen et al. (2008) and specity

1 V2 2
=L))o

where V2 = (n —q)! Z:l:q 1O = y)? is the sample variance of the observed
series, and y = (n — ¢)~! Z:;q 4+1):- From a Bayesian point of view, the use of
penalty corresponds to a data-dependent Gamma prior on 1/ akz with its mode at
1/ V,%. In what follows, we will work with 7n(¢ K)-

AR-order selection and parameter estimation via regularization: If we directly
maximize the adjusted conditional log-likelihood I, (@), the estimates of some of
the AR coefficients 6;; may be close but not equal to zero. The resulting full model
will not be as parsimonious as required in applications. We achieve model selection
by maximizing the regularized (or penalized) conditional log-likelihood

Pln(Px) = 1(Px) — 1a(Pr) 2.8)
with some regularization function

q

K
En(®r) =Y Y 1Ok Awi) (2.9)
k=1

j=1

for pre-specified pair K and g. The penalty function r,(6;A) will be chosen
positive, continuous in 6 and having a spike at & = 0; A > 0 is a tuning
parameter controlling the severity of the penalty. When r,(6; 1) is appropriately
chosen, maximizing (2.8) will lead to some 6y;s having fitted values exactly zero.
Furthermore, increasing the size of A,; generally forces more of fitted values of
Oijs to be zero. Consequently, such a procedure leads to a method that performs
simultaneous AR-order and parameter estimation. This procedure does not evaluate
every possible MAR submodel and thereby is computationally feasible.
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Example of penalties: Forms of r,,(6; A) with the desired properties are the LASSO
penalty

ra(0; 1) = nAl6],
and the SCAD penalty which is most often characterized by its first derivative:

r(O;1) =nAlI(10] <A) + (ad =10+ I1(|0] > A); x sgn(0)
AMa—1)

for some constant a > 2; where /(-) and sgn(-) are the indicator and sign functions,
and (-)+ is the positive part of the input, respectively. Fan and Li (2001) showed that
the value ¢ = 3.7 minimizes a Bayes risk criterion for 6. This choice of a has since
become the standard in various model selection problems. We used this value in our
simulations and data analysis.

For the MAR model (2.3) where the S, are iid samples, the theoretical proportion
of S, = k is given by ;. Thus, we choose the penalties in (2.9) to be proportional
to the mixing probabilities m; to control the level of regime-specific penalty on
Bx;s. This improves the finite sample performance of the method, and the influence
vanishes as the sample size n increases.

2.3.2 Numerical Computations

The maximization of the penalized conditional log-likelihood for a K regime MAR
model with maximal AR order ¢ is an optimization over a space of dimension (K —
1) + K(g + 2); for example, with K = 5 and ¢ = 10, the number of parameters is
64; this number is large, but direct optimization using Nelder-Mead or quasi-Newton
methods (via optimin R) is still possible when a local quadratic approximation to
the penalty is adopted: following Fan and Li (2001), the approximation

71,605 Ank)

rn(ekj; Ank) = rn(eo; Ank) + 290

(05— 65) (2.10)

holds in a neighbourhood of a current value 6y, and may be used. Coordinate-based
methods operating on the incomplete data likelihood may also be useful.

In this paper, however, we use a modified EM algorithm for maximization of the
penalized log-likelihood pl,, (@ k) in (2.8). Let @, x = arg max{pl, (P g)} denote the
maximum penalized conditional likelihood estimator ( MPCLE) of @ k. By tuning the
level of penalty A, this estimator has its 8, components containing various number
of zero-fitted values and parsimony is induced.
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2.3.2.1 EM-Algorithm
For observation y;, let Zy, with realization z4, equal 1 if S, = k, and equal 0

otherwise. The complete conditional adjusted log-likelihood function under the
MAR model is given by

K n K
E@) =YY z,k{lognk +1og¢(y,;ur,k,a,3)} =3 pu(?)
k=1

k=1 t=g+1

and thus the penalized complete conditional log-likelihood is pl; (P k) = Zfl (Pk) —

(P k).
Let x;r = (Lyt—lyyt—Za ce ayt—q)a X = (xq+laxq+2a ce axn)Tv y =
Vg1 Ygt2s- -+, yn)T. Given the current value of the parameter vector q);(m), the

EM algorithm iterates as follows:

E-step: We compute the expectation of the latent Z;, variables conditional on the
other parameters and the data. At (m+1)-th iteration, the EM objective function is

K n
QP =>" w}k’”’{ log 7 + 10g ¢ (vi: fes- OF)

k=1r=q+1

K q

K
- an(O,kZ) - Z Tk Z rn(ekj; A'nk)
k=1 k =1

=1

with weights

2
PO i 0 ")

(m) . ™
wy =EZyly: ®g") = < )
hIy ”z(m)¢(Yt? M;rzn) 0; (m))

M-step: By using the penalty p,(o7) in (2.7) and the quadratic approxima-
tion (2.10) for r,,(6; Ank), we maximize the (approximated) Q(Pk; ¢2") ) with
respect to @ . Note that the quadratic approximation to the penalty provides a
minorization of the exact objective function, ensuring that the iterative algorithm
still converges to the true maximum of the penalized likelihood function.

The EM updates of the regime-specific AR-coefficients and variances, for k =
1,...,K, are given by

0" = XWX + ") xTw"y

(m) T pmt1)
S2m D _ Y1 @ =% 0" 4 2VE/ /n
: —
D i=qt1 of" +2/Jn



20 A. Khalili et al.

with diagonal matrices W\ = diag{w(";t = ¢ + 1,...,n} and " =
. m) 2(m m m) .
diag{0, 7" o} )r{,(@fj );Ank)/(?,fj i=1,....q}
For the mixing probabilities, the updates are

n
(m+1) 1 (m)
T = w , k=1,2,...,K
k n_qt=§q+:l tk

that maximize the leading term in Q(Pk; ¢§é") ), and it worked well in our simulation
study.
Starting from an initial value (Pf,(o), the EM algorithm continues until some

convergence criterion is met. We used the stopping rule ||¢§<m+l) — ¢;<m) | < e
for a pre-specified small value &, taken 10~ in our simulations and data analysis.
Due to the sparse selection penalty 7, (6 A) some of the estimates ékj will be
very close to zero at convergence; these estimates are set to zero. Thus we achieve
simultaneous AR-order and parameter estimation.

2.3.2.2 Tuning of A inr,(6, 1)

One remaining issue in the implementation of the regularization method is the
choice of tuning parameter A for each regime. We recommend a regime-specific
information criterion together with a grid search scheme as follows.

We first fit the full MAR model by finding the maximum point of 7,(® x) defined
by (2.6) using the same EM algorithm above. Once the maximum point of 1(®x),
Pk, is obtained, we compute

Tk (Vs Lk 5’13)
S 7 b fies, 67)

This is the fitted probability of S; = k, conditional on y, and based on the fitted full
model.

Next, we pre-choose a grid of A-values {11, A5, ..., Ay} for some M, say M = 10
or 15. For each A; and regime k, we define a regime specific regularized likelihood
function

d)tk =

n q
(0.0%) = Y @ulogd (i jts07) — pa(0®) = 7 Y ra(Bi i)

t=qg+1 Jj=1

with u, = x;'—0. We then search for its maximum point with respect to @ and o2,

0:(1;) and cr,%; compute fl;r; = x;'— 0+ (1;), and the residual sum of squares (RSS)

n

RSSi(A;) = Z @ (e — feri)™.

t=q+1



2 Regularization in MAR Models 21

The weights @, are included because observations y, may not be from regime k.
The regime-specific information criterion is computed as

IC(A;; k) = ny log[RSSk(4;)] + DF(A;)(log ni) (2.11)

where DF(4;) = ;’=1 16y #0)and g = Y 41 @y.. This information criterion
mimics the one used in linear regression by Zhang et al. (2010). We choose the value
of the tuning parameter for regime k as

ik = argmin IC(A;; k).

1<i<Mm

2.3.3 Choice of the Mixture-Order or Number of AR
Regimes K

The procedure presented in the last subsection is used when the number of AR
regimes K is pre-specified. However, a data-adaptive choice of K is needed in most
applications. We now propose a regularized BIC (RBIC) for choosing K.

Consider the situation where placing an upper bound %" on K is possible. For
each K € {1,2,...,. %}, we fit a MAR model as above with resulting estimates
denoted by @nK Let A% = Zf:l ;’=1 1 (ékj # 0) be the total number of non-zero

ékjs, and
RBIC(®, k) = L(D,x) — 0.5(Nk + 3K — 1) x log(n — q) (2.12)

where 3K — 1 counts the number of parameters (7, o2, 0x0), 1,(+) is the conditional
log-likelihood given in (2.5). We then select the estimated number of AR regimes
K, as

K, = arglsnllé)f% RBIC(®D k). (2.13)

We now have an estimated MAR model with K, AR regimes, and the regime-specific
AR model characterized by the corresponding 0 nk=1,2,..., I%n.

Extensive simulation studies show that the RBIC performs well in various
situations. It is noteworthy that, for each K, RBIC is computed based on the outcome
én,K from the regularization method outlined in (2.8) and (2.9), which is obtained
after examining a grid of, say, M = 10 or 15, possible values for the tuning
parameters A,;. In comparison, the standard BIC* adopted in Wong and Li (2000)
must examine 2X*4 possible MAR submodels. The RBIC thus offers a substantial
computational advantage unless .#" and g are both very small.
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2.4 Simulations

In this section we study the performance of the proposed regularization method for
AR-order and parameter estimation, and the RBIC for selection of the number of AR
regimes (mixture-order) via simulations. We generated times series data from five
MAR models. The parameter settings for the first four models are:

Model | (K*,q) |(m1,m) [(01,02) |pie Mt

1 2.5) (75,25 |G, 1) | .50y, 13y,

2 2.5)  |(75.25) | (5. 1) | 70y—1 — 65v— | 45y_1 — 1.2y

3 (2.6) (.75,.25) | (5, 1) 67y —1 — .55y— | .45y,—1 + .35y—3 — .65y,—
4 (2,15) (.65,.35) | (3, 1) S58y—1 — .45y—¢ | .56y,—1 — .40y,—3 + .44y,

Note that ¢ in the above table is the pre-specified maximum AR-order, and K*
is the true number of AR-regimes in a MAR model. By Theorem 1 of Wong and Li
(2000), in a MAR model, a necessary and sufficient condition for a MAR to be first-
order stationary is that all roots of 1 — ;1=1 > bz = 0 are inside the unit
circle. The parameter values my and 6y; in Models 1-4 are chosen to ensure, at least,
this condition is satisfied.

The fifth MAR model under our consideration is a three-regime MAR with
parameter values:

Model | (K*,q) | (71,2, 73) | (01,02,03) | i1 1783 e
5 (3.5 [(4.3.3) (LLS | 91— 6y | =5yt | 1.5y—1 — 5%

The maximum AR-order specified in the regularization method for this model is
also ¢ = 5, and the values of m; and 6; are chosen such that the MAR model is, at
least, first-order stationary as defined above.

2.4.1 Simulation when K* is Specified

In this section we assess the performance of the the regularization method for
AR-order and parameter estimation when the number of AR regimes (K*) of the
MAR is specified. We use the EM-algorithm outlined in Sect. 2.3.2 to maximize the
regularized likelihood defined in (2.8). The regime-specific tuning parameters A,
in r,(6; A,x) are chosen by the criterion IC in (2.11). The computations are done
in C++ and on a Mac OS X machine with 2 x 2.26 GHz Quad-Core Intel Xeon
processor.
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Table 2.1 Correct (Cor) and incorrect (Incor) number of estimated zero 6;’s in Models 1, 2 and 3.

The numbers inside [-, -] are the true Cor in regimes Reg; and Reg, of each model
MAR Model 1 Model 2 Model 3
Method | n Regimes | Cor[4,4] Incor | Cor[3,3] Incor | Cor[4,3] Incor
BIC* 150 | Reg; 3.83 .024 2.92 .001 3.87 .014
Reg, 3.56 .025 2.81 .005 2.76 .023
250 | Reg; 3.92 .000 2.95 .000 3.93 .001
Reg, 3.88 .000 2.90 .000 2.92 .002
400 | Reg; 3.95 .000 2.96 .000 3.93 .000
Reg, 3.93 .000 2.95 .000 2.95 .000
SCAD 150 | Reg; 3.93 .022 2.97 .000 3.89 .013
Reg, 3.85 .002 291 .004 2.88 .013
250 | Reg; 3.99 .001 3.00 .000 3.98 .003
Reg, 3.98 .000 2.99 .000 2.98 .003
400 | Reg; 4.00 .000 3.00 .000 4.00 .000
Reg, 4.00 .000 3.00 .000 3.00 .000

The simulation results are based on 1000 randomly generated time series of
a given size from each of the five models, and they are reported in the form of
regime-specific: correct (Cor) and incorrect (Incor) number of estimated zero AR-
coefficients 6y, and the empirical mean squared errors (MSEy) of the estimators 6
of the vector of AR-coefficients 8. The Reg; in the tables represent AR regimes of
each MAR model.

For Models 1-3, it is computationally feasible to implement the standard BIC* of
Wong and Li (2000). Therefore, we also reported the results based on BIC* together
with their computational costs. For Models 4 and 5, the amount of computation of
BIC* is infeasible. Thus, BIC* is not included in our simulation.

Tables 2.1 and 2.2 contain the simulation results based on the SCAD regular-
ization method and standard BIC* for Models 1, 2 and 3. From Table 2.1, the
regularization method clearly outperforms BIC* by having higher rates of correctly
(Cor) estimated zero AR-coefficients and lower rates of incorrectly (Incor) estimated
zero AR-coefficients, in both regimes Reg; and Reg, of the three MAR models.
Both methods improve as the sample size increases. Table 2.2 provides the regime-
specific empirical mean square errors (MSE;) of the estimators 8. For n = 150,
SCAD outperforms BIC* in all three models, especially with respect to the MSE;.
When the sample size increases, the two methods have similar performances.
Regarding the computational time, the regularization method took about 6—-16s for
n = 150 and 400, respectively, to complete 1000 replications for each of the three
models. The BIC* took about 2.78 and 7.83 h for Models 1 and 2, and it took 22.9
and 143.8 h for Model 3 when n = 150 and 400, respectively.
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Table 2.2 Regime-specific empirical mean squared errors (MSE) in Models 1, 2 and 3

Sample size Model 1 Model 2 Model 3
Method n MSEq MSE» MSE; MSE» MSEq MSE»
BIC* 150 .027 121 .013 .014 .034 .029
250 .008 .002 .006 .002 .015 .004
400 .004 .001 .004 .001 .008 .002
SCAD 150 .024 .010 .014 .011 .035 .015
250 .010 .001 .005 .002 .015 .005
400 .006 .001 .003 .001 .007 .002

Table 2.3 Correct (Cor) and incorrect (Incor) number of estimated zero 6y;’s, and regime-specific
empirical mean squares errors (MSE) in Model 4. The numbers inside [-,] are the true Cor in
regimes Reg; and Reg, of the model

MAR Cor[13,12] MSE
Method n Regimes Reg; Reg, MSE; MSE;y
SCAD 250 Cor 12.8 11.3 .066 .089
Incor .027 .100
400 Cor 12.9 11.9 014 .031
Incor .002 .058
600 Cor 13.0 11.9 .007 .016
Incor .000 .037
800 Cor 13.0 12.0 .005 .008
Incor .000 .014
1000 Cor 13.0 12.00 .004 .003
Incor .000 .000
LASSO 250 Cor 12.8 11.3 .056 .076
Incor .019 .096
400 Cor 12.9 11.8 .021 .027
Incor .004 .045
600 Cor 12.9 11.9 .013 .014
Incor .000 .021
800 Cor 13.0 12.0 .011 .008
Incor .000 .004
1000 Cor 13.0 12.0 .009 .005
Incor .000 .000

Table 2.3 contains the simulation results for the MAR Model 4 which has higher
AR-orders. Overall, the new method based on either SCAD or LASSO performed
very well. It took SCAD about 118 and 787s, corresponding to n = 250 and
1000, respectively, to complete the 1000 replications. The LASSO had similar
computational times. The BIC* is computationally infeasible.
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Table 2.4 Correct (Cor) and incorrect (Incor) number of estimated zero 6y;’s, and regime-specific
empirical mean squares errors (MSE) in Model 5. The numbers inside [-, -, -] are the true Cor in
regimes Reg;, Reg, and Reg; of the model

MAR Cor[3,4,3] MSE
Method n Regimes Reg; Reg, Regs MSE; MSE; MSE3
SCAD 150 | Cor 2.97 3.96 2.70 .006 .002 285
Incor .003 .000 .090
250 | Cor 2.99 4.00 2.89 .001 .001 .067
Incor .000 .000 .025
400 | Cor 3.00 4.00 2.97 .001 .000 .019
Incor .000 .000 .003
LASSO 150 | Cor 2.96 3.95 2.51 .008 .002 .368
Incor .004 .000 .165
250 | Cor 2.99 4.00 2.67 .002 .000 .229
Incor .000 .000 .077
400 | Cor 3.00 4.00 2.80 .002 .000 .145
Incor .002 .000 .023
Model 5 has K* = 3, and its simulation results are in Table 2.4. The

regularization method performs reasonably well in both AR-order selection and
parameter estimation. Comparatively to regimes 1 and 2, the method has lower rates
of correctly estimated zero AR-coefficients, higher rates of incorrectly estimated
zero AR-coefficients and also larger mean square errors for regime 3. This is more
evident for LASSO. This is expected because the noise level (03 = 5) in Regs
is much higher. Consequently, it is harder to maintain the same level of accuracy
for AR-order selection and parameter estimation. When the sample size increases,
the regularization method has improved precision, either when SCAD or LASSO is
used. The regularization method took about 13 and 34s, for n = 150 and 400,
respectively, to complete the simulations.

2.4.2 Selection of K

In this section we examine the performance of the estimator K, in (2.13). We report
the observed distribution of K, based on 1000 replications. The results for Models
1-3 and also Model 5 are reported in Table 2.5. Model 4 has more complex regime
structures. Thus, it is more closely examined with additional sample sizes and the
results are singled out in Table 2.6. For each model, kn is calculated based on the
RBIC. Note that if we replace the factor log(n — ¢) in (2.12) by number 2, we create
an AIC motivated RAIC selection method. We also obtained the simulation results
based on RAIC to serve as a potential yardstick. We present the results corresponding
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Table 2.5 Simulated distribution of the mixture-order estimator I%,,. Results for the true order K*
are in bold. Values in [-] are the proportion of concurrently correct estimation of the regime-specific
AR-orders

Models: | 1 (K* = 2) 2(K* =2) 3(K* =2) 5(K* =3)
n K RBIC RAIC | RBIC RAIC RBIC RAIC RBIC RAIC
150 |1 131 000 |.031 004 | .023 .000 |.000 .000
2 855,53 | 207 | 96506y | 468 | 957,03 | 215 |.016 .000
3 014 150 |.004 177 |.019 169 | 945035 | .589
4or5 |.000 643 |.000 351 |.001 616 |.039 411
250 |1 .008 000 |.002 002 |.000 000 |.002 002
2 978,075 | 312 | 995005 | 572 | 996005 | 217 | .000 .000
3 014 190 | .003 171 |.004 185 | 9861055 | 768
4or5 |.000 498 |.000 255 |.000 598 |.012 230
400 |1 .002 000 |.004 004 |.000 .000 |.001 001
2 998005 | 327 | 9961005 | 632 |.99900 |.220 |.001 001
3 .000 194 |.000 158 |.001 229 | 996100 | 836
4or5 |.000 479 |.000 206 |.000 551 |.002 162

Table 2.6 Simulated distribution of the mixture-order estimator I%,,. Results for the true order K*
are in bold. Values in [+] are the proportion of concurrently correct estimation of the regime-specific
AR-orders. Model 4 (K* = 2)

n =250 n = 400 n= 600 n = 800 n = 1000

K RBIC RAIC | RBIC RAIC | RBIC RAIC | RBIC RAIC | RBIC RAIC
1 145 002 |.012 .000 | .003 .000 |.001 .000 | .000 .000
2 81ldg05 | 327 | 9491040 | 431 | 967 067 | 492 | .983( 055 | .530 | 999,009 | 551
3 038 264 |.035 244 | .024 217 |.011 190 |.000 187
4or5|.003 407 |.004 325 |.006 291 |.005 280 |.001 262

to the true order K* in bold. The subscripts inside [-] are the proportion of times that
both the mixture-order and the regime-specific AR-orders are selected correctly.

From Table 2.5, when the sample size is n = 150, the success rates of RBIC are
85.5%, 96.5 %, and 95.7 % for Models 1-3 respectively. The success rate of RBIC
is 94.5 % for Model 5. As the sample size increases to n = 400, all success rates
exceed 99 %. Overall, the RBIC performs well. As expected, the RAIC tends to select
higher orders in all cases.

We now focus on the results in Table 2.6 for Model 4 (K* = 2). The success
rate of RBIC is 81.4 % when n = 250, and it improves to 94.9 % and 99.9 % when
n = 400 and n = 1000. Note that RAIC severely over-estimates the order even when
n = 1000.
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2.5 Real Data Examples

2.5.1 U.S. Gross Domestic Product (GDP) Growth

We analyze the data comprising the quarterly GDP growth rate (Y;) of the U.S.
over the period from the first quarter of 1947 to the first quarter of 2011. The
data is obtained from the US Bureau of Economic Affairs website http://www.
bea.gov. Figure 2.1 contains the time series plot, the histogram and the sample
autocorrelation function (ACF) of 256 observations of Y;. The time series plot shows
that the variation in the series changes over time, and the histogram of the series
is multimodal. This motivates us to consider fitting a MAR model to this data. The
ACF plot indicates that the sample autocorrelation function at the first two lags are
significant. Thus, we let the maximum g = 5 and applied our method in Sect. 2.3
and fitted MAR models with K = 1,2, 3, 4, to this data set. The RBIC values for
k=1,2,3,4 are: —351.66,—343.01, —344.14, —345.36. Thus, we select K =2

—_
Q
~

(b)

US GDP % growth (quarterly)

[ ! ! 1
1950 1970 1990 2010 -2 0 2 4

Date US GDP % growth (quarterly)

—_
(3)
~

ACF
0.0 02 04 06 08 1.0

Lag

Fig. 2.1 (a) and (b) The time series plot and histogram of the U.S. GDP data. (¢) The ACF of the
U.S. GDP data
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The fitted conditional density function of the model is given by
FOulyi—1) = 276 ¢ (v:; 702, .2862) + .724 ¢ (yy; 497 + .401y,_, 1.06%).

The standard errors of the estimators (élo,ézo,én) are (.060,.092,.080). The
estimated conditional variance of Y; is:

2 2 2 2
Var(Y,|y,_1) = Z 7"\[](0’\'](2 + Z ﬁkﬂi»f a (Z f[k/lk.t) = .838—.033 y,—; +.032 ytz—l'
k=1 k=1 k=1

We have the conditional variance plotted with respect to time in Fig.2.2. It is seen
that up to the year 1980, the time series has high volatility compared to the years
after 1980.

1.2

1.1
|

1.0

Estimated conditional variance

0.9

| :

\ \ \ \ \ \ \
1950 1960 1970 1980 1990 2000 2010

Date

Fig. 2.2 The conditional variance of the fitted MAR model to the U.S. GDP data
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Fig. 2.3 One-step predictive density at 4 quarters of year 2009

Figures 2.3 and 2.4 give a number of first-step predictive (conditional) density
functions. The time points correspond to 4 quarters in year 2009 and 8 quarters in
years 1949 and 1950. Over two periods, the conditional density function changes
from bimodal to unimodal or from unimodal to bimodal. It is interesting to find
these changes occur when the time series experiences high volatility. The fitted MAR
model has successfully captured such behaviours.
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Fig. 2.4 One-step predictive density at 8 quarters in years 1949-1950

2.5.2 U.S. Unemployment Rate

The data are monthly U.S. unemployment rates over the period of 1948-2010,
obtained from http://www.bea.gov. The time series plot and histogram of the
observed series of length 755 is given in Fig.2.5. The time series plot shows an
increasing and decreasing trend in the series and also high volatility over time.
The histogram of the series is clearly multimodal indicating that a MAR model
may be appropriate. As is commonly done in time series we use the first difference
transformation of the series in order to remove the increasing and decreasing
trend in the series. The time series plot and also the ACF of the first difference
zz = ¥y — y—1 are given in Fig.2.5. The trend in the mean series has been
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Fig. 2.5 (a) and (b) The time series plot and histogram of the monthly U.S. unemployment rate.
(c) The time series plot of the first difference of the U.S. unemployment rate. (d) The ACF of the
first difference

successfully removed but the variance still changes over time. In what follows
we fit a MAR model to the difference z;. Based on the ACF of the z; in Fig.2.5,
the autocorrelation at around lag five seem significant. Thus we let ¢ = 5 and
applied our method in Sect.2.3 and fitted MAR models with K = 1,2,3,4, to z.
The RBIC values for K = 1,2,3,4 are: —396.28, —359.25, —345.25, —353.49.
Thus, we select K = 3. The parameter estimates of the correspondmg
fitted MAR model are (7‘[1 Ty, 713, 01, 02, 03] 911, 912, 915, 922, 923, 931, 935) =
(.184,.742,.074; .152, .148, .256; .631, .659, .298, .143,.182, —1.15,.862).  The
standard errors of the AR-coefficient estimators are (.128,.113,.126,.036,.033,
.486, .217).
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Fig. 2.6 Fitted conditional variance of MAR model to the U.S. unemployment rate

The fitted MAR model to the original series y, has the conditional density function

FOelyi=1, -+ vi—6) = 184 ¢ (ys;1.63y,—1 + .028y,—, — .659y;_3
+ .298y,—5 — .298y,—¢, .152%) + 742 ¢ (v:: yi—1 + .143y,»
+ .039y,_3 — .182y,_4, .148?) + .074 ¢ (y;; —. 150y,
+ 1.15y,_5 + .862y,_5 — .862y,_¢, .2567).

The estimated conditional variance of Y;, i.e. \//a\r(Y,|y,_1, ..., Yi—¢), is plotted
against time in Fig.2.6. It is seen that the unemployment rate has high volatility
over different time periods.

Figure 2.7 shows the one-step predictive density function of the series y, for the
period of November 1974 to April 1975. The shape of the predictive density changes
over this period where the unemployment rate y, has experienced a dramatic change
from 6.6 to 8.8. We have observed similar behaviours of the one-step predictive
density over different time periods where the series has high volatility. For example,
in year 1983, the unemployment rate decreases from 10.4 in January to 8.3 in
December. To save space, the related plots are not reported here.
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Fig. 2.7 One-step predictive density for the period of November 1974 to April 1975

2.6 Summary and Discussion

Regime-switching Gaussian autoregressive (AR) models provide a rich class of
statistical models for time series data. We have developed a computationally
efficient regularization method for the selection of the regime-specific AR-orders
and the number of AR regimes. We evaluated finite sample performance of the
proposed methods through extensive simulations. The proposed RBIC for selecting
the number AR-regimes performs well in various situations considered in our
simulation studies. It represents a substantial computational advantage compared to
the standard BIC*. The proposed methodologies could be extended to the situations
where there are exogenous variables x, affecting the time series y,. Large sample
properties such as selection consistency and oracle properties of the proposed
regularization methods are the subject of future research.
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Chapter 3

Modeling Zero Inflation and Overdispersion
in the Length of Hospital Stay for Patients
with Ischaemic Heart Disease

Cindy Xin Feng and Longhai Li

Abstract Ischaemic heart disease is the top one cause of death in the world;
however, quantifying its burden in a population is a challenge. Hospitalization data
provide a proxy for measuring the severity of ischaemic heart disease. Length of
stay (LOS) in hospital is often used as an indicator of hospital efficiency and
a proxy of resource consumption, which may be characterized as zero-inflated
if there is an over-abundance of zeros, or zero-deflated if there are fewer zeros
than expected under a standard count model. Such data may also have a highly
right-skewed distribution for the nonzero values. Hurdle models and zero inflated
models were developed to accommodate both the excess zeros and skewness of
the data with various configuration of spatial random effects, as well as allowing
for analysis of nonlinear effect of seasonality and other fixed effect covariates. We
draw attention to considerable drawbacks with regards to model misspecifications.
Modeling and inference use the fully Bayesian approach via Markov Chain Monte
Carlo MCMC) simulation techniques. Our results indicate that both hurdle and
zero inflated models accounting for clustering at the residential neighborhood
level outperforms the models without counterpart models, and modeling the count
component as a negative binomial distribution is significantly superior to ones with
a Poisson distribution. Additionally, hurdle models provide a better fit compared to
the counterpart zero-inflated models in our application.
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3.1 Introduction

Ischaemic heart disease (IHD), also known as coronary heart disease (CHD) (Bhatia
2010), is a disease characterized by reduced blood supply to the heart due to buildup
of plaque along the inner walls of the coronary arteries. IHD is the top one cause of
death in the world (Mathers and Loncar 2006; Murray 1997). In 2004, the number of
IHD-related deaths was 7.2 million, accounting for 12.2 % of all deaths and 5.8 %
of all years of life lost, and 23.2 million people experienced moderate or severe
disability due to IHD (Mathers et al. 2008). As the most common type of heart
disease, the projected total costs of IHD will increase from 46.8 billion dollars
in 2015 to 106.4 billion dollars in 2030 (Go et al. 2013). In 2008, cardiovascular
disease accounted for 29 % of all deaths in Canada with 28 % of all male deaths
and 29.7 % of all female deaths according to the mortality, summary list of causes
released by Statistics Canada in 2011. Among those, 54 % were due to ischemic
heart disease. In 2005/06 there were 160,323 hospitalizations for ischemic heart
disease (Tracking Heart Disease and Stroke in Canada 2009), which caused huge
burden on medical care services.

Many studies on improving admission outcomes for ischemic heart disease
patients tended to focus on reducing duration of in-patient care, which is often
measured as length of stay (LOS), i.e., duration of a hospital admission (i.e.,
the difference in days between the date of admission and the date of discharge).
A shorter LOS often results in reduced costs of health resources. Therefore,
LOS is often used as an indicator of hospital efficiency and a proxy of resource
consumption, which is a also a measure of crucial recovery time for in-patient
treatment. The number of heart disease patients in need of surgery is increasing
due to the aging population and prevalence (Chassot et al. 2002). To prepare for the
increasing demand of inpatient treatment from a service management perspective
as well as with the advances in pharmaceutical, medical technologies and clinical
practice, health services provided same-day surgery, also known as ambulatory
surgery or outpatient surgery. This type of surgery does not require an overnight
hospital stay, so that surgery patients may go home and do not need an overnight
hospital bed, leading to a decline in LOS. The purpose of outpatient surgery is to
create a cost reduction to the health system, as well as saving the patient time.

Analysis of LOS data may assist monitoring and planning rescouses allocation
and designing appropriate interventions. The potential risk factors for LOS can be
at both patient or group level, some observed and others unobserved and maybe
spatially correlated. From a statistical point of view, several important features of
the LOS data must be considered. First, the data are potentially zero-inflated or
deflated depending on the proportion of patients with day surgery (LOS = 0).
Second, because the patients are clustered within neighborhood, within cluster
correlation need to be addressed. Within the context of health services research,
the study of regional variation in LOS can help suggesting regional health care
inequalities, which can motivate further study by examining the nature of these
inequalities. This type of geographical differences may be driven by socio-economic
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determinants, availability and access to health care and health seeking behavior.
Third, for ischaemic heart disease, temporal variation may be a factor of access to
care; therefore, needs to be modeled flexibly to capture the non-linear trend. Finally,
it is unclear if the probability of having day surgery for patients from certain areas
are correlated with the mean of the LOS for patients from the same geographic
areas reflecting the needs of health care in geographic areas. If correlation is absent,
that implies the health care seeking behaviors for outpatients and inpatients are
not geographically correlated. If correlation is present, failing to account for such
dependence may produce biased parameter estimates. Therefore, adequate statistical
modeling and analysis taking into all those features in this data is needed.

The empirical investigation indicated that the number of zeros (LOS = 0) is
greater than expected under a standard count distribution, so the data is zero inflated.
The excess zeros often comes from two sources. Some may be from subjects who
choose not to stay in hospital overnight and thereby contributing to ‘sampling zeros’
while some who are genuine non-user of inpatient service and are hence considered
as ‘structured zeros’. Standard count distributions, such as Poisson and negative
binomial, may fail to provide an adequate fit, since they can not account for excess
zeros arising from two data generating process simultaneously. Fitting these models
may lead to inflated variance estimates of model parameters. If the data exhibit
only an excess of structural zeros, a hurdle model (Heilbron 1994; Mullahy 1986)
would be more appropriate. Hurdle models have been exploited in many disciplines
as well, such as drug and alcohol use study (Buu et al. 2012) and health-care
utilization (Neelon et al. 2013; Neelon and O’Malley 2010). The model consists of
two components: a Bernoulli component modeling a point mass at zero and a zero-
truncated count distribution for the positive observations. Alternatively, if excess
zeros are comprised of both structural and sampling zeros, zero-inflated model
(Lambert 1992) can be used, which combines the untruncated count distribution
and a degenerate distribution at zero. This type of model has been extensively used
in many fields, such as environmental and ecological science (Ver Hoef and Jansen
2007), substance abuse (Buu et al. 2012), dentistry (Mwalili et al. 2008) and public
health (Musal and Aktekin 2013), etc.

The distinction between zero-inflated and hurdle models may be subtle, but one
may be more appropriate than another depending how the zeros arise. The different
models can yield different results with different interpretations. If zeros arise in only
one way, then a hurdle model may be more appropriate. In the context of our study,
if patients either decline or have never been referred to same day surgery, in which
case the zero observations only come from ‘structural’ source. In contrast, if zeros
arises in two sources: among those who are not at risk of being hospitalized over
night or those who are at risk but nevertheless choose not to use services. In such
case, a zero-inflated model would be more desirable.

Model fitting can be carried out either using EM algorithm or Bayesian approach.
For each component, patient or neighborhood level fixed effect covariates, as well
as random effects at neighborhood level accounting for clustering within neighbors
can be included. The random effect terms for each of two model components can be
modeled as an independent and identically distributed normal distribution (IID).
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To provide spatial smoothing and borrowing information across neighborhoods,
spatially correlated random effect — conditional autoregressive model (CAR) (Besag
et al. 1991) can be applied to the count or both Bernoulli and count components
(Agarwal et al. 2002; Rathbun 2006; Ver Hoef and Jansen 2007). Furthermore,
(Neelon et al. 2013) developed a spatial hurdle model for exploring geographic
variation in emergency department utilization by linking the Bernoulli and Poisson
components of a hurdle model using a bivariate conditional CAR prior (Gelfand
and Vounatsou 2003; Mardia 1988). In our study, we seek to investigate zero-
inflated and hurdle models with various random effect structures, accommodating
potential overdispersion by considering different parametric specifications of count
distribution. We draw attention to considerable drawbacks with regards to model
misspecifications.

The rest of the paper is organized as follows. We first describe the data. Next, we
specify the models and outline the Bayesian approach used for model estimation.
This is followed by the application of the model to the data, and then results are
presented. Discussion on the results and limitations of the study conclude this
Chapter.

3.2 Methods

3.2.1 Data

We used hospital discharge administrative database with the admission date ranging
between January 1 and December 31 in 2011 due to IHD, which was provided by
the Saskatchewan Ministry of Health. These administrative databases produced by
every acute care hospital in the province of Saskatchewan, provide the following
information from every single admission: age, gender, admission and discharge
dates, the patient’s areas of residence, and diagnosis and procedure codes [Inter-
national Classification of disease (ICD) 10th revision Clinical Modification Code —
120 - 125 for IHD]. The patients’ areas of residence, i.e., postal code, is confidential;
therefore, each case was matched to one of the 33 health districts in Saskatchewan.

Figure 3.1 presents the histogram of the LOS for IHD patients from
Saskatchewan in 2011. Of the 5777 hospitalized cases due to IHD, 1408(24 %)
had same-day surgery, which constitutes the zero counts in LOS. Among those
inpatients who stayed in hospital overnight, the number of days ranged from 1
to 156, with 75 % having fewer than a week of stay. Suppose that the data were
generated under an independent and identically distributed Poisson regression with
mean parameter as the mean 4.5 days, which is the mean of the LOS in our data.
Under such model, we would expect about 1 % of zeros, which is far fewer Os than
observed. The proportion of zeros and the right-skewed non-zero counts suggest
the potential zero inflation relative to the conventional Poisson distribution and
overdispersion. Hence, special distributions are needed to provide an adequate fit to
the data.
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Fig. 3.1 Empirical distribution of LOS in days

Table 3.1 provides summary statistics on patient characteristics. Of the 5777
hospitalized cases due to ischaemic heart disease, 3931(68 %) are males, 391(6.8 %)
are Aboriginal. During the study period, the number of IHD hospitalized cases tends
to slightly vary over time, with the median age at 69 years old (Interquartile range
(IQR): 59-79). Those characteristics of the data are more or less the same for those
who had day-surgery and those who stayed in hospital overnight. For those who
stayed in hospital over night, the median LOS is around 4 days with IQR ranging
from 2 days to about a week.

The left panel in Fig. 3.2 displays the percentage of patients accessing same day
surgery from each health district, which indicates higher values appeared in the
south and in the middle of the province, but generally lower in the north territories.
The right panel of the Fig. 3.2 presents the average number of LOS per patient from
each health district, which shows that one of the health districts in the north west
had higher mean LOS and a cluster of health district on the south east had a higher
mean LOS compared with the rest of the health districts.
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Table 3.1 Summary statistics of the data
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Variable Total LOS=0 LOS> 0

n(%) n(%) n(%) Median(IQR)
Gender
Male 3931(68.0) 1006(25.6) 2925(74.4) 3(0-5)
Female 1846(21.8) 402(21.8) 1444(78.2) 3(1-6)
Ethnicity
Aboriginal 391(6.8) 88(22.5) 303(77.5) 4(2-6)
Non-Aboriginal 5386(93.2) 1320(24.5) 4066(75.5) 4(2-7)
Month
Jan 529(9.2) 112(21.2) 417(78.8) 4(2-8)
Feb 469(8.1) 103(22.0) 366(78.0) 4(2-7)
Mar 520(9.0) 147(28.3) 373(71.7) 4(2-8)
Apr 483(8.4) 112(23.2) 371(76.8) 4(2-8)
May 490(8.5) 119(24.3) 371(75.7) 4(2-8)
Jun 504(8.7) 136(27.0) 368(73.0) 4(2-6)
Jul 445(7.7) 106(23.8) 339(76.2) 4(2-7)
Aug 404(7.0) 110(27.2) 294(72.8) 4(2-6)
Sep 460(8.0) 109(23.6) 351(76.3) 4(2-7)
Oct 505(8.7) 119(23.6) 386(76.4) 4(2-7)
Nov 503(8.7) 114(22.7) 389(77.3) 4(2-7)
Dec 465(8.0) 121(26.0) 344(74.0) 4(2-7)
Age
[18, 40) 54(0.93) 12(22.2) 42(77.8) 2(1-4)
[40,50) 368(6.4) 87(23.6) 281(76.4) 2.5(1-5)
[50, 60) 1074(18.6) 268(25.0) 806(75.0) 2(1-5)
[60, 70) 1457(25.2) 420(28.8) 1037(71.2) 2(0-5)
[70, 80) 1434(24.8) 405(28.2) 1029(71.8) 2(0-6)
80+ 1390(24.1) 216(15.5) 1174(84.5) 4(1-8)

3.2.2 The Statistical Models

3.2.2.1 The Hurdle Model

The hurdle model (Heilbron 1994; Mullahy 1986) is a two-component mixture
model consisting of a zero mass and the non-zero observations component following
a conventional count distribution, such as Poisson or negative binomial.

Let Y;; denote the LOS in days for ith,i = 1,-- - , n, patient from health district j,

j=1,---,J. The general structure of a hurdle model is given by
T yij =0,
P Y — v:) — i';oi'
TSI o 2 =0

(3.1)
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Fig. 3.2 The panel on the left: percentage of patients with day surgery in each of the health districts
from Saskatchewan in 2011; the panel on the right: mean number of LOS among those inpatients
with at least one day stay in hospital. The darker color represents higher values

where m; = P(Y; = 0) is the probability of a subject belonging to the zero
component; p(y;; 6;;) represents a probability distribution for a regular count
distribution with a vector of parameters 6 ; and p(0; 6 ;) is the distribution evaluated
at zero. If the count distribution follows a Poisson distribution, the probability
distribution for the hurdle Poisson model is written as:

ﬂ,‘j if y,‘j = 0,
P(Y; =y;) = i 20y . (3.2)
v (=m0 iy, > 0
Alternatively, the non-zero count component can follow other distributions to
account for overdispersion and negative binomial is the most commonly used. The
hurdle negative binomial model (hurdle NB) is given by:

IT,‘J' lfy,J = 0,

— y.) — l—m;  Tog+n ( wi ) ",
Py = i) rJ " F(rj)yi; (luji’) (Merr’) ity; >0 - G-
1_(Mf+')
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where (1 4 w;;/r) is a measure of overdispersion. As r — oo, the negative binomial
converges to a Poisson distribution. To model the association between a set of
predictors and the zero-modified response, both hurdle Poisson or hurdle NB models
can be extended to a regression setting by modeling each component as a function
of covariates. The covariates appearing in the two components are not necessarily
the same. Let wl’j be the set of factors contributing to the out-patient with LOS = 0
and x;j be the set of factors contributing to the in-patient with non-zero LOS. The
parameter m; represents the probability of using day surgery. When 7; = 1, no
patients received day surgery and the data follows a truncated count distribution,
whereas, when 7;; = 0, no patients stayed in hospital overnight. ;; ranges between
0 and 1. The parameter 1; measures the expected mean counts of LOS (in days)
for those patients who stayed in hospital overnight, so as j; increases, the average
LOS increases. Both logit(sr;;) and log(u;;) are assumed to depend on a function of
covariates. In addition, the random effects at the health district level are introduced
in the model to account for possible correlation between the two components. The
random components also control the variation at the health district level. The model
can be written as:

logit(r;) = wje + fi(monthy) + by; 3.4)

log(pyj) = x;;B + fr(monthy) + by, '
where ng and xgj are patient level fixed effect covariates for the logistic and Poisson
components, and & and 8 are the corresponding vectors of regression coefficients.
In our study context,

nga = ao + ajabor; + axmale; + asl(age; € [18,40)) + ayl(age; € [40,50))+
asl(age; € [50,60)) + acl(age; € [60,70)) + azl(age; € [70,80))

x;jﬂ = Po + Biabor; + Bomale; + B3l(age; € [18,40)) + Bal(age; € [40,50))+
Bsl(age; € [50,60)) + Bol(age; € [60,70)) + B7l(age; € [70, 80)),

(3.5)

where oy and By represent the intercept terms for the excess zero and random
count components, respectively, and abor is the indicator of Aboriginal status for
the patients with non-Aboriginal as the reference category; male denotes the male
gender with female gender as the reference category. The age variable is categorized
into 6 categories with the 80 years old and above as the reference category and /()
is 1 if the condition in the bracket is true.

Seasonal variation has been observed in mortality due to coronary heart disease,
often characterized by a winter peak (Bull and Morton 1978; Rogot and Blackwelder
1979; Rose 1966). It has been postulated that temperature changes could account for
practically all of the seasonal variation observed in coronary heart disease deaths,
since lower environmental temperature may exert a direct effect on the heart or
has an indirect effect via changes in blood pressure (Woodhouse et al. 1993). Even
though the existing literature contains a vast amount of evidence on the role of
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seasonal variations in the effects of IHD mortality, little is currently available on the
possible effects of seasonal variations on LOS due to IHD. Hence, we considered to
flexibly model the temporal effect of month of being admitted to the hospital using
the smooth function with cubic B-spline basis in our study. The specification for the
spline function in the logit(sr;;) and the log(u;;) components are:

K

fi(monthy) =" ciBi(monthy), h = 1,2, (3.6)
k=1

where Bi(month;),k = 1,---,K denote the cubic B-spline basis function with
a predefined number of equidistant knots for the excess zero and the random
Poisson component, respectively; and {cy,k=1,---,K;h = 1,2} denotes the
corresponding regression coefficients for the basis functions of month. To ensure
enough flexibility, we choose K = 6.

The parameters by; and b,; in (3.4) are random effect terms to account for residual
variation at the areal level unexplained by the patient level covariates, where by; is
a latent areal level variable contributing to the propensity of access day surgery
for patients living in health district j and by; is a latent variable contributing to
the expected mean of LOS for those inpatients from health district j. As such,
larger values of by; imply that inpatients living in health district j are more likely to
receive day surgery compared with patients in health districts with lower by; values.
Likewise, larger values of by; imply, on average, longer LOS among patients in the
Jjth health districts compared with other health districts.

Those random effect terms can account for unmeasured characteristics at the
health district level; therefore, to study their correlation is of interests, as it can
reflect the association between the propensity of accessing day-surgery and the mean
length of hospital stay. For example, the patients from some health districts could be
more likely to be referred to day-surgery and also patients from those health districts
tend to stay in hospital longer than those from other health districts. Alternatively,
patients from certain health districts may be more likely to access day surgery rather
than staying in hospital overnight, vise versa; or the spatial patterns for propensity
of receiving day surgery and mean of LOS are not statistically related. To account
for the potential association, we can assume a joint multivariate normal distribution
for b; = (by;, sz)T,j =1,---,Jash; ~ MVN(0, X'), where X is a 2 x 2 variance-
covariance matrix with diagonal elements X', and X, representing the conditional
variances of by = (byj,--,byy)" and by = (byj,--+ ,boy)T respectively, and off-
diagonal element X'}, representing the within-area covariance between b; and b,.
The correlation between the by and b, is p = X5/ X1 X5, which measures the
strength of the association between the two process, —1 < p < 1. When p = 0, the
two components of the hurdle model are uncorrelated, so the propensity of using
day surgery is unrelated to the mean length of hospital stay within an area. When
p > 0, health districts with a higher proportion of day surgery users tend to have
higher mean of length of hospital stay and when p < 0, health districts with a higher
proportion of day surgery tend to have lower mean of length of hospital stay.
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To account potential spatial correlation for each component and across the two
components, a bivariate intrinsic CAR prior distribution (Gelfand and Vounatsou
2003; Mardia 1988) can be used for b; (Neelon et al. 2013):

1 1
bilbj. Z ~MVN| > by, Lz (3.7)

m .
7 tes; J

where §; and m; denote the set of labels of the “neighbors” of area j and the
number of neighbors, respectively. X' is again a 2 x 2 variance-covariance matrix
and the diagonal elements describing the spatial covariance structure characterizing
each component of the hurdle model. The off-diagonal element X'}, contains cross-
covariance, the covariances between the two components at different areas, which
allows the covariances between component of proportion of day surgery at area j
and component of mean of length of hospital stay at area j' to be different from that
between the proportion of day surgery at area j/ and mean of length of hospital stay
at area j.

3.2.2.2 The Zero-Inflated Model

A zero-inflated model assumes that the zero observations have two different origins:
“structural” and “sampling”. The sampling zeros are due to the usual Poisson
(or negative binomial) distribution, which assumes that those zero observations
happened by chance. Zero-inflated models assume that some zeros are observed
due to some specific structure in the data. The general structure of a zero-inflated
model is given as:

i+ (1= 7)p(0:0) vy = 0,
(1 = mp)p(yij: 05) yij >0,
which consists of a degenerate distribution at zero and an untruncated count

distribution with a vector of parameters ;. If the count distribution follows a
Poisson distribution, the zero inflated Poisson model (ZIP) is given by:

P(Y; =y;) = { (3.8)

i + (1 — my)e i if y; = 0,
e_“"ju?}ij s (3.9
(1 — JTij)

P(Y; =y = £y > 0
ij

¥ii!

where p;; is the mean of the standard Poisson distribution. As with hurdle models,
overdispersion can be modeled via the negative binomial distribution. The zero
inflated negative binomial model (ZINB) is then given by:

i+ (1 —my) [( .Crr) ] if y; =0,
P(Yy = yy) = POt [ N\ . (3.10)
=75 F oy (ij+r) (Mij+’) ify; >0
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3.2.3 Bayesian Posterior Computation

Fully Bayesian inference is adopted for model estimation, which is based on the
analysis of posterior distribution of the model parameters. In general, the posterior
is highly dimensional and analytically intractable, which makes inference almost
impossible. This problem is circumvented by using Markov chain Monte Carlo
(MCMC) methods simulation techniques, where the samples are drawn from the
fully conditional of parameters given the rest of the data. At convergence, the
MCMC draws the Monte Carlo samples from the joint posterior distribution of the
model parameter, which can be then used for parameter estimates and corresponding
uncertainty intervals, thus avoiding the need for asymptotic assumptions when
assessing the sampling variability of parameter estimates.

To complete the model specification, we assign uniform priors to the intercept
parameters oy and By and weakly informative proper priors N(0, 10) for the
remaining regression coefficients, including the spline parameters. For the spatial
covariance matrix, X, we assume an inverse Wishart prior IW(2,1,), where I,
denotes the two-dimensional identity matrix. Updating the full conditionals of
parameters is implemented in WinBUGS (Spiegelhalter et al. 2005). We ran two
parallel dispersed chains for 20,000 iterations, each, discarding the first 10,000 as
burn-in. Convergence of Markov chain Monte Carlo chains were assessed by using
trace plots and Gelman-Rubin statistics, which indicated rapid convergence of the
chains.

To compare various models, we employ the deviance information criterion
(DIC), defined as DIC= D + pp where D is the posterior mean of the deviance,
which measures the goodness of fit (Spiegelhalter et al. 2002). The penalty term
pp is the effective number of model parameters, which is a measure of model
complexity. Models with lower D indicate good fit and lower values of pD indicate
a parsimonious model. Therefore, models with smaller values of DIC are preferred
as they achieve a more optimal combination of fit and parsimony.

3.3 Analysis of the LOS Data

To analyze the LOS data, we initially considered fitting the Poisson, negative
binomial (NB), ZIP, ZINB, hurdle Poisson and hurdle NB regression models without
any random effect terms. To assess which distribution fits the data better, various
statistical tests were applied to evaluate over-dispersion and compare model fit when
not including the random effect terms. Akaike’s information criterion (AIC) (Akaike
1973) and Vuong statistic (Vuong 1989) were calculated.

Table 3.2 summarizes the statistics comparing the goodness of fit of the models.
Positive difference in the Vuong statistic means that the model in the row fits
better than the model in the column. Negative difference means that the model
in the column fits better than the model in the row. The conventional Poisson
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Table 3.2 Criteria for evaluating the goodness of fit and model selection of six competing models
for analyzing the LOS of ischaemic heart disease patients from Saskatchewan in 2011. The second
column is the Akaike’s information criterion (AIC) and the rest of the columns present Vuong
statistic. Negative number means that the model in the column fits better than the model in the row
and positive number means that the model in the column fits better than the models in the row

AIC Vuong Statistic
NB ZIP ZINB hurdleP* hurdleNB®
Poisson 52836 —14 —22 —14 —22 —14
<0.001 <0.001 <0.001 <0.001 <0.001
NB 29676 - 11 -3 11 —4
<0.001 0.003 <0.001 <0.001
ZIP 45171 - - —11 0.9 —11
<0.001 0.18 <0.001
ZINB 29665 - - - 11 -1.9
<0.001 0.028
hurdleP? 45172 - - - - —11
<0.001

hurdleNB® 29631 - - - - _

“hurdleP denotes hurdle Poisson model
®hurdleNB denotes hurdle Negative Binomial model

model is inferior to the other models as shown by all the negative numbers in its
row; the hurdle model NB shows superior fit compared to the other models, with
all the negative numbers in its column; and zero-inflated models fit better than
their corresponding non-zero inflated counterparts; this suggests that the best fitting
model needs to account for both zero-inflation and over-dispersion in the observed
data. In addition, the hurdle Poisson and hurdle NB models fit better than their
corresponding ZIP and ZINB models, which suggests that the zero counts were best
modeled as being only structural zeroes.

Furthermore, we included the random effect terms in the model to compare the
goodness of fit of ZIP, ZINB, hurdle Poisson and hurdle NB models with various
configuration of random effect terms, ranging from the model without any random
effect terms, models with random effect term in one of the two model components
and models with random effect terms in both model components. The random effect
term is either IID normally distributed or assigned with a CAR prior or both random
effect terms are correlated through a bivariate normal distribution or MCAR prior
conditional on the predictors. The results are presented in Table 3.3, which shows
that the inclusion of random effects further improve the model fitness despite the
model complexity. Therefore, modeling the impact of fixed effect factors alone is
not sufficient to produce satisfactory fit to the data, and random effects at health
district level in both the bernoulli or the counts components are needed to account
for areal level heterogeneity. However, spatial correlation at the health district level
is not strong in either of the components with the DIC scores for the MCAR models
larger than the counterpart IID models.
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Table 3.3 DIC and pD for competing models in the analysis of LOS for ischaemic heart disease
patients from Saskatchewan in 2011

Model Hurdle 71
Poisson NB Poisson NB

No (b;,b,)T 45172(28) 29631(29) 45172(28) 29655(9)
1ID b, 45122(46) 29581(48) 45121(46) 29629(21)
1ID b, 44284(46) 29534(48) 44289(46) 29606(21)
Independent CAR b, 45122(46) 29579(46) 45121(46) 29642(28)
Independent CAR b, 44292(62) 29540(53) 44296(62) 29611(31)
IID b, and b, 44233(76) 29484(71) 44231(76) 29543(50)
Independent CAR b, and b, 44240(79) 29488(71) 44236(79) 29556(56)
Bivariate 1ID (b;,b,)" 44235(80) 29486(76) 44233(80) 29540(50)
MCAR (b, b>)" 44243(82) 29492(74) 44241(82) 29540(54)

Table 3.4 presents the posterior means and 95 % credible intervals for all
parameters except for the B-spline coefficients for the hurdle NB and hurdle Poisson
models with the bivariate IID random effect structure on (b, b2)”. Under the hurdle
NB model, after adjusting for other predictors, males are more likely to access
day surgery with posterior mean (95 % CI) as 0.143(0.008, 0.276), whereas male
gender is not significantly associated with means of LOS with posterior mean (95 %
CI) as 0.011(—0.073,0.093). Aboriginal status had no impact on either propensity
of receiving day surgery or LOS. In general, as age decreases, the likelihood of
accessing day surgery increases, but not for the age under 40 years old. As a contrast,
as age increases, the LOS increases, which is intuitively sensible, as elder patients
needs longer time to recover.

The variance components of the random effect terms in the model indicate
that the two components are not statistically associated with each other at the
residential neighborhood with the posterior mean (95 % CI) of p being estimated as
0.108(—0.294, 0.489) under the hurdle NB model. This suggests that the probability
of accessing day surgery is not correlated with the mean LOS among users at
the health district level after adjusting for various patient-level covariates. In
comparison with the hurdle NB model, the hurdle Poisson model yields relatively
smaller variance component estimates.

Figure 3.3 displays the temporal trends of month being admitted to hospital due
to IHD on the linear predictor scale for the two model components under the hurdle
NB model with the bivariate IID random effect structure on (b1, b2)”. The horizontal
line at zero corresponds to no month effect. The log-odds of day surgery use do
not vary over time with the point-wise credible interval covering zero. For the log
of mean of LOS, although a bimodal pattern appears in the early spring and late
fall, the effect is not significant, shown in Fig.3.3. Under the counterpart hurdle
Poisson model, the log-odds of day surgery use is consistent with the hurdle NB
model; however, the temporal effect on the mean of LOS became more pronounced,
shown in Fig. 3.4. Therefore, hurdle Poisson model yields greater temporal effect
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Table 3.4 Posterior mean estimates and 95 % credible intervals (in parentheses) for the parameters
from the hurdle NB and hurdle Poisson models with the random effect terms (b, b,)” following a

bivariate normal distribution

Variable | Parameter | Hurdle NB | Hurdle Poisson

logit(r;)

Intercept Qg —2.083(—2.365, —1.810) —2.085(—2.385, —1.806)
Aboriginal ay —0.072(—0.345, 0.187) —0.069(—0.352, 0.189)
Male a 0.143(0.008, 0.276)* 0.138(0.007, 0.284)*

Age 18-40 a3 0.403(—0.261, 1.044) 0.431(—0.261, 1.103)
Age 40-50 ay 0.474(0.189, 0.750)* 0.478(0.185, 0.754)*

Age 50-60 as 0.549(0.334, 0.750)* 0.551(0.348, 0.765)*

Age 60-70 A 0.762(0.575, 0.950)* 0.765(0.564, 0.966)*

Age 70-80 a7 0.746(0.548, 0.928)* 0.753(0.555, 0.947)*
log(p4)

Intercept Bo 1.782(1.599, 1.961) 2.034(1.919, 2.167)
Aboriginal B 0.000(—0.160, 0.176) —0.031(—0.091, 0.031)
Male B 0.011(—0.073, 0.093) —0.004(—0.031, 0.023)
Age 18-40 B3 —1.035(—1.438, —0.596)* —0.842(—1.010, —0.681)*
Age 40-50 Ba —0.815(—0.983, —0.646)* —0.643(—0.704, —0.581)*
Age 50-60 Bs —0.615(—0.730, —0.490)* —0.484(—0.522, —0.444)*
Age 60-70 Be —0.499(—0.607, —0.390)* —0.388(—0.421, —0.353)*
Age 70-80 B —0.233(—0.339, —0.131)* —0.177(—0.209, —0.145)*
Variance component

var(by;) X 0.117(0.061, 0.212) 0.119(0.057, 0.211)
var(by;) P 0.101(0.057, 0.170) 0.085(0.050, 0.144)
cov(byj, byj) X 0.012(—0.037,0.062) 0.009(—0.034, 0.053)
corr(byj, byj) 0 0.108(—0.294, 0.489) 0.085(—0.321, 0.459)

compared to the corresponding hurdle NB model, similarly for the ZIP compared
with the ZINB model (not presented here), suggesting that failure to account for
overdispersion leads to over-estimation of the temporal effect. The seasonality
pattern is in contrast with the findings for coronary heart disease mortality in the
literature, which often reported higher hospital mortality rates in winter than other
seasons. Nevertheless, inpatients undergoing surgery who environmental condition
may be under control. Such difference in seasonality pattern between mortality and
LOS warrants further investigation.

Figure 3.5 presents the posterior mean estimates of the random effects by (left
panel) and b, (right panel) when (by,b2)” following bivariate IID based on the
hurdle NB model. The left panel indicates that those health districts in red have
increased propensity of accessing day surgery, which were distributed mainly in
the middle of the province stretching towards the south east of the province. The
right panel shows that a health district in the north west and some regions in the
south middle east have higher expected mean counts of LOS in days. The different
residual spatial patterns imply that the spatial distribution for the two components
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Fig. 3.3 Temporal effect on the linear predictor scale for the binary component (left panel) and
the NB component (right panel) for the hurdle NB model with the random effect terms (by,b2)”
following a bivariate normal distribution. Dashed lines denote 95 % credible intervals

after accounting for the individual level covariates are not sharing similar spatial
patterns.

3.4 Discussion

In this article, hurdle models and zero inflated models were considered to model
the LOS for IHD hospitalizations. The models accommodate both excess zeros
and skewness of the data with various configuration of fixed and random effects
allowing for analysis of nonlinear effect of seasonality and spatial pattern. The
initial inspection of the observed data, as well as fit statistics, suggested that
the distribution of the LOS was both overdispersed and zero-inflated. Our results
indicate that both hurdle and zero inflated models including random effects at areal
level for both model components outperform the models without those terms, and
modeling the count component as a negative binomial distribution is significantly
superior to modeling the count component as a Poisson distribution.
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Fig. 3.4 Temporal effect on linear predictor scale for the binary component (left panel) and the
Poisson component (right panel) for the hurdle Poisson model with the random effect terms
(b1, b3)T following a bivariate normal distribution. Dashed lines denote 95 % credible intervals

Hurdle models outperform the corresponding zero-inflated models in our appli-
cation. Min and Agresti (2005) suggested that hurdle models might provide better
fit if there is evidence of zero deflation among subgroups of the population.
Zero-inflated models imply zero inflation at all the levels of the covariates. Min
and Agresti (2005) also revealed unstable nature of the zero inflated formulation,
primarily because there is no distinct selection process leading to zero or non-zero
value. On the contrary, the hurdle model has a very stable behavior and performance.
Neelon and O’Malley (2010) gives a detailed discussion comparing the zero inflated
and hurdle models in health service research setting. The importance of accounting
for zero inflation and overdispersion clearly deserves further attention in the health
care utilization literature.

Our results highlight some important policy implications for management of
utilization of hospital services. By investigating the spatial pattern of propensity of
accessing day surgery and the means of LOS, policy makers can target communities
with greater needs for services such as day surgery centers to reduce the burden to
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Fig. 3.5 Posterior mean estimates of the random effects by (left panel) and b, (right panel)based
on the hurdle NB model with the random effect terms (by,b;)” following a bivariate normal
distribution

the primary health care facilities, which may be in great need at the remote or rural
communities.

The estimates of the effect of covariates differed in magnitude between models.
Of particular note, the Poisson models (ZIP or hurdle Poisson) estimated significant
temporal effect of month of being admitted to hospitals for the means of LOS
component, whereas under the negative binomial models (ZINB or hurdle NB),
the temporal effect was not detected to be significant, suggesting it is important to
account for overdispersion in the model, since ignoring greater dispersion in the data
will result in underestimation of the variance of the estimators. This illustrates the
risk of falsely identifying a significant effect if the model chosen does not model the
spread of the data correctly. Although in our application the time was not detected
significantly impact on either of the components, the models presented in this article
can be adapted to analyze other health indicator of similar structure and in like
settings.
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A major limitation of our analysis is that the data used comes from hospital
registers. In Saskatchewan, registered first nation patients is regulated by the
Canadian federal government, so the results may be biased towards urban areas
that are well covered by health facilities. Moreover, socio-demographic variables
are not contained in a hospital registration data; therefore, a more representative
data is to link the hospital data with a cross-sectional household surveys data, which
will provide additional patient or health district level covariates reflecting patients’
deprivation level; however, such data are often carried out every several years and
the personal identifier is generally not being released due to confidentiality. The
geographic unit in our application is only restricted at the health district level due to
confidentiality of releasing postal code. Stronger spatial autocorrelation may emerge
if a finer level geographic unit, such as census block, would be available for this
study.
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Chapter 4

Robust Optimal Interval Design
for High-Dimensional Dose Finding
in Multi-agent Combination Trials

Ruitao Lin and Guosheng Yin

Abstract In the era of precision medicine, combination therapy is playing a
more and more important role in drug development. However, drug combinations
often lead to a high-dimensional dose searching space compared to conventional
single-agent dose finding, especially when three or more drugs are combined for
treatment. To overcome the burden of calibration of multiple design parameters,
which often intertwine with each other, we propose a robust optimal interval (ROI)
design to locate the maximum tolerated dose (MTD) in phase I clinical trials. The
optimal interval is determined by minimizing the probability of incorrect decisions
under the Bayesian paradigm. Our method only requires specification of the target
toxicity rate, which is the minimal design parameter. Neither does ROI impose
any parametric assumption on the underlying distribution of the toxicity curve,
nor it needs to calibrate any other design parameters. To tackle high-dimensional
drug combinations, we develop a random-walk ROI design to identify the MTD
combination in the multi-agent dose space. Both the single- and multi-agent
ROI designs enjoy convergence properties with a large sample size. We conduct
simulation studies to demonstrate the finite-sample performance of the proposed
methods under various scenarios. The proposed ROI designs are simple and easy to
implement, while their performances are competitive and robust.

4.1 Introduction

The primary objective of phase I dose-finding trials is to determine the maximum
tolerated dose (MTD), which is typically defined as the dose with the dose-limiting
toxicity (DLT) probability closest to the target toxicity rate. Nowadays, combination
therapy is playing a more and more important role in drug development. After
demonstrating the clinical effectiveness of two agents separately, a natural follow-up
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step is to evaluate their joint effects when used in combination, especially if they
target different disease pathways. In general, dose finding in two-drug combination
trials is much more complicated since the joint toxicity order of the combined doses
is only partially known. Due to the enormous data from the historical trials and
the emergence of precision medicine, there is a trend to combine three or more
drugs for the sake of improved efficacy as well as reduced side effects. However,
multi-agent combination brings new challenges to the phase I dose-finding design:
the dimension of the dose searching space expands multiplicatively with respect
to the number of drugs in the combination. For a three-drug combination trial,
a usual logistic model may need eight parameters to quantify the joint effect
of the combined therapy by including the main effects, and two- and three-way
interactions. More importantly, these parameters should satisfy several conditions
under the partial order constraints, which in fact become very challenging to set.
As the sample size of a phase I trial is typically small, it is difficult to estimate
a large number of unknown parameters accurately, needless to say identifying the
true MTDs in multi-agent dose finding.

Numerous statistical methods have been proposed for phase I single-agent dose-
finding trials, which can generally be classified as algorithm- and model-based
designs (Yin 2012). The algorithm-based methods, such as the well-known 3 + 3
design (Storer 1989), usually proceed based on a set of prespecified rules without
imposing any model assumption on the unknown toxicity curve. Despite simplicity
and dominance in practice, the 3 4+ 3 design has been criticized for its poor
performance (Ahn 1998). Alternatives to the 3 + 3 design include the accelerated
titration design (Simon et al. 1997), the biased coin design (Durham et al. 1997),
the group up-and-down design (Gezmu and Flournoy 2006), and so on. For a
comprehensive review on the algorithm-based methods, see Liu et al. (2013). By
contrast, model-based dose-finding methods typically aim to find the MTD by
estimating the toxicity curve based on an imposed parametric model. The most
prominent model-based method is the continual reassessment method (CRM) by
O’Quigley et al. (1990), which dynamically determines the possible MTD based on
the observed data. For various extensions of the CRM, see Heyd and Carlin (1999),
Leung and Wang (2002), and Yuan et al. (2007). Although the model-based designs
tend to have superior operating characteristics over the algorithm-based, Rogatko
et al. (2007) reported that only 1.6 % of the phase I cancer trials (20 of 1235 trials)
published between 1991 and 2006 used model-based designs such as the modified
CRM, while the remainder used variations of the 3 + 3 design.

Interval designs, which belong to the algorithm-based class, have recently
attracted enormous attention due to their simplicity and desirable properties. The
entire procedure of an interval design is guided by comparing the observed toxicity
rate (or the number of DLTs) with a prespecified toxicity tolerance interval. Yuan
and Chappell (2004) suggested utilizing an interval to determine dose escalation or
de-escalation. Ivanova et al. (2007) proposed a cumulative cohort design by modi-
fying the group up-and-down design. Ji et al. (2007) proposed a toxicity probability
interval method using penalties to determine the dose assignment, and Ji et al.
(2010) made a further modification based on the unit probability mass. However,
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the specification of the tolerance interval is critical for the design performance. To
solve this problem, Liu and Yuan (2015) developed a Bayesian optimal interval
(BOIN) design by minimizing the probability of incorrect dose allocation under a
Bayesian decision-making framework. From a theoretical perspective, Oron et al.
(2011) showed that the MTD identified by an interval design converges almost
surely to one of the doses in the tolerance interval. Lin and Yin (2016) extended
BOIN to two-dimensional dose finding by comparing the posterior probability of
each dose combination falling inside the predetermined interval.

Most of the aforementioned methods require certain degrees of prespecfication
of design parameters, which is crucial for the trial performance. However, very
limited literature is devoted to addressing the issues on parameter calibration. For
example, the CRM requires the prespecification of the toxicity rates (or the skeleton)
for the dose levels under consideration. Such prespecification can be arbitrary and
subjective and, as a result, the operating characteristics are sensitive to various
toxicity scenarios. To overcome the arbitrariness in the prespecification of toxicity
rates, Yin and Yuan (2009) proposed a Bayesian model averaging CRM approach,
which is robust to the misspecification of the skeleton and thus leads to competitive
trial performance. Besides the skeleton, other design specifications in the CRM
include the working model and the prior distributions of the unknown parameters,
which also affect the design properties. The BOIN design requires to prespecify two
parameters ¢; and ¢,, which denote respectively the toxicity rates for underdosing
and overdosing. However, the performance of BOIN is sensitive to these two tuning
parameters, as they uniquely determine the optimal toxicity probability interval.

Similar to single-agent trial designs, two-agent dose finding in drug combina-
tion trials can also be classified as either algorithm- or model-based. Conaway
et al. (2004) proposed to use the pool-adjacent-violators algorithm to determine
dose allocation in drug combination trials. Ivanova and Wang (2004) applied the
Narayana design to find the MTD based on partial orders. Huang et al. (2007)
developed a two-agent 3 4+ 3 method by partitioning the dose space into separate
zones along the diagonal direction. Fan et al. (2009) proposed a three-stage 2+ 143
design. However, the dose-escalation rules in the existing algorithm-based two-
dimensional designs are rather ad-hoc and typically lack a theoretical support. Thus,
the performances of these methods are well below the satisfactory level.

Most of the model-based designs are developed under the CRM framework,
which continuously update the unknown parameters by assuming a certain model
for the joint toxicity surface. For example, Thall et al. (2003) considered a six-
parameter model for the joint toxicity rate of two drugs. Wang and Ivanova (2005)
proposed a log-linear working model for the dose-toxicity relationship. Yuan and
Yin (2008) applied the CRM to subtrials in a sequential order so that overly toxic
or overly safe doses can be eliminated in an efficient way. Yin and Yuan (2009)
utilized a copula-type regression method to characterize the interactive effects of
the two agents in combination. In a more general framework of 2 x 2 tables (Yin
and Yuan 2009; Yin and Lin 2014), many other copulae and bivariate binary models
can be applied to two-drug combination designs. Shi and Yin (2013) developed
a two-dimensional approach of escalation with overdose control on the basis of a
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four-parameter logistic regression model. However, the number of unknown param-
eters in a two- or multi-agent combination trial is relatively large in comparison to
the small sample size, such that the estimation may be unstable and the trial results
are sensitive to some prior specifications. The situation becomes worse when three
or more drugs are combined, as more unknown parameters need to be estimated
in order to characterize two-way, three-way, and four-way interactions. However,
there are very limited statistical methods for dose finding with three or more drugs
in combination.

Our research is motivated by a phase I dose-finding study of combined treatment
with mitoxantrone and genasense in patients with metastatic hormone-refractory
prostate cancer (Chi et al. 2001). One of the major goals of the prostate cancer trial
was to find the MTD of the combination therapy. To broaden application of interval
designs as well as to overcome the arbitrary specification of design parameters ¢,
and ¢, in the BOIN design, we propose a robust optimal interval (ROI) design
that only requires the specification of the target toxicity rate (the minimal design
specification for a trial). As a result, with fewer parameters to calibrate, the proposed
method is more robust to various design parameters and unknown toxicity curves.
In addition to the single-agent ROI design, we also develop a multi-agent random-
walk ROI (RW-ROI) design, which is applicable to dose finding with two or more
combined drugs. The proposed RW-ROI design adaptively searches for the MTD
using the accrued information, and it can be easily extended to high-dimensional
dose finding. We compare the RW-ROI method with existing approaches and
demonstrate its comparative and stable operating characteristics.

The rest of the paper is organized as follows. In Sect. 4.2, we propose the single-
agent ROI design, and in Sect. 4.3 we make an extension to multi-dimensional dose-
finding trials with RW-ROI. Simulation studies are conducted in Sect. 4.4 to examine
the operating characteristics of the new design as well as comparisons with existing
methods. Section 4.5 illustrates the proposed RW-ROI method with a trial example,
and Sect. 4.6 provides some concluding remarks.

4.2 Single-Agent Robust Optimal Interval Design

Consider a phase I dose-finding trial with J prespecified dose levels, whose toxicity
rates monotonically increase; that is, p; < --+ < py, where p; is the true toxicity
rate at dose level j, j = 1,...,J. Let ¢ be the target toxicity rate specified by the
investigator. The trial starts with treating the first cohort of patients at the lowest
dose level. Suppose the current dose level is j and the total number of patients treated
at dose level j is n;. The interval design proceeds by comparing y;, the cumulative
number of DLTs at level j, with the prespecified toxicity lower and upper boundaries
AL(I/Z/) and AU(I/Z/)Z

* Ify; < Ar(n;), the dose for the next cohort is escalated to level j + 1.
» Ify; > Ay(n;), the dose for the next cohort is de-escalated to level j — 1.
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o If Ar(nj) < y; < Ay(nj) or the next dose assignment falls outside of the
prespecified dose range, the next cohort is treated at the same dose level j.

For safety, overly toxic dose levels that satisfy Pr(p; > ¢[y;) > A andn; > 3
are excluded from the trial, where A is the prespecified threshold probability. Based
on the safety constraint, we can obtain the dose elimination cutoffs Ar(n;): if y; >
Az (n;), dose level j and all the higher levels are eliminated from the trial.

To avoid arbitrary prespecifications of Az(n;) and Ay(n;), Liu and Yuan (2015)
derived the lower and upper boundaries by casting the dose-finding problem in a
Bayesian hypothesis testing framework for each j,

Ho:pj=¢., Hi:pj=¢1, Hy:pj= ¢

Their method requires prespecification of two design parameters, ¢; and ¢,, which
are viewed as the highest toxicity rate (but subtherapeutic) such that the dose should
be escalated and the lowest toxicity rate (while still overly toxic) such that the dose
should be de-escalated, respectively. To enhance the robustness of the design as
well as to circumvent calibration of redundant parameters, we consider a hypothesis
setting with a single target rate parameter ¢,

Ho:pj:¢, Hllpj<¢), Hg:pj>¢,

where Hy, H; and H; indicate that the current dose level j is the MTD, below and
above the MTD, respectively. Under the Bayesian paradigm, we assume the three
hypotheses are a priori equally probable, i.e., Pr(Hy) = Pr(H;) = Pr(H,) = 1/3.
Under the composite alternatives H; and H,, we assign noninformative uniform
prior distributions for p;,

pjlH, ~ Unif(0,¢) and p;|H, ~ Unif(¢, 1),

while the prior distribution under Hy is a point mass on ¢. Based on the accumulated
data at dose level j, the posterior probability of each hypothesis my; is given by

Pr(H;) Pr(y;|Hy)

) , k=0,1,2,
Y w—o Pr(Hy) Pr(yj|Hy)

7Tkj = PI'(Hklyj) =

where the marginal likelihood Pr(y;|Hy) can be obtained by integrating out the
parameter p; with respect to its prior f (p;|Hy),

Pr(y;|Hy) /Pf(l —p) " f (pj| Hdp,  k=0,1,2.



60 R. Lin and G. Yin

Given the accumulated data y;, the posterior probability of making incorrect
decisions is formulated as

Pr(Incorrect|y;) = mo; Pr(E or D|Hy) + my; Pr(S or D|H}) 4 72 Pr(S or E|H>)
= 1o; Pr(y; < Ar(nj) ory; > Ay (n;)|Ho)
7 Pr(y; > Ar(nj)|Hy) + 7o Pr(y; < Au(m)|Hz),  (4.1)

where E, D and S stand for “Escalation”, “De-escalation” and “Stay”, respectively.
We can also take a weighting scheme to penalize more for de-escalation under H;
than staying at the same dose and for escalation under H, than staying. If it is
further assumed that escalation is more dangerous than de-escalation, we can assign
asymmetric weights or penalties for escalation and de-escalation under Hy. The ROI
design aims to minimize the probability of making incorrect decisions at each step,
and the optimal interval boundaries for y; can be derived as

P (1 — )
Ar(n)) = max qm : <1,
o {m JE (= pysf(p | Hy)dp }

(1 —p)yv™"f(p | Ha)d
Sy =p)T(p | 2)p51}, 42

Ay(n;) = max {m : oL — pyvm

which in fact do not depend on y;. We can see from (4.2) that the escalation rules
of ROI are equivalent to escalating the dose if mj; > m;, and de-escalating the
dose if mwo; > ;. Let ¢>L(nj) = AL(n])/n, and ¢)U(I’l,) = AU(I’lj)/l’lj, which are the
boundaries for the toxicity rate.

Theorem 1 The values of ¢r(n;) and ¢y(n;) converge to ¢ almost surely, as
n; — oo.

The proof of Theorem 1 is based on the consistency of the posterior probability
of Hy as n; — oo, which is straightforward and thus omitted. It indicates that the
optimal interval would shrink to the target toxicity rate as the sample size increases.

Several remarks are in place for comparisons between the ROI and BOIN
designs. First, m;; in (4.1) of BOIN is the prior probability of each hypothesis Hy and
thus BOIN is developed based on the prior information at the trial planning stage,
while ROI aims to control the incorrect decisions based on the posterior distribution
using the accrued information. Second, BOIN requires prespecification of ¢; and ¢»,
while there is no theoretical guidance for selection of the two values. In addition,
the interpretations of ¢; and ¢, as well as the optimal intervals produced by BOIN
are somewhat counterintuitive: ¢; and ¢, are claimed to be the highest and lowest
toxicity rates corresponding to escalation and de-escalation respectively, but the trial
is conducted using the derived optimal boundaries, which lie inside (¢, ¢ ), instead
of using ¢; and ¢, directly. By contrast, there is no ambiguity for ROI, since it only
requires the specification of ¢, the target toxicity rate. Last but most importantly, the
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limiting interval of BOIN depends on the values of ¢; and ¢, and does not shrink to
the target toxicity rate ¢ with an increasing sample size. As a result, BOIN would
randomly locate one of the dose levels that lie inside the limiting optimal interval,
while ROI converges almost surely to the true MTD because its optimal interval
indeed shrinks to the target.

4.3 Multi-agent Robust Optimal Interval Design

4.3.1 Combining Two Drugs

The decisions of dose escalation, de-escalation or retention based on the ROI
design only depend on the accumulative information at the current dose level, and
thus can be applied to a multi-agent combination trial in a straightforward way.
However, there are up to eight adjacent dose levels at a typical location in the two-
dimensional dosing space and the toxicity orders are partially known. To determine
an appropriate dose assignment, we propose a random walk rule to assign each
new cohort of patients to the level that has the maximum posterior probability of
being the MTD. More specifically, we consider combining J dose levels of drug A
and K levels of drug B in a two-dimensional dose-finding study. Let p;; denote the
toxicity probability of the two agents at dose level (7, k),j = 1,....J;k=1,...,K.
Suppose the current dose combination level is (j, k), and we define an admissible
escalation set as

g ={(G+ 1.k),G.k+ 1)},

and an admissible de-escalation set as

V(Z{D = {(]_ lvk)v(jsk_ 1)}7

as shown in Fig. 4.1. The admissible dose escalation/de-escalation set only contains
the dose levels by upgrading or downgrading one drug by one dose level while fixing
the level of the other drug. We exclude the dose levels that are out of the dose range
from the admissible dose escalation/de-escalation set. For example, when j = 1,
the dose level (j — 1, k) should be excluded from the dose de-escalation set. The
random-walk robust optimal interval (RW-ROI) design begins with treating the first
cohort at the lowest dose combination (1, 1). Based on the cumulative number of
DLTs observed at dose level (j, k), y, the dose level for the next cohort of patients
is determined as follows:

1. If yu < Ar(np), escalate to the dose level in the admissible escalation set,
which has the largest posterior probability Pr(Ho|yyw), (', k') € <. If the
admissible escalation set contains untried dose levels (i.e., nyr = 0), we set
Pr(Ho|yyw) = 1, which thus facilitates exploring the untried dose levels as well
as preventing the trial from being trapped in some suboptimal doses.
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2. If yy > Ay(nj), de-escalate to the dose level in the admissible de-escalation set,
which has the largest posterior probability Pr(H|yy«), (, k') € /p. Similarly,
we take Pr(Ho|yyw) = 1 for the untried admissible dose levels.

3. Otherwise, if Ar(nj) < yjx < Ay(nj), the doses stay at the same level (j, k).

During the process of dose escalation and de-escalation, if there exist multiple
optimal dose levels, we randomly choose one with equal probability. The trial
continues until the total sample size is exhausted. Additionally, if the most recent
patients are treated at the lowest dose level (1, 1) and y;; > Ay(n;;), the next dose
retains at the same dose level. Symmetrically, if the current dose level is the highest
dose level (J, K) and yjx < Ap(njk), we still treat the next cohort of patients at the
same dose level.

4.3.2 Combining Three or More Drugs

Existing two-agent dose-finding methods can hardly be extended to the cases with
three or more drugs combined. By contrast, the proposed random walk rule is
suitable for any arbitrary number of drugs. For illustration, we consider a three-
dimensional dose-finding study that combines J dose levels of drug A, K levels of
drug B and L levels of drug C.

Suppose that y;; out of nj, patients have experienced the DLT at the current
dose level (j, k, 1), whose true toxicity probability is pjy;. As before, we define an
admissible escalation set by increasing one dose level of one drug while fixing the
other two,

g ={(+ 1.k D), (. k+1.0),G.k 1+ 1)}
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Similarly, the admissible de-escalation set is defined by decreasing one dose level
of one drug while fixing the other two,

dp ={(G—1,k1),Gk—1,0,0,k1—1)}.

Following similar rules as the double-agent design, the RW-ROI for a triple-agent
trial begins with treating the first cohort of patients at the lowest dose combination
(1,1, 1). Based on the cumulative number of DLTs observed at dose level (j, k, [),
Yjui» the dose level for the next cohort is determined as follows:

1. If yju < Ar(nju), escalate to the dose level in the admissible escalation set,
which has the largest posterior probability Pr(Holyywr), (7. k', I') € <. If the
admissible escalation set contains untried dose levels (i.e., nypy = 0), we set
Pr(Ho|yywr) = 1, which thus facilitates exploring the untried dose levels as well
as preventing the trial from being trapped in some suboptimal doses.

2. If yju > Ay(nju), we de-escalate to the dose level that lies inside the admissible
de-escalation set and also has the largest posterior probability Pr(Ho|yywr),
(/. K,y € op. Similarly, we take Pr(Ho|yywvr) = 1 for the untried admissible
dose levels.

3. Otherwise, if Ar(njy) < yju < Ay(nju), the doses stay at the same level (j, k, [).

The trial continues until the total sample size is exhausted. During the process
of dose escalation and de-escalation, if there exist multiple optimal dose levels, we
randomly choose one with equal probability.

Such an algorithm can be straightforwardly extended to the drug-combination
trial with more than three drugs. Suppose the current dose level is (j, k, /, ... ,), and
then the admissible escalation set is

g ={G+ 1,k 1..),Gk+1,1..),GkLI+1,..),...},
and the admissible de-escalation set is

Ay ={G—1LkL.. ) Gk—1,0..0,GkI—1,..), ...}

The dose-finding rules remain unchanged.

After the trial by RW-ROI is completed, we perform the isotonic regression so
that the estimated toxicity rates satisfy partial ordering of the toxicity rates when
allowing only the dose of one drug to change and fixing the other drugs at certain
levels. Specifically, in a three-agent trial, we perform three-dimensional isotonic
regression (Dykstra and Robertson 1982) to the estimated toxicity rate pj,, and let
Pji denote the trivariate isotonic regression estimator. The MTD (7, k', I*) is finally
selected as the dose level whose toxicity rate p;ii;i is closest to the target ¢:

G & 17 = argming e g 1P — 1.
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where the set .4 = {(j, k, ) : njy > 0} contains all the tested dose levels.

When there are ties for pji;i;i on the same row, the same column, or the same
layer, the highest dose combination satisfying pjixii < ¢, or the lowest dose
combination satisfying pjixii > ¢, is finally selected as the MTD. However, it is
difficult to distinguish the ties when they lie on different rows, columns, or layers,
e.g., i+ 1,k—1,])and (j — 1,k + 1,]). In this case, we select the one that has
the largest value of Pr(Ho|y;us), which is approximately equivalent to the dose
combination that has been tested with more patients.

Similar to the single-agent ROI design, the RW-ROI design has desirable large-
sample properties. Based on the accrued information in the trial, it can be shown
that the estimates of the posterior probabilities Pr(Hy|yj;) in the RW-ROI design
would converge to their true values (either 1 or 0). Thus, RW-ROI would adaptively
assign patients to the dose level that is closer to the MTD instead of being trapped
in a local neighborhood, and the dose assignment converges to the MTD.

4.4 Simulation Study

4.4.1 Single-Agent ROI Versus BOIN

First, we conduct a simulation study of the single-agent ROI design with a
comparison to the BOIN design in terms of the operating characteristics. The trial
under consideration consists of eight dose levels with a target toxicity rate ¢ = 0.3.
The total sample size planned is 30 and patients are assigned in cohorts of size 3. For
the BOIN method, we consider three paired values for (¢, ¢): the default interval
(¢1,92) = (0.6¢, 1.4¢)) recommended by Liu and Yuan (2015), the narrow interval
(¢1,¢2) = (0.8¢, 1.2¢), and the wide interval (¢;, ¢;) = (0.5¢, 1.5¢). In addition,
we impose a safety constraint by setting A = 0.95 for the two methods.

Table 4.1 shows the simulation results under three toxicity scenarios and each
scenario is replicated for 1000 times. In scenario 1, the seventh dose is the MTD, and
the MTD selection probabilities of BOIN using the three intervals are very different.
In particular, the BOIN design with the narrow interval has the lowest selection
percentage, while that based on the default interval is the best. Under scenario 2,
all three BOIN designs perform similarly, while the default one behaves slightly
poor. For scenario 3, the default and wide interval BOIN designs perform much
worse than the narrow interval BOIN. By contrast, the proposed ROI design does not
depend on any extra design parameters, such as ¢; and ¢,, and it tends to perform
comparably with the best of the three BOIN designs under each scenario. These
findings suggest that the prespecified interval indeed plays a critical role in the BOIN
design, and the performance could be much compromised if the interval is chosen
inappropriately. However, it is difficult, if not impossible, to justify which interval
is more sensible in the trial planning stage.
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Table 4.1 Comparison between BOIN and ROI for single-agent trials under three toxicity
scenarios with a target toxicity rate of 0.3

Recommendation percentage at dose level Average | Average
Design 1 2 3 4 5 6 7 8 #DLTs | # patients
Scenario 1 0.01| 0.02| 0.03| 0.05| 0.08| 0.13| 0.30| 0.50
BOIN(0.6,1.4)| 0.0 | 0.0 | 0.0 | 0.3 | 2.0 (253 |53.0 194 |39 30.0
# patients 31 | 32 | 33 | 3.7 | 41 | 53 | 53 | 21
BOIN(0.8,1.2)| 0.0 | 0.0 | 0.1 | 1.3 | 55 [38.5 (405 |14.1 |3.1 30.0
# patients 33 | 35 | 38 | 44 | 48 | 57 | 3.1 1.4
BOIN(0.5,1.5)| 0.0 | 0.0 | 0.0 | 0.6 | 3.3 |27.9 |50.8 17.4 |3.8 30.0
# patients 31 | 32 | 34 | 38 | 42 | 53 | 51 | 2.0
ROI 00 | 00 | 00 | 0.8 | 39 |251 528 [17.4 |38 30.0
# patients 31 | 32 | 34 | 38 | 41 | 51 | 53 | 21
Scenario 2 0.15| 030| 0.42| 0.55| 0.65| 0.68| 0.70| 0.80
BOIN(0.6,1.4) (23.9 /518 [21.0 | 25 | 0.0 | 0.0 | 0.0 | 0.0 |8.4 29.8
# patients 10.1 (128 | 57 | 1.1 | 0.1 | 0.0 | 0.0 | 0.0
BOIN(0.8,1.2) [20.9 |55.0 205 | 28 | 0.2 | 0.0 | 0.0 | 0.0 |78 29.9
# patients 126 (119 | 45 | 09 | 00 | 0.0 | 0.0 | 0.0
BOIN(0.5,1.5) [ 25.3 |551 [16.6 | 22 | 0.0 | 0.0 | 0.0 | 0.0 |8.1 29.8
# patients 10.7 (132 | 50 | 09 | 00 | 0.0 | 0.0 | 0.0
ROI 231 546 |188 [ 2.7 | 00 | 0.0 H 0.0 | 0.0 |8.4 29.8
# patients 96 |135 | 56 | 1.0 | 0.1 | 0.0 | 0.0 | 0.0
Scenario 3 0.10| 0.15| 0.22| 0.30| 0.38| 0.46| 0.55| 0.60
BOIN(0.6,1.4)| 1.6 /105 |31.0 |324 |17.6 | 58 | 0.9 | 0.0 |6.6 30.0
# patients 48 | 67 | 83 | 63 | 28 | 0.9 | 0.1 | 0.0
BOIN(0.8,1.2) | 1.5 |13.5 [29.1 | 388 |134 | 29 | 04 | 0.0 |58 29.9
# patients 68 | 85 | 7.6 | 5.1 1.5 | 04 | 00 | 0.0
BOIN(0.5,1.5) | 2.5 12.0 {333 |31.8 |153 | 43 | 0.6 | 0.0 |6.4 30.0
# patients 52 | 73 | 84 | 58 | 24 | 07 | 0.1 | 0.0
ROI 2.8 |11.6 |32.1 |335 [145 | 46 | 0.7 | 0.0 |65 30.0
# patients 51| 70 | 84 | 61 | 25 | 07 | 0.1 | 0.0

BOIN stands for the Bayesian optimal interval design, and the values in the parentheses are the
prespecified design parameters ¢; and ¢, in BOIN; ROI is the proposed robust optimal interval
design

4.4.2 Double-Agent RW-ROI Versus Model-Based Designs

For dose finding with two drugs in combination, we investigate the performance
of the proposed RW-ROI design with comparisons to four existing model-based
methods that are described as follows:

(1) Two-dimensional escalation with overdose control (TEWOC): Shi and Yin
(2013) proposed a TEWOC design for dose finding on the basis of a four-
parameter logistic regression model, under which the joint toxicity probability
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at dose level (j, k) is given by

exp(Bo + Brd}! + Padf + B3d}dp)

- , 43
1+ exp(Bo + prd} + Badi + Bad}dy) @

Pjk

where d]/.* and d? are the dosages of the two agents in combination. The
assignment of the next dose level is based on the estimated MTD distribution
with respect to a prespecified quantile level a, which is set as a = 0.25.

In the simulation study, we consider (df,d4,d}) = (0.1,0.2,0.3) and
(d®,...,d%) = (0.1,0.2,0.3,0.4,0.5) and assign noninformative priors to the
unknown parameters: By ~ N(0, 2), By, B2, B3 ~ Gamma(4, 0.8).

Copula-type method: To model the toxicity surface, Yin and Yuan (2009)
proposed a copula-type regression method to capture drug—drug interactions.
Specifically, they used a Clayton copula regression function, which is given by

pi=1—{(1—a)7 + (1 =) — 1,77,

where «, 8, y > 0 are unknown parameters, and a; j = 1,...,J) and by (k =
1, ..., K) are the prespecified toxicity probabilities for each dose level of drug A
and drug B, respectively. The dose escalation decision is based on the posterior
probability given the cumulative data D, Pr(pjx < ¢|D), and two prespecified
cutoffs ¢, and cq: if Pr(pjx < ¢|D) > c,, the dose is escalated to an adjacent dose
combination with its toxicity rate higher than the current value as well as closest
to the target rate; similarly, if Pr(py < ¢|D) < cq4, the dose is de-escalated for
the next cohort of patients; otherwise, the current dose combination stays at
the same level. We set ¢, = 0.7 and ¢; = 0.55 to direct dose escalation and
de-escalation, respectively.

We take an even partition from 0 to 0.3 for both a;’s and by’s:
(a1,a2,a3) = (0.1,0.2,0.3), (by,...,b5) = (0.06,0.12,0.18,0.24,0.3). We
specify Gamma(2, 2) as the prior distribution for o and B, and a relatively
noninformative Gamma(0.1, 0.2) as the prior distribution for y.

Log-linear model: Wang and Ivanova (2005) utilized a log-linear working
model for the dose—toxicity relationship in drug-combination trials:

pie = 1— (1 —a%)(1 — b)) exp{—y log(1 — @) log(1 — by)},

where «, 8,y > 0. For comparison, all the trial specifications under the log-
linear model are identical to those in the copula-type method.

Logistic model: We make a further comparison of the proposed method with
the logistic model in (4.3) while keeping the dose allocation rule the same as
the copula-type method.
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Table 4.2 Ten toxicity scenarios for two-drug combinations with a target toxicity probability of
30 %. The MTDs are in boldface

Drug B
Doselevel [1 (2 [3 |4 |5 12 3 |4 s
Scenario 1 Scenario 2
3 0.15 030 |0.45 |0.50 |0.65 |030 |0.50 |0.60 |0.65 |0.75
2 0.10 |0.15 |0.30 |0.45 |0.50 |0.15 (030 |0.45 |0.52 |0.60
0.05 |0.10 |0.15 |030 |0.45 |0.05 |0.10 |0.12 |0.15 |0.30
Scenario 3 Scenario 4
3 0.10 |0.15 030 |0.45 |0.55 |0.12 |0.15 |0.17 |0.30 |0.50
2 0.06 |0.10 |0.15 |030 |0.45 |0.06 |(0.08 |0.15 |0.20 |0.45
0.04 |0.06 |0.10 |0.15 |0.30 |0.02 |0.06 |0.10 |0.15 |0.30
Scenario 5 Scenario 6
E‘J 3 0.40 |042 |0.48 |0.55 |0.60 |0.15 (030 |0.45 |0.50 |0.60
5 2 030 |040 |0.43 |048 |0.55 |0.08 |0.12 |0.15 |0.30 |0.45
0.15 [030 |0.40 |045 |0.50 |0.04 |0.06 |0.10 |0.12 |0.15
Scenario 7 Scenario 8
3 0.50 |0.60 |0.70 |0.75 |0.80 |0.08 |0.15 |0.45 |0.60 |0.70
2 0.10 |0.30 |0.45 |0.60 |0.70 |0.05 |0.20 |0.30 |0.45 |0.70
0.06 |0.10 |0.15 |030 |0.40 |0.02 |0.10 |0.15 |0.40 |0.50
Scenario 9 Scenario 10
3 0.15 030 |0.40 |0.60 |0.70 |0.70 |0.75 |0.80 |0.85 |0.90
2 0.02 |0.05 |0.08 |0.12 |0.15 |045 |0.55 |0.60 |0.65 |0.70
0.01 |0.02 |0.03 |0.04 |0.10 |0.05 |0.08 |0.20 |0.30 |0.40

We compare the RW-ROI design with the four model-based methods in terms of the
operating characteristics under the 10 scenarios in Table 4.2, which involves various
numbers and locations of the MTDs. We take the maximum sample size to be 60
with a cohort size of 3, and the target toxicity probability is set at 0.3. To ensure
comparability across different methods, we do not impose any early stopping rule
so that we run the entire trial till the exhaustion of the maximum sample size. We
simulate 1000 replications for each scenario.

Table 4.3 presents the simulation results of our proposed RW-ROI design in
conjunction with those of existing model-based methods, which include three
performance statistics: the percentage of MTD selection, the percentage of patients
allocated at the MTDs, and the average number of DLTs. Among the four model-
based designs considered, the logistic method performs the best, with their MTD
selection and patient allocation percentages substantially greater than those of the
other model-based designs under scenarios 1, 3, 6, and 8. The log-linear method and
Clayton method have similar performance under the 10 scenarios. The performance
of the model-based methods is sensitive to the MTD locations. For example,
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Table 4.3 Comparisons of the proposed two-dimensional RW-ROI design with the model-based
methods under ten scenarios with a target toxicity rate of 0.3. The best performance statistics are
in boldface
Scenarios
Method 1 2 3 4 5 6 7 8 9 10
Percentage of MTD selections
TEWOC 64.4 |444 |735 |458 602 |38.8 (594 |315 |12.8 |393
Logistic 747 527 |762 [43.0 |63.8 564 |[57.1 |43.8 51 |[22.6
Log-linear |[59.1 |56.8 |[59.1 327 |64.2 |47.0 (521 [273 |158 |325
Clayton 589 |50.3 |59.6 |32.8 |63.1 |40.0 |47.0 |24.1 17.4 |28.2
RW-ROI 634 |66.2 |679 |525 |553 |51.7 |582 |31.5 (352 |335
Percentage of patients allocated at the MTDs
TEWOC 47.8 |36.1 428 |26.1 |57.7 (313 |36.7 |24.6 7.8 (234
Logistic 482 (324 (473 |254 (432 326 (354 |272 46 |[12.9
Log-linear |44.7 |36.1 |42.6 |240 |[50.4 |303 (418 |16.7 |13.1 |174
Clayton 40.1 |[37.6 |40.7 |254 433 |28.8 344 |16.5 142 9.6
RW-ROI 425 |42.6 (402 |264 436 (319 (373 |192 (218 |152
Average number of DLTs
TEWOC 156 |174 |142 |132 |185 |154 181 |[16.0 |16.1 1938

Logistic 17.3 174 |16.4 |157 |19.0 |[16.5 |17.8 |17.3 |163 |17.8
Log-linear |16.2 |16.3 152 |146 |194 (149 (165 |164 147 |17.3
Clayton 16.1 159 154 |150 |172 |152 (165 |152 153 |[16.6

RW-ROI 16.6 |[17.4 |152 148 |[18.7 |154 |182 |169 |149 |18.9

TEWOC stands for the two-dimensional escalation with overdose control method, and RW-ROI
represents the random-walk robust optimal interval design

under scenarios 1-3 where three MTDs exist, the MTD selection percentages
under TEWOC and logistic methods have an over 20 % range of variations due to
different MTD locations. Similarly, the selection percentages of the four model-
based methods vary from 32% to 64 % under scenarios 4—7 which have two
MTDs. These findings demonstrate that the mode-based methods are not robust.
In addition, we find that the TEWOC and logistic model are also sensitive to the
design calibration parameters. By contrast, the MTD selection percentages based
on the RW-ROI design is more stable with respect to various toxicity scenarios.
For the first seven scenarios, RW-ROI design has an average selection percentage
of 60 %, with improvement between 5 % to 20 % over the log-linear and Clayton
methods. Scenarios 2, 4, 7 are difficult ones because their toxicity surfaces are quite
irregular, for which the proposed RW-ROI design has the best performance among
all the methods. When the MTD is unique in scenarios 8—10, the proposed design is
also comparable with the model-based methods. Similar conclusions can be made
with respect to the percentage of patients allocated at the MTDs. The five designs
have similar operating characteristics in terms of the average number of DLTs, .
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Fig. 4.2 Relationship between the sample size and the percentage of MTD selection under the 10
scenarios in Table 4.2

To examine the limiting performance of the proposed methods, we increase the
maximum sample size of the simulated trials. Figure 4.2 presents the trends of
the percentages of MTD selection with respect to an increasing sample size under
the ten scenarios in Table 4.2. Clearly, the performance of the proposed design
continuously improves by accumulating more data and would not be trapped in
any suboptimal doses. In general, the more MTDs in the two-dimensional space,
the higher the selection percentage. In scenarios 2 and 3, the percentages of MTD
selection increase from 40 % to 80 % as the sample size is enlarged from 40 to 180.
In scenarios 8 and 10, where only one MTD exists, the MTD selection percentages
using RW-ROI can still improve substantially as the sample size increases.

4.4.3 Triple-Agent RW-ROI

To investigate the operating characteristics of RW-ROI in multi-agent combination
trials, we expand the dosing space to three dimensions. Specifically, we consider
four dose levels of drug A, three levels of drug B, and two levels of drug C.
Therefore, there are 24 combination dose levels in total. Two scenarios with a
target toxicity rate of 0.3 are provided in Table 4.4, where four MTDs exist under
each scenario. The sample size is 90 patients with 3 patients in a cohort. Based on
5000 replications, the percentage of MTD selection for scenario 1 is 62.2 %, and
on average 41.4 % patients are allocated to the MTDs by RW-ROI. For scenario 2,
RW-ROI also achieves a 62.4 % correct selection percentage, and allocates 38.1 %
of the patients to the MTDs. The average numbers of DLTs are 27.8 and 26.3 under
scenarios 1 and 2, respectively, which are very close to the expectation as if all the 90
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Table 4.4 Two toxicity scenarios for three-drug combinations with a target toxicity probability of
30 %. The MTD is in boldface

Drug A
Dose level 1 2 3 4 1 2 3 4
Scenario 1 Scenario 2
Drug C: Level 1 Drug C: Level 1
3 0.15 0.30 0.45 0.60 0.12 0.15 0.30 0.50
m 0.05 0.15 0.30 0.45 0.06 0.08 0.20 0.45
%D 0.01 0.05 0.10 0.15 0.02 0.06 0.15 0.30
A Drug C: Level 2 Drug C: Level 2
3 0.45 0.55 0.65 0.80 0.17 0.30 0.45 0.65

0.15 0.30 0.45 0.65 0.15 0.18 0.30 0.55
0.05 0.15 0.30 0.45 0.10 0.15 0.18 0.45

patients were allocated to the MTDs (with the target toxicity rate of 0.3). The triple-
agent simulation results demonstrate that RW-ROI also has a desirable and robust
performance in multi-agent combination trials. With an even higher dimension,
RW-ROI is expected to still perform well and its implementation is simple and
straightforward.

4.5 Illustrative Example

4.5.1 Prostate Cancer Trial

For patients with metastatic hormone-refractory prostate cancer, mitoxantrone
has been demonstrated to be an active agent, but its prostate-specific antigen
response rate is low. Genasense is a phosphorothioate antisense oligonucleotide
complementary to the bcl-2 mRNA open reading frame, which contributes to
inhibiting expression of bcl-2, delaying androgen independence as well as enhanc-
ing chemosensitivity in prostate and other cancer models. As a result, a phase
I dose-finding study of combined treatment with mitoxantrone and genasense is
considered to meet the need for more effective treatment of the prostate cancer (Chi
et al. 2001). The goals of the trial were to evaluate the safety and biological effect of
the combination of genasense and mitoxantrone, and to determine the preliminary
antitumor activity. Specifically, three doses (4, 8, and 12 mg/m?) of mitoxantone
and five doses (0.6, 1.2, 2.0, 3.1, 5.0 mg/kg) of genasense were investigated in this
trial. To identify the MTD combination, the trial selected seven combination doses:
(mitoxantone, genasense) = (4,0.6), (4,1.2), (4,2.0), (4,3.1), (8,3.1), (12,3.1),
(12,5.0), and applied the modified 3 + 3 dose escalation scheme. However, the
chosen dose pairs from the two-dimensional space are arbitrary, so that the true
MTD might have been excluded. Due to the limitation of the 3 + 3 design, only
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one MTD can be identified in the trial, even though multiple MTDs may exist in
the drug-combination space. In addition, the 3 + 3 design does not even guarantee
the recommended MTD is correct. This example demonstrates the need for a more
effective dose-finding design in drug-combination trials.

4.5.2 Trial Hllustration

For illustration, we apply the proposed RW-ROI design to the aforementioned
prostate cancer trial. As described previously, the trial examined 3 dose levels
of mitoxantrone and 5 dose levels of genasense, which results in a 3 x 5 drug-
combination space. The target toxicity rate is ¢ = 0.3, the cohort size is set as 3
and 20 cohorts are planned for the trial. Based on the formulae in (4.2), the optimal
boundaries for the RW-ROI design are given in Table 4.5.

In addition, we impose a safety rule by setting the threshold A = 0.95. The first
cohort of patients is treated at the lowest dose level (1, 1). Figure 4.3 shows the path
of the dose assignments for the subsequent cohorts, from which we can see that the
RW-ROI design can search the MTD adaptively and treat most of the patients at
the right dose level. Specially, three DLTs are observed for the 8th cohort at dose
level (3, 3), which is beyond the dose elimination cutoff. Therefore, the dose level
(3, 3) and the higher dose combinations are eliminated from the trial, and dose de-
escalation should be made for the next cohort. Note that the admissible de-escalation
set is {(3,2), (2, 3)} while dose level (3, 2) has never been administrated before, so
the RW-ROI design selects dose level (3, 2) for the next assignment. In addition,
dose-escalation for the 14th cohort is based on comparison between the posterior
probabilities Pr(Hy|y,3) and Pr(Hy|ys2), and finally chooses dose level (2, 3). Atthe

Table 4.5 Interval boundaries and dose elimination cutoffs for the number of DLTSs in the robust
optimal interval design with a target toxicity rate ¢ = 0.3

n 3 6 9 |12 15 18 |21 24 27 30
AL(n) 0 1 1 2 2 3 4 4 5 6
Ay(n) 2 4 5 6 7 9 |10 11 12 14
Ar(ny) 3 4 5 7 8 9 |10 11 12 14
n 33 |36 (39 |42 |45 |48 |51 54 57 60
AL(n) 6 7 8 8 9 |10 11 11 12 13
Au(n) |15 16 17 18 19 |20 21 22 23 24
Ar(ny) |15 16 17 18 19 |20 21 22 23 24

Note: n; is the cumulative number of patients at dose level j
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Fig. 4.3 Illustration of RW-ROI for the prostate cancer trial with a target toxicity rate of 0.3.
Circle indicates patients without toxicity, triangle and diamond respectively denote one and two
toxicities, and cross represents three toxicities

end of the trial, the estimated toxicity probability matrix after implementing the two-
dimensional pool adjacent violators algorithm is given by

-068 1 — —
—0.150.150.28 — |,
o0 0 - -

9

where represents the dose levels that have not been administered in the trial.
Thus, dose level (2, 4), which is 8 mg/m? mitoxantone combined with 3.1 mg/kg
genasense, would be selected as the MTD.

4.6 Concluding Remarks

To simplify dose-finding procedure while still maintaining the trial performance,
a robust optimal interval design is developed. Its extension to double-, triple-, or
higher-dimensional drug combinations is straightforward, which greatly simplifies
the current practice of dose finding in combination treatment. The proposed ROI
and RW-ROI methods can substantially outperform the BOIN design, if the interval
parameters (¢, ¢>) of BOIN is poorly specified. The ROI design only requires
the prespecification of the target toxicity rate of the trial and thus it dramatically
improves the robustness of the existing dose-finding designs. In addition, we have
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demonstrated the good performance and operating characteristics of all the single-,
double- and triple-agent ROI designs by conducting extensive simulation studies.
An arguable point is that the allocation decisions by the ROI designs are solely
determined by the information at the current dose level, while the sequential dose-
escalation procedure as well as the isotonic regression at the end of the trial
implicitly account for the majority of information from other doses.
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Chapter 5
Group Selection in Semiparametric Accelerated

Failure Time Model

Longlong Huang, Karen Kopciuk, and Xuewen Lu

Abstract In survival analysis, a number of regression models can be used to
estimate the effects of covariates on the censored survival outcome. When covariates
can be naturally grouped, group selection is important in these models. Motivated
by the group bridge approach for variable selection in a multiple linear regression
model, we consider group selection in a semiparametric accelerated failure time
(AFT) model using Stute’s weighted least squares and a group bridge penalty.
This method is able to simultaneously carry out feature selection at both the group
and within-group individual variable levels, and enjoys the powerful oracle group
selection property. Simulation studies indicate that the group bridge approach for
the AFT model can correctly identify important groups and variables even with
high censoring rate. A real data analysis is provided to illustrate the application of
the proposed method.

5.1 Introduction

Variable selection, an important objective of survival analysis, is to choose a
minimum number of important variables to model the relationship between a
lifetime response and potential risk factors. In an attempt to select significant
variables and estimate regression coefficients automatically and simultaneously,
a family of penalized or regularized approaches is proposed. Variable selection
is conducted by minimizing a penalized objective function by adding a penalty
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function with the following form
min {Loss function + Penalty} .

The popular choices of loss functions are least squares and negative log-likelihood.
Many different penalty functions have been used for penalized regression, such as
the least absolute shrinkage and selection operator (LASSO) (Tibshirani 1996), the
bridge penalty (Fu 1998), the smoothly clipped absolute deviation (SCAD) method
(Fan and Li 2001), the elastic-net method (Zou and Hastie 2005), the minimax
concave penalty (MCP) (Zhang 2010) and the smooth integration of counting and
absolute deviation (SICA) method (Lv and Fan 2009). These methods are designed
for individual variables selection.

In many applications, covariates in X are grouped. For example, in multi-factor
analysis of variance (ANOVA) problem, in which each factor may have several
levels and can be expressed through a group of dummy variables, such as for
response Z with two factors @ and S, the intercept u and the random error &,

Z=p+oj+p+e, j=1,....J, k=1,... K,

J .
where {aj}j: , and {,Bk},I;l can be considered as two groups. Another example
is the additive model with polynomial or nonparametric components, where each
component in the additive model may be expressed as a linear combination of a

number of basis functions of the original measured variable, for example,
Z=pu+dW)+---+¢;,(W)) +e,

where each function ¢;(W;) = > /-, y;Bi(W)), here {Bl(Wj)}IIn are basis functions,
and considered as a group.

Ma and Huang (2007) pointed that complex diseases such as cancer are often
caused by mutations in gene pathways, it would be reasonable to select groups of
related genes rather than individual genes. Bakin (1999) proposed the group LASSO
and a computational algorithm. Later Yuan and Lin (2006) developed this method
and related group selection methods, such as group least angle regression and
group nonnegative garret methods. The group LASSO is a natural extension of the
LASSO, in which an L, norm of the coefficients associated with a group of variables
is used as a component of the penalty function. Meier et al. (2008) studied the group
LASSO for logistic regression. Motivated by identifying transcriptional factors
that can explain the observed variation of microarray time course gene expression
over time during a given biological process, Wang et al. (2007) introduced a
group SCAD penalized estimation procedure for selecting variables with time-
varying coefficients in the context of functional response models. Zhao et al. (2009)
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introduced the Composite Absolute Penalties (CAP) family, which allows given
grouping and hierarchical relationships between the predictors to be expressed.
These studies only considered group selection, but did not take the individual
variable selection within groups into account. Huang et al. (2009) proposed the
group bridge method in a multiple linear regression model with data uncensored,
which is capable of carrying out variable selection at the group and within-group
individual variable levels simultaneously. Huang et al. (2014) studied the group
bridge for the Cox model. Breheny and Huang (2009) developed the group MCP
approach in the linear regression model with uncensored data to select important
groups as well as identifying important members of these groups. They refer to this
as bi-level selection.

In this paper, we consider the group bridge method for the AFT model with
right censored data. The Stute’s weighted least squares estimator in AFT models is
introduced in Sect. 5.2. In Sect. 5.3 we describe the group bridge method for the AFT
model and present the computation steps and tuning parameters selection methods.
The asymptotic properties are stated in Sect. 5.4. In Sect. 5.5 simulation studies are
produced to evaluate the proposed method comparing to the group LASSO method.
In Sect. 5.6 we apply the proposed methods to the primary biliary cirrhosis data set.
Summary and discussion are reported in Sect. 5.7.

5.2 Stute’s Weighted Least Squares Estimation
in The AFT Model

Fori = 1,...,n,let T; represent the logarithm of the survival time for the jth subject,
X, be the associated d-dimensional vector of covariates, C; denote the logarithm of
the censoring time and §; denote the event indicator, i.e., §; = I(T; < C;), which
takes value 1 if the event time is observed, or O if the event time is censored. Define
Y; as the minimum of the logarithm of the survival time and the censoring time, i.e.,
Y; = min(7;, C;). Then, the observed data are in the form (Y}, §;, X;),i = 1,2,...,n,
which are assumed to be an independent and identically distributed (i.i.d.) sample
from (Y, 8, X). Survival analysis focuses on the distribution of survival times and
the association between survival time and risk factors or covariates. The AFT model
directly relates the logarithm of the failure time linearly to the covariates, and
resembles a conventional linear model.
The AFT model is defined as

Ti=a+X B+e. i=1,....n (5.1)
where « is the intercept, B is a d x 1 regression parameter vector to be estimated,

and the ¢;’s are independent identically distributed random errors with a common
distribution function. If the distribution function of the error term is known, this
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model is a parametric model. If the distribution function of error term is unspecified,
this model is considered as a semiparametric model.

In order to estimate the coefficients («, §) in the AFT model, there are three
popular approaches. One is the Buckley and James estimator (1979) that adjusts
censored observations using the Kaplan-Meier estimator. This original Buckley-
James approach has no theoretical justification and does not provide a reliable
numerical method for implementation. Later, Ritov (1990) studied the asymptotic
properties of the Buckley-James estimator. The second one is the rank based
estimators (Fygenson and Ritov 1994; Heller 2007; Tsiatis 1990; Ying 1993) that
are motivated by the score function of the partial likelihood. The existing rank based
methods are computationally intensive for semiparametric estimators.

Stute (1993) proposed a weighted least squares estimator in the semiparametric
AFT model for right censored data, which uses the Kaplan-Meier weights to account
for censoring in the least squares criterion in the AFT model. The weights in the
equation are the jumps in the Kaplan-Meier estimator, which is computationally
more feasible than the Buckley-James and rank based estimators.

Let F, be the Kaplan-Meier estimator of the distribution function F of T
and assume Yy < --- < Y, are the order statistics of Y¥;’s; §(),..., 8@ and
Xy, ..., X are the associated censoring indicators and covariates of the ordered
Y;’s, respectively. According to Stute and Wang (1993) and Stute (1996), F, can
be written as f’n(y) = Z?=1 wnil (Y5 < y), where the wy;’s are the jumps in the
Kaplan-Meier estimator and can be expressed as

Sa
Wnl: ()s

F Py A AN ¥
Whi = ® l_[ / , 1=2,...,n.
n—i—}—lj=1 n—j+1

The wy,;’s are also called the Kaplan-Meier weights. Then the Stute’s weighted least
squares objective function is

1 « T \2
2 ani (Y(,‘) - —X(i)ﬂ) .
i=1

By centering X(;) and Y(,) with their w,;-weighted means, the intercept becomes
0. Denote X(L) = (nwy) 1/2 (X — Xw) and Y(,) = (nwy) 1/2 (Y4 — Yy), where
Xy = D WX/ Yoy e and Yy, = 30w Y/ D iy Wai. We can rewrite
the Stute’s weighted least squares objective function as

n

L(B) = ; > (Yo —3(’(5[3)2. (5.2)

i=1



5 Group Selection in Semiparametric Accelerated Failure Time Model 81

The Stute’s weighted least squares estimator of 8 can be obtained by minimizing the
objective function (5.2). Since this objective function uses the least squares method,
it is easy to solve. Assuming that 7 and C are independent, Stute (1993, 1996)
showed that the estimator § is consistent and asymptotically normal as n — co.

Stute’s weighted least squares method can be used to construct a loss function,
and then by combining with penalty terms, variable selection in the AFT model will
be performed.

5.3 The Group Bridge Estimator in The AFT Model

When covariates are grouped, instead of individual variable selection, we should
treat the related covariates as a group. Let X = Xy, . .. ,Xnk)T, k=1,...,d,be
the design vectors and T = (T},...,T,)" be the response vector in (5.1), then the
regression model can be written as

T=a+pBX1+...4+BsXu+c¢

with an error vector ¢ = (81,...,8,,)T. Let Ay,---,Ay be subsets of {1,---,d}
representing known groupings of the design vectors and denote the regression
coefficients in the j group by ﬂA]_ = (Br.k C Aj)T,j =1,...,J. Forany k x 1
vector a, ||al|; denotes the L norm: ||a||; = |ai| + -+ + |a].

Let B be the parameters of interest in the AFT model (5.1). After adding the
group bridge penalty function proposed by Huang et al. (2009) to the Stute’s
weighted least squares loss function (5.2), the group bridge penalized Stute’s
weighted least squares objective function is

n

J
3 (Fo—X08) + 4 Yl Iy
Jj=1

i=1

Ly, (B)

n d 2 7
1 . ~
5 E (Y(i) - E Xkﬁk) + An E cillBa,lIY
k=1 =1

i=1

2

1
2

d
Y- Zikﬂk
=1

J
+ A Y cillBall. (5.3)
j=1

2

where A, > 0 is the penalty tuning parameter and c;’s are constants for the
adjustment of the different dimensions of A;. In the case of uncensored data,
Huang et al. (2009) suggested a simple choice of ¢; is ¢; o« |A;|'™7, where |A;|
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is the cardinality of A;, and they also showed that when 0 < y < 1, the group
bridge penalty is able to carry out variable selection at the group and individual

variable levels simultaneously. For simplicity, we use Xk (X(l)k, .. X(,,)k) and
Y = (Ya),Y@2), -, Y»)". Then we can obtain the penalized estimator of 8 by
minimizing Ly, (B).

5.3.1 Computation

Since the group bridge penalty is not a convex function for 0 < y < 1, direct
minimization of Ly, (B) is difficult. Following Huang et al. (2009), we formulate an
equivalent minimization problem that is easier to solve computationally. For 0 <
y < 1, define

Lu(8.0) = ) [V~

J 2
> Xibr
k=1 2

J J
1=1/y 1
+ZHJ. /ch/yllﬂAjlll—f-tZH-,
=1 =1

where 7 is a penalty parameter.

Proposition 1 Suppose 0 <y < 1.If A, = t' 77y (1 — )", then B minimizes
Ly, (B) if and only lf(ﬂ 0) minimizes L1,(B, @) subject to 6; > O forj=1,...,J.

When data are uncensored, i.e., w,; = 1/n,i = 1,...,n, Huang et al. (2009)
pointed out that minimizing Ly, (8, 6) with respect to (8, 8) yields sparse solutions
at the group and individual variable levels, that is, the penalty is an adaptively
weighted L; penalty, which conduct the sparsity in 8, and when 0 < y < 1, small
6; will force B 4; = 0 and leads to group selection.

Based on Proposition 1, for s = 1,2,..., we have the iterative computation
algorithm as the following:

Step 1. Obtain an initial value 8©.
Step 2. Compute

) 1- - .
=o'V s 6

Step 3. Compute

B+ — argn}@in

S -1/
9\ Y1
+3°(67) 1B
Jj=1

2

d
=Y XiBi
k=1

Step 4. Repeat steps 2 and 3 until convergence.
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The original value in Step 1 could be obtained by least squares method or LASSO
1-1/y

le/y
wy; * Jj, such that k € Aj, }wk = ik/a)k, Bow = okPr, ﬂwAj = a)A_/.ﬂAj. Rewrite
BE*Y in Step 3 as

approach. The main computation task is Step 3. Let ws;, = (Oj(x)) , Wy =

ﬂ(s+l) =arg n}gin

d 2
- Z ka:Bwk
k=1

J
F 11X (Bl ¢ - (5.5)
j=1

In Eq.(5. 5) o, is the weighted covariate matrix for k™ covariate, B, is the
weighted coefficient for the covariate and g, A; is the weighted coefficient for each
group. Whenever wy; is 0 or very small, we set ,Ba,k = 0 and B; = 0, and remove the
associated X;. Now the objective function (5.5) becomes a LASSO problem with
tuning parameter fixed at 1, and this can be solved using the existing R function
“predict.lars” by setting “s = 1”. After the value of :éwk has been estimated, we

could calculate ﬁk = ,éwk/wk, k=1,...,d.

5.3.2 Tuning Parameter Selection

Following the procedure in Huang et al. (2009), for a fixed A,, let }9 = [3 (An)
be the group bridge estimator of B. Let 6, j = 1,...,J, be the jth component of

6 = 9(}9(/\,,)) as defined in Step 2. Let 2~ = (fl, . ,fd) be the n x d covariate
matrix. The Karush-Kuhn-Tucker condition for Step 3 is

~ < (8 1=1/y l/V
13|r i 1X1</31<||2 2jia; (6 “)3” B —0 VB £0

By
s =y
l |r’ ({) o k” jAjEk (9) v Vﬁk - 07

which implies that

Y—2B) Xe=>67"c/"sgn(Br). Vpi #0. (5.6)

J:A; Dk

Since sgn(Bx) = Br/|Bx|, then the fitted response vector is

=~

= %—B = %—l”[%:{n%% + Wl,,]_l%-;r”?,
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where 2”3, is the sub matrix of 2~ whose columns correspond to covariates with
nonzero estimated coefficients for the given A, and %/, is the diagonal matrix with
diagonal elements

07 1B, Be # 0.

kGAj

Therefore, the number of effective parameters with a given A, can be approxi-
mated by

-1
d(\,) = trace { 2, (%L%A” + WA,,) 3&”1—”} .

An AIC-type criterion for choosing A, is

~ N 2
AIC(A,) = In { HY— 2B0w)|. / nb 4 2d(A)/n.
A BIC-type criterion for choosing A, is
~ N 2
BIC(A,) = In { HY— B0, / nb 4+ In(n)d(r,)/n.

A generalized cross-validation (GCV)-type criterion for choosing A, is

2 / {n(l—d(/\,,)/n)z}.

The tuning parameter A, is selected by minimizing the criteria AIC(A,), BIC(A,),
or GCV(A4,).

GOV = [V = 2B

5.3.3 Comparison With the Group LASSO

Yuan and Lin (2006) introduced the group LASSO method to select grouped
variables in the linear regression model with uncensored data, which uses an L,
norm of the coefficients associated with a group of variables in the penalty function.
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We propose the group LASSO estimator for the AFT model with censored data to be

2

Zxkﬂk

+ Ay ZC]”ﬂA llk;.25 (5.7

2 Jj=1

B = argmin
B gmi

where A, > 0 is the tuning parameter and K; is a positive definite matrix and
||ﬂAj||K ) = (ﬂ;{K B )'/2. Yuan and Lin (2006) suggested the choice of K; is
= |Aj|1; with [; be1ng the |A;| x |A;| identity matrix.
Srmrlar to the group bridge approach, let t be a penalty parameter, then

L8 0) = | |V~

J 2
> XiBr
k=1

J J
+Y 07 1B IR+ T Y6 (5.8)
Jj=1 j=1

Proposition 2 If A, = 2¢'/2, then B~satisﬁes (5.7) if and only lf([i, 0) minimizes
Loy (B, 0) subjectto @ > 0, for some 0 > 0.

From the penalized objective function (5.8) we see that the sum of the squared
coefficients in group j is penalized by 6;, and the sum of §;’s is penalized by
7. The large 6; tends to keep all of the elements of 8 A Therefore in order to
minimize (5. 8) either 8 4 =0, that is, the group is dropped from the model,
otherwise, with large 6, ﬂ 4 # 0, which means all the elements of 4; are non-
zero and all the variables in group j are retained in the model. So the group LASSO
selects either the group with all the variables inside or deletes the whole group.
This is the reason why the group LASSO can conduct group selection, but it cannot
select individual variables within groups. Our simulation studies in Sect.5.5 also
reexamine this property.

5.4 Asymptotic Properties of the Group Bridge Stute’s
Weighted Least Squares Estimator

Stute (1993, 1996) proved consistency and asymptotic normality of the weighted
least squares estimator with the Kaplan-Meier weights under some conditions.
Huang et al. (2009) derived the symptomatic properties of the group bridge
estimators with uncensored data. Combining the methods of these authors, we
derive the asymptotic distribution of the Stute’s weighted estimator under the group
bridge penalty. We can show that, for 0 < y < 1, the group bridge estimators
correctly select nonzero groups with probability converging to one under reasonable
conditions.
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According to Huang and Ma (2006)’s regularization estimation in the AFT
model for ungrouped variables, let H denote the distribution function of Y. By the
independence between T and C, 1 — H(y) = (1 — F(»))(1 — G(y)), where F and
G are the distribution functions of T and C, respectively. Let ty, 77 and 7¢ be the
endpoints of the support of ¥, T and C, respectively. Let F° be the joint distribution
of (X, T). Denote

FO(x, 1), <ty

F(x,1) =
(x. 1) FO(x, 7y_) + FO(x, ty)1{ty € A} t> 1y,

with A denoting the set of atoms of H. Define two sub distribution functions:
H'(x,y) =PX <x,Y <y,§ =1),
H'(y) = P(Y < 3.8 = 0).

Forj=0,...,d,let

0
Yo(y) = exp { / 4 g?;)’)}

1 -
Y B) = 1—H) / Lysy(w —xT B)x;yo(w)H" (dx, dw),

' _ 1v<y,v<w(W - xT:B)xj)’O(W) ~0 ~11
20, B) = /f 1 — H)P H°(dv)H" (dx, dw),

Y. B) = Vo B). v 0. B)e e via. BT, 1=1,2.

Denote the true regression coefficients by B, = (ﬂOE{, }30 ﬂO%)T For j =
L. J let o = {keA:pu#0}. 8 = {keAj.,BOk = 0. B, 750},% -

{k €A Bu =0, ﬂOA_/_ = O}. So &/ contains the indices of nonzero coefficients,
2% contains the indices of zero coefficients that belong to nonzero groups, and
% contains the indices of zero coefficients that belong to zero groups. We write
2 = % U ¢, which contains the indices of all zero coefficients. Since Boy =0,
the true model is fully explained by the first ./ subset. Then }3 o and ﬂ@ are the
estimates of B, and B, from the group bridge estimator ﬂ, respectively.
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Let W = diag(nwy,...,nw,) be the diagonal matrix of the Kaplan-Meier
weights. Let %Aj = (X, k € Aj) be the matrix with columns X;’s for k € A;,

and denote X, = %;W%Aj/n. Fori = 1,...,n,let ¢, = 7(,~) - X(Ti)ﬂo and

& = Z?Zlfikei,l < k < d. Define X, = 2" 2 /n and let p, and o be the
smallest and largest eigenvalues of X,. We assume the following.

(A1) The number of nonzero coefficients ¢ is finite;

(A2) (a) The observations (Y;, X;,8;),i = 1,...,n are independent and identically
distributed; (b) The random errors ¢4, ..., &, are independent and identically
distributed with mean 0 and finite variance o2, and furthermore, there exist
Ky,K; > 0 such that the tail probabilities of &; satisfy P(le; > u|) <
K> exp(—K u?) for all u > 0 and all i

(A3) (a) The distribution of §;’s are subgaussian; (b) The covariates are bounded,
that is, there exists a constant M > 0 such that [Xy| < M,1 <i <n,1 <
k=< d

(A4) The covariate matrix 2 satisfies the sparse Riesz condition (SRC) with rank
g™ there exist constants 0 < ¢« < ¢* < 00, such that for g* = (3+4C)gq, with
probability converging to 1, cx < vTEAjv/||v||§ < c*, VA; with [4;| = ¢*
and v € Rq*;

(A5) The maximum multiplicity C; = maxy Zf:l I{k € A;} is bounded and

22

"N Boy 1714 < My In(d), M, = O(1);
npy, pr -

(A6) The constants c; are scaled so that minj<j<; ¢; > 1 and

An(p2)' 77/
— 0
{In(d)}' 7% (q* + pa) /2 prny/?

The model is sparse by assumption (Al) (Huang and Ma 2010; Ma and Du
2012), which is reasonable in genomic studies, that is, although the total number
of covariates may be large, the number of covariates with nonzero coefficients is
still small. The subgaussian assumption (A2) has been made in high dimensional
linear regression models (Zhang and Huang 2008). Assumption (A3) proposed by
Ma and Du (2012) shows the subguassian tail property still holds under censoring,
and it is required for Theorem 1. The SRC condition proposed by Zhang and Huang
(2008) in assumption (A4) implies that all the eigenvalues of any p x p submatrix
of 2’ TW.Z /n with p < ¢* lie between ¢, and ¢*. It ensures that any model with
dimension no greater than ¢* is identifiable. Similar assumptions (A5) and (A6)
were used under uncensored data in Huang et al. (2009). We allow In(d) = o(n)
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or d = exp(o(n)), so our work is more general than that of Huang et al. (2009).
Also (AS) and (A6) put restrictions on the magnitude of the penalty parameter,
whichis 0 <y < 1.

Theorem 1 (Group Bridge) Suppose that 0 < y < 1, conditions (Al)—(A6) hold
and A/ /n— Ao > 0. Let X| = (X}, k € &) and X\ = E(XlXIr). Then

(i) (Zero Group Selection Consistency)
Pr{B,, =0} — 1.
(ii) (Asymptotic Distribution of Nonzero Parameter Estimators in Nonzero Groups)

(B, ., — Bo.y) —p argmin{U;(b) : b € R},

where
1
Ui(b) = —b"V, + 2bT21b
J
-1
+ydo D ¢llBoa Il Y tbisen(Bon)}-
j=1 kel
Here
Vi~ N(0, 2)).

21 = Var{§yo(V) (Y — X Boo)) X1 + (1 = 8)y1(Y: Booy) — 72(Y; Bor)}-

Note that if Ay = 0, the penalty part is negligible, the asymptotic distribution of
nonzero parameters estimators in both zero and nonzero groups becomes that of
the Stute’s estimator. Part (i) of Theorem 1 states that the group bridge estimates
of the coefficients of the zero groups exactly equal 0 with probability converging
to one; part (ii) shows the normality property of the group bridge estimates of the
coefficients of the nonzero parameters in both zero and nonzero groups. Part (i) of
Theorem 1 implies that the group bridge estimator can distinguish nonzero groups
from zero groups correctly, but it does not address the zero coefficients in nonzero
groups, so the proposed method possesses group selection consistency but lacks
individual selection consistency. In order to archive individual selection consistency,
following Wang et al. (2009), an adaptive group bridge penalty is needed, this
issue will be explored in our future research. Our part (ii) of Theorem 1 is also
different from that in Theorem 1 (b) of Huang et al. (2009), where </ is replaced by
B; = &/ UZ, which shows the asymptotic distribution of nonzero group estimators.
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However, we found that their asymptotic distribution results were hard to get under
the given conditions, and further investigation is needed to solve the problem.

We also present the Theorem 2 for the group LASSO estimator to compare the
asymptotic properties of the group bridge and group LASSO estimators.

Theorem 2 (Group LASSO) Suppose {B,d,Aj,c;,K;,j < J} are all fixed. &;’s are
iid errors with E(g;) = 0 and Var(g;) = 0> € (0,00). Let ¥, = E(XXT) and
suppose n=\2 ), — Lo > 0 when n — oo. Then

Vn(B, — By) —p argmin{U,(b) : b € R%},

where

1
Us(b) = —b"V, + 2bT22b

“‘)ic' bgwo"'“ﬂ # 0) + [lba 521 (B,, = 0)
j=1 ! ”ﬂOAj”Kj,Z A Ajl1K;. 24P 4; .
Here
V2~ N(0.£2,),

2, = Var{§yo(V)(Y = X B)X + (1 = 8)y1(Y: By) — r2(Y: By)}-

From Theorem 2 we notice that, when Ay = 0, the group LASSO estimator is
the same as the Stute’s estimator. When Ao > 0, the asymptotic distribution of Bn
puts positive probability at 0 when S 4 = 0. Since this positive probability is less
than one in general, which results in the non-consistency property in selecting the
nonzero groups.

5.5 Simulation Studies

In this section, simulations are conducted to compare the bi-level (group and within-
group individual variable levels) performance of the group bridge estimator and
the group LASSO estimator. Following Huang et al. (2009)’s simulations set up
for uncensored data, two scenarios are considered. Since the proposed method can
deal with right censored data, the logarithm of censoring times, C, are generated
by the logarithm of random variables from the exponential distribution with a rate
parameter v, where v is chosen to obtain 20 %, 50 % and 70 % censoring rates for
both scenarios. In Scenario 1, the number of groups is moderately large, the group
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sizes are equal and relatively large, and within each group the coefficients are either
all nonzero or all zero. In Scenario 2, the group sizes vary and there are coefficients
equal to zero in a nonzero group. We use y = 0.5 in the group bridge estimator.
The sample size n = 200 in each scenario. The simulation results are based on 400
replications.

We calculate the average number of groups selected (No.Grp), the average
number of variables selected (No.Var), the percentage of occasions on which the
model produced contains the same groups as the true model (%Corr.Grp), the
percentage of occasions on which the model produced contains the same variables as
the true model (%Corr.Var) and the model error (Model Error), which is computed
as (f — ﬂO)TE(XTX)(ﬂ — By), where B is the true coefficient value. Enclosed
in parentheses are the corresponding standard deviations. And the last line in each
table gives the true values used in the generation model. For example, in Scenario
1, there are 2 nonzero groups and 16 nonzero coefficients in the generation model.

For both of the group bridge estimator and group LASSO estimator, AIC, BIC
and GCV tuning parameter selection methods were used to evaluate performance.
The variable selection and coefficient estimation results based on GCV are similar
to those using AIC. A comparison of different tuning parameter selection methods
indicates that tuning based on BIC in general does better than that based on AIC and
GCV in terms of selection at the group and individual variable levels. We therefore
focus on the comparisons of the methods with BIC tuning parameter.

5.5.1 Scenario 1

In this experiment, there are five groups and each group consists of eight covariates.
The covariate vector is X = (X1,...,X5) and, for any jin 1,...,5, the subvector
of covariates that belong to the same group is X; = (¥gj—1)+1,--.,X8(j—1)+8)-
To generate the covariates xi,...,Xx4, we first simulate 40 random variables
R, ..., Ry independently from the standard normal distribution. Then Z; (j =
1,...,5) are simulated with a normal distribution and an AR(1) structure such
that cov(Z;,,Z;,) = 0.4““”', for ji,j» = 1,...,5. The covariates xi,...,Xs are
generated as

X = (Zy +R)/V2. j=1.....40,

where g; is the smallest integer greater than (j— 1)/8 and the x;s with the same value
of g; belong to the same group. The logarithm of failure times are generated from

the log-Normal model, T = Zﬁil x;B; + &, where the random error is ¢ ~ N(0, 22),
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and
Bi,-..,Ps) =(0.5,1,1.5,2,2.5,3,3.5,4),
(Bo.- ... Bre) = (2,2,....2),
(B17.- .- B2a) = (Bos. ..., B) = (B33, ..., ao) = (0,0,....,0).

Thus, the coefficients in each group are either all nonzero or all zero.

Table 5.1 summarizes the simulation results for Scenario 1. From these results
we notice that as the censoring rate increases, the model error increases and the
percentage of correct variables selected decreases for both of the group bridge and
group LASSO methods. But comparing the group bridge approach with the group
LASSO approach, the group bridge method tends to more accurately select correct
groups as well as the variables in each group, even when the censoring rate is high
as 70 %. While the group LASSO method tends to select more groups and variables
than the true models, and when the censoring rate is high, the group LASSO method
performs poorer than the group bridge method. So in terms of the number of groups
selected, the number of variables selected, the percentage of correct models selected
and the correct variable selected, the group bridge considerably outperforms the
group LASSO, and the group bridge incurs smaller model error than the group
LASSO.

Table 5.1 Simulation results for Scenario 1

CR% | Method No.Grp No.Var % Corr.Grp 9 Corr.Var Model error
20 GBridge |2.00(0.000) | 15.98(0.156) | 100.00(0.000) | 97.50(0.156) |0.596(0.253)
GLASSO |2.23(0.508) | 17.84(4.061) | 80.50(0.397) |80.50(0.397) |2.025(0.269)
50 GBridge |2.00(0.000) | 15.93(0.251) | 100.00(0.000) |93.25(0.251) |0.900(0.369)
GLASSO |[2.57(0.723) |20.52(5.780) |56.25(0.497) |56.25(0.497) |2.328(0.673)
70 GBridge |2.00(0.000) | 15.86(0.352) | 100.00(0.000) | 86.50(0.342) |1.442(0.683)
GLASSO |2.30(0.544) | 18.40(4.351) | 73.75(0.441) |73.75(0.441) |2.710(1.014)
True 2 16 100 100 0
GBridge the group bridge method, GLASSO the group LASSO method, CR censoring rate,
No.Grp the average number of groups selected, No.Var the average number of variables selected,
% Corr.Grp the percentage of occasions on which the model produced contains the same groups as
the true model, % Corr. Var the percentage of occasions on which the model produced contains the

same variables as the true model, Model Error = (/§ — ﬁO)TE(XTX)(ﬁ — B,)- Empirical standard
deviations are in the parentheses
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5.5.2 Scenario 2

In this experiment, the group size differs across groups. There are six groups made
up of three groups each of size 10 and three groups each of size 4. The covariate
vector is X = (Xi,...,Xg), where the six subvectors of covariates are X; =
(X10(—1)+15 - - - » X10G-1)+10), for j = 1,2,3, and X; = (Xa(—4)+31, - - - » Xd(j—4)+34)>
for j = 4,5,6. To generate the covariates xy,...,Xs, we first simulate Z;(i =
1,...,6)and Ry, ..., Ry independently from the standard normal distribution. For
Jj = 1,...,30, let g; be the largest integer less than j/10 + 1, then g; = 1,2, 3,
and for j = 31,...,42, let g; be the largest integer less than (j — 30)/4 + 4, then
g = 4,5, 6. The covariates (xi, ...,X4) are obtained as

Xj=(Zy +R)/V2, j=1... 42

The logarithm of failure times are generated from 7' = Zﬁl x;B; + ¢, where the

random error is & ~ N(0,2?), and
Bi,...,B1w0) =(0.5,-2,05,2,-1,1,2,-1.5,2,-2),
Bits.-.,Br) =(—1.5,2,1,-2,1.5,0,0,0,0,0),
(Bars -, B30) = (0,...,0), (B31,....Bs) = (2,2, 1, 1.5),
(B3s, ..., B3s) = (—1.5,1.5,0,0), (B9,...,Bs) = (0,...,0).
Thus we consider the situation that the group size differs across groups and the
coefficients in a group can be either all zero, all nonzero or partly zero.

Table 5.2 summarizes the simulation results for Scenario 2. From Table 5.2 we
can see that when the censoring rate is low, the group bridge method choses more

Table 5.2 Simulation results for Scenario 2

CR% Method No.Grp No.Var 90 Corr.Grp Model error
20 GBridge 4.00(0.279) 24.50(1.460) 96.0(0.196) 1.569(0.583)
GLASSO 5.12(0.994) 35.38(5.491) 44.0(0.497) 3.045(0.882)
50 GBridge 4.08(0.473) 24.86(1.962) 90.5(0.293) 2.241(0.907)
GLASSO 5.42(0.909) 37.20(5.075) 29.0(0.454) 3.487(1.015)
70 GBridge 4.02(0.453) 22.51(2.212) 89.3(0.310) 4.113(1.823)
GLASSO 4.97(1.001) 34.35(5.393) 51.8(0.500) 3.775(1.122)
True 4 21 100 0

GBridge the group bridge method, GLASSO the group LASSO method, CR censoring rate,
No.Grp the average number of groups selected, No.Var the average number of variables selected,
% Corr.Grp the percentage of occasions on which the model produced contains the same groups as
the true model, Model Error = (/§ —By)E (XTX)(ﬁ — Bo). Empirical standard deviations are in
the parentheses
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Table 5.3 Simulation results No.Var

in each group for Scenario 2 CR% Method |Gl |G2 |G3 G4 |G5 |G6
20 GBridge (9.8 |79 0.0 |40 |27 |0.0
GLASSO |10.0 [10.0 |55 |40 |40 |19
50 GBridge [9.8 (82 0.2 |40 |27 |0.0
GLASSO |10.0 [10.0 |7.0 |40 |40 |22
70 GBridge (9.3 |75 0.1 |39 |16 |0.0
GLASSO |10.0 [10.0 4.7 |40 |40 | 1.6
True 10 5 0 4 2 0
GBridge the group bridge method, GLASSO the group

LASSO method, CR censoring rate, No.Var the average
number of variables selected, G/, ..., G6 the six groups

accurate groups and variables than the group LASSO method. When the censoring
rate goes up, both of the group bridge and group LASSO approaches result in
higher model errors, but the group bridge method still performs better than the group
LASSO in terms of the number of groups selected, the number of variables selected
and the percentage of correct models selected. Table 5.3 gives the average variable
selected in each group. The group bridge estimator is closer to the true value while
the group LASSO method tends to choose more variables than the true variables in
each group.

5.6 Real Data Analysis

The PBC data can be found in Fleming and Harrington (2011), and is obtained by
using attach(pbc) inside the R {SMPractials} package. The data set is from the
Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver conducted between
1974 and 1984. In this study, 312 out of 424 patients who agreed to participate
in the randomized trial are eligible for the analysis. Among the 312 patients, 152
were assigned to the drug D-penicillanmine, while the others were assigned to a
control group with placebo drug. Some covariates, such as age, gender and albumin
level, were recorded. The primary interest was to investigate the effectiveness of
D-penicillanmine in curing PBC disease. To compare with the analysis of PBC data
in Huang et al. (2014), we restrict our attention to the 276 observations without
missing covariate values. The censoring rate is 60 %. All of the 17 risk factors are
naturally clustered into 9 different categories, measuring different aspects, such as
liver reserve function and demographics, etc. The definitions of the 10 continuous
and 7 categorical variables are given in the accompanying study Dictionary table
Table 5.4.

We fitted the PBC data in the AFT model, then used the group bridge and group
LASSO methods both with BIC to select the tuning parameter A,. Huang et al.
(2014) fitted this data set in the Cox proportional hazards model with the group
bridge penalty under the BIC tuning parameter selection method. For comparison,
Table 5.5 includes these different penalties and different estimation results. For the
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Table 5.4 Dictionary of PBC data covariates

L. Huang et al.

Group Variable| Type| Definition
Age(Gl) X1 C Age(years)
Gender(G2) X2 D Gender(0 male; 1 female)
Phynotype(G3) X3 D Ascites(0 absence)
X4 D Hepatomegaly(0 absence; 1 presence)
X5 D Spiders(0 absence; 1 presence)
X6 D Edemaoed(0 no edema; 0.5 untreated/successfully treated)
Liver function X7 C Alkaline phosphatase(units/litre)
damage(G4)
X8 C Sgot(liver enzyme in units/ml)
Excretory function of | X9 C Serum bilirubin(mg/dl)
the liver(GS)
X10 C Serum cholesterol(mg/dl)
X11 C Triglyserides(mg/dl)
Liver reserve X12 C Albumin(g/dl)
function(G6)
X13 C Prothrombin time(seconds)
Treatment(G7) X14 D Penicillamine v.s. placebo(1 control; 2 treatment)
Reflection(G8) X15 D Stage(histological stage of disease, graded 1,2,3 or 4)
X16 C Urine copper(ug/day)
Haematology(G9) X17 C Platelets(per cubic ml/1000)

Note: Type: type of variable (C: continuous; D: discrete)

Table 5.5 Estimation results of PBC data

AFT-BIC Cox-BIC

Group Covariate GroupLASSO GroupBridge GroupBridge
Gl Age 0.002 0 0
G2 Gender 0.454 0.25 —0.945

asc —0.455 —0.481 0.136
3 hep 0.136 0.071 0.146

spid —0.404 —0.36 0.102

oed —0.310 —0.4 0.566
Ga alk 0 0 0

sgot 0 0 0

bil —0.059 —0.047 0.060
G5 chol 0.001 0 0

trig 0.001 0 0
G6 alb 1.134 1.12 —1.289

prot 0.268 0.322 0.124
G7 trt 0 0 —0.237
G8 stage 0.033 0 0

cop —0.002 —0.002 0
G9 plat 0 0 0

Note: The results for Cox-BIC are from Huang et al. (2014)
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Fig. 5.1 Group bridge vs. Group LASSO estimation results of PBC data based on AFT model

AFT model, the group LASSO and group bridge methods obtain similar estimation
coefficients values, except that comparing with the group bridge method, the group
LASSO method selected one variable age in group 1, two variables chol and trig
in group 5 and the variable stage in group 8, while the group bridge method did
not select these variables. Using the group bridge with BIC under different models,
the AFT and Cox models selected almost the same groups and variables, except the
AFT model chose the variable cop in group 8, while the Cox model did not. The
Cox model selected the variable trt in group 7, while the AFT model did not.

In order to have a clear visual comparison, we plotted the coefficients based
on different models and different penalty functions. Figure 5.1 shows the estimated
coefficients based on the AFT model with the group LASSO penalty (blue triangles)
and the group bridge penalty (red circles), respectively. We could see that except
group 8, the group bridge and group LASSO choose the same groups and the
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Fig. 5.2 Group bridge estimation results of PBC data based on AFT vs. Cox model
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estimated coefficients for each variable are very similar. Figure 5.2 contains the
estimated coefficients under the group bridge method in the AFT model and the
Cox proportional hazards model. The coefficients in the AFT model indicate the
relationship between the covariates and the logarithm of survival time and the
coefficients in the Cox model represent the relationship between the covariates and
the logarithm of hazard, their signs are opposite. From Fig.5.2 we also see that
except for group 7, these two models select the same groups and variables based on

the group bridge method. Figure 5.3 combines Figs. 5.1 and 5.2 for a better visual
comparison.
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Fig. 5.3 Comparison of the estimation results of PBC data based on three methods

5.7 Summary and Discussion

We have considered an extension of the group LASSO and group bridge regression
to the AFT model with right censored data. Stute’s weighted least squares estimator
with the group bridge penalty in AFT model is comparable to that in the Cox
regression model with group bridge penalty. The group bridge approach performs
better in selecting both the correct groups and individual variables than the group
LASSO method even when censoring rates are high. We have established the
asymptotic properties of the group bridge penalized Stute’s weighted least squares
estimators and allow the dimension of covariates to be larger than the sample size,
which is applicable for the high-dimensional genomic data.
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We focused on the group bridge penalty for the group and within-group variable
selection, and only compared it to the group LASSO penalty. It is possible to
consider the Stute’s weighted least squares estimators with the group SCAD penalty
(Wang et al. 2007), or with the group MCP penalty (Breheny and Huang 2009),
although the asymptotic properties of each penalized method need to be studied.

On the other hand, in many real life survival data sets, covariates have nonpara-
metric effects on the survival time, so the nonparametric or partial linear regressions
are of interest. In order to distinguish the nonzero components from the zero
components, the group bridge approach could also be applied in the nonparametric
and partial linear regressions. We are working on these projects now and the detailed
information will be reported elsewhere.
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Chapter 6
A Proportional Odds Model for Regression
Analysis of Case I Interval-Censored Data

Pooneh Pordeli and Xuewen Lu

Abstract Case I interval censored or current status data arise in many areas such
as demography, economics, epidemiology and medical science. We introduce a
partially linear single-index proportional odds model to analyze these types of data.
Polynomial smoothing spline method is applied to estimate the nuisance parameters
of our model including the baseline log-odds function and the nonparametric link
function with and without monotonicity constraint, respectively. Then, we propose
a simultaneous sieve maximum likelihood estimation (SMLE). It is also shown that
the resultant estimator of regression parameter vector is asymptotically normal and
achieves the semiparametric information bound, considering that the nonparametric
link function is truly a spline. A simulation experiment presents the finite sample
performance of the proposed estimation method, and an analysis of renal function
recovery data is performed for the illustration.

6.1 Introduction

The proportional odds (PO) model has been used widely as a major model for
analyzing survival data which is particularly practical in the analysis of categorical
data and is possibly the most popular model in the case of ordinal outcomes related
to survival data. Ordinal responses are very common in the medical, epidemiolog-
ical, and social sciences. The PO model was first proposed by McCullagh (1980)
where he extended the idea of constant odds ratio to more than two samples by
means of the PO model. Pettitt (1982) and Bennett (1983) generalized this model
to the survival analysis context and subsequently much effort and research has gone
into proposing reasonable estimators for the regression coefficients for this model.
Although the proportional hazards (PH) model is the most common approach used
for studying the relationship of event times and covariates, alternate models are
needed for occasions when it does not fit the data. As mentioned in Hedeker and
Mermelstein (2011), in analysis of failure time data, when subjects are measured
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repeatedly at fixed intervals in terms of the occurrence of some event, or when
determination of the exact time of the event is only known within grouped intervals
of time, the PO model is a rather elegant and popular choice considering its ordered
categorical nature without any substantial increase in the difficulty of interpretation.
The regression parameter estimates have a nice interpretation as the additive change
in the log-odds (multiplicative effect on the odds) of survival associated with a one
unit change in covariate values.

Suppose T is the failure time of some event of interest and C is a random
censoring time. The observations of failure time, 7, are from current status data
type where the only information that we have about them is that if the failure has
happened before or after the examination time C instead of being observed exactly.
LetV = (Vy,..., Vq)T is a g-dimensional linear covariate vector which is time
independent. The linear PO model is defined as

1 -S|V 1 —So(z

vy _ o(2) exp(a V).

S@v) So(1)

Since logit(#) = In{u/(1 — u)}, by taking natural logarithm of both sides, we can
write the model as follows

logit{1 — S(#|V)} = logit {1 — So()} + "V, (6.1)

where S(#|V) is the survival function of T conditional on covariate V, o =
(@1,...,04) is a g-dimensional regression coefficient vector, and So(f) is the
baseline survival function corresponding to V' = 0. Thus, logit{l — Sy(?)} is the
baseline log-odds function. It is a monotone increasing function since 1 — So(r) =
Fo(#) and logit(-) are increasing. In this model, oj, j = 1,...,q, is the increase in
log-odds of falling into or below any category of the response variable, associated
with the one unit increase in V; holding all other V;’s (j* # j) constant. Therefore, a
positive slope indicates a tendency for the response level to increase as the covariate
increases. In other words, the PO model considers the effect that changes in the
explanatory variables V| to V, have on the log-odds of T being in a lower rather
than a higher category. A key advantage of this model is that it uses a logit link
yielding constant odds ratios; hence the name is proportional odds model.

One important property of the PO model is that the hazard ratio converges from
exp{a " V} to unity as the time changes from zero to co. From (6.1) we can write

1

S t V - )
( | ) 1+ (1—80(0) ex (OlTV)
sowy ) &P

and since S(1|V) = e=4") and Sy(r) = ¢~ 4O we have

A@V) =In{l + (%0 — ) exp (aTV)},
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and then considering A(¢|V) = dA(#|V)/0t, it follows that

A0y !
Ao 1+ {exp(—aTV) =1} So ()

Thus, when t = 0, So(¢) is 1 and A(1]V)/Ao(f) = exp{a 'V}, and when r = oo,
So(#) is 0 and A(¢|V)/Ao(t) = 1. This is different from the PH model where the
hazard ratio remains constant as time passes, such that A(z|V)/A¢(r) = exp(a' V),
which could be unreasonable in some applications where the initial effects such as
differences in the stage of disease or in treatment can disappear over the time. In this
case, the property of the PO model that the hazard ratio converges to 1 as ¢ increases
to infinity makes more sense.

To analyze interval-censored data, a number of articles considered the PO model.
Dinse and Lagakos (1983) focused on score tests derived under model (6.1) which
expressed tumour prevalence as a function of time and treatment. Huang and
Rossini (1997) used sieve maximum likelihood estimation (SMLE) to estimate
the finite-dimensional regression parameter. They showed that the estimators are
asymptotically normal with /n convergence rate and achieve the information
bound. Shen (1998) also developed an estimation procedure for the baseline func-
tion and the regression parameters based on a random sieve maximum likelihood
method for linear regression with an unspecified error distribution, taking the
PH and PO models as special cases. Their procedures used monotone splines
to approximate the baseline survival function. They implemented the proposed
procedures for right-censored and case II interval-censored data. The estimated
regression parameters are shown to be asymptotically normal and efficient.

For PO models with current status data, Huang (1995) used maximum likelihood
estimation (MLE). Rossini and Tsiatis (1996) treated the baseline log-odds of
failure time as the infinite-dimensional nuisance parameter of their model and
approximated it with a uniformly spaced non-decreasing step function, and then
proceeded with a maximum likelihood procedure. In Rabinowitz et al. (2000)
the basis for estimation of the regression coefficients of the linear PO model is
maximum likelihood estimation based on the conditional likelihood. Their approach
is applicable to both current status and more generally, interval-censored data. Wang
and Dunson (2011) used monotone splines for approximating the baseline log-
odds function, and McMahan et al. (2013) proposed new EM algorithms to analyze
current status data under two popular semiparametric regression models including
the PO model. They used monotone splines to model the baseline odds function and
provided variance estimation in a closed form.

However, many predictors in a regression model do not necessarily affect the
response linearly. In order to consider the non-linear covariate effects, we have
to think about a more flexible model. There are not many articles for this in the
literature, but as a special case of the transformation model for this, Ma and Kosorok
(2005) presented a partly linear proportional odds (PL-PO) model which is defined
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as follows
logit{1 — S(z|V. X))} = logit{1 — So()} + & T V + ¢ (X)), (6.2)

where ¢ is an unknown function relating to the one-dimensional non-linear covariate
Xi. They used penalized MLE to estimate parameters of their model and made
inference based on a block jackknife method. To analyze right-censored data, Lu
and Zhang (2010) studied a PL transformation model where (6.2) is a special case.
They applied a martingale based estimating equation approach, consisting of both
global and kernel-weighted local estimation equations to estimate parameters of
their model and presented asymptotic properties of their estimators. They also used
a resampling method to estimate the asymptotic variance-covariance matrix of the
estimates. In these models they could handle just one non-linear covariate X; € R.

Since in many real applications we may face with more than one non-linear
covariate, we need to think about a model to incorporate high dimensionality. In
this chapter, we propose a partially linear single-index proportional odds (PLSI-
PO) model to deal with high dimensionality in analyzing current status data. This
model reduces the dimension of data through a single-index term and it involves
the log-odds of the baseline survival function which is unknown and has to be
estimated. We use B-splines to approximate log-odds of baseline survival function,
In{So(-)/ (1 — So(-))}, and also to approximate the link function of single-index
term, ¥ (). Asymptotic properties of the estimators are derived using the theory
of counting processes.

6.2 Model Assumptions and Methods

In many situations there is limited information for a single observation about the
event of interest and the only information that we have is that it has occurred before
or after the examination time. The failure time is either left- or right-censored
instead of being observed exactly and we only observe whether or not the event
time, T, has occurred before some monitoring time C. In this case, we are dealing
with current status data. Suppose Z = (VT,XT)T is a covariate vector. In terms
of the odds ratio of S(¢|Z) which is the survival function of T conditional on Z, we
define the PLSI-PO model as follows

R R R
1—8((Z) = 1= o TP V-V NN (6.3)

where o = (al,...,aq)T and § = (,31,...,,BP)T are g- and p-dimensional
regression coefficient vectors, respectively, Sy(7) is the baseline survival function
corresponding to V. = 0, X = 0; and ¥ () is the unknown link function for
the single-index term. Following Huang and Liu (2006) and Sun et al. (2008),
for identifiability of the model, we consider some constraints. For this respect,
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we assume f; > 0 in order to the sign of 8 be identifiable, and because any
constant scale can be absorbed in ¥ (-) we can only estimate the direction of §
and the scale of it is not identifiable, so it is required that ||8|| = 1, where
lal = (a"a)'/? is the Euclidean norm for any vector a. On the other hand, since
there are two nonparametric functions and thus any constant in one of them can be
assimilated in the other one, for identifiability of the model, we assume E(V) = 0
and E{y/ (BT X)} = 0.

By taking natural logarithm of both sides of (6.3), we have the model as follows

1-S#2)| 1 —So(?) T T
ln{ s(12) }_h‘{ Sol0) }“‘ VHYEn.

that is
logit{1 — S(1|2)} = logit{1 — So(t)} + &V + ¥(B T X), (6.4)

where logit(u) = In{u/(1 —u)} for 0 < u < 1 and So(-) = =40 is the baseline
survival function.

In the setting of current status data, we do not observe the values of T directly,
thus the observations are in the form of independent samples of {C;, §;, Vi, X;}'_,
drawn from the population {C, §, V, X}, where censoring time C is continuous on
the interval [a,, b.] with the hazard function A.(t|Z) = v(¢|Z); § = I(C < T) is the
censoring indicator where § = 1 if the event of interest has not occurred by time C
and otherwise § = 0.

Since H(-) = logit{l — So(-)} = —logit{Sp(-)} and ¥ (-) are two unknown
functions of the model (6.4), we need to estimate them. We use the B-spline method
to approximate the two unknown functions H(-) = —logit{So(:)} and ¥ (), and then
we use a maximum likelihood approach to estimate parameters of the model.

Suppose L, is the collection of nonnegative and nondecreasing functions Ag(-)
on [ac, b.] and .%, be the space of polynomial splines of order p;, > 1, where
each functional element of this space is defined on a sub interval of a partition.
To get faster convergence rate in B-spline approximation, we assume for p; > 2
and 0 < r < p; — 2, each functional element of this space is » times continuously
differentiable on [a., b.]. For each A € L,,, we have

logit{l — e~ 1™} = logit{l — So(r)}

dfy

= —logit{So()} = > _ uli(C) = 7" L(C), (6.5)
k=1

where L(C) = (Li(C), ..., Ly, (C))T is the vector of B-spline basis functions with
Li(C) € &, foreachk = 1,...,dff and T = (1q,..., tde)T is the vector of B-
spline coefficients. We have df; = K; + p. is the degree of freedom (number of
basis functions) with K; interior knots and B-splines of order py.
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Let ¥, be the collection of ¥ (-) functions on [a, byy] and 2, be the space of
polynomial splines of order pg > 1, with the same properties as .Z,. To satisfy
the identifiability centering constraint, E{1/ (80X)} = 0, we focus on a subspace of
spline functions S° = {5 : s(x) = szﬁ YeBe(BTx), ', s(X;) = 0} with basis
{Bi(BTX),...,By(BTX)} where By(Bx) = B,(BTx) — (O, Be(BTX:)/n) for
¢ =1,...,dfp, and mention that as to the empirical version of the constraint, this
subspace is dfg, = dfz — 1 dimensional. So ¥ € W, can be approximated at 8T X as

follows

dfp1

Y(BTX) = yBu(BTX) = yTB(BTX). (6.6)

(=1

where B(8TX) = (Bi(BTX),... , Bagg, (B7X))T is the vector of local normalized
B-spline basis functions, B¢(8'X) € %,y = (y1,..., ydel)T is the vector of B-
spline coefficients. Having Kp interior knots and B-splines of order pg, the degree
of freedom of the B-spline would be dfy = Kp + ps.

For identifiability purpose we assume [|f]| = 1 and perform the delete-one-
component method by defining B = (B2,...,B,) as a (p — 1)-dimensional
vector deleting the first component ;. We also assume 8; > 0 which could be

implemented by considering 81 = \/1 - ||,3~||2 = \/1 -yt BZ. Then, we have
B = (\/1 — > _, B2 B, ..., By T where the true parameter ||,30|| < 1. Therefore,

B is infinitely differentiable in a neighborhood of the true parameter ,3~0. Since we
use B-spline to estimate H(-) = logit{] — e~4°")}, the baseline hazard function is
Ap(-) =1n {1 + eITL(')} which has to be positive and nondecreasing. The positivity
is guaranteed by property of a logarithmic function and we just need to satisfy the
condition of being nondecreasing by putting a constraint on the coefficients of the
basis functions, thatis 7y < --- < 745

Under suitable smoothness assumptions logit{1 — So(-)} and ¥ (-) can be well
approximated by functions in %, and %,, respectively. Therefore, we have to
find members of %, and 4, along with values for « and B that maximize the
semiparametric log-likelihood function.

Now in Eq.(6.4) we replace B-spline approximations for logit{1 — Sy(7)} and
¥ (BTX) from (6.5) and (6.6), respectively. Considering logit{l — S(1]Z)} =
—logit{S(#|2)}, (6.4) is equivalent to

logit(p) = —1 ' L(C) —a 'V — y TB(BTX). 6.7)

where p = p(f) = S(#|Z). Since for subject i, i = 1,...,n, we have S(C;|Z;) =
Pr(C; < T;|Z) = E{(C: < T)|Z} = E(6]Z;), by assuming 6; as a binary
response, we can consider model (6.7) as a generalized linear model (GLM) with
linear predictor —f = —t"L(C) —a'V — y TB(BTX) and “logit” link. Then we

use the GLM methods, available in many computer software packages, to estimate
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parameters «, 8, T and y. We use “glm” function in the R package to do that. The
constraints set up for the model are not used for the estimated values obtained in
this step, and we consider them as the initial values of the parameters of PLSI-
PO model for the next step which is maximizing the semiparametric log-likelihood
function subject to the mentioned constraints.

For current status data, the likelihood function at observed censoring times, C;,
given covariates, Z;, is proportional to [ /_ , {S(Ci|Z)}% {1 — S(Ci|Z;)}'~% where for
eachi = 1,...,n, S(Ci|Z) = exp{—A(Ci|Z)} = pi(C;) = p;. Thus, we can write
the semiparametric log-likelihood function for PLSI-PO model as follows

n

o ="Lo(a.B.So.¥) = D {&iIn(pi) + (1—8) In(1 — py)}

i=1

= Z 8,’11’1 . !
= 1+ exp {—logit{So(C)} + aTV; + ¥(BT X)}

exp {—10git{So(C)} + & TV; + ¥ (BT X))}

A { 1+ exp {—logit {So(C)} + aTVi + v (BT X))}

(6.8)

Then, we plug in the B-spline approximations of —logit (So(-)) and ¥ () obtained
from (6.5) and (6.6) into the semiparametric log-likelihood function (6.8). So we
have the log-likelihood function as follows

‘ 1
lo="lo(a.B.1.y) = Z [8" In { 1+exp{tTLC) +aTVi+yTBBTX)}

i=1

exp {rTL(C,-) +alVvi+ VTB(ﬂTXi)}

+(1—=48;)In { 1+ exp {‘L'TL(Ci) +aTV, + yTB(ﬂTXi)}

(6.9)

Now we can estimate the parameters of our regression model, (o, 8, t,y),
by maximizing the log-likelihood function (6.9) which has a parametric form
after using the B-spline approximated values of the infinite-dimensional nuisance
parameters. To maximize (6.9), we use a sieve method through an iterative algorithm
subject to the mentioned constraints on coefficients t and f;i.e., 7y < -+ < 7y for
monotonicity of A¢(C) and B; > 0 and ||| = 1 for the purpose of identifiability

iny(B7X).
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Some regularity conditions have to be satisfied in order to establish large sample
properties of the estimators in PLSI-PO model. These conditions are as follows:

(C1) (i) T and C are independent given the covariate history Z. (ii) Censoring time,
C, has an absolutely continuous distribution on [a,, b.] where 0 < a, < b. <
00, with hazard function v(¢f) = v(t,Z) = A.(t,Z) conditional on covariate
vector Z.

(C2) Assume for any integer s > 1, there exist continuous and positive sth
derivatives A((f) and ). Then let the finite-dimensional parameter spaces ©),
for o and ®, for ,3 are bounded subsets of R? and RP_I, respectively. Assume
the true regression parameter values ap € @) and By € &, are interior points
of the true functions Ay € I,,, and ¥ € ¥,,.

(C3) (i) Forany o # « and By # B we have Pr(aOTV #a'V)>0and Pr(,B(—)'—X #*
BTX) > 0. (ii) Assume E(V) = 0 and for the true parameter ,30 € @, and the
true function ¥ (-) assume E{y/ (B X)} = 0.

(C4) (i) Covariates V and X have bounded supports which are subsets of R? and R?,
respectively. That is, there exist vy and xq such that ||V] < v and || X|| < xo
with probability 1. (ii) If we denote the distribution of T by Fy such that
Fy(0) = 0, then the support of C is strictly contained in the support of F,
that is for 7, = inf{t : Fy(f) = 1} we have 0 < a. < b, < tf,.

(C5) For a small ¢ > 0 we have Pr(T < a.|C,V,X) > ¢ and Pr(T > b |C,V,X) >
& with probability one.

(C6) The baseline cumulative hazard function Ay has strictly positive derivative on
[ac, b.], and the joint distribution function G(c, v, x) of (C, V, X) has bounded
second-order partial derivative with respect to c.

Condition (C1) is to satisfy non-informative censoring condition. (C2) is to
ensure identifiability of the parameters, (C3) implies certain characteristics in order
to apply spline smoothing techniques. (C4) bounds likelihood and score functions
away from infinity at the boundaries of the support of the observed event time.
(C5) is required to ensure that the probability of being either left-censored or
right-censored is positive and bounded away from zero regardless of the covariate
values. (C6) requires for the partial score functions (or partial derivatives) of the
nonparametric components in the least favorable direction to be close to zero, so
that the /n convergence rate and asymptotic normality of the finite-dimensional
estimator can be obtained. Similar conditions in a linear PH model for current status
data are discussed in Huang (1996).

6.3 Theory of Estimation

We first assume that (6.6) holds, i.e., the link function v is a B-spline function with
fixed knots and order, then model (6.3) contains only one nonparametric function of
So(7), we can calculate the information matrix of the estimators of the regression
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parameters. When ¥ is a smooth nonparametric function instead of a B-spline
function, the derived theory works as an approximation. Our simulation results
indicate the approximation is quite accurate and provides a practical solution for
real data analysis.

6.3.1 Information Calculation

Considering observations {C;,§;, Vi, X;}!_,, we define two counting processes
N]i(l) = 8LI(CL < t) and Nzl‘(t) = (1 — 8L)I(Cl < t). Then let Ni(t) =
Ni(t) + Noi(t) = §I(C; <) + (1 =8)I(C; < 1) = I(C; < t)and Y;(t) = I(t < C})

be at risk process for time point t. Having Ny;(f) and N,;(¢) with intensity processes
S (1) = Yi(@vi())pi(r) = Yivip; and fi,, (1) = Yi())vi())(1 — pi(1)) = Yivi(1 — p),
we define M,;(f) and M>;(¢) as their corresponding compensated counting processes
as follows

Mut) = Nu() — /0 Yi)vi(s)pis)ds.

Mzi(t) = Nzl‘(t) —/0 Yi(S)Ui(S)(l —pi(s))ds,

which are martingales as shown in Martinussen and Scheike (2002). In the
following, we shall drop ¢ from N, (¢), Na(t), M1 (2), M2 (1), v(t), Y(¢) and p(¢) unless
it needs to be specified. We can write the log-likelihood function given in (6.8), as
follows

o= Lo, B, A ¥) =) %/ (Inp;) dNy; + / (In(1—pi))dNaig . (6.10)
i=1

where p; = p(C;) = S(C;|Z;) foreachi = 1,...,n with

1

S(Gilz) = 1 + exp[—logit {So(C))} + TV + ¥ (BTX)]

Since we have an unknown parameter in one of the two unknown functions of our
model, in the procedure of obtaining the efficient information bound, it is difficult to
use projection onto a sumspace of two non-orthogonal L, spaces. Thus, we replace
the B-spline approximated value of ¥(B8TX) from (6.7) and consider Ho(-) =
—logit{So(-)} = —logit{e="°")} as the only infinite-dimensional nuisance parameter
of the model. We consider a simpler finite-dimensional parametric submodels
contained within this semiparametric model. Assuming parametric submodel for
the nuisance parameter H(-) = Ho(-) as a mapping of the form n — H,
in {Hg,) : n € Ret(p=D+dlsy Then, characterize H(-) by a finite-dimensional
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parameter 1 such that

0H, (m)

() =a() =a. (6.11)
an

As we re-parametrized f as B = (B, ET)T, the marginal score vector for 6 =
(BT.aT,yT)T is obtained by partially differentiating Lo(0,Hy) given in (6.10),
for one observation, with respect to 6 such that

where by defining X = (X, ... ,X,,)T, with X, as the first element of X, and 8 =
\/1 — > F_, B2, we have

a0 ) . B
S; = 3/50 :/yTB BTX) (X—Xlﬂl){psz—(l—p)le},
L1
S0= 0 Z/V{Psz—(l—P)le}s
and
ol
$,= 30 = [ BT (p v = (1 = prami},
with

1

p=p(0)=S5(C12) = 1 +exp {H(C) +aTV +yTBETX)}

Knowing that dN; = dM; + Yvpdt and dN, = dM; + Yv(1 — p)dt we can write
S5 = / U* {p aM, — (1 — p)dM,}

where U* isa (g + (p — 1) + dfs1) x 1 vector defined as follows

T

o* = VT ABBTX))

yTB(BTX) (X—xl 4 )
B
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Let e; = exp {OlTV + yTB(,BTX)}, and £, be the expression inside the integral
in (6.10) such that €, = (Inp) dN; + (In (1 = p)) dN>. For H() = —logit{So()} we
have Sy (a) = [ Si(a) where S;(a) = 5% x 3[-(;](77;) and

9, _ 9 ) Do Vs e Y am
= n n
0H 0H 1+ efle; ! 1+ efle; 2

] . 1+ efe;
BH{_ln(l+e el)dMl—ln( eH61 )sz}

efle 1
- 1+
1+ efle 1+ efle;

= pdM, — (1 — p)dM,.

dM,

Thus, the score operator associated with H is as follows

Sula) = / a(t) {p dMs — (1 — p)dMy}

Under conditions (C1) to (C6), the efficient score for the finite-dimensional
parameter 6 is the difference between its score vector, S5, and the score for a
particular submodel of the nuisance parameter, Sy (a). The particular submodel is
the one with the property that the difference is uncorrelated with the scores for all
other submodels of the nuisance parameters. Thus, the score operator for 6 is as
follows

S = S5 — Su(a).
We have to find a* = a*(¢) such that
5% = 85— Su(a") = / (0 —a*) (pdMs— (1 —p)dMy}  (6.12)
be orthogonal to any other Sy(a) € Ay where Ay = {Su(a) : a € Ly(P¢)} and

Ly(Pc) = {a : E[Jla(O)|Pp(C)(1 = p(O)] < oo} (ie., E(S:Sy) = 0). Thus, we
have

E(S}Sn) = EI(S; — Su(a*)}Su(a)] = 0, (6.13)

for any a € L,(Pc¢). The orthogonality Eq. (6.13) is equivalent to

E[/(U*—a*){l’ am, — (1 —P)dMl}X/a{P dM, — (1 _P)dMl}:|
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=E [/(U* —a*){p dM, — (1 —p)aM,} x /a{p am, — (1 _P)dMl}i|
=E [/(i]* —a®)ap*d(M,) + /(U* —a®)a(l —p)zd(Ml)i| =0. (6.14)
Then, since d{(M;) = pvYdt and d{M,) = (1 — p)vYdt, it is equivalent to
J[—aE {(f/* —a*)p(1 —p)Yvdt}] =0,
and then
[ [-a[E{U*p(1 = p)Yv} + a*E{p(1 —p)Yv}]]dt = 0.
So considering a # 0, we have

. _ E{f]*p(l —p)Yv}
E{p(l-p)Yv}

By plugging in a* into (6.12) we have the efficient score for 6 as follows

st = / [U* - Eél{]p}(jl(l_;?g;}} (pdMs— (1 —p)dMy}.  (6.15)

The empirical version of the efficient score for 0 is
» n 5 S(g)
S6.4) =) / Ur — (15) {pi dMa; — (1 — pi)dMy;} (6.16)
i=1 Sy

where

SO = 50 ) = D WH® pi (1= p)Yiv;, for u=0,1,

1

with ® denoting the Kronecker operation defined as »#®° = 1, b®!' = b and
b®% = bb". Since v; = v(1]Z;) is an unknown function of the covariate vector, in

order to obtain an estimated value for S,(f), we need to estimate v;. Following the idea
of Martinussen and Scheike (2002), we use a simple kernel estimator for estimating

value of Sf,g), where v;(¢)dt is replaced by the convolution of the kernel estimator
K, (+) and dN;(s) such that D(¢|Z;)dt = K, (s — t)dN;(s). The kernel function satisfies
Ky(-) = (1/b)K(-/b), and b > 0 is the bandwidth of the kernel estimator. We also
assume that [ Kj,(u)du = 1, [ uK,(u)du = 0 and the kernel has compact support.



6 Partially Linear Single-Index Proportional Odds Model 113

Therefore, after obtaining the semiparametric maximum likelihood estimator é,

using the plug-in method, Sf,g) is estimated as follows:
$9 =500 =3" / Pi(s) (1 = pi(5)) Yi(s)(U7)®“Ky(s — D)dNi(s). for u=0, 1,
i=1

where
1
[1 + exp {—logit {SO(S)} +aTv+ JQTB('BATX)}]
1
[1 + exp {—logit {e“i(”} +atv+ ?TB('BATX)}] |

pi(s) =

with kernel function K, (-) = (1/b)K(-/b), and b > 0 is the bandwidth of the kernel
estimator. We see that v;(¢)dr = D (¢|Z;)dt = K (s — 1)dN;i(s) = Kp(C; — )I(C; < 1)
for any ¢ € [a., b.], sO we have

Sf)(f) = Zﬁi(ci) (1 =pi(Cy)) Yi(Ci){f];((Ci)}@uKb(Ci —1), for u=0,1.
i=1
The Epanechnikov kernel function is used here which is defined as

Ky(u) = (1/b)(3/4) (1 = (u/b)*) 1(ju/b| < 1).

Then we can write the information matrix at éo as follows:
1(6y) =E U {U* —E (U*Yvp(1 —p)) E~" (Yvp(l —p))}®2p(1 —p)Yvdt:| .

Using the central limit theorem for martingales, n~!/ 2S(éo, /i) converges in distri-
bution to a normal distribution with mean zero and covariance matrix X which can
be consistently estimated by

i o T
3 I ¢ - S(le) - S(le) 2 2
Y = u-— u:— . pi dN»; + (1 — p;)*dNy;}
1 n X;/ i 3‘(0) i 3‘(0) {pz 2 ( 17) l}
= 0 0

and X converges in probability to X; and therefore, we have n!/ 2(5 - éo)
converges in distribution to a mean zero normal distribution with covariance matrix
Y = I"Y(6y) X, (6y). The robust sandwich estimator of the variance is given

by y = }_l(é)fili_l(é). With the consistent estimator of A we can conclude
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that &, = ?(é) + 0,(1), and thus, n1/2(é - éo) converges in distribution to a

mean zero random vector with covariance matrix I_l(éo) estimated by ?‘1(5).
Therefore, our obtained estimators are efficient. A rigorous proof of the consistency

and asymptotic normality of the semimparametric estimator 6 can be obtained by
using the theory developed by Huang (1996) for empirical processes with current
status data, assuming that (6.6) holds, i.e., the link function ¥ is a B-spline function
with fixed knots and order.

6.3.2 Inference

To obtain the variance-covariance matrix of & = (87,&",7T)", we define a map
G: (B,a,y) = (B,a,y). Then after obtaining the variance-covariance matrix of

6=BT.aT,.9T)T asI71(f) = Var(B, &, 7), by the delta method we have

Var(B. . 9) = Var(G(B. 6. 7)) = G (B.&. 7)Var(B.&. )G (B.a.9).  (6.17)

where G’ isa (p + g + dfp1) X ((p — 1) + g + df1) matrix and can be calculated
as follows:

0G(B.a.y) _ 0(B..y)
0B.c.y)  UP.ey)

B _ b
( b b0 0) .
I(p—1)+q+dfs

Then, Var(,é, 7,@) can be estimated using (6.17). Var(,é), Var(y) and Var(&) are
estimated by the corresponding block matrices in Var(8, y, @). Inferences, such as
Wald-type tests and confidence intervals for the parameters, can be made using these

estimated variances. Moreover, for any s € the support of ﬂ(—)'— X, an approximate
(1 — ©)100 % confidence band for ¥ (s) = y " B(s) is obtained as follows

G (B.ay) =

U (s) £ Zgj2 x SE(Y(5)),

where /(s) = 77B(s), SE((s)) = {Var(¥(s))}'/* = {BT (s)Var(7)B(s)}"/? and
Zy/> is the upper quantile of the standard normal distribution.
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6.3.3 Implementation

Because the unknown functions of this model are approximated using B-spline
approximation, it may cause some numerical instability in the functional estimation
when available data are sparse. The monitoring time C tends to be sparse in the right
tail of the distribution, and the estimator of H(¢) = logit{1 —So(r)} = —logit{So ()}
may deviate from the true curve there. To overcome this problem, as suggested by
Gray (1992), we add a penalty term in the estimation, such that the penalty functions
in the penalized approach pull the estimates away from very extreme values and the
estimates from the penalized maximization are less biased and better behaved. Since
the distribution of BT X is less sparse in the tails than that of C, we don’t impose a
penalty on v (-). From (6.10), the penalized likelihood function becomes

Lo Bty = bl By) — ¢ / (H' (1)) dr, 6.18)

where H(f) is a quadratic B-spline defined in (6.5), and ¢ is a penalty tuning
parameter which controls the smoothing. When ¢ is close to zero it means that there
is no penalty and when it goes to oo it forces H(f) to become a constant. Because
the penalty term in (6.18) is a quadratic function of 7, it can be written as follows

T
P 3
2{'1 T

where P = ( fab; L (1)L.(1)d1)1<s<daf, . 1<r<dp, 18 a dfi X dfy, nonnegative definite matrix,
which can be approximated by a Monte Carlo integration method.

We use the sieve method for maximum penalized log-likelihood estimation of the
parameters and functions in the model. We maximize the penalized log-likelihood
function £p(0) in (6.18) as the objective function subject to some constraints
indicated as g,(0). Then, we apply the adaptive barrier algorithm for solving a
constrained optimization problem through the function constrOptim.nl in the
R package alabama.

The iterative algorithm we use to maximize £p follows these steps:

+ Step 0: Considering that the direction of 8 can be correctly estimated, @, 7©,
¥ can be obtained from the GLM method by fixing 8 at an initial value 8.

+ Step 1. In step &, given current values «®, t® y® update the value of & by
maximizing the log-likelihood function given in (6.10) subject to the constraint

1-Y"%_, B? > 0 which ensures the constraints f; > O and || || = \/ B =
1. In this respect, we use the barrier method which is implemented by the

constrOptim.nl function in the R package alabama. Denote the updated
value by B*+1D,
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+ Step 2. Having B%*D, update the values of a®, t®, y® simultaneously
through GLM with the binary response § and linear predictor £ = v L(C) +
o TV 4+ yTB(BTX) with logit link. Then by lettingw = (", 7",y ") T, we use
the Newton-Raphson method to obtain w*+! = (0{("+1)T, kDT y(k+1)T)T
through maximizing the log-likelihood function £, given in (6.10) without
considering the constraint on t and &. This is implemented by the nlminb
function in R which uses a quasi-Newton algorithm.

* Step 3. Using the same procedure as Step 1, considering r( +0

rgfﬂ) as the constraints on 7, we further update the value of t**1 using
constrOptim.nl.

+ Step 4. Further update «**V to obtain o**?) by fixing other parameters in the
(k + 1) step and maximizing the likelihood function. For doing this, we use
nlminbinR.

* Step 5. Repeat Step 1 to 4 until a certain convergence criterion is met. Note: the
two further updates in Step 3 and Step 4 considering the constraints on 7 produce

better results than skipping these two steps.

Finally, after m iterations where the algorithm converges, we use B, £, o)
and y™ as the estimated values for B, T, @ and y, respectively. Variance estimation
is presented using the above variance estimators.

6.4 Simulation Studies

To evaluate the finite-sample performance of our estimators, we conduct a sim-
ulation study with current status data for the PLSI-PO model. The failure time,
T, is generated from model (6.3) through the inverse transform sampling method
and considering a Weibull distribution for the baseline survival function with scale
parameter 1 and shape parameter w = 2. Thus T has the following form

T = [_ In UeXp{aTV 4 W(,BTX)} i|1/w
N (1—-U) + Uexp{laTV+y(8TX)} ,

where U ~ Uniform(0, 1), and the single-index function is defined as 1//(,3(—)'— X) =
sin(,B(;r X). Two covariate vectors are considered, one is ¢ = 2 dimensional linear
covariate vector V. = (Vi,V,)T and the other is p = 3 dimensional non-linear
covariate vector X = (X],Xz,X3)T. We assume oy = (0.5, —1)T and By =
2,-1, —1)T / V6 and generate X1, X», X3 from continuous uniform distribution on
interval (—4, 4) and let V; ~ Uniform(1, 4)—2.5and V, ~ Bernoulli(0.5)—0.5. The
covariates satisfy condition (C3) such that E(V;) = E(V,) = E{¢/(8{ X)} = 0.In
order to satisfy the identifiability condition on the link function, we center (8" X)

as Y (BTX) — (1/n) X, ¢ (BTX)) fori=1,....n
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The censoring time, C, is confined to interval [a., b = [0.01,3.00] and
generated from a truncated exponential distribution, i.e.,

C= (_1/Ac) In [exp(_kcac) -U {exp(_kcac) - exp(_kcbc)}] s

where A, = A, + (0.5)(Vy + V2) + (0.1)(X1 4+ X, + X3) and A9 = 1. In kernel
estimation of the covariance, we use bandwidth b = bf x n"'/%) x sd(C) computed
from the data, where bf = 1/15.

We use cubic B-spline basis functions (order=4) for y (8" X) and quadratic basis
functions (order=3) for H(C) = —logit{Sy(C)} to approximate the two unknown
curves. The BIC method is applied to find the optimized value for the number of B-
spline basis functions indicated by degree of freedom, df, and the number of interior
knots, K = df — (order of B-spline basis functions). That is, we choose the value of
(dfL, dfp) such that it locally minimizes the BIC objective function given as follows

BIC(dft, dfs) = —2Lo +In(m){(p — 1) + g + dfp + (dfs — 1)},

where £ is the log-likelihood function given in (6.9). A large value of BIC implies
lack of fit. Various forms of BIC have been proposed in the literature and tested for
knots selection in semiparametric models (For example see He et al. (2002)).

Table 6.1 summarizes the simulation results based on 1000 replications with
sample sizes 200, 400 and 800. In this table, we can see that the bias for the
estimated values of 8 = (B, B2, 83) and ¢ = (a1, ) are reasonably small. The
Monte Carlo standard deviations of the estimates which are shown as StDev(%)
are very close to the estimated average standard errors of the estimates indicated

Table 6.1 (PLSI-PO) Simulation results for estimation of 8 and « using the sieve MLE

Sample | Summary True B True o
size (n) | statistics B = je B = :/2 B3 = :/2 ;=05 |ap=-10
200 Bias —0.0272 0.0608 0.0896 0.0222 —0.1227
StDev(%) 0.1530 0.2438 0.2687 0.3968 0.6117
Avg.{SE(")} 0.1638 0.2360 0.2364 0.4827 0.7811
Cov. prob. 0.9327 0.9328 0.9267 0.9754 0.9769
400 Bias —0.0103 0.0029 0.0050 0.0125 —0.0438
StDev(*) 0.0614 0.0967 0.1006 0.2206 0.3735
Avg {SE(")} 0.0658 0.1028 0.1013 0.2619 0.4291
Cov. prob. 0.9585 0.9351 0.9347 0.9704 0.9621
800 Bias —0.0035 0.0013 0.0012 0.0084 —0.0304
StDev(%) 0.0410 0.0641 0.0635 0.1381 0.2374
Avg.{SE(")} 0.0416 0.0660 0.0687 0.1608 0.2647
Cov. prob. 0.9593 0.9438 0.9385 0.9687 0.9643

BIAS empirical bias, STDEV sample empirical standard deviation, AVG.{SE} estimated average
standard error, COV. PROB. empirical coverage probability of the 95 % confidence interval
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Fitted curve {, n =200 Fitted curve H = -logit(exp(- Ao)), n = 200 Fitted curve Aq, n = 200

~logit(exp(- Ao))
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~logit(exp(- Ao))

X
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~logit(exp(- Ac))
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Fig. 6.1 (PLSI-PO) True and estimated curves: Left: The estimated  curves; Middle: The
estimated curves for —logit{So}; Right: The estimated A, curves; corresponding to the sample
sizes n = 200, 400, 800. Solid lines show the true curves, dashed lines the estimated curves and
dotted lines illustrate the 95 % point-wise confidence bands based on Monte Carlo results

by Avg.{SE(*)}. The Monte Carlo coverage probabilities of the 95 % confidence
intervals are shown as Cov. prob. which are very close to the nominal level
specifically for larger sample size.

Plots in Fig. 6.1 show the curves indicating the estimated nuisance parameters
¥(-), H(-) = —logit{exp (—Ao(-))} = —logit{So(#)} and Ao(:). It is seen that the
fitted curves match the true functions closely, indicating good performance of the
proposed method. Figures 6.2 and 6.3 illustrate the histograms for the estimated
values of B and «, respectively, which are close to normal probability density curves.
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Fig. 6.2 (PLSI-PO) Histogram of estimated S values including 3 1 (on the left), ﬂAz (in the middle)
and B3 (on the right) corresponding to the sample sizes n= 200, 400, 800
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Fig. 6.3 (PLSI-PO) Histogram of estimated « values including &; (on the left) and &, (on the
right) corresponding to the sample sizes n= 200, 400, 800
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6.5 Real Data Analysis

In this section, we apply PLSI-PO model to the Acute kidney injury (AKI) dataset
which is a typical kidney disease syndrome with substantial impact on both short and
long-term clinical outcomes. A study was conducted at the University of Michigan
Hospital on 170 hospitalized adult patients with AKI to identify risk factors
associated with renal recovery in those who required renal replacement therapy
(RRT). This study is conducted in order to help clinicians in developing strategies to
prevent non-recovery and improve patient’s quality of life. Data collection included
patient characteristics, laboratory data, details of hospital course and degree of fluid
overload at RRT initiation. For each of the patients, his/her time of the inception
of dialysis was recorded along with time of hospital discharge, which may be
regarded as a monitoring time. In this study, the investigators only observed patient’s
current status of renal recovery at discharge time but did not know exactly when
renal function recovery occurred. More details about the study background and
preliminary findings can be found in Heung et al. (2012) and Lu and Song (2015).
To assess the relationship between the hazard of occurrence of renal recovery
and the clinical factors, let T be the failure time indicating the number of days from
the time of starting dialysis to the date of renal recovery, and C be the monitoring
time which is the time of hospital discharge. Two nonlinear covariates are baseline
serum creatinine (BScr) and use of vasopressor (VP), and the linear ones are age
(Age) and gender (Gender). VP is coded as 1 for Yes and O for No. Gender is
coded as 1 for male and O for female. Let V. = (V; = VP,V, = Gender)'is
the linear covariate vector where V| is use of vasopressor and V, is gender, and
= (X; = BScr, X, = Age) T represents the non-linear covariate vector where X;
is baseline serum creatinine level and X, is age. For ith observation, i = 1,...,n,
we standardize X); as (X,; — min(X),;))/(max(X,;) — min(X,;)) for p = 1, 2. Then,

the support of X,,; is [0, 1]. Suppose § = I(C < T) is the indicator of renal recovery
situation at the time of discharge where § = 0 means recovered and § = 1 means
not recovered at the time of hospital discharge. Let A(#; V, X) be the hazard function
of recovery time, 7. We apply PLSI-PO model to establish a relationship between
these four covariates and the survival odds and consequently the hazard function
of T. The estimated values for the parameters of the model fitted to the data are
a; = —1.3873, &, = —0.0375, ,31 = 0.6314 and ,32 = 0.7754 with estimated
standard errors equal to 0.5909, 0.5803, 0.0953 and 0.0776, respectively. The Z-
test statistic values for «; and o, equal to —2.348 and —0.0647 , and the p-values
equal to 0.019 and 0.948, implying that the use of VP has an effect on the survival
log-odds of renal recovery but Gender is not significant in the PLSI-PO model.

The negative log-odds of the baseline survival function, the baseline cumulative
hazard function and the link function of the single-index term are fitted using B-
spline approximation with respectively 5 and 7 knots which are chosen by the BIC.
Figure 6.4 shows the estimated curves for —logit{So(C)} and ¥ (8T X). It can be
seen from the curve for ¥ (-) that its effect on the log-odds of death or the hazard is
mostly deceasing specifically for values of the single-index less than 0.2 and greater
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A a ~
Fitted curve 0, Fitted curve H = —logit(So) Fitted curve Ao

Fig. 6.4 (PLSI-PO) Left: The estimated nonparametric function v (-) with 95 % pointwise confi-
dence intervals. The solid line is the estimated function, the dashed line is the identity function and
the dotted lines are the 95 % pointwise confidence intervals; Middle: The estimated —logit (So(+))
function; Right: The estimated cumulative hazard function Ag(+)

than 0.8 and there is a mild fluctuation in between. the 95 % point-wise confidence
bands are wider before the index value of 0.8. The identity link function lies outside
the confidence band which indicates that the linear PO model is not appropriate for
this data set. The negative log-odds of the unknown baseline survival function and
baseline cumulative hazard function have an increasing nonlinear trend.

6.6 Concluding Remarks

In this chapter, we establish an efficient estimation method for the PLSI-PO model
with current status data. This model can handle high dimensional nonparametric
covariate effects in predicting the survival odds of failure time. This partially linear
model is more practical in the analysis of current status data than models with
only a single linear term of covariates or just a few nonlinear covariates. We use
B-splines to approximate the link function of the single-index term and negative
logit of the baseline survival function. The splines for the negative logit of the
baseline survival as a function of the cumulative hazard function should be restricted
to monotone polynomial splines. By maximizing the log-likelihood function over
the splines spanned sieve spaces, we estimate the unspecified negative logit of
the baseline survival function, single-index link function, orientation parameter
and the parametric vector of the regression coefficients. Under the assumption
that the true nonparametric link function i is a smoothing splines function, we
show that the estimators for the parameter vector of the regression coefficients and
the orientation parameter vector of the single-index term are semiparametrically
efficient by applying theory of counting processes, martingales and empirical
processes. Utilizing martingale theory is a new approach in the analysis of current
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status data through this model. To show the efficacy of the proposed model and the
estimation algorithm, we present a simulation study and apply the model to a real
clinical data set.
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Chapter 7

Empirical Likelihood Inference Under Density
Ratio Models Based on Type I Censored
Samples: Hypothesis Testing and Quantile
Estimation

Song Cai and Jiahua Chen

Abstract We present a general empirical likelihood inference framework for Type
I censored multiple samples. Based on this framework, we develop an effective
empirical likelihood ratio test and efficient distribution function and quantile
estimation methods for Type I censored samples. In particular, we pool information
across multiple samples through a semiparametric density ratio model and propose
an empirical likelihood approach to data analysis. This approach achieves high
efficiency without making risky model assumptions. The maximum empirical
likelihood estimator is found to be asymptotically normal. The corresponding
empirical likelihood ratio is shown to have a simple chi-square limiting distribution
under the null model of a composite hypothesis about the DRM parameters. The
power of the EL ratio test is also derived under a class of local alternative models.
Distribution function and quantile estimators based on this framework are developed
and are shown to be more efficient than the empirical estimators based on single
samples. Our approach also permits consistent estimations of distribution functions
and quantiles over a broader range than would otherwise be possible. Simulation
studies suggest that the proposed distribution function and quantile estimators are
more efficient than the classical empirical estimators, and are robust to outliers and
misspecification of density ratio functions. Simulations also show that the proposed
EL ratio test has superior power compared to some semiparametric competitors
under a wide range of population distribution settings.
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7.1 Introduction

Type I censored observations are often encountered in reliability engineering and
medical studies. In a research project on long-term monitoring of lumber quality,
lumber strength data have been collected from mills across Canada over a period
of years. The strength-testing machines were set to prefixed tension levels. Those
pieces of lumber that are not broken in the test yield Type I right-censored
observations. A primary task of the project is to monitor the quality index based
on lower quantiles, such as the 5 % quantile, as the years pass. Another important
task is to detect the possible change in the overall quality of lumber over time.
The statistical nature of the first task is quantile estimation, and that of the second
is testing for difference among distribution functions of different populations. We
are hence motivated to develop effective quantile estimation and hypothesis testing
methods based on multiple Type I censored samples. To achieve high efficiency
without restrictive model assumptions, we pool information in multiple samples via
a semiparametric density ratio model (DRM) and propose an empirical likelihood
(EL) approach to data analysis.

Suppose we have Type I censored samples from m + 1 populations with
cumulative distribution functions (CDFs) F, k = 0,1, ..., m. Particularly for our
target application, it is reasonable to assume that these CDFs satisfy the relationship

dF(x) = exp {ax + Blq(x)}dFo(x) (7.1)

for a pre-specified d-dimensional basis function q(x) and model parameter 6, =

(o, ﬂ,I)T. The baseline distribution Fy(x) in the above model is left unspecified.
Due to symmetry, the role of F is equivalent to that of any of the F;. When the data
are subject to Type I censoring, it is best to choose the population with the largest
censoring point as the baseline.

The DRM (7.1) has some advantages. First, it pools the information across
different samples through a link between the population distributions without a
restrictive parametric model assumption. Highly statistical efficient data analysis
methods are therefore possible compared with methods based on models without
such links. Second, the DRM is semiparametric and hence very flexible. For
example, every exponential family of distributions is a special case of this DRM. In
life-data modeling, the moment-parameter family and Laplace-transform-parameter
family of distributions (Marshall and Olkin 2007, 7. H & I) both satisfy the DRM.
The commonly used logistic regression model under case-control study is also
closely related to the DRM (Qin and Zhang 1997). This flexibility makes DRM
resistant to misspecification of g(x). Last but not the least, standard nonparametric
methods would permit sensible inferences of F(x) only for x < ¢, where ¢ is the
censoring cutting point of the kth sample. The proposed EL method based on the
DRM, however, extends this range to x < max{cy}.

Data analysis under the DRM (7.1) based on full observations has attracted a
lot of attention. Qin (1998) introduced the EL-based inference under a two-sample



7 EL Inference under DRM Based on Type I Censored Samples 125

setting; Zhang (2002) subsequently developed a goodness-of-fit test; Fokianos
(2004) studied the corresponding density estimation; quantile estimation was
investigated by Chen and Liu (2013); in Cai et al. (2016), a dual EL ratio test was
developed for testing composite hypotheses about DRM parameters. Research on
DRM based on Type I censored data has been scarce. Under a two-sample setting
with equal Type I censoring points, Wang et al. (2011) studied the properties of
the parameter estimations based on full empirical likelihood. However, without
building a link between the EL and its dual, as we do in this paper, both numerical
solution and analytical properties of the quantile estimation were found technically
challenging.

In this chapter, we first establish a general EL inference framework for Type
I censored multiple samples under the DRM. Based on this framework, we then
develop an effective EL ratio test and efficient CDF and quantile estimation
methods. Instead of a direct employment of the full EL function, we develop a dual
partial empirical likelihood function (DPEL). The DPEL is equivalent to the full
EL function for most inference purposes. However, unlike EL, it is concave and
therefore allows simple numerical solutions as well as facilitating deeper analytical
investigations of the resulting statistical methods. Using the DPEL, we show that
the maximum EL estimators of the 6, is asymptotically normal. We also show
that the corresponding EL ratio has a chi-square and a non-central chi-square
limiting distribution under the null model and local alternative model of a composite
hypothesis about the DRM parameters, respectively. We further construct CDF and
quantile estimators based on DPEL, and show that they have high efficiency and nice
asymptotic properties. The DPEL-based approach is readily extended to address
other inference problems, such as EL density estimation and goodness-of-fit test.

The chapter is organized as follows. In Sect. 7.2, we work out the EL function
for the DRM based on Type I censored data, introduce the maximum EL estimators,
and study their properties. Section 7.3 presents the theory of EL ratio test under the
DRM. Sections 7.4 and 7.5 study the EL. CDF and quantile estimations. Section 7.6
provides numerical solutions. Simulation results are reported in Sects. 7.7 and 7.8.
Section 7.9 illustrates the use of the proposed methods with real lumber quality data.

7.2 Empirical Likelihood Based on Type I Censored
Observations

Consider the case where n; sample units are drawn from the kth population out
of which n; — n; units are right-censored at ¢y, with n; being the number of
uncensored observations. Without loss of generality, we assume ¢y > c¢; for all
k. Denote the uncensored observations by xy; for j = 1,..., 7. Write dFi(x) =
Fi(x) — Fr(x™). Based on the principle of empirical likelihood of Owen (2001), the
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EL is defined to be

m

L,((F) = [ [[ )it - Fuceny™ ™)

k=0 j=1

Under the DRM assumption (7.1), the above EL can be further written as

m ng m o ng

Lu(tFid) = [[ [ TaFos) LT T Texptoi@Cuon ][ T T01 = Fecewt ],
k=0

k=0 =1 k=0 j=1
(7.2)

with Q) = (1, g¥)")" and 8; = (e, B1)".

Denote & = (o1, ....0m) ", B = (BT, ....8T) , and 6 = (a'. 7). For
convenience, we set &g = 0 and B, = 0. Further, let py; = dFo(xy), p = {pij}
¢k = Fi(ck), and ¢ = {¢x}. Finally, introduce the new notation

(0. x, ) = exp {0{Q(0}1(x < o).

The EL is seen to be a function of 8, p, and ¢, and we will denote it L,(0, p, ¢).
The maximum EL estimators (MELEs) are now defined to be

m g

(9’13’ §) :argmax{l‘n(ov p, g) : Zzpkj(pr(07 Xkj» Cr) = Gr
0.p.s k=0 j=1
ij20,0<§r§1,r=0,...,m}. (7.3)

The constraints for (7.3) are given by a equality implied by the DRM assump-
tion (7.1) as follows:

o = Fele) = / exp {67000} L(x < cdFo(x) = / 018, x, c)dFo®)

fork=0,1,...,m.

7.2.1 MELE and the Dual PEL Function

The MELE of ¢; is given by ¢ = #x/m, a useful fact for a simple numerical
solution to (7.3). To demonstrate, let us factorize the EL (7.2) as

m g m

L,0.p.¢) = { [T T@a/s0) [T] (so/s0e (o, ij,Ck)} { I o1 — gk}”k_ﬁk}

k=0j=1 k=1j=1 k=0

(7.4)
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=PLn(07p’ g)Ln(g) (75)

We call PL,(0, p, ¢) the partial empirical likelihood (PEL) function. Under the
constraints specified in (7.3), supy , PL,(, p, <) is constant in ¢ as follows.

Proposition 1 Let ¢ and ¢ be two values for parameter ¢ that satisfy the
constraints in (7.3). Then we have

supPL,(0, p, ¢) =supPL,(0,p, ¢).
0.p 0.p

Proof (Proof) Suppose p and @ form a solution to supy , PLy(8. p, ¢), namely,

PL,(0.p, &) = soupPLn(&p, S).
P

Letp and 0 be defined by
P = Pii(So/S0)s G = & + log(So/So) — log(Si/Sk)-
It is easily verified that
PL,(0.p. &) = PL\(8. 5. §).
Hence, we must have

sup PL,(0, p, ) < supPL,(0, p, <).
0.p 0.p

Clearly, the reverse inequality is also true, and the proposition follows.

This proposition implies that ¢ = argmaxIL, (¢ ) and therefore that & = 71 /ny. It
further implies that (9 , p) = argmaxPL,(0, p, ¢) under the same set of constraints.
Because of this, we can compute (9, p) with standard EL tools. We first get
the profile function £,(8) = sup, log{PL,(#, p, ¢)} and then compute for 0 =
argmax 57,1(0).

More specifically, let 7 = Y ;— 7ix be the total number of uncensored obser-
vations. By the method of Lagrange multipliers, for each given @, the solution of
sup PL, (@, p, ¢) inp is given by

m —1
Py =i 1/e0+ Y A0, e =& /0l) (7.6)

r=1
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where the Lagrange multipliers {A;}7_, solve > Z]  Pier(0, x4, ¢r) = &, for
r=20, 1, ..., m. The resulting proﬁle log-PEL is then given by

m g m g

Zn(ﬂ):—ZZlogn{l/s‘o—i—Zk 00, x5 c) =&/} + 30D T 0).

k=0 j=1 r=1 k=1 j=1

(7.7)

At its maximum when = 8, the profile log-PEL satisfies 30, (0)/0ay = 0 for
k =1, ..., m. Some simple algebra shows that consequently, when § = 0, we
have the corresponding Lagrange multipliers are )Akk = m/n.

Put oy = ni/n and recall that &, = 7, /n,. We find that

£(6) = Zzlog{Zprwr(O e} + 303 0700w,

k=0 j=1 r=0 k=1 j=1
For this reason, we define a dual PEL (DPEL) function

g

£,(8) =~ ZZlog{Zwrw wgoeh+ Y Y0100 (78)

k=0 j=1 k=1 j=1

Clearly, we have 0 = argmax [, (#), and the DPEL is a concave function of 6. The
relationship also implies that

m

pg=n" { > bron(0, xy. cr)}_l. (1.9)

r=0

The DPEL is analytically simple, facilitating deeper theoretical investigations and
simplifying the numerical problem associated with the data analysis.

7.2.2 Asymptotic Properties of the MELE 0

Let 6* be the true value of the parameter 6. Suppose that, for some constants
o € (0,1), pp = mg/n — pyasn — oo, for k = 0, .... Define the partial
empirical information matrix U, = —n"'3*(,(0*)/3000". By the strong law of
large numbers, U, converges almost surely to a matrix U because it is the average
of several independent and identically distributed (i.i.d) samples. The limit U serves
as a partial information matrix.
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Define

h(ov -x) = (Pl(/’l(ov X, C]), B pm(pm(os X, Cm))Ts

50, %) =D (8, x, c0),

k=0

H(8, x) = diag{h(0, x)} — h(8, )hT (0, x)/5(8, x).

We partition the entries of U in agreement with & and B and denote them by Uy,
Uap, Uga, and Ugg. The blockwise algebraic expressions of U can be written as

Use = Ep {H(0*, X)}s
Ugp = Eo {H(0". X) ® ((X)q" ().
Uap = Uy = Eo {H(0". X) ® 4" (X))}

where E(-) is the expectation operator with respect to Fy(x) and ® is the Kronecker
product operator. The above blockwise expressions of U reveal that U is positive
definite when [ Q(x)Q" (x)dFy(x) > 0.

We found that the MELE @ is asymptotically normal as summarized as follows.

Theorem 1 Suppose we have m + 1 Type I censored random samples with
censoring cutting points ¢, k = 0, ..., m, from populations with distributions
satisfying the DRM assumption (7.1) with a true parameter value 0" such that
fexp{ﬂ,{q(x)}dFo(x) < oo for all @ in a neighborhood of 8*. Also, suppose
fQ(x)QT(x)dFo(x) > 0and pp = m/n — pr as n — o0 for some constants
Pk € (O, 1)

Then, as n — oo,

Jn( — 8% -5 N, U - W),

where
et et ot !
—1 —1 —1 —1
J po +py e P
W:(T’”X’" 0 ) with T = 0 0 0
0 Omdxmd . . R .

The asymptotic normality of @ forms the basis for developing the EL-DRM
hypothesis testing and estimation methods in the sequel.
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7.3 EL Ratio Test for Composite Hypotheses About 8

An appealing property of the classical EL inference for single samples is that the
EL ratio has a simple chi-square limiting distribution (Owen 2001). For uncensored
multiple samples satisfying the DRM assumption (7.1), the dual EL (DEL) ratio is
also shown to have an asymptotic chi-square distribution by Cai et al. (2016) under
the null hypothesis of a large class of composite hypothesis testing problems. Such
nice property of the EL ratio also carries to the case of Type I censored multiple
samples as we will show in this section.

As noted in the Introduction, a primary interest in our lumber project is to
check whether the overall quality of the lumber change over time. This amounts
to test the difference among the underlying distributions {F}};, of random lumber
samples collected from different years, i.e. testing Hy : Fyp = ... = F, against
H, : F; # F; for some i # j. When the {F}} satisfy the DRM assumption (7.1), this
hypothesis testing problem is equivalent to a hypothesis testing problem about the
DRM parameter 8: Hy : B = 0 against H, : B # 0. Note that, the parameter & is
not included because it is just a normalizing constant, and 8, = 0 implies oz = 0.

Here we consider a more general composite hypothesis testing problem about f

Hy: g(B) =0 against H;: g(B) #0 (7.10)

for some smooth function g : R" — RY, with ¢ < md, the length of 8. We will
assume that g is thrice differentiable with a full rank Jacobian matrix dg/df. The
parameters {o;} are usually not a part of the hypothesis, because their values are
fully determined by the {8,} and F, under the DRM assumption.

We propose an EL ratio test for the above hypothesis. Let (8, p, &) be the MELE
based on Type I censored samples under the null constraint of g(8) = 0. Define the
EL ratio statistic as

Ry = 2{logL,(8. p. &) —logL,(8. . §)}.
Our following lemma shows that R, is equal to the DPEL ratio, a quantity that enjoys
a much simpler analytical expression.

Lemma 1 The EL ratio statistic R, equals the DEPL ratio statistic, i.e.
R, = 2{€,(0) — £,(6)},

where £,,(0) is the DPEL function (7.8).

Note that, except for the additional indicator terms, the expression of the DPEL
is identical to that of the DEL function defined in Cai et al. (2016) for uncensored
samples under the DRM. Hence the techniques for showing the asymptotic proper-
ties of the DEL ratio in Cai et al. (2016) can be readily adapted here to prove our
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next two theorems (Theorems 2 and 3) about the asymptotic properties of the EL
ratio R, based on Type I censored samples.

Let y; denote a chi-square distribution with ¢ degrees of freedom, and y2(6%)
denote a non-central chi-square distribution with ¢ degrees of freedom and non-
central parameter §2. Partition the Jacobian matrix of g(B) evaluated at B*, v =
dg(B*)/0B, into (71, V2), with g and md — g columns respectively. Without loss
of generality, we assume that v/, has a full rank. Let /; be an identity matrix of size
kxkandJT = (—(77' D). Luag)-

Theorem 2 Adopt the conditions postulated in Theorem 1. Then, under the null
hypothesis, Hy : g(B) = 0, of (7.10), we have

(d)
Rn — Xj

asn — Q.

Theorem 2 is most useful for constructing a EL ratio test for composite hypothe-
sis testing problem (7.10). In addition, it can be used to construct a confidence region
for the true DRM parameter $*. Take the null hypothesis to be g(8) = 8 —B* =0
for any given B*, then R, = I,(B) — L,(8*) — %2, We can use this result to
construct a chi-square confidence region for B*. The advantage of a chi-square
confidence region over a normal region is extensively discussed in Owen (2001),
so we do not elaborate further.

We shall focus on the hypothesis testing problem since that is our primary goal
in application. The next theorem gives the limiting distribution of the EL ratio under
a class of local alternatives. It can be used to approximate the power of the EL ratio
test and to calculate the required sample size for achieving a certain power.

Theorem 3 Adopt the conditions postulated in Theorem 1. Let {B; }}—, be a set of
DRM parameter values that satisfy the null hypothesis of (7.10).
Then, under the local alternative model:

Bi=Br +n e, k=1,....m, (7.11)

where {ci} are some constants, we have
@ 5. e
Ry~ 12
as n — oo. The expression of the non-central parameter §* is given by

s )T {A- AI(ITAN T Ay ifg < md
0" An ifg=md

- _ - - - T
where A = Upp — UpqUglUap. and q = (py *cT, p;%el, ... om'%el) .

m
Moreover;, 8> > 0 unless 0 is in the column space of J.
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In many situations, a hypothesis of interest may well focus on characteristics of
just a subset of the populations {Fy};—,. If so, should our test be based on all the
samples or only the samples of interest? An answer is found in the improved local
power of the EL ratio test based on all samples over the test based on the subset
of the samples. Such an answer is the same as that for the DEL ratio test under the
DRM based on uncensored multiple samples. A rigorous treatment of this argument
is given by Theorem 3 of for uncensored case. Again, because of the similarity in
expressions of the DPEL and DEL, that theorem also holds for the proposed EL
ratio test for Type I censored samples. The details can be found therein.

7.4 Estimation of F;,

We now turn to the estimation of CDFs {F}}. The estimation of population quantiles
is studied in the next section.
Due to the DRM assumption, we naturally estimate F, at any z < ¢y by

m m

B =30 pyexp {8,000y <2 = 3 puen(0.x5.2).  (7.12)

k=0 j=1 k=0 j=1

A few notational conventions have been and will continue to be used: >, ; will be
regarded as summation overk = 0,...,mandj = 1,...,n. When iy <j < ny, the
value of x;; is censored and we define

0 (0,3, 2) = exp {8,0(x)} 1 (xy < 2) = Oor 1. (7.13)

Whether (0, x4, z) takes value 0 or 1 when 7, < j < n; depends on whether it
serves as an additive or a product term, and similarly for other quantities involving
x5 With this convention, we may regard ), ; as being a sum over m + 1 i.id
samples.

Even though observations from the population F, are censored at ¢, < cy, the
connection between F, and F( through DRM makes it possible to consistently
estimate F,(z) for z € (¢, co] when ¢, < ¢y.

Theorem 4 Assume the conditions of Theorem 1. For any pair of integers 0 <
r1, 12 < mand pair of real values z1,z2 < co, we have

\/n{i:rl (z1) — Fy, (1), IA:rz(ZZ) - Frz(ZZ)}T ﬂ) N0, 2g).
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The expression for the (i, j) entry of gL is

w1 = Eolg (0%, X, )0, (6%.X, )/560%, X)} + W] ) U™, (z)
- p;l[EO{(pr,'(O*sXs Zi)}EO{(prj(o*sXs Z])}]l(l :])s

where, fork =0, ..., m, ¥(z) = (lI/,II(Z), lI/,IZ(Z))T, is a vector with

lIIk,l(Z) = EO [{ek]l(k 7é O) - h(O*v X)/S(O*s X)}(pk(o*sxs Z)],
Wia(z) = Eo [{ex1(k # 0) —h(8", X)/s(0", X)}pu (0", X, 2) ® q(X)],

and ey, is a vector of length m with the kth entry being 1 and the others 0.

The result of this theorem extends to multiple 7y, .. ., ry with their corresponding
21,--.,27 < co. For ease of presentation, we have given the result only for J = 2
above.

We have assumed (without of loss of generality) that ¢, < c¢o. When ¢, < ¢y, there
is no direct information to estimate F,(z) for z € (c,, co]. The DRM assumption,
however, allows us to borrow information from samples from F and other Fj to
sensibly estimate F',(z) for z in this range. This is an interesting result. When z < ¢,,
we may estimate F,(z) via its empirical distribution based only on the sample from
F,. Theorem 4 can be used to show that the EL-DRM-based estimator has lower
asymptotic variance, i.e., 2g;, < §2gy, where 2gy is the covariance matrix of the
empirical distribution.

7.5 Quantile Estimation

With a well-behaved EL-DRM CDF estimator in hand, we propose to estimate the
tth, 7 € (0, 1), quantile &, of the population F,(x) by

é, = inf{x: F,(x) > }. (7.14)

Our following theorem characterizes an important asymptotic property of é,.

Theorem S Assume the conditions of Theorem 1. Assume also that the density
function, f.(x), of F.(x), is positive and differentiable at x = §&, for some T €

(Oa FV(CO))'
Then the EL quantile estimator (7.14) admits the following representation:

E =& — (&) — T}/1(E) + 0,(n*{logn}'/?).

A result of this nature was first obtained by Bahadur (1966) for the sample
quantiles, hence the name Bahadur representation. It is proven to hold much more
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broadly, including for EL-based quartile estimators such as those in Chen and
Chen (2000) and Chen and Liu (2013). Our result is of particular interest as the
representation goes beyond the range restricted due to Type I censorship: &, < c¢,.
Bahadur representation sheds light on the large sample behavior of the quantile
process, and it is most useful for studying the multivariate asymptotic normality of
é,, as follows.

Theorem 6 Let & be the tjth quantile of F,, with 7; € (0, Fy;(co)) forj = 1,2.
Under the conditions of Theorem 5, we have

n(E — 1.6 — gz)T 9, N(0, AQgA)
with A = diag{frl (gl)7frz(g2)}_l~

Clearly, improved precision in terms of $2g; over §2gy leads to improved
efficiency of the proposed &, over the sample quantile.

7.6 Other Inferences on Quantiles

Theorem 6 has laid a solid basis for constructing approximate Wald-type confidence
intervals and hypothesis tests for quantiles. For this purpose, we need a consistent
estimator of £2g; and f,(§,), the density function at §,.

The analytical expression for £2g; is a function of #* and has the general form
Eo{g(X, 6")1(X < cg)}. To estimate §2g;, it is most convenient to use the method
of moments with EL weights py;:

Ep{gX. 0)1(X < co)} = Y _ pug(xy. 0).
kj

where 6 is the MELE of 6 and Dy is as given in (7.9).

The value of f,(§,) is most effectively estimated by the kernel method. Let K ()
be a positive-valued function such that [ K(r)dr = 1 and [ tK(t)dt = 0. We estimate
fr(z) at z < co by

m  ng

F@ =033 (0. x5, c) K { (2 — xig) /.

k=0 j=1

When the bandwidth 4, — 0 and nh, — oo as n — oo, this kernel estimator is
easily shown to be consistent. The optimal bandwidth is of order n~'/° in terms of
the asymptotic mean integrated squared error (Silverman 1986) at z values that are
not close to the boundary. In our simulation, we choose the density function of the
standard normal distribution as the kernel and n~'/® as the bandwidth.
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The covariance matrix, X'y, of the proposed quantile estimator is then estimated
by substituting the estimated £2z;, and the density estimates f}, (§;) into the expression

of XYgr. The procedures have been implemented in our R software package
“drmdel”, which is available on the Comprehensive R Archive Network (CRAN).

7.7 Simulation Studies I: CDF and Quantile Estimation

We use simulation studies to demonstrate the advantages of combining information
through the use of the DRM and the EL methodology. This section presents the
simulation results for the proposed CDF and quantile estimation methods are
presented in this section, and those for EL ratio test are given in the next section. Our
estimation approach is particularly effective at efficient estimation of lower quantiles
and is resistant to mild model misspecification and the influence of large outliers.
As individual samples are by nature sparse at observations at lower quantiles, it is
particularly important to pool information from several samples. At the same time,
the presence of Type I censorship matters little for estimating lower quantiles.

In all simulations, we put the number of samples to be m + 1 = 4, and the
sample sizes n to be (110, 90, 100, 120). The number of simulation repetitions is
set to 10,000.

7.7.1 Populations Satisfying the DRM Assumption

The DRM encompasses a large range of statistical models as subsets. In this sim-
ulation, we consider populations from a flexible parametric family, the generalized
gamma distribution (Stacy 1962), denoted GG(a, b, p). It has density function

f) = bap; (" P/ x>0

When p = 1, the generalized gamma distribution becomes the Weibull distribution;
when a = 1, it becomes the gamma distribution. Generalized gamma distributions
with known shape parameter a satisfy the DRM assumption with basis function
q(x) = (logx, x")T. In our simulations, we fix a at 2 and choose parameter values
such that the shapes and the first two moments of populations closely resemble
those of our lumber quality samples in real applications. We generate samples from
four such populations and make these samples right-censored around their 75 %
population quantiles. We also conduct simulations based on samples from Weibull,
gamma, and normal populations, respectively.

We first study CDF estimation for F,(z) for all r = 0, ..., m with z being the
5%, 10 %, 30 %, 40 %, and 50 % quantiles of the baseline population Fy. Based on
the Type I censored data, the empirical distribution F, (z) is well defined for z values
smaller than the censoring point but not for larger values of z. We purposely selected
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Table 7.1 Simulation results for CDF estimation based on generalized gamma samples

7 —3y | o2(F) | 8XE) | V() 2~ ¥
z Fr(z) | V(F)(X107) wNEY | avE | Vi B(F,)(%) | B(F,)(%)

GG(2,4.3,2.8) |3.64 10.05 |0.34 0.99 |[1.00 1.24 0.92 0.45
co =82 426 10.10 |0.67 0.96 {0.98 1.21 1.36 0.40
5.68 {0.30 |1.62 0.98 [0.98 1.20 0.08 0.03
6.23 1040 |1.92 0.99 {0.98 1.14 | —0.07 0.03
6.76 | 0.50 |2.10 0.99 {0.98 1.09 | —0.05 0.06
GG(2,2.6,5 |3.64/0.05 |0.39 1.02 |1.02 1.32 | —0.93 0.07
¢ =65 426 {0.13 | 1.05 0.96 [0.97 1.26 | —0.34 —0.16
5.68 |10.52 |2.43 1.00 | 1.00 1.14 0.10 0.05
6.23 [0.68 |2.07 1.02 | 1.01 1.15 | —0.01 0.01
6.76 | 0.80 |3.27 095 |[1.02 |NA 0.34 NA
GG(2, 3.8, 3.5) [3.64 |0.03 |0.23 0.96 {0.98 1.38 0.78 0.20
¢ =381 4.26 {0.07 |0.54 094 10.95 1.27 0.21 0.22
5.68 1028 |1.62 1.00 | 0.99 1.21 | —0.20 0.06
6.23 1 0.39 |2.00 1.01 |1.01 1.18 | —0.01 0.11
6.76 | 0.50 |2.23 1.02 | 1.01 1.10 0.15 0.05
GG(2,2.5,6) |3.64/0.02 |0.12 1.02 | 1.05 1.54 1.24 1.21
c3=16.8 426 [0.07 | 045 098 [0.98 1.31 | —0.52 0.39
5.68 (041 |1.76 1.01 | 1.00 1.14 0.02 —0.05
6.23 10.59 | 1.77 1.01 |1.01 1.13 0.10 —0.06
6.76 | 0.74 | 1.55 1.01 |1.01 1.03 | —0.03 —0.05

F,: true CDF value; F - and F - EL-DRM and EM estimates; V: simulated variance; o2: theoretical
variance; 62: average of variance estimates; B: relative bias in percentage; NA: F,(z) not defined

populations such that at some z values, F,(z) is not well-defined but the EL-DRM
estimator F, +(2) is. We report various summary statistics from the simulation for both
the empirical distribution and our proposed EL-DRM estimators.

The simulation results for data from the generalized gamma populations are
reported in Table 7.1. The parameter values of the populations are listed in
the leftmost column. Note that the basis function of the DRM for these pop-

ulations is g(x) = (logx, xZ)T. The censoring points for the four samples are
(8.2, 6.5, 8.1, 6.8). The z values at which the CDFs are estimated are listed in the
“z” column, and the corresponding true CDF values are listed in the “F,(z)” column.

The fourth column is the variance of the CDF estimator observed in the simula-
tion (over 10,000 repetitions). The fifth (respectively, sixth) column is the ratio of
the theoretical asymptotic variance (respectively, average estimated variance) to the
variance observed in the simulation. All the values in these columns are close to
1, indicating that the variance estimator constructed in Sect. 7.4 and its numerical
computation method given in Sect. 7.6 work very well. The seventh column is the
ratio between two simulated variances, one based on the empirical distribution
and the other on our proposed EL-DRM-based estimator. For small z values, our
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proposed estimator gains 20 %—55 % precision in terms of simulated variances. The
gain in efficiency is smaller at large z values but still noticeable.

The last two columns are relative biases. The relative biases of both the EL-DRM
estimators and the empirical (EM) estimators are generally below 1.5 %, which
seems rather satisfactory. Overall, compared to the variance, the bias is a very small
portion of the mean squared error (MSE), so we omit the comparison of the two
estimators in MSE.

When the empirical distribution F, (z) is not defined for a particular z due to Type
I censorship, we put “NA”s in the corresponding cells in the table. As indicated,
z = 6.76 is beyond the censoring point of Fj, so F(6.76) cannot be estimated by
the empirical distribution.

We next examine the results for quantile estimation. For each population, we
estimate quantiles at levels t = 0.05, 0.1, 0.3, 0.5 and 0.6. The results for data
from the generalized gamma populations are given in Table 7.2. The first column
lists the parameter values of the populations, the second gives the levels at which
the quantiles are estimated, and the third provides the corresponding true quantile
values. The fourth column is the simulated variance. The fifth and sixth columns
reflect the quality of the theoretical asymptotic variance and the variance estimation

Table 7.2 Simulation results for quantile estimation based on generalized gamma samples

A 2.8 A2 E 4 PN v
to & VEII07) | TR | U NE) BEN() | BE)(%)
GG(2,4.3,2.8) |0.05 |3.64 |8.44 1.02 {098 |1.27 0.30 0.44
cp =182 0.10 |4.26 |6.75 096 099 |1.23 | —0.10 —0.93
0.30 | 5.68 | 5.38 097 |1.02 |1.17 0.07 —0.40
0.50 | 6.76 | 5.89 1.00 | 1.01 |[1.09 0.09 —0.33
0.60 | 7.31 6.44 0.99 |1.04 |1.06 0.03 —0.36
GG(2, 2.6, 5) 0.05 |3.65 |4.41 1.02 | 1.01 |[1.29 0.52 0.36
3 =065 0.10 | 4.06 | 3.30 0.99 |1.00 |1.27 0.25 —0.69
0.30 | 4.96 |2.43 098 |1.03 |1.22 0.03 —0.38
0.50 |5.62 |2.53 1.01 |1.04 |1.15 | —0.01 —0.32
0.60 |5.95 |2.72 099 |1.06 |1.12 | —0.02 —0.34
GG(2,3.8,3.5) |0.05 |3.96 |7.94 095 094 |1.31 0.37 —1.40
c =381 0.10 | 4.52 | 6.07 092 ]0.96 |1.28 0.14 —0.86
0.30 |5.81 |4.47 1.01 | 1.03 |1.20 0.12 —0.40
0.50 | 6.77 | 4.80 .05 |1.06 |1.13 | —0.00 —0.35
0.60 | 7.25 |5.34 1.02 |1.06 |1.08 | —0.03 —0.32
GG(2,2.5,6) 005 |4.04 |3.28 0.98 1096 |1.40 0.27 —0.97
cp =638 0.10 |4.44 |2.38 098 1099 |1.30 0.16 —0.54
0.30 |5.31 | 1.72 1.00 |1.04 |1.21 0.07 —0.23
0.50 |5.95 |1.76 1.02 | 1.05 |1.12 | —0.02 —0.19
0.60 | 6.27 | 1.91 099 |1.05 |1.10 | —0.02 —0.19

&,: true quantile; é, and 5,: EL-DRM and EM quantile estimates; V: simulated variance; o2:

theoretical variance; 62: average of variance estimates; B: relative bias in percentage
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relative to the simulated variance. Again, we see that all numbers in these columns
are close to 1, showing that the asymptotic variance and its estimates are good
approximations to the actual variance of the estimator.

The seventh column, which gives the ratio of two simulated variances-one based
on the empirical distribution and the other on the EL-DRM quantile estimator-
shows that the EL-DRM quantile estimator is uniformly more efficient than the EM
quantile estimator (i.e., the sample quantile). In applications, the gain is particularly
substantial and helpful at lower quantiles (5 % and 10 %), being between 23 % and
40 %. The biases of the EL-DRM quantile estimator are generally smaller than those
of the EM estimator in absolute value, except in one case. In general, the biases of
both estimators are satisfactorily low.

The asymptotic normality shown in Theorem 6 can be used to construct confi-
dence intervals for quantiles and quantile differences based on EL-DRM quantile
estimators. The same is true for the EM quantile estimators. The simulation results
for confidence intervals of quantiles and quantile differences are shown in Table 7.3.

In all cases, the EL-DRM intervals outperform the EM intervals in terms of
both coverage probabilities and lengths. For single lower quantiles at t = 0.05 and
0.1, the coverage probabilities of EL-DRM intervals are between 91 % and 93.5 %.
In comparison, on average the EM intervals have around 2 % less coverage. Both
methods have closer to nominal coverage probabilities for the higher quantiles. The
EL-DRM intervals have shorter average lengths and therefore are more efficient.

The simulation results for confidence intervals of quantile differences between F
and F; are also shown in the last two rows in Table 7.3. The coverage probabilities
of the EL-DRM intervals are all between 94 % and 95 % so are very close to
the nominal level. The coverage probabilities of the EM intervals are 1 % to 2 %
less than those of the EL-DRM intervals, while the average lengths are somewhat
greater. The simulation results for quantile differences between other populations
are similar and are omitted.

Table 7.3 Simulation results for EL-DRM and EM confidence intervals of quantiles

T 0.05 0.10 0.30 0.50 0.60
EL EM |EL EM |EL EM |EL EM |EL EM
& Length: 1.09| 1.22 099 1.10| 091 | 0.96| 0.94| 097 | 0.99| 1.01
Coverage: | 91.1 |89.0 [92.9 |91.1 |93.9 (923 |93.4 927 942 |92.8
& Length: 0.80| 0.92| 0.70| 0.80| 0.61| 0.67| 0.63| 0.67| 0.65| 0.71
Coverage: | 91.6 | 90.2 [93.0 |91.9 |94.4 [934 |94.7 935 |94.4 |94.7
& Length: 1.04| 1.21| 093 1.05| 0.83| 0.91| 0.87| 091 | 091 | 0.94
Coverage: | 91.5 | 89.6 |92.8 [90.9 |94.2 [92.8 [94.0 1928 |94.0 |93.4
& Length: 0.68| 0.80| 0.59| 0.68 052 0.57| 0.53| 0.56| 0.55| 0.59

Coverage: | 92.3 | 91.8 [93.3 |93.1 |94.8 [94.1 [94.9 1946 948 |95.6
& — & | Length: 1.27| 1.47| 1.13| 130 1.05| 1.12| 1.08| I1.12| 1.14| 1.18
Coverage: | 94.7 | 92.7 | 94.7 | 93.1 |94.3 [94.0 (943 | 93.7 | 948 |94.5

Nominal level: 95 %; & — &;: difference between quantiles of Fj and F; EL: EL-DRM intervals;
EM: EM intervals
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The simulation results for the Weibull, gamma and normal populations are quite
similar to the reported results for the generalized gamma populations: the EL-DRM
CDF and quantile point and interval estimators are generally more efficient than
their empirical counterparts. The detailed results are omitted for brevity. It is worth
noting that, compared to the EM quantile estimator, the efficiency gain of the EL—
DRM quantile estimator for the Weibull distributions is as high as 100 % to 200 %
for lower quantiles at t = 0.05 and 0.1. The efficiency gains of the EL-DRM
estimators for both the normal and the gamma populations are between 10 % and
45 %.

7.7.2 Robustness to Model Misspecification

The DRM is flexible and includes a large number of distribution families as
special cases. The model fits most situations, being applicable whenever the basis
function ¢(x) is sufficiently rich. Misspecifying ¢(x) has an adverse effect on the
estimation of DRM parameters (Fokianos and Kaimi 2006). However, in the targeted
applications, and likely many others, the coefficients of g(x) in the model do not
have direct interpretations. The adverse effect of model misspecification on the
estimation of population distributions and quantiles is limited.

In this simulation, we choose the population distributions from among four
different families: Weibull, generalized gamma, gamma, and log-normal. The
parameter values are again chosen such that the shape and the first two moments
of the populations approximately match real lumber data. These parameter values
are listed in the first column of Table 7.4, where W(A, k) stands for a Weibull
distribution with shape A and scale k, G(a, b) stands for a gamma distribution
with shape a and rate b, and LN(u, o) stands for a log-normal distribution with
mean p and standard deviation ¢ on log scale. Note that the generalized gamma
distribution in the current simulation is the F used in the simulation in Sect.7.7.1.
These four distributions do not fit into any DRM, and therefore no true g(x) exists.
In applications, these four families are often chosen to model positively distributed
populations. None of them are necessarily true. Hence, taken in combination, they
form a sensible example of a misspecified model.

In the simulation, the observations are censored around their 75 % population
quantiles, which are 9.7, 6.5, 9.1, and 8.7. We choose ¢(x) = (logx, x, xZ)T, which
combines the basis function that suits gamma distributions and the one that suits the
generalized gamma distributions in our previous simulation. The settings for this
simulation are otherwise the same as the one in the previous subsection.

The simulation results for quantile estimation are summarized in Table 7.4. As
the fifth column of the table shows, the EL-DRM-based variance estimates obtained
according to Theorem 6 closely match the simulated variances. The efficiency
comparison again strongly favours the EL-DRM quantile estimator, showing gains
in the range of 4 % to 45 %. The efficiency gain is most prominent at the 5 % and
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Table 7.4 Simulation results for quantile estimation under misspecified DRM

e Vé NG e [BE®  BE®)
W(4.5,9) 0.05 4.65 0.16 1.03 1.15 0.05 0.32
co =97 0.10 5.46 0.11 1.07 1.16 —0.06 —1.00
0.30 7.16 0.07 1.06 1.15 0.12 —0.35
0.50 8.30 0.06 1.00 1.06 —0.00 —0.29
0.60 8.83 0.06 1.03 1.04 —0.01 —0.30
GG(2, 2.6, 5) 0.05 3.65 0.05 0.99 1.05 0.53 0.43
cp =65 0.10 4.06 0.04 1.01 1.12 0.24 —0.70
0.30 4.96 0.03 1.04 1.08 —0.05 —0.35
0.50 5.62 0.03 1.02 1.06 0.05 —0.27
0.60 5.95 0.03 1.03 1.06 0.06 —0.30
(20, 2.5) 0.05 5.30 0.06 1.00 1.44 0.39 —1.10
c; =09.1 0.10 5.81 0.05 1.01 1.27 0.19 —0.56
0.30 6.97 0.04 1.02 1.13 0.00 —0.33
0.50 7.87 0.05 1.00 1.08 0.01 —0.28
0.60 8.32 0.05 1.01 1.06 0.01 —0.25
LN(2, 0.25) 0.05 4.90 0.04 0.99 1.35 0.46 —0.79
c; =87 0.10 5.36 0.04 0.97 1.20 0.23 —0.46
0.30 6.48 0.03 1.02 1.15 0.00 —0.26
0.50 7.39 0.04 1.06 1.09 —0.00 —0.24
0.60 7.87 0.05 1.06 1.05 0.02 —0.26

&,: true quantile; §, and é,: EL-DRM and EM quantile estimates; V: simulated variance; 6

average of variance estimates; B: relative bias in percentage

10 % quantiles. The relative bias of the EL-DRM estimator is smaller than that of
the EM estimator in most cases, and both are reasonably small.

The results for quantile interval estimation are given in Table 7.5. The EL-DRM
intervals for both quantiles and quantile differences have closer to nominal coverage
probabilities in most cases compared to the EM intervals. In all cases, the EL-DRM
intervals are also superior to the EM intervals in terms of average lengths.

In conclusion, the simulation results show that the EL-DRM method retains its
efficiency gain even when there is a mild model misspecification.

We also conducted simulations for two-parameter Weibull populations and two-
component normal mixture populations under misspecified DRMs. The results are
similar to those presented and are omitted for brevity.

7.7.3 Robustness to Outliers

Often, the assumed model in an application fails to account for a small proportion
of comparatively very large values in the sample. These outliers may introduce
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Table 7.5 Simulation results for confidence intervals of quantiles under misspecified DRM

T 0.05 0.10 0.30 0.50 0.60
EL EM | EL EM | EL EM |EL EM | EL EM
& Length: 1.52 1.56| 132 138 1.02| 1.07| 0.95| 0.97| 0.95| 0.96
Coverage: | 89.9 | 87.2 [93.0 [90.6 |94.1 [922 [93.1 925 |93.3 |92.8
& Length: 0.87| 091 | 0.75| 080 0.65| 0.67| 0.65| 0.67| 0.67| 0.70
Coverage: | 89.6 | 89.8 [91.9 |92.3 |94.1 [93.8 [93.8 1933 |93.1 |94.6
& Length: 0.93| 1.11| 0.85| 095| 0.79| 0.83| 0.83| 0.86| 0.88| 0.91
Coverage: | 92.2 | 90.1 |92.6 |91.8 |94.1 [93.1 [93.8 1924 |93.1 |92.9
& Length: 0.79( 0.92| 0.73| 081 0.72| 0.76 | 0.79| 0.82| 0.86| 0.88

Coverage: | 91.9 | 91.5 [ 925 [92.7 |942 (932 [942 93.1 |93.9 |93.8
& — & | Length: 1.65( 1.70 | 146 151 1.16| 1.20| 1.09| 1.12| L.11| 1.14
Coverage: | 90.7 |1 90.2 [94.0 |92.5 |94.7 [93.6 [94.0 1 93.7 |94.1 |94.2

Nominal level: 95 %; &, — &;: difference between quantiles of Fjy and F
EL: EL-DRM intervals; EM: EM intervals

substantial instability into the classical optimal inference methods. Therefore,
specific robustified procedures are often developed to limit the influence of the
potential outliers.

The proposed EL-DRM method for Type I censored data is by nature robust
to large-valued outliers for lower quantile estimation. In fact, potential outliers
would be censored automatically. We may purposely induce Type I censoring to
full observations to achieve robust estimation of lower quantiles.

In this simulation, we form new populations by mixing the F; in Sect.7.7.1
with a 10 % subpopulation from a normal distribution. The mean of the normal
subpopulation is set to 11, around the 95 % quantile of F, and its standard deviation
is taken to be 1, about half of that of F|y. More precisely, the population distributions
are mixtures given by

0.9F, + 0.IN(11, 1), k=0,1,2,3.

Accurately estimating the lower population quantiles remains our target. The
observations are censored at the 85 % quantiles of the corresponding populations:
10.0, 7.8, 9.8, and 8.0. We compute the estimates for the 0.05, 0.1, and 0.15
population quantiles. The simulation results are reported in Table 7.6. The first
column lists the parameter values of the populations, the second gives the levels
at which the quantiles are estimated, and the third provides the corresponding true
quantile values. The fourth and fifth columns are the relative biases of the EL-DRM
estimators based on censored data (é,) and full data (é,(f ) ). At the 0.05 quantiles, the
relative biases of g?, are below 0.51 %, compared to between 4 and 8 % for §§f ).

The sixth and seventh columns are the simulated variances of ér and é
respectively. The variances of é, are slightly larger than those of é,(f ) in general.
The eighth and ninth columns reflect the precision of the variance estimators.

()
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Table 7.7 Simulation results for confidence intervals of quantiles when samples contain large
outliers

T 0.05 0.10 0.15
EL |EL(H |[EM |EL |EL(H |[EM |EL |EL(H |EM
£ Length: 1.10 | 081 | 126 1.02| 081 | 1.14] 098 | 081 | 1.07
Coverage: | 91.8 | 63.9 [ 89.1 |933 [81.6 |91.0 | 93.6 |90.8 |915
£ Length: 081 | 085 0.94| 073 080 | 0.83| 0.68| 078 | 0.77
Coverage: | 92.0 | 924 [90.3 [93.1 [948 [923 | 936 | 963 |97
£ Length: 105 077 | 124 096| 078 | 1.10| 0.91| 079 | 1.03
Coverage: | 923 | 723 [ 893 |93.6 |859 [91.2 | 938 |92.1 |90
£ Length: 069 | 069 083 061 ] 066 071] 058| 065 0.65
Coverage: | 92.7 | 89.0 | 92.1 | 938 [ 935 [93.1 942 [958 | 936
£ — & | Length: 127 071 151 117] 092 134 11| 1.02] 1.26

Coverage: | 94.8 | 63.4 | 925 | 951 |833 |927 | 947 |92.6 | 932

Nominal level: 95 %; & —§&;: difference between quantiles of population 0 and 1 EM: EM intervals;
EL: EL-DRM intervals based on censored data; EL(f): EL-DRM intervals based on full data

The entries for é, are all close to 1, showing that both precision and stability of
variance estimation for é, are superior. The entires for E,(f ) based on the full data
fluctuate between 0.61 and 1.36, revealing non-robustness and inaccurate variance
estimation.

We also report the MSEs of the estimators in the last three columns of Table 7.6.
In most of the cases, é, is superior to both ér(f ) and é,. The gains in MSE are most
remarkable at the 0.05 quantile.

Table 7.7 shows the simulation results for quantile confidence intervals. Because
of the outliers, the EL-DRM intervals based on the full data in most cases have
much lower coverage probabilities than the nominal 95 % level for 0.05 and 0.1
quantiles; however, the performance improves much for the 0.15 quantile. The
EL-DRM intervals based on censored data have much closer to nominal coverage
probabilities in general.

In conclusion, for lower quantile estimation, it makes sense to collect much
cheaper censored data, as doing so will result in a large gain in robustness with
only a very mild loss of efficiency. If efficiency is deemed especially important, the
money saved by collecting cheaper data could be used to increase the sample size.

7.8 Simulation Studies II: EL Ratio Test

We now carry out simulations to study the power of the EL ratio test under
correctly specified and misspecified DRMs. As in simulation studies for CDF and
quantile estimations, we set the number of populations to be m + 1 = 4, and
consider populations with generalized gamma distributions. The parameters of these
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distributions are again chosen so that their first two moments closely match those
of the lumber strength samples in our application. Again, we set the number of
simulation repetitions to 10,000.

Since our primary application is to detect difference among lumber populations,
we test the following hypotheses in our simulations

Hy:Fy=F, =F, =F; against H,:F; # F; forsome i,j=0,...,3
(7.15)

at the significance level of 0.05. This is the same as (7.10) with g(8) = B.

In all simulations, the four samples are set to Type I censored at 0.9, 0.8, 0.87
and 0.83 population quantiles of the baseline distribution Fj, respectively.

When samples are Type I censored, the proposed EL ratio test does not have
many non or semiparametric competitors. A straightforward competitor would
be a Wald type test based on the asymptotic normality of § under the DRM.

It uses the test statistic nﬁTfJ_l ﬁA with ¥ being a consistent estimator of the
asymptotic covariance matrix of f. The Wald type test also has a chi-square
limiting reference distribution under Hy of (7.15). Probably the most commonly
used semiparametric competitor is the partial likelihood ratio test based on the
celebrated Cox Proportional Hazards (CoxPH) model (Cox 1972). The CoxPH
model for multiple samples amounts to assuming

hi(x) = exp(Br)ho(x),

where /. (x) is the hazard function of the kth sample. Clearly, the CoxPH model
impose strong restrictions on how m + 1 populations are connected. In comparison,
the DRM is more flexible by allowing the density ratio to be a function of x. This
limitation of the CoxPH approach has been shown by Cai et al. (2016) for the case
of uncensored multiple samples: the power of the partial likelihood ratio test under
the CoxPH model is lower than that of the DEL ratio test under the DRM when the
hazards ratio of populations is not constant in x.

In our simulations, we compare the powers of the proposed EL ratio test under
the DRM (ELRT), the Wald type test under the DRM (Wald-DRM), and the partial
likelihood ratio test under the CoxPH model. In the CoxPH model, we use m dummy
population indicators as covariates. The corresponding partial likelihood ratio has a
2 limiting distribution under the null hypothesis of (7.15).

7.8.1 Populations Satisfying the DRM Assumption

We consider two settings for population distributions: generalized gamma distribu-
tions with fixed a = 2 in the first setting, and generalized gamma distributions with
fixed @ = 1 in the second. Note that in the second settings, a = 1 gives regular
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Table 7.8 Parameter values for power comparison under correctly specified DRMs (Sect. 7.8.1).
Fy remains unchanged across parameter settings 0-5
GG(a, b, p): generalized gamma distribution with parameters a, b and p
Parameter settings
1 2 3 4 5

Fy b P b p b )4 b p b )4
Fi: |66 075 69 (070 (7.2 068 |72 |07 |7.5 |0.66
Fp: 1635 |0.66 635 063 665 061 66 [0.65 |6.8 |0.60
a = 2inall settings | F3: |55 088 |53 092 |52 |1 52 |12 |51 |13

GG(2, 6, 0.8)

GG(1, 2, 2); Fi: |22 |18 23 1.75 |24 [1.72 |25 |1.62 |26 |1.40
a = linall settings | Fp: |1.75 |22 |1.7 |23 |17 |[235 |1.6 |245 |155 |25
(gamma) Fs: | 1.8 |23 |1.78 |255 |1.78 |27 |1.75 |28 |17 |29
Generalized gamma with shape a=2; Generalized gamma with shape a=1 (gamma);
a(x) = (log(x), x*)" a(x) = (log(x), x)"
o | e |
—e ELRT / o —e ELRT °
w | © Wald-DRM . w | © Wald-DRM o
s - CoxPH s | - CoxPH .
o s
© - © - . yZ g
o o

Power
0.4
L
*
0.4
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| . ¥ o~
o * o
3 / 3
o S
0 1 2 3 4 5 0 1 2 3 4 5
Parameter settings Parameter settings

Fig. 7.1 Power curves of the ELRT, Wald-DRM, and CoxPH; the ELRT and Wald-DRM are based
on correctly specified DRMs; the parameter setting 0 corresponds to the null model and the settings
1-5 correspond to alternative models

gamma distributions. Under each setting of population distributions we compare
the power of the three competing tests for six parameter settings (settings 0-5), with
parameter setting O under the null hypothesis Hy and parameter settings 1-5 under
the alternative hypothesis H,. These parameter settings are given in Table 7.8.

The populations in the first distribution setting satisfy a DRM with basis function
qg(x) = (log(x), xz)T, and those in the second distribution setting satisfy a DRM
with basis function g(x) = (log(x), x)". We fit DRMs with these basis functions to
the corresponding Type I censored samples.

The power curves of the three testing methods are shown in Fig.7.1. The type
I errors of the ELRT and the CoxPH are very close to the nominal level, while
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that of the Wald-DRM is a little lower than the nominal level. The ELRT has the
highest power under all the settings. The Wald-DRM is also more powerful than the
CoxPH under most parameter settings. In summary, under our simulation settnigs,
the DRM-based tests are more powerful the CoxPH, and the proposed ELRT is the
most powerful of all.

7.8.2 Robustness to Model Misspecification

We now examine the power of the ELRT under misspecified DRMs. As we have
argued, since the DRM is very flexible, a mild misspecification of the basis function
should not significantly reduce the power of a DRM-based test. We now demonstrate
this idea by simulation studies.

We again consider two settings for population distributions: three-parameter
generalized gamma distributions in the first setting, and generalized gamma distri-
butions with fixed p = 1 in the second. Note that in the second settings, p = 1 gives
the two-parameter Weibull distributions. As in the last simulation study, under each
setting of population distributions we compare the power of the three competing
tests for six parameter settings (settings 0-5), with parameter setting 0 under the
null hypothesis Hy and parameter settings 1-5 under the alternative hypothesis H,,.
These parameter settings are given in Table 7.9.

The populations in neither distribution setting satisfy the DRM assumption (7.1).
In either case, we still fit a DRM with the basis function that is suitable to gamma
populations, g(x) = (log(x), x)T, to the censored samples. Such a basis function
is chosen by the shapes of the histograms of the samples: both generalized gamma
and Weibull samples have similar shapes to gamma samples, and hence are easily
recognized falsely as from the gamma family.

The simulated rejection rates of the three tests are shown in Fig.7.2. It is clear
that, although the DRMs are misspecified, the ELRT still has the highest power
while its type I error rates are close to the nominal. Again, the Wald-DRM is not as
powerful as the ELRT, but is more powerful than the CoxPH in most cases.

7.9 Analysis of Lumber Quality Data

Two important lumber strength measures are modulus of tension (MOT) and
modulus of rupture (MOR). They measure, respectively, the tension and bending
strengths of lumber. Three MOT and three MOR samples were collected in labs.

The first MOT sample (MOT 0) is not subject to censoring, the second (MOT 1)
is right-censored at 5.0 x 10* pounds per square inch (psi), and the third (MOT 2) at
4.0x 10? psi. The size of each sample is 80. The number of uncensored observations
for MOT 1 and MOT 2 are 52 and 38, respectively. The kernel density plots of these
samples are shown in Fig. 7.3a.
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Fig. 7.2 Power curves of the ELRT, Wald-DRM, and CoxPH; the ELRT and Wald-DRM are based
on misspecified DRMs; the parameter setting O corresponds to the null model and the settings 1-5

correspond to alternative models
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Fig. 7.3 Kernel density plots of MOT and MOR samples
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We fit a DRM with basis function g(x) = (logx, x, xz)T to the samples. Quantile
estimations are similar when other two- and three-dimensional basis functions are
used, although the estimates for # are quite different.

We compute the EL-DRM and EM quantile
their estimated standard deviations, at T

estimates (§, and ér), along with

0.05, 0.1, 0.3, 0.5 and 0.6. Note that
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P Tk i o
populations (unit: 103 psi) MOTO |0.05 |2.11 |3.38 |2.08 |5.33
0.10 (2.47 [3.15 |2.47 |3.67
0.30 [3.45 [2.82 |3.28 |2.58
0.50 [4.11 [2.68 |4.11 |3.12
0.60 |4.36 [3.21 [4.38 |3.31
MOT1 |0.05 |2.11 |249 |2.10 |2.51
0.10 |2.45 [2.50 [2.30 |2.85
0.30 |3.33 [3.61 [3.48 |3.85
0.50 [4.19 [3.27 |4.15 |3.11
0.60 [4.60 |4.13 |4.55 |4.89
MOT2 |0.05 |1.72 |5.17 |1.66 |5.84
0.10 {2.29 [3.82 [2.19 |3.97
0.30 |3.38 [3.24 |3.37 |3.70
0.50 |4.09 [2.85 |NA |NA
0.60 [4.33 [636 |NA |NA
é,: EL-DRM quantile estimates; §,: EM quan-
tile egtimates; o estimated standard deviation;
NA: &, not well-defined

only 47.5 % of observations in the third MOT sample are uncensored, invalidating
the EM estimator at T = 0.5 and 0.6. The EL-DRM estimator, however, is effective
at all  values.

The results are shown in Table 7.10. The EL-DRM and EM quantile estimates
are close. Except in two cases, we see that a(é,) the estimated standard error of E,,
is smaller than a(é,) the estimated standard error of é, On average, a(é,) is 12%
smaller than o(sr) Such an efficiency gain is likely to be real, as implied by our
earlier simulation studies.

We next analyze the non-censored MOR samples of sizes 282, 98, and 445,
denoted MOR 0, MOR 1 and MOR 2 in the kernel density plots shown in Fig. 7.3b.
There are no obvious large outliers.

In addition to being robust, the EL-DRM estimator based on Type I censored
data is believed to lose little efficiency compared to that based on full data for lower
quantile estimation. To illustrate this point, we induced right censoring to all the
MOR samples around their 85 % quantiles at 8.4, 8.3 and 8.3 (x103 psi). We fitted
a DRM with basis function g(x) = (logx, x, xl)T to the censored and full samples,
respectively.

The quantile estimates for the MOR populations and the corresponding estimated
standard deviations (6) are shown in Table 7.11. The three estimators give similar
quantile estimates. The standard deviations of é, based on censored observations
are close to the ones based on the full data. The average of the ratio o(srf ) )/ 0(&,) is
0.98. Moreover, a(g,) and J(E,(f ) ) are 16 % and 18 % smaller than o(é,) on average.
In conclusion, the EL-DRM estimator based on the censored data is almost as
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Table 7.11 Quantile A 7 D T~ 200 = v
estimates for MOR Ll T & o) |& o) | & a(§)

populations (unit: 10° psi) MORO |0.05 452 [3.62 453 |370 | 440 |5.50
0.10 496 |3.54 |500 344 |5.00 |4.10

030 599 [2.69 |6.02 255 |6.05 |2.82

050 674 |3.06 672 |2.84 | 6.67  3.14

0.60 |7.11 [356 |7.06 |3.16 |7.23 |4.44

MOR 1 |0.05 [4.57 586 |4.55 561 [4.70 |8.01
0.10 |5.03 |535 497 [520 517 492

030 593 [3.76 593 |3.89 |5.88 |3.86

050 659 [425 |6.62 441 |646 532

0.60 6.88 471 695 [479 | 6.92 |6.46
MOR2 |0.05 |3.54 [4.08 |3.58 391 3.8 |4.43
0.10 403 |391 403 [3.84 408 3.74

030 536 (325 534 318 |532 [3.58

050 626 [2.82 621 280 |627 |3.35

0.60 672 [3.08 672 3.13 |6.76 |3.01

é,. and é,‘.f) : EL-DRM quantile estimates based on censored

and full data; é,.: EM quantile estimates; 6: estimated standard
deviation

efficient as the one based on the full data, and both are more efficient than the EM
estimator.

7.10 Concluding Remarks

We have developed EL-DRM-based statistical methods for multiple samples with
Type I censored observations. The proposed EL ratio test is shown to have a simple
chi-square limiting distribution under the null model of a composite hypothesis
about the DRM parameters. The limiting distribution of the EL ratio under a class of
local alternative models is shown to be non-central chi-square. This result is useful
for approximating the power of the EL ratio test and calculating the required sample
size for achieving a certain power. Simulations show that the proposed EL ratio test
has a superior power compared to some semiparametric competitors under a wide
range of population distribution settings.

The proposed CDF and quantile estimators are shown to be asymptotically
normal, as well as to be more efficient and have a broader range of consistent
estimation than their empirical counterparts. Extensive simulations support these
theoretical findings. The advantages of the new methods are particularly remarkable
for lower quantiles. Simulation results also suggest that the proposed method is
robust to mild model misspecifications and useful when data are corrupted by large
outliers.
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This work is motivated by a research project on the long-term monitoring
of lumber quality. The proposed methods have broad applications in reliability
engineering and medical studies, where Type I censored samples are frequently
encountered.
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Chapter 8

Recent Development in the Joint Modeling

of Longitudinal Quality of Life Measurements
and Survival Data from Cancer Clinical Trials

Hui Song, Yingwei Peng, and Dongsheng Tu

Abstract In cancer clinical trials, longitudinal Quality of Life (QoL) measurements
and survival time on a patient may be analyzed by joint models, which provide more
efficient estimation than modeling QoL data and survival time separately, especially
when there is strong association between the longitudinal measurements and the
survival time. Most joint models in the literature assumed classical linear mixed
model for longitudinal measurements and Cox’s proportional hazards model for
survival times. The linear mixed model with normal distributed random components
may not be sufficient to model bounded QoL measurements. Moreover, when some
patients are immune to recurrence of relapse and can be viewed as cured, the
proportional hazards model is not suitable for survival times. In this paper, we
review some recent developments in joint models to deal with bounded longitudinal
QoL measurements and survival times with a possible cure fraction. One of such
joint models assumes a linear mixed tt model for longitudinal measurements and a
promotion time cure model for survival data, and the two parts are linked through
a latent variable. Another joint model employs a simplex distribution to model the
bounded QoL measurements and a classical proportional hazard to model survival
times, and the two parts share a random effect. Semiparametric estimation methods
have been proposed to estimate the parameters in the models. The models are
illustrated with QoL measurements and recurrence times from a clinical trial on
women with early breast cancer.
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8.1 Introduction

In cancer clinical trials, the patient’s quality of life (QoL) is an important subjective
endpoint beyond the traditional objective endpoints such as tumor response and
relapse-free or overall survival. Specially, when the improvement in survival may be
limited by a new treatment for a specific type of cancer, patients’ QoL is important
to determine whether this new treatment is useful (Richards and Ramirez 1997).
Several studies (Dancey et al. 1997; Ganz et al. 2006) have also found that QoL
measurements such as overall QoL, physical well-being, mood and pain are of
prognostic importance for patients with cancer, so they may help to make a treatment
decision.

The quality of life of cancer patients is usually assessed by a questionnaire,
which consists of a large number of questions assessing various aspects of quality
of life, at different timepoints before, during, and after their cancer treatments. The
score for a specific domain or scale of QoL is usually calculated as the mean of
the answers from a patient to a set of the questions which define this QoL domain
or scale and, therefore, can be considered as a continuous measurement. In this
chapter, we only consider measurements of a specific QoL domain or scale, which
can be defined as ¥; = (Y;1,..., Y,-,,,.)T, where Yj; is the measurement of this QoL
domain or scale from the ith subject at the jth occasion,j = 1,...,n;,i=1,...,n.
These longitudinal QoL measurements from cancer clinical trials can be analyzed
by standard statistical methods for repeated measurements, such as linear mixed
models (Fairclough 2010). These models provide valid statistical inference when
complete longitudinal measurements from all patients are available or the missing
longitudinal measurements can be assumed missing at random. In cancer clinical
trials, some seriously ill patients who have worse QoL may drop out of the study
because of disease recurrence or death. The QoL measurements are not available
from these patients. In this case, dropping out is directly related to what is being
measured, and the missing of QoL measurements caused by the dropout of these
patients is informative and may not be assumed as missing at random. Application
of a standard longitudinal data analysis in this context could give biased results.
Tu et al. (1994) analyzed the longitudinal QoL data of a breast cancer clinical trial
based on a nonparametric test taking into account of informative censoring.

Patients’ poor QoL can lead to both informative dropout for QoL measurements
and censoring in survival time. Let 7/ be the survival time and §; be the censoring
indicator of the ith subject. A joint modeling framework for longitudinal QoL
measurements ¥; and survival data (77, §;) allows modeling both longitudinal mea-
surements and survival time measurements jointly to accommodate the association
between them. It may provide a valid inference for data with missing measurements
caused by the dropout of patients. As pointed out in an introductory review by
Ibrahim et al. (2010), Tsiatis and Davidian (2004) and Diggle et al. (2008), joint
analysis of longitudinal QoL data together with data on a time to event outcome,
such as disease-free or overall survival would also provide more efficient estimates
of the treatment effects on both QoL and time to event endpoints and also reduce
bias in the estimates of overall treatment effect.
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Since Schluchter (1992) proposed the analysis of the longitudinal measurements
jointly with the dropout time by a multivariate normal distribution, many approaches
have been proposed for jointly modeling longitudinal measurements and survival
data. Some recent reviews can be found in, for example, Wu et al. (2012) and Gould
et al. (2015).

In this paper, we will review some of our recent contributions in this area, which
were motivated from the analysis of data from a clinical trial on early breast cancer.
We developed some new joint models which take into account of features of QoL
and survival data observed from the clinical trials. The models employ the Student’s
t distribution for the random components of the model for the longitudinal QoL data
to better accommodate extreme observations. The simplex distribution is considered
to accommodate longitudinal bounded QoL data. A promotion time cure model is
considered for survival data to allow a possible cure fraction in the patients. To
simplify the model estimation, a penalized joint likelihood generated by the Laplace
approximation is attempted to estimate the parameters in the models. The details of
these new models and statistical procedures for the inference of parameters in these
models are reviewed in the following sections, followed by an illustration with the
breast cancer data. The paper is concluded with conclusions and discussions.

8.2 QoL and Survival Data from a Breast Cancer
Clinical Trial

The data that motivated our recent contributions are from a clinical trial (MA.5) on
early breast cancer conducted by NCIC Clinical Trials Group which compared two
chemotherapy regimens for early breast cancer, a new and intensive treatment of
cyclophosphamide, epirubicin, and fluorouracil (CEF) with the standard treatment
of cyclophosphamide, methotrexate, and fluorouracil (CMF) (Levine et al. 1998,
2005). In this study, 356 patients were randomly assigned to CEF and 360 patients
to the CMF arm. Both CEF and CMF were administered monthly for six months.
The survival time of our interest is the time to relapse or recurrence free survival
time (RFS), which was the primary endpoint of this trial. The median follow-up
time of all patients is 59 months, and there are 169 and 132 uncensored RFS times
from patients randomized to CEF and CMF respectively in the data set updated in
2002. The difference in 10-year relapse-free survival between two treatment arm
is 7% (52 % on CEF and 45 % on CMEF, respectively), which was considered as
moderate and may not be able to completely determine the relative advantages of
CEF over CME. Therefore, information on QoL may be helpful in the process of
decision-making (Brundage et al. 2005).

In MA.S5, the quality of patients undergoing chemotherapy treatment was
assessed by the self-answered Breast Cancer Questionnaire (BCQ) which consists
of 30 questions measuring different dimensions of QoL and was administered at
each of the clinical visits (every one during the treatment and then every 3 months
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after the completion of the treatment) until the end of the second year or until
recurrence or death, whichever came first. The specific QoL scale of interest is the
global QoL of patients defined as the means of the answers to all 30 questions.
Because of drop-out of patients due to recurrence or death, joint analysis of RFS
and the global QoL would provide more robust and also efficient inference on the
difference in global QoL between two treatment groups.

Joint modeling of longitudinal QoL measures and survival data was studied
previously by Zeng and Cai (2005). They assumed a linear mixed effects model
to the longitudinal QoL measurements Y; and a multiplicative hazards model to the
survival time Tl./ . These two models share a vector of common random effects, which
reflects the unobserved heterogeneity for different subjects and its coefficient in the
model characterizes the correlation between the longitudinal QoL measurements
and survival times. The EM algorithm was implemented by them to calculate the
maximum likelihood estimates. This simultaneous joint model with shared random
effect established a basic framework for the joint modeling of longitudinal QoL
measurements and survival data but during the process to apply it to analyze data
from MA.5, we found it necessary to extend this framework for several reasons.
One reason is, for early breast cancer, with advances in the development of new
cancer treatments, the existence of cured patients becomes possible and, therefore,
the models for the survival times need to take this into consideration. This can also
be seen from the plateau of the Kaplan-Meier survival curves of the two treatments
shown in Fig. 8.1. Another reason is that QoL measurements may be restricted to
an interval. For example, since each question on BCQ are on a Likert scale from 0
to 7 with the best outcome marked as 7, the minimum and maximum of the scores
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Fig. 8.1 Kaplan-Meier survival curves of patients in the two treatment groups of MA.5
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for global QoL are respectively 0 and 7. Such data is often called bounded data
(Aitchison 1986). There are totally 7769 QoL measurements from both arms.

8.3 Modeling QoL and Survival Data with a Cure Fraction

As mentioned above, Zeng and Cai (2005) considered the change in longitudinal
QoL measures over time and the time to event as two simultaneous processes. They
used a classical linear mixed model for the longitudinal QoL measurements Y; and a
Cox proportional hazards model with random effects for the survival time 7] and
assumed the random effects in these two models are the same. When there are
potential cured patients, this simultaneous joint model may not be suitable to model
longitudinal QoL measures and survival times. To accommodate a possible cure
fraction in the data, we proposed to use a linear mixed tt model for the longitudinal
QoL measurements Y; and a promotion time cure model for Ti’ (Song et al. 2012).
These two models are connected through a latent gamma variate, which defines a
joint model for the longitudinal QoL measurements and survival time. Let &; be
the latent gamma variate with the density function P(&;|n, n) so that E[§;] = 1 and
var[&] = 1/n. Given &;, the proposed joint model specifies that the longitudinal
QoL measurements Y; in the joint model is assumed to follow the linear mixed #
model,

Yi = Xif + Xieti + e;, 8.1

where X; and f(i are the design matrices of covariates for the fixed effects, § and
the random effects ¢; respectively, and e; is the random error. Given §;, ¢; and e;
are assumed to be independent and both are normal random variates with «;|&; ~
N(0,02/&) and ¢;|&; ~ N(O, Ixn,02/60).

It can be shown that the marginal distributions of «; and e; are respectively
£(0, 05,277) and tni(O,anInixm,Zn), where 1,,(0, crflnixm,ZU) is an n;-dimensional
t distribution (Pinheiro et al. 2001) with mean 0, a positive definite scale matrix
021,xn, and a degree of freedom 27, and #(0,02,2n) is that distribution for
univariate variable (Cornish 1954; Lange et al. 1989). Therefore, Eq. (8.1) is often
called the linear mixed # model (Song 2007; Song et al. 2007; Zhang et al. 2009).
Since the marginal variances of «; and e; are respectively varfo;] = nﬁlag and
varle;] = nfl 021, xn;» @ condition 7 > 1 in the joint model is required to guarantee
the existence of the variances.

Given &;, the survival time Tl./ in the joint model is assumed to follow a conditional

distribution with the following survival function,

Spop(t|Zi, &) = exp[—&:0(Z)Fo(1)], (8.2)
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where Fy(f) is an arbitrary proper distribution function, 6(Z;) = exp[y?Z] with
Z; the vector of covariates which may have partial or complete overlap with X;,
and y is the corresponding regression coefficients. Eq.(8.2) is often called the
promotion time cure model (Chen et al. 1999; Yakovlev et al. 1993; Yin 2005).
The unconditional cure probability for a subject with Z; under this model is
iMoo fo Spop(t1Z:, EVP(Eiln, m)dg; = ("% + 1)7.

Equations (8.1) and (8.2) are connected by the latent gamma variate &;, which
acts multiplicatively on the hazard function of 77 and on the variances of «; and
e;; in the model for Y;. These two equations together define a joint model for the
longitudinal QoL measures and survival times, referred as JMtt.

Since conditional on «;, £;, the contribution of y; to the likelihood under (8.1) is

LiGilei, &) = pl i — Xif — X)) " (vi — Xip — Xit})]

1 1
(Vara2 /ey T 2028

and the contribution of (7, 8;) to the likelihood under (8.2) and independent
censoring is

Li(tilou, &) = [E0(Z)fo ()] exp[—&:0(Z)Fo(t)].

The observed likelihood for the proposed joint model based on all n subjects is
=TT [ wtvlan .02, Blatelen. 1 . Fohteilo. o3 /6y 6 . dauds,
i=1

where ¢(-|0,02 /) is the density function of the normal distribution with mean 0
and variance o2/£;, and ¥ (§;|n, 1) is the density function of the gamma distribution
with mean 1 and variance 1/7. The unknown parameters in this model are denoted

as ®@ = (B, y, n, 04, 0u, Fo(1)).

EM algorithm is used to obtain the maximum likelihood estimates of parameters
(Klein 1992). If «; and &; are observed, the complete log-likelihood from the joint
model is

Lo=L+Li+ Ly + L,
where

L =Y, (log& —logay) — 2%3 i — XiB — X)) (i — Xif — Xicty)].
Ly = i [8i(log fo(t) + log & + 1<2>g 0(Z))) — &0(Z)Fo(t)].

Ly = i, [, (log§ —logoy) — i’ﬁé],

Le = Yi_i[nlogn—log I'(n) + (n — 1) log & — n&i.



8 Joint Modeling QoL and Survival Data 159

Denote the entire observed data as O = {y;, t;, §;, X;, X, Z;}. Let O be the estimate
of ® in the kth iteration. The E-step in the (k + 1)th iteration of the EM algorithm
computes the conditional expectation of L. with respect to «; and §&;, which is
equivalent to evaluating the following four conditional expectations,

E[L|6, 0] = 37 {"} (& — logo}) — 2(1,3 (i = XiB)" (yi — XiB)Fi—
20y — Xif) Xz + X Xibi]};

E[L,|Ok, O] = 3 i_ {8illog fo(t:)) + a; + log 0(Z)] — O(Z) Fo(1:)7:};

E[La|6. 0] = Y {4 —logog] — ) }:

E[Lg|O O] = 3 [nlogn —log I' (1)) + (n — Da; — i,

where &;, b;, g; and 7; are given in the Appendix of Song et al. (2012). In the M-step
of the EM algorithm, maximizing E[L;|®, O], E[Ly|G, O], and E[L¢|®y, O] can
be accomplished through the Newton-Raphson method. To update the parameters
(¥, Fo()) in E[Ly|®%, O], it is assumed that Fy(f) is a proper cumulative distri-
bution function and only increases at the observed event times, and maximizing
E[Ly|®y, O] can be carried out using the semiparametric method of Tsodikov
et al. (2003). The maximum likelihood estimates of the parameters are obtained
after iterating the E-step and M-step until convergence. To calculate the variance
estimates for the parameter estimates, the method of Louis (1982) is employed
to obtain the observed information matrix. Extensive simulations studies showed
that the proposed joint model and estimation method are more efficient than the
estimation methods based on separate models and also the joint model proposed by
Zeng and Cai (2005).

Other researchers also proposed joint models to accommodate a possible cure
fraction. Brown and Ibrahim (2003) considered a Bayesian method for a joint model
that joins a promotion time cure model (8.2) for the survival data and a mixture
model for the longitudinal data. Law et al. (2002) and Yu et al. (2008) proposed
a joint model which employed another mixture cure model for the survival data
and nonlinear mixed effect model for longitudinal data and employed a Bayesian
method to estimate the parameters in the model. Chen et al. (2004) investigated the
joint model of multivariate longitudinal measurements and survival data through a
Bayesian method, where the promotion time cure model with a log-normal frailty
is assumed for survival data. Due to complexity of the joint models, the Bayesian
methods used in the models can be very tedious. In contrast, the estimation method
proposed by Song et al. (2012) for model (8.1) and (8.2) is simple to use and takes
less time to obtain estimates due to the simplicity of the conditional distributions
of the latent variables in the model, which greatly reduces the complexity of
estimation.
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8.4 Modeling QoL and Survival Data with the Simplex
Distribution

As mentioned in the introduction, although QoL measurements can be considered
as continuous, their values are usually restricted in an interval and thus are bounded
data. Therefore, classical linear mixed models with normal or ¢-distributions may
not be proper models for the QoL measurements. Recently, we have explored the use
of a model which assumes that the QoL measurements follow a simplex distribution
for the longitudinal QoL measurements and developed estimation procedures for
a joint model with simplex distribution based models for the longitudinal QoL
measurements and Cox proportional hazards models for the survival times (Song
et al. 2015). Specifically, given a random effect «;, the density function of a
simplex distribution for a longitudinal QoL measurements Y;; has the following form
(Barndorff-Nielsen and Jgrgensen 1991):

d(y;pij
a(y; o) exp[- 5457,y e (0.1)

, (8.3)
otherwise

fOl.0%) =

— )2
where a(y;02) = 2ro?(y(1 — )72, d(y; uy) = y(l_gﬂﬁ_‘(”l)_ﬂ_/)z, 0 <py <1
ij 4

is the location parameter and is equal to the mean of the distribution, and 0> > 0 is
the dispersion parameter. The simplex distribution has a support on (0, 1) which
make it suitable as a model for bounded data. Further details and properties of
the simplex distribution can be found in Song and Tan (2008), Qiu et al. (2008),
Jprgensen (1997), and Song (2007). We assume that the mean of Yj;’s satisfies the
following:

logit(1y) = X;B + . (8.4)

where Xj; is a vector of covariates with coefficient 8 and ¢; is a random effect which
satisfies that

Ay, Oy~ ()0, crlf . (8.5)

This model is called a simplex model for Y;;, which allows a directly modeling
effects of X;; on the mean of Y}, a desirable property that the existing joint modeling
approaches for bounded longitudinal data do not have. The effect of X;; on the mean,
measured by S, can be easily interpreted in a similar way as the log odds ratio in the
logistic regression.

For the survival time 77, we assume it follows the proportional hazards model

h(t1Zi, ai) = ho(1) exp(Z] y + pa), (8.6)



8 Joint Modeling QoL and Survival Data 161

where y is the coefficient of Z;, ¢ is the coefficient of the random effect ¢;, and A ()
is an arbitrary unspecified baseline hazard function. The assumptions for ¢;’s are the
same as in (8.5).

Similarly, the random effect «; in the joint model (8.4) and (8.6) reflects the
unobserved heterogeneity in the mean of Yj; and the hazard of 7] for different
subject, and ¢ characterizes the correlation between the longitudinal bounded
measurements and survival times, which can be seen from the joint density function
of T/ and ¥j;

F(t,y) = (2o (y(1 — )| 71/2e#Y

Th+a
o= )

+oo Ho ()2l v+oe - 14eXTB+a
X efaHoe exp | — e | Pl@)do.
_ 2u(1 —v) ¢ o
o 20%y(1 —y (e ays

When ¢ = 0, the survival times and longitudinal measurements will be independent
conditional on the observed covariates since f(t,y) = f(¢) f_+oz° fOl)e(@)da =
f(O)f (). The above joint model (8.3), (8.4), (8.5), and (8.6) is referred as JMSIM.
Since the simplex distribution is not in an exponential family, the joint model
JMSIM is an extension of Viviani and Rizopoulos (2013) who assumed the
distribution of the longitudinal response is in the exponential family and used the
generalized linear mixed model together with the Cox model to construct the model.

The parameters in the joint model based on the simplex distribution, denoted as
O = (B, d, v, ho(t), o2, 05), can be estimated from the marginal log-likelihood of
the proposed joint model:

n n; . T o
K@=mﬂ/IVWWﬁ)%@%WWVMWM¢mM@m
i=1 j=1
(8.7)

where Hy(?) = fot ho(#)dt. Since (8.7) involves an integration that does not have a
closed form, it is difficult to maximize it directly. Instead, we considered the Laplace
approximation to (8.7) and obtained the following first-order and the second-order
penalized joint partial log-likelihoods (PJPL):

Z:l=1 ni 10

IlPJPL(@,) = 2

n
n N
g02 ) log 03 + E ApspL(@;),
i=1

bD

" _on n " . 1 & .
LLPJPL(@/) — _ t;l i 1og 0'2 — ) log 0'02[ + ZAPJPL(OU) — 2 Zlog ME,ZJ)PL(O[,')L

i=1 i=1
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where @' = (B, ¢,y,02,02),

n;

Apapnles) = — Zd(y,,, i) + 812y + po —log( 3 A - 1,

kER(1) %
2® (o) = — ! ad()’tp i) -6 < rrheig? — et )= :
PIPLY 202 da;? ZkER([i)eZ/cTV+¢ak ZkERm A vt o2

and @; = argmaxaikapL(oci). Following Ripatti and Palmgren (2000), Ye et al.
(2008), and Rondeau et al. (2003), omitting the complicated term log |A?(&;)| in
LLpjpr(®') have a negligible effect on the parameter estimation but can make the
computation faster. The parameter §, y can be updated by maximizing LLp 7rL(©),

then o2, 0 2 ¢ can be updated with current estimates of B,y by maximizing
LLpspr(®"). The maximum likelihood estimate of @’ is obtained by iterating these
two steps until convergence, and /(¢) can be estimated by using Breslow’s estimator
(Breslow 1972). The variances of these parameter estimates are approximated from
inverting the information matrices of EPJPL(@/ ) for parameters (8,y) and of
LLpyp(®') for parameters (o2, a(f, P).

Another intuitive approach to deal with longitudinal bounded data is to perform
logit transformation (Aitchison and Shen 1980; Lesaffre et al. 2007) of the bounded
data before applying a joint model, such as Zeng and Cai (2005), to the data. Song
et al. (2015) explored this approach in details. Numerical studies showed that the
two approaches are comparable in performance and both are better than the simple
approach that ignores the restrictive nature of the longitudinal bounded data, such
as the method of Ye et al. (2008). The joint model based on logit-transformed
longitudinal bounded data is more robust to model mis-specification. The approach
based on simplex distribution has, however, an advantage in its simpler and easier
interpretation of covariate effects on the original scale of the data. Similar to the
classic generalized linear model, this approach allows the effects of covariates on
the mean of the longitudinal bounded data while the dispersion of the distribution
stays intact.

8.5 Application to a Data from a Breast Cancer Clinical Trial

As an illustration, the joint models and the estimation methods of JMtt and IMSIM
are applied respectively to analyze the data from the MA.5 described in Sect.8.1.
Preliminary examination of QoL data revealed that patterns of change in the
scores are different in different time periods and in different treatment groups
(Fig. 8.2). This lead to the piecewise polynomial linear predictors (8.8) and (8.9)
to better interpret the change in scores over time of joint models JMtt and JMSIM,
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Fig. 8.2 Averages of BCQ scores for patients in the two treatment groups of MA.5

respectively:

IMit : X[ B + ;i = [Bo + Brxi + Baty + Baxity + Baty; + Bsxitylliepo) +
[Bs + Brxi + Bstij + /39li2j]1z,-je[2,9) +
[Bio + Buxi + Protyly>0 + i, (8.8)
IMSIM = X[ B + a; = [Bo + Brxi + Baty + Baxity + Paty; + Bsxityliser0.2) +
[Be + Brxi + Bstyy + Poxity + /310l,;2,~ + lgllxit?j]llﬁe[Z.g) +
[Bi2 + Biaxi + Braty + Bisxitijlly;=o + ai, (8.9)
where x; is the binary treatment indicator (=1 for CEF and =0 for CMF) and ¢;
denotes the time(in month from the randomization) when the QoL of a patient was

assessed. The RFS times in the joint model are modeled by (8.2) in JMtt and (8.6)
in JMSIM with Z; = x;.
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Table 8.1 Estimations, standard errors of parameters in joint models JMtt and JMSIM with
longitudinal parts (8.8) and (8.9) for MA.5 respectively

Joint Model | Parameter | B¢ Bi B2 B3 Ba Bs
IMtt Est. 0.0382 0.0679 —0.4426 | —0.5360 |0.1380 0.2662
Std. 0.0306 0.0433 0.0597 0.0841 0.0309 0.0436
JMSIM Est. 1.0516 0.0350 —0.2171 | —0.4345 |0.0393 0.1904
Std. 0.0316 0.0447 0.0624 0.0900 0.0332 0.0469
Joint Model | Parameter | B¢ B2 Bs By Bio B
IMtt Est. —0.0278 |0.0732 —0.2174 |0.0297 0.3630 0.1192
Std. 0.0553 0.0355 0.0207 0.0019 0.0356 0.0361
IMSIM Est. 0.7431 —0.0152 | —0.0311 |—0.0105 |0.0102 0.0016
Std. 0.0787 0.1118 0.0316 0.0447 0.0028 0.0004
Joint Model | Parameter | B3 Bia Bis Yo Y1
IMtt Est. 0.0062 - - - —0.0454 | —0.2863
Std. 0.0015 - - - 0.0788 0.1163
JMSIM Est. 1.4364 0.0110 0.0070 0.0012 - —0.2679
Std. 0.0397 0.0565 0.0019 0.0027 - 0.1122
Joint Model | Parameter |62 n(¢)
IMtt Est. 0.1499 3.6392
Std. 0.0099 0.2991
JMSIM Est. 0.1781 0.3444
Std. 0.0101 0.1425

Table 8.1 summarizes the estimates of the parameters and their standard errors
in the two joint models of JMtt and JMSIM fitted to the data respectively. The
hazard of the RFS times was significantly lower for patients randomized to CEF than
those to CMF( p-value 0.0138 from JMtt, p-value 0.0170 from JMSIM). In addition,
both 7 in JMtt and QAS in JMSIM are significantly different from 0, which indicate a
strong dependence between longitudinal QoL and RFS data from MA.S. The fitted
mean curves and their confidence bands of the longitudinal data for CEF and CMF
from JMtt and JMSIM are in Fig. 8.3. The plots fitted by JMtt and JMSIM have a
similar trend. The mean BCQ score in the CMF group decreases to a nadir after
randomization and them increases steadily over the next 7 months. In contrast, the
mean BCQ score in the CEF group decreases more quickly to a nadir and gradually
increases in the remaining months of chemotherapy treatment. After 6-month of the
chemotherapy treatments, the scores of both arms tend to be stable. This implies that
patients treated by CEF had worse QoL than those treated by CMF at very beginning
but gradually recovered to a slightly better than those treated by CMF.



8 Joint Modeling QoL and Survival Data 165

BCQ Summary Score
0.0
L

CMF fitted by JMtt

o E— CEF fitted by JMtt
ol T T T T T
0 5 10 15 20
Months from randomization
0
@ |
o
o
@ |
9 o
3
3P
2 o
©
IS
E R
@» o
3
@ 8
=N
——  CMF fitted by JMSIM
§ | ~ CEF fitted by JMSIM

T T T T T
0 5 10 15 20
Months from randomization

Fig. 8.3 Estimated mean curves and their confidence bands of longitudinal data from JMtt and
JMSIM for CMF and CEF arms respectively

8.6 Discussions and Future Work

In this paper, we have reviewed our recent contributions in the joint modeling of
longitudinal QoL and survival data to deal with bounded longitudinal QoL data and
apossible cure fraction. Our work involves a linear mixed tt model and a generalized
linear mixed effect model with simplex distribution for the longitudinal QoL data to
better accommodate extreme and bounded QoL measurements. A promotion time
cure model is considered for survival data to accommodate a possible cure fraction.
Semiparametric inference procedures with an EM algorithm and a penalized joint
likelihood based on the Laplace approximation were developed for the parameters
in the joint models. The simulation studies show that the estimation of parameters
in the joint models is more efficient than that in the separate analysis and the
existing joint models. The models also enjoy intuitive interpretation. The models
are illustrated with the data from a breast cancer clinical trial.

Our work is limited in the definition of new models and inference of parameters
in these models. Recently, motivated also by the analysis of data from MA.5, Park
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and Qiu (2014) developed statistical procedures for the selection of diagnostics for
a joint model which uses a linear mixed model for longitudinal measurements and a
time-varying coefficient model for the survival times. Procedures for the assessment
of fit for each component of the joint model were derived recently by Zhang et al.
(2014). He et al. (2015) developed some procedures which can be used to select
simultaneously variables in both components of a joint model. Developments of
similar procedures for the models we proposed would be an interesting but also
challenging future research topic.

Other future extensions of the work reviewed in this paper include treating
the QoL measurements as categorical data based on their original scales. An
item response model (Wang et al. 2002) may be considered in a joint model to
accommodate categorical QoL measurements. It is also an interesting topic to
develop a smooth function of time for the longitudinal trajectory and the baseline
hazard function via splines. Also the relapse free survival time is, by nature,
interval-censored since assessment of recurrence is usually done at each clinical
assessment. Extensions of the joint models reviewed to take into account of the
interval censoring are of interest in the applications.
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Chapter 9
Confidence Weighting Procedures for
Multiple-Choice Tests

Michael Cavers and Joseph Ling

Abstract Multiple-choice tests are extensively used in the testing of mathematics
and statistics in undergraduate courses. This paper discusses a confidence weighting
model of multiple choice testing called the student-weighted model. In this model,
students are asked to indicate an answer choice and their certainty of its correctness.
This method was implemented in two first year Calculus courses at the University
of Calgary in 2014 and 2015. The results of this implementation are discussed here.

9.1 Introduction

Multiple-choice exams are extensively used to test students’ knowledge in math-
ematics and statistics. Typically a student has four or five options to select from
with exactly one option being correct. Using multiple-choice exams allow the
examiners to cover a broad range of topics, to score the exam quickly, and to
measure various learning outcomes. However, it is difficult to write questions that
test mathematical ideas instead of factual recall. Shank (2010) is an excellent
resource discussing the construction of good multiple-choice questions. It is also
debated as to whether multiple-choice exams truly measure a students’ knowledge
since in the conventional model there is no penalty for guessing (Echternacht 1972).

This paper discusses an implementation of a confidence weighting procedure
known as the student-weighted model. In this model, each multiple-choice question
has four or five options to select from with exactly one correct answer. The examinee
must also indicate their certainty of the correctness of their answers, for example on
a three-point scale. We first briefly discuss past studies where confidence testing was
applied.

In 1932, Hevner applied a confidence testing method to music appreciation
true/false tests. In 1936, Soderquist completed a similar study with true/false tests,
whereas Wiley and Trimble (1936) analyzed whether or not there are personality
factors in the confidence testing method. A five-point scale for confidence levels
was implemented by Gritten and Johnson in 1941.
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A particularly interesting study, completed in 1953 by Dressel and Schmid,
compares four non-conventional multiple-choice models. Five sections of a course
in physical science were used in the study where each section contained about 90
students. In the first hour of the exam, each section wrote a common (conventional)
multiple-choice test. In the second hour, five multiple-choice models were imple-
mented, one for each of the five sections: a conventional multiple-choice test with
one correct answer from five options; a free-choice test where each question had
exactly one correct answer and examinees must mark as many answers as they
felt they needed to be sure they had not omitted the correct answer; a degree-of-
certainty test where each question had exactly one correct answer and examinees
indicate how certain they are of their answer as being correct; a multiple-answer test
where any number of the options may be correct and the examinee is to mark each
correct alternative; and a rwo-answer test where exactly two of the five options is
known to be correct. After comparing the above models, it was found that students
completed the conventional test the fastest, followed by degree-of-certainty, free-
choice, two-answer, and multiple-answer. From most to least reliable the models
rank as multiple-answer, two-answer, degree-of-certainty, conventional followed by
free-choice.

Relevant studies to confidence weighting methods, including those described
above, are summarized by Echternacht (1972). In Echternacht (1972), it is stated
that such methods can be used to discourage guessing since the expected score
is maximized only if the examinee reveals the true degree of certainty in their
responses. Frary (1989) reviews methods used in the 1970s and 1980s.

Ling and Cavers (2015) describe overall results of an early implementation of
the student-weighted model completed in 2014. The current paper compares results
from Ling and Cavers (2015) to our Spring 2015 study. This study is approved by
the Conjoint Faculties Research Ethics Board (CFREB) at the University of Calgary.

In Sect. 9.2 we discuss the implementation of the student-weighted model at the
University of Calgary in 2014. We then discuss differences in how the method was
applied in 2015. Survey results and the effects of the method on class performance
are analyzed. In Sect. 9.3 we conclude with issues for future investigation.

9.2 The Student-Weighted Model

The student-weighted model was implemented on the multiple-choice sections
of the midterms and final examination in two first year Calculus courses at the
University of Calgary in 2014 and 2015. In particular, we applied the method in
four semesters: Winter 2014 (one section of Math 249 and one section of Math
251), Spring 2014 (Math 249), Fall 2014 (five sections of Math 249), and Spring
2015 (one section of Math 249). This paper mainly focuses on the data collected
from the Fall 2014 and Spring 2015 semesters.
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In what follows, we first describe the method and how scores are calculated.
Second, we discuss the effect relative weights had on class average along with
percentage of beneficial and detrimental cases. Third, student feedback from surveys
conducted to solicit student feedback about the method are analyzed.

9.2.1 Description of the Method

Out of five options, each question had exactly one correct answer. After each
question, the examinee was asked to assign a relative weight to the question (i.e.,
a confidence level) on a three-point scale. In an early implementation of the model
in the Winter 2014 semester, students indicated their answers on a custom answer
sheet. They were instructed to place an X in the box for their choice (options
A, B, C, D, E) along with an X in one of three relative weight boxes for that
question (options 1, 2, 3). Sample answer sheets with tallied scores were distributed
in advance to explain the scoring method to the students. Later implementations
made use of the standard university multiple-choice answer sheets where the odd
numbered items were exam questions and the even numbered items were the relative
weights. A sample exam question followed by a request for students to indicate a
relative weight is shown in Fig.9.1.

Students were told to assign weights to questions based on their confidence level
for each problem. That is, when they felt very confident, “Relative Weight = 3”
should be assigned, whereas, when they did not feel confident, “Relative Weight
= 17 should be assigned. When the weighting part of the question is left blank, a
default weight of 2 was assigned. To calculate the multiple-choice score for each

Question 1. Suppose that y = f(x) is everywhere continuous and that for all x,

f)=1+2 /O () dt.

What is the value of £(1)?

(a) 1.

(b) 2.

(c) e.

d) e

(e) There is insufficient information for us to determine the value of /(1).

Question 2. Please assign a (relative) weight to Question 1 above.

(a) Weight = 1.
(b) Weight =2.
(c) Weight = 3.

Fig. 9.1 A sample exam question and follow-up asking examinees to indicate a relative weight
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student, the total sum of the relative weights for all correct answers was divided
by the total sum of the relative weights assigned to all questions. Thus, in such
a method, each student may have a different total sum of relative weights. These
scores were then multiplied by the portion of the test that is multiple-choice: in the
case the exam had a 30 % written component and 70 % multiple-choice component,
by 70; in the case the exam was all multiple-choice, by 100. Students were instructed
they could default to a conventional multiple-choice test by assigning the same
relative weight to each question, or by leaving the relative weights blank. Students
who scored 100 % on the multiple-choice did not see a benefit in grade from the
method since a perfect score would have been obtained regardless of the assignment
of relative weights.

9.2.2 Effect on Class Average and Student Grades

Using actual data from midterms and examinations we are able to compare students’
scores between a conventional (uniform-weight) scoring method and the student-
weighted model. Here, we present the data collected from the Fall 2014 and Spring
2015 semesters. In the Fall 2014 semester, we implemented the method in five
sections of Math 249 (Introductory Calculus) for the two midterms and the final
examination. A total of 723 students wrote the first midterm, 657 students wrote
the second midterm and 603 students wrote the final examination. In the Spring
2015 semester, the method was implemented in one section of Math 249 for both
the midterm and final examination. A total of 87 students wrote the midterm and 81
students wrote the final examination. Note that at the University of Calgary, the Fall
and Winter semesters last 13 weeks each whereas the Spring and Summer semesters
range from 6 to 7 weeks each, thus, one midterm was given in the Spring 2015
semester where two midterms were given in the Fall 2014 semester.

To measure the effect of relative weights on student grades, for each student,
we first computed their grade assuming a conventional scoring method where all
questions are weighted the same, we then compared this to the student-weighted
model using the relative weights assigned by the student. Below we will present
three ways of looking at the impacts of relative weights on student grades:

* The change in the class average.

* The percentage of students that received a higher mark, a lower mark and the
same mark on tests and exams.

» The percentage of students that experienced a substantial difference (5 percent-
age points or more and 3 percentage points or more) in test and exam marks.
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Fall 2014 Spring 2015
Midterm 1 Midterm 2 Final Exam Midterm Final Exam
(723 students) (657 students) (603 students) (87 students) (81 students)
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Fig. 9.2 Effect of relative weights on class average
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Fig. 9.3 Percentage of students whose midterm/final examination mark increased, remained
unchanged or decreased after applying the student-weighted scoring method

Figure 9.2 shows the effect that relative weights had on the class average.
These results indicate that course performance as a whole is better when we use
the student-weighted scoring method compared to using the conventional scoring
method.

Figure 9.3 shows that a majority of students had an increase in their midterm
or final examination mark after applying the student-weighted model. In the Spring
2015 semester, eight students scored 100 % on the midterm and thus their mark is
indicated as unchanged when compared to an equal weight scheme. Additionally,
some students either left the relative weight options blank or assigned each question
the same relative weight, thus, their score is also unchanged when comparing the
relative weight method to the conventional. Note that some students who saw their
mark decrease come from top performers who had one or two incorrect responses
but assigned a high relative weight to those particular problems.

In Figs.9.4 and 9.5, we further analyze the effect that relative weights had
on student grades. Students whose multiple-choice mark is affected by at least
five percentage points would likely receive a different letter grade than if the
conventional scoring method were used. Here, we have separated the “beneficial”
cases from the “detrimental” cases.



176 M. Cavers and J. Ling

Fall 2014 Spring 2015
Midterm 1 Midterm 2 Final Exam Midterm Final Exam
P (723 students) (657 students) (603 students) i (87 students) (81 students)
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Fig. 9.4 Percentage of beneficial cases

Fall 2014 Spring 2015
Midterm 1 Midterm 2 Final Exam Midterm Final Exam
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® Grade on MC decreased by 5% or more ® Grade on MC decreased by 5% or more

B Grade on MC decreased by 3% or more ® Grade on MC decreased by 3% or more

Fig. 9.5 Percentage of detrimental cases

9.2.3 Survey Results

During each course, a survey was conducted to solicit student feedback about the
student-weighted method. The main purpose of each survey is for us to learn about
the students’ perspectives on their experience with the student-weighted method.
We use student comments to help us improve both our teaching and future students’
learning experience. See Ling and Cavers (2015) for comments on survey questions
and responses from the Winter 2014, Spring 2014 and Fall 2014 semesters. Here,
we summarize results from the Spring 2015 semester and compare it to that of the
Fall 2014 semester.

In the Fall 2014 semester, one survey was conducted about two weeks after the
second midterm test, but response rate was low: 73 out of 646 students completed
the survey. Questions were asked to measure students’ perception on learning
and course performance. Note that Figs. 9.2 and 9.3 illustrate the actual effect of
the method. Because of the low response rate, we hesitate to draw any definite
conclusions about the general student perceptions on the scoring method.

In the Spring 2015 semester, we incorporated the use of the student-weighted
format in the tutorials/labs. All lab problem sets were laid out in this format, thus
practice with the method is built into the entire course. In the Fall 2014 semester,
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a multi-page explanatory document was posted for students to read, but such a
document was not posted in the Spring 2015 semester. Bonus effort marks for
submitting individual or group solutions to the lab problem sets were awarded.

In the Spring 2015 semester, the number of surveys was increased from one to
two, and the number of survey questions from 6 to 30 for the first survey and 31 for
the second survey. By conducting two surveys, we are better able to track possible
change of feeling/experience during the semester. In the Spring 2015 semester we
also asked about impacts on study habits and exam strategies, impact on stress level,
and perception of fairness of the method.

Completion of the two surveys was built into the course grade, in particular, 1 %
of the course mark was for completion of the surveys. As a result, the response
rate to the surveys increased when compared to the Fall 2014 semester: 72 out
of 87 students (82.76 %) for survey one and 65 out of 81 students (80.25 %) for
survey two. This gives us a lot more concrete information to help improve our future
teaching. However, valid consent for research use of the data is low: twelve students
gave consent to present their responses for both surveys. Three students consented
for use of their data in one of the surveys but not the other, while another three
students consented but did not complete one (or both) of the surveys. We caution the
reader that information shared here is from the twelve consented respondents who
completed both surveys and may or may not be representative of all respondents.

In what follows, we highlight, report and reflect on a few survey questions from
consented participants. We use a vector

(SA,A,N, D, SD)

to indicate the number of students that selected Strongly Agree (SA), Agree (A),
Neutral (N), Disagree (D) and Strongly Disagree (SD), respectively, and a vector

(VCon, SCon, N, SClear, VClear)

to indicate the number of students that selected Very Confusing (VCon), Somewhat
Confusing (SCon), Neither (N), Somewhat Clear (SClear) and Very Clear (VClear),
respectively.

The first question asked on both surveys was “Which multiple-choice model,
traditional or weighted, do you prefer?”. On survey one, one student selected the
“Traditional method”, ten students selected the “Weighted method”, zero students
selected “Neither” and one student selected “No opinion”. Interestingly, on survey
two all twelve students chose the “Weighted method”.

The second question asked was “How would you rate your understanding of the
weighting method?” for survey one and “How would you rate your understanding
of the weighting method after the midterm test?” for survey two. We observe

(VCon, SCon, N, SClear, VClear) = (0,1,0,6,5)
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for survey one and
(VCon, SCon, N, SClear, VClear) = (0, 1,0, 5, 6)

for survey two. The student who chose “Somewhat Confusing” in survey one,
chose “Somewhat Clear” in survey two, while the student who chose “Somewhat
Confusing”in survey two, chose “Somewhat Clear” in survey one. Overall, most of
the students understood the weighting.

The third question asked was “How would you rate the calculation of your
grade using the weighting method?” for survey one and “How would you rate the
calculation of your grade using the weighting method after the midterm test?” for
survey two. We observe

(VCon, SCon, N, SClear, VClear) = (0,2,1,7,2)
for survey one and
(VCon, SCon, N, SClear, VClear) = (0,1,2,4,5)

for survey two. Five students selected the same option on both surveys while five
students chose options indicating the calculation of grade became clearer after
the midterm test. The remaining two students chose “Somewhat Clear” on survey
one but on survey two, one chose “Neither” while the other chose “Somewhat
Confusing”.

The fourth item on the surveys was “I paid attention to how I assigned weight
when I did the questions in the lab problem sets” for survey one and “ Since
the midterm test, I have paid attention to how I assigned weight when I did the
questions in the lab problem sets” for survey two. We observe (SA,A, N, D, SD) =
(4,6,0,1,1) for survey one and (SA,A,N,D,SD) = (1,4,6,0,1) for survey two.
Overall, most of the students paid more attention to weight assignment in the labs
before the midterm while still learning about the method.

The next set of questions asked students about double-checking their work. For
the question “How often do you typically double-check your work on midterms
(respectively, examinations)?”’, we observe

(Always, Very Frequently, Occasionally, Rarely, Never) = (7,3,0,2,0)
for survey one and

(Always, Very Frequently, Occasionally, Rarely, Never) = (5,3, 4,0,0)
for survey two. For the statements “While working on the problem sets, I felt an
increased need to double-check my work as I was to assign weights to my answers”

for survey one and “Since the midterm test, I felt an increased need to double-check
my work as I was to assign weights to my answers while working on the lab problem
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sets” for survey two, we observe (SA,A,N, D, SD) = (1,2, 5,4,0) for survey one
and (SA,A,N,D,SD) = (5,2,4,1,0) for survey two. Finally, for the question
“During the midterm test (respectively, final examination), I felt an increased
need to double-check my work as I was to assign weights to my answers’ we
observe (SA,A,N,D,SD) = (4,5,2,1,0) for survey one and (SA,A,N, D, SD) =
(8,4,0,0,0) for survey two. Overall, although students already frequently double-
check their work, students perceived the assignment of weights to cause an increase
in need to double-check their work.

The next question asked “During the midterm test (respectively, final examina-
tion), I experienced an increased level of stress as I was to assign weights to my
answers” with a follow-up question requesting students to provide a reason for
their choice. We observe (SA,A,N,D,SD) = (2,4,2,2,2) for survey one and
(SA,A,N,D,SD) = (1,4,3,3,1) for survey two. The most common reasons given
for those who selected (SA) or (A) are that the stake is high and weighting impacts
grade. For those who selected (SD) or (D) the most common reason given is that
the method can lower weight when unsure.

We also asked students their perception of the weighted method on learning:
“Assigning relative weights to multiple-choice questions was beneficial to my
learning.” We observe (SA,A,N,D,SD) = (3,7,1,1,0) for survey one and
(SA,A,N,D,SD) = (6,5,1,0,0) for survey two. After the final exam, it appears
that an increased number found the method beneficial. When asked how did they
think the method was beneficial to their learning, the most common response was
that it helped identify weak areas for more practice and study. We also asked
students the following: “My test mark based on the weighting method is a more
accurate reflection of my knowledge of the course material than the mark based on
the traditional grading method would have been.” We observe (SA,A,N, D, SD) =
(2,5,4,1,0) on survey one, however, there was a mistake in two of the options on
survey two so we omit that data here.

The next question asked “Prior to writing the midterm test (respectively,
final exam) I developed my own strategy to assign weights to my answers.” We
observe (SA,A,N,D,SD) = (2,2,4,2,2) for survey one and (SA,A, N, D, SD) =
(2,7,2,1,0) for survey two. From this it appears that more students developed a
strategy for the final exam than in midterm. When asked if they used the same
strategy we found (SA,A, N, D, SD) = (4,4,0,4,0).

The next question asked “I personally believe that there is a positive correlation
between one’s knowledge of a subject and one’s confidence in one’s knowledge
of that subject” with a follow-up question requesting students to provide a reason
for their choice. We observe (SA,A,N,D,SD) = (9,3,0,0,0) for survey one and
(SA,A,N,D,SD) = (9,2,0,0,1) for survey two. Note that the student with the
(SD) response in survey two chose (SA) in survey one for the same question.
Reasons are respectively “If you are confident you know something, you’re more
likely to have it stick to your brain instead of just learning it for the exam” and “If
you think you don’t know it, you probably don’t.”
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When asked “Knowing that I could assign weights affected how I studied,” we
observe (SA,A,N,D,SD) = (0,5,2,4,1) for survey one and (SA,A,N, D, SD) =
(1,4,4,2,1) for survey two. Reasons given for (SA) and (A) are that students
focus more on content they weight a one and that if there was a topic they did
not understand they did not stress as much about it knowing they can weight it a
one. Reasons given for (SD) and (D) mostly mention that they would study all of
the material regardless and that they need to know all concepts for future courses.
On the other hand, when asked “Knowing that I could assign weights affected how I
distrubuted (sic) my study time to different topics,” we observe (SA,A,N, D, SD) =
(1,4,2,4,1) for survey one and (SA,A, N, D, SD) = (2,4,2,3,1) for survey two.
Comments given for (SA) and (A) are that they focused more time on topics they
were not confident in, whereas comments for (D) and (SD) are that the weighting
method does not affect grade enough to completely ignore a topic.

To conclude, consented respondents found the method beneficial to their learn-
ing, mainly by helping them to identify areas of weakness; developed strategies
as the term progressed; believed that there is a positive correlation between
knowledge and confidence; thought that the weighting method reflected their level
of knowledge more accurately than the traditional method; and seemed to be neutral
in relation to the impact on stress level in tests and exam.

9.3 Issues for Future Investigation

After implementation of the student-weighted method, feedback from students and
colleagues have sparked many questions, for example, see Ling and Cavers (2015).
Results indicate that course performance as a whole is better when we use the
student-weighted scoring method compared to that of the conventional scoring
method. However, how is one to interpret this in terms of student learning? More
research targeted at specific issues is needed.
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Chapter 10
Improving the Robustness of Parametric
Imputation

Peisong Han

Abstract Parametric imputation is widely used in missing data analysis. When
the imputation model is misspecified, estimators based on parametric imputation
are usually inconsistent. In this case, we propose to estimate and subtract off the
asymptotic bias to obtain consistent estimators. Estimation of the bias involves
modeling the missingness mechanism, and we allow multiple models for it. Our
method simultaneously accommodates these models. The resulting estimator is
consistent if any one of the missingness mechanism models or the imputation model
is correctly specified.

10.1 Introduction

Imputation is a widely used method in missing data analysis, where the missing
values are filled in by imputed values and the analysis is done as if the data
were completely observed. Parametric imputation (Little and Rubin 2002; Rubin
1978, 1987), which imputes the missing values based on a parametric model, is
the most commonly taken form in practice, due to its simplicity and straight-
forwardness. However, parametric imputation is sensitive to misspecification of
the imputation model. The resulting estimators are usually inconsistent when the
model is misspecified. Because of this sensitivity, many researchers suggested
nonparametric imputation; for example, Cheng (1994), Lipsitz et al. (1998), Aerts
et al. (2002), Wang and Rao (2002), Zhou et al. (2008) and Wang and Chen (2009).
Despite the robustness against model misspecification, nonparametric imputation
usually suffers from the curse of dimensionality. In addition, for kernel-based
techniques, bandwidth selection could be a complicated problem. In this paper,
within the framework of parametric imputation, we propose a method to improve
the robustness against possible model misspecifications. The idea is to estimate and
subtract off the asymptotic bias of the imputation estimators when the imputation
model is misspecified. Estimation of the bias involves modeling the missingness
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mechanism, and we allow multiple models for it. Our method simultaneously
accommodates these models. The resulting estimator is consistent if any one of
these models or the imputation model is correctly specified. A detailed numerical
study of the proposed method is presented.

10.2 Notations and Existing Methods

We consider the setting of estimating the population mean of an outcome of interest
that is subject to missingness. This simple yet important setting has been studied
in many recent works on missing data analysis, including Tan (2006, 2010), Kang
and Schafer (2007) and its discussion, Qin and Zhang (2007), Qin et al. (2008), Cao
et al. (2009), Rotnitzky et al. (2012), Han and Wang (2013), Chan and Yam (2014),
and Han (2014a).

Let Y denote an outcome that is subject to missingness, and X a vector of
auxiliary variables that are always observed. Our goal is to estimate o = E(Y),
the marginal mean of Y. Let R denote the indicator of observing Y; thatis, R = 1
if Y is observed and R = 0 if Y is missing. Our observed data are (R;, R;Y;, X)),
i = 1,...,n, which are independent and identically distributed. We assume the
missingness mechanism to be missing-at-random (MAR) (Little and Rubin 2002)
in the sense that

P(R = 1Y,X) = P(R = 1)X),

and we use 7(X) to denote this probability. Under the MAR assumption, the
sample average based on complete cases, namely n~! Y "', R;Y;, is not a consistent
estimator of 4.

Parametric imputation postulates a parametric model a(y;X) for E(Y|X), and
imputes the missing Y; by a(p;X;), where p is some estimated value of y.
One typical way of calculating y is the complete-case analysis, as E(Y|X) =
E(Y|X,R = 1) under the MAR mechanism. When a(y; X) is a correct model for
E(Y|X), in the sense that a(y,; X) = E(Y|X) for some y,, the two imputation
estimators of Lo,

n

1
Aim = A;Xi s
Mimp,1 n Za(}’ )

i=1

1 n
limp2 = Y {RY; + (1= R)a(p:X0)},
imp2 = {RYi + ( a(y: Xi)}

i=1

are both consistent. When a(y;X) is a misspecified model, we have p EN Y
for some y, # p,. In this case neither flimp,1 nOr flimp2 is consistent. Their
probability limits are E{a(y,; X)} and E{RY + (1 — R)a(y ,; X)}, respectively, and
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their asymptotic biases are

bias, = E{a(y,;X) =Y}, (10.1)
bias, = E[{1 — m(X)Ha(y.;X) — Y}]. (10.2)
Thus, if a consistent estimator of bias; (or bias,) can be found, subtracting this bias

estimator off from ﬁ,impJ (or ﬂimpﬁz) leads to a consistent estimator of .
Noticing that

. R )
bias; = E [n(X) {a(y X)) — Y}:| ,
. R .
bias, = E |:7r(X){1 -7 X)Ha(yX) — Y}:|

under the MAR mechanism, one straightforward way to obtain a consistent estima-
tor of the asymptotic bias is to model 7 (X). Let 7 (e; X) denote a parametric model
for 7(X), and & the maximizer of the Binomial likelihood

n

[ Jem(e: X3% 41 — m(o: X} =5, (10.3)

i=1

The two biases in (10.1) and (10.2) can be respectively estimated by

— 1 R; .
bias; = ;X)) = Yit |,
iasy = ; [n(&;Xi) {a(y:Xi) }}

n

—_— 1 i n ~
bias; = ; [ﬂ(‘f; Xi){l — (@ X)) Ha(: X;) — Y,-}:| )

It is easy to see that, when 7 (e; X) is a correctly specified model in the sense that
— p . — .
7(ag; X) = 7(X) for some o, bias; — bias, and bias, — bias;, and thus both

flimp,1 — bias| and flimp » — bias, are consistent estimators of fto. On the other hand,
when a(y; X) is a correctly specified model for E(Y|X), we have

ias, %> E [WR.X) {alye: X) - Y}}
_ p| ERX) : _
= [ et X) — EIN0) | <o

where o is the probability limit of & and may not be equal to e, and the second
last equality follows from R L Y | X under the MAR mechanism. Similarly, we

— p ~ — A~ "."’ . . .
have bias, — 0. S0 flimp,1 — bias; and flinp > — bias, are again consistent estimators
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of po. Therefore, flimp1 — 1%1 and flimp2 — 1%2 are more robust than flimp,; and
{limp 2 against possible misspecification of a(y; X).
Actually, fimp,1 — bias; and [limp» — bias, are both equal to

n

A 1 Ri Rl‘ — ﬂ(&, Xl) N
. = le — ~ le s
Paipw = ; { (@ X) raxy AFX)

which is the augmented inverse probability weighted (AIPW) estimator (Robins

etal. 1994). The fact that fLsipw LN o if either 7 (X) or E(Y|X) is correctly modeled
is known as the double robustness property (Scharfstein et al. 1999; Tsiatis 2006).
The improvement of robustness is achieved by introducing an extra model 7 (e; X)
in addition to a(y; X).

10.3 The Proposed Method

In observational studies, the correct model for 7(X) is typically unknown. To
increase the likelihood of correct specification, multiple models 7/(e¢/; X), j =
1,...,J, may be fitted instead of just one. Refer to Robins et al. (2007) for more
discussion on some practical scenarios where multiple models may be fitted. Our
goal is to propose a method that can simultaneously accommodates all these models,
so that bias; and bias, in (10.1) and (10.2) are consistently estimated if one of
7/ (o/; X) is correct or a(y; X) is correct.
Because of

R . . o
0=E (H(X) [7/ (o’ X) —E{n’(a’,X)}])
—E (N(IX) [ (@/; X) — E{l (@ X)}] | R = 1) PR=1).
7w/ (o/;X),j = 1,...,J, satisfy
E (ﬂ(lx) [7/(a/; X) — E{7/(e; X)}] | R = 1) =0. (10.4)

Let m = ) ', R; be the number of subjects who have their outcome observed,
and index those subjects by i = 1,...,m without loss of generality. Let & denote
the maximizer of the Binomial likelihood (10.3) with 7/(e/; X). We construct the
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empirical version of (10.4) as

W,EO (i:l,...,m), Zwizl’

D owiln@:X) — 0@ =0 (j=1....0, (10.5)
i=1
where w;, i = 1,...,m, are positive weights on the complete cases under
sum-to-one regularization, and 6/(&') = n~'Y""_, 7/(&@’;X;). The w; naturally

accommodate all models 7/ (a¢/; X).

Being positive and sum-to-one, w; may be viewed as an empirical likelihood on
the complete cases. Applying the principle of maximum likelihood, we maximize
[T/, wi subject to the constraints in (10.5). Write & = {(&")", ..., (@’)T} and

8(@)" = (r'@"X,) - 0'@",.... 7@ X) - ' @)}

From empirical likelihood theory (Owen 1988, 2001; Qin and Lawless 1994) the
maximizer is given by

1 1
W = =1, m), (10.6)
m1+p'gi@)
where p7 = (1, --- , ;) is the J-dimensional Lagrange multiplier solving
1 m Ai A
y 8 @ (10.7)

m— 1+ p'gi(a)

We propose to estimate bias; and bias, in (10.1) and (10.2) respectively by

bias, = vai{d(f’;xi) - Y,
i=1
bias, = Z(VAW —n"Ya(@: X)) - Yi}.

i=1

To discuss the large sample propertles of bias, and bias,, let of,, ¢ and Py

denote the probability limits of @, 6J (oz/ ) and p, respectively. It is clear that g, =
E{m/ (e, X)}. Write aT = {(a)T, -, («?)T} and

gla)T = {7l (@l;X) -0}, ... .7/ (@l;X) - 0]} (10.8)
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When a(y; X) is a correct model for E(Y|X), we have p LN Yo- Therefore,

bias; = Y Wwita(p: X)) - i}

i=1
s s ]
1 E[ R
PR=1) 1+ pTg(as)
_ E[ ER|X)
PR =" 1+ plges)

=

(a(ye:X) - Y}}
{a(ye:X) —E(Y|X)}} ~0

where the second last equality follows from R L Y | X under the MAR mechanism.
Similarly,

Biasy = Y (Wi —n~Ma(p:X) — ¥

i=1
nl < 1 m R

_ Z[R,-{ Lo }{a(y;x,-)—m}
mn [T @)

P 1

T rr=1" [R{l 1 gy TR = DHalreiX) - Y}} =

Hence, both ﬁ,impJ — l;'a\sl and ﬁimp,z — b/i;sz are consistent estimators of pp when
a(y;X) is a correct model for E(Y|X).

In the following, we will show that l;'a\sl and l;';sz are consistent estimators of
bias and bias,, respectively, when any one of 77/ (a/; X) is a correct model for 7 (X).
Without loss of generality, let the correct model be 7! (a'; X). It is easy to see that

1 i gi(a)

m = 1+ pTg(&)

0'@) 8(@)
P 1(4!. Nal Al Alal T, .
= @5 X+ {81@)en - 1.01@ e '@ 0| 8@

@' & g:(&)/7' (&' X))

m = ALeal A1(al Aeay W s iy ialx

= {01@he - 1,01 @) 0@ | @)/ @5 X)
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Because p solves (10.7), if we define A, = 0'(&")p; — 1 and A, = 8'(@")p,,
t= 2,...,J,then):T = ()Akl,--- ,)AU) solves

ilgl) 6.(&)/m' (@' X,
6 ’(Zz ) 3 gi(@)/m' (& ;X;) (10.9)

S ATg(@) /@ X))

In terms of A, W; given by (10.6) can be re-expressed as

.1 8'@h/7'@Xy)
my 43 g(@)/7 @' X))
1

Since 7! (a'; X) is a correct model for (X), we have el = a, and thus A = 0 is
the solution to

Rg(ax)/m' (@:X) |
1+ A"glo) /' @l:X) |

3

where g(a) is given by (10.8). In addition, the left-hand side of (10.9) converges in
probability to the left-hand side of the above equation. Therefore, A solving (10.9)
has probability limit 0 and is of order O, (n~'/?) from the M-estimator theory (e.g.,
van der Varrt 1998). With this fact, we have

l;'a\sl = Z wi{a(y: X)) — Y3}
i=1

nd'@" 1 Z[ Ri/7'(@": X))

mo )43 @)/ @ X)

{a(y; X)) — Yi}:|
P R . y

LY [N(X) {a(y:X) - Y}} — bias,
and

Piass = 3 (i —n”a(p: X)) — Vi)

i=1

_ nd'@ht Z R:
m n (@' X;)

i=1

1
1+ 3 (@) /' @' X0

Teal.
_nél(&l)ﬂ (OL ,X,‘)

ta(y:Xi) — Yi}:|

R
LE [n(x) {1 —7X)Ha(y,;X) — Y}} = bias,.
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Thus, bias; and bias, are consistent estimators of bias; and bias,, respectively,
which makes flimp,1 — biasi and fLimp 2> — bias, consistent estimators of fig.
As a matter of fact, simple algebra shows that flimp1 — bias; is equal to

,aimp,Z — l;a\sz. Let [in, denote this difference, where “mr” stands for multiple
robustness. Based on our arguments above, fi,,, is a consistent estimator of o if any
one of /(e/;X),j = 1,...,J, is a correct model for (X) or a(y: X) is a correct
model for E(Y|X). Therefore, [l improves the robustness over the imputation
estimators and the AIPW estimator. The asymptotic distribution of fiy,, depends
on which model is correctly specified, but such information is usually unavailable
in real studies. This makes the asymptotic distribution to be of little practical use
for inference. Hence, we choose not to derive the asymptotic distribution, but
rather recommend the bootstrapping method to calculate the standard error of fip,.
Numerical performance of the bootstrapping method will be evaluated in the next
section.

A main step in the numerical implementation of the proposed method is to
calculate p. Since p solves (10.7) and w; are positive, p is actually the minimizer of

1 A
F.(p) = . ZR,- log{1 + p" (&)}
i=1

over the region , = {p : 1+ p'g;(&@) > 0, i = 1,...,m}. Han (2014a) showed
that the minimizer of F,(p) over &, indeed exists, and p is the unique and global
minimizer, at least when n is large. On the other hand, it is easy to verify that 2,
is an open convex set and F,,(p) is a strictly convex function. Therefore, calculating
p pertains to a convex minimization problem. Refer to Chen et al. (2002) and Han
(2014a) for a detailed description of the numerical implementation using Newton—
Raphson algorithm.

10.4 Simulation Study

Our simulation setting follows that in Kang and Schafer (2007). The data are
generated with X = (X1 ... X®} ~ N(0.I), Y]X ~ N{E(Y|X),1}, and
R|X ~ Ber{n(X)}, where 1 is the 4 x 4 identity matrix,

7(X) = [1 4 exp{XV —0.5x? 4+ 0.25x® + 0.1x®} 71,
E(Y|X) =210 4 27.4XD 4+ 13.7{X® 4+ ... 4 X},

The 7(X) leads to approximately 50 % of the subjects with missing Y. As in Kang
and Schafer (2007), we calculate Z1 = exp{X(V/2},Z® = X® /[1 +exp{XV}] +
10,2 = {XWx® /25 +0.6}3 and Z® = {X + X& 1 20}2. The correct models
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for 7(X) and E(Y|X) are given by

7' (@';X) = [1 + expie] + a%X(l) et Ol;X(4)}]_l,
ad' (i X) =y + X0 4 plx®,

respectively. The incorrect models are fitted by 72(a?;Z) and a?(p?;Z), which
replace X in 7'(e';X) and a'(y':X) by Z = {ZM,...,Z™}. As in Robins
et al. (2007) and Rotnitzky et al. (2012), we also consider the scenario where
Y is observed when R = 0 instead of when R = 1. The estimators under our
comparison include the inverse probability weighted (IPW) (Horvitz and Thompson
1952) estimator

. Yo RiYi/m(a; X))
/\‘Li W = n £
b Zi:l Ri/m(e; X;)

the imputation estimators flimp1 and flimpo, the AIPW estimator fl,ipw, and the
estimator fis proposed by Rotnitzky et al. (2012). We use a four-digit superscript
to distinguish estimators constructed using different postulated models, with each
digit, from left to right, indicating if 7! (e!; X), 72 (a?; Z), a' (y'; X) and a*(y*; Z)
is used, respectively. We take the sample sizes n = 200, 800 and conduct 2000

replications for the simulation study. The results are summarized in Table 10.1.
Both imputation estimators flimp,1 and flimp> have large bias when E(Y|X) is
incorrectly modeled by a*(y?;Z), especially in the second scenario where Y is
observed if R = 0. Using the correct model 7'(e';X) for 7(X), our proposed
11001 and 1191 are able to significantly reduce the bias. While the

estimators i,
existing estimators ﬂi&% and ,urll(zfl have similar capability, they explicitly require
1101

to know which model for 7 (X) is correct. Our estimator f,’', on the contrary,
accommodates both 7' (e!; X) and 7%(a?; Z) to reduce the bias without requiring
such knowledge. This is important in practice, as it is usually impossible to tell
which one among the multiple fitted models is correct. The estimator 11%! also
has high efficiency, illustrated by its significantly smaller root mean square error
compared to the AIPW estimator ,ui?% It is well known that this AIPW estimator
using an incorrect model for E(Y|X) could be very inefficient (e.g., Tan 2006, 2010;
Cao et al. 2009), and the estimator ,urll()?l was proposed to improve the efficiency
over Mi&% Our estimator /111°! has efficiency even comparable to ,urll(zfl , judging by
their root mean square errors.

When only the incorrect model w2(a?; Z) is used in addition to a?(y?; Z), our

estimator 2°1°! is not consistent, the same as MSIL% and ,uﬂls?l In this case, similar

to 3", figy" has much more stable numerical performance than 490! in the first
scenario where Y is observed if R = 1. Here the poor performance of A" is
because that, some nz(&z;Zi) for a few subjects with R; = 1 are erroneously

close to zero, yielding extremely large weights R;/ 712(&2; Z;) (Robins et al. 2007).
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Table 10.1 Comparison of different estimators based on 2000 replications. Each digit of the four-
digit superscript, from left to right, indicates if ' (ac'; X), 72 (a?; Z), a' (y'; X) and a*(y?; Z) is
used, respectively. The numbers have been multiplied by 100

Y observed if and only if R = 1 Y observed if and only if R = 0

n =200 n = 800 n =200 n = 800

Bias |RMSE|MAE | Bias |RMSE| MAE| Bias| RMSE| MAE| Bias| RMSE | MAE
AR | —9 | 388 | 241 50 202126 | 15 (427 253 8195 | 125
A | 154 | 863 |315 505 | 1252|265 381|509 |387 |371 407 |[373
A0 4| 261 |180 —1| 127 84 41261 179 | —1 {127 85
pget | —521| 338 |227 —81 | 184 | 131 [497 [584 |500 |496 |518 |496
JTHe 4| 261 |180 —1| 127 84 4261 179 | —1 127 85
Aol | —52| 338 | 227 —81 | 184 | 131 497|584 500 |496 518 |496
sy 4| 261 [179 —1| 127 84 4 (261 [179 | —1|127 85
e |35 358|233 41 190|116 | 43 |432 |252 | 16[192 |120
gy 3| 261 | 179 —10 | 456 | 86 4 (261 [180 | —1 |127 85
iy | —693 5688 | 361 | —2397 |37088 | 510 |326 |462 |350 308 348 |311
aLoto 4| 261 |179 —1| 127 84 41261 179 | —1|127 85
Ao 31| 297 |202 70 137 91 |116 (312|210 | 34 | 141 94
asLlo 3| 262 |178 2| 129 84 41261 178 | —1 {127 86
AT —170 | 356 |244 | —237 | 345 261 [254 396 |287 | 157|221 [163
aloor |49 | 344 | 233 12| 170|113 | 62 (308 |214 | 18150 97
Q0T | 244 | 417 |295 | —314 | 432 314 [300 435 |328 277|318 |[278
o 8| 309 |214 —1| 156|107 | 85 (308 (211 | 27 |148 94
Lo 4| 261 [179 —1| 127 84 4 (261 (179 | —1|127 85
aoL10 4| 261 [179 —1| 127 85 4 (261 (179 | —1|127 85
Ao 4| 261 |180 —1| 127 84 4261 179 | —1 127 85

RMSE root mean square error, MAE median absolute error

This also explains the problematic performance of the corresponding [PW estimator
fiipe’- Our estimator 201" is not affected much by the close-to-zero (@’ Z:)
because it uses weights w; that maximize [ [/, w;. The maximization prevents the
occurrence of extreme weights for our proposed method.

When the correct model a'(y!; X) for E(Y|X) is used, the proposed estimators

Qlo10 40110 and 31119 have almost identical performance to the imputation estima-

7,0010 £,0010
tors Loy and o,

Table 10.2 summarizes the performance of the bootstrapping method in calcu-
lating the standard error of the proposed estimator. The re-sampling size is 200.
The means of bootstrapping-based standard errors over the 2000 replications are
close the corresponding empirical standard errors. In addition, except for the case
where the proposed estimator is inconsistent (i.e. 221°1), the 95 % bootstrapping-
based confidence intervals have coverage probabilities very close to 95 %. These
observations demonstrate that the bootstrapping method provides a reliable way to
make statistical inference.
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Table 10.2 Bootstrapping method for the calculation of standard errors based on 2000 replications
with re-sampling size 200. Each digit of the four-digit superscript, from left to right, indicates if
al(a'; X), 72(a?;Z), a' (y'; X) and a?(py?; Z) is used, respectively. Except for the percentages,
the numbers have been multiplied by 100

Y observed if and only if R = 1 Y observed if and only if R = 0

n =200 n = 800 n =200 n = 800

EMP |EST |PER |EMP |EST |PER |EMP |EST [PER |EMP |EST |PER
a0 1338 1326 | 943% 171 [167 |94.4%|295 285 |93.3% 148 |146 [93.5%
Q0101 1346 1334 | 87.4% 226 |[176 |54.3%|303 298 |823% 152 |151 [55.0%
AlOT 1311 1309 | 942% 156 | 155 |94.5%|284 281 |93.5% 145 |143 [93.8%
Ql010 1253 1255 1952% 125 | 128 |95.2%|253 255 |95.1% 125 |128 [94.9%
Q010 1253 1255 1 952%| 125 | 128 |953%|253 255 [95.0%| 125 |128 |94.9%
a0 1253 1255 19529%) 125 [128 |95.2%|253 255 |95.1% 125 |128 |94.9%

EMP empirical standard error, EST mean of estimated standard error, PER percentage out of 2000
replications that the 95 % confidence interval based on the estimated standard error covers jio

10.5 Discussion

In the literature, many researchers model both 7(X) and E(Y|X) to improve
the robustness against model misspecification over the IPW estimator and the
imputation estimator. It has been a common practice to propose and study new
estimators by incorporating the imputation approach into the weighting approach
(e.g., Robins et al. 1994; Tan 2006, 2010; Tsiatis 2006; Qin and Zhang 2007; Cao
et al. 2009; Rotnitzky et al. 2012; Han and Wang 2013; Chan and Yam 2014; Han
2014a,b). We took an alternative view by incorporating the weighting approach into
the imputation approach. This is similar to Qin et al. (2008). But the estimator
proposed by Qin et al. (2008) can only take one model for 7 (X), resulting double
robustness.

Although the proposed idea was described in the setting of estimating the
population mean, it can be easily extended to regression setting with missing
responses and/or covariates. We leave this straightforward extension to empirical
researchers who choose to apply the proposed idea.

References

Aerts M, Claeskens G, Hens N, Molenberghs G (2002) Local multiple imputation. Biometrika
89:375-388

Cao W, Tsiatis AA, Davidian M (2009) Improving efficiency and robustness of the doubly robust
estimator for a population mean with incomplete data. Biometrika 96:723-734

Chan KCG, Yam SCP (2014) Oracle, multiple robust and multipurpose calibration in a missing
response problem. Stat Sci 29:380-396

Chen J, Sitter RR, Wu C (2002) Using empirical likelihood methods to obtain range restricted
weights in regression estimators for surveys. Biometrika 89:230-237



194 P. Han

Cheng PE (1994) Nonparametric estimation of mean functionals with data missing at random. J
Am Stat Assoc 89:81-87

Han P (2014a) A further study of the multiply robust estimator in missing data analysis. J Stat Plan
Inference 148:101-110

Han P (2014b) Multiply robust estimation in regression analysis with missing data. ] Am Stat
Assoc 109:1159-1173

Han P, Wang L (2013) Estimation with missing data: beyond double robustness. Biometrika
100:417-430

Horvitz DG, Thompson DJ (1952) A generalization of sampling without replacement from a finite
universe. J] Am Stat Assoc 47:663-685

Kang JDY, Schafer JL (2007) Demystifying double robustness: a comparison of alternative
strategies for estimating a population mean from incomplete data (with discussion). Stat Sci
22:523-539

Lipsitz SR, Zhao LP, Molenberghs G (1998) A semiparametric method of multiple imputation. J
R Stat Soc Ser B 60:127-144

Little RJA, Rubin DB (2002) Statistical analysis with missing data, 2nd edn. Wiley, New York

Owen A (1988) Empirical likelihood ratio confidence intervals for a single functional. Biometrika
75:237-249

Owen A (2001) Empirical likelihood. Chapman & Hall/CRC Press, New York

Qin J, Lawless J (1994) Empirical likelihood and general estimating equations. Ann Stat 22:300—
325

Qin J, Shao J, Zhang B (2008) Efficient and doubly robust imputation for covariate-dependent
missing responses. J Am Stat Assoc 103:797-810

Qin J, Zhang B (2007) Empirical-likelihood-based inference in missing response problems and its
application in observational studies. J R Stat Soc Ser B 69:101-122

Robins JM, Rotnitzky A, Zhao LP (1994) Estimation of regression coefficients when some
regressors are not always observed. J] Am Stat Assoc 89:846-866

Robins JM, Sued M, Gomez-Lei Q, Rotnitzky A (2007) Comment: performance of double-robust
estimators when “inverse probability” weights are highly variable. Stat Sci 22:544-559

Rotnitzky A, Lei Q, Sued M, Robins JM (2012) Improved double-robust estimation in missing data
and causal inference models. Biometrika 99:439-456

Rubin DB (1978) Multiple imputations in sample surveys. In: Proceedings of the survey research
methods section, American Statistical Association, Washington, DC, pp 20-34

Rubin DB (1987) Multiple imputation for nonresponse in surveys. Wiley, New York

Scharfstein DO, Rotnitzky A, Robins JM (1999) Adjusting for nonignorable drop-out using
semiparametric nonresponse models. J Am Stat Assoc 94:1096-1120

Tan Z (2006) A distributional approach for causal inference using propensity scores. ] Am Stat
Assoc 101:1619-1637

Tan Z (2010) Bounded efficient and doubly robust estimation with inverse weighting. Biometrika
97:661-682

Tsiatis AA (2006) Semiparametric theory and missing data. Springer, New York

van der Varrt AW (1998) Asymptotic statistics. Cambridge University Press, Cambridge

Wang D, Chen SX (2009) Empirical likelihood for estimating equations with missing values. Ann
Stat 37:490-517

Wang Q, Rao JNK (2002) Empirical likelihood-based inference under imputation for missing
response data. Ann Stat 30:896-924

Zhou Y, Wan ATK, Wang X (2008) Estimating equations inference with missing data. ] Am Stat
Assoc 103:1187-1199



Chapter 11
Maximum Smoothed Likelihood Estimation
of the Centre of a Symmetric Distribution

Pengfei Li and Zhaoyang Tian

Abstract Estimating the centre of a symmetric distribution is one of the basic
and important problems in statistics. Given a random sample from the symmetric
distribution, natural estimators of the centre are the sample mean and sample
median. However, these two estimators are either not robust or inefficient. Other
estimators, such as Hodges-Lehmann estimator (Hodges and Lehmann, Ann Math
Stat 34:598-611, 1963), the location M-estimator (Huber, Ann Math Stat 35:73—
101, 1964) and Bondell (Commun Stat Theory Methods 37:318-327, 2008)’s
estimator, were proposed to achieve high robustness and efficiency. In this paper,
we propose an estimator by maximizing a smoothed likelihood. Simulation studies
show that the proposed estimator has much smaller mean square errors than the
existing methods under uniform distribution, z-distribution with one degree of
freedom, and mixtures of normal distributions on the mean parameter, and is
comparable to the existing methods under other symmetric distributions. A real
example is used to illustrate the proposed method. The R code for implementing
the proposed method is also provided.

11.1 Introduction

Estimating the centre of a symmetric distribution is one of the basic and important
problems in statistics. When the population distribution is symmetric, the centre
represents the population mean (if it exists) and population median. Let X, ..., X,
be independent and identically distributed random variables. Assume that their
probability distribution function is f(x — u) with f being a probability density
function and symmetric with respect to the origin. Our interest is to estimate p.
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Symmetric population is seen in many applications. For example, Naylor and
Smith (1983) and Niu et al. (2015) analyzed an dataset about biochemical measure-
ments by a mixture of normal distributions on the scale parameter, which is a special
case of symmetric distributions. More description and further analysis of this dataset
will be given in Sect. 11.4. Symmetric distribution also naturally appears in paired
comparison. Two data sets of the same kind, such as heights of two groups of people
and the daily outputs of a factory in two different months, can be regarded as coming
from the same distribution family with different location parameters. Estimating
the location difference between those two data sets is one of the focuses. Assume
that X and Y are two independent random variables from those two populations
respectively, and let © = E(Y) — E(X). Then X and Z = Y — p have the same
distribution. By symmetry

PX—-Z<t)=PZ—-X<t)=PX—-Z>—1).
Replacing Z with Y — u gives that
PY-X<u+t)=PY-X>pu—1.

That is, the distribution of ¥ — X is symmetric with respect to (. A natural question
is whether © = 0 or not. An accurate estimator of u can be used to construct a
reliable testing procedure for Hy : . = 0.

With the random sample X1, ..., X, from the symmetric distribution f(x — ), a
simple and also traditional estimator of y is the sample mean of the random sample.
This estimator is the maximum likelihood estimator of w under the normality
assumption on f(x). In such situations, sample mean has many nice properties.
For example, the sample mean is normally distributed and its variance attains the
Cramer-Rao lower bound. Even the underlined distribution is not normal, the central
limit theorem implies that the sample mean is asymptotically normal as long as
Var(X;) < oo. However, when the data exhibits heavy tails, the sample mean may
have pool performance. Because of that, many other estimators are proposed in the
literature. For example, sample median of X1, ..., X, is another natural choice. It
performs much better than the sample mean when the data appear heavy tailed.
Although, sample median displays high robustness, its efficiency is disappointing
sometimes. Other nonparametric methods are then proposed to improve the effi-
ciency. Two popular choices are the Hodges-Lehmann (HL) estimator (Hodges and
Lehmann 1963) and the location M-estimator of Huber (1964). Recently, Bondell
(2008) proposed an estimator based on the characteristic function, which is shown
to be more robust than HL estimator and M-estimator in simulation studies.

Although HL estimator, M-estimator, and Bondell’s estimator are shown to be
robust and efficient in simulation studies, to the best of our knowledge, none of
them has a nonparametric likelihood interpretation. We feel that there is room for
improvement. On one hand, empirical likelihood method (Owen 2001) seems to be
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a quite natural choice. On the other hand, it is quite challenging to incorporate the
symmetry information on f(x). See the discussion in Sect. 10.1 of Owen (2001).

In this paper, we propose to estimate p by maximizing a smoothed likelihood.
The concept of smoothed likelihood is first proposed by Eggermont and LaRiccia
(1995). This method gives a nonparametric likelihood interpretation for the classic
kernel density estimation. Later on, it has been used to estimate the monotone
and unimodal densities (Eggermont and Lariccia 2000), the component densities
in multivariate mixtures (Levine et al. 2011), the component densities in mixture
model with known mixing proportions (Yu et al. 2014). These papers demonstrated
that the smoothed likelihood method can easily incorporate the constraint on the
density function. This motivates us to use it to estimate the centre p by incorporating
the symmetric assumption through the density function.

The organization of the paper is as follows. In Sect. 11.2, we present the idea
of smoothed likelihood and apply it to obtain the maximum smoothed likelihood
estimator of . In Sects. 11.3 and 11.4, we present some simulation results and a real
data analysis, respectively. Conclusion is given in Sect. 11.5. The R (R Development
Core Team 2011) code for implementing the proposed method is given in the
Appendix.

11.2 Maximum Smoothed Likelihood Estimation

In this section, we first review the idea of smoothed likelihood and then apply it to
estimate the centre y of a symmetric distribution.

11.2.1 Idea of Smoothed Likelihood

Given a sample Xi,...,X, from the probability density function g(x), the log-
likelihood function of g(x) is defined to be

> log{g(Xy)}

i=1

subject to the constraint that g(x) is a probability density function. Maximizing such
a log-likelihood, however, does not lead to a consistent solution, since we can make
the log-likelihood function arbitrarily large by setting g(X;) — oo for a specific i or
eveneveryi=1,...,n.

The unboundedness of the likelihood function can be tackled by the follow-
ing smoothed log likelihood approach (see Eggermont and LaRiccia 1995 and
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Eggermont and Lariccia 2001, Chapter 4). Define the nonlinear smoothing operator
Mhg(x) of a density g(x) by

Hg(x) = exp { / Kol —x) logg(u)du} ,

where Kj;(x) = }11K (x/h), K(-) is a symmetric kernel function, and % is the
bandwidth for the nonlinear smoothing operator. The smoothed likelihood of g(x) is
defined as

> tog Hig(x) = n [ () oo,
i=1

where 2,(x) = n7' Y| Ki(x — X;) is the usual kernel density estimator of g(x).
Interestingly, the smoothed likelihood function is maximized at g(x) = g,(x).
This gives a nonparametric likelihood interpretation for the usual kernel density
estimator.

11.2.2 Maximum Smoothed Likelihood Estimator of the Centre

Suppose we have a random sample Xj,...,X, from the population with the
probability density function f(x — w). In this subsection, we consider estimating
the centre p by using the maximum smoothed likelihood method. Following the
principle of the smoothed likelihood presented in last subsection, we define the
smoothed likelihood of { f, u} as follows:

() =) log Mif (i = ).
i=1

After some calculation, /,(f, t) can be written as
birg) =n [+ o togf o

where f,(x) = n~! Y, Kn(x—X;) is the kernel density estimation of f(x— ). The
maximum smoothed likelihood estimator of {f(x), i} is defined to be

{meo(x)v /:LSmo} = arg sup ln(f7 H)
S, 1

subject to the constraint that f(x) is a symmetric probability density function with
respect to the origin.
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We proceed in two steps to get flsno. In the first step, we fix g and maximize
I, (f, ) subject to the constraint that f(x) is a symmetric probability density function
around 0. Since f(x) is symmetric around 0, we have

/ Folx + 1) log f (¥)dx = / Folox 4 1) log f (—x)dx = / Folex+ ) logf (x)ds.

Hence the smoothed likelihood function can be written as
WF ) = [ 0.5+ )+, + o) og ()

Note that 0.5{f,(x + 1) + f,(—x + )} is a probability density function and is
symmetric around 0. Hence /,(f, t) is maximized at

() = 0.5{(x + ) + fu(—x + 1)}

In the second step, we plug f(x) = 0.5{f,(x + 1) + fo(—x + 1)} to L,(f, 1) and
obtain the profile smoothed likelihood function of u:

() = [ G-+ 1) ToglO.5F, G5+ ) + 0.5, 1 = )1
=n / f (¥)102{0.5F, (x) + 0.5f, (21 — x)}dx.
The maximum smoothed likelihood estimator of p can be equivalently defined as
fsmo = arg Sl;ppln(u).

To implement the above method, we need to specify the kernel density K(x)
and select the bandwidth 4. The commonly used kernel density is the standard
normal density, which is used in our implementation. Methods for choosing a
bandwidth for kernel density estimation are readily available in the literature. In
our implementation, we have used function dpik() in the R package KernSmooth to
choose the bandwidth /4. This package essentially implements the kernel methods in
Wand and Jones (1995). We have written a R function to calculate pl, (1) and then
use optim() to numerically calculate fts,,. These code is provided in the Appendix.

11.3 Simulation Study

We conduct simulation to test the efficiency of the maximum smoothed likelihood
method and compare it with the five existing methods: the sample mean, sample
median, HL. estimator, M-estimator, and Bondell (2008)’s estimator. We choose
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Table 11.1 Mean square errors (X sample size) for six estimates under thirteen symmetric
distributions with the sample size equal to 50

Distribution Mean | Median | HL M-estimator | Bondell | jispo
N(0,1) 1.092 | 1.613 1.130 | 1.110 1.147 1.140
DE 1.906 | 1.138 1.300 | 1.379 1.361 1.434
U(-2,2) 1.376 | 3.780 1.556 | 1.454 1.686 0.682
t(1) 5634 | 2.701 3.786 |4.128 3.017 2.940
t(2) 71.13 | 1.986 1.925 |2.102 1.834 2.010
t(3) 2.855 |1.821 1.580 | 1.506 1.552 1.678
0.5N(—1,0.5) 4+ 0.5N(1,0.5) 1.555 | 5.088 1.749 | 1.574 1.858 1.150
0.5N(—1,0.75) 4+ 0.5N(1,0.75) |1.722 |4.148 1.956 |2.074 1.991 1.610
0.5N(0, 1) + 0.5N(0, 3) 2.058 |2.461 1.885 | 1.990 1.892 2.016
0.5N(0, 1) + 0.5N(0, 5) 3.080 |3.135 2.644 |2.585 2.684 2.903
0.5N(0, 1) + 0.5N(0, 10) 5.705 |3.891 4.014 |4.220 4.166 4.123
0.9N(0, 1) + 0.1N(0,9) 1.680 | 1.663 1.247 | 1.232 1.178 1.211
0.8N(0, 1) + 0.2N(0,9) 2.574 | 1.939 1.697 | 1.728 1.680 1.802

Table 11.2 Mean square errors (X sample size) for six estimates under thirteen symmetric
distributions with the sample size equal to 100

Distribution Mean |Median | HL M-estimator | Bondell | jigyo
N(,1) 0.991 |1.626 1.042 |1.013 1.045 1.032
DE 2.035 | 1.071 1.357 | 1.466 1.418 1.392
U(-2,2) 1.351 |3.872 1.483 | 1.456 1.633 0.572
t(1) 20572 | 2.476 3.306 |3.749 2.801 2.487
t(2) 9.517 |2.050 2.045 [2.132 1.944 1.980
t(3) 2.829 | 1.772 1.503 | 1.677 1.486 1.589
0.5N(—1,0.5) 4+ 0.5N(1,0.5) 1.590 |5.318 1.770 |1.519 1.887 1.122
0.5N(—1,0.75) + 0.5N(1,0.75) |1.766 |4.328 2.035 |1.898 2.064 1.553
0.5N(0, 1) + 0.5N(0, 3) 1.996 | 2.588 1.864 |1.843 1.883 1.978
0.5N(0, 1) + 0.5N(0, 5) 3.058 |3.026 2.548 |2.766 2.600 2.730
0.5N(0, 1) 4+ 0.5N(0, 10) 5493 | 3.538 3.585 |3.887 3.703 3.443
0.9N(0, 1) 4+ 0.1N(0, 9) 1.868 | 1.736 1.274 |1.243 1.205 1.260
0.8N(0, 1) + 0.2N(0, 9) 2.568 | 2.091 1.694 | 1.690 1.644 1.717

thirteen symmetric distributions with the centre zero: the standard normal distribu-
tion N(0, 1), double exponential (DE) distribution, uniform distribution over (-2, 2)
(denoted by U(-2,2)), three ¢ distributions (denoted by #(v) with v being the
degrees of freedom), two mixtures of normal distributions on the mean parameter,
and five mixtures of normal distributions on the scale parameter. We consider three
sample sizes: 50, 100, and 200. We calculate the mean square errors for each of six
estimates based on 1000 replications. The results are summarized in Tables 11.1,
11.2 and 11.3, in which the mean square errors are multiplied by the sample size.

It is seen from Tables 11.1, 11.2 and 11.3 that mean square errors of sample
means are significantly larger under some specific distributions, such as #(1)
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Table 11.3 Mean square errors (X sample size) for six estimates under thirteen symmetric
distributions with the sample size equal to 200

Distribution Mean | Median | HL M-estimator | Bondell | figno
N(,1) 1.003 | 1.537 1.031 | 1.085 1.034 1.033
DE 1.847 | 1.069 1.256 | 1.403 1.316 1.260
U(—2,2) 1.407 | 4.125 1.512 | 1.410 1.707 0.448
t(1) 74611 |2.653 3.608 |3.881 2.908 2.575
t(2) 13.17 | 1.977 1.914 |2.011 1.821 1.815
t(3) 3470 |1.745 1.537 | 1.756 1.492 1.552
0.5N(—1,0.5) + 0.5N(1,0.5) 1.471 |5.426 1.611 | 1.605 1.736 0.980
0.5N(—1,0.75) + 0.5N(1,0.75) | 1.758 |4.521 2.007 |1.945 2.041 1.483
0.5N(0, 1) 4+ 0.5N(0, 3) 1.893 |2.257 1.745 | 1.912 1.766 1.860
0.5N(0, 1) 4+ 0.5N(0, 5) 3.224 |3.115 2.650 |2.480 2.691 2.738
0.5N(0, 1) 4+ 0.5N(0, 10) 5.322 | 3.679 3.568 |4.006 3.709 3.226
0.9N(0,1) + 0.1N(0,9) 1.790 |2.036 1.377 | 1.370 1.340 1.375
0.8N(0,1) + 0.2N(0,9) 2.795 |2.213 1.793 | 1.693 1.714 1.714

t(3),smoothed 0.9N(0,1)+0.1N(0,3),smoothed
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Fig. 11.1 Histograms of maximum smoothed likelihood estimates under #(3) and 0.9N(0, 1) +
0.1N(0, 9) distributions

and 7(2), as variances of those distributions do not exist or are very large. On
average, efficiency of sample median is low compared to other methods except
for the double exponential distribution. Compared with HL estimator, M-estimator,
and Bondell (2008)’s estimator, the maximum smoothed likelihood estimator has
smaller mean square errors under uniform distribution and #(1), and mixtures of
normal distributions on mean parameters. For other distributions, the new estimator
has comparable performance as HL estimator, M-estimator, and Bondell (2008)’s
estimator.

As we can see from Tables 11.1, 11.2 and 11.3, the products of sample sizes
and mean square errors of fls;,, almost remain as a constant. Hence we conjecture
that the mean square error of fis,,, is of the order O (n_l). In Fig. 11.1, we plot the
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histograms of maximum smoothed likelihood estimates under #(3) and 0.9N(0, 1) +
0.1N(0,9). It is seen that their histograms behave similarly to normal distribution.
Hence we also conjecture that the asymptotic distribution of jig,, is normal. We
leave these two conjectures for future study.

11.4 Real Application

In clinical chemistry, the clinical assessment of biochemical measurements is
typically carried out by reference to a “normal range”, which is the 95 % prediction
interval of the mean measurement for a “healthy” population (Naylor and Smith
1983). One way of obtaining such a normal range is to first collect a large sample
of biochemical measurements from a healthy population. However, in practice, it
may be difficult to collect measurements only from healthy individuals. Instead,
measurements from a contaminated sample, containing both healthy and unhealthy
individuals, are obtained. Because of the potential heterogeneity in the contaminated
sample, mixtures of normal distributions are widely used in such analyses.

Naylor and Smith (1983) and Niu et al. (2015) used a mixture of two normal
distributions on the scale parameter to model a contaminated sample of 542 blood-
chloride measurements collected during routine analysis by the Department of
Chemical Pathology at the Derbyshire Royal Infirmary. Note that the mixture
of two normal distributions on the scale parameter is a symmetric distribution.
Here we illustrate our method by estimating the centre of this data set. The
maximum smoothed likelihood estimate and other five existing estimates are shown
in Table 11.4. As we can see, all six estimates are close to each other. According
to our simulation experience on the mixtures of normal distributions on the scale
parameter, we expect that the variances of the proposed method, Bondell’s method,
HL estimator, and M-estimator are similar and may be smaller than those of sample
mean and sample median.

Table 11.4 Six estimates of the centre of 542 blood-chloride measurements

Mean Median HL M-estimator Bondell ASmo
99.985 100.017 100.033 100.068 100.087 100.100
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11.5 Conclusion

In this paper, we proposed the maximum smoothed likelihood estimator for the
centre of a symmetric distribution. The proposed method performs better than those
widely used estimators such as the HL estimator, M-estimator, and Bondell (2008)’s
estimator under the uniform, 7(1), and mixtures of normal distributions on mean
parameters. It has comparable performance to the HL estimator, M-estimator, and
Bondell (2008)’s estimator under other symmetric distributions.

We admit that so far the proposed method lacks theoretical justification. Further
work on the consistency and asymptotic distribution of fig,, will provide solid
theoretical support for its application. There is also room for improvement for its
computational efficiency.

Acknowledgements Dr. Li’s work is partially supported by the Natural Sciences and Engineering
Research Council of Canada grant No RGPIN-2015-06592.

Appendix: R code for calculating i s,,,

library ("KernSmooth")
library ("ICSNP")

norm.kern=function (x,data,h)

{

out=mean( dnorm( (x-data)/h ) )/h
out

}

dkern=function (x,data)

{

h=dpik (data, kernel="normal")
out=lapply (x,norm.kern,data=data, h=h)
as.numeric (out)

}

dfint=function (x,data, mu)

{

pl=dkern (x,data)
p2=1log (0.5xdkern (x,data) +0.5+xdkern (2+mu-x,data) +1e-100)

pl*p2

}

pln=function (mu,data)

{

h=dpik (data, kernel="normal")
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out=integrate (dfint, lower=min(data)-10*h,
upper=max (data) +10+h, data=data, mu=mu)
-outsvalue

}

hatmu.smooth=function (data)

{

##Input: data set
##Output : maximum smoothed likelihood estimate

hl.est=hl.loc (data)
est=optim(hl.est,pln,data=data, method="BFGS") $Spar
est

}

##Here is an example
set.seed(1221)
data=rnorm(100,0,1)
hatmu.smooth (data)
##Result: 0.1798129
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Chapter 12

Modelling the Common Risk Among Equities:
A Multivariate Time Series Model with an
Additive GARCH Structure

Jingjia Chu, Reg Kulperger, and Hao Yu

Abstract The DCC GARCH models (Engle, J Bus Econ Stat 20:339-350, 2002)
have been well studied to describe the conditional covariance and correlation
matrices while the common risk among series cannot be captured intuitively by the
existing multivariate GARCH models. A new class of multivariate time series model
with an additive GARCH type structure is proposed. The dynamic conditional
covariance between series are aggregated by a common risk term which has been
the key to characterize the conditional correlation.

12.1 Introduction

The volatility of the log return is necessary to be estimated for the financial
modelling. The Black-Scholes-Merton (BSM) model (Black and Scholes 1973;
Merton 1973) assumes that the log returns follow independently and identically
(i.i.d) normal distribution while the real market data shows volatility clustering and
heavy tail which violates this assumption. The conditional heteroscedasticity models
have been widely used in finance today to estimate the volatility to take the feature
of the financial return series into consideration. Let .%; be the information set (o-
field) of all information up to time point # and assume {x; : t € T} is the observed
process, then the general form of the model is in a multiplicative structure given by

Xt = €0y
E(x|Z#-1)=0 (12.1)
E(xﬂﬁ,_l) = 0,2,

where the innovations {¢, : t € T} are i.i.d. white noises with mean 0 and variance
1. The innovations are independent of .%,_, o,’s are .%,_; adapted.
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Engle (1982) introduced the autoregressive conditional heteroscedasticity
(ARCH) model with the unique ability of capturing volatility clustering in financial
time series. The ARCH(q) model defines the conditional variance of x; to be

q
ol =w+ E aix’ ;.
i=1

The lag g tends to be large when the model was applied to real data. Subsequently,
GARCH model introduced by Bollerslev (1986) extends the formula for o; by
adding autoregressive terms of o2. The conditional variance of the univariate
GARCH(p,q) model was defined as

q p
2 _ 2 2
o, =+ E :alxr—i + E :IBJO—r—j'

i=1 j=1

When there are more than one time series, it is necessary to understand the co-
movements of the returns since that the volatility of stock returns are correlated
with each other. In contrast to the univariate cases, the multivariate volatility
models based on a GARCH dependence are much more flexible. The multivariate
GARCH models are specified based on the first two conditional moments as well
as the univariate cases. The first multivariate volatility model is the half-Vec (vech)
multivariate GARCH defined by Bollerslev et al. (1988), which is also one of the
most general forms of multivariate GARCH models.

1/2
xt = H,' "¢,

g r (12.2)
hy =c+ ZAiﬂt—i + Ztht—js
i=1 =1

where €;’s are white noises with mean 0 and variance /,,,,

h; = vech(H,),

¢ = vech(ece]).

In this class of model, the conditional covariance matrix is modelled directly.
The number of parameters in the general m-dimensional case increases at a rate
proportional to m*, which makes it difficult to get the estimations.

There are simpler forms of multivariate GARCH by specifying the H, in different
ways. The constant correlation coefficient (CCC)-GARCH model is presented
by Bollerslev (1990), who assumes that the conditional correlation matrix R =
(pij)ij=1,-m would be time-invariant, and reduces the number of parameters to
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O(m?). The model is defined as

Xt = Htl/zft
Ht == S[RS;

q P
A =c+ ZAiXt—iz + ZBjAt—j
i=1 =1

(12.3)

where A, is a vector contains the diagonal elements of H; and S, is the diagonal
matrix of +/A;. A less restrictive time-varying conditional correlation version,
called the dynamic correlation coefficient (DCC) GARCH, is studied by Engle
(2002) and Tse and Tsui (2002). Both CCC-GARCH and DCC-GARCH models
are built by modelling the conditional variance of each series and the conditional
correlation between series. However, all of these multivariate GARCH models and
their extensions do not have a simple way to capture the common risk among
different stocks.

Information flows around the world almost instantaneously, thus most markets
(Asian, European, and American) will react to the same events (good news or
bad news). Most stock prices will go up or down together following the big
events (random shocks) currently. The strong positive association between the
equity variance and several variables is confirmed by Christie (1982). Recently,
Carr and Wu (2009) found that a common stochastic variance risk factor exists
among the stocks by using the market option premiums. There are several different
approaches used in finance and economy to describe the same driven process in the
literature. The first approach is the asset pricing model (Treynor, Market value, time,
and risk. Unpublished manuscript, pp 95-209, 1961; Toward a theory of market
value of risky assets. Unpublished manuscript, p 40, 1962; Sharpe 1964; Treynor
2008) and its generalizations (Burmeister and Wall 1986; Fama and French 1993,
2015) which quantifies the process by the market indices or some macro economic
factors. Another approach is the volatility jump models (Duffie et al. 2000; Tankov
and Tauchen 2011) which assumes the effect of the news is a discrete process
would happen by chance over the time. Different multivariate GARCH models
are introduced to describe the same underlying driven process in the financial time
series (Engle et al. 1990; Girardi and Tolga Ergun 2013; Santos and Moura 2014).
These models either involve other market variables, modelling the underlying risk
as a discrete process or characterize the common risk implicitly.

We develop a simple common risk model which keeps the GARCH structure and
involves the return only. In the light of Carr and Wu (2009), the innovations are
divided into two parts. A new additive GARCH type model was proposed by using
a common risk term to characterize the internal relationship among series explicitly.
The common risk term could be used as an indicator of the shock among series.
The conditional correlations aggregated by this common risk term are changing
dynamically. This model is also able to capture the conditional correlation clustering
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phenomenon described in So and Yip (2012). The common risk term would show
a latency after it reaching a peak since it follows a GARCH type structure, which
means that a big shock would take some time to calm down.

The notation and the new common underlying risk model is introduced in
Sect. 12.2. In Sect. 12.3, we discuss the model is identifiable and the estimates based
on Gaussian quasi likelihood are unique under certain assumptions. In Sect. 12.4, the
results of a Monte Carlo simulation study are shown and the estimated conditional
volatility is compare with some other GARCH models based on a bivariate dataset.

12.2 Model Specification

Consider an R™-valued stochastic process {X¢,f € Z} on a probability space
(82,97, &) and a multidimensional parameter @ in the parameter space &® C R°.
We say that x¢ is a common risk model with an additive GARCH structure if, for all
t € Z, we have

X1t = €101 + €000,

X2 = €402 + €000,

(12.4)
Xmit = €miOm,s + €000,
where 07, -+, 02, are following a GARCH type structure,
o7, = a1g(x1,—1)* + Biot,_,
03, = 02g(x2,-1)> + B203,_,
...... (12.5)

2 2 2
o-mJ = amg('xm,f—l) + ﬁmo-m’t_l

2 2 2
04, = o + ,301(7” + -+ ﬂome,t.

The size of the effect on a& . is linearly increasing with each observed element of
x¢. The conditional volatilities based on this model will expose to infinity and the
mean reverse property will hardly hold when one of the o;, terms larger than 1. The
function g could be a continuous bounded function to avoid this kind of situation.
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The m + 1 dimensional innovation terms {€; — co < t < oo} are independent
and identically distributed with mean 0 and covariance ¥ where X has the same
parameterization as a correlation matrix,

RO
Y = .
The innovation can be divided into two parts etT = (‘tT, ind» €0.1). The first part is a

m dimensional correlated individual shocks €¢inq and the second part is a univariate
common shock term € ;.

Define the following notations, D, = diag{o, 02+ ,Om}, 1 = (1,1,--- , DT
€1t
€11
¢ €21
2. €t ind
€tind = . , €t = ( ' =
: €0,
€m,t
Em.t mx1

€007 (mt1)x1
Then Eq. 12.4 could be written in a matrix form:

Xt = D;€¢jing + 00€0,1. (12.6)
So the model could be specified either by Egs. 12.6 and 12.5 together or Eqgs. 12.4

and 12.5 together. The conditional covariance matrix of X; can be computed by
definition H, = cov(x¢|-%—1).

2 2 2 2
0y, T+ 01, 004 + 01201:02; ... 04, + P1mO1,:0m;s
2 2 2 2
00 + 01,201,:02; 00 + 05, .. 0g, + 02.m02.10m
Ht = . . .
02, 4 PLmO1.1Oms 02, + 0210240, o2 + o2
0,t P1,mO01,:0m,t 0., P2.m02,10myz - - 0, mit

H, can be written as a sum of two parts: H; = U&l.] + D,RD, where J isam X m
matrix with 1 as all the elements (or J = 11T).

The number of parameters is increasing at the rate O(m?) which is in the
same manner as in the CCC-GARCH model. We could separate the vector of
unknown parameters into two parts: the parameters in the innovations correlation
matrix X and the coefficients in the Eq. 12.5. The number of total parameters is
s = s1+3m+1 where s; = m(”;_l) is the number of parameters in R.

The conditional correlation between series i and series j can be represented by

the elements in H, matrix. The dynamic correlation between series i and j can be
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calculated as

COV(-xi,I‘v -xj,l‘)
\/Vaf(xi,t) var(x;,,)
U&[ + 0ij0i:0j;

J@ + 2@, + )

Ot Ojt
v (ot ) (o)
Pty 00,7 \NO0,¢

Sy ey

From the equations above, the conditional correlation matrix R; = (0jj1)ij=1,-m
tends to be J defined above when the common risk term oy, is much larger than both
0;; and oj;. In this case, the common risk term is dominant and all the log return
series are nearly perfect correlated. On the contrary, the conditional correlation
matrix will be approaching the constant correlation matrix R when the common risk
term is much smaller and close to 0. Then, the conditional correlation will become
time invariant which is the same as a CCC-GARCH model. Mathematically,

Pijr =

R, — J when gy, — 00,

R, — R when gy, — 0.

12.3 Gaussian QMLE

A distribution must be specified for the innovations €; process in order to form the
likelihood function. The maximum likelihood (ML) method is particularly useful
in statistical inferences for models because it provides us with an estimator which
has both consistency and asymptotic normality. The quasi-maximum likelihood
(QML) method could draw statistical inference based on a misspecified distribution
of the innovations while the ML method assumes that the true distribution of the
innovation is the specified distribution. ML method essentially is a special case of
the QML method with no specification error.

We can construct the Gaussian quasi likelihood function based on the density of
conditional distribution x¢|.%,_;. The vector of the parameters

0 = (pl,Zv"' spm—l,msalv”' samvﬂlv"' sﬁmsw()sﬁols"' 7ﬂ0m)T (127)
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belongs to a parameter space of the form

m(m—1)
O C [0,00)""% " FIn+L, (12.8)
The true value of the parameter is unknown, and denoted by

[© 0 © 0 © 0 © © 0
ooz(plygﬂ.. ’pfn)lm’al)’ . ’ar(n)’ﬂl)"”’ﬂ:n) >1301),.. ﬁ())T

12.3.1 The Distribution of the Observations

The observations X¢’s are assumed following a realization of a m-dimensional
common risk process and €;’s are i.i.d. normally distributed with mean 0 and
covariance Y. Equation 12.4 shows that based on the past, the observations can be
written as linear combinations of normally distributed variables, then the conditional
distribution of the observations x;’s are multivariate normal as well, e.g. X¢|.%;—1 ~
N(0, H;). The model in Sect. 12.2 can be revised to a different form as

1/2

&
2 2 2 2
04, T 01, 04 T P1201402¢ + .. O, F PLmO1:0ms
2 2 2 2
. 0¢, T P1,201,:02, 0o+ 03, con 00y F P2m02,Om; (12.9)
t — . . . .
02, + PLmO1:Oms O2F, + P2.m024C ol + o2
0 T PLmO1tOmzt Oy, T P2.m02,0mp - - - 0.1 m.t

where the innovation &, are a sequence of i.i.d m-dimensional standard normal
variables. Then the quasi log likelihood function is given by

n

1 RS
Ly(0) =—, 3 AoglH(8)| +x[H(8) 'x} = —, ;zxa). (12.10)

=1

The driving noises €;’s are i.i.d N(0, X'), so the conditional distribution of x; is
N(0,H,(0)). The QML estimator is defined as

0, = argmax L,(0)
9eo

= arg min log|H,(6 +XHO X
gm ;{ gl Hi(6))] (0) "% (12.11)

= arg min Z 1(0).

gco N
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12.3.2 Identifiability

We start this section with the concept of parameter identifiability.

Definition 1 Let H,(0) be the conditional second moment of x¢, ® be the parameter
space, then H,(9) is identifiable if V04,0, € ©@, H,(01) = H(0;) a.s. = 01 =
05,.

It is necessary to study the condition of parameter identification since the parameter
estimates are based on the maximum of the likelihood function. The solution needs
to be unique when the likelihood function reaches its maximum.

Theorem 1 Assume that:
Assumption 1 Y0 € O, o; > 0and §; € [0,1) fori=1,--- ,m.
Assumption 2 The model in Eq. 12.4 is stationary and ergodic.

Then there exists a unique solution of 0 € ® which maximizes the quasi likelihood
function for n sufficiently large.

If the Assumption 1 is satisfied, then the conditional second moment of x¢, H,, is
identifiable in the quasi-likelihood function. Suppose that 6 is the true value of the
parameters and H, is identifiable, then E(L,(0¢)) > E(L,(0)) for all 8 # 6. If the
time series X¢ is ergodic and stationary, there will be a unique solution of 8 in the
parameter space ®@ which maximize the likelihood function when the sample size n
is sufficient large.

12.4 Numeric Examples

12.4.1 Model Modification

To reduce the number of parameters and simplify the model, the contributions from
each individual stock to the common risk indicator a& , can be assumed equal, fo; =
Bo2 = -+ = Bom = Bo. In this case, the number of parameters in og’[ is changed to
2 from m + 1 and the last line in Eq. 12.5 become

2 2 2
00, = wo + Po(07,— + -+ 0,,-1)

The g function presented in this section is chosen as a piecewise function which
defined as

@ x |x] <0.01
8§W) =
0.01 [x| >=0.01
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The effect of observed data will be bounded within 10 % once the observed data
reaches extreme large values (larger than 10 %). If the daily log return of a stock
exceeds 10 % in real world, we would consider to do more research on the stock
since it is unusual.

12.4.2 Real Data Analysis

A bivariate example is shown in this subsection which is based on the centered
log returns of two equity series (two stocks in New York Stock Exchange: the
International Bushiness Machines Corporation (IBM) and the Bank of American
(BAC) from 1995 to 2007 (Fig. 12.1)). The conditions for stationarity and ergodicity
are not solved yet. The ergodicity of the process could be partly verified by numeric
results while the stationarity is commonly assumed in financial log returns. The
default searching parameter space is chosen to be ® = [—1,1] x [0,1]” and
the numeric checks are set to verify the positive definite constraints on H; and R
matrices.

A numeric study called parametric bootstrap method (or Monte Carlo simulation)
is used to test the asymptotic normality of the MLE estimator.

The histograms of the estimates in Figs. 12.2 and 12.3 were well shaped as
normal distributions which verifies the asymptotic normality of the MLE in this
model by using the empirical study.

The horizontal lines in Fig. 12.4 show some big events in the global stock markets
over that time period. The 1997 mini crash in the global market was caused by
the economic crisis in Asia on Oct 27, 1997. The time period between two solid
lines was October, 1999 to October, 2001 where the Internet bubble burst. The last
line was the peak before financial crisis on Oct 9, 2007. The conditional variances
were significantly different in some time points. During the 1997 mini crash, the
estimated conditional variances in DCC-GARCH model are different from the ones
in the common risk model. The conditional variance of IBM was high while the
conditional variance of BAC was relative low from DCC-GARCH model. However,

to)

Q —

o i
: ,.~“.~ﬁk‘."<"i“.‘*~.\«w EJ&'J*“HJNJ*L“’!:“1

o AL r‘«..ﬂ,vp’(ﬂr,rr N T‘IY“A'W'i‘

3 | f

S |

]

o

? _

T T T T T T
1996 1998 2000 2002 2004 2006 2008

Fig. 12.1 Centered log returns of IBM and BAC from Jan. 1, 1995 to Dec. 31, 2007. The solid
black line represents the centered log returns of IBM and the cyan dash line represents the centered
log returns of BAC
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Fig. 12.2 The histogram of 1000 parameter estimates from the Monte Carlo Simulations (o, o,

B, B2)

the conditional covariance of both log returns were quite high from the common
risk model. It is a difficult task to tell which model fits the data better since the main
usages of these models are all based on the conditional volatilities or the conditional
correlations (Fig. 12.5).

Denote the conditional variance estimating from model 1 by V41 in the
following equation. Define a variable to measure the relative difference of the
estimated conditional variance between two models.

,ll Zrll |Vm0d1 - Vm0d2|

Relative difference = | <

n Z] VmodZ
Table 12.1 is not a symmetric table since the elements in the symmetric
locations have different denominators according to the definition formula above.
The estimated conditional variance for IBM and BAC log return series from the
traditional models are really close to each other while the relative differences
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Table 12.1 The relative difference of BAC series between models
Model2

Modell CommonRisk CCCGARCH DCCGARCH GARCH(1,1)
CommonRisk - 15.06 % 15.06 % 15.00 %
CCCGARCH 15.11% - 0.01 % 0.12 %
DCCGARCH 15.11% 0.01 % - 0.13 %
GARCH(1,1) 15.06 % 0.12% 0.13% -

Table 12.2 The 95 % confidence interval of the estimates by using parametric bootstrap

b2 100G, 100G, 108, 108, 10% 108,
“True’ —0.45 6.69 1.90 8.93 9.58 1.51 434
LB —0.78 5.18 1.22 8.68 9.30 0.24 2.34
UB —0.12 9.41 3.74 9.13 9.71 7.47 6.04

between our new model and other models are large. It is worth to build up such
a complicate model since it will change the investment strategy dramatically.

12.4.3 Numeric Ergodicity Study

This example demonstrates the ergodicity and the long term behavior of the model.
The data were simulated from the ‘True’ parameter values in Table 12.2. The
plots illustrates the behavior of log returns from two common risk models (denote
by M, and M,) starting from different initial a¢’s. Denote the log return of the
first simulated bivariate common risk model M; by (x;,x;) and the initial value
(0'1!0, 02,0, 00,0, X1,0» )Cz,()) in this model is (0.020, 0018, 0.013, 0.0079, 00076) The
log returns simulated from M, were denoted by (y;, y2) and the initial value of M,
is (0.01,0.01,0.01, 0.009, 0.009).

In Figs.12.6 and 12.7, we can see that the effect of the starting volatilities
vanishes after a long enough bursting time period.



12 Modelling the Common Risk Among Equities 217

0.05
1

0.03
1

0.01
1

0 200 400 600 800 1000

0.040
1

0.025
1

0.010
1

T
0 200 400 600 800 1000

0.01 0.02 0.03 0.04

T T T T T
0 200 400 600 800 1000

Fig. 12.6 The simulated o’s from two groups of initial values M1 and M2: the upper plot is o},
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Fig. 12.7 The simulated bivariate log returns from two different initial values M1 and M2: the
simulated path of x;, is shown in the upper plot and the simulated path of x, , is in the lower plot.
The solid black lines represents the simulated values from M1 while the red dash line shows the
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