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Preface

v

This book is comprised of the most significant presentations at the 25th ICSA
Applied Statistics Symposium held at Hyatt Regency Atlanta on June 12–15, 2016.
This symposium attracted more than 700 statisticians and data scientists working in
academia, government, and industry worldwide. The theme of this conference was
“Challenges of Big Data and Applications of Statistics,” which was in recognition
of the advent of big data era. The symposium offered great opportunities for
learning, receiving inspirations from old research ideas and developing new ones,
and promoting research collaborations in data sciences. The invited and contributed
talks in the symposium covered rich topics in big data analysis. From this very
successful symposium, the six editors selected 19 high-quality presentations and
invited the speakers to prepare full chapters for this book. All 19 chapters were
thoroughly peer reviewed and consequently revised multiple times before final
acceptance. We believe they provide invaluable contributions to statistics and data
science.

The goal of this book is to disseminate the recent findings, showcase the scientific
outputs of the symposium, and reflect new challenges and important advances in
data science, statistics, business statistics, and biostatistics. The chapters in the
book present the most recent developments in statistics, innovative methods in data
science, and case applications from different fields of statistics, data sciences, and
interdisciplinary research fields.

The 19 chapters are organized into four parts. Part I includes five chapters that
present a review of the theoretical framework in data science. Part II consists
of five chapters on complex and big data analysis. Part III is composed of four
chapters that outline clinical trials, statistical shape analysis, and applications. Part
IV presents statistical modeling and data analysis. The chapters are organized as
self-contained units, and the references for each chapter are at the end of the chapter
so that readers can refer to the cited sources for each chapter easily. To facilitate
readers’ understanding of the proposed methods and new procedures in the book,
corresponding data and computing programs can be requested from the authors or
the editors by email.
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Part I: Review of Theoretical Framework in Data Science
(Chapters 1–5)

The chapter “Statistical Distances and Their Role in Robustness” describes the
statistical properties of some of the distance measures, which play a fundamental
role in statistics, machine learning, and associated scientific disciplines. In this
chapter, Markatou, Chen, and Lindsay illustrate the robust nature of Neyman’s chi-
squared and the non-robust nature of Pearson’s chi-squared statistics and discuss the
concept of discretization robustness.

In the chapter “The Out-of-Source Error in Multi-Source Cross Validation-Type
Procedures,” Afendras and Markatou propose the “out-of-source” error. The authors
present an unbiased estimator of this error, discuss its variance, and derive natural
assumptions under which the consistency of the estimator is guaranteed for a broad
class of loss functions and data distributions.

In the following chapter “Meta-Analysis for Rare Events As Binary Outcomes,”
Dong provides a comprehensive review of the different methods of meta-analyses
for rare events as binary outcomes. The methods covered in this chapter include
nonparametric meta-analysis, parametric meta-analysis, and parametric bootstrap
resampling meta-analysis. Several case studies using these methods are provided.

In the chapter “New Challenges and Strategies in Robust Optimal Design
for Multicategory Logit Modelling,” O’Brien provides key model-robust design
strategies by deriving a larger unifying multi-category logit regression model and
model nesting. These strategies are also extended to incorporate geometric and
uniform designs. These designs are useful for both parameter estimation and model
discrimination via checking for goodness of fit. Some examples are provided to
illustrate these results.

The chapter “Testing of Multivariate Spline Growth Model” presents a new
method, based on spline approximation and the F-test, for testing multivariate
growth curves. Nummi, Möttönen, and Tuomisto show how the basic spline
regression model can easily be extended to the multiple response case.

Part II: Complex and Big Data Analysis (Chapters 6–10)

In the chapter “Uncertainty Quantification Using the Nearest Neighbor Gaussian
Process,” Shi, Kang, Konomi, Vemaganti, and Madireddy demonstrate that the
nearest-neighbor Gaussian process (NNGP) for analyzing a large dataset has the
potential to be used for uncertainty quantification. The authors discover that when
using NNGP to approximate a Gaussian process with strong smoothness, Bayesian
inference needs to be carried out carefully with marginalizing over the random
effects in the process. Using simulated and real data, the authors investigate the
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performance of NNGP to approximate the squared-exponential covariance function
and its ability to handle change-of-support effects when only aggregated data over
space are available.

In the following chapter “Tuning Parameter Selection in the LASSO with
Unspecified Propensity,” Zhao and Yang incorporate the missing data mechanism
or the propensity in the penalized likelihood in order to correctly adopt the LASSO.
Compared to the missing data methods with a concrete propensity, this assumption
is relatively easier to satisfy in reality. The authors illustrate the proposed methods
using real data from a melanoma study.

In the chapter “Adaptive Filtering Increases Power to Detect Differentially
Expressed Genes,” Nie and Liang propose a novel adaptive filtering procedure that
improves power by filtering out genes that are unlikely to be differentially expressed.
The authors show that the proposed procedure controls the false discovery rate
asymptotically. Simulation study further demonstrates its advantage over state-of-
the-art competitors.

In the chapter “Estimating Parameters in Complex Systems with Functional
Outputs: A Wavelet-Based Approximate Bayesian Computation Approach,” Zhu,
Lu, Ming, Gupta, and Müller introduce a wavelet-based approximate Bayesian
computation (wABC) approach that is likelihood-free and computationally scalable
to functional data measured on a dense, high-dimensional grid. The method relies on
near-lossless wavelet decomposition and compression to reduce the high correlation
between measurement points and high dimensionality. The authors adopt a Markov
chain Monte Carlo algorithm with a Metropolis-Hastings sampler to obtain posterior
samples of the parameters for Bayesian inference. A Gaussian process surrogate for
the simulator is proposed, and the uncertainty of the resulting sampler is controlled
by calculating the expected error rate of the acceptance probability.

The chapter “A Maximum Likelihood Approach for Non-invasive Cancer Diag-
nosis Using Methylation Profiling of Cell-Free DNA from Blood” designs a
maximum likelihood approach and a corresponding computational method to
estimate the fraction of tumor-derived cell-free DNA in blood samples using
methylation sequencing data. In this chapter, Sun and Li model the cell-free DNA in
blood samples as a mixture of normal and tumor-derived cell-free DNA and assume
the distributions of methylation levels for both normal and tumor-derived cell-free
DNA follow different beta distributions. Through simulations, the authors study the
effects of sequencing depth and fraction of tumor-derived cell-free DNA on the
estimation accuracy.

Part III: Clinical Trials, Statistical Shape Analysis,
and Applications (Chapters 11–14)

In the chapter “A Simple and Efficient Statistical Approach for Designing an Early
Phase II Clinical Trial: Ordinal Linear Contrast Test,” Zhang, Deng, Wang, and
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Ting present an ordinal linear contrast test to design an efficient early Phase II
trial. Although the performance of both MCP-Mod and ordinal linear contrast test
is comparable, the ordinal linear contrast test is simpler, more robust, and more
efficient from a practical perspective. For practitioners, the ordinal linear contrast
test is a useful alternative.

The chapter “Landmark-Constrained Statistical Shape Analysis of Elastic Curves
and Surfaces” presents a framework for landmark-constrained elastic shape analysis
of curves and surfaces. In this chapter, Strait and Kurtek propose a new method,
which has its roots in elastic shape analysis and uses the square-root velocity
function representation for curves and square-root normal field representation for
surfaces to greatly simplify the implementation of these methods. The authors pro-
vide complex examples from graphics and computer vision, wherein the landmark-
constrained shape analysis framework is able to provide natural deformations
between shapes and representative summaries.

In the chapter “Phylogeny-Based Kernels with Application to Microbiome
Association Studies,” Xiao and Chen provide a three-parameter phylogeny-based
kernel, which allows modeling a wide range of nonlinear relationships between
bacterial species and the environment for microbiome data. Each parameter has a
nice biological interpretation, and by tuning the parameter, the authors can gain
insights about how the microbiome interacts with the environment. The authors
demonstrate that the test based on their new kernel outperforms those that are based
on traditional distance-converted kernels, and apply the phylogeny-based kernel to
real gut microbiome data from a diet-microbiome association study.

The chapter “Accounting for Differential Error in Time-to-Event Analyses Using
Imperfect Electronic Health Record-Derived Endpoints” addresses the implications
of using an imperfectly assessed outcome with differential measurement error in
time-to-event analyses, motivated by identifying secondary breast cancer events
using electronic health record data. Hubbard, Milton, Zhu, Wang, and Chubak
use simulation studies to demonstrate the magnitude of bias induced by failure to
account for error in the status or timing of recurrence and compare several methods
for correcting this bias.

Part IV: Statistical Modeling and Data Analysis (Chapters
15–19)

In the chapter “Modeling Inter-Trade Durations in the Limit Order Market,” Yang,
Li, Chen, and Xing discuss the limitations of the Markov-switching multifractal
intertrade duration models in the analysis of the ultrahigh-frequency limit order
book (LOB) data and propose extensions which replace the exponential distributions
on the errors by Weibull and Gamma distributions. Comparing the original and
extended models, the authors find that the extended models fit data better.
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The chapter “Assessment of Drug Interactions with Repeated Measurements”
investigates the problem of assessing the joint effects of combined therapies for
in vitro studies with repeated measurements. In this chapter, Zhou, Shen, and Lee
use mixed-effects linear regression to estimate the dose-effect curve and propose
a procedure to construct the point and interval estimates of the interaction index.
Their approach improves the accuracy of the confidence intervals for the interaction
indices at observed combination dose levels.

The chapter “Statistical Indices for Risk Tracking in Longitudinal Studies”
centers on statistical indices to measure the tracking abilities of variables of interest
over time. In this chapter, Tian and Wu propose a series of global statistical tracking
indices based on the weighted means of the corresponding local tracking indices.
The authors investigate the statistical properties of the new global tracking indices
and demonstrate the usefulness of these tracking indices through their application
to a longitudinal study of cardiovascular risk factors for children and adolescents.

The chapter “Statistical Analysis of Labor Market Integration: A Mixture
Regression Approach” studies the labor market integration of young males in
Finland using data from 2005 to 2013. In this chapter, Nummi, Salonen, and O’Brien
apply a multivariate logistic mixture regression model for the longitudinal data. The
authors suggest that the mixture regression approach can reveal new information
that may remain hidden in more formal, census-based labor market statistics.

The chapter “Bias Correction in Age-Period-Cohort Models Using Eigen Analy-
sis” develops a bias correction method using eigenanalysis in the age-period-cohort
models. Fu corrects the bias in the parameter estimation using simple calculations
without requiring original data and provides accurate standard error estimation. The
proposed method is illustrated using two real examples.

The editors are deeply grateful to many people who helped publish this book
with Springer. First, we would like to thank the authors of each chapter for their
expertise, contributions, and dedications. Second, our sincere appreciations go to all
the reviewers for their excellent reviews and valuable time, which greatly improved
the presentations and the quality of the book. Third, our deep gratitude goes to
the leadership of the executive committee, the organizing committee, the program
committee, the program book committee, the local organizing committee, and the
numerous volunteers of the 25th ICSA Applied Statistics Symposium because
this book would not be possible without this successful symposium. Last but not
least, we would like to acknowledge the great support and wonderful assistance of
Nicholas Philipson (Springer/ICSA Book Series coordinator and editorial director,
Business/Economics & Statistics) and Nitza Jones-Sepulveda (associate editor)
from Springer New York throughout the publication process.

We look forward to receiving any comments and suggestions on typos, errors, and
improvements about the book. If there is an exchange, please contact Dr. Yichuan
Zhao (email: yichuan@gsu.edu) as the corresponding author and, if desired,
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Drs. Ding-Geng Chen (email: dinchen@email.unc.edu), Zhezhen Jin (email:
zj7@columbia.edu), Gang Li (email: vli@ucla.edu), Yi Li (email: yili@umich.edu),
and Aiyi Liu (email: liua@mail.nih.gov) as well.

Chapel Hill, NC, USA Ding-Geng Chen
New York, NY, USA Zhezhen Jin
Los Angeles, CA, USA Gang Li
Ann Arbor, MI, USA Yi Li
Bethesda, MD, USA Aiyi Liu
Atlanta, GA, USA Yichuan Zhao
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Statistical Distances and Their Role
in Robustness

Marianthi Markatou, Yang Chen, Georgios Afendras, and Bruce G. Lindsay

1 Introduction

Distance measures play a ubiquitous role in statistical theory and thinking. However,
within the statistical literature this extensive role has too often been played out
behind the scenes, with other aspects of the statistical problems being viewed as
more central, more interesting, or more important.

The behind the scenes role of statistical distances shows up in estimation, where
we often use estimators based on minimizing a distance, explicitly or implicitly,
but rarely studying how the properties of the distance determine the properties
of the estimators. Distances are also prominent in goodness-of-fit (GOF) but the
usual question we ask is how powerful is our method against a set of interesting
alternatives not what aspects of the difference between the hypothetical model and
the alternative are we measuring?

How can we interpret a numerical value of a distance? In goodness-of-fit we
learn about Kolmogorov-Smirnov and Cramér-von Mises distances but how do these
compare with each other? How can we improve their properties by looking at what
statistical properties are they measuring?

Past interest in distance functions between statistical populations had a two-
fold purpose. The first purpose was to prove existence theorems regarding some
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optimum solutions in the problem of statistical inference. Wald (1950) in his book
on statistical decision functions gave numerous definitions of distance between two
distributions which he primarily introduced for the purpose of creating decision
functions. In this context, the choice of the distance function is not entirely arbitrary,
but it is guided by the nature of the mathematical problem at hand.

Statistical distances are defined in a variety of ways, by comparing distribution
functions, density functions or characteristic functions and moment generating
functions. Further, there are discrete and continuous analogues of distances based
on comparing density functions, where the word “density” is used to also indicate
probability mass functions. Distances can also be constructed based on the diver-
gence between a nonparametric probability density estimate and a parametric family
of densities. Typical examples of distribution-based distances are the Kolmogorov-
Smirnov and Cramér-von Mises distances. A separate class of distances is based
upon comparing the empirical characteristic function with the theoretical character-
istic function that corresponds, for example, to a family of models under study, or
by comparing empirical and theoretical versions of moment generating functions.

In this paper we proceed to study in detail the properties of some statistical
distances, and especially the properties of the class of chi-squared distances. We
place emphasis on determining the sense in which we can offer meaningful inter-
pretations of these distances as measures of statistical loss. Section 2 of the paper
discusses the definition of a statistical distance in the discrete probability models
context. Section 3 presents the class of chi-squared distances and their statistical
interpretation again in the context of discrete probability models. Section 3.3
discusses metric and other properties of the symmetric chi-squared distance. One
of the key issues in the construction of model misspecification measures is that
allowance should be made for the scale difference between observed data and a
hypothesized model continuous distribution. To account for this difference in scale
we need the distance measure to exhibit discretization robustness, a concept that
is discussed in Sect. 4.1. To achieve discretization robustness we need sensitive
distances, and this requirement dictates a balance of sensitivity and statistical noise.
Various strategies that deal with this issue are discussed in the literature and we
briefly discuss them in Sect. 4.1. A flexible class of distances that allows the user
to adjust the noise/sensitivity trade-off is the kernel smoothed distances upon which
we briefly remark on in Sect. 4. Finally, Sect. 5 presents further discussion.

2 The Discrete Setting

Procedures based on minimizing the distance between two density functions express
the idea that a fitted statistical model should summarize reasonably well the data
and that assessment of the adequacy of the fitted model can be achieved by using
the value of the distance between the data and the fitted model.

The essential idea of density-based minimum distance methods has been pre-
sented in the literature for quite some time as it is evidenced by the method of
minimum chi-squared (Neyman 1949). An extensive list of minimum chi-squared
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methods can be found in Berkson (1980). Matusita (1955) and Rao (1963) studied
minimum Hellinger distance estimation in discrete models while Beran (1977) was
the first to use the idea of minimum Hellinger distance in continuous models.

We begin within the discrete distribution framework so as to provide the clearest
possible focus for our interpretations. Thus, let T D f0; 1; 2; � � � ;Tg, where T is
possibly infinite, be a discrete sample space. On this sample space we define a true
probability density �.t/, as well as a family of densities M D fm� .t/ W � 2 ‚g,
where ‚ is the parameter space. Assume we have independent and identically
distributed random variables X1;X2; � � � ;Xn producing the realizations x1; x2; � � � ; xn

from �.�/. We record the data as d.t/ D n.t/=n, where n.t/ is the number of
observations in the sample with value equal to t.

Definition 1 We will say that �.�;m/ is a statistical distance between two proba-
bility distributions with densities � , m if �.�;m/ � 0, with equality if and only if �
and m are the same for all statistical purposes.

Note that we do not require symmetry or the triangle inequality, so that �.�;m/
is not formally a metric. This is not a drawback as well known distances, such as
Kullback-Leibler, are not symmetric and do not satisfy the triangle inequality.

We can extend the definition of a distance between two densities to that of a
distance between a density and a class of densities as follows.

Definition 2 Let M be a given model class and � be a probability density that does
not belong in the model class M . Then, the distance between � and M is defined as

�.�;M / D inf
m2M

�.�;m/;

whenever the infimum exists. Let mbest 2 M be the best fitting model, then

�.�;mbest/ , �.�;M /:

We interpret �.�;m/ or �.�;M / as measuring the “lack-of-fit” in the sense that
larger values of �.�;m/ mean that the model element m is a worst fit to � for our
statistical purposes. Therefore, we will require �.�;m/ to indicate the worst mistake
that we can make if we use m instead of � . The precise meaning of this statement
will be obvious in the case of the total variation distance, as we will see that the
total variation distance measures the error, in probability, that is made when m is
used instead of � .

Lindsay (1994) studied the relationship between the concepts of efficiency and
robustness for the class of f - or �-divergences in the case of discrete probability
models and defined the concept of Pearson residuals as follows.

Definition 3 For a pair of densities � , m define the Pearson residual by

ı.t/ D
�.t/

m.t/
� 1; (1)

with range the interval Œ�1;1/.
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This residual has been used by Lindsay (1994), Basu and Lindsay (1994), Marka-
tou (2000, 2001), and Markatou et al. (1997, 1998) in investigating the robustness
of the minimum disparity and weighted likelihood estimators respectively. It also
appears in the definition of the class of power divergence measures defined by

�.�;m/ D
1

�.�C 1/

X
�.t/

(�
�.t/

m.t/

��
� 1

)

D
1

�.�C 1/

X
m.t/f.1C ı.t//�C1 � 1g:

For � D �2;�1;�1=2; 0 and 1 one obtains the well-known Neyman’s chi-squared
(divided by 2) distance, Kullback-Leibler divergence, twice-squared Hellinger
distance, likelihood disparity and Pearson’s chi-squared (divided by 2) distance
respectively. For additional details see Lindsay (1994) and Basu and Lindsay (1994).

A special class of distance measures we are particularly interested in is the class
of chi-squared measures. In what follows we discuss in detail this class.

3 Chi-Squared Distance Measures

We present the class of chi-squared disparities and discuss their properties. We offer
loss function interpretations of the chi-squared measures and show that Pearson’s
chi-squared is the supremum of squared Z-statistics while Neyman’s chi-squared is
the supremum of squared t-statistics. We also show that the symmetric chi-squared
is a metric and offer a testing interpretation for it.

We start with the definition of a generalized chi-squared distance between two
densities � , m.

Definition 4 Let �.t/, m.t/ be two discrete probability distributions. Then, define
the class of generalized chi-squared distances as

�2a.�;m/ D
X Œ�.t/ � m.t/�2

a.t/
;

where a.t/ is a probability density function.
Notice that if we restrict ourselves to the multinomial setting and choose �.t/ D

d.t/ and a.t/ D m.t/, the resulting chi-squared distance is Pearson’s chi-squared
statistic. Lindsay (1994) studied the robustness properties of a version of �2a.�;m/
by taking a.t/ D Œ�.t/ C m.t/�=2. The resulting distance is called symmetric chi-
squared, and it is given as

S2.�;m/ D
X 2Œ�.t/ � m.t/�2

�.t/C m.t/
:
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The chi-squared distance is symmetric because S2.�;m/ D S2.m; �/ and satisfies
the triangle inequality. Thus, by definition it is a proper metric, and there is a strong
dependence of the properties of the distance on the denominator a.t/. In general we
can use as a denominator a.t/ D ˛�.t/ C ˛m.t/, ˛ D 1 � ˛, ˛ 2 Œ0; 1�. The so
defined distance is called blended chi-squared (Lindsay 1994).

3.1 Loss Function Interpretation

We now discuss the loss function interpretation of the aforementioned class of
distances.

Proposition 1 Let � , m be two discrete probabilities. Then

�.�;m/ D sup
h

fE� .h.X// � Em.h.X//g2

Vara.h.X//
;

where a.t/ is a density function, and h.X/ has finite second moment.

Proof Let h be a function defined on the sample space. We can prove the above
statement by looking at the equivalent problem

sup
h

fE� .h.X// � Em.h.X//g
2; subject to Vara.h.X// D 1:

Note that the transformation from the original problem to the simpler problem
stated above is without loss of generality because the first problem is scale invariant,
that is, the functionsbh and cbh where c is a constant give exactly the same values. In
addition, we have location invariance in that h.X/ and h.X/C c give again the same
values, and symmetry requires us to solve

sup
h

fE� .h.X// � Em.h.X//g; subject to
X

h2.t/a.t/ D 1:

To solve this linear problem with its quadratic constraint we use Lagrange
multipliers. The Lagrangian is given as

L.t/ D
X

h.t/.�.t/ � m.t// � �
nX

h2.t/a.t/ � 1
o
:

Then

@

@h
L.t/ D 0; for each value of t;

is equivalent to

�.t/ � m.t/ � 2�h.t/a.t/ D 0;8t;
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or

bh.t/ D
�.t/ � m.t/

2�a.t/
:

Using the constraint we obtain

X Œ�.t/ � m.t/�2

4�2a.t/
D 1 )b� D

1

2

�X Œ�.t/ � m.t/�2

a.t/

� 1=2
:

Therefore,

bh.t/ D
�.t/ � m.t/

a.t/
qP Œ�.t/�m.t/�2

a.t/

:

If we substitute the above value of h in the original problem we obtain

sup
h

fE� .h.X//�Em.h.X//g
2 D sup

h

nX
h.t/Œ�.t/ � m.t/�2

o

D

8
<̂

:̂

X Œ�.t/ � m.t/�2

a.t/
qP Œ�.t/�m.t/�2

a.t/

9
>=

>;

2

D

8
<̂

:̂
1

qP Œ�.t/�m.t/�2

a.t/

.
X Œ�.t/ � m.t/�2

a.t/
/

9
>=

>;

2

D
X Œ�.t/ � m.t/�2

a.t/
;

as was claimed. ut

Remark 1 Note that bh.t/ is the least favorable function for detecting differences
between means of two distributions.

Corollary 1 The standardized function which creates the largest difference in
means is

bh.t/ D
�.t/ � m.t/

a.t/
p
�2a

;

where �2a D
P Œ�.t/�m.t/�2

a.t/ , and the corresponding difference in means is

E� Œbh.t/� � EmŒbh.t/� D

q
�2a:
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Remark 2 Are there any additional distances that can be obtained as solutions
to an optimization problem? And what is the statistical interpretation of these
optimization problems? To answer the aforementioned questions we first present
the optimization problems associated with the Kullback-Leibler and Hellinger
distances. In fact, the entire class of the blended weighted Hellinger distances can be
obtained as a solution to an appropriately defined optimization problem. Secondly,
we discuss the statistical interpretability of these problems by connecting them, by
analogy, to the construction of confidence intervals via Scheffé’s method.

Definition 5 The Kullback-Leibler divergence or distance between two discrete
probability density functions is defined as

KL.�;mˇ/ D
X

x

mˇ.x/Œlog mˇ.x/ � log �.x/�:

Proposition 2 The Kullback-Leibler distance is obtained as a solution of the
optimization problem

sup
h

X

x

h.x/mˇ.x/; subject to
X

x

eh.x/�.x/ � 1;

where h.�/ is a function defined on the same space as � .

Proof It is straightforward if one writes the Lagrangian and differentiates with
respect to h. ut

Definition 6 The class of squared blended weighted Hellinger distances (BWHD˛)
is defined as

.BWHD˛/
2 D

X

x

Œ�.x/ � mˇ.x/�2

2
h
˛
p
�.x/C ˛

p
mˇ.x/

i2 ;

where 0 < ˛ < 1, ˛ D 1 � ˛ and �.x/, mˇ.x/ are two probability densities.

Proposition 3 The class of BWHD˛ arises as a solution to the optimization
problem

sup
h

X

x

h.x/Œ�.x/ � mˇ.x/�; subject to
X

x

h2.x/

�
˛
p
�.x/C ˛

q
mˇ.x/

�2
� 1:

When ˛ D ˛ D 1=2, the .BWHD1=2/
2 gives twice the squared Hellinger distance.

Proof Straightforward. ut

Although both Kullback-Leibler and blended weighted Hellinger distances are
solutions of appropriate optimization problems, they do not arise from optimization
problems in which the constraints can be interpreted as variances. To exemplify and
illustrate further this point we first need to discuss the connection with Scheffé’s
confidence intervals.
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One of the methods of constructing confidence intervals is Scheffé’s method.
The method adjusts the significance levels of the confidence intervals for general
contrasts to account for multiple comparisons. The procedure, therefore, controls
the overall significance for any possible contrast or set of contrasts and can be stated
as follows,

sup
ccc

ˇ̌
cccT.yyy �			/

ˇ̌
< Kb
; subject to kccck D 1; cccT111 D 0;

whereb
 is an estimated contrast variance, k � k denotes the Euclidean distance and
K is an appropriately defined constant.

The chi-squared distances extend this framework as follows. Assume that H is
a class of functions which are taken, without loss of generality, to have zero expec-
tation. Then, we construct the optimization problem suph

R
h.x/Œ�.x/ � mˇ.x/�dx,

subject to a constraint that can possibly be interpreted as a constraint on the variance
of h.x/ either under the hypothesized model distribution or under the distribution of
the data.

The chi-squared distances arise as solutions of optimization problems subject
to variance constrains. As such, they are interpretable as tools that allow the
construction of “Scheffé-type” confidence intervals for models. On the other hand,
distances such as the Kullback-Leibler or blended weighted Hellinger distance do
not arise as solutions of optimization problems subject to interpretable variance
constraints. As such they cannot be used to construct confidence intervals for
models.

3.2 Loss Analysis of Pearson and Neyman Chi-Squared
Distances

We next offer interpretations of the Pearson chi-squared and Neyman chi-squared
statistics. These interpretations are not well known; furthermore, they are useful in
illustrating the robustness character of the Neyman statistic and the non-robustness
character of the Pearson statistic.

Recall that the Pearson statistic is

X Œd.t/ � m.t/�2

m.t/
D sup

h

ŒEd.h.X// � Em.h.X//�2

Varm.h.X//

D
1

n
sup

h

Œ 1n
P

h.Xi/ � Em.h.X//�2

1
n Varm.h.X//

D
1

n
sup

h
Z2h ;

that is, the Pearson statistic is the supremum of squared Z-statistics.
A similar argument shows that Neyman’s chi-squared equals suph t2h, the supre-

mum of squared t-statistics.
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This property shows that the chi-squared measures have a statistical interpre-
tation in that a small chi-squared distance indicates that the means are close on
the scale of standard deviation. Furthermore, an additional advantage of the above
interpretations is that the robustness character of these statistics is exemplified.
Neyman’s chi-squared, being the supremum of squared t-statistics, is robust,
whereas Pearson’s chi-squared is non-robust, since it is the supremum of squared
Z-statistics.

Signal-to-Noise There is an additional interpretation of the chi-squared statistic
that rests on the definition of signal-to-noise ratio that comes from the engineering
literature.

Consider the pair of hypotheses H0 W Xi � � versus the alternative H1 W Xi �

m, where Xi are independent and identically distributed random variables. If we
consider the set of randomized test functions that depend on the “output” function
h, the distance between H0 and H1 is

S2.�;m/ D
ŒEm.h.X// � E� .h.X//�2

Var� .h.X//
:

This quantity is a generalization of one of the more common definitions of
signal-to-noise ratio. If, instead of working with a given output function h, we take
supremum over the output functions h, we obtain Neyman’s chi-squared distance,
which has been used in the engineering literature for robust detection. Further, the
quantity S2.�;m/ has been used in the design of decision systems (Poor 1980).

3.3 Metric Properties of the Symmetric Chi-Squared Distance

The symmetric chi-squared distance, defined as

S2.�;m/ D
X 2Œ�.t/ � m.t/�2

m.t/C �.t/
;

can be viewed as a good compromise between the non-robust Pearson distance and
the robust Neyman distance. In what follows, we prove that S2.�;m/ is indeed a
metric. The following series of lemmas will help us establish the triangle inequality
for S2.�;m/.

Lemma 1 If a, b, c are numbers such that 0 � a � b � c then

c � a
p

c C a
�

b � a
p

b C a
C

c � b
p

c C b
:
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Proof First we work with the right-hand side of the above inequality. Write

b � a
p

b C a
C

c � b
p

c C b
D .c � a/f

b � a

c � a

1
p

b C a
C

c � b

c � a

1
p

c C b
g

D .c � a/f
˛

p
a C b

C .1 � ˛/
1

p
c C b

g;

where ˛ D .b�a/=.c�a/. Set g.t/ D 1=
p

t, t > 0. Then g00.t/ D d2

dt2
g.t/ > 0, hence

the function g.t/ is convex. Therefore, the aforementioned relationship becomes

.c � a/f˛g.a C b/C .1 � ˛/g.c C b/g:

But

˛g.a C b/C .1 � ˛/g.c C b/ � g.˛.a C b/C .1 � ˛/.c C b//;

where

˛.a C b/C .1 � ˛/.c C b/ D
b � a

c � a
.a C b/C

c � b

c � a
.b C c/ D c C a:

Thus

˛g.a C b/C .1 � ˛/g.c C b/ � g.c C a/;

and hence

b � a
p

b C a
C

c � b
p

c C b
�

c � a
p

c C a
;

as was stated. ut

Note that because the function is strictly convex we do not obtain equality except
when a D b D c.

Lemma 2 If a, b, c are numbers such that a � 0, b � 0, c � 0 then

ˇ̌
ˇ̌ c � a
p

c C a

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌ b � a
p

b C a

ˇ̌
ˇ̌C

ˇ̌
ˇ̌ c � b
p

c C b

ˇ̌
ˇ̌ :

Proof We will distinguish three different cases.

Case 1: 0 � a � b � c is already discussed in Lemma 1.
Case 2: 0 � c � b � a can be proved as in Lemma 1 by interchanging the role of

a and c.
Case 3: In this case b is not between a and c, thus either a � c � b or b � a � c.
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Assume first that a � c � b. Then we need to show that

c � a
p

c C a
�

b � a
p

b C a
:

We will prove this by showing that the above expressions are the values of an
increasing function at two different points. Thus, consider

f1.t/ D
t � a

p
t C a

:

It follows that

f1.b/ D
b � a

p
b C a

and f1.c/ D
c � a

p
c C a

:

The function f1.t/ is increasing because f 0
1 > 0 (recall a � 0) and since c � b

this implies f1.c/ � f1.b/. Similarly we prove the inequality for b � a � c. ut

Lemma 3 The triangle inequality holds for the symmetric chi-squared distance
S2.�;m/, that is,

fS2.�;m/g1=2 � fS2.�; g/g1=2 C fS2.g;m/g1=2:

Proof Set

˛t D
j�.t/ � g.t/jp
�.t/C g.t/

; ˇt D
jg.t/ � m.t/jp

g.t/C m.t/
:

By Lemma 2

nX
˛2t

o1=2
�
nX

.˛t C ˇt/
2
o1=2

:

But

X
.˛t C ˇt/

2 D
X

˛2t C
X

ˇ2t C 2
X

˛tˇt

�
X

˛2t C
X

ˇ2t C 2
nX

˛2t

o1=2 nX
ˇ2t

o1=2
:

Therefore

X
.˛t C ˇt/

2 �

(rX
˛2t C

rX
ˇ2t

) 2
;
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and hence
nX

.˛t C ˇt/
2
o1=2

�
nX

˛2t

o1=2
C
nX

ˇ2t

o1=2
;

as was claimed. ut

Remark 3 The inequalities proved in Lemmas 1 and 2 imply that if � ¤ m there is
no “straight line” connecting � and m, in that there does not exist g between � and
m for which the triangle inequality is an equality.

Therefore, the following proposition holds.

Proposition 4 The symmetric chi-squared distance S2.�;m/ is indeed a metric.

A testing interpretation of the symmetric chi-squared distance: let � be a test
function and consider the problem of testing the null hypothesis that the data come
from a density f versus the alternative that the data come from g. Let � be a random
variable with value 1 if the alternative is true and 0 if the null hypothesis is true.
Then

Proposition 5 The solution �opt to the optimization problem

min
�

E� Œ.� � �.x//2�;

where �.�/ is the prior probability on � , given as

�.�/ D

�
1=2; if � D 0

1=2; if � D 1
;

is not a 0 � 1 decision, but equals the posterior expectation of � given X. That is

�.t/ D E.� j X D t/ D P.� D 1 j X D t/ D
1
2
g.t/

1
2
f .t/C 1

2
g.t/

D
g.t/

f .t/C g.t/
;

the posterior probability that the alternative is correct.

Proof We have

E.� j X/ D
1

2
EH1 Œ.1 � �/2�C

1

2
EH0 .�

2/:

But

EH1 Œ.1 � �.X//2� D
X

t

.1 � �.t//2g.t/;

and

EH0 .�
2.X// D

X

t

�2.t/f .t/;
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hence

�opt.t/ D
g.t/

f .t/C g.t/
;

as was claimed. ut

Corollary 2 The minimum risk is given as

1

4

�
1 �

S2

4

�
;

where

S2 D S2.f ; g/ D
X Œf .t/ � g.t/�2

1
2
f .t/C 1

2
g.t/

:

Proof Substitute �opt in E� Œ.� � �/2� to obtain

E� Œ.� � �opt/
2� D

1

2

X

t

f .t/g.t/

f .t/C g.t/
:

Now set

A D
X

t

Œf .t/C g.t/�2

f .t/C g.t/
D 2; B D

X

t

Œf .t/ � g.t/�2

f .t/C g.t/
D
1

2
S2:

Then

A � B D 4
X

t

f .t/g.t/

f .t/C g.t/
D 2 �

1

2
S2;

or, equivalently,

X

t

f .t/g.t/

f .t/C g.t/
D
1

4

�
2 �

1

2
S2
�
:

Therefore

E� Œ.� � �opt/
2� D

1

2

X

t

f .t/g.t/

f .t/C g.t/
D
1

4

�
1 �

S2

4

�
;

as was claimed. ut
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Remark 4 Note that S2.f ; g/ is bounded above by 4 and equals 4 when f , g are
mutually singular.

The Kullback-Leibler and Hellinger distances are extensively used in the liter-
ature. Yet, we argue that, because they are obtained as solutions to optimization
problems with non-interpretable (statistically) constraints, are not appropriate for
our purposes. However, we note here that the Hellinger distance is closely related to
the symmetric chi-squared distance, although this is not immediately obvious. We
elaborate on this statement below.

Definition 7 Let � , m be two probability densities. The squared Hellinger distance
is defined as

H2.�;m/ D
1

2

X

x

hp
�.x/ �

p
m.x/

i2
:

We can more readily see the relationship between the Hellinger and chi-squared
distances if we rewrite H2.�;m/ as

H2.�;m/ D
1

2

X

x

Œ�.x/ � m.x/�2

Œ
p
�.x/C

p
m.x/�2

:

Lemma 4 The Hellinger distance is bounded by the symmetric chi-squared dis-
tance, that is,

1

8
S2 � H2 �

1

4
S2;

where S2 denotes the symmetric chi-squared distance.

Proof Note that

�p
�.x/C

p
m.x/

	2
D �.x/C m.x/C 2

p
�.x/m.x/ � �.x/C m.x/:

Also
�p

�.x/C
p

m.x/
	2

� 2Œ�.x/C m.x/�;

and putting these relationships together we obtain

�.x/C m.x/ �
�p

�.x/C
p

m.x/
	2

� 2Œ�.x/C m.x/�:

Therefore

H2.�;m/ �
1

2

X Œ�.x/ � m.x/�2

�.x/C m.x/
D
1

4
S2;
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and

H2.�;m/ �
1

2

X Œ�.x/ � m.x/�2

2Œ�.x/C m.x/�
D
1

8
S2;

and so

1

8
S2.�;m/ � H2.�;m/ �

1

4
S2.�;m/;

as was claimed. ut

3.4 Locally Quadratic Distances

A generalization of the chi-squared distances is offered by the locally quadratic
distances. We have the following definition.

Definition 8 A locally quadratic distance between two densities � , m has the form

�.�;m/ D
X

Km.x; y/Œ�.x/ � m.x/�Œ�.y/ � m.y/�;

where Km.x; y/ is a nonnegative definite kernel, possibly dependent on m, and such
that

X

x;y

a.x/Km.x; y/a.y/ � 0;

for all functions a.x/.

Example 1 The Pearson distance can be written as

X .d.t/ � m.t//2

m.t/
D
X 1Œs D t�

p
m.s/m.t/

Œd.s/ � m.s/�Œd.t/ � m.t/�

D
X

Km.s; t/Œd.s/ � m.s/�Œd.t/ � m.t/�;

where 1.�/ is the indicator function. It is a quadratic distance with kernel

Km.s; t/ D
1Œs D t�
p

m.s/m.t/
:

Sensitivity and Robustness In the classical robustness literature one of the attributes
that a method should exhibit so as to be characterized as robust is the attribute of
being resistant, that is insensitive, to the presence of a moderate number of outliers
and to inadequacies in the assumed model.
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Similarly here, to characterize a statistical distance as robust it should be
insensitive to small changes in the true density, that is, the value of the distance
should not be greatly affected by small changes that occur in � . Lindsay (1994),
Markatou (2000, 2001), and Markatou et al. (1997, 1998) based the discussion of
robustness of the distances under study on a mechanism that allows the identification
of distributional errors, that is, on the Pearson residual. A different system of
residuals is the set of symmetrized residuals defined as follows.

Definition 9 If � , m are two densities the symmetrized residual is defined as

rsym.t/ D
�.t/ � m.t/

�.t/C m.t/
:

The symmetrized residuals have range Œ�1; 1�, with value �1 when �.t/ D 0 and
value 1 when m.t/ D 0. Symmetrized residuals are important because they allow us
to understand the way different distances treat different distributions.

The symmetric chi-squared distance can be written as a function of the sym-
metrized residuals as follows

S2.�;m/ D 4
X�

1

2
�.t/C

1

2
m.t/

��
�.t/ � m.t/

�.t/C m.t/

� 2
D 4

X
b.t/r2sym.t/;

where b.t/ D Œ�.t/C m.t/�=2.
The aforementioned expression of the symmetric chi-squared distance allows us

to obtain inequalities between S2.�;m/ and other distances.
A third residual system is the set of logarithmic residuals, defined as follows.

Definition 10 Let � , m be two probability density. Define the logarithmic residuals
as

ı.t/ D log

�
�.t/

m.t/

�
;

with ı 2 .�1;1/.
A value of this residual close to 0 indicates agreement between � and m. Large

positive or negative values indicate disagreement between the two models � and m.
In an analysis of a given data set, there are two types of observations that cause

concern: outliers and influential observations. In the literature, the concept of an
outlier is defined as follows.

Definition 11 We define an outlier to be an observation (or a set of observations)
which appears to be inconsistent with the remaining observations of the data set.

Therefore, the concept of an outlier may be viewed in relative terms. Suppose
we think a sample arises from a standard normal distribution. An observation from
this sample is an outlier if it is somehow different in relation to the remaining
observations that were generated from the postulated standard normal model. This
means that, an observation with value 4may be surprising in a sample of size 10, but
is less so if the sample size is 10;000. In our framework therefore, the extent to which
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an observation is an outlier depends on both the sample size and the probability of
occurrence of the observation under the specified model.

Remark 5 Davies and Gather (1993) state that although detection of outliers is a
topic that has been extensively addressed in the literature, the word “outlier” was
not given a precise definition. Davies and Gather (1993) formalized this concept
by defining outliers in terms of their position relative to a central model, and in
relationship to the sample size. Further details can be found in their paper.

On the other hand, the literature provides the following definition of an influential
observation.

Definition 12 (Belsley 1980) An influential observation is one which, either
individually or together with several other observations, has a demonstrably larger
impact on the calculated values of various estimates than is the case for most of the
other observations.

Chatterjee and Hadi (1986) use this definition to address questions about
measuring influence and discuss the different measures of influence and their inter-
relationships.

The aforementioned definition is subjective, but it implies that one can order
observations in a sensible way according to some measure of influence. Outliers
need not be influential observations and influential observations need not be outliers.
Large Pearson residuals correspond to observations that are surprising, in the
sense that they occur in locations with small model probability. This is different
from influential observations, that is from observations for which their presence or
absence greatly affects the value of the maximum likelihood estimator.

Outliers can be surprising observations as well as influential observations. In
a normal location-scale model, an outlying observation is both surprising and
influential on the maximum likelihood estimator of location. But in the double
exponential location model, an outlying observation is possible to be surprising but
never influential on the maximum likelihood estimator of location as it equals the
median.

Lindsay (1994) shows that the robustness of these distances is expressed via
a key function called residual adjustment function (RAF). Further, he studied the
characteristics of this function and showed that an important class of RAFs is given

by A�.ı/ D .1Cı/��1
�C1

, where ı is the Pearson residual (defined by Eq. (1)). From
this class we obtain many RAFs; in particular, when � D �2 we obtain the RAF
corresponding to Neyman’s chi-squared distance. For details, see Lindsay (1994).

4 The Continuous Setting

Our goal is to use statistical distances to construct model misspecification measures.
One of the key issues in the construction of misspecification measures in the
case of data being realizations of a random variable that follows a continuous
distribution is that allowances should be made for the scale difference between
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observed data and hypothesized model. That is, data distributions are discrete while
the hypothesized model is continuous. Hence, we require the distance to exhibit
discretization robustness, so it can account for the difference in scale.

To achieve discretization robustness, we need a sensitive distance, which implies
a need to balance sensitivity and statistical noise. We will briefly review available
strategies to deal with the problem of balancing sensitivity of the distance and
statistical noise.

In what follows, we discuss desirable characteristics we require our distance
measures to satisfy.

4.1 Desired Features

Discretization Robustness Every real data distribution is discrete, and therefore is
different from every continuous distribution. Thus, a reasonable distance measure
must allow for discretization, by saying that the discretized version of a continuous
distribution must get closer to the continuous distribution as the discretization gets
finer.

A second reason for requiring discretization robustness is that we will want
to use the empirical distribution to estimate the true distribution, but without this
robustness, there is no hope that the discrete empirical distribution will be closed to
any model point.

The Problem of Too Many Questions Thus, to achieve discretization robustness, we
need to construct a sensitive distance. This requirement dictates us to carry out a
delicate balancing act between sensitivity and statistical noise.

Lindsay (2004) discusses in detail the problem of too many questions. Here we
only note that to illustrate the issue Lindsay (2004) uses the chi-squared distance and
notes that the statistical implications of a refinement in partition are the widening of
the sensitivity to model departures in new “directions” but, at the same time, this act
increases the statistical noise and therefore decreases the power of the chi-squared
test in every existing direction.

There are a number of ways to address this problem, but they all seem to involve
a loss of statistical information. This means we cannot ask all model fit questions
with optimal accuracy. Two immediate solutions are as follows. First, limit the
investigation only to a finite list of questions, essentially boiling down to prioritizing
the questions asked of the sample. A number of classical goodness-of-fit tests create
exactly such a balance. A second approach to the problem of answering infinitely
many questions with only a finite number of data points is through the construction
of kernel smoothed density measures. Those measures provide a flexible class
of distances that allows for adjusting the sensitivity/noise trade-off. Before we
briefly comment on this strategy, we discuss statistical distances between continuous
probability distributions.
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4.2 The L2L2L2-Distance

The L2 distance is very popular in density estimation. We show below that this
distance is not invariant to one-to-one transformations.

Definition 13 The L2 distance between two probability density functions � , m is
defined as

L22.�;m/ D

Z
Œ�.x/ � m.x/�2dx:

Proposition 6 The L2 distance between two probability density functions is not
invariant to one-to-one transformations.

Proof Let Y D a.X/ be a transformation of X, which is one-to-one. Then x D b.y/,
b.�/ is the inverse transformation of a.�/, and

L22.�Y ;mY/ D

Z
Œ�Y.y/ � mY.y/�

2dy

D

Z
Œ�X.b.y// � mX.b.y//�

2.b0.y//2dy

D

Z
Œ�X.x/ � mX.x/�

2.b0.a.x///2a0.x/dx

D

Z
Œ�X.x/ � mX.x/�

2b0.a.x//dx

¤

Z
Œ�X.x/ � mX.x/�

2dx D L22.�X;mX/:

Thus, the L2 distance is not invariant under monotone transformations. ut

Remark 6 It is easy to see that the L2 distance is location invariant. Moreover, scale
changes appear as a constant factor multiplying the L2 distance.

4.3 The Kolmogorov-Smirnov Distance

We now discuss the Kolmogorov-Smirnov distance used extensively in goodness-
of-fit problems, and present its properties.

Definition 14 The Kolmogorov-Smirnov distance between two cumulative distri-
bution functions F, G is defined as

�KS.F;G/ D sup
x

jF.x/ � G.x/j :
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Proposition 7 (Testing Interpretation) Let H0 W � D f versus H1 W � D g and
that only test functions ' of the form 1.x � x0/ or 1.x > x0/ for arbitrary x0 are
allowed. Then

�KS.F;G/ D sup jEH1 Œ'.X/� � EH0 Œ'.X/�j :

Proof The difference between power and size of the test is G.x0/�F.x0/. Therefore,

sup
x0

jG.x0/ � F.x0/j D sup
x0

jF.x0/ � G.x0/j D �KS.F;G/;

as was claimed. ut

Proposition 8 The Kolmogorov-Smirnov distance is invariant under monotone
transformations.

Proof Write

F.x0/ � G.x0/ D

Z
1.x � x0/Œf .x/ � g.x/�dx:

Let Y D a.X/ be a one-to-one transformation and b.�/ be the corresponding
inverse transformation. Then x D b.y/ and dy D a0.x/dx, so

FY.y0/ � GY.y0/ D

Z
1.y � y0/ŒfY.y/ � gY.y/�dy

D

Z
1.y � y0/ŒfX.b.y//b

0.y/ � gX.b.y//b
0.y/�dy

D

Z
1.x � b.y0//ŒfX.b.y//b

0.y/ � gX.b.y//b
0.y/�dy

D

Z
1.x � x0/ŒfX.x/ � gX.x/�dx:

Therefore,

sup
y0

jFY.y0/ � GY.y0/j D sup
x0

jFX.x0/ � GX.x0/j ;

and the Kolmogorov-Smirnov distance is invariant under one-to-one transforma-
tions. ut

Proposition 9 The Kolmogorov-Smirnov distance is discretization robust.

Proof Notice that we can write

jF.x0/ � G.x0/j D

ˇ̌
ˇ̌
Z

1.x � x0/dŒF.x/ � G.x/�

ˇ̌
ˇ̌ ;
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with 1.x � x0/ being thought of as a “smoothing kernel”. Hence, comparisons
between discrete and continuous distributions are allowed and the distance is
discretization robust. ut

The Kolmogorov-Smirnov distance is a distance based on the probability integral
transform. As such, it is invariant under monotone transformations (see Proposi-
tion 8). A drawback of distances based on probability integral transforms is the fact
that there is no obvious extension in the multivariate case. Furthermore, there is
not a direct loss function interpretation of these distances when the model used is
incorrect. In what follows, we discuss chi-squared and quadratic distances that avoid
the issues listed above.

4.4 Exactly Quadratic Distances

In this section we briefly discuss exactly quadratic distances. Rao (1982) introduced
the concept of an exact quadratic distance for discrete population distributions and
he called it quadratic entropy. Lindsay et al. (2008) gave the following definition of
an exactly quadratic distance.

Definition 15 (Lindsay et al. 2008) Let F, G be two probability distributions, and
K is a nonnegative definite kernel. A quadratic distance between F, G has the form

�K.F;G/ D

“
KG.x; y/d.F � G/.x/d.F � G/.y/:

Quadratic distances are of interest for a variety of reasons. These include the fact
that the empirical distance �K.bF;G/ has a fairly simple asymptotic distribution the-
ory when G identifies with the true model � , and that several important distances are
exactly quadratic (see, for example, Cramér-von Mises and Pearson’s chi-squared
distances). Furthermore, other distances are asymptotically locally quadratic around
G D � . Quadratic distances can be thought of as extensions of the chi-squared
distance class.

We can construct an exactly quadratic distance as follows. Let F, G be two
probability measures that a random variable X may follow. Let " be an independent
error variable with known density kh."/, where h is a parameter. Then, the random
variable Y D X C " has an absolutely continuous distribution such that

f �
h .y/ D

Z
kh.y � x/dF.x/; if X � F;

or

g�
h .y/ D

Z
kh.y � x/dG.x/; if X � G:
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Let

P�2.F;G/ D

Z
Œf �.y/ � g�.y/�2

g�.y/
dy;

be the kernel-smoothed Pearson’s chi-squared statistic. In what follows, we prove
that P�2.F;G/ is an exactly quadratic distance.

Proposition 10 The distance P�2.F;G/ is an exactly quadratic distance provided
that

’
K.s; t/d.F � G/.s/d.F � G/.t/ < 1, where K.s; t/ D

R kh.y�s/kh.y�t/
g�.y/ dy.

Proof Write

P�2.F;G/ D

Z
Œf �.y/ � g�.y/�2

g�.y/
dy

D

Z
Œ
R

kh.y � x/dF.x/ �
R

kh.y � x/dG.x/�2

g�.y/
dy

D

Z
Œ
R

kh.y � x/d.F � G/.x/�2

g�.y/
dy

D

Z
Œ
R

kh.y � s/d.F � G/.s/�Œ
R

kh.y � t/d.F � G/.t/�

g�.y/
dy:

Now using Fubini’s theorem, the above relationship can be written as

“ �Z
kh.y � s/kh.y � t/

g�.y/
dy

�
d.F � G/.s/d.F � G/.t/

D

“
K.s; t/d.F � G/.s/d.F � G/.t/;

with K.s; t/ given above. ut

Remark 7

(a) The issue with many classical measures of goodness-of-fit is that the balance
between sensitivity and statistical noise is fixed. On the other hand, one
might wish to have a flexible class of distances that allows for adjusting
the sensitivity/noise trade-off. Lindsay (1994) and Basu and Lindsay (1994)
introduced the idea of smoothing and investigated numerically the blended
weighted Hellinger distance, defined as

BWHD˛.�
�;m�

� / D

Z
.��.x/ � m�

� .x//
2

�
˛
p
��.x/C ˛

p
m�
� .x/

	2 dx;

where ˛ D 1 � ˛, ˛ 2 Œ1=3; 1�. When ˛ D 1=2, the BWHD1=2 equals the
Hellinger distance.
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(b) Distances based on kernel smoothing are natural extensions of the discrete
distances. These distances are not invariant under one-to-one transformations,
but they can be easily generalized to higher dimensions. Furthermore, numerical
integration is required for the practical implementation and use of these
distances.

5 Discussion

In this paper we study statistical distances with a special emphasis on the chi-
squared distance measures. We also introduce an extension of the chi-squared
distance, the quadratic distance, introduced by Lindsay et al. (2008). We offered
statistical interpretations of these distances and showed how they can be obtained
as solutions of certain optimization problems. Of particular interest are distances
with statistically interpretable constraints such as the class of chi-squared distances.
These allow the construction of confidence intervals for models. We further
discussed robustness properties of these distances, including discretization robust-
ness, a property that allows discrete and continuous distributions to be arbitrarily
close. Lindsay et al. (2014) study the use of quadratic distances in problems of
goodness-of-fit with particular focus on creating tools for studying the power of
distance-based tests. Lindsay et al. (2014) discuss one-sample testing and connect
their methodology with the problem of kernel selection and the requirements that are
appropriate in order to select optimal kernels. Here, we outlined the foundations that
led to the aforementioned work and showed how these elucidate the performance of
statistical distances as inferential functions.
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The Out-of-Source Error in Multi-Source Cross
Validation-Type Procedures

Georgios Afendras and Marianthi Markatou

1 Introduction

In many situations data arise not from a single source but from multiple sources,
each of which may have a specific generating process. An example of such a
situation is the monitoring and diagnosis of cardiac arrhythmias.

Monitoring devices in cardiac intensive care units use data from electrocardio-
gram (ECG) channels to automatically diagnose cardiac arrhythmias. However, data
from other sources like arterial pressure, ventilation, etc. are often available, and
each of these sources has a specific data generating process. Other potential data
sources include nuclear medicine tests and echocardiograms. Other examples arise
in natural language processing where labeled data for information extraction or
parsing are obtained from a limited set of document types.

Cross validation is a fundamental statistical method used extensively in both,
statistics and machine learning. A fundamental assumption in using cross validation
is that the observations are realizations of exchangeable random variables, that
is both, the training and test data come from the same source. However, this is
not necessarily the case when data come from multiple sources. Geras and Sutton
(2013) state that “for data of this nature, a common procedure is to arrange the cross
validation procedure by source”. In this article we are interested in estimating the
generalization error of learning algorithms when multi-source data are present.
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The generalization error is defined as the error an algorithm makes on cases
that the algorithm has never seen before, and is important because it relates to
the algorithm’s prediction capabilities on independent data. The literature includes
both, theoretical investigations of risk performance of machine learning algorithms
as well as numerical comparisons.

Estimation of the generalization error can be achieved via the use of resampling
techniques. The process consists of splitting the available data into a learning
or training set and a test set a large number of times and averaging over these
repetitions. A very popular resampling technique is cross validation. We are
interested in investigating the use of cross validation in the case of multi-source
data, where testing occurs on elements that may not have been part of the training
set on which the learning algorithm was trained. We do not offer here a detailed
overview of cross validation. The interested reader is referred to Stone (1974, 1977)
for foundational aspects of cross validation, Breiman et al. (1984, Ch.s 3,8), Geisser
(1975), and to Arlot and Celisse (2010) for a comprehensive survey.

A recent article by Geras and Sutton (2013) addresses a formulation of the out-
of-source (OOS) error in a multi-source data setting. In Sect. 2 we provide Geras
and Sutton’s detailed definition of the OOS error. In their framework there are k
sources. If the data size is n, the sample size of each source is n=k. The observations
of each source are independent and identically distributed (iid) realizations of
random variables/vectors from an unknown distribution. The elements that belong
to a specific source constitute a test set, while the union of the elements of the
remaining sources constitutes the corresponding training set. Geras and Sutton
(2013) construct their cross validation-type decision rule using the elements of the
aforementioned training set. In this sense, their procedure can be thought of as k-
fold cross validation with the fundamental difference that the test set data does not
necessarily follow the same distribution as the training data.

Recently, multi-source data analysis has received considerable attention in the
literature. Ben-David et al. (2010) study the performance of classifiers trained on
source data but tested on target data, that is data that do not necessarily follow
the same distribution with the source data. Specifically, they study conditions
under which a classifier performs well, as well as strategies to combine a small
amount of labeled target data at the training step of the classifier to facilitate better
performance.

This paper is organized as follows. Section 2 presents motivation, reviews the
most relevant literature and establishes the notation used in this paper. Section 3
presents our framework and defines the OOS error. Section 4 defines our OOS
error estimator and discusses its properties. Section 5 presents simulation results
while Sect. 6 offers a discussion. Appendix 1 presents useful relationships needed
for the proof of some results, while Appendix 2 shows some useful existing results.
Finally, Appendix 3 contains the proofs of the obtained results.
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2 Literature Review and Notation

First we present the Geras and Sutton’s (2013) framework and give a list of
definitions and notations.

Assume k sources, where k is a fixed number, and let Z be a data set Z D

fZ1; : : : ;Zng of size n. Assume all sources have the same number of observations,
m D n=k, and the observations of the jth source constitute an iid collection of
size m from an unknown distribution Fj, j D 1; : : : ; k. For each j D 1; : : : ; k the
observations of the jth source is the jth test set and its complement set, the union of
the observations of the other sources, is the corresponding training set; furthermore,
the decision rule is constructed based on all of the elements of the training set for
all j D 1; : : : ; k.

To formalize the above procedure, first we give a list of definitions and notations.
Let N D f1; : : : ; ng. For each A � N, we denote by ZA the set ZA

:
D fZi j i 2 Ag.

The set of the indices of the jth source is denoted by Sj and the set of observation
of this source is ZSj . The loss function L is a measurable nonnegative real function

L.T;bd/, wherebd is a decision rule and T is the target variable. The decision rule is
constructed using the elements of a set ZA, i.e.bd Dbd.ZA/, while the target variable
is an element Zi … ZA. Hereafter, we write bdj � bdj;n D bd.ZSj/, j D 1; : : : ; k,
when the decision rule is constructed based on the elements of the jth source, and
bd�j � bd�j;n D bd.Z X ZSj/, j D 1; : : : ; k, when the decision rule is constructed
based on the elements of the complement of the jth source, where n is the total
sample size.

The Geras and Sutton’s OOS is defined as

	CVS D
1

k

kX

jD1

EŒL.Z.j/;bd�j/�;

where Z.j/ � Fj and are independent from the data set; and its estimator is

b	CVS D
1

n

kX

jD1

X

i2Sj

L.Zi;bd�j/:

Geras and Sutton’s hypothesis that each source has exactly the same number
of elements is too restrictive (and some times not realistic) in practice. Also, the
construction of the decision rule based on all of the elements of the training set
often leads to various pathologies, as we see in the following example.

Example 1 Consider a data set of observations that are realizations of independent
variables and has size n D 30, say fZ1; : : : ;Z30g. Assume that the data set arises
from three sources with n1 D n2 D n3 D 10 observations each; in general, denote
by nj the sample size associated with the jth source. A variable of the first source
follows N.�	; 1/, of the second source follows N.0; 1/ and of the third source
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follows N.	; 1/. Let the squared error loss be used and suppose that a new variable
Z comes from the second source and is independent from the remaining variables
in the data set. Additionally, assume that the decision rule is the sample mean.
According to Geras and Sutton’s (2013) formulation, Z has an OOS error which is
E.Z�Z1;3/2, wherebd�2 D Z1;3 is the average of the union of the elements of the first
and third sources, that is Z1;3 D 1

20

P
i2S1[S3

Zi, where Sj denotes the set of indices
of the elements of the jth source. One can easily see that Z � Z1;3 � N.0; 1:05/.
Therefore, E.Z � Z1;3/2 D Var.Z � Z1;3/C E2.Z � Z1;3/ D 1:05. Observe that in
this case Geras and Sutton’s formulation has the pathology that the preceding error
is independent of the value of 	. We see below, see Example 2, that the OOS error
that is addressed by Geras and Sutton (2013) is significantly different than the actual
OOS error.

In view of the above, it is clear that we need to re-formulate the definition of the
OOS error in the context of multi-source data to take into account the fact that in
practice, not all sources have the same number of observations.

3 Framework

Assume k sources, where k is a fixed number. Let a data set fZ1; : : : ;Zng of size n
be observed when the generating process is as follows. The observations come from
the sources that follow a distribution ppp D .p1; : : : ; pk/. That is, the percentage of
observations of the jth source is pj, j D 1; : : : ; k (the sample size of the jth source is
nj D npj). The vector of the numbers of observations of the sources is denoted by
nnn D nppp D .n1; : : : ; nk/. Each Zi is labeled by its source and it is independent from
the remaining observations whether those come from the same or different sources.
The observations of the jth source constitute an iid collection of size nj from an
unknown distribution Fj.

A new unobserved variable, say Z, comes from a source and is independent from
fZ1; : : : ;Zng. The probability of the event “the variable Z belongs to the jth source”
is pj D nj=n, and follows the distribution Fj, j D 1; : : : ; k. The OOS error is the
error that arises between the variable Z and the k � 1 foreign sources with respect to
Z, when a loss function L is used for measuring this error.

Now we are in a position to present the algebraic form of the OOS error. Hereafter
we assume that the loss function has finite moment of the first order; that is,
EjL.Zi;bdl/j < 1 for all Zi 2 Zj and l ¤ j. Given that the variable Z comes from
the jth source and that the decision is constructed based on the elements of the lth
source, the error committed is

ejIl
:

D EŒL.Z;bdl/� when Z � Fj and Z;ZSl are independent;

that is, ejIl is the expected value of the loss function when the decision rule is
constructed based on the elements of the lth source and the target variable belongs
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to the jth source and is independent of the elements of the lth source. Taking into
account the distribution of the sources and using the conditional total probability
theorem, given that the variable Z comes from the jth source the error is

ej
:

D
1

1 � pj

X

l¤j

plejIlI

this is the error that is created from an observation from the jth source when
compared against observations from the other sources. According to the total
probability theorem, the total OOS error is defined by

	.nnn/os
:

D

kX

jD1

pjej D

kX

jD1

odj

X

l¤j

plejIl; (1)

where odj
:

D pj=.1 � pj/ is the odds of the jth source. This error can be thought of
as a generalization-type error.

Our definition of the OOS error differs from the definition given by Geras and
Sutton (2013) in two fundamental aspects. The first corresponds to the fact that our
construction does not assume that the different sources have the same number of
observations. The second is that, in our construction, if the test set corresponds to
one of the sources the remaining sources serve as individual training sets, avoiding
the usage of their union as a single training set.

4 The OOS Error Estimation

Here, we give an estimator of the OOS error defined in the previous section and
investigate the properties of this estimator.

4.1 Estimating the OOS Error

We are interested in estimating the OOS error. To simplify notation we use `i;j to
denote L.Zi;bdj/. By definition, a natural estimator of ejIl is 1

nj

P
i2Sj

`i;l, and thus, a

natural estimator of 	.nnn/os is

b	.nnn/os
:

D
1

n

kX

jD1

1

n � nj

X

l¤j

nl

X

i2Sj

`i;l: (2)
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This estimator is a cross validation-type estimator of the OOS error. When k-fold
cross validation is used to estimate generalization error the data are split in k equal
parts. Each of these parts is a test set and its complement set is the corresponding
training set. The target variable is a variable of the test set and the decision rule
is constructed based on the elements of the corresponding training set (for more
details see, for example, Afendras and Markatou 2016). Here, we have k test sets
(ZS1 ; : : : ;ZSk ), which are defined by the labeling of the data and are a partitioning
of the data set. For each test set ZSj the corresponding training set Z c

Sj
D
S

l¤j ZSl

is partitioned into k � 1 training sub-sets ZS1 ; : : : ;ZSj�1 ;ZSjC1
; : : : ;ZSk . The target

variable is a variable of the test set and for each l ¤ j the decision rule is constructed
based on the elements of the training sub-set ZSl .

Hereafter we write 	os and b	os instead 	.nnn/os and b	.nnn/os respectively. The following
example illustrates the difference between the OOS error that introduced by Geras
and Sutton and that we have defined in relationship (1).

Example 2 (Example 1 Continued) Let the data be as in Example 1 and the squared
error loss is used. Let us consider Z.1/ � N.�	; 1/, Z.2/ � N.0; 1/, Z.3/ � N.	; 1/
and Z.1/, Z.2/, Z.3/, fZ1; : : : ;Zng are independent. If bd�1 D Z2;3, bd�2 D Z1;3 and
bd�3 D Z1;2, then Z.1/ � Z2;3 � N.�3	=2; 1:05/, Z.2/ � Z1;3 � N.0; 1:05/ and
Z.3/ � Z1;2 � N.3	=2; 1:05/. Hence, the OOS error given by Geras and Sutton
(2013) is

	CVS D
1

3

n
E


Z.1/ � Z2;3

�2
C E



Z.2/ � Z1;3

�2
C E



Z.3/ � Z1;2

�2o
D 1:05C

3

2
	2:

Using the more general Example 4(a) below, relation (3) gives that the OOS error
given by (1) is 	os D 1:1C 2	2.

4.2 Bias and Variance of b�osb�osb�os

In this section we investigate the bias and variance, and so the mean square error,
of the OOS error estimatorb	os. Using E.1–E.5, see Appendix 1, we state and prove
the following theorem.

Theorem 1 Assume that EŒL.Z;bdl/�
2 < 1 when Z � Fj and Z, ZSl are

independent for all j ¤ l. Then,

(a) the estimator b	os given by (2) is an unbiased estimator of the OOS error;
(b) the variance of b	os is
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Var.b	os/ D

kX

jD1

od2j
npj

0

@
X

l¤j

p2l


VjIl C n.pj � 1=n/CjIl

�
C
XX

l¤l0Wl;l0¤j

plpl0CjIl;l0

1

A

C
XX

j¤j0

odjodj0

0

@
X

l¤j;j0

pl.plCj;j0Il C 2pjCj;j0Il;j/

1

A ;

where VjIl D Var L.Z;bdl/ when Z � Fj and is independent of ZSl ; CjIl D

Cov.L.Z;bdl/;L.Z0;bdl// when Z and Z0 are iid from Fj and are independent
of ZSl ; CjIl;l0 D Cov.L.Z;bdl/;L.Z;bdl0// when Z � Fj and is independent of
ZSl [ ZSl0

; Cj;j0Il D Cov.L.Z;bdl/;L.Z0;bdl// when Z � Fj, Z0 � Fj0 and Z,

Z0, ZSl are independent; and Cj;j0Il;j D Cov.L.Z;bdl/;L.Z0;bdj// when Z 2 ZSj ,
Z0 � Fj0 and Z0, ZSj , ZSl are independent.

Now we investigate the consistency of the estimator b	os. First, we are interested
in finding simple and natural conditions that imply the desired result. Very often
the sequence, with respect to n, of the decision rulesbdjIn converges in probability
to a constant for each j. For example, if the decision rule is the sample mean of

the elements of the jth source, say Zj, and Fj has mean 	j, then Zj
p

�! 	j. Also, the
finiteness of the variance of the OOS error estimator requires that EŒL.Zi;bdl/�

2 < 1

for all Zi 2 ZSj and j ¤ l. In view the above observations, we state the following
conditions/assumptions:

C.1: bdjIn
p

�! dj, as n ! 1, for all j D 1; : : : ; k, where djs are constants.
C.2: There exist positive numbers � and M such that EŒL.Z;bdl;n/�

2C� � M when
Z � Fj and Z, ZSl are independent, for all j ¤ l and n.

The condition � > 0 is needed because for Theorem 2 to hold the sequence
L.Z;bdl;n/L.Z0;bdl;n/ is not generally necessarily uniformly integrable. This in turn
does not guarantee the convergence to 0 of CjIl defined in Theorem 1(b); the same
holds for the remaining quantities Cj;j0;l and Cj;j0I;l;j again defined in Theorem 1(b),
facts that affect the consistency of the OOS estimator.

Theorem 2 Let L be a continuous loss function and suppose that C.1, C.2 hold.
Then, Var.b	os/ ! 0 as n ! 1 and, thus, b	os is a consistent estimator of 	os.

The following Examples 3 and 4 show the usefulness of Theorem 2.

Example 3 Let ZSj be an iid collection of random variables (rv’s) from Fj, j D

1; : : : ; k, the decision rules are the usual averages of the elements of the sources, Fj

does not depend on n and has mean 	j and variance 
2j .

(a) Let the absolute error loss be used. Suppose that Fj has finite moments
of order 2 C �j for some �j > 0, j D 1; : : : ; k. Then, bdj D Zj D
1
nj

P
i2Sj

Zi
p

�! 	j, that is, C.1 is satisfied. Set � D minjD1;:::;k f�jg > 0,

ˇ2C� D maxjD1;:::;kfEjZj2C� when Z � Fjg < 1 and M D 23C�ˇ2C� < 1.



34 G. Afendras and M. Markatou

For each j ¤ l and Z � Fj such that Z, ZSl are independent we have
that EjL.Z;bdl;n/j

2C� D EjZ � Zlj
2C� � 22C�



EjZj2C� C EjZlj

2C�
�

�

22C�
�
EjZj2C� C 1

nl

P
i2Sl

EjZij
2C�

	
� 23C�ˇ2C� D M; and so C.2 is satisfied.

Therefore, Theorems 1 and 2 show that MSE.b	os/ D bias2.b	os/CVar.b	os/ D

Var.b	os/ ! 0 as n ! 1.
(b) Let the squared error loss be used, that is L.Z;bdl;n/ D .Z � Zl/

2, and suppose
that Fj has finite moments of order 4C �j for some �j > 0, j D 1; : : : ; k. Using
the same arguments as in (a), we obtain that MSE.b	os/ ! 0 as n ! 1.

Example 4 Suppose Fj � N.	j; 

2
j / andbdj D Zj D 1

nj

P
i2Sj

Zi.

(a) Let the squared error loss be used. Then, we calculate (see in Appendix 3)

	os D

kX

jD1

pj

2
j C

kX

jD1

odj

X

l¤j

pl.	j � 	l/
2 C

1

n

kX

jD1

odj

X

l¤j


2j I (3)

and the quantities VjIl, CjIl, CjIl;l0 Cj;j0Il and Cj;j0Il;j that appear in the variance of
b	os in Theorem 1(b) are

VjIl D 2

�

j C


2l
npl

��

j C


2l
npl

C 2.	j � 	l/
2

�
; (4a)

CjIl D 2

2l
npl

�

2l
npl

C 2.	j � 	l/
2

�
;

CjIl;l0 D 2
2j



2j C 2.	j � 	l/.	j � 	l0/

�
;

Cj;j0Il D 2

2l
npl

�

2l
npl

C 2.	j � 	l/.	j0 � 	l/

�
;

CjIl;l0 D 2

2j

npj

 

2j

npj
� 2.	j � 	l/.	j0 � 	j/

!
:

9
>>>>>>>>>>>>>=

>>>>>>>>>>>>>;

(4b)

Observe that CjIl;Cj;j0Il;Cj;j0Il;j ! 0 as n ! 1; specifically, these covariances
are O.1=n/ functions as n ! 1. It is obvious that Var.b	os/ D O.1=n/ as
n ! 1. This example is a confirmation of Theorem 2 for this case.

(b) Let the absolute error loss be used. Then, see in Appendix 3,

	os D

kX

jD1

odj

X

l¤j

pl

(
	jIl

�
1 � 2ˆ

�
�
	jIl


jIl

��
C 
jIl

r
2

�
exp

 
�
	2jIl

2
2jIl

!)
;

(5)

where 	jIl D 	j � 	l, 
2jIl D 
2j C 
2l =.npl/ and ˆ denotes the cumulative
distribution function of the standard normal distribution. The calculations of the
covariances CjIl, CjIl;l0 , Cj;j0Il and CjIl;l0 in Theorem 1(b) are rather difficult.
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In practice, the data distributions of the sources are unknown and, thus, the OOS
error must be estimated. There are loss functions for which the calculation of the
variance ofb	os is difficult, or impossible, even if the distribution of the data sources
is known, cf. Example 4(b). Furthermore, in the formulation of Example 3 where the
absolute error loss is used, if we consider Fj � U.aj; bj/, j D 1; 2; 3, the calculation
of OOS error in closed form is impossible.

4.3 On Variance Estimation

In this section we study the estimation of variance of the OOS error. Recall that in
random cross validation one splits randomly the data into two sets of sizes n1 and
n2 (n1 C n2 D n is the total sample size) that serve as training/test sets and repeats
this process J times.

First, we present a general result and some useful observations that arise from
it. Nadeau and Bengio (2003) study the variance estimation of the random cross
validation estimator of the generalization error of a computer algorithm when
L.Zi;bdj/ for all realizations ZSj and Zi 2 Z c

Sj
are exchangeable. They prove

that “There is no general unbiased estimator of the variance of the random cross
validation estimator that involves the L.Zi;bdj/s in a quadratic and/or linear way.”
(see Nadeau and Bengio 2003, Proposition 3, p. 246). This result holds in a more
general form.

Lemma 1 Let X1;X2; : : : ;Xn be a collection of random variables. If E.Xj/ D 	,
Var.Xj/ D 
2 and Cov.Xj;Xj0/ D C, j ¤ j0, are unknown parameters, then we can
find unbiased estimators of the second moments of Xjs only for the cases of linear
combinations of 
2 C 	2, C C 	2.

The following corollary follows immediately from Lemma 1.

Corollary 1 Let X1;X2; : : : ;Xn be as in Lemma 1. Then, (a) there does not exist an
unbiased estimator of Var.X/, where X is the usual average of Xjs, and (b) there do
not exist unbiased estimators of 	2, 
2, C.

Remark 1

(a) If one of the parameters 	2, 
2 and C is known, then we can provide unbiased
estimators for each linear combination of the other two parameters.

(b) The statistic s2 D 1
n�1

Pn
jD1.Xj � X/2 is an unbiased estimator of 
2 � C. The

variance of this estimator is

Var.s2/D
1

.n�1/2

8
<

:

nX

jD1

Var.Xj�X/2C
XX

1�j<j0�n

Cov


.Xj�X/2; .Xj0�X/2

�
9
=

; :

It is possible Var.s2/ 6! 0, as n ! 1, see Example 5 below; and thus, s2 is not
a consistent estimator of 
2 � C.
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(c) In both random and k-fold cross validation estimators of the generalization
error of a computer algorithm, the sequence of the test set errors are as in
Lemma 1 (see Afendras and Markatou 2016, Proposition 1). For both of
these cases the cross validation estimator is the usual average of the test set
errors. Thus, the unbiased estimation of the variance of the cross validation
estimator is impossible. Let b	j, j D 1; : : : ; J, denote the estimates of the
test set errors and b	CV;J D 1

J

PJ
jD1b	j be the cross validation estimator of

the generalization error in the random cross validation procedure. If s2b	j
D

1
J�1

PJ
jD1



b	j �b	CV;J

�
and � D Corr.b	j;b	j0/, Nadeau and Bengio (2003,

p. 248) state that “. . .
�
1C �

1��

	
s2b	j

is an unbiased estimator of Var.b	CV;J/”;

this sentence is incorrect because the parameter � is unknown and, thus,�
1C �

1��

	
s2b	j

is not an estimator (statistic). Of course, it is a random variable

with E

��
1C �

1��

	
s2b	j

�
D Var.b	CV;J/. In general, the estimation of the

correlation � is difficult. Nevertheless, even in the case in which we find an

unbiased estimator of �, sayb�, then
�
1C b�

1�b�
	

s2b	j
is not an unbiased estimator

of Var.b	CV;J/, except if
�
1C b�

1�b�
	

and s2b	j
are uncorrelated. Moreover, ifb� is

consistent estimator of �, then
�
1C b�

1�b�
	

s2b	j
might is not a consistent estimator

of Var.b	CV;J/, cf. (b).
(d) Markatou et al. (2005) provide moment approximation estimators for the

variance of the test set errors and for their covariance in a broad and often used
class of cross validation procedures, in both random and k-fold cross validation
cases. In view of (c), it is clear that their results are very important in practice.

Example 5 Let 0 < C < 
2 < 1 and 	 2 R. Assume that Y1; : : : ;Yn is an iid col-
lection from the distribution with probability mass function pY



�.
2 � C/1=2=2

�
D

pY


.
2 � C/1=2=2

�
D .n2�1/=.2n2�1=2/, pY



�n.
2 � C/

�
D pY



n.
2 � C/

�
D

3=.8n2 � 2/; and � � N.	;C/ which is independent to Yjs. By straightforward
calculations, E.Y/ D 0, Var.Y/ D 
2 � C. Consider the rv’s Xj D Yj C �,
j D 1; : : : ; n. Then, one can easily see that the Xjs are exchangeable with E.Xj/ D 	,
Var.Xj/ D 
2 and Cov.Xj;Xj0/ D C for all j ¤ j0. By definition of the Xjs,
s2X D 1

n�1

Pn
jD1.Xj � X/ D 1

n�1

Pn
jD1.Yj � Y/ D s2Y . So, Var.s2X/ D Var.s2Y/ D

	
.Y/
4

n C .n�3/Var.Y/
n.n�1/

D 12n4Cn2�1
n.16n2�4/

C .n�3/.
2�C/
n.n�1/

! 1 as n ! 1.
In view of Theorem 1(a), Lemma 1 and Corollary 1, the unbiased estimation of

the variance of b	os is impossible because the quantities VjIl, CjIl, CjIl;l0 , Cj;j0Il and
Cj;j0Il;j are as in Lemma 1. For example, let the jth source and the lth source be two
different sources. Then, f`i;l; i 2 Sjg is a set of exchangeable rv’s of size nj with
unknown mean, say 	j;l, variance Vj;l and covariance between two elements Cj;l.

It is a fact that there does not exist a general unbiased estimator of the variance of
the OOS error. If someone needs an estimator of the variance of the OOS error for
some reason (for example, for statistical inference on the OOS error), one may resort
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to the bootstrap resampling technique or can follow the moment approximation
method of Markatou et al. (2005) when it is possible. Notice that the bootstrap
resampling technique in this formulation has a very large computational cost.

5 Simulation Study

Assume we have k D 3 sources with probability vector ppp D .0:2; 0:3; 0:5/, and thus
odds vector ododod D .1=4; 3=7; 1/. Suppose that the elements of each source are iid
rv’s from a distribution and the squared or absolute error loss is used.

Table 1 presents the true value of the OOS error, the empirical mean, variance
and squared bias of the OOS error estimatorb	os, when N D 104 Monte Carlo (M-C)
repetitions are used, for various values of the sample size n. The elements of each
source are normally distributed and the squared and absolute error loss are used. In
this case we have the explicit expressions of	os given by the relations (3) and (5) for
both cases of squared and absolute error loss respectively. We observe that for both
cases, squared and absolute error loss, the empirical mean square error of b	os tends
to zero as n tends to infinity, confirming the statements of Theorems 1(a) and 2.

Tables 2, 3, and 4 present the empirical mean and the empirical variance of the
OOS error estimator b	os, for N D 104 M-C repetitions for various values of the
sample size n, when the elements of each source are uniformly distributed (Table 2),
Student distributed (Table 3) and gamma distributed (Table 4), and the squared and
absolute error loss are used. For both cases of loss function, squared and absolute
error loss, and for all cases of the sources’ distributions the empirical variance
of b	os tends to zero as n tends to infinity, confirming empirically the statement
of Theorem 2. Note that for these cases of the sources’ distributions we do not
have explicit forms of 	os and thus, we cannot present the values bbias2.b	os/ and
1MSE.b	os/. On the other hand, since b	os is an unbiased estimator of 	os, for large
values of n we have that 1MSE.b	os/ 	 bVar.b	os/.

Tables 5, 6, 7, and 8 present the OOS error estimator and its associate empirical
variance estimate in the case of a linear regression model with four covariates

Table 1 The OOS error, 	os, the average ofb	os and its empirical variance and squared bias, for
N D 104 M-C repetitions, when k D 3, ppp D .0:2; 0:3; 0:5/, F1 � N.0; 9/, F2 � N.2; 1/,
F3 � N.5; 5/ and the squared/absolute error loss is used, for various values of n

n 100 200 300 500 700 103 104

Squared 	os 18.171 18.084 18.055 18.031 18.021 18.014 17.998

b	os 18.164 18.084 18.055 18.038 18.038 18.017 17.999

bbias2.b	os/ <10�3 <10�3 <10�4 <10�4 <10�5 <10�5 <10�6

cVar.b	os/ 11.524 5.897 3.873 2.314 1.664 1.177 0.117

Absolute 	os 3.639 3.636 3.635 3.635 3.634 3.634 3.633

b	os 3.635 3.634 3.638 3.635 3.633 3.634 3.633

bbias2.b	os/ <10�5 <10�5 <10�5 <10�5 <10�6 <10�7 <10�8

cVar.b	os/ 0.148 0.074 0.050 0.030 0.021 0.014 0.001
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Table 2 The average ofb	os and its empirical variance cVar.b	os/, for N D 104 M-C repetitions,
when k D 3, ppp D .0:2; 0:3; 0:5/, F1 � U.�1; 1/, F2 � U.1=2; 3=2/, F3 � U.3; 7/ and the
squared/absolute error loss is used, for various values of n

n 100 200 300 500 700 103 104

Squared b	os 17.294 17.266 17.277 17.271 17.273 17.278 17.275

cVar.b	os/ 1.699 0.871 0.568 0.332 0.243 0.173 0.017

Absolute b	os 3.8435 3.8451 3.8425 3.8433 3.8433 3.8430 3.8428

cVar.b	os/ 0.0229 0.0113 0.0077 0.0047 0.0033 0.0022 0.0002

Table 3 The average ofb	os and its empirical variance cVar.b	os/, for N D 104 M-C repetitions,

when k D 3, ppp D .0:2; 0:3; 0:5/, F1 � t7, F2 � t5.2/, F3 � t6.5/ (where t.	/
d
D t C	) and the

squared/absolute error loss is used, for various values of n

n 100 200 300 500 700 103 104

Squared b	os 14.976 14.927 14.954 14.943 14.936 14.936 14.925

cVar.b	os/ 2.677 1.376 0.941 0.548 0.388 0.274 0.027

Absolute b	os 3.5182 3.5142 3.5153 3.5152 3.5150 3.5153 3.5147

cVar.b	os/ 0.0417 0.0209 0.0141 0.0084 0.0061 0.0042 0.0004

Table 4 The average ofb	os and its empirical variance cVar.b	os/, for N D 104 M-C repetitions,
when k D 3, ppp D .0:2; 0:3; 0:5/, F1 � exp.1/, F2 � �.2; 1/, F3 � �.10; 2/ and the
squared/absolute error loss is used, for various values of n

n 100 200 300 500 700 103 104

Squared b	os 12.095 12.068 12.067 12.060 12.038 12.048 12.043

cVar.b	os/ 2.763 1.326 0.863 0.537 0.385 0.265 0.027

Absolute b	os 3.0669 3.0636 3.0655 3.0662 3.0657 3.0647 3.0652

cVar.b	os/ 0.0469 0.0240 0.0163 0.0095 0.0070 0.0048 0.0005

Table 5 The average ofb	os and its empirical variance cVar.b	os/ in linear regression case with four
covariates, when k D 3, ppp D .0:2; 0:3; 0:5/

n 100 200 300 500 700 103 104

b	os 83.06 71.46 79.36 70.88 72.73 75.04 74.32

cVar.b	os/ 10.21 4.78 3.31 1.76 1.29 0.93 0.09

The model of the jth source is y.j/ D ˇ
.j/
0 C ˇ

.j/
1 X1 C ˇ

.j/
2 X2 C ˇ

.j/
3 X3 C ˇ

.j/
4 X4 C �, j D 1; 2; 3,

where X1 � binomial.0:6/, X2 � Poisson.2/, X3 � N.3; 1/, X4 � U.0; 3/ with � � N.0; 1/, and
ˇ̌̌ .1/ D .2; 1;�1;�3; 1/, ˇ̌̌ .2/ D .1; 3;�1; 1; 1/ and ˇ̌̌ .3/ D .�2;�2; 1; 1;�1/. The number of
M-C repetitions is N D 103

and three sources, for various sample sizes. Tables 5 and 6 present results for
two different vectors of probabilities for the sources but the composition of the
sources in terms of covariate distributions and vectors of parameters is the same
in both tables. Furthermore, the distribution of covariates is the same in all sources
but the associated parameter vectors are source-specific, i.e. they vary from source
to source. We observe that the variance of the OOS error estimator, for large n
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Table 6 The average ofb	os and its empirical variance cVar.b	os/ in linear regression case with four
covariates, when k D 3, ppp D .0:1; 0:3; 0:6/

n 100 200 300 500 700 103 104

b	os 67.74 66.50 60.06 62.86 63.37 61.25 61.08

cVar.b	os/ 12.33 4.56 3.00 1.69 1.19 0.81 0.08

The models of the sources are as in Table 5, and the number of M-C repetitions is N D 103

Table 7 The average ofb	os and its empirical variance cVar.b	os/ in linear regression case with four
covariates, when k D 3, ppp D .0:2; 0:3; 0:5/

n 100 200 300 500 700 103 104

b	os 4.447 2.566 2.055 1.613 1.477 1.320 1.033

cVar.b	os/ 8.870 1.795 0.786 0.294 0.175 0.087 0.001

The model of the jth source is y.j/ D 2 C X.j/1 � X.j/2 C 3X.j/3 C X4 C �, j D 1; 2; 3, where

X.1/1 � binomial.0:6/, X.1/2 � Poisson.2/, X.1/3 � N.3; 1/, X.1/4 � U.0; 3/, X.2/1 � binomial.0:8/,

X.2/2 � Poisson.1/, X.2/3 � N.1; 1/, X.2/4 � U.5; 7/, X.3/1 � binomial.0:2/, X.3/2 � Poisson.3/,

X.3/3 � N.0; 1/, X.3/4 � U.0; 1/ and � � N.0; 1/. The number of M-C repetitions is N D 103

Table 8 The average ofb	os and its empirical variance cVar.b	os/ in linear regression case with four
covariates, when k D 3, ppp D .0:1; 0:3; 0:6/

n 100 200 300 500 700 103 104

b	os 5.715 2.705 2.300 1.775 1.585 1.364 1.037

cVar.b	os/ 12.27 2.041 1.202 0.479 0.254 0.102 0.001

The models of the sources are as in Table 7, and the number of M-C repetitions is N D 103

converges to 0. We draw similar observations from the results of Tables 7 and 8;
these tables present results for various sample sizes when the parameter vector is
the same for all sources but the distribution of covariates is different among the
different sources, and the probability of the different sources is different in the two
tables. The results show that as n ! 1 the variance of the OOS error estimator
converges to 0.

6 Discussion

In this paper we discuss the definition, estimation and properties of the proposed
estimator of the out-of-source error in the context of multi-source data, when it is
not assumed that all sources have exactly the same number of observations and do
not necessarily follow the same distribution. We show that our proposed estimator is
unbiased, and we offer natural and easy to verify in practice conditions under which
the estimator we propose is consistent.
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Most research, both theoretical and empirical, assumes that a learning algorithm
is trained and tested using data that follow the same distribution. This setting
has been extensively studied in the literature, and uniform convergence theory
guarantees that a learning algorithm’s empirical error is close to its true error under
appropriate assumptions. However, in many practical situations we wish to train a
learning algorithm under one or more source domains and then test it on a domain
that is potentially different from the source domains. Our work, presented here,
studies the out-of-source error in this setting. We further supplement the theoretical
results we present here with a simulation that essentially verifies these results.

One setting where our results may be potentially useful is in meta-analysis.
Meta-analysis methods combine and further analyze, quantitative evidence from
related studies. As such meta-analysis is an evidence generation method in medicine
(Riley et al. 2010). There are two approaches to carry out meta-analysis. Traditional
approaches synthesize, at the study level, aggregated data, obtained from different
publications. An alternative approach is meta-analysis based on individual partic-
ipant data. Here, the individual raw, study specific data are used. In this setting,
one can consider the different studies as corresponding to different sources. A large
OOS error then indicates differences in the populations that are associated with the
different studies. We conjecture that similar comments hold in the case of variable
selection with respect to the OOS error and note that further study of OOS error in
both, individual participant meta-analysis and variable selection and regularization,
is needed.

Acknowledgements Dr. Markatou would like to thank the Jacobs School of Medicine and
Biomedical Science for facilitating this work through institutional financial resources (to M.
Markatou) that supported the work of the first author of this paper.

Appendix 1: Some Useful Relations

Since Zis are independent and the elements of each source are identically distributed,
the following are obvious.

E.1:


L.Zi;bdl/;L.Zi0 ;bdl/

�
, i 2 Sj, i0 2 Sj0 with j ¤ j0 ¤ l ¤ j, are exchangeable;

E.2:


L.Zi;bdl/;L.Zi;bdl0/

�
, i 2 Sj with j ¤ l ¤ l0 ¤ j, are exchangeable;

E.3:


L.Zi;bdl/;L.Zi0 ;bdl0/

�
, i ¤ i0 2 Sj with j ¤ l ¤ l0 ¤ j, are exchangeable;

E.4:


L.Zi;bdl/;L.Zi0 ;bdj/

�
, i 2 Sj, i0 2 Sj0 with j ¤ j0 ¤ l ¤ j, are exchangeable.

E.5: L.Zi;bdl/ and L.Zi0 ;bdl0/, i 2 Sj, i0 2 Sj0 , are independent for all indices j; j0; l; l0

such that fj; lg \ fj0; l0g D ¿.
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Appendix 2: On Moments of Bivariate Normal Distribution

Theorem 3 (Isserlis 1918) Let .Y1;Y2/ � N2
�
000;
�

21

12


12

22

		
. Then, E.Y4i / D 3
4i ,

E.Y21Y22 / D 
21 

2
2 C 2
212 and E.Y21Y2/ D E.Y1Y22 / D 0.

An application of Isserlis’s Theorem 3 gives

Corollary 2 Let .X1;X2/ � N2
��

	1
	2

	
;
�

21

12


12

22

		
. Then, the covariance of X21 and

X22 is Cov.X21;X
2
2/ D 2
12 .
12 C 2	1	2/.

Appendix 3: Proofs

Proof of Theorem 1

(a) By definition of ejIl,

E.b	os/ D
1

n

kX

jD1

1

n � nj

X

l¤j

nl

X

i2Sj

E.`i;l/ D
1

n

kX

jD1

nj

n � nj

X

l¤j

nlejIl:

The result arises by nj=n D pj for all j D 1; : : : ; k.
(b) Write †j D

P
l¤j nl

P
i2Sj

`i;l and †j;l D
P

i2Sj
`i;l. Hence, b	os D

1
n

Pk
jD1

1
n�nj

†j and †j D
P

l¤j nl†j;l. By straightforward calculations

Var.b	os/ D
1

n2

8
<

:

kX

jD1

Var.†j/

.n � nj/2
C
XX

j¤j0

Cov.†j; †j0/

.n � nj/.n � nj0/

9
=

; : (6)

The variance of †j is Var.†j/ D
P

l¤j n2l Var.†j;l/ C
PP

l¤l0Wl;l0¤j nlnl0 Cov
.†j;l; †j;l0/. We compute Var.†j;l/ D

P
i2Sj

Var.`i;l/ C
PP

i;i02SjWi¤i0 Cov
.`i;l; `i0;l/ D njVjIl C nj.nj � 1/CjIl, see E.1 and E.2. Also, we compute
the covariance of †j;l and †j;l0 , Cov.†j;l; †j;l0/ D

P
i2Sj

Cov.`i;l; `i;l0/ CPP
i;i02SjWi¤i0 Cov.`i;l; `i0;l0/ D njCjIl;l0 , see E.3 and E.5. Thus,

Var.†j/ D
X

l¤j

n2l


njVjIl C nj.nj � 1/CjIl

�
C
XX

l¤l0Wl;l0¤j

njnlnl0CjIl;l0 : (7)

The covariance of †j and †j0 is Cov.†j; †j0/ D
P

l¤j

P
l0¤j0 nlnl0 Cov

.†j;l; †j0;l0/ D
P

l¤j;j0 n2l Cov.†j;l; †j0;l/C
PP

l¤j;l0¤j0Wl¤l0 nlnl0 Cov.†j;l; †j0;l0/.
Now we compute Cov.†j;l; †j0;l/ D

P
i2Sj

P
i02Sj0

Cov.`i;l; `i0;l/ D njnj0Cj:j0Il.

For Cov.†j;l; †j0;l0/ when l ¤ l0 we distinguish the following cases: If
l ¤ j0 and l0 ¤ j, Cov.†j;l; †j0;l0/ D 0, see E.5; if l ¤ j0 and l0 D j,
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Cov.†j;l; †j0;j/ D
P

i2Sj

P
i02Sj0

Cov.`i;l; `i0;j/ D njnj0Cj;j0Il;j, see E.4; and if

l D j0 and l0 ¤ j, similarly, Cov.†j;j0 ; †j0;l0/ D njnj0Cj;j0Ij0;l0 . Thus, for each
j ¤ j0

Cov.†j; †j0/ D
X

l¤j;j0

nlnjnj0.nlCj;j0Il C 2njCj;j0Il;j/ (8)

Combining (6)–(8),

Var.b	os/ D
1

n2

8
<̂

:̂

kX

jD1

P
l¤j

n2l


njVjIl C nj.nj � 1/CjIl

�
C
PP

l¤l0Wl;l0¤j

njnlnl0CjIl;l0

.n � nj/2

C
XX

j¤j0

P
l¤j;j0

nlnjnj0.nlCj;j0Il C 2njCj;j0Il;j/

.n � nj/.n � nj0/

9
>=

>;
:

Using nj D npj and odj D pj=.1 � pj/ for all j, after some algebra, the proof is
completed.

ut

Proof of Lemma 1 Since the joint distribution function of Xjs is unknown, the only
information that we have is with respect to the moments of Xjs. Therefore, the
only forms of estimators that we know to have expected values equal to linear
combinations of	2, 
2 and C are the linear combination of X2j s and XjXj0s. Consider
ı D

Pn
jD1 ajX2j C

PP
1�j<j0�n bj;j0XjXj0 . Observe that E.X2j / D 
2 C 	2 and

E.XjXj0/ D C C 	2. Thus, setting a D
Pn

jD1 aj and b D
PP

1�j<j0�n bj;j0 , we
get

E.ı/ D a.
2 C 	2/C b.C C 	2/;

completing the proof. ut

Proof of Corollary 1

(a) We compute Var.X/ D 1
n


2 C n�1
n C. Let now ı be an unbiased estimator of the

variance of X, ı D
Pn

jD1 ajX2j C
PP

1�j<j0�n bj;j0XjXj0 . Setting a D
Pn

jD1 aj

and b D
PP

1�j<j0�n bj;j0 , we get

a.
2C	2/Cb.CC	2/ D
1

n

2C

n � 1

n
C )

�
a D

1

n
; b D 1 �

1

n
; a C b D 0

�
;

a contradiction.
(b) Using the same arguments as in (a), the proof is completed.

ut



The Out-of-Source Error in Multi-Source Cross Validation-Type Procedures 43

Proof of Theorem 2 Let Z � Fj be independent of the elements of the
lth source. Using Hölder inequality and C.2, Vj;l � EŒL.Z;bdl;n/�

2 �

EfŒL.Z;bdl;n/�
2C�g2=.2C�/ � M2=.2C�/ D M� for all j ¤ l. Thus,

Pk
jD1

od2j
npj

.
P

l¤j p2l VjIl/ � M�

n

Pk
jD1

od2j
pj
.
P

l¤j p2l / D O.1=n/. An application of Cauchy–

Schwarz inequality gives jCj;l;l0 j � Vj;l � M�. So,
Pk

jD1
od2j
npj
.
PP

l¤l0Wl;l0¤jplpl0CjIl;l0/

� M�

n

Pk
jD1

od2j
pj
.
PP

l¤l0Wl;l0¤jplpl0/ D O.1=n/.

It is remains to prove that CjIl, Cj;j0;l, Cj;j0I;l;j ! 0 as n ! 1. Let Z;Z0 are iid from
Fj and are independent of the elements of the lth source. Consider the sequence
of random vectors .Z;Z0;bdl;n/ with respect to n. Then, C.1 gives .Z;Z0;bdl;n/  
.Z;Z0; dl/ as n ! 1. Since L is continuous, the maps .Z;Z0;bdl;n/ 7! L.Z;bdl;n/ and
.Z;Z0;bdl;n/ 7! L.Z;bdl;n/L.Z0;bdl;n/ are continuous. Using the Continuous Mapping
Theorem, L.Z;bdl;n/  L.Z; dl/ and L.Z;bdl;n/L.Z0;bdl;n/  L.Z; dl/L.Z0; dl/ as
n ! 1. Observe that EjL.Z;bdl;n/j

1C.1C�/ � M, see C.2, so the sequence L.Z;bdl;n/

is uniformly integrable. Hence, EjL.Z; dl/j < 1 and EŒL.Z;bdl;n/� ! EŒL.Z; dl/�

as n ! 1 (see, e.g., Billingsley 1995, p. 338). Similarly, EjL.Z0; dl/j < 1 and
EŒL.Z0;bdl;n/� ! EŒL.Z0; dl/� as n ! 1. Using Cauchy–Schwarz inequality we
obtain EjL.Z;bdl;n/L.Z0;bdl;n/j

1C�=2 � .EjL.Z;bdl;n/j
2C� /1=2.EjL.Z0;bdl;n/j

2C� /1=2 �

M. So, L.Z;bdl;n/L.Z0;bdl;n/ is uniformly integrable. Therefore, EjL.Z; dl/L.Z0; dl/j <

1 and EŒL.Z;bdl;n/L.Z0;bdl;n/� ! EŒL.Z; dl/L.Z0; dl/� as n ! 1. More-
over, L.Z; dl/ and L.Z0; dl/ are independent. So, EŒL.Z;bdl;n/L.Z0;bdl;n/� !

EŒL.Z; dl/�EŒL.Z0; dl/� as n ! 1. From the preceding analysis we have that
CjIl ! 0 as n ! 1. Using the same arguments as above it follows that Cj;j0;l,
Cj;j0I;l;j ! 0 as n ! 1, and the proof is completed. ut

Proof of Equations (3)–(5) Let j; j0; l; l0 are four distinct indices. Assume that
Z.j/;Z0

.j/ 2 ZSj (with Z.j/ ¤ Z0
.j/) and Z.j0/ 2 ZSj0

. Consider the following random

vectors .X1;X2/ D .Z.j/ � Zl;Z0
.j/ � Zl/ � N2

��
	j�	l
	j�	l

	
;

�

2j C
2l =nl


2l =nl


2l =nl


2j C
2l =nl

��
,

.X3;X4/ D .Z.j/ � Zl;Z.j/ � Zl0/ � N2

��
	j�	l
	j�	l0

	
;

�

2j C
2l =nl


2j


2j


2j C
2
l0
=nl0

��
,

.X5;X6/ D .Z.j/ � Zl;Z.j0/ � Zl/ � N2

��
	j�	l
	j0 �	l

	
;

�

2j C
2l =nl


2l =nl


2l =nl


2
j0

C
2l =nl

��
,

.X7;X8/ D .Z.j/ � Zl;Z.j0/ � Zj/ � N2

��
	j�	l
	j0 �	j

	
;

�

2j C
2l =nl

�
2j =nj

�
2j =nj


2
j0

C
2j =nj

��
. If

X � N.	; 
2/, then Var.X2/ D 2
2.
2 C 2	2/. Since Vj;l D Var.X21/, (4a) follows.
Observe that CjIl D Cov.X21;X

2
2/, CjIl;l0 D Cov.X23;X

2
4/, Cj;j0Il D Cov.X25;X

2
6/ and

Cj;j0Il;j D Cov.X27;X
2
8/. Hence, an application of Corollary 2 proves (4b). Finally,

If X � N.	; 
2/, then EjXj D 	Œ1 � 2ˆ.�	=
/� C 
.2=�/1=2 expf�	2=.2
2/g.

Because ejIl D EjX1j D 	jIl
�
1 � 2ˆ



�	jIl=
jIl

�
C 
jIl

p
2=� exp

�
�	2jIl=2


2
jIl

	
,

using (1), (5) follows, completing the proof. ut
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Proof of Corollary 2 Consider Y1 D X1 � 	1 and Y2 D X2 � 	2. Then, .Y1;Y2/ �

N2
�
000;
�

21

12


12

22

		
. Thus, Cov.X21;X

2
2/ D Cov.Y21C2	1Y1C	21;Y

2
2C2	2Y2C	22/ D

Cov.Y21 ;Y
2
2 /C2	2 Cov.Y21 ;Y2/C2	1 Cov.Y1;Y22 /C4	1	2 Cov.Y1;Y2/. A simple

application of Isserlis’s Theorem completes the proof. ut
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Meta-Analysis for Rare Events As Binary
Outcomes

Gaohong Dong

1 Introduction

While the use of meta-analyses can be traced back to nineteenth century studies of
astronomy (Plackett 1958), Glass first introduced the term “meta-analysis” in 1976
from his paper “Primary, secondary, and meta-analysis of research”. Meta-analysis
is a systematic and quantitative review of the results of a set of individual studies,
intended to integrate their findings (Glass 1976). Meta-analysis has been frequently
and widely used in pharmaceutical industry to estimate treatment effects in terms of
efficacy and/or safety outcomes, or to update the estimates of treatment effects by
further including recent relevant clinical studies to date.

To estimate treatment effects from the pooled data, Simpson’s paradox is a main
reason for the use of a meta-analysis rather than a naïve data pooling. One of
the best-known examples of Simpson’s paradox is a study of gender bias among
graduate school admissions to University of California, Berkeley (e.g. Wikipedia).
In 1973, The UC Berkeley admission figures showed that men applying were
more likely than women to be admitted. As shown in Table 1, overall 44% men
vs. 35% women were admitted per a naïve data pooling analysis. Therefore men
were more successful in admissions than women. Bickel et al. (1975) revealed that
women tended to apply to competitive departments with low rates of admission
even among qualified applicants (such as in the English department), whereas men
tended to apply to less-competitive departments with high rates of admission among
the qualified applicants (such as in the engineering and chemistry departments).
Basically gender and the department were confounded. There are many real-life
examples of Simpson’s paradox in the medical field. Confounding is a main reason
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Table 1 UC Berkeley applications and admissions in 1973

Men Woman
Department Applicants Admitted Applicants Admitted

A 825 62% 108 82%
B 560 63% 25 68%
C 325 37% 593 34%
D 417 33% 375 35%
E 191 28% 393 24%
F 373 6% 341 7%
Overall 8442 44% 4321 35%

to run randomized clinical trials. However, randomization itself does not guarantee
the elimination of all confounding effects. From analysis perspective, a way to
remove confounding effect is a stratified analysis or meta-analysis (e.g. Dmitrienko
et al. 2005; Pourhoseingholi et al. 2012).

When the outcomes of interest are rare events, which are not uncommon for drug
safety assessments, it is quite challenging to conduct a meta-analysis. As Cochrane
Handbook (Higgins and Green 2011) pointed out that meta-analysis may be the
only way to obtain reliable evidence of the treatment effects if the events are rare, as
individual studies are usually underpowered to detect differences in rare outcomes.
The conventional meta-analysis methods rely on large-sample approximations to
the distributions of the combined point estimators. Such approximations may be
inaccurate and lead to invalid conclusions when the individual study sample sizes
are small, the number of studies is not large, or the event rates are low (e.g. Brown et
al. 2001). The inverse-variance weighted method (Cochran 1954) is widely used in
meta-analyses (fixed and random effects). However, this method is inappropriate
for rare events (e.g. Higgins and Green 2011; Shuster and Walker 2016). The
DerSimonian and Laird (1986) approach has a serious deficiency when event rate
is low (e.g. Higgins and Green 2011; Shuster and Walker 2016). Hoaglin (2016)
discussed the misunderstanding about Cochran’s Q for heterogeneity test in meta-
analyses. He pointed out that the use of the inverse-variance weights is problematic.

Since the events of interest are rare, some clinical studies that qualify the
inclusion of the meta-analyses the sponsor pre-planned have zero events in one
treatment group or in both treatments groups (so called single-zero-events or double-
zero-events studies). Conventional methods either exclude such studies or add an
arbitrary positive value (sometimes called continuity correction) to each cell of
the corresponding 2 
 2 tables in the analysis, which is usually the case when
the inverse-variance weighted approach is used. In the past decade, there are new
methodological developments on the meta-analyses for rare events. Sweeting et al.
(2004), Bradburn et al. (2007), Kuss (2015) and Böhning et al. (2015) extensively
evaluated the performance of different meta-analysis methods for rare events with
or without a continuity correction. Rücker et al. (2009) investigated the arcsine
difference as a measure of treatment effect. Tian et al. (2009) developed an exact
and efficient inference procedure for meta-analysis and provided an application of
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rosiglitazone studies with all available data included but without artificial continuity
correction. Cai et al. (2010) proposed alternative approaches based on Poisson
random-effect models to make an inference about the relative risk between two
treatment groups. Brockhaus et al. (2016) compared the Peto odds ratio with the
usual odds ratio.

This chapter reviews the meta-analyses with rare events as binary outcomes.
The methods covered in this chapter include non-parametric meta-analysis (Mantel-
Haenszel method, the Peto odds ratio, and the exact method of constructing
confidence intervals for risk differences by Tian et al. (2009)), parametric meta-
analysis (random-effects regression model, random-effects beta-binomial model and
random-effects Poisson model) and parametric bootstrap resampling meta-analysis.
Case studies using these methods are provided.

2 Methods

2.1 Non-Parametric Meta-Analysis

The non-parametric meta-analyses reviewed in this section are the methods under
the framework of fixed-effects models, which assume that all studies have the same
treatment effect (i.e. there is no between-study heterogeneity).

2.1.1 Mantel-Haenszel Method

The Mantel-Haenszel method (Mantel and Haenszel 1959) is often used for meta-
analyses on binary outcomes. Let nijm denote the frequency count of the cell in the
ith row and jth column of the 2 
 2 table (e.g. the first row vs. the second row is for
the investigational treatment vs. control, and the first column vs. the second column
is for with vs. without events, respectively) of the mth study included in the meta-
analysis (m D 1, 2, : : : , M), and nm the total sample size for the mth study. The
Mantel-Haenszel odds ratio is computed as follows:

ORMH D

MP
mD1

n11mn22m=nm

MP
mD1

n12mn21m=nm

: (1)

Since the Mantel-Haenszel method takes sums before ratios and adjusts the
calculation with study sample sizes (i.e. more weight is applied to a larger study),
the Mantel-Haenszel method provides a similar or robust estimate of the odds ratio
compared to logit, maximum likelihood and other estimates, in particular when the
data are sparse (e.g. Agresti 2002, 2013). It should be noted that Agresti (2002,
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2013) pointed out that if the variability of the odds ratio across the studies is not
substantial, the Mantel-Haenszel odds ratio is still useful. The calculation of the
Mantel-Haenszel odds ratio can include the studies without an event of interest
unless the denominator is zero. However, the double-zero-events studies do not have
a contribution to the Mantel-Haenszel odds ratio, which is unappealing. Continuity
correction (i.e. adding 0.5 to each cell of the 2 
 2 table) has been suggested
when the Mantel-Haenszel method is used to analyze rare events. However, it has
been reported that, a continuity correction may result in an unpleasant element
of arbitrariness (e.g. Agresti and Hartzel 2000) or a bias (Bradburn et al. 2007),
therefore it is not suggested (e.g. Kuss 2015).

The Mantel-Haenszel risk ratio (RRMH) and the Mantel-Haenszel risk differ-
ence (ıMH) are also used in meta-analyses for rare events, which are calculated as

RRMH D

MP
mD1

n11mn2�m=nm

MP
mD1

n21mn1�m=nm

; (2)

and

ıMH D

MP
mD1

.n11mn2�m � n21mn1�m/ =nm

MP
mD1

n1�mn2�m=nm

; (3)

where n1 • m and n2 • m are the number of subjects in the investigational treatment
and the control group, respectively. Typically the variance of the logarithm of the
Mantel-Haenszel odds ratio is estimated using Robins et al. (1986), and Greenland
and Robins (1985) is used to estimate the variances of the Mantel-Haenszel risk
difference and the logarithm of the Mantel-Haenszel risk ratio. One advantage to
use the Mantel-Haenszel risk difference is that this method can include any zero-
events studies.

2.1.2 Peto Odds Ratio

The Peto odds ratio (Peto et al. 1977; Yusuf et al. 1985) is used for meta-analyses
for rare events as well. Same as the Mantel-Haenszel odds ratio, double-zero-events
studies do not have a contribution to the Peto odds ratio. The Peto odds ratio is
calculated as follows:

ORPeto D exp

0

BBB@

MP
mD1

n11m � E .n11m/

MP
mD1

Vm

1

CCCA ; (4)
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where E .n11m/ D .n11mCn21m/.n11mCn12m/

nm
is the expectation of n11m and Vm D

E.n11m/.n21mCn22m/.n12mCn22m/

nm.nm�1/
.

Brockhaus et al. (2014, 2016) recently studied the Peto odds ratio. They
demonstrated that the Peto odds ratio performs better in terms of mean percentage
error, but not the confidence interval width and mean square error when the
treatment effect is small and the sample sizes are similar between treatment groups;
however when the treatment effect is large and group sizes are unbalanced, the
Peto odds ratio leads to biased estimates. The latter had been reported by other
researchers, e.g. Greenland and Salvan (1990) and Sutton et al. (2000). And bias is
also possible when the estimated odds ratio is far from unity (Fleiss 1993). Sweeting
et al. (2004) and Cochrane Handbook (Higgins and Green 2011) indicated that the
Peto odds ratio can be least biased when the event rate is very low (e.g. <1%) and
two groups are balanced; in other scenarios, the Mantel-Haenszel method without
a continuity correction performs better. However, Kuss (2015) pointed out that this
recommendation ignored that both the Mantel-Haenszel method for the odds ratio
and the risk ratio and the Peto odds ratio exclude double-zero-events studies unless
continuity corrections are applied, and continuity corrections are not suggested.

2.1.3 Exact Method of Constructing Confidence Intervals for Risk
Differences (Tian et al. 2009)

Tian et al. (2010) developed an exact and efficient inference procedure for meta-
analysis. Their method can handle any zero-events studies without artificial conti-
nuity corrections. The parameter of interest is the risk difference�, say to construct
a 100(1 � ’)% 1-sided confidence interval (a, 1) for �. For a given ˜, there are M
study-specific 1-sided ˜-level confidence intervals for �. Now, for any fixed value
of �, say 0, let’s examine whether 0 is the true value of �. If yes, then on average,
0 should belong to at least 100˜% of the above M intervals. Let ym D 1, if 0 belongs
to the observed ˜ interval from the mth study, and ym D 0, otherwise. Then, 0 is
included in (a, 1) if

t .�/ D

MX

mD1

wm .ym � �/ � c (5)

where wm is a study-specific positive weight (e.g. total sample size), c is chosen such
that ProbfT (�) < cg� ˛. Similarly, one can obtain combined 100(1 � ’)% 1-sided
confidence interval (�1, b). It follows that (a, b) would be a 100(1 � 2’)% 2-sided
confidence interval for �. A point estimator for � may be obtained as O� such that
O� belongs to the intersection of all nonempty 2-sided confidence intervals for �.
Tian et al. (2009) provided an application of rosiglitazone studies with all available
data included but without artificial continuity correction. It was reported by Tian et
al. (2009) that this method can be over conservative in some cases.
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2.2 Parametric Meta-Analysis

One benefit of parametric meta-analyses is to include covariates on the individual
subject (participant) level, whereas the non-parametric meta-analyses typically use
the summary data at the study level, which could be only data that can be extracted
from the literatures. The meta-analysis using individual participant data (IPD) is
becoming an increasingly popular tool. Since Stewart and Tierney (2002), there
is a tendency to consider the IPD meta-analysis as a ‘gold standard’ as it can
improve the quality of the meta-analysis that can be done and produce more reliable
results. There are two statistical approaches for conducting an IPD meta-analysis:
one-stage and two-stage. The one-stage approach analyzes the IPD from all studies
simultaneously, for example, in a hierarchical regression model with random effects.
The two-stage approach derives aggregate data (such as effect estimates) in each
study separately and then combines them in a traditional meta-analysis model. Many
researchers have compared the one-stage and two-stage approaches. Recently Burke
et al. (2017) pointed out that most differences arise because of different modelling
assumptions, rather than the choice of one-stage or two-stage itself. However,
individual participant data may not be always available for a meta-analysis.

In this section, I review the three parametric meta-analysis models: random-
effects regression model, random-effects beta-binomial model and random-effects
Poisson model. Each of them can be reduced to the corresponding fixed-effects
model by removing the random study effect. Due to the low event rates, some
model parameters may not be identifiable. Therefore, these models may need to
be implemented under the Bayesian framework. However, Stijnen et al. (2010)
pointed out that Bayesian methods are not always suited for meta-analyses for
rare events due to the fact that the study data could be easily dominated by the
priors, which are even thought to be non-informative. This chapter only describes
the frequentist version of the parametric meta-analyses. However, it should be noted
that the advantages of the Bayesian models could be beyond to have the model
parameters identified.

2.2.1 Random-Effects Regression Model

Logistic regression model is a natural way to analyze binary outcomes. Let Yim

denote the number of subjects with an event in the ith treatment of the mth study,
Nim the number of subjects and � im the event rate in the ith treatment of the mth
study, then we have,

Yim � Binomial . Nim; � im / ; (6a)

log it .�im/ D 	C ım C Ximˇ; (6b)
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where � is the intercept, ım � N(0, ¢2) is the random study effect, Xim is the
covariate metrics and “ is the effect of the covariates. This is a random-effects
logistic regression model on the event rate with the logit link function to estimate
the odds ratio. It is can be parameterized to estimate the risk ratio by using the
log link function, and to estimate the risk difference by using the identity link
function. When the random study effect ım is removed, the (6a) and (6b) are
reduced to a fixed-effects model (e.g. a conventionally simple logistic regression),
which assumes that the treatment effect is the same for all studies. A random-
effects regression model can be implemented via the SAS GLIMMIX or NLMIXED
procedure.

2.2.2 Random-Effects Beta-Binomial Model

Beta-binomial model assumes (1) the number of subjects with an event in the
ith treatment of the mth study, Yim follows a binomial distribution with the event
rate � im; and (2) � im follows a beta distribution. Therefore, Yim follows a beta-
binomial distribution. This model and Poisson-gamma/Poisson-normal model (see
Sect. 2.2.3) are typically implemented via a non-linear mixed-effect model, which
is available in most commercial softwares such as SAS NLMIXED procedure. Kuss
(2015) compared various meta-analysis models for rare events and concluded his
recommendation of the beta-binominal model to estimate the odds ratio, the risk
ratio or the risk difference, and he reported that this method is comparable or
superior in terms of convergence, empirical power and empirical coverage.

2.2.3 Random-Effects Poisson Model

A Poisson model for meta-analyses to analyze rare events has been reported by
many researchers. The recent work would be a Poisson-gamma model by Cai et al.
(2010) and a Poisson-normal model by Böhning et al. (2015). The Poisson model
considers that the number of subjects with an event in the ith treatment of the mth
study, Yim follows a Poisson distribution. Further the random study effect is assumed
to follow a gamma distribution (so called Poisson-gamma model) or a normal
distribution (so called Poisson-normal model). Advantages of the Poisson model
include (a) zero-events studies are naturally addressed; (b) the varying exposure
or follow-up time can be considered. The random-effects Poisson model can be
implemented via the SAS NLMIXED procedure.

2.3 Parametric Bootstrap Resampling Meta-Analysis

Parametric meta-analyses are typically implemented via the maximum likelihood
approach with interferences based on the large sample theory. In practice, some
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model assumptions may not hold for some studies included in the analyses and
the data may not be large enough to apply the large sample theory, which possibly
result in biased estimates and inappropriate standard errors (Van Den Noortgate and
Onghena 2005). As computing intensity is not a major concern nowadays, there have
been discussions for the use of resampling for meta-analyses. Resampling methods
used for meta-analyses include bootstrap, Jacknife procedure and randomization
test.

A comprehensive view of bootstrap in a general setting can be found from
Carpenter and Bithell (2000). The use of bootstrap in meta-analyses has been
suggested by many researchers. Per my knowledge, a recent methodological work
was by Van Den Noortgate and Onghena (2005). Dong et al. (2016) presented an
application with rare events in transplant studies to address implausible estimated
event rates (e.g. negative lower limits of 95% confidence intervals of event rates)
provided from SAS NLMIXED per delta method (see more details from Sect. 3.2).

When the parametric bootstrap is applied to meta-analyses, a parametric model
is assumed known up to unknown parameters. For example, the random-effects
logistic regression model given in (6a) and (6b) is assumed known for the parameter
of interest—the event rates � im with unknown parameters � (intercept), “ (effect
vector for the covariates) and ım (random study effect). The bootstrap to construct
confidence intervals for event rates can be carried out as follows:

(a) Estimate the model parameters and their distributions, e.g. based on the
maximum likelihood method;

(b) Draw a random sample for the parameters based on their estimated distributions;
(c) Estimate event rate O� i (i D 1, 2, : : : , for treatment regimens), as well as

Od.� i, � j), a function of � i and � j (i ¤ j) of interest if applicable, e.g. Od.� i,
� j) D O� i� O� j for the event rate difference between the treatment regimens i
and j.

(d) Obtain bootstrap samples by repeating (b) and (c) B times (e.g. BD100,000);
(e) Construct confidence intervals for � i and d(� i, � j) based on the B bootstrap

samples.

3 Case Studies

3.1 A Rosiglitazone Meta-Analysis Study

Nissen and Wolski (2007) performed a meta-analysis comparing rosiglitazone (a
drug for treating type 2 diabetes mellitus) with placebo or active comparators
to assess the effect of rosiglitazone on cardiovascular outcomes of myocardial
infarction (MI) and cardiovascular disease related death (CVD). They screened 116
phase II, III and IV clinical trials. Of these, 48 trials met the predefined inclusion
criteria of having a randomized comparator group, a similar duration of treatment
in all groups, and more than 24 weeks of drug exposure (see Appendix). Six of the
48 trials did not report any MI or CVD and therefore were not included in their
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analysis. Of the remaining 42 studies, 38 with at least one MI reported and 23 with
at least one CVD reported were included in their MI and CVD analysis, respectively.

Nissen and Wolski analyzed the rosiglitazone studies with the Peto odds ratio and
concluded that rosiglitazone was associated with a significant increase in the risk of
MI (odds ratio: 1.43; 95% CI: 1.03, 1.98; p-value D 0.03) and with an increase in the
risk of CVD that had borderline significance (odds ratio: 1.64; 95% CI: 0.98, 2.74; p-
value D 0.06). This analysis was criticized by many researchers primarily due to the
exclusion of the clinical studies that did not have an event reported. The immediate
criticism was from Shuster et al. (2007) who argued that the rosiglitazone studies
had differing doses, differing follow-up, differing control medications, differing
eligibility, and differing concomitant medications, therefore, performed a random-
effects analysis with zero-events studies included. Subsequently, a number of further
re-analyses were conducted to assess rosiglitazone effect on MI and CVD. Table 2
presents the meta-analysis by Nissen and Wolski and some re-analyses by other
researchers. The latter showed inconsistent results compared to what Nissen and
Wolski reported. Shuster et al. (2007) revealed the opposite significant results (e.g.
insignificant for MI, but significant for CVD). Cai et al. (2010) reported a slightly
lower significant p-value for MI than Shuster et al. (2007) (p-value D 0.087 vs.
0.110). However the odds ratio estimated by Cai et al. (2010) was also slightly lower
than that per Shuster et al. (2007) (odds ratio D 1.33 vs. 1.51 for MI). It should be
noted that the inverse-variance weighted approach, the Mantel-Haenszel method and
Tian et al. (2009) showed a very similar point estimate of the risk difference (0.18%
� 0.19%). However, the statistical significances are very different: a very significant
risk difference (p-value D 0.001 and 0.009 for MI and VCD, respectively) vs. a
moderately significant risk difference (e.g. p-value D 0.034 and 0.048) vs. very
insignificant risk difference (e.g. p-value D 0.27 and 0.83).

Nissen and Wolski (2010) re-analyzed rosiglitazone studies with additional eight
recent studies included (in total of 56 studies) and re-stated their findings made in
2007. Subsequently, there are some re-analyses of these updated rosiglitazone study
data (e.g. Böhning et al. 2015).

3.2 A Transplant Extrapolation Study with Everolimus

Ballerstedt et al. (2015) and Dong et al. (2016) reported a pediatric investigational
plan (PIP) to assess the efficacy and safety of everolimus combined with reduced
exposure calcineurin inhibitors (CNIs) in the pediatric kidney and liver transplant
indications. This PIP commitment consisted of one new study in each of two
indications. However, the very slow enrollment made it impossible to recruit patients
in a timely manner. Following the recent EMA concept paper on extrapolation
(EMA 2013) and with consultations with EMA, an extrapolation methodology was
developed to bridge adult and pediatric data via meta-analyses, which included 57
adult studies with a total of 19,720 patients and seven pediatric studies with a total
of 652 children. In the two pediatric studies, zero events were observed.
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The meta-analysis model used for this extrapolation study was a random-effects
logistic regression model as described in (6a) and (6b). The efficacy analyses consid-
ered the primary composite endpoint of biopsy-proven acute rejection (BPAR), graft
loss or death and its main component of BPAR because most of the studies were
from literature without the composite endpoint reported. Due to the same reason, the
two timepoints Month 12 (primary) and Month 6 were considered. The covariates
included population (adult vs. children) and various immunosuppressant drugs. This
model assumed that the drug effects in combination therapies were additive in the
log-odds scale.

The model was implemented via the SAS PROC NLMIXED. For the estimated
event rates and differences in event rates, the confidence intervals (CIs) initially
obtained were based on the delta method directly from the SAS NLMIXED
procedure. However these intervals were deemed unsatisfactory, since the coverages
were poor and especially the CI limits were nonsensical (i.e. negative lower limits
for event rates). Therefore, appropriate CIs were constructed via a parametric
bootstrap approach (Dong et al. 2016) as described in Sect. 2.3. However, the
parameters of interest here for this bootstrap resampling were the average composite
efficacy failure rates at Month 12 of the treatment regimens used in the pediatric
studies for adults and children populations O� ip (i D 1, 2, : : : , for treatment regimens,
and p D 1 for children vs. 0 for adults) and the event rate differences between the
two populations d(� i1, � i0) D � i1�� i0.

4 Summary

There are methodological challenges to perform meta-analyses for rare events,
particularly for the analyses with zero-events studies included. The conventional
analyses like the inverse-variance weighted approach and the DerSimonian and
Laird random-effects method mostly provide biased results, or even could not
be mathematically calculated. Excluding zero-events studies is not a reasonable
approach at all as these studies do provide information, thus should not be ignored.
The Peto odds ratio performs well in terms of mean percentage error (but not the
confidence interval width and mean square error) when the treatment effect is small
and the sample sizes are similar between the two treatment groups; the Mantel-
Haenszel method without a continuity correction performs better in other scenarios.
The Mantel-Haenszel method for the odds ratio and the risk ratio and the Peto odds
ratio ignore the double-zero-events studies unless continuity corrections are applied.
However, the recent research does not suggest continuity corrections.

Parametric meta-analyses have an advantage to include covariates on the indi-
vidual subject level into the analysis models. However, conventional parametric
approaches deriving the variances of parameters of interest based on the large
sample theory or delta method may result in unsatisfactory results. Specific models
such as beta-binomial model and Poisson model should be considered. Bootstrap
may provide a reasonable tool to construct confidence intervals for the parameters
of interest.
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Appendix: Data for the rosiglitazone meta-analysis study
from Nissen and Wolski (2007)

Rosiglitazone Control

Study
Number of
subjects

Number of
subjects
with MI

Number of
subject
with CVD

Number of
subjects

Number of
subjects with
MI

Number of
subject
with CVD

1 357 0 1 176 0 1
2 391 1 0 207 0 2
3 774 1 0 185 0 3
4 213 1 0 109 0 4
5 232 0 1 116 0 5
6 43 1 0 47 0 6
7 121 0 0 124 0 7
8 110 2 3 114 2 8
9 382 0 0 384 0 9
10 284 0 0 135 0 10
11 294 1 2 302 1 11
12 563 0 0 142 0 12
13 278 1 0 279 1 13
14 418 0 0 212 0 14
15 395 1 2 198 0 15
16 203 1 1 106 1 16
17 104 2 0 99 0 17
18 212 0 1 107 0 18
19 138 1 1 139 0 19
20 196 0 1 96 0 20
21 122 1 0 120 0 21
22 175 1 0 173 0 22
23 56 0 0 58 0 23
24 39 0 0 38 0 24
25 561 2 1 276 0 25
26 116 3 2 111 1 26
27 148 0 2 143 0 27
28 231 0 1 242 0 28
29 89 0 0 88 0 29
30 168 0 1 172 0 30
31 116 0 0 61 0 31
32 1172 0 1 377 0 32

(continued)
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33 706 0 1 325 0 33
34 204 2 0 185 1 34
35 288 0 1 280 0 35
36 254 0 0 272 0 36
37 314 0 0 154 0 37
38 162 0 0 160 0 38
39 442 0 1 112 0 39
40 394 0 1 124 0 40
41 2635 9 12 2634 10 41
42 1456 41 2 2895 5 42
43 101 0 0 51 0 43
44 232 0 0 115 0 44
45 70 0 0 75 0 45
46 25 0 0 24 0 46
47 196 0 0 195 0 47
48 676 0 0 225 0 48
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New Challenges and Strategies in Robust
Optimal Design for Multicategory Logit
Modelling

Timothy E. O’Brien and Changwon Lim

1 Introduction

Binary logistic and multi-category logit (MCL) regression models are amongst the
most popular techniques in applied research where a goal is to determine rela-
tionships between attributes and/or adjusting for covariates. As such, introductory
statistics texts cover these methods, and many applications-focused students note
their usefulness in basic statistical methods courses. Aside from choosing from
probit-based or logit-based link functions, modelling in the logistic case is relatively
straightforward. But the situation is complicated in the multi-category case since
several reasonable rival models have been suggested to handle these data. In these
MCL cases, the practitioner is thus faced with choosing one of these models over
the others, and, more importantly, deciding which experimental design to use. As in
all cases of modelling, it is desired that this design should then allow for efficient
model-parameter estimation and provide for a test of goodness-of-fit of the chosen
model.

Important background to quantal, logistic and multicategory modelling is given
in McCullagh and Nelder (1989), Agresti (2007, 2013), and Dobson and Barnett
(2008), and extensions and applications are provided in Finney (1978). Optimal
design strategies are introduced and illustrated in Silvey (1980), O’Brien and Funk
(2003) and Atkinson et al. (2007), and geometric and uniform designs are explored
in O’Brien et al. (2009).
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In the context of typical MCL modelling situations, in what follows we provide
needed background and introduce and demonstrate the usefulness of model-robust
near optimal designs, highlighting extensions that allow for geometric and uniform
design strategies. Thus, these results provide practitioners with useful guidelines in
situations where potentially several MCL models can be chosen for a given dataset.
Note that although the illustrations provided in this paper concern only three-
level outcomes with a single explanatory variable, the results have been applied
to numerous illustrations involving several independent variables and as many as
five outcome categories.

2 Quantal Dose-Response Modelling

For the binary logistic model, where the x variable corresponds to dose or
concentration, it is common that the researcher wishes to select the k dose points
to run the experiment. This dose selection as well as the number of replicates at
each of these points is the experimental design problem addressed here in a larger
context. For ni experimental units receiving dose xi, the logistic model holds that
the number of “successes” yi has a binomial distribution with success probability
� i; under the assumed logit link, we obtain the generalized linear model equation,

log
�

�i
1��i

	
D ˛ C ˇxi. Also, when this model function is reparameterized so that

the ED50 parameter � D �˛
ˇ

is a model parameter—so that the right-hand side in
this expression is ˇ(x � � )—the model then becomes generalized nonlinear model.
Important references for generalized linear and nonlinear models include McCul-
lagh and Nelder (1989), Agresti (2007, 2013), and Dobson and Barnett (2008).

In contrast with binary logistic situation—where experiments result in “suc-
cesses” or “failures”—often the number of outcomes is three or more. Commonly-
used models for these data include the adjacent category logit (ACL), baseline
category logit (BCL), continuation ratio (CR), and proportional odds (PO). For
example, in the case of K D 3 outcomes and single predictor x, the ACL model
is given by the simultaneous equations

8
<̂

:̂

.i/ log
�
�1
�2

	
D ˛1 C ˇ1x

.ii/ log
�
�2
�3

	
D ˛2 C ˇ2x

(1)

Denoting ex1 D e˛1Cˇ1x; ex2 D e˛2Cˇ2x; den D 1 C ex1 C .ex1/ .ex2/,
this expression is equivalent to �1 D (ex1)(ex2)/den,�2 D ex2/den,�3 D 1/den. To
obtain parameter estimates, confidence regions/intervals and experimental designs,
these expressions can be substituted into the log-likelihood expression. The BCL
model amends the left-hand sides of the expressions in (1) with (i) log(�1/�3) and
(ii) log(�2/�3). It is therefore observed that the BCL model is equivalent to the
ACL model through a simple reparameterization, and it is therefore subsumed by



New Challenges and Strategies in Robust Optimal Design for Multicategory. . . 63

Table 1 Multicategory logit models for K D 3 outcomes

Continuation ratio A (CRA) model8
<

:
.i/ log

�
�1
�2

	
D ˛1 C ˇ1x

.ii/ log
�
�1C�2
�3

	
D ˛2 C ˇ2x

Un-proportional odds (UPO) logit model8
<

:
.i/ log

�
�1

�2C�3
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�1C�2
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Adjacent category logit (ACL) model8
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.i/ log
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Continuation ratio B (CRB) model8
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.i/ log
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�2
�3

	
D ˛2 C ˇ2x

results for the ACL model. Additional details regarding multicategory logit models
are given below as well as in Agresti (2007, 2013).

In addition to the ACL model, a listing of useful multicategory logit models is
given in Table 1. For K D 3 outcomes, each of these models entails two equations.
These expressions are easily extended to K > 3 outcomes where each model would
then contain (K � 1) equations.

As specified in Table 1, in addition to the ACL model, commonly-used models
include the two variants of the Continuation Ratio model (denoted CRA and CRB
here) as well as the Proportional Odds (PO) model. The PO model is derived from
the UPO model imposing the equal-slope restriction, viz, ˇ1 Dˇ2(Dˇ). In addition
to noting similarities and differences in models, an important goal in listing these
models here is to unify them under one umbrella in order to provide the researcher
with near-optimal robust designs (see Sect. 5).

Example 1 Price et al. (1987) provides toxicity data involving pregnant mice in
which the predictor variable is the concentration of a certain ether. The chosen
concentration levels in the study were xi D 0, 62.5, 125, 250, 500 mg/kg per day.
With respective sample sizes of ni D 297, 242, 312, 299, 285, the total sample size
is n D 1435 mice. The response variable here encompassed the three levels relating
to the status of the offspring: death, malformed, or normal. Among the model
functions given in Table 1, the model with the highest log-likelihood value (and
thus AIC) here is the CRB model, with maximum likelihood estimates: b̨1 D

�3:2479; b̌1 D 0:0064;b̨2 D �5:7019; b̌2 D 0:0174. In terms of interpretation
of these estimates, since equation (i) in the CRB model contrasts dead with alive
offspring and equation (ii) contrasts malformed with normal offspring, these results
are best interpreted in terms of odds ratios: as the concentration level increases by
an additional 100 mg/kg/day, the odds of a dead pup (versus alive) increases by a

multiplicative factor of e100b̌1 D 1:89 and the odds of a malformed pup (versus

normal) increases by a multiplicative factor of e100b̌2 D 5:68.
We return to this illustration below to demonstrate ways to improve upon the

chosen experimental design.
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3 Confidence Regions and Intervals

As noted in Seber and Wild (1989), in the case of normal linear and nonlinear
models involving the p-vector � of model parameters, (1 �˛)100% Wald confi-

dence regions for � are of the form:

�
� 2 ‚ W

�
� �b�

	TbV
TbV

�
� �b�

	
� ps2F˛

�
.

In this expression, b� is the least-squares (i.e., maximum likelihood) estimate of
� , bV is the n 
 p Jacobian matrix of first derivatives evaluated at b� , s2 is the
mean square error (estimator of 
2), and F˛ is a tabled F percentile with p and
n � p degrees of freedom with tail probability of ˛. The (1 �˛)100% likelihood-

based confidence region in this situation is
n
� 2 ‚ W S .�/ � S

�
b�
	

� ps2F˛
o
.

Here, S(�) D (y � �(x, �))T (y � �(x, �)) D "T". These two regions will be nearly
equivalent depending upon the degree to which the (vector) model function, �(x, �),

is well-approximated by the planar expression, �
�

x;b�
	

C bV
�
� �b�

	
. In normal

linear models, this result is exactly met, and only approximately so for normal
nonlinear, generalized linear, and generalized nonlinear models.

In non-normal situations, such as those considered here, approximate
(1 �˛)100% likelihood-based confidence regions are of the formn
� 2 ‚ W 2

h
LL .�/ � LL

�
b�
	i

� �2˛

o
, where LL(� ) is the model log-likelihood

and �2˛ is a tabled �2 percentile with p degrees of freedom and tail probability equal
to ˛. Wald and likelihood confidence intervals can be obtained from these regions
by conditioning or profiling; further details are given in Seber and Wild (1989) and
Pawitan (2013). Notably, often the researcher wishes to choose an experimental
design to reduce the length of the resulting confidence interval or the volume of the
resulting confidence region.

4 Optimal Design Theory

An n-point design, denoted � , is written

� D

(
x1 x2 : : : xn

!1 !2 : : : !n

)
(2)

The ! i are non-negative design weights which sum to one, and the xi are design
points (or vectors) that belong to the design space, and which are not neces-
sarily distinct. For the constant-variance normal setting with linear or nonlinear
normal model function �(x, �), the n 
 p Jacobian matrix is V D @�

@�
. Denoting

� D diag f!1,!2, : : : ,!ng, the p 
 p (Fisher) information matrix is then written

M .�;�/ D VT�V (3)
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In the more general case of either non-constant variance or non-normality, the
corresponding information matrix is given by

M .�;�/ D �E

�
@2LL

@�@�T

�
(4)

As underscored in Atkinson et al. (2007), the information matrix for the binary
logistic model has the same form as in (3) with an appropriate modification of
the weight matrix �. Since the (asymptotic) variance of b�MLE is proportional
to M�1(� , �), in many regression settings designs are often chosen to minimize
some (convex) function of M�1(� , �). For example, designs which minimize its
determinant are called D-optimal. As noted in Seber and Wild (1989), these designs
minimize the volume of the confidence region given in the previous section. Since
for nonlinear/logistic models, M depends upon � , so-called local (or Bayesian)
designs are typically obtained.

The (approximate) variance of the predicted response at the value x is

d .x; �;�/ D
@� .x;�/

@�T M�1 .�/
@� .x;�/

@�
D tr

˚
M�1 .�/M.x/

�
(5)

Here, M.x/ D @�.x;�/
@�

@�.x;�/
@�T is the information matrix evaluated at the arbitrary

value x; note that in contrasting with Eq. (4) where it is highlighted that for nonlinear
models the information matrix depends upon the design and parameter values,
occasionally one or both of these symbols are drop in what follows merely for
typographic simplicity. Designs that minimize (over �) the maximum (over x) of
d(x, � , �) in (5) are called G-optimal. As stated above, since this predicted variance
depends upon � for logistic and nonlinear models, researchers often seek optimal
designs either using a “best guess” for � (called a local optimal design) or by
assuming a plausible prior distribution on � (called a Bayesian optimal design).

The General Equivalence Theorem (GET) of Kiefer and Wolfowitz (1960) estab-
lishes that D- and G-optimal designs are equivalent. This theorem also demonstrates
that the variance function (5) evaluated using the D�/G-optimal design does not
exceed the line y D p (where p is the number of model function parameters)—but
that it will exceed this line for all other designs. A corollary of the GET establishes
that the maximum of the variance function is achieved for the D�/G-optimal design
at the support points of this design. This result is very useful in demonstrating
optimality of a given design, by substituting it into (5) and plotting the resulting
variance function. Results and additional references for optimal design in binary
logistic settings are given in Abdelbasit and Plackett (1983) and Minkin (1987), and
in the general setting in Silvey (1980).

Example 1 Continued For the pregnant mice illustration and CRB model with the
(MLE) parameter estimates given above and design points in the range [0, 2000], the
local D-optimal design associates the respective weights w D 0.4058, 0.3805, 0.2136
with design support points (concentrations) x D 222.59, 401.35, 767.91. The
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Fig. 1 Variance function for CRB model using D-optimal design—pregnant mice example

corresponding variance-function plot is shown in Fig. 1 along with the cut line,
y D 4, since this model contains p D 4 parameters. D-optimality is established here
by noting that the variance function does not exceed the cut-line.

Mindful that for the models considered here we are typically more interested in
efficient estimation of only a subset of the model parameters, we partition the Fisher
information matrix as

M D

�
M11 M12

M21 M22

�
(6)

In this expression, each sub-matrix Mij is of dimension pi 
 pj for i, j D 1, 2, and
p1 C p2 D p. In the current situation, the parameter vector is similarly partitioned,

� D

�
�1

�2

�
with �1 of dimension p1 
 1, �2 of dimension p2 
 1, and �1 is the

parameter vector of interest and �2 are the nuisance parameters. Subset D-optimal
designs for �2 in the joint model, as discussed in Atkinson et al. (2007), are obtained
by maximizing

ˇ̌
M22 � M21M�1

11 M12

ˇ̌
D

jMj

jM11j
(7)
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Noting problems associated with subset designs, O’Brien (2005) and Atkinson
et al. (2007) instead combine the subset and full-parameter criteria and suggest that
designs be chosen to maximize the objective function

ˆ� .�;�/ D
1 � �

p1
log jM11j C

�

p2
log

ˇ̌
M22 � M21M�1

11 M12

ˇ̌
(8)

For � chosen in the interval
h
0; p2

p

i
, we call designs that maximize (8) D�-

optimal. The resulting designs range from D-optimal designs for the �1 parameters
in the smaller model containing only the �1 parameters for the choice �D 0 to
D-optimal designs for the full � parameter vector in the larger model for the
choice � D p2

p . The corresponding variance function associated with (8) and
an extension of the General Equivalence Theorem are then used to ensure D�-
optimality of the resulting design by plotting the variance function, with the note that
this normalized variance function has cut line y D 1 instead of y D p. To illustrate
using the first example given in O’Brien (2005), the subset design for the two-
parameter intermediate product model comprises only a single design support point
and so is a singular design, whereas the D�-optimal design has two support points

for � in
�
0; p2

p

i
.

A measure of the distance or discrepancy between an arbitrary design �C and the
D-optimal design ��

D is the D-efficiency discussed in O’Brien and Funk (2003) and
Atkinson et al. (2007), and given by the expression

 
jM .�C/jˇ̌
M


��

D

�ˇ̌
!1=p

(9)

To illustrate, for an arbitrary design �C with a D-efficiency of 66.7%, the
researcher would need 50% more (1/0.667) experimental units to obtain the same
information as the D-optimal design. Thus, in this setting, the same information
would thus be achieved using the D-optimal design and only 120 experimental units
as with the chosen (arbitrary) design using 180 experimental units.

The above advantage (i.e., optimality) notwithstanding, optimal designs can
often only be used as a starting point in realistic situations since they often have
some associated shortcomings. One important shortcoming is that often in practice,
optimal designs for p-parameter model functions comprise only p support points,
and so they provide little or no ability to test for lack of fit of the assumed model.
Indeed, for the pregnant mice example discussed above, although the model contains
p D 4 model parameters, the D-optimal design contains only three support points, so
this design gives little or no means to check model adequacy. Further, in spite of the
important theoretical optimal design results given in Zocchi and Atkinson (1999),
Fan and Chaloner (2001), and Perevozskaya et al. (2003) for the CRB, CRA and
PO models respectively, these works do not directly deal with the model-robustness
issues raised and addressed here.
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Table 2 Local D-optimal designs for pregnant mice example

Continuation ratio A (CRA) model

��

CRA D

(
194:5 428:1 1682:0

0:3023 0:4531 0:2445

) Un-proportional odds (UPO) logit model

��

UPO D

(
0 353:2 678:2

0:3575 0:4066 0:2359

)

Adjacent category logit (ACL) model

��

AC D

(
193:5 425:5 1554:8

0:3037 0:4527 0:2435

) Continuation ratio B (CRB) model

��

CRB D

(
222:6 401:3 767:9

0:4058 0:3805 0:2136

)

Importantly, optimal designs can also vary substantially—including the ACL,
CRA, CRB and UPO models considered here. To illustrate, for the pregnant mice
example and the concentration-range [0, 2000] as used in Price et al. (1987), the
local D-optimal designs are given in Table 2 (obtained using the respective best
fitting model parameter estimates). Note that whereas one such optimal design
includes a concentration level as low as 0 mg/kg (i.e., for the UPO model), the
highest concentration in another design is almost 1700 mg/kg (i.e., for the CRA
model). This underscores the fact that optimal designs for one model may be very
inefficient for another model.

As noted above, the designs and design strategies considered to date have focused
primarily on efficiently estimating parameters in the assumed model, and not
focused on allowing for—or discriminating amongst—other MCL models. Since in
general rival models exist, clearly designs should also highlight which model best
fits the data. That is, researchers often desire near-optimal so-called “robust” designs
which have extra support points that can then be used to test for model adequacy.
We next give very useful means to obtain these robust near-optimal designs.

5 Near-Optimal Robust Design Strategies

The structure of the four multicategory logit models considered in Table 1 suggest
the following model function, which we refer to as the generalized ordinal logit
(GOL) model function:

8
<

:
.i/ log

�
�1

�2C�1�3

	
D ˛1 C ˇ1x

.ii/ log
�
�2�1C�2

�3

	
D ˛2 C ˇ2x

(10)

In this expression, �1 and �2 are additional (or “hyper”) parameters introduced
to connect the above models. The ACL, CRA, CRB, and UPO models result
by choosing (�1, �2) D (0, 0), (0, 1), (1, 0), (1, 1), respectively. As a result, for the
GOL model, we impose the constraints 0 � �1 � 1, 0 � �2 � 1; numerically this is
achieved by imposing for example for i D 1; 2; �i D e i

1Ce i
so when  i varies

between �1 and 1, (�1, �2) is bounded in the unit square. Estimation of the six
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model parameters (including the hyper-parameters) can easily be achieved using
maximum likelihood estimation algorithms. Although none of the ACL, CRA, CRB,
or UPO models are special cases of another, since each of these models is nested in
the larger GOL model, differences between each of these models and the best-fitting
GOL model can be evaluated using the asymptotic �2 test statistic (i.e., two times
the change in log-likelihood) with associated 2 degrees of freedom. Further, subsets
of this larger family can also be connected: an important such special case of the
GOL model is the UPOCRB model, obtain for �1 D 1. This latter model connects
UPO and CRB models, and is demonstrated in the illustration below.

The key goal of our introducing the GOL model here is to facilitate our obtaining
model-robust near-optimal designs. This is achieved by viewing the assumed model
function chosen from one of the constituents (viz, ACL, CRA, CRB, and UPO) as
an element of the GOL family and using the modified subset design procedure given
in (8) to obtain D�-optimal designs. For example, if the ACL is the assume model
function with given a priori parameter estimates for this ACL model, it is suggested
to use design criterion (8) with �T

2 D .�1; �2/ D .0; 0/ and �T
1 D .˛1; ˇ1; ˛2; ˇ2/

fixed at the a priori parameter estimates. We choose the tuning parameter � in (8)
so that the D-efficiency given in (9) for the ACL model exceeds some lower bound
such as 90%. We thereby obtain an efficient model-robust D�-optimal design. This
is illustrated in the following example.

Example 1 Continued For the pregnant mice illustration, the best fitting model is
the CRB model and second best fitting model is the UPO model. As highlighted in
Table 2, the (local) optimal designs for these two models differ substantially, with
one design containing a lowest concentration of 0 and the other containing a lower
bound in excess of 200. Further, since the fit of these two models to these data is far
superior to the other two models, we view the chosen CRB model as embedded in
the UPOCRB model. As noted above, we envision the frequently-encountered situ-
ation in which the researcher has the CRB model in mind (with a priori parameter
estimates), and desires a near-optimal design which satisfies the dual objectives of:
(1) efficiently estimating the CRB model parameters, and (2) providing for some
ability to test for lack-of-fit in the direction of the UPO model. Taking �D 0.05,
the local D�-optimal design assigns the weights w D 0.0856, 0.3635, 0.3572, 0.1937
to the design points (concentrations) x D 0, 230.5, 405.8, 760.9. We underscore that
the additional design support point reflects the multi-objective nature of this design.
Indeed, D�-optimality of this design is established by noting that the corresponding
variance function, plotted in Fig. 2, lies below the cut line y D 1. The associated
D-efficiency for this design for the CRB model is 95.3% and for the UPO model
exceeds 80%, and so it is therefore quite efficient for both models. Certainly, if
the researcher was concerned with departures from the assumed CRB model in the
direction of the ACL and/or CRA models in addition to the UPO model, we would
easily embed the CRB model in the larger GOL model and find the associated D�-
optimal design.

The structure of the design chosen in Price et al. (1987), as well as several
additional examples given in O’Brien et al. (2009), underscores the popularity of
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Fig. 2 Variance function for UPOCRB model using D� -optimal design—pregnant mice example

geometric and uniform designs in practical settings. Thus, we also examine here
robust geometric designs of the form x D a, ab, ab2 : : : abK for multicategory logit
models, checking to see whether addition of the point x D 0 improves this geo-
metric design. Here, K is specified by the researcher, and computer maximization
algorithms are used to obtain optimal values of a and b as well as any associated
information loss (as measured by the D-efficiency). We have also obtained optimal
uniform designs of the form A, A C B, A C 2B : : :A C KB, letting the final choice of
the design structure (geometric or uniform) be the one with the higher D-efficiency
or up to the researcher’s discretion. So that the final design is robust to the assumed
model function choice, we recommend obtaining local D�-optimal designs using
the modified subset design procedure given in (8) and with � chosen to yield a
sufficiently-high final D-efficiency for the assumed sub-model.

Example 1 Continued For the pregnant mice illustration and now embedding
the CRB model in the GOL model, we have noted somewhat higher D-
efficiencies for geometric designs over uniform designs, so we highlight only
geometric designs here. As such, we have sought designs which associate
weights of the form !� , 1�!�

4
, 1�!�

4
, 1�!�

4
, 1�!�

4
respectively with support

points x D 0, a, ab, ab2, ab3. Hence, robust geometric designs have been obtained
here by optimizing over !� , a, b. Choosing �D 0.10 yields the optimal values
!� D 0.054, a D 160.2, b D 1.65, and produces a robust optimal design with D-
efficiency (for the CRB model) of 90.6%. For the total sample size used by the
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authors (n D 1435), this design assigns 79, 339, 339, 339, 339 mice to the respective
concentrations x D 0, 169.2, 264.2, 435.8, 718.9. We emphasize that the original
design used in Price et al. (1987) given above—with nearly uniform weights and
geometric support points x D 0, 62.5, 125, 250, 500—has D-efficiency (for the CRB
model) of only 62.8%. Therefore, with a D-efficiency in excess of 90%, the robust
optimal geometric design strategy and design suggested here is strongly favored.

Some additional extensions—further demonstrating the breadth of our multiple-
objective design strategy—are provided in the following illustration.

Example 2 Zocchi and Atkinson (1999) presents a dataset in which seven sets of
500 housefly pupae were exposed to one of seven doses of gamma radiation. The
response variable for this study encompassed the three classes: death, opened but
died before complete emergence, and complete emergence. The chosen radiation
levels in the study were x D 80, 100, 120, 140, 160, 180, 200 Gy, and with equal
replicates of ni D 500 fly pupae per level, the total sample size was therefore
n D 3500. Due to nonlinearities involved with these data, the authors suggest
quadratic fits, and for the ACL, CRA, CRB and UPO models considered here, the
best-fitting is the quadratic CRA model,

8
<

:
.i/ log

�
�1
�2

	
D ˛1 C ˇ1x C �1x2

.ii/ log
�
�1C�2
�3

	
D ˛2 C ˇ2x C �2x2

(11)

We underscore that, with design points constrained to lie in the design space
[80, 200], the (local) D-optimal design for this model places equal weights at only
three design points: x D 80, 125.2, 163.6. With only three support points, this design
is thus of limited use to detect lack of fit of the assumed model. This model is easily
embedded in the corresponding quadratic GOL model (which then contains eight
parameters), and local D�-optimal designs using the modified subset design proce-
dure given in (8) can then be easily obtained. Here, with �D 0.25, the local D�-
optimal design associates the weights w D 0.2423, 0.0456, 0.2272, 0.2454, 0.2395
with the five design points x D 80, 97.8, 116.1, 147.4, 182.1. With a D-efficiency of
93.5%, this design represents only a minor information loss but a vast improvement
in terms of additional design support points and thus the ability to test for
model adequacy. To justify the claim of optimality, the corresponding scaled
variance function is given in Fig. 3, and D�-optimality is established by noting
that this function lies below the cut-line y D 1. Also, among designs of the
form A, A C B, A C 2B, : : : , A C 6B, using �D 0.10, the local D�-optimal uniform
design has the support points, x D 80, 96.6, 113.2, 129.8, 146.4, 163.0, 179.6. Our
final recommendation would be to allocate 500 fly pupae to each of these seven
radiation levels. Whereas the original (uniform) seven-point design given in Zocchi
and Atkinson (1999) has a D-efficiency (viz-a-viz the CRA model) of 84.1%,
this proposed design increases the D-efficiency to 92.1%, and represents a modest
improvement.
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Fig. 3 Variance function for GOL model using D� -optimal design—house flies example

6 Discussion

In addition to linear and logistic regression models, researchers often find that
multi-category logit models—including the adjacent category logit, baseline cate-
gory logit, continuation ratio and proportional odds models considered here—are
useful for modelling their data. The resulting parameter estimates then aid these
researchers to make predictions or comparisons under different settings, for example
using estimated odds ratios across strata. As such, practical experimental design
methodologies are needed to gather the data to estimate these values and make
needed predictions, and these researchers often consider using optimal designs.

But important theoretical optimal design results that are applicable only to the
assumed model function are of only limited use to the practitioner. As noted, most
optimal designs for models containing only p support points comprise no more than
p support points, and this is certainly the case for the MCL models considered
here. Underscoring this fact, Govaerts (1996) comments that this limitation prevents
the use of optimal designs in most industrial settings. Therefore, the multiple-
objective design strategies introduced and illustrated here for multi-category logit
models—as well as in Hyun and Wong (2015) for normal nonlinear models—are
paramount in applied research. Additionally, the extension of our GOL nesting
strategy to incorporate geometric- and uniform-type designs gives practitioners
clear suggestions as to how these designs in situations where they are desired. The
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suggested designs suggested here are indeed very “near” to the optimal designs in
the sense that often the resulting D-efficiency is above 90%. As such, practitioners
typically find that an information loss of less than 10% is relatively small compared
to the practical nature of geometric and uniform robust designs and the resulting
ability to assess model goodness-of-fit.

We conclude by pointing out that beyond the MCL models considered here—
viz, the PO, UPO, ACL, CRA and CRB—authors such as Agresti (2010) and others
have introduced yet more models for ordinal response data, and extensions of our
methods provided here to these additional cases are now under study.
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Testing of Multivariate Spline Growth Model

Tapio Nummi, Jyrki Möttönen, and Martti T. Tuomisto

1 Introduction

Modeling of growth have been of special interest for statisticians over many
decades. Many approaches have been proposed for the purpose depending on the
research design as well as the assumptions imposed on the data. In our study we
focus on methods likely to be especially useful in an experimental situation where
more than one variable is measured at each measuring point which is the same for
each individual. It is also common in these situations that some experimental groups
are tested against each other. One of the most important statistical models for such
data is the Growth Curve Model (GCM) of Potthoff and Roy (1964). The early
development of this model was mainly based on an unstructured covariance matrix
for random vectors (e.g. Khatri 1966 and Grizzle and Allen 1969) with multivariate
analysis methods applied after some data transformation. Later developments also
introduced some parsimonious models for the covariance matrix (see e.g. Azzalini
1987, Lee 1991 and Nummi 1997). The books by Kshirsagar and Smith (1955)
and Pan and Fang (2002) provide comprehensive summaries of the main lines of
development under GCM.

The methods introduced in the past have mainly been confined on one-response
models. However, our focus is on the situation where more than one response
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variable are involved. Naturally, this also creates a special challenge for modeling
the covariance within and between the variables studied. Another challenge is
the actual modeling of growth or development that have often been based on the
application of parametric linear models. Modeling of growth in this study is based
on the use of cubic smoothing splines. For statistical inference with smoothing
splines we can refer to Eubank and Spiegelman (1990), Schimek (2000), Cantoni
and Hastie (2002), Liu and Wang (2004) and Nummi et al. (2011). The main focus
of these studies has been on testing the order of the polynomial model against
a spline alternative. However, in a growth modeling context the more important
goal is to test whether the mean growth differs in some respect across treatment
groups. This topic has been studied in the one-variable situation in Nummi and
Koskela (2008) and Nummi and Mesue (2013). The aim of this study is to extend
the approach presented in Nummi and Mesue (2013) to the multivariate situation
with an application to cardiology testing data.

In Sect. 2 we introduce the basic spline growth model. In Sect. 3 a spline
approximation is introduced and a test for mean curves developed. In Sect. 4 the
model is extended to the multiple response situation. In Sect. 5 a computational
example of multivariate modeling in behavioral cardiology is presented.

2 Modeling Growth with Smooth Functions

We begin by presenting the growth curve model of Potthoff and Roy (1964). This
model can be written as

Y D TBA0 C E; (1)

where Y D .y1; y2; : : : ; yn/ is the q
n matrix of independent q
1 response vectors,
T is a q 
 p within-individual design matrix, A is an n 
 m between-individual
design matrix, B is an unknown p 
 m parameter matrix to be estimated and E is
a q 
 n matrix of random errors. It is assumed that the columns e1; : : : ; en of E are
independently normally distributed as ei � N.000;†††/; i D 1; : : : ; n:

In many practical situations, it may be difficult to find a parametric growth model
that can be theoretically justified. Often low degree polynomial models are used
to summarize the mean growth profiles. Our approach is to use cubic smoothing
splines, which are very flexible curves with interesting mathematical properties (see
e.g. Green and Silverman 1994). The Spline Growth Model (SGM) (see Nummi and
Koskela 2008 and Nummi and Mesue 2013) can be written as

Y D GA0 C E; (2)

where G D .g1; : : : ; gm/ is the matrix of smooth mean growth curves at time
points t1; t2; : : : ; tq, where it is assumed that ††† follows a parsimonious covariance
structure ††† D 
2R.���/ with covariance parameters ��� . The growth curve model
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of (1) is now the special case G D TB. Note that our analysis is limited to the
situation where measurement points are the same for each individual (complete and
balanced data). One of the main advantages of this approach is that certain special
covariance structures can be nicely incorporated into the analysis with hypothesis
testing using F-test. Smoothing in more general context have been considered by
Rice and Silverman (1991), Rice and Wu (2001) and Muller et al. (2005), for
example.

The fitted curves can be obtained by minimizing the penalized least squares
(PLS) criterion

Q D trŒ.Y � PG/0H.Y � PG/C ˛ PG0K PG�; (3)

where we denote PG D GA0, H D R�1 and K is the roughness matrix from
roughness penalty RP D

R
g002 and ˛ is a fixed smoothing parameter. The roughness

matrix is now

K D rrr����1rrr 0; (4)

where the non-zero elements of banded q 
 .q � 2/ and .q � 2/ 
 .q � 2/ matrices
rrr and��� are respectively

rrrk;k D
1

hk
; rrrkC1;k D �

�
1

hk
C

1

hkC1

�
; rrrkC2;k D

1

hkC1

(5)

and

���k;kC1 D���kC1;k D
hkC1

6
; ���k;k D

hk C hkC1

3
; (6)

where hj D tjC1 � tj; j D 1; 2; : : :; .q � 1/ and k D 1; 2; : : :; .q � 2/. It can be shown
that minimizing Q for given ˛ and H yields the estimator (Nummi and Mesue 2013)

QG D .H C ˛K/�1HYA.A0A/�1; (7)

where the fitted growth curves QG are natural cubic smoothing splines. In practical
situations the precision matrix H may unfortunately not be known. However, if

KR D K or equivalently K D KH (8)

the spline estimator QG simplifies as

OG D .Iq C ˛K/�1YA.A0A/�1 D SYA.A0A/�1; (9)

where the smoother matrix is S D .Iq C ˛K/�1. Note that for fixed ˛ the fitted
splines are simple linear functions of the observations. If we define X D .1q; x/,
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where x is a vector of q measuring times, and since rrr 0 and X are orthogonal, it is
easily seen that the well known structures R D Iq C 
2d 1q10

q, R D Iq C 
2d0XX0 and
R D Iq C XDX0 meet the condition (8). The Generalized Cross-Validation criteria
for choosing the smoothing parameter ˛ can be written as

GCV.˛/ D

1
nq

Pn
iD1

Pq
jD1Œyij � Oyij�

2

.1 � m�edf
nq /2

; (10)

where yij and Oyij are observed and smoothed values and edf D tr.S/.

3 Testing of Mean Curves

Testing is an essential part of the analysis of growth curves. This have often been
based on some transformed version of the model (e.g. MANCOVA), with MANOVA
testing statistics. These methods have been nicely summarized in Seber (1984),
Timm (2002), Kollo and Rosen (2005), Kshirsagar and Smith (1955) and Pan
and Fang (2002). Testing for multivariate growth curves with certain patterned
covariance matrix for random errors is considered in Nummi and Mottonen (2000),
for example.

Testing hypotheses with smoothing splines may not be as straightforward as it is
with more classical linear models or in a multivariate analysis context. One possible
alternative would be to use techniques developed for functional data analysis, see
e.g. Ramsay and Silverman (2002). The functional data ANOVA method have been
compared with some usual MANOVA tests in Cuesta and Febrero (2010). Here the
proposed approach is based on spline approximation. Then more traditional testing
methods (Azzalini 1987; Nummi and Mottonen 2000; Nummi and Koskela 2008;
Nummi and Mesue 2013) are applied to approximated curves. The advantage is that
in some important special cases the test statistic derived has an exact distribution.

3.1 Spline Approximation

The smoother matrix S is not a projection matrix and therefore certain results
developed for linear models are not directly applicable here. Our approach is to
approximate the spline fit in such a way that the smoother matrix utilized has the
properties of a projection matrix. The smoother matrix can be written as e.g. Hastie
(1996)

S D M.Iq C ˛ƒƒƒ/�1M0; (11)



Testing of Multivariate Spline Growth Model 79

where M is the matrix of q orthogonal eigenvectors of K and ƒƒƒ is a diagonal
matrix of corresponding q eigenvalues. This shows that K and S share the same
set of eigenvectors m1;m2; : : : ;mq and the eigenvalues are connected such that
the eigenvalues of S are � D 1=.1 C ˛�/. Here we assume that eigenvectors
m1;m2; : : : ;mq are ordered according to the eigenvalues of S. Note that the first two
eigenvalues are always 1, and we can set m1 D 1q=

p
q and m2 D t�; where t� D

.t � Nt1q/=St; Nt D 1
q

Pq
iD1 ti and St D

qPq
iD1.ti � Nt/2 are calculated from the time

points t1; : : : ; tq. It is seen that the first two eigenvectors m1 and m2 span a straight
line model and the sequence of eigenvectors appears to increase in complexity
like a sequence of orthogonal polynomials (Ruppert et al. 2005). Therefore one
reasonable approximation arises directly from the spline basis m1;m2; : : : ;mq using
c first eigenvectors. The smoother matrix S is substituted by P� D M�M0

�, where
M� D .m1;m2; : : : ;mc/. This approximation has several advantages. Firstly, P�

has the properties of a projection matrix, it is computationally very simple (can
be obtained directly from K) and provides a good approximation of the spline fit
(Nummi et al. 2011). More detailed consideration of spline approximations can be
found e.g. in Hastie (1996). The Generalized Cross-Validation criteria for choosing
c can be written as

GCV.˛/ D

1
nq

Pn
iD1

Pq
jD1Œyij � Nyij�

2

.1 � m�c
nq /

2
; (12)

where fitted values Nyij are obtained from

NY D P�YP; (13)

where P D A.A0A/�1A0.

3.2 Constructing a Test for Mean Spline Curves

As discussed in the previous section the set of fitted approximation curves can be
obtained from

NY D P�YP D M�
O���A0; (14)

where we denoted O��� D M0
�YA.A0A/�1. These are just the fitted growth curves

when spline basis M� is taken as the within-individual model in the growth curve
model (1). Therefore all the relevant information for testing mean profiles is in O���,
which can now be considered to be an unbiased estimate of the parameters of the
ordinary growth curve model E.Y/ D M����A0. Testing can be based on the linear
hypothesis of the form

H0 W C���D D 0;
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where C and D are known  
 c and m 
 g matrices with ranks  and g respectively.
It is shown in Nummi and Mesue (2013) that testing can based on

F D
Q�=g

O
2
� FŒg; n.q � c/�; (15)

where

Q� D tr
˚
ŒD0.A0A/�1D��1ŒC O���D�0ŒCM0

�RM�C0��1ŒC O���D�
�

(16)

and

O
2 D
1

n.q � c/
tr
˚
Y0.Iq � P�/Y

�
(17)

In practical situations R contains unknown parameters that need to be estimated and
therefore the distribution of the F-statistic is only approximate. However, if we are
only interested in progression in time we can take C D Œ0�.c�/; I� (constant term
dropped) and if we assume the uniform covariance model R D d21q10

q CIq, it can be
shown that the distribution of the test statistics is exact. This is an important result
since the uniform covariance model is quite common and a good approximation in
many situations. In Nummi and Mesue (2013) other kinds of situations are discussed
that yield an exact version of the F-test introduced here.

4 Multivariate Spline Growth Curve Model

In this section we generalize the spline growth model to a multivariate response
case. The multivariate spline growth curve model is then written as

Y D GA0; (18)

where

Y D .y1; : : : ; yn/ D

0

BBB@

y11 y21 � � � yn1

y12 y22 � � � yn2
:::

:::
: : :

:::

y1s y2s � � � yns

1

CCCA

is a qs 
 n matrix of the vectors of measurements of s responses and

G D .g1; : : : ; gm/ D

0

BBB@

g11 g21 � � � gm1

g12 g22 � � � gm2
:::

:::
: : :

:::

g1s g2s � � � gms

1

CCCA
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is the corresponding qs
m matrix of smooth mean curves. For the covariance matrix
R we can take, for example, a multivariate version of the uniform structure

R D .Is ˝ 1q/D.Is ˝ 1q/
0 C Iqs

D

0

BBBB@

d211q10
q C Iq d121q10

q � � � d1s1q10
q

d211q10
q d221q10

q C Iq � � � d2s1q10
q

:::
:::

: : :
:::

ds11q10
q ds21q10

q � � � d2s 1q10
q C Iq

1

CCCCA
: (19)

If we now define the roughness part of the fitting criteria as

Ks D W ˝ K;

where W D diag.˛1; : : : ; ˛s/ is a diagonal matrix of smoothing parameters
˛1; : : : ; ˛s and K is the roughness matrix computed using the time points t1; : : : ; tq.
Then the roughness matrix Ks meets the multivariate version of the condition (8)

RKs D Ks (20)

and the unweighted spline estimator becomes

OG D .Iqs C W ˝ K/�1YA.A0A/�1

D

0

BBB@

S.˛1/ O O : : : O
O S.˛2/ O : : : O
:::

: : :
:::

O O O : : : S.˛s/

1

CCCAYA.A0A/�1; (21)

where S.˛j/ D .IqC˛jK/�1; for j D 1; : : : ; s. If we use the approximation technique
introduced earlier we get

OG D

0

BBB@

M1M0
1 O O : : : O

O M2M0
2 O : : : O

:::
:::

: : :
:::

O O O : : : MsM0
s

1

CCCAYA.A0A/�1; (22)

where MjM0
j D Pj is an approximation matrix for the jth variable. Note that the

dimensions needed can be estimated using the generalized cross-validation criteria
introduced in Sect. 2. A straightforward generalization of the earlier considerations
gives us an estimator

O��� D M0
�YA.A0A/�1; (23)
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where M� D diag.M1;M2; : : : ;Ms/, of the multivariate growth curve model

Y D M����A0: (24)

Testing can be based on the linear hypothesis

H0 W C���D D 0;

where C and D are known 
 c and m 
 g matrices with ranks  and g, respectively,
with

F D
Q�=g

O
2
� FŒg; n.sq � ctot/�; (25)

where ctot D c1 C � � � C cs and

Q� D tr
˚
ŒD0.A0A/�1D��1ŒC O�D�0ŒCM0

�RM�C0��1ŒC O�D�
�

(26)

and

O
2 D

sX

lD1

1

n.q � cl/
tr
˚
Y0

l.Iq � Pl/Yl
�
: (27)

For an exact version of the F-test it remains to be shown that

CM0
�RM�C0 D I

for the proposed multivariate model. When investigating the progression in a
multivariate situation we can take C D ŒIs ˝ .0; I/�. It is then easily verified that
for a multivariate uniform covariance model (19) CM0

�R D CM0
� and therefore

CM0
�RM�C0 D I.

5 Computational Example: Modeling in Behavioral
Cardiology

The participants (n = 95) of the study were selected from a routine health check-
up carried out on 14,215 out of 18,993 men invited through the City of Tampere
primary health care in Finland. The participants were from three cohorts aged 35, 40,
and 45 years. The inclusion criteria were: healthy on conventional health measures
(except for elevated blood pressure) and not on medication. No participants with
heavy tobacco or alcohol consumption were included in the study. Twenty-one per
cent (2950) met the criteria. The volunteers did no heavy or dirty work on the test
day and all fulfilled the following criteria: normal result in physical examination,
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hematological and biochemical screening tests, chest X-ray, and ECG. The data
selected for this study are part of the Tampere Ambulatory Hypertension Study
Tuomisto (1997). The variables considered here are systolic blood pressure (SBP),
diastolic blood pressure (DBP), and heart rate (HR).

The participants were classified into normotensive (NT), borderline hypertensive
(BHT), and hypertensive (HT) groups using World Health Organization (WHO)
criteria (WHO, 1978), based on repeated casual blood pressure (BP) measurements
in the seated position obtained over 2 months before the experiment. A detailed
description of the diagnostic classification procedure is available in Tuomisto
(1997). None of the participants took anti-hypertensive medication or any other
drugs regularly at the time of the study. The groups, in addition to representing the
same age, were similar for participant characteristics such as height, weight, BMI,
alcohol consumption, and smoking. They were of the same ethnic, linguistic, and
cultural background, and about 90% were of the same religion. However, the effects
of possible covariates could also have been tested here by including them into the
A matrix with appropriate choices for C and D. The data were collected during the
years 1987 through 1991. They consist of approximately 100,000 SBP, MAP, DBP,
PP, and HR values per participant, respectively, and were reduced to 30 s means and
from these means the set of measurements was reduced to means per hour. Figure 1
shows the measurements of the three variables SBP, DPB and HR at 20 different
time points during 1 day starting from midnight.

To set up the spline growth model the between-individual design matrix A was
defined as follows. For the normotensive participants (Group 1, n1 D 33) the rows
of A are .1; 0/ and for the borderline hypertensive and hypertensive participants
(Group 2, n2 D 62) the rows of A are .0; 1/. Using the generalized cross-validation
criteria we got the smoothing parameters ˛1 D 0:47 (SBP), ˛2 D 0:57 (DPB)
and ˛3 D 0:18 (HR). To use the approximation spline fits we need to determine
the dimensions c1; : : : ; c5. The generalized cross-validation criteria gave the values
c1 D 12 (SBP), c2 D 10 (DPB) and c3 D 12 (HR). To test if the progression is the
same in both groups we used the matrices C D diag.Œ0; Ic1�1�; Œ0; Ic2�1�; Œ0; Ic3�1�/

and D D .1;�1/0. Then the value of the F-test statistic is

F D
1811:041=5

66:26201
D 5:466301;

which gives the P-value P.F52;470 � 5:466301/ 	 0. Therefore the null hypothesis
of equal progression of the response variables SBP, DPB and HR in two test groups
is clearly rejected. It would also be interesting to further analyze how the response
variables differ. For example, whether there is a special daytime or variable, which
causes the difference. However, a more detailed further analysis remains a topic of
future research.
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Fig. 1 The measurements of systolic blood pressure (SBP), diastolic blood pressure (DBP) and
heart rate (HR) at 20 time points. The group 1 contains the normotensive participants and the group
2 contains the hypertensive participants
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Uncertainty Quantification Using the Nearest
Neighbor Gaussian Process

Hongxiang Shi, Emily L. Kang, Bledar A. Konomi, Kumar Vemaganti,
and Sandeep Madireddy

1 Introduction

Uncertainty quantification plays a vital role in quantitative characterization and
reduction of uncertainties in a given system, which has a wide range of applications
in various of areas, e.g. engineering and computational experiments. Over the
last decades, Gaussian process (GP) based approaches have steadily increased
in popularity as prominent tools for data analysis in several fields, including
uncertainty quantification. The first attempt of the statistics community to build a
computer surrogate with Gaussian process models starts with the seminal papers of
Currin et al. (1988) and Sacks et al. (1989) that modeled the computer experiment
output as a Gaussian process and developed a comprehensive Bayesian inference
for the distributions of the experiment output, based on data comprising observed
outputs at a finite number of configurations of the experiment. In addition, Gaussian
process models are used to develop surrogate models, called “emulators”, to
describe the output of experiments as well as computationally expensive simulations
in uncertainty quantification (e.g. Craig et al. 2001; Kennedy and O’Hagan 2001;
Gramacy and Lee 2008; Liu et al. 2009). These studies have shown that Gaussian
process has the advantages to achieve parsimoniousness in the model and to result
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in analytically tractable posterior distributions but also possesses the flexibility
to model many stochastic processes in practice. Generally, a Gaussian process
fY.s/ W s 2 D � Rdg is characterized by its mean function 	.�/ and its covariance
function c.�; �/. Usually, a stationary isotropic covariance function with unknown
parameter � , c.jj � jjI �/, is specified such that the covariance between two locations
s1 and s2 only depends on the distance jjs1 � s2jj, where s1, s2 2 D . In uncertainty
quantification, the Euclidean distance is often used while other types of distances
can also be applied; for example, it is common to use the great circle distance when
the location coordinates are longitude and latitude.

When the size of data becomes large or massive, modeling with Gaussian process
incurs computational difficulties, which is often referred to as the “big n” problem
for Gaussian problem with n denoting the size of the data set. Classical ways
to make inference for Gaussian process, such as kriging, inevitably involves the
inversion of the n 
 n covariance matrix for the data of size n, which requires
O.n3/ operations and O.n2/ storage, thus becoming computationally infeasible for
large n. In recent years, various methods have been proposed to alleviate these
difficulties, including covariance tapering (Furrer et al. 2006), Gaussian predictive
process and its variants (Banerjee et al. 2008; Konomi et al. 2014), and fixed
rank kriging and filtering (Cressie and Johannesson 2008; Cressie et al. 2010).
Recently, Datta et al. (2016) proposed so-called Nearest Neighbor Gaussian Process
(NNGP) and have shown that NNGP possesses some very attractive properties:
NNGP is a valid non-degenerate stochastic process, and the associated computing
complexity is highly scalable for large datasets by introducing sparsity into the
precision matrices. Furthermore, NNGP can be easily adopted in a fully Bayesian
framework to coherently account for uncertainties from various levels including that
from the unknown parameter. Datta et al. (2016) illustrated the computational and
inferential benefits of NNGP when using it to approximate a Gaussian process with
an exponential covariance function and a geostatistical data set.

In this article, we build upon the previous work by Datta et al. (2016) to inves-
tigate the potential of NNGP in uncertainty quantification. In particular, we focus
on two important problems common in uncertainty quantification: (1) Smoother
covariance structure: Different from many studies in geostatistics, it is common in
uncertainty quantification to assume a Gaussian process with stronger smoothness,
that is, with the squared-exponential covariance function (Higdon et al. 2008; Qian
et al. 2008; Zhou et al. 2011; Arendt et al. 2012; Santner et al. 2013; Gramacy and
Apley 2015; Crevillen-Garcia et al. 2017). We will show empirically that NNGP
tends to underestimate the range parameter in the squared-exponential covariance
function. As discussed in Kaufman and Shaby (2013), misspecified/estimated range
parameter can be problematic for making predictions. Moreover, we discover that
Bayesian inference needs to be carried out carefully with NNGP. We develop an
algorithm for Bayesian inference that is computationally stable and efficient; (2)
Change-of-support: In physical/computer experiments, sometimes the outputs are
at relatively coarse resolution, due to configurations of the experiment equipment or
the computational cost of the numerical model (e.g. Berrocal et al. 2010; Zaytsev
et al. 2016). However, inference is often preferred at a finer resolution different from
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that of data, which is called the “change-of-support” problem. Failure to properly
handle this discrepancy of resolutions between data and desirable inference will lead
to the so called “ecological fallacy”: fallacious conclusions can be reached when
inference of individual units is drawn from aggregated data (e.g., Cressie 1996;
Nguyen et al. 2012). We will exploit NNGP to demonstrate the importance and
benefits of using it when tackling the “change-of-support” problem.

The rest of this article is organized at follows: in Sect. 2, we describe the model
of NNGP along with the details on Bayesian inference. Section 3 presents extensive
simulation studies to illustrate the performance of NNGP in various scenarios,
including different assumptions of the covariance function and assumption of
whether or not the observations are aggregated. Section 4 uses the developed
techniques to analyze a surface dataset and to make inference for important
properties of surface micro-topography. A few concluding remarks are presented
in Sect. 5.

2 Methods

In this section, we elaborate the statistical modeling of a latent stochastic process
using Gaussian process, briefly describe the Nearest Neighbor Gaussian process
(NNGP), and discuss how efficient and stable computational algorithms are devel-
oped for fully Bayesian inference.

2.1 Modeling with Gaussian Process

Let Y.�/ � fY.s/ W s 2 Dg be the hidden stochastic process of interest over a
domain D � Rd, where d � 1 denotes the dimension of space. We assume Y.s/ is
a Gaussian process with a mean function f	.s/ W s 2 Dg and a covariance function
C.s; s0/. It is equivalent to write the following additive model for fY.s/g:

Y.s/ D 	.s/C w.s/I s 2 D I (1)

where f	.�/g is called the trend term in geostatistics, and it is modeled as a linear
function with p covariates, 	.s/ D x.s/0ˇ with an unknown p-dimensional vector
of coefficients ˇ. The process w.s/ is assumed to be a Gaussian process with mean
0 and the covariance function C.s; s0/ that is known up to a few parameters. To form
a valid Gaussian process, the covariance function C.�; �/ needs to be symmetric and
positive semi-definite (e.g., Cressie 1993). In practice, it is often assumed that the
covariance function is isotropic. That is, the covariance function is a function only
of the distance, C.ks�s0k/. In geostatistics, the Matérn class of covariance functions

are often used: C.dI 
2; �; / D 
2

2�1�./

�p
2 d

�

	
K
�p

2 d
�

	
; where d D ks�s0k;
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2 > 0 is the variance parameter; �.�/ is the gamma function; K.�/ is the modified
Bessel function of the second kind and of order ; the parameter � > 0 is called the
range parameter, and the parameter  > 0, is called the smoothness parameter. The
Matérn class includes the familiar exponential covariance function with  D 1

2
,

C.dI 
2; �/ D 
2exp

�
�

d

�

�
: (2)

As  ! 1, its limit is the squared-exponential covariance function:

C.dI 
2; �/ D 
2exp

�
�

d2

�2

�
: (3)

The Matérn class covariance, especially the exponential covariance function has
been widely used in geostatistics (Guttorp and Gneiting 2006). Also Stein
(1999) points out that the squared-exponential covariance function ( ! 1) is
infinitely differentiable and thus is an infinitely smooth process. Although this may
be unrealistic for applications in geostatistics, it is often desirable in modeling
physical/computer experiment outputs, making the squared-exponential covariance
function preferred in uncertainty quantification (e.g. Higdon et al. 2008; Qian et al.
2008; Zhou et al. 2011; Arendt et al. 2012; Santner et al. 2013; Gramacy and Apley
2015).

We assume that potential observations (outputs) have a component of measure-
ment of error term:

Z.s/ D Y.s/C �.s/I s 2 D ;

where f�.s/ W s 2 Dg is an independent Gaussian white noise that is inde-
pendent of Y.�/ and has mean 0 and cov.�.s/; �.s0// D 
2� 1.s D s0/ > 0.
Data are only observed at a finite set of locations or input configurations of the
experiments, s1; : : : ; sn. With these n observations, we define the data vector Z D

.Z.s1/; : : : ;Z.sn//
0. It is straightforward to observe that

Z � MVN.Xˇ; †Z/;

where X MVN.a; †/ denotes the multivariate normal distribution with mean a and
covariance matrix †; is an n 
 p design matrix with its ith row to be x.si/

0, and the
variance-covariance matrix†Z � C.�/C
2� In and the n
n matrix C.�/ is induced
by the latent process Y.�/ with entries C.si; sjI �/ for i; j D 1 to n, and � denotes the
set of parameters in the covariance function.

To make fully Bayesian inference, we impose priors on the unknown parameters
� D .ˇ;�/ and then obtain posterior inference usually using Markov chain Monte
Carlo (MCMC) methods (Banerjee et al. 2014). However, when n is large, the
MCMC algorithm will break down since it requires inverting an n 
 n matrix
with computational complexity O.n3/ and also requires memory for an n 
 n
matrix, referred to as the “big n” problem. To alleviate such difficulties, Datta et al.



Uncertainty Quantification with NNGP 93

(2016) propose the Nearest Neighbor Gaussian process (NNGP) to approximate
the original Gaussian process by considering the product of low-dimensional
conditional densities. Below we briefly describe the NNGP in Datta et al. (2016)
and then elaborate on how Bayesian inference can be made and provide guidance
when the squared-exponential covariance function is utilized.

We consider a fixed finite collection of locations in D denoted by S D

fu1;u2; : : : ;ukg, called the reference set. Now given an ordering of the locations,
the joint density for wS D .w.u1/;w.u2/; : : : ;w.uk//

0 can be written as p.wS/ DQk
iD1 p.w.ui/jw<i/, where w<i D .w.u1/;w.u2/; : : : ;w.ui�1// for 2 � i � k

and is empty for i D 1. To construct NNGP, instead of considering all elements
in w<i, we only consider a subset corresponding to N.ui/ � fu1; : : : ;ui�1g for
every ui 2 S. The locations in N.ui/ are those close to ui and are called neighbors
of ui. Then we replace w<i with wN.ui/ in the conditional densities to obtain the
composite likelihood Qp.wS/ D

Qk
iD1 p.w.ui/jwN.ui//. Datta et al. (2016) prove that

Qp.wS/ is a valid joint density as long as the directed graph formed with vertices
ui and directed edges to ui from all elements in N.ui/ is acyclic. The choice of
N.si/ based upon the “past” locations of ui, namely fu1;u2; : : : ;ui�1g guarantees an
acyclic specification for the graph. A natural assumption is to define N.ui/ as the set
of m-nearest neighbors of ui. That is, N.ui/ is defined as:

N.ui/D

8
ˆ̂<

ˆ̂:

empty set; for i D 1

fu1;u2; : : : ;ui�1g; for 2 � i � m C 1

m nearest neighbors of ui among fu1;u2; : : : ;ui�1g; for m C 1 < i � k:
(4)

Let CN.ui/ be the covariance matrix of wN.ui/, for i D 2; : : : ; k. Thus, CN.ui/ is
.i � 1/ 
 .i � 1/ when 2 � i � m, and is m 
 m when m C 1 � i � k. Similarly,
denote the cross-covariance vector between w.ui/ and wN.ui/ by Cui;N.ui/ which is
1 
 .i � 1/ when 2 � i � m, and is 1 
 m when m C 1 � i � k. According to
the properties of multivariate normal distribution, it is straightforward to show that
p.w.ui/jwN.ui// D N.w.ui/jBui wN.ui/;Fui/, where

Bui D Cui;N.ui/C
�1
N.ui/

; and Fui D C.ui;ui/ � Cui;N.ui/C
�1
N.ui/

C0
ui;N.ui/

: (5)

Then the composite likelihood Qp.wS/ is proportional to

exp

�
�
1

2

kX

iD1



w.ui/ � Bui wN.ui/

�0
F�1

ui



w.ui/ � Bui wN.ui/

��
: (6)

If we write w.ui/� Bui wN.ui/ D .B�
ui
/0wS, where B�

ui
is a k-dimensional vector with

B�
ui
Œi� D 1, B�

ui
Œindex of N.ui/ in S� D �Bui , and 0 elsewhere, then (6) is written as:

kX

iD1

w0
S.B

�
ui
/0F�1

ui
B�

ui
wS D w0

SB0
SF�1

S BSwS (7)
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where F D diag.Fui ;Fu2 ; : : : ;Fuk/ and BS D .B�
u1 ;B

�
u2 ; : : : ;B

�
uk
/0. Therefore, we

can derive

wS � MVN.0; QCS/ (8)

where QCS D .B0
SF�1

S BS/
�1. It is easily seen that BS has a sparse and low-triangle

structure with its diagonal elements equal to 1. Datta et al. (2016) prove that for
m � k, the k 
 k precision matrix QC�1

S is sparse with at most km.m C1/=2 non-zero
entries, thus facilitating efficient computation.

We conclude this section with remarks on NNGP and the methods by Emery
(2009) and Gramacy and Apley (2015). The latter two are designed to select an
optimal set of locations and to use only the locations in this neighborhood for
prediction. It is worth noting that their methods do not guarantee a valid NNGP
model and hence prohibit the fully Bayesian inference of the covariance parameters,
but they also provide computational advantages as NNGP for making predictions of
the underlying process Y.�/.

2.2 Bayesian Inference and Computational Considerations

As suggested by Datta et al. (2016), we choose the reference set S to match the
set of all observation locations in D . That is, k D n, and S D fs1; : : : ; sng. In
our study, we order the locations in the reference set according to their distance
to the origin in order to reduce possible ties when sorting regular grid points. As
illustrated by Datta et al. (2016), various ways of ordering locations in the reference
set should have little impact on the performance of NNGP. Different from Datta et al.
(2016), we now assume that data are only available at a coarser resolution while the
underlying process Y.�/ and its inference is at a finer or point-level resolution. This
is of practical interest, since the outputs from computer experiments are often at
relatively coarse resolution due to configurations of the experiment equipment or
the computational cost of the numerical models (e.g. Berrocal et al. 2010; Zaytsev
et al. 2016), although inference is preferred at a finer resolution.

We assume that we observe the data process fZ.�/g over l blocks:

Z.Ai/ D

Z

s2D\Ai

Z.s/d s=jAij; i D 1; : : : ; l:

where jAij denotes the area or volume of the block Ai. As in Cressie (1996) and
Nguyen et al. (2012), we impose a lattice over the domain of interest D and assume
that D D [fUi � Rd W i D 1; : : : ;NDg. That is, D is made up of ND fine-scale, non-
overlapping, basic areal units (BAUs) fUig with their centroid locations denoted as
fsi W i D 1; : : : ;NDg. For example, the set of BAUs could be a set of tiling squares,
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and fsig is the set of the squares’ centers. In practice, the resolution of this lattice
[fUig is chosen according to the finest resolution for which inference is desirable.

We model the observation over a block A as the average of the true surface Y.�/
over the BAUs within that block plus measurement error:

Z.Ai/ �
1

jAij

X

s2Ai

Y.s/C �.Ai/; i D 1; : : : ; l; (9)

where �.Ai/ is also defined as the average of �.�/ over the BAUs within the block
Ai, and jAij denotes the number of BAUs in Ai. Now define the data vector Z D

.Z.A1/;Z.A2/; : : : ;Z.Al//
0. Without loss of generality, we assume that these l blocks

cover a total of n BAUs, associated with fs1; : : : ; sng with n � ND. We then define
Y D .Y.s1/;Y.s2/; : : : ;Y.sn//

0 and an l 
 n aggregation matrix A such that:

Z D AY C A� D AXˇ C Aw C A� (10)

where the .ij/-th element in A is Aij D
1.sj2Ai/

jAij
; X is the n 
 p design matrix for

the trend; w � .w.s1/; : : : ;w.sn//
0, and � � MVN.0;D/ with D D 
2� In. We then

utilize NNGP to specify the distribution of w and then write the model hierarchically
as follows:

Zjw;ˇ; 
2� � MVN.AXˇ C Aw;DA/; (11)

wj� � MVN.0; QC//; (12)

where DA D ADA0 and QC is defined in (8) and dependent on � , the parameters in
the covariance function.

In order to make inference, we write out the joint density:

p.�/ 
 p.
2� / 
 p.ˇ/ 
 p.wj�/ 
 p.Zjw;ˇ; 
2� / (13)

where we assume independence priors for parameters f�; 
2� ;ˇg; p.ı1/ denotes
the density function of a random variable ı1 marginally and p.ı1jı2/ denotes the
conditional density function of a random variable ı1 given ı2. When implementing
our method, we choose priors suggested in previous studies (e.g., Banerjee et al.
2014). For the range parameter �, a uniform prior is assumed. For variance
parameters 
2 and 
2� , inverse-Gamma priors are assumed. The full conditional
of the unknown parameters as well as the random effects w can be easily derived
analytically and MCMC methods such as the Gibbs sampling can be used to obtain
posterior samples of the unknowns. We call this MCMC Scheme 1. This is the
inference framework suggested in Datta et al. (2016) where interested readers can
find more details of MCMC Scheme 1 including all full conditionals.
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We now propose an alternative way for Bayesian inference, referred to as MCMC
Scheme 2. Instead of sampling the random effects w in MCMC iterations, we
integrate them out and obtain the following joint density:

p.�/ 
 p.�2/ 
 p.ˇ/ 
 p.Zjˇ;�; 
2� / (14)

where it is straightforward that Zjˇ;�; 
2� � MVN.AXˇ;A QCA0 C DA/. Our
motivation is that for a covariance with stronger smoothness such as the squared-
exponential covariance function, the matrices fCN.si/ W i D 2; : : : ; ng can be close
to singular when the locations in N.si/ are very close to each other, which makes
calculation of fCN.si/ W i D 1; : : : ; ng in MCMC iterations computationally unstable.
With the random effects w integrated out, we now combine both A QCA0 and the
covariance matrix DA, and the latter is a diagonal matrix and thus can be used as
a perturbation term to overcome the potential numerical instability when inverting
matrices. This is similar to resolving the numerical instability of kriging predictor
by introducing the nugget (Peng and Wu 2004).

In MCMC Scheme 2, the Gibbs sampling proceeds by first updating ˇ from its
full conditional distribution, MVN.V�

ˇ��
ˇ;V

�
ˇ/, where

V�
ˇ D .Vˇ C X0.A QCA0 C DA/

�1X/�1; and ��
ˇ D V�1

ˇ �ˇ C X0.A QCA0 C DA/
�1Z:
(15)

To invert the l 
 l matrix .A QCA C DA/, we apply the Sherman-Morrison-Woodbury
formula:

.A QCA0 C DA/
�1 D D�1

A � D�1
A A. QC�1 C A0D�1

A A/�1A0D�1
A ; (16)

which can be calculated efficiently without requiring large memory, since QC�1 and
QC�1 C A0D�1

A A are both sparse matrices and DA is a diagonal matrix. Then the
covariance parameters 
2� and � are updated jointly by using Metropolis-Hastings
procedure with the following full conditional as the target density:

p.
2� /
 p.�/
 jA QCA0 C DAj�1=2 exp.�
1

2
.Z � AXˇ/0.A QCA0 C DA/

�1.Z � AXˇ//

(17)

which involved the determinant jA QCA0 C DAj. Taking advantages of the sparse
matrices involved in it, we use a variant of the Sherman-Morrison-Woodbury
formula:

jA QCA0 C DAj D
j QC�1 C A0DAAj

j QC�1j

 jDAj: (18)

Notice that our MCMC Scheme 2 can also be used for unaggregated data. In
this case, Z and Y are at the same resolution, and we have l D n. It is easily seen
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that then the matrix A will be the n 
 n identity matrix. In this case, the matrix
.A QCA0 C DA/

�1 becomes:

. QC C 
2� In/
�1 D 
�2

�
QC�1. QC�1 C 
�2

� In/
�1I (19)

and the determinant j QC�1 C A0DAAj can be calculated as

j. QC C 
2� In/
�1j D

j
�2
�

QC�1j

j QC�1 C 
�2
� Inj

: (20)

Note that although w is not sampled directly during the sampling procedure in
MCMC Scheme 2, it can be easily recovered from p.wjZ/ D

R
p.�jZ/d� via

composition sampling using the posterior realization of � (Banerjee et al. 2014).
Similarly, posterior samples of Y.�/ at any unobserved location s can also be
obtained.

As described above, in iterations from MCMC Scheme 2, we need to obtain the
inverse and determinant of l 
 l sparse matrices which can be done by calculating
the Cholesky factor of sparse matrices, which reduces the computations complexity
from O.l3/ to O.l1:5/ and the storage requirement from O.l2/ to O.l logl/ as noted
in Rue and Held (2005). We show in Sect. 3 that the sparsity pattern of QC�1

S grants
NNGP substantial computational benefits over the full Gaussian process. Moreover,
NNGP only stores the m
m distance matrices between neighbors for every location
rather than the entire n 
 n distance matrix.

3 Simulation Experiments

In this section, we demonstrate the performance and computational efficiency of
NNGP using MCMC Schemes 1 and 2 under various scenarios in simulation studies.
The computation is carried out in Matlab on a 4-core HP system with Intel Xeon
x5650 CPU and 12 Gigabytes memory.

We simulate the latent process Y.s/ using the model in (1) at 70 
 70 D4900
regularly spaced locations within a unit square D D Œ0; 1� 
 Œ0; 1� � R2. We
assume a constant trend for Y.�/, i.e, 	.s/ D ˇ for any s 2 D . We simulate
w.s/ from a Gaussian process with mean 0 and the covariance function to be either
the exponential covariance function in (2) or the squared-exponential covariance
function in (3). The former is often used when analyzing geostatistical data in
environmental sciences, while the latter is widely used in uncertainty quantification
for physical and computer experiments. The true values of the parameters for the
covariance functions are shown in Table 1. To generate the data Z.s/, we added a
white noise term �.s/ to Y.s/ where �.s/ is generated from N.0; 
2� / independently.
To obtain the aggregated data at a coarse resolution, we use the 70 
 70 grids as
the BAUs and to obtain Z.A/ we aggregate Z.s/ to a coarser resolution using (9)
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Fig. 1 Simulated data using the exponential covariance function (upper panels) and the squared-
exponential covariance function (lower panels) at the BAU resolution of 70 � 70 (left panels), the
coarse resolution of 35� 35 (middle panels), and the coarser resolution of 23� 23 (right panels)

with A contains four adjacent BAUs in 2 
 2 blocks. Thus, there are a total of
35 
 35 D 1225 blocks in the domain of interest. We also consider a coarser
resolution with A contains nine adjacent BAUs in 3 
 3 blocks. For convenience,
we remove the last column and the last row of the data at the original resolution
to obtain the aggregated data which has a total of 23 
 23 D 529 blocks of size
3 
 3. We use Zf , Zc1 and Zc2 to denote the data vector at the fine resolution
.n D 4900/, the data vector at the coarse resolution (l D 1225), and the data at
the coarser resolution (l D 529), respectively. Figure 1 presents simulated data at
these three resolutions using the exponential covariance function (upper panels) and
the squared-exponential covariance function (lower-panels).

We first use the data at the BAU resolution, Zf to make Bayesian inference. We
consider three methods, the full Gaussian process, NNGP with MCMC Scheme
1, and NNGP with MCMC Scheme 2, called Full GP, NNGP, and mNNGP,
respectively. For all of the three methods, we give flat prior distribution for
the intercept ˇ0, inverse-Gamma IG.2; 1/ and IG.2; 0:1/ prior for 
2 and 
2� ,
respectively, and a uniform prior U.1=30; 1=3/ for the range parameter �, since
.1=30; 1=3/ corresponds to the effective range between 0.1 to 1 domain distance
units roughly. When implementing NNGP, we choose the set of observations as the
reference set, and set m D 10 as suggested by Datta et al. (2016).

Parameter estimates and 95% credible intervals are shown in Table 1. With
the exponential covariance function, all of three methods, Full GP, NNGP, and
mNNGP, give very similar posterior inference of the parameters. The posterior
median and 95% credible intervals are consistent with the true values. We also
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Table 1 Summaries of inference with three methods, NNGP, mNNGP, and Full GP, using
simulated data Zf

Parameter True NNGP mNNGP Full GP

Exponential

ˇ 1 1.23 (0.97, 1.53) 1.18 (0.94, 1.43) 1.20 (0.95, 1.45)


2� 0.1 0.11 (0.09, 0.14) 0.11 (0.09, 0.13) 0.11 (0.08, 0.13)


2 1 1.01 (0.85, 1.28) 0.98(0.83, 1.22) 0.97 (0.82, 1.21)

� 0.06 0.061 (0.049,0.085) 0.058 (0.046, 0.078) 0.057 (0.046, 0.076)

Time – 183.57 399.12 1843.75

Squared-exponential

ˇ 1 – 0.94 (0.81, 1.07) 0.88 (0.67, 1.11)


2� 0.1 – 0.10 (0.10, 0.11) 0.10 (0.10, 0.11)


2 1 – 1.06 (0.89, 1.28) 0.81 (0.65, 1.00)

� 0.08 – 0.066 (0.063, 0.069) 0.078 (0.074, 0.081)

Posterior median of the parameters and a 95% creditable interval using 2.5th and 97.5th percentiles
are presented. Computing time (in minutes) for running one chain of 25,000 iterations using data
with the exponential covariance function is given

record the computing times (in minutes) of running an MCMC chain of 25,000
iterations for the Full GP, NNGP, and mNNGP. It demonstrates the enormous
computational advantage of NNGP and mNNGP over Full GP, verifying that using
NNGP facilitates efficient computation. NNGP requires the shortest computing
time since it just requires inverting m 
 m matrices, while mNNGP requires
inverting not only these m 
 m matrices to construct QC but also sparse matrices
as described in Sect. 2.2. With the squared-exponential covariance function, NNGP
(MCMC Scheme 1, without integrating out w) fails to produce any estimates as
the covariance matrices of the neighbor set are very close to singular. Note that
the squared-exponential covariance function produces smoother response surface
compared to those covariance functions in the Matérn family (including the
exponential function as a special case). In particular, for the squared-exponential
covariance, the responses within small distance are highly correlated, and such
correlation goes to zero slowly when the distance increases. Therefore, if the points
in the reference set are closely spaced, the covariance matrices can be very close
to singular, making the computation of NNGP unstable. Meanwhile, we notice that
although mNNGP generates similar estimates for ˇ and 
2� as Full GP does, it tends
to underestimate the range parameter � in particular, and the 95% credible interval
does not include the true value of �. This discrepancy between mNNGP and Full
GP can also be explained by the stronger smoothness of the squared-exponential
covariance function.

Although the non-marginalized NNGP requires even less computing time, it
cannot guarantee stable computation, and thus we use mNNGP for the rest of our
simulation and the real data analysis. We proceed to analyze the data at the coarse
resolution Zc1 and the data at the coarser resolution Zc2 . In order to demonstrate the
importance of handling the “change-of-support” problem, we implement the model
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in (10) that takes into consideration the change-of-support, and denote the methods
as mNNGPC and Full GPC, corresponding to whether mNNGP or the full Gaussian
process is used to model w.�/, respectively. Meanwhile, we implement mGGNP
and Full GP as in analyzing Zf , i.e., ignoring the fact that data Zc1 and Zc2 are
from a coarser resolution. We call them mNNGPNC and Full GPNC, respectively,
where NC means not taking into account the change-of-support problem. The
priors for unknown parameters are kept the same for all the methods. The results
for Zc1 and Zc2 are summarized in Tables 2 and 3, correspondingly. With the

Table 2 Summaries of inference with four methods, mNNGPC , Full GPC , mNNGPNC , Full GPNC ,
using Zc1 at the coarse resolution (2�2) with the exponential covariance function and the squared-
exponential covariance function

Handling “change-of-support” Not handling “change-of-support”

True mNNGPC Full GPC mNNGPNC Full GPNC

Exponential

ˇ 1 1.16 (0.92, 1.40) 1.17 (0.94, 1.40) 1.12 (0.82, 1.66) 1.19 (0.85, 1.55)

�2 0.1 0.05 (0.02, 0.13) 0.06 (0.02, 0.14) 01 (0.01, 0.03) 0.02 (0.01, 0.03)


2 1 1.00 (0.86, 1.28) 0.96 (0.82, 1.18) 0.94 (0.70, 1.46) 0.81 (0.62, 1.10)

� 0.06 0.055 (0.044, 0.076) 0.052 (0.042, 0.069) 0.108 (0.079, 0.175) 0.090 (0.066, 0.128)

Squared-exponential

ˇ 1 0.98 (0.85, 1.12) 0.89 (0.67, 1.11) 0.89 (0.67, 1.11) 0.89 (0.67, 1.12)

�2 0.1 0.09 (0.08, 0.11) 0.10 (0.09, 0.11) 0.02 (0.02, 0.03) 0.03 (0.02, 0.03)


2 1 1.04 (0.87, 1.24) 0.80 (0.64, 1.01) 0.93 (0.74, 1.18) 0.79 (0.64, 1.02)

� 0.08 0.064 (0.061, 0.067) 0.078 (0.074, 0.082) 0.076 (0.072, 0.080) 0.080 (0.076, 0.084)

Posterior median of the parameters and a 95% creditable interval using 2:5th and 97:5th percentiles
are presented

Table 3 Summaries of inference with four methods, mNNGPC , Full GPC , mNNGPNC , Full GPNC ,
using Zc2 at the coarser resolution (3�3) with the exponential covariance function and the squared-
exponential covariance function

Handling “change-of-support” Not handling “change-of-support”

True mNNGPC Full GPC mNNGPNC Full GPNC

Exponential

ˇ 1 1.16 (0.95, 1.37) 1.15 (0.93, 1.37) 1.17 (0.77, 1.60) 1.18 (0.81, 1.58)

�2 0.1 0.06 (0.02, 0.27) 0.06 (0.02, 0.30) 0.02 (0.01, 0.05) 0.02 (0.01, 0.05)


2 1 0.95 (0.81, 1.17) 0.92 (0.77, 1.13) 0.70 (0.52, 1.15) 0.68 (0.50, 1.10)

� 0.06 0.050 (0.039, 0.071) 0.049 (0.038, 0.067) 0.108 (0.075, 0.192) 0.103 (0.072, 0.180)

Squared-exponential

ˇ 1 0.90 (0.76, 1.04) 0.87 (0.64, 1.11) 0.97 (0.73, 1.21) 0.88 (0.64, 1.12)

�2 0.1 0.07 (0.04, 0.11) 0.09 (0.06, 0.13) 0.01 (0.01, 0.02) 0.01 (0.01, 0.02)


2 1 1.35 (1.10, 1.68) 0.86 (0.68, 1.12) 0.78 (0.61, 1.07) 0.81 (0.64, 1.06)

� 0.08 0.064 (0.060, 0.068) 0.079 (0.074, 0.084) 0.078 (0.074, 0.084) 0.083 (0.079, 0.088)

Posterior median of the parameters and a 95% creditable interval using 2:5th and 97:5th percentiles
are presented
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Fig. 2 Empirical semivariograms obtained using fine-resolution data Zf (circle), coarse-resolution
data Zc1 (square), and coarser-resolution data Zc2 (asterisk) from the exponential (left panel) and
squared-exponential covariance function (right panel), respectively

exponential covariance function, failing to handle the change-of-support problem
results in severe overestimation of the range parameter � and underestimation of the
measurement error variance 
2� , no matter which model between Full and mNNGP
is used. However, with the squared-exponential covariance function, the estimate
for the range parameter � from Full GP does not change much no matter whether
or not the change-of-support problem is handled. To investigate the reason behind
this situation, we plot the empirical semivariograms from Zf , Zc1 and Zc2 for
both the exponential covariance function and the squared-exponential covariance
function as shown in Fig. 2. It can be easily seen that the difference of the empirical
semivariograms from the fine and the coarse resolutions is more substantial and
obvious for the exponential covariance function compared to that for the squared-
exponential covariance function. In fact, the empirical semivariograms from Zf , Zc1
and Zc2 with squared-exponential covariance are very close especially when the
lag distance is small. As for the parameter 
2� , Tables 2 and 3 show that even with
the squared-exponential covariance function, it is still important to deal with the
change-of-support; failing to do so will result in severely underestimated parameter.
As expected, we have less confidence in the estimation of 
2� at a coarser resolution
as the confidence interval becomes wider as the resolution becomes coarser.
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4 Application: Uncertainty Quantification for Surface Data

In this section, we briefly present an example of applying the proposed method in
Sect. 2 to an Aluminum 6061 surface which is measured by non-contact optical
profilometry at a sampling interval of 6.67�m. The measured surface micro-
topography of Al 6061 surface is shown in Fig. 3, which consists of 251,856
data points. Due to random nature of the contact surface, micro-asperity based
statistical models are extensively used to understand the role of surface micro-
structure on the contact phenomena such as friction, wear, thermal and electrical
contact conductance. The parameters for these statistical models are calculated
from two fundamental properties of surface: the distribution of surface heights
and their covariance functions. The distribution function describes how the surface
heights vary perpendicular to the surface whereas the autocorrelation function
describes the manner in which the surface heights vary along the surface. The
pioneering paper of Greenwood and Williamson (1966) is an important advance
in development of micro-asperity based models in which the rough surfaces are
assumed as a randomly distributed population of elastic asperities with Gaussian
distributed asperity heights., while the radii of curvature of all the asperities are the
same. This model was further improvised by relaxing various assumptions such as
constant mean curvature and elastic deformation (Bush et al. 1975; Tworzydlo et al.
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Fig. 3 Micro-topography of the Al 6061 surface
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1988). Uncertainty quantification for contact surfaces involves understanding the
properties of rough surfaces that are commonly reported including RMS roughness,
mean slope and mean curvature. These quantities are generally calculated from the
spectral moments of surfaces. Sista and Vemaganti (2014) recently propose the
squared-exponential covariance function motivated by its insensitivity to smaller
asperities that are registered at higher resolutions, and they have derived explicitly
the formulas of the power spectral moments for the squared-exponential covariance
function:

m0 D

2�

2
p
�

Z 1

�1

exp.�
k2�2

4
/dk D 
2; (21)

m2 D

2�

2
p
�

Z 1

�1

exp.�
k2�2

4
/.k2/dk D

2
2

�2
; (22)

m4 D

2�

2
p
�

Z 1

�1

exp.�
k2�2

4
/.k2/dk D

2
2

�4
D
12
2

�4
: (23)

From above equations, we can see that the power spectral moments, m0, m2,
and m4 are functions of only the covariance parameters 
2 and �. This means
that to obtain these important features of surfaces, we simply obtain inference of
functions of parameters 
2 and �. Given the surface data, we thus model Z as
described in Sect. 2.1 where the covariance function takes the form of the squared-
exponential function as suggested by Sista and Vemaganti (2014). In addition, we
assume a constant trend term and assign a flat prior. For covariance parameters,
we impose inverse-Gamma prior IG(2,0.02) for 
2 and the uniform prior for �.
Given the large size of data, the full Gaussian process cannot be implemented due
to the “big n” problem. We first carry out a pilot study on a subset of data and
find that both m D 10 and m D 20 give similar inference results (not presented).
For more efficient computation, we thus decide to use the NNGP with m D 10

when analyzing the complete surface data. We integrate out the random effects w in
MCMC to obtain fully Bayesian inference, and we obtain the posterior samples of
the unknown parameters 
2 and �, based on which we generate posterior samples
of these spectral moments m0, m2, and m4, presented in Table 4 and Fig. 4.

Table 4 Posterior median
and 5th and 95th percentiles
for the spectral moments of
the Aluminum 6061 surface
described in Sect. 4

Parameter Median 5th percentile 95th percentile


2 2.1093(�6) 2.0139(�6) 2.2152(�6)

� 0.4325(�1) 0.4269(�1) 0.4217(�1)

m0 2.1093(�6) 2.0139(�6) 2.2152(�6)

m2 2.3110(�3) 2.2136(�3) 2.4249(�3)

m4 7.6077(0) 7.2446(0) 8.0252(0)
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Fig. 4 Histograms of the posterior samples of the spectral moments, m0 (left), m2 (middle), and
m4 (right) for the Aluminum 6061 surface

5 Conclusions and Discussion

In this study, we investigate the performance of NNGP related to the squared-
exponential covariance function, a commonly used function in uncertainty quan-
tification and the capability of NNGP to handle the “change-of-support” problem
with the exponential covariance function and the squared-exponential covariance
function. Through the simulation studies, we find that with the exponential covari-
ance function, NNGP performs consistently well; it can produce accurate parameter
estimates and it can successfully handle the “change-of-support” problem. With
the squared-exponential covariance function, we suggest an alternative MCMC
framework that can overcome computational instability by integrating out the
random effects. Meanwhile, we discover that NNGP tends to slightly underestimate
the range parameter in the squared-exponential covariance function. Moreover,
for the squared-exponential covariance function, we find through our simulation
experiments that the change-of-support problem is not as severe as that with the
exponential covariance function. That is, the parameter estimates obtained via
handling the change-of-support problem do not differ much from those obtained
without handling the problem, which may be due to the very strong smoothness
of the squared-exponential covariance function. Although we focus on only the
exponential and squared-exponential covariance functions, since the latter is the
limit of the Maérn family with the smoothness parameter going to infinity, we expect
our findings to be applicable for a Matérn covariance function with a very large
smoothness parameter.

Our findings show that NNGP can be potentially used in uncertainty quantifica-
tion when the physical/computer experiment outputs are of large or massive size,
as illustrated by the real data example in Sect. 4. Meanwhile, there are still a few
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problems requiring further investigation. For example, in experiments with p input
and q output variables, the outputs will be assumed to be a Gaussian process over
D � RpCq. When separability is assumed, NNGP can be implemented to each
dimension, and tensor products of matrices can be utilized to achieve efficient
computation. However, without separability, how to sort locations in such a ultra
high-dimensional space and/or to define the so-called nearest neighbors is not
obvious. For example, it is not desirable to choose the m nearest neighbors in each
dimension, since it can result a total of mpCq neighbors and inverting an mpCq
mpCq

matrix can be computationally infeasible even when m, p and q are moderate.
Furthermore, NNGP can also be applied to analyze outputs from multiple

experiment outputs and/or multiple field datasets. The model in Sect. 2.2 can be
used as a building block to describe data resources at different resolutions, and thus
provide a way to model outputs from different scales directly instead of treating the
coarse ones (sometimes, also called the low-fidelity ones) as a regression covariate
(e.g. Kennedy and O’Hagon 2000; Perditaris et al. 2015) Another direction is
to extent the NNGP model to the context of multivariate analysis. Specifically, a
valid cross-covariance function can be used to specify the dependence structure, not
only within each output variable, but across these variables as well. A common
way to guarantee the validity of a cross-covariance function is through linear
models of coregionalization (LMC) where each component is represented as a linear
combination of latent, independent univariate spatial processes (Goulard and Marc
1992; Wackernagel 2013). The multivariate Matérn covariance function proposed
by Gneiting et al. (2010) can also be used alternatively to construct a valid cross-
covariance function. These topics are currently under investigation.
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Tuning Parameter Selection in the LASSO
with Unspecified Propensity

Jiwei Zhao and Yang Yang

1 Introduction

Nowadays advances in technologies have led to an emerging demand for statistical
strategies to analyze data with complex structure. For instance, in a biomedical study
the number of explanatory variables could be relatively large, or even larger than
the sample size. In these settings, it is usually believed that only a small number
of variables are truly informative while others are irrelevant. An underfitted model
excluding some of the truly informative variables may lead to severe estimation
bias in model fitting, whereas an overfitted model including some of the irrelevant
variables may enlarge the estimation variance and hinder the model interpretation.
Therefore, it is the primary goal to identify the truly informative variables.

Regularization is a popular and powerful method to achieve this goal. Although
there exist various regularization methods through different penalty functions, the
least absolute shrinkage and selection operator (LASSO; Tibshirani 1996) is still
one of the most useful and representative approaches in regularization. The key idea
of the original LASSO is to put an L1 penalty on the least square objective function
to attain a sparse estimator for the unknown parameter. Compared with traditional
estimation methods, LASSO’s major advantage is its simultaneous execution of
both parameter estimation and variable selection. Furthermore, the LASSO has very
nice computational properties. Using the technique of coordinate descent, Friedman
et al. (2010) implemented a very fast and efficient algorithm to solving LASSO-type
problems. In recent years, there has been an enormous amount of research activity
devoted to the extension of the LASSO and the related regularization methods.
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In biomedical studies with human being’s behaviors involved, missing-data is
the rule rather than the exception. Lots of settings can be named, for example,
nonresponse in a health survey (Zhao and Shao 2015), missing covariate values
(Fang et al. 2017), or dropout in a follow-up study (Shao and Zhao 2013). Statistical
methods handling missing data relies on the assumption imposed on the probability
of having a missing value conditioned on all the data, termed as propensity. It
is called ignorable when the propensity doesn’t depend on any unobserved data;
otherwise it is called nonignorable. In general different statistical methods have to
be created based on different assumptions on the propensity. In reality, however,
the assumption imposed on the propensity is often unverifiable. Therefore, a more
flexible propensity is ideal. In this paper we study the variable selection through the
LASSO when the data have missing values and the propensity is not fully specified.

With a flexible and generally applicable propensity that is not fully specified,
the main idea is to create a pseudo likelihood function for the parameter (of main
interest) in the regression model treating the propensity model as a nuisance. In
this paper we consider the conditional likelihood applying the idea of Kalbfleisch
(1978) to a regression setting. We also approximate this conditional likelihood to a
computational feasible version (Liang and Qin 2000). Through this technique, the
propensity model, as a nuisance, is canceled out and disappears in the likelihood.
Hence, this method is propensity free. To some extend, this method can be regarded
as a universal solution under a large family of different assumptions on the
propensity. Furthermore, after some data manipulation, we transform the pseudo
likelihood function to the likelihood function of a classic logistic regression without
the intercept term. This is a paramount breakthrough since instead of using Newton-
type algorithm for maximizing the likelihood function, we can adopt the common
software designed for the logistic regression to optimize our pseudo likelihood
function. To perform variable selection, we extend the idea of the LASSO to the
penalized likelihood and put the L1 penalty function in our pseudo likelihood, and
in computation it can be treated as a logistic regression with the LASSO. We will
detail this part in Sect. 2.

In penalized likelihood method with the LASSO, the performance of its cor-
responding estimator depends on the choice of the tuning parameter, which is
employed to control the trade-off between model fitting and model sparsity.
Theoretically the optimal property of the penalized likelihood method requires
certain specification of the optimal tuning parameter. For example, Zhao and Yu
(2006) showed that, under the irrepresentable condition, the linear regression with
the LASSO is selection consistent when the tuning parameter converges to zero at
a rate slower than O.n�1=2/, where n is the sample size. These results guarantee
the existence of the � needed, but offer little guidance on how to find the desired �
in practice. Indeed, data-driven regularization parameter selection with guaranteed
theoretical performance turns out to be a particularly difficult problem. Therefore,
in practical implementations, penalized likelihood methods are usually applied with
a sequence of tuning parameters resulting in a corresponding collection of models.
Therefore, it is of crucial importance to select the appropriate tuning parameter so
that the performance of the penalized regression model can be optimized.
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The multifold cross validation (CV; Stone 1974; Arlot and Celisse 2010) is
a popular model-free criterion for tuning parameter selection. It relies on data
resampling technique to minimize the prediction error of a collection of candidate
solutions. However, it’s known that in many situations, the CV fails to identify
all of the truly informative variables consistently (Shao 1993, 1997). On the other
hand, Wang et al. (2007) showed that the tuning parameter that is selected by the
Bayesian information criterion (BIC; Schwarz et al. 1978) can identify all of the
truly informative variables consistently for the smoothly clipped absolute deviation
(SCAD) approach in Fan and Li (2001). For non-fixed dimensionality, Wang et al.
(2009) showed that a modified BIC continues to work for tuning parameter selection
consistency with diverging dimensionality and Fan and Tang (2013) studied the
generalized information criterion for tuning parameter selection consistency when
allowing the number of parameters to grow exponentially fast with the sample size.

Statisticians also propose tuning parameter selection methods based on stability.
Sun et al. (2013) proposed a tuning parameter selection criterion based on variable
selection stability (VSS). The key idea is that if multiple samples are available from
the same distribution, a good variable selection method should yield similar sets
of informative variables that do not vary much from one sample to another. The
similarity between two informative variable sets is measured by Cohen’s kappa
coefficient (Kohen 1960), which adjusts the actual variable selection agreement
relative to the possible agreement by chance. Using the similar idea and focusing on
the estimation instead of variable selection, Lim and Yu (2016) proposed a tuning
parameter selection method based on estimation stability and CV (ESCV). Clearly,
variable selection stability and estimation stability are model-free and can be used
to tune any penalized regression model.

In this paper, we focus on the tuning parameter selection in the LASSO when
the data have missing values and the propensity is unspecified. We introduce the
four aforementioned tuning parameter selection methods into our penalized pseudo
likelihood function with the LASSO. We detail this part in Sect. 3. In Sects. 4 and 5
respectively, we conduct comprehensive simulation studies including both low and
high dimensional settings, and a melanoma data study to examine the performance
of different tuning parameter selection methods in real applications. We provide
some final remarks in Sect. 6 to conclude our paper.

2 Model and Method

To fix our idea, we let Y denote the scalar response variable, and X be a p-
dimensional covariate variable. For simplicity, we assume that, with a canonical
link, the conditional distribution of Y given X belongs to a generalized linear model
(GLM) with the following density:

p.YjXI �/ D expŒ��1fY� � b.�/g C c.yI�/�; (1)
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where b and c are known functions, � D ˛ C ˇTX, � D .˛;ˇT ; �/T , � represents
the positive dispersion parameter. Assume that we have independent and identically
distributed observations fyi; xig; i D 1; : : : ;N. When variables from .Y;X/ have
missing values, we use the indicator R D 1 to represent that, the data from that
subject are completely observed, and R D 0 otherwise. Without loss of generality,
we assume the first n subjects are fully observed with ri D 1, i D 1; : : : ; n, and
the remaining N � n subjects may contain missing components with ri D 0; i D

n C 1; : : : ;N.
For the propensity Pr.R D 1jY;X/, since its underlying truth is unknown and

its assumption is unverifiable, it is ideal to impose an assumption, that is more
robust than a single parametric model, and is as flexible and generally applicable
as possible. In this paper, we impose a general assumption as follows

Pr.R D 1jY;X/ D s.Y/t.X/; (2)

where s and t are some functions, not necessarily to be known or specified. The
assumption (2) is very flexible and generally applicable. The situations we concern
include: only Y has missing values (missing response); only X has missing values
(missing covariate); both Y and X have missing values. It also includes both
ignorable and nonignorable cases. For example, for the case of missing response,
if s=constant, (2) is covariate-dependent and hence ignorable; if t=constant, (2) is
outcome-dependent and hence nonignorable; for the case of missing covariate, if
s=constant, (2) is nonignorable while if t=constant, (2) is ignorable. Furthermore, (2)
only assumes that Pr.R D 1jY;X/ can be written as the multiplier of an X-only
function and a Y-only function. We do not impose any concrete form on s or t,
therefore, it is robust to misspecification of s or t function.

Due to the complexity of the missing data structure and the presence of unknown
functions s and t, we propose the following pseudo likelihood function. Notice that

p.YjX;R D 1/ D
Pr.R D 1jY;X/

Pr.R D 1jX/
p.YjX/; (3)

which reveals that, the direct maximum likelihood estimate from a biased sample
(the fully observed subjects) will result in biased estimates and incorrect conclusions
unless Pr.R D 1jY;X/ D Pr.R D 1jX/. Under the separable propensity
assumption (2), Pr.R D 1jY;X/=Pr.R D 1jX/ in (3) preserves to be the multiplier of
an X-only function and a Y-only function. Therefore, following Kalbfleisch (1978)
and Liang and Qin (2000), restricting attention to completely observed subjects with
subscripts ranging from f1; : : : ; ng, decomposing fy1; : : : ; yng as rank statistics and
order statistics, and conditioning on the order statistics fy.1/; : : : ; y.n/g, we have the
following for �:

p.y1; : : : ; ynjr1 D : : : D rn D 1; x1; : : : ; xn; y.1/; : : : ; y.n// D
…n

iD1p.yijxiI �/P
c…

n
iD1p.y.i/jxiI �/

;

(4)
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where the summation in the denominator corresponds to all possible permutations
of f1; : : : ; ng. An appealing feature of this method is that, it is now nuisance free:
all s, t functions are all canceled out through conditioning. Furthermore, to reduce
the computational burden, Liang and Qin (2000) advocated the following pairwise
pseudo likelihood

Y

1�i<j�n

p.yijxiI �/p.yjjxjI �/

p.yijxiI �/p.yjjxjI �/C p.yijxjI �/p.yjjxiI �/
: (5)

Under the GLM assumption, the negative part of the log-version of (5), after adding
a normalizing constant, can be written as

L .�/ D
1

n.n � 1/=2

X

1�i<j�n

logf1C exp.�yinjx
T
inj�/g; (6)

where yinj D yi � yj, xinj D xi � xj and � D ˇ=�. To perform variable selection with
the LASSO, we propose to minimize the penalized pseudo likelihood

L .�/C�

pX

jD1

j�jj D
1

n.n � 1/=2

X

1�i<j�n

logf1C exp.�yinjx
T
inj�/g C�

pX

jD1

j�jj; (7)

and we denote the minimizer asb� .
It can be seen that, the unpenalized component L .�/ is a U-statistic, in which

even the original b function in the definition of GLM disappears. Since our method
is under a very flexible and generally applicable assumption (2), to compensate for
missing data, not surprisingly, we may not be able to estimate the whole unknown
parameter � itself. Instead, we can only estimate a scaled parameter � D ˇ=�.
Denote the true value of ˇ and � as ˇ� and �� respectively. It’s clear that each
coordinate ˇ�

j D 0 if and only if ��
j D 0. Therefore, we can carry out variable

selection through the scaled parameter � .
For computation, note that

L .�/ D
1

n.n � 1/=2

X

1�i<j�n

logf1C exp.�yinjx
T
inj�/g

D
1

n.n � 1/=2

X

1�i<j�n

logf1C exp.� sign.yinj/jyinjjx
T
inj�/g

D
1

T

TX

kD1

logf1C exp.zkv
T
k �/g;

where we let sign.�/ denote the sign function, zk D � sign.yinj/ and vk D xinjjyinjj,
T D n.n � 1/=2. If we define
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uk D

(
1 if yinj > 0

0 if yinj < 0;

it can be seen that, L .�/ can be regarded as the negative log-likelihood function
of a regular logistic regression with response uk, covariate vk, without the intercept
term. Hence, the minimization of (7) can be achieved in any available software for
solving penalized logistic regression by forcing the intercept term to zero.

3 Tuning Parameter Selection in the LASSO

How to select the regularization parameter � is of paramount importance in
penalized likelihood estimation since � governs the complexity of the selected
model. A large value of � tends to choose a simple model, whereas a small value of
� inclines to a complex model. Theoretically quantified optimal tuning parameters
are not practically feasible, because they are valid only asymptotically and usually
depend on unknown nuisance parameters in the true model. Therefore, in practical
implementations, penalized likelihood methods are usually applied with a sequence
of tuning parameters resulting in a corresponding collection of models. The trade-
off between the model complexity and the prediction accuracy yields an optimal
choice of �. In this Section, we introduce four different tuning parameter selection
methods in our proposed penalized pseudo likelihood function with the LASSO.

3.1 Multifold Cross Validation (CV)

The multifold cross validation (CV; Stone 1974) is one of the most frequently used
tuning parameter selection methods in regularization. It optimizes the prediction
error of a collection of candidate models based on some data resampling techniques.
Specifically, we denote the data set indexed by f1; : : : ; ng as T , and randomly
partition this set into K equally sized subsets T./,  D 1; : : : ;K. We denote the
cross validation training and test sets by TnT./ and T./, for  D 1; : : : ;K, where
the usual choice of K is 5 or 10. Each time, for fixed � and , we find the minimizer
b� .�/� of L .�/C�k�k1 using the training set TnT./. Finally, we choose �CV to be
the minimizer of the following cross validation function

CV.�/ D
1

K

KX

D1

L ./.b� .�/� /;

where L ./.�/ represents the evaluation of L .�/ using the test set T./.
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Although computationally convenient, the literature showed that, in many sit-
uation the CV failed to identify all of the truly informative variables consistently
and often overfitted the model (Shao 1993, 1997). On the other hand, under some
regularity conditions the Bayesian information criterion (BIC; Schwarz et al. 1978)
was shown to be selection consistent.

3.2 Bayesian Information Criterion (BIC)

Information criterion is a traditional method for variable selection, especially the
Bayesian information criterion (BIC). To be more specific, for each fixed tuning
parameter �, we find the minimizer b�� of the objective function L .�/ C �k�k1.
Then we choose � to be the minimizer of the following BIC function

BIC.�/ D 2L .b��/C p�
log.n/

n
;

where p� is the number of nonzero coordinates in b��. Wang et al. (2007) showed
that the tuning parameter that is selected by the BIC can identify all of the
truly informative variables consistently for the smoothly clipped absolute deviation
(SCAD) approach in Fan and Li (2001). The BIC method was well accepted to result
a more parsimonious model than the CV.

In high dimensional settings, for regression models without missing data, to
preserve to be selection consistent, it was shown that some modifications are needed
for the definition of the BIC. Wang et al. (2009) considered the situation with
diverging dimensionality p / n˛ and showed that the second component in the
classic BIC function should be changed to p� log.n/ logflog.p/g=n to continue to be
selection consistent; while Fan and Tang (2013) considered the so-called ultrahigh
dimensionality log p / n˛; 0 < ˛ < 1 and showed that the second component in
the classic BIC function should be changed to p� logflog.n/g log.p/=n to continue
to be selection consistent. In our proposal, we modify the BIC as the following two
functions and we term them as BIC1 and BIC2 respectively:

BIC1.�/ D 2L .b��/C p�
log.n/ logflog.p/g

n
;

and

BIC2.�/ D 2L .b��/C p�
logflog.n/g log.p/

n
:

In the current literature, CV and BIC are the most two dominating tuning
parameter selection methods. Statisticians also propose tuning parameter selection
methods based on stability. We review one for estimation stability and the other for
variable selection stability.
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3.3 Variable Selection Stability (VSS)

Sun et al. (2013) proposed a tuning parameter selection criterion based on variable
selection stability (VSS). The key idea is that if we repeatedly draw samples from
the population and apply the candidate variable selection methods, a desirable
method should produce the informative variable set that does not vary much from
one sample to another. The similarity between two informative variable sets can
be measured by Cohen’s kappa coefficient (Kohen 1960), which adjusts the actual
variable selection agreement relative to the possible agreement by chance.

To be more detailed, we denote the data set indexed by f1; : : : ; ng as T . Each
time, we randomly partition T into two subsets Tb

1 and Tb
2 . For a fixed � and one

subset Tb
1 (or Tb

2 ), we optimize the proposed penalized pseudo likelihood function
and obtain b�1b

� (or b�2b
� ), each yielding a set of selected informative variables A 1b

�

(or A 2b
� ). We measure the agreement between A 1b

� and A 2b
� by the Cohen’s kappa

coefficient:

�.A 1b
� ;A

2b
� / D

Pr.a/ � Pr.e/

1 � Pr.e/
;

where Pr.a/ D .n11 C n22/=p and Pr.e/ D .n11 C n12/.n11 C n21/=p2 C .n12 C

n22/.n21Cn22/=p2, with n11 D jA 1b
� \A 2b

� j, n12 D jA 1b
� \A 2b

� j, n21 D jA 1b
� \A 2b

� j,

n22 D jA 1b
� \ A 2b

� j, and j � j being the set cardinality. We repeat this procedure B
times and we define the variable selection stability at this fixed � as

‰.�/ D
1

B

BX

bD1

�.A 1b
� ;A

2b
� /:

Finally we select

�VSS D min

�
� W

‰.�/

max�0 ‰.�0/
� 1 � ˛

�
:

Note that, the adoption of ˛ in the last step is necessary since some informative
variables may have relatively weak effect compared with others. Following Sun
et al. (2013), we take ˛ D 0:1 and B D 20 in our numerical studies.

3.4 Estimation Stability (ESCV)

The last tuning parameter selection method we are introducing is motivated from
estimation stability and the cross validation (Lim and Yu 2016). The intuition is the
same as VSS but the focus changes to estimation. Note that since the model we
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concern is semiparametric, and it may have arbitrary missing values in the samples
i D n C 1; : : : ;N, the procedure proposed by Lim and Yu (2016) cannot be applied
directly. Instead, what we do is the following.

Similar to the CV, we denote the data set indexed by f1; : : : ; ng as T , and
randomly partition this set into K equally sized subsets T./,  D 1; : : : ;K.
We denote the cross validation training and test sets by TnT./ and T./ for
 D 1; : : : ;K. Each time, for fixed � and , we find the minimizer b� .�/� of
L .�/ C �k�k1 using the training set TnT./. Then we compute the estimates
xT

injb�
.�/
� for i; j D 1; : : : ; n and form it to an S-dimensional vector z.�/� , where

S D n.n � 1/=2. We define

z� D
1

K

KX

D1

z.�/� ;

and

ESCV.�/ D
1
K

PK
D1 kz.�/� � z�k22

kz�k22
:

We denote �escv D arg min� ESCV.�/ and due to the same reason as in Lim and Yu
(2016), our final choice of the tuning parameter is �ESCV D �escv _ �CV.

One advantage of the stability motivated tuning parameter selection methods is
that, they are model-free and can be used to tune any penalized regression model.

4 Simulation Studies

In this Section, we conduct simulation studies to examine the finite sample
performance of our proposed method. We mainly compare the performance in
terms of estimation and variable selection under different tuning parameter selection
methods: CV, the multi-fold cross validation; BIC, the Bayesian information
criterion; VSS, the variable selection stability; and ESCV, the estimation stability
based on cross validation. We consider the classic BIC for low-dimensional case and
BIC1 and BIC2, the two modified criteria for high-dimensional case. We examine
two commonly used models: linear regression and logistic regression.

For linear regression, we generate the response Y following GLM with � D ˛ C

ˇTX, ˛ D 0, ˇ D .2; 1:5; 0:5; 0; : : : ; 0/T , the dispersion parameter � D 1. We
generate the covariate X from N.0;†/, where †ij D 0:5ji�jj. We consider the total
sample size N D 200 and p D 8 for low dimension and p D 200 for high dimension,
and in both cases the number of truly informative variables is 3. For the propensity,
we consider the following assumption

Pr.R D 1jY;X/ D IfY>�1gIfX1>�2g;
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which means the propensity depends on both response Y and the covariate variable
X1. The choices of �1 and �2 are as follows: for either low or high dimensional
case, �1 D 0:7, �2 D �0:3 to achieve around 40% completely observed samples;
�1 D �1:1, �2 D �0:8 to achieve around 60%; and �1 D �3:2, �2 D �1:3 to
achieve around 80%.

For logistic regression, we set ˛ D 0, ˇ D .3; 2; 1; 0; : : : ; 0/T . Same as above,
we generate the covariate X from N.0;†/, where †ij D 0:5ji�jj. We consider the
total sample size N D 500 and p D 8 for low dimension and p D 500 for high
dimension, and in both cases the number of truly informative variables is 3. For the
propensity, we consider

Pr.R D 1jY;X/ D IfX1>�gs.Y/:

The specific choices of � and s.Y/ are as follows: for either low or high dimensional
case, � D 0:2 and s.Y/ D .2Y C 3/=5 for 40% observed proportion, � D �0:5

and s.Y/ D .2Y C 3/=5 for 60% observed proportion, and � D �1 and s.Y/ D

.Y C 9/=10 for 80% observed proportion.
For the performance of estimation, we consider three measures: L1, L2 and L1

norms of the estimation bias. To be more specific, if we have the estimator b̌ and the
true value ˇ�, the L1 norm is defined as kb̌� ˇ�k1 D

Pp
iD1 jb̌i � ˇ�

i j, the L2 norm

is defined as kb̌ � ˇ�k2 D
�Pp

iD1 jb̌i � ˇ�
i j2
	1=2

, and the L1 norm is defined as

kb̌� ˇ�k1 D maxi jb̌i � ˇ�
i j. In this paper, following Sun et al. (2013), we report

the results on the estimation based on the estimators by maximizing the pairwise
pseudo likelihood function, or equivalently, minimizing (6), only with the selected
informative variables, after the standard minimization of (7) has been executed. In
terms of variable selection, we consider the following measures: #FP, the number
of false positives (the ones with true zero value but falsely estimated as nonzero);
#FN, the number of false negatives (the ones with true nonzero value but falsely
estimated as zero); F-measure, the harmonic mean of precision and sensitivity,
which is defined as

F D
2#TP

2#TP C #FP C #FN
;

in which TP stands for true positive (the one with true nonzero value and also
correctly estimated as nonzero). We also consider the proportion of under-fit,
correct-fit and over-fit, where under-fit represents the situation of excluding any
nonzero coefficients, correct-fit means the situation of selecting the exact subset
model, and over-fit stands for the situation of including all three significant variables
and some noise variables.

For linear regression, we report a boxplot of the three norms for estimation in
Fig. 1 and summarize the other measures for variable selection in Table 1. Similarly,
Fig. 2 and Table 2 are for logistic regression respectively. We report the results based
on 100 replications in each setting.
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Fig. 1 The L1 (1st column), L2 (2nd column) and L1 (3rd column) norms of the estimation bias
through different tuning parameter selection methods (CV, BIC (or BIC1, BIC2), VSS, ESCV) for
linear regression with dimensionality p D 8 (1st, 2nd and 3rd rows), p D 200 (4th, 5th and 6th
rows), and observed proportion 40% (1st and 4th rows), 60% (2nd and 5th rows) and 80% (3rd and
6th rows)

Our conclusions from the simulation studies are as follows. For estimation,
when the number of the observed samples gets increase, the L1, L2 and L1

norms become smaller and the contrast among different tuning parameter selection
methods becomes clearer. At 80% observed proportion level, the CV performs
worse than all other methods BIC, VSS and ESCV. The difference among BIC,
VSS and ESCV are quite indistinguishable. For variable selection, the CV performs
much worse than all the other methods. It always overfits the model. Under low
dimensionality, the performance of BIC, ESCV and VSS are comparable, while
under high dimensionality, BIC is slightly better than the other two. The behaviors
of BIC1 and BIC2 under high dimensionality are almost always exactly the same.
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Table 1 Mean and standard deviation (SD; in parentheses) of #FP, #FN and F-measure and the
proportion of under-fit, correct-fit and over-fit through different tuning parameter selection methods
(CV, BIC (or BIC1, BIC2), VSS, ESCV) for linear regression with dimensionality p D 8 or p D
200, and observed proportion 40%, 60% or 80%

Observed Proportion of

proportion
(%) #FP #FN F-measure under-fit correct-fit over-fit

p D 8 40 CV 3.13(1.25) 0(0) 0.67(0.10) 0 0.01 0.99

BIC 0.81(0.86) 0.11(0.31) 0.87(0.12) 0.06 0.39 0.55

VSS 0.09(0.32) 0.67(0.62) 0.85(0.14) 0.59 0.33 0.08

ESCV 0.50(0.72) 0.24(0.49) 0.88(0.12) 0.18 0.44 0.38

60 CV 3.50(1.22) 0.00(0.00) 0.64(0.09) 0 0.01 0.99

BIC 0.73(0.92) 0.02(0.14) 0.90(0.11) 0 0.52 0.48

VSS 0.02(0.14) 0.48(0.52) 0.90(0.11) 0.47 0.51 0.02

ESCV 0.23(0.60) 0.31(0.54) 0.90(0.13) 0.27 0.57 0.16

80 CV 3.40(1.23) 0(0) 0.65(0.09) 0 0.02 0.98

BIC 0.51(0.66) 0.01(0.10) 0.93(0.09) 0 0.58 0.42

VSS 0(0) 0.34(0.48) 0.93(0.10) 0.34 0.66 0

ESCV 0.11(0.40) 0.25(0.44) 0.94(0.09) 0.25 0.67 0.08

p D 200 40 CV 22.78(6.81) 0.14(0.35) 0.21(0.06) 0 0 1.00

BIC1 0.29(0.54) 1.01(0.81) 0.72(0.25) 0.64 0.11 0.25

BIC2 0.27(0.53) 1.06(0.84) 0.71(0.26) 0.66 0.11 0.23

VSS 1.47(4.22) 1.04(0.70) 0.67(0.19) 0.64 0.07 0.29

ESCV 3.99(6.30) 0.67(0.74) 0.60(0.21) 0.34 0.04 0.62

60 CV 27.62(8.93) 0.01(0.10) 0.19(0.06) 0 0 1.00

BIC1 0.19(0.46) 0.26(0.44) 0.92(0.10) 0.24 0.60 0.16

BIC2 0.17(0.45) 0.27(0.45) 0.92(0.10) 0.25 0.61 0.14

VSS 0.01(0.10) 0.85(0.58) 0.82(0.14) 0.75 0.24 0.01

ESCV 0.42(1.36) 0.46(0.58) 0.86(0.15) 0.40 0.41 0.19

80 CV 29.14(9.02) 0.01(0.10) 0.18(0.06) 0 0 1.00

BIC1 0.14(0.38) 0.08(0.27) 0.96(0.07) 0.07 0.80 0.13

BIC2 0.13(0.37) 0.09(0.29) 0.96(0.08) 0.08 0.80 0.12

VSS 0(0) 0.60(0.49) 0.88(0.10) 0.60 0.40 0

ESCV 0.06(0.24) 0.38(0.53) 0.91(0.11) 0.36 0.58 0.06

5 Melanoma Study

Melanoma is the most dangerous type of skin cancer. Melanoma incidence is
increasing at a rate that exceeds all solid tumors. High-risk melanoma patients,
although education efforts have resulted in earlier detection of melanoma, continue
to have high relapse and mortality rate of 50% or higher. Several post-operative
(adjuvant) chemotherapies have been proposed for this class of melanoma patients,
and the one which seems to provide the most significant impact on relapse-free
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Fig. 2 The L1 (1st column), L2 (2nd column) and L1 (3rd column) norms of the estimation bias
through different tuning parameter selection methods (CV, BIC (or BIC1, BIC2), VSS, ESCV) for
logistic regression with dimensionality p D 8 (1st, 2nd and 3rd rows), p D 500 (4th, 5th and 6th
rows), and observed proportion 40% (1st and 4th rows), 60% (2nd and 5th rows) and 80% (3rd and
6th rows)

survival is Interferon Alpha-2b (IFN). This immunotherapy was evaluated in E1690,
an observation-controlled Eastern Cooperative Oncology Group (ECOG) phase III
clinical trial (Kirkwood et al. 2000).

In this trial as we consider, there are in total N D 427 patients and all the patients
were randomized to one of two treatment trials: high dose interferon or observation.
In this analysis, the outcome variable Y , was taken to be binary, and was assigned
a 1 if the patient had an overall survival greater than or equal to 0.55 years, and
0 otherwise. There are several prognostic factors that were identified as potentially
important predictors: X1, treatment (two levels); X2, age (in years); X3, nodes1 (four
levels); X4, sex (two levels); X5, perform (two levels); and X6, logarithm of Breslow
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Table 2 Mean and standard deviation (SD; in parentheses) of #FP, #FN and F-measure and the
proportion of under-fit, correct-fit and over-fit through different tuning parameter selection methods
(CV, BIC (or BIC1, BIC2), VSS, ESCV) for logistic regression with dimensionality p D 8 or
p D 500, and observed proportion 40%, 60% or 80%

Observed

proportion Proportion of

(%) #FP #FN F-measure under-fit correct-fit over-fit

p D 8 40 CV 3.12(1.36) 0.07(0.29) 0.66(0.12) 0 0.04 0.96

BIC 0.23(0.45) 0.94(0.75) 0.75(0.18) 0.62 0.16 0.22

VSS 0.06(0.24) 1.40(0.60) 0.67(0.16) 0.91 0.03 0.06

ESCV 1.07(1.51) 0.97(0.81) 0.66(0.14) 0.55 0.01 0.44

60 CV 3.15(1.31) 0.01(0.10) 0.67(0.10) 0 0 1.00

BIC 0.59(0.79) 0.01(0.10) 0.92(0.10) 0.01 0.55 0.44

VSS 0.01(0.10) 0.71(0.92) 0.82(0.23) 0.39 0.60 0.01

ESCV 0.37(0.85) 0.82(0.97) 0.75(0.22) 0.43 0.37 0.20

80 CV 3.31(1.29) 0(0) 0.66(0.10) 0 0 1.00

BIC 0.47(0.73) 0(0) 0.94(0.09) 0 0.65 0.35

VSS 0(0) 0.17(0.43) 0.96(0.09) 0.15 0.85 0

ESCV 0.10(0.30) 0.25(0.61) 0.93(0.15) 0.16 0.74 0.10

p D 500 40 CV 17.62(13.37) 1.13(0.58) 0.24(0.16) 0.02 0 0.98

BIC1 0.04(0.20) 1.92(0.66) 0.48(0.26) 0.96 0 0.04

BIC2 0.04(0.20) 1.97(0.67) 0.46(0.27) 0.96 0 0.04

VSS 2.81(10.64) 1.55(0.58) 0.56(0.19) 0.84 0 0.16

ESCV 1.12(4.39) 1.56(0.52) 0.57(0.15) 0.72 0 0.28

60 CV 35.19(15.83) 0(0) 0.18(0.10) 0 0 1.00

BIC1 0.11(0.31) 0.37(0.63) 0.90(0.15) 0.28 0.61 0.11

BIC2 0.10(0.30) 0.37(0.63) 0.90(0.15) 0.28 0.62 0.10

VSS 0(0) 1.50(0.75) 0.64(0.19) 0.85 0.15 0

ESCV 0.19(0.60) 1.09(0.91) 0.71(0.21) 0.62 0.26 0.12

80 CV 33.38(19.52) 0(0) 0.19(0.10) 0 0 1.00

BIC1 0.09(0.29) 0.02(0.14) 0.98(0.05) 0.02 0.89 0.09

BIC2 0.07(0.26) 0.02(0.14) 0.99(0.05) 0.02 0.91 0.07

VSS 0(0) 0.30(0.54) 0.94(0.12) 0.26 0.74 0

ESCV 0.10(0.33) 0.47(0.78) 0.87(0.19) 0.29 0.62 0.09

thickness (in mm). Among all six covariates, only X6 has missing values and the
total number of completely observed samples is n D 417. The data set is available
from Ibrahim et al. (2001).

We adopt the logistic regression and we minimize the following penalized
likelihood function

1

n.n � 1/=2

X

1�i<j�n

logf1C exp.�yinjx
T
injˇ/g C �

pX

jD1

jˇjj:
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Table 3 The parameter estimation and the number of selected informative variables in the
Melanoma study based on different tuning parameter selection methods: CV, BIC, VSS and ESCV

TRT AGE NODES1 SEX PERFORM log(BRESLOW) p�
CV �0:080 0.018 0.499 �0:052 0.000 0.267 5

BIC 0.000 0.018 0.464 0.000 0.000 0.226 3

VSS 0.000 0.017 0.212 0.000 0.000 0.000 2

ESCV 0.000 0.018 0.396 0.000 0.000 0.137 3
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Fig. 3 The solution path for the proposed penalized pseudo likelihood in the Melanoma study and
the determination of the tuning parameter based on different methods: CV, BIC, VSS and ESCV,
where 1=TRT, 2=AGE, 3=NODES1, 4=SEX, 5=PERFORM, 6=log(BRESLOW)

We examine the four methods to select the tuning parameter �: CV, BIC, VSS and
ESCV. We report the estimation result in Table 3 and visualize the solution path in
Fig. 3. It can be seen that, out of six variables, the CV chooses five as informative
ones, while BIC, ESCV and VSS choose three, three and two variables respectively.
This is consistent with the simulation studies in the sense that CV tends to overfit the
model. The performance of BIC, ESCV and VSS are similar. The variables age and
nodes1 are always significant, and the variable logarithm of Breslow is significant
when using BIC or ESCV.
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6 Discussion

In this paper, we mainly evaluate the numerical performance among various
tuning parameter selection methods under an arbitrary and unspecified propensity
assumption. The key idea is to use a conditional argument and then obtain a
pseudo likelihood function in a pairwise fashion. During this conditional argument
procedure, only the parameters in the terms with both Y and X in (1) are preserved in
(6), and hence estimable. Therefore, this method only requires that the terms in (1)
with both Y and X correctly specified. The theoretical justification of our proposed
method using CV to determine the tuning parameter can be found in Zhao et al.
(2017) and references therein.

The efficiency loss is a major disadvantage of using the pairwise pseudo
likelihood (Liang and Qin 2000; Diao et al. 2012; Chan 2013; Zhao and Shao 2017;
Zhao 2017). It will be an interesting topic to consider the efficiency loss of this
estimator under the penalization framework, which should be relevant to the post-
selection inference. This definitely warrants further investigation and it is already
beyond the scope of the current paper.

Acknowledgements Research reported in this publication was supported by the National Center
for Advancing Translational Sciences of the National Institutes of Health under award number
UL1TR001412. The content is solely the responsibility of the authors and does not necessarily
represent the official views of the NIH.
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Adaptive Filtering Increases Power to Detect
Differentially Expressed Genes

Zixin Nie and Kun Liang

1 Introduction

Detecting differentially expressed genes between conditions is a fundamental task
in biomedical research. With the advent of the high-throughput technology such as
microarray, the task becomes more challenging due to the large number of tests
performed simultaneously. Typical microarray datasets contain measurements on
thousands of genes, with a comparatively small number of samples.

One method to determine whether a gene is differentially expressed (DE) versus
equivalently expressed (EE) is to perform variable-by-variable hypothesis testing
(Dudoit et al. 2003; Kerr et al. 2000; Bourgon et al. 2010). The null hypothesis
is no differential expression, for example, there is no difference in the mean
measurements of a gene between a treatment group and a control group. Assuming
the expression data are distributed normally, which is a reasonable assumption
after a log transformation, t-tests can be performed and p-values can be computed
accordingly.

When performing a large number of hypothesis tests simultaneously we need to
adjust for multiplicity. Suppose we have m null hypotheses under consideration, of
which m0 are true nulls and m1 are false nulls. Let �0 D m0=m denote the true
null proportion. Suppose the p-values associated with the m null hypotheses are
p1; : : : ; pm, respectively. Furthermore, let p.1/ � : : : � p.m/ denote these p-values in
ascending order. We can reject some null hypotheses, i.e., declare them significant,
and the resulting classification is shown in Table 1. Two global error rates can be
considered, the family-wise error rate (FWER), and the false discovery rate (FDR)
due to Benjamini and Hochberg (1995). The FWER is defined to be P.V � 1/, or
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Table 1 Classification of m
null hypotheses

True null False null Total

Declared significant V S R

Declared non-significant U T m � R

Total m0 m � m0 m

the probability of having at least 1 false discovery. Controlling the FWER at level
˛ means the probability of making even one false discovery is controlled at ˛. The
FDR is defined to be the expected proportion of false discoveries, or EŒ V

R_1
�.

Controlling the FDR instead of the FWER will result in more detections
(Benjamini and Hochberg 1995). The Benjamini-Hochberg (BH) procedure is the
most commonly used method for controlling the FDR, which operates as follows:

1. For a given FDR target level ˛, let k D maxfi W p.i/ � i˛=mg.
2. Reject all hypotheses whose p-values � p.k/.

The BH procedure controls the FDR at level �0˛ under independence and
a special positive dependence condition (Benjamini and Yekutieli 2001). This
motivates the more powerful adaptive procedures that apply the BH procedure at
level ˛= O�0, where O�0 is an estimator of �0. A widely used �0-estimator (Storey
2002) is

O�0.�/ D
#fpi > �g

.1 � �/m
;

where � is a tuning parameter in Œ0; 1/ to be specified. Liang and Nettleton
(2012) proposed the right-boundary (RB) procedure that selects � from a candidate
set according the observed p-values and guarantees that the resulting O�0.�/ is a
conservative estimator of �0. Briefly, for a � candidate set ƒ D f�1; : : : ; �Jg such
that 0 � �0 < �1 < : : : < �J < 1, the � chosen is the first �j such that
O�0.�j/ � O�0.�j�1/.

An alternative method for increasing the number of discoveries is to reduce the
number of tests to perform. This is achieved by filtering hypotheses whose filtering
statistics are below a certain threshold. In this paper, we will investigate the filtering
approach in detail.

In Sect. 2, we briefly review the existing literature of filtering. We propose a
novel adaptive filtering method in Sect. 3 and evaluate its performance in Sect. 4.
Summaries and discussions are presented in Sect. 5.

2 Existing Filtering Methods

In the context of detecting differentially expressed genes, the filtering method can
at least be traced back to Scholtens and Von Heydebreck (2005). Hackstadt and
Hess (2009) performed simulation studies to compare different filtering methods.
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When comparing two or more groups, Bourgon et al. (2010) first pointed out
that, according to Basu’s theorem, the overall mean and variance are independent
of the test statistic when the null hypothesis is true. Thus, the overall mean and
variance can serve as independent filter statistics without affecting the distribution
of the test statistic under the null. Farcomeni and Finos (2013) further show that
such independent filter statistics exist under a general linear model where nuisance
parameters can be incorporated. On the other hand, the independent filter statistics
can be correlated with the test statistic under the alternative and be useful to improve
power, see Section 3 of Farcomeni and Finos (2013) for details. In the rest of the
paper, we will work with the independent filter statistics.

When using the BH procedure to control the FDR, Hackstadt and Hess (2009)
show that the realized FDR level can decrease as more tests are filtered out. If
the EE genes are more likely to be filtered, then the true null proportion among
the remaining hypotheses is likely to decrease and so is the FDR level if the
BH procedure is used. This phenomenon calls for an adjustment of the true null
proportion after filtering.

More importantly, it is unclear from the literature what fraction of genes should
be filtered out. Ideally, we want to maximize the power or the number of the true
positives. In practice, we do not know the true status of hypotheses, and a natural
substitute is to maximize the number of rejections. However, Ignatiadis et al. (2016)
show that a greedy filtering procedure that maximize the number of rejections over
all possible filtering fractions leads to inflated FDR levels.

In the next section, we propose a novel method to address the true null proportion
correction and filtering fraction selection simultaneously.

3 Proposed Method

Suppose in addition to the p-values, the filtering statistics associated with the m null
hypotheses are s1; : : : ; sm, respectively. We consider selecting filter threshold � from
a candidate set ‚ D f�i; i D 1; : : : ; Ig. After filtering at threshold �i, i 2 f1; : : : ; Ig,
suppose there are mi hypotheses left, among which m0i are true nulls and m1i are
false nulls.

Definition 1 (Adaptive Filtering Procedure) For each �i, i 2 f1; : : : ; Ig,

1. Filter hypotheses with filtering statistics � �i.
2. Apply RB on the remaining p-values with a candidate � set ƒ D f�1; : : : ; �Jg to

obtain O�RB
0i .

3. Apply BH on the remaining p-values with target level of ˛= O�RB
0i .

Among all possible filter thresholds, choose the one with the largest # of rejections.
We denote the index of the selected filter threshold as i� and the corresponding �
chosen by RB as �RB

i� .
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After filtering at �i, i 2 f1; : : : ; Ig, for t 2 Œ0; 1�, define the following empirical
processes:

Vi.t/ D #fnullpk W pk � t and sk > �ig;

Si.t/ D #falternativepk W pk � t and sk > �ig;

Ri.t/ D Vi.t/C Si.t/:

Then the FDR at a fixed p-value cut-off t 2 .0; 1�, denoted by FDR.t/, can be
defined from the above processes as

FDRi.t/ D E

�
Vi.t/

Ri.t/ _ 1

�
:

We also define the �0-estimator after filtering as

O�0i.�/ D
#fpk > � and sk > �ig

.1 � �/mi
D

mi � Ri.�/

.1 � �/mi
:

Assuming null p-values are independent and uniformly distributed on .0; 1/, a
natural estimator of FDRi.t/ is

dFDRi;�.t/ D
mi O�0i.�/t

Ri.t/ _ 1
:

And the FDR estimator for the selected filter threshold according to our adaptive
filtering procedure is

dFDRi�;�RB
i�
.t/ D

mi� O�
0i�.�

RB
i� /t

Ri�.t/ _ 1
:

Consider the following conditions: for each i 2 f1; : : : ; Ig,

lim
m!1

Vi.t/

m0i
D t almost surely for each t 2 .0; 1�; (1)

lim
m!1

Si.t/

m1i
D Gi.t/ almost surely for each t 2 .0; 1�: (2)

where Gi is a continuous function:

lim
m!1

m0i=mi � �0i exists: (3)

We require these conditions to hold for each filter threshold, and they are parallel
to the conditions (1)–(3) in Liang and Nettleton (2012). Condition 1 can be easily
satisfied by the independence between null p-values and the filtering statistics and
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the uniform distribution of null p-values. Define the pointwise limit of dFDRi;�.t/
under the conditions of (1)–(3) as

dFDR1
i;�.t/ �

n
�0i C 1�Gi.�/

1��
�1i

o
t

�0it C �1iGi.t/
;

where �1i D 1 � �0i. Furthermore, for any function 0 � F � 1, define the step-up
threshold function

t˛.F/ D supf0 � t � 1 W F.t/ � ˛g:

Then the adaptive filtering procedure controls the FDR asymptotically.

Theorem 1 Suppose that conditions (1)–(3) hold. Also suppose there is a �

candidate set� D f�i; i D 1; : : : ; Ig and a � candidate set� D f�j; j D 1; : : : ; Jg 2

Œ0; 1/J , and the set size I and J are fixed finite integers. If for each �i 2 � and �j 2 �

there exists a ti;j 2 .0; 1� such that dFDR1
i;�j
.ti;j/ < ˛, then,

lim sup
m!1

FDR
n
t˛.dFDRi�;�RB

i�
/
o

� ˛:

Proof Abbreviate t˛.dFDRi;�/ by ti;�
˛ . According to the conditions of the theorem,

for each �i and �j there exist a ti;j > 0 such that ˛ � dFDR1
i;�j
.ti;j/ D "i;j > 0.

We can let m be sufficiently large so that j dFDR1
i;�j
.ti;j/ � dFDRi;�j.ti;j/j < "i;j, which

implies that dFDRi;�j.ti;j/ < ˛ and t
i;�j
˛ � ti;j. Therefore, lim infm!1 t

i;�j
˛ � ti;j with

probability 1. Similar to the proof of Theorem 5 of Liang and Nettleton (2012), it is
straightforward to show

lim inf
m!1

"
dFDRi;�j.t

i;�j
˛ / �

Vi.t
i;�j
˛ /

Ri.t
i;�j
˛ / _ 1

#
� lim

m!1
inf

t�ıi;j

�
dFDRi;�j.t/ �

Vi.t/

Ri.t/ _ 1

�
� 0

with probability 1 for ıi;j D ti;j=2. By definition, dFDRi;�j.t
i;�j
˛ / � ˛, and it follows

that

lim sup
m!1

"
Vi.t

i;�j
˛ /

Ri.t
i;�j
˛ / _ 1

#
� ˛;

with probability 1. Then,

lim sup
m!1

2

4 Vi�.t
i�;�RB

i�
˛ /

Ri�.t
i�;�RB

i�
˛ / _ 1

3

5 � lim sup
m!1

"
max

1�i�I;1�j�J

(
Vi.t

i;�j
˛ /

Ri.t
i;�j
˛ / _ 1

)#

� ˛;
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with probability 1. Then by Fatou’s lemma,

lim sup
m!1

0

@E

2

4 Vi�.t
i�;�RB

i�
˛ /

Ri�.t
i�;�RB

i�
˛ / _ 1

3

5

1

A � E

2

4lim sup
m!1

2

4 Vi�.t
i�;�RB

i�
˛ /

Ri�.t
i�;�RB

i�
˛ / _ 1

3

5

3

5 � ˛:

ut

On the surface, the adaptive filtering procedure is similar to the greedy filtering
procedure proposed in Ignatiadis et al. (2016) that they both maximize the number
of rejections across candidate filter thresholds. However, the two procedures are
different in the number of candidates they consider. Ignatiadis et al. (2016) consider
all possible filtering fractions, i.e., the � candidate set size is the same as m. On the
other hand, Theorem 1 requires that the � candidate set size I be fixed and let m
tend to infinity, which means in practice I should be small relative to m. For gene
expression data where the number of genes are in the thousands, we propose to set
I D 20.

4 A Data-Based Simulation Study

To mimic the characteristic of real gene expression data, we generate gene expres-
sion levels based on existing microarray data similar to the simulation schemes in
Nettleton et al. (2008), Liang and Nettleton (2010), and Benidt and Nettleton (2015).
Suppose we have an existing microarray dataset with a treatment group and a control
group. To simulate G gene expression levels with G0 EE genes and G1 DE genes in
a two-group setting with sample size of n in each group, we perform the following
steps:

1. For each gene, calculate a p-value for differential expression using a regular two-
sample t-test.

2. Calculate for each gene the probability of being DE using the fdrtool package
(Strimmer 2008).

3. Compute the sampling weight vector w by subtracting the probability of DE from
1, and then normalize the weights so that they sum to unity.

4. Randomly select G1 genes without replacement to be DE based on the sampling
weights in w.

5. Randomly select G0 genes without replacement to be EE. Thus, in total, we have
G D G1 C G0 genes selected.

6. Randomly select n samples without replacement from the treatment group,
subsetting to the set of G1 DE genes. This will be our swap set.

7. Randomly select 2n samples without replacement from the control group,
subsetting to the set of G selected genes. We will treat the first n samples as
the simulated control group and the second n samples as the simulated treatment
group.



Adaptive Filtering 133

8. Swap the G1 genes in the swap set with the G1 genes in the simulated treatment
group.

9. Keep only the gene expressions in the simulated treatment and control groups.

The gene expression levels of G0 genes are sampled from the same population (the
original control group) and are EE by construction. On the other hand, the gene
expression levels of G1 genes are sampled from different populations and are DE.
This simulation scheme is nonparametric and maintains the correlation structure
among genes.

We could also simulate data parametrically with the parameters estimated from
the original dataset. More specifically, we conduct the following steps:

1. For each gene, estimate its mean and variance in the original treatment and
control groups, respectively.

2. Follow the steps 1–5 of the nonparametric simulation procedure to generate G1

DE genes and G0 EE genes.
3. For each EE gene, generate expression levels for 2n samples across both the

simulated treatment and control groups by sampling from a normal distribution
using the mean and variance of the same gene in the original control group.

4. For each DE gene, simulate expression levels from different normal distributions
in the simulated treatment and control groups. First calculate the pooled variance
across the original treatment and control groups to use as the variance, then
generate expression levels for the n samples in the simulated control group using
the mean of the original control group, and generate expression levels for the n
samples in the simulated treatment group using the mean of the original treatment
group.

In the parametric simulation setting, the gene expressions are independent between
genes, which is the biggest difference comparing to the nonparametric simulation
setting.

We use both the parametric and nonparametric settings to create simulated
datasets, and compare the performances of the following four procedures:

(a) Variance Filter: the adaptive filtering procedure with overall variance as
the filter statistic

(b) Mean Filter: the adaptive filtering procedure with overall mean as the filter
statistic

(c) limma: with more than 5000 citations as of December, 2016, limma (Smyth
2004) is the most widely used method for detecting DE genes.

(d) limma_RB: limma using the right-boundary correction from Liang and
Nettleton (2012).

Note that limma by default use the BH procedure to control FDR.
We used the B- and T-cell Acute Lymphocytic Leukemia dataset (Chiaretti

et al. 2004) as our basis for simulation. Similar to Bourgon et al. (2010), we
used the 37 samples with the BCR/ABL mutation as our treatment group and
the 42 samples with no observed cytogenetic abnormalities as our control group.
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Fig. 1 Simulation results. Top row: realized FDR; dotted lines indicate diagonal lines. Bottom
row: the number of true positives

Simulation settings are as follows: 5000 genes are simulated from the two datasets,
with 500 set as DE. The sample size n D 10. Results were averaged over 1000
repeats. We search over the filtering fraction of 0%, 5%, : : :, 95%. For the RB,
we set ƒ D f0:05; 0:1; : : : ; 0:95g for parametric simulation and ƒ D f0:05g

for nonparametric simulation, where the latter was suggested by Blanchard and
Roquain (2009) for adaptive false discovery rate control under dependence. Figure 1
shows the realized FDR and the number of true positives as functions of the target
FDR levels.

Under the parametric simulation setting, the realized FDR levels of Variance
Filter and Mean Filter match precisely to the target FDR levels. Under
the nonparametric simulation setting, the realized FDR levels of Variance
Filter and Mean Filter only loosely follow the target FDR levelswith
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much more variations, likely due to the correlation among genes. In both set-
tings, Variance Filter is the most powerful procedure, followed by Mean
Filter, limma_RB, and limma.

The overall results show that filtering can lead to more powerful tests than
limma. Although the best method for analyzing microarray data may depend on
the dataset, filtering can be a simple yet effective approach to increase the power of
detecting DE genes.

5 Conclusion

To increase the power of finding DE genes, we investigate the method of adaptive
filtering to reduce the number of statistical tests and adapt to the true null proportion
after filtering. We show that our proposed adaptive filtering procedure controls
the FDR asymptotically. Using a data-based simulation method to mimic the
characteristic of the real data, we conduct simulations to investigate whether filtering
can detect more DE genes compared to other methods while maintaining proper
FDR control. Simulation results show that filtering methods can maintain their FDR
levels closely to the target FDR levels, while increasing the power of the test beyond
that of limma.

Although we focus on the detection of DE genes, the proposed adaptive filter
procedure can potentially be used in other settings, such as in chromatin immuno-
precipitation with sequencing (Liang and Keleş 2012) and hypothesis testing with
discrete data (Gilbert 2005), provided a good filtering statistic exists.
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Estimating Parameters in Complex Systems with
Functional Outputs: A Wavelet-Based
Approximate Bayesian Computation Approach

Hongxiao Zhu, Ruijin Lu, Chen Ming, Anupam K. Gupta, and Rolf Müller

1 Introduction

Functional data, such as signals, surfaces, and images, are frequently encountered
in many scientific disciplines. The increased prevalence of such data promotes
the development of functional data analysis (Ferraty and Vieu 2006; Horváth
and Kokoszka 2012; Ramsay and Silverman 1997; Wang et al. 2016). While
considerable efforts have been made to the preprocessing (Ramsay and Li 1998;
Tang and Müller 2008), estimation (Rice and Silverman 1991; Yang et al. 2016;
Yao et al. 2005), and regression analysis (Cardot 2005; Chiou et al. 2003; Morris
2015; Scheipl et al. 2014; Zhu et al. 2011) of functional data, existing approaches
primarily rely on linking functional observations with the unknown parameters via
a likelihood or an objective function. Many applications, however, involve inferring
parameters when such linkage is implicit or difficult to specify. In this paper, we
consider a family of parameter estimation problems under such situations.
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Fig. 1 A conceptual
demonstration of the
parameter estimation
problems we consider

Figure 1 provides a conceptual demonstration of the estimation problems we
consider. The black box represents an unknown complex system that takes the
parameter � as input and produces functional observations fYi.t/g as outputs. Our
goal is to estimate the underlying parameter � based on the observed functional
outputs. If the relationship between fYi.t/g and � is known, for example, if fYi.t/g
are independent and identically distributed Gaussian processes with mean zero
and a covariance kernel that depends on � , we can estimate � through maximum
likelihood or Bayesian method. There are, however, many other situations in which
the true linkage between fYi.t/g and � is more complicated, and scientists use phys-
ical rules and/or mathematical equations to model such linkage. To illustrate these
situations, we provide two examples—the light detection and ranging (LIDAR) data
and the foliage-echo data.

1. The LIDAR data. LIDAR is an optical remote-sensing technique that uses
laser light to measure targets and produces high-resolution functional data. For
example, authors in Xun et al. (2013) considered LIDAR data measured on an
aerosol cloud. During the measurement, a point source laser was transmitted into
an aerosol cloud at multiple wavelengths and over multiple time points. The laser
light was then scattered by the aerosol cloud and reflected back to a receiver. The
resulting data can be modeled by Y.t; z/ D g.t; z/C ".t; z/, where t is time, z is
the range value, Y.t; z/ is the random surface that can be observed, g.t; z/ is the
underlying true signal, and ".t; z/ is the random measurement error. The linkage
between g.t; z/ and the parameters of interest is implicit, described by a partial
differential equation (PDE):

@g.t; z/

@t
� �D

@2g.t; z/

@z2
� �S

@g.t; z/

@z
� �Ag.t; z/ D 0;

subject to boundary conditions. Here, the parameters �D; �S, and �A denote the
diffusion rate, the drift shift, and the reaction rate respectively, which reflect the
physical properties of the laser light reflection. Consequently, the relationship
between the functional observation Y.t; z/ and the parameters is implicit, and
one cannot write the likelihood of Y.t; z/ in terms of the parameters explicitly.

2. The foliage-echo data. The foliage-echo data represents a more general situation
when functional data is produced by a complicated system which cannot be
described using a single formula (e.g., a PDE). During the measurement, an
active sonar system transmits acoustic waves into tree foliages, and the waves
reflected back from the foliages (i.e. the echoes) are received. While the
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mechanism of sound propagation and reflection is complicated, we are able to
simulate echoes using a simulator by applying acoustic laws under simplified
assumptions. Details of the simulation are described in Sect. 2 and the Appendix.
Our goal is to estimate properties of the foliages, such as the density of the leaves
(i.e., how many leaves per cubic meter), based on the echoes.

The above two examples demonstrate functional data produced by complex sys-
tems. These systems have the following characteristics: (1) Due to the complexity of
the underlying physical rules, the parameter estimation is a difficult inverse problem
which may be ill-posed, meaning that the solution to the parameter estimation may
not be unique. For example, both LIDAR and foliage-echo examples are remote
sensing problems in which the data are aggregations of reflected waveforms from
numerous reflectors; therefore, it is possible that different combinations of the
model parameters result in the same/similar data outputs. Furthermore, analytical
or numerical solution to these inverse problems is often hard to find. (2) One
can numerically simulate data from a physical/mathematical model (e.g., a PDE
or a more complicated simulator), but the simulation may be computationally
intensive. (3) The data-generation procedure of the complex system involves
random variables, hence, it produces random functional outputs for a given set of
parameters. For example, in both LIDAR and foliage-echo examples, randomness
may be caused by measurement error and/or numerous reflecting facets whose
size, location, and orientation follow certain probability distributions. (4) It is often
difficult to explicitly link the functional outputs with the underlying parameters via
a likelihood or an objective function. (5) The functional outputs are often measured
on a dense, high-dimensional grid.

For systems that can be described using ordinary differential equations (ODEs)
or PDEs, such as the LIDAR data case, estimation approaches based on regularized
optimization, also called parameter cascading, have been proposed (Ramsay et al.
2007; Lu et al. 2011; Xun et al. 2013; Zhang et al. 2017). These methods, however,
are not suitable for systems that cannot be described by ODEs or PDEs. In this paper,
we propose a wavelet-based approximate Bayesian computation (wABC) approach
that is applicable to general complex systems—systems that include ODE and PDE
as special cases. For this reason, we will use the more general foliage-echo data as
our primary example.

The proposed wABC approach inherits the “likelihood-free” property of the
traditional approximate Bayesian computation (ABC) (Marin et al. 2012; Turner
and Van Zandt 2012) through bypassing analytical evaluations of the likelihood
function. The bypassing is achieved through approximating the likelihood function
evaluation by simulation. The basic idea is illustrated in Fig. 2. Specifically, instead
of evaluating the likelihood, the ABC approach first samples a candidate parameter
�� from the prior distribution �.�/, then simulates data fXig from a “simulator”
of the system by treating �� as the input. If the simulated data is “close to” the
observed data, the candidate parameter �� is accepted, otherwise it is rejected. A
more detailed review of ABC can be found in Sect. 3.1.
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q ∗ ∼ π(q) Input Output {Xi      }

r( {Xi      }, {Yi      } ) ≤ ε
?

If Yes,
accept q ∗

If No,
reject q ∗

Simulator

Fig. 2 The basic idea of the ABC method. Here, fXig represent the simulated data, fYig represent
the observed data, and �.	; 	/ measures how “close” the simulated data are to the observed data

Despite their flexibility in handling complex systems, as a simulation-based
approach, the ABC method suffers from low efficiency when the dimension of
the observed data increases and when the “simulator” becomes computationally
expensive. As the dimension of the data increases, the criterion �.fXi.t/g; fYi.t/g/ �

" is harder to be satisfied, resulting in lower acceptance rate. When the “simulator”
becomes moderately expensive, even on the scale of a few seconds per simulation,
accepting 1000 samples of � would require hours of calculation, and the compu-
tation quickly becomes intractable when the acceptance rate drops. Our proposed
wABC approach extends beyond existing ABC by allowing functional outputs
measured on high-dimensional grid, yet still remains computationally tractable.
It relies on the near-lossless wavelet decomposition and compression to reduce
the high-correlation between measurement points and the high-dimensionality, and
adopts a Markov chain Monte Carlo algorithm with a Metropolis-Hastings sampler
to obtain posterior samples of the parameters. To avoid expensive simulations, a
Gaussian process surrogate for the simulator is introduced, and the uncertainty of
the resulting sampler is controlled by calculating the expected error rate of the
acceptance probability.

To our knowledge, the proposed wABC approach is the first that estimates
parameters in complex systems based on functional outputs measured on a dense,
high-dimensional grid. It is generally applicable to various physical, chemical, and
biological systems that facilitate numerical simulations. Compared with existing
functional data analytical tools, our approach has the following advantages: (1) It
is likelihood-free. It takes full advantages of the physical/mathematical rules that
connect data with the parameter. (2) It can characterize various linear or nonlinear
data-parameter relationships. (3) It produces the joint posterior distribution of the
parameters with various multi-modality and shape structures. (4) It is scalable to
functional outputs measured on high-dimensional grids as well as expensive simu-
lations. Our results for the simulated foliage-echo data demonstrate the effectiveness
of the proposed method in estimating parameters.



Estimating Parameters in Complex Systems 141

2 A Motivating Example: The Foliage-Echo Simulation
System

While the method we propose is generally applicable to various complex systems, it
is initially motivated by the foliage-echo study. The goal of the study is to estimate
the statistical properties of tree foliages, i.e., the density of the leaves, the average
size of the leaves, and the average orientation of the leaves, based on the echo signals
captured by a sonar device.

Figure 3 shows the working mechanism of an active sonar, which consists of an
emitter that ensonifies the environment and a receiver that records the returning
echoes. The transmitter emits acoustic waves and the receiver collects echoes
reflected from objects in the environment. The echo signals carry information about
the targets, hence have been used for various identification and navigation tasks
(Vanderelst et al. 2016). In natural environments, an echo signal is the superposition
of reflected waveforms from numerous scatterers, e.g., foliage leaves, rocks in
uneven natural terrains, thus is highly stochastic.

To study the foliage echoes, we establish a computational model to simulate a
natural sonar scene in a three-dimensional (3-d) space. The scene is demonstrated
in Fig. 4a, which consists of an active sonar sensor and a cluster of tree leaves. The
sensor is located at the origin. It emits ultrasonic waves towards the positive x-axis
direction. The tree foliages are uniformly located in a Œ1; 10� 
 Œ�2; 2� 
 Œ�2; 2�

region in 3-d. The total number of leaves is determined by the leaf density—the
number of leaves per cubic meter, denoted by �1. The leaf shapes are approximated
by planar circular disks with radius (denoted by a) randomly sampled from a normal
distribution N.�2; 0:1�2/, where �2 denotes the mean radius. The orientation of each
leaf relative to the sonar is determined by two angles: (1) the angle between the
leaf normal vector and pulse direction (the positive x-axis direction), which follows
a truncated normal distribution N.xj�3; 5/1f0<x<90g with �3 the mean angle and 5
the variance; and (2) the angle that describes the rotation of the leaf normal vector
around the pulse direction clockwisely, which follows a uniform distribution in
the range of Œ0; 2�/. Based on these two angles, we further calculate the incident
angle—the angle between the leaf’s normal direction and the sonar-leaf center line.
We denote the incident angle by ˇ. With these setups and the specification of

Fig. 3 The principle of an
active sonar. This figure was
created based on an online
figure available at the
Wikipedia website on Sonar
(Wikipedia 2017) (https://en.
wikipedia.org/wiki/Sonar)

https://en.wikipedia.org/wiki/Sonar
https://en.wikipedia.org/wiki/Sonar
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Fig. 4 The Foliage-echo Simulation. (a) The sonar scene in 3-d. The color indicates the sound
intensity leaves receive/reflect (scaled to Œ0; 1�). (b) A simulated echo signal with leaf density of 30
(in number of leaves per cubic meter), leaf radius of 0:0171 (in meter), and leaf orientation of 45
(in degree). (c) A demonstration of the upper and lower envelopes of the waveform. (d) The echo
envelope extracted from the echo signal in (b)

acoustic properties of the sonar, echoes are simulated following acoustic laws of
sound emission, propagation, and reflection (Bowman et al. 1987). More technical
details of the simulator are described in the Appendix.

The above simulation model constitutes a physical system with three inputs:
the leaf density (�1), the mean leaf radius (�2), and the mean leaf orientation
(�3). The output is an echo signal as demonstrated in Fig. 4b. The output echo
signal is a temporal waveform measured from 0 to 60ms with a sampling rate
of 400 kHz. The total number of measurement points is 24;000 for each echo.
The parameters .�1; �2; �3/ summarize statistical properties of the foliage targets.
Therefore, estimating these parameters based on the echo signals provides us
knowledge of the targets. While the current study only involves echoes simulated
from a physical model, our ultimate hope is to use the proposed estimation approach
to infer target properties based on echoes collected in a real scene.

Directly modeling the echo signals is difficult because the echoes contain
information about both emitted signals and the target properties. Since sound
reflection from stationary targets does not change the carrier frequency of the
emitted signal, information about targets is contained in the amplitude modulation,
which is captured by the envelopes of the echo signals. We therefore perform a
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preprocessing step to extract the echo envelopes, and use this data for our analysis.
The envelope of a signal is the boundary curve within which all amplitude values
of the signal are contained. A conceptual demonstration is shown in Fig. 4c. The
envelope of an echo retains the target-specific information by capturing the low
frequency amplitude variations, which makes it an ideal representation of echo
signals. In the sonar echo data, since the upper and the lower envelopes are always
symmetric, we only consider the upper envelopes in our data analysis. The envelope
signal extracted from the echo in Fig. 4b is shown in Fig. 4d.

3 Wavelet-Based Approximate Bayesian Computation

The foliage-echo data example demonstrated in Sect. 2 represents a family of param-
eter estimation problems involving functional data. In these problems, functional
data is related to the parameters of interest through a complex system guided by
physical or mathematical rules. As a result, one cannot explicitly write the likelihood
of the functional outputs as a function of the parameters. To facilitate parameter esti-
mation under these scenarios, we propose a wavelet-based Approximate Bayesian
Computation (wABC) approach. The logic behind the main concepts introduced in
Sects. 3.1–3.4 and their connections with wABC are illustrated in Fig. 5. Section 3.1
reviews the general ABC approach, which is the foundation for the proposed wABC
approach. In order to facilitate functional outputs measured on a dense, high-
dimensional grid, we represent functional data through wavelet basis expansion and
perform a wavelet compression to reduce dimension; details are in Sect. 3.2. For
simulators that are computationally expensive, we further introduce the Gaussian
process surrogate for the simulator to enable fast simulation; this is discussed in
Sect. 3.3. Sections 3.1–3.3 constitute the general framework of wABC. Finally, in
Sect. 3.4, we introduce a method to control the uncertainty of the decision-making
in wABC.

Control uncertainty

wABC

ABC + +Wavelet & compression

To deal with high-
dim functional data

To avoid repeatedly
calling the simulator

GP surrogate

Fig. 5 The logic behind the concepts introduced in Sects. 3.1–3.4 and their connections with
wABC
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3.1 Review of Approximate Bayesian Computation

Let Y denote a random element whose realizations are the observed data and let �
denote a parameter that determines the distribution of Y . In a typical Bayesian setup,
one computes the posterior distribution �.� jY/ / �.Yj�/�.�/, where �.Yj�/ is the
likelihood that relates Y to the parameter � and �.�/ is the prior distribution for � .
Approximate Bayesian Computation (ABC), initially proposed by Pritchard et al.
(1999), aims to approximate the posterior distribution �.� jY/ without explicitly
specifying the likelihood �.Yj�/. In particular, we assume that �.Yj�/ is unknown,
but there is a simulation model, often denoted by �.Xj�/, that produces simulated
data X given ��. We sometimes call X the pseudo-data. Here, �� is an arbitrary
sample from the prior distribution �.�/. If X is “close to” Y , we retain �� as a
sample of �.� jY/, otherwise, we reject �� and repeat the procedure with a new ��.
This procedure, as illustrated in Fig. 2, will be repeated until the desired amount
of “good samples” is collected. In ABC, we often use a distance measure �.�; �/
to determine how close X is to Y . For example, in the univariate case, by letting
�.X;Y/ D jX � Yj, we will retain �� when jX � Yj � " for a small ".

The above procedure indeed produces samples for the distribution �.� jf�.X;Y/ �

"g/, a distribution that is identical to �.� jY/ when " D 0 (i.e., X D Y). However,
since fX=Yg happens with probability 0 for continuous random variables, in
practice, we can only require �.X;Y/ � " for a small discrepancy ", which
results in �.� jf�.X;Y/ � "g/. The distribution �.� jf�.X;Y/ � "g/ serves as
an approximation of �.� jY/ when " is small, i.e.,

�.� jY/ 	 �.� j�.X;Y/ � "/; for a small ":

When multiple samples are observed, we index the data by Yi, i D 1; : : : ; n
and denote Y D fY1; : : : ;Yng. In this case, ABC can be performed by sampling
X D fX1; : : : ;Xmg based on each ��, and define �.�; �/ based on a summary statistic
S.�/ of the samples. If S.Y/ is a sufficient statistic for � , then S.Y/ contains all
information about � , therefore �.� jY/ D �.� jS.Y//, which can be shown by
applying the Fisher-Neyman factorization theorem (Lehmann and Casella 1998).
The right-hand side of the equation �.� jS.Y// can be further approximated by
�.� j�.S.X/; S.Y// � "/ using the ABC. For example, if fY1; : : : ;Yng is a random
sample from a Bernoulli distribution with mean � , then one can define �.X;Y/ D

jsY � sXj, where S.Y/ D sY is the sample mean, a sufficient statistic for � .

Markov Chain Monte Carlo for ABC The traditional ABC procedure relies on
accepting �� when �.S.X/; S.Y// � ". This procedure can be embarrassingly
inefficient because of two reasons: (1) A good sufficient statistic can be hard to
find. Sometimes one has to use the original data set as the sufficient statistic. (2)
The acceptance rate can be extremely low especially when the statistic S.�/ or the
parameter � is of high dimension. Various alternative algorithms have been proposed
to improve the computational efficiency of ABC. Here, we review an Markov chain
Monte Carlo (MCMC) algorithm using the Metropolis-Hastings (MH) sampler.
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More discussions of the MCMC algorithm for ABC can be found in Wegmann et al.
(2009), Didelot et al. (2011), Meeds and Welling (2014), and Sadegh and Vrugt
(2014), among others. First, we transfer the acceptance criterion �.S.X/; S.Y// � "

to a probability density function �".S.Y/ j S.X// controlled by the discrepancy
parameter ". For example, with an independent Gaussian assumption, we may write

�".S.Y/ j S.X// D .2�"/�J=2 expf�
1

2"2
.S.X/ � S.Y//T.S.X/ � S.Y//g; (1)

where J is the dimension of the sufficient statistic S.�/. With this representation, we
can approximate the likelihood �.S.Y/ j �/ by �".S.Y/ j �/, and the latter can be
approximated using the Monte Carlo integration

�".S.Y/ j �/ D

Z
�".S.Y/ j S.X//�.S.X/ j �/ dS.X/

	
1

H

HX

gD1

�".S.Y/ j S.X.g///: (2)

Here, fX.g/; g D 1; : : : ;Hg denote H samples of the pseudo-data generated from the
simulator, �.X j �/. Note that we do not need to evaluate �.S.X/ j �/ in Eq. (2). We
just need to sample from it. Based on the approximated likelihood, we can design
a MCMC algorithm by assuming an proposal distribution q.��j�/. We accept the
proposed �� with probability

˛.��j�/ D min

�
1;
�.��/�".S.Y/ j ��/q.� j��/

�.�/�".S.Y/ j �/q.��j�/

�
:

The above MCMC algorithm provides improved mixing for the posterior samples
than the traditional rejection-based ABC algorithm. However, it requires H repeated
calls to the simulator in order to compute the approximation in Eq. (2), and this has
to be performed during each MCMC iteration. Here, H needs to be large enough to
guarantee a good approximation, e.g., H D 1000 is reasonable if �.S.X/ j �/ is a
Gamma distribution. Repeated sampling can be a computational burden when the
simulator runs slow. In Sect. 3.3, we adopt a Gaussian process surrogate (GPS) for
the simulator following the idea of Meeds and Welling (2014), which substantially
reduces the number of simulation calls.

3.2 Wavelet Representation and Compression of Functional
Data

While the idea of ABC is straightforward to follow, it can be inefficient due to a
number of assumptions and approximations that may not be easily satisfied. One
assumption is the existence of a sufficient statistic for the parameters of interest.
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Given a random sample Y D fY1; : : : ;Yng, the determination of a sufficient statistic
S.Y/ for � is often difficult without knowing the distribution of Yi. Although one
can always choose the data itself as the sufficient statistic, doing so only makes
the specification of the distance measure �.�; �/ extremely difficult (because the
dimension of Y is high). This issue is particularly severe for high dimensional
vectors and functional data. In our foliage-echo example, an echo envelope is
of dimension 24;000, therefore, the data Y can be written as a n-by-24;000
matrix. Given that the relationship between the data and the parameters is implicit,
determining a sufficient statistics for .�1; �2; �3/ given Y is practically intractable.

To facilitate the efficient performance of ABC for functional data measured on a
dense, high-dimensional grid, we adopt a strategy that achieves de-correlation and
compression so that functional observations can be parsimoniously represented in
a much lower dimensional setting. In particular, we represent the functional data
by a multi-scale wavelet basis. Given a set of multi-scale wavelet basis functions
f jkI j D 1; : : : ; J; k D 1; : : : ;Kjg and a scale function (the father wavelet)
f 0kI k D 1; : : : ;K0g, we can expand a functional observation Y.t/ by Y.t/ DPJ

jD0

PKj

kD1 djk jk.t/. Here, djk is the wavelet coefficient at scale j and location k. For
functional data measured on an equally spaced grid, this representation is lossless,
i.e., providing an exact representation of the original data. Therefore, fdjkg contain
the same amount of information as Y.t/ thus can be treated as a sufficient statistic
for � . We can denote the sufficient statistics of Y as S.Y/ D D, where D D .dijk/ is
a n-by-K matrix and K D

PJ
jD0 Kj. In general, the wavelet transformation is not the

only option. It is possible to construct lossless transforms with other basis functions
(e.g. Spline or Fourier bases), or construct an approximately lossless transformation
with a basis fBk.t/; k D 1; : : : ;Kg that satisfies jY.t/ �

PK
kD1 dkBk.t/j < ı for all t

and a small ı.
The wavelet representation has two advantages: the coefficients fdjkg are sparse,

meaning that most coefficients are zero or close-to-zero, and they are approximately
uncorrelated. These properties bring two types of convenience to the specification
of the distance measure in ABC. First, since components in fdjkg are approxi-
mately uncorrelated, the conditional distribution �".S.Y/ j S.X// can be specified
following Eq. (1), i.e., assuming that components of S.Y/ (or S.X/) are mutually
independent of each other. Second, the sparsity of the wavelet coefficients makes
the wavelet compression feasible.

Wavelet Compression For many high-dimensional problems, representing the
data in a much lower dimensional space brings tremendous convenience to data
storage and processing. This is also true in the ABC context. Let D D .dijk/ denote
the n by K matrix of wavelet coefficients, and the ith row corresponds to the wavelet
coefficients of the ith functional observation. Since D is sparse, many components
of D are zero or close-to-zero, therefore do not contain essential information about
the parameter. Wavelet compression removes zero or close-to-zero components
while retaining large components. The compressed matrix, denoted by eD, is nearly
lossless, thus can be used as an approximately sufficient statistic for � . To compress
D, we retain K1 columns of D so that the proportion of energy retained is greater than
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(or equal to) a threshold ı1 (e.g., ı1 D 0:999) for each function. Here, the proportion
of energy retained for a function Yi.t/ is defined by

P
.j;k/2C1

d2ijk=
P

.j;k/ d2ijk, where

C1 is the set of scale and location indices that correspond to columns retained in eD.
The wavelet representation and compression introduced above provide an effec-

tive way to transform the functional observation Y to wavelet coefficient matrix D
in the wavelet domain, and to reduce the dimension of D from n-by-K to n-by-K1.
The compression also has the effect of removing high frequency noise in functional
data. The reduced data eD will be treated as a sufficient statistics of Y to be used in
the MCMC sampling scheme for wABC.

3.3 A Gaussian Process Surrogate for the Simulator

As discussed in Sect. 3.1, although the MCMC method can provide better mixing
than the traditional rejection-based ABC method, it requires sampling from the
simulator H times during each MCMC iteration. Even if each simulation only
requires a moderate amount of time, running a large amount of MCMC iterations
can be computationally intractable. For example, our foliage-echo simulator takes
2:3 s to simulate one echo envelope. If the MCMC algorithm has an acceptance
rate of 30%, H D 100, and the number of independent samples in X is m D 3,
the expected time needed to obtain 1000 posterior samples of � is around 639 h
(26:6 days). It is possible to use parallel computing at the stage of computing
�".S.Y/ j �/, i.e., during each MCMC, the H samples of X (which contain Hm
echoes) can be performed in parallel using a multi-core computing server. However,
it may still take days to obtain 1000 posterior samples of � because the number of
computing cores one has access to is often limited. The modern graphics processing
units (GPU) based computing system provides far more computing cores (Sanders
and Kandrot 2010), but each core can only deal with relatively simple calculation,
therefore may not be suitable for the large-scale matrix calculations required by
our simulator. When the speed of the simulator cannot be improved any further, a
good solution is to adopt a strategy that requires less calls of the simulator. We now
introduce a GPS for the simulator following the idea of Meeds and Welling (2014).
GPS can substantially reduce the number of simulation calls in the MCMC.

We explain the GPS in the context of the foliage-echo example. Suppose that J
columns of D are retained after wavelet compression. Let eDy D .d1y ; : : : ;d

J
y/ denote

the n-by-J matrix of wavelet coefficients after compression, where each dj
y is an

n-by-1 vector. The randomness in the leaf location, orientation, and radius causes
random fluctuations in the n samples. These fluctuations reflect the leaf-specific
information, i.e., exact locations, orientations, and radii of leaves in a scene, which
is not relevant to the population parameters .�1; �2; �3/. Therefore, we remove the
random fluctuation by averaging each dj

y across its n entries, resulting in a scalar
sdj

y. Denote the averaged wavelet coefficients by sDy D .sd1y ; : : : ;sd
J
y/

T . We will use
S.Y/ D sDy in the analysis of foliage-sonar data. Since the wavelet coefficients in
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sDy are approximately independent of each other, we will calculate the likelihood
�".sdj

y j �/ for each j independently. We assume that

sdj
y D sdj

x C ej; ej � N.0; "2/: (3)

Here, sdj
x is the jth averaged wavelet coefficients based on the simulated samples X D

fX1; : : : ;Xmg. Model (3) is equivalent to assuming that �".sdj
y j sdj

x/ corresponds to a
N.sdj

x; "
2/ distribution. We further approximate the simulator distribution �.sdj

x j �/

by assuming that sdj
x follows a Gaussian process (GP) regression model:

sdj
x D fj.�/C rj; fj.�/ � GP.0; kj.�; �

�//; rj � N.0; 
2j /; (4)

where fj.�/ is an unknown GP with mean zero and a pre-specified covariance
kernel kj.�; �

�/. For example, a commonly used covariance kernel is the squared
exponential kernel kj.�; �

�/ D �2j expf�jj� � ��jj2=.2�2j /g. Since both (3) and (4)
induce Gaussian distributions, we can analytically calculate �".sdj

y j �/ by integrat-
ing out sdj

x. This analytical integration avoids the need to perform approximation
using Monte Carlo integration as described in Eq. (2). We call the GP regression
model (4) a GPS. The main idea is to train a GP model on a grid of � and use it
to replace the simulation distribution �".sdj

y j �/. This strategy avoids the need of
frequently calling the simulator during the MCMC iteration.

Specifically, we calculate �".sdj
y j �/ following a three-step procedure.

1. Produce a grid of values ‚ D .�1; : : : ; �A/
T on the domain of � , generate X D

fX1; : : : ;Xmg at each grid point, perform wavelet decomposition and compression
of X, and average the wavelets coefficients across the m samples. This results in
a list of “input-output” pairs f.�i;sd

j
x; i/; i D 1; : : : ;Ag, which will be treated as

the training data for estimating the function fj.�/.
2. Given a pair of values .��; �/, we will calculate the GP predictive distribution

on .��; �/ using the conditional distribution, which gives N.	j
.��;�/j‚

;†
j
.��;�/j‚

/,
where

	
j
.��;�/j‚

D

�
k��;‚

k�;‚

� 

K‚;‚ C 
2j I

��1
sdj

x ; (5)

†
j
.��;�/j‚

D

�
k��;�� k��;�

k�;�� k�;�

�
�

�
k��;‚

k�;‚

� 

K‚;‚ C 
2j I

��1
�

k��;‚

k�;‚

�T

: (6)

Here, sdj
x D .sdj

x; 1; : : : ;
sdj

x;A/
T is an A-by-1 vector of training points, k��;‚ is a

1-by-A vector consisting of kernel evaluations at �� and components in‚, K‚;‚

is an A-by-A matrix consisting of kernel evaluations at two components in‚, and
k��;� D k.��; �/. We treat the above GP conditional distribution as a surrogate
of the simulator. In Fig. 6, we compared the prediction performance of the GPS
at a test value of �1 with the sample estimate obtained from data directly sampled
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Fig. 6 A one-dimensional demonstration of the GP prediction using the sonar-foliage simulator.
Here, we have fixed �2 D 0:017 and �3 D 45, and treated �1 as the unknown parameter. Left panel:
the gray lines are the first wavelet coefficient of m D 3 simulated echo envelopes at A D 10 grid
points on the domain Œ5; 50�; the black lines are the average of the three gray lines; the magenta dot
and line are the predictive mean and the confidence interval (mean ˙ 2 std) calculated using the
GPS. Right panel: the gray lines and the black lines are the same as the left panel. The magenta dot
is the sample estimate of the mean, and the magenta bar is the confidence interval based on 100
echoes sampled directly from the simulator

from the simulator. Here, we have fixed �2 and �3, treating �1 as the parameter
to be estimated. Figure 6 demonstrates that the GPS gives as accurate prediction
as the sample estimates (which are based on 100 samples) using only 10 training
locations on the support of �1.

3. Based on the GPS, the likelihoods �".Ndj
y j ��/ and �".Ndj

y j �/ can be

approximated by N.Ndj
yj	

j;�
�� ; 


2
j C "2/ and N.Ndj

yj	
j;�
� ; 


2
j C "2/ respectively, where

.	
j;�
�� ; 	

j;�
� / is a sample from N.	j

.��;�/j‚
;†

j
.��;�/j‚

/. The acceptance probability
of the MCMC can be calculated by

˛.��j�/ D min

(
1;
�.��/

QJ
jD1 N.Ndj

yj	
j;�
�� ; 


2
j C "2/q.� j��/

�.�/
QJ

jD1 N.Ndj
yj	

j;�
� ; 


2
j C "2/ q.��j�/

)
: (7)

Note that if the function fj.�/ is known, we can replace 	j;�
�� and 	j;�

� by the true
values of fj.��/ and fj.�/ respectively, in which case ˛.��j�/ is a deterministic
value. However, since we have used GPS, the randomness of	j;�

�� and	j;�
� introduces

uncertainty to ˛.��j�/. This uncertainty may cause an error for decision-making in
the MCMC algorithm. Therefore, we need to control the uncertainty so that the
probability of making a wrong decision based on ˛.��j�/ is reasonably low. We
discuss this issue in Sect. 3.4.
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3.4 Control the Uncertainty of Decision-Making in wABC
Using GPS

The control of uncertainty in the GPS-based MCMC algorithm serves two purposes:
to control the error rate of making decisions (e.g., the decision of accepting/rejecting
the proposed ��) based on GPS in the MCMC algorithm, and to provide a strategy
of refining the GPS of the simulator. The main idea is to keep adding training data
to the GPS at each iteration until the expected probability of making the wrong
decision is less than a pre-specified threshold � (e.g., � D 0:3).

In particular, since 	j;�
�� and 	j;�

� are random samples from the GPS, ˛ in Eq. (7) is
a random variable. In stead of making decisions based on one ˛ value, we produce
L samples f˛.l/; l D 1; : : : ;Lg, and calculate a summary statistic � from it. We will
accept �� if u < � and reject �� if u � �. Here, u � Unif.0; 1/.

Now we can calculate the probability of making a mistake following the above
decision rule. If u < �, we will accept ��, and this will be a wrong decision if indeed
fu > ˛g, in which case we should reject ��. The probability that this situation
appears is 1fu<�gPr.fu > ˛g/. Similarly if u � �, the probability of making a wrong
decision is 1fu��gPr.fu � ˛g/. Therefore, given a value of u, the overall probability
of making an error is

Wu.˛/ D 1fu<�gPr.fu > ˛g/C 1fu��gPr.fu � ˛g/; u � Unif.0; 1/:

We can further integrate out u from the above conditional error function to obtain
the marginal probability of making an error, i.e.,

W.˛/ D

Z 1

0

Wu.˛/du;

The above error probability W.˛/ is minimized when � D median.˛/; a detailed
argument can be found in the Section 3.1 of Meeds and Welling (2014) and the
reference therein.

The above result enables us to control the probability of making a wrong decision
in the Step 3 in Sect. 3.3 by calculating ˛ L times, each with different samples of
	

j;�
�� and 	j;�

� . This calculation is very efficient since obtaining L samples from a
multivariate normal distribution is fast. Based on the L samples of ˛, we set � to
be the sample median of ˛ and calculate W.˛/ numerically. If W.˛/ > � , we will
add more training points (i.e., creating a denser grid on the support of � ) and repeat
Step 2–3 in Sect. 3.3 again, until W.˛/ � � . We finally accept the proposed �� if
u < � for a random u sampled from Unif.0; 1/. This completes one iteration of the
MCMC. The above adaptive strategy allows us to adjust for the training points for
the GPS so that the probability of making a wrong decision is controlled during each
MCMC iteration.
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4 The Algorithm and Parameter Settings

We describe the algorithm for the proposed wABC approach in the context of
foliage echo data. Detailed steps are described in Algorithm 1. Algorithm 1 is
an approximate MCMC algorithm because we have used GPS to approximate the
simulator. These samples are used to approximate samples from the simulator. With
GPS, we only need to call the simulator� times at each iteration under the condition
W.˛/ > � . As more training points are added, the GPS will become more reliable.
Eventually, there will be no need to call the simulator at all during the MCMC
iterations.

Algorithm 1: An MCMC algorithm for wavelet-based ABC using GPS

Input: Y, A, �, � , ", � , q.	 j 	/, f
2j g, �.�/, m, N, k.	; 	/, the simulator.
Step 1: Perform wavelet decomposition and compression on Y to get sDy.
Step 2: Create a grid ‚ of size A. Generate initial training points X from the simulator at

each grid point in ‚. Perform wavelet decomposition and compression on each X to
get f.�i;sd

j
x; i/; i D 1; : : : ;Ag for j D 1; : : : ; J.

Step 3: Run the following MCMC iterations.
for i D 1 to N do

Propose �� from q.�� j �/;
while W.˛/ > � do

Step 3.1: Calculate the mean and covariance for .��; �/ following (5)–(6) for all j,
j D 1; : : : ; J;
Step 3.2: Generate L samples of 	j;�

�� and 	j;�
� and calculate f˛.l/; l D 1; : : : ;Lg

using equation (7);
Step 3.3: Set � D median.f˛.l/; l D 1; : : : ;Lg/ and calculate the probability of
making a wrong decision W.˛/;
if W.˛/ > � then

Add � grid points to ‚, generate new training data at each newly added grid
point. Add these points to the existing training points;

end
end
Sample u � Unif.0; 1/;
if u < � then

Set � D ��;
end
Save � ;

end
Output: N posterior samples of � .

For the numerical stability of the algorithm and the convenience of setting
parameters, we recommend to rescale the compressed data eDy and the simulated
features eDx using a common set of constants so that all values are in a similar
scale (e.g., Œ�1; 1�). The scaling constants can be estimated from the observed data
(e.g., using the minimum and maximum of dj

y for each j). Similarly, in the GPS
calculation, we recommend to scale all � parameters to a common range (e.g.,
Œ0; 1�).
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Parameter Settings There are two types of model parameters we need to specify
in the wABC algorithm—those in the GPS and those in the MCMC algorithm.
Generally speaking, we suggest to determine parameters in GPS by checking the GP
prediction at some � values, so that the resulting GP prediction is comparable with
that obtained by directly sampling from the simulator. Figure 6 provides an example
of such comparison. Furthermore, we suggest to tune parameters in the MCMC
algorithm by controlling the expected performance of the algorithm, such as the
acceptance rate of the Metropolis-hastings sampler. In what follows, we introduce
some specific guidelines.

The parameter " in Eq. (7) is a small value that controls the expected discrepancy
between simulated and observed data. We suggest to set a small value (e.g., 1e�4)
for ". In the GPS MCMC algorithm, it is possible to set " D 0 as done by
Meeds and Welling (2014). The parameters f
2j g in (4) control the noise level in
the GP regression. We found that these parameters may substantially influence the
predictive covariance of the GPS, i.e., the covariance in (6). A reasonable way to
determine f
2j g is to take the empirical variance of dj

x (calculated across the m

replicates of eDx) and average them across all grid points in ‚. The parameters
in the GP kernel k.�; �/ also play important roles in determining the predictive
mean and covariance of the GPS. We have used the squared exponential kernel
kj.�; �

�/ D �2j expf�jj����jj2=.2�2j /g for each j. In the foliage-echo data analysis,
we have scaled the � parameters to Œ0; 1� and scaled all sdj

x; j D 1; : : : ; Jg to Œ�1; 1�.
Under these setups, we found that setting �j � 0:1 and �j � 0:4 is a reasonable
choice. In practice, we recommend the users to start with the one-parameter settings
(i.e., fixing all other parameters) and plot the predictive error bar like shown in
Fig. 6. This helps visualize the effect of the parameter setups. The parameters � , m,
N, A, and � can be tuned based on the computation speed and the acceptance rate
of the MCMC algorithm.

In general, the accuracy of the posterior estimation can be improved by increasing
the sample size in data Y, reducing the threshold � for the probability of making
an error in the MH sampler, increasing the size of the training grid for GPS, and
increasing the number of training samples m at each GP training grid.

5 The Analysis of Simulated Foliage-Echo Data

While our ultimate goal is to apply wABC on real foliage-echo data collected under
experimental or natural environments, at this stage, the real data have not yet been
made available. Therefore, in this analysis, we will only provide the parameter
estimation result based on echoes simulated from the foliage-echo simulation model
described in the Appendix. Because the true parameters are known in this simulation
setup, our analysis provides the proof-of-concept for the feasibility of wABC for
complex systems.
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We applied the proposed wABC approach to a set of foliage-echo data sim-
ulated from the sonar-foliage simulator. The data consists of n D 100 echo
envelope signals sampled independently from the simulator under the true parameter
.�1; �2; �3/ D .30; 0:017; 45/. We aim to solve the inverse-problem by estimating
the three underlying parameters based on the 100 echo envelopes while assuming
that the domains of the parameters are �1 2 Œ5; 50�, �2 2 Œ0:005; 0:05�, and
�3 2 Œ1e�4; 90�.

We applied the wavelet transformation to each echo envelope using Daubechies
wavelets with the maximal number of vanishing moments being 12 (i.e., db12).
The number of resolution levels is set to be J D 20, and the boundary extension
mode is set to be periodic. The wavelet decomposition transforms each echo
envelope from the time domain (with 24;000 measurement points) to the wavelet
domain (with 24;008 wavelet coefficients). We further applied wavelet compression
by retaining ı1 D 0:999 of the total energy. This reduces the dimension of
the wavelet coefficients from 24;008 to 992. We then applied MCMC with GPS
using Algorithm 1. We adopted a random walk proposal by setting the proposal
distribution q.�� j �/ to be a truncated log-normal with a scale parameter 0:05. To
train the GPS, we segmented the domain of .�1; �2; �3/ using a 10
10
10 equally-
spaced grid. This gave a total of 1000 training points for the GPS. The number of
repeated samples in X on each grid point was set to be m D 3. The kernel parameters
for the Gaussian process kernel function were set to be �j � 0:1, �j � 0:4. The "
parameter in the MCMC-ABC was set to be 1e�4 and the � parameter in the GPS
procedure was set to be 0:3. These setups resulted in an acceptance rate of 35% in
the MCMC MH sampler. We monitored the behavior of the posterior samples by
checking the trace plots and the autocorrelation plots. We tested the convergence of
the chains by calculating the Geweke’s Z-statistics (Geweke 1992). We ran 30;000
MCMC iterations and took the first 10;000 iterations as the burn-in period. Summary
statistics of the parameter estimation, including the posterior means and the 95%
credible intervals (CIs), are listed in Table 1. Table 1 shows that all three CIs cover
the true values of the parameters.

We further summarized the posterior distribution of parameters using 1-d and
2-d marginal kernel density estimations. In Fig. 7, we plot the heatmaps of the 2-
d kernel density estimations for each pair of the parameters. The gray dots on the
heatmaps are the scatter plots of the posterior samples (a total of 15;000 samples

Table 1 The posterior estimation for the three parameters in the foliage-echo data

�1 �2 �3

Meaning Density in 3-d Mean radius Mean orientation

Unit Counts per m3 Meter Degree

Domain Œ5; 50� Œ0:005; 0:05� Œ1e�4; 90�

True value 30 :017 45

Post. mean 28:45 :018 42:57

Post. CIs Œ17:1; 41:9� Œ:017; :026� Œ10:1; 72:7�
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after the burnin period). The white cross sign on the heatmaps mark the true values
of the parameters. The histograms on the top and right-hand side of each heatmap
show the marginal distributions of the parameters (superimposed by the 1-d density
estimations). The red vertical bar in each histogram indicates the location of the
posterior mean, and the red dashed bars indicate the 95% credible interval.

From Fig. 7, we observe that the posterior distributions of the parameters
demonstrate skewed, multi-modality shapes. In particular, the marginal distribution
of the leaf size is skewed to the right, and the leaf orientation demonstrates
two modes, one near 10ı and the other near 40ı. Furthermore, the 95% CIs
for the leaf density and the orientation are fairly wide. Wide CIs indicate high
uncertainty in the point estimates. These results are not a surprise, because they
reflect several characteristics of the foliage-echo simulation. First, the echo signals
are highly stochastic—using 100 echoes samples to recover the statistical properties
of the foliages is a challenging task. Second, the multi-modal behavior of the
posterior distribution reflects the non-identifiability nature of the inverse-problem,
i.e., different combinations of the leaf density, size, and orientation could result in
similar reflection behavior of the sound wave. Therefore, the solution to the inverse-
problem is not unique. Despite these challenges, our proposed wABC still provide
a comprehensive view for the distributions of the underlying parameters under a
moderate number of samples—a result that is intractable if using any other existing
statistical approaches. These results demonstrate the promise of solving ill-posed
inverse-problems even when the data is highly stochastic and of high-dimension.

6 Discussion

We have proposed a general simulation-based approach called wABC to estimate
the parameters of a complex system with functional data outputs. The proposed
method relies on simulating from the complex system to estimate the parameters
of interest, which avoids the difficulty of specifying the intractable likelihood.
We accommodate functional data measured on a dense, high-dimensional grid
by combining wavelet decomposition with compression, and achieve scalable
computation using a Gaussian process surrogate to the simulator. Our inference
is based on posterior samples of the underlying parameters which can be used to
recover the joint distributions of all parameters.

The proposed wABC approach is generally applicable to a large family of
inverse-problems associated with complex systems, such as solving differential
equations based on noisy data and estimating parameters of a biological system.
However, it requires a “simulator” to generate pseudo-data. The simulator needs to
resemble the real system with sufficient accuracy. Otherwise, even if the wABC is
tuned to perform well with simulated data, it may fail on real-word data.

While the GPS has the benefit of avoiding repeatedly calling the simulator,
the computation of GP may become inefficient when the number of grid points
goes beyond 1000. The main difficulty comes from the evaluation of the inverse
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covariance matrix in the predictive calculation, i.e., Eqs. (5)–(6). Our future work
involves replacing the GPS by a local-GPS, i.e., using only a portion of the training
points to predict the mean and standard deviation at .��; �/. A promising strategy
is to use the K-nearest neighbor approach. Similar ideas have been adopted by
Gramacy and Apley (2015) and Gramacy and Haaland (2014) in GP regression.

While we have focused on systems with highly-stochastic functional outputs, the
proposed framework is also suitable for deterministic systems in which the simulator
yields a deterministic functional output subject to random measurement error. An
example is the LIDAR data introduced in Sect. 1. In these situations, we just need
to set n D 1 and m D 1 in wABC. These problems are often easier to solve than the
stochastic systems considered here.

Although ABC brings substantial convenience by enabling likelihood-free infer-
ence, it is well-recognized that ABC suffers from “curse of dimensionality” when
the number of parameters increases. That is, it becomes more difficult to accept a
proposed parameter �� as the dimension of the parameter space increases (Turner
and Van Zandt 2012). We adopted an MCMC algorithm in this paper, which has
been proposed to attenuate the low acceptance rate issue. However, it remains
generally true that a larger number of parameters is more expensive to be estimated
using ABC-based approaches.

Though a real data analysis is not included in this paper, our simulation study
provides a solid validation of the statistical component of the method. Given that
the proposed method performs well under simulated setting, the only situation
under which it will fail in a real data analysis is when the physical model (i.e., the
simulator) does not describe the scenario of the real data properly. If that happens,
one either adjusts the way to collect real data or modifies the physical model.

Finally, we note that it remains a future work to develop the theoretical properties
of the proposed wABC approach. In particular, it is of interest to demonstrate the
convergence of the MCMC to a stationary distribution, and show that the resulting
stationary distribution approximates the true posterior distribution with a bounded
error. These theoretical investigations may be done following the arguments/hints in
Korattikara et al. (2014) and Meeds and Welling (2014).

Appendix: More Details of the Foliage-Echo Simulator

In this appendix, we provide more details about the simulation model. Let Y.t/
denote a random echo signal to be simulated based on the sonar scene described in
Sect. 2. We will simulate Y.t/ discretely, i.e., simulate the vector y D .y1; : : : ; yv/T ,
a discretized version of Y.t/. Here, the sampling frequency of y is 400 kHz. To
achieve this, we first simulateby D .by1; : : : ;byv0/T , which is the Fourier transform of
y in the frequency domain. We then apply the inverse fast Fourier transform toby to
obtain y.

Each component in by corresponds to a fixed frequency. We denote by fk the
frequency corresponding to byk (the kth component of by). In this simulation, we
mimic the frequency range of a horseshoe bat’s echolocation call (Vaughan et al.
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1997) and only simulate the Fourier components corresponding to frequencies
in the range of Œ60; 80� kHz. All other Fourier components are set to zero. For
fk 2 Œ60; 80� kHz,byk is a complex number in the form ofbyk D

Ps
iD1 Ak;i cos.�k;i/C

j
Ps

iD1 Ak;i sin.�k;i/, where j denotes the imaginary unit, s denotes the number of
leaves considered, Ak;i is the amplitude at frequency fk for the ith leaf, and �k;i is a
phase delay parameter at fk for the ith leaf.

The key of our simulation is the calculation of f.Ak;i; �k;i/; k D 1; : : : ; v0; i D

1; : : : ; sg based on the physical laws of sound transmission and reflection. This
calculation is performed through four steps:

1. Simulate the foliage scene. From the input parameters .�1; �2; �3/, simulate the
total number of leaves (denoted by s0), the radii of leaves faig, the 3-d coordinates
of the leaf centers f.xi; yi; zi/; i D 1; : : : ; s0g, and the incident angles fˇi; i D

1; : : : ; s0g following the description in Sect. 2.
2. Select leaves that contribute to echo. Based on the locations of the leaves and

the sonar, we calculate the sonar’s beampattern gains (i.e., the spatial distribution
of sound pressure) at all leaves, and filter out those leaves that have small gain
values. Therefore, only leaves at locations with large enough sonar gain values
are used to simulate y. We denote the number of leaves passing this filter by s.

3. Calculate amplitudes. The parameter Ak;i represents the amplitude correspond-
ing to the wave reflected from the ith leaf at frequency fk. It is calculated based
on the formula:

Ak;i D S.azi; eli; fk; ri/Li.ˇi; ai; fk/
�k

2�r2i
: (8)

Below, we will explain the meaning of each factor in (8):

(a) The factor S.azi; eli; fk; ri/ denotes the sonar beampattern, a function that
describes the spatial distribution of the power density of the emitted wave. The
arguments .azi; eli/ denote the azimuth and elevation angles of the line that
connects the origin (i.e., the sonar) and the ith leaf center, and the argument ri

denotes the distance between the sonar and the ith leaf center. Here, .azi; eli/
and ri can be directly calculated from the leaf center coordinates .xi; yi; zi/.
For a given sonar, S.�/ is assumed to be known. In this study, we used a
Gaussian function to approximate the sonar beampattern. The parameters
of the Gaussian function are determined using empirical data. In particular,
the Gaussian function parameters are determined by three variables: the
beamwidth of the sonar beampattern (�3 dB), the direction that sonar faces,
and the peak amplitude of the sonar beampattern.

(b) The factor Li.ˇi; ai; fk/ denotes the beampattern of the ith leaf, which describes
the spatial distribution of the power density of the reflected wave at the ith leaf.
Here, ˇi is the incident angle of the ith leaf, ai is the radius of the ith leaf, and fk
is the kth frequency. The leaf beampattern can be calculated using complicated
physical equations (Bowman et al. 1987). In this study, we approximate the
leaf beampattern using
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Li.ˇi; ai; fk/ D P1.c.fk; ai// cos.P2.c.fk; ai//ˇi/;

where c.fk; ai/ D 2�aifk=v, v D 340 (meters per second) denotes the
speed of sound, P1.c.fk; ai// D 0:5003c2 C 0:6867, and P2.c.fk; ai// D

0:3999c�0:9065 C 0:9979. The functions P1.�/ and P2.�/ are nonlinear regres-
sion functions estimated based on data obtained from numerical evaluation
(Adelman et al. 2014).

(c) In the factor �k=.2�r2i /, ri is the distance between the sonar and the ith leaf
center, and �k is the wavelength of the emitted sound wave corresponding to
the frequency fk. Here, �k is a known constant.

4. Calculate phase delays. The phase delay parameters f�k;ig reflect the phase
change at leaf i and frequency fk due to wave propagation. After waves travel
ri meters, the phase delay becomes 2�ri=�k. As it is a round trip for the
sound to travel from sonar to leaf and from leaf to sonar, the phase delay due
to propagation is 4�ri=�k. Another part that contributes to the phase delay
is the phase shift after the wave strikes the leaf. The phase shift depends on
the frequency fk, the leaf radius ai, and the incident angle ˇi. To make the
computation efficient, we estimate the phase shift by fitting a nonlinear regression
based on data obtained from numerical evaluation (Adelman et al. 2014), which
gives

Phase_shift.fk; ai; ˇi/ D erf.PA.c.fk; ai//.1:57 � ˇi// � 2:6343;

where erf.x/ D 2p
�

R x
0

e�t2dt, PA.c.fk; ai// D 0:9824c.fk; ai/
0:3523 � 0:9459, and

c.fk; ai/ D 2�aifk=v. Based on these results, the phase delay can be calculated
by

�k;i D �
4�ri

�k
� Phase_shift.fk; ai; ˇi/ (9)

Steps 1–4 provide the values of f.Ak;i; �k;i/g, based on which we can calculate the
frequency domain vectorby. The final time domain signal y is calculated by using
the inverse fast Fourier transform. Before applying the transform, we also applied
a Hann window function to weightby, which helps minimize the signal side lobes
(unwanted ripples) in the resulting time domain signal.
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A Maximum Likelihood Approach for
Non-invasive Cancer Diagnosis Using
Methylation Profiling of Cell-Free DNA from
Blood

Carol K. Sun and Wenyuan Li

1 Introduction

Cancer is a common human disease with over one million people getting cancer
every year in US alone. To combat cancer, President Obama announced the National
Cancer Moonshot Initiative during his 2016 State of Union address and Vice
President Biden led the initiative. One of the objectives of the initiative is to improve
cancer detection tools that can make cancer detection as simple as getting blood
drawn.

A variety of different approaches have been developed for cancer detection
including mammograms and MRI for breast cancer; sigmoidoscopy, colonoscopy
and CT for colon and rectal cancer; etc. These tests are usually invasive and
expensive. Therefore, new cancer detection methods are urgently needed.

It was discovered that tumor-derived DNA is present in blood of cancer patients
(Schwarzenbach et al. 2011). This fundamental discovery led to the use of blood
sample for the detection of cancer (Bettegowda et al. 2014; Chan et al. 2013; Leary
et al. 2012; Siravegna and Bardelli 2014). In these studies, chromosomal alterations
such as copy number variation and genome rearrangements were used for cancer
detection. Oesper et al. (2013) developed a statistical method to estimate the fraction
of different cell types based on copy number variations. However, such methods
usually require deep sequencing to accurately estimate chromosomal aberrations.
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DNA methylation is an epigenetic modification that occurs by adding a methyl
group to the 50 carbon cytosine ring, producing 5-methylcytosine. DNA methylation
is primarily found in cytosine-guanine dinucleotides (CpGs). CpG sites can be
found throughout the genome, but more frequently at small stretches, called CpG
islands. These islands are usually located in or near the promoter regions of genes.
Therefore, methylation can effectively inhibit transcription due to the placement
of the CpG islands. Hypermethylation may silence important growth regulators,
such as tumor suppressor genes, and hypomethylation may affect oncogenes,
resulting in cancer (Sharma et al. 2010). These methylated DNA can be released
to blood and are called circulating cell-free DNA (cfDNA). Therefore, blood of
a cancer patient contains a mixture of normal and tumor-derived cfDNA. Zheng
et al. (2014) developed a mixture model for methylation profiles of tumor samples
and an expectation-maximization (EM) algorithm to estimate minor and major
cell population components and their fraction in each genomic region. However,
they did not use methylation profiles of different cell population components of
many individuals as given in the TCGA (The Cancer Genome Atlas at https://
cancergenome.nih.gov/).

Many factors affect DNA methylation patterns including genetics, diet, life style,
age, gender, cell states, etc. (Wu et al. 2015). In this paper, we concentrate on regions
with different methylation patterns between normal and tumor cells. In particular,
the DNA methylation patterns for tumor cells and normal cells are different in many
regions along the human genome. Therefore, the cfDNA methylation can be used
to distinguish between cancer patients and healthy individuals (Chan et al. 2013;
Zheng et al. 2014). However, cfDNA extracted from blood contains DNA released
from both healthy and tumor DNA. Usually the fraction of tumor-derived cfDNA is
low, making it challenging to separate the tumor-derived cfDNA from the normal
cfDNA. Also, the proportion of tumor-derived cfDNA in the blood varies among the
patients, adding an additional component of complexity into the problem.

In this study, we develop a novel computational method to infer the composition
of cfDNA in blood samples using the genome wide DNA methylation data and to
make stable diagnostic cancer prediction. Given the blood cfDNA sample of an
individual with unknown cancer status, we measure the methylation levels on a set
of CpG sites distributed across the whole genome. We investigate the composition of
the cfDNA released from healthy and tumor cells and estimate the proportion of the
normal and tumor cfDNA in a new blood sample. To do this, we use methylation
sequencing data of blood samples to measure the methylation level at each CpG
site. We first develop a probabilistic model for the observed counts of both total
and methylated cytosines at each CpG site. We then use a maximum likelihood
estimation (MLE) and an efficient computational method to estimate the fraction of
tumor-derived cfDNA in the blood samples as well as the methylation patterns of
the normal and tumor cells for the particular individuals. The accuracy of estimation
depends on two parameters: sequencing depth and the fraction of tumor-derived
cfDNA within the blood samples. The sequencing depth is the average number of
reads covering a CpG site. We study the effect of these parameters on the accuracy of
the estimated fraction of tumor-derived cfDNA using simulation data. We also apply

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
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our method to estimate the fraction of liver tumor-derived cfDNA in 24 normal
individuals and 24 liver cancer patients to see if our method can predict cancer
status. It is shown that the estimated fractions of tumor-derived cfDNA among the
liver cancer patients are generally larger than that of the normal individuals. Using
the estimated fraction of tumor-derived cfDNA in the blood for cancer detection,
the prediction accuracy is as high as 94%. Finally, we study the change of fraction
of tumor-derived cfDNA before and after surgery for two liver cancer patients,
indicating that the estimated fraction of tumor-derived cfDNA can be used to predict
patient survival. Therefore, our method is promising for cancer diagnosis and for
predicting survival.

2 Methods

We consider the cfDNA in a patient coming from two sources: normal cells and
tumor cells. To estimate the proportion of tumor-derived cfDNA in the mixture, we
need to model the methylation profiles in the two cell types. Figure 1 shows the
schema of our procedures based on sequencing techniques.

2.1 Model the Methylation Probabilities

We use liver cancer as an example. The method developed in the paper can also
be applied for the analysis of other cancer types that have preliminary data on
the distribution of methylation values at each CpG site or CpG-rich region. For
our study, the methylation data of liver cancerous cells and normal liver cells from
TCGA are used. In TCGA, 377 liver cancer samples and 50 normal liver samples
from some patients have their DNA methylation levels measured by Infinium
HumanMethylation450 microarray.

The methylation level of a CpG site or a CpG-rich region is represented by the
ˇ-value (denoted as x) that is defined as:

x D
M

U C M
; (1)

where U and M are the numbers of unmethylated and methylated cytosines at the
CpG site (or CpG-rich region), respectively. That is, the ˇ-value is the probability
that a copy of DNA is methylated at the particular site or region. Multiple
experimental platforms have been used to measure methylation levels including
microarray technologies and methylation generation sequencing. For the microarray
platform, the intensities measured by unmethylated and methylated probes are used
for the calculation of ˇ-values. The microarray techniques only measure ˇ-values
at single CpG sites with low cost, and cannot yield information on the sequences
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Diagnosis  of  Liver Cancer using Cell-Free DNA

Patient
DNA Extraction

Next Generation Sequencing

Map to Human Genome
Methylation Data

Estimating tumor-
derived cfDNA fraction

Liver Cancer 
Diagnosis

Fig. 1 Schema of our cancer diagnosis method based on NGS. For a given patient, blood samples
are drawn from the patient and DNA samples are extracted. The DNA samples are sequenced using
methylation sequencing technique and the sequencing reads are mapped to the human genome to
identify methylation patterns. Based on the methylation patterns, the fraction of tumor-derived
cfDNA is estimated and a diagnosis is given based on the estimated fraction of tumor-derived
cfDNA

with methylated/unmethylated CpG sites; while bisulfite sequencing techniques can
yield the highest resolution of DNA methylation data at the DNA sequence level,
but currently at high cost. Please refer to a recent review (Yong et al. 2016) for
details. However, due to the lack of bisulfite sequencing data of tumors, we can only
use the array data of tumors that have a large number of samples in the massive
TCGA database, for estimating the distribution of ˇ-values. As shown in a recent
study (Titus et al. 2016), there is a high correlation of methylation measurements
between array and sequencing data collected from matched TCGA tumor samples.
In this work, we therefore used a large amount of microarray data to model the
distribution of ˇ-values in normal and tumor samples, and used sequencing data
for the patient’s plasma cfDNA samples. With the development of high throughput
sequencing technologies, a very large number of methylation sequencing data for
tumor sample sequences can be generated cheaply and efficiently. With sequencing,
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it is possible to count the numbers of methylated and unmethylated sequences at
each CpG site and it is possible to investigate the variation of the estimated ˇ-values.

For a given CpG site (or CpG-rich region), there is variation of ˇ-values among
the normal samples as well as tumors. We assume that the ˇ-values of each
site/region follow a beta distribution, in order to model the biological variation of
a sample type among individuals. We use beta distribution because it is flexible
and is frequently used to model fraction data. We also plot the histograms of the
ˇ-values based on the TCGA data which validate the beta distribution assumption.
Specifically, the ˇ-values of a CpG site/region s in the normal individuals follow
a beta distribution Beta(˛s1; ˇs1). Similarly, the ˇ-values of a CpG site/region s in
the tumor cells follow another beta distribution Beta(˛s2; ˇs2). These parameters are
separately estimated using moment estimators for normal and tumor samples based
on the ˇ-values of each site/region measured. Specifically, for CpG site/region s,
we first calculate the sample mean Om and variance O
2 of the ˇ-values of the normal
plasma samples and liver tumor samples, respectively. We then let the theoretical
mean and variance of the beta distribution equal to Om and variance O
2, respectively.
Finally, the parameters can be estimated.

2.2 Estimate the Composition of Tumor-Derived cfDNA Using
Methylation Data

For each CpG site/region s, let ns be the total number of cytosines and ms be the
number of methylated cytosines. Let two vectors �!n D .ns/N�1 and �!m D .ms/N�1

denote these cytosine counts for all N CpG sites (or CpG-rich regions). Our
objective is to estimate the fraction of tumor-derived cfDNA and the methylation
profiles of the normal plasma and the tumor of the particular patient.

We model the probability P.ns;msjŒX
�!
� �s/ with two sets of parameters: (1) a

methylation level matrix X D .xsj/N�2, where xsj 2 Œ0; 1� is the ˇ-value of CpG
site s in the j-th sample type, j D 1 for the normal plasma and j D 2 for the tumor

as above; and (2) a genome mixing vector
�!
� D Œ�1; �2�

0 where �j is the fraction
of cfDNA from the j-th sample type such that �2 D p and �1 C �2 D 1. We aim
to estimate the fractions of the tumor cells p and the ˇ-values across all the CpG
sites/regions for both normal and cancerous cells xsj; s D 1; 2; � � � ;NI j D 1; 2 for
the particular individuals with a total of 2N C 1 parameters.

This problem can be formulated as finding the underlying matrix X and genome

mixing vector
�!
� that maximize the joint probability P.�!m ;�!n ;

�!
� ;X/ that can be

expressed as:

P.�!m ;�!n ;Xj
�!
� / D P.X/P.�!m ;�!n jX;

�!
� / D

NY

sD1

2Y

jD1

P.xsj/

NY

sD1

P.ms; nsjŒX
�!
� �s/;

(2)
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Fig. 2 Mathematical formulation of the problem

where P.xsj/ can be calculated by the beta distribution estimated from the methyla-
tion data from TCGA, that is, based on the TCGA data, we can estimate ˛sj and ˇsj

using the moment estimator, and P.ms; nsjŒX
�!
� �s/ can be obtained by the fact that

ms follows the binomial distribution Bin.ns; ŒX
�!
� �s/, where ŒX

�!
� �s is the expected

methylation level (ˇ-value) for the CpG site/region s in the new blood sample.
Figure 2 shows the details of this formulation.

Specifically, the negative logarithm of P.�!m ;�!n ;
�!
� ;X/ can be represented as

follows,

� log.P.�!m ;�!n ;
�!
� ;X//

D � log.P.X// � log.P.�!m ;�!n jX;
�!
� //

D

NX

sD1

2X

jD1

�
log.B.˛sj; ˇsj// � .˛sj � 1/ log.xsj/ � .ˇsj � 1/ log.1 � xsj/



�

NX

sD1

h
log



ns
ms

�
C ms log.ŒX

�!
� �s/C .ns � ms/ log.ŒX

�!
� �s/

i
; (3)

where B.�; �/ indicates the beta function. Since there are 2N C 1 parameters, finding
the optimal point is challenging. Therefore, we employ the nonlinear optimization
“interior-point algorithm” (Byrd et al. 1999) to minimize � log.P.m; n; �;X// in
Eq. (3), subject to the constraint �1 C�2 D 1 and �1 > 0; �2 D p > 0. The interior-
point algorithm of Byrd et al. (1999) is based on two major techniques: sequential
quadratic programming and the trust region technique. The former is used to deal
with nonlinearity in the constraints and the latter is used to uniformly handle both
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convex and non-convex optimizations. Due to their efficient applications of these
techniques, the algorithm is fast and also more likely to find the optimal points.
In addition, because the Hessian matrix of Eq. (3) is very sparse, this algorithm can
quickly converge to the solution. In addition, the algorithm may converge to multiple
points and we run the program multiple times (1000 times in our study) and choose
the median of all the outputs as the final estimates for X and p.

2.3 Simulate the Methylation Sequencing Data of Plasma
cfDNA Samples

We carry out simulation studies to investigate the estimation accuracy under
different settings of sequencing depth and fraction of tumor-derived cfDNA in the
blood. In the simulation study, we generate the data at the level of CpG sites.
The conclusions will apply to the data measured at the level of CpG-rich regions.
Sequencing depth is defined as the average number of reads covering a CpG site.
If the sequencing depth is low, the number of reads covering a CpG site is low
resulting in an inaccurate estimation of the fraction of tumor-derived cfDNA in the
blood. Similarly, when the fraction of tumor-derived cfDNA in the blood is low, it is
difficult to sample reads from the tumor-derived cfDNA resulting in the decrease of
estimation accuracy. In this study, we want to quantify such reduction in estimation
accuracy due to changes in sequencing depth and in the fraction of tumor-derived
cfDNA in the blood.

We assume that every piece of genomic DNA in a cell has the same opportunity
to be released into the circulating system when the cell undergoes apoptosis or
necrosis. Therefore, the cfDNA in the blood of a patient can be modelled as a
combination of normal cfDNA and tumor-derived cfDNA mixed at the same ratio
over all the genomic regions.

We simulate the methylation patterns of cfDNA by extracting methylation data
from randomly picked samples, one from normal set and one from tumor set,
respectively. Then we mix them at a given ratio to generate a simulated plasma
sample. We use a large number of TCGA liver tumor samples for the tumor set and
a large number of TCGA normal liver samples for the normal set. Given a CpG site,
suppose its average methylation levels in normal and tumor samples are x0 and x1,
respectively. If the proportion of tumor-derived cfDNA in the blood is p, then the
proportion of normal cfDNA in blood is 1 � p . In the blood sample, using the law
of total probability, a read is methylated with probability xB D p 
 x1 C .1� p/
 x0.
The proportion p is given as a parameter in the data simulation procedure and the
expected ˇ-value in blood is estimated as xB. We simulate the experimental process
of the reduced representation bisulfite sequencing (RRBS) (Meissner et al. 2005)
on the blood sample to measure the methylation patterns. We further simulate the
variation introduced by the sequencing technique. With the methylation sequencing
technique, the reads are randomly sampled from the genome and, thus, the number
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of reads covering each position is not constant. Instead, it is a random variable.
When the sequencing depth is D, which is given as a parameter as well, the number
of reads covering a CpG site follows a Poisson distribution with mean D. Finally,
we simulate the number of methylated and unmethylated reads. Suppose the actual
reads coverage of this CpG site is n and its methylation level in blood is the ˇ-value
xB. The number of methylated reads m from this site is generated from the binomial
distribution Bin.n; xB/.

We generate a set of simulated RRBS sequencing data with tumor-derived DNA
proportion, p, and average sequencing depth, D, both of which are the parameters of
this data simulation process. For each combination of the parameters, 200 plasma
cfDNA samples are randomly simulated.

For each combination of sequencing depth D and fraction of tumor-derived
cfDNA p, a total of R D 200 estimates for the fraction of tumor-derived DNA
are obtained. We plot the histogram of the estimates. We also calculate the mean,
median, root-mean-square-error (RMSE), and the relative error of the estimated
fraction of tumor-derived cfDNA. Let Opi be the estimated fraction of tumor-derived
cfDNA in the i-th individual and Om be the mean of Opi; i D 1; 2; � � � ; 200. The RMSE
is defined as

RMSE D

sP200
iD1.Opi � p/2

200
;

and the relative error is defined as RMSE= Om.

2.4 Cancer Prediction Using Estimated Fraction of
Tumor-Derived cfDNA and Evaluation Criteria

We can use the estimated fraction of tumor-derived cfDNA to predict cancer status.
For a given threshold, individuals with estimated fraction of tumor-derived cfDNA
above the threshold are predicted as having cancer and those with estimated fraction
of tumor-derived cfDNA below the threshold are predicted as not having cancer. The
false positive rate (FPR) is the fraction of normal individuals who are predicted as
having cancer. The true positive rate (TPR) is the fraction of liver cancer patients
who are predicted as having liver cancer. By changing the threshold, we can obtain
the relationship between FPR and TPR. The receiver operating characteristic (ROC)
curve shows the relationship between FPR and TPR. The area under the ROC curve
(AUC) is used to evaluate the prediction method. Another evaluation criterion is
the prediction accuracy that is defined as the fraction of correct predictions over the
total number of individuals.

We also use the Wilcoxon-Mann–Whitney (WMW) statistic (Samuels et al.
2012) to test if the predicted fractions of tumor-derived cfDNA in cancer patients
are higher than that in normal individuals.
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2.5 Applications to Real Data

In addition to simulated data, we also apply our method to estimate the fractions
of tumor-derived cfDNA from blood samples of 24 normal individuals and 24
liver cancer patients. We predict liver cancer status of the individuals based on the
estimated fractions of tumor-derived cfDNA in the blood samples of the individuals.
The usefulness of our method is evaluated using accuracy, receiver operating
characteristic (ROC) curve, and the Wilcoxon-Mann–Whitney (WMW) statistic
(Samuels et al. 2012) to test if the fractions of tumor-derived cfDNA in liver cancer
patients are higher than that in normal individuals. Further, we estimate the fractions
of tumor-derived cfDNA from blood samples of two liver cancer patients before and
at several time points after surgery. The data are obtained from Chan et al. (2013).

3 Results

In this section, we first present the simulation results on the accuracy of the
estimated fraction of tumor-derived cfDNA for different values of sequencing depth
D and fraction of tumor-derived cfDNA p. Then we present the results based on the
blood samples of normal individuals and liver cancer patients. Finally, we present
the results based on the blood samples of two liver cancer patients before surgery
and several times after surgery.

3.1 Estimation Accuracy Increases with Sequencing Depth and
Fraction of Tumor-Derived cfDNA in Simulation Data

We simulate the blood methylation data of 200 individuals based on the procedures
in Sect. 2.3 for given values of the fraction of tumor-derived cfDNA p = (0, 0.01,
0.05, 0.1, 0.2, 0.3) and sequencing depth D = (5, 10, 20, 50). We then use the
estimation method described in Sect. 2.2 to estimate the fraction of tumor-derived
cfDNA based on the methylation sequencing data resulting in 200 estimates for each
pair of .p;D/. Figure 3 shows the histograms of the estimated fractions of tumor-
derived cfDNA for some values of p and sequencing depth D.

Looking down the columns, the fraction is fixed and the depth is the independent
variable. For example, the first column shows the case of p D 0:01. The mode of
the histogram is 0.028 at depth 5, 0.021 at depth 10, and 0.015 at depth 20. As the
sequencing depth increases, the mode becomes close to the true fraction. The same
observation holds for other values of p.

Looking across the rows, the depth is fixed and the fraction of tumor-derived
cfDNA becomes the independent variable. At depth 5, the modes of the histograms
are 0.028, 0.139, and 0.265 when the fractions of cancer cells are 0.01, 0.1, and
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Fig. 3 Histograms of the estimated fractions of tumor-derived cfDNA for various sequencing
depths D D .5; 10; 20/ when the true fraction p is 0.01, 0.1 and 0.2, respectively

0.2, respectfully. As the fraction of tumor-derived cfDNA increases, the mode also
increases. This observation also holds for all the other depths.

Table 1 shows the median, mean, root-mean-square-error (RMSE), and the
relative error (RE) of the estimated fraction of tumor-derived cfDNA for different
values of true fraction of tumor-derived cfDNA p and sequencing depth D. The
table shows that when the fraction of tumor-derived cfDNA is small (for example, p
= 0.01), the median of the estimated fraction is between 0.03 and 0.04. The relative
error can be as high as 120%. These results indicate the difficulties of estimating the
fraction of tumor-derived cfDNA when this fraction is low. More accurate methods
are needed to estimate the fraction of tumor-derived cfDNA when the fraction is low.

On the other hand, when the fraction of tumor-derived cfDNA is large (p = 0.3),
the median and mean of the estimated fraction are close to the true fraction. For
a given fraction, the root-mean-square error and the relative error decrease as the
sequencing depth increases. When the sequencing depth is at least 10, the relative
error is less than 43%, showing that the accuracy stabilizes when the sequencing
depth is above 10.
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Table 1 The median, mean, root-mean-square-error (RMSE), and the relative error (RE) of the
estimated fraction of tumor-derived cfDNA for different values of true fraction of tumor-derived
cfDNA p and sequencing depth D

Fraction (p) Depth (D) Median Mean RMSE (%) RE (%)

0 5 0.018 0.043 7.5 175

0 10 0.030 0.043 6.4 150

0 20 0.027 0.040 5.8 145

0 50 0.026 0.035 5.1 145

0.01 5 0.030 0.048 7.3 152

0.01 10 0.040 0.049 6.2 128

0.01 20 0.036 0.044 5.6 125

0.01 50 0.033 0.040 5.0 123

0.05 5 0.066 0.078 7.4 95

0.05 10 0.065 0.073 5.8 80

0.05 20 0.065 0.071 5.3 75

0.05 50 0.059 0.065 4.4 67

0.1 5 0.117 0.119 8.4 70

0.1 10 0.103 0.109 6.2 57

0.1 20 0.101 0.107 5.4 51

0.1 50 0.093 0.096 5.0 52

0.2 5 0.215 0.210 9.8 46

0.2 10 0.200 0.189 7.5 40

0.2 20 0.181 0.182 7.2 39

0.2 50 0.166 0.176 7.8 44

3.2 Estimated Fraction of Tumor-Derived cfDNA in Real
Blood Samples Can Predict Normal from Liver Cancer
Patients

We download the bisulfite sequencing data of cfDNA from blood samples of 24
normal individuals and 24 liver cancer patients from Chan et al. (2013). We then
calculate the methylation fraction of CpG-rich regions from the whole-genome
bisulfite sequencing of these samples, because the very low coverage of the
sequencing data can allow us to reliably calculate the methylation level at CpG-rich
region, not at individual CpG sites. Using our algorithm, we calculate the estimated
fraction of tumor-derived cfDNA for each real blood sample. The resulting fractions
are given in Table 2 and the corresponding histograms and scatter plots are given in
Fig. 4.

It is clear from Table 2 and Fig. 4 that the estimated fractions of tumor-derived
cfDNA in the blood of liver cancer patients are generally higher than that of the
normal individuals. Twenty-two out of the 24 normal individuals have estimated
fraction less than 4%, while 23 of the 24 liver cancer patients have estimated fraction
at least 4%. Therefore, if we use 4% as a threshold of the estimated fraction for
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Table 2 The estimated
fractions (%) of
tumor-derived cfDNA in the
blood samples of 24 normal
individuals and 24 liver
cancer patients

Normal Cancer

0:8 2:2 3:2 3:2 5:8 16:4

1:3 2:4 3:2 4:0 5:8 16:8

1:4 2:4 3:4 4:2 7:0 17:5

1:5 2:5 3:6 4:4 7:2 17:9

1:6 2:7 3:7 4:8 7:5 18:4

2:1 2:7 3:7 4:9 7:8 18:5

2:1 2:8 4:4 5:7 8:1 22:2

2:1 3:1 8:6 5:8 16:0 29:4

Fig. 4 The (a) histograms and (b) scatter plots of the estimated fractions of tumor-derived cfDNA
in the blood samples of 24 normal and 24 liver cancer patients. The line in (b) is the threshold
y D 0:04. The estimated fractions of tumor-derived cfDNA in liver cancer patients are generally
higher than that in the normal individuals

predicting liver cancer status, the prediction accuracy is 45/48 D 94%. Only 2 out
of the 24 normal individuals are predicted as having liver cancer, and only 1 out of
the 24 liver cancer patients is predicted as normal.

We also use receiver operating characteristic (ROC) curve to evaluate our method
as described in Sect. 2.4. For our study, the ROC curve is shown in Fig. 5, and the
area under the ROC curve (AUC) is 0.96, again indicating very high prediction
accuracy.

In addition, we also use the Wilcoxon-Mann–Whitney statistic to test if the
estimated fractions of tumor-derived cfDNA in the blood of liver cancer patients
are higher than that for the normal individuals. The resulting statistic is W D 555:5

and the p-value is 2:576 
 10�8, thus strongly against the null hypothesis.
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Fig. 5 The ROC curve for
predicting liver cancer status
based on the estimated
fraction of liver
tumor-derived cfDNA

Fig. 6 Fractions of tumor-derived cfDNA in two liver cancer patients before and after surgery.
The estimated fraction of tumor-derived cfDNA is significantly decreased after surgery. Data is
obtained from Chan et al. (2013)

3.3 The Fractions of Tumor-Derived cfDNA in the Blood of
Liver Cancer Patients Are Significantly Decreased After
Surgery

We next study the change of tumor-derived cfDNA fraction in the blood samples
of liver cancer patients after surgery. Figure 6 shows the results based on two
individuals. We can see from the bar graphs that the fraction of tumor-derived
cfDNA is significantly reduced after surgery. In liver cancer patient 1, the fraction
of tumor-derived cfDNA is 52.4% before surgery. Three days after the surgery,
the fraction has significantly decreased to 11.3%. Two months after surgery, the
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fraction rose to 14.7% and, unfortunately, the patient passed away. On the other
hand, liver cancer patient 2 was able to combat the cancer and was able to lower his
or her fraction of tumor-derived cfDNA at a low level. Before surgery, the fraction
of tumor-derived cfDNA was 42.0%. Three days after surgery, it was 6.1% and 3
months later, the fraction decreased to 1.6%. The tumor-derived cfDNA continued
to fluctuate around 1% and 2%.

4 Discussion and Conclusions

In this paper, we develop a computational method to estimate the fraction of
tumor-derived cfDNA based on the methylation data of blood samples and the
TCGA methylation data for liver cancer patients and normal individuals. Through
simulation studies, we show that the method can be used to estimate the fraction
of tumor-derived cfDNA in blood samples. We investigate the relationship of
estimation accuracy with the fraction of tumor-derived cfDNA and the sequencing
depth. We show that when the fraction of tumor-derived cfDNA is low, it is
challenging to accurately estimate this fraction. However, when the fraction is
relatively high (e.g. p � 0:05), the mode of the estimated fraction is close to the true
fraction at sequencing depth 5–50. The accuracy increases as the sequencing depth
increases. The mean, median and the mode of the estimated fractions increases with
the true fraction of tumor-derived cfDNA in the blood. Using our method in a real-
life situation, we show that the estimated fraction of tumor-derived cfDNA in cancer
patients is generally higher than that in normal individuals. Using the estimated
fraction of tumor-derived cfDNA to predict liver cancer status, the prediction
accuracy is as high as 94% and the area under the ROC curve is as high as 96%.
Also, after a liver cancer patient has surgery, the estimated fraction of tumor-derived
cfDNA is drastically decreased.

We use a relatively simple mathematical model to study the methylation levels
of blood samples. However, the blood is a complex mixture of different cell
types, making it difficult to accurately model the methylation levels. As we learn
more about the methylation levels of different cell types, we can incorporate the
knowledge into our model for estimating the fraction of tumor-derived cfDNA for
cancer detection. In our model, we assumed that the fraction of tumor-derived
cfDNA p is a constant across the different CpG sites. It is possible that the
probability of shedding tumor-derived cfDNA is genomic region dependent and
varies along the genome. Under this assumption, we may model p as a random
variable and a Bayesian approach can be used to estimate the fraction of tumor-
derived cfDNA (Wu et al. 2015). In this study, we concentrate on the detection of
just one cancer type, i.e. liver cancer. How to extend our model to the detection of
multiple different cancer types is an important problem for further study.

In conclusion, our method can potentially be used to estimate the fraction of
tumor-derived cfDNA for cancer detection. More studies are needed to accurately
estimate the presence of tumor-derived cfDNA when the fraction is low.
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A Simple and Efficient Statistical Approach
for Designing an Early Phase II Clinical Trial:
Ordinal Linear Contrast Test

Yaohua Zhang, Qiqi Deng, Susan Wang, and Naitee Ting

1 Introduction

In the drug development process, a candidate compound goes through a stringent
series of tests to assess its toxicity, pharmacokinetics, efficacy, and safety before
being released to the market. After the initial safety assessment in humans, a proof of
concept together with dose-response experiment is conducted in which several doses
of the compound are administered to separate groups of experiment units. A good
understanding and characterization of the dose response relationship is an important
step in the investigation of a new compound. The importance and challenges in
designing and analyzing dose-response trials can be found in the ICHE4 (1994)
guidance document.

There are usually three phases in clinical studies prior to a registration. Generally
speaking, the objective of Phase I is to find the upper end of a dose range that will
not cause some undesirable effect. Different from Phase I, the intent of Phase II is to
show drug effect (proof of concept) and to estimate the lower end of dose range that
will demonstrate some desirable effect. Therefore, a critical component of this entire
process is the dose and/or dose range selected for further confirmation in phase III
studies. In this manuscript, we address methods employed in an early Phase II.
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Searching for an adequate dose has been extensively studied by researchers in
history. Williams (1971,1972) proposed one of the first dose-finding procedures.
William’s procedure is based on finding the difference between lowest response dose
and placebo. Ruberg (1989) proposed some procedures based on selected contrasts
of the sample means at different doses. In 2004, the Food and Drug Administration
(FDA) released a White Paper entitled “Stagnation/Innovation: Challenge and
Opportunity on the Critical Path to New Medical Products.” This white paper
triggered many activities across pharmaceutical industry to enhance current dose
finding practices. For example, Pharmaceutical Research and Manufacturers of
America (PhRMA) has organized a working group on “Adaptive Dose Ranging
Studies” to offer recommendations to address the problem of inadequate dose
response information.

One very useful, yet not necessarily popular method to prove the concept is the
application of ordinal linear contrast test (OLCT). This approach has been success-
fully implemented in designing early Phase II clinical trials (Ting 2009), and has
been proposed for more general applications (Wang and Ting 2012). This technique,
referred to “linear contrast test”, or “trend test” previously is straightforward. The
objective of this article is to encourage more practitioners to apply OLCT in solving
real world problems. The popular method nowadays is MCP-Mod, but it is rather
complicated. In practice, a useful statistical method should be simple so that it
can be easily accepted by non-statisticians. Also it is less likely to cause errors by
inexperienced statisticians.

Bretz et al. (2005) put forward MCP-Mod, a combination of multiple com-
parisons and modeling techniques. It received a positive Committee for Medical
Products for Human Use (CHMP) qualification opinion in January 2014 as an
efficient statistical methodology for model-based design and analysis of Phase II
dose finding studies under model uncertainty. Unfortunately, MCP-Mod has led to
confusions due to the high thresholds of complete understanding this methodology,
the requirement of excessive assumptions, and the difficulties in use of the software.

This article compares OLCT with MCP-Mod, and two other methods in design-
ing early Phase II clinical trials. It is organized as follows. Section 2 presents some
necessary notations and assumptions. Each of the statistical method is introduced
in Sect. 3. In Sect. 4, we discussed issues relating to dose spacing of a trial design.
In Sect. 5, we compared the performance of each method from a power perspective.
Section 6 provides conclusion and discussion.

2 Notation and Assumptions

We start this section by introducing some notations and model setups throughout
this article.
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2.1 Model Description

Continuous data Y is observed for a set of groups of patients corresponding to a
set of increasing dose levels d0; d1; d2; � � � ; dk, where d0 corresponds to the placebo
control. Under a one-way layout setting in which ni experiment units are tested at
dose level di, i D 0; 1; 2; � � � ; k. We assume that all observations Yit, t D 1; 2; � � � ; ni

are mutually independent, then a general model for Yit is defined as

Yit D f .di;�/C "it; (1)

where f .:/ denotes the mean response at dose di for some dose-response model
f .d;�/ and � refers to the vector of model parameters. Let "it be independent and
identically distributed Gaussian noise with mean zero and variance 
2 (we assume
equal variance in this article). For the purpose of detecting an overall trend, we
rewrite Eq. (1) in the format of a usual one-way analysis of variance (ANOVA)
model,

Yit D 	di C "it (2)

where 	di D f .di;�/. Let NYi: � N.	di ; 

2=ni/ be an estimator of 	di , and let s2 �

Gamma.=2; 2
2=/ be an estimator of 
2, independent of NYi:. Here  D
Pk

iD0 ni �

.kC1/ is the degree of freedom. Without losing generality, in this article, we restrict
to the case where n0 D n1 D � � � D nk D n and hence only focus on a balanced
clinical trial, although unbalanced trial can be handled in a similar manner.

2.2 Monotonicity

A typical proof of concept (PoC) study which demonstrates a feasible proposal
via comparing the maximum tolerated dose (MTD) of test product with a placebo
control is based on monotonicity assumption. In other words, the hidden justification
of choosing the highest tolerable dose for proof of concept is that this dose offers
the best possible efficacy among all of the candidate doses. However, the underlying
is if it is reasonable to assume a monotonic efficacy dose-response relationship.

Regarding product safety, it is generally believed that the safety issues (adverse
events, lab abnormalities etc.) increase as doses increase. This is why MTD serves
as an anchor of the upper end of dose range to be studied. The reason behind such
a belief or such an assumption is that every medicinal product is toxic. If a product
could cure a disease, or improve a particular health condition, it must have changed
the biological system in human body. If the product changes the biological system,
it could cause problems to the human body. Hence by increasing the amount of
exposure, it is expected that the potential safety problems could increase, resulting
in a monotonicity assumption.
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In most of the therapeutic areas, this monotonicity assumption is also applicable
to product efficacy. If the medicinal product helps improve health conditions, then
more of such a product would improve the health condition more efficiently. For
example, if a product is developed to reduce pain, then it is expected that more of
such a product in the body could translate to more pain reduction for the patient
who suffers from pain. This idea is applicable in most of therapeutic areas. Hence
unless it is proven, the generally accepted assumption is that as doses increase,
efficacy responses increase. Monotonicity assumption for efficacy can be expressed
mathematically as

	d0 � 	d1 � 	d2 � � � � � 	dk :

In practice, most of the cases, we will see monotonic data. Our OLCT method is
built on this monotonicity assumption.

2.3 Family-Wise Error Rate

When multiple doses are compared, there is a multiple hypothesis testing problem.
Thus it is necessary to require control of the family-wise error rate (FWER). FWER
is defined as the probability of observing at least one null hypothesis rejected. Thus,
by assuring FWER is less than or equal to ˛, the probability of making type I
error in the family is controlled at level ˛. Here family is defined by Hochberg
and Tamhane (2009) as “any collection of inferences for which it is meaningful to
take into account some combined measure of error”.

3 Statistical Methods

3.1 Ordinal Linear Contrast Test

Using contrasts to analyze clinical trial data is a common practice. OLCT is not a
new method. It originated from the linear contrast test, and is generally referred to
the trend test in the literature (Ting 2009; Wang and Ting 2012). Assumptions for
applying OLCT are correct maximum tolerated dose (MTD) and monotonicity in
efficacy. It should be noted that mild violation of monotonicity assumption will not
affect the performance of OLCT. We provide a detailed discussion regarding some
mis-perceptions and issues related to OLCT in Sect. 5.7. An OLCT can be expressed
in terms of an ordinal linear contrast with statistical hypotheses as

H0 W a0	0 C a1	1 C � � � ak	k D 0 versus Ha W a0	0 C a1	1 C � � � ak	k > 0
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Table 1 Coefficients to be used in contrast for the trend test

# of doses Placebo Lowest dose Medium doses Highest dose

2 �1 0 1

3 �3 �1 1 3

4 �2 �1 0 1 2

5 �5 �3 �1 1 3 5

6 �3 �2 �1 0 1 2 3

where ai’s subject to
Pk

iD0 ai D 0 and the difference between two consecutive ai’s
is a constant (equally spaced contrasts). The corresponding t statistic is given by

t D

Pk
iD0 ai NYi:

s
qPk

iD0 a2i =n
� t

where s is the square root value of s2 defined in Sect. 2.1. The critical values of the
test depend on a t distribution with degree of freedom . For trials with different
number of dose groups, the associated contrast coefficients (ai) are listed in Table 1.

As an example, assume a phase II trial has included three doses of test drug and
a placebo arm. The null and alternative hypotheses for OLCT can be written as

H0 W �3	d0 �	d1 C	d2 C3	d3 D 0 versus Ha W �3	d0 �	d1 C	d2 C3	d3 > 0

where 	d0 ; 	d1 ; 	d2 , and 	d3 represent the mean response of placebo, low dose,
medium dose and high dose, respectively. Coefficients associated with this contrast
are �3;�1; 1, and 3. For balanced clinical trials, these coefficients are the optimal
contrast when the dose response curve follows a linear function, and the doses are
equally spaced, such as 0, 10, 20, and 30 mg.

3.2 MCP-Mod

Prior to the MCP-Mod approach (Bretz et al. 2005), dose-response studies were
designed and analyzed from two different angles of thinking: multiple comparison
procedures (MCP) and modeling procedures. The MCP adjustment was applied to
pairwise comparison hypotheses test of each dose against placebo or to certain pre-
defined contrast(s). On the other hand, the use of a dose-response model is to help
estimate parameters associated with a given dose-response relationship. Hence MCP
represents the hypothesis testing feature of dose-ranging trials, while modeling
procedure reflects the estimation thinking about the dose-response relationships.
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MCP-Mod combines these two different ways of thinking into a unified proce-
dure. It employs MCP to select models from candidate models first. After a model
is selected, a modeling procedure is used to estimate the dose-response relationship.
To formalize the idea, we assume that a set M of M parameterized candidate models
is given, with corresponding model functions fm.di;�m/; i D 0; 1; 2; � � � ; kI m D

1; 2; � � � ;M and prior guesses for the parameters of the standardized models �0m.
Each of the dose response curve in the candidate set is then tested using a single
contrast test, with contrast coefficients chosen to maximize the power of the contrast
tests introduced further below. The single contrast test for detecting the mth model
curve is defined by

Tm D

Pk
iD1 cmi NYi:

s
qPk

iD1 c2mi=ni

; m D 1; 2; � � � ;M (3)

where s is the square root value of s2 defined in Sect. 2.1, and cm D

.cm1; cm2; � � � ; cmk/
0 is the optimal contrast vector for model fm.di;�m/, subject

to
Pk

iD1 cmi D 0. Let � D .	d1 ; 	d2 ; � � � ; 	dk/
0 denote the true response means at

each dose level, the associated null hypotheses to be tested are

H0m W cm� D 0 versus Ham W cm� > 0

Let N be the total number of observations and k to be the number of treatment
arms. Under the assumption of model (2) and null hypothesis, Tm follows central
t-distribution with degree freedom  D N � k. The final decision of a significant
dose-response curve or a model from the candidate set is based on the maximum
contrast test statistics Tmax D maxfT1;T2; � � � ;Tmg. Proof of concept (PoC) can
hence be established if Tmax > q, where q is an appropriate critical value. Details
of how to compute q and account for FWER are discussed in Bretz et al. (2005) and
Hochberg and Tamhane (2009). Once a dose-response curve has been selected, one
can proceed to estimate the target dose of interest.

3.3 ANOVA F Test

The classical ANOVA F test is designed to detect any pattern of differential response
among several dose levels by comparing the variation among replicated samples
within and between dose levels. Consider a model setting described in Sect. 2.1, the
hypotheses are

H0 W 	0 D 	1 D � � � D 	k versus Ha W means are not all equal

To assess whether any of the arms is on average different versus the null hypothesis
that all arms yield the same mean response, we employed the F statistic
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F D

Pk
iD1 ni. NYi: � NY::/2=.k � 1/
Pk

iD1

Pni
tD1.Yit � NYi:/2=

This Fstatistic follows a Fk�1;N�k distribution under null hypothesis. The null
hypothesis is rejected if observed F value is greater than Fk�1;N�k;˛ for a given
probability type I error ˛.

3.4 MaxT Test

To establish PoC, it seems intuitive to consider the Maximum t test (MaxT) which
is a simple and powerful approach. MaxT test is inspired by Dunnett (1955). By
computing a Student’s t statistic for each comparison of the active dose versus the
control (placebo), several two-sample inferences emanate. Instead of calculating the
100.1 � ˛/% simultaneous confidence intervals on each two-sample inference, as
in Dunnett’s method, decision on PoC can be made by testing the maximum value
of the t statistics. To formalize the idea, we consider the model setting described in
Sect. 2.1. The hypotheses of interest are

H0 W 	0 D 	1 D � � � D 	k versus Ha W 	0 < 	i; i D 1; 2; � � � ; k

Once the data are available from a trial, the Student’s t statistics t1; t2; � � � ; tk can be
calculated. Each t statistic is defined as ti D . O	i� O	0/

p
n=2=
 . The final detection of

a significant PoC is based on the maximum t value among all the statistics Tmax D

maxft1; t2; � � � ; tkg. When 
 is known, ft1; t2; � � � ; tkg follows a multivariate normal
distribution with correlation matrix specified as V D .vij/, where off diagonal vij D

1=2 if a balanced clinical trial is considered. Multiplicity adjusted critical values
and p-values can be calculated using the identity of the set fTmax < q1�˛g D ft1 <
q1�˛; t2 < q1�˛; � � � ; tk < q1�˛g, where q1�˛ is the multiplicity adjusted critical
value from a multivariate t distribution. Further, the statistical power to reject the
null hypothesis is estimated by using

P.Tmax � q1�˛gjHa/ D 1 � P.t1 < q1�˛; t2 < q1�˛; � � � ; tk < q1�˛ jHa/

4 Dose Ranging

In non-adaptive design practice, usually the first dose ranging study covers a wide
dose range, and then the next dose ranging study will be designed with a narrower
dose range and tease out the target doses to be assessed in Phase III. Dose range in a
clinical trial design is defined as the ratio of the highest dose divided by the lowest
dose included in the design. For example, if the doses in trial A are placebo, 20, 40,



186 Y. Zhang et al.

and 80 mg, then the dose range is 4 (= 80/20). If the doses in trial B are placebo, 0.1,
1 and 10 mg, then the dose range is 100 (= 10/0.1). Although the doses used in trial
A are higher than doses used in trial B, trial B has in fact a much wider dose range
(25 times wider than trial A). It is critical to cover a wide dose range in the first dose
ranging study. Inappropriate selection of dose range may result in failure of finding
the appropriate doses and delay the phase III program and the time to market launch.

A poorly designed trial with inadequate dose range and poor spacing can not be
salvaged by any sophisticated analytical methods. It is now a common agreement
between regulators and industry that the narrow dose range and inadequate dose
finding is among the top contributors for the high phase III failure rate. Mullard
(2015) summarized the top-line message from EMA dose finding workshop in
London on Dec 2014, and pointed out the pairwise comparison as a traditional way
to design dose ranging trials is inadequate for dose-finding. The problem of pairwise
comparison was further illustrated by a real-world example from Pfizer where the
company needed to run three trials using this design over many years to chart the
dose-response curve of a drug. One major drawback for pairwise comparison is that
multiplicity adjustment is often needed.

By adjusting the alpha for multiplicity issue, the sample size for each arm
is further increased to maintain the same level of overall type I error, which
reduces the possibility of exploring more doses under restricted resources. With
a small modification by only including highest doses versus placebo as PoC test,
multiplicity issue can be resolved. This type of design is simple yet quite efficient
when there are 2–3 test doses. Actually, it resembles the traditional wisdom of PoC
(with only MTD versus Placebo) followed by dose ranging. It also presents the
extreme cases that all weights in a contrast are allocated to the two ends. However,
this design did not use all available data for doses in the middle and, moreover, tends
to be less powerful than OLCT or MCP-Mod when there are four or more doses.

From the discussion above, it can be seen that the method for designing dose
ranging trials and the choice of doses are somehow related to each other. The design
should respect the doses selected and also in return influence the decision on the
doses to be chosen. We recommend using binary dose spacing (BDS) proposed
by Hamlett et al. (2002) to help OLCT reaching its full potential. Over the years,
BDS has been successfully applied in many dose ranging designs together with
OLCT (Ting 2009; Wang and Ting 2012). For example, let there be m test doses in
addition to placebo, then the test doses can be given d1 D 1=2m; d2 D 3=2m; d3 D

3=2m�1; d4 D 3=2m�2; � � � ; dm D 3=22 (suppose the highest dose is 1 mg). BDS
design has numerous variations. It should be viewed as guidance for dose spacing,
since it specifies ranges to select each dose. This flexibility is highly desired in
practice due to the limitation in formulation. BDS is based on the same two
assumptions with OLCT: knowledge of MTD and non-decreasing dose-response
relationship.

In addition to BDS, other algorithms could be useful, e.g., log dose spacing,
Fibonacci series, modified Fibonacci series approach (Penel and Kramar 2012), and
the approach suggested by Quinlan and Krams (2006). However, it is important to
note that most of these methods propose dose spacing from lower doses to higher
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doses. In practice, dose spacing should be considered starting with MTD and then
move down to lower doses. Hence when applying any of these algorithms, the dose
allocation would be reversed (from high to low, instead of from low to high). The
common idea behind all those approaches is allocation of wider spacing with higher
dose range and narrower spacing with lower range. Thus these dose arrangement
could help users identify doses which are below MED. This is even more important
than what methods to be used for hypothesis testing itself.

5 Method Comparisons

Comparisons of the four methods mentioned above are based on a simulation study.
Four dose levels are compared to the zero dose level (placebo) in a balanced clinical
trial. Suppose that the dose levels are as follow Assume the standard deviation of
each arm is 0.67 and maximum response is 0.36. With ensuring power to be 0.8, we
try to find the sample size required for each method. FWER is controlled at ˛ D

0:025 (one-sided test). Throughout this section, we employ Emax1 as an example to
demonstrate the model setup. Sample size calculation for the other models follows
the same logic (Table 2).

5.1 OLCT Approach

The dose-response data described by Emax1 is Oy D .0:0000; 0:0990; 0:1980; 0:3046;

0:3600/. The contrast is chosen as a D .�2;�1; 0; 1; 2/ according to Table 1. Based
on the t test described in Sect. 3.1, we could compute the total sample size N by
solving the following equation

0:8 D P.F.1;N � 5; �/ � F1;N�1;0:95/

where � is calculated as

� D N
.
P5

iD1 ai NYi:/
2


2
P5

iD1 ai

Table 2 Dose setup D0 D1 D2 D3 D4

0 mg 1 mg 3 mg 10 mg 30 mg
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5.2 MCP-Mod Approach

We start with a set of potential models for the description of the dose-response data.
From this candidate set, we select the “best” model if there is any. Proof of concept
is based on whether there is one or more “best” model(s) or not. To best describe
the dose-response data, we chose five candidate models as follows:

Figure 1 is the graphical display of the five potential models. The sample size
required for each potential model is then calculated using an R function samSize
in the package MCPMod. To make comparison simpler, our calculations for other
procedures are all based on these five models (Table 3).
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Fig. 1 Five potential models (open dots)

Table 3 Model specification

Model Specification of �

Logistic E0 D �0:009 Emax D 0:368 ED50 D 0:243 ı D 0:065

Emax1 E0 D 0 Emax D 0:396 ED50 D 0:100

Emax2 E0 D 0 Emax D 0:365 ED50 D 0:014

Linear E0 D 0 ı D 0:360

Exponential E0 D 0 E1 D 0:128 ı D 0:748
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5.3 ANOVA Approach

It is known that when the alternative hypothesis (not all 	i equals 0) is true, the
F-statistic which we compute to test the null hypothesis follows a non-central F
distribution. The non-centrality parameter is defined as

� D N

P5
iD1.

NYi: � NY::/2


2
:

Then we can get the sample size (N) by solving the following equation

0:8 D P.F.1;N � 5; �/ � F1;N�5;0:95/

5.4 MaxT Approach

The standard deviation and covariance of t-statistic are

var. OYl � OY1/ D

2

n
C

2

n
D
2
2

n

cov. OYl � OY1; OYl � OY1/ D var. OY1/ D

2

n

The correlation coefficient is then calculated as

� D

2=n

2
2=n
D
1

2

Therefore we can get the variance-covariance matrix

† D

2

664

1 0:5 0:5 0:5

0:5 1 0:5 0:5

0:5 0:5 1 0:5

0:5 0:5 0:5 1

3

775

Given 
 is known, .t1; t2; t3; t4/ � MVN4. O�
?
;†/ (e.g. O�

?
D .Oy2 � Oy1; Oy3 �

Oy1; Oy4 � Oy1; Oy5 � Oy1/ D .0:0990; 0:1980; 0:3046; 0:3600/ under Emax1). Sample
size is estimated by iteratively solving the power function described in Sect. 3.4.
The algorithm is implemented in R and codes to produce Table 4 are available upon
request.
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5.5 Comparisons

Table 4 displays the sample size calculation for each model and each statistical
method. All calculation are based on one-sided type I error of 0:025, 80% of power,
maximum treatment difference of 0.36 and common standard deviation of 0.67. In
this study, it is clear that MCP-Mod and OLCT in general perform better than the
other two for the selected dose response relationships. When dose-response curves
are logistic and Emax1, OLCT performs better than MCP-Mod. While for the other
cases, MCP-Mod requires smaller sample size than OLCT does. In the setting where
MCP-Mod reaches its full potential in the sense that the true model including the
right guesstimates of model parameters are included in the candidate set, OLCT
leads to only three additional patients per arm, which is often considered comparable
in practice.

ANOVA F test is effective in detecting extreme curves, such as when expected
mean responses increase sharply either at lower dose or at higher dose. For gradual
increase over doses, such as the case in Emax1 and linear models, the ANOVA F
test will require larger sample size.

MaxT test requires smaller sample size only when a plateau is reached sharply
in the dose response. This is logical if we consider the power calculation formula in
Sect. 3.4. To get a larger power, each t statistic (active dose versus placebo) must be
close to its critical value.

The comparison between MCP-Mod and OLCT in Table 4 represents the ideal
scenario for MCP-Mod that the actual dose response curves are completely covered
in the candidate set by the MCP-Mod approach. This is hardly the case in practice.
To evaluate the performance when the true model is not covered in the candidate set,
we compare power of a given sample size through simulations. The comparison of
power is more straightforward than sample size under this setting because the later
one for MCP-Mod requires binary search. As a start, Table 5 presented the power
with 55 patients per arm for MCP-Mod and OLCT when the true model is included
in candidate sets (OLCT vs MCP-Mod1). When the true model is excluded from the
candidate set in a leave-one-out fashion (MCP-Mod3), the comparisons are made in
Table 6. This is done through 10,000 simulations.

Table 4 Sample size per arm calculation

Model Mean responses ANOVA F MCP-Mod MaxT OLCT

Logistic 0 0.0055 0.0283 0.2863 0.3600 46 35 67 35

Emax1 0 0.0990 0.1980 0.3046 0.3600 63 47 64 41

Emax2 0 0.2556 0.3046 0.3501 0.3600 61 48 51 53

Linear 0 0.0120 0.0360 0.1200 0.3600 61 46 76 52

Exponential 0 0.0058 0.0183 0.0720 0.3600 59 46 77 57

Average 58 44.4 67 47.6
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Table 5 Power with 55 patients per arm when true model is included in MCP-Mod

Model Mean responses OLCT MCP-Mod1 MCP-Mod2

Logistic 0 0:0055 0:0283 0:2863 0:3600 0:94 0:95 0:93

Emax1 0 0:0990 0:1980 0:3046 0:3600 0:90 0:87 0:83

Emax2 0 0:2556 0:3046 0:3501 0:3600 0:81 0:86 0:83

Linear 0 0:0120 0:0360 0:1200 0:3600 0:83 0:87 0:84

Exponential 0 0:0058 0:0183 0:0720 0:3600 0:79 0:88 0:85

Average 0:85 0:88 0:84

MCP-Mod1: included only the candidate models described in Table 3. MCP-Mod2: included two
U shaped curve, in addition to the five candidate models

Table 6 Power with 55 patients per arm when true model is not included in MCP-Mod

Model Mean responses OLCT MCP-Mod3 MCP-Mod4

Logistic 0 0:0055 0:0283 0:2863 0:3600 0:95 0:94 0:91

Emax1 0 0:0990 0:1980 0:3046 0:3600 0:90 0:86 0:75

Emax2 0 0:2556 0:3046 0:3501 0:3600 0:82 0:75 0:75

Linear 0 0:0120 0:0360 0:1200 0:3600 0:80 0:87 0:80

Exponential 0 0:0058 0:0183 0:0720 0:3600 0:77 0:87 0:81

Average 0:85 0:86 0:80

MCP-Mod3: included the other four curves, but not the true curve. MCP-Mod4: included the other
four curves and two additional U shaped curve, but not the true curve

Including or excluding the candidate model will not change the power for OLCT,
but the power for MCP-Mod tends to decrease when the true candidate model is not
included. As mentioned above, MCP-Mod is fairly robust, and there is no major
reduction in power when the true model is not covered, as long as there is another
model in the candidate set that is reasonably close to the true model. However,
the small advantages of MCP-Mod1 over OLCT observed in Table 5 diminish.
In practice, the true difference between the two methods is likely to be between
Tables 5 and 6. As a consequence, the performance can be really close, and the
difference can be considered negligible.

The comparison between MCP-Mod3 and MCP-Mod1 showed the effect of
missing the true model in candidate set. On the other hand, MCP-Mod2 showed
the effect of including unrealistic model into the candidate set. In MCP-Mod3,
two additional non-monotonic U-shaped curves are included in the candidate set
(BetaMod and quadratic in Fig. 2), on top of the five curves including the true model.
In this case, the average power of MCP-Mod is reduced and is slightly below OLCT.
This reduction become more apparent in MCP-Mod4 if the true model is not covered
in candidate set. This example illustrated how the performance of MCP-Mod can
vary for different set up of candidate models. When set up appropriately, MCP-Mod
provide small improvement over OLCT; otherwise it can be worse than OLCT. The
setup requires thoughtful consideration and thorough discussion with other team
members like clinician and pharmacologist. Careful thinking and justification are
required in considering such a collection of models.
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Fig. 2 Five potential models and two non-monotonic models (open dots)

In fact, both OLCT and MCP-Mod use contrasts to test a weighted average of
the treatment effects. Estimation of the treatment effects can be obtained using any
statistical methods that are appropriate for the endpoints and trial designs, including
methods that can adjust for covariates. In practice, people may include covariates
to increase the estimation precision. Detailed information and examples for using
MCP-Mod are provided in Pinheiro et al. (2014). The idea behind using OLCT is
similar but instead a rank-based contrast is used. It should be noted that when there is
no treatment by covariate interaction considered, different covariates will only lead
to a shift on treatment effect, and has no impact on the dose response relationship. It
becomes complex, however, if the inclusion of covariates is to explore their impact
on dose response curves (e.g. exploring the impact of covariates on the maximum
effect that can be achieved in an Emax model, or the impact on slopes of the dose
response curve). This type of analysis is outside the scope of this article.

5.6 When to Use MCP-Mod and When Not?

MCP-Mod is a big step forward from using a specific model to design dose-ranging
trials. MCP-Mod allows multiple potential models to be explored at the design stage.
These models can cover a variety of potential shapes of dose-response relationships.
Although there is still a need to pre-specify some of the parameters associated with
the models, research showed that the loss in power from misspecification is often
acceptable for a reasonable candidate set. Also, the loss of power due to multiplicity
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adjustment with many models in the candidate set is small. These features make
MCP-Mod a robust approach. Generally speaking, at the PoC stage, MCP-Mod
performs well and researchers can consider it a safe tool to help design the trial.

A few problems were found while we were studying the MCP-Mod. Errors occur
frequently when we used the R package MCPMod. For example, we encountered
convergence issues in as many as 50% of simulation runs, with warning messages
that at least one model failed to converge. Although this only has true impact
on modeling step, it can be bothersome for some people in this highly regulated
environment. A clear understanding of MCP-Mod can be challenging, in particular
to non-statisticians. Thus obtaining agreement on the candidate set of models can be
difficult and time-consuming. It requires competence from all trial team members
for implementations. On the other hand, OLCT is easily understood by statistician
and non-statisticians. Its implementation is easy and straightforward.

In fact, MCP-Mod method is a combination of contrast test and MaxT. As
stated in Sect. 5.1, the first step of MCP-Mod is to find an optimal contrast for
each candidate model. When a candidate model gives equally spaced response, the
optimal contrast approximately equals the contrast employed in OLCT. However, if
a candidate model has an “extreme” shape (e.g., Emax2 in Fig. 1), MCP-Mod will
find a contrast which can mediate the effect of extremeness. The second step of
MCP-Mod is to carry out a univariate t test where the test statistic is the maximum
of contrast test statistics. As stated above, MaxT performs well when one curve has
a sharp increase either at the beginning or in the end. Therefore, as long as there is
such a candidate model, it is highly possible that we have PoC. This explains the
results showed in Tables 5 and 6. That is when the true model is not included in the
candidate set, the power of MCP-Mod decreases.

5.7 When to Use OLCT and When Not?

The two assumptions required for OLCT are correct maximum tolerated dose
(MTD) and monotonicity in efficacy. When the two assumptions are true, use of
OLCT for PoC is very powerful, because all of the experiment-wise Type I error
can be allocated to a single degree of freedom test and this avoids the multiple
comparison adjustment. Moreover, it is simple and easy so that people can fully
understand it. Although monotonicity assumption is crucial for OLCT, it is quite
robust to mild violation where there may be a small drop in the highest dose. This
can happen when the endpoint is affected by safety. For example, in binary endpoint
analysis, patients who drop out early due to adverse events can be considered as
failure. OLCT handled this type of mild non-monotonicity quite well. For example,
when mean response is (0, 0.024, 0.08, 0.24, 0.48, 0.96) with standard deviation of
1 for placebo and five test doses from low to high, OLCT under two-sided alpha
of 0.2 yields 0.87 power with 10 patients each arm. In contrast, for mild non-
monotonic dose response of (0, 0.008, 0.096, 0.48, 0.96, 0.8), OLCT yields 0.93
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power with same number of patients under the same MCID. This is due to the fact
that it integrates the treatment difference for doses in the middle, which helps to
reduce sample size.

There are some mis-perceptions that ordinal linear contrast test should only be
used when the dose response curve is linear. It is not true. With equal spacing dose
and sample allocation, the contrasts OLCT uses are optimal under a straight line.
But when doses are not equally spaced as suggested in binary spacing from Hamlett
et al. (2002), optimal contrasts will occur under a different curve that may not have
an easy mathematic form. In this case, the contrasts are still optimal. For example,
OLCT provides close to optimal contrast for Emax1 instead of Linear in the example
we provided, and it works well under logistic model. In practice, for a dose ranging
study, what really matters are the responses from selected doses, instead of the
underlying shape of the curves. Dose ranging study should be designed in a way that
the lowest dose is likely to be in the sub-therapeutic range, and is clearly inferior to
higher doses, so that the lower limit of dose range can be established. An ascending
response by dose groups is a desired outcome in dose ranging trial and is reflected
in OLCT method. The authors recommend using BDS to help reach this goal, and
thus the full potential of OLCT method can be realized.

Although monotonicity can be assumed in general as stated above and OLCT
works for mild non-monotonic dose response curves, when serious inverse U shape
cannot be comfortably excluded by the study team, for example in CNS trials
or biological therapy in some disease areas, OLCT may not be appropriate, and
methods like MCP-Mod is still a preferred choice.

5.8 Limitations of ANOVA F Test

Although ANOVA F test is widely used, several limitations are discovered. First,
Brown and Forsythe (1974) found that one-way ANOVA F statistic yields a test
that is sensitive to a lack of homogeneity of within group variances. That is, the
actual size of a test may differ greatly from the selected size when the groups have
different underlying population variances. Second, we find that when homogeneity
is assumed, ANOVA F test tends to ignore information provided by data. Given two
group mean responses: g1 D .0; 0:09; 0:18; 0:27; 0:36/ and g2 D .0; 0; 0; 0; 0:36/ ,
to achieve 80% of power, we need 68 patients per arm for g1 and 53 patients per arm
for g2. This result is counterintuitive since g1 offers more information by data but
results in a larger sample size. The mathematical reason behind this result is that g1
gives a smaller “variation between sample means” and a larger “variation within the
samples”. A smaller F is derived then which requires more sample size to achieve
the same power.
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6 Discussion

In this article, we compared the performance of MCP-Mod, ordinal linear contrast
test (OLCT), ANOVA F test and Max T test, and showed that under monotonic
assumption, MCP-Mod and OLCT yield similar performance with different dose
response curves, and are in general more powerful than the other two methods.
OLCT also performs reasonably well with mild violation of monotonic dose-
response relationships. When there is a possibility for serious non-monotonic dose
response (e.g., inversed U shape), OLCT may not be appropriate and MCP-Mod
could be a preferred choice.

As mentioned in Sect. 5, OLCT method depends on two assumptions: correct
MTD and monotonicity. Over the years, our experiences indicate that these two
critical assumptions as stated above are often necessary for most of phase II study
designs. Correct MTD is an important foundation irrespective of design methods
stated in this article. On the other hand, monotonic assumption is relevant in the
comparison. In general, it is believed that monotonic dose response is reasonable for
more than 90% of programs. Potential exceptions include CNS trials or biological
therapies.

Thomas and Ting (2007) summarized the findings based on a meta-analysis of
clinical dose response in a large drug development portfolio. Their report covered
a wide range of studies across different therapeutic areas in non-oncology small
molecule compounds, and concluded that almost all compounds in the portfolio
showed monotonic response. It should be noted that, in practice, when dose response
reach its plateau at median dose, there is about 50% probability that median dose
appears to be more efficacious than a higher dose. There are plenty of cases where
a non-monotonic dose response curve in one study was subsequently confirmed to
be a false signal by a second study. Thus when a non-monotonic shape is observed,
it is worthwhile to pause and think twice before jumping into the conclusion.

Our results indicate that performance of OLCT is comparable with that of MCP-
Mod. However, OLCT is simpler, more efficient, and more robust. Simplicity of
this method makes it very useful—it is easy to communicate with non-statisticians,
easy to implement and interpret. When there is not much prior knowledge about the
underlying efficacy dose-response relationship, and that the project team is willing
to assume MTD is correct and the efficacy dose-response relationship is monotonic,
then OLCT can be an ideal choice. When implementing MCP-Mod with the existing
software, there could be difficulties when models do not converge, and lack of
transparency of the calculations behind the scene. These experiences could result in
frustrations for users. Debugging MCP-Mod code can also be challenging. On the
other hand, OLCT is simple and clear. Whenever the performance is not good, users
can easily use these findings to debug the computer code and the OLCT method can
be adjusted. The R code for MCP-Mod is confusing in many cases. For practitioners
who have limited understanding of MCP-Mod, or who are not comfortable with the
complexity of MCP-Mod software, OLCT is a useful alternative.
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R and SAS codes that we used to produce Table 4 are available upon request.
It should be clear to readers that the complexity and difficulty in coding when
implementing these methods. These codes only reflect the difference in complexity
at the design stage. When performing data analysis, MCP-Mod will go through the
model selection process and the estimation process. The analysis code could be
more complicated.
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Landmark-Constrained Statistical Shape
Analysis of Elastic Curves and Surfaces

Justin Strait and Sebastian Kurtek

1 Introduction

Shape is a fundamental property of objects observed in images, and is often
defined as the appearance of their outlines. In the case of two dimensional images,
the outlines of objects form planar open and closed curves. In the case of three
dimensional images, such as medical ones including magnetic resonance images
(MRIs), the outlines of structures form surfaces. Due to improvements in imaging
technology, shape datasets have become ubiquitous in many different applications
including biology, medicine, biometrics, graphics, bioinformatics, and many others.
As a result, statistical shape analysis is an emerging discipline within statistics
that seeks to make inferences about a population of objects, represented by their
corresponding shapes. To develop statistical procedures applicable to shapes, one
must first represent them mathematically; this is not a simple task. Consider a
lightbulb, for example. The shape of a lightbulb is easily recognizable. However,
it is important to note that if the lightbulb is moved to a different location in the
image, rotated, or re-scaled, its shape does not change. Thus, mathematically, shape
is a property of an object, which is invariant when the object is translated in space,
rotated, or re-scaled. Because of these required invariances, new tools for analyzing
shapes are required. That is, standard univariate or multivariate statistical methods
are often not directly applicable in this context, because shape spaces are nonlinear
and follow a quotient structure. Additionally, shape analysis often requires tools
from functional data analysis (Ramsay and Silverman 2005) due to the infinite
dimensionality of shape representation spaces. The goal of statistical shape analysis
is to reproduce basic statistical techniques while taking into account these extra
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challenges. The developed techniques can then be used in real-life applications,
most notably in medical imaging, where the shapes of anatomical structures can
potentially be used to diagnose and monitor various types of diseases.

Many methods have been developed to analyze the shapes of objects observed
in images. In the case of surfaces, one of the most popular approaches in medical
imaging studies shapes of objects by embedding them in volumes and deforming
the volumes (Beg et al. 2005; Grenander and Miller 1998; Joshi et al. 1997) (termed
deformable templates and Large Deformation Diffeomorphic Metric Mapping or
LDDMM). Others have studied 3D shape variability using level sets (Malladi
et al. 1996), medial axes (Bouix et al. 2001; Gorczowski et al. 2010), or point
clouds via the iterative closest point algorithm (Almhdie et al. 2007). The case of
curves has also been considered under many different representations. In statistics,
the most widely-used method was developed by Kendall (1984), where shapes
were represented using a finite set of “important” points known as landmarks.
The landmarks can be selected manually or automatically. Most often, they are
provided by an application domain expert and correspond to similar salient features
across a population of shapes; such landmarks are referred to as anatomical. On
the other hand, mathematical landmarks correspond to points which in some sense
capture the most important properties of the shapes (e.g., peaks and valleys).
By reducing the representation of an object to a set of landmarks, one can alter
multivariate statistical techniques to account for desired shape invariances, and use
them for shape analysis. Developments of these techniques are described in many
places (Bookstein 1986; Dryden and Mardia 1992, 1998; Small 1996).

The ability to apply classical multivariate analyses to landmark shapes is
intriguing, but not without drawbacks. Landmark-based methods require the user
to summarize the full outline of an object into a finite set of points. This leads to a
loss of information, which may affect statistical conclusions. In addition, selecting
landmarks is not a simple task; it is not clear how many points should be selected,
or if there is an “optimal” configuration of points which best represents the objects’
outlines. One could select a large number of landmarks to better approximate
the shape; however, this leads to a very high-dimensional problem, which can be
quite challenging computationally. To overcome these challenges, several groups
proposed methods that retain all information provided about the object’s outline.
In this setting, one defines infinite-dimensional representations, which additionally
requires invariance to re-parameterizations of the functions representing the curve or
surface (in addition to the similarity group, which includes translation, rotation and
scale). In the case of curves, parameterization determines how fast it is traversed.
In the case of surfaces, parameterization defines its grid or mesh. Thus, changing
the parameterization of curves or surfaces is a shape preserving transformation.
In a statistical shape analysis context, re-parameterizing an object can be used
to determine which geometric features of objects are in correspondence with
each other.

Several authors have studied this new set of shape frameworks in-depth. Zahn
and Roskies (1972) and Klassen et al. (2004) in the case of curves, and Brechbühler
et al. (1995) and Styner et al. (2006) in the case of surfaces, achieve parameterization
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invariance through normalization (to arc-length for curves and equal area for
surfaces). Unfortunately, these methods do not match geometric features of objects
across a population of shapes, and thus result in suboptimal correspondences and
subsequent statistical results (Kurtek et al. 2011b, 2012a,b; Srivastava et al. 2011).
On the other hand, there is a set of methods in the statistics literature that seek
“optimal” correspondences across a population of shapes; these methods are based
on elastic metrics and are thus referred to as elastic in short. Instead of normalizing
parameterizations, they seek a “best” re-parameterization to match one object to
another. This process is often also referred to as registration. Such methods have
been developed for statistical shape analysis of curves in Younes (1998), Younes
et al. (2008), Joshi et al. (2007), Srivastava et al. (2011) and Kurtek et al. (2012b),
and surfaces in Kurtek et al. (2010, 2011a,b, 2012a), Jermyn et al. (2012) and Samir
et al. (2014). One of the main benefits of using elastic methods for shape analysis is
that the metric used to calculate distances between shapes measures the amount of
bending and stretching required to deform one object into another, thus providing a
natural interpretation. However, elastic metrics in general are very difficult to work
with due to their complex structure (Mio et al. 2007). Recent approaches developed
elastic representations of curves and surfaces that greatly simplify the problem at
hand (Jermyn et al. 2012; Kurtek et al. 2010; Srivastava et al. 2011).

In this manuscript, we describe an approach to statistical shape analysis that
unifies the recent elastic method with previous landmark-based approaches. As
mentioned earlier, relying on landmarks reduces the amount of information used in
statistical analyses. However, while elastic shape analysis overcomes this problem,
these methods treat all points as equally important. Thus, if special landmark
locations (e.g., anatomical features) are known, standard elastic shape analysis
methods are not able to emphasize these points. Thus, the ability to combine elastic
shape analysis with landmark information allows us to overcome both drawbacks.
As a motivating example, in medical imaging, an anatomical structure of interest is
often represented as a surface. Additionally, the doctor marks special points on the
structure, which can be used to detect abnormalities. These points (landmarks) are
certainly valuable for statistical inferences, and thus including them in the analysis
is necessary.

As another motivating example, consider the dog shapes shown in Fig. 1. In the
left panel is a representation of the dog via a curve while in the right panel we show
the outline of a dog as a surface. In both cases, it appears natural to place anatomical
landmarks at the dogs’ legs, tail and snout. In the surface case, one can also clearly
see the dog’s ears where additional landmarks can be marked. All of these points
are important to representing the structure of the full dog outline, and should thus
be incorporated into the shape analysis framework. Additionally, good landmark
correspondences across shapes provide improved registration over unconstrained
elastic methods as shown by Strait et al. (2017) and Kurtek et al. (2013a).

The idea of incorporating landmark constraints into elastic representations of
shape had not been explored much in the past. Liu et al. (2010) imposed soft
landmark constraints on the analysis by augmenting the elastic shapes with an
auxiliary function constructed using the landmark locations. Two recent papers
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Fig. 1 Landmark-
constrained curve and surface
representations of a dog.
Landmarks segment the full
curve outline of the dog into
six pieces. Landmarks are
shown as black points on the
curve or surface

provide statistical shape analysis tools for both (curves and surfaces) that are able
to incorporate hard landmark constraints into elastic representations (Kurtek et al.
2013a; Strait et al. 2017). The methods presented in this manuscript are largely
based on those works. The rest of this paper is organized as follows. In Sect. 2, we
present tools for landmark-constrained registration and elastic comparison of shapes
of curves and surfaces. Sect. 3 provides methods for averaging and summarization
of variability of a sample of shapes. Throughout these two sections we illustrate the
approach using multiple examples. Finally, we give a brief summary in Sect. 4.

2 Landmark-Constrained Shape Analysis

In this section, we describe a landmark-constrained elastic shape analysis frame-
work for curves and surfaces. We begin by briefly discussing a technical issue that
arises when using standard L

2-based methods in this setting. We describe this issue
for curves only, but note that it also arises in the same way for surfaces.

Let F represent an appropriate representation space of curves made precise
later. Also, let � be the set of all diffeomorphisms of the curve domain. The set
� contains all possible re-parameterizations of curves, and for an object f 2 F and
an element � 2 � , f ı � represents its re-parameterization. Given this setup, many
works in literature adopt the standard approach of measuring distances between
elements of F using the L

2 norm. Unfortunately, this framework is inappropriate
for statistical shape analysis of parameterized curves as was previously shown in
multiple places (Kurtek et al. 2010; Srivastava et al. 2011; Younes 1998). We
elaborate next. Let f1; f2 2 F be two parameterized curves, and � 2 � a re-
parameterization function. Then, it is easy to show that the L2 norm is not preserved
under the action of � , i.e., kf1�f2k ¤ kf1ı��f2ı�k. Thus, in this setup, a common
re-parameterization of two curves changes the distance between them (this is also
termed “lack of isometry”). This theoretical problem prevents one from defining
a parameterization-invariant statistical framework for shape analysis. Thus, in the
following sections, we describe an approach which uses new representations of
curves and surfaces that satisfy this property under the L

2 metric. Furthermore, we
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show that one can seamlessly incorporate hard landmark constraints into these repre-
sentations. For more detailed descriptions of these methods please refer to Srivastava
et al. (2011), Strait et al. (2017), Jermyn et al. (2012) and Kurtek et al. (2013a).

2.1 Unconstrained Representation Spaces of Curves
and Surfaces

Curves Let F denote the space of two-dimensional, absolutely continuous curves
with domain D D Œ0; 1� (planar open curves). The framework is also applicable
to closed curves with domain D D S

1 with minimal changes. Let � D f� W

Œ0; 1� ! Œ0; 1�j�.0/ D 0; �.1/ D 1; 0 < P� < 1g denote the unconstrained re-
parameterization group, where P� is the derivative of � . As stated earlier, this group
does not act on F by isometries under the L2 metric. To circumvent this issue, for a
curve f 2 F , we define the square-root velocity function (SRVF) representation of

curves (Srivastava et al. 2011) as qSRVF.t/ D
Pf .t/p
jPf .t/j

, where j � j is the Euclidean norm

in R
2. The inverse mapping is defined as f .t/ D f .0/C

R t
0

qSRVF.r/jqSRVF.r/jdr; thus,
the mapping from curve to SRVF is a bijection up to a translation. An important fact
about the SRVF is that the action of � becomes .qSRVF; �/ D .qSRVF ı �/

p
P� . Note

that the SRVF representation can be used for curves of any dimension, though the
focus here is on two-dimensional curves.

Surfaces In similar fashion, one can define a new representation of surfaces. In
this case, let F represent the space of all smooth embeddings of S

2 in R
3 and

let � be the set of all diffeomorphisms from S
2 to itself. Again, � serves as the

re-parameterization group for spherical surfaces. In this work, we only consider
closed or spherical surfaces, but this framework is readily applicable to other types
of surfaces including quadrilateral, hemispherical, cylindrical, etc. For a closed
surface f 2 F , f ı � represents its re-parameterization (i.e., the action of the
re-parameterization group is the same as in the case of curves). To define a new
representation of surfaces that allows parameterization-invariant shape analysis, let
n.s/ D @f

@u .s/ 
 @f
@v
.s/ 2 R

3 denote the normal vector to the surface at the point
s D .u; v/ 2 S

2. Jermyn et al. (2012) defined the square-root normal field (SRNF) as
qSRNF.s/ D n.s/p

jn.s/j
, where j � j denotes the Euclidean norm in R

3. If a surface f is re-

parameterized to f ı� , then its SRNF is given by .qSRNF; �/ D .qSRNFı�/
p

J� , where
J� is the determinant of the Jacobian of � . Note that unlike in the case of curves,
inversion of SRNFs cannot be performed analytically. The numerical inversion of
SRNFs has been considered by Xie et al. (2014) and Laga et al. (2017), and is
a difficult computational problem. As defined here, SRNFs are only applicable to
shape analysis of two-dimensional surfaces embedded in R

3.

Advantages of SRVFs and SRNFs There are two main benefits of these new
mathematical representations of curves and surfaces: (1) the group � acts on the
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space of SRVFs or SRNFs by isometries under the L
2 metric, and (2) the L

2

metric on the space of SRVFs (SRNFs) corresponds to an elastic metric (partial
elastic metric) on the original space of absolutely continuous curves (smooth
surfaces). In both cases, the resulting representation space after transformation is
L
2, henceforth denoted by Q. The relationship of these two representations to

elastic metrics is an important property as they provide a measure of the amount
of bending and stretching to deform one curve/surface into another. This allows
natural interpretation of the shape distance between objects as well as natural shape
deformation paths as will be seen in later sections. Further details on the elastic
metric can be found in Srivastava et al. (2011), Mio et al. (2007) and Kurtek et al.
(2012b). Note that whenever our discussion applies to either the SRVF or SRNF, we
use q without the superscript to denote the representation.

Definition of the Pre-shape Space Recall that shape is defined as a property of
an object that is invariant to translation, scale, rotation and re-parameterization. The
SRVF and SRNF representations, and associated elastic metrics, are automatically
invariant to translation due to their definition through first derivatives only. For
curves, scale invariance in this framework is achieved by re-scaling to unit length viaR 1
0

jPf .t/jdt D
R 1
0

jqSRVF.t/j2dt D kqSRVFk2 D 1. For surfaces, we re-scale them to
have unit area:

R
S2

jn.s/jds D
R
S2

jqSRNF.s/j2ds D kqSRNFk2 D 1. Thus, the resulting
SRVFs or SRNFs lie on the unit Hilbert sphere, which forms the pre-shape space:
C D fq 2 Qjkqk D 1g (in the case of closed curves there is an additional closure
condition). We refer to C as the pre-shape space because up to this point, we have
only accounted for translation and scaling variabilities. Invariance to rotation and
re-parameterization is obtained differently, using equivalence classes.

2.2 Landmark-Constrained Shape Space for Curves

We begin by introducing landmark constraints into the SRVF representation as
they play an important role in the rotation and re-parameterization steps. Suppose
that in addition to the curve f , we are given k discrete landmarks marked on f ,
ff .t1/; : : : ; f .tk/g 2 R

2. Also, let SO.2/ denote the group of all rotations in 2D
(also called the special orthogonal group). To take into consideration the landmark
constraints that were marked on the curve f , we must redefine the set of allowed
re-parameterizations as a subgroup of the unconstrained re-parameterization group
� whose elements respect landmark matching. For this purpose, we define �0 D

f� W Œ0; 1� ! Œ0; 1�j�.0/ D 0; �.1/ D 1; 0 < P� < 1; �.ti/ D ti; i D

1; : : : ; kg � � as the landmark-constrained re-parameterization group. Applying
two elements, O 2 SO.2/ and � 2 �0, to a curve f yields the transformed
curve O.f ı �/, where the landmark points remain unmoved; the SRVF of this
transformed curve is given by O.qSRVF ı �/

p
P� . Then, the landmark-constrained

shape space, denoted by S , is defined by the set of equivalence classes ŒqSRVF� D

fO.qSRVF ı �/
p

P� jO 2 SO.2/; � 2 �0g (note that these SRVF equivalence classes
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correspond to equivalence classes on the space of the original curves given by
Œf � D fO.f ı �/jO 2 SO.2/; � 2 �0g). Thus, the landmark-constrained shape space
is a quotient space: S D C =.SO.2/
�0/. The equivalence classes ŒqSRVF� represent
the landmark-constrained shapes uniquely, and the shape space S provides the
desired invariances to translation, scaling, rotation, and landmark-constrained re-
parameterization.

Next, we define a suitable metric on S . As mentioned earlier, an important
property of the elastic metric on the space of absolutely continuous curves is that,
under the SRVF representation, it is equivalent to the standard L

2 metric (Srivastava
et al. 2011). We begin by defining the elastic distance between two curves using
their SRVF representation on C . Since the pre-shape space C is a Hilbert sphere,
the geodesic distance between two curves represented via their SRVFs q1; q2 2 C
is given by dC .qSRVF

1 ; qSRVF
2 / D � D cos�1.hqSRVF

1 ; qSRVF
2 i/, where h�; �i is the L

2

inner product; the corresponding geodesic path (optimal deformation path) is given
analytically by ˛.qSRVF

1 ; qSRVF
2 /.�/ D 1

sin.�/ .sin..1��/�/qSRVF
1 Csin.��/qSRVF

2 /; � 2

Œ0; 1�. The rotation and landmark-constrained re-parameterization groups act on C
by isometries, which allows the L

2 metric to descend from the pre-shape space to
the quotient shape space. Then, the landmark-constrained geodesic distance in the
shape space S is given by:

d.Œf1�; Œf2�/ � dS .Œq
SRVF
1 �; ŒqSRVF

2 �/ D min
O2SO.2/; �2�0

dC .q
SRVF
1 ;O.qSRVF

2 ı �/
p

P�/:

(1)

The optimization over SO.2/ and �0 is often referred to as the registration process,
which aligns geometric features across shapes. The optimal rotation is found
using Procrustes analysis, which involves singular value decomposition (SVD).
To optimize over �0, one can take a product space approach where the complete
optimization problem is separated into an optimization over the unconstrained re-
parameterization group � for each segment formed using the landmark constraints
(see left panel of Fig. 1). See Strait et al. (2017) and Robinson (2012) for the
implementation details. Once the optimal pair .O�; ��/ is found, one can compute
the geodesic path in the SRVF shape space using ˛.qSRVF

1 ;O�.qSRVF
2 ı ��/

p
P��/,

and map it back to the space of absolutely continuous curves for visualization
purposes. This procedure provides the landmark-constrained elastic geodesic path
and distance between shapes of two curves.

2.3 Landmark-Constrained Shape Space for Surfaces

In contrast to the elastic curve framework, it is not a simple task to invert an arbitrary
SRNF to obtain its original surface (Laga et al. 2017; Xie et al. 2014). Thus, in this
case, we work directly in the space of smooth surfaces under the pullback of the L

2

metric from the SRNF space; this is the previously mentioned partial elastic metric
(Jermyn et al. 2012). We provide some details next.
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Throughout this section, with a slight abuse of notation, we use C as the pre-
shape space of smooth surfaces rather than their SRNF representations. Let each
surface f 2 C be annotated by k landmark points. Let s1; : : : ; sk be the locations of
these landmarks on S

2 such that f .si/ 2 R
3, i D 1; : : : ; k are the given landmarks

on the parameterized surface f . To form the landmark constrained shape space we
define �0 D f� W S2 ! S

2j� is a diffeomorphism; �.si/ D si; i D 1; : : : ; kg � �

as the landmark-constrained re-parameterization group for spherical surfaces. The
rotation group SO.3/ acts on the pre-shape space as .O; f / D Of ; the constrained
re-parameterization group �0 acts on C as before by composition .f ; �/ D .f ı �/.
Then, an equivalence class of a surface f is given by Œf � D fO.f ı�/jO 2 SO.3/; � 2

�0g, and represents a landmark-constrained shape of a spherical surface uniquely.
The set of all such equivalence classes is defined to be the landmark-constrained
elastic shape space denoted by S . As in the case of curves, because SO.3/ and �0
act on C by isometries, the partial elastic metric descends from the pre-shape space
to the quotient space S .

The shape geodesic between two landmark-constrained surfaces f1 and f2, such
that fj.si/, i D 1; : : : ; k, and j D 1; 2, denote the landmarks on them, is defined as:

dS .Œf1�; Œf2�/ D min
O2SO.3/; �2�0

0

BBBB@
min

F W Œ0; 1� ! C

F.0/ D f1; F.1/ D O.f2 ı �/

�Z 1

0

hh
dF

dt
.t/;

dF

dt
.t/ii.1=2/ dt

�

1

CCCCA
;

(2)

where F.t/ is a path in C and hh�; �ii is the partial elastic metric. The quantity
LŒF� D

R 1
0

hh dF
dt .t/;

dF
dt .t/ii

.1=2/dt denotes the length of the path F. The inside
minimization problem seeks the shortest path (geodesic) between f1 and O.f2 ı �/

in C ; the solution can be found using a path-straightening algorithm (Klassen and
Srivastava 2006; Kurtek et al. 2012a; Samir et al. 2014). In the presented results,
we approximate the geodesic using a straight line path. The outside minimization
problem seeks an optimal landmark-constrained registration between f1 and f2,
which is a search for an optimal rotation O� 2 SO.3/ and an optimal landmark-
constrained re-parameterization �� 2 �0. The search for O� is again performed
using Procrustes analysis. To find ��, we require two steps: (1) an initialization that
matches given landmark points on f1 and f2, and (2) a gradient descent search over
�0 that finds the optimal landmark-constrained re-parameterization. We begin with
a description of the first step.

Initial Landmark Matching First, we must find two initial diffeomorphisms
�1; �2 W S

2 ! S
2 that map the selected landmarks on surfaces f1 and f2 with

locations fQs1; : : : Qskg 2 S
2 and fNs1; : : : Nskg 2 S

2, respectively, to a standard set of
landmarks (s1; : : : ; sk 2 S

2). We briefly describe this procedure for �1. In general,
the deformations between the landmarks can be very large. Thus, we divide the
original problem into l smaller deformation steps. We first connect each pair of
matched landmarks on S

2 with a geodesic (great circle) and sample it uniformly
using l steps. Then, we begin by solving for the first small deformation that matches
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the first point to the second point on this geodesic path for all landmarks. Let �j be
the tangent vector to S

2 at Qsj such that exp Qsj
.�j/ D sj; exp denotes the exponential

map on the unit two-sphere. For brevity, we do not provide the full expression for
the exponential map, but note that it is available analytically. Then, using a Gaussian
kernel, we define a vector field over S2 according to V.s/ D

Pk
jD1 K.s; sj/�j in such

a way that V.sj/ D �j. This is a simple interpolation step that uses the landmark
vector fields to define a full vector field over S

2. The desired small deformation
at each point s is obtained by computing exps.Vs/. This is repeated for each of
the l small steps. The desired large deformation �1, which guarantees that the
landmarks on f1 are matched exactly to the standard landmarks, is obtained through
composition of the l small deformations. The procedure can be repeated for the
second surface f2 in the same manner. This general procedure is also described in
Kurtek et al. (2013a).

Gradient Descent Optimization Over 	0 One can perform the optimization over
�0 directly as suggested by Eq. (2). However, the correspondence between the
partial elastic metric on the space of smooth closed surfaces and the L

2 metric on
the space of SRNFs allows us to greatly simplify the problem. Given two surfaces f1
and f2 with matched landmarks, the optimization over �0 is solved using the energy
E�id .�/ D kqSRNF

1 � �qSRNF
2

.�/k2, where qSRNF
1 ; qSRNF

2 are the SRNFs of f1 and

f2 and �qSRNF
2

.�/ D .qSRNF
2 ı �/

p
J� . An algorithm for finding optimal landmark-

constrained re-parameterizations of surfaces via this energy is given in Kurtek et al.
(2013a, 2010, 2011b) and is omitted here for brevity. We refer the interested reader
to those papers for the details.

2.4 Motivating Examples

Landmark-Constrained Curves The utility of landmark-constrained shape anal-
ysis for curves is presented in Fig. 2 for two complicated outlines of elephants.
These elephants are fairly similar with two noticeable differences. First, the trunk
of the first elephant is oriented downwards, but upwards for the second one. Also,
the first elephant has four distinct legs (with very wide gaps in-between), while the
second elephant has no gap between the second and third legs; visually, this feature
looks like one large leg, although it is obvious that it should represent two legs.
By identifying these special, salient features (i.e., the feet and trunk) as landmarks,
we force them to be in correspondence. In some cases, this is a necessary constraint
to enforce, as a standard unconstrained elastic shape analysis framework may not
know how to handle the lack of a gap between the two legs on the second elephant
or the very different orientations of the trunks.

The landmark-constrained geodesic distance between this pair of shapes is
0.7803, which provides an accurate measure of their shape differences; this claim
is supported by the image displayed in the bottom panel of Fig. 2, which shows
seven equally-spaced points along the shape space geodesic path where the initial
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Fig. 2 Top left: Outlines of two elephants used for shape comparison. The starting point
(a landmark) is shown in red, while additional landmarks are in green. Top right: Correspondence
of features between the two elephants and the optimal landmark-constrained re-parameterization
function. Bottom: Landmark-constrained geodesic path between the two elephants, with landmarks
marked along the path

shape is the first elephant and the final shape is the second elephant. This path shows
how one can optimally deform the first elephant into the second, while preserving
the landmarks (marked by points in the figure); it represents a natural deformation
between the two given elephant shapes. The landmarks remain in correspondence
throughout, and one can clearly see the expected shift in the orientation of the
trunk as well as the reasonable transformation from being able to see all four legs
distinctly to the gap disappearing between the middle two legs.

The top-right panel of Fig. 2 shows two additional plots associated with the
landmark-constrained elastic matching obtained for the two elephants. The left plot
shows the correspondence of points on the first elephant (red) to the points on the
second elephant (blue); the landmark-constrained analysis ensured that geometric
features around the trunks and legs match each other well. The right plot shows
the optimal matching function (landmark-constrained diffeomorphism). Deviations
from a straight, 45ı line indicate the elastic nature of the matching problem.

Landmark-Constrained Surfaces Figure 3 displays a motivating example for the
surface case. In the top left panel, we show two highly articulated surfaces of
a standing cat and a standing horse. On top of each surface, we marked seven
landmark points corresponding to natural features of the two animals (ears, legs
and tail; the landmark on the tail of the horse is occluded). In the bottom panel,
we show the initial landmark matching procedure. The leftmost spherical domain
contains the two sets of landmarks as given on the surfaces (red for cat and black
for horse). First, we compute an optimal rotation of the domain to match the two
landmark sets as well as possible (this is an area-preserving element of � ). The
result is given on the middle sphere. Note that the landmarks are now closer than
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Fig. 3 Motivating example for landmark-constrained elastic shape analysis of spherical surfaces

previously. Finally, we compute the nonlinear, large deformation that matches the
two sets of landmarks exactly. For reference, we still show the original landmark
locations. We also display an intermediate matching result in magenta. After
initial landmark matching, we compute the landmark-constrained registration and
geodesic between the two surfaces. The geodesic path is displayed in the top right
panel of the figure. The path preserves important features of the two animal models;
the two surfaces naturally deform into each other.

2.5 Additional Examples

Figure 4 provides four additional examples of geodesic paths on the landmark-
constrained shape space of curves. All examples in this manuscript were generated
using the MPEG-7 dataset.1 All of these examples were selected because of the
potential for ambiguities in the matching of features using unconstrained elastic
shape analysis (i.e., without landmarks). The first example compares two octopi,
where the arms are in drastically different locations. Without the ability to constrain
the comparison at the arm locations, the result may not display a natural path
between the two shapes. However, placing eight meaningful landmarks allows for
the geodesic path to show a natural movement of the octopus arms. Next to the
octopus example is a comparison of two crowns, the first of which has five distinct
tips, while the second one appears to have more than five tips. The landmark

1http://www.dabi.temple.edu/~shape/MPEG7/dataset.html.

http://www.dabi.temple.edu/~shape/MPEG7/dataset.html
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Fig. 4 Landmark-constrained geodesic paths for several examples from the MPEG-7 dataset.
Corresponding landmarks are marked along each path

Fig. 5 Landmark-constrained geodesic paths for several examples from the TOSCA and SHREC
2007 datasets

constraints in this case allow the extra tips to grow out of the gaps between tips in
the first crown. The last two comparisons consider cows and butterflies, respectively.
As in the previous examples, the addition of landmarks to the elastic representation
provides valid deformations between shapes.

Next, we provide several examples of landmark-constrained geodesic paths
(approximated using linear paths) between shapes of very complex spherical
surfaces including dogs, cats, horses and human bodies. The models used in all
of the examples in this manuscript were obtained from the TOSCA (Bronstein et al.
2008) and SHREC 2007 (Girogi et al. 2007) databases. The results are presented in
Fig. 5. We do not show the marked landmarks in these cases, which were chosen as
extreme points on the surfaces, i.e., legs, ears, tails, etc. In all examples, geometric
features are nicely preserved along the geodesic paths. Furthermore, all of the
deformations are natural: movement of arms and legs reflects our intuition. For
example, the first path deforms a sitting dog into a laying dog. Note that at each
point along the path the head of the dog is slightly lowered while the front limbs
simply extend out. Figure 6 presents two examples where we compare landmark-
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Fig. 6 Comparison of two landmark-constrained elastic geodesic paths (top) to their uncon-
strained elastic counterparts (bottom)

constrained geodesics (top) to unconstrained ones (bottom). It is clear that, in both
examples, landmarks add valuable information, which improves the comparison of
the given shapes.

3 Statistical Analysis of Landmark-Constrained Shapes

In this section, we provide two useful tools for statistical shape analysis of
landmark-constrained curves and surfaces: computing the sample mean and sum-
marizing variability using tangent principal component analysis (tPCA).

3.1 Sample Averaging

We begin by defining an intrinsic mean called the Karcher mean. Let ff1; f2; : : : ; fng

denote a sample of curves or surfaces. Then, the sample Karcher mean is given
by ŒNf � D arg minŒf �2S

Pn
iD1 d.Œf �; Œfi�/2. A gradient-based approach for finding the

Karcher mean is given in Dryden and Mardia (1998) and Le (2001), and is omitted
here for brevity; a specific implementation of this algorithm for SRVFs and SRNFs
can be found in Kurtek et al. (2013b) and Kurtek et al. (2016), respectively. Further
theoretical results and properties of Karcher means are given in Bhattacharya
(2008), Bhattacharya and Bhattacharya (2012) and Bhattacharya and Lin (2017).
Note that the resulting Karcher mean is defined as an entire equivalence class, which
is how we defined shapes. For visualization purposes and subsequent covariance
computation, we select one representative element Nf 2 ŒNf �. Next, we present several
averaging results for landmark-constrained shapes of curves and closed surfaces.
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3.1.1 Examples

We present two examples of Karcher averaging for a collection of landmark-
constrained curves. Figure 7 shows the first example: a sample of 20 bones with
different features. Some of the bones are slightly bent, and the edges of the bones
vary from sharp to smooth. Four landmarks were selected on each bone. Two
elastic averages are displayed; the middle average was computed without landmark
constraints, while the right one includes landmarks. In this case, the two averages are
somewhat similar; they both indeed look like bones, and it appears as if averaging
over a somewhat large sample size has “smoothed” out any unusual features that a
few of the bones may have. The difference in the two averages being fairly small
suggests that landmark information may not be as crucial in this example.

The second example features a sample of 12 camels displayed in Fig. 8; these
camels vary in the number of clearly visible legs as well as the number of humps
the animal has. Unconstrained Karcher averaging (without landmarks) does not
preserve the legs well, as shown in the middle panel of Fig. 8. Thus, landmark-

Fig. 7 Left: Sample of 20 bone curves. Middle: Average of bones without landmark constraints.
Right: Average of landmark-constrained bones (with landmarks annotated in black)

Fig. 8 Left: Sample of 12 camel outlines. Middle: Average of camels without landmark con-
straints. Right: Average of landmark-constrained camels (with landmarks annotated in black)
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Fig. 9 Left: Sample of eight horse surfaces. Right: Landmark-constrained average of the eight
horse shapes

constrained Karcher averaging appears to be a better option to preserve as many
features in the camels as possible. Six landmarks were selected on each camel
(one for each of the four legs and one for each of the two possible humps). The
landmark-constrained average camel shape is shown in the right panel of Fig. 8.
Since all but two of the camels have two humps, the average also has two distinct
humps. However, the Karcher mean’s legs show some signs of occlusion as the
gap (particularly in the front pair of legs) is fairly small. This is inherited from the
camels in the sample which share that property. For both examples, the gradient
descent algorithm converged after approximately 500 iterations.

Finally, we close this section with one example of averaging shapes of landmark-
constrained surfaces. The example is presented in Fig. 9 and considers a sample
of eight horse shapes. The horses mostly differ in their pose. We selected eight
landmarks on each horse corresponding to the two ears, the snout, the four legs
and the tail. The resulting average is presented in the right panel. It is a nice
representative of the given data where all features have been preserved. The pose
of the average horse is approximately neutral.

3.2 Summarization of Variability

Tangent principal component analysis (tPCA) is a useful way to visualize principal
directions of variability in shape datasets. We first describe this procedure for
landmark-constrained curves. Given the Karcher mean shape, we compute the
shooting vectors vi; i D 1; : : : ; n by projecting all of the SRVFs into the linear
tangent space at Nq, the SRVF of Nf , using the inverse exponential map. At the
implementation stage, the shooting vectors are sampled using N points allowing
us to use multivariate tools on this tangent space to perform tPCA. We first compute
the sample covariance matrix given by K D 1

n�1

Pn
iD1 viv

T
i (assuming that the vis

are stacked into long vectors). The SVD of K is given by K D U†UT , where †
is a diagonal matrix of principal component variances and the columns of U are
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the corresponding principal directions of variation in the data. One can explore the
ith direction Ui by computing  D t

p
†iiUi (for some value of t), where †ii is the

ith diagonal element of †. This vector can then be mapped back to the landmark-
constrained shape space via the exponential map and converted to a curve for
visualization. This procedure is greatly simplified by the invertibility of the SRVF.
We can simply perform all of the analysis on the SRVF shape space (quotient space
of the Hilbert sphere with a simple differential geometry), and then map the results
back to the original curve shape space. This is not possible for the case of surfaces
as described next.

The evaluation of the covariance for a collection of landmark-constrained surface
shapes is performed as follows. First, we find the shooting vectors from the

estimated Karcher mean Nf to each of the surfaces in the sample, vi D
dF�

i
dt jtD0,

where i D 1; : : : ; n and F� denotes a geodesic path in the landmark-constrained
shape space S (computed using path-straightening as before). To generate a much
lower dimensional, orthonormal basis denoted by fBjjj D 1; : : : ;mg, m � n, we
apply the Gram-Schmidt procedure under the partial elastic metric hh�; �ii to the
observed shooting vectors fvi; i D 1; : : : ; ng. We approximately represent each
original shape using a low dimensional coefficient vector ci D fci;j; j D 1; : : : ;mg,
where ci;j D hhvi;Bjii. The sample covariance matrix can be computed in the
coefficient space as K D 1

n�1

Pn
iD1 cicT

i 2 R
m�m and tPCA can be performed

using K as before. This results in the principal directions of variation in the given
data U and the diagonal matrix of principal component variances †. To explore the
principal direction Ui 2 R

m, we can compute the corresponding shooting vector as
 D t

p
†ii

Pm
jD1 Ui;jBj (

p
†ii denotes the ith diagonal element of †). One can then

map this vector to a surface f using the exponential map. The exponential map in
this case must be computed under the non-standard partial elastic metric introduced
earlier, which is not a simple task. This can be accomplished using a tool called
parallel transport, which was derived for this representation of surfaces by Xie et al.
(2013). For brevity, we do not provide details here but rather refer the interested
reader to that paper. In the current results, we approximate the exponential map
using a straight line.

3.2.1 Examples

Like in many standard statistical analyses, one may want to understand the
variability in a population given a collection of shapes. This can be done by looking
at principal directions of variation obtained through tPCA. The top panel of Fig. 10
shows the top two principal directions of variation in the bone data. The primary
direction includes a slight bending of the bone, as well as different patterns at
the ends of the bone (especially at the top end). The second direction controls
the thickness of the middle portion of the bone. Similarly, the middle panel of
Fig. 10 displays the two principal directions of variation for the collection of camel
shapes. The primary direction captures the variability in the presence of a gap
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Fig. 10 Visualization of the two principal directions of variation for the bone, camel and horse
examples. From left to right for each direction: �1.5, �1, �0.5, 0 (mean), +0.5, +1, +1.5 standard
deviations from the mean

between the front legs or the rear legs (or both) among the sample of shapes. The
second one appears to capture some more differences in the leg structure as well
as the variability in the humps. Finally, the bottom panel of Fig. 10 displays the
same results for the sample of horse surfaces. The principal direction mainly reflects
the up-down movement of the horse’s head and the pose of the front two legs. The
second direction captures changes in the pose of the back legs and the overall body.

4 Summary

We present a framework for landmark-constrained shape analysis of curves and
surfaces. The framework is based on elastic metrics and corresponding, simplifying
representations termed the square-root velocity function and the square-root normal
field. The elastic metrics combined with anatomical landmarks provide intuitive
correspondences between shapes and result in natural geodesic deformations. We
also provide tools for statistical analysis including averaging and summarization
of variability using tangent principal component analysis. The resulting sample
shape averages and principal directions of variability provide natural summaries
of complex datasets.
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Phylogeny-Based Kernels with Application
to Microbiome Association Studies

Jian Xiao and Jun Chen

1 Introduction

The human microbiome is the collection of microorganisms (mostly bacteria) and
their genomes associated with an individual body location. It plays an important role
in promoting human health. For example, the human gut microbiome can harvest
otherwise inaccessible nutrients, synthesize certain vitamins, promote the proper
development of the immune system and protect us from pathogens (Turnbaugh et al.
2007). Increasingly more human microbiome studies have implicated the human
microbiome in the pathogenesis of many human diseases such as obesity, diabetes,
inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), vaginosis and
cancers (Cho 2012; Holmes et al. 2011; Honda and Littman 2012; Kinross et al.
2011; Plottel and Blaser 2011; Pughoeft and Versalovic 2011). Higher Firmicutes
to Bacteroidetes ratios and reduced species diversity have been observed in obese
humans (Ley et al. 2005, 2006). Two recent studies found that the abundance of
phylum Fusobacteria increased significantly in the gut microbiome of colorectal
cancer patients (Castellarin et al. 2012; Kostic et al. 2012). These findings have pro-
found implications. If the microbiome effect is causal, new therapeutic strategies can
be designed to treat diseases by modulating the microbiome composition (Collison
et al. 2012; Virgin and Todd 2011). Even if the microbiome alteration is a result of
disease process, the affected taxa in the microbiome can still serve as biomarkers
for disease prevention and early diagnosis (Knights et al. 2011; Segata et al. 2011).
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The development of next generation sequencing methods such as 454
pyrosequencing and Illumina Solexa sequencing enables researchers to study
the microbiome composition by directly sequencing the environmental DNAs.
One commonly used sequencing strategy involves sequencing a variable region of
the 16S ribosomal RNA (rRNA) gene in the bacterial genome, and this variable
region serves as ‘fingerprint’ for species identification. A basic bioinformatics
workflow first clusters these 16S sequence reads into small sequence units based
on sequence similarities, either by comparing to a curated reference set of 16S
rRNA gene sequences or by de novo clustering method (Chen et al. 2013b). These
small sequence units are termed as operational taxonomic units (OTUs) and, at
97% similarity level, they are thought to approximate the bacterial species. Each
OTU has a representative DNA sequence, and a taxonomic lineage can be assigned
to each OTU by comparing their sequence to existing 16S rRNA gene databases.
Finally, a phylogenetic tree can be inferred based on the aligned OTU sequences,
characterizing their evolutionary relationships. Therefore, a typical 16S data set
is usually summarized as a table of counts of the detected OTUs, together with a
phylogenetic tree among these OTUs. Sparsity (excessive zeros or zero-inflation)
and phylogenetic tree structure are two key features of 16S-based microbiome data.

One challenge of statistical analysis of microbiome data involves appropriately
modeling the microbiome data in relation to disease phenotypes or environmental
covariates. Due to the complex interaction between bacterial species and the
environment/disease and non-normality of the count data, traditional linear models
are not appropriate for microbiome data. Kernel-machine (KM) methods, which
allow modeling complex nonlinear relationships and potential interactive effects,
are particularly appealing for microbiome data. Moreover, KM methods allow
easy incorporation of prior structure information by defining a problem-specific
kernel function. KM methods have been proven to be an effective approach for the
analysis of complex genomic and genetic data, especially for testing the association
between a group of genetic/genomic features and an outcome. The popularity of
KM methods for genomic/genetic data is mainly due to the work of Liu et al.
(2007, 2008), who connected the KM-based semi-parametric regression models
with generalized mixed effects models and derived a score test for testing the
significance of the expression of a gene pathway on a normal or binary outcome.
Later, many variants of KM-based association tests have been proposed, ranging
from the sequence kernel association test (SKAT) for human genetic data, to
the microbiome regression-based kernel association test (MiRKAT) for human
microbiome data (Kwee et al. 2008; Lee et al. 2012; Wu et al. 2010, 2011b, 2013;
Zhao et al. 2015).

KM methods require a kernel function K.�; �/, which can be regarded as a
similarity measure between observations. Though any generic kernels can be used,
a well-defined kernel, which incorporates the field knowledge, is usually more
powerful. For microbiome data, the phylogenetic tree provides important prior
knowledge as how these bacterial species are related, and hence incorporating the
phylogenetic tree into analysis can potentially improve the efficiency and power
of statistical analysis of microbiome data. This was clearly demonstrated in the
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context of lower-dimensional embedding, canonical correlation analysis, regression
analysis and multiple testing of microbiome data (Chen and Li 2013; Chen et al.
2013a, 2015; Purdom 2011; Zhao et al. 2015; Xiao et al. 2017). KM methods
have also been applied to microbiome data (Chen and Li 2013; Zhao et al. 2015).
Among these, MiRKAT is the most successful KM method designed for testing the
association between the microbiome and an outcome variable (Zhao et al. 2015).
Instead of inventing new microbiome-based kernels, MiRKAT converts distance
measures into kernels, given the availability of various ecological distances for
microbiome data. Since each distance measure represents an individual view of
the microbiome, it is only powerful when the distance captures the relationship
between the microbiome and the outcome and becomes powerless if the distance
does not reflect the underlying biological relationship. Thus it is beneficial to
consider multiple distance measures to have a comprehensive view of the micro-
biome in order not to miss important biologically relevant associations. Therefore,
MiRKAT proposed an omnibus test, which combines multiple distance measures to
improve the robustness and power of the test. By default, it uses three phylogeny-
based distances: unweighted, generalized and weighted UniFrac distances, and one
phylogeny-independent distance: Bray-Curtis distance (Chen et al. 2012; Lozupone
and Knight 2005, 2008). The unweighted UniFrac distance (Lozupone and Knight
2005), which is defined as the fraction of the branch length of the tree that leads to
descendants from either sample, but not both, is a qualitative measure that uses only
the presence and absence information. It is efficient in detecting the community
membership change or the abundance change in rare lineages, given that more
prevalent species are likely to be present in all samples (Chen et al. 2012). In
contrast, the weighted UniFrac distance (Lozupone and Knight 2008), which weighs
the branches of the phylogenetic tree based on the abundance difference, is more
sensitive to changes in abundant lineages. The generalized UniFrac distance (Chen
et al. 2012) fills the gaps that the weighted and unweighted UniFrac distance do not
over, and has been shown to be more powerful to detect changes in moderately
abundant lineages. Bray-Curtis distance (Beals 1984), on the other hand, does
not take into account the phylogenetic relationship among OTUs, and quantifies
the dissimilarity between two samples on the basis of the OTU counts only.
It is powerful to detect phylogenetically non-related changes.

One inherent problem with the ‘distance-to-kernel’ approach is the choice of
distance measures. Though the above choice of distance measures seems reasonable
in practice, it is not clear whether it constitutes the optimal combination to include in
the omnibus test. Including too many biologically irrelevant distance measures will
reduce the statistical power due to multiple testing while too few distance measures
may miss relevant microbiome associations. Moreover, the ‘flexibility’ of choosing
distance measures opens up the possibility of p-value hacking, where the ‘best’
p-value is reported after trying out different combinations of distance measures.

Here we circumvent the difficulty of choosing an optimal combination of
distance measures by inventing a new phylogeny-based and fully parameterized
kernel function. The kernel function is defined based on the OTU abundances and
the phylogenetic tree, and are capable of detecting a broad range of microbiome
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changes. Microbiome change can occur in many forms. The change could be in the
abundant, moderately abundant or rare lineages at different phylogenetic depth. For
example, obesity has been associated with the change in the bacterial phyla, which
are high up on the phylogenetic tree, while other diseases or traits may affect a much
deeper level such as the genus level (Martiny et al. 2015). Moreover, the change can
be highly nonlinear. Through the use of three parameters, the new kernel can capture
microbiome effects in bacterial lineages of different abundance levels and different
phylogenetic depths, and allows modeling a wide range of nonlinear relationships.
Each parameter has a nice biological interpretation and, by tuning the parameter, we
can gain insights about how the microbiome interacts with the environment.

We demonstrated the performance of the phylogeny-based kernel using KM-
based association test. We show that the omnibus test based on our new kernel
outperforms MiRKAT based on traditional distance-converted kernels. We finally
applied the phylogeny-based kernel to a real gut microbiome data from a diet-
microbiome association study. We identified more nutrients associated with the gut
microbiome using the phylogeny-based kernels.

2 Methods

In this paper, we directly define a three-parameter kernel function based on the OTU
abundance data and the phylogenetic tree among OTUs. Before introducing the new
kernel, we firstly define a phylogeny-induced correlation structure among OTUs,
which is based on the observation that closely related OTUs usually have similar
biological characteristics, and their traits tend to be correlated with the correlation
depending on the divergence time between the OTUs.

2.1 Phylogeny-Induced Correlation Structure Among OTUs

Assume we have p OTUs on a phylogenetic tree, we define the trait correlation
between OTU i and j using the following model, which is a direct extension of the
trait evolution model by Martin and Hansen (1997):

Cij.�; �/ D e��M�
ij ; i; j D 1; : : : ; p;

where M D .Mij/ is the p 
 p matrix of patristic distances between OTUs, i.e.,
the length of the shortest path linking the OTUs on the tree. The parameter � 2

Œ0;1/ characterizes the evolutionary rate. If � D 0, there is no evolution at all
since Cij D 1;8i; j and all traits are identical. While � ! 1, the traits evolve
so fast that there is no correlation between traits. From a statistical perspective, �
controls the depth of phylogenetic grouping with a large � value grouping OTUs at
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Fig. 1 The relationship between M (X axis) and C(�,� ) (Y axis) with �=2 and �=2�2; 2�1; : : : ; 212

(numbers on top). Blue and red lines represent species level (3%) and family level (10%)
divergence respectively

a lower phylogenetic depth. The phylogenetic grouping is very similar in concept
to taxonomic grouping, where OTUs from various taxonomic ranks (e.g. phylum,
family, genus) are grouped. Thus by varying �, we can achieve various phylogenetic
resolutions by grouping OTUs at different phylogenetic depths. When � ! 1,
we have the finest OTU-level resolution. Compared to the trait evolution model by
Martin and Hansen (1997), we have an extra parameter � , which controls the decay
rate of the correlation with respect to the patristic distance. The effect can be best
seen from Figs. 1 and 2, where we set � D 2 and 16 respectively and plot the
correlation coefficients Cij as a function of the patristic distances Mij. When �D2,
the correlation decays slowly with the patristic distances, and the grouping is ‘soft’
meaning no clear boundary as for where the grouping takes place. When �D16,
the correlation drops abruptly from (nearly) 1 to (nearly) 0 at a certain distance
threshold depending on �, and the grouping is ‘hard’, where OTUs with patristic
distances less than a threshold are grouped together. Therefore, by varying � , we
can achieve soft and hard grouping of the OTUs, making the model more flexible.
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Fig. 2 The relationship between M (X axis) and C(�,� ) (Y axis) with �=16 and
�=162; 162; : : : ; 1616 (numbers on top). Blue and red lines represent species level (3%) and family
level (10%) divergence respectively

2.2 A Phylogeny-Based Kernel for Microbiome Data

With the phylogeny-induced correlation structure, we next define the phylogeny-
based kernel function. Let z D .z1; : : : ; zn/

T , where zi D .zi1; : : : ; zip/
T denotes

observed (normalized) abundance vector for the p OTUs from ith sample. Then we
define the three-parameter phylogeny-based kernel function as

Kphy.zi; zjI �; �; �/ D f.zi; �/
TC.�; �/f.zj; �/;

where f.zi; �/ D .f .zi1; �/; : : : ; f .zip; �//
T , f denotes a transformation function with

parameter � . With some abuse of notation, we also denote Kphy.�; �; �/ as the kernel
matrix evaluated at the data points z.

Remark 1 The OTU abundance data has a very skewed distribution, i.e., a few
highly abundant OTUs with a large number of low-abundance and rare OTUs. The
OTU data also contain excessive zeros, which makes the modeling very difficult.
To improve the modeling capability of the kernel, we propose a power transform
on zi:
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f .zij; �/ D

(
z�ij zij ¤ 0

0 zij D 0;

j D 1; : : : ; p and � is a constant .0 � � � 2/. The above transformation is similar
to the Box-Cox transformation and can approximate a wide range of nonlinear
functions including the log function by the parameter � . The parameter � also
controls the weights on OTUs of different abundance levels. When � is large, the
effects of abundant OTUs will dominate. As � becomes smaller, these less abundant
OTUs will contribute more weights. When � D 0, the abundance data is reduced
to presence/absence data. Since the majority of the OTUs are low-abundance/rare,
small � favors these OTUs. Thus � is designed to improve the efficiency of the
proposed kernel in capturing microbiome effects from OTU lineages of different
abundance levels. Note that the effect of � is very similar to the ˛ parameter
in generalized UniFrac distance (Chen et al. 2012) and it also has some feature
weighting/selection function (Wu et al. 2016).

Remark 2 The derivation of the phylogeny-based kernel function can be best
understood based on a generalized mixed effects model

g.E.yi// D ˇ0 C f.zi; �/
Tˇ;

where g.:/ is a known link function, ˇ0 is the intercept and ˇ D .ˇ1; � � � ; ˇp/
T are

random effects for the p OTUs following a multivariate normal distribution

ˇ � MVN.0; �2C.�; �//;

where �2 is variance component, and C.�; �// is the phylogeny-induced correlation
matrix. Thus we incorporate the phylogenetic tree information through a prior MVN
distribution on the OTU effects. The model above is equivalent to

g.E.yi// D ˇ0 C hi; h D .h1; � � � ; hp/
T � MVN.0; �2Kphy.�; �; �//;

where h are aggregated OTU effects and Kphy is the phylogeny-based kernel matrix
evaluated on the data points.

Remark 3 There exists some connection between the proposed kernel and existing
kernels. For example, when � ! 1 and � D 1, it is easily seen that the phylogeny-
based kernel becomes regular kernel Kregular D zzT .

2.3 Kernel-Machine (KM) Association Test

To demonstrate the performance of the proposed kernel, we apply our kernel to
KM-based association test, which was implemented in MiRKAT (Zhao et al. 2015).
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KM-based association tests share a common framework, and are based on a score
test, which compares similarity in the features to similarity in the outcome.

We first review KM-based linear and logistic regression framework briefly (Liu
et al. 2007, 2008). Specifically, for subject i .i D 1; : : : ; n/, we denote xi a q 
 1

vector of covariates and zi a p
1 vector of OTU abundances. We assume an intercept
is included in xi. Then for a normally distributed continuous outcome variable yi, the
outcome yi depends on xi and zi through the following linear model

yi D xT
i ˇ C h.zi/C "i; (1)

and, for a dichotomous outcome variable (e.g., y D 1 or 0), we use the logistic
model

logit.P.yi D 1// D xT
i ˇ C h.zi/; (2)

where ˇ is a q 
 1 vector of regression coefficients, h.zi/ is a smooth function
from a functional space and the errors "i are assumed to be independent and follow
N.0; 
2/. Model (1) and (2) models covariate effects parametrically and the OTU
effects non-parametrically. One popular choice of the functional space is the RKHS
(Reproducible Kernel Hilbert Space), which is specified using a known kernel
function K.�; �/ (Cristianini and Shawe-Taylor 2000). From Mercer’s theorem, under
some regularity conditions, a kernel function K.�; �/ implicitly specifies a unique
function space spanned by a particular set of orthogonal basis functions (features)
f�j.z/gJ

jD1. In other words, any h.z/ 2 HK can be represented using a set of bases

as h.z/ D
PJ

jD1 !j�j.z/ D �.z/T! (the primal representation), where ! is a vector
of coefficients. Equivalently, h.z/ can also be represented using the kernel function
K.�; �/ as h.z/ D

PL
lD1 ˛lK.z�

l ; z/ (the dual representation), for some integer L, some
constants ˛i and some fz�

1 ; : : : ; z
�
Lg 2 Rp.

2.3.1 Single Kernel-Based KM Association Test

Given � , � and � , under model (1) and (2) for microbiome data, when only a single
kernel is considered, we estimate the coefficients ˇ and h.z/ by maximizing the
following penalized log-likelihood:

pl.h; ˇ/ D

nX

iD1

log L.h; ˇI yi; xi; zi/ �
1

2
�jjhjj2HKphy.�;�;�/

D

nX

iD1

log L.h; ˇI yi; xi; zi/ �
1

2
�˛TKphy.�; �; �/˛:
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Through an important relationship between KM regression and mixed models
(Liu et al. 2007, 2008; Gianola and Van Kaam 2008), h.z/ can be viewed as a
subject-specific random effect that follows a MVN distribution with mean 0 and
variance �2Kphy.�; �; �/ (See Remark 2). Then, testing for an association between
the microbiome composition and the outcome is equivalent to testing the null
hypothesis that H0 W �2 D 0. Under the mixed-model framework, this can be done
with a standard variance-component score test (Lin 1997). In particular, the score
statistic is computed as

Q D
1

2�
.y � Oy0/

TKphy.�; �; �/.y � Oy0/; (3)

where Oy0 is the fitted mean of y under H0 and � is the dispersion parameter. For
linear KM regression, � D O
2, the estimated error variance under the null model.
For logistic KM regression, � D 1.

Under the null hypothesis, Q asymptotically follows a weighted mixture of �2

distribution. This can be best seen for the continuous-outcome case, where

y D Xˇ C "; " � MVN.0; �I/:

Denote P0 D I�X.XTX/�1XT the projection matrix into the residual space, we have

Q D
1

2�
"TP0Kphy.�; �; �/P0":

Suppose �i is the ith eigenvalue of P0Kphy.�; �; �/P0, then asymptotically

Q �

nX

iD1

�i�
2
i ;

given a consistent estimator of �. Similar results have also been derived for the
binary-outcome case (Liu et al. 2008). P value can thus be analytically obtained
through higher-order moment matching (Liu et al. 2009) or by the exact methods
(Davies 1980) with possible small-sample adjustments via resampling (Lee et al.
2012). However, the comparatively small sample sizes for many microbiome studies
and the complexity of the phylogeny-based kernels considered here lead to very
conservative tests. Thus, MiRKAT (Zhao et al. 2015) further considers the use of
new, alternative small-sample adjustments for both continuous and dichotomous
traits (Chen et al. 2016).
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2.3.2 Multiple Kernel-Based Optimal KM Association Test

As noted, although KM association test is valid even if a poor kernel is chosen,
better kernel choices can lead to improved power. The optimal MiRKAT method
(Zhao et al. 2015) extends the single kernel-based MiRKAT to simultaneously
consider multiple kernels. The basic idea is to combine the strength of different
kernels to detect a wide range of microbiome changes since each kernel is only
powered to detect a specific type of microbiome change. The optimal MiRKAT
performs testing with each individual kernel, obtains the p value for each of the tests,
selects the minimum p value as the test statistic, and then evaluates the significance
via a residual permutation approach. The purpose of the residual permutation is
to derive the empirical null distribution of the test statistic. Specifically, we first
obtain the residuals under the null model by fitting a linear and a logistic regression
model for continuous and binary outcomes, respectively. Then outcomes under the
null are generated by either permuting the residuals for continuous outcomes or
using Fisher’s non-central hypergeometric distribution to generate 1/0 values for
binary outcomes. We refer the readers to Zhao et al. (2015) for more technical
details. In this paper, we use the similar strategy to simultaneously consider multiple
phylogeny-based kernels (different values of � , � and � ). We label our method
as optimal phylogenetic tree-kernel association test (PTKAT). We search the best
combination of .�; �; �/ over a pre-defined grid. The grid was chosen to strike a
balance between power and computational efficiency.

3 Simulation Studies

In this section, we carry out various simulations to evaluate the performance of
our proposed phylogeny-based kernel in the context of testing the association
between the microbiome composition and an outcome. We compare our method
(PTKAT) to the optimal MiRKAT method, where four distance-converted kernels,
the weighted and unweighted UniFrac kernels, the Bray-Curtis kernel and the
generalized UniFrac kernel with ˛ value 0.5, are selected as the candidate kernels for
the optimal MiRKAT method. For PTKAT, we use a grid of values from f164k�2jk D

�7;�6; � � � ; 0g
S

f162k�2jk D 1; 2; � � � ; 12g for parameter �, f0:001; 0:1; 0:5; 1; 2g

for parameter � , and f2; 16g for parameter � . We let the outcome (binary or
continuous) depend on the abundance of a cluster of OTUs with different abundance
levels to reflect the clustered signals usually observed in microbiome data. Both
linear and nonlinear OTU effects are considered in the simulations. Performance
is evaluated with the type I error and the statistical power of detecting significant
associations at an ˛ level of 0.05.
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3.1 Simulation Details

For all simulation settings, we simulate n D 100 samples for continuous outcomes
and 50 cases and 50 controls for binary outcomes. We base our simulations on a
real microbiome data set from a study of the human upper respiratory tract (Chen
and Li 2013), which consists of an abundance table of 778 OTUs, together with a
phylogenetic tree. We fit a Dirichlet-multinomial model (DMM) to the OTU counts
and estimate the mean proportion vector and the dispersion parameter. We then
simulate the counts using DMM with the estimated parameter values and a total read
count drawn from a negative binomial distribution (depth = 5000 and size = 25). We
next normalize the OTU counts into proportion data z, which has a unit sum for each
sample.

We partition the 778 OTUs into 10 clusters using the partitioning-around-
medoids (PAM) algorithm based on the patristic distances between OTUs. We
pick three representative clusters with minimum, medium and maximum abundance
(denoted as level 1 to level 3) and generate the outcomes based on the OTU
abundances within the cluster. Given an OTU cluster (let J contain the OTU indices
for the cluster), we consider the following specific models:

Gaussian outcome case
Linear OTU effects:

yi D scale.
X

k2J
zik/bcausal C "i; i D 1; : : : ; n;

Non-linear OTU effects:

yi D scale.
X

k2J
z�ik/bcausal C "i; i D 1; : : : ; n;

where scale.:/ is the scaling function to standardize the data into mean 0 and
variance 1 and � D 0:001. The coefficients for OTU effects bcausal are drawn from
N.0; 
2b / and the random errors "i are drawn from N.0; 1/. The variance parameter

2b characterizes the effect size and we let 
2b vary from 0 to 1 with a step size 1/6 to
create a power curve.

Binary outcome case
Linear OTU effects:

log.
�i

1 � �i
/ D scale.

X

k2J
zik/bcausal; i D 1; : : : ; n;

Non-linear OTU effects:

log.
�i

1 � �i
/ D scale.

X

k2J
z�ik/bcausal; i D 1; : : : ; n;



228 J. Xiao and J. Chen

where �i D P.yi D 1jzi; bcausal/ and � D 0:001. The coefficients for OTU effects
bcausal are drawn from N.0; 
2b / as in the Gaussian outcome. We vary 
2b from 0
to 2 with a step size 1/3 to create the power curve. All the simulation settings are
replicated 1000 times.

Remark 4 For the nonlinear case, the small � value converts the abundance data into
nearly binary data (presence/absence). It represents an extreme case of nonlinearity,
where the abundance does not matter. The nonlinear case corresponds to the
biological scenario where the species richness (the number of OTUs) within a
high-level taxonomic group such as the phylum Firmicutes is associated with the
outcome.

3.2 Results on Simulated Data

As expected, from Table 1, both PTKAT and MiRKAT control the type I error at the
nominal level of 0.01, 0.05 and 0.10 under the null (
2b D 0) and the power increases
with the effect size. The results for Gaussian and binary outcomes are very similar
(Figs. 3 and 4 vs. Figs. 5 and 6). For linear OTU effects (Figs. 3 and 5), PTKAT
and MiRKAT do not dominate each other. PTKAT has a better performance when
the associated cluster has low abundance while MiRKAT performs better when the
associated cluster is more abundant. Overall, the power difference is very moderate.
For nonlinear effects (Fig. 4 and 6), the trend is opposite. MiRKAT is slightly
more powerful than PTKAT when the associated cluster is less abundant. However,
PTKAT becomes much more powerful than MiRKAT when the cluster becomes
more abundant, and the power difference could be up to 50%. The suboptimal
performance of MiRKAT under such scenarios is due to the insufficient coverage
of the four distance-converted kernels used in the omnibus test. In contrast, PTKAT
is more robust than MiRKAT, and the three-parameter kernel covers a wider range
of microbiome changes, explaining the huge power gain in the nonlinear scenarios.

4 Application to a Real Data Set

Finally, we demonstrate the performance of phylogeny-based kernel by the analysis
of a real microbiome data set from a study of long-term dietary effects on the
human gut microbiome (Wu et al. 2011a). Diet strongly affects human health,
partly by modulating gut microbiome composition. In this cross-sectional study,
98 healthy volunteers were enrolled, and habitual long-term diet information was
collected using a food frequency questionnaire. The intake amounts of 214 nutrients
were calculated based on questionnaires and further standardized by total caloric
intake. Stool samples were collected, from which DNA was extracted, and the
V1–V3 region of the 16S rRNA gene was sequenced using 454 pyrosequencing.



Phylogeny-Based Kernels with Application to Microbiome Association Studies 229

Table 1 Simulation results for empirical type-I error

Response type Model Abundance level Methods Level 0.01 Level 0.05 Level 0.10

Gaussian Linear Low PTKAT 0:002 0:047 0:108

MiRKAT 0:010 0:049 0:110

Medium PTKAT 0:001 0:049 0:101

MiRKAT 0:009 0:054 0:100

High PTKAT 0 0:045 0:092

MiRKAT 0:009 0:043 0:101

Gaussian Nonlinear Low PTKAT 0 0:044 0:083

MiRKAT 0:009 0:057 0:110

Medium PTKAT 0 0:051 0:102

MiRKAT 0:002 0:041 0:090

High PTKAT 0:002 0:055 0:105

MiRKAT 0:005 0:042 0:099

Binomial Linear Low PTKAT 0 0:037 0:086

MiRKAT 0:011 0:042 0:098

Medium PTKAT 0 0:046 0:109

MiRKAT 0:010 0:045 0:103

High PTKAT 0 0:058 0:108

MiRKAT 0:005 0:047 0:105

Binomial Nonlinear Low PTKAT 0 0:038 0:080

MiRKAT 0:006 0:042 0:081

Medium PTKAT 0 0:041 0:104

MiRKAT 0:013 0:051 0:086

High PTKAT 0:001 0:036 0:090

MiRKAT 0:015 0:053 0:104

16S sequence tags were denoised before being analyzed by the QIIME pipeline
(Caporaso et al. 2010) with the default parameter settings, yielding 3071 OTUs
after discarding the singleton OTUs. A phylogenetic tree among these OTUs was
constructed using the FastTree algorithm.

We test for the association of these 214 nutrients with the gut microbiome
composition to demonstrate the performance of PTKAT. We exclude very rare
OTUs, which occur in less than 10% of the samples. We normalize the OTUs
count data into proportions before running the analysis. The same parameter setting
is used for PTKAT and MiRKAT as in the simulation study. Figure 7 plots
the number of significant nutrients at different p-value cutoffs (raw p-value) for
PTKAT and MiRKAT. Overall, PTKAT identifies more nutrients than MiRKAT
at various significance levels. We finally apply Benjamini-Hochberg (BH) based
false discovery rate (FDR) control to correct for multiple testing (Benjamini and
Hochberg 1995). At an FDR of 15%, our procedure identifies 15 nutrients while
MiRKAT does not identify any nutrient at this cutoff. Most of the identified nutrients
are from the category ‘fat’ and the effect of dietary fat on the gut microbiome has
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Fig. 3 Power curves for Gaussian outcome case with linear OTU effects. The cluster becomes
more abundant from level 1 to level 3
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Fig. 4 Power curves for Gaussian outcome case with nonlinear OTU effects. The cluster becomes
more abundant from level 1 to level 3
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Fig. 5 Power curves for binary outcome case with linear OTU effects. The cluster becomes more
abundant from level 1 to level 3
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Fig. 6 Power curves for binary outcome case with nonlinear OTU effects. The cluster becomes
more abundant from level 1 to level 3
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Fig. 7 Results from testing the associations of 214 micronutrients with the microbiome compo-
sition. The nutrient intake values are standardized against caloric intake and dichotomized into
‘high’ and ‘low’ categories

been well documented (Turnbaugh et al. 2006). Interestingly, alcohol has also been
detected to be associated with the gut microbiome, confirming previous findings
(Bull-Otterson et al. 2013) (Table 2).

5 Discussion

We proposed and studied a new three-parameter phylogeny-based kernel for the
analysis of microbiome data. Compared with the previous kernels for microbiome
data, the new phylogeny-based kernel incorporates the phylogenetic tree infor-
mation explicitly without the need for distance-to-kernel conversion. Through the
specification of three ecologically motivated parameters, the proposed kernel can
capture a wide range of complex, nonlinear relationship with environment or disease
at various phylogenetic depths. We demonstrated the performance of the proposed
kernel in the context of kernel-machine association test. Simulations as well as a
real data application revealed the robustness of the proposed kernel.
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Table 2 Nutrients identified by PTKAT and MiRKAT with an FDR of 15%

Nutrient ID Nutrient name PTKAT MiRKAT

tfat Total fat 0:150 0:546

poly Polyunsaturated fat 0:150 0:307

chol Cholesterol 0:150 0:307

alco Alcohol 0:150 0:307

f225 Docosapentaenoic fatty acid (DPA) 0:150 0:686

trn02 Total trans fat 0:150 0:307

cys Cystine 0:150 0:307

germa Added germ from wheats 0:150 0:392

pfn602 Omega 6 0:150 0:392

n602 Omega 6, no gamma 0:150 0:392

pfa183n3c02 Alpha linolenic fatty acid 0:150 0:307

ag18302 Alpha + Gamma linolenic acid 0:150 0:307

pfn602_wo Omega 6 w/o suppl. 0:150 0:307

n602_wo Omega 6, no gamma 18:3 0:150 0:307

aspart Aspartame 0:150 0:307

The ‘PTKAT’ and ‘MiRKAT’ columns show the BH procedure (Benjamini and Hochberg 1995)
adjusted p-values for PTKAT and MiRKAT, respectively

There is concern that the phylogenetic tree may not be useful or the phylogenet-
ically clustered signal is a very strong assumption. This can happen when the tree
constructed based on 16S sequences does not reflect the truly evolutionary relation-
ship between species or the tree is contaminated with heavy noises. Moreover, it is
also likely that disease/environment may only affect phylogenetically non-related
species. Therefore, the tree information should be taken cautiously. Interestingly,
the proposed kernel can be reduced to a regular tree-independent kernel if the tuning
parameter � ! 1, which adds to the robustness of the proposed kernel.

The proposed kernel only depends on a pairwise distance matrix between OTUs.
Thus the tree construction step is not necessary and the distance can be defined
directly based on the divergence of OTU sequences. The proposed kernel can also be
used in other kernel methods for microbiome data such as kernel-based prediction,
dimension reduction, clustering, and canonical correlation analysis (Akaho 2001;
Hoffmann 2007; Ober et al. 2011; Scholkopf et al. 1999).

There is still room for improvement for the proposed kernel. The current
implementation focuses on the overall similarity as captured by the kernel, and
it is expected to perform optimally when the signal is dense. However, when
the signal is sparse, the described kernel approach may not work well due to
the signal dilution of irrelevant OTUs when constructing the kernels. In such
case, it may be more powerful by performing variable selection in the kernel
framework or performing association tests for all the nodes on the tree, coupled by
multiple testing correction. KerNel Iterative Feature Extraction (KNIFE) provides a
general framework for incorporating variable selection into kernel machine methods
(He et al. 2016). Allowing multiple phylogenetic depths in the kernel is also
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Fig. 8 Power curves for Gaussian outcome case with nonlinear OTU effects. The cluster becomes
more abundant from level 1 to level 3. The combined test uses the kernels from PTKAT and
MiRKAT

an interesting topic. The parameter � in the proposed kernel governs a global
phylogenetic depth. However, the environment and disease may affect different
bacterial lineages at different phylogenetic depths. Thus it may be beneficial to
allow different �’s for different bacterial lineages. Finally, it is possible to combine
the proposed phylogeny kernels and the traditional kernels used by MiRKAT to
further increase the robustness of the test since PTKAT does not dominate MiRKAT
in the simulations. We have conducted additional simulations by combining both
kernels. Figure 8 shows an example of the combined test with Gaussian outcome
and nonlinear OTU effects. This strategy does make the test more robust.
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Accounting for Differential Error in
Time-to-Event Analyses Using Imperfect
Electronic Health Record-Derived Endpoints

Rebecca A. Hubbard, Joanna Harton, Weiwei Zhu, Le Wang,
and Jessica Chubak

1 Introduction

Electronic health records (EHR) have great potential as a data source for investi-
gating questions about use and outcomes of clinical interventions in a real-world
setting. However, poor data quality, including missing and erroneous data elements,
constitutes a major challenge to valid inference based on this data source. Because
EHR data are collected for clinical and administrative rather than research purposes,
data elements that are considered low priority from a clinical perspective may be
recorded inconsistently. For instance, information on behavioral risk factors such as
smoking or alcohol consumption may be inconsistently assessed and recorded by
medical providers. This inconsistency can lead to substantial under estimation of
the prevalence of these risk factors and differential misclassification if risk factors
are more likely to be assessed for some patients than for others. Addressing the
limitations of erroneous and inconsistent data is a necessary first step to realizing
the promise of EHR data for research.

EHR provide a uniquely valuable data source for studying cancer survivors
because they provide information on cancer recurrence, an important outcome that
is notably not available in population-based cancer registry data or in diagnosis
codes. Aging of the population coupled with improvements in early detection and
cancer treatment have led to a steady increase in the population of patients with a
personal history of cancer. As a result, the population of cancer survivors included
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over 15.5 million individuals as of 2016 and is anticipated to grow to over 26
million individuals by 2040 (Bluethmann et al. 2016). Understanding risk factors
for cancer recurrence and mortality in this population is therefore of increasing
importance. However, data sources are lacking to support such studies. Population-
based cancer registries do not collect data on cancer recurrence. As a result, a
number of attempts have been made to use medical claims to identify recurrences
(Earle et al. 2002; Lamont et al. 2006; Chubak et al. 2012; Hassett et al. 2014).
However, validation studies have demonstrated that in many cases classification
accuracy of these approaches is fair or poor (Hassett et al. 2014; Warren et al.
2016). More detailed information about utilization and results of diagnostic tests as
well as treatments for cancer available in the EHR have the potential to improve
classification accuracy of algorithms for identifying cancer recurrence, but are
unlikely to completely eliminate error and misclassification.

The ability to extract dates of event occurrence from EHR would increase the
clinical relevance of research studies conducted in this context. For instance, in the
case of cancer recurrence, knowledge of the timing of recurrence is important for
planning appropriate surveillance schedules and providing patients with accurate
information on prognosis. Indeed, as survival rates have improved, the expected
length of disease-free survival has emerged as a key measure to support informed
decision-making (Warren and Yabroff 2015). Despite this, the majority of studies
that have investigated cancer recurrence using EHR data have focused on defining
a binary recurrence outcome, with little attention paid to the precise timing of
recurrence. Motivated by an EHR-based algorithm for second breast cancers, we
previously investigated the accuracy of a cancer recurrence date derived from an
EHR-based measure (Chubak et al. 2015). In this prior study, we found that the
EHR-based algorithm could identify the date of breast cancer recurrence within 60
days of the true date in 82% of cases. However, for a small subset of patients, the
EHR-derived date differed from the true date by a year or more.

Estimates of survival functions and hazard ratios are biased in the presence of
imperfect ascertainment of a time-to-event outcome (Snapinn 1998; Meier et al.
2003; Zee and Xie 2015). In the case of non-differential outcome misclassification,
association estimates tend to be biased towards the null (Magder and Hughes
1997; Neuhaus 1999). When information on the sensitivity and specificity of the
imperfect time-to-event outcomes is available, this can be incorporated into the
model to obtain unbiased estimates (Richardson and Hughes 2000; Meier et al.
2003). Alternatively, a validation subsample can be included in the analysis along
with a larger sample for whom only the imperfect outcome is available in order to
obtain bias-corrected estimates (Zee and Xie 2015). In the context of EHR-based
studies, obtaining gold standard outcome data through manual review of medical
records can be extremely costly and time consuming. It is therefore desirable to
conduct analyses using results of existing validation studies.

In this context of event times assigned on the basis of EHR, error in the outcome
measure takes two forms. First, an error may be made in classifying an individual as
to whether an event has occurred during follow-up. Second, among those classified
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as having experienced an event, error may exist in the precise timing of the event.
In our previous analysis, we conducted simulation studies to quantify the magnitude
of bias arising in a Cox proportional hazards regression model using such an
imperfect time-to-event measure as the outcome and found that bias in hazard ratios
was minimal unless misclassification of event status was differential with respect
to exposure status (Chubak et al. 2015). Unfortunately, in the context of EHR-
based studies, differential error is not uncommon because patients may differ in
their interactions with the healthcare system, leading to more accurate or precise
outcome ascertainment according to patient characteristics.

As illustrated by the case of error in ascertainment of time to cancer recurrence,
error in time-to-event outcomes derived from the EHR differs from cases previously
investigated in the biostatistical literature in several important respects. First, the
structure of the error consists of not only misclassification as to whether an event
occurred but also error in the precise timing of the event. Second, information
on the operating characteristics of an EHR-based algorithm for identifying the
outcome of interest is typically only available at the person-level. That is, the
standard approach to validation of EHR-based algorithms computes sensitivity and
specificity or positive and negative predictive values for the algorithm applied to all
EHR for a given individual relative to their true status as ever having experienced
an event. This person-level validation does not provide information at the level of
an individual follow-up visit or suspected event which is required by previously
proposed approaches (Snapinn 1998; Meier et al. 2003). Finally, while past work
has noted that the direction of bias is not uniformly toward or away from the null in
the case of differential measurement error, the case of differential error has generally
received less attention than that of non-differential error. However, in the case of
EHR-derived outcomes, where the health status and healthcare seeking behavior of
the individual will strongly influence the type and timing of information populated
in their EHR, differential error may be the norm. This particularly challenging case
thus warrants further investigation.

The current study was motivated by the need to identify statistical methods
that can correct for bias in hazard ratio estimates induced by misclassification and
measurement error in EHR-derived time-to-event outcomes, with a special focus
on the challenge posed by differential measurement error. Motivated by the study of
second breast cancer events described above, we investigated alternative approaches
to account for this error. We first discuss naive and adjusted approaches to estimating
associations for a mismeasured time-to-event outcome derived from the EHR and
then describe a simulation study designed to investigate the ability of existing
approaches to correct bias arising in the case of differential error (Sect. 2). In Sect. 3,
we present the results of our simulation studies. Finally, in Sect. 4, we conclude
with general considerations for analyses of EHR-derived time-to-event endpoints
and discuss areas for future research.
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2 Methods

We conceive of EHR data as a set of records documenting encounters between a
patient and a given healthcare system. Each record consists of a date, procedure
and diagnosis codes, free text notes describing the encounter, and, when relevant,
additional information describing the encounter such as test results or other findings.
Because the timing of these encounters varies in response to a patient’s healthcare
needs and healthcare seeking behavior and is not fixed according to a study
protocol, it is tempting to conceive of EHR data as representing a continuous time
representation of a patient’s health. However, despite the unscheduled nature of
encounters, each represents a discrete encounter, with information about patient
health unavailable in the elapsed periods between encounters. Data of this structure
more closely reflect a discretely sampled process than one that is continuously
observed and can be described using a survival model in discrete time, which
accounts for the inherent interval censoring of the observation process (Kalbfleisch
and Prentice 1980).

EHR-derived outcomes must be based on the presence or absence of a combi-
nation of codes or other pieces of information in the medical record. For instance,
Chubak et al. (2012) proposed algorithms for breast cancer recurrence that made
use of combinations of codes denoting mastectomy, radiation therapy, and diagnosis
of a secondary malignant neoplasm. Each of these events will occur at a different
time and all will lag behind the biological time of cancer recurrence making it
impossible to precisely pinpoint the date of cancer recurrence. It may be preferable
to aggregate data across a fixed time period, such as a week or month, resulting in
a discrete time process where time is measured in units corresponding to the level
of aggregation. Within each interval the event of interest is defined based on the
presence or absence of the corresponding codes or other EHR data. For instance, in
the case of breast cancer recurrence we could define the date of recurrence as the
first month in which the necessary combination of codes is observed. An advantage
of this discrete time approach is that it provides a concrete unit of time for validation
studies to target. Rather than providing information on concordance between EHR-
derived and true event status at the person-level, this information could be reported
based on discrete windows of time. Similarly, if the operating characteristics of an
EHR algorithm are known at the person level, performance within windows of fixed
length can be calculated, subject to certain assumptions about variation in operating
characteristics over time (see Sect. 2.4). Below we describe the discrete proportional
hazards approach corresponding to this discrete-time formulation and extensions to
accommodate error in time-to-event outcomes.
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2.1 Definitions and Notation

Our data take the form fti; dig, for i D 1; : : :N, where ti is the earlier of the time
of the event of interest or a censoring time if the study ends or the participant
moves out of catchment of the EHR and di is a binary indicator taking the value
1 if the participant experienced an event while under observation and 0 otherwise.
For instance, in our breast cancer recurrence example ti represents the number of
months after a primary breast cancer diagnosis at which diagnosis or treatment
codes indicative of a second breast cancer event appear in the EHR. Censoring may
have a number of causes, but an important cause to consider in EHR-based studies
is disenrollment from the healthcare system or health insurance plan or moving
outside the catchment area of the healthcare system. It is important that information
on patient enrollment in the healthcare system is available and incorporated into
time-to-event studies in order to ensure that the apparent lack of occurrence of the
event of interest is not simply due to the fact that the patient is no longer seeking
care within the healthcare system.

We assume that ti is unobserved but that we have an imperfect proxy, to
i . We

further assume that once a subject is observed to have experienced an event, follow-
up ends. True events occurring after to

i are thus censored at to
i . The true event status,

di, is also unobserved. Instead do
i , an imperfect event status indicator, is available and

takes the value 1 if the imperfect outcome occurs before censoring and 0 otherwise.
We further assume that each subject has available a vector of covariates Xi and that
scientific interest lies in estimating the association between these covariates and the
event time. Like information on outcome status, time-varying covariate status can be
updated within each discrete time interval based on presence or absence of records
indicative of a particular condition or exposure.

2.2 Discrete Proportional Hazards Model

The discrete proportional hazards model (Kalbfleisch and Prentice 1980) is appro-
priate for outcomes that are assessed at discrete, equally spaced time points such as
those resulting from discretization of follow-up time as described above. Let 
0 D

f�01; �02; : : :; �0Tg represent the baseline hazard at time 1 to T . The baseline hazard
is allowed to vary flexibly over time, with no constraints placed on �0k. For subject
i with covariates Xi, the discrete hazard at time j is given by 1� .1��0j/

exp.X0

i ˇ/. We
write the likelihood as

f .ti; diI Xi;ˇ;
0/ D

ti�1Y

jD1

n
.1 � �0j/

exp.X0

i ˇ/
o



n
1 � .1 � �0ti/

exp.X0

i ˇ/
odi



n
.1 � �0ti/

exp.X0

i ˇ/
o.1�di/

:
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This represents the product of ti � 1 contributions to the likelihood at time points
at which no event occurred followed by a term representing the final likelihood
contribution for subjects who experience the event and a term representing the
final likelihood contribution for censored subjects. Analogous to Cox proportional
hazards regression, in many cases 
0 can be considered a nuisance parameter and
the primary target of inference will be ˇ which represents the association between
covariates and the hazard of the event of interest. This model corresponds to a
generalized linear model for Bernoulli distributed data with complementary log-
log link function. Estimates can be obtained using standard software for generalized
linear models.

2.3 Adjustment for Error in Event Times

In the context of EHR data, the true event times are unobserved and we instead
attempt to make inference about the relationship between covariates and the out-
come of interest by applying an algorithm to available EHR data. to

i can be obtained
by applying the algorithm within each discrete time period and represents the first
time period in which the algorithm returns a positive result. For instance, using
an algorithm for colorectal cancer recurrence described by Warren et al. (2016),
we might divide time after treatment for a primary colorectal cancer diagnosis into
months and within each month look for codes for chemotherapy, radiation therapy,
or colorectal cancer-directed surgery. In this example, to

i represents the first month
in which such codes appear in a patient’s EHR, and do

i represents a binary indicator
of whether such codes were ever observed over the course of available follow-up
data for a patient or were never observed.

One approach to the analysis of such data is to reformulate the discrete
proportional hazards likelihood to account for the possibility that, within each
discrete time period, the outcome of interest may have been misclassified. We briefly
describe such an adjusted discrete proportional hazards model, originally proposed
by Meier et al. (2003). Let � represent the probability that the algorithm correctly
classifies an interval where an event truly has occurred (i.e., sensitivity) and �
represent the probability that the algorithm correctly classifies an interval where
there truly has been no event (i.e., specificity). It is important to note that � and �
correspond to the operating characteristics of the EHR-based approach within each
discrete interval and not with respect to correct classification of an individual over
the complete follow-up period, as is typically reported in EHR-based validation
studies.

Below we illustrate a sample observation pattern for a participant in a study of
breast cancer recurrence who experienced a recurrence ti months after her primary
cancer diagnosis and whose EHR data reflected a recurrence based on a pre-existing
algorithm to

i months after the primary diagnosis.
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1; 2; � � � ; ti � 1„ ƒ‚ …
ti�1 true negatives

;

True
recurrence‚…„ƒ

ti ; � � � ; to
i � 1

„ ƒ‚ …
toi �ti false negatives

;

EHR � based
recurrence‚…„ƒ

to
i

Note that this observation pattern corresponds to ti � 1 true negative observations
followed by to

i � ti false negatives and a single true positive observation at time to
i .

In terms of � and �, the probability of this pattern of observations can be expressed
as � ti�1.1 � �/t

o
i �ti� .

More generally, we can express the probability of observed event times and
statuses as functions of � and � as

f .to
i ; d

o
i jti D to

i ; di D 0; �; �/ D � toi �1�1�do
i .1 � �/d

o
i
:

D �i (1)

f .to
i ; d

o
i jti � to

i ; di D 1; �; �/ D � ti�1.1 � �/t
o
i �ti.1 � �/1�do

i �do
i
:

D �iti (2)

The observed data likelihood can then be obtained by marginalizing over all
possible combinations of true event time and status,

f .to
i ; d

o
i I Xi;ˇ;
0; �; �/ D

2

4
toiY

jD1

.1 � �0j/
exp.X0

i ˇ/
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5�i C
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n
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o



n
1 � .1 � �0k/

exp.X0

i ˇ/
o
�ik

3

5 : (3)

By numerically maximizing this observed data likelihood function with respect to ˇ

and 
0 we can obtain maximum likelihood estimates that correctly account for the
imperfect accuracy of � and �.

2.4 Incorporating Person-Level Validation Data

If a discrete time approach were considered prior to undertaking a validation study
for a proposed EHR algorithm, it would be possible to directly obtain estimates of
� and � by conducting chart review to obtain gold-standard outcome information
and comparing this against algorithm classification within each discrete time-period.
However, given the high cost and labor intensivity of manual chart review, it is often
the case that EHR-based studies rely on prior validation of a given algorithm in
which case it is likely that sensitivity and specificity will only be available across a
longer period of time than we would prefer to use in our discrete-time model. For
instance, the motivating study by Chubak et al. (2012) validated an algorithm for
second breast cancer events comparing the algorithm applied to the complete set of
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EHR available for a given woman over her period of follow-up to her true event
status at the end of follow-up. Sensitivity and specificity over this entire follow-
up period are expected to be substantially different from sensitivity and specificity
computed within a single, relatively brief time period such as a week or month.

Information from a prior validation study available at the person-level can be
used to compute � and � under a set of fairly strong assumptions about temporal
variation in classification accuracy. Specifically, if we are willing to assume that �
and � are constant over the follow-up period we can relate these quantities to the
observed person-level sensitivity and specificity. Let OP.do D 1jd D 1/ represent a
person-level measure of sensitivity estimated in a prior validation study and OP.do D

0jd D 0/ represent the estimated person-level specificity. We assume information
on the distribution of follow-up time for cases and controls is also available. We can
obtain estimates O� and O� based on these validation results using the equations

OP.do D 1jd D 1/ D

MX

kD1

h
1 � .1 � O�/k

i
P.to D kjd D 1/ (4)

OP.do D 0jd D 0/ D

MX

kD1

O�kP.to D kjd D 0/; (5)

where M is the maximum follow-up length and P.to D kjd D 1/ and P.to D kj

d D 0/ are the distribution of follow-up time in cases and controls, respectively.
Although the complete specification of these follow-up distributions will not be
reported by a validation study, simple approximations based on the reported means
and standard deviations or medians and interquartile ranges can be used.

Note that in addition to assuming � and � constant over follow-up, this approach
assumes that, in the validation sample, individuals with di D 1 had already
experienced the event prior to the period included in the validation study. Both of
these assumptions are potentially unrealistic and could be relaxed, although this
results in more complex expressions. Specifically, if information about changes in
coding or other practices within the healthcare system are known and suggest a
particular functional form for � and � they could be replaced with time-dependent
analogues �k and �k both here and in Eqs. (1) and (2). However, with only
information on person-level sensitivity and specificity available, strong assumptions
about the functional form of these relationships will still be required in order for
�k and �k to be identifiable. We posit that in the absence of very strong prior
information about how these parameters vary over time, assuming that they remain
constant is a reasonable simplifying assumption.
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2.5 Differential Error in Event Times

In the context of EHR-based studies, we are particularly interested in the setting
where � and � may differ according to patient characteristics. Let �Z and �Z repre-
sent covariate-specific values of the discrete-time period sensitivity and specificity
and Zik represent a vector of possibly time-varying characteristics associated with
algorithm accuracy. If these quantities are known they can simply be incorporated
into Eqs. (1) and (2), and the estimation procedure is otherwise unchanged. If data
on a validation subsample is available they can be estimated using this data. For
instance, given interval-level data on true and imperfect event status, dik and do

ik,
respectively, we can use an appropriate regression framework such as

�Zik

:
D E.do

ikjZik; dik D 1/ D g�1.Z0
ik˛/

�Zik

:
D 1 � E.do

ikjZik; dik D 0/ D 1 � g�1.Z0
ik�/;

where g.:/ represents a suitable link function.
However, as discussed above, it is often the case that validation data are not

available and that a study relies on operating characteristics reported by prior
validation studies. In these cases it is unlikely that sensitivity and specificity will be
reported in suitably stratified sub-groups to encompass variation in performance of
the algorithm for outcome ascertainment across all of the many potentially relevant
patient sub-groups. In this case, the investigator must rely on adjustment using the
marginal values of � and � which will incompletely account for differential error in
outcome ascertainment. We anticipate this will be a common challenge in EHR-
based studies and therefore investigate this case in simulation studies described
below.

2.6 Simulation Study Design

Motivated by the BRAVA study of second breast cancer events (Chubak et al.
2012) we conducted a series of simulation studies to compare the performance
of alternative approaches to accounting for an imperfect time-to-event outcome,
focusing on the case of cancer recurrence derived from EHR data. We previously
developed an administrative data-derived measure for time to second breast cancer
event and compared this measure to true time of second breast cancer event based on
chart review (Chubak et al. 2015). We found that our administrative data algorithm
identified the true date of second breast cancer event with a mean error of 0
days and interquartile range of about 15 days. We used these estimates of the
magnitude of error in a time-to-event outcome in our simulation study, assuming
that these are representative of what might be expected in a similar study based
on EHR data. Parameters of the distributions of event times and censoring times
in our simulation study were also selected to produce event and censoring rates
approximately mirroring those observed in the BRAVA study.
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In our simulation studies we first evenly divided the population into exposed
and unexposed groups. We then simulated a true time-to-event (in months) for each
individual by simulating an exponential random variable. The rate of events in the
unexposed group was 0.004 (corresponding to a mean time to second breast cancer
of 240 months). The event rate in the exposed group was set to 0:004 
 exp.ˇ/ for
values of the hazard ratio ranging from 1 to 5 (log hazard ratio, ˇ, ranging from
0 to 1.6). Next we simulated a censoring time for each individual from a Weibull
distribution with shape = 2.1 and scale = 84. This parametric distribution as well
as the choice of shape and scale parameters were motivated by the distribution
observed in data from the BRAVA study. Any simulated individual with more
than 120 months of follow-up was administratively censored at 120 months. We
next assigned a sensitivity and specificity for detecting an event prior to censoring
conditional on exposure status for each individual. Conditional on true event status,
i.e. event time prior to censoring time, we simulated observed event status, do

i
from either a Bernoulli distribution with p equal to sensitivity (for individuals
experiencing a true event) or with p equal to 1-specificity (for individuals not
experiencing a true event). All individuals with simulated do

i D 0, censored
individuals, were assigned to

i equal to their simulated censoring time. Individuals
with do

i D 1 and di D 1, true positive events, were assigned to
i equal to their true

event time plus a normally distributed error term with mean, 	, and variance,
2,
varying across simulation scenarios. Finally, for individuals with do

i D 1 and di D 0,
false positive events, we simulated to

i from a Weibull distribution with shape = 1.1
and scale = 37.2, corresponding to a mean observed event time of approximately 36
months, motivated by the distribution observed in the BRAVA study. All censoring
and event time variables were rounded to the nearest month. We simulated a cohort
of size 4000 for all scenarios and repeated each scenario 1000 times.

Our simulations focus on the setting of differential measurement error. Across
all simulations, sensitivity in the exposed group was set to 0.91 and specificity
was set to 0.982. Corresponding values for the unexposed group were 0.86 and
0.99. These values were selected to preserve marginal sensitivity and specificity
of 0.89 and 0.99, respectively, similar to values observed in the BRAVA study.
We hypothesized that higher sensitivity and lower specificity would be expected
in exposed individuals compared to unexposed in settings where exposure results
in more frequent contact with the healthcare system, such as greater burden of
comorbid disease. We investigated two scenarios for differential misclassification of
recurrence times. First, we simulated dates assuming that the person-level sensitivity
and specificity of the algorithm varied according to exposure status but that, if
correctly classified as an event, the distribution of error in the date assigned did
not vary according to exposure. In these scenarios 	 was fixed at 0 for the exposed
and unexposed groups. We varied the strength of the log hazard ratio (ˇ) relating
exposure status to hazard of recurrence and the standard deviation of the error
in dates (
 ). Second, we investigated scenarios where there was both differential
misclassification and differential error in dates assigned. In these scenarios we again
varied ˇ as well as the difference in the mean of the date error distribution between
exposed and unexposed individuals.
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In each simulated data set we estimated the association between exposure and
outcome using the following approaches:

1. Unadjusted discrete proportional hazards model
2. Adjusted discrete proportional hazards model using exposure-specific � and �
3. Adjusted discrete proportional hazards model using marginal � and �

For the adjusted approaches, we assumed that person-level sensitivity and specificity
were available such as would be the case if a prior validation study had been
performed and used Eqs. (4) and (5) along with the empirical distribution of follow-
up times in cases and controls to obtain estimates of � and �. Under approach
2, we estimated these quantities separately for the two exposure groups while for
approach 3 we obtained estimates of accuracy parameters pooling all data. Note
that both approaches represent a misspecified error correction because the model
used to account for error in the dates differs from the model used to simulate the
data.

For all simulation scenarios, bias was estimated by averaging the log hazard
ratios across replications of the simulation and computing the difference relative
to the true log hazard ratio used in the simulation of the data.

3 Results

3.1 Non-differential Error in Dates

We first present results for the case where the mean and standard deviation of the
error in simulated dates were assumed independent of exposure status. Note that
although error in dates is non-differential in this scenario, classification accuracy of
event status was assumed to be exposure status dependent. Figure 1a, illustrates
bias in the three discrete proportional hazards models as a function of 
 , the
standard deviation of the error in dates among true positive individuals, which
was assumed to be the same for exposed and unexposed individuals. Across all
values of 
 investigated, bias was smallest when a separate bias correction was
made for exposed and unexposed individuals (approach 2), intermediate for the
naive approach (approach 1), and largest when a marginal bias correction was
made (approach 3). This indicates that, in this setting, the imperfect marginal bias
correction resulted in more bias than making no bias correction at all. Similar
results were observed when 
 was fixed at 1 and ˇ was allowed to vary (Fig. 1b).
For all three methods, bias decreased for increasing values of ˇ but was smallest
across all values of ˇ investigated for the exposure-dependent adjusted discrete
proportional hazards model (approach 2) and largest for the marginally adjusted
discrete proportional hazards model (approach 3).
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Fig. 1 Bias in log hazard
ratio (ˇ) as a function of 

(panel a) and ˇ (panel b)
under differential
classification accuracy and
non-differential date error.
Dashed line with squares
provides estimates for
unadjusted method (approach
1), solid line with triangles
provides estimates for
exposure-group specific
adjusted method (approach
2), and dashed-and-dotted
line with circles provides
estimates for marginal
adjusted method (approach 3)
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3.2 Differential Error in Dates

We next present results for the case where the mean of the error in simulated dates
was allowed to differ between exposed and unexposed groups. In Fig. 2a, the mean
of the error in the recurrence date in the exposed group was held constant at 3
months while mean error in the unexposed group was varied across the range from
3 to 24 months. When the difference in the mean date error was similar in exposed
and unexposed groups, all three methods overestimated the log hazard ratio with the
exposure group-specific adjustment (approach 2) having the smallest positive bias
while the marginal bias correction (approach 3) had the largest bias, similar to what
we observed in the case of non-differential error in dates. However, as mean date
error in the unexposed group increased, bias of the exposure status-specific approach
systematically decreased while bias in the other two approaches increased slightly.
In these scenarios, recurrence in the unexposed group is detected systematically
later than in the exposed group, resulting in overestimation of the positive exposure
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Fig. 2 Bias in log hazard
ratio (ˇ) as a function of
difference in mean date error
(panel a) and ˇ (panel b)
under differential
classification accuracy and
differential mean error in
dates. Dashed line with
squares provides estimates for
unadjusted method (approach
1), solid line with triangles
provides estimates for
exposure-group specific
adjusted method (approach
2), and dashed-and-dotted
line with circles provides
estimates for marginal
adjusted method (approach 3)
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hazard ratio when using the uncorrected and marginally corrected approaches.
The systematic decrease in the bias in the exposure group-specific adjustment
approach suggests that this approach is overcorrecting, resulting in underestimation
of ˇ when the mean error in the date of the unexposed group was approximately 10
months greater than that in the exposed group or larger. Despite this overcorrection,
the absolute magnitude of the bias of the exposure group-specific adjustment was
smaller than the bias in the marginally adjusted or naive approaches for all values
of differential date error investigated.

Finally, we fixed the mean date error at 9 months in the unexposed group and 3
months in the exposed group and investigated the effect of varying log hazard ratios,
ˇ, on the performance of the three methods (Fig. 2b). Similar to the pattern observed
in the case of non-differential date error, bias in all three methods decreased as
ˇ increased. The exposure group-specific bias correction (approach 2) resulted in
negative bias for values of ˇ greater than 0.4 indicating over-correction for error in
the ascertainment of recurrence times while the other two approaches had positive
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bias across the range of values for ˇ investigated. Because bias in all three methods
decreased across the range of ˇ, the absolute magnitude of the bias in ˇ was smallest
for the unadjusted approach (approach 1) for the largest values of ˇ investigated,
ˇ D 1:4 and 1.6, corresponding to hazard ratios of 4 and 5.

4 Discussion

In this study we investigated the implications of differential measurement error
in time-to-event outcomes derived from the EHR for bias in estimates of out-
come/exposure relationships. We found that this type of measurement error com-
monly arising in EHR studies is difficult to address using existing statistical
methods. Although an exposure-status specific bias correction decreased bias in
many of the settings investigated, this type of correction is difficult to implement in
practice because exposure status-specific operating characteristics for EHR-derived
algorithms are not typically reported. Unlike cohort studies with outcome assess-
ment at defined study visits occurring at fixed intervals, operating characteristics
for EHR-derived outcomes are typically reported only at the level of the individual
rather than the level of the assessment or discrete time-point. In this setting, it is
difficult to accurately derive operating characteristics at the discrete time-point level
resulting in failure of bias-correction methods to adjust for measurement error. This
finding underscores the importance of conducting validation studies and reporting
their results at a finer timescale, with the goal of supporting future time-to-event
studies. Providing validation results conditional on key patient characteristics would
also better support future studies by providing the information necessary to correct
for differential measurement error at least with respect to these characteristics.

Understanding and appropriately adjusting for error in EHR-derived variables is
a critical first step in conducting valid research using this data source. Despite this,
a comprehensive review of health outcomes research studies conducted using EHR
data published between 2000 and 2007 found that only 24% included a validation
component (Dean et al. 2009). As the frequency of use of EHR data for research
increases, several studies have highlighted the variable data quality of EHR and have
cautioned against using these data without investigating data quality or considering
the clinical and administrative processes that generated it (Hripcsak and Albers
2013; Hersh et al. 2013; Weiskopf and Weng 2013; Overhage and Overhage 2013).
In addition to data quality issues, all of the standard considerations that arise when
using observational data such as the risk of confounding also pertain to EHR data.
But if data quality issues are not addressed, no amount of confounding control will
allow meaningful inference to be made on the basis of inaccurate data.

Many prior studies have investigated effects of measurement error in outcomes
on exposure/outcome association parameter estimates. When parameters of the error
distribution are unknown it is theoretically possible to obtain maximum likelihood
estimates for the joint likelihood for both the association parameters and the error
distribution parameters. However, in practice, the likelihood tends to be so flat that
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this task is impracticable (Carroll et al. 2006). The alternative approach investigated
here is to assume parameters of the error distribution are known and estimate
association parameters conditional on these known values. While promising if
validation data are available, previous work has demonstrated that misspecification
of sensitivity and specificity can result in substantial bias in association parameter
estimates (Meier et al. 2003). In the current study we have expanded this finding
to investigate the case where sensitivity and specificity are estimated based on
available validation data but the parametric form of the error distribution has been
misspecified. In this case as well, we found that misspecification of the error
model results in an inability to effectively remove bias from association parameter
estimates.

Our investigations were motivated by a real world study of second breast cancer
events using EHR data from an integrated healthcare system. The distributions and
parameter values used in our simulation studies were selected to approximate the
features of this data set. While this provides insight into the implications of error
in time-to-event outcomes in scenarios similar to this study, findings may differ in
other settings. For instance, results may be more robust to misclassification and
misspecification of the error distribution if a time-to-event outcome is classified
with perfect specificity but imperfect sensitivity. Additionally, the bias correction
approach we have investigated assumed that algorithm operating characteristics
based on a prior study were available but that the validation data themselves were
not. In the case where investigators have access to the raw validation data, operating
characteristics at the individual study assessment level could be directly estimated
conditional on relevant patient characteristics, facilitating more precise and accurate
bias correction. We anticipate that bias correction would perform better in this
setting, but note that in many studies validation data will not be available.

In the bias correction approach investigated in this paper, we assumed that
information on sensitivity and specificity was only available at the person-level
and made use of a simplifying assumption that sensitivity and specificity were
constant with respect to time. In the context of cancer recurrence, if the main cause
of misclassification for patients who have not yet experienced a recurrence is a
cancer diagnosis code assigned to routine visits for cancer surveillance purposes
and the frequency of surveillance visits does not vary over time then specificity
would remain constant over time. In contrast, if the recommended frequency of
surveillance visits decreases over time then this would tend to result in an increase
in algorithm specificity. Over relatively short periods of time (e.g., several years) it
may be reasonable to assume that no substantial changes in surveillance schedules
or medical records coding that would lead to systematic variation in sensitivity and
specificity have occurred. The appropriateness of this assumption depends on the
outcome under study and the causes of outcome misclassification.

If productive use is to be made of EHR data, additional work must be conducted
to mitigate, characterize, and account for data quality issues. Characterization
includes understanding the processes and procedures within the healthcare system
that lead to the generation of these data. Attempting to understand the error in EHR



254 R.A. Hubbard et al.

data without devoting attention to the means by which they are created is akin to
analyzing data from an observational study without reading the study protocol. Such
uninformed efforts are nearly certain to produce erroneous results.
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Modeling Inter-Trade Durations in the Limit
Order Market

Jianzhao Yang, Zhicheng Li, Xinyun Chen, and Haipeng Xing

1 Introduction

A limit order market is an order-driven market that automatically collects orders,
and matches the buyers and sellers in a centralized limit order book (LOB) based
on some priority rules. As frequencies of trading have become extremely high in
recent years, a great number of order events can be generated for a single stock in a
very short time period. For instance, the time interval between two order events has
reached the level of a nanosecond (i.e., 10�9 s), and tends to be even finer with the
rapid development of information technology. Such high frequency tradings bring
unparalleled challenge to researchers on modeling and analyzing trading events.
As an example, although the NASDAQ stock market was initially a quote-driven
market in which only market makers facilitate transactions, nowadays it has become
a hybrid market where customer limit orders are allowed in addition to on-exchange
market making, by using the electronic communication networks (ECN). In terms
of total market activities, the share of using ECN has increased dramatically in the
past years, and recently trades through ECN account for more than 40% of the total
trading volume in NASDAQ market (Fink et al. 2006; Hendershott 2003). Given
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the high frequency feature of electronic limit orders in the market, providers of
market liquidity have transferred from the orders given by traditional market makers
to the LOB. In order to gain more insight into the market mechanism and merits
of orders in different scenarios (Harris and Hasbrouck 1996) and optimize order
execution strategies (Obizhaeva and Wang 2013), it becomes extremely important
to understand the dynamics of the LOB for both market participants and academic
researchers.

In this paper, we focus on empirical features of inter-trade durations in the
LOB market. Inter-trade duration is not only an important variable in the LOB,
but also highly related to the trading behaviors and price formation processes.
Recent studies have demonstrated the following important properties about inter-
trade duration. First, the transaction-time trade arrivals are intimately related to
the calendar time volatility in price (Clark 1973; O’hara 1995; Engle and Russell
1998; Engle 2000; Bauwens and Veredas 2004). Specifically, the serial correlation
in transaction-time trade arrival drives the serial correlation of calendar-time trade
counts, which further drives the serial correlation in calendar-time volatility. This
feature is crucially important in terms of risk management, portfolio allocation
and asset pricing. Second, returns interact with inter-trade duration. For instance,
short duration moves price more than long duration across stocks and across time
(Manganelli 2005; Furfine 2007). Third, transaction-time trade arrival intensity is
ultimately driven by serial correlation in the information flow that drives trading
(Diamond and Verrecchia 1987; Dufour and Engle 2000a; Simonsen 2007). The
time elapsed between transactions is believed to contain some messages on the
information flow and these messages can be passed to market participants. Relevant
information may be related to the valuation of the stock also.

Some stylized facts of inter-trade durations have been studied intensively over
the past decades, such as, long-range dependence (i.e., trade duration tends to be
persistent), heavy tailedness (i.e., extremely short or long trade duration can be
often observed), and trading clustering (i.e., short duration follows short duration
and long duration follows long duration); see discussions in Jasiak (1999), Bauwens
and Giot (2000), Dufour and Engle (2000b), and Chen et al. (2013). Among these
studies, one breakthrough in modeling financial market inter-trade duration is the
autoregressive conditional duration (ACD) model of Engle and Russell (1998),
which expresses the conditional expectation of duration as a linear function of
past duration and past conditional expectation and is an analog of Engle (1982)
autoregressive conditional heteroskedasticity model in duration analysis. Bauwens
and Veredas (2004) extended the discussion and proposed a stochastic conditional
duration (SCD) model, which is similar to the stochastic volatility model in Ghysels
et al. (2004) and allows the conditional mean duration depending on some latent
information.

These models have been generalized to discuss different features of the trade
data in the past years. Bauwens and Giot (2000) extended the ACD model to
the logarithmic ACD model. Zhang et al. (2001) embedded a regime switching
structure into the ACD model so that the model has different persistence, conditional
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means, and error distributions in different regimes. Feng et al. (2004) proposed a
linear non-Gaussian state-space version of the SCD model to capture the leverage
effect of the expected durations. Simonsen (2007) extended the ACD model to
examine the dependence between durations.

Besides the multiplicative framework discussed above, another way to analyze
inter-trade durations is to use the assumption from the point process theory that
durations between two events follow an exponential distribution conditional on the
hazard rate (or trade arrival intensity) and hence directly model their hazard rates or
intensities; see Russell (1999) and Bauwens and Hautsch (2009). Recently, inspired
by the success of the Markov-switching multifractal (MSM) stochastic volatility
model in forecasting persistent volatility of financial returns (Calvet and Fisher
2004). Chen et al. (2013) proposed a Markov-switching multifractal inter-trade
duration (MSMD) model. This model uses an elegant structure and parsimonious
parameters to generate rich dynamics of inter-trade durations, and the inter-trade
durations are composed of multiple fractals, with each of them following a distinct
hidden Markov process. Also because of this multifractal feature, the MSMD model
can be used to analyze trading data of large sample sizes, and is computationally
efficient. Chen et al. (2013) used the model to study trade durations of the 1993
NYSE stock data and showed that the model could capture the long memory
property of the data.

The nice feature of the MSMD model indicates that it might be applied to
analyze durations of today’s LOB market. However, the frequency of the LOB data
has a much larger range than that in the 1993 NYSE stock market. Specifically,
the LOB data we collected from the NASDAQ market have a large dispersion
in the inter-trade duration, as it ranges from 10�5 to 102 s, while the inter-trade
duration in the 1993 NYSE stock data ranges from 1 s to several hundreds of
seconds. Due to this limit, the MSMD model in Chen et al. (2013) could not
fit the 2013 NASDAQ LOB data well. To overcome this problem, we extend the
MSMD model by modifying their assumption on error distributions. In particular,
we keep the multifractal feature of the MSMD model, but relax the assumption of a
single exponential distribution for error distribution to mixtures of exponentials (i.e.,
Gamma or Weibull distributions). We show that the extended model fits the current
LOB data better than the original one and demonstrate the empirical features of
LOB data that can be captured by the modified model.

The rest of the paper is organized as follows. Section 2 demonstrates some
stylized facts of inter-trade durations of the NASDAQ LOB data. Section 3 presents
the details of our model and inference method, and compares our models with
Chen’s MSMD models. In Sect. 4, we apply the MSMD model and our extensions
to analyze the inter-trade durations of the 2013 NASDAQ LOB stock data, and
compare the pros and cons of these models. Section 5 provides conclusive remarks
and our discussion for further research.
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2 Empirical Facts

Our data are downloaded from LOBSTER (https://lobsterdata.com/), which pro-
vides high-quality LOB data of all NASDAQ stocks from June 2007. The LOB data
reconstructed by LOBSTER are based on NASDAQ’s Historical TotalView-ITCH
data (i.e., the historic record of what NASDAQ calls), and contain event messages
that record changes of the LOB.

Table 1 shows a sample of LOB event messages, which record LOB events of
Microsoft Corporation (MSFT) on January 2, 2013. In the table, event type 1, 2,
and 3 represents submission, cancellation and deletion of a limit order, respectively.
Event type 4 represents execution of a visible limit order. Thus, from the event
message file provided in the LOB, one can easily construct the inter-trade durations
series for a particular stock during a specified time period.

To demonstrate some features of inter-trade durations in the LOB, we plot the
time series of inter-trade durations for Microsoft Corporation on January 2, 2013 in
Fig. 1. Note that some features of the data have been mentioned in the past literature,
while some of them are only possessed by recent high frequency LOB data.

• Large variation: There are almost 9000 trades for Microsoft Corporation on
01/02/2013. In Fig. 1, we can see that some durations are extremely short (to the
extent of 1
10�5 s), some are very long (to the extent of 100 s). In the histogram
of logarithm of MSFT inter-durations, which is shown as Fig. 2, there is a
bimodal distribution with two peaks at 1 
 10�3 s and 1 
 101 s. The extremely
large span of the durations is probably related to the high frequency trading and
has never been discussed before.

• Huge dispersion: This refers to the standard deviation exceeding the mean to a
huge extent. Standard homogeneous Poisson process suggests that the duration
should follow an independent and identical exponential distribution. However,
in the exponential Q � Q plot for this duration series shown in Fig. 3, we find a
non-exponential distribution with an extraordinarily heavy tail. We will show

Table 1 Message file of LOB events

Time (s) Event type Order ID Size Price Direction

34200:678583052 1 8100758 200 272,700 1

34200:678585706 1 8100759 200 272,700 1

34200:678914184 1 8100869 12 272,600 1

34200:679079227 1 8100901 100 272,600 1

34200:680069341 4 8100320 99 272,700 1

34200:681045068 1 8101470 100 272,800 �1

34200:681700278 3 8100043 115 272,600 1

34200:681700278 4 8101470 100 272,800 �1

https://lobsterdata.com/
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Fig. 2 Histogram of logarithm of MSFT inter-trade durations on 01/02/2013

in Sect. 4 that this dispersion is so large that even a combination of several
exponential distributions (just like the MSMD) is still faint to model it.

• Persistence and long memory: It is not hard to see from Fig. 1 that the durations
have a high persistence, i.e, short (or long) durations follow by short (or long)
durations. Furthermore, the sample autocorrelation function decays very slowly
and exhibits the so-called long memory property, which is shown in Fig. 4. This
phenomenon is consistent with the discussion in many other studies (Deo et al.
2010; Pacurar 2008).



264 J. Yang et al.

150100500

0
5

10
15

20
25

30

Sample Quantiles of Durations

Th
eo

re
tic

al
 Q

ua
nt

ile
s 

fro
m

 E
xp

on
en

tia
l

D
is

tri
bu

tio
n

Fig. 3 Exponential and Inverse Gaussian QQ plot for MSFT inter-trade duration on 01/02/2013

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0 20 40 60 80 100
Lag

AC
F

Fig. 4 Autocorrelations of MSFT inter-trade durations on 01/02/2013

3 Model and Estimation

3.1 Model Specification

We consider the following extension of the MSMD model (Chen et al. 2013).
Denote di D ti � ti�1 the inter-trade durations, where ti is the calendar time of
ith trade and i D 1; 2; : : :N. The durations di is assumed to have the form of

di D  i"i; (1)
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where "i are independent and identically distributed (i.i.d.) random variables with
mean 1 and variance 
2. Same as that in the MSMD model, the conditional mean
 i is a latent variable that possess the following Markov-switching multifractal

 i D N 

NkY

kD1

Mk;i; (2)

in which the component Mk;i .1 � k � Nk/ is an independent Markov renewal process
specified below

Mk;i D

(
M drawn from distribution GM with probability �k

Mk;i�1 with probability1 � �k:
(3)

The above specification suggests that, the kth component of the ith duration Mk;i

remains the same as that in the last duration with probability 1��k, and takes a new
value that is drawn from a fixed distribution GM with probability �k. Furthermore,
probabilities .�1; �2; � � � ; �Nk/ are parsimoniously parameterized by

�k D 1 � .1 � �Nk/
bk�Nk

: (4)

Following Chen et al. (2013), we assume the distribution of the components GM

is binomial, which draws values m0 and 2 � m0 with equal probabilities. Then the
state vector and the corresponding transition matrix of Mk;i are written as

Mk;i D

(
m0 with probability 1=2;

2 � m0 with probability 1=2;
(5)

Pk D

�
1 � 1

2
�k

1
2
�k

1
2
�k 1 � 1

2
�k

�
: (6)

Since the components Mk;i are independent, the transition matrix of Mi is given by

P D P1 ˝ P2 ˝ � � � ˝ PNk; (7)

where the ˝ represents the Kronecker product.
We shall note that the model specification so far is essentially the same as

the MSMD model, and such a specification has two prominent advantages. First,
it has a “parameter-driven” structure since the conditional dynamics are driven
by the history of the latent variable. The dynamics implied by the model allows
more flexibility, compared to the traditionally ACD models that are “observation-
driven” (i.e., conditional dynamics are driven by the history of observables). Such
flexibility comes from the stochastic process of the latent variable, which follows
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a hidden Markov process. Although the number of controlling parameters is small
(just Nk, �Nk, b, and m0), each component of this Markov-switching multifractal has
a distinct evolution path and the total number of states can reach 2Nk. Second, such
specification provides a natural long-memory duration generating mechanism by
overlaying simple regime-switching processes with different degrees of persistence,
which can be explained as reactions of different types of informed and uninformed
traders.

In Chen et al. (2013)’s MSMD model, they assumed that "i in (1) are i.i.d.
exponentials with mean 1. Although they argued that this assumption is general
enough and only requires very weak regularity conditions, it actually imposes a
strong constraint that limits its empirical applications, especially with application
to the high frequency trading data. Therefore, we relax this assumption and allow
the error term "i to follow a variety of distributions. Specifically, instead of using
exponential distribution with mean 1, we consider the standard Weibull distribution
and Gamma distribution with the unit mean for error "i. To distinguish from the
original MSMD model with the unit-mean exponential distribution (denoted as
the Exponential-MSMD), we denote the other two corresponding models as the
Weibull-MSMD and the Gamma-MSMD models.

3.2 Maximum Likelihood

Denote the observed inter-trade durations as d1Wn D fd1; d2; : : : dng. The log-
likelihood function for d1Wn can be expressed as

ln L .d1Wnj�/ D log f .d1j�/C

nX

iD2

log f .dijd1Wi�1; �/; (8)

where � includes the parameter in f ."/ and fNk;m0; b; �Nkg. Since the mean levels
 i can not be observed, we need to use a weighted average of state-conditional
likelihoods. Moreover, according to (2) and (5), the possible states of  i can be as
large as 2Nk. This is due to the fact that each underlying Markov component Mk;i

has two independent states. Assume that the states of  i are  .j/; j D 1 : : : 2
Nk and

denote the probability of  i D  .j/ as P. i D  .j//. Then the log-likelihood (8) can
be written as

ln L .d1Wnj�/ D

2
NkX

jD1

P. 1 D  .j/j�/ � log f .d1j 
.j/; �/

C

nX

iD2

2
NkX

jD1

P. i D  .j/jd1Wi�1; �/ � log f .dij 
.j/; �/: (9)
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To compute the log-likelihood, we first initialize t D 0 by the long run
equilibrium distribution associated with the Markov transition matrix P2Nk�2Nk in (7).
Then for t D 1 : : : n, P. i D  .j/jd1Wi�1; �/ is computed by the previous probability
distribution and the Markov transition matrix

P. i D  .j/jd1Wi�1; �/ D

2
NkX

kD1

P. i�1 D  .k/jd1Wi�1; �/ � Pkj; (10)

and the posterior distribution of the  i is updated by the Bayes rule, i.e,

P. i D  .j/jd1Wi; �/ / f .dij 
.j/; �/P. i D  .j/jd1Wi�1; �/: (11)

We can iteratively compute (10) and (11), and obtain the log-likelihood function
for all these observations from 1 to n for a given value of � . Therefore we could
use grid search to maximize the log-likelihood and obtain a maximum likelihood
estimate for � , i.e.,

b� D arg max ln L .d1Wnj�/: (12)

Note that in the calculation above, different distribution assumptions on "i lead
to different functional forms of (12). In Chen et al.’s (2013) Exponential-MSMD
model, "i � Exponential(1), i.e.

fE."/ D exp.�"/; (13)

then the density function of the duration di is

fE.diI i/ D
exp.�di= i/

 i
: (14)

In this case, � D fNk;m0; b; �Nkg.
In the Weibull-MSMD model with scale parameter �



1C 1

�

�
, the unit mean

assumption implies that the density of the error distribution is given by

fW."I �/ D �

�
�

�
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1
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���
"��1 exp

�
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Hence the density function for the duration di is

fW.diI i; �/ D
�

di

�
�

�
1C

1

�

��� � di

 i

��
exp

�
��

�
1C

1

�

��
di

 i

�� �
(16)

In this case, � D fNk;m0; b; �Nk; �g.
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In the Gamma-MSMD model with scale parameter 1
�

, the unit mean assumption
implies that the density of the error distribution is expressed as

fG."I �/ D
"��1

���� .�/
exp.�"�/: (17)

Thus the density function of the duration di is

fG.diI i; �/ D
��

di� .�/

�
di

 i

��
exp.��

di

 i
/: (18)

In such a case, � D fNk;m0; b; �Nk; �g.

4 Empirical Analysis

We use the original Exponential-MSMD model and the extended Weibull- and
Gamma-MSMD models to analyze the LOB data of Google from January 8, 2014
to January 10, 2014, which contains 10,000 inter-trade durations in total. Figure 5
shows the time series plot of the data. One thing need to be mentioned is that we
have used a procedure which is similar to that in Chen et al. (2013) to remove the
calendar effect. The only difference is that the time interval we use is 5 min instead
of 30-min intervals used in Chen et al. (2013). This is because that, for the current
high frequency data, the information is updated much quicker than 20 years ago.
Figure 6 shows the sample autocorrelation of the data. We can see that the inter-
trade durations have significant correlation even until lag 100, exhibiting a strong
long memory effect.

We fitted these three MSMD models to the sample data, and assumed the number
of Markov components to be 3, 4 and 5 in each model. We coded the estimation
procedure in MATLAB and implemented it on a desktop (3.4 GHz Intel Core i5).
It took about 3 min to obtain the estimation results for exponential error distribution
and about 5 min for Weibull or Gamma error distribution. The running time varies
with different initial parameter values, Nk and optimization methods. Table 2 presents
the estimation results. (We tried a larger range of Nk and various initial parameters, but
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Fig. 5 Time series plot of Google inter-trade durations from 2014/01/08 10:30:03 to 2014/01/10
10:46:46, with number of observations 10,000 and calendar effect removed
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Fig. 6 Autocorrelation of the sample of Google inter-trade duration

Table 2 Estimation results of the sample durations of Google

Exponential-MSMD Weibull-MSMD Gamma-MSMD
Nk D 3 Nk D 4 Nk D 5 Nk D 3 Nk D 4 Nk D 5 Nk D 3 Nk D 4 Nk D 5

m0 1.99 1.96 1.92 1.98 1.96 1.922 1.35 1.31 1.33

(0.00027) (0.00069) (0.0011) (0.0006) (0.0008) (0.0011) (0.022) (0.024) (0.025)

 1486.72 288.62 153.17 400 301.62 175.50 76.12 31.35 86.69

(51.15) (9.91) (6.21) (18.45) (11.32) (8.73) (4.32) (2.10) (5.92)

�Nk 0.79 0.86 0.86 0.84 0.84 0.86 0.0055 0.0049 0.0056

(0.04) (0.037) (0.041) (0.033) (0.040) (0.046) (0.0018) (0.0017) (0.0020)

b 1.001 1.001 1.001 1.001 1.001 1.002 6.10 1.89 2.63

(0.12) (0.085) (0.075) (0.11) (0.09) (0.081) (3.71) (0.63) (0.97)

� N/A N/A N/A 0.79 0.88 0.90 0.196 0.198 0.197

(0.0051) (0.0064) (0.0074) (0.0021) (0.0022) (0.0021)

ln L �30962 �30500 �30694 �30779 �30338 �30610 �29368 �29357 �29360

the best results we have gotten are shown here. Based on our experiments, a larger Nk
will lead to a rapid increase in the computational cost but not necessarily improved
the results.) We can see that the Exponential-MSMD and Weibull-MSMD models
have a very small value of b (lower boundary is 1) and a large value of �k. This
indicates that, in order to capture the dynamics of these high frequency data, both
the Exponential-MSMD and Weibull-MSMD models require shifts among different
states to be very frequent. One possible reason for this is that the single standard
exponential or Weibull distribution can not capture large variations in a short time
period. On the other hand, the result from fitting a Gamma-MSMD model indicates
a stable Markov transition matrix, which demonstrates its high flexibility.

To further see if these results are reasonable, we simulate the inter-trade durations
using parameters estimated in Table 2 and demonstrate them in Figs. 7, 8, and 9,
respectively (here we use Nk D 4). In these figures, the first four panels show the time
series plots of simulated latent components Mt;i. It is clear that the latent processes
in the Exponential- and Weibull-MSMD models switch regimes so quickly that even
the slowest component M1 is hard to be recognized. This is probably due to large
variations of inter-trade durations in the LOB data. The fifth panels in Figs. 7, 8, and
9 show the evolution of  i. We find from them that, for Exponential- and Weibull-
MSMD models,  i need frequently jump from its upper bounds to the lower bounds
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Fig. 7 Properties of the simulated inter-trade durations of Exponential-MSMD, with parameters
calibrated from the sample of Google inter-trade duration from 2014/01/08 10:30:03 to 2014/01/10
10:46:46
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Fig. 8 Properties of the simulated inter-trade durations of Weibull-MSMD, with parameters
calibrated from the sample of Google inter-trade duration from 2014/01/08 10:30:03 to 2014/01/10
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Fig. 9 Properties of the simulated inter-trade durations of Gamma-MSMD, with parameters cal-
ibrated from the sample of Google inter-trade durations from 2014/01/08 10:30:03 to 2014/01/10
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to adapt to large variations of inter-trade durations in the high frequency LOB data.
On the other hand, the latent process of the Gamma-MSMD model evolves steadily
and we can clearly observe the difference from M1 to M4. The overall dynamic of
 in the Gamma-MSMD model is clear and stable, suggesting the MSMD model
with Gamma distribution fits the high frequency data better than the other two.
Then we show the autocorrelation of simulated data from three MSMD models.
Note that only the Gamma-MSMD model generates long memory phenomena. This
indicates that, although the MSMD structure provides a natural long-memory by
overlaying regime-switching components with different degrees of persistence, if
latent components switch their regimes too fast, the benefit of multifractal feature in
the MSMD models can be offset. We further compare these simulation with the real
data using Q-Q plots. Both the Exponential- and Weibull-MSMD models exhibit a
very long tail in durations, while the Gamma-MSMD model does not.

In the end, we compare the out-of-sample forecasting performance of the three
models. We use the first 5000 data points as the training data, and the rest 5000
data points for out-of-sample prediction. To compare the forecasting performance,
we consider the Mincer-Zarnowitz ordinary least squares (OLS) regressions for
durations on a one-step forecasts,

XtC1 D ˇ0 C ˇ1Et.XtC1/C 	t (19)

The results of out of sample prediction are presented in Figs. 10, 11, and 12 and
summarized in Table 3. Both the figures and the table suggest that the Gamma-
MSMD model performs better than the other two models.
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Fig. 10 Forecasting performance of Exponential-MSMD and its out-of-sample comparison with
the real data of Google inter-trade durations
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Fig. 11 Forecasting performance of Weibull-MSMD and its out-of-sample comparison with the
real data of Google inter-trade durations
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Fig. 12 Forecasting performance of Gamma-MSMD and its out-of-sample comparison with the
real data of Google inter-trade durations
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Table 3 Mincer-Zarnowitz OLS summary for three MSMD model to compare the forecasting
performance

Exponential-MSMD Weibull-MSMD Gamma-MSMD

R-square 0.218 0.224 0.493

ˇ0

Estimate �132.23 �127.91 0.75

S.E 21.25 20.34 2.85

t-statistics (�6.22) �6.29 0.26

p-value 2.07E�09 1.44E�09 0.79

ˇ1

Estimate 0.60 0.55 0.92

S.E 0.07 0.067 0.06

t-statistics 8.11 8.23 15.37

p-value 2.25E�14 8.31E�15 6.7E�38

5 Conclusion

The ultra high frequency LOB data have brought much challenge to statistical
analysis. To model the dynamics of inter-trade durations in the LOB data, we
extend the Exponential-MSMD model that was originally proposed for the 1993
NYSE trade data and discuss two extensions, Weibull and Gamma distributions for
error distributions. We compare the in-sample and out-of-sample performance of
the original and extended models using the 2014 NASDAQ LOB data. We find that
the Gamma-MSMD model performs better than the other two, due to the fact that
inter-trade durations in the LOB data has a huge dispersion.

On the other hand, we note that the success of using the MSMD model to
analyze inter-trade durations lies in the fact that the MSMD has an intrinsic Markov
switching feature in its model structure. This motivates us to investigate what is the
driving force for these regime switchings. Specifically, it is worthwhile in the future
to look into which market factors play an important role in regime switchings and
how these factors affect patterns of regime switchings in inter-trade durations.
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Assessment of Drug Interactions with Repeated
Measurements

Shouhao Zhou, Chan Shen, and J. Jack Lee

1 Introduction

Drug combination therapy has become a major treatment approach in oncology and
other branches of medicine, applying a growing number of drugs approved by the
FDA in recent years. Synergistic drug combinations, which are more effective than
predicted from summing the effects of the individual drugs, often achieve greater
efficacy at lower doses, while also reducing toxicity (Chou 1991). Although dose
response assessment and drug interaction analysis play integral parts of early-stage
drug discovery, determining optimal designs for in vitro studies remains elusive.

Despite thousands of papers published in the field of drug combination discovery,
the procedure to characterize a two-drug interaction proposed by Chou and Talalay
(1984) is still the most commonly used method. Assuming the median effect
equation holds for the marginal dose-effect curves of the single agents and the
combination doses at a fixed ray (i.e., d1=d2 D c, where c is a constant forming
a ray in the d1 
 d2 dose plane when considering a 2-drug combination), Chou and
Talalay assessed the drug interaction at the observed combinations by estimating
the interaction index derived from Loewe’s additivity model (Loewe and Muischnek
1926; Berenbaum 1985; Greco et al. 1995; Tallarida 2000). Comprehensive reviews
of this approach are available (Chou 2006; Lee et al. 2007). To assess the uncertainty
of the estimation, Lee and Kong (2009) proposed an analytic approach to construct
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the confidence intervals for the interaction index, which is close to what is generated
using Monte Carlo techniques (Belen’kii and Schinazi 1994).

Although the interaction index can be estimated with only one observation at
each combination dose, there have been new developments in the implementation
of experiments for assessing drug combinations. Given the low cost of conducting
in vitro studies, repeated measurements are collected to better estimate the dose
response curves. For example, to investigate synergy for different ratios of the
compounds in the mixture, Sanofi (2013) recommends performing the experiment
3 times sequentially with 10 concentrations in triplicate for robust estimation of
synergy using a ray design. However, the estimation of the interaction index and
its confidence interval was implemented by simply applying Chou and Talalay’s
method after averaging over the effects at each single or combination dose, leading
to estimation inefficiency due to discarded data points and induced correlation (Hen-
nessey et al. 2010).

The objective of this study is to improve the accuracy of the point and interval
estimation of the interaction index in a fixed ray design by taking into account
the variability between experiments and/or between replicates of the repeated
measurements. The framework of Loewe’s additivity for potency and the median
effect model for estimating the dose response curve is introduced in Sect. 2, followed
by generalization to the data with repeated measurements in the experiment. In
Sect. 3, we propose a procedure to estimate the interaction index at some observed
dose of the drug combination and construct its associated confidence interval.
Because investigators are usually not only interested in examining synergism at the
tested dose levels, but also identifying the region of the drug combination effect
that shows significant synergism, in Sect. 4, we propose an additional procedure
to estimate the interaction index along the drug effect on interval .0; 1/ and
construct its associated confidence bound. Section 5 provides some simulation
results showing improvement in the estimation by introducing random effects
for repeated measurements. In Sect. 6, we apply our methods in an experimental
study conducted at MD Anderson Cancer Center. The last section is devoted to a
discussion.

2 Median Effect Model for Drug Combination Effects

In this section, we review popular method and design for assessing drug combina-
tion effects, then generalize the ideas of the median effect model in the setting of
repeated measurements.
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2.1 Median Effect Model

Chou and Talalay (1984) considered the estimation of the drug effect with various
dose concentrations. The dose response curve was estimated with the median effect
equation, which has the following form

E D

�
d

Dmed

	m

1C
�

d
Dmed

	m ; (1)

where d is the dose of a drug eliciting effect E, Dmed is the median effective dose
of the drug that achieves the effect E D 1=2, and m is the Hill coefficient (Hill
1910a,b), a slope parameter that depicts the shape of the curve. When E describes
the proportion of cells surviving, m is negative, and the curve described by Eq. (1)
falls with increasing drug concentration; when E describes the percentage of
inhibition, m is positive, and the curve rises with increasing drug concentration.

A transformation of the median effect equation can be written as

logit.E/ D log
E

1 � E
D m log.d/ � m log.Dmed/ D ˇ0 C ˇ1 log.d/; (2)

where ˇ0 D �m log.Dmed/ and ˇ1 D m, making a 1-to-1 mapping between the
unknown parameters fm;Dmedg and fˇ0; ˇ1g. For an arbitrary dose level d, suppose
the observable drug effect is y. The median effect model (2) has the form

logit.y/ D ˇ0 C ˇ1 log.d/C "; (3)

with the model error " following N.0; 
2/. If there are k candidate drugs, the
marginal dose-effect curve for the ith drug, i D 1; � � � ; k, can be estimated by
logit.Oy/ D Ǒ

0;i C Ǒ
1;i log.d/, or equivalently, Oy D logit�1. Ǒ

0;i C Ǒ
1;i log.d//.

2.2 Ray Design

A ray design is used to assess k-drug interactions for any integer k � 2 by fixing the
ratio of multiple drug concentrations in order to better estimate synergism (Tallarida
2000). In practice, the individual agents are combined in amounts that retain
constant relative proportions of each drug. A simple example of a combination of
2 agents is illustrated in Fig. 1, where the different lines correspond to the different
rays, each with a specific fraction (f) value with f D .f ; 1� f /, and the dots represent
various concentrations within a mixture. In cases of k > 2, f D .f1; � � � ; fk/ with
0 � fk � 1 and fk D 1 � f1 � � � � � fk�1.
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Fig. 1 Illustration of a ray
design. The x-axis
corresponds to the
concentration of agent B and
the y-axis to the concentration
of agent A. Each line
corresponds to a different ray
with a specific relative
potency f value with respect
to Agent A, and the dots
represent various
concentrations within a ray
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For a combination of k drugs .k � 2/ at dose level d D .d1; � � � ; dk/, we have
di D fiAi for each i D 1; � � � ; k and a total dose of the combination

d D

kX

iD1

di D

kX

iD1

fiAi;

where Ai is the dose level of the ith single agent in a ray design (Straetemans
et al. 2005). Because all dose concentrations have a constant ratio between drug
combinations, a drug combination on a fixed ray can be considered as a special drug
with the dose-effect curve logit.Oy/ D Ǒ

0;c C Ǒ
1;c log.d/.

2.3 Loewe Additivity

In drug interaction analysis, the Loewe additivity model was considered to be
the gold standard for defining drug interactions (Berenbaum 1989). For a k-drug
combination with dose level d D .d1; � � � ; dk/, the potency of the combination can
be characterized as

� D
d1

DE;1
C � � � C

dk

DE;k
D

kX

iD1

di

DE;i
: (4)

Here, d1; � � � ; dk are doses of each drug in the mixture of the k drugs resulting in
effect E, and DE;1; � � � ;DE;k are the doses of the drugs that result in the effect E
for each respective drug when given alone. The summation (4) is the interaction
index (Tallarida 2002), which has a value that is less than the constant number of
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1 for synergistic drug combinations, equal to 1 for additive drug combinations, and
larger than 1 for antagonistic drug combinations. Because E is the unknown true
effect of the drug combination d D .d1; � � � ; dk/, and for any given effect E, the dose
level of each drug given alone is unknown, Chou and Talalay proposed the following
estimate of the interaction index:

O�.d/ D

kX

iD1

di

ODy;i

(5)

for a single observation d D .d1; � � � ; dk/ on that ray resulting in observed effect y,

where ODy;i D exp
�
�

Ǒ
0;i

Ǒ
1;i

	 �
y
1�y

	1= Ǒ
1;i

.

2.4 Drug Combination Effects with Repeated Measurements

Denote nc and ni as the number of observations when a k-drug combination is used
and the ith drug is used alone, respectively, i D 1; � � � ; k. Conventionally, any
study with repeated measurements requires at least three 96-well plates for data
collection, which translates into a minimum total sample size (n D nc C

Pk
iD1 ni)

of 250 after excluding the positive and negative controls, which is sufficient for the
normal approximation of the confidence interval proposed in the following sections.
In Sanofi’s guideline (Sanofi 2013) for robust estimation of the dose response curve,
cell viability at each dose level is measured 9 times, first in 3 replicates, then
repeating the experiment 3 times, which requires nine 96-well plates to complete
a study.

Suppose there exists some bias ˛j, for instance, the random effect from the jth
plate or the jth well on the 96-well plate, with observations of drug effects yi;j;r for
the ith drug in model (3),

logit.yi;j;r/ D ˇ0;i C ˛j C ˇ1;i  log.d/C "i;j;r; (6)

where the subscript r stands for repeated measurements and ˛j follows N.0; 
2˛ ),
j D 1; � � � ; J. Chou and Talalay’s estimate for the potency of k-drug combinations
can be generalized with repeated measurements given a certain estimator Oy for y,

O�.d/ D

kX

iD1

di

ODOy;i

: (7)

The commonly used estimators for Oy include the average raw effect y at dose
d, and logit�1. Ǒ

0;c C Ǒ
1;c log.d// based on the marginal dose-effect curve of the

combination drug without random effects.
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3 Confidence Interval Estimation at the Observed
Combination

Under the assumption that the dose-effect curves follow the median effect equation,
Lee and Kong (2009) investigated the characteristics of the interaction index at
an observed combination d and its logarithmic transformation and proposed a
procedure for constructing the confidence interval for the estimated interaction
index without repeated measurements by approximating the variance of Var. O�.d//
using the delta method (Bickel and Doksum 2001).

In the experiment with repeated measurements, we use a similar approach by
first estimating the variance of log. O�.d//. Because log. O�.d// has a distribution that
is more symmetric than O�.d/ in (7), we construct the confidence interval of O�.d/with
the exponential transformation for better normal approximation. Compared with the
95% confidence interval constructed directly with the estimated variance of O�.d/,
our approach guarantees that the lower limit of the confidence interval is greater than
zero all the time due to the exponential transformation. As shown in the simulation
study in Sect. 5, our approach also increases the estimation accuracy in terms of the
confidence coverage rate being close to the nominal rate.

Let pi D di=d. The logarithm of the interaction index for a single observation
d D .d1; � � � ; dk/ can be written as

log. O�.d// D log.d/C log.
kX

iD1

pi

ODOy;i

/: (8)

In Eq. (8), both quantities d and pis are constant. For any effect y in (6), the dose
estimate

ODy;i D exp

 
�

Ǒ
0;i

Ǒ
1;i

!�
y

1 � y

�1= Ǒ
1;i

is a function of f Ǒ
0;i; Ǒ

1;ig, such that the randomness of (8) indeed only comes from
the estimation of Oy and 2k parameters Ǒ D f Ǒ

0;1; Ǒ
1;1; � � � ; Ǒ

0;k; Ǒ
1;kg. Any two pairs

of parameters f Ǒ
0;i; Ǒ

1;ig and f Ǒ
0;j; Ǒ

1;jg are independent when i ¤ j, since different
experimental subjects are used to estimate the dose response curves for drug i alone
and for drug j alone, respectively. Furthermore, all those patients are different from
the patients who receive the combination dose d. Thus, the estimates f Ǒ

0;c; Ǒ
1;cg for

the drug combination and Oy D logit�1. Ǒ
0;c C Ǒ

1;c log.d// are independent of the
estimates f Ǒ

0;i; Ǒ
1;ig, for any drug administered alone i D 1; � � � ; k.

Denote g. Ǒ; y/ D
Pk

iD1 pi= ODy;i. Let rg. Ǒ ; Oy/ and †1 respectively be the
first derivative and variance-covariance matrix of g.ˇ; y/ at f Ǒ ; Oyg. For the first
derivatives, we have
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@g. Ǒ; Oy/

@ Ǒ
0;i

D
pi

Ǒ
1;i ODOy;i

;
@g. Ǒ; Oy/

@ Ǒ
1;i

D
pi

ODOy;i

logit.Oy/ � Ǒ
0;i

Ǒ2
1;i

for i D 1; � � � ; k, and

@g. Ǒ; Oy/

@Oy
D �

1

Oy.1 � Oy/

 
kX

iD1

pi

Ǒ
1;i ODOy;i

!
:

The variance-covariance matrix †1 is a blocked diagonal matrix, with the block
being a 2 
 2 matrix except for the last diagonal element Var.Oy/. Using the
multivariate delta method, we can approximate the variance of log. O�.d//,

Var.log. O�.d/// 	
1

g. Ǒ; Oy/2
Var.g. Ǒ; Oy//

	
1

g. Ǒ; Oy/2
� rg. Ǒ; Oy/T �†1 � rg. Ǒ; Oy/

	
1

g. Ǒ; Oy/2

8
<

:Var.logit.Oy//

 
kX

iD1

pi

Ǒ
1;i ODy;i

!2
C

kX

iD1

p2i
D2

Oy;i

Var.log DOy;i/

9
=

;

D
1

g. Ǒ ; Oy/2

8
<

:Var.logit.Oy//

 
kX

iD1

pi

Ǒ
1;i ODy;i

!2

C

kX

iD1

 
pi

DOy;i

!2  
1

Ǒ2
1;i

Var. Ǒ
0;i/C 2

logit.Oy/ � Ǒ
0;i

Ǒ3
1;i

Cov. Ǒ
0;i; Ǒ

1;i/

C
.logit.Oy/ � Ǒ

0;i/
2

Ǒ4
1;i

Var. Ǒ
1;i/

!)
: (9)

A natural estimate for the term Var.logit.Oy// in (9) can be derived from the
estimation of the variance O
2 for the model error in regression (6). Denote nc;r as
the number of repeated measurements at dose level d for the drug combination.
There is no need for additional computations and the estimator O
2=nc;r provides a
more robust estimation than the other two estimators, such as the sample variance
proposed by Lee and Kong (2009). As shown by the simulation study in the
following simulation section, the model variance estimator in (6) has much smaller
bias than that in (3), leading to a better estimation in Var.log. O�.d///.

Once the variance for log. O�.d// in (9) is obtained, a .1 � ˛/ 
 100% confidence
interval for log.�.d// can be constructed as

h
log. O�.d// � z˛=2

p
Var.log. O�.d///; log. O�.d//C z˛=2

p
Var.log. O�.d///

i
;
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where z˛=2 is the 1 � ˛=2 percentile of the standard normal distribution. Note that
the large sample approximation using a normal distribution is considered especially
reasonable in our setting of repeated measurements with a larger degree of freedom
than the case when repeated measurements are discarded.

Therefore, a .1�˛/
100% confidence interval for �.d/ can be approximated by

h
O�.d/ exp

�
�z˛=2

p
Var.log. O�.d///

	
; O�.d/ exp

�
z˛=2

p
Var.log. O�.d///

	i
: (10)

4 Confidence Bound for Interaction Index on a Fixed Ray

Different from (7) at a given combination dose, the interaction index (4) for a given
effect E can be estimated with the statistic

bII.E/ D OdE

kX

iD1

pi

ODE;i

; (11)

a function of OdE and ODE;i, denoting the projected total doses for drug effect E based
on the estimated dose response curves in (6) for a drug combination on the fixed ray
or drug i used alone, respectively.

To assess the variation of bII.E/ with normal approximation, we first derive
an estimate for the variance Var.log.bII.E/// when log.bII.E// is more symmetric
than bII.E/. Let rg. Ǒ ;E/ and †2 respectively be the first derivative and variance-
covariance matrix of g.ˇ;E/ at Ǒ . Using the multivariate delta method (Bickel and
Doksum 2001), the variance of log.bII.E// can be approximated by

Var.log.bII.E/// D Var.log.OdE//C Var.log.g. Ǒ ;E/// (12)

	 Var.log.OdE//C
1

g. Ǒ ;E/2
Var.g. Ǒ ;E// (13)

	 Var.log.OdE//C
1

g. Ǒ ;E/2
� rg. Ǒ;E/T �†2 � rg. Ǒ;E/

	 Var.log.OdE//C
1

g. Ǒ ;E/2

kX

iD1

 
pi

ODE;i

!2
Var.log. ODE;i// (14)

D h. Ǒ
0;c; Ǒ

1;c;E/C
1

g. Ǒ ;E/2

kX

iD1

 
pi

ODE;i

!2
h. Ǒ

0;i; Ǒ
1;i;E/; (15)

where h. Ǒ
0; Ǒ

1;E/ D 1
Ǒ2
1

Var. Ǒ
0/ C 2

logit.E/� Ǒ
0

Ǒ3
1

Cov. Ǒ
0; Ǒ

1/ C .logit.E/� Ǒ
0/
2

Ǒ4
1;c

Var. Ǒ
1/.

Equation (12) holds because the estimation of . Ǒ
0;c; Ǒ

1;c/ for the dose combination
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is independent of Ǒ . The first approximation (13) holds because of another use of
the delta method. The last approximation (14) holds because p1; � � � ; pk are constant
on the fixed ray and †2 is a blocked diagonal matrix, with each block being a 2 
 2

matrix when the pairs . Ǒ
0;i; Ǒ

1;i/ and . Ǒ
0;j; Ǒ

1;j/ are independent for i ¤ j.
Based on approximation (15), a .1 � ˛/ 
 100% confidence bound for log.�/ as

a function of drug effect E 2 .0; 1/ can be constructed as

�
log.bII.E// � z˛=2

q
Var.log.bII.E///; log.bII.E//C z˛=2

q
Var.log.bII.E///

�
;

where z˛=2 is the 1 � ˛=2 percentile of the standard normal distribution. Again,
the normal approximation is considered reasonable in our setting of repeated
measurements with a large total number of observations, n D nc C

Pk
iD1 ni, where

nc and ni denote the number of measurements taken when the k-drug combination
is used and drug i is used alone, respectively, i D 1; � � � ; k.

Accordingly, a .1�˛/
100% confidence bound for the interaction index of drug
effect E 2 .0; 1/ can be approximated by

�
bII.E/ exp

�
�z˛=2

q
Var.log.bII.E///

�
;bII.E/ exp

�
z˛=2

q
Var.log.bII.E///

��
:

(16)

5 Simulation Study

To examine whether the confidence intervals and confidence bounds proposed in
the previous sections have proper characteristics, we first simulated two drugs that
follow the median effect equation (6) with the same slope, m D 2, and median
effective doses: Dmed;1 D Dmed;2 D Dmed;c D 1. That setting is identical to the “sham
combination” of Berenbaum (1989), giving us the additive effects at an arbitrary
dose combination with a constant interaction index of 1.

We adopted a fixed ray with ratio d2=d1 D 1=1 and a constant standard deviation
in the model error 
 D 0:25. We used two settings of the within-group standard
deviation 
˛ , 0:2 and 0:4, to examine the sensitivity of the estimation of the
interaction index to random effects. We generated replicates of the dose effects on
three doses, 0:8, 1:6 and 3:2, for each of the single drugs, and three doses, (0:6,0:6),
(1:2, 1:2) and (2:4, 2:4), for the mixture (d1, d2) at the fixed ray using the median
effect model

logit.Ei;j/ D ˇ0 C ˛j C ˇ1  log.di/C ei;j;

with error term e � N.0; 
2/.
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Table 1 The mean, median, standard deviation (st. dev.) and root mean squared error (RMSE) for
the estimation of the model error O
 � 
 . We compared the proposed method (ZSL16) with the
median effect model of Chou and Talalay (CT84) using 1000 simulations


 D 0:2 
 D 0:4

ZSL16 CT84 ZSL16 CT84

Mean �0.001 �0.145 �0.005 �0.291

Median �0.001 �0.153 �0.006 �0.308

St. dev. 0.035 0.042 0.066 0.084

RMSE 0.035 0.151 0.066 0.303

To illustrate the effects of proper modeling for repeated measurements, we
considered Oy D y in the following simulations parallel to the standard approach of
Chou and Talalay (1984) using the dose effect by aggregating the effects of repeated
measurements at the same dose level. As a function of the model error Var.logit.y//,
the estimate of the 95% confidence interval for the combination indices at the
observed combination dose strongly depends on the estimation accuracy of the
model variance 
2. In Table 1, we compare the standard deviation and root mean
squared error (RMSE) of the estimated 
2 obtained by the proposed method or
the median effect model (Chou and Talalay 1984), using previously published R
code (Lee et al. 2010). In both scenarios, our method not only estimated 
2 without
bias, but also significantly reduced the variance and RMSE of the estimate.

Because the construction of the 95% confidence interval was under H0 W II D 1,
we assessed the probabilities of concluding synergistic, additive, and antagonistic
effects based on the 95% confidence intervals of the combination indices under H0.
In both scenarios, the probability of additive effects using our proposed method
was reasonably close to 95% (Table 2). The 95% confidence intervals constructed
based on the work of Lee and Kong (2009) for the method of Chou and Talalay
(1984) underestimated the variance of the combination indices, leading to larger
than expected probabilities of false conclusions for the synergistic or antagonistic
effects.

Furthermore, we investigated scenarios in which we assumed the alternative
model was true by only changing Dmed;c to a value of 1.65, which equivalently
translates into ˇ0;c D 0:5. Under this setting, the drug combination was always
synergistic and the true interaction index was a constant of 0.78 regardless of the
actual dose level or dose effect. Although both CT84 and our method tended to
overestimate the coverage probabilities of the confidence intervals in the simulation
(Table 3), our method produced smaller estimation errors for the parameter coeffi-
cients (not shown) and model variance (Table 4).
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Table 2 The probabilities of concluding synergistic, additive, and antagonistic effects based on
the 95% confidence intervals of the combination indices under H0. We compared the proposed
method (ZSL16) with that of Chou and Talalay (1984, CT84), using 1000 simulations. The
implementation of the 95% confidence interval estimation for CT84 was based on the approach
of Lee and Kong (2009) with R code provided by Lee et al. (2010)

ZSL16 CT84

Dose 0:6 1:2 2:4 0:6 1:2 2:4


 D 0:2

Synergistic 0:009 0:003 0:006 0:161 0:123 0:125

Additive 0:975 0:962 0:953 0:671 0:702 0:762

Antagonistic 0:016 0:035 0:041 0:168 0:175 0:113


 D 0:4

Synergistic 0:015 0:006 0:008 0:163 0:124 0:125

Additive 0:958 0:923 0:921 0:674 0:699 0:752

Antagonistic 0:027 0:071 0:071 0:163 0:177 0:123

Table 3 The probabilities of concluding synergistic, additive, and antagonistic effects based on
the 95% confidence intervals of the combination indices under H1. We compared the proposed
method (ZSL16) with that of Chou and Talalay (1984, CT84) using 1000 simulations. The
implementation of the 95% confidence interval estimation for CT84 was based on the approach
of Lee and Kong (2009) with R code provided by Lee et al. (2010)

ZSL16 CT84

Dose 0:6 1:2 2:4 0:6 1:2 2:4


 D 0:2

Synergistic 0:996 1:000 0:999 1:000 0:999 0:996

Additive 0:004 0:000 0:001 0:000 0:001 0:004

Antagonistic 0:000 0:000 0:000 0:000 0:000 0:000


 D 0:4

Synergistic 0:995 0:999 0:981 1:000 0:999 0:996

Additive 0:005 0:001 0:019 0:000 0:001 0:004

Antagonistic 0:000 0:000 0:000 0:000 0:000 0:000

Table 4 The mean, median, standard deviation (st. dev.) and root mean squared error (RMSE)
for the estimation of model error O
 � 
 . We compared the proposed method (ZSL16) with the
median effect model of Chou and Talalay (CT84) using 1000 simulations


 D 0:2 
 D 0:4

ZSL16 CT84 ZSL16 CT84

Mean �0:001 �0:183 �0:001 �0:183

Median �0:001 �0:194 �0:001 �0:193

St. dev. 0:043 0:052 0:044 0:052

RMSE 0:043 0:190 0:044 0:190
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6 Application

In this section, we apply our methods in an experimental study conducted for soft
tissue sarcoma samples at MD Anderson Cancer Center in a nested hierarchical
experimental design. Soft tissue sarcomas, which arise from connective or support-
ive tissues, account for 1% of adult cancers and 15% of pediatric cancers. Among 70
different histological subtypes, 5–10% are undifferentiated pleomorphic sarcomas
(UPS), which are typically large and rapidly growing tumors. Patients are still at risk
for both tumor recurrence and metastasis after undergoing standard treatments of
radiation therapy and chemotherapy. The objective of the experiment was to explore
the combination of targeted therapies for better treatment of patients with UPS.

UPS-186, a cell line derived from a sporadic UPS sample, was used to test the
effectiveness of treatment regimens in Dr. Keila Torres’s lab at the MD Anderson
Department of Surgical Oncology. Two novel inhibitors, AEW541 and BGT226,
were investigated for their drug interaction effects in combination doses at the fixed
ray with d2=d1 D 3=20. The experiment was repeated three times, each with tripli-
cate doses in combination or as single agents, as recommended by Sanofi (2013).

We first estimated the dose-effect curves for AEW541 and BGT226 by a mixed-
effect linear regression of logit.E/ on log.d/ based on cell viability when treated
with the single agents. The random effects in the mixed-effect regression had a
nested structure to accommodate the specific design feature. The median effect
plot indicates that the data followed the median effect equation (3) reasonably well
(Fig. 2a, b). Using the fitted median effect equations, we calculated the interaction
indices based on (11) for the varied effects (solid lines) of drug combinations at
the fixed ray with d2=d1 D 3=20 and constructed their associated point-wise 95%
confidence bounds (dashed lines) based on (16) in both Fig. 2c, d. The vertical bars
in Fig. 2c indicate the 95% confidence interval estimates of the interaction indices
at the tested doses of drug combinations using a naive estimator of the drug effects,
Oy D y, while the vertical bars in Fig. 2d indicate those obtained with the model-based
estimator Oy D logit�1. Ǒ

0;i C Ǒ
1;i log.d//. Based on the estimated 95% confidence

bounds (dashed lines), we conclude that the combination doses at the fixed ray are
statistically synergistic, with the effect between 0.37 and 0.45.

7 Discussion

We proposed a new approach to provide both point and interval estimates for the
drug interaction index in a ray design. It was implemented under the framework of
the median effect model (Chou and Talalay 1984), but using repeated measurements
observed for in vitro experiments. Our approach can adjust for the presence of
plate-location effects that are known to be of significant magnitude, for instance,
in micro-titer experiments (Faessel et al. 1999). At some observed dose levels for
a multiple drug combination, we proposed a procedure to estimate the interaction
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Fig. 2 Results of dose effect assessment at the fixed ray for combination doses of agents AEW541
and BGT226 to treat a cell line of undifferentiated pleomorphic sarcoma. (a) Median effect; (b)
Dose-effect curves; (c) Interaction indices versus effects using Oy D y; (d) Interaction indices
versus effects using model-based estimator Oy D logit�1. Ǒ

0;i C Ǒ
1;i log.d//. In plots (c) and (d),

solid curves indicate estimated interaction indices versus effects (proportion of cells surviving);
dashed lines are point-wise 95% confidence bounds for the curve of interaction index versus effect
based on the delta method in Sect. 4; vertical bars, from left to right, give 95% confidence interval
estimates of the interaction indices based on the delta method in Sect. 3 for observed combinations
respectively corresponding to the combination doses of (7.5, 50), (3, 20), (2, 13.3), (1.5, 10), (0.75,
5), (0.5, 3.3) and (0.3, 2)

index and construct its associated confidence interval. Because we can test drug
combinations only at a limited number of dose levels, and investigators are
interested in possible synergism at those dose levels, as well as identifying the region
where the synergistic effect is significant, we proposed an additional procedure to
estimate the interaction index along with the drug effect on the interval .0; 1/ and
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construct its associated confidence bound. The proposed method can help us gauge
the uncertainties of the interaction indices for combination doses of two or more
drugs and can also be used to provide more in-depth assessment of drug interactions.

The point estimator O�.d/ in our approach depends heavily on the estimated
effect Oy at the observed dose d. The bias in the estimation of Oy at a specific dose
level has a larger impact on O�.d/ and its confidence interval than bII.E/, which
partially explains why the derived variance estimator (15) for log.bII.E// could be
significantly different from the variance estimator (9) for log. O�.d// in some cases.
In addition, if we estimate the drug effects Oy by averaging the observed effects
at the same dose level, the change in the associated interaction indices between
two adjacent dose levels may contradict the trend estimated by bII.E/ (for example,
see plot C in Fig. 1 or 2), which is an indicator of an unreliable estimate of the
drug interaction due to the uncertainty in the dose effect estimation. This problem
also occurs for the estimation that uses the standard approach of Chou and Talalay
without repeated measurements. Alternatively, the model-based estimator Oy from
the estimated median effect equation for the drug combination avoids that problem
and provides a smooth estimation of the interaction index. However, as a trade-off,
a larger estimation bias is induced when the median effect model is misspecified.

Although bII.E/ has not been widely recognized or used in medical applications
to examine drug combinations, it is a robust estimate that provides an overall
assessment of drug potency and drug effects. Together with the construction of
its confidence bound, investigators can easily identify the regions that demonstrate
statistically significant drug synergism. This is especially useful in practice when
the focus of drug potency is mostly circumscribed to the effect in a range of
.50%; 90%/, or equivalently, the cell inhibition rate of 10–50%, where the drug
combination is considered to be not only effective but also potentially to have lim-
ited toxicity. However, before multi-drug combination experiments are conducted in
vitro, the dose-effect curve of the combined drug is unknown. In many cases when
none of the tested dose levels reaches the desired range of effects, bII.E/ can still
provide a valuable reference for guiding whether further in vitro or in vivo studies
should be conducted.
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Statistical Indices for Risk Tracking
in Longitudinal Studies

Xin Tian and Colin O. Wu

1 Introduction

Well-known regression methods for longitudinal analysis, for the most part, focus on
modeling the conditional means of the response variables with various longitudinal
variance-covariance structures given time and a set of covariates, which could be
either time-varying or time-invariant. The conditional means and the longitudinal
variance-covariance structures can be modeled either parametrically or nonparamet-
rically. These conditional mean-based regression models have been well-established
in the literature, e.g., Hart and Wehrly (1986), Shi et al. (1996), Hoover et al.
(1998), Fan and Zhang (2000), James et al. (2000), Lin and Carroll (2001), Rice
and Wu (2001), Diggle et al. (2002), Molenberghs and Verbeke (2005), Zhou et al.
(2008), Fitzmaurice et al. (2009) and Sentürk and Müller (2010). Although the
conditional mean-based models are popular in practice, they may be inadequate
when the scientific objectives of the study require the evaluation of the conditional
distribution functions.

Longitudinal analysis based on conditional distributions has two important
objectives which may not be easily fulfilled by evaluating the conditional means.
First, when the outcome variable has a non-Gaussian or skewed distribution,
the temporal trends of the outcome variable and the covariate effects may be
better described through the time-varying patterns of conditional distributions. The
conditional mean-based regression models, on the other hand, do not lead to useful
inferences on the distribution functions, when the distributions of the error terms
are non-Gaussian or unknown. One aspect we should note is that the estimation of
the conditional distribution functions generally requires a larger sample size than
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the estimation of the conditional means. Second, unlike the conditional mean-based
models, the conditional distributions and their functionals provide a natural and
clinically simple approach for describing tracking of risk factors over time. Of note,
the concept of tracking is originated from the need of predicting future values of
risk factors from serial measurements in epidemiological studies or longitudinal
clinical trials, and it has been studied by Clarke et al. (1978), Ware and Wu (1981),
Foulkes and Davis (1981) and McMahan (1981) under two general definitions and
various model formulations. As discussed in Foulkes and Davis (1981), the first
definition of tracking is concerned with the ability to predict the future values of
an outcome variable from its repeated measurements in the past, while the second
definition of tracking describes the maintenance of relative ranking over time among
a study population. Despite different technical definitions, tracking has important
implications in longitudinal biomedical studies that aim to identify persistent disease
risk factors related to the development and the occurrence of diseases later in life.

Applications of conditional distribution functions and risk factor tracking are
widely available in biomedical studies. For example, Mahoney et al. (1991)
described the factors affecting tracking of coronary heart disease risk factors in
a pediatric study, and Wilsgaard et al. (2001) analyzed tracking of cardiovascular
risk factors in an epidemiology study with an adult population. In these studies, the
scientific objective is to determine whether an individual with unfavorable levels
of cardiovascular risk factors, such as blood pressure, body mass index, and serum
lipids, at younger ages is more likely to have unfavorable levels of the same risk
factors at an older age relative to the reference population, or equivalently, the
tracking properties of these cardiovascular risk factors.

In this paper, the motivating example is the National Heart, Lung, and Blood
Institute Growth and Health Study (NGHS). The NGHS is a large epidemiological
study of childhood growth and cardiovascular risks of 2379 girls, who were 9 or 10
years old at enrollment, with detailed anthropometric and laboratory measurements
obtained at each of 10 annual visits during 1986–1997 (NGHSRG 1992). Previous
publications (Daniels et al. 1998; Obarzanek et al. 2010) investigated the effects of
age, race and other covariates on the cardiovascular risk factors using the conditional
mean-based methods. Since obesity and hypertension of a child are defined by the
conditional distributions of body mass index (BMI) and blood pressure (BP) level
given the child’s age, gender and height (NHBPEP 2004; Obarzanek et al. 2010),
an important question on tracking is whether having the abnormal level of a risk
factor, such as BMI or BP, at an early age could increase the likelihood of having
the abnormal level of the same risk factor at a later age. The appropriate answer to
this question may be used to justify longitudinal studies in young children and track
those subjects who have abnormal risk levels from childhood to young adulthood.
Motivated by the NGHS, Wu and Tian (2013a,b) and Tian and Wu (2014) proposed
two statistical tracking indices, namely, the rank-tracking probability (RTP) and the
rank-tracking probability ratio (RTPR), to quantify the tracking of a longitudinal
risk variable over time, and investigated a number of nonparametric estimators of
the RTP and RTPR under different regression models. The applications of the RTP
and RTPR estimators to the NGHS data demonstrate that both BMI and BP in this
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population of adolescents have good tracking abilities as children with high levels
of BMI or BP at a younger age are more likely to have high levels of BMI and BP
at an older age. These RTPs and RTPRs are local statistical indices in the sense that
they are functions of two specific time points, .t; t C ı/, with t > 0 and ı > 0,
so that their values may change with t or ı and the clinical interpretations depend
on the specific time points .t; t C ı/. In many situations, however, it may be more
convenient to measure tracking of risk factors by certain global tracking indices.
For example, if the RTP (or RTPR) of a risk factor only changes with ı and stays
mostly constant for t 2 Œt1; t2�, then it is reasonable to use the mean-integrated RTP
(or RTPR) over the time range Œt1; t2� as a function of the elapsed or lagging time ı
only.

Here we propose a class of mean-integrated RTP and RTPR (mRTP and mRTPR)
to quantify the global tracking of time-dependent variables in a longitudinal study.
In general, we may expect that a risk factor’s tracking ability diminishes over the
lagging time ı. Thus, we first consider the mRTP and mRTPR over a given time
range t 2 Œt1; t2�, which, as functions of ı, can be used to quantify how the rank-
based tracking of the variable changes over the elapsed time. When an overall
tracking index is required, we can also quantify the global tracking of a time-
dependent variable by a global mean-integrated RTP and RTPR (gRTP and gRTPR)
over both time ranges for t and ı. As useful alternatives to the local RTP and RTPR
for given .t; ı/, these global measures of tracking indices can be easily used to
compare the overall tracking of disease risk factors over short-term or long-term
follow-up.

For the rest of the paper, we present in Sect. 2 the various definitions and
interpretations of the local and global RTPs and RTPRs, derive in Sect. 3 the
estimation and inference methods for these tracking indices, and demonstrate the
applications of these tracking indices to the NGHS data in Sect. 4. Finally, we
investigate in Sect. 5 the statistical properties of these tracking indices through a
simulation study, and give some concluding remarks in Sect. 6.

2 Rank-Based Tracking Indices

We consider the longitudinal design commonly seen in large biomedical studies.
Motivated by the NGHS study (NGHSRG 1992), we focus on the following
longitudinal data structure that is mathematically tractable and simple to interpret in
biomedical studies: (a) The sample has n independent subjects, and the ith subject
has ni observations at time points ftij 2 T I j D 1; : : : ; nig, where T D ŒT0;T1� is
the time interval of interest or the study duration. The total number of observations is
N D

Pn
iD1 ni. (b) At any time point t 2 T , Y.t/ is the real-valued outcome variable.

For simplicity, we assume that Y.t/ is non-negative and the covariate X is time-
invariant and categorical, taking values x 2 f1; : : : ;Kg, and denote the longitudinal
sample for



Y.t/; X; t

�T
by Z D f.Yij;Xi; tij/I 1 � i � n; 1 � j � nig. In general,
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the methods of this paper can be easily extended to any range of Y.t/ on the real
line with continuous and time-dependent covariates. The assumption of categorical
and time-invariant covariate X is made for mathematical simplicity and practical
interpretations. We review in this section the local statistical tracking indices, RTP
and RTPR, defined by Wu and Tian (2013a,b) and Tian and Wu (2014), and then
introduce the corresponding mean-integrated global tracking indices.

2.1 Rank-Tracking Probabilities

Given that our objective is to evaluate the conditional percentiles and ranks of the
subjects’ health status (e.g., Kavey et al. 2003; Thompson et al. 2007; Obarzanek
et al. 2010), we define here a class of conditional probabilities to quantitatively
measure a subject’s percentile or rank and the tracking ability (or tracking) of the
outcome variable Y.t/ at different time points. Suppose that, for a given t 2 T and
X D x, the subject’s health status is determined by a set A.x; t/ for the response
value Y.t/, we can quantify the conditional probability of a certain health status by

PA.x; t/ D P
�
Y.t/ 2 A.x; t/

ˇ̌
X D x; t


: (2.1)

The choice of A.x; t/ depends on the scientific objective of the study. For example,
if Y.t/ is a subject’s BMI at age t, then A.x; t/ can be chosen as the overweight
risk set defined by the BMI values greater than the age-adjusted 85th percentile
from the growth chart (Obarzanek et al. 2010); if Y.t/ is a subject’s blood pressure,
then A.x; t/ can be chosen as the high blood pressure risk set defined by the blood
pressure levels greater than the 90th percentile conditional on age, gender and
height (NHBPEP 2004). Specifically, if A.x; t/ D .y;1/ for a given value y, PA.x; t/
= 1- Ft.yjx/, where Ft.yjx/is the conditional cumulative distribution function (CDF)
of Y.t/ given X D x and t, i.e.,

Ft.yjx/ D P
�
Y.t/ � y

ˇ̌
X D x; t


: (2.2)

In practice, it is sometimes useful to allow A.x; t/ to change with x and t. For
pediatric studies, because the health categories for children and adolescents are often
defined by the conditional distributions given age, gender and other covariates (e.g.,
Kuczmarski et al. 2002; NHBPEP 2004), it is meaningful to evaluate the conditional
CDF defined by Ft

�
y.x; t/jx


D P

�
Y.t/ � y.x; t/

ˇ̌
x; t

, where y.x; t/ is a pre-

determined risk threshold curve.
To quantify the tracking of Y.t/ at two time points t and t C ı, with ı > 0, the

rank-tracking probability based on A.x; t/ at t and t C ı is defined by

RTPA


x; t; t C ı

�
D P

�
Y.t C ı/ 2 A.x; t C ı/

ˇ̌
Y.t/ 2 A.x; t/; X D x


; (2.3)
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which is the conditional probability of Y.t C ı/ 2 A.x; t C ı/ given that X D x
and Y.t/ 2 A.x; t/. By comparing (2.1) with (2.3), we see that (2.3) measures the
likelihood of Y.t C ı/ 2 A.x; t C ı/ at time t C ı given that, at time t, Y.t/ is
already within A.x; t/, while (2.1) at time t C ı only measures the likelihood of
Y.tCı/ 2 A.x; tCı/without knowing the subject’s health status at time t. Thus (2.3)
takes the knowledge of Y.t/ 2 A.x; t/ into account and describes the ability to track
the subject’s health status determined by Y.t/ 2 A.x; t/ and Y.t C ı/ 2 A.x; t C ı/.
When RTPA



x; t; t C ı

�
D 1 at a given t, it indicates perfect tracking, i.e., certain

health status of Y.t/ is always maintained from t to t C ı. Since RTPA


x; t; t C ı

�
is

a function of the two time points t and t C ı, it is a local measure of tracking based
on A.x; t/ in the sense that the value of (2.3) is time-specific. For the special case
that A.x; t/ is the interval A˛.x; t/ D .y˛.x; t/;1/, where y˛.x; t/ is the .100
˛/th
percentile of Y.t/ given X D x, the quantile-based RTP of (2.3) is

RTP˛1;˛2


x; t; tCı

�
D P

�
Y.tCı/ > y˛2.x; tCı/

ˇ̌
Y.t/ > y˛1.x; t/; X D x


; (2.4)

which is the probability that Y.t/ is above the .100 
 ˛2/th percentile at time t C ı

given that X D x and Y.t/ is already above the .100 
 ˛1/th percentile at time t.

2.2 Rank-Tracking Probability Ratios

A potential problem of RTPA


x; t; t C ı

�
, which takes values in Œ0; 1�, is that it does

not provide a relative scale as compared to the conditional probability of Y.t C ı/ 2

A.x; t C ı/ without knowing the information of Y.t/. Thus, an alternative tracking
index for measuring the relative strength of tracking ability for Y.t/ at time points
t and t C ı is the relative value of RTPA



x; t; t C ı

�
compared with the conditional

probability P
�
Y.t C ı/ 2 A.x; t C ı/

ˇ̌
X D x


. This relative tracking index is defined

to be the rank-tracking probability ratio,

RTPRA


x; t; t C ı

�
D

RTPA


x; t; t C ı

�

P
�
Y.t C ı/ 2 A.x; t C ı/

ˇ̌
X D x

 : (2.5)

If RTPRA


x; t; t C ı

�
D 1, then the knowledge of Y.t/ 2 A.x; t/ does not increase

the chance of Y.tCı/ 2 A.x; tCı/, and this implies that Y.t/ 2 A.x; t/ does not have
tracking potential for Y.tCı/ 2 A.x; tCı/. On the other hand, if RTPRA



x; t; tCı

�

is greater or less than 1, then Y.t/ 2 A.x; t/ has positive or negative tracking for
Y.t C ı/ 2 A.x; t C ı/, respectively. The strength of the positive tracking ability can
be measured by how much RTPRA



x; t; t C ı

�
is greater than 1.
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2.3 Mean-Integrated RTPs and RTPRs

By integrating out the time variable in RTP of (2.3) over an interval T0 D Œt1; t2�,
we can obtain a mean-integrated RTP (mRTP), which represents the average value
of RTP over the time range T0 as a function of the lagging time ı,

mRTPA;T0



x; ı

�
D

R t2
t1

RTPA


x; t; t C ı

�
dt

t2 � t1
: (2.6)

When the RTPA


x; t; t C ı

�
curve does not change significantly over t 2 T0, it

is appropriate to measure the tracking ability of Y.t/ within T0 using the simpler
index, mRTPA;T0



x; ı

�
, which, for a fixed X D x, is a function of ı only. As ı

changes, mRTPA;T0



x; ı

�
measures the mean tracking ability of Y.t/ for any given

lagging time ı, which is expected to decrease with ı in most biomedical studies. For
the special case of quantile-based RTP of (2.4), the mRTP is denoted by

mRTP.˛1;˛2/;T0



x; ı

�
D

R t2
t1

RTP˛1;˛2


x; t; t C ı

�
dt

t2 � t1
: (2.7)

When the RTPR curve is used for tracking of outcome Y.t/, the mean-integrated
RTPR (mRTPR) over t 2 T0 D Œt1; t2� is given by

mRTPRA;T0



x; ı

�
D

R t2
t1

RTPRA


x; t; t C ı

�
dt

t2 � t1
: (2.8)

Similar to (2.6), (2.8) is an appropriate global measure of tracking when the values
of RTPRA



x; t; t C ı

�
do not vary significantly over t 2 T0, and is likely to be a

decreasing function of the lagging time ı. To fully use all the observations in the
design time range or during the entire study follow-up T D ŒT0;T1�, we can let
T0 D Tı D ŒT0;T1 � ı�. Thus for any ı > 0, t 2 Tı D ŒT0;T1 � ı�, we can estimate
RTPA.x; t; t C ı/ and RTPRA.x; t; t C ı/, then obtain mRTPA;Tı

.x; ı/ in (2.6) and
mRTPRA;Tı

.x; ı/ in (2.8).
Although the above tracking indices, mRTPA;T0



x; ı

�
and mRTPRA;T0



x; ı

�
,

characterize some of the global tracking features of a variable Y.t/, their dependence
on ı makes them “partially global”. For example, if we would like to compare the
degrees of tracking for two disease risk factors Y.1/.t/ and Y.2/.t/ within the time
range t 2 T0, mRTPA;T0



x; ı

�
and mRTPRA;T0



x; ı

�
for Y.1/.t/ and Y.2/.t/ only

describe the tracking abilities of Y.1/.t/ and Y.2/.t/ at a specifically given lagging
time ı, and they do not provide an overall comparison for a range of ı values. To
use certain global tracking indices that capture the time ranges for both t 2 T0 and
ı 2 T1 D Œd1; d2�, we consider the global mean-integrated RTP (gRTP) and RTPR
(gRTPR) defined by
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gRTPA.x/ D

R d2
d1

mRTPA;T0



x; ı
�

dı

.d2 � d1/
(2.9)

and

gRTPRA.x/ D

R d2
d1

mRTPRA;T0



x; ı

�
dı

.d2 � d1/
(2.10)

respectively. Compared to the tracking indices defined in (2.3) through (2.8), the
gRTP and gRTPR defined in (2.9) and (2.10) are the overall measures of tracking
for Y.t/ because they are not functions of either t or ı. When the RTPs and RTPRs
do not change significantly with .t; ı/ for t 2 T0 and ı 2 T1, the gRTPA.x/ and
gRTPRA.x/ are appropriate global tracking indices for Y.t/within the corresponding
time ranges.

3 Estimation and Inference Methods

We establish a nonparametric method based on B-spline approximations for the
estimation and inferences of the tracking indices defined in Sect. 2. Assuming the
covariate X is discrete and time-invariant, our estimation method is based on the
nonparametric mixed models of Shi et al. (1996) and Rice and Wu (2001). We briefly
discuss a potential extension of the estimation method with continuous and time-
varying covariates.

3.1 Nonparametric Mixed Models and Prediction

Global smoothing through basis approximations is a natural extension of the linear
mixed-effects models and popular in nonparametric longitudinal analysis. For the
simple case of evaluating the time trend of Y.t/ without covariates, Shi et al. (1996)
and Rice and Wu (2001) have proposed to model Yi.t/ at time t by the nonparametric
mixed-effects model,

Yi.t/ D 	.t/C �i.t/C �i.t/ ; (3.1)

where	.t/ is the mean curve of Yi.t/, �i.t/ is the subject-specific deviation from	.t/
for the ith subject with E

�
�i.t/


D 0, and �i.t/ is the mean zero measurement error.

For the subgroup analysis conditioning on X D x, the model (3.1) can be applied by
specifying 	x.t/, �i;x.t/ and �i;x.t/ as the corresponding mean curve, subject-specific
deviation curve and error process for X D x, so that, conditioning on X D x,

Yi.t/
ˇ̌
XDx D 	x.t/C �i;x.t/C �i;x.t/: (3.2)
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The estimation of the mean and subject-specific deviation curves can be achieved
through a least squares method for the B-spline approximated model of (3.1)
or (3.2). When B-splines are used for (3.1), we have the approximations

	.t/ 	 b0.t/
T � and �i.t/ 	 b1.t/

T �i;

so that the B-spline approximated model for (3.1) is

Yi.t/ D b0.t/
T � C b1.t/

T �i C �i.t/; (3.3)

where, for some positive integers m0 and m1,

b0.t/ D


b01.t/; : : : ; b0m0 .t/

�T
and b1.t/ D



b11.t/; : : : ; b1m1 .t/

�T

are the B-spline basis functions and

� D


�1; : : : ; �m0

�T
and �i D



�i1; : : : ; �im1

�T

are the corresponding population and subject-specific coefficients. We assume that
the subject-specific coefficient vectors �i, i D 1; : : : ; n, are independent and have a
multivariate normal distribution with mean zero and variance-covariance matrix ˆ.
If we denote by Yi the column vector consisting of the observed Yi.ti/ values at the
time points ti D .ti1; : : : ; tini/

T , B0i and B1i the corresponding ni 
 m0 and ni 
 m1

spline basis matrices, and �i the measurement error vector evaluated at these time
points, respectively, the matrix representation of the B-spline approximation (3.3)
for the observed data is

Yi D B0i � C B1i �i C �i; (3.4)

where �i D


�i.ti1/; : : : ; �i.tini/

�T
.

Under the assumption that �i has the mean zero normal distribution, i.e. �i �

N.0;†/, the maximum likelihood estimators (MLEs) or the restricted MLEs of˚
�;†;ˆ

�
are b̊�;b†; b̂

�
, and the best linear unbiased predictors (BLUPs) of the

random effects b�i can be computed by the EM algorithm as described in Rice
and Wu (2001) and implemented by using the statistical packages (e.g., the lme4
package in R, Bates et al. 2016). The B-spline predicted outcome trajectory curve
for the ith subject at any time point t is then

bYi.t/ D b0.t/
Tb� C b1.t/

Tb�i ; (3.5)

which is computed by plugging the coefficient estimates into (3.3). Estimation of the
mean and subject-specific curves in (3.2) can be obtained using the same method as
outlined in (3.3) through (3.5), except that the estimated coefficients in (3.5) depend
on the given covariate X D x. In this case, the B-spline predicted outcome trajectory
curve for the ith subject at any time point t is
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bYi.t/
ˇ̌
XiDx D b0.t/

Tb�x C b1.t/
Tb�i;x: (3.6)

In general, we allow b0.t/ and b1.t/ to be B-spline basis functions with possibly
different m0 and m1. In practice, we may take m0 D m1 D m for computational
simplicity, so that b0.t/ D b1.t/ D b.t/. The number of terms for the B-spline bases,
m0, m1 or m, may be chosen by the model selection criteria or cross-validation.
We used B-spline basis in our computation for curve estimation and outcome
trajectory prediction because of its good numerical properties and simplicity in
practical implementation. Other smoothing methods, such as the Fourier basis
approximations or penalized smoothing splines, may also be applied.

We note that, as an extension of model (3.1), when a set of continuous and
time-dependent covariates X.t/ are included, Liang et al. (2003) proposed to use a
class of mixed-effects varying coefficient models to predict the outcome Y.t/ given
X.t/. However, this extension does not lead to useful interpretation of the global
tracking indices in Sect. 2.3 and requires further methodological development than
the indices provided in this paper.

3.2 Estimation of Tracking Indices

The predicted trajectory for Y.t/ can be used to estimate the tracking indices.
Estimation of the local tracking indices, RTP and RTPR, based on this approach has
been described in Tian and Wu (2014). We further extend this estimation approach
to the global tracking indices defined in Sect. 2.3.

For a brief description of the local RTP and RTPR estimators, we first note that
RTP of (2.3) and RTPR of (2.5) can be written as

RTPA


x; t; t C ı

�
D

E
˚
1ŒY.tCı/2A.x; tCı/�; Y.t/2A.x; t/;XDx�

�

E
˚
1ŒY.t/2A.x; t/;XDx�

� (3.7)

and

RTPRA


x; t; t C ı

�
D

RTPA


x; t; t C ı

�

E
˚
1ŒY.tCı/2A.x; tCı/;XDx�

� (3.8)

respectively, where 1Œ	� is the indicator function. Let

eYi.t/ D bYi.t/Cb�i.t/ (3.9)

be the estimated pseudo-observation of the ith subject at time t, where b�i.t/ is
estimated measurement error. Then, by substituting the expected values of (3.7)
and (3.8) with their corresponding empirical estimators, we obtain the estimators,

bRTPA


x; t; t C ı

�
D

Pn
iD1 1ŒeYi.tCı/2A.x; tCı/;eYi.t/2A.x; t/;XiDx�Pn

iD1 1ŒeYi.t/2A.x; t/;XiDx�

(3.10)
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and

1RTPRA


x; t; t C ı

�
D

bRTPA


x; t; t C ı

�

.1=n/
Pn

iD1 1ŒeYi.tCı/2A.x; tCı/;XiDx�

(3.11)

for RTP and RTPR, respectively. The reason for using eYi.t/ of (3.9) in the
estimators (3.10) and (3.11) is thatbYi.t/ is the subject-specific average at t for the ith
subject, whileeYi.t/, which includes the random measurement error for the subject,
is an “observation” for the subject and appropriate for estimating the distribution
functions. Two remarks for the estimators (3.10) and (3.11) have been noted in
Tian and Wu (2014). First, theb�i.t/ can be computed from the maximum likelihood
estimator of �i.t/ in (3.1) or the estimated error from the fitted model residuals. The
potential bias of usingbYi.t/ instead ofeYi.t/ in (3.10) and (3.11) has been shown by
simulation. Second, in some situations, the risk threshold in set A.�/ is not known
and may be estimated through a sample splitting approach.

Based on (3.10) and (3.11), we can obtain the estimators of the global tracking
indices through integration over the time ranges of interest. Replacing the RTP and
RTPR in (2.6) and (2.8) with the estimators in (3.10) and (3.11), we obtain the
estimators

1mRTPA


x; ı

�
D

R t2
t1
bRTPA



x; t; t C ı

�
dt

t2 � t1
(3.12)

and

2mRTPRA


x; ı

�
D

R t2
t1
1RTPRA



x; t; t C ı

�
dt

t2 � t1
(3.13)

for mRTP and mRTPR, respectively, where the integration in the numerators can
be computed numerically. Similarly, the estimators for gRTP and gRTPR of (2.9)
and (2.10) are given by

1gRTPA.x/ D

R d2
d1

1mRTPA


x; ı

�
dı

.d2 � d1/
(3.14)

and

2gRTPRA.x/ D

R d2
d1

2mRTPRA


x; ı

�
dı

.d2 � d1/
(3.15)

respectively, through further integration over the range of the lagging time ı.
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3.3 Bootstrap Confidence Intervals

As the asymptotic distributions of the estimators in (3.12) through (3.15) are still
unavailable, the resampling-subject bootstrap approach is used to construct the
corresponding approximate bootstrap confidence intervals (Hoover et al. 1998).
In this approach, we obtain B bootstrap samples by resampling the subjects with
replacement one at a time, and compute the corresponding estimates within each
bootstrap sample. The average and the lower and upper Œ100
.˛=2/�th percentiles of
the B bootstrap estimates are used as our bootstrap estimate and the Œ100
.1�˛/�%
bootstrap confidence interval. Alternatively, we can compute the sample standard
deviations (SD) of the estimates from the bootstrap samples, and approximate the
Œ100 
 .1 � ˛/�% confidence interval by the estimate ˙ z˛=2 
 SD error band. In
our numerical applications, we used B D 500 bootstrap samples, and the simulation
results show the coverage probabilities of these bootstrap confidence intervals are
reasonably good.

4 Application to the NGHS Data

The NGHS is a multi-center population-based cohort study aimed to assess the racial
differences and longitudinal changes in cardiovascular risk factors for adolescent
girls. A total of 1166 Caucasian and 1213 African-American girls at age 9 or
10 years enrolled in NGHS and had height, weight, blood pressure and other
cardiovascular risk factors measured at annual visits through age 18–19 years.
The study design was described in NGHSRG (1992). Tian and Wu (2014) studied
tracking of body mass index (BMI) and systolic blood pressure (SBP) using the local
rank-tracking indices. Building on this earlier work, we evaluate here the global
indices discussed in Sect. 2 to track the health status of overweight/obesity and high
blood pressure in these adolescent girls.

4.1 Rank-Tracking for BMI

Based on Obarzanek et al. (2010), the overweight and obesity status for girls (�
85th percentile) was defined by using the age- and sex-adjusted percentile from the
Centers for Disease Control and Prevention (CDC) growth charts. We fit separate
nonparametric mixed-effects models (3.2) to the NGHS BMI data by race with cubic
B-spline approximation and 4 equally-spaced knots. Then we computed the subject-
specific BMI trajectories over 9–19 years of age, and estimated the mean-integrated
global RTP and RTPR of BMI for both races over the age range and the lagging
time interval.
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Fig. 1 The estimated BMI mRTPA0:85



x; ı
�
, mRTPRA0:85



x; ı
�

and their 95% pointwise bootstrap
percentile confidence intervals for Caucasian (x D 0) and African-American (x D 1) girls (a–
d). The estimated BMI gRTPA0:85 .x/ or gRTPRA0:85 .x/ and its 95% bootstrap percentile confidence
interval are indicated in each plot

Figure 1a, b shows the estimated mRTPA0:85



x; ı
�

curve over the range of the
lagging time ı 2 Œ1; 5� years, for Caucasian (x D 0) and African-American (x D 1)
girls, respectively. Here A0:85 D A0:85.t/ represents the risk set for the over-
weight/obesity status, containing the set of BMI values greater than the age-adjusted
85th CDC percentile for girls’ BMI at age t. At each given ı, mRTPA0:85



x; ı
�

was calculated from integrating the RTPA0:85



x; t; t C ı

�
curve over the entire time

range of Œ9; 19 � ı� years. That is, when ı=2, for each t 2 Œ9; 17�, we estimated
the local RTPA0:85



x; t; t C 2

�
, then obtained mRTPA0:85



x; ı D 2

�
by integrating

RTPA


x; t; t C 2

�
over [9, 17] for t; when ı=4, we obtained mRTPA0:85



x; ı D 4

�

by integrating RTPA0:85



x; t; t C 4

�
over the time Œ9; 15� for t. The 95% pointwise

bootstrap percentile confidence intervals for mRTP estimators were computed from
B D 500 bootstrap replications.

For Caucasian and African-American girls at 9–19 years of age, the estimated
mRTP curves show that, on average, the conditional probability of being overweight
or obese were 76–88% and 85–92% for those girls who were already overweight one
to 5 years earlier, respectively. As expected, the mRTP curves tended to decrease
with ı 2 Œ1; 5�. Further, the global indices gRTPA0:85 .x/ and their 95% bootstrap
confidence intervals were estimated to be 0:817.0:792�0:840/ for Caucasian girls
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and 0:882.0:866�0:896/ for African-American girls by averaging over the interval
for ı, respectively, which suggested that African-American girls were more likely
to remain in the undesirable overweight status compared to Caucasian girls. The
relative strength of the BMI tracking ability is shown by the mRTPR curves
and gRTPR in Fig. 1c, d. For both racial groups, these relative global tracking
indices were significantly greater than 1, indicating that the knowledge of a girl’s
overweight status in an earlier age increased the chance of being overweight at
a later age about two to three times compared to the probability of her being
overweight without the knowledge of her previous weight status. Consistent with
the snapshot results based on the local RTPs and RTPRs in Tian and Wu (2014),
these global tracking results indicate that there was a very high degree of positive
tracking for BMI over 1–5 years for these adolescent girls.

4.2 Rank-Tracking for SBP

For children and adolescents, the blood pressure status was defined by the age-, sex-
and height-specific conditional percentiles (NHBPEP 2004). We studied here the
tracking of SBP by comparing it with the risk set A0:75.t/ D fy W y > q0:75.t/g where
q0:75.t/ was the age-adjusted 75th SBP percentile for a girl at age t with median
height from the guideline table in NHBPEP (2004).

Similarly, we fit the nonparametric mixed-effects models to the NGHS SBP
data by race separately, using cubic B-spline approximation with 4 equally-spaced
knots selected from Bayesian information criterion (BIC). Then we estimated the
mean-integrated global rank-tracking indices based on the predicted trajectories
of individual SBP curves. Figure 2a, b shows the estimated mRTPA0:75



x; ı
�

curve
over the range of 1–5 years, for both racial groups (x D 0 for Caucasians and
x D 1 for African-Americans), respectively. The 95% pointwise bootstrap percentile
confidence intervals for the estimators were obtained from B D 500 bootstrap
samples.

For both Caucasian and African-American girls at 9–19 years of age, the
estimated mRTP curves had a slight decreasing trend over the lagging time ı,
indicating more recent SBP status such as SBP measured 1 or 2 years earlier
might be more predictive of the current SBP status compared to the SBP status
5 years ago. On average, the conditional probability of having elevated SBP (in
the upper quartiles of the population) was 30–37% for Caucasian girls and 36–
43% for African-American girls given those girls who already had elevated SBP
1–5 years earlier. Further, the global indices gRTPA0:75 .x/ and their 95% bootstrap
confidence intervals (CIs) averaging over the lagging time were estimated to be
0:336.0:303�0:370/ and 0:402.0:370�0:432/, respectively. These results suggest
SBP had a moderate and positive tracking ability for adolescent girls, although not
as high compared to using BMI to track overweight status (Fig. 1). The relative
strength of the SBP tracking ability evaluated by the mRTPR curves and gRTPR are
displayed in Fig. 2c, d. Compared to the probability of a girl having elevated SBP
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Fig. 2 The estimated SBP mRTPA0:75



x; ı
�
, mRTPRA0:75
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and their 95% pointwise bootstrap
percentile confidence intervals for Caucasian (x D 0) and African-American (x D 1) girls (a–
d). The estimated SBP gRTPA0:75 .x/ or gRTPRA0:75 .x/ and its 95% bootstrap percentile confidence
interval are indicated in each plot

without knowing the SBP status at an earlier age, knowing that a girl already had
elevated SBP in an earlier age increased the likelihood of her having elevated SBP at
a later age more than 2 times: the estimated gRTPR = 2.587 (95% CI 2.399–2.783)
for Caucasian and gRTPR = 2.373 (95% CI 2.235–2.523) for African-American
girls, respectively.

5 Simulation

To study the performance of our estimators, we consider a small simulation that
mimics the NGHS SBP data structure. The simulated samples were generated based
on the model (3.1), Yi.t/ D 	.t/ C �i.t/ C �i.t/, for t 2 Œ0; 10�. Each simulated
sample consisted of n D 1000 subjects, each with 10 random visit times. Within
each sample, we generated the ith subject’s jth visiting time, tij, from the uniform
distribution UŒ.j � 1/; j� for j D 1; : : : ; 10, so that, ti1 � UŒ0; 1�; : : : ; ti10 � UŒ9; 10�.
Similar to the patterns of the SBP growth curves in NGHS, we chose 	.t/ D

100� 0:9t C 18 sin.� t=25/. The random effect of the model was �i.t/ D �0i C �1it,
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where .�0i; �1i/
T followed the bivariate normal distribution with zero-mean and

covariance � D .�1; �2/ such that �1 D .9;�0:15/T and �2 D .�0:15; 0:04/T ,
i.e., corr.�0i; �1i/ D �0:25. The random error �.tij/ was uncorrelated with .�0i; �1i/

T

and had the N.0; 4/ distribution.
For each simulated sample, we estimated mRTPA˛;T0



ı/ and mRTPRA˛;T0



ı/

defined in (2.6) and (2.8), where ı 2 Œ1; 5�, T0 D Œ0; 5�, and A˛.�/ D .q˛.t/;1/,
with the .100 
 ˛/th percentile q˛.t/ computed from the normal distribution based
on the simulation model. Using the procedures in Sect. 3, we fit a mixed-effects
model (3.1) to each sample with the cubic B-spline basis approximation and equally-
spaced knots selected from BIC, and computed the estimators 1mRTPA˛



ı/ and

2mRTPRA˛



ı/ using the predicted subject-specific curves bYi.t/ for t 2 Œ0; 10�.

Furthermore, we calculated the 1gRTPA˛ and 2gRTPRA˛ . The bootstrap confidence
intervals for the estimators were obtained with B D 500 bootstrap replications.

We repeated the simulation M D 1000 times. Figure 3 shows the true curves of
tracking indices computed based on the known simulation model, the averages of
their estimates and the lower and upper 2.5% pointwise percentiles of the estimated
curves 1mRTPA˛



ı/ and 2mRTPRA˛



ı/ with ˛ D 75% and ı 2 Œ1; 5�. These plots

indicate that these average curves were reasonably close to the true curves, and the
widths of the intervals bounded by the lower and upper 2.5% pointwise percentiles
were relatively small. We carried out the simulations for a range of .˛; ı/ values.
For ˛ D 75% and ı D 1; 2; : : :; 5, the averages and the square roots of the mean
squared errors (MSEs) of the mRTP, gRTP, mRTPR and gRTPR estimates and the
empirical coverage probabilities for the bootstrap percentile confidence intervals are
summarized in Table 1. Other ˛ and ı values are not tabled because the simulation
results for the corresponding estimators were very similar to those in Table 1. We
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Fig. 3 The true curves (solid lines) of tracking indices, the averages of their estimates (dash lines)
and the lower and upper 2.5% pointwise percentiles (dotted dash lines) of the estimated curves for

(a) 1mRTPA0:75
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Table 1 The true values of mRTPA˛ .ı/, gRTPA˛ , mRTPRA˛ .ı/, and gRTPRA˛ with ˛ D 75%
under the simulation model, the averages and the square roots of the MSEs for the estimates and the
empirical coverage probabilities of the 95% bootstrap confidence intervals from 1000 simulations

True Average Average Coverage

value estimate root MSE probability

mRTP(ı) ı D 1 0.588 0.579 0.018 0.914

ı D 2 0.585 0.578 0.017 0.922

ı D 3 0.581 0.576 0.016 0.940

ı D 4 0.575 0.574 0.016 0.954

ı D 5 0.569 0.570 0.016 0.951

gRTP 0.580 0.576 0.015 0.936

mRTPR(ı) ı D 1 2.353 2.359 0.071 0.948

ı D 2 2.341 2.353 0.072 0.942

ı D 3 2.323 2.345 0.072 0.938

ı D 4 2.301 2.336 0.076 0.919

ı D 5 2.274 2.327 0.086 0.916

gRTPR 2.320 2.344 0.072 0.930

also repeated the simulation study using the sample size of n D 200 or n D 500

in each simulated sample, and the results were comparable to those in Table 1. In
summary, these results show that our proposed methods for estimating the global
tracking indices perform well: the averages of the estimates were close to the true
curves and the coverage probabilities of the bootstrap confidence intervals were also
near the nominal level of 95%.

6 Discussion

We have developed in this paper a class of global tracking indices for a time-
dependent variable, and showed that these statistical indices quantitatively measure
the rank-tracking abilities of risk factors in a longitudinal epidemiological study.
These global tracking indices are constructed based on the local tracking indices,
RTP and RTPR, defined in Tian and Wu (2014), which can be intuitively interpreted
as the conditional probabilities of a subject’s health status at a later time point given
that the same subject had certain health status at an earlier time point. Compared
with the commonly used serial correlations in the literature, our tracking indices give
more intuitive quantitative measures of the variables’ tracking abilities over time and
do not depend on the assumptions for the distribution of the longitudinal variable of
interest. In contrast, serial correlations may not have adequate interpretations if the
relationship between the outcome variable evaluated at two time points is not linear
or their joint distribution is significantly different from normality. Furthermore,
the Pearson’s correlation or other rank-based nonparametric correlation coefficients
may not provide an adequate estimate of dependence at any two different time
points using sparse observations due to missing or random study visits. However, the
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estimation and inference procedures of our global tracking indices are constructed
under the nonparametric mixed-effects models, which use all the available data and
are sufficiently flexible in many longitudinal settings. Therefore, the inherent model
flexibility and the scientific interpretations enable our global track indices to be used
as a convenient statistical tool to identify certain disease risk factors that track over
time.

Notably, the findings from applying these global tracking indices to the NGHS
study of the adolescent girls suggest that both BMI and SBP had positive tracking
ability over 1–5 years with certain differences by the race groups. These results
would be expected to have important implications in the design of long-term
pediatric studies and in developing guidelines for the primary prevention of
cardiovascular disease beginning in childhood. In general, the global rank-tracking
indices may be applied to other large epidemiological studies with even longer
follow-up, such as the Framingham Heart Study (with over 65 years of follow-
up; Mahmood et al. 2014) and the Coronary Artery Risk Development in Young
Adults (CARDIA) Study (with over 30 years of follow-up; Cutter et al. 1991). In
this context, these global indices can be used to evaluate tracking of various disease
risk factors and subclinical measures over a short term (such as 5–10 years) or very
long term (such as over 20–30 years) period of time from early life and to determine
the optimal risk threshold levels and timing for early intervention to prevent the
occurrence of diseases later in life.

Further methodological and theoretical research in this topic is still warranted in
at least two fronts. First, we need to develop the asymptotic properties, including the
asymptotic mean squared errors and the asymptotic distributions, for the estimators
of (3.12) through (3.15). These asymptotic properties can be used to establish
the asymptotic inference procedures for the tracking indices. Second, estimation
methods other than the ones proposed in this paper need to be developed. We present
here the method of estimating the conditional probabilities from individual outcome
trajectories based on the nonparametric mixed-effects models. Alternatively, various
distribution-based regression approaches may be used to estimate the conditional
distribution functions and the related tracking indices (Wei et al. 2006; Wu and Tian
2013b). The potential advantages and disadvantages of the alternative estimation
methods may be compared with the B-spline based estimators.
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Statistical Analysis of Labor Market
Integration: A Mixture Regression Approach

Tapio Nummi, Janne Salonen, and Timothy E. O’Brien

1 Introduction

Integration of young people into the labor market is a complex and socially impor-
tant issue which must be understood as a process in time. The majority of young
people attach to the labor market quite quickly, some after their studies although
some do remain unemployed (e.g. Pareliussen 2016). Moreover, different stages
may not necessarily follow a straightforward progression. For example, it is quite
common in the Finnish system for students to work during their studies. Meaning,
one person can have several different statuses at the same time (throughout 1 year).
Obtaining an overall picture of such complex and heterogeneous longitudinal data
is a challenging task.

In this paper we present one possible approach to this complex data analysis
problem. The approach is based on the mixture regression applied to multivariate
longitudinal binary data. In applied statistics, these methods are often referred to as
latent class regression models, or trajectory analysis (Nagin 2005). The idea is that
data consists of unknown sub-populations with some common properties that can be
revealed through longitudinal data. Recently these methods have been very popular
in many fields of science, including psychology, education, sociology, marketing
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and health sciences (Korpela et al. 2017; Kokko et al. 2008; Jolkkonen et al. 2017;
Mani and Nandkumar 2016; Nummi et al. 2014, 2017).

In this paper we present a 4-dimensional binary mixture regression model that
is used to identify the sub-groups in the data gathered. We find that there are ten
main groups that lead to different development paths of young men. Most people
integrated into the labor market quite quickly after various intermediate stages, but
in a few groups the integration is weaker or slower. In terms of society, the groups
of weak attachment are of central interest, because they may later require special
support or action from society. For instance, in some countries a special youth
guarantee policy has been promoted (Keränen 2012; Escudero and Mourelo 2015).

2 Methods

2.1 Data

The data comes from the administrative registers of the Finnish Centre for Pensions
and Statistics Finland. In the administrative registers there is a range of information
pertaining to all of the pension insured (total population) people in Finland. For this
study we choose the male cohort born in 1987. For other studies of the same cohort
we can refer to Paananen and Gissler (2013). We follow all individuals between
2005 to 2013, when the cohort is 18–26 years of age. We take a sub-population of
those who are Finnish citizens and who have lived in Finland during the specified
period. The research population is 29,383 males.

Labor market attachment is measured using days when working, in education, in
unemployment and on various social benefits per year. This yields the 4-dimensional
response vector as follows:

• Variable 1 (Employed): Individual employed for days/year in private or public
sector or self-employed.

• Variable 2 (Education): Individual in education leading to a degree and/or is
receiving student financial aid.

• Variable 3 (Unemployed): Individual receives unemployment benefits, either
earnings related or paid by the state.

• Variable 4 (Leave): Individual receives sickness benefits or is on vocational
rehabilitation. Parental leave and the permanently disabled are included here as
well.

The original data is measured as days/year. For our analysis, the data was
dichotomized (Yes/No) because in this type of longitudinal data, the most important
factor in the formation of an individual’s career trajectory is the several different
statuses of the individuals. This makes the analysis of data much simpler and more
uniform.



Statistical Analysis of Labor Market Integration: A Mixture Regression Approach 315

2.2 Multivariate Binary Mixture

Our aim is to identify clusters of individuals with the same kind of mean develop-
mental profiles (trajectories). Let yi D .yij1; yij2; : : : ; yijT/

0 represent the sequence of
measurements on individual i for the variable j over T periods and let fi.yijXi/ denote
the marginal probability distribution of yi with possible time dependent covariates
Xi that are same to all j D 1; : : : ; s variables. It is assumed that fi.yijXi/ follows a
mixture of K densities

fi.yijXi/ D

KX

kD1

�kfik.yijXi/;

KX

kD1

�k D 1 with �k > 0; (1)

where �k is the probability of belonging to the cluster k and fik.yijXi/ is the density
for the kth cluster (see e.g. McLachlan and Peel 2000). The natural choice is to use
the Bernoulli distribution for the mixture components. It is assumed that s variables
in yi; i D 1; : : : ;N; are independent. Also measurements given the kth cluster are
assumed to be independent. This yields the density

fik.yijXi/ D

sY

jD1

TY

tD1

p
yijt

ijtk.1 � p
1�yijt

ijtk /; (2)

where pijtk is a function of covariates Xi. For modeling the conditional distribution
of pijtk we use the logistic regression model. For the ith individual we can then write

pijtk D
exp.x0

iˇjk/

1C exp.x0
iˇjk/

; (3)

where x0
i is the tth row of Xi , ˇjk is the parameter vector of the jth variable in the

kth cluster. For our analysis we took the second degree model

x0
iˇjk D ˇ0jk C ˇ1jkt C ˇ2jkt2 (4)

for modeling the probabilities within the variable j and cluster k in time t. Maximum
likelihood estimates can then be obtained by maximizing the log likelihood
log

PN
iD1 fi over unknown parameters ˇjk; j D 1; : : : sI k D 1; : : :K (Nagin 1999;

Jones et al. 2001; Nagin and Tremblay 2001; Jones and Nagin 2007, Nagin and
Odgers 2010a,b). When the model parameters are estimated the posterior probability
estimate provides a tool for assigning individuals to specific clusters. Individuals
can then be assigned to specific clusters to which their posterior probability is the
largest.
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3 Analysis

Choosing the number of trajectories (clusters) K is an important issue when applying
mixture modeling. The selection of K can be based on technical criteria, substantive
examination, or both. We used the information criteria BIC, which is perhaps
the most widely used in this context. Here we present the values of BIC for
k D 5; : : : ; 10: �397509.4, �394554.5, �392966.5, �389504.3, �388897.6 and
�383596.6. The maximum (note: SAS implementation) is obtained for k D 10

and is therefore our choice for the number of clusters K. Increasing K could yield
to more difficult to interpret and insignificantly small clusters. The final estimated
model is summarized in Tables 1 and 2 (in Appendix). The trajectory plots (Figs. 1,
2, 3, and 4) present conditional point means calculated for each of the four variables.

Table 1 Clusters k, their
estimated absolute Nk and
relative sizes O�k

Group .k/ Nk O�k .%/

1: 545 1:9

2: 3009 10:2

3: 1971 6:7

4: 1975 6:7

5: 5942 20:2

6: 5933 20:2

7: 1510 5:1

8: 3141 10:7

9: 4093 13:9

10: 938 3:2

Employed

Age

1,0

0,8

0,6

0,4

0,2

0,0
18 19 20 21 22 23 24 25 26

G1 1.9%

G2 10.2%

G5 20.2%

G6 20.2%

G3 6.7%

G4 6.7%

G7 5.1%

G8 11.8%

G9 13.9%

G10 3.2%

Fig. 1 Time-point means (proportions) over trajectories for the variable Employed
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In education

Age

1,0

0,8

0,6

0,4

0,2

0,0
18 19 20 21 22 23 24 25 26

G1 1.9%

G2 10.2%

G5 20.2%

G6 20.2%

G3 6.7%

G4 6.7%

G7 5.1%

G8 11.8%

G9 13.9%

G10 3.2%

Fig. 2 Time-point means (proportions) over trajectories for the variable Education

Unemployed

Age

1,0

0,8

0,6

0,4

0,2

0,0
18 19 20 21 22 23 24 25 26

G1 1.9%

G2 10.2%

G5 20.2%

G6 20.2%

G3 6.7%

G4 6.7%

G7 5.1%

G8 11.8%

G9 13.9%

G10 3.2%

Fig. 3 Time-point means (proportions) over trajectories for the variable Unemployed

These plots are used as the main tool for the interpretation of the results obtained
from the mixture regression fit. The computations were carried out by SAS proc traj
procedure.

3.1 Normal Life-Course

In the trajectory plots the solid lines indicate groups (total of 88.1%) where labor
market integration is good (Fig. 1). It is quite common for young people ages 18–21
to be in post-secondary or vocational education (Fig. 2). From Fig. 1 we note that
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On sick or parental leave

Age

1,0

0,8

0,6

0,4

0,2

0,0
18 19 20 21 22 23 24 25 26

G1 1.9%

G2 10.2%

G5 20.2%

G6 20.2%

G3 6.7%

G4 6.7%

G7 5.1%

G8 11.8%

G9 13.9%

G10 3.2%

Fig. 4 Time-point means (proportions) over trajectories for the variable Leave

about 74.6% of young males are in the trajectories where the percentage of people
who have employment status after 21 years of age is surprisingly high (>80%). We
refer to this group of trajectories (groups 2, 5, 6, 7, 8 and 9) as the HES group
(high employment status group). Trajectories 5 and 2 (30.4%) from the HES group
both have high percentage of people (>50%) in education after 21 years of age
(Fig. 2). This reflects the well-known fact that the majority of students in Finland
work during their studies. Group 2 (10.2%) contains typical university students.
Note that this group also has a high percentage of people in employment.

Group 9 (13.9%) is interesting as we can see from Fig. 3 that this group has a
low percentage of people in education after the age of 21 (Fig. 2). However, the
percentage of people in employment is still high and increases with age (Fig. 1).
This group contains low-educated young men who work in various part-time or
temporary jobs and experience unemployment periods.

In general most of the trajectory groups (Fig. 3) have low percentage of people
who are unemployed, with many young men experiencing short unemployment
periods. These unemployment spells are usually short throughout their normal
life-course. This is also true for sickness and disability periods (Fig. 4). As the
trajectories indicate, young Finnish men participate in family life (take parental
leave), and this participation increases with age. However, due to short follow-up
time, a more thorough analysis of parental leave is not possible as the first child is
usually born after this time.

From employment and education trajectories we can see a change at age 20
(Figs. 1 and 2). This is due to the fact that the Finnish male cohort (80% of males)
enters military service at this age. Service lasts less than a year, and therefore these
men in the military have no status in the labor market or on education during this
time.
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3.2 Weak Labor Market Integration

In the figures the dotted lines indicate groups (total of 11.8%) where labor market
integration is poor for longer time periods. We refer to this group of trajectories
(groups 1, 3 and 10) as the LES group (low employment status group) which is our
main interest and focus. These young men are experiencing difficulties in the labor
market and have therefore been the target government support programs.

From Fig. 2 we can identify four groups (1, 3, 4 and 10) with low percentages in
terms of employment. There is one positive indication, however, as group 3 contains
higher percentage in education (Fig. 2). The LES group is not particularly active in
education, as they perhaps receive some vocational education in their late teens.

Unemployment and leave trajectories (Figs. 3 and 4) explain the LES group in
more detail. Group 4 (6.7%) is clearly unemployed after secondary and vocational
education. The percentage of unemployment in this group is nearly 80% at the end
of the follow up period.

The sickness and parental leave trajectory plot indicates that Group 1 (1.9%)
has the highest percentage (Fig. 4). In fact this group is not on parental leave, but
receives occupational rehabilitation or a disability pension instead. This is clearly
the group with the most difficulties in the labor market. In Finland occupational
rehabilitation is rather effective, so these young men may have a chance to attend
school or work later in life.

As an ex-post validation of these trajectory groups we can measure or sum up the
working days over the follow-up period. The length of working life is on average 5.1
years for the HES group and only 1.3 years for the LES group. The results confirm
that this analysis has found clusters that also have practical importance.

4 Concluding Remarks

It is clear that our mixture regression analysis is an effective tool for the identifica-
tion of different clusters of register-based data. Naturally, the central interest is on
those who have difficulties with labor market integration. We think that our analysis
provides new insight into this important social issue. We mainly concentrated on
a descriptive analysis of results. However, it would also be interesting to analyze
the identified clusters further using covariates like social class, living area, parents’
education, or parents’ income. The best way to proceed may be the joint modeling
of clusters and mixing percentages using multinomial regression. This more subject-
oriented analysis remains a topic of further research.

Acknowledgements The authors wish to thank the Finnish Centre for Pensions and Statistics
Finland for providing the research data for this study. We also like to thank the referees for the
comments that led to improvements of the paper.
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Appendix

Table 2 Summary of the estimated model: variables, clusters, parameter estimates and their
standard errors

Variable Group Ǒ
0 SE( Ǒ

0) Ǒ
1 SE( Ǒ

1) Ǒ
2 SE( Ǒ

2)

1 1 2:398 4:0937 �0:3086 0:3809 0:0043 0.0088

1 2 �33:1751 1:6662 2:8697 0:1567 �0:0572 0.0036

1 3 �1:3307 1:4851 �0:082 0:1356 0:0052 0.0031

1 4 �10:4101 1:4206 0:8602 0:1308 �0:0177 0.003

1 5 �18:5665 1:4307 1:4459 0:1371 �0:0223 0.0033

1 6 �30:6046 3:7969 2:2395 0:3836 �0:0297 0.0097

1 7 �49:6895 2:1645 4:5499 0:201 �0:0993 0.0046

1 8 �64:2231 2:9188 5:9415 0:2719 �0:1288 0.0062

1 9 �48:3674 1:6773 4:3293 0:1584 �0:0912 0.0037

1 10 �10:4439 2:556 1:0078 0:2392 �0:0264 0.0055

2 1 11:1319 2:9527 �0:8535 0:2754 0:013 0.0064

2 2 399:1368 10:4145 �41:2003 1:0772 1:0621 0.0278

2 3 �20:6646 1:6869 2:0785 0:156 �0:0485 0.0036

2 4 36:9462 1:8208 �3:1096 0:1655 0:0635 0.0037

2 5 �54:0624 0:9532 5:2318 0:0885 �0:1231 0.002

2 6 165:358 4:3881 �14:2717 0:3962 0:2974 0.0089

2 7 151:7117 4:8462 �14:7589 0:4754 0:3563 0.0116

2 8 72:251 2:3522 �6:5804 0:2146 0:1428 0.0048

2 9 83:5415 2:0619 �7:2462 0:1871 0:1515 0.0042

2 10 45:0733 2:7618 �4:0274 0:2565 0:0857 0.0059

3 1 �37:1495 7:5126 3:338 0:7054 �0:0805 0.0164

3 2 �3:5307 99:786 �15:2704 54:119 0:5892 2.0791

3 3 7:1229 2:1854 �1:0465 0:1995 0:0284 0.0045

3 4 �61:0014 2:0817 5:2682 0:1901 �0:1111 0.0043

3 5 �1:4631 1:5541 �0:2562 0:1412 0:0092 0.0032

3 6 �110:2661 3:8561 10:3492 0:3723 �0:246 0.009

3 7 �54:1435 3:2046 4:9123 0:2998 �0:1141 0.007

3 8 8:3929 3:0624 �1:3156 0:2777 0:0354 0.0062

3 9 �58:2828 1:2639 5:0717 0:1153 �0:1092 0.0026

3 10 19:9764 2:9505 �2:2136 0:2699 0:0548 0.0061

4 1 �22:1081 4:2901 1:4843 0:4084 �0:0185 0.0097

4 2 �16:5855 5:8831 0:9372 0:5318 �0:0173 0.0119

4 3 6:3987 8:9441 �1:345 0:7973 0:0372 0.0176

4 4 �33:001 3:2404 2:5058 0:2873 �0:0505 0.0063

4 5 �11:5583 2:6232 0:3925 0:2318 �0:0015 0.0051

(continued)
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Table 2 (continued)

Variable Group Ǒ
0 SE( Ǒ

0) Ǒ
1 SE( Ǒ

1) Ǒ
2 SE( Ǒ

2)

4 6 �36.7212 2.2235 2.7618 0.1953 �0.0548 0.0043

4 7 �38.7528 4.6765 3.0266 0.4167 �0.0633 0.0092

4 8 �30.3185 2.4405 2.2794 0.2174 �0.0456 0.0048

4 9 �33.8236 2.1217 2.6022 0.1885 �0.0529 0.0042

4 10 �20.8289 6.5442 1.4166 0.591 �0.0281 0.0132
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Bias Correction in Age-Period-Cohort Models
Using Eigen Analysis

Martina Fu

1 Introduction

Age-period-cohort (APC) analysis is a popular technique that is often used in
epidemiology to examine chronic disease incidence or mortality rates and in
sociology to examine social event rates. It analyzes age-year-specific rates, found
in a 
 p tables with a rows of consecutive age groups and p columns of consecutive
periods, using regression models. When the time spans in each age group and period
group are equal, the diagonals of the table represent birth cohorts (generations).
Recognizing the importance of all the age, period, and cohort effects, biostatisticians
and quantitative scientists simultaneously estimate the fixed effects of all three
factors in the APC models (Mason et al. 1973; Rodgers 1982; Kupper et al. 1983;
Wilmoth 1990; Glenn 2003; Smith 2008).

However, age, period, and birth cohort have a linear relationship: Period –
Age D Cohort. This linear dependence among the covariates of APC regression
models leads to multiple estimators and multiple trends in age, period, and cohort,
resulting in parameter indetermination (Mason et al. 1973; Rodgers 1982; Smith
et al. 1982; Kupper et al. 1983). This identification problem attracted much attention
in the 1970s and 1980s, and several approaches have been studied to address
this problem, including specifying an extra constraint on the parameters (Mason
et al. 1973; Kupper et al. 1985) or identifying estimable functions (Rodgers 1982;
Smith et al. 1982). In particular, the constraint method specifies a relationship
among the parameters so that a unique estimator can be determined. Different
constraints, however, may lead to different parameter estimates and, very often, a
seemingly reasonable constraint assumed on the parameters yields an insensible
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trend (Kupper et al. 1985). An estimable function approach, on the other hand,
looks for characteristics of the parameters or the trend that are independent of the
constraint (Rodgers 1982; Smith et al. 1982; Kupper et al. 1985). The search for
an estimable function that completely determines the parameters was not successful
(Kupper et al. 1985; Clayton and Schifflers 1987) and the identification problem had
remained unsettled until recently.

In recent years, several new methods have been studied to address the identifi-
cation problem, including the smoothing trend method (Heuer 1997), the intrinsic
estimator and ridge regularization methods (Fu 2000), the smoothing cohort model
(Fu 2008), the mechanism-based approach (Winship and Harding 2008), and the
partial least-squares method (Tu et al. 2011). Specifically, the intrinsic estimator
has the expectation of an estimable function that completely determines the
parameters, yielding robust parameter estimation with finite samples and consistent
estimation with diverging samples (Fu 2016). Furthermore, constrained estimators
have asymptotic bias, leading to biased estimation (Fu 2016). Thus, the intrinsic
estimator provides a simple method to achieve unbiased estimation among multiple
estimators, and has been shown to produce meaningful data analysis results in the
literature (Yang et al. 2004; Schwadel 2010; Fu 2016).

However, before the intrinsic estimator was introduced in Fu (2000), many
studies used an equality constraint for technical convenience to determine a unique
estimation based on subjective assumptions (Mason and Smith 1985). It is known
that using a constraint introduces bias unless the constraint is satisfied by the true
parameters of the model (Kupper et al. 1985), and it has been recently shown that
an equality constraint almost surely introduces bias (Fu 2016). Such estimation
bias needs to be corrected so that correct inferences can be made. Calculating the
unbiased estimation using the intrinsic estimator method requires the original data
(Fu 2016). Unfortunately, many publications only report the analysis results, either
through numerical estimates or graphical plots, but do not report raw data. For
example, see Jemal et al. (2001), Cayuela et al. (2004), and Chen et al. (2011).
Bias correction becomes even more challenging when the original data is no longer
available after the analysis has been published. In this paper, we develop a method
that directly corrects the bias in the estimation. It possesses the following properties.
(1) It requires no raw data and no model fitting; (2) It is easy to implement
with simple calculations; and (3) It provides the standard error of the parameter
estimates if the previously reported analytical results have variance or standard
error estimations, regardless of the constraint used to achieve the unique parameter
estimation.

This article is organized as follows. Section 2 reviews the APC model, the
identification problem, and the intrinsic estimator method. Section 3 develops a bias
correction method and provides algorithms for bias correction and standard error
estimation. Section 4 demonstrates the bias correction method with two studies, one
with the raw data and the other with only graphical plots and no raw data. Section 5
provides a discussion and conclusion. The R program is available from the author
upon request, and will be posted on the internet.



Bias Correction in Age-Period-Cohort Models Using Eigen Analysis 325

2 Age-Period-Cohort Model and the Identification Problem

2.1 The Age-Period-Cohort Model

Assume the investigator is interested in analyzing data in an a 
 p table with a rows
of consecutive age groups and p columns of consecutive periods. Yij is the rate of
the ith age group in the jth period, i D 1 : : : a, j D 1 : : : p, as shown in Table 1 for
cervical cancer incidence rate among U.S. females aged 15–84 from 1975 to 2009
from the Surveillance Epidemiology and End Results (SEER) database (National
Cancer Institute, n.d.)). The APC accounting model or multiple classification model
fits a linear model to the logarithm of the rate Yij on the fixed effect of age, period,
and cohort:

log


Yij
�

D 	C ˛i C ˇj C �k C "ij; (1)

where 	 is the intercept, ˛i is the ith age group effect, ˇj is the jth period effect, � k

is the kth cohort effect with k D a – i C j, and "ij is the random error with mean
0 and common variance 
2.Alternatively, if non-Gaussian response variables are
considered, one may fit a generalized linear model with the same covariate structure
as in model (1):

g


EYij

�
D 	C ˛i C ˇj C �k; (1*)

where EYij is the expected value of the response, and g is a link function, such as
the log link for Poisson log-linear models or the logit link for the logistic regression.

Table 1 Cervical cancer incidence rate (per 100,000) among U.S. females 1975–2009a

Age\period 1975–1979 1980–1984 1985–1989 1990–1994 1995–1999 2000–2004 2005–2009

15–19 0.26 0.33 0.29 0.33 0.48 0.17 0.23
20–24 2.99 2.41 2.01 2.61 1.76 1.50 1.46
25–29 8.94 7.84 7.78 7.87 7.11 6.15 4.33
30–34 14.51 12.86 11.99 11.70 11.90 10.58 9.12
35–39 18.38 15.34 16.37 15.09 14.13 11.02 12.63
40–44 19.23 16.86 16.84 15.76 15.54 13.25 12.22
45–59 21.48 17.39 17.60 16.99 16.43 12.42 11.49
50–54 21.07 18.10 17.94 16.77 14.37 11.77 10.46
55–59 24.83 18.82 16.09 16.24 14.29 12.36 10.21
60–64 25.77 20.55 18.41 18.54 15.32 13.14 10.83
65–69 27.05 21.21 19.14 18.56 14.73 13.12 12.18
70–74 27.41 20.70 18.86 14.99 13.42 11.26 11.69
75–79 26.44 20.93 18.95 15.98 14.75 11.15 9.35
80–84 27.92 20.92 17.01 18.22 12.57 12.70 7.78

aObtained from the SEER cancer registry database
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As in ANOVA models, parameter centralization is required separately on the fixed
effects of the age, period and cohort.

Xa

iD1
˛i D 0;

Xp

jD1
ˇj D 0;

XaCp�1

kD1
�k D 0 (2)

Alternatively, a reference level may be set for each parameter ˛1 Dˇ1 D �1 D 0.
If model (1) determines a unique parameter estimate, then the temporal trends in
age, period, and cohort can be obtained by plotting the age effect against age, period
effect against period, and cohort effect against birth cohort.

For notational convenience, the APC model (1) can also be written in a matrix
form:

log .Y/ D Xb C "; (3)

where Y is a column vector of the event rate and b is a column vector of the model
parameters such that its transpose bT D (	,˛1, : : : ,˛a � 1,ˇ1, : : : ,ˇp � 1, �1, : : : ,
�a C p � 2). With parameter centralization (2), the parameters ˛a, ˇp, and �a C p � 1

do not appear in b. X is the design matrix and " is a vector of independent random
errors, each with mean 0 and common variance 
2.

2.2 The Identification Problem

Because of the linear dependence: Period – Age D Cohort, models (1) and (1*) yield
multiple estimators. Each one leads to a different temporal trend, which makes it
difficult to estimate and interpret the parameters (Fig. 1). To determine a unique
trend, an additional constraint can be set on the parameters (Smith et al. 1982;
Kupper et al. 1983). Many studies choose to set an equality constraint assuming its
justification based on the investigator’s prior knowledge. For example, the first two
age effects may be set as equal assuming that the event rates in the early ages do not
vary much. Similar assumptions can be made for identical period effects or cohort
effects (Fig. 1). However, seemingly reasonable constraints often lead to insensible
trend estimations (Kupper et al. 1985), such as the overall decreasing age trend in
the top panel of Fig. 1 based on a reasonable assumption that cervical cancer risk
stays low and constant in early ages. Furthermore, different constraints may yield
different temporal trends, as shown in Fig. 1, where three different temporal trends
are obtained for the cervical cancer incidence rates in Table 1 with three constraints:
identical first two age effects, identical first two period effects, and identical first
two cohort effects. The different trend estimations clearly indicate that bias can be
introduced by setting a constraint. To help address the issue, one major question
may be asked about which constraints would yield unbiased parameter estimation.
A logical answer is that a constraint satisfied by the true parameter values will yield
unbiased estimation. However, this argument quickly leads to a paradox, because it
is impossible to confirm whether a constraint is satisfied by the true parameter values
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Fig. 1 Temporal trend in age, period and cohort of the cervical cancer incidence rates in Table 1
generated by equality constraints. Top panels: ˛1 D˛2; Middle panels: ˇ1 Dˇ2; Bottom panels:
�1 D �2

before the parameters are accurately estimated. Consequently, the identification
problem cannot be resolved with the constraint approach.

To understand the mechanism of the identification problem, we study the APC
model in matrix form (3). The linear dependence among age, period, and cohort
induces a singular design matrix X with 1- less than its full rank (Kupper et al.
1983). This implies that there exists an eigenvector v in the null parameter space of
the matrix X̧ corresponding to the unique eigenvalue 0, i.e. Xv D 0. By Kupper et al.
(1983), vT D (0 A P C), where

A D

�
1 �

a C 1

2
; : : : ; a � 1 �

a C 1

2

�
;

P D

�
p C 1

2
� 1; : : : ;

p C 1

2
� .p � 1/

�
; (4)

C D

�
1 �

a C p

2
; : : : ; a C p � 2 �

a C p

2

�
:
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All estimators have the same fitted value because X(uCtv) D Xu, where u is a
parameter estimator and t is an arbitrary real number. Different values of t lead to
different estimators (Fu 2000).

2.3 The Intrinsic Estimator Addressing the Identification
Problem

Compared to the constraint method, the estimable function approach is superior
in addressing the identification problem. An estimable function is defined to be a
linear combination of model parameters that can be uniquely estimated regardless
of which estimator is used (McCulloch and Searle 2001; Seber and Lee 2003), thus
possessing invariant properties that do not depend on the constraint. One popular
example of estimable functions is the contrasts in the one-way ANOVA model,
which are invariant regardless of the choice of either parameter centralization or
reference level. Although the estimable function approach seems to be promising,
it has been observed in APC studies that nonlinear trends are estimable but linear
trends vary with constraint (Rodgers 1982; Kupper et al. 1985). This makes the
search for estimable functions that completely determine the parameters difficult.
Surprisingly, the intrinsic estimator has recently been shown to possess such an
invariance property. Specifically, the intrinsic estimator has an estimable expectation
and thus provides unbiased estimation (Fu 2016). It has further been shown that the
intrinsic estimator of finite samples yields robust estimation with a slight change of
the data by either adding or deleting one row or one column, and yields consistent
estimation as the number of columns (periods) p, and thus the sample size, diverges
to infinity, while the constrained estimators, particularly by the equality constraints,
yield biased estimation (Fu 2016).

The intrinsic estimator was identified through a unique decomposition of the
multiple parameter estimators in vector form (Fu 2000)

bb D B C tB0; (5)

wherebb is the estimate of the parameter vector b. B0 is a normalized eigenvector of
v with unit length 1. B is orthogonal to B0 in the parameter space and is uniquely
determined by the data. t is a real number that may take any value. B is named the
intrinsic estimator (Fu 2000), and is a linear combination of model parameters that
satisfies the projection

B Dbb � tB0 Dbb � B0B0
Tbb D



I � B0B0

T
�bb; (6)

where I is an identity matrix and the coefficients of the linear combination
B D Lbbsatisfy Lv D



I � B0BT

0

�
v D



I � B0BT

0

�
B0 kvk D 0. This means that,

geometrically, B can be obtained by projecting any given estimatorbb to the vertical
axis orthogonal to the eigenvector B0, as shown in Fig. 2. B determines both linear
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Fig. 2 Decomposition of multiple estimators by Eigen analysis. Ob1 and Ob2 are estimators with an
arbitrary t value. B is the intrinsic estimator and can be obtained by projecting any estimator to
the vertical axis as illustrated by the arrow. B0 is a normalized eigenvector in the null space and is
perpendicular to B

and nonlinear trends with zero bias because the bias Lv D 0 as defined in Kupper
et al. (1985). Other estimators in Eq. (5) with t ¤ 0 do not have an estimable
expectation and thus yield nonzero bias.

3 The Bias Correction Method

For a given estimator bb (e.g. an estimator obtained by using a constraint), the
unbiased estimator B can be calculated by B D bb � tB0 from (5), where t D B0Tbb
is an inner product between vectorsbb and B0, and B0 can be calculated using the
numbers of age groups (a) and period groups (p) as in Eq. (4), followed by a
normalization

B0 D
v

kvk
; (7)

where kvk D
q
v21 C � � � C v2m is the Euclidean norm of vector v in an

m-dimensional space with m D 2(a C p) � 3. This provides a method of correcting
the bias without fitting a model by calculating the unbiased estimation B using only
the null eigenvector B0 and the given biased estimatorbb. We provide an algorithm
for the bias correction procedure.
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3.1 Bias Correction Algorithm

1. Form an estimatorbb using the estimates of the intercept, age, period and cohort

effects,bb
T

D


	; ˛1; : : : ; ˛a�1; ˇ1; : : : ; ˇp�1; �1; : : : ; �aCp�2

�
. If the intercept is

not available, use 	 D 0 because its value will not affect the bias correction for
the age, period and cohort effects. Notice that the effects of the last age ˛a, period
ˇp and cohort �a C p � 1 are not present in the vectorbb.

2. Based on the numbers of age groups a and period groups p in the estimates,
calculate the eigenvector v in Eq. (4) and then normalize it to B0 as in Eq. (7).

3. Calculate the unbiased estimator B by removing the bias frombb: B Dbb�B0B0Tbb.

3.2 Standard Error Estimation

If the original constraint method provides standard errors for the parameter esti-
mates of model (1) or (2), it is desirable to provide the standard errors for the
parameter estimates after bias correction. For linear model (1), the parameter
estimates have the variance-covariance matrix



XT

c Xc
��1

2, where 
2 is the variance

component and Xc is the design matrix reduced from X of model (1) by a preselected
constraint on the parameters, such as ˛1 D˛2, which is often provided if a constraint
method is used for parameter estimation. The variance of the parameter estimates
is given by the diagonal elements of the matrix



XT

c Xc
��1

2. Hence the variance

component 
2 can be calculated with the squares of the standard errors divided
by the diagonal elements of the matrix



XT

c Xc
��1

. Since the variance component
is estimated with the residuals (rij) of the model (1) together with a specified
constraint, and the residuals remain the same regardless of the constraint because
all constraints yield the same fitted values, the variance component estimate b
2 DP

ij r2ij
.a�2/.p�2/

remains the same even when different constraints may be specified based
on the investigator’s prior acknowledge, as shown in Fig. 3. This leads to accurate
estimation of the variance of the intrinsic estimator after bias correction as follows.

Denote by V the orthonormal matrix whose column vectors are the eigenvectors
of matrix (XTX) ordered by the eigenvalues in descending order. Denote by Vl and
V�l the last column vector of V and the submatrix excluding Vl from V, respectively.
The intrinsic estimator can be computed through the principal component analysis
approach (Fu 2008) with B D VU and row vector UT D (((WTW)�1WTR)T , 0), where
W D XV�l and R is the response vector, such as R D log(Y). Thus B has variance
Var.B/ D V�l



WTW

��1
VT

�l

2 D V�l



VT

�lX
TXV�l

��1
VT

�l

2. The standard error of

the intrinsic estimator can therefore be calculated using the variance component 
2

as follows.
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Fig. 3 Plot of variance estimate against the matrix diagonal element by different constraints. Large
values of the variance (>0.5) by the equality constraint on the cohort effects are not plotted so that
details can be observed for small variance close to 0 with different colors. Black dot—equality
constraint on the first two age group effects ˛1 D˛2; Red dot—equality constraint on the first two
period effects ˇ1 Dˇ2; Blue dot—equality constraint on the first two cohort effects �1 D �2

3.3 Algorithm for Standard Error Estimation
After Bias Correction

1. Form the design matrix X of model (1) and its reduced matrix Xc according to
the constraint used for parameter estimation.

2. Calculate the estimate of the variance component 
2 by dividing the squares of
the standard errors by the diagonal elements of matrix



XT

c Xc
��1

. Note that due
to the use of parameter centralization (2) or reference levels, certain parameters
are not present in the model. Hence, the dimension of matrix Xc is smaller than
the number of parameters in model (1).

3. Calculate the orthonormal matrix V, whose column vectors are the eigenvectors
of the matrix (XTX) in descending order of the eigen values. Denote by V�l
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the submatrix of V excluding the last column. Calculate the variance Var.B/ D

V�l


VT

�lX
TXV�l

��1
VT

�l

2. Report the square root of the main diagonal elements

as the standard errors after bias correction.
4. By the centralization (2), the standard errors of b̨a; b̌p;b�aCp�1 are calculated to

be the square-root of (1T˙1)
2, where 1 is the vector with elements 1 of dimen-
sion a � 1, p � 1, and a C p � 2, respectively, and ˙ is the variance-covariance

matrix of the corresponding vectors
�
b̨1, : : : ,b̨a�1

	
T ,
�
b̌
1; : : : ;

b̌
p�1

	T
and



b�1; : : : ;b�aCp�2

�T
, respectively.

For the generalized linear model (1*), the standard error estimation remains the
same as above, assuming the variance component 
2 is estimated correctly by the
constraint method.

The R code for the bias correction and standard error estimation will be provided
in an R package.

4 Application

4.1 Cervical Cancer Incidence Rate

To demonstrate the bias correction method, we analyze the cervical cancer incidence
rates in Table 1. It has 14 age groups from 15–19 to 80–84, 7 periods from 1975–
1979 to 2005–2009, and 20 cohort groups with mid birth year from 1895 to 1990.
First, we use an equality constraint on the first two age effects ˛1 D˛2, the first two
period effects ˇ1 Dˇ2, or the first two cohort effects �1 D �2 to determine a unique
trend, as shown in Table 2, with the standard errors given in parentheses. Although
different constraints lead to different estimates of the age, period and cohort effects
and largely different standard errors, the variance component remains the same,
as shown in Fig. 3, which yields b
2 D 0:012. Then we apply the bias correction
method to each equality constraint estimator to obtain the corrected estimates and
the standard errors, as shown in the last two columns of Table 2. Though we
start with different constraint estimators, the corrected estimates and the standard
errors are identical. Further examination shows that the standard errors of the bias
corrected estimates are smaller than those of the constraint estimators, illustrating
the efficiency of the intrinsic estimator (Fu 2016).

We also compare the novel bias correction method with the partial least-squares
method, which analyzes the APC data using the maximal number of components in
the partial least squares. As shown in the last column of Table 2, the partial least-
squares method yields the same parameter estimates as the intrinsic estimator, but
without standard errors (Tu et al. 2011). This further confirms the estimates by the
bias correction method. However, the lack of standard error estimates reflects the
limitation of the partial least-square method applied to APC data using the maximal
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Fig. 4 Temporal trend and 95% confidence interval of cervical cancer incidence rate among U.S.
females in Table 1 by the intrinsic estimator method

number of components. Notice also that the partial least-squares method cannot
be used for bias correction when the original data becomes unavailable since the
method requires the original data.

In order to interpret the temporal trend, we plot the corrected age, period, and
cohort effects in the same scale in Fig. 4. The age trend shows that the incidence
rate increased sharply from age 15 to 30, peaked around 40, and slowly decreased
until age 84. The period trend shows that the incidence increased from 1975 to 1980
and then decreased slowly until 2009. The cohort trend shows that the incidence
slowly decreased from the oldest cohort born in 1895 to the cohort born in 1970
and then fluctuated slightly till 1995, which may be due to unstable cohort effect
estimation resulting from having few observations in the extreme cohorts. From
an epidemiological point of view, the increasing-then-decreasing age trend can be
well explained by the strong association between cervical cancer incidence and
the human papillomavirus infection (Bosch et al. 1995; Sasieni and Adams 2000;
Scheurer et al. 2005). Additionally, the decreasing period trend may be attributed to
improved health care and personal hygiene while the decreasing cohort trend may
be a result of educational programs about sexually transmitted diseases in younger
generations.
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4.2 Chronic Obstructive Pulmonary Disease Mortality

To demonstrate our method of bias correction in previously published analysis
results that do not provide raw data, we apply the procedure to an age-period-
cohort study of chronic obstructive pulmonary disease (COPD) mortality in Hong
Kong from 1981 to 2005 (Chen et al. 2011). In this study, sex-specific mortality
rates for 5 year age and period intervals among individuals 45 years and older were
analyzed using an APC log-linear model with an equality constraint on two periods,
1986–1990 and 1996–2000. In the paper, the effect estimates were only plotted,
and no numerical estimates were reported. We obtain the effect estimates of age,
period, and cohort by reading the published figure of the temporal trend (Fig. 3
of Chen et al. 2011), centralize the effect estimates for each of age, period, and
cohort, and apply the bias correction procedure since, by the large sample theory, the
equality constraint almost surely yields biased estimation (Fu 2016). We compare
the temporal trend of the corrected age, period and cohort effects with the reported
trend for males in Fig. 5a and females in Fig. 5b.

Fig. 5 (a) Comparison of age, period, and cohort trends before and after bias correction of COPD
mortality rate in Hong Kong males. Dashed: before bias correction. Solid: after bias correction. (b)
Comparison of age, period, and cohort trends before and after bias correction of COPD mortality
rate in Hong Kong females. Dashed: before bias correction. Solid: after bias correction
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Fig. 5 (continued)

As shown in Fig. 5, the age and cohort trends remain similar before and after
bias correction in both males and females. The period trend in males changes from
an overall increasing pattern to a steadily decreasing one while the period trend in
females changes from an increasing-then-decreasing pattern to a steadily decreasing
one. It is interesting to notice that, before bias correction, the period trends between
males and females were largely different, likely due to biased estimation from the
equality constraint. After bias correction, they present a more or less similar pattern.
This reflects the fact that both males and females lived with the same air quality,
and, consequently, their period trends should have had a similar pattern, though
their age trend may have been different due to the difference in the effect of aging
on physiological functions between males and females. On the other hand, a closer
observation reveals that the scale of the period trend is relatively small compared to
that of the age and cohort trends in both males and females as shown in Fig. 6. This
may imply that more effort should be focused on the age and cohort effects in order
to effectively lower the mortality.
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Fig. 6 (a) Temporal trend of COPD mortality in age, period, and cohort plotted in the same scale
among Hong Kong males after bias correction. (b) Temporal trend of COPD mortality in age,
period, and cohort plotted in the same scale among Hong Kong females after bias correction

4.3 Importance of the Variance/Standard Error Estimation

The above two examples demonstrate this powerful bias-correction method, which
does not require any original data, as well as the powerful variance/standard error
estimation. In the example of the cancer incidence rates, three sets of biased
estimates are given, each calculated with a different equality constraint. The
standard errors of the estimates also vary across the three sets. The bias correction
method not only provides accurate parameter estimates through straightforward bias
correction, but also provides accurate standard error estimates, even though the
standard errors of the biased estimates are known to be inaccurate and vary with
the estimates. As shown in Fig. 4, the accurate standard errors calculated by the
correction method offers accurate 95% confidence intervals and further statistical
inferences can be made about the increasing-then-decreasing age trend, the overall
decreasing period, and the overall decreasing cohort trend accordingly.
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Fig. 6 (continued)

In contrast, no standard errors were available for the biased estimates in the
second, COPD study example, therefore no standard errors can be made available by
the bias-correction method. The bias-correction method did yield decreasing period
trend for both males and for females separately, which is much more reasonable
than the increasing period trend for males and the increasing-then-decreasing period
trend for females since both males and females lived in the same city and had the
same air-quality. However, no statistical inferences can be made because of the lack
of the standard errors for the effect estimates. Had the COPD study provided the
standard error estimates, the bias-correction method would yield accurate standard
error estimates no matter how inaccurate the original errors were, and meaningful
statistical inference could be made to the trend estimation after bias correction.

5 Conclusion and Discussion

Age-period-cohort models have broad applications in demography, economics, mar-
keting research, public health studies, and sociology. Although the statistical models
and methods have been studied extensively in the literature, the identification
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problem was not settled for a long time, resulting in confusion and misinterpretation.
Consequently, most studies did not analyze the age-period-cohort data correctly,
and bias was frequently introduced through the constraint method by the subjective
assumptions of the investigators. Although the intrinsic estimator method provides
an unbiased estimation, the direct computation of the intrinsic estimator requires
the original data, which may not be available in published age-period-cohort studies
where bias correction is still needed. Furthermore, many studies chose not to report
the original data in publications, which makes bias correction even more difficult.

Our novel bias correction method addresses this challenging issue. It requires
no original data, and corrects the bias in parameter estimation obtained from using
any constraint. Additionally, it is simple and easy to implement, thus making it
applicable to any APC analysis that uses a constraint estimator for parameter
determination. Furthermore, if the constraint method provides the standard errors of
the parameter estimates for the age, period and cohort effects and the constraint used
to generate the parameter estimates, our method may also yield accurate estimation
of the standard errors for the parameter estimates after bias correction.

Although this bias correction method is developed based on the linear model
(1), it also applies to the log-linear model (1*) and other generalized linear models
because the mechanism of the identification problem remains the same and thus bias
can be corrected following the same procedure. This is demonstrated in the example
of the Hong Kong COPD mortality study fitted with a log-linear model, which yields
much more meaningful trend after the bias correction.

It may be noted that although this uses the same mathematical formula as Eq. (14)
in Yang et al. (2008), they serve very different purposes. Yang et al. (2008) used the
equation to confirm the discovery of the estimable function by observing that any
constraint leads to the same estimator B, which can be interpreted geometrically
as estimable (independent of the constraint). Notice, however, that this is merely
an interpretation, not a rigorous proof, and it was never pointed out that Eq. (14)
can be used for bias correction for any given biased estimates in publications. As a
matter of fact, ever since the publication of Yang et al. (2008), no bias correction
has been studied yet and bias correction in APC studies has received no attention in
any publication. This is because the interpretation of the estimability of B through
its independence of any constraint does not constitute a rigorous proof of the
estimability, therefore, no bias correction can be established yet. Currently, the same
equation is being used for bias correction, especially after rigorous proof of the
unbiasedness and consistency of the intrinsic estimator B as shown in Fu (2016).
Only after the theoretical proof of the estimability and the consistency, could one
claim the unbiasedness of the intrinsic estimator and further make bias correction
through it, as demonstrated here.
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