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Foreword

Scenes from my Life—Winfried Stute

I was born on 20 November 1946, in Bochum (West Germany), a city which is
located in the Ruhr Valley, a heavily industrialized region comprising around
40 cities, whose economic basis at that time was the coal and steel industry. People
from the area take pride in their working-class background, though they do not
usually talk much about it. What they do make known is their passion for football,
and wearing a shirt with the right team colours is almost a matter of religion.

In the early 1950s, family apartments were still small, so to meet friends one had
to play in the streets or the ruins left over from the war. I had no brothers and
sisters, but my cousins all lived in the same neighbourhood. What I remember
clearly was the extreme optimism of the people at the time and their planning for
the future. Only when I became older did I begin to understand that, having lived
through the war, they were all survivors of a great disaster and that their attitude
really reflected a celebration of their survival.

When I was four or so I developed some “emotional distance” to people dressed
in white, e.g. medical doctors, pharmacists or the nuns running the kindergarten.
I decided to escape on the very first day and not to go back again. School was later
something which I took more seriously. Unfortunately, when I was seven, my
father, who was a manager in the furniture business, started what would become a
random walk-through the cluster of cities in the region. While changing jobs was
good for his career, I always had to make new friends and adapt to levels of
teaching, which were potentially different at each new school. The nice conse-
quence of this was that because I was able to teach myself and no tutoring was
necessary, my mathematical level in particular was often much higher than that
of the rest of the class. So at school mathematics became my success story. As to
football, all of the teams I supported were dressed in blue. So blue of course became
my favourite colour.

As we became older, teachers expected us to learn a lot by heart, for example in
history and geography. At the end of my time at school, I felt fairly exhausted and
was ready for a big change. I joined the army for two years and became a truck
driver. Unlike other boys of my generation, I never complained about this time, but
considered it a pleasant interlude between school and what I was planning to do,
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becoming a student of mathematics at the university in my hometown Bochum. The
change when I began my studies was dramatic. In the fall of 1968, as in many other
western countries, there were a lot of violent protests at German universities. At the
mathematical institute in Bochum, it was relatively peaceful, and our provocations
were mild. Many of our professors were young, only 10–15 years older than we
were ourselves. Some were members of the Bourbaki school and presented the
material in the most abstract and concise way. To digest Zorn’s lemma was not that
easy for somebody who had been driving trucks just weeks before. But overall my
new life went on smoothly.

Significant changes then came in 1971. In 1969, I had met my girlfriend Gerti,
who came from a city in the region whose football team was considered the most
important local rival of my “blue team”. Though my friends all warned me about
this new “black and yellow” influence, I—luckily—ignored them and we married in
1971. At the same time, a new professor came to our faculty, Peter Gaenssler, who
had just completed his habilitation in Cologne and accepted the offer of a profes-
sorship from Bochum. He was very different from the “Bourbakis” at the institute,
whom we never tried to meet in their office hours. Gaenssler was open-minded and
friendly. In his lectures, he focused on topological measure theory and probability.
Deep in his heart he was a measure theorist with strong connections to functional
analysis, and Donsker’s invariance principles, which had become popular through
Billingsley’s monograph on Convergence of Probability Measures, were major
applications in these areas, so that students of Gaenssler were quite familiar with
concepts such as tightness, convergence of distributions and the continuous map-
ping theorem.

In 1972 I started to work on my Diploma (master’s) thesis, of course on a topic
related to convergence of empirical measures. Our daughter Petra was born in the
same year, and everything went on very nicely. My thesis was completed in January
1973, and Prof. Gaenssler offered me a position as a teaching assistant. We had
several outstanding young students at the time. Two of them were Erich Haeusler
who later became my colleague in Giessen, and Michael Falk, who became a
professor in Wuerzburg. In 1974, our son Volker was born, and our small family
was complete. Regarding work, after my Ph.D. in 1975, Prof. Gaenssler proposed a
joint book project, a textbook on advanced probability theory in German, which
was completed in 1977 and became very successful.

The year 1978 brought several changes. My advisor had accepted the offer of a
position from the University of Munich. So, in May 1978, we all moved to Bavaria.
In the following years, we had several visitors from the USA, who would all
become important members of the school of empirical processes: D. Mason,
D. Pollard and J. Wellner, among others. At that time, Gaenssler became one of the
leading researchers in the Vapnik–Chervonenkis group. There were other sub-
groups of the “empiricals”, like the Hungarians with their strong approximations or
the counting process group who brought stochastic calculus to statistics. My situ-
ation was slightly different. In the German system, the next step in my career was
habilitation, an advanced postdoctoral thesis needed to qualify for the offer of a
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professorship. Since my knowledge of statistics at the time was still poor, I con-
tinued with something which I knew best: tightness of stochastic processes. In the
case of empirical processes, this led me to the study of their oscillation modulus.
What I did not know in the beginning was that this would immediately lead me to
the estimation of local quantities such as densities, regression functions or hazards.
In the multivariate case, I came to conditional empirical processes and their
inverses, which are now referred to in the research as “quantile regression”. My
personal hero at that time was Prof. Jack Kiefer (Cornell and Berkeley) whose work
and ideas on empiricals gave me a lot. Actually, what I liked very much during the
1980s was to develop applications combining my local results with the global
bound in the Dvoretzky–Kiefer–Wolfowitz inequality.

In 1981, one year after my habilitation in Munich, I became an associate pro-
fessor in Siegen and a colleague of Rolf-Dieter Reiss, an internationally known
expert in extreme value theory. Two years later I moved to Giessen, a mid-sized
city of 80,000 people 70 km north of Frankfurt/Main. Its university was founded in
1607 and named after the famous chemist Justus von Liebig. The atmosphere at the
institute was friendly and open-minded so that I immediately felt at home. My
colleague in stochastics at the time was Georg Pflug, who a few years later went
back to his hometown of Vienna. Geographically speaking, the move to Giessen
was the last big change I would make. As far as my research network and coop-
erative projects, however, things began to change rapidly. In August 1985, I
attended a conference in Bilbao, in the Basque country of Spain. After my talk a
young Spanish scientist approached me and introduced himself as Wenceslao
Manteiga from Santiago de Compostela, Galicia. It was the starting point of a long
and fruitful friendship and cooperation. The next year he invited me to Santiago to
give a workshop on empiricals. Many of his Ph.D. students later visited me in
Giessen, and my cooperation with researchers across Spain expanded to include
many universities in the north and west of the country, and Carlos III from Madrid.
The contributions to this volume clearly reflect this part of my activities.

At the end of the 1980s, my interest in local studies, i.e. smoothing, had
declined. At the same time, I had intensified my contact with researchers from UC
Davis, and in September 1990, Jane Ling Wang came to Giessen for four months.
Our plan was to work on the extension of the strong law of large numbers to
Kaplan–Meier integrals. To prove it, I proposed a technique which I had learned
from Gaenssler, in the simpler classical situation, which used the convergence
theorem for reverse martingales. September and October were terrible and full of
frustration. As it would turn out later, we were on an impossible mission and that
actually, due to censorship, the Kaplan–Meier estimator was biased so that
attempting to prove a martingale property was hopeless. As all of our attempts
failed Jane Ling made a suggestion which brought my hero from the 1970s back
into play. Since she was a former Ph.D. student of Prof. Kiefer, she could tell me
what he would have done when things became complicated. In our situation, her
simple recipe was to study the martingale property first by comparing the simplest
cases, namely sample size n = 1 and n = 2. The results were striking: the martingale
property could be disproved, but the sub- or super-martingale property, depending
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on the sign of the integrand, was still valid. After we knew what to look for, we
rapidly—at least in my memory—completed the proof. In the 1990s, I continued to
work on various open questions in survival analysis, for censored and truncated
data and combinations of both. After this, it was time for another change, and my
interests began to move towards statistical model checking. Besides my work with
my Spanish friends, the list of partners now also included Li Xing Zhu from Hong
Kong and Hira Koul from Michigan State. Both visited me on a Humboldt-Award
grant, and in our joint work, I enjoyed learning from their ideas and experience.

These developments came to an abrupt end on a Monday afternoon in October
1998. For the opening lecture of the new winter semester, we had invited a former
student of ours who had a successful career in the financial sector in Frankfurt. The
success of this talk was overwhelming. The following day five students came to my
office and told me that they were quite impressed by yesterday’s speaker. They also
asked me to start a new programme on financial mathematics. I must say that I
always liked students who were committed to their subject. So I agreed and began
teaching a course the following spring semester. What I found out was that talking
about the Black–Scholes formula required not only Ito-calculus, but also a thorough
knowledge of the economic theory. To improve my own understanding, I invested
some money in highly risky financial derivatives—and survived. I also realized that
facing financial risks was very different from erroneously rejecting a statistical
hypothesis at the 5% level. My interest in the behaviour of the market grew further,
so when I was ready to begin research I looked for models which could incorporate
aspects such as shocks, profit-taking or rallies. Finding the Girsanov martingale
measure and seeing how things worked in simulations was a new experience for
me, which was quite different from what I had done before. And I began to like it. It
eventually led me to some cooperative projects in the marketing industry which was
looking for new dynamic models describing the impact of promotion events and
television advertisements on consumption. The result was an investigation of
so-called self-exciting processes.

Looking back, my interest in mathematics really began at school. I liked its
hierarchical structure and the fact that learning by heart was kept to a minimum.
Later, at university, learning so much about Lindelöf spaces and tight measures did
not dampen my interest, and we students shared our teacher’s enthusiasm for
Donsker and Billingsley. Probability theory was also well structured, and concepts
like martingales became very familiar to us. When I came to statistics, it was just
the opposite, a big building with many dark chambers, so that I was looking for
someone to guide me. What I realized only later was that this friend was already
there when I worked on my diploma thesis: the empirical distribution. Of course, as
time went by, one had to be prepared to adapt and become quite flexible and to
study new techniques when approaching a new problem.

Of all the areas of mathematics I have worked in I found statistics the most
demanding. Maybe this is so because real life is so colourful and data can often
contain hidden features, which can be detected if one is prepared to take the time to
look. Therefore, when young students ask me to describe, in a non-technical way,
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the nature of statistics, I usually point out that statistics is the art of how to properly
weight the available information in the data.

I’d like to thank all who made this volume feasible. It is good to know that when
walking down the road one was not alone, but could share ideas and time with good
friends.

March 2017 Winfried Stute
Mathematical Institute

University of Giessen, Giessen, Germany
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Survival Analysis



1AnOdyssey to IncompleteData:
Winfried Stute’s Contribution to
Survival Analysis

Jane-Ling Wang

1.1 Introduction

Winfried Stute is one of the pioneers and key contributors to empirical process theory.
His interest in empirical processes dates back to his students days with a Diploma
thesis on this topic under the guidance of Peter Gaenessler, which was later pub-
lished in Z.Wahrscheinlichkeitstheorie und verw. Gebiete in 1976, a premier journal
in probability. This was a feat for a diploma (comparable to M.Sc.) student. Win-
fried continued to work on problems in empirical processes for the next ten years
and gained international acclaim for this work. His 1982 paper (Stute 1982) on the
oscillation behavior of empirical processes remains a classic and became a founda-
tion for research in density estimation, nonparametric regression, and beyond. His
odyssey into the terrain of survival analysis was not accidental and was a conse-
quence of his interest in expanding the horizon of empirical processes from the i.i.d.
setting to incomplete data. Here we define survival analysis in the narrow sense that
it involves incomplete data, such as randomly right censored or truncated data, or
doubly censored data etc. With this narrow interpretation, Winfried’s first publica-
tions in survival analysis appeared in Diehl and Stute (1988) and Dikta et al. (1989).
They involved density and hazard function estimation as well as sequential confi-
dence bands for distribution functions, all for randomly right censored data.Applying
empirical process theory to censored data is a natural path that many theoreticians
have partaken in, thereafter his interest in survival analysis intensified. From 1992 to
1997, he had more than 20 papers in survival analysis and continued to plow the field
till his retirement in 2012 and beyond. In fact, his most recent papers including Sen
and Stute (2014) and Azarang et al. (2013) are on this topic. To date he has produced

J.-L. Wang (B)
University of California, Davis, CA 95616, USA
e-mail: janelwang@ucdavis.edu

© Springer International Publishing AG 2017
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4 J.-L.Wang

nearly 40 papers in survival analysis, which accounts for roughly one-third of his
publications. It is fitting and a pleasure for me to comment on his contributions in
survival analysis, especially as I have worked with him on several projects in this
area. Instead of an exhaustive review of his work in survival analysis, I will focus
on the projects that I co-authored or am most familiar with, complemented by a few
anecdotes.

We began to collaborate in the Fall of 1990 when I spent a sabbatical leave at the
University of Giessen, where Winfried was a faculty member in the Department of
Mathematics until his retirement.Wewere looking for a topic of common interest and
survival analysis was the obvious choice, as he had just entered the field and I was in
the midst of several projects on incomplete data. It took little time for us to settle on
a topic, the strong law of large number (SLLN) for censored data, which seemed of
great interest given that the SLLN is one of themost fundamental theoretical concepts
in statistics. There were many results on the strong consistency of the Kaplan-Meier
(hereafter abbreviated as K-M) estimator at that time but little was known for the
general setting that involves the K-M integral defined as

∫
φ(x) d F̂n(x), where F̂n

is the K-M estimator (defined in (1.5) of section “Strong Law of Large Numbers:
Random Right Censoring”) of the true lifetime distribution function F and φ is a
Borel measurable function on the real line such that

∫ |φ(x)| dF(x) < ∞. The open
problem we addressed was under what conditions

∫
φ(x) d F̂n(x) would converge

to
∫

φ(x) dF(x) with probability one; the answer was provided in Stute and Wang
(1993b).

This was amost memorable experience for me, especially as wewere able to solve
the problemwith the minimum requirement that φ is F-integrable, which is the same
condition that is needed for the classical SLLN to hold for i.i.d. data. The proof is
fairly elaborate and involves several cases where both the lifetime and censoring
distributions could be continuous, discrete, or neither, as long as they do not have
common jumps (see Sect. 1.2 for details). This collaboration led to three subsequent
joint papers (Gürler et al. 1993; Stute and Wang 1993a, 1994) and a series of papers
by Winfried and his other collaborators (Stute 1993a, 1994a, b, c, d, 1995a) within
the next two years.

Shortly after solving the SLLN for censored survival data, Winfried tackled the
next most fundamental result, the central limit theorem (CLT) for the K-M integral
(Stute 1995b), to be discussed further in Sect. 1.3. Besides randomly right censored
data, Winfried also made landmark contributions to truncated data, another type of
incomplete data that are challenging for two reasons: the sample is biased and there
are technical difficulties at both the left and right tails of the lifetime distribution
F , in contrast to the right censoring case where the left tail pose no difficulties.
For truncated data the counterpart of the K-M estimator is the Lynden-Bell estimator
(Lynden-Bell 1971) F̂T

n defined in (1.27), whichwill be further discussed in Sect. 1.2.
In Stute (1993a) Winfried established an i.i.d. representation for the Lynden-Bell
estimator, which facilitated further asymptotic analysis for truncated data. This work
sparked further research interest for truncated data, however a fundamental result
regarding a CLT for the Lynden-Bell integral

∫
φ(x) d F̂T

n had proved elusive for
a long time and remained an open problem. By 2000 we both drifted away from
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survival analysis but were acutely aware of the need to fill this major theoretical gap.
Finally, in the fall of 2005 (or around that period) I returned toGiessen towork on this
project with Winfried and the results were published in Stute andWang (2008). This
was my last paper with Winfried although we both maintained interest in survival
analysis and continued to dash into the field occasionally.

In the remainder of this paper, we discuss Winfried’s four papers with focus on
the SLLN and CLT for survival data.

1.2 Strong Law of Large Numbers: Random Right Censoring

Let X1, . . . , Xn be a sequence of i.i.d. random variables from a distribution func-
tion F , and let Fn be their empirical distribution function. The classical SLLN
implies that, with probability one,

∫
φ(x) dFn(x) = 1

n

∑n
i=1 φ(Xi ) → E(φ(X1)) =∫

φ(x) dF(x), as long as E(|φ(X1)|) < ∞. Here the empirical distribution is a dis-
crete probability measure that assigns equal point mass 1/n to each observation Xi ,
hence the classical SLLN and CLT hold automatically for

∫
φ(x) dFn(x). When F

is an event-time or lifetime distribution, a longitudinal follow-up study is needed to
track the event-time Xi and as in many studies patients/subjects may be lost dur-
ing the follow-up period or the study has to end before the event, which could be
death. Therefore the event time cannot be observed for all patients. This triggers
right censoring for which Winfried has made major contributions.

In the setting of random right censoring, Xi are no longer observed directly as they
are subject to potential censoring by an independent variable Yi . Instead, one can
only observe Zi = min(Xi , Yi ) along with the censoring indicator, δi = 1{Xi≤Yi }.
Unless otherwise mentioned, we make the standard assumption that Y1, . . . , Yn is an
independent sequence of i.i.d. censoring variables with distribution function G that
is independent of the sequence Xi . The counterpart of the empirical distribution in
the presence of right censoring is the Kaplan-Meier estimator F̂n , which has been
defined in several different but equivalent ways. We will use the form that has the
most intuitive appeal for the purpose we want to serve.

One of themost intuitiveways to understand the principle of estimation for incom-
plete or biasedly sampled data is to first identify what parametric or nonparametric
components could be estimated empirically from the observed data and then relate
these components to the main target. In the random right censoring setting the main
target is the lifetime distribution F , or equivalently its cumulative hazard function,
which is defined as

�(x) =
∫ x

0

dF(t)

1 − F(t−)
, (1.1)

where the notation F(t−), for any distribution F , stands for F(t−) = limy↑t F(y),
the limit of F(y) as y approaches t from below.

It is obvious that Zi can always be observed, so its empirical distribution function,
Hn(x) = 1

n

∑n
i=1 1Zi≤x , is the natural estimate for H(x) =Pr (Z1 ≤ x). Likewise,
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H1(x) = Pr(Z1 ≤ x, δ = 1), a subdistribution of the distribution of the Zi , can be
estimated empirically by H1n(x) = 1

n

∑n
i=1 1{Zi≤x, δi=1}. It is not difficult to show

that

�(x) =
∫ x

0

dH1(t)

1 − H(t−)
. (1.2)

So� can be estimated by replacing H and H1 in (1.2) with their respective empirical
estimates, Hn and H1n .

To include the case with tied observations, let Z(1) < Z(2) < . . . < Z(K ) denote
the K distinct and ordered observed lifetimes among {Z1, . . . , Zn}, i.e. Z(i) = Z j

for some j for which δ j = 1. Then the resulting estimate of � is

�̂n(x) =
∫ x

0

dH1n(t)

1 − Hn(t−)
=

K∑

i=1

[
di
ni

]1{Z(i)≤x}
, (1.3)

where di = ∑n
j=1 1{Z j=Z(i),δ j=1} is the number of deaths observed at time Z(i) and

ni = n[1 − Hn(Z(i)−)] = ∑n
j=1 1{Z j≥Z(i)} is the number of subjects still at risk at

Z(i).
The estimator �̂n(x) has an intuitive interpretation as the cumulative risk up to

time x and is referred to in the literature as the Nelson-Aalen estimator. It is also
the cumulative hazard function of the Kaplan-Meier estimate if one adopts a general
result that provides a one-to-one correspondence between a cumulative distribution
function (F) and its cumulative hazard function (�) for any random variable, be it
continuous, discrete, or neither. Specifically, for any F let F{x} = F(x) − F(x−)

denote the point mass at x and similarly for �, then F{x} = �{x} = 0, except for
x ∈ AF , where AF is the set of atoms of F , i.e. AF is the set of all x at which F(x)
is discontinuous. Decomposing � into � = �c + �d , where �c is a continuous
function and �d is a step function with jumps at AF and jump sizes �{x}, the
following relation holds for any distribution function F :

1 − F(x) = e−�c(x)
∏

a j∈AF ,a j≤x

[1 − �{a j }]. (1.4)

Since the Nelson-Aalan estimator in (1.3) is a step function with atoms in AH =
{Z(1), . . . , Z(K )}, following (1.4) its corresponding survival function is:

1 − F̂n(x) =
K∏

i=1

[

1 − di
ni

]1{Z(i)≤x}
, (1.5)

which is the Kaplan-Meier estimator.
It follows from (1.5) that F̂n is a discrete distribution function with atoms at Z(i)

and jump sizes

wi = di
ni

i−1∏

j=1

[

1 − d j

n j

]

. (1.6)
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With this interpretation it is easy to see that theKaplan-Meier estimate F̂n collapses to
the empirical distribution Fn in the absence of censoring, i.e. when all δi = 1, and the
SLLN implies

∫
φ(x) dFn(x) = 1

n

∑n
i=1 φ(Xi ) → E(φ(X1)) = ∫

φ(x) dF(x) as
long as

∫ |φ(x)| dF(x) < ∞.When censoring is present, the Kaplan-Meier integral,
defined as

Sn =
∫

φ(x) d F̂n(x) =
K∑

i=1

wi φ(Z(i)), (1.7)

now has random weights wi (1.6) at Z(i), and this poses technical challenges for
the SLLN in Theorem 1. Moreover, Sn cannot converge to

∫
φ(x)dF(x), if τH =

in f {x : H(x) = 1} < τF = in f {x : F(x) = 1}.
The correct limit for Sn turns out to be

S =
∫

x<τH

φ(x) dF(x) + 1{τH∈AH } φ(τH ) F{τH }

=
∫

x≤τH

φ(x) d F̃(x), (1.8)

where AH is the set of atoms of H and

F̃(x) = F(x), if x < τH ,

= F(τH
−) + 1{τH∈AH } F{τH }, if x ≥ τH . (1.9)

We now state the SLLN for censored data in Stute and Wang (1993b), hereafter
abbreviated as SW93,which hadmore than 300 citations according toGoogleScholar
in August, 2017.

Theorem 1 (Stute and Wang 1993b)
Assume that

∫ |φ| dF < ∞, then

Sn =
∫

φ(x) d F̂n(x) → S =
∫

φ(x) d F̃(x),

with probability one and in the mean.

Remark 1 Obviously, the limit in the r.h.s. is
∫
{x≤τH } φ(x) dF(x) unless F is dis-

continuous at τH and G(τH−) = 1. Otherwise, the limit is
∫
{x<τH } φ(x) dF(x).

Also, the limit would be
∫

φ(x) dF(x) if τH = τF and F is either continuous at τH
or F has a jump at τH but G(τH−) < 1.

Remark 2 The original SLLN in SW93 involved an extra condition that F and G
have no jumps in common but this condition can be removed using a new time
scale. This extension was briefly mentioned in a review paper (Stute 1995b), which
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is a highly recommend reading for anyone interested in studying Winfried’s striking
results on K-M integrals. With this extension, the only assupmtion for the SLLN to
hold under the random censoring scheme is exactly the same as its empirical counter-
part with no censoring. That is, censoring does not cost any theoretical compromise
for the SLLN but this is not the case for the central limit theorem which will be
explored in Sect. 1.3.

Remark 3 Applications of Theorem 1 are plentiful. For example the choice φ(x) =
1(−∞,t](x) leads to the strong consistency of the K-M estimator, and the choice
φ(x) = xk leads to the convergence of the K-M moment estimators, among others
results. Needless to say, it is useful to establish the SLLN for U-statistics (Stute and
Wang 1993a) and M-estimators (Wang 1995). The results in Stute (1976) can be
further used to derive the strong uniform consistency of the K-M estimator. We refer
the readers to the corollaries on Page 1595 there and the additional discussions in
SW93.

Last but not least, we mention three additional applications of the SLLN that are
provided in Stute (1993b, 1994a) and Stute and Wang (1994). An extension to the
multivariate case was studied in Stute (1993b) in the presence of a p-dimensional
covariate when these covariates are not subject to censoring. The SLLN for themulti-
variate joint distribution of the censored response and its covariates is presented there
with a very neat application to the linear censored regression model and a proposal
for a new and simple estimator for the slope regression parameter. This estimator
was shown to perform favorably against its competitors, such as the Buckley-James
estimator (Buckley and James 1979). In Stute (1994a) an explicit expression for
the bias of a Kaplan-Meier integral was established, while Stute and Wang (1994)
provides an explicit formula for the jackknife estimate of a Kaplan-Meier integral.

1.2.1 Key Ideas of the SLLN

The most studied case in the literature is for φ(x) = 1(−∞,t], which amounts to
showing F̂n(t) → F(t) almost surely (a.s.). Because of the nice empirical expression
(1.3), most approaches in the literature by 1990 took a two step approach by first
showing that �̂n(t) → �(t) a.s. and then showing that log(1 − F̂n(t)) + �̂n(t) →
0 a.s. This completes the proof for continuous F , since log(1 − F(t)) = −�(t).
One drawback with such a two-step approach is that the convergence can only be
established for t such that F(t) < 1 or along a sequence of tn such that F(tn) → 1
slowly, since �(t) needs to stay away from ∞ at a certain rate. It turns out that
this problem on the right tail can be avoided if one bypasses the cumulative hazard
function andworks insteadwith the distribution functiondirectly. This is the approach
taken in SW93.

Since the idea is to stick to the target (1.7), the goal is to explore what kind of
structure it possesses. There are three classical techniques to prove SLLNs for the
case where there is no censoring, (i) Kolmogorov’s original proof, (ii) the ergodic
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theorem for strictly stationary and ergodic sequences, and (iii) the reverse-time mar-
tingale approach (Neveu 1975) for a proper sequence of σ−fields so the martingale
convergence theorem can be applied. When we first looked into this problem in
1990, we knew immediately that the first two approaches could not be extended
to censored data easily and the reverse-time martingale structure does not hold for
Sn since E(Sn) varies with n. But Winfried had a hunch that it might still work if
we can show that Sn endowed with a proper sequence of decreasing σ−field is a
reverse-time supermartingale for positive φ functions (we knew that Sn could not
be a reverse-time submartingale because the K-M estimator is biased downward).
Although it was not hard to construct the proper σ−fields (cf. Step 1 of Sect. 1.2.2)
needed for this martingale structure it was not easy to pin down the supermartingale
structure.

This went on for some time and we still had no clue about the martingale structure
of Sn . After another uneventful day (Wish I remembered the date !) I left the institute
frustrated. After dinner and some soothing German dinner that night, my spirit was
lifted and I decided to give a final shot to see if we should continue to invest our time
on this problem. My plan was simple, just check the simple cases of n = 1, 2 and
3, and the truth would be revealed. I settled down to do the calculation: The case of
n = 1 was trivial, and YES, Sn is a reverse-time supermartingale when n = 2. When
it was revealed that Sn is also a reverse-time supermartingale for n = 3, I thought
that I had hit the jackpot—it had to be (ok, just might be) true for general n. I learned
this naive strategy to do research on difficult problems from the late Jack Kiefer who
taught me that if something is true for n = 1 to 3, it is probably true for all n!

A side note about my two mentors in research, Professors Jack Kiefer and Lucien
LeCam, two geniuses who approached open problems from opposite ends. Both
were extremely kind and generous. Kiefer was my thesis advisor until his sudden
death at the age of 57, less than a year before my graduation, and Le Cam graciously
took me under his wings after Kiefer’s death and remained a mentor and friend
until his death in 2000. I am forever indebted to their inspiration and guidance. As
mentioned, Kiefer taught me how to approach a problem from the simplest sce-
nario, e.g., try the one-dimensional case first, then general Euclidean space, before
launching to the infinite-dimensional abstract space. LeCam favored the opposite,
top-down, approach, as he could see things high up in the abstract space that few
others could, so he typically approached a problem in its most general and abstract
setting. I was extremely fortunate to witness their differences and took advantage of
both approaches. Often, I would start to work on a problem at the ground level and
work my way up as Kiefer had taught me to do, but once reaching the higher ground,
I would look for powerful tools that could simplify the proofs or expand the results
with less stringent assumptions. These two reversed approaches are effective in their
own individual way but together they form a powerful team.

Going back to the story of the paper SW93 on the SLLN, the next morning I
arrived early at the institute to eagerly share the discovery from the night before.
I ran straight to Winfried’s office to announce the big news—the supermartingale
structure must be true for Sn because it holds for n = 1, 2 and 3. He did not laugh
at the obviously flawed and naive statement and instead immediately realized that
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we had work to do. We went downstairs to a classroom which had huge blackboards
and began to explore our options one by one. After we understood what was going
on and believe by then that the statement must be true we still could not come up
with a one-shot proof that Sn is a reverse-time supermartingale. So we took the last
resort—to prove it by mathematical induction! I don’t know about Winfried but I
never would have thought that one day I would use induction to prove the theorem of
my life. It is perhaps not the most elegant way to prove the key result, Lemma 2.2 in
SW93, and I still wonder whether there is a more direct way to prove this lemma. But
even with the induction the proof of Lemma 2.2 is non-trivial and involves elegant
use of order statistics, concomitants and ranks.

We made significant progress over the next few days but there were still multiple
hurdles ahead. It must have taken more than a week before we had a proof for the
special case when H is a continuous distribution function. I was exhilarated and
ready to call it quits when we had the proof for continuous H as that was already far
better than any existing result. But Winfried was not content, he was keen to get rid
of the continuity assumption. So upon his insistence we eliminated this assumption
and showed that the SLLN holds as long as F and G do not have common jumps.
This was the version published in our 1993 paper but Winfried learned of a trick
later to get rid of this assumption and included that extension in Stute (1995b). In
the end he fulfilled his dream to show that the SLLN for K-M integral holds under
no assumptions other than the trivial one that

∫ |φ| dF < ∞. Overall, this project
involved the most unusual route towards a proof that I have ever encountered in my
career. Still until today, Theorem 1.1 in SW93 remains my favorite theorem of all
time.

1.2.2 Outline of the Proof

Step 1. The first step is to identify the σ−fields for the reverse time martingale.
Towards this goal, it is easier to consider an alternative form of the K-M estimator,
which aims at breaking tied observations so that any lifetimeprecedes a tied censoring
time but the ordering within tied lifetimes or tied censoring times can be arbitrary.
With this rule, the K-M estimator in (1.5) is equivalent to the one in formula (1.2) of
SW93 and the associated K-M integral (1.7) can be expressed as

Sn =
n∑

i=1

Win φ(Zi :n), where Zi :n is the i th ordered-statistics among {Z1, . . . , Zn}, (1.10)

Win = δ[i :n]
n − i + 1

i−1∏

j=1

[
n − j

n − j + 1

]δ[i :n]
with δ[i :n] = δ j , if Z j = Zi :n .

The δ[i :n] above are often called the concomitants of the Zi :n .
With these notations defineFn to be the σ field generated by {Zi :n, δ[i :n], 1 ≤ i ≤

n, Zn+1, δn+1 . . .}. Then Sn is adapted to Fn with Fn ↓ F∞ = ∩n≥1Fn and F∞ is



An Odyssey to Incomplete Data:Winfried Stute’s Contribution to Survival Analysis 11

trivial by the Hewitt-Savage zero-one law.

Step 2. Next, we show that, for everyφ ≥ 0 and continuous H , E(Sn|Fn+1) ≤ Sn+1.
Hence {Sn,Fn}n≥1 is a reverse-time supermartingale. The proof uses mathematical
induction and is included in Lemma 2.2 of SW93. This is the key step towards the
final SLLN.

Step 3. Proposition 5-3-11 in Neveu (1975) then implies that, for every φ ≥ 0, Sn
converges a.s. and in themean to some randomvariable S∞, whichmust be a constant
S by the Hewitt-Savage zero-one law. Hence Sn → S a.s. and E |Sn − S| → 0.

This result can be extended to general φ = φ+ + φ− by decomposing into posi-
tive (φ+) and negative (φ−) parts.

Step 4. It now remains to identify the constant S and this was achieved in Lemma
2.7 of SW93 for continuous H , which implies that

S =
∫

φ(x) m(x) γ0(x) dH(x), (1.11)

where m(x) = P(δ = 1|Z = x), and γ0(x) = ∫ x−
0

1−m(y)
1−H(y) dH(y).

Under independence of lifetime T and censoring variableC , the limit S then takes
the form in (1.8).

Step 5. To show the result for a generalH,wefirst look at the casewhere F andG have
no common jumps, hence there are no tied observations between the censored and
uncensored observations. Under this assumption, apply a quantile transformation,
H−1(Ui ), to a specially constructed sequenceUi of uniform [0, 1] random variables
as in Lemma 2.8 in SW93, so that Zi = H−1(Ui ). Then

Sn =
n∑

i=1

Win φ(H−1(Ui :n)). (1.12)

The SLLN now follows by replacing φ with φ ◦ H . This is what was obtained
in SW93, where the only assumption needed for the SLLN of K-M integrals is
that F and G have no common jump points. It turns out that this restriction can be
removed because theK-Mestimator treats an uncensored observation as if it precedes
a censored one slightly if there is a tie between them. A trick in Gill (1980) to shift
the time scale of G slightly to the right of those common jump points then implies
that F and the transformed G on this new time scale no longer have common jumps
and hence the SLLN holds. This trick was discussed in detail on page 437 of Stute
(1995a) where he dealt with the CLT for the K-M integral. In conclusion, the SLLN
for a K-M integral holds under the minimal assumption

∫ |φ(x)| dF(x) < ∞, with
no restriction on F and G, just like the classical SLLN when there is no censoring.
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1.3 Central Limit Theorem:Random Right Censoring

Once the limit S in (1.8) of Sn = ∫
φ(x) d F̂n(x) has been identified, this facilitates

to explore the limiting distribution of Sn − S, i.e. the CLT for a K-M integral. The
special case of φ(x) = 1(∞,x] for x < τH , was studied, for instance, by Breslow and
Crowley (1974); Lo and Singh (1986); Major and Rejto (1988). The unrestricted
case for all x was established in Gill (1983) and Ying (1989) by using the martingale
convergence theorem, a powerful tool to handle asymptotic theory for censored data
thatwas popular in the 1980s.However, some technical assumptionswere still needed
to control the censoring effect in the right tail of the lifetime distributions.Under these
assumptions, the case of aφ-function that is of bounded variation on an interval [0, T ]
for which T < τH can be handled without much difficulties by invoking integration
by parts. But this is a restrictive class of functions and specifically, it excludes the
estimation of the K-Mmean which corresponds to φ(x) = x . Susarla and Van Ryzin
(1980) were able to extend the K-M mean estimate to an interval [0, Mn] for which
Mn → ∞ at a suitable rate but the results on [0,∞) remains unresolved.

Subsequently, Schick et al. (1988) established the CLT for φ-functions that are
nonnegative, nonincreasing and continuous. Under some regularity conditions on F ,
Yang (1994) extended the results to general functions φ that satisfy

∫
φ2

1 − G
dF < ∞. (1.13)

Other than the restrictions on F , the result of Yang (1994) is optimal as assumption
(1.13) is needed to ensure that the limiting variance is finite. Other restrictions in
Yang (1994) were removed by Winfried in his1995 paper (Stute 1995a), where he
established the CLT for K-M integral for any F and G under minimal conditions.
This paper had 173 citations based on Google scholar in August 2017.

HowdidWinfried do it? There are several ways to derive the CLT and those familiar
with Winfried’s technical style probably know his affinity to derive everything from
scratch using basic tools. Thus, instead of employing the martingale CLT as was
done in Gill (1983), he took the classical approach of expanding

√
n (Sn − S) as

a sum of i.i.d. random variables plus a small and negligible remainder term. While
this i.i.d. representation approach has been explored by many before him, the key
to success rests upon the conditions that are invoked to handle the remainder term.
Through a clever expression of Sn as a U-statistic of degree three plus a negligible
remainder term, he realized that the Hajek projection for U-statistics would provide
the right platform for the desired i.i.d. decomposition. What remains is hard analysis
and the tenacity to get things right.

In professional life, Winfried is a minimalist. Any extra condition for the sake of
convenience would be an eyesore for him. In my experience working with him, I
have witnessed repeatedly his persistence to get rid of anything that is not elegant.
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This working style has served him well and attributed to his ability to produce the
most elegant results time and again.

To state the CLT, we first define several quantities:
H̃0(z) = P(Z ≤ z, δ = 0) = ∫ z

−∞(1 − F(y)) dG(y),

H̃1(z) = P(Z ≤ z, δ = 1) = ∫ z
−∞(1 − G(y−)) dF(y),

γ0(x) = exp{∫ x−
−∞

d H̃0(y)
1−H(y) },

γ1(x) = 1
1−H(x)

∫
1{x<w} φ(w) γ0(w) d H̃1(w),

and

γ2(x) = ∫ ∫ 1v<x,v<w φ(w) γ0(w)

[1−H(v)]2 d H̃0(v) d H̃1(w).

The following two assumptions are needed for the CLT in Theorem 2:

∫
φ2(x) γ 2

0 (x) d H̃1(x) < ∞ (1.14)

and
∫

|φ(x)| C1/2(x) d F̃(x) < ∞, (1.15)

where C(x) = ∫ x−
−∞

dG(y)
[1−H(y)] [1−G(y)] and F̃ is defined in (1.9).

Theorem 2 (Corollary 1.2 of Stute, 1995a) Under assumptions (1.14) and (1.15),√
n(Sn − S) = √

n
∫

φ(x) d(F̂n − F)(x) → N (0, σ 2) in distribution, where σ 2=
Var [φ(Z) γ0(Z) δ + γ1(Z) (1 − δ) − γ2(Z)].

Remark 4 For continuous F the asymptotic variance becomes

σ 2 =
∫ τH

−∞
φ2(x)

1 − G(x)
dF(x) −

[∫ τH

−∞
φ(x) dF(x)

]2

−
∫ [∫ τH

x
φ(y) dF(y)

]2 1 − F(x)

[1 − H(x)]2 dG(x), (1.16)

which further simplifies to σ 2 = ∫
φ2 dF − [∫ φ dF]2 when there is no censoring

as G then always equals zero.

Remark 5 Condition (1.14) is equivalent to condition (1.13) when F is a continuous
function. Both are properly modified “second moment” conditions in the CLT for
censored data. Condition (1.15), on the other hand, is used to control the bias of
the K-M integral so the

√
n rate can be achieved. This is the price paid by the K-M

estimator and is needed for the CLT of general K-M integrals. Examples provided in
Stute (1995a) imply that Theorem 2 may not hold if condition (1.15) is not satisfied.
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Remark 6 Aswith the SLLN, applications of the CLT are plentiful. Remark 3 above
listed a few such applications. In particular, the CLT was extended to the case when
covariates are present in Stute (1996a). Another application is provided in Stute
(1996b), where Winfried established an explicit expression for the variance of the
jackknife estimator of the K-M integral and investigated the convergence of this
variance estimator. Surprisingly the variance of the jackknife estimator converges
to the variance of the K-M integral only when φ(x) → 0 as x → τH . As this is
quite restrictive and in view of Winfried’s low tolerance for wrinkles, he proposed a
modified variance estimate, v̂ar∗J K , that satisfies n v̂ar∗J K → σ 2.

1.3.1 Outline of the Proof

The proof of the CLT is based on an i.i.d. representation of the K-M integral (cf.
Theorem 1.1 of Stute (1995a)), which leads to

∫
φ d(F̂n − F̃) = 1

n

n∑

i=1

Ui + Rn, (1.17)

where the Ui are i.i.d. with mean zero and variance σ 2 and Rn = oP (n−1/2).

The derivation of (1.17) follows the following steps.

Step 1. First assume that H is continuous. Then (1.10) and Lemma 2.1 in Stute
(1995a) imply that

∫
φ d F̂n can be expressed as

n∑

i=1

Win φ(Zi :n)=
∫

φ(x) exp

{

n
∫ x−

−∞
ln

[

1 + 1

n(1 − Hn(y))

]

d H̃0
n (y)

}

d H̃1
n (x).

(1.18)

Step 2. Replace the logarithm term ln(1 + x) by x and neglecting the error terms, then

the exponential term in (1.18) becomes exp
{∫ x−

−∞
d H̃0(y)
1−Hn(y)

}
. Integrating this term

w.r.t. H̃1
n and further expanding this exponential term leads to a U-statistic of order 3.

Step 3. The Hájek projection of this U-statistic leads to the desired i.i.d. expansion in
(1.17). Details are provided in Lemma 2.2–2.7 of Stute (1995a) under the additional
assumption that

φ(x) = 0 for all x > T and some T < τH , (1.19)

so all terms appearing in the denominators of the proof are bounded away from zero,
hence the denominator will cause no problem.
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Step 4. Under the two assumptions (1.14) and (1.15), and for continuous F , the
denominators in the proof can be controlled without assumption (1.19). The proof
is thus extended to the case without assumption (1.19) but with the assumption that
H is continuous.

Step 5. Finally, the assumption of continuous H can be removed just as in the case
for the SLLN, as discussed in Step 5 of Sect. 1.2.2.

1.4 RandomTruncation

While I was visiting Giessen in 1990, Winfried and I worked on another type of
incomplete data, random truncated data (Gürler et al. 1993), which often occur in
astronomy (Woodroofe 1985) or in studies with delayed entry of patients into a study.
Let (Xi , Yi ), i = 1, . . . , N , be a sequence of i.i.d. random vectors for which Xi ∼ F
is also independent of Yi ∼ G. Random truncation occurs when the pair (Xi , Yi )
can be observed only when Xi ≥ Yi . That is, neither Xi nor Yi can be observed
when Xi < Yi but both are observed when Xi ≥ Yi . This sampling structure is quite
different from the one for censored data where one, and only one (the minimum),
of the lifetime and censoring variable can be observed. Consequently, the observed
sample size, n = ∑N

i=1 1{Xi≥Yi }, is a random quantity while the latent sample size
N is unknown. We denote the observed data by (X∗, Y ∗) to distinguish them from
the original (X, Y ). Luckily (X∗

i , Y
∗
i ) are still i.i.d. with joint distribution

H∗(x, y) = P(X ≤ x, Y ≤ y|Y ≤ X) = 1

α

∫ x

−∞
G(y ∧ z) dF(z); (1.20)

and marginal distributions

F∗(x) = H∗(x, ∞) = 1

α

∫ x

−∞
G(z) dF(z), (1.21)

G∗(y) = H∗(∞, y) = 1

α

∫ ∞

−∞
G(y ∧ z) dF(z), (1.22)

where α = P(Y ≤ X) and y ∧ z denotes the minimum of y and z.
Note here that F∗,G∗ and H∗ can all easily be estimated empirically but the goal

is to estimate F and G. We say that left truncation occurs when the primary interest
is F , in which caseG is called the truncation distribution. Likewise, the data are right
truncated when G is the primary interest and F is the right truncation distribution.
For illustration purposes we focus on the left truncation case for which F is the
primary target with cumulative hazard function �F defined as in (1.1).
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Let aF = inf{x : F(x) > 0} be the left support point of F , and bF = sup{x :
F(x) < 1} be its right support point. It is not surprising that F can be estimated only
when

(i) aG < aF , or (1.23)

(i i) aG = aF and F{aF } = 1.

Case (i) is much easier to deal with than case (ii). Throughout this section we
make the assumption (1.23) and write

C(z) = P(Y ∗ ≤ z ≤ X∗) = G∗(z) − F∗(z−) (1.24)

= 1

α
G(z) [1 − F(z−)], for aF ≤ z < ∞.

It can be easily shown that �F (x) = ∫ x
−∞

dF∗(y)
C(z) . Hence the empirical estimate of

�F (x) is

�̂T
n (x) =

∫ x

−∞
dF∗

n (z)

Cn(z)
=

∑

distinct X∗
k≤x

F∗
n {X∗

k }
Cn(X∗

k )
, (1.25)

where F∗
n is the empirical estimates based on {X∗

1, . . . , X
∗
n} and

Cn(z) = 1

n

n∑

i=1

1{Y ∗
i ≤z≤X∗

i } (1.26)

is the empirical estimate of C . The superscript T in (1.25) reminds us that this is for
truncated data.

Based on (1.4) the distribution function F̂T
n that corresponds to �̂T

n is

1 − F̂T
n (x) =

∏

k: X∗
k≤x

[

1 − Fn{X∗
k }

Cn(X∗
i )

]

, (1.27)

which, when there are no tied observations among X∗
i , becomes

1 − F̂T
n (x) =

∏

i : X∗
i ≤x

[

1 − 1

n Cn(X∗
i )

]

. (1.28)

This is the original Lynden-Bell estimate (Lynden-Bell 1971) which was shown
to be the nonparametric maximum likelihood estimator of F by Woodroofe (1985)
and Wang et al. (1986). One undesirable feature of the estimator F̂T

n (x) is that it
may jumps to 1 before x reaches the largest order statistic. To see this, consider the
simpler case when there is no tied observation so (1.28) holds. Under this scenario
F̂T
n (x) = 1 as soon as nCn(X∗

j ) = 1 for some X∗
j ≤ x , and all observations larger
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than X∗
j will have no influence on the estimation of F . This is a soft spot of the

Lynden-Bell estimator which triggers technical difficulties as we will elaborate later.
Luckily, the probably that this happens is small so at the end of the day the Lynden-
Bell estimator still enjoys nice properties. However, in order to establish the CLT
for Lynden-Bell integrals, a revised estimator, which is asymptotically equivalent to
the Lynden-Bell estimate, was constructed in Stute andWang (2008) to facilitate the
proof.

To understand when the above undesirable feature might occur, observe that
n Cn(X∗

j ) = 1, if X∗
j is not covered by any other interval [Y ∗

i , X∗
i ], i �= j (note

that n Cn(X∗
j ) ≥ 1 because [Y ∗

j , X
∗
j ] always covers X∗

j ). This phenomenon occurs
when there are gaps in the unions of all intervals [Y ∗

i , X∗
i ], 1 ≤ i ≤ n, and these

gaps, which are intervals that are not covered by any [Y ∗
i , X∗

i ], are referred to as the
“holes” for truncated data (Strzalkowska-Kominiak and Stute 2010) or “empty inner
risk sets” (Keiding and Gill 1990). On those holes, Cn(x) may be zero so the proba-
bility for those holes needs to be small and tend to zero sufficiently fast as the sample
size tends to infinity. Sharp probability bounds were developed in Strzalkowska-
Kominiak and Stute (2010) and they have ramifications on the estimation of α, a
topic of practical interest further studied in He and Yang (1998a). Below we focus
on two of the fundamental results that Winfried established (Stute 1993a; Stute and
Wang 2008).

1.4.1 I.I.D.Representation for Truncated Data

So far, the left truncation setting resembles the random censoring case by replacing
H1 and H in (1.2), respectively, by F∗ andC and by replacing the empirical estimates
H1n and Hn in (1.3), respectively, by the empirical estimates F∗

n and Cn . However,
there are distinctive features between the two settings in the handling of theory
because Cn is not a monotone function while Hn is and also because of the problems
created by the “holes” in truncated data when nCn(X∗

j ) = 1, for some j .
Winfried’s first solo act for truncated data was Stute (1993a), which appeared

around the same time as SW93. However, instead of tackling the Lynden-Bell inte-
grals,

∫
φ(x)d F̂T

n (x), he focused on the Lynden-Bell estimator itself and on provid-
ing an i.i.d. representation for the Lynden-Bell estimator. Along this path, he realized
that he needed stronger results on the processes of U-statistics which he developed
alongside with Stute (1993a) and which subsequently appeared in Stute (1994e).
Below we summarize the main result of Stute (1993a), which improved the results in
Chao and Lo (1988) and had 109 citations according to Google Scholar in August,
2017.
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Theorem 3 (Theorems 1 and 2 of Stute Stute 1993a) Assume aG ≤ aF and
∫ ∞
aF

G−2(x) dF(x) < ∞, then uniformly in aF ≤ x ≤ b < bF we have

(i) �̂T
n (x) − �F (x) = Ln + Rn, and

(i i) F̂T
n (x) − F(x) = (1 − F(x)) Ln(x) + R0

n(x),

where Ln =
∫ x

aF

1

C(z)
d(F∗

n − F∗)(z) −
∫ x

aF

Cn(z) − C(z)

C2(z)
dF∗(z),

sup
aF≤x≤b

|Rn(x)| = o(n−1(ln n)δ), with probabili t y one and f or any δ > 1.5,

sup
aF≤x≤b

|R0
n(x)| = O(n−1(ln n)3) with probability one.

Remark 7 It is clear from the theorem that Ln is a sum of i.i.d. processes which then
leads to the CLT and LIL (Law of Iterated logarithm) for the Lynden-Bell estimator.

Remark 8 The order of the remainder terms (other than the log part) in Theorem 3
is O(n−1), which is much sharper than the order o(n−1/2) in standard i.i.d. repre-
sentations. Winfried stressed the need to have such a higher order remainder term,
e.g. for density and quantile estimation.

Remark 9 A version of the SLLN for truncated data was later studied in He and
Yang (1998b) but an optimal solution under random truncation remains elusive at
this time. Maybe Winfried will fill this gap when he has more time in his hand (he
is still carrying a full teaching load at Giessen).

1.4.2 CLT for Truncated Data

For right censored data, only the right tail poses technical challenges, but for left
truncated data both the left and right tails present challenges. This can be seen from
the function C and its estimator Cn , as both approach zero on the left and right
tail and as in particular Cn appears in the denominator. Additional challenges are
due to the aforementioned “holes” in the data and to the fact neither C nor Cn

is monotone. Consequently, the proof of the CLT for right censored data in Stute
(1995a) does not apply directly for truncated data. To circumvent the tail problem
we want to prevent F̂T

n to reach its full mass (one) prematurely, which means that we
need to construct a modified estimator F̃T

n which avoids this problem but satisfies√
n{∫ φ d F̂T

n − ∫
φ d F̃T

n } = oP (n−1/2). This is the key idea in Stute and Wang
(2008), which will be discussed further after we present the CLT for Lynden-Bell
estimator.

The following assumptions are needed for the CLT,
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(i)
∫

dF

G
< ∞, (1.29)

(i i)
∫

φ2

G
dF < ∞. (1.30)

Theorem 4 (Theorem 1.1 and Corollary 1.1 of Stute and Wang, 2008)
Under assumptions (1.23), (1.29), and (1.30) we have

∫
φd F̂T

n −
∫

φdF=
∫

ψ(y)

C(y)
d(F∗

n − F∗)(y) −
∫

Cn(y) − C(y)

C2(y)
ψ(y) dF∗(y) + oP (n−1/2), (1.31)

where

ψ(y) = φ(y) [1 − F(y)] −
∫

[y<x]
φ(x) [1 − F(x)]

C(x)
dF∗(x) =

∫

[y<x]
[φ(y) − φ(x)] dF(x).

Hence

√
n

∫
φ d(F∗

n − F) → N (0, σ 2) in distribution, (1.32)

with σ 2 = Var

{
ψ(X)

C(X)
−

∫ X

Y

ψ(y)

C2(y)
dF∗(y)

}

.

Remark 10 Assumption (1.23) as mentioned before ensures that F can be properly
estimated under the left truncation setting and assumption (1.29) further ensures that
there is enough information in the left tail so F can be estimated at the

√
n rate. Both

assumptions are standard for truncated data and were already stated in Woodroofe
(1985). Assumption (1.30) is needed to ensure that the leading terms in the i.i.d.
representation (1.31) have finite second moments so the asymptotic normality in
(1.32) holds. Thus, the assumptions listed in Theorem 4 are mild and they are much
weaker than any other existing assumptions for truncated data.

The fact that G ≤ 1 implies
∫

φ2dF < ∞, which is the second moment assump-
tion for standard CLTs when there is no truncation. It will be implied by assumption
(1.29) when

∫
φ2dF < ∞ and φ is locally bounded in a neighborhood of aG . Both

assumptions in (1.29) and (1.30) will be satisfied when aG < aF and
∫

φ2dF < ∞.

Remark 11 Theorem 4 actually has broader implications to a class of φ functions if
one traces its proof carefully. For instance, if we take the class of all indicators φx =
1(−∞,x] then it can be shown that the i.i.d representation in (1.31) holds uniformly
for all φx under condition (1.23) and (1.29) (here condition (1.30) is implied by
condition (i)) because the remainder term can be bounded uniformly.
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1.4.3 Outline of the Proof

Step 1. The proof begins with the case that F is continuous, where the Lynden-Bell
estimator takes the special form in (1.28). As mentioned, F̂T

n has the undesirable
property that if “holes” exist then F̂T

n jumps to one as soon as nCn(X∗
j ) = 1 for

some X∗
j . When this happens before the largest order statistic the exponential repre-

sentation in (1.18) for the K-M integral cannot hold for the Lynden-Bell integral, so
the method of proof for Theorem 2 is not applicable. To circumvent this problem,
a modified estimator was proposed in Stute and Wang (2008). This estimator was
constructed by modifying the weights of the Lynden-Bell estimator from

F̂T
n {X∗

i :n} = 1

Cn(X∗
i :n)

i−1∏

j=1

[

1 − 1

nCn(X∗
i :n)

]

. (1.33)

to

F̃T
n {X∗

i :n} = 1

Cn(X∗
i :n)

i−1∏

j=1

[

1 − 1

nCn(X∗
i :n) + 1

]

, (1.34)

where X∗
i :n is the i th order statistics of {X∗

1, . . . , X
∗
n}.

This smallmodification in the denominator of the products nowavoids the problem
of “holes” so all observed data X∗

i receive positive weights and hence are properly
accounted for.

Step 2. A similar proof to the CLT for censored data can then be applied to
∫

φ d F̃T
n ,

albeit extra care is still needed as the truncation case is challenging both in the left
and right tail, whereas the censored case only faces challenges in the right tail. For
instance, a new bound for the function C/Cn is needed and established in Lemma
3.1 of Stute andWang (2008). In addition, many more bounds need to be established
for quantities that involve Cn in the denominator. Since Cn is not monotone, many
of the nice properties that are readily available for its censoring counter part Hn are
not afforded to Cn .

After eight lemmas and three corollaries, Theorem 4 was established for contin-
uous F .

Step 3. The extension to an arbitrary F is less treacherous and follows a similar path
as the analogous extension for censored data, as described in step 5 of Sect. 1.2.2, by
invoking a quantile transformation.
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1.5 Conclusion

It has been 40 years sinceWinfried’s first publication and since he obtained his Ph.D.
degree (both events occurred in the same year 1976). During these 40 years, he had
a very productive career with many landmark papers. It appears from his CV that
the four years from 1993 to 1996 were Winfried’s most productive period, during
which he had a total of 27 publications, 20 of which were either in survival analysis
or inspired by his interest in survival analysis. In this review, we focused on four
of his papers and some of their applications in survival analysis as examples for the
scope and impact of his research. Hopefully, the review gives the reader a sense of
the transformative nature of his contributions to the theory of survival analysis. It is
also my hope that after a brief tranquil period after his retirement Winfried gets fired
up again to crack another code, perhaps for doubly or interval censored data this
time. There are still lots of interesting open problems for the theory of incomplete
data—the world of incomplete data is not complete yet. I look forward to another
opportunity to hack the incomplete filed together. Meanwhile, I wish him the very
best for his 70th birthday—and many more years to look forward to!

Acknowledgements The author is grateful for the suggestions and thorough review of two referees
and a co-editor.
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2TheKaplan-Meier Integral in the
Presenceof Covariates:AReview

Thomas A. Gerds, Jan Beyersmann, Liis Starkopf, Sandra Frank, Mark
J. van der Laan and Martin Schumacher

2.1 Introduction

In survival analysis with covariates, many parameters of interest are special cases of
the integral:

θ(ϕ) =
∫
Rp

∫ ∞

0
ϕ(t, z)F( dt | z) H( dz). (2.1)

Here, T is the time of an event and Z a p-dimensional vector of covariates,
ϕ a square integrable function, and F(t | z) = P (T ≤ t | Z = z) and H( dz) =
P (Z ∈ dz) denote the conditional survival distribution and the marginal law of Z ,
respectively. For example, θ(I {t > t∗}) is the marginal survival probability at time
t∗, θ(I {t > t∗, z1 > z∗1}) the bivariate distribution at (t∗, z∗1) (Akritas 1994), and
θ([I {t > t∗} − m(t∗|z)]2) the expected Brier score of a regression model m which
predicts survival at time t∗ conditional on the covariates (Graf et al. 1999). In the
absence of covariates, using the integrand ϕs(t) = exp(st) in (2.1) has been used for
expressing the moment generating function of multi-state survival times (Hudson
et al. 2014).
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In a remarkable series, Stute (1993, 1996, 1999) analyzed an estimator of (2.1) for
right censored observations of the survival time. The estimator is called the Kaplan-
Meier integral. In this paper we first show that Stute’s estimator can be written as an
inverse of the probability of censoringweighted (IPCW) estimator (Van der Laan and
Robins 2003) and then review the structural assumptions of the estimation problem
and the asymptotic properties of the estimator.

In biostatistics, Stute’s method has recently been put to prominent use for esti-
mating transition probabilities in non-Markov illness-death models (e.g., Meira-
Machado et al. 2006;Andersen and Perme 2008;Allignol et al. 2014; deUña-Álvarez
and Meira-Machado 2015). For instance in oncology, illness-death models are used
to jointly model progression-free survival and overall survival, and Kaplan-Meier
integrals apply interpreting progression-free survival as the covariate and overall
survival as time-to-event. We illustrate the general program of the present paper
in this example. Using IPCW representations, we obtain simplified estimators that
even allow for left-truncated data. Left-truncation is another common phenomenon
in survival analysis describing a situation of delayed study entry where individuals
are included in prospective cohorts after time origin, conditional on still being alive
(Keiding 1992).

2.2 The Kaplan-Meier Integral

Let C be a positive random variable (the censoring time) and suppose that instead
of (T, Z) one observes X = (T̃ , �, Z) where T̃ = min(T,C) and � = I {T ≤ C}.
Stute’s estimate of (2.1) is defined on a set of n iid right censored observations
X1, . . . , Xn . Let T̃1:n ≤ · · · ≤ T̃n:n denote the ordered values of T̃1, . . . , T̃n , and
(δi :n, Zi :n) the concomitant status and covariate values. Stute (1993) introduced the
estimate

θ̂(ϕ) =
n∑

i=1

Win ϕ(T̃i :n, Zi :n) (2.2)

where

Win = δi :n
n − i + 1

i−1∏
j=1

(
n − j

n − j + 1

)δ j :n
.

The weightsWin do not only match the initials of their inventor’s first name, they are
also equal to the jump sizes of the Kaplan-Meier estimator for the marginal survival
function of Ti and thereby justify the name “Kaplan-Meier integral”.
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Lemma 1 Assume that there are no tied event times, i.e., T̃i :n < T̃(i+1):n, i =
1, . . . , n − 1. The product limit forms of the Kaplan-Meier estimators of the mar-
ginal survival time distribution S(t) = P(T > t) and the marginal censoring time
distribution G(t) = P(C > t) are given by

Ŝ0(t) =
∏

i :T̃i :n≤t

{
1 − δi :n

n − i + 1

}
Ĝ0(t) =

∏
i :T̃i :n≤t

{
1 − (1 − δi :n)

n − i + 1

}
.

The corresponding IPCW sum forms are:

Ŝ0(t)Ĝ0(t) = 1

n

n∑
i=1

I {T̃i :n > t}

Ŝ0(t) = 1 − 1

n

n∑
i=1

I {T̃i :n ≤ t}δi :n
Ĝ0(Ti :n)

,

and

Ĝ0(t) = 1 − 1

n

n∑
i=1

I {T̃i :n ≤ t}(1 − δi :n)
Ŝ0(Ti :n)

.

Proof These relations were readily noted by Gill (1980, page 36) in slightly more
general form, that is allowing for tied times.

Lemma 2 Under the assumption of Lemma 1 the weights of the Kaplan-Meier inte-
gral equal the jump size of the Kaplan-Meier estimator:

Wi :n = Ŝ0(T(i−1):n) − Ŝ0(Ti :n)

The Kaplan-Meier integral has the following IPCW representation:

θ̂(ϕ) = 1

n

n∑
i=1

ϕ(Ti :n, Zi :n)δi :n
Ĝ0(Ti :n)

.

Proof It follows from Lemma 1 that

Ŝ0(T(i−1):n) − Ŝ0(Ti :n) = −1

n

i−1∑
j=1

δ j :n
Ĝ0(Tj :n)

+ 1

n

i∑
j=1

δ j :n
Ĝ0(Tj :n)

= 1

n

δi :n
Ĝ0(T̃i :n)

.

The claim follows since

nWin = n δi :n
n − i + 1

i−1∏
j=1

(
n − j

n − j + 1

)δ j :n
= n δi :n

n − i + 1

i−1∏
j=1

(
1 − δ j :n

n − j + 1

)

= δi :n
n

n − i + 1
Ŝ0(T̃(i−1):n) = δi :n

Ĝ0(T̃i :n)
.
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Interestingly, Lemma 2 shows that the IPCW sum form of the Kaplan-Meier
estimator (Satten and Datta 2001) is the special case of the Kaplan-Meier integral
where ϕ(t, z) = θ̂(I {t > t∗}) Akritas (2000).

2.3 Identifiability and Structural Assumptions

2.3.1 Support

In biomedical applications of survival analysis, due to limited follow up times, the
support of the censoring times is usually strictly smaller than the support of the
survival times. This means that inference on the tail of the survival distribution
is not feasible and to identify the parameter in (2.1) based on the right censored
observations we have to truncate the parameter at some point in time. To formalize
all this let τ0 = infs P(C > s) = 0 and τ1 = infs P(T > s) = 0 denote the limits
of the supports of C and T , respectively. To meet the setting of typical biomedical
applications of survival analysis, we assume τ0 < τ1, and to achieve identifiabilitywe
assume thatϕ satisfies the following condition for some functionϕ∗ of the covariates
only and ε > 0:

ϕ(t, z) = ϕ(t, z)I {t ≤ τ0 − ε} + ϕ∗(z)I {t > τ0 − ε}. (A1)

For example, the mean restricted lifetime is defined as θ(t I {t > t∗}) for a suitably
chosen truncation time t∗. We refer to Stute (1993, 1996) for a rigorous discussion
of the borderline cases where ε → 0.

2.3.2 Independence

Assumption (A1) is not sufficient to achieve identifiability and a further assumption
is needed regarding the independence of the censoring mechanism (Tsiatis 1975;
Grüger et al. 1991; Gill et al. 1995). To discuss the different assumptions that lead
to identifiability we introduce the function G whose values are the conditional prob-
abilities that an observation is uncensored given the event time and the covariates:

P (� = 1 | Z = z, T = t) = P (C > t | Z = z, T = t) = G(t, z). (2.3)

Even without further independence assumptions, the density of a right censored
observation X (with respect to an appropriately chosen dominating measure) can be
decomposed as

P (T̃ ∈ dt,� = δ, Z ∈ dz) = {P (� = 1 | Z = z, T = t) P (T ∈ dt, Z ∈ dz)}δ
+ {P (� = 0 | Z = z,C = t) P (C ∈ dt, Z ∈ dz)}(1−δ).
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The first term can be expressed as

P (T̃ ∈ dt, � = 1, Z ∈ dz) = P (� = 1 | Z = z, T = t)P (T ∈ dt, Z ∈ dz)

= G(t, z) F( dt | z) H( dz) = P (1)( dt, dz)

and this relation motivates the general form IPCW estimation equations for θ:

θϕ(F, H) =
∫

ϕ(t, z) F( dt | z) H( dz) =
∫

ϕ(t, z)
P (1)( dt, dz)

G(t, z)
= νϕ(P (1),G).

(2.4)
Since P (1) only depends on the right censored observations it can be estimated non-

parametrically, i.e., by the empirical lawof theuncensoredobservations P̂
(1)
n (A, B) =

1
n

∑n
i=1 I{T̃i ∈ A,�i = 1, Zi ∈ B}. The general form of the IPCW estimate of θ is

then obtained by also substituting an estimate Ĝ for G:

θ̂n(ϕ) = ν̂n(ϕ; P̂ (1)
n , Ĝ) = 1

n

n∑
i=1

�iϕ(Ti , Zi )

Ĝ(Ti , Zi )
.

To justify the IPCW estimate defined in Lemma 2 above, Stute (1993, 1996)
restricted the model for G by assuming

T and C are independent, (A2)

P (T ≤ C | T, Z) = P (T ≤ C | T ). (A3)

These two conditions together imply

G(t, z) = P (C > t |T = t, Z = z)
A3= P (C > t |T = t)

A2= P (C > t). (2.5)

Alternatively, we may assume

T and C are conditionally independent given Z (A4)

which is familiar from the Cox regression model (compare Begun et al. 1983, page
448). Under (A4) we have

G(t, z) = P (C > t | Z = z). (2.6)

Comparing (2.5) and (2.6) shows that under (A2) and (A3) the function G is a
simpler parameter, because it does not depend on the covariates.Note also that neither
(A2) implies (A4) nor (A4) implies (A2), and that in generality both assumptions
permit that the censoring times depend on the covariates. However, we emphasize
that under (A2) and (A3) the functionG does not depend on the covariates and hence
the conditional censoring distribution may depend on the covariates only in regions
of the underlying probability space that are irrelevant for estimation of θϕ.
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Under (A2) and (A3) the function G(t) = P (C > t) equals the marginal survival
function of the censoring times and can be estimated consistently by the marginal
reverse Kaplan-Meier estimator for the survival function of the censoring times as
defined in Lemma 1. Under (A4) we need to estimate the conditional censoring
distribution. Only when all covariates are discrete variables this can be done without
further modelling assumptions.

2.4 Large Sample Properties of the Kaplan-Meier Integral

Lemma2 shows that the plug-in IPCWestimator ν̂n(P̂
(1)
n , Ĝ0) equals Stute’sKaplan-

Meier integral (2.2). Stute (1993, 1996) proves strong consistency and weak conver-

gence of θ̂(ϕ)=ν̂n(P̂
(1)
n ,Ĝ0) and obtains the following i id representation (translated

to our notation)

√
n(θ̂(ϕ) − θ) = 1√

n

n∑
i=1

ICθ̂(ϕ)
(T̃i ,�i , Zi ) + oP (1)

where the influence function ICθ̂(ϕ)
of the Kaplan-Meier integral is given in the

following theorem.

Theorem 1 Under (A1), (A2) and (A3) the Kaplan-Meier integral

θ̂(ϕ) = ν̂n(P̂
(1)
n , Ĝ0)

is consistent and regular, asymptotically Gaussian linear with influence function

ICθ̂(ϕ)
(T̃i , �i , Zi ) = �i

ϕ(T̃i , Zi )

G(T̃i )
+ (1 − �i )

W (T̃i )

∫ ∞

T̃i
ϕ(s, z) F( ds | z) H( dz)

−
∫ {∫ T̃i∧s

0

G( du)

W (u)G(u−)

}
ϕ(s, z) F( ds | z) H( dz) − θ(ϕ)

(2.7)

where W (t) = P (T̃i > t).

Proof See Stute (1993, 1996). An alternative proof can be obtained by applying the
functional delta method (e.g. Van der Vaart 1998, Theorem 20.8) to the Hadamard
differentiable functional ν(G,P (1)) using that both the Kaplan-Meier estimator for

the censored times Ĝ0 and the empirical distribution function P̂
(1)
n are

√
n-consistent

in appropriately normed spaces of distributions (Reeds 1976; Van der Vaart 1991).
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2.5 Bias and Efficiency

The Kaplan-Meier integral can have a large sample bias and it is not efficient even
not when assumptions (A2) and (A3) are satisfied. The bias can be seen when the
conditional survival distribution of the censoring times depend on the covariates
P(C > t |Z = z) 	= P(C > t). In this case the marginal Kaplan-Meier estimator for
the censored times Ĝ0(t) converges in probability to G̃(t) = ∫

Rp G(t | z) H( dz)

and the large sample bias of θ̂(ϕ) is given by the following limit as n → ∞:

∣∣∣θ̂(ϕ) − θ(ϕ)

∣∣∣ →
∣∣∣∣
∫

ϕ(t, z)

{
1

G̃(t)
− 1

G(t, z)

}
P (1)( dt, dz)

∣∣∣∣ .

Rotnitzky and Robins (1995) were the first to observe that the Kaplan-Meier integral
is not efficient even not when it is consistent and the survival distribution of the
censored times does not depend on the covariates.

The following is a special case of Van der Laan and Robins (2003, Theorem 1.1
and Example 1.12), see also Gerds (2002).

Proposition 1 The efficient influence function for estimation of θ based on the right
censored data (T̃i , �i , Zi ) is given by

ICeff(T̃i ,�i , Zi ) = �i
ϕ(T̃i , Zi )

G(T̃i | Zi )
+ (1 − �i )

W̃ (T̃i | Zi )

∫ ∞

T̃i
ϕ(s, Zi ) F( ds | Zi )

−
∫ ∫ T̃i∧s

0

G( ds | z)
W̃ (s | z)G(s− | z) ϕ(s, Zi ) F( ds | Zi ) − θ(ϕ) (2.8)

where W̃ (t | z) = P (T̃ > t | Z = z).

A regular, asymptotically linear estimator is asymptotically efficient if and only
if the influence function of the estimator equals the efficient influence function for
the estimation problem. Hence, comparing (2.8) with (2.7) shows that θ̂(ϕ) is inef-
ficient except for the case where G(t, z) = G(t, z′) and F(t, z) = F(t, z′) for all
z, z′, i.e. where the covariates are independent of both survival and censoring times
(Malani 1995). At first glance, the inefficiency of the Kaplan-Meier integral may
appear counter-intuitive as it is not so obvious where the information is lost. A closer
look however reveals that the covariate values corresponding to the right censored
observations do not enter the statistic (2.2). But, there is information in the fact that
no event happened until the end of followup (right censored). This information can
be recovered by a model for the conditional survival function of the censored times
given the covariates. For example, a standard Cox regression model fitted to the
censored times yields

Ĝ1(t, z) = exp

{
−

∫ t

0
exp(̂β z) �̂0( ds)

}
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where β̂ and �̂0 are the partial likelihood estimates of the regression coefficients
and the Breslow estimate of the cumulative baseline hazard function, respectively.

The corresponding plug-in IPWC estimator ν̂n(P̂
(1)
n , Ĝ1) is more efficient than the

IPCW estimator using Kaplan-Meier for the censoring, but it is still inefficient. The
influence curve for this estimator equals (�i ϕ)/G − θ(ϕ) minus its projection on
the tangent space of the scores of the censoring model, as shown in Van der Laan and
Robins (2003, Sect. 2.3.7). The principle of adaptive estimation (Bickel et al. 1993) in
this situation can be expressed as follows: The bigger the censoring model the more
efficient the IPCW estimator. In particular, if one has available a consistent estimator
in a saturated model for G, then the correspondingly defined IPCW estimator is
fully efficient. Similarly, it is known that in general the traditional survival rank
test needs the whole nonparametric model for its efficiency (Neuhaus 2000). But if
the covariates are continuous or high dimensional such estimators perform not very
nicely in small samples due to the curse of dimensionality. A practical solution is
given by doubly robust estimators which rely on models for both G and F and are
locally efficient if both models are correctly specified. If either the model forG or the
model for F is correctly specified then the estimator is consistent and asymptotically
linear.

2.6 Empirical Results

This section illustrates the magnitude of the potential bias and efficiency loss in the
special case θ(I {t > t∗}), i.e., where the parameter is the marginal survival function
at t∗. Note that in this case the Kaplan-Meier integral (with Ĝ0) equals the ordinary
Kaplan-Meier estimate. See (e.g. Gerds and Schumacher 2006) for a similar sim-
ulation study of IPCW estimators of a more complex parameter. We consider two
simulation scenarios. For both settings, a binary covariate is drawn from the binomial
distribution with P(X = 1) = 0.5. The survival and censoring times were generated
using parametric Cox proportional hazard models λT

0 exp(1.5Z) and λC
0 exp(γZ),

respectively, as described in Bender et al. (2005). In the first setting we set γ = 1.2
so that the censoring time distribution depends on the covariate. In the second set-
ting we set γ = 0 so that only the survival times depend on the covariate. In both
settings the baseline hazards λT

0 and λC
0 were chosen so that S(t = 70) = 62% and

P(C ≤ 70, T > C) = 60%. We contrast estimates of the parameter θ(I {t > 70})
obtained with the Kaplan-Meier estimate ν̂n(P̂

(1)
n , Ĝ0) and with the IPCW estimate

ν̂n(P̂
(1)
n , Ĝ2) where

Ĝ2(t, z) =
∏

i :Zi=z,T̃i :n≤t

{
1 − (1 − δi :n)

n − i + 1

}
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Table 2.1 Summary of simulation study for estimating P(T > 70) = 62% based on right cen-
sored data where P(C ≤ 70, T > C) = 60%. In setting 1 both the survival time distribution and
the censoring time distribution depend on a binary covariate. In setting 2 only the survival time
distribution depends on a binary covariate

Setting Estimate Bias (%) Variance (%) MSE (%)

Censoring
dependent

ν̂n(P̂
(1)
n , Ĝ0) 5.0118 0.309 0.560

on covariate ν̂n(P̂
(1)
n , Ĝ2) −0.0366 0.266 0.266

Censoring
independent

ν̂n(P̂
(1)
n , Ĝ0) −0.0228 0.286 0.286

of covariate ν̂n(P̂
(1)
n , Ĝ2) −0.0369 0.261 0.261

is the stratified Kaplan-Meier estimate for the censored times conditional on the
strata defined by Z = z. We report averaged small sample bias and mean squared
errors across 2000 simulated data sets.

Table2.1 shows the results for sample size 200. In the first setting there is a large

bias in the marginal Kaplan-Meier estimate whereas ν̂n(P̂
(1)
n , Ĝ2) is less biased.

In addition, the variance of the marginal Kaplan-Meier estimate is bigger. In the
second setting the marginal Kaplan-Meier IPCW estimate is no longer biased. The
same holds for the stratified Kaplan-Meier IPCW estimate. However, the marginal
Kaplan-Meier IPCW estimate still has a larger variance than the stratified Kaplan-
Meier IPCW estimate (see Table2.1).

Figure2.1 illustrates the difference between the estimators as a function of the
sample size. We see that the MSE can be large and this is due to a large bias as
can be seen from the data in Table2.1. The left panel of the figure indicates that the
difference in MSE decreases with increasing sample size. However, Fig. 2.2 reveals
that the relative advantage of the stratified Kaplan-Meier IPCW estimate does note
decrease with increasing sample size. The figure also shows that the magnitude of
the relative gain in MSE depends on the predictiveness of the covariate and on the
amount of censoring.

2.7 Non-Markov Illness-DeathModelWithout Recovery

The illness-death model without recovery has important biostatistical applications,
for example in oncology. In this section we make the connection with the Kaplan-
Meier integral. We therefore consider a stochastic process (Xt )t∈[0,∞) which has
state space {0, 1, 2}, right-continuous sample paths, initial state 0, P(X0 = 0) = 1,
intermediate state 1 and absorbing state 2. This process describes an illness-death
model without recovery when also the probability of a recovery event is zero, i.e.,
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when P(X (t) = 0|X (s) = 1) = 0 for all s ≤ t . The process can equivalently be
described by a pair of random variables

T0 = inf{t : Xt 	= 0} and T = inf{t : Xt = 2}

so that T0 is the waiting time in the initial state, XT0 ∈ {1, 2}, and T the time until
the absorbing state is reached. The process passes through the intermediate state 1, if
and only if T0 < T , and T0 = T if the process does not pass through the intermediate
state. Our aim is to estimate the transition probabilities between state l ∈ {0, 1} and
state j ∈ {1, 2}

Pl j (s, t) = P(Xt = j | Xs = l) (2.9)

for pairs of time points (s, t) that satisfy s ≤ t .
Based on right censored data of the illness-death process Meira-Machado et al.

(2006) derive an estimator for (2.9) starting with the following representations:

P01(s, t) = P(s < T0 ≤ t, t < T )

P(T0 > s)
,

P11(s, t) = P(T0 ≤ s, t < T )

P(T > s) − P(T0 > s)
. (2.10)

The challenge in estimating the right hand sides in (2.10) stems from the numerators,
while straightforward Kaplan-Meier estimation applies to estimating P(T0 > s) and
P(T > s). For the numerators, Meira-Machado et al. (2006) apply Stute’s Kaplan-
Meier integral with ‘covariate’ Z = T0. Allignol et al. (2014) showed that the esti-
mator of Meira-Machado et al. (2006) can alternatively be derived from a suitably
defined competing risks process and they also obtain an IPCW representation of the
estimator ofMeira-Machado et al. (2006) for P01(s, t) in a similar fashion as we have
for the Kaplan-Meier integral in Sect. 2.2. In bivariate (T0, T )-time several IPCW
estimators are available, and Allignol et al. (2014) also discuss an IPCW estimator
which uses the estimate of the survival function of the censored times suggested by
Tsai and Crowley (1998). This results in a simplified estimator which could easily be
extended to left-truncated data. Unfortunately, the Tsai andCrowley (1998) approach
is not applicable for estimating P11(s, t).

In what follows we discuss the Kaplan-Meier-integral based estimator of P11(s, t)
from the IPCW-perspective. For this we express P(T0 ≤ s, t < T ) as a special case
of (2.1):

P(T0 ≤ s, t < T ) =
∫

I (z ≤ s, y > s) P T0,T ( dz, dy).
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For estimation we assume i.i.d. replications (T̃0i , T̃i ,�i ), i = 1, . . . n, where T̃0i =
min(T0i ,Ci ), T̃i = min(Ti ,Ci ), and �i = I (Ti ≤ Ci ). It is convenient to introduce
counting processes

N (u) =
n∑

i=1

I {i : T̃i ≤ u, �i = 1},

N∗(u) =
n∑

i=1

I {i : T̃i ≤ u, �i = 1, T0i ≤ s, Ti > t},

Y (u) =
n∑

i=1

I {i : T̃i ≥ u}.

Straightforward algebra shows that the estimator of Meira-Machado et al. (2006) for
P(T0 ≤ s, t < T ) equals

∑
u

∏
v

(
1 − �N (v)

Y (v)

)
�N∗(u)

Y (u)
, (2.11)

where both the sum and the product in (2.11) are over all observed unique times
to the absorbing state and �N and �N∗ denote the increments of the count-
ing processes. Since

∏
v(1 − �N (v)

Y (v)
) is a standard Kaplan-Meier estimator, the

IPCW-representations discussed earlier give rise to different possible IPCW-variants
of (2.11),

1

n

∑
u

(
P̂a(C ≥ u)

)−1
�N∗(u),

where P̂a(C ≥ ·) is some consistent estimator of the censoring survival function.
Recall that in bivariate time there are several possible Kaplan-Meier-type estimators
of P(C ≥ ·), simple choices only using either {T̃0i : T0i > Ci , i = 1, . . . n} or {T̃i :
Ti > Ci , i = 1, . . . n}. Using representation (2.10), we may estimate P11(s, t) by

1
n

∑
u

(
P̂a(C ≥ u)

)−1
�N∗(u)

|{i : T̃i>s}|
n P̂b(C>s)

− |{i : T̃0i>s}|
n P̂c(C>s)

, (2.12)

where P̂b(C ≥ ·) and P̂c(C ≥ ·) are some consistent estimators of the censoring
survival function. Because P11(s, t) conditions on being in state 1 at time s, the idea
is now to estimate the censoring survival function using the censoring times of the
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subjects that are uncensored by time s and are in the intermediate state at the end of
followup. In order to formalize this, introduce

Y (u; s) =
n∑

i=1

I {i : T0i < s, T̃i ≥ u}, u > s,

N (u; s) =
n∑

i=1

I {i : T0i < s, T̃i ≥ s, T̃i ≤ u,�i = 1}, u > s,

NC (u; s) =
n∑

i=1

I {i : T0i < s, T̃i ≥ s, T̃i ≤ u,�i = 0}, u > s.

In words, Y (u; s) is the number of individuals at risk of absorption at u− in the
subset of the data of subjects who are in the intermediate state and uncensored at
time s with associated counting process of observed absorption event N (u; s). NC is
the censoring counting process in this data subset. Note that N∗ only counts events
in the data subset at hand.

Now, define the following estimator of P(C ≥ u), u > s,

P̃(C ≥ u; s) = P̃(C ≥ u |C > s)P̃(C > s)

=
∏

v∈(s,u)

(
1 − �NC (v; s)

Y (v; s) − �N (v; s)
)
P̃(C > s), (2.13)

where the product in the last display is over all unique jump times of NC (·; s) and
P̃(C > s) is some consistent estimator of P(C > s).

Using (2.13) in (2.12) (and the same P̃(C > s) also for P̂b and P̂c) leads to the
estimator

P̂11(s, t) =
∑
u

∏
v

(
1 − �N (v; s)

Y (v; s)
)

�N∗(u; s)
Y (u; s) . (2.14)

We note four important facts about P̂11(s, t). Firstly, the estimator is similar
to (2.11) but evaluated in the data subset ‘in the intermediate state 1 at time s and
under observation at s’. Secondly, this data subsetting accounts for the condition-
ing on Xs = 1, and such data subsetting is, in biostatistics, known as landmarking
(e.g., Anderson et al. 2008; van Houwelingen and Putter 2012). Thirdly, the new
estimator (2.14) is just the right-hand limit of the standard Aalen-Johansen estimator
of a cumulative incidence function (irrespective of X (t) being Markov or not) and
inherits its asymptotic properties (e.g., Andersen et al. 1993, Sect. 4.4). And finally,
data subsetting (or landmarking) can easily be extended to random left-truncation
(delayed study entry). We illustrate this last aspect with a brief simulation study
comparing the Aalen-Johansen estimator of P11(s, t) with the new P̂11(s, t) in a
left-truncated non-Markov illness-death model. Recall that the original estimator of
Meira-Machado et al. (2006) has only been developed for right-censored data, but an
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IPCW-perspective on Kaplan-Meier-integrals has led to an estimator that naturally
accounts for left-truncation via landmarking.

To this end, consider n i.i.d. units under study with data (Li , T̃0i , T̃i ,�i ) as before
but with the addition of left-truncation times Li . We assume that (T0i , Ti ) is indepen-
dent of (Li ,Ci ) with P(Li < Ci ) = 1. We also assume that these n units are under
study in the sense that Li < T̃i for all i . In order to account for delayed study entry
at time Li , we re-define

Y (u; s) =
n∑

i=1

I {i : T0i < s, T̃i ≥ u, Li < s}, u > s,

and analogously for N (u; s) and NC (u; s). Then Y (u; s) still denotes the number
of individuals at risk of absorption at u− in the subset of subjects who are in the
intermediate state and under observation at time s, but now in the presence of left-
truncation.

Our simulation design is similar to the one of Meira-Machado et al. (2006).
We simulate waiting times T0 in the initial state from an exponential distribution
with parameter 0.039 + 0.026 and entries into the intermediate state, XT0 = 1, with
binomial probability 0.039/(0.039 + 0.026). For individuals moving through the
intermediate state, we set T = 4.0 · T0, making the model non-Markov. Random
right-censoring times were drawn from an exponential distribution with parameters
0.013 and 0.035, respectively, and random left-truncation was simulated from a skew
normal distribution with location parameter −5, scale 10 and shape 10. We report
averages of 1000 simulation runs per scenario, each with a simulated sample size
of 200 units.

Table2.2 shows bias (negative values indicate underestimation) and empirical
variance of our new estimator (2.13) and the standard Aalen-Johansen estimator
for P11(s, t) (Table2.3),

∏
u∈(s,t]

(
1 − |{i : Li < u = Ti ≤ Ci , T0i < Ti }|

|{i : Li < u ≤ T̃i , T0i < u}|
)

for s = 25. In the scenarios considered, the new estimator underestimates and the
Aalen-Johansen estimator over-estimates the true probability. The absolute bias in
general favours the new estimator, save for early time points and in particular with
more pronounced censoring. The empirical variance of theAalen-Johansen estimator
tends to be smaller save for later time points, one possible explanation being that the
new estimator uses less data.

2.8 Discussion

The Kaplan-Meier integral can be written as an inverse of probability of censoring
weighted estimator for which the weights are estimated with the usual Kaplan-Meier



The Kaplan-Meier Integral in the Presence of Covariates: A Review 39

Table 2.2 Simulation results for estimating P11(25, t) from left-truncated and right-censored non-
Markovian data

censoring hazard 0.013 censoring hazard 0.035

t P̂11(25, t) Aalen-Johansen P̂11(25, t) Aalen-Johansen

Bias Variance Bias Variance Bias Variance Bias Variance

30 −0.0063 0.0029 0.0052 0.0023 −0.1090 0.0311 0.0066 0.0041

40 −0.0089 0.0065 0.0376 0.0047 −0.1101 0.0386 0.0404 0.0094

50 −0.0093 0.0081 0.0818 0.0056 −0.1049 0.0419 0.0877 0.0136

60 −0.0072 0.0082 0.1266 0.0060 −0.0999 0.0415 0.1341 0.0172

70 −0.0100 0.0077 0.1650 0.0061 −0.0974 0.0344 0.1691 0.0221

80 −0.0077 0.0064 0.2019 0.0058 −0.0728 0.0235 0.2132 0.0270

90 −0.0044 0.0037 0.2350 0.0055 −0.0378 0.0115 0.2530 0.0328

Table 2.3 True values of P11(25, t) to be estimated in the simulation study

t 30 40 50 60 70 80 90

P11(25, t) 0.8890 0.6930 0.5256 0.3843 0.2649 0.1623 0.0744

method for the censoring times. With this representation the large sample proper-
ties of the Kaplan-Meier integral and various modifications can be directly derived
with the functional delta method. We further showed in Sect. 2.3 that the conditions
imposed by Stute (1993, 1996, 1999) and followers (e.g. Orbe et al. 2003; De Uña
Álvarez and Rodriguez-Campos 2004) are practically equivalent to assuming that
the censoring is independent of the survival time and of the covariates. Then we
showed that it can be advantageous to derive estimators under the conditional inde-
pendence assumption allowing that the censoring distribution depends on covariates.
This improves efficiency and simultaneously reduces the risk of a large sample bias
(Robins and Rotnitzky 1992). Our empirical results illustrate the potential bias and
the inefficiency of the Kaplan-Meier integral in a specific setting (Table2.1).

However, in real data applications there is a tradeoff between the simplicity of
weighting all the uncensored observations with the Kaplan-Meier for the censoring
times and the potential advantages obtained with a working regression model for
the conditional censoring distribution. For example in a multi-state framework it is
possible to define consistent IPCW estimators for transition probabilities by using
the marginal Kaplan-Meier for the censoring (see e.g. Meira-Machado et al. 2006).
But, this approach implies that every censored process is weighted unconditional on
the state which is occupied at the censoring time. On the other hand, the methods
comprised in van der Laan et al. (2002); Van der Laan and Robins (2003) show
how to derive more efficient estimators based on an estimate of the survival function
of the censored times conditional on the history of the multi-state process and other
covariates. In Sect. 2.7, we have exploited this to derive a new estimator of a transition
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probability in a non-Markovian illness-deathmodel. Starting with an estimator based
on Kaplan-Meier integrals and using the IPCW principle, we also extended the
estimator for the case of right-censored and left-truncated data.

Stute’s theory of Kaplan-Meier integrals has arguably not entered the mainstream
literature on survival analysis, at least not the more biostatistically oriented one,
notable exceptions also including Orbe et al. (2002). On the other hand, Kaplan-
Meier integrals may form the basis for attacking complex survival models and
finding efficient estimators, which we have illustrated for the important illness-
death model. We believe that the theory deserves more attention, another pos-
sible field of application being competing risks models with a continuous mark
(e.g. Gilbert et al. 2008).
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3Semi-parametric RandomCensorship
Models

Gerhard Dikta

3.1 Introduction

In lifetime studies, the occurrence of incomplete observations due to some type of
censoring is the rule rather than the exception, and we have to take care of this in
our data analysis. Different censoring mechanisms can naturally arise from study
design, and one type frequently used and widely accepted in practice is the random
censorship model (RCM).

This model is described by two independent sequences of independent and iden-
tically distributed (i.i.d.) random variables: the survival times X1, . . . , Xn and the
censoring times Y1, . . . , Yn . Based on these two sequences, the observations are
given by (Z1, δ1), . . . , (Zn, δn), where Zi = min(Xi , Yi ) and δi indicates whether
the observation time Zi is a survival time (δi = 1) or a censoring time (δi = 0).

We assume here that all random variables are defined over some probability space
(Ω,A ,P), and denote the distribution functions (d.f.) of X, Y, and Z by F,G, and
H , respectively. Furthermore, we assume that F,G, and therefore H , are continuous.

Nonparametric statistical inference of F under the RCM usually rests upon the
time-honored Kaplan-Meier (KM) product limit estimator, see Kaplan and Meier
(1958), defined by

1 − FKM
n (t) =

∏

i : Zi≤t

(
1 − δi

n − Ri,n + 1

)
,
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where Ri,n denotes the rank of Zi among the Z−sample. Let Z1:n, . . . , Zn:n denote
the ordered Z−sample and δ[1:n], . . . , δ[n:n] the associated censoring indicators. The
mass attached by FKM

n to Zi :n is given by

WKM
i,n = FKM

n (Zi :n) − FKM
n (Zi−1:n) = δ[i :n]

n − i + 1

i−1∏

k=1

(
1 − δ[k:n]

n − k + 1

)
. (3.1)

Obviously, FKM
n puts mass only on the uncensored observations. Efron (1967)

pointed out that the mass attached by FKM
n increases from the smallest to the largest

uncensored observationwhile the amount of increase between two uncensored obser-
vations depends on the number of censored observations between them.

When many observations are censored, FKM
n will only have a few jumps with

increasing sizes and one might not be satisfied with the accuracy of FKM
n . In such

a situation, and if a complete parametric model assumption for F is too restrictive,
we can try a semi-parametric extension of the RCM.

Under this approach, a mild parametric assumption is added to RCM to define the
semi-parametric random censorship model (SRCM). Precisely, it is assumed that the
conditional expectation of δ given the observation time Z = z,

m(z) = E(δ | Z = z) = P(δ = 1 | Z = z),

belongs to a parametric family

m(z) = m(z, θ0),

where θ0 = (θ0,1, . . . , θ0,k) ∈ Θ ⊂ R
k . Essentially, we assume a binary regression

model. Together with the SRCM, the semi-parametric estimator

1 − FSE1
n (t) =

∏

i : Zi≤t

(
1 − m(Zi , θn)

n − Ri,n + 1

)
(3.2)

was introduced inDikta (1998). Here, θn is themaximum likelihood estimator (MLE)
of θ0, that is, the maximizer of the (partial) likelihood function

ln(θ) =
n∏

i=1

m(Zi , θ)δi (1 − m(Zi , θ))1−δi .

This estimator puts mass on all observations Zi :n according to

WSE1
i,n = m(Zi :n, θn)

n − i + 1

i−1∏

k=1

(
1 − m(Zk:n, θn)

n − k + 1

)
. (3.3)

If the largest observation is censored, the total mass attached by FKM
n is less than

one. In this case, the KM-estimator is only a sub-d.f. But also FSE1
n has this defect if
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m(Zn:n, θn) �= 1. In some cases, this insufficiency could produce misleading results.
As an example, assume that we want to estimate E(X) = ∫

x F(dx), the expected
survival time. We can use the plug-in estimator

∫
x FKM

n (dx) or if the SRCM can
be assumed

∫
x FSE1

n (dx). If the last observation is censored,
∫
x FKM

n (dx) will
underestimateE(X) since the largest observation gets noweight. Also

∫
x FSE1

n (dx)
has this artificial bias if FSE1

n is only a sub-d.f.
Modifications of the KM-estimator are considered in the literature which extends

FKM
n to a real d.f. A discussion of some extensions are given in Wellner (1985) and

Chen et al (1982).As an example, Efron’s self-consistent version of theKM-estimator
is a real d.f., see Efron (1967, Theorem 7.1). Under the SRCM, a modification of
FSE1
n to a real d.f. is given by

1 − FSE
n (t) =

∏

i : Zi≤t

(
1 − m(Zi , θn)

n − Ri,n + m(Zi , θn)

)
, (3.4)

which puts the mass

WSE
i,n = m(Zi :n, θn)

n − i + m(Zi :n, θn)

i−1∏

k=1

(
1 − m(Zk:n, θn)

n − k + m(Zk:n, θn)

)
(3.5)

on the observation Zi :n , for i = 1, . . . , n, see Dikta et al (2016). Note that FSE
n is a

real d.f. if m(Zn:n, θn) �= 0.
It is the purpose of this article to review some probabilistic results of the semi-

parametric estimators under the SRCM. Further important applied statistical oriented
issues are not discussed here. In Sect. 3.2, we will outline an approach to derive
survival time estimators in general. Sect. 3.3, focuses on semi-parametric integrals
and the 4th section on some goodness-of-fit tests to check the parametric assumption
of the SRCM. Sect. 3.5, deals with the bootstrap under the SRCM.

3.2 Deriving Survival Time Estimators Under RCM and SRCM

To motivate this approach, we recall a derivation of the KM-estimator introduced in
the survey paper of Gill and Johansen (1990). Set H1(s) = P(δ = 1 , Z ≤ s) and
V̄ (s) = 1 − V (s), for an arbitrary d.f. V , to derive for t ≥ 0 under the RCM and the
assumed continuity of the d.f.s that

H̄(t) = F̄(t) Ḡ(t) and H1(t) =
∫ t

0
Ḡ(s) F(ds).

The last equality states that Ḡ is a Radon-Nikodym derivative of H1 with respect to
F . Consequently, we get for t ≥ 0

F(t) =
∫ t

0

H̄(s)

H̄(s)
F(ds) =

∫ t

0

F̄(s)

H̄(s)
Ḡ(s) F(ds) =

∫ t

0

F̄(s)

H̄(s)
H1(ds),
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the identifyingVolterra type integral equation for F .As indicated inGill and Johansen
(1990), this integral equation can be used to derive the KM-estimator, see Kaplan and
Meier (1958), by applying an explicit Euler scheme for the approximated integral
equation.

To open up the identifying equation for some additional assumptions extending
the RCM, we continue as in Dikta et al (2016). Since

H1(t) =
∫ t

0
m(s) H(ds),

m is a Radon-Nikodym derivative of H1 with respect to H and we can modify the
identifying equation to get

F(t) =
∫ t

0

F̄(s)

H̄(s)
m(s)H(ds).

Let F̂ denote a generic estimator of F and Hn the empirical d.f. of H to get the
corresponding estimating equation

F̂(t) =
∫ t

0

(
F̄(s)

/
H̄(s)

)
nmn(s) Hn(ds),

where (F̄(s)
/
H̄(s))n andmn(s) are some estimators of F̄(s)/H̄(s) andm(s), respec-

tively. Thus

F̂(Zi :n) = F̂(Zi−1:n) +
∫

]Zi−1:n ,Zi :n ]
(
F̄(s)

/
H̄(s)

)
nmn(s) Hn(ds), (3.6)

for i = 1, . . . , n, where we set Z0:n = 0 and F̂(0) = 0.

Now substitute the integrand (F̄(s)
/
H̄(s))n with the constant ¯̂F(Zi−1:n)

/

H̄n(Zi−1:n) (explicit Euler scheme) to get

F̂(Zi :n) = F̂(Zi−1:n) +
¯̂F(Zi−1:n)mn(Zi :n)

n − i + 1
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and, after some basic rearrangements,

¯̂F(Zi :n) =
i∏

k=1

(
1 − mn(Zk:n)

n − k + 1

)
(3.7)

for i = 1, . . . , n.

If i < n, we can also use ¯̂F(Zi :n)
/
H̄n(Zi :n) to substitute (F̄(s)

/
H̄(s))n in

Eq. (3.6) (implicit Euler scheme) and derive

F̂(Zi :n) = F̂(Zi−1:n) +
¯̂F(Zi :n)mn(Zi :n)

n − i

to obtain

¯̂F(Zi :n) =
i∏

k=1

(
1 − mn(Zk:n)

n − k + mn(Zk:n)

)
(3.8)

for i = 1, . . . , n. Note that this equation holds for i < n but it can be extended to
i = n if mn(Zn:n) > 0.

Finally, to get the specific F̂ , we have to specify the estimator mn(Zk:n) in the
two Eqs. (3.7) and (3.8), respectively.

In the absence of any further information about m (besides RCM), we only
know that E(δ[k:n]|Zk:n = x) = m(x), see Stute and Wang (1993, Lemma 2.1), and
therefore δ[k:n] is the only possible candidate for mn(Zk:n). With this substitution,
Eqs. (3.7) and (3.8) are the KM-estimator.

A pre-smoothed version of the KM-estimator can be obtained from these two
equations if a non-parametric estimator of m(Zk:n) is plugged in for mn(Zk:n). But
to use such a non-parametric estimator, we have to know thatm is a smooth function,
thus we need some additional assumptions. The pre-smoothed KM-estimator based
on Eq. (3.7) was introduced by Ziegler (1995), see also Cao et al (2003). To the best
of our knowledge, results about the corresponding pre-smoothed version based on
Eq. (3.8) are not available yet.

If we know that m belongs to a parametric family, we are in the SRCM and use
m(Zk:n, θn) for mn(Zk:n). Equations (3.7) and (3.8) then yield the semi-parametric
estimators given in Eqs. (3.2) and (3.4).

3.3 Integral Estimators

In data analysis, we often have to estimate some specific parameters of an underlying
d.f. which can be expressed by an integral of a Borel-measurable function ϕ with
respect to the underlying d.f. F , that is,

∫
ϕ dF . Some candidates for ϕ which are

of particular interest in statistics, are discussed in Stute and Wang (1993). If all
of our observations would be uncensored, the empirical d.f. Fn would be plugged
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in to get
∫

ϕ dFn as an estimator of
∫

ϕ dF . In this case, the strong law of large
numbers (SLLN) and the central limit theorem (CLT) guarantee strong consistency
and asymptotic normality of the plug-in estimator. In this section, we will discuss
the corresponding results for

∫
ϕ dFKM

n ,
∫

ϕ dFSE1
n , and

∫
ϕ dFSE

n . Note that

∫
ϕ dFKM

n =
n∑

i=1

ϕ(Zi :n)WKM
i,n ,

where Wi,n is defined by (3.1). The semi-parametric integrals are defined similarly,
see (3.3) and (3.5).

Since all three estimators distribute mass only on the observations Z , none of
them can be used to estimate F(t) if t > τH , where

τH = inf{x : H(x) = 1}

is the rightmost point of the support of H . Consequently, we can only expect to
estimate the restricted integral

∫ τH

0
ϕ dF

with these estimators. However, if τF ≤ τH , the restricted integral coincides with∫
ϕ dF .

3.3.1 Strong Consistency

Themost general result with respect to the choice of ϕ for strong consistency of KM-
integrals is given in Stute and Wang (1993, Theorem 1.1). Note that this theorem is
not restricted to continuous F and G. The proof is mainly based on Stute and Wang
(1993, Lemma 2.2) which states that for continuous H and ϕ ≥ 0

( ∫
ϕ dFKM

n ,F KM
n

)
n≥1

is a reversed-time supermartingale, where

F KM
n = σ

(
Zi :n, δ[i :n], 1 ≤ i ≤ n, Zn+1, δn+1, . . .

)
.

This guarantees, among other things, the almost sure (a.s.) convergence of the KM-
integral to a random variable S according to Neveu (1975, Proposition V-3–11).
The identification of the limit S is also based on a reversed-time supermartingale
approach, where m(t), the conditional expectation of δ given Z = t is crucial.
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The semi-parametric counterpart, restricted to continuous H , can be found in
Dikta (2000, Theorem 1.1). Under a mild moment condition, strong consistency of
the MLE θn , and some local smoothness of the parametric model for m

∫
ϕ dFSE1

n −→
∫ τH

0
ϕ dF, a.s.

as n → ∞, is derived in this theorem. The proof is based on the reversed-time
supermartingale approach introduced by Stute andWang (1993) in the context of the
KM-integral estimator. However, since theMLE θn is used under SRCM to obtain the
estimate ofm, a direct reversed supermartingale approach seems not to be applicable.
Instead, it is shown that for every ε > 0,

∫
ϕ dFSE1

n can be enclosed a.s., for large
n, between two random sequences ξn(ε) and ηn(ε) which converge a.s. to constant
limits U (ε) and O(ε) such that

U (ε) ≤
∫ τH

0
ϕ dF ≤ O(ε)

and O(ε) −U (ε) → 0, as ε → 0. The convergence of the sequences ξn and ηn is
based onDikta (2000, Lemma2.1), saying that forϕ ≥ 0 and everyBorel-measurable
function q : R 	 t → q(t) ∈ [0, 1]

( n∑

i=1

ϕ(Zi :n)Wi,n(q),Fn

)

n≥1
and

( n∑

i=1

ϕ(Zi :n)W̄i,n(q),Fn

)

n≥1
,

are reversed-time supermartingales, whereFn = σ
(
Zi :n, 1 ≤ i ≤ n, Zn+1, . . .

)
and

Wi,n(q) = q(Zi :n)
n − i + 1

i−1∏

k=1

(
1 − q(Zk:n)

n − k + 1

)
, W̄i,n(q) = 1

n − i + 1

i−1∏

k=1

(
1 − q(Zk:n)

n − k + 1

)
.

Strong consistency of the second semi-parametric integral, that is,
∫

ϕ dFSE
n −→

∫ τH

0
ϕ dF, a.s.

is given in Dikta et al. (2016, Theorem 2.7). As we already mentioned in the intro-
duction, FSE

n is a real d.f. which is an obvious advantage over FSE1
n here. The proof

of this theorem relies on the a.s. convergence of
∫

ϕ dFSE1
n and on

∣∣∣
∫

ϕ dFSE
n −

∫
ϕ dFSE1

n

∣∣∣ −→ 0, a.s.,

as n → ∞. To establish the last result, the equality

n∏

i=1

ai −
n∏

i=1

bi =
n∑

i=1

(ai − bi )
( i−1∏

k=1

ak

n∏

k=i+1

bk
)

(3.9)
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is used. This formula appears in elementary proofs of the Lindeberg-Feller CLT and
holds for any sequences of complex numbers a1, . . . , an and b1, . . . , bn .

If we specify ϕ(x) = 1(x ≤ t), where 1(x ∈ A) denotes the indicator function
corresponding to the set A, the strong consistency results discussed here are the
point-wise a.s. convergence of FKM

n (t), FSE1
n (t), and FSE

n (t) towards F(t), for 0 ≤
t < τH . This point-wise convergence can be extended toGlivenko-Cantelli (uniform)
convergence by standard arguments, see Loève (1977, p. 21). Further generalized
uniform convergence results may be established from these strong consistent integral
estimators in connection with Stute (1976).

3.3.2 Asymptotic Normality

Under some moment conditions, Stute (1995, Theorem 1.1) states an asymptotic
linear representation of the KM-integral. According to the CLT, this leads directly
to the asymptotic normality of the KM-integral estimator. Precisely,

n1/2
( ∫

ϕ dFKM
n −

∫ τH

0
ϕ dF

)
−→ N (0, σ 2

KM ),

in distribution, as n → ∞, where

σ 2
KM = VAR

(
ϕ(Z)γ0(Z)δ + γ1(Z)(1 − δ) − γ2(Z)

)
.

The precise definitions of γ0, γ1 and γ2 are given in Stute (1995) and are omitted
here.

Under SRCM and some regularity assumptions and moment conditions, a corre-
sponding asymptotic linear representation is derived in Dikta et al. (2005, Theorem
2.1) for the first semi-parametric integral estimator to obtain

n1/2
( ∫

ϕ dFSE1
n −

∫ τH

0
ϕ dF

)
−→ N (0, σ 2

SE ),

in distribution, as n → ∞, where

σ 2
SE = VAR

(
ϕ(Z)γ0(Z)m(Z , θ0) + γ1(Z)(1 − m(Z(θ0))) − γ2(Z)

−K (Z , δ)
(
γ3(Z) − γ4(Z)

))
.

The definition of γ3, γ4, and K can be looked up there.
A general comparison of the two variances under a correctly specified parametric

model form shows that σ 2
SE ≤ σ 2

KM , where equality will be the exception, see Dikta
et al. (2005, Corollary 2.5). To see this, we redo the essential part of the proof here
for the special case that θ0 is one dimensional. As pointed out in Dikta et al. (2005,
(4.8)),

σ 2
KM − σ 2

SE = E
(
m(Z)m̄(Z)(A2(Z) − B2(Z))

)
,
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where m̄(z) = 1 − m(z), m(z) = m(z, θ0), and

m(z)m̄(z)B(z) = Dm(z, θ0)

σ 2

∫
A(x)Dm(x, θ0) H(dx). (3.10)

Here, σ 2 = E
([Dm(Z , θ0)/

√
m(Z , θ0)m̄(Z , θ0)]2

)
, where Dm(z, θ0) denotes the

derivative of m(z, θ) at θ0. The precise definitions of A and B can be found in Dikta
et al. (2005, (2.4)), but they are not relevant here.

According to (3.10),

E
(
m(Z)m̄(Z)B2(Z)

) = E

( (Dm(Z , θ0))
2

σ 4m(Z)m̄(Z)

( ∫
A(x)Dm(x, θ0) H(dx)

)2)

= σ−2
( ∫ √

m(x)m̄(x)A(x)
Dm(x, θ0)√
m(x)m̄(x)

H(dx)
)2

.

Recall the definition of σ 2 to get, according to Cauchy-Schwarz’s inequality, that the
last term is less or equal to

∫
m(x)m̄(x)A2(x) H(dx)which shows that σ 2

SE ≤ σ 2
KM .

Furthermore, σ 2
SE = σ 2

KM can only occur if there is equality in the application of
Cauchy-Schwarz’s inequality. Compare Shorack and Wellner (1986, p. 843) to see
that this can only appear in an exceptional case.

3.3.3 Efficiency

Since FSE1
n incorporates the additional parametric model information which can

not be used for FKM
n under the RCM, the variance comparison in the last section

is unfair and the result is not surprising. In other words, FSE1
n would be useless if

no gain in efficiency compared to FKM
n could be achieved. To evaluate the qual-

ity of the semi-parametric integral estimator, one has to compare it with other
possible estimators under SRCM. Dikta (2014, Corollary 3.11) states the result
of such a comparison. There it is shown that the semi-parametric integral estima-
tor is asymptotically efficient with respect to the class of all regular estimators of∫
1(0 ≤ x ≤ τH )ϕ(x) F(dx) under the SRCM. Note that this result holds if the

correct parametric model is used. Compare also Wellner (1982) for the asymptotic
efficiency of the KM-estimator within the class of all regular estimating sequences
under the RCM.

Asymptotic linearity, normality, and efficiency have been obtained for
∫

ϕ dFSE1
n .

But an application of (3.9) also shows that

n1/2
( ∫

ϕ dFSE1
n −

∫
ϕ dFSE

n

)
−→ 0, in probabiliy, as n → ∞,

see Dikta et al. (2016, Theorem 2.2). Therefore, these results are the same for both
semi-parametric integral estimators.
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3.4 Testing the Parametric Assumption of SRCM

UnderSRCM, (δ1, Z1), . . . , (δn, Zn) canbe interpreted as observations fromabinary
regression model (BRM). Some popular examples of BRMs are discussed in text-
books on generalized linear models (GLM), e.g. in McCullagh and Nelder (1989).
Further examples of parametric models form can be found in Dikta (1998) or can be
constructed based on Eq. (3.3) of that paper which relates m to the two hazard rates
corresponding to F and G.

Once a parametric model for m is specified, one should examine its validity by
applying a goodness-of-fit (GOF) test, that is, one has to test the null hypothesis

H0 : m(·) ∈ M versus H1 : m(·) /∈ M ,

where M = {m(·, θ | θ ∈ Θ)} specifies the parametric model for m.
To obtain an universal approach forGOF tests in the BRMsetup, Dikta et al (2006)

adapt the ideas outlined in Stute (1997); Stute et al (1998a, b). In Stute (1997), a
marked empirical process (MEP), that is, the cusum process based on the residuals of
some parametric regressionmodels, is studied. Stute (1997, Corollary 1.3) shows that
the MEP converges in distribution to a centered Gaussian process. The continuous
mapping theorem then guarantees that critical values for Kolmogorov-Smirnov (KS)
and Cramér-von Mises (CvM) type GOF tests which are based on this MEP can
be approximated by the distribution of corresponding functionals applied to the
limit process of the MEP. Unfortunately, the limit distributions of the MEP and
of these functionals are complicated and model depending, thus not distribution
free. In Stute et al (1998b), this problem is tackled by replacing the MEP with its
innovation martingale to get asymptotically distribution free KS and CvM tests. A
wild bootstrap approach is also applicable to handle this problem properly, compare
Stute et al (1998a).

The MEP for our BRM is defined by

Rn(x) = n−1/2
n∑

i=1

(δi − m(Zi , θn))1(Zi ≤ x), 0 ≤ x ≤ ∞.

Based on this process, the corresponding KS and CvM test statistics are given by

Dn = sup
0≤x≤∞

|Rn(x)| and Wn =
∫

R2
n(x) Hn(dx),

respectively. Stute (1997, Corollary 1.3) can be applied to derive the convergence in
distribution of Rn to a centered Gaussian process R in D[0, ∞], the space of càdlàg
functions. Among other things, the covariance function of R depends on the model
M , see Dikta et al. (2006, (10)) for the concrete covariance structure of the limiting
process.

Instead of an innovation martingale approach, a model-based bootstrap (MBB)
technique is applied there to handle the model dependence of the limit distributions.
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Compared to the innovation martingale technique, MBB has the charm of simplicity
and can easily be implemented.

Since a p-value of a statistical test is always calculated or approximated under the
null distribution, the underlying resampling of the bootstrap data should reflect this,
regardless whether the original observations are generated under the null hypothesis
or the alternative. To guarantee this, the underlying resampling should always be
done under the null hypothesis or as close as possible to it. In the BRM setup, δ has
a Bernoulli distribution with success parameter m(z) if Z = z is observed. Under
MBB, the bootstrap data (Z∗

1 , δ
∗
1), . . . , (Z

∗
n , δ

∗
n) are i.i.d., where

Z∗
i = Zi , δ∗

i ∼ Bernoulli(m(Z∗
i , θn)).

Let θ∗
n be the MLE of the bootstrap sample and define the corresponding bootstrap

version of the MEP by

R∗
n(x) = n−1/2

n∑

i=1

(δ∗
i − m(Z∗

i , θ
∗
n ))1(Z∗

i ≤ x), 0 ≤ x ≤ ∞.

Obviously, the bootstrap data are generated under the null hypothesis even if the
original data are from the alternative. Dikta et al. (2006, Theorem 2, Remark 2) show
that R∗

n tends to the same Gaussian process R as Rn does under the null hypothesis.
Even under the alternative, if m(·, θ0) is interpreted as the projection of m(·) onto
M with respect to the Kullback-Leibler geometry, R∗

n tends to this limit process in
distribution with probability 1. Overall this guarantees that the distribution of KS
and CvM statistics based on R∗

n can be used to obtain approximated p-values for the
original KS and CvM test.

3.5 Bootstrapping Under SRCM

The validation method discussed in the last section is based on the MEP, a cusum
residual process. The corresponding KS and CvM tests are completely specified by
the chronology of the residuals while concrete time-stamps, given by the ordered
Z−sample, do not influence these statistics directly. Bootstrapping of the MEP in
this scenario mainly has to reflect the heteroscedastic nature of the BRM residuals;
whereas the time-stamps can be kept fixed.

This situation changes, when we want to approximate the distribution of the
process

α1
n(t) = n1/2

(
FSE1
n (t) − F(t)

)
, 0 ≤ t ≤ τ < τH

with a bootstrap approach. Now there is no cusum residual process involved anymore
and both, the Z− and m(Z)−sample, carry the important part of the information
describedby the processα1

n .A resampling procedurewhich takes care of this situation
is the two-stage model-based bootstrap (TMBB) introduced in Subramanian and
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Zhang (2013). Under TMBB, the bootstrap data (Z∗
1 , δ

∗
1), . . . , (Z

∗
n , δ

∗
n) are i.i.d.,

where

Z∗
i ∼ Hn, δ∗

i ∼ Bernoulli(m(Z∗
i , θn)).

Note that in the first step, the Z−data are resampled according to Hn , like in the
classical bootstrap of the empirical process, while in the second step the MBB is
used. Based on this dataset, the MLE θ∗

n is calculated to derive

1 − FSE1∗
n (t) =

∏

i : Z∗
i :n≤t

(
1 − m(Z∗

i :n, θ∗
n )

n − i + 1

)
,

where Z∗
1:n ≤ · · · ≤ Z∗

n:n denotes the ordered Z∗− sample. The corresponding boot-
strap version of α1

n is then defined by

α1∗
n (t) = n1/2

(
FSE1∗
n (t) − FSE1

n (t)
)
, 0 ≤ t ≤ τ < τH .

In Subramanian and Zhang (2013, Theorem 3) it is shown that with probability 1
α1∗
n tends to the same Gaussian process as α1

n . Based on this result, a simultaneous
confidence band (SCB) for F is constructed. Furthermore, in a simulation study, this
SCB is compared to SCBs which are based on other procedures. In the concluding
discussion, the authors pointed out that their numerical studies show that the TMBB
based SCB “performs as well as or better than competing SCBs whether or not there
is a parametric misspecification.”

Similar results for the TMBB based bootstrap version of the process

αn(t) = n1/2
(
FSE
n (t) − F(t)

)
, 0 ≤ t ≤ τ < τH

are not studied yet.
In the case of the Kaplan-Meier estimator, there are two resampling plans dis-

cussed in the literature. In Reid (1981), the bootstrap data are generated as an i.i.d.
sample from FKM

n . Efron (1981) suggested to generate the bootstrap sample by
drawing uniformly from the original data (Z1, δ1), . . . , (Zn, δn) with replacement.
As pointed out by Akritas (1986), only the latter approach can by used to construct
SCBs. Under the first resampling plan, the limit process obtained for the bootstrap
does not match the limit of the Kaplan-Meier process.
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4Nonparametric Estimationof an
Event-Free Survival Distribution
Under Cross-Sectional Sampling

Jacobo de Uña-Álvarez

4.1 Introduction

In Survival Analysis and other fields, a target of much interest is the event-free
survival. This function evaluates along time the probability of surviving without
undergoing a certain intermediate event. The intermediate event may represent a
post-operatory complication (like infection), a recurrence of a disease, and so on; in
these biomedical examples, the event-free survival reports the survival probability but
restricted to the healthy population, being referred to as infection-free, disease-free,
or recurrence-free survival.

Cross-sectional samplings or prevalence studies are often applied due to their
simplicity relative to prospective or incidencedesigns (see e.g.Wang1991;Fluss et al.
2013). Under cross-sectional sampling, only individuals in progress (that is, alive) at
the cross-section date are recruited and, therefore, the survival times are left-truncated
by the recruitment times. Besides, right-censoringwill often appear due to limitations
in the follow-up of the individuals, withdrawals, deaths unrelated to the disease of
interest, etc. See Fig. 4.1 for a graphical description. In this setting, nonparametric
estimation of the (total) survival has been deeply investigated along the last three
decades. The product-limit estimator with left-truncated and right-censored data
(Tsai et al. 1987), which extends the time-honoured Kaplan-Meier estimator to the
truncated setting, is consistent under some identifiability assumptions; these include
independence between the truncation-censoring times and the survival times, and
support conditions to ensure the availability of sampling information on the lifetime
of interest. See Tsai et al. (1987), Wang (1991), Stute (1993), Gijbels and Wang
(1993), Zhou and Yip (1999) or, more recently, Stute and Wang (2008) for results
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Fig. 4.1 Left-truncated and
right-censored
cross-sectional survival data
with an intermediate event.
Red segments are
unobserved

and access to the related literature. However, estimation of the event-free survival
under cross-sectional sampling has not been investigated in much detail.

The main point to introduce a suitable estimator for the event-free survival under
the described cross-sectional sampling scenario is to note that the left-truncation
time acts on the total survival, T 0 say, rather than on the event-free lifetime, Z0 say.
That is, it is possible to recruit individuals with Z0 smaller than the left-truncation
time, as long as T 0 is larger than the latter (see Fig. 4.1). This makes a difference
with respect to the standard setting with left-truncated and right-censored data, and
the left-truncation times must be handled in a different, particular manner for the
construction of the estimator. Still, estimation of the joint distribution of (Z0, T 0),
from which an estimator of the event-free survival can be immediately obtained by
taking the corresponding marginal, has received some attention in the recent years.
We review this approach in Sect. 4.2, andwe discuss its main theoretical and practical
limitations.

The rest of the paper is organized as follows. In Sect. 4.2 we introduce the needed
notations and we review existing estimators for the event-free survival. In Sect. 4.3
a new nonparametric estimator for the event-free survival is introduced, and some
asymptotic results are established. In Sect. 4.4 a comparative numerical study is
conducted. Some conclusions and final remarks are given in Sect. 4.5.

4.2 Notations and Existing Estimators

The basic model for the cross-sectional sampling scenario described in the Intro-
duction is as follows. We observe (L , Z , δ, T, �) if and only if L ≤ T where
Z = min(Z0,C), δ = I (Z0 ≤ C), T = min(T 0,C), � = I (T 0 ≤ C). Here, C is
the potential right-censoring time and L is the left-truncation time (time from onset
to cross-section). Therefore, with this notation, Z and T are the censored versions
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of Z0 and T 0, while δ and � are their corresponding censoring indicators. Since
P(Z0 ≤ T 0) = 1, it happens that � = 1 implies δ = 1; in words, Z0 is uncensored
whenever T 0 is.

We assume that (L ,C) and (Z0, T 0) are independent, which is a standard require-
ment with left-truncated and right-censored data. This independence assumption just
means that the cross-sectional sampling and the follow-up of the patients are unre-
lated to the disease under investigation. However, we allowC and L to be dependent.
Note that, under cross-sectional sampling, a positive correlation between C and L is
generally present, since L is a portion of the censoring time. Indeed, it is often the
case (at least for a subpopulation) that C = L + τ for some constant τ which repre-
sents the maximum follow-up time after recruitment and, therefore, the pair (L ,C)

falls on a line with positive probability. We naturally assume P(L ≤ C) = 1 too
(that is, censoring may only occur after recruitment), from which the no-truncation
event {L ≤ T } may be rewritten as {L ≤ T 0}. We also assume α = P(L ≤ T ) > 0.
The standard model for random right-censorship is obtained as a particular case by
taking P(L = 0) = 1.

Wefirst introduce an estimator for FZ0T 0(z, t) = P(Z0 ≤ z, T 0 ≤ t). Let (Li , Zi ,

δi , Ti ,�i ), 1 ≤ i ≤ n, be the available data; these are, iid copies with the distribu-
tion of (L , Z , δ, T,�) conditionally on L ≤ T . We will see that a natural estima-
tor for FZ0T 0(z, t) is the one that weights the indicator I (Zi ≤ z, Ti ≤ t) by the
jump at time Ti of Tsai et al. (1987)’s product-limit estimator for the total survival
ST 0(t) = P(T 0 ≥ t).

Consider the joint subdistribution function of the observed (Z , T )’s with � = 1,
that is, F1∗

ZT (z, t) = P(Z ≤ z, T ≤ t,� = 1|L ≤ T ). We have:

F1∗
ZT (z, t) =

∫ t

0
α−1P(L ≤ v ≤ C)FZ0T 0(z, dv)

where we have used the independence between (L ,C) and (Z0, T 0). Introduce
KT (v) = P(L ≤ v ≤ T |L ≤ T ). It is easily seen that KT (v) = α−1P(L ≤ v ≤
C)ST 0(v), from which P(L ≤ v ≤ C) = αKT (v)/ST 0(v) whenever ST 0(v) > 0.
Therefore,

F1∗
ZT (z, t) =

∫ t

0

KT (v)

ST 0(v)
FZ0T 0(z, dv).

Provided that KT (v) > 0 on the support of T 0 we thus have

FZ0T 0(z, t) =
∫ t

0

ST 0(v)

KT (v)
F1∗
ZT (z, dv).

This equation suggests the estimator:

F̂Z0T 0(z, t) =
∫ t

0

ŜT 0(v)

K̂T (v)
F̂1∗
ZT (z, dv) =

n∑
i = 1

ŜT 0(Ti )�i

n K̂T (Ti )
I (Zi ≤ z, Ti ≤ t),(4.1)
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where ŜT 0(t) and K̂T (t) are, respectively, the product-limit estimator of ST 0(t) under
left-truncation and right-censoring (Tsai et al. 1987), and the sampling proportion
of data satisfying Li ≤ t ≤ Ti , and where

F̂1∗
ZT (z, t) = 1

n

n∑
i = 1

I (Zi ≤ z, Ti ≤ t,�i = 1).

Explicitly, and assuming no ties among the Ti ’s for simplicity,

ŜT 0(t) =
∏
Ti<t

[1 − �i

n K̂T (Ti )
], K̂T (t) = 1

n

n∑
i = 1

I (Li ≤ t ≤ Ti ). (4.2)

It can be seen that, indeed, Wi ≡ ŜT 0(Ti )�i/nK̂T (Ti ) = −d ŜT 0(Ti ). Thus, (4.1)
weights the observed pairs (Zi , Ti ) through the jumps of the estimator for the mar-
ginal survival of T 0. The estimator (4.1) can be regarded as a special case of the
product-limit integral in Sánchez-Sellero et al. (2005) for the indicator function
ϕ(u, v) = I (u ≤ z, v ≤ t), where Z0 plays the role of the covariate in that paper.
These authors investigated asymptotic properties of general product-limit integrals
by assuming the independence between the truncation and censoring variables; how-
ever, this independence assumption can be removed (see e.g. de Uña-Álvarez and
Veraverbeke 2017), which is very important in our setting, as discussed above.

The distribution of Z0 can be estimated by taking the marginal of (4.1) corre-
sponding to Z0, F̂Z0(z) = F̂Z0T 0(z, ∞). This product-limit integral-type estimator
presents however two drawbacks. First, it gives no mass to the uncensored Zi ’s with
censored Ti , which may result in a loss of efficiency. Actually, an ideal estimator
should reduce in the non-truncated setting to the standard Kaplan-Meier estimator,
which is efficient, and this is not the case for F̂Z0(z). Second, and more important,
consistency of the Z0-marginal is ensured only when the censoring support contains
the lifetime support, which is often unrealistic in practice. To be more specific, the
estimator F̂Z0(z) converges in general to FbT

Z0 (z) = P(Z0 ≤ z, T 0 ≤ bT ), where bT
denotes the upper bound of the support of T and, consequently, F̂Z0(z) underesti-
mates the target. In practice, this systematic bias is more visible at the right tail of
the distribution, due to the positive correlation between Z0 and T 0. Despite of this,
F̂Z0(z) is recommended if there is no censoring; in such a setting, the aforemen-
tioned limitations vanish and, indeed, F̂Z0(z) can be introduced as a nonparametric
maximum-likelihood estimator for FZ0(z) = FZ0T 0(z, ∞) in that case.

4.3 A New Estimator

In this Sectionwe introduce an estimator of themarginal distribution of Z0 alternative
to F̂Z0(z), which somehow generalizes the Kaplan-Meier estimator to our truncated
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setting. Introduce SZ0(z) = P(Z0 ≥ z) = 1 − FZ0(z−). Note that the estimator of
SZ0(z) based on the approach in Sect. 4.2 is just ŜZ0(z) = 1 − F̂Z0(z−).

Recall KT (v) = P(L ≤ v ≤ T |L ≤ T ) and introduce the analogue for Z , namely
KZ (v) = P(L ≤ v ≤ Z |L ≤ T ). Since KT (v) = α−1P(L ≤ v ≤ C)ST 0(v) and
KZ (v) = α−1P(L ≤ v ≤ C)SZ0(v), we have

SZ0(v) = ST 0(v)
KZ (v)

KT (v)
.

This suggest the estimator

Ŝ∗
Z0(v) = ŜT 0(v)

K̂Z (v)

K̂T (v)
(4.3)

where ŜT 0(v) and K̂T (v) are defined in (4.2), andwhere K̂Z (v) = n−1 ∑n
i = 1 I (Li ≤

v ≤ Zi ). It is easily seen that (4.3) takes values in the [0, 1] interval. Note that the
fraction in (4.3) is itself a sampling proportion, specifically the proportion of cases
satisfying v ≤ Zi among those with Li ≤ v ≤ Ti ; and, therefore, one has indeed
Ŝ∗
Z0(v) ≤ ŜT 0(v). Also, (4.3) is consistent since it is a function of consistent esti-

mators; see the Theorem below. In the case with no truncation, it is easily seen that
the estimator (4.3) reduces to the ordinary Kaplan-Meier estimator of SZ0(v) but
for a factor which is the rate of two different estimators of the survival function of
the censoring time SC (v) = P(C ≥ v): the one based on the (Zi , 1 − δi )’s, and the
one based on the (Ti , 1 − �i )’s. This suggests that Ŝ∗

Z0(v) may be almost efficient
at least when there is no truncation or when truncation is light.

Let [aξ, bξ] denote the support of a given random variable ξ. Introduce F1∗
T (t) =

F1∗
ZT (∞, t). We will refer to the following conditions:
C1. The random variables Z0, T 0, L and C are continuous
C2. (L ,C) and (Z0, T 0) are independent
C3. P(L ≤ C) = 1 and infaT ≤v≤b P(L ≤ v ≤ C) > 0 for some b < bT
Condition C1 avoids the discussion of possible ties among the observed data.

Stute and Wang (2008) gives a proper treatment of ties under random left-truncation
and similar arguments could be applied here. However, for simplicity of exposure we
assume continuity throughout. Both the independence assumption C2 and condition
P(L ≤ C) = 1 appearing in C3 have been already discussed at the beginning of
Sect. 4.2. Condition C3 was used in de Uña-Álvarez and Veraverbeke (2017) to deal
with cross-sectional data; it impliesaL ≤ aT , which ensures that ST 0 can be identified
on its whole support. Besides, under C3 we have KT (v) > 0 for v ∈ [aT , b], which
serves to control the denominator K̂T (v) appearing in (4.3), as indicated in the proof
below. On the other hand, C3 immediately gives

∫ b

aT
KT (v)−3dF1∗

T (v) < ∞

for some b < bT . Under this integrability condition, Zhou and Yip (1999) derived
an almost sure rate of convergence of O(n−1 log log n) for the remainder in the
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asymptotic representation for ŜT 0 as a sum of independent and identically distributed
(iid) random variables, see their Theorems 2.1 and 2.2. This representation is used
in the proof of our Theorem.

Theorem Under C1-C3 we have, uniformly on aT ≤ z ≤ b < bT ,

Ŝ∗
Z0(z) − SZ0(z) = 1

n

∑n
i = 1 ψi (z) + Rn(z)

where the ψi (z)’s are zero-mean iid random variables, and where supaT ≤z≤b

|Rn(z)| = O(n−1 log log n) with probability 1.

Proof By adding and substracting terms in an obvious manner, we obtain

Ŝ∗
Z0(z) − SZ0(z) ∼ KZ (z)

KT (z)
{ŜT 0(z) − ST 0(z)}

+ ST 0(z)

KT (z)
{K̂Z (z) − KZ (z)}

+KZ (z)ST 0(z)

KT (z)2
{K̂T (z) − KT (z)}.

We then apply Theorem 2.2 in Zhou and Yip (1999) and standard results for the
sample means K̂T (z) and K̂Z (z) to get the iid representation and the order for the
remainder. For this, note that condition C3 ensures that the denominator KT (z)
remains bounded away from zero uniformly on the interval [aT , b]. �

Remark Explicitly, the iid representation n−1 ∑n
i = 1 ψi (z) in the Theorem is given

by (see Theorem 2.2 in (Zhou and Yip, 1999))

1

n

n∑
i = 1

ψi (z) = −ST 0(z)
KZ (z)

KT (z)

∫ z

aT

d(F̂1∗
T − F1∗

T )(v)

KT (v)

+ST 0(z)
KZ (z)

KT (z)

∫ z

aT

K̂T (v) − KT (v)

KT (v)2
dF1∗

T (v)

+ ST 0(z)

KT (z)
{K̂Z (z) − KZ (z)}

+KZ (z)ST 0(z)

KT (z)2
{K̂T (z) − KT (z)}
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where F̂1∗
T (v) = F̂1∗

ZT (∞, v). That is, the ψi (z)’s are given by

ψi (z) = −ST 0(z)
KZ (z)

KT (z)

{
I (Ti ≤ z)�i

KT (Ti )
−

∫ z

aT

dF1∗
T (v)

KT (v)

}

+ST 0(z)
KZ (z)

KT (z)

{∫ min(z,Ti )

max(aT ,Li )

dF1∗
T (v)

KT (v)2
−

∫ z

aT

dF1∗
T (v)

KT (v)

}

+ ST 0(z)

KT (z)
{I (Li ≤ z ≤ Zi ) − KZ (z)}

+KZ (z)ST 0(z)

KT (z)2
{I (Li ≤ z ≤ Ti ) − KT (z)}.

�

The estimator Ŝ∗
Z0(z) is non-monotone along time z. A monotone estimator

can be constructed from Ŝ∗
Z0(z) by considering its monotonized version Ŝ∗,m

Z0 (z) =
infv≤z Ŝ∗

Z0(v). On the other hand, unlike for the product-limit type estimator ŜZ0(v),
the jump points of (4.3) are not restricted to the Zi ’s, but they involve the Ti ’s and
the Li ’s too. This may create some technical difficulties in the computation of the
estimator for small sample sizes. For example, although nK̂T (Ti ) ≥ 1 is always
guaranteed (thus allowing for the construction of (4.1)), K̂T (v) = 0 may happen
for specific v’s. In practice, we suggest to take the value 1/n for K̂T (v) in (4.3)
whenever this denominator becomes zero. On the other hand, when nK̂T (Ti ) = 1,
Tsai et al. (1987)’s product-limit estimator ŜT 0(t) is zero for t > Ti , a situation
which may occur even for small Ti ’s. This problem of possible ’holes’ in the data
is provoked by left-truncation, and has received some attention in the recent litera-
ture (Strzalkowska-Kominiak and Stute 2010). The issue of ‘holes’ affect both the
product-limit integral type estimator and the new estimator introduced in this paper.

4.4 Simulation Study

In this Section we conduct a simulation study to investigate the finite sample per-
formance of the several estimators reviewed along Sects. 4.2 and 4.3. To this end,
we independently draw Z0 ∼ Exp(3), V 0 ∼ Exp(1) and γ ∼ Ber(0.7), and then
compute T 0 = Z0 + γV 0. This simulates an exponential event-free survival, with a
70% of the individuals undergoing the intermediate event, after which the residual
lifetime is independently distributed according to another exponential distribution.
We then draw an independent left-truncation time L ∼ U (0, bL) with bL = 2 (56%
of truncated data), so we keep the datum (L , Z0, T 0) only when L ≤ T 0. The uni-
form distribution for the left-truncation time is often used to simulate processes in the
steady (or stationary) state, under which the incidence rate is constant (see Asgharian



64 J. de Uña-Álvarez

and Wolfson 2005; Fluss et al. 2013). In this scenario, the probability of sampling a
lifetime T 0 = t is proportional to its length t (the so-called length-biased sampling).

For the censoring time we draw ν ∼ Ber(0.5) and we compute C = νCadm +
(1 − ν)Crdm , whereCadm = L + τ is an administrative potential censoring time due
to the end of study, which occurs τ time units after recruitment; and where Crdm =
L +U (0, τ ) is a random potential censoring time representing lost to follow-up
issues. Note that, in our simulated setting, 50% of the censoring times correspond
to administrative censoring. For τ we take values {0.5,∞} to introduce both the
censored and the uncensored cases. In the censored case (τ = 0.5), the censoring
rates for T 0 and Z0 are 68% and 14% respectively. The observable variables are
finally computed as Z =min(Z0,C), δ = I (Z0 ≤ C), T =min(T 0,C), and � =
I (T 0 ≤ C).

For sample sizes n = 250, 500 (after truncation), we generate 1,000 Monte Carlo
trials and we compute the bias, the standard deviation (SD), and the mean squared
error (MSE) of the estimators for the event-free survival SZ0(z) at the quartiles of
the Exp(3) distribution, namely z = 0.0959, 0.2310, 0.4621 (Q1, Q2 and Q3 in
Tables). The results are given in Tables4.1 and 4.2.

From Table4.1, corresponding to the uncensored case, we see that the product-
limit integral-type estimator (PLI) ŜZ0 has a smaller MSE compared to that of the
new estimator Ŝ∗

Z0 , basically due to the smaller standard deviation of the former. The

differences are more clear at the left tail of Z0 and small sample size. Thus, the new
estimator is not optimal in this case. The MSE of both estimators decrease with an
increasing sample size.

The situation changes in the censored case (Table4.2). FromTable4.2 it is seen that
the PLI type estimator has a systematic bias which does not decrease as n increases.
This bias is larger at the right tail of Z0, where 1 − FbT

Z0 (z) (the truncated limit of

ŜZ0(z), see Sect. 4.2) deviates more from the target SZ0(z). As a consequence, the
MSE of the PLI estimator is much larger than that of the new estimator at the right
tail (between 2.5 and 3.7 times the MSE of the new estimator). Still, ŜZ0 is more
accurate than Ŝ∗

Z0 at the left tail, because of the relatively small impact of the bias.

The new estimator performs well at the three quartiles of Z0, the bias being of a
smaller order of magnitude compared to the standard deviation in all the cases.

To complete our study, in Table4.3 we consider the censored case (τ = 0.5) but
with no truncation (bL = 0). This is interesting to study the behavior of the PLI type
and new estimators relative to that of the standard Kaplan-Meier estimator, which
is efficient in that situation. The censoring rates on T 0 and Z0 are 72% and 39%
respectively in this case. From Table4.3 we see that the new estimator is competitive,
exhibiting aMSEwhich is never above 1.2 times that of the Kaplan-Meier estimator.
The results of the PLI type estimator are disappointing, with aMSEwhich is between
16 and 213 times that of the new estimator.
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Table 4.1 Bias, standard deviation (SD), and mean squared error (MSE) of ŜZ0 (PLI) and Ŝ∗
Z0

(New) at the quartiles of Z0 along 1,000 Monte Carlo trials, with τ = ∞ (no censoring) and
bL = 2

n = 250 n = 500

PLI New PLI New

Q1 Bias 0.0004 0.0053 0.0068 0.0077

SD 0.1041 0.1236 0.0735 0.0843

MSE 0.0108 0.0153 0.0055 0.0072

Q2 Bias −0.0006 −0.0012 0.0037 0.0043

SD 0.0790 0.0925 0.0558 0.0648

MSE 0.0062 0.0085 0.0031 0.0042

Q3 Bias −0.0005 −0.0003 0.0026 0.0028

SD 0.0453 0.0515 0.0316 0.0362

MSE 0.0021 0.0026 0.0010 0.0013

Table 4.2 Bias, standard deviation (SD), and mean squared error (MSE) of ŜZ0 (PLI) and Ŝ∗
Z0

(New) at the quartiles of Z0 along 1,000 Monte Carlo trials, with τ = 0.5 (censored case) and
bL = 2

n = 250 n = 500

PLI New PLI New

Q1 Bias 0.0164 0.0045 0.0236 0.0075

SD 0.1110 0.1256 0.0783 0.0851

MSE 0.0126 0.0158 0.0067 0.0073

Q2 Bias 0.0339 −0.0010 0.0382 0.0040

SD 0.0942 0.0950 0.0668 0.0662

MSE 0.0100 0.0090 0.0059 0.0044

Q3 Bias 0.0559 0.0002 0.0563 0.0025

SD 0.0693 0.0561 0.0489 0.0390

MSE 0.0079 0.0032 0.0056 0.0015

4.5 Main Conclusions

In this paper the problem of estimating an event-free survival function from cross-
sectional data has been studied. Two different nonparametric estimators have been
considered. The first one is a special case of the product-limit integrals for left-
truncated and right-censored data investigated in Sánchez-Sellero et al. (2005). The
second estimator is new (for the best of our knowledge), and it is simply defined
as a time-varying portion of Tsai et al. (1987)’s product-limit estimator; asymptotic
results for this new estimator can be established in a straightforward way. While
the PLI type estimator is, in general, systematically biased, the new estimator is
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Table 4.3 Bias, standard deviation (SD), and mean squared error (MSE) of ŜZ0 (PLI), Ŝ∗
Z0 (New),

and Kaplan-Meier estimator (KME) at the quartiles of Z0 along 1,000 Monte Carlo trials, with
τ = 0.5 and bL = 0 (no truncation)

n = 250 n = 500

PLI New KME PLI New KME

Q1 Bias 0.1102 0.0014 −0.0007 0.1109 0.0003 −0.0008

SD 0.0242 0.0287 0.0283 0.0171 0.0207 0.0203

MSE 0.0127 0.0008 0.0008 0.0126 0.0004 0.0004

Q2 Bias 0.2342 0.0007 −0.0012 0.2353 0.0010 −0.0003

SD 0.0319 0.0345 0.0336 0.0212 0.0254 0.0240

MSE 0.0559 0.0012 0.0011 0.0558 0.0006 0.0006

Q3 Bias 0.3822 0.0009 −0.0002 0.3851 0.0018 0.0010

SD 0.0364 0.0361 0.0325 0.0246 0.0267 0.0238

MSE 0.1474 0.0013 0.0011 0.1489 0.0007 0.0006

consistent. This has been investigated both theoretically and through simulations.
The simulation study conducted in this paper suggests that the PLI type estimator
may be recommended in the special case of no censoring but that, in the censored
case, it should not be used. The simulations suggest that there is some ground for
improvements of the new estimator particularly at the left tail of the event-free
survival time, where it can be beated by the PLI type estimator when there is no
censoring, or when the censoring is light.

The cross-sectional sampling scenario considered in this paper results in left-
truncation on the total survival time T 0. Different situationswhen sampling prevalent
cases are possible. For example, Chang and Tzeng (2006) considered an alternative
sampling procedure in which the recruited individuals are those with event-free
survival time Z0 larger than the left-truncation time. In this alternative sampling
scheme SZ0 can be estimated through the standard Tsai et al. (1987)’s product-limit
estimator applied to the event-free survival times; however, for the estimation of ST 0 ,
specific estimators must be derived.

In some applications with cross-sectional data, the assumption of uniformly dis-
tributed left-truncation times is plausible. This is the case under the so-called steady
state (e.g. Fluss et al. 2013).When information on the truncation distribution is avail-
able, improved estimators of the event-free survival can be constructed. For example,
with uniform truncation, Tsai et al. (1987)’s product-limit estimator ŜT 0(v) in (4.3)
can be replaced by the nonparametric maximum-likelihood estimator in Asgharian
andWolfson (2005) to obtain a better estimator for the event-free survival. Properties
of such alternative estimator are still unexplored.
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5.1 Introduction

Let (Y, X) be a bivariate random vector with probability measure P and regres-
sion function r(x) := E (Y | X = x). In a landmark paper, Stute (1997) introduced
omnibus, smooth and directional tests of the null hypothesis

H0 : r ∈ M0, (5.1)

where M0 is a family of regression functions in R linear in parameters, i.e.

M0 =
{

m : m(x) = βT g (x) : β ∈ R
k
}

,

for a known k-dimensional vector ofmeasurable functions g : R →R
k , where hence-

forth aT denotes the transpose of the vector a. The discussion in what follows is also
valid for models that are non-linear in parameters and satisfy standard regularity
conditions.
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Stute’s (1997) directional tests specify a local alternative of the form

H1n : r ∈ M1n , (5.2)

where

M1n =
{

m : m(x) = βT g (x) + d(x)√
n

: β ∈ R
k
}

,

and d is a known measurable function, indicating the direction of departure from
M0.

The main contribution of this article is to show that Stute’s (1997) directional test
is efficient in a semiparametric sense. We formalize the directional testing problem
as a one-sided parametric testing problem within a semiparametric model. Asymp-
totically Uniformly Most Powerful (AUMP) tests in this context have been defined
in Choi et al. (1996, Sect. 3, Theorem 1) as tests that are asymptotically equivalent
to the canonical efficient score, suitably standardized. The main result of this arti-
cle shows that, under conditional homoskedasticity, Stute’s (1997) directional test
is AUMP. We also show that Stute’s directional test is asymptotically equivalent to
a standard t−ratio test under homoskedasticity. We study the heteroskedastic case,
and show that the directional functional likelihood ratio test based on the CUSUM
of (conditionally) standarized residuals (Stute et al. 1998) is AUMP, and is asymp-
totically equivalent to the t-ratio using the generalized least squares estimator. In
summary, we show that Stute’s (1997) directional tests, which were motivated from
the functional likelihood ratio approach of Grenander (1950), are also asymptotically
efficient in a semiparametric sense.

The rest of the article is organized as follows. Section5.2 introduces Stute’s (1997)
directional test as a functional likelihood ratio test based on the CUSUMof residuals.
Section5.3 formalizes this testing problem as a parametric testing problem within
a semiparametric model, and discusses AUMP tests. Section5.4 contains the main
results of the article, which include proving the efficiency of Stute’s directional test
and its relation with the more standard t–ratio tests.

5.2 Stute’s Directional Test

Assume that Y is square integrable and that the random vector g(X) is linearly
independent, in the sense that E

[
g(X)g(X)T

]
is non-singular. Then, H0 is satisfied

iff r = βT
0 g, whereβT

0 g (X) is the best linear predictor ofY giveng (X), i.e. under H0

β0 = E

[
g(X)g(X)T

]−1
E
[
g(X)Y

]
. (5.3)
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Stute (1997) characterized H0 as

∫
{X≤x}

Y dP =
∫

{X≤x}
βT
0 g(X)dP a.s. (5.4)

Define

R0(x) := 1

σ

∫
{X≤x}

(
Y − βT

0 g(X)
)

dP = 1

σ
E

[(
Y − βT

0 g(X)
)
1{X≤x}

]
, (5.5)

where 1{A} denotes the indicator functionof the event A andσ2 :=E
(
Y − βT

0 g(X)
)2

.

In view of (5.4), for a suitable norm ‖·‖, H0 can be expressed as

H0 : ‖R0‖ = 0. (5.6)

Omnibus tests are consistent in the direction of any nonparametric alternative such
that ‖R0‖ > 0.

Given a random sample of (Y, X) of size n, {Yi , Xi }n
i=1, a scale invariant sample

analog of R0(x) is

Rn(x) := 1

n

n∑
i=1

εni

σ̂
1{Xi ≤x},

where εin := Yi − βT
n g(Xi ) are residuals from the ordinary least squares (OLS)

estimator, i.e.

βn =
[

n∑
i=1

g(Xi )g(Xi )
T

]−1 n∑
i=1

g(Xi )Yi

and σ̂2 = n−1∑n
i=1 ε2in estimates σ2.

Stute (1997) shows that, under H0 and uniformly in x ∈ R,

Rn = R1
n + oP

(
1√
n

)
, (5.7)

with

R1
n(x) = 1

n

n∑
i=1

εi

σ
w(Xi , x),

εi = Yi − βT
0 g(Xi ), and

w(z, x) = 1{z≤x} − E

[
g(X)T 1{X≤x}

] (
E

[
g(X)gT (X)

])−1
g(z).
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Consider ηn(x) = √
n Rn(x) as a random element of the infinite-dimensional Hilbert

space L2
F of measurable real-valued functions on R that are square integrable with

respect to F , the cumulative distribution function of X , with corresponding norm

‖h‖L2
F

= √〈h, h〉,

and inner product 〈h1, h2〉 = E [h1(X)h2(X)] . Using (5.7), and applying a central
limit theorem (CLT) for Hilbert spaces (e.g. Kundu et al. 2000), under H0

ηn →d η∞,

where η∞ is a Gaussian element of L2
F with mean zero and covariance kernel

C(x1, x2) := E [η∞(x1)η∞(x2)] = E

[
ε2w(X, x1)w(X, x2)

σ2

]
,

where ε = Y − βT
0 g(X). Henceforth, “→d” means convergence in distributions of

sequences of random variables, random vectors, or random elements in L2
F , and

“→p” means convergence in probability. Therefore, by the continuous mapping
theorem, under H0, ‖ηn‖2L2

F
→d ‖η∞‖2L2

F
. The distribution of ‖η∞‖2L2

F
is unknown,

but critical values of the test �n(c) = 1{
‖ηn‖2L2

F
>c

} can be estimated using bootstrap

(see Stute et al. 1998).
Under H1n,

ηn →d η∞ + δ,

where

δ(x) := E [d(X)w(X, x)] . (5.8)

Hence, by the continuous mapping theorem ‖ηn‖2L2
F

→d ‖η∞ + δ‖2L2
F
, respectively.

Therefore,�n(c) is able to detect local alternatives converging at the parametric rate.
Introduce the Fredholm integral operator K, where for any generic function

h ∈ L2
F ,

Kh(·) =
∫

h(x)C(x, ·)F(dx).

Henceforth, we drop the region of integration for simplicity of notation. SinceK is a
compact, linear and positive operator, it has countable spectrum {λ j , ϕ j }∞j=1, where
{λ j }∞j=1 are real-valued, positive, with λ j ↓ 0, and {ϕ j }∞j=1 are such that Kϕ j =
λ jϕ j , for all j ∈ N. Let ξ j := λ

−1/2
j

〈
η∞,ϕ j

〉
, j ∈ N, be the so-called principal

components of η∞.
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Hence,
{
ξ j
}

j≥0 are iid as standard normals and η∞
d= ∑∞

j=1 ξ jλ
1/2
j ϕ j , where

“
d=” means equality in distribution. Then, after choosing some m > 0, the statistic

Nn,m =
m∑

j=1

ξ2nj ,

with ξnj := λ
−1/2
j

〈
ηn,ϕ j

〉
forms a basis for a Neyman-type smooth test.

Denote by Q the limiting probability measure of ηn , and Q0 and Q1 the corre-
sponding probability measures under H0 and H1, respectively; i.e. the distributions
of η∞ and η∞ + δ. Assume that

∞∑
j=0

〈
δ, ϕ j

〉2
λ j

< ∞, (5.9)

so thatQ1 is absolutely continuouswith respect toQ0, as shown byGrenander (1950)
and Skorohod (1974, Chap.16, Theorem 2), with Radom-Nikodyn derivative

h ∈ L2
F �−→ dQ1

dQ0
(h) = exp

{
−
∫

A(x)

[
h(x) − δ(x)

2

]
F(dx)

}
, (5.10)

with

A(x) = −
∞∑
j=0

〈
δ, ϕ j

〉
√

λ j
ϕ j .

Then, each test of H0 in the direction H1n , which is based on ηn , asymptotically
becomes one of testing the simple hypothesis H̃0 : Q = Q0 versus H̃1 : Q = Q1 in
the exponential model (5.10) withQ the limiting distribution of ηn . By the Neyman-
Pearson Lemma, the optimal test rejects H̃0 in favor of H̃1 if and only if, for suitable
critical value c1,

−
∫

A(x)

[
η∞(x) − δ(x)

2

]
F(dx) ≥ c1,

or equivalently, for a suitable critical value c2,

T∞ =
∞∑
j=1

〈
δ, ϕ j

〉 〈
η∞,ϕ j

〉

λ j
≥ c2.

Notice that T∞ is a normal r.v. with E (T∞) = 0, under H0, and V ar (T∞) =∑∞
j=0〈δ, ϕ j 〉2/λ j , which can be estimated from data.
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Stute (1997, page 633) suggested a directional test, rejecting H0 against H1n for
large values of

Tn,mn =
mn∑
j=1

〈
δ, ϕ j

〉 〈
ηn,ϕ j

〉

λ j
, (5.11)

where mn is a tuning parameter that goes to infinity as n goes to infinity.
The directional test proposed by Stute (1997) was later extended by Stute et al.

(1998),Boning andSowell (1999),Bischoff andMiller (2000) andEscanciano (2009)
to other regression settings. Applications to conditional distributions were given in
Delgado and Stute (2008), and to tests for correct specification of the covariance
structure of a linear process in Delgado et al. (2005). The optimality of directional
tests in a very general framework of semiparameric moment restrictions, which
includes the one from this article, have been previously studied in Escanciano (2012).

5.3 Efficient Semiparametric Test

This section formalizes the directional testing problem as a parametric test within
a semiparametric model. Then, it discusses the asymptotically efficient test for the
semiparametric problem.

Let P be absolutely continuous with respect to a σ-finite measure μ. Consider the
following nonparametric family of error’s probability density functions (p.d.f.) with
respect to μ,

F =
{

f : f ≥ 0,
∫

f dμ = 1,
∫

e f (e, X)μ(de, X) = 0 a.s.

}
.

DefineθT = (βT , γ) andhT = (gT ,d), and assumeE
[
h(X)h(X)T

]
is non-singular.

Define the semiparametric class of models

P1 :=
{
Pθ, f : dPθ, f

dμ
(y, x) = f

(
y − θTh(x), x

)
: θ ∈ R

k+1, f ∈ F
}

.

Henceforth, for a generic parameter, the subscript zero denotes that the para-
meter is evaluated under the distribution that generates the data, i.e. P. Define

θ0 = (βT
0 , γ0)

T = E
[
h(X)h(X)T

]−1
E [h(X)Y ]. That is, β0 corresponds to (5.3)

when γ0 = 0.
Then, Stute’s (1997) directional test is simply a parametric test for

H0 : γ0 = 0 vs H1 : γ0 > 0, (5.12)

within the semiparametric class of models defined by P1 (i.e. with the maintained
hypothesis that P ∈ P1). Although we term directional tests as parametric, we note
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that they involve unknown infinite-dimensional nuisance parameters under both the
null and alternative hypotheses, namely υ := (β, f ) ∈ R

k × F .
The concept of optimality that we use is well explained in Choi et al. (1996,

Sect. 3). These authors show that a test ϒn(c) = 1{Tn>c} of asymptotic level α is
asymptotically uniformly most powerful for testing (5.12), in short AUMP(α), if for
every υ0 := (β0, f0) ∈ R

k × F) under H0,

Tn = ζnγ + oP(1),

where ζnγ is the standardized canonical effective score test statistic

ζnγ := 1√
nσ2

γ

n∑
i=1

�̇∗
γ(Zi ),

where �̇∗
γ is the efficient score defined below and σ2

γ := V ar(�̇∗
γ) is the efficient

information. Define the marginal class of semiparametric models with γ fixed at
γ0 by Pγ0 := {P(γ0,υ) : υ = (β, f ) ∈ R

k × F}, and let Ṗγ0 be the tangent space of
Pγ0 atP(γ0,υ0), i.e. the closed linear span of scores (derivatives of log-likelihood ratios
in many cases) passing through the semiparametric model P(γ0,υ0). Given the score
�̇γ in the marginal familyPυ0 = {P(γ,υ0) : γ ∈ R},we define the efficient score �̇∗

γ as

the orthogonal mean square projection of the score �̇γ onto the orthocomplement of
Ṗ2.We show below that for our semiparametric testing problem the efficient score is

�̇∗
γ(Z) = ε

(
d(X) − πT

0 g(X)
)

τ2 (X)
, (5.13)

where π0 = (
E
[
τ−2 (X) g(X)g(X)

])−1
E
[
τ−2 (X) g(X)d(X)

]
, with τ2 (X) :=

E
(
ε2
∣∣ X
)
, and corresponding efficient information

σ2
γ = E

[(
d(X) − πT

0 g(X)
)2

τ2 (X)

]
. (5.14)

The presence of heterokedasticity, i.e. τ2 (X) �= σ2 with positive probability, intro-
duces an infinite-dimensional nuisance parameter in the efficient score, which
substantially complicates the implementation of efficient inference, see Robinson
(1987).

Efficient scores and efficient informations have been extensively discussed for
regression problems; see e.g. Chamberlain (1987), Newey (1990) and Bickel et al.
(1993), amongmanyothers.Wecompute �̇∗

γ for our semiparametric regression testing
problem using parametric submodels. A parametric submodel in our problem has a
parametric density

fρ
(

y − βT g(x) − γd(x), x
)

(5.15)
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depending on finite-dimensional parameters (β, γ, ρ), where ρ is a scalar parameter
in a neighborhood of zero and fρ ∈ F . The parametric submodel is regular, in the
sense of satisfying a classical mean square differentiability property, and passes
through the truth, meaning that f0

(
y − βT

0 g(x) − γ0d(x), x
)
is the true density that

generated the data. An example of fρ is

fρ (e, x) = f0 (e, x) (1 + ρa(e, x)) ,

where a(e, x) is a (bounded) measurable square integrable function satisfying

∫
a(e, x) f0 (e, x) dμ(e, x) = 0.

Compute the scores for (β, γ, ρ) in (5.15) under H0 : γ0 = 0 as

�̇β(z) = f (1)
0

(
y − βT

0 g(x), x
)

f0
(
y − βT

0 g(x), x
) g(x) ≡ bβ(y − βT

0 g(x), x)g(x),

�̇γ(z) = f (1)
0

(
y − βT

0 g(x), x
)

f0
(
y − βT

0 g(x), x
) d(x) ≡ bγ(y − βT

0 g(x), x)d(x),

�̇ρ(z) = ∂ log fρ
(
y − βT

0 g(x), x
)

∂ρ

∣∣∣∣∣
ρ=0

≡ a(y − βT
0 g(x), x),

and f (1)
0 (e, ·) = ∂ f0(e, ·)/∂e. The condition fρ ∈ F implies by differentiation

∫
ea(e, X) f0(e, X)μ(de, X) = 0 a.s.

This means that the set of scores for the infinite-dimensional parameter includes zero
mean and square integrable a(e, x) such that

E [εa(ε, X)| X ] = 0 a.s.

The set of orthogonal functions to such a′s necessarily are functions of the form
εs(X) for a measurable function s. Thus, the projection of �̇γ(Z) onto such set is
some εsγ(X), for a function sγ such that for all measurable functions s

E
[
bγ(ε, X)d(X)εs(X)

] = E
[
εsγ(X)εs(X)

]
.

Solving for sγ in this equation, we find

sγ(x) = E
[
εbγ(ε, X)

∣∣ X = x
]

d(x)

τ2 (x)
= d(x)

τ2 (x)
,
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where we have used that

E
[
εbγ(ε, X)

∣∣ X = x
] =

∫
e f (1)

0 (e, x) μ(de, x)∫
f0 (e, x) μ(de, x)

= 1.

It remains to project εsγ(X) onto the orthocomplement of the space generated by
�̇β. Similarly to what we did for γ, the orthogonal projection of �̇β onto the space
orthogonal to scores of the infinite-dimensional parameter is

εsβ(X) = ε
g(X)

τ2 (X)
.

Then, by standard least squares theory

�̇∗
γ(Z) = εsγ(X) − E

[
εsγ(X)εsβ(X)

] (
E
[
εsβ(X)εsβ(X)

])−1
εsβ(X)

= ε

(
d(X) − πT

0 g(X)
)

τ2 (X)
.

Then, a testϒn(c) = 1{Tn>c} is AUMP(α), if it is asymptotically of levelα and under
H0,

Tn = ζnγ + oP(1),

where

ζnγ := 1√
nσ2

γ

n∑
i=1

(
εi

(
d(Xi ) − πT

0 g(Xi )
)

τ2 (Xi )

)
. (5.16)

5.4 Efficiency of Stute’s Directional Test

5.4.1 The Homoskedastic Case

This Section shows that Stute’s directional test based on Tn,mn is AUMP(α) under
homoskedasticity. We relate Stute’s directional test with the standard t-test, and we
extend these results to conditional heteroskedasticity of unknown form.

The first step in this analysis consists of deriving the asymptotic equivalence of
Tn,mn and its asymptotic approximation T 1

n,mn
, defined as (cf. 5.7)

T 1
n,mn

:=
mn∑
j=1

〈
δ, ϕ j

〉 〈√
n R1

n, ϕ j
〉

λ j
.

To that end, we require the following mild condition on mn .
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Assumption 1 Assume that mn → ∞ as n → ∞ and either (i) (5.9) holds and∑mn
j=1 λ−1

j = o(n); or (ii)
∞∑
j=0

〈
δ, ϕ j

〉2
λ2

j

< ∞. (5.17)

Since the eigenvaluesλ j are unknown, it is hard to evaluate this assumption.However,
for univariate regressors we expect λ j = O( j−2), see Stute (1997 , p. 621), so
that

∑mn
j=1 λ−1

j = O(m3
n), and hence Assumption 1(i) would require m3

n/n → 0.
Assumption 1(ii) strengthens the key condition (5.9) required for absolute continuity,
but relaxes the rate conditions on mn (mn → ∞ as n → ∞ arbitrarily in this case.)
An important new implication of our results below is that a sufficient condition
for Stute’s absolutely continuity assumption (5.9) is simply E

[
d2(X)

]
< ∞. This

follows from Parseval’s identity and Fubini’s Theorem, since

〈
δ, ϕ j

〉
√

λ j
= 1√

λ j

∫ ∫
d(x̄)w(x̄, x)ϕ j (x)F(dx̄)F(dx)

= E[d(X)ψ j (X)]. (5.18)

where

ψ j (X) :=
〈
w(X, ·), ϕ j

〉
√

λ j
, (5.19)

and hence

∞∑
j=0

〈
δ,ϕ j

〉2
λ j

=
∞∑
j=0

(
E[d(X)ψ j (X)])2

≤ E[d2(X)].

Alternatively, the stronger (5.17) requires

∞∑
j=0

〈
δ, ϕ j

〉2
λ2

j

=
∞∑
j=0

(
E[d(X)ψ j (X)])2

λ j
< ∞,

i.e. the Fourier coefficients of d with respect to {ψ j }∞j=1 decay sufficiently fast. This
is a mild “smoothness” condition on d.

Proposition 1 Under Assumption 1, as n → ∞

Tn,mn = T 1
n,mn

+ oP(1).
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Proof Note that

Rn(x) = 1

nσ

n∑
i=1

εiwn(Xi , x), (5.20)

where

wn(z, x) : = σ

σ̂

{
1{z≤x} − gT (z)�−1

n Gn(x)
}

,

�n : = 1

n

n∑
i=1

g(Xi )
T gT (Xi ),

Gn(x) : = 1

n

n∑
i=1

g(Xi )
T 1{Xi ≤x}.

Similarly, define G(x) := E
[
g(X)T 1{X≤x}

]
and � := E

[
g(X)gT (X)

]
. Then, write

Tn,mn − T 1
n,mn

= 1

σ
√

n

n∑
i=1

εi

⎛
⎝

mn∑
j=1

〈
δ,ϕ j

〉 〈
wn(Xi , ·) − w(Xi , ·),ϕ j

〉

λ j

⎞
⎠

=
(

1

σ
√

n

n∑
i=1

εig(Xi )
T

)
�−1

⎛
⎝

mn∑
j=1

〈
δ,ϕ j

〉 〈
G − Gn,ϕ j

〉

λ j

⎞
⎠

T

+
(

1

σ
√

n

n∑
i=1

εig(Xi )
T

)(
�−1 − �−1

n

)⎛⎝
mn∑
j=1

〈
δ,ϕ j

〉 〈
Gn,ϕ j

〉

λ j

⎞
⎠

T

+ oP(1)

= oP(1),

since, under Assumption 1 and (5.9)
∣∣∣∣∣∣

mn∑
j=1

〈
δ,ϕ j

〉 〈
G − Gn,ϕ j

〉

λ j

∣∣∣∣∣∣
≤ ‖G − Gn‖

⎛
⎝

mn∑
j=1

λ−1
j

⎞
⎠

1/2⎛
⎝

mn∑
j=1

〈
δ, ϕ j

〉2
λ j

⎞
⎠

1/2

= oP(n−1/2)o(n1/2)O(1) = oP(1).

The same holds true under (5.17). �
By Proposition 1 we can focus in what follows on T 1

n,mn
. Then, plugging R1

n in T 1
n,mn

and replacing the orders of summation, we can write

T 1
n,mn

= 1

σ
√

n

mn∑
j=1

n∑
i=1

εi

〈
δ,ϕ j

〉 〈
w(Xi , ·), ϕ j

〉

λ j

= 1

σ
√

n

n∑
i=1

εi

mn∑
j=1

〈
δ, ϕ j

〉 〈
w(Xi , ·), ϕ j

〉

λ j

= 1

σ
√

n

n∑
i=1

εi sn(Xi ), (5.21)
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where

sn :=
mn∑
j=1

〈
δ, ϕ j

〉 〈
w(Xi , ·), ϕ j

〉

λ j
.

In the next Theoremwe show that sn converges inmean square to a limit s∞.Then,we
show that σ−1εi s∞(Xi ) is proportional to the efficient score for the semiparametric
testing problem (5.12), as derived in the previous section but assuming, as in Stute
(1997),

Assumption 2 τ2 (X) = σ2 a.s.
That is, we show

ŝ−1T 1
n,mn

≡ 1

nσ̂s

n∑
i=1

εi sn(Xi ) = 1

nσγ

n∑
i=1

εi

(
d(Xi ) − πT

0 g(Xi )
)

σ2 + oP(n−1/2),

(5.22)
where ŝ2 = n−1∑n

i=1 s2n (Xi ) and σ2
γ was defined in (5.14). This asymptotic equiv-

alence in (5.22) is the main result of this paper.

Theorem 2 Under Assumptions 1 and 2, Stute’s (1997) directional test is AUMP(α),
i.e. (5.22) holds.

Proof We show that sn(Xi ) converges inmean square error to the function s∞(Xi ) =
d(Xi ) − πT

0 g(Xi ), i.e.

‖sn − s∞‖ → 0 as n → ∞.

By (5.18),

sn(Xi ) =
mn∑
j=1

E[d(X)ψ j (X)]ψ j (Xi )

is the Fourier expansion of d(X) in the basis {ψ j }∞j=1. By Kress (1999, Theo-

rem 15.16) {ψ j } is a basis that spans the orthocomplement of ker(T ) = { f ∈ L2
F :

T s = 0}, where T is the linear operator

T a(x) := E[w(X, x)a(X)] x ∈ R
p, a ∈ L2

F .
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Hence sn converges in mean square error to

s∞(Xi ) = d(Xi ) − �ker(T )d(Xi ).

It is straightforward to show that

ker(T ) = span {g(Xi )} .

Then, we conclude that

1

nσ

n∑
i=1

εi sn(Xi ) = 1

nσ

n∑
i=1

εi

(
d(Xi ) − πT

0 g(Xi )
)

+ oP(n−1/2),

and

ŝ2 = E[s2∞(Xi )] + oP(1)

= σ2σ2
γ + oP(1).

Thus,

1

nσ̂s

n∑
i=1

εi sn(Xi ) = 1

nσγ

n∑
i=1

εi

(
d(Xi ) − πT

0 g(Xi )
)

σ2 + oP(n−1/2).

�

Remark 3 From the proof of Theorem 2 we see that mn plays the role of a “band-
width” (number of terms in a series expansion, more precisely) for estimating the
score s∞(·). The optimal bandwidth choice is mn = ∞.

Incidentally, a test that is also AUMP for the homoskedastic case is the classical
t-test. The t-test rejects H0 for large values of

tn = γn

s.e(γn)
,

where γn is the OLS estimator of γ0 and s.e(γn) its standard error. Straightforwardly,
it is shown that under H0,

tn = 1√
nσγ

n∑
i=1

εi

(
d(Xi ) − πT

0 g(Xi )
)

σ2 + oP(1).
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5.4.2 The Heteroskedastic Case

In the heterokedastic case Stute’s directional test is not asymptotically equivalent
under H0 to the standardized canonical effective score test given in (5.16). Therefore,
it is not efficient. In this section we show how Stute’s (1997) directional test needs
to be implemented in the conditional heteroskedastic case to achieve asymptotic
efficiency.

Stute et al. (1998) considered the martingale part of the CUSUM process

R̃n(x) = 1

n

n∑
i=1

Yi − β̃
T
n g(Xi )

τ (Xi )
1{Xi ≤x},

where β̃n is a consistent estimator of π0. To achieve efficiency in the directional
tests below, it is crucial to use the infeasible GLS estimator

β̃n =
[

n∑
i=1

g(Xi )g(Xi )
T

τ2(Xi )

]−1 n∑
i=1

g(Xi )Yi

τ2(Xi )
.

Stute et al. (1998) developed omnibus, smooth and directional tests of H0, where
τ (·) is estimated using smoothers. Under H0, η̃n = √

n R̃n satisfies

η̃n →d η̃∞,

and under H1n,

η̃n →d η̃∞ + δ̃,

with η̃∞ a Gaussian process with zero mean and covariance function

C̃(x1, x2) := E
[
η̃∞(x1)η̃∞(x2)

] = E
[
w̃(X, x1)w̃(X, x2)

]
,

where

w̃(z, x) = 1{z≤x} − E

[
g(X)

τ (X)

T

1{X≤x}

](
E

[
g(X)gT (X)

τ2(X)

])−1
g(z)
τ (z)

and δ̃ (x) = E
[
w̃(X, x) d(X) /τ (X)] . The functional likelihood ratio based on η̃n

is

T̃∞ =
∞∑
j=1

〈
δ̃, ϕ̃ j

〉 〈
η̃∞, ϕ̃ j

〉

λ̃ j
,
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where {λ̃ j , ϕ̃ j }∞j=1 is the spectrum of η̃∞. The sample analog of T̃∞ is

T̃n,mn :=
mn∑
j=1

〈
δ̃, ϕ̃ j

〉 〈
η̃n, ϕ̃ j

〉

λ̃ j
.

Next Theorem establishes the semiparametric efficiency of the functional likelihood
ratio test based on T̃n,mn in the heteroskedastic case.

Theorem 4 Under Assumption 1 with δ replaced by δ̃, the directional test based on
T̃n,mn is AUMP.

Proof The proof is identical to that of Theorem2, but replacing Y , g(x), and d(x)

by Y/τ (x), g(x)/τ (x), and d(x)/τ (x), respectively.

Another efficient test is based on the infeasible GL S estimator of γ0, given by

γ̃n = 1

n

n∑
i=1

εni
(
d(Xi ) − πT

n g(Xi )
)

τ2(Xi )
,

with

πn =
[

n∑
i=1

g(Xi )g(Xi )
T

τ2(Xi )

]−1 n∑
i=1

g(Xi )d(Xi )

τ2(Xi )
.

The corresponding t—ratio statistic for the significance of d(X) is the generalized
least squares t—ratio

t̃n = γ̃n

σ̂γ
,

where

σ̂2
γ = 1

n

n∑
i=1

(
d(Xi ) − πT

n g(Xi )
)2

τ2(Xi )
,

and which satisfies t̃n = ζnγ + oP(1) under H0.

Feasible versions of the tests above are constructed by replacing τ2(·) with a
smooth estimator of it, e.g. the k—nn suggested by Robinson (1987) for semipara-
metric GLS. Using the k—nn estimator and applying Robinson’s (1987) results, we
obtain that feasible versions are asymptotically equivalent to the infeasible ones
under H0 and H1n . Hence, following the results above it is shown that the feasible
test is also AUMP.
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5.5 Conclusions

This article has shown the efficiency of Stute’s (1997) directional test in a semipara-
metric sense under conditional homoskedasticity. It has shown its asymptotic equiv-
alence to the classical t—ratio test in that setting. For conditional heteroskedasticity
of unknown form, a directional test based on the conditionally standardized CUSUM
process of Stute et al. (1998) with an efficient estimator for the slope coefficients is
shown to be semiparametrically efficient, and asymptotic equivalent to the t—ratio
test based on the generalized least squares estimator. Thus, directional tests, origi-
nally derived as functional likelihood ratio tests, are shown to be efficient in a more
traditional sense in a semiparametric one-sided testing problem (cf. Choi et al. 1996,
Sect. 3).

Two-sided and/ormultidimensional versions of the proposed semiparametric tests
are also available. The results of this article also show that the corresponding versions
of directional tests have certain optimality properties in these settings. For example, a
two-sided version of Stute’s (1997) directional test rejects the null for large absolute
values of Tn,mn in (5.11), and our results imply that this test is AUMPwithin the class
of unbiased tests (cf. Choi et al. 1996, Sect. 4). Multidimensional tests correspond to
a multivariate d, and the corresponding Stute’s (1997) directional tests are AUMP
within a class of invariant test defined in Choi et al. (1996, Sect. 5).

Another important contribution of Stute (1997) was the development of Ney-
man’s smooth tests for regression models based on the principal components of
the CUSUM process. Combining the results of the present article with those of
Escanciano (2009), it is shown that Stute-Neyman’s smooth tests are also AUMP
and invariant tests for an implicitly defined multidimensional d, precisely the vector
with components

{
ψ j (X)

}m
j=1 in (5.19) or their heteroskedastic version. Details of

this result are beyond the scope of this paper, but we refer to Escanciano (2009).
Related Neyman’s smooth tests for regression with errors independent of covari-
ates and multidimensional d have been obtained by Inglot and Ledwina (2006).
Neyman’s smooth tests for regression under conditionalmean independence of errors
and covariates are classical score tests based on least squares estimates, or based
on generalized least squares estimators under conditional heteroskedasticity. They
are called Lagrange Multiplier tests in econometrics. These tests are optimal in a
semiparametric sense discussed in Choi et al. (1996, Sect. 5), they are easy to inter-
pret and are a compromise between the directional tests and omnibus tests of Stute
(1997), which have been so fundamental in the development of model checks for
regression.
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6Goodness–of–FitTest for Stochastic
VolatilityModels

Wenceslao González-Manteiga, Jorge Passamani Zubelli, Abelardo
Monsalve-Cobis and Manuel Febrero-Bande

6.1 Introduction

Understanding and quantifying volatility is one of the main challenges in present–
day financial analysis. This is thoroughly justified by its impact in pricing and risk
management, among other applications. For instance, it is crucial in pricing and
hedging derivatives a good model selection.

However, this is not an easy task to accomplish. The volatility of a process is
not directly observed and thus needs to be estimated by some indirect process. In
addition, the term volatility has different meanings depending on the discipline or
field of study, which has given rise to quite a few different definitions of volality
throughout the literature (see Ghyles et al. (1996), Shephard (2005) and references
therein for a sample of the various approaches and historical background).

Nevertheless, there is a key feature of volatility which somehow unifies the al-
ternative approaches: volatility refers to a measure of variation or oscillation of the
observed quantity time series. Intuitively, higher volatility acts as if time would be
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running faster and more information is being added to the observed system (see
Shephard (2005) and references therein).

In financial applications, the classical work of Markowitz (1952) connects the
volatility directly with investment strategies and risk management. The seminal pa-
pers by Black and Scholes (1973) and Merton (1973) in option pricing make use
of a powerful simplifying assumption. Namely, that the underlying asset follows a
geometric Brownian motion (GBM) with drift

drt = μrtdt + σrtdWt , (6.1)

where dWt refers to the differential of the Wiener process, rt denotes the asset
price and σ and μ are constant values. However, this hypothesis has been deeply
scrutinized and questioned in the literature. For instance, even in the case of US
stock returns, departures from GBM have been well–documented (see Campbell
et al. (1997), Sect. 9.3.6).

In addition, the unpredictability and evidence of non–stationarity of the volatility
in financial time series under different scales has been well documented in the liter-
ature and goes back to Mandelbrot (1963) and Officer (1973). This naturally leads
to the proposal of more general models than (6.1), such as

drt = m(rt )dt + σ(rt )dWt , (6.2)

where the drift m and the volatility σ are now dependent on the underlying asset, rt .
Equation (6.2) can be analyzed as a parametric model by assuming that

drt = m(rt , θ)dt + σ(rt , θ)dWt , (6.3)

where the functional form for m an σ are well–defined within a certain class that
depends on an unknown parameter θ ∈ Θ ⊂ R

d with d a positive integer. Equa-
tion (6.3) allows for the representation of a fairly broad family of financial models.
See for example Andersen and Lund (1997) and Hull and White (1987).

A plethora of volatility definitions and indices arises when volatility models are
formulated in a discrete time scale. For instance, a great deal of attention has been
paid to models such as the autoregressive conditional heteroskedasticity (ARCH)
model by Engle (1982) and its generalizations. The need for continuous models is
obvious and crucial for comparisons, model simulations and ultimately pricing and
risk-management. As it can be seen in Shephard (2005), there have been efforts
in both simulation and inference methods on continuous–time stochastic volatility
models. Nevertheless, to the best of our knowledge, the joint use of goodness–of–fit
tests and Kalman filtering techniques has not been explored.
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In this work, financial models will be considered as continuous in time and de-
scribed by stochastic differential equations whose coefficients are to be determined
parametrically. In particular, the focus will be placed on models for an observed
quantity rt given by the stochastic differential equation

drt = m1(rt , θ)dt + σtυ1(rt , θ)dW1,t

dg(σt ) = m2(g(σt ), ϑ)dt + υ2(g(σt ), ϑ)dW2,t

(6.4)

where g,m1, υ1,m2 and υ2 are known functions;Φ = (θ, ϑ) ∈ R
d is an unknown

vector parameter (to be estimated); σ 2
t is the unobserved volatility and W1,t y W2,t

are (possibly correlated) Brownian motions.
As remarked in Campbell et al. (1997) there are many open issues in statis-

tical inference for continuous–time processes with discretely sampled data. For
instance, Aït-Sahalia (1993) proposes a nonparametric estimator of the diffusion
coefficient (assuming some constraints on the drift). Genon-Catalot et al. (1999) in-
troduce appropriate and explicit functions of the observations to replace either the
log-likelihood or the score function. Aït-Sahalia and Kimmel (2007) developed an
alternative method that employs maximum likelihood, using closed form approxi-
mations to the true (but unknown) likelihood function. Specifically, for Model (6.3),
the goodness–of–fit testing problem has been discussed by Dette and von Lieres und
Wilkau (2003), Dette et al. (2006) and Monsalve-Cobis et al. (2011).

For the stochastic volatility model in Eq. (6.4), most of the existing methods for
goodness–of–fit testing are not directly applicable due the fact that the volatility is not
directly observed, but there have been some approaches for testing its components.
For example, Lin et al. (2013) propose a goodness–of–fit test for the volatility distri-
bution in (6.4), based on the deviation between the empirical characteristic function
and its parametric counterparts.

In this work, a goodness–of–fit test based on the empirical process is proposed.
First, a discretized version of Model (6.4) is considered. Then, Kalman filtering
techniques are applied to obtain the associated state space model. Finally, the ideas
described in Monsalve-Cobis et al. (2011) for the construction of some generalized
statistical tests are applied to this context. Thus, the goal is to introduce a goodness–
of–fit test for the (parametric) drift and volatility functions in those models with
a stochastic volatility component. Calibration of the tests is done using bootstrap
procedures (see Rodriguez and Ruiz (2012) and Monsalve-Cobis et al. (2011)).

This article is organized as follows: the continuous time stochastic volatility mod-
els are presented in Sect. 6.2, discussing the corresponding state space structure.
In Sect. 6.3, the new goodness–of–fit tests for the drift and the volatility is intro-
duced. Section6.4 is devoted to the bootstrap strategy used for calibration. Finally,
in Sect. 6.5, some preliminary simulation results are provided, jointly with a real data
application of the tests, dealing with interbank intereset rates in the Eurozone.
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6.2 The Stochastic Volatility Model

Consider the stochastic volatilityModel (6.4), where g,m1,m2, υ1 and υ2 are known
real valued functions satisfying certain regularity conditions in order to ensure the
existence and uniqueness of the solution of the underlying stochastic differential
equations (see Genon-Catalot et al. (1999) and Lin et al. (2013)). The coefficients
in (6.4) depend on the unknown parameters Φ = (θ, ϑ) ∈ Θ ∈ R

d , and therefore,
different models can be generated for stochastic volatility by choosing different
parametric forms for the functions g,m1,m2, υ1 and υ2. The developments presented
in this paperwill be focused on awidely studiedmodel,which has beenused in several
financial applications: the CKLS model proposed by Andersen and Lund (1997).
This model incorporates the volatility as a non observable stochastic factor, being
an extension of the CKLS model introduced by Chan et al. (1992). The specification
proposed by Andersen and Lund (1997) assumes mean reversion -both at the level
of the interest rate and at the volatility (in log scale). More concretely:

drt = κ1(μ − rt )dt + σt r
γ
t dW1,t

d log(σ 2
t ) = κ2(α − log(σ 2

t ))dt + ξdW2t ,

where W1t and W2t are independent Brownian motions, and α, κ1, κ2, μ, γ and ξ

are the unknown parameters.
It should be also noted that it is not unusual to find in Model (6.4) a correlation

between rt and σt as a consequence of the corresponding Brownian processes. In
that case, the following kind of dependence structure can be used,

dW1t = ρdW2t +
√
1 − ρ2dW3t , ,

withW2t andW3t independent Brownian motions. However, along this paper, ρ will
be set to 0.

Although model in Eq. (6.4) specifies a proper framework for continuous time
financial process analysis, in practice, the phenomena associated to such processes is
just observed at discrete time points. Hence, discretized versions of continuous time
models must be considered for application in practice. For that purpose, assume that
the process {rt : 0 ≤ t ≤ T } is observed at discrete equally spaced times ti = iΔ,
i = 0, 1, . . . , n, with a fixed Δ > 0 within an observation window [0, nΔ = T ],
which increases as n grows. Then, the discrete time version of Model (6.4) can be
formulated as

rti+1 − rti = m1(rti , θ)Δ + σtiυ1(rti , θ)
(
W1,ti+1 − W1,ti

)

g(σti+1) − g(σti ) = m2(g(σti ), ϑ)Δ + υ2(g(σti ), ϑ)
(
W2,ti+1 − W2,ti

)
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and taking into account the properties of the Brownian motion, the process can be
expressed as

yti
Δ

= m1(rti , θ) + σtiυ1(rti , θ)Δ−1/2ε1,ti

g(σti+1) − g(σti ) = m2(g(σti ), ϑ)Δ + υ2(g(σti ), ϑ)
√

Δε2,ti ,

(6.5)

where, yti = rti+1 − rti , and {ε1,ti , ε2,ti } are two independent random variables with
distribution N (0, 1), for i = 1, . . . , n.

An important issue when analyzing the behaviour of the aforemetioned processes
is the large sample scheme, since there is not a unique way of defining it. The most
natural approach considered in practice consists in taking Δ (spacing between two
consecutive observations) as fixed and let the number of observations n grow (see
Kessler (2000) and Iacus (2008), for some examples). However, there are other al-
ternatives, as the one considered by Genon-Catalot et al. (1999), where the sampling
distance Δ = Δn goes to zero whereas the window nΔn goes to infinity. The main
goal of the different observation schemes is related to keeping the asymptotic prop-
erties of the estimators and to allow the use of statistical inference methods (see Lin
et al. (2013)).

6.2.1 State SpaceModel

The estimation of stochastic volatility models turns out to be a complex problem,
partly motivated by the estimation of the transition density funciton of rt (the state
variable), which is itself a difficult task, even under closed formulations. In addition,
the state variables that determine the volatility are not directly observable. Thus, the
estimation for such a function just from information of the underlying process in its
essence calls for the use of filtering techniques. With this purpose, Kalman filtering
techniques are applied to obtain the state space representation (6.5) of the model
in (6.4). Taking xti = g(σti ), with g strictly monotonic and after some algebraic
manipulations,

yti
Δ

= m1(rti , θ) + g−1(xti )υ1(rti , θ)Δ−1/2ε1,ti

xti+1 = xti + m2(xti , ϑ)Δ + υ2(xti , ϑ)
√

Δε2,ti .

(6.6)

The main goal of this representation is to capture the dynamics of the observable
variables yti and rti , in terms of the unobservable σti . It is important to stress that,
for convenience, the state space model is required to fall within the class of linear
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state spacemodels. This is achieved considering, for example, g(y) = log(y2). Thus,
Model (6.5) with g(·) = 2 log(·) can be written as Eq. (6.6):

yti
Δ

= m1(rti , θ) + σtiυ1(rti , θ)Δ−1/2ε1,ti

log(σ 2
ti+1

) = log(σ 2
ti ) + m2(log(σ 2

ti ), ϑ)Δ + υ2(log(σ 2
ti ), ϑ)

√
Δε2,ti .

Following the derivation in Harvey et al. (1994), denote by eti the error obtained
from the equation

eti = yti
Δ

− m1(rti , θ) = σtiυ1(rti , θ)Δ−1/2ε1,ti ,

which gives:

log(e2ti ) = log(σ 2
ti ) + 2 log(υ1(rti , θ)) − log(Δ) + log(ε21,ti )

Now, taking uti = log(e2ti ), and xti+1 = log(σ 2
ti+1

), the following state space model
is obtained:

uti = xti + 2 log(υ1(rti , θ)) + ηti − κ

xti+1 = xti + m2(xti , ϑ)Δ + υ2(xti , ϑ)
√

Δε2,ti

(6.7)

with ηti = − log(Δ) + log(ε21,ti ) + κ and κ = log(Δ) − E

[
log(ε21,ti )

]
. The parame-

ter estimation of Φ = (θ, ϑ) can be obtained by maximum likelihood, computing
the likelihood from the innovations ηt1 , . . . , ηtn .

In the sequel, the estimation can be obtained using Kalman filters considering
a mixture of Gaussian variables to approximate the non–Gaussian errors, but other
alternatives are also possible. With respect to this issue, note that innovation errors in
the previous state space model are not Gaussian. If ε21,ti follows a lognormal distri-
bution, then the state space model presents Gaussian errors, and it can be estimated
using basic Kalman filter techniques. Unfortunately, under the assumption of nor-
mality for ε1,ti , the variable ε21,ti has a χ2 distribution with one degree of freedom,
and the density under the logarithmic transformation is given by

f (x) = 1√
2π

e− 1
2 (ex−x), −∞ < x < ∞,

with mean −1.2704 and variance π2/2. It is clear the need of applying method-
ology that allows to obtain an equation involving the non observable variable xti ,
with Gaussian mixture distributions. Therefore, writing the observation equation in
Model (6.7) with uti = log(e2ti ) as

uti = xti + 2 log(υ1(rti , θ)) + ηti − κ
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where ηti is zero-mean noise, the assumption of a normal mixture distribution will
be considered. In particular, for a mixture of two distributions:

ηti − κ = Iti zti0 + (1 − Iti )zti1,

where Iti is an i id process such that P{Iti = 0} = π0, P{Iti = 1} = π1, (π0 + π1 =
1), zti0 ∼ i id N (0, σ 2

0 ), and zti1 ∼ i id N (μ1, σ
2
1 ). The advantage of such procedure

hinges upon the use of normality.
The estimation of the model parameters is performed by maximum likelihood,

being the log–likelihood function to optimize:

log L(Φ) =
n∑

i=1

log

⎛

⎝
1∑

j=0

π j f j (ti |ti − 1)

⎞

⎠

where the transition density f j (ti |ti − 1) is approximated by a normal or normal
mixture density, with parameters given by the filter. For details see, for example,
Shumway and Stoffer (2011), Sects. 6.8 and 6.9.

An alternative method for the estimation of the stochastic volatility can be found
in Aït-Sahalia and Kimmel (2007). In this reference, maximum likelihood is also
used but considering numerical approximations of the true likelihood. In order to
consider positive correlation between Brownian motions, the methods introduced by
Sect. 6.7–Shumway and Stoffer (2011) and Nisticò (2007), also based on Kalman
filtering techniques, could be considered.

6.3 GOF-Tests

Ageneralization of the goodness–of–fit test proposed inMonsalve-Cobis et al. (2011)
for the stochastic volatilityModel (6.4) will be presented in this section. The proposal
follows the methodology developed by Stute (1997) for the regression context, based
on empirical residual processes. The goal in this work is to compare the parametric
form of the drift functions and the volatility for the model under consideration,
establishing as null hypothesis:

H0m : m1 ∈ {m1(·, θ) : θ ∈ Θ} (6.8)

for the parametric form of the drift function, and

H0v : υ1 ∈ {υ1(·, θ) : θ ∈ Θ} (6.9)

for the parametric form of the volatility. The construction of the test statistic and the
testing procedure will be described in the next sections.
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6.3.1 Drift Function Test

Assume that Φ̂ = (θ̂ , ϑ̂) is an appropriate estimator (satisfying a root-n consistency
condition) of the true parameter Φ = (θ, ϑ) of the stochastic volatility model. The
test statistic for assessing the parametric form of the drift function, under the as-
sumption that H0v given by (6.9) holds, is based on the empirical process:

Dn(r) = 1√
n

n∑

i=1

1{rti ≤r}
{ yti

Δ
− m1(rti , θ̂ )

}
, with r ∈ R,

being 1{·} the indicator function. For constructing a test statistic, a continuous func-
tional�(·) of the empirical process can be considered. In general, such a test statistic
will be defined as Tn = �(Dn) and the null hypothesisH0m is rejected if Tn > c1−α

where c1−α satisfies

P{Tn > c1−α|H0m} = α .

Two examples of such a test statistic are the following

T K S
n = sup

r
|Dn(r)|, and TCvM

n =
∫

R

Dn(r)
2Fn(dr)

being the first one aKolmogorov-Smirnov (KS) type test and the second one aCramér-
von Mises (CvM) statistic. In the previous formulation, Fn denotes the empirical
distribution of {rti }ni=1. Along the text, Tn = T K S

n or Tn = TCvM
n will be used to

indicate the specific statistics under consideration.

6.3.2 Volatility Function Test

Focusing now on the volatility component, and similarly to the ideas presented for
the test designed for the drift function, assume that Φ̂ = (θ̂ , ϑ̂) is an appropriate
estimator of the true parameter Φ = (θ, ϑ) in the volatility model. The goodness–
of–fit test for the parametric form of the volatility function under the assumption that
H0m given by (6.8) holds, is based on the empirical process:

Vn(r, x) = 1√
n

n∑

i=1

1{rti ≤r,σ̂ 2
ti
≤x}

{
( yti

Δ
− m1(rti , θ̂ )

)2 − σ̂ 2
ti υ

2
1 (rti , θ̂ )

Δ

}

, with r, x ∈ R.

with σ̂ 2
t an estimate of the volatility. As before, a continuous functional �(·) of the

empirical process can be considered to define, in general, the test statistics Un =
�(Vn). Similarly, the null hypothesis H0υ is rejected if Un > c1−α where c1−α is
the critical value for the α–level test:

P{Un > c1−α|H0υ} = α ,
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Again, Kolmogorov-Smirnov (KS) and Cramér-von Mises (CvM) statistics can be
expressed as

UKS
n = sup

r,x
|Vn(r, x)|, and UCvM

n =
∫ ∫

R2
(Vn(r, x))

2 Fn(dr, dx)

where Fn is the empirical distribution of {rti , σ̂ 2
ti }. Un = UKS

n or Un = UCvM
n will

be used to denote the corresponding statistics.
In the definition of Vn(r, x), a parametric model is assumed for the drift m1. If

such a model in H0m is not specified, a nonparametric estimator for m1 must be
used. In that case, the problem is that: E

[
yti /Δ|rti

] = m1(rti , θ) + υ1(rti , θ)Δ−1/2

E
[
g−1(xti )ε1,ti |rti

]
and additional assumptions on the stochastic volatility would

be necessary to obtain a consistent estimator of m1 (for example, using a kernel
estimation). Clearly, this is still an open problem and more research is needed in this
direction.

Both for the drift and the volatility tests, the critical values under the null hypoth-
esis, denoted by c1−α , must be determined. For that purpose, the distribution of the
processes Tn and Un must be specified, which turns out to be difficult in general.
Alternatively, approximations of such critical values by means of bootstrap tech-
niques can be considered for testing purposes. A bootstrap approximation will be
introduced in the next section.

6.4 Bootstrap Approximations

A bootstrap algorithm will be presented for approximating the critical values of the
proposed test statistics. The procedure is based on the generation of an artificial
sample with the same characteristics of the initial one. From such a sample, critical
values are estimated as follows.

First, let {(r∗
t )} be an artificial process (to be defined later in detail) and let Φ̂∗ =

(θ̂∗, ϑ̂∗) be a parameter estimator obtained from such process. Then, the bootstrap
versions Dn and Vn are given by:

D∗
n(r) = 1√

n

n∑

i=1

1{r∗
ti
≤r}

{
y∗
ti

Δ
− m1(r

∗
ti , θ̂

∗)
}

, with r ∈ R.

V ∗
n (r, x) = 1√

n

n∑

i=1

1{r∗
ti
≤r,σ̂ ∗2

ti
≤x}

{(
y∗
ti

Δ
− m1(r

∗
ti , θ̂

∗)
)2

− σ̂ ∗2
ti υ2

1 (r
∗
ti , θ̂

∗)
Δ

}

, with r, x ∈ R.

The critical value c1−α will be approximated by its bootstrap counterpart, c∗
1−α , so

that

P
∗{T ∗

n > c∗
1−α} = α, P

∗{U∗
n > c∗

1−α} = α,
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where P∗ denotes the probability measure associated to the bootstrap with

T ∗K S
n = sup

r
|D∗

n(r)|, or T ∗CvM
n =

∫

R

D∗
n(r)

2Fn(dr)

and

U∗K S
n = sup

r,x
|V ∗

n (r, x)|, or U∗CvM
n =

∫ ∫

R2
V ∗
n (r, x)2Fn(dr, dx)

In practice,

c∗
1−α = T ∗	B(1−α)


n , or c∗
1−α = U∗	B(1−α)


n

that is, the 	B(1 − α)
-th order statistic calculated on the B bootstrap replicates
T ∗ j
n = T ∗

n (U∗ j
n = U∗

n ), 1 ≤ j ≤ B. The empirical p-value for the bootstrap sample
can be calculated as

�{T ∗ j
n > Tn}
B

or
�{U∗ j

n > Un}
B

,

that is to say, the p-value is taken as the fraction of values from the bootstrap versions
T ∗
n (U∗

n ) exceeding the value of Tn (Un). It seems clear that appropriate (consistent)
parametric estimates for the stochastic volatility model parameters is crucial for the
procedure. In the following section, someaspects concerning the characteristics of the
artificial sample used in the bootstrap procedure implementation will be described.

6.4.1 Bootstrap Resampling

For the construction of the bootstrap sample, the state space model structure must
be taken into account. This feature will be illustrated for Model (6.7). A crucial
condition is that such model presents Gaussian errors, or at least, that such errors are
approximately Gaussian distributed (which must be checked using some statistical
procedure). Under these premises, the bootstrap sample can be generated as follows:

1. Let Φ̂ = (θ̂ , ϑ̂) be the estimator of the true parameter Φ, obtained by maximum
likelihood. That is:

Φ̂ = argmax
Φ

L(Φ),

assuming that the errors follow Gaussian mixture distribution.
2. Following Shumway and Stoffer (2011) Sect. 6.7, apply the Kalman filter equa-

tions to obtain a bootstrap resample
{(
u∗
ti , x

∗
ti , rti

)}
where the

{
rti

}
remain fixed.

3. Once the bootstrap resample is obtained, estimate the corresponding parameters
Φ̂∗ = (θ̂∗, ϑ̂∗) associated to the state spacemodel bymaximum likelihood, based
on L∗(Φ).

4. Get the bootstrap versions of the aforementionedprocesses D∗
n(r, x) andV

∗
n (r, x),

for x, r ∈ R, and T ∗
n , (U

∗
n ).
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5. Repeat Steps 2–4 B times and get copies T ∗ j
n , (U∗ j

n ), for j = 1, 2, . . . , B,
6. Finally, compute the bootstrap approximations of the critical values

ĉ∗
1−α = T ∗	B(1−α)


n or ĉ∗
1−α = U∗	B(1−α)


n .

6.5 Some Applications

The performance of the testing procedure introduced in this work is illustrated in
this section. First, some preliminary simulation results are shown, considering a
previously studied model from the financial literature and showing the procedure
perfomance. A real data example is also provided. The dataset gathers interest rate
curves at the European markets, the EURIBOR�-(Euro Interbank Offered Rate).

As an example of artificial data, consider Model (1) given in (Monsalve-Cobis
et al. 2011, Eq. (35)):

drt = (0.0408 − 0.5921rt )dt + σt r
1.4999
t dW1,t

where the deterministic valueσt = √
1.6704 in the previous reference is replaced by a

stochastic volatilitymodelwith d(log σ 2
t ) = ωdW2,t beingω an unknown parameter.

Equation (6.7) adapted for this model is given by:

uti = xti + γ0 log(r2ti ) − logΔ − 1.2704 + ηti
xti+1 = xti + ω

√
Δε2,ti

with γ0 = 1.4999, ηti a random variable following the centered density given in
Sect. 6.2 and ε2,ti distributed as a standard normal.

The null hypothesis H0v : υ1(rt , θ) = r1.4999t was tested under the assumption
that the drift is completely known and with ω = 0.0046 in the simulated model.
For simulations, {rt : 0 ≤ t ≤ T }was observed at discrete equally spaced times ti =
iΔ, i = 0, 1, . . . , n = 300withΔ = 1/52. TheKolmogorov–SmirnovUKS

n statistic
was applied for testing in 100 trials. The distribution of the test under the null was
calibrated by the suggested bootstrap resamplingwith B = 1000. For the resampling,
the density ofηti was simulated using amixture of sevennormal densities as described
in Kim et al. (1998). Table6.1 shows the empirical power for the levels α = 0.1, 0.05
obtained for the null and for the alternatives υ1(rt , θ) = rγ

t with γ = 1.4999 (the
null) and γ = 1.25 and γ = 1.0.

Needless to say that this is a very simple example and more research is necessary
about the theoretical and practical behaviour of the different tests and the simulation
in more complex models. Even in this simple case, the optimization procedure of
the Kalman filter is quite demanding in computing time. That effect is multiplied
here by the number of bootstrap replicates. So, a revision of the (possibly high time
consuming) steps involved in the procedure (design of Kalman filter, optimization
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Table 6.1 Empirical power for the null (γ = 1.4999) and for the two alternatives (γ = 1.25, 1.0)

γ = 1.4999 γ = 1.25 γ = 1.00

α = 0.10 0.11 0.39 0.89

α = 0.05 0.08 0.24 0.77

techniques, constraints for the parameters, …) is required in order to get better
calibration levels in a more extensive study.

As far as the real data set is concerned, the interest rate curves of EURIBOR,
representing the rates at which different interbank Euro denominated deposits, with
distinct maturities, are offered within Eurozone. Such maturities for the EURIBOR
time series are 1, 2, and 3 weeks, and 1, 2, . . . , 12 months, being the EURIBOR
time frequency a daily scale. For the analysis, the data is divided in two observed
time series:

• Previously to the crisis: From October 15th, 2001 till March 31st, 2006
• During the crisis: From January 2nd, 2008 till November 30th, 2011.

Figures6.1 and 6.2 display the graphical evolution of the EURIBOR series during
the above mentioned periods. As null hypotheses, for the goodness–of–fit tests for
the drift and the volatility, aCKLS formulation incorporating the stochastic volatility
model proposed in Andersen and Lund (1997) is considered:

drt = κ1(μ − rt )dt + σt r
γ
t dW1,t

d log(σ 2
t ) = κ2(α − log(σ 2

t ))dt + ξdW2t

whereW1t andW2t are independent Brownian motions. The Euler scheme is applied
to discretize the model and to obtain the first order approximation

rti+1 − rti = κ1(μ − rti )Δ + σti r
γ
ti

√
Δε1,ti

log(σ 2
ti+1) − log(σ 2

ti ) = κ2(α − log(σ 2
ti ))Δ + ξ

√
Δε2,ti

where ε1,t and ε2,t are independent normal random variables N (0, 1) with fixed Δ

and weekly frequency (hence, Δ = 1/52). The corresponding general Model (6.7)
is, in this case:

ut = xt + 2γ log(rt ) − 1.27 + ζt − log(Δ)

xt = φ0 + φ1xt−1 + ξ
√

Δε2,t

where

• φ0 = (1 − κ2Δ), φ1 = κ2αΔ

• ζt = log(ε21,t ) + 1.27
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Fig. 6.1 Time series for the interbank deposits in the Eurozone for the period 2001–2006 with
maturities of 1, 2, and 3 weeks; and 1, 2, . . . , 12 months
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Fig. 6.2 Time series for the interbank deposits in the Eurozone for the period 2008–2011 with
maturities of 1, 2, and 3 weeks; and 1, 2, . . . , 12 months
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Table 6.2 p-values associated to the goodness–of–fit test for the drift and volatility functions of
the stochastic volatility model adjusted to the EURIBOR series before the crisis

Maturity GOF-Drift GOF-Volatility

p̂value Dn(r, x) p̂value Vn(r, x)

1 week 0.036 28.634 0.126 3.717

2 week 0.660 21.603 0.098 2.586

3 week 0.754 27.816 0.984 0.017

1 month 0.752 37.673 0.998 0.003

2 month 0.194 57.085 0.996 0.002

3 month 0.054 51.173 0.990 0.003

4 month 0.186 38.473 0.990 0.004

5 month 0.246 38.926 0.982 0.007

6 month 0.442 33.302 0.990 0.009

7 month 0.238 35.567 0.948 0.013

8 month 0.132 38.118 0.870 0.019

9 month 0.088 38.478 0.766 0.026

10 month 0.050 39.023 0.652 0.033

11 month 0.076 39.375 0.528 0.037

12 month 0.034 42.505 0.440 0.050

• ut = log(e2t ) and et = Yt/Δ − m1(rt , θ) = Yt/Δ − κ1 (μ − rt )
• xt = log(σ 2

t ).

Based on the above state space model, the proposed tests are applied. Model
parameters are estimated by maximum likelihood and Kalman filtering procedures
are applied to obtain the non observable variable xt , required for performing the
tests. B = 500 bootstrap copies are generated to approximate the distribution of the
corresponding processes involved in the tests contruction and estimate the empirical
p-values. The results collected in Tables6.2 and 6.3 were obtained applying the
resampling scheme described in Sect. 6.4. It can be noted that the p-values associated
to the tests for the drift and the volatility of the EURIBOR series, except for a few
cases of maturity, do not reject the null hypothesis for the periods before the crisis
and during the crisis. Therefore, the CKLS model, incorporating the volatility factor,
is capable of characterizing such series. It is important to emphasize that the CKLS
model considered in Monsalve-Cobis et al. (2011), without taking into account the
stochastic volatility, was rejected in a conclusive way for the volatility component.

In the light of the results, incorporating a stochastic model for the volatility func-
tion in a more flexible way seems to allow for a more effective characterization of
the EURIBOR series.
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Table 6.3 p-values associated to the goodness–of–fit test for the drift and volatility functions of
the stochastic volatility model adjusted to the EURIBOR series during the crisis

Maturity GOF-Drift GOF-Volatility

p̂value Dn(r, x) p̂value Vn(r, x)

1 week 0.222 25.947 0.460 0.198

2 week 0.898 19.519 0.616 0.159

3 week 0.748 23.504 0.402 0.171

1 month 0.996 16.458 0.870 0.129

2 month 0.828 20.524 0.544 0.177

3 month 0.794 19.166 0.596 0.258

4 month 0.476 21.579 0.336 0.310

5 month 0.040 25.021 0.072 0.418

6 month 0.140 27.131 0.096 0.468

7 month 0.436 23.855 0.976 0.013

8 month 0.094 29.190 0.104 0.506

9 month 0.064 28.640 0.066 0.869

10 month 0.056 27.945 0.118 0.656

11 month 0.006 28.735 0.156 0.646

12 month 0.166 26.243 0.098 0.767
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7AReviewonDimension-Reduction
BasedTests For Regressions

Xu Guo and Lixing Zhu

7.1 Introduction

Regression analysis is a powerful tool to describe the relationship between response
and predictors. In practice, parametric regression models such as linear regression
models arewidely used due to their simplicity and interpretability.When a parametric
regressionmodel is correctlyfitted by the data, further statistical analysis canbe easily
and accurately elaborated with good explanations. However, such further analysis
and interpretation could be misleading when the model does not fit the data well.
It is therefore necessary to assess the suitability of a parametric model and this is
often performed through a goodness-of-fit test. A practical example is production
theory in economics, in which the Cobb-Douglas function is commonly used to
describe the linear relationship between the log-inputs, such as labor and capital,
and the log-output. However, this function may not well describe the relationship. To
avoidmodelmis-specification, Kumbhakar et al. (2007) suggested a semi-parametric
regression model to fit data. Zhang and Wu (2011) and Lin et al. (2014) respectively
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worked on tests of parametric functional form in nonstationary time series and fixed
effects panel data models. In summary, when describing the regression relationship
between responses and predictors, wemay have to make a choice between the simple
but fragile parametric model and the flexible but more complicated model. This is a
typical scenario in the initial steps of statistical analysis. In this review, we focus on
independent data.

There are a number of methods available for testing a parametric regressionmodel
against a general nonparametric model. Examples include the following. Härdle and
Mammen (1993) considered the L2 distance between the null parametric regression
and the alternative nonparametric regression as the base of their test statistic con-
struction. Zheng (1996) proposed a quadratic form of the conditional moment test
that was also independently developed by Fan and Li (1996). Dette (1999) developed
a test based on the difference between variance estimates under the null and alterna-
tive models. See also Fan et al. (2001) and Zhang and Dette (2004). We call these
tests local smoothing tests as they require nonparametric local smoothing methods.
Another main class of tests is based on empirical processes. For instance, Bierens
(1982; 1990) suggested some tests that are based on weighted residual moment with
characteristic function weights. Stute (1997) introduced a nonparametric principal
component decomposition based on a residual marked empirical process. Inspired by
the Khmaladze transformation used in goodness-of-fitting for distributions, Stute et
al. (1998b) first developed the innovation martingale approach to obtain distribution-
free tests. Khmaladze and Koul (2009) studied the goodness-of-fit problem for errors
in nonparametric regression.We call this class of tests global smoothing tests because
they are actually based on the weighted averages of residuals and averaging itself is
a global smoothing step. We may pay special attention to González-Manteiga and
Crujeiras (2013a; 2013b) who provided a comprehensive review of the literature on
the lack-of-fit and goodness-of-fit testing for regression models with modest number
of covariates. In the present review, we focus on dimension reduction type tests.

The rest of this review is organized as follows. In Sect. 7.2, some basic ideas of
constructing tests are briefly reviewed. Section7.3 presents various tests designed for
avoiding the curse of dimensionality. In Sect. 7.4, the important Stute’s contributions
other than the results of dimension reduction nature are very briefly reviewed. Finally
some conclusions and discussions are presented in Sect. 7.5.

7.2 Basic Ideas of Test Statistics Construction

We first review local smoothing tests and global smoothing tests that do not involve
special dimension reduction strategies.
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7.2.1 Local Smoothing BasedTests

Consider a regressionmodel Y = m(X) + ε with {(Xi , Yi )}ni=1 being a random sam-
ple of (X, Y ). Here Y is a scalar response, X is a predictor vector of p-dimension
and m(·) is an unknown function. For a given parametric function g(·, ·), the goal is
to test the null hypothesis:

H0 : P(m(X) = g(X, θ0)) = 1, (7.1)

for some unknown θ0 ∈ � for a parameter space� in the Euclidean spaceR
d against

the alternative hypothesis

yH1 : P(m(X) = g(X, θ)) < 1, (7.2)

for any θ ∈ �. In the following, denote ε0 = Y − g(X, θ0), the random error. Under
the null hypothesis, the conditional expectation of ε0 given X is zero: E(ε0|X) = 0,
while under the alternative, it is not zero.

Local smoothing tests are based on estimating E(ε0|X) which requires local
smoothing methods such as the Nadaraya-Watson kernel estimator. Let the local
weight function be

Wni (x) = Kh(x − Xi )
∑n

j=1 Kh(x − X j )
,

where Kh(·) = K (·/h)/h p with K (·) being a kernel function and h is the bandwidth.
Härdle andMammen’s (1993) test is based on the L2 distance between parametric

and nonparametric estimators. The test statistic has the form:

THM =
∫ (

n∑

i=1

Wni (x)ε̂0i

)2

ω(x)dx . (7.3)

Here ε̂0i = Yi − g(Xi , θ̂ ) and ω(·) is some positive weight function. ε̂0i is the resid-
ual with an estimator θ̂ of θ0. The estimator θ̂ , e.g. the nonlinear least squares esti-
mator, can be

√
n-consistent.

It can be shown that the limiting null distribution of THM is

nh p/2
(

THM − (nh p)−1
∫

K 2(x)dx
∫

σ 2(x)ω(x)

f (x)
dx

)

⇒ N

(

0, 2
∫

(K ∗ K )2dx
∫

σ 4(x)ω2(x)

f 2(x)
dx

)

, (7.4)

here f (x) is the density of the predictor vector X ,σ 2(x) = Var(Y |X = x) is the con-
ditional variance, the symbol ∗ denotes the convolution operator and K ∗ K (x) =∫
K (t)K (x − t)dt . As the significance level cannot be well maintained when the



108 X.Guo and L. Zhu

limiting null distribution is used to determine critical values, Monte Carlo approxi-
mation/bootstrap to its sampling null distribution is required.

Zheng (1996) developed a quadratic conditionalmoment test whichwas also inde-
pendently proposed by Fan and Li (1996). The test statistic is a consistent estimate
of E[ε0E(ε0|X) f (X)ω(X)], which is zero under the null hypothesis and positive
under the alternative hypotheses. The test statistic is defined by

TZH = 1

n(n − 1)

n∑

i=1

n∑

j �=i

Kh(Xi − X j )ε̂0i ε̂0 jω(Xi ). (7.5)

Under the null hypothesis, the asymptotic normality is provided as:

nh p/2TZH ⇒ N

(

0, 2
∫

K 2(x)dx
∫

σ 4(x)ω2(x) f 2(x)dx

)

. (7.6)

A main advantage of TZH , compared to THM , is the asymptotic unbiasedness and
then with no need of bias-correction.

By noticing that E
([

ε20 − (ε0 − E(ε0|X))2
]
ω(x)

)
is zero under H0, Dette (1999)

introduced a test statistic based on the difference between the error variance estimates
under the null and alternative hypotheses. The test statistic is defined as

TDE = 1

n

n∑

i=1

(Yi − g(Xi , θ̂ ))2ω(Xi ) − 1

n

n∑

i=1

(Yi − m̂(Xi ))
2ω(Xi ). (7.7)

Here m̂(x) = ∑n
i=1 Wni (x)Yi is the nonparametric estimator of the regression func-

tion. Denote K 2∗ = 2K − K ∗ K . Then the asymptotic distribution of the variance
difference statistic TDE is

nh p/2
(

TDE − (nh p)−1K 2∗(0)
∫

σ 2(x)ω(x)dx

)

⇒ N

(

0, 2
∫

K 2∗(x)dx
∫

σ 4(x)ω2(x)dx

)

. (7.8)

Similarly as THM , this test also has a bias term diverging to infinity. For the compar-
ison of these above three methods, see Zhang and Dette (2004).

Inspired by the classical likelihood ratio test, Fan et al. (2001) suggested a gen-
eralized likelihood ratio test which resembles the F-test construction for regression
models. A significant property of this test is that the limiting null distribution does
not depend on nuisance functions, exhibiting what is known as Wilks phenomenon.
For more details, see also Fan and Jiang (2007).

Koul and Ni (2004) studied a class of minimum distance tests for multidimen-
sional covariates and heteroscedatiscity. These tests are based on certain minimized
L2 distances between a nonparametric regression function estimator and the paramet-
ric model being fitted. Different bandwidths for the estimation of the numerator and
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denominator in the nonparametric regression function estimator are adopted. Com-
pare with Härdle and Mammen (1993), Koul and Ni (2004)’s tests do not require the
null regression function, g(·, ·), to be twice continuously differentiable. Thus, they
are relatively broadly applicable. Readers may also refer to Koul and Song (2009).

The tests in this class are called local-smoothing tests. The monograph by Hart
(1997) that is a comprehensive reference collected many local smoothing tests.

7.2.2 Empirical Process-BasedTests

Another class of tests for model checking is based on the estimator of the
integrated function I(x) = ∫ x

−∞(m(t) − g(t, θ0))dF(t) = E((Y − g(X, θ0))

I (X ≤ x)), where I (·) is the indicator function. We can estimate I(x) by an empir-
ical process defined as

In(x) = 1

n

n∑

i=1

(Yi − g(Xi , θ̂ ))I (Xi ≤ x).

Based on this empirical process,we can construct Cramér-vonMises orKolmogorov-
Smirnov type tests. Early studies for these types of test statistics are due to Bierens
(1982), Su andWei (1991) and Stute (1997). However, for composite null hypothesis
H0, the above defined test statistics depend on the parametric form of g(X, θ) and
also θ̂ , and are not distribution-free. Inspired by the Khmaladze transformation used
in goodness of fit for distributions, Stute et al. (1998b) developed the innovationmar-
tingale approach to obtain some distribution-free tests in the case of one-dimensional
predictor. Khmaladze and Koul (2009) further studied the goodness-of-fit problem
for errors in nonparametric regressions.

Van Keilegom et al. (2008) considered continuous functionals of the distance
between the empirical distribution of the residuals under the null and the alternative
hypotheses. The test statistic that is based on this distance needs the independence
between the error term and the predictors. Huskova andMeintanis (2009) considered
an alternative route based on the characteristic function requiring weaker conditions
than their analogues using empirical distributions. For these two methods, see also
Dette et al. (2007) and Huskova and Meintanis (2010).

Compared with other local smoothing tests, these tests can either avoid the selec-
tion of bandwidth, or at least depend less on the bandwidth. We call these tests
global smoothing tests. These tests are also called empirical process-based tests in
the literature. We use the term “global smoothing” because the integral/average over
all indices is a global smoothing procedure. Another advantage of global smooth-
ing tests is that the tests in this class can detect local alternatives converging to
the null hypothesis with the rate of n−1/2, whereas for local smoothing based tests,
the optimal rate is n−1/2h−p/4. However, we should also mention that the higher
detecting rate of empirical process based tests do not mean they can generally have
larger power compared with the local smoothing tests that can be more sensitive
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to oscillating/high-frequency models. Global smoothing tests generally yield low
powers against high-frequency alternatives, see Fan and Li (2000) and Guo et al.
(2016). Thus the two schools of local and global smoothing tests could be viewed
as complementing each other.

7.3 Tests Designed to Avoid the Curse of Dimensionality

As commented above, existing local smoothing tests could be more powerful for
detecting high-frequency regression models. However, a very obvious and serious
shortcoming is that these methods suffer severely from dimensionality due to the
inevitable use of multivariate nonparametric function estimation. Under the corre-
sponding null hypotheses, existing local smoothing test statistics converge to their
limits at the rate O(n−1/2h−p/4), which can be very slow when p is large and select-
ing a proper bandwidth is also an issue. Therefore, the significance level very often
cannot be maintained when used with moderate sample size. This problem has been
acknowledged in the literature. Thus, even though their limiting null distributions
are given, there are still a number of local smoothing tests that use the wild bootstrap
or Monte Carlo approximation to help determine critical values (or p values). Exam-
ples include Härdle and Mammen (1993), Delgado and González-Manteiga (2001)
and Dette et al. (2007). In contrast, most of the existing global smoothing methods
depend on high-dimensional stochastic processes (see, e.g., Stute et al. 1998a). Their
power performance often drops significantly as p increases due to the data sparseness
in high-dimensional space. A recent reference is Guo et al. (2016).

These difficulties lead to different modifications of the previous methods in order
to avoid the curse of dimensionality. In the following three subsections, we will
respectively focus on projection-pursuit based tests, sufficient dimension-reduction
based tests and other relevant tests. For projection-pursuit based tests, the original
covariates X are first projected onto to be β	X for all ||β|| = 1 in the unit sphere
S
p = {β ∈ R

p : ||β|| = 1}. Here “‖a‖” is the Euclidean norm of vector a. The test
statistics are then constructed based on β	X . Since there are infinitely many β sat-
isfying ||β|| = 1, the resulting tests are either supremum or integral over all β ∈ S

p.
Both supremum and integral can be approximated by usingMonte Carlo approxima-
tion in general. Instead of considering infinitely many directions β in S

p, sufficient
dimension-reduction based tests can automatically adopt the dimension reduction
structure of X under the null and alternative hypotheses. It is worth pointing out that
projection-pursuit based tests can handle more general hypotheses than those suffi-
cient dimension-reduction based tests. For example, projection-pursuit based tests
can handle general nonlinear regression models as hypothetical models. But the lat-
ter can be more efficient than the former when a dimension reduction structure does
exist. More specifically, sufficient dimension-reduction based tests can fully utilize
the dimension reduction structures in the respective hypothetical models such as the
one specified in the null hypothesis (7.13) in Sect. 7.3.1 below. However, due to the
involvement of infinite directions, projection-pursuit based tests are more computa-
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tional intensive and the powers of these tests are often lower. For more details about
the computational burden of the projection-pursuit based tests, readers may refer to
Zhu et al. (2017). Other tests designed to avoid the curse of dimensionality are also
reviewed.

7.3.1 Projection-Pursuit BasedTests

To the best of our knowledge, the first effort in this direction would be traced back
to Zhu and An (1992), which was motivated by the projection pursuit technique (see
a review paper by Huber (1985)). They proposed the following test statistic:

Kn = arg inf||β||=1
Ŝn(β)/σ̂ 2. (7.9)

Here ε̂0i = Yi − g(Xi , θ̂i ), σ̂ 2 = n−1 ∑n
i=1 ε̂20i and

Ŝn(β) = n−1
n∑

i=1

(ε̂0i − m̂i
β(Xi ))

2;

m̂i
β(x) =

∑

j �=i

K (β	(x − X j ))ε̂0 j/
∑

j �=i

K (β	(x − X j )).

The authors proved that in probability under H0, Kn → k = 1, whereas under
H1, Kn → k < 1. They reject H0 if Kn < 1 − n−C/2. Here C > 0 is a pre-specified
constant.

Xia (2009) considered some more general null hypotheses. To be precise, the null
hypothesis can be other more complex models, such as partial linear model, single
index model, etc. The alternative hypothesis is that the assumed model in the null
hypothesis does not hold. Xia (2009) projected the covariate X in the direction of
β = β1 such that β1 (with ||β1|| = 1) minimizes E(ε0 − E(ε0|β	X))2 = E(ε0 −
mβ(X))2 over all β. This enables us to construct a test statistic as

Tn = Sn/T SSn . (7.10)

Here T SSn = n−1 ∑n
i=1(ε̂0i − ε̄)2 with ε̄ = n−1 ∑n

i=1 ε̂0i ,

Sn = 1

n

n∑

i=1

(ε̂0i − m̂
β̂i

(Xi ))
2,

β̂i = arg min||β||=1

∑

j �=i

(ε̂0 j − m̂i
β(X j ))

2,

where ε̂0i and m̂i
β(x) are defined before. The null hypothesis is rejected if Tn < 1.

Xia (2009)’s work enhanced and extended Zhu and An’s (1992) test. Note that for



112 X.Guo and L. Zhu

these two tests, the sampling and limiting null distributions are not given and the
probabilities of rejection under the null hypothesis tend to zero in the large sample
sense. Thus, they can not be used to test significance at any nominal level.

Later, Zhu and Li (1998) gave the following lemma.

Lemma 1 A necessary and sufficient condition for H0 to hold is that for any vector
β ∈ R

p with ||β|| = 1,

E(ε0|β	X) = 0 a.s. for some θ0 ∈ �.

The authors noted that H0 is equivalent to

∫

Sp
R(β)dμ(β) = 0,

where R(β) = E[E(ε0|β	X)]2 and μ(·) is the uniform distribution on S
p. They

proposed using an unweighed integral of expectations conditional on single linear
indices for checking a linear regression model. They did not give much distributional
details of this test. Instead, their test was based on the empirical version of the above
integral plus a directional test with the form n−1 ∑n

i=1 ε̂0iφ(||Xi ||), where φ(·) is the
univariate standard normal density. Thus their test is actually a combination of local
smoothing test and a directional test. They found that the limiting null distribution
of the test statistic can be determined by the latter term.

From a lemma similar to the above, Escanciano (2006) realized that consistent
tests for H0 can be based on one-dimensional projections. This makes the above idea
much more implementable. To be precise, the following equivalence holds:

H0 ⇔ E[ε0 I (β	X ≤ t)] = 0 a.s. for any ||β|| = 1, t ∈ R.

This leads to an empirical process

Rn(β, t) = 1√
n

n∑

i=1

(Yi − g(Xi , θ̂ ))I (β	Xi ≤ t)

indexed in β and t . Specifically, the Kolmogorov-Smirnov and the Cramrvon Mises
tests can be extended to this setting, with the following statistics:

TnK S = sup
t

sup
||β||=1

|n−1/2
n∑

i=1

(Yi − g(Xi , θ̂ ))I (β	Xi ≤ t)|,

TnCM =
∫

||β||=1

∫ ∞

−∞
[n−1/2

n∑

i=1

(Yi − g(Xi , θ̂ ))I (β	Xi ≤ t)]2dFnβ(t)dω(β).

(7.11)

Here Fnβ is the empirical distribution of {β	Xi }ni=1 and ω is a weight function over
the projection direction.
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Compared with Zhu and Li (1998), Escanciano (2006) proved weak convergence
of the related empirical process and the corresponding test statistics. Further, power
study under local alternatives converging to the null at the rate of order 1/

√
nwas also

investigated in his paper. A bootstrap approximation is implemented to determine
critical values. Lavergne and Patilea (2008; 2012) also used projections to construct
test statistics to improve on the performance of local smoothing tests, particularly,
Zheng (1996)’s test.

Lavergne and Patilea (2012) gave the following lemma that can be deduced from
Lemma 1.

Lemma 2 A necessary and sufficient condition for H0 to hold is that for any vector
β ∈ R

p with ||β|| = 1,

E[ε0E(ε0|β	X) fβ(β	X)] = 0 a.s. for some θ0 ∈ �

where fβ(·) is the density of β	X.

Based on this lemma, the authors first defined

Qn(β) = 1

n(n − 1)

n∑

i=1

n∑

j �=i

ε̂0i ε̂0 j
1

h
K (β	(Xi − X j )),

as an estimator of E[ε0E(ε0|β	X) fβ(β	X)]. This statistic is the one studied by
Zheng (1996) applied to the index β	X . The resulting test statistic is as follows:

TLP1 = 1

n(n − 1)

n∑

i=1

n∑

j �=i

ε̂0i ε̂0 j
1

h

∫

||β||=1
K (β	(Xi − X j ))dβ. (7.12)

Lavergne and Patilea (2012) proved that under certain conditions, the test statistic
under the null hypothesis converges to its limit at a faster rate of order O(n−1/2h−1/4)

rather than O(n−1/2h−p/4), and it is consistent against any global alternative hypoth-
esis and can detect local alternatives distinct from the null at the rate of order
O(n−1/2h−1/4). This improvement is significant particularlywhen p is large because
the new test does behave like a local smoothing test as if X was one-dimensional.
Thus in theory, the test could well maintain the significance level with better power
performance than Zheng’s test. Lavergne and Patilea (2008) considered a test based
on Qn(β̂n), with

β̂n = arg max||β||=1
nh1/2Qn(β) − αn I (β �= β∗)

where β∗ represents a favored direction and αn is a slowly diverging penalty
sequence. Their procedure allows incorporation of some information on the preferred
single-index alternative, as defined through β∗, but introduces a supplementary user
chosen parameter αn .
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Ma et al. (2014) investigated the integrated conditional moment test for partially
linear single index models incorporating dimension-reduction. Conde-Amboage et
al. (2015) studied the lack of fit test for quantile regression models with high-
dimensional covariates by following the concepts proposed by Escanciano (2006).

7.3.2 Sufficient Dimension-Reduction BasedTests

Formodels with dimension reduction structure, Guo et al. (2016) developed a dimen-
sion reduction model-adaptive approach to avoid the dimensionality difficulty. The
main idea is to fully utilize the dimension reduction structure of X under the null
hypothesis, but to adapt the alternative model such that the test is still omnibus. To
achieve this goal, sufficient dimension reduction (SDR) technique is adopted.

Consider the hypotheses as follows:

H0 : ∃β0 ∈ R
p, θ0 ∈ R

d , such that, P(m(X) = g(βT
0 X, θ0)) = 1;

H1 : �β ∈ R
p, �θ ∈ R

d , such that, P(m(X) = g(βT X, θ)) < 1. (7.13)

Here g(·, ·) is a known parametric function, β0 is a p-dimensional unknown index
vector and θ0 is a d-vector of parameters. Note that, for any p × p orthonormal
matrix B, G(X) = G(BBT X) := G̃(BT X). Based on this observation, consider a
parsimonious alternative model that is widely used in SDR:

Y = G(BT X) + η, (7.14)

where B is a p × q orthonormal matrix with q orthogonal columns for an unknown
number q with 1 ≤ q ≤ p, G is an unknown smooth function and E(η|X) = 0.
When q = p, this model is a purely nonparametric regression model. This implies
that there always exists a p × qmatrix B, 1 ≤ q ≤ p, such thatm(X) = E(Y |B	X).
Under the null hypothesis, q = 1 and then B = β0/||β0||, and under the alternative,
q ≥ 1. Let ε0 = Y − g(β	

0 X, θ0). Then, under H0,

E{ε0E(ε0|B	X)W (B	X)} = E{E2(ε0|B	X)W (B	X)} = 0, (7.15)

where W (X) is some positive weight function that is discussed below.
Under H1, E(ε0|B	X) = E(Y |B	X) − g(β	

0 X, θ0) �= 0 and thus

E{ε0E(ε0|B	X)W (B	X)} = E{E2(ε0|B	X)W (B	X)} > 0. (7.16)

The empirical version of the left hand side in (7.15) can be used as a test statistic,
and H0 will be rejected for large values of the test statistic. A non-standardized test
statistic is defined by

Vn = 1

n(n − 1)

n∑

i=1

n∑

j �=i

ε̂0i ε̂0 j Kh{B̂(q̂)	(Xi − X j )}. (7.17)
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Here, ε̂0 j = Y j − g(β̂	X j , θ̂ ), β̂ and θ̂ are the commonly used least squares esti-
mates of β0 and θ0, B̂(q̂) is a sufficient dimension reduction estimate with an
estimated structural dimension q̂ of q , Kh(·) = K (·/h)/hq̂ with K (·) being a q̂-
dimensional kernel function and h being a bandwidth.

Remark 1 The test statistic suggested by Zheng (1996) is

TZH = 1

n(n − 1)

n∑

i=1

n∑

j �=i

ε̂0i ε̂0 j K̃h(Xi − X j ). (7.18)

Here K̃h(·) = K̃ (·/h)/h p with K̃ (·) being a p-dimensional kernel function. Com-
paring Eq. (7.17) with Eq. (7.18), there are two main differences. First, Vn uses
B̂(q̂)	X rather than X itself in TZH and applies q̂th order kernel Kh(·) instead of the
pth order kernel K̃h(·). This reduces the dimension p down to q̂ . Second, under H0,
we will show that with a probability going to one, q̂ = 1, and B̂(q̂) → β0/||β0||2,
and further using the normalizing constant nh1/2 to get that nh1/2Vn has a finite
limit. Under the alternative model (7.14), we will show that q̂ = q ≥ 1 with a prob-
ability going to one and B̂(q̂) → BC for a q × q orthonormal matrix C . Further,
comparing with projection-pursuit based tests, it fully uses the dimension reduction
structure under the null hypothesis and thus only one projection needs to be used.
The significance level can be easily maintained, see Guo et al. (2016). The theo-
retical results show that the test is consistent against any global alternative and can
detect local alternatives distinct from the null at the rate of order O(n−1/2h−1/4).
This improvement is significant particularly when p is large.

As estimating the matrix B and its dimension is crucial, the authors adopted two
popular sufficient dimension reduction methods, discretization-expectation estima-
tion (DEE, Zhu et al. 2010) and minimum average variance estimation (MAVE, Xia
et al. 2002) to estimate the matrix B. Moreover the authors applied two BIC criteria
to determine the dimension q .

This methodology can be readily applied to many other testing methods and
problems. Recently, Niu et al. (2016) developed a model-adaptive enhancement of
the nonparametric generalized likelihood ratio (GLR) test. Fan et al. (2001) proposed
the following GLR test:

�n = n

2
log

RSS0
RSS1

≈ n

2

RSS0 − RSS1
RSS1

.

Here RSS0 = n−1 ∑n
i=1(Yi − g(β̂	Xi , θ̂ ))2; RSS1 = n−1 ∑n

i=1(Yi − m̂(Xi ))
2.

When the dimension of predictors is high, it can not well control type I error and has
very low power. Another drawback of the original GLR is that there is a bias term in
its limiting null distribution which can cause the test not to well control type I error
and thus bootstrap or Monte Carlo approximation for critical value determination is
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required. In a similar framework to Guo et al. (2016), Niu et al. (2016) replaced the
above RSS1 by

R̃SS1 =
n∑

i=1

∣
∣
∣[Yi − Ĝ(B̂(q̂)	Xi )][Yi − g(β̂	Xi , θ̂ )]

∣
∣
∣,

where, | · | denotes the absolute value and the leave-one out kernel estimator
Ĝ(B̂(q̂)	X) of G(B	X) is applied:

Ĝ(B̂(q̂)	Xi ) =
∑n

j �=i K {B̂(q̂)	(Xi − X j )/h}Y j
∑n

j �=i K {B̂(q̂)	(Xi − X j )/h} . (7.19)

Finally, a test statistic that is asymptotically unbiased is defined as:

T̃n = n

2

RSS0 − R̃SS1

R̃SS1
. (7.20)

The proposed test statistic still possesses the Wilks phenomenon, and behaves like a
test with only one covariate. Thus the null distribution of T̃n converges weakly to its
limit at a much faster rate. Moreover, this test is much more sensitive to alternative
models than the original nonparametric GLR test. In fact, the test can detect the local
alternatives distinct from the null at the rate of order n−1/2h−1/4 while the GLR test
can only detect those converging to the null at the rate of order n−1/2h−p/4.

Note that both Guo et al. (2016) and Niu et al. (2016) are improvements over
classical local smoothing tests. On the other hand, Tan et al. (2017) proposed a
projection-based adaptive-to-model approach to improve the performance of global
based tests when the number of covariates is greater than one. The procedure is
an interesting combination of the projection-pursuit based and sufficient dimension-
reduction based tests. First, under the null hypothesis,

E[ε0 I (β	
0 X ≤ t)] = 0.

Here ε0 = Y − g(β	
0 X, θ0) is defined as before. For the parametric single-index

model (7.13), Stute and Zhu (2002) considered the following empirical process

Rn(t) = n−1/2
n∑

i=1

(Yi − g(β̂	Xi , θ̂ ))I (β̂	Xi ≤ t).

Further, they recommended the martingale transformation to derive the asymptoti-
cally distribution-free property. In this test, β̂ is an estimate of β0 that is the index
under the null hypothesis. Therefore, it is a directional test rather than an omnibus
test. Guo et al. (2016) provided a simple example to show this property. The result-
ing test statistic by Escanciano (2006) involves all directions β in S

p and thus, the
omnibus property can be held.
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To benefit from Stute and Zhu’s (2002) idea, but make a test omnibus, Tan et al.
(2017) considered the following strategy.According to lemma1, under the alternative
hypothesis, for an α ∈ R

q with ||α|| = 1,

E[ε0 I (α	B	X ≤ t)] �= 0.

The authors then used SDR to estimate B and its dimension q . An adaptive-to-model
residual marked empirical process was suggested by the authors as follows:

Vn(t, α̂) = n−1/2
n∑

i=1

[Yi − g(β̂	Xi , θ̂ )]I (α̂	 B̂(q̂)Xi ≤ t),

Vn(t) = sup
α̂∈Sq̂

Vn(t, α̂),

where S
q̂ = {α̂ ∈ Rq̂ : ‖α̂‖ = 1, α̂1 ≥ 0} with α̂1 being the first component of α̂.

The significant feature of this projection-based test is as follows. Under the null
hypothesis, S

q̂ has only one element α̂ = 1 and thus the supremum over all ele-
ments in S

q̂ is Vn(t, 1) that is asymptotically equal to Stute and Zhu’s (2002) test.
Therefore, a martingale transformation that was proposed by Stute et al. (1998b) is
easily performed to derive the asymptotically distribution-free property. Under the
alternative hypothesis, the test is still omnibus. This is a substantial improvement
over Stute and Zhu’s (2002) test.

Zhu et al. (2017) considered a more general null hypothesis of the partially para-
metric single-index model:

Y = g(β	
0 X,W, θ0) + ε. (7.21)

Here (X,W ) is the covariate vector in R
p+s , g(·) is a known smooth function that

depends not only on the index β	X but also on the covariate W and the error ε

follows a continuous distribution and is independent with the covariates (X,W ).
The model (7.21) reduces to the parametric single-index model in the absence of the
covariate W and to the general parametric model in the absence of the index β	X .
This structure is often meaningful as in many applications, p is often large while s
is not. The alternative model is taken as:

Y = G(B	X,W ) + η,

where B is a p × q orthonormal matrix with q orthogonal columns for an unknown
number q with 1 ≤ q ≤ p and G(·) is an unknown smooth function. For identi-
fiability consideration, assume that the matrix B satisfies B	B = Iq . This model
covers many popularly used models in the literature such as the single-index models
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with B = β, the multi-index models with the absence of W , and partial single-
index models with the mean function g1(β	X) + g2(W ). Similarly as before, let
ε0 = Y − g(β	

0 X,W, θ0). Under the null model, we have for all (t, ω)

E
[
ε0 I {(B	X,W ) ≤ (t, ω)}

]
= 0,

and under the alternative models, for some (t, ω)

E
[
ε0 I {(B	X,W ) ≤ (t, ω)}

]
�= 0.

A residual-marked empirical process is defined as

Vn(t, ω) = n−1/2
n∑

i=1

(Yi − g(β̂	Xi ,Wi , θ̂ ))I {(B̂(q̂)	Xi ,Wi ) ≤ (t, ω)}, (7.22)

where β̂ and θ̂ are the nonlinear least squares estimates of β and θ , respectively.
Note that in this model, there is a covariate W that is not in the projected subspace
spanned by B	X and thus, the sufficient dimension reductionmethods for estimating
B and q described before does not work. Thus, the partial discretization-expectation
estimation (Feng et al. 2013) is used to identify/estimate the matrix B. The resulting
estimate B̂(q̂) is called the partial sufficient dimension reduction estimate of B with
the structural dimension estimate q̂ of q where the ridge-type eigenvalue ratio (Xia
et al. 2015) is applied to estimate q .

Some other recent developments in this direction can be mentioned. Zhu et
al. (2016) proposed a dimension reduction adaptive nonparametric test for het-
eroskedasticity in nonparametric regression model. Zhu and Zhu (2016) developed
a dimension-reduction based adaptive-to-model test for significance of a subset of
covariates in the context of a nonparametric regression model. Niu and Zhu (2016)
developed a test statistic that is robust against outliers. Koul et al. (2016) provided
some useful dimension-reduction based tests for parametric single-index regression
models when covariates are measured with error and validation data are available.
For further details, readers can refer to the aforementioned references.

7.3.3 Some Other Tests

Lavergne et al. (2015) considered testing the significance of a subset of covariates
in a nonparametric regression. The null hypothesis is as follows:

H0 : P(E[Y |W, X ] = E[Y |W ]) = 1. (7.23)

Under this hypothesis, the covariates X ∈ R
p are redundant for modelling the rela-

tionship between the response and the covariates. This hypothesis is equivalent to

H0 : P(E[u|W, X ] = 0) = 1 (7.24)
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where u = Y − E[Y |W ]. They give the following lemma to characterize the null
hypothesis H0 using a suitable unconditional moment equation.

Lemma 3 Let (W1, X1, u1) and (W2, X2, u2) be two independent copies of
(W, X, u) and ν(W ) a strictly positive function on the support of W such that
E[u2ν2(W )] < ∞, and K (·) and ψ(·) are even functions with (almost everywhere)
positive Fourier integrable transforms. Define

I (h) = E[u1u2ν(W1)ν(W2)h
−s K ((W1 − W2)/h)ψ(X1 − X2)].

Then for any h > 0, I (h) ≥ 0 and

E[u|W, X ] = 0 a.s. ⇔ I (h) = 0 ⇔ lim
h→0

I (h) = 0.

Suppose that a random sample {(Yi ,Wi , Xi ), 1 ≤ i ≤ n} from (Y,W, X) is avail-
able. A test statistic is defined as

In = 2

(n − 1)2n(n − 1)

∑

a

∑

k �=i

∑

l �= j

(Yi − Yk)(Y j − Yl)Lnik Lnjl Kni jψi j .(7.25)

Here Lnik = g−s L((Wi − Wk)/g), Kni j = h−s K ((Wi − Wj )/h), ψ(Xi − X j ),
L(·) and K (·) are two kernel function with bandwidths g and h, respectively.

A remarkable feature of the proposed test is that this is a combination of global
and local smoothing test procedure with no local smoothing relative to the covariates
X . Unlike the results in Fan and Li (1996) and Lavergne and Vuong (2000) who used
a multidimensional smoothing kernel h−(s+p) K̃ ((Wi − Wj )/h, (Xi − X j )/h) over
(W, X), it is showed that In has a weak limit by multiplying nhs/2 rather than
nh(s+p)/2. This provides a much faster convergence rate than those in Fan and Li
(1996) and Lavergne and Vuong (2000).

The choice of the function ψ(·) is flexible. There are many functions that possess
an almost everywhere positive and integrable Fourier transform. Examples include
(products of) the triangular, normal, Laplace, logistic and Student density. This idea
has been applied by Patilea and his coauthors to address the issue of lack-of-fit testing
for a parametric quantile regression (Maistre et al. 2017) and nonparametric model
checks for single index regression (Maistre and Patilea 2017).

For the regression model Y = m(X) + ε, Bierens (1982; 1990) tested the null
hypothesis that the regression function m(X) = g(X, θ0) almost surely for some θ0.
The following result holds

E(ε0|X) = 0 ⇔ E(ε0 exp(i t
	X)) = 0,

where ε0 = Y − g(X, θ0) and i = √−1 denotes the imaginary unit. Unlike Stute
(1997) who used indicator function I (X ≤ t), Bierens (1982) used the characteristic
weight function ω(X, x) = exp(i t	X) in the above equivalence between the condi-
tional moment and the unconditional moment. Further, when the p-variate normal
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density function is used as the integration function for the argument t , theCramër-von
Mises type test statistic is defined:

CvMn,exp = n−1
n∑

i=1

n∑

j=1

ε̂0i ε̂0 j exp(−1

2
||Xi − X j ||2).

This is a typical global smoothing test. Compared with the indicator weight used in
Stute (1997) and his followers, the characteristic weight function, which is based on
one-dimensional projections, is less sensitive to the dimension p. This can be seen
more clearly in the formulation ofCvMn,exp. The dimensionality has little impact on
the Euclidean distance between Xi and X j . On the contrast, if we use I (Xi ≤ X j )

or Xi − X j to express distance between Xi and X j , the data can be sparse when
p is large. Thus this type of test statistics can also be used to avoid the curse of
dimensionality.

Another idea is to use weighted residual process. By assuming that ε is indepen-
dent with X , under the null hypothesis E(�−1(X − E(X))|ε0) = 0 is equivalent
to E(�−1(X − E(X))I (ε0 ≤ t)) = 0. Here � is the covariance matrix of X . Zhu
(2003) then proposed the following weighted residual process

In(t) = 1√
n

n∑

j=1

�̂−1/2(X j − X̄)I (ε̂0 j ≤ t),

where �̂ is the sample covariance matrix of Xi ’s. Let

Tn = sup
||β||=1

β	[1
n

n∑

i=1

In(Xi )I
	
n (Xi )]β.

The null hypothesis is rejected for large value of Tn .
Stute et al. (2008) further generalized this idea and proposed the following empir-

ical process

Rn(t) = n−1/2
n∑

i=1

(g(Xi ) − ḡ)I (ε̂0i ≤ t),

with ḡ = n−1 ∑n
i=1 g(Xi ). By suitable selection of weight function vector g(·), the

power of the test can be much enhanced. The selection was discussed in Stute et al.
(2008). These two tests can also greatly avoid the curse of dimensionality. But they
are not omnibus tests either.
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7.4 Stute’s Contributions onModel Checking

In the model checking field for regressions, Stute has several fundamental contribu-
tions. In this section, we give a very brief summary for his main results that may not
be of dimension reduction nature, but stimulate the research in this area.

For local smoothing tests, Stute and González-Manteiga (1996) proposed a test
for linearity. The test is based on the comparison of a nearest neighbor estimator and
a parametric estimator of the regression function. Instead of Nadaraya-Watson kernel
estimator that was used in many local smoothing tests, Stute and González-Manteiga
(1996) adopted the symmetrized nearest neighbor estimators of m(·) as studied in
Stute (1984).

He then devoted more efforts on developing global smoothing tests. A seminal
work of the empirical process-basedmethodology that can be used to construct global
smoothing tests is Stute (1997). A nonparametric principal component analysis was
studied in detail, which stimulated many following researches in constructing global
smoothing tests. From this work, we can see clearly that empirical process-based
tests are usually not distribution-free asymptotically. Stute et al. (1998b) then skill-
fully introduced the innovation process approach to model checking to obtain an
asymptotically distribution-free test in the case of one-dimensional covariate. The
innovation process approach was first proposed by Khamlazde (1981) in the the-
ory of goodness-of-fit for distributions and is now well known as the Khamaladze
martingale transformation. As such an innovation process approach is in general
not easy to be applied to the cases with multidimensional covariates, more practi-
cal implementation method is to use a wide bootstrap. Stute et al. (1998a) formally
proved that the wild bootstrap yields a consistent approximation of the null distri-
bution of the residual marked process-based test. They also demonstrated that the
residual-based bootstrap is consistent only when the errors are homoscedastic. The
wild bootstrap has become a standard method to approximate limiting null distribu-
tions in this area. One of the earlier references for this approach is Stute et al. (1993)
for goodness-of-test of distribution functions.

Besides the above fundamental developments, Stute also makes great contribu-
tions on model checking with other types of data structure and regression models.
For time series data, Koul and Stute (1999) developed some residual marked process-
based tests for autoregressive models. Koul et al. (2005) proposed diagnostic tests
for self-exciting threshold autoregressive models. Later on, Stute et al. (2006) inves-
tigated model checking for higher order autoregressive models. For censored data,
Stute et al. (2000) also considered the empirical process-based tests. Stute and Zhu
(2005) proposed certain score-type test statistics to check the suitability of semipara-
metric single index models. The tests can detect Pitman alternatives at a

√
n-rate,

and also peak alternatives.
Some other contributions should also be mentioned. Ferreira and Stute (2004)

introduced tests for equality of two regression curves when the inputs are driven by
a time series. The basic construction is based on empirical process of the time series
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marked by the difference in the pertaining dependent variables. Srihera and Stute
(2010) constructed tests based on weighted differences of two regression curves
computed at selected points.

7.5 Conclusion and Discussion

In this brief review, we focus on dimension-reduction based tests for regression
models with independent data. We have not included methods for other types of
data, such as time-series data, although there are numerous proposals in the literature.
On the other hand, how to deal with data with divergent dimension or ultra-high
dimension is of interest and importance. We hope this review can give readers a
relative clear introduction of tests in the literature to avoid the curse of dimensionality.
As this is an important research topic that deserves more further studies in the future
for high, and ultra-high dimension paradigms.
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8AsymptoticTail Bounds for the
Dempfle-Stute Estimator inGeneral
RegressionModels

Dietmar Ferger

8.1 Introduction andMain Results

Let (X1, Y1), . . . , (Xn, Yn) be independent copies of a vector (X, Y ) ∈ R
2 de-

fined on some probability space (Ω,A ,P) such that Y has finite expectation.
Then the regression function m(x) := E(Y |X = x), x ∈ R, exists and admits the
representation

Y = m(X) + ε withE(ε|X) = 0 a.s. (8.1)

If

Q(x, ·) := P(Y ∈ ·|X = x), x ∈ R,

denotes the conditional distribution of Y given X = x then the distribution of (X, Y )

is uniquely determined by

P ◦ (X, Y )−1 = P ◦ X−1 ⊗ Q

and the regression function m by

m(x) =
∫

y Q(x, dy). (8.2)

Dempfle and Stute (2002) consider the special case, where

m(x) = a1{x≤θ} + b1{x>θ} (8.3)
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is a unit step function with jump at point θ ∈ R and levels a �= b ∈ R. Here, the
parameters θ, a and b are unknown. For the estimation of θ they propose an estimator
θ̂n , which can be rewritten as

θ̂n ∈ argmax
t∈R

n∑
i=1

1{Xi≤t}(Yi − Ȳn) with Ȳn := n−1
n∑

i=1

Yi . (8.4)

Relation (8.4) means that θ̂n is a random variable, which maximizes the marked
empirical distribution function

En(t) :=
n∑

i=1

1{Xi≤t}(Yi − Ȳn).

Let X1:n ≤ . . . ≤ Xn:n be the order statistics of X1, . . . , Xn with pertaining con-
comitants Y[1:n], . . . , Y[n:n]. If

Fn(x) := 1

n

n∑
i=1

1{Xi≤x}

denotes the empirical distribution function of the X -sample then

En(t) :=
n∑

i=1

1{Xi≤t}(Yi − Ȳn) =
nFn(t)∑
i=1

(Y[i :n] − Ȳn). (8.5)

It follows that En is a step function with jumps exactly at the points Xi :n, 1 ≤ i ≤ n,
which vanishes outside of the interval [X1:n, Xn:n). Put

Sk := En(Xk:n), 1 ≤ k ≤ n,

and

λn := min{1 ≤ l ≤ n : Sl = max
1≤k≤n

Sk}.
Then the measurable choice

θ̂n := Xλn :n (8.6)

gives a maximizing point of the marked empirical process En and thus an explicit
estimator for θ . Notice that the (simple) computational formula (8.6) is valid for
every data set {(X1, Y1), . . . , (Xn, Yn)} in R

2 no matter of which type the data are.
In particular, the Yi can be 0 − 1 variables or ties in the X -sample are permitted.
However, if there are no ties then Sk further simplifies to

Sk =
k∑

i=1

(Y[i :n] − Ȳn).
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Dempfle and Stute (2002) prove the following theorem.Here, theymake assumptions
on the distribution function F of X and on the conditional variance

V (x) := Var (Y |X = x) =
∫

(y − m(x))2 Q(x, dy), x ∈ R. (8.7)

In the sequel ε > 0 denotes a generic constant.

Theorem 1 (Dempfle-Stute) Assume that m is of type (8.3), where a > b. If
(F) F is continuously differentiable in [θ − ε, θ + ε] with F ′(θ) > 0
and V is bounded on R, then

n(θ̂n − θ) = OP(1),

that is

lim
y→∞ lim sup

n→∞
P(n|θ̂n − θ | ≥ y) = 0.

We will generalize and extend this result in many respects. Consider an arbitrary
conditional distribution Q(x, ·)with induced regression function (8.2) of the follow-
ing type: the graph of m runs above a mean level m̄ to the left of θ and it runs below
that level on the right-hand side. More precisely, let

m̄ := E(Y ) =
∫
R

m(x)F(dx)

be the mean output. Then we assume that

(C1) m(x) > m̄ ∀ x ∈ [θ − ε, θ) and m(x) < m̄ ∀ x ∈ (θ, θ + ε],
(C2) m(x) ≥ m̄ ∀ x < θ − ε and m(x) ≤ m̄ ∀ x > θ + ε.

Similarly as (F) the requirement (C1) is a local condition. It can be rewritten in a
closed form as

sign (x − θ)(m(x) − m̄) < 0 ∀ x ∈ [θ − ε, θ + ε]\{θ}.

Thatmeansmmust be strictly separated from m̄ in a local punctured neighborhood of
θ and outside of that region it may touch it. Notice that there is no continuity assump-
tion onm. So, theremight be a jumpat θ or alternatively there is a continuous crossing.
For the unit-step functionm in (8.3) the value of m̄ is equal to aF(θ) + b(1 − F(θ)),
whence m satisfies the above conditions as long as 0 < F(θ) < 1, which is clearly
implied by (F).
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Theorem 2 If (C1) and (C2) hold and F is strictly increasing in [θ − ε, θ + ε],
then

θ̂n → θ a.s. (8.8)

Proof First, observe that θ̂n ∈ argmax
t∈R

n−1En(t), since the positive factor n−1 leaves

the maximizing point unchanged. Now,

ρn(t) := n−1En(t) = Hn(t) − Ȳn Fn(t), (8.9)

with

Hn(t) = n−1
n∑

i=1

1{Xi≤t}Yi .

By theGlivenko-Cantell Theorem Fn converges to F uniformly onRwith probability
one. As Stute (1997) points out we also have that

sup
t∈R

|Hn(t) − H(t)| → 0 a.s.,

where

H(t) =
∫ t

−∞
m(x)F(dx).

The Strong Law of Large Numbers ensures that Ȳn → m̄ a.s. To sum up, we obtain
from (8.9) that

sup
t∈R

|ρn(t) − ρ(t)| → 0 a.s.,

where

ρ(t) := H(t) − m̄F(t) =
∫ t

−∞
(m(x) − m̄) F(dx). (8.10)

From Lemma C in the Appendix we know that ρ is right-continuous with left-hand
limits (in short: rcll or cadlag) with well-separated supremizing point θ . Thus we
can apply Theorem 3.3 of Ferger (2015) to get the desired result (8.8). �

Notice that after all the global behavior of the function ρ in (8.10) is essential
for the consistency of θ̂n . Using the consistency we will demonstrate how the local
behavior of ρ determines the tail probabilities of θ̂n − θ .

In the sequel we focus on two different types of regression functions m. The first
type has a finite jump at θ and is continuous in an arbitrary small region on the left
and right of θ . Formally, it is required that
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(J) The left and right limits m(θ−) and m(θ+) exist and are finite with

m(θ−) > m̄ > m(θ+)

and m is continuous in a punctured neighborhood [θ − ε, θ + ε]\{θ}.

The second type is a locally smooth function.

(S) m is continuous and decreasing in [θ − ε, θ + ε]. Moreover, there exist se-
quences αn → ∞ and βn → ∞ and functions φ, ϕ : (0, ∞) → (0,∞) such
that

lim inf
n→∞

√
n/αn

(
m(θ) − m(θ + u/αn)

) ≥ φ(u) ∀ u > 0, (8.11)

lim inf
n→∞

√
n/βn

(
m(θ − u/βn) − m(θ)

) ≥ ϕ(u) ∀ u > 0. (8.12)

The requirements (8.11) and (8.12) can be considered as generalizations of differ-
entiability. They are comparable to those given by Smirnov (1952). However, if m
is (continuously) differentiable at θ with negative derivative, then αn = βn = n1/3

and φ(u) = ϕ(u) = −m′(θ)u. A huge class of non-differentiable m is given in
Example 1 below.

Under (S) and (F) we obtain from Fatou’s Lemma that

lim inf
n→∞

√
nαn

(
ρ(θ) − ρ(θ + u/αn)

) ≥ F ′(θ)

∫ u

0
φ(s)ds =: ψ(u) ∀ u ≥ 0,

(8.13)

lim inf
n→∞

√
nβn

(
ρ(θ) − ρ(θ + u/βn)

) ≥ F ′(θ)

∫ |u|

0
ϕ(s)ds =: ψ(u) ∀ u ≤ 0.

(8.14)
Similarly, under (J) and (F) it follows that

lim inf
n→∞ n

(
ρ(θ) − ρ(θ + u/n)

) ≥ ψ(u) ∀ u ∈ R, (8.15)

ψ(u) := F ′(θ) ·
{

(m̄ − m(θ+)) u, u ≥ 0
(m(θ−) − m̄) |u|, u ≤ 0.

(8.16)

Thus (8.15) corresponds to (8.13) and (8.14) with αn = βn = n. So, even though the
regression functionsm in (J) and (S) look completely different they share comparable
features as far as the induced function ρ is concerned.

The following example is an adaption of Knight’s example (6) in Knight (1998).
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Example 1 Let a, b, α, β be positive constants. We assume that m satisfies

m(x) − m(θ) =
{−a(x − θ)αL(x − θ), x ∈ (θ, θ + ε]

b|x − θ |βl(|x − θ |), x ∈ [θ − ε, θ)

where L and l are continuous and slowly varying functions at 0 such that m is
decreasing. In this case m meets (S) with

αn = n
1

1+2α L∗(n), φ(u) = auα, βn = n
1

1+2β l∗(n), ϕ(u) = buβ,

where L∗ and l∗ are slowly varying at infinity. (This can be verified by the repre-
sentation theorem for slowly varying functions of Karamata, see Bojanic and Seneta
(1971).) Notice that φ and ϕ do not depend on L or l, respectively. For example, if
L(x) = log(1/x) then we can take

αn = (1 + 2α)−2/(1+2α) n1/(1+2α) log(n)2/(1+2α).

The corresponding ψ in (8.13) and (8.14) is given by

ψ(u) = F ′(θ) ·
{

a
1+α

u1+α, u ≥ 0
b

1+β
|u|1+β, u ≤ 0.

Our main result in the next theorem gives the asymptotic upper and lower tail
bounds of θ̂n − θ in terms of ψ-integrals.

Theorem 3 Assume that (C1), (C2) and (F) are true and that V is continuous in
a local punctured neighborhood [θ − ε, θ + ε]\{θ} with finite limits V (θ+) and
V (θ−). Let constants C+,C−, D+, D− and C be given by

C± = F ′(θ){108 V (θ±) + 144 m(θ±)2 + 9(|m̄| + 1)2},

D± = 2
108 V (θ±) + 144 m(θ±)2 + 9(|m̄| + 1)2

F ′(θ)(m(θ±) − m̄)2

and C = max{D+, D−}.

• If (J) holds, then

lim sup
n→∞

P(n(θ̂n − θ) ≥ y) ≤ C+{ y ψ(y)−2 +
∫ ∞

y
ψ(s)−2ds} ∀ y > 0,

(8.17)

lim sup
n→∞

P(n(θ̂n − θ) ≤ −y) ≤ C−{ y ψ(−y)−2 +
∫ −y

−∞
ψ(s)−2ds} ∀ y > 0

(8.18)
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with ψ given in (8.16). In particular,

lim sup
n→∞

P(n|θ̂n − θ | ≥ y) ≤ C y−1 ∀ y > 0. (8.19)

• If (S) holds and E(Y 2) < ∞, then

lim sup
n→∞

P(αn(θ̂n − θ) ≥ y) ≤ C+{ y ψ(y)−2 +
∫ ∞

y
ψ(s)−2ds} ∀ y > 0,

(8.20)

lim sup
n→∞

P(βn(θ̂n − θ) ≤ −y) ≤ C−{ y ψ(−y)−2 +
∫ −y

−∞
ψ(s)−2ds} ∀ y > 0

(8.21)
with ψ given in (8.13) and (8.14).

Proof First, we find r ∈ (0, ε] such that all local conditions are fulfilled simultane-
ously in the neighborhood [θ − r, θ + r ] or [θ − r, θ + r ]\{θ}, respectively. Let us
begin with the simple inequality

P(θ̂n − θ ≥ d) ≤ P(d ≤ θ̂n − θ ≤ r) + P(|θ̂n − θ | > r), d ≤ r. (8.22)

In view of (8.15) we put αn := n if (J) holds. This makes us to treat the cases (S)
and (J) jointly. Henceforth, for given y > 0 we define

d := dn(y) := y α−1
n . (8.23)

Then the left side in (8.22) is equal to the upper tail probability in (8.20) or (8.17),
respectively. Since dn(y) → 0 as n → ∞ there is an integer n0 = n0(y, r) such that
dn(y) ≤ r for all n ≥ n0. By Theorem 2 the second probability on the right side in
(8.22) converges to zero as n → ∞. Thus it remains to bound the first probability
on the right side in (8.22) with d in (8.23) for n ≥ n0.

Observe that

{d ≤ θ̂n − θ ≤ r} ⊆
⋃

d≤u≤r

{ρn(θ + u) − ρn(θ) ≥ 0} =: En(y, r). (8.24)

To see this basic relation (8.24), assume that ρn(θ + u) < ρn(θ) for all u ∈ [d, r ].
Then u = θ̂n − θ yields ρn(θ̂n) < ρn(θ), which is a contradiction to θ̂n
∈ argmax

t∈R
ρn(t).

We decompose the process ρn into

ρn(t) = Un(t) + Vn(t) + Zn(t) + ρ(t) (8.25)
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with

Un(t) = Hn(t) − H(t),

Vn(t) = −Ȳn(Fn(t) − F(t))

and

Zn(t) = (m̄ − Ȳn)F(t).

Thus the increments of ρn can be written as

ρn(θ + u) − ρn(θ) = {Un(θ + u) −Un(θ)} + {Vn(θ + u) − Vn(θ)}
+ (m̄ − Ȳn){F(θ + u) − F(θ)} − {ρ(θ) − ρ(θ + u)}.

By Lemma C in the Appendix

ρ(θ) − ρ(θ + u) > 0 ∀ 0 �= |u| ≤ r,

hence we can conclude that

P(En(y, r)) ≤ P( sup
d≤u≤r

|Un(θ + u) −Un(θ)|
ρ(θ) − ρ(θ + u)

≥ 1

3
)

+ P( sup
d≤u≤r

|Vn(θ + u) − Vn(θ)|
ρ(θ) − ρ(θ + u)

≥ 1

3
) (8.26)

+ P(|Ȳn − m̄| sup
d≤u≤r

|F(θ + u) − F(θ)|
ρ(θ) − ρ(θ + u)

≥ 1

3
)

=: P1,n(y) + P2,n(y) + P3,n(y).

Since

Un(t) = n−1
n∑

i=1

1{Xi≤t}(Yi − m(Xi )) + n−1
n∑

i=1

1{Xi≤t}m(Xi ) − H(t) =: Sn(t) + Ln(t),

it follows that

P1,n(y) = P( sup
d≤u≤r

|Un(θ + u) −Un(θ)|
ρ(θ) − ρ(θ + u)

≥ 1

3
)

≤ P( sup
d≤u≤r

|Sn(θ + u) − Sn(θ)|
ρ(θ) − ρ(θ + u)

≥ 1

6
)

+ P( sup
d≤u≤r

|Ln(θ + u) − Ln(θ)|
ρ(θ) − ρ(θ + u)

≥ 1

6
) =: q1,n(y) + q2,n(y). (8.27)
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Set

Δn(u) := Sn(θ + u) − Sn(θ)

= n−1
n∑

i=1

1{θ<Xi≤θ+u}(Yi − m(Xi )) (8.28)

= n−1
n∑

i=1

1{θ<Xi :n≤θ+u}(Y[i :n] − m(Xi :n))

= n−1
∑

nFn(θ)<i≤nFn(θ+u)

(Y[i :n] − m(Xi :n)).

For the investigation of

q1,n(y) = P( sup
d≤u≤r

|Sn(θ + u) − Sn(θ)|
ρ(θ) − ρ(θ + u)

≥ 1

6
) = P( sup

d≤u≤r

|Δn(u)|
ρ(θ) − ρ(θ + u)

≥ 1

6
)

(8.29)

we need to introduce several quantities. Define

Ωn :=
n⋃

i=1

{Xi :n ∈ (θ + d, θ + r ]} = {∃1 ≤ i ≤ n : Xi :n − θ ∈ (d, r ]},

Tn := {xn = (x1, . . . , xn) ∈ R
n : x1 ≤ . . . ≤ xn},

Rn := {xn ∈ Tn : ∃1 ≤ i ≤ n : xi − θ ∈ (d, r ]},
a(xn) := min{1 ≤ i ≤ n : xi − θ ∈ (d, r ]}, xn ∈ Rn,

b(xn) := max{1 ≤ i ≤ n : xi − θ ∈ (d, r ]}, xn ∈ Rn,

c(xn) :=
n∑

i=1

1{xi≤θ},

Xn := (X1:n, . . . , Xn:n),
Y n := (Y[1:n], . . . , Y[n:n]),
μn := P ◦ X−1

n .

On the event Ωn the process {|Δn(u)| : d ≤ u ≤ r} is piecewise constant with
jumps exactly at the points Ui := Xi :n − θ, A ≤ i ≤ B, where A := a(Xn) and
B := b(Xn). So, UA and UB are the smallest and largest jump-point in (d, r ], re-
spectively. Since u �→ (ρ(θ) − ρ(θ + u))−1 is strictly decreasing and continuous
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on [−r, r ] by Lemma C in the Appendix, the process { |Δn(u)|
ρ(θ)−ρ(θ+u)

: d ≤ u ≤ r} has
its supremizing points in the set {Ui : A ≤ i ≤ B} ∪ {d}. Thus, on Ωn

sup
d≤u≤r

|Δn(u)|
ρ(θ) − ρ(θ + u)

≤ max{ max
A≤l≤B

|Δn(Ul)|
ρ(θ) − ρ(Xl:n)

, max
A≤l≤B

|Δn(Ul−)|
ρ(θ) − ρ(Xl:n)

,
|Δn(d)|

ρ(θ) − ρ(θ + d)
}.

(8.30)

On the complement Ωc
n the process { |Δn(u)|

ρ(θ)−ρ(θ+u)
: d ≤ u ≤ r} has no jumps at all.

It is continuous and strictly decreasing, whence

sup
d≤u≤r

|Δn(u)|
ρ(θ) − ρ(θ + u)

= |Δn(d)|
ρ(θ) − ρ(θ + d)

.

In view of (8.29) and (8.30) we therefore obtain that

q1,n(y) = P({ sup
d≤u≤r

|Δn(u)|
ρ(θ) − ρ(θ + u)

≥ 1

6
} ∩ Ωn) + P({ sup

d≤u≤r

|Δn(u)|
ρ(θ) − ρ(θ + u)

≥ 1

6
} ∩ Ωc

n )

≤ P({ max
A≤l≤B

|Δn(Ul )|
ρ(θ) − ρ(Xl:n)

≥ 1

6
} ∩ Ωn) + P({ max

A≤l≤B

|Δn(Ul−)|
ρ(θ) − ρ(Xl:n)

≥ 1

6
} ∩ Ωn)

+ P(
|Δn(d)|

ρ(θ) − ρ(θ + d)
≥ 1

6
)

=: a1,n(y) + a2,n(y) + a3,n(y). (8.31)

Observe that nFn(θ +Ul) = nFn(Xl:n) = l upon noticing that there are no ties in
the interval (d, r ] by the (local) continuity of F . Moreover C := c(Xn) = nFn(θ).
Thus

Δn(Ul) = n−1
∑

C<i≤l

Y[i :n] − m(Xi :n)

and so

max
A≤l≤B

|Δn(Ul)|
ρ(θ) − ρ(Xl:n)

= n−1 max
A≤l≤B

| ∑C<i≤l Y[i :n] − m(Xi :n)|
ρ(θ) − ρ(Xl:n)

.

For xn ∈ Rn and y
n

∈ R
n we introduce

H(xn, yn) := 1A(xn ,yn)
,

where the indicator set is defined as

A(xn, yn) := { max
a≤l≤b

|∑l
i=c+1 yi − m(xi )|
ρ(θ) − ρ(xl)

≥ n

6
}
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with a := a(xn), b := b(xn) and c := c(xn). SinceΩn = X−1
n (Rn) conditioning on

Xn yields

a1,n(y) = E(1Ωn H(Xn, Yn)) = E(1ΩnE(H(Xn, Yn)|Xn))

=
∫
Rn

E(H(Xn, Yn)|Xn = xn)μn(dxn) (8.32)

with integrand

I (xn) := E(H(Xn, Yn)|Xn = xn) =
∫
Rn

H(xn, yn)P(Y n ∈ dy
n
|Xn = xn).

Lemma 2.1 of Stute and Wang (1993) implies that

P(Y n ∈ dy
n
|Xn = xn) =

n⊗
i=1

Q(xi , dyi ),

hence

I (xn) =
∫
Rn

H(xn, yn)
n⊗

i=1

Q(xi , dyi ).

For each fixed xn ∈ Rn let Z1, . . . , Zn be independent random variables defined
w.l.o.g. on (Ω,A ,P) with Zi ∼ Q(xi , ·), 1 ≤ i ≤ n, i.e.

n⊗
i=1

Q(xi , ·) = P ◦ (Z1, . . . , Zn)
−1.

Then

I (xn) = E(H(xn, Z1, . . . , Zn)) = P( max
a≤l≤b

| ∑l
i=c+1 Zi − m(xi )|
ρ(θ) − ρ(xl)

≥ n

6
).

Notice that ξi := Zi − m(xi ) are centered with variance V (xi ), because

E(Zi ) =
∫
R

y Q(xi , dy) = m(xi ) by (8.2)

and

Var(ξi ) = E((Zi − m(xi ))
2) =

∫
R

(y − m(xi ))
2 Q(xi , dy) = V (xi ) by (8.7).
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Thus by a simple index-transformation

I (xn) = P( max
a−c≤k≤b−c

| ∑k
i=1 ξc+i |

ρ(θ) − ρ(xc+k)
≥ n

6
).

Since (ρ(θ) − ρ(xc+k))
−1, a − c ≤ k ≤ b − c is a decreasing sequence of positive

weights as a consequence of xn ∈ Rn , we may apply the Hájek-Rényi inequality to
get

I (xn) ≤ 36

n2

{
(ρ(θ) − ρ(xa))

−2
a−c∑
i=1

V (xc+i ) +
b−c∑

i=a−c+1

(ρ(θ) − ρ(xc+i ))
−2V (xc+i )

}

= 36

n2

{
(ρ(θ) − ρ(xa))

−2
a∑

i=c+1

V (xi ) +
b∑

i=a+1

(ρ(θ) − ρ(xi ))
−2V (xi )

}

= 36

n2

{
(ρ(θ) − ρ(xa))

−2
a−1∑

i=c+1

V (xi ) +
b∑

i=a

(ρ(θ) − ρ(xi ))
−2V (xi )

}

= 36

n2
{
I1(xn) + I2(xn)

}
(8.33)

with

I1(xn) = (ρ(θ) − ρ(xa))
−2

a−1∑
i=c+1

V (xi )

and

I2(xn) =
b∑

i=a

(ρ(θ) − ρ(xi ))
−2V (xi ). (8.34)

By (8.32) and (8.33) we arrive at

a1,n(y) ≤ 36

n2
{
∫
Rn

I1(xn) μn(dxn) +
∫
Rn

I2(xn) μn(dxn)}. (8.35)

By Change of Variable this gives for the first integral

∫
Rn

I1(xn) μn(dxn) = E(1Ωn (ρ(θ) − ρ(XA:n))−2
A−1∑

i=C+1

V (Xi :n)). (8.36)

It follows from the definition of A that θ + d < XA:n ≤ θ + r on the event Ωn . By
Lemma C in the Appendix ρ is strictly decreasing on [θ + d, θ + r ], whence we can
conclude that
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E(1Ωn (ρ(θ) − ρ(XA:n))−2
A−1∑

i=C+1

V (Xi :n))

≤ (ρ(θ) − ρ(θ + d))−2
E(1Ωn

n∑
i=1

1{C+1≤i≤A−1}V (Xi :n)). (8.37)

Using the minimality property of A and the definition of C one easily verifies that
on the event Ωn the following equivalence holds:

C + 1 ≤ i ≤ A − 1 ⇔ θ < Xi :n ≤ θ + d.

Thus the expectation on the left side in (8.37) simplifies to

E(1Ωn

n∑
i=1

1{θ<Xi :n≤θ+d}V (Xi :n))

≤ E(

n∑
i=1

1{θ<Xi :n≤θ+d}V (Xi :n)) = E(

n∑
i=1

1{θ<Xi≤θ+d}V (Xi )) (8.38)

= n
∫

(θ,θ+d]
V (x)F(dx). (8.39)

Here, the equation in (8.38) is simply the commutative law. Combining (8.36), (8.37)
and (8.39) we arrive at

∫
Rn

I1(xn) μn(dxn) ≤ n (ρ(θ) − ρ(θ + d))−2
∫

(θ,θ+d]
V (x)F(dx). (8.40)

For the second integral in (8.35) the Change of Variable gives

∫
Rn

I2(xn) μn(dxn) = E(1Ωn

n∑
i=1

1{A≤i≤B}(ρ(θ) − ρ(Xi :n))−2V (Xi :n)). (8.41)

Recall the definition of A and B to see that Ωn ∩ {A ≤ i ≤ B} ⊆ {d < Xi :n − θ ≤
r}. Therefore and because V ≥ 0 by (8.7), we can infer that the expectation on the
right side in (8.41) is less than or equal to

E(

n∑
i=1

1{θ+d<Xi :n≤θ+r}(ρ(θ) − ρ(Xi :n))−2V (Xi :n))

= E(

n∑
i=1

1{θ+d<Xi≤θ+r}(ρ(θ) − ρ(Xi ))
−2V (Xi ))

= n
∫

(θ+d,θ+r ]
(ρ(θ) − ρ(x))−2V (x)F(dx). (8.42)
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Consequently, by (8.41) and (8.42) it follows that

∫
Rn

I2(xn) μn(dxn) ≤ n
∫

(θ+d,θ+r ]
(ρ(θ) − ρ(x))−2V (x)F(dx).

Together with (8.35) and (8.40) we can conclude that

a1,n(y) ≤ 36 n−1(ρ(θ) − ρ(θ + d))−2
∫

(θ,θ+d]
V (x)F(dx)

+ 36 n−1
∫

(θ+d,θ+r ]
(ρ(θ) − ρ(x))−2V (x)F(dx). (8.43)

To bound the probability a2,n(y) in (8.31) we can proceed in the same way as above,
because

max
A≤l≤B

|Δn(Ul−)|
ρ(θ) − ρ(Xl:n)

= n−1 max
A≤l≤B

| ∑C<i≤l−1 Y[i :n] − m(Xi :n)|
ρ(θ) − ρ(Xl:n)

.

The conditional argument yields that

a2,n(y) ≤ 36

n2
{
∫
Rn

I1(xn) μn(dxn) +
∫
Rn

I ∗
2 (xn) μn(dxn)} (8.44)

with

I ∗
2 (xn) =

b−1∑
i=a

(ρ(θ) − ρ(xi+1))
−2V (xi ).

Integration leads to

∫
Rn

I ∗
2 (xn) μn(dxn) = E(1Ωn

n∑
i=1

1{A≤i≤B−1}(ρ(θ) − ρ(Xi+1:n))−2V (Xi :n))

≤ E(1Ωn

n∑
i=1

1{θ+d<Xi :n≤θ+r}(ρ(θ) − ρ(Xi+1:n))−2V (Xi :n))

≤ E(1Ωn

n∑
i=1

1{θ+d<Xi :n≤θ+r}(ρ(θ) − ρ(Xi :n))−2V (Xi :n))

(8.45)

≤ E(

n∑
i=1

1{θ+d<Xi≤θ+r}(ρ(θ) − ρ(Xi ))
−2V (Xi ))

= n
∫

(θ+d,θ+r ]
(ρ(θ) − ρ(x))−2V (x)F(dx).
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To see (8.45) observe that Xi+1:n ≥ Xi :n and V ≥ 0 by (8.7) as well as ρ is (strictly)
decreasing on [θ, θ + r ]. Consequently, by (8.40) and (8.44) we arrive at

a2,n(y) ≤ 36 n−1(ρ(θ) − ρ(θ + d))−2
∫

(θ,θ+d]
V (x)F(dx)

+ 36 n−1
∫

(θ+d,θ+r ]
(ρ(θ) − ρ(x))−2V (x)F(dx). (8.46)

For the third probability a3,n(y) in (8.31) recall that by (8.28)

a3,n(y) = P(
|Δn(d)|

ρ(θ) − ρ(θ + d)
≥ 1

6
)

= P(|
n∑

i=1

1{θ<Xi≤θ+d}(Yi − m(Xi ))| ≥ 1

6
n(ρ(θ) − ρ(θ + d))).

The summands ηi := 1{θ<Xi≤θ+d}(Yi − m(Xi )) = 1{θ<Xi≤θ+d}εi , 1 ≤ i ≤ n, are
i.i.d. and centered, because in view of (8.1)

E(1{θ<X≤θ+d}ε) = E(1{θ<X≤θ+d}E(ε|X)) = 0.

Again, by conditioning on X

Var(ηi ) = E(η2i ) = E(1{θ<X≤θ+d}E((Y − m(X))2|X))

= E(1{θ<X≤θ+d}V (X))

=
∫

(θ,θ+d]
V (x)F(dx).

Thus the Tschebyscheff-inequality guarantess that

a3,n(y) ≤ 36 n−1(ρ(θ) − ρ(θ + d))−2
∫

(θ,θ+d]
V (x)F(dx).

From (8.31), (8.43) and (8.46) we finally obtain

q1,n(y) ≤ 108 n−1(ρ(θ) − ρ(θ + d))−2
∫

(θ,θ+d]
V (x)F(dx)

+ 72 n−1
∫

(θ+d,θ+r ]
(ρ(θ) − ρ(x))−2V (x)F(dx)

= 108{√nαn(ρ(θ) − ρ(θ + y/αn))}−2
∫ y

0
V (θ + s/αn)F

′(θ + s/αn)ds

(8.47)

+ 72
∫ αnr

y
{√nαn(ρ(θ) − ρ(θ + s/αn))}−2V (θ + s/αn)F

′(θ + s/αn)ds,
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where the equality (8.47) is simply a consequence of d = yα−1
n and the substitution

s = αn(x − θ). Thus Fatou’s Lemma in combination with (8.13) and (8.15) yields
that

lim sup
n→∞

q1,n(y) ≤ c1 y ψ(y)−2 + c2

∫ ∞

y
ψ(s)−2ds

≤ c1

{
y ψ(y)−2 +

∫ ∞

y
ψ(s)−2ds

}
(8.48)

with c1 = 108 V (θ+)F ′(θ) and c2 = 72 V (θ+)F ′(θ).
Next, we turn our attention to the second probability q2,n(y) in (8.27). It involves

the increments of the process

Ln(t) = n−1
n∑

i=1

1{Xi≤t}m(Xi ) − H(t) =: L̂n(t) − H(t).

By Theorem A in the Appendix the Doob-Meyer decomposition of the process

L̂n(t) = n−1
n∑

i=1

1{Xi≤t}m(Xi )

admits the representation

Ln(t) = Mn(t) − Dn(t), t ∈ R,

where (Mn(t) : t ∈ R) is a centered rcll martingale with respect to some filtration
(Fn(t) : t ∈ R) specified in Theorem A, and

Dn(t) =
∫

(−∞,t]
Fn(x−) − F(x−)

1 − F(x−)
m(x)F(dx).

It follows that

q2,n(y) = P( sup
d≤u≤r

|Ln(θ + u) − Ln(θ)|
ρ(θ) − ρ(θ + u)

≥ 1

6
) by definition

≤ P( sup
d≤u≤r

|Mn(θ + u) − Mn(θ)|
ρ(θ) − ρ(θ + u)

≥ 1

12
)

+ P( sup
d≤u≤r

|Dn(θ + u) − Dn(θ)|
ρ(θ) − ρ(θ + u)

≥ 1

12
) =: b1,n(y) + b2,n(y). (8.49)

In order to bound the probability b1,n(y) we introduce the process

Mn(u) := Mn(θ + u) − Mn(θ), d ≤ u ≤ r.
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Observe that (Mn(u) : d ≤ u ≤ r) is likewise a centered rcll martingale with re-
spect to the filtration (Fn(θ + u) : d ≤ u ≤ r). Thus we may apply the extended
Birnbaum-Marshall inequality, confer Theorem B in the Appendix, and get

b1,n(y) = P( sup
d≤u≤r

|Mn(u)|
ρ(θ) − ρ(θ + u)

≥ 1

12
)

≤ P( sup
d≤u≤r

(ρ(θ) − ρ(θ + u))−2 Mn(u)2 ≥ 1

144
)

≤ 144

{∫ r

d
(ρ(θ) − ρ(θ + u))−2Gn(du) + (ρ(θ) − ρ(θ + d))−2Gn(d)

}

(8.50)

upon noticing that (Mn(u)2, d ≤ u ≤ r) is a nonnegative submartingale. Here,

Gn(u) = E[Mn(u)2] = E[(Mn(θ + u) − Mn(θ))2] = E[Mn(θ + u)2] − E[Mn(θ)2], (8.51)

where the last equality holds by the martingale property. Thus we have to compute
E[Mn(t)2], t ∈ R. For that purpose notice that by Theorem A

Mn(t) = L̂n(t) −
∫

(−∞,t]
1 − Fn(x−)

1 − F(x−)
m(x)F(dx)

= n−1
n∑

i=1

[1{Xi≤t} m(Xi ) −
∫

(−∞,t]
1{Xi≥x}

1 − F(x−)
m(x)F(dx)]

= n−1
n∑

i=1

ρi (t),

where

ρi (t) := 1{Xi≤t} m(Xi ) −
∫

(−∞,t]
1{Xi≥x}

1 − F(x−)
m(x)F(dx) , 1 ≤ i ≤ n,

are i.i.d. copies of M1(t) and hence in particular are centered. Consequently,

E[Mn(t)
2] = n−1

E[M1(t)
2] (8.52)

with

E[M1(t)
2] = E[1{X≤t} m(X)2] + E[(

∫
(−∞,t]

1{X≥x}
1 − F(x−)

m(x)F(dx))2]

− 2E[1{X≤t} m(X)

∫
(−∞,t]

1{X≥x}
1 − F(x−)

m(x)F(dx)]. (8.53)
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Using Fubini’s Theorem for the computation of the second and third expectation in
(8.53) we arrive after some straightforward calculations at

E[M1(t)
2] = K (t) −

∫
(−∞,t]

F({x})
1 − F(x−)

m(x)2F(dx), (8.54)

where

K (t) =
∫

(−∞,t]
m(x)2F(dx).

It follows from (8.51)–(8.54) that

Gn(u) = n−1[
∫

(θ,θ+u]
m(x)2F(dx) −

∫
(θ,θ+u]

F({x})
1 − F(x−)

m(x)2F(dx)]

= n−1
∫

(θ,θ+u]
m(x)2F(dx)

= n−1
∫

(0,u]
m(θ + x)2F ′(θ + x)dx,

since F ′ is continuous on [θ − r, θ + r ] by (F). Thus for the integral in (8.50) we
obtain

∫ r

d
(ρ(θ) − ρ(θ + u))−2Gn(du) = n−1

∫ r

d
(ρ(θ) − ρ(θ + u))−2m(θ + u)2F ′(θ + u)du

and for the second summand

(ρ(θ) − ρ(θ + d))−2Gn(d) = n−1(ρ(θ) − ρ(θ + d))−2
∫

(0,d]
m(θ + x)2F ′(θ + x)dx .

Combine this with (8.50) to infer that

b1,n(y) ≤ 144n−1
∫ r

d
(ρ(θ) − ρ(θ + u))−2m(θ + u)2F ′(θ + u)du

+ 144n−1(ρ(θ) − ρ(θ + d))−2
∫

(0,d]
m(θ + x)2F ′(θ + x)dx

= 144
∫ αnr

y
{√nαn(ρ(θ) − ρ(θ + s/αn))}−2m(θ + s/αn)

2F ′(θ + s/αn))ds

+ 144{√nαn(ρ(θ) − ρ(θ + y/αn))}−2
∫ y

0
m(θ + s/αn)

2F ′(θ + s/αn))ds.

By Fatou’s Lemma and (8.13) and (8.15) we obtain that

lim sup
n→∞

b1,n(y) ≤ d1

{
y ψ(y)−2 +

∫ ∞

y
ψ(s)−2ds

}
(8.55)

with d1 = 144 m(θ+)2F ′(θ).
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As to the second probability b2,n(y) in (8.49) observe that

sup
d≤u≤r

|Dn(θ + u) − Dn(θ)|
ρ(θ) − ρ(θ + u)

≤ c ||Fn − F || sup
θ+d≤u≤θ+r

F(u) − F(θ)

ρ(θ) − ρ(u)
, (8.56)

with c = (1 − F(θ + r))−1 supθ≤x≤θ+r |m(x)| and

||Fn − F || := sup
x∈R

|Fn(x) − F(x)|.

Notice that F(θ + r) < 1 for r sufficiently small as a consequence of (F). From
(J) or (S), respectively, we can infer that supθ≤x≤θ+r |m(x)| is finite, whence c is a
finite constant. Put

l(u) = F(u) − F(θ)

ρ(θ) − ρ(u)
, θ < u ≤ θ + r.

By (8.10)

ρ(θ) − ρ(u) =
∫ u

θ

m̄ − m(x)F(dx) =
∫ u

θ

m̄ − m(x)F ′(x)dx . (8.57)

Therefore
d

du
(ρ(θ) − ρ(u)) = (m̄ − m(u))F ′(u)

and by the quotient rule

l ′(u) = F ′(u){∫ u
θ
m̄ − m(x)F(dx) − (m̄ − m(u))(F(u) − F(θ))}

(ρ(θ) − ρ(u))2
.

From (S) we can infer that m̄ − m(x) ≤ m̄ − m(u) for all x ∈ [θ, u] and thus

∫ u

θ

m̄ − m(x)F(dx) ≤ (m̄ − m(u))(F(u) − F(θ)).

It follows that l ′(u) ≤ 0 for all u ∈ (θ, θ + r ]. Hence l is monotone decreasing on
(θ, θ + r ] resulting in

sup
θ+d≤u≤θ+r

F(u) − F(θ)

ρ(θ) − ρ(u)
≤ F(θ + d) − F(θ)

ρ(θ) − ρ(θ + d)
≤ 2F ′(θ)

d

ρ(θ) − ρ(θ + d)

(8.58)
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for r sufficiently small. Consequently, by (8.56) and Massarts’s (1990) inequality
we arrive at

b2,n(y) = P( sup
d≤u≤r

|Dn(θ + u) − Dn(θ)|
ρ(θ) − ρ(θ + u)

≥ 1

12
)

≤ 2 exp{−C y−2αn(
√
nαn(ρ(θ) − ρ(θ + y/αn))

2}

with some finite positive constant C which could be specified. Infer from (8.13) that
there exists an integer n1 = n1(y) such that

√
nαn(ρ(θ) − ρ(θ + y/αn) ≥ 1

2
ψ(y) ∀ n ≥ n1 (8.59)

and so

b2,n(y) ≤ 2 exp{−4 C y−2αn ψ(y)2} ∀ n ≥ n1.

This finally shows that under (S) we have

lim
n→∞ b2,n(y) = 0 ∀ y > 0. (8.60)

In case of (J) the above argument via monotonicity of the function l fails, because
here we do not require that m is monotone decreasing. However, by (8.57)

ρ(θ) − ρ(u) ≥ inf
θ≤x≤θ+r

(m̄ − m(x))(F(u) − F(θ)) ≥ 1

2
(m̄ − m(θ+))(F(u) − F(θ)) (8.61)

for r sufficiently small. Therefore, it follows from (8.56) and Massart’s (1990) in-
equality that

b2,n(y) ≤ 2 exp{−D n}
for some finite positive constant D, which guarantees that likewise under (J)

lim
n→∞ b2,n(y) = 0 ∀ y > 0. (8.62)

Summing up we obtain from (8.49), (8.55), (8.60) and (8.62) that

lim sup
n→∞

q2,n(y) ≤ d1

{
y ψ(y)−2 +

∫ ∞

y
ψ(s)−2ds

}
(8.63)

with d1 = 144 m(θ+)2F ′(θ). Combine this with (8.27) and (8.48) to conclude that

lim sup
n→∞

P1,n(y) ≤ a1

{
y ψ(y)−2 +

∫ ∞

y
ψ(s)−2ds

}
(8.64)

with finite constant a1 = c1 + d1 = F ′(θ){108 V (θ+) + 144 m(θ+)2}.
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Wecontinuewith the treatment of the second probability in (8.26)which is equal to

P2,n(y) = P(|Ȳn| sup
d≤u≤r

|Fn(θ + u) − F(θ + u) − (Fn(θ) − F(θ))|
ρ(θ) − ρ(θ + u)

≥ 1

3
).

Since |Ȳn| ≤ |m̄| + 1 on the event {|Ȳn − m̄| ≤ 1} a decomposition yields that

P2,n(y) ≤ P( sup
d≤u≤r

|Fn(θ + u) − F(θ + u) − (Fn(θ) − F(θ))|
ρ(θ) − ρ(θ + u)

≥ 1

3(|m̄| + 1)
)

+ P(|Ȳn − m̄| > 1) =: q̃2,n(y) + pn . (8.65)

By the Weak Law of Large Numbers

pn = P(|Ȳn − m̄| > 1) → 0, n → ∞. (8.66)

Notice that

q̃2,n(y) = P( sup
d≤u≤r

|Fn(θ + u) − F(θ + u) − (Fn(θ) − F(θ))|
ρ(θ) − ρ(θ + u)

≥ 1

3(|m̄| + 1)
)

is of the same type as probability q2,n(y) upon noticing that Ln = Fn − F , ifm = 1.
But Theorem A in particular holds for m = 1, and we can proceed in the same way
as in the derivation of (8.63) to get

lim sup
n→∞

q̃2,n(y) ≤ d̃1

{
y ψ(y)−2 +

∫ ∞

y
ψ(s)−2ds

}
(8.67)

with d̃1 = 9(|m̄| + 1)2F ′(θ). Thus (8.65)–(8.67) yield that

lim sup
n→∞

P2,n(y) ≤ d̃1

{
y ψ(y)−2 +

∫ ∞

y
ψ(s)−2ds

}
. (8.68)

The third probability in (8.26) is equal to

P3,n(y) = P(|Ȳn − m̄| sup
d≤u≤r

|F(θ + u) − F(θ)|
ρ(θ) − ρ(θ + u)

≥ 1

3
).

It follows from (8.61) that, if (J) holds then

sup
d≤u≤r

|F(θ + u) − F(θ)|
ρ(θ) − ρ(θ + u)

≤ 2

m̄ − m(θ+)
,

whence by the Weak Law of Large Numbers

lim
n→∞ P3,n(y) = 0 ∀ y > 0. (8.69)
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If (S) holds, then by (8.58)

sup
d≤u≤r

|F(θ + u) − F(θ)|
ρ(θ) − ρ(θ + u)

≤ 2 F ′(θ)
d

ρ(θ) − ρ(θ + d)
,

whence by the Tschebyscheff-inequality

P3,n(y) ≤ P(|Ȳn − m̄| ≥ 1

6 F ′(θ)

ρ(θ) − ρ(θ + d)

d
)

≤ 36 F ′(θ)2Var(Y ) n−1 d2

(ρ(θ) − ρ(θ + d))2

= 36 F ′(θ)2Var(Y )y2 (
√
nαn(ρ(θ) − ρ(θ + y/αn)))

−2 α−1
n since d = y/αn

≤ 144 F ′(θ)2Var(Y )y2 ψ(y)−2 α−1
n ∀ n ≥ n1 by (59)

and consequently

lim
n→∞ P3,n(y) = 0 ∀ y > 0. (8.70)

After all with (8.24), (8.26), (8.64), (8.68), (8.69) and (8.70) we arrive at

lim sup
n→∞

P(y/αn ≤ θ̂n − θ ≤ r) ≤ C+{ y ψ(y)−2 +
∫ ∞

y
ψ(s)−2ds} ∀ y > 0

for some r > 0 sufficiently small. Hence, by (8.22) and Theorem 2 the upper tail
bounds (8.17) and (8.20) follow immediately.

For the derivation of the lower tail bounds (8.18) and (8.21) we follow the same
arguments. Here, one has to use the Doob-Meyer decomposition of the process

L̄n(t) := n−1
n∑

i=1

1{Xi>t}m(Xi )

into a reverse martingale plus compensator, confer Theorem A in the Appendix.
Finally, the explicit tail probability (8.19) results from (8.17) and (8.18) by an ele-
mentary integration of ψ given in (8.16). �

Observe that by (8.19) the sequence n(θ̂n − θ) under (J) is stochastically bounded,
i.e.,

lim
y→∞ lim sup

n→∞
P(n|θ̂n − θ | ≥ y) = 0. (8.71)

Similarly, under (S) we obtain one-sided stochastic boundedness.
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Corollary 1 Let the preliminary assumptions of Theorem 3 be true and E(Y 2) be
finite. If (S) holds with φ and ϕ monotone increasing, then

lim sup
n→∞

P(αn(θ̂n − θ) ≥ y) ≤ L+y−1 ∀ y ≥ 1 (8.72)

lim sup
n→∞

P(βn(θ̂n − θ) ≤ −y) ≤ L−y−1 ∀ y ≥ 1 (8.73)

where L+ and L− are finite constants. In particular,

lim
y→∞ lim sup

n→∞
P(αn(θ̂n − θ) ≥ y) = 0 (stochastic boundedness f rom above)

(8.74)
and

lim
y→∞ lim sup

n→∞
P(βn(θ̂n − θ) ≤ −y) = 0 (stochastic boundedness f rom below).

(8.75)

Proof For every u ≥ 1 we have by (8.13) that

ψ(u) = F ′(θ){
∫ 1/2

0
φ(s)ds +

∫ u

1/2
φ(s)ds}

≥ F ′(θ)φ(1/2)(u − 1/2) since φ > 0 is monotone increasing

≥ 1/2F ′(θ)φ(1/2) u since 1/2 ≤ u/2,

whence

ψ(u)−2 ≤ c u−2 ∀ u ≥ 1

with finite constant c. Consequently, by elementary integration (8.20) yields (8.72),
which in turn gives (8.74). Analogously, we obtain (8.73) and (8.75). �

Typically,we obtain sharper asymptotic tail bounds as in (8.72) and (8.73). Indeed,
in the situation of Example 1 it follows from Theorem 3 that:

lim sup
n→∞

P(n
1

1+2α L∗(n)(θ̂n − θ) ≥ y) ≤ K+ y−(1+2α) ∀ y > 0, (8.76)

lim sup
n→∞

P(n
1

1+2β l∗(n)(θ̂n − θ) ≤ −y) ≤ K− y−(1+2β) ∀ y > 0, (8.77)

where K+ and K− are finite constants.
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8.2 Convergence in Distribution to a Random Closed Set

Recall that αn = βn = n under the assumption (J). For simplicitly, let us assume that
(S) holds likewise with αn = βn . To set a concrete example consider

m(x) − m(θ) = −sign(x − θ)|x − θ | log(|x − θ |−1), x ∈ [θ − ε, θ + ε]\{θ},

which by Example 1 induces

αn = βn = 1
3
√
9
n1/3 log(n)2/3.

We will show that αn(θ̂n − θ) converges in distribution, where the limit variable in
general is a random closed set and not only a random real point as in the classical
theory. Here, our starting point is the rescaled process.

Zn(t) := γn{En(θ + t/αn) − En(θ)}, t ∈ R,

where γn is some appropriate sequence. By Lemma 2.2 (i) and (iii) in Ferger (2015)
we obtain that

αn(θ̂n − θ) = argmax
t∈R

Zn(t)

with Zn a cadlag process. If we can show that

Zn
L−→ Z in the Skorokhod space D[−a, a] ∀ a > 0, (8.78)

then stochastic boundedness (8.71) or (8.74) and (8.75), respectively, enables us to
apply Theorem 3.11 of Ferger (2015). In combination with Theorem 3.13 in Ferger
(2015) it ensures that

lim sup
n→∞

P(αn(θ̂n − θ) ∈ F) ≤ TC (F) for all closed F ⊆ R, (8.79)

where

C = A(Z) := set of all supremizing points of Z

and

TC (F) = P(C ∩ F �= ∅).
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The set-function TC is called capacity functional of C . According to a Theorem of
Matheron there is an extension of TC onto the Borel-σ algebra B(R) such that

TC (B) = P(C ∩ B �= ∅) for all Borel-sets B ⊆ R.

Moreover Choquet’s Theorem states that TC uniquely determines the distribution of
the random closed set C . As a capacity functional TC has many features in common
with probability measures. On the other hand TC is merely sub-additive and in gen-
eral lacks additivity, whence it can be regarded as a generalization of a probability
measure. (See, e.g., Matheron (1975), Molchanov (2005) or Nguyen (2006) for an
introduction to the theory of random closed sets and capacity functionals.) Notice
that (8.79) formally looks exactly like the equivalent characterization of weak con-
vergence given by the Portmanteau-Theorem. In consideration of all these facts we
take (8.79) as the basis for saying that the sequence αn(θ̂n − θ) of random points on
the real line converges in distribution to the random closed set C :

αn(θ̂n − θ)
L−→ C.

If (J) holds, then it turns out that the limit process Z in (8.78) is a two-sided compound
Poisson process with Z(t) → −∞ a.s. as |t | → ∞. Thus C is the finite union of
disjoint compact intervals with probability one. If (S) holds (with the liminf replaced
by lim and the inequality by equality) then Z is equal to a two-sidedBrownianmotion
with a drift downwards. This process has almost surely a unique maximizing point
τ , i.e., C = {τ }. An application of Theorem 3.12 in Ferger (2015) gives traditional
weak convergence:

αn(θ̂n − θ)
L−→ τ.

Observe that Theorems 3.11 and 3.12 of Ferger (2015) contain two basic condi-
tions, namely:

(1) αn(θ̂n − θ) is stochastically bounded.
(2) Zn converges weakly in the Skorokhod space.

Here, (1) is an essential part, which is covered by (8.71) or (8.74) and (8.75),
respectively. A full treatment of (2), i.e., the functional limit theorem (8.78) will
appear elsewhere, since it is beyond the scope of this paper. Moreover, we will
derive limit theorems in case the sequences αn and βn are different.

8.3 Appendix

Recall the definitions of the marked empirical distribution function

L̂n(t) = n−1
n∑

i=1

1{Xi≤t}m(Xi ), t ∈ R
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and its reverse counterpart

L̄n(t) = n−1
n∑

i=1

1{Xi>t}m(Xi ), t ∈ R.

The following theorem yields the Doob-Meyer decompositions of L̂n and L̄n , where
m needs not to be our regression function and the Xi may stem from any distribution
function F .

Theorem A Let X1, . . . , Xn be i.i.d. with arbitrary distribution function F and let
m : R → R be a measurable function, which at each point t ∈ R is either right-
continuous with left-limit or left-continuous with right-limit. Then it holds:

L̂n(t) = Mn(t) + An(t), t ∈ R,

where

(Mn(t),Fn(t) : t ∈ R)

is a centered rcll martingale with respect to the filtration

Fn(t) = σ
( n⋃
i=1

σ({{Xi ≤ r} : r ≤ t})).

Moreover

An(t) =
∫

(−∞,t]
1 − Fn(x−)

1 − F(x−)
m(x)F(dx).

Similarly,

L̄n(t) = Rn(t) + Bn(t), t ∈ R,

where

(Rn(t),Gn(t) : t ∈ R)

is a centered rcll reverse martingale with respect to the filtration

Gn(t) = σ
( n⋃
i=1

σ({{Xi > r} : r ≥ t})).
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Moreover

Bn(t) =
∫

(t,∞)

Fn(x)

F(x)
m(x)F(dx).

Proof See Ferger (2009) for the decomposition of L̂n . The process L̄n can be treated
analogously. �

The next result generalizes a martingale inequality, which goes back to Birnbaum
and Marshall (1961), see also Shorack and Wellner (1986).

Theorem B Let (S(u),F(u) : u ∈ [a, b]), a < b, be a submartingale with trajec-
tories that are right-continuous with left limits. Let S(u)+ := max {S(u), 0} and
H(u) := E(S(u)+) < ∞, u ∈ [a, b]. Furthermore, let w : [a, b] → (0, ∞) be rcll
and monotone decreasing. Then for all λ > 0

P

(
sup

a≤u≤b
w(u)S(u) > λ

)
≤ λ−1

(∫ b

a
w(u)H(du) + w(a)H(a)

)
.

Proof A slight modification of the proof of Lemma 3.3 in Ferger and Venz (2017)
gives

P

(
sup

a≤u≤b
w(u)S(u) > λ

)
≤ λ−1

(∫ b

a
H(u)(−w)(du) + w(b)H(b)

)

and integration by parts yields the assertion. �

The function ρ plays a crucial role. We summarize some of its properties.

Lemma C Let

ρ(t) =
∫

(−∞,t]
(m(x) − m̄)F(dx), t ∈ R.

Then the following statements hold:

(1) ρ is rcll.
(2) ρ is continuous at t ⇔ m(t) = m̄ or F is continuous at t .
(3) ρ is monotone increasing on (−∞, θ), if m ≥ m̄ on (−∞, θ) and monotone

decreasing on [θ,∞), if m ≤ m̄ on [θ, ∞).
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(4) Assume (C1) and (C2) hold. If F is strictly monotone on [θ − ε, θ + ε] then ρ

is strictly monotone (increasing or decreasing, respectively) on [θ − ε, θ + ε].
In particular θ is the unique and well-separated supremizing point of ρ, i.e.,

ρ(θ) > sup{ρ(t) : |t − θ | ≥ η} ∀ η > 0.

Proof See Ferger (2009) or Ferger et al. (2012).
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9OnEmpirical Distribution Functions
UnderAuxiliary Information

Erich Haeusler

9.1 Introduction

Let (Xi )i≥1 be a sequence of independent and identically distributed random vari-
ables with common continuous distribution function F . The nonparametric max-
imum likelihood estimator for estimating F based on the first n of these random
variables is the classical empirical distribution function Fn and has been studied
extensively.

Suppose now that auxiliary information about F of a nonparametric nature is
available in the sense that for known measurable functions g1(x), . . . , gr (x) we
have

E(g(X1)) = 0 , (9.1)

where g (x) = (g1 (x) , . . . , gr (x)) for x ∈ R. Examples are
(i) an integrable X1 whose mean E (X1) has a known valueμ ∈ R, where g (x) =

x − μ,
(ii) an X1 for which it is known that a given m ∈ R is a median, i.e., F (m) = 1

2 ;
here g (x) = 1(−∞,m] (x) − 1

2 , or
(iii) a square integrable X1 whose mean E (X1) has a known value μ ∈ R and

whose variance Var (X1) has a known value σ 2 ∈ (0,∞), where g now is the R2-
valued function g (x) = (

x − μ, x2 − σ 2 − μ2
)
.

Formodel (9.1) (extended by an additional parameter θ whichwewill not consider
here), using ideas from the concept of empirical likelihood as developed by Owen in
(1988, 1990, 1991) (see also Owen 2001), Qin and Lawless in (1994) have derived
the nonparametric maximum likelihood estimator Fn,g for F , which turns out to be a
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distribution functionwhich puts randommasses on the observed data x1, . . . , xn from
X1, . . . , Xn . Qin and Lawless also derived asymptotic normality of the random vari-
able n1/2

(
Fn,g (x) − F (x)

)
for fixed x ∈ R, whereas Zhang in (1997) established

the corresponding functional central limit theorem, i.e. weak convergence of the
entire stochastic process n1/2

(
Fn,g − F

) = (
n1/2

(
Fn,g (x) − F (x)

))
x∈R towards

an appropriate Gaussian process. For model (9.1), Theorem 3.3 in Zhang (1997)
contains the following result: If

E
(‖g (X1)‖3

)
< ∞ , (9.2)

where ‖ ‖ denotes any norm in R
r , and

Σ = E
(
g (X1) g (X1)

T
)

is positive definite , (9.3)

then

n1/2
(
Fn,g − F

) L→ W in D [−∞, ∞] as n → ∞ , (9.4)

where D [−∞, ∞] is the Skorohod space over the compact time interval [−∞, ∞],

where
L→ denotes convergence in distribution and W is a centered Gaussian process

with covariance function

E (W (x)W (y)) =F (min (x, y)) − F (x) F (y)

−U (x)T Σ−1U (y) for x, y ∈ R ,

where U (x) = E
(
g (X1) 1{X1≤x}

)
. It is important to point out here that the third

moment condition (9.2) is imposed in Zhang (1997) because there the more general
model with the additional parameter θ mentioned earlier is considered for which this
third moment condition is essential. If the more restricted model (9.1) is considered,
as it is done in this note, then the functional central limit theorem (9.4) already
holds if condition (9.2) is replaced by the weaker and somewhat more natural second
moment condition

E
(‖g (X1)‖2

)
< ∞ . (9.5)

This can be seen by an inspection of the proof of Theorem 3.3 in Zhang (1997)
and is essential for the point we want to make later. Note that condition (9.5) is
sufficient to guarantee the existence of the covariance matrix appearing in condition
(9.3) which means that under (9.5) the only requirement in condition (9.3) is the
positive definiteness of the matrix Σ .

If the functional central limit theorem (9.4) is compared to the classical Donsker
functional central limit theorem

n1/2 (Fn − F)
L→ Z in D [−∞, ∞] as n → ∞ (9.6)
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for the classical empirical distribution function Fn , where Z is a centered Gaussian
process with covariance function

E (Z (x) Z (y)) = F (min (x, y)) − F (x) F (y) for x, y ∈ R ,

then clearly Var (Z (x)) ≥ Var (W (x)) for all x ∈ R. Thus, the variances of the limit
process Z are pointwise at least as big as the variances of the limit processW . More
generally, if Cov [Y1, . . . , Ym] denotes the covariance matrix of the random vector
(Y1, . . . , Ym), then

Cov [Z (x1) , . . . , Z (xm)] ≥ Cov [W (x1) , . . . ,W (xm)] for all x1, . . . , xm ∈ R

in the sense of the Loewner ordering for symmetric matrices (i.e., B ≥ A if B − A is
nonnegative definite). This entails, for example, that asymptotic bootstrap confidence
bands for F based on Fn,g tend to be smaller, and sometimes considerably smaller,
than confidence bands based on Fn ; see e.g. Haeusler and Plies (2000). Therefore, the
modified distribution function Fn,g has advantages over Fn in statistical applications,
provided that, of course, the assumptions in model (9.1) are satisfied.

In order to further enlighten the role of the assumptions for (9.4) in model (9.1) we
consider the examples (i) and (ii) from above in some detail. Let us begin with exam-
ple (ii). Because the function g (x) = 1(−∞,m] (x) − 1

2 is bounded, condition (9.5)
holds for all continuous distribution functions F . Because g is one-dimensional,
condition (9.3) reduces to E

(
g (X1)

2) > 0, which is also clearly satisfied for all
continuous F . Therefore, the functional central limit theorem (9.4) holds for all
continuous distribution functions with known median m. In example (i) we will
assume w.l.o.g. that μ = 0 and will write c (x) = x instead of g (x) = x from now
on. Clearly, condition (9.5) for the one-dimensional function c is equivalent to
E

(
X2
1

)
< ∞, i.e., to square integrability of X1, whereas condition (9.3) is equivalent

to Var (X1) = E
(
X2
1

) = E
(
c (X1)

2) > 0, which is always satisfied for continuous
F . Nevertheless, in example (i) the required auxiliary information about X1 for (9.4)
to hold is twofold: It has to be known that X1 has mean zero and that it is not only
integrable, but square integrable. Therefore, (9.4) provides no information about
the asymptotic distributional behaviour of n1/2

(
Fn,c − F

)
if X1 is integrable with

known mean zero, but has infinite variance. It is the aim of this note to shed some
light on this problem. For this, we will first give the complete definition of Fn,g in
Sect. 9.2. In Sect. 9.3 we will present two classes of centered random variables X1
with infinite variance for which

n1/2
∥
∥Fn,c − Fn

∥
∥∞ = oP (1) as n → ∞ (9.7)

holds true, where ‖ ‖∞ denotes the supremum norm. From (9.6) and (9.7) it follows
by Cramér’s theorem that

n1/2
(
Fn,c − F

) L→ Z in D [−∞, ∞] as n → ∞ ,
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in contrast to (9.4). Consequently, for (9.4) to hold, square integrability of X1 is
essential, besides the knowledge of the mean of X1. If the auxiliary information
about X1 is only integrability and a known mean, (9.4) need not to be true. (Of
course, the statement of (9.4) itself requires already the existence of Σ = Var (X1),
i.e., square integrability of X1).

9.2 The Definition of Fn,g and Fn,c

Let F be a continuous distribution function and X1, . . . , Xn be independent and
identically distributed random variables with common distribution function F . Let
x1, . . . , xn be an observed sample from X1, . . . , Xn , i.e., xi ∈ R is a realization of the
random variable Xi for every i = 1, . . . , n. The nonparametric likelihood function
of the sample x1, . . . , xn is, for every distribution function F̃ , given by

L
(
F̃

) =
n∏

i=1

(
F̃ (xi ) − F̃ (xi − 0)

)
,

where F̃ (x − 0) denotes the left-hand limit of F̃ at x ∈ R. The unique maximizer
of the function L is the classical empirical distribution function

Fn (x) = 1

n

n∑

i=1

1(−∞,x] (xi ) , x ∈ R ,

of the sample x1, . . . , xn . To see this, note that the maximizer of L necessarily is of
the form

F̃ (x) =
n∑

i=1

pi1(−∞,x] (xi ) , x ∈ R ,

with pi > 0 for i = 1, . . . , n and
∑n

i=1 pi = 1 so that maximizing L reduces to
maximizing

L̃ (p1, . . . , pn) =
n∏

i=1

pi

for these pi . This easily leads to pi = 1
n for i = 1, . . . , n and hence to Fn . This

establishes Fn as the nonparametric maximum likelihood estimator for F .
Suppose now that we want to estimate F inside model (9.1). Then the estimator

should satisfy the same restrictions given by (9.1) as F does. Consequently, the
function L should be maximized over all distribution functions F̃ satisfying the
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restrictions imposed by (9.1). This leads to the maximization of L̃ subject to the
conditions

pi > 0,
n∑

i=1

pi = 1,
n∑

i=1

pi g (xi ) = 0 . (9.8)

Note that the auxiliary information provided by (9.1) is taken into account through
the equation

∑n
i=1 pi g (xi ) = 0. As a consequence, it is no longer guaranteed that a

maximizer of L̃ exists for all samples x1, . . . , xn . However, if 0 is an interior point
of the convex hull of the points g (x1) , . . . , g (xn) in R

r , then a unique maximizer(
pn,1, . . . , pn,n

)
satisfying the conditions in (9.8) does exist, and it can be found by

the method of Lagrange multipliers; see Owen (1990), p. 100, and Qin and Lawless
(1994), p. 304/305. We have

pn,i = 1

n
(
1 + t Tn g (xi )

) for i = 1, . . . , n .

Here tn denotes the r -dimensional Lagrange multiplier and is a solution of the equa-
tion

n∑

i=1

g (xi )

1 + t Tn g (xi )
= 0 . (9.9)

Because of pn,i < 1 for i = 1, . . . , n, the vector tn belongs to the open convex set

Mn =
{
t ∈ R

r : 1 + t T g (xi ) >
1

n
for i = 1, . . . , n

}
.

Moreover, Eq. (9.9) has exactly one solution in Mn provided that the r × r -matrix∑n
i=1 g (xi ) g (xi )T is positive definite; see Owen (1990), p. 105, or use the mean

value theorem for a direct proof. Notice that
∑n

i=1 g (xi ) g (xi )T is always nonneg-
ative definite by construction.

Consequently, under model (9.1) the appropriate empirical distribution function
for the observed sample x1, . . . , xn is defined by

Fn,g (x) =
n∑

i=1

1

n
(
1 + t Tn g (xi )

)1(−∞,x] (xi ) , x ∈ R ,

with tn being the unique solution of (9.9) in Mn , provided that the sample satisfies
the conditions

0 is an interior point of the convex hull of {g (x1) , . . . , g (xn)} ⊂ R
r (9.10)

and
n∑

i=1

g (xi ) g (xi )
T is positive definite . (9.11)
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Of course, not all samples x1, . . . , xn will usually satisfy these conditions. For a
reasonable definition of Fn,g , we have to ensure at least that the probability that
a sample x1, . . . , xn satisfies conditions (9.10) and (9.11) converges to one as the
sample size n tends to infinity. To do this formally, we introduce the random events

An = {0 is an interior point of the convex hull of {g (X1) , . . . , g (Xn)}}
and

Bn =
{

n∑

i=1

g (Xi ) g (Xi )
T is positive definite

}

.

Then on An ∩ Bn the random distribution function

Fn,g (x) =
n∑

i=1

1

n
(
1 + t Tn g (Xi )

)1(−∞,x] (Xi ) , x ∈ R ,

is well-defined by the requirement that the (random) vector tn ∈ R
r is the unique

vector in the (random) set

Mn =
{
t ∈ R

r : 1 + t T g (Xi ) >
1

n
for i = 1, . . . , n

}

satisfying the equation
n∑

i=1

g (Xi )

1 + t Tn g (Xi )
= 0 .

Under (9.1) and (9.3) the proof of Lemma 2 in Owen (1990) adapted to the present
situation gives, as n → ∞,

P (An) → 1 , (9.12)

whereas by (9.3) and (9.5) the law of large numbers implies

P (Bn) → 1 . (9.13)

Hence under (9.3) and (9.5) the empirical distribution function Fn,g is well-defined
with probability converging to one.

Let us now discuss the definition of Fn,g in the special case of example (i) with
μ = 0, i.e., in the notation of Sect. 9.1, the definition of Fn,c if X1 is integrable with
mean zero, but need not be square integrable. Because of g (x) = c (x) = x , and
observing that X1, . . . , Xn are real-valued random variables, we see that the interior
of the convex hull of {g (X1) , . . . , g (Xn)} = {X1, . . . , Xn} equals the open interval(
min1≤i≤n Xi ,max1≤i≤n Xi

)
and hence An = {

min1≤i≤n Xi < 0 < max1≤i≤n Xi
}
.

Therefore, condition (9.12) now reads

P

(
min
1≤i≤n

Xi < 0 < max
1≤i≤n

Xi

)
→ 1 as n → ∞ . (9.14)
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But for an integrable random variable X1 with continuous distribution function F
and mean zero we have 0 < F (0) < 1 so that, as n → ∞,

P

(
min
1≤i≤n

Xi ≥ 0

)
= P

(
n⋂

i=1

{Xi ≥ 0}
)

= P (X1 ≥ 0)n = (1 − F (0))n → 0

and, similarly,

P

(
max
1≤i≤n

Xi ≤ 0

)
= F (0)n → 0 .

Consequently, condition (9.14) and hence (9.12) is satisfied for an integrable X1
with mean zero and a continuous distribution function. Condition (9.3), which was
vital in the general case, is not needed. Moreover, using again g (x) = c (x) = x
and the fact that X1, . . . , Xn are real-valued, we get Bn = {∑n

i=1 X
2
i > 0

}
. But

P (Bn) = 1 for all n ≥ 1 if X1, . . . , Xn are independent and identically distributed
with a continuous distribution function so that condition (9.13) is trivially satisfied.
Note that, as before, condition (9.3) as well as the second moment condition (9.5)
are not needed. Continuity of the distribution function alone is sufficient here. Thus
we have seen that the two conditions (9.12) and (9.13) which are essential for a
reasonable definition of Fn,c are satisfied whenever X1 is integrable with mean zero
and has a continuous distribution function, i.e., in the setup of example (i).

The explicit definition of Fn,c on An ∩ Bn is given by

Fn,c (x) =
n∑

i=1

1

n (1 + tn Xi )
1(−∞,x] (Xi ) , x ∈ R , (9.15)

with tn being the unique real number in the set

Mn =
{
t ∈ R : 1 + t Xi >

1

n
for i = 1, . . . , n

}

=
((

1

n
− 1

)
1

max1≤i≤n Xi
,

(
1

n
− 1

)
1

min1≤i≤n Xi

)
(9.16)

with
n∑

i=1

Xi

1 + tn Xi
= 0 . (9.17)

The fact that in example (i) the set Mn equals the open interval given in (9.16) will
be crucial in the next section.
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9.3 The Asymptotic Distributional Behaviour of Fn,c for Two
Classes of Centered RandomVariables with Infinite Variance

Recall that a real-valued positive measurable function L defined on some interval
(x0,∞) is called slowly varying at infinity if

L (λx)

L (x)
→ 1 as x → ∞ for all λ ∈ (0,∞) .

Because we will exclusively use functions which are slowly varying at infinity we
will drop the specification “at infinity” in the sequel. A standard reference on slowly
varying functions is the monograph (Bingham et al. 1987).

Nowwe can introduce the two classes of random variables which wewill consider
in this section:

Class 1 contains all continuous distribution functions F for which there exist
constants p−, p+ ∈ [1, 2),−∞ < x− < 0 < x+ < ∞ and slowly varying functions
L−, L+ such that

F (x) = (−x)−p− L− (−x) for all x ∈ (−∞, x−)

and

1 − F (x) = x−p+L+ (x) for all x ∈ (x+, ∞) .

Moreover, we assume that a random variable X with distribution function F is
integrable (which is automatically satisfied if p− > 1 and p+ > 1, but not if p− = 1
or p+ = 1) and has mean zero. Note that X always has infinite variance.

Class 2 contains all continuous distribution functions F for which there exist
constants −∞ < x− < 0 < x+ < ∞ and a slowly varying function L such that

F (x) = x−2L (−x) for all x ∈ (−∞, x−)

and

1 − F (x) = x−2L (x) for all x ∈ (x+, ∞) .

Moreover, we assume that a random variable X with distribution function F has
mean zero (note that X is always integrable) and infinite variance (which is not
automatically true but holds, for example, if L (x) = 1 for all large x).

Remark Recall that a positive measurable function f which is defined on an interval
(x0,∞) is called regularly varying at infinity of index ρ ∈ R if f (x) = xρL (x)
for x ∈ (x0, ∞) with some slowly varying function L; see Bingham et al. (1987),
Theorem 1.4.1 and the Definition on p. 18. Thus, for F in Class 1 the tail-sum
1 − F (x) + F (−x) is the sum of two functions which are regularly varying at
infinity of index −p+ and −p−, respectively, and therefore is regularly varying at
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infinity of index max (−p+,−p−) = −min (p+, p−) according to Bingham et al.
(1987), Proposition 1.5.7 (iii). For all large x ∈ R we have

1 − F (x)

1 − F (x) + F (−x)
= x−p+L+ (x)

x−p+L+ (x) + x−p−L− (x)
= L+ (x)

L+ (x) + x p+−p−L− (x)
.

If p+ > p−, then for any positive ε < 1
2 (p+ − p−) the Potter bounds on L+ and

L− (see Bingham et al. (1987), Theorem 1.5.6 (i)) imply

L+ (x) ≤ Aεx
ε and L− (x) ≥ Bεx

−ε for all large x ∈ R

with positive constants Aε and Bε depending only on ε. Therefore, for all large
x ∈ R,

1 − F (x)

1 − F (x) + F (−x)
≤ L+ (x)

x p+−p−L− (x)
≤ Aε

Bε

x−(p+−p−)+2ε → 0 as x → ∞

because − (p+ − p−) + 2ε < 0. An immediate consequence is

F (−x)

1 − F (x) + F (−x)
→ 1 as x → ∞ .

For p+ < p− a similar argument gives

1 − F (x)

1 − F (x) + F (−x)
→ 1 and

F (−x)

1 − F (x) + F (−x)
→ 0 as x → ∞ .

Consequently, if p+ 
= p−, then the tail-balance condition (8.3.6) in Bingham et al.
(1987) is satisfied, and by Theorem 8.3.1 (ii) in Bingham et al. (1987) we conclude
that F belongs to the domain of attraction of a non-normal stable law; for a discussion
of non-normal stable laws and their domains of attraction consult Bingham et al.
(1987), Sects. 8.3.1 and 8.3.2.

If p+ = p−, then

1 − F (x)

1 − F (x) + F (−x)
= L+ (x)

L+ (x) + L− (x)
= 1

1 + L− (x) /L+ (x)
,

and the existence of the limit

lim
x→∞

1 − F (x)

1 − F (x) + F (−x)
(in [0, 1])

is equivalent to the existence of the limit

lim
x→∞

L− (x)

L+ (x)
(in [0,∞]) .
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Since the last limit may or may not exist, F may or may not belong to the domain
of attraction of a non-normal stable law.

For the remaining part of this section let (Xi )i≥1 be a sequence of independent
and identically distributed random variables with common distribution function F
in Class 1 or Class 2. According to Sect. 9.2, the empirical distribution function
Fn,c based on X1, . . . , Xn is well-defined with probability converging to one as n
tends to infinity, and our main result in this note describes its distance to the classical
empirical distribution function

Fn (x) = 1

n

n∑

i=1

1(−∞,x] (Xi ) , x ∈ R ,

based on X1, . . . , Xn .

Theorem For F in Class 1 or Class 2 we have

n1/2
∥
∥Fn,c − Fn

∥
∥ = oP (1) as n → ∞ . (9.7)

For the proof of this theorem we need two auxiliary results which will be formulated
as lemmas.

Lemma 1 Let F be a continuous distribution function forwhich there exist constants
p > 0 and 0 < x0 < ∞ and a slowly varying function L such that

1 − F (x) = x−pL (x) for all x ∈ (x0,∞) . (9.18)

If (Xi )i≥1 is a sequence of independent and identically distributed random variables
with common distribution function F, then, as n → ∞,

max1≤i≤n Xi

an
= OP (1) (9.19)

and
an

max1≤i≤n Xi
= OP (1) , (9.20)

where an = n1/p L̃ (n) for some slowly varying function L̃ which depends only on
the exponent p and the slowly varying function L.

Proof According to Assumption (9.18) the function 1 − F is regularly varying at
infinity of index −p. Therefore, F is in the max-domain of attraction of the Fréchet
extreme value distribution Φp (see e.g. Bingham et al. (1987), Theorem 8.13.2),
which means that there exist constants an such that

max1≤i≤n Xi

an

L→ Yp as n → ∞ ,
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whereYp is a randomvariablewith distributionΦp . This gives (9.19). By the continu-
ous mapping theorem, the sequence

(
an/max1≤i≤n Xi

)
n≥1 converges in distribution

so that (9.20) holds as well. To complete the proof of the lemma, it therefore remains
to determine the constants an . According to Bingham et al. (1987), Theorem 8.13.2,
we can take

an = inf

{
x : 1 − F (x) ≤ 1

n

}
= inf

{
x : 1

1 − F (x)
≥ n

}
=

(
1

1 − F

)←
(n) ,

where f ← (u) = inf {x : f (x) ≥ u} denotes the generalized inverse of a real-valued
locally bounded function f with f (x) → ∞ as x → ∞. By Bingham et al. (1987),
Proposition 1.5.7 (i), the function 1

1−F is regularly varying at infinity of index p so

that by Bingham et al. (1987), Theorem 1.5.12, the function
(

1
1−F

)←
is regularly

varying at infinity of index 1
p . Therefore, by Bingham et al. (1987), Theorem 1.4.1,

we have
(

1

1 − F

)←
(x) = x1/p L̃ (x)

for some slowly varying function L̃ so that an = n1/p L̃ (n). Note that by (9.18) the
right tail of F is completely determined by the exponent p and the slowly vary-

ing function L , and that
(

1
1−F

)←
is a function of F . Therefore, L̃ is completely

determined by p and L , too. This completes the proof of the lemma. �

Since results for max1≤i≤n Xi can be immediately transferred into results for
min1≤i≤n Xi through the relation

min
1≤i≤n

Xi = − max
1≤i≤n

(−Xi ) ,

Lemma 1 yields the following

Corollary Let F be a continuous distribution function forwhich there exist constants
p > 0 and −∞ < x0 < 0 and a slowly varying function L such that

F (x) = (−x)−p L (−x) for all x ∈ (−∞, x0) .

If (Xi )i≥1 is a sequence of independent and identically distributed random variables
with common distribution function F, then, as n → ∞,

min1≤i≤n Xi

an
= OP (1) (9.21)

and
an

min1≤i≤n Xi
= OP (1) , (9.22)

where an = n1/p L̃ (n) for some slowly varying function L̃ which depends only on
the exponent p and the slowly varying function L.
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The next lemma is crucial for handling distribution functions from Class 2.

Lemma 2 If (Xi )i≥1 is a sequence of independent and identically distributed ran-
dom variables with common distribution function in Class 2, then

(
n∑

i=1

X2
i

)−1/2 n∑

i=1

Xi = OP (1) as n → ∞ .

Proof We first show that any distribution function F fromClass 2 is in the domain of
attraction of the normal distribution; for a definition of this notion see e.g. Bingham
et al. (1987), Sect. 8.3.1. For this, we will apply the normal convergence criterion in
Bingham et al. (1987), Theorem 8.3.1 (i). Fix x0 ≥ max (x+, −x−) where x+ and
x− are specified according to the definition of Class 2. For all x ∈ (x0, ∞), using the
tail-symmetry of F , we decompose the truncated variance V (x) = ∫ x

−x t
2 dF (t) of

F as

V (x) =
∫ x0

−x0
t2 dF (t) + 2

∫ x

x0
t2 dF (t) .

For the second summand on the right hand side we find, by an integration by parts,

∫ x

x0
t2 dF (t) = 2

∫ x

x0
t (1 − F (t)) dt − x2 (1 − F (x)) + x20 (1 − F (x0))

= 2
∫ x

x0

L (t)

t
dt − L (x) + x20 (1 − F (x0)) .

The first summand on the right hand side is slowly varying by Bingham et al.
(1987), Proposition 1.5.9a, so that V (x) is the sum of slowly varying functions and
hence slowly varying by Bingham et al. (1987), Proposition 1.3.6 (iii). According to
Bingham et al. (1987), Theorem 8.3.1 (i) this is equivalent to F being in the domain
of normal attraction. Because X1 has mean zero, Theorem 1.4 in Chistyakov and

Götze (2004) implies that
(∑n

i=1 X
2
i

)−1/2 ∑n
i=1 Xi converges in distribution to a

normal distribution and is therefore bounded in probability. �

Now we are prepared to give the
Proof of the Theorem Recall from Sect. 9.2 that on the event An ∩ Bn with

An =
{
min
1≤i≤n

Xi < 0 < max
1≤i≤n

Xi

}
and Bn =

{
n∑

i=1

X2
i > 0

}

the empirical distribution function Fn,c is defined by

Fn,c (x) =
n∑

i=1

1

n (1 + tn Xi )
1(−∞,x] (Xi ) , x ∈ R , (9.15)
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where tn is the unique real number in

Mn =
((

1

n
− 1

)
1

max1≤i≤n Xi
,

(
1

n
− 1

)
1

min1≤i≤n Xi

)

with
n∑

i=1

Xi

1 + tn Xi
= 0 . (9.17)

As shown in Sect. 9.2 we have P (An ∩ Bn) → 1 as n → ∞ so that for assertion
(9.7) it plays no role how Fn,c is defined on the complement of the event An ∩ Bn .
Therefore, we can and will ignore this complement completely and for simplicity
assume w.l.o.g. from now on that An ∩ Bn is the whole sample space and that Fn,c

is defined by (9.15) and (9.17) on this whole sample space. Then

Fn,c (x) − Fn (x) = 1

n

n∑

i=1

1

1 + tn Xi
1(−∞,x] (Xi ) − 1

n

n∑

i=1

1(−∞,x] (Xi )

= 1

n

n∑

i=1

(

1 − tn Xi + t2n X
2
i

1 + tn Xi

)

1(−∞,x] (Xi )

− 1

n

n∑

i=1

1(−∞,x] (Xi )

= −1

n
tn

n∑

i=1

Xi1(−∞,x] (Xi ) + 1

n
t2n

n∑

i=1

X2
i

1 + tn Xi
1(−∞,x] (Xi )

and 1 + tn Xi > 1
n for i = 1, . . . , n so that the second summand on the right hand

side of this chain of equations is nonnegative. Therefore, we get

n1/2 sup
x∈R

∣
∣Fn,c (x) − Fn (x)

∣
∣ ≤ n−1/2 |tn|

n∑

i=1

|Xi | + n−1/2t2n

n∑

i=1

X2
i

1 + tn Xi
.

Moreover, by (9.17),

0 =
n∑

i=1

Xi

1 + tn Xi
=

n∑

i=1

1 + tn Xi − tn Xi

1 + tn Xi
Xi =

n∑

i=1

Xi − tn

n∑

i=1

X2
i

1 + tn Xi

so that

tn

n∑

i=1

X2
i

1 + tn Xi
=

n∑

i=1

Xi . (9.23)

This gives

n−1/2t2n

n∑

i=1

X2
i

1 + tn Xi
= n−1/2tn

n∑

i=1

Xi ≤ n−1/2 |tn|
n∑

i=1

|Xi |
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so that

n1/2 sup
x∈R

∣
∣Fn,c (x) − Fn (x)

∣
∣ ≤ 2n−1/2 |tn|

n∑

i=1

|Xi | = 2n1/2 |tn| 1
n

n∑

i=1

|Xi | .

Because of E (|X1|) < ∞ the law of large numbers implies that 1
n

∑n
i=1 |Xi | con-

verges almost surely and is therefore bounded in probability. Consequently, it is
sufficient to show that

n1/2tn = oP (1) as n → ∞ . (9.24)

Because of tn ∈ Mn we have

(
1

n
− 1

)
1

max1≤i≤n Xi
< tn <

(
1

n
− 1

)
1

min1≤i≤n Xi
.

Lemma 1 and its Corollary yield, by (9.20) and (9.22), as n → ∞,

an
max1≤i≤n Xi

= OP (1) and
bn

min1≤i≤n Xi
= OP (1) (9.25)

for an = n1/p+ L̃+ (n) and bn = n1/p− L̃− (n) with p+ and p− as in the definition of
Classes 1 and 2 and with slowly varying functions L̃+ and L̃−. Hence

|tn| ≤ 1

max1≤i≤n Xi
+ 1

∣
∣min1≤i≤n Xi

∣
∣

≤ 1

min (an, bn)

(
an

max1≤i≤n Xi
+ bn∣

∣min1≤i≤n Xi
∣
∣

)

= 1

min (an, bn)
OP (1) (9.26)

by (9.25).
For distribution functions from Class 1 it follows that, as n → ∞,

n1/2 |tn| ≤ 1

min
(
n−1/2an, n−1/2bn

)OP (1) .

Here

min
(
n−1/2an, n

−1/2bn
) = min

(
n1/p+−1/2 L̃+ (n) , n1/p−−1/2 L̃− (n)

) → ∞

as n → ∞ because 1/p+ − 1/2 > 0, 1/p− − 1/2 > 0 and L̃+, L̃− are slowly vary-
ing; seeBinghamet al. (1987), Proposition 1.3.6 (v). This completes already the proof
of (9.24) for distribution functions from Class 1.
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To verify (9.24) also for distribution functions from Class 2 we use (9.23) to write

n∑

i=1

Xi = tn

n∑

i=1

X2
i

1 + tn Xi
= tn

n∑

i=1

1 + tn Xi − tn Xi

1 + tn Xi
X2
i

= tn

n∑

i=1

X2
i − t2n

n∑

i=1

X3
i

1 + tn Xi
.

Setting Vn = (∑n
i=1 X

2
i

)1/2
we obtain

(
n1/2tn

) (
n−1/2Vn

) = 1

Vn

n∑

i=1

Xi + t2n
Vn

n∑

i=1

X3
i

1 + tn Xi
.

From E
(
X2
1

) = ∞ it follows that 1
n

∑n
i=1 X

2
i converges to infinity almost surely so

that

n−1/2Vn =
(
1

n

n∑

i=1

X2
i

)1/2

→ ∞ almost surely as n → ∞ .

Therefore, to prove (9.24) it remains to show that

1

Vn

n∑

i=1

Xi + t2n
Vn

n∑

i=1

X3
i

1 + tn Xi
= OP (1) as n → ∞ . (9.27)

The first summand on the left hand side of (9.27) is bounded in probability by
Lemma 2. For the second summand we have (recall that 1 + tn Xi is positive for
i = 1, . . . , n)

∣
∣
∣
∣∣
t2n
Vn

n∑

i=1

X3
i

1 + tn Xi

∣
∣
∣
∣∣
≤ t2n

Vn

(
max
1≤i≤n

|Xi |
) n∑

i=1

X2
i

1 + tn Xi
= tn

Vn

(
max
1≤i≤n

|Xi |
) n∑

i=1

Xi

≤ |tn|max

(
max
1≤i≤n

Xi ,

∣
∣∣
∣ min
1≤i≤n

Xi

∣
∣∣
∣

)
1

Vn

∣
∣
∣
∣
∣

n∑

i=1

Xi

∣
∣
∣
∣
∣
,

where the equality follows from (9.23). Using (9.26), (9.19) and (9.21) as well as
Lemma 2 this bound is less than or equal to

max (an, bn)

min (an, bn)
OP (1) .

But for distribution functions from Class 2 we have an = n1/2 L̃ (n) and bn =
n1/2 L̃ (n) for the same slowly varying function L̃ because F (x) = x−2L (−x) and
1 − F (x) = x−2L (x) for all x ∈ R with |x | sufficiently large, i.e., the exponent
p = 2 governing the tail decay of F is the same for both tails and so is the slowly
varying function L . According to Lemma 1 and its Corollary this implies that the
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slowly varying function in the definition of an and bn depends only on p = 2 and
L and therefore is the same in both cases. Thus max (an, bn) = min (an, bn). This
completes the proof of

t2n
Vn

n∑

i=1

X3
i

1 + tn Xi
= OP (1) as n → ∞

and of the theorem.
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10AReviewandSomeNewProposals
for Bandwidth Selection
inNonparametricDensity Estimation
forDependentData

Inés Barbeito and Ricardo Cao

10.1 Introduction

This chapter deals with the widely known problem of data-driven choice of smooth-
ing parameters in nonparametric density estimation, which is indeed an important
research area in Statistics (see classical books such as Silverman (1986) and Devroye
(1987), among others, for introductory background in the iid case). Our aim is to
extend the critical review by Cao et al. (1994), for iid data, when dependence is
assumed and to complete and update the review by Cao et al. (1993). Furthermore,
some approaches regarding new techniques for bandwidth selection in density esti-
mation are included. Subsequently, an extensive simulation study is carried out in
order to check the good empirical behaviour of these bandwidth parameters, and also
to compare them critically.

The current state of the art concerning nonparametric density estimation assum-
ing independence has been extensively studied. A great amount of cross-validation
methods proposed for iid data (see Rudemo 1982; Chow et al. 1983; Bowman 1984;
Stone 1984; Marron 1985; Marron 1987; Hall 1983; Hall and Marron 1987a; Hall
and Marron 1987b; Scott and Terrell 1987; Stute 1992; Feluch and Koronacki 1992)
triggered the development of new techniques for the purpose of bandwidth selec-
tion. Apart from the plug-in procedures which have been proposed (see Park and
Marron 1990; Hall and Marron 1991; Sheather and Jones 1991 or Jones et al. 1991),

I. Barbeito (B) · R. Cao
Research Group MODES, CITIC, Faculty of Computer Science, Department of Mathematics,
Universidade da Coruña, Campus de Elviña, 15071 A Coruña, Spain
e-mail: ines.barbeito@udc.es

R. Cao
e-mail: rcao@udc.es

© Springer International Publishing AG 2017
D. Ferger et al. (eds.), From Statistics to Mathematical Finance,
DOI 10.1007/978-3-319-50986-0_10

173



174 I. Barbeito and R.Cao

there was also room for the development of bootstrap methods (see some remark-
able approaches such as Taylor 1989; Hall 1990; Faraway and Jhun 1990; Léger and
Romano 1990; Marron 1992 and Cao 1993). Some critical and extensive simulation
studies were carried out in this context, we only refer to Park and Marron (1990),
Cao et al. (1994) and Jones et al. (1996) for the sake of brevity.

Nonetheless, when the data are generated by a stochastic process observed in
time, they will no longer be iid. In fact, very few papers have dealt with data-driven
bandwidth selectors under stationarity for kernel density estimation. Only a few
approaches appeared concerning this issue. Firstly, the classical cross-validation
method was modified by Hart and Vieu (1990). Hall et al. (1995) also proposed an
adaptation of the plug-in method when dependence is assumed, and a bandwidth
parameter chosen by minimizing an asymptotic expression for the mean integrated
squared error obtained by themselves was established. A deep simulation study in
this context was carried out by Cao et al. (1993). Focusing on bootstrap procedures,
a very recent development was proposed by Barbeito and Cao (2016). It consists
in a smoothed version of the so-called stationary bootstrap by Politis and Romano
(1994), more suitable when our aim is to estimate nonparametrically the density
function. A closed expression for the smoothed stationary bootstrap version of the
mean integrated squared error was also obtained by these authors, so Monte Carlo
approximation is avoided.

Some review papers have already been published concerning bootstrap methods
used in the dependent data setup, such asCao (1999) orKreiss andPaparoditis (2011).
However, to the best of our knowledge, none have dealt with the specific problem of
nonparametric density estimation, which is precisely the aim of this chapter. Section
10.2 presents an up-to-date review of the main methods and justify our choice of the
bandwidths to be compared by simulation. Furthermore, the adaptation of two already
existing methods is established: the modified cross-validation by Stute (1992), when
dependence is considered, and the penalized cross-validation proposed by Estévez-
Pérez et al. (2002) for hazard rate estimation, using it for density estimation. Similarly
to the smoothed stationary bootstrap, a smoothed version of the moving blocks
bootstrap (see Künsch 1989 and Liu and Singh 1992 for the unsmoothed case) is
also established in Sect. 10.3. In addition, a closed expression for the smoothed
moving blocks bootstrap version of the mean integrated squared error is presented
in that section and a bootstrap bandwidth selector is proposed. The performance of
those bandwidth parameters is analyzed via an extensive simulation study in Sect.
10.4, including some concluding remarks. Finally, an Appendix contains the proof
of the result stated in Sect. 10.3.

10.2 A Critical Review of SmoothingMethods

We focus on the problem of estimating the density function in a nonparametric way.
Let us consider a random sample, (X1, . . . , Xn), coming from a population with
density f . Throughout this chapter the kernel density estimator (see Parzen 1962;
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Rosenblatt 1956) is studied,

f̂h(x) = 1

n

n∑

i=1

Kh(x − Xi ),

where Kh(u) = 1
h K
( u
h

)
, K is a kernel function (typically a probability density func-

tion) and h = hn > 0 is the sequence of smoothing parameters or bandwidths. In fact,
the choice of the bandwidth, h, is really important in order to obtain a correct den-
sity estimator, since it regulates the degree of smoothing applied to the data. From
now on, the aim of this chapter is to select the bandwidth when dependent data are
considered.

10.2.1 Cross-ValidationMethods

Three cross-validation procedures are considered in the following. They are all re-
lated by the use of a leave-(2l + 1)-out device when computing the cross-validation
function, which is intended to be minimized. Firstly, the well known leave-(2l + 1)-
out cross-validation proposed by Hart and Vieu (1990) is studied. Thereupon, two
adaptations to our setting of existing methods for hazard rate estimation with de-
pendence and density estimation with iid data are established: the penalized cross-
validation and the modified cross-validation.

10.2.1.1 Leave-(2l + 1)-Out Cross-Validation
This method (see Hart and Vieu 1990) is the adaptation to dependence of the classic
leave-one-out cross-validation procedure for iid data proposed by Bowman (1984).
Its aim is to minimize the cross-validation function (namely, CVl ) in order to obtain
the optimal bandwidth parameter, where CVl is given by:

CVl(h) =
∫

f̂ 2(x)dx − 2

n

n∑

j=1

f̂ j
l (X j ),

being

f̂ j
l (x) = 1

nl

n∑

i :| j−i |>l

1

h
K

(
x − Xi

h

)
,

and l is a sequence of positive integers known as the ‘leave-out’ sequence. It is also
worth mentioning that nl is chosen as follows:

nl = #{(i, j) : |i − j | > l}
n

.



176 I. Barbeito and R.Cao

Finally, the leave-(2l + 1)-out cross-validation bandwidth is defined as:

hCVl = argmin
h>0

CVl(h).

The asymptotic optimality of the method for a certain class of l, assuming some
regularity conditions over the stationary process, is also stated by Hart and Vieu
(1990). The convergence rates of hCVl are studied by Cox and Kim (1997), where
regularity conditions are also assumed. It is worth mentioning that the regularity
conditions imposed by Hart and Vieu (1990) demand short-range dependence of
the underlying process. This issue is taken up by Hall et al. (1995) in their plug-in
procedure (see Sect. 10.2.2) since they assume conditions of long-range dependence.

10.2.1.2 Penalized Cross-Validation
The penalized cross-validation (PCV) method was proposed by Estévez-Pérez et al.
(2002) for hazard rate estimation under dependence in order to avoid undersmoothed
estimations. As a consequence, they stated a penalization for the cross-validation
bandwidth hCVl . In this chapter, we propose an adaptation to density estimation
under dependence. It consists in adding to the value hCVl , obtained by means of
Hart and Vieu (1990) cross-validation procedure, a parameter empirically chosen
and somehow related with the estimated autocorrelation.

Specifically, the PCV bandwidth selector is

hPCV = hCVl + λ̄,

where λ̄ turns out to be

λ̄ =
(
0.8e7.9ρ̂−1

)
n−3/10 hCVl

100
,

and ρ̂ is the estimated autocorrelation of order 1. In fact, as ρ̂ increases, so does the
bandwidth parameter, hPCV . It is worth pointing out that hPCV is obtained in such
a way that it is still consistent, according to the consistency of both ρ̂ and hCVl .

10.2.1.3 Modified Cross-Validation
An extension to dependent data of the modified cross-validation for iid data (see
Stute 1992) is described now. In the independent case, the aim of this approach
consists in avoiding undersmoothed estimations of the density function, considering
awaywhich definitely differs from the usual. In this sense, this approach is based on a
finite sample rather than an asymptotic argument, focusing on a statistic whoseHajek
projection contains the unknown

∫
f̂h(x) f (x)dx , which takes part in the I SE(h)

expression. This is precisely the function studied by cross-validation procedures.
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Themain difference between the dependent case (SMCV) and the iid case (MCV)
is the idea of leaving out 2l + 1 points (as in Hart and Vieu 1990) when computing
the function intended to be minimized, SMCV (h).

SMCV (h) = 1

nh

∫
K 2(t)dt

+ 1

n(n − 1)h

∑

i �= j

[
1

h

∫
K

(
x − Xi

h

)
K

(
x − X j

h

)
dx

]

− 1

nnlh

n∑

j=1

n∑

i :| j−i |>l

[
K

(
Xi − X j

h

)
− dK ′′

(
Xi − X j

h

)]
,

where d = 1
2

∫
t2K (t)dt . Then the SMCV bandwidth selector is

hSMCV = argmin
h>0

SMCV (h).

As for the consistency of the method, similar results as those for the iid case
can be obtained, assuming some regularity and moment conditions on the stochastic
process.

10.2.2 Plug-In Method

Hall et al. (1995) proposed the plug-in when assuming dependence (see Sheather
and Jones 1991 for the iid case). The key of this method is to minimize, in h,
the AMI SE(h) expression obtained for dependent data, assuming that f is six
times differentiable, and considering R( f ) = ∫ f (x)2dx , R( f ′′) = ∫ f ′′(x)2dx ,
R( f ′′′) = ∫ f ′′′(x)2dx and μk = ∫ zk K (z)dz. The AMISE expression is given by:

AMI SE(h) = 1

nh
R(K ) + 1

4
h4μ2

2R( f ′′) − h6
1

24
μ2μ4R( f ′′′) (10.1)

+1

n

(
2
n−1∑

i=1

(
1 − i

n

)∫
gi (x, x)dx − R( f )

)
,

where gi (x1, x2) = fi (x1, x2) − f (x1) f (x2), and fi is the density of (X j , Xi+ j ).

Minimizing expression (10.1) in h leads to the plug-in bandwidth selector,

ĥ =
(
Ĵ1
n

)1/5

+ Ĵ2

(
Ĵ1
n

)3/5

,
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where Ĵ1 is an estimator of J1 = R(K )

μ2
2R( f ′′)

, and Ĵ2 is an estimator of J2 =
μ4R( f ′′′)
20μ2R( f ′′)

.

Thereupon, Hall et al. (1995) propose to replace directly R( f ′′) and R( f ′′′) by
their respective estimators, that is, Î2 and Î3, that can be obtained as follows:

Îk = 2θ̂1k − θ̂2k, k = 2, 3

where θ̂1k and θ̂2k are the respective estimators of θ1k =
∫ (

E( f̂1)
)
f (k), θ2k =

∫ (
E( f̂ (k)

1 )
)2
, k = 1, 2, 3, and, f̂1 is the nonparametric Parzen-Rosenblatt density

estimator obtained with a kernel K1 and a bandwidth h1. The upcoming expressions
are obtained for θ̂1k and θ̂2k :

θ̂1k = 2
(
n(n − 1)h2k+1

1

)−1 ∑∑

1≤i< j≤n

K (2k)
1

(
Xi − X j

h1

)
,

θ̂2k = 2
(
n(n − 1)h2(k+1)

1

)−1 ∑∑

1≤i< j≤n

∫
K (k)
1

(
x − Xi

h1

)
K (k)
1

(
x − X j

h1

)
dx .

Under somemoment and regularity conditions on the stationary process, assuming
the differentiability of the kernel K1, and choosing h1 verifyingn−1/(4k+1) ≤ h1 ≤ 1;
Hall et al. (1995) proved that this plug-in method under dependence is consistent.

10.2.3 Bootstrap-Based Procedures

Since the introduction of the bootstrap method by Efron (1979), this technique has
been widely used to approximate the sampling distribution of a statistic of interest
(see Efron and Tibishirani 1993 for a deeper insight of the bootstrap method and its
applications).

The essential idea to compute a bootstrap bandwidth selector is to obtain the
bootstrap version of the mean integrated squared error (namely, MI SE) and to find
the smoothing parameter that minimizes this bootstrap version, given by

MI SE∗(h) = E
∗
[∫ (

f̂ ∗
h (x) − f̂g(x)

)2
dx

]

= B∗(h) + V ∗(h),
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with

B∗(h) =
∫ [

E
∗ ( f̂ ∗

h (x)
)

− f̂g(x)
]2

dx , and

V ∗(h) =
∫

Var∗
(
f̂ ∗
h (x)

)
dx,

where E∗ denotes the expectation (Var∗, the variance) with respect to the bootstrap
sample X∗

1, . . . , X
∗
n , g is some pilot bandwidth, f̂g is a kernel density estimation

based on the sample X1, . . . , Xn , and f̂ ∗
h is the bootstrap version of the kernel

density estimator with bandwidth h, based on the resample X∗
1, . . . , X

∗
n .

In the iid case, the bootstrapmethod has been used to produce bandwidth selectors
(see, for instance, Cao 1993). The idea is basically to use the smoothed bootstrap
proposed by Silverman and Young (1987) to approximate the MI SE of the kernel
density estimator.

Themain disadvantage of this procedure, however, is the necessity ofMonte Carlo
approximation whenever the bootstrap distribution of the bootstrap version of the
statistic of interest cannot be explicitly computed. Nevertheless, as shown below,
when dependence is considered, both smoothed stationary bootstrap (see Barbeito
and Cao 2016) and smoothed moving blocks bootstrap (proposed subsequently)
techniques, need no Monte Carlo in order to implement the bootstrap bandwidths.

10.2.3.1 Smoothed Stationary Bootstrap
This bootstrap resampling plan was proposed by Barbeito and Cao (2016). It is
actually a smoothed version of the stationary bootstrap (see Politis and Romano
1994), that is, the bootstrap sample used in Eq. (10.2) below is drawn from the pilot
density estimate f̂g . The pilot bandwidth g is proposed to be chosen as in the iid
case (basic results involving this choice can be found in Cao 1993). The smoothed
stationary bootstrap, SSB (see Cao 1999 for the unsmoothed case, SB), proceeds as
follows:

1. Draw X∗(SB)
1 from Fn , the empirical distribution function of the sample.

2. Define X∗
1 = X∗(SB)

1 + gU∗
1 , where U

∗
1 has been drawn with density K and in-

dependently from X∗(SB)
1 .

3. Assume we have already drawn X∗
1, . . . , X

∗
i (and, consequently, X∗(SB)

1 , . . . ,

X∗(SB)
i ) and consider the index j , for which X∗(SB)

i = X j . We define a bi-
nary auxiliary random variable I ∗

i+1, such that P∗ (I ∗
i+1 = 1

) = 1 − p and

P∗ (I ∗
i+1 = 0

) = p. We assign X∗(SB)
i+1 = X( j mod n)+1 whenever I ∗

i+1 = 1 and

we use the empirical distribution function for X∗(SB)
i+1 |I ∗

i+1=0, where mod stands
for the modulus operator.

4. Once drawn X∗(SB)
i+1 , we define X∗

i+1 = X∗(SB)
i+1 + gU∗

i+1, where, again,U
∗
i+1 has

been drawn from the density K and independently from X∗(SB)
i+1 .



180 I. Barbeito and R.Cao

In order to obtain the bandwidth parameter h∗
SSB , Monte Carlo is not needed

because of the explicit formula for the smoothed stationary bootstrap version of the
MI SE(h), given by:

MI SE∗
SSB (h) = n−2

n∑

i, j=1

(
Kg ∗ Kg

) (
Xi − X j

)

− 2n−2
n∑

i, j=1

(
Kh ∗ Kg ∗ Kg

) (
Xi − X j

)

+
[
n − 1

n3
− 2

1 − p − (1 − p)n

pn3

+ 2
(n − 1) (1 − p)n+1 − n (1 − p)n + 1 − p

p2n4

]

×
n∑

i, j=1

[(
Kh ∗ Kg

) ∗ (Kh ∗ Kg
)] (

Xi − X j
)

+ n−1h−1R (K ) (10.2)

+ 2n−3
n−1∑

�=1

(n − �) (1 − p)�
n∑

k=1

[(
Kh ∗ Kg

) ∗ (Kh ∗ Kg
)]

(
Xk − X�(k+�−1) mod n�+1

)
.

The proof of the previous result can be found in Barbeito and Cao (2016), where an
exact expression for MI SE(h) under dependence and stationarity is also obtained.
The bootstrap smoothing parameter h∗

SSB turns out to be the one which minimizes
in h the function in (10.2), that is:

h∗
SSB = h∗SSB

M I SE = argmin
h>0

MI SE∗
SSB(h).

Similarly to the SSB, in a density estimation context it makes more sense to build
a smoothed version of the moving blocks bootstrap by Künsch (1989) and Liu and
Singh (1992). The method is presented in the next section, where a closed formula
for its bootstrap version of MI SE is also stated.

10.3 SmoothedMoving Blocks Bootstrap

The smoothed moving blocks bootstrap, SMBB (see Cao (1999) for the unsmoothed
case, MBB), proceeds as follows:

1. Fix the block length, b ∈ N, and define k = min�∈N � ≥ n
b
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2. Define:

Bi,b = (Xi , Xi+1, . . . , Xi+b−1)

3. Draw ξ1, ξ2, . . . , ξk with uniform discrete distribution on {B1, B2, . . . , Bq}, with
q = n − b + 1

4. Define X∗(MBB)
1 , . . . , X∗(MBB)

n as the first n components of

(ξ1,1, ξ1,2, . . . , ξ1,b, ξ2,1, ξ2,2 . . . , ξ2,b, . . . , ξk,1, ξk,2, . . . , ξk,b)

5. Define X∗
i = X∗(MBB)

i + gU∗
i , where U∗

i has been drawn with density K and

independently from X∗(MBB)
i , for all i = 1, 2, . . . , n

This resampling plan depends on a parameter b, which is the block length, to be
chosen by the user. The pilot bandwidth, g, also needs to be chosen. The following
result presents an exact expression for the smoothedmoving blocks bootstrap version
of the MI SE(h).

Theorem 1 If the kernel K is a symmetric density function, then the smoothed mov-
ing blocks bootstrap version of M I SE admits the following closed expression, con-
sidering n an integer multiple of b:

1. If b < n,

M I SE∗
SMBB(h) = R(K )

nh
+

n∑

i=1

ai

n∑

j=1

a jψ(Xi − X j )

− 2

n

n∑

i=1

ai

n∑

j=1

[(
Kh ∗ Kg

) ∗ Kg
]
(Xi − X j )

+ 1

n2

n∑

i=1

n∑

j=1

[
Kg ∗ Kg

]
(Xi − X j )

− b − 1

n(n − b + 1)2

n−b+1∑

i=b−1

n−b+2∑

j=b

ψ(Xi − X j )

− 1

nb(n − b + 1)2

⎡

⎣
b−1∑

i=1

b−1∑

j=1

min{i, j}ψ(Xi − X j )

+
b−1∑

i=1

i
n−b+1∑

j=b

ψ(Xi − X j )

+
b−1∑

i=1

n∑

j=n−b+2

min{(n − b + i − j + 1), i}ψ(Xi − X j )

+
n−b+1∑

i=b

b−1∑

j=1

jψ(Xi − X j )
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+
n∑

i=n−b+2

min{(n − i + 1), b}
n−b+1∑

j=b

ψ(Xi − X j )

+
n−b+1∑

i=b

n∑

j=n−b+2

min{(n − j + 1), b}ψ(Xi − X j )

+
n∑

i=n−b+2

b−1∑

j=1

min{(n − b + j − i + 1), j}ψ(Xi − X j )

+b
n−b+1∑

i=b

n−b+1∑

j=b

ψ(Xi − X j )

+
n∑

i=n−b+2

n∑

j=n−b+2

(n + 1 − max{i, j}) ψ(Xi − X j )

⎤

⎦

+ 2

nb(n − b + 1)

b−1∑

s=1

n−s∑

j=1

(min{ j, b − s}

−max{1, j + b − n} + 1)ψ(X j+s − X j )

− 2

nb(n − b + 1)2

⎡

⎢⎢⎣
b∑

k,�=1
k<�

⎡

⎣
b−2∑

i=k

b−1∑

j=�

ψ(Xi − X j )

+
n−b+k∑

i=n−b+2

n−b+�∑

j=n−b+3

ψ(Xi − X j )

+
b−2∑

i=k

n−b+�∑

j=n−b+3

ψ(Xi − X j ) +
n−b+k∑

i=n−b+2

b−1∑

j=�

ψ(Xi − X j )

⎤

⎦

+
b−1∑

k=1

(b − k)
b−2∑

i=k

n−b+2∑

j=b

ψ(Xi − X j )

+
b∑

�=2

(� − 1)
n−b+1∑

i=b−1

b−1∑

j=�

ψ(Xi − X j )

+
b∑

�=2

(� − 1)
n−b+1∑

i=b−1

n−b+�∑

j=n−b+3

ψ(Xi − X j )

+
b−1∑

k=1

(b − k)
n−b+k∑

i=n−b+2

n−b+2∑

j=b

ψ(Xi − X j )

⎤

⎦ ,
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where ψ(u) = [(Kh ∗ Kg
) ∗ (Kh ∗ Kg

)]
(u) and:

a j = min{ j, n − j + 1, b}
b(n − b + 1)

, j = 1, 2, . . . , n. (10.3)

2. If b = n,

M I SE∗
SMBB(h) = R(K )

nh
+ 1

n2

n∑

i=1

n∑

j=1

ψ(Xi − X j )

− 2

n2

n∑

i=1

n∑

j=1

[(
Kh ∗ Kg

) ∗ Kg
]
(Xi − X j )

+ 1

n2

n∑

i=1

n∑

j=1

[
Kg ∗ Kg

]
(Xi − X j )+ψ(0)

n
.

Theorem1 is proven in the Appendix.
A bootstrap bandwidth selector, h∗

SMBB , can be defined as the minimizer, in h, of
MI SE∗(h) given in Theorem1.

h∗
SMBB = h∗SMBB

MI SE = argmin
h>0

MI SE∗
SMBB(h).

It is worth mentioning that the exact expression for the MI SE∗
SMBB(h) is really

useful since Monte Carlo approximation is not necessary to compute the bootstrap
bandwidth selector.

Remark 1 The closed expression for MI SE∗
SMBB in Theorem1 has been worked

out in order to alleviate its computational cost. Alternative closed expressions for
MI SE∗

SMBB could be easier and shorter to write but they would imply a larger
computational cost when implemented.

10.4 Simulations

10.4.1 General Description of the Study

A simulation study is carried out to compare the practical behaviour of the bandwidth
parameters described in Sect. 10.2, that is, hCVl , hPCV , hSMCV , hP I , h∗

SSB and
h∗
SMBB . We will consider seven different populations (six of them already used by

Cao et al. 1993 and Barbeito and Cao 2016) so as to show the empirical results of
every bandwidth in different situations:
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Model 1: The sample is drawn from an AR(2) model given by Xt = −0.9Xt−1 −
0.2Xt−2 + at , where at are i id random variables with common distribu-

tion N (0, 1). The marginal distribution is Xt
d= N (0, 0.42).

Model 2: A MA(2) model given by Xt = at − 0.9at−1 + 0.2at−2 is considered,
where the innovations at are i id standard normal random variables. The

marginal distribution is Xt
d= N (0, 1.85).

Model 3: An AR(1) model: Xt = φXt−1 + (1 − φ2)1/2at . Here at are i id random
variables with common standard normal distribution. The autocorrelation
was set to the values φ = ±0.3, ±0.6,±0.9. The marginal distribution is
a standard normal.

Model 4: The time series is generated from an AR(1) model given by Xt =
φXt−1 + at . In this case, the distribution of at has exponential structure:

P(It = 1) = φ,P(It = 2) = 1 − φ, with

at |It=1
d= 0 (constant), at |It=2

d= exp(1).

The values of φ chosen were φ = 0, 0.3, 0.6, 0.9. The marginal distribu-

tion is Xt
d= exp(1).

Model 5: An AR(1) model with a double-exponential structure: Xt = φXt−1 + at ,
which means that the innovations have to be drawn from the following
distribution:

P(It = 1) = φ2,P(It = 2) = 1 − φ2, with

at |It=1
d= 0 (constant), at |It=2

d= Dexp(1),

The values of φ used were φ = ±0.3,±0.6,±0.9. The marginal distrib-

ution is Xt
d= Dexp(1).

Model 6: A mixture of two normal densities, with probability 1/2 each, associated
to the model:

Xt =
{
X (1)
t with probability 1/2

X (2)
t with probability 1/2

,

where X ( j)
t = (−1) j+1 + 0.5X ( j)

t−1 + a( j)
t with j = 1, 2, ∀t ∈ Z, and

a( j)
t

d= N (0, 0.6). The marginal distribution is a normal mixture Xt
d=

1
2N (2, 0.8) + 1

2N (−2, 0.8).
Model 7: A mixture of three normal densities (Model 9 of Marron and Wand 1992)

inducing dependence using a Markovian regime change:

Xt =

⎧
⎪⎨

⎪⎩

X (1)
t with probability 9/20

X (2)
t with probability 9/20

X (3)
t with probability 1/10

,
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where X ( j)
t = 0.9X ( j)

t−1 + a( j)
t with j = 1, 2, 3, ∀t ∈ Z, and a(1)

t
d=

N (−0.12, 0.0684), a(2)
t

d= N (0.12, 0.0684), a(3)
t

d= N (0, 0.011875). The

marginal distribution is a normal mixture Xt
d= 9

20N
(− 6

5 ,
9
25

)+
9
20N

( 6
5 ,

9
25

)+ 1
10N

(
0, 1

16

)
.

The transition matrix used is given by:

T =
⎛

⎝
0.90790619 0.08152211 0.0105717
0.08152211 0.90790619 0.0105717
0.04757265 0.04757265 0.9048547

⎞

⎠ .

This produces a first order autocorelation of φ = 0.6144.

For everymodel, 1000 random samples of size n = 100were drawn. TheGaussian
kernel is used to compute the Parzen-Rosenblatt estimator. For the three cross-
validation bandwidths the value of l was l = 5. The parameter p used in the SSB
was p = 1

2
√
n
and the parameter b used in the SMBB was b = 2

√
n, while the pilot

bandwidth, g, has been chosen as in Cao (1993) in both cases. The pilot bandwidth
used in the plug-in method was h1 = Ch̃1n4/45, where C = 1.12 and h̃1 is the band-
width chosen as in Sheather and Jones (1991) for iid data. The bandwidth selectors
h∗
SSB , h

∗
SMBB , hCVl and hSMCV are the minimizers, in h, of four empirical functions.

Since these minimizers do not have explicit expressions, a numerical method is used
to approximate them. The algorithm proceeds as follows:

Step 1: Let us consider a set of 5 equally spaced values of h in the interval [0.01, 10].
Step 2: For each method, a bandwidth h is chosen among the five given in the pre-

ceeding step, by minimizing the objective function (MI SE∗
SSB ,

MI SE∗
SMBB , CVl or SMCV ). We denote it by hOPT1 .

Step 3: Among the set of 5 bandwidth parameters defined in Step 1, we consider
the previous and the next one to hOPT1 . If hOPT1 is the smallest (largest)
bandwidth in the grid, then hOPT1 is used instead of the previous (next) value
of hOPT1 in the grid.

Step 4: A set of 5 equally spaced values of h is constructed within the interval whose
endpoints are the two values selected in Step 3.

Step 5: Finally, Steps 2–4 are repeated 10 times, retaining the optimal bandwidth
selector in the last stage.

It is worth mentioning that, to avoid oversmoothing of the SMCV procedure,
hSMCV is considered as the smallest h for which SMCV (h) attains a localminimum,
not its global one.
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The six bandwidth selectors are compared in terms of how close they are to the
optimal MI SE bandwidth and also in terms of the error committed when using
each one of them. Thus, using the 1000 samples, the following expressions were
approximated by simulation:

log

(
ĥ

hM I SE

)
and (10.4)

log

(
MI SE(ĥ)

MI SE(hMI SE )

)
, (10.5)

where ĥ = hCVl , hPCV , hSMCV , hP I , h∗
SSB, h∗

SMBB , and hMI SE is the smoothing
parameter which minimizes the error criterion, MI SE(h).

10.4.2 Discussion and Results

Figures10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7 and 10.8 show boxplots with the
results obtained for expressions (10.4) and (10.5) approximated by simulation. The
simulation results remarkably show that smoothing parameters h∗

SSB and h∗
SMBB

display a similar performance, actually the best one, even for heavy dependence.
For both h∗

SSB and h∗
SMBB , expression (10.4), shown in Figs. 10.1, 10.2, 10.3, 10.4,

10.5, 10.6, 10.7 and 10.8 (left side) exhibit that the median of h∗
SSB and h∗

SMBB is
approximately hMI SE . Moreover, h∗

SSB and h∗
SMBB present less variance than the

three cross-validation smoothing parameters.
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Fig.10.1 Boxplots of log
(
ĥ/hMI SE

)
(left side) and log

(
MI SE(ĥ)/MI SE(hMI SE )

)
(right side)

forModel 1, where ĥ = hCVl (first box), hSMCV (second box), hPCV (third box), h∗
SSB (fourth box),

h∗
SMBB (fifth box) and hP I (sixth box)
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Fig.10.2 Boxplots of log
(
ĥ/hMI SE

)
(left side) and log

(
MI SE(ĥ)/MI SE(hMI SE )

)
(right side)

for Models 2, 6 and 7, where ĥ = hCVl (first box), hSMCV (second box), hPCV (third box), h∗
SSB

(fourth box), h∗
SMBB (fifth box) and hP I (sixth box)
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Fig. 10.3 Boxplots of log
(
ĥ/hMI SE

)
(left side) and log

(
MI SE(ĥ)/MI SE(hMI SE )

)
(right

side) for Model 3 with autocorrelation φ = −0.9,−0.6,−0.3, where ĥ = hCVl (first box), hSMCV

(second box), hPCV (third box), h∗
SSB (fourth box), h∗

SMBB (fifth box) and hP I (sixth box)
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Fig.10.4 Boxplots of log
(
ĥ/hMI SE

)
(left side) and log

(
MI SE(ĥ)/MI SE(hMI SE )

)
(right side)

for Model 3 with autocorrelation φ = 0.3, 0.6, 0.9, where ĥ = hCVl (first box), hSMCV (second
box), hPCV (third box), h∗

SSB (fourth box), h∗
SMBB (fifth box) and hP I (sixth box)
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Fig. 10.5 Boxplots of log
(
ĥ/hMI SE

)
(left side) and log

(
MI SE(ĥ)/MI SE(hMI SE )

)
(right

side) for Model 4 with autocorrelation φ = 0, 0.3, where ĥ = hCVl (first box), hSMCV (second
box), hPCV (third box), h∗

SSB (fourth box), h∗
SMBB (fifth box) and hP I (sixth box)

The three cross-validation bandwidths exhibit a worse behaviour than the boot-
strap selectors. The bandwidth hCVl tends to severely undersmooth for some trials
in almost every model. This is not satisfactorily corrected by hPCV , which, para-
doxically, sometimes shows a general tendency to oversmoothing (see Figs. 10.4e
and 10.8e). Although hSMCV typically corrects the extreme udersmoothing cases of
hCVl and hPCV , on the average it tends to give smaller values than the target hMI SE .
The undersmoothing feature is also present in hP I , which, in turn, for some models,
presents a remarkable proportion of trials with severe oversmoothing.
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Fig.10.6 Boxplots of log
(
ĥ/hMI SE

)
(left side) and log

(
MI SE(ĥ)/MI SE(hMI SE )

)
(right side)

for Model 4 with autocorrelation φ = 0.6, 0.9, where ĥ = hCVl (first box), hSMCV (second box),
hPCV (third box), h∗

SSB (fourth box), h∗
SMBB (fifth box) and hP I (sixth box)

All in all, it is clear in Figs. 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7 and 10.8 (right
side) that the two bootstrap-based bandwidth selectors present the best results in
terms of MI SE . It is also worth pointing out that h∗

SMBB actually performs better
than its main competitor, h∗

SSB , when there exists heavy and positive correlation
(specifically, φ = 0.9), as can be noticed in Figs. 10.4f and 10.8f. Additionally, even
for moderate autocorrelation, it can be easily checked by looking at Fig. 10.2f that,
for Model 7, the empirical behaviour presented by h∗

SMBB is by far the best (in terms
of MI SE). However, Model 7 is in itself difficult to analyze in a nonparametric way,
due to the fact that its underlying theoretical density is trimodal.
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ĥ/hMI SE
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side) for Model 5 with autocorrelation φ = −0.9,−0.6,−0.3, where ĥ = hCVl (first box), hSMCV

(second box), hPCV (third box), h∗
SSB (fourth box), h∗

SMBB (fifth box) and hP I (sixth box)
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for Model 5 with autocorrelation φ = 0.3, 0.6, 0.9, where ĥ = hCVl (first box), hSMCV (second
box), hPCV (third box), h∗
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10.5 Appendix

Proof (Proof of Theorem 1) Let us take into account a random sample (X1, . . . , Xn)

which comes from a stationary process and the smoothed moving blocks bootstrap
version of the kernel density estimator, f̂ ∗

h (x). The bootstrap version of the mean
integrated squared error is given by:

MI SE∗(h) = B∗(h) + V ∗(h), (10.6)

where

B∗(h) =
∫ [

E
∗ ( f̂ ∗

h (x)
)

− f̂g(x)
]2

dx , and

V ∗(h) =
∫

Var∗
(
f̂ ∗
h (x)

)
dx .

Now, straight forward calculations lead to

B∗(h) =

∫
[
E

∗
(
1

n

n∑

i=1

Kh(x − X∗
i )

)
− f̂g(x)

]2
dx

=

∫
[
1

n

n∑

i=1

∫
Kh(x − y) f̂ (i)

g (y)dy − f̂g(x)

]2
dx,

where

f̂ (i)
g (y) = 1

n − b + 1

n−b+ti∑

j=ti

Kg(y − X j ),

considering ti = [(i − 1)mod b] + 1.
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Let us now assume that n is an integer multiple of b:

∫
[
1

n

n∑

i=1

∫
Kh(x − y) f̂ (i)

g (y)dy − f̂g(x)

]2
dx

=

∫
[
1

n

b∑

i=1

n

b

(
Kh ∗ f̂ (i)

g

)
(x) − f̂g(x)

]2
dx

=

∫
[
1

b

b∑

i=1

(
Kh ∗ f̂ (i)

g

)
(x) − f̂g(x)

]2
dx

=

∫ ⎡

⎣1

b

b∑

i=1

⎛

⎝ 1

n − b + 1

n−b+ti∑

j=ti

Kh ∗ Kg(· − X j )

⎞

⎠ (x) − f̂g(x)

⎤

⎦
2

dx

=

∫ ⎡

⎣1

b

b∑

i=1

⎛

⎝ 1

n − b + 1

n−b+ti∑

j=ti

∫
Kh(x − y)Kg(y − X j )dy

⎞

⎠− f̂g(x)

⎤

⎦
2

dx

=

∫ ⎡

⎣1

b

b∑

i=1

⎛

⎝ 1

n − b + 1

n−b+ti∑

j=ti

∫
Kh(x − u − X j )Kg(u)du

⎞

⎠− f̂g(x)

⎤

⎦
2

dx

=

∫ ⎡

⎣1

b

b∑

i=1

⎛

⎝ 1

n − b + 1

n−b+ti∑

j=ti

Kh ∗ Kg(x − X j )

⎞

⎠− f̂g(x)

⎤

⎦
2

dx

=

∫ ⎡

⎣ 1

b(n − b + 1)

b∑

i=1

n−b+ti∑

j=ti

Kh ∗ Kg(x − X j ) − f̂g(x)

⎤

⎦
2

dx .

Furthermore, if b < n

1

b(n − b + 1)

b∑

i=1

n−b+ti∑

j=ti

Kh ∗ Kg(x − X j )

= 1

n − b + 1

n−b+1∑

j=b

Kh ∗ Kg(x − X j ) + 1

b(n − b + 1)

b−1∑

j=1

j (Kh ∗ Kg)(x − X j )
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+ 1

b(n − b + 1)

n∑

j=n−b+2

(n − j + 1)(Kh ∗ Kg)(x − X j )

=
n∑

j=1

a j (Kh ∗ Kg)(x − X j ),

where a j (10.3).
If b = n,

1

b(n − b + 1)

b∑

i=1

n−b+ti∑

j=ti

Kh ∗ Kg(x − X j ) = 1

n

n∑

j=1

Kh ∗ Kg(x − X j )

=
n∑

j=1

a j
(
Kh ∗ Kg

)
(x − X j ),

considering a j = 1

n
, if b = n.

Hence, carrying on with the calculations of the integrated bootstrap bias (including
several changes of variable and using the symmetry of K ) results in:

B∗(h) =

∫
⎡

⎣
n∑

j=1

a j
(
Kh ∗ Kg

)
(x − X j ) − f̂g(x)

⎤

⎦
2

dx

=

∫
⎡

⎣
n∑

j=1

a j
(
Kh ∗ Kg

)
(x − X j ) − 1

n

n∑

j=1

Kg(x − X j )

⎤

⎦
2

dx

=
n∑

j=1

n∑

k=1

∫
[
a j
(
Kh ∗ Kg

)
(x − X j ) − 1

n
Kg(x − X j )

]

×
[
ak
(
Kh ∗ Kg

)
(x − Xk) − 1

n
Kg(x − Xk)

]
dx
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=
n∑

j=1

n∑

k=1

∫
[
a j ak

(
Kh ∗ Kg

)
(x − X j )

(
Kh ∗ Kg

)
(x − Xk)

− 2a j

n

(
Kh ∗ Kg

)
(x − X j )Kg(x − Xk) + 1

n2
Kg(x − X j )Kg(x − Xk)

]
dx

=
n∑

j=1

n∑

k=1

a j ak

∫
[(
Kh ∗ Kg

)
(x − X j )

(
Kh ∗ Kg

)
(x − Xk)

]
dx

− 2

n

n∑

j=1

a j

n∑

k=1

∫
[(
Kh ∗ Kg

)
(x − X j )Kg(x − Xk)

]
dx

+ 1

n2

n∑

j=1

n∑

k=1

∫
[
Kg(x − X j )Kg(x − Xk)

]
dx

=
n∑

j=1

n∑

k=1

a j ak

∫
[(
Kh ∗ Kg

)
(−v)

(
Kh ∗ Kg

)
(X j − Xk − v)

]
dv

− 2

n

n∑

j=1

a j

n∑

k=1

∫
[(
Kh ∗ Kg

)
(−v)Kg(X j − Xk − v)

]
dv

+ 1

n2

n∑

j=1

n∑

k=1

∫
[
Kg(−v)Kg(X j − Xk − v)

]
dv

=
n∑

j=1

n∑

k=1

a j ak
[(
Kh ∗ Kg

) ∗ (Kh ∗ Kg
)]

(X j − Xk)

− 2

n

n∑

j=1

a j

n∑

k=1

[(
Kh ∗ Kg

) ∗ Kg
]
(X j − Xk) + 1

n2

n∑

j=1

n∑

k=1

[
Kg ∗ Kg

]
(X j − Xk).

Thus,

B∗(h) =
n∑

j=1

a j

n∑

k=1

ak
[(
Kh ∗ Kg

) ∗ (Kh ∗ Kg
)]

(X j − Xk) (10.7)

− 2

n

n∑

j=1

a j

n∑

k=1

[(
Kh ∗ Kg

) ∗ Kg
]
(X j − Xk) + 1

n2

n∑

j=1

n∑

k=1

[
Kg ∗ Kg

]
(X j − Xk).
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We now focus on the integrated bootstrap variance, which needs a deeper insight:

V ∗ (h) =
∫

Var∗
(
n−1

n∑

i=1

Kh
(
x − X∗

i

)
)
dx

= n−2
∫ n∑

i=1

Var∗ (Kh
(
x − X∗

i

))
dx

+ n−2
n∑

i, j=1
i �= j

∫
Cov∗ (Kh

(
x − X∗

i

)
, Kh

(
x − X∗

j

))
dx

= n−2
n∑

i=1

∫
E

∗
(
Kh
(
x − X∗

i

)2)
dx

− n−2
n∑

i=1

∫ [
E

∗ (Kh
(
x − X∗

i

))]2
dx

+ n−2
n∑

i, j=1
i �= j

∫
Cov∗ (Kh

(
x − X∗

i

)
, Kh

(
x − X∗

j

))
dx . (10.8)

The first term in (10.8), after some changes of variable, is given by:

n−2
n∑

i=1

∫
E

∗ (Kh
(
x − X∗

i

)2)
dx = n−2

n∑

i=1

∫ [∫
Kh(x − y)2 f̂ (i)

g (y)dy

]
dx

= n−2
n∑

i=1

∫ ⎡

⎣
∫

Kh(x − y)2

⎡

⎣ 1

n − b + 1

n−b+ti∑

j=ti

Kg(y − X j )

⎤

⎦ dy

⎤

⎦ dx

= 1

n2(n − b + 1)

n∑

i=1

n−b+ti∑

j=ti

∫
Kg(y − X j )

[∫
Kh(x − y)2dx

]
dy

= 1

n2(n − b + 1)

n∑

i=1

n−b+ti∑

j=ti

∫
Kg(y − X j )

[
1

h

∫
K (z)2 dz

]
dy

= R(K )

n2(n − b + 1)h

n∑

i=1

n−b+ti∑

j=ti

∫
Kg(y − X j )dy

= R(K )

n2(n − b + 1)h

n∑

i=1

n−b+ti∑

j=ti

∫
K (u) du = R(K )

nh
.

(10.9)
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Focusing now on the second term, including several changes of variable and using
the symmetry of K :

n−2
n∑

i=1

∫ [
E

∗ (Kh
(
x − X∗

i
))]2 dx = n−2

n∑

i=1

∫ [∫
Kh(x − y) f̂ (i)

g (y)dy

]2
dx

= n−1b−1
b∑

i=1

∫ [(
Kh ∗ f̂ (i)

g

)
(x)
]2

dx

= n−1b−1
b∑

i=1

∫
⎡

⎣
n−b+ti∑

j=ti

1

n − b + 1
(Kh ∗ Kg)(x − X j )

⎤

⎦

×
⎡

⎣
n−b+ti∑

k=ti

1

n − b + 1
(Kh ∗ Kg)(x − Xk)

⎤

⎦ dx

= 1

nb(n − b + 1)2

b∑

i=1

n−b+ti∑

j=ti

n−b+ti∑

k=ti

∫
(Kh ∗ Kg)(x − X j )(Kh ∗ Kg)(x − Xk)dx

= 1

nb(n − b + 1)2

b∑

i=1

n−b+ti∑

j=ti

n−b+ti∑

k=ti

∫
(Kh ∗ Kg)(v)(Kh ∗ Kg)(X j − Xk − v)dv

= 1

nb(n − b + 1)2

b∑

i=1

n−b+i∑

j=i

n−b+i∑

k=i

[
(Kh ∗ Kg) ∗ (Kh ∗ Kg)

]
(X j − Xk).

Let us consider the function ψ defined in Theorem 1. Whenever b < n, we have:

n−2
n∑

i=1

∫ [
E

∗ (Kh(x − X∗
j )
)]2

dx

= 1

nb(n − b + 1)2

b∑

i=1

n−b+i∑

j=i

n−b+i∑

k=i

[
(Kh ∗ Kg) ∗ (Kh ∗ Kg)

]
(X j − Xk)

= 1

nb(n − b + 1)2

b∑

i=1

n−b+i∑

j=i

n−b+i∑

k=i

ψ(X j − Xk)

= 1

nb(n − b + 1)2

⎡

⎣
b∑

i=1

b−1∑

j=i

b−1∑

k=i

ψ(X j − Xk)

+
b∑

i=1

b−1∑

j=i

n−b+1∑

k=b

ψ(X j − Xk) +
b∑

i=1

b−1∑

j=i

n−b+i∑

k=n−b+2

ψ(X j − Xk)
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+
b∑

i=1

n−b+1∑

j=b

b−1∑

k=i

ψ(X j − Xk) +
b∑

i=1

n−b+1∑

j=b

n−b+1∑

k=b

ψ(X j − Xk)

+
b∑

i=1

n−b+1∑

j=b

n−b+i∑

k=n−b+2

ψ(X j − Xk) +
b∑

i=1

n−b+i∑

j=n−b+2

b−1∑

k=i

ψ(X j − Xk)

+
b∑

i=1

n−b+i∑

j=n−b+2

n−b+1∑

k=b

ψ(X j − Xk) +
b∑

i=1

n−b+i∑

j=n−b+2

n−b+i∑

k=n−b+2

ψ(X j − Xk)

⎤

⎦

= 1

nb(n − b + 1)2

⎡

⎣
b−1∑

j=1

b−1∑

k=1

min{ j,k}∑

i=1

ψ(X j − Xk)

+
b−1∑

j=1

n−b+1∑

k=b

j∑

i=1

ψ(X j − Xk) +
b−1∑

j=1

n∑

k=n−b+2

j∑

i=max{(k+b−n),1}
ψ(X j − Xk)

+
n−b+1∑

j=b

b−1∑

k=1

k∑

i=1

ψ(X j − Xk) +
n−b+1∑

j=b

n−b+1∑

k=b

b∑

i=1

ψ(X j − Xk)

+
n−b+1∑

j=b

n∑

k=n−b+2

b∑

i=max{(k−n+b),1}
ψ(X j − Xk)

+
n∑

j=n−b+2

b−1∑

k=1

k∑

i=max{( j+b−n),1}
ψ(X j − Xk)

+
n∑

j=n−b+2

n−b+1∑

k=b

b∑

i=max{( j−n+b),1}
ψ(X j − Xk)

+
n∑

j=n−b+2

n∑

k=n−b+2

b∑

i=max{( j−n+b),(k−n+b)}
ψ(X j − Xk)

⎤

⎦

= 1

nb(n − b + 1)2

⎡

⎣
b−1∑

j=1

b−1∑

k=1

min{ j, k}ψ(X j − Xk)

+
b−1∑

j=1

j
n−b+1∑

k=b

ψ(X j − Xk)

+
b−1∑

j=1

n∑

k=n−b+2

min{(n − b + j − k + 1), j}ψ(X j − Xk)
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+
n−b+1∑

j=b

b−1∑

k=1

kψ(X j − Xk) + b
n−b+1∑

j=b

n−b+1∑

k=b

ψ(X j − Xk)

+
n−b+1∑

j=b

n∑

k=n−b+2

min{(n − k + 1), b}ψ(X j − Xk)

+
n∑

j=n−b+2

b−1∑

k=1

min{(n − b + k − j + 1), k}ψ(X j − Xk)

+
n∑

j=n−b+2

min{(n − j + 1), b}
n−b+1∑

k=b

ψ(X j − Xk)

+
n∑

j=n−b+2

n∑

k=n−b+2

min{(n − j + 1), (n − k + 1)}ψ(X j − Xk)

⎤

⎦

= 1

nb(n − b + 1)2

⎡

⎣
b−1∑

j=1

b−1∑

k=1

min{ j, k}ψ(X j − Xk)

+
b−1∑

j=1

j
n−b+1∑

k=b

ψ(X j − Xk)

+
b−1∑

j=1

n∑

k=n−b+2

min{(n − b + j − k + 1), j}ψ(X j − Xk)

+
n−b+1∑

j=b

b−1∑

k=1

kψ(X j − Xk) + b
n−b+1∑

j=b

n−b+1∑

k=b

ψ(X j − Xk)

+
n−b+1∑

j=b

n∑

k=n−b+2

min{(n − k + 1), b}ψ(X j − Xk)

+
n∑

j=n−b+2

b−1∑

k=1

min{(n − b + k − j + 1), k}ψ(X j − Xk)

+
n∑

j=n−b+2

min{(n − j + 1), b}
n−b+1∑

k=b

ψ(X j − Xk)

+
n∑

j=n−b+2

n∑

k=n−b+2

(n + 1 − max{ j, k}) ψ(X j − Xk)

⎤

⎦ . (10.10)
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On the other hand, if b = n:

1

nb(n − b + 1)2

b∑

i=1

n−b+i∑

j=i

n−b+i∑

k=i

ψ
(
X j − Xk

) = 1

n2

n∑

i=1

ψ(Xi − Xi ) = ψ(0)

n
.

Finally, we investigate the covariance term further. It is now necessary to take into
account the following notation, naming the n/b blocks as follows:

Jr = {(r − 1)b + 1, (r − 1)b + 2, . . . , rb} , r = 1, 2, . . . , n/b.

Thus, X∗
i and X∗

j turn out to be independent (in the bootstrap universe) whenever it
does not exist r ∈ {1, 2, . . . , n/b} which satisfies i, j ∈ Jr . In that case, X∗

i and X∗
j

do not belong to the same bootstrap block, implying:

Cov∗ (Kh(x − X∗
i ), Kh(x − X∗

j )
)

= 0.

On the other hand, if there exists r ∈ {1, 2, . . . , n/b} satisfying i, j ∈ Jr , then
the bootstrap distribution of the pair (X∗

i , X
∗
j ) is exactly identical to that of the pair

(X∗
ti , X

∗
t j ), where ti = [(i − 1)mod b] + 1. Let us consider r ∈ {1, 2, . . . , n/b} satis-

fying i, j ∈ Jr , then X∗
i e X

∗
j belong to the same bootstrap block. As a consequence,

Cov∗ (Kh(x − X∗
i ), Kh(x − X∗

j )
)

= Cov∗ (Kh(x − X∗
ti ), Kh(x − X∗

t j )
)

.

Thus:

Cov∗ (Kh(x − X∗
i ), Kh(x − X∗

j )
)

=

⎧
⎪⎨

⎪⎩

Cov∗
(
Kh(x − X∗

ti ), Kh(x − X∗
t j )
)

, if ∃r/ i, j ∈ Jr

0, otherwise

.

Notice that: E
∗ [Kh

(
x − X∗

i

)] =
(
Kh ∗ f̂ (i)

g

)
, and E

∗
[
Kh

(
x − X∗

j

)]
=

(
Kh ∗ f̂ ( j)

g

)
. Now, consider k, � ∈ {1, 2, . . . , b} satisfying k < �. Carrying on with

the calculations of the covariance term and using:

P
∗ ((X∗(d)

k , X∗(d)
�

)
= (X j , X j+�−k

)) = 1

n − b + 1
, j = k, k + 1, . . . , n − b + k,

leads to:

1

n2

n∑

i, j=1
i �= j

Cov∗ (Kh
(
x − X∗

i

)
, Kh

(
x − X∗

j

))

= 1

n2
n

b

b∑

k,�=1
k �=�

Cov∗ (Kh
(
x − X∗

k

)
, Kh

(
x − X∗

�

))
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= 2

nb

b∑

k,�=1
k<�

Cov∗ (Kh
(
x − X∗

k

)
, Kh

(
x − X∗

�

))

= 2

nb

b∑

k,�=1
k<�

[
E

∗ (Kh
(
x − X∗

k

)
Kh
(
x − X∗

�

))− E
∗ (Kh

(
x − X∗

k

))
E

∗ (Kh
(
x − X∗

�

))]

= 2

nb

b∑

k,�=1
k<�

[
E

∗ [
E

∗ ( Kh
(
x − X∗

k

)
Kh
(
x − X∗

�

)∣∣
U∗
k ,U∗

�

)]
−
(
Kh ∗ f̂ (k)

g

) (
Kh ∗ f̂ (�)

g

)]

= 2

nb

b∑

k,�=1
k<�

[
E

∗
[
E

∗
(
Kh

(
x − X∗(d)

k − gU∗
k

)
Kh

(
x − X∗(d)

� − gU∗
�

)∣∣∣
U∗
k ,U∗

�

)]

−
(
Kh ∗ f̂ (k)

g (x)
) (

Kh ∗ f̂ (�)
g (x)

)]

= 2

nb

b∑

k,�=1
k<�

⎡

⎣ 1

n − b + 1

n−b+k∑

j=k

E
∗ [Kh

(
x − X j − gU∗

k

)
Kh
(
x − X j+�−k − gU∗

�

)]

−
(
Kh ∗ f̂ (k)

g (x)
) (

Kh ∗ f̂ (�)
g (x)

)]

= 2

nb

b∑

k,�=1
k<�

⎡

⎣ 1

n − b + 1

n−b+k∑

j=k

∫ ∫
Kh(x − X j − gu)Kh(x − X j+�−k − gv)K (u)K (v)dudv

−
(
Kh ∗ f̂ (k)

g (x)
) (

Kh ∗ f̂ (�)
g (x)

)]

= 2

nb

b∑

k,�=1
k<�

⎡

⎣ 1

n − b + 1

n−b+k∑

j=k

∫ ∫
Kh(x − X j − s)Kh(x − X j+�−k − t)Kg(s)Kg(t)dsdt

−
(
Kh ∗ f̂ (k)

g (x)
) (

Kh ∗ f̂ (�)
g (x)

)]

= 2

nb

b∑

k,�=1
k<�

⎡

⎣ 1

n − b + 1

n−b+k∑

j=k

(Kh ∗ Kg)(x − X j )(Kh ∗ Kg)(x − X j+�−k)

−
(
Kh ∗ f̂ (k)

g (x)
) (

Kh ∗ f̂ (�)
g (x)

)]

= 2

nb

b∑

k,�=1
k<�

⎡

⎣ 1

n − b + 1

n−b+k∑

j=k

(Kh ∗ Kg)(x − X j )(Kh ∗ Kg)(x − X j+�−k)

−
(

1

n − b + 1

n−b+k∑

i=k

∫
Kh(x − y)Kg(y − Xi )dy

)

×
⎛

⎝ 1

n − b + 1

n−b+�∑

j=�

∫
Kh(x − y)Kg(y − X j )dy

⎞

⎠

⎤

⎦
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= 2

nb

b∑

k,�=1
k<�

⎡

⎣ 1

n − b + 1

n−b+k∑

j=k

(Kh ∗ Kg)(x − X j )(Kh ∗ Kg)(x − X j+�−k)

−
(

1

n − b + 1

n−b+k∑

i=k

∫
Kh(x − Xi − u)Kg(u)du

)

×
⎛

⎝ 1

n − b + 1

n−b+�∑

j=�

∫
Kh(x − X j − u)Kg(u)du

⎞

⎠

⎤

⎦

= 2

nb

b∑

k,�=1
k<�

⎡

⎣ 1

n − b + 1

n−b+k∑

j=k

(Kh ∗ Kg)(x − X j )(Kh ∗ Kg)(x − X j+�−k)

− 1

(n − b + 1)2

n−b+k∑

i=k

n−b+�∑

j=�

(Kh ∗ Kg)(x − Xi )(Kh ∗ Kg)(x − X j )

⎤

⎦ .

The integral with respect to x is now computed (using some changes of variable
and the symmetry of the kernel K ):

∫
1

n2

n∑

i, j=1
i �= j

Cov∗ (Kh
(
x − X∗

i
)
, Kh

(
x − X∗

j

))
dx

=

∫ ⎡

⎢⎢⎣
2

nb

b∑

k,�=1
k<�

⎡

⎣ 1

n − b + 1

n−b+k∑

j=k

(Kh ∗ Kg)(x − X j )(Kh ∗ Kg)(x − X j+�−k)

− 1

(n − b + 1)2

n−b+k∑

i=k

n−b+�∑

j=�

(Kh ∗ Kg)(x − Xi )(Kh ∗ Kg)(x − X j )

⎤

⎦

⎤

⎦ dx

= 2

nb

⎡

⎢⎢⎢⎣

b∑

k,�=1
k<�

⎡

⎢⎢⎢⎣
1

n − b + 1

n−b+k∑

j=k

∫
(Kh ∗ Kg)(X j+�−k − X j − u)(Kh ∗ Kg)(u)du

− 1

(n − b + 1)2

n−b+k∑

i=k

n−b+�∑

j=�

∫
(Kh ∗ Kg)(u)(Kh ∗ Kg)(Xi − X j − u)du

⎤

⎥⎥⎥⎦

⎤

⎥⎥⎥⎦
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= 2

nb(n − b + 1)

b∑

k,�=1
k<�

n−b+k∑

j=k

[
(Kh ∗ Kg) ∗ (Kh ∗ Kg)

]
(X j+�−k − X j )

− 2

nb(n − b + 1)2

b∑

k,�=1
k<�

n−b+k∑

i=k

n−b+�∑

j=�

[
(Kh ∗ Kg) ∗ (Kh ∗ Kg)

]
(Xi − X j ).

Notice that, whenever b < n:

b∑

k,�=1
k<�

n−b+k∑

j=k

[
(Kh ∗ Kg) ∗ (Kh ∗ Kg)

]
(X j+�−k − X j )

=
b−1∑

k=1

n−b+k∑

j=k

b∑

�=k+1

[
(Kh ∗ Kg) ∗ (Kh ∗ Kg)

]
(X j+�−k − X j )

=
b−1∑

k=1

n−b+k∑

j=k

b−k∑

s=1

[
(Kh ∗ Kg) ∗ (Kh ∗ Kg)

]
(X j+s − X j )

=
b−1∑

s=1

n−s∑

j=1

min{ j,b−s}∑

k=max{1, j+b−n}

[
(Kh ∗ Kg) ∗ (Kh ∗ Kg)

]
(X j+s − X j )

=
b−1∑

s=1

n−s∑

j=1

(min{ j, b − s} − max{1, j + b − n} + 1)
[
(Kh ∗ Kg) ∗ (Kh ∗ Kg)

]
(X j+s − X j ).

Now, using the function ψ , and considering b < n, we have:

n−2
n∑

i, j=1
i �= j

∫
Cov∗ (Kh(x − X∗

i ), Kh(x − X∗
j )
)
dx

=
b∑

k,�=1
k<�

n−b+k∑

i=k

n−b+�∑

j=�

ψ(Xi − X j )

=
b∑

k,�=1
k<�

b−2∑

i=k

b−1∑

j=�

ψ(Xi − X j ) +
b∑

k,�=1
k<�

b−2∑

i=k

n−b+2∑

j=b

ψ(Xi − X j )

+
b∑

k,�=1
k<�

b−2∑

i=k

n−b+�∑

j=n−b+3

ψ(Xi − X j )

+
b∑

k,�=1
k<�

n−b+1∑

i=b−1

n−b+�∑

j=n−b+3

ψ(Xi − X j ) +
b∑

k,�=1
k<�

n−b+k∑

i=n−b+2

b−1∑

j=�

ψ(Xi − X j )
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+
b∑

k,�=1
k<�

n−b+k∑

i=n−b+2

n−b+2∑

j=b

ψ(Xi − X j ) +
b∑

k,�=1
k<�

n−b+k∑

i=n−b+2

n−b+�∑

j=n−b+3

ψ(Xi − X j )

=
b∑

k,�=1
k<�

b−2∑

i=k

b−1∑

j=�

ψ(Xi − X j ) +
b−1∑

k=1

b∑

�=k+1

b−2∑

i=k

n−b+2∑

j=b

ψ(Xi − X j )

+
b∑

k,�=1
k<�

b−2∑

i=k

n−b+�∑

j=n−b+3

ψ(Xi − X j )

+
b∑

�=2

�−1∑

k=1

n−b+1∑

i=b−1

b−1∑

j=�

ψ(Xi − X j ) +
n−b+1∑

i=b−1

n−b+2∑

j=b

b∑

k,�=1
k<�

ψ(Xi − X j )

+
b∑

�=2

�−1∑

k=1

n−b+1∑

i=b−1

n−b+�∑

j=n−b+3

ψ(Xi − X j ) +
b∑

k,�=1
k<�

n−b+k∑

i=n−b+2

b−1∑

j=�

ψ(Xi − X j )

+
b−1∑

k=1

b∑

�=k+1

n−b+k∑

i=n−b+2

n−b+2∑

j=b

ψ(Xi − X j )

+
b∑

k,�=1
k<�

n−b+k∑

i=n−b+2

n−b+�∑

j=n−b+3

ψ(Xi − X j )

=
b∑

k,�=1
k<�

b−2∑

i=k

b−1∑

j=�

ψ(Xi − X j ) +
b−1∑

k=1

(b − k)
b−2∑

i=k

n−b+2∑

j=b

ψ(Xi − X j )

+
b∑

k,�=1
k<�

b−2∑

i=k

n−b+�∑

j=n−b+3

ψ(Xi − X j )

+
b∑

�=2

(� − 1)
n−b+1∑

i=b−1

b−1∑

j=�

ψ(Xi − X j ) + b(b − 1)

2

n−b+1∑

i=b−1

n−b+2∑

j=b

ψ(Xi − X j )

+
b∑

�=2

(� − 1)
n−b+1∑

i=b−1

n−b+�∑

j=n−b+3

ψ(Xi − X j ) +
b∑

k,�=1
k<�

n−b+k∑

i=n−b+2

b−1∑

j=�

ψ(Xi − X j )

+
b−1∑

k=1

(b − k)
n−b+k∑

i=n−b+2

n−b+2∑

j=b

ψ(Xi − X j )

+
b∑

k,�=1
k<�

n−b+k∑

i=n−b+2

n−b+�∑

j=n−b+3

ψ(Xi − X j ). (10.11)
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On the other hand, if b = n and using the symmetry of the kernel K , we obtain:

2

nb(n − b + 1)

b∑

k,�=1
k<�

n−b+k∑

j=k

[
(Kh ∗ Kg) ∗ (Kh ∗ Kg)

]
(X j+�−k − X j )

− 2

nb(n − b + 1)2

b∑

k,�=1
k<�

n−b+k∑

i=k

n−b+�∑

j=�

[
(Kh ∗ Kg) ∗ (Kh ∗ Kg)

]
(Xi − X j )

= 2

n2

n−1∑

k=1

n∑

�=k+1

ψ (X� − Xk) − 2

n2

n−1∑

k=1

n∑

�=k+1

ψ (Xk − X�) = 0. (10.12)

Using (10.9), (10.10) and (10.11) in (10.8), and this and (10.7) in (10.6) gives the
statement of Theorem 1 for b < n. The case b = n is even simpler using (10.12).
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11Estimating the ErrorDistribution in a
Single-IndexModel

Hira L. Koul, Ursula U. Müller and Anton Schick

11.1 Introduction

We consider the single-index regression model in which the response variable Y is
linked to a p-dimensional covariate vector X via the formula

Y = �(θ�
0 X) + ε, (11.1)

where � is a smooth function, θ0 is a p-dimensional unit vector, and the error variable
ε is independent of the covariate X , has mean zero and a finite variance. In order to
guarantee identifiability, we require that the matrix E[X X�] is positive definite and
that θ0 belongs to �, the set of all p-dimensional unit vectors whose first coordinate
is positive, see e.g., Cui et al. (2011). Furthermore, we assume that ε has a density
f and that θ� X has a density gθ for each θ in �.
The single-index regression model was introduced to overcome the curse of di-

mensionality. Numerous applications and theoretical results can be found in Stoker
(1986); Li (1991); Ichimura (1993); Xia and Li (1999); Xia et al. (2002a); Xia et
al. (2002b); Xia and Härdle (2006); Xia (2008), and references therein. The primary
focus of these and related papers has been the estimation of the parameter θ0 and
of the link function �. Stute and Zhu (2005) provide asymptotically distribution free
maximin tests for fitting a single-index model to the regression function against a
large class of local alternatives.
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Here we are interested in the estimation of the error distribution function F based
on independent copies (X1, Y1), . . . , (Xn, Yn) of (X, Y ). Our goal is to derive a
first order uniform stochastic expansion for a suitably weighted residual empirical
distribution function. Such a uniform expansion has been obtained in linear, partially
linear and nonparametric regression models by Koul (1969, 1970, 2002); Akritas
and Van Keilegom (2001); Müller et al. (2007, 2009a), and Neumeyer and Van
Keilegom (2010). In the context of time series, expansions of this type have been
obtained in Boldin (1982, 1990, 1998); Koul (1991, 2002); Müller et al. (2009b),
and Neumeyer and Selk (2013). The existing literature does not cover the case of
interest here.

If we denote the single-index θ�
0 X by S, then we can write the regression model

as a nonparametric regression model

Y = �(S) + ε.

A common assumption for estimating � in such nonparametric regression models
is that the single covariate S has a density that is bounded and bounded away from
zero on its compact support. We call distributions of this type quasi-uniform. Thus,
if θ0 were known and if S were quasi-uniform, we could estimate � by classical
nonparametric curve estimators, and the results of Müller, Schick and Wefelmeyer
(“MSW”2007) would yield the desired expansion of the corresponding residual em-
pirical process. However, the assumption that S is quasi-uniform is not reasonable
in our case as the following two examples demonstrate.

Example 1 Suppose that X is uniformly distributed on the unit disk D = {x ∈ R
2 :

‖x‖ ≤ 1}. In this case θ� X has density

gθ(s) = g(s) = 2

π

√
1 − s2 1[|s| < 1]

for all θ in �, and this density is not bounded away from zero on [−1, 1].

Example 2 Suppose that X is uniformly distributed on the unit square [0, 1] × [0, 1].
Let θ = (a, b)� with 0 < a ≤ 1/

√
2 and b = √

1 − a2. Then the density of θ� X is
given by

gθ(s) = 1

ab

[
1[0 ≤ s ≤ b]min(s, a) + 1[b < s < a + b](a + b − s)

]
.

This density is piecewise linear, and its support depends on a.

Let θ̂ be an estimator of θ0 and set

Ŝ j = θ̂� X j and δ̂ j = 1[Ŝ j ∈ Î ], j = 1, . . . , n,
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where Î is the random interval [l̂, û] whose endpoints are functions of the estimated
indices Ŝ1, . . . , Ŝn and the estimator θ̂, say

l̂ = φn,l(Ŝ1, . . . , Ŝn, θ̂) and û = φn,u(Ŝ1, . . . , Ŝn, θ̂). (11.2)

Choices of such random intervals are discussed in Remark 1 below.
We estimate the link function � by a local quadratic smoother �̂ treating Ŝ j as the

regressor. Our estimator F̂n of the distribution function F is based on the residuals
Y j − �̂(Ŝ j ) for which δ̂ j = 1, i.e.,

F̂n(t) = 1

Nn

n∑

j=1

δ̂ j1[Y j − �̂(Ŝ j ) ≤ t], t ∈ R, (11.3)

with Nn = ∑n
j=1 δ̂ j .

Remark 1 Let us briefly comment on choices of Î . The goal is to have gθ0 bounded
away from zero on Î with high probability. If gθ were known, we could choose
intervals I (θ) on which gθ is bounded away from zero, and then take Î = I (θ̂).
If gθ is known up to parameters, say gθ is a normal density with mean θ�μ and
variance θ��θ for some unknown vector μ and some unknown dispersion matrix
�, then we could take Î = [ν̂ − cσ̂, ν̂ + cσ̂], where ν̂ is the sample mean and σ̂
the sample standard deviation of the estimated indices Ŝ1, . . . , Ŝn . Another choice
for Î is [q̂α1 , q̂α2 ] for 0 < α1 < α2 < 1, where q̂α denotes the α-th sample quantile
of the estimated indices. Using only values Ŝ j that are densely distributed in an
interval Î around the mean or median, e.g., between the upper and lower five percent
quantiles, seems to be a natural choice: it ensures that the local smoother �̂ has
enough ‘observations’ available to estimate the link function reasonably well.

The remainder of the paper is organized as follows. In Sect. 11.2 we describe our
main result, a first order uniform stochastic expansion of F̂n , and discuss in detail
the assumptions used. An application of the main result is described in Sect. 11.3
by constructing asymptotically distribution free tests for fitting an error distribu-
tion in model (11.1). Some properties of local quadratic smoothers are given in
Sect. 11.4. In Sect. 11.5 we generalize results from MSW (2007) for nonparametric
regression with quasi-uniform covariates to the case when quasi-uniformity cannot
be assumed. Sects. 11.4 and 11.5 play a major role in the proof of our main result
given in Sect. 11.6. Our approach is to regard the single-index model as a nonpara-
metric regression model with estimated covariates Ŝ j . The randomness caused by
the estimators θ̂ is handled using discretization and contiguity arguments, which
are standard techniques in the construction of efficient estimators in semiparametric
models.
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11.2 Main Result

We begin by describing the local quadratic smoother. The value �̂(s) of this estimator
at s ∈ R equals the first component β̂0 of the minimizer (β̂0, β̂1, β̂2) of

1

nbn

n∑

j=1

(
Y j − β0 − β1

Ŝ j − s

bn
− β2

( Ŝ j − s

bn

)2)2
K

( Ŝ j − s

bn

)
,

where K is a symmetric density with compact support [−1, 1] and bn is a bandwidth,
i.e., bn is a sequence of positive numbers that converges to zero.

We prove our main result, a uniform stochastic expansion of F̂n , under the fol-
lowing conditions. Let I = [a, b] be a compact interval of R.

(R1) The regression function � is twice continuously differentiable and satisfies

E[|�(θ� X) − �(θ�
0 X) − (θ − θ0)

� X�′(θ0� X)|2] = o(‖θ − θ0‖2),

as ‖θ − θ0‖ → 0.
(R2) The p × p matrix

M = E[(�′(S))2(X − E[X |S])(X − E[X |S])�]

has rank p − 1.
(T) The estimator θ̂ satisfies n1/2(θ̂ − θ0) = Op(1) and is discretized.
(I) There are interior points l0 < u0 of I and functions φ̄n,l and φ̄n,u such that for

all θn in � with n1/2(θn − θ0) bounded we have

φn,l(S1, . . . , Sn, θn) = φ̄n,l(θn) + op(n
−1/4) = l0 + op(1),

φn,u(S1, . . . , Sn, θn) = φ̄n,u(θn) + op(n
−1/4) = u0 + op(1),

with φn,l and φn,u as in (11.2) and S j = θ�
0 X j .

(G1) The density gθ0 is bounded and also bounded away from zero on I .
(G2) The map θ 	→ √

gθ is differentiable at θ0 in L2, i.e., there is a measurable
function ġθ0 fromR into θ⊥

0 = {v ∈ R
p : v�θ0 = 0} such that ‖ġθ0‖ is square-

integrable and

∫ (√
gθ(s) − √

gθ0(s) − (θ − θ0)
�ġθ0(s)

)2
ds = o(‖θ − θ0‖2)

holds as ‖θ − θ0‖ → 0.
(F1) The error variable has a finite third moment.
(F2) The error density f has finite Fisher information for location.
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We shall now discuss these assumption. The first part of (R1) is used to derive
appropriate properties of the local quadratic smoother of �. The bias of this estimator
is of order o(b2n) which needs to be of order o(n−1/2). The choice bn ∼ n−1/4 used
in Theorem 1 is the largest bandwidth satisfying this requirement. Larger bandwidth
are allowed under additional smoothness assumptions on �. For example, if the
second derivative of � is Hölder with exponent α, then we can take larger bn subject
to the constraint b2+α

n = o(n−1/2). In particular, for α > 1/2, the familiar choice
bn ∼ n−2/5 works. Instead of a local quadratic smoother, we could have worked
with a local linear smoother. The bias of this estimator is of order O(b2n). This would
require a smaller bandwidth such as bn ∼ (n log n)−1/4 to guarantee that the bias is
of order o(n−1/2). A local linear smoother with this choice of bandwidth was used
in MSW (2007).

The matrix M in condition (R2) cannot have full rank p as

θ�
0 Mθ0 = E[(�(S))2(θ�

0 (X − E[X |S]))2] = E[(�(S))2(S − E[S|S])2] = 0.

Condition (R2) guarantees that v�Mv > 0 for every unit vector v orthogonal to θ0.
This is needed to guarantee the existence of a root-n consistent estimator of θ0, as
required in condition (T).

The set θ⊥
0 appearing in (G2) is the tangent space of � at θ0. The requirement in

(G2) that ġθ0 takes values in θ⊥
0 ensures that the derivative ġθ0 is uniquely determined

(up to almost everywhere equivalence). Without this assumption, the differentiabil-
ity requirement would also hold with ġθ0 replaced by ġθ0 + hθ0 for each square-
integrable h. This follows from the fact that (θ − θ0)

�θ0 equals−‖θ − θ0‖2/2 for all
θ in�. On the other hand, it suffices to verify the differentiability condition for some
ġθ0 that is not θ

⊥
0 -valued, because it then holds with ġθ0 replaced by (Ip − θ0θ

�
0 )ġθ0 ,

where Ip is the p × p identity matrix, and this replacement is θ⊥
0 -valued in view of

θ�
0 (Ip − θ0θ

�
0 ) = 0.

By the same token, we can replace in (R1) the derivative X�′(θ�
0 X) by the θ⊥

0 -
valued derivative (Ip − θ0θ

�
0 )X�′(θ�

0 X). This and (F2) show that the score function
for θ0 is given by

�(ε)�′(S)(Ip − θ0θ
�
0 )X,

with � = − f ′/ f , the score function for location. The tangent space T for the nui-
sance parameter (�, F, G), with G the distribution of X , consists of the function

�(ε)a(S) + c(ε) + b(X)

with E[a2(S)] finite, E[b(X)] = 0 and E[b2(X)] finite, E[c(ε)] = E[εc(ε)] = 0
and E[c2(ε)] finite. The projection of the score function onto T p is given by

�(ε)�′(S)(Ip − θ0θ
�
0 )E[X |S].
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Thus the efficient score for estimating θ0 is

�(ε)�′(S)(Ip − θ0θ
�
0 )(X − E[X |S])

and the efficient information matrix is

J∗ = E[�2(ε)](Ip − θ0θ
�
0 )M(Ip − θ0θ

�
0 ) = E[�2(ε)]M.

While the information matrix is not invertible, the map φ from θ0
⊥ to θ0

⊥ defined
by it, i.e. φ(v) = J∗v, v ∈ θ0

⊥, is invertible. Finally, the efficient influence function
for estimation F(t) is given by

1[ε ≤ t] − F(t) + f (t)ε.

This can be deduced from the results in Müller and Schick (2017) and the form of
the present tangent space.

For the construction of root-n consistent estimators of θ0 we refer to Carroll
et al. (1997); Wang et al. (2010), and Xia and Härdle (2006), who develop n1/2-
consistent estimators of the underlying Euclidean parameters in a class of partially
linear single-index models. Cui et al. (2011) use a method of estimating functions to
develop estimators of θ0 that satisfy condition (T) for a large class of single-index
model. Their estimator of θ0 is found to have smaller or equal limiting variance than
that of Carroll et al. (1997). See also the correction note by Li et al. (2011) pertaining
to the reference Wang et al. (2010). The method of Hall and Yao (2005) provides yet
another approach to obtain a root-n consistent estimator.

Condition (T) also requires that the root-n consistent estimator of θ0 is discretized.
Such an estimator can be obtained by discretizing any preliminary root-n consistent
estimator θ̂ on grids with mesh width n−1/2, e.g., by replacing it by the closest
point on the grid, so the change is at most n−1/2 and consistency is preserved.
This trick simplifies the proofs since we can replace θ̂n by a nonrandom sequence
θn = θ0 + O(n−1/2), see, e.g., Le Cam (1986) or van der Vaart (1998).

We use condition (G2) to establish that the distributions of (θ�
n X1, . . . , θ

�
n Xn) and

(θ�
0 X1, . . . , θ

�
0 Xn) are mutually contiguous whenever θn = θ0 + O(n−1/2). This

implies that (I) holds with each S j = θ�
0 X j replaced by θ�

n X j . This and (T) then
allow us to conclude that l̂ is a consistent estimator of l0, more precisely, we have

l̂ = φ̄n,l(θ̂) + op(n
−1/4) = l0 + op(1).

An analogous statement holds for û. Similar arguments yield

Nn

n
= 1

n

n∑

j=1

δ̂ j = P(l0 ≤ θ�
0 X ≤ u0) + op(1). (11.4)

Let q̂α denote the α-th sample quantile constructed from the estimated indices
Ŝ1, . . . , Ŝn . Recall that the sample quantile based on independent observations from
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a density is a root-n consistent estimator of the quantile whenever the density is
positive and continuous at this quantile. Thus condition (I) is met by

Î = [l̂, û] = [q̂α1 , q̂α2 ],

with 0 < α1 < α2 < 1, if gθ0 is continuous and positive on an open interval contain-
ing the α1 and α2-quantiles of gθ0 . In particular, condition (I) holds for any such α1
and α2 if gθ0 is continuous and the set {gθ0 > 0} is an interval.

The moment assumption (F1) is used to derive properties of the local quadratic
smoothers. The assumption (F2) together with (R1) is used to obtain contiguity. It
also guarantees that the density f is Hölder with exponent 1/2, which meets one of
the requirements in MSW (2007), namely, the density f to be Hölder with exponent
greater than 1/3.

We now state our main result, the uniform stochastic expansion of the estimator
F̂n introduced in (11.3). This expansion is similar to the expansions obtained in
MSW (2007, 2009a) in semiparametric and nonparametric regression models. The
difference is the presence of weights w(θ�

0 X j ), where

w(s) = 1[l0 ≤ s ≤ u0]
P(l0 ≤ θ�

0 X ≤ u0)
, s ∈ R.

Theorem 1 Suppose the model (11.1) and the conditions (R1), (R2), (T), (I), (G1),
(G2), (F1) and (F2) hold. In addition, assume that the kernel K has a Hölder con-
tinuous second derivative, and the bandwidth bn satisfies bn ∼ n−1/4. Then we have
the uniform stochastic expansion

sup
t∈R

∣
∣
∣F̂n(t) − F(t) − Wn(t)

∣
∣
∣ = op(n

−1/2) (11.5)

with

Wn(t) = 1

n

n∑

j=1

w(θ�
0 X j )

[
1[ε j ≤ t] − F(t) + f (t)ε j )

]
, t ∈ R.

Remark 2 The above result shows that the influence function of the estimator F̂n(t)
is

φt (Y, X) = w(θ�
0 X)

[
1[ε ≤ t] − F(t) + f (t)ε

]
,

which is the efficient influence function for estimating F(t) multiplied by w(θ�
0 X).

The asymptotic variance of our estimator thus equals the efficient variancemultiplied
by E[w2(θ�

0 X)]. This factor equals 1/p0 with

p0 = P(l0 ≤ θ�
0 X ≤ u0).

Thus our estimator is nearly efficient if p0 is close to one.
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11.3 An Application

We shall now discuss an application of (11.5) for deriving an asymptotically distri-
bution free (ADF) test for fitting a known error distribution in the model (11.1). For
this we introduce the process

Zn(t) = 1

n

n∑

j=1

[
1[ε j ≤ t] − F(t) + f (t)ε j

]
, t ∈ R.

Note that nCov(Zn(s),Zn(t)) = C(s, t) and nCov(Wn(s),Wn(t)) = (1/p0)C(s, t)
with

C(s, t) = Cov(1[ε ≤ s] + f (s)ε, 1[ε ≤ t] + f (t)ε), s, t ∈ R.

Recall, say fromKoul (2002), thatn1/2
Zn convergesweakly to a continuousGaussian

process Z with mean zero and covariance function C . Thus Theorem 1 implies

n1/2(F̂n − F) →D p−1/2
0 Z,

where →D denotes weak convergence in the Skorokhod space D[−∞, ∞] and uni-
form metric. By (11.4), p̂n = Nn/n is a consistent estimator of p0 and we conclude

N 1/2
n (F̂n − F) →D Z. (11.6)

An analog of Theorem1 is obtained inMSW(2009a) for the ordinary nonparamet-
ric residual empirical process F̂n in a class of nonparametric regressionmodels. They
established, under some conditions on the regression function and F , the expansion

n1/2 sup
t∈R

|F̂n(t) − F(t) − Zn(t)| = op(1). (11.7)

Let F0 be a known distribution function having zero mean, a finite third moment
and finite Fisher information for location. Consider the problem of testing H0 : F =
F0 versus the alternative that H0 is not true. In the context of nonparametric regression
models, Khmaladze and Koul (2009) (KK) used the expansion (11.7) to show that
under H0 a certain transform of F̂n converges weakly in D[−∞, ∞] and uniform
metric to B ◦ F0, where B is standard Brownianmotion on [0,∞). The results (11.5)
and (11.6) used with F = F0 enable one to conclude that the analog of this transform
will also converge weakly, under H0, to B ◦ F0. For the sake of completeness we
describe this transform here.

Let f0 be density of F0 and f ′
0 be its a.e. derivative. Define

h(x) = (
1, − f ′

0(x)/ f0(x)
)�

, σ2(x) =
∫ ∞

x

( f ′
0(y)

f0(y)

)2
d F0(y),

�F0(x) =
∫ ∞

x
h(x)h�(x)d F0(x) =

(
1 − F0(x) f0(x)

f0(x) σ2(x)

)
, x ∈ R.
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Let

Kn(t) =
∫ t

−∞
h�(s)�−1

F0(s)

∫ ∞

s
h(z) dF̂n(z) d F0(s), t ∈ R.

The transformed process is

Un(t) = n1/2(
F̂n(t) − Kn(t)

)
, t ∈ R.

See the discussion in KK for the existence of this transform. Arguing as in KK,
one can show with the help of (11.5) and (11.6) that under appropriate conditions
p̂1/2n Un →D B ◦ F0. As a consequence, under H0,

Dn = sup
t∈R

| p̂1/2n Un(t)| = sup
t∈R

|N 1/2
n (F̂n(t) − Kn(t))| →D sup

0≤s≤1
|B(s)|,

and the test based on Dn is ADF for testing H0 in the single-index model (11.1).
Perhaps it is worth pointing out that this test differs from its analog used for fitting
an error distribution in the one sample location model only in that the scale factor
n1/2 is replaced by N 1/2

n and the ordinary residual empirical distribution function of
the one sample location model is replaced by F̂n .

11.4 Properties of Local Quadratic Smoothers

In this sectionwe describe some large sample properties of a local quadratic smoother
of the regression function r on a closed interval I = [a, b] with a < b for the non-
parametric regression model

Y = r(Z) + ε,

where ε and Z are independent random variables, ε has mean zero and a finite third
moment, Z has a bounded density g, and r is twice continuously differentiable. Let
(Y1, Z1), . . . , (Yn, Zn) denote independent copies of the pair (Y, Z) from the above
regression model.

The local quadratic smoother r̂ associated with a kernel K and a bandwidth cn is
defined as follows. The value r̂(z) of this estimator at z is given by the first component
of the minimizer β̂(z) = (β̂0(z), β̂1(z), β̂2(z))� of

L(β) = 1

ncn

n∑

j=1

(
Y j − β0 − β1

Z j − z

cn
− β2

( Z j − z

cn

)2)2
K

( Z j − z

cn

)
.

We assume throughout that K is a symmetric density with support [−1, 1] and make
additional assumptions as needed.
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In what follows we use the following notation. For a k × m matrix A, we let ‖A‖
denote its Euclidean norm

‖A‖ =
⎛

⎝
k∑

i=1

m∑

j=1

A2
i j

⎞

⎠

1/2

.

For a function M from the interval I to the set of k × m matrices we set

‖M‖∗ = sup
x∈I

‖M(x)‖.

If this function is differentiable with derivative M ′, then we set

‖M‖1,γ = ‖M‖∗ + ‖M ′‖∗ + sup
x,y∈I,x<y

‖M ′(x) − M ′(y)‖
|x − y|γ , 0 < γ < 1.

These norms apply to vectors (m = 1) and scalars (k = m = 1).
Set ψ(x) = (1, x, x2)� for x ∈ R. Then the above criterion function becomes

L(β) = 1

ncn

n∑

j=1

(
Y j − β�ψ

( Z j − z

cn

))2
K

( Z j − z

cn

)
.

Routine calculations show that the minimizer β̂(z) of L(β) solves the normal equa-
tions

Ŵ (z)β̂(z) = Â(z) + B̂(z),

where

Ŵ (z) = 1

ncn

n∑

j=1

ψ
( Z j − z

cn

)
ψ�( Z j − z

cn

)
K

( Z j − z

cn

)
,

Â(z) = 1

ncn

n∑

j=1

ε jψ
( Z j − z

cn

)
K

( Z j − z

cn

)
,

B̂(z) = 1

ncn

n∑

j=1

r(Z j )ψ
( Z j − z

cn

)
K

( Z j − z

cn

)
.

Since K has support [−1, 1] and r ′′ is uniformly continuous on compact sets, a Taylor
expansion yields

‖B̂ − Ŵ ṙcn ‖∗ = sup
z∈I

|B̂(z) − Ŵ (z)ṙcn (z)| = o(c2n)
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with ṙcn (z) = (r ′(z), cnr ′(z), c2nr ′′(z)/2)�. Direct calculations show that

W̄ (z) = E[Ŵ (z)] =
∫

ψ(u)ψ�(u)K (u)g(z + cnu) du.

In order to prove Theorem 2 below, which lists some important properties of the
smoother, we need the following two lemmas. The first lemma is an immediate
consequence of the definition of W̄ and the fact that the matrix

∫

A
ψ(u)ψ�(u)K (u) du

is positive definite for any subinterval A of [−1, 1] of positive length. Recall that g
is bounded.

Lemma 1 Suppose g is also bounded away from zero on I . Then there is an α,
0 < α < 1, such that the eigenvalues of W̄ (z) fall into the interval [α, 1/α] for all
z in I and all cn satisfying cn ≤ l/2, where l is the length of the interval I .

The next lemma is a consequence of Corollary 4.2 in MSW (2007) with their δ
equal to zero. Note that Z has a bounded density as required there. We also use the
fact that ε has finite third moment.

Lemma 2 Suppose w is an integrable and Hölder continuous function and
log n/(ncn) is bounded. Then the rate

sup
z∈I

∣
∣
∣
1

ncn

n∑

j=1

w
( Z j − z

cn

)
− E[w

( Z j − z

cn

)
]
∣
∣
∣ = Op

(( log n

ncn

)1/2)

holds. Moreover, if E |ε|3 < ∞ and log n/(cnn1/3) is bounded, then the rate

sup
z∈I

∣
∣
∣
1

ncn

n∑

j=1

ε jw
( Z j − z

cn

)∣
∣
∣ = Op

(( log n

ncn

)1/2)

holds.

In view of Lemma 2, from now on we assume that log n/(cnn1/3) is bounded. It
then follows from Lemma 1 that

‖W̄‖∗ = O(1) and ‖W̄ −1‖∗ = O(1).

Furthermore, Lemma 2 applied to the entries of the matrices implies that

‖Ŵ − W̄‖∗ = Op

(( log n

ncn

)1/2)
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and

‖ Â‖∗ = Op

(( log n

ncn

)1/2)
,

provided K is Hölder. It follows that the matrices Ŵ (z), z ∈ I , are invertible on the
event {‖Ŵ − W̄‖∗ < α}, whose probability converges to one. On this event we have

‖Ŵ‖∗ = O(1), ‖Ŵ −1‖∗ = O(1),

and

‖Ŵ −1 − W̄ −1‖∗ = Op

(( log n

ncn

)1/2)
.

Moreover, on this event we have the identity

β̂(z) − ṙcn (z) − W̄ (z)−1 Â(z)

= (Ŵ (z)−1 − W̄ (z)−1) Â(z) + Ŵ (z)−1(B̂(z) − Ŵ (z)ṙcn (z)), z ∈ I.

Using the above properties we obtain the following result. Recall that we assumed
that g is bounded, that ε has a finite third moment and that K is a symmetric density
with support [−1, 1].

Proposition 1 Suppose g is also bounded away from zero on I and the kernel K is
also Hölder. Then the uniform stochastic expansion

‖β̂ − ṙcn − W̄ −1 Â‖∗ = Op

( log n

nc

)
+ op(c

2
n)

holds.

Thus, under the assumptions of the proposition and cn ∼ n−1/4, we have the
expansion

sup
z∈I

|r̂(z) − r(z) − [1, 0, 0]W̄ (z)−1 Â(z)| = op(n
−1/2).

Next, we investigate the magnitude of the process

Ĉ(z) = W̄ −1(z) Â(z), z ∈ I.

Proposition 2 Suppose g is bounded away from zero on I and K has a Hölder
continuous second derivative. Then the map z 	→ Ĉ(z) is twice differentiable and
the following rates hold.

‖Ĉ‖∗ = Op

(( log n

ncn

)1/2)
,

‖cnĈ ′‖∗ = Op

(( log n

ncn

)1/2)
,

‖c2nĈ ′′‖∗ = Op

(( log n

ncn

)1/2)
.
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Proof Note that

‖Ĉ‖∗ ≤ ‖W̄ −1‖∗‖ Â‖∗ = Op

(( log n

ncn

)1/2)
.

By the properties of the kernel K , the function z 	→ Ĉ(z) is twice continuously
differentiable with the first derivative given by

Ĉ ′(z) = W̄ −1(z) Â′(z) − W̄ −1(z)W̄ ′(z)W̄ −1(z) Â(z)

and the second derivative given by

Ĉ ′′(z) = W̄ −1(z) Â′′(z) − 2W̄ −1(z)W̄ ′(z)W̄ −1(z) Â′(z)
+ 2W̄ −1(z)W̄ ′(z)W̄ −1(z)W̄ ′(z)W̄ −1(z) Â(z) − W̄ −1(z)W̄ ′′(z)W̄ −1(z) Â(z).

We write the matrix [cn Â′(z), c2n Â′′(z)] as

1

ncn

n∑

j=1

ε j�
( Z j − z

cn

)

with � = [(Kψ)′, (Kψ)′′]. By the assumption on K , the entries of � are integrable
and Hölder. Thus we obtain from Lemma 2 that

‖cn Â′‖∗ + ‖c2n Â′′‖∗ = Op

(( log n

ncn

)1/2)
.

Rewrite the matrix [cnW̄ ′(z), c2nW̄ ′′(z)] as
∫

g(u + cn x)[V ′(x), V ′′(x)] dx

with V = Kψψ�. From this we conclude that ‖cnW̄ ′‖∗ + ‖c2nW̄ ′′‖∗ = O(1). Com-
bining the above we obtain

‖cnĈ ′‖∗ ≤ ‖W̄ −1‖∗‖cn Â′‖∗ + ‖W̄ −1‖2∗‖cn W̄ ′‖∗‖ Â‖∗
and

‖c2nĈ ′′‖∗ ≤ ‖W̄ −1‖∗‖c2n Â′′‖∗ + 2‖W̄ −1‖2∗‖cnW̄ ′‖∗‖cn Â′‖∗
+ 2‖W̄ −1‖3∗‖cnW̄ ′‖2∗‖ Â‖∗ + ‖W̄ −1‖2∗‖c2nW̄ ′′‖∗‖ Â‖∗.

This immediately yields the desired rates. ��

We use Proposition 2 to obtain rates on the Hölder norms ‖Ĉ‖1,γ , 0 < γ < 1.

Since we can bound ‖Ĉ ′(s) − Ĉ ′(t)‖|s − t |−γ by ‖Ĉ ′′‖∗c1−γ
n for 0 < |s − t | ≤ cn

and by 2‖Ĉ ′‖∗c−γ
n for |t − s| > cn , we have the following result.



222 H.L. Koul et al.

Proposition 3 Suppose the assumptions of Proposition 2 hold and 0 < γ < 1. Then
the rate

‖Ĉ‖1,γ = Op

(( log n

nc3+2γ
n

)1/2)

holds. In particular, for cn ∼ n−1/4 and γ < 1/2, one has

‖Ĉ‖1,γ = op(1).

The next result summarizes properties of the local quadratic smoother r̂ if the
bandwidth is proportional to n−1/4.

Theorem 2 Suppose g is bounded away from zero on I , K has a Hölder continuous
second derivative and the bandwidth satisfies cn ∼ n−1/4. Then the following hold
with ĉ = [1, 0, 0]Ĉ the first coordinate of Ĉ.

sup
z∈I

|r̂(z) − r(z) − ĉ(z)| = op(n
−1/2), (11.8)

∫

I
ĉ2(z)g(z) dz = Op(n

−3/4), (11.9)

and, for 0 < γ < 1/2,

sup
z∈I

|ĉ(z)| + sup
z∈I

|ĉ′(z)| + sup
s,t∈I,s<t

|ĉ′(t) − ĉ′(s)|
|t − s|γ = op(1). (11.10)

Moreover, for any square-integrable functions v, v1, v2, . . . satisfying

∫

I
(vn(z) − v(z))2 dz = o(1),

we have the expansion

∫

I
ĉ(z)vn(z)g(z) dz = 1

n

n∑

j=1

ε j1[Z j ∈ I ]v(Z j ) + op(n
−1/2). (11.11)

Proof Claim (11.8) is a consequence of Proposition 1 and (11.10) of Proposition 3.
Statement (11.9) follows from the bounds ‖W̄ −1‖∗ = O(1) and

ncn E[‖ Â(z)‖2] ≤ E[ε2]E
[ 3

cn
K 2

( Z − z

cn

)]
≤ 3E[ε2]

∫
g(z + cnu)K 2(u) du

and the boundedness of g. Here we used ‖ψK‖2 ≤ 3K 2.
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In order to prove (11.11) we set

ṽn(z) = 1[z ∈ I ]vn(z)g(z)[1, 0, 0]W̄ −1(z),

and

Vn(z) =
∫

ṽn(z − cnu)ψ(u)K (u) du and V (z) = 1[z ∈ I ]v(z).

Then rewrite the left-hand side of (11.11) as

1

ncn

n∑

j=1

ε j

∫
ṽn(z)ψ

( Z j − z

cn

)
K

( Z j − z

cn

)
dz = 1

n

n∑

j=1

ε j Vn(Z j ).

Let � = ∫
ψ(u)ψ�(u)K (u) du. Since the density g is bounded, it is square-

integrable. This and the translation continuity in L2 yield the convergence

∫ ∥
∥
∥

∫
g(z + cnu)ψ(u)ψ�(u)K (u) du − g(z)�

∥
∥
∥
2

dz → 0.

Since g is bounded away from zero on I , we conclude from this that the map
z 	→ 1[z ∈ I ]W̄ −1(z) converges to the map z 	→ 1[z ∈ I ](g(z)�)−1 in Lebesgue
measure. An application of Lebesgue’s dominated convergence theorem now yields
that ṽn converges in L2 to ṽ, where

ṽ(z) = 1[z ∈ I ]v(z)[1, 0, 0]�−1.

Using this, the identity ṽ(z)
∫

ψ(u)K (u) du = ṽ(z)�[1, 0, 0]� = 1[z ∈ I ]v(z) =
V (z), and the translation continuity in L2, we derive

�n =
∫

(Vn(z) − V (z))2 dz

=
∫

|
∫

ṽn(z − cnu)ψ(u)K (u) du − 1[z ∈ I ]v(z)|2 dz

≤ 2
∫

‖ṽn(z) − ṽ(z)‖2 dz
∫

‖ψ(u)K (u)‖2 du

+ 2
∫

|
∫

(ṽ(z − cnu) − ṽ(z))ψ(u)K (u) du|2 dz = o(1).

From the above we conclude that n times the second moment of the difference

∫

I
ĉ(z)vn(z)g(z) dz − 1

n

n∑

j=1

ε jv(Z j ) = 1

n

n∑

j=1

ε j (Vn(Z j ) − V (Z j ))

equals E[ε2]E[(Vn(Z) − V (Z))2], which is bounded by a constant times �n . This
implies the desired (11.11). ��
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Remark 3 Let v̂ be an estimator of some square-integrable function v0. Suppose
there is a sequence of square-integrable functions vn such that

∫

I
(v̂(z) − vn(z))2 dz = o(n−1/4) and

∫

I
(vn(z) − v0(z))

2 dz = o(1).

Then under the assumption of the previous theorem the expansion

∫

I
ĉ(z)v̂(z)g(z) dz = 1

n

n∑

j=1

ε j1[Z j ∈ I ]v0(Z j ) + op(n
−1/2)

holds. This follows from (11.9), (11.11), the inequality

∣
∣
∣
∫

I
ĉ(z)(v̂(z) − vn(z))g(z) dz

∣
∣
∣
2 ≤

∫

I
ĉ2(z)g(z) dz

∫

I
(v̂(z) − vn(z))2g(z) dz

and the fact that g is bounded.

11.5 Estimating the Error Distribution in Nonparametric
Regression

In this section we modify results from MSW (2007) to the case when the regressor
is not quasi-uniform. We begin by extending their Theorems 2.1 and 2.2.

Let ε be a random variable with distribution function F , and let Z be a k-
dimensional random vector with distribution Q, independent of ε. Let D be a non-
negative function in L2(Q), and D be a set of measurable functions a such that
|a| ≤ D and 0 ∈ D . Let V be a class of measurable functions from R

k into [0, 1].
We now give conditions on the classes D and V that imply that the class

H = {ha,v,t : a ∈ D, v ∈ V , t ∈ R}

is F ⊗ Q-Donsker, where

ha,v,t (ε, Z) = v(Z)1[ε − a(Z) ≤ t], a ∈ D, v ∈ V , t ∈ R.

For this we endowD with the L1(Q)-pseudo-norm. By an η-bracket for (D, L1(Q))

we mean a set [a, a] = [a ∈ D : a ≤ a ≤ a} where a and a belong to L1(Q) and
satisfy

∫ |a − a| d Q ≤ η. Recall that the bracketing number N[ ](η,D, L1(Q)) is
the smallest integerm for which there arem η-brackets [a1, a1], . . . , [am, am]which
cover D in the sense that the union of the brackets contains D .
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Proposition 4 Suppose that V is Q-Donsker. Assume that F has a finite second
moment and a bounded density and that the bracketing numbers satisfy

∫ 1

0

√
log N[ ](η2,D, L1(Q)) dη < ∞. (11.12)

Then H is F ⊗ Q-Donsker.

Proof Let φ be the projection map from R × R
k into R

k so that φ(ε, Z) = Z .
Since V is Q-Donsker, the class Ṽ = {v ◦ φ : v ∈ V } is F ⊗ Q-Donsker. Let
H1 = {ha,1,t : a ∈ D, t ∈ R} with ha,1,t (ε, Z) = 1[ε − a(Z) ≤ t]. It follows from
Theorem 2.1 of MSW (2007) that the class H1 is F ⊗ Q is Donsker. Since Ṽ and
H1 are uniformly bounded (by 1) F ⊗ Q-Donsker classes, their pairwise prod-
uct Ṽ · H1 = {ṽh : ṽ ∈ Ṽ , h ∈ H1} forms a F ⊗ Q-Donsker class by Example
2.10.8 in van der Vaart and Wellner (1996). This is the desired result as H equals
Ṽ · H1. ��

Now consider a regression model

Y = r(Z) + ε

and independent copies (Y j , Z j ) of (Y, Z). For an estimator r̂ of r define the residuals
ε̂ j = Y j − r̂(Z j ). Define the processes

Ŵ (t, v) = 1

n

n∑

j=1

v(Z j )1[ε̂ j ≤ t], W (t, v) = 1

n

n∑

j=1

v(Z j )1[ε j ≤ t], t ∈ R, v ∈ V .

Proposition 5 LetD andV be as in Proposition 4. LetV have envelope 1I for some
compact convex set I with nonempty interior. Let F have a finite second moment and
a density f that is Hölder with exponent ξ ∈ (0, 1]. Additionally, assume that there
is an â such that

P(â ∈ D) → 1, (11.13)
∫

1I |â|1+ξ d Q = op(n
−1/2), (11.14)

sup
z∈I

|r̂(z) − r(z) − â(z)| = op(n
−1/2). (11.15)

Then the uniform expansion

sup
t∈R,v∈V

∣
∣
∣Ŵ (t, v) − W (t, v) − f (t)

∫
â v d Q

∣
∣
∣ = op(n

−1/2)

holds.
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Proof Without loss of generality we may assume â is D-valued; otherwise replace
â by â1[â ∈ D]. Let

W̃ (t, v) = 1

n

n∑

j=1

v(Z j )1[ε j − â(Z j ) ≤ t] and Wa(t, v) =
∫

F(t + a(z))v(z) d Q(z).

Then we can write

Ŵ (t, v) − W (t, v) − f (t)
∫

â v d Q = T1(t, v) + T2(t, v) + T3(t, v),

where

T1(t, v) = Ŵ (t, v) − W̃ (t, v),

T2(t, v) = W̃ (t, v) − Wâ(t, v) − W (t, v) + W0(t, v),

T3(t, v) = Wâ(t, v) − W0(t, v) − f (t)
∫

â v d Q.

Since f is Hölder, say with constant �, we obtain that

|T3(t, v)| ≤
∫

1I |F(t + â(z)) − F(t) − f (t)â(z)| d Q(z)

≤ �

∫
1I (z)|â|1+ξ d Q = op(n

−1/2).

To deal with T1 and T2, we introduce the empirical process

νn(a, v, t) = 1√
n

n∑

j=1

{
v(Z j )1[ε j − a(Z j ) ≤ t] − Wa(t, v)

}

= 1√
n

n∑

j=1

(
ha,v,t (ε j , Z j ) − E[ha,v,t (ε, Z)]), a ∈ D, v ∈ V , t ∈ R,

associated with the Donsker class H . Then we have the identity

n1/2T2(t, v) = νn(â, v, t) − νn(0, v, t)

and the bound

|n1/2T1(t, v)| ≤ n1/2(W̃ (t + Rn, v) − W̃ (t − Rn, v))

≤ |νn(â, t + Rn, v) − νn(â, t − Rn, v)|
+ n1/2(Wâ(t + Rn, v) − Wâ(t − Rn, v)),

where Rn denotes the left-hand side of (11.15). Since f is Hölder, f is bounded and
F is Lipschitz with Lipschitz constant ‖ f ‖∞. Thus we obtain

n1/2(Wâ(t + Rn, v) − Wâ(t − Rn, v)) ≤ 2‖ f ‖∞n1/2Rn = op(1). (11.16)
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Moreover, for s, t ∈ R and a, b ∈ D , we have the bound

E[(ha,v,s(ε, Z) − hb,v,t (ε, Z))2] ≤ E[v2(Z)|F(s + a(Z)) − F(t + b(Z))|]
≤ ‖ f ‖∞

(|s − t | + E[|a(Z) − b(Z)|]).
In view of this and the stochastic equi-continuity of the empirical process, for every
η > 0 there is a δ > 0 such that, with P∗ denoting outer measure,

sup
n

P∗( sup
t∈R,a∈D,v∈V ,

∫ |a| d Q<δ

|νn(a, v, t) − νn(0, v, t)| > η
)

< η,

sup
n

P∗( sup
a∈D,v∈V ,s,t∈R,|s−t |<δ

|νn(a, v, s) − νn(a, v, t)| > η
)

< η.

The first of these statements and (11.14) imply

sup
t∈R,v∈V

|T2(t, v)| = op(n
−1/2),

while the second, (11.15) and (11.16) imply

sup
t∈R,v∈V

|T1(t, v)| = op(n
−1/2).

This completes the proof. ��

Now fix a v0 in V and let v̂ denote an estimator of v0. Suppose this estimator
satisfies

P(v̂ ∈ V ) → 1 (11.17)

and
∫

(v̂(z)) − v0(z))
2 d Q(z) = op(1). (11.18)

It follows that

v̂∗ = 1

n

n∑

j=1

v̂(Z j ) =
∫

v0 d Q + op(1). (11.19)

Moreover, under the assumptions of Proposition 5, the uniform expansion

sup
t∈R

∣
∣
∣Ŵ (t, v̂) − W (t, v̂) − f (t)

∫
â v̂ d Q

∣
∣
∣ = op(n

−1/2)

holds. We write W (t, v̂) = v̂∗F(t) + U (t, v̂), where

U (t, v) = 1

n

n∑

j=1

v(Z j )(1[ε j ≤ t] − F(t)).
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Note that the functions (y, z) 	→ v(z)(1[ε ≤ t] − F(t)) with v ∈ V and t ∈ R form
an F ⊗ Q-Donsker class. Thus we find

sup
t∈R

∣
∣
∣W (t, v̂) − v̂∗F(t) − U (t, v0)

∣
∣
∣ = op(n

−1/2).

Combining the above yields the uniform expansion

sup
t∈R

∣
∣
∣Ŵ (t, v̂) − v̂∗F(t) − U (t, v0) − f (t)

∫
â v̂ d Q

∣
∣
∣ = op(n

−1/2).

This finding is summarized in the following theorem.

Proposition 6 Suppose the assumptions of Proposition 5 are met and v̂ is an estima-
tor which satisfies (11.17) and (11.18) for some v0 ∈ V with v̄0 = ∫

v0 d Q positive.
Then the uniform expansion

sup
t∈R

∣
∣
∣Ŵ (t, v̂)/v̂∗ − F(t) − U (t, v0)/v̄0 − f (t)

∫
âv̂ d Q/v̂∗

∣
∣
∣ = op(n

−1/2)

holds with v̂∗ as in (11.19).

Now assume that Z has dimension 1 with a density g that is bounded and bounded
away on the interval I = [a, b] with −∞ < a < b < ∞. We takeD to be the set of
all functions h that vanish off I and satisfy

‖h‖1,1/4 = sup
z∈I

|h(z)| + sup
z∈I

|h′(z)| + sup
a≤s<t≤b

|h′(s) − h(t)|
|t − s|1/4 ≤ 1.

Here we have to understand h′ as the derivative of the restriction of h to I so that
h′(a) is the right-hand derivative of h at a and h′(b) is the left-hand derivative at b.
It follows from Theorem 2.7.1 in van der Vaart and Wellner (1996) that the entropy
condition (11.12) holds as log N[ ](η2,D, L1(Q)) is bounded by C(b − a)(1/η)8/5,
for some positive constant C . It follows from the results in the previous section that
a local quadratic smoother with bandwidth cn ∼ n−1/4 and appropriate kernel K
satisfies the conditions (11.13)–(11.15) with â = ĉ and ξ > 1/3. Let V be the set of
indicator functions of intervals [l, u] with a ≤ l < u ≤ b. This is clearly a Donsker
class. Now take

v̂ = 1[l̂,û], vn = 1[ln ,un ] and v0 = 1[l0,u0]

with l0 < u0 interior points of I . Note that
∫

(1[s,t](z) − 1[l,u](z))2 dz ≤ |s − l| + |t − u|.

We have the following result for the regression problem with a one-dimensional Z .
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Theorem 3 Suppose Z has a bounded density that is bounded away from zero on
the interval I = [a, b], ε has mean zero, a finite third moment and a density f that
is Hölder with exponent greater than 1/3, the kernel K has a Hölder continuous
second derivative, the bandwidth satisfies cn ∼ n−1/4, the lower endpoints of the
above intervals satisfy l̂ = ln + op(n−1/4) and ln → l0 and the upper endpoints
satisfy û = un + op(n−1/4) and un → u0. Then the estimator

F̂(t) = 1

N̂

n∑

j=1

1[l̂ ≤ Z j ≤ û]1[ε̂ j ≤ t], t ∈ R,

with N̂ = ∑n
j=1 1[l̂ ≤ Z j ≤ û], satisfies the uniform expansion

sup
t∈R

∣
∣
∣F̂(t) − F(t) − 1

n

n∑

j=1

1[l0 ≤ Z j ≤ u0]
P(l0 ≤ Z ≤ u0)

[
1[ε j ≤ t] − F(t)) + f (t)ε j

]∣∣
∣ = op(n

−1/2).

11.6 Proof of Theorem 1

A key technical tool for proving Theorem 1 will be the use of two contiguity results.
For the sake of self-containment, we shall briefly review the notion of contiguity of
Le Cam (1960) and give the needed contiguity results that will be used in the proof;
see also Le Cam (1986) and Hájek and Šidák (1967).

Let (	n,An, {Pn, Qn}) be a sequence of binary experiments. Then Qn is contigu-
ous to Pn if for every sequence An , An ∈ An , Pn(An) → 0 implies Qn(An) → 0.
We say Pn and Qn are mutually contiguous if Qn is contiguous to Pn and Pn is
contiguous to Qn .

We now state a sufficient condition for contiguity of product measures. For this we
assume that (	,A ,μ) is a measure space and {�θ : θ ∈ �} is a family of probability
measures dominated by μ. Denote by γθ a density of �θ with respect to μ. Suppose
there is a measurable function γ̇θ0 from 	 into θ0

⊥ such that ‖γ̇θ0‖ belongs to L2(μ)

and
∫

(γ
1/2
θ − γ

1/2
θ0

− (θ − θ0)
�γ̇θ0)

2 dμ = o(‖θ − θ0‖2) (11.20)

holds. Then the product measures �n
θn

and �n
θ0

are mutually contiguous whenever

n1/2(θn − θ0) is bounded. See, e.g., van der Vaart (1998).
We shall use this result first with

γθ(x, y) = γ1,θ(x, y) = f (y − �(θ�x)), x ∈ R
p, y ∈ R,



230 H.L. Koul et al.

and μ = G ⊗ λ where G is the distribution of X and λ is the Lebesgue measure. It
follows from (R1), (R2) and (F2) that (11.20) holds with

γ̇θ0(x, y) = − f ′(y − �(θ0
�x))

2 f 1/2(y − �(θ0
�x))

�′(θ0�x)(Ip − θ0θ
�
0 )x .

Then we shall apply the result with

γθ(x, y) = γ2,θ(x, y) = f (y)gθ(x), x ∈ R, y ∈ R,

andμ = λ ⊗ λ. It follows from(G2) that (11.20) holdswith γ̇θ0(x, y) = f 1/2(y)ġθ0(x).
By the properties of θ̂ specified in (T), it suffices to prove the result with θ̂ replaced

by non-stochastic sequences θn such that n1/2(θn − θ0) is bounded. This is a standard
argument used in the construction of efficient estimators in semiparametric models,
see, e.g., Schick (1986) and references therein.

Now fix such a sequence θn and set

Sn, j = θ�
n X j , δn, j = 1[Sn, j ∈ I (θn)] and εn, j = Y j − �(Sn, j )

for j = 1, . . . , n. Let �̃ denote the local linear smoother associated with minimizing

1

nbn

n∑

j=1

(
Y j − β0 − β1

Sn, j − s

bn
− β2

( Sn, j − s

bn

)2)2
K

( Sn, j − s

bn

)
.

Moreover, we introduce

F̃(t) =
∑n

j=1 1[l̃n ≤ Snj ≤ ũn]1[Y j − �̃(Snj ) ≤ t]
∑n

j=1 1[l̃n ≤ Snj ≤ un] ,

with l̃n = φn,l(Sn,1, . . . , Sn,n, θn) and ũn = φn,u(Sn,1, . . . , Sn,n, θn) and set

W̃n(t) = 1

n

n∑

j=1

w(Sn, j )
[
1[εn, j ≤ t] − F(t)) + f (t)εn, j

]
, t ∈ R.

We achieve our goal by verifying the uniform stochastic expansions

sup
t∈R

∣
∣
∣F̃(t) − F(t) − W̃n(t)

∣
∣
∣ = op(n

−1/2) (11.21)

and

sup
t∈R

|W̃n(t) − Wn(t)| = op(n
−1/2). (11.22)

To stress dependence on the parameter θ0 we now write Pθ for the underlying
probability measure when θ0 = θ and write Pn,θ for the joint distribution of the data
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X1, Y1, . . . , Xn, Yn under Pθ, for each θ ∈ �. It follows from the above that the
sequences of distributions Pn,θn and Pn,θ0 are mutually contiguous. Thus it suffices
to prove (11.21) under the measure Pθn . Under the measure Pθn , we have

Y j = �(Sn, j ) + εn, j , j = 1, . . . , n,

and derive that that the left-hand side of (11.21) is a function of the random vec-
tors (εn,1, Sn,1)

�, . . . , (εn,n, Sn,n)�. Under Pθn these variables are independent with
common density γ2,θn . By another contiguity argument it thus suffices to prove
(11.21) under the assumption that the randomvectors (εn,1, Sn,1)

�, . . . , (εn,n, Sn,n)�
are independentwith density γ2,θ0 . The desired (11.21) then follows fromTheorem3.

Note that the distribution of the process definedby thefirst average in (11.22) under
the measure Pθn equals the distribution of the process defined by the second average
in (11.22) under Pθ0 . Thus, by contiguity, the difference of these two processes is
tight under Pθ0 . It suffices to prove (11.22) without the supremum, but for all t in R.
Fix such a t . We are left to verify

1

n

n∑

j=1

hθn (X j , Y j ) − 1

n

n∑

j=1

hθ0(X j , Y j ) = op(n
−1/2) (11.23)

with

hθ(X, Y ) = w(θ� X)
{
1[Y − �(θ� X) ≤ t] − F(t) + f (t)(Y − �(θ� X))

}
.

Using the translation continuity in L2, we verify

∫∫ ∣
∣
∣hθ(x, y)

√
γ1,θ(x, y) − hθ0(x, y)

√
γ1,θ0(x, y)

∣
∣
∣
2

dG(x)dy → 0

as θ → θ0. With � = − f ′/ f the score function for location, we verify

Dθ0 = −
∫∫

hθ0 (x, y)�(y − �(θ0
�x))�′(θ0�x)(Ip − θ0θ

�
0 )xγ1,θ0 (x, y) dG(x)dy

= −E
[
(1[ε ≤ t] − F(t) + f (t)ε)�(ε)

]
E

[
w(θ�

0 X)�′(θ�
0 X)(Ip − θ0θ

�
0 )X

] = 0,

because the first expectation in the product equals − f (t) − 0 + f (t) = 0. Since the
densities γ1,θ are Hellinger differentiable at θ0 with Hellinger derivative

κθ0(x, y) = �(y − �(θ0
�x))�′(θ0�x)(Ip − θ0θ

�
0 )x,

as shown above, the claim (11.23) follows fromTheorem 2.3 in Schick (2001), which
extends to the present parameter set �. His result is stated for open subsets of Rp.
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12Bounds andApproximations for
Distributions ofWeighted
Kolmogorov-SmirnovTests

Nino Kordzakhia and Alexander Novikov

12.1 Introduction

This study is motivated by applications of nonparametric testing to statistical genomic
data treatment, in particular Gene Set Enrichment Analysis (GSEA), see Mootha et
al. (2003) and Subramanian et al. (2005). Here we consider the so-called “weighted
Kolmogorov-Smirnov” goodness-of-fit tests which have been extensively studied by
Charmpi and Ycart (2015) in the context of GSEA. Further the one-sided and the
two-sided weighted Kolmogorov-Smirnov tests will be referred to as wKS-1 and
wKS-2, respectively.

In GSEA sample sizes are typically very large, thus limit distributions of test
statistics can be used for analyzing data. The limit distributions of wKS-1 and wKS-
2 test statistics can be defined as the distributions of the following random variables

D+
g = max

0≤t≤1
(Xt ), Dg = max

0≤t≤1
|Xt |, (12.1)

where X = {Xt , 0 ≤ t ≤ 1} is a continuous centered Gaussian process with the
covariance function

RX (t, s) = min(t, s) − ts + g(t)g(s), (12.2)

g = {g(t), 0 ≤ t ≤ 1} is a continuous function such that g(0) = g(1) = 0.
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The following family of functions g is of special interest in genomic applications

g(t) = (tα − t),
1

2
< α < 1 . (12.3)

In particular, α = 2/3 corresponds to the case where gene expression ranks are tested
against a given gene set, see Charmpi and Ycart (2015) or Kordzakhia et al. (2016)
for more details.
Recall that for the two-sided case with g = 0, Kolmogorov (1933) found that

K (x) := P{D0 > x} = 2
∞∑

k=1

(−1)k−1 e−2k2x2
. (12.4)

Kolmogorov also noted in Kolmogorov (1933) that for smaller values of x > 0 the
approximation

1 − K (x) ≈
√

2π

x
e− π2

8x2

holds. This can be deduced from another series expansion for K (x) (see e.g. Feller
(1971), Durbin (1973))

K (x) = 1 −
√

2π

x

∞∑

k=1

e− (2k−1)2π2

8x2 . (12.5)

For the one-sided case with g = 0, Smirnov (1939) proved that

S(x) := P{D+
0 > x} = e−2x2

. (12.6)

The formula (12.6) first appeared in a personal letter from A. Kolmogorov to P.
Aleksandrov written in 1931, see Shiryaev (2003), p. 436.

The covariance function

RB(t, s) = min(t, s) − ts

corresponds to the standard Brownian bridge B = {Bt , 0 ≤ t ≤ 1} with values B0 =
B1 = 0. It is well known that the process B admits the following two representations:

B = {Bt , 0 ≤ t < 1} d= {Wt − tW1, 0 ≤ t < 1} d= {(1 − t)Wt/(1−t), 0 ≤ t < 1},
(12.7)

where W = {Wt , t ≥ 0} is a standard Brownian motion defined on a filtered proba-

bility space (�, F, {Ft }, P) and “
d=” stands for “equality in distribution”. By direct
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calculation it can be easily checked that the Gaussian process X with covariance
function (12.2) can be represented in the following form

X
d= {Bt − g(t)ξ, 0 ≤ t ≤ 1}, (12.8)

where ξ follows the standard normal distribution and is independent of B.
It must be noted that the goodness-of-fit testing of models with unknown parame-
ters (see e.g. Durbin (1957), Kulinskaya (1995), Tyurin (1984), del Barrio (2007))
typically involves limiting processes Y = {Yt } with covariance functions of the form

RY (t, s) = min(t, s) − ts − g(t)g(s),

where
∫ 1

0 ( d
ds g(s))

2 ds = 1.

The covariance function RY (t, s) looks similar to (12.2), however, the process Y has
a more complicated representation:

Y
d= {Wt − tW1 − g(t)

∫ 1

0
g′(s) dWs, 0 ≤ t ≤ 1}.

The present study is restricted to processes {Xt } with covariance function RX (t, s)
from (12.2).

In the literature, several approaches for approximating probabilities P{D+
g > x}

and P{Dg > x} have been developed. Such probabilities can be seen as functionals of
a diffusion process. Historically, it was Kolmogorov (1933) who used his own results
on empirical processes and backward Partial Differential Equations (PDE) from the
theory of diffusion processes for finding the analytical formula (12.4). Since then, the
theory of empirical processes has been intensively developed in combination with
PDE and other approaches (e.g. Anderson and Darling (1952), Gaenssler and Stute
(1979), Tyurin (1984)) for solving related problems in the theory of goodness-of-fit
tests. Under the PDE approach, for finding P{D+

g > x} and P{Dg > x} one needs to
solve a parabolic time-varying PDE with some boundary conditions, for discussion
also see p. 220 in Gaenssler and Stute (1979). A numerical solution of such PDEs can
be obtained using finite-difference schemes although it requires a special software
and rather complicated analysis of numerical errors.

The martingale approach has been used by Khmaladze (1981) and Stute and
Anh (2012). Under this approach, an integral transformation is applied to an
underlying empirical process to reduce the problem to the known distributions of
max0≤t≤1(Wt ) and max0≤t≤1 |Wt |. Finding such a transformation for our problem
is a separate task which is worth pursuing.

Among others, we mention the asymptotic approach which is based on approxi-
mations to P{D+

g > x}for large x via the theory of extremes of Gaussian processes:
see Durbin (1957), Parker (2013), Piterbarg (1996). Note that due to their asymptotic
nature, such approximations are not accurate for smaller x (larger p-values) which
are also of interest in GSEA.
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The problem of finding accurate and fast approximations for one-sided weighted
Kolmogorov-Smirnov test (wKS-1) has been discussed in Kordzakhia et al. (2016)
using the reduction to boundary crossing probabilities (BCP) for the standard Brown-
ian motion W . In Sect. 12.2 we demonstrate that BCP approach can be applied to
both P{D+

g > x} and P{Dg > x} by approximating nonlinear boundaries with n-
knot linear splines enabling us to use recurrent integrations. In Sect. 12.3, for wKS-1
and wKS-2 we provide general bounds for errors of approximations in terms of a
specific distance defined between g and the approximating function gn .

For the case wKS-1 in Kordzakhia et al. (2016) it has been shown via numeri-
cal experiments that the BCP approximations with 1-knot linear splines have rela-
tive errors smaller than 5% uniformly for all α ∈ (1/2, 1) in (12.3). In Sect. 12.4,
we illustrate that for the important case wKS-1 with g(t) = t2/3 − t the mid-point
approximation based on upper and lower bounds has relative errors less than 1% (see
Fig. 12.2). The refinement has been achieved with the use 2-knot linear splines while
remaining computationally efficient. The advantage of using upper and lower bounds
consists in the fact that one can control accuracy of calculations avoiding intensive
analysis of numerical errors which could be computationally costly. A study com-
paring the PDE, BCP and MC approaches for P{Dg > x} with various weighting
functions g will be discussed elsewhere.

12.2 Reduction to BCP for a BrownianMotion

12.2.1 Notation and General Facts

In this section we provide the results of BCP approach for both wKS-1 and wKS-2
cases. For completeness of the exposition we provide the results for wKS-1 from
Kordzakhia et al. (2016) along with some new aspects which were not discussed in
Kordzakhia et al. (2016).

Using (12.8) and the second representation in (12.7) along with the change of
time

t

1 − t
= s, t = s

1 + s
, (12.9)

the random variables D+
g and Dg from (12.1) can be represented as follows:

D+
g

d= max
0≤s<∞

Ws − G(s)ξ

s + 1
, Dg

d= max
0≤s<∞

|Ws − G(s)ξ |
s + 1

, (12.10)

where

G = {G(s) := (s + 1)g(
s

s + 1
), s ∈ [0,∞)}. (12.11)
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In particular, for g(s) from (12.3) we have

G(s) = (s + 1)1−αsα − s , 1/2 < α < 1,

which is a non-negative bounded function.
Further we will assume that G is a monotone continuous function such that1

inf
0≤s<∞G(s) = 0 , sup

0≤s<∞
G(s) := M < ∞. (12.12)

Let A = {A(s), s ∈ [0,∞)} be a continuous function and define

S(x, y, A) := P{ max
0≤s<∞

Ws − A(s)y

(s + 1)
> x} , (12.13)

K (x, y, A) := P{ max
0≤s<∞

|Ws − A(s)y|
s + 1

> x} . (12.14)

Since ξ is independent of B in (12.8) we obtain for the case A = G

P{D+
g > x} =

∫ ∞

−∞
φ(y)S(x, y,G) dy, P{Dg > x} = 2

∫ ∞

0
φ(y)K (x, y,G) dy,

(12.15)

where the function G is defined above in (12.11), φ(y) = e− y2

2 /
√

2π is the density
function of the standard normal distribution and in the last integral representation for
P{Dg > x} we have used the symmetry property K (x, y, A) = K (x,−y, A). Now,
to approximate P{Dg > x} and P{D+

g > x} we can substitute an approximating
function gn instead of g and use the representation (12.15) with the corresponding
function

Gn := {Gn(s) := (s + 1)gn(
s

s + 1
) , s ≥ 0}.

In fact, we found that it is more convenient to discuss at first a n-knot piecewise
linear function Gn as an approximation to G and then define the corresponding
approximating function

gn := {gn(t) := (1 − t)Gn(
t

1 − t
), 0 ≤ t < 1} ,

which is also a n-knot piecewise linear function. It is also important to note that
under the assumption that G is a nonnegative continuously differentiable function,

1This assumption is used just for convenience, the exposition can be adapted for a general case as
well.
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we can always construct sequences of piecewise linear functions GL
n (s) and GU

n (s)
such that for all s ∈ (0, ∞)

GL
n (s) ≤ G(s) ≤ GU

n (s),

lim
n→∞GL

n (s) = lim
n→∞GU

n (s) = G(s).

Hence, for y ≥ 0, as n → ∞

S(y, x,G) ≤ P{ sup
0≤s<∞

Ws − GL
n (s)y

(s + 1)
> x} = S(y, x,GL

n ) → S(y, x,G) ,

and for y < 0, as n → ∞

S(y, x,G) ≥ P{ sup
0≤s<∞

Ws − GU
n (s)y

s + 1
> x} = S(y, x,GU

n ) → S(y, x,G) .

Therefore

P{D+
g > x} ≤ UB(x) :=

∫ ∞

0
φ(y)[S(x, y,GL

n ) + S(x,−y,GU
n )] dy → P{D+

g > x} ,

(12.16)

P{D+
g > x} ≥ LB(x) :=

∫ ∞

0
φ(y)[S(x, y,GU

n ) + S(x,−y,GL
n )] dy → P{D+

g > x} .

(12.17)
Analogously, one can obtain the following upper and lower bounds for P{Dg > x} :
P{Dg > x} ≤ 2

∫ ∞

0
φ(y)(1 − P{−x(1 + s) + GU

n (s)y ≤ Ws ≤ GL
n (s)y + x(1 + s), s ≥ 0})dy

→ P{Dg > x},

P{Dg > x} ≥ 2
∫ ∞

0
φ(y)(1 − P{−x(1 + s) + GL

n (s)y ≤ Ws ≤ GU
n (s)y + x(1 + s), s ≥ 0})dy

→ P{Dg > x}.

12.2.2 Recurrent Numerical Integration for BCP Approximations

Let f (s) and q(s) be boundaries for W on the interval [0,T ]. Let

p(i, f, q|Wti ,Wti+1) := P{ f (s) < Ws < q(s), ti ≤ s ≤ ti+1|Wti ,Wti+1}. (12.18)

The following result, first proved in Novikov et al. (1999), can be used for finding
BCP for one-sided and two-sided boundaries via recurrent integrations when the
function p(i, f, q|x, y) is known.
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Proposition 1 (Novikov et al. 1999) Let f (s)and q(s) be deterministic continuous
functions,

t0 = 0 < t1 < · · · < tn = T .

Then

P{ f (s) < Ws < q(s), 0 ≤ s ≤ T } = E
n−1∏

i=0

p(i, f, q|Wti ,Wti+1).

In the particular case of one-sided boundaries where f = −∞and q(s) is a linear
boundary on the interval s ∈ [ti , ti+1], we have

p(i,−∞, q|Wti ,Wti+1 ) = 1 − exp{−2(q(ti ) − Wti )
+(q(ti+1) − Wti+1 )

+/(ti+1 − ti )}. (12.19)

The latter can be found in Wang and Pötzelberger (1997). The case of two-sided
linear boundaries was discussed in Novikov et al. (1999) and then it was also stud-
ied with the use of the Monte Carlo method in Pötzelberger and Wang (2001) and
Pötzelberger (2012).

For completeness of the exposition we outline here the proof of Proposition 1
which was presented in Novikov et al. (1999).

Proof Let

Z (i)
t := Wt − E[Wt |(Wti ,Wti+1 )] = Wt − Wti − t − ti

ti+1 − ti
(Wti+1 − Wti ), t ∈ [ti , ti+1] .

Then the Gaussian processes Z (i)
t and E[Wt |(Wti ,Wti+1)] are independent for all

t ∈ [ti ,ti+1]. Note that Z (i)
t , i = 1, ..., n are independent Brownian bridges, the

covariance function of Z (i)
t is

cov(Z (i)
t , Z (i)

s )=min(t − ti , s − si ) − (t − ti )(s − si )/(ti+1 − ti ) , s, t ∈ [ti ,ti+1].

Using the change of time (12.9) and the Bachelier formula (see Doob 1949) with the
substitutions

a = (q(ti ) − Wti )
+ , b = (q(ti+1) − Wti+1)

+/(ti+1 − ti ), (12.20)

we obtain (12.19).
An explicit representation for p(i, f, q|Wti ,Wti+1) with linear functions f and

q can be found in Doob (1949). Here we reproduce the result of Escriba (1987), as
it is presented in computationally more convenient form due to nonnegativity of the
summands in the series (12.22).
For a > 0, c > 0, b ≥ d

P{−c − ds < Ws < a + bs, 0 ≤ s < ∞} = 1 − H(a, b, c, d) , (12.21)
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where

H(a, b, c, d) = Q(a, b, c, d) + Q(c, d, a, b), Q(a, b, c, d) :=
∞∑

k=1

qk(a, b, c, d) ,

(12.22)

qk(a, b, c, d) := exp{2(b + d)(−c)(k − 1)2 −
2(b + d)a(k − 1)k − ab + b(2(−c − a)(k − 1) − a)}
×(1 − exp{−2c((b + d)(2k − 1) + b)}).

Make in (12.22) the change (12.20) for the upper boundary q and correspondingly,
the following change for the lower boundary f :

c = ( f (ti ) − Wti )
+, d = ( f (ti+1) − Wti+1)

+/(ti+1 − ti )

an explicit representation of p(i, f, q|Wti ,Wti+1) as an infinite series can be obtained.
Note in literature one can find other representations for p(i, f, q|Wti ,Wti+1) with
linear functions f and q , see e.g. Anderson (1960) and Hall (1997).

12.2.3 Computing S(x, y, Gn) and K (x, y, Gn)with n-knot Linear
Splines

Here we consider the case where instead of G(s) in (12.10) a piecewise linear con-
tinuous function Gn(s) is used. Let

{ti : t0 = 0 < t1 < · · · < tn = T }.

Suppose that Gn(s) is truncated by a constant at point tn = T < ∞ i.e.

Gn(s) ≡ Gn(T ) , s ≥ T .

Proposition 2 (Kordzakhia et al. (2016))

S(x, y,Gn) = 1 − E
n−1∏

i=0

(1 − exp{−2(q(ti ) − Wti )
+(q(ti+1) − Wti+1 )

+/(ti+1 − ti )})

(1 − e−2(Gn(T )y−WT +(1+T )x)+x ) .

Remark 1 The computation of S(y, x,Gn) can be reduced ton-fold integration of the
factorized expression which contains the transition density of the Brownian motion
W . Hence, we need to make n recurrent integrations to find S(y, x,Gn) and it only
remains to make one additional integration over y to find P{D+

gn
> x}.
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Remark 2 To find approximations based on the expressions (12.22) for wKS-2 one
needs to make a proper truncation of the infinite series in (12.22); we shall discuss this
procedure elsewhere in details. Here we just note that for large x , a rather accurate
upper bound can be obtained via the obvious inequality

P{Dg > x} ≤ P{D+
g > x} + P{D+−g > x} = 2P{D+

g > x}, (12.23)

where P{D+
g > x} can be approximated using (12.15) in Proposition 2.3 and (12.16).

The following simple lower bound

P{Dg > x} ≥ K (x), (12.24)

is a result of the Anderson inequality, see Anderson (1955). By direct calculations
based on the second representation for K (x) from (12.5) one can check that 1 −
K (x) < 10−4 for x ≤ 0.33, hence, we have P{Dg > x} ≈ 1 for the range 0 ≤ x ≤
0.33 with a high accuracy for any function g.

12.3 Accuracy of BCP Approximations

Here we present general upper bounds for distances |S(x, y, A1) − S(x, y, A2)| and
|K (x, y, A1) − K (x, y, A2)|. Such estimates lead to the theoretical justification of
numerical consistency of the BCP approach using n-knot linear splines and recurrent
integration formula from Proposition 2 withn → ∞. In fact, for wKS-1 a comparison
with MC simulations demonstrates that an accuracy of order 1% is achieved with
the use of 2-knot linear splines, see Sect. 12.4.

Theorem 1 Let A1(s) and A2(s) be continuously differentiable functions such that
A1(0) = A2(0) and

�(A1, A2) :=
∫ ∞

0
(

d

ds
(A1(s) − A2(s)))

2 ds < ∞ . (12.25)

Then

|S(x, y, A1) − S(x, y, A2)| (12.26)

≤ 2er f (|y|√�(A1, A2)/8) ≤ |y|
√

2�(A1, A2)

π
,
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and

|K (x, y, A1) − K (x, y, A2)| (12.27)

≤ 2er f (|y|√�(A1, A2)/8) ≤ |y|
√

2�(A1, A2)

π
,

where er f (x) := ∫ x
0 φ(

√
2u)du/

√
2.

To simplify notations further we set

�(A1, A2) := �12, ζ12 :=
∫ ∞

0
(

d

ds
(A1(s) − A2(s))) dWs . (12.28)

The proof of Theorem 1 relies on the following lemma.

Lemma 1 LetAi (s), i = 1, 2 be continuous differentiable functions, Ai (0) = 0.

Then for any x > 0 and y

S(x, y, A1) = E I { max
0≤s<∞

Ws − A2(s)y

s + 1
> x} e−yζ12−y2�12/2, (12.29)

and

K (x, y, A1) = E I { max
0≤s<∞

|Ws − A2(s)y|
s + 1

> x} e−yζ12−y2�12/2. (12.30)

Further we show validity of (12.30) by adapting the proof of (12.29) given in
Kordzakhia et al. (2016).

Proof of Lemma 1. We define the Girsanov measure transformation on (�, F,

{Ft }, P) as follows

P̃(A) = E I {A} e−yζ12−y2�12/2, A ∈ F.

By Girsanov’s theorem (see Liptser and Shiryaev (2001)) the process Wt has drift
y(A2(t) − A1(t)) with respect to the probability space (�, F, {Ft }, P̃). This implies

E I { max
0≤s<∞

|Ws − A2(s)y|
s + 1

> x} e−yζ12−y2�12/2

= Ẽ I { max
0≤s<∞

|W̃s + y(A2(s) − A1(s)) − A2(s)y|
s + 1

> x}

= Ẽ I { max
0≤s<∞

|W̃s − yA1(s)|
s + 1

> x} = E I { max
0≤s<∞

|Ws − yA1(s)|
s + 1

> x},
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where Ẽ(.) is the symbol of expectation and W̃s is a standard Brownian motion with
respect to the measure P̃(A). Thus (12.30) is proved.

Consequently, the proof of Theorem 1 is a straightforward adaptation of that of
Theorem 1 from Kordzakhia et al. (2016).

Remark 3 Using Theorem 1, the numerical consistency of the BCP approximations
via piecewise linear functions can be deduced. Indeed, letGn(s) be a piecewise linear
continuous function such that

Gn(si ) = G(si ), si = iT/n, i = 0, . . . , n,

Gn(s) = G(T ), s ≥ T, T < ∞ ,

and consider the following approximations

P̂n{D+
g > x} =

∫ ∞

−∞
φ(y)S(x, y,Gn)dy

and

P̂n{D > x} = 2
∫ ∞

0
φ(y)K (x, y,Gn) dy,

obtained by substituting Gn instead of G in (12.15). Set

�n :=
∫ T

0
(

d

ds
(Gn(s) − G(s)))2 ds, δT :=

∫ ∞

T
(

d

ds
G(s)))2 ds . (12.31)

By Theorem 1 we have

|S(x, y,G) − S(x, y,Gn)| ≤ 2erf(|y|√(�n + δT )/8)

and

|K (x, y,G) − K (x, y,Gn)| ≤ 2erf(|y|√(�n + δT )/8).

Hence, for S(.) as well as K (.), we have

|P{D+
g > x} − P{D+

gn
> x}| ≤

∫ ∞

−∞
φ(y)|S(x, y,G) − S(x, y,Gn)| dy ≤

∫ ∞

−∞
φ(y)2erf(|y|√(�n + δT )/8) dy =

4

π
arctan(

√
(�n + δT )/2) ≤ 2

√
(�n + δT )

π
.
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If G(s) has a continuous second derivative then one can easily check that

�n ≤ 2 max
s≤T

|G ′′
(s)|T 3/n2 = constT 3/n2 .

The quantity δT can be made arbitrary small. By choosing T and large enough n,√
�n + δT < ε for any ε > 0. This implies the numerical consistency of the BCP

approach for P̂n{D+
g > x} and P̂n{Dg > x} as n → ∞.

12.4 Numerical Results

Here we provide the numerical results obtained for P{D+
g > x} for the most impor-

tant case α = 2/3 in (12.3). In this case

G(s) = (s + 1)1/3s2/3 − s,

and the conditions (12.12) and (12.25) hold.
Figure 12.1 illustrates a choice of 2-knot upper and lower bounds for G(s). The

chosen nodes minimize the distance �(G,G2) defined in (12.25). Results of numer-
ical calculation are shown in Table 12.1 for the following functions: the upper bound
UB(x) (see (12.16)), the lower bound LB(x) (see (12.17)), the Durbin’s asymptotic
approximation (Durbin (1985))

DurbA(x) := 0.94088 e−1.87055x2
,

obtained from Kordzakhia et al. (2016), and the mid-point approximation:

Mid(x) := (LB(x) +UB(x))/2.

Fig. 12.1 2-knot upper and
lower bounds for G = G(s)

0 1 2 3 4
s0.00
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0.15

0.20

0.25

0.30
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Table 12.1 Numerical results for approximations to P{D+
g > x}, g(t) = t2/3 − t

X LB UB Mid DurbA MC

0.1 0.968012 0.983650 0.975831 0.923446 0.972634

0.2 0.902706 0.931352 0.917029 0.873053 0.910118

0.3 0.811256 0.847397 0.829327 0.795101 0.821336

0.4 0.702729 0.741782 0.722256 0.697520 0.714913

0.5 0.586754 0.625236 0.605995 0.589445 0.600191

0.6 0.472232 0.507648 0.489940 0.479825 0.485830

0.7 0.366321 0.397126 0.381724 0.376249 0.379100

0.8 0.273871 0.299367 0.286619 0.284197 0.285115

0.9 0.197324 0.217484 0.207404 0.206784 0.206706

1.0 0.137001 0.152276 0.144639 0.144933 0.144388

1.1 0.091655 0.102759 0.097207 0.097852 0.097190

1.2 0.059082 0.066837 0.062959 0.063639 0.063017

1.3 0.036693 0.041901 0.039297 0.039869 0.039383

1.4 0.021956 0.025319 0.023637 0.024060 0.023713

1.5 0.012656 0.014747 0.013702 0.013987 0.013758

1.6 0.007028 0.008279 0.007654 0.007832 0.007692

1.7 0.003760 0.004480 0.004120 0.004225 0.004138

1.8 0.001938 0.002336 0.002137 0.002195 0.002144

1.9 0.000962 0.001174 0.001068 0.001099 0.001074

2.0 0.000460 0.000569 0.000515 0.000530 0.000516

Fig. 12.2 Lower (LB) and
upper (UB) bounds,
mid-point (Mid) and
Durbin’s (DurbA)
approximations to
P{D+

g > x} from Table 12.1

LU

Mid

UB

DurbA

0.1 0.5 1 1.5 2
x0.01

0.14

0.59

0.97

P D x

In Table 12.1 Monte Carlo simulation results are included for the discretised max-
imum:

D̂+
g,n := max

0≤ j≤n
(X j/n) ,

based on 107 trajectories and n = 2 × 105 points uniformly located on [0,1].
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Fig. 12.3 Relative errors of
Mid and DurbA
approximations versus MC

Mid

DurbA

0.1 0.5 1 1.5 2
x

4

2

1

0

1

2

Relative error

The numerical results for mid-point and Durbin’s approximations to P{D+
g > x}

provided in Table 12.1 for g(t) = t2/3 − t, 0 ≤ t ≤ 1, are plotted in Fig. 12.2 along
with its upper and lower bound approximations.

Figure 12.3 illustrates the relative errors (%) of Mid(x) and DurbA(x) approx-
imations evaluated with respect to Monte Carlo (MC) results shown in Table 12.1.
The absolute value of the relative errors of the mid-point approximation Mid(x)
does not exceed 1% for all x ∈ (.1, 2).
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13.1 Introduction and Summary

Let X1, . . . , Xk, . . . be sequentially observed independent random variables whose
Lebesgue density changes either within a location family

CL( f ) = { f (x, θ) = f (x − θ), θ ∈ R},

or within a scale family

CS( f ) = { f (x, θ) = e−θ f
(
xe−θ

)
, θ ∈ R},

from f (x, θ0) to f (x, θ0 + �) after an unknown (possibly infinite) change-point τ .
Here � > 0 is a specified amount of change to be detected quickly and with a low
rate of false alarm, while the initial θ0 may or may not be known. The literature
on this problem mostly deals with known f . The aim of this paper is to construct
nonparametric stopping rules when f is unknown, which would compare favorably
with their parametric counterparts based on a possibly misspecified form of density.
This will be attempted in an asymptotic setting, considering contiguous changes in
the following two models. We denote the distribution of {Xi } by Pf,∞ if the density
remains f (·) throughout the sequence (i.e., τ = ∞), and by Pf,τ ,� or P1 f,τ ,� if the
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density changes from f (·) to f (· − �) in CL( f ) or from f (·) to e−� f (·/e�) in
CS( f ) after Xτ with τ < ∞.

• Model 1. The distribution of {Xi } is either Pf,∞ or Pf,τ ,� in CL( f ), where τ is
unknown,� > 0 is specified and f is symmetric about 0 but otherwise unknown.

• Model 2. The distribution of {Xi } is either Pf,∞ or Pf,γ,� inCL( f ), or P1 f,τ ,� in
CS( f ), where τ is unknown, � > 0 is specified and f is arbitrary and unknown.

In both models we shall consider contiguous changes. Indeed, our evaluation
of a stopping rule will be determined by its asymptotic behavior over the first n
observations under Pn = Pf,∞, and under either Qn = Pf,τn ,�n in CL( f ) or Q1n =
P1 f,τn ,�n in CS( f ) as n → ∞, where τn = [nλ] for some 0 < λ < 1 and �n =
δn−1/2 with a specified δ > 0.

The stopping rules constructed in this paper are rank analogues of the Page-
CUSUM procedure and its generalization. When f and θ0 are both known, the
CUSUM procedure due to Page (1954) calculates the log likelihood ratio (LLR)
statistic to test Hk : τ ≥ k against the alternative H ′

k : τ < k based on X1, . . . , Xk

for each k ≥ 1 and stops as soon as the LLR exceeds a prescribed boundary c . The
LLR for Hk vs H ′

k is

Tk( f,�) = max
0≤ j<k

Tjk( f, �), k ≥ 1, (13.1a)

where

Tjk( f, �) =
∑

j+1≤i≤k

log[ f (Xi , θ0 + �)/ f (Xi , θ0)]. (13.1b)

The Page-CUSUM stopping rule is thus defined as

NP (c, f, �) = min{k : Tk( f, �) ≥ c}, (13.1c)

where the constant c, known as the decision boundary, is chosen so as to control the
false alarm rate by keeping E [NP (c, f,�)] or P [NP (c, f, �) ≤ n] for given n at a
specified value when there is no change. This rule has been shown to be optimal in a
minimax sense by Lorden (1971) andMoustakides (1986). However, it may perform
poorly if f is misspecified.

Pursuing the likelihood approach when f is known and θ0 is unknown, the Page-
CUSUM procedure generalizes by replacing the Neyman-Pearson LLR, Tjk( f, �)

for Hk : τ ≥ k against the alternative H∗
j : τ = j with θ0 known by the correspond-

ing Wilks’ �, using maximum likelihood estimators θ̂k and θ̃ jk of the unknown θ0
based on X1, . . . , Xk under Hk and H∗

j respectively. Thus at the kth stage sampling,
we calculate

Wk( f, �) = max
1≤ j≤k−1

Wjk( f,�), k ≥ 2, (13.2a)
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where

Wjk( f,�) =
∑

1≤i≤ j

log f (Xi , θ̃ jk) +
∑

j+1≤i≤k

log f (Xi , θ̃ jk + �) −
∑

1≤i≤k

log f (Xi , θ̂k).

(13.2b)
For uniformity of notations, we extend the definitions ofWk andWjk in (13.2a) and
(13.2b) by letting

W0k( f, �) = 0 and Wk( f, �) = max
0≤ j<k

W jk( f, �) for k ≥ 1.

The generalized CUSUM stopping rule is thus defined as

NG(c, f, �) = min{k ≥ 1 : Wk( f, �) ≥ c}. (13.2c)

In practice, the above rules are often implemented with assumed density g (possibly
different from the true f ) in 1(a,b,c) or 2(a,b,c), which we shall call the “working
density”. For a family of densities {g(x, θ), θ ∈ R}, with g(x, 0) = g(x), write score
function and the Fisher information as

ψ(x; g) = ∂ log g(x, θ)

∂θ
|θ=0 , I (g) =

∫
ψ2(x; g)g(x)dx, (13.3)

and in particular

ψL(x; g) := ψ(x; g) = −g′(x)/g(x), IL(g) := I (g) in CL(g), (13.3a)

ψS(x; g) := ψ(x; g) = −1 − xg′(x)/g(x), IS(g) := I (g) in CS(g). (13.3b)

Then under Pg,∞ and for j = [ns] < k = [nt], 0 ≤ s < t ≤ 1 and � = δn−1/2, the
building blocks Tjk of NP and Wjk of NG have the following approximations as
n → ∞, subject to some Cramér-type regularity conditions (see Bhattacharya and
Zhou (1996)):

Tjk(g, �) = �T̂ jk(g, �) + oP (1), Wjk(g, �) = �Ŵ jk(g, �) + oP (1),

where

T̂ jk(g, �) =
∑

j+1≤i≤k

ψ(Xi ; g) − (1/2)(k − j)�I (g) (13.4)

and

Ŵ jk(g, �) =
∑

j+1≤i≤k

ψ(Xi ; g) − k − j

k

∑
1≤i≤k

ψ(Xi ; g) − j

2k
(k − j)�I (g)

(13.5)
with ψ = ψL , I = IL in CL(g) and ψ = ψS , I = IS in CS(g).
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Now let s(Xi ) = sign(Xi ), Rk:i = the rank of Xi among (X1, . . . , Xk), R
+
k:i =

the rank of |Xi | among (|X1|, . . . , |Xk |), and consider the σ-fields

Fk = σ{(s(X1), . . . , s(Xk), (R
+
k:1, . . . , R

+
k:k)} and Gk = σ{Rk:1, . . . , Rk:k}.

To construct nonparametric analogues of NP and NG , it seems reasonable to use

T̄ jk(g, �) = Eg,∞
[
T̂ jk(g, �)|Fk

]
and W̄ jk = Eg,∞

[
Ŵ jk(g, �)|Gk

]

as building blocks. This leads to the signed rank CUSUM stopping rule

N+
R (c, g, �) = min

{
k ≥ 1 : max

0≤ j≤k−1
T̄ jk(g, �) ≥ c

}

to detect changes in Model 1 and the rank CUSUM stopping rule

NR(c, g, �) = min

{
k ≥ 1 : max

0≤ j≤k−1
W̄ jk(g, �) ≥ c

}

to detect changes in Model 2. Explicit formulas for T̄ jk(g, �) and W̄ jk(g, �) are
given in Sect. 13.2.2 in terms of notations introduced in Sect. 13.2.1.

In Sect. 13.3 we present our main results concerning the asymptotics of
N+
R (c, g, �n) and NR(c, g, �n) over the first n observations under Pn = Pf,∞ (no

change) and Qn = Pf,τn ,�n (or Q1n = P1 f,τn ,�n ) with τn = [nλ] for some 0 < λ <

1 and �n = δn−1/2, δ > 0. These asymptotics are described in Theorems 1 and 2
in terms of weak convergence properties of suitably normalized versions of doubly-
indexed processes

{
T̄ jk(g, �), 0 ≤ j < k ≤ n

}
and

{
W̄ jk(g, �), 0 ≤ j < k ≤ n

}
.

Comparing these results with the weak limits of {Tjk(g, �)} and {Wjk(g, �)}
obtained by Bhattacharya and Zhou (1996), we see that the nonparametric rules
have the same asymptotic behaviors as their parametric counterparts under Pn as
well as Qn (or Q1n) if g = f . This parallels the Chernoff and Savage (1958) result
in fixed sample hypothesis testing. Moreover, due to the distribution-free property
of ranks in the null case, false alarm rates of N+

R and NR are unaffected by mis-
specification (i.e., when g 	= f ), while these rates for NP and NG may be quite
adversely affected when g 	= f . The weak convergence results also show how the
drift terms which set in when a change occurs, and drive the underlying stochastic
processes towards the decision boundary, slow down under model misspecification
for all procedures. We prove the two theorems by establishing the convergence of
finite-dimensional distributions in Sect. 13.4 and tightness in Sect. 13.5 of normal-
ized versions of {T̄ jk(g, �)} and {W̄ jk(g, �)}. Convergence of finite-dimensional
distributions is established by the usual Hájek-projection technique. However, the
proof of tightness requires derivation of some fluctuation inequalities for doubly-
indexed rank sums, using intricate martingale properties of these processes which
are believed to be new in the literature (Lemma 8).



Nonparametric Stopping Rules for Detecting Small Changes… 255

Asymptotic properties of N+
R (c, g, �) were stated in Bhattacharya and Zhou

(1994) without proof together with a simulation study comparing N+
R with NP .

13.2 Construction of Nonparametric Rules to Detect Change

13.2.1 Preliminaries

Throughout the paper we assume that the true density f and the working density g
satisfy the following condition.
Condition C. (a) In CL( f ) and CL(g), f and g are absolutely continuous, f ′ and
g′ are integrable, and the Fisher informations IL( f ), IL(g) are positive and finite.
(b) In CS( f ) and CS(g), f and g are absolutely continuous, x f ′ and xg′ are inte-
grable, and the Fisher informations IS( f ), IS(g) are positive and finite.

The following notations are standard in the theory of ranks (see Hájek and Šidák
(1967)).

LetUk:1 < · · · < Uk:k denote the order statistics in a random sample (U1, . . . ,Uk)

fromUniform(0,1) and let F ,G denote the distribution functions of f , g respectively.
Under Pg,∞, the score functions given by 13.3(a,b) are

ψL(Xi ; g) D= −g′oG−1

goG−1 (Ui ) := φ(Ui ; g) in CL(g), (13.6)

ψS(Xi ; g) D= − 1 − G−1(Ui )
g′oG−1

goG−1 (Ui ) := φ1(Ui ; g) in CS(g). (13.7)

Moreover, with a symmetric g, ψL(Xi ; g) = s(Xi )ψL(|Xi |; g), and

ψL(|Xi |; g) D= −g′oG−1

goG−1 (1/2 +Ui/2) := φ+(Ui ; g). (13.8)

For a square-integrable function φ on [0, 1] with ∫ 10 φ(u)du = 0 and
∫ 1
0 φ2(u)du =

||φ||2, let
ak(i, φ) = E[φ(Uk:i )], A2

k = k−1
∑

1≤i≤k

a2k (i, φ). (13.9)

Then
∑

1≤i≤k ak(i, φ) = 0 and limk→∞ A2
k = ||φ||2. Under Condition C, the func-

tions φ(·; g), φ1(·; g) and φ+(·; g) defined by (13.6), (13.7) and (13.8) are square-
integrable,

∫ 1

0
φ(u; g)du =

∫ 1

0
φ1(u; g)du = 0, (13.10)

||φ(·; g)||2 = ||φ+(·; g)||2 = IL(g), ||φ1(·; g)||2 = IS(g),
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and specializing (13.9) to these functions, we define ak(i, g), a1k(i, g), and a
+
k (i, g)

as means of φ(Uk:i ; g), φ1(Uk:i ; g) and φ+(Uk:i ; g) respectively. Clearly, (13.6),
(13.7), (13.8) and (13.10) also hold for f and we define ak(i, f ), a1k(i, f ) and
a+
k (i, f ) analogously.

13.2.2 The Stopping Rules N+
R and NR

In the following two lemmas, we obtain explicit formulas for the building blocks
T̄ jk of N

+
R and W̄ jk of NR . These formulas allow us to do the computations for the

stopping rule N+
R in terms of s(Xi ) and R+

k:i and for NR in terms of Rk:i .

Lemma 1 In CL(g), with a symmetric g satisfying Condition C,

T̄ jk(g, �) =
∑

j+1≤i≤k

s(Xi )a
+
k (R+

k:i , g) − (1/2)(k − j)�IL(g).

Proof For a symmetric g, the signs s(Xi ), the ranks R
+
k:i and the order statistics |Xk:i |

are mutually independent under Pg,∞. Now use (13.4) and (13.8) and the definition
of a+

k . �

Lemma 2 For arbitrary g satisfying Condition C,

W̄ jk(g, �) =
{ ∑

j+1≤i≤k ak(Rk:i , g) − j
2k (k − j)�IL(g), in CL(g),∑

j+1≤i≤k a1k(Rk:i , g) − j
2k (k − j)�IS(g), in CS(g).

Proof For arbitrary g ,the ranks Rk:i and the order statistics Xk:i are independent
under Pg,∞. Now use (13.5), (13.6) and (13.7) and the definition of ak inCL(g) (and
of a1k in CS(g)) and because

∑
1≤i≤k ak(Rk:i , g) = 0 (similarly for a1k). �
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13.3 Main Results

13.3.1 Weak Convergence of {T̄ j k} and {W̄ j k}

For �n = δn−1/2, j = [ns], k = [nt], 0 ≤ s < t ≤ 1, dividing by {nIL(g)}1/2 or
{nIS(g)}1/2 as appropriate, and letting

ξn(s, t; g) = n−1/2
∑

[ns]+1≤i≤[nt]
s(Xi )a

+
[nt]
(
R+

[nt]:i , g
)

/||φ+(·; g)||, (13.11a)

ηn(s, t; g) = n−1/2
∑

[ns]+1≤i≤[nt]
a[nt]

(
R[nt]:i , g

)
/||φ(·; g)||, (13.11b)

η1n(s, t; g) = n−1/2
∑

[ns]+1≤i≤[nt]
a1,[nt]

(
R[nt]:i , g

)
/||φ1(·; g)||, (13.11c)

the normalized versions of {T̄ jk} and {W̄ jk} in CL(g) and CS(g) are respectively
defined as

Y+
n (s, t; g, δ) = ξn(s, t; g) − (1/2)(t − s)δ IL(g)1/2 + o(1), (13.12a)

Yn(s, t; g, δ) = ηn(s, t; g) − (1/2)st−1(t − s)δ IL(g)1/2 + o(1), (13.12b)

Y1n(s, t; g, δ) = η1n(s, t; g) − (1/2)st−1(t − s)δ IS(g)
1/2 + o(1), (13.12c)

on (s, t) ∈ � = {(s, t) : 0 ≤ s ≤ t ≤ 1}, where ξn , ηn , η1n and Y+
n , Yn, Y1n are all

0 for s = t . The o(1) terms in 13.12(a,b,c) are uniform, because they represent the
discrepancy due to treating ns, nt as integers, which we shall do all through.

We now describe the weak convergence properties of these processes in the fol-
lowing two theorems. In what follows, {B(t) : t ≥ 0} is a standard Brownianmotion.

Theorem 1 Suppose that f and g are symmetric densities, satisfying Condition C
in CL( f ) and CL(g). Then

{
Y+
n (s, t; g, δ), (s, t) ∈ �

}
converges weakly to

(a)
{
Y+(s, t; g, δ) = B(t) − B(s) − (1/2)δ IL(g)1/2(t − s), (s, t) ∈ �

}
under Pn = Pf,∞, and to

(b)
{
Y+(s, t; g, δ) + δρ+( f, g)IL( f )1/2α(s, t), (s, t) ∈ �

}
under Qn = Pf,τn ,�n , where ρ+( f, g) is correlation between φ+(·; f ) and
φ+(·; g) and α(s, t) = (t − λ)+ − (s − t)+.

Theorem 2 Suppose f , g are densities, satisfying Condition C in CL( f ) and CL(g)
or in CS( f ) and CS(g). Then

I. {Yn(s, t; g, δ), (s, t) ∈ �} converges weakly to

(a)
{
Y (s, t; g, δ) = st−1B(t) − B(s) − (1/2)δ IL(g)1/2st−1(t − s), (s, t) ∈ �

}
under Pn = Pf,∞, and to
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(b)
{
Y (s, t; g, δ) + δρ( f, g)IL( f )1/2β(s, t), (s, t) ∈ �

}
under Qn = Pf,τn ,�n , where ρ( f, g) is correlation between φ(·; f ) and
φ(·; g) and β(s, t) = st−1(t − λ)+ − (s − t)+.

II. The weak limits of {Y1n(s, t; g, δ), (s, t) ∈ �} under Pn and Q1n = P1 f,τn ,�n

are obtained by substituting IS(g), IS( f ) and ρ1( f, g) =correlation between
φ1(·; f ) and φ1(·; g) for IL(g), IL( f ) and ρ( f, g) respectively in the limits of
{Yn(s, t; g, δ)} stated in I (a, b).

By simple algebraic rearrangement it can be seen that the stopping time Nn =
N+
R (c, g, �) in model 1 with (i) j = [ns], k = [nt], (ii) � = �n = δn−1/2, (iii)

c = cn = d{nIL(g)}1/2 can be written as:

Nn = min{1 ≤ [nt] ≤ n : sup
0≤s≤t

Y+
n (s, t; g, δ) ≥ d}.

Hence

P[Nn ≤ [nx]] = P[ sup
0≤t≤x

sup
0≤s≤t

Y+
n (s, t; g, δ) ≥ d]

for all 0 ≤ x ≤ 1. By Theorem 1(a) for λ = 1 and Theorem 1(b) for λ < 1, and the
ContinuousMapping Theorem, it follows that in the limit as n → ∞, this probability
is obtained by replacing Y+

n by Y+ in the above expression if d is a continuity point
of the limit distribution. The limiting distribution of Yn obtained in Theorem 2 serves
the same purpose.

The above comment regarding the actual use of these theorems is added at the
suggestion of a referee who also pointed out some typographic errors. We extend
our thanks to the referee.

13.3.2 Comparison Between the Parametric and Nonparametric
Stopping Rules

Similar to the normalization of {T̄ jk} and {W̄ jk} for (s, t) ∈ �, define

Z0
n(s, t; g, δ) = T[ns][nt]

(
g, δn−1/2) /{nIL(g)1/2}

for a symmetric g, and

Zn(s, t; g, δ) = W[ns][nt]
(
g, δn−1/2) /{nIL(g)1/2},

Z1n(s, t; g, δ) = W[ns][nt]
(
g, δn−1/2) /{nIS(g)1/2},

inCL(g) andCS(g) respectively for an arbitrary g. Theweak limits of {Z0
n}, {Zn} and

{Z1n} which describe the asymptotic behaviors of NP and NG have been derived by
Bhattacharya andZhou (1996). Comparing their resultswith those given inTheorems
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1 and 2, we see that for g = f (i.e., when the working density is the same as the true
density), the weak limits of {Z0

n}, {Zn} and {Z1n} are the same as the weak limits of
{Y+

n }, {Yn} and {Y1n} respectively, under Pn as well as Qn (or Q1n). This parallels
the results of Chernoff and Savage (1958) in fixed sample hypothesis testing.

Next consider the case of g 	= f . Here, under Pn , the weak limits of {Y+
n }, {Yn}

and {Y1n} remain the same as in the case of g = f except for IL( f )1/2 (or IS( f )1/2)
being replaced by IL(g)1/2 (or IS(g)1/2), but the weak limits of {Z0

n}, {Zn} and
{Z1n} depend on the unknown f . Thus the false alarm rates of N+

R and NR are
distribution-free, but the false alarm rates of NP and NG are vulnerable to model
misspecification.

Under contiguous change, the deterministic components in part (b) of Theorem
1 and 2, which drive the respective processes towards the decision boundary, get
weakened by the factors ρ+( f, g) inModel 1 and ρ( f, g) (or ρ1( f, g)) in the location
(or scale) problem in Model 2 if g 	= f . Although these factors are less than 1, they
may still attain reasonable levels unless g is drastically different from f . For a
measure of distance between f and g which is relevant in the present context, see
Hájek and Šidák (1967), page 22. Note that

(i) ρ+( f, g) > 0 if f and g are symmetric and unimodal,
(ii) ρ( f, g) > 0 if f and g are strongly unimodal (i.e., f ′/ f , g′/g are non-

increasing),
(iii) ρ1( f, g) > 0 if x f ′(x)/ f (x), xg′(x)/g(x) are non-increasing.
The linear drifts N+

R and NR in Theorems 1(b) and 2(b), are improvements upon
the adhoc stopping rules based on cumulative sums of sequential ranks (or their
scores) considered by Bhattacharya and Frierson (1981) and others, which are driven
towards the decision boundary by logarithmic drifts after change.

The behaviors of {Z0
n}, {Zn} and {Z1n} under contiguous change when g 	= f ,

are quite complicated. However, here also the linear drift terms which set in after
change, slow down due tomisspecification ofmodel by factorswhich are correlations
between certain scores. See Bhattacharya and Zhou (1996) for details.

13.3.3 Overview of Proofs of Theorems 1 and 2

Let pn , qn and q1n denote the joint densities of (X1, . . . , Xn) under Pn , Qn and Q1n
respectively. Consider the likelihood ratios Ln = qn/pn , L1n = q1n/pn . Then log Ln

and log L1n are the same as T[nλ],n( f, δn−1/2) in CL( f ) and CS( f ) respectively.
Using (13.4), we then see that under Pn

log Ln = δn−1/2
∑

[nλ]+1≤i≤n

ψL(Xi ; f ) − (1/2)(1 − λ)δ2 IL( f ) + oP (1),

(13.13)

log L1n = δn−1/2
∑

[nλ]+1≤i≤n

ψS(Xi ; f ) − (1/2)(1 − λ)δ2 IS( f ) + oP (1).

(13.14)
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Thus under Pn , log Ln
L→ N

(−σ2
L/2,σ2

L

)
where σ2

L = (1 − λ)δ2 IL( f ) and

log L1n
L→ N

(−σ2
S/2,σ

2
S

)
where σ2

S = (1 − λ)δ2 IS( f ). Consequently, both {Qn}
and {Q1n} are contiguous to {Pn}. In view of this, the proofs of Theorems 1 and 2
will proceed as follows.

We shall work with ak(i) = E [φ(Uk:i )] for arbitrary square-integrable function
φ on [0, 1], and the process
⎧⎨
⎩ξn(s, t) = n−1/2

∑
[ns]+1≤i≤[nt]

s(Xi )a[nt]
(
R+

[nt]:i
)

/||φ||, (s, t) ∈ �

⎫⎬
⎭ (13.15)

and
⎧⎨
⎩ηn(s, t) = n−1/2

∑
[ns]+1≤i≤[nt]

a[nt]
(
R[nt]:i

)
/||φ||, (s, t) ∈ �,

⎫⎬
⎭ (13.16)

with the additional requirement
∫ 1
0 φ(u)du = 0 in (13.16).

Approximating {ξn(s, t)}, {ηn(s, t)} by normalized sums of iid random variables,
finite-dimensional limit laws of {ξn}, {ηn} will be derived first under Pn , and then
under Qn (or Q1n) using (13.13) and (13.14) and LeCam’s Third Lemma. This will
establish the following two theorems in Sect. 13.4.

Theorem 1 The finite-dimensional distributions of {ξn(s, t)} converge to those of
(a) {B(t) − B(s)} under Pn, and
(b)
{
B(t) − B(s) + δ||φ||−1〈φ,φ+(·; f 〉α(s, t)

}
under Qn, whereα(s, t) = (t −

λ)+ − (s − λ)+.

Theorem 2 The finite-dimensional distributions of {ηn(s, t)} converge to those of
(a) {st−1B(t) − B(s)} under Pn, and
(b)

{
st−1B(t) − B(s) + δ||φ||−1〈φ,φ(·; f 〉β(s, t)

}
under Qn and the same

expression with φ(·; f ) replaced by φ1(·; f ) under Q1n, where β(s, t) = st−1(t −
λ)+ − (s − λ)+.

In Sect. 13.5, we shall establish tightness of {ξn(s, t)}, {ηn(s, t)} under Pn , and
then tightness under Qn and Q1n will follow by contiguity, thus yielding

Theorem 3 {ξn(s, t)} is tight under Pn and Qn.

Theorem 4 {ηn(s, t)} is tight under Pn, Qn and Q1n.

Specializing Theorems 1 and 3 to ak(i) = E
[
φ+(Uk:i ; g)

]
, Theorem 1 will

follow and specializing Theorems 2 and 4 to ak(i) = E [φ(Uk:i ; g)] and ak(i) =
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E [φ1(Uk:i ; g)], Theorem 2 will follow. Therefore, the main task is to prove Theo-
rems 1, 2, 3 and 4 in the general setting of ak(i) = E [φ(Uk:i )] with arbitrary square-
integrable φ satisfying the additional requirement of

∫ 1
0 φ(u)du = 0 in Theorems 2

and 4. This will be done in the rest of the paper.

13.4 Convergence of Finite-Dimensional Distributions—Proofs
of Theorems 1 and 2

13.4.1 Finite-Dimensional Distributions of {ξn(s, t)}
Let S+

jk =∑ j+1≤i≤k s(Xi )ak
(
R+
k:i
)
for 0 ≤ j ≤ k − 1and S+

kk = 0 .Then ξn(s, t) =
S+
ns,nt/(n

1/2||φ||). Now let

F jk = σ{(s(X j+1), . . . , s(Xk), (R
+
k: j+1, . . . , R

+
k:k)}, 0 ≤ j ≤ k − 1,

and let Fkk = {∅,�} denote the trivial σ-field. In particular,

F0k = σ{(s(X1), . . . , s(Xk), (R
+
k:1, . . . , R

+
k:k)} = Fk

in the context of Lemma1. Note that S+
jk is F jk-measurable and F j−1,k ⊃ F jk ⊂

F j,k+1. Now let F+(x) = 2F(x) − 1 denote the distribution function of |X1| having
a symmetric density f , and define

T ∗
jk =

∑
j+1≤i≤k

s(Xi )φ
(
F+(|Xi |

)
), 0 ≤ j ≤ k − 1 and T ∗

kk = 0.

Then we have the following Lemma.

Lemma 3 Under Pn = Pf,∞ with symmetric f , the following hold:

(a) E
[
T ∗
jk |F0k

]
= E

[
T ∗
jk |F jk

]
= S+

jk .

(b) E
[
T ∗
jk

]
= E

[
S+
jk

]
= 0, E

[
T ∗2
jk

]
= (k − j)||φ||2,

E
[
S+2
jk

]
= (k − j)A2

k ,

E

[(
T ∗
jk − S+

jk

)2] = (k − j)
(||φ||2 − A2

k

)
,

where A2
k = k−1∑

1≤i≤k ak(i)
2 = k−1∑

1≤i≤k {E [φ(Uk:i )]}2.
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(c) E
[
S+
j,k+1|F0k

]
= E

[
S+
j,k+1|F jk

]
= S+

jk = E
[
S+
j−1,k |F jk

]
, i.e.,

{(
S+
jk,F0k

)
, k ≥ j

}
is a martingale for a fixed j and

{(
S+
jk,F jk

)
, 0 ≤ j ≤ k

}
is a reverse martingale for fixed k.

(d) For a ≤ c ≤ d ≤ b, E
[(
S+
ab − S+

cd

)2] = (b − a)A2
b − (d − c)A2

d .

Proof of Lemma 3 Argue as in Lemma 1 to see that E
[
T ∗
jk |F0k

]
= S+

jk . Since S+
jk

is F jk-measurable and F jk ⊂ F0k we now have

E
[
T ∗
jk |F jk

]
= E

[
E
[
T ∗
jk |F0k

]
|F jk

]
= E

[
S+
jk |F jk

]
= S+

jk ,

proving (a).
The first three parts of (b) follow because s(Xi ) is independent of |Xi |, has mean 0

and variance 1 and A2
k = k−1∑

1≤i≤k ak(i)
2. Now use the proven parts of the lemma

to prove the rest of (b) by conditional expectation argument.
Next, for fixed j , write T ∗

j,k+1 = T ∗
jk + s(Xk+1)φ (F+ (|Xk+1|)) and note that

s(Xk+1) and |Xk+1| are mutually independent and independent of F0k , S
+
jk is F jk-

measurable and F jk ⊂ F0k ⊂ F0,k+1 for all k ≥ j . Thus

E
[
S+
j,k+1|F0k

]
= E

[
E
[
T ∗
j,k+1|F0,k+1

]
|F0k

]
= E

[
T ∗
j,k+1|F0k

]

= E
[
T ∗
jk |F0k

]
+ E

[
s(Xk+1)φ

(
F+
(|Xk+1|

)) |F0k
] = S+

jk + 0 = S+
jk ,

E
[
S+
j,k+1|F jk

]
= E

[
E
[
S∗
j,k+1|F0k

]
|F jk

]
= E

[
S∗
jk |F jk

]
= S+

jk ,

while for fixed k, writing S+
j−1,k = S+

jk + s(X j )ak
(
R+
k: j
)
, the remaining part of (c)

follows, because s(X j ) is independent of R
+
k: j and F jk .

Finally, let a ≤ c ≤ d ≤ b. If c = d, then S+
cd = 0, so (d) follows from (b). If

c < d, then Fcd ⊂ Fad , so by (c),

E
[
S+
ab|Fcd

] = E
[
E
[
S+
ab|Fad

] |Fcd
] = E

[
S+
ad |Fcd

] = S+
cd .

Hence

E
[(
S+
ab − S+

cd

)2] = EE
[{
S+
ab − E

(
S+
ab|Fcd

)}2 |Fcd

]

= E
[
E
(
S+2
ab |Fcd

)
− E2 (S+

ab|Fcd
)]

= E
[
S+2
ab

]
− E

[
S+2
cd

]
= (b − a)A2

b − (d − c)A2
d

by (b), proving (d). �
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Proof of Theorem 1 First suppose that Pn holds with symmetric f and let

Vi = s(Xi )φ (F+(|Xi |)) /||φ||, Wi = δψL(Xi ; f ).

Then {(Vi ,Wi )} is an iid sequence with E[Vi ] = E[Wi ] = 0 and

Var [Vi ] = 1, Var [Wi ] = δ2 IL( f ), Cov[Vi ,Wi ] = δ||φ||−1〈φ,φ+(·; f )〉.
By (13.13),

log Ln = n−1/2
∑

nλ+1≤i≤n

Wi − (1/2)(1 − λ)δ2 IL( f ) + oP (1),

and if we let

ξ∗
n(s, t) = n−1/2T ∗

ns,nt/||φ|| = n−1/2
∑

ns+1≤i≤nt

Vi

for (s, t) ∈ �, then

ξn(s, t) = n−1/2S+
ns,nt/||φ|| = ξ∗

n(s, t) + oP (1),

because of Lemma 3(b) and by virtue of limk→∞ A2
k = ||φ||2,

lim
n→∞ E

[{
ξn(s, t) − ξ∗

n(s, t)
}2] = lim

n→∞
(
n||φ||2)−1

E
[(
S+
ns,nt − T ∗

ns,nt

)2]

= (t − s) lim
n→∞

(
1 − A2

nt/||φ||2) = 0.

Thus under Pn , for arbitrary (sl , tl) ∈ �, 1 ≤ l ≤ r , where � = {(s, t) : 0 ≤ s ≤ t ≤
1},

(log Ln , ξn(s1, t1), . . . , ξn(sr , tr ))

= (−(1/2)(1 − λ)δ2 IL ( f ), 0, . . . , 0
)+ n−1/2

⎛
⎝ ∑

nλ+1≤i≤n

Wi ,
∑

ns1+1≤i≤nt1

Vi , . . . ,
∑

nsr+1≤i≤ntr

Vi

⎞
⎠+ oP (1)

L→ (−(1/2)(1 − λ)δ2 IL ( f ), 0, . . . , 0
)+ (ζ0, ζ1, . . . , ζr )

as n → ∞, where (ζ0, ζ1, . . . , ζr ) is a Gaussian random vector with
(i) ζ0 distributed as N

(
0, (1 − λ)δ2 IL( f )

)
,

(ii) (ζ1, . . . , ζr ) distributed as (B(t1) − B(s1), . . . , B(tr ) − B(sr )) ,

(iii) Cov[ζ0, ζl ] = {(tl − λ)+ − (sl − λ)+
}
Cov[W1, V1] = α(sl , tl)δ||φ||−1

〈φ,φ+(·; f )〉.
Thus the finite-dimensional distributions of {ξn(s, t)} converge in law to those of

{B(t) − B(s)} under Pn , and by LeCam’s Third Lemma, to those of{
B(t) − B(s) + α(s, t)δ||φ||−1〈φ,φ+(·; f )〉} under Qn . �
In the above proof, we have only used Lemma 3(b). Parts (c) and (d) of Lemma 3

will be used to control the fluctuations of
{
S+
jk

}
for the purpose of proving tightness

claimed in Theorem 3.
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13.4.2 Finite-Dimensional Distributions of {ηn(s, t)}
Proceeding as in Sect. 13.4.1, let S jk =∑ j+1≤i≤k ak(Rk:i ) for 0 ≤ j ≤ k − 1 and

Skk = 0. Then ηn(s, t) = n−1/2Sns,nt/
||φ|| can be approximated by η∗

n(s, t) = n−1/2W ∗
ns,nt/||φ||, where

W ∗
jk = jk−1

∑
1≤i≤k

φ (F(Xi )) −
∑

1≤i≤ j

φ (F(Xi )), 1 ≤ j ≤ k − 1 and W ∗
kk = 0.

Slight modifications in the proof of Lemma 3(a,b) lead to

E f,∞
[(

W ∗
jk − S jk

)2] = j (k − j)
{||φ||2/k − A2

k/(k − 1)
}
, (13.17)

as will be seen as a special case of Lemma 4(c) with Gk = σ {Rk:1, . . . , Rk:k}. Hence

lim
n→∞ E f,∞

[{
ηn(s, t) − η∗

n(s, t)
}2] = st−1(t − s) lim

n→∞
(
1 − A2

nt/||φ||2) = 0.

Thus ηn(s, t) = η∗
n(s, t) + oP (1) under Pn .

Proof of Theorem 2 Argue under Pn in CL( f ) and let

Vi = φ (F(Xi ))/||φ||, Wi = δψL(Xi ; f ).

Then everything is as in the proof of Theorem 1, the only exception being

Cov[Vi ,Wi ] = δ||φ||−1〈φ,φ(·; f )〉,

η∗
n(s, t) = n−1/2

⎡
⎣st−1

∑
1≤i≤nt

Vi −
∑

1≤i≤ns

Vi

⎤
⎦ ,

and for for arbitrary (sl , tl) ∈ �, 1 ≤ l ≤ r , as in the proof of Theorem 1,

(log Ln, ηn(s1, t1), . . . , ηn(sr , tr ))

=
(
−(1/2)(1 − λ)δ2 IL ( f ), 0, . . . , 0

)

+ n−1/2

⎛
⎝ ∑

nλ+1≤i≤n

Wi , s1t
−1
1

∑
1≤i≤nt1

Vi −
∑

1≤i≤ns1

Vi , . . . , sr t
−1
r

∑
1≤i≤ntr

Vi −
∑

1≤i≤nsr

Vi

⎞
⎠

L→
(
−(1/2)(1 − λ)δ2 IL ( f ), 0, . . . , 0

)
+ (ζ0, ζ1, . . . , ζr )

as n → ∞, where (ζ0, ζ1, . . . , ζr ) is a Gaussian random vector with
(i) ζ0 distributed as N

(
0, (1 − λ)δ2 IL( f )

)
,

(ii) (ζ1, . . . , ζr ) distributed as
(
s1t

−1
1 B(t1) − B(s1), . . . , sr t−1

r B(tr ) − B(sr )
)

,
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(iii) Cov[ζ0, ζl ] =
{
sl t

−1
l (tl − λ)+ − (sl − λ)+

}
Cov[W1, V1] = β(sl , tl)δ

||φ||−1〈φ, φ(·; f )〉.
The convergence of finite-dimensional distributions of ηn(s, t) under Pn and under

Qm now follows exactly as in the proof of Theorem 1 In the scale family, take
Wi = δψS(Xi ; f ) and replace IL( f ) by IS( f ) and φ(·; f ) by φ1(·; f ). Otherwise,
use the same proof. �

13.4.3 Generalization of the Process {S jk}

Analogue of Lemma3(b) holds for
(
S jk,W ∗

jk

)
replacing

(
S+
jk, T

∗
jk

)
and this enabled

us to prove Theorem 2, but there are no simple analogues of Lemma 3(c,d) for
{
S jk
}

due the absence of the s(Xi ) terms. To prove tightness of {ηn} we shall rely on a
more complicated martingale structure to control the fluctuations of

{
S jk
}
. To this

end, we introduce a more general process, viz.,

Sq: jk =
∑

j+1≤i≤k

aq(Rq:i ), 0 ≤ j < k ≤ q ≤ n, Sq:kk = 0, (13.18)

and let

W ∗
q: jk =

∑
j+1≤i≤k

φ (F(Xi )) − (k − j)q−1
∑

1≤i≤q

φ (F(Xi )), 0 ≤ j < k ≤ q,

(13.19)
with W ∗

q:kk = 0.

As before, Gq = σ
{
Rq:1, . . . , Rq:k

}
. Note that for q = k, Sk: jk = S jk , W ∗

k: jk =
W ∗

jk . Then for (s, t) ∈ �,

ηn(s, t) = n−1/2Snt :ns,nt/||φ|| = n−1/2Sns,nt/||φ||, (13.20)

which will be approximated by

η∗
n(s, t) = n−1/2W ∗

nt :ns,nt/||φ|| = n−1/2W ∗
ns,nt/||φ||. (13.21)

The following two lemmas will be needed to prove tightness of {ηn(s, t)} in the proof
of Theorem 4 which is omitted.

Lemma 4 Under Pn, the following hold:

(a) E
[
W ∗

q: jk |Gq
]

= Sq: jk .

(b) E
[
W ∗

q: jk
]

= E
[
Sq: jk

] = 0, E
[
W ∗2

q: jk
]

= q−1(k − j)(q − k + j)||φ||2,
E
[
S2q: jk

]
= (q − 1)−1(k − j)(q − k + j)A2

q .
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(c) E

[(
W ∗

q: jk − Sq: jk
)2] = (k − j)(q − k + j)

[
q−1||φ||2 − (q − 1)−1A2

q

]
.

(d) E
[
Sk+1:d(k+1)|Gk

] = Sk:dk , E
[
Sk+1:cd |Gk

] = Sk:cd and E
[
Sk+1:cd − Sd:cd |Gk

] =
Sk:cd − Sd:cd for c ≤ d ≤ k.
Consequently, {(|Sk:dk |,Gk) , k ≥ d} and {(|Sk:cd − Sd:cd |,Gk) , k ≥ d ≥ c} are
nonnegative submartingales starting at 0.

(e) Fix a ≤ c ≤ b and let Tk = supa≤ j≤c |Sk: jc| for a ≤ c ≤ k ≤ b. Then
{(Tk,Gk) , c ≤ k ≤ b} is a submartingale.

(f) Fix a ≤ b and let T ′
k = supa≤ j≤k |Sk: jk | for a ≤ k ≤ b. Then{(

T ′
k ,Gk

)
, a ≤ k ≤ b

}
is a submartingale.

Proof of Lemma 4 For 1 ≤ i ≤ q we have

E
[
φ(F(Xi ))|Gq

] = aq(Rq:i ) and
∑

1≤i≤q

aq(Rq:i ) = qE [φ(U1)] = 0.

Also by definition,

E
[
φ2(F(Xi ))

] = ||φ||2 and q−1
∑

1≤i≤q

a2q(i) = A2
q .

Part (a) and all but the last item of part (b) follow immediately from these facts, and

E
[
S2q: jk

]
= E

⎡
⎢⎣
⎧⎨
⎩

∑
j+1≤i≤k

aq(Rq:i )

⎫⎬
⎭

2
⎤
⎥⎦ = (q − 1)−1(k − j)(q − k + j)A2

q

by routine simplification. This completes the proof of part (b).
Using (a), part (d) of the lemma follows by routine conditional expectation argu-

ments and because E
[|Sk+1:d(k+1)||Gk

] ≥ |E [Sk+1:d(k+1)|Gk
] | = |Sk:dk |. Parts (e)

and (f) follow in the same manner using

E

[
max

a≤ j≤k+1
|Sk+1: j (k+1)||Gk

]
≥ max

a≤ j≤k+1

∣∣E [Sk+1: j (k+1)|Gk
]∣∣ = max

a≤ j≤k
|Sk: jk |.

�

Lemma 5 For s ≤ t1 ≤ t2, the following hold, as n → ∞:

(a) n−1/2Snt2:ns,nt1
L→ N

(
0, t−1

2 (t1 − s)(t2 − t1 + s)||φ||2
)

,

(b) n−1/2
[
Snt2:ns,nt1 − Snt1:ns,nt1

] L→ N
(
0, (t−1

1 − t−1
2 )(t1 − s)2||φ||2

)
.
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Proof By Lemma 4(c), n−1E
[(
Snt2:ns,nt1 − W ∗

nt2:ns,nt1
)2]→ 0, and

n−1/2W ∗
nt2:ns,nt1

L→ ||φ||
[
{B(t1) − B(s)} − t−1

2 (t1 − s)B(t2)
]
,

proving (a). The proof of (b) is similar. �

13.5 Tightness-Proofs of Theorems 1 and 3

We shall verify the tightness criterion in Theorem 2 of Wichura (1969).

Remark 1 Consider the spaces D2 on [0, 1]2 and H2 on� = {(s, t) : 0 ≤ s ≤ t ≤ 1}
of functions which are continuous from above with limits from below, endowed
with the topology of uniform convergence. Let A and B denote respectively the
σ-fields on D2 and H2 generated by coordinate mappings. For weak convergence
of probability measures on (D2,A), Wichura (1969) has given conditions which
consist of convergence of fdd’s and a fluctuation inequality for tightness. On the
other hand, the processes Y+

n , Yn and Y1n are in H2, so their weak convergence
properties must be examined on (H2,B). However, if we extend each y : � → R to
ȳ : D2 = [0, 1]2 → R by letting ȳ(s, t) = 0 on [0, 1]2\�, and observe that Y+

n , Yn
and Y1n are 0 on the diagonal line, then it follows that the extensions Ȳ+

n , Ȳn and Ȳ1n
are 0 outside �, so it is enough to demonstrate the weak convergence of fdd’s and
validate the fluctuation inequality on � to establish weak convergence of Ȳ+

n , Ȳn and
Ȳ1n on (D2,A). �

Let

B(δ) = {((s, t), (s′, t ′)
) ∈ � × � : |s − s′| < δ, |t − t ′| < δ

}
.

A sequence {Xn(s, t), (s, t) ∈ �} satisfies this tightness criterion if for arbitrary
ε, ε′ > 0, there exist δ0 ∈ (0, 1) and n(δ) for each δ > 0, such that for 0 < δ ≤ δ0
and n ≥ n(δ),

P

[
sup
B(δ)

|Xn(s, t) − Xn(s
′, t ′)| > ε

]
< ε′. (13.22)

We shall verify this for {ξn} under Pf,∞ with symmetric f and for {ηn} under Pf,∞
with arbitrary f . The rest will follow by contiguity.

For notational simplicity, treat 1/δ and nδ as integers and for 1 ≤ l ≤ m ≤ 1/δ −
1, let

Rlm(δ) = {(s, t) ∈ � : (l − 1)δ ≤ s ≤ (l + 1)δ, (m − 1)δ ≤ t ≤ (m + 1)δ}
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and

Plm(δ; Xn) = P

[
sup

(s,t),(s′,t ′)∈Rlm (δ)
|Xn(s, t) − Xn(s

′, t ′)| > ε

]
.

Since ((s, t), (s′, t ′)) ∈ B(δ) implies that both (s, t), (s′, t ′) belong to the same
Rlm(δ) for some l ≤ m,

P

[
sup
B(δ)

|Xn(s, t) − Xn(s
′, t ′)| > ε

]
≤

∑

1≤l≤δ−1−1

∑

l≤m≤δ−1−1

Plm(δ; Xn) (13.23)

=
∑

1≤l≤δ−1−3

∑

l+2≤m≤δ−1−1

Plm(δ; Xn)

+
∑

1≤l≤δ−1−2

∑
l≤m≤l+1

Plm(δ; Xn) + Pδ−1−1,δ−1−1(δ; Xn),

sowe need to get appropriate upper bounds for Pm(δ; ξn) and Plm(δ; ηn) for all these
(l,m). Of these, the (δ−1 − 3)(δ−1 − 2)/2 terms for m ≥ l + 2 in the first term will
be treated differently from the (2δ−1 − 3) terms for m = l, l + 1.

We now use the martingale (and submartingale) properties of {S+
jk} proved in

Lemma 3(c) and of {Sq: jk} proved in Lemma 4(d,e,f) to bound Plm(δ; ξn) and
Plm(δ; ηn) under Pn to verify (13.22).

13.5.1 Fluctuations of {S+j k} and Proof of Theorem 3

In the following Lemma, we state two maximal inequalities for nonnegative sub-
martingales.

Lemma 6 Suppose that {(Xn,Fn) , n ≥ 1} is a nonnegative submartingale. Then:
(a) P

[
max1≤k≤n Xk ≥ 2t

] ≤ P[X1 ≥ t] + t−1E1/2
[
X2
n

]
P1/2[Xn ≥ t] for t >

0.
(b) E

[
max1≤k≤n X2

k

] ≤ 4E
[
X2
n

]
.

Remark 2 Part (b) of the Lemma is from Doob (1953), p. 317 and part (a) is proved
in Bhattacharya (2005). If X1 = 0, then the first term on the right-hand side of (a) is
0. Lemma 6(a) is an extension of the following inequality for martingales. �

Lemma 6(a1) Suppose that {(Xn,Fn) , n ≥ 1} is a martingale with X1 = 0. Then

P

[
max
1≤k≤n

|Xk | ≥ 2t

]
≤ t−1E1/2 [X2

n

]
P1/2[|Xn| ≥ t] for t > 0.
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See Hall and Heyde (1980) for Lemma 6(a1), which is a weaker version of Brown
(1971) inequality

P

[
max
1≤k≤n

|Xk | ≥ 2t

]
≤ P[Xn ≥ t] + t−1E [(|Xn| − 2t) I (|Xn| ≥ 2t)] for t > 0.

From Lemma 6 we now obtain the following.

Lemma 7 Suppose that Pn holds. Then

(a) P
[
maxa≤ j<k≤b |S+

jk | ≥ 4t
]

≤ t−3/2E3/4
[
S+2
ab

]
P1/4

[[|S+
ab|
] ≥ t

]
for a <

b,
(b) for a ≤ c ≤ d ≤ b

P

[
max

a≤ j≤c≤d≤k≤b
|S+

jk − S+
cd | ≥ 4t

]
≤ t−1E1/2

[
|S+
ad − S+

cd |2
]
P1/2

[
|S+
ad − S+

cd | ≥ t
]

+ t−1E1/2
[
|S+
ab − S+

cd |2
]
P1/2

[
|S+
ab − S+

cd | ≥ t
]

+ t−3/2E3/4
[
|S+
ab − S+

cd |2
]
P1/4

[
|S+
ad − S+

cd | ≥ t
]
.

Proof of Lemma 7 For a ≤ k ≤ b, let Tk = maxa≤ j<k |S jk | and Ta = 0. By Lemma

3(c), {(Tk,F0k) , k ≥ a} is a submartingale and
{(

|S+
jb|,F jb

)
, a ≤ j ≤ b

}
is a

reverse submartingale, both nonnegative and both starting at 0. Now note that

maxa≤ j<k≤b |S+
jk | = maxa≤k≤b Tk and use Lemma 6 on {Tk} and

{
|S+

jb|
}
. Thus

P

[
max

a≤ j<k≤b
|S+

jk | ≥ 4t

]
≤ t−3/2E3/4 [|S+

ab|2
]
P1/4 [|S+

ab| ≥ t
]
,

proving (a). Next note that S+
cd is F jk-measurable and use Lemma 3(c) to obtain

E
[
S+
j,k+1 − S+

cd |F0k

]
= S+

jk − S+
cd = E

[
S+
j−1,k − S+

cd |F jk

]
. (13.24)

By the first equality in (13.24),
{(

S+
jk − S+

cd ,F0k

)
, k ≥ d

}
is a martingale for fixed

j . As in part (a), it now follows that if we let T ′
k = maxa≤ j≤c |S+

jk − S+
cd | for d ≤

k ≤ b, then
{(
T ′
k ,F0k

)
, k ≥ d

}
is a nonnegative submartingale starting at T ′

d . Hence
by Lemma 6(a),

P

[
max

a≤ j≤c≤d≤k≤b
|S+

jk − S+
cd | ≥ 4t

]

= P

[
max
d≤k≤b

T ′
k ≥ 4t

]

≤ P
[
T ′
d ≥ 2t

]+ (2t)−1E1/2 [T ′2
b

]
P1/2 [T ′2

b ≥ 2t
]

= P

[
max
a≤ j≤c

|S+
jd − S+

cd | ≥ 2t

]
+ (2t)−1E1/2

[
max
a≤ j≤c

|S+
jb − S+

cd |2
]
P1/2

[
max
a≤ j≤c

|S+
jb − S+

cd | ≥ 2t

]
.
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Now use the second inequality in (13.24) for k = d and k = b to see that{(
S+
jd − S+

cd ,F jd

)
, a ≤ j ≤ c

}
is a reverse martingale starting at 0 and{(

|S+
jb − S+

cd |,F jb

)
, a ≤ j ≤ c

}
is a reverse martingale starting at 0 and{(

|S+
jb − S+

cd |,F jb

)
, a ≤ j ≤ c

}
is a nonnegative reverse submatringale starting at

|S+
cb − S+

cd |. This makes Lemma 6(a,a1,b) applicable to all terms in the last expres-
sion, leading to the bound claimed in (b). �

This lemma now leads to the following, which provides the tool to establish the
tightness of {ξn(s, t)}.

Lemma 8 Suppose that Pn holds, and let δ < 1.
(a) Let (a, b) = ((l − 1)nδ, (l + 2)nδ). Then

lim
n→∞ P

[
max

a≤ j<k≤b
|S+

jk | > n1/2||φ||ε
]

≤ c(ε)δ1/2
{
1 − �

(
a(ε)δ−1/2)}1/4 .

(b) For m ≥ l + 2, let (a, b) = ((l − 1)nδ, (m + 1)nδ) and (c, d) = ((l + 1)nδ,
(m − 1)nδ). Then

lim
n→∞ P

[
max

a≤ j≤c≤d≤k≤b
|S+

jk − S+
cd | > n1/2||φ||ε

]
≤ c(ε)δ1/2

{
1 − �

(
a(ε)δ−1/2

)}1/4
.

Here � is the standard normal distribution function and c(ε), a(ε) are generic
constants depending only on ε > 0.

Proof In Lemma 7, take t = n1/2||φ||ε/4. Since ξn(s, t)
L→ B(t) − B(s) by

Theorem 1 and limk→∞ A2
k = ||φ||2, the lemma follows. �

Proof of Theorem 3 We shall show that under Pn , the bound in (13.23) for {ξn(s, t)}
tends to 0 as n → ∞ and then invoke continguity.

Of the (δ−1 − 3)(δ−1 − 2)/2 terms in the first sum, consider the (l,m)-th term
and let

(alm, blm) = ((l − 1)nδ, (m + 1)nδ), (clm, dlm) = ((l + 1)nδ, (m − 1)nδ).

By the triangle inequality and Lemma 8(b), we have

Plm(δ, ξn) ≤ 2P

[
sup

(s,t)∈Rlm(δ)
|ξn(s, t) − ξn

(
n−1clm, n−1dlm

) | > ε/2

]

= 2P

[
sup

alm≤ j<clm≤dlm<k≤blm
|S+

jk − Sclm ,dlm | > n1/2||φ||ε/2
]

≤ c(ε)δ1/2
{
1 − �

(
a(ε)δ−1/2)}1/4 ,
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as n → ∞.
Next form = l andm = l + 1, (s, t) ∈ Rlm(δ) implies al ≤ ns ≤ nt ≤ bl , where

(al , bl) = ((l − 1)nδ, (l + 2)nδ). Hence

sup
(s,t),(s′,t ′)∈Rlm (δ)

|ξn(s, t) − ξn(s
′, t ′)| ≤ 2 sup

(s,t)∈Rlm (δ)
|ξn(s, t)|

= 2n−1/2||φ||−1 sup
(s,t)∈Rlm (δ)

|S+
ns,nt | ≤ 2n−1/2||φ||−1 max

al≤ j<k≤bl
|S+

jk |.

Using this and Lemma 8(a) on each of the remaining (2δ−1 − 3) terms in (13.23),
we have

Plm(δ, ξn) ≤ P

[
max

al≤ j<k≤bl
|S+

jk | > n1/2||φ||ε/2
]

≤ c(ε)δ1/2
{
1 − �

(
a(ε)δ−1/2)}1/4 ,

as n → ∞.
Putting all these together in the bound in (13.23),

lim
n→∞ P

[
sup
B(δ)

|ξn(s, t) − ξn(s
′, t ′)| > ε

]
≤ (δ−2 − δ−1)c(ε)δ1/2

{
1 − �

(
a(ε)δ−1/2)}1/4 .

Examining the fluctuations of {S jk} and proving Theorem 4 involves a lot more
technicalities, which we omit. �
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14ChangePointDetectionwith
MultivariateObservations Based
onCharacteristic Functions

Zdeněk Hlávka, Marie Hušková and Simos G. Meintanis

14.1 Introduction

When observing a certain random quantity over a given time period, the assumption
of time-invariance of the underlying stochastic structure is oftenmade as a benchmark
assumption. Although invariance may well hold for a short period of time, it is not
a truly realistic assumption when observations are collected over a long horizon.
On the contrary, it is expected that institutional changes cause structural breaks in
the stochastic properties of certain variables, particularly in the macroeconomic and
financial world. Hence, change detection procedures are of undeniable interest. For
univariate independent observations there are numerous procedures for change-point
detection. These are nicely reviewed in Horváth and Rice (2014). On the other hand,
corresponding methods for multivariate and/or dependent observations have not yet
been considered as much, and an on-going effort has recently begun in order to
extend the existing procedures towards such situations.
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In this paper, we propose change-point detectors for multivariate independent
observations, as well as corresponding methods involving observations which are
driven by vector autoregressive (VAR) models. The methods make use of character-
istic functions (CFs). Apart from other favorable features which will be mentioned
along the paper regarding CF-based procedures, an extra reason for using CFs is that
with CFs vector observations are linearly projected onto the real line and the result-
ing statistics may be written in convenient closed-form expressions. This feature of
simplicity is particularly important when dealing with multivariate data and it is not
always true if one employs classical procedures based on the empirical distribution
function. Papers which are closest to the current work, either in terms of the problems
being considered, and/or in terms of methodology employed are Hlávka et al. (2012,
2016, 2017); Kirch et al. (2015); Lee et al. (2009) and Selk and Neumeyer (2013).

The remainder of the paper is as follows. In Sect. 14.2, we formulate the null
hypothesis and introduce the corresponding criteria with independent observations
while in Sect. 14.3 we do the same for VAR observations. In Sect. 14.4, we study the
large sample behavior of the new methods. Section14.5 is devoted to computational
aspects and the implementation of the procedures on the basis of suitable resampling
techniques. The results of a Monte Carlo study for the finite-sample properties of the
methods are presented in Sect. 14.6, along with some empirical applications.

14.2 Change Detection Under Independence

Let {X t , t = 1, 2, . . . , T } be a sequence of independent vectors of dimension d
(d ≥ 1), with corresponding distribution function (DF) denoted by Ft , 1 ≤ t ≤ T .
Then the classical change-point detection problem is formulated in the following
hypotheses:

H0 : Ft ≡ F0 for all t = 1, . . . , T, vs. H1 : Ft ≡ F0, t ≤ t0; Ft ≡ F0, t > t0,
(14.1)

where the DFs F0 and F0 (F0 �= F0) are considered unknown.
Our approach will be based on the fact that the null hypothesis H0 in (14.1) is

tantamount to accepting the hypothesis

ϕt ≡ ϕ0 for all t = 1, . . . , T (14.2)

and vice versa, where ϕt (u) := E(eiu
′X t ) stands for the characteristic function (CF)

of X t . Based on this fact, Hušková and Meintanis (2006) develop detectors for
the same problem with univariate observations, while Matteson and James (2014)
consider multivariate data. In both cases, the resulting procedures were found to have
nice asymptotic properties and to be competitive to other methods in finite samples.
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The proposed detector involves the quantity

δt (u) = ∣
∣φt (u) − φt (u)

∣
∣2 , (14.3)

where

φt (u) = 1

t

t
∑

τ=1

eiu
′Xτ , φt (u) = 1

T − t

T
∑

τ=t+1

eiu
′Xτ , (14.4)

are the empirical CFs computed from X1, . . . , X t and X t+1, . . . , XT , t = 1, . . . , T ,
respectively. Clearly under H0 (resp. H1) in (14.1), δt (u) is expected to be
“small”(resp. “large”), and this should hold uniformly in the argument u. In fact,
if the change point t0 were known then a two-sample test statistic such as those
suggested by Hušková and Meintanis (2008) will be appropriate. However, in the
present setting t0 is considered unknown and therefore some extra weighting scheme
is needed which will allow detection of early as well as late changes. Both options
are made possible through a proper choice of the parameter γ below. Based on these
considerations, we propose to reject the null hypothesis H0 for large values of the
detector

QT,w(γ ) = max
1≤t<T

( t (T − t)

T 2

)2+γ

T Dt,w, (14.5)

where

Dt,w =
∫

Rd
δt (u)w(u)du. (14.6)

Here γ ∈ (−1, 1] is a tuning constant and w(u) denotes a weight function the choice
of which will be discussed later.

14.3 Change Detection inVARModels

For fixed p > 0, assume thatwe observe X t , t = 1, . . . , T , coming from theVAR(p)
model

X t =
p

∑

j=1

A jX t− j + εt , (14.7)

where {εt } is a sequence of (d × 1) i.i.d. randomvectors (termed innovations) satisfy-
ingE(εt ) = 0,E(εtε

′
t ) = Σε andE(εtε

′
s) = 0, t �= s. The (d × d) square matrices

{A j }pj=1 contain the unknown coefficients, and we assume the usual stability con-

dition det(Id − ∑p
j=1 A j z j ) �= 0, |z| ≤ 1, with Id denoting the identity matrix of

dimension (d × d).
Equation (14.7) expresses the typical VARmodel of fixed order, whereby the basic

ingredients are assumed to be time-invariant. Nevertheless we may consider several
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kinds of departures from (14.7). Themost popular ones are changes in the parameters
A j , the possibility of additive or innovation outliers, as well as breaks in the cor-
relation structure of Σε or time-varying volatility; see, among others, Lanne et al.
(2010), Herwartz and Lütkepohl (2014), and Lütkepohl (2012). A further aspect,
which has not been studied as much, is a possible break due to a change in the shape
of the conditional distribution of the innovations. Specifically the innovations {εt }
are typically assumed to be normally distributed which corresponds to the classi-
cal Gaussian VAR model. However, from the time of Mandelbrot (1963) and Fama
(1965) there is strong evidence that the distribution of economic data, particularly
in the financial world, could be heavy-tailed and possibly asymmetric, which makes
the normality assumption unrealistic. In this connection and although in univariate
autoregressions non-Gaussian innovations have been considered by several authors
(see for instance, Hannan and Kanter 1977, Brockwell and Davis 1992, Davis 1996,
Tiku et al. 2000, and Andrews et al. 2009), the corresponding literature with mul-
tivariate models is rather poor; exceptions include Siegfried (2002) and Lanne and
Lütkepohl (2010) who consider non-Gaussian VAR models.

Earlier work on change point detectors in the context of VARmodels includes Bai
et al. (1998), Bai (2000), Ng and Vogelsang (2002), Qu and Perron (2007), Dvořák
and Prášková (2013), Dvořák (2015, 2016). Here we consider change detectors in
VARmodels, but our approach deviates fromearlier approaches in two basic features:
(i) Although we are interested in all kinds of breaks mentioned above, including
parameter breaks, our procedures are targeted not on the estimates of the parameters
as it is typically the case, but on the resulting residuals. This approach, which is
also followed by Hlávka et al. (2012, 2016) and Kirch et al. (2015), enables us to
capture arbitrary changes in model (14.7) since any such change will be immediately
reflected in the behavior of the resulting residuals. (ii) We employ the empirical CF
as our main tool for the reasons already mentioned above.

Motivated by this discussion, we consider the detection problem in (14.1) for
model (14.7) where Ft denotes the distribution of εt , t ≥ 1. Given that innovations
are unobserved, our test statistic will be based on corresponding residuals

ε̂t = X t −
p

∑

j=1

Â jX t− j , (14.8)

where Â j , j = 1, . . . , p, are
√
T consistent estimators of A j , j = 1, . . . , p, result-

ing from some standard method of estimation such the as the method of OLS, the
QMLE or Yule–Walker type estimation (see for instance Hamilton (1994) or Lütke-
pohl (2005)). For the purpose of estimation,wemoreover suppose that a set of starting
values X1−p, . . . , X0, exists. Then the suggested criterion based on Q̂T,w(γ ) is given
by (14.5) but with Dt,w replaced by

D̂t,w =
∫

Rd
δ̂t (u)w(u)du, (14.9)
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where δ̂t (u) := ∣
∣φ̂t (u) − φ̂t (u)

∣
∣
2
incorporates the empirical CFs

φ̂t (u) = 1

t

t
∑

τ=1

eiu
′̂ετ , φ̂t (u) = 1

T − t

T
∑

τ=t+1

eiu
′̂ετ , (14.10)

computed from ε̂1, . . . , ε̂t and ε̂t+1, . . . , ε̂T , t = 1, . . . , T , respectively.
The test statistic here is similar to that in the independent situation. However the

X t ’s are being replaced by the residuals ε̂t ’s defined in (14.8), which brings forward
the need for additional assumptions; details are postponed to subsection14.4.2.

14.4 Asymptotics

14.4.1 Independent Setup

Here we present the results on the limit behavior of QT,w(γ ) both under the null as
well as under a class of alternatives.

Theorem 1 Let X1, X2, . . . be a sequence of independent identically d-dimensional
random vectors with finite second moment, let γ ∈ (−1, 1] and let w(·) be a non-
negative measurable weight function defined on Rd such that

w(u) = w(−u), ∀u ∈ R
d , 0 <

∫

Rd
‖u‖2w(u)du < ∞. (14.11)

Then, as T → ∞,

QT,w(γ )
d→ sup

s∈(0,1)
(s(1 − s))γ

∫

Rd

(

V (u, s) − sV (u, 1)
)2
w(u)du, (14.12)

where {V (u, s); u ∈ R
d , s ∈ (0, 1)} is a Gaussian process with zero mean and

covariance structure

cov(V (u1, s1), V (u2, s2)) = min(s1, s2)C(u1, u2),

where C(u1, u2) = cov
(

cos(u′
1X1) + sin(u′

1X1), cos(u′
2X1) + sin(u′

2X1)
)

.

Proof It is postponed to the Appendix. �

Remark 1 The one-dimensional situation is treated in the paper of Hušková and
Meintanis (2006), however there the limit distribution is formulated in a different,
but equivalent, way. In any case, the explicit form of the distribution of the quantity
on the r.h.s. of (14.12) is unknown, and moreover it depends on unknown quantities.
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Possible solutions to the approximation of this distribution are (i) to estimate these
quantities and then simulate the limit distribution by Monte Carlo or (ii) to apply a
proper version of resampling.

Remark 2 The proof of Theorem 1 in the Appendix still holds, and hence the same
test criterion can be used, even when the observations are dependent, e.g., if they are
α–mixing. In fact, it can be further extended to testing of no change in the joint distri-
bution of the vector (X t , . . . , X t+q)

′, for given q ≥ 1. This is quite straightforward
but we do not pursue this here any further as it is technically more complex.

Next, we focus on the behavior of QT,w(γ ) under alternatives.
Denote the CFs before and after the change by ϕ0 and ϕ0, respectively, and let

B0(u) = E
(

cos(u′X t ) + sin(u′X t )
)

, 1 ≤ t ≤ t0,

B0(u) = E
(

cos(u′X t ) + sin(u′X t )
)

, t0 + 1 ≤ t ≤ T .

Theorem 2 Let X1, . . . , XT be independent d-dimensional random vectors and let
X1, . . . , X t0 and X t0+1, . . . , XT have CF ϕ0 and ϕ0, respectively. Let assumption
(14.11) on the weight function w(·) be satisfied and assume that t0 = T s0�, for some
s0 ∈ (0, 1). Then, as T → ∞,

(s(1 − s))2

T
DT s�,w

P→ (min(s, s0)(1 − max(s, s0)))
2
∫

Rd

(

B0(u) − B0(u)
)2
w(u)du (14.13)

for s ∈ (0, 1).

From (14.13) it follows that T
∫

Rd

(

B0(u) − B0(u))2w(u)du → +∞ implies

that QT,w(γ )
P→ +∞ and, hence, the test is consistent. In fact, it may be shown that

the test is consistent even for some local alternatives.
The assertion of Theorem 2 motivates us in accordance with change-point proce-

dures in simple models to define estimators of the change point t0 as

t̂0 = arg max
1≤t<T

Dt,w(t (T − t))2.

Some weak consistency of this estimator can be shown quite straightforwardly.

14.4.2 Dependent setup

Here we formulate Theorems 3 and 4 in an analogous manner to Theorems 1 and 2,
respectively. As already noted, additional and/or more stringent assumptions are
needed.
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Theorem 3 Let X1, X2, . . . be a sequence of d-dimensional random vectors follow-
ing model (14.7) including the assumptions below it and let Â j , j = 1, . . . , p, be
estimators of A j , j = 1, . . . , p, satisfying

√
T ( Â j − A j ) = OP (1), j = 1, . . . , p. (14.14)

Let γ ∈ (−1, 1] and let w(·) be a nonnegative measurable weight function defined
on R

d such that

w(u) = w(−u), ∀t ∈ R
d , 0 <

∫

Rd
‖u‖4w(u)du < ∞. (14.15)

Then, as T → ∞,

Q̂T,w(γ )
d→ sup

s∈(0,1)
(s(1 − s))γ

∫

Rd

(

V̂ (u, s) − sV̂ (u, 1)
)2
w(u)du, (14.16)

where {V̂ (u, s); u ∈ R
d , s ∈ (0, 1)} is a Gaussian process with zero mean and

covariance structure

cov
(

V̂ (u1, s1), V̂ (u2, s2)
) = min(s1, s2)Ĉ(u1, u2),

where

Ĉ(u1, u2) = cov
(

cos(u′
1ε1) + sin(u′

1ε1), cos(u
′
2ε1) + sin(u′

2ε1)
)

.

Proof It is postponed to the Appendix. �

Next, we shortly consider the alternatives. To this end, consider the situation of a
change-in-distribution of innovations

X t =
p

∑

j=1

A jX t− j + εt , 1 ≤ t ≤ t0, (14.17)

X t =
p

∑

j=1

A jX t− j + εt,T , t0 < t ≤ T, (14.18)

where the change point is such that t0 = T s0� for some s0 ∈ (0, 1), {εt } and {εt,T }
are independent sequences of (d × 1) i.i.d. random vectors with zero means, finite
variances, and with CFs ϕ0 and ϕ0, respectively, and where the assumptions for the
matrices {A j }pj=1 given below (14.7) continue to hold.
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Theorem 4 Let X1, . . . , XT satisfy the above assumptions. Let assumption (14.15)
on the weight function w(·) be satisfied. Then, as T → ∞,

(s(1 − s))2

T
D̂T s�,w

P→ (min(s, s0)(1 − max(s, s0)))
2
∫

Rd

(

B0,ε(u) − B0,ε(u)
)2
w(u)du,

(14.19)
for s ∈ (0, 1), where

B0,ε(u) = E
(

cos(u′εt ) + sin(u′εt )
)

, 1 ≤ t ≤ t0

B0,ε(u) = E
(

cos(u′εt,T ) + sin(u′εt,T )
)

, t0 + 1 ≤ t ≤ T .

Moreover, as soon as T
∫

Rd

(

B0,ε(u) − B0,ε(u)
)2
w(u)du → +∞, the test based

on Q̂T,w(γ ) is consistent.

Remark 3 Most of the remarks and comments in Sect. 14.4.1 hold true here also.

14.5 Computations and Resampling Procedures

14.5.1 Computations

In what follows, we discuss only the test statistic (14.6) of Sect. 14.2 but analogous
computations apply to the criterion (14.9) in Sect. 14.3. As already mentioned, our
procedures enjoy the advantage of computational simplicity. To see this, we first
proceed from (14.3) by using simple algebra and the trigonometric identity cos(a −
b) = cos(a) cos(b) + sin(a) sin(b) to get

δt (u) = 1

t2

t
∑

τ,s=1

cos(u′Xτ,s) + 1

(T − t)2

T
∑

τ,s=t+1

cos(u′Xτ,s)

− 2

t (T − t)

t
∑

τ=1

T
∑

s=t+1

cos(u′Xτ,s), (14.20)

where Xτ,s = Xτ − Xs . Then, by making use of the previous equation in (14.6), we
conclude that the test statistic can be written as

Dt,W = 1

t2

t
∑

τ,s=1

Iw(Xτ,s) + 1

(T − t)2

T
∑

τ,s=t+1

Iw(Xτ,s) − 2

t (T − t)

t
∑

τ=1

T
∑

s=t+1

Iw(Xτ,s),

(14.21)
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where

Iw(x) =
∫

Rd
cos(u′x)w(u)du. (14.22)

The weight functionw(·) in (14.22) may be chosen in a way that avoids numerical
integration which is problematic in higher dimension. To this end, we follow Henze
and Wagner (1997) and adopt the weight function w(u) = e−a‖u‖2 , a > 0, which
leads to

Iw(x) =
(π

a

)d/2
e−‖x‖2/4a, (14.23)

where ‖z‖ =
√

∑d
m=1 z

2
m denotes the Euclidian norm of an arbitrary vector z of

dimension d. Alternative choices for w(·) are also possible but we will not pursue
this issue further here.

14.5.2 Resampling Procedures

As already shown in Sect. 14.4, the null distribution of the proposed test statistic
depends, among other things, on the underlying stochastic properties of the random
variables involved which, however, are assumed unknown in the present setting.
In order to deal with these issues, we apply appropriate resampling procedures for
computing critical points and actually carrying out the tests. We present below such
procedures for all the detection problems considered.

14.5.3 Resampling for Independent Data

Let Q = Q(X1, . . . , XT ) be a test statistic which depends on a sample of size T
of observations X t , 1 ≤ t ≤ T . We will apply the permutation procedure whereby
we randomly generate a permutation b = {b1, . . . , bT } of {1, . . . , T }, and compute
the test statistic Qb = Q(Xb1 , . . . , XbT ). The procedure is repeated a number of
times b = 1, . . . ,B, and the critical point of the test of size α is determined as the
corresponding (1 − α) quantile Q((1−α)B) of the values Qb, b = 1, . . . ,B. The null
hypothesis is then rejected if Q > Q((1−α)B).

14.5.4 Non-parametric Bootstrap for theVARModel

First, we estimate the model (14.7) based on the observations X t , t = 1, . . . , T ,
and initial values X1−p, . . . , X0, and obtain the residuals ε̂t , t = 1, . . . , T , and the
corresponding value of the criterion Q := Q(̂ε1, . . . , ε̂T ). Let ε̂ = T−1 ∑T

t=1 ε̂t be
the residual sample mean and write ε̃t = ε̂t − ε̂ for the centered residuals. Obtain
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{ε∗
1, . . . , ε

∗
T }, by sampling from the empirical distribution of {̃ε1, . . . , ε̃T }. Compute

the value of the criterion Q∗ = Q(ε∗
1, . . . , ε

∗
T ) and repeat this step a number of

times B. This gives rise to the bootstrap statistics Q∗
b, b = 1, . . . ,B, and then we

calculate the critical point in the same manner as in the case of the permutation
procedure above.

14.6 Simulations and Real Data

The setup of the simulation study has been inspired by Dvořák (2015): We simulate
observations from a two-dimensional VAR(1) model (14.7), where

A1 =
(

0.5 0.2
0.2 0.1

)

, and Σε = σ

(

1 ρ

ρ 1

)

,

with the parameter σ controlling the scale and the parameter ρ the correlation. Apart
from these parameters, we consider several distributions of the random error terms:

1. multivariate normal (N ),
2. multivariate tdf with df degrees of freedom,
3. multivariate χ2

df with df degrees of freedom.

All distributions are standardized, i.e., E(εt ) = 0 and E(εtε
′
t ) = Σε. The multivari-

ate normal and tdf distributions were simulated using R library mvtnorm (Genz
et al. 2014; Genz and Bretz 2009). The multivariate χ2

df distribution was simulated
according to Minhajuddin et al. (2004).

Throughout this simulation study, we investigate the behavior of the test statis-
tic (14.21) with the weight function w(u) = e−a‖u‖2 , a > 0. The VAR coefficients
are estimated using OLS method.

14.6.1 Empirical Level

In Table14.1, we display the empirical level obtained from 1000 computer simula-
tions with 2000 bootstrap replications for different values of the parameters γ and a.
We consider two sample sizes (T = 200 or 400) and five distributions of the random
errors. The scale and correlation parameters were set to σ = 1 and ρ = 0.2.

Looking at Table14.1, it seems that the empirical level lies very close to the true
(nominal) level α considered in the simulation study (0.01, 0.05, and 0.10).
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Table 14.1 Empirical level (in %) for five error distributions

a α T = 200 T = 400

N t3 t4 χ2
2 χ2

4 N t3 t4 χ2
2 χ2

4

γ = −0.5 1 0.01 0.9 0.8 0.6 1.1 0.9 1.2 0.7 1.4 1.3 1.3

0.05 3.3 3.9 4.9 4.9 4.2 4.9 4.5 5.4 4.1 5.1

0.10 7.9 9.9 10.3 10.2 9.6 9.8 9.9 11.0 8.2 11.0

2 0.01 1.0 0.5 0.3 0.9 1.0 0.8 1.3 1.5 1.5 0.6

0.05 4.6 3.7 5.4 5.1 5.3 4.3 4.8 5.4 4.5 4.1

0.10 9.8 8.1 10.8 9.9 9.8 11.0 9.8 10.2 10.0 7.9

3 0.01 1.0 1.3 0.6 1.1 1.0 1.0 1.1 0.5 1.1 1.4

0.05 5.0 4.2 4.4 5.0 3.8 5.6 4.7 4.3 5.6 4.9

0.10 10.4 8.2 9.2 9.8 9.3 9.1 9.6 11.2 10.9 9.9

γ = 0 1 0.01 1.2 0.7 0.8 0.9 1.3 0.9 1.2 0.6 1.0 0.8

0.05 4.6 4.7 3.6 3.9 6.4 5.2 4.3 3.6 5.5 3.2

0.10 10.3 8.8 8.5 8.3 11.6 10.8 7.5 7.8 11.7 7.5

2 0.01 1.6 1.1 0.5 1.0 1.1 1.2 0.9 1.6 1.0 1.2

0.05 6.4 4.4 5.0 4.7 4.9 5.2 4.5 4.9 4.4 4.5

0.10 11.9 7.9 9.0 8.6 10.0 9.3 8.8 8.7 8.4 10.2

3 0.01 1.0 0.9 1.5 1.0 1.0 1.0 0.9 0.9 1.3 0.9

0.05 5.8 5.1 5.1 4.2 4.6 5.0 5.0 5.1 6.2 5.2

0.10 10.8 8.9 10.8 8.7 10.4 9.9 11.1 9.8 10.6 11.2

γ = 0.5 1 0.01 0.9 0.7 0.5 1.0 1.0 1.5 1.4 1.1 0.7 1.0

0.05 5.2 3.8 5.5 4.3 5.2 5.2 4.8 5.3 4.8 4.9

0.10 10.0 8.4 10.8 9.3 9.9 10.4 9.5 10.3 9.5 9.1

2 0.01 0.6 0.6 1.2 1.1 0.9 0.8 0.7 1.1 1.4 0.8

0.05 4.7 4.4 5.5 5.3 5.2 3.7 3.6 4.0 5.3 5.0

0.10 11.0 9.2 11.4 10.0 10.7 8.6 8.8 9.9 8.9 11.0

3 0.01 0.8 0.6 0.8 1.3 0.8 0.9 0.7 1.5 1.2 1.3

0.05 3.8 4.3 5.2 5.9 5.0 4.6 4.3 6.0 5.7 4.0

0.10 8.3 8.9 10.9 10.8 9.8 8.6 9.4 10.6 12.0 8.2

14.6.2 Empirical Power

In this section, we investigate the power of the change–point test with respect to
changes in the error distribution.

We assume that the distribution before the change–point t0 = τ0T is bivariate
normal with the variance matrix Σε defined in the previous section with σ1 = 1 and
ρ1 = 0.2 and we consider the following types of change:
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Table 14.2 Empirical power (in %) for several types of change in the error distribution with
changepoint t0 = τ0T . The symbol  denotes 100%, a = 2

τ0 γ σ1 → σ2 ρ1 → ρ2 N → t4 N → χ2
4

−0.5 0.0 0.5 −0.5 0.0 0.5 −0.5 0.0 0.5 −0.5 0.0 0.5

T = 200 0.1 37.0 20.6 19.4 4.7 5.9 4.5 5.7 4.4 4.7 6.8 4.8 5.1

0.2 98.7 97.4 91.6 4.9 5.2 7.3 6.8 6.3 5.3 10.0 9.5 9.7

0.5  99.9  9.2 7.9 8.7 8.9 7.2 8.6 19.0 20.0 20.5

0.8 99.4 98.0 95.0 6.4 5.9 4.9 5.9 6.6 5.7 11.3 9.2 8.1

T = 400 0.1 96.7 64.5 43.4 5.6 5.7 5.0 6.6 5.5 6.8 8.9 6.4 7.4

0.2    6.3 6.0 5.1 8.7 8.4 6.8 18.4 14.1 13.0

0.5    11.4 12.7 13.4 13.1 12.9 16.9 36.8 37.5 40.2

0.8    7.7 5.1 6.9 6.7 7.6 6.9 15.2 14.7 11.4

T = 600 0.1  97.1 74.0 6.5 5.3 6.1 5.8 4.9 5.5 11.5 8.6 6.7

0.2    8.2 8.3 6.2 11.4 10.0 7.7 24.4 21.5 19.7

0.5    15.5 19.6 20.3 18.6 21.4 21.7 50.2 57.0 56.6

0.8    8.8 7.6 7.1 7.7 7.9 7.9 21.8 20.1 18.5

1. change in scale (the parameter σ1 = 1 changes to σ2 = 2),
2. change in correlation (the parameter ρ1 = 0.2 changes to ρ2 = 0.6),
3. change in distribution (normal distribution changes to t4 or χ2

4 ).

The results of the simulation study are summarized in Table14.2. It seems that
the test has good power against changes in the variance of the random errors. The
empirical power against other types of alternatives is much lower. With T = 600
observations, the test rejects the null hypothesis of no change with probability 20%
for the change in the correlation of randomerrors and for the change fromNormal to t4
distribution. The probability of detecting the change from Normal to χ2

4 distribution
with the same number of observations is approximately 50%.

Concerning the choice of the parameter γ , it seems that γ = 0.5 works somewhat
better for changes occurring in the center of the time series (τ0 = 0.5) and γ = −0.5
works somewhat better especially for changes occurring earlier. In our opinion, the
value γ = 0.0 provides a reasonable compromise.

14.6.3 Real Data Analysis

We apply the proposed test on the bivariate time series consisting of monthly log
returns of IBM and S&P500 from January 1926 until December 1999 (Tsay 2010).
This data set has been already investigated in Dvořák (2015, Sect. 3.6), who consid-
ered VAR(5) model and identified a change in its parameters in December 1932.
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Table 14.3 p–values for monthly IBM and S&P500 log returns for seven decades

Decade 1930s 1940s 1950s 1960s 1970s 1980s 1990s

p-value 0.2380 0.1595 0.8590 0.4740 0.2430 0.4245 0.0185

Looking at the time series (T = 888) and applying the proposed test with
parameters a = 2 and γ = 0, we also reject the null hypothesis of no change
(p-value = 0.0045).

In order to investigate the changes in more detail, we test the existence of a
change-point in the error distribution of the VAR(5)model separately in each decade.
Interestingly, the p-values summarized in Table14.3 suggest that significant changes
in the error distribution of the VAR model can be detected only in 1990s.
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14.7 Appendix

Proof (Theorem1) Notice that little algebra leads to an equivalent expression for
Dt,w:

T · Dt,w = T
∫

Rd

(1

t

t
∑

j=1

Z(u, X j ) − 1

T − t

T
∑

j=t+1

Z(u, X j )
)2
w(u)du (14.24)

=
( T 2

t (T − t)

)2
∫

Rd

(

VT (u, t) − t

T
VT (u, T )

)2
w(u)du, (14.25)

where

Z(u, X j ) = cos(u′X j ) + sin(u′X j ), u ∈ R
d , j = 1, . . . , T, (14.26)

VT (u, t) = 1√
T

t
∑

j=1

Z(u, X j ), u ∈ R
d , t = 1, . . . , T . (14.27)
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Notice that, under the null hypothesis, the process {VT (u, t), u ∈ R
d , t = 1, . . . , T }

has the expectation and the covariance structure

EVT (u, t) = t√
T
EZ(u, X1),

cov
(

VT (u1, t1), VT (u2, t2)
)

= min(t1, t2)

T
cov

(

Z(u1, X1), Z(u2, X1)
)

.

Now the proof follows the lines of that of Theorem 4.1 in Hlávka et al. (2017),
therefore we will be brief.

At first, it should be proved for any s ∈ (0, 1) fixed

∫

Rd

(

VT (u, T s�) − sVT (u, T )
)2
w(u)du

d→
∫

Rd

(

V (u, s) − sV (u, 1)
)2
w(u)du, (14.28)

where the process {V (u, s), u ∈ R
d , s ∈ (0, 1)} is defined in Theorem 1. Towards

this, notice that under our assumptions VT (u, T s�) − EVT (u, T s�) has asymptot-
ically a normal distribution with zero mean and variance s · var(Z(u, X1)). More-
over, standard arguments give for any s ∈ (0, 1) and any u1, u2 ∈ R

d

E |VT (u1, T s�) − VT (u2, T s�)| ≤ C‖u1 − u2‖β

for some β > 0 and C > 0 and also

E
( T 2

t (T − t)

)2
∫

Rd

(

VT (u, t) − t

T
VT (u, T )

)2
w(u)du =

∫

Rd
var(Z(u, X1))w(u)du < ∞.

Then the convergence (14.28) follows fromTheorem22 in IbgagimovandHas’minskii
(1981).

Additionally, to derive properties of the process

YT (s) =
√

∫

Rd

(

VT (u, T s�) − sVT (u, T )
)2
w(u)du, s ∈ (0, 1)

it suffices to follow the proof of Theorem 4.1 b) in Hlávka et al. (2017), therefore
we omit it. �

Proof (Theorem2) Following the considerations in the proof of Theorem1,we easily
receive that

sup
s∈(0,1)

(s(1 − s))γ
∫

Rd

(

VT (u, T s�) − sVT (u, T )

− E
(

VT (u, T s�) − sVT (u, T )
))2

w(u)du = OP (1)
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and

1

T

∫

Rd

(

E
(

VT (u, T s�) − sVT (u, T )
))2

w(u)du

= min(s, s0)(1 − max(s, s0))
∫

Rd

(

B0(u) − B0(u)
)2
w(u)du.

The assertion of Theorem 2 easily follows. �

Proof (Theorem3) It follows the same line as that of Theorem 1 but the situation is
slightly more complicated due to the presence of a nuisance parameter. We have

T D̂t,w = T
∫

Rd

(1

t

t
∑

j=1

Ẑ(u, ε̂ j ) − 1

T − t

T
∑

j=t+1

Ẑ(u, ε̂ j )
)2
w(u)du

=
( T 2

t (T − t)

)2
∫

Rd

(

V̂T (u, t) − t

T
V̂T (u, T )

)2
w(u)du,

where

Ẑ(u, ε̂ j ) = cos(u′̂ε j ) + sin(u′̂ε j ), u ∈ R
d , j = 1, . . . , T,

V̂T (u, t) = 1√
T

t
∑

j=1

Ẑ(u, ε̂ j ).

Since the residuals ε̂ j , j = 1, . . . , T are dependent, we have to do additional steps.
Particularly, we apply the Taylor expansion

cos(u′̂εt ) = cos(u′εt ) − u′(̂εt − εt ) sin(u′εt ) + RT (u, t),

where the first term on the r.h.s. is influential while the others are not. Straightforward
calculations give

|RT (u, t)| ≤ C‖u‖2 · 1

T

T
∑

j=1

‖(̂ε j − ε j )‖2

and therefore

1

T

∫ ( T
∑

t=1

|RT (u, t)|
)2
w(u)du = oP (1).
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Next, we have to study

LT (u, t) = 1√
T

∑

j≤t

(̂ε j − ε j ) sin(u′ε j ) − t

T

1√
T

∑

j≤T

(̂ε j − ε j ) sin(u′ε j ).

Noticing that ε̂ j − ε j = (A − ÂT )X j−1, j = 1, . . . , T, we have

LT (u, t) = √
T (̂A − A)

1

T

(∑

j≤t

X j−1 sin(u′ε j ) − t

T

∑

j≤T

X j−1 sin(u′ε j )
)

.

By assumptions (14.14) and using the same arguments as in the proof of Theorem 1:

∫
1

T 2

( ∑

j≤t

X j−1 sin(u′ε j ) − t

T

∑

j≤T

X j−1 sin(u′ε j )
)2
w(t)d t = oP (T−ξ )

for some ξ > 0. Here we utilize properties of

∑

j≤t

(

X j−1 sin(u′ε j ) − E
(

X j−1 sin(u′ε j )
))

, t > p,

that are for each fixed u partial sums of martingale differences. Particularly, the
asymptotic normality holds true under the considered assumptions. As a conse-
quence, we get that the respective term is not influential.

Finally, we get after some standard steps, that the limit distribution of Q̂w,T (γ ) is
the same as Qw,T (γ ) with the Gaussian process {V̂ (u, s), u ∈ Rd , s ∈ (0, 1)} with
the expectation

EV̂ (u, s) = √
T sE

(

cos(u′ε1) + sin(u′ε1)
)

and the covariance structure

cov
(

V̂(u1, s1), V̂(u2, s2)
)

= min(s1, s2)cov
(

cos(u′
1ε1) + sin(u′

1ε1), cos(u
′
2ε2) + sin(u′

2ε2)
)

instead of V (u, s), u ∈ Rd , s ∈ (0, 1). �

Proof (Theorem4) Since it is assumed that the change occurs only in the distribution
of the error term, but not in A j , j = 1, . . . , p, we realize going through the proof
of Theorem 3 that the limit distribution of

max
1<t<T

( t (T − t)

T 2

)2+γ
∫

Rd

(1

t

t
∑

j=1

Ẑ(u, ε̂ j ) − 1

T − t

T
∑

j=t+1

Ẑ(u, ε̂ j )
)2
w(u)du
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is the same as if ε̂ j , j = 1, . . . , T , are replaced by ε j , j = 1, . . . , T . Then it remains
to study

( t (T − t)

T 2

)2+γ
∫

Rd

(1

t

t
∑

j=1

Ẑ(u, ε j ) − 1

T − t

T
∑

j=t+1

Ẑ(u, ε j )
)2
w(u)du.

The proof can be finished as in the proof of Theorem 2. The details are omitted. �
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15Kader—AnRPackage for
Nonparametric Kernel Adjusted
Density Estimation andRegression

Gerrit Eichner

15.1 Introduction

Kernelmethods in nonparametric density estimation and in nonparametric regression
estimation have been a core topic in theoretical statistical research and in practical
applications likewise. Standard references for the theory of nonparametric density
estimation are, e.g., Silverman (1986) and Wand and Jones (1995), while Härdle
(1990) and again Wand and Jones (1995) provide a review of nonparametric regres-
sion estimation.With respect to the practical applications various methods have been
implemented in almost every professional statistical software package. This is, in
particular, the case for the open-source programming language and environment for
statistical computing R, R Core Team (2016), both in its so-called base distribution
and in readily available add-on packages.

In the following we shall very briefly recall the goals and very basics of nonpara-
metric kernel density estimation and of nonparametric kernel regression estimation.
References to some R packages which provide implementations of respective meth-
ods will be given. We then introduce the fully adaptive kernel methods of Srihera
and Stute (2011) for density estimation, the robustified approach by Eichner and
Stute (2013), and the extension to nonparametric regression estimation by Eichner
and Stute (2012). (The extension of the pointwise method for density estimation to
an L2-approach as presented by Eichner and Stute (2015) is beyond the scope of this
paper and the current version of package kader, but shall be included in a future
version of the package.) It should be emphasized that this and the next section intend
to just recall and summarize quantities and results which are most relevant for the
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implementation of the methods while all proofs will be omitted and, instead, the
reader referred to the cited publications.

15.1.1 Nonparametric Density Estimation

The goal is to recover an unknown density f = F ′ (on the real line) from a random
sample X1, . . . , Xn of independent replicates of X ∼ F with an absolutely con-
tinuous distribution function F . A classical approach due to Rosenblatt (1956) and
Parzen (1962) proposes to estimate f (x) through

fn(x) = 1

nh

n∑

j=1

K

(
x − X j

h

)
, x ∈ R, (15.1)

with bandwidth (or window size) h > 0 and a kernel K , which typically satisfies
K ≥ 0 and

∫
K (u)du = 1, i.e., is itself a density.

If, in addition, K is symmetric about zero, i.e., K (−u) = K (u) for all u, or
at least satisfies

∫
uK (u)du = 0, and if f is twice continuously differentiable in

a neighborhood of x then asymptotic expansions of bias and variance, and hence
of the mean squared error (MSE) are well-known for bandwidths h = hn such
that hn → 0 with nhn → ∞ while n → ∞. The asymptotically optimal choice
of h minimizing the leading term of the MSE is also known, at least in theory
(see, e.g., Silverman (1986) or Wand and Jones (1995)). However, in practice it is
unknown since it depends on f and f ′′. Although it also depends on K , the choice
of K has little effect on MSE (see again, e.g., Silverman (1986)). Consequently,
considerable efforts have been made to get close to the optimal bandwidth. Among
those efforts are, e.g., iterative approaches (in which, first, a preliminary bandwidth
is chosen to estimate quantities that enter the optimal bandwidth and, second, the
optimal bandwidth is used with unknown quantities replaced by their estimates),
cross-validation strategies, or using a parametric family of centered densities with
a scale parameter σ to compute the optimal bandwidth, and then apply the optimal
bandwidth with an estimated σ . (The first method is not fully satisfactory since
the choice of a preliminary bandwidth is subjective. Feluch and Koronacki (1992)
criticize the second approach and Silverman (1986) the third in certain situations;
see Srihera and Stute (2011) and Eichner and Stute (2013) where very brief accounts
of those popular methods and of their criticism are given.)

There are numerous functions in various R packages which provide univariate
(or multivariate) kernel density estimation. A non-exhaustive list of examples (e.g.,
found on www.RSeek.org with the search term “kernel density estimation”) con-
tains the function density in R’s base distribution, the R packages KernSmooth
(Wand 2015), sm (Bowman and Azzalini 2014), np (Hayfield and Racine 2008),
feature (Duong andWand 2015),ks (Duong 2016), and kedd (Guidoum (2015),
also offering functions for kernel density derivative estimation).

www.RSeek.org
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15.1.2 Nonparametric Regression Estimation

Here, the goal is to nonparametrically estimate an unknown regression function x �→
m(x) := E[Y |X = x], x ∈ R, from a sample (X1, Y1), . . . , (Xn, Yn) of independent
replicates of (X, Y ) ∈ R

2. Nadaraya (1964) and Watson (1964) proposed the kernel
estimator

mn(x) =
∑n

i=1 Yi K
(
x−Xi
h

)

∑n
i=1 K

(
x−Xi
h

) , x ∈ R, (15.2)

where h = hn and K are a positive bandwidth and a typically non-negative kernel,
respectively, and where h → 0 at a particular rate if n → ∞, while K has to satisfy
certain conditions like being integrable and having short tails. See Härdle (1990)
and Wand and Jones (1995) for a review. In those references the optimal choice of
the bandwidth h minimizing the leading term of the MSE (and also of the MISE)
under smoothness conditions on m is also discussed. The methods in practice, when
crucial quantities are unknown, are analogous to the ones mentioned in the previous
section on kernel density estimation.

An example for a function and two examples for packages which provide
functionality for nonparametric kernel regression estimation are function
ksmooth in R’s base distribution and the R packages KernSmooth (Wand 2015)
and lokerns (Herrmann 2016). This listing is certainly also not
exhaustive.

15.2 New Kernel Adaptive Methods

Srihera and Stute (2011) proposed a new, fully adaptive approach of pointwise kernel
density estimation which modifies the third method for optimal bandwidth selection
mentioned above in Sect. 15.1. Eichner and Stute (2013) robustified it by basing it
on ranks, and Eichner and Stute (2015) adapted the latter to an L2-approach. Eich-
ner and Stute (2012) extended the pointwise approach to nonparametric regression
estimation. In this section we will only very briefly summarize the methods and
the results relevant for their implementation while omitting all proofs and referring
the reader to the cited publications. Instead, we will present important quantities in
representations which are suitable to simplify their implementation in R or to reduce
their computational complexity, or, in the ideal case, achieve both.

It is evident that mathematical elegance or brevity of analytical formulae not
necessarily coincide with usefulness or effectiveness when it comes to their concrete
computational numerical evaluation. It was not the intention to achieve the fastest
and most efficient implementation that guided us in designing the current version
of the presented package. Instead, it was the idea to provide a pure, modular R-
implementation that is easy to modify, utilizes R’s computational strengths in matrix
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calculus, and hence is passably efficient under this premises. For future versions of
the package enhancements in respect to computational efficiency and speed shall
therefore be the focus.

15.2.1 Kernel Adjusted Density Estimation

Srihera andStute (2011) suggested to “update” the kernel K in a data-adaptiveway by
replacing it by a location-scale family associatedwith the classical Parzen-Rosenblatt
estimator in (15.1). More precisely, an initial kernel K is used to first construct fn
and then to replace K in (15.1) by σ fn(σ · + θ) with a location-parameter θ ∈ R

and a scale-parameter σ > 0 yielding

σ

nh

n∑

i=1

fn

(
σ
x − Xi

h
+ θ

)
= σ

n2h2
∑

1≤i, j≤n

K

(
σ

h
· x − Xi

h
+ θ − X j

h

)

The actual estimator was set to

f̃n(x) ≡ f̃n(x; h, θ, σ ) := σ

n(n − 1)h2

∑

1≤i �= j≤n

K

(
σ

h
· x − Xi

h
+ θ − X j

h

)
(15.3)

and does exclude the summands for i = j in the double-sum to reduce possible
bias (see Eq. (1.6) in Srihera and Stute (2011)). Then (under, e.g., K being a sym-
metric density with compact support, f being twice continously differentiable in a
neigborhood of x , and E[X2] < ∞), the asymptotically leading terms of bias and
variance were obtained. It turned out that choosing θ = E[X ] allowed an interesting
asymptotic representation of the asymptotic MSE:

MSE f̃n(x) ≡
(
Bias f̃n(x)

)2 + Var f̃n(x)

= 1

4

(
f ′′(x)

)2 h4

σ 4 Var
2X + σ f (x)

∫
f 2(u)du

nh
(15.4)

as h → 0 and n → ∞ such that nh → ∞ (see Theorem 1.1 and Eq. (2.1) in Srihera
and Stute (2011)). It follows from (15.4) that, besides the fact that the quality of the
estimator f̃n(x) is affected by both local and global properties of the true density f ,
it merely depends on the ratio of h and σ . In fact, the MSE in (15.4) is minimal if

h

σ
=

(
1

n

)1/5
(

f (x)
∫

f 2(u)du

[ f ′′(x)VarX ]2

)1/5

Consequently, h = n−1/5 is feasible without loss of generality so that the bias is
asymptotically neglible and theMSE is a function only ofσ . Recall that θ has been set
to the (typically) unknownE[X ]. However, the asymptotic representation of theMSE
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in (15.4) is also true for consistent estimators θ̂ of θ , so that in a real data situation,
where θ is unknown (but contained in a compact set) and hence needs to be replaced
by an estimator, θ̂ = n−1 ∑n

i=1 Xi can (and typically will) be chosen. This holds as
well for estimators σ̂ with σ̂ → σ if σ is bounded away from 0 and K ′ is continuous
(Theorem 1.3 in Srihera and Stute (2011)). Distributional convergence of f̃n(x) and
of f̃n(x; n−1/5, θ̂ , σ̂x ) was obtained under mild conditions (see Theorems 1.2 and
1.3 in Srihera and Stute (2011)).

The proofs in Srihera and Stute (2011) further revealed that minimization of an
estimator M̂SEx (σ ) ofMSE f̃n(x) in σ does not have to be based on its representation
in (15.4), but instead can be based on estimators for explicit expressions of Bias f̃n(x)
and Var f̃n(x), respectively, without the need for preliminary estimates of f (x) and
f ′′(x). Consequently, with Fn denoting the empirical distribution function of the
sample, the bias estimator was set to

B̂iasx (σ ) :=
∫∫

K (u) fn

(
x + h

θ̂ − y − hu

σ

)
Fn(dy)du − fn(x)

=
∫

K (u)
1

n

n∑

i=1

fn

(
x + h

θ̂ − Xi − hu

σ

)
du − fn(x) (15.5)

with θ̂ := n−1 ∑n
i=1 Xi as estimator of θ ≡ E[X ] and fn the “initial” estimator

from (15.1) with h = n−1/5. The variance of f̃n(x) in turn was first approximated
by the variance of the Hájek-projection f̃ (0)

n (x) of f̃n(x), i.e., by

Var f̃ (0)
n (x) = σ 2h−4n−1Var(Zi (x))

with the iid quantities

Zi (x) ≡
∫
K

(
σ

h
· x − Xi

h
+ θ − y

h

)
F(dy) +

∫
K

(
σ

h
· x − z

h
+ θ − Xi

h

)
F(dz)

(15.6)
Then, the estimator V̂arx (σ ) of Var(Zi (x)) was set to be the sample variance of

estimators Ẑi of Zi (x) for 1 ≤ i ≤ n (obtained by replacing F in (15.6) with its
empirical analogue Fn and θ with θ̂ as above) where

Ẑi := 1

n

n∑

j=1

[
K

(
σ

h
· x − Xi

h
+ θ̂ − X j

h

)
+ K

(
σ

h
· x − X j

h
+ θ̂ − Xi

h

)]

(15.7)
Finally, the choice for σ was taken to be a minimizer σ̂x of (see (2.3) in Srihera

and Stute (2011))

M̂SEx (σ ) :=
(
B̂iasx (σ )

)2 + σ 2h−4n−1V̂arx (σ ) (15.8)
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which is apparently possible without referring to higher order derivatives of the
unknown density f . Typically, σ �→ M̂SEx (σ ) is virtually convex for small σ , so
that σ̂x is usually uniquely determined.

15.2.2 RankTransformations in Kernel Density Estimation

Eichner and Stute (2013) robustified the approach of Srihera and Stute (2011) in
so far as they constructed an estimator of f with similar features as the above f̃n ,
but which does not require moments of the X ’s. For that robust version of f̃n the
(typically centered) θ − X j in (15.3) was replaced by a suitable transformation J of
the rank of X j to obtain the kernel estimator

f̂n(x) ≡ f̂n(x; h, J, σ ) := σ

n(n − 1)h2
∑

1≤i �= j≤n

K

(
σ

h
· x − Xi

h
− J (Fn(X j ))

h

)

(15.9)
(which is Eq. (4) in Eichner and Stute (2013)). The transformation J , defined on
the unit interval, needs to be strictly increasing and continuously differentiable with∫ 1
0 J (u)du = 0 to ensure (among other things) that E[J (F(X j ))] = 0 and that the
bias is of order h2 (and not h). Note: No location parameter θ needs to be estimated.

From Theorem 2.1 in Eichner and Stute (2013) it follows (under f being twice
continuously differentiable in a neighborhood of x ,

∫
K (w)dw = 1,

∫
wK (w)dw =

0,
∫

w2K (w)dw < ∞, K being thrice differentiable with bounded K ′′′, and the
above-mentioned conditions on J ) that the asymptotic bias and variance and hence
the asymptotic MSE again depend on the ratio of h and σ . Omitting negligible terms
it was obtained that

MSE f̂n(x) ≡
(
Bias f̂n(x)

)2 + Var f̂n(x)

=
(
h

σ

)4 [ f ′′(x)]2
4

[∫ 1

0
J 2(u)du

]2
+ σ

h

f (x)

n

∫ 1

0

1

J ′(du)
du (15.10)

as h → 0 and n → ∞ such that nh → ∞. This is minimal if

h

σ
=

(
1

n

)1/5

⎛

⎜⎝
f (x)

∫ 1
0

1
J ′(u)

du
[
f ′′(x)

∫ 1
0 J 2(u)du

]2

⎞

⎟⎠

1/5

(15.11)

In particular, one may (as in the non-robustified version of the previous section)
choose h = n−1/5 without loss of generality so that again the bias is neglible and
the MSE is a function of σ only.
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Analogously to the strategy in Srihera and Stute (2011) described in the previous
section, minimization of an estimator of MSE f̂n(x) in σ was not based on its repre-
sentation in (15.10), but instead on estimators for explicit expressions of Bias f̂n(x)
and Var f̂n(x), respectively: The bias estimator is

B̂iasx (σ ) :=
∫

K (u)
1

n

n∑

i=1

fn

(
x + h

−J (Fn(Xi )) − hu

σ

)
du − fn(x)(15.12)

where fn is the classical Parzen-Rosenblatt kernel estimator with h = n−1/5, and
the variance estimator V̂arx (σ ) is the sample variance of

Ẑi := 1

n

n∑

j=1

[
K

(
σ

h
· x − Xi

h
− J (Fn(X j )

h

)
+ K

(
σ

h
· x − X j

h
− J (Fn(Xi )

h

)]

(15.13)
for 1 ≤ i ≤ n. Consequently, σ̂x is obtained as a minimizer of an expression
equivalent to that in (15.8). (For all that, see p. 431 in Eichner and Stute (2013).) The
remark after (15.8) regarding convexity of σ �→ M̂SEx (σ ) applies here as well.

Note the structural similarities of (15.12) and (15.13) to (15.5) and (15.7), respec-
tively, which can be utilized for a unified implementation of both methods. Note
further that Fn(Xi ) is the rank of Xi so that summation over the order statistics in
(15.12) and (15.13) simplifies J (Fn(Xi )) to J (Fn(Xi :n)) = J (i/n).

15.2.2.1 The Optimal RankTransformation
The choice of J was determined by the goal to minimize the leading term of the
MSE f̂n(x) in (15.10) for the optimal ratio h/σ given in (15.11). It turned out that
the optimal J is a minimizer of

J →
∫ 1

0

1

J ′(u)
du subject to J ′ > 0,

∫ 1

0
J (u)du = 0 and

∫ 1

0
J 2(u)du = 1

(15.14)
(see Eqs. (8) and (9) in Eichner and Stute (2013)).

An explicit solution was obtained by solving an isoperimetric problem in varia-
tional calculus in a class of functions parameterized by a real-valued c > 0. This
boiled down to solving an Euler-Lagrange differential equation (see Eq. (10) in Eich-
ner and Stute (2013)) within that parameterized function class, which, in turn, led to
solving the following cubic equation (see Lemma 3.1 in Eichner and Stute (2013))
within that class:

y(u)3 + 3pcy(u) + 2qc = 0, 0 ≤ u ≤ 1, (15.15)
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where, provided that c �= √
3,

pc := 1

5
· 3c

2 − 5

3 − c2
· c2 and qc ≡ qc(u) := 2

5
· c5

3 − c2
· (1 − 2u)

For c = √
3 the cubic equation is not necessary because the mentioned differential

equation and its solution simplify (see below). Finally, the “admissible” solutions
of the cubic equation (15.15) had to be identified in dependence of c �= √

3, in the
sense that they are the ones which are real-valued, minimize the “target integral” in
(15.14) while satisfying the conditions therein and the symmetry condition y(1) =
c = −y(0), as well as solve the differential equation. The following results were
obtained (see p. 434 in Eichner and Stute (2013)):

• For c <
√
5/3 and for c >

√
5 the real-valued solutions of (15.15) are not

admissible because minimization of the target integral in (15.14) is not warranted.
• For

√
5/3 ≤ c <

√
3 the only real-valued solution of (15.15) is

y(u) = J1(u; c) := 3

√
−qc(u) +

√
q2c (u) + p3c + 3

√
−qc(u) −

√
q2c (u) + p3c

(15.16)
Note: y tends to the function u �→ √

3(2u − 1) if c ↗ √
3.

• For c = √
3: y(u) = √

3(2u − 1).
• For

√
3 < c ≤ √

5 the solution is

y(u) = J2(u; c) := 2
√−pc · sin

{
1

3
arcsin

{
qc(u)

(−pc)3/2

}}
(15.17)

All the above forms of y for
√
5/3 ≤ c ≤ √

5 are admissible, but in fact only
c = √

5 minimizes the target integral (see Theorem 3.3 in Eichner and Stute (2013)).
Hence, u �→ J (u) := J2(u;√

5) is the sought-after optimal rank transformation.

15.2.3 Kernel Adjusted Nonparametric Regression

Eichner and Stute (2012) suggested to replace the kernel in the Nadaraya-Watson
estimator (15.2) analogously to the approach inSect. 15.2.1 by a location-scale family
associated with the classical kernel density estimator fn in (15.1) using an initial
kernel K (preferably nonnegative and with unbounded support). They thus obtained
as estimator the weighted sum

m̂n(x) ≡ m̂n(x; h, θ, σ ) :=
n∑

i=1

Wni (x) · Yi (15.18)
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with weights

Wni (x) ≡ Wni (x; h, θ, σ ) :=
fn

(
σ
x − Xi

h
+ θ

)

n∑

k=1

fn

(
σ
x − Xk

h
+ θ

)

=

n∑

j=1

K

(
σ

h
· x − Xi

h
+ θ − X j

h

)

∑

1≤k, j≤n

K

(
σ

h
· x − Xk

h
+ θ − X j

h

) (15.19)

which are non-negative and sum to 1 for all x ∈ R (see proof of Theorem 1 on
p. 2542 in Eichner and Stute (2012)).

With θ = E[X ], Theorem 1 in Eichner and Stute (2012) implies (under E[Y 2] <

∞, E[X2] < ∞ with X having a density f that satisfies f (x) > 0 and is con-
tinuously differentiable in a neighborhood of x , m being twice continuously differ-
entiable in a neighborhood of x , and K being a symmetric probability density with∫ |w3|K (w)dw < ∞) that the asymptoticMSE (omitting negligible terms) satisfies

MSE m̂n(x) ≡ (
Bias m̂n(x)

)2 + Var m̂n(x)

= 1

4

(
2 f ′(x)m′(x) + f (x)m′′(x)

f (x)

)2 h4

σ 4 Var2X

+ σ
∫

f 2(u)du

nh f (x)
Var(Y |X = x) (15.20)

as h → 0 and n → ∞ such that nh → ∞ (see also Eq. (2.2) in Eichner and Stute
(2012)). Apparently, the asymptotic MSE depends (as in kernel adjusted density
estimation) on the ratio of h and σ . This MSE is minimal if

h

σ
=

(
1

n

)1/5
(

f (x)
∫

f 2(u)du Var(Y |X = x)

[2 f ′(x)m′(x) + f (x)m′′(x)]2 Var2X

)1/5

In particular, one may choose also here h = n−1/5 without loss of generality so
that the bias is asymptotically neglible and the MSE is a function of σ alone. Recall
that θ has been set to the (typically) unknown E[X ]. Fortunately, the asymptotic
representation in (15.20) holds also for

√
n-consistent estimators θ̂ of θ , so that in a

real data situation where θ is unknown (but realistically assumed to be contained in
a compact set), the estimator θ̂ = n−1 ∑n

i=1 Xi can (and typically will) replace it.

Minimization of an estimator M̂SEx (σ ) ofMSE m̂n(x) in σ , however, is not based
on the analytic form of its representation in (15.20).Moreover, estimators for explicit
expressions of Bias m̂n(x) and Var m̂n(x), respectively, are utilized without the need
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for preliminary estimates of the unknown local and global quantities appearing in
(15.20). In particular, the bias estimator was set to

B̂iasx (σ ) :=
n∑

i=1

Wni (x){mn(Xi ) − mn(x)} (15.21)

and the variance estimator to

V̂arx (σ ) :=
n∑

i=1

W 2
ni (x){Yi − mn(Xi )}2, (15.22)

where in both definitions mn is the classical Nadaraya-Watson estimate from (15.2)
with h = n−1/5. Note that σ only enters the weights Wni . Note also that in Eichner
and Stute (2012) it is recommended to not replace mn by m̂n here. Note further that
this estimation procedure is completely different from the one followed in kernel
adjusted density estimation of Srihera and Stute (2011) summarized in Sect. 15.2.1.
(See p. 2540 in Eichner and Stute (2012) for the derivation and the reasoning behind
it.)

Finally, the choice for σ was taken to be a minimizer σ̂x of

M̂SEx (σ ) :=
(
B̂iasx (σ )

)2 + V̂arx (σ )

which is apparently possible without referring to the unknown local and global quan-
tities in (15.20). According to empirical evidence, the remark after (15.8) regarding
convexity of σ �→ M̂SEx (σ ) appears to apply here only in a weaker form.

15.3 Implementations

Caveat: For the following it is assumed that the reader is familiar with R.
Package kader in its latest version should be readily available for download

and installation from “The Comprehensive R Archive Network” (CRAN) at https://
CRAN.R-project.org/ in the “Packages” section, or directly from https://CRAN.
R-project.org/package=kader. After successful installation, attaching the package
to R’s search path with library(kader) should enable one to reproduce the
following examples.

15.3.1 R Function kade for Kernel Adjusted Density Estimation

The main function to compute the kernel adjusted density estimators of Sects. 15.2.1
and 15.2.2 with an MSE-estimator-minimizing σ for a given data set of real values
is kade. To illustrate its mode of operation we shall apply it to a univariate data set

https://CRAN.R-project.org/
https://CRAN.R-project.org/
https://CRAN.R-project.org/package=kader
https://CRAN.R-project.org/package=kader
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that is available in R. The data are n = 272 durations of eruptions of the Old Faithful
geyser in Yellowstone National Park, Wyoming, USA. They are contained in the
component eruptions of the data frame faithful. (Details may be found in
faithful’s help page.) Fig. 15.1 shows just for illustrative purposes a “classical”
kernel density estimate obtained with the R-function density which comes with
R’s base distribution in its package stats. It computes a kernel density estimate
with a selectable kernel (the gaussian kernel by default) and a global bandwidth that
is (here) choosen by a method which has been suggested by Sheather and Jones
(1991) and is also recommended by Venables and Ripley (2002). More information
is available on density’s and bw.SJ’s help pages. In addition, the raw data are
indicated by a rug plot on the x-axis. Figure15.1 was created by

> plot(density(faithful$eruptions, bw = "SJ"))
> rug(faithful$eruptions, col = "blue")

Before proceeding to concrete examples of use of kade we give an (incomplete)
overview over its arguments:

• x: Vector of location(s) at which the density estimate is to be computed.
• data: Vector (X1, . . . , Xn) of the data fromwhich the estimate is to be computed.
• kernel: A character string naming the kernel to be used for the adjusted

estimator. This must partially match (currently) one of “gaussian”,
“rectangular”, or “epanechnikov”, with default “gaussian”. It may
be abbreviated to a unique prefix.

• method: A character string naming the method to be used for the adap-
tive estimator. This must partially match one of “both”, “ranktrafo”, or
“nonrobust”, with default “both”, and may be abbreviated to a unique pre-
fix.

2 3 4 5

0.
0

0.
2

0.
4

0.
6

density.default(x = faithful$eruptions, bw = "SJ")

N = 272   Bandwidth = 0.14

D
en

si
ty

Fig. 15.1 “Classical” kernel density estimate for the Old Faithful eruptions data as produced by
R’s built-in function density using the gaussian kernel with a provided bandwidth selection
procedure, augmented with a rug plot of the data
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• Sigma: Vector of value(s) of the scale parameter σ . If of length 1 no adaptation
is performed, but just the estimator of (15.3) or (15.9) for the given value of σ

computed. Otherwise, Sigma’s value is considered as the grid over which the
optimization of the adaptive method will be performed. Defaults to seq(0.01,
10, length = 51).

• h: Numeric scalar for bandwidth h. Defaults toNULLwhich leads to automatically
setting h := n−1/5.

• theta: Numeric scalar for the value of the location parameter θ . It defaults to
NULL which leads to setting it to the arithmetic mean of the data X1, . . . , Xn .

• ranktrafo: Function used for the rank transformation. Defaults to the optimal
rank transformation in (15.17) with c = √

5 (which is implemented in a function
named J2 with its default cc = sqrt(5); see Sect. 15.3.1.3).

• plot: Should graphical output be produced? Defaults to FALSEwhich means no
plotting. If set to TRUE a plot of the estimators of the squared bias, the variance,
and of the MSE as functions of σ (for the values in Sigma) is produced for each
value in x. If provided with a character string (which can, of course, also contain
a file path) the output is directed to automatically numbered (from 1 to the length
of x) pdf-files whose names and location in your file system are determined by
the given character string.

• parlist: A list of graphical parameters (which is passed to a function named
adaptive_fnhat coordinating the adaptive procedure and doing some of the
plotting). It affects only the pdf-files which are created if the aforementioned
plot is set to TRUE. Default: NULL.

15.3.1.1 Non-robust Kernel Adjusted Density Estimation
To compute the kernel adjusted density estimator of (15.3) using the gaussian kernel,
we have to set method = “nonrobust” and would have to set kernel =
“gaussian”, if the latter wasn’t the default. So, we can simply omit the kernel-
argument in the argument list of the call:

> X <- faithful$eruptions
> est1 <- kade(x = pretty(X, n = 50), data = X,
+ method = "nonrobust", Sigma = seq(0.01, 10, length = 21),
+ plot = "Plots/Est1_MSEx", #'Plots' must already exist!
+ parlist = list(mar = c(2.5, 2, 2, 0.5), tcl = -0.3,
+ mgp = c(1.3, 0.5, 0), cex = 1.1))

The argument x of kade expects the point(s) at which the density estimator is
to be evaluated. Here, we let R determine an equidistant grid of roughly 50 “pretty”
points which covers the range of the data (see ?pretty for details). The sample
data are passed to kade through its argument data. A vector of values for the scale
parameter σ can be provided to Sigma, but doesn’t have to because its default is
a vector with a grid of equidistant values (currently seq(0.01, 10, length
= 51)). Here we have chosen a coarser grid to reduce the computational workload
since the optimization of the adaptive method will be performed on the provided grid
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Fig.15.2 Typical estimators of squared bias, variance, andMSE as functions of σ in kernel adjusted
density estimation for the Old Faithful eruptions data, each for the single x which is reported in the
respective plot title

as follows: First, a minimizer of M̂SE is searched on that grid, and then it is refined
by a numerical minimization in its neighborhood. (More details are provided in the
remarks on page 306–307.) Since plot receives a character string one (colored)
plot is produced for each value in the vector that is assigned to x presenting the
estimators of the “technical quantities” squared bias, variance and MSE as functions
of σ for the values in Sigma. (Here, the plots are placed in a subdirectory “Plots”
which has to exist already in R’s current working directory.) Two selected examples
of this plot are shown in Fig. 15.2 and indicate the mentioned convexity of M̂SE for
small σ . (Argument parlist is here provided with settings to reduce the amount
of “white space” around the graph.)

kade’s return-value is a data frame with one row for each element of x; here we
only show the first three. But note also that, since kade usually produces numerous
status messages while it is working, the presented output is anyway not complete:

> head(est1, 3)

x y sigma.adap msehat.min discr.min.smaller sig.range.adj
1 1.60 0.1920315 1.253887 0.001658418 FALSE 0
2 1.65 0.2132562 1.547541 0.002023333 FALSE 0
3 1.70 0.2414115 1.962614 0.002261519 FALSE 0

Column x contains each x-value at which the density estimator was computed, y the
corresponding values of the density estimator, sigma.adap the respective values
of σ̂x , and msehat.min the pertaining values of M̂SE(σ̂x ). (The remaining two
columns report technical information: if theminimizer found by grid search is smaller
than the refined one found by numerical minimization (discr.min.smaller),
and the number of times that the search range for σ̂x had to be extended beyond the
initial σ -grid during the minimization process (sig.range.adj).)
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Fig. 15.3 Kernel adjusted density estimation (pointwise adapted) for the Old Faithful eruptions
data on an x-grid of 71 equidistant points, overlaid with a rug plot of the data
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Fig. 15.4 Kernel adjusted density estimation: σ̂x versus x for the same x-grid and data as in
Fig. 15.3, overlaid with a rug plot of the data

With a sufficiently fine grid of x-values, and after having the necessary patience
regarding the required computing time, a plot of the graph of the (pointwise (!)
adapted) estimated density is immediately created from kade’s result (see Fig. 15.3).
Similarly, a plot of σ̂x vs. x is as easily produced, e.g., to gain some empirical insight
into how the minimizer σ̂x “depends” on x and the data distribution (see Fig. 15.4).
The following two code snippets lead to the two figures.

> with(est1, plot(x, y, type = "l",
+ ylab = expression(tilde(f)[n]))) # Fig. 3
> rug(faithful$eruptions, col = "blue") # Rug plot of data

> with(est1, plot(x, sigma.adap, type = "l",
+ ylab = expression(hat(sigma)[x]))) # Fig. 4
> rug(faithful$eruptions, col = "blue") # Rug plot of data
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15.3.1.2 Kernel Adjusted Density Estimation Using Rank
Transformations

To compute the robustified kernel adjusted density estimator of (15.9) using rank
transformations while otherwise using the same settings as in the previous section,
i.e., the gaussian kernel, etc., we just have to change the method-argument to
method = “ranktrafo”. It is also possible to provide a user-defined function
for the rank transformation to the argument ranktrafo. Its default is the MSE-
optimal rank transformation implemented in J2. Section15.3.1.3 provides more
details on this. (Only the call to kade, but nothing of its numerical output is shown
here since it is completely analogous to that in the previous section.) For the sake
of comparison Fig. 15.5 shows the plots of estimators of the squared bias, variance
and MSE as functions of σ for the values in Sigma corresponding to the plots in
Fig. 15.2. They also indicate thementioned convexity of M̂SE for small σ (evenmore
convincing than for the non-robust method).

> X <- faithful$eruptions
> est2 <- kade(x = pretty(X, n = 50), data = X,
+ method = "ranktrafo", Sigma = seq(0.01, 10, length = 21),
+ plot = "Plots/Est2_MSEx",
+ parlist = list(mar = c(2.5, 2, 2, 0.5), tcl = -0.3,
+ mgp = c(1.3, 0.5, 0), cex = 1.1))

The plot of the graph of the (pointwise (!) adapted) robustly estimated density
using the MSE-optimal rank transformation is seen in Fig. 15.6, and that of σ̂x ver-
sus x is presented inFig. 15.7. (The code that produced those twographs is completely
analogous to the respective code near the end of Sect. 15.3.1.1 and thus not shown.)
Note the increased smoothness of both the density estimator and of x �→ σ̂x in
comparison to Figs. 15.3 and 15.4 of the non-robust method.
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Fig. 15.5 Typical estimators of squared bias, variance, and MSE as functions of σ using the
MSE-optimal rank transformation in robust kernel adjusted density estimation for the Old Faithful
eruptions data, each for the single x reported in the plot title
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Fig. 15.6 Kernel adjusted density estimation (pointwise adapted) using the MSE-optimal rank
transformation for the Old Faithful eruptions data on an x-grid of 71 equidistant points, overlaid
with a rug plot of the data
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Fig. 15.7 Kernel adjusted density estimation using the optimal rank transformation: σ̂x versus x
for the same x-grid and data as in Fig. 15.6, overlaid with a rug plot of the data

Remarks concerning the implementations of both estimation methods:

• The help pages of the introduced R-functions provide further information, and in
particular the examples there illustrate additional variants of using them.

• There are custom-made functionsfnhat_SS2011 and fnhat_ES2013which
prepare the evaluation of (15.3) and (15.9), respectively, for a set of x-values, a
data vector (X1, . . . , Xn), a kernel K with bandwidth h, a single scale para-
meter value σ , and either a location parameter θ or a rank transformation
J : fnhat_ES2013 actually mainly precomputes the vector (−J (1/n), . . . ,

−J (n/n)) for the rank-transformation method while fnhat_SS2011 does the
respective for (θ̂ − X1, . . . , θ̂ − Xn) for the non-robust method. They then both
call the function compute_fnhatwhich does what its name already insinuates.
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The examples section on the help pages of those functions demonstrate their use
extensively. Note, however, that the graphs which are created there are computed
for a single fixed σ , i.e., without adaption! They are produced for demonstration
purposes only.

• Most of the number-crunching parts of the implementation are without loops, but
instead use matrix-vector-calculus. (This is usually pretty fast, but can, in turn, be
quite memory-intensive already for moderate sample sizes of n ≥ 200 in combi-
nation with even not-so-large x-grids.) Exceptions from the matrix-calculus are
the handling of the elements in x and (for each x-element) the discrete miminizer
search along the σ -grid. Both processes iterate through the respective vectors
Sigma and x.

• The search for themiminizer of the estimatedMSE (like in (15.8)) proceeds byfirst
searching aminimizer of M̂SE on the σ -grid provided inSigma, and then refining
the found discrete minimizer by a numerical minimization in its neighborhood.
This takes currently the most time, both in the discrete grid-search and when
using R’s numerical optimization routine optimize. This is due to the fact that
the integral in the bias-estimator in (15.5) and (15.12) is computed numerically
by means of R’s integrate. A function named bias_AND_scaledvar
coordinates and triggers this repeatedly so that it could be termed the “workhorse”
function here, but actually integrate does most of the (so-to-say internal)
computational work together with a function kfn_vectorized. The latter
realizes a vectorized (in u) evaluation of the integrand n−1 ∑n

i=1 K (u) · fn(x −
h/σ · (θ̂ − Xi − hu)) in (15.5) and of an analogous version of (15.12). This
integration is currently the main source of computing effort and time, and one of
the targets of future improvements.

• Empirical evidence suggests that the σ -grid should start near zero. By default this
is currently the case with the smallest σ -value being 0.01.

• The numerous status messages of kade can generally be suppressed if a call of
suppressMessages is “wrapped around” the call of kade.

15.3.1.3 The Optimal RankTransformation
All functions from Sect. 15.2.2.1 are implemented, notably:

• pc and qc(u) of the cubic equation (15.15) as pc and qc, respectively.
• J1(u; c) of (15.16) and J2(u; c) of (15.17) as J1 and J2, respectively. Note that

the optimal rank transformation is hence implemented as J2, because its default
is to use c = √

5.
• The function J_admissible provides the complete family of admissible func-

tion forms of y mentioned at the end of Sect. 15.2.2.1.

Thus, it is simple to take an “empirical” look at the shapes and the behavior of the
admissible functions. Figure15.8, as an example, is the result of the following code:
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Fig. 15.8 Shapes of admissible forms of the rank transformation for selected values of c. Recall:
For c = √

3 the admissible form is linear, namely u �→ √
3(2u − 1), but this is not shown here

> par(mfrow = c(1, 2), mar = c(3, 3, 0.5, 0.5), mgp = c(1.5, 0.5, 0),
+ tcl = -0.3) # Reduce white space around plots.
> u <- seq(0, 1, by = 0.01)
> # Family of functions for c-grid in [\sqrt(5/3), \sqrt(3)); left plot.
> # (expression() used only to have mathematical notation in legend.)
> #---------------------------------------------------------------------
> c0 <- expression(sqrt(5/3)); c1 <- expression(sqrt(3) - 0.01)
> cgrid <- seq(1.4, 1.6, by = 0.1); cvals <- c(eval(c0), cgrid, eval(c1))
> Y <- sapply(cvals, function(cc, u) J1(u, cc = cc), u = u)
> cols <- rainbow(ncol(Y), end = 3/4) # Just to let the graphs look fancy.
> matplot(u, Y, type = "l", lty = "solid", col = cols,
+ ylab = expression(J[1](u, c))); abline(h = 0, lty ="dotted")
> legend("topleft", title = "c", legend = c(c0, cgrid, c1), lty = 1,
+ col = cols, bty = "n")

> # Family of functions for c-grid in (\sqrt(3), \sqrt(5)]; right plot.
> #--------------------------------------------------------------------
> c0 <- expression(sqrt(3) + 0.01); c1 <- expression(sqrt(5))
> cgrid <- seq(1.9, 2.1, by = 0.1); cvals <- c(eval(c0), cgrid, eval(c1))
> Y <- sapply(cvals, function(cc, u) J2(u, cc = cc), u = u)
> cols <- rainbow(ncol(Y), end = 3/4)
> matplot(u, Y, type = "l", lty = "solid", col = cols,
+ ylab = expression(J[2](u, c))); abline(h = 0, lty = "dotted")
> legend("topleft", title = "c", legend = c(c0, cgrid, c1), lty = 1,
+ col = cols, bty = "n")

Note: J1 accepts c /∈ [√5/3,
√
3) and issues then only a warning; likewise, J2

accepts c /∈ (
√
3,

√
5] and issues also only a warning!
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15.3.2 R Function kare for Kernel Adjusted Regression Estimation

kare is the main function to compute the kernel adjusted regression estimator in
(15.18)with anMSE-estimator-minimizingσ for a given data set of univariate regres-
sor values X1, . . . , Xn and the pertaining univariate response values Y1, . . . , Yn .
To illustrate its use we shall apply it to a data set available in R that comprises
n = 116 (non-missing) observations of temperature and ozone concentration. They
are contained in the respective components Ozone and Temp of the data frame
airquality. (For details, see ?airquality.) Fig. 15.9 shows the scatter plot
of the ozone versus the temperature values, for the sake of illustration overlaid with
two curves obtained with the “classical” kernel regression estimator of Nadaraya
and Watson in (15.2) using two different bandwidths. The R-function ksmooth
which comes with R’s base distribution in its package stats was used to produce
this result. It computes the Nadaraya-Watson estimate (here) with the “normal”,
i.e., gaussian, kernel, a given bandwidth and, by default, on a grid of at least 100
equidistant points over the range of the regressor variable. Details are available on
ksmooth’s help page. Figure15.9 was created by

> with(na.omit(airquality[c("Temp","Ozone")]), {
+ plot(Temp, Ozone)
+ lines(ksmooth(Temp, Ozone,"normal", bandwidth = 2), col = "red")
+ lines(ksmooth(Temp, Ozone,"normal", bandwidth = 5), col = "green")
+ })

Before applying kare to the example data we list its main arguments:

• x.points: Vector of location(s) at which the regression estimate is to be com-
puted.

• data: Data frame or list with components named x and y, where x contains a
numeric vector of the regressor values X1, . . . , Xn and y a numeric vector of the
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Fig.15.9 “Classical” Nadaraya-Watson kernel regression estimate for the ozone data as produced
by R’s built-in function ksmooth using the gaussian kernel with two different bandwidths
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pertaining response values Y1, . . . , Yn of the data for which the estimate is to be
computed.

• kernel: A character string naming the kernel to be used for the adjusted
estimator. This must partially match (currently) one of “gaussian”,
“rectangular”, or “epanechnikov”, with default “gaussian”. It may
be abbreviated to a unique prefix.

• Sigma: Vector of value(s) of the scale parameter σ . If of length 1 no adaptation
is performed, but just the estimator in (15.18) for the given value of σ computed.
Otherwise, Sigma’s contents is considered as the grid over which the optimiza-
tion of the adaptive method will be performed. Defaults to seq(0.01, 10,
length = 51).

• h: Numeric scalar for bandwidth h. Defaults toNULLwhich leads to automatically
setting h := n−1/5.

• theta: Numeric scalar for the value of the location parameter θ . It defaults
to NULL which leads to setting it to the arithmetic mean of the design values
X1, . . . , Xn .

The following code snippet prepares the input for kare’s argument data by
creating a data frame with suitably named components and removing its rows with
missing values. The, it calls kare with a single value for its argument x.points
at which the regression estimator is to be evaluated. The sample data are passed
through its argument data. A vector of values for the scale parameter σ can be
provided to Sigma, but doesn’t have to because its default is a vector with a grid of
equidistant values (currently seq(0.01, 10, length = 51)). Here we stick
with the default grid because the computational workload is not at all as high as
in the current implementation of kernel adjusted density estimation of the previous
sections. If a scalar is provided for Sigma no adaptation is performed, but only the
computation of the regression estimator for that σ . Otherwise the optimization of the
adaptive method will be performed, but only on the given σ -grid, i.e., no (possibly
refining) numerical minimization is currently implemented. (There is currently also
no automatic plotting provided by kare.)

> data <- na.omit(with(airquality,
+ data.frame(x = Temp, y = Ozone)))
> fit1 <- kare(x.points = 75, data = data)

kare’s return value is a list of eight components if x.points receives only a
scalar as above:

> str(fit1)

List of 8
$ x : num 75
$ y : num 16.8
$ sigma.adap: num 3.21
$ msehat.min: num 1.5
$ Sigma : num [1:51] 0.01 0.21 0.41 0.609 0.809 ...
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$ Bn : num [1:51] 23.2 19.9 18.5 14.1 11.1 ...
$ Vn2 : num [1:51] 2.72 2.19 3.04 3.31 3.6 ...
$ MSE : num [1:51] 541 397 345 201 127 ...

Component x contains the x-value at which the regression estimator was com-
puted,y the value of the estimator,sigma.adap the value of σ̂x , andmsehat.min
the pertaining value of M̂SE(σ̂x ). Sigma contains the σ -grid on which the mini-
mization process was performed while Bn, Vn2, and MSE contain vectors with the
estimators of variance, bias, and MSE, respectively, on that σ -grid, e.g., to be able
to draw them for visualisation purposes (as will be demonstrated shortly).

If x.points receives a vector of k > 1 elements (as below), kare returns a
list with the same component names, but then x contains the k-vector (x1, . . . , xk)
in x.points (at which the regression estimator was computed), y the vector of the
k estimator values (m̂n(x1), . . . , m̂n(xk)), sigma.adap the vector of the σ̂x j , j =
1, . . . , k, and msehat.min the pertaining values of M̂SE(σ̂x j ). Sigma contains
the σ -grid of length, say, s on which the minimization process was performed while
Bn, Vn2, and MSE contain (s × k)-matrices with the estimators of variance, bias,
and MSE, respectively, on that σ -grid in their columns (which correspond to the k
x-values). Let’s execute kare for this case and present the structure of its return
value:

> xgrid <- seq(55, 100, by = 0.5)
> str(fit <- kare(x.points = xgrid, data = data))

List of 8
$ x : num [1:91] 55 55.5 56 56.5 57 57.5 58 58.5 ...
$ y : num [1:91] 6 6 6 6 ...
$ sigma.adap: num [1:91] 3.21 3.81 4.81 6.4 ...
$ msehat.min: num [1:91] 0.332 0.332 0.332 0.32 ...
$ Sigma : num [1:51] 0.01 0.21 0.41 0.609 ...
$ Bn : num [1:51, 1:91] 37.9 28.6 11.3 11.4 ...
$ Vn2 : num [1:51, 1:91] 3.09 2.26 1.38 2.9 ...
$ MSE : num [1:51, 1:91] 1438 820 129 132 ...

Using the returned information, Fig. 15.10 was created with the code below and
displays the regression estimator (top) on the x-grid as well as the estimators of
squared bias, variance, and MSE on the σ -grid for one selected x-value in the two
lower plots).

> # Open a graphics device and preparing its layout for 3 plots to come:
> par(mfrow = c(3, 1), mar = c(3, 3, 2, 0.1), mgp = c(1.6, 0.5, 0),
+ tcl = -0.3, cex.main = 1.4)
> # The scatter plot of the"raw data":
> plot(y ˜ x, data = data, xlim = range(data$x, fit$x),
+ ylim = range(data$y, fit$y, na.rm = TRUE),
+ main = bquote(n == .(nrow(data))), xlab ="Temp", ylab ="Ozone")
> # Overlay the graph of the obtained estimator on the x-grid:
> lines(x = fit$x, y = fit$y, col ="red")
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Fig. 15.10 Top Kernel adjusted regression estimator for the ozone data as produced by kare.
Middle estimators of squared bias and variance on the σ -grid for one selected x-value (reported in
the plot title). Bottom estimator of MSE on the σ -grid for one selected x-value (reported in the plot
title) together with the detected minimum. Note how the estimated MSE is here dominated by the
squared estimated bias

> # Draw the estimators of (Bias_x(sigma))ˆ2 and Var_x(sigma) on
> # the sigma-grid for one selected x:
> ix <- 41 # Index of selected point of x-grid
> with(fit,
+ matplot(Sigma, cbind(Bn[, ix]ˆ2, Vn2[, ix]), type = "l", lty = 1:2,
+ col = c("black","red"), xlab = expression(sigma), ylab = "",
+ main = bquote(x[0] == .(x[ix]))))
> # Legend for the estimators:
> legend("top", lty = 1:2, col = c("black","red"), bty = "n", cex = 1.2,
+ legend = c(expression(paste(widehat(plain(Bias))[x[0]]ˆ2, (sigma))),
+ expression(widehat(plain(Var))[x[0]](sigma))))

> # Draw the estimator of MSE_x(sigma) on the sigma-grid together
> # with the point indicating the detected minimum, and a legend:
> with(fit, {
+ plot(Sigma, MSE[, ix], type = "l", xlab = expression(sigma),
+ ylab = "", main = bquote(x[0] == .(x[ix])))
+ points(sigma.adap[ix], msehat.min[ix], pch = 4, col = "red", cex = 2)
+ legend("top", lty = c(1, NA), pch = c(NA, 4), col = c("black","red"),
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Fig.15.11 Kernel adjusted regression estimation for the ozone data: σ̂x versus x on an x-grid of 91
equidistant points, overlaid with a rug plot of the (slightly jittered) regressor data. (Remember that
also the Yi s enter the variance estimator and hence affect σ̂x , so that this simple display is certainly
far from telling the “whole story”)

+ legend = c(expression(widehat(plain(MSE))[x[0]](sigma)),
+ substitute(group("(", list(plain(Minimizer), plain(Minimum)),")")
+ == group("(", list(x, y),")"),
+ list(x = signif(sigma.adap[ix], 4),
+ y = signif(msehat.min[ix], 4)))), bty = "n", cex = 1.2)
+ })

The fine grid of x-values used for fit allows to plot the graph of σ̂x versus x , e.g.,
to gain some empirical insight into how the minimizer σ̂x “depends” on x and the
regressor distribution. The following code snippet produced Fig. 15.11. (Note that
the added rug plot of the regressor data is here slightly jittered to reduce overplotting
of tied values.)

> with(fit, plot(x, sigma.adap, type = "l",
+ ylab = expression(hat(sigma)[x]))) # Fig. 11
> set.seed(2017) # Reproducibly jittered rug
> rug(jitter(data$x), col = "blue") # plot of regressor data.

A few remarks concerning the implementation of the estimation method:

• There is a function named weights_ES2012 that implements the weights of
(15.19) for the pre-computed quantities (x − X1)/h, . . . , (x − Xn)/h and (θ −
X1)/h, . . . , (θ − Xn)/h where x is the single (!) location for which the weights
are to be computed, θ is the location parameter, the Xi ’s are the regressor values,
and h is the bandwidth.

• Based on weights_ES2012 the bias estimator of (15.21) and the variance esti-
mator of (15.22) are computed by functions bias_ES2012 and var_ES2012,
respectively. They expect the same arguments as function weights_ES2012,
but the first one needs in addition the pre-computed vector (mn(X1)−mn(x), . . . ,
mn(Xn)−mn(x)) and the latter one the vector ((Y1−mn(x))2, . . . , (Yn−mn(x))2).
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Concluding remarks regarding future package versions: The main focus shall
be an increase in computing efficiency, considering both mathematical and pro-
gramming tools to achieve this. Another goal is to supply numerical minimization
also in kare to refine its grid search. Harmonizing kade’s and kare’s return
values and their argument lists with respect to contents and structure is desirable,
but would brake backwards compatibility which needs to be considered carefully.
Finally, implementing the L2-approach of kernel adjusted density estimation is on
the to-do list.

Acknowledgements Thanks to the two referees whose constructive criticism and suggestions
helped to improve the paper considerably.
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16Limiting Experiments andAsymptotic
Boundson thePerformance
of Sequenceof Estimators

Debasis Bhattacharya and George G. Roussas

16.1 Introduction

The notion of “statistical experiment” was first introduced by Blackwell (1951) for
themathematical description of the observed data in a probabilistic framework. Later,
it was studied extensively by Le Cam (1964, 1986) in framing the general principles
of asymptotic theory of statistics. A statistical experiment (or a statistical model) is
defined by E = (X, A, Pθ , θ ∈ �), where X is the sample space of the statistical
data, A is a σ -field of subsets of X , Pθ is a probability measures on A, which depends
on the value of the unknown parameter θ , and � is the parameter space, or the set of
all possible theories. We can think of each θ as a theory that associates a stochastic
model Pθ with the observation process to be carried out by the experimenter. For
non-asymptotic (or exact) models, the best statistical decisions are sought based on a
finite amount of statistical data. Unfortunately, an explicit solution of a finite sample
problem is available only for simple models. On the other hand, for a large amount
of statistical data, probabilistic and statistical laws like the law of large numbers,
and the central limit theorem begin to work, and that allow us to think about the
possibility of approximating the model under consideration by some simpler “limit
models”. The original decision problem then is reduced to: “How do we construct
asymptotically optimal decisions, if we know the structure of the optimal decisions
for the limit model?”. In fact, statistical decision theory discusses the problems of
construction of optimal decisions for a given statistical experiment, whereas the
questions of comparison, approximation, convergence, etc. for different statistical
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experiments are discussed under the asymptotic theory of statistical experiments.
Let En = (Xn, An, Pθ,n, θ ∈ �), n ≥ 1, integer, be statistical experiments, where
n is the size or dimension of the statistical data. For the classical (i.e., independent)
framework: Xn = Rn, An = B(Rn), the Borel σ -field over Rn , Pθ,n = Pθ ×...×Pθ .

One possible way to define the idea of convergence of the experiments En , n ≥ 1,
to some limit experiment E = (X, A, Pθ , θ ∈ �), is by considering random func-
tions, such as the likelihood ratios �n(θ, θn) and �(θ, θn), instead of the families
of measures Pθ,n and Pθ . The parameter point θn is defined at the beginning of the
preliminaries section. Basically, the asymptotic problems in statistics revolve largely
around the idea of approximating a family of probability measures (Pθ , θ ∈ �) by
other families (Qθ , θ ∈ �) that may be better known or more tractable. Le Cam
in his 1960 seminal paper introduced the concept of “Limit Experiments”, which
states, in effect, that, if one is interested in studying the asymptotic properties of a
converging sequence of experiments, it is enough to prove the result for the limit
experiment. Then the corresponding limiting result for the sequence of experiments
will follow. In other words, it provides an absolute standard for what can be achieved
asymptotically by a sequence of experiments. No sequence of experiments or sta-
tistical procedures can be asymptotically better than the best procedure in the limit
experiment. In case of a sequence of tests, the best limiting power function is the best
power function in the limit experiment. A sequence of estimators converges to a best
estimator in the limit experiment, etc. The asymptotic behavior of the log-likelihood
ratio function, corresponding to an arbitrary but fixed parameter point “θ” and a
neighboring point was first studied by Le Cam (1960, 1972) under the independent
and identical paradigm.

In this connection, mention may be made of the works of Hájek (1962) and Há-
jek and Šidák (1967), where contiguity results have been employed in the context
of rank tests. Those two works elaborated on the so-called Le Cam’s three lemmas
and thus contributed to familiarizing researchers with these concepts (see Hájek
and Šidák (1967), pages 202–210). In Hájek (1970), the author derived a deep re-
sult having substantial impact in asymptotic statistical theory, developed by means
of contiguity considerations. Coincidentally, the same result was published in the
same year by Inagaki (1970). Another reference which should not be omitted here
is the book by Strasser (1985). This book is endowed with the novel feature of
bridging well-known results in classical statistics with more general settings and
current (for up to the 1980s) research methodology. In classical statistics, one is
faced with one experiment—typically, a parametric model—and the objective is to
provide optimal solutions to an assortment of problems. As long as the sample size
n is fixed, this objective obtains only for a very few particular cases. This necessi-
tates asymptotic methods, by letting n tend to infinity. A rough description of the
procedure involved is this: The specific experiment that one is presented with is
embedded in a convergence sequence of experiments, and then one concentrates on
the study of the limit experiment instead of the original one. This book confines
itself to the case that the limit experiments are Gaussian shifts. In implementing the
above described procedure, the author exploits skillfully almost the entirety of Le
Cam’s powerful results, spread over thirty years of research effort. In a sense, this
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book may be looked upon as a precursor to Le Cam’s own book (Le Cam (1986)). Of
course, in the process, the results of many other researchers are utilized, such asWald
(1943, 1949, 1950), Blackwell (1947, 1951, 1953), etc. In the context of compari-
son of experiments, Torgersen (1991) has provided a thorough study of the subject
of comparison of experiments, and discussedmost of the relevant references up to the
year 1988. Le Cam’s work has a prominent presence in the study, which is set mostly
in the framework of normed vector lattices and their special cases, the L-spaces and
theM-spaces. The concepts of deficiency, sufficiency, and completeness—as defined
by Le Cam—play a significant role in the study. There does not seem to be a sepa-
rate concrete treatment of locally asymptotically mixed normal (LAMN) and locally
asymptotically quadratic (LAQ) experiments.

Later on, shifts in the paradigm took place. Various studies related to the as-
ymptotic behavior of the log-likelihood ratio function have been made by various
authors under different models and set-ups. As we can expect, and which is also
very logical, the direction of the shift was towards dependent observations. First,
for Markov dependent processes, and later for general stochastic processes, Rous-
sas in a series of papers investigated the asymptotic behavior of the log-likelihood
ratio function (for all related references see Roussas (1972)). After that, Jeganathan
(1980), Swensen (1980), Basu and Bhattacharya (1988, 1990, 1992), Roussas and
Bhattacharya (2002, 2008, 2009), and others studied the asymptotic behavior of the
log-likelihood ratio function from various view-points. Also, Fabian and Hannan
(1987) is a relatively long paper containing a wealth of important results. Their de-
tailed descriptionwould take us too far afield.We onlymention that their contribution
consists in generalizing, in the framework of locally asymptotically mixed normal
families, previously derived results under local asymptotic normality. It has been
observed (Le Cam (1960, 1986), Roussas (1972)) that, under suitable conditions,
the limiting distribution of the sequence of log-likelihood ratio processes, approxi-
mately and in the neighborhood of any parameter point, belongs to an exponential
family. Some implications of this observation have been discussed in Chaps. 3–6 in
Roussas (1972). It is to be noted that, if the two parameter points are sufficiently
apart from each other, any decent statistical procedure will be able to differentiate
between them. An issue arises when the parameter points are close to each other, and
yet the respective probability measures are distinctly different. In such cases, the ap-
proach has got to be asymptotic in nature, and it will utilize the concept of contiguity
and its applications (Le Cam (1986), Roussas (1972)). With the above motivation,
several basic optimality results for a locally asymptotically normal (LAN) family of
distributions, under i.i.d. and general dependence set-up have been obtained. The ex-
ponential approximation, Hájek-Inagaki representation theorem, and related results
for theMarkovian set-up and under a general dependence set-up have been discussed
in Roussas and Soms (1972) and Roussas and Bhattacharya (2007), respectively. The
results have been obtained for non-random sample size, and also when the sampling
is based on a random number of random variables.

Subsequently, it was observed that there exist a number of processes, where the
LAN conditions are violated. For example, critical and super-critical Galton-Watson
branching processes, critical and super-critical autoregressive processes, Ornstein-
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Uhlenbeck processes, etc. (Davis (1985), Jeganathan (1982), Le Cam and Yang
(2000)). In such cases, it has been observed that the sequence of log-likelihood ratio
processes satisfies more general conditions known as locally asymptotically mixture
of normal or locally asymptoticallymixed normal (LAMN), or locally asymptotically
quadratic (LAQ) conditions. As a result, the limit experiment no longer belongs to
an LAN family, but to an LAMN, or an LAQ family. Naturally, investigators started
to obtain optimal results for LAMN and LAQ families of distributions. Results in
this direction can be found in Roussas and Bhattacharya (2002, 2007, 2008, 2009,
2010, 2011) and Basu and Bhattacharya (1999), Bhattacharya and Basu (2006),
Davis (1985), Basawa and Scott (1983), Jeganathan (1982, 1995), Le Cam and Yang
(2000); see also Taniguchi and Kakizawa (2000) and van der Vaart (1998).

In a paper of Bhattacharya and Roussas (2001), the exponential approximation
result for the randomly stopped LAMN experiment was derived. In that paper, it
has been observed that the sequence of randomly stopped LAMN experiments can
be approximated in the L1—norm sense by another experiment which is a member
of a curved exponential family, in the sense of Efron (1975). This, in turn, implies
that the sequences of random vectors and matrices involved in the distribution of an
LAMN experiment form a sequence of locally asymptotically (differentially) suffi-
cient statistics (see pages 80–81 in Roussas (1972) for a definition). The exponential
approximation result derived in Bhattacharya and Roussas (2001) can be used to
study the asymptotic behavior of sequential estimates of parameters, asymptotic
properties of risk functions, performance of sequential tests, etc.

The familiar Hájek-Inagaki (Hájek (1970), Inagaki (1970)) representation of the
asymptotic distribution of a sequence of sequential estimates of parameters for gen-
eral stochastic processes has been discussed in Roussas and Bhattacharya (2008)
and a similar result under the LAMN framework has been the topic of discussion of
Roussas and Bhattacharya (2009). An example where the limit experiment is neither
LAN nor LAMN—although, in general, is translation invariant—is provided by the
paper of Koul and Pflug (1990). The purpose of the present paper is to provide an
overview of selected available results in this area on asymptotic theory of statistical
inference, which covers the concept of limit experiments and asymptotic bounds on
the performance of a sequence of estimators.

Throughout the entire paper, we use the following notation: For a vector y ∈ Rk, y′
denotes the transpose of y, and for a square matrix D, |D| denotes the determinant
of D, ||D|| denotes the norm of D, defined by the square root of the sum of squares
of its elements. If P and Q are two probability measures on a measurable space (X ,
A), then dP/dQ denotes the Radon-Nikodym derivative of the Q-continuous part of
P with respect to Q. If p and q are the probability density functions of Pand Q,
respectively, with respect to some σ -finite measure λ, then ||P−Q|| = ∫ |p − q|dλ

is the L1-norm. The symbol “⇒” denotes the convergence in distribution, whereas

the symbol
Pθ,n→ denotes convergence in Pθ,n-probability. Unless otherwise stated,

the expectation of a random variable is to be understood under θ . Also to avoid
repetitions, it is stated that all the limits are taken as n or subsequences of {n} tend
to infinity.
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The paper is organized as follows: Sect. 16.2 introduces the preliminaries, which
describe the technical notation and state assumptions required to develop the main
results. In the same section, two examples are given, where the underlying assump-
tions hold. In the following section, Sec. 16.3, the results for non-random sample
size are presented. In Sect. 16.4, the results for random sample size are stated and
some justifications are provided.

16.2 Preliminaries

Let X1, X2, ..., Xn be the first n randomvariables from a discrete time-parameter sto-
chastic process; the random variables are defined on the probability space (X, A, Pθ )

and take values in (S, F), where S is a Borel subset of a Euclidean space, and F is the
σ -field ofBorel subsets of S. Let θ ∈ �, where� is the underlined parameter space. It
is assumed that� is an open subset of Rk . It is also assumed that the joint probability
law of any finite number of such random variables has some known functional form
except for the unknown parameter θ involved in the distribution. Let An be the σ -field
induced by X1, X2, ..., Xn, and let Pθ,n be the restriction of Pθ to An . It is assumed
that, for j ≥ 2, a regular conditional probability measure of the distribution of X j ,

given (X1, X2, ..., X j−1), is absolutely continuouswith respect to a σ -finitemeasure
μ j with corresponding (probability) density f j (θ) = f j (x j |x1, x2, ..., x j−1; θ), and
the distribution of X1 is absolutely continuous with respect to a σ -finite measure μ1
with corresponding density f1(θ) = f1(x1, θ). Let {θn} be a sequence of local alter-
natives of θ , where θn = θn(h) = θ + δ−1

n h, h ∈ Rk , { δn} is a sequence of norming
factors, such that δn is a k×k positive definite matrix with ||δ−1

n || → 0.Here δn may
depend on θ but is independent of the observations; θ, θn ∈ �. Let Pθ,n and Pθn ,n

be mutually absolutely continuous for all θ and θn .Then the sequence of likelihood
ratios is given by:

Ln(X1, X2, ..., Xn; θ, θn) = Ln(θ, θn) = dPθn ,n

d Pθ,n
=

n∏

j=1
f j (θn)

n∏

j=1
f j (θ)

, (16.1)

and on account of (16.1), the corresponding sequence of log-likelihood ratios is
given by:
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�n(X1, X2, ..., Xn; θ, θn) = �n(θ, θn) = log Ln(θ, θn)

=
n∑

j=1

log
f j (θn)

f j (θ)
=

n∑

j=1

2 log
f
1
2
j (θn)

f
1
2
j (θ)

=
n∑

j=1

2 log(1 + ηnj (θ, h))

=
n∑

j=1

{2ηnj (θ, h) − α∗
njη

2
nj (θ, h)}, 0 ≤ α∗

nj ≤ 1

=
n∑

j=1

{(ηnj (θ, h) + 1)2 − 1} −
n∑

j=1

(α∗
nj + 1)η2nj (θ, h),

=
n∑

j=1

Unj (θ, h) −
n∑

j=1

(α∗
nj + 1)η2nj (θ, h), (16.2)

where

ηnj (θ, h) = f
1
2
j (θn)

f
1
2
j (θ)

− 1, and Unj (θ, h) = Unj = (ηnj (θ, h) + 1)2 − 1.

Clearly,

E(Unj |A j−1) = 0, for j ≥ 1, where A0 = φ.

Thus, {Unj } is a martingale difference sequence.
Under a standard set of assumptions (see Roussas and Bhattacharya (2011)), it can

be shown that there exists a sequence of k- dimensional random vectors {�n(θ)} and
a sequence of k × k symmetric almost sure (a.s.) positive definite random matrices
{Tn(θ)} such that the log-likelihood ratio function, as defined in (16.2), can be
approximately written as a sum of two terms: A term h′�n(θ), which is linear in the
local parameter h, and a term − 1

2h
′Tn(θ)h, which is quadratic in h; i.e., for every

h ∈ Rk,

�n(θ, θn) − (h′�n(θ) − 1
2h

′Tn(θ)h) → 0 in Pθ,n-probability. (16.3a)

Further,

L(�n(θ), Tn(θ)|Pθ,n) ⇒ L(�(θ), T (θ)|Pθ ), (16.3b)

where T (θ) is an a.s. positive definite random matrix and �(θ) is a random vector
whose conditional distribution (under Pθ ), given T (θ), is Nk(0, T (θ)). (See also
Fabian and Hannan (1987).)

If the matrices in the quadratic term, i.e.,Tn(θ), converge to a non-random matrix
T (θ), then the sequence of log-likelihood ratios belongs to the locally asymptotically
normal (LAN) family. In this case, �(θ) ∼ N (0, T (θ)) and T (θ) is a non-random
positive definite matrix.
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Let the random vectors �n = �n(θ) in Eqs. (16.3a) and (16.3b) be represented
in the form:

�n(θ) = T
1
2
n (θ)Wn(θ), (16.4)

such that

L(�n(θ), Tn(θ)|Pθ,n) ⇒ L(�(θ), T (θ)|Pθ ), �(θ) = T
1
2 (θ)W,

where T (θ) is an a.s. positive definite randommatrix andW ∼ Nk(0, I ) independent
of T (θ). Then the sequence of experiments is locally asymptotically mixture of
normal (LAMN). Clearly, under LAMN conditions, the distribution of �(θ), given
T (θ), is N (0, T (θ)), where T (θ) is as above. Given T (θ), E(h′�(θ))2 = h′T (θ)h.

It is to be noted that, under the LAMN set-up, the distribution of T (θ) does not
depend on the local parameter h; i.e., L(Tn(θ)|Pθn ,n) with θn = θ + δ−1

n h, has a
limit distribution independent of h. In general, �n(θ) and Tn(θ), being dependent
on θ , are not statistics, and they are not so useful elements for inferential purposes.
For the definition of LAQ and the difference of the LAQ conditions from those of
LAMN and LAN, the reader is referred to Le Cam and Yang (2000, pages 120–121)
and Jeganathan (1995). However, it is noteworthy that LAN implies LAMN and that
LAMN implies LAQ. It is to be observed that the representation of �n(θ), as the
one stated in (16.4), does not hold in the LAQ set-up. Those points θ at which LAN
or LAMN conditions do not hold are called “critical points”. Sometimes, in an LAQ
expansion of�n(θ, θn), it can be seen that�(θ) and T (θ) appearing in the expansion
are functionals of a Brownian motion or a Gaussian process. Then those models are
called locally asymptotically Brownian functional (LABF) or locally asymptotically
Gaussian functional (LAGF). To bemore specific, the sequence ofmodels is LABF if

�(θ) =
1∫

0

FtdBt , T (θ) =
1∫

0

F2
t dt,

where Bt is a standardBrownianmotion and Ft is a predictable process. The sequence
of models is LAMN if

�(θ) = T
1
2 (θ)B1 and T (θ) is random,

and it is LAN if

�(θ) = T
1
2 (θ)B1 and T (θ) is a non-random quantity.

An example of LAQ, which is not LAMN, is given in Le Cam and Yang (2000, page
121).
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For the LAQ model, using contiguity (see Definition 1) of two sequences {Pθ,n}
and {Pθn ,n}, with θn = θ + δ−1

n h, we will have

E[exp(h′�(θ) − 1

2
h′T (θ)h)] = 1, for all h, (16.5)

where � (θ) andT (θ) are as they appear in (16.3b).
In order to obtain various asymptotic results, under the LAQmodel, the following

representation of the expression exp(h′�(θ) − 1
2h

′T (θ)h), appeared in (16.5), is
convenient:

exp(h′� − 1

2
h′Th) = exp{− 1

2 (T
− 1
2� − T

1
2 h)′(T− 1

2� − T
1
2 h)}

exp{− 1
2 (T

− 1
2�)′(T− 1

2�)}
. (16.6)

The representation given in (16.6) is actually a ratio of two multivariate normal
densities under the following (γ, ; φ) model:

dPθn ,n

d Pθ,n
= φ(γ (x) − (x)h)

φ(γ (x))
,

where φ = φ(x) denotes a standard multivariate normal density.
As defined earlier, let θn = θ + δ−1

n h and let f j (θ) = f j (X j |X j−1; θ), where for
convenience, the same notation f j (θ) is used when the observed values are replaced
by the random variables.
Define ξnj (.; θ, h) by :

ξnj (.; θ, h) = f
1
2
j (.|X j−1; θn)− f

1
2
j (.|X j−1; θ).

Then assume that there exists a k-dimensional random vector ξ j (θ) such that:

k∑

j=1

Eθ [
∫

(ξnj (x j ; θ, h) − 1

2
h′δ−1

n ξ j (θ))2dμ j ] → 0.

Set η j (θ) = ξ j (θ) / f
1
2
j (θ) and assume that Eθ [ η j (θ)|A j−1] = 0 a.s. [Pθ ], j ≥ 1.

Let

ξ j (θ) =
∂
∂θ

f j (θ)

f 1/2j (θ)
so that η j (θ) = ∂

∂θ
f j (θ) / f j (θ),

where
(

∂

∂θ
f j (θ)

)′

=
(

∂

∂θ1
f j (θ), ...,

∂

∂θk
f j (θ)

)

.
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The important results stated in the following sections require a specification of dif-
ferent quantities involved. This is done below.
The norming matrices δn are such that

δ′
nδn =

n∑

j=1

Eθ [η j (θ)η′
j (θ)].

Under the i.i.d. set-up, δ′
nδn = nIk, so that δ−1

n = 1√
n
and the “local neighborhoods”

of θ become θn = θ + δ−1
n h = θ + 1√

n
h.

Tn(θ) = δ−1
n {

n∑

j=1

Eθ [η j (θ)η′
j (θ)|A j−1]}δ−1

n ,

and

Wn(θ) = T
− 1
2

n (θ)[δ−1
n

n∑

j=1

η j (θ)].

For each n ≥ 1, the quantities
n∑

j=1
Eθ [η j (θ)η′

j (θ)] and
n∑

j=1
Eθ [η j (θ)η′

j (θ)|A j−1]
are generally called the Fisher information (FI) matrix and conditional Fisher in-
formation (CFI) matrix, respectively. Under the LAN set-up, the ratio of CFI to FI
converges to 1 as n → ∞,but under LAMN and LAQ set-ups, the said ratios converge
to a random variable.

Under Pθn ,n, the limiting distribution of (�n(θ), Tn(θ)) is such that the marginal
distribution of the second component is independent of h, and the conditional dis-
tribution of �(θ), given T (θ), is N (T (θ)h,T (θ)), since L(�n(θ), Tn(θ)| Pθn ,n) ⇒
L(�(θ), T (θ)| Pθ ), with �(θ) = T 1/2(θ)W + T (θ)h, where T (θ) and W are inde-
pendent and W~N (0, Ik).

It follows that Eθ [�(θ)|T (θ)] = T (θ)h and Eθ [T−1/2(θ)W |T (θ)] = Eθ [�(θ)
T (θ)|T (θ)] = h (see, for example, van der Vaart (1998), Theorem 9.8, or Le Cam and

Yang (2000), page 118).
For illustrative purposes, we consider the following two examples, where the

LAMN properties hold, and therefore all the relevant results apply. See, however, the
paper of Koul and Pflug (1990), where the authors, in the absence of LAN and LAMN
properties, exploit the translation invariance of the limit experiment to construct an
adaptive estimator for the autoregressive parameter in the framework of an explosive
autoregression model.

Example 1 Explosive autoregressive process of first order.
Here the process consists of random variables X j , j ≥ 0, generated as follows:

X j = θX j−1 + ε j , X0 = 0, |θ | > 1, (16.7)
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where the ε j ’s are inependent random variables distributed as N (0,1). These random
variables, as defined in (16.7), form a Markov process with transition p.d.f. as that
of N (θX j−1, 1), so that

f j (θ) = f (x j |x j−1; θ) = 1√
2π

exp[−1

2
(x j − θ x j−1)

2].

In Basu and Bhattacharya (1988), it has been checked that the relevant assumptions
hold, so that the underlying family of probability measures is LAMN (see also, Ba-
sawa and PrakasaRao (1980), Basawa and Scott (1983), Greenwood andWefelmeyer
(1993, page 110), van der Vaart (1998, pages 135–136)).

The key quantities here are:

δ−1
n (θ) = δ−1

n = (θ2−1)2

θn
, so that θn = θ + (θ2−1)h

θn
,

ξ j (θ) = f ′
j (θ)/ f

1
2
j (θ),

where

f ′
j (θ) = ∂

∂θ
f (x j |x j−1; θ) = x j−1(x j − θ x j−1)√

2π
exp[− 1

2 (x j − θ x j−1)
2],

so that

η j (θ) = ξ j (θ)

f
1
2
j (θ)

= f ′
j (θ)

f j (θ)
= x j−1(x j − θ x j−1).

It follows that

Tn(θ) = (θ2 − 1)

θ2n

n∑

j=1

X2
j−1 , Wn(θ) = (

n∑

j=1

X j−1ε j )/(

n∑

j=1

X2
j−1)

1
2 ,

�n(θ) = (θ2 − 1)

θn
(

n∑

j=1

X j−1ε j ).

Furthermore, it is seen that the log-likelihood ratio is given by:

�n(θ, θn) = (θ2 − 1)h

θn

(
n∑

j=1
X j−1(X j − θX j−1)

(
n∑

j=1
X2

j−1 )
1
2

− (θ2 − 1)2h2

2θ2n
(

n∑

j=1

X2
j−1 ) + oPθ,n (1).



Limiting Experiments and Asymptotic Bounds on the Performance… 327

From results found in Basawa and Brockwell (1984, pages 164–165) and Green-
wood and Wefelmeyer (1993, page 110), it is observed that

L(Tn(θ)|Pθ.n) ⇒ L(T (θ)|Pθ ) = χ2
1 ,

L(�n(θ), Tn(θ)|Pθ,n) ⇒ L(�(θ), T (θ)|Pθ ),

with �(θ) = T
1
2 (θ)W, where T

1
2 (θ) ∼ N (0, 1),W ∼ N (0, 1), and T

1
2 (θ) and W

are independent (all under Pθ ).

Example 2 Super-critical Galton-Watson branching process with geometric off-
spring distribution.

Here the process consists of random variables X j , j ≥ 0, generated as follows:

f j (θ) = f (x j |x j−1; θ) = (1 − 1
θ
)x j−x j−1( 1

θ
)x j−1 , θ > 1. (16.8)

The geometric offspring distribution is given by:

P(X1 = j) = θ−1(1 − θ−1) j−1, j = 1, 2, ..., 1 < θ < ∞,

such that

E(X1) = θ and V (X1) = σ 2(θ) = θ(θ − 1).

Using (16.8), the key quantities are:

δ−1
n = θ

1
2 (θ−1)
θn/2 , so that θn = θ + θ

1
2 (θ−1)
θn/2 ,

ξ j (θ) = f ′
j (θ)/ f

1
2
j (θ), where f ′

j (θ) = ∂
∂θ

f j (θ) = f j (θ). ∂
∂θ

log f j (θ),

and ∂
∂θ

log f j (θ) = (X j−θX j−1)

θ(θ−1) , so that, η j (θ) = (X j − θX j−1)/θ(θ − 1).

It follows that:

Tn(θ) = (θ − 1)

θn

n∑

j=1

X j−1,

Wn(θ) =
n∑

j=1

(X j − θX j−1)/[θ(θ − 1)
n∑

j=1

X j−1] 12 ,

and

�n(θ) =
n∑

j=1

(X j − θX j−1)/θ
(n−1)

2 .

Furthermore, using (16.8), the log-likelihood function can be written as:

�n(θ, θn) = h

θ
(n−1)

2

n∑

j=1

(X j − θX j−1) − θ(θ − 1)2h2

2θn
(

n∑

j=1

X j−1) + oPθ,n (1).
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It can be seen that:
L(Tn(θ)|Pθ.n) ⇒ L(T (θ)|Pθ ),

L(�n(θ), Tn(θ)|Pθ.n) ⇒ L(�(θ), T (θ)|Pθ ), with�(θ) = T
1
2 (θ)W,

L(�n(θ)|Pθ.n) ⇒ L(T
1
2 (θ)W |Pθ ),

where T (θ) is an exponential random variable under Pθ with unit mean, W ∼
N (0, 1), and T

1
2 (θ) and W are independently distributed random variables. See

also Basawa and Prakasa Rao (1980, pages 22–25), Basawa and Scott (1983, pages
2–3), for further readings.

The example pertaining to the LAQ model will be the unit root autoregressive
process as described in Example 1 with θ = 1. For the key quantities, log-likelihood
function, and the asymptotic distribution of different statistics of interest, seeRoussas
and Bhattacharya (2011, pages 273–274, Example 17.3).

16.3 Results for Non-random Sample Size

We are now ready to state some basic results for the limit experiments when the
sample size is non-random. These are the following:

Result 1 Let �n(θ, θn), �n(θ) and T (θ) be the quantities appearing in 3(a) and
3(b). Then, under a set of standard assumptions (see Roussas (1972), Roussas and
Bhattacharya (2011)), we have:

(i) �n(θ, θn) − h′�n(θ) → − 1
2h

′T (θ)h in Pθ,n-probability.
(ii) L(�n(θ)|Pθ,n) ⇒ L(�(θ)|Pθ ), where �(θ) ∼ N (0, T (θ)).

(iii) L(�n(θ, θn)|Pθ,n) ⇒ L(�(θ)|Pθ ), where �(θ) ∼ N (− 1
2h

′T (θ)h, h′T (θ)h).

Result 2 In the notation of Result 1, and under the same set of assumptions:
(i) �n(θ, θn) − h′�n(θ) → − 1

2h
′T (θ)h in Pθn ,n-probability.

(ii) L(�n(θ)|Pθn ,n) ⇒ L(�(θ)|Pθ ), where �(θ) ∼ N (T (θ)h, T (θ)).

(iii) L(�n(θ, θn)|Pθn ,n) ⇒ L(�(θ)|Pθ ), where �(θ) ∼ N ( 12h
′T (θ)h, h′T (θ)h).

Result 2 can be obtained from Result 1 without much effort at all, because of the
contiguity of the sequences {Pθ,n}and {Pθn ,n}, and by using Le Cam’s third lemma
(see also Corollary 7.2, page 35, in Roussas (1972)).

The concept of contiguity, introduced and developed by Le Cam (1960) and was
extensively applied by Roussas (1972), refers to two sequences of probability mea-
sures. Contiguity is concerned with the “closeness” or “nearness” and is defined as
follows:
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Definition 1 For n = 1, 2, ..., let Pn and P ′
n be two probability measures defined

on measurable space (X,An). Then the sequences {Pn} and {P ′
n} are said to be

contiguous if for any An ∈ An, Pn(An) → 0 implies P ′
n(An) → 0, and vice versa.

Here we record the following interesting observations; for a detail and lucid de-
scription of different features of contiguity see Roussas (1972).

(i) For any An-measurable random variable Tn, Tn → 0 in Pn-probability if and
only if Tn → 0 in P ′

n-probability.
(ii) L1-norm implies contiguity but not the converse.
(iii) Contiguity is aweakermeasure of “closeness” of two sequences of probability

measures than that provided by the L1 (or sup) - norm convergence.

Result 3 With θn = θ + δ−1
n h, let {Pθ,n} and {Pθn ,n} be two sequences of proba-

bility measures, and let �n = log dPθn ,n
d Pθ,n

. Assume that {L(�n|Pθ,n)} converges to
N (μ, σ 2). Then the two sequences {Pθ,n} and {Pθn ,n} are contiguous if and only if

μ = −σ 2

2 .

Result 3 follows from Le Cam’s third lemma (see also Corollary 7.2, page 35, in
Roussas (1972)), which states that, if {Pθ,n} and {Pθn ,n} are contiguous and

L(�n|Pθ,n) ⇒ L(�)
L(�n|Pθn ,n) ⇒ L(�′), (16.9)

then the distribution of �′, appearing in (16.9), is determined by:

dF�′

dF�

= eλ. (16.10)

Let L(�n|Pθ,n) ⇒ L(�) = F, where F is N (μ, σ 2), and L(�n|Pθn ,n) ⇒
L(�′) = G.

Then, because of contiguity of Pθ,n and Pθn ,n, μ = −σ 2

2 , and G is N ( σ 2

2 , σ 2).

All these results follow from the facts that G(dλ) = eλF(dλ) and
∫
G(dλ) = 1.

Now,
∫
G(dλ) = 1 implies

∫
eλF(dλ) = 1,

or
∫ 1

σ
√
2π

eλ.e
− 1
2σ 2 (λ − μ)2

dλ = 1 implies σ 4 + 2μσ 2 = 0; i.e., μ = −σ 2

2 ,

and G(x) =
x∫

−∞
1

σ
√
2π

eλ.e
− 1
2σ 2 (λ + σ 2

2 )2
dλ =

x∫

−∞
1

σ
√
2π

e
− 1
2σ 2 (λ − σ 2

2 )2
dλ.

Thus, if we have L(�n(θ)|Pθ,n) ⇒ N (0, T (θ)), and �n(θ, θn) − h′�n(θ) →
− 1

2h
′T (θ)h in Pθ,n- probability for every h ∈ Rk, then we will have L(�n(θ, θn)|

Pθ,n) ⇒ N (− 1
2h

′T (θ)h, h′T (θ)h). Using contiguity of {Pθ,n} and {Pθn ,n} and the
relation given in (16.10) we get:

L(�n(θ, θn)|Pθn ,n) ⇒ N ( 12h
′Th, h′T (θ)h),

and

L(�n(θ)|Pθn ,n) ⇒ N (T (θ)h, h′T (θ)h).
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Under the LAMN model, the term Tn(θ) appearing in (16.3a) stays random in
the limit. The unconditional distribution of the log-likelihood ratio function can be
shown to be amean and variancemixture of a normal distribution, themixing variable
being T (θ).

Result 4 If the sequence of experiments {En} satisfies the LAMN conditions at
θ ∈ �, then for every h ∈ Rk we have:

L(�n(θ, θn),�n(θ), Tn(θ)|Pθ,n) ⇒ L(h′T 1/2(θ)W − 1

2
h′T (θ)h, T 1/2(θ)W, T (θ)),

and

L(�n(θ, θn),�n(θ), Tn(θ)|Pθn ,n) ⇒ L(h′T 1/2(θ)W + 1

2
h′T (θ)h, T 1/2(θ)W + T (θ)h, T (θ)),

where W is a k × 1 standard normal vector independent of T (θ).

Result 5 If the sequence of experiments {En} satisfies the LAMN conditions at
θ ∈ �, then for every h ∈ Rk we have :

L(T−1/2
n (θ)�n(θ)|Pθ,n) ⇒ L(W ),

and

L(T−1/2
n (θ)�n(θ)|Pθn ,n) ⇒ L(W + T 1/2(θ)h),

where W is a k × 1 standard normal vector independent of T (θ).

Result 6 If the sequence of experiments {En} satisfies the LAMN conditions at
θ ∈ �, then for every h ∈ Rk the joint convergence of (�n(θ), Tn(θ))is as follows:

L(�n(θ), Tn(θ)|Pθ,n) ⇒ L(�(θ), T (θ)),where �(θ) = T 1/2(θ)W,

and

L(�n(θ), Tn(θ)|Pθn ,n) ⇒ L(�̃(θ), T (θ)), where �̃(θ) = T 1/2(θ)W + T (θ)h.

Here W is a k × 1 standard normal vector independent of T (θ).

Justificationof theResults 4-6 canbe found inBasu andBhattacharya (1988, 1990,
1992), Le Cam and Yang (2000), Jeganathan (1995), Davis (1985) and Roussas and
Bhattacharya (2010).

All the results stated above are instrumental in deriving several optimality results
related to the LAN, LAMN and LAQ families of distributions. The exponential ap-
proximation result holds for the LAN and LAMN models with respect to a certain
truncated version of �n(θ) (Roussas and Bhattacharya 2002; and Bhattacharya and
Roussas, 2001). It is to be noted, however, that the approximating family, under
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the LAMN framework, no longer belongs to a standard exponential family, but to
a curved exponential family, as defined in Efron (1975). Roughly speaking, an ex-
ponential family is curved when the dimensionality of the sufficient statistics for
θ is larger than the dimensionality of θ . For example, the normal family N (θ, θ2),
θ ∈ R, is a curved exponential family. In Result 4, the limiting distribution of the
log-likelihood ratio function is a member of curved exponential family. However, the
independence of T (θ) andW, appearing in the limiting distribution, and the fact that
W ∼ N (0, Ik) turn the limiting distribution into a normal distribution, when condi-
tioned upon T (θ) = t . This fact is exploited in making statistical inference in the
limit experiment, and then transposing it to the original experiment. Optimal prop-
erties of different statistical procedures can be studied, which are based on this idea
of conditioning on the mixing variable. Efficient tests for LAMN experiments have
been derived in Roussas and Bhattacharya (2010) and Bhattacharya and Roussas
(1999).

Asymptotic efficiency of an estimate can be determined by following various
routes. TheWeiss-Wolfowitz approach (see, e.g., Wolfowitz (1965), Weiss andWol-
fowitz (1967)) is based on the asymptotic concentration of probabilities over certain
classes of sets. Wald’s approach (Wald 1939, 1947) was directed towards measur-
ing the risk of estimation under an appropriate loss function. The idea of measur-
ing asymptotic efficiency of Wald was extended by Hájek (1972). Ibragimov and
Has’minskii (1981) employed the concept of a locally asymptotically normal exper-
iment (see pages 7 and 120–123) in the context of statistical estimation. Fabian and
Hannan (1982) considered locally asymptotically normal families, and under some
additional very mild assumptions, they constructed locally asymptotically minimax
estimates, and provided a condition under which an estimate is locally asymptoti-
cally minimax adaptive. Also, they showed that a lower bound, due to Hájek (1972),
is not attained, and a new sharp lower bound was obtained. Schick (1988) considered
the problem of estimating a finite dimensional parameter in the presence of an arbi-
trary nuisance parameter in the framework of locally asymptotically mixed normal
families. A lower bound for the local asymptotic risk of an estimate was obtained,
and sufficient conditions were given for this bound to be achieved for bounded loss
functions. Furthermore, a necessary conditionwas given for the existence of adaptive
estimates, and also a necessary condition for an estimate to be adaptive. The concept
of studying asymptotic efficiency based on large deviations has been recommended
by Basu (1956) and Bahadur (1960, 1967). The search for an asymptotically efficient
estimator is done in two steps: First, obtain a bound for the limit (lim sup or lim inf) of
a certain desirable quantity, the risk of estimation under an appropriate loss function,
say, for a wide class of competing estimators; and second, find an estimator in the
target class for which this bound is attained. In the following subsection a search for
an efficient estimator is presented.
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16.3.1 Asymptotic Bounds on the Performance of Sequence of
Estimators

The convolution theorem and the local asymptotic minimax theorem may be used
decisively with regards to the asymptotic performance of a sequence of estimators.
They replace the Cramér-Rao lower bound for the variance of unbiased estimators
in an asymptotic sense. The convolution theorem is applicable to a class of regular
estimator sequence, a normalized version of which is assumed to converge weakly
to a probability measure (see, e.g., relation (3.1), page 136, in Roussas (1972)), and
states that those estimators are asymptotically distributed as the convolution of a
normal random variable and an independent noise variable. As a result, the limiting
measure is most concentrated when it is restricted to its normal component, and
diffused otherwise. The local asymptotic minimax theorem is not restricted to any
particular class of estimator sequences, and gives a lower bound for the limit of the
minimax risk over a shrinking neighborhood of the true distribution.

In asymptotic theory of estimation, local asymptotic minimax risk is often viewed
as an effective measure of asymptotic optimality of an estimator. Minimax risk
bounds for the estimator of a parameter, under LAQ family of distributions, are
discussed below. For details of the derivations, see Basu and Bhattacharya (1999).

Let L be the class of loss functions � : Rk → [0, ∞) satisfying the conditions:
(i) �(x) = �(|x |).
(ii) �(0) = 0.
(iii) �(x) ≤ �(y) if |x |≤ |y|.
Actually, L contains all bowl-shaped symmetric loss functionswith zerominimum

loss.
Here, an asymptotic minimax risk bound for an estimator of the parameter θ for

some l ∈ L is determined. Note that L contains the majority of the loss functions
usually considered in the literature (Le Cam, 1986; Le Cam and Yang, 2000). Let θ̂n
be an estimator of the parameter θn = θ + δ−1

n h. Then the loss in estimating θn by
θ̂n is:

�(θ̂n, θn) = �(θ̂n − θn) = �(θ̂n − (θ + δ−1
n h)).

Let Eh = E
θ+δ−1

n h, Rn(θ) = δn(θ̂n − θn), and let Q(·) be the multivariate normal
density with mean vector zero and dispersion matrix I ; also, let λ be the Lebesgue
measure on the Borel subsets of Kα , where Kα is a cube in Rk whose vertices have
coordinates ±α, so that the k-dimensional volume of Kα is

∫

Kα

λα(dh) = (2α)k .

Then the following result, Result 7, holds under the assumptions stated below:

1. L(�n(θ), Tn(θ), Rn(θ)|Pθ,n) → L(�(θ), T (θ), R(θ)).

2. Rn(θ) is tight in the sense that {Pθ,n} is tight for fixed θ and for all n.

3. Rn(θ) − T−1
n (θ)�n(θ) is oP (1) in Pθ,n-probability.

4. For some positive εα andCα with εα → 0,Cαεα → ∞ :
(a)

∫
P

θ+δ−1
n h{|T−1(θ)�(θ)| > α − Cα}λα(dh) → 0 as α → ∞,

(b)
∫
P

θ+δ−1
n h{|T

1
2 (θ)| ≤ εα}λα(dh) → 0 as α → ∞.
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Result 7 Suppose the sequence of experiments {En} is LAQ at θ , � ∈ L is bounded
and {θn} is any sequence of estimators. Then:

lim
α→∞ lim inf

n→∞ sup
h∈R

E
θ+δ−1

n h�(δnT
1
2
n (θ)(θ̂n − (θ + δ−1

n h))) ≥ E�(B1),

where B1 is N (0, Ik).

The above result implies that the minimax risk of any estimator is bounded by the
risk of an asymptotically normally distributed estimator. Hence, any asymptotically
normally distributed estimator will be minimax in a LAQmodel also. A result similar
to Result 7, pertaining to finding the asymptotic minimax bounds for sequential
estimators of parameters in a locally asymptotically quadratic family, can be found
in Basu and Bhattacharya (1999).

It has been noted that the symmetric loss structure as considered abovemay not be
applicable to all situations. Indeed, there are situations,where the loss can be different
for equal amounts of over- estimation and under-estimation. Estimation errors of
the same magnitude, but of opposite signs, may not have equal consequences. For
example, in the AR(16.1) process, consider the situations where the autoregressive
parameter θ , whose actual value is 0.95, say, is estimated first by θ̂ = 0.85 and second
by θ̂ = 1.05. Though the absolute magnitude of error in estimating θ , |e| = 0.10, is
the same in both cases, the consequences of the estimation are significantly different.
In the first case, that is when θ̂ = 0.85, the process is a stationary process, but in the
second case, that is when θ̂ = 1.05, the process is an explosive process. There are
many other situations, where researcher’s favorite symmetric loss function may not
be appropriate. For a detail discussion on this issue, see Bhattacharya et al. (2002)
and Roychowdhury and Bhattacharya (2008, 2010). Local asymptotic minimax risk
bounds for estimators of θ in a locally asymptotically mixture of normal experiments
under asymmetric loss has been discussed in Bhattacharya and Basu (2006). For lack
of space, we omit recording the results here, and refer the interested readers to the
above cited paper.

16.4 Results Under Random Sample Size

Let {νn, n ≥ 1} be a sequence of stopping times; that is, a sequence of non-negative
integer-valued random variables defined on the process{Xn, n ≥ 1},tending non-
decreasingly to ∞ a.s. [Pθ ], and such that, for each n, (νn = m) ∈ Am,m ≥ 1. It is
also assumed that {νn/n → 1} in Pθ -probability. Let Aνn = σ(X1, X2, ..., Xνn ) be
the σ -field induced by the random variables X1, X2, ..., Xνn , and let Pθ,νn = P̃θ,n

be the restriction of Pθ to Aνn .
If Pθ,n and Pθ∗,n are mutually absolutely continuous (that is, Pθ,n ≈ Pθ∗,n), for

θ, θ∗ ∈ �, n ≥ 1, then P̃θ,n ≈ P̃θ∗,n, and the Radon-Nikodym derivative of P̃θ∗,n
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with respect to Pθ,n is given by:

d P̃θ∗,n

d P̃θ,n
= Lνn (θ, θ∗) =

νn∏

j=1

[ f j (θ∗)/ f j (θ)]. (16.11)

Using (16.11), the randomly stopped likelihood ratios are given by:

Lνn (θ, θn) =
νn∏

j=1

[ f j (θn)/ f j (θ)], for θ, θn ∈ �, (16.12)

and therefore, from (16.12),

�νn (θ, θn) =
νn∑

j=1

log[ f j (θn)/ f j (θ)], (16.13)

where θn = θ + δ−1
n h, h ∈ Rk and ||δ−1

n || → 0.
All the results recorded below are obtained under the basic assumption that the

underlying family of probability measures is LAMN. That is, for each θ ∈ �, the
sequence of probability measures {Pθ,n; θ ∈ �}, n ≥ 1, is LAMN at θ .

Result 8 Let�νn (θ, θn) be given by (16.13), and let Tνn (θ) andWνn (θ) be as below:

Tνn (θ) = δ−1
n

νn∑

j=1

Eθ [η j (θ)η′
j (θ)|A j−1]}δ−1

n ,

and

Wνn (θ) = T
− 1
2

νn (θ)[δ−1
n

νn∑

j=1

η j (θ)].

Then, for each θ ∈ �, the sequence {P̃θ,n; θ ∈ �, n ≥ 1}, of families of probability
measures is LAMN at θ ; that is,

�νn (θ, θn) − [h′T
1
2

νn (θ)Wνn (θ) (16.14)

− 1

2
h′Tνn (θ)h] → 0 in P̃θ,n- probability for every h ∈ Rk,

and

L(Wνn (θ), Tνn (θ)|P̃θ,n) ⇒ L(W, T (θ)|Pθ ), (16.15)

where W ~N (0, Ik) and W is independent of T (θ).
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Recall that θn=θ + δ−1
n h, h ∈ Rk and θ , although arbitrary in �, is kept fixed.

In order to emphasize this fact and the dependence of P̃θn ,n, as well as of the log-
likelihood on h, we write

P̃h,n = P̃θn ,n,�νn (h) = �νn (θ, θn). (16.16)

Then the following results hold:

Result 9 Let �νn (h) be as in (16.16). Then the sequence {L(�νn (h)|P̃θ,n)} is rela-
tively compact (equivalently, tight), and

L[�νn (h)|P̃θ,n] ⇒ L(�(h)|Pθ ), with �(h) = h′T
1
2 (θ)W − 1

2
h′T (θ)h,

where W and T (θ) are as in Result 8.

Result 10 For every h ∈ Rk , the sequences of probability measures {P̃θ,n} and
{P̃h,n} are contiguous.

Proofs of the convergence results (16.14)-(16.15) and Results 9-10 can be found
in Basu and Bhattacharya (1988, 1990, 1992).

Result 11 With �νn (h) and P̃h,n as given in (16.16), and for every h ∈ Rk , the
following result holds:

�νn (h) − [h′T
1
2

νn (θ)Wνn (θ) − 1

2
h′Tνn (θ)h] → 0 in P̃h,n-probability. (16.17)

Result 11 follows from Results 8 and 10.
Now, let Tνn (θ) and Wνn (θ) be as in Result 8, and for a sequence 0 < kn → ∞,

let Wkn
νn (θ) be a truncated version of Wνn (θ) defined by:

Wkn
νn

(θ) = Wνn (θ)I (|�νn (θ)| ≤ kn),

where

�νn (θ) = T
1
2

νn (θ)Wνn (θ).

Bymeans ofWkn
νn (θ), and for everyh ∈ Rk , define a curved exponential probability

measure Qνn (h) = Q̃h,n by:

Q̃h,n(A) = C̃h,n

∫

A
exp[h′T

1
2

νn (θ)Wkn
νn

(θ) − 1

2
h′Tνn h] dP̃θ,n, for A ∈ Aνn ,

(16.18)
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where C̃h,n is the norming constant, so that

d Q̃h,n

d P̃θ,n
= C̃h,n exp[h′T

1
2

νn (θ)Wkn
νn

(θ) − 1

2
h′Tνn (θ)h]. (16.19)

Then the following result holds:

Result 12 With Q̃h,n(A) as defined in (16.18) and (16.19), and on the basis of the
convergence result stated in (16.17), the following assertions hold:

(i) sup[||P̃h,n − Q̃h,n||; h ∈ B, a bounded subset of Rk] → 0.
(ii) sup[||C̃h,n − 1||; h ≤ b] → 0, for every b > 0.
(iii) ||P̃hn ,n − Q̃hn ,n|| → 0 for every bounded sequence {hn} in Rk satisfying

θ + δ−1
n hn ∈ �.

The proof of the assertions can be found in Bhattacharya and Roussas (2001).
This section is concluded with the following remarks.

Remark 1 As it has been remarked before, from relations (16.18) and (16.19), it
follows that Q̃h,n belongs to a curved exponential family. However, the conditional
probability measure of Q̃h,n, given T (θ), belongs to an exponential family. This
fact suggests that the conditional approach, applied to a curved exponential family,
might be used in the sameway that an exponential family is used for certain purposes
of statistical inference (see, for example, pages 113–127, in Roussas (1972)). This
idea of conditional inference for LAMN model has also been indicated in Sweeting
(1992) and Basawa and Brockwell (1984).

16.4.1 A Convolution Representation Theorem

In this section,wewill discuss the issue related to the representation of the asymptotic
distribution of a regular sequence of sequential estimates of θ (see relation (16.20)
below), when properly normalized, in the LAMN framework. This representation has
far reaching consequences on statistical inferential procedures about θ , and in par-
ticular, the behavior of estimates from asymptotic efficiency view-point. Under this
set-up, the representation theorem states that the limiting distribution of any regular
sequence of sequential estimates of θ must be a normal distribution N (0, T−1(θ)),
for a given T (θ), convoluted with some other probability measure, and therefore it
has less concentration than the normal distribution involved in the limit distribution.
Hence the Hájek-Inagaki representation theorem in the LAMN framework, holds
conditionally on T (θ). Specifically, we have the following theorem.

Result 13 Let θ be an arbitrary but fixed point in �, and suppose that the sequence
of families {P̃θ,n; θ ∈ �}, n ≥ 1, satisfies the LAMN conditions at θ ∈ �, with
k × k random matrices Tνn (θ) and the k × 1 random vectors Wνn (θ) (as defined
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in Result 8). Let {Vνn }, n ≥ 1, be a sequence of k-dimensional random vectors of
regular sequential estimates of θ ; that is, for every h ∈ Rk ,

L[δn(Vνn − θn), Tνn (θ)|P̃θn ,n] ⇒ L(V (θ), T (θ)|Pθ ) = L(θ), say . (16.20)

Let LT (θ) be a regular conditional probability measure of V (θ), given T (θ). Then:

LV (θ)|T (θ) = LT (θ) = L1 ∗ L2, a.s. Pθ , (16.21)

where L1 = N (0, T−1(θ)) and L2 is the conditional distribution (under Pθ ) of

(V (θ)−T− 1
2 (θ)W ), given T (θ), and W~N (0, Ik) is independent of T (θ).

Outline of Proof Here, what we are aiming at showing is that the characteristic
function (ch.f.) of the conditional limiting distribution of Vνn (θ), given T (θ), is the
product of two suitable ch.f’s. Then the composition (or convolution) theorem on
page 193 in Loève (1963), or Theorem 6, page 212 in Roussas (2014) would apply
and give the result. The result is proved for k =1, since the derivations are easier to
describe in R. The modifications required for k > 1 are basically notational, and can
be implemented without much difficulty.

Let u, v and h be real numbers, and observe that the joint ch.f. of δn(Vνn − θn)

and Tνn (θ) is given by:

E[exp(iuδn(Vνn − θn) + ivTνn |P̃θn ,n)]
= E[exp(iuδn(Vνn − θ) − iuh + ivTνn |P̃θn ,n],

(16.22)

since

iuδn(Vνn − θn) = iuδn(Vνn − θ − δ−1
n h) = iuδn(Vνn − θ) − iuh.

However,

E[exp(iuδn(Vνn − θ) + ivTνn |P̃θn ,n]
= E[exp(iuδn(Vνn − θ) + ivTνn + �νn |P̃θ,n], since d P̃θn ,n

d P̃θ,n
= exp(�νn ).

(16.23)
Now, using (16.22) and (16.23), we have,

E[exp(iuδn(Vνn − θn) + ivTνn |P̃θn ,n]
= E[exp(iuδn(Vνn − θ) + ivTνn + �νn |P̃θ,n] exp(−iuh).

(16.24)

At this point, let

ψn(u, v, h) = E[exp(iuδn(Vνn − θ) + ivTνn + �νn |P̃θn ,n]. (16.25)
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Since the exponential approximation result holds for the LAMN experiments under
sequential sampling (Bhattacharya and Roussas (2001)), there exists a sequence
{�∗

νn
}, where �∗

νn
is a suitably truncated version of �vn . It is to be noted that �n(θ)

has appeared in the definition of LAMN experiments, and �νn (θ) is obtained from
�n(θ) just by replacing n by νn . Actually,

�νn (θ) = T
1
2

νn (θ)Wνn (θ).

Now, let us define

φn(u, v, h) = E[exp(iuδn(Vνn − θ) + ivTνn + h�∗
νn

− h2

2
Tνn |P̃θn ,n].(16.26)

Then, using (16.25) and (16.26), it can be shown that:

ψn(u, v, h) − φn(u, v, h) → 0 in Pθ -probability. (16.27)

Again, from (16.24) and (16.27), we have:

E[exp(iuδn(Vνn − θn) + ivTνn |P̃θn ,n)]

= exp(−iuh)ψn(u, v, h)

= exp(−iuh)φn(u, v, h) + o(1) → exp(−iuh)φ(u, v, h), (16.28)

where

φ(u, v, h) = E[exp(iuV + ivT + hT
1
2W − h2

2
T |Pθ ]. (16.29)

Now, from the conditions of the theorem, and for every h ∈ R, we have:

L(δn(Vνn − θn), Tνn |P̃θn ,n) ⇒ L(V (θ), T (θ)|Pθ ),

E[exp(iuδn(Vνn − θn) + ivTνn |P̃θn ,n)]

→ E[exp(iuV + iνT |Pθ )] = φn(u, v, 0). (16.30)

Thus, from (16.28) and (16.29), we obtain the following equation valid for all real
u, v and h:

φ(u, v, 0) = exp(−iuh)φ(u, v, h). (16.31)

From (16.29), (16.30) and (16.31),

Eθ [exp(ivT )]Eθ [exp(iuV )|T ] = Eθ [exp(ivT )]Eθ [exp(iuV + hT
1
2 W − h2

2
T − iuh)|T ].

(16.32)
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Now, using the uniqueness of Fourier transforms, we get,

Eθ [exp(iuV )|T = t] = Eθ [exp(iuV + ht
1
2W − h2

2
t − iuh)|T = t] a.s.[Qθ ],

(16.33)
where Qθ is the distribution of T under Pθ .

The right hand-side function in (16.33), being looked upon as a function of h, may
be shown to be analytic (due to Lemma 3.2, page 140, in Roussas (1972)), so that
the equality in (16.33) holds when we replace h by -i t−1 u and find the following,
for every u:

Eθ [exp(iuV )|T = t] = Eθ [exp(iuV − iut−
1
2 W + u2

2t
− t−1u2)|T = t]

= Eθ [exp(iu(V − t−
1
2 W )|T = t] exp(−t−1 u

2

2
) a.s. [Qθ ]. (16.34)

Now, relation (16.34) and the Convolution Theorem 6 in Roussas (2014), page 212,
yield:

LV |T = L1
∗L2, a.s.[Pθ ],

where L1 = N (0, T−1(θ)), L2 is the conditional distribution of the random variable

(V − T− 1
2W ), given T , and W follows the N (0,1) distribution and is independent

of T . For the details of the proof, the reader is referred to Roussas and Bhattacharya
(2009).

In a concluding remark, it is mentioned that such convolution result in an LAQ
framework remains unexplored until now, and it can be an interesting problem of
future research.
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17RiskBounds andPartial Dependence
Information

Ludger Rüschendorf

17.1 Introduction

For the evaluation of risks there are several structural and dependence models in
use. The risk vector X = (X1, . . . , Xn) is described typically by specified mar-
ginal distributions and by some copula model describing the dependence structure.
Alternatively there are several structural models like factor models in common use
to describe the connection between the risks. Several basic statistical methods and
techniques have been developed to construct estimators of the dependence structure
like the empirical copula function (see Rüschendorf 1976; Deheuvels 1979; Stute
1984) or the tail empirical copula as estimator for the (tail-)copula function. Similarly
various estimators for dependence parameters as for the tail dependence index, for
Spearmann’s � or for Kendall’s τ have been introduced and used to test hypotheses
on the dependence structure. (see f.e. Rüschendorf 1974; Genest et al. 1995, 2009).
In many applications however there are not enough data available to use these meth-
ods in a reliable way. As a consequence there is a considerable amount of model risk
when using these methods in an uncritical way. Many instances of these problems
have been documented in the recent literature.

In recent years a lot of effort has been undertaken to base risk bounds only on
reliable information available from the data, arising from history or from external
sources. In particular the case where only information on the marginals is available
while the dependence structure is completely unknown has been considered in detail
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startingwith the paper of Embrechts and Puccetti (2006). In this paperwe concentrate
on the risk of the aggregated portfolio, where the aggregation is given by the sum∑n

i=1 Xi .
In the first section we give a brief review of this development. In the following

sectionswedescribe several recent approaches to introduce additional dependence in-
formation and structural information in order to tighten the risk bounds. In particular
we consider higher order marginals, positive resp. negative dependence restrictions,
independence information, variance and higher order moment bounds and partially
specified risk factor models. The general insight obtained is that positive dependence
information allows to increase lower risk bounds but typically not to decrease the
upper risk bounds. Negative dependence information on the other hand allows to
decrease upper risk bounds but typically does not increase the lower risk bounds.

17.2 VaR and TVaR Bounds with Marginal Information

Let X = (X1, . . . , Xn) be a risk vector with marginals Xi ∼ Fi , 1 ≤ i ≤ n. Then
the sharp tail risk bounds without dependence information are given by

M(s) = sup
Xi∼Fi

P

(
n∑

i=1

Xi ≥ s

)

and m(s) = inf
Xi∼Fi

P

(
n∑

i=1

Xi ≥ s

)

. (17.1)

Similarly, for the Value at Risk of the sum S =
n∑

i=1
Xi = Sn we define the sharp VaR

bounds

VaRα = sup
Xi∼Fi

VaRα(S) and VaRα = inf
Xi∼Fi

VaRα(S). (17.2)

The dependence uncertainty (DU-)interval is defined as the interval [VaRα,VaRα ].
Dual representations of (sharp) upper and lower bounds were given in Embrechts
and Puccetti (2006) and in Puccetti and Rüschendorf (2012a). In some homogeneous
cases i.e. for risk vectors with identical marginal distributions, exact sharp bounds
were derived in Wang and Wang (2011) and extended in Puccetti and Rüschendorf
(2013) resp. Puccetti et al. (2013) and in Wang (2014). Since the dual bounds are
difficult to evaluate in higher dimensions in the inhomogeneous case the development
of the rearrangement algorithm (RA) in Puccetti and Rüschendorf (2012a) and in
extended form in Embrechts et al. (2013) was an important step to approximate the
sharp VaR bounds in a reliable way also in high dimensional examples.

As a result it has been found that the DU-interval typically is very wide. The

comonotonic sum Sc =
n∑

i=1
Xc
i is typically not the worst dependence structure and

often the worst case VaR exceeds the comonotonic VaR denoted as VaR+ by a
factor of 2 or more as shown f.e. in the following two examples (see Table17.1 and
Fig. 17.1). A detailed discussion of these effects is given in Embrechts et al. (2013).
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Table 17.1 VaR bounds, n = 648, Fi = Pareto(2), 1 ≤ i ≤ n

α VaRα (RA range) VaR+
α (exact) VaRα (exact) VaRα (RA range)

0.99 530.12 − 530.24 5832.00 12302.00 12269.74 −
12354.00

0.995 562.33 − 562.50 8516.10 17666.06 17620.45 −
17739.60

0.999 608.08 − 608.47 19843.56 40303.48 40201.48 −
40467.92

Fig. 17.1 VaR bounds,
d = 8, risk bounds for
operational risk data with
marginal Generalized Pareto
distributions (GPD) from
Moscadelli (2004)

The following theorem gives simple to calculate unconstrained bounds for the
VaR in terms of the TVaR resp. the LTVaR defined as

TVaRα(X) = 1

α

∫ 1

1−α

VaRu(X)du resp. LTVaRα(X) = 1

α

∫ α

0
VaRu(X)du.

(17.3)

Theorem 1 (unconstrained bounds)

A :=
n∑

i=1

LTVaRα(Xi ) = LTVaRα(Scn)

≤ VaRα(Sn) ≤ TVaRα(Sn)

≤ TVaRα(Scn) =
n∑

i=1

TVaRα(Xi ) =: B
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For these bounds (see Wang and Wang 2011; Puccetti and Rüschendorf 2012a;
Bernard et al. 2015a).

Puccetti and Rüschendorf (2014) found the astonishing result, that the sharp VaR
bounds are asymptotically equivalent to the unconstrained TVaR bounds in Theorem
1 (in the homogeneous case under some regularity conditions)

VaRα ∼ TVaRα(Scn) and VaRα ∼ LTVaRα(Scn) as n → ∞, (17.4)

meaning that the quotients converge to 1 as n → ∞. This result was then extended
to the inhomogeneous case in Puccetti et al. (2013) andWang (2014). The worst case
dependence structure has negative dependence in the upper part of the distribution.
Construction of this mixing (negatively dependent) part is an interesting task in itself.
As a result one obtains tools to determine VaR bounds also for the high dimensional
and for the general inhomogeneous case based on marginal informations only. The
bounds however are typically too wide to be applicable in practise. As consequence
it is necessary to include further information on the dependence structure in order to
obtain tighter risk bounds.

17.3 Higher Dimensional Marginals

The class of all possible dependence structures can be restricted if some higher
dimensional marginals are known. Let E be a system of subsets J of {1, . . . , n} and
assume that for J ∈ E , FXJ = FJ is known. The class

FE = F(FJ ; J ∈ E) ⊂ F(F1, . . . , Fn) (17.5)

resp. the corresponding class of distributionsME is called generalized Fréchet class.
In some applications e.g. some two-dimensional marginals additionally to the one-
dimensional marginals might be known. The relevant tail risk bounds then are given
by

ME (s) = sup {P(S ≥ s); FX ∈ FE } and mE (s) = inf {P(S ≥ s); FX ∈ FE } .

(17.6)
Under some conditions a duality result corresponding to the simple marginal case
has been established under the assumptionME 	= ∅ for various classes of functions
φ as e.g. upper semicontinuous functions (see Rüschendorf 1984, 1991a; Kellerer
1988). The duality theorem then takes the form:

ME (φ) = sup

{∫

φdP; P ∈ ME
}

= inf

{
∑

J∈E

∫

f J d PJ ;
∑

J∈E
f J ◦ πJ ≥ φ

}

.

(17.7)
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The dual problem is however not easy to determine. Note that by definition ME =
ME (φs), whereφs(x) = 1[s,∞](

∑n
i=1 Xi ). For specific classes of indicator functions

one can use the duality result to connect up with Bonferroni type bounds.
Let (Ei ,Ai ), 1 ≤ i ≤ n be measurable spaces and let for J ∈ E , PJ ∈

M1(EJ ,AJ ) be a marginal system, i.e. PJ are probability measures on (EJ ,AJ )

with (EJ ,AJ ) = ⊗
j∈J

(E j ,A j ). The following class of improved Fréchet bounds,

i.e. bounds for a marginal class with additional dependence restrictions, was given
in Rüschendorf (1991a).

Proposition 1 (Bonferroni type bounds) Let (Ei ,Ai ), 1 ≤ i ≤ n, (PJ , J ∈ E) be a
marginal system. For Ai ∈ Ai and AJ = ∏

j∈J
A j the following estimates hold:

1. ME (A1 × · · · × An) ≤ min
J∈E

PJ (AJ )

2. In the case that E = Jn2 = {(i, j); i, j ≤ n}, and with qi = Pi (Ac
i ), qi j =

Pi j (Ac
i × Ac

j ) it holds:

ME (A1 × · · · × An) ≤ 1 −
∑

qi +
∑

i< j

qi j (17.8)

mE (A1 × · · · × An) ≥ 1 −
∑

qi + sup
τ∈T

∑

(i, j)∈τ

qi j , (17.9)

where T is the class of all spanning trees of Gn, the complete graph of {1, . . . , n}.

Part 1. yields improved Fréchet bounds compared to the usual Fréchet boundswith
marginal information only. Part 2. relates Fréchet bounds to Bonferroni bounds of
higher order, and implies in particular improved bounds for the distribution function.

For particular cases of decomposable systems also conditional bounds were given
in Rüschendorf (1991a) and applied to risk bounds in Embrechts et al. (2013). For
non-overlapping systems E = {J1, . . . , Jm} with Jk ∩ Ji = ∅ for i 	= k define
Yr := ∑

i∈Jr

Xi , Hr := FYr , r = 1, . . . ,m and H = F(H1, . . . , Hm). Then consider

MH(s) = sup{P(Y1 + · · · + Ym ≥ s); FY ∈ H} and

mH(s) = inf{P(Y1 + · · · + Ym ≥ s); FY ∈ H}

where FY are the distribution functions of (Y1, . . . , Ym).
MH and mH are tail bounds corresponding to a simple marginal system with

marginals Hi .
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Proposition 2 (non-overlapping systems) For a non-overlapping marginal system
E , holds:

ME (s) = MH(s) and mE (s) = mH(s). (17.10)

The following extension to general marginal systems was given in Embrechts and
Puccetti (2010); Puccetti and Rüschendorf (2012a). Let ηi := #{Jr ∈ E; i ∈ Jr },
1 ≤ i ≤ n. For a risk vector X with FX ∈ FE define:

Yr :=
∑

i∈Jr

Xi

ηi
, Hr := FYr , r = 1, . . . ,m.

H = F(H1, . . . , Hm) denotes the corresponding Fréchet class.

Proposition 3 reduced Fréchet bounds LetFE 	= ∅ be a consistent marginal system
such thatME 	= ∅. Then for s ∈ R holds

ME (s) ≤ MH(s) and mE (s) ≥ mH(s). (17.11)

In comparison to the non-overlapping case the bounds in (17.11) are not sharp in
general but they can be determined numerically. The RA algorithm can be used to
calculate the reduced Fréchet bounds MH and mH. In order to apply the reduced
bounds in Propositions 2 and 3 it is enough to know the partial sum distributions Hr

instead of the whole multivariate marginal distributions FJr .
Also generalized weighting schemes of the form

Y α
r =

m∑

i=1

αr
i Xi , with αr

i > 0 iff i ∈ Jr and
m∑

r=1

αr
i = 1

have been introduced, leading to a parametrized family of bounds.
The magnitude of reduction of the reduced VaR bound with higher order marginal

information given by ME which we denote VaR
r
α compared to the unconstrained

upper bound VaRα and the comonotonic VaR+ depends on the structure of the
marginals. In the following examplewe assume that there are n = 600 Pareto(2) risks
and that the two-dimensional marginals are comonotonic in case A) and independent
in case B). The results confirm the intuition, that in case A) the improvement is
moderate while in case B) it is considerable (see Fig. 17.2 and Table17.2).

As a result it is found that higher order marginals may lead to a considerable
reduction of VaR bounds, when the known higher dimensional marginals do not
specify strong positive dependence. For various applications like in insurance appli-
cations however this kind of higher oder marginals information FJr or Hr may not
be available.
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Fig. 17.2 Reduced bounds n = 600 Pareto(2) variables, A ∼ comonotone F2 j−1,2 j marginals,
B ∼ independent F2 j−1,2 j marginals

Table 17.2 Reduced bounds as in Fig. 17.2

α VaR+
α VaR

r,A
α VaR

r,B
α VaRα(L)

0.99 5400.00 10309.14 8496.13 11390.00

0.995 7885.28 14788.71 12015.04 16356.42

0.999 18373.67 33710.3 26832.2 37315.70

17.4 Risk Bounds withVariance and Higher Order Moment
Constraints

In several applications like in typical insurance applications it may be possible to
have information available on bounds for the variance or for higher order moments
of the portfolio. Consider therefore information of the form:

Xi ∼ Fi , i ≤ i ≤ n and Var(Sn) ≤ s2. (17.12)

Alternatively also partial information on some of the covariances Cov(Xi , X j ) may
be available. The corresponding optimization problems

M = M(s2) = sup{VaRα(Sn); Sn satisfies (12)} and

m = m(s2) = inf{VaRα(Sn); Sn satisfies (12)} (17.13)

have been considered in Bernard et al. (2015a). A variant of the Cantelli bounds then
is given as follows:
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Theorem 2 (VaR bounds with variance information) Let α ∈ (0, 1) and
Var(Sn) ≤ s2, then

a :=max

(

μ − s

√
α

1 − α
, A

)

≤ m ≤ VaRα(Sn)

≤ M ≤ b := min

(

μ + s

√
α

1 − α
, B

)

where μ = ESn . (17.14)

The bounds in (17.14) are simple to evaluate and depend only on the variance bound
s, on the mean μ as well as on the unconstrained bounds A, B.

The VaR bounds and the convex order worst case dependence structure depend on
convex order minima in the upper and in the lower part {Sn ≥ VaRα(Sn)} resp. {Sn <

VaRα(Sn)} of the distribution of Sn . This is described in the following proposition
(cf. Bernard et al. 2015a). Let for Xi ∼ Fi , qi (α) denote the upper α-quantile of X .

Proposition 4 Let Xi ∼ Fi , Fα
i ∼ Fi/[qi (α), ∞) and let Xα

i , Y
α
i ∼ Fα

i , then:

(a) M = sup
Xi∼Fi

VaRα

(
n∑

i=1

Xi

)

= sup
Y α
i ∼Fα

i

VaR0

(
n∑

i=1

Y α
i

)

(b) If Sα =
n∑

i=1

Y α
i ≤cx

n∑

i=1

Xα
i , then

VaR0

(
n∑

i=1

Xα
i

)

≤ VaR0(S
α) = ess inf

(
n∑

i=1

Y α
i

)

≤ B

Thus maximizing of VaR corresponds to maximizing the minimal support over all
Yi ∼ Fα

i and it is implied by convex order. This connection is intuitively explainable.
An extreme dependence structure for the maximization is obtained when the random
variables are mixable in the upper resp. the lower part of the distribution. Here
mixable means that a coupling of the random variables can be found on these parts
such that the sum is constant in these parts. In the following Fig. 17.3 this is applied
to the quantile function in the comonotonic case and leads to an increase of the upper
resp. decrease of the lower value of VaR if the distribution of Sn is mixable on the
upper resp. lower part of the distribution.

The connection to the convex order gives the motivation for the extended re-
arrangement algorithm (ERA) a variant of the RA (see Fig. 17.4). This algorithm
consists of two alternating steps:

1. choice of domain, starting from largest α-domain
2. rearrangement in the upper α-part and in the lower 1−α-part
3. check if the variance constraint is fulfilled
4. shift the domain and iterate
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Fig. 17.3 VaR bounds and
convex order

u

A := LTVaRα(Sc)

B := TVaRα(Sc)

α 1

Fig. 17.4 ERA algorithm

a

b

a

p

Also a variant of the algorithm has been introduced which uses self determined
splits of the domain. The following Table17.3 compares for a portfolio of n = 100
Pareto(3) distributed risks the approximate sharp bounds (m, M) calculated by the
ERA for various variance restrictions, determined by constant pairwise correlations
� with the VaR bounds (a, b) and the unconstrained bounds (A, B).

We find considerable improvements over the unconstrained bounds (A, B) for
small variance levels. Since the ERA bounds correspond to valid dependence struc-
tures and are close to the theoretical bounds (a, b) this shows that the bounds (a, b)
are good and also that the ERA works well.

In an application to a credit risk portfolio of n = 10000 binomial loans X j ∼
B(1, p)with default probability p = 0.049 and variance s2 = np(1− p)+n(n−1)
p(1 − p)�D where the default correlation is �D = 0.0157, Bernard et al. (2015a)
compared the unconstrained and constrained bounds with some standard industry
models like KMV, Beta and Credit Metrics. Table17.4 shows the improvement of the
variance constrained bounds and also the still considerable dependence uncertainty.
It raises some doubts on the reliability of the standard models used in practice.
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Table 17.3 VaR bounds and ERA with unconstrained bounds for Pareto(3) variables, n = 100

(m, M) � = 0 � = 0.15 � = 0.3

VaR0.95 (47.96; 84.72) (42.48; 188.9) (39.61; 243.3)

VaR0.99 (48.99; 129.5) (46.61; 366.0) (45.36; 489.5)

VaR0.995 (49.23; 162.8) (47.54; 499.1) (46.68; 671.5)

(a, b) � = 0 � = 0.15 � = 0.3 (A, B)

VaR0.95 (47.96; 84.74) (42.48; 188.9) (39.61; 243.4) VaR0.95 (36.46; 303.3)

VaR0.99 (48.99; 129.6) (46.59; 367.3) (45.33; 491.7) VaR0.99 (44.47; 577.6)

VaR0.995 (49.23; 162.9) (47.54; 500.0) (46.65; 676.3) VaR0.995 (46.33; 741.1)

Table 17.4 VaR bounds compared to some standard models (KMV, Beta, Credit Metrics)

(A, B) (%) (a, b) (%) (m, M) (%) KMV (%) Beta (%) Credit metrics (%)

VaR0.8 (0; 24.50) (3.54; 10.33) (3.63; 10) 6.84 6.95 6.71

VaR0.9 (0; 49.00) (4.00; 13.04) (4.00; 13) 8.51 8.54 8.41

VaR0.95 (0; 98.00) (4.28; 16.73) (4.32; 16) 10.10 10.01 10.11

Table 17.5 VaR bounds with higher order moment constraints � = 0.10, n = 100, models as in
Table17.4

q = KMV Comon. Unconstrained K = 2 K = 3 K = 4

0.95 340.6 393.3 (34.0; 2083.3) (97.3; 614.8) (100.9; 562.8) (100.9; 560.6)
0.99 539.4 2374.1 (56.5; 6973.1) (111.8; 1245.0) (115.0; 941.2) (115.9; 834.7)
0.995 631.5 5088.5 (89.4; 10119.9) (114.9; 1709.4) (117.6; 1177.8) (118.5; 989.5)

It is found that the amount of reduction of the VaR bounds can be considerable
when the variance bound s2 is small enough. Additional higher order moment re-
strictions of the form ESkn ≤ ck , 2 ≤ k ≤ K are considered in Bernard et al. (2014,
2017). Table17.5 shows the potential of higher order moments in a specific case for
a corporate portfolio.

The variance resp.moment restriction is a global negative dependence assumption.
Therefore one can expect from this assumption a reduction of the upper VaR bounds
as shown in the examples. The effect on an improvement of lower bounds is of minor
magnitude.

17.5 Dependence/Independence Information

How does positive, negative or independence information influence risk bounds? A
weak notion of positive dependence is the positive orthant dependence (POD). X is
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called positive upper orthant dependent (PUOD) if

FX (x) = P(X ≥ x) ≥
n∏

i=1

P(Xi ≥ xi ) =
n∏

i=1

Fi (xi ).

X is called positive lower orthant dependent (PLOD) if

FX (x) ≥
n∏

i=1

Fi (xi ), ∀x .

X is POD if X is PLOD and PUOD.
More generally for F = FX , F = FX let G be an increasing function with

F− ≤ G ≤ F+; F−, F+ the Fréchet bounds and let H be a decreasing function
with F

− ≤ H ≤ F
+
. Further let ≤uo, ≤lo denote the upper resp. lower orthant

ordering. Then
G ≤ F is a positive dependence restriction on the lower tail probabilities and
H ≤ F is a positive dependence restriction on the upper tail probabilities.

In the case that G is a distribution function and H is a survival function these
conditions correspond to ordering conditions w.r.t. ≤lo resp. ≤uo. In the case that
G(x) = ∏

Fi (xi ), these conditions together are equivalent to X being POD.
Similarly: F ≤ H , F ≤ H are negative dependence restrictions.

These kind of restrictions have been discussed in a series of papers, as in
Williamson and Downs (1990), Denuit et al. (1999), Denuit et al. (2001), Em-
brechts et al. (2003) Rüschendorf (2005), Embrechts and Puccetti (2006), Puccetti
and Rüschendorf (2012a). As a result the following improved standard bounds are
obtained (see Puccetti and Rüschendorf 2012a).

Theorem 3 (positive dependence restriction, improved standard bounds) Let X be
a risk vector with marginals Xi ∼ Fi . Let G be an increasing function with F− ≤
G ≤ F+ and let H be a decreasing function with F

− ≤ H ≤ F
+
. Then

(a) If G ≤ FX , then

P

(
d∑

i=1

Xi ≤ s

)

≥
∨

G(s); (17.15)

(b) If H ≤ FX , then

P

(
d∑

i=1

Xi < s

)

≤ 1 −
∨

H(s); (17.16)
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(c) If F is POD, then

∨
(

d∏

i=1

Fi

)

(s) ≤ P

(
d∑

i=1

Xi ≤ s

)

,

P

(
d∑

i=1

Xi < s

)

≤ 1 −
∨

(
d∏

i=1

Fi

)

(s), (17.17)

where with U (s) :=
{

x ∈ Rn;
n∑

i=1
xi = s

}

,
∧

G(s) := inf
x∈U (s)

G(x) is the G-infimal

convolution,
∨

H(s) := sup
x∈U (s)

H(x) is the G-supremal convolution.

Bignozzi et al. (2015) considered the following specific type of model assumption
to explore the consequences of this kind of dependence assumptions. Let the risk
vector X = (X1, . . . , Xn) have marginals Fi = FXi and assume that {1, . . . , n} =
k⋃

j=1
I j is a split into k subgroups. Let Y = (Y1, . . . , Yn) be a random vector, that

satisfies

FY (x) =
k∏

j=1

min
i∈I j

G j (xi ), (17.18)

i.e. Y has k independent homogeneous subgroups and the components within the
subgroup I j are comonotonic. The basic assumption made is

Y ≤ X (17.19)

where ≤ is the upper or lower positive orthant ordering ≤uo resp. ≤lo.
In case Fi = G j for i ∈ I j and k = n, (17.19) is equivalent to X being PUOD resp.

PLOD. As k decreases the assumption is getting stronger and for k = 1 it amounts to
the strictest assumption that X is comonotonic. In Bignozzi et al. (2015) an analytic
expression for the upper and lower bounds VaRub

α , VaRlb
α under this assumption is

given. It turns out that as expected the upper VaR bounds are only slightly improved.
The lower bounds are improved strongly if k is relatively small. For k = n there is no
improvement of the unconstrained lower VaR bounds VaRα . The POD assumption
alone is too weak to lead to improved lower bounds (see Table17.6).

Similar conclusions are also obtained for inhomogeneous cases.
A stronger notion of positive dependence is the (sequential) positive cumulative

dependence (PCD) defined by

P

(
k−1∑

i=1

Xi > t1 | Xk > t2

)

≥ P

(
k−1∑

i=1

Xi > t1

)

, 2 ≤ k ≤ n (17.20)



Risk Bounds and Partial Dependence Information 357

Table 17.6 n homogeneous Pareto(2) risks, split into n
k subgroups of equal size

n = 8 k = 1 k = 2 k = 4 k = 8

α VaRα VaRlb
α VaRlb

α VaRlb
α VaRlb

α

0.990 9.00 72.00 36.00 18.00 9.00

0.995 13.14 105.14 52.57 26.28 13.14

This is a sequential version of the PCD notion in Denuit et al. (2001). Similarly, (se-
quential) negative cumulative dependence (NCD) is defined if “≤” holds in (17.20).

From the PCD assumption one obtains the following convex ordering result,
where X ≤cx Y means that E f (X) ≤ E f (Y ) for all convex functions f such
that f (X), f (Y ) are integrable.

Proposition 5 Let S⊥
n =

n∑

i=1
X⊥
i denote the independent sum with X⊥

i ∼ Fi .

(a) If X is PCD, then S⊥
n ≤cx Sn

(b) If X is NCD, then Sn ≤cx S⊥
n

This result implies as consequence the following VaR resp. TVaR bounds.

Corollary 1 (positive dependence restriction) If X is PCD, then

(a) TVaRα(S⊥
n ) ≤ TVaRα(Sn)

(b) LTVaRα(S⊥
n ) ≤ LTVaRα(Sn) ≤ VaRα(Sn) ≤ TVaRα(Scn)

The stronger PCD notion implies improvements of the lower bounds for VaR and
for TVaR. Under the corresponding negative dependence assumption one obtains
improvements of the upper bounds.

Proposition 6 (negative dependence restriction) If X is NCD, then

(a) Sn ≤cx S⊥
n and

(b) VaRα(Sn) ≤ TVaRα(Sn) ≤ TVaRα(S⊥
n )

Remark 1 Astronger positive dependence ordering between any two randomvectors
X and Y , the WCS = the weakly conditionally in sequence ordering was introduced
in Rüschendorf (2004).

X ≤wcs Y implies that
n∑

i=1

Xi ≤cx

n∑

i=1

Yi . (17.21)



358 L. Rüschendorf

Table 17.7 n = 8, Gamma distributed risks, 4 Gamma (2, 1/2), 4 Gamma (4, 1/2)

n = 8 Unconstrained k = 1 k = 2 k = 4 k = 8

α ESα ESα ESlbα ESlbα ESlbα ESlbα
0.990 12.00 38.27 38.27 29.15 23.29 19.56

0.995 12.00 41.64 41.64 31.15 24.52 20.33

This ordering notion allows to pose more general kinds of positive (negative) depen-
dence restrictions and to compare not only to the independent case. Several examples
for applications of this ordering are given in that paper.

In the subgroup example the WCS condition is strong enough to imply strongly
improved lower bounds for k ≤ n subgroups also in the case that k = n (see
Table17.7).

The reduction of the DU-spread in this example ranges from about 28% for k = 8
to 65% for k = 2.

A particular relevant case of reduction of the VaR bounds arises under the inde-
pendence assumption I) which was discussed in Puccetti et al. (2015).

I) The subgroups I1, . . . , Ik are independent.

In this case we can represent the sum S as an independent sum

S =
k∑

i=1

Yi where Yi =
∑

j∈Ii
X j . (17.22)

We denote by Sc,k =
k∑

i=1
Y c
i the comonotonic version of the sum and by VaR

I
α the

sharp upper bound for VaRα with this independence information.

Theorem 4 Under the independence assumption I) holds:

aI := LTVaRα(Sc,k) ≤ VaRI
α ≤ VaR

I
α

≤ bI := TVaRα(Sc,k).

Note that the upper and lower bounds aI, bI can be calculated numerically by Monte
Carlo simulation. As consequence one obtains strongly improved VaR bounds aI, bI

compared to the sharp VaR bounds as is demonstrated for a Pareto example in
Table17.8.

The bounds in Theorem 4 have also been extended to the case of partial in-
dependent substructures which appear to be realistic models in several important
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Table 17.8 n = 50, Pareto(3) variables

(aI, bI) k = 1 k = 2 k = 5 k = 25 k = 50 (VaRα;VaRα)

α = 0.990 (18.23;
153.72)

( 20.21;
116.32)

( 22.03;
81.54)

( 23.76;
48.57)

( 24.15;
41.09)

(18.24;
153.3)

α = 0.995 (22.24;
297.84)

( 23.14;
208.2)

( 23.92;
132.28)

( 24.59;
65.87)

( 24.73;
51.98)

(22.26;
297.64)

Table 17.9 comparison of bI, VaR+
α , and VaRα for a insurance portfolio, n = 11

α bI VaR+
α VaRα

0.990 147.34 − 149.66 168.37 209.59

0.995 173.37 − 176.96 202.89 249.55

0.999 250.41 − 262.47 304.63 367.70

applications like in hierarchical insurance models (containing several independen-
cies). It has been applied to a real insurance example in dimension n = 11 and with
k = 4 independent subgroups.

Let I1, . . . , I4 be risks which are modeled in the insurance company I1 =
{market-, credit-, insurance-, business-, asset-, non life-, reput.-, and life risk} by
Gaussian marginals. Further denote by I2 = {reinsurance risk}, I3 = {operational
risk} risks which are modeled by log-Normal distributions and finally let I4 =
{catastrophic risk} be a risk modeled by a Pareto distribution. The independence
assumption leads to a considerable reduction of approximatively 30% of the upper
risk bound (seeTable17.9)which is even a strong improvement over the comonotonic
case.

An analysis shows that in this example the independence information is dominat-
ing the variance information, i.e. the independence bounds improve on the variance
based bounds. The results in this example yield upper risk bounds which are based
on reliable information and are acceptable for the application considered.

17.6 Partially Specified Risk Factor Models

In Bernard et al. (2016) risk bounds are discussed under additional structural infor-
mation. It is assumed that the risk vector is described by a

factormodel : X j = f j (Z , ε j ), 1 ≤ j ≤ n (17.23)

where Z is a systemic risk factor and ε j are individual risk factors. It is assumed that
the joint distributions Hj of (X j , Z) are known 1 ≤ j ≤ n, but the joint distribution
of (ε j ) and Z is not specified as is done in the usual factor models. Therefore, this
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describes partially specified risk factor models without the usual assumptions of
conditional independence of (ε j ) given the risk factor Z .

In particular the marginal distributions Fj |z of X j given Z = z are known. The set
of admissible models consistent with this partial specification is denoted by A(H)

where H = (Hj ). The idea underlying this approach is that the common risk factor Z
should reduce theDU-interval. Thismodel assumption reduces the upperVaR bounds

VaR
f
α over the class of admissible models if Z generates negative dependence and

it increases the lower VaR bounds VaR f
α when Z induces positive dependence.

The partially specified factor model can be described by a mixture representa-
tion X = XZ with Xz = (X j,z) ∈ A(Fz), Fz = (Fj |z), where Z and (X j,z) are
independent. Then

FS =
∫

FSz dG(z) with G ∼ Z . (17.24)

Let qz(α) = VaRα(Sz) denote the VaR of Sz at level α and define for γ ∈ R1,
γz = q−1

z (γ ) the inverse γ -quantile of Sz i.e. the amount of probability chosen from
{Z = z}. Further define

γ ∗(β) = inf

{

γ ∈ R;
∫

γz dG(z) ≥ β

}

. (17.25)

From the mixture representation in (17.23) the following mixture representation of

VaRα(SZ ) and of the worst case VaR
f
α w.r.t. the admissible class is derived.

Theorem 5 (worst case VaR in partially specified factor model) For α ∈ (0, 1)
holds:

(a) VaRα(SZ ) = γ ∗(α)

(b)

VaR
f
α = γ ∗(α) = inf

{

γ ;
∫

γ zdG(z) ≥ α

}

, (17.26)

where qz(α) = VaRα(Sz), γ z = (qz)
−1(γ ) is the worst case inverse γ -quantile.

Themixture representation in (17.26) has an obvious intuitivemeaning. It is however
in general not simple to calculate. For that purpose it is useful to replace the condi-
tional VaR’s in formula (17.26) by conditional TVaR’s which are easy to calculate,
i.e. define

tz(β) = TVaRβ(Scz ) =
n∑

j=1

TVaRβ(X j,z). (17.27)

Then qz(β) ≤ tz(β) and we obtain

γ ∗(β) ≤ γ ∗
t (β) = inf

{

γ ;
∫

t−1
z (γ )dG(z) ≥ β

}

. (17.28)
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Fig. 17.5 TVaR reduction in partially specified risk factor model, reduction of DU-spread in de-
pendence on p

As a result this estimate from above leads to the following corollary.

Corollary 2 (TVaR bounds for the partially specified risk factor model)

(a)

VaR
f
α = γ ∗(α) ≤ γ ∗

t (α). (17.29)

(b) With T+
z := TVaRU (Scz ), U ∼ U (0, 1), the following representation holds

VaRα(T+
Z ) = γ ∗

t (α). (17.30)

The expression in (17.30) is well suited for Monte Carlo simulations and thus

for the numerical calculation of upper bounds for VaR
f
α . The following example

confirms the idea of the influence of the systemic risk factor Z on the reduction of
the DU-spread.

Example 1 Consider the case n = 2 where

X1 = (1 − Z)−1/3 − 1 + ε1

X2 = p
(
(1 − Z)−1/3 − 1

)
+ (1 − p)

(
Z−1/3 − 1

)
+ ε2

where Z ∼ U (0, 1), εi ∼ Pareto(4) and p ∈ [0, 1] is a dependence parameter. For
small p the common risk factor produces strong negative dependence, for large p
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it produces strong positive dependence. Therefore, for p ≈ 0 we expect a strong
reduction of the upper risk bounds; for p ≈ 1 we expect a strong improvement of
the lower risk bound. This is confirmed in Fig. 17.5 for the case α = 0.90.

Similar reduction results are also obtained at other confidence levels α for VaR
and hold true also in higher dimensional examples (see Bernard et al. 2016). For
strong negative dependence we see a strong reduction of the upper bounds, for
strong positive dependence induced by the common risk factor Z we obtain a strong
improvement of the lower bound. But for all possible values of the dependence
parameter p the reduction of the DU-spread is of similar order. In our example above
it is of order of 60–70% which is due to the dominant influence of the common risk
factor Z .

The consideration of partially specified risk factormodels is a flexible and effective
tool to reduce DU-spreads. The magnitude of the reduction amounts to the influence
of the common risk factor Z . Examples of particular interest for applications are the
Bernoulli mixturemodels for credit risk portfolioswhere the conditional distributions
Fi |z of Xi given Z = z are given by B(1, pi (z)). Common models for financial
portfolios are the multivariate normal mean-variance mixture models of the form

Xi = μi + γi Z + √
Z�iεi , 1 ≤ i ≤ n (17.31)

where Z is a stochastic factor and εi are standard normal distributed. These models
include many of the standard and well established marginal distributions in finance
like Variance Gamma, hyperbolic or Normal Inverse Gaussian distributions. In our
partially specified factor model we dismiss with the usual Gaussian dependence
among the εi .

The results on partially specified risk factor models described above can be ex-
tended to more generalmixture models. Let D = D1 + D2 + D3 be a decomposition
of the state space D of Z . Assume that for states z ∈ D1 of the risk factor Z we
have available a precise model P1

z for the risk vector X given Z = z while for states
z ∈ D2 we have available the conditional distributions Fz = (Fj |z) i.e. the partially
specified distributions. For z ∈ D3 we only have available marginal information
(G j ). As result we obtain a mixture model of the form

PX =
∫

D1

P1
z d PZ (z) +

∫

D2

P2
z d PZ (z) + p3P

3 (17.32)

with P1
z completely specified for z ∈ D1, P2

z ∈ A(Fz) for z ∈ D2 and P3 ∈ A(G j ).
With pi = P(Z ∈ Di ) the model in (17.32) has three components

PX = p1P
1 + p2P

2 + p3P
3, (17.33)

where the (normalized) first component P1 is explicitly modeled, the second one
P2 contains partially specified risk factor information, and the third one P3 contains
only marginal information.
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Since

P

⎛

⎝
n∑

j=1

X j ≥ t

⎞

⎠ =
3∑

i=1

pi P
i

⎛

⎝
n∑

j=1

X j ≥ t

⎞

⎠ (17.34)

we obtain the sharp tail risk bound for this extended mixture model

M(t) = p1P
1

⎛

⎝
n∑

j=1

X j ≥ t

⎞

⎠ + p2

∫

D2

M2,z(t)dP
Z (z) + p3M3(t), (17.35)

where M2,z(t) is the constrained tail risk bound in D2 and M3(t) is the marginal tail
risk bound in D3. The convex sharp upper bound in this model is given by

S =
n∑

i=1

Xi ≤cx I (Z ∈ D1)F
−1
1 (U ) + I (Z ∈ D2)S

c
2,Z + I (Z ∈ D3)S

c
3, (17.36)

where F1 is the distribution function of
n∑

j=1
Xi under P1, Sc2,z =

n∑

j=1
F−1
j |z (U ) and

Sc3 =
n∑

j=1
G−1

j (U ) are the conditional resp. unconditional comonotonic vectors,

U ∼ U (0, 1) independent of Z . The formula in (17.36) implies directly sharp upper
bounds for the Tail Value at Risk of S.

Also the TVaR upper bounds in Corollary2 generalize to this extended mixture
model since they are based only on the convex ordering properties as in (17.36).

An interesting case of this general model is the case where D = {0, 1} and where
for z = 0 we have an exact model in the central part of the distribution in Rn and
for z = 1 we have only marginal information. The model has been suggested and
analyzed in Bernard and Vanduffel (2015). In particular, the reduction of tail risk of
the distribution of S for moderate levels α by the exactly modeled central part of the
distribution is of practical relevance.

17.7 Conclusion

Sharp risk bounds for portfolios where only marginal information is available can
be calculated by the RA-algorithm. They are however typically to wide to be us-
able in applications. Therefore, various further reductions of the VaR bounds have
been proposed in the literature and are discussed in this paper. These are based on
additional dependence or structural information.

Higher order marginals may give a good reduction of th DU-bounds when avail-
able. Variance constraints and also higher order moment constraints are often avail-
able and yield a good reduction when the constraints are small enough.
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Partial dependence information together with structural information on subgroups
can lead to interesting improvements, when the dependence notion used is strong
enough. The weak positive orthant dependence (POD) alone is not sufficient. Of
particular interest for applications is to include some (structural) independence in-
formation on the underlying model.

A particular flexible method to introduce relevant structural information is based
on partially specified risk factor models. These models can be used based on realistic
model information and often give a considerable improvement of the DU-spread
depending on the magnitude of the influence of the common risk factor. We also
briefly describe in this paper an extension of this approach to a more general class
of mixture models.
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18Shot-Noise Processes in Finance

Thorsten Schmidt

18.1 Introduction

Shot-noise processes constitute a well-known tool for modelling sudden changes
(shots), followed by a typical following pattern (noise). In this regard, they are
more flexible than other approaches simply utilizing jumps and this led to many
applications in physics, biology and, with an increasing interest, in finance. Quite
remarkably, shot-noise effects were already introduced in the early 20th century,
see Schottky (1918); Campbell (1909a, b), sometimes also referred to as Schottky-
noise. First fundamental treatments were only developed many years later with Rice
(1944, 1945, 1977). Applications of shot-noise processes also arise in insurance
mathematics, marketing, and even astronomy—see the survey article Bondesson
(2004). The first appearances in a finance context seem to be Samorodnitsky (1996);
Chobanov (1999) while in insurance mathematics these class of processes were
studied even earlier, see Klüppelberg et al. (2003) for literature in this regard.

In a general form, denote by 0 < T1 < T2 < . . . the arrival times of the shots,
and by (H(., T ) : T ∈ R≥0) a family of stochastic processes representing the noises,
then a shot-noise process S is given by the superposition

St =
∑

i≥1

1{t≤Ti }H(t, Ti ), t ≥ 0; (18.1)

an example at this level of generality can be found in Schmidt and Stute (2007). Of
course, absolute convergence of the sum needs to be justified, typically by making

1The works stem from different authors, Stephen Oswald Rice and John Rice.
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assumptions on the arrival times together with suitable restrictions on the noise
processes. For the consideration of stationarity, the process is often extend to the full
real line.

At this level of generality, shot-noise processes extend compound Poisson
processes significantly and neither need to beMarkovian nor semimartingales.While
the definition in (18.1) is very general, more restrictions will be needed to guarantee
a higher level of tractability. In this paper we will focus on shot-noise processes
which are semimartingales. To the best of our knowledge all articles, including Rice
(1977) and many others, assume that the noises are i.i.d. and independent from the
arrival times of the shots. The most common assumption even leads to a piecewise
deterministic Markov process: this is the case, if the noise process are given by
H(t, Ti ) = Uie−a(t−Ti ) with i.i.d. (Ui )i≥1, independent from (Ti )i≥1, and a ∈ R.
We will show later that this is essentially the only example where Markovianity is
achieved. More general cases allow for different decay, as for example a power-law
decay, see e.g. Lowen and Teich (1990), or do not assume a multiplicative structure
for the jump heights (Ui ). These cases can be summarized under the assumption that

H(t, Ti ) = G(t − Ti ,Ui ), t ≥ 0, i ≥ 1, (18.2)

with some general random variables (Ui ) and a suitable (deterministic) function G.
The obtained class of processes is surprisingly tractable, and the reason for this is

that the Fourier and Laplace transforms of S are available in explicit form, depending
on the considered level of generality. Even integration does not leave the class,
a property shared by affine processes and of high importance for applications in
interest rate markets and credit risk, see Gaspar and Schmidt (2010).

Abranchof literature considers limits of shot-noise processeswhen the intensity of
the shot arrivals increases and show, interestingly, that limits of this class of processes
have fractional character, see Lane (1984); Lowen and Teich (1990); Klüppelberg
and Kühn (2004), and the early studies in insurance mathematics

The application of shot-noise processes to the modelling of consumer behaviour
has been suggested in Kopperschmidt and Stute (2009, 2013), wherein also the nec-
essary statistical tools have been developed. The key in this approach is that i.i.d.
shot-noise processes are at hand which allows a good access to statistical method-
ologies.

In the financial and insurance community they have been typically used to effi-
ciently model shock effects, see for example Dassios and Jang (2003); Albrecher
and Asmussen (2006); Schmidt and Stute (2007); Altmann et al. (2008); Jang et al.
(2011); Scherer et al. (2012), and references therein. Besides this, in Moreno et al.
(2011) an estimation procedure in a special class of shot-noise processes utilizing
the generalized method of moments (GMM) is developed.

The paper is organized as follows: in Sect. 18.2 we introduce a suitably general
formulation of shot-noise processes and derive their conditional characteristic func-
tion. Moreover, we study the connection to semimartingales and Markov processes.
Proposition2 proves that exponential decay is equivalent to Markovianity of the
shot-noise process. In Sect. 18.3 we propose a model for stocks having a shot-noise
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component. After the study of equivalent and absolutely continuousmeasure changes
we obtain a drift condition implying absence of arbitrage and give an example where
independence and stationarity of increments holds under the objective and the equiv-
alent martingale measure.

18.2 Shot-Noise Processes

Our focus will lie on shot-noise processes satisfying (18.2) and the detailed study
of this flexible class. Consider a filtered probability space (Ω,F ,F,P) where
the filtration F = (Ft )t≥0 satisfies the usual conditions, i.e. F is right-continuous
and A ⊂ B ∈ F with P(B) = 0 implies A ∈ F0. By O and P we denote the
optional, respectively predictable, σ -fields, generated by the càdlàg, respectively
càg, processes.

We will allow for a marked point process as driver,2 generalizing previous lit-
erature. In this regard, consider a sequence of increasing stopping times 0 < T1 <

T2 < . . . and a sequence of d-dimensional random variables U1,U2, . . . . The dou-
ble sequence Z = (Ti ,Ui , i ≥ 1) is calledmarked point process. Such processes are
well-studied in the literature and we refer to Brémaud (1981) for further details and
references.We consider one-dimensional shot-noise processes only, a generalization
to more (but finitely many) dimensions is straightforward; for the more general case
see e.g. Bassan and Bona (1988) for shot-noise random fields.

Definition 1 If Z = (Ti ,Ui , i ≥ 1) is a marked point process and G : R+ × R
d →

R a measurable function, we call a stochastic process S = (St )t≥0 having the repre-
sentation

St =
∞∑

i=1

1{Ti≤t}G(t − Ti ,Ui ), t ≥ 0, (18.3)

a shot-noise process. If Z has independent increments we call S an inhomogeneous
shot-noise process and if the increments are moreover identically distributed S is
called standard shot-noise process.

The classical shot-noise process is obtained when g does not depend on (Ui ), see
Bondesson (2004) for links to the rich literature on this class. Time-inhomogeneous
Lévy processes have independent increments and hencemay serve as a useful class of
driving processes; see Jacod and Shiryaev (2003) for an in-depth study of processes
with independent increments and, for example, Sato (1999); Cont and Tankov (2004)
for a guide to the rich literature on Lévy processes. The interest in driving processes

2We consider here for simplicity R
d as mark space, while R

d can be replaced by a general Lusin
space, see Björk et al. (1997) in this regard.
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beyond processes with independent increments can be traced back to Ramakrishnan
(1953); Smith (1973); Schmidt (1987)—only under additional assumptions explicit
formulae can be obtained.

Note that absolute convergence of the infinite sum in (18.3) is implicit in our
assumption and needs not be true in general. However, when the stopping times
(Ti )i≥1 have no accumulation point, this will always hold. A precise definition of
this technical fact will utilize the relation to random measures and the associated
compensators, which we introduce now.

To the marked point process Z we associate an integer-valued random measure μ

on R+ × R
d by letting

μt (A) = μ([0, t] × A) :=
∑

i≥1

1{Ui∈A}1{Ti≤t}, t ≥ 0 (18.4)

for any A ∈ B(Rd). Sometimes we also write Z = (Zt )t≥0 for the stochastic
process given by Zt = ∑

i≥1Ui1{Ti≤t} = μ([0, t],Rd). As usual, we define Ω̃ =
Ω × R≥0 × R

d , P̃ = P × R≥0 × R
d , and Õ = O × R≥0 × R

d . A Õ-measurable
function W on Ω̃ is called optional. For an optional function W and a random
measure μ we define

W ∗ μt =
∫

[0,t]×Rd
W (s, x)μ(ds, dx), t ≥ 0,

if
∫
[0,t]×Rd |W (s, x)|μ(ds, dx) is finite, and W ∗ μt = +∞ otherwise.
From Definition1, we obtain that a shot-noise process S has the representation

St =
∫ t

0

∫

Rd
G(t − s, x)μ(ds, dx), t ≥ 0

and in Lemma1 we prove the for ous relevant fact that, if g is absolutely continuous,
then S is a semimartingale.

The compensator of μ is the unique, F-predictable random measure ν such that

E[W ∗ μ∞] = E[W ∗ ν∞]

for any non-negative P̃-measurable function W on Ω̃ , see TheoremII.1.8 in Jacod
and Shiryaev (2003).

Some properties of the marked point process Z can be determined from the com-
pensator: if ν is deterministic (i.e. does not depend on ω), then Z has independent
increments. Moreover, if the compensator additionally does not depend on time, i.e.
ν(dt, dx) = ν(dx)dt , then Z also has stationary increments, hence is a Lévy process.

Example 1 (Exponential decay) An important special case is the well-known case
when the decay is exponential.Wewill later show that this is essentially the only case
when S is Markovian. Consider d = 1, assume that ν([0, t],R) < ∞ for all t ≥ 0
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and denote Zt = ∑
Ti≤t Ui , t ≥ 0. When G(t, x) = xe−bt , we obtain ∂xG(t, x) =

−bG(t, x) and G(0, x) = x , such that, by Itô’s formula,

St =
∫ t

0
−bSudu + Zt .

Hence, if Z has independent increments, then S is a Markov process, in particular,
an Ornstein-Uhlenbeck process.

We give some further useful specifications of shot-noise processes to be used in
the following.

Example 2 Specific choices of the noise function G lead to processes with indepen-
dent increments, Markovian, and non-Markovian processes.

(i) A jump to a new level (with d = 1 andG(t, x) = x). Then Z = S and S has the
same properties, as for example independent and stationary increments, such
that S is a Lévy process.

(ii) We say that S has power-law decay when

G(t, x) = x

1 + ct

with some c > 0. This case allows for long-memory effects and heavy cluster-
ing, compare Moreno et al. (2011). In this case, the noise decay is slower than
for the exponential case and the effect of the shot persists for longer time in the
data.

(iii) If the decay parameter is random, we obtain the important class of Random
decay. For example, let d = 2 and

G(t, (u, v)) = u exp(−vt).

Clearly, jump height and decay size can be dependent, see also Schmidt and
Stute (2007).

Shot-noise processes offer a parsimonious and flexible framework as we illustrate
in the following example. In general, shot-noise processes are not necessarily semi-
martingales: indeed, this is the case if t 	→ G(t, x) is of infinite variation for all x
(or for at least some x).

The following result, which iswell-known for standard shot-noise processes, gives
the conditional characteristic function of S. This is a key result to the following
applications to credit risk. We give a proof using martingale techniques which is
suitable for our setup.
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Proposition 1 Assume that S is a shot-noise process, ν(dt, dx) does not depend on
ω, and ν([0, T ],Rd) < ∞. Then, for any 0 ≤ t ≤ T and θ ∈ R,

E

[
eiθ ST |Ft

]
= eiθ

∫ t
0

∫
Rd G(T−s,x)μ(ds,dx) · exp

( ∫ T

t

∫

Rd

(
eiθG(T−s,x) − 1

)
ν(ds, dx)

)
.

(18.5)

Proof For fixed T and θ , we define

Zt := exp

(
iθ

∫ t

0

∫

Rd
G(T − u, x)μ(du, dx)

)
, 0 ≤ t ≤ T .

By the Itô formula we obtain that

Zt = 1 +
∫ t

0
Zs−

(
eiθG(T−s,x) − 1

)
μ(ds, dx), 0 ≤ t ≤ T .

We set ϕ(t) := E[Zt ] for t ∈ [0, T ]. Then

ϕ(T ) = E

[
eiθ ST

]

= 1 + E

[ ∫ T

0
Zt−

∫

Rd

(
eiθG(T−t,x) − 1

)
ν(dt, dx) + MT

]

= 1 +
∫ T

0
ϕ(t−)F(dt), 0 ≤ t ≤ T,

whereM is amartingale and F(t) = ∫ t
0

∫
Rd

(
eiθG(T−t,x) − 1

)
ν(dt, dx), 0 ≤ t ≤ T

is an increasing function with associated measure F(dx). The unique solution of this
equation is given by

ϕ(T ) = exp(F(T ))

= exp

(∫ T

0

∫

Rd

(
eiθG(T−t,x) − 1

)
ν(dt, dx)

)
.

Finally, we observe that for 0 ≤ t ≤ T ,

E

[
eiθ ST |Ft

]
= eiθ

∫ t
0

∫
Rd G(T−s,x)μ(ds,dx) · E

[
exp

(
iθ

∫ T

t

∫

Rd
G(T − s, x)μ(ds, dx)

)
|Ft

]
.

As Z has independent increments by assumption, the conditional expectation is in
fact an ordinary expectation which can be computed as above and we obtain the
desired result.
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The first part of (18.5) corresponds to the noise of already occured shots (at time
t). The second part denotes the expectation of future jumps in S. By the application
of iterated conditional expectations, Proposition1 also allows to compute the finite-
dimensional distributions of S.

Example 3 (The standard shot-noise process) If Z is a compound Poisson process,
then ν(ds, dx) = λF(dx)ds where λ is the arrival rate of the jumps, which itself
are i.i.d. with distribution F . The classical proof of the above results uses that the
jumping times of a Poisson process have the same distribution as order statistics of
uniformly distributed random variables, see p. 502 in Rolski et al. (1999). In this
case the proof simplifies to

E

[
eiθ ST

]
= E

[∑

n≥1

1{Tn≤T,Tn+1>T }eiθ
∑n

j=1 G(t−Ti ,Ui )
]

= e−λT (λT )n

n!
n∏

j=1

1

T

∫ T

0

∫

Rd
eiθG(t−s,u)F(du)ds

= exp

(
− λT + λ

∫ T

0

∫

Rd
eiθG(t−s,u)F(du)ds

)

= exp

(∫ T

0

∫

Rd
(eiθG(t−s,u) − 1)λF(du)ds

)
.

A conditional version is obtained in an analogous manner.

Remark 1 (On the general case) What can be said when ν is not deterministic? In
fact, for the proof we need to compute

E

[
exp

(
iθ

∫ T

t

∫

Rd
G(T − u, x)μ(du, dx)

)
|Ft

]
. (18.6)

For this we need to obtain the exponential compensator of μ given Ft , i.e. the
Ft -measurable random measure γ t , such that

(6) = exp

(
iθ

∫ T

t

∫

Rd
G(T − u, x)γ t (du, dx)

)
.

Exponential compensators for semimartingales were introduced in Kallsen and
Shiryaev (2002) and play an important rôle in interest rate theory, compare? We
will show later that for affine shot-noise processes we will be able to compute the
exponential compensator efficiently, see Example4 where we study a self-exciting
shot-noise process.

The following result, taken fromSchmidt (2014), gives sufficient conditionswhich
yield that S is a semimartingale.
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Lemma 1 Fix T > 0 and assume that G(t, x) = G(0, x) + ∫ t
0 g(s, x)ds for all 0 ≤

t ≤ T and all x ∈ R
d . If

∫ T

0

∫

Rd
(g(s, x))2ν(ds, dx) < ∞, (18.7)

P-a.s., then (St )0≤t≤T is a semimartingale.

For the convenience of the reader we repeat the proof of this result.

Proof Under condition (18.7), we can apply the stochastic Fubini theorem in the
general version given in TheoremIV.65 in Protter (2004). Observe that

St =
∫ t

0

∫

Rd

∫ t

s
g(u − s, x)du μ(ds, dx) +

∫ t

0

∫

Rd
G(0, x)μ(ds, dx)

=
∫ t

0

∫ s

0

∫

Rd
g(u − s, x)μ(ds, dx) du +

∫ t

0

∫

Rd
G(0, x)ν(ds, dx) + Mt ,

(18.8)

with a local martingale M . This is the semimartingale represenation of S and hence
S is a semimartingale.

It is possible to generalize this result to the case where G(t, x) = G(0, x) +∫ t
0 g(s, x)d A(s) with a process A of finite variation. Here, however, we do not
make use of such a level of generality—see Jacod and Shiryaev (2003), Proposi-
tion II.2.9. for details on the choice of A.

Moreover, a characterization of semimartingales when starting from the more
general formulation in (18.1) is possible using similar methodologies, see Schmidt
and Stute (2007) for an example.

Remark 2 Having a driver Z which has independent and stationary increments may
be a limitation in some applications. It is straightforward to allow for more general
driving processes. For example, consider a filtrationG = (Gt )t≥0 satisfying the usual
conditions. Let ν be a G0-measurable random measure on [0, T ] × R

d such that for
any open set A in R

k ,

P

( ∑

Ti∈(s,t]
1{Xi∈A} = k

∣∣∣Gs

)
= e−ν((s,t]×A) (ν((s, t] × A))k

k! .

If X1, X2, . . . are i.i.d. and independent of G, then Z is a G-doubly stochastic
marked Poisson process, Intuitively, given G , Z is a (time-inhomogeneous) Poisson
processwithG0-measurable jumps.This is a so-called initial enlargement of filtration,
compareBielecki et al. (2000) or Jeanblanc andRutkowski (2000) for an introduction
into this field. Doubly-stochastic marked Poisson processes in credit risk modeling
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have also been considered in Gaspar and Slinko (2008), however not in a shot-noise
setting.

Example 4 (An affine self-exciting shot-noise process) Inspired byErrais et al. (2010)
we consider the two-dimensional affine process X = (N , λ)
 where

dλt = κ(θ − λt )dt + dNt (18.9)

and N is a counting process with intensity λ. In this case the compensator of N
is given by νN (dt, dx) = λtδ1(dx)dt ; δa denoting the Dirac measure at the point
a. Following Keller-Ressel et al. (2013), the process X is a two-dimensional affine
process with state space N0 × R≥0 when θ ≥ 0. Hence its conditional distribution
is given in exponential affine form, i.e.

E[eiuXT |Ft ] = exp
(
φ(T − t, u) + 〈ψ(T − t, u), Xt 〉

)
,

for all u ∈ R
2 and the coefficients φ and ψ solve the generalized Riccati equations

∂tφ(t, u) = κθψ2(t, u)

∂tψ1(t, u) = 0

∂tψ2(t, u) = −κψ2(t, u) + exp(ψ2(t, u) + ψ1(t, u)) − 1

with the boundary conditions φ(0, u) = 0 and ψ(0, u) = u (see Proposition 3.4 in
Keller-Ressel et al. (2013)). Hence ψ1(t, u) = u1. Observe that λ is a shot-noise
process (when λ0 = θ = 0): the solution of (18.9) is

λt = e−κtλ0 + θ(1 − e−κt ) +
Nt∑

i=1

e−κ(t−Ti ),

where we denoted by T1, T2, . . . the jumping times of N . Hence, for λ0 = θ = 0, λ
is an (affine and Markovian) shot-noise process.

18.2.1 Markovianity

Proposition 1 allows us to draw a connection to affine processes. This processes
have been studied intensively in the literature because of their high tractability. Let-
ting G(t, x) = xe−bt implies that G(t + s, x) = G(t, x)e−bs which is the key to
Markovianity. Then,

eiθ
∫ t
0

∫
Rd G(T−s,x)μ(ds,dx) = eiθ

∫ t
0

∫
Rd e−b(T−t)G(t−s,x)μ(ds,dx)

= eiθ
∫ t
0

∫
Rd e−b(T−t)G(t−s,x)μ(ds,dx)

= eiθe
−b(T−t)

∫ t
0

∫
Rd G(t−s,x)μ(ds,dx) = eiθe

−b(T−t)St ,
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such that

E

[
eiθ ST

∣∣Ft

]
= exp

( ∫ T

t

∫

Rd

(
eiθG(T−s,x) − 1

)
ν(ds, dx)

)
· eiθe−b(T−t)St

=: exp(φ(t, T, θ) + ψ(t, T, θ)St ),

which is the exponential-affine structure classifying affine processes.While for affine
processes φ and ψ are determined via solutions of generalized Riccati equations, in
the shot-noise case we obtain a simpler integral-representation. Similar in spirit,
we obtain that under Markovianity, many expectations simplify considerably, as the
following result illustrates.

Corollary 1 Consider an inhomogeneous shot-noise process S with G(t, x) =
xe−bt and E |Xi | < ∞, i ≥ 1. Then, for T > t ,

E[ST |Ft ] = e−b(T−t)St + E

[ ∑

Ti∈(t,T ]
Xie

−b(T−Ti )
]
.

We now focus our attention on the important question of Markovianity of shot-
noise processes. Typically, shot-noise processes are not Markovian. Still, from a
computational point of view Markovianity could be preferable. Proposition2 pro-
vides a clear classification when the decay function satisfies G(t, x) = xH(t): then
Markovianity is equivalent to an exponential decay. In more general cases one typi-
cally looses Markovianity.

Proposition 2 Consider a standard shot-noise process S where G(t, x) = xH(t)
with a càdlàg function h : R≥0 → R. Assume that there exists an ε > 0 such that
(0, ε] ⊂ H(R+). Then S is Markovian, if and only if there exist a, b ∈ R such that

H(t) = ae−bt .

Proof First, consider the case where the shot-noise process S is Markovian (with
respect to the filtration F). For s > t , we have that

E[Ss |Ft ] =
∑

Ti≤t

UnH(s − Ti ) + E

[ ∑

Ti∈(t,s]
UnH(s − Ti )

∣∣∣Ft

]
. (18.10)

As Z has independent and stationary increments, we obtain that

E

[ ∑

Ti∈(t,s]
UnH(s − Ti )

∣∣Ft

]
= E

[ ∑

Ti∈(0,s−t]
UnH(s − t − Ti )

]

is a deterministic function (and hence does not depend on ω). From Markovianity
it follows that E[Ss |Ft ] = E[Ss |St ] =: F̃(t, s, St ) for all 0 ≤ s ≤ t , where F̃ is
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a measurable function. Hence, we obtain the existence of a measurable function
F : R+ × R

+ × R, such that
∑

Ti≤t
UnH(s − Ti ) = F(t, s, St ) (18.11)

a.s. for all 0 ≤ t ≤ s. IfP(U1 = 0) = 1 the claimholdswitha = 0.Otherwise choose
non-zero u such that (18.11) holds withU1,U2, . . . replaced by u. W.l.o.g. consider
u = 1. In particular, F(t, s, H(t − T1)) = H(s − T1) holds a.s. As in Remark3 we
condition on Nt = n and obtain that

F(t, s,
n∑

i=1

H(t − ηi )) =
n∑

i=1

H(s − ηi ) =
n∑

i=1

F(t, s, H(t − ηi )) (18.12)

with probability one, where ηi are i.i.d. U [0, s]. As (0, ε] ⊂ H(R+),

F(t, s, x1 + · · · + xn) =
n∑

i=1

F(t, s, xi ) (18.13)

for all x1, x2, . . .R+ and n ≥ 1 except for a null-set with respect to the Lebesgue
measure. Note with h being càd so is F in the third coordinate and we obtain that
(18.13) holds for all x1, x2, · · · ∈ R

+. Hence, F is additive such that F(t, s, x) =
F(t, s, 1)x (see Theorems 5.2.1 and 9.4.3 in Kuczma and Gilányi (2009)) for all
x ∈ R

+.
Next, we exploit

F(t, s, 1)H(t − u) = H(s − u)

for all 0 ≤ u ≤ t ≤ s to infer properties of h. First, u = 0 gives F(t, s, 1)H(t) =
H(s) and so H(0) = 0 because otherwise H(s) would vanish for all s ≥ 0 which
contradicts (0, ε] ⊂ H(R+). Next, u = t gives H(s − t) = F(t, s, 1)H(0) such that

H(s − t)H(t) = F(t, s, 1)H(0)H(t) = H(s)H(0).

This in turn yields that f := H(t)/H(0) satisfies

f (x + y) = f (x) f (y).

Then f is additive and measurable and hence continuous. The equation is a multi-
plicative version of Cauchy’s equation and hence f (x) = e−bx , see Theorem13.1.4
in Kuczma and Gilányi (2009) such that we obtain H(x) = H(0)e−bx .

For the converse, note that if G(t) = ae−bt , then

∑

Ti≤t

UnG(s − Ti ) = G(s − t)
∑

Ti≤t

UnG(t − Ti ),

and hence (18.10) yields that S is Markovian.
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Remark 3 For Markovianity it is necessary that U1,U2, . . . are independent and
identically distributed. Merely for the sake of the argument, assume that U1,U2 ∈
{0, 1, 2} and 0 = U3 = U4, . . . . If t > T1 and St = 2 the distribution of St+1 depends
not only on St but also on the number of jumps before t and so it is not Markovian.

18.3 The Application to Financial Markets

Shot-noise processes have been applied to the modelling of stock markets and to the
modelling of intensities, which is useful in credit risk and insurance mathematics.
Following the works Altmann et al. (2008); Schmidt and Stute (2007); Moreno et al.
(2011) we consider the application to the modelling of stocks. The main idea is to
extend the Black-Scholes-Merton framework by a shot-noise component.

In this regard, we denote by X the price process of the stock. As in the previous
section, a marked point process Z = (Ti , Xi )i≥1 with mark space R

d and a noise
function g : R≥0 × R

d determine the shot-noise component. Additionally, there is a
one-dimensional Brownian motion W , which is independent of Z , and σ > 0. The
integer-valued random measure μ counts the jumps of the marked point process Z ,
see Eq.18.4. Alltogether, we assume that

X (t) = X (0) exp
(
μt + σW (t)

σ 2t

2
+

∫ t

0

∑

Ti≤s

g(s − Ti ,Ui )ds +
∑

Ti≤t

G(0,Ui )
)
, t ≥ 0.

(18.14)

To guarantee absence of arbitrage, one has to find an equivalent martingale measure.
However, for statistical estimation of themodel it is important to have a nice structure
of the process under the risk-neutral measure. It turns out that this is not the case for
the minimal martingale measure, studied in Schmidt and Stute (2007), and our goal
is it to classify all martingale measures by a drift condition and give some hints of
possible choices of nice martingale measures. The first important step will therefore
be to classify all equivalent measures.

18.3.1 Equivalent Measure Changes

In this section we study all equivalent measure changes which apply to different
settings of shot-noise processes. We consider an initial filtrationH ⊂ F0.

(A1) F = F∞− and F is the smallest filtration for which μ is optional and H ⊂
F0.

(A2) Themeasure ν is absolutely continuous with respect to the Lebesgue-measure,
i.e. there is a kernel, which we denote again by ν(t, dx) such that

ν(dt, dx) = ν(t, dx)dt.
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We set

ξn := inf(t :
∫ t

0

∫

Rd
(1 − √

Y (s, u))2ν(s, du)ds ≥ n) for all n.

Proposition 3 Assume that (A1) and (A2) hold and P
′ � P. Then there exists a

P ⊗ R
d -measurable non-negative function Y such that the density process Z of P′

relative to P coincides with

Zn
t = e− ∫ t∧ξn

0

∫
Rd (Y (s,u)−1)ν(s,du)ds

∏

Tn≤t

Y (Tn,Un) (18.15)

Moreover, Z is a (possibly explosive) marked point process under P′ and its com-
pensator w.r.t. P′ is Y (t, u)ν(t, du)dt.

Proof We apply TheoremIII.5.43 in Jacod and Shiryaev (2003) and refer to their
notation for this proof. All references in this proof rever to Jacod and Shiryaev (2003).
Note that because the compensator of Z is absolutely continuous,

Ŷt =
∫

Rd
Y (t, u)ν({t}, du) = 0

(compare Eq. III.5.2) and therefore σ given in Eq. III.5.6 satisfies σ = ∞. Further-
more, the process H given in Eq. III.5.7 computes to

Ht =
∫ t

0

∫

Rd
(1 − √

Y (s, u))2ν(s, du)ds.

A priory we do not have that H is finite, so that following III.5.9 we define ξn :=
inf(t : Ht ≥ n) and define N ξn by

N ξn
t :=

∫ t∧ξn

0
(Y − 1) (μ(ds, du) − ν(s, du)ds).

Proposition III.5.10 yields that there exists a unique N which coincides with NGn

at least on all random intervals [0, ξn], n ≥ 1. TheoremIII.5.43 yields that under
our assumptions the density Z coincides with Zn as inspection of formula III.5.21
shows. This gives our claim.

The main tool is the following result which considers the stronger case of equiv-
alent measures.
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Theorem 1 Assume that (A1) and (A2) hold and P ∼ P
′. Then

∫ t

0

∫

Rd
Y (s, u)ν(s, du)ds < ∞ (18.16)

P
′-almost surely for all t > 0 and the density Z is given by

Zt = e− ∫ t
0

∫
Rd (Y (s,u)−1)G(s,du)ds

∏

Tn≤t

Y (Tn,Un), t ≥ 0. (18.17)

Proof As P and P′ are equivalent and we consider only non-explosive marked point
processes, P′(limn→∞ Tn = ∞) = 1. Hence

∫ t
0

∫
Rd ν(s, du)ds < ∞ for all t > 0,

almost surely with respect to P and P
′.

Also,
∫ t
0

∫
Rd Y (s, u)ν(s, du)ds < ∞: let At := {ω ∈ Ω : ∫ t

0

∫
Rd Y (s, u)ν(s, du)

ds = ∞} be a set with positive probability. Then, Z vanishes on At and so P is not
equivalent to P which gives a contradiction. Because Yν is non-negative At ⊂ At+ε

for all ε > 0 and (18.16) follows P′-almost surely for all t > 0. Finally, note that

∫ t

0

∫

Rd
(1 − √

Y (s, u))2ν(s, du)ds ≤
∫ t

0

∫

Rd
(1 + Y )ν(s, du)ds < ∞.

Hence the ξn in Proposition 3 tend to infinitywith probability 1. Then (18.15) together
with Proposition III.5.10 in Jacod and Shiryaev (2003) gives (18.17).

We have the following important result: the shot-noise property is preserved under
an absolutely continuous (and hence also under an equivalent) change of measure.

Corollary 2 Assume that (A1)and (A2)hold andP′ � P. If S is a shot-noise process
under P, then S is a shot-noise process under P′.

Proof The result follows immediately from the Definition1 together with Proposi-
tion3: under P′, the representation (18.3) of course still holds and by Proposition 3
states that Z = (Ti ,Ui )i≥1 is a marked point process under P′.

We will see that additional useful properties, like independent increments are not
preserved under the change of measure, such that the specific structures of the shot-
noise process under both measures can be substantially different.

18.3.2 Preserving Independent Increments

For tractability reasons one often considers shot-noise processes driven by a marked
point process which has independent increments. If the increments are moreover
stationary, the associated process is a Lévy process. We cover both cases in this
section.
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Theorem 2 Assume that P ∼ P
′. Let the density process of P′ relative to P be of the

form (18.17).

1. If Z has independent increments under P and P
′, then Y is deterministic.

2. If Z has independent and stationary increments under P and P′, then Y is deter-
ministic and does not depend on time.

Proof Z is a process with independent increments (PII), if and only if its compen-
sator is deterministic, see Jacod and Shiryaev (2003). Hence, if Z is a PII under P,
then ν(ω, t, dx) = ν(t, dx) is deterministic. By Theorem 1, Z has a deterministic
compensator under P′ if and only if Y (ω, t, u)ν(t, du) is deterministic and hence
Y (ω, t, u) = Y (t, u) is deterministic. Stationarity is equivalent to ν being indepen-
dent of time and so (ii) follows analogously.

Example 5 (The Esscher measure) Consider a generic n-dimensional stochastic
process X . Then the Esscher measure Esscher (1932) is given by the density

Zt = ehXt

E(ehXt )

where h ∈ R
d is chosen in such a way that Z is a martingale. Esche and Schweizer

(2005) showed that the Esscher measure preserves the Lévy property, in a specific
context. It is quite immediate that if applied to a model for stock-prices driven by
shot-noise processes this property will not hold in general. Dassios and Jang (2003)
applied the Esscher measure to Markovian shot-noise processes.

Example 6 (The minimal martingale measure) The minimal martingale measure as
proposed in Föllmer and Schweizer (1990) for a certain class of shot-noise processes
has been analysed in Schmidt and Stute (2007). It can be described as follows:
consider the special semimartingale X in its semimartingale decomposition X =
A + M where A is an increasing process of bounded variation and M is a local
martingale. Assume that there exists a process � which satisfies

At =
∫ t

0
�sd〈M〉s .

Then the density of the minimal martingale measure with respect to P is given by

Z = E

(∫ ·

0
�s−dMs

)
.

Here E denotes the Doleans-Dade stochastic exponential, i.e. Z is the solution of
dZt = Zt−�t−dMt . Theminimalmartingalemeasure need not exist in general. From
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(18.14), proceeding as in the proof of Proposition 4.1 in Schmidt and Stute (2007),
we obtain that

�t− = 1

Xt−
μ + ∑

Ti<t g(t − Ti ,Ui ) + ∫
Rd (eG(0,x) − 1)ν(t, ds)

∫
Rd (eG(0,x) − 1)2ν(t, ds)

.

Conditions which ensure that theminimal martingale measure is indeed a probability
measure can be found in Schmidt and Stute (2007).

From Theorem 2 it is clear, that the minimal martingale measure will not preserve
independent increments of Z—a property which makes this measure less tractable
for financial applications. In the following section, we propose an alternative to this
approach.

18.3.3 The Drift Condition

We consider the equivalent measure P
′ ∼ P and assume that (A1) and (A2) hold.

Then Theorem 1 gives the relationship between both measures and Z is again a
marked point process und P

′. The compensator of μ under P′ is given by

ν′(dt, t x) = ν′(t, dx)dt = ν(t, dx)Y (t, x)dt.

By the equivalent change of measure, there exists a market price of risk ξ , such that
W ′ = W + ξ is a P

′-Brownian motion, see Jacod and Shiryaev (2003), Theorem
III.3.24.

We assume that discounting takes place via a bank account with constant short
rate r .

Theorem 3 The equivalent measure P′ is a (local) martingale measure, if

r = μ − σξt +
∫ t

0

∫

Rd
g(t − s, x)μ(ds, dx) +

∫

Rd

(
eG(0,x) − 1

)
ν′(t, dx)

(18.18)

dP ⊗ dt-almost surely for all t ≥ 0.

Proof We first derive the semimartingale representation of X . By Itô’s formula and
(18.8),

dXt = Xt−
(

μdt + σdWt +
∫ t

0

∫

Rd
g(t − s, x)μ(ds, dx)

)

+
∫

Rd
Xt−

(
eG(0,x) − 1

)
μ(dt, dx).

The equivalent change of measure allows to introduce a drift ξ to the Brownian
motion, such that W ′ = W + ξ is a P′-Brownian motion. Compensating μ with the
P

′-compensator gives the result.
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It is apparent that typically therewill bemany solutions of the drift condition.With
a view on tractability it is reasonable to impose that the marked point process Z has
independent (and possibly stationary) increments under P and P

′. From Theorem2
it follows that this is the case if the function Y is deterministic (and does not depend
on time). Then, from Eq. (18.18) we obtain that

ξt = σ−1
(
μ +

∫ t

0

∫

Rd
g(t − s, x)μ(ds, dx) +

∫

Rd

(
eG(0,x) − 1

)
Y (t, x)ν(t, dx)

)
.

Example 7 (Independent and stationary increments under bothmeasures) Fix afinite
time horizon T ∗ and assume that Z has independent and stationary increments,
i.e. ν(t, dx) = λF(dx) where F is the distribution of U1 and λ > 0 is the arrival
rate of the jumps. Assume that F ′ is equivalent to F , i.e. F ′(dx) = η(x)F(dx)
and λ′ > 0. Then an equivalent change of measure is obtained via Y (t, x) = λ′

λ
η(x).

In this case, the arrival rate of jumps under P′ is λ′ and the jumps sizes are again
i.i.d. with distribution F ′. Assume that

∫
eG(0,x)F ′(dx) < ∞ and let ξ be such that

ξt = σ−1
(
μ + m1 +

∫ t

0

∫

Rd
g(t − s, x)μ(ds, dx)

)
(18.19)

with m1 := ∫
Rd

(
eG(0,x) − 1

)
λ′F ′(dx). If furthermore the process

(
E

( ∫ t

0
ξsdWs

))

0≤t≤T ∗

is a true martingale, then P
′ is an equivalent (local) martingale measure.
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19ALévy-DrivenAsset PriceModel
withBankruptcy and Liquidity Risk

Patrick Bäurer and Ernst Eberlein

19.1 Introduction

Standard models for asset prices do not take the possibility of bankruptcy of the
underlying company into account. In real markets, however, there are plenty of
cases where a listed company went bankrupt with the consequence of a total loss of
the invested capital. Figure 19.1 shows an example. It is the purpose of this paper
to expand an approach such that bankruptcy can occur. As underlying asset price
model S = (St )t≥0 we choose an exponential model which is driven by a Lévy
process L = (Lt )t≥0. A second Lévy process Z = (Zt )t≥0 is used as driver for the
hazard rate which determines the default time. The asset price jumps to zero when
this event happens.

It is a well-known fact that there is a strong negative dependence between the
value of the asset and the probability of default of the corresponding company.
Figure 19.3 shows a striking example where we plotted CDS quotes of the German
energy company E.ON against its stock price. In order to take this dependence into
account in the modeling approach which will be developed, the process Z is not only
used for the definition of the time point of default, but enters as an additional driver
into the equation for the asset price. Negative dependence is generated via a minus
sign in front of Z . The remaining terms in the definition of S are determined by the
fact that the discounted asset price should be a martingale.

Earlier approaches where bankruptcy of the underlying company is taken into
account areDavis andLischka (2002),Andersen andBuffum (2004), Linetsky (2006)
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and Carr andMadan (2010). In these papers the driving process is a standard Brown-
ian motion and the hazard rate of bankruptcy is chosen as a decreasing function of
the stock price. A particular parsimonious specification for such a function is given
by a negative power of the stock price. In order to improve the performance Carr
and Madan (2010) use a stochastic volatility model and jointly employ price data
on credit default swaps (CDSs) and equity options to simultaneously infer the risk
neutral stock dynamics in the presence of the possibility of default.

Since we will use European option prices to calibrate the model, a Fourier-based
valuation formula is derived. Several types of options are discussed explicitly. In order
to get prices expressed as expectations in a form which is convenient from the point
of view of numerics, the survival measure is introduced. The effect of the measure
change is that expectations are those of a standard payoff function. Calibration is
done with L being a normal inverse Gaussian (NIG) and the independent process
Z being a Gamma process. As an alternative to the Fourier-based valuation method
we derive also the corresponding partial integro-differential equations (PIDEs). In
the last section we show that the defaultable asset price approach which is exposed
here, provides also an appropriate basis for the recently developed two price theory.
The latter allows to get bid and ask prices and thus to model in addition the liquidity
component of the market.

19.2 The Defaultable Asset Price Model

A standard model for the price process (St )t≥0 of a traded asset which goes back to
Samuelson (1965) is given by

St = S0eXt (19.1)

where X = (Xt )t≥0 is a Brownian motion. This approach represented an essential
improvement on the initial Bachelier (1900) model where S had been a Brownian
motion itself. The main differences are that asset prices according to (1) are positive
and behave in a multiplicative or geometric way. The geometric Brownian motion
became well-known as the basis for the celebrated option pricing formula due to
Black and Scholes (1973) and Merton (1973). A from the point of view of distrib-
utional assumptions more realistic modeling was achieved by replacing Brownian
motion by jump-type Lévy processes like hyperbolic Lévymotions, see Eberlein and
Keller (1995), Eberlein and Prause (2002) and Eberlein (2001). Similar results were
obtained by using the class of Variance Gamma Lévy processes as seen inMadan and
Seneta (1990), Madan and Milne (1991) and Carr et al. (2002). A virtually perfect
adjustment of theoretical to real option prices across all strikes and maturities was
achieved by using Sato processes (Carr et al. 2007).

In this paper, the asset price model (19.1) is enhanced by including the possibil-
ity of default. A meaningful dependence structure between the asset price and the
probability of default is introduced. Since we shall use this model for valuation, the
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specification is done a priori in a risk-neutral setting, i.e. we assume the underlying
measure P to be risk-neutral. The economic objects to be modeled are

• the hazard rate λ as a nonnegative stochastic process with càdlàg paths, which
describes the behaviour of the default time τ ,

• the asset price S as a nonnegative stochastic process with càdlàg paths.

We want the asset price S to be negatively dependent on the hazard rate λ. There-
fore, we use two sources of randomness

(1) a Lévy process Z = (Zt )t≥0 as driver of the hazard rate λ,
(2) an independent Lévy process L = (Lt )t≥0, which represents the market noise

of the asset price.

In general a Lévy process is an R
d -valued, adapted stochastic process X =

(Xt )t≥0 on a filtered probability space (Ω,F ,F = (Ft )t≥0, P) which starts at zero
and has independent and stationary increments. Any Lévy process is characterised
by its Lévy triplet (b, c, νX ), where b ∈ R

d , c is a symmetric nonnegative d × d
matrix and νX is a measure on Rd , called the Lévy measure of X . The characteristic
function of X1 is given in its Lévy-Khintchine representation as follows

E[ei〈u,X1〉] = exp

[
i〈u, b〉 − 1

2
〈u, cu〉 +

∫
[ei〈u,x〉 − 1 − i〈u, h(x)〉]νX (dx)

]
.

If a random vector X has an exponential moment of order v ∈ R
d , i.e. if E[e〈v,X〉] is

finite, wewrite v ∈ EMX and in this case E[e〈z,X〉] can be defined for all z ∈ C
d with

Re(z) ∈ EMX . For Lévy processes X we have under the proper moment assumption
that E[e〈z,Xt 〉] = etθX (z), where

θX (z) := log E[e〈z,X1〉] = 〈z, b〉 + 1

2
〈z, cz〉 +

∫
[e〈z,x〉 − 1 − 〈z, h(x)〉]νX (dx)

is called the cumulant function of X . Since EMXt is independent of t for Lévy
processes we use EMX in this case to express that the moment condition holds for
every t . The existence of exponential moments implies the finiteness of moments of
arbitrary order, in particular the finiteness of the expectation. The latter entails that
the truncation function h can be chosen to be the identity, i.e. h(x) = x . With the
following lemma we are able to calculate explicitly the expectations of exponentials
of stochastic integrals with respect to a Lévy process.

Lemma 1 Let X be a Lévy process such that [−MX (1 + ε), MX (1 + ε)]d ⊂ EMX

for constants MX , ε > 0. If f : R+ → C
d is a complex-valued, continuous function

such that |Re( f i )| ≤ MX (i = 1, ..., d), then

E

[
exp

(∫ t

0
f (s)d Xs

)]
= exp

(∫ t

0
θX ( f (s))ds

)
.
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Proof This is a straightforward extension of Lemma 3.1. in Eberlein and Raible
(1999). A proof can be found in Kluge (2005). 	


In the following we shall only use one-dimensional Lévy processes.

Example 1 A very flexible and useful subclass of Lévy processes is given by the nor-
mal inverse Gaussian (NIG) processes, which are generated by the NIG distribution
with the simple characteristic function

ϕN I G(u) = eiuμ exp(δ
√

α2 − β2)

exp(δ
√

α2 − (β + iu)2)

and the four parameters μ, β ∈ R, δ > 0 and α > |β| ≥ 0.

Example 2 TheGamma process, generated by theGamma distribution, is an increas-
ing Lévy process. The Gamma distribution has the parameters p, b > 0 and the
characteristic function

ϕΓ (u) =
(

b

b − iu

)p

.

The default time τ : Ω → [0,∞] is constructed via

τ = inf{t ≥ 0 | e−Γt ≤ ξ}.

where Γt := ∫ t
0 λsds is the integral over the hazard rate λ = (λt )t≥0, a nonnegative

F-adapted process with càdlàg paths and ξ is a uniformly distributed random variable
on [0, 1], independent of F. This is the so-called intensity-based approach of default
modelling. Details can be found in Bielecki and Rutkowski (2004). We need three
properties of this construction:

1. One can easily show that

P(t < τ | Ft ) = e−Γt . (19.2)

Thus, the survival probability can be calculated to be P(t < τ) = E
[
e−Γt

]
.

2. If (Mt )t≥0 is a nonnegative F-martingale, then

(
Mt1{τ>t}eΓt

)
t≥0

follows aG-martingale.G = (Gt )t≥0 is defined by Gt := Ft ∨ Ht , whereHt :=
σ({τ ≤ u | u ≤ t}) is the filtrationwhich carries the information about the default
time.
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Fig. 19.1 The bankruptcy of Walter Bau

3. For the t-survival measure

Pt (A) := P(A | t < τ),

which is the measure P conditioned on no default until t , one gets Pt  P and

dPt |Ft

dP|Ft

= e−Γt

E[e−Γt ] . (19.3)

Now we are ready to specify the asset price model in the form

St = S0 exp
[
r t + Lt − ζ Zt + ωt + Γt

]
1{t<τ } (19.4)

with a constant r , representing the continuously compounded interest rate. Default
is modeled by a single jump to zero at time point τ . This reflects the idea of no
recovery for shareholders. This assumption seems to be reasonable if we look at the
history of bankruptcies. As an example, the time series of stock prices showing the
bankruptcy of the former German company Walter Bau is represented in Fig. 19.1.
Effectively, the default event, marked by the ellipse, is a jump to zero. In the sequel,
this model will be denoted the Defaultable Asset Price Model ( DAM).

The term −ζ Zt models the dependency between credit risk and asset price with
an additional parameter ζ ≥ 0. A surge of the default probability leads to a decline of
the asset price. A generalisation to a more complex functional dependence structure
− f (Zt ) is possible and in line with the pricing methods below. The simple form
−ζ Zt was chosen for convenience.

Since we want (St )t≥0 to be a martingale after discounting, the reason for the
term ωt + Γt is a mathematical one. Using the well-known fact that eXt /E[eXt ] is a
martingale for a process X with independent increments, we can choose the constant
ω such that exp[Lt − ζ Zt + ωt] is an F-martingale:

ω = − log E[eL1] − log E[e−ζ Z1 ] = −θL(1) − θZ (−ζ ).
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Thus, as indicated before, the discounted price process

e−r t St = S0 exp [Lt − ζ Zt + ωt] · eΓt1{t<τ }

is a G-martingale. This ensures that the considered financial market model is
arbitrage-free, cf. Delbaen and Schachermayer (2006).

For the existence of ω ∈ R, we need the conditions

(i) 1 ∈ EML .
(ii) −ζ ∈ EMZ .

A similar type ofmodel for pricing convertible bondswas introduced byDavis and
Lischka (2002). Their model, driven by a Brownian Motion (Wt )t≥0 with volatility
σ , is

St = S0 exp

[
r t + σ Wt − 1

2
σ 2t +

∫ t

0
λsds

]
1{t<τ },

where (λs)s≥0 is the hazard rate corresponding to the default time τ . This model
approach was enhanced by Andersen and Buffum (2004), Linetsky (2006) and Carr
and Madan (2010). Their idea of getting a reasonable dependence structure between
credit risk and asset price was a different one. They choose the hazard rate as a
function of the asset price, for example

λs = λ(Ss) = αS−p
s ,

which leads to a stochastic integral equation. Our approach,which is also an enhance-
ment of this model, avoids this. Thus, we get a more direct analytical access.

As a model for the hazard rate (λt )t≥0, we choose a positive Ornstein-Uhlenbeck
(OU) process driven by an increasing Lévy process (Zt )t≥0 which is assumed to be
independent of L

dλt = κ(μ − λt )dt + d Zt . (κ, μ ≥ 0). (19.5)

This kind of processesmoves up by the jumps of Z and then declines exponentially
as if there is a restoring force measured by the parameter κ , see Fig. 19.2. One main
advantage is the analytical tractability, see for example Barndorff-Nielsen and Shep-
hard (2001) or Cont and Tankov (2004), where OU processes are used as stochastic
volatility models for financial assets. Schoutens and Cariboni (2009) investigated
OU processes already as hazard rate models.

The upward jumps can be interpreted as bad news about the firm, like a profit alert,
an essential loss of capital or a failed project. Other reasons could be major events
or even catastrophes with consequences for a whole industrial sector or the global
economy. Examples are the burst of the Dot-com bubble in 2000, the terror attacks
of 9/11, the collapse of Lehman Brothers in 2008 or the Fukushima disaster in 2011.
Hazard rates are not directly observable, but CDS quotes also reflect the default
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Fig. 19.2 OU process driven by a Γ process

probability. Hence, the time evolution of hazard rates and short time CDS quotes
should look quite similar. We take the one-year CDS quotes of the German energy
company E.ON SE as an example, see Fig. 19.3. There are two big jumps, one after
the collapse of Lehman Brothers (left line) and one when the German government
resolved the nuclear phase-out a few months after the Fukushima disaster (middle
line).We can conclude that the model approach (19.5) looks quite reasonable in view
of this example. The relation between the upward jumps of the CDS quotes and the
downward movement of the stock price is clearly visible.

The explicit expression for (19.5) is

λt = λ0e−κt + μ(1 − e−κt ) +
∫ t

0
eκ(s−t)d Zs . (19.6)

Using Fubini’s Theorem for stochastic integrals, cf. Theorem 64 in Chapter IV of
Protter (2005), we get for the hazard process

Γt = Γ d
t +

∫ t

0
γ t

s d Zs (19.7)

where we used the abbreviations

Γ d
t := λ0

κ
(1 − e−κt ) + μ

(
t + e−κt

κ
− 1

κ

)

γ t
s := 1 − e−κ(t−s)

κ
.
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Fig. 19.3 One-year CDS quotes (top) and stock price (bottom) of the German energy company
E.ON SE. The left line marks the collapse of Lehman Brothers, the middle line the German nuclear
phase-out after the Fukushima disaster

For the numerical calculation of the survival probability P(t < τ) = E[e−Γt ], we
can now use Lemma 1

E[e−Γt ] = e−Γ d
t E

[
exp

(
−

∫ t

0
γ t

ud Zu

)]

= e−Γ d
t exp

(∫ t

0
θZ (−γ t

u)du

)
, (19.8)

where θZ is the cumulant function of Z . To obtain (19.8), we need the assumptions
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(iii) There are constants MZ , ε > 0 such that ±MZ (1 + ε) ∈ EMZ .
(iv) κ satisfies 1

κ
≤ MZ .

This kind of model cannot be adjusted to an exogenously given survival function
t �→ P(t < τ) = E[e−Γt ]. The survival function can be recovered from CDS quotes
using the methods described in Madan et al. (2004).

The same problem is known from short rate models for the term structure of
interest rates (for an overview see the book of Brigo and Mercurio (2001)). The
famous Vasicek (1977) model is not able to incorporate the current yield curve. Hull
and White (1990) overcame this drawback by making one parameter in the Vasicek
model time-dependent. The same idea could be used to extend (19.5) in the following
way

dλt = κ(μ(t) − λt )dt + d Zt .

19.3 Option Pricing

In this section, we price some European options under the Defaultable Asset Price
Model. We define the F-adapted semimartingale

Xt := log S0 + r t + Lt − ζ Zt + ωt + Γt

such that St = eXt1{t<τ } and use the Fourier-based valuation method as given in
Eberlein et al. (2010). This leads to the equation

EQ[ f (XT )] = 1

2π

∫
ϕ

Q
XT

(u − i R) f̂ (i R − u)du, (19.9)

where f̂ denotes the Fourier transformof f ,which is definedby f̂ (u)=∫
eiux f (x)dx

and where ϕ
Q
XT

denotes the extended characteristic function of XT under the proba-
bility measure Q. R ∈ R is a constant that must satisfy

(C1) g ∈ L1
bc(R) = {h ∈ L1(R) | h bounded and continuous},

(C2) R ∈ EMXT ,
(C3) ĝ ∈ L1(R),

where g(x) := e−Rx f (x). The key point of (19.9) is the separation of the function
f from the distribution Q XT of XT .
In order to use the Fourier-basedmethodwithin theDefaultableAsset PriceModel

one has to separate the indicator 1{t<τ } from the payoff function. This means that
we only consider payoff functions f which can be written as

f (ST ) = f (1{T <τ }eXT ) = 1{T ≥τ } f1(XT ) + 1{T <τ } f2(XT ) (19.10)

for functions f1 and f2, that satisfy the assumptions for the valuation formula (19.9).
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Lemma 2 Let f be a payoff function of an option with maturity T > 0which satisfies
(19.10). Then the following formula holds

E [ f (ST )] = E [ f1(XT )] − E
[
e−ΓT

]
ET [ f1(XT )] + E

[
e−ΓT

]
ET [ f2(XT )]

(19.11)
where ET := EPT is the expectation under the survival measure PT .

Proof For this calculation, we use the change-of-numeraire technique with the sur-
vival measure PT

E [ f (ST )]
(19.10)= E

[
1{T ≥τ } f1(XT )

] + E
[
1{T <τ } f2(XT )

]
=E

[
(1 − 1{T <τ }) f1(XT )

] + E
[
1{T <τ } f2(XT )

]
=E

[
f1(XT )E

[
(1 − 1{T <τ }) | FT

]] + E
[

f2(XT )E
[
1{T <τ } | FT

]]
(19.2)= E [ f1(XT )] − E

[
e−ΓT f1(XT )

] + E
[
e−ΓT f2(XT )

]
(19.3)= E [ f1(XT )] − E

[
e−ΓT

]
ET [ f1(XT )] + E

[
e−ΓT

]
ET [ f2(XT )] .

	


The elements on the right side of (19.11) can be calculated numerically. E[e−ΓT ]
can be calculated by using Lemma 1. For the calculation of the expectations
ET [ f (XT )] under the survival measure PT for different functions f , we use (19.9).
We shall calculate the extended characteristic function ϕPT

XT
of XT under the survival

measure PT . We begin with a generic lemma of stochastic analysis.

Lemma 3 Let X and Y be two independent semimartingales and H be a determin-
istic process with left-continuous paths. Then the processes X and (

∫ t
0 HsdYs)t≥0

are independent as well.

Proof Fix t ≥ 0 and define

Hn
t := 1{0}H0 +

2n∑
k=1

1](k−1) t
2n ,k t

2n ] Hk t
2n

.

For each n ≥ 1 and each t ′ ≥ 0, Xt ′ is independent from

∫ t

0
Hn

s dYs =
2n∑

k=1

Hk t
2n

(Yk t
2n

− Y(k−1) t
2n

).

∫ t
0 Hn

s dYs is a Riemann approximation for the stochastic integral
∫ t
0 HsdYs , i.e.

∫ t

0
Hn

s dYs →
∫ t

0
HsdYs
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in probability, see Proposition I.4.44 in Jacod and Shiryaev (2003). Independence is
transferred to the stochastic limit, cf. Proposition 1.13 in Sato (1999), and thus the
assertion follows. 	


Lemma 4 Let R > 1 (R < 0 resp.) such that

(v) R ∈ EML , i.e. E[eRLT ] exists for all T ≥ 0,
(vi) max{ζ R, R−1

κ
− ζ R} ≤ MZ (max{−ζ R, ζ R − R−1

κ
} ≤ MZ resp.).

Then MT
XT

(R) = ET [eR XT ] exists, i.e. assumption (C2) of (19.9) is satisfied.

Proof Using Lemma 3, we obtain

MT
XT

(R)= ET [exp(R XT )]
= const. · ET [exp(RLT ) exp(−ζ RZT + RΓT )]

(19.3)= const. · E[exp(RLT ) exp(−ζ RZT + (R − 1)ΓT )]

= const. · MLT (R) · E

[
exp

(∫ T

0
(R − 1)γ T

s − ζ R d Zs

)]
.

(vi) implies |(R − 1)γ T
s − ζ R| ≤ MZ , and thus the existence of the last factor. 	


To use (19.9), we need to calculate the extended characteristic function ϕPT

XT
of

XT under PT . We abbreviate

dt := ln S0 + r t + ωt

Dt (x) := exp[x(dt + Γ d
t ) − Γ d

t ]
E[e−Γt ] ,

and obtain for all x ∈ C with Re(x) = R

ET [ex XT ] = exdT ET [ex(LT −ζ ZT +ΓT )]

= exdT E

[
e−ΓT

E[e−ΓT ]ex(LT −ζ ZT +ΓT )

]

= DT (x)E
[
ex LT e

∫ T
0 xγ T

s −xζ−γ T
s d Zs

]
(�)= DT (x)E

[
ex LT

]
E

[
e
∫ T
0 xγ T

s −xζ−γ T
s d Zs

]

= DT (x) exp [T · θL(x)] exp

[∫ T

0
θZ (xγ T

s − xζ − γ T
s )ds

]
,
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where we have used Lemma 3 in equation (�). In the last step of this calculation, we
used Lemma 1. The requirement

∣∣Re(xγ t
s − xζ − γ t

s )
∣∣ ≤ MZ

is satisfied by the assumptions of Lemma 4.Hence, we have for all u ∈ R and suitable
R ∈ R

ϕPT

XT
(u − i R) = ET [e(R+iu)XT ]

= DT (R + iu) exp [T · θL (R + iu)] exp

[∫ T

0
θZ ((R + iu)γ T

s − (R + iu)ζ − γ T
s )ds

]
.

(19.12)

Example 3 In the case of a call option, we have f (x) = (ex − K )+, i.e.

f̂ (z) = K 1+i z

i z(1 + i z)
, Im(z) ∈ (1,∞).

Conditions (C1) and (C3) are fulfilled for R > 1. The payoff function is of type
(19.10) with f1 ≡ 0 and f2(x) = (ex − K )+. For the put option, where f (x) =
(K − ex )+, we have

f̂ (z) = K 1+i z

i z(1 + i z)
, Im(z) ∈ (−∞, 0).

Conditions (C1) and (C3) are fulfilled for R < 0. We have f1 ≡ K and f2(x) =
(K − ex )+. By using (19.11), we obtain the call prices

C0(T, K ) = e−rT E[e−ΓT ]ET [(eXT − K )+] (19.13)

and the put prices

P0(T, K ) = e−rT
[

E[e−ΓT ]ET [(K − eXT )+] + K (1 − E[e−ΓT ])
]
. (19.14)

Example 4 The payoff function of a digital call option with barrier B > 0 and matu-
rity T > 0 is f (x) = 1{x>B}, i.e. it is of type (19.10) with f1 ≡ 0 and f2 = 1{ex >B}.
We use (19.11) and obtain

E
[
e−rT1{ST >B}

]
= e−rT E[e−ΓT ]ET

[
1{eXT >B}

]
.

The Fourier transform of f2 is

f̂2(z) = − Biz

i z
for Im(z) > 0.
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Fig. 19.4 Prices of digital
call options with barrier B
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The assumptions for applying (19.9) are satisfied for R > 0, cf. Eberlein et al. (2010).
For the digital put option, we have

E
[
e−rT1{ST <B}

]
(19.11)= e−rT

(
1 − E[e−ΓT ] + E[e−ΓT ]ET

[
1{eXT <B}

])
.

The Fourier transform of f2(x) = 1{ex <B} is

f̂2(z) = Biz

i z
for Im(z) < 0.

In this case, we need R < 0. To give a numerical example, we take S0 = 30, T = 260
and the parameters

α = 50.0 β = −0.1 δ = 0.012
p = 0.0035 b = 66 κ = 0.11 (∗)

ζ = 9.0

which correspond to a one-year default probability of about 10.7 %. The results can
be seen in Fig. 19.4. The main difference to a non-defaultable model is that the prices
tend to 1 − P(T ≥ τ) for B ↘ 0 and not to 1.

Example 5 Thepayoff of a self-quanto call optionwith strike K > 0 is ex (ex − K )+,
i.e. we have

e−rT E
[
1{T <τ }eXT (eXT − K )+

]
= e−rT E[e−ΓT ]ET

[
eXT (eXT − K )+

]
.

The Fourier transform of f2(x) = ex (ex − K )+ is

f̂2(z) = K 2+i z

(1 + i z)(2 + i z)
for Im(z) > 2.
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For a self-quanto put option with payoff ex (K − ex )+ we have

e−rT E
[
1{T <τ }eXT (K − eXT )+

]
= e−rT E[e−ΓT ]ET

[
eXT (K − eXT )+

]
.

The Fourier transformof f2(x) = ex (K − ex )+ is the same as above, but for Im(z) <

1.

For calculating expectations E[ f (ST )], we can also useMonte Carlo simulations,
i.e. we can simulate the random variable ST for example N times and approximate
E[ f (ST )] by 1

N

∑N
i=1 f (si

T ), where (si
T )i=1,...,N denotes a simulated sample of ST .

For the pathwise simulation of the Defaultable Asset Price Model

St = S0 exp
[
r t − qt + Lt − ζ Zt + ωt + Γt

]
1{t<τ },

we have to be able to simulate the Lévy processes Lt and Zt pathwise. This means,
that it is necessary to simulatewhole paths (St )0≤t≤T if wewant to create a simulation
for ST . If we have to do that already, with only little additional effort one can price
path-dependent options or options with different maturities Tk ≤ T (k = 1, ..., n)

simultaneously.

Example 6 An Asian option is a derivative, whose payoff depends on the average
price

ST := 1

T

∫ T

0
St dt

of the underlying price process (St )0≤t≤T . We simulate the price path on an equidis-
tant time grid 0 = t0 < t1 < ... < tn = T . The simulated value si

T of the average
price is then given as the mean

si
T = 1

n

n∑
k=0

si
tk

of the simulated prices (si
tk )k=0,...,n for each simulation i ∈ {1, ..., N }. Figure 19.5

shows an example.

19.4 Calibration

Calibration is conducted by minimising the sum of the squared differences between
observed market prices and model prices

SD(α) :=
∑

j

(
πModel

j (α) − πMarket
j

)2
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Fig. 19.5 Prices of average
price calls with payoff
(ST − K )+ (solid line). For
comparison, prices of
ordinary calls (dashed line)
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over the model parameters α = (α1, ..., αn) in a parameter space A1 × ... × An ⊂
R

n . This space is given by constraints on the mathematical model. In our case, we
have to consider the parameter spaces of the processes L and Z and have to check
the conditions (i)–(vi).

We choose a NIG(α, β, δ, μ) process for L and a Γ (p, b) process for Z as an
example. This leads to a model with the seven parameters

α > 0, β ∈ (−α, α), δ > 0 for the NIG process
p, b > 0 for the Γ process
κ ≥ 0 for the OU restoring force
ζ ≥ 0 as dependence parameter.

We note here that the drift parameter μ of the NIG process is redundant. The
reason is the martingale setting. If L1 is NIG-distributed, then L1 − log E[eL1] is
also NIG-distributed, but independent of μ.

The model assumptions (i)–(vi) can be reduced to restrictions on the process
parameters. For the NIG process L , we haveEML = (−α − β, α − β) and for theΓ

process Z , we get EMZ = (−∞, b). Consequently we can convert the conditions to

(i) 1 < α − β

(ii) −ζ < b
(iii) is always satisfied
(iv) 1

κ
< b

(v) 1 < R < α − β

(vi) max{ζ R, R−1
κ

− ζ R} < b (max{−ζ R, ζ R − R−1
κ

} < b resp.),

which can all be checked easily.
We calibrate all parameters, i.e. the parameters for L , the credit parameters and the

dependence parameter ζ , to the option price surface. Hence, we obtain the required
risk-neutral parameters of the model which are needed to price other financial prod-
ucts based on this asset. Accordingly, we can extract credit risk information about the
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firm from option quotes. This enables us to calculate default probabilities. Alterna-
tively, one could calibrate the credit parameters to the CDS term structure, fix them
and calibrate the remaining ones using option prices.

We consider the stocks of theEuropean banksBNPParibas, Commerzbank, Credit
Agricole, Credit Suisse, Deutsche Bank, UBS and UniCredit and look at the corre-
sponding call prices onMarch 20, 2014.We restrict ourselves to calls with expiration
date T1 in December 2014 and T2 in December 2015. As a riskless interest rate, we
take the EONIA rate. The current stock prices are dividend-adjusted via

S0 � S0 − e−rTD · D,

where we take the estimated or promised dividend payment of each bank for D and
the day following the annual general assembly for TD . The results of the calibrations
can be found in Tables 19.1 and 19.2.

In Fig. 19.6, we observe a virtually perfect fit of the DAM to the real market data
of BNP Paribas.

Table 19.1 Calibration results 1

BNP Paribas Commerzbank Credit Agricole Credit Suisse

T1 T2 T1 T2 T1 T2 T1 T2

α 53.0 52.6 50.3 49.9 45.2 46.1 45.8 44.0

β −0.09 −0.05 −0.23 −0.17 −0.10 0.03 −0.08 −0.1

δ 0.0087 0.0091 0.0229 0.0213 0.0088 0.0095 0.0056 0.0060

p 0.00218 0.00182 0.00134 0.00122 0.004 0.00366 0.00312 0.00244

b 51 81 91 101 90 119 78 112

κ 0.162 0.402 0.47 0.402 0.16 0.234 0.18 0.25

ζ 5.0 5.0 5.5 5.5 4.6 5.1 4.0 3.0

Table 19.2 Calibration results 2

Deutsche Bank UBS UniCredit

T1 T2 T1 T2 T1 T2

α 61.3 60.4 69.0 69.1 45.0 45.0

β −0.95 −1.1 −0.5 −0.8 −3.2 −3.2

δ 0.0109 0.0106 0.0120 0.0110 0.013 0.013

p 0.00314 0.00276 0.0028 0.0025 0.0022 0.0020

b 87 126 142 144 154 146

κ 0.182 0.26 0.28 0.27 0.16 0.18

ζ 3.5 3.8 3.0 3.5 6.0 5.8
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19.5 A Differential Equation for the Option Pricing Function

In the former sections, the calculation of the desired expectation E[ f (ST )] is accom-
plished by combining the change of measure with the Fourier-based valuation
method. Now we shall investigate another common method, namely pricing by solv-
ing a partial integro-differential equation (PIDE). The procedure is the following.
Write the martingale E[ f (ST ) | Ft ] as a C2-function g of t and some underlying
process Vt = (V 1

t , ..., V d
t )

E[ f (ST ) | Ft ] = g(Vt , t). (19.15)

We assume that the processes V i are special semimartingales, i.e. they possess a
(unique) decomposition V i = V0 + Mi + Ai with a local martingale Mi and a pre-
dictable process Ai with paths of bounded variation. By applying Itô’s formula we
obtain

g(Vt , t) = g(V0, 0) +
∑
i≤d

∫ t

0
∂i g(Vs−, s)dV i

s +
∫ t

0
∂d+1g(Vs−, s)ds

+ 1

2

∑
i, j≤d

∫ t

0
∂i j g(Vs−, s)d〈(V i )c, (V j )c〉s

+
∑
s≤t

⎡
⎣g(Vs, s) − g(Vs−, s) −

∑
i≤d

∂i g(Vs−, s)ΔV i
s

⎤
⎦ .

(19.16)

Fig. 19.6 Quoted call prices
of BNP Paribas (circles) and
the model prices (line) after
the calibration

20 30 40 50 60 70 80

0

10

20

30

K



404 P. Bäurer and E. Eberlein

g(Vt , t) is a special semimartingale, but also a martingale by (19.15). Consequently,
any decomposition

g(Vt , t) = g(V0, 0) + Mt + At

with a localmartingale M and a predictable process Awith paths of bounded variation
has to satisfy A ≡ 0. Expanding and sorting the the right-hand side of (19.16) in this
sense leads to the desired PIDE

0 =
∑
i≤d

∫ t

0
∂i g(Vs−, s)d Ai

s +
∫ t

0
∂d+1g(Vs−, s)ds

+ 1

2

∑
i, j≤d

∫ t

0
∂i j g(Vs−, s)d〈(V i )c, (V j )c〉s

+
∫

[0,t]×Rd

⎡
⎣g(Vs− + x, s) − g(Vs−, s) −

∑
i≤d

∂i g(Vs−, s)x

⎤
⎦ (μV )p(ds, dx),

(19.17)

where (μV )p is the predictable compensator of the jump measure μV of V , cf.
Theorem II.1.8 in Jacod and Shiryaev (2003). The boundary condition is set at the
maturity date T of the contingent claim

g(x1, ..., xd , T ) = f (l(x1, ..., xd)),

where l is the function, such that ST = l(V 1
T , ..., V d

T ). Solving thePIDE (numerically)
on R

d × [0, T ] gives us the desired value

E[ f (ST )] = g(V0, 0).

The boundary condition determines the solution g(x, t) at the end of the considered
time interval [0, T ], but the value we are looking for is the one at the beginning.

In order to apply this approach to the Defaultable Asset Price Model

St = exp
[
log S0 + r t + Lt − ζ Zt + ωt + Γt

]
1{t<τ } = eXt1{t<τ },

we firstly have to take care of the indicator function 1{t<τ }. Therefore, we shall only
consider payoff functions f of type (19.10), i.e. we assume that

f (ST ) = f (1{T <τ }eXT ) = 1{T ≥τ } f1(XT ) + 1{T <τ } f2(XT )
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for functions f1 and f2. As seen before, most of the common payoff functions have
this form. In this case, we can eliminate the indicator function 1{t<τ } in the time-0
pricing formula

π0 = e−rT E[ f (ST )] (19.10)= e−rT E[1{T ≥τ } f1(XT ) + 1{T <τ } f2(XT )]
= e−rT {E[E[1{T ≥τ } f1(XT ) | FT ]] + E[E[1{T <τ } f2(XT ) | FT ]]}
= e−rT {E[ f1(XT )E[1{T ≥τ } | FT ]] + E[ f2(XT )E[1{T <τ } | FT ]]}
= e−rT {E[ f1(XT )(1 − e−ΓT )] + E[ f2(XT )e−ΓT ]}
= e−rT E[ f1(XT )(1 − e−ΓT ) + f2(XT )e−ΓT ] =: e−rT E[ f̃ (XT , ΓT )].

In the next step, we write the martingale E[ f̃ (XT , ΓT ) | Ft ] as a function of the
processes

V 1
t := Lt , V 2

t := Zt , V 3
t := Yt :=

∫ t

0
eκsd Zs and t.

We remark here that e−r(T −t)E[ f̃ (XT , ΓT ) | Ft ] does not represent the option
price at time t . It is only an auxiliary function that is needed for the calculation of π0.
The correct option price at time t would be given by e−r(T −t)E[ f̃ (XT , ΓT ) | Gt ].

Lemma 5 Let (Xt )t≥0 be a semimartingale with independent increments and let
f : [0,∞) → R be a locally bounded, deterministic and left-continous function.
Then the semimartingale (Yt )t≥0 defined by

Yt :=
∫ t

0
f (s)d Xs

has independent increments as well.

Proof Due to Theorem II.4.15 in Jacod and Shiryaev (2003), there is a version of the
characteristics of X , which is deterministic. The characteristics ofY can be calculated
by only using the characteristics of X and the function f , see Proposition IX.5.3 in
Jacod and Shiryaev (2003). Consequently, there is a version of the characteristics of
Y , which is deterministic. So Theorem II.4.15 gives us the intended result. 	


Lemma 6 The conditional expectation E[ f̃ (XT , ΓT ) | Ft ] is a function of Lt , Zt ,
Yt and t

E[ f̃ (XT , ΓT ) | Ft ] = g(Lt , Zt , Yt , t). (19.18)

Proof First of all, we note that Γt is a function of Zt , Yt and t

Γt = Γ d
t +

∫ t

0

1 − e−κ(t−s)

κ
d Zs = Γ d

t + 1

κ

[
Zt − e−κt

∫ t

0
eκsd Zs

]
,



406 P. Bäurer and E. Eberlein

and that ΓT − Γt is a function of ZT − Zt , YT − Yt , Yt and t

ΓT − Γt = Γ d
T − Γ d

t + 1

κ

[
ZT − Zt − e−κT YT + e−κt Yt

]

= Γ d
T − Γ d

t + 1

κ

[
ZT − Zt − (e−κT − e−κt )Yt − e−κT (YT − Yt )

]
.

Consequently,

XT = log S0 + rT + ωT + LT − ζ ZT + ΓT

= log S0 + rT + ωT + LT − Lt + Lt − ζ(ZT − Zt + Zt )

+ ΓT − Γt + Γt

is a function of

(a) the increments LT − Lt , ZT − Zt , YT − Yt ,
(b) the random variables Lt , Zt , Yt and t .

L and Z are Lévy processes, and so Lemma 5 shows that all increment terms under
(a) are independent of Ft . The terms under (b) are Ft -measurable. Hence, we get
the intended result

E[ f̃ (XT , ΓT ) | Ft ] = E[ f̂ (LT − Lt , ZT − Zt , YT − Yt , Lt , Zt , Yt , t) | Ft ]
= E[ f̂ (LT − Lt , ZT − Zt , YT − Yt , x, y, z, t)]∣∣x=Lt ,y=Zt ,z=Yt

.

	


Theorem 1 Assume that the function g(x, y, z, t), defined in (19.18), is of class
C2(R4) and that L1 and Z1 have a finite first moment. Then g satisfies the following
integro-differential equation

0 =E[L1]∂1g + E[Z1]∂2g + E[Z1]eκt∂3g + ∂4g + 1

2
cL∂11g

+
∫
R

[g(x + ξ, y, z, t) − g − ξ∂1g]νL(dξ) (19.19)

+
∫
R

[g(x, y + ξ, z + eκtξ, t) − g − ξ∂2g − eκtξ∂3g]νZ (dξ)

with boundary condition

g(x, y, z, T ) = f1(b2(x, y, z, T ))(1 − e−b1(x,y,z,T )) + f2(b2(x, y, z, T ))e−b1(x,y,z,T ),

where we have abbreviated g = g(x, y, z, t) and

b1(x, y, z, t) := Γ d
t + 1

κ
(y − e−κt z),

b2(x, y, z, t) := log S0 + r t + ωt + x − ζ y + b1(x, y, z, t).
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νL and νZ are the Lévy measures of the processes L and Z. cL denotes the variance
of the Brownian part of L.

Proof WedenoteVt = (V 1
t = Lt , V 2

t = Zt , V 3
t = Yt ) and apply Itô’s formula (19.16),

cf. Theorem I.4.57 in Jacod and Shiryaev (2003). The existence of the first moment
gives us a simple semimartingale representation for the Lévy process L

Lt = Lt − t E[L1] + t E[L1] =: M L
t + t E[L1].

As a consequence, we obtain the semimartingale representation of the stochastic
integral

∫
Hsd Ls

∫ t

0
Hsd Ls =

∫ t

0
Hsd M L

s + E[L1]
∫ t

0
Hsds,

where H is a locally bounded predictable process. The first summand is a local
martingale, cf. I.4.34 (b) in Jacod and Shiryaev (2003). We are interested in the
second one, which is a predictable process with paths of bounded variation. The
same procedure can be applied to the increasing Lévy process Z . Therefore, we get
the representations

∫ t

0
Hsd Zs =

∫ t

0
Hsd M Z

s + E[Z1]
∫ t

0
Hsds ,

∫ t

0
HsdYs =

∫ t

0
Hseκsd Zs =

∫ t

0
Hseκsd M Z

s + E[Z1]
∫ t

0
Hseκsds .

Since Z is an increasing Lévy process, we have Zc ≡ 0 and also Y c ≡ 0. Thus, the
second term of Itô’s formula is simplified considerably

1

2

∑
i, j≤d

∫ t

0
∂i j g(Vs−, s)d〈(V i )c, (V j )c〉s = 1

2
cL

∫ t

0
∂11g(Vs−, s)ds.

The jump term in Itô’s formula can be written in terms of the jumpmeasureμ(L ,Z)

of the two-dimensional Lévy process (L , Z)

∑
s≤t

⎡
⎣g(Vs− + ΔVs, s) − g(Vs−, s) −

∑
i≤d

∂i g(Vs−, s)ΔV i
s

⎤
⎦

=
∑
s≤t

[
g(Ls− + ΔLs, Zs− + ΔZs, Ys− + eκsΔZs, s) − g(Vs−, s)

− ∂1g(Vs−, s)ΔLs − ∂2g(Vs−, s)ΔZs − ∂3g(Vs−, s)eκsΔZs

]

=
∫

[0,t]×R2

[
g(Ls− + x, Zs− + y, Ys− + eκs y, s) − g(Vs−, s)

− ∂1g(Vs−, s)x − ∂2g(Vs−, s)y − ∂3g(Vs−, s)eκs y
]
μ(L ,Z)(ds, (dx, dy)).
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The semimartingale representation of this type of integral is

W ∗ μV = W ∗ μV − W ∗ (μV )p︸ ︷︷ ︸
martingale

+ W ∗ (μV )p︸ ︷︷ ︸
pred. + bounded variation

,

cf. Theorem II.1.8. in Jacod and Shiryaev (2003). So, we have to investigate the
predictable compensator of the jump measure μ(L ,Z), which is

(
μ(L ,Z)

)p
(ω; dt, (dx, dy)) = dt ⊗ ν(L ,Z)(dx, dy),

where ν(L ,Z) is the Lévy measure of (L , Z). Since the processes L and Z are inde-
pendent, ν(L ,Z) is supported on the union of the coordinate axes and we can write

ν(L ,Z)(A) = νL(Ax ) + νZ (Ay),

where Ax :={(x, 0) | x ∈ A} is the projection on the x-axis and Ay :={(0, y) | y ∈ A}
the projection on the y-axis. This result can be found in Sato (1999), E 12.10.(i)
or Cont and Tankov (2004), Proposition 5.3. Consequently, each two-dimensional
integral w.r.t. ν(L ,Z) is the sum of two one-dimensional integrals

∫
g(x, y)ν(L ,Z)(dx, dy) =

∫
g(x, 0)νL(dx) +

∫
g(0, y)νZ (dy). (19.20)

As a result, the predictable and bounded variation part of the jump term is

∫
[0,t]×R2

[
g(Ls− + x, Zs− + y, Ys− + eκs y, s) − g(Vs−, s)

− ∂1g(Vs−, s)x − ∂2g(Vs−, s)y − ∂3g(Vs−, s)eκs y
]
ds ⊗ ν(L ,Z)(dx, dy)

=
∫ t

0

∫
R

[
g(Ls− + x, Zs−, Ys−, s) − g(Vs−, s) − ∂1g(Vs−, s)x

]
νL(dx)

+
∫
R

[
g(Ls−, Zs− + y, Ys− + eκs y, s) − g(Vs−, s)

− ∂2g(Vs−, s)y − ∂3g(Vs−, s)eκs y
]
νZ (dy) ds.

If we now zero all the predictable parts of Itô’s formula with bounded variation, we
obtain

0 =
∫ t

0
H(Ls−, Zs−, Ys−, s)ds (∀t ≥ 0)



A Lévy-Driven Asset Price Model with Bankruptcy and Liquidity Risk 409

for

H(x, y, z, t) :=E[L1]∂1g + E[Z1]∂2g + E[Z1]eκt∂3g + ∂4g + 1

2
cL∂11g

+
∫
R

[g(x + ξ, y, z, t) − g − ξ∂1g]νL(dξ)

+
∫
R

[g(x, y + ξ, z + eκtξ, t) − g − ξ∂2g − eκtξ∂3g]νZ (dξ),

wherewewrote for short g = g(x, y, z, t). By continuity, H(x, y, z, t) has to be zero
for every t ≥ 0, every x ∈ S(Lt ), every y ∈ S(Zt ) and every z ∈ S(Zt ), whereby
S(X) denotes the support of the random variable X . This is the desired Eq. (19.19).
	


In many cases, we have S(Lt ) = R and S(Zt ) = S(Yt ) = R+, such that we have
to solve equation (19.19) for x ∈ R, y, z ∈ R+ and t ∈ R+.

To apply the stated theorem, we have to verify that the function g, defined in
(19.18), is of class C2(R4). The validity of this condition depends on the specific
processes L and Z and on the payoff function f of the claimwhichwe consider. Cont
and Voltchkova (2005) investigated a similar issue in the simpler case of exponential
Lévy models. The problem is more complicated in our model setting and is not
pursued in this paper.

19.6 Two Price Theory

In the classical risk-neutral valuation theory for financial derivatives it is implicitly
assumed that the product is traded in a perfectly liquid market, which means that
it can be bought and sold at once within the trading session and that this does not
cause any substantial price movement. Typical examples for assets which are traded
in rather liquid markets are shares of big listed companies, the corresponding plain
vanilla options on these shares and government bonds of countries with a high rating.
Neglecting processing, inventory and transaction costs of themarket makers, in these
markets the law of one price prevails, which means that the price for buying an asset
is the same as the one for selling it.

In reality however there are two prices, one for buying from the market—the ask
price—and one for selling to the market—the bid price. “The difference between
these two prices can be quite large and may have little connection to processing,
inventory, transactions costs or information considerations. The differences instead
reflect the very real and substantial costs of holding unhedgeable risks in incomplete
markets.”1. In particular a large part of the products financial institutions are deal-
ing with are very specialised. The markets for these over-the-counter (OTC) traded

1Cherny and Madan (2010), Introduction, p. 1150
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structured products are very narrow with the consequence of large spreads between
bid and ask prices.

Cherny and Madan (2010) started to develop a two price theory, which models
bid and ask prices in a way which takes the cost of unhedgeable risks into account.
In classical financial mathematics, cf. Delbaen and Schachermayer (2006), the price
π0(X) of a derivative with discounted payoff X is calculated via

π0(X) = EP [X ],

where P is a risk-neutral pricing measure. This formula is now substituted by the
non-linear pricing formulas

b(X) = inf
Q∈D

EQ[X ]
a(X) = sup

Q∈D
EQ[X ]

for the bid and the ask price of an asset with discounted payoff X . D is a convex
set of probability measures which contains a risk-neutral measure P . The size of D
is related to the degree of uncertainty (liquidity) in the market under consideration.
With increasing uncertainty more measures (scenarios) should be added to the set.
Conversely,D could be shrunk when the uncertainty in the market decreases. Details
and a vivid explanation of this can be found in Cherny and Madan (2010).

Under slight additional assumptions, namely comonotonicity and law-invariance,
these two values can be calculated using concave distortions Ψ , more exactly

b(X) =
∫
R

yΨ (FX (dy)) (19.21)

a(X) = −
∫
R

yΨ (F−X (dy)), (19.22)

where FX is the distribution function of X under P . Very useful parametrized families
of distortions (Ψγ )γ≥0 are presented in the following example.

Example 7 The MINVAR-family of distortions is defined by

ΨMI
γ (y) := 1 − (1 − y)γ+1, γ ≥ 0, y ∈ [0, 1].

Another family is given by

ΨMA
γ (y) := y

1
γ+1 , γ ≥ 0, y ∈ [0, 1]

and is called MAXVAR. One possible combination ofMINVAR and MAXVAR is

ΨMAMI
γ (y) := (1 − (1 − y)γ+1)

1
1+γ , γ ≥ 0, y ∈ [0, 1]
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and is called MAXMINVAR. The other possible combination is

ΨMIMA
γ (y) := 1 − (1 − y

1
γ+1 )γ+1, γ ≥ 0, y ∈ [0, 1]

and is called MINMAXVAR.

The existence of the integrals in (19.21) and (19.22) is not discussed in Cherny and
Madan (2010). It depends on the payoff X and the used distortion Ψ . The existence
under the four introduced distortions is ensured, if X possesses exponentialmoments,
as seen in the following proposition.

Proposition 1 Let X be a random variable with E[et X ] < ∞ for |t | ≤ t0. Then the
integrals (19.21) and (19.22) exist for the distortion families ΨMA, ΨMI, ΨMAMI,
ΨMIMA and any γ ≥ 0.

Proof The assumption implies that the distribution function FX of X decays expo-
nentially. We consider the left tail of ΨMA

∫ 0

−∞
ΨMA

γ (FX (y))dy ≤
∫ 0

−∞
ΨMA

γ (Cet0 y)dy = C
1

1+γ

∫ 0

−∞
e

t0
1+γ

ydy < ∞

and the left tail of ΨMI

∫ 0

−∞
ΨMI

γ (FX (y))dy ≤
∫ 0

−∞
ΨMI

γ (Cet0 y)dy

=
∫ 0

−∞
1 − (1 − Cet0 y)1+γ dy

≤ C1 +
∫ −d2

−∞
1 − (1 + (1 + γ )(−Cet0 y))dy

= C1 +
∫ −d2

−∞
(1 + γ )Cet0 ydy < ∞,

where we have used Bernoulli’s inequality

(1 + x)r ≥ 1 + r x (x > −1, r ≥ 1).

The same arguments show the statement for the right tails of ΨMI and ΨMA and for
both tails of the distortion families ΨMAMI and ΨMIMA. 	
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Example 8 Since the payoff P = (K − ST )+ of a put option always possesses expo-
nential moments if ST ≥ 0, the bid and ask prices always exist and are given by

aγ (P) =
∫ K

0
Ψγ (FST (x))dx (19.23)

bγ (P) =
∫ K

0
(1 − Ψγ (1 − FST (x)))dx . (19.24)

The payoff C = (ST − K )+ of a call option does not possess exponential moments
in general for nonnegative random variables ST . Consider ST = S0 exp(Y ) for a
random variable Y with exponential moment at u0 > 1. Let Ψ be the MINVAR-
family of distortions. Then the integrals (19.21) and (19.22) exist for every γ ≥ 0
and we get

aγ (C) =
∫ ∞

K
Ψγ (1 − FST (x))dx (19.25)

bγ (C) =
∫ ∞

K
(1 − Ψγ (FST (x)))dx . (19.26)

Let Ψ be the MAXVAR-, MAXMINVAR- or MINMAXVAR-family of distortions.
Then the integrals exist for every γ ∈ [0, u0 − 1) and the formulas (19.25) and
(19.26) are in force for γ ∈ [0, u0 − 1). The proofs are similar to that of Proposition
1. Details can be found in Bäurer (2015).

Wenowapply the two price theory to theDefaultableAsset PriceModel and derive
bid and ask prices for options. As a consequence, we get prices for which market,
credit and liquidity risk is taken into account. The bid and ask price formulas (19.21)
and (19.22) depend on the distribution function FX of the option payoff X . In many
cases, it can be reduced to a dependence on FST , the distribution function of the
underlying ST , cf. Example 8. In the DAM, the distribution function

FST (x) = P(T ≥ τ) + P(eXT ≤ x and T < τ)

of the asset price ST is not known explicitly, because of the dependence between
XT and τ . Nevertheless one can calculate the desired values numerically. Using
Lemma 1, the quantities P(T < τ) and P(T ≥ τ) = 1 − P(T < τ) are given by a
simple integral

P(T < τ) = E[e−ΓT ] = e−Γ d
T exp

(∫ T

0
θZ (−γ T

u )du

)
.
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We use the T -survival measure PT (A) := P(A | T < τ) to determine

P(eXT ≤ x and T < τ) = P(eXT ≤ x | T < τ) · P(T < τ)

= PT (eXT ≤ x) · P(T < τ).

The probability PT (eXT ≤ x) can be calculated numerically by Fourier inversion

PT (eXT ≤ x) = PT (XT ≤ log(x)) ≈ PT (C ≤ XT ≤ log(x))

= 1

2π

∫
e−i tC − e−i t log(x)

i t
ϕPT

XT
(t)dt, (19.27)

where the constantC ∈ Rhas to be chosen properly.ϕPT

XT
is the characteristic function

of XT under PT , which can be calculated by integration via (19.12). Thus, the
computational cost for calculating the distribution function at one point is that of
two simple integrations and one double integration.

Alternatively, we can compute the distribution function FST by Monte Carlo sim-
ulations. We can then also assess the bid and ask prices for path-dependent options.

For the existence of the integrals in (19.21) and (19.22), we often need the exis-
tence of exponential moments of

XT := log S0 + rT + LT − ζ ZT + ωT + ΓT .

Lemma 7 Suppose that

(I) LT has an exponential moment of order u0 > 0.
(II) ZT has an exponential moment of order u0[( 1κ − ζ ) ∨ ζ ].

Then XT has an exponential moment of order u0.

Proof First we observe that |γ T
s − ζ | ≤ ( 1

κ
− ζ ) ∨ ζ and therefore we can conclude

E[exp(u0XT )] = const. · E
[
exp (u0LT − u0ζ ZT + u0ΓT )

]

= const. · E[exp(u0LT )]E

[
exp

(∫ T

0
γ T

s u0 − ζu0d Zs

)]

≤ const. · MLT (u0) · E

[
exp

(∫ T

0
u0|γ T

s − ζ |d Zs

)]

≤ const. · MLT (u0) · E

[
exp

(
u0

[(
1

κ
− ζ

)
∨ ζ

]
ZT

)]
< ∞.
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Fig. 19.7 Bid and ask prices
of a put with S0 = 30, DAM
with parameters (∗∗),
T = 260, γ = 0.1,
MAXVAR
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Fig. 19.8 Bid and ask prices
of a digital call with
S0 = 30, DAM with
parameters (∗∗), T = 260,
γ = 0.1,MAXVAR
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Example 9 For pricing calls and puts, we can use (19.23), (19.24), (19.25) and
(19.26). Suppose XT has an exponential moment at u0 > 1. If Ψ is the MINVAR-
family of distortions, then the integrals in (19.25) and (19.26) exist for every γ ≥ 0.
IfΨ is theMAXVAR-,MAXMINVAR- orMINMAXVAR-family of distortions, then
the integrals exist for every γ ∈ [0, u0 − 1). A numerical examplewith the parameter
set

α = 50.0 β = −0.1 δ = 0.012
p = 0.0035 b = 66 κ = 0.11 (∗∗)

ζ = 9.0.

is shown in Fig. 19.7.
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Example 10 For a digital call option with barrier B > 0 and payoff X = 1{ST >B},
we can use the simple formulas

aγ (X) = Ψγ (1 − FST (B)) and

bγ (X) = 1 − Ψγ (FST (B)).

Figure 19.8 shows a numerical example. For this option, there are no constraints
concerning the integrability.
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20Effects of RegimeSwitchingonPricing
CreditOptions in a ShiftedCIRModel

L. Overbeck and J. Weckend

20.1 Introduction

This paper studies the effects of regime switching in interest rate and single-name
credit risk modeling in the context of Cox and Ross (1985) (CIR) processes. The
focus is on the price implication for CDS options.

Figure20.1 shows the absolute daily spread changes of the most liquid default
product in Europe—the iTraxx® Main 5 year.

Oneway to interpret the inhomgeneous picture in Fig. 20.1 can be based on chang-
ing distributions of the spread changes in different time intervals over the whole
period. There is at least one regime switch at the beginning of the credit crisis in the
mid of 2007. Over a longer time period there are more regime switches, and there are
economic cycles with irregular economy state changes (e.g., Hamilton (1989)). This
observation gave the motivation to consider credit models with regime switching for
pricing credit options.

Usually there are two classes of credit models. For a general overview on pricing
models for credit derivativesBielecki andRutkowski (2004)may serve as a reference.
The first one is the reduced form model, cf. e.g. Lando (1998); Duffie and Singleton
(1999), to which the CIR family of models belongs. The second one is the class
of structural models. They assume an underlying structure which causes the default
event. The default time τD is for example modelled as the first hitting time of the firm
value process A, i.e. τD = inf{t ≤ 0|At ≤ D0} where the default point D0 might be
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Fig. 20.1 iTraxx®Main 5
year historic spread changes
(6th July 2012,
Copyright c©2012 Markit
Group Limited)
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derived from balance sheet data. The reduced form models reduce the analysis to the
direct modeling of the default intensity of τD . Mathematically τD is a Cox process
with stochastic intensity x(t), t ≥ 0. In the CIR model, which is again a subclass of
affine models (e.g., Duffie and Singleton (1999)), this intensity follows the so-called
square-root process.

Since structural models are very difficult to calibrate to the term structure of
defaults of a counterparty, in the area of single name credit derivative pricing, reduced
form models are usually preferred and implemented, cf. e.g. Brigo et al. (2013).
According to this reference the CIR-EJ++ is a widely used and accepted model and
serves as a starting point in the present paper.

Because of the above mentioned observation we want to analyse how the pricing
will change if we incorporate regime switching into the picture.

In addition to the default intensity the modeling of the interest component is
done by the short rate model CIR++. For interest rate it prevents negative rates
by definition, is analytically tractable and matches the term structure exactly. This
model is an extension of the CIRmodelwith a deterministic shift introduced byBrigo
and Mercurio (2001). In Brigo and Mercurio (2006) it is called shifted square-root
diffusion model in case of default. Due to the large jumps in the credit market, the
model is extended by an exponential jump component. Exponential jumps keep the
property of positivity, but do not enable the model to reflect large down movements
of the default intensity which are also visible in specific market environments.

The changes of regimes are handled in the model by introducing a hiddenMarkov
process to simulate the possibility of different distributions depending on the states.
If there are two states only these may be interpreted as good and bad economy, but
a finer grid of states is possible as well. This regime switching component affects
both, the interest and the default component. Usually, in case of a bad economy, the
interest rate decreases and the default intensity increases, and vice versa in a good
economy.

Upon introduction of the regime switching into the CIR++ process the analytical
tractability is lost. The calibration to the term structure is done by the deterministic
shift, the volatility calibration is not possible in an analytical way.



Effects of Regime Switching on Pricing Credit Options in a Shifted CIR Model 419

20.2 Regime Switching CIR

Figure20.1 indicates that the distribution of iTraxx® Main spread changes has sig-
nificantly changed between the time period before and after mid of 2007. Constant
component models would omit this economic behavior by using one distribution
only for the risk factor. The regime switching models offer one option to overcome
this problem. In these models a state variable is introduced. The distribution of the
process thus, becomes state dependent. This state variable can be modeled as a
Markov process.

The regime switching models can be traced back to the early work of Lindgren
(1978) and became popular after the seminal work of Hamilton (1988). There are
many papers on this topic as, among others, Gray (1996) or Ang and Bekaert (2002).
Most papers on regime switching have no pricing background. In this paper the effect
and the importance of the regime switching will be shown.

The model for the interest rate r and the default intensity λ are in its most general
form CIR-EJ++ models, i.e. CIR models with exponential distributed jumps. “++”
stands for the shift in order to calibrate the current term structure, cf. Brigo and
Mercurio (2001)without theEJ component andBrigo andEl-Bachir (2006) including
the jump component:

y (t) = xα (t) + ϕCIR (t;α) (20.1)

Here xα (t) is CIR process with exponential jumps defined by

dxα (t) = κ
(
θ − xα (t)

)
dt + σ

√
xα (t)dW (t) + J (γ) dN (ς) (20.2)

where dN (ς) represents a homogeneous Poisson process with constant intensity
ς > 0 (jump arrival rate) and N is independent of the Brownian motion W . J
is exponentially distributed with a positive mean γ. The deterministic function
ϕCIR (t;α) is chosen to match the initial term structure as usual. The parameter
vector is α = (x (0) ,κ, θ,σ, ς, γ). The process xα is always positive if the Feller
condition

(
2κθ > σ2

)
is satisfied.

An example of a probability density function of CIR and CIR-EJ is shown in Fig.
20.2 where the parameter vector (0.0165, 0.4, 0.026, 0.14, 0.25, 0.15) is applied with
a time horizon of one year. The last two components of the parameter vector are only
used in the CIR-EJ model. As expected, the exponential jump component shifts the
density to higher values.

The CIR++ process and the CIR-EJ++ process are also called shifted square-root
diffusion (SSRD) process and shifted square-root jump diffusion (SSRJD) process,
respectively, as described in Brigo and Mercurio (2006).

Now we come to the regime switching.We use the generator matrix approach
described in Elliott et al. (1995) to determine the state process and its transitions.The
economic state variable is modeled by an F-adapted continuous-time Markov chain
process S (t) with a finite state space S := (s1, . . . , sZ ). As in Elliott et al. (2005)
the state space is described by a finite set of unit vectors {e1, . . . , eZ } where ei =
(0, . . . , 1, . . . , 0) ∈ R

Z without loss of its generality.
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Fig. 20.2 Probability
density function for CIR and
CIR-EJ
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pi j (t, T ) := P
(
S (T ) = e j | S (t) = ei

)
denotes the transition probabilities of S

from state ei to state e j for all times t ≤ T , i, j = 1, . . . , Z , Q (t, T ) := [
pi j (t, T )

]
.

Let A (t) = [
ai j (t)

]
i, j=1,...,Z denote the generator matrix of the Markov chain

process. The real matrix A (t) satisfies the usual requirements as aii (t) =
− ∑

j �=i ai j (t) and ai j (t) ≥ 0 for all i �= j .

Assumption 1 Each parameter in the parameter vector is itself a vector of length Z
(number of states). The short rate r is assumed to be a RS CIR++ model given by1

r (t) = xα
r (t) + ϕRS CIR (t;α) where

dxα
r (t) = 〈κr , S (t)〉

(〈θr , S (t)〉 − xα
r (t)

)
dt + 〈σr , S (t)〉

√
xα
r (t)dW (t)

with parameter vector α = (
xα
r (0) ,κr , θr ,σr

) ∈ R × R
Z × R

Z × R
Z .

Assumption 2 The default intensity λ is assumed to be a RS CIR++ or a RS CIR-
EJ++ by

λ (t) = xβ
λ (t) + ϕRS CIR-EJ (t;β) where

dxβ
λ (t) = 〈κλ, S (t)〉

(
〈θλ, S (t)〉 − xβ

λ (t)
)
dt + 〈σλ, S (t)〉

√
xβ
λ (t)dW̄ (t)

+ J (〈γλ, S (t)〉) d N̄ (〈ςλ, S (t)〉)

with parameter vector β =
(
xβ
λ (0) ,κλ, θλ,σλ, ςλ, γλ

)
∈ R × R

Z × R
Z × R

Z ×
R

Z × R
Z . The last two parameters exist only in the RS CIR-EJ++ model.

1〈., .〉 is a scalar product in R
Z that for any a, b ∈ R

Z is: 〈a, b〉 = ∑Z
i=1 ai bi .
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Assumption 3 The Brownian motions W and W̄ are correlated according to

d
〈
W (t) , W̄ (t)

〉 = ρ dt

The jump component is assumed to be independent of the Brownian motions.
The state space process S is independent of the Brownian motions W and W̄ and

of the jump component N̄ .

The deterministic shift is again chosen to match the exact term structure as in the
CIR++ or CIR-EJ++model. Besides the starting point of the process, each parameter
is a vector of length Z . The other way round each state i = 1, . . . , Z has one parame-
ter vector with constants (x (0) ,κi , θi ,σi , ςi , γi ). The Feller condition is satisfied if
it is satisfied for each of the Z one-dimensional parameter vectors.

The interest rate has no jump component because it plays a minor role only in
the valuation of credit products. Moreover, in the world of interest rates a jump
component with positive shocks only is not reasonable. In the credit world shocks
are possible which cause a positive jump of the default intensity. For example the
default intensity of a firm jumps in case of bad news. The downward movement after
such bad news is mostly smoother which is covered by the diffusion part.

20.3 Results

We now present results on the effect of the different models on Credit Default Swap
option valuation which are based on a tree implementation of the regime switching
model, cf. Overbeck and Weckend (2017).

A credit default swap (CDS) is a swap of premium payments K at times
Ta+1, . . . , Tb in exchange for a single protection payment Lgd (= 1 − RR) at default
time τ , provided that Ta < τ ≤ Tb. To simplify the forthcoming formulas the notional
is set to one. The CDS can be split into two parts, such as, the default leg for the
default payments and the premium leg for the insurance payments. The discounted
payoffs at time t are equal to

1{Ta<τ≤Tb}D (t, τ )Lgd (20.3)

resp.

K
(∑b

i=a+1 D (t, Ti )αi1{τ≥Ti } + D (t, τ )
(
τ − Tβ(τ )−1

)
1{Ta<τ<Tb}

)
(20.4)

where β (t) = min {k | Tk > t} is the next date in the tenor structure after t , thus,
t ∈ [

Tβ(t)−1, Tβ(t)
)
. D (t, T ) is the stochastic discount factor at t for time T .
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The price of a CDS is the expectation of the difference between its two legs
(protection seller view) and given by

CDSa,b (t; K ) =E

[
K

(
b∑

i=a+1

D (t, Ti )αi1{τ≥Ti } + D (t, τ )
(
τ − Tβ(τ )−1

)
1{Ta<τ<Tb}

)

− 1{Ta<τ≤Tb}D (t, τ )Lgd

∣∣
∣∣Ft

]

where Ft describes the information available at t .
A credit default swap option or credit default swaption is an option on a CDS.

It gives the holder the right to enter a CDS at its beginning Ta at a predefined level
(strike) K . There are two different types of options, to sell or buy protection. The
price of a call option (CallCDS) is given by

CallCDSa,b (t; K ) := E

{
1{τ>Ta}D (t, Ta) · [−CDSa,b (Ta; K )

]+ |Ft

}
.

The calibrations used in the examples were carried out in the spirit of market models
(as in Schönbucher (2000), Jamshidian (2004), Brigo and Morini (2005)). This is
possible since in case without regime switching semi-analytic formula for standard
products are available. For more details of the calibration and implementation we
refer to the Ph.D. thesis Weckend (2014). The programming language MATLAB®
is used to obtain these results.

The market data of the 6th July 2012 is the taken for the short rate, the default
intensity is basedonAllianzmarket data on that date.2 All parameters are summarized
in Table20.1. Here the first three rows belong to the interest rate component.

The regime switching model is presented for two and for three regimes. For the
two and the three regimes one parameter vector is given in Table20.1 only. The
reason is that the one and two regime parameter vectors are taken additionally for
the two and three regime models respectively. The parameters in the one-regime
case calibrated to the option prices are adjusted to match the Feller condition. These
single regime parameter is used as start regime in any case.

The parameters in the second and third regime are chosen to reflect different
market conditions accordingly to a basic statistical analysis as in Weckend (2014).
That means they are not calibrated to market data. In the non-jump models the
mean-reversion level and the volatility are adapted and for the interest rate model
the speed of mean-reversion as well. On the jump model only the jump components
are changed to separate the effects.

The second regime reflects a better economy state than the first one. The third
regime represents a very bad economy state with very high volatilities and high

2We do not present more recent data, since the calibration to negative interest rates seems to require
an extension of the model and some additonal calibration procedures. This we want to avoid in
order to focus on the regime switching.
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Table 20.1 Parameters in RS CIR model

model variable x (0) κ θ σ ς γ

CIR++ α 0.0003 0.0707 0.032 0.065 - -

2-RS
CIR++

α 0.0003 0.0707 0.05 0.01 - -

3-RS
CIR++

α 0.0003 0.707 0.02 0.12 - -

CIR++ β 0.0055 0.2 0.035 0.11 - -

2-RS
CIR++

β 0.0055 0.2 0.02 0.05 - -

3-RS
CIR++

β 0.0055 0.2 0.07 0.3 - -

CIR-EJ++ β 0.0038 0.0307 0.03 0.04 0.02 0.1445

2-RS
CIR-EJ++

β 0.0038 0.0307 0.03 0.04 0.01 0.05

3-RS
CIR-EJ++

β 0.0038 0.0307 0.03 0.04 0.06 0.25

default intensities. The applied generator matrices of the transition probabilities are
given by

A =
(−0.014 0.014

0.021 −0.021

)
, A =

⎛

⎝
−0.024 0.014 0.01
0.015 −0.0151 0.0001
0.011 0.0001 −0.0111

⎞

⎠

in the two and three regime models, respectively. The parameter vectors in the dif-
ferent states does satisfy the Feller condition. The condition that the model forward
curve is below the market forward curve is satisfied for the applied transition proba-
bilities. This is necessary to have a positive deterministic shift function keeping the
overall short rate process positive.

As already announced all different models are applied to the CDS call option.
The maturity date of the option is the 20th December 2012, the final CDS date is the
20th June 2017. The strike is chosen to be at the money. For the CIR default intensity
model and in case of deterministic interest rates the analytical price is given by 36
bps, in the CIR-EJ model by 27bps. The correlation between interest rate and default
intensity is assumed to be zero.

In Fig. 20.3 the prices are shown in relation to a multiplier of the generator matrix.
The specified generator matrix is used per year in case of the multiplier being one.
The statistics in Weckend (2014) are calculated on a daily basis. Therefore the factor
goes up to 250 business days which means that the generator matrix is rescaled to
a daily basis. A factor of 250 results in very high transition probabilities which are
not in line with economic cycles and with durations of several years at least. But
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Fig. 20.3 CDS option prices

its application is useful to show some effects of regime switching and its impact on
CDS option prices.

In Fig. 20.3a the regime switching model is shown without jumps. The lower
volatility parameter in the second state leads to a lower price for the two regime
case as expected. The small hump in the beginning can be explained by the volatility
through the regime switching. The three regime case is exactly vice versa. The
additional volatile regime leads to increased prices by an increased multiplicative
factor. The slope is much higher in the beginning than for factors higher than 20.
For higher factors the process is more like a mixture process and the slope becomes
smaller.

The effects in case of the RS CIR-EJ++ model are presented in Fig. 20.3b. The
shapes are very similar to the non-jumpmodel parameters in Fig.20.3a. There is again
a hump on the two regime case and afterwards slightly decreasing prices. The prices
in the three regime case strongly increase in the beginning due to higher probabilities
for the third regime in which the CDS option has a higher value. At certain point in
time the prices decrease due to the effect of very fast regime switches.

In this example it is shown that using a regime switchingmodels for option pricing
has a significant impact.

20.4 Conclusion

Looking at the historic CDS data suggests that the distribution of the time series
cannot be handled using only one parameter vector for all time periods. Based on
a rough analysis of historical data (Weckend (2014)), we implement a model with
three different states to explain the spread returns occurring on the iTraxx® Main
and CDX® IG historic time series.

More specially in this paper default intensities and interest rates aremodeled using
a regime switching CIR model (RS CIR). The basic model definition and the impact
on CDS option prices are given. In these examples the price differences between a
single regime CIR model and RS CIR models are very significant.
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For further model development, the calibration of the RS CIR model to market
data is a necessary step. This will require a (semi-) analytic solution of the bond
option prices in case of regime switching.
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21.1 Introduction

From an empirical viewpoint it is not clear whether there are glass ceiling effects in
corporate, political or academic contexts. The results are mixed: sometimes discrim-
ination seems to become worse at the upper levels, while at others it is constant or
even improves (Smith, 2012; Jackson and O’Callagham, 2009). These discrepancies
may be partly explained by the fact that the notion of glass ceiling effects is not
always the same in all papers. But it may also be the case that glass ceilings are
present in some markets or for some types of corporate hierarchy but not for others,
so that different data sets yield different answers as to whether or not there is a glass
ceiling (Baxter and Wright, 2000).

On the other hand, there is clear evidence of gender and race biases in different
contexts (Goldin andRouse, 2000;Moss-Racusin et. al., 2012; andReuben, Sapienza
and Zingales, 2014, among others) and of selection processes that make use of
stereotypes (Fershtman andGneezy, 2001) and could result in a bias in the perception
of female qualifications.
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In this paper we explore the conditions for obtaining glass ceiling effects when
there is a gender bias at different levels of a hierarchical organization. We show
that the explanation for the glass ceiling effect does not need to rely on exogenous
greater discrimination at the top levels but on the dynamics of the process, the shape
of the hierarchical organization and the distribution of abilities. To isolate the effect
of the bias we assume that male and female candidates have the same preferences
and outside options, so that there are no labor supply effects (Bertrand, Goldin and
Katz, 2010).

The situation for homogeneous individuals has been studied in Espinosa and
Ferreira (2015); Espinosa et. al., (2016) and in Ferreira and Stute (2016). Theseworks
provide theoretical tools to study the consequences of bias on the long run and on
the glass ceiling effects. Here the context is different, individuals are heterogeneous
in their abilities and high ability individuals are more productive; the distribution
of abilities is the same for men and women, although their perceived abilities may
differ when there is a perception bias. In this setup, the selection process involves
choosing the best candidates, in particular setting a minimum level, or a quantile, in
the space of abilities and selecting candidates above the threshold.

The paper is organized as follows. Section21.2 presents the main elements of a
hierarchical structure and formalizes the concept of a promotion structure in this
framework. Section21.3 characterizes three different notions of glass ceiling effects
and their links to the characteristics of a promotion structure. Section21.4 presents the
results for two families of ability distributions, Pareto andWeibull. Finally, Sect. 21.5
discusses the main results and concludes. The proofs are relegated to the Appendix.

21.2 Modeling Discrimination Under Heterogeneus Abilities

We consider selection processes that choose the best candidates in a population with
different groups. Thoroughout the paper we refer to these groups as men and women,
but they could be defined according to other characteristic such as ethnic origin, etc.
The important point is that there is a perception bias against one of the groups; we
assume that the distribution, F , of real abilities, X , is the same in the two groups and
all individuals show the same willingness to work, so that we can explore the effects
of the bias in isolation from any possible labor supply effects. Once in the job, the
candidate’s productivity is an increasing function of his/her real ability. This setup
corresponds to positions where efficiency increases with the qualifications of the
elected candidates. The model and the selection procedure are formalized through
the following set of assumptions:

The candidates

Assumption (H.1) (Equal distribution of abilities)Eligible candidates can be ordered
according to their abilities. The abilities of the candidates are independent observa-
tions of the same random variable X with distribution F.
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We denote the perceived ability by S, that takes a value Sm, when the candidate
is a male, and S f when she is a female. The candidates’ abilities are observable but
there may be a perception bias:

Assumption (H.2) (Perception bias) The perception of male abilities, Sm , has no
bias so the perceived and real ability coincide, Sm = X , and therefore P (Sm ≤ x) =
F (x), whereas for female candidates the distribution of the perceived abilities, S f ,
accounts for some gender bias.More precisely, for female candidates perceived abili-
ties are a function of real abilities: S f = �(X),where 0 < �(x) ≤ x and� ′(x) > 0,
so that P (Sm ≤ x) = F

(
�−1(x)

)
. The discrepancy between x and �(x) is inter-

preted as the bias in the selection process and measured as 0 < �(x)/x ≤ 1.

Remark 1 If the bias depends on the level in the hierarchy, we should use �l(x)
However, as mentioned in the introduction, our interest is precisely to analyze the
effect of the bias on the glass ceiling effect, even when this bias does not depend on
the level.

The hierarchy
We describe the selection processes in a hierarchy with several rungs. The selection
process for promotion at each level, l, sets a minimum level of capabilities zl . All
candidates who are perceived to be above that level are promoted.

Assumption (H.3) (Promotion decision) For promotion from l − 1 to l all candidates
that are perceived to have abilities greater than zl are promoted. That is, a candidate
is selected if S ≥ zl . The candidates competing for level l are all those who were
promoted at level l − 1.

We assume that the hierarchical organization follows the layout of a pyramid:

Assumption (H.4) (Pyramid organizational structure) A hierarchy is a sequence
{z1, z2, z3, ..., zl−1, zl , ...} = {zl}l , where z j < z j+1 for all j .

Assumption (H.5) (Continuous abilities).We assume that the distribution of abilities
is absolutely continuous, which avoids trivial selection processes, that is F

(
z j

)
<

F
(
z j+1

)
for any hierarchy.

Our final interest is to check whether discrimination leads to wider gaps at higher
levels in a hierarchical organization or, in other words, whether there is a glass ceiling
effect. To that end we look at three different indices. The first one, denoted p(zl), is
just the proportion of women at each level of the hierarchy l which requires ability
zl . Under assumptions (H.1) to (H.5),

p (zl) = P(S = S f |S ≥ zl) = P
(
S = S f

)
P(S ≥ zl |S = S f )

P (S ≥ zl)

= ql P
(
X ≥ �−1(zl)

)

ql P
(
X ≥ �−1(zl)

) + (1 − ql) P (X ≥ zl)
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where ql is the proportion of women in the set of candidates to be promoted at level
l, which, by (H.3), is equal to p (zl−1), the proportion of women at rung l − 1.

To determine whether there is a glass ceiling effect we must look at the sequence
{p(z1), p(z2), ..., p(zl−1), p(zl), ...}, denoted by {p(zl)}. We show that for a given
level of ability zl the proportion p(zl) is independent of the rest of the hierarchical
structure {z1, z2, ..., zl−1, zl+1, ...}. In fact, the proportion p(zl) depends only on the
parameters of the model: the distribution of abilities, F , the bias, �(x)/x , and the
proportion of women in the population (the pool of candidates), q . This result is
stated as follows:

Lemma 1 Under (H.1) to (H.5) the proportion of women at each level l of the
hierarchy, p(zl), depends on the ability threshold zl . It does not depend on the rest
of the hierarchy structure {z1, z2, ..., zl−1, zl+1, ...}.

A promotion structure (PS) is characterized by the bias �(x)/x , the initial pro-
portion of women, q , the distribution of abilities, F , and the hierarchy, {zl}l ,
(PS) = {�(x)/x , q , F , {zl}l}. In a promotion structure (PS) a glass ceiling effect is
defined as an increasing discrimination gap as l increases. Using the first index, the
proportion of women at each level, we define the type 1 glass ceiling as follows.1.

Definition 1 In a promotion structure (PS), there is a type 1 glass ceiling effect
(GC1) if {p(zl)} is strictly decreasing in l.

The second index for the discrimination gap looks at the odds of men and women
being promoted to level l from the beginning of a career. Consider all female can-
didates at the beginning of the selection process and denote by ρ f (zl) the pro-
portion of them that will pass threshold zl ; similarly, ρm (zl) is the proportion of
men that will pass that same threshold zl . The partition theorem enables us to write
P (S ≥ zl) = P

(
S ≥ zl |S ≥ zl− j

)
P

(
S ≥ zl− j

)
, for any previous level zl− j < zl .

Thus, from assumption (H.3), we have that ρ f (zl) and ρm (zl) are independent of
the rest of the hierarchy structure {z1, z2, z3, ..., zl−1, zl+1, ...} and in particular of
the previous ability levels before level zl . Therefore, we can write

ρ f (zl) = P
(
S f ≥ zl

)
= P

(
X ≥ �−1(zl)

)

ρm (zl) = P
(
Sm ≥ zl

) = P (X ≥ zl)

The ratio ρ f (zl) /ρm (zl) measures the relative chances of each of the two groups
reaching a certain level l in the corporate hierarchy. Since abilities are equally dis-
tributed, in the absence of any discrimination (�−1(zl) = zl ) the index would be 1.

1See also Espinosa and Ferreira (2015) for similar definitions of glass ceilings in a homogeneous
abilities context
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When there is a gender bias (�−1(zl) > zl ), the index will be lower than 1. We are
interested in how this discrimination gap changes over the course of a pyramidal
hierarchy. Using this ratio, we define the type 2 glass ceiling.

Definition 2 In a promotion structure (PS), there is a type 2 glass ceiling effect
(GC2) when the sequence {ρ f (zl) /ρm (zl)} is strictly decreasing in l.

We propose a third measure, frequently used in empirical analysis: women who
have already reached high levels find it increasingly difficult to be promoted in
comparison with male candidates at the same level. Consider all female candidates
who have reached level l − 1 and denote by ρ

f
l−1 (zl) the proportion of them that

will pass the threshold zl ; similarly, ρml−1 (zl) is the proportion of men at level l − 1
that will be selected for level l. Then,

ρ
f
l−1 (zl) = P

(
S f ≥ zl |S f ≥ zl−1

)
= P(X ≥ �−1(zl)|X ≥ �−1(zl−1))

ρml−1 (zl) = P
(
Sm ≥ zl |Sm ≥ zl−1

) = P (X ≥ zl |X ≥ zl−1)

The index ρ
f
l−1 (zl) /ρml−1 (zl) considers the relative chances of promotion for women

and men who have reached a certain level in their careers (as opposed to the chances
at the beginning of a career, as in GC2). Again, in the absence of any discrimination
(γ = 1) the ratio would be 1, and we look at how this discrimination index moves
with l with a constant gender bias γ < 1.

Definition 3 In a promotion structure (PS), there is a type 3 glass ceiling effect
(GC3) when the sequence {ρ f

l−1 (zl) /ρml−1 (zl)} is strictly decreasing in l.

Since we assume there is a perception bias against one of the groups (women), we are
bound to find discrimination. The question is whether a non-increasing bias leads
to constant, wider or narrower gender discrimination gaps at higher levels of the
hierarchy.

One could conjecture that if the gender bias is constant, the gender gap should also
be constant no matter which definition of GC is considered. However, we show that
this is not the case. Even in this simple framework, for a given promotion structure,
the presence of the different types of glass ceiling effects depends crucially on the
hierarchy structure and/or the distribution of abilities. The next section presents some
general results, and applications to two families of ability distributions, Weibull and
Pareto.

21.3 Characterization of Glass Ceiling Effects

In this section we show that type 1 and type 2 glass ceilings do not depend on the
particular hierarchy structure {zl}l , but only on the distribution of abilities F and the
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biased perception �(x), whereas GC3 does depend on the specific hierarchy. The
function g(z) = P

(
X > �−1(z)

)
/P (X > z), which involves the distribution of

abilities F and the bias �(x)/x , is useful in deriving the results. Using this notation,
the general result can be stated as follows:

Proposition 1 Consider a given promotion structure, characterized by (PS) =
{�(x)/x, q, F, {zl}l}. Then, under Asumptions (H.1) to (H.5),

(i) If �(x) = x, there are no GC effects.
(ii) If �(x) < x, there is always GC1.
(iii) If �(x) < x and g(z) is a strictly decreasing function, there is GC2.
(iv) If �(x) < x and g (zl)2 > g (zl−1) g (zl+1) for any l > 1, there is GC3.

From this proposition it can be seen that a gender bias, �(x)/x < 1, always leads to
GC1, while GC2 also requires g(z) to decrease with z . Moreover, GC3 is related to
the hierarchy structure and a sufficient condition for GC3 is that g(zl )

g(zl−1)
be decreas-

ing in l. The following proposition highlights how GC3 is related to the hierarchy
structure:

Proposition 2 Fix (�(x)/x, q, F) and consider the class of all PS with (�(x)/x,
q, F). These promotion structures only differ in the hierarchy {zl}l , that is, on the
ability requirements for each level l. Consider any number of levels L; if g is strictly
monotone, there is a PS with L levels in the class with GC3 effects and there is also
a PS with L levels where the GC3 effects are reversed.

21.4 Glass Ceiling Effects Under Pareto andWeibull Distributions
of Ability

In this section we analyze GC effects in two applications with different distributions
of abilities. In particular, we check whether the conditions on g for the glass ceiling
effects hold (Proposition 1). TheWeibull and Pareto families of distributions are very
common for modeling the distributions of the tails, P(X ≥ z), and since the glass
ceiling is a concern in the upper tail of the distribution of abilities, both seem to be
good choices.

The main difference between the two families is the rate of decay. In the Weibull
case it is exponential while in the Pareto case there is a power-law decay. Thus, the
Pareto distribution models variables with heavier tails than the Weibull distribution.
As shown below, the shape of the rate of decay plays an important role inGC effects.
We also examine whether there is any role for the hierarchy in the GC3 effect.
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21.4.1 Weibull Case

In this subsection we assume that the ability X follows a distribution in the Weibull
family so that P (X > z) = e−(z/λ)a , where λ and a are positive parameters. We
assume a constant bias so that�(x) = γX . We examine which promotion structures
(PS)W = {γ, q , FW , {zl}l}, give rise to glass ceiling effects, where W denotes the
Weibull distribution function.

Proposition 3 Under (H.1) to (H.5), if γ < 1 and X follows a distribution in the
Weibull family:

(i) There are GC1 and GC2 for any promotion structure (PS)W .
(ii) Given (PS)W = {γ, q, FW , {zl}l}, there isGC3whenever zal+1 − zal > zal − zal−1

for any l.

It is interesting to discuss the condition for GC3 in (ii). The result indicates that,
even with the same distribution of abilities, promotion structures may or may not
lead to GC3 effects, depending on the ability requirements at the different lev-
els (the hierarchical structure). For instance, in the exponential case (a = 1), GC3
appears whenever the steps zl − zl−1 widen when climbing up the corporate ladder:
zl+1 − zl > zl − zl−1. This condition seems to be realistic since inmany companies’
organizational structures, the jumps between low levels are smaller than at the top
rungs.

However, if the steps zl − zl−1 are shorter at the top, not only does GC3 not
appear, but the odds ratio between females and males may reverse at higher levels.
This is a very counter-intuitive result since one would expect GC2 and GC3 to go in
the same direction.

21.4.2 Pareto Distribution

In this subsection, we apply our results to two Pareto distributions, the first kind
Pareto (FP) and thegeneralized Pareto (GP), and analyzewhich promotion structures,
(PS)FP and (PS)GP respectively, give rise to glass ceiling effects.
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First kind Pareto distribution
Consider that ability X follows a first kind Pareto distribution (FP), that is,
P (X > z) = (z/k)a , where parameters a and k are strictly positive. For this case,
the function g(z) = P (X > z/γ) /P (X > z) is constant:

g(z) = (z/γk)a

(z/k)a
= 1

γa

Therefore, there is no GC2. Moreover, since the condition for GC3 is g (zl)2 <

g (zl−1) g (zl+1), there is no GC3 either. This result can be stated as follows:

Proposition 4 Under (H.1) to (H.5), if γ < 1 and X follows a first kind Pareto
distribution (FFP):

(i) There is GC1 for any promotion structure (PS)FP = {γ, q, FFP , {zl}l}.
(ii) Given (PS)FP , there is no GC2 or GC3.

When abilities follow the first kind Pareto distribution the odds ratio between
women and men remains constant throughout the hierarchy, which prevents any type
2 or 3 GC effects.

Generalized Pareto distribution
Now consider that ability X follows a Generalized Pareto distribution, that is,

P (X > z) =
{(

1 − kz
σ

)1/k
k �= 0

exp
(− z

σ

)
k = 0

(21.1)

with σ > 0; if k > 0, 0 ≤ z ≤ σ/k; and if k ≤ 0, 0 ≤ z < ∞. Note that if k = 0
then this is the exponential case exp (σ); if k = 1, the distribution is uniform [0, σ];
and if k < 0, it is a second kind Pareto distribution.

Proposition 5 Under (H.1) to (H.5), if γ < 1 and X follows a generalized Pareto
distribution (FGP):

(i) For any (PS)GP = {γ, q, FGP , {zl}l}, there is always GC1 and GC2.
(ii) For any number of rungs L, there is a (PS)GP with L levels with GC3. There

is also a (PS)GP with L levels where the GC3 effect is reversed.

21.5 Conclusions

We explore glass ceiling effects in hierarchical organizations. Our results relate the
presence of glass ceilings to the structure of the hierarchy and the distribution of
abilities. We show that the explanation for glass ceiling effects does not need to rely
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on exogenous greater discrimination at top levels but on the requirements for each
level in the hierarchy and the characteristics of the distribution of abilities. These
results are roughly consistent with the mixed empirical evidence that has found glass
ceilings in some contexts but not in others.

As a general result, the type 1 glass ceiling effect appears whenever there is a
bias in the selection process, independently of the ability distribution. The type 2
glass ceiling effect, which accounts for unconditional probabilities of climbing the
corporate ladder, depends on the ability distribution but not on the hierarchy structure.
Finally, the type 3 glass ceiling effect depends on the distribution of abilities and
more crucially on the structure of the corporate ladder.

The results for the Weibull distribution point to the existence of all types of glass
ceiling effects (GC1, GC2 and GC3) when hierarchies have higher steps at the top
than at the bottom of the corporate ladder. However, this result cannot be extended
to other distributions.
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21.6 Appendix

Proof Lemma 1
For the sake of simplicity and without loss of generality consider hierarchy 1 with
one level {z} and hierarchy 2 with two levels, {z1, z2}, with z1 < z2 = z.

For the first hierarchy {z},

p1(z) = qP
(
X ≥ �−1(z)

)

qP
(
X ≥ �−1(z)

) + (1 − q) P (X ≥ z)

where q is the proportion of women in the population. For the second hierarchy
{z1, z},

p2(z) = p1(z1)P
(
X ≥ �−1(z)|X ≥ �−1(z1)

)

p1(z1)P
(
X ≥ �−1(z)|X ≥ �−1(z1)

) + (1 − p1(z1)) P (X ≥ z|X ≥ z1)

= qP
(
X ≥ �−1(z1)

)
P

(
X ≥ �−1(z1)|X ≥ �−1(z1)

)

qP
(
X ≥ �−1(z1)

)
P

(
X ≥ �−1(z)|X ≥ �−1(z1)

) + ..

.. + (1 − q) P (X ≥ z1) P (X ≥ z|X ≥ z1)

= qP
(
X ≥ �−1(z)

)

qP
(
X ≥ �−1(z)

) + (1 − q) P (X ≥ z)

= p1(z)



438 M.P. Espinosa and E. Ferreira

An induction argument shows the result for any twogeneral hierarchies {z1, z2, ...z, ...}
and {y1, y2, ...z, ...} with a level z in common. �

Proof Proposition 1
(i) This is straightforward since, for this case, P(X > z/γ) = P(X > z) for all z.
(ii)

p(zl) = P
(
S = S f |S ≥ zl

)
= P(S ≥ zl |S = S f )P

(
S = S f

)

P (S ≥ zl)

= ql P
(
X ≥ �−1(zl)

)

ql P
(
X ≥ �−1(zl)

) + (1 − ql) P (X ≥ zl)

= p(zl−1)P
(
X ≥ �−1(zl)

)

p(zl−1)P
(
X ≥ �−1(zl)

) + (1 − p(zl−1)) P (X ≥ zl)

From (H5), P (X ≥ zl) > P
(
X ≥ �−1(zl)

)
, so p(zl) < p(zl−1) for any zl−1 < zl .

(iii) GC2 is characterized by the condition

g(zl) = P
(
X > �−1(zl)

)

P (X > zl)
<

P
(
X > �−1(zl−1)

)

P (X > zl−1)
= g(zl−1)

That is, for a given hierarchy {zl}l there isGC2 if g (z1) > g (z2) > ... > g (zl) > ....

If g(z) is a monotone decreasing function, then there is GC2 for any hierarchy.
(iv) GC3 is characterized by the condition

P
(
X > �−1(zl+1)|X > �−1(zl)

)

P (X > zl+1|X > zl)
<

P
(
X > �−1(zl)|X > zl−1/γ

)

P (X > zl |X > zl−1)

P
(
X >�−1(zl+1)

)
/P

(
X >�−1(zl)

)

P (X > zl+1) /P (X > zl)
<

P
(
X > �−1(zl)

)
/P

(
X > �−1(zl−1)

)

P (X > zl) /P (X > zl−1)

g(zl+1)/g(zl) < g(zl)/g(zl−1)

which is equivalent to the condition g(zl+1)g(zl−1) < g(zl)2. �

Proof Proposition 2
Consider that g is strictly decreasing (the increasing case is analogous). Note

that g(z) is a continous bounded function which lies in the interval [0, 1]. Fix the
first point z1, a low value from the distribution of abilities, with g(z1) = α. Take an
increasing sequence of positive values {β2 < β3 < · · · < βL} such that

∑L
l=2 βl ≤

α. Then, the corresponding values {z1 < z2 < · · · < zL} such that g(z1) = α and
g(zl) = g(zl−1) − βl , for l = 2, ..., L conform a hierarchy with GC3 effects. This
is straightforward since βl < βl+1 implies

g(zl+1)g(zl−1) = (g(zl) − βl+1) (g(zl) + βl)

= g(zl)
2 − βl+1g(zl) + βl g(zl) − βlβl+1

= g(zl)
2 + g(zl) (βl − βl+1) − βlβl+1 < g(zl)

2
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To construct a hierarchy where the GC3 effect is reversed, consider a decreasing
sequence of positive values {β2 > β3 > · · · > βL} such that∑L

l=2 βl ≤ α/2,βl+1 <

βl/2, and the corresponding values {z1 < z2 < · · · < zL} such that g(z1) = α and
g(zl) = g(zl−1) − βl , for l = 2, ..., L . For this hierarchy g(zl+1)g(zl−1) > g(zl)2,
since g(zl) (βl − βl+1) > αβl/4 > β2

l /2 > βlβl+1. �

Proof Proposition 3
(i) From Proposition 1, there is GC2 if g is decreasing:

g (zl) = e−(zl/γλ)a

e−(zl/λ)a
<

e−(zl−1/γλ)a

e−(zl−1/λ)a
= g (zl−1)

⇔ − (zl/γλ)a + (zl/λ)a < − (zl−1/γλ)a + (zl−1/λ)a

⇔ zal (1/γ
a − 1) > zal−1(1/γ

a − 1)

⇔ zl > zl−1

which holds for any (PS)W .
(ii) From Proposition 1, there is GC3 if g (zl)2 > g (zl−1) g (zl+1) for any l > 2.

e−2(zl/γλ)a

e−2(zl/λ)a
>

e−(zl−1/γλ)a

e−(zl−1/λ)a

e−(zl+1/γλ)a

e−(zl+1/λ)a

⇔ −2 (zl/γ)a + 2zal > − (zl−1/γ)a − (zl+1/γ)a + zal−1 + zal+1

⇔ −2zal

(
1

γa
− 1

)
> −zal−1

(
1

γa
− 1

)
− zal+1

(
1

γa
− 1

)

⇔ zal+1 + zal−1 > zal + zal
⇔ zal+1 − zal > zal − zal−1

�

Proof Proposition 5
(i) For GC2, consider g(z) = P (X > z/γ) /P (X > z). For k = 0, the expo-

nential case has already been analyzed with the Weibull case. For the rest, it holds
that

g(z) =
(
1 − kz

γσ

)1/k

/

(
1 − kz

σ

)1/k

Hence, g′ (z) = C(z) (γ − 1) for

C(z) =
(
1 − kz

γσ

) 1
k −1 (

1 − kz
σ

) 1
k −1

σγ
(
1 − kz

σ

) 2
k

> 0
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so g′ (z) < 0. Therefore, the function is strictly decreasing, and the result follows
from Proposition 1.

(ii) Since g(z) is strictly decreasing, the result follows from Proposition 2. �
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