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Preface

‘Mathematical statistics’ never lost its attractiveness, both as a mathematical
discipline and for its applications in nearly all parts of empirical research.
During the last years it was found that not everything that is mathematically
optimal is also practically recommendable if we are not sure whether the
assumptions (for instance, normality) are valid.
As an example we consider the two-sample t-test that is an optimal

(uniformly most powerful unbiased) test if all assumptions are fulfilled. In appli-
cations however, we are often not sure that both variances are equal. Then the
approximateWelch test is preferable. Such results have been found by extensive
simulation experiments that played a much greater role the last time (see the
eight international conferences about this topic since 1994 under http://iws.
boku.ac.at).
Therefore we wrote in 2016 a new book in German (Rasch and Schott, 2016)

based on Rasch (1995) incorporating the developments of the last years.
We dropped the first part of the book from 1995 containing measure and

probability theory because we have excellent books about this such as Billingsley
(2012) and Kallenberg (2002).
Considering the positive resonance to this book in the community of statis-

tics, we decided to present an English version of our book from 2016. We thank
Alison Oliver for the reception into Wiley’s publishing programme.
We assume from probability theory knowledge about exponential families

as well as central and non-central t-, χ2- and F-distributions. Because the def-
inition of exponential families is basic for some chapters, it is repeated in
this book.
Most of the authors of books about mathematical statistics assume that data

already exist and must be analysed. But we think that the optimal design for col-
lecting data is at least as important as the statistical analysis. Therefore, in addi-
tion to statistical analysis, we included the design of experiments. The optimal
allocation is described in the chapters on regression analysis. Finally a chapter
about experimental designs is added.
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For practical calculations of data, we present and use in some parts of the book
IBM SPSS Statistics 24 for the statistical analysis, and we thank Dr. Johannes
Gladitz (Berlin) for giving us access to it. Unfortunately, it is not possible to
change within SPSS to British English – therefore, you find in the screens
and in our command ‘Analyze’.
The determination of sample sizes can be found together with the description

of the method of analysis, and for the sample size determination and other
design problems, we offer the package OPDOE (Optimal Design of Experi-
ments) under .
We heartily thank Prof. Dr. Rob Verdooren (Wageningen, Netherlands) for

proving the correctness of statistics and Sandra Almgren (Kremmling, CO,
USA) for improving the English text.

Rostock, December 2017 Dieter Rasch and Dieter Schott
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1

Basic Ideas of Mathematical Statistics

Elementary statistical computations have been carried out for thousands of
years. For example, the arithmetic mean from a number of measures or obser-
vation data has been known for a very long time.
First descriptive statistics arose starting with the collection of data, for exam-

ple, at the national census or in registers of medical cards, and followed by com-
pression of these data in the form of statistics or graphical representations
(figures). Mathematical statistics developed on the fundament of probability
theory from the end of 19th century on. At the beginning of the 20th century,
Karl Pearson and Sir Ronald Aylmer Fisher were notable pioneers of this new
discipline. Fisher’s book (1925) was a milestone providing experimenters such
basic concepts as his well-known maximum likelihood method and analysis of
variance as well as notions of sufficiency and efficiency. An important informa-
tion measure is still called the Fisher information (see Section 1.4).
Concerning historical development we do not want to go into detail. We refer

interested readers to Stigler (1986, 1990). Instead we will describe the actual
state of the theory. Nevertheless many stimuli come from real applications.
Hence, from time to time we will include real examples.
Although the probability calculus is the fundament of mathematical statistics,

many practical problems containing statements about random variables cannot
be solved with this calculus alone. For example, we often look for statements
about parameters of distribution functions although we do not partly or com-
pletely know these functions. Mathematical statistics is considered inmany intro-
ductory textbooks as the theory of analysing experiments or samples; that is, it is
assumed that a random sample (corresponding to Section 1.1) is given. Often it is
not considered how to get such a random sample in an optimal way. This is trea-
ted later in design of experiments. But in concrete applications, the experiment
first has to be planned, and after the experiment is finished, the analysis has to be
carried out. But in theory it is appropriate to determine firstly the optimal eval-
uation, for example, the smallest sample size for a variance optimal estimator.
Hence we proceed in such a way and start with the optimal evaluation, and after

1
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this we work out the design problems. An exception is made for sequential meth-
ods where planning and evaluation are realised together.
Mathematical statistics involves mainly the theory of point estimation, statis-

tical selection theory, the theory of hypothesis testing and the theory of confi-
dence estimation. In these areas theorems are proved, showing which
procedures are the best ones under special assumptions.
We wish to make clear that the treatment of mathematical statistics on the

one hand and its application to concrete data material on the other hand are
totally different concepts. Although the same terms often occur, they need
not be confused. Strictly speaking, the notions of the empirical sphere (hence
of the real world) are related to corresponding models in theory.
If assumptions for deriving best methods are not fulfilled in practical applica-

tions, the question arises how good these best methods still are. Such questions
are answered by a part of empirical statistics – by simulations. We often find
that the assumption of a normal distribution occurring in many theorems is
far from being a good model for many data in applications. In the last years sim-
ulation developed into its own branch in mathematics. This shows a series of
international workshops on simulation. The first to sixth workshops took place
in St. Petersburg (Russia) in 1994, 1996, 1998, 2001, 2005 and 2009. The seventh
international workshop on simulation took place in Rimini (Italy) in 2013 and
the eighth one in Vienna (Austria) in 2015.
Because the strength of assumptions has consequences mainly in hypothesis

testing and confidence estimation, we discuss such problems first in Chapter 3,
where we introduce the concept of robustness against the strength of
assumptions.

1.1 Statistical Population and Samples

1.1.1 Concrete Samples and Statistical Populations

In the empirical sciences, one character or several characters simultaneously
(character vector) are observed in certain objects (or individuals) of a popula-
tion. The main task is to conclude from the sample of observed values to the
whole set of character values of all objects of this population. The problem is
that there are objective or economical points of view that do not admit the com-
plete survey of all character values in the population. We give some examples:

• The costs to register all character values were out of all proportion to the value
of the statement (for instance, measuring the height of all people worldwide
older than 18 years).

• The registration of character values results in destruction of the objects
(destructive materials testing such as resistance to tearing of ropes or
stockings).
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• The set of objects is of hypothetic nature, for example, because they partly do
not exist at the moment of investigation (as all products of a machine).

We can neglect the few practical cases where all objects of a population can be
observed and no more extensive population is demanded, because for them
mathematical statistics is not needed. Therefore we assume that a certain part
(subset) is chosen from the population to observe a character (or character vec-
tor) from which we want to draw conclusions to the whole population. We call
such a part a (concrete) sample (of the objects). The set of character values
measured for these objects is said to be a (concrete) sample of the character
values. Each object of the population is to possess such a character value (inde-
pendent of whether we register the value or not). The set of character values of
all objects in the population is called the corresponding statistical population.
A concrete population as well as the (sought-after/relevant) character and

therefore also the corresponding statistical population need to be determined
uniquely. Populations have to be circumscribed in the first line in relation to
space and time. In principle it must be clear for an arbitrary real object whether
it belongs to the population or not. In the following we consider some examples:

Original population Statistical population

A Heifer of a certain breed in a certain
region in a certain year

A1 Yearly yield of milk of these heifer

A2 Body mass of these heifer after
180 days

A3 Back height of these heifer

B Inhabitants of a town at a certain day B1 Blood pressure of these
inhabitants at 6.00 o’clock

B2 Age of these inhabitants

It is clear that applying conclusions from a sample to the whole population
can be wrong. For example, if the children of a day nursery are chosen from
the population B in the table above, then possibly the blood pressure B1 but
without doubt the age B2 are not applicable to B. Generally we speak of char-
acters, but if they can have a certain influence to the experimental results, they
are also called factors. The (mostly only a few) character values are said to be
factor levels, and the combinations of factor levels of several factors factor level
combinations.
The sample should be representative with respect to all factors that can influ-

ence the character of a statistical population. That means the composition of the
population should be mirrored in the sample of objects. But that is impossible
for small samples and many factor level combinations. For example, there are
already about 200 factor level combinations in population B concerning the fac-
tors age and sex, which cannot be representatively found in a sample of 100
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inhabitants. Therefore we recommend avoiding the notion of ‘representative
sample’ because it cannot be defined in a correct way.
Samples should not be assessed according to the elements included but accord-

ing to the way these elements have been selected. This way of selecting a sample is
called sampling procedure. It can be applied either to the objects as statistical
units or to the population of character values (e.g. in a databank). In the latter
case the sample of character values arises immediately. In the first case the char-
acter must be first registered at the selected objects. Both procedures (but not
necessarily the created samples) are equivalent if the character value is registered
for each registered object. This is assumed in this chapter. It is not the case in so-
called censored samples where the character values could not be registered in all
units of the experiment. For example, if the determination of lifespans of objects
(as electronic components) is finished at a certain time, measured values of
objects with longer lifespans (as time of determination) are missing.
In the following we do not differ between samples of objects and samples of

character values; the definitions hold for both.

Definition 1.1 A sampling procedure is a rule of selecting a proper subset,
named sample, from a well-defined finite basic set of objects (population, uni-
verse). It is said to be at random if each element of the basic set has the same
probability p to come into the sample. A (concrete) sample is the result of a sam-
pling procedure. Samples resulting from a random sampling procedure are said
to be (concrete) random samples.

There are a lot of random sampling procedures in the theory of samples (see, e.g.
Cochran and Boing, 1972; Kauermann and Küchenhoff, 2011; Quatember, 2014)
that can be used in practice. Basic sets of objects are mostly called (statistical)
populations or synonymously sometimes (statistical) universes in the following.

1.1.2 Sampling Procedures

Concerning random sampling procedures, we distinguish (among other cases)

• The simple sampling, where each element of the population has the same
probability to come into the sample.

• The stratified sampling, where a random sampling is done within the before-
defined (disjoint) subclasses (strata) of the population. This kind of sampling
is only at random as a whole if the sampling probabilities within the classes are
chosen proportionally to the cardinalities of the classes.

• The cluster sampling, where the population is divided again into disjoint sub-
classes (clusters), but the sampling of objects is done not among the objects of
the population itself but among the clusters. In the selected clusters all objects
are registered. This kind of selection is often used as area samples. It is only at
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random corresponding to Definition 1.1 if the clusters contain the same num-
ber of objects.

• The multistage sampling, where at least two stages of sampling are taken. In
the latter case the population is firstly decomposed into disjoint subsets (pri-
mary units). Then a random sampling is done in all primary units to get sec-
ondary units. A multistage sampling is favourable if the population has a
hierarchical structure (e.g. country, province, towns in the province). It is
at random corresponding to Definition 1.1 if the primary units contain the
same number of secondary units.

• The (constantly) sequential sampling, where the sample size is not fixed at the
beginning of the sampling procedure. At first a small sample is taken and ana-
lysed. Then it is decided whether the obtained information is sufficient, for
example, to reject or to accept a given hypothesis (see Chapter 3), or if more
information is needed by selecting a further unit.

Both a random sampling (procedure) and an arbitrary sampling (procedure)
can result in the same concrete sample. Hence we cannot prove by inspecting
the sample itself whether the sample is randomly chosen or not. We have to
check the sampling procedure used.
For the pure random sampling, Definition 1.1 is applied directly: each object

in the population of sizeN is drawn with the same probability p. The number of
objects in a sample is called sample size, mostly denoted by n.
Themost important case of a pure random sampling occurs if the objects drawn

from a population are not put back. An example is a lottery, where n numbers are
drawn fromN given numbers (in Germany the well-known Lotto usesN = 49 and

n = 6). Using an unconditioned sampling of size N, the number M = N
n of all

possible subsets have the same probability p= 1
M to come into the sample.

As mentioned before, the sample itself is only at random if a random sampling
method was used. But persons become at once suspicious if the sample is
extreme. If somebody gets the top prize buying one lot of 10.000 possible lots,
then this case is possible although rather unlikely. It can happen at random, or in
other words, it can be the result of (a correct) random sampling. But if this per-
son gets the top prize buying one lot at three consecutive lotteries of the men-
tioned kind, and if it turns out additionally that the person is the brother of the
lot seller, then doubts are justified that there was something fishy going on. We
would refuse to accept such unlikely events and would suppose that something
is wrong. In our lottery case, we would assume that the selection was not at ran-
dom and that cheats were at work. Nevertheless, there is an extremely small
possibility that this event is at random, namely, p = 1/1.000.000.000.000.
Incidentally, the strategy of statistical tests in Chapter 3 is to refuse models

(facts) under which observed events possess a very small probability and instead
to accept models where these events have a larger probability.
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A pure sampling also occurs if the random sample is obtained by replacing the
objects immediately after drawing and observing that each object has the same
probability to come into the sample using this procedure. Hence, the population
always has the same number of objects before a new object is taken. That is only
possible if the observation of objects works without destroying or changing
them (examples where that is impossible are tensile breaking tests, medical
examinations of killed animals, felling of trees and harvesting of food). The dis-
cussed method is called simple random sampling with replacement.
If a population of N objects is given and n objects are selected, then it is n <N

for sampling without replacement, while objects that can multiply occur in the
sample and n >N is possible for sampling with replacement.
A method that can sometimes be realised more easily is the systematic sam-

pling with random start. It is applicable if the objects of the finite sampling set
are numbered from 1 to N and the sequence is not related to the character con-
sidered. If the quotientm =N/n is a natural number, a natural number i between
1 and m is chosen at random, and the sample is collected from objects with
numbers i ,m + i , 2m + i , … , (n – 1)m + i. Detailed information about this case
and the case where the quotient m is not natural can be found in Rasch et al.
(2008) in Method (1/31/1210).
The stratified sampling already mentioned is advantageous if the population

of size N is decomposed in a content-relevant manner into s disjoint subpopu-
lations of sizes N1 ,N2 , … ,Ns. Of course, the population can sometimes be
divided into such subpopulations following the levels of a supposed interfering
factor. The subpopulations are denoted as strata. Drawing a sample of size n is
to realise in such a population an unrestricted sampling procedure holds the
danger that not all strata are considered in general or at least not in appropriate
way. Therefore in this case a stratified random sampling procedure is favour-
able. Then partial samples of size ni are collected from the ith stratum (i = 1,
2, … , s) where pure random sampling procedures are used in each stratum.
This leads to a random sampling procedure for the whole population if the
numbers ni/n are chosen proportional to the numbers Ni/N.
While for the stratified random sampling objects are selected from each sub-

set, for the multistage sampling, subsets or objects are selected at random at
each stage as described below. Let the population consist of k disjoint subsets
of size N0, the primary units, in the two-stage case. Further, it is supposed that
the character values in the single primary units differ only at random, so that
objects need not to be selected from all primary units. If the wished sample size
is n = r n0 with r < k, then, in the first step, r of the k given primary units are
selected using a pure random sampling procedure. In the second step n0 objects
(secondary units) are chosen from each primary unit again applying a pure ran-

dom sampling. The number of possible samples is
k

r

N0

n0
, and each
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object of the population has the same probability p=
r
k

n0
N0

to reach the sample

corresponding to Definition 1.1.

Example 1.1 A population has N = 1000 objects. A sample of size n = 100
should be drawn without replacement of objects. Table 1.1 lists the number

Table 1.1 Possible samples using different sampling procedures.

Sampling Number K of possible samples

Simple random sampling
K =

1000

100
> 10140

Systematic sampling with random start K = 10

k = 10

Stratified random sampling
K =

50

5

20

= 2 11876 10120k = 20, Ni = 50, i = 1, …, 20

Stratified random sampling
K =

100

10

10

= 1 7310309 10130k = 10, Ni = 100, i = 1, …, 10

Stratified random sampling
K =

200

20

5

= 1 6135878 10135k = 5, Ni = 200, i = 1, …, 5

Stratified random sampling
K =

400

40

600

60
= 5 4662414 10138

k = 2, N1 = 400, N2 = 600

Two-stage sampling
K =

20

4

50

25
= 6 1245939 1017

k = 20, N0 = 50, r = 4

Two-stage sampling
K =

20

5

50

20
= 7 3069131 1017

k = 20, N0 = 50, r = 5

Two-stage sampling
K =

10

2

100

50
= 4 5401105 1030

k = 10, N0 = 100, r = 2

Two-stage sampling
K =

10

4

100

25
= 5 0929047 1025

k = 10, N0 = 100, r = 4

Two-stage sampling
K =

5

2

200

50
= 4 5385838 1048

k = 5, N0 = 200, r = 2

Two-stage sampling
K =

2

1

500

100
> 10100

k = 2, N0 = 500, r = 1

Basic Ideas of Mathematical Statistics 7



of possible samples using the discussed sampling methods. The probability of
selection for each object is p = 0.1.

1.2 Mathematical Models for Population and Sample

In mathematical statistics notions are defined that are used as models (general-
isations) for the corresponding empirical notions. The population, which cor-
responds to a frequency distribution of the character values, is related to the
model of probability distribution. The concrete sample selected by a random
procedure is modelled by the realised (theoretical) random sampling. These
model concepts are adequate, if the size N of the populations is very large com-
pared with the size n of the sample.

Definition 1.2 An n-dimensional random variable

Y = y1, y2,…, yn
T ,n ≥ 1

with components yi is said to be a random sample, if

• All yi have the same distribution characterised by the distribution function
F(yi, θ) = F(y, θ) with the parameter (vector) θ Ω Rp and

• All yi are stochastically independent from each other, that is, it holds for the
distribution function F(Y,θ) of Y the factorisation

F Y , θ =
n

i= 1

F yi, θ , θ Ω Rp

The values Y = (y1, y2, … , yn)
T of a random sample Y are called realisations.

The set {Y} of all possible realisations of Y is called sample space.

In this book the random variables are printed with bold characters, and the
sample space {Y} belongs always to an n-dimensional Euclidian space, that is,
{Y} Rn.
The function

L Y ,θ =
f Y , θ =

∂F Y , θ
∂Y

, for continuous y

p Y , θ , for discrete y

with the probability function p(Y, θ) and the density function f(Y, θ) correspond-
ingly is said to be for given Y as function of θ the likelihood function (of the
distribution).

8 Mathematical Statistics



Random sample can have two different meanings, namely:

• Random sample as random variable Y corresponding to Definition 1.2

• (Concrete) random sample as subclass of a population, which was selected by
a random sample procedure.

The realizations Y of a random sample Y we call a realized random sample.
The random sample Y is the mathematical model of the simple random sam-

ple procedure, where concrete random sample and realised random sample cor-
respond to each other also in the symbolism.
Wedescribe in this book the ‘classical’philosophy,whereY is distributed by the

distribution function F(Y, θ) with the fixed (not random) parameter θ Ω Rp.
Besides there is the philosophy of Bayes where a random θ is supposed, which is
distributed a priori with a parameter φ assumed to be known. In the empirical
Bayesian method, the a priori distribution is estimated from the data collected.

1.3 Sufficiency and Completeness

A random variable involves certain information about the distribution and their
parameters. Mainly for large n (say, n > 100), it is useful to condense the objects
of a random sample in such a way that fewest possible new random variables
contain as much as possible of this information. This vaguely formulated con-
cept is to state more precisely stepwise up to the notion of minimal sufficient
statistic. First, we repeat the definition of an exponential family.
The distribution of a random variable y with parameter vector θ = (θ1,θ2, …,

θp)
T belongs to a k-parametric exponential family if its likelihood function can

be written as

f y, θ = h y e
k

i= 1
ηi θ Ti y −B θ ,

where the following conditions hold:

• ηi and B are real functions of θ and B does not depend on y.

• The function h(y) is non-negative and does not depend on θ.

The exponential family is in canonical form with the so-called natural para-
meters ηi, if their elements can be written as

f y, η = h y e
k

i= 1
ηi Ti y −A η with η= η1,…, ηk

T

Let (Pθ, θϵΩ) be a family of distributions of random variables y with the dis-
tribution function F(y, θ), θ Ω. The realisations Y = (y1, … , yn)

T of the random
sample

Y = y1,y2,…,yn
T ,

Basic Ideas of Mathematical Statistics 9



where the components yi are distributed as y itself lie in the sample space {Y}.
According to Definition 1.2 the distribution function F(Y, θ) of a random sample
Y is just as F(y, θ) uniquely determined.

Definition 1.3 AmeasurablemappingM=M(Y) = [M1(Y), … ,Mr(Y) ]
T , r ≤ n

of {Y} on a space {M}, which does not depend on θ Ω, is called a statistic.

Definition 1.4 A statistic M is said to be sufficient relative to a distribution
family (Pθ, θϵΩ) or relative to θ Ω, respectively, if the conditional distribution
of a random sample Y is independent of θ for given M =M(Y) =M(Y).

Example 1.2 Let the components of a random sample Y satisfy a two-point
distribution with the values 1 and 0. Further, let be P(yi = 1) = p and P(yi = 0)
= 1 − p , 0 < p < 1. Then M =M Y = n

i=1yi is sufficient relative (correspond-
ing) to θ (0, 1) =Ω. To show this, we have to prove that
P Y =Y n

i= 1yi =M is independent of p. Now it is

P Y =Y M =
P Y =Y , M =M

P M =M
,M = 0,1,…,n

We know from probability theory thatM =M Y = n
i= 1yi is binomially dis-

tributed with the parameters n and p. Hence it follows that

P M =M =
n

M
pM 1−p n−M ,M = 0,1,…, n

Further we get with yi = 0 or yi = 1 and A(M) = {Y M(Y) =M } the result

P Y =Y , M Y =M =P y1 = y1,…, yn = yn IA M Y

=
n

i= 1

1

yi
pyi 1−p 1−yi IA M Y

= p
n

i= 1
yi 1−p n−

n

i= 1
yi IA M Y

= pM 1−p n−M

Consequently it is P Y =Y M =
1

n

M

, and this is independent of p.

This way of proving sufficiency is rather laborious, but we can also apply it for
continuous distributions as the next example will show.
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Example 1.3 Let the components yi of a random sample Y of size n be
distributed as N(μ,1) with expected value μ and variance σ2 = 1. Then
M = yi is sufficient relative to μ R1 =Ω. To show this we first remark that
Y is distributed as N(μen, In). Then we apply the one-to-one transformation

Z =AY = z1 = yi, y2−y1,…, yn−y1 withA=
1 eTn−1

−en−1 In−1

where |A| = n. We write Z = (z1, Z2) =( yi, y2 − y1, … , yn − y1) and recog-
nise that

cov Z2,z1 = cov Z2,M = cov −en−1, In−1 Y , eTn Y = 0n−1

Considering the assumption of normal distribution, the variables M and Z2

are stochastically independent. Consequently Z2 but also Z2 M and Z M are
independent of μ. Taking into account that the mapping Z = AY is biunique,
also Y M is independent of μ. Hence M = yi is sufficient relative to μ R1.
With a sufficient M = yi and a real number c 0, then cM is also sufficient,
that is, 1n yi = y is sufficient.
But sufficiency plays such a crucial part in mathematical statistics, and we

need simpler methods for proving sufficiency and mainly for finding sufficient
statistics. The following theorem is useful in this direction.

Theorem 1.1 (Decomposition Theorem)
Let a distribution family (Pθ, θϵΩ) of a random sample Y be given that is domi-
nated by a finite measure ν. The statistic M(Y) is sufficient relative to θ, if the
Radon–Nikodym density fθ of Pθ can be written corresponding to ν as

fθ Y = gθ M Y h Y 1 1

ν – almost everywhere. Then the following holds:

• The v – integrable function gθ is non-negative and measurable.

• h is non-negative and h(Y) = 0 is fulfilled only for a set of Pθ – measure 0.

The general proof came from Halmos and Savage (1949); it can be also found,
for example, in Bahadur (1955) or Lehmann and Romano (2008).
In the present book we work only with discrete and continuous probability

distributions satisfying the assumptions of Theorem 1.1. A proof of the theorem
for such distributions is given in Rasch (1995). We do not want to repeat it here.
For discrete distributions Theorem 1.1 means that the probability function is

of the form

p Y , θ = g M Y , θ h Y 1 2

Basic Ideas of Mathematical Statistics 11



For continuous distributions the density function has the form

f Y , θ = g M Y , θ h Y 1 3

Corollary 1.1 If the distribution family (P∗(θ), θϵΩ) of the random variable y is
a k-parametric exponential family with the natural parameter η and the likeli-
hood function

L∗ y, η = h∗ y e
k

i= 1
M∗

j y −A η , 1 4

then, denoting the random sample Y = (y1, y2, … , yn)
T,

M Y =
n

i= 1

M∗
1 yi ,…,

n

i= 1

M∗
k yi

T

1 5

is sufficient relative to θ.

Proof: It is

L y,η =
n

i=1

h∗ yi e
k

j= 1
ηj

n

i= 1
M∗

j yi −nA η
, 1 6

which is of the form (1.2) and (1.3), respectively, where h Y = n
i= 1h

∗ yi
and θ = η.

Definition 1.5 Two likelihood functions, L1(Y1, θ) and L2(Y2, θ), are said to be
equivalent, denoted by L1 ~ L2, if

L1 Y1, θ = a Y1,Y2 L2 Y2, θ 1 7

with a function a(Y1, Y2) that is independent of θ.

Then it follows from Theorem 1.1

Corollary 1.2 M(Y) is sufficient relative to θ if and only if (iff) the likelihood
function LM(M, θ) ofM =M(Y) is equivalent to the likelihood function of a ran-
dom sample Y.

Proof: If M(Y) is sufficient relative to θ, then because of

LM M, θ = a Y L Y , θ , a Y > 0, 1 8

LM(M, θ) has together with L(Y, η) the form (1.1). Reversely, (1.8) implies that
the conditional distribution of a random sample Y is for given M(Y) = M inde-
pendent of θ.
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Example 1.4 Let the components yi of a random sample Y = (y1, y2, … , yn)
T

be distributed as N(μ, 1). Then it is

L Y , μ =
1

2π n e
−1
2 Y −μen

T Y −μeN =
1

2π n e
−1
2

n

i= 1
yi−y

2

e−
n
2 y−μ 2

1 9

Since M Y = y is distributed as N μ, 1n , we get

LM y,μ =
n

2π
e−

n
2 y −μ 2

1 10

Hence LM y,μ L Y ,μ holds, and y is sufficient relative to μ.

Generally we immediately obtain from Definition 1.4 the

Corollary 1.3 If c > 0 is a real number chosen independently of θ andM(Y) is
sufficient relative to θ, then c M(Y) is also sufficient relative to θ.

Hence, for example, byputtingM = yi and c=
1
n
, also

1
n

yi = y is sufficient.

The problem arises whether there exist under the statistics sufficient relative
to the distribution family (P∗(θ), θ ϵ Ω) such, which are minimal in a certain
sense, containing as few as possible components. The following example shows
that this problem is no pure invention.

Example 1.5 Let (P∗(θ), θ ϵ Ω) be the family of N(μ,σ2)-normal distributions
(σ > 0). We consider the statistics

M1 Y =Y

M2 Y = y21,…, y2n
T

M3 Y =
r

i=1

y2i ,
n

i= r + 1

y2i

T

, r = 1,…, n−1

M4 Y =
n

i=1

y2i

of a random sample Y of size n, which are all sufficient relative to σ2. This can
easily be shown using Corollary 1.1 of Theorem 1.1 (decomposition theorem).
The likelihood functions ofM1(Y) and Y are identical (and therefore equivalent).

Since both the yi and the y2i are independent and
y2i
σ2

= χ 2i are distributed asCS(1)

(χ2-distribution with 1 degree of freedom; see Appendix A: Symbolism), it fol-
lows after the transformation y2i = σ

2χ 2i :
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LM M2 Y ,σ2 L Y ,σ2 =
1

2πσ2
n
2
e−

1
2σ2

n

i= 1
y2i 1 11

Analogously we proceed with M3(Y) and M4(Y).

Obviously, M4(Y) is the most extensive compression of the components of a
random sample Y, and therefore it is preferable compared with other statistics.

Definition 1.6 A statistic M∗(Y) sufficient relative to θ is said to be minimal
sufficient relative to θ if it can be represented as a function of each other suf-
ficient statistic M(Y).
If we consider Example 1.5, there is

M4 Y =MT
1 Y M1 Y = eTnM2 = 1 1 M3, r = 1,…,n−1

Hence, M4(Y) can be written as a function of each sufficient statistic of this
example. This is not true for M1(Y), M2(Y) and M3(Y); they are not functions
of M4(Y). M4(Y) is the only statistic of Example 1.5 that could be minimal suf-
ficient relative to σ2.Wewill see that it has indeed this property. But, how canwe
show minimal sufficiency? We recognise that the sample space can be decom-
posed with the help of the statisticM(Y) in such a way into disjoint subsets that
all Y for whichM(Y) supplies the same valueM belong to the same subset. Vice
versa, a given decomposition defines a statistic. Now we present a decomposi-
tion that is shown to generate a minimal sufficient statistic.

Definition 1.7 Let Y0 {Y} be a fixed point in the sample space (a certain
value of a realised random sample), which contains the realisations of a random
sample Y with components from a family (P∗(θ), θϵΩ) of probability distribu-
tions. The likelihood function L(Y, θ) generates by

M Y0 = Y L Y ,θ L Y0,θ 1 12

a subset in {Y}. If Y0 runs through the whole sample space {Y}, then a certain
decomposition is generated. This decomposition is called likelihood decompo-
sition, and the corresponding statistic ML(Y) satisfying ML(Y) = const. for all
Y ϵ M(Y0) and each Y0 is called likelihood statistic.

Before we construct minimal sufficient statistics for some examples by this
method, we state

Theorem 1.2 The likelihood statisticML(Y) is minimal sufficient relative to θ.

Proof: Considering the likelihood statistic ML(Y), it holds

ML Y 1 =ML Y 2
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for Y1 , Y2ϵ {Y} iff L(Y1, θ) ~ L(Y2, θ) is fulfilled. Hence, L(Y, θ) is a function of
ML(Y) having the form

L Y , θ = a Y g∗ ML Y , θ 1 13

ThereforeML(Y) is sufficient relative to θ taking Theorem 1.1 (decomposition
theorem) into account. IfM(Y) is any other statistic that is sufficient relative to
θ, if further for two points Y1 , Y2 ϵ {Y} the relation M(Y1) =M(Y2) is satisfied,
and finally, if L(Yi, θ) > 0 holds for i = 1 , 2, then again Theorem 1.1 supplies

L Y1,θ = h Y1 g M Y1 ,θ = h Y2 g M Y2 ,θ

because of M(Y1) =M(Y2) and

L Y2,θ = h Y2 g M Y2 ,θ or equivalently g M Y2 ,θ =
L Y2,θ
h Y2

Hence, we obtain

L Y1,θ =
h Y1

h Y2
L Y2,θ ,h Y2 > 0,

which means L(Y1, θ) ~ L(Y2, θ). But this is just the condition forM(Y1) =M(Y2).
ConsequentlyML(Y) is a function ofM(Y), independent of howM(Y) is chosen,
that is, it is minimal sufficient.

We demonstrate the method giving two examples.

Example 1.6 Let the components yi of a random sample Y fulfil a binomial
distribution B(N, p), N fixed and 0 < p < l. We look for a statistic that is minimal
sufficient relative to p. The likelihood function is

L Y ,p =
n

i=1

N

yi
pyi 1−p N −yi , yi = 0,1,…,N

For all Y0 = (y01, … , y0N)
T ϵ {Y} with L(Y0, p) > 0, it is

L Y ,p
L Y0,p

=

n

i= 1

N

yi
n

i= 1

N

y0i

p
1−p

n

i= 1
yi−y0i

ThereforeM(Y0) is also defined byM Y0 = Y n
i= 1yi =

n
i= 1y0i , since just

there L(Y, p) ~ L(Y0, p) holds. Hence M Y = n
i= 1yi is a minimal sufficient

statistic.
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Example 1.7 Let the components yi of a random sample Y = (y1, y2, … , yn)
T

be gamma distributed. Then for yi > 0 we get the likelihood function

L Y , a, k =
ank

Γ k n e
−a

n

i= 1

yi n

i=1
yk−1i

For all Y0 = (y01, … , y0N)
Tϵ {Y} with L(Y0, a, k) > 0, it is

L Y , a, k
L Y0, a, k

= e−a
n

i= 1
yi−

n

i= 1
y0i

n

i= 1
yk−1i

n

i= 1
yk−10i

For given a the product n
i= 1yi is minimal sufficient relative to k. If k is

known, then n
i= 1yi is minimal sufficient relative to a. If both a and k are

unknown parameters, then ( n
i= 1yi,

n
i= 1yi) is minimal sufficient relative to

(a, k).

More generally the following statement holds:

Theorem 1.3 If (P∗(θ), θϵΩ) is a k-parametric exponential family with likeli-
hood function in canonical form

L y,θ = e
k

i= 0
ηiMi y −A η h y ,

where the dimension of the parameter space is k (i.e. the η1, …, ηk are linearly
independent), then

M Y =
n

i= 1

M1 yi ,…,
n

i=1

Mk yi

T

is minimal sufficient relative to (P∗(θ), θ ϵ Ω).

Proof: The sufficiency ofM(Y) follows from Corollary 1.1 of the decomposition
theorem (Theorem 1.1), and the minimal sufficiency follows from the fact that
M(Y) is the likelihood statistic, because it is L(Y, θ) ~ L(Y0, θ) if

k

j=1

ηj

n

i= 1

Mj yi −Mj y0i = 0

Regarding the linear independence of ηi, it is only the case if M(Y) =M(Y0) is
fulfilled.

Example 1.8 Let (P∗(θ), θ ϵ Ω) the family of a two-dimensional normal distri-

butions with the random variable
x

y
, the expectation μ=

μx

μy
and the
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covariance matrix Σ=
σ2x 0

0 σ2y
This is a four-parametric exponential family

with the natural parameters

η1 =
μx
σ2x

,η2 =
μy
σ2y

,η3 = −
1

2 σ2x
,η4 = −

1
2 σ2y

and the factors

M1
x

y
= x, M2

x

y
= y,

M3
x

y
= x2, M4

x

y
= y2,

A η =
1
2

μ2x
σ2x

+
μ2y
σ2y

If dim(Ω) = 4, then

M =
n

i=1

M1i,
n

i= 1

M2i,
n

i= 1

M3i,
n

i=1

M4i

T

is minimal sufficient relative to (P∗(θ), θϵΩ). Assuming that
P
∗∗

θ , θϵΩ P∗ θ , θϵΩ is the subfamily of (P∗(θ), θϵΩ) with
σ2x = σ

2
y = σ

2, then dim(Ω) = 3 follows, and M is not minimal sufficient relative

to (P
∗∗

θ , θ ϵΩ).

The natural parameters of (P
∗∗

θ , θ ϵΩ are

η1 =
μx
σ2

, η2 =
μy
σ2

, η3 = −
1
2σ2

Further we have A η =
1
2σ2

μ2x + μ
2
y , and the factors of the ηi are

M1
x

y
= x,M2

x

y
= y, M3

x

y
= x2 + y2

Relative to P
∗∗

θ , θ ϵΩ ,

M =
n

i= 1

M1i,
n

i=1

M2i,
n

i=1

M3i

T

is minimal sufficient.

Basic Ideas of Mathematical Statistics 17



As it will be shown in Chapter 6 for model II of analysis of variance, the result
of Theorem 1.3 is suitable also in more sophisticated models to find minimal
sufficient statistics.
Completeness and bounded completeness are further important properties

for the theory of estimation. We want to introduce both together by the follow-
ing definition.

Definition 1.8 A distribution family P = (Pθ, θϵΩ) with distribution function
F(y, θ) , θ ϵ Ω is said to be complete, if for each P-integrable function h(y) of the
random variable y the condition

E h y = h y dF y = 0 for all θ ϵΩ 1 14

implies the relation

Pθ h y = 0 = 1 for all θ ϵΩ 1 15

If this is true only for bounded functions h(y), then P = (Pθ, θ ϵ Ω) is called
bounded complete.

We want to consider an example for a complete distribution family.

Example 1.9 Let P be the family {Pp}, p (0,1) of binomial distributions with
the probability function

p y, p =
n

y
py 1−p n−y =

n

y
νy 1−p n, 0 < p < 1,

y= 0,1,…,n, ν=
p

1−p

Integrability of h(y) means finiteness of 1−p n n
y=0h y

n

y
νy, and (1.14)

implies

n

y= 0

h y
n

y
νy = 0 for all p 0,1

The left-hand side of the equation is a polynomial of nth degree in ν, which

has at most n real zeros. To fulfil this equation for all ν R+, the factor
n

y
h y

must vanish for y = 0, 1, …, n, and because of
n

y
> 0, it follows
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Pθ h y = 0 = 1 for all p 0,1

Theorem 1.4 A k-parametric exponential family of the distribution of a suf-
ficient statistic is complete under the assumptions of Theorem 1.3 (dim(Ω) = k).

The proof can be found in Lehmann and Romano (2008).

Definition 1.9 Let a random sample Y = (y1, y2, … , yn)
T be given whose com-

ponents satisfy a distribution from the family

P∗ = Pθ , θ ϵ Ω
A statistic M(Y), whose distribution is independent of θ, is called an ancillary

statistic. If P is the family of distributions induced by the statisticM(Y) in P∗ and
if P is complete andM(Y) is sufficient relative to P∗, thenM(Y) is said to be com-
plete sufficient.

Example 1.10 Let P∗ be the family of normal distributionsN(μ, 1) with expec-
tation μ = θ and variance 1, that is, it holds Ω = R1. This is a one-parametric
exponential family with dim(Ω) = 1, which is complete by Theorem 1.4. If
Y = (y1, y2, … , yn)

T is a random sample with components from P∗, then

M1 Y = y is distributed as N(μ,
1
n
). Consequently the family of distributions

P∗ is also complete. Because of Theorem 1.3, y is minimal sufficient and
therefore complete sufficient. The distribution family of CS(n − 1)-distributions
(χ2-distributions with n – l degrees of freedom) induced by
n−1 M2 Y = y2i −ny

2 is independent of μ. Hence s2 = 1
n−1

n
i= 1 yi−y

2 is
an ancillary statistic relative to μ = θ.

We close this section with the following statement:

Theorem 1.5 Let Y be a random sample with components from P = (Pθ, θ ϵΩ)
and letM1(Y) be bounded complete sufficient relative to P. Further, ifM2(Y) is a
statistic with a distribution independent of θ, then M1(Y) and M2(Y) are (sto-
chastically) independent.

Proof: Let {Y0} {Y} be a subset of the sample space {Y}. ThenM2(Y) maps {Y}
onto {M} and {Y0} onto {M0}. Since the distribution ofM2(Y) is independent of θ,
P[M2(Y)ϵ{M0}] is independent of θ. Moreover, observing the sufficiency of
M1(Y) relative to θ, also P[M2(Y)ϵ{M0}|M1(Y)] is independent of θ. We consider
the statistic

h M1 Y = P M2 Y ϵ M0 M1 Y −P M2 Y ϵ M0

depending on M1(Y), such that analogously to (1.14)
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Eθ h M1 Y = Eθ P M2 Y ϵ M0 M1 Y −P M2 Y ϵ M0 = 0

follows for all θ ϵ Ω. Since M1(Y) is bounded complete,

P M2 Y ϵ M0 M1 Y −P M2 Y ϵ M0 = 0

holds for all θ ϵ Ω with probability 1, analogously to (1.15). But this means that
M1(Y) and M2(Y) are independent.

1.4 The Notion of Information in Statistics

Concerning the heuristic introduction of sufficient statistics in Section 1.2, we
emphasised that a statistic should exhaust the information of a sample to a large
extent. Now we turn to the question what the information of a sample really
means. The notion of information was introduced by R. A. Fisher in the field
of statistics, and his definition is still today of great importance. We speak of
the Fisher information in this connection. A further notion of information ori-
ginates from Kullback and Leibler (1951), but we do not present this definition
here. We restrict ourselves in this section at first to distribution families

P = Pθ , θ ϵΩ ,Ω R1

with real parameters θ. We denote the likelihood function (Y = y) of P by L(y, θ).

Definition 1.10 Let y be distributed as

P = Pθ , θ ϵΩ ,Ω R1

Further let the following assumption V1 be fulfilled:

1) Ω is an open interval.

2) For each y {Y} and for each θ ϵΩ, the derivative
∂

∂θ
L y,θ exists and is finite.

The set of points satisfying L(y, θ)= 0 does not depend on θ.
3) For each θ ϵΩ there exist an ε > 0 and a positive Pθ-integrable function k(y,θ)

such that for all θ0 in an ε-neighbourhood of θ the inequality

L y,θ −L y,θ0
θ−θ0

<k y,θ0

holds.

4) The derivative
∂

∂θ
L y,θ is quadratic Pθ-integrable, and it holds for all θ ϵ Ω

0 <E
∂

∂θ
lnL y,θ

2
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Then the expectation

I θ =E
∂

∂θ
lnL y,θ

2

1 16

is said to be the Fisher information of the distribution Pθ and of the variable y,
respectively.
It follows from the third condition of V1 that Pθ-integration and differentia-

tion by θ can be exchanged for L(y, θ), and because of

∂

∂θ
lnL y,θ =

∂

∂θ
L y,θ

L y,θ
,

we obtain

Eθ
∂

∂θ
lnL y,θ =

Y

∂

∂θ
lnL y,θ L y,θ dy=

∂

∂θ
Y

L y,θ dy=
∂

∂θ
1 = 0

for all θ ϵ Ω. Hence, we have

I θ = var
∂

∂θ
lnL y,θ 1 17

Now let the second derivative of lnL(y, θ) with respect to θ for all y and θ exist,
and let Y L y,θ dPθ be differentiable twice, where integration and double
differentiation can be commuted. Then by considering

∂2

∂θ2
lnL y,θ =

L y,θ
∂2

∂θ2
L y,θ −

∂

∂θ
L y,θ

2

L y,θ 2 =

∂2

∂θ2
L y,θ

L y,θ
−

∂

∂θ
L y,θ

L y,θ

2

and

0 =
∂2

∂θ2
lnL y,θ dPθ =

∂2

∂θ2
lnL y,θ dPθ ,

the relation

Eθ
∂2

∂θ2
lnL y,θ = −Eθ

∂

∂θ
lnL y,θ

2

= − I θ

follows and therefore also

I θ = −Eθ
∂2

∂θ2
ln L y,θ 1 18
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We present an example determining the Fisher information for both a dis-
crete and a continuous distribution.

Example 1.11 Let P be the family of binomial distributions for given n and
Ω = (0,1). The likelihood function is

L y,p =
n
y

py 1−p n−y

The assumption V1 is satisfied, namely, the square of

∂

∂p
lnL y,p =

y
p
−
n−y
1−p

after replacing y by random y has the finite expectation

I p =Ep
∂

∂p
lnL y,p

2

=
n

y=0

y
p
−
n−y
1−p

2 n

y
py 1−p n−y,

and this means

I p =
n

p 1−p
,0 < p < 1

Example 1.12 Let P be the family of normal distributions N(μ, σ2) with
known σ2. It is Ω=R1, and the likelihood function has the form

L y,μ =
1

σ 2π
e−

1
2σ2

y−μ 2

For these distributions assumption V1 is fulfilled, too. We obtain

∂

∂μ
lnL y,μ =

1
σ2

y−μ

and

I μ =
1
σ4

E y−μ 2 =
1
σ4

var y =
1
σ2

Now we show the additivity of the Fisher information.

Theorem 1.6 If the Fisher information I(θ) = I1(θ) exists for a family P of prob-
ability distributions with Ω = R1 and if Y = (y1, y2, … , yn)

T is a random sample
with components yi (i = l, …, n) all distributed as Pi P, then the Fisher infor-
mation In(θ) of the distribution corresponding to Y is given by

In θ = nI1 θ 1 19
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Proof: It follows from Definition 1.2 that the likelihood function Ln(Y, θ) of a
random sample Y is

Ln Y ,θ =
n

i= 1

L yi,θ

Consequently we get

lnLn Y ,θ =
n

i= 1

lnL yi,θ

and

∂

∂θ
lnLn Y ,θ =

n

i= 1

∂

∂θ
lnL yi,θ

Observing (1.17) we finally arrive at

In θ = var
∂

∂θ
lnLn Y ,θ =

n

i=1

var
∂

∂θ
lnL yi,θ = nI1 θ

Theorem 1.7 LetM(Y) be a sufficient statistic with respect to the distribution
Pθ ϵ P ,Ω R1 of the components of the random sample Y = (y1, y2, … , yn)

T. Let
the distribution Pθ fulfil the condition V1 of Definition 1.10. Then the Fisher
information

IM θ =E
∂

∂θ
lnLM M,θ

2

1 20

of M =M(Y) exists where LM(M, θ) is the likelihood function of M and

In θ = IM θ 1 21

Proof: Considering (1.2) and (1.3), respectively, we have

L Y ,θ = h Y g M Y ,θ

and therefore

∂

∂θ
ln L Y ,θ =

∂

∂θ
ln g M Y ,θ

since h (Y) is by assumption independent of θ. Taking Corollary 1.1 of
Theorem 1.1 into account, the likelihood function LM(M, θ) of M satisfies also
condition V1 of Definition 1.10, and therefore IM(θ) in (1.20) exists. Observing
the equivalence of LM(M, θ) and L(Y, θ), the assertion follows because

of
∂

∂θ
lnLM M,θ =

∂

∂θ
ln g M,θ .
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Consequently the Fisher information of a sufficient statistic is the Fisher
information of the corresponding random sample.
Now we consider parameters θ ϵ Ω Rp.

Definition 1.11 Let y be distributed as Pθ ϵ P ,Ω Rp , θ = (θ1, … , θp)
T. Let

the conditions 2, 3 and 4 of V1 in Definition 1.10 be fulfilled for each component
θi (i = 1,…, p). Let Ω be an open interval in Rp. Further, assume that the expec-

tation of
∂

∂θi
lnL y,θ

∂

∂θj
lnL y,θ exists for all θ and all i, j = 1, …, p. Then the

quadratic matrix

I θ = Ii, j θ ,   i, j= 1,…, p

of order p given by

I θ = E
∂

∂θ i
lnL y, θ

∂

∂θ j
lnL y, θ

is said to be the (Fisher) information matrix with respect to Pθ.

Example 1.13 Let the random variable y be distributed as N(μ, σ2) where
θ = (μ,σ2)T R1 × R+ =Ω. Then

lnL y,θ =− ln 2π−
1
2
lnσ2−

1
2σ2

y−μ 2

holds, and the assumption of Definition 1.11 is fulfilled with θ1 = μ and θ2 = σ2.
Further we have

∂

∂μ
lnL y, θ =

y−μ
σ2

and
∂

∂σ2
lnL y,θ = −

1
2σ2

+
1
2σ4

y−μ 2

Because E[(y − μ)2] = var(y) = σ2, it follows I11 θ =
1
σ2
. Since the skewness

γ1 = 0 and since E(y − μ) = 0, we get I12(θ) = I21(θ) = 0. Further

∂

∂σ2
lnL y,θ

2

=
1
4σ4

−
2
4σ6

y−μ 2 +
1
4σ8

y−μ 4

Moreover, considering γ2 = 0 and E[(y − μ)4] = 3σ4, it follows

I22 =E
∂

∂σ2
lnL y, θ

2

=
1
σ4

1
4
−
1
2
+
3
4

=
1
2σ4

,

and we obtain
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I θ =

1
σ2

0

0
1
2σ4

On the other hand, if we put θ1 = μ and θ2 = σ, then we have

∂

∂σ
lnL y,θ = −

1
σ
+

1
σ2

y−μ 2

While I11, I12 and I21 remain unchanged, we find now

I22 = E
∂

∂σ
lnL y,θ

2

=
1
σ2

1−2 + 3 =
2
σ2

and therefore

I θ =

1
σ2

0

0
2
σ2

This example shows that the Fisher information is not invariant with respect
to parameter transformations. Using the chain rule of differential calculus, the
following general statement arises.

Theorem 1.8 Let ψ = h (θ) be a monotone in Ω R1, and with respect to θ
differentiable function, let h map Ω onto Π. Then with respect to ψ , the differ-
entiable inverse function θ = g(ψ ) exists. Under the assumptions of Definition
1.10, let I(θ) be the Fisher information of the distribution Po ϵΠ. Then the Fisher
information I∗(ψ) of the distribution Pψ (i.e. Pθ written with the transformed
parameter) is

I∗ ψ = I θ
d
dψ

g ψ
2

1 22

Considering Example 1.13 we set (for fixed μ) θ = σ2, ψ = θ = σ and
dθ
dψ

= 2ψ = 2σ. By Theorem 1.8 we get with I(σ2) =
1
σ2

the information

I∗ ψ = I σ2 4σ2 =
2
σ2

In Chapter 2 we need the following statement.
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Theorem 1.9 (Inequality of Rao and Cramér)
Let assumptionV1ofDefinition1.10hold for all componentsof the randomsample
Y possessing the likelihood function L(Y, θ). Let the set {Y0} = {Yϵ{Y} : L(Y, θ) = 0}
of the points in the sample space satisfying L(Y, θ) = 0 do not depend on θ. Let
Pθ ϵ P = (Pθ, θ ϵ Ω) ,Ω R1 be the distribution of the components, and let M(Y)
be a statisticwith expectationE[M(Y)] and variance var[M(Y)]mapping the sample
space {Y} into Ω. Then the inequality of Rao and Cramér

var M Y ≥

dE M Y
dθ

2

nI θ
1 23

is fulfilled.

Proof: With the notation M(Y) = M, we get E = E[M − E(M)] = 0. Hence

dE
dθ

= −

Y

dE M Y
dθ

dPθ +

Y

M−E M
d
dθ

L Y ,θ dPθ = 0

and

dE
dθ

= −
dE M Y

dθ
Y

dPθ +

Y

M−E M
d
dθ

lnL Y ,θ dY = 0

hold, respectively. Then

E M−E M
d
dθ

ln L Y ,θ =
dE M
dθ

follows. Taking Schwarz’s inequality into account, we arrive at

dE M
dθ

2

= E M−E M
d
dθ

ln L Y ,θ
2

≤E M−E M 2E
d
dθ

ln L Y ,θ
2

Considering (1.16) completes the proof.
When choosing E(M) = θ, the inequality of Rao and Cramér takes

the form

var M Y ≥
1

nI θ
1 24
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Theorem 1.10 If y is distributed as a one-parametric exponential family and if
g(θ) = η = E(M), then

I∗ η =
1

var M
1 25

Proof: Since the assumption V1 of Definition 1.10 is fulfilled, I(η) exists.
Observing

d
dη

ln L Y ,η =M Y −
d
dη

A η

and Theorem 1.8, we obtain

var M = I∗ η = I θ var M 2

Hence, the assertion is true.

Considering Schwarz’s inequality for the second moments of statistics M(Y)
with finite secondmoment and an arbitrary function h(Y,θ) with existing second
moment, then the inequality

var M ≥
cov2 M, h Y ,θ

var h Y ,θ

follows.

Theorem 1.11 Let M(Y) be a statistic with expectation g(θ) and existing
secondmoment, and let hj = hj(Y, θ), j = l,…, r be functions with existing second
moments. Then with the notations

cj = cov M Y ,hj ,σij = cov hi,hj ,c
T = c1,…, cr

and Σ = (σij) , (|Σ| 0), the inequality

var M ≥ cTΣ−1c 1 26

is fulfilled.

Proof: The assertion follows from
cTΣ −1c
var y

≤ 1.

With the help of (1.26), the inequality (1.24) of Rao and Cramér can be
generalised to the p-dimensional case.

Theorem1.12 Let the components of a random sampleY = (y1, y2, … , yn)
T be

distributed as

Pθ ϵP = Pθ, θϵΩ ,Ω Rp,θT = θ1,…,θp ,p > 1
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Let L(Y,θ) be the likelihood function of Y. Further, let the assumptions of
Definition 1.10 be fulfilled. Additionally, let the set of points in {Y} satisfying
L(Y,θ) = 0 do not depend on θ. Finally, letM(Y) be a statistic, whose expectation
E[M(Y)] =w(θ) exists and isdifferentiablewith respect to all θi. Then the inequality

var M Y ≥ aT I −1a

holds, where I−1 is the inverse of I(θ) and a is the vector of the derivatives ofw(θ)
with respect to the θi.

Proof: As I(θ) is positive definite and therefore I−1 exists, the assertion follows

with hj =
d
dθj

L Y ,θ from (1.26) considering Definition 1.11.

1.5 Statistical Decision Theory

First, we formulate the general statistical decision problem. Let us start from the
assumption that there is a set of random variables {yt} , tϵR1 whose distribution
Pθ ϵ P = (Pθ, θ ϵ Ω) , dim {Ω} = p is at least partly unknown.
Here we restrict ourselves to the case that only statements about ψ = g (θ) are

demanded, where Ω is mapped by g onto Z and dim(Z) = s. This set Z is called
state space.
The statistician has for statements about ψ a set {E} of decisions at his dis-

posal. {E} is called decision space. Let Yti = yti1,…,ytini
T
for each fixed ti be

a random sample of size ni.
Let the set of results of an experiment for which a decision has to be made (i.e.

to select from {E}) be with

N =
k

i= 1

ni, Ak = Yt1 ,…,Ytk ϵ
k

i= 1

Yti = Yk,N ,

the realisation of a random variable Ak = Y t1 ,…,Y tk . Now let d ϵ D be a meas-
urable mapping from {Yk ,N} onto E, which relates each Ak to a decision d(Ak).
Then d is called a decision function, and D is the set of admissible decision func-
tions. Ak will depend on the distribution of Ak, the support �k = t1,…, tk of the
experiment and its allocation vector �k = n1,…,nk . We denote the concrete
design by

�k

�k
=

t1,…, tk

n1,…,nk
ϵVN

belonging to a set V of admissible designs. Additionally, let a loss function L be
given as measurable mapping from E × Z × R1 into Rm (its definition and there-
fore that of m is a problem outside of mathematics), which means

L d Ak ,ψ , f M ,d Ak ϵE,ψ ϵZ 1 27

with a non-negative real function f (M) where M = d,�k ,�k .
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The function Z registers the loss occurring if d(Ak) is chosen, and ψ is the value
in the transformed parameter space, while f (M) corresponds to the costs for
realising M. The task of statistics consists in providing methods for selection
of triples M = d,�k ,�k , which minimise a functional R d,�k ,�k ,ψ , f M
of random loss called risk function R. We will denote by d either a decision
function (for fixed n) or a sequence of decision functions of the same structure,
whose elements differ only with respect to the sample size n. We assume that

R d,�k ,�k ,ψ , f M = F d,�k ,�k ,ψ + f �k ,�k , 1 28

where f does not depend on d and d∗ is the decision function (sequence of
decision functions) for which

min
d D

d,�k ,�k ,ψ = F d∗,�k ,�k ,ψ 1 29

is satisfied. Then the risk R can beminimised in two steps. First, d∗ is determined
in such a way that (1.29) is fulfilled, and second, �k

∗,�k
∗ is chosen to fulfil

R d∗,�k
∗,�k

∗,ψ , f �k
∗,�k

∗ = min
�k

�k
ϵV

R d∗,�k ,�k ,ψ , f �k ,�k

Definition 1.12 A triple T∗ ϵ V × D is said to be locally R-optimal at the point
ψ0 ϵZ relative to V × D if for all T ϵ V × D the inequality

R T∗,ψ0, f M∗ ≤R T ,ψ0, f M

holds. If M∗ is for all ψ0 ϵ Z locally R-optimal, then M∗ is called global
R-optimal.

Example 1.14 Let k = 1 and yt1 = y be distributed as N(μ, σ2). Then

θ =
μ

σ2
ϵΩ=R1 ×R+ and A1 = Y. Further, let ψ = g(θ) = μ ϵ R1 and

d Y = μ be a statistic with realisations in R1 = {E}. Finally, let D be the class
of statistics with finite second moment and realisations in R1. Now we choose
the loss function

L μ,μ, f T = c1 μ −μ 2 + c2nK ,c1,c2,K > 0,

where K represents the costs of an experiment (a measurement). Besides we
define as risk R the expected random loss

R μ ,n,μ,Kn =E c1 μ−μ 2 + c2nK = c2nK + c1 var μ +B μ 2 ,

Basic Ideas of Mathematical Statistics 29



where B μ =E μ −μ. In the class D the choice μ =ψ0 is together with n = 0
locally R-optimal for the decision, and for (ψ0,n) the risk R is equal to 0. The
class D can be restricted to exclude this unsatisfactory trivial case. We denote
by DE D the subset in D with B μ = 0 Then we obtain

R μ, n, μ,Kn = c2nK + c1 var μ , μ ϵDE

in the form (1.28). We will see in Chapter 2 that var μ becomes minimal
for μ∗ = y.

Since for a random sample of n elements we have var y =
σ2

n
, the first step of

minimising R leads to

min
dϵDE

c1 var μ =
c1
n
σ2

and

R μ ,n,μ,Kn = c2Kn+
c1
n
σ2

If we derive the right-hand side of the equation with respect to n and put the

derivative equal to 0, then we get n∗ = σ
c1
Kc2

, and this as well as y does not

depend on ψ = μ. The convexity of the considered function shows that we have
indeed found a (global) minimum. Hence, the R-optimal solution of the decision
problem in E ×Z (which is inZ global, but inΩ only local because of the depend-
ence on σ) is given by

M∗ = y, n∗ = σ
c1
Kc2

If we choose ψ = g(θ) = σ2 > 0, then we obtain E = R+, k = 1, A1 = Y and N = n.
Let the loss function be

L d Y ,σ2, f M = c1 σ2−d
2
+ c2nK ,ci > 0,K > 0

If we take again

R d Y ,n,σ2,Kn =R=E L = c1E σ2−d Y
2

+ c2nK

as risk function, it is of the form (1.28). If we restrict ourselves to d ϵDE by anal-
ogous causes as in the previous case such that E[d(Y)] = σ2 holds, then the first
summand of R is minimal for

d Y = s2 =
1

n−1

n

i= 1

yi−y
2,

which will be seen in Chapter 2.

30 Mathematical Statistics



Since
s2

σ2
n−1 is distributed as CS (n − 1) and has therefore the variance

2(n − l), we find

var s2 =
2σ4

n−1
The first step of optimisation supplies

R s2,n,σ2,Kn = c1
2σ4

n−1
+ c2nK

The R-optimal n is given by

n∗ = 1+ σ2
2c1
Kc2

The locally R-optimal solution of the decision problem is

M∗ = s2, n∗ = 1+ σ2
2c1
Kc2

We consider more detailed theory and further applications in the next
chapters where the selection of minimal sample sizes is discussed. We want
to assume that d has to be chosen for fixed �k and �k R-optimal relative to

a certain risk function. Concerning the optimal choice of
�k

�k
, we refer to

Chapters 8 and Chapter 9 treating regression analysis. We write therefore with
τ from Definition 1.13

R d,ψ = E L d Y ,ψ = r d,τ 1 30

In Example 1.14 a restriction to a subset DE D was carried out to avoid triv-
ial locally R-optimal decision functions d. Now two other general procedures
are introduced to overcome such problems.

Definition 1.13 Let θ be a random variable with realisations θ ϵ Ω and the
probability distribution Pτ,τϵ� Let the expectation

Ω

R d,ψ dΠτ = r d,τ 1 31

of (1.30) exist relative to Pτ, which is called Bayesian risk relative to the a priori
distribution Pτ.

A decision function d0(Y) that fulfils

r d0,τ = inf
d ϵD

r d,τ ,

is called Bayesian decision function relative to the a priori distribution Pτ.
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Definition 1.14 A decision function d0 ϵ D is said to be minimax decision
function if

max
θϵΩ

R d0,ψ = min
d D

max
θϵΩ

R d,ψ 1 32

Definition 1.15 Let d1, d2 ϵD be two decision functions for a certain decision
problem with the risk function R(d, ψ) where ψ = g (θ), θ ϵΩ. Then d1 is said not
to be worse than d2, if R(d1, ψ) ≤ R(d2, ψ) holds for all θ ϵ Ω. The function d1 is
said to be better than the function d2 if apart from R(d1, ψ ) ≤ R(d2, ψ) for all θ ϵΩ
at least for one θ∗ ϵ Ω the strong inequality R(d1, ψ

∗) < R(d2, ψ
∗) holds where

ψ∗=g(θ∗). A decision function d is called admissible in D if there is no decision
function in D better than d. If a decision function is not admissible, it is called
inadmissible.

In this chapter it is not necessary to develop the decision theory further. In
Chapter 2 we will consider the theory of point estimation, where d(Y) = S(Y)
is the decision function. Regarding the theory of testing in Chapter 3, the prob-
ability for the rejection of a null hypothesis and in the confidence interval esti-
mation a domain in Ω covering the value θ of the distribution Pθ with a given
probability is the decision function d(Y). Selection rules and multiple compar-
ison methods are further special cases of decision functions.

1.6 Exercises

1.1 For estimating the average income of the inhabitants of a city, the income
of owners of each 20th private line in a telephone directory is determined.
Is this sample a random sample with respect to the whole city population?

1.2 A set with elements 1, 2, 3 is considered. Selecting elements with replace-
ment, there are 34 = 81 different samples of size n = 4. Write down all
possible samples, calculate y and s2 and present the frequency distribution
of y and s2 graphically as a bar chart. (You may use a program package.)

1.3 Prove that the statisticM(Y) is sufficient relative to θ, where Y = (y1, y2, … ,
yn)

T , n ≥ 1 is a random sample from a populationwith distributionPθ, θ ϵΩ,
by determining the conditional distribution of Y for given M(Y).

a) M Y = n
i=1yi and Pθ is the Poisson distribution with the parameter

θ Ω R+.
b) M(Y) = (y(1), y(n))

T and Pθ is the uniform distribution in the interval
(θ, θ + 1) with θ ϵ Ω R1.

c) M(Y) = y(n) and Pθ is the uniform distribution in the interval (0, θ) with
θ ϵ Ω = R+.

d) M Y = n
i= 1yi and Pθ is the exponential distribution with the param-

eter θ ϵ Ω = R+.
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1.4 Let Y = (y1, y2, … , yn)
T , n ≥ 1 be a random sample from a population with

the distribution Pθ, θ ϵΩ. Determine a sufficient statistic with respect to θ
using Corollary 1.1 of the decomposition theorem if Pθ, θ ϵΩ is the density
function

a) (y, θ) = θyθ − 1 , 0 < y < 1 ; θ ϵ Ω = R+,
b) Of the Weibull distribution

f y,θ = θa θy a−1e− θy a

,y ≥ 0,θ ϵΩ=R+ ,a > 0known

c) Of the Pareto distribution

f y,θ =
θaθ

yθ + 1
,y > a > 0,θ ϵΩ=R+ known

1.5 Determine a minimal sufficient statistic M(Y) for the parameter θ, if
Y = (y1, y2, … , yn)

T , n ≥ 1 is a random sample from a population with
the following distribution Pθ:

a) Geometric distribution with the probability function

p y,p = p 1−p y−1, y= 1,2,…,0 < p < 1

b) Hypergeometric distribution with the probability function

p y,M,N ,n =

M

y

N −M

n−y

N

n

,n 1,…,N ,y 0,…,N ;M ≤N integer,

c) Negative binomial distribution with the probability function

p y,p,r =
y−1

r−1
pr 1−p y−r ,0 < p < 1,y≥ r integer,r 0,1,…

and
i) θ = p and r known;

ii) θT = (p, r),

d) Beta distribution with the density function

f y,θ =
1

B a,b
ya−1 1−y b−1,0 < y < 1,0 < a,b < ∞

and
i) θ = a and b known;

ii) θ = b and a known
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1.6 Prove that the following distribution families {Pθ, θ ϵ Ω } are complete:

a) Pθ is the Poisson distribution with the parameter θ ϵ Ω = R+.
b) Pθ is the uniform distribution in the interval (0, θ), θ ϵ Ω = R+.

1.7 Let Y = (y1, y2, … , yn)
T , n ≥ 1 be a random sample, whose components

are uniformly distributed in the interval (0, θ), Ω = R+. Show that
M(Y) = y(n) is complete sufficient.

1.8 Let the variable y have the discrete distribution Pθ with the probability
function

p y,θ =P y= y =
θ for y= −1

1−θ 2θy for y= 0,1,2,…

Show that the corresponding distribution family with θ ϵ (0, 1) is
bounded complete, but not complete.

1.9 Let a one-parametric exponential family with the density or probability
function

f y,θ = h y eη θ M y −B θ ,θ ϵΩ
be given.

a) Express the Fisher information of this distribution by using the func-
tions η(θ) and B(θ).

b) Use the result of a) to calculate I(θ) for the
i) Binomial distribution with the parameter θ = p
ii) Poisson distribution with the parameter θ = λ
iii) Exponential distribution with the parameter θ
iv) Normal distribution N(μ, σ2) with θ = σ and μ fixed

1.10 Let the assumptions of Definition 1.11 be fulfilled. Besides, the second

partial derivatives
∂2

∂θi∂θj
L y,θ are to exist for all i, j = 1, …, p and y ϵ

{Y} as well as their expectations for random y. Moreover, let {Y}L(y, θ)
dy be twice differentiable, where integration and differentiation are
commutative.

Prove that in this case the elements of the information matrix in
Definition 1.11 have the form

a) Ii, j θ = cov
∂

∂θi
lnL y,θ ,

∂

∂θj
lnL y,θ ,

b) Ii, j θ = −E
∂2

∂θi∂θj
lnL y,θ ,

respectively.
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1.11 Let Y = (y1, y2, … , yn)
T be a random sample from a population with the

distribution Pθ , θ ϵ Ω and M(Y) a given statistic.
Calculate E[M(Y)], var[M(Y)], the Fisher information I(θ) of the distri-

bution and the Rao–Cramér bound for var[M(Y)].
Does equality hold in the inequality of Rao and Cramér under the fol-

lowing assumptions?

a) Pθ is the Poisson distribution with the parameter θ ϵ R+ and

M Y =
1 for y= 0

0 else
,

(here we have n = 1, i.e. y = Y).
b) Pθ is the Poisson distribution with the parameter θ ϵ R+ and

M(Y) = 1−
1
n

ny

, (generalisation of a) for the case n > 1).

c) Pθ is the distribution with the density function

f y, θ = θyθ−1, 0 < y < 1, θ ϵR+

and M(Y)= −
1
n

n

i=1
lnyi.

1.12 In a certain region it is intended to drill for oil. The owner of drilling
rights has to decide between strategies from {E1, E2, E3 }.

The following notations are introduced:

E1 – The drilling is carried out under its own direction.
E2 – The drilling rights are sold.
E3 – A part of drilling rights are alienated.

It is not known so far if there really is an oil deposit in the region.
Further let be Ω = {θ1, θ2} with the following meanings:

θ = θ1 – Oil occurs in the region.
θ = θ2 – Oil does not occur in the region.

The loss function L(d, θ) has for the decisions d = Ei , i = 1 , 2 , 3 and
θ = θj, j = 1, 2 the form

E1 E2 E3

θ1 0 10 5

θ2 12 1 6

The decision is made considering expert’s reports related to the geo-
logical situation in the region. We denote the result of the reports by
y ϵ {0, 1}.
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Let pθ(y) be the probability function of the random variable y – in
dependence on θ – with values

y = 0 y = 1

θ1 0.3 0.7

θ2 0.6 0.4

Therefore the variable y states the information obtained by the ‘random
experiment’ of geological reports about existing (y = 1) or missing (y = 0)
deposits of oil in the region. Let the set D of decision functions d(y)
contain all possible 32 discrete functions:

1 2 3 4 5 6 7 8 9

di(0) E1 E1 E1 E2 E2 E2 E3 E3 E3

di(1) E1 E2 E3 E1 E2 E3 E1 E2 E3

a) Determine the risk R(d(y), θ)= Eθ[L{d(y)}, θ] for all 18 above given
cases.

b) Determine the minimax decision function.
c) Following the opinion of experts in the field of drilling technology, the

probability of finding oil after drilling in this region is approximately
0.2. Then θ can be considered as random variable with the probability
function

θ θ1 θ2

π(θ) 0.2 0.8

Determine for each decision function the Bayesian risk r(di, π) and then
the Bayesian decision function.

1.13 The strategies of treatment using two different drugsM1 andM2 are to be
assessed. Three strategies are at the disposal of doctors:

E1 – Treatment with the drug M1 increasing blood pressure
E2 – Treatment without using drugs
E3 – Treatment with the drug M2 decreasing blood pressure

Let the variable θ characterise the (suitable transformed) blood pressure
of a patient such that θ < 0 indicates too low blood pressure, θ = 0 normal
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blood pressure and θ > 0 too high blood pressure. The loss function is
defined as follows:

E1 E2 E3

θ < 0 0 c b + c

θ = 0 b 0 b

θ > 0 b + c c 0

The blood pressure of a patient is measured. Let the measurement y be
distributed as N(θ, 1) and let it happen n-times independently from each
other: Y = (y1, y2, … , yn)

T. Based on this sample the decision function

dr,s =

E1, if y < r

E2, if r ≤ y ≤ s

E3, if y > s

is defined.

a) Determine the risk R(dr,s(y), θ) = E L dr s y ,θ .
b) Sketch the risk function in the case b = c = 1, n = 1 for

i) r = −s = −1;

ii) r = −
1
2
s = −1.

For which values of θ the decision function d−1 , 1(y) should be preferred
to the function d−1 , 2(y)?
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2

Point Estimation

In this chapter we consider so-called point estimations. The problem can be
described as follows. Let the distribution Pθ of a random variable y belong to
a family P = (Pθ, θ ϵ Ω) ,Ω Rp , p ≥ 1 . With the help of a realisation Y of a ran-
dom sample Y = (y1, y2, … , yn)

T , n ≥ 1, a statement is to be given concerning the
value of a prescribed real function ψ = g(θ) ϵ Z. Often g(θ) = θ. Obviously the
statement about g(θ) should be as precise as possible. What this really does
mean depends on the choice of the loss function defined in Section 1.5. We
define a statistic M(Y) taking the value M(Y) for Y = Y where M(Y) is called
the estimate of ψ = g(θ).
The notation ‘point estimation’ reflects the fact that each realisation M(Y) of

M(Y) defines a point in the space Z of possible values of g(θ).
The problem of interval estimators is discussed in Chapter 3 following the

theory of testing.
By L[g(θ),M(Y)] = L(ψ ,M), we denote a loss function taking the value L(ψ0,M)

if ψ takes the value ψ0 and Y the value Y (i.e. M = M(Y) takes the value
M = M(Y)).
Althoughmany statements in this chapter can be generalised to arbitrary con-

vex loss functions, we want to use mainly the most convenient loss function, the
quadratic loss function without costs. If it is not explicitly stated in another way,
our loss function

L ψ ,M = ψ −M 2,ψϵZ,MϵD 2 1

is the square of the L2-norm of the vector ψ −M supposing that it is Pθ-integra-
ble. Then we define the risk function as expectation

R ψ ,M = E ψ −M 2 =

Y

ψ −M Y 2dPθ 2 2

of the random loss. Here R(ψ , M) is the risk (the expected or mean loss) occur-
ring if the statisticM (Y) ϵD is used to estimate ψ = g(θ) ϵ Z. We will come back
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later to the problem of finding a suitable set D of statistics. First we want to
assure by the following definition that the difference ψ − M makes sense.

Definition 2.1 Let Y = (y1, y2, … , yn)
T be a random sample of size n ≥ 1 with

components yiwhose distribution Pθ is from the family P = (Pθ, θ ϵΩ). A statistic
is said to be an estimator (in the stronger sense) or also estimation S = S(Y) with
respect to the real function g(θ) = ψ with ψ ϵ Z = g(Ω), if S maps the sample
space into a subset of Z. By D we denote the set of all estimators with respect
to g(θ) based on samples of size n.

Two remarks should be made concerning Definition 2.1.
First, if we look for optional estimators, we always suppose that n is fixed and

not itself a variable of the optimisation problem. Therefore we assume that both
n and S ϵD can be chosen separately optimal considering the total optimisation
process according to Section 1.5. Hence, if we speak about ‘the estimator’, we
mean the estimator for a fixed n. For example, the arithmetic mean

y=
1
n

n

i= 1

yi

is an estimator for each n. But we want to give statements about the asymptotic
behaviour, for example, referring to n in the case of the arithmetic mean. Thenwe
consider the sequence {S(Yn)} of estimators S(Yn) with n = 1,2,…, for example, the

sequence y =
1
n

n

i= 1
yi of the arithmetic means. For short we keep to the

common speech that ‘the arithmetic mean is consistent’ instead of themore pre-
cise expression that ‘the sequence of the arithmetic means is consistent’.
Second, demanding that S is only an estimator, if S maps the space {Y}

measurably into a space {M(Y)} Z, is sometimes too restrictive. In older
publications also such statistics, M are admitted as estimators if Z {M(Y)} ,
dim(Z) = dim({M(Y)}) is fulfilled. Often such cases occurred in model II of anal-
ysis of variance (ANOVA) (Chapter 6). Variance components estimated by the
ANOVA method can also take negative values. In this book we will call such
procedures not as estimators and remain with Definition 2.1.
In non-linear regression we also speak of estimators if the corresponding

mapping is not measurable. We call such statistics estimators in a weaker sense.
It could be suggested to declare the aim of the theory of estimation as finding

such estimators that are R(ψ , S)-optimal (i.e. that minimise the value of R(ψ , S)
under all S(Y) ϵD). But, since R(ψ , S) is minimal, namely, equal to 0 for ψ = ψ0, if
we put S(Y) = ψ0 for all Yϵ{Y}, a problem stated in this way has no solution,
which is uniformly R-optimal (i.e. for all ψ ϵ Z). This dilemma can be eliminated,
as already described in Section 1.5, either by restricting to a subset D0 D and
looking for R-optimal estimators in this subset D0 or, analogously to use the
Bayesian approach, by minimising a weighted risk, the so-called Bayesian risk
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RB ψ =

Z

R ψ ,S dPλ 2 3

with respect to a measure Pλ standardised to 1, where Pλ (λ ϵ K) is chosen as a
weight function, which has an existing integral according to (2.3) and which
moreovermeasures the ‘importance’ of single θ-values. For random θ the weight
Pλ is the probability measure of the random variable g(θ), that is, the a priori
distribution of ψ = g(θ).
Finally there is a third approach that is often used. Here we look for aminimax

estimator S(Y) satisfying

R ψ ,S = min
S D

max
ψϵZ

R ψ ,S 2 4

We use the first approach in this book, as already indicated in Section 1.5. We
consider in Section 2.1 the subset DE =D0 D of unbiased estimators; further
we restrict ourselves to linear (DL), linear unbiased (DLE), quadratic (DQ) or
quadratic unbiased (DQE) estimators.

2.1 Optimal Unbiased Estimators

We suppose that all estimators S used in this chapter are Pθ-integrable, which
means that for each Pθ ϵ P = (Pθ, θ ϵ Ω) and for each S the expectation

E S Y =

Y

S Y dFθ Y 2 5

exists. Here Fθ(Y) is the distribution function of the random sample Y = (y1,
y2,… , yn)

T (and therefore the distribution function of the product measure
of the distributions Pθ belonging to yi).

Definition 2.2 An estimator S(Y) based on a random sample Y = (y1, y2, … ,
yn)

T of size n ≥ 1 is said to be unbiased with respect to ψ = g(θ) if

E S Y = g θ 2 6

holds for all θ ϵ Ω. We denote the class of unbiased estimators of an estimation
problem by DE . The difference vn(θ) = E[S(Y)] − g(θ) is called the bias of S(Y).

A statistic U(Y) is said to be unbiased with respect to 0 if

E U Y = 0 2 7

for all θ ϵ Ω.
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Naturally the expression ‘for all θ ϵ Ω’ in the definitions and theorems always
means ‘for all Pθ ϵ P’, that is, more precisely for all measures Pθ with existing
integral in (2.5). First we show by an example that there are problems of esti-
mation with a non-empty class DE .

Example 2.1 Let the components yi of the random sample Y = (y1, y2, … , yn)
T

be distributed asN(μ,σ2). Then θ = (μ , σ2)T. Let ψ1 = g1(θ) = (1 0)Tθ = μ and ψ2 =
g2(θ) = (0 1)Tθ = σ2. We consider

S1 Y = y and S2 Y =
1

n−1

n

i=1

yi−y
2 = s2

We know that y is distributed as N μ,
σ2

n
and X2 =

n−1 s2

σ2
as CS(n − 1).

Consequently we have E y = μ (for all θ) and E(s2) = σ2 because E(X2) = n – 1.
Hence, y is unbiased with respect to μ and s2 is unbiased with respect to σ2.

However, there are problems of estimation possessing no unbiased estima-
tors. This is shown in the next example.

Example 2.2 Let the randomvariableY= ybedistributedasB(n, p)with0<p<1.
Let n be known and ψ = g(p) = l/p. The sample space is {Y} = {0, 1, …, n}.
Assuming that there is an unbiased estimator S(y) with respect to 1/p, the
expectation

E S y =
n

y=0

n
y

py 1−p n−yS y

would be l/p. But this is not possible, because E[S(y)] tends to S(0) for p 0
while l/p tends to infinity for p 0.

The following statement is obvious.

Theorem 2.1 If S0(Y) is an unbiased estimator with respect to ψ = g(θ), then
each other unbiased estimator S(Y) with respect to ψ has the form

S Y = S0 Y −U Y 2 8

where U(Y) is an unbiased statistic with respect to 0.

We want to use this theorem to find R(ψ , S)-optimal estimators S(Y) ϵD. First
we see that

R ψ ,S = var S
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is true for S(Y) ϵ DE , that is, the variance-optimal unbiased estimator has to be
found. Assuming that S0 is an unbiased estimator with respect to g and that S0, S
and U have a finite variance, then

var S = var S0−U =E S0−U
2 −ψ2 2 9

Hence, we can find the variance-optimal estimator by minimising E(S0 −U).
We want to demonstrate this approach in the next example.

Example 2.3 Let Y = y where y take the values −1, 0, 1, … with the
probabilities

P y= − l = p,P y= y = py 1−p 2 for y= 0,1,…

where 0 < p = θ < 1. Since

∞

k = 0

xk =
1

1−x
for x < 1,

a distribution is defined observing

p+
∞

k = 0

pk 1−p 2 = 1

If U(y) = − y U(−1) for y = 0, 1, … and U(−1) ϵ R1, then U(y) is unbiased with
respect to 0.

This can be seen from

∞

k = 1

kxk−1 =
1

1−x 2 for x < 1

and

E U y =U −1 p+ 0− 1−p 2p
∞

y= 1

ypy−1 = 0

However, E[U(y)] = 0 implies U(y) = − y U(−1) for y =0, 1, …, namely, in

pU −1 + 1−p 2U 0 + 1−p 2p
∞

y= 1

U y py−1 = 0,

the series converges for U(y) = y ∙ const. Hence, the solution is U(0) = 0 ,U(y) =
− y U(−1).
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Otherwise the series does not converge or converges in dependence on p.
Now we consider two special cases:

a) Let ψ = g(p) = p. Then, for example, S0(y) with

S0 y =
1 for y= −1

0 else

is unbiased with respect to p, and S(y) in (2.8) is a variance-optimal unbiased
estimator, since it minimises

Q=
∞

y= −1

P y= y S0 y + yU −1 2

because of (2.9). Fixing p = p0 we get for Q

Q0 = p0 1−U −1 2 + 0 +
∞

y= −1

yU −1 2py0 1−p0
2

By differentiatingQ0 forU(−1) and putting the derivative equal to 0, we get
as variance-optimal value (the second derivative for U(−1) is positive) the
minimum at

U0 −1 =
1−p0
2

,

that is, there is only one variance-optimal unbiased estimator dependent on
the parameter value p0.
The situation is favourably disposed if we consider another function g(p).

b) Let ψ = g(p) = (1 − p)2. Therefore we have to estimate (1 − p)2 (and not p
itself ) unbiasedly. An unbiased estimator is, for example, S0(y) with

S0 y =
1 for y= 0

0 else

Naturally as unbiased estimation of 0, U(y) is the same for all functions g,
and analogous to the case (a), we want to determine the minimum of

Q0 = p0 U −1 2 + 1−p0
212 + 1−p0

∞

y= −1

yU −1 2py0

Again the second derivative of Q0 with respect to p0 is positive. Now the
minimum is at U(−1) = 0. Consequently S(y) = S0(y) is the variance-optimal
unbiased estimator for (1 − p)2 with respect to each p0 ϵ (0, 1).

We want especially to emphasise the property of the estimator in case (b) of
Examples 2.3.
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Definition 2.3 Let Y = (y1, y2, … , yn)
T be a random sample with components

distributed as Pθ ϵ P = (Pθ, θ ϵ Ω), and let S Y be an unbiased estimator with
respect to g(θ) = ψ with finite variance. Besides, let DE DE be the class of all
unbiased estimators with finite positive variance andDE the class of all unbiased
estimators. If

var S Y = min
S Y ϵDE

varθ0 S Y ,θ0 ϵΩ, 2 10

then S Y is said to be a locally variance-optimal unbiased estimator (LVUE) at
θ = θ0.

Definition 2.4 If (2.10) is satisfied for all θ0 ϵΩ, then S Y is said to be a uni-
formly variance-optimal unbiased estimator (UVUE).

The class DE introduced in Definition 2.3 is used in the same sense also in the
following. The next theorem contains a necessary and sufficient condition for an
estimator to be a UVUE.

Theorem 2.2 Let the components of the random sample Y = (y1, y2, … ,
yn)

T be distributed as Pθ ϵ P = (Pθ, θ ϵ Ω), and (let be) S(Y) ϵ DE. Further, let
D0

E be the class of unbiased estimators with respect to 0 with finite second
moment. Then the condition

E S Y U Y = 0 for allU Y ϵD0
E and all θ ϵΩ 2 11

is necessary and sufficient for S(Y) to be a UVUE with respect to g(θ).

Proof: If S(Y) is a UVUE with respect to g(θ), then S∗(Y) = S(Y) + λU(Y) is unbi-
ased with respect to g(θ) for U Y ϵD0

E ,θ0 ϵΩ and λ ϵ R1. Moreover

varθ0 S
∗ Y = varθ0 S Y + λU Y ≥ var S∗ Y for all λ ϵR1

is fulfilled. But then

λ2varθ0 U Y + 2λcovθ0 S Y ,U Y ≥ 0 for all λ ϵR1

follows. Assuming equality, the quadratic equation in λ has the two solutions:

λ1 = 0,λ2 = −
2covθ0 S Y ,U Y

varθ0 U Y

But the expression on the left-hand side of the inequality is only non-negative
for arbitrary λ if the condition

covθ0 S Y ,U Y =Eθ0 S Y U Y = 0

is satisfied. This derivation is independent of the special parameter value θ0.
Therefore it is true everywhere in Ω.
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Reversely, assume that

E S Y U Y = 0

is fulfilled for all U(Y) ϵ D0
E . Besides, let S (Y) be another unbiased estimator

with respect to g(θ). If S (Y) is not in DE, that is, if it is in DE \ DE, then trivially
var[S(Y)] < var[S (Y) ] holds. Therefore let S (Y) ϵ DE. But then S(Y) − S (Y) ϵ D0

E
follows since the finite variances of S(Y) ϵ DE and S (Y)ϵ DE imply also the finite
variance of the difference S(Y) − S (Y) by considering

var S Y −S Y = var S Y + var S Y −2 cov S Y , S Y

Namely, with var[S(Y)] and var[S (Y) ],the right-hand side of the equation is
finite such that the assertion S(Y) − S (Y) ϵ D0

E follows. Moreover, the assump-
tion implies

E S Y S Y −S Y =E S S−S = 0

and

E S2 = E SS ,

respectively. Now

cov S,S = E S−g θ S −g θ = E SS −g θ 2 =E S2 −ψ2 = var S

Observing the inequality of Schwarz, we get

var S 2 = cov S,S 2
≤ var S var S

and therefore as asserted

var S ≤ var S

We want to demonstrate the consequences of this theorem by returning to
Example 2.3.

Example 2.3 (continuation)
Our aim is to determine all UVUE of g(p). Since D0

E contains only elements of
the formU(y) = − yU(−1) and since (2.11) holds, it is necessary and sufficient to
be an UVUE that under the assumption U(−1) 0 the equality Ep(S(y)) = 0 is
fulfilled for all p ϵ (0, 1), that is, then S(y) belongs to D0

E and satisfies therefore
the relations U(y) = S(y) y = − y U(−1) = y S(−1).
These relations hold if S(0) is an arbitrary real value and S(y) = S(−1) for

y = 1,2, ….
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If we put S(−1) = a, S(0) = b (a, b real), then we obtain

Ep S = pS −1 + 1−p 2 S 0 +
∞

y= 1

py 1−p 2S −1

= pa+ b 1– p 2 + 1– p 2 a
p

1−p
= b 1−p 2 + a 1− 1−p 2

= a+ b−a 1−p 2

Hence, g(p) must be of the form a + (b − a)(1 − p)2, if it is to possess an UVUE,
but g(p) = p is not of this form. Therefore it is impossible to find a UVUE.

The following statement is of fundamental significance for estimators belong-
ing to DE.

Theorem 2.3 (Rao, 1945; Blackwell, 1947; Lehmann and Scheffé, 1950)
Let the components of the random sample Y = (y1, y2, … , yn)

T be distributed as
Pθ ϵ P = (Pθ, θ ϵΩ), and let S(Y) ϵDE be unbiased with respect to g(θ) = ψ . If there
is a sufficient statistic M(Y) with respect to Pθ, then the following exists:

ψ Y =E S Y M Y = h M Y 2 12

and is unbiased with respect to ψ and

var ψ Y ≤ var S Y for all θ ϵΩ

IfM(Y) is complete (and) minimal sufficient, then ψ Y with probability 1 is
the uniquely determined unbiased estimator of g(θ) with minimal variance for
each θ ϵ Ω.

Proof: Considering the sufficiency of M(Y), the expectation in (2.12) does not
depend on θ and consequently is an estimator. Observing that S(Y) is unbiased,
it follows via

E ψ Y =E E S Y M Y =E S Y =ψ

that ψ Y is unbiased, too. Further we get

var S Y =E var S Y M Y + var E S Y M Y

The second summand on the right-hand side of the equation is equal to
var ψ Y , and the first summand is non-negative. This implies the second part
of the assertion.

Now letM(Y) beadditionally completeandψ Y = h M Y . Further, letM∗(Y)
be an arbitrary estimator from DE dependent on M(Y) such that M∗(Y) =
t [M(Y)]. Then for all θ ϵ Ω the statement

E ψ Y =E M∗ Y andE h M Y − t M Y = 0,
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respectively, holds. As M(Y) is complete, this implies h = t (with probability l).
This completes the proof.
Under the assumption that Pθ is a k-parametric exponential family of full rank,

it follows from Section 1.3 that it suffices to find an estimator S ϵDE and a vector

M Y = M1 Y ,…,Mk Y T

Via (2.12) the UVUE ψ with probability 1 is unique.

We want to demonstrate the applicability of this theorem by examples.

Example 2.4 Let Y = (y1, y2, … , yn)
T be a random sample.

a) Let the components of Y be distributed asN(μ, 1), that is, it is θ = μ. If g(θ) = μ,
then y ϵDE Since y is complete minimal sufficient with respect to theN(μ, 1)
family, y is with probability 1 the only UVUE with respect to μ.

b) Let the components of Y be distributed as N(0,σ2). Then n
i=1y

2
i = SQy with

respect to this family is complete minimal sufficient. It is θ = σ2 and we

choose g(θ) = σ2. As
SQy

σ2
is distributed as CS(n),

SQy

n
is with probability 1

the only UVUE with respect to σ2.

c) Let the components of Y be distributed as N(μ, σ2). With θ =
μ

σ2
we put

g θ =
μ

σ2
= θ. Then HT = n

i=1yi,
n
i=1 y

2
i is complete minimal suffi-

cient with respect to θ. The statistic

M = y,
n

i=1

yi−y
2

T

is equivalent to HT, meaning that H(Y1) = H(Y2) iff M(Y1) = M(Y2). This is
clear if n

i= 1 yi−y
2 = n

i= 1 y
2
i −ny

2 is considered. Therefore M(Y) is also

complete minimal sufficient with respect to θ. As 1
σ2

n
i= 1 yi−y

2 is distrib-

uted as CS(n − 1), it follows that y,s2 with s2 = 1
n−1

n
i=1 yi−y

2 with prob-
ability 1 is the only UVUE with respect to (μ, σ2).

Example 2.5 Let the components of a random sample Y = (y1, y2, … , yn)
T be

two-point distributed. W.l.o.g. we assume P(y = 0) = 1 – p , P(y = 1) = p ; 0 < p < 1.
The likelihood function

L Y ,p = p
n

i= 1
yi 1−p n−

n

i= 1
yi

shows that the distribution of Y belongs to a one-parametric exponential family
and M Y = n

i= 1yi is complete sufficient. Because of E(yi) = p, we have
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E[M(Y)] = np, and
M Y
n

= y is UVUE with respect to p = g(θ). Observing that

M =M(Y) is distributed as B(n, p) and assuming g(θ) = var(yi) = p(1 – p), the

estimator S Y =
1

n−1
1−p M because of

E y−y2 =E y −E y2 = p− var y + p2

is unbiased with respect to p(1 − p) and therefore UVUE. Considering

var y =
p 1−p

n
and consequently

E
1

n−1
1−y M =

n
n−1

E y 1−y =
n

n−1
n−1
n

p−p2 = p 1−p

S(Y) with probability 1 is the uniquely determined UVUE.

Example 2.6 Let the components of the random sampleY = (y1, y2, … , yn)
T be

distributed as N(μ, σ2), where μ is known. Further, put g(θ) = σt (t = 1,2,…). The

estimator S Y = n
i=1 yi−μ

2 is complete minimal sufficient, andX2 =
1
σ2

S Y

is CS(n)-distributed. The components and moments of X2 are only dependent
on n, that is, we have

E X2r = c n, 2r andE Sr Y = σ2rc n, 2r ,

respectively. Hence, S Y
t
2

1
c n, t

is UVUE with respect to σt.

The factor c(n, 2r) is known from probability theory, which is

c n, 2r =
Γ

n
2
+ r 2r

Γ
n
2

2 13

For t = 1 and r = ½, respectively, the UVUE with respect to σ is obtained from

S Y
c n,1

=
Γ

n
2

n
i= 1 yi−μ

2

2Γ
n+ 1
2

2 14

For t = 2 and r = 1, respectively, the UVUE with respect to σ2 results from

S Y
c n,2

=
1
n

n

i=1

yi−μ
2
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However, if μ is unknown, then y, n−1 s2 is complete minimal sufficient
with respect to θT = (μ, σ2) according to Example 2.4, and y is UVUE with

respect to μ. Since
n−1 s2

σ2
is distributed as CS(n – 1), the UVUE with respect

to σ2 is obtained by

E s2r =
2rΓ

n−1
2

+ r

Γ
n−1
2

n−1 r
σ2r 2 15

For r =
1
2
this implies

E s =
2Γ

n
2

Γ
n−1
2

n−1
σ,

such that

s
Γ

n−1
2

n−1

2Γ
n
2

2 16

is UVUE with respect to σ. For r = 1 the estimator s2 is UVUE with respect to σ2.

Example 2.7 Let the component of a random sample Y = (y1, y2, … , yn)
T be

distributed as P(λ), 0 < λ < ∞. Now we want to estimate g λ =
e−λλk

k
(k = 0,

1, 2,…), a value of the probability function for a given k. An unbiased estimator
based on the first element y1 of a random sample Ywith I ={Y, y1 = k} is given by

S1 Y = g y1 I Y k = 0,1,2,… ,

that is, S1(Y) is equal to
e−λλk

k
for y1 = k and 0 else. As M Y = n

i= 1yi is com-

plete minimal sufficient with respect to λ, we can determine a UVUE S2(Y)
according to

S2 Y =E S1 Y M Y =P y1 = k M Y

For all M =M(Y) the conditional distribution of y1 for a given value of M is a
binomial distribution with n = M and p = 1/n. This is not difficult to see. Since
the yi are independent and identically distributed, for a fixed sum M, each yi
takes the value a (a = 0, …, M) with probability
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M

a

1
n

a

1−
1
n

n−a

Therefore the UVUE is equal to

S2 Y =

0 forM Y = 0, k > 0

1 forM Y = 0, k = 0

M

k

1
n

k n−1
n

n−k

forM Y > 0,k = 0,…,M

Theorem 2.4 If a random sample Y = (y1, y2, … , yn)
T is N(μ, Σ)-distributed

with μ = (μ1, …, μk)
T ϵ Rk, rk(Σ) = k and |Σ| > 0, then the UVUE of the

k k + 3
2

-dimensional parameter vector

θ= μ1,…,μk ,σ
2
1,…,σ2k ,σi, j

T
, i < j, j= 2,…,k

based on a random sample X = (Y1, … , Yn)
T with components Yi distributed as

Y is given by

θ= y1 ,…,yk , s
2
1,…,s2k ,si, j

T
, i < j, j= 2,…,k

where

yi =
1
n

n

j=1

yij, s
2
i =

1
n−1

n

j = 1

yij−yi
2
,

sjk =
1

n−1

n

i=1

yij−yj yik −yk

Proof: If k = 2, then the family of two-dimensional normal distributions with
positive definite covariance matrix is a five-parametric exponential family, and

M2 X = y1 ,y2 ,SS1,SS2,SP12

is a complete minimal sufficient statistic with respect to this family, where

SSi =
n

j =1

yij−yi
2
, i= 1,2

and

SP1,2 =
n

j =1

y1j−y1 y2j−y2
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The marginal distributions of yij , i = 1 , 2 are N(μi, σi
2)-distributed with the

UVUE yi and

s2i =
1

n−1
SSi

If we can show that E(SP1 , 2) = (n − 1)σ1 , 2, then the proof of the theorem is
completed for k = 2, because the five parameters are then estimated by an unbi-
ased estimator only depending on the sufficient statistic M2(X).
But by definition it is now

σ1,2 = E y1−μ1 y2−μ2 =E y1y2 −μ1μ2

Then, we have

SP1,2 =
n

j = 1

y1jy2j−n y1 y2

and

E SP1,2 =
n

j = 1

E y1jy2j −nE y1 y2

= n σ12 + μ1μ2 −
1
n
n σ12 + μ1μ2 + n n−1 μ1μ2 = σ12 n−1 ,

since

E y1jy2j = μ1μ2

taking into account that the y1j and y2j are independent for i j.

Now we consider the case k > 2 where X follows a
k k + 3

2
-parametric expo-

nential family with an analogously to the case k = 2 defined complete minimal
sufficient statistic

Mk X = y1,…,yk ,SS1,…,SSk ,SP12,…,SPk−1,k
T

All
k k + 3

2
parameters can be estimated from two-dimensional marginal

distributions unbiased and only depending on Mk(X). This finishes the proof.

Sometimes it is indicated to compare the variance of any estimator from DE to
the variance of the UVUE. This leads to a new definition.

Definition 2.5 Let S0(Y) and S(Y) be estimators from DE with respect to g(θ)
and let S0(Y) be a UVUE. Then the ratio

E0 =
var S0 Y
var S Y

is called the relative efficiency of S(Y). All UVUE are called efficient estimators.
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If there is no UVUE, then we often look for the best linear or the best quad-
ratic estimators, meaning that a statistic has to be minimised in the class DL of
linear, in the class DLE of linear unbiased, in the class DQ of quadratic or in the
class DQE of quadratic unbiased estimators, respectively. The best linear or
quadratic estimators and the best linear predictions are treated in the chapters
about linear models. Linear estimators are used to estimate fixed effects in linear
models. However, quadratic estimators are suitable to estimate variance com-
ponents of random effects in linear models.

2.2 Variance-Invariant Estimation

In applications of statistics, measurements are carried out within a certain
scale, which is sometimes chosen arbitrarily. In the biological testing for
active agents, for instance, concentrations of solutions are registered directly
using a logarithmic scale. Temperatures are given in degrees with respect to
the Celsius, Fahrenheit, Réaumur or Kelvin scales. Angles are measured in
degrees or radians. Assume now that two methods of measuring differ only
by an additive constant c, such that y∗i = yi + c holds for the realisations of ran-
dom samples Y∗ and Y, respectively. If components y∗i and yi of these random
samples are distributed as Pθ∗ and Pθ, respectively, and if θ∗ = θ + c, then the
relations

S Y � = S Y + c

and

var S Y � = var S Y

are fulfilled. The variances of the estimators are equal in both problems, and we
say that the problem of estimation is variance-invariant with respect to
translations.

Definition 2.6 Let a random variable y be distributed as Pθ ϵ P = (Pθ, θ ϵ Ω)
and take values y ϵ {Y} in the sample space {Y}. Further, let h be a measurable
one-to-one mapping of {Y} onto {Y} such that for each θ ϵΩ the distribution Pθ∗
of h(y) = z is in P = (Pθ, θ ϵ Ω), too, where h(θ) = θ∗ covers with θ the
whole parameter space. Then we say that Pθ ϵ P = (Pθ, θ ϵΩ) is invariant relative
to h, where h is the mapping from Ω onto itself induced by h. If {T} is a class of
transformations such that Pθ ϵ P = (Pθ, θ ϵ Ω ) is invariant relative to the
whole class, and if H({T}) =H is the set of all transformations, arising by
taking all finite products of transformations in {T} and their inverses, then
Pθ ϵ P = (Pθ, θ ϵ Ω) is invariant relative to H, and H is the group induced by {T}.
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W.l.o.g. we will therefore assume in the following that a class of transforma-
tions is a group, where the operation is the product (or concatenation, the step-
wise application of transformations). In the following letH be a group of one-to-
one mappings of {T} onto itself. If P = (Pθ, θ ϵ Ω) is invariant relative to H, then
we obtain

Eθ h y = Eh θ y 2 17

because

Eθ h y =

Y

h y dPθ =

Y

ydPh θ = Eh θ y

Example 2.8 The family of normal distributions N(μ,σ2), θT = (μ, σ2) is
invariant relative to the group of real affine transformations. Namely, if z = h(y)
= a + by (a, bϵR1) and if y is distributed as N(μ,σ2), then it is known that z is
distributed as N(μ∗,σ∗2) with μ∗ = a + bμ, σ∗2 =b2σ2.

Moreover, θ∗T = (μ∗,σ∗2) covers with θT for fixed a and b the whole set Ω.

Definition 2.7 Let Y = (y1, y2, … , yn)
T be a random sample with realised com-

ponents yi ϵ {Y} and let H be a group of transformations as described before.
Further, let yi be distributed as Pθ ϵ P = (Pθ, θ ϵΩ) and assume that S is invariant
relative toH. Then a statisticM(Y) =M(y1, … , yn) is said to be invariant relative
to H if

h M Y =M y1,…,yn 2 18

holds with h M =M h y1 ,…, h yn for all h ϵ H. If M(Y) is an estimator and

h M Y = h M Y 2 19

is fulfilled, then M(Y) is said to be equivariant (relative to H).

The induced transformations h from Ω onto Ω introduced in Definition 2.6
constitute a group H if h runs through the whole group H.
Let the components of the random sample Y be distributed asN(μ,σ2), and let

H be the group of real affine transformations introduced in Example 2.8. The
(minimal sufficient and complete) estimator ST(Y) = y ,s2 is equivariant,
because, according to Example 2.8, we have

h θT = θ∗T = a+ bμ, b2σ2 andh ST Y = a+ by, b2s2
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Definition 2.8 If g(θ) = ψ ϵ Z is to be estimated in a problem of estimation, if
besides g(θ1) = g(θ2) implies g h θ1 = g h θ2 for all h ϵ H and if finally

g h θ −h S Y
2
= g θ −S Y 2

holds for each estimator S(Y) ϵ DE with respect to g(θ) and for all h ϵ H , θ ϵ Ω,
then the problem of estimation is said to be invariant relative toH (with respect
to the quadratic loss).

Theorem 2.5 If S(Y) is an equivariant estimator with finite variance in a
problem of estimation, which is invariant relative to a group H of transforma-
tions, then

varh θ S Y = varθ S Y 2 20

Proof: Observing

varh θ S Y =

Y

g h θ −h S Y
2
dPh θ =Eh θ g h θ −h S Y

2

from (2.17) and the invariance of the estimation problem, the assertion
follows that

varh θ S Y =Eθ g θ −S Y 2 = varθ S Y

Corollary 2.1 Under the assumptions of Theorem 2.5, the variance of all with
respect toH equivariant estimators inΩ is constant (i.e. independent of θ), if the
group H is transitive over Ω.

Proof: The transitivity of a transformation group H over Ω means that to any
pair (θ1, θ2) ϵ Ω, there exists a transformation h ϵH , which transfers θ1 into θ2.
Then it follows by Theorem 2.5 for each such pair

varθ1 S Y = varθ2 S Y = const

Let P = (Pθ, θϵΩ) be a group family of distributions, which is invariant relative to
a groupH of transformations for whichH acts transitive overΩ and additionally
where g(θ1) g(θ2) always implies h g θ1 h g θ2 .

If the distribution of y is given by Pθ0 with arbitrary θ0 ϵ Ω, then the set of
distributions induced by h(y) with h ϵ H is just the group family (Pθ, θ ϵ Ω).
Therefore a group family is invariant relative to the group of transformations
defining this family. Hence, especially the location families are invariant relative
to translations.
Now we look for equivariant estimators with minimal mean square deviation.

If DA is the class of equivariant estimators with existing second moment and if
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for R in (2.2) the mean square deviationMSD[S(Y)] is chosen, then an estimator
S0(Y) ϵ DA satisfying

MSD S0 Y = inf
S Y ϵ DA

MSD S Y

is called equivariant estimator with minimal MSD.

Example 2.9 Let the components of a random sample Y be distributed as
N(μ,σ2) where θT = (μ, σ2) ϵ Ω. As in Example 2.8 let H be the group of affine
transformations. The statistic MT Y = y,SSy with SSy =

n
i= 1 yi−y

2 is
minimal sufficient with respect to θ. Let μ y,SSy be equivariant for g1(θ) =

μ, and let σ2 y,SSy be equivariant for g2(θ) = σ2, that is, for all h ϵ H and

h ϵH the relations

h μ y,SSy = a+ bμ y,SSy = μ a+ by, b2SSy = h μ y,SSy

and analogously

h σ2 y,SSy = b2σ2 y,SSy

are fulfilled. If we put a = −y, b = 1, then h MT Y = 0,SSy arises, and we can
write all equivariant estimators with respect to μ as μ y,SSy = y+w SSy and

all equivariant estimators with respect to σ2 as σ2 y,SSy = αSSy with suitably
chosen w and α. Since y and SSy are independent,

MSD y+w SSy = var y +w2E SSy

holds. This becomesminimal for SSy = 0, such that y is the equivariant estimator
with minimal MSD with respect to μ. Nonetheless it is

MSD αSSy = E αSSy−σ
2 2

= α2E SSy
2 −2ασ2E SSy + σ4

Since
SSy
σ2

is distributed as CS(n − 1), we get E(SSy) = (n − 1)σ2, var(SSy)

= 2(n − 1)σ4 and consequently

MSD αSSy = α2σ4 n−1 n+ 1 −2ασ4 n−1 + σ4

This expression becomes minimal for α=
1

n+ 1
. Therefore

σ2 =
SSy

n+ 1

is the equivariant estimator with minimal MSD with respect to σ2.
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2.3 Methods for Construction and Improvement
of Estimators

In Sections 2.1 and 2.2 we checked estimators whether they fulfilled certain
optimality criteria. But first we need one or more estimators at our disposal
for use in applications. In the following we want to consider methods for con-
structing estimators.

2.3.1 Maximum Likelihood Method

We assume now that the likelihood function L(Y, θ) for all Y ϵ {Y} has a uniquely
determined supremumwith respect to θ ϵΩ. The reader should be not confused
by the double meaning of L(.,.), namely, both for the loss function and the like-
lihood function – but this is common use in the statistical community.

Definition 2.9 Fisher (1925)
Let the components of the random sample Y be distributed as Pθ ϵ P =

(Pθ, θ ϵ Ω) and let L(Y,θ) be the corresponding likelihood function.

An estimator SML(Y) is said to be the maximum likelihood estimator or
shortly ML estimator (MLE) with respect to g(θ) = ψ ϵ Z, if its realisation is
defined for each realisation Y of Y by

L Y , g SML Y = max
ψϵZ

L Y ,ψ = max
θϵΩ

L Y , g θ 2 21

It is obvious that equivalent likelihood functions imply the same set of MLE.
Many standard distributions possess, as generally supposed in this section,
exactly one MLE. Sometimes their determination causes considerable numer-
ical problems. For exponential families the calculations can be simplified by
looking for the supremum of ln L(Y,θ) instead of L(Y,θ). Since the logarithmic
function is strictly monotone increasing, this implies the same extremal θ.
If the distribution of the components of a random sample Y follows a

k-parametric exponential family with a natural parameter η, then

ln L Y ,η =
k

i=1

ηjMj Y −nA η + ln h Y

with Mj Y = n
i= 1Mj yi .

For ψ = g (θ) = η with η = (η1, … , ηk)
T, the MLE of η is obtained by solving the

simultaneous equations

∂

∂ηj
A η =

1
n

n

i= 1

Mj yi , j= 1,…,k 2 22
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if A(η) is partially differentiable relative to ηj. If the expectations of Mj(Y) exist
for a random sample Y, then

∂

∂ηj
A η = E Mj yi

and

E
∂

∂ηj
A SML Y =

∂

∂ηj
A η , j= 1,…,k

follow. Moreover, if A(η) is twice partially differentiable relative to the coordi-
nates of η and if the matrix

∂2A η

∂ηj∂ηl

of these partial derivatives is positive definite at η = SML(Y) (for all η = ψ ϵ Z),
then (2.22) has the unique solution SML(Y), which is minimal sufficient.

Example 2.10 Let Y = (y1, y2, … , yn)
T be a random sample with components

yi satisfying a two-point distribution, where yi (i = l,…, n) takes the value 1 with
the probability p and the value 0 with the probability 1 – p (Ω = (0;1),θ = p).
Then by putting y= n

i= 1yi and g(p) = p, we get

L Y ,p =
n

i= 1

pyi 1−p 1−yi = py 1−p n−y, y= 0,1,…,n

This likelihood function is equivalent to the likelihood function of a random
sample Y of size 1 distributed as B(n, p). By setting the derivative

∂ ln L Y ,p
∂p

=
y
p
−
n−y
1−p

equal to 0, we get the solution p=
y
n
, which supplies a maximum of L as the

second derivative of ln L relative to p is negative. Therefore the uniquely deter-
mined ML estimator is

SML Y =
y
n
=p

Example 2.11 Let the components of a random sample Y be distributed as
N(μ, σ2) and let θ = (μ, σ2)T ϵ Ω. Then we obtain

ln L Y ,θ = −
n
2
ln 2π−

n
2
lnσ2−

1
2σ2

n

i= 1

yi−μ
2

We consider two cases.
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a) Let g(θ) = θ. By partial differentiation we get

∂ ln L Y ,θ
∂μ

=
1
σ2

n

i=1

yi−μ ,

∂ ln L Y ,θ
∂σ2

= −
n
2σ2

+
1
2σ4

n

i=1

yi−μ
2

After putting both right-hand sides of these equations equal to 0, we arrive
at the unique solution

S Y = y ,
1
n

n

i= 1

yi−y
2

T

of this system. Since the matrix of second partial derivatives of ln L is neg-
ative definite at this point, we have the ML estimator

SML Y = y,
1
n

n

i=1

yi−y
2

T

= μ,σ2
T

b) Let g(θ) = (μ,σ)T. By partial derivation we obtain instead of

∂ ln L Y ,θ
∂σ2

= −
n
2σ2

+
1
2σ4

n

i=1

yi−μ
2

now as second equation

∂ ln L Y ,θ
∂σ

= −
n
σ
+

1
σ3

n

i=1

yi−μ
2

Setting again the partial derivatives to 0 and solving the system, we find the
ML estimator

SML Y = y,
1
n

n

i= 1

yi−y
2

T

= μ,σ T

Since the N(μ,σ2) distributions form an exponential family with the natural
parameters

η1 =
μ

σ2
, η2 = −

1
2σ2

,

the function ln L(Y, θ) can be written as

ln L Y ,θ = lnL∗ Y ,η = −
n
2
ln2π + η1M1 + η2M2−nA η ,
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where

M1 =
n

i= 1
yi,M2 =

n

i=1
yi
2 andA η = −

η21
4η2

+
1
2
ln −

1
2η2

If we partially differentiate lnL∗(Y, η) relative to η1 and η2, then we get with
STML Y = η1,η2 after putting the partial derivatives to 0 and solving the system
the expressions

1
2
η1
η2

= −
M1

n
, −

η1η
2

4η2
2 =

1
2η2

= −
M2

n

and finally the solutions

η1 =
μ

σ2 ,η2 = −
1

2σ2

Since the matrix
∂2A η

∂η1∂η2
is positive definite, the estimators η1,η2 and

μ,σ2 , respectively, are minimal sufficient.

Often numerical problems occur if the equations that have to be solved are non-
linear or if even the function L(Y, θ) cannot be differentiated with respect to θ.
As a consequence of the decomposition theorem (Theorem 1.1) the following

statement is given.

Theorem 2.6 If the statistic M(Y) is sufficient with respect to Pθ under the
conditions of Definition 2.9, then aML estimator SML(Y) with respect to θ only
depends on M(Y).

2.3.2 Least Squares Method

If the form of a distribution function from the family P = (Pθ, θ ϵΩ) is unknown
or (as in the case of non-parametric families) not sufficiently specified, then the
maximum likelihoodmethod does not apply. Concerning the following method,
we need a model for the components yi of the random sample. Then the prob-
lem of estimation consists in the estimation of the model parameters. We now
write for the components

yi =E yi + ei = f θ + ei 2 23

with an unknown real function f and with random ‘errors’ ei. Hence, we suppose
that we know a parametric model f(θ) for the expectations E(yi) of yi. So we
have to estimate the model parameter θ and, if necessary, the distribution para-
meters of ei.
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Since Y = (y1, y2, … , yn)
T is a random sample, all ei have the same distribution

and are (stochastically) independent, that is, e = (e1, … , en)
T is a vector of iden-

tically and independently distributed components.
Besides we assume that E(ei) = 0. We restrict ourselves to estimate only θ and

var(ei) = σ2. The model class (2.23) originates from theory of errors. If an object
is measured n times and if the measuring method includes errors, then the
measured values yi differ by an experimental error ei from the real value μ
(in this case we have f (θ) = μ).
The question arises how to get a statement about μ by the n single measure-

ments yi. Gauss, but earlier also Legendre, proposed the least squares method
(LSM) that determines a value θ ϵ Ω with minimal sum of squared
errors n

i=1e
2
i .

Definition 2.10 A measurable statistic SQ(Y) whose realisation SQ(Y) fulfils
the condition

n

i= 1

yi− f SQ Y
2
= min

θϵΩ

n

i= 1

yi− f θ 2 2 24

is said to be estimator according to the least squares method with respect to
θ ϵ Ω or shortly LSM estimator of θ ϵ Ω.

Usually the variance σ2 = var(ei) is estimated by

s2 =
n
i= 1 yi− f SQ Y

2

n− dim Ω
2 25

if dim(Ω) < n holds.
The LSM estimator is mainly used in the theory of linear (and also non-linear)

models. In these models Y is not a random sample, since the components of Y
have different expectations. For example, for a simple linear model, we have

yi = β0 + β1xi + ei i= 1,…,n ,

and if β1 0, the expectation E(yi) is dependent on xi. Hence, the vector
Y = (y1, … , yn)

T is not a random sample. Nevertheless the parameters of the
model can be estimated by the LSM. We refer to Chapters 4 and 8 where param-
eter estimation in linear models is investigated. The LSM can be generalised also
for dependent ei with arbitrary, but known positive definite covariance matrix.

2.3.3 Minimum Chi-Squared Method

The minimum chi-squared method (or minimum χ2 method; this notation is
used in the following) is applicable if the observed values are frequencies of
observations, which belong to a finite number of mutually disjoint subsets
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whose union represents the totality of possible realisations of a component of a
random sample Y. It is unimportant whether these classes are possible realisa-
tions of a discrete random variable (natural classes) or subsets of values of con-
tinuous random variables. In each case let n1, …, nk be the number of
components of a random sample Y, which fall into k classes. Because of

k

i= 1
ni = n,

the variables ni are dependent. Let ψ1 = g1(θ) , … , ψk = gk(θ) be the correspond-
ing probabilities, determined by the distribution Pθ, for which an element of a
random sample Y belongs to one of the k classes.

Definition 2.11 An estimator S0(Y) whose realisations fulfil

Χ2 =
k

i=1

ni−ngi S0 Y 2

ngi S0 Y
= min

θϵΩ

k

i=1

ni−ng i θ
2

ng i θ
2 26

is said to be minimum χ2 estimator.

The notation minimum χ2-estimator originates from the fact that Χ2 is
asymptotically distributed as CS(n − k). If the functions gi(θ) are differentiable
relative to θ, then a minimum of the convex function Χ2 in (2.26) is obtained
if the partial derivatives of X2 relative to the components of θ are put equal
to 0 and the simultaneous equations are solved. This leads to

k

i=1

ni−ngi S0 Y
gi S0 Y

+
ni−ngi S0 Y 2

2n gi S0 Y 2

∂gi θ
∂θi θ = S0 Y

= 0 2 27

Unfortunately it is difficult to solve (2.27). But often the second part in this
sum can be neglected without severe consequences. In these cases (2.27) is
replaced by the simpler equation

k

i=1

ni−ngi S0 Y

gi S0 Y
∂gi θ
∂θi θ = S0 Y

= 0 2 28

This approach is also called modified minimum χ2 method.

2.3.4 Method of Moments

If just p product moments of the distribution Pθ ϵ P = (Pθ, θ ϵ Ω) , dim(Ω) = p
controlling the components of a random sample Y are known as explicit func-
tions of θ, then the method of moments can be used.
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Definition 2.12 If n ≥ p, then an estimator SM(Y) whose realisation SM(Y)
solves the simultaneous equations

mr = μr SM Y 2 29

is said to be an estimator according to themethod of moments. In (2.29) μr is the
usual rth moment. Observe that

mr =
1
n

n

i=1

yri

Example 2.12 Let Y be a random sample from a non-central CS(ν,λ) distribu-
tion where ν and λ are assumed to be unknown. Then we get

E yi = ν+ λ, var yi = 2 ν+ 2λ , var yi =E y2i − E yi
2, i= 1,…,n

For p = 2 relation (2.29) implies with r = 1 and r = 2 the system

y= ν + λ and
1
n

n

i= 1

y2i = 2 ν+ 2λ + ν+ λ
2
,

with the solution ST
M = ν,λ with

ν= 2y−
1
2

1
n

n

i=1

y2i −y
2 ,λ=

1
2

1
n

n

i= 1

y2i −y
2 −y

2.3.5 Jackknife Estimators

It is supposed for this method that an estimator S(Y) for the problem of estima-
tion is already known. The aim is now to improve the given estimator. Here we
restrict ourselves to such cases, where S(Y) is biased with respect to g(θ) = ψ . We
look for possibilities to reduce the bias vn(θ) = E[S(Y)] − g(θ) .

Definition 2.13 Let Sn(Y) be an estimator with respect to g(θ) including all
n (>1) elements of a random sample Y. Besides, let Sn − 1(Y

(i)) be an element
of the same sequence of estimators based on

Y i = y1,…,yi−1,yi+ 1,…,yn
T

Then

J S Y = nSn Y −
n−1
n

n

i=1

Sn−1 Y i 2 30

is said to be the jackknife estimator of first order with respect to g(θ) based
on Sn(Y).
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If Sn(Y) and Sn − 1(Y
(i)) have finite expectations and if the bias of Sn(Y) has

the form

vn θ =
∞

l = 1

al θ
nl

,

then

E J S Y −g θ = nvn θ − n−1 vn−1 θ =
∞

l = 1

al θ
nl−1

−
∞

l =1

al θ

n−1 l−1

= −
a2 θ

n n−1
−

∞

l =2

al +1 θ
1

n−1 l −
1
nl

follows such that the order of bias is reduced from O 1
n to O 1

n2 .

Example 2.13 Let Y be a random sample whose components have the expec-
tation μ. Further, let g(θ) = μ and Sn Y = yn. Then the jackknife estimator based
on yn is given by J yn = yn
Indeed, it is

J yn = n yn −
n−1
n

n

i= 1

y i
n = yn

2.3.6 Estimators Based on Order Statistics

The estimators of this subsection are to estimate mainly location parameters.
First we want to introduce statistics that are important for certain problems
of estimation (but also of testing).

2.3.6.1 Order and Rank Statistics
Definition 2.14 Let Y be a random sample of size n > 1 from a certain distri-
bution family.
If we arrange the elements of the realisation Y according to their magnitude,

and if we denote the jth element of this ordered set by y(j) such that y(1) ≤ … ≤
y(n) holds, then

Y = y 1 ,…,y n
T

is a function of the realisation of Y, and S∗(Y) = Y(.) = (y(1), … , y(n))
T is said to be

the order statistic vector, the component y(i) is called the ith order statistic, and
y(n) − y(1) =w is called the range of Y.

Since Y ϵ {Y} implies also Y(.) ϵ {Y}, the sample space {Y} is mapped by S∗(Y)
into itself.
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Theorem 2.7 Let Y be a random sample with continuous components
possessing the distribution function F(y) and the density function f(y). Then
the density function h(Y(.)) is given by

h Y = n
n

i= 1

f y i 2 31

If 1 ≤ k ≤ n and if Rk = y i1 ,…,y ik

T
is the vector of a subset with k elements

of Y(.), then the density function h(Rk) of Rk is given by

h Rk =
n

k + 1

j= 1
ij− ij−1−1

k +1

j=1

F y ij
−F y ij−1

ij− ij−1−1 k

j= 1

f y ij
,

2 32

where we put i0 = 0, ik+1 = k + 1, y i0 =−∞ and y(k+1) = +∞ and observe

y i1 ≤… ≤ y ik

We sketch only the basic idea of the proof. Let Bij = y ij−1
,y ij

and E the

following event: considering the components of a random sample Y (and Y(.),
respectively) lie i1 − 1 in Bi1 , i2 − i1 − 1 in Bi2 ,…, k − ik in Bk.

If Pij is the probability for y ϵBij , then Pij = Bij
f y dy= F y ij

−F y ij−1

holds. Since

P E = n
Pi1 −1
i1 Pi2 − i2−1

i2 … Pk− ik
ik

i1−1 i2− i1−1 … k− ik
,

we obtain (2.32) and for k = n also (2.31).

Corollary 2.2 The density function of the ith order statistic is

h y i =
n

i−1 n− i
F y i

i−1
1−F y i

n−1
f y i 2 33

Especially significant are

h y 1 = n 1−F y 1
n−1

f y 1 2 34

and

h y n = n F y n
n−1

f y n 2 35
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Definition 2.15 Taking the notations of Definition 2.14 into account, let the
n positive integers ri = r(y(i)) defined by yi = y ri . The numbers ri are called the
rank numbers or simply ranks of yi (i = 1, …, n). The vector R = (r1, … , rn)

T =
[r(y1), … , r(yn)]

T is called rank statistic vector of the random sample Y, and the
components r(yi) are called rank statistics.

2.3.6.2 L-Estimators
L-estimators are weighted means of order statistics (where L stands for linear
combination).

Definition 2.16 If Y is a random sample and Y(.) the corresponding order sta-
tistic vector, then

L Y = SL Y =
n

i=1

ciy i ; ci ≥ 0,
n

i= 1

ci = 1 2 36

is said to be an L-estimator.

It has to be indicated with respect to which parameters L(Y) is to be an esti-
mator. In the most cases we have to do with location parameters. The main
causes for this are the conditions ci ≥ 0,

n
i= 1ci = 1. Linear combinations within

order statistics without these restrictions can also be used to estimate other
parameters, but often they are not called L-estimators.
Thus with c1 = −1, c2 = = cn−1 = 0, cn = l, we get the range S(Y) = w =

y(n)− y(1), which is an estimator with respect to σ = var y in distributions with
existing second moment.

Example 2.14 Trimmed mean value
If we put

c1 =…= ct = cn− t +1 =…= cn = 0 and ct + 1 =…= cn− t =
1

n−2t

in (2.36) with t <
n
2
, then the so-called

t
n
-trimmed mean

LT Y =
1

n−2t

n− t

i= t +1

y i 2 37

arises. It is used if some measured values of the realised sample can be strongly
influenced by observation errors (so-called outliers). For n =2t + 1 the
t
n
-trimmed mean is the sample median
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LM Y = y t +1 = y n− t 2 38

Example 2.15 Winsorized mean
If we do not suppress, as in Example 2.14, the t smallest and the t largest

observations, but concentrate them in the value y(t + 1) and y(n − t), respectively,

then we get the so-called
t
n
-winsorized mean

LW Y =
1
n

n− t

i= t +1

y i + ty t + 1 + ty n− t 2 39

c1 =…= ct = cn− t + 1 =…= cn = 0 and ct + 1 =…= cn− t =
1
n

The median in samples even of size n = 2t can be defined as ½-winsorized
mean

LW Y =
1
2

y t +1 + y n− t 2 40

Definition 2.17 The median ymed of a random sample of size n ≥ 2 is
defined by

ymed =Med Y =
y n− t forn= 2t + 1

1
2

y t + 1 + y n− t forn= 2t

For n = 2t + 1 and t =
n−1
2

, respectively, it is Med(Y) = LT(Y).

2.3.6.3 M-Estimators
Definition 2.18 An estimator S(Y) =M(Y), which minimises for each realisa-
tion Y of a random sample Y the expression

n

i= 1

ρ yi−S Y , 2 41

where

ρ t =

1
2
t2 for t ≤ k

k t −
1
2
k2 for t > k

2 42

holds for suitable chosen k, is said to be an M-estimator.
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Huber (1964) introduced M-estimators for the case that the distributions of
the components yi of a random sample Y have the form

F y = 1−ε G y + εH y ,

where 0 < ε < 1 and G and H are known distributions. If 0 < ε <½, then F can be
considered as distribution G contaminated by H.

2.3.6.4 R-Estimators
Definition 2.19 Let Y be a random sample and Y(.) the corresponding order
statistic vector of Y. For 1 ≤ j ≤ k ≤ n we denote

mjk =
1
2

y j + y k

Further, let d1, …, dn be n given non-negative numbers. The numbers

wjk =
dn− k− j

n
i=1idi

,1≤ j ≤ k ≤ n

define the probabilities of a 1
2n n+ 1 -point distribution, that is, of a discrete dis-

tribution with 1
2n n+ 1 possible values mjk (constituting the support), which

occur with the positive probabilities wjk. If R(Y) is the median of this distribu-
tion, then R(Y) is said to be an R-estimator after transition to a random variable.

It is easy to see that the values wjk define a probability distribution. Namely,
these wjk are non-negative and also not greater than 1, since the numerators
in the defining term are not greater than the common denominator. Finally,
considering the 1

2n n+ l pairs (j, k), the numerator dn occurs n-times, the
numerator dn−1 occurs (n − l)-times and so on, up to the numerator d1 that
occurs once (viz. for the pair j = l, k = n).

Example 2.16 Hodges–Lehmann estimator
Assume that d1 = = dn = 1. Then R(Y) is the median of themjk. This estimator
is called Hodges–Lehmann estimator.

2.4 Properties of Estimators

If we construct R-optimal estimators as in Section 2.1, we know in the case of
global R-optimality that the obtained estimator is the best one in the sense of R-
optimisation. Sometimes it is interesting to know how these optimal estimators
behave according to other criteria. But it is more important to validate estima-
tors constructed by methods, which were described in Section 2.3. Is it possible
to state properties of these estimators?
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What can be done if R-optimal solutions do not exist as it was shown in Exam-
ple 2.2? Are there estimators that have at least asymptotically (i.e. for n ∞)
certain desired properties? We will present some results for such problems.

2.4.1 Small Samples

The first question should be to define the meaning of ‘small’ in this connection.
This verbal expression has become a technical term of statistics. The focus is
then on samples of such a size, which needs exact methods and excludes the
approximate use of asymptotic results. This holds mainly for samples of size
n < 50. For larger samples, partly asymptotic results can be used supplying good
approximation for sequences of samples with n ∞. It depends on the problem
from which n on this is possible. We will see in Chapter 9 about non-linear
regression that in special cases asymptotic results can be exploited already
for n = 4. But this is the exception. Unfortunately in most cases, it is not known
where the limit of applicability really lies.
In this section we describe properties that hold for each n > 1. Such essential

properties are to be unbiased (Definition 2.2) or to be inΩ global variance opti-
mal unbiased (Definition 2.3). If no local variance-optimal unbiased estimator
exists, then the relative efficiency in Definition 2.5 can be extended to arbitrary
estimators in DE fulfilling condition V1 in Definition 1.10, and the variance in
Definition 2.5 can be replaced by the lower bound given in the inequality of Rao
and Cramér.
All random samples and estimators of this section may be assumed to satisfy

the assumption V1 of Definition 1.10. Let the components of a random sample Y
be distributed as Pθ ϵ P = (Pθ, θ ϵΩ) with dim(Ω) = 1. We start with the general-
ised concept of relative efficiency.

Definition 2.20 Let S1 = S1(Y) and S2 = S2(Y) be two unbiased estimators
based on the random sample Y with respect to g(θ). Then

e S1,S2 =
var S1 Y
var S2 Y

2 43

is said to be the relative efficiency of S2 with respect to S1. For each unbiased
estimator S = S(Y) with respect to g(θ), the quotient

e S =

∂g θ

∂θ

2

In θ var S Y
2 44

is called efficiency function, where In(θ) denotes the Fisher information
(see (1.16)).
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The concepts of efficiency just introduced in (2.43) and (2.44) are not related
to the existence of a UVUE; they need weaker assumptions as, for example, the
existence of the second moments of S2 and S1 in (2.43) or the assumptions of
Theorem 1.8 with respect to g(θ) in (2.44). The equation (2.44) measures the
variance of all S(Y) ϵ DE at the lower bound of the inequality of Rao and Cramér
for dE[M(Y)] = dθ. Sometimes it is interesting to compare estimators with dif-
ferent bias according to the risk (2.2), which is based on the quadratic loss
in (2.1).

Definition 2.21 If S(Y) is an estimator with respect to g(θ) = ψ with the bias
vn =vn(θ) according to Definition 2.2 and if the second moment of S(Y)
exists, then

MSD S Y =E ψ −S Y 2 = var S Y + v2n 2 45

is said to be the mean square deviation of S(Y). For two estimators with existing
second moments, the quotient

r S1,S2 =
MSD S1 Y
MSD S2 Y

2 46

is called relative mean square deviation of S2(Y) with respect to S1(Y).

The following example shows that there exist estimators outside of DE with a
mean square deviation smaller than that of the UVUE.

Example 2.17 If the components of a randomsampleY = (y1, y2, … , yn)
T (n>1)

are distributed as N(μ, σ2) and if g(θ) = σ2, then s2 is a UVUE with respect to σ2

(see Example 2.4c). The formula for the variance of the χ2 distribution implies

that var s2 =
2σ4

n−1
holds. The maximum likelihood estimator

σ2 =
n−1
n

s2

has the bias vn (σ
2) = − σ2

n and the variance

var σ2 =
n−1 2

n2
var s2 =

2 n−1
n2

σ4

Therefore it is

MSD s2 = var s2 =
2σ4

n−1
andMSD σ2 = var σ 2 + v2n σ2 =

2n−1
n2

σ4

We get

r σ2,s2 =
2n−1 n−1

2n2
=
2n2−3n+ 1

2n2
< 1,
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That is,MSD(σ2 is always smaller thanMSD(s2). Therefore σ2, with respect
to the risk function, R(ψ ,S) is uniformly better inΩ than s2 (and s2 is not admis-
sible in the sense of Definition 1.15). Nevertheless s2 is used in applications with
only a few exceptions. The equivariant estimator with minimalMSD is accord-
ing to Example 2.9

σ 2 =
n−1
n+ 1

s2

with the bias −
2

n+ 1
σ2. Consequently we obtain

MSD σ2 = var σ2 +
4

n+ 1 2 σ
4 =

2
n+ 1

σ4

and because of n > 1

r σ2,σ2 =
2n2

2n−1 n+ 1
=

2n2

2n2 + n−1
< 1

Among the three estimators, σ2 has the largest bias, but the smallest MSD.

Definition 2.22 If S1(Y) is an unbiased estimator of ψ1 = g1(θ) and S2(Y) an
unbiased estimator of ψ2 = g2(θ), then

eψ1ψ2
S1,S2 =

d g1 θ
dθ

d g2 θ
dθ

2
var S1 Y
var S2 Y

2 47

is said to be Pitman efficiency of S2(Y) with respect to S1(Y) (Pitman 1979). Here
the existence of the derivatives of g1 and g2 and of the second moments of the
estimators is supposed.

For g1 = g2 the efficiency (2.47) is reduced to (2.43).

2.4.2 Asymptotic Properties

Sometimes it is useful to investigate the limit behaviour of estimator sequences
for n ∞.
Briefly, an estimator possesses a certain asymptotic property, if the corre-

sponding estimator sequence possesses this property. In each case we suppose
a sequence Y1, Y2, … of random samples Y = (y1, y2, … , yn)

T with n = 1,2, ….

Definition 2.23 Let S1, S2,… be a sequence {Sn} of estimators with respect to
g(θ), where Sn = S(Yn). Then {Sn} is said to be consistent, if this sequence sto-
chastically converges to g(θ) for all θ ϵ Ω, that is, if for all ε > 0
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lim
n ∞

P Sn−g θ ≥ ε = 0

holds. Further, the sequence {Sn} is called asymptotically unbiased, if the
sequence vn (θ) = E(Sn) − g(θ) of bias tends to zero for all θ ϵ Ω, that is,

lim
n ∞

vn θ = 0

The concept of consistency is not really suitable to evaluate competing esti-
mators. Thus the estimators s2, σ2 and σ2 of Section 2.4.1 are consistent (in the
family of normal distributions) with respect to σ2; all three are also asymptot-
ically unbiased. But we have

MSD σ2 <MSD σ2 <MSD s2

Definition 2.24 Let {S1 , n} be a sequence of estimators with respect to g(θ) and
let n S1,n−g θ be distributed asymptotically as N(0, σ21). Additionally, let
{S2 , n} be another sequence of estimators with respect to g(θ) so that
n S2,n−g θ is distributed asymptotically as N(0, σ22). Then the quotient

eA S1,S2 =
σ21
σ22

2 48

is said to be the asymptotic relative efficiency of {S2 , n} with respect to {S1 , n}.
Here σ2i is called the asymptotic variance of {Si , n} (i = 1,2).

A general definition of the asymptotic relative efficiency of two sequences of
estimators can be given also for the case that the limit distributions are no nor-
mal distributions.

Example 2.18 We consider the asymptotic relative efficiency of the sample
median with respect to the arithmetic mean based on location families of dis-
tributions Pθ. If F(y − θ) is the distribution function and L(y,θ) = f(y) the density
function of the components of the random sample Y = (y1, y2, … , yn)

T, then θ is
for F(0) = 1/2 and f(0) > 0 the median of the distribution Pθ. Now let

S2,n = yn =
y m+ 1

1
2

y m + y m+1

forn= 2m+ 1

forn= 2m

be the median of Yn.

We show that n yn−θ is distributed asymptotically as N 0,
1

4f 2 0
. First

let n = 2m + 1. Since the distribution of yn−θ is independent of θ,
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Pθ n yn−θ ≤ c = P0 nyn ≤ c =P0 yn ≤
c
n

holds for real c. Ifwn is thenumberof realisations yi greater than
c
n
, then yn ≤

c
n

is satisfied iff wn ≤m=
n−1
2

. Observing that wn is distributed as B(n, pn) with

pn = 1 − F
c
n

, the relation

Pθ n yn−θ ≤ c =P0 wn ≤
n−1
2

=P0
wn−npn
npn 1−pn

≤

1
2
n−1 −npn

npn 1−pn

is fulfilled. If we apply the inequality of Berry and Esseen [Berry (1941), Esseen
(1944), see also Lehmann and Romano (2008)] (taking into account that the
third moment exists for the binomial distribution), it follows that the difference

P0 wn ≤
n−1
2

−Φ un ,un =

1
2
n−1 −npn

npn 1−pn

tends to 0 for n ∞ (Φ distribution function of N(0, 1) distribution). It is

lim
n ∞

un = lim
n ∞

1

pn 1−pn
n

1
2
−pn −

1
2 n

For n ∞ the sequence F c
n converges to F(0) = ½ and therefore pn(1 − pn)

to
1
4
. Hence,

lim
n ∞

un = 2 lim
n ∞

n
1
2
−pn = 2c lim

n ∞

F
c
n

−F 0

c
n

But the limit of the right-hand side of the equation is just the first derivative of
F(y) at y = 0, that is,

lim
n ∞

un = 2cf 0

Consequently P n y m −θ ≤ c tends to Φ[2cf(0)] for n ∞. If y is

distributed as N(0, σ2), then we get

Φ
c
σ

=P
y
σ
≤
c
σ

= P y < c ,
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and vice versa. P y < c =Φ c
σ implies that y is distributed as N(0, σ2). Therefore

n y m −θ is distributed asymptotically as N 0,
1

4f 2 0
. It can be shown

[see Lehmann and Romano (2008)] that this is also the case for even n, which
finally means for arbitrary n.
Now we consider on the other hand the arithmetical mean

S1n = y=
1
n

n

i=1

yi

It is well known that y is distributed with expectation θ and variance
σ2

n
, which

means that n y −θ has expectation 0 and variance σ2. Hence the distribution
of n y −θ converges to the N(0,σ2) distribution. By (2.48) we obtain

eA y,y = 4σ2f 2 0

If y is distributed as N(μ, l), then f 0 =
1

2π
and

eA y,y =
4
2π

≈0 6366

Bahadur (1964) showed the following result under certain regularity condi-
tions, which are omitted here. If n Sn y −θ is distributed asymptotically as
N(0,σ2) for estimators Sn(y) with respect to θ, then

σ2 θ ≥
1

I θ
2 49

is true, where I(θ) denotes the Fisher information with respect to Pθ.

Definition 2.25 Let Sn(y) be an estimator with respect to θ ϵ Ω and let us
assume that the Fisher information with respect to Pθ exists. Further, let
n Sn y −θ be asymptotically distributed as N(0, σ2(θ)). If the equality holds

for σ2(θ) in (2.49), then Sn(y) is said to be a best asymptotically normally distrib-
uted estimator or simply BAN estimator.

Let θT = (θ1, … , θp) and let the information matrix I(θ) defined in Section 1.4
exist and be positive definite. Then a (vectorial) estimator Sn with respect to θ is
called BAN estimator, if n Sn−θ is asymptotically distributed asN[0n, I

−1(θ) ].

The following theorem is given without proof.

Theorem 2.8 Let L(y,θ) be the likelihood function of the components in the
sequence {Yn} of random samples and assume that ln L(y,θ) has second partial
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derivatives according to all components of θ. For sufficient small ε > 0 and for all
θ0 ϵ Ω with |θ0 − θ| < ε, let the supremum of

∂2

∂θi∂θj
lnL y,θ0 −

∂2

∂θi∂θj
lnL y,θ

be bounded with respect to y by a function, which is integrable relative to the
components of θ. Let the sequence θn of maximum likelihood estimators be
consistent. Finally assume that the information matrix I(θ) exists and is positive
definite. Then θn is a BAN estimator with respect to θ.

Generally BAN estimators are not unique. For example, the estimators s2,
σ 2 and σ 2 given in Section 2.4.1 are BAN estimators.

2.5 Exercises

2.1 Let y be a random variable whose values −1, 0, 1, 2, 3 occur with the
probabilities

P y= −1 = 2p 1−p ,P y= k = pk 1−p 3−k ,0 < p < 1,k = 0,1,2,3

a) Show that this defines a probability distribution for y.
b) Give the general form of all functions U(y), which are unbiased with

respect to 0.
c) Determine locally variance-optimal unbiased estimators for p and for

p(1 − p) on the basis of Theorem 2.3.
d) Are the LVUE obtained in c) also UVUE? Check the necessary and suf-

ficient condition (2.11).

2.2 Let Y = (y1, y2, … , yn)
T , n ≥ 1 be a random sample from a binomial distrib-

uted population with parameters n and p, 0 < p < 1, n fixed. Determine the
uniformly variance-optimal unbiased estimator for p and for p(1 − p).

2.3 Let Y = (y1, y2, … , yn)
T , n ≥ 1 be a random sample, where the second

moments for the components exist and are equal, that is, var(y) = σ2 <∞.

a) Show that

S Y =
1

n−1

n

i=1

yi−y
2

is unbiased with respect to σ2.
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b) Suppose that the random variables yi take the values 0 and 1 with
the probabilities P(yi = 0) = 1 − p and P(yi = 1)= p, 0 < p < 1,
respectively.

Prove that in this case S(Y) is a uniformly variance-optimal unbiased
estimator with respect to p(1 − p).

2.4 Let Y = (y1, y2, … , yn)
T , n ≥ 1 be a random sample whose components

have the distribution Pθ.
Calculate the maximum likelihood estimator with respect to θ as well as

the estimator according to the method of moments using the first usual
moments of Pθ, where Pθ is the uniform distribution in the interval
(a) (0, θ), (b) (θ, 2θ) and (c) (θ, θ+1).

2.5 Let Y = (y1, y2, … , yn)
T , n ≥ 1 be a random sample from a population uni-

formly distributed in the interval (0, θ), θ R+. Let SML(Y) and SM(Y) be
the estimators described in Exercise 2.4 (a).

a) Are the estimators SML(Y) and SM(Y) unbiased with respect to θ?
If not, then change them in such a way that unbiased estimators
SML Y and SM Y are created.

b) Determine the UVUE with respect to θ and the relative efficiency of
SML Y and SM Y .

2.6 Consider three stochastically independent random samples

X = (x1, x2, … , xn)
T , Y = (y1, y2, … , yn)

T and Z = (z1, z2, … , zn)
T.

Let the random variables xi, yi, zi be distributed as N a,σ2a , N b,σ2b and
N c,σ2c , respectively. Further, we suppose that σ2a, σ

2
b, σ

2
c are known and

that c = a + b holds.

a) DetermineML estimators for a, b and c, where only the sample from the
population is used for estimation whose expectation is to be estimated.

b) Calculate estimators for a, b and c applying the maximum likelihood
method, if the united sample and c = a + b are used for estimation.

c) Determine the expectations and variances of the ML estimators from
(a) and (b).

2.7 The task is to estimate the parameter θ in the model

yi = fi xi,θ + ei, i= 1,…,n

Further, assume that the random variables ei are distributed as N(0, σ
2) and

are stochastically independent. Show that the maximum likelihood method
and the least squares method are equivalent under these conditions.
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2.8 a) Let Y = (y1, y2, … , yn)
T , n ≥ 1 be a random sample with E(yi) = θ < ∞

(i = 1 , … , n). Determine the LSM estimator of the expectation θ.
b) Estimate the parameters α and β of the linear model

yi = α+ βxi + ei, i= 1,…,n

according to the least squares method, where xi xj holds for at least one
pair (i, j) of the indices.

2.9 Let Y = (y1, y2, … , yn)
T , n ≥ 1 be a random sample whose components

are uniformly distributed in (0, θ), and let S(Y) = y(n) be the maximum
likelihood estimator with respect to θ. Calculate the bias of this
estimator.

2.10 Let y1 , y2 , … , yn be independently and identically distributed and pos-
itive random variables with E(yi)= μ > 0 , var(yi) = σ2 <∞ and x1 , x2 , … ,
xn independently and identically distributed random variables with
E(xi) = η > 0, var(xi) = τ2 < ∞ . Further, let

cov xi,yj =
ρστ for i= j

0 for i j
, i, j= 1,…,n, ρ < 1

First estimate g(θ) =
η

μ
. Then show that the estimator x y and its jack-

knife estimator with respect to g(θ) have biases of order O(1/n) and O(1/
n2), respectively.

2.11 Let Y = (y1, y2, … , yn)
T , n ≥ 1 be a random sample whose components

are uniformly distributed in the interval [μ − α; μ + α].

a) Determine the expectation of the ith order statistic (i = 1, …, n).
b) Show that the median of the sample (see Definition 2.17) is in this

case an unbiased estimator with respect to μ.

2.12 Let the random sample Y = (y1, y2, … , yn)
T of size n > 2 be from a

population exponentially distributed with the parameter α > 0.

a) Give the efficiency function for the estimators that are unbiased with
respect to α.

b) Starting with the ML estimator for α, determine an unbiased estima-
tor and calculate its relative efficiency.

2.13 Show that the ML estimator of Exercise 2.12 (b) is asymptotically unbi-
ased and consistent.
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2.14 Let y1 , y2 , … , yn be independently and identically N(θ, 2θ)-distributed
random variables. Determine the ML estimator of the parameter θ > 0
and check its consistency.
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3

Statistical Tests and Confidence Estimations

3.1 Basic Ideas of Test Theory

Sometimes the aim of investigation is neither to determine certain statistics
(to estimate parameters) nor to select something, but to test or to examine care-
fully considered hypotheses (assumptions, suppositions) and often also wishful
notions on the basis of practical material. Also in this case a mathematical
model is established where the hypothesis can be formulated in the form of
model parameters. We want to start with an example.
Table potatoes are examined beside other things, whether they are infected by

so-called brown foulness. Since the potato under examination is cut for that rea-
son, it is impossible to examine the whole production. Hence, the examiner
takes at random a certain number n of potatoes from the produced amount
of potatoes and decides to award the rating ‘table potatoes’ if the number r
of low-quality potatoes is less or equal to a certain number c, and otherwise
he declines to do so. (For example, we can suppose that a quantity of potatoes
is classified as table potatoes, if the portion p of damaged or bad potatoes is
smaller than or equal to 3%.) This is a typical statistical problem, because it
concludes from a random sample (the n examined potatoes) to a population
(the whole amount of potatoes of a certain producer in a certain year).
The above described situation is a bit more complicated than that for estima-

tion and selection problems, because evidently two wrong decisions can appear
with different effect. We call the probability to make an error of the first kind or
type I error (e.g. by classifying table potatoes wrongly as fodder potatoes) the
risk of the first kind α and correspondingly the probability to make an error
of the second kind or type II error (e.g. by classifying fodder potatoes wrongly
as table potatoes) the risk of the second kind β.
Both errors have different consequences. Assuming that table potatoes are

more expensive than fodder potatoes, the error of the first kind implies that
the producer is not rewarded for his effort to supply good quality; therefore
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the risk of the first kind is called also producer’s risk. However, the error of the
second kind implies that the consumers get bad quality for their money; there-
fore the risk of the second kind is called also consumer’s risk. The choices of
numbers α and β depend on n and c, and reversely, n and c have to be chosen
suitably for given α and β.
Generally a statistical test is a procedure to allow a decision for accepting or

rejecting a hypothesis about the unknown parameter occurring in the distribu-
tion of a random variable.We shall suppose in the following that two hypotheses
are possible. The first (or main) hypothesis is called null hypothesis H0, and the
other one alternative hypothesis HA. The hypothesis H =H0 is right, if HA is
wrong, and vice versa. Hypotheses can be composite or simple. A simple
hypothesis prescribes the parameter value θ uniquely, for example, the hypoth-
esis H0 : θ = θ0 is simple. A composite hypothesis admits that the parameter θ
can have several values.
Examples for composite null hypotheses are:

H0 θ = θ0 or θ = θ1

H0 θ < θ1,

H0 θ θ0

Let Y be a random sample of size n, and let the distribution of their components
belong to a family P = Pθ, θ ϵ Ω of distributions. We suppose the null hypoth-
esis H0 θ ϵ ω=Ω0 Ω and the alternative hypothesis HA θ ϵ ΩA =Ω ω Ω.
We denote the acceptance of H0 by d0 and the rejection of H0 by dA. A non-
randomised statistical test has the property that it is fixed for each possible rea-
lisation Y of the random sample Y in the sample space {Y} whether the decision
has to be d0 or dA. According to this test, the sample space {Y} is decomposed
into two disjoint subsets {Y0} and {YA} ({Y0} {YA} = Ø, {Y0} {YA} = {Y}), defin-
ing the decision function

d Y =
d0 for Y ϵ Y0

dA for Y ϵ YA

The set {Y0} is called acceptance region, and the set {YA} critical region or
rejection region. We consider a simple case for illustration. Let θ be a one-
dimensional parameter in Ω= −∞ ,∞ . We suppose that the random variable
y has the distribution Pθ. With respect to the parameter, two simple hypotheses
are established, the null hypothesis H0 : θ = θ0 and the alternative hypothesis
HA : θ = θ1 where θ0 < θ1. Based on the realisation of a random sample Y =
(y1, … , yn)

T, we have to decide between both hypotheses. We calculate an

estimator θ from the sample whose distribution function G θ, θ is known.

Let θ be a continuous variable with the density function g θ,θ , which evidently

depends on the true value of the parameter. Consequently θ has under the null
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hypothesis the density function g θ, θ0 and under the alternative hypothesis

the density function g θ, θ1 . Further, we assume for the sake of simplicity that
y is normally distributed with unknown expectation θ = μ and known variance
σ2. Then the densities g θ, θ0 and g θ, θ1 are of the same type. Their graphs
have the same shape and are only mutually shifted along the θ-axis, as Figure 3.1

shows. Here we put θ = y.
Both hypotheses are simple hypotheses. In this case usually the test statistic

z=
y−μ0
σ

n

is applied where y is the mean taken from the random sample Y of size n.
Starting with the (random) sample mean y, first the value μ0 of the null

hypothesis is subtracted, and then this difference is divided by the standard

deviation
σ

n
of y.

Therefore z=
y−μ0
σ

n has the variance 1 and under the null hypothesis

the expectation 0. Under the alternative hypothesis, the expectation is

E z =
μ1−μ0

σ
n. The corresponding number λ=

μ1−μ0
σ

n is called non-

centrality parameter.
Having inmind a test decision to define on the base of the realisation z of z, we

determine for the chosen αwith 0 < α < 1 the (1 − α)-quantile (z(1 − α) = z1 − α) of
the standard normal distribution that can be found in Table D.2 and for special
values of α in the last line of Table D.3 (see Appendix). Then the decision is as
follows: reject H0, if z > z(1 − α), the so-called critical value generally denoted by
θk, and otherwise accept the null hypothesis (i.e. for z ≤ z(1 − α)).

43.532.521.510.50–0.5–1–1.5–2–2.5

z(0.5)

α
β

μ0= 0 μ1= 2

z(1 – α)

Figure 3.1 Density functions of the estimator of the location parameter μ depending on the
hypothesis values μ = 0 and μ = 2, respectively.
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This decision rule is illustrated in Figure 3.1. In the coordinate system, for
example, the values μ0 = 0 and μ1 = 2 are marked on the z-axis (where z repre-
sents certain realisations of z). Taking each of the two values as corresponding
expectation, the curves of the density functions can be plotted (shifted standard
normal distributions). Regarding the left curve belonging to μ0 = 0 the critical
value, the quantile z(1 − α) is marked on the z-axis; besides a vertical straight
line through z(1 − α) separates certain area parts under both curves (shaded
in Figure 3.1). Besides α = 0.025 is chosen in Figure 3.1 supplying z(1 − α) =
z(0.975) = 1.96.
The decision of rejecting the null hypothesis, if z > 1.96 (where z is obtained

from the realisations of the random sample or in other words is calculated
from the measurements), can be wrong, because such a value z is also possible
for μ > 0 (e.g. for μ = 2).
Let us come back to the general case. The probability to get an estimate of

θ > θk for valid null hypothesis is equal to

∞

θk

g θ, θ0 dθ = α

The value of α is represented by the darker shaded area under the curve of
g θ, θ0 in Figure 3.1. If the null hypothesis is rejected although it is right, then
an error is made, called error of the first kind. The maximal probability of
wrongly rejecting the null hypothesis in a test is said to be the risk α of the first
kind or significance level. However, the alternative hypothesis is said to have a
significance of (1 – α) 100%.
The better a test seems, the smaller its risk of the first kind. Considering prac-

tical investigations a risk of the first kind α = 0.05 seems to be only just accept-
able in the most cases. Users may ask why the test is not designed in such a way
that α has a very small value, say, α = 0.00001. Figure 3.1 clearly illustrates that
the further to the right the bound θk (in this case z(1 − α)) between both regions
is shifted, the smaller α (i.e. the area under the curve of g θ, θ0 ) is to be chosen
on the right-hand side of z(1 − α). But then the probability tomake another error
increases. Namely, if we calculate an estimate θ < θk from the realisation of the
sample, then the null hypothesis is accepted, although this value would be also
possible in the case that the alternative hypothesis is right and consequently the
null hypothesis is wrong.
If we accept the null hypothesis although it is wrong, then another error is

made, called the error of the second kind. The probability β of wrongly accept-
ing the null hypothesis, that is, the probability to make an error of the second
kind, is said to be the risk of the second kind. In Figure 3.1 this risk is repre-
sented by the lightly shaded area under the curve of g θ, θ1 at the left-hand

82 Mathematical Statistics



side of θk. Its value is obtained by integrating the density function g θ, θ1 from
−∞ up to θk, that is,

θk

−∞

g θ, θ1 dθ = β

Figure 3.1 makes clear that α can only be reduced for a certain test and a fixed
sample size if a larger β is accepted. Hence, the risks of the first and the second
kind cannot simultaneously be made arbitrarily small for a fixed sample size.
Applying statistical tests, it is wrong but common to focus mainly on the risk
of the first kind while the risk of the second kind is neglected. There are a
lot of examples where the wrong acceptance of the null hypothesis can produce
serious consequences (consider ‘genetic corn has no damaging side effects’ or
‘nuclear power stations are absolutely safe’). Therefore, it is advisable to control
both risks, which is always possible by suitably chosen sample size. In the fol-
lowing scheme the decisions performing a statistical test with respect to the true
facts (H0 null hypothesis, HA alternative hypothesis) are shown.

True fact Decision
Result of the
decision Probability of the result

H0 right
(HA wrong)

H0 accepted
(HA rejected)

Right decision Acceptance (or confidence)
probability 1 – α

H0 rejected
(HA accepted)

Error of the first
kind

Significance (or error) level,
risk α of the first kind

H0 wrong
(HA right)

H0 accepted
(HA rejected)

Error of the
second kind

Risk β of the second kind

H0 rejected
(HA accepted)

Right decision Power 1 – β

To be on the safe side, it is recommended to declare that hypothesis as null
hypothesis, which causes the more serious consequences in the case of wrong
rejection.
A generalisation of the situation just described is given if, after knowing the

experimental results, that is, the realisation θ of the statistic θ, it is not instantly
decided which of the two hypotheses is accepted. But instead a random proce-
dure (a kind of tossing a coin) is used accepting the null hypothesis with prob-
ability 1−k Y = 1−k θ and the alternative hypothesis with probability k θ , if

Y ϵ {Y} was observed (or θ calculated). Although the user of statistical methods
will hardly agree, leaving it after carefully planned and often cost intensive
experiments to leave it to chance which of the two hypotheses should be
accepted, the theory of testing is firstly based on the concept of such randomised
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tests. The significance of the Neyman–Pearson lemma in Section 3.2 is just to
recognise that non-randomised tests are sufficient for continuous distributions.

Definition 3.1 Let Y be a random sample with Y ϵ {Y} whose components are
distributed as Pθ ϵ P = {Pθ, θ ϵΩ}. Further, let k(Y) be a measurable mapping of
the sample space {Y} onto the interval (0, 1). It is called critical function. If k(Y)
states the probability for rejecting H0 : θ ϵω (i.e. for accepting HA : θ ϵ Ω\ω) in
the case that Y takes the value Y ϵ {Y}, then the critical function defines a
statistical test for the pair (H0, HA) of hypotheses. Then k(Y) is shortly called
a test. The test k(Y) is said to be randomised if it does not take with probability
1 only the values 0 or 1.
Now we want to define the risks of the first and the second kind for such

general tests k(Y). In this chapter we consider only such functions k(Y)
whose expectation exists for all θ ϵ Ω. The notation E[k(Y)|θ] means that the
expectation is taken with respect to the distribution Pθ ϵ Ω.

Definition 3.2 If k(Y) is a statistical test for a pair (H0, HA) of hypotheses
according to Definition 3.1, then

E k Y θ ϵ ω =

Y

k Y dPθ = α θ ,Pθ ϵ P,θ ϵ ω 3 1

is said to be the risk function of the first kind and

1−E k Y θ ϵ Ω ω = β θ 3 2

the risk function of the second kind. The function

π θ =

Y

k Y dPθ ,Pθ ϵ P,θ ϵ Ω

is said to be the power function of the test. Further

max
θ Ω

α θ = α

is called the significance level of the test k(Y). A test with the significance level α
is briefly called an α-test (alpha-test).
If α(θ) = α for all θ ϵ ω, then the test k(Y) is said to be α-similar or simply

similar.

If ω and Ω ω, respectively, are the closures of ω and Ω ω, respectively,

and if ω Ω ω =Ω∗ is the common boundary of both subsets, then k(Y)
is called α-similar on the boundary, if E k Y θ ϵ Ω∗ = α is fulfilled with
Pθ - probability 1.
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Definition 3.3 Considering tests ω = {θ0} and Ω ω = {θA} with simple null
and alternative hypotheses, then k∗(Y) is said to be most powerful α-test, if
for all α in the interval (0, 1)

max
k Y ϵKα

E k Y θA = E k∗ Y θA = α,

where Kα is the class of all α-tests.
According to Definition 3.2, an α-test k(Y) ϵ Kα for the pair of hypotheses

H0 θ = θ0, HA θ = θA

considered in Definition 3.3 is a test with

E k Y θ0 = α 3 3

Definition 3.4 An α-test k∗(Y) for the pair H0 : θ ϵ ω against HA θ ϵ Ω ω is
said to be uniformly best α-test, if

E k∗ Y θ ϵΩ ω ≥E k Y θ ϵ Ω ω 3 4

for each other test k(Y) with a significance level not larger than α and for all
α ϵ (0, 1). The test k∗(Y) is also briefly called a uniformly most powerful test
(UMP-test).

Definition 3.5 If k(Y) is with respect to the pair H0 : θ ϵω ,HA : θ ϵ Ω ω an
α-test and if for its power function π(θ) ≥ α holds for all θ ϵ Ω ω and for all
α ϵ (0, 1), then k(Y) is said to be an unbiased α-test. If Kuα is the class of all unbi-
ased α-tests and if

max
k Y ϵKuα

E k Y θA =E k∗∗ Y θA for all θA ϵ Ω ω,

then k∗∗(Y) is said to be a uniformly most powerful unbiased α-test
(UMPU-test).
We need the following statement in the next sections.

Lemma 3.1 Let (H0, HA) be a pair of hypotheses H0 θ ϵ ω,HA θ ϵ Ω ω
concerning the parameter θ of the distribution family P = Pθ, θ ϵ Ω , assuming
that each test has in θ a continuous power function π(θ). If k(Y) is with respect to
(H0, HA) in the class KΩ∗ of all on the boundary α-similar tests the uniformly
most powerful α-test, then it is also a uniformly most powerful unbiased α-test.

The proof uses the facts that the class KΩ∗ contains the class of unbiased
α-tests, taking the continuity of π(θ) into account, and considering that k(Y) ful-
fils the inequality (3.4) for all k∗ Y ϵ KΩ∗ , it all the more fulfils this inequality
for all k∗(Y) ϵ Kua. Moreover, k(Y) is in Kuα, since it fulfils as uniformly most
powerful α-test in KΩ∗ also inequality (3.4) for k∗ Y ϵ KΩ∗ . Hence, its power
function in Ω ω cannot lie under that of k∗(Y), which is just α.
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Example 3.1 Let Y = (y1, y2, … , yn)
T be a random sample of size n > 1 from a

N(μ, σ2)-distribution, where μ ϵ R1 =Ω, σ2 known. Let ω = (−∞, a] and

therefore Ω ω= a,∞ . Then z =
y−a
σ

n is distributed as N μ−a
n
σ

,1 .

We consider the test k(Y) with

k Y =
0 for z ≤ z0 95

1 for z > z0 95

Here we have z0.95 = 1.6449 and Ф(z0.95) = 0.95. This is a 0.05-test because

P z > z0 95 μ ≤ a ≤ 0 05

Regarding P{z > z0.95| μ > a} > 0.05, this is an unbiased 0.05-test. For each other α
in the interval (0, 1)

k Y =
0 for z ≤ z1−α

1 for z > z1−α

is an unbiased α-test which can easily be seen.
Let μ = a + δ (δ ≥ 0). Then the power function for α = 0.05 is

π δ =P z > 1 6449−
nδ
σ

Table 3.1 lists π(δ) for special δ and n.
In the applications δ is chosen as practically interesting minimum difference

to the value of the null hypothesis (also called effect size). If we want to avoid
such a difference with at most probability β, that is, to discover it with proba-
bility 1 – β, we have to prescribe a corresponding sample size. Again we consider
the general case that Y is a random sample of size n taken from an N(μ,σ2)-
distribution.
Putting μ = a + δ (δ > 0), assuming α = 0.05 and after that fixing β = 0.1, then

the difference

1 6449−
n δ
σ

has to be the 0.1-quantile of the standard normal distribution, namely, −1.2816.
Therefore

1 6449−
nδ
σ

= −1 2816

is satisfied. This equation has to be solved for n.
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Choosing δ = σ, we find

1 6449− n= −1 2816

and n = 8.56. But we have to look for the smallest integer n, which is larger or
equal to the calculated value (using rounding up function CEIL(x) denoted
here by x ). Hence, we get n = (1.6449 + 1.2816)2 = 8.56 and that is 9.
Generally, we get the sample size for given α, β,σ and δ by the formula

n= z1−α + z1−β
2 σ2

δ2

We call
δ

σ
the relative effect size.

3.2 The Neyman–Pearson Lemma

The authors Neyman and Pearson as a lemma introduced the following very
important theorem.

Table 3.1 Values of the power function in Example 3.1 for n = 9, 16, 25,
σ = 1 and special δ.

δ π(δ), n = 9 π(δ), n = 16 π(δ), n = 25

0 0.05 0.05 0.05

0.1 0.0893 0.1066 0.1261

0.2 0.1480 0.1991 0.2595

0.3 0.2282 0.3282 0.4424

0.4 0.3282 0.4821 0.6387

0.5 0.4424 0.6387 0.8038

0.6 0.5616 0.7749 0.9123

0.7 0.6755 0.8760 0.9682

0.8 0.7749 0.9400 0.9907

0.9 0.8543 0.9747 0.9978

1.0 0.9123 0.9907 0.9996

1.1 0.9510 0.9971 0.9999

1.2 0.9747 0.9992 1.0000
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Theorem 3.1 Neyman–Pearson Lemma (Neyman and Pearson, 1933)
Let L(Y, θ) be the likelihood function of the random sample Y = (y1, … , yn)

T

with Y ϵ {Y} and θ ϵΩ = {θ0, θA} with θ0 θA. Further, the null hypothesis
H0 : θ = θ0 is to be tested against the alternative hypothesis HA : θ = θA. Then
with a constant c ≥ 0, the following holds:

1) Each test k(Y) of the form

k Y =

1 forL Y , θA > c L Y , θ0

γ Y forL Y , θA = c L Y , θ0

0 forL Y , θA < c L Y , θ0

3 5

with 0 ≤ γ(Y) ≤ 1 is for a certainα = α[c, γ(Y)] amost powerful α-test (0 ≤ α ≤ 1).
The test k(Y) with

k Y =
1 forL Y , θ0 = 0

0 forL Y , θ0 > 0
3 6

is a best 0-test, and the test k(Y) with

k Y =
1 forL Y , θA > 0

0 forL Y , θA = 0
3 7

is a best 1-test.

2) For testingH0 againstHA, there exist for each α ϵ (0, 1) constants c = cα, γ = γα
so that the corresponding test k(Y) in the form (3.5) is a best α-test.

3) If k(Y) is a best α-test with α ϵ (0, 1), then it is with probability 1 of the form
(3.5) (apart from the set {Y : L(Y, θA) = c L(Y, θ0)} of Pθ-measure 0) if there is
no α0-test k∗(Y) with α0 < α and E[k∗(Y)| θA] = 1.

Proof:
Assertion (1)
If α = 0, then k(Y) satisfies the relation (3.6). If k (Y) is another α-test, then

E k Y θ0 =

B0

k Y dPθ0 = 0

for B0 = {Y : L(Y, θ0) > 0}. If L(Y, 0) > 0 holds, then k (Y) has to be equal to 0 with
probability 1. Putting BA = {Y} B0, we get
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E k Y θA −E k Y θA =

Y

k Y −k Y dPθA

=

B0 BA

k Y −k Y dPθA

=

BA

k Y −k Y dPθA =

BA

1−k Y dPθA ≥ 0

and therefore the assertion (1) for α = 0 from (3.6). Analogously the assertion
(1) follows for α = 1 from (3.7). Hence, we can now consider α-tests with
0 < α < 1. We show that they are most powerful α-tests if they fulfil (3.5).
Let k(Y) be an α-test of the form (3.5), that is, besides (3.5) assume also

E k Y θ0 = α 3 8

If k (Y) is an arbitrary test with a significance level not larger than α, then we
have to show

E k Y θA ≥E k Y θA 3 9

For L(Y, θA) > c L(Y, θ0) it is 1 = k(Y) ≥ k (Y), and for L(Y, θA) < c L(Y, θ0), it is
0 = k(Y) ≤ k (Y). That means

L Y , θA −c L Y , θ0 k Y −k Y ≥ 0,

and therefore

k Y −k Y dPθA −c dPθ0 ≥ 0,

and further

E k Y θA −E k Y θA ≥ c E k Y θ0 −E k Y θ0 ≥ 0

Finally, this implies (3.9).
Assertion (2)
For α = 0 and α = 1 the formulae (3.6) and (3.7), respectively, have the

form (3.5) putting c0 = ∞ (where 0 ∞ = 0), γ0 = 0 and c1 = 0 , γ1 = 0, respec-
tively. Therefore we can restrict ourselves to 0 < α < 1.
If we put γ(Y) = γ in (3.5), then the constants c0 and γ0 are to be determined

so that

α= E k Y θ0 = 1 P L Y , θA > cα L Y , θ0 + γαP L Y , θA = cα L Y , θ0 ,
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and with the notation

q =
L Y , θA
L Y , θ0

,

then

α= 1−P q ≤ cα θ0 + γαP q = cα θ0

holds. In the continuous case we choose the (1 – α)-quantile of the distribution
of q for cα and γα = 0. If q is discrete, then a constant cα exists in such a way that

P q < cα θ0 ≤ 1−α ≤P q ≤ cα θ0 3 10

holds. We put

γα =
P q ≤ cα θ0 − 1−α

P q = cα θ0
, 3 11

if the equality does not hold twice (= for both ≤) in (3.10) (i.e. if P[q = cα| θ0] > 0 ).
Otherwise (for vanishing denominator), we proceed just as in the continuous
case and write k(Y) in the form (3.5).
Assertion (3)
Since 0 < α < 1 is supposed, we take k(Y) as a most powerful α-test of the form

(3.5) with c = cα and γ(Y) = γα from (3.10) and (3.11), respectively, and choose
the α-quantile cα of q and γα = 0. Let k (Y) be an arbitrary most powerful α-test.
Then both

E k Y θ0 = E k Y θ0 = α

and

E k Y θA =E k Y θA

must hold, which means

Y

k Y −k Y dPθA = 0, θ ϵ θ0, θA

as well as

Y

k Y −k Y dPθA −cα dPθ0 = 0

This implies the assertion. If there is an α0-test k∗(Y) with α0 < α and
E k∗ Y θA = 1, then this conclusion is not possible.
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The Neyman–Pearson lemma has some interesting consequences.

Corollary 3.1 Let the general assumptions of Theorem 3.1 be fulfilled and
put β = E[k(Y) | θA]. Then always α < β for the most powerful a-test k(Y) if
L(Y, θ0) L(Y, θA).

Proof: Since E[k∗(Y)|θA] = α holds for the special α-test k∗(Y)≡ α, it follows
α ≤ β for the most powerful α-test k(Y). However, α = β is not possible.
Otherwise k∗(Y)≡ α would be a most powerful α-test and would have with
probability 1 the form (3.5) considering (3) in Theorem 3.1. Nevertheless, both
would only hold, if L (Y, θ0) is with probability 1 equal to L(Y, θA). This contra-
dicts the assumption of the corollary.
One of the best books of test theory was that of Lehmann (1959), and we

also cite the revised edition of Lehmann and Romano (2008).
Theorem 3.1 can be generalised (for the proof, see Lehmann, 1959, pp. 84–87).

Corollary 3.2 Let K be the set of all critical functions k(Y) of a random sample
Y with respect to a distribution Pθ ϵ P = Pθ, θ ϵ Ω . Further, let g1 , … , gm
and g0 be in Rn defined real Pθ-integrable functions. Additionally, for given real
constants c1 , … , cm, let k(Y) exist so that

Y

k Y gi Y dPθ = ci, i= 1,…,m

We denote the class of functions k(Y) ϵ K satisfying this equation by Kc.

1) There is a function k∗(Y) in Kc with the property

Y

k∗ Y g0 Y dPθ = max
k Y ϵKc

Y

k Y g0 Y dPθ

2) Let real constants k1,…, km and a function γ(Y) with 0 < γ(Y) < 1 exist so that

k∗ Y =

1 for g0 >
m
i=1kigi

γ Y for g0 =
m
i= 1kigi

0 for g0 <
m
i=1kigi

for all Y ϵ {Y}. Then (1) is satisfied using this k∗(Y).
3) If k∗(Y) ϵ Kc fulfils the sufficient condition in (2) with non-negative ki, then

Y

k∗ Y g0 Y dPθ = max
k Y ϵK∗

c
Y

k Y g0 Y dPθ
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follows, where K∗
c Kc is the set of critical functions k(Y) with

Y

k Y gi Y dPθ ≤ ci, i= 1,…,m

4) The set M Rm of the points

Y

k Y g1 Y dPθ,…,

Y

k Y gm Y dPθ

generated by the functions gi for any k(Y) ϵ Kc is convex and closed. If
c = (c1, … , cm)

T is an inner point of M, then there exist m constants
k1, …, km and any k∗(Y) ϵ Kc so that the condition in (2) is true.

The condition that k∗(Y) with probability 1 has the form in (2) is necessary for
a k∗(Y) ϵ Kc to fulfil the equation in (3).

If we put m = 1 in Corollary 3.2, we get the statements of Theorem 3.1.

Example 3.2 Let Y be a random sample of size n taken from a N(μ, σ2)-
distribution, where σ2 is known. Besides we assume that μ ϵ {a, b}, that is, μ,
can be either equal to a or equal to b a. We want to test H0 : μ = a against
HA : μ = b. Since the components of Y are continuously distributed, a most pow-
erful α-test for this pair of hypotheses has according to Theorem 3.1 the form
(3.5) with γα = 0 (0 < α < 1). Besides, we have

L Y , θ0 = L Y ,a =
1

2πσ2
n
2
e−

1
2σ2

n

i= 1
y2i −2a

n

i= 1
yi + na2

and

L Y , θA = L Y ,b =
1

2πσ2
n
2
e−

1
2σ2

n

i= 1
y2i −2b

n

i= 1
yi + nb2

as well as

q =
L Y ,b
L Y ,a

= e
1
σ2

ny b−a −n
2 a+ b b−a

The quantity c = cα in (3.5) has to be chosen so that 1−α=P q < cα =
P lnq < lncα .
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Considering

lnq =
1
σ2

ny b−a −
n
2

a+ b b−a ,

the relation ln q < ln cα is equivalent to

y

<
σ2 lncα
n b−a

+
a+ b
2

for a < b

>
σ2 lncα
n b−a

+
a+ b
2

for a > b

Since

z =
y−μ
σ

n 3 12

is N(0, 1)-distributed, it holds with the (1 – α)-quantile z1 − α of the standard
normal distribution under the null hypothesis H0

P
y−a
σ

n < z1−α = 1−α

and

P y <
σ

n
z1−α + a = 1−α,

respectively. Regarding the case a < b, it follows under H0

σ

n
z1−α + a=

σ2 lncα
n b−a

+
a+ b
2

and

cα = e
1
σ z1−α n b−a − n

2σ2
a−b 2

,

respectively. Analogously we get for a > b

cα = e
1
σ zα n b−a − n

2σ2
a−b 2

This leads to an important statement.

Theorem 3.2 Let the random sample Y = (y1, y2, … , yn)
T be for known σ2 > 0

distributed asN(μ 1n, σ
2In). Assume that μ can only have the values a and b (with

a b). IfH0 : μ = a is tested againstHA : μ = b, then amost powerful α-test k(Y) is
given in form of (3.5) with γα = 0 and

cα = e
1
σ z1−α n b−a − n

2σ2
a−b 2

,
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which can be written with z in (3.12) also in the form

k Y =
1 for z > z1−α

0 else
,

that is, H0 is rejected for |z| > z1 − α.

This test is one-sided, since it is known whether b > a or b < a holds. The test
corresponds to the heuristic-derived test in Example 3.1. Hence, the sample size
given there is always the smallest possible.
Now we turn to discrete random variables.

Example 3.3 Let the random variables yi with the values 0 and 1 be
independent from each other as B(l, p) two-point distributed, where p =
P(yi = 1) and 1 − p = P(yi = 0) with p ϵ {p0, pA} ; i = 1 , … , n. We want to test
the null hypothesis H0: p = p0 against HA: p = pA. Then y= n

i=1yi is B(n, p)
binomial distributed, and for Y = (y1, … , yn)

T

L Y ,p =
n

y
py 1−p n−y

According to Theorem 3.1, there exists a most powerful α-test of the form (3.5).
We determine now γα and cα. Regarding

q =
L Y , pA
L Y , p0

=
pA
p0

y 1−pA
1−p0

n−y

3 13

the following equation is satisfied:

ln q = y lnpA – ln 1– pA − lnp0+ ln 1– p0

+ n ln 1−pA − ln 1−p0

Case A:
For the chosen α there exists a y∗ so that the distribution function of B(n,p0) has
at y∗ the value F(y∗, p0) = 1 − α . In (3.5) we put γα = 0 and calculate cα, obtaining

cα =
pA
p0

y∗ 1−pA
1−p0

n−y∗

3 14

Case B:
For the chosen α there does not exist such a value y∗ considered in case A. But,
assuming pA > p0, there is a value y∗ so that F(y

∗, p0) < 1 − α ≤ F(y∗ + 1, p0). Then
we choose according to (3.11)

γα =
F y∗ + 1, p0 − 1−α

n
y∗ py∗ 1−p n−y∗

, 3 15
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and calculate cα again by (3.14).
If pA < p0, then a value y∗ exists with F(y∗, p0) ≤ α < F(y

∗ + 1, p0). Then we
choose

γα =
α−F y∗, p0
n

y∗
py∗ 1−p n−y∗

, 3 16

where cα is calculated again according to (3.14). Therefore, we can formulate the
test also directly with y.
For pA > p0 it is

k y =

1 for y > y∗

γα for y= y∗

0 for y < y∗
with γα from 3 15

For pA < p0 it is

k y =

1 for y < y∗

γα for y= y∗

0 for y > y∗
with γα from 3 16

Now we turn to special data. If n = 10 and H0 : p = 0.5 is to be tested against
HA : p = 0.1, then the value y∗ = 3 follows by (3.16) because of 0.1 < 0.5, and
for α = 0.1 we get

γ0 1 =
0 1−0 05469

0 11719
= 0 3866

Then k(Y) has the form

k y =

1 for y < 3

0 3866 for y= 3

0 for y > 3

,

that is, for y < 3, the hypothesisH0: p = 0.5 is rejected;H0 is rejected for y = 3 with
the probability 0.3866; andH0 is accepted for y > 3 . The random trial in the case
y = 3 can be simulated on a computer. Using a generator of random numbers
supplying uniformly distributed pseudorandom numbers in the interval (0, 1), a
value v is obtained. For v < 0.3866 the hypothesis H0 is rejected and otherwise
accepted. This test is a most powerful 0.1-test.
Now our considerations can be summarised. The proof is analogous to that in

Example 3.3.
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Theorem 3.3 If y is distributed as B(n, p), then a most powerful α-test for
H0 : p = p0 against HA : p = pA < p0 is given by

k − y =

1 for y < y−

γ−α for y= y−

0 for y > y−
with γ−α from 3 16 3 17

and for H0 : p = p0 against HA : p = pA > p0 by

k + y =

1 for y > y+

γ +α for y= y+

0 for y < y+
with γ +α from 3 15 3 18

where y− is determined by

F y− , p0 ≤ α < F y− + 1, p0

and y+ by

F y+ , p0 < l−α ≤ F y+ + 1, p0

Here F(y, p) is the distribution function of B(n, p).
If possible, randomised tests are avoided. As mentioned earlier, users do

not really accept that the decisions after well-planned experiments depend
on randomness.

3.3 Tests for Composite Alternative Hypotheses and
One-Parametric Distribution Families

Theorem 3.1 allows finding most powerful tests for one-sided null and alterna-
tive hypotheses. In this section we will clarify the way to transfer this theorem to
the case of composite hypotheses.

3.3.1 Distributions with Monotone Likelihood Ratio and Uniformly
Most Powerful Tests for One-Sided Hypotheses

It is supposed in the Neyman–Pearson lemma that the null hypothesis as well as
the alternative hypothesis is simple and the parameter space consists of only two
points. However, such prerequisites are rather artificial and do not meet prac-
tical requirements. We intend to decrease these restrictions systematically;
however, we have to accept that the domain of validity of such extended state-
ments is reduced. First we consider the case Ω R1 and one-sided (one-tailed)
hypotheses. We demonstrate the new situation in the next example.
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Example 3.4 Let the components of the random sampleY = (y1, y2, … , yn)
T be

distributed as N(μ, σ2), where σ2 > 0 is known. The hypothesis H0 : μ ϵ (−∞, a]
is to be tested against HA : μ ϵ (a,∞). Looking for an α-test the condition

max
−∞ < μ ≤ a

E k Y μ = α

must hold. Regarding the pair of hypotheses

H∗
0 μ= a; H∗

A μ= b > a,

a most powerful α-test is defined (see Theorem 3.2). Since k(Y) is a most
powerful test for each b ϵ (a,∞), k(Y) is a uniformly most powerful α-test for
H∗

0 μ= a against HA : μ ϵ (a,∞) and for H0 against HA in the class Kα of all
α-tests, respectively. If

z =
n
σ

y−a

is distributed as N
n
σ

μ−a ,1 and

E k Y μ = P
n
σ

y−a > z1−α ,

then E[k(Y)| μ] increases monotone in μ and has for μ = a the value α and for
μ ≤ a a value v ≤ α. Since k(Y) is a uniformly most powerful test in the class Kα, it
is a uniformly most powerful test for the pair H0 : μ ϵ (−∞, a] , σ2 > 0 against
HA : μ ϵ (a,∞) , σ2 > 0, because the class of tests satisfying E[k(Y)|μ] ≤ α for all
μ ϵ (−∞, a] is a subset of Kα.
The results are summarised in the following statements.

Theorem 3.4 Under the assumptions of Theorem 3.2,H0 : μ ≤ a is to be tested
against HA : μ > a. Then

k Y =
1 for

y−a
σ

n ≥ z1−α

0 else
3 19

is a uniformly most powerful α-test. Analogously

k Y =
1 for

y−a
σ

n < zα

0 else

is a uniformly most powerful α-test for H0 : μ ≥ a against HA : μ < a.
Now we consider normal distributed random samples with known

expectation.
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Example 3.5 Let the components of the random sample Y = (y1, y2, … , yn)
T

be distributed as N(μ, σ2), where μ is known. It is H0 σ2 ≤ σ20 to be tested
against HA σ2 = σ2A > σ

2
0. Then

q n =
1
σ2

Q n =
1
σ2

n

i= 1

yi−μ
2

is as CS(n) centrally χ2-distributed with n degrees of freedom. Considering the
pair H∗

0 σ2 = σ20,HA σ2 = σ2A > σ
2
0 , the test

k∗ Y =
1 forQ n ≥ σ20CS n 1−α

0 else

is according to Theorem 3.1 a most powerful α-test, where CS n 1−α is the
1−α -quantile of the CS n -distribution.
Since this holds for arbitrary σ2A > σ

2
0, k

∗(Y) is a uniformly most powerful α-test
for the pair H∗

0 ,HA . Observe that

E k∗ Y σ2 =P σ2q n ≥ σ20CS n 1−α ≤ α

holds for all σ2 ≤ σ20. Besides it is

q n ≥
σ20
σ21
CS n 1−α q n ≥

σ20
σ22
CS n 1−α

for 0 < σ21 < σ
2
2 ≤ σ

2
0. This implies

E k∗ Y σ21 ≤E k∗ Y σ22 ≤E k∗ Y σ20

and
max
σ2 ≤ σ20

E k∗ Y σ2 = α, 3 20

respectively. Hence, k∗(Y) is a uniformly most powerful α-test for the pair
{H0, HA}.
The results of this example can be stated in a theorem.

Theorem 3.5 Let the components of the random sample Y = (y1, y2, … , yn)
T

be distributed as N(μ, σ2), where σ2 > 0 and μ is known. Considering the pairs of
hypotheses

a) H0 σ2 ≤ σ20; HA σ2 = σ2A > σ
2
0

b) H0 σ2 ≥ σ20; HA σ2 = σ2A < σ
2
0,

a uniformly most powerful α-test is given by

a) k + Y =
1 for Q n ≥ σ20CS n 1−α

0 else
3 21
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and

b) k − Y =
1 for Q n ≤ σ20CS n α

0 else
3 22

respectively, where

q n =
1
σ2

Q n =
1
σ2

n

i= 1

yi−μ
2

The proof of this theorem essentially exploits the fact that the ratio

L Y , σ2A
L Y , σ20

=
σ20
σ2A

n
2

e
−Q n

2
1
σ2
A

− 1
σ2
0

is monotone increasing in Q for σ20 < σ
2
A and monotone decreasing in Q

for σ20 < σ
2
A.

Such a property is generally significant to get α-tests for one-sided hypotheses
concerning real parameters.

Definition 3.6 A distribution family P = Pθ , θ ϵ Ω R1 is said to possess a
monotone likelihood ratio, if the quotient

L y, θ2
L y, θ1

= LR y θ1, θ2 ; θ1 < θ2

at the positions y, where at least one of the two likelihood functions L y, θ1
and L y, θ2 is positive, is monotone non-decreasing (isotone) or monotone
non-increasing (antitone) in y. Observe that LR y θ1, θ2 is defined as ∞
for L y, θ1 = 0.

Theorem 3.6 Let P be a one-parametric exponential family in canonical form
with respect to the parameter θ ϵ Ω R1. Then P has a monotone likelihood
ratio, provided that concerning the exponent of the likelihood function, the fac-
tor T(y) is monotone in y and the factor η(θ) monotone in θ.

Proof: W.l.o.g. we assume θ1 < θ2. Then the assertion can evidently be seen
regarding

LR y θ1, θ2 = r y eT y η θ2 −η θ1 with r y ≥ 0

Nowwe are ready to design uniformly most powerful α-tests for one-parametric
exponential families and for one-sided hypotheses if we still refer to the next
statements.
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Theorem 3.7 Karlin (1957)
Let P = Pθ, θ ϵ Ω R1 be a family with isotone and antitone likelihood ratio
LR, respectively. If g(y) is Pθ-integrable and isotone (antitone) in y ϵ{Y}, then
E[g(y)| θ] is isotone (antitone) and antitone (isotone) in θ, respectively. For
the distribution function F(y, θ) of y in the case of isotone LR and g for all θ
< θ and y ϵ{Y}, we have

F y,θ ≥ F y,θ

and in the case of antitone LR and g for all θ < θ and y ϵ{Y}

F y,θ ≤ F y,θ

Proof:
Without loss of generality the assertion is shown in the case of isotone.
First we suppose θ < θ . Further, let M+ and M− be two sets from the sample

space {Y} defined by

M + = y L y,θ > L y,θ , M− = y L y,θ < L y,θ

Since LR(y|θ1, θ2) is isotone in y, we obtain for y ϵM−, y ϵM+ the relation y < y .
Then the isotone of g(y) implies

a= max
y ϵ M−

g y ≤ max
y ϵ M +

g y = b

Therefore it is

D= E g y θ −E g y θ

=

Y

g y dPθ −dPθ =

M−

g y dPθ −dPθ +

M +

g y dPθ dPθ

≥ a

M−

dPθ −dPθ + b

M +

dPθ −dPθ

3 23

Evidently we have for each θ∗ ϵ Ω the relations

Y

dPθ∗ =

M−

dPθ∗ +

M +

dPθ∗ = 1−P L y θ = L y θ θ = θ

It follows for θ∗ = θ

M−

dPθ = −

M +

dPθ + 1−P L y θ = L y θ θ = θ
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and correspondingly for θ∗ = θ

−

M−

dPθ =

M +

dPθ−1 +P L y θ = L y θ θ = θ

This means that

M−

dPθ −dPθ = −

M +

dPθ −dPθ

If this is inserted in (3.23), we finally arrive at

D ≥ b−a

M +

dPθ −dPθ ≥ 0,

considering b > a and the definition ofM+. Observing the assumption θ > θ, this
shows that E[g(y)| θ] is isotone in θ.
Now we choose g(y) = φt(y) , t ϵ R1 and

φt y =
1 for y > t

0 else

Since the function φt(y) is isotone in y, we get

E φt y θ ≤E φt y θ

using the first part of the proof. Because of

E φt y θ =P y > t = 1−F t,θ ,

also the last part of the assertion is shown.

Theorem 3.8 Let P = Pθ , θ ϵΩ R1 be a distribution family of the compo-
nents y1 , … , yn of a random sample Y and M = M (Y) be a sufficient statistic
with respect to P.
Further, let the distribution family PM of M possess an isotone likelihood

ratio. Denoting the (1 – α)-quantile M1 − α of the distribution belonging to
M, the function

k Y =

1 for M >M1−α

γα for M =M1−α

0 for M <M1−α

3 24

is a test with the following properties:

1) k(Y) is an UMP-test for H0 : θ ≤ θ0 against HA : θ = θA > θ0 and 0 < α < 1.
(Analogously a test for H0 : θ ≥ θ0 against HA : θ = θA < θ0 can be formu-

lated.)
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2) For all α ϵ (0, 1), there existMα
0 and γαwith−∞ ≤Mα

0 ≤ ∞ , 0 ≤ γα ≤ 1 andM
α
0

satisfying

P M <Mα
0 θ0 ≤ 1−α ≤P M ≤Mα

0 θ0 ,

so that the corresponding test k(Y) in (3.24) is with γα and Mα
0 =M1−α, an

UMP-α-test for H0 against HA.
3) The power function E[k(Y)|θ] is isotone in θ ϵ Ω.

Proof: According to Theorem 3.1, a most powerful α-test for H∗
0 θ = θ0 against

H∗
A: θ = θA has the form

k M =

1 for cαLM M, θ0 < LM M, θA

γ M for cαLM M, θ0 = LM M, θA

0 for cαLM M, θ0 > LM M, θA

,

where LM(M, θ) is the likelihood function of M. Since M > M0 implies

LRM M θ0, θA ≥ LRM0 M θ0, θA

because LRM is isotone,

LRM M θ0, θA =
LM M, θA
LM M, θ0

>

=

<

cα
LM Mα

0 , θA
LM Mα

0 , θ0

implies

M

>

=

<

Mα
0

Hence k(M) is the same as k∗(M) and therefore a most powerful α-test for
(H∗

0 , H
∗
A), whereM

α
0 =M1−α and γα has to be determined according to the proof

of Theorem 3.1. Since k∗(M) is isotone inM, the power function E[k∗(M)|θ] is by
Theorem 3.7 isotone in θ. Hence, assertion (3) is true.
Further we have

max
θ ≤ θ0

E k∗ M θ = α,

and k(Y) = k∗(M) in (3.24) is an UMP-α-test. Therefore, assertion (1) holds.
If we putMα

0 =M1−α for a fixed α ϵ (0, 1) taking the (1 – α)-quantileM1 − α of
the distribution ofM for θ0, then we get γα = 0 for 0 = P(M =M1 − α| θ0) (and, e.g.
for all continuous distributions), which shows assertion (2) for this case.
Otherwise we choose Mα

0 analogously to (3.10) so that

P M <Mα
0 θ0 < 1−α ≤P M ≤Mα

0 θ0
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Put M1−α =Mα
0 in (3.24) and determine γα analogously to (3.11) as

γα =
P M ≤M1−α θ0 − 1−α

P M =M1−α θ0

Hence, assertion (2) generally follows.

Corollary 3.3 If the components of a random sample Y = (y1, y2, … , yn)
T sat-

isfy a distribution of a one-parametric exponential family with θϵΩ R1 and
if the natural parameter η(θ) is monotone increasing, then H0 : θ ≤ θ0 can be
tested against HA : θ = θA > θ0 for each α ϵ (0, l) using an UMP-test k(Y) of
the form (3.24).
It is easy to see that the tests H0 : θ ≤ θ0 against HA : θ = θA > θ0 can be analo-

gously designed for antitone η(θ).

Example 3.6 Let the random variable y be B(n, p)-distributed.We want to test
case A:H0 : p ≤ p0 againstHA : p = pA, pA > p0 and case B:H0 : p ≥ p0 againstHA :
p = pA, pA < p0 using a sample of size 1. Instead we can take Y = (y1, y2, … , yn)

T,
where yi is distributed as B(1, p), because n

i= 1yi is sufficient. The distribution
belongs for fixed n to a one-parametric exponential family with the natural
parameter

η= η p = ln
p

1−p
,

which is isotone in p. The likelihood function is

L y,η =
n

p
eyη p −n ln 1−p ,

and we have T =M = y. According to Theorem 3.6, the random variable y has a
monotone likelihood ratio. Therefore we have to choose k∗(y) in case A
according to (3.18) with γ +α from (3.15) (putting y∗ = y+) and in case B
according to (3.17) with γ−α from (3.16) (putting y∗ = y--). These tests are
UMP-tests for the corresponding α.
If θ is a vector and if we intend to test one-sided hypotheses relating to the

components of this vector for unknown values of the remaining components,
then UMP-tests exist only in exceptional cases. The same holds already in case
θ ϵ R1 for simple null hypotheses and two-sided alternative hypotheses. In
Section 3.3.2 the latter case is considered, while in Section 3.4 tests are devel-
oped for multi-parametric distribution families.
But there are UMP-tests for a composite alternative hypothesis and a two-

sided null hypothesis, where two-sided has a special meaning here. This is
shown in the next theorem.
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Theorem 3.9 We consider for the parameter θ of the distribution family
P = Pθ, θ ϵΩ R1 the pair

H0 θ ≤ θ1 or θ ≥ θ2,θ1 < θ2; θ1, θ2 ϵ Ω

HA θ1 < θ < θ2; θ1 < θ2; θ1, θ2 ϵ Ω

of hypotheses. If P is an exponential family and if θ is the natural parameter (until
now η), then also the distribution of the random sample Y = (y1, y2, … , yn)

T

belongs to an exponential family with the sufficient statistic T = T(Y) and the
natural parameter θ = η. Then the following statements hold:

1) There is a uniformly most powerful α-test for {H0, HA} of the form

h T = k Y =

1 for c1α <T < c2α; c1α < c2α

γiα for T = ciα; i= 1,2

0 else

3 25

where ciα and γiα have to be chosen so that

E h T θ1 =E h T θ2 = α 3 26

(Then we say that h(T) ϵ Kα.)
2) The test h(T) from (1) has the property that E[h(T)| θ] for all θ < θ1 and θ > θ2

is minimal in the class Kα of all tests fulfilling (3.26).
3) For 0 < α < 1 there is a point θ0 in the interval (θ1, θ2) so that the power func-

tion π(θ) of k(Y) given in (1) takes its maximum at this point and is monotone
decreasing in |θ − θ0|, provided that there is no pair {T1, T2} fulfilling

P T =T1 θ + P T =T2 θ = 1

for all θ ϵ Ω.
The proof of this theorem can be found in the book of Lehmann (1959,
pp. 102–103). It is based on Corollary 3.2 with m = 2. This theorem is hardly
important in practical testing.
If null and alternative hypotheses are exchanged in Theorem 3.9, or, more

precisely, if we consider under the assumptions of Theorem 3.9 the pair

H0 θ1 ≤ θ ≤ θ2; θ1,θ2 ϵ Ω R1

HA θ < θ1 or θ > θ2; θ1 < θ2; θ1,θ2 ϵ Ω R1

of hypotheses, there is no uniformly most powerful (UMP-) test, but a uniformly
most powerful unbiased (UMPU-) test. This will be shown in the next
Section 3.3.2.
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3.3.2 UMPU-Tests for Two-Sided Alternative Hypotheses

Let the assumptions of Theorem 3.9 hold for the just defined pair {H0, HA} of
hypotheses. We will show that

h T = k Y =

1 for c1α <T or T > c2α; c1α < c2α

γiα for T = ciα; i= 1,2

0 else

3 27

is a uniformly most powerful unbiased (UMPU)-test for this pair, if ciα and γiα
are chosen so that (3.26) holds. Since k(Y) is a bounded and measurable func-
tion, E[k(Y) | θ] is continuous in θ, and therefore differentiation and integration
(related to expectation) with respect to θ can be commuted. Regarding conti-
nuity all assumptions of Lemma 3.1 in Section 3.1 are satisfied, where
Ω∗ = θ1, θ2 We have to maximise E[k(Y)|θ ] for all k(Y) ϵKα and any θ outside
of [θ1, θ2] and to minimise E[λ(Y)| θ ] with λ(Y) = 1 − k(Y) outside of [θ1, θ2],
respectively, where λ(Y) lies in the class K1-α of tests fulfilling

E λ Y θ1 =E λ Y θ2 = 1−α

Theorem 3.9 implies that λ(Y) has the form (3.25), and therefore k(Y) = 1 − λ(Y)
has the form (3.27), where all γiα in (3.27) have to be put equal to 1 − γiα in (3.25).
Consequently, the test (3.27) is a UMP-α-test in Kα and because of Lemma 3.1

also a UMPU-α-test. These results are summarised in the next theorem.

Theorem 3.10 If P = Pθ , θ ϵΩ R1 is an exponential family with the suffi-
cient statistic T(Y) and k(Y) is a test of the form (3.27) for the pair

H0 θ1 ≤ θ ≤ θ2; θ1 < θ2; θ1,θ2 ϵ Ω R1

HA θ < θ1 or θ > θ2; θ1,θ2 ϵ Ω R1

of hypotheses, then k(Y) is a UMPU-α-test.
In the applications, a pair {H0, HA} is often tested with the simple null

hypothesis H0: θ = θo and the alternative hypothesis HA : θ θo. This case is
now considered.

Theorem 3.11 If under the assumptions of Theorem 3.10 the pair

H0 θ = θ0,θ0 ϵ Ω R1

HA θ θ0,θ0 ϵ Ω R1

of hypotheses is tested using k(Y) in the form (3.27), where all ciα and γiα so that

E k Y θ0 = α 3 28
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and

E T Y k Y θ0 = αE T Y θ0 3 29

hold, then k(Y) is a UMPU-α-test.

Proof: The condition (3.28) ensures that k(Y) is an α-test. To get an unbiased
test k(Y), the expectation E[k(Y)|θ] has to be minimal at θ0. Therefore

D θ =
∂

∂θ
E k Y θ =

Y

∂

∂θ
k Y dPθ

necessarily has to be 0 at θ = θ0. Since L(Y, θ) =C(θ)eθTh(Y) ~ LT(T, θ) by
assumption, with the notation C = ∂C

∂θ , we get

∂

∂θ
LT T ,θ =

C θ

C θ
LT T ,θ +TLT T ,θ

and therefore

D=D θ =
C θ

C θ
E k Y θ +E T Y k Y θ

Regarding

0 =
∂

∂θ
Y

dPθ =
C θ

C θ
Y

dPθ +E T Y θ ,

it follows

C θ

C θ
= −E T Y θ

Because of (3.28) we get

0 = −αE T Y θ0 + E T Y k Y θ0

by putting θ = θ0 and therefore (3.29). This shows that (3.29) is true because the
test is unbiased.
Now letM be the set of the points {E[k(Y)| θ0], E[T(Y)k(Y)| θ0]} taking all crit-

ical functions k(Y) on {Y}. ThenM is convex and contains for 0 < z < 1 all points
{z, zE[T(Y)|θ0]} as well as all points (α, x2) with x2 > α E[T(Y)| θ0]. This follows
because there are tests with E[k(Y)|θ0] = α, where D(θ0) > 0. Analogously we get
that M contains also points (α, x1) with x1 > αE[T(Y)| θ0]. But this means that
(α, α E[T(Y)| θ0]) is an inner point of M. Taking Corollary 3.2, part (4), in
Section 3.2, into account, there exist two constants k1, k2 and a test k(Y) fulfilling
(3.28) and (3.29) and supplying k(Y) = 1 iff

C θ0 k1 + k2T eθ0T <C θ eθ T
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The T-values satisfying this inequality lie either below or above a real
constant, respectively, or outside an interval [c1α, c2α]. However, the test can
have neither the form (3.24) given in Theorem 3.8 for the isotone case nor
the corresponding form for the antitone case, because the statement (3) of
Theorem 3.8 contradicts (3.29). This shows that the UMPU-test has the
form (3.27).

Example 3.7 Let P be the family of Poisson distributions with Y = (y1, … , yn)
T

and the likelihood function

L Y ,λ =
n

i=1

1
yi

e ln λ
n

i= 1
yi−λn , yi = 0,1,2,…; λ ϵ R+

with the natural parameter θ = ln λ. We want to test the pair H0 : λ = λ0 ,HA :
λ λ0 of hypotheses. The likelihood function of the sufficient statistic
T = n

i= 1yi is with θ = ln λ

LT T ,θ =
1
T

eθT −A θ

It defines also a distribution from a one-parametric exponential family with
θ =ln (nλ) and

H0 θ = θ0 with θ0 = ln nλ0 ; HA θ θ0

Hence, all assumptions of Theorem 3.11 are fulfilled. Therefore (3.27) is a
UMPU-α-test for {H0, HA}, if ciα and γiα (i =1, 2) are determined so that
(3.28) and (3.29) hold. Considering

T LT T ,λ = nλLT T – l,λ T = 1,2,… ,

E Tθ0 = λ0 = eθ0 ,

and putting now w.l.o.g. n = 1, the simultaneous equations

α= P T < c1α θ0 + P T > c2α θ0 + γ1αLT c1α, θ0 + γ2αLT c2α, θ0 ,

α= P T −1 < c1α θ0 + P T −1 > c2α θ0 + γ1αLT c1α−1, θ0 + γ2αLT c2α−1, θ0

3 30

have to be solved.
The results of this example supply the following statements.

Theorem 3.12 If y is distributed as P(λ), then a UMPU-α-test for the pair

H0 λ= λ0,HA λ λ0, λ0 R+

of hypotheses has the form (3.27), where constants ciα and γiα are solutions of
(3.30) with natural ciα and 0≤ γiα ≤ 1.
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Example 3.7 (continuation)
It needs some time of calculation to find the constants ciα and γiα. We give a
numerical example to illustrate the solution procedure. We test H0 : λ = 10
againstHA : λ 10. The values of the probability function and the likelihood
function can be determined by statistical software, for instance, by SPSS or R.
We choose α = 0.1 and look for possible pairs (c1, c2).
For c1 = 4, c2= 15, we obtain equations

0 006206 = 0 018917γ1 + 0 034718γ2
0 013773 = 0 007567γ1 + 0 052077γ2

from (3.30) supplying the improper solutions γ1 = −0.215, γ2 = 0.296. The pairs
(4, 16) and (5, 15) lead to improper values (γ1 , γ2), too. Finally, we recognise
that only the values c1 = 5, c2 = 16 and γ1 = 0.697, γ2 = 0.799 solve the problem.
Hence, (3.27) has the form

k y =

1 for y < 4or y > 15

0 697 for y= 4

0 799 for y= 15

0 else

,

and k(y) is the uniformly most powerful unbiased 0.1-test.

Example 3.8 Let y be distributed as B(n, p). Knowing one observation y = Y,
we want to test H0: p = p0 against HA : p p0 , p0 ϵ(0, 1) . The natural parameter

is η= ln
p

1−p
, and y is sufficient with respect to the family of binomial distribu-

tions. Therefore the UMPU-α-test is given by (3.27), where ciα and γiα (i = 1, 2)
have to be determined from (3.28) and (3.29). With

Ln y p =
n

y
py 1−p n−y,

Equation (3.28) has the form

c1α−1

y=0

Ln y p0 +
n

y= c2α+ 1

Ln y p0 + γ1αLn c1α p0 + γ2αLn c2α p0 = α

3 31

Regarding

y Ln y p = npLn−1 y−1 p and E y p0 = np0,
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the relation (3.29) leads to

c1α−1

y=0

Ln−1 y−1 p0 +
n

y= c2α + 1

Ln−1 y−1 p0 + γ1αLn−1 c1α−1 p0

+ γ2αLn−1 c2α−1 p0 = α

3 32

The solution of these two simultaneous equations can be obtained by statistical
software, for example, by R. Further results can be found in the book of Fleiss
et al. (2003).

Example 3.9 If Y = (y1, … , yn)
T is a random sample with components distrib-

uted asN(0, σ2), then the natural parameter is η= −
1
2σ2

, and n
i=1y

2
i =T Y =T

is sufficient with respect to the family of N(0, σ2)-distributions. The variable

T is distributed with the density function
1
σ2

gn
T
σ2

, where gn(x) is the density

function of a CS(n)-distribution. Therefore, the distribution family of T is a
one-parametric exponential family (depending on σ2). Then

h T = k Y =
1 for T < c1ασ20 or T > c2ασ20
0 else

is a UMPU-α-test for the hypotheses H0 σ2 = σ20 0 < σ20 < ∞ against
HA σ2 σ20 , where constants ciα, i = 1,2 are non-negative and satisfy

c2α

c1α

gn x dx= 1−α 3 33

c2α

c1α

xgn x dx= 1−α E
T
σ20

σ20 = n 1−α

A symmetric formulation supplies under the conditions of the next corollary of
Theorem 3.11 a UMPU-test (naturally these conditions are not fulfilled for
Example 3.9).

Corollary 3.4 Let the distribution of the sufficient statistic T = T(Y) be for
θ = θo symmetric with respect to a constant m, and let the assumptions
of Theorem 3.11 be fulfilled. Then a UMPU-α-test is given by (3.27),
c2α = 2m – c1α, γα = γ1α = γ2α and

P T Y < c1α θ0 + γαP T Y = c1α θ0 =
α

2
3 34
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Proof: Regarding

P T Y <m−x =P T Y >m+ x

Equation (3.28) is satisfied for x =m − c1α, where c1α is the α/2-quantile of the
T-distribution. Then we have

E T Y k Y θ0 =E T Y −m k Y θ0 +mE k Y θ0

Since the first summand on the right-hand side vanishes for a k(Y), which
fulfils the assumptions above (symmetry), it follows mE{k(Y)|θ0} =mα and
because of E{T(Y)|θ0} =m also (3.29).

Example 3.10 If Y = (y1, y2, … , yn)
T is a random sample with components

distributed as N(μ, σ2) and σ2 is known, then T =T Y = n
i=1yi is sufficient

with respect to μ. The statistic
1
n
T = y is distributed as N μ,

σ2

n
, that is, it

is symmetrically distributed with respect to μ. Regarding the hypotheses
H0 : μ = μ0 ,HA : μ μ0, a UMPU-α-test is given by

k Y =
1 for z < zα

2
or z > z

1−
α

2

0 else
, 3 35

if zP is the P-quantile of the standard normal distribution and z =
y−μ0
σ

n. In

the description of (3.27), we obtain

c1α = μ0 + zα2
σ

n
and c2α = μ0−zα2

σ

n
= μ0 + z1−α

2

σ

n

3.4 Tests for Multi-Parametric Distribution Families

In several examples we supposed normal distributed components yi, where
either μ or σ2 were assumed to be known. However, in the applications in
the most cases both parameters are unknown. When we test a hypothesis with
respect to one parameter the other unknown parameter is a disturbance param-
eter. Here we mainly describe a procedure for designing α-tests that are on the
common boundary of the closed subsets of Ω belonging to both hypotheses
independent of a sufficient statistic with respect to the noisy parameters.
At the end of this section, we briefly discuss a further possibility. Then we
need the concept of α-similar tests and especially of α-similar tests on the
common boundary Ω∗ of ω and Ω \ ω given in Definition 3.2. We start with
an example.
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Example 3.11 Let the vector Y = (y1, y2, … , yn)
T be a random sample whose

components are distributed as N(μ, σ2). We test the null hypothesis H0: μ = μ0,
against HA : μ μ0 for arbitrary σ

2. The statistic

t μ =
y −μ
s

n

is a function of the sufficient statistic M = y, s2 T It is centrally distributed as
t(n − 1). Here and in the following examples,

s2 =
1

n−1

n

i= 1

yi−y
2

is the sample variance, the unbiased estimator of the variance σ2. The statistic

t(μ0) is non-centrally distributed as t n– 1;
μ−μ0
σ

n . Therefore the test

k Y =
1 for t μ0 > t n−1 1−

α

2
0 else

3 36

is an α-test, where t n−1 1−
α

2
is the α-quantile of the central t-distribution

with n − 1 degrees of freedom. These quantiles are shown in Table D.3. SinceΩ∗

is in this case, the straight line in the positive (μ, σ2)-half-plane (σ2 > 0) defined
by μ = μ0 and P{k(Y) = 1| μ0} = α for all σ2, k(Y) is an α-similar test on Ω∗.

3.4.1 General Theory

Definition 3.7 We consider a random sample Y = (y1, y2, … , yn)
T from a

family P = {Pθ, θ ϵ Ω} of distributions Pθ and write Ω0 = ω and ΩA = Ω \ ω
for the subsets in Ω defined by the null and alternative hypothesis, respectively.
The set Ω∗ =Ω0 ΩA denotes the common boundary of the closed sets Ω0 and
ΩA . Let P

∗ P be the subfamily P∗ = {Pθ, θ ϵ Ω∗ Ω} on this common bound-
ary. We assume that there is a (non-trivial) sufficient statistic T(Y) with respect
to Ω∗ so that E[k(Y)|T(Y)] is independent of θ ϵ Ω∗, that is, k(Y) is α-similar on
Ω∗ with

α= E k Y T Y , θϵΩ∗ 3 37

A test k(Y) satisfying (3.37) is said to be an α-test with Neyman structure.
Hence, tests with Neyman structure are always α-similar on Ω∗. Moreover

they have the property that α can be calculated by (3.37) as conditional expec-
tation of the sufficient statistic T(Y) for the given value T(Y). Since the condi-
tional expectation in (3.37) for each surface is defined by T(Y) = T(Y) = T
independent of θ ϵ Ω∗, the tests of this section can be reduced for each single
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T-value to such of preceding sections (provided that (3.37) holds). Therefore
we will look for UMP-tests or UMPU-tests in the set of all tests with Neyman
structure by trying to find a sufficient statistic with respect to P∗. But first of all
we want to know whether tests with Neyman structure exist. The next theorem
states conditions for it.

Theorem 3.13 If the statistic T(Y) with the notations of Definition 3.7 is
sufficient with respect to P∗, then a test k(Y) that is α-similar on the boundary
has with probability 1 a Neyman structure with respect to T(Y) iff the family
PT of the distributions of T(Y) is bounded complete.

Proof:

a) Let PT be bounded complete, and let k∗(Y) be α-similar on the boundary.
Then the equation E[k(Y) − α|θϵΩ∗] = 0 is fulfilled. Now consider

d Y = k Y −α=E k∗ Y −α T Y , θϵΩ∗

Since T(Y) is sufficient, we get E[d(Y) | PT] = 0. However, critical functions
k(Y) are bounded by definition. Thus the assertion follows from the bounded
completeness.

b) If PT is not bounded complete, then there exist a function f and a realC > 0 so
that |f[T(Y)]| ≤C and E{ f[T(Y)]| θ ϵ Ω∗} = 0, but that f [T(Y)] 0 holds with
positive probability for at least one element of PT. Putting 1

C min(α, 1– α) =K,
the function

k Y = h T Y =Kf T Y + α

because of 0 ≤ k(Y) ≤ 1 for all Y ϵ {Y} is a test and because of

E k Y θϵΩ∗ =K E f T Y θϵΩ∗ + α= α

α-similar on the boundary Ω∗. But it holds k(Y) α for elements of PT with
f(T) 0. Therefore the test has no Neyman structure.

Using Theorems 1.3 and 1.4 as well as Lemma 3.1, the problems of this section
can be solved for k-parametric exponential families. Solutions can also be found
for other distribution families. But we do not want to deal with them here.

Theorem 3.14 Let us choose θ = (λ, θ2, … , θk)
T , λ ϵ R1 in Definition 3.7 and

consider each of the hypotheses H0 λ ϵ Ω0 R1 and HA λ Ω0 R1 with arbi-
trary θ2 , … , θk. Besides, let P be a k-parametric exponential family with
natural parameters η1 , … , ηk, where we put η1 = λ and T1(Y) = S(Y) = S. Then

UMPU-α-tests exist for {H0, HA}, namely, we get for Ω0 = −∞ , λ0 the form

k Y = h S T∗ =

1 for S > cα T∗

γα T∗ for S = cα T∗

0 else

, 3 38
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for Ω0 = λ0,∞ the form

k Y = h S T∗ =

1 for S < cα T ∗

γα T∗ for S = cα T∗

0 else

, 3 39

and for Ω0 = λ1, λ2 the form

k Y = h S T ∗ =

1 for S < c1α T∗ or S > c2α T ∗

γiα T ∗ i= 1,2 for S = ciα T∗

0 else

,

3 40

The constants in (3.38) and (3.39) have to determined so that

E h S T� T∗ =T∗, θ ϵ Ω0 = α

for all T∗. Further, the constants in (3.40) must fulfil the equation

E h S T� T∗ =T∗, θ ϵ Ω0 = α

and, in the special case λ1 = λ2 = λ0, both equations

E h S T� T∗ =T∗, λ= λ0 = α,

E Sh S T� T∗ =T ∗, λ= λ0 = αE S T∗ =T∗, λ= λ0

with probability 1, respectively (analogous to (3.28) and (3.29)).

Proof: Regarding the null hypothesis, we have

Ω∗ = θ λ= λ0; η2,…, ηk arbitrary

if Ω0 = −∞ , λ0 , Ω0 = λ0,∞ or Ω0 = λ0 and

Ω∗ = θ λ= λ1 or λ= λ2; η2,…, ηk arbitrary

if Ω0 = λ1, λ2 , λ1 λ2. Because of Theorems 1.3 and 1.4, T is complete (and
therefore bounded complete) as well as sufficient with respect to P and
therefore also with respect to P∗. The conditional distribution of S for
T∗ = T∗ belongs to a one-parametric exponential family with the parameter

space Ω R1 =Ω0 . In the case of one-sided hypotheses, the test k(Y) in (3.38)
and (3.39), respectively, designed analogously to (3.24), is a UMP-α-test for
known η2 , … , ηk by Corollary 3.3 of Theorem 3.8 for suitable choice of the con-
stants. Taking the sufficiency of T(Y) into account, these constants can be deter-
mined independent of η2 , … , ηk. Hence, k(Y) in (3.38) and (3.39), respectively,
have Neyman structure by Theorem 3.14. Therefore, both are UMPU-α-tests
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because of Lemma 3.1. The assertion for the two-sided case follows analogously
by applying Theorems 3.10 and 3.11.

Example 3.12 Let
x

y
be bivariate distributed with independent compo-

nents. Let the marginal distributions of x be P(λx) and of y be P(λy), respectively
(0 < λx, λy <∞).We want to testH0: λx = λy againstHA : λx λy. We take a sample
of size n and put T = x + y. The conditional distribution of x for T∗ = T∗ is a

B(T∗, p)-distribution with p=
λx

λx + λy
, where T∗ is distributed as P(λx + λy).

Hence, the probability function of the two-dimensional random variable
(x, T∗) is

P x,T∗ θ, η2 =
T ∗

x

1
T ∗ eθx+ η2T

∗−λx−λy

which has the form of an exponential family for θ = ln
λx
λy
, η2 = ln λy and

A η = eη2 1 + eθ . Now the pair {H0,HA} can be written asH0: θ = 0, η2 arbitrary
and HA : θ 0 , η2 arbitrary. Therefore the optimal UMPU-α-test for {Ho, HA}
has the form (3.40).
Assume H0 (i.e. for p = ½) the conditional distribution of x under the condi-

tionT∗ =T∗ is symmetric with respect to
1
2
T∗. By Corollary 3.4 of Theorem 3.11,

the constants in (3.28) and (3.29), respectively, have to be calculated from

c1α T∗ = cα, c2α T∗ =T∗−cα

γ1α T∗ = γ2α T∗ =

α

2
−F cα T∗, p=

1
2

P cα T∗, p=
1
2

3 41

where cα is the largest integer for which the distribution function
F xα T∗, p= 1

2 of the B T∗, 12 -distribution is less or equal to α
2. Further,

P xα T∗, p= 1
2 is the probability function of the B T∗, 12 -distribution.

The results of the example imply the following statements.

Theorem 3.15 If x and y are independent from each other distributed as
P(λx) and P(λy), respectively, and if H0: λx = λy is tested against HA : λx λy, then
a UMPU-α-test is given by (3.40), where the constants are determined with
the notations of Example 3.12 by (3.41).
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The following theorem allows the simple construction of further tests. The
present theory does not supply the t-test of (3.36) in Example 3.11, which is
often used in applications.

Theorem 3.16 Let the assumptions of Theorem 3.14 be fulfilled. If moreover
there exists a function g(S,T∗), which is isotone in S for all T∗, and if g = g(S,T∗) is
under H0 independent of T�, then the statements of Theorem 3.14 hold
for the tests

k Y = r g =

1 for g > cα

γα for g = cα

0 else

, 3 42

in the case Ω0 = −∞ , λ0 ,

k Y = r g =

1 for g < cα

γα for g = cα

0 else

3 43

in the case Ω0 = λ0,∞ , and

k Y = r g =

1 for g < c1α or g > c2α

γiα for g = ciα i= 1,2

0 else

3 44

in the case Ω0 = λ1, λ2 , if cα and γα are determined in (3.42) and (3.43), respec-
tively, that k(Y) is an α-test and for (3.44) conditions analogous to both of the
last equations of Theorem 3.14 are fulfilled.

Proof: The prescriptions for determining the constants imply E[r(g)|H0] = α,
that is, for instance, in the case of the test in (3.42)

P g > cα + γαP g = cα = α

Since g is independent of T∗ for λ = λo, cα and γα are independent of T∗.
Further, since g(S, T∗) is isotone in S for each T∗, the tests in (3.42) and in

(3.38) as well as analogously the tests in (3.43) and in (3.39) are equivalent
(i.e. there rejection regions in the sample space {Y} are identical). The same con-
clusion can be made in the two-sided case with respect to the tests in (3.44) and
(3.40) if only the last equations of Theorem 3.14 are replaced by the equivalent
conditions

E r g T∗, λ0 = α,

E g r g T∗, λ0 = αE g T ∗, λ0
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We will use this theorem for showing that the t-test in Example 3.11 is a
UMPU-test.

Example 3.11 (continuation)

We know from Chapter 1 that n
i= 1yi,

n
i=1y

2
i

T
=T is minimal sufficient

with respect to the family of N(μ, σ2)-distributions. With the notations of
Theorem 3.14, we put

S = y=
1
n

n

i= 1

yi and T∗ =
n

i= 1

y2i ,

where T∗ is complete sufficient with respect to P∗ (e.g. with respect to the family
of N(μ0, σ

2)-distributions). Now we consider

t = g = g S,T� =
n S−μ0

1
n−1 T∗−nS2

=
y−μ0
s

n 3 45

We know that g is for μ = μ0 distributed as t(n − 1) and to be precise independent
of σ2 R+. However, for known μ= μ0 the statistic

1
σ2T

∗ is distributed as CS(n).
Therefore Theorem 1.5 implies that g and T∗ are independent for all θ ϵΩ∗ (i.e.
for μ = μ0). Thus the assumptions of Theorem 3.16 are fulfilled because g is
isotone in S for each T∗. Consequently the t-test is a UMPU-α-test.
This leads to the test of W.S. Gosset published in 1908 under the pseudonym

Student (Student, 1908).

Theorem 3.17 Student (1908)
If n > 1 components of a random sample Y = (y1, y2, … , yn)

T are distributed
as N(μ,σ2), then the so-called t-test (Student’s test) for testing H0: μ = μ0, σ

2

arbitrary, of the form

k Y =
1 for t > t n−1 1−α

0 else
,

for HA: μ > μ0, σ
2 arbitrary, of the form

k Y =
1 for t < − t n−1 1−α

0 else
,

for HA: μ < μ0, σ
2 arbitrary, of the form

k Y =
1 for t > t n−1 1−

α

2
0 else
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and forHA : μ μ0, σ
2 arbitrary, respectively, is a UMPU-α-test, where t(n – 1 P)

is the P-quantile of the central t-distribution with n – 1 degrees of freedom.
First we will show how the sample size can be determined appropriately

corresponding to Example 3.1. We want to calculate the sample size so that
for given risks of the first and the second kind, a fixed difference of practical
relevance related to the value of the null hypothesis can be recognised. We
suppose that for each n > 1 Y = (y1, y2, … , yn)

T is a random sample with com-
ponents distributed as N(μ, σ2).
We test the null hypothesis H0: μ = μ0, σ

2 arbitrary, against one of the
alternatives:

a) HA: μ > μ0, σ
2 arbitrary,

b) HA: μ < μ0, σ
2 arbitrary,

c) HA: μ μ0, σ
2 arbitrary.

The test statistic

t μ =
y −μ

s
n

in (3.45) is under H0 centrally t-distributed; in general it is non-centrally

t-distributed with the non-centrality parameter λ=
μ−μ0
σ

n.

Actually, each difference of the parameters under the null hypothesis (μ0) on
the one hand and under the alternative hypothesis (μ1) on the other hand can
become significant as soon as the sample size is large enough. Hence, a significant
result alone is not yet meaningful. Basically it expresses nothing, because the dif-
ference could also be very small, for instance, |μ1 − μ0| = 0.00001. Therefore,
investigations have to be planned by fixing the difference to the parameter value
of the null hypothesis (μ0) to be practically relevant. For explaining the risk β of
the second kind, we pretended the alternative hypothesis would consist only of
one single value μ1. But in most applications μ1 can take all values apart from
μ0 for two-sided test problems and all values smaller than or larger than μ0 for
one-sided test problems. The matter is that each value of μ1 causes another
value for the risk β of the second kind. More precisely the smaller β is, the
larger the difference μ1 − μ0 . The quantity E = (μ1 − μ0)/σ, that is, the relative
or standardised practically relevant difference, is called (relative) effect size.
Therefore the fixing of the practically interestingminimal difference δ=μ1−μ0

is an essential step for planning an investigation. Namely, if δ is determined and if
certain risks α of the first kind and β of the second kind are chosen, then the nec-
essary sample size can be calculated. The fixing ofα,β and δ is called the precision
requirement. The crucial point is that differences μ1 − μ0 equal or larger than the
prescribed δ should not be overlooked insofar as it is possible. To say it more
precisely, it is to happen only with a probability less or equal to β that such dif-
ferences are not recognised.
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The sample size that fulfils the posed precision requirement can be obtained
by the power function of the test. This function states the power for given sam-
ple size and for all possible values of δ, that is, the probability for rejecting the
null hypothesis if indeed the alternative hypothesis holds. If the null hypothesis
is true, the power function has the value α. It would not be fair to compare the
power of a test with α = 0.01 with that of a test with α = 0.05, because a larger α
also means that the power is larger for all arguments referring to the alternative
hypothesis. Hence only tests with the same α are compared with each other.
For calculating the required sample size, we first look for all power

functions related to all possible sample sizes that have the probability α for
μ0, that is, the parameter value under the null hypothesis. Now we look up
the point of the minimum difference δ. Then we choose under all power func-
tions the one that has the probability 1 – β at this point, that is, the probability
for the justified rejection of the null hypothesis; hence, at this point the prob-
ability of unjustified accepting, that is, of making an error of the second kind,
is β. Finally, we have to choose the size n corresponding to this power
function. For two-sided test problems, the points –δ and +δ have to be fixed.
Figure 3.2 illustrates that deviations larger than δ are overlooked with still
lower probability. A practical method is as follows: divide the expected range
of the investigated character, that is, the difference between the imaginably
maximal and minimal realisation of the character, by 6 (assuming a normal dis-
tribution approximately 99% of the realisations lie between μ0 – 3σ and μ0 + 3σ)
and use the result as estimation for σ.
For unknown variance σ2 we can use the sample variance of a prior sample of

size n between 10 and 30.

p= 0.9

p= 0.05

n= 1717
n= 1414
n= 1212

n= 9n= 7

n= 17
n= 14
n= 12

n= 9n= 7

Delta = 1.5

–4 –3 –2 –1 0 1 2 3 4

1.0

0.8

0.6

0.4

0.2

0.0

Figure 3.2 The power functions of the t-test testing the null hypothesis H0 : μ = μo against HA:
μ μo for a risk α = 0.05 of the first kind and a sample size n = 5 (bold-plotted curve below)
as well as other values of n (broken-lined curves) up to n = 20 (bold-plotted curve above).

118 Mathematical Statistics



For example, assuming a power of 0.9, the relative effect can be read on the
abscissa, and it is approximately 1.5 for n = 7.

Hints Referring to the Statistical Software Package R
In practical investigations professional statistical software is used to determine
appropriate sample sizes for given values of α, β and δ; in this book we apply
mainly R. The software package R is an adaptation of the programming language
S, which has been developed since 1976 by John Chambers and colleagues in the
Bell Laboratories. The functionality of R can be extended by everybody without
any restrictions using free software tools; moreover it is possible to implement
also special statistical methods as well as certain procedures of C and FOR-
TRAN. Such tools are offered in the Internet in standardised archives. The most
popular archive is probably CRAN (Comprehensive RArchive Network), a server
net that is supervised by the R Development Core Team. This net also offers the
package OPDOE (Optimal Design of Experiments), which was thoroughly
described in the book of Rasch et al. (2011b).
Apart from only a few exceptions, R contains implementations for all statis-

tical methods concerning analysis, evaluation and planning.
The softwarepackageR is available freeofchargeunderhttp://cran.r-project.org/

for the operating systems Linux, Mac OS X andWindows. The installation under
Microsoft Windows takes place via ‘Windows’. Choosing their ‘base’, the installa-
tion platform is reached. With ‘Download R 2.X.X forWindows’ (X stands for the
required versionnumber), the setup file canbedownloaded.After this file is started,
the setup assistant is running through the single installation steps. Concerning this
book, all standard settings can be adopted. The interested reader will find more
information about R under http://www.r-project.org/
After starting R the input window will be opened presenting the red-coloured

input request: ‘>’. Here commands can be written up and carried out by the
enter button. The output is given directly below the command line. But the user
can also realise line changes as well as line indents for increasing clarity. All this
does not influence the functional procedure. Needing a line change the next line
has to be continued with ‘+’. A sequence of commands is read, for instance, as
follows:

> cbind(u1_t1.tab, u1_t1.pro, u1_t1.cum)

The Workspace is a special working environment in R. There certain objects
can be stored, which were obtained during the current work with R. Such objects
contain not only results of computations but also data sets. A Workspace is
loaded using the menu

File – Load Workspace...
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Nowwe turn to the calculation of sample sizes. We describe the procedure for
calculations by hand and list a corresponding file in R.
The test statistic (3.45) is non-centrally t-distributed with n – 1 degrees of

freedom and the non-centrality parameter λ=
μ−μ0
σ

n. Under the null hypoth-

esis μ = μ0 is λ = 0. Taking the (1−α)-quantile t(n − 1 | 1 − α) of the central
t-distribution with n − 1 degrees of freedom and the β-quantile of the corre-
sponding non-central t-distribution t(n – 1, λ | β), we obtain in the one-sided
case the condition

t n−1 1−α = t n−1, λ β

because of the requirement 1 − π(μ) = P(t < t(n − 1, λ | 1 − α)) = β. This means
that the (1 − α)-quantile of the central t-distribution (the distribution under
the null hypothesis) has to be equal to the β-quantile of the non-central
t-distribution with non-centrality parameter λ, where λ depends on the mini-
mum difference δ. We illustrate these facts by Figure 3.3.
We apply an approximation that is sufficiently precise for the calculation of

sample sizes by hand, namely,

t n−1, λ β ≈ t n−1 β + λ= − t n−1 1−β +
δ

σ
n

Analogous to Example 3.1 the minimum sample size n is therefore obtained by

n= t n−1 1−α + t n−1 1−β 2 σ
2

δ2
,

where x again denotes the round-off function.
After fixing α, β, δ and σ, the sample size n can be iteratively calculated by

this formula. Now we put δ = σ, that is, deviations of at least the standard

λ

β
α

t-Quantile

Figure 3.3 Graphical illustration of the risks α and β.
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deviation are to be overlooked at most with the probability β. For α = 0.05 and
β = 0.2, we start iterations with n(0) =∞ and get

t ∞ 0 95 = 1 6449, t ∞ 0 8 = 0 8416,

followed by

n 1 = 1 6449 + 0 8416 2 = 6 18 = 7;

t 6 0 95 = 1 9432, t 6 0 8 = 0 957;

n 2 = 1 9432 + 0 9057 2 = 8 11 = 9

t 8 0 95 = 1 8595, t 8 0 8 = 0 8889

n 3 = 1 9432 + 0 9057 2 = 7 56 = 8

t 7 0 95 = 1 8946, t 7 0 8 = 0 896;

n 4 = 1 8946 + 0 896 2 = 7 78 = 8

Hence, n = 8 is the minimum sample size. In the case of a two-sided alternative,
we calculate n = 10 using R (see Table 3.2). Here 1 – α has to be replaced in the
t-quantile by 1 – α/2.
Table 3.2 lists the sample sizes in the just considered case for a two-sided

alternative with α = 0.05, β = 0.2 and some δ computed with the software pack-
age OPDOE (according to the exact formula). The extract of commands is

>size.t.test(delta=1, sd=1, sig.level=0.05, power =
+0.8, +type:"one.sample", alternative = "two.sided")

where sd = σ, sig.level = α and power = 1 – β. Remember that a new command
line needs the sign ‘+’ at the beginning.
Exploiting the previous results the reader can prove for many of the custom-

ary tests used in applications that they are UMPU-α-tests.

Example 3.13 Supposing the conditions of Example 3.11, we want to test
H0 σ2 = σ20, μ arbitrary, against a one- or two-sided alternative hypothesis. Here
we restrict ourselves to the alternative HA σ2 σ20, μ arbitrary. Put

λ= −
1
2σ2

, η2 =
n
σ2

, S =
n

i= 1

y2i ,T
∗ = y

Table 3.2 Values of n depending on δ = c σ for α = 0.05, β = 0.20 and a two-sided alternative
(i.e. P = 1 – α/2).

δ 1/25 σ 1/10 σ 1/5 σ 1/4 σ 1/3 σ 1/2 σ 1 σ

n 4908 787 199 128 73 34 10
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and

g = g S,T� =
1
σ20

S−nT∗2 =
1
σ20

n

i= 1

yi−y
2

The function g is for each T∗ isotone in S. Besides y is complete sufficient with
respect to the family N μ,σ20 (i.e. with respect to P∗). Since g is distributed as
CS(n − 1), the mapping

k Y =
1 for g < c1α or g > c2α

0 else

is a UMPU-α-test if c1α and c2α are determined according to (3.32) and (3.33)
with n – 1 instead of n.
Now we discuss whether it is always favourable to look for UMPU-tests. The

exclusion of noisy factors η2,…, ηk, as it was described in this section, is only one
of several possibilities. We can also design tests so that the condition

max
θ Ω0

E k Y θ = α

is fulfilled. We want to consider both possibilities in the following case. Let the
random variables x and y be mutually independently distributed as B(1, px) and
B(1, py) correspondingly (satisfying each a two-point distribution), where

P x= 0 = px,P x= 1 = 1– px,0 < px < 1,

P y= 0 = py,P y= 1 = 1– py,0 < py < 1

Further, the null hypothesisH0: px = py = p, p arbitrary in {0, 1}, is to be tested in
Ω∗ = (0, 1) againstHA: px < py; px, py arbitrary in {0, 1} with a risk α (0 < α < 0.25)
of the first kind. The set of possible realisations of (x, y) is

Y = x,y x= 0,1; y= 0,1

The boundaryΩ∗ is the set of possible p-values, namely,Ω∗ = {0, 1}, the diagonal
in the discrete square {0, 1} × {0, 1}.
First we design a test that fulfils the above given maximum condition. Because

of Ωo = Ω∗, the condition

max
pϵ 0,1

E k Y p = α

has to hold, which supplies for α < 0.25 (with cα = 0)

k1 Y =
4α for x,y = 0, 1

0 else
,
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taking

E k1 Y = 4αP x= 0, y= 1 = 4αpx 1−py

into account. Under the null hypothesis the expectation is equal to 4 αp(l − p).
This functional expression takes its maximum α for p = 1/2. Therefore k1(Y) is
an α-test.
Now we design a UMPU-α-test. Evidently we have

pxy = P x= x, y= y =
1

x
pxx 1−px

1−x 1

y
pyy 1−py

1−y

= pxxp
y
y 1−px

1−x 1−py
1−y

Putting T∗ = x + y, S = x, we see from (3.37) analogous to Example 3.12 that

P x= x,T∗ =T∗, px = py =
1
2
T ∗

is true under H0. Then

k2 Y =

2α for x= 0,y= 1

α for x= y

0 for x= 1,y= 0

is with cα = 0 the realisation of a UMPU-α-test, since

E k2 Y = 2αpy 1−px + α pxpy + 1−px 1−py + 0= α 1 + py−px ,

which is equal to α under the null hypothesis. If the power functions π1(px, py)
and π2(px, py) of both tests, namely,

π1 px, py = 4αpx 1−py ; π2 px, py = α 1−px + py ,

are compared, then we get (here ‘more powerful’ means a larger power)

k2 Y is more powerful than k1 Y , if 4px 1−py > 1 + py−px,

k1 Y is biased, if 4px 1−py < 1

The parameter space is determined by px ≤ py. It is easy to see that the biased test
k1(Y) is in a considerable part of the parameter space more powerful than the
unbiased test k2(Y). If an a priori information is available that the differences
between px and py are rather great or that only rather great differences are of
interest, then k1(Y) should be preferred to k2(Y).
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3.4.2 The Two-Sample Problem: Properties of Various Tests
and Robustness

The following examples for UMPU-α-tests are of such great practical impor-
tance that we dedicate an entire section to them. Moreover, as representatives
of all test problems in this chapter, these tests are to be compared with tests
not belonging to the UMPU-class where also consequences of violated or
modified assumptions concerning the underlying distributions are also pointed

out. We consider two independent random samples Y 1 = y11,…, y1n1
T
,

Y 2 = y21,…, y2n2
T
, where components yij are supposed to be distributed as

N μi,σ
2
i . We intend to test the null hypothesis

H0 μ1 = μ2 = μ,σ
2
1,σ

2
2 arbitrary

against

HA μ1 μ2,σ
2
1,σ

2
2 arbitrary

The UMPU-α-tests for one-sided alternatives with σ21 = σ
2
2 can be designed anal-

ogously. This work is left to the reader.
The second class of tests we consider concerns the pair

H0 σ21 = σ
2
2 = σ

2,μ1,μ2 arbitrary

HA σ21 σ22,μ1,μ2 arbitrary

of hypotheses. Since we use two random samples belonging to different distri-
butions, it is called a two-sample problem. Regarding each pair (i,j), 1 ≤ i ≤ n1,

1 ≤ j ≤ n2 the vector variable
y1i
y2j

belongs to a two-dimensional (or bivariate)

normal distribution with the expectation vector
μ1
μ2

and the covariance

matrix
σ21 0
0 σ22

representing a four-parametric exponential family. Therefore,

the random vector Y =
Y 1

Y 2
has also a distribution from a four-parametric

exponential family with the natural parameters

ηk =
nk μk
σ2k

k = 1,2 ; η3 = −
1

2 σ21
, η4 = −

1
2 σ22

and the complete sufficient statistics

Ti Y = yi i= 1,2 ;T3 Y =
n1

i=1

y21i;T4 Y =
n2

j= 1

y22j
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3.4.2.1 Comparison of Two Expectations
Considering the pair of hypotheses with respect to the expectations, we cannot
design a UMPU-α-test in general. We are only successful for the special case
σ21 = σ

2
2 = σ

2 (variance homogeneity).

3.4.2.1.1 A UMPU-α-Test for Normal Distributions in the Case of Variance
Homogeneity
We want to design a test for the pair

H0 μ1 = μ2 = μ, σ21 = σ
2
2 = σ

2 arbitrary

HA μ1 μ2, σ
2
1 = σ

2
2 = σ

2 arbitrary

of hypotheses. Then the common distribution of a random variable Y =
Y 1

Y 2

is an element of a three-parametric exponential family, which can be written
with the natural parameters

η1 = λ=
μ1−μ2
1
n1

+
1
n2

σ2
, η2 =

n1μ1 + n2μ2
n1 + n2 σ2

, η3 = −
1
2σ2

and the corresponding statistics

S = y1−y2;T
�
1 = n1y1 + n2y2;T

∗
2 =

n1

i= 1

y21i +
n2

j= 1

y22j

Besides, T�
1 ,T

�
2 =T∗ is complete sufficient with respect to P∗ (i.e. for the

case μ1 = μ2 = 0, where P∗ is a two-parametric exponential family). According
to Theorem 3.14, there is a UMPU-a-test for our problem. We consider

g = g S,T∗ =
S

T∗
2−

1
n1 + n2

T∗
1−

n1n2
n1 + n2

S2
=

y1−y2
s n1 + n2−2

=

1
σ

y1−y2
s
σ

n1 + n2−2
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with

s2 =
n1
i= 1 y1i−y1

2 + n2
j= 1 y2i−y2

2

n1 + n2−2
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The distribution of g under H0 depends neither on the value μ = μ1 =μ2 nor

on σ2, since the nominator of g is distributed as N 0,
n1 + n2
n1n2

and the square

of the denominator independent of it distributed as CS(n1 + n2 − 2) referring to
the first quotient representation in (3.46). Hence, by Theorem 1.5 the random
variable g is independent of T. The test statistic

t =
y1−y2

s
n1n2
n1 + n2

3 47

is distributed as t n1 + n2−2;
μ1−μ2

σ

n1n2
n1 + n2

. Therefore the UMPU-α-test

for H0 against HA given in (3.47) has the form

k Y =
1 for t > t n1 + n2−2 1−

α

2
0 else

This test is called the two-sample-t-test.

Example 3.14 (Optimal Sample Size)
We want to calculate the optimal (i.e. the minimal) total size of both samples

so that the precision requirements α = 0.05, β = 0.1 and σ = δ = μ1 − μ2 hold.

For given total size N = n1 + n2 the factor
n1n2
n1 + n2

in (3.47) becomes maximal

if n1 = n2 = n. We take this choice. Observing the mentioned precision require-
ments, the non-centrality parameter of the t-distribution is

λ=
μ1−μ2

σ

n1n2
n1 + n2

=
δ

σ

n
2

Analogous to the one-sample case, the condition

t 2 n−1 ;
n
2

β = t 2 n−1 ;
n
2

P

has to be realised. Using OPDOE in CRAN – R, the size n of a random sample
can be determined. Again we choose for one-sided alternatives P = 1 – α and
for two-sided alternatives P = 1 − α/2.
The commands in R have to be modified only slightly compared with the

one-sample problem as you can see below:

>size.t.test(delta=1, sd=1, sig.level=0.05, power = 0.8,
+type="two.sample", alternative = "two.sided")
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If the calculation is made by hand, we can again use the formula

n= t 2 n−1 P + t 2 n−1 1−β 2 2σ
2

δ2

obtained by approximation.

Warning: It should be explicitly mentioned here that the two-sample t-test
is not really suitable for practical applications. This is the consequence of an
article published by Rasch et al. (2011a). Some comments can also be found
at the end of this section concerning robustness. We urgently recommend using
the Welch test instead of the two-sample-t-test. This test is described now.

3.4.2.1.2 Welch Test
We previously assumed that the unknown variances of the populations from
which both samples are taken are equal. But often this is not fulfilled or not
reliably known. Then we advise for practical purposes applying an approximate
t-test, namely, a test whose test statistic is nearly t-distributed. Such a test is suf-
ficiently precise concerning practical investigations. Moreover, it is a so-called
conservative test –meaning a test guaranteeing a risk of the first kind not larger
than the prescribed α.
The distribution of the test statistic

t∗ =
y1−y2− μ1−μ2

s21
n1

+
s22
n2

, s2k =
1

nk −1

nk

i=1

yik −yk
2, k = 1,2

for unknown variances was derived by Welch (1947). The result is given in the
next theorem.

Theorem 3.18 (Welch)

Let Y 1 = y11,…, y1n1
T
,Y 2 = y21,…, y2n2

T
be two independent random

samples with components yij distributed asN μi,σ
2
i . Introducing the notations

γ =

σ21
n1

σ21
n1

+
σ22
n2

, b=
n1−1

s21
σ21

n1−1
s21
σ21

+ n2−1
s22
σ22

and

p b =
1

B
n1−1
2

,
n2−1
2

b
n1 −1
2 −1 1−b

n2 −1
2 −1,
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with values B
n1−1
2

,
n2−1
2

of the beta function, the distribution function of

t∗ in the case μ1 = μ2 is given by

F t∗ =

1

0

Hn1 +n2−2 n1 + n2−2
γb

n1−1
+

1−γ 1−b
n2−1

p b db,

where Hn1 + n2−2 is the distribution function of the central t-distribution with
n1 + n2 − 2 degrees of freedom.
The proof of the theorem is contained, for example, in Welch (1947) or in

Trickett and Welch (1954). The critical value t∗P can only be iteratively deter-
mined. An iterative method is presented in Trickett andWelch (1954), Trickett
et al. (1956) and Pearson and Hartley (1970). Tables listing critical values are
given in Aspin (1949).
If the pair

H0 μ1 = μ2 = μ, σ
2
1,σ

2
2 arbitrary

HA μ1 μ2,σ
2
1,σ

2
2 arbitrary

of hypotheses is to be tested often, the approximate test statistic

t∗ =
y1−y2

s21
n1

+
s22
n2

is used. H0 is rejected if |t∗| is larger than the corresponding quantile of the
central t-distribution with

f ∗ =

s21
n1

+
s22
n2

2

s41
n12 n1−1

+
s42

n22 n2−1

degrees of freedom.

Example 3.14 Optimum Sample Size (continuation)
We want to determine the size of both samples so that the precision require-

ments α = 0.05; β = 0.1; σx =Cσy with known C and δ = μ1 − μ2 = 0.9σy are ful-
filled. Using these data the software package OPDOE in CRAN – R is ready for
calculating the sizes of both samples. As before we have to put P = 1 – α for one-
sided alternatives and P = 1 − α/2 for two-sided alternatives. The sequence of
commands in R has to be only slightly changed compared with the one for
the t-test.
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Concerning calculations by hand, we use ny =
σy
σx

nx and again the

approximation

nx≈ t f ∗ P + t f ∗ 1−β 2 σx σx + σy
δ2

The data in this example supply the sizes nx = 105 and ny = 27 for
σx = 4σy(C = 4).

Hints for Program Packages
At this point, we give an introduction to the package IBM SPSS 24 Statistics
(SPSS in short). When we open the package, we find a data matrix (which is
empty at the beginning) into which we will put our data.
Clicking on variables you can give names for the characters you wish to enter

as shown in Figure 3.4.

Figure 3.4 SPSS data file in variable view. Source: Reproduced with permission of IBM.
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Let us consider an example.

Example 3.15 Two independent samples of 13 mice are drawn from two
mouse populations (26 mice in all). The x- and y-values are the litter weights
of the first litters of mice in populations 1 (xi) and 2 (yi), respectively, and given
in Table 3.3.
We will now create this data as an SPSS data file. First we need to rename

var in the first column as x and var in the second column as y as already done
in Figure 3.5. Then we need three digits in each column and one decimal place.
To do these we change from Data View to Variable View (see Figure 3.5 below
left). Now we can change the variable names to x and y and the number of
decimal places to 1. Having returned to Data View, we now enter the data
values. We save the file under the name mice-data.sav. The SPSS file is shown
in Figure 3.5.
SPSS allows us at first to calculate some descriptive statistics from the

observations via

Analyze
Descriptive statistics

Descriptive

and then we choose Options as shown in Figure 3.6
Here we select what we like and receive the output in Figure 3.7.

Table 3.3 The litter weights of mice (in g) of
Example 3.15.

i xi yi

1 7.6 7.8

2 13.2 11.1

3 9.1 16.4

4 10.6 13.7

5 8.7 10.7

6 10.6 12.3

7 6.8 14.0

8 9.9 11.9

9 7.3 8.8

10 10.4 7.7

11 13.3 8.9

12 10.0 16.4

13 9.5 10.2
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Figure 3.6 Options in descriptive statistics.
Source: Reproduced with permission of IBM.

Figure 3.5 SPSS data file for Example 3.15. Source: Reproduced with permission of IBM.

Statistical Tests and Confidence Estimations 131



To test the hypothesis, that the expectation of both variables are equal against
a two-sided alternative, we first have to rearrange the data in one column now
proceed named ‘weight’ and a second column group where we put a ‘1’ for the
first 13 values and a ‘2’ for the others as done in Figure 3.8.

Figure 3.8 Rearranged data of Example 3.15. Source: Reproduced with permission of IBM.

Figure 3.7 SPSS output of Example 3.15. Source: Reproduced with permission of IBM.
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Now we proceed with

Analyze
Compare means

independent samples t-test

and receive Figure 3.9.
In the upper row we find the result for the t-test and below that for theWelch

test. As we mentioned above, we always use only the Welch test output. The
decision about the rejection of the null hypothesis is as follows. If the first
kind risk chosen in advance is larger than the value significance in the output,
we reject the null hypothesis. In our example it must be accepted if α = 0.05
(because it is below 0.089 in the output).
Confidence intervals can be found in the corresponding test output right from

the test results.

3.4.2.1.3 Wilcoxon–Mann–Whitney Test
Assume that we do not know whether the sample components of a two-sample
problem are normally distributed, but the distributions are continuous, all
moments exist and at most the expectations of the distributions are different.
Then the pair

H0 μ1 = μ2 = μ, all higher moments equal, but arbitrary

HA μ1 μ2, all higher moments equal, but arbitrary

Figure 3.9 SPSS output for comparing means. Source: Reproduced with permission of IBM.
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of hypotheses can also be written as

H0 f1 y1 = f2 y2 ,

where f1(y1), f2(y2) are the densities of both distributions. If higher moments of
the distributions are different (e.g. σ21 σ22 or skewness and excess of both dis-
tributions are different, respectively), then the rejection of the null hypothesis
does not say anything about the expectations. However, if the equality of all kth
moments (k ≥ 2) of both distributions is guaranteed, then non-parametric tests
can be used for the hypotheses. Such tests are generally not treated in this book
(see Bagdonavicius et al., 2011; Rasch et al., 2011c). We only want to describe a
special representative, the Wilcoxon test, also called Mann–Whitney test (see
Wilcoxon, 1945; Mann and Whitney, 1947).
For i = 1, …, n1; j = 1, …, n2, we consider

dij =
1 for y2j < y1i

0 for y2j > y1i

The equality occurs for continuous random variables with probability 0.
In Rasch et al. (2011c) it is described how to proceed in practical cases if

equality happens (ties).
The test statistic is

U =
n1

i=1

n2

j= 1

dij

If Fi (yi) are the distribution functions of yij (i = 1, 2) and if

p=P y2 < y1 =

∞

−∞

y1

−∞

f2 y2 f1 y1 dy2dy1 =

∞

−∞

F2 t f1 t dt,

then H0 : f1(y1) = f2(y2) implies

p=

∞

−∞

F1 t f1 t dt =
1
2

The n1n2 random variables dij are distributed as B(1, p), where E(dij) = p and

var d2
ij = p l−p . Mann and Whitney (1947) showed

E U H0 =
n1n2
2

, var U H0 =
n1n2 n1 + n2 + 1

12
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Further, the distribution of U is under H0 symmetric with respect to
n1n2
2

.

With the notation U = n1n2 −U the function

kU Y =
1 for U < cα 2 or U < cα 2

0 else

is an α-test, provided that cα/2 is determined by P(U < cα/2| H0) = α/2. The
random variable

W =U +
n1 n1 + 1

2

is equal to the sum of the ranks of the n1 random variables y1i in the vector of

the ranks of the composed random vector Y =
Y 1

Y 2
, representing the test

statistic of the Wilcoxon test. Therefore kU(Y) is equivalent to the test

kW Y =
1 forW <WU α 2 or W >WO α 2

0 else

The quantiles WU α/2 andWO α/2 of this test can for ni > 20 be replaced by the
quantiles of the standard normal distribution; for smaller n these quantiles
should be calculated with the help of R.

Example 3.15 (continued)
For the data in Figure 3.8, we now calculate the Mann–Whitney test by SPSS.
We use

Analyze
Nonparametric Tests

Independent Samples

and use the entry Fields putting weight as Test Fields and groups as Groups.
Then we use Run and obtain Figure 3.10.

3.4.2.1.4 Robustness
All statistical tests in this chapter are proved to be α-tests and to have other
wished properties if some distributional assumptions are fulfilled. An experi-
menter looking for a proper statistical test often does not know whether or
not these assumptions are fulfilled, or he knows that they are not fulfilled.
How can we help him? Certainly not by deriving some theorems about
this topic.
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We give here an introduction to methods of empirical statistics (see
Chapter 1) via simulations and methods, which will be used later not only in
this chapter but also in other chapters (especially in Chapter 11).
General problems concerning robustness are not thoroughly discussed in this

book. We restrict ourselves to such comments, which are necessary for under-
standing the tests presented above (and later). The robustness of a statistical
method means that the essential properties of this method are relatively insen-
sitive to variations of the assumptions. We especially want to investigate the
robustness of the methods in Section 3.4.2.1 with respect to violating normality
or variance equality. Problems of robustness are discussed in detail in a paper of
Rasch and Guiard (2004).

Definition 3.8 Let kα be an α-test (0 < α < 1) for the pair {H0, HA} of hypoth-
eses in the class G1 of distributions of the random sample Y with size n. And let
G2 be a class of distributions containing G1 and at least one distribution, which
does not fulfil all assumptions for guaranteeing kα to be an α-test.
Finally, let α(g) be the risk of the first kind for kα concerning the element g of

G2 (estimated by simulation). Here and in the sequel, we write α(g) = αact, the
actual α and the α fixed the nominal α written as αnom.
Then kα is said to be (1 – ε)-robust in the class G2 if

max
g ϵG2

αact −αnom ≤ ε

We call a statistical test acceptable if 100 (1 – ε) % ≥ 80%.
For example, elements of the set difference G2 \ G1 are distributions with

σ21 σ22 for the two-sample t-test and the Wilcoxon test as well as distributions
being not normal for the t-test and the Welch test. Rasch and Guiard (2004)
report about extensive simulation experiments investigating the robustness
of the t-test in a set of 87 distributions of the Fleishman system (Fleishman,
1978) as well as the robustness of the two-sample t-test and the Wilcoxon test

Figure 3.10 SPSS output of the Mann–Whitney test.
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for unequal variances. The results showed that both the one-sample t-test and
the two-sample t-test (and also the corresponding confidence intervals given in
Section 3.5) are extremely robust with respect to deviations from the normal
distribution. So, Rasch et al. (2011a) conclude that the two-sample t-test
cannot be recommended, and also it makes no sense to check in a pretest
whether the variances of both random samples are equal or not. In most cases
the Wilcoxon test yields unsatisfactory results, too. Only the Welch test works
well. Its power is nearly that one of the two-sample t-test if both variances
are equal. Moreover, for unequal variances, this test obeys the given risks
in the sense of 80% robustness even for non-normal distributions with a
skewness |γ1| < 3.

3.4.3 Comparison of Two Variances

A UMPU-α-Test
A UMPU-α-test exists for the pair

H0 σ21 = σ
2
2, μ1, μ2 arbitrary

HA σ21 σ22, μ1, μ2 arbitrary

of hypotheses and the random samples Y 1 = y11,…, y1n1
T
,

Y 2 = y21,…, y2n2
T
, where components yij are distributed as N μi,σ

2
i . The

random vector Y =
Y 1

Y 2
has a distribution from a four-parametric exponen-

tial family with the natural parameters

η1 = λ= −
1
2

1
σ21

−
1
σ22

,η2,η3,η4

and the sufficient statistics S, T� =(T1
∗, T2

∗, T3
∗)T given by

S =
n2

j=1

y22j, T1
∗

n1

i= 1

y21i +
σ21
σ22

n2

j= 1

y22j,T2
∗ = y1,T2

∗ = y2

Under H0 we have
σ21
σ22

= 1, and the random variable

F =

n1
i= 1 y1i−y1

2 n2−1
σ21

n2
i=1 y2i−y2

2n1−1
σ22
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does not depend on μ1 , μ2 and σ21 = σ
2
2 = σ

2. Hence, F is independent of T�.
Therefore Theorem 3.16 can be used. The random variable F is centrally dis-
tributed as F(n1 − 1, n2 − 1) under H0. The function

k Y =

1 if F < F n1−1, n2−1
α

2

or F > F n1−1, n2−1 1−
α

2
0 else

defines a UMPU-α-test, where F(n1 − 1, n2 − 1| P) is the P-quantile of the
F-distribution with n1 − 1 and n2 − 1 degrees of freedom. These quantiles for
α = 0.05 can be found in Table D.5. This test is very sensitive to deviations
from the normal distribution. Therefore the following Levene test should be
used instead of it in the applications.

Levene Test
Box (1953) already mentioned the extreme non-robustness of the F-test com-
paring two variances (introduced at the beginning of this Section 3.4.2.2). Rasch
and Guiard (2004) report on extensive simulation experiments devoted to this
problem. The results of Box show that non-robustness has to be expected
already for relatively small deviations from the normal distribution. Hence,
we generally suggest applying the test of Levene (1960), which is described now.
For j = 1, 2 we put

zij = yij−y j

2
; i= 1,…,nj

and

SSbetween =
2

j=1

nj

i=1

z j−z ..
2
, SSwithin =

2

j= 1

nj

i= 1

zij−z j
2

where z j= 1
nj

nj
i= 1zij ,z .. =

1
n1 + n2

2
j= 1

nj
i= 1zij .

The null hypothesis H0 is rejected if

F∗ =
SSbetween
SSwithin

n1 + n2−2 > F 1, n1 + n2−2 1−
α

2

3.4.4 Table for Sample Sizes

We present in Table 3.4 an overview listing formulae to determine the sample
sizes for testing hypotheses.
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3.5 Confidence Estimation

In applications, the user seldom contents oneself with point estimations for
unknown parameters. On the contrary, he often tries to calculate or estimate
the variance of the estimation. If this variance is sufficiently small, then there
is no cause to distrust the estimated value.

Definition 3.9 Let Y = (y1, y2, … , yn)
T be a random sample with realisations

Y ϵ {Y}, whose components are distributed as Pθ ϵ P = {Pθ : θ ϵ Ω}. Let S(Y) be a
measurable mapping of the sample space onto the parameter space and K(Y) be
a random set with realisations K(Y) inΩ. Further, let PS be the probability meas-
ure induced by S(Y). Then K(Y) is said to be a confidence region for θ with the
corresponding confidence coefficient (confidence level) 1 – α if

PS θ ϵ K Y = P θ ϵ K Y ≥ 1−α for all θ ϵ Ω 3 48

In a condensed form,K(Y) is also said to be a (1 – α) confidence region. IfΩ R1

andK(Y) is a connected set for allY ϵ {Y}, thenK(Y) is called a confidence interval.
The realisationK(Y) of a confidence region is called a realised confidence region.
The interval estimation includes the construction of confidence intervals. It

stands beside the point estimation. Nevertheless, we will see that there are ana-
logies to the test theory concerning the optimality of confidence intervals that
can be exploited to simplify many considerations. That is the cause for treating
this subject in the chapter about tests.

Table 3.4 Approximate sample sizes for testing hypotheses with given risks α, β and given
minimum difference δ (apply P = 1 – α for one-sided tests and P = 1 – α/2 for two-sided tests).

Parameter Sample size

μ n≈ t n−1;P + t n−1; 1−β σ
δ

2

μx − μy paired observations n≈ t n−1;P + t n−1; 1−β σΔ
δ

2

μx − μy independent samples, equal
variances

n≈ 2 t n−1;P + t n−1; 1−β σ
δ

2

μx − μy independent samples, unequal
variances

nx≈
σx σx + σy

δ2
t f ∗;P + t f ∗, 1−β 2

Probability p n=
z1−α p0 1−p0 + z1−β p1 1−p1

2

p1 −p0
2

Probabilities p1 and p, H0 : p1 = p2 n=
1

δ2
z P p1 +p2 1−

1
2
p1 + p2 +

z 1−β p1 1−p1 + p2 1−p2

2
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Example 3.16 Let then>1componentsof a randomsampleY = (y1, y2, … , yn)
T

be distributed as N(μ,σ2), where σ2 is known. We consider the measurable
mapping S Y = y from {Y} onto Ω = R1. The mean y follows a

N μ,
σ2

n
-distribution. A (1 – α) confidence region K(Y) with respect to μ

has to satisfy P[μ ϵ K(Y)] = 1 − α (here we write P for PS). We suppose that
K(Y) is a connected set, that is, an interval K Y = μu ,μo . This means

P μu ≤ μ ≤ μo = 1−α

Since y is distributed as N μ,
σ2

n
, it holds

P zα1 ≤
y−μ
σ

n ≤ z1−α2 = 1−α1−α2 = 1−α

for α1 + α2 = α, α1 ≥ 0 , α2 ≥ 0. Consequently, we have

P y−
σ

n
z1−α2 ≤ μ ≤ y −

σ

n
zα1 = 1−α

so that μu = y−
σ

n
z1−α2 and μo = y −

σ

n
zα1 are fulfilled. For 1 − α there are infi-

nitely many confidence intervals according to the choice of α1 and α2 = α − α1.
If α1 = 0 and α2 = 0, respectively, then the confidence intervals are one-sided
(i.e. only one interval end is random). The more the values α1 and α2 differ from

each other, the larger is the expected width E μo −μu =
σ

n
z1−α2 −zα1 . For

example, the width becomes infinite for α1 = 0 or for α2 = 0. Finite confidence
intervals result for α1 > 0 , α2 > 0.
Now we set conditions helping to select suitable confidence intervals from

the huge number of possible ones. First K(Y) ought to be connected and
finite with probability 1. Additionally, for fixed α we prefer confidence intervals
possessing the smallest width or the smallest expected width with respect to
all θ ϵ Ω.

3.5.1 One-Sided Confidence Intervals in One-Parametric
Distribution Families

Definition 3.10 Let the components of a random sample Y = (y1, y2, … , yn)
T

be distributed as Pθ ϵ P = {Pθ, θ ϵ Ω, where Ω = {θ1, θ2} and the improper
values −∞ for θ1 and +∞ for θ2 are admitted. Then

K L =KL Y = θu Y , θ2
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and

KR =KR Y = θ1, θo Y ,

respectively, are said to be one-sided confidence intervals for θ with the
confidence coefficient l – α if

Pθ θ ϵ K L ≥ 1−α and Pθ θ ϵ KR ≥ 1−α, 3 49

respectively. KL is called a left-sided and KR a right-sided confidence interval.
A left-sided (right-sided) confidence interval with coefficient 1 – α is said to
be a uniformly most powerful confidence interval (UMP (1 – α)-interval), if
for each θ∗ < θ [θ∗ > θ], θ∗ ϵ Ω the probability

Pθ θu Y ≤ θ∗ Pθ θo Y ≥ θ∗

becomes minimal under the condition (3.49).
A two-sided confidence intervalK(Y) satisfying (3.48) is called uniformlymost

powerful confidence interval (UMP (1 – α)-interval), if for each θ∗ θ , θ∗ ϵΩ
the probability Pθ{θ

∗ϵ K(Y)} becomes minimal.
As we will see there is a close relation between UMP-α-tests and UMP (1 – α)-

intervals. At first we more generally state the relation between α-tests and
confidence intervals with the coefficient 1 – α.

Theorem 3.19 Let the components of a random sample Y = (y1, y2, … , yn)
T

be distributed as Pθ ϵ P = {Pθ : θ ϵ Ω}. For each θo ϵΩ R1, let {Y0} {Y} be
the region of the sample space {Y}, where the null hypothesis H0: θ = θ0 is
accepted. Let K(Y) be for each Y ϵ {Y} the subset

K Y = θ ϵ Ω Y ϵ Y0 3 50

of the parameter spaceΩ. Then K(Y) is a (l – α)-confidence interval, if a test with
a risk of the first kind not larger than α is defined by {Y0}. If moreover {Y0}
defines a UMP-α-test, then K((Y) is a UMP (1–α)-interval.

Proof: Since θ ϵ K(Y) iff Yϵ{Y0}, it follows

Pθ θ ϵ K Y =Pθ Y ϵ Y0 ≥ 1−α

If K∗(Y) is another (1 – α)-confidence interval for θ and if Y ∗
0 =

Y θ ϵ K∗ Y , then we analogously get

Pθ θ K∗ Y =Pθ Y Y ∗
0 ≥ 1−α,

that is, Y ∗
0 defines another test with maximal risk α of the first kind. Since {Y0}

generates a UMP-test, we obtain

Pθ θ K∗ Y θ0 ≥Pθ θ K Y θ0
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for all θ θ0 Ω and therefore

Pθ θ K∗ Y ≥Pθ θ K Y for all θ θ0

The equivalence given in the above theorem means that a realised confidence
interval with coefficient 1 – α contains a subset ω ofΩ so that Ho : θ = θ0 would
be accepted for all θo ϵ ω if Y is a realisation of Y.
The next theorem is a consequence of Theorems 3.19 and 3.8 and its

Corollary 3.3, respectively.

Theorem 3.20 If P∗ is under the assumptions of Theorem 3.8 a family of
continuous distributions with distribution functions Fθ(T), then there exists
for each α with 0 ≤ α ≤ 1 a UMP (1–α)-interval KL(Y) according to Definition

3.10. If the equation Fθ(T ) = Pθ{T(Y ) < T } = 1 − α has a solution θ Ω, then it

is unique. Further θu Y = θ.

Proof: The elements of P∗ are continuous distributions. Hence, to each θ0 there
exists a number T1 − α = T1 − α(θ0) so that P∗

θ T Y >T1−α = α. Taking (3.24)
into account, YA(θ0) = {T : T > T1 − α(θo)} is the rejection region of a UMP-α-tests
for Ho: θ = θ0 against HA: θ = θA. Then Y0(θ0) = {T : T ≤ T1 − α(θo)} is the corre-
sponding acceptance region. Now let K(Y) be given by (3.50). Since T1−α(θo) is
strictly monotone in θo (the test is unbiased), K(Y) consists of all θ ϵ Ω with
θu(Y) ≤ θ, where θu(Y) = minθ Ω{θ, T(Y)} ≤ T1 − α(θ0)}. This implies the first
assertion in Theorem 3.20.
It follows from Corollary 3.1 of Theorem 3.1 that Fθ(T) is strictly antitone in

θ for each fixedT, provided that 0 < Fθ(T) < 1holds for thisT. Therefore the equa-

tion Fθ(T) = 1 − α has at most one solution. Let θ be such a solution, that is, let

F
θ
T = 1−α Then T1−α θ =T follows, and the inequalities T ≤ T1 − α(θo) and

T1−α θ ≤T1−α θo or θ ≤ θ are equivalent. But this means θu Y = θ. Hence,

θu(Y) is obtained by solving the equation T(Y) = T1 − α(θ) in θ.

Example 3.17 Under the conditions of Example 3.4, we look for a UMP

(1–α)-interval for μ. Now T Y = y is distributed as N μ,
σ2

n
. Therefore

T1 − α(μ) is the (1–α)-quantile of a N μ,
σ2

n
-distribution. Considering θ = μ

we must first solve the equation Fμ[T(Y)] = 1 − α. Because of T1−α μ =

μ+
σ

n
z1−α , the wished UMP (1–α)-interval for μ has the

form y−
σ

n
z1−α, + ∞
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Example 3.18 Starting with the random sample of Examples 3.5, we
want to construct a one-sided confidence interval with coefficient 1–α for
σ2 (where μ is known). Using the sufficient statistic T Y = n

i= 1 yi−μ
2,

the region Y0 for accepting H0 σ2 = σ20 is given by the inequality
T Y < σ20 CS n 1−α . Here CS(n|1 − α) is the (1 − α)-quantile of the chi-
squared distribution. The quantiles are shown in Table D.4. Now K(Y) written
as σ2u Y is determined by

σ2u Y = min
σ2 ϵΩ

σ2,T Y < σ20CS n 1−α

Hence, σ2u Y , + ∞ with the left end

σ2u Y =
n
i=1 yi−μ

2

CS n 1−α

is for each α (0 < α < 1) a UMP (1–α)-interval for σ2.
Analogously the reader can as an exercise transform other UMP-α-tests into

corresponding UMP (1–α)-intervals.
If under the assumptions of Theorem 3.8 the distribution of T(Y) is discrete,

then the tests are randomised. Thus the corresponding confidence intervals
are also called randomised. But in general we do not want to deal with such
confidence intervals. However, in practical applications, they often are
needed concerning the parameter p of the binomial distribution representing
a probability p. Here we refer to Fleiss et al. (2003) and to the case of two-sided
intervals in Section 3.5.2.

3.5.2 Two-Sided Confidence Intervals in One-Parametric and
Confidence Intervals in Multi-Parametric Distribution Families

Definition 3.11 A two-sided confidence interval K(Y) with coefficient 1–α is
said to be a uniformly most powerful interval, if K(Y) is in the class

Kα = K Y ,Pθ θ ϵ K Y ≥ 1−α for all θ Ω 3 51

and fulfils the condition

Pθ θ
∗ K Y = min

K∗ Y ϵKα

Pθ θ∗ ϵ K∗ Y for all θ∗ θ Ω 3 52

Analogous to Section 3.5.1 for continuous distributions, we can construct two-
sided uniformly most powerful (1–α)-intervals on the base of UMP-α-tests
for H0 : θ = θ0 against HA : θ θ0. But generally such tests do not exist for all
α, and therefore we introduce a weaker optimality condition analogous to the
UMPU-tests.
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Definition 3.12 A (1 – α)-confidence interval K(Y) = [l, u] is said to be an
unbiased U(1 − α)-interval, if it lies in Kα and satisfies

Pθ θ
∗ ϵ K Y ≤ 1−α for all θ∗ θ ϵ Ω 3 53

Then we note briefly that K(Y) is aU-(l–α)-interval.K(Y) is said to be a uniformly
most powerful unbiased (l – α)-confidence interval, if it fulfils the conditions
(3.51) and (3.53) as well as a condition analogous to (3.52), where the minimum

is taken within the class Kα Kα of such K(Y) satisfying both (3.51) and (3.53).
We denote uniformly most powerful unbiased (1 – α)-confidence intervals
shortly as UMPU (1 – α)-intervals.
If θ = (λ, η2, … , ηk)

T is a parameter vector and if a confidence interval with
respect to the real component λ is to be designed, then we can generalise with
η∗ = (η2, … , ηk)

T the Definitions 3.9 and 3.3 by replacing the demand ‘for all θ
“by the demand” for all λ and η∗’. If a UMPU-α-test exists, then it is easy to see
that the procedure described in Section 3.5.1 can be used to construct a UMPU
(1 – α)-interval. We want to demonstrate this by presenting some examples.
But first we must mention the fact that UMPU (1 – α)-intervals satisfy for con-
tinuous distributions the condition

Pθ θ ϵ K Y = 1−α

Example 3.19 Under the conditions of Example 3.9, we want to construct a
UMPU (1 – α)-interval for σ2. For this purpose we use the sufficient statistic
T Y = n

i= 1yi
2 and introduce

Y0 =A σ2 = σ2, c1α ≤
1
σ2

T Y ≤ c2α ,

where c1α and c2α fulfil (3.33) and (3.34). Observing

A σ2 = σ2,
1
c2α

≤
σ2

T Y
≤

1
c1α

and passing to random variables shows that

K Y =
1
c2α

n

i= 1

yi
2,

1
c1α

n

i= 1

yi
2

is a two-sided UMPU (1 – α)-interval for σ2.

Example 3.20 On the basis of Example 3.11, a UMPU (1 – α)-interval is to
be constructed for the expectation μ of a normal distribution with unknown
variance. Because of (3.36) we get

Y0 =A μ = − t n−1 1−
α

2
≤
y−μ
s

n ≤ t n−1 1−
α

2
,
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and therefore

K Y = y− t n−1 1−
α

2
s
n
; y + t n−1 1−

α

2
s
n

,

is a UMPU (1 – α)-interval for μ.

Example 3.21 On the base of Example 3.15, a UMPU (1 – α)-interval for the
difference μ1 − μ2 is to be constructed. It follows from (3.46) and the form of
the UMPU-α-test K(Y) given afterwards, if in the numerator of (3.46) the
expression μ1 − μ2 is inserted (which is 0 under Ho), that

K Y = y1−y2− t n1 + n2−2 1−
α

2
s

n1 + n2
n1n2

, y1−y2

+ t n1 + n2−2 1−
α

2
s

n1 + n2
n1n2

is a UMPU (1 – α)-interval. In this case we also propose to use instead confi-
dence intervals that are based on the Welch test.
If the distribution modelling the character is discrete as, for example, in

the case of the binomial distribution, then exact tests are for all α always ran-
domised tests. If the demand is slightly weakened by looking for a confidence
interval that covers the parameter p at least with probability 1–α, then an exact
interval K(Y) = [l, u] can be constructed according to Clopper and Pearson
(1934) as follows. If [l, u] is a realised confidence interval and y the observed
value of the random variable y distributed as B(n, p), then the endpoints l
and u can be determined so that

n

i= y

n
i

li 1− l n− i = α1

and
y

i= 0

n
i

ui 1−u n− i = α2

hold, where α1 + α2 = α for given α1 and α2 is independent of y.

We put l = 0 and u= 1−
α

2

1
n
for y = 0 as well as l =

α

2

1
n
and u = 1 for y = n.

The other values can be calculated according to Stevens (1950) with the help
of the probability function pbeta of the beta distribution with the parameters x
and n−x−1, for instance, with R using the commands

l< -qbeta(alfa/2,X,n-X+1)
and
u< -qbeta(1-alfa/2,X+1,n-X),
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respectively.TheClopper–Pearsonintervals canbecalculatedwith theRcommand
binom.test. In SPSS confidence intervals cannot be found in the menu bar.
The minimal covering probability is for n ≥ 10 and for all p at least

1 − (α1 − α2) − 0.005, but in the most cases larger than 1–α, that is, conservative.
This was shown by Pires and Amado (2008). Both authors compared 20 con-
struction methods for two-sided confidence intervals regarding the covering
probability and the expected interval width using extensive simulation experi-
ments. The study found that a method of Agresti and Coull (1998) had slight
advantages in comparison with the Clopper–Pearson intervals. But we do not
want to go into the matter here.
The needed sample size can be obtained in R with the command size.prop.

confint by calculating confidence intervals via normal approximation (see
Rasch et al., 2011a, p. 31).

3.5.3 Table for Sample Sizes

We present in Table 3.5 a list of formulae for determining suitable sample sizes
of confidence estimations. It should be observed that for location parameters,
either the width or, if it is random, the expected width of the interval has to
be given before lying under a reasonable bound 2δ.

Table 3.5 Sample size for the construction of two-sided (1 − α)-confidence intervals with half
expected width δ.

Parameter Sample size

μ n= t2 n−1; 1−
α

2

2 Γ2 n
2

Γ2 n−1
2

n−1

σ2

δ2

P With R via size.prop.confint

μx − μy paired observations n= t2 n−1; 1−
α

2

2 Γ2 n
2

Γ2 n−1
2

n−1

σ2Δ
δ2

μx − μy independent samples, equal variances n= 2σ2
t2 2n−2; 1−

α

2
δ2 2n−2

2Γ2 2n−1
2

Γ2 n−1

μx − μy independent samples, unequal
variances

nx =
σx σx + σy

δ2
t2 f ∗; 1−

α

2
;

ny =
σy
σx

nx
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3.6 Sequential Tests

3.6.1 Introduction

Until now a sample of fixed size n was given. The task of statistical design of
experiments is to determine n so that the test satisfies certain precision require-
ments of the user. We have demonstrated this procedure in the previous
sections.
For testing the null hypothesis that the expectation of a normal distribution

with unknown variance takes a particular value against a one-sided alternative
hypothesis, the sample size has to be determined after fixing the risks α, β and
the minimum difference δ as

n= t n−1 1−α + t n−1 1−β 2 σ
2

δ2
3 54

according to Section 3.4.1. Apart from the fact that (3.54) can only be
iteratively solved, it needs also a priori information about σ2. Therefore
Stein (1945) proposed a method of realising a two-stage experiment. In
the first stage a sample of size n0 > 1 is drawn to estimate σ2 by the var-
iance s20 of this sample and to calculate the sample size n of the method using
(3.54). In the second stage n − no, further measurements are taken. Following
the original method of Stein in the second stage, at least one further measure-
ment is necessary from a theoretical point of view. In this subsection we
simplify this method by introducing the condition that no further measure-
ments are to be taken for n − n0 ≤ 0. Nevertheless, this supplies an α-test of
acceptable power.
Since both parts of the experiment are carried out one after the other,

such experiments are called sequential. Sometimes it is even tenable to
make all measurements step by step, where each measurement is followed
by calculating a new test statistic. A sequential testing of this kind can be
used, if the observations of a random variable in an experiment take place
successive in time. Typical examples are series of single experiments in a
laboratory, psychological diagnostics in single sessions and medical treat-
ments of patients in hospitals, consultations of clients of certain institu-
tions and certain procedures of statistical quality control, where the
sequential approach was used the first time (Dodge and Romig, 1929).
The basic idea is to utilise the observations already made before the next
are at hand.
For example, testing the hypothesis H0: μ = μ0 against HA: μ > μ0 there are

three possibilities in each step of evaluation, namely,

1) Accept H0.
2) Reject H0.
3) Continue the investigation.
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Comparing sequential tests with tests of fixed size, the advantage of the former
is that on the average fewer experimental units are needed considering great
series of investigations. But a decision between the abovementioned three cases
is only possible for a priori given values of α, β and δ. Unfortunately, this a priori
information is not compelling for testing with fixed size.
Nevertheless, we will only briefly deal with the theory of sequential tests for

two good reasons. Firstly the up-to-now unsurpassed textbook of Wald (1947)
has since been reprinted and is therefore generally available (Wald, 1947/2004),
and new results can be found in books of Ghosh and Sen (1991) as well as DeG-
root (2005). Secondly we do not recommend the application of this general the-
ory, but we recommend closed plans, which end after finite steps with certainty
(and not only with probability 1).
We start with some concepts.

Definition 3.13 Let a sequence S = {y1, y2,…} of random variables (a stochas-
tic process) be given, where the components are identically and stochastically
independently distributed as Pθ ϵ P ={Pθ ϵΩ}. Let the parameter spaceΩ consist
of two different elements, θ0 and θA. Besides, let yi ϵ {Y} R1. Concerning testing
of the hypotheses H0: θ = θ0;HA: θ = θA, we suppose that for each n in the above
sequence a decomposition {Mn

0 ,M
n
A,M

n
F , } of

Y n = y1 × y2 × × yn Rn

with

Mn
0 Mn

A Mn
F =M

n−1
F × yn Rn

exists. Then the sets Mn
0 ,M

n
A,M

n
F (n = 1, 2, …) define together with the

prescription

y1,…, yn ϵ

Mn
0 acceptation of H0 θ = θ0

Mn
A rejection of H0 θ = θ0

Mn
F continuation,observe yn+ 1

a sequential test with respect to the pair H0: θ = θ0; HA: θ = θA. Mn
0 andM

n
A are

called final decisions. The pair (α, β) of risks is called the strength of a sequen-
tial test.

Definition 3.14 Let a sequence S = {y1, y2, …} of random variables be given
where the components are identically and stochastically independently distrib-
uted as Pθ ϵ P ={Pθ ϵ Ω}. Let the parameter space Ω consist of the two different
elements θ0 and θA. A sequential test for H0: θ = θ0 against HA: θ = θA, based on
the ratio

LRn =
L Y n θA

L Y n θ0
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of the likelihood functions L(Y(n)|θ) of both parameter values and on the first n
elements Y(n)={y1, y2,…, yn} of the sequence S is said to be sequential likelihood
ratio test (SLRT), if for certain numbers A and B with 0 < B < 1 <A the decom-
position of {Y(n)} reads

Mn
0 = Y n LRn ≤B , Mn

A = Y n LRn ≥A , Mn
F = Y n B < LRn <A

Theorem 3.21 A sequential likelihood ratio test (SLRT) that leads with prob-
ability 1 to a final decision with the strength (α, β) fulfils with the numbersA and
B from Definition 3.14 the conditions

A ≤
1−β
α

, 3 55

B ≥
β

1−α
3 56

In the applications the equalities are often used in (3.56) and (3.57) to calculate
approximately the bounds A and B. Such tests are called approximate tests.
It follows from the theory that SLRT can hardly be recommended, since they

end under certain assumptions only with probability 1. So far they are the most
powerful tests for a given strength as the expectation of the sample size – the
average sample number (ASN) – for such tests is minimal and smaller than
the size for tests where the size is fixed. Since it is unknown for which maximal
sample size the SLRT ends with certainty, it belongs to the class of open
sequential tests. In comparison there are also closed sequential tests, that is,
tests with a secure maximal sample size, but this advantage is won by a bit
larger ASN.

3.6.2 Wald’s Sequential Likelihood Ratio Test for One-Parametric
Exponential Families

All results are presented without proofs. The interested reader can find proofs in
the book of Wald (1947). Some results come from an unpublished manuscript
of B. Schneider (1992).
We thank him for the permission to use the results for our book.
Let a sequence S = {y1, y2,…} of identically and independently distributed ran-

dom variables be given, which are distributed as ywith the same likelihood func-
tion f(y, θ). We test the null hypothesis

H0 θ = θ0 f y,θ = f y, θ0

against the alternative

HA θ = θ1 f y,θ = f y, θ1
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where θ0 θ1 and θ0 , θ1 Ω R1.
The realised likelihood ratio after n observations is

LRn =
n

i= 1

f yi; θ1
f yi; θ0

; n > 1 3 57

The subsequent questions arise:

• How do we choose the numbers A and B in (3.55) and (3.56)?

•What is the mean size E(n│θ) of the sequence {y1, y2,…}?

Wald used the following approximations forA, B. If the nominal risks of the first
and the second kind are given by αnom and βnom, then the real (actual) risks αact
and βact satisfy

αact ≤
1
A
= αnom; βact ≤B= βnom

Hence, the approximate test introduced in the preceding subsection is conserv-
ative. This supplies the relations in (3.55) and (3.56). The corresponding bounds
are called Wald bounds.

Example 3.22 Assuming that the nominal risks of the first and the second
kind are 0.05 and 0.1, respectively, the relations (3.55) and (3.56) lead (in the
equality case) to the values A = 18 and B = 0.10536. Therefore we have to con-
tinue the process up to the step where 0.10356 < LRn < 18 is fulfilled. In a system
of coordinates with n on the abscissa and LRn on the ordinate, the zone of con-
tinuation lies between two parallel lines.
The (approximate) power function of the SLRT is

π θ =

1−β
α

h θ

−1

1−β
α

h θ

−
β

1−α

h θ
forh θ 0 3 58

The function h(θ) in (3.58) is uniquely defined in the continuous case by the
equation

f y, θ1
f y, θ0

h θ

f y,θ dy= 1

and in the discrete case by the equation

yi

f yi, θ1
f yi, θ0

h θ

f yi,θ = 1
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Wald showed that for sequential likelihood ratio tests, the expected (average)
sample size ASN is minimal under all sequential tests with risks not larger than
αnom and βnom provided that one of the two hypotheses is true.
With the notations

z= ln
f y, θ1
f y, θ0

, zi = ln
f yi, θ1
f yi, θ0

3 59

we get lnLRn = zi. For E(|z|) <∞ Wald showed also

E n θ =
π θ lnA+ 1−π θ lnB

E z θ
, if E z θ 0 3 60

The experiment ends if in the current step at least one inequality (sign) becomes
an equality (sign) in

αact ≤
1
A
= αnom, βact ≤B= βnom

Wijsman (1991) presented an approximation for E(n|θ) that reads in the
special case θ = θ0

E n θ0 ≈
1

E z θ0

A−1
A−B

lnB+
1−B
A−B

lnA 3 61

and in the general case

E n θ ≈
1

E z θ
A−1 B
A−B

lnB+
A 1−B
A−B

lnA 3 62

In an exponential family the first derivative of A(θ) supplies the expectation of y
and the second derivative the variance of y.
Wald (1947) proved in the continuous case that there exists a θ∗ with

E(z|θ∗) = 0 that fulfils h(θ∗) = 0 in (3.58) and moreover that

E n θ∗ ≈
lnA lnB
E z2 θ∗

, if h θ∗ = 0 3 63

holds.

Example 3.23 We consider a one-parametric exponential family with density
function f(y, θ) = h(y)eyη −A(η).
We want to test

H0 θ = θ0 η= η0

against

HA θ = θ1 η= η1 , θ0 < θ1 η0 < η1
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with ηi = η(θi) ; i = 0 , 1. For θ0 > θ1 we interchange the hypotheses.
The variables zi can be written (in a realised form) as zi = (η1 − η0)yi −

[A(η1) −A(η0)]. We continue while

lnB < η1−η0 yi−n A η1 −A η0 < lnA

and because of η1 − η0 > 0 while

bnu =
lnB+ n A η1 −A η0

η1−η0
< yi <

lnA+ n A η1 −A η0
η1−η0

= bno 3 64

is satisfied.
For η1 − η0 < 0 we continue if

bnu > yi > b
n
o

holds with the bounds bnu and b
n
o from (3.64).W.l.o.g. we restrict ourselves to the

case η1 − η0 > 0.
In the discrete case the distribution function of the random process is

between parallel lines a step function. Therefore it cannot be guaranteed that
the Wald bound is met in the last step exactly. In such cases an algorithm of
Young (1994) is useful, which is described now.
Suppose that the test ends with the nth observation. The probability for

obtaining a value tn of the variable tn = yi after n units were observed is
the sum of the probability sequence that fulfils the conditions
biu ≤ ti ≤ b

i
o;i= 1,2,…,n−1 and tn = tn. We write this probability as

P tn = t =
bn−1o

j= bn−1u

P tn = tn tn−1 = j P tn−1 = j =
bn−1o

j= bn−1u

f tn− j;θ P tn−1 = j

We start with P(t0 = 0) = 1 and determine all further probabilities by recursion.
For fixed n the probability for accepting HA at the nth observation is

P tn > bnu =
bn−1o

j= bn−1u

∞

k = bnu − j+ 1

f k;θ P tn−1 = j

=
bn−1o

j= bn−1u

1−F bno − j;θ P tn−1 = j ,

3 65

where F is the distribution function.
For fixed n the probability for accepting H0 at the nth observation is

P tn < bnl = k =
bn−1o

j= bn−1u

bnu − j−1

k = 0

f k;θ P tn−1 = j

=
bn−1o

j= bn−1u

F bn0 − j−1;θ P tn−1 = j

3 66
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The power function is given by n
i= 1P ti < biu if the procedure ends with step n,

and the probability for this event is equal to P tn < bnu +P tn > bno .
In the following example we use one-sided hypotheses with α = 0.05, β = 0.1

and δ = θ1 − θ0= 0.1.

Example 3.24 Normal Distribution with Known Variance
If y is distributed as N(μ; σ2) with known σ2, then we get

z = ln
1
2σ2

2y μ1−μ0 + μ20−μ
2
1 ,

E z μ = ln
1
2σ2

2μ μ1−μ0 + μ20−μ
2
1

We test

H0 μ= μ0

against the alternative

HA μ= μ1; μ0 μ1; μ R1

For μ0 − μ1 = σ and θ = μ, we obtain in (3.58) with h(θ) = h(μ)

e−
1

2σ2
2yσ− σ2

h μ 1

σ 2π
e−

1
2σ2

y−μ 2

dy= 1

Finally an R-routine in OPDOE supplies E(n|μ) and π(μ) as functions of μ.

3.6.3 Test about Mean Values for Unknown Variances

Now we deal with a two-parametric exponential family. We have to adapt the
method from Section 3.6.1 to this case. We have a nuisance parameter, that is,
the method cannot be used directly. The parameter vector of an exponential
family is θ = (θ1, θ2)

T. For φ0 φ1 we have to test

H0 φ θ ≤φ0;φ R1 against HA φ θ ≥φ1;φ R1

or

H0 φ θ =φ0;φ R1 against HA φ θ φ1;φ R1

In this book, we consider the one-dimensional normal distribution; the corre-
sponding test is called sequential t-test.

The Sequential t-Test
The normal distribution of a random variable y is a two-parametric exponential
family with the parameter vector θ = (μ; σ2)T and the log-likelihood function
(natural logarithm of the likelihood function)

l μ;σ2 =− ln 2π− lnσ−
1
2σ2

y−μ 2
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We put φ θ = μ
σ and test

H0
μ

σ
≤φ0 against HA

μ

σ
≥φ1

or

H0
μ

σ
=φ0 against HA

μ

σ
φ1

If we replace the noisy parameter, as in the case of fixed sample size in
Section 3.6.2, by its estimation, then LRn in Definition 3.14 is no likelihood ratio.
We consider a sequence

z1 = z1 y1 ; z2 = z2 y1; y2 ,…

so that for each n > 1 the conditional likelihood function f n
u z1, z2,…, zn;φ of

(z1, z2, … , zn) depends only via φ(θ) on θ.
Then we apply the theory of Section 3.6.1 with

LR∗
n =

n

i=1

f n
u zi,φ1

f n
u zi,φ0

,n > 1 3 67

instead of

λn =
n

i= 1

f yi; θ1
f yi; θ0

;n > 1

The choice of the sequence z1 = z1(y1); z2 = z2(y1; y2) ,… is explained in the
following.
Lehmann (1959) formulated the principle of invariant tests. If we multiply μ

and σ with a positive real number c, then the hypotheses H0
μ

σ
≤φ0 and

HA
μ

σ
≥φ1 remain unchanged since they are invariant with respect to affine

transformations. The random variables y∗i = cyi are normally distributed with
expectation cμ and standard deviation cσ. Therefore, the family of the distribu-
tions of y1 , y2 , … , yn is for each n ≥ 1 the same as that of cy1 , cy2 , … , cyn.
Summarised we see that both the hypotheses and the family of the distributions
are invariant with respect to affine transformations. Now the sequential t-test
can be implemented according to Eisenberg and Ghosh (1991) as follows:

• Specialise LR∗
n in (3.67) for a normal distribution, that is,

LR∗
n = e

−1
2 n−v2n φ2

1−φ
2
0

∞
0 tn−1e−

1
2 t−vnφ1

2dt
∞
0 tn−1e−

1
2 t−vnφ0

2dt
3 68

• Solve LR∗
n =

β

1−α
and LR∗

n =
1−β
α

with respect to vn. We denote the solutions

by vnu and vno , respectively.
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• Calculate

vn =
n
i= 1yi
n
i=1 y

2
i

3 69

and continue while vnu < vn < v
n
o holds.

• Accept H0 if vn ≤ vnu and reject H0 if vn ≥ vno .

Approximation of the Likelihood Function for Constructing an Approximate t-Test
Nowwe want to use certain functions z and v related to the Taylor expansion of
the log-likelihood function to construct simple sequential tests.
Let the sequence (y1 , y2 ,…) of identically distributed and independent ran-

dom variables be distributed as ywith the likelihood function f(y; θ). We expand
l(y; θ) = ln f(y; θ) according to Taylor with respect to θ at θ = 0 up to the second
order with third-order error term:

l y;θ = l y;0 + θ lθ y;0 +
1
2
θ2lθθ y;0 +O θ3 3 70

Now we put

z = lθ y;0 =
∂ ln y,θ

∂θ
θ = 0, 3 71

−v= lθθ y;0 =
∂2 ln y,θ

∂θ2
θ =0 3 72

If we neglect the error term O(θ3), we get a quadratic approximation around θ
= 0:

l y;θ = const + θ z−
1
2
θ2v 3 73

In the case where the likelihood function depends also on a vector, τ = (τ1,
… , τk)

T of noisy parameters. Whitehead (1997) proposed to replace this vector
by the vector of the corresponding maximum likelihood estimators.
Then the likelihood function reads f(y; θ, τ) and has the logarithm l(y; θ, τ) =

ln f(y; θ, τ).
We denote the maximum likelihood estimator of τ by τ θ , which supplies

τ = τ 0 for θ = 0. The maximum likelihood estimator of τ is a solution of the
simultaneous equations

∂

∂τ
l y;θ,τ = 0

and under natural assumptions also the unique solution, since l(y; θ, τ) is then
concave (convex from above) in τ and has therefore only one maximum. We
expand τ θ according to Taylor at θ = 0 taking a quadratic error term:

τ θ = τ + θ
∂

∂θ
τ θ θ = 0 +O θ2 3 74
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The vector τθ =
∂

∂θ
τ θ is the first derivative of τ θ with respect to θ. Thematrix

of the second partial derivatives (called also Hessian matrix) of lnf(y; θ, τ) with
respect to τi and τj for τ = τ is denoted by Mττ y,θ, τ θ
After some rearrangements (see Whitehead, 1997), we can write z and v with

the notations

lθ y;0,τ =
∂ ln y,θ,τ

∂θ
θ = 0

lθθ y;0,τ =
∂2 ln y,θ,τ

∂θ2
θ = 0; lθτ y;0,τ =

∂2 ln y,θ,τ
∂θ ∂τ θ = 0;τ = τ

in the following form:

z = lθ y;0,τ , 3 75

v= − lθθ y;0,τ − lθτ y;0,τ T Mττ y,θ, τ θ lθτ y;0,τ 3 76

Using z- and v-values in (3.71) and (3.72) in the case without noisy parameters
or in (3.75) and (3.77) in the case with noisy parameter(s), unique approximate
sequential likelihood ratio tests (SLRT) can be constructed.
After observing n elements y1 , y2 , … , yn of the sequence, which are

distributed as y with the log-likelihood function l(y; θ, τ) = ln f(y; θ, τ), we write
the z-function in (3.71) and (3.75), respectively, as

zn =
n

i= 1

zi =
n

i= 1

lθ yi;0,τ ,

where the estimator of the noisy parameter is put 0, if it is missing. The number
zn represents the efficient value and characterises the deviation from the null
hypothesis.
The v-function is connected with the Fisher information matrix

I θ = −
n

i= 1

Eθ
∂2l yi,θ,τ

∂θ2
= n i θ ,

where

i θ = −
∂2l y,θ,τ

∂θ2

is the information of an observation with i(θ) = Eθ(i(θ)).
Now we put v = nE[i(θ)]|θ = 0. Since likelihood estimations are asymptotically

normally distributed, the variable

zn =
n

i= 1

zi =
n

i=1

lθ yi;0,τ
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is approximately asymptotically normally distributed with the expectation θ v
and the variance v.
After observing n elements y1 , y2 , … , yn distributed as y, we write the

v-functions (3.72) and (3.76) in the form

vn =
n

i=1

− lθθ y;0,τ − lθτ y;0,τ T Mττ y,θ, τ θ lθτ y;0,τ

For testing the null hypothesis

H0 θ = θ0; θ0 Ω R1 against HA θ = θ1 θ0; θ1 Ω R1,

we use the approximate SLRT as follows:

• Continue in taking observation values, while

au =
1
θ1

ln
β

1−α
< zn−bvn < ao =

1
θ1

ln
1−β
α

with b=
1
2
θ1

• Accept HA : θ = θ1 > 0, if zn−bvn > ao =
1
θ1

ln
1−β
α

, and accept HA : θ = θ1 < 0, if

zn−bvn < au =
1
θ1

ln
β

1−α
, respectively; otherwise accept H0.

The power function of the test is

π θ ≈
1−

β

1−α

1−2 θ
θ1

1−β
α

1−2 θ
θ1

−
β

1−α

1−2 θ
θ1

for θ 0 5θ1

and

π θ =
ln

1−α
β

ln
1−β
α

+ ln
1−α
β

for θ = 0 5θ1

The expected sample size is given by

E n θ =

ln
1−β
α

1−
β

1−α

1−2 θ
θ1

− ln
β

1−α
1−

1−β
α

1−2 θ
θ1

θ1 θ−0 5θ1
1−β
α

1−2 θ
θ1

−
β

1−α

1−2 θ
θ1

for θ 0 5θ1

and

E n θ =
1

θ21
ln
1−β
α

ln
β

1−α
for θ = 0 5θ1
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The null hypothesis H0 : θ = 0 can be used. W.l.o.g., as it is obtained if in the
general hypothesisH0 : μ = μ0 0, the value μ0 is subtracted from all observation
values.
Nowwe consider the normal distribution with unknown variance by using the

approximation given in this section. We test

H0 μ= 0; σ2 arbitrary against HA μ= μ1,μ1 01; μ1 Ω R1

We put τ = σ2 and θ =
μ

σ
. Then the log-likelihood function reads

lθ y1; y2;…; yn;θ = −
1
2
n ln 2πσ −

1
2σ2

n

i= 1

yi−μ
2

= −
1
2
n ln 2πσ −

1
2

n

i=1

yi
σ
−θ

2
3 77

The efficient value is

zn =
n
i= 1yi

1
n

n

i= 1
y2i

3 78

The v-function is

vn = n−
z2n
2n

3 79

The formulae for zn and vn are listed for some distributions in Table 3.6.

3.6.4 Approximate Tests for the Two-Sample Problem

We have two distributions with parameters θ1, θ2 and a common noisy para-
meter ψ . Two random samples (yi1,…, yini) of size niwith i = 1, 2 are sequentially
drawn to test the null hypothesis

Table 3.6 Values zn and vn for special distributions.

Distribution Log-likelihood Hypotheses zn vn

Normal, σ
known

− n
2 ln 2πσ − 1

2
n
i= 1

yi
σ −μ

2 H0 : μ = 0
zn =

n

i= 1
yi

σ

vn = n

HA : μ = μ1

Normal, σ
unknown

− n
2 ln 2πσ − 1

2
n
i= 1

yi
σ −μ

2 H0 : μ = 0
zn =

n

i= 1
yi

1
n

n

i= 1
yi2

vn = n− z2n
2n

HA : μ = μ1

Bernoulli n ln p
1−p + n ln 1−p H0 : p = p0 zn =

y−np0
p0 1−p0

vn = n
p0 1−p0
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H0 θ1 = θ2

against one of the following alternative hypotheses:

a) HA : θ1 > θ2.
b) HA : θ1 < θ2.
c) HA : θ1 θ2.

A suitable reparametrisation is

θ =
1
2
θ1−θ2 ;φ=

1
2
θ1 + θ2

The log-likelihood function of both samples reads

l y1, y2;q,φ,ψ = l y1 y1; θ1,y + l y2 y2; θ2,ψ

For simplification we omit now the arguments of the functions. Then the first
and second partial derivatives of l are

lθ = l y1
θ1

− l y2
θ2

lφ = l y1
θ1

+ l y2
θ2

lψ = l y1
ψ + l y2

ψ

lθθ = l y1
θ1θ1

+ l y2
θ2θ2

lθφ = l y1
θ1θ1

l y2
θ2θ2

lθψ = l
y1
θ1ψ

l y2
θ2ψ

lφψ = l y1
θ1ψ

+ l y2
θ2ψ

lψψ = l y1
ψψ + l y2

ψψ

The expectations φ;ψ are solutions of

l y1
θ1

φ,ψ + l y2
θ2

φ,ψ = 0,

l y1
ψ1

φ,ψ + l y2
ψ2

φ,ψ = 0

Now we can continue as described in Section 3.6.2. We do not want to go into
detail here, since we are more interested in focusing on triangular tests (see the
following Section 3.6.5).
Naturally, it is wrong to prefer sequential tests in each case to non-sequential

ones. At most, it holds for the mean sample size. Namely, in a sequential test the
actual n in a final decision could be larger than the one for a test with a priori
given size. Besides, for these kinds of experiments, the necessary time interval
has to be taken into account. A sequential experiment lasts at least n-times as
long as it has a fixed size n. Sequential evaluations are beneficial (compared with
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other methods) in such cases where the data arise anyway sequentially (e.g. in
medical tests or treatments for patients who are rarely ill).

3.6.5 Sequential Triangular Tests

In this section we turn to special closed tests, the triangular tests.
The values of the decision statistics of the triangular tests correspond to those

of the approximate tests in the previous section. In a suitable coordinate system,
the sequence of these values (ordinates) generates as a function of successive
points in time and sample sizes (abscissas), respectively, a sequential path.
The population is here the set of all possible paths. Within the plane coordinate
system, a triangular ‘zone of continuation’ is defined, which contains the origin
of the time axis. While the path runs in this zone, the process of drawing sam-
ples is continued. If the path meets or crosses the boundary of the zone, then the
data collection is finished. The decision whether the null hypothesis is accepted
or rejected depends on the point of boundary crossing. The separation of the
boundary into two parts has to fulfil the condition that for true H0 the part
of rejecting H0 is reached at most with probability α and for true HA the part
of accepting H0 is reached at most with probability β. We want to point out that
it is not necessary to make an evaluation after each newly taken sample value
and to wait for the evaluation result before the sampling is continued. The
sequence path is independent of the decision whether an evaluation is made
or not. Hence, it is definitely possible to restrict the evaluations to certain time
points or sample sizes fixed before or ad hoc.
Regarding sequential triangular tests for a parameter θ, we want to use the

standardised null hypothesis θ = 0. Otherwise a reparametrisation of θ has to
be chosen so that θ becomes for the corresponding reference value θ0 of the null
hypothesis the value 0.
The two variables z and v create the sequence path. They are derived from

the likelihood function L(θ) as described in Section 3.6.3. More precisely,
z and v are introduced by using derivatives of l(θ) = ln L(θ) with respect to
θ. Namely, z is the first derivative of l(θ), and v is the negative second deriv-
ative of l(θ) with respect to θ in place 0. If we replace the sample values in the
likelihood function by corresponding random variables (whose realisations
represent the sample), then z becomes a random variable itself, which is
for not too small sample sizes and not too great absolute values of θ nearly
normally distributed with the expectation θ and the variance v. Therefore
z can be considered as a measure for the deviation of the parameters θ from
the value 0 of the null hypothesis. The variable v characterises the amount of
information in the sample with respect to the parameters θ. This amount
increases with increasing sample size, that is, v is a monotone increasing
function of the sample size.
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For triangular tests the continuation zone is a closed triangular set. These
tests are based on the asymptotic tests of the previous section.
We consider the one-sample problem and test

H0 θ = θ0 against HA θ = θ1

The continuation zone is given by

−a+ 3bvn < zn < a+ bvn for θ1 > θ0,

−a+ bvn < zn < a+ 3bvn for θ1 < θ0

where the sequence (zn; vn) is defined in (3.75) and (3.76).
The hypothesis H0 : θ = θ0 is accepted, if

zn ≥ a+ bvn for θ1 > 0

and if

zn ≤ −a+ bvn for θ1 < 0

If zn leaves the continuation zone or meets its boundary, then HA : θ = θ1 is
accepted.
The constants a and b are determined by

a= 1+
z1−β
z1−α

ln
α

2
θ1

, 3 80

b=
θ1

1 +
z1−β
z1−α

3 81

Both straight lines on the boundary meet in the point

vmax; zmax =
a
b
; 2a

If this point is reached, we accept HA : θ = θ1. The point of inter-
section corresponds to the maximal sample size. This size is larger than that
of experiments with fixed size for equally prescribed precision, but the latter
is larger than the average sample size (ASN) of the triangular test.
Now some special cases follow, which can be solved using the software

OPDOE in R.
First we consider the problem of Example 3.11. Let S = (y1, y2,…) be a

sequence with components distributed together with y as N(μ, σ2). We want
to test

H0 μ= μ0, σ
2 arbitrary againstHA μ= μ1, σ

2 arbitrary
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Then we get

zn =
n
i=1yi
n
i= 1 y

2
i

n

, vn = n−
z2n
2n

The boundary lines of the triangle follow from (3.80) and (3.81) put-

ting θ1 =
μ1−μ0

σ
.

Regarding the two-sample problem, we test analogously to Section 3.4.2.1

H0 μ1 = μ2 = μ, σ21 = σ
2
2 = σ

2 arbitrary

against

HA μ1 μ2, σ21 = σ
2
2 = σ

2 arbitrary

We put θ1 =
μ1−μ2

σ
and calculate from the n1 and n2, respectively, observations

the maximum likelihood estimator

σ2n =
n1
i= 1 y1i−y1

2 + n2
i= 1 y2i−y2

2

n1 + n2

Then we introduce

zn =
n1n2

n1 + n2

y1−y2
σn

, vn =
n1n2

n1 + n2

z2n
2 n1 + n2

The constants a and b result again from (3.80) and (3.82). Analogously many
tests can be derived from this general theory. More details on the R-files and
examples using concrete data and including the accompanying triangles are
presented in Rasch at al. (2011b). We want to clarify only one special case, since
it stands out from the usual frame. This case was just recently investigated by
Schneider et al. (2014).

3.6.6 A Sequential Triangular Test for the Correlation Coefficient

We suppose that the distribution F(x,y) of a two-dimensional continuous ran-
dom vector (x, y) has finite secondmoments σ2x, σ

2
y and σxy. Then the correlation

coefficient ρ = σxy/(σxσy) of the distribution exists and can be calculated. We
want to test the null hypothesis H0: ρ ≤ ρ0 (or ρ ≥ ρ0) against the alternative
HA: ρ > ρ0 (or ρ < ρ0). The probability for rejecting H0 although ρ ≤ ρ0 (or
ρ ≥ ρ0) is to be less or equal to α, and the probability for rejecting HA although
ρ = ρ1 > ρ0 (or ρ = ρ1 < ρ0) is to be less or equal to β.
The empirical correlation coefficient r = sxy/(sxsy), which is determined from

k data pairs (xi, yi) with i = 1,…,k as realisations from (x, y), is an estimate for the
parameter ρ (where sxy, s2x , s

2
y are the empirical covariance and the empirical

variances, respectively). Naturally r can be used as test statistic for ρ. Fisher
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(1915) derived the distribution of r assuming a two-dimensional (bivariate)
normal distribution. He showed that this distribution only depends on n and
ρ. Later Fisher (1921) introduced the transformed variable

z =
1
2
ln

1 + r
1−r

3 82

as a test statistic. Moreover, he proved that for a small k the distribution of
this statistic can already be quite well approximated by a normal distribution.
Following Cramér (1946) it suffices already k = 10 to get for the interval
–0.8 ≤ ρ ≤ +0.8 a very good adaptation to a normal distribution. We propose
here for technical causes a further transformation, namely, u = 2z. This statistic
has approximately the following expectation and variance:

E u = ζ ρ = ln
1 + ρ
1−ρ

+
ρ

k−1
; var u =

4
k−3

3 83

If we look for a usable triangular test for hypotheses about the correlation coef-
ficient ρ, then the sequence of data pairs (xi, yi) is unsuited, since their likelihood
function depends not only on ρ but also on the expectations and variances of the
two variables x and y (altogether five parameter), which cannot be estimated by
one data pair alone.We need at least three data pairs. This suggests the idea with
the sequence of the data pairs (xi, yi) to generate at first successive partial sam-
ples of arbitrarily chosen size k and to calculate with the data of each partial
sample j a test statistic possessing a known distribution, which depends on
the parameter ρ. A hot candidate for this is the already introduced z-statistic
of Fisher (used here with u = 2z instead of z). As mentioned above this statistic
is for not too small sample sizes k approximately normally distributed with the
expectation ζ(ρ) and the variance 4/(k–3) (see (3.84)). As we supposed for the
triangular test to use for the null hypothesis the standardised parameter value 0,
we transform for testing the hypothesis ρ = ρ0 the u-values into u∗-values so that
they have for ρ = ρ0 the expectation 0 and the variance 1. Hence, our triangular
test will use the sequence

u∗
j = uj− ln

1 + ρ0
1−ρ0

−
ρ0
k−1

k−3
4

for j = 1, 2, …. The expectation of u∗
j is the tested parameter θ:

θ =E u∗
j = ln

1 + ρ
1−ρ

− ln
1 + ρ0
1−ρ0

+
ρ−ρ0
k−1

k−3
2

3 84

For ρ = ρ0 we get the wanted standard θ = 0. The value for ρ = ρ1 is denoted by θ1.
The numbers u∗

j that are calculated from the consecutively drawn partial

samples j with the empirical correlation coefficients rj (implicitly contained
in uj) are realisations of independent (approximately) normally distributed
random variables with the expectation θ and the variance 1. If m consecutive
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values u∗j are available, then the log-likelihood function involving thesem values

reads as

l θ = const −
1
2

m

j= 1

u∗j −θ
2

3 85

Now we write again z for u to be in accordance with the usual notation for tri-
angular tests. This rewriting leads to the test statistics

zm =
dl θ
dθ

=
m

j=1

u∗j , vm = −
d2l θ

dθ2
=m 3 86

Using a (z, v)-coordinate system, the sequence path is generated by the points
(zm,vm) obtained by the evaluation steps m = 1, 2, 3, ….
The continuation zone is a triangle whose sides are determined by two

variables a and c depending on the risks α, β, the sample size k and the value
of the alternative hypothesis θ1:

a=
1+

z1−β
z1−α

ln
1
2α

θ1
,c=

θ1

2 1 +
z1−β
z1−α

3 87

Here zP denotes the P-quantile of the standardised normal distribution. One
side of the triangle lies on the z-axis extending from a to –a. Both sides are cre-
ated by the straight lines

G1 z = a+ cv andG2 z = – a+ 3cv, 3 88

which meet in the point with the coordinates

vmax =
a
c

zmax = 2a 3 89

For θ = θ1 > 0 we have a > 0 and c > 0. The upper side of the triangular starting
from a on the z-axis has the ascent c, while the lower side starting from –a
on the z-axis has the ascent 3c with respect to the v-axis. Moreover, for θ1 < 0
it is a < 0 and c < 0. Now the upper side starting from -a has the ascent 3c,
and the lower side starting from a has the ascent c with respect to the v-axis.
The decision rule is as follows: Continue making observations up to the step

where zm reaches the value a + cvm or goes under it, and accept H0, if

−a+ 3cvm < zm < a+ cvm for θ1 > 0, or 3 90

−a+ 3cvm > zm > a+ cvm for θ1 < 0

In the case θ1 > 0 the alternative HA has to be accepted, if zm reaches at vm
the straight line z = a + cvm or goes over it, and H0, if zm reaches at vm the value
z = a + 3cvm or goes under it. In the case θ1 < 0 the alternative HA has to be
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accepted, if zm reaches the value z = a + 3cvm or goes over it. If the top of the
triangular is hit exactly, then HA has to be accepted.

Example 3.25 We want to test the null hypothesis ρ ≤ 0.6 against the
alternative hypothesis ρ > 0.6 with prescribing the risks α = 0.05, β = 0.2 and
the minimum deviation ρ1 − ρ0 = 0.1. Further we choose k = 12. This means
we calculate one correlation coefficient from samples of each 12 elements.
Then we get for ρ1 = 0.7 and for ρ0 = 0.6 the values

ς 0 7 = ln
1 + 0 7
1−0 7

+
0 7
11

= 1 798

and

ς 0 6 = ln
1 + 0 6
1−0 6

+
0 6
11

= 1 441

Because of k−3 = 3 the Formula (3.84) supplies

θ1 =
3
2
1 798−1 4444 = 0 5355

Taking z0.8 = 0.8416 and z0.95 = 1.6449 into account, the sides of the triangular
result by (3.87) from

a=
1 +

0 8416
1 6449

ln
1
0 1

0 5355
= 6 50

and

c=
0 5355

2 1 +
0 8416
1 6449

= 0 1771

(see Figure 3.11). Further, (3.89) supplies

vmax =
6 50

0 1771
= 36 7, zmax = 13

The number nfix of observations can be calculated for a test with fixed sample
size under corresponding precision requirements using the software R or the
iterative procedure

ni = 3 + 4
z1−α + z1−β

ln
1 + ρ1
1−ρ1

− ln
1 + ρ0
1−ρ0

+
ρ1−ρ0
ni−1−1

2

,

where the result at the end of the iteration is denoted by nfix.
Schneider et al. (2014) investigated the approximation quality of such tests as

well as Rasch and Yanagida (2015).
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Simulations were carried out with 10 000 repetitions (calculations of the test
statistics) using different sample sizes k, two-dimensional normally distributed
random numbers x, y with μx = μy = 0, σ2x = σ

2
y = 1 and a correlation coefficient

σxy = ρ, nominal risks αnom = 0.05, βnom = 0.1 and 0.2 as well as some values of ρ0,
ρ1. Criteria for the quality of the tests were as follows:

a) The relative frequency of rejecting H0 wrongly, if ρ = ρ0. This is an estimator
of the actual risk of the first kind, αact.

b) The relative frequency of rejecting HA if ρ = ρ1. This is an estimator of the
actual risk of the second kind, βact.

c) The mean number of partial samples for determining r and z up to the stop
for ρ0 and ρ1.

d) The mean number of pairs (x, y), that is, the ASN, for ρ0 and ρ1 taken over all
10 000 repetitions.

In a special case the sample size can be over or under the value of ASN. Some
results are presented in Table 3.7. There are two values of k listed, for which αact
lies just under or just over 0.05 with exception of one case, where αact = 0.05 is
exactly met. Table 3.8 lists the k-values that obey αact and βact. The ASN strongly
depends on the value of ρ. This is demonstrated in the next example.

Example 3.26 In Table 3.7 we consider the case with αact = 0.05, ρ0 = 0.6,
ρ1 = 0.75, α = 0.05, β = 0.1 and k = 20. The following values of ρ were simulated:

ρ= 0 05; 0 1; 0 15; 0 2; 0 25; 0 3; 0 35; 0 4; 0 45;

0 5; 0 55; 0 65; 0 7; 0 8; 0 85; 0 9; 0 95

Using 10 000 repetitions the ASN and the relative frequency of rejecting H0 are
plotted in Figure 3.12. The ASN is shown in Table 3.9, its graph tends for ρ 0
to 30 and for ρ 1 to 20. The maximum lies between ρ = 0.6 and ρ = 0.75.

H1

H0

Vn

z n

0 10 20 30 40 50
–10

–5

0

5

10

15 Figure 3.11 Graph of the triangle
obtained in Example 3.25.
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Table 3.7 Simulation results for α =0.05.

ρ0 = 0.5, ρ1 = 0.7 ρ0 = 0.6, ρ1 = 0.75 ρ0 = 0.6, ρ1 = 0.8 ρ0 = 0.7, ρ1 = 0.8

β = 0.1 β = 0.2 β = 0.1 β = 0.2 β = 0.1 β = 0.2 β = 0.1 β = 0.2

k 12 16 12 16 20 12 16 12 16 12 16 20 50 16 20

αact 0.060 0.049 0.053 0.042 0.050 0.063 0.052 0.052 0.041 0.048 0.038 0.064 0.036 0.064 0.057

βact 0.043 0.053 0.114 0.130 0.049 0.103 0.112 0.040 0.047 0.109 0.117 0.044 0.053 0.102 0.112

ASN|ρ0 74.2 71.5 55.7 54.5 90.0 71.4 67.9 49 47 37.1 37.0 128.7 131.8 98.2 96.1

ASN|ρ1 72.2 72.3 62.1 62.3 90.0 77.0 76.1 48.2 49.1 41.6 42.8 124.3 137.0 104.9 105.5

nfix 88 88 65 65 113 82 82 56 56 41 41 164 164 119 119

ρ0 = 0.7, ρ1 = 0.9 ρ0 = 0.8, ρ1 = 0.9 ρ0 = 0.9, ρ1 = 0.95

β = 0.1 β = 0.2 β = 0.1 β = 0.2 β = 0.1 β = 0.2

k 8 12 6 8 16 20 12 16 16 20 16 20

αact 0.058 0.041 0.066 0.047 0.054 0.045 0.059 0.047 0.058 0.048 0.051 0.041

βact 0.029 0.039 0.059 0.085 0.038 0.046 0.094 0.110 0.039 0.040 0.106 0.108

ASN|ρ0 28.2 25.8 24.9 21.2 56.9 56.2 44.7 43.3 61.6 60.8 46.4 46.9

ASN|ρ1 26.3 25.9 25.2 23.1 55.4 56.4 47.8 48.4 58.8 60.3 51.6 52.7

nfix 27 27 20 20 65 65 48 48 70 70 51 51



Table 3.8 Admissible results for the simulated δ, ρ0 and β for α = 0.05.

β = 0.1 β = 0.2

ρ0 δ k ρ0 δ k

0.5 0.1 50 0.5 0.1 20 < k < 50

0.5 0.15 20 < k < 50 0.5 0.15 20

0.5 0.2 12 < k < 16 0.5 0.2 12 < k < 16

0.6 0.1 20 < k < 50 0.6 0.1 20 < k < 50

0.6 0.15 20 0.6 0.15 12 < k < 16

0.6 0.2 12 < k < 16 0.6 0.2 12 < k < 16

0.7 0.1 20 < k < 50 0.7 0.1 16 < k < 20

0.7 0.15 12 < k < 16 0.7 0.15 8 < k < 12

0.7 0.2 8 < k < 12 0.7 0.2 6 < k < 8

0.8 0.05 50 0.8 0.05 20 < k < 50

0.8 0.1 16 < k < 20 0.8 0.1 12 < k < 16

0.8 0.15 8 0.8 0.15 6 < k < 8

0.9 0.05 16 < k < 20 0.9 0.05 16 < k < 20

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

0

20

40
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80

100

120 nfix

A
S

N

ρ

Figure 3.12 ASN graph of Example 3.26.

Table 3.9 Empirical ASN in dependence on ρ in Example 3.26.

ρ 0.60 0.65 0.70 0.75

ASN(ρ) 89.98 110.094 115.01 89.98
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As it is shown in Figure 3.12, the maximum of the empirical ASN function lies
between the values of the hypotheses, but it is smaller than nfix. The empirical
power function is plotted in Figure 3.13.
The examples show that the optimal k-values can be found in relatively large

regions and the risks of the second kind are conservative. Therefore, Rasch and
Yanagida (2015) have developed tables where the user can see which value k has
to be chosen and how the nominal risk of the second kind has to be increased to
obtain the wished risk of the second kind as actual risk so that the ASN becomes
minimal.

3.7 Remarks about Interpretation

At the end of statistical tests, we decide on one of two possibilities, namely, for
accepting or for rejecting the null hypothesis. A confidence interval K(Y) covers
the unknown parameter of a distribution with a certain probability, and the tests
k(Y) are connected with risks, with probabilities for wrong rejection (risk of the
first kind) or wrong acceptation (risk of the second kind) of the null hypothesis.
Concerning the mathematical theory no questions arise. But practical applica-
tions need some clarification. What can be stated about a realised confidence
interval K(Y), and how we assess the value k(Y) of a critical function k(Y) that
leads in the non-randomised case either to the acceptance or to the rejection
of H0?
Probability statements can never be made for a realisation of K(Y) or after

accepting Ho. Such probabilities relate to the method of constructing confi-
dence intervals and tests, but not to their realisations.
It would be nonsense to say that a realised interval K(Y) = (4.756; 29.560) con-

tains the parameter σ2 with a probability 0.95. As we know the realisation of this

ρ
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.0

.2

.4

.6

.8

1.0

1
–

β

Figure 3.13 Empirical power function of Example 3.26.
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parameter is an unknown but although fixed non-negative real number. Hence,
this parameter value either lies in K(Y) or not. For example, no serious scientist
would claim that the number 2 with probability 0.95 is in the interval (4.756;
29.560). Nevertheless, there are some books about applied statistics, but above
all printouts of some statistical software tools, where you can read that a realised
interval contains an unknown parameter with a calculated probability. There-
fore it is no miracle that some students and user repeat this nonsense.
Analogously it is completely wrong to state after rejecting a null hypothesis

basedona randomsample that thisdecision iswrongwithprobabilityα. Evidently
this decision is either right orwrong.However, it is correct to say that the decision
is based on a procedure that supplies wrong rejections with probability α.
Let us turn to a further example. If a single die is thrown, then an even number

is obtained with probability 0.5. Assume that the number 3 was thrown. It is
nonsense to claim that the number 3 would be even with probability 0.5. Per-
haps this simple example is helpful to realise that probability statements con-
cerning realised test results or confidence intervals make no sense.
Therefore the user is recommended to choose α (and β, respectively), small

enough that a rejection (or acceptation) of Ho or a realisation K(Y) let the user
behave with a clear conscience asHo would be wrong (orHA right) or as would θ
lie in K(Y). But there is also an important statistical consequence: if the user has
to conclude during his/her investigations a lot of such decisions, then he/she
will wrongly decide in about 100 α (and 100 β, respectively) percent of the cases.
This is a realistic point of view that can be essentially confirmed by experience. If
we move in traffic, we should realise the risk of one’s own and other people’s
incorrect actions (observe that in this case α is considerably smaller then
0.05), but we must participate, just as a researcher must derive a conclusion
from a random experiment, although he knows that it can be wrong. Moreover,
it is very important to control risks. Concerning the risk of the second kind, this
is only possible if the sample size is determined before the experiment or if it is
sequentially tested during the experiment.
The user should take care not to transfer probability statements to sin-

gle cases.

3.8 Exercises

3.1 Let P0 and P1 be the rectangular distributions acting over the intervals
(0,1) and (1,2), respectively. Test the hypothesis H0 that the distribution
P0 occurs against the hypothesis HA that the distribution P1 occurs taking
one observation y. The following tests are proposed for given α (0, 1):

k1 y =
α for y 0,1

1 for y 1,2
, k2 y =

0 for y α,1

1 for y 0,α 1,2
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a) Show that these tests are most powerful α-tests.
b) Present these tests – if possible – in the form (3.5). Does the result con-

tradict the statement (3) of the Neyman–Pearson lemma (Theorem
3.1)? Is one of these tests randomised?

3.2 Test for the geometric distribution with the probability function

P y= k = pk−1 1−p , k = 1,2,…; 0 < p < 1

the hypothesis H0 : p = p0 against HA : p = p1 (p0 p1) based on a random
sample Y = (y1, y2, … , yn)

T.

a) Formulate the most powerful α-test using the test statistic y.
b) Determine the numbers cα , γ(Y) and β for this test assuming that

n = 1 , α = 0.05 , p0 = 0.5 , p1 = 0.1 (see Section 3.2).

3.3 Test for the Poisson distributionwith a random sampleY = (y1, y2, … , yn)
T

of size n = 10 the hypothesis H0 : λ = λ0 = 0.1 against the hypothesis
HA : λ = λ1 = 1. Determine the most powerful α-test for α = 0.01 and calcu-
late for this test the risk β of the second kind.

3.4 Let the lifetime y of certain industrial instruments be exponentially dis-
tributed with the density function f(y) = λe−λy , y > 0. Based on a random
sample Y = (y1, y2, … , yn)

T the hypothesis H0 : λ = λ0 is to be tested against
the hypothesis HA : λ = λ1 , λ0 λ1. Determine the most powerful α-test.

3.5 Formulate and prove amodification of Theorem 3.8 concerning the UMP-
test H0 : θ ≤ θ0 against HA : θ = θA > θ0, supposing an antitone likelihood
ratio (instead of an isotone one) of the distribution family belonging to
the sufficient statistic M =M(Y).

3.6 Determine under the assumptions of Exercise 3.4

a) The UMP-α-test of H0 : λ ≤ λ0 against HA : λ = λ1 > λ0,
b) The power function of this test
c) In the case λ0 = 0.01, α = 0.05 the test result based on the sample

170.8; 211.7; 73.5; 52.1; 11.8; 22.1; 167.6; 26.7; 77.5; 17.3

3.7 Let Y = (y1, y2, … , yn)
T be a random sample whose components are

uniformly distributed in the interval (0, θ). With the notation y(n) =
max(y1, … , yn), let

kc Y =
1 for y n ≥ c

0 else
, c > 0

be the critical function of a test for the pair {H0, HA} of hypotheses.
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a) Determine the power function π(θ) for kc(Y) and show that π(θ) is
monotone non-increasing in θ.

b) TestH0: θ ≤
1
2
againstHA: θ >

1
2
with the significance level α = 0.05. For

which value c is kc(Y) an α-test for {H0, HA}?
c) Sketch the power function of the test in (b) using n = 20. Is this test

unbiased?
d) Which number n has to be chosen, so that the test in (b) has for θ = 0.6

a risk 0.02 of the second kind?

3.8 Let the components of the random sample Y = (y1, y2, … , yn)
T satisfy a

Rayleigh distribution with the density function

f y,θ =
y

θ2
e−

y2

2θ2 ,y > 0, θ > 0

The hypothesis H0: θ ≤ θ0 = 1 is to be tested against HA: θ > θ0.

a) Show that there is a UMP-α-test for {H0,HA}, and determine for great
n with the help of the central limit theorem approximately the critical
function of this test.

b) Determine for great n approximately the power function of this test.

3.9 Let the assumptions of Exercise 3.4 be fulfilled.

a) Show that there is a UMPU-α-test for the hypotheses
H0 : λ = λ0, HA : λ λ0.

b) Determine for n = 1 the simultaneous equations whose solutions
ciα (i = 1, 2) are necessary to describe the critical function of this test.

c) Show, for example, in the case λ0 = 10, α = 0.05, n = 1, that the cor-
responding test for a symmetric partition of α is biased by calculating
the power function of this tests at λ = 10.1.

3.10 Let p be the probability that the event A happens. Based on a large
sample of size n, where this event was hn-times observed, the hypothesis
H0 : p = p0 is to be tested against the hypothesis HA : p p0.

a) Construct an approximate UMPU-α-test for these hypotheses by
applying the limit theorem of Moivre–Laplace.

b) A coin with head and tail on its faces was tossed 10 000 times, where
the tail appeared 5280 times. Check with the help of (a) if it is justified
to assume that the coin is not fair (that head and tail do not appear
with the same probability). Choose α = 0.001.

c) A dice is tossed 200 times, where the (side with) number 6 occurs
40 times. Is it justified to claim (with a significance level of 0.05) that

this dice shows the number 6 with the probability p=
1
6
?
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3.11 The milk-fat content of 280 randomly chosen young cows of a cattle
breed was determined. The average value in the sample was y= 3 61 .
We suppose that the random variable ymodelling this fat content is nor-
mally distributed.

a) Let the variance of the fat content y be given, say, σ2 = 0.09. Test the
hypothesis that the average milk-fat content of young cows of this
race is μ0 = 3.5% against the alternative that it is larger than 3.5%.
Choose α = 0.01.

b) Determine the probability that deviations of the population mean μ
of 0.05% fat content from μ0 = 3.5% imply the rejection of the null
hypothesis in (a).

c) Which deviations δ between the value μ and the reference value μ0 =
3.5% imply in the test from (a) that the null hypothesis is rejected with
a probability larger than 0.9?

d) Let the variance σ2 of the fat content y be unknown. From a sample of
size 49 an estimator s2 = 0.076673 for the variance was calculated.
Test the hypotheses in (a) using the significance level α = 0.01.

3.12 The producer of a certain car model declares that the fuel consumption
for thismodel is in the city traffic approximately normally distributedwith
the expectation μ = 7.5 l/100 km and the variance σ2 = (2.5 l/100 km)2.
These declarations are to be tested to satisfy the interests of the car buyers.
Therefore the fuel consumption was measured for 25 (randomly chosen)
cars of this model moving in the city traffic (of randomly chosen cities
worldwide). Here are the results:

Average fuel consumption: 7.9 l/100 km
Sample variance (3.2 l/100 km)2

Test the statements of the car producer separately for both parameters
choosing α = 0.05.

3.13 The milk-fat content of Jersey cows is in general considerably higher than
the one of black-coloured cows. It is to be tested whether the variability of
the fat content is for both breeds equal or not. A random sample of n1 = 25
Jersey cows supplied the estimator s21 = 0 128, while an independent
random sample of n2 = 31 black-coloured cows led to the estimator
s22 = 0 072. The fat content is supposed to be in both breeds normally dis-
tributed.Test forα=0.05 thehypothesisH0 σ21 = σ

2
2 against the alternative

a) HA σ21 > σ
2
2,

b) HA σ21 σ22.

3.14 Consider a random sample Y = (y1, y2, … , yn)
T whose components are

uniformly distributed in the interval (0, θ), θ R+ Determine the sample
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size n so that the random interval (y(1) , y(n)) of order statistics covers the

parameter
θ

2
with the probability 0.999.

3.15 Let Y = (y1, y2, … , yn)
T be a random sample whose components are uni-

formly distributed in the interval (0, θ0) with unknown θ0. Confidence
intervals K(Y) are to be constructed with respect to θ and with the con-
fidence coefficient 1–α. They are to be of the form

K Y = y n c1 α1 , y n c2 α2 ,

where α= α1 + α2;0 ≤ α1,α2 <
1
2

holds and c1(α1) , c2(α2) are suitable

constants.

a) Construct three confidence intervals K1(Y) for α1,α2 < 1
2 arbitrary;

K2(Y) for α1 = 0 , α2 = α; and K3(Y) for α1 = α , α2 = 0.
b) Calculate the expected length 2δi of the confidence intervals Ki(Y)

with i = 1, 2, 3 from (a). Which interval has the smallest expected
length?

c) W(θ, θ0) = P(θ K(Y) θ0) is called the characteristic function of the
confidence estimation K(Y). Calculate the corresponding functions
Wi(θ, θ0) of the intervals Ki(Y) with i = 1, 2, 3 given in (a), and sketch
these functions for θ0 = 10, n = 16, α = 0.06 and α1 = 0.04 in the case of
the interval K1(Y). Which confidence intervals are unbiased?

3.16 a) Determine the one-sided UMP-(1 – α) confidence intervals with
respect to λ supposing the conditions of Exercise 3.4.

b) Determine the realisations of these confidence intervals based on the
sample from Exercise 3.6 (c) using α = 0.05.

3.17 Let the assumptions of Section 3.4.2 be satisfied.

Determine das UMPU-(1 – α) confidence interval for the quotient σ21
σ22
of

variances.

3.18 In a factory certain pieces are produced in large series. The probability p
(0 < p < l) that a peace in a series is defect is unknown. The hypothesis
H0 : p = p0 is to be tested against the alternativeHA : p = p1 where p0 p1.
We want to use the following sequential test. Let n0 be a fixed natural
number. We successively select independent pieces for the sample. If
the kth piece (k ≤ n0) is defect, then H0 is rejected. But if all n0 pieces
are intact, then H0 is accepted.

a) Determine the power function of this test.
b) Calculate the average sample size E(n | p).
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c) Calculate for p0 = 0.01, p1 = 0.l, n0 = 10 the risks α, β and the expecta-
tions E(n | pi) with i = 1,2.

3.19 Let the components of the random vector Y = (y1, y2,…)T be mutually
independently distributed as N(μ, σ2). The null hypothesis H0 : μ = μ0 is
to be tested by a 0.05-t-test. Which minimal sample size has to be chosen
for a risk 0.1 of the second kind if

a) The alternativeHA is one-sided and the practically relevant minimum

difference is δ=
1
4
σ?

b) The alternativeHA is two-sided and the practically relevant minimum

difference is δ=
1
2
σ?

Hint: Use the approximate formula.

3.20 Let the components of the random vectors Yi = (yi1, yi2,…)T ; i = 1 , 2 be
independently distributed as N μi,σ

2
i . It is unknown whether σ21 = σ

2
2

holds or not. The null hypothesis H0 : μ1 = μ0 is to be tested with a
0.05-t-test.

b) Which test statistic should be used?
c) Which minimal sample size has to be chosen for a risk 0.1 of the sec-

ond kind if
i) The alternative HA is one-sided and the practically relevant mini-

mum difference is δ=
1
4
σ?

ii) The alternative HA is two-sided and the practically relevant min-

imum difference is δ=
1
2
σ?

Hint: Use the approximate formula.

3.21 We consider two independent random samples Y 1 = y11,…, y1n1
T
,

Y 2 = y21,…, y2n2
T
, where components yij are supposed to be distributed

as N(μi, σ2i ) with i = 1, 2. The null hypothesis

H0 μ1 = μ2 = μ, σ21,σ
2
2 arbitrary

is to be tested against

HA μ1 μ2, σ
2
1,σ

2
2 arbitrary

Construct a UMPU-α-test for one-sided alternatives in the
case σ21 = σ22.
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4

Linear Models – General Theory

4.1 Linear Models with Fixed Effects

The theory of linear statistical models plays an important role in the applica-
tions. Mainly the standard methods of analysis of variance and regression anal-
ysis have become firmly established in evaluating biological and technological
experiments.
In this chapter we introduce the general theory concerning methods of

analysis of variance and regression analysis with fixed effects. In the following
Ω Rn denotes a p-dimensional linear subspace with p < n called parameter
space, and θ Ω denotes a parameter vector with n coordinates θi(i = 1, … , n).
Further, let Y be an n-dimensional random variable (a random vector) with

components yi(i = 1, … , n) and realisations Y from the n-dimensional sample
space Rn. Finally, let e be an n-dimensional random variable with E(e) = 0n,
var(e) = σ2V, where V is a symmetric and positive definite matrix of size
(n, n) and rank n. For constructing tests and confidence intervals, we will
later suppose that e (and hence also Y ) are n-dimensional normally distributed
(satisfy n-variate normal distributions).

Definition 4.1 The equation

Y = θ + e 4 1

including the constraints θ Ω, E(e) = 0n, var(e) = σ2V is said to be a general
linear model (with fixed effects). If ω Ω is a linear subspace of Ω, then the
hypothesis H0 : θ ω is called linear.
The definition of a linear hypothesis obviously implies that HA : θ ω is no

linear hypothesis, since Ω \ω is no linear subspace of Ω. Namely, linear combi-
nations of elements in this set can, for example, belong to ω. W.l.o.g. we assume
V = In. This is indeed no restriction of generality if V is known as we will see.
Since V is symmetric and positive definite, there is a non-singular matrix P with
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V = PTP. We introduce the new variable Z = (PT)−1Y that has the expectation
λ = E(Z) = (PT)−1E(Y) = (PT)−1 θ and the variance

var Z = PT −1
E Y −θ Y −θ T P−1 = PT −1

var Y P−1 = σ2In

The model

Z = λ+ e∗

e∗ = PT −1e λ Ω∗ , E e∗ = 0n, var e∗ = σ2In

has therefore the form (4.1) including corresponding constraints. Since Ω is
mapped by λ = (PT)−1 θ onto a set Ω∗ with dim(Ω) = dim(Ω∗), Ω∗ is again a
p-dimensional linear subspace. Analogously the matrix (PT)−1 maps ω onto
ω∗ where dim(ω) = dim(ω∗) and ω∗ Ω∗ so that the linearity of the hypothesis
is also conserved. Hence we will use V = In for linear models.

4.1.1 Least Squares Method

First we want to estimate the parameter vector using the least squares method

(LSM) (compare Section 2.3.2). An estimator θ for θ by the LSM is an estimator
where its realisations θ fulfil

e 2 = Y −θ 2 = inf
θ Ω Y −θ 2 4 2

The following theorem is known from approximation theory.

Theorem 4.1 A realisation θ of the LSM θ satisfying (4.2) is the orthogonal
projection of Y (the realisation of Y) onto Ω.

Proof: Let c1,…, cp be an orthonormal (vector) basis ofΩ. Introducing numbers
(scalars) ki = YTci, the realisation Y can be written in the form

Y =
p

i=1

kici +Y −
p

i= 1

kici = c+ b, c=
p

i=1

kici

Because of cTj b= 0 the representation Y = c + b supplies a decomposition of Y in

the sum of two orthogonal vectors c Ω, b Ω⊥.
This decomposition is unique. Assuming that there is another decomposition

Y = c∗ + b∗, we get c + b = c∗ + b∗ or c − c∗ = b∗ − b. Since c − c∗ Ω and b∗ − b
Ω⊥, it follows c − c∗ = b∗ − b = 0. Hence, the uniquely determined vector c is the
orthogonal projection of Y onto Ω.
Finally we have to show that c= θ Taking Y −θ =Y −c+ c−θ into account, it

follows

Y −θ
2
= Y −c 2 + c−θ

2
+ 2 Y −c T c−θ 4 3
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Since c−θ Ω and b = Y − c Ω⊥, the third summand on the right-hand side of
(4.3) vanishes, and this side attains its minimum for c= θ.

Theorem 4.2 The LSM vector θ satisfying (4.2) can be obtained from a rea-
lisation Y of the random vector Y by the linear transformation

θ =AY 4 4

with a (symmetric) idempotent matrix A of rank p.1

On the other hand, if A is an idempotent matrix of size (n,n) with rank p,
then the linear transformationAYwith Y Rn realises the orthogonal projection
of Rn onto a p-dimensional vector space.

Proof: First we show (4.4), where A is supposed to be idempotent with rank
p (rk(A) = p). Considering the proof of Theorem 4.1, it is

θ =
p

i= 1

kici =
p

i= 1

ciY
Tci 4 5

Because of Y Tci = cTi Y (transposition rule), we get

θ = c1,…,cp c1,…,cp
T
Y

With the notations C = (c1, …, cp) and A = CCT, the vector θ becomes the form
(4.4). Observing AT = (CCT)T = CCT = A and remembering the vectors ci to be
orthonormal (compactly written asCTC = Ip), it followsA

TA =CCTCCT =A2= A,
that is, A is idempotent.
Moreover it is rk(A) = rk(C) = p.
Now we prove the second part of the theorem. Let A be an idempotent matrix

of size (n,n) and with rank p. For each such matrix there is an orthogonal matrix
C so that CTAC = Ip On−p,n−p. Therefore A can be written as A = (c1, …, cp)
(c1, …, cp)

T where the column vectors ci of C (i = 1, …, p) represent a basis of a
p-dimensional subspace of Rn.
If we intend to estimate parameters in linear models for unknown distribu-

tion, then the LSM is usually applied. A justification for this approach is pre-
sented in the next theorem.

Theorem 4.3 Gauss–Markov Theorem
Let L = aT θ be a linear form in the parameter vector θ Ω of model (4.1)
with range R1. Then there exists for aT θ in the class of all linear estimators with
bounded mean square deviation E(SD) a uniquely determined estimator

1 In the following, we omit the attribute ‘symmetric’, since all idempotent matrices in this book will
be symmetric.
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with minimal E(SD); this estimator is the LSM that has the form aTAY with A
described in Theorem 4.2 (see (4.4)).

Proof: Let tTY be a linear estimator for aTθ = L. We consider the mean square
deviation (MSD)

E SD = E tTY −aTθ
2
=E tTY − tTθ + tTθ−aTθ

2

which can be written with E(Y) = θ in the form

E SD = var tTY + tTθ−aTθ
2

E(SD) is only then bounded for all θ Ω, if tTθ − aTθ = 0 for all these θ. Hence,
the class of all linear estimators for aTθ with bounded E(SD) is described by the
equation tTθ − aTθ = 0. The matrix A in (4.4) realises the orthogonal projection
of Rn onto Ω. Therefore it is Aθ = θ, and the class of linear estimators with
bounded E(SD) is characterised by At = Aa if (tT − aT) Aθ = 0 for all θ, and con-
sequently tT−aT A= 0Tn is taken into account. This class of estimators satisfies

E SD = var tTY + tTtσ2

Now we have to determine t so that E(SD) is minimised under the condition
At = Aa with A from (4.4). We write

tTt = t +At−At T t +At−At

Since A is idempotent, we get

tTt = At T At + In−A t T In−A t

and because of At = Aa also

tTt = Aa T Aa + In−A t T In−A t 4 6

The functional tTt in (4.6) and consequently E(SD) are minimised if the second
summand of the right-hand side in (4.6) vanishes, that is, if t = At = Aa. This
supplies the uniquely determined estimator aTAY for aTθ.
Many variants of the Gauss–Markov theorem are based on the class of linear

unbiased estimators for aTθ. The LSM under all these estimators is the one with
minimal variance.

Example 4.1 Let p = 1 in the model equation (4.1) so that (4.1) can be
written as

Y = 1nθ1 + e yi = θ1 + ei, i= 1,…,n

Here 1n is the vector whose coordinates are all 1 (see also Appendix A). Assum-
ing −∞ < θ1 < ∞ the parameter space Ω has the dimension 1. The estimator of
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θ1 according to the LSM is obtained by putting the derivative of eTe = f (θ1) to 0
as unique solution θ1 = θ1 = y of the equation

D=
∂ Y −1nθ1

T Y −1nθ1
∂θ1

= −2
n

i= 1

yi + 2nθ1 = 0

(which produces a minimum, since the second derivative of f (θ1) is positive).
Therefore the parameter vector is estimated by θ = 1nθ1. The parameter space

Ω has the orthonormal basis c1 =
1
n
,…,

1
n

T

. Using the notations of the

proofs to Theorems 4.1 and 4.2, we get

C = c1, CCT = cT1 c1 =A=

1
n

…
1
n

1
n

…
1
n

The orthogonal decomposition of Y given in the proof of Theorem 4.1 is realised

with k1 =
Σyi
n
and c=

Σyi
n
c1. Additionally in this special case, the general state-

ment c= θ =AY holds. The variance of θ= 1Tny is

var θ =Aσ2 =

σ2

n
σ2

n

σ2

n
σ2

n

It is easy to show that A is idempotent and has rank 1 (see also Exercise 4.5).

Theorem 4.4 If θ is the LSM for θ in (4.1) with var θ = σ2In, then

s2 =
1

n−p
Y −θ 2 =

1
n−p

Y T In−A Y 4 7

is an unbiased estimator for σ2.

Proof: We have to show

E Y −θ 2 = σ2 n−p 4 8

Linear Models – General Theory 183



Regarding θ=AY and the idempotence of both A and In − A, we obtain

E Y −θ 2 = E Y T In−A Y =E Y TInY −E Y TAY 4 9

Now

E Y TBY = tr BΣ + μTBμ

if E(Y) = θ = μ and var(Y) = Σ = σ2In. This implies with B = In,

E Y TInY = σ2tr In + θTθ = σ2n+ θTθ

and with B = A

E Y TAY = σ2tr A + θTAθ = σ2p+ θTθ

The difference of both equations leads to (4.8) that finishes the proof.

4.1.2 Maximum Likelihood Method

In this section in addition to the linear model conditions, that is, (4.1) and
the constraints, we suppose that the random vector e in (4.1) follows an
n-dimensional normal distribution N(0n, σ2In). Then Y is distributed as
N(θ, σ2In). Now we look for a MLE, an estimator for θ according to the maxi-
mum likelihood method. The likelihood function has the form

L= L θ,σ2 Y = 2πσ2
−
n
2 exp −

Y −θ T Y −θ

2σ2

θ Ω, θT,σ2
T

Ω∗, Ω∗ =Ω× 0,∞

4 10

According to this method we get MLE for θ and σ2. We start with determining
the log-likelihood function in (4.10):

lnL= −
n
2
ln2π−

n
2
lnσ2−

1
2σ2

Y −θ T Y −θ 4 11

Now we want to maximise ln L under the constraint Aθ = θ (i.e. θ Ω), where
A is the matrix of orthogonal projection of Rn onto Ω. We denote the values

maximising L and ln L, respectively, by θ and σ2. We use the Lagrange method.
Introducing the Lagrange multiplicator λ for Aθ = θ and deriving the modified
function (4.11) partially according to λ, θ and σ2 we get after putting the deri-

vatives to zero and replacing the variable θ and σ2 by θ and σ2 the simultaneous
equations
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−
n

2σ2
+

1

2σ4
Y −θ

T
Y −θ = 0

1

σ2
Y −θ − In−A λ= 0

In−A θ = 0

4 12

which have unique solutions supplying the maximum, since the matrix of
second partial derivatives is negative definite. If we use the random variable
Y in the solutions instead of its realisation Y, we find the MLE

σ2 =
1
n

Y −θ 2, 4 13

θ=AY = θ 4 14

The MLE θ is identical with LSM θ. The MLE σ2 is biased, but consistent.

Theorem 4.5 If Y is distributed with the likelihood function (4.10) and

dim(Ω) = p, then cTθ= cTθ is for each vector c = (c1,…, cn)
T, with real numbers

ci the uniformly variance-optimal unbiased estimator (UVUE) for cTθ, and s2 in
(4.7) is a UVUE for σ2 (compare Definition 2.3).

Proof: The assertion follows from Theorem 2.4 in relation to Example 2.4,

because E cTθ = cTθ and E(s2) = σ2 as well as cTθ and s2 are complete sufficient

statistics.

4.1.3 Tests of Hypotheses

The linear hypothesis H0 : θ ω with the (p − q)-dimensional linear subspace
ω Ω is to be tested against the alternative hypothesis θ ω. We design a
likelihood quotient test by introducing

Q=
supθ ωL θ,σ2 Y
supθ ΩL θ,σ2 Y

, 4 15

where Y is again supposed to be distributed as N(θ, σ2In). After passing to ran-
dom variable Q itself or a monotone function of Q considered as a function of
Y are to be used as test statistic. We denote such values of σ2 and θ that max-
imise the function L from (4.15) given in (4.10) on ω by σ2 and θ . Additionally,
let B be the idempotent matrix, which orthogonally projects Rn onto ω. After
passing from the realisations to the random variables analogously to (4.13)
and (4.14). we get

σ 2 =
1
n

Y −θ 2, 4 16

Linear Models – General Theory 185



θ =BY 4 17

Regarding

sup
θ ω

L θ,σ2 Y = 2πσ2 −
n
2 exp −

1
2

Y −θ 2

1
n

Y −θ 2
= 2πσ2 −

n
2 e−

n
2

and

sup
θ Ω

L θ,σ2 Y = 2πσ2
−
n
2 e−

n
2

after passing to random variables, the likelihood ratio (4.15) becomes

Q=
σ2

σ2

n
2
=

Y −AY 2

Y −BY 2

n
2

=
Y −AY
Y −BY

n

4 18

We consider a monotone function F = F(Q) of Q, namely (in the random form),

F = Q−
2
n−1

n−p
q

=
Y T A−B Y

Y T In−A Y

n−p
q

, 4 19

where q = rk(A − B) to allow calculations on the base of tabulated distributions.
Theorem 4.7 clarifies the distribution behind (4.19).
We repeat without proof a theorem from probability theory, which is needed

here and also later.

Theorem 4.6 Theorem of Cochran (1934)
If Y is distributed as N(1n μ, In), then the positive semi-definite quadratic forms
YTAiY (i = 1, 2, …, k) of rank ni are independently of each other distributed as
CS(ni, λi) with the non-centrality parameters λi = (1n μ)

TAi (1n μ) if and only if at
least two of the three following conditions are fulfilled:

1) All Ai are idempotent.

2) k
i= 1Ai is idempotent.

3) Ai Aj = 0 for all i j.

Corollary 4.1 If Y is distributed asN(1n μ, In) and if Y TY = k
i= 1Y

TAiY , then
the quadratic forms YTAiY(i = 1, 2, …, k) of rank ni are mutually independent
distributed as CS(ni, λi) with ni = rk(Ai) and the non-centrality parameters
λi = (1n μ)

TAi (1n μ) if and only if either

• all Ai are idempotent

or
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• Ai Aj = 0 for all i j

or

•
k
i=1rk Ai = rk k

i=1Ai = n

Corollary 4.2 If Y is distributed as N(1n μ, σ2In) and if Y TY = k
i= 1Y

TAiY
with ni = rk(Ai), then each of the three conditions of Corollary 4.1 is necessary
and sufficient for the fact that the quadratic forms (1/σ2) YTAiY (i = 1, 2, …, k)
are distributed independently of each other as CS(ni, λi) with the non-centrality
parameters λi = (1/σ2) (1n μ)

TAi (1n μ).
Nowwe come to the announced statement about the distribution of F in (4.19).

Theorem 4.7 Let Y be distributed asN(θ, σ2In) and let A and B be idempotent
matrices that project Rn orthogonally onto Ω and onto ω Ω, respectively
(where rk(A) = p, rk(B) = p − q). Then F in (4.19) is distributed as F(q, n − p, λ)
with non-centrality parameter λ = (1/σ2)θT(A − B)θ and the degrees of freedom
q and n − p.

Proof: Since A is the orthogonal projector of Rn onto the p-dimensional sub-
space Ω and B the orthogonal projector onto the (p − q)-dimensional subspace
ω Ω, we get AB = BA = B. Hence, In − A and A − B are idempotent. With the
notations A1 = In − A, A2 = A − B and A3 = B, the conditions of Theorem 4.6 are
satisfied. Regarding Corollary 4.2 to this theorem, (1/σ2)YT(In − A)Y and (1/σ2)
YT(A − B)Y are mutually independent distributed as CS(n − p) and CS(q, λ),
respectively, with the non-centrality parameter λ = (1/σ2)θT(A − B)θ, which sup-
plies the assertion.
Using results in Section 4.1.1 we can show

E Y T In−A Y = σ2 n−p , E Y T A−B Y = σ2q + σ2λ

If the interim results for calculating F are to be represented in a clear way, an
analysis of variance table often is used (see Table 4.1).
If H0 is true, the non-centrality parameter becomes λ = 0, and F is centrally

F-distributed with degrees of freedom q and n − p. H0 is rejected, if

F > F1−α q,n−p = F q,n−p 1 −α

where the quantile F1−α(q, n − p) is chosen so that

maxP F > F1−α q,n−p θ ω = α 4 20

is the significance level of the test. The power function is

β θ,λ =P
qF

qF + n−p
>

qF1−α q, n−p
qF1−α q, n−p + n−p

4 21
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It can be shown (see Witting and Nölle, 1970, p. 37) that this test is invariant
with respect to the group of affine transformations in Rn, thus the test problem
is also invariant. The F-test is under all invariant tests with respect to these
transformations a uniformly most powerful α-test.
Each linear hypothesis can be written in a basic form by using a suitable trans-

formation of the sample space.

Definition 4.2 A linear hypothesis θ∗ ω according to Definition 4.1 is said
to be in canonical form if

θ∗ Ω means θ∗p+1 = = θ∗n = 0

and

θ∗ ω means θ∗1 = = θ∗q = θ∗p+ 1 = = θ∗n = 0

Theorem 4.8 Each linear hypothesisH0: θ ω can be transformed by orthog-
onal projection of the model equation (4.1) into canonical form so that

Y T A−B Y = z21+ + z2q, Y T In−A Y = z2p+1+ + z2n

is satisfied, and the distribution in (4.19) remains unchanged.

Proof: Let P be an orthogonal matrix of size (n,n). We put Y = PZ and θ = Pθ∗.
W.l.o.g. we choose P so that

PT A−B P =
Iq O

O O
, PTBP =

O O O

O Ip−q O

O O O

Table 4.1 Analysis of variance table calculating the test statistic for the test of the hypothesis
H0: θ ω Ω.

Source of
variation

Sum of
squares SS

Degrees of
freedom df

Mean square
deviation

MS=
SS
df

E(MS) F

Total YTY n

Null hypothesis
θ ω

YT(A − B)Y q 1
q
Y T A−B Y σ2 1 +

λ

q
F =

n−p
q

Y T A−B Y
Y T In−A Y

Residual YT(In − A)Y n − p
1

n−p
Y T In−A Y σ2

Alternative
hypothesis θ ω

YTBY p − q
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and

PT In−A P =
O O

O In−p

which is always possible. For simplicity the sizes of the null matrices are omitted
here. Then (4.1) is transferred into

Z = θ∗ + e∗ where Z Rn,θ∗ Ω,e∗ =PTe,Z∗ = z1,…,zn
T

As B is also PTBP the orthogonal projector of Rn onto a (p − q)-dimensional
subspace ω∗, and that means

H0 θ∗i =
0 for i= 1,…,q, p+ 1,…,n

arbitrary for i= q + 1,…,p

Besides we find

Y T A−B Y =ZTPT A−B PZ = z21+ + z2q

and

Y T In−A Y =ZTPT In−A PZ = z2p+ 1+ + z2n

The non-centrality parameter of the numerator in (4.19) is

λ=
1
σ2

θ∗21 + + θ∗2q

It is equal to 0 if and only if θ1
∗ = = θq

∗ = 0, that is, if and only if H0 is true.
According to this Theorem (4.8) can also be applied for testing linear hypoth-

eses in canonical form.

Definition 4.3 We understand as linear contrast of the parameter vector θ a
linear functional cT θ with c = (c1, …, cn)

T and n
i=1ci = 0. Two linear contrasts

cT1 θ and cT2 θ are said to be orthogonal (linear contrasts) if cT1 c2 = 0.

Nowweareable toexpress thenullhypothesisθ Ωbyorthogonal contrasts.Let
n − p pairwise orthogonal contrasts cTi θ i= 1,…, n−p be given that are equal
to 0. Under this condition the hypothesis H0, in which q further pairwise and
to the given cTi θ orthogonal contrasts tTj θ j= 1,…,q are also 0, is to be tested

against the alternative hypothesis that at least one of the additional contrasts tTi θ
is different from 0.We putC = (c1,…, cn−p) andT = (t1,…, tq). Now the condition
CTθ = 0n−p defines the p-dimensional null space Ω, that is, CTθ = 0n−p is equiv-
alent to θ Ω. Correspondingly the hypothesis H0 : C

Tθ = 0n−p TTθ = 0q is
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equivalent to θ ω. Hence, the hypothesis containing the contrasts can be
tested with F from (4.19). This test statistic can be rewritten in another form
as it is shown in the next theorem.

Theorem 4.9 We consider n − p + q orthogonal contrasts cTi θ i= 1,…, n−p
and tTj θ j= 1,…,q . Then the notations C = (c1, …, cn−p) and T = (t1, …, tq)

imply CTT =O. Besides CTC = D1 and TTT = D2 are diagonal matrices.
Now let cTi θ = 0 (i = 1, …, n − p) and Y be distributed as N(θ, σ2In). Then the

test statistic of the linear hypothesis H0 tTj θ = 0 for all j = 1,…, q (θ ω) can be

written with the estimator θ as

F =
n−p
q

q
j=1

1
tj

2 tTj θ
2

Y T In−A Y
, 4 22

where A is again the orthogonal projector onto Ω.

Proof: The first assertions are evident. Finally we have to show that the term
YT(A − B)Y in the numerator of (4.19) has the form

Y T A−B Y =
q

j= 1

1
tj 2

tjθ
2
,

where the matrices A and B are the projectors onto Ω and ω, respectively.
Then the difference A − B is the orthogonal projector of Rn onto the subspace
ω⊥ Ω, and we get

θ =Bθ + A−B θ

for θ Ω. The columns of T form a basis of ω⊥ Ω, and the columns of P
in A − B = PPT also form an orthonormal basis of ω⊥ Ω. Consequently a -
non-singular matrix H exists so that T = PH and P = TH−1, respectively, as
well as A − B = PPT = T(HTH)−1TT hold. Since A − B is idempotent, it follows
A − B = T(TTT)−1TT and

Y T A−B Y =Y TA A−B AY = θ
T
T T TT

−1
T TθY 4 23

This implies the assertion because TTT is a diagonal matrix.

4.1.4 Construction of Confidence Regions

As in the previous subsections, we assume that Y is distributed as N(θ, σ2In). In
this subsection, methods are presented that can be used to construct confidence
regions for linear combinations. The condition θ Ω is also written as CTθ = 0,
CTC = D1.
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Theorem 4.10 Let Y be distributed as N(θ, σ2In) so that the condition
CTθ = 0 (θ Ω) of the linear model (4.1) is fulfilled. If CTT = 0 also holds,
then a confidence region for TTθ with the coefficient 1 − α is given by

1
qs2

θ
T
T −θTT T TAT

−1
T Tθ−T Tθ ≤ F1−α q, n−p 4 24

In (4.24) the matrix A is the projector of Rn onto Ω, s2 is the estimator for σ2

according to (4.7) and q is the rank of T.

Proof: Regarding (4.19), (4.23) and (4.7) Theorem 4.7, the assumptions above
imply that the statistic

F =
1
qs2

θ
T
T −θTT T TAT

−1
T Tθ−T Tθ

is centrally F-distributed as F(q, n − p), if E T Tθ =T Tθ is taken into account.

Hence, the assertion is true.

Example 4.2 Let T = t be a (n × 1)-vector (i.e. q = 1). Then it follows from the
Gauss–Markov theorem (Theorem 4.3) that the LSM L of L = tTθ is equal to

L= tTθ= tTAY . We put tTA = a. Because of TTAT = TTAAT = aTa, we get
as a special case of (4.24) with focus on L

1
a 2s2

L−L
2
≤ F1−α 1, n−p = t2 n−p, 1−

α

2
4 25

This supplies for L the (1 − α)-confidence interval

L−s a t n−p, 1−
α

2
,L+ s a t n−p, 1−

α

2
4 26

4.1.5 Special Linear Models

Example 4.3 Regression Analysis
Let X be a (n × p)-matrix of rank p < n so that Ω is in (4.1) the rank space of X
(R[X] = Ω); that is, for a certain β Rp, we have

θ =Xβ 4 27

Since both X and XTX have the same rank p, the inverse matrix (XTX)−1 exists.
Then (4.27) implies β = (XTX)−1XTθ. According to the Gauss–Markov theorem
(Theorem 4.3) from (4.4), we get the estimator

β= XTX
−1
XTAY , 4 28
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where A is again the orthogonal projector of Rn onto Ω. Consequently there
exists a matrix P whose columns form an orthonormal basis of Ω so that
A = PPT.
SinceΩ is the rank space of X, the columns of X also form a basis ofΩ. Hence,

there is a non-singular matrix H with P = XH−1. As A = XH−1(HT)−1XT is idem-
potent, it has to be A = X(XTX)−1XT. If this representation of A is used in (4.28),
we obtain

β= XTX
−1
XTY 4 29

With this form of A, the formula for s2 in (4.7) becomes

s2 =
1

n−p
Y −X XTX

−1
XTY 2 =

1
n−p

Y T In−X XTX
−1
XT Y

Now we want to test the hypothesis

K Tβ = a 4 30

under the assumption that Y is distributed as N(Xβ, σ2In), where K
T is a (q × p)-

matrix of rank q and a is a (q × 1)-vector. The hypothesis (4.30) is according
to Definition 4.1 in the case a 0q no linear hypothesis. But (4.30) can be line-
arised as follows. We put

Z =Y −Xc, θ∗ = θ−Xc, γ = β−c

where c is chosen so that KTc = a. Considering the linear model

Z = θ∗ + e 4 31

with θ∗ = θ − Xc = Xβ − Xc = Xγ, the hypothesis H0 : K
Tβ = a becomes the linear

hypothesis

H0 K Tγ =K Tβ−K Tc= 0q

Now H0: K
Tγ = 0 can be tested for the model equation (4.31) using the test sta-

tistic (4.19) with inclusion of formula (4.23). The test statistic has the form

F =
ZTT T TT

−1
T TZ

ZT In−A Z

n−p
q

,

where TT is as in Section 4.1.3 the matrix occurring in the hypothesis

H0 θ∗ ω CTθ∗ = 0 T Tθ∗ = 0

The matrix T can be expressed by KT and X.
Because of θ∗ = Xγ we get γ = (XTX)−1XTθ∗ and KTγ = KT(XTX)−1XTθ∗. There-

fore it is TT = KT(XTX)−1XT. The equation KTc = a implies c = K (KT K)−1a.
If besides Z = Y − Xc = Y − XK(KTK)−1a is used, the test statistic reads
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F =
n−p
q

Y −XK K TK
−1
a

T
X XTX

−1
K K T XTX

−1
K

−1
K T XTX

−1
XT Y −XK K TK

−1
a

Y −XK K TK −1a
T
In−X XTX −1XT Y −XK K TK −1a

=
K Tβ−a

T
K T XTX

−1
K

−1
K Tβ−a

T

Y T In−X XTX −1XT Y

n−p
q

4 32

since XT[In − X(XTX)−1XT] = 0.
The hypothesis KTβ = a that can be tested by (4.32) is very general. From The-

orem 4.7 follows that F in (4.32) is non-centrally F-distributed as F1−α(q, n– p, λ).
The non-centrality parameter is

λ=
K Tβ−a

T
K T XTX

−1
K

−1
K Tβ−a

σ2

It vanishes, if the null hypothesis is true.

Example 4.4 Analysis of Variance
As in Example 4.3 let X be a (n × p)-matrix, but now of rank r < p. Using (4.27)
the model equation (4.1) becomes

Y =Xβ + e

Since the rank of X is smaller than p, the inverse matrix (XTX)−1 does not exist.
Consequently β cannot be uniquely determined from θ. The quantities β = β∗
that minimise

S = Y −Xβ 2 = Y −Xβ T Y −Xβ

are the solutions of the Gaussian normal equations

XTXβ =XTY 4 33

for Xβ = Y. These equations arises also if the derivative

∂S
∂β

= 2XTXβ−2XTY

is put to 0. (A minimum is reached for β = β∗, since the matrix of second
derivatives is positive definite.)
Let G be a generalised inverse (or also inner inverse) of XTX defined by the

relation XTXGXTX = XTX. Then a solution of (4.33) can be written as

β∗ =GXTY

We will see later that it makes no sense to call β∗ an estimator for β. Naturally

Xβ∗ = θ is an estimator for θ because XGXT is in θ=XGXTβ∗ independent of
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choosing G. Some further considerations need the concept of an estimable
function.

Definition 4.4 A linear function qTβ of the parameter vector β is said to be
estimable if it is equal to at least one linear function pTE(Y) of the expectation
vector of the random variable Y in the model equation

Y =Xβ + e

Theorem 4.11 Let a random variable Y be given that satisfies the model
equation Y = Xβ + e with a (n × p)-matrix X. Then it follows:

a) The expectations of all components of Y are estimable.
b) If all qTj β j= 1,…,k are estimable functions, then the linear combination

L= k
j= 1cjq

T
j β (cj real) is also an estimable function.

c) The function qTβ is estimable iff qT can be written in the form qT = pTX with
a certain vector p.

d) If qTβ is estimable, then qTβ∗ is independent of the special solution β∗ of the
normal equations (4.33).

e) The best linear unbiased estimator (BLUE) of an estimable function qTβ is

qTβ = qTβ∗ where β∗ is the random variable of solutions of (4.33).

Proof:

a) If the i-th (coordinate) unit vector is chosen for p in pTE(Y), then E(yi) =
pTE(Y) arises that is estimable.

b) qTj β = pTj E Y implies L= k
j= 1cjp

T
j E Y = pTE Y with p= L= k

j= 1cjp
T
j .

c) Starting with E(Y) = Xβ and qTβ = pTE(Y), it follows qTβ = pTXβ. Since the
estimability is a property that does not depend on β, the latter relation must
hold for all β. Hence, qT = pTX. On the other hand, if qT = pTX, then qTβ is
obviously estimable.

d) We have qTβ∗ = pTXβ∗ = pTXGXTY, where G is a generalised inverse of X.
Since XGXT is independent of the special choice of G, qTβ∗ does not depend
on the special choice of a solution β∗ in (4.33).

e) The Equation (4.33) implies that qTβ∗ is linear in Y and also that

E qTβ∗ = qTE GXTY = qTGXTE Y

is fulfilled. Since Y = Xβ + e leads to E(Y) = Xβ we obtain

E qTβ∗ = qTGXTXβ

Because of (c) we can put qT = pTX so that E(qTβ∗) = pTXGXTβ. Regarding
XGXTX = X this supplies that qTβ∗ is unbiased. We need the equation
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qTGXTX = qT again in the equivalent form q = XTXGTq. The variance var(β∗)
can be written as

var β∗ = var GXTY =GXTvar Y XGT =GXTXGTσ2

Therefore we get

var qTβ∗ = qTGXTXGTqσ2 = qTGXTX

qT

GXTXGTq

q

σ2 = qTGqσ2

We have to show that the variance of arbitrary linear combinations cTY of Y
with E(cTY) = qTβ cannot fall under the just obtained variance above. The
unbiasedness has the consequence cTX = qT if cTE(Y) = cTXβ is taken into
account. Now we get

cov qTβ∗,cTY = qTGXTXGTqσ2 = qTGqσ2

and

var qTβ∗−cTY = var qTβ∗ + var cTY −2 cov qTβ∗, cTY

= var cTY −qTGqσ2 = var cTY − var qTβ∗

Since var(qTβ∗ − cTY) is non-negative, var(cTY) ≥ var(qTβ∗) follows. There-
fore the estimation of qTβ is a BLUE.

The estimability of a linear combination of θ is connected with the testability of
a hypothesis that is introduced next.

Definition 4.5 A hypothesis H : KTβ = a with β from the model Y = Xβ + e is
said to be testable if the functions kTi β are estimable for all i (i = 1,…, q), where ki
are the columns of K, that is, if KT can be written as PTX with a certain (n × q)-
matrix P.

In Definition 4.5 we can also write K = (k1, …, kq), K Tβ = kTi β and
P = (p1, … , pq). If the hypothesis H is testable, then KTβ∗ = a does not depend
on the choice of the solution β∗ in (4.33).
Now we want to find a test statistic for a testable null hypothesisH0 : K

Tβ = a.
We know that KTβ∗ is an estimator for KTβ that is invariant with respect to β∗.
It is also unbiased, since (because of X = XGXTX)

E K Tβ∗ =K TE β∗ =K TGXTE Y =K TGXTXβ

= PTXGXTXβ =PTXβ =K Tβ

We can derive a test statistic for the hypothesis KTβ = a similar to Example 4.3,
where Y is again supposed to be distributed as N(Xβ, σ2IN). All conversions
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leading to (4.32) can be overtaken; only (XTX)−1 has to be replaced by the gen-
eralised inverse G of X. Hence, instead of (4.32) we get

F =
Y −XK K TK −1a

T
XGK K TGK −1K TGXT Y −XK K TK −1a

Y −XK K TK −1a
T
In−XGXT Y −XK K TK −1a

n−p
q

We have only to show that TTT = KTGXTXGTK = KTGK. Regarding KT = PTX
and X = XGXTX or XT = XTXGTXT, we find indeed

K TGXTXGTK =PTXGXTXGTXTP =PTXGXTP =K TGK

The numerator of F (ignoring the scalar factor at the end) can be rewritten as
(KTβ∗ − a)T(KTGK)−1 (KTβ∗ − a) if

a=K TK K TK
−1
a=PTXK K TK

−1
a= PTXGXTXK K TK

−1
a

=K TGXTXK K TK
−1
a

is considered. Therefore the test statistic of the testable hypothesisKT β = a reads

F =
K Tβ∗−a T

K TGK
−1

K Tβ∗−a
Y T In−XGXT Y

n−p
p

, 4 34

since XT(In − XGXT) = 0.
According to Theorem 4.7 the statistic F in (4.34) is non-centrally F-distributed

as F(q, n − p, λ) with degrees of freedom q and n − p and the non-centrality
parameter

λ=
1
σ2

K Tβ−a
T
K TGK

−1
K Tβ−a

If H0: K
Tβ = a is true, then λ = 0 follows.

Example 4.5 Covariance Analysis
Often it happens that the matrix X in Example 4.4 contains some linear inde-
pendent columns. This suggests to represent X in the form X = (W, Z), whereW
is a (n × s)-matrix of rank r < s and Z is a (n × k)-matrix of rank k (with linear
independent columns). Obviously it is s + k = p. Now it is natural to split also

β =
α

γ
so that (4.1) obtains the form

Y =Wα+Zγ + e 4 35
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The parameter space Ω is the rank space of X, that is, Ω = R[X]. If R[W]
R[Z] = {0}, thenΩ is (equal to) thedirect sumR[W] R[Z] of these two rank spaces.
In the following, it is supposed on the one hand that the columns in Z are

linear independent and on the other hand that the columns ofW do not linearly
depend on columns of Z.
The model equation (4.35) can be considered not only as a mixture of the

model equations used in Example 4.3 and in Example 4.4 but also as special case
of the model equation in Example 4.4. We obtain from (4.33)

XTXβ∗ =
W TW W TZ

ZTW ZTZ

α∗

γ∗
=

W TY

ZTY
4 36

If GW denotes a generalised inverse of WTW and G a generalised inverse of
ZT(En −WGWW

T)Z (in the sense we used it before), then α∗ and γ∗ can be deter-
mined in (4.36) as

α∗ =Gw W TY −W TZγ∗ =GwW
TY −GwW

TZγ∗ = α∗0−GwW
TZγ∗

and

γ∗ =GZT In−WGWW T Y

Here α∗0 denotes a solution of (4.36) in the case γ∗ = 0.
Since S = In − WGWW

T is idempotent, the matrices SZ and ZTSZ = ZTSSZ
have the same rank. Because of rk(SZ) = rk(Z) (the columns ofW are by assump-
tion no linear combinations of columns in Z), the inverse (ZTSZ)−1 exists and
we get

γ∗ = ZTSZ
−1
ZTSY = γ

Therefore γ∗ = γ is (together with the corresponding α∗) not only a special solu-
tion of (4.36) but also the unique one. Hence γ is an estimator for γ. As we see,
γ is estimable. Besides qTα is always estimable if it is estimable in a model with

γ = 0. The representation γ = ZTSSZ −1ZTSY implies that γ is the LSM of γ in
the model Y = SZγ + e.
We want to derive a test statistic for the hypothesis H0: γ = 0. If we put

θ = W α + Zγ, then Ω in (4.1) is a parameter space of dimension

p= rk W + rk Z = r + k

The linear hypothesis H0: γ = 0 corresponds to the parameter space ω, whose
dimension is p − q = rk(W) = r. Hence the hypothesis H0: γ = 0 can be tested
using the statistic (4.19). Let A again denote the orthogonal projector of Rn onto
Ω and B the orthogonal projector of Rn onto ω. RegardingΩ ω⊥ = R[(In − B)Z]
and R[Z] ω = {0}, we get

A−B= In−B Z ZT In−B Z
−1
ZT In−B = SZ ZTSZ

−1
ZTS
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Therefore Y T A−B Y = γTZTSY and Y T In−A Y =Y T In−B Y −γTZTSY .
Hence, the hypothesis H0 : γ = 0 can be tested with

F =
γTZTSY

Y T In−B Y −γTZTSY

n−r−k
k

4 37

Moreover, F is centrally F-distributed with k and n − r − k degrees of freedom if
H0 is true.
If the hypothesis KαT = a is to be tested with the estimable function KTα, then

the test statistic F is applied as in Example 4.4.

4.1.6 The Generalised Least Squares Method (GLSM)

Now we again want to consider the case where V = var(e) In with a positive
definite matrix V. Although it was shown after Definition 4.1 that V = In can be
taken by transforming the model, it is sometimes useful to get estimators for
arbitrary positive definite matrices in a direct way (without transformation).
We apply the same notations as in the special case (see the passages after
Definition 4.1).
If we use the LSM relation (4.2) with the notations

V = PTP,Z = PT −1
Y , λ= PT −1

θ, λ= PT −1
θ, Ω∗ = PT −1

Ω,

then we get

Z−λ 2 = inf
λ Ω∗ Z−λ 2

and

Z−λ 2 = PT −1
Y − PT −1

θ
T

PT −1
Y − PT −1

θ

= Y −θ
T
P−1 PT −1

Y −θ = Y −θ
T
V −1 Y −θ

Analogously to the transformation (4.4), we have λ=BZ with an idempotent
matrix B of rank p. It follows

θ = PTB PT −1
Y 4 38

from (PT)−1θ = B(PT)−1Y after multiplying both sides of the equation by PT. This
corresponds with θ in (4.4) putting A = PTB(PT)−1.
Regarding the case in Example 4.3 θ =Xβ, rk X = p , we have λ = (PT)−1Xβ

= X∗β. Further, analogously as in Example 4.3 we find

B=X∗ X∗TX∗ −1
X∗T = PT −1

X XTP−1 PT −1
X

−1
XTP−1
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and finally after introducing random variables and the UVUE of β

β= XTV −1X
−1
XTV −1Y 4 39

If V is unknown, then (4.39) is often used with the estimator V instead of V, that
is, we estimate β by the quasi-UVUE

β= XTV
−1
X

−1
XTV

−1
Y 4 40

V is the estimated covariance matrix of Y. If the structure of X it permits (mul-
tiple measurements at single measuring points), V is estimated from observa-

tion values used for the estimation of β. In (4.40) the estimator β is neither
linear nor unbiased.

4.2 Linear Models with Random Effects: Mixed Models

If in model equation (4.1) at least one component of θ is random and at least one
component is an unknown fixed parameter, then the corresponding linear
model is called a mixed model. Up to now the theory of mixed models could
not be developed in as much as the unified and complete theory of linear models
with fixed effects. Further it is up to the diversity of models. If we arrange θ in
such an order that θT = θT1 ,θ

T
2 is written with an unknown parameter vector

θ1 and a random vector θ2, then we can split up the matrix X and the vector β in
(4.27) analogously. Then we find with X = (X1, X2), β

T = βT1 ,β
T
2 , the (n × p1)-

matrix X1, the (n × p2)-matrix X2 and p1 + p2 = p the following model variants:

Y =X1β1 +X2β2 + e 4 41

Y =X1β1 +X2β2 + e 4 42

Y =X1β1 +X2β2 + e 4 43

All three models contain the linear model of Section 4.1 for p2 = 0 as a special
case. If X1 β1 = μ1N (μ real), then each of the models (4.41) up to (4.43) is called
model II. The other models with p2 > 0 are called mixed models (in a
stronger sense).
The special models in Section 4.1.5 are usually denoted in the following way

(after the model name the chapter number is given, where this model is treated,
and the model specification is recorded; the models of covariance analysis are
omitted here to guarantee a certain clarity):

•Model I of regression analysis (8): (4.41) with rk(X1) = p1 = p, p2 = 0.

•Model II of regression analysis (8): (4.41) with X1β1 = β01N (β0 real),
Y i,X i,p1 + 1,…,X ip non-singular (p2+1)-dimensional distributed with p2 ≥ 1.
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•Mixed model of regression analysis (8): (4.41) with rk(X1) = p1 > 1,
Y i,Xi,p1 + 1,…,Xip non-singular (p2+1)-dimensional distributed with p2 ≥ 1.

• Regression model I with random regressors (8): (4.42) with β1 = 0 (p1 = 0),
rk(X2) = p or with X1β1 = β0eN (β0 real), rk(X2) = p − 1.

•Model I of analysis of variance (5): (4.42) with X2 = 0 (i.e. with p = p1),
rk(X1) < p.

•Model II of analysis of variance (6): (4.42) with X1β1 = μ1N (μ real), rk(X2)
< p − 1.

•Mixed model of analysis of variance (7): (4.42) with p1 > 1, rk(X1) < p1, p2 ≥ 1,
rk(X2) < p2.

This list does not contain all possible models, but is focused on the ones
described in the literature under the above given name.
In the mixed models some problems arise, which are only briefly or even not

treated in the preceding chapters. This concerns the estimation of variance
components and the optimal prediction of random variables. The following
problems occur in the mixed models (4.41) and (4.42):

• Estimation of β1

• Prediction of X2 and β2, respectively

• Estimation of var(β2)

The estimation of β1 can principally done with methods described in
Section 4.1 – but there are also methods of interest estimating β1 and var(β2)
together in an optimal way, based on a combined loss function. Prediction
methods are briefly discussed in Section 4.2.1. Methods for estimating
variance matrices var(β2) of special structure are dealt with in Section 4.2.2.

4.2.1 Best Linear Unbiased Prediction (BLUP)

We introduce a new concept, that of prediction.

Definition 4.6 Model equation (4.42) is considered with E(e) = 0N. Further,
let V = var(Y| β2) be positive definite, E(β2) = b2, var(β2) = B be positive definite,
β1 be known and cov e,β2 =ON ,p2 . A linear function in Y of the form

L= aT Y −X1β1 a= a1,…,aN
T, ai real 4 44

is said to be an unbiased prediction or briefly L from the set of unbiased pre-
dictions DUP if

E K −L = 0 4 45

and it is said to be a best linear unbiased prediction (BLUP) of
K = cTβ2, cT = c1,…,cp2 if L is from DUP and
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var K −L = min
L∗ DUP

var K −L∗ 4 46

is fulfilled for all V, b2, B and X1β1.
Analogously BLUPs can be defined for linear combinations of elements from

X2 in model equation (4.41). Here we restrict ourselves to the case of Definition
4.6, since it is representative for all models.

Theorem 4.12 The BLUP of cTβ2 = K (for unknown b2) is given under the
conditions of Definition 4.6 by

L= aT Y −X1β1

where

a=V −1X2 XT
2 V

−1X2
−1
c, 4 47

provided that DUP has at least one element and XT
2 V

−1X2 is positive defi-
nite. Then

var K −L = cT XT
2 V

−1X2
−1
c 4 48

Proof: First we show L DUP, that is, (4.45). Namely, we have

E K −L = cTE β2 −aTE Y −X1β1 = cTb2−a
TX2b2

= cTb2−c
T XT

2 V
−1X2

−1
XT
2 V

−1X2b2 = 0

Now let L∗ = a∗T(Y − X1β1) be an arbitrary element from DUP, that is,
XT
2 a=X

T
2 a

∗ = c is fulfilled. Next we find

var cTβ2−a
∗T Y −X1β1 = var cTβ2−a

∗TY

= var cTβ2−a
TY + aTY −a∗TY

Since

var Y = E var Y β2 + var E Y β2 =V +X2BX
T
2

and analogously

cov Y ,cTβ2 =E cov Y ,cTβ2 β2 + cov E Y β2 ,cTβ2 =X2Bc

holds, it follows

cov cTβ2−a
TY ,aTY −a∗TY = a−a∗ TX2Bc− a−a∗ TVa
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Because of aTX2 = a∗TX2 = c, the first summand on the right-hand side is equal
to 0, and the second summand becomes with a in (4.47):

a−a∗ TVV −1X2 XT
2 V

−1X2
−1
c= a−a∗ TX2 XT

2 V
−1X2

−1
c

which is also equal to 0. This implies

var cTβ2−a
∗TY = var cTβ2−a

TY + a−a∗ Tvar Y a−a∗

and consequently

var cTβ2−a
∗TY ≥ var cTβ2−a

TY

which completes the first part of the proof.
The equation (4.48) follows by considering

var K −L = var K + var L −2 cov K ,L

= cTBc+ aTVa+ aTX2BX
T
2 a−2c

TBXT
2 a= aTVa

and replacing a by its representation (4.47).

Practical applications of this method are predictions of values concerning the
regressand (predictand) in linear regression or predictions of random effects in
mixed models of analysis of variance to determine the breeding values of sires,
where Xβ1 is often unknown, cf. Rasch and Herrendörfer (1989).

4.2.2 Estimation of Variance Components

In models of type (4.42), the goal is often to estimate the variance var(β2) of β2
in the case rk(X1) < p1, rk(X2) < p2. If B = var(β2) is a diagonal matrix, then
the diagonal elements are called variance components, and the factor σ2 in
var(e) = σ2IN is called variance component of the residual (of the error) and
is to be estimated too. There are important causes to restrict ourselves to
so-called quadratic estimators.

Definition 4.7 Let Y be a random vector satisfying the model equation (4.42)
and var(β2) = B be a diagonal matrix with the diagonal elements σ2j j= 1,…,p2 .

Further, let σ2 = σ20 and cov(β2, e) = 0. The random variable Q = YTAY is said to
be a quadratic estimator with respect to a linear combination W = p2

i= 0ciσ
2
i .

It is said to be a quadratic unbiased estimator with respect to W if E(Q) = W.
Further, Q is said to be an invariant quadratic estimator if

Q=Y TAY = Y −X1β1
TA Y −X1β1 4 49
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(i.e. if AX1 = 0). Finally, using the notations cT = c0,c1,…,cp2 and C = diag(c)
for the corresponding diagonal matrix, a quadratic estimator Q is said to be of
minimal norm if the expression

C−XT
2 AX2 = D

with the matrix A from Q becomes minimal in an arbitrary matrix norm ||| |||.
Usually the spectral norm is used (which is induced by the Euclidian vector
norm). Rao (1970, 1971a, 1971b, 1971c) introduced for invariant unbiased esti-
mators of minimal norm the name MINQUE (minimum norm quadratic unbi-
ased estimator).

There are a lot of papers about such estimators. Estimation methods for special
models of analysis of variance can be found in Chapter 7. Following are some
hints regarding the literature of general theory.
In many cases with positive scalar W, we would hesitate to accept negative

estimators (remembering that an estimator is defined as a mapping into the
parameter space).
But estimation principles as MINQUE, the method of analysis of variance

described in Chapter 6 as well as the maximum likelihood method or a modified
maximum likelihood estimation (REML: restricted maximum likelihood) have
for normal distributed Y a positive probability that negative estimators occur;
see Verdooren (1980, 1988).
Pukelsheim (1981) discusses in a survey possibilities for guaranteeing

non-negative unbiased estimators. Using the MINQUE principle, he states a
sufficient condition for the existence of corresponding estimators; see also
Verdooren (1988).
Henderson (1953) published a first paper about methods for estimating

variance components. Anderson et al. (1984) describe optimal estimations of
variance components for arbitrary excess (kurtosis) of the distribution of e.
The books of Sarhai and Ojeda (2004, 2005) deliver an inspired overview

about the state of the art with respect to the special field of estimating variance
components.

4.3 Exercises

4.1 Assume that C is a (n × p)-matrix whose columns form an orthonormal
basis of the p-dimensional linear subspace Ω of Rn. Prove that the condi-
tion CT b = 0p (b Rn) defines the (n − p)-dimensional orthogonal com-
plement of Ω in Rn.

4.2 Prove that the solutions β∗ of the Gaussian normal equations XTXβ = XTY
supply a minimum of the squared (Euclidian) norm f (β) = ||Y – X β||2.
Hint: Show that the second derivative of f (β) is a positive definite matrix.
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4.3 Show that X = XGXTX is fulfilled, where G is a generalised (inner) inverse
of XTX.

4.4 Show that the relation XT(In − XGXT) = 0 is satisfied if G is a generalised
(inner) inverse of XTX.

4.5 Show that the matrix A in

Aσ2 =

σ2

n
σ2

n

σ2

n
σ2

n

is idempotent and has the rank 1.
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5

Analysis of Variance (ANOVA) – Fixed Effects Models
(Model I of Analysis of Variance)

5.1 Introduction

An experimenter often has to find out in an experiment whether different values
of one variable or of several variables have different results on the experimental
material. The variables investigated in an experiment are called factors; their
values are called factor levels. If the effects of several factors have to be exam-
ined, the conventional method means to vary only one of these factors at once
and to keep all other factors constant. To investigate the effect of p factors this
way, p experiments have to be conducted. This approach is not only very labour
intensive, but it can also be that the results at the levels of factor investigated
depend on the constant levels of the remaining factors, which means that inter-
actions between the factors exist. The British statistician R. A. Fisher recom-
mended experimental designs by varying the levels of all factors at the same
time. For the statistical analysis of the experimental results of such designs (they
are called factorial experiments; see Chapter 12), Fisher developed a statistical
procedure, the analysis of variance (ANOVA). The first publication about this
topic stemmed from Fisher and Mackenzie (1923), a paper about the analysis of
field trials in Fisher’s workplace at Rothamsted Experimental Station in Harpen-
den (UK). A good overview is given in Scheffé (1959).
The ANOVA is based on the decomposition of the sum of squared deviations

of the observations from the total mean of the experiment into components.
Each of the components is assigned to a specific factor or to the experimental
error. Further a corresponding decomposition of the degrees of freedom
belonging to sums of squared deviations is done. The ANOVA is mainly used
to test statistical hypotheses (model I) or to estimate components of variance
that can be assigned to the different factors (model II; see Chapter 6).
The ANOVA can be applied on several problems based on mathematical

models called model I, model II and mixed model, respectively. The problem
leading to model I is as follows: all factor levels have been particularly
selected and involved into the experiment because just these levels are of
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practical interest. The objective of the experiment is to find out whether the
effects of the different levels (or factor level combinations) differ significantly
or randomly from each other. The experimental question can be answered
by a statistical test if particular assumptions are fulfilled. The statistical conclu-
sion refers to (finite) factor levels specifically selected. The problem leading to
model II is as follows: the levels of the factors are a random sample from a uni-
verse of possible levels. The objective of the experiment is to make a conclusion
about the universe of all levels of a factor by estimating the proportion of the
total variance that could be traced back to the variation of the factors or to test
a hypothesis about these proportions of the total variance.
The problems in model I are the estimation of the effects and interaction

effects of the several factor levels and testing the significance of these effects.
The problems in model II are the estimation of the components of variance of
several factors or factor combinations and the hypotheses concerning these com-
ponents. The estimation of components of variance is discussed in Chapter 6.
In all chapters we also give hints concerning the design of experiments.

Remarks about Program Packages

In the analysis of the examples, we also give calculations without program
packages although we assume that for the analysis of this data, the reader usually
will use program packages like R, SPSS or SAS. We therefore give a short intro-
duction about IBM SPSS Statistics and concerning sample size determination
about the R-package OPDOE. IBM SPSS Statistics is very voluminous and with
costs. The reader finds more information via www.ibm.com/marketplace/
cloud/statistical-analysis-and-reporting/us/en-us.
With the program package R (free via CRAN: http://www.r-project.org or

https://cran.r-project.org/), several analyses as well as experimental designs
including sample size determination can be done. First one has to install
R and then start. To experimental designs one then comes via the command

install.packages(“OPDOE”)

and

library(“OPDOE”)

Now one can calculate the sample size for analysis of variance (or for short
Anova) via size.anova and find help by

help(size.anova).

In SPSS for the one-way ANOVA, we use either
Analyze

Compare Means
One-Way ANOVA
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or by the path mainly for higher classifications with
Analyze

General Linear Models
Univariate

Definition 5.1 We start with a model

Y =Xβ + e, R X =Ω 5 1

where Y is a N(Xβ, σ2IN)-distributed N-dimensional random variable, e is a
N(0N, σ

2IN)-distributed N-dimensional random variable, β is a a+ 1 × 1 vec-
tor of parameters and X a N × a+ 1 matrix of rank p < a+ 1 <N . Then (5.1) is
the equation of model I of the ANOVA.

If we abdicate the assumption of normal distribution in the parameter estima-
tion, we receive BLUE instead of UVUE (see Chapter 2). That is the case in the
sequel. If in point estimation normal distribution is given, then read UVUE in
place of BLUE. In hypothesis testing and confidence estimation, normal distri-
bution in Definition 5.1 is essential and will be assumed in those cases.
We explain this definition by a simple example.

Example 5.1 From a populations G1,…,Ga, random samples Y1,…, Ya of
dimension (or as we also say of size) n1,…, na have been drawn independently

from each other. We write Y i = yi1,…,yini
T
. The yi are distributed in the popu-

lations Gi as N μi , σ2Ini with μi = μi,…,μi
T . Further we write

μi = μ+ ai i= 1,…,k . Then we have

yij = μ+ ai + eij i= 1,…,k; j= 1,…,ni 5 2

Writing β = μ,a1,…,ak
T and Y T = Y T

1 ,…,Y T
a , then Y is a N × 1 vector by

putting N =
a

i= 1
ni. Now we can write (5.2) in the form (5.1) if

e= e11,…,e1n1 ,…,ea1,…,eana
T as well as

XT =

1 1 … 1

1 1 … 1

0 0 … 0

0 0 … 0

n1

1 1 … 1

0 0 … 0

1 1 … 1

0 0 … 0

n2

…

…

…

…

1 1 … 1

0 0 … 0

0 0 … 0

1 1 … 1

na

and X = 1N ,
a

i= 1
1ni , respectively.
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In Example 4.4, we have shown that in general no unique MSE of β exists
because the normal equations have infinitely many solutions. Let β∗ be any solu-
tion of the normal equations

XTXβ∗ =XTY

Let G = XTX − be a generalised inverse of XTX. Then we have

β∗ =GXTY 5 3

If we choose a a+ 1−p × a+ 1 matrix B of rank a+ 1−p so that

rk
X

B
= a+ 1

and

Bβ = 0 5 4

then by the side condition (5.4) the generalised inverse G of XTX is uniquely

determined and equal to G = XTX +BTB
−1
. By this also β∗ is uniquely deter-

mined (i.e. β in (5.1) is uniquely defined) and equal to the MSE (MLE):

β= XTX +BTB
−1
XTY 5 5

This leads to

Theorem 5.1 If B in (5.4) is a matrix, whose rank space R[B] is orthogonal to

the rank space R[X] of the matrix X in (5.1) and if rk H = rk
X

B
= a+ 1 and

the side condition (5.4) is fulfilled, then β in (5.1) is estimable by (5.5).

Proof: We minimise r = Y −Xβ 2 + λTBβ with λT = λ1,…,λa+ 1−p by putting
the first derivatives of r with respect to β and λ equal to zero. With the notation
β = β∗, we obtain

2XTXβ∗−2XTY +BTλ= 0,

Bβ∗ = 0

Because r is convex we really obtain a minimum in this way. For each

θ R X =Ω is β uniquely defined by θT ,0Ta+ 1−p =Hβ, which means that

for each θ Ω we have θT ,0Ta+ 1−p R H . Because H HTH
−1
HT is the

matrix of the orthogonal projection from RN + a+ 1−p on R[H] (see Example
4.3), we obtain
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H HTH
−1
HT

θ

0a+1−p
=

θ

0a+1−p

or

X HTH
−1
XTθ = θ, B HTH

−1
XTθ = 0a+ 1−p

for all θ Ω. Therefore R X HTH
−1
BT ⊥R X and B HTH

−1
XT = 0. From

the equations above it follows that X HTH −1XT is idempotent and by this
thematrix of the orthogonal projection of RN into a linear vector spaceV enclos-
ing Ω.

On the other hand, V =BX HTH −1XT Ω so that V =Ω follows. Multiply-

ing 2XTXβ0−2X
TY +BTλ= 0 from the left by B HTH

−1
, we immediately

obtain (because) B HTH −1BTλ= 0.

Now B has full rank andHTH is positive definite, so that B HTH
−1
BT is non-

singular and λ= 0 follows. From the normal equations we therefore obtain

XTθ =XTXβ∗ =XTY

Multiplying both sides with X HTH
−1
, we see that HTH

−1
is a generalised

inverse of XTX. From (5.3) then follows Equation (5.5)
because HTH =XTX +BTB.

Example 5.2 In Example 5.1 let a = 2 and initially n= n1 = n2. Then we get

XT =

1 … 1

1 … 1

0 … 0

1 … 1

0 … 0

1 … 1

,

a matrix with 2n columns. Without loss of generality we write in (5.4)

B= 0,1,1 , and by this (5.4) has the form ai = 0. Writing N = 2n, it follows

XTX =

N n n

n n 0

n 0 n

, BTB=

0 0 0

0 1 1

0 1 1

,

and

XTX +BTB=

2n n n

n n+ 1 1

n 1 n+ 1
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is a matrix of rank three. The inverse of this matrix is

XTX +BTB
−1

=
1
4n

n+ 2 −n −n

−n n+ 2 n−2

−n n−2 n+ 2

Using (5.5) and XTY =

Y ..

Y 1

Y 2

, we finally receive

β=

y ..

y1 − y ..

y2 − y ..

=

μ

a1

a2

In the case n1 n2, we have with N = n1 + n2:

XTX =

N n1 n2

n1 n1 0

n2 0 n2

For this case in the literature two methods for choosing B can be found. On the
one hand, analogously to the case with n= n1 = n2, one can choose

B1 = 0, 1, 1

and on the other hand

B2 = 0, n1, n2

In the first case again

ai = 0

In contrast with the second case, where it follows

niai = 0

In the second case it is implied that the ai effects of factor levels have the prop-
erty that after multiplying with the sample sizes ni and summing up gives 0.
Especially in designs with several factors or if ni are random (as in animal experi-
ments), such an assumption is not plausible.

In the first case (B1), we have

XTX +BT
1 B1

−1
=

1
4n1n2

n1n2 +N n2−n1−n1n2 n1−n2−n1n2

n2−n1−n1n2 n1n2 +N n1n2−N

n1−n2−n1n2 n1n2−N n1n2 +N

,
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and the estimator of β becomes

β1 =

μ 1

a1
1

a2
1

=

1
2
y1 + y2

1
2
y1 −y2

1
2
y2 −y1

In the second case (B2), we have

XTX +BT
2 B2

−1
=

1
N2n1n2

n1n2 1 +N −n1n2 −n1n2

−n1n2 n2 n22 + n1 + n1n2 n1n2 1−N

−n1n2 n1n2 1−N n1 n21 + n2 + n1n2

,

and the estimator of β is

β2 =

μ 2

a1
2

a2
2

=

y ..

y1 − y ..

y2 − y ..

The reader may ask which form of B he should use. There is no general
answer. While the two forms B1 and B2 are arbitrary, many others are possible.
In the ambiguity of B, the ambiguity of the generalised inverse XTX − is
reflected. Therefore estimates of ai are less interesting than those for μ+ ai,
which are the same for all possible B.
As shown in Chapter 4, the tests of testable hypotheses of the ai and the esti-

mates of estimable functions of the ai do also not depend of the special selected
B or XTX − .
Because the tests of testable hypotheses and the estimation of estimable func-

tions of the effects of factor levels play an important role in model I, the ambi-
guity of XTX − does not influence the final solution. We therefore solve the
normal equations under side conditions, resulting in a simple solution.
We now summarise the definitions of estimable functions and testable

hypotheses for model I of the ANOVA together with some important theorems
and conclusions.
Following Definition 4.4 a linear function qTβ of the parameter vector β in

(5.1) is estimable, if it equals at least one linear function tTE (Y) of the expecta-
tion vector of the random variable Y in (5.1).
Then it follows from Theorem 4.11 for the model equation (5.1):

a) The linear functions of E(Y) are estimable.
b) If qTj β are estimable functions j= 1,…,a , then also
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L=
a

j= 1

cjq
T
j β cj real

is an estimable function.
c) qTβ is an estimable function if qT can be written in the form tT X with X from

(5.1) t Rn .
d) The BLUE of an estimable function qTβ is

qTβ= qTβ= tTX XTX
−
XTY

with β from (5.3); it is independent of the choice of β and by this independent of
the choice of XTX − .

e) The covariance between the BLUE qTi β and the BLUE qTj β of two estimable

functions of qTi β and qTj β is given by

cov qTi β, q
T
j β = qTi XTX

−
qjσ

2 5 6

Aswe have seen it is indifferent for the estimation of estimable functionswhich
generalised inverse XTX

−
in (5.3) is chosen. Even the variance of the estimator

does not depend on the choice of XTX
−
because cov x,x = var x .

The concept of an estimable function is closely connected with that of a test-
able hypothesis.
A hypothesis H KTβ = a∗ with β from (5.1) is called testable if with

K = k1,…,kq
T
and KTβ = kTi β i= 1,…,q the kTi β are for all i estimable

functions.
Finally we give some results for generalised inverses in form of lemmas. As

used already before, each matrix A− for which

AA−A=A

is called a generalised inverse of the matrix A.

Lemma 5.1 If XTX
−
is a generalised inverse of the symmetrical matrix XTX,

we get

X XTX
−
XTX =X , XT =XTX XTX

−
XT

Lemma 5.2 For a system of simultaneous linear equations XTXx=XTy (nor-
mal equations), all solution vectors x have the form

x= XTX
−
XTy
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Lemma 5.3 If M is a symmetrical matrix of the form

M =
A B

B D
,

then with Q=D−BTA−B the matrix

M− =
A− +A−BQ−BTA− −A−BQ−

−Q−BTA− Q−
=

A− 0

0 0
+

−A−B

I
Q− −BTA− , I

is a generalised inverse of M, with the identity matrix I.

5.2 Analysis of Variance with One Factor (Simple- or
One-Way Analysis of Variance)

In this section we investigate the situation that in an experiment several ‘treat-
ments’ or levels of a factor A have to be compared with each other. The corre-
sponding analysis is often called ‘simple ANOVA’.

5.2.1 The Model and the Analysis

We start with a model equation of the form (5.2) and call μ the total mean and ai
the effect of the ith level of factor A. In Table 5.1 we find the scheme of the
observations of an experiment with a levels A1,…, Aa of factor A and ni obser-
vations for the ith level Ai of A.

Table 5.1 Observations yij of an experiment with a levels of a factor.

Number of the levels of the factor

1 2 … i … a

y11 y21 … yi1 … ya1

y12 y22 … yi2 … ya2

…

y1n1 y2n2 … yini yana

ni n1 n2 … ni … na

Yi. Y1. Y2. … Yi. … Ya.
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If an experiment is designed to draw conclusions about the levelsAi occurring
in the experiment, then model I is appropriate and we use the introduced math-
ematical model I in Definition 5.1 as the basis for the design and analysis. If how-
ever Ai are randomly selected from a universe of levels, then model II as
described in Chapter 6 is used.
We use Equation (5.2) with the side conditions

E eij = 0, cov eij,ekl = δikδjlσ
2

For testing hypothesis the eij and by this also the yij are assumed to be nor-
mally distributed. Then it follows from the examples above.

Theorem 5.2 Solutions âi for the ai i= 1,…,a and μ for μ of the normal
equation (5.5) for model equation (5.2) are given by

1μ=
1
a

a

i= 1

yi , 5 7

1ai =
a−1
a

yi −
1
a

j i

yj 5 8

in the case (5.4) for the matrix B= 0,1,…,1 .
In the case (5.4) for the matrix B= 0,n1,…,na , they are given by

2μ = y .., 5 9

2αi = yi −y .. 5 10

Both estimations are identical if ni = n i= 1,…,a . The variance σ2 in both
cases is unbiasedly estimated by

s2 =
y2ij−β

TXTY

N −a

The proof of the first part of that theorem follows from (5.5). For
B= 0 1,…,1 is

XTX +BTB=

N n1 n2 na

n1 n1 + 1 1 1

n2 1 n2 + 1 1

na 1 1 na + 1
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For B= 0,n1,…,na ,

XTX +BTB=

N n1 n2 nn

n1 n21 + 1 n1n2 n1na

n2 n2n1 n22 + n2 n2na

na nan1 nan2 n2a + na

Simply we can obtain (5.7) and (5.8) also by minimising
a

i= 1

ni

j= 1

yij−μ−ai
2

under the side condition
a

j=1
ai = 0. The solutions (5.9) and (5.10) can be

obtained by minimising
a

i= 1

ni

j= 1

yij−μ−ai
2

under the side condition
a

i= 1
niai = 0. It follows

E 1μ =
1
a

a

i= 1

E yi =
1
a

a

i= 1

μ+ ai = μ

because of
a

j=1
ai = 0 and

E 1αi =
a−1
a

μ+ ai −
1
a

j i

μ+ aj =
a−1
a

ai +
1
a
ai = ai

because of ai = 0 j i
aj = −ai .

Analogously the unbiasedness of (5.9) and (5.10) under the corresponding
side conditions can be shown.
The second part of the theorems is a special case of Theorem 4.4.

Estimable functions of the model parameters are, for instance,
μ+ ai i= 1,…,a or ai−aj i, j= 1,…,a;i j with the estimators

μ+αi = yi = 1μ+ 1αi = 2μ+ 2αi

and

αi−αj = yi −yj = 1αi−1αj = 2αi−2αj,

respectively. They are independent from the special choice of B and of XTX − .
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One example of an experiment that can be modelled in a model I is to test the
null hypothesis H0 ai = aj for all i j against the alternative that at least two
ai differ from each other. This null hypothesis corresponds with the assumption
that the effects of a factor considered for all a levels are equal. The basis of the cor-
responding tests is the fact that the sum of squared deviations SS of the yij from the
totalmeanof theexperimenty can be broken down to independent components.
The following trivial conclusion is formulated as a theorem due to its importance.

Theorem 5.3 Let us draw samples from a populations Pi and let yij be the jth
observations of the sample from the i-ten population and yi. the mean of this
sample. Let N be the total number of observations and y .. the total mean of
the experiment. The sum of squared deviations of the observations from the
total mean of the experiment

SST =
a

i=1

ni

j= 1

yij−y ..
2
=Y TY −Ny2.. with Y T = y11,…,yanα

can be written in the form

Y TY −Ny2.. =Y T IN −X XTX
−
XT Y +Y TX XTX

−
XTY −Ny2..

or as

a

i=1

ni

j= 1

yij−y ..
2
=

a

i= 1

ni

j=1

yij−yi
2
+

a

i= 1

ni

j= 1

yi −y ..
2

The left-hand side is called SS total or for short SST; the first component of the
right-hand side is called SS within the treatments or levels of factor A (short SS
within or SSw = SSres) and SS between the treatments or levels of factor A
(SSb = SSA), respectively.
We generally write

SST =
ij

y2ij−
1
N
Y 2
..,

SSres =
ij

y2ij−
i

Y 2
i

ni
,

SSA =
i

Y i
2

ni
−
1
N
Y 2
..

Theorem 5.4 Under the assumptions of Definition 5.1,

F =
N −a SSA
a−1 SSres

5 11
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is distributed as F a−1,N −a,λ with the non-centrality parameter

λ=
1
σ2

βTXT X XTX
−
XT −

1
N
1N ,N Xβ

and 1N ,N = 1TN ,N = 1n1Tn .
If H0 a1 = = aa, then F because of λ= 0 is F a−1,N −a -distributed.

Proof: Y = y1,…,y1n1 ,…,ya1 ,…,yana
T

is N(Xβ; σ2IN)-distributed. Because of

Theorem 5.3 YTY is the sum of three quadratic forms taking

Y .. =
1
N
Y T1N ,NY into account, namely,

Y TY =Y TA1Y +Y TA2Y +Y TA3Y

with

A1 = IN −X XTX
−
XT , A2 =X XTX

−
XT −

1
N
1N ,N , A3 =

1
N
1N ,N

From Lemma 5.1 X XTX
−
XT is idempotent of rank a and by this A1 is idem-

potent of rank N −a. Further A3 is idempotent of rank 1. Because 1TN is the first
row of XT, it follows from Lemma 5.1 1TNX XTX −XT = 1TN and from this the
idempotence of A2. The rank of A2 is a−1. By this, for instance, condition 1
of Theorem 4.6 N = n, n1 =N −a, n2 = a−1, n3 = 1 is fulfilled. Therefore
1
σ2

Y TA1Y is CS N −a,λ1 -distributed and
1
σ2

Y TA2Y is independent of

1
σ2

Y TA1Y distributed as CS a−1,λ2 with

λ1 =
1
σ2

βTXTA1Xβ = 0

and

λ2 = λ=
1
σ2

βTXT X XTX
−
XT −

1
N
1N ,N Xβ

This completes the proof.

Following Theorem 5.4 the hypothesis H0 a1 = = aa can be tested by an

F-test. The ratiosMSA =MSb =
SSb
a−1

andMSR =MSres =MSw =
SSw

N −a
are called

mean squares between treatments and within treatments or residual mean
squares, respectively. The expectations of these MS are

E MSA = σ2 +
1

a−1

a

i= 1

nia
2
i −

1
N

a

i= 1

niai

2

= σ2 +
1

a−1
SSA
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and

E MSres = σ2

Under the reparametrisation condition
a

i= 1
niai = 0, we receive

E MSA = σ2 +
1

a−1

a

i= 1

nia
2
i

Now the several steps in the simple ANOVA for model I can be summarised
as follows.
We assumed that from systematically selected normally distributed populations

with expectations μ+ ai and the same variance σ2, representing the levels of a
factor – also called treatments – independent random samples of size ni have
been drawn. For theN observations yij, we assume model equation (5.2) with its
side conditions. From the observations in Table 5.1, the column sums Yi. and
the number of observations are initially calculated. The corresponding means

yi =
Y i

ni

are UVUE under the assumed normal distribution and for arbitrary distribu-
tions with finite second moments BLUE of the μ+ ai.
To test the null hypothesis a1 = = aa that all treatments effects are equal

and by this all samples stem from the same population, we need the sums

i, j
y2ij, i

Y 2
i

ni
and further

Y 2
..

N
.

With these sums, a so-called theoretical ANOVA table can be constructed as
shown in Table 5.2. In such an ANOVA table occur so-called sources of

Table 5.2 Theoretical analysis of variance table of the one-way analysis of variance model

I ai = 0 .

Source of
variation SS df MS E(MS) F

Main
effect A

SSA =
i

Y i
2

ni
−
1
N
Y 2
.. a − 1 MSA =

SSA
a−1

σ2 +
1

a−1
nia

2
i FA =

MSA
MSres

Residual SSres =
ij

y2ij−
i

Y 2
i

ni
N − a MSres =

SSres
N −a

σ2

Total SST =
i, j
y2ij −

Y 2
..

N
N − 1

MS, mean squares; SS, sum of squares.
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variation (between the treatments or levels of factor A, residual (or within the
levels) and total). The SS is in the second column, the degrees of freedom (df) in
the third, the MS in the fourth, the E(MS) in the fifth and the F-statistic in
the sixth.
In a practical ANOVA table with data (computer output), the column E(MS)

does not occur, and no random variables but only their realisations appear.

The following functions of the parameters in β are estimable: μ+ ai and μ+ ai,

i = 1, …, a are BLUEs. Further
a

i=1
ci μ+ ai is estimable by the BLUE

a

i= 1
ciyi . (Under normality assumptions they are UVUEs.)

Further all linear contrasts
a

i= 1
ciai mit ci = 0 as, for instance, differ-

ences ai−aj i j between the components of a ci = 1, cj = −1 or terms of the
form 2aj−as−ar cj = 2, cs = −1, cr = −1, j s r are estimable. The advantage
of estimable functions is their independence of the special choice of XTX

−

and that a hypothesis H0 KTβ = a∗ with the test statistic given in (4.34) is test-
able if KTβ is estimable.
Because the hypothesis a1 = = aa can be written in the form KTβ = 0 with

β = μ,α1,…,αa
T and the a−1 × a+ 1 matrix

KT =

0 1 −1 0 … 0

0 1 0 −1 … 0

0 1 0 0 … −1

= 0a−1,1a−1, − Ia−1 ,

it is testable. The test statistic as introduced in Theorem 5.4 is along with the
given KT, a special case of the test statistic F in (4.34).
Introducing side conditions can change the conclusions about estimability

and the BLUE. For example, under the condition
a

i= 1
niai = 0, the parameter

μ is estimable; the BLUE is y ... This also means that the hypothesis H0 μ= 0 is
testable.

Also under the side condition
a

i= 1
ai = 0, the parameter μ is estimable; but

the BLUE is now
1
a

a

i=1
yi .

For the ambiguousness of XTX
−

and the choice of particular side
conditions, we make some general remarks, which are also valid for other
classifications in the following sections but will not be repeated:

• Independent of the special choice of XTX − and by this of the choice of the
side conditions are:
– The SS, MS and F-values in the ANOVA tables of testable hypotheses
– The estimators of estimable functions
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• In practical applications we do not need estimates of non-estimable functions.
If, for example, three animal feed for pigs have to be analysed and the model
yij = μ+ ai + eij is used, the evaluation of these feed can be done by
μ+ a1,μ+ a2 and μ+ a3 and the parameters a1, a2 and a3 are not needed.

• If a problem is independent of the special choice of XTX − , it is often favour-
able for the derivation of formulae to do this under special side conditions.
Normal equations under side conditions can often be relatively simple.

We demonstrate this by an example.

Example 5.3 In an insemination centre, three sires B1, B2, B3. are available.
By help of milk yields yij i= 1,2 3; j= 1,…,ni of ni daughters of these sires, it
shall be examined whether differences in the breeding value of these sires con-
cerning the milk fat exist. We assume that the observations yij are realisations of
N μ+ ai,σ2 -distributed and independent random variables following model
(5.2). Table 5.3 contains the performances yij of the daughters of the three sires.
We can ask the following:

•What is the breeding value of the sires?

• Is the null hypothesis H0 a1 = a2 = a3 valid?

•What are the estimates of a1−a2 and −8a1−6a2 + 14a3?

• Can we accept the null hypothesis H0 a1−a2 = 0, −8a1−6a2 + 14a3 = 0?

All tests should be done with a first kind risk of α = 0.05.
It follows from (5.1) and (5.2), respectively,

y11 = 120 = μ+ a1 + e11,

y12 = 155 = μ+ a1 + e12,

Table 5.3 Performances (milk fat in kg) yij of
the daughters of three sires.

Sire

B1 B2 B2

yij 120 153 130

155 144 138

131 147 122

130

ni 4 3 3

Yi. 536 444 390

yi 134 148 130
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y13 = 131 = μ+ a1 + e13,

y14 = 130 = μ+ a1 + e14,

y21 = 153 = μ+ a2 + e21,

y22 = 144 = μ+ a2 + e22,

y23 = 147 = μ+ a2 + e23,

y31 = 130 = μ+ a3 + e31,

y32 = 138 = μ+ a3 + e32,

y33 = 122 = μ+ a3 + e33,

and by this it is in (5.1)

Y = 120,155,131,130,153,144,147,130,138,122 T ,

β = μ,a1,a2,a3
T , e= e11,…,e33

T ,

X =

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

1 0 1 0

1 0 1 0

1 0 1 0

1 0 0 1

1 0 0 1

1 0 0 1

= 110,14 13 13 ,

a= 3,n1 = 4,n2 = n3 = 3 and N = 10

All hypotheses are testable; a1−a2 and −8a1−6a2 + 14a3 are estimable
functions.
It is sufficient to calculate any generalised inverse of XTX. In this example, in

solution l oncemore, a generalised inverse ofXTX is calculated; solution 2 shows
the approach by using the formulae derived in this section. In the examples of
the following sections, only the simple formulae of the SS are used.

Solution l:
To calculate XTX

−
an algorithm exploiting the symmetry of XTX is used:

• Determine rk XTX = r.

• Select a non-singular (r × r) submatrix of rank r and invert it.

• Replace each element of the submatrix of XTX by the element of the inverse
and the other elements of XTX by zeros.
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We initially calculate

XTX =

10 4 3 3

4 4 0 0

3 0 3 0

3 0 0 3

The sum of the last three rows is equal to the first one. Because the submatrix
4 0 0

0 3 0

0 0 3

has rank 3, we get rk XTX = r = 3. The inverse of

4 0 0

0 3 0

0 0 3

equals

1
4

0 0

0 1
3

0

0 0 1
3

, and therefore we obtain

XTX
−
=

0 0 0 0

0 1
4

0 0

0 0 1
3

0

0 0 0 1
3

As a check we can show that XTX XTX −XTX =XTX .
To calculate β first we find

XTY
T
= Y ..,Y1 ,Y2 ,Y3

T = 1370,536,444,390 T ,

and then we obtain

β = XTX
−
XTY =

0

y1
y2
y3

=

0

134

148

130

=

μ

a1

a2

a3

The breeding value of the sires is estimated by yi. The estimable functions
μ+ ai are estimated by 134, 148 and 130, respectively.
To test the null hypothesis H0 a1 = a2 = a3, we calculate the test statistic

(4.34), namely,

F =
KTβ−a

T
KT XTX

−
K

−1
KTβ−a

Y T In−X XTX −XT Y

n−p
q

,
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where H0 a1 = a2 = a3 is written in the form KTβ = a∗ with a∗ = 0 and

KT =
0 1 −1 0
0 1 0 −1

and we have p= a, q = a−1.

The realisation F of F is

F =

a1−a2

a1−a3

T 7
12

3
12

3
12

7
12

−1

a1−a2

a1−a3

Y T I10−X XTX −XT Y
7
2

The inverse is
12
40

7 −3

−3 7
and the numerator (because of ai−aj = yi −yj ,

y1 −y2 = −14,y1 −y 3 = 4) finally becomes

−14 4
12
40

7 −3
−3 7

−14
4

= 546

We further have

X XTX
−
XT =

1
4
144

1
3
133

1
3
133

In the denominator it is Y TI10Y = y2ij = 189068,

Y T 1
4
144

1
3
133

1
3
133 Y =

a

i=1

Yi
2

ni
= 188236,

and

F =
546
832

7
2
= 2 297

The quantile of the F-distribution in Table A.5 for α= 0 05 with 2 and 7
degrees of freedom is 4.74, and therefore the null hypothesis H0 a1 = a2 = a3
is not rejected. The estimate of a1−a2 is, as already mentioned, y1−y2 = −14.

By (5.6) we can calculate var a1− a2 . Because a1−a2 has the form qTβ with

qT = 0 1, −1 0 , it follows from (5.6):

var a1− a2 = 0 1, −1 0

0 0 0 0

0 1
4

0 0

0 0 1
3

0

0 0 0 1
3

0

1

−1

0

σ2

=
1
4
+
1
3

σ2 =
7
12

σ2
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The function −8a1−6a2 + 14a3 is a linear contrast and estimable. Following
Theorem 4.10 and because of −8a1−6a2 + 14a3 = 0, −8, −6 14 β, the BLUE of
this linear contrast is

0, −8, −6 14 β = −8y1 −6y2 + 14y3 = −140

Taking

0, −8, −6 14 XTX
−

0

1

−1

0

= 0

into account the two contrasts are orthogonal. From (5.6) we obtain the vari-

ance of the estimated contrasts as
93
3
σ2 = 31σ2.

The null hypothesis

H0
0 1 −1 0

0 −8 −6 14
β = 0

is tested by the test statistic of Theorem 5.4 with

KT =
0 1 −1 0

0 −8 −6 14
and G = XTX

−

It follows

KTGK =

7
12

0

0 280
3

and KTGK
−1

=

12
7

0

0 3
280

=
1
280

480 0

0 3

The SS in the numerator of F is then

−14, −140
1
280

480 0

0 3

−14

−140
= 336 + 210 = 546

The realisation F of F in this case is again

F =
546
832

7
2
= 2 297

However in contrast to the null hypothesis written with non-orthogonal con-
trasts the sub-hypotheses

H0 a1 = a2, H0 −8a1−6a2 + 14a3 = 0
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with the numerators SS, 336 and 210, respectively (with one degree of freedom
each) can be tested separately so that the test of one hypothesis is independent
of the validity of the other. For H0 a1 = a2 the test statistic is

F =
336
832

7 = 2 827

and for the hypothesis H0 −8a1−6a2 + 14a3 = 0, the test statistic is

F =
210
832

7 = 1 767

The two sub-hypotheses are both accepted.

Solution 2:
This solution is the usual one for practical calculations. Initially the values in

Tables 5.3 and 5.4 as well as Y 2
.. = 1876900 and 1

10
Y 2
.. = 187690 are calculated.

The yi are estimates of μ+ ai i= 1,2 3 . To test the null hypothesis
H0 a1 = a2 = a3, we need an ANOVA table such as Table 5.2 without E(MS)
(Table 5.5). The values of this table can be obtained from Table 5.4 (e.g. 188
236 − 187 690 = 546). The decomposition of the SS between sires in additive
components concerning the orthogonal contrasts is shown in Table 5.6.

Table 5.5 Analysis of variance table for testing the hypothesis a1 = a2 = a3 of Example 5.3.

Source of variation SS df MS F

Between sires 546 2 273.00 2.297

Within sires 832 7 118.86

Total 1378 9

Table 5.4 Results in the analysis of variance of the material in Table 5.3.

Sire Yi. Y2
i

Y2
i

ni
y2ij

B1 536 287 296 71 824 72 486

B2 444 197 136 65 712 65 754

B3 390 152 100 50 700 50 828

Sum 1370 188 236 189 068
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Remarks about Program Packages

With statistical program packages like R, SAS or SPSS, calculations can be done
safely and simply. In R we use the command lm().
We demonstrate the analysis of Example 5.3 with IBM SPSS 24 (SPSS for

short). Initially the data must be brought into a data matrix. After starting SPSS
we use the option ‘Data input’ and define the variable ‘Sire’ and ‘fat’. By this we
define two columns of the data matrix. In the second column, we insert the
number of the sire to which the daughter performance belongs, in our case four
times 1, three times 2 and three times 3. In the first column, the corresponding
10 daughter performances (fat) are listed. In Figure 5.1 we find sire as factor and
the data matrix. We now proceed with
Analyze

Compare Means
– One-Way ANOVA

and define ‘sire’ as factor and ‘fat’ as dependent variable. By clicking OK we get
the result in Figure 5.2.

5.2.2 Planning the Size of an Experiment

For planning the size of an experiment, precision requirements are needed as in
Chapter 3. The following approach is valid for all sections of this chapter.

5.2.2.1 General Description for All Sections of This Chapter
At first we repeat the density function of the non-central F-distribution. It reads

fn1,n2,λ F =
∞

j= 0

e−
λ
2 Γ

n1
2
+
n2
2
+ j λj n

n1
2 + j
1 n

n2
2
2

j 2j Γ
n1
2
+ j Γ

n2
2

F
n1
2 + j−1

n2 + n1F
n1
2 + n2

2 + j
I 0,∞

Table 5.6 Table for testing the hypotheses a1 = a2 and −8a1−6a2 + 14a3 = 0.

Source of variation SS df MS F

a1 −a2

−8a1−6a2 + 14a3

336 1 336.00 2.827

210 1 210.00 1.767

Between sires 546 2 273.00 2.297

Within sires 832 7 118.86

Total 1378 9
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Figure 5.2 ANOVA output for Example 5.3. Source: Reproduced with permission of IBM.

Figure 5.1 Data file of Example 5.3. Source: Reproduced with permission of IBM.
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Analogously to the relation

t n−1 1−α = t n−1,λ β

in Chapter 3 for the quantile of the central and non-central F-distribution,
respectively, we now use the relation

F f1, f2,0 1−α = F f1, f2,λ β , 5 12

where f1 and f2 are the degrees of freedom of the numerator and the denomina-
tor, respectively, of the test statistic. Further α and β are the two risks and λ is the
non-centrality parameter. This equation plays an important role in all other sec-
tions of this chapter. Besides f1, f2, α and β, the difference δ between the largest
and the smallest effect (main effect or in the following sections also interaction
effect), to be tested against null, belongs to the precision requirement. We
denote the solution λ in (5.12) by

λ= λ α,β, f1, f2

Let Emin, Emax be theminimum and themaximum of q effects E1, E2,…, Eq of a
fixed factor E or an interaction. Usually we standardise the precision require-

ment by the relative precision requirement τ =
δ

σ
.

If Emax−Emin ≥ δ, then for the non-centrality parameter of the F-distribution

(for even q) with E = 1
q

q

i= 1
Ei holds

λ=
q

i=1

Ei−E
2
σ2 ≥

q
2
Emax−E

2 +
q
2
Emin−E

2

σ2

≥ q Emax−Emin
2 2σ2 ≥ qδ2 2σ2

If we omit

q
2
Emax−E

2 +
q
2
Emin−E

2

σ2
, then it follows

λ=
q

i=1

Ei−E
2
σ2 ≥ qδ2 2σ2 5 13

The minimal size of the experiment needed depends on λ accordingly to the
exact position of all q effects. But this is not known when the experiment starts.
We consider two extreme cases, the most favourable (resulting in the smallest
minimal size nmin) and the least favourable (resulting in the largest minimal size
nmax). The least favourable case leads to the smallest non-centrality parameter
λmin and by this to the so-called maximin size nmax. This occurs if the q−2
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non-extreme effects equal
Emax + Emin

2
. For E = 0,

q

i= 1
Ei−E

2 = qE2 this is

shown in the following scheme:

E1= –E 0 =E2= · · · =Eq– 1 Eq=E

The most favourable case leads to the largest non-centrality parameter λmax

and by this to the so-called minimin size nmin. For even q = 2m this is the case, if
m of the Ei equal Emin and them other Ei equal Emax. For odd q = 2m + 1 againm
of the Ei should equal Emin andm other Ei should equal Emax, and the remaining
effect should be equal to one of the two extremes Emin or Emax. For

E = 0,
q

i=1
Ei−E

2 = qE2, this is shown in the following scheme for even q:

E1=E2= · · · =Em= –E Em+1=Em+2= · · · =Eq=E0

5.2.2.2 The Experimental Size for the One-Way Classification
We now determine the required experimental size for the most favourable as
well as for the least favourable case, that is, we are looking for the smallest n
(for instance, n = 2q) so that for λmax = λ and for λmin = −λ, respectively, (5.13)
is fulfilled.
The experimenter must select a size n in the interval nmin ≤ n ≤ nmax, but if he

wants to be on the safe side, he must choose n= nmax. The solution of the
Equation (5.12) is laborious and done mostly by computer programs. The pro-
gram OPDOE of R allows the determination of the minimal size for the most
favourable and the least favourable case in dependence on α, β, δ and τ and
the number a of treatments (levels of factor A) for all cases in this chapter.
The corresponding algorithm stems from Lenth (1986) and Rasch et al.
(1997). We demonstrate both programs by an example. In any case one can
show that the minimal experimental size is smallest if n1 = n2 = = na = n,
which can be reached by planning the experiment. The design function of
the R-package OPDOE for the ANOVA is called size.anova() and for the
one-way ANOVA has the form

>size.anova(model="a", a=,alpha=,beta=,delta=,case=).

It calculates the minimal size for any of the a levels of factor A for model I in
model = "a" and the number of levels a=. Besides the risks, the relative minimal
difference τ = δ/σ (delta) and the strategy of optimisation (case: “maximin” or
“minimin”) must be put in.
We demonstrate all programs by an example.
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Example 5.4 Determinenmin andnmax fora = 4,α = 0.05,β = 0.1 and τ = δ/σ = 2.
With OPDOE of R we get

> size.anova(model="a", a=4, alpha=0.05, beta=0.1,
+delta=2, case="minimin")
n
5
>size.anova(model="a", a=4, alpha=0.05, beta=0.1,
+delta=2, case="maximin")
n
9

Now a value of n between 5 and 9 must be used.

5.3 Two-Way Analysis of Variance

The two-wayANOVA is a procedure for experiments to investigate the effects of
two factors. Let us investigate a varieties of wheat and b fertilisers in their effect
on the yield (per ha). The a varieties as well as the b fertilisers are assumed to be
fixed (selected systematically) as always in this chapter with fixed effects. Then
factor variety is factorA, and factor fertiliser is factorB. In this and the next chap-
ter, the number of levels of factor X is denoted by the same letter x as factor
(a capital letter) but as a small letter. So factor A has a, and factor B has b levels
in the experiment. In experiments with two factors, the experimental material is
classified in two directions. For this we list the different possibilities:

1) Observations occur in each level of factor A combined with each level of fac-
tors B. There are a b combinations (classes) of factor levels. We say factor
A is completely crossed with factor B or we have a complete cross-
classification.
1.1) For each combination (class) of factor levels, there exists one observa-

tion (nij = 1 with nij defined in 1.2).
1.2) For each combination (class) (i, j) of the level i of factor A with the level j

of factor B, we have nij ≥ 1 observations, at least one nij > 1. If all nij = n,
we have a cross-classification with equal class numbers also called a bal-
anced experimental design.

2) At least one level of factorA occurs together with at least two levels of factors
B, and at least one level of factor B occurs together with at least two levels of
factors A, but we have no complete cross-classification. Then we say factor
A is partially crossed with factor B, or we have an incomplete cross-
classification.
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3) Each level of factor B occurs together with exactly one level of factor A. This
is called a nested classification of factor B within factor A. We also say that
factor B is nested within factor A and write B≺A.

The kinds of the two-way classification are as follows:

nij = 1 for all (i, j) complete cross-classification with one observation
per class.

nij ≥ 1 for all (i, j) complete cross-classification.
nij = n ≥ 1 for all (i, j) complete cross-classification with equal class numbers.
nij1 0; nij2 0 for at least one i and at least one nij = 0 incomplete cross-

classification.
ni1j 0; ni2j 0 for at least one j and at least one nij = 0 incomplete cross-

classification.
If nkj 0, then nij = 0 for i k (at least one nij > 1 and at least two nij 0)

nested classification.

5.3.1 Cross-Classification (A× B)

The observations yij of a complete cross-classification for the ith level Ai of fac-
tor A i= 1,…,a and the jth level Bj of factor B j= 1,…,b in the case nij = 1 can
be written in form of Table 5.7 and in the case of equal class numbers in form of
Table 5.8.W.l.o.g. the levels of factorA are the rows and the levels of factor B are
the columns of the tables. The special cases of Tables 5.7 and 5.8 are considered
at the end of this section. Initially we consider a universal cross-classification
where empty classes may occur. Let the random variables yijk with class (i, j)

Table 5.7 Observations (realisations) yij of a complete
two-way cross-classification with class numbers nij = 1.

Levels of factor B

B1 B2 … Bj … Bb

Levels of
factor A

A1 y11 y12 y1j y1b

A2 y21 y22 y2j y2b

Ai yi1 yi2 yij yib

Aa ya1 ya2 yaj yab
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be a random sample of a population associated with this class. Mean and var-
iance of the population of such a class are called truemean and variance, respec-
tively. The true mean of the class (i, j) is denoted by ηij. Again we consider the
case that the levels of factors A and B are chosen systematically (model I).
We call

μ= η .. =

a
i= 1

b

j=1
ηij

ab

the total mean of the experiment.

Table 5.8 Observations (realisations) yij of a complete two-way cross-classification with class
numbers nij = n.

Levels of factor B

B1 B2 … Bj … Bb

Levels of factor A A1 y111

y112

y11n

y121

y122

y12n

y1j1

y1j2

y1jn

y1b1

y1b2

y1bn

A2 y211

y212

y21n

y221

y222

y22n

y2j1

y2j2

y2jn

y2b1

y2b2

y2bn

Ai yi11

yi12

yi1n

yi21

yi22

yi2n

yij1

yij2

yijn

yib1

yib2

yibn

Aa ya11

ya12

ya1n

ya21

ya22

ya2n

yaj1

yaj2

yajn

yab1

yab2

yabn
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Definition 5.2 The difference ai = ηi −μ is called the main effect of the ith
level of factor A, and the difference bj = η j−μ is called the main effect of the
jth level of factor B. The difference ai j = ηij−η j is called the effect of the ith level
of factor A under the condition that factor B occurs in the jth level. Analogously
bj i = ηij−ηi is called the effect of the jth level of factor B under the condition that
factor A occurs in the ith level.
The distinction between main effect and ‘conditional effect’ is important, if

the effects of the levels of one factor depend on the number of the level of
the other factor. In ANOVA, we then say that an interaction between the
two factors exists. We define the effects of these interactions (and use them
in place of the conditional results).

Definition 5.3 The interaction (a, b)ij between the ith level of factor A and the
jth level of factor B in a two-way cross-classification is the difference between
the conditional effect of the level Ai of factor A for a given level Bj of factors B
and the main effect of the level Ai of A or, which means the same, the difference
between the conditional effect of the level Bj of B for a given level Ai of A and the
main effect of the level Bj of B or as formula

a,b ij = ai j−ai = bj i−bj = ηij−ηi −η j + μ 5 14

Under the assumption above the random variable yij of the cross-classification
varies randomly around the class mean in the form

yijk = ηij + eijk

We assume that the so-called error variables eijk are independent of each
other N(0, σ2)-distributed and write

yijk = μ+ ai + bi + a,b ij + eijk , i= 1,…,a; j= 1,…,b; k = 1,…,nij

5 15

with a,b ij = 0 if nij = 0. If in (5.14) all a,b ij = 0, we call

yijk = μ+ ai + bj + eijk , i= 1,…,a; j= 1,…,b; k = 1,…,nij 5 16

a model without interactions.
The models (5.15) and (5.16) are special cases of (5.1). To show this we write

Y = y111,…,y11n11 ,…,y1b1,…,y1bn1b ,…,yabnab
T
,

β = μ,a1,…,aa, b1,…,bb, a,b 11,…, a,b 1b, a,b 21,…, a,b 2b,…, a,b ab
T

for (5.15) and

β = μ, a1,…,aa, b1,…,bb
T
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for (5.16). In (5.15) let r of the nij be equal to 0 and ab−r = t of the nij be larger
than 0.
If (5.15) is written in matrix notation, then β is a t + a+ b+ 1 × 1 vector
a+ 1 b+ 1 −r = t + a+ b+ 1 and X a N × t + a+ b+ 1 matrix of zeros

and ones while e is a N × 1 vector of random errors andN(0, σ2IN)-distributed.
Then Y is N(Xβ, σ2IN)-distributed.

5.3.1.1 Parameter Estimation
Before we generally discuss the estimation of themodel parameters, we consider
an example.
We demonstrate the choice of the matrix X in (5.1) by

Example 5.5 Let a= b= n= 2, so that r = 0, t = ab= 4 and

Y = y111,y112,y121,y122,y211,y212,y221,y222
T ,

e= e111,e112,e121,e122,e211,e212,e221,e222
T ,

β = μ,a1,a2,b1,b2, a,b 11, a,b 12, a,b 21, a,b 22
T

Then

X =

1 1 0 1 0 1 0 0 0

1 1 0 1 0 1 0 0 0

1 1 0 0 1 0 1 0 0

1 1 0 0 1 0 1 0 0

1 0 1 1 0 0 0 1 0

1 0 1 1 0 0 0 1 0

1 0 1 0 1 0 0 0 1

1 0 1 0 1 0 0 0 1

is a matrix of rank 4. Further N = abn and

XTX =

N bn bn an an n n n n

bn bn 0 n n n n 0 0

bn 0 bn n n 0 0 n n

an n n an 0 n 0 n 0

an n n 0 an 0 n 0 n

n n 0 n 0 n 0 0 0

n n 0 0 n 0 n 0 0

n 0 n n 0 0 0 n 0

n 0 n 0 n 0 0 0 n

=

8 4 4 4 4 2 2 2 2

4 4 0 2 2 2 2 0 0

4 0 4 2 2 0 0 2 2

4 2 2 4 0 2 0 2 0

4 2 2 0 4 0 2 0 2

2 2 0 2 0 2 0 0 0

2 2 0 0 2 0 2 0 0

2 0 2 2 0 0 0 2 0

2 0 2 0 2 0 0 0 2
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The matrix B in (5.4) following Definitions 5.2 and 5.3 has the form

B=

0 N N 0 0 0 0 0 0

0 0 0 N N 0 0 0 0

0 0 0 0 0 N N 0 0

0 0 0 0 0 0 0 N N

0 0 0 0 0 N 0 N 0

under the side conditions

a

i= 1

ai =
b

j= 1

bi = 0,
a

i= 1

a,b ij = 0 for all j,
b

j= 1

a,b ij = 0 for all i 5 17

This leads to

BTB=

0 0 0 0 0 0 0 0 0

0 N2 N2 0 0 0 0 0 0

0 N2 N2 0 0 0 0 0 0

0 0 0 N2 N2 0 0 0 0

0 0 0 N2 N2 0 0 0 0

0 0 0 0 0 2N2 N2 N2 0

0 0 0 0 0 N2 N2 0 0

0 0 0 0 0 N2 0 2N2 N2

0 0 0 0 0 0 0 N2 N2

with rk BTB .... BTB = 5 and further

XTX +BTB =

N bn bn an an n n n n

bn N2 + bn N2 n n n n 0 0

bn N2 N2 + bn n n 0 0 n n

an n n N2 + an N2 n 0 n 0

an n n N2 N2 + an 0 n 0 n

n n 0 n 0 2N2 + n N2 N2 0

n n 0 0 n N2 N2 +n 0 0

n 0 n n 0 N2 0 2N2 + n N2

n 0 n 0 n 0 0 N2 N2 +n
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=

8 4 4 4 4 2 2 2 2

4 68 64 2 2 2 2 0 0

4 64 68 2 2 0 0 2 2

4 2 2 68 64 2 0 2 0

4 2 2 64 68 0 2 0 2

2 2 0 2 0 130 64 64 0

2 2 0 0 2 64 66 0 0

2 0 2 2 0 64 0 130 64

2 0 2 0 2 0 0 64 66

Estimators β for β we obtain under these side conditions as in Section 5.2.1 by

calculating XTX + BTB
−1

and β = XTX +BTB
−1

XT Y .
The following statements are independent of the special choice under the side

conditions.

Theorem 5.5 Thematrix XTX of the model equation (5.15) written in the form

Y =Xβ + e

with the N × t + a+ b+ 1 matrix X has rank t > 0, and a solution of the normal

equations XTX β
∗
= XT Y is given by

abij = yij for all i, jwithnij > 0

ai = 0 for all i, bj = 0 for all j, μ= 0 5 18

Proof: We write X = x1,x2,…,xt + a+ b+ 1 with the column vectors xl of X. We

easily see that
a+1

l = 2
xl =

a+ b+ 1

l = a+ 2
xl = x1. Adding to xl l = a+ b+ 2,…,

a+ b+ t + 1 corresponding to (a, b)ij those corresponding to all (a, b)ij for a
given i, then we obtain xi+ 1. Adding to xl all those corresponding to (a, b)ij
for a given j, we obtain xa+ 1+ j. That means that from the t + a+ b+ 1 rows of
XTX, at least t are linearly independent; because the last t rows and columns
of XTX are a diagonal matrix with t from 0 different elements, we have
rk XTX = t. We put a+ b+ 1 values of β equal to 0, namely, μ, a1,…, aa, b1,
…, bb. The last t equations of the system of normal equations are then the solu-
tions (5.18). When all a,b ij = 0, that is, when model equation (5.16) has to be

used, we obtain

Theorem 5.6 When all a,b ij = 0, then the matrix XTX of the model equation

(5.16) has, written in the form Y =Xβ + e, with the N × a+ b+ 1 matrix X the
rank rk XTX = rk X ≤ a+ b−1.
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Proof: XTX is a symmetrical matrix of order a+ b+ 1. The sum of the second up
to the a+ 1 th row equals the first row; the a+ 2 th up to the last row also add
up to the first one, so that the rank is at most a+ b+ 1.

Before solutions of the normal equations for model equation (5.16) are given,
we list some estimable functions and their BLUEs for model (5.15).

5.3.1.1.1 Models with Interactions
We consider the model equation (5.15). Because E(Y) is estimable, then

ηij = μ+ ai + bj + a,b ij for all i, j withnij > 0

is estimable. The BLUE of ηij is

ηij = μ+ai + bj + a,b
ij
, 5 19

because μ+ai + bj = 0 and a,b
ij
= yij. From (5.6) it follows

cov ηij,ηkl =
σ2

nij
δikδjl 5 20

It is now easy to show that differences between ai and bj are not estimable. All
estimable functions of the components of (5.15) without further side conditions
contain interaction effects (a, b)ij. It follows the theorem below.

Theorem 5.7 (Searle, 1971) The function

LA = ai−ak +
b

j= 1

cij bj + a,b ij −
b

j= 1

ckj bj + a,b kj for i k 5 21

or analogously

LB = bi−bk +
a

j=1

dji aj + a,b ji −
a

j= 1

djk aj + a,b jk for i k

is estimable if crs = 0 for nrs = 0 and drs = 0 for nrs = 0, respectively, as well as

b

j= 1

cij =
b

j= 1

ckj = 1 and
a

j= 1

dji =
a

j= 1

djk = 1,respectively

The BLUE of an estimable function of the form (5.21) is given by

LA =
b

j= 1

cijyij −
b

j= 1

ckjykj, 5 22
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and it is

var LA = σ2
b

j= 1

c2ij
nij

+
c2kj
nkj

5 23

Proof: An estimable function is always a linear combination of ηij. Therefore
crs = 0, if nrs = 0. Now

b

j=1

cijηij −
b

j= 1

ckjηkj

as a linear function of the ηij is estimable. Because of

b

j=1

cijηij =
b

j= 1

cij μ+ ai + bj + a,b ij = μ+ ai +
b

j= 1

cij bj + a,b ij

and the analogous relation for the corresponding term in ckj, the estimability of
LA and the validity of (5.22) and (5.23) follow.

If we usemodel equation (5.16) without interactions and side conditions, then

ηij =E yijk = μ+ ai + bj is an estimable function; the differences ai−aj and

bi−bj are estimable.
We consider the following example.

Example 5.6 From three test periods of testing pig fattening for male and
female offspring of boars, the number of fattening days an animal needed to
grow from 40 to 110 kg has been recorded. The values are given in Table 5.9.

Table 5.9 Results of testing pig fattening: fattening days (from 40 to 110
kg for three test periods and two sexes) for the offspring of several boars.

Sex

Male Female

Test periods 1 91

84 99

86

2 94 97

92 89

90

96

3 82

86 −
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We choose model equation (5.15) as a basis and write it in the form

91

84

86

99

94

92

90

96

97

89

82

86

=

1 1 0 0 1 0 1 0 0 0 0

1 1 0 0 1 0 1 0 0 0 0

1 1 0 0 1 0 1 0 0 0 0

1 1 0 0 0 1 0 1 0 0 0

1 0 1 0 1 0 0 0 1 0 0

1 0 1 0 1 0 0 0 1 0 0

1 0 1 0 1 0 0 0 1 0 0

1 0 1 0 1 0 0 0 1 0 0

1 0 1 0 0 1 0 0 0 1 0

1 0 1 0 0 1 0 0 0 1 0

1 0 0 1 1 0 0 0 0 0 1

1 0 0 1 1 0 0 0 0 0 1

μ

a1

a2

a3

b1

b2

a,b 11

a,b 12

a,b 21

a,b 22

a,b 31

+

e111

e112

e113

e121

e211

e212

e213

e214

e221

e222

e311

e312

We have r = 1, t = 3 2−1 = 5 and N = 12; X is a 12 × 11 matrix of rank 5.
We obtain

XTX =

12 4 6 2 9 3 3 1 4 2 2

4 4 0 0 3 1 3 1 0 0 0

6 0 6 0 4 2 0 0 4 2 0

2 0 0 2 2 0 0 0 0 0 2

9 3 4 2 9 0 3 0 4 0 2

3 1 2 0 0 3 0 1 0 2 0

3 3 0 0 3 0 3 0 0 0 0

1 1 0 0 0 1 0 1 0 0 0

4 0 4 0 4 0 0 0 4 0 0

2 0 2 0 0 2 0 0 0 2 0

2 0 0 2 2 0 0 0 0 0 2

and from (5.18)

a,b
11
= y11 = 87, a,b

12
= y12 = 99,

a,b
21
= y21 = 93, a,b

22
= y22 = 93,

a,b
31
= y31 = 84
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The function L1 = b1−b2 + a,b 11− a,b 12 is estimable, because the condi-
tion of Theorem 5.7 is fulfilled. The function L2 = b1−b2 + a,b 21− a,b 22
is also estimable. We get

L1 = y11 −y12 = −6, L2 = y21 −y22 = 6

Further var L1 = 4
3
σ2 and var L2 = 3

4
σ2.

5.3.1.1.2 Models Without Interactions
Model equation (5.16) is simpler than (5.15), but there exists nevertheless no
simple solution of the normal equations as for (5.15). The matrix XTX is

XTX =

N n1 … na n 1 … n b

n1 n1 n11 … n1b

0 0

na na na1 … nab

n 1 n11 … na1 n 1

0 0

n b n1b … nab n b

To obtain a simpler solution, we must rename for a < b the factors w.l.o.g. so
that a ≥ b. Because XTX following Theorem 5.6 has a rank of at most
a+ b−1, we can choose two values of β∗ arbitrarily. We put μ∗ = β∗b = 0 and
obtain the reduced system of normal equations

n1 0 n11 n1,b−1

0 na na1 na,b−1

n11 na1 n 1 0

0

n1,b−1 na,b−1 n b−1

a∗1

a∗
a

b∗1

b∗b−1

=

Y 1

Y a

Y 1

Y b-1

We put

Da =

n1 0

0 na

, V =

n11 n1,b−1

na1 na,b−1

, Db =

n 1 0

0 n b−1
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Now thematrix of coefficients of the reduced system of normal equations can be
written as

Da V

V T Db
=R

We put

W = −V TD−1
a V +Db 5 24

and assume that R has rank a+ b−1. Then W −1 exists. Further, we obtain

R−1 =
D−1

a +D−1
a VW −1V D−1

a −D−1
a VW −1

−W −1V T D−1
a W −1

,

so that with

v=Yb−V
TD−1

a Ya, v= v1,…,vb−1
T ,

vj =Y j −
a

i= 1

nijyi , Ya = y1 ..,…,ya ..
T ,

Ya = Y 1 ..,…,Y a ..
T , Yb = Y 1 ,…,Y b−1

T ,

the vector

1b
∗ =

0

Ya −D−1
a VW −1v

W −1v

0

5 25

is the solution of the system of normal equations and

XTX
−
=

0 0Ta 0Tb−1 0

0a D−1
a +D−1

a VW −1V TD−1
a −D−1

a VW −1 0a

0b−1 −W −1V TDa
−1 W −1 0b−1

0 0Ta 0Tb−1 0

5 26

is the corresponding generalised inverse.

Definition 5.4 A (incomplete) cross-classification is called connected if

W = a,b ij i, j= 1,…,b−1 in (5.24) is non-singular. If W = 0, then the

cross-classification is disconnected (see also a corresponding definition in
Chapter 12).
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Example 5.7 We consider a two-way cross-classification with a = 5, b = 4 and
the subclass numbers:

Levels ofA

A1

A2

A3

A4

A5

n n 0 0

n n 0 0

n n 0 0

0 0 m m

0 0 m m

Levels ofB

B1 B2 B3 B4

Here is n 1 = n 2 = 3n, n 3 = n 4 = 2m, n1 = n2 = n3 = 2n, n4 = n5 = 2m, and the
matrix W is given by

W =

3
2
n −

3
2
n 0

−
3
2
n 3

2
n 0

0 0 m

The first row is (−1) times the second row so that W is singular. The term ‘dis-
connected cross-classification’ can be illustrated by this example as follows. From
the scheme of the subclass numbers, we see that the levels A1, A2, A3, B1, B2 and
A4, A5, B3, B4 form two separate cross-classifications. If we add n further observa-
tions in (A2 B3), we obtain n2 = 3n,n 3 = 2m+ n, and W becomes

W =

5
3
n −

4
3
n −

n
3

−
4
3
n 5

3n
−
n
3

−
n
3

−
n
3

m+ 2
3
n

with W 0; now the cross-classification is connected.

In SPSS we easily see in a cross-classification of A with a levels and B with b
levels directly that there is a disconnected scheme if df A < a−1 and/or
df B < b−1 in the ANOVA table.
For special cases the two-way cross-classification as complete block designs

or balanced and partially balanced incomplete block designs is discussed in
Chapter 12 where only connected designs are used.

5.3.1.2 Testing Hypotheses
In this section testable hypotheses and tests of such hypotheses are considered.
The models (5.15) and (5.16) are handled separately.
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5.3.1.2.1 Models without Interactions
We start with model (5.16) and assume a connected cross-classification (W in
Definition 5.4 non-singular), that is, rk XTX = a+ b−1. For a testable hypoth-
esis KTb= 0, we can use the test statistic F in (4.34), that is, the test statis-
tic reads

F =
βTK KT XTX −K −1KTβ

Y T IN −X XTX −XT Y

n−p
q

5 27

and is F n−p,q,λ -distributed with non-centrality parameter

λ=
1
σ2

bTK KT XTX
−
K

−1
KTb, p= rk XTX , q = rk K

KTb= 0 leads to λ = 0. Because KTb= 0 is assumed to be testable, all rows of
KTb must be estimable functions. To show how (5.27) is used, we consider
an example.

Example 5.8 The hypothesisH0 b1 = = bb is to be tested. Initially we inves-
tigate whether H0 is testable. We write H0 in the form
H0 bj−bb = 0 j= 1,…,b−1 with

KT =

0

0

0 … 0

0 … 0

a

1 −1

0 −1

0

1 −1

b−1

= 0b−1,a+ 1, Ib−1, −1b−1 ,

so that KT XTX − with XTX − from (5.26) becomes

KT XTX
−
= 0b−1, −W

−1V TD−1
a ,W −1,0b−1

and KT XTX −K =W −1. Further with β from (5.25), we have

KTβ=W −1v,

and the numerator of F becomes

vTW −1 W −1 −1
W −1v= vTW −1v

To test the hypothesis H0 a1 = = aa, we have to use another generalised
inverse as in (5.26). We choose 2μ = 0 and 2ai = 0 and obtain a reduced system
of normal equations; in its matrix the first two rows and columns contain
zeros. Let
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Da =

n2 0

0 na

, Db =

n 1 0

0 n b

, V =

n21 n2b

na1 nab

and W =Da−VD−1
b V

T
. The matrix of coefficients

R=
Da V

V
T

Db

must have (full) rank a+ b−1 so that W
−1

exist. Then

R
−1

=
W

−1
−W

−1
VD

−1
b

−DbV
T
W

−1
Db

−1
+Db

−1
V

T
W

−1
VDb

−1

follows. Putting v= v2,…,va
T with vi =Y i−

b

j=1

nijy j , we get

2β =

0

0

yb−D
−1
b V

T
W

−1
v

5 25a

analogously to (5.25) with yb = y 1,…,y b . In this case

XTX
−
=

022 02a 02b

0a2 W
−1

W
−1
VD

−1
b

0b2 −D−1
b V W

−1
D−1

b +D−1
b V W

−1
D−1

b

5 26a

If there is a generalised inverse, then

1β
TXTY = Y −D−1

b VW −1v
T
Ya + W −1v

T
Yb =

a

i=1

Y 2
i

ni
+ vTW −1v

and

2β
TXTY =

b

j= 1

Y 2
j

n j
+ vTW

−1
v

From the special solution b of the system of normal equations independent of

β
∗
=XTY and from

a

i=1

Y 2
i

ni
+ vTW −1v=

b

j= 1

Y 2
j

n j
+ vTW −1v,
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it follows that

vTW
−1
v=

a

i= 1

Y 2
i

ni
+ vTW

−1
v−

b

j=1

Y 2
j

n j

Therefore it is sufficient to calculate any generalised inverse and the corre-
sponding solution β∗.
From the numerator of the F-statistic for the test of H0 b1 = = bb, the

numerator of the F-statistic for testing of H0 a1 = = aa can easily be derived.

Because of β= XTX −XTY , it follows that

Y T In−X XTX
−
XT Y =Y TY −βTXTY ,

and the test statistic for H0 a1 = = aa is

F =

a

i=1

Y 2
i ..
ni

−
b

j= 1

Y 2
j

n j
+ vTW

−1
v

i, j,k

y2ijk −
a

i=1

Y 2
i ..
ni

−vTW
−1
v

N −a−b+ 1
a−1

and for H0 b1 = = bb correspondingly

F =
vTW

−1
v

i, j,k

Y 2
ijk −

a

i= 1

Y 2
i ..
ni

−vTW
−1
v

N −a−b+ 1
b−1

If, as in (5.16), nij = n (equal subclass numbers), simplifications for the tests of
hypotheses about a and b result. We have the possibility further to construct an
ANOVA table, in which SSA, SSB, SSres = SSR add to SStotal = SST .

Theorem 5.8 If in model equation (5.16) nij = n ≥ 1 for all i and j, then the sum
of squared deviations of yijk from the total mean y… of the experiment

SST =Y TY −Ny2… =
a

i= 1

b

j=1

n

k = 1

yijk −y…
2

can be written as

SST = SSA + SSB + SSres
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with

SSA =
1
bn

a

i=1

Y 2
i −

1
N
Y 2

…, SSB =
1
an

b

j= 1

Y 2
j −

1
N
Y 2

…,

SSres =
a

i=1

b

j=1

n

k = 1

y2ijk −
1
bn

a

i=1

Y 2
i .. +

1
an

b

j=1

Y 2
j +

1
N
Y 2

…

SSA,SSB andSSres are independently distributed, and for normally dis-

tributed yijk, it is
1
σ2

SSA as CS(a −1, λa),
1
σ2

SSB as CS(b − 1, λb) and
1
σ2

SSres as

CS(N − a − b + 1) distributed with

λa =
1
σ2

a

i=1

ai−a
2, λb =

1
σ2

b

j= 1

bj−b
2

These formulae are summarised in Table 5.10.

Example 5.9 Two forage crops (green rye and lucerne) have been investigated
concerning their loss of carotene during their storage. For this four storage pos-
sibilities (glass jar in a refrigerator, glass jar in a barn, sack in a refrigerator and
sack in a barn) are chosen. The loss during storage was defined by the difference
between the content of carotene at start and the content of carotene after storing
300 days (in percent of dry mass). The question is whether the kind of storage
and/or of forage crop influences the loss during storage. We denote the kind
of storage as factor A and the forage crop as factor B and the observations (differ-
ences yij) can be arranged in the form of Table 5.7. Table 5.11 shows these values.

Table 5.10 Analysis of variance table of a two-way cross-classification with single subclass
numbers (nij = n).

Source of
variation SS df MS F

Between the
levels of A

SSA =
1
bn

a

i= 1
Y 2
i ..−

1
N
Y 2
… a−1

SSA
a−1

=MSA
MSA
MSres

= FA

Between the
levels of B

SSB =
1
an

b

j= 1
Y 2

j −
1
N
Y 2
… b − 1

SSB
b−1

=MSB
MSB
MSres

= FB

Residual SSres = SST −SSA−SSB N −a−b+ 1 SSres
N −a−b+ 1
=MSres

Total SST =
i, j,k

y2ijk −
1
N
Y 2
… N −1
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Because forage crops and kinds of storage have been selected consciously, we use
for the yij model I and (5.16) as the model equation.
The ANOVA assumes that the observations are realisations of random vari-

ables that are independent of each other with equal variances and normally dis-
tributed. Table 5.11 shows further results of the calculation. Table 5.12 is the
ANOVA table following Table 5.10. As the F-tests show, only factor storage
has a significant influence on the loss during storage; significant differences
could be found only between the kinds of storage, but not between the forage
crops α= 0 05 .
How many observations per factor level combination are needed to test the

effects of the factors ‘kind of storage’with the following precision requirements:
a = 4, b = 2, α = 0.05, β = 0.1 and δ/σ = 2?

Table 5.12 Analysis of variance table of Example 5.9.

Source of variation SS df MS F

Between the storages 43.2261 3 14.4087 186.7

Between the forage crops 0.8978 1 0.8978 11.63

Residual 0.2315 3 0.0772

Total 44.3554 7

Table 5.11 Observations (loss during storage in percent of dry mass during storage of
300 days) of the experiment of Example 5.9 and results of first calculations.

Forage crop

Green rye Lucerne Yi. Y2
i

2

j = 1
y2ij

K
in
d
of

st
or
ag
e Glass in

refrigerator
8.39 9.44 17.83 317.9089 159.5057

Glass in barn 11.58 12.21 23.79 565.9641 283.1805

Sack in
refrigerator

5.42 5.56 10.98 120.5604 60.2900

Sack in barn 9.53 10.39 19.92 396.8064 198.7730

Y. j 34.92 37.60 72.52 1401.2398

Y 2
j 1219.4064 1413.7600 2633.1664

4

i= 1
y2ij

324.6858 377.0634 701.7402
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Hints for Programs
With OPDOE of R we put in

size.anova(model="axb", hypothesis="a", a=4, b=2,
+alpha=0.05, beta=0.1, delta=2, cases="maximin")

and

size.anova(model="axb", hypothesis="a", a=4, b=2,
+alpha=0.05, beta=0.1, delta=2, Cases="minimin")

We obtain the output

n
5

and

n
3

We plan therefore experiments with 3 up to 5 subclass numbers.

5.3.1.2.2 Models with Interactions
We consider now model (5.15) and assume a connected cross-classification.
Also in this case a testable hypothesis KTb= 0 can be tested by the statistic

(5.27) if the yijk are N μ+ ai + bj + a,b ij,σ
2 -distributed. Now β has the form

β = μ,a1…,aa,b1,…,bb, a,b 11,…, a,b ab
T

Each estimable function is a linear function of

E yijk = ηij = μ+ ai + bj + a,b ij

A testable hypothesis KTβ = 0 has also the form KTβ =TTη= 0 with the vector

η= η11,…,ηab
T , with the t components ηij, for which nij > 0. By this we obtain

(5.27) due to (5.18) and

XTX
−
=

01+ a+ b, 1 + a+ b

0t,1 + a+ b

01+ a+ b, t

D
,

with a t × t -diagonal matrix D with elements
1
nij

nij > 0 , that is, because of

KT XTX −K =TTDT , we get
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F =
Y TT TTDT

−1
TTY

Y T IN −X XTX −XT Y

N − t
q

5 28

with Y = y11 ,…,yab
T . In (5.28) q is the number of (linear independent) rows of

KT or TT.
Before considering special cases nij = 1, nij = n , we look at

Example 5.10 For the values of Table 5.9 of Example 5.5, the hypothesis H0

b1−b2 + a,b 11− a,b 12 = 0 for α= 0 05 is to be tested. Now H0 is equivalent to
η11−η12 = 0, so that TT = 1, −1 0,0 0 . In Example 5.5 we have
XTX − =O5 5 D with

D=

1
3

0 0 0 0

0 1 0 0 0

0 0
1
4

0 0

0 0 0
1
2

0

0 0 0 0
1
2

Further it is η= 87,99,93,93,84 T , q = 1, t = 5 andN = 12. Moreover we find that

SSres =Y
T IN −X XTX

−
XT Y =

a

i=1

b

j= 1

nij

k = 1

y2ijk −b
TXT Y ,

and with b= β from (5.5), this is

SSres =Y
T IN −X XTX

−
XT Y =

a

i=1

b

j= 1

nij

k = 1

y2ijk −
a

i=1

b

j= 1

Y 2
ij

nij
, 5 29

writing down only summands for nij > 0. In the example it is

3

i= 1

2

j= 1

nij

k = 1

y2ijk = 98 600,
3

i= 1

2

j= 1

Y 2
ij

nij
= 98 514

and SSres = 86. From

YTT = y11 −y12 = −12, TTDT =
4
3
, TTDT

−1
=
3
4
,
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we get for F in (5.28)

F =
108
86

7 = 8 791

By this the null hypothesis is rejected, because F 1 7 0 95 = 5 59.

We consider now some special cases. Initially let nij = n, so that t = ab,N = abn
and N − t = ab n−1 . The observations can be written in form of Table 5.8.
Because all classes are occupied, we have

Aik = ai−ak +
1
b

b

j= 1

a,b ij−
b

j=1

a,b kj i,k = 1,…,a ; i k

and

Bjl = bj−bl +
1
a

a

i= 1

a,b ij−
a

i= 1

a,b il j, l = 1,…,b ; j l

as estimable functions. This can easily be shown, because

ai−ak +
1
b

b

j= 1

a,b ij− a,b kj =
1
b

b

j= 1

ηij−ηkj

The BLUEs of Aik are

Aik =
1
b

b

j=1

yij −ykj ,

and BLUEs of Bjl are analogously

Bjl =
1
a

a

i=1

yij −yil

By this the null hypotheses

H0A ai +
1
b

b

j= 1

a,b ij = aa +
1
b

b

j= 1

a,b aj i= 1,…,a−1 ,

H0B bj +
1
a

a

i= 1

a,b ij = bb +
1
a

a

i=1

a,b ib j= 1,…,b−1

are testable. W.l.o.g. we consider only H0A. We write H0A in the form

H0A ai +
1
b

b

j= 1

a,b ij−aa−
1
b

b

j= 1

a,b aj = 0 i= 1,…,a−1
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or

KTβ = 0

with

KT = 0a−1, Ia−1, −1a−1,Oa−1, b−1,
a−1

i= 1
1
b
1Tb , −

1
b
1a−1,b

We consider the next example.

Example 5.11 Assume that for the classification in Example 5.5 four observa-
tions per class are given. Then a= 3,b= 2 and

β = μ,a1,a2,a3,b1,b2, a,b 11, a,b 12, a,b 21, a,b 22, a,b 31, a,b 32
T

We test the hypothesis

HA a1 +
1
2

a,b 11 + a,b 12 = a2 +
1
2

a,b 21 + a,b 22 = a3 +
1
2

a,b 31 + a,b 32

KT in KTβ = 0 has the form

KT =
0 1 0 −1 0 0

1
2

1
2

0 0 −
1
2

−
1
2

0 0 1 −1 0 0 0 0
1
2

1
2

−
1
2

−
1
2

If in the general case KT is given as above, F in (5.27) can be simplified. With β
from (5.18), we have

βTK =
1
b

b

j=1

y1j −yaj ,…,
1
b

b

j= 1

ya−1, j −yaj

Further

KT XTX
−
K =

1
n
K∗TK∗ =

1
bn

M =
1
bn

Ia−1 + 1a−1,a−1

(and also the multiple M) is a a−1 × a−1 matrix of rank a−1. K∗T is the
matrix generated from the ab last columns of KT. Subtracting inM the (i + 1)th
row from the ith row i= 1,…,a−2 and adding then the first column to the sec-
ond one, the so generated new second column to the third and so forth, we find
that M = a. By this it is

1
n
K∗TK∗ =

a
ba−1na−1
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The minors of order a−2 belonging to the main diagonal elements of M are
a−1, and the others are −1, so that

KT XTX
−
K

−1
= bn

a−1
a

−
1
a

… −
1
a

−
1
a

a−1
a

… −
1
a

−
1
a

−
1
a

…
a−1
a

= bn Ia−1−
1
a
1a−1,a−1

By this F in (5.27) becomes

FA =

1
bn

a

i= 1

Y 2
i .. −

1
N

Y 2
… ab n−1

a−1 SSres
5 30

For H0B we correspondingly receive

FB =

1
an

b

j= 1

Y 2
j −

1
N

Y 2
… ab n−1

b−1 SSres
5 31

Under the side conditions

b

j=1

a,b ij = 0 foralli,
a

i= 1

a,b ij = 0 forallj

ai−ak and bi−bl are BLUE with the estimable functions

ai−ak = yi ..−yk .. i k

and

bj−bl = y j −y l j l

Then the test statistics (5.30) and (5.31) can be used to test the hypotheses

H0A a1 = = aa and H0B b1 = = bb

In the case of equal subclass numbers, we use the side conditions (5.17) and test
the hypotheses

H∗
0A a1 = = aa = 0 ,

H∗
0B b1 = = bb = 0 ,

H0AB a,b 11 = = a,b ab = 0
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with the F-statistics (5.30), (5.31) and

FAB =

1
n

a

i= 1

b

j= 1

Y 2
ij −

1
bn

a

i= 1

Y 2
i ..−

1
an

b

j= 1

Y 2
j +

1
N

Y 2
… ab n−1

a−1 b−1 SSres
,

5 32

respectively.
The ANOVA table for this case is Table 5.13. Because of

SST = SSA + SSB + SSAB + SSres,

the F-statistics (5.30), (5.31) and (5.32) are under the hypotheses H0A ,H0B and
H0AB central as F a−1 , ab n−1 , F b−1 , ab n−1 and F a−1 b−1 ,
ab n−1 , respectively, distributed. Otherwise they are non-central F-
distributed.

Example 5.12 We consider again Example 5.9 and the storages in glass and
sack with four observations per subclass as shown in Table 5.14. Table 5.15
shows the calculation and Table 5.16 is the ANOVA table following
Table 5.13. Due to the F-test, H0A has to be rejected but not H0B and H0AB.
How many replications in the four subclasses are needed to test the hypothesis

H0AB a,b 11 = = a,b 22 = 0

with the precision requirements in the following R commands?
The input is

size.anova(model="axb", hypothesis="axb", a=2, b=2,
alpha=0.05, beta=0.1, delta=2, cases="minimin")

The result is

n
4

The maximin size is 6.
A further special case is nij = n= 1. We also consider this case under the side

conditions (5.17). Then the following theorem can be stated.

Theorem 5.9 (Tukey, 1949).
The random variables yij i= 1,…,a ; j= 1,…,b may be represented in the

form of Equation (5.15) with nij = 1 for all i, j and (5.17) as well as
a,b ij = aibj may be fulfilled. The eij in (5.15) are independent from each other

N(0, σ2)-distributed for all i, j. Then with the symbolism of Table 5.13,
for n= 1 and
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Table 5.13 Analysis of variance table of a two-way cross-classification with equal subclass numbers for model I with interactions under the
condition (5.17).

Source of variation SS df MS E(MS) F

Between rows (A) SSA =
1
bn i

Y 2
i ..−

1
N
Y 2
… a−1

SSA
a−1

σ2 +
bn
a−1 i

a2i
ab n−1 SSA
a−1 SSres

Between columns (B) SSB =
1
an j

Y 2
j −

1
N
Y 2
… b−1

SSB
b−1

σ2 +
an
b−1 j

b2j
ab n−1 SSB
b−1 SSres

Interactions SSAB =
1
n i j

Y 2
ij −

1
bn i

Y 2
i ..

=
1
an i

Y 2
j +

Y 2

N

a−1 b−1
SSAB

a−1 b−1 σ2 +
n

i, j
a,b 2

ij

a−1 b−1

ab n−1 SSAB
a−1 b−1 SSres

Within classes (residual) SSres = i, j,k
y2ijk −

1
n i, j

Y 2
ij ab n−1

SSres
ab n−1

= s2σ2

Total SST =
i, j,k

y2ijk −
1
N
Y 2
…

N −1



Table 5.16 Analysis of variance table for the carotene storage experiment of Example 5.12.

Source of variation SS df MS F

Between the kind of storage 41.6347 1 41.6347 101.70

Between the forage crops 0.7098 1 0.7098 1.73

Interactions 0.9073 1 0.9073 2.22

Within classes (residual) 4.9128 12 0.4094

Total 48.1646 15

Table 5.14 Observations of the carotene storage experiment of
Example 5.12.

Forage crop

Green rye Lucerne

Kind of storage Glass 8.39 9.44

7.68 10.12

9.46 8.79

8.12 8.89

Sack 5.42 5.56

6.21 4.78

4.98 6.18

6.04 5.91

Table 5.15 Class sums Yij. and other results for the observations of Table 5.14.

Forage crop

Yi.. Y2
i .. j

Y2
ijGreen rye Lucerne

Kind of
storage

Glass 33.65 37.24 70.89 5025.3921 2519.1401

Sack 22.65 22.43 45.08 2032.2064 1016.1274

Y. j. 56.30 59.67 115.97 7057.5985

Y 2
j 3169.6900 3560.5089 6730.1989

i

Y 2
ij

1645.3450 1889.9225 3535.2675
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SSN =
a

i= 1

b

j= 1

yi −y .. y j−y .. yij−yi −y j + y ..

2
ab

SSASSB
5 33

the statistic

F =
SSN

SSAB−SSN
a−1 b−1 −1 5 34

is as F 1, a−1 b−1 −1 -distributed if the null hypothesisH0AB a,b ij = 0 for

all i, j is valid.
Before showing this theorem we prove two lemmas.

Lemma 5.4 Under the assumptions of Theorem 5.9, we have the following:

a) μ= y .. is independent of ai = yi −y .., bi = y j−y .. and a,b
ij
= yij−yi −y j +

y .. for all i, j.

b) âi and bj are independent for all i, j.

c) âi and a,b
kl
are independent for all i, k, l.

d) bj and a,b
kl
are independent for all j, k, l.

e) μ is N μ,
1
ab

σ2 -distributed, the âi are N ai,
a−1
ab

σ2 -distributed for all i,

the bi are N bj,
b−1
ab

σ2 -distributed for all j, the a,b
ij

are

N a,b ij,
a−1 b−1

ab
σ2 - distributed for all i, j and the corresponding

SS are χ2-distributed.

We further have

f) cov ai,aj = −
1
ab

σ2 for i j, cov bi,bj = −
1
ab

σ2 for i j,

cov a,b
ij
, a,b

kl
=
σ2

ab
aδik −1 bδjl−1

Proof: By the assumptions yij are N μ+ ai + bj + a,b ij,σ
2 -distributed. The

estimators are as linear combinations of the yij also normally distributed. From

(5.17) follows E y .. = μ, E ai = ai, E bj = bj, E a,b
ij
= a,b ij for all i, j.

Now we get
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var y .. = var
1
ab

a

i= 1

b

j=1

yij =
1

a2b2

a

i=1

b

j= 1

var yij =
1
ab

σ2

and

var ai = var
a
ab

b

j= 1

yij−
1
ab

a

t =1

b

j=1

ytj

=
1

a2b2
var a−1

b

j= 1

yij−
a

t i

b

j= 1

ytj

Because the two terms within the square bracket due to the assumption are
independent, we have

var ai =
1

a2b2
a−1 2bσ2 + a−1 bσ2 =

a−1
ab

σ2

Analogously the other relations under (f ) follow. By this (e) and (f ) are
proved. To show the independencies, in (a) to (d) due to (e), we have only to
show that the correlations are zero.
For (a) cov y ..,ai = cov y ..,yi −y .. = cov y ..,yi − var yi .. , and because of

cov
1
ab

a

i= 1

b

j=1

yij,
1
b

b

j=1

yij =
1
ab2

cov
a

i= 1

b

j=1

yij,
b

j= 1

yij =
σ2

ab

this covariance is zero. The proof of the other statements in (a) to (d) we leave as
exercises.

Lemma 5.5 Under the conditions of Theorem 5.9

u= SSN =

a

i= 1

b

j= 1

a,b ijaibj

a

i= 1

a2i

b

j=1

b2j

is N(0, σ2)-distributed, if a,b ij = 0 for all i, j.

Proof:We consider the a+ b+ 1 − dimensional random variable (u, a1,…, aa,
b1,…, bb) and show that the conditional distribution of u for given realisations
ai and bj of ai and bj is independent of ai and bj and by this equal to the mar-
ginal distribution of u.
For fixed ai, bj the variable u is a linear combination of the normally distrib-

uted (a, b)ij (from Lemma 5.4), and therefore the conditional distribution of u is
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a normal distribution.We have E a,b
ij

= a,b ij, so that under the assump-

tion a,b ij = 0

E u ai,bj = 0 i= 1,…,ai; j= 1,…,b

is independent of ai and bj. From (e) and (f ) of Lemma 5.4, var u ai,bj = σ2

follows. Because the expectation and the variance of u are independent of the
conditions and u is normally distributed, the statement follows.

Proof of Theorem 5.9:
Under the hypothesis H0AB all a,b ij = 0 the sum of squares of interactions

SSAB is distributed as CS a−1 b−1 . We assume that a,b ij = 0 for all i, j.

From Lemma 5.5 it follows that
SSN
σ2

=
u2

σ2
is CS(1)-distributed. Because

SSAB
σ2

−
SSN
σ2

is non-negative (Schwarz’s inequality), it follows from Theorem

4.6 that this difference is distributed as CS a−1 b−1 −1 . From Corollary

4.1 of Theorem 4.6, SSN and
SSAB
σ2

−
SSN
σ2

are independent of each other. This

completes the proof.

The results of Theorem 5.9 are often in the applications used as follows. With
the F-statistic of Theorem 5.9, the hypothesis H0AB a,b ij = 0 is tested. If H0AB

is rejected, a new experiment to test H0A and H0B with n > 1 has to be carried
out. If H0AB is accepted, H0A and H0B (often with the same observations) are
tested with the test statistic in Table 5.10. Concerning the problems of such
an approach, we refer the reader to special literature.

5.3.2 Nested Classification (A B)

A nested classification is a classification with super- and subordinated factors,
where the levels of a subordinated or nested factor can be considered as further
subdivision of the levels of the superordinated factor. Each level of the nested
factor occurs in just one level of the superordinated factor. An example is
the subdivision of the United States into states (superordinated factor A) and
counties (nested factor B). Table 5.17 shows observations of a two-way nested
classification.
As for the cross-classification we assume that the random variables yijk in

Table 5.17 vary randomly from the expectations ηij, that is,

yijk = ηij + eijk i= 1,…,a; j= 1,…,bi; k = 1,…,nij ,
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and that eijk are independent of each other N(0, σ2)-distributed. With

μ= η .. =

a

i=1

bi

j= 1

ηijnij

N
,

the total mean of the experiment is defined.
In nested classification, interactions cannot be defined.
Analogously to Definition 5.2 we give

Definition 5.5 The difference ai = ηi −μ is called the effect of the ith level of
factorA, and the difference bij = ηij−ηi. is the effect of the jth level of Bwithin the
ith level of A.

By this the model equation for yijk is

yijk = μ+ ai + bij + eijk 5 35

(interactions do not exist). It is easy to see that (5.35) is a special case of (5.1) if

Y = y111,…,y11n11 ,y121,…,y12n12 ,…,yabanaba
T
,

β = μ,a1,…,aa,b11,…,baba
T ,

e= e111,…,e11n11 ,e121,…,e12n12 ,…,eabanaba
T

and X is a matrix of zeros and ones so that (5.35) is valid. From assumption it

follows that e is N 0N ,σ2IN -distributed N =
i, j

nij Y and e are N × 1

vectors,β is a a+ 1+B × 1 vector B =
a

i= 1

bi

Example 5.13 demonstrates the choice of the matrix X.

Table 5.17 Observations yijk of a two-way nested classification.

Levels of the factor A A1 A2 … Aa

Levels of the nested
factor B

B11 … B1b1 B21 … B1b2 … Ba1 … Baba

Observations y111 … y1b21
y112 … y1b22

y11n11 … y1b2n1b1

y211 … y2b21
y212 … y2b22

y21n21 … y2b2n2b2

…

…

…

ya11 … yaba1
ya12 … yaba2

ya1na1 … yabanaba
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Example 5.13 In Table 5.18 observations of a two-way nested classification
are given (artificial data). Now we have

Y = 14,12,15,18,12,14,6,5,10,7,8,12 T

and

β = μ,a1,a2,b11,b12,b21,b22,b23
T

Then

X =

1 1 0 1 0 0 0 0

1 1 0 0 1 0 0 0

1 1 0 0 1 0 0 0

1 1 0 0 1 0 0 0

1 0 1 0 0 1 0 0

1 0 1 0 0 1 0 0

1 0 1 0 0 0 1 0

1 0 1 0 0 0 1 0

1 0 1 0 0 0 1 0

1 0 1 0 0 0 1 0

1 0 1 0 0 0 0 1

1 0 1 0 0 0 0 1

= 112,14 18,11 13 12 14 12 ,

Table 5.18 Observations of a two-way nested classification.

A1 A2

B11 B12 B21 B22 B23

yijk 14 12 12 6 8

15 14 5 12

18 10

7

nij 1 3 2 4 2

Ni. 4 8
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and XTX becomes

XTX =

12 4 8 1 3 2 4 2

4 4 0 1 3 0 0 0

8 0 8 0 0 2 4 2

1 1 0 1 0 0 0 0

3 3 0 0 3 0 0 0

2 0 2 0 0 2 0 0

4 0 4 0 0 0 4 0

2 0 2 0 0 0 0 2

The matrix XTX is of order 8 and, as it can be easily seen, of rank 5, because the
second and third rows sum up to the first row, the fourth and fifth rows sum up
to the second one and the last three rows sum up to the third one.
This may be generalised. One column of X corresponds to μ; a columns cor-

respond to the levels of A (the ai; i= 1,…,a); and B =
a

i= 1
bi columns corre-

spond to the levels of B within the levels of A. The order of XTX equals the
number of the columns of X, and by this it is 1 + a + B . XTX has with

N =
ij
nijNi the form

XTX =

N

N1

Na

n11

n1b1
na1

naba

N1

N1

0

n11

n1b1

0

0

Na n11 n1b1 na1 naba
0 n11 n1b1 0 0

Na 0 0 na1 naba
0 n11 0 0 0

0 0 n1b1 0 0

na1 0 0 na1 0

naba 0 0 0 naba

As we see the first row is the sum of the a following rows, and the ith of these a
following rows, that is, the i+ 1 th row is the sum of the bi rows with the row

numbers a+ 1+
i−1

j= 1
bj up to a+ 1+

i

j=1
bj. That means there are a + 1 lin-

ear relations between the rows of XTX. Therefore rk(XT X) of XTX is smaller or
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equal to B . But rk XTX =B , because the B last rows and columns are a non-
singular submatrix with the inverse

1
n11

1
n1b1

0

0
1
na1

1
naba

,

and by this a generalised inverse XTX
−
of XTX is given by a matrix of order

a+ 1+B . Their elements apart from the B last ones in the main diagonal are
equal to zero. In the main diagonal are a + 1 zeros and further the B.

values
1
nij

i= 1,…,a; j= 1,…,bi .

Example 5.14 We consider the matrix XTX of Example 5.13. We derive
XTX − as shown above and obtain

XTX
−
=

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0
1
3

0 0 0

0 0 0 0 0
1
2

0 0

0 0 0 0 0 0
1
4

0

0 0 0 0 0 0 0
1
2

The reader may show as an exercise that XTX XTX −XTX =XTX . As matrix

B in (5.4), we may choose, for instance, a a+ 1 × a+ 1+ bi -matrix
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B=

0 N … N 0 … 0 … 0 … 0

0 0 … 0 N1 … N1 … 0 … 0

0 0 … 0 0 … 0 … Na … Na

corresponding to the side conditions

a

i= 1

ai =
bi

j= 1

bij = 0 for alli

We see that

BTB =

0 0 … 0 0 … 0 … 0 … 0

0 N2 … N2 0 … 0 … 0 … 0

0

0 N2 … N2 0 … 0 … 0 … 0

0 0 … 0 N2
1 … N2

1

0

0 0 … 0 N2
1 … N2

1

0 0 … 0 N2
a … N2

a

0

0 0 … 0 N2
a … N2

a

= 0 N21aa N2
1 1b1b1 N2

a1baba

is of rank a+ 1. We choose instead

B=

0 N1 … Na 0 … 0 0 … 0

0 0 … 0 n11 … n1b1 0 … 0

0 0 … 0 0 … 0 na1 … naba

,
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and this is corresponding to the side conditions

a

i=1

Ni ai = 0,
bi

j=1

nijbij = 0 for alli 5 36

Minimising

a

i=1

bi

j= 1

nij

k = 1

yijk −μ−ai−bij
2
,

under these side conditions without the cumbersome calculation of

XTX +BTB
−1
, we obtain the BLUE (MSE)

μ= y…, ai = yi ..−y…, bij = yij −yi .. 5 37

Theorem 5.10 In a two-way nested classification, we have

SST =
i, j,k

yijk −y…
2

=
i, j,k

yi ..−y…
2
+

i, j,k

yij −yi ..
2
+

i, j,k

yijk −yij
2

or

SST = SSA + SSB in A + SSres

where SSA is the SS between the A-levels, SSB in A is the SS between the B-levels
within the A-levels and SSres is the SS within the classes (B-levels).
The degrees of freedom of these SS are:

SS df

SST N −1

SSA a−1

SSB in A B −a

SSres N −B

The SS may also be written in the form

SST =
i, j,k

y2ijk −
Y 2

N
, SSA =

i

Y 2
i ..

Ni
−
Y 2

N
,

SSB in A =
i, j

Y 2
ij

nij
−

i

Y 2
i ..

Ni
, SSres =

i, j,k

y2ijk −
i, j

Y 2
ij

nij

The expectations of the MS are given in Table 5.19.
Here and later we assume the side conditions (5.36).
With the results of Chapter 4, we obtain the following theorem
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Theorem 5.11 MSA +MSB in A andMSres in Table 5.19 are independent of
each other distributed as CS a−1,λa , CS B −a,λb and CQ N −B , respec-
tively, where

λa =
1
σ2

E Y T B2−B3 E Y , λb =
1
σ2

E Y T B1−B2 E Y

Here B1 is the direct sum of B. matrices Cij of order nij:

B1 =C11 Caba ;

the elements of Cij are all equal to n−1
ij . B2 is the direct sum of a matrices Gi of

order Ni.:

B2 =G1 Ga;

the elements of Gi are all equal to N −1
i . B3 is a matrix of order N; all of its ele-

ments are equal to N −1.

Proof:We only have to show that the quadratic forms SSA, SSB in A and SSres
fulfil the assumptions of Theorem 4.6. We have

i, j,k

y2ijk =Y TY and
i, j

Y 2
ij

nij
=Y TB1Y

and further

i

Y 2
i

Ni
=Y TB2Y ;

B2 is the direct sum of a matrices of order Ni with the elements N −1
i . Finally

Y 2
…

N
=Y TB3Y

Table 5.19 Analysis of variance table of the two-way nested classification for model I.

Source of
variation SS df MS E(MS)

Between
A-levels

SSA = i

Y 2
i ..

Ni
−
Y 2

…

N a−1
SSA
a−1

σ2 +
1

a−1 i
Ni a

2
i

Between
B-levels
within
A-levels

SSB in A = i, j

Y 2
ij

nij
−

i

Y 2
i ..

Ni
B −a

SSB in A

B −a
σ2 +

1
B −a i, j

nijb
2
ij

Within
B-levels
(residual)

SSres = i, j,k
y2ijk − i, j

Y 2
ij

nij
N −B. SSres

N −B
σ2

Total SST =
i, j,k

y2ijk −
Y 2

…

N
N −1

SST

N −1
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We have

rk B1 =B , rk B2 = a, rk B3 = 1

Further B1, B2 and B3 are idempotent (Condition 1 of Theorem 4.6). In

SSA =Y T B2−B3 Y , SSB in A =Y
T B1−B2 Y , SSres =Y

T IN −B1 Y ,

the matrices of the SS have the ranks

rk B2−B3 = a−1, rk B1−B2 =B −a, rk IN −B1 =N −B

Here IN −B1 +B1−B2 +B2−B3 = IN −B3 is the matrix of the quadratic form SST
of rank N −1. By this two conditions of Theorem 4.6 are fulfilled, and Theorem
5.11 is proven.

Example 5.15 For the data of Example 5.13, we get

Y = 14,12,15,18,12,14,6,5,10,7,8,12 T ,

B1 =

1 0 0 0 0 0 0 0 0 0 0 0

0
1
3

1
3

1
3

0 0 0 0 0 0 0 0

0
1
3

1
3

1
3

0 0 0 0 0 0 0 0

0
1
3

1
3

1
3

0 0 0 0 0 0 0 0

0 0 0 0
1
2

1
2

0 0 0 0 0 0

0 0 0 0
1
2

1
2

0 0 0 0 0 0

0 0 0 0 0 0
1
4

1
4

1
4

1
4

0 0

0 0 0 0 0 0
1
4

1
4

1
4

1
4

0 0

0 0 0 0 0 0
1
4

1
4

1
4

1
4

0 0

0 0 0 0 0 0
1
4

1
4

1
4

1
4

0 0

0 0 0 0 0 0 0 0 0 0
1
2

1
2

0 0 0 0 0 0 0 0 0 0
1
2

1
2

= 1
1
3
13 3

1
2
12 2

1
4
14 4

1
2
12 2 ,
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where is again the symbol of a direct sum. We have rk B1 = 5 because each
summand has rank 1. Further B2 is the direct sum of the matrix of order 4 with
elements 1

4 and the matrix of order 8 with elements 1
8, where we have

rk B2 = 2 B3 is the matrix of order 12 of rank 1 with elements 1
12. From this

we obtain (matrices as tables)

B2−B3 =

1 2 3 4 5 6 7 8 9 10 11 12
1

1
6 − 1

12
2
3
4
5

− 1
12

1
24

6
7
8
9
10
11
12

B1−B2 =

1 2 3 4 5 6 7 8 9 10 11 12
1 3

4 − 1
4

02
− 1
4

1
12

3
4
5
6

0

3
8 − 1

87
8

− 1
8

1
8 − 1

8
9
10
11 − 1

8
3
812
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In−B1 = 0

2
3

−
1
3

−
1
3

−
1
3

2
3

−
1
3

−
1
3

−
1
3

2
3

1
2

−
1
2

−
1
2

1
2

3
4

−
1
4

−
1
4

−
1
4

−
1
4

3
4

−
1
4

−
1
4

−
1
4

−
1
4

3
4

−
1
4

−
1
4

−
1
4

−
1
4

3
4

1
2

−
1
2

−
1
2

1
2

The reader may check as an exercise that B2−B3,B2−B2 and In−B1 are
idempotent and that B2−B3 B1−B2 = B2−B3 In−B1 =O12 12.
From Theorem 5.11 it follows that with λa and λb defined in Theorem 5.11

FA =
MSA
MSres

is distributed asF a−1, N −B ,λa

and

FB =
MSB in A

MSres
is distributed asF B −a, N −B ,λb

If (5.36) is valid, FA can be used to test the hypothesis H0A a1 = = aa because

under this hypothesis λa equals 0 (applying
a

i= 1
Ni ai = 0). Analogously FB can

be used to test the hypothesisH0B bi1 = = bib, for all i, because then (applying
bi

j=1
nijbij = 0  λb equals zero. H0B is also testable, if (5.36) is not true.

Example 5.16 We calculate the analysis of variance table for Example 5.13.
We have

Y11 = 14, Y12 = 45, Y1 .. = 59,

Y21 = 26, Y22 = 28, Y23 = 20, Y2 .. = 74,

Y… = 133

Further it is

i j k

y2ijk = 1647,
i j

Yij
2

nij
= 1605,
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i

Yi ..2

Ni
= 1545 75;

Y…
2

N
= 1474 09

Table 5.20 contains the SS, df, MS and the F-ratios. The 0.95-quantiles (for
α= 0 05 are F 1 7 0 95 = 5 59 and F 3 7 0 95 = 4 35. H0A is rejected, but
not the hypothesis H0B.

Hints for Programs
In SPSS a nested classifications can be analysed only if we change the syntax for
the DESIGN command. After
Analyze

General Linear Model
Univariate

both factors must be put on ‘main effects’. Under ‘Model’ we choose in ‘Sum of
Squares’ ‘Type 1’. Back in the main menu after pressing ‘Paste’, you can change
the syntax for the DESIGN command as shown below:

UNIANOVA
y BY a b
/METHOD=SSTYPE(1)
/INTERCEPT=INCLUDE
/CRITERIA=ALPHA(.05)
/DEIGN=a b(a).

We now show how for the nested classification the minimal experimental size
can be determined. We choose for testing the effects of A:

>size.anova(model="a>b",hypothesis="a",a=6,b=4,
+alpha=0.05,beta=0.1,delta=1,cases="minimin")

n
4

>size.anova(model="a>b",hypothesis="a",a=6,b=4,
+alpha=0.05,beta=0.1,delta=1,cases="maximin")

n
9

Table 5.20 Analysis of variance table of Example 5.16.

Source of variation SS df MS F

Between A 80.66 1 80.66 13.44

Between B within A 50.25 3 16.75 2.79

Residual 42 7 6.00

Total 172.91 11
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We have to choose between 4 and 9 observations per level of factor B. For test-
ing the effects of the factor B, we use

>size.anova(model="a>b",hypothesis="b",a=6,b=4,
+alpha=0.05,beta=0.2,delta=1,cases="minimin")
n
5
>size.anova(model="a>b",hypothesis="b",a=6,b=4,
+alpha=0.05,beta=0.2,delta=1,cases="maximin")
n
41

5.4 Three-Way Classification

The principle underlying the two-way ANOVA (two-way classification) is also
useful if more than two factors occur in an experiment. In this section we only
give a short overview of the cases with three factors without proving all state-
ments because the principles of proving are similar to those in the case with two
factors. Further statements valid for all cases proven in Chapter 4 and at the
beginning of this chapter have been proven.
We consider the case with three factors because it often occurs in applica-

tions, which can be handled with a justifiable number of pages, and last but
not least because besides the cross-classification and the nested classification
a mixed classification occurs. At this point some remarks about the numerical
analysis of experiments using ANOVAmust be made. Certainly a general com-
puter program for arbitrary classifications and numbers of factors following the
theory of Chapter 4 with unequal class numbers can be elaborated. However
such a program even with modern computers is not easy to apply because
the matrices XTX easily obtain several ten thousands of rows. Therefore we give
for some special cases of the three-way ANOVA numerical solutions for which
easy-to-use programs can be applied (in SAS, SPSS, R).
Problems with more than three factors are described in Method 3/51/0001 in

Rasch et al. (2008).

5.4.1 Complete Cross-Classification (A× B×C)

We assume that the observations of an experiment are influenced by three fac-
tors A, B, C with a, b and c levels A1,…,Aa, B1,…, Bb and C1,…,Cc, respectively.
For each possible combination (Ai, Bj, Ck), let n ≥ 1 observations yijkl l = 1,…,n
be present. Each combination (Ai, Bj, Ck) i= 1,…,a; j= 1,…,b; k = 1,…,c of
factor levels is called a class and characterised by (i, j, k). The expectation in
the population associated with the class (i, j, k) is ηijk.
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Analogously to Definition 5.2 we define the following:

ηi .. =
j,k
ηijk

bc the expectation of the ith level of factor A

η j =
i,k
ηijk

ac the expectation the jth level of factor B
and

η ..k =
i, j
ηijk

ab the expectation of the kth level of factor C

The total expectation is

μ= η… = i, j,k
ηijk

abc

The main effects of the factors A, B and C are defined by

ai = ηi…−μ, bj = η j −μ and ck = η ..k −μ

Assuming that the experiment is performed at a particular level Ck of the
factors C, we have a two-way classification with the factors A and B, and
the conditional interactions between the levels of the factors A and B for fixed
k are given by

ηijk −ηi k −η jk + η ..k 5 38

The interactions (a, b)ij between the ith A-level and the jth B-level are the
means over all C-levels of the terms in (5.38), that is, (a, b)ij is defined as

a,b ij = ηij −ηi ..−η j + μ 5 39

The interactions betweenA-levels andC-levels (a, c)ik and between B-levels and
C-levels (b, c)jk are defined by

a,c ik = ηi k −ηi ..−η ..k + μ 5 40

and

b,c jk = η jk −η j −η ..k + μ, 5 41

respectively.
The difference between the conditional interactions between the levels of two

of the three factors for the given level of the third factor and the (unconditional)
interaction of these two factors depends only on the indices of the levels of the
factors and not on the fact for which the interaction of two factors is calculated.
We call it the second-order interaction (a, b, c)ijk (between the levels of three
factors). Without loss of generality we write
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a,b,c ijk = ηijk −ηij −ηi k −η jk + ηi .. + η j + η ..k −μ 5 42

The interactions defined by (5.39) until (5.41) between the levels of two fac-
tors are called first-order interactions. From the definition of themain effect and
(5.39) until (5.41), we write for ηijk

ηijk = μ+ ai + bj + ck + a,b ij + a,c ik + b,c jk + a,b,c ijk

Under the definitions above the side conditions for all values of the indices not
occurring in the summation at any time are

i

ai =
j

bj =
k

ck =
i

a,b ij =
j

a,b ij =
i

a,c ik =
k

a,c ik

=
j

b,c jk =
k

b,c jk =
i

a,b,c ijk =
j

a,b,c ijk =
k

a,b,c ijk = 0

5 43

The n observations yijkl in each class are assumed to be independent from each
other N(0, σ2)-distributed. The variable (called error term) eijkl is the difference
between yijkl and the expectation ηijk of the class, that is, we have

yijkl = ηijk + eijkl

or

yijkl = μ+ ai + bj + ck + a,b ij + a,c ik + b,c jk + a,b,c ijk + eijkl 5 44

By the least squares method, we obtain under (5.43) the following estimators:

y .... =
1

abcn
i, j,k, l

yijkl forμ

as well as

ai = yi…−y ....,

bj = y j ..−y ....,

ck = y ..k −y ....,

a,b
ij
= yij ..−yi…−y j .. + y ....

a,c ik = yi k −yi…−y k .. + y ....

b,c
jk
= y jk −y j ..−y ..k + y ....

a,b,c
ijk
= yijk −yij ..−yi k −y jk + yi… + y j .. + y ..k −y ....

274 Mathematical Statistics



Wemay split SS_total =
i, j,k, l

yijkl−y ....
2
into eight components: three cor-

responding with the main effects, three with the first-order interactions, one
with the second-order interaction and one with the error term or the residual.
The corresponding SS are shown in the ANOVA table (Tables 5.21 and 5.22). In
these tables N is again the total number of observations, N = abcn.
The following hypotheses can be tested under (5.44) (H0x is one of the hypoth-

eses H0A,…,H0ABC; SSx is the corresponding SS):

H0A ai = 0 for all i ,

H0B bj = 0 for all j ,

H0C ck = 0 for all k ,

H0AB a,b ij = 0 for all i, j ,

H0AC a,c ik = 0 for all i,k ,

H0BC b,c jk = 0 for all j,k ,

H0ABC a,b,c ijk = 0 for all i, j,k, if n > 1

Under the hypothesis H0x,
1
σ2

SSx and
1
σ2

SSres are independent of each other

with the df given in the ANOVA table centrally χ2-distributed. Therefore
the test statistics given in the column F of the ANOVA table are with
the corresponding degrees of freedom centrally F-distributed. For n = 1
all hypotheses except H0ABC can be tested under the assumption

a,b,c ijk = 0 for all i, j, k because then
1
σ2

SSABC =
1
σ2

SSres and
1
σ2

SSx
under H0x x=A,B,C etc are independent of each other χ2-distributed.
The test statistic Fx is given by

Fx =
a−1 b−1 c−1

dfx

SSx
SSres

The calculation of a three-way ANOVA can be done in such a way as if we
have three two-way ANOVA. We demonstrate this by the following example.

Example 5.17 The observations of Example 5.9 can be considered as those of
a three-way ANOVA with single class numbers n= 1 if as factors we use the
forage crop (A), the kind of storage (B – barn or refrigerator) and the packaging
material (C – glass or sack) (Table 5.22). We have a= b= c= 2 and n= 1. The
observations in Table 5.22 can be arranged in three tables of a two-way classi-
fication where the new ‘observations’ are the sums over the third factor of the
original observations in the classes defined by the levels of the two factors
selected (Tables 5.23, 5.24 and 5.25). Table 5.26 is the ANOVA table of the
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Table 5.21 Analysis of variance table of a three-way cross-classification with equal subclass numbers
(model i).

Source of variation SS df

Between A-levels SSA =
1
bcn i

Y 2
i −

1
N
Y 2

i a−1

Between B-levels SSB =
1
acn j

Y 2
j −

1
N
Y 2
.... b−1

Between C-levels SSC =
1

abn k
Y 2

k −
1
N
Y 2
.... c−1

Interaction A × B SSAB =
1
cn i, j

Y 2
ij −

1
bcn i

Y 2
i

−
1
acn j

Y 2
j +

Y 2
....
N

a−1 b−1

Interaction A × C SSAC =
1
bn i,k

Y 2
i k −

1
bcn i

Y 2
i

−
1

abn k
Y 2

k +
Y 2
....
N

a−1 c−1

Interaction B × C SSBC =
1
an j,k

Y 2
jk −

1
acn i

Y 2
j ..

−
1

abn k
Y 2

k +
Y 2
....
N

b−1 c−1

Interaction A × B × C SSABC = SSG−SSA−SSB−SSC

−SSAB−SSAC−SSBC−SSres

a−1 b−1 c−1

Within the
classes (residual)

SSres = i, j,k, l
y2ijkl−

1
n i, j,k

Y 2
ijk abc n−1

Total SST =
i, j,k , l

y2ijkl−
Y 2
....
N

N −1

MS E(MS) F

MSA =
SSA
a−1

σ2 +
bcn
a−1

a
2

i

abc n−1
a−1

SSA

SSres

MSB =
SSB

b−1
σ2 +

acn
b−1

b
2

j
abc n−1

b−1
SSB
SSres

MSC =
SSC
c−1

σ2 +
abn
c−1

c
2

k

abc n−1
c−1

SSC
SSres

MSAB =
SSAB

a−1 b−1
σ2 +

cn
a−1 b−1

a,b ij
abc n−1
a−1 b−1

SSAB
SSres

MSAC =
SSAC

a−1 c−1
σ2 +

bn
a−1 c−1

a,c ik
abc n−1
a−1 c−1

SSAC

SSres

MSBC =
SSBC

b−1 c−1
σ2 +

an
b−1 c−1

b,c jk
abc n−1
b−1 c−1

SSBC
SSres

MSABC =
SSABC

a−1 b−1 c−1
σ2 +

n
a−1 b−1 c−1

a,b,c ijk
abc n−1

a−1 b−1 c−1
SSABC
SSres

MSres = s2 =
SSres

abc n−1
σ2



Table 5.22 Three-way classification of the observations of Table 5.14 with factors kind of
storage, packaging material and forage crop.

Kind of storage Packaging material

Forage crop

Green rye Lucerne

Refrigerator Glass 8.39 9.44

Sack 5.42 5.56

Barn Glass 11.58 12.21

Sack 9.53 10.39

Table 5.23 Two-way classification of the observations of Table 5.14 with factors kind of
storage and forage crop (Yij.).

Forage crop

Y. j. Y2
j

Green rye Lucerne

Kind of storage Refrigerator 13.81 15.00 28.81 830.0161

Barn 21.11 22.60 43.71 1910.5641

Yi 34.92 37.60 72.52 2740.5802

Y 2
i

1219.4064 1413.76 2633.1664

Table 5.24 Two-way classification of the observations of Table 5.14 with factors packaging
material and forage crop Y jk .

Forage crop

Y k Y2
kGreen rye Lucerne

Packaging material Glass 19.97 21.65 41.62 1732.2244

Sack 14.95 15.94 30.90 954.8100

Y. j. 34.92 37.60 72.52 2687.0344

Y 2
j 1219.4064 1413.76 2633.1664
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example. The F-tests are done under the assumption that all second-order inter-
actions vanish using the SSres defined above. Only between the kinds of storage
significant differences α= 0 05 could be found, that is, only the hypothesis HA

is rejected.

Hints for Programs
The size of the experiment is again calculated with the help of OPDOE in R.
The syntax is analogous to that of the one- and two-way ANOVA. We
demonstrate the calculation for sizes needed for testing the null hypothesis
for factor A and the interactions A × B for a balanced experiment with
a = 3, b = 4 and c = 3:

> size.anova(model="axbxc",hypothesis="a",a=3,b=4,c=3,
+alpha=0.05,beta=0.1,delta=0.5,cases="minimin")
n
6

Table 5.26 Analysis of variance table of Example 5.17.

Source of variation SS df MS F

Between kind of storage 27.7513 1 27.7513 170.78

Between forage crops 0.8978 1 0.8978 5.52

Between packaging material 14.3648 1 14.3648 88.40

Interaction kind of storage × packaging material 1.1100 1 1.11 6.83

Interaction kind of storage × forage crops 0.0112 1 0.0112 <1

Interaction forage crops × packaging material 0.0578 1 0.0578 <1

Residual 0.1625 1 0.1625

Total 44.3554 7 44.3554

Table 5.25 Two-way classification of the observations of Table 5.14 with factors kind of
storage and packaging material Yi k .

Packaging material

Yi Y2
i

Glass Sack

Kind of storage Refrigerator 17.83 10.98 28.81 830.0161

Barn 23.79 19.92 43.71 1910.5641

Y.. k 41.62 30.90 72.52 2740.5802

Y 2
k 1732.2244 954.8100 2687.0344
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> size.anova(model="axbxc",hypothesis="a",a=3,b=,c=3,
+alpha=0.05,beta=0.1,delta=0.5,cases="maximin")
n
9
> size.anova(model="axbxc",hypothesis="axb",a=3,b=4,
+c=3, alpha=0.05,beta=0.1,delta=1,cases="minimin")
n
3
> size.anova(model="axbxc",hypothesis="axb",a=3,b=4,
+c=3, alpha=0.05,beta=0.1,delta=1,cases="maximin")
n
12

5.4.2 Nested Classification (C≺B≺A)

We speak about a three-way nested classification if factor C is subordinated to
factor B (as described in Section 5.3.2) and factor B is subordinated to factor A,
that is, if C≺B≺A. We assume as in Section 5.3.2 that the random variable yijkl
varies randomly with expected value ηijk i= 1,…,a; j= 1,…,bi; k = 1,…,cij , that
is, we assume

yijkl = ηijk + eijkl l = 1,…,nijk ,

where eijkl independent from each other are N(0, σ2)-distributed. By

μ= η =

a

i= 1

bi

j= 1

cij

k = 1

ηijknijk

N
,

we define the total mean of the experiment by N =
a

i= 1

bi

j= 1

cij

k =1
nijk .

We generalise Definition 5.5 by

Definition 5.6 The difference ai = ηi ..−μ is called the effect of the ith level of
A, the difference bij = ηij −ηi .. is called the effect of the jth level of B within the
ith level ofA and the difference cijk = ηijk −ηij is called the effect of the kth level of
C within the jth level of B and the ith level of A.

Then the observations can be modelled by

yijkl = μ+ ai + bij + cijk + eijkl 5 45

There exist no interactions. We consider (5.45) with Nij = k
nijk ;

Ni .. = jk
nijk under the side conditions
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a

i=1

Ni..ai =
bi

j= 1

Nij bij =
cij

k =1

nijkcijk = 0 5 46

Minimising

a

i=1

bi

j= 1

ci j

k = 1

nijk

l =1

yijkl−μ−ai−bij−cijk
2
, 5 47

under the side conditions (5.46), leads to the BLUE of the parameters as follows:

μ= y ...., ai = yi…−y ...., bij = yij ..−yi…, cijk = yijk −yij ..

Without proof we give a theorem about the decomposition of the SStotal = SST
where the corresponding non-centrality parameters are calculated analo-
gously to

λ=
1
σ2

βTXT X XTX
−
XT −

1
N
1N ,N Xβ

in Section 5.1 by multiplying the quadratic form of the SS with the correspond-
ing expectations.

Theorem 5.12 In a three-way nested classification, we have

SST = SSA + SSB in A + SSC in B and A + SSres

with N =
a

i=1

b

j= 1

c

k = 1
nijk , Nij = k

nijk ;Ni .. = jk
nijk and

SST =
i, j,k , l

y2ijkl−
Y 2
....
N

, SSA =
i

Y 2
i…

Ni
−
Y 2
....
N

,

SSB in A =
i, j

Y 2
ij

Nij
−

i

Y 2
i…

Ni
, SSC in B =

i, j,k

Y 2
ijk

nijk
−

i, j

Y 2
ij

Nij
,

SSres =
i, j,k, l

y2ijkl−
i, j,k

Y 2
ijk

nijk

1
σ2

SSA up to
1
σ2

SSC in B are with B .. = bij,C… =
ijk
cijk pairwise independently

CS a−1,λa , CS B −a,λb , CS C ..−B ,λc distributed and
1
σ2

SSres is

CS N −C .. -distributed. The non-centrality parameters λa, λb and λc vanish
under the null hypotheses H0A ai = 0 i= 1,…,a , H0B bij = 0
i= 1,…,a; j= 1,…,bi , H0C cijk = 0 i= 1,…,a; j= 1,…,bi; k = 1,…,cij , so that

the result of Theorem 5.12 for constructing the F-statistics can be used.
Table 5.27 shows the SS and MS for calculating the F-statistics. If H0A is valid,
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FA is F a−1, N −C .. -distributed. If H0B is valid, then FB is F B−a,
N −C .. -distributed, and if H0C is valid, then FC is F C ..−B ,
N −C .. -distributed.

Hints for Programs
For the analysis in SPSS analogously to Section 5.3.2, we have to change the syn-
tax in the/DESIGN command. The minimal subclass numbers for the three
tests of the main effects with OPDOE in R give the following results:

> size.anova(model="a>b>c",hypothesis="a",a=2,b=2,c=3,
+alpha=0.01,beta=0.1,delta=0.5,cases="minimin")
n
21
> size.anova(model="a>b>c",hypothesis="a",a=2,b=2,c=3,
+alpha=0.01,beta=0.1,delta=1,cases="minimin")
n
6
> size.anova(model="a>b>c",hypothesis="b",a=2,b=2,c=3,
+alpha=0.01,beta=0.1,delta=1,cases="minimin")
n
7
> size.anova(model="a>b>c",hypothesis="c",a=2,b=2,c=3,
+alpha=0.01,beta=0.1,delta=1,cases="minimin")
n
10

The maximin values are left for the reader as an exercise.

Table 5.27 Analysis of variance table of a three-way nested classification for model i.

Source of
variation SS df MS E(MS) (under (5.46)) F

Between A
i

Y 2
i

Ni
−
Y 2
....
N

a−1
SS
a−1

σ2 +
1

a−1
n

i= 1
Ni ..a

2
i

MSA
MSres

= FA

Between B
in A i, j

Y 2
ij

Nij
−

i

Y 2
....

Ni

B −a
SSB in A

B −a
σ2 +

1
B −a i, j

Nij b
2
ij

MSB in A

MSres
= FB

Between C
in B and A i, j,k

Y 2
ijk

nijk
−

i, j

Y 2
ij

Nij
C ..−B.

SSC inB

C ..−B
σ2 +

1
C ..−B i, j,k

nijkc
2
ijk

MSC in B

MSres
= FC

Residual
i, j,k, l

y2ijkl − i, j,k

Y 2
ijk

nijk
N −C..

SSres
N −C ..

σ2

Total i, j,k, l
y2ijkl −

Y 2
....
N N −1
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5.4.3 Mixed Classification

In experiments with three or more factors under test besides a cross-
classification or a nested classification, we often find a further type of classifica-
tions, so-called mixed (partially nested) classifications. In the three-way
ANOVA, two mixed classifications occur (Rasch, 1971).

5.4.3.1 Cross-Classification between Two Factors Where One of Them Is
Subordinated to a Third Factor B≺A × C
If in a balanced experiment a factor B is subordinated to a factor A and both are
cross-classified with a factor C, then the corresponding model equation is
given by

yijkl = μ+ ai + bij + ck + a,c ik + b,c jk i + eijkl

i= 1,…,a; j= 1,…,b; k = 1,…,c; l = 1,…,n ,
5 48

where μ is the general experimental mean, ai is the effect of the ith level of factor
A, bij is the effect of the jth level of factor B within the ith level of factor A and the
ck is the effect of the kth level of factor C. Further (a, c)ik and (b, c)jk(i) are the
corresponding interaction effects and eijkl are the random error terms.
Model equation (5.48) is considered under the side conditions for all indices

not occurring in the summation

a

i= 1

ai =
b

j= 1

bij =
c

k =1

ck =
a

i= 1

a,c ik =
c

k = 1

a,c ik =
b

j=1

b,c jk =
c

k =1

b,c jk i = 0

5 49

and

E eijkl = 0, E eijklei j k l = δii δjj δkk δll σ
2, σ2 = var eijkl 5 50

(for all i, j, k, l).
The observations

yijkl i= 1,…,a; j= 1,…,b; k = 1,…,c; l = 1,…,n

are allocated as shown in Table 5.28 (we restrict ourselves to the so-called bal-
anced case where the number of B-levels is equal for allA-levels and the subclass
numbers are equal). For the sum of squared deviations of the random variables

yijkl i= 1,…,a; j= 1,…,b; k = 1,…,c; l = 1,…,n

from their arithmetic mean

SST =
i, j,k , l

yijkl−y ....
2
=

i, j,k, l

y2ijkl−
Y 2
....
N

, N = abcn ,
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Table 5.28 Observations of a mixed three-way classification b with c cross-classified, b in a
nested B≺A × C .

Levels of A Levels of B Levels of C

C1 C2 Cc

A1 B11 y1111 y1121

y1112 y1122

y111n y112n

y11c1

y11c2

y11cn

B12 y1211 y1221

y1212 y1222

y121n y122n

y12c1

y12c2

y12cn

B1b y1b11 y1b21

y1b12 y1b22

y1b1n y1b2n

y1bc1

y1bc2

y1bcn

A2 B21 y2111 y2121

y2112 y2122

y211n y212n

y21c1

y21c2

y21cn

B22 y2211 y2221

y2212 y2222

y221n y222n

y22c1

y22c2

y22cn

B2b y2b11 y2b21

y2b12 y2b22

y2b1n y2b2n

y2bc1

y2bc2

y2bcn

(Continued)

Analysis of Variance (ANOVA) – Fixed Effects Models 283



we have

SST = SSA + SSB in A + SSC + SSA×C + SSB×C in A + SSres,

where

SSA =
1
bcn

a

i=1

Y 2
i…
−
Y 2
....
N

are the SS between the levels of A,

SSB in A =
1
cn

a

i=1

b

j= 1

Y 2
ij
−

1
bcn

a

i= 1

Y 2
i…

the SS between the levels of B within the levels of A,

SSC =
1

abn

c

k =1

Y 2
k
−
Y 2

…

N

Table 5.28 (Continued)

Levels of A Levels of B Levels of C

Aa Ba1 ya111 ya121

ya112 ya122

ya11n ya12n

ya1c1

ya1c2

ya1cn

Ba2 ya211 ya221

ya212 ya222

ya21n ya22n

ya2c1

ya2c2

ya2cn

Bab yab11 yab21

yab12 yab22

yab1n yab2n

yabc1

yabc2

yabcn
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the SS between the levels of C,

SSA×C =
1
bn

a

i= 1

c

k = 1

Y 2
i k −

1
bcn

a

i= 1

Y 2
i −

1
abn

c

k = 1

Y 2
k +

Y 2
....
N

the SS for the interactions A×C,

SSB×C in A =
1
n

a

i= 1

b

j=1

c

k = 1

Y 2
ijk −

1
cn

a

i= 1

b

j= 1

Y 2
ij

−
1
bn

a

i= 1

c

k = 1

Y 2
i k +

1
bcn

a

i= 1

Y 2
i

the SS for the interactions B×C within the levels of A and

SSres =
i, j,k , l

y2ijk −
1
n

a

i=1

b

j= 1

c

k = 1

Y 2
ijk

the SS within the classes. The N − 1 degrees of freedom of SST corresponding
with the components of SST can be split into six components. These compo-
nents are shown in Table 5.29; the third column of Table 5.29 contains the
MS gained from the SS by division with the degrees of freedom.
If hypotheses have to be tested about the constants in model equation (5.47),

we additionally have to assume that eijkl are normally distributed. The hypoth-
eses can then again be tested with of F-tests. The choice of the correct test sta-
tistic for a particular hypothesis can easily be found heuristically. For this the
expectation E(MS) of the MS must be known. The E(MS) can be found in
the last column of Table 5.29. Representatively for the derivation of an E(MS)
we show the approach for E(MSA). We have

E MSA =
1

a−1
E SQA =

1
a−1

E
1
bcn

a

i= 1

Y 2
i −E

Y 2
....
N

Nowwe replace the yijkl by the right side of themodel equation (5.48) and obtain

Y i… = bcnμ+ bcnai + cn
b

j=1

bij + bn
c

k = 1

ck + bn
c

k = 1

a,c ik

+ n
b

j= 1

c

k =1

b,c ijk +
b

j=1

c

k = 1

n

l =1

ejikl

and using (5.49)

Y i = bcnμ+ bcnai +
b

j= 1

c

k =1

n

l = 1

eijkl
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Table 5.29 Analysis of variance table for a balanced three-way mixed classification B≺A xC for
model I n> 1 .

Source of variation SS

Between the levels of A SSA =
1
bcn

a

i=1
Y 2

i −
1
N
Y 2
....

Between the levels of B
within the levels of A

SSB in1 =
1
cn

a

i=1

b

j=1
Y 2

ij −
1
bcn

a

i= 1
Y 2

i

Between the levels of C SSc =
1

abn
a

k = 1
Y 2

k −
1
N
Y 2
....

Interaction A×C SSA×C =
1
bn

a

i= 1

a

k =1
Y 2

i k −
1
bcn

a

i= 1
Y 2

i

−
1

abn
e

k = 1
Y 2

k +
1
N
Y 2
....

Interaction B×C within the
levels of A

SSB×C in A =
1
n

a

i=1

b

j=1

c

k = 1
Y 2

ijk −
1
cn

a

i= 1

b

j= 1
Y 2

ij

−
1
bn

a

i= 1

e

k =1
Y 2

i k −
1
bcn

a

i= 1
Y 2

i

Residual SSres =
a

i= 1

b

j=1

c

k =1

n

l = 1
y2ijkl −

1
n

a

i=1

b

j=1

c

k = 1
Y 2

ijk

Total SST =
a

i=1

b

j= 1

c

k = 1

n

l = 1
y2ijkl−

1
N
Y 2
....

df MS E(MS) under (5.49)

a−1 MSA =
SSA
a−1

σ2 +
bcn
a−1

α

i= 1
a2i

a b−1 MSB inA =
SSB inA

a b−1
σ2 +

cn
a b−1

α

i= 1

b

j= 1
b2ij

c−1 MSC =
SSc
c−1

σ2 +
abn
c−1

c

k =1
c2k

a−1 c−1 MSA×C =
SSA×C

a−1 c−1
σ2 +

bn
a−1 c−1

a

i=1

c

k = 1
a,c 2

ik

a b−1 c−1 MSB×C inA =
SSB×C inA

a b−1 c−1
σ2 +

n
a b−1 c−1

α

i= 1

b

j= 1

c

k = 1
b,c 2

jk i

N −abc MSres =
SSres

abc n−1
σ2

N −1
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Analogously we receive under (5.49)

Y = abcnμ+
i, j,k, l

eijkl

Now we obtain for E Y 2
i the equation

E Y 2
i = b2c2n2μ2 + b2c2n2a2i + 2b2c2n2μai + bcnσ

2

and for E Y 2 the equation

E Y 2 =N2μ2 +Nσ2

With these two equations we get

E MSA =
bcn
a−1

a

i= 1

a2i + σ
2

The hypothesis H0A ai = 0 can be tested by the help of the statistic FA =
MSA

MSres
,

which under H0A with a – 1 and N −abc degrees of freedom is F-distributed. If
the null hypothesis is correct, numerator and denominator of FA (from
Table 5.29) have the same expectation. In general there is a ratio of two MS
of a particular null hypothesis with the corresponding degrees of freedom cen-
trally F-distributed, if the numerator and the denominator in case that the
hypothesis is valid have the same expectation. This equality is however not suf-
ficient if unequal subclass numbers occur; for instance, it is not sufficient if the
MS are not independent from each other. In this case we obtain in the way
shown above only a test statistic that is approximately F-distributed. We will in
the followingnotdifferentiatebetweenexact andapproximatelyF-distributed test
statistics. FromTable 5.29we see that in ourmodel, the hypothesis over all effects
(ai, bij,…, (a, b, c)ijk) can be testedbyusing the ratios of the correspondingMS and
MSres as test statistic.
As an example we consider again testing pig fattening for male and female

(factor C) offspring of sows (factor B) nested in boars (factor A). The observed
character is the number of fattening days an animal needed to grow up from
40 to 110 kg (compare Example 5.6).
We again give an example for the calculation of the experimental size using

the symbolism of OPDOE in R as in the other sections:

>size.anova(model="(axb)>c", hypothesis="a",a=6, b=5,
+c=4, alpha=0.05, beta=0.1, delta=0.5, case="minimin")
n
3
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5.4.3.2 Cross-Classification of Two Factors in Which a Third Factor Is
Nested C≺ A× B
If two cross-classified factors (A × B) are super-ordered to a third factor (C), we
have another mixed classification. The model equation for the random obser-
vations in a balanced design is given by

yijkl = μ+ ai + bj + cijk + a,b ij + eijkl, i= 1,…, a; j= 1,…,b; k = 1,…,c; l = 1,…,n

5 51

This is again the situation of model I, where the error terms eijkl may fulfil con-
dition (5.50).
Analogously to (5.48) we assume that for all values of the indices not occur-

ring in the summation, we have the side conditions

a

i=1

ai =
b

j= 1

bj =
c

k = 1

cijk =
a

i=1

a,b ij =
b

j= 1

a,b ij = 0 5 52

The total sum of squared deviations can be split into components

SST = SSA + SSB + SSC inAB + SSA×B + SSres

with

SSA =
a

i= 1

Y 2
i

bcn
−
Y 2
....
N

,

the SS between the A-levels,

SSB =
a

j= 1

Y 2
j

acn
−
Y 2
....
N

,

the SS between the B-levels,

SSC in AB =
a

i= 1

b

j= 1

c

k = 1

Y 2
ijk

n
−

a

i= 1

b

j=1

Y 2
ij

cn
,

the SS between the C-Levels within the A×B combinations,

SSA×B =
a

i=1

b

j= 1

Y 2
ij

cn
−

a

i= 1

Y 2
i

bcn
−

b

j= 1

Y 2
j

acn
+
Y 2

N
,
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the SS for the interactions between factor A and factor B and

SSres =
a

i=1

b

j= 1

c

k = 1

n

l =1

y2ijkl−
a

i=1

b

j= 1

c

k = 1

Y 2
ijk

n

The expectations of the MS in this model are shown in Table 5.31, and the
hypotheses

H0A ai = 0, H0B bj = 0, H0C cijk = 0, H0AB a,b ij = 0

can be tested by using the corresponding F-statistic as the ratios of MSA, MSB,
MSC and MSA×B, respectively (as numerator) and MSres (as denominator).
As an example consider the mast performance of offspring of beef cattle (fac-

tor C) of different genotypes (factor A) in several years (factor B). If each sire
occurs just once, then the structure of Table 5.30 is given.

Table 5.30 Observations of a balanced three-way mixed classification, a with b cross-
classified and c nested in the a × b-combinations.

Levels
of A

Levels of B

B1 B2 Bb
Levels of C Levels of C Levels of C

C111 C112 … C11c C121 C122 … C12c C1b1 C1b2 … C1bc

A1 y1111 y1121 … y11c1

y1112 y1122 … y11c2

y111n y112n … y11cn

y1211 y1221 … y12c1

y1212 y1222 … y12c2

y121n y122n … y12cn

y1b11 y1b21 … y1bc1

y1b12 y1b22 … y1bc2

y1b1n y1b2n … y1bcn

C211 C212 … C21c C221 C222 … C22c C2b1 C2b2 … C2bc

A2 y2111 y2121 … y21c1

y2112 y2122 … y21c2

y211n y212n … y12cn

y2211 y2221 … y22c1

y2212 y2222 … y22c2

y221n y222n … y22cn

y2b11 y2b21 … y2bc1

y2b12 y2b22 … y2bc2

y2b1n y2b2n … y2bcn

Ca11 Ca12 … Ca1c Ca21 Ca22 … Ca2c Cab1 Cab2 … Cabc

Aa ya111 ya121 … ya1c1

ya112 ya122 … ya1c2

ya11n ya12n … ya1cn

ya211 ya221 … ya2c1

ya212 ya222 … ya2c2

ya21n ya22n … ya2cn

yab11 yab21 … yabc1

yab12 yab22 … yabc2

yab1n yab2n … yabcn
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Hints for Programs
Again we determine the minimal experimental size by OPDOE of R using the
procedure as in sections above:

> size.anova(model="(axb)>c", hypothesis="b",a=6, b=5,
+c=4, alpha=0.05, beta=0.1, delta=0.5, case="minimin")
n
3
> size.anova(model="(axb)>c", hypothesis="b",a=6, b=5,
+c=4,+ alpha=0.05, beta=0.1, delta=0.5, case="maximin")
n
6.

Table 5.31 Analysis of variance table and expectations of the MS for model I of a balanced
three-way analysis of variance A with B cross-classified, C in the A × B-combinations nested.

Source of variation SS

Between A-levels SSA =
a

i= 1

Y 2
i

bcn
−
Y 2

N

Between B-levels SSB =
a

j= 1

Y 2
j

acn
−
Y 2

N

Between C-levels in
A×B combinations

SSC in AB =
a

i= 1

b

j= 1

c

k = 1

Y 2
ijk

n
−

a

i= 1

b

j= 1

Y 2
ij

cn

Interaction A×B SSA×B =
a

i= 1

b

j= 1

Y 2
ij

cn
−

a

i= 1

Y 2
i

bcn
−

b

j= 1

Y 2
j

acn
+
Y 2

N

Residual SSres =
a

i=1

b

j=1

c

k = 1

n

l = 1
y2ijkl−

a

i=1

b

j=1

c

k = 1

Y 2
ijk

n

Total SST =
a

i= 1

b

j= 1

c

k =1

n

l = 1
y2ijkl −

Y 2

N

DF MS E(MS) under (5.52)

a−1 MSA =
SSA

a−1
σ2 +

bcn
a−1

a

i= 1
a2i

b−1 MSB =
SSB
b−1

σ2 +
acn
b−1

b

j= 1
b2j

ab c−1 MSC inAB =
SSC inAB

ab c−1
σ2 +

n
ab c−1

a

i= 1

b

j= 1

c

k =1
c2ijk

a−1 b−1 MSA×B =
SSA × B

a−1 b−1
σ2 +

cn
a−1 b−1

a

i= 1

b

j= 1
a,b 2

ij

N −abc MSres =
SSres

N −abc
σ2

N −1
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5.5 Exercises

5.1 Prove (a) to (d) of Lemma 5.4.

5.2 Analyse the data of Table 5.14 by SPSS or R, that is, compute the analysis
of variance table and all F-values.

5.3 Analyse the data of Table 5.18 by SPSS or R, that is, compute the analysis
of variance table and all F-values.

5.4 Prove that X XTX
−
XTX =X .

5.5 Show that in Example 5.15 the differences B2−B3,B1−B2 and In−B1 are
idempotent and that B2−B3 B1−B2 = B2−B3 In−B1 = 0.

5.6 Install and load in R the program package OPDOE.

5.7 Compute with OPDOE of R for α = 0.025, β = 0.1 and δ/σ = 1 maximin
and minimin of the one-way analysis of variance for a = 6.

5.8 Compute with OPDOE of R for α = 0.05, β = 0.1 and δ/σ = 1maximin and
minimin of the two-way cross-classification for testing factor A for a = 6
and b = 4.

5.9 Compute with OPDOE of R for α = 0.05, β = 0.1 and δ/σ = 1maximin and
minimin of the two-way nested classification for testing the factorsA and
B for a = 6 and b = 4.

5.10 Compute with OPDOE of R for α = 0.05, β = 0.1 and δ/σ = 1maximin and
minimin of the two-way cross-classification for testing the interactions
A × B for a = 6 and b = 4.

5.11 Compute with OPDOE of R for α = 0.05, β = 0.1 and δ/σ = 0.5 maximin
and minimin of the three-way cross-classification for testing factor A for
a = 6, b = 5 and c = 4.
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6

Analysis of Variance: Estimation of Variance Components
(Model II of the Analysis of Variance)

6.1 Introduction: Linear Models with Random Effects

In this chapter models of the analysis of variance (ANOVA) where all factors are
random are considered; we call the model in this case model II. Our aim in such
models is not only as in Chapter 5 the testing of particular hypotheses but also
the methods of estimating the components of variance. For the latter we first of
all consider the best elaborated case of the one-way analysis of variance. We
again use the notation of Section 5.1 and consider formally the same models
as in Chapter 5. The difference between Chapters 5 and 6 is that the effects
of model II are random.We assume that, for instance, for a factor A, say, exactly
a levels are randomly selected from a universe PA of (infinite) levels of the factor
A so that α1, … , αa; the effects of these levels are random variables.
The terms main effect and interaction effect are defined analogously as in

Chapter 5, but these effects are now random variables and not parameters that
could be estimated.
Models, in which some effects are fixed and other are random, are discussed

in Chapter 7. In Chapter 6 some terms defined in Chapter 5 are used, without
defining them once more.

Definition 6.1 Let Y = (y1,…, yN)
T be an N-dimensional random vector and

β = (μ, β1, … , βk)
T a vector, of elements that except for μ are random variables.

Further X as in (5.1) is a N × (k + 1) matrix of rank p < k + 1. The vector e is also
an N-dimensional random vector of error terms. Then we call

Y =Xβ+ e 6 1

a model II of the ANOVA if

var e = σ2IN , cov β,e =Ok +1,N and E e = 0N , E β =
μ

0k
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We write (6.1) in the form

Y = μ1N +Zγ + e 6 2

where Z is the columns two up to (k + 1)- of X and γ contains the second up to
the (k + 1)-th element of β. Then we have E(Y) = μ1N.
If in β of (6.1) effects of r factors and factor combinations occur, we may write

γT = γTA1,γ
T
A2,…,γTAr and Z = ZA1,ZA2,…,ZAr

In a two-way cross-classification with interactions and the factors A and B, we
have, for instance, r = 3 ,A =A1 , B =A2 and AB =A3. In general, we have

Y = μ1N +
r

i=1

ZAiγAi
+ e 6 3

Definition 6.2 Equation (6.3) under the side conditions of Definition 6.1 and
the additional assumption that all elements of γAi

are uncorrelated and have the

same variance σ2i so that cov γAi
γAj

=Oaiaj for all i , j(i j) var γAi
= σ2i Iai if ai

is the number of levels of the factors, Ai is called a special model II of the analysis
of variance; σ2i and σ2 are called components of variance or variance
components.
From Definition 6.2 we get

var Y =
r

i=1

ZAiZ
T
Ai
σ2i + σ2IN 6 4

Theorem 6.1 IfY is anN-dimensional randomvariable so that (6.3) is amodel II
of the ANOVA following Definition 6.2 for the quadratic form YTAY with an
N×N-matrix A, we have

E Y TAY = μ21TNA1N +
r

i=1

σ2i tr AZAiZ
T
Ai

+ σ2tr A 6 5

Proof: We see that

E Y TAY = tr A var Y + E Y T AE Y

and because E(Y) = μ1N and (6.4) now follows (6.5).
Theorem 6.1 allows us to calculate the expectations of the mean squares of an

ANOVA based on model II, which is of importance to one of the methods for
estimating the components σ2i and σ2.
Henderson (1953), Rao (1970, 1971a), Hartley and Rao (1967), Harville

(1977), Drygas (1980) and Searle et al. (1992) developed methods for the esti-
mation of variance components. A part of these methods can also be used for
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mixed models (Chapter 7). Henderson’s ANOVA method works as follows: at
first ANOVA for the correspondingmodel I is calculated including the ANOVA
table excluding the calculation of the E(MS). Then using (6.5) the E(MS) is
calculated for model II. These are functions of the variance components σ2i .
The E(MS) then equalised with the observed MS and the resulting equations
are solved for σ2i The solutions are used as estimates σ2i = s

2
i of σ

2
i .

In this way differences occur between the MS, and these can be negative;
consequently, negative estimates of the variance components can result
as a consequence of this method. That means that the method gives no
estimators (or estimates) as defined in Definition 2.1. If the value of a variance
component is small (near 0), negative estimates may often occur. Negative
estimates may either mean that the estimated component is very small or they
may be a signal of an inappropriately chosen model, for instance, if effects are
nonadditive. The interpretation of negative estimates is discussed by Verdoo-
ren (1982).
In the following sections the method of Henderson is applied for several clas-

sifications. The estimator of a component is reached by replacing all observed
values in the corresponding equation of the estimate by the corresponding ran-
dom variables.
Simultaneously with the estimation tests of hypotheses about the variance,

components are described.
Besides the method of Henderson, three further methods are mainly in use.

For normally distributed Y we can use the maximum likelihood method or a
special version of it, the restricted maximum likelihood method (REML). Fur-
ther we have the MINQUEmethod (Figure 6.1), minimising a matrix norm.We
propose always to use REML.
Each of these four methods can be performed by SPSS via (see next page)

Figure 6.1 Methods of variance
component estimation available
in SPSS. Source: Reproduced with
permission of IBM.
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Analyze
General Linear Model

Variance Components
Options

Before we discuss special cases, some statements about the approximate distri-
bution of linear combinations of χ2-distributed random variables must be made.

The random variables u1 , … , uk may be independent of each other, and
niui

σ2i
may be CS (ni)-distributed. The variance of the linear combination

z =
k

i=1

ciui ci so that
k

i= 1

ciσ
2
i > 0

is then

var z = 2
k

i= 1

c2i
σ4i
ni

We divide z by the weighted variance σ2W = k
i= 1ciσ

2
i ,σ

2
W > 0, and we will

approximate the distribution of
nz
σ2W

for certain n by a χ2-distribution, which

has the same variance as
nz
σ2W

. This we achieve by putting (following

Satterthwaite, 1946)

n=
σ4W
k
i= 1c

2
i
σ4i
ni

by Theorem 6.2 below.

Theorem 6.2 If the random variables
niui

σ2i
are independent of each other

CS(ni)-distributed, then the random variable
nz
σ2W

with

z =
k

i=1

ciui, σ
2
W =

k

i= 1

ciσ
2
i > 0 and n=

σ4W
k
i= 1c

2
i
σ4i
ni

has the same variance as a CS(n)-distributed variable.

We already used this theorem for Welch test in Chapter 3.
Following Theorem 6.2 we can approximate a linear combination of inde-

pendently χ2-distributed random variable by a χ2-distribution with appropriate
chosen degrees of freedom. For instance, we see in Theorem 6.2 that
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nz

CS n, 1−
α

2

,
nz

CS n,
α

2

6 6

an approximate confidence interval with coefficient 1 − α for σ2W if σ2W, z and n
are chosen as in Theorem 6.2. Welch (1956) showed that for n > 0 a better
approximate confidence interval as (6.6) can be found as

nz
A1−α

2

,
nz
Aα

2

6 7

where

Aγ =CS n,γ −
2
3

2z21−α + 1 z

k
i=1

c3i z
3
i

n2i

k
i= 1

c2i z
2
i

ni

2 −1

For some cases Graybill and Wang (1980) found a further improvement.

6.2 One-Way Classification

We consider Equation (6.3) for the case r = 1 and put γA1 = (α1, … , αα)
T and

σ2i = σ
2
a Then (6.3) can be written in the form

yij = μ+αi + eij i= 1,…,a; j= 1,…,ni 6 8

The side conditions of Definition 6.1 are var eij = σ2, var ai = σ2a and that ai
are independent of each other and eij are independent of each other and of αi.
From Example 5.1 with X in (6.8) and (6.4) it follows that

V = var Y =
a

i=1
1ni ,niσ

2
a + Iniσ

2 6 9

For the case a = 3 , n1 = n2 = n3 = 2, the direct sum in (6.9) has the form

V = 12,2σ
2
a + I2σ

2 12,2σ
2
a + I2σ

2 12,2σ
2
a + I2σ

2

=

σ2a + σ
2 σ2a 0 0 0 0

σ2a σ2a + σ
2 0 0 0 0

0 0 σ2a + σ2 σ2a 0 0

0 0 σ2a σ2a + σ2 0 0

0 0 0 0 σ2a + σ
2 σ2a

0 0 0 0 σ2a σ2a + σ
2
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Lemma 6.1 If the square matrix V of order n has the form

Vn a,b = bIn + a1nn,

then its determinant is if b − na and b 0

Vn a,b = bn−1 b+ na 6 10

and further its inverse is

V −1
n a,b =Vn

1
b
, −

a
b + na

= −
a

b + na
1n,n +

1
b
In

Proof (Rasch and Herrendörfer, 1986): We subtract the last column of Vn(a, b)
from all the other columns and add the n − 1 first rows of the matrix generated
in this way to the last row. Then the determinant of the resulting matrix
equals (6.10).
If the inverse of Vn(a, b) has the form dIn + c1n , n, then Vn(a, b)(dIn + c1n , n) =

In, and this leads to d =
1
b
; c= −

a
b b+ an

Lemma 6.2 The eigenvalues of

V =
a

i=1
1ni ,niσ

2
a + Iniσ

2

are with N = a
i= 1ni

λk =
nkσ2a + σ

2 k = 1,…,a ,

σ2 k = a+ 1,…,N

The orthogonal eigenvectors are

τk =
1nk k = 1,…,a ,

sk k = a+ 1,…,N

with (sk) = SN = a
i= 1 Si where Si is the matrix

Si =

1 1 1 1

−1 1 1 1

−2 1 1

−3 1

0 − ni−1
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Proof: We have

V −λIN =
a

i= 1

Vi−λIni =
a

i= 1

1ni ,niσ
2
a + Ini σ

2−λ

and due to Lemma 6.1

V −λIN =
a

i= 1

σ2−λ
ni−1 niσ

2
a + σ2−λ = σ2−λ

N −a
a

i=1

niσ
2
a + σ2−λ

This term has the (N − a)-fold multiple zero λ = σ2 and a zeros λi = niσ2a + σ2,
and this proves the first part.
Orthogonal eigenvectors must fulfil the conditions V rk = λkrk andrTk rk = 0
k k . We put R = (r1, … , rN) = (TN, SN), where TN is a (N × a)-matrix and
SN a N × (N − a)-matrix.
With TN = a

i= 1ni we get

VTN =TN
a

i=1
λi

Further the columns of TN are orthogonal, and by this the columns of TN

are the eigenvectors of the first k eigenvalues. For the N − a eigenvalues
λk = σ2(k = a +1, … ,N), we have

Vrk = σ
2rk k = a+ 1,…,N

or

V −σ2IN rk = 0 k = a+ 1,…,N

or
σ2aTNT

T
N rk = 0 k = a+ 1,…,N

With SN = a
i= 1Si = ra+ 1,…,rN the last condition is fulfilled if 1ni−1,ni Si = 0

From the orthogonality property, it follows that

STi Si =

2 0 0
0 6 0

0 0 ni ni−1

With

Si =

1 1 1 1

−1 1 1 1

−2 1 1

−3 1

0 − ni−1

all conditions are fulfilled. Further the columns of TN and SN are orthogonal.
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6.2.1 Estimation of Variance Components

For the one-way classification, several methods of estimation are described and
compared with each other. The ANOVA method is the simplest one and stems
from the originator of the ANOVA R. A. FISHER. In HENDERONS fundamen-
tal paper from 1953, it was mentioned as method I.

6.2.1.1 Analysis of Variance Method
In Table 5.2 we find the SS, df andMS of a one-way analysis of variance. These
terms are independent of the model; they are the same for model I and model II.
But E(MS) for model II differs from those of model I. Further we have to respect
that for model II; yij in (6.8) within the classes are not independent. We have,
namely,

cov yij,yik =E yij−μ yik −μ =E ai + eij ai + eik

and from the side conditions of model II it follows:

cov yij,yik =E a2i = σ2a

We call cov(yij, yik) the covariance within classes.

Definition 6.3 The correlation coefficient between two random variables yij
and yik in the same class i of an experiment for which model II of the ANOVA as
in (6.8) can be used is called within-class correlation coefficient and is given by

ρI =
σ2a

σ2a + σ2

The within-class correlation coefficient ρI is independent of the special class i.
We now derive E(MS) for model II. E(MSI) = E(MSres) is as in model I equal to

σ2. For E(MSA) follows from model (6.8)

E MSA =
1

a−1
E

i

Y 2
i

ni
−E

Y 2
..

N

At first, we calculate E Y 2
i . The model assumptions supply

E Y 2
i =E niμ+ niai +

j

eij

2

= n2i μ
2 + n2i σ

2
a + niσ

2

and by this

E
i

Y 2
i

ni
=Nμ2 +Nσ2a + aσ2
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For E
Y 2

N
we obtain due to Y =Nμ+ a

i= 1niai + i, j eij

E
Y 2

N
=Nμ2 +

1
N

n2i σ
2
a + σ2

And therefore we obtain

E MSA =
1

a−1
σ2a N −

n2i
N

+ σ2 6 11

If in (6.8) all ni = n, then because n2i = n
2a and N = a n

E MSA = σ2 + nσ2a

Then an unbiased estimator of σ2a simply can be gained fromMSA andMSres by

s2a =
1
n

MSA−MSres

or

s2a =
1
n

1
a−1 j

Y 2
i

n
−
Y 2

n
−

1
N −a i, j

y2ij−
i

Y 2
i

n

In general s2a is given by

s2a =
a−1

N −
n2i
N

MSA−MSres 6 12

This corresponding estimates are negative if MSres >MSA.
As already mentioned this approach to put the calculated MS equal to the

E(MS) is called the ANOVA method and can be used for any higher or nested
classification. The corresponding estimators gained by transition to random
variables; these unbiased estimators can give negative estimates. Later we will
not use unbiased estimators, which sometimes give non-negative estimates of
the variance components, see, for example, REML.
If we are interested in an estimation in the sense of Definition 2.1 (mapping

into R+) and use Max 0,s2a as estimator, the unbiasedness is lost, but the
MQD becomes smaller as for s2a. The matrix A of the quadratic form

Y TAY = a
i= 1

Y 2
i

ni
−
Y 2

N
is

A= i
1
ni
1ni ,ni −

1
N
1N ,N
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From (6.9) we obtain

tr A var Y =
a

i= 1

ni

j= 1

σ2a−
ni
N
σ2a +

1
ni
σ2−

1
N
σ2

= σ2a N −
a

i= 1

n2i
N

+ σ2 a−1

Further E[YT]AE[Y] = 0 because E[Y] = μ1N. By this we obtain again (6.11) from
(6.5). The matrices A and var(Y) are confusing for higher classifications. For the
case of equal subclass numbers, simple rules for the calculation of the E(MS)
exist, which will be described in Chapter 7 for the general case of the mixed
model as well as for specialisations for model II. The two methods presented
below only for the case of unequal subclass numbers are really needed.

6.2.1.2 Estimators in Case of Normally Distributed Y
We assume now that the vector Y of yij in (6.8) areN(μ1N, V)-distributed with V
from (6.9). Further we assume ni = n(i = 1, … , a), that is, N = an. From (6.10)
and Lemma 6.1, it follows that

V = σ2
a n−1

σ2 + nσ2a
a

and

V −1 = i
1
σ2

In−
σ2a

σ2 + nσ2a
1n,n

with a summands in the direct sum. The density function of Y is

f Y μ,σ2,σ2a =
1

2π
N
2 V

1
2

e
1
2 Y −μ1N

T V −1 Y −μ1N

=
e

1
2σ2

Y −μ1N
T Y −μ1N +

σ2a
2σ2 σ2 + nσ2a

Y −μ1N
T a

i= 1
1n,n Y −μ1N

2π
N
2 σ2

a
2 n−1 σ2 + nσ2a

a
2

Because

Y −μ1N
T Y −μ1N =

i, j

yij−yi + y j−μ
2

=
i, j

yij−yi
2
+ n

a

i= 1

yi −μ
2

and

Y −μ1N
T 1n,n Y −μ1N = n2

i, j

yij−yi + y j−μ
2
,

= n2
a

i= 1
yi −y ..

2 + an2 y ..−μ 2

this density becomes
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f Y μ,σ2,σ2a =

exp −
1
2

SSres
σ2

+
SSA

σ2 + nσ2a
+
an y −μ 2

σ2 + nσ2a

2π
N
2 σ2

a
2 n−1 σ2 + nσ2a

a
2

= L

with SSres and SSA from Theorem 5.3.
The maximum likelihood estimates σ2, σ2aand μ are obtained, by zeroing the

derivations of ln L with respect to the three unknown parameters and obtain

0 =
−an

σ2 + nσ2a
y ..−μ

0 = −
a n−1

2σ2
−

a

2 σ2 + nσ2a
+
SSres
2σ4

+
SSA

2 σ2 + nσ2a
2

0 = −
na

2 σ2 + nσ2a
+

nSSA

2 σ2 + nσ2a
2

From the first equation (after transition to random variables), it follows for the
estimators

μ= y

and from the two other equations

a σ2 + nσ2a = SSA

or

σ2 =
SSres

a n−1
= s2 =MSres 6 13

and

σ2a =
1
n

SSA

a
−MSres =

1
n

1−
1
a

MSA−MSres 6 14

Because thematrixof the secondderivations isnegativedefinite,we reachmaxima.
As it is easy to see, μ and s2 are for μ and σ2 unbiased. But σ2a has following

(6.11) the expectation

E σ2a =
1
n

1−
1
a

σ2 + nσ2a −σ2 = σ2a−
1
an

σ2 + nσ2a

Because σ2a for 1−
1
a

MSA <MSres is negative, σ2,σ2a is in general no MLS

concerning σ2,σ2a because following Chapter 2 the maximum must be taken
with respect to Ω, that is, for all θ R1 × (R+)2.
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Herbach (1959) could show that besides this maximum μ= y leads to

σa
2 =

1
n

1−
1
a

MSA−MSres , if 1−
1
a

MSA ≥MSres

0 otherwise

6 15

and

σ2 =
s2, if 1−

1
a

MSA ≥MSres

0 otherwise

6 16

Both estimators are biased.
Using the given notation of SSres after Theorem 5.3 and SSA, the exponents in

the exponential function of f Y μ,σ2,σ2a are equal to

M = −
1
2σ2 i j

y2ij−
1
n

a

i= 1

Y 2
i −

1

2 σ2 + nσ2a

1
n

a

i=1

Y 2
i −

1
an

Y 2 −
an y ..−μ 2

2 σ2 + nσ2a

= η1M1 Y + η2M2 Y + η3M3 Y +A η

where A(η) only depends on θ.
This is the canonical form of a three parametric exponential family of full

rank with

η1 = −
1
2σ2

, η2 =
n

2 σ2 + nσ2a
, η3 =

n

2 σ2 + nσ2a

and

M1 Y =
i= 1 j=1

y2ij, M2 Y =
i=1

y2i , M3 Y = y ..

By this is (M1(Y),M2(Y),M3(Y)) following the conclusion of the Chapters 1 and
2 an UVUE of (η1, η2, η3).

6.2.1.3 REML Estimation
The method REML can be found in Searle et al. (1992). We describe this esti-
mation generally in Chapter 7 for mixed models. The method means that the
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likelihood function of TY is maximised, where T is a (N − a − 1) ×N-matrix,
whose rows are N − a − 1 linear independent rows of IN − X(XTX)−XT.
The (natural) logarithm of the likelihood function of TY is

lnL−
1
2
N −a−1 ln 2π −

1
2
N −a−1 lnσ2−

1
2
ln

σ2a
σ2

TVTT

−
1

2σ2YTTT
σ2a
σ2

TVTTTY

σ2a
σ2

TVTT

Now we differentiate this function with respect to σ2 and
σ2a
σ2

and zeroing this

derivation. The arising equation we solve iteratively and gain the estimates.
Because the matrix of second derivatives is negative definite, we find

maxima.
This method is increasingly in use in the applications; even for not normally

distributed variables, the REML method is equivalent to an iterative MINQUE;
it is discussed in the next section.

6.2.1.4 Matrix Norm Minimising Quadratic Estimation
We look now for quadratic estimators for σ2a and σ2 that are unbiased and
invariant against translation of the vector Y and have minimal variance for
the case that σ2a = λσ2 with known λ > 0. By this the estimators are in the sense
of Definition 2.3 LVES in the class the translation invariant quadratic
estimators.
We start with the general model (6.8) with the covariance matrix var(Y) =V in

(6.9) and put

σ2a
σ2

= λ, λ R+

Theorem 6.3 For model (6.8) under the corresponding side conditions

S2a =
1

N −1 K −L2
N −1−2λ+ λ2K Q1− L−λK Q2 , 6 17

S2 =
1

N −1 K −L2
KQ2− L−λK Q1 6 18

is at λ R+ an LVUE concerning
σ2a

σ2
in class of all estimators of the quad-

ratic form Q = YT AY, having finite second moments, and are invariant against
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transformations of the form X = Y + a with a constant (n × 1)-vector a. Here the
symbols L, K,Q1,Q2 in (6.17) and (6.18) are defined as follows:
Initially let

y .. =
a

i= 1

ni
niλ+ 1

−1 a

i= 1

ni
niλ+ 1

yi

and

kt
a

i= 1

ni
niλ+ 1

t

t = 1,2,3

Then we have

L= k1−
k2
k1
, K =K2−2

k3
k1

+
k22
k21

,

Q1 =
a

i= 1

n2i
niλ+ 1

2 yi −y
2

6 19

and
Q2 =Q1 + SSI 6 20

with SSI from Section 5.2.
The proof of this theorem is from Rao (1971b) and is not repeated here.

6.2.1.5 Comparison of Several Estimators
Which of the estimators offered should be applied in practice? Methods leading
to negative estimates for positive defined quantities are not estimators because
they do notmap into the parameter space and are often not accepted. In practice
the estimation of σ2a is often done following Herbach’s approach with a trun-
cated estimation analogous to (6.15), but contrary to (6.16), s2 =MSI is always
used. We lose by this the unbiasedness of the estimator of σ2a.
For the special case equal subclass numbers ni = n(i = 1, … , a), we have

Theorem 6.4 The estimators of the ANOVA method

s2 =MSI 6 21

and s2a following (6.12) and the LVUE (6.17) and (6.18) for σ2,σ2a are for ni = n

identical. In this case the LVUE do not depend on λ=
σ2a
σ2

and because of this are

also UVUE in class .

Proof: Initially from ni = n, (6.12) becomes

s2a =
1
n

MSA−MSI 6 22
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The constants in (6.17) and (6.18) simplify for ni = n as follows:

k1 =
an

nλ+ 1
, k2 =

an2

nλ+ 1 2 , k3 =
an3

nλ+ 1 3

By this we obtain

L=
a−1 n
nλ+ 1

, K =
a−1 n2

nλ+ 1 2

and further

L−λK =
n a−1

nλ+ 1 2 , N −1 K −L2 =
N −a a−1 n2

nλ+ 1 2

Finally

N −1−2λL+ λ2K =N −a+
a−1

nλ+ 1 2

Because in our special case y = y (6.19) and (6.20) simplify to

Q1 =
n

nλ+ 1 2SSA, Q2 =
1

nλ+ 1 2SSA + SSI

By this S2a in (6.17) becomes

S2a =
nλ+ 1 2

N −a a−1 n2
N −a+

a−1

nλ+ 1 2

n

nλ+ 1 2SSA

−
n a−1

nλ+ 1 2

1

nλ+ 1 2SSA + SSI

=
1
n

MSA−MSI

and this is independent of λ and identical with s2a in (6.12). Analogously follows
from (6.18) the relation

S2 =MSI = s
2

By this we propose to proceed in the case of equal subclass numbers (ni = n) by
estimating analogue to (6.15) σ2a by

S∗2a =
s2a =

1
n

MSA−MSI , if MSA >MSI

0 otherwise

and σ2 by MSi via (6.21). These estimators are biased but have small MSD.
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But how to act in the case of unequal subclass numbers? How good are the
MINQUE-estimators if we use a wrong λ-value? Often we have no idea how
to choose λ. What is the consequence of ‘unbalancedness’ (the inequality of
ni) to the UVUE-property? Empirical results are given in Ahrens (1983).
MINQUE can of course be used iteratively or adaptively by starting with some
a priori values for the variance components and choose the new estimates as a
priori information for the next step. Such an ‘iterative MINQUE’ converges
often to the REML estimates given in Section 6.2.1.3. For this, see Searle
et al. (1992). Rasch and Mašata (2006) compared the four methods above
and some more by simulation with unbalanced data. They found nearly no dif-
ferences; the total variance was best estimated by REML and MINQUE.

6.2.2 Tests of Hypotheses and Confidence Intervals

To construct confidence intervals for σ2a and σ2 and to test hypotheses about
these variance components, we need as in Section 6.2.1.2 a further side condi-
tion in model equation (6.6) about the distribution of yij. We assume again that
yij areN μ, σ2a + σ

2 -distributed. Then for the distribution ofMSB andMSres, use
the following theorem for the special case of equal subclass numbers.

Theorem 6.5 The random vector Y following the model equation (6.8) for
n1 = = na = n for its components yij may be N(μeN,V)-distributed. Here,

V = var(Y) is given by (6.9). Then the quadratic forms
SS1

σ2
=u1 and

SSA

σ2 + nσ2a
=u2 are independent of each other and are CS[a (n − 1)]- and CS

[a − 1]-distributed, respectively.

Proof: We write

u1 =Y
TA1Y with A1 =

1
σ2

IN −
1
n

a

i= 1
1n,n

and

u2 =Y
TA2Y with A2 =

1
σ2 + σ2a

1
n

a

i=1
1n,n−

1
N
1N ,N

Now, from (6.9) with ni = n,

A1V =
1
σ2

a

i=1
σ2In + σ2a1n,n −

σ2

n

a

i=1
1n,n−σ

2
a

a

i= 1
1n,n

= IN −
1
n

a

i= 1
1n,n

6 23

and this is an idempotent matrix using

1nm1mr =m1nr , 6 24
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Further

A2 =
1

σ2 + σa2
a

i=1
1n,nσa

2−
n
N
1N ,Nσa

2 +
a

i= 1
1n,nσ

2−
n
N
1N ,Nσ

2 =
a

i= 1
1n,n−

n
N
1N ,N

6 25

and this is idempotent.
We now only have to show that A1VA2 = 0, but this follows from

σ2 + nσ2a A1VA2 = IN −
1
n

a

i=1
1n,n

1
n

a

i= 1
1n,n−

1
N
1N ,N = 0

Because rk (A1) =N − a = a(n − 1) and rk (A2) = a − 1, the proof of Theorem 6.5
is completed.
From Theorem 6.5, it follows that

Corollary 6.1 Under the assumptions of Theorem 6.5 is

F =
SSA

SSI

a n−1 σ2

a−1 σ2 + nσ2a
6 26

and under the null hypothesis H0 σ2a = 0, this becomes

F =
SSA

SSI

a n−1
a−1

, 6 27

and this is F[a − 1, a(n − 1)]-distributed.
Corollary 6.1 allows us to use F in (6.27) to test the null hypothesis H0 σ2a = 0.

The test statistic (6.27) is identical with that in (5.11) and under the correspond-
ing null hypothesis both test statistics have the same distribution. If the null

hypothesis is wrong then, F in (5.11) is in the case σ2a > 0 the
σ2 + nσ2a

σ2
-fold of

a centrally F-distributed random variable. By this we can construct confidence
intervals for the variance components. Because u1 is CS[a(n − 1)]-distributed,

SSI

χ2 a n−1 1−
α

2

,
SSI

χ2 a n−1
α

2

6 28

is a (1 − α)-confidence interval for σ2 if n = n1 = = na. From Corollary 6.1 it
follows that

MSA−MSIF1−α
2

MSA + n−1 MSIF1−α
2

,
MSA−MSIFα

2

MSA + n−1 MSIFα
2

6 29
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with Fε = F[a + 1, a(n − 1)| ε] is a (1 − α)-confidence interval for
σ2a

σ2 + σ2a
. An

approximate confidence interval for σ2a in the case of unequal subclass numbers
is obtained (Seely and Lee, 1994).

6.2.3 Variances and Properties of the Estimators of the
Variance Components

As we have seen, estimators from the ANOVAmethod are unbiased concerning
the two variance components. From (6.11) and (6.12) we get

E s2a = σ2a,

and

E s2 = σ2

Now we need the variance of the estimators s2a and s2. By the analysis of
variance method, all estimators of the variance components are linear
combinations of the MS. From Theorem 6.5 it follows that MSA and MSres
are stochastically independent if all subclass numbers are equal. In this case
we have cov(MSres, MSA) = 0:

var s2 = var MSres

var s2a =
1
n2

var MSA + var MSres
6 30

In the case where Y is N(μ1n, V)-distributed, it follows from Theorem 6.5 that

var
SSres

σ2
= 2a n−1 = var

a n−1
σ2

MSres

This immediately leads to

var s2 = var MSres =
2σ4

a n−1
6 31

Analogously

var
SSA

σ2 + nσ2a
= 2 a−1 = var

a−1
σ2 + nσ2a

MSA

and

var MSA = 2
σ2 + nσ2a

2

a−1
6 32
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From (6.31), (6.32) and (6.30), we obtain, if Y is N(μ1N, V)-distributed,

var s2a =
2
n2

σ2 + nσ2a
2

a−1
+

σ4

a n−1
6 33

We summarise this in

Theorem 6.6 Under the conditions of Theorem 6.5, the variances of

s2a =
1
n

MSA−MSI and s2 = MSI are given by (6.33) and (6.31), respectively.

Further

cov s2,s2a =
−2σ4

na n−1
6 34

The relation for the covariance follows because

cov s2,s2a = cov MSI,
1
n

MSA−MSI = −
1
n
var MSI

and from (6.31).
Estimators for the variances and covariances in (6.31), (6.33) and (6.34) can be

obtained, by replacing the quantities σ2 and σ2a occurring in these formulae by
their estimators σ2 = s2 and σ2a = s

2
a. These estimators of the variances and covar-

iance components are biased. It can easily be seen that

var s2 =
2s4

a n−1 + 2
, 6 35

var sa
2 =

2
n2

s2 + s2a
a+ 1

−
s2

a n−1 + 2
6 36

and

cov s2, s2a =
−2s4

n a n−1 + 2
6 37

are unbiased concerning var s2 , var s2a and cov s2,s2a because, if

z =
f MSK

E MSK
is CS( f )-distributed then var(z) = 2f and by this

var MSK =
2
f
E MSK

2

Further

E MS2K − E MSK
2 =

2
f
E MSK

2

(in more detail see the proof of Theorem 6.10).
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In the case of unequal subclass numbers, Theorem 6.5 cannot be applied. But
Formula (6.31) was derived independently of Theorem 6.5 and is therefore valid
for unequal subclass numbers if we replace a(n − 1) by N − a.
Deriving the formulae for var s2a and cov s2,s2a for unequal ni is cumber-

some. The derivation can be found in Hammersley (1949) and by another
method in Hartley (1967). Townsend (1968, appendix IV) gives a derivation
for the case μ = 0. For the proof of the following theorems, we therefore refer
to these references.

Theorem 6.7 The random vector Y with the components in model equation
(6.8) is assumed to be N (μ1n, V)-distributed; V = var(Y) is given by (6.9). Then
for s2a in (6.12), we receive

var s2a =
2 N2− n2i + n2i

2
−2N n3i

N2− n2i
2 σ4a

+
4N

N2− n2i
σ2aσ

2 +
2N2 N −1 a−1

N2− n2i
2
N −a

σ4

6 38

Further

var s2 =
2σ4

N −a
, 6 39

cov s2,s2a =
−2 a−1 N

N −a N2− n2i
σ4 6 40

For ni = n we obtain the Formulae (6.31) to (6.33). If μ = 0, we get

var s∗2a =
2
N2

σ4a n2i + 2σ
2
aσ

2N + σ4
aN
N −a

, 6 41

where

s∗2a =
a
N

a

i= 1

Y 2
i

ni
−

1
N −a

SSI 6 42

is the ML-estimator of σ2a if μ = 0N.

Example 6.1 Table 6.1 shows milk fat performances (in kg) yij of the daugh-
ters of ten sires randomly selected from a corresponding population. The por-
tion of the fathers in the variance of this trait in the population shall be
estimated as well as the variances of this estimator and the estimator of the
residual variance and the covariance between the two estimators. Table 6.2 is
the ANOVA table, and Table 6.3 contains the estimates.
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Table 6.1 Milk fat performances yij of daughters of 10 sires.

Sire (bull)

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

120 152 130 149 110 157 119 150 144 159

155 144 138 107 142 107 158 135 112 105

131 147 123 143 124 146 140 150 123 103

130 103 135 133 109 133 108 125 121 105

140 131 138 139 154 104 138 104 132 144

140 102 152 102 135 119 154 150 144 129

142 102 159 103 118 107 156 140 132 119

146 150 128 110 116 138 145 103 129 100

130 159 137 103 150 147 150 132 103 115

152 132 144 138 148 152 124 128 140 146

115 102 154 138 124 100 122 106 108

146 160 115 142 154 152 119

ni 12 12 11 10 12 12 11 12 12 12

yi 1647 1584 1538 1227 1559 1576 1492 1593 1538 1452

yi 137.25 132.00 139.82 122.70 129.92 131.33 135.64 132.75 128.17 121.00

Table 6.2 Analysis of variance table (SPSS output) for the data of Table 6.1 of Example 6.1.

Tests of between subjects effects

Dependent variable: milk

Source Type III sum of squares df Mean square F Sig.

Sire Hypothesis 3609.106 9 401.012 1.272 .261

Error 33426.032 106 315.340

Table 6.3 Results the variance component estimation using four methods.

Method s2a s2 var s2 var s2a cov s2,s2a

Analysis of variance 7.388 315.34

MINQUE 8.171 315.35

ML 3.248 316.03 199.45 1883.95 −161.99

REML 6.802 315.90 271.26 1882.59 −162.06
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According to the ANOVAmethod is s2a = 7 388 In the ANOVA table, we find
s2 = 315.34. The inner-class correlation coefficient ρI is estimated as

rI =
7 388
322 728

= 0 023

The ANOVA table is calculated by SPSS via

Analyze
General Linear Model

Variance Components

At first we receive the data and via OPTIONS the possible methods of estima-
tion as shown in Figure 6.2.

By using the button ‘model’ putting the sum of squares to 1, we get this
result.
In the SPSS output in Table 6.2, Sig leads to the rejection of the null

hypothesis, in cases where the value is smaller or equal to the first kind risk
α chosen.
We now will estimate the variance components with SPSS using all available

methods in this program given in Figure 6.1.
Again we put SS to type I. In the window arising after this, we select the

corresponding method (Figure 6.1). We obtain the results of Table 6.3.
As we see, the results, except for the variance of factor A in ML, differ unes-

sentially from each other.

Figure 6.2 The data of Example 6.1 and the possible methods of estimation in SPSS.
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6.3 Estimators of Variance Components in the
Two-Way and Three-Way Classification

In this chapter, we consider only the ANOVAmethod. In case of unequal sub-
class numbers, there are methods already shown in Section 6.2, which can be
calculated with SPSS. But as in Section 6.1.2 for the one-way ANOVA, we also
cannot say here that one of these methods is uniformly better than the
ANOVA method; however in practice the REML method is increasingly used.
Readers interested in this method are referred to Searle et al. (1992) and
Ahrens (1983).
For the following we need

Definition 6.4 Let Y be a random variable with a distribution independent of
the parameter (vector) θ.
θ is an unbiased estimator of θ, being a quadratic function of Y. If θ

has minimal variance amongst all unbiased estimators quadratic in Y with
finite second moments, then θ is called best quadratic unbiased estimator
(BQUE) of θ.

6.3.1 General Description for Equal and Unequal Subclass Numbers

Definition 6.5 For a special model II of the ANOVA in Definition 6.2 and for
correspondingly structured other models, we speak about a balanced case; if
for each factor the subclass numbers in the levels are equal and in nested
classifications the number of nested factors is equal for each level of the
superior factor.
Balanced cases are, for instance, the cross-classification with equal subclass

numbers and nested classification with equal number of levels of the inferior
factor and equal subclass number.
In the one-way classification in (6.3) is r = 1 and for ZA1 =Z = a

i=1en, we have

eTNZ = neTa , Zea = eN 6 43

The general approach of the ANOVA method in the balanced case as already
said is to look for the ANOVA table (except the column for E(MS)) for the cor-
responding model I in Chapter 5. Now the E(MS) for model II are calculated,
and theMS are formally equated to the E(MS). The solutions of the then arising
simultaneous equations are the estimates of the variance components. The esti-
mators are given by transition to the corresponding random variables. The fac-
tors of the variance components in the E(MS) can be found by using the rules of
Chapter 7. We denote by q = (MS1, …, MSr)

T the vector of the MS in an
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ANOVA table and with σ21,…,σ2r
T
the vector of the variance components and

with K the non-singular matrix of the factors kij so that

s21,…,s2r
T
=K −1q 6 44

The random solutions of q =K σ21,…,σ2r
T
are used as an estimator s21,…,s2r

T

of σ21,…,σ2r
T
, and we get s21,…,s2r

T
=K −1q

Without proof we give the following theorem:

Theorem 6.8 (Graybill)
In an ANOVA for a special linear model of the form (6.3), we have in any
balanced case:

1) The estimator (6.44) is in the case that γAi
in (6.3) have finite third and

fourth moments and are equal for all elements of γAi
(and for each i)

a BQUE.
2) The estimator (6.44) for normally distributed random variables Y is the best

(unbiased) estimator.

The proof of this theorem can be found in Graybill (1954).
The unbiasedness follows immediately from

E s21,…,s2r
T

=K −1E q =K −1K σ21,…,σ2r
T
= σ21,…,σ2r

T

The covariance matrix of the estimator (6.44) is

var s21,…,s2r
T

=K −1 var q K −1

Theorem 6.9 Let (6.3) be a special model of the ANOVA following Definition
6.2 and Y in (6.3) is N-dimensional normally distributed. Then in the balanced
case for SSi of the corresponding ANOVA (see Chapter 5) with the degrees of
freedom vi(i = 1, …, r + 1, SSr+1 = SSres)

SSi

E MSi
=Y TAiY

with the positive definite matrices Ai of rank vi that are independent of each
other CS(vi)-distributed.
The proof of this theorem can be obtained with the help of Theorem 4.6

showing that AiV is idempotent and AiVAj = 0 for i j and μ1TnAi1nμ= 0.
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Theorem 6.10 If y in (6.3) in the balanced case is N-dimensional normally

distributed, then for s21,…,s2r
T
in (6.44)

var s21,…,s2r
T

=K −1D KT −1

with the diagonal matrixD, having elements equal to
2
vi

E DQi
2. The vi are the

degrees of freedom of MSi for i = 1 , … , r + 1. Further

var s21,…,s2r
T

=K −1D KT −1

is with the diagonal matrix D with elements
2

vi + 2
MS2i an unbiased estimator

for var s21,…,s2r
T

.

Proof: From Theorem 6.9 follows that in the balanced case,
viMSi

E MSi

i= 1,…, r + 1 are independent of each otherCS(νi)-distributed. Therefore from
var(χ2) = 2n for each CS(n)-distributed random variable χ2

var
viMSi

E MSi
=

v2i
E MSi

2 var MSi = 2vi

and from this follows because of cov(MSi, MSj) = 0 for all i j the stated form
of D.
Because

var MSi = E MS2
i − E MSi

2 =
2
vi

E MSi
2,

we have

E MS2i = E MS i
2 2 + vi

vi
,

and
2

νi + 2
MS2i is unbiased concerning

2
νi

E MSi
2, and we get E D =D

We consider now the unbalanced case, that is, such models for which (6.43) is
not valid.We restrict as already said on the ANOVAmethod because it is simple
to calculate and no uniformly better method exists – but see Ahrens (1983).
The analogy is as follows. The SSi in the balanced case can be written as linear

combinations of squares of the components ofY and of partial sums of this com-
ponents. We denote now these elements in the SSi written as linear combina-
tions by sAi , where the Ai are the factors or factor combinations in (6.3) (SA0 = Sμ
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is assigned to μ). Analogously to the sAi for the balanced case, the corresponding
SAi for the unbalanced case are calculated as follows:

Sμ =
Y 2
…

N
, Sres =Y

TY = SAr + 1

SAi =
ai

j=1

Y 2 Aij

N Aij
i= 1,…,r

6 45

In (6.45) Y (Aij) is the sum of components of Y in the j-th level of the factors (or
factor combination) Ai, N (Aij) is the number of summands in Y (Aij) and ai are
the number of levels of Ai.
SAi are transformed to quasi-SS with the help of the linear combinations

derived for the balanced case. Putting these quasi-SS or the corresponding
quasi-MS equal to their expectations leads to simultaneous equations. The solu-
tions are the estimates the variance components from the ANOVA method for
the unbalanced case. The denotation quasi-SS was chosen, because these quad-
ratic forms are not always positive definite and by this not a sum of squared
deviations. For the estimation of the variance component, that is, however,
irrelevant.
For the derivation of the simultaneous equations, we need the expectations of

the quasi-SS and by this the SAi . Denoting by k σ2j ,SAi the coefficients of σ2j in

expectation of SAi i, j= 1,…,r , we can calculate these coefficients following
Hartley (1967) (see also Hartley and Rao, 1967). We put

SAi =
ai

j=1

1

N Aij
Y 2 Aij =Y TBiY = SAi Y

and use ZAi = z1 Ai ,…, zai Ai with the column vectors zj(Ai)(j = 1, … , ai).
Then we have

kij = k σ2j ,SAi =
ai

j= 1

SAi zj Ai 6 46

For the derivation of (6.46), we refer to Hartley (1967). The coefficients of σ2 are
equal to ai, and we have further

E Sres = E Y TY =N μ2 + 1Tr + 1 σ21,…,σ2r
T

If in the balanced case for the calculation of the SS the formulae

SSi =
r

j=1

cijSAj + cr + 1, iSres

SSres =
r

j= 1

cj,r + 1SAj + cr + 1,r +1Sres

6 47
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are valid the quasi-SS (QSSi), also in the non-balanced case are calculated by
(6.47). Let C be the positive definite matrix of the coefficients of σ2j in the expec-

tations ofQSSi (i row index, j column index), a∗ be the vector of the coefficients
of σ2, Σ the vector of the variance components σ2i i= 1,…,r and S be the vector
of QSSi, so we gain the simultaneous equations

E
S

SSres
=

C a∗

0Tr N −p

Σ

σ2
6 48

where p is the number the subclasses with at least one observation. The matrix
of coefficients comes from (6.47), (6.46) and the corresponding formulae for the
SS in the balanced case. From (6.48) we get the estimation equations by the
ANOVA method in the form

S

SSres
=

C a∗

0Tr N −p

Σ

s2
6 49

where ΣT = s21,…,s2r . From (6.49) we obtain

s2 =
1

N −p
SSres 6 50

and

Σ=C−1 S−s2a∗ 6 51

Formulae for the variances (and estimators of the variances) of s2 and s2i can be
found in Searle (1971).

6.3.2 Two-Way Cross-Classification

In the two-way cross-classification, our model following Definition 6.2 is

yijk = μ+ ai + bj + a,b ij + eijk i= 1,…,a; j= 1,…,b; k = 1,…,nij 6 52

with side conditions that ai, bj, (a, b)ij and eijk are uncorrelated and

E ai =E bj =E a,b ij =E aibj =E ai a,b ij =E bj a,b ij = 0

E eijk =E aieijk = E bjeijk =E a,b ijeijk = 0 for all i, j, k

var ai = σ2a for all i, var bj = σ2b for all j

var a,b ij = σ2ab for all i, j, var eijk = σ2 for all i, j, k

For testing and constructing confidence intervals, we additionally assume that
yijk is normally distributed.
A special case of Theorem 6.9 is
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Theorem 6.11 In a balanced two-way cross-classification (nij = n for all i, j),
model II and normally distributed yijk the sum of squares in Table 5.13 are sto-
chastically independent, and we have

SSA
bnσ2a + nσ

2
ab + σ

2
isCS a−1

SSB
anσ2b + nσ2ab + σ

2
isCS b−1

SQAB

nσ2ab + σ
2
isCS a−1 b−1 -distributed

Theorem 6.11 allows us to test the hypotheses

HA0 σ2a = 0, HB0 σ2b = 0, HAB0 σ2ab = 0

Theorem 6.12 With the assumptions of Theorem 6.11, the test statistic

FA =
SSA
SSAB

b−1

is the
bnσ2a + nσ2ab + σ

2

nσ2ab + σ
2

fold of a random variable distributed as

F[a − 1, (a − 1)(b − 1)]. If HA0 is true, FA is F[a − 1, (a − 1)(b − 1)]-distributed.
The statistic

FB =
SSB
SSAB

a−1

is the
anσ2b + nσ

2
ab + σ2

nσ2ab + σ
2

-fold of a random variable distributed as

F[b − 1, (a − 1)(b − 1)]. If HB0 is true, FB is F[b − 1, (a − 1)(b − 1)]-distributed.
The statistic

FAB =
SSAB
SSRest

ab n−1
a−1 b−1

is the
nσ2ab + σ

2

σ2
fold of a random variable distributed as F[(a − 1)(b − 1), ab(n − 1)].

If HAB0 is true, FAB is F[(a − 1)(b − 1), ab(n − 1)]-distributed.

The proof follows from Theorem 6.11. The hypothesesHA0,HB0 andHAB0 are
tested by the statistics FA, FB and FAB, respectively. If the observed F-values are
larger than the (1 − a)-quantiles of the central F-distribution with the corre-
sponding degrees of freedom, we may conjecture that the corresponding vari-
ance component is positive and not zero.
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To derive Theorem 6.11 from Theorem 6.9, we need (for the balanced case)

E MSA = bnσ2a + nσ2ab + σ
2

E MSB = anσ2b + nσ
2
ab + σ2

E MSAB = nσ2ab + σ
2

E MSRest = σ2

6 53

(see Exercise 6.4).
Table 6.4 is the ANOVA table of the balanced case. With (6.53) the ANOVA

method provides the variance components of the balanced case

s2 =MSres, sab2 =
1
n

MSAB−MSres

s2b =
1
an

MSB−MSAB s2a =
1
bn

MSA−MSAB

6 54

Formula (6.54) is a special case of (6.44), because (6.53) generates K in (6.44) as

K =

bn 0 n 1
0 an n 1
0 0 n 1
0 0 0 1

We get |K| = abn3 and

K −1 =
1

abn

a 0 −a 0

0 b −b 0

0 0 ab −ab

0 0 0 abn

FromTheorem6.10 thevariancesof theestimators s2a,s
2
b,s

2
ab and s

2 are obtained as
follows. At first we calculate the diagonal matrix D from (6.53) or from
Table 6.4:

d11 =
2

a−1
bnσ2a + nσ2ab + σ

2 2
, d22 =

2
b−1

anσ2b + nσ2ab + σ
2 2

,

d33 =
2

a−1 b−1
nσ2ab + σ2

2
, d44 =

2
ab n−1

σ4

Table 6.4 Supplement of Table 5.13 for model II.

Source of variation E(MS) F

Between levels of A σ2 + nσ2ab + bnσ
2
a b−1

SSA

SSAB

Between levels of B σ2 + nσ2ab + anσ
2
b a−1

SSB
SSAB

Interactions σ2 + nσ2ab ab n−1
a−1 b−1

SSAB
SSres

Residual σ2
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From this we obtain the covariance matrix V of the vector s2a,s
2
b,s

2
ab,s

2

d11 + d33
b2n2

d33
abn2

−d33
bn2

0

d33
abn2

d22 + d33
a2n2

−d33
an2

0

−d33
bn2

−d33
an2

d33 + d44
n2

−d44
n

0 0
−d44
n

d44

For instance, var s2 =
2

ab n−1
σ4 and

cov s2a,s
2
b =

2
a a−1 b b−1 n2

n2σ4ab + 2nσ4abσ
2 + σ4

Estimators of the elements of the covariance matrix V are the elements of the
matrix V , which is gained from V by replacing the dii by dii, where

d11 =
2

a+ 1
MS2

A, d22 =
2

b+ 1
MS2B

d33 =
2

a−1 b−1 + 2
MS2

AB, d44 =
2

ab n−1 + 2
MSres

For instance, we have

var s2 =
2

ab n−1 + 2
MS2

res

and

cov s2a,s
2
b =

2

a−1 b−1 + 2 abn2
MS2AB

The unbalanced case: In p classes at least one observation may be present
(0 < p ≤ ab). If p = ab, we assume that not all nij are equal. The quasi-SS (with
the aid of 6.37) are analogue to the SS in Table 5.13

QSSA = SA−Sμ

QSSB = SB−Sμ

QSSAB = SAB−SA−SB + Sμ

QSSres = Sres−SAB

6 55

with

Sμ =
1
N
Y 2

…, Sres =
a

i= 1

b

j=1

nij

k = 1

y2ijk

SA =
a

i= 1

Y 2
i

Ni
, SB =

b

j=1

Y 2
j

N j
, SAB =

a

i=1

b

j=1

∗Y ij 2

nij

6 56
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Here Σ∗ means that only summands with a non-zero denominator have been
taken. Equation (6.56) is a special case of (6.45). The expectations of Sμ, SA, SB,
SAB and E(QSSres) = (N − p)σ2 can be obtained by utilising the model equation
(6.52) in the Formula (6.56) or from Formula (6.46). In the present case we get

E SA =
a

i=1

Ni μ
2 +E Ni a

2
i +

b

j=1
n2ijb

2
j

Ni
+

b

j=1
n2ij a,b

2
ij

Ni
+
E2
i ..
Ni

=Nμ2 +Nσ2a +
a

i=1

b
j=1n

2
ij

Ni
σ2b +

a

i= 1

b
j= 1n

2
ij

Ni
σ2ab + aσ

2

Ei .. =
j,k

eijk

E SB =Nμ2 +Nσ2b +
b

j= 1

a
i=1n

2
ij

N j
σ2a +

b

j=1

a
i= 1n

2
ij

N j
σ2ab + bσ2

E SAB =N μ2 + σ2a + σ
2
b + σ

2
ab + pσ2

E Sμ =Nμ2 +
a
i= 1N

2
i

N
σ2a +

b
j= 1N

2
j

N
σ2b +

a
i= 1

a
j=1n

2
ij

N
σ2ab + σ2

E Sres =N μ2 + σ2a + σ
2
b + σ

2
ab + σ

2

and by this

E QSSA = σ2
N −

a

i= 1
N2

i

N
+ σ2b

a

i= 1

b

j= 1
n2ij

Ni
−

b
j= 1N

2
j

N

+ σ2ab

a

i= 1

b

j= 1

n2ij
1
Ni

−
1
N

− a−1 σ2

E QSSB = σ2a

a

i= 1

a

i=1
n2ij

N j
−

a

i= 1
N2

i

N
+ σ2b N −

b

j= 1
N2

j

N

+ σ2ab

b

j=1

a

i= 1

n2ij
1
N j

−
1
N

+ b−1 σ2

E QSSAB = σ2a

b

i= 1
N2

i

N
−

b

j= 1

a

i=1
nij

2

N j
+ σ2b

b

j=1
N2

j

N
−

a

i= 1

b

j= 1
n2ij

Ni

+ σ2ab N −
a

i= 1

b

j= 1
n2ij

Ni
−

b

j= 1

a

i=1
n2ij

N j
+
1
N

a

i=1

b

j= 1

n2ij

+ σ2 p−a−b+ 1

E QSSres = N −p σ2
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If all classes are occupied, we have p = ab.
We obtained estimators s2a,s

2
b,s

2
ab and s2 with the ANOVA method by repla-

cing the E(QSS) by the QSS and the variance components by their estimators.

6.3.3 Two-Way Nested Classification

The two-way nested classification is a special case of the incomplete two-way
cross-classification; it is maximal disconnected. The formulae for the estimators
of the variance components become very simple. We use the notation of
Section 5.3.2, but now ai and bj in (5.33) are random variables. The model equa-
tion (5.33) then becomes

yijk = μ+ai + bij + eijk , i= 1,…,a; j= 1,…,bi; k = 1,…,nij 6 57

with the side conditions of uncorrelated ai , bij and eijk and

0= E ai =E bij = cov ai,bij = cov ai,eijk = cov bi,eijk

for all i, j, k.
The quasi-SS of the sections so far become real SS, because Theorem 5.10 is

valid and independent of the special model. In Table 6.5 we find the E(MS). In
this table occur positive coefficients λi defined by

λ1 =
1

B −a
N −

a

i= 1

bi

j= 1

n2ij

Ni
,

λ2 =
1

a−1

a

i= 1

b

j= 1

n2ij
1
Ni

−
1
N

,

λ3 =
1

a−1
N −

1
N

a

i=1

N2
i

6 58

Table 6.5 Column the E(MS) of the two-way nested
classification for model II (the other part of the analysis of
variance table is given in Table 5.19).

Source of variation E(MS)

Between A-levels σ2 + λ2σ2b + λ3σ
2
a

Between B-levels within A-levels σ2 + λ1σ2b

Within B-levels σ2
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We gain the coefficients in (6.58) either by deriving the E(MS) with the help of
the model equation (6.57) or as special cases of the coefficients in the E(QSS) of
the last sections. From the analysis of variance method, we obtain the estimators
of the variance components by

s2 =MSres

sb =
1
λ1

MSB in A−MSres

s2a =
1
λ3

MSA−
λ2
λ1
MSB in A− 1−

λ2
λ1

MSres

6 59

With

λ1 = B −a λ1, λ2 = a−1 λ2, λ3 = a−1 λ3,

λ4 =N +
1
N

a

i= 1

N2
i , λ5 = λ

2
1 λ4−N λ4−

2
N

a

i= 1

N3
i ,

λ6 = λ2−λ1 +N Nλ 2
2 + λ 2

2 −λ1 +N λ 2
2 + λ1 + λ2

a

i= 1

b
j= 1n

2
ij

2

N2
i

−2 λ21 + λ
2
2 λ2

a

i= 1

b
j= 1n

2
ij

N
+ 2

λ1λ2
N

a

i= 1

b

j= 1

n3ij + λ1

a

i= 1

b
j= 1n

2
ij

2

NNi
,

λ7 =
1

N −B
λ 2
1 N −1 a−1 − λ1 + λ2

2
a−1 B −a + λ 2

1 N −1 B −a ,

λ8 = λ 2
1

1
N

a

i= 1

b

j=1

n2ijλ4−
2
N

a

i= 1

Ni

b

j= 1

n2ij

and

λ9 = λ 2
1 λ3,λ10 = λ1λ2 λ1 + λ2 ,

the following formulae for the variances of the variance components result
under the assumption that yijk are normally distributed

var s2 =
2

N −Bi
σ4,

var s2a =
2

λ 2
1 λ

2
3

λ5σ4a + λ6σ4b + λ7σ4 + 2λ8σ2aσ
2
b + 2λ9σ2aσ

2 + 2λ10σ2bσ
2 ,

var s2a =
2

λ 2
1 λ

2
1

a

i=1

b
j= 1n

2
ij

2

N2
i

+
a

i=1

b

j=1

n2ij−2
a

i= 1

b

j= 1
n3ij

Ni
σ2b

+ 4λ1σ
2
bσ

2 +
2 B −a N −a σ4

N −B
6 60
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and the covariances

cov s2a,s
2 =

λ2 B −a
λ1

− a−1
var s2

λ3
,

cov s2b,s
2 =

B −a var s2

λ1

cov s2a,s
2
b =

2
λ1λ3

a

i=1

b

j= 1

n3ij
N2

i
−

b

j= 1

n2ij

2

N2
i

+

b

j= 1

n2ij

2

Ni N
−
1
N

b

j= 1

n3ij σ4b

+
2 a−1 B −a

N −B
σ4−λ1λ2var s2b

6 61

6.3.4 Three-Way Cross-Classification with Equal Subclass Numbers

We start with the model equation

yijkl = μ+ai + bj + ck + a,b ij + b,c jk + a,b,c ijk + eijkl

i= 1,…,a; j= 1,…,b; k = 1,…,c; l = 1,…,n
6 62

with the side conditions that the expectations of all random variable of the right
hand side of (6.62) are equal to zero and all covariances between different ran-
dom variables of the right side of (6.62) vanish. Further we assume for tests that
yijkl are normally distributed. Table 6.6 is the ANOVA table for this case.

Table 6.6 The column E(MS) as supplement for model II to the analysis of
variance Table 5.21.

Source of variation E(MS)

Between A-levels σ2 + nσ2abc + cnσ
2
ab + bnσ

2
ac + bcnσ

2
a

Between B-levels σ2 + nσ2abc + cnσ
2
ab + anσ

2
bc + acnσ

2
b

Between C-levels σ2 + nσ2abc + anσ
2
bc + bnσ

2
ac + abnσ2c

Interaction A × B σ2 + nσ2abc + cnσ
2
ab

Interaction A ×C σ2 + nσ2abc + bnσ
2
ac

Interaction B × C σ2 + nσ2abc + anσ
2
bc

Interaction A × B ×C σ2 + nσ2abc

Within the subclasses (residual) σ2
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Following the ANOVA method, we obtain the estimators for the variance
components

MSA = s2 + ns2abc + cns
2
ab + bns

2
ac + bcns2a

MSB = s2 + ns2abc + cns
2
ab + ans

2
bc + acns2b

MSC = s2 + ns2abc + ans2bc + bns
2
ac + abns

2
c

MSAB = s2 + ns2abc + cns
2
ab

MSAC = s2 + ns2abc + bns
2
ac

MSBC = s2 + ns2abc + ans
2
bc

MSABC = s2 + ns2abc
MSrest = s2

Under the assumption of a normal distribution of yijkl, it follows from Theorem
6.9 that

Theorem 6.13 If for the yijkl model equation (6.62) including its side condi-
tions about expectations and covariances of the components of yijkl is valid and
yijkl are multivariate normally distributed with the marginal distributions

N μ, σ2a + σ
2
b + σ

2
c + σ

2
ab + σ

2
ac + σ

2
bc + σ2abc + σ2 ,

then
SSX

E MSX
are CS(dfX)-distributed (X=A, B, C, AB, AC, BC, ABC) with SSX ,

E(MSX) and dfX from Table 5.21.

FromTheorem 6.13 it follows that the F-values of the first column of Table 6.7
have the distribution given in the third column. By this we can test the hypoth-
eses HAB σ2ab = 0,HAC σ2ac = 0, HBC σ2bc = 0,HABC σ2abc = 0 with an F-test.
For testing the hypothesis HA σ2a = 0,HB σ2b = 0,HC σ2c = 0, we need

Lemma 6.3 (Satterthwaite, 1946)

If z1 , … , zk are independent of each other as
CS ni E zi

ni
-distributed,

(i = 1, … , k), so for real ai

z =
k

i= 1

aizi

is with

n =

k
i=1aizi

2

k
i= 1

a2i
ni
z2i

6 63
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approximately
CS n E z

n
-distributed, if E(z) > 0.

This means that each realisation z of z is a realisation of an approximately
CS(n )-distributed random variable. The approximation is relatively good for
positive ai (see also the remarks after Theorem 6.2).

We further need the following corollary to this lemma:

Corollary 6.2 If MSi are independent of each other and if zi =
MSini
E MSi

are

CS(ni)-distributed (i = 1, …, k), so is

F =
s
i= rMSi
v
i=uMSi

under the null hypothesis H0 σ2x = 0 approximately F(n ,m )-distributed with

n =
s
i= rMSi

2

s
i= r

MS2i
ni

, m =
v
i=uMSi

2

v
i= u

MS2i
ni

,

if

E
s

i= r

MSi = cσ2x +E
v

i= u

MSi

and the second summand of the right side is positive.

Table 6.7 Test statistics for testing hypotheses and distributions of these test statistics.

Test statistic H0 Distribution of the test statistic

Distribution
of the test statistic
under H0

FAB =
MSAB

MSABC
σ2ab = 0 cnσ2ab + nσ

2
abc + σ

2

nσ2abc + σ2
F a−1 b−1 , a−1 b−1 c−1

F[(a − 1)(b − 1),
(a − 1)(b − 1)(c − 1)]

FAC =
MSAC

MSABC
σ2ac = 0 bnσ2ac + nσ2abc + σ2

nσ2abc + σ2
F a−1 c−1 , a−1 b−1 c−1

F[(a − 1)(c − 1),
(a − 1)(b − 1)(c − 1)]

FBC =
MSBC

MSABC

σ2bc = 0 anσ2bc + nσ2abc + σ2

nσ2abc + σ
2

F b−1 c−1 , a−1 b−1 c−1
F[(b − 1)(c − 1),
(a − 1)(b − 1)(c − 1)]

FABC =
MSABC

MSres

σ2abc = 0 nσ2abc + σ
2

σ2
F a−1 b−1 , c−1 ,N −abc

F[(a − 1)(b − 1)
(c − 1),N − abc]
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Gaylor andHopper (1969) could show by simulation experiments that the dif-
ferenceMSD betweenMSI andMSII, which are independent of each other with

degrees of freedom nI and nII, respectively, multiplied with
nD

E MSD
, that is,

MSD = MSI −MSII
nD

E MSD
are exact (or approximately) CS(nII)-distributed

if nD are the degrees of freedom ofMSD and
MSInI
E MSI

is exact (or approximately)

CS(nII)-distributed and
MSIInII
E MSII

is exact (or approximately) CS(nII)-distributed

with

nD =
MSI−MSII

2

MS2I
nI

+
MS2II
nII

The approximation is sufficient as long as

MSI

MSII
> F nII,nI,0,975 F nI,nII,0 50

We use this corollary, to construct test statistics for the null hypotheses
HA0 σ2a = 0,HB0 σ2b = 0 and HC0 σ2c = 0, which are approximately F-distributed.
From Table 6.6 we find

E MSA = bcnσ2a +E MSAB +MSAC −MSABC

E MSB = acnσ2b + E MSAB +MSBC −MSABC

E MSC = abnσ2c + E MSAC +MSBC −MSABC

so that

FA =
MSA

MSAB +MSAC −MSABC
is under HA0 approximately F(a1, a2)-distributed,

FB =
MSB

MSAB +MSBC −MSABC

is under HB0 approximately F(b1, b2)-distributed, and

FC =
MSC

MSBC +MSAC −MSABC

is under HC0 approximately F(c1, c2)-distributed. From (6.63) we get
a1 = a−1, b1 = b−1, c1 = c−1

a2 =
MSAB +MSAC −MSABC

2

MS2AB
a−1 b−1

+
MS2AC

a−1 c−1
+

MS2ABC
a−1 b−1 c−1
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Analogue formulae are valid for b2 and c2.
As Davenport andWebster (1973) show, it is sometimes better to use in place

of FA , FB and FC, respectively, the test statistics

F∗
A =

MSA +MSABC
MSAB +MSAC

, F∗
B =

MSB +MSABC

MSAB +MSBC

and

F∗
C =

MSC +MSABC

MSAC +MSBC
,

respectively. Here again the Satterthwaite approximation is used; for instance,
F∗
A is approximately F a∗1,a

∗
2 -distributed with

a∗1 =
MSA +MSABC

2

MS2A
a−1

+
MS2ABC

a−1 b−1 c−1

and

a∗2 =
MS2AB +MS2AC

MS2AB
a−1 b−1

+
MS2AC

a−1 c−1

For the case of unequal subclass numbers, we use model equation (6.62) but
now l runs l = 1, …, nijk. Analogously to the two-way cross-classification, we
construct quasi-SS (corresponds with the SS of Table 6.6) as, for instance,

QSSA =
a

i= 1

Y 2
i…

Ni ..
−
1
N
Y 2

…

QSSAB =
a

i= 1

b

j= 1

∗Y 2
ij ..

Nij
−

a

i=1

Y 2
i…

Ni ..
−

b

j=1

Y 2
j ..

N j
+
1
N
Y 2

…

where Σ∗means summing up only over subclasses withNij > 0. So we obtain the
ANOVA table (Table 6.8).
In Table 6.8 is

λa,b =
a

i=1

b
j= 1N

2
ij

Ni ..
, λa,c =

a

i=1

c
k = 1N

2
i k

Ni ..

λb,a =
b

j=1

a
i=1N

2
ij

N j
, λb,c =

b

j=1

c
k = 1N

2
jk

N j

λa,bc =
a

i=1

b
j= 1

c
k = 1n

2
ijk

Ni ..
, λb,ac =

b

j= 1

a
i= 1

c
k =1n

2
ijk

N j
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Table 6.8 Analysis of variance table of a three-way cross-classification for model II.

Source of variation Quasi-SS Quasi-df Quasi-MS

Coefficients the variance components in E(QMS)

σ2a σ2b

Between A-levels QSSA a − 1 QMSA N −ka
a−1

λa,b−kb
a−1

Between B-levels QSSB b − 1 QMSB λb,a−ka
b−1

N −ka
a−1

Between C-levels QSSC c − 1 QMSC λc,a−ka
c−1

λc,b−kc
c−1

Interaction A × B QSSAB pab − a − b + 1a QSMAB ka−λb,a
pab−a−b+ 1

kb−λa,b
pab−a−b+ 1

Interaction A ×C QSSAC pac − a − c + 1a QMSAC ka−λc,a
pac−a−c+ 1

λac,b−λa,b + kb−λc,a
pac−a−c+ 1

Interaction B ×C QSSBC pbc − b − c + 1a QMSBC λbc,a−λb,a−λc,a + ka
pbc−b−c+ 1

kc−λb,c
pbc−b−c+ 1

Interaction A × B ×C QSSABC p − pab − pac − pbc +
a + b + c − 1a

QMSABC cA cB

Residual QSSres N − p QMSres 0 0

(Continued)



Table 6.8 (Continued)

σ2c σ2ab σ2ac σ2bc σ2abc σ2

λa,c−kc
a−1

λa,b−kab
a−1

λa,c−kac
a−1

λa,bc−kbc
a−1

λa,bc−kabc
a−1

1

λb,c−kc
b−1

λb,a−kab
b−1

λb,ac−kac
b−1

λb,c−kbc
b−1

λb,ac−kabc
b−1

1

N −kc
c−1

λc,ab−kab
c−1

λc,a−kac
c−1

λb,c−kbc
c−1

λc,ab−kabc
c−1

1

λab,c−λa,c−λb,c + kabc
pab−a−b+ 1

N −λa,b−λb,a + kab
pab−a−b+ 1

λab,c−λa,c−λb,ac + kac
pab−a−b+ 1

λab,c−λa,bc−λb,c + kbc
pab−a−b+ 1

λab,c−λa,bc−λb,ac + kabc
pab−a−b+ 1

1

kc−λa,c
pac−a−c+ 1

λac,b−λa,b−λc,ab + kab
pac−a−c+ 1

N −λa,c−λc,a + kac
pac−a−c+ 1

λac,b−λa,bc−λc,b + kbc
pac−a−c+ 1

λac,b−λa,bc−λc,ab + kabc
pac−a−c+ 1

1

kc−λb,c
pbc−b−c+ 1

λbc,a−λb,a−λc,ab + kab
pbc−b−c+ 1

λbc,a−λb,ac−λc,a + kac
pbc−b−c+ 1

N −λb,c−λc,a + kbc
pbc−b−c+ 1

λbc,a−λb,ac−λc,ab + λabc
pbc−b−c+ 1

1

cC cAB cAC cBC cABC 1

0 0 0 0 0 1

ap = number of subclasses with at least one observation, pab = number of Nij > 0, pbc = number of N jk > 0, pac = number of Ni k > 0.



λc,ab =
c

k = 1

a
i= 1

b
j= 1n

2
ijk

N ..k

λab,c =
a

i= 1

b

j= 1

c
k = 1n

2
ijk

Nij
, λac,b =

a

i= 1

c

k = 1

b
j= 1n

2
ijk

Ni k

λab,c =
a

i= 1

b

j= 1

c

k = 1

n2ijk

Nij
, λac,b =

a

i= 1

c

k = 1

b

j= 1

n2ijk

Ni k
, λbc,a =

b

j=1

c

k = 1

a

i= 1

n2ijk

N jk

ka =
1
N

a

i= 1

N2
i .., kb =

1
N

b

j= 1

N2
j , kc =

1
N

c

k = 1

N2
..k

kab =
1
N

a

i= 1

b

j= 1

N2
ij , kac =

1
N

a

i=1

c

k =1

N2
i k , kbc =

1
N

b

j= 1

c

k =1

N2
jk

vcA = λb,a + λc,a−λbc,a−ka,

vcB = λa,b + λc,b−λac,b−kb,

vcC = λa,c + λb,c + λab,c−kc,

vcAB = λa,b + λb,a + λc,ab−λac,b−λbc,a−kab,

vcAC = λa,c + λb,ac + λc,a−λab,c−λbc,a−kac,

vcBC = λa,bc + λb,c + λc,b−λab,c−λac,b−kbc,

vcABC =N + λa,bc + λb,ac + λc,ab−λab,c−λac,b−λbc,a−kabc,

where

v= p−pab−pac−pbc + a+ b+ c−1

From the equations, gained from the coefficients of the E(QMS) when replacing
the E(QMS) by the QMS and σ2x by s

2
x , we receive the estimator of σ2x

6.3.5 Three-Way Nested Classification

For the three-way nested classification C≺ B≺A, the following model equation
is assumed:

yijkl = μ+ai + bij + cijk + eijkl

i= 1,…,a; j= 1,…,bi; k = 1,…,cij; l = 1,…,nijk
(6.64)
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The side conditions are that all random variables of the right-hand side of (6.64)
have expectation 0 and are pairwise uncorrelated and var ai = σ2a for all
i, var bij = σ2b for all i, j, var cijk = σ2c for all i, j, k and var(eijkl) = σ2 for all i,
j, k, l.
BecauseTheorem5.12 is independent of themodel, we find the SS,df andMSof

the three-waynestedANOVAinTable5.27. For thecalculation theE(MS)weneed

D=
i

N2
i , Ei =

j

N2
ij , E =

i

Ei,

Fij =
k

n2ijk , Fi =
j

Fij, F =
i

Fi,

λ1 =
i, j

Fij
Nij

, λ2 =
i

Fi
Ni

λ3 =
i

Ei
Ni

The E(MS) can be found in Table 6.9. By the ANOVA method, we gain the
following estimators for the variance components:

s2 =MSres

s2c =
C −B
N −λ1

MSC in B−MSres

s2b =
B −a
N −λ3

MSB in A−MSres−
λ1−λ2
B −a

s2c

s2a =
a−1

n−
D
N

MSA−MSres−
λ2−

F
N

a−1
s2c −

λ3−
F
N

a−1
s2b

The variances of these variance components can be found in Searle (1971) and
will not repeat here for space considerations.

Table 6.9 Expectations of theMS of a three-way nested classification for
model II.

Source of variation E(MS)

Between the A-levels
σ2 + σ2c

λ2− F
N

a−1
+ σ2b

λ3− E
N

a−1
+ σ2a

N − D
N

a−1

Between the B-levels
σ2 + σ2c

λ1−λ2
B −a

+ σ2b
N −λ3
B −awithin the A-levels

Between the C-levels
σ2 + σ2c

N −λ1
C −Bwithin the B- and A-levels

Residual σ2
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6.3.6 Three-Way Mixed Classification

We consider themixed classifications in Sections 5.4.3.1 and 5.4.3.2 for model II
of the ANOVA. The model equation for the type (B≺ A) ×C is

yijkl = μ+ ai + bij + ck + a,b ik + b,c i jk + eijkl

i= 1,…,a; j= 1,…,b; k = 1,…,c; l = 1,…,n
6 65

The model equation for the type C≺ AB is

yijkl = μ+ai + bj + cijk + a,b ij + eijkl i= 1,…,a; j= 1,…,b; k = 1,…,c; l = 1,…,n

6 66

Again we assume that the random components of the right hand side of (6.65)
and of (6.66) that have expectation zero are pairwise uncorrelated and have for
all indices the same variances

var ai = σ2a, var bij = σ2bina var bj = σ2b ,

var ck = σ2c var cijk = σ2c , var a,b ik = σ2ac var b,c i, jk = σ2bcina

var eijkl = σ2 var a,b ij = σ2ab

The decomposition of the SS and df can be given in Sections 5.4.3.1 and
5.4.3.2. To estimate the variance components by the ANOVA method, we need
E(DQ). Following Rasch (1971) we obtained the type (B≺A) ×C

E MSA = σ2 + nσ2bc in a + bnσ2ac + cnσ
2
b in a + bcnσ2a

E MSB in A = σ2 + nσ2bc in a + cnσ
2
b in a

E MSC = σ2 + bnσ2ac + abnσ2c + nσ
2
bc in a

E MSAC = σ2 + bnσ2ac + nσ2bc in a

E MSBC in A = σ2 + nσ2bc in a

E MSres = σ2

6 67

and for the type C≺ AB

E QMSA = σ2 + cnσ2ab + nσ2c in ab + bcnσ2a
E QMSB = σ2 + cnσ2ab + nσ2a in ab + acnσ

2
b

E QMSC in AB = σ2 + nσ2c in ab

E QMSAB = σ2 + cnσ2ab−nσ
2
c in ab

E QMSres = σ2

6 68
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By the ANOVA method, we obtain the estimators of the variance compo-
nents, by replacing in (6.67) and (6.68), σ2x by s2x and E(MSx) by MSx and solve
the equations for s2x .

6.4 Planning Experiments

Systematic descriptions of designing the experiments for the one-way ANOVA
and definitions of several optimality criteria gives Herrendörfer (1976) on which
the results of this section are based. We start with model equation (6.8) with its
side conditions. Further, all random effects in (6.8) may be normally distributed.
As estimators of σ2a and σ2, we choose (6.12) and MSres, respectively. We use
the following notations: ΣT = σ2a,σ

2 and ΣT = s2a,s
2 with s2a from (6.12)

and s2 =MSres from Table 5.2.

Definition 6.6 The vector VN = (a, n1, … , na)N is called concrete experimen-
tal design for the estimation of Σ, if 2≤ a ≤N −1,ni ≥ 1,

a
i= 1ni =N where a and

ni are integers. 0VN = (a,N1, … , na)N is called discrete experimental design for
the estimation of Σ, if 2 ≤ a≤N −1,ni ≥ 1,

a
i= 1ni =N where a and N are inte-

gers, but the ni may be real. With {VN} and {0VN} we denote the set of possible
concrete or discrete experimental design, respectively, for fixed N.
We see that {VN} {0VN}.

Definition 6.7 An experimental design 0V ∗
N 0VN V ∗

N VN is called
discrete (concrete) A-optimal experimental design for given N, if for this exper-
imental design

var s2a + var s2 =
1
w2

var MSA + var MSres + var MSres

with

w=
1

a−1
N −

1
N

a

i= 1

n2i

in the set {0VN}({VN}) is minimal.

Theorem 6.14 (Herrendörfer)
The discrete A-optimal experimental design in {0VN} for estimating Σ must be
found amongst the designs with equal subclass numbers (ni = n).

Proof: The formulae (6.38) and (6.39) are initially defined only for natural a and
ni(i = 1, … , a). For a discrete experimental design, we allow real ni ≥ 1. For fixed
N and a the w is maximum for ni = N

a = n. Because ni = n is minimising
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1
w2

var MSA (Hammersley, 1949) and var(MSres) are independent of the

decomposition of N into ni, the theorem is proved because this is true for all
pairs (a,N).

Thus for the determination of a discrete A-optimal experimental design,
the term

A N ,a =
1
n2

2 nσ2a + σ2
2

a−1
+

2σ4

a n−1
+

2σ4

a n−1
6 69

must be minimised. Putting for ρI = ρ, for ρI in Definition 6.3, (6.69) becomes

A N ,a =
2

a+ 1
ρ+

1−ρ
N

2

+
4

N −a
1−ρ 2

+ 2
1−ρ
N

2ρ−
1−ρ
N

N −1 σ2a + σ
2 2

From Definition 6.3 and σ2 > 0, it follows always 0 < ρ < 1.
Looking at the second partial derivation of A(N, a) with respect to a, we see

that A(N, a) for 1 ≤ a ≤N is convex from below and for 0 < ϱ < 1 therefore

A(N, a) has exactly one relative minimum. Putting
∂A N ,a

∂a
equal to zero gives

the two solutions

a1 = 1 +
N −1 ρ+

1−ρ
N

ρ+
1−ρ
N

− 2 1−ρ
6 70

and

a2 = 1 +
N −1 ρ+

1−ρ
N

ρ+
1−ρ
N

+ 2 1−ρ
6 71

Buta1 is not in the interval 0 ≤ a ≤N − 1, andwith this only the solutiona2 in (6.71)
is acceptable. If a2 is an integer and 2 ≤ a2 ≤N, the A-optimal design is given by

a=
N Nρ+ 1+ 2 1−ρ ρ

Nρ+ 1 +N 2 1−ρ
6 72

and n= −
N
a
.
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If a ≤ a2 ≤ a with a = a + 1 (a , a integer) and only a or a is in the interval
[2,N], then the integer in this interval is a of the A-optimal discrete design. If
both numbers a and a are in [2,N], we calculate for both A(N, a) and choose
that one as optimal, for which A(N, a) is minimum.
We find the concreteA-optimal experimental design by systematical search in

the neighbourhood of the discrete A-optimal experimental design. By this sys-
tematical search, we also vary a and of course unequal ni can occur. Theorems
about optimal experimental designs tominimise the variance of a variance com-
ponent (so called C-optimal designs) and the cost optimal choice of N can be
found in Herrendörfer (1976). There and in Rasch et al. (2008), tables of optimal
designs and experimental sizes are given.

6.5 Exercises

6.1 For testing performances of boars, offspring of boars under unique feeding
fattening and slaughter performances are measured. From the results of
such testing, two boars b1 and b2 have been randomly selected. For each
boar, the offspring of several sows have been observed. As well as from b1
and also from b2, three observations y (number of the fattening days from
40 kg up to 110 kg) are available. The variance components for boars and
sows (within boars) and within sows must be estimated.

Table 6.10 shows the observations yijk. This case is a = 2 , b1 = 3 , b2 = 3.
The E(MS) are given in Table 6.6.

6.2 Determine the A-optimal experimental design by (6.71) for N = 200 and
ρ = 0.5.

6.3 Add in Example 6.1 for boar 5 the missing value by the corresponding
mean (2 decimal places) and add for boar 2 the mean twice. Estimate
the variance components for the new data set D.

Table 6.10 Data of Example 6.1.

Number the
fattening days

Boars b1 b2

yijk. Sows s1 s2 s3 s4 s5 s6

Offspring yijk 93 107 109 89 87 81

89 99 107 102 91 83

97 94 104 82 85

105 106 97 91

nij 4 2 4 4 3 4

10 11
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6.4 Derive

E MSA = bnσ2a + nσ2ab + σ
2

E MSB = anσ2b + nσ
2
ab + σ2

E MSAB = nσ2ab + σ
2

E MSres = σ2

using the rule of Chapter 7.
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7

Analysis of Variance – Models with Finite Level
Populations and Mixed Models

Inthepresentchapterweconsidermodelswith factor levels froma finitepopulation
of factor levels, or aswe call them in short ‘finite level populations’. Covering at least
in the case of equal subclass numbers, model I and model II of the analysis of var-
iance (ANOVA) as special cases. Even the mixed models, also introduced in this
chapter, are limiting cases of models with finite level populations.
Inmixedmodels as well, problems of variance component estimation and also

of estimating and testing fixed effects occur. In Section 7.3, some special meth-
ods are presented, which are demonstrated for some special cases in Section 7.4.

7.1 Introduction: Models with Finite Level Populations

Models with finite level populations are of interest because we meet practical
situations where the selection of factor levels covers a finite number of levels
but not all levels in a population with a finite number of levels and further
because other models are special or limiting cases of such models.

Definition 7.1 Let the elements γAk, j j= 1,…,ak of the vectors γAk
in model

equation (6.3) be ak random variables. The realisations of those ak random vari-
ables are ak effects, sampled (without replacement) from a population of N(Ak)
effects. Then we call themodel equation (6.3) (under the side conditions that the
effects in the populations sum up to zero) an ANOVA model with finite level
populations. If (6.43) holds, we speak about a balanced case of the model with
finite level populations.
This means we assume that the ak effects in an experiment are selected

randomly from a level population with N(Ak) ≥ ak effects and that each level
can be selected only once. If N(Ak) = ak, all levels are selected and the factor
Ak is a fixed factor in a model I. If N(Ak) ∞, then the factor Ak is a random
factor of model II.
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In the balanced case we present in Section 7.2 simple rules for the derivation
of SS, df, MS and E(MS).
For simplicity we call an n-dimensional random variable with identically

distributed (but not independent) components a type 2 random sample as it
is usual in the theory of sampling from finite populations.
In the theory of sampling from finite populations, the variance in the popu-

lation is defined as the sum of squared deviations from the expectation divided
by the population size N. But in the ANOVA, we use for simplification of
further formulae quasi-variance by dividing the sum of squared deviations
from the expectation by N − 1. We denote the quasi-variances by σ2, σ2a and
so on but the real variances by σ∗2,σ∗2a . The conversion of varainces into
quasi-variances and vice versa is demonstrated by the example below.

Example 7.1 Let the cross-classified factors A and B be nested in the factor C.
Then the variance component of the interaction A × B is

σ2ab inc =
N A N B

N A −1 N B −1
σ∗2ab inc 7 1

where

σ2ab inc =
i, j ab 2

ij k

N A −1 N B −1
for all k 7 2

Example 7.2 We consider a model with finite level populations and two
factors and a factor level combination, where A1 =A,A2 = B,A3 =A × B, a1 = a,
a2 = b and a3 = ab and R stands for the residual. The model equation for the
balanced case is

yi jk = μ+ai + bj + ab ij + ei jk i= 1,…,a; j= 1,…,b; k = 1,…,n 7 3

The side conditions are

n <N R ,
N A

i= 1

ai =
N B

j= 1

bi =
N A

i= 1

ab ij =
N B

j= 1

ab ij =
N R

k = 1

eijk = 0,

1
N A −1

N A

i= 1

a2i = σ2a,
1

N B −1

N B

j= 1

b2j = σ
2
b,

1
N A −1 N B −1

N A

i=1

N B

j=1

ab 2
ij = σ2ab,

1
N R −1

N R

k = 1

e2i jk = σ2

for all i and j not at the bounds of the sigma signs.
We can derive the following expectations after inserting the right-hand side

of the model equation for y in the E(MS).
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With the notations of Table 5.13, this results in

E MSA = 1−
n

N R
σ2 + n 1−

b
N B

σ2ab + nbσ2a,

E MSB = 1−
n

N R
σ2 + n 1−

a
N A

σ2ab + naσ
2
b,

E MSAB = 1−
n

N R
σ2 + nσ2ab

E MSres = σ2

7 4

IfN(R) ∞,N(B) ∞ andN(A) ∞, we obtain the E(MS) of model II in (6.53).
For N(R) ∞, a =N(A) and b =N(B), we obtain the E(MS) of model I in
Table 5.13. ForN(R) ∞,N(B) ∞ and a =N(A), we get the model of Example
7.2, a mixed model (A fixed, B random), and we receive

E MSA = σ2 + nσ2ab + nbσ
2
a,

E MSB = σ2 + naσ2b,

E MSAB = σ2 + nσ2ab,

E MSres = σ2

7 5

In (7.5) we put σ2a =
1

a−1
a

i= 1
a2i but this is no variance.

Example 7.2 shows the potential of models with finite level populations. In the
balanced case simple rules for the calculation of the E(MS) exist.

7.2 Rules for the Derivation of SS, df, MS and E(MS)
in Balanced ANOVA Models

In Chapters 5 and 6, we could see that the derivation of E(MS) even in simple
cases is elaborate. Now we give rules by which formulae for SS, df,MS and
E(MS) for a balanced case can be easily derived.
Let us consider t factors Ak ; k = 1, …, t in an ANOVAwith the size of the level

populations N(ak) and the number of selected levels ak. (If there are few factors,
we rename A1 =A, A2 = B, A3 =C.) If a factor Ak1 is subordinated to a factor Ak2 ,
we write Ak1 ≺Ak2 The indices of the effects in the model equations are split
into two groups. The indices in any suffix of subordinated (nested) factors
are given first; then the indices of the superordinate factors or factor combina-
tions follow in a bracket such as ek(i, j) or el(i, j, k). In the ANOVA table for each
factor (including residual), a row exists. Further, there are rows for factor com-
binations (interactions). If a factor X is not subordinated to any factor, we
write X≺ .
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Rule 1 Interactions between two factors or factor combinations are obtained
formally by symbolic multiplication of the factors (or factor combinations) both
left of the ≺ sign and right of the ≺ sign. If the same letter occurs, the right of the
≺ sign more than once, it will be noted only once (X X = X). An interaction is
not defined if the same letter occurs at both sides of the ≺ sign.
Rule 2 The degrees of freedom in a row are obtained, reducing the number of

occurring levels of theAk left of the≺ sign by 1 andmultiplying with analogously
reduced numbers of other factors left of the ≺ sign as well as with the number of
the selected levels of factors right of the ≺ sign.
Rule 3 The SS in a row are obtained by performing a product of the SAk in

(6.45) analogue to the product of the degrees of freedom, which means
that an Ak left of the ≺ sign gives a factor SAk −e, in the product, but the right
of the ≺ sign gives Ak a factor SAk in the product. The error term e is the identity
element of this multiplication (SAke= eSAk = SAk ) and defined by e= 1

NY
2
….

Further as a result of that symbolic multiplication, SAi
, SAj

is to read as SAiAj

and SR,A1,…,At as SR.
Rule 4 The E(MS) are calculated as follows: define a table with rows defined

by the components (except μ) of the right-hand side of the model equation. The
columns correspond with the indices in the suffix. If in a cell of the table the
index defining the column does not occur in the effect defining the row, we fill
the cell with the number of selected levels of the factor defining the column. If
the index defining the column occurs in the bracket of the row effect, we put a 1
into the corresponding cell of the table; otherwise we put there

1−
number of selected levels of the column

number of levels of the column

Now each E(MS) is written as a linear combination of σ2 and all the
variance components whose suffixes contain the upper bounds of those
indices occurring in the effect corresponding to the MS in front of the
bracket. The coefficients of the linear combination are generated in that
row of the table corresponding with the variance component by multiplica-
tion of the contents of those cells in that row defined by a column suffix not
in the bracket of the effect defining the MS. Finally, we convert as shown in
Example 7.1.

Example 7.3 Given a two-way cross-classification with finite level populations
as inExample 7.2.At first, themodel equation (7.3) is assumed.TheSS,df andMS
ofTable 5.13 aswell as theE(MS) are to state according to the rules of this section.
The ANOVA table has to contain the rows for A, B, AB and residual. At first, we
have to put the indices of superordinate factors in brackets. Because only the
error terms are subordinated to all factors, (7.3) becomes

yi jk = μ+ai + bj + ab ij + ek i, j
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Only one interaction exists, (A≺)(B≺) =AB≺. The degrees of freedom following
rule 2 (res and R means residual)

A≺ a−1,

B≺ b−1,

AB≺ a−1 b−1 ,

R≺AB n−1 ab

The SS following rule 3 are

A≺ SA−
Y 2

N
=

a

i= 1

Y 2
i

bn
−
Y 2

N
,

B≺ SB−
Y 2

N
=

b

j= 1

Y 2
j

an
−
Y 2

N
,

AB≺ SA−e SB−e = SAB−SA−SB + e =
a

i=1

b

j=1

Y 2
ij

n
−

a

i= 1

Y 2
i

bn
−

b

j= 1

Y j

an
+

Y 2

N
,

R≺AB SR−e SASB = SR,AB−SAB =
a

i= 1

b

j= 1

n

k = 1

y2i jk −
a

i= 1

b

j= 1

Y ij

n

Then SST is the sum of all S:

SST =
a

i=1

b

j= 1

n

k = 1

y2i jk −
Y 2

N

To determine the E(MS) following rule 4, we first construct the table
defined there:

i j k

ai 1−
a

N A
b n

bj a
1−

b
N B

n

(ab)ij 1−
a

N A 1−
b

N B
n

ek(i, j) 1 1 1−
n

N res
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The column subscript i of the first column does not occur in βj, so that in the
first cell in the second row, a is placed. Because j is not in ai, b is placed in the
second cell of the first row. k does not occur in ai, bj and (ab)ij; therefore the first
three cells in the third column contain n. The indices i and j are for ek(i, j) in the
bracket; therefore 1 stands in the first two cells of the last row. In all other

cells of the first column, we put 1−
a

N A
, in the still free cells of the second col-

umn, we put 1−
b

N B
and in the free cell of the last column, we put 1−

n
N res

Now, following rule 4,

E MSA = c1σ
2
a + c2σ

2
ab + c3σ

2

with

c1 = bn, c2 = n 1−
b

N B
, c3 = 1−

n
N res

and

E MSB = c4σ
2
b + c5σ

2
ab + c6σ

2

with

c4 = an, c5 = n 1−
a

N A
, c6 = 1−

n
N res

and

E MSAB = c7σ
2
ab + c8σ

2

with

c7 = n, c8 = 1−
n

N res

and finally

E MSres = σ2

Example 7.4 We determine df, SS and E(MS) for the ANOVA of type C≺AB
in Section 5.4.3.2. We write model equation (5.48) as

yijkl = μ+ai + bj + ck i, j + ab ij + el i, j,k

i= 1,…,a; j= 1,…,b; k = 1,…,c; l = 1,…,n

In the ANOVA table, we have rows for A≺, B≺,C≺AB,AB ≺ and res.
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The degrees of freedom are (rule 2)

A≺ a−1,

B≺ b−1,

C ≺AB c−1 ab,

AB≺ a−1 b−1 ,

R≺CAB n−1 abc

The SS (rule 3) are

A≺ SSA = SA−e =
a

i = 1

Y 2
i

bcn
−
1
N
Y 2 ,

B≺ SSB = SB−e =
b

j= 1

Y 2
j

acn
−
1
N
Y 2 ,

C ≺AB SSC in AB = SC −e SASB = SCAB−SAB

=
a

i= 1

b

j= 1

c

k =1

Y 2
ijk

n
−

a

i=1

b

j=1

Y ij

cn,

R≺ SSR = SR−e SASBSC = SR−SABC

=
a

i= 1

b

j= 1

c

k =1

n

l = 1

y2ijkl−
1
n

a

i=1

b

j=1

c

k = 1

Y 2
ijk

Following rule 4 we construct the table:

i j k l

ai 1−
a

N A
b c n

bj a
1−

b
N B

c n

ck(i, j) 1 1 1−
c

N C
n

(ab)ij 1−
a

N A 1−
b

N B
c n

el(i, j, k) 1 1 1 1−
n

N res
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Then we get

E MSA = bcnσ2a + n 1−
c

N C
σ2c inab + cn 1−

b
N B

σ2ab + 1−
n

N res
σ2,

E MSB = acnσ2b + n 1−
c

N C
σ2c inab + cn 1−

a
N A

σ2ab + 1−
n

N res
σ2,

E MSC inAB = nσ2c inab + 1−
n

N res
σ2,

E MSAB = n 1−
c

N C
σ2c inab + cnσ

2
ab + 1−

n
N res

σ2,

E MSres = σ2

7.3 Variance Component Estimators in Mixed Models

Mixed models in the ANOVA are such models where in Equation (6.3) at least
one but not all γAi

are random variables. More general mixedmodels are defined
so that models I and II are special cases. We use this general rule, but neverthe-
less find it reasonable to consider model I and model II in separate chapters
as done in Chapters 5 and 6 and to use the methods developed for mixed
models only if neither model I nor model II can be used.

Definition 7.2 Let Y = (y1, …, yN)
T be an N-dimensional random vector

depending on the effects γAi
,…,γAs

,γAs+ 1
,…,γAr

of r factors or factor combina-
tions Ai (i = 1, …, r) with ai levels as

Y = μ1N +
s

i=1

ZAiγAi
+

r

i= s+ 1

ZAiγAi
+ e 7 6

Equation (7.6) under the side conditions

var e = σ2EN , E e = 0N , cov γAi
,e =Oai ,N i= s+ 1,…,r ,

cov γAi
,γAj

=Oai ,aj i, j= s+ 1,…,r; i j , E γAi
= 0ai

is called a mixed model of the ANOVA.
Inserting in Definition 7.2,

β1 = μ,γTA1
,…,γTAs

T
, β2 = γTAs+ 1

,…,γTAr

T
,

X1 = 1N ,ZAi ,…,ZAs and X2 = ZAs+ 1 ,…,ZAr ,
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then (7.6) becomes

Y =X1β1 +X2β2 + e 7 7

analogue to (5.1) and (6.1). For X1 = X, β1 = β(X2 = 0) (7.7) becomes equation
(5.1), and for β1 = μ,X1 = 1N ,X2 =Z,β2 = γ (7.7) becomes Equation (6.2). Hereaf-
ter we are interested in the so-called real mixed models where β1 except μ con-
tains at least one further component and X2 and β2 are not zero. New with the
real mixed models is the fact that fixed effects are estimated or tested and var-
iance components are estimated.
Do not confuse mixed models with mixed classifications.

7.3.1 An Example for the Balanced Case

Example 7.5 (Mixed model in the two-way cross-classification with equal
subclass numbers)
Two cross-classified factors A (fixed) and B and their interactions AB in

Equation (7.6) lead us to

A1 =A, A2 =B, A3 =AB

Then s = 1 and r = 3 and we put a1 = a, a2 = b, and consequently a3 = ab.
Because we have equal subclass numbers with n > 1, it follows N = abn.
Equations (7.6) and (7.7) become

yijk = μ+ ai + bj + ab ij + eijk 7 8

From the side conditions of Definition 7.2, we get side conditions for (7.8). Let
additionally (case I)

var bj = σ2b for all j, cov bj, bk = 0, for all j,k with j k,

var ab ij = σ2ab for all i, j,
a

i= 1

ai = 0,

cov bj, ab ij = cov bj ,eijk = cov ab i j ,eijk = 0

and

cov ab ij, ab ij = 0 j j

The columns SS, df andMS in the corresponding ANOVA table aremodel inde-
pendent and given in Table 5.13. The expectations of theMS for model (7.8) can
be found in Table 7.1.
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If the additional side conditions (case II) are

a

i=1

ab ij = 0 for all j 7 9

the term a= 1
a

a
i= 1ai vanishes and (ab)ij and ab i j i i ; j= 1,…,b are

correlated; the covariance is cov ab ij, ab i j = σab for all j and i i

Because var a
i= 1 ab ij = var 0 = 0 0 = var a

i= 1 ab ij = a
i=1σ

∗2
ab +

a
i= 1

a
i =1σab

i i

= aσ∗2ab + a a−1 σab, the relations and σab = −
1

a−1
σ∗2ab follow.

The conditions (7.9) lead to the E(MS) in the last column in Table 7.1. Searle
(1971) clearly recorded the relations between the two cases. He showed that
σ2b in the two cases changed in meaning. To show this, we write down
Equation (7.8) separately for both cases: (7.8) as it stands for case I and (7.8) with
effects complemented by for case II (side conditions (7.9))

yijk = μ + ai + bj + ab ij + eijk

(7.8) can be written as

yijk = μ+ ai + bj + ab j + ab ij− ab j + eijk

with ab j = a−1 a
i= 1 ab ij Then we obtain μ = μ+ a,ai = ai−a,bj = bj−b

and ab ij = ab ij− ab j. Then we have

σ∗2b = σ∗2b = σ2b =
1
a
σ2ab, σ∗2ab = σ2a b =

a−1
a

σ2ab

Table 7.1 Expectations of the MS in Table 5.13 for a mixed model (levels of A fixed) for two side
conditions.

Source of
variation E MS , if cov ab ij , ab i, j = 0 Case I E MS , if a

i = 1 ab ij = 0 for all j Case II

Between the
levels of A

bn
a−1

a

i= 1

ai−a
2 + nσ2ab + σ

2 bn
a−1

a

i=1

a2i +
na
a−1

σ∗2ab + σ2

Between the
levels of B

anσ2b + nσ2ab + σ
2 anσ∗2b + σ2

Interactions
A × B

nσ2ab + σ2 na
a−1

σ∗2ab + σ
2

Residual σ2 σ2
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and

σab = cov ab ij, ab i j = −
1

a−1
σ2a b = −

1
a−1

σ∗2ab

The variance components σ2b,σ
2
ab and σ2 can be estimated due to balancedness.

For case I from column 2 in Table 7.1 by the ANOVA method,

s2 =MSres,

s2ab =
1
n

MSAB−MSres ,

s2b =
1
an

MSB−MSAB

7 10

For case II from the last column in Table 7.1,

s2 =MSres,

s∗2ab =
a−1
na

MSAB−MSres ,

s∗2b =
1
an

MSB−Mres

7 10a

Analolously to this example, cross-classified, nested or mixed-classified bal-
anced designs of the mixed model can be treated; the general statements of
Section 6.3 are still valid.

7.3.2 The Unbalanced Case

In unbalanced cases we use Hendersons method III (in Henderson, 1953), start-
ing with the model equation (7.7). A quadratic form in Ymust be found so that
its expectation independent of β1 contains only the variance components we are
looking for, if the covariances between the random effects of each factor
are zero.

Theorem 7.1 For Y let the mixed model in Definition 7.2 have the form (7.7).
With X = (X1, X2), the expectation of the quadratic form

Y T X XTX
−
XT −X1 XT

1 X1
−
XT
1 Y =Y T U −V Y

depends only on the unknown σ2 and on var(β2), but not on β1 even if β1 is
random.

Proof: We rewrite (6.5) for Y in (7.7) as

E Y T AY = tr XTAXE ββT + σ2tr A 7 11
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with β=
β1

β2
(E(β1) = β1). Due to the idempotence of X(XT X)−XT and

XT X(XT X)−XT X = XT X, we get

E Y TUY =E Y TX XT X
−
XT Y = tr XT X E ββT + σ2rk X

and

E Y TV Y =E Y T XT
1 XT

1 X1
−
XT
1 Y

= tr XTX1 XT
1 X1

−
XT
1 XE ββT + σ2rk X1

We write

XTX =
XT
1

XT
2

X1

X1

XT
1

XT
2

X2

X2

with (X1, X2) = X and obtain

E Y TUY = tr
XT
1

XT
2

X1

X1

XT
1

XT
2

X2

X2

E ββT + σ2rk X 7 12

or because XTX(XT X)−XT = XT,

E Y T V Y = tr
XT
1

X2

X1

X1

XT
1 X1

−
XT
1 X1, X

T
1 X2 E ββT + σ2rk X1

= tr
XT
1

XT
2

X1

X1

XT
1

XT
2

X2

X1 XT
1 X1

−
XT
1 X2

E ββT + σ2rk X1

With β=
β1

β2
we obtain

E Y T X XTX −XT −X1 XT
1 X1

−
XT
1 Y

= tr X2 IN −X1 XT
1 X1

−
XT
1 X2E β2β

T
2 + σ2 rk X −rk X1 ,

7 13

and this completes the proof.

Hendersons method III uses Theorem 7.1.
The partitioning of β into two vector components β1, β2 (and X in X1, X2) is

independent of β1 containing only fixed effects or not. Theorem 7.1 is valid for
all partitioning of β, as long as rk(X) − rk(X1) > 0.
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We now build for a mixed model with r − s random components all quadratic
forms of type YT(U −V)Y, in which β2 has one, two, …, r − s random groups
of elements and by this X2 one, two, …, r − s groups of columns. Together
with E(MSres) = σ2, the expectations of these quadratic forms result in
r − s + 1 equations with the variance components being obtained, as long as
E β2β

T
2 is a diagonal matrix.

In these equations we replace E[YT(U −V)Y] by YT(U −V)Y and the variance
components σ2i σ2 with their estimators s2i s2 and receive equations with the
estimators of the variance components as unknown quantities. The estimates
can become negative, but the estimators are unbiased and independent of
the fixed effects. Note that due to the unbiasedness, we can get negative esti-
mates that of course are nonsense. If we replace the negative estimates by zero,
the unbiasedness property is no longer true.
In mixed models, it may happen that variance components of the random

effects as well as the fixed effects have to be estimated. If the distribution of
Y is normal, we can use the maximum likelihood method. The likelihood func-
tion is differentiated concerning the fixed effects and the variance components.
The derivatives are set at zero, and we get simultaneous equations that can be
solved by iteration. The formulae and proposals for numerical solutions of the
simultaneous equations are given in Hartley and Rao (1967). The numerical
solution is elaborated (see the remarks about REML in Section 6.2.1.2).

7.4 Tests for Fixed Effects and Variance Components

We assume now that all random entries in (7.6) are normally distributed and
that the side conditions (7.9) are defined so that all fixed effects are estimable.
W.l.o.g. we restrict ourselves to i = 1 and i = s + 1

H0F γA1 = 0a1, against HAF γA1 0a1 7 14

and

H0V σ2s+ 1 = 0 against HAV σ2s+1 0

By

SSi =Y TTiY i= 1,…, r + 1 7 15

we denote the SS of factor Ai (SSr + 1 = SSres) where the Ti are idempotent
matrices of rank rk(Ti) = fi. In the special cases of Section 7.5, SSi and fi are
given in the ANOVA tables. The magnitudes

MSi =
1
fi
SSi i= 1,…, r + 1 7 16

are the corresponding MS, MSr + 1 =MSres, fr + 1 = fres.
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To test H0F we construct a test statistic

F1 =
Y TT1Y

f1
r + 1
i= s+ 1ciMSi

=
MS1

r + 1
i= s+1ciMSi

7 17

so that if H0F is true for suitable ci,

E MS1 H0F = E
r + 1

i= s+1

ciMSi

A corresponding construction is used if the test statistic for H0V is given by

F s+1 =
MSs+ 1
r + 1
j= s+2kjMSj

7 18

where we have to choose the kj so that

E MSs+ 1 H0V =E
r + 1

j= s+ 2

kjMSj

The degrees of freedom of the test statistics (7.17) and (7.18) in all cases, in
which only one of ci (i = s + 1, …, r + 1) or kj ( j = s + 2, …, r + 1) differs from zero
and is equal to 1, are given by ( f1, fi) or ( fs + 1, fj). In all other cases we approx-
imate the degrees of freedom by f1, f ∗F or fs+1, f ∗V using the corollary of
Lemma 6.3. For testingH0F andH0V, Seifert (1980, 1981) used another approach
leading to mixed models to exact α-tests and in balanced cases to simple for-
mulae. The principle of Seifert was to use test statistics that are ratios of
two independent quadratic forms YTB1Y and YTB2Y where YTB2Y is centrally
χ2-distributed with g2 degrees of freedom and YTB1Y – if H0 F (H0 V) is true –
is centrally χ2-distributed with g1 degrees of freedom. Then

F =
Y TB1Y

Y TB2Y

g2
g1

7 19

– if H0 F (H0 V) is true – is F(g1, g2) centrally F-distributed. This procedure for
model I and model II may also be used (s = 0, r = 0)

7.5 Variance Component Estimation and Tests
of Hypotheses in Special Mixed Models

Below we discuss simple cases (mainly balanced designs) of the two- and three-
way analyses with mixed models. If we discuss statistical tests of fixed effects or
variance components, we assume that all random variables in (7.6) are normally
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distributed and that side conditions are fulfilled so that all fixed effects are
estimable.

7.5.1 Two-Way Cross-Classification

W.l.o.g. we assume that in a mixed model of the two-way cross-classification,
factor A is fixed, and factor B is random as in model equation (7.8). The variance
component estimation already was handled in Example 7.5.
The SS, MS and df are given in Table 5.10; there we have single subclass

numbers and R = AB. We have s = 1, r = 2, a1 = a, a2 = b, a3 = n, and the model
equation is (7.8) for (ab)ij = 0
The null hypotheses that can be tested are

H01: ‘All ai are zero’.
H02: ‘σ2b = 0’.
H03: ‘σ2ab = 0’.

If H01 is true, then E(MSA) equals E(MSAB), and we test H01 using

FA =
MSA
MSAB

,

which has under H01 an F-distribution with (a − 1) and (a − 1)(b − 1) degrees of
freedom.
To find the minimum size of the experiment that will satisfy given precision

requirements, we must remember that only the degrees of freedom of the corre-
sponding F-statistic influence the power of the test and by this the size of the
experiment. To test the hypothesis H01 that the fixed factor has no influence
ontheobservations,wehave (a−1) and(a−1)(b−1)degreesof freedomofnumer-
ator and denominator, respectively. Thus the subclass number n does not influ-
ence the size needed and therefore should be chosen as small as possible. If we
know that there are no interactions, we choose n= 1, but if interactionsmay occur
we choosen= 2. Because the number a of levels of the factor under test is fixed, we
canonly chooseb, the sizeof the sampleofB-levels to fulfil precision requirements.
Here is an example.

Example 7.6 We want to test the null hypothesis that six wheat varieties do
not differ in their yields.
For the precision requirements α = 0.05, β = 0.2, σ =1, δ =1.6, we receive a

maximin number of levels of factor B as b = 12.
For the experiment we randomly selected 12 farms. The varieties are the levels

of a fixed factor A and the twelve farms are levels of a random factor B. Both are
cross-classified. The yield in dt/ha was measured. The results are shown in
Table 7.2.
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We can perform the two-way ANOVA with SPSS by using the procedure:

Analyze
General Linear Model

Univariate

We input ‘variety’ as fixed factors, ‘farm’ as random factor and ‘yield’ as the
dependent variable as shown in Figure 7.1. With the model key, we use a model
without interactions. The results of the SPSS calculations are shown in
Table 7.3. Note that because we have single-cell observation, the residual is
equal to the interaction AB.
We received FA =

MSA
MSAB

= 1139.247/33.144 = 34.372, and therefore we found

significant differences between the varieties. This follows directly from
Table 7.3 because sig. < 0.05. For FB we receive FB = 2.007,and this means that
the variance component for the farms is with α = 0.05, not significantly different
from the error variance.
To estimate the variance component for the farms, we use in SPSS:

Analyze
General Linear Models

Variance Components

Again we use a model without interactions and select the ANOVAmethod. The
result shows Table 7.4.

Table 7.2 Yields of 6 varieties tested on 12 farms.

A: varieties

B: farms 1 2 3 4 5 6

1 32 48 25 33 48 29

2 28 52 25 38 27 27

3 30 47 34 44 38 31

4 44 55 28 39 21 31

5 43 53 26 38 30 33

6 48 57 33 37 36 26

7 42 64 40 53 38 27

8 42 64 42 41 29 33

9 39 64 47 47 23 32

10 44 59 34 54 33 31

11 40 58 27 50 36 30

12 42 57 32 46 36 35
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Figure 7.1 The factors of Example 7.6. Source: Reproduced with permission of IBM.

Table 7.3 ANOVA table for Example 7.6.

Tests of between-subjects effects

Dependent variable:yield

Source
Type III sum of
squares df

Mean
square F Sig.

Intercept Hypothesis 110842.014 1 110842.014 1666.070 .000

Error 731.819 11 66.529a

Variety Hypothesis 5696.236 5 1139.247 34.372 .000

Error 1822.931 55 33.144b

Farm Hypothesis 731.819 11 66.529 2.007 .045

Error 1822.931 55 33.144b

aMS(farm)
bMS(error)
Source: Reproduced with permission of IBM.
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7.5.2 Two-Way Nested Classification B≺ A

Let the model equation of the nested classification be

yijk = μ+ai + bj i + ek i j i= 1,…,a; j= 1,…,b; k = 1,…,n 7 20

with the side conditions that the levels of A,B and the residuals stem from finite
level populations and for all i and i, j, we assume

0 =E ai =
1

N A

N A

i= 1

ai

=E bj i =
1

N B

N B

j= 1

bj i =
1

N res

N res

k = 1

ek i, j

1
N A −1

N A

i=1

a2i = σ
2
a,

1
N B −1

N B

j=1

b2j i = σ
2
b in a,

1
N res −1

N res

k =1

e2k i, j = σ2

7 21

Further, all covariances between the components in (7.14) (e . g . between ai and
bj(i)) shall be zero. We use the rules in Section 7.2 to generate the ANOVA table.
This ANOVA table has three rows: levels ofA, levels of B inA, and residual. The
ANOVA table is Table 7.5. By rule 2 the degrees of freedom have been found
and by rule 3, the SS.

Table 7.4 Variance component estimates of Example 7.6.

Variance estimates

Component Estimate

Var(farm) 5.564

Var(error) 33.144

Dependent variable: yield method: ANOVA (type I sum of squares)

Source: Reproduced with permission of IBM.
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We use rule 4 to determine the E(MS) using the table below:

i j k

ia ( )
1 a

N A
− b n

( )j ib 1
( )

1 b
N B

− n

( ),k i je 1 1
( )

1− n
N res

Then E(MS) are

E MSA = bnσ2a + n 1−
b

N B
σ2b ina + 1−

n
N res

σ2,

E MSB inA = nσ2b ina + 1−
n

N res
σ2,

E MSres = 1−
n

N res
σ2

7 23

Table 7.5 ANOVA table of a two-way balanced nested classification for a model with finite level
populations.

Source of
variation SS df MS E(MS)

Between the
levels of A

SSA =
a

i=1

Y 2
i

bn
−
Y 2

abn
a − 1

SSA
a−1

=MSA bnσ2a + n 1−
b

N B
σ2b ina

+ 1−
n

N res
σ2

Between the
levels of B
within A

SSB inA =
a

i= 1

b

j= 1

Y 2
ij

n

−
a

i= 1

Y 2
i

bn

a(b − 1)
SSB inA
a b−1

=MSB inA

nσ2b ina + 1−
n

N res
σ2

Residual SSres =
a

i= 1

b

j= 1

n

k = 1

y2ijk

−
a

i= 1

b

j=1

Y 2
ij

n

ab(n − 1) SSres
ab n−1

=MSres
1−

n
N res

σ2

7 22

Analysis of Variance – Models with Finite Level Populations and Mixed Models 359



If N(res) tends to infinity (∞), then we receive

E MSA = bnσ2a + n 1−
b

N B
σ2b ina + σ2,

E MSB = nσ2b ina + σ2,

E MSres = σ2

7 24

Putting in (7.24) N(B) = b, we obtain the E(MS) of model I in Table 5.19 for the
balanced case (ni = n, bi = b). For N(B) ∞ we obtain from (7.24) the E(MS) of
model II in Table 6.5 for the balanced case (with a corresponding definition of
σ2a and σ2b in a). Nevertheless, here we are interested in mixed models. In the
nested classification, there exist two mixed models.

7.5.2.1 Levels of A Random
Let the levels of A be randomly selected from the level population and the levels
of B fixed, the model equation is then

yijk = μ+ai + bj i + ek i, j i= 1,…,a; j= 1,…,b; k = 1,…,n 7 25

with corresponding side conditions.
(Expectations of all random variables are zero, var ai = σ2a for all i;

var(ek(i, j)) = σ2 for all i, j, k; all covariances between different random variables

on the right-hand side of (7.25) are zero, b
j= 1bj i = 0 )

The E(MS) we get from (7.24) for N(B) = b is given in column 2 of Table 7.6.
The estimators of the variance components are

s2 =MSres, s
2
a =

1
bn

MSA−MSres 7 26

Table 7.6 E(MS) of mixed models of the two-way nested classification.

Source of variation A random, B fixed A fixed, B random

Between the levels of A bnσ2a + σ2
bn
a−1

a

i= 1

a2i + nσ
2
b ina + σ

2

Between the levels of B within the
levels of A

n
a b−1

a

i= 1

b

j= 1

b2j i + σ
2

nσ2b ina + σ2

Residual σ2 σ2
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7.5.2.2 Levels of B Random
If the levels of A are fixed and those of B random, the model equation is

yijk = μ+ ai + bj i + ek i, j , i= 1,…,a; j= 1,…,b; k = 1,…,n 7 27

with the side conditions

var bj i = σ2b ina for all i, j,

var ek i, j = σ2 for all i, j,k,
a

i= 1

ai = 0,

and the expectations of the random variables on the right-hand side of (7.27),
and all covariances between the random variables on the right-hand side of
(7.27) are equal to zero.
The E(MS) for this case follows from (7.24) and can be found in the last col-

umn of Table 7.6. The estimators of σ2 and σ2b ina are

s2 =MSres, s2b ina =
1
n

MSB inA−MSres 7 28

The null hypothesis that the effects of all the levels of factor A are equal is tested
using the test statistic:

FA =
MSA

MSB inA
,

which under H0 has an F-distribution with (a − 1) and a(b − 1) degrees of
freedom.
For the mixed model we use conditions analogue to case II of Section 7.3.1

but corresponding to the remarks below. In Example 7.1 in place of a
a−1σ

∗2
ab,

we write the quasi-variance component σ2ab Then we get

E MSA =
bn
a−1

a

i= 1

a2i + nσ2ab + σ
2,

E MSB = anσ2b + σ
2, E MSAB = nσ2ab + σ

2

To find the minimum size of the experiment, which will satisfy given precision
requirements, we have to find the minimum number b of levels of factor B.
Because in nested models we have no interactions, we can fix n = 1. Consider
the following example.

Example 7.7 It shall be tested whether an amino acid supplementation in
the rearing rations of young boars (7 months old) causes a significant
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increase in sperm production (total number of spermatozoa per ejaculate in
Mrd.) of the boars. There were a = 2 feeding groups (with and without sup-
plementation) formed; in each group b1 = b2 = b randomly selected boars
from an animal population have been investigated. From each boar sperma-
tozoa from c ejaculates have been counted. This is a two-way nested classi-
fication with factor feeding (fixed) and boar (random). In the SPSS procedure
it reads:

Analyze
General Linear Model

Univariate

We click themodel button, and then under ‘build terms’we enter both factors as
‘main effects’; under ‘sum of squares’we choose ‘type I’After clicking ‘continue’,
click on ‘paste’, and in the syntax window change ‘/design feeding boar’ to
‘/design feeding boar(feeding)’ (signifying boar nested in feeding). The new
syntax is

DATASET ACTIVATE DataSet1.
UNIANOVA Yield BY Feeding Boar
/RANDOM=Boar
/METHOD=SSTYPE(1)
/INTERCEPT=EXCLUDE
/CRITERIA=ALPHA(0.05)
/DESIGN=Feeding Boar(Feeding).

Then start the programme with ‘Run’.

7.5.3 Three-Way Cross-Classification

To calculate the variance components, we must calculate as in Example 7.4 the
quasi-variance components; we call them variance components for short.
The reader corresponding to the procedure in the sections above can

derive the side conditions of the models. We only give the E(MS) for a
model with finite level populations and for both types of balanced mixed
models. In the unbalanced case the method Henderson III with two random
factors does not lead to a unique solution; this case is not included in
this text. We recommend in those situations to use the REML method in
Section 6.2.1.2.
The model for finite level populations is

yijkl = μ+ai + bj + ck + ab ij + ac ik + bc jk + abc ijk + eijkl

i= 1,…,a; j= 1,…,b; k = 1,…,c; l = 1,…,n ,
7 29

the sums of overall effects of the level populations are assumed to be zero.
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The SS, df andMS of the three-way cross-classification are given in Table 5.21.
To derive the E(MS) for model equation (7.29), we first use the table below:

i j k l

ai 1−
a

N A b c n

bj a 1−
b

N B
c n

ck a b 1−
c

N C n

(ab)ij 1−
a

N A 1−
b

N B
c n

(ac)ik 1−
a

N A b 1−
c

N C n

(bc)jk a 1−
b

N B
1−

c
N C n

(abc)ijk 1−
a

N A 1−
b

N B
1−

c
N C n

el(i, j, k) 1 1 1 1−
n

N res

If N(res) ∞, we obtain the E(MS) of the second column in Table 7.7. In the
three-way cross-classification exist two types of mixed models. In the first type
the levels of one factor (we choose w.l.o.g. factorC) are randomly selected. In the
second type the levels of two factors (we choose w.l.o.g. factors B and C) are
randomly selected.
The model equation of the first type (A, B fixed, C random) is

yijkl = μ+ ai + bj + ck + ab ij + ac ik + bc jk + abc i jk + el i, j,k

i= 1,…,a; j= 1,…,b; k = 1,…,c; l = 1,…,n
7 30

For N(A) = a, N(B) = b and N(C) ∞, we receive the E(MS) for the model
equation (7.30) in the third column of Table 7.7. From this the estimators of
the variance components become

s2 =MSres, s2abc =
1
n

MSABC −MSres ,

s2bc =
1
an

MSBC −MSres , s2ac =
1
bn

MSAC −MSres ,

s2c =
1

abn
MSC −MSres

7 31
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Table 7.7 E(MS) of a three-way cross-classification for a model with finite level populations
and two mixed models.

Source of variation Model with finite level populations [N(R) ∞]

Levels of A
bcnσ2a + cn 1−

b
N B

σ2ab + bn 1−
c

N C
σ2ac

+ n 1−
b

N B
1−

c
N C

σ2abc + σ
2

acnσ2b + cn 1−
a

N A
σ2ab + an 1−

c
N C

σ2bc

+ n 1−
a

N A
1−

c
N C

σ2abc + σ2

abnσ2c + bn 1−
a

N A
σ2ac + an 1−

b
N B

σ2bc

+ n 1−
a

N A
1−

b
N B

σ2abc + σ2

cnσ2ab + n 1−
c

N C
σ2abc + σ

2

bnσ2ac + n 1−
b

N B
σ2abc + σ2

anσ2bc + n 1−
a

N A
σ2abc + σ

2

nσ2abc + σ2

σ2

Levels of B

Levels of C

Interaction A × B

Interaction A ×C

Interaction B × C

Interaction A × B ×C
Residual

A, B fixed, C random; model equation (7.30) A fixed, B, C random; model equation (7.32)

bcn
a−1

a

i= 1

a2i + bnσ2ac + σ2
bcn
a−1

a

i= 1

a2i + cnσ2ab + bnσ
2
ac + nσ2abc + σ2

acn
b−1

b

j=1

b2j + anσ2bc + σ2 acnσ2b + anσ
2
bc + σ

2

abnσ2c + σ2 abnσ2c + anσ2bc + σ2

cn
a−1 b−1

a

i=1

b

j= 1

ab 2
ij + nσ

2
abc + σ

2 cnσ2ab + nσ
2
abc + σ

2

bnσ2ac + σ
2 bnσ2ac + nσ

2
abc + σ

2

anσ2bc + σ
2 anσ2bc + σ

2

nσ2abc + σ
2 nσ2abc + σ

2

σ2 σ2
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The model equation of the second type (A fixed, B, C random) is

yijkl = μ+ ai + bj + ck + ab ij + ac ik + bc jk + abc ijk + el i, j,k
i= 1,…,a; j= 1,…,b; k = 1,…,c; l = 1,…,n

7 32

If we put in the E(MS) of the model with finite level populationsN(A) = a and let
N(B) and N(C) tend to ∞, then we obtain the E(MS) for the model equation
(7.32), in the last column of Table 7.7. From this we obtain the estimators of
the variance components:

s2 =MSres s2abc =
1
n

MSABC −MSres ,

s2bc =
1
an

MSBC −MSres ,

s2ac =
1
bn

MSAC −MSABC , s2ab =
1
cn

MSAB−MSABC ,

s2a =
1

abn
MSC −MSBC , s2b =

1
acn

MSB−MSBC

7 33

7.5.4 Three-Way Nested Classification

In the three-way nested classification, there are six mixed models. To save space
here, side conditions are not given. They are analogue to those in Section 7.5.2.
(The sums over all fixed effects of a factor are zero; covariances between random
model components are zero.) At first the model for finite level populations is
discussed, and then the E(MS) are derived by the rules in Section 7.2. Then
the six balanced mixed models are treated; their E(MS) can be derived by the
reader from those of the model with finite level populations. They are sum-
marised in Table 7.8 and 7.9. We further give the estimators. The SS, df and
MS are given in Table 5.27. Themodel with finite level populations has themodel
equation

yijkl = μ+ ai + bj i + ck i, j + el i, j,k
i= 1,…,a; j= 1,…,b; k = 1,…,c; l = 1,…,n

7 34

Following rule 4 in Section 7.2, we obtain the following scheme:

i j k l

ai 1−
a

N A
b c n

bj(i) 1
1−

b
N B

c n

ck(i, j) 1 1 1−
c

N C
n

el(i, j, k) 1 1 1 1−
n

N res
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and from this the E(MS) in Tables 7.8 and 7.9. The six mixed models are
as follows:

I) Levels of A randomly selected, levels of B, C fixed
II) Levels of B randomly selected, levels of A, C fixed
III) Levels of C randomly selected, levels of A, B fixed
IV) Levels of B and C randomly selected, levels of A fixed
V) Levels of A and C randomly selected, levels of B fixed
VI) Levels of A and B randomly selected, levels of C fixed

The estimators are
s2 =MSRest for all six cases and further:
For case I,

s2a =
1
bcn

MSA−MSres 7 35

For case II,

s2b ina =
1
cn

MSB inA−MSres 7 36

For case III,

s2c inb =
1
n

MSC inB−MSres 7 37

For case IV,

s2c inb =
1
n

MSC inB−MSres ,

s2b ina =
1
cn

MSB inA−MSC inB

7 38

For case V,

s2c inb =
1
n

MSC inB−MSres ,

s2a =
1
bcn

MSA−MSC inB

7 39

For case VI,

s2b ina =
1
cn

MSB inA−MSres ,

s2a =
1
bcn

MSA−MSB inA

7 40
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Table 7.8 E(MS) for a balanced three-way nested classification − models with finite level populations and mixed models with one random facto.

Source of
variation Model with finite level populations (see Example 7.1) A random, B, C fixed (I) B random, A, C fixed (II) C random, A, B, fixed (III)

Between A bcnσ2a + cn 1−
b

N B
σ2b in a + n 1−

c
N C

σ2c in b + σ2 bcnσ2a + σ
2

bcn
a−1

a

i= 1

a2i + cnσ
2
b in a + σ

2 bcn
a−1

a

i= 1

a2i + nσ
2
c in b + σ2

Between B in A cnσ2b in a + n 1−
c

N C
σ2c in b + σ2

cn
a b−1 i, j

b2j i + σ
2 cnσ2b in a + σ

2 cn
a b−1 i, j

b2j i + nσ2c in b + σ2

Between C in B
and A

nσ2c in a + σ
2

n
ab c−1

i, j,k

c2k i, j + σ
2 n

ab c−1
i, j,k

c2k i, j + σ
2

nσ2c in b + σ
2

Residual σ2 σ2 σ2 σ2

Table 7.9 E(MS) for a balanced three-way nested classification − models with one fixed factor.

Source of variation A fixed, B, C random (IV) B fixed, A, C random (V) C fixed, A, B random (VI)

Between A bcn
a−1

a

i= 1

a2i + cnσ
2
b in a + nσ

2
c in b + σ2

bcnσ2a + nσ
2
c in b + σ

2 bcnσ2a + cnσ2b in a + σ
2

Between B in A cnσ2b in a + nσ2c in b + σ
2

cn
a b−1 i, j

b2j i + nσ2c in b + σ
2

cnσ2b in a + σ
2

Between C in B and A nσ2c in b + σ2 nσ2c in b + σ
2

n
ab c−1

i, j,k

c2k i, j + σ
2

Residual σ2 σ2 σ2



7.5.5 Three-Way Mixed Classification

In Chapters 5 and 6, mixed classifications with three factors have been consid-
ered. Mixed models for the two types of mixed three-way classification are now
discussed.

7.5.5.1 The Type (B≺ A) × C
For the balanced case of the mixed classification (model equation (5.45) dis-
cussed in Section 5.4.3.1), first the E(MS) for the model with finite level popula-
tions are derived. The E(MS) are given in Table 7.10.
For the six mixed models, the E(MS) can be found in Tables 7.10 and 7.11.

The estimators for the variance components besides s2 =MSres are given below.
With rule 4 in Section 7.2, we receive

i j k l

ai 1−
a

N A b c n

bj(i) 1 1−
b

N B
c n

ck a b 1−
c

N C n

(ac)ik 1−
a

N A b 1−
c

N C n

(bc)jk(i) 1 1−
b

N B
1−

c
N C n

el(i, j, k) 1 1 1 1−
n

N res

For the six models the estimators of the variance components are the
following:
– A fixed, B, C random

s2bc ina =
1
n

MSB×C inA−MSres ,

s2a =
1
bn

MSA×C −MSB×C inA ,

s2c =
1

abn
MSC −MSB×C inA ,

s2bina =
1
cn

MSB inA−MSB×C inA ;

7 41
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– B fixed, A, C random

s2bc ina =
1
n

MSB×C inA−MSres ,

s2ac =
1
bn

MSA×C −MSres ,

s2c =
1

abn
MSC −MSA×C ,

s2a =
1
bcn

MSA−MSA×C ;

7 42

– C fixed, A, B random

s2bc in a =
1
n

MSB×C inA−MSres ,

s2ac =
1
bn

MSA×C −MSB×C inA ,

s2b in a =
1
cn

MSB inA−MSres ,

s2a =
1
bcn

MSA−MSB in A ;

7 43

– A random B, C fixed

Table 7.10 E(MS) of the mixed classification (B≺ A) × C –model with finite level populations
(N(R) ∞) (see Example 7.1).

Source of variation E(MS)

Between A
bnσ2a + cn 1−

b
N B

σ2b in a + bn 1−
c

N C
σ2ac

+ n 1−
b

N B
1−

c
N C

σ2bc in a + σ2

Between B in A cnσ2b in a + n 1−
c

N C
σ2bc in a + σ

2

Between C abnσ2c + bn 1−
a

N A
σ2ac + n 1−

b
N B

σ2bc in a + σ
2

Interaction A × C bnσ2ac + n 1−
b

N B
σ2bc in a + σ2

Interaction B ×C in A nσ2bc in a + σ2

Residual σ2
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Table 7.11 E(MS) of the mixed classification (B≺ A) × C – models with one fixed factor.

Source of variation A fixed, B, C random B fixed, A, C random C fixed, A, B random

Between A bcn
a−1 i

a2i + cnσ
2
b ina + bnσ

2
ac

+ nσ2bc in a + σ
2

bcnσ2a + bnσ2ac + σ2 bcnσ2a + cnσ
2
bina + σ

2

Between B in A cnσ2b in a + nσ
2
bc in a + σ

2
cn

a b−1 i, j

b2j i + nσ
2
bc in a + σ

2
cnσ2b in a + σ2

Between C abnσ2c + nσ
2
bc ina + σ

2 abnσ2c + bnσ
2
ac + σ

2 abn
c−1

k

c2k + bnσ
2
ac + nσ

2
bc in a + σ

2

Interaction A ×C bnσ2ac + nσ2bc ina + σ
2 bnσ2ac + σ2 bnσ2ac + nσ

2
bc ina + σ2

Interaction B ×C in A nσ2bc ina + σ
2 nσ2bc in a + σ2 nσ2bc ina + σ2

Residual σ2 σ2 σ2



s2ac =
1
bn

MSA×C −MSres ,

s2a =
1
bcn

MSA−MSres ;

7 44

– B random A, C fixed

s2bc in a =
1
n

MSB×C inA−MSres ,

s2b =
1
cn

MSB in A−MSres ;

7 45

– C random A, B fixed

s2bc in a =
1
n

MSB×C in A−MSres ,

s2ac =
1
bn

MSA×C −MSres ,

s2c =
1

abn
MSC −MSres

7 46

The E(MS) of the six models are given in Table 7.11 and in Table 7.12.

7.5.5.2 The Type C≺ AB
For the type C≺AB of the mixed classification the E(MS) for the model with
finite level populations have been derived in Section 7.2, Example 7.4. The fol-
lowing mixed models exist: The E(MS) for these four cases can be found in
Table 7.13. The estimators of the variance components are given below:

Fall I Cfixed, A or B W l o g we choose A fixed,

Fall II Cfixed, A and B random,

Fall III Crandom, A and B fixed,

Fall IV Crandom, A or B W l o g we choose A random

Case I:

s2ab =
1
cn

MSA×B−MSres ,

s2b =
1
acn

MSB−MSres ;

7 47
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Table 7.12 E(MS) of the mixed classification (B≺ A) × C – models with one random factor.

Source of variation A random, B, C fixed B random, A, C fixed C random, A, B fixed

Between A bcnσ2a + σ
2

bcn
a−1

i

a2i + cnσ2b in a + σ
2 bcn

a−1
i

a2i + bnσ
2
ac + σ

2

Between B in A cn
a b−1

i, j

b2j k + σ2 cnσ2bina + σ
2 cn

a b−1
i, j

b2j i + nσ2bc in a + σ
2

Between C abn
c−1

k

c2k + bnσ
2
ac + σ

2 abn
c−1

k

c2k + nσ
2
bc in a + σ

2 abnσ2c + σ
2

Interaction A ×C bnσ2ac + σ
2

bn
a−1 c−1

i,k

ab 2
ik + nσ2bc in a + σ2 bnσ2ac + σ2

Interaction B ×C in A
n

a b−1 c−1
i, j,k

bc 2
jk i + σ2 nσ2bc in a + σ

2 nσ2bc in a + σ
2

Residual σ2 σ2 σ2



Table 7.13 E(MS) for mixed models of the mixed three-way classification of type C≺ AB.

Source of variation B random, A, C fixed A, B random, C fixed C random, A, B fixed A, C random, B fixed

Between A bcn
a−1 i

a2i + cnσ
2
ab + σ

2 bcnσ2a + cnσ2ab + σ2 bcn
a−1 i

a2i + nσ
2
c in ab + σ

2 bcnσ2a + nσ
2
c in ab + σ

2

Between B acnσ2b + σ2 acnσ2b + cnσ2ab + σ2 acn
b−1 j

b2j + nσ
2
c in ab + σ

2 acn
b−1 j

b2j + nσ2c in ab + cnσ2ab + σ2

Between C in A × B n
ab c−1

i, j,k

c2k i, j + σ2
n

ab c−1
i, j,k

c2k i, j + σ2 nσ2c in ab + σ2 nσ2c in ab + σ
2

Interaction A × B cnσ2ab + σ
2 cnσ2ab + σ2

nσ2c in ab +
cn i, j ab 2

ij

a−1 b−1
+ σ2

nσ2c in ab + cnσ
2
ab + σ

2

Residual σ2 σ2 σ2 σ2



Case II:

s2ab =
1
cn

MSA×B−MSres ,

s2b =
1
acn

MSB−MSA×B ,

s2a =
1
bcn

MSA−MSA×B ;

7 48

Case III:

s2c in ab =
1
n

DQMSC inA×C −MSres ; 7 49

Case IV:

s2c in ab =
1
n

MSC in A×C −MSres ,

s2ab =
1
cn

MSA×B−MSC in A×B ,

s2a =
1
bcn

MSA−MSC in A×C

7 50

7.6 Exercises

7.1 Use the data set D in Exercise 6.3. The six boars must randomly be split
into two groups. The groups are now understood as two locations as levels
of a fixed factor. What model do we now have? Call the generated file D1.

7.2 For file D1 test the null hypothesis that there are no differences between
the locations.

7.3 Estimate from D1 the variance component of the factor ‘boar’.

References

Hartley, H. O. and Rao, J. N. K. (1967)Maximum likelihood estimation for themixed
analysis of variance model. Biometrika, 54, 92–108.

Henderson, C. R. (1953) Estimation of variance and covariance components.
Biometrics, 9, 226–252.

374 Mathematical Statistics



Searle, S. R. (1971, 2012) Linear Models, John Wiley & Sons, Inc., New York.
Seifert, B. (1980) Prüfung linearer Hypothesen über die festen Effekte in balancierten

gemischten Modellen der Varianzanalyse. Diss. Sektion Mathematik, Humboldt
Universität Berlin.

Seifert, B. (1981) Explicit formulae of exact tests in mixed balanced ANOVA-models.
Biom. J., 23, 535–550.

Analysis of Variance – Models with Finite Level Populations and Mixed Models 375



8

Regression Analysis – Linear Models with Non-random
Regressors (Model I of Regression Analysis) and with
Random Regressors (Model II of Regression Analysis)

8.1 Introduction

In this chapter we describe relations between two or more magnitudes with sta-
tistical methods.
Dependencies between magnitutes can be found in several laws of nature.

There is a dependency of the height h of a physical body falling under the influ-
ence of gravity (in a vacuum) and the case time t in the form h = αt2, and the
relationship provided by this formula is a special function, a so-called functional
relationship. Similar equations can be given for the relationship between pres-
sure and temperature or between brightness and distance from a light source.
The relationship is strict, that is, for each value of t, there is a unique h-value, or
in other words, with appropriate accuracy from the same t-value, there always
results a unique h-value. One could calculate α by the formula above by setting
t and measuring h, if there is no measurement error. The h-values for various
t-values lie on a curve (parabola) when t is plot on the abscissa and h on the
ordinate of a coordinate system. In this example, you could give h as well
and measure the time. In functional relationships, therefore, it doesn’t matter
which variable is given and which is measured, if no other aspects (accuracy,
effort in the measurement), which have nothing to do with the context itself,
lead to the preference of one of these variables.
There are events in nature and variables, between which there is no functional

relationship but they are well dependent on each other. For instance, let’s con-
sider height at withers and age or height at withers and chest girth of cattle.
Although there is obviously no formula by which you can calculate the chest
girth or the age of cattle from the height at withers, nevertheless there is obvi-
ously a connection between both. You can see this in some animals when both
measurements are present and a point represents the value pair of each animal
in a coordinate system. All these points are not, as in the case of a functional
dependency, on a curve; it is rather a point cloud or as we say a scatter diagram.
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In such a cloud, a clear trend is frequently recognizable, which suggests the
existence of a relationship. Such relationships, which are not strictly functional,
are called stochastic, and their investigation is the main subject of the regression
analysis.
Even if a functional relationship between two features exists, it may happen

that the graphic representation of the measured value pairs is a point cloud; this
is the case if the characteristic values cannot be observed without greater meas-
urement errors.
The cloud itself is only a clue to the nature of the relationship between two

variables and suggests their existence. It is required, however, to discern the
relationship precisely through a formula-based representation. In all cases,
the estimation target is a function of the independent variable called the
regression function. In regression analysis, it is also of interest to characterize
the variation of the dependent variable around the regression function, which
can be described by a probability distribution. One must distinguish two
important special cases that should be characterized for the case of two vari-
ables x, y – the generalization to more than two variables is left to the reader.
In the first case, x is a non-random variable. Most commonly, regression
analysis estimates the conditional expectation E(y|xi) = f(xi) of the regressand
variable given the value of the regressor variable – that is, the average value of
the dependent variable when the independent variable is fixed. The relation-
ship is modelled by

yi = y xi = f xi + ei 8 1

or

y= f x + e

ei are random variables with E(ei) = 0, var(ei) = σ2 and cov(ei, ej) = 0 for i j.
Often the distribution of ei is assumed to be normal N(0, σ2).
This we call a model I of regression analysis. As an example, you could call the

relationship between the height of withers and the age of the cattle. Of course,
you can also write the functional relationship in which only the measured values
of a variable (as y) are strongly influenced by measurement errors, in the form of
Equation (8.1) and treat analysis with the model I regression. The functional
relationship is between and through y = g(x).
In this chapter all occurring functions are assumed to be differentiable for all

their arguments.
In the second case both x and y are random variables distributed by a two-

dimensional distribution with density function g(x, y), marginal expectation
μx , μy, marginal variances σ2x , σ

2
y and covariance σxy. Regression of x on y or

of y on x means the conditional expectations E(x|y) and E(y|x), respectively.
If g(x, y) is the density function of a two-dimensional normal distribution, then
the conditional expectations E(x|y) and E(y|x), respectively, are linear functions
of y and x, respectively,
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E x y = α+ βy,  E y x = α∗ + β∗x

The random variables x or y deviate by e or e∗, respectively, from E(x|y) or E(y|
x); therefore the stochastic dependency between x and y is either of the form

x=E x y + e= α+ βy+ e 8 2

or of the form

y= E y x + e∗ = α∗ + β∗x+ e∗ 8 3

The Equations (8.2) and (8.3) are not transferable into each other, which
means that

y=
x−α−e

β
=
x
β
−
α

β
−
e
β

and y= α∗ + β∗x+ e�

differ from each other. This is easy to see, if we look at the meaning
of α , β , α∗ and β∗.
An equation of the form x = E(x|y) + e or y = E(y|x) + e∗ is called a model II of

regression analysis if the conditioning variables are written as random. An exam-
ple is the relationship between wither height and chest girth mentioned above.
The difference between both models becomes clear by looking at the exam-

ples above. In the dependency wither height–age, the age can be understood as a
non-random variable (chosen in advance by the investigator). The wither height
is considered dependent on age and not the age dependent on the wither height.
For the dependency wither height–chest girth we model by two random vari-
ables. Therefore two equation analogues (8.2) and (8.3) are possible.
The function y = f(x) in (8.1) and the functions E(x|y) and E(y|x) are called

regression functions. The argument variable is called the regressor or the influ-
encing variable (in program packages often the misleading expression ‘inde-
pendent variable’ is used, but in model II both variables are dependent on
each other). The variables y in (8.1), x in (8.2) and y in (8.3) are called regressand
(or dependent variable). In this chapter we assume that regression functions are
a special case of the theory of linear models in Chapter 4.

Definition 8.1 Let X be a [n × (k + 1)] matrix of rank k + 1 < n and Ω = R[X]
the rank space of X. Further, let β Ω be a vector of parameters βj (j = 0, … ,
k) and Y = Yn an n-dimensional random variable. If the relations E(e) = 0n and
var(e) = σ2In for the error term e are valid, then

Y =Xβ + e  Y ∈Rn,β∈Ω=R X 8 4

with X = (1n, X
∗) is called model I of the linear regression with k regressors in

standard form.
Equation (8.4) is, as shown in Example 4.3, a special case of Equation (4.1). As

shown in Chapter 4, var(e) =Vσ2 with positive definite matrix V can be reduced
to (8.4). At first we consider (8.4) and later use also var(e) =Vσ2.
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8.2 Parameter Estimation

8.2.1 Least Squares Method

For model I of regression we can prove the following.

Theorem 8.1 The BLUE of β and an unbiased estimator of σ2 are given by

b= β= XTX
−1
XT Y 8 5

and

s2 =
1

n−k−1
 Y−X XTX −1XTY   2

=
1

n−k−1
Y T In−X XT  X −1XT Y

8 6

The proof follows from Example 4.3.

Theorem 8.2 If Y in (8.4) isN(Xβ, σ2In)-distributed, then theMLE of β is given
by (8.5) and the MLE of σ2 is given by

σ2 =
1
n

Y T −X XT X
−1
XTY

2
8 7

b in (8.5) and s2 in (8.6) are sufficient with respect to β and σ2. b is

N[β, σ2(XTX)−1]-distributed and
n−k−1

σ2
s2 is independent of b CS(n − k − 1)-

distributed.

Proof: b in (8.5) and σ2 in (8.7) are MLE of β, and σ2 follows from Example 4.3
together with (4.13) and (4.14). With μ = Xβ , Σ = σ2In and A = (XT X)−1XT, it
follows that b with

E b =Aμ= XTX −1XT  Xβ = β
and

var b =A Σ A′ = XTX −1XTσ2InX XT  X −1 = σ2 XT  X −1

is (k + 1)-dimensional normally distributed.

To show that
n−k−1 s2

σ2
is CS(n − k − 1)-distributed, we have to show that

In − X(XT X)−1XT = K is idempotent of rank n − k − 1 and

λ=
1
σ2

βTXT KXβ = 0. The idempotence of K is obvious. Because with X also

XT X and X(XT X)−1 XT are of rank k + 1, due to the idempotence of
X(XT X)−1 XT = B, there exists an orthonormal matrix T, so that TTBT is a diag-
onal matrix with k + 1 values 1 and n − k − 1 zeros. Therefore rk(K) = n − k − 1.
Finally
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σ2λ= βT  XT In−X XT  X −1 XT Xβ = 0

By this b and YTK Y are independent because (XTX)−1 XT K =Ok + 1 , n.
We only have to show the sufficiency of b and s2. This is done, if the likelihood

function L(Y, β, σ2) can be written in the form (1.3). From our assumption it fol-
lows that

L Y ,β,σ2 =
1

σ 2π
n exp −

1
2σ2

Y −Xβ 2

From (8.6) the identity

Y −Xβ 2 = Y −Xb 2 + b−β T XTX b−β

= n−k−1 s2 + f β,b ,

follows for a certain f(β, b) such that

L Y ,β,σ2 =
1

σ 2π
n exp −

1
2σ2

n−k−1 s2 + f β,b

has the form (1.3) and the theorem is proven.

Example 8.1 If the number of regressors in (8.4) is k = 1, we have a linear
regression with one regressor or a so-called simple linear regression. With
k = 1 we get

XT =
1 1 … 1

x1 x2 … xn
and βT = β0,β1

and (8.4) becomes

yi = β0 + β1xi + ei  i= 1,…,n 8 8

rk(X) = k + 1 = 2 means that at least two of the xi must be different. We look for
the estimators of the coefficients β0 and β1. By the least squares method, an
empirical regression line y= b0 + b1x in the (x, y)-coordinate system as an esti-
mate of the ‘true’ regression line y = β0 + β1x has to be found in such a way that if
it is put into the scatter diagram (xi, yi) that S = n

i= 1 yi−β0−β1xi
2 is

minimised.
The values of β0 and β1, minimising S are denoted by b0 and b1. We receive

the following equations by putting the partial derivations of S with respect to
β0 and β1 equal to zero and replacing all y by the random variables y
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b1 =

n
i= 1xiyi−

n
i= 1xi

n
i= 1yi

n

n
i=1 x

2
i −

n
i= 1xi

2

n

=
n n

i= 1xiyi−
n
i= 1xi

n
i=1yi

n n
i=1 x

2
i −

n
i=1xi

2
,

8 9

b0 = y−b1x with y=
yi
n

and x=
xi
n

8 10

Because S is convex, we really get a minimum.
We call estimators obtained in this way least squares estimators or in short LS

estimators. As in the analysis of variance (ANOVA), we use for the sums of
squared deviations for short:

SSx = x2−
x 2

n

and

SSy = y2−
y 2

n

And analogously for the sum of products

SPxy = xy−
x y
n

= x−x y−y ,

the symbol SPxy (SPxx = SS) is used. Then b can be written as

b1 =
SPxy

SSx

Equations (8.9) and (8.10) are special cases of (8.5). We get (all summation
from i = 1 to i = n)

XTX =
n xi

xi x2i
, XTY =

yi
xiyi

Now XTX
−1

=
1

XTX

x2i − xi

− xi n
with the determinant XTX =

n x2i − xi
2, and this leads to (8.9) and (8.10).

An estimator s2 of σ2 is by (8.6) equal to

s2 =
n
i= 1 yi−b0−b1xi

2

n−2
=
SSy−

SP2
xy

SSx

n−2
8 11
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(8.11) follows from (8.6) because

Y T In−X XTX
−1
XT Y = y2i −Y

TX XTX
−1
XTY ,

if we insert XT Y = (YTX)T and (XT X)−1 as given above.
Putting the variables x and y in a coordinate system, the values of the variable

x at the abscissa and the realisations yi of the random variables y (or their expec-
tations yi) at the ordinate, we obtain by

yi = b0 + b1xi i= 1,…,n 8 12

a straight line with slope b1 and intercept b0. This straight line is called an (esti-
mated) regression line. It is connecting the estimated expected values yi for the
values of xi. If we put the observed values (xi, yi) as points in the coordinate sys-
tem, we receive a scatter diagram. Amongst all lines, which could be put into
this scatter diagram, the regression line is that one for which the sum of the
squares of all distances parallel to the ordinate between the points and the
straight is minimum. The value, respectively, of b1 and β1 shows us by how
many units y is changing in mean if x is increasing by one unit. The distribution
of b0 and b1 is given by the corollary of Theorem 8.1.

Corollary 8.1 The estimators b0 given by (8.10) and b1 given by (8.9) are
under model equation (8.8) and its side conditions with expectations

E b0 = β0,  E b1 = β1, 8 13

the variances

σ20 = var b0 =
σ2 x2j

n xj−x
2 , σ21 = var b1 =

σ2

xj−x
2 8 14

and the covariance

cov b0,b1 = −
σ2 xj

n xj−x
2 8 15

distributed, with Y are also b0 and b1 normally distributed.

Of course we can use other loss functions than the quadratic one. At the place
of the sum of squared deviations, we could, for instance, use the sum of the p-th
powers of the module of the deviations

S∗ =
n

i= 1

yi−β
∗
0−β

∗
1xi

p

and minimise them (Lp-norm). Historically this happened before using the LS
estimators already by Bošković, an astronomer in Ragusa (Italy). Between 1750
and 1753 for astronomical calculations, he used a method for fitting functions
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by minimising the absolute sum of residuals, that is, a L1-norm. Carl Friedrich
Gauss made notice of Boškovićs work on ‘orbital determination of luminaries’
(see Eisenhart, 1961). A modern description of the parameter estimation using
the L1 loss function, iteration methods and asymptotic properties of the esti-
mates can be found in Bloomfield and Steiger (1983) and for other p-values
in Gonin and Money (1989).
If k regressors x1 , … , xk are given with the values xi1 ,… , xik (i = 1, … , n),

we call (8.4) for k > 1 the model equation of the multiple linear regression. Then

the components bi = βi of β in (8.5) are the estimators with realisations
minimising

S =
n

i= 1

yi−β0−
k

j=1

βjxij

2

The right-hand side of the equation

yi =E yi = b0 + b1xi1+…+ bkxik 8 16

is the estimator of the expectation of the yi. An equation in the realisations

yi = E yi = b0 + b1xi1+…+ bkxik

defines a hyperplane, called the estimated regression plane. The bi and bi are
called regression coefficients, respectively. For the estimator of σ2, we write

s2 =
n
i= 1 yi−yi

2

n−k−1
8 17

By (8.4) we also can describe non-linear dependencies between Y and one
regressor x = x1 (but also more regressors) if this non-linearity is of a spe-
cial form.
We restrict ourselves to one regressor; the transmission to more regressors is

simple and is left to the reader. In generalisation of (8.8), let

yi = f xi + ei 8 18

In (8.8) we had f(x) = β0 + β1x.

Definition 8.2 Let k + 1 linear independent functions gi(x) (x B R1;
g0(x)≡ 1) be given and amongst them at least one is non-linear in x. If the
non-linear regression function with k + 1 (unknown) parameters αi can be writ-
ten as

f x = f x,α0,…,αk =
k

i=1

αigi x , 8 19

and the (known) functions gi(x) are independent of the parameters αi, we call the
in αi linear function f(x) a quasilinear regression function.
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The non-linearity of a quasilinear regression function refers this to the regres-
sor only and not to the parameters.
Regression analysis with quasilinear regression functions can be easily led

back to the multiple linear regression analysis. Setting in (8.19)

gi x = xi, 8 20

we receive

f x,α0,…,αk =
k

i= 0

αixi with x0 = 1,

so that (8.18) becomes

yi =
k

j=0

αjxij + ei i= 1,…,n; x0j = 1

In addition, this model equation is apart from symbolism identical with (8.4).
By this quasilinear regression function can be handled as a multiple linear
regression function.
Nevertheless a practical important special case will be considered in some

detail, because we can find simplifications in computation. This special case
is the polynomial regression function.

Definition 8.3 If the gi(x) in (8.19) are polynomials of degree i in x, that is, if
f(x, α0, … , αk) can be written as

f x,α0,…,αk =
k

j=0

αjPj x =
k

j=0

βjx
j =P x,β0,…,βk , 8 21

then we call f (x, α0, … , αk) and P(x, β0, … , βk) polynomial regression functions,
respectively.
With Definition 8.2 we can write the model equation of the polynomial

regression as follows:

yi =
k

j−0

βjx
j
i + ei i= 1,…,n 8 22

If the n values xi of the regressor x are prespecified equidistantly, that is,
we have

xi = a+ ih  i= 1,…,n; h= const , 8 23

computation becomes easy in (8.21), if we replace the Pj(x) and use the orthog-
onal polynomials in i− i, because the values of these polynomials are tabulated
(Fisher and Yates, 1974).
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We demonstrate this at first for a regression function quadratic in x; afterwards
the procedure is explained for regression functions of arbitrary degree in x.

Example 8.2 Orthogonal polynomials for a polynomial regression of
second degree
If the regression function in (8.21) is a polynomial of the second degree in x, we
get from (8.22)

yi = β0 + β1xi + β2x
2
i + ei i= 1,…,n , 8 24

and this shall be written in the form

yi = α0 + α1P1 i− i + α2P2 i− i + ei 8 25

P1 and P2 shall be orthogonal polynomials, that is, the relations

n

i=1

P1 i− i P2 i− i = 0

and n
i=1Pj i− i = 0, j= 1,2 shall be valid.

Because i=
1
n

n

i= 1
i=

n n+ 1
2n

=
n+ 1
2

, we have

P1 i− i =P1 i−
n+ 1
2

= c0 + c1 i−
n+ 1
2

c1 0 8 26

and

P2 i− i =P2 i−
n+ 1
2

= d0 + d1 i−
n+ 1
2

+ d2 i−
n+ 1
2

2

d2 0

8 27

The values c0 , c1 , d0 , d1 and d2 have to be chosen in such a way that the
conditions

n

i=1

P1P2 = 0

and

n

i=1

P1 =
n

i= 1

P2 = 0

are fulfilled using short notation.
From (8.23) and (8.24), we get

yi = β0 + β1 a+ ih + β2 a+ ih 2 + ei 8 28
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Further it follows from (8.25) to (8.27):

yi = α0 + α1 c0 + c1 i−
n+ 1
2

+ α2 d0 + d1 i−
n+ 1
2

+ d2 i−
n+ 1
2

2

+ ei

8 29

Extending (8.28) and (8.29) and arranging the result according to powers of i,
by comparing the coefficients of these powers, leads to

β0 + aβ1 + a
2β2 = α0 + α1 c0−c1

n+ 1
2

+ α2 d0−d1
n+ 1
2

+ d2
n+ 1 2

4
,

hβ1 + 2ahβ2 = α1c1 + α2 d1− n+ 1 d2 ,h2β2 = d2α2
8 30

Estimating the αi by the least squares method and replacing the parameters in
(8.30) by their estimates (Theorem 4.3) model equation (8.24) can be replaced
by (8.25). Equation (8.30) simplifies when choosing c0 , c1 , d0 , d1 , d2, as men-
tioned above. Due to

P1 = P2 = P1P2 = 0 , c1 0 , d2 0, we obtain

P1 = c0 + c1 i−
n+ 1
2

= nc0,

that is, it follows c0 = 0. Further it is

P2 = nd0 + d2
n

i= 1

i2−
n n+ 1 2

4
= nd0 + d2

n n−1 n+ 1
12

,

because the sum of the squares of 1 to n equals
n n+ 1 2n+ 1

6
. Because of

d2 0 from P2 = 0 follows d0 = −d2
n−1 n+ 1

12
From P1P2 = 0 follows d1 = 0.
Hence, orthogonal polynomials P1 and P2 have the form

P1 i−
n+ 1
2

= c1 i−
n+ 1
2

8 31

and

P2 i−
n+ 1
2

= d2 i−
n+ 1
2

2

−
n−1 n+ 1

12
8 32
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We should choose c1 and d2 so that each polynomial has integer coefficients.
Fisher and Yates (1974) give tables of P1,P2, P2

1 and P2
2.

We now consider the general case of the quasilinear polynomial regression
and assume w.l.o.g. that (8.21) is already written as

P x, β0,…,βk =
k

j=0

βjx
j
i

If we put xij = xji, we have shown that

yi = β0 +
k

j= 1

βjx
j
i + ei i= 1,…,n 8 33

is of the form (8.4). It only must be shown that

X =

1 x1 x21 … xk1
1 x2 x22 … xk2

1 xn x2n … xkn

is of rank k + 1. This certainly is the case, if at least k + 1 of the xi are different
from each other and k + 1 < n. Let these conditions be fulfilled (assumption of
the polynomial regression). Now Theorem 8.1 can also be applied on the quasi-
linear regression. For XTX and XT Y, we obtain

XT X =

n xi x2i … xki
xi x2i x3i … xk + 1

i

x2i x3i x4i … xk + 2
i

xki xk +1i xk + 2
i … x2ki

and XTY =

yi
xiyi
x2i yi

xki yi

For equidistant xi as in Example 8.2 for k = 2, the use of orthogonal polyno-
mials has numerical advantages.
With modern computer programs, of course, the work does not need such

transformations. Nevertheless, we consider this special case.

Theorem 8.3 If in model (8.33), the xi are equidistant, that is, it can be written

in the form (8.23), and if Pj i−
n+ 1
2

are polynomials of degree j in

i−
n+ 1
2

j= 0,…,k; i= 1,…,n so that
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k

j= 0

βjx
j
i =

k

j= 0

αjPj i−
n+ 1
2

, P0 i−
n+ 1
2

1, 8 34

then an LS estimator of the vector α = (α0, … , αk)
T is given by

a= y,
yiP1 i−

n+ 1
2

P2
1 i−

n+ 1
2

,…,
yiPk i−

n+ 1
2

P2
k i−

n+ 1
2

T

8 35

The LS estimator of β = (β0, … , βk)
T is

b=U−1Wa 8 36

with U and W obtained from (8.34) (by comparison of coefficients) so that

Uβ =Wa 8 37

Proof: With

X =

1 P1 1−
n+ 1
2

Pk 1−
n+ 1
2

1 P1 2−
n+ 1
2

Pk 2−
n+ 1
2

1 P1 n−
n+ 1
2

Pk n−
n+ 1
2

,

the right-hand side of (8.34) with P0≡ 1 presentable as Xα and by this (8.33) is
presentable as Y = Xα + e, and this is an equation of the form (8.4). Further (8.35)
is a special case of (8.5), because

XTX =

n P1i … Pki

P1i P2
1i … P1iPki

Pki PkiP1i … P2
ki

Pji =Pj i−
n+ 1
2

and
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XTX
−1

=

1
n

0

1
P2
1i

0
1
P2
ki

is a diagonal matrix, and

XTY =

yi
yiP1i

yiPki

Equation (8.36) follows from the Gauss–Markov theorem (Theorem 4.3).
XT X becomes by suitable choice of coefficients in

Pj i−
n+ 1
2

= k0j + k1j i−
n+ 1
2

+ k2j i−
n+ 1
2

2

+ + kjj i−
n+ 1
2

j

a diagonal matrix. The values of the polynomials are uniquely fixed by i , j and
n, and they are tabulated.

Example 8.3 In a carotene storage experiment, it should be investigated
whether the change of the carotene content in grass depends upon the method
of storage. For this the grass was stored in a sack and in a glass. During the time
of storage in days, samples were taken and their carotene content was ascer-
tained. Table 8.1 shows the results for both kinds of storage.
The relationship between carotene content and time of storage is modelled by

Equation (8.8); the side conditions and the additional assumptions may be ful-
filled. This relationship must be modelled by model I, because the time of stor-
age is not a random variable; its values are chosen by the experimenter.

Hints for SPSS
Contrary to the ANOVA in SPSS, no distinction is made between models with
fixed and random factors. Therefore the correlation coefficient defined in
Section 8.5 is always calculated, also for model I where it is fully meaningless
and must be dropped.
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We choose in SPSS (after data input):

Analyze
Regression

Linear

and consider both storage in a sack and in a glass. The datamatrix of Table 8.1 esti-

mates of βi0, βi1,E yij , var βi0 , var βi1 and cov βi0, βi1 for i = 1 should

be given. The case i = 2 is left to the reader.
By (8.9) and (8.10) the estimates b10 and b11 as well b20 and b21 can be calcu-

lated by SPSS. The estimates y1j of E y1j and y2j of E y2j are given in

Table 8.1 as PRE_1 and PRE_2, respectively. RES_1 and RES_2 are the differ-
ences y1j−y1j and y2j−y2j, respectively.
To obtain these values we must in SPSS (Figure 8.1) go to the button ‘Save’

and activate there ‘Predicted values’ and ‘Residuals’. Do this for each kind of
storage. The results appear in the data matrix. To get the covariance matrix
under statistics, we choose ‘Covariance matrix’.
The regression coefficients, standard deviations of the estimates and the

covariance cov (b10, b11)between both coefficients are shown in Figure 8.2.
The ANOVA table, in SPSS also named ANOVA table, is explained in the

next section. We obtain

b11 = −0 055,

b10 = 31 216

Further we find in the column right of that of the coefficients in Figure 8.2 (Std
error) the coefficients in σ10 = var b10 = 0 706σ and σ11 = var b11 =
0 004σ

Table 8.1 Carotene content (in mg/100 g dry matter) y of grass in dependency of the time of
storage x (in days) for two kinds of storage as SPSS input (columns 4 until 7 are
explained later).

Time Sack Glass Pre_1 Res_1 Pre_2 Res_2

1 31.2500 31.2500 31.16110 31.16110 31.16110 0.08890

60 28.7100 30.4700 27.94238 27.94238 27.94238 0.76762

124 23.6700 20.3400 24.45089 24.45089 24.45089 −0.78089

223 18.1300 11.8400 19.04999 19.04999 19.04999 −0.91999

303 15.5300 9.4500 14.68563 14.68563 14.68563 0.84437
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Figure 8.2 SPSS output for storage in sack of Example 8.6. Source: Reproduced with
permission of IBM.

Figure 8.1 Introduction to regression analysis in SPSS. Source: Reproduced with permission
of IBM.
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Because in the ANOVA table in the row residual s2 =
2 7666

3
= 0 922 is found,

the estimates of σ210, σ
2
11 and σ 1

12 can easily be calculated by multiplying the
results above by s in place of σ.
For i = 2 we obtain analogously

b21 =−0 081,  b20 = 32 185

The equations of the estimated regression lines are

i= 1 y1j = 31 216−0 055xj,

i= 2 y2j = 32 185−0 081xj
1 ≤ xj ≤ 303

For the estimated regression function, we should always give the region of the
values of the regressor because any extrapolation of the regression curve outside
this region is dangerous. Both estimated regression lines are shown in Figure 8.3.
If we are not sure, whether the regression is linear or not, we use another

branch of SPSS, namely,

Analyze
Regression

Curve Estimation

to calculate polynomials or

Analyze
Regression

Nonlinear

for intrinsically non-linear regression as described in Chapter 9.

x

y

0

10

20

30

50 100 150 200 250 300

y1ˆ

y2ˆ

Figure 8.3 Estimated regression lines of Example 8.3.
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We demonstrate the first way for linear, quadratic and cubic polynomials for
the trait ‘sack’. At first we come to the sheet in Figure 8.4.
The graphical output is shown in Figure 8.5.
Here we can see how dangerous an extrapolation outside the interval [1, 303]

can be. The cubic regression function goes up after 303 days; this certainly is
impossible. Between the three lines within the interval [1, 303] no large differ-
ences can be found, the coefficients of the quadratic and cubic terms are not
significant; the numerical output may be done by the reader.

8.2.2 Optimal Experimental Design

In this section, the optimal choice of X in model equation (8.4) for estimating
β is described. We assume that the size n of the experiment is already given and
β or Xβ must be estimated by its LS estimator. Rasch and Herrendörfer (1982)
discuss the problem that X, n and the estimator of β have to be chosen
simultaneously.
Let X = (x1, … , xn)

T and B the domain of the Rk + 1, in which the row vectors
xi
T of X are located. B is called experimental region. {Ln} is that set of the X, for

which xi B. We now call X a design matrix. Contrary to discrete and contin-
uous experimental designs, introduced now, we understand by X the design
matrix of a concrete (existing) designs. In the sequel we call X briefly a design.

Figure 8.4 SPSS–window for curvilinear regression. Source: Reproduced with permission
of IBM.
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In the theory of optimal experimental designs as in Kiefer (1959), Fedorov
(1971) and Melas (2008), the following definitions are important.

Definition 8.4 Each set of pairs

ξm =
x1 x2 xm

p1 p2 pm
8 38

with xi B, 0 < pi ≤ 1 i= 1,…,m , xi xj for i j i, j= 1,…,m and m
i= 1 pi = 1

is called a discretem-point design, pi are called weights and x1 , … , xm is called
support of ξm.

Definition 8.5 Each probability measure ξ on the measurable space (B, ) is
called a continuous design.

Y, as a discrete design, is a special case of a continuous design for a discrete
probability measure. A concrete design has the form of a discrete design with

pi =
ki
n
, ki = n and ki integer.

The problem is to construct a discrete or continuous design in such a way that

the covariance matrix of β meets some optimality criteria. The optimality cri-
teria in this section concern a functional Φ mapping (XTX)−1 in the R1. We

0
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Figure 8.5 The regression curves for the linear, quadratic and cubic regression.
Source: Reproduced with permission of IBM.
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define the optimality for concrete designs; the definitions for discrete and con-
tinuous designs are left to the reader.

Definition 8.6 A concrete design X∗ is called Φ−optimal for a regression
model Y = Xβ + e with E(e) = 0n , var(e) = σ2In, for fixed n and B, if

min
X Ln

Φ XT X
−1

=Φ X∗TX∗ −1
8 39

Especially a Φ-optimal design with M = (XT X)−1 is called for

−Φ M = M D-optimal,

−Φ M = tr M A-optimal,

−Φ M = Max
x B

xTMx G-optimal,

−Φ M = λmax M E-optimal with λmax as maximal eigenvalue of M,

−Φ M = cTMc C-optimal with c= c1,…,cp
T
, p= k + 1

TheC-optimality is of importance if the variance of a linear contrast cTβ of the
parameter vector must be minimised. If we wish to make an extrapolation, the
results of an experiment from the experimental region B in a region B∗ (predic-
tion), we replace in the G-optimality B by B∗.
From a theorem of Kiefer (1959), we know that discrete or continuous (but

not always concrete!) designs are exactlyD-optimal, if they areG-optimal. From
the same theorem it follows that for special B (e.g. in R2) the support of a discrete
D- (G-) optimal design contains only points where var y is maximal, that is,
for which

max
x B

xT XT X
−1
x=

k + 1
n

We restrict ourselves to the G- or D-optimality for the simple linear regres-
sion. Jung (1973) gives a systematic investigation of the construction of concrete
optimal designs. Some of his results for a special case of model equation (8.4) are
given in the sequel. Concerning proofs see his paper.
At first we consider the case of Examples 8.1 for k = 1 (p = 2), with

XTX
−1

=
1

XT X

n

i=1

x2i −
n

i=1

xi

−
n

i= 1

xi n

8 40

and the experimental region B = a, b . Then the design withm = 2, the support
{a, b} and the weights p1 = p2 = 1/2 is a discreteD-optimal design. For integer n
this is of course also a concrete D- (and G-) optimal design, where half of the
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y-values lie at the boundary of the interval. This fact is a special case of the
following theorems.

Theorem 8.4 A concrete design with the matrix X = (x1, … , xn)
T with

xTi = (1, xi) , B = {xi|xi [a, b]} and n ≥ 2 is then and only then G-optimal, if

a) For integer n,
n
2
of the xi are equal to a and b, respectively.

b) For odd n,
n−1
2

xi values are equal to a and
n−1
2

xi values are equal to b and

one xi equals
a+ b
2

.

It can be shown that for odd n concrete D- and G-optimal designs are not
identical.

Theorem 8.5 Under the assumptions of Theorem 8.4, X is then and only then
D-optimal, if

a) For integer n,
n
2
of the xi are equal to a and b, respectively.

b) For odd n,
n−1
2

of the xi are a and b, respectively, and the remaining xi is

either a or b.

For the case n = 5 is for a = −1 and b = 1,

XT
G =

1 1 1 1 1

−1 −1 0 1 1

a G-optimal design and

XT
D =

1 1 1 1 1

−1 −1 1 1 1

a D-optimal design in −1, 1 . We have XT
GXG = 20 and XT

DXD = 24

8.3 Testing Hypotheses

The parameter vector β = (β0, … , βk)
T lies in a (k + 1)-dimensional vector space

Ω. If q < k + 1 of the βj ( j = 0, … , k) equal zero (or some other fixed number) has
the consequence that β lies in a (k + 1 − q)-dimensional subspace ω of Ω. In
Theorem 4.7 it was shown that the components of β always can be renumbered
in such a way that the first q components are the restricted ones. We then say
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that the conditions are given in canonical form (Definition 4.2). We restrict our-
selves to the case β0 = = βq − 1 = 0, but remember that β0 must not further be
the constant of the regression equation.
The hypothesis H0 that these conditions hold, that is,

β∈ω or β0 =⋯= βq−1 = 0 8 41

shall be tested against the alternative β Ω\ω.

Theorem 8.6 If Y in (8.4) is N(Xβ, σ2In) distributed, the null hypothesis H0,
that (8.41) holds, against the alternative hypothesis that H0 does not hold can
be tested with the test statistic

F =
n−k−1

q

Y T X XT X −1XT −X1 XT
1 X1

−1
XT
1 Y

Y T In−X XT X −1XT Y
8 42

IfH0 holds, F is in (8.42) central F – distributed with q and n − k − 1 degrees of
freedom. X1 is the [n × (k + 1 − q)]−matrix with the last k + 1 − q columns of X.

Proof: The statement of this theorem follows from Example 4.3.

This result can be summarised by an ANOVA table (Table 8.2) putting

β= XT X
−1
XTY and γ =XT XT

1 X1
−1
XT Y This table is a special case of

Table 4.1.
If q = 1, then F = t2 and if the null hypothesis holds F is the square of a central

t-distributed random variable with n − k − 1 degrees of freedom. In this case
(8.42) becomes very simple.

Corollary 8.2 If Y in (8.4) is N(Xβ, σ2In)-distributed, the null hypothesis
H0 : βj = 0 against HA : βj 0 ( j = 0, … , k) can be tested by the test statistic

t j =
bj

s cjj
8 43

In (8.43) is the bj = βj the j+ 1 − th component of the estimated parameter
vector, s the square root of s2 in (8.6) and cj j the (j + 1) − th main diagonal

Table 8.2 Analysis of variance table for testing the hypothesis H0 : β0 = β1 = = βq − 1 = 0.

Source of variation SS df MS Test statistic

Total YTY n

H0 : β0 = = βq − 1 = 0 Y TXβ−Y TX1γ =Z q Z
q

F =
n−k−1

q
Z
N

Residual Y T Y −Y TXβ=N n − k − 1 N
n−k−1

Regression Y T X1γ k + 1 − q
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element ofC = (XTX)−1 ; tj ifH0 : βj = 0holds is central t-distributedwithn − k − 1
degrees of freedom.

Proof: We assume that the null hypothesis is in canonical form H0 : β0 = 0. If x0
is the first column of X and X1 the matrix of the k remaining columns of X, then
X = (x0, X1) and

XTX =
xT0 x0 xT0 X1

XT
1 x0 XT

1 X1

We decompose the symmetric inverse C in submatrices of the same type and
obtain

C =
C11 C12

C21 C22

(C11 is a scalar). Then we have

XT
1 X1

−1
=C22−C21C

−1
11 C12,

and Z =Y T X XT X −1XT −X1 XT
1 X1

−1
XT
1 Y in (8.42) becomes

Y T x0C11x
T
0 +X1C21x

T
0 + x0C12X

T
1 1 +X1C21C

−1
11 C12X

T
1 1 Y

It follows now from (8.5)

b0 = C11 C12
xT0
XT
1

Y

or

b20 =Y
T x0C11C11x

T
0 + x0C11C12X

T
1 +X1C21C11x

T
0 +X1C21C12X

T
1 Y

Using b20 = b20
T
andCT

12 =C21 shows thatZ can be written asC−1
11 b

2
0.C11 con-

tains one element c00 only so that c−100 =
1
c00

. Therefore (8.42) becomes

F =
b20
c00s2

or going back to the original hypothesis

F =
b2j
cjjs2

,

and this completes the proof.
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It is easy to see that under the hypothesis βj = β∗j the test statistic

t =
bj− β∗j
s cjj

8 44

is with n − k − 1 degrees of freedom central t-distributed.
To test hypotheses of the formH0 : β = β∗, for whichω contains only one point

and has dimension 0 we need the following theorem.

Theorem 8.7 If Y in (8.4) isN(Xβ, σ2In)-distributed, the hypothesis H0 : β = β∗

can be tested against the alternative hypothesis β β∗ due to X(XTX)−1XT

= X(XTX)−1XTX(XTX)−1XT and (8.5) with the test statistic

F =
n−k−1
k + 1

Y −Xβ∗ TX XT X −1XT Y −Xβ∗

Y T In−X XT X −1XT Y
=

1
s2 k + 1

b−β∗ T XT X b−β∗

8 45

F in (8.45) is non-central F-distributed (F(k + 1, n − k − 1, λ)) with non-
centrality parameter

λ=
1
σ2

β−β∗ T XTX β−β∗

Proof: Because for θ = θ∗

max
θ∈Ω

 L θ,σ2 Y =
nn 2 e−n 2

2π n 2 Y−θ∗ n

holds, Q in (4.18) becomes

Q=
Y −AY

Y −Xβ∗ 2

2 n 2

The orthogonal projection A of Rn on Ω is idempotent and therefore is
θ∗ =Aθ∗ and Y − θ∗ 2 − Y −AY 2 = (Y − θ∗)TA(Y − θ∗).
The test statistic F in (4.19) has via Example 4.3 the form (8.45).

Example 8.4 We consider the simple linear regression of Examples 8.1 and
use its symbols. We assume that the ei in (8.8) are independent from each other
andN(0, σ2)-distributed. If σ2 is known, the hypothesisH0 β0 = β

∗
0 can be tested

with the test statistic

z0 =
b0− β∗0
σ0

=
b0− β∗0

σ

n xi−x
2

x2i
8 46
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and the hypothesis H0 β1 = β
∗
1 with the test statistic

z1 =
b1− β∗1
σ1

=
b1− β∗1

σ
xi−x

2

z0 and z1 due to Corollary 8.1 are N(0, 1)-distributed if the corresponding null
hypothesis holds. If σ2 is not known, it follows from (8.44) that if the hypothesis
β0 = β

∗
0 holds, then

t =
b0− β∗0

s

n xi−x
2

x2i
=

b0− β∗0
s0

8 47

is central t(n − 2)-distributed because in Example 8.1 it was shown that in the
simple linear regression

C = XTX
−1

=
1

n xi−x
2

x2i − xi

− xi n
,

that is, c00 =
x2i

n xi−x
2 Because c11 =

1

xi−x
2, it follows from (8.44)

that if H0 β1 = β
∗
1 holds, the test statistic

t =
b1− β∗1

s
xi−x

2 8 48

is t(n − 2)-distributed.
The null hypothesis H0 β0 = β

∗
0 (or H0 β1 = β∗1 is rejected with a first kind

risk α and the alternative hypothesis β0 > β
∗
0 (or β1 > β

∗
1) accepted, if for t in

(8.47) (or in (8.48)) t > t(n − 2 | 1 − α). We accept the alternative hypothesis
β0 < β

∗
0 β1 < β

∗
1 if for t in (8.47) (or in (8.48)), t < t(n − 2 | α). For a two-sided

alternative hypothesis HA β0 β∗0 (or β1 β∗1), the null hypothesis is rejected

with a first kind risk α, if with t in (8.47) (or in (8.48)) t > t n−2 1−
α

2
The hypothesis β1 = 0 means that the random variable y is independent of the

regressor.
To test the null hypothesis β = β∗, that is, β0 = β∗0, β1 = β

∗
1, we use the test sta-

tistic (8.45) of Theorem 8.5, and because

XTX =
n x

x x2
,

we receive the test statistic
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F =
n b0− β∗0

2
+ 2 xi b0− β∗0 b1− β∗1 + x2i b1− β∗1

2

2s2
8 49

F is if thenull hypothesis holds centralF(2, n − 2)-distributed.Thenull hypothesis
H0 β0 = β∗0, β1 = β∗1 is rejected with the first kind risk α if F > F(2, n − 2 | 1− α),
here F(2, n − 2 | 1 − α) is the (1 − α)−quantile of the F-distribution with 2 and
n − 2 degrees of freedom.
Usually the steps in calculating the F-test statistic are presented in an ANOVA

table, as already discussed in Chapter 5. We decompose SS-total, that is,

SST = n
i= 1 yi−β∗0−β

∗
1xi

2
, that is, the sum of squared deviations of the

observed values of the corresponding values of the regression function if the null
hypothesis holds

E yi
∗ = β∗0 + β

∗
1xi,

into two components. The first component contains that part of SST, originated
by the deviations of the estimated regression line y= b0 + b1x from the regres-
sion line given by the null hypothesis. This first component is called SS-regres-
sion(SSRegr.). The other component contains that part of SST, originated by
the deviations of the observed values yi of the values yi from the estimated
regression function; this component is called SS − residual (SSres). Analogously
the degrees of freedom are decomposed. The SS after transition to random vari-
ables are

SST =
n

i= 1

yi−β
∗
0−β

∗
1xi

2
,

SSRegr =
n

i= 1

b0 + b1xi−β
∗
0−β

∗
1xi

2
= σ2Q1 β∗0,β

∗
1 ,

SSres =
n

i= 1

yi−b0−b1xi
2

Because SSRegr is the numerator of F in (8.49) and SSres = (n − 2)s2, the rela-
tion SST = SSRegr + SSres follows. The ANOVA table is Table 8.3.
Often we are interested to test if two regression equations

y1i = β10 + β11x1i + e1i,   y2i = β20 + β21x2i + e2i,

with parameters from two groups of n1 and n2 observed pairs (y1i, x1i) and (y2i,
x2i), respectively, have the same slope. The hypothesis H0 : β11 = β21 has to be
tested. For the model equations for y1i and y2i, the side conditions and the addi-
tional assumptions of the model equation (8.8) may be fulfilled. From (8.9) esti-
mates bi1 for βi1(i = 1, 2) are
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bi1 =
ni

ni
j=1xijyij−

nj
j= 1xij

ni
j=1yij

ni
ni
j= 1 x

2
ij−

ni
j= 1xij

2 i= 1, 2

and from (8.7) estimates bi0 for βi0 are given by

bi0 = yi−bi1xi i= 1, 2

with

yi =
ni
j= 1yij
ni

and xi =
ni
j= 1xij
ni

i= 1,2

We have shown that the bi1 are

N βi1,
σ2i

ni
j=1 xij−xi

2

distributed, if the Yi are N Xiβi,σ
2
i Ini -distributed (i = 1, 2). Under the assump-

tion that the two samples (y1i, x1i) and (y2i, x2i) are independent from each
other, it follows that b11 and b21 are also independent from each other. We
assume here the independency of both samples. Further we assume that these
samples stem from populations with equal variances, that is, we have
σ21 = σ

2
2 = σ

2 Then the difference b11 − b21 with expectation β11 − β21 is normally
distributed and

t =
b11−b21− β11−β21

sd

is t(n1 + n2 − 4)-distributed, with sd as the square root of

s2d =

n1
j = 1 y1j−b10−b11x1j

2
+ n2

j = 1 y2j−b20−b21x2j
2

n1 + n2−4
1

n1
j= 1 x1j−x1

2 +
1

n2
j= 1 x2j−x2

2

If the null hypothesis β11 = β21 holds,

Table 8.3 Analysis of variance table for testing the hypothesis H0 β0 = β∗0, β1 = β∗1.

Source of variation SS df MS F

Total SST n

Regression SSRegr. 2 SSRegr

2

SSRegr
2s2

Residual SSres n − 2 s2
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t =
b11−b21

sd

is t(n1 + n2 − 4)-distributed, and t =
b11−b21

sd
can be used as a test statistic for the

corresponding t−test of this null hypothesis against the alternative hypothesis
β11 β21 (or one-sided alternatives).
But also in this case, we recommend not to trust in the equality of both var-

iances, but to use the approximate test with the test statistic

t� =
b11−b21

s�d
8 50

with

s∗2d =
∑n1

i= 1 y1j−b10−b11x1j
2

n1−2 ∑n1
j= 1 x1j−x1 2 +

∑n1
i= 1 y2j−b20−b21x2j

2

n2−2 ∑n1
j= 1 x2j−x2 2 = s∗21 + s∗22

and reject H0, if | t∗| exceeds the corresponding quantile of the central
t-distribution with f degrees of freedom with

f =
s∗21 + s∗22

2

s∗41
n1−2

+
s∗42

n2−2

We give a simple example for n = 5.

Example 8.5 For the data of Example 8.3, we will test each of the hypotheses

H0 β10 = 30 against HA β10 30,

H0 β11 = 0 against HA β11 < 0,

H0 β1 =
β10

β11
=

30

0
against HA β1

30

0
,

H0 β11 = β21 against HA β11 β21

with a first kind risk α = 0.05. The one-sided alternativeHA : β11 < 0 stems from
the fact that the carotene content cannot increase during storage.
Table 8.4 is the ANOVA table for this example. MSres = 0.922 03 is the esti-

mate s21 of σ
2.

The test statistic for the hypothesis β10 = 30 becomes via (8.47)

t =
31 215−30
0 7059

= 1 72 < t 3 0 975
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For a first kind risk 0.05, the hypothesis β10 = 30 is not rejected.
From (8.48) we obtain the test statistic for the hypothesis β11 = 0

t = −
0 05455
0 00394

= −13 85 < t 3 0 05 ,

and this hypothesis is rejected with a first kind risk 0.05. This result was already
given in the SPSS output of Figure 8.2. In the fifth column we find the value of
the test statistic, and the sig-value in column six is below 0.05, and this means
rejection.
The hypothesis, as we see from the F−test statistic in Table 8.4, is also rejected.
Finally we test the hypothesis that both (theoretical) regression lines have the

same slope, that is, the hypothesis β11 = β21. For this we use the test statistic
given in (8.50) and obtain with f = 6.24

t =
−0 05455 + 0 08098

0 0042 + 0 0112
= 2 17 > t 6 24 0 975 ,

and the null hypothesis of parallelism of both regression lines (i.e. that the loss of
carotene is the same for both kinds of storage), is rejected by this approxi-
mate test.
The test of the hypothesis that some components of β in (8.4) equal zero is

often used to find out whether some of the regressors, that is, some columns
of X in (8.4) can be dropped.
This method can be applied to test the degree of a polynomial.
From (8.34) it follows that βk equals zero if αk = 0. By this the hypothesis

H0 : βk = 0 is identical with H0 : αk = 0 and can be tested from the corollary of
Theorem 8.6.

Corollary 8.3 (of Theorem 8.6): Let

Y =Xα+ e

be a quasilinear polynomial regression model of degree k, where X has the form
as shown in the proof of Theorem 8.3 and α depends on β in (8.33) by (8.34). Let
Y be N(Xα, σ2In)-distributed. The hypothesis H0 : αk = βk = 0 can be tested with
the test statistic

Table 8.4 Analysis of variance table for testing the hypothesis H0 : β10 = 30 , b11 = 0 in
Example 8.6 for i = 1.

Source of variation SS df MS F

Total 393.5733 5

Regression 390.8072 2 195.50 211.9

Residual 2.7661 3 0.92203
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F =
a2k

n
i= 1 P

2
ki n−k−1

n
i=1 y

2
i −

k
j= 0 a

2
j

n
i=1 P

2
j i

=

n−k−1
n
i= 1yiPk i

2

n
i=1 P

2
ki

n
i=1 y

2
i −

k
j= 1

n
i= 1yiPji

2

n
i= 1 P

2
j i

8 51

if the ai are the components of the MLE a in (8.35).

Proof: X has the form given in the proof of Theorem 8.3; XTX is a diagonal
matrix. Because YT X(XTX)−1XT Y = YTX(XTX)−1XT X(XT X)−1 XT Y and from
(8.35) Equation (8.42) with q = 1 becomes

F = n−k−1
aT XT Xa−cT XT

1 X1c

Y TY −aT XTX a
8 52

Here X1 is the matrix, which arises, if the last column in X is dropped and c is
the LS estimator if the null hypothesis αk = 0 holds. Further

aT XT Xa=
k

j= 0

a2
j

n

i= 1

P2
j i 8 53

and

cT XT
1 X1c=

k−1

j=0

a2j

n

i= 1

P2
ji, 8 54

and this completes the proof.

8.4 Confidence Regions

When we know the distributions of the estimators of the parameters, confi-
dence regions for these parameters can be constructed. In this section we will
construct confidence regions (intervals) for the components βi of β, the
variance σ2, the expectations E(yi) and the vector β Ω. Again we make the
assumption that Y isN(Xβ, σ2In)-distributed and themodel equation (8.4) holds.
From (8.44) it follows that

P t n−k−1
α

2
≤
bj−βj
s cjj

≤ t n−k−1 1−
α

2
= 1−α 8 55

and due to the symmetry of the t-distribution is

bj− t n−k−1 1−
α

2
s cjj, bj + t n−k−1 1−

α

2
s cjj 8 56
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a confidence interval of the component βj with a confidence coefficient 1 − α. In

(8.56) is cj j the j-th main diagonal element of (XT X)−1 and s= s2 the square

root of the residual variance in (8.6). Due to the assumptions
s2 n−k−1

σ2
is

CS(n − k − 1)-distributed. If χ2 is a CS(n − k − 1)-distributed random variable
and χ2(n − k − 1 | α1) and χ2(n − k − 1 | 1 − α2) are chosen in such a way that
with α1 + α2 = α,

P χ2 χ2 n−k−1 α1 = α1

and

P χ2 χ2 n−k−1 1−α2 = α2,

then

P χ2 n−k−1 α1 ≤
s2 n−k−1

σ2
≤ χ2 n−k−1 1−α2 = 1−α,

and a confidence interval for σ2 with a confidence coefficient 1 − α is given by

s2 n−k−1
χ2 n−k−1 1−α2

,
s2 n−k−1

χ2 n−k−1 α1
8 57

If we choose a vector x = (x0, … , xk)
T of the values of the regressor so that

min
i

xij ≤ xj ≤ max
i

xij

holds for j = 0, … , k, then by the Gauss–Markov theorem (Theorem 4.3) an
estimator y of y = xTβ in the regression function is given by

y= xTb

with b in (8.5).
Now b is N(β, σ2(XTX)−1)-distributed (independent of s2) so that xTb is

N[xTβ, xT(XTX)−1xσ2]-distributed. From this it follows that

z =
xT b−β

σ xT XTX −1x

is N(0, 1)-distributed, and because
s2 n−k−1

σ2
is independent of z as

CS(n − k − 1)-distributed the test statistic

t =
xT b−β

s xT XTX −1x
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is t(n − k − 1)-distributed. From this it follows that

y− t n−k−1 1−
α

2
s xT X X −1x,y+ t n−k−1 1−

α

2
s xT X X −1x

8 58

is a confidence interval for y = xTβ with a confidence coefficient 1 − α. The con-
fidence intervals (8.56) give for each j an interval that covers βj with probability
1 − α. From these confidence intervals, no conclusions can be drawn, in which
region the parameter vector β rests with a given probability.
A region in Ω, covering β with the probability 1 − α, is called a simultaneous

confidence region for β0, … , βk. With the test statistic F in (8.45) for the test of
β = β∗, we construct this a simultaneous confidence region. From (8.45) it
follows

P
1

s2 k + 1
b−β TXTX b−β ≤ F k + 1, n−k−1 1−α = 1−α,

so that the interior and the boundary of the ellipsoid

b−β TXTX b−β = k + 1 s2F k + 1,n−k−1 1−α

is our confidence region.

Example 8.6 For Example 8.3 (i = 1) confidence regions for β0,β1,σ
2,

y= β0 + β1x and βT = β0,β1 each with a confidence coefficient 0.95 shall be
found. By SPSS after activating ‘confidence interval’ after pressing the button
‘Statistics’, we receive Table 8.5 with the confidence intervals for β10 and β11.

From (8.57) [0.26;12.82] is a confidence interval for σ2 with α1 = α2 =
α

2
But

this is because of the skewness of the χ2−distribution, not the decomposition of
α into two components, leading to the smallest expected width of the confidence
interval.
To calculate a 95%-confidence interval for E y in (8.58), we need for some

x0 B the values of

Table 8.5 SPSS output with confidence intervals (analogue to Figure 8.2).

Model

Unstandardized
coefficients

t Sig.

95.0% confidence
interval for B

B Std. error Lower bound Upper bound

1 (Constant) 31.216 0.706 44.223 0.000 28.969 33.462

time −0.055 0.004 −13.848 0.001 −0.067 −0.042

Source: Reproduced with permission of IBM.
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K0 =
x2j −2x0 xj + nx20

n xj−x
2 = xT XT X −1x,

given in Table 8.6 together with the confidence bounds for E yi . Figure 8.6
shows the estimated regression line for i = 1 and the confidence belt, obtained
by mapping the confidence bounds for E y in Table 8.5 and splicing them.

A confidence region for β =
β0

β1
is an ellipse, given by

n b0−β0
2 + 2∑xi b0−β0 b1−β1 +∑xi

2 b1−β1
2 = 2s2F 2,n−2 1−α

Table 8.6 95%-confidence bounds for E yi in Example 8.6.

xj yj Kj Confidence bounds

Lower Upper

1

60

124

223

303

31 16

27 94

24 45

19 05

14 69

0 73184

0 56012

0 45340

0 55668

0 79701

28 92

26 23

23 06

17 35

12 25

33 40

29 65

25 84

20 75

17 12

x

y

0

10

20

30

50 100 150 200 250 300

y1ˆ

Figure 8.6 Estimated regression line and confidence belt of Example 8.6.
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Using the data of Example 8.3 gives

5 31 25−β0
2−1422 31 215−β0 0 05455 + β1 + 160515 0 05455 + β1

2 =

1 84406 9 522

8.5 Models with Random Regressors

For random regressors we only consider the linear case.

8.5.1 Analysis

Definition 8.7 If xT = (x1,…xk + 1) is a (k + 1)-dimensional normally distribu-
ted random vector and is X = (xi j) (i = 1, … , k + 1; j = 1, … , n) a random sam-
ple of n such vectors, distributed as x then equation

yj =xk +1, j =
k

i=0

βixi j + ej, x0j 1, 8 59

with the additional assumption that ej are independent of each other, N(0, σ2)-
distributed and are independent of the xi j, is called a model II of the (multiple)
linear regression. Definition 8.4 can be generalised by neglecting the assump-
tion that Y is normally distributed. Nevertheless, for tests and confidence
estimation, the assumption is necessary. Correlation coefficients are always
defined, as long as (8.59) holds, and the distribution has finite second moments.
To estimate the parameter of (8.59), we use the same formulae as for model I.
An estimator for ρxiy = σxiy σxiσy by (5.33), we obtain by replacing σxiy,σ

2
xi and

σ2y by the unbiased estimators sxiy,s
2
xi and s2y of the covariances and variances,

respectively. Then we get the (not unbiased) estimator

rxiy =
sxiy
sxisy

=
SPxiy

SSxiSSy
8 60

of the correlation coefficient.
At first the special case k = 2 is considered. The random variable (x1, x2, x3)

shall be three-dimensional normally distributed; it can be shown that the three
conditional two-dimensional distributions fk(xi, xj|xk) (i j k; i, j, k = 1, 2, 3)
are two-dimensional normal distributions with correlation coefficients

ρij k =
ρij−ρikρjk
1− ρ2ik 1− ρ2jk

    i j k;i, j,k = 1,2,3 8 61

Here ρij , ρik and ρjk are the correlation coefficients of the three two-
dimensional (normal) marginal distributions of (xi, xj, xk). It can easily be shown
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that these marginal distributions are two-dimensional normal distributions
(Exercise 8.1).
The correlation coefficient (8.61) of the conditional two-dimensional normal

distribution of (xi, xj) for xk given is called partial correlation coefficient between
xi and xj after the cut-off of xk.
The name partial correlation coefficient stems from applications and is of gen-

eral use even if the name conditional correlation coefficient seems to be better.
It follows from (8.61) that the value of xk has no influence on the correlation

coefficient of the conditional distribution of (xi, xj) and therefore ρij k is inde-
pendent of xk. We say that ρij k is a measure of the relationship between xi and
xj after the cut-off of the influence of xk or after the elimination of xk. This inter-
pretation of ρij k can be illustrated as follows. Starting with the marginal distri-
butions of (xi, xk) and (xj, xk) because these marginal distributions are normal
distributions as conditional random expectations (in dependency on xk) of these
marginal distributions, we receive

E xi xk = μi + βik xk−μk 8 62

and

E xj xk = μj + βjk xk−μk , 8 63

where μl = E(xl) is the expectation of the one-dimensional marginal distribution
of xl and βi k and βj k are the regression coefficients of the marginal distributions.
Calculating the differences,

di =di⋅k = xi−μi−βik xk−μk
and

dj =dj⋅k = xj−μj−βj k xk−μk ,

leads to a normally distributed two-dimensional random variable (di k, dj k). It
is to be shown that the correlation coefficient ρdi ,dj is given by (8.61).

We have

ρdi ,dj =
cov di,dj

var di var dj

8 64

Because cov(di, dj) = E(di dj) − E(di)E(dj), we obtain

cov di,dj =E xi,xj −μiμj−βikσjk −βjkσik + βikβjkσ
2
k

and

cov di,dj = σij−
σikσjk
σ2k
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Further

σ2i k = var di = σ2i + ρ
2
ikσ

2
i −2ρ

2
ikσ

2
i = σ

2
i 1−ρ2ik

and analogous

σ2j k = var dj = σ2j 1−ρ2ik ,

so that ρdi ,di = ρji k
Between the regression coefficients of x on y and the correlation coefficients

of the normally distributed random variables (x, y) one has

βxy = ρ
σx
σy

8 65

In the three-dimensional case it can be shown that the relation

β i
j = ρij k

σi k
σj k

i j k; i, j,k = 1,2,3

holds,where themultiple (partial) regressioncoefficientsβ i
j are the coefficients in

case k = 2. The β i
j can be interpreted as regression coefficients between di k

and d
j k

and are therefore often called partial regression coefficients. The β i
j

show, by how many units xi changes, if xj increases by one unit, while all other
regressors remain unchanged. For the four-dimensional normally distributed
random variable (x1, x2, x3, x4), we can define a partial correlation coefficient
between two components for fixed values of the both residual components.
We call the expression

ρi j lk = ρi j k l =
ρi j k −ρil kρj l k

1− ρ2i lk 1− ρ2j lk

i j k l; i, j,k,l = 1,2,3,4 ,

8 66

defined for the four-dimensional normally distributed random variable (x1, x2,
x3, x4) a partial correlation coefficient (of second order) between xi and xj after
the cut-off of xk and xl.
Analogous partial correlation coefficients of higher order can be defined.
We obtain estimators ri j k and ri j k l for partial correlation coefficients by

replacing the simple correlation coefficients in (8.61) and (8.66) by their estima-
tors. For instance, we get

ri j k =
ri j−rikrjk

1− r2ik 1− r2jk

8 67

Without proof we give the following theorem.
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Theorem 8.8 If (x1, … , xk) is k-dimensional normally distributed and for
some partial correlation coefficients of s-th order (s = k − 2) the hypothesis
ρi j u1…us = 0 (u1, … , us are s = k − 2 different numbers from 1, … , k, different
from i and j) is true, then

t =
ri j u1…us n−k

1− r2i j u1…us

8 68

is t(n − k)-distributed, if n values of the k-dimensional variables are observed.
Especially for k = 3 (s = 1) under H0 : ρij k = 0

t =
ri j k n−3

1− r2i j k

is t(n − 3)-distributed and for k = 4 under H0 : ρ{i j} kl = 0

t =
ri j kl n−4

1− r2i j k l

is t(n − 4)-distributed.
By Theorem 8.8 for k = 2, the hypothesis ρ = 0 can be tested with the test sta-

tistic (8.68). For a two-sided alternative (ρ 0), the null hypothesis is rejected,

if t > t n−2 1−
α

2
To test the hypothesis H0 : ρ = ρ∗ 0, we replace r by the Fisher transform

z =
1
2
ln
1 + r
1−r

8 69

that is approximately normally distributed with expectation

E z ≈
1
2
ln
1 + ρ
1−ρ

+
ρ

2 n−1

and variance var z ≈
1

n−3
If the hypothesis ρ=ρ∗ is valid,

u= z− ln
1 + ρ∗

1−ρ∗
−

ρ∗

2 n−1
n−3

is approximately N(0, 1)-distributed. For large n in place of u also

u� = z− ln
1 + ρ∗

1−ρ∗
n−3
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can be used. An approximate (1 − α). 100% confidence interval for ρ is

tanh z−
z1−α

2

n−3
, tanh z +

z1−α
2

n−3
,

with the 1−
α

2
− quantile z1−α

2
of the standard normal distribution

P z > z1−α
2

= α
2

A sequential test of the hypothesis ρ = 0 was already given in Chapter 3 using

z =
1
2
ln
1 + r
1−r

in place of z = ln
1 + r
1−r

To interpret the value of ρ (and also of r), we again consider the regression
function f(x) = E(y|x) = α0 + α1x. ρ

2 can now be explained as a measure of the
proportion of the variance of y, explainable by the regression on x. The condi-
tional variance of y is

var y x = σ2y 1−ρ2

and

var y x
σ2y

= 1−ρ2

is the proportion of the variance of y, not explainable by the regression on x, and
by this the statement above follows. We call ρ2 = B measure of determination.
To construct confidence intervals for β0 and β1 or to test hypotheses about

these parameters seems to be difficult, but the methods for model I can also be
applied for model II. We demonstrate this as example of the confidence interval
for β0. The argumentation for confidence intervals for other parameters and for
the statistical tests is analogue.
The probability statement

P b0− t n−2 1−
α

2
s0 ≤ β0 ≤ b0 + t n−2 1−

α

2
s0 = 1−α,

leading to the confidence interval (8.56) for j = 0 is true, if for fixed values x1 ,
… , xn samples of y-values are selected repeatedly. Using the frequency inter-
pretation, β0 is covered in about (1 − α) 100% of the cases by the interval
(8.56). This statement is valid for each arbitrary n-tuple xi l , … , xin, also for
an n-tuple xi l , … , xin, randomly selected from the distribution because
(8.56) is independent of x1 , … , xn, if the conditional distribution of the yj
is normal. But this is the case, because (y, x1, … , xk) was assumed to be nor-
mally distributed. By this the construction of confidence intervals and testing
of hypotheses can be done by the methods and formulae given above. But the
expected width of the confidence intervals and the power function of the tests
differ for both models.
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That bi− t n−2 1−
α

2
si, bi + t n−2 1−

α

2
si is really a confidence interval

with a confidence coefficient 1 − α also for model II can of course be proven
exactly, using a theorem of Bartlett (1933) by which

t i =
sx n−2

s2y − b2i s
2
x,

bi−βi

is t(n − 2)-distributed.

8.5.2 Experimental Designs

The experimental design for model II of the regression analysis differs funda-
mentally from that of model I. Because x in model II is a random variable,
the problem of the optimal choice of x does not occur. Experimental design
in model II means only the optimal choice of n in dependency of given precision
requirements. A systematic description about that is given in Rasch et al. (2008).
We repeat this in the following.
At first we restrict in (8.59) on k = 1 and consider the more general model of

the regression within of a ≥1 groups with the same slope β1:

yhj = βh0 + β1xhj + ehj h= 1,…,a; j= 1,…, nh ≥ 2 8 70

We estimate β1 for a > 1 not by (8.9), but by

bI1 =
a
h=1 SP

h
x,y

a
h= 1SS

h
=
SPI xy

SSI x
, 8 71

with SP h
xy and SS h

x for each of the a groups as defined in Example 8.1.

If we look for a minimal n= a
h=1nh so that V b11 ≤C, we find in

Bock (1998)

n−a−2 =
σ2

C σ2k

If in (8.59) for k = 1 for the expectation E(y|x) = β0 + β1x a (1 − α)−confidence
interval is to be given so that the expectation of the square of the half of the
width of the interval (8.58) (for k = 1) does not exceed the value d2, then

n−3 =
σ2

d2
1−

2
n σ2x

Max x0−μ0
2, x1−μ1

2 t2 n−2 1−
α

2
8 72

must be chosen.
The theorem of Bock (1998) is important and given without proof.
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Theorem 8.9 The minimal sample size n for the test of the hypothesis
H0 : β1= β10 with the t-test statistic (8.48) should be determined so that for
a given first kind risk α and a second kind risk β not larger than β∗ as well
as β1−β10 ≤ d is given by

n≈
4 zP + z1−β∗

2

ln 1 +
dσx

d2 σ2x−σ
2

− ln 1−
dσx

d2 σ2x + σ2

2 8 73

Here is P = 1 − α for one-sided and P = 1 − α/2 for two-sided alternatives.
Concerning the optimal choice of the sample size for comparing two or more

slopes (test for parallelism), we refer to Rasch et al. (2008).

8.6 Mixed Models

If the conditional expectation of the component y of an r-dimensional random
variable (y, xk − r + 2, … , xk) is a function of k − r further (non-random) regres-
sors, in place of (8.59)

yj =
k−r +1

i= 0

βixij +
k

i= k−r + 2

βixij + ej, x0j 1 8 74

must be used.

Definition 8.8 Model equation (8.74) under the assumption that ej are
independent of each other and of the xi j and N(0, σ2)-distributed, and the
vectors xj = (yj, xk − r + 2 , j, … , xk , j) are independent of each other and N(μ, Σ)-
distributed with the vector of marginal expectations

μ∗ =
k−r + 1

i= 0

βixij,μk−r + 2,…,μk

T

It is called mixed model of the linear regression (|Σ| 0).

Estimators and tests can formally be used as for model II. The problem of
the experimental design consists in the optimal choice of the matrix of the
xi j(i = 0, … , k − r + 1; j = 1, … , n) and the optimal experimental size n. Results
can be found in Bartko (1981).
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8.7 Concluding Remarks about Models
of Regression Analysis

Because the estimators for β0 and β1 for model I and model II equal each other
and tests and confidence intervals are constructed by the same formulae, the
reader may think that no distinction between both models has to be made.
Indeed in many instructions for the statistical analysis of observed material
and in nearly all program packages, a delicate distinction is missed. But the
equality of the numerical treatment for both models does not justify to neglect
both models in a mathematical treatment. Further, between both models there
are differences that must also be considered in a pure numerical analysis. We
describe this shortly for k = 1.

1) In model I only one regression function is reasonable:

E y = α0 + α1x

But for model II two regression functions are possible:

E y x = α0 + α1 x and E x y = β0 + β1y

For model II the question, which regression function, should be used arises. If
the parameters of the regression function are estimated to predict the values of
one variable from observed values of the other one, we recommend using that
variable as regressand, which should be predicted. That is, because the corre-
sponding regression line by the least squaresmethod is estimated, the deviations
parallel to the axis of the regressand are squared and the sums are minimized.
But if the two-dimensional normal distribution is truncated in such a way that

only for one variable the region of the universe is restricted (in breeding by
selection concerning one variable), that variable could not be used as regres-
sand. We illustrate this by an example.

Example 8.7 We consider a fictive finite universe, as shown in Figure 8.7 with
linear regression functions f(x) and g(y). If we truncate with respect to x (regres-
sor), the samples stem from that part of the population where x > 3. For simpli-
fication, we assume that the sample is the total remaining population. Then the
regression function is identical with the regression function for the total uni-

verse α0 = 0, α1 =
1
2

and given by the function E y x =
1
2
x. Truncation with

respect to y, leads to different regression lines. Truncation for y > 3 (y < − 3) is
shown in Figure 8.7 and leads to the regression functions

f1 x =E y x, y 3 = 3 25 + 0 25x

f2 x =E y x, y −3 =−3 25 + 0 25x,

respectively, with wrong estimates α0 = 0 and α1 = 0.5.
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The example shows that truncation with respect to the regressand results in
inacceptable estimates, while truncation with respect to the regressors causes
no problem.

2) While for model I the estimators b0 and b1 are normally distributed, this is
not the case for model II.

3) The confidence intervals for both parameters are calculated by the same for-
mulae, but the expected width of these intervals differs for both models.

4) The hypotheses for both models are tested by the same test statistic, but nev-
ertheless the tests are different because they have different power functions,
leading to different sample sizes.

5) In case of model II, the regression analysis can be completed by calculating
the correlation coefficient. For model I it may also be calculated, but cannot
be interpreted as a statistical estimate of any population parameter and
should be avoided. That the calculation of a sample correlation coefficient
(as done by program packages) for model I is unreasonable follows from
the fact that its value can be manipulated by a suitable choice of the xi.

6) In the experimental design of model I, although the optimal choice the
matrix X is important for model II, only the optimal choice of the sample
size is important.

f2(x)
y< –3

y> 3

x> 3

= α 0
+ α 1x

=  x2f(x)
 = E(y|x

)f 1(x
)6

4

2

0

–2

–4

–6

–8 –6 –4 –2 0 2 4 6 8

Figure 8.7 Fictive population with truncation shown in Example 8.7.
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We considered only themost importantmodels of the linear regression.Mod-
els with errors in the regressor variables are not included in this book. Models
with random regression coefficients β as occurring in the population mathemat-
ics if each individual has its own regression coefficient are discussed in Swamy
(1971) and Johansen (1984).

8.8 Exercises

8.1 Derive Equations (8.9) and (8.10) using the partial derivations of S given in
the text before these equations.

8.2 Prove Corollary 8.1.

8.3 Estimate the parameters in the quasilinear regression model:

yi = β0 + β1cos 2x + β2ln 6x + ei  i= 1,…,n

8.4 Calculate in Example 8.3 all estimates for the storage in glass with SPSS.

8.5 Determine for Example 8.3 the G- and D-optimal design in the experi-
mental region and calculate the determinants XT

G XG and XT
D XD
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9

Regression Analysis – Intrinsically Non-linear Model I

In this chapter estimates are given for parameters in such regression functions
that are non-linear in x B R and are not presentable in the form (8.19). We
restrict ourselves to cases of real-valued regressands x; generalisations for
vectoriale x are simple.

Definition 9.1 Regression functions f(x, θ) in a regressor x B R and with
the parameter vector

θ = θ1,…,θp
T
, θ Ω Rp,

which are non-linear in x and in at least one of the θi and cannot be made linear
or quasilinear by any continuous transformation of the non-linearity parameter
are called intrinsically non-linear regression functions. Correspondingly we
also say intrinsically non-linear regression. More precisely, supposing f(x, θ)
is concerning θ differentiable and

∂f x,θ
∂θ

is the first derivative of f(x,θ) with respect to θ, the regression function is said to
be partially non-linear, if

∂f x,θ
∂θ

=C θ g x,φ , φ= θi1 ,…,θir
T 9 1

and 0 < r < pwhere C(θ) is a (p × p)−matrix not depending on x and φ, chosen in
such a way that r is minimal (r = 0 means a quasilinear regression). If r = p, then
f(x, θ) is called completely non-linear.
θij j= 1,…,r are called non-linearity parameters, and the other components

of θ are called linearity parameter.
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We illustrate the definition by some examples.

Example 9.1 We consider

f x,θ =
θ1x

1−x θ2 + 1−θ2 x

That is, we have p = 2, θ = (θ1, θ2)
T

and obtain

∂f x,θ
∂θ

=

x
1−x θ2 + 1−θ2 x

−θ1x

θ2 + 1−θ2 x 2

=
1 0

0 θ1

x
1−x θ2 + 1−θ2 x

−x

θ2 + 1−θ2
2

Here θ1 is a linearity parameter and φ = θ2 a non-linearity parameter. Further
r = 1.

Example 9.2 We consider

f x,θ = θ1 x+ e−θ3x −θ2xe
−θ3x,

that is, we have θT = (θ1, θ2, θ3) and p = 3 and obtain

∂f x,θ
∂θ

=

x+ e−θ3x

−xe−θ3x

−xθ1 + x2θ2 e−θ3x
=

1 0 0

0 1 0

0 θ1 θ2

x+ e−θ3x

−xe−θ3x

x2e−θ3x
;

φ = θ3 is a non-linearity parameter, and θ1 and θ2 are linearity parameters (i.e.
r = 1).
For linear models a general theory of estimating and tests was possible, and by

the Gauss–Markov theorem, we could verify optimal properties of the least

squares (LS) estimator θ. A corresponding theory for the general (non-linear)
case does not exist. For quasilinear regression the theory of linear models, as
shown in Section 8.2, can be applied. For intrinsically non-linear problems
the situation can be characterised as follows:

• The existing theoretical results are not useful for solutions of practical pro-
blems; many results about distributions of the estimates are asymptotic: for
special cases simulation results exist.

• The practical approach leads to numerical problems for iterative solutions;
concerning properties of distributions of the estimators, scarcely anything
is known. The application of the methods of the intrinsically non-linear
regression is more a problem of numerical mathematics than of mathematical
statistics.
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• A compromise could be to go over to quasilinear approximations for the non-
linear problem and conduct the parameter estimation for the approximative
model. But by this we lose the interpretability of the parameters, desired in
many applications by practitioners.

We start with the model equation

Y = η+ e 9 2

with the side conditions E(e) = 0n (E(Y) = η) and var(e) = σ2In (σ
2 > 0). Y, η and e

are vectors with components yi, ηi and ei (i = 1, …, n), respectively, where ηi are
intrinsically non-linear functions

ηi = f xi,θ , θ Ω Rp i= 1,…,n 9 3

in the regressor values xi B R. We use the abbreviations

η θ = f x1,θ ,…, f xn,θ
T ,

fj x,θ =
∂f x,θ
∂θj

, fjk x,θ =
∂2f x,θ
∂θj∂θk

,

Fi = Fi θ = f1 xi,θ ,…, fp xi,θ ,

F = F θ = F1 θ ,…, Fn θ T = fj xi,θ ,

Ki =Ki θ = kjk xi,θ =
∂2f xi,θ
∂θj∂θk

,

9 4

and assume always that n > p. Further

R θ = Y −η θ 2 =
n

i= 1

yi− f xi,θ
2 9 5

The first question is whether different values of θ always lead to different para-
meters of the distribution of Y – in other words, whether the parameter is iden-
tifiable. Identifiability is a necessary assumption for estimability of θ. But the
identifiability condition is often very drastic in the intrinsically non-linear case,
so that we will not discuss this further. Instead we choose a pragmatic approach
that also can be used if identifiability is established.

Definition 9.2 The random variable θ is called LS estimator of θ, if its realisa-
tion θ is a unique solution of

R θ = min
θ Ω

R θ 9 6

In (9.6) R(θ) is given by (9.5). Further let

η= f x,θ
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be the LS estimator of η = f(x, θ). In place of (9.6) we also write

θ = arg min
θ Ω

R θ

We always assume for all discussions that for (9.6) a unique solution exists.
The estimators of the parameters by the LS method for the intrinsically non-
linear regression function are in general not unbiased. The exact distribution
is usually unknown, and therefore for confidence estimations and tests, we have
to use asymptotic distributions.
The possibility to approximate function (9.3) by replacing f(x, θ) by a quasi-

linear function was discussed in the literature (see Box and Lucas, 1959; Box and
Draper, 1963; Karson et al., 1969; Ermakoff, 1970; Bunke, 1973; Petersen, 1973).
For instance, a continuous differentiable function f(x, θ) could be developed in a
Taylor series stopping after a designated number of terms and choosing the
design (the xi) in such a way that the discrepancy between f(x, θ) and the approx-
imate quasilinear function is aminimum. The approximate function can then be
estimated by the methods of Chapter 8.
We now assume that the experimenter is interested in the parameters of a

special intrinsically non-linear function obtained from a subject-specific differ-
ential equation.Wemust therefore use direct methods even if we know only few
about the statistical properties of the estimators.
For the case that f(x, θ) concerning θ is a continuously differentiable function,

we obtain by zeroing the first partial derivations of (9.5) with respect to the com-
ponents of θ

Rj θ ηj θ Y −η θ = 0 9 7

with

Rj θ =
∂R θ

∂θj
and ηj θ = fj x1,θ ,…, fj xn,θ

T

and

fj x,θ =
∂f x,θ
∂θj

9.1 Estimating by the Least Squares Method

At first we give numerical methods for an approximate solution of (9.7) or
(9.6). The existence of a unique solution is from now on assumed. In
Section 9.1.2 we give methods without an exact knowledge of the function
to be minimised and without using the first derivations. In Section 9.1.3 we
present methods applied directly to the differential equation and not to its inte-
gral f(x, θ).
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9.1.1 Gauss–Newton Method

We assume that f(x, θ) is twice continuously differentiable concerning θ Ω and
that for a given x exactly one local minimum concerning θ exists. We develop
f(x, θ) around θ0 Ω in a Taylor series stopping after the first-order terms. If
fj(x, θ0) is the value of fj(x, θ) at θ = θ0, then

f x,θ ≈ f x,θ0 + θ−θ0
∂f x,θ

∂θ
θ = θ0 = f

0
x,θ 9 8

We approximate (9.2) written in its realisations starting with l = 0 by

Y = η l + e l , η l = f
l
x1,θ ,…, f

l
xn,θ

T

9 9

Equation (9.9) is linear in θ − θl =Δθl (l = 0). The Gauss–Newtonmethodmeans
that Δθ0 in (9.9) is estimated by the LS method, and from a Taylor series expan-
sion and with the estimate Δθ0, we build up the vector θ1 = θ0 + v0Δθ0. Around
θ1 once more a Taylor series analogously to (9.8) is constructed, andmodel (9.9)
is now used with l = 1.
NowΔθ1 = θ − θ1 has to be estimated by the LSmethod. If θ0 is near enough to

the solution θ of (9.7) (in the algorithm of Hartley below, it is exactly explained
what ‘near enough’ means), the sequence θ0, θ1,… converges against θ. If we
however start with a bad initial vector θ0, a cutting of a Taylor series expansion

after the first terms leads to large differences between f and f , and the method
converges not to the global minimum but to a relative minimum (see
Figure 9.4). If θl Ω is the vector in the l-th step of a Taylor series and

f
l
x,θ is determined analogously to (9.8), then in the l-th step the simultane-

ous equations become

FT
l FlΔθl = FT

l Y −η l 9 10

with Fl = f l
ij = f l

j xi,ϑ . We assume that xi are chosen in such a way that

FT
l Fl is non-singular and by this that (9.10) has a unique solution. The iteration

method calculating vectors for a Taylor series by

θl + 1 = θl + vlΔθl 9 11

can be (convergence assumed) continued as long as for all j

θj, l−1−θj l < δj θl = θ1l,…,θpl
T

But because the objective of the iteration is the solution of (9.6), it makes more
sense to continue the iteration with θl + 1 and θl for θ in (9.6) as long as

R θl −R θl + 1 < ε

is reached for the first time.
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In the original form of the Gauss–Newton iteration, vl = 1 (l = 0, 1,…) was
used. But then the convergence of the procedure is not sure or can be very slow.
Some proposals are known to modify the Gauss–Newton method, for

example, by Levenberg (1944) and Hartley (1961), and the latter will
be described now.
The method of Hartley offers a quicker convergence and has the advantage

that assumptions for a reliable convergence can be formulated.
Let the following assumptions be fulfilled:

V1: f(x, θ) has for all x continuous first and second derivatives concerning θ.
V2: For all θ0 Ω0 Ω (Ω0 restricted, convex) with F = [η1(θ), …, ηp(θ)], the
matrix FTF is positive definite.

V3: There exists a θ0 Ω0 Ω so that

R θ0 < inf
θ Ω \Ω0

R θ

Hartley’s modification of the Gauss–Newton method means to choose vl in
(9.11) so that R(θl + vlΔθl) for a given θl as a function of vl for 0 ≤ vl ≤ 1 is a
minimum.
Hartley proved the following theorems, and we give them without proof.

Theorem 9.1 (Existence theorem)
If V1 to V3 are fulfilled, then a subsequence {θu} of the sequence {θl} of vectors in
(9.11) always exists with vl that minimises R(θl + vlΔθl) for given θl and 0≤ vl ≤ 1
that converges against a solution of

R θ∗ = min
θ Ω0

R θ

For restricted and convex Ω0, by this theorem, Hartley’s method converges
against a solution of (9.6).

Theorem 9.2 (Uniqueness theorem)
If the assumptions of Theorem 9.1 are valid and with the notations of this

section the quadratic form aTRa with R= Rij θ and Rij θ =
∂2R θ

∂θi∂θj
is posi-

tive definite in Ω0, then there is only one stationary point of R(θ).

A problem of Hartley’s method is the suitable choice of a point θ0 in a
restricted convex set Ω0. The numerical determination of vl + 1 is often elabo-
rate. Approximately vl + 1 can be found by quadratic interpolation with the

values v∗l + 1 = 0, v
∗∗
l +1 =

1
2
and v∗∗∗l + 1 = 1 from

vl +1 =
1
2
+
1
4

R θl −R θl +Δθl

R θl +Δθl −2R 2θl +
1
2
Δθl +R θl

9 12
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Further modifications of the Gauss–Newton method are given by Marquardt
(1963, 1970) and Nash (1979).

Program Hint
With SPSS an LS estimator can be obtained as follows.
A data file with (x, y)-values, as for instance that for the growth of hemp plants

given by Barath et al. (1996), is needed and shown in Figure 9.1. The value 20 for
age was added for later calculations and does not influence the parameter esti-
mation, due to the missing height value.
We choose at first

Regression
Nonlinear

and get the window in Figure 9.2.
In this window first the parameters with their initial values must be put in, and

then the regression function must be programmed. We choose at first the logis-
tic regression from Section 9.6.3. The programmed function and the initial
values of the parameters are given in Figure 9.3.
After many iterations an unsatisfactory result with an error MS of 506.9 as

shown in Figure 9.4 came out.
With a bad choice of the initial values, we get a relative (but no absolute) min-

imum of R(θ).

Figure 9.1 Data file of hemp data with additional calculated values (explained later).
Source: Reproduced with permission of IBM.
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Figure 9.2 Start of non-linear regression in SPSS. Source: Reproduced with permission of IBM.

Figure 9.3 Programmed function and the initial values. Source: Reproduced with permission
of IBM.



We now choose other initial values by help of the data. For x =∞ the logistic
function reaches for negative γ the value α; we replace it by the rounded max-

imum 122. If the growth starts (x = 0), the value of the function is about
122
1 + β

,

and we replace this by the rounded smallest value 8 and receive β = 14.25. Finally
we choose γ = −0.1 and change the initial values correspondingly.
Now we gain in Figure 9.5 a global minimum with a residual MS error of 3.71,

and the estimated logistic regression function is
126 22

1 + 19 681e−0 46x
.

Another possibility is to try some function already programmed in SPSS. For
this we use the commands

Analyze
Regression

Curve Estimation

We receive Figure 9.6 where we already have chosen the cubic regression (logis-
tic does not mean the function used before), and with save we gave the com-
mand to calculate the predicted values FIT and the error terms RES, which
are already shown in Figure 9.1.
In Figure 9.7 we find the graph of the fitted cubic regression with extrapola-

tion to age 20.
TheMS error is the sum of squares of the residuals divided by df = 10 = 14 − 4,

because four parameters have been estimated in the cubic regression. We

Figure 9.4 Result of the calculation with the initial parameter values from Figure 9.3.
Source: Reproduced with permission of IBM.
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receive MS error = 7.16. This is larger than the corresponding value 3.71 in
Figure 9.6, and it seems that the logistic regression makes a better fit to the data.
But even if the MS error for the cubic regression would be smaller than that of
the logistic regression, one may have doubts about using the latter. From the
graph we find that extrapolation (to an age of 20) gives a terrible result for
the cubic function that can be seen in the graph as well as in the predicted value

Figure 9.5 Result of the calculation with improved initial parameter values.
Source: Reproduced with permission of IBM.

Figure 9.6 Start of curve estimation in the regression branch of SPSS. Source: Reproduced
with permission of IBM.
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−15.0 in Figure 9.1. The predicted height for the logistic regression at age 20 is
129.3, a reasonable result. The reason is that the logistic regression is an integral
of a differential equation for growth processes.

9.1.2 Internal Regression

The principle of internal regression starts with Hotelling (1927). Later Hartley
(1948) developed for the simple intrinsically non-linear regression with equidis-
tant xi a method for the case that f(x) is integral of a linear differential equation
of first order. The observed values yi are not fit to the regression function but
approximatively to the generating differential equation by approximating the
differential quotient. This method has later been extended to intrinsically
non-linear regression functions, which are integral of a linear homogeneous dif-
ferential equation of higher order with constant coefficients, and to non-linear
differential equations (Scharf, 1970).
We restrict ourselves in the following outline to the generalised method of

internal regression for homogeneous linear differential equations of order k
of the form

f k +
k

l = 1

blf
l−1 = 0 k > 0, integer 9 13

0

120.00

100.00

80.00

60.00

40.00

20.00

.00
5 10

Age

Height

Observed

Cubic

15 20

Figure 9.7 Graph of the fitted cubic regression with extrapolation to age 20.
Source: Reproduced with permission of IBM.
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with f l =
dlf x
dxl

, unknown real bl and a k-times continuously differentiable

function f(x, θ) = f (0). (W.l.o.g. the absolute term was omitted.) To obtain a gen-
eral solution of this differential equation, we need at first the roots of the char-
acteristic equation

rk +
k

l = 1

blr
l−1 = 0 9 14

Each real root r∗ of (9.14) with the multiplicity v corresponds to the v solutions

xler
∗x l = 0,…, v−1 9 15

of (9.13). Because bl must be real, complex roots of the characteristic equation
can only be pairwise complex conjugate. We consider here only such cases
where (9.14) has only simple real roots r1, … , rt, so that the general solution
of (9.13) can be written as a linear combination of the special solutions (9.15)
with real coefficients ci(i = 1, …, t) of the form

f x,θ = f x =
t

l = 1

cle
rlx θ = c1,…,ct ,r1,…,rt

T 9 16

We now have to estimate the coefficients bl in (9.13) in place of the para-
meters of f(x, θ) = f(x) in (9.16) and use the stochastic model

f t xi +
t

l = 1

blf
l−1 xi = ei i= 1,…,n , n > t 9 17

We assume that the vector ei is N 0n, σ2In -distributed and we wish to deter-

mine the LS estimators bl of the bl in (9.17). Of course we now consider a model
different from (9.2), and we now assume additive error terms in the differential
equation and not, as in (9.2), for the integral. The applicability of the internal
regression depends on the tenability of model (9.17) (at least approximately).

bl are calculated so that

n

i=1

f t xi +
t

l = 1

blf
l−1 xi

2

= min
−∞ < bl < ∞

n

i=1

f t xi +
t

l = 1

blf
l−1 xi

2

9 18

holds.
To replace the differential quotient by a difference quotient, we need the fol-

lowing notations assuming x1 < x2 < :

Δ0
i = yi,

Δs
i =

Δs−1
i+ 1− Δs−1

i−1

xi+ 1−xi−1

i=
s−2
2

+ 1,…, n−
s+ 2
2

; s= 1,…,k

9 19
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yi are the observed values or in case of multiple measurements the means of the
observed values at xi. From (9.18) we obtain by derivation with respect to bi and
zeroing these derivatives and by

f u xi ≈Δu
i 9 20

the approximate equations for bl:

n− t

i= t + 1

Δt
i +

t

l = 1

blΔl−1
i Δh−1

i = 0 h= 1,…, t 9 21

These linear simultaneous equations in bl can easily be solved. From (9.14) and

with bl, we obtain estimates r1,…,rt for r and correspondingly by (9.16) the gen-
eral solution

f xi =
t

l =1

cle
rixi

With zli = erixi the cl are estimated as regression coefficients of a multiple linear
regression problem with the model equation

yi =
t

l = 1

clzli + e
∗
i 9 22

Transition to random variables gives

θ= c1,…,ct ,r1,…,rt
T

as estimator of θ by internal regression.

9.1.3 Determining Initial Values for Iteration Methods

The convergence of iteration methods to minimise non-linear functions and to
solve non-linear simultaneous equations depends extremely on the choice of
initial values. If the parameters of a function can be interpreted from a practical
application or if the parameters can roughly be determined from a graphical
representation, then a heuristic choice of an initial value θ0 of θ can be reason-
able. But if we only have the (yi, xi) values in our computer, we can try to find
initial values by some specific methods. Unfortunately some of those methods
like Verhagen’s trapezial method (Verhagen, 1960) (Section 9.6) are applicable
only for special functions. A more general method is the ‘internal regression’
(Section 9.1.2) that is recommended to determine initial values.

The residual variance σ2 is either estimated by s2 =
1

n−p
R θ or by

σ2 =
1
n
R θ . The motivation is given in Section 9.4.2.
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9.2 Geometrical Properties

The problem of minimising R(θ) in (9.5) will now be discussed geometrically.
For a fixed support (x1, …, xn) in (9.4), the function η(θ) defines an expectation
surface in Rn.

9.2.1 Expectation Surface and Tangent Plane

First we give the following definition.

Definition 9.3 The set

ES = Y ∗ θ Y ∗ = η θ 9 23

is called the expectation surface of the regression function η(θ) in Rn.
If σ2 > 0, an observed value Y with probability 1 does not lie in ES.
From Definition 9.2 we may conclude that the LS estimate θ is just that value

inΩ that has a minimum distance between Y and θ or in other words f x,θ = f
is the orthogonal projection of Y on ES.
The distance is the length of the vector orthogonal to the tangent plane of the

expectation surface at the point η(θ) and has its (not necessarily unique) min-
imum at η θ .

Example 9.3 Let θ Ω = R1, that is, p = 1, x R1, and let us consider the
function

f x,θ =
10

1 + 2eθx
9 24

Further let n = 2, x1 = 1, x2 = 2. For

Y =
y1

y2
and η θ =

10
1 + 2eθ

10
1 + 2e2θ

,

we consider the four cases: (y11; y21) = (4; 8) ; (y12; y22) = (7; 3) ; (y13; y23) = (1.25;
2.5) and (y14; y24) = (1.25; 1.5).
For each case (i = 1, 2, 3, 4), R(θ|y1i, y2i) was calculated as a function of θ

(Table 9.1), and the graphs of these four functions are shown in Figure 9.8.
The coordinates of the expectation surface in R2, which because p = 1 is an

expectation curve (and the tangent plane is a tangent), are shown in
Table 9.2. From Definition 9.3 it follows that the expectation surface does
not depend on the observations. The expectation curve, observed points
Yi (i = 1, 2, 3, 4) and two tangents are shown in Figure 9.9.
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The θ scale at the expectation curve can be found in the first column of
Table 9.2. For in θ non-linear regression functions f(y, θ) the expectation surface
is curved, and the curvature depends on θ and in an environment U(θ0) of θ0 it
can be defined as the degree of the deviation of the expectation surface from the

Table 9.1 Values of the functionals R(θ) for four pairs of values of Example 9.3 (values > 30
are not included).

θ R(θ|y11, y21) R(θ|y12, y22) R(θ|y13, y23) R(θ|y14, y24)

−1.5 9.69

−1.4 8.1

−1.3 6.61

−1.2 5.24

−1.1 4.05 27.9

−1.0 3.12 25.3

−0.9 2.53 22.6

−0.8 2.37 20.0

−0.7 2.73 17.6

−0.6 3.68 15.5 26.4

−0.5 5.28 13.8 21.3 28.8

−0.4 7.54 12.6 16.8 23.3

−0.3 10.45 11.9 12.9 18.4

−0.2 13.94 11.9 9.60 14.1

−0.1 17.91 12.5 7.00 10.6

0 22.22 13.6 5.03 7.70

0.1 26.75 15.1 3.64 5.45

0.2 17.0 2.74 3.76

0.3 19.2 2.23 2.54

0.4 21.5 2.03 1.70

0.5 23.9 2.06 1.16

0.6 26.4 2.23 0.85

0.7 28.7 2.51 0.71

0.8 2.85 0.68

0.9 3.21 0.74

1 3.57 0.84

1.2 1.31
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R(θ|1.25;1.5)
R(θ|1.25;1.5)

R(θ|4;8)

R(θ|7;3)R(θ|φ)

θ

30

20

15
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5

–1.5 –1.0 –0.5

25

0 0.5 1.0 1.5

Figure 9.8 Graphs of R(θ,Y) from Table 9.1.

Table 9.2 Coordinates of the expectation curve of Example 9.6.

θ
10

1+ 2eθ
10

1+ 2e2θ

−1.9 7.70 9.57

−1.7 7.32 9.37

−1.5 6.91 9.09

−1.3 6.47 8.71

−1.1 6.00 8.18

−0.9 5.52 7.52

−0.82 5.32 7.20

−0.7 5.02 6.70

−0.5 4.52 5.76

−0.3 4.03 4.77

−0.24 3.89 4.47

−0.1 3.56 3.79

0 3.33 3.33

0.2 2.90 2.51

0.4 2.51 1.83

0.44 2.44 1.72

0.6 2.15 1.31

0.78 1.86 0.95

1.0 1.55 0.63

2.0 0.63 0.09
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tangent plane at θ0. The coordinate system on the expectation surface is not
uniform, that is, as θ3 θ4 from

θ4−θ3 = θ2−θ1, θi Ω i= 1,2,3,4

not necessarily follows

η θ4 −η θ3 = η θ2 −η θ1

In this chapter, we assume that R(θ) has for all Y a unique minimum.
The expectation surface is independent of the parametrisation of the function

defined below.

Definition 9.4 A regression function f(x, θ) is reparametrised, if a one-to-one
transformation g: Ω Ω∗ is applied on θ and f(x, θ) is written as

f x,θ =ψ x, g θ =ψ x,θ∗ 9 25

with θ∗ = g(θ) [θ = g−1(θ∗)].

10

8

7

6

4

3

1

0 1 2 3 4 5 6 7 8 9 10 y1

1

0.5

0

–0.5

–1
Y1

Y2
Y3

Y4
2

5

9

y2

Figure 9.9 Expectation vectors of the function
10

1 + 2eθx
for x = 1 and x = 2 and four

observations.

Regression Analysis – Intrinsically Non-linear Model I 437



Example 9.4 The function

f x,θ =
α

1 + βeγx
with θ = α,β,γ T ,β > 0 9 26

is called logistic function. We assume αβγ 0. The first and second derivatives
by x are

df x,θ
dx

= −
αβγeγx

1 + βeγx 2

and

d2 f x,θ
dx2

= −αβγ
1 + βeγx 2γeγx−2eγx 1 + βeγx βγeγx

1 + βeγx 4 = −αβγ2eγx
1−βeγx

1 + βeγx 3

Let the parameter vector lie in a subspaceΩ0 ofΩ where f(x, θ) has an inflection
point (xω, ηω). In this point the numerator of the second derivative has to be zero
so that

1−βeγxω = 0; β = e−γxω and xω = −
1
γ
lnβ

and

fω =
α

2
= ηω

At xω the second derivative
d2 f x,θ

dx2
changes its sign and we really get an inflec-

tion point.
Because β = e−γxω , we get

f x,θ =
α

1 + βeγx
= α

eγxω

eγxω + eγx
=
α

2
1 +

e−γxeγxω −1
e−γxeγxω + 1

=
α

2
1+ tanh −

γ
2
x−xω = a 1+ tanh b x−c =ψ x,ϑ∗

9 27

with

θ∗T = a,b,c , a=
α

2
, b= −

γ
2
, c= −

1
γ
lnβ

Both versions of function can also be written as a three-parametric hyperbolic
tangent function. The parameter c is the x-coordinate of the inflection point and
α/2 the y-coordinate of the inflection point.
Both versions of f(x, θ) in (9.27) have, of course, the same expectation curve.
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The function of Example 9.3 written as hyperbolic tangent function is

f x,θ = 5 1+ tanh −
θ

2
x−

ln2
2

,

and the vector of the coordinates of the expectation curve is

η θ = 5 1+ tanh −
1
2

ln2 + θ , 5 1+ tanh −
1
2

ln2 + 2θ
T

If as the result of parametrisation a new parameter depends non-linear on the
original parameter, the curvature changes as is shown below.

Example 9.5 The function

f x,θ = α+ βeγx δ θ = α,β,γ,δ T , αβ < 0, γ > 0, δ > 0 9 28

was used in Richards (1959) tomodel the growth of plants under the restrictions
in (9.28) of the parameter space. The function (9.28) is called Richard’s function.
We rewrite this function also as

ψ x,θ∗ =A 1 +B exp D−x
C
A

B+ 1 1+1 B
−1 B

The connection between θ and θ∗ = (A, B, C,D)T is given by the relationship
(θ = g−1(θ∗)):

α=A−B, β =BA−B exp
C
A
D B+ 1 1+ 1 B ,

γ= −
C
A

B+ 1 1+ 1 B, δ= −
1
B

or (θ∗ = g(θ))

A= αδ, B= −
1
δ
, C = −γαδ 1−

1
δ

δ−1

, D= −
1
γ
ln

−βδ
α

The parameters A, C and D can be interpreted as follows:

A: Final value A= lim
x ∞

ψ x,θ∗

D: x-coordinate of the inflection point of the curve of ψ(x, θ∗).

C: y-coordinate of
dψ x,θ∗

dx
at x =D (maximal growth).

This can be used to determine initial values for the iterative calculation of LS
estimates.
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For the case p = 1 Hougaard (1982) showed that a parameter transformation g
exists, leading to a parameter α= g θ , so that the asymptotic variance of its esti-
mator is nearly independent of θ. Asymptotic skewness and asymptotic bias of α
are zero, and the likelihood function of α is approximately that of a normal dis-
tribution, if the error terms e in (9.2) are normally distributed (this parametrisa-
tion has further parameter-dependent curvature; see Section 9.2.2).
This transformation is given by

∂g θ

∂θ
= c FTF 9 29

with an arbitrary constant c.
Generalisations of this result for p > 1 are given in Holland (1973) and

Hougaard (1984).

Theorem 9.3 Let η = η(θ) in (9.2) in Ω three times continuously (concerning
θ) differentiable andΩ be connected. Then a covariance-stabilising transforma-
tion g = g(θ1, …, θp) is a solution of

∂g
∂θi∂θj

=
∂g
∂θ1

,…,
∂g
∂θp

FTF
−1 ∂g

∂θ1
,…,

∂g
∂θp

T

kij

with kij and F defined in (9.4).
Hougaard (1984) could show that for functions of type f(xi, θ) = θ1 + θ2h(xi, θ3)

such a parameter transformation exists.

9.2.2 Curvature Measures

As shown in Example 9.4, the same function can by reparametrisation be writ-
ten in several forms.

Definition 9.5 Given two continuous differentiable functions f(x, θ) and
h x,δ , θ Ω,∂ Δ and let g(θ) be a one-to-one mapping of Ω on Δ. For all
x R let f(x, g(θ)) = h(x, δ). Then we call h(x, δ) a reparametrisation of f(x, θ)
(and vice versa).

Are there different properties of the estimators in a non-linear regressions
model if different reparametrisation are used? Does a reparametrisation exist
leading to a smaller bias as for the original parametrisation? In general there
are questions about the influence of reparametrisation on the curvature. To
answer such questions, we first need a definition of curvature.
The second derivative of the regression function (concerning the parameter

vector) often defines curvature measures. Such a locally measure (depending on
the parameter) must suitably be globalised, for instance, by a supremum (see
Beale, 1960; Bates and Watts, 1988).
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Morton (1987) proposed a statistically motivated curvature measures based
on higher moments of a symmetrical error distribution. We follow Morton’s
approach.
In model equation (9.2) we assume now that the error terms ei are identically

and independently distributed (i.i.d.) with expectation 0 and positive finite var-
iance σ2. Further we assume that this distribution is symmetric. We write the LS

estimator θ= θ1,…,θp
T
in dependency of the error terms as

θ= θ e = θ1 e ,…, θp e
T

By

uj =
1
2

θj e −θj −e , 9 30

vj =
1
2

θj e + θj −e −θj, 9 31

we receive

θj = θj +uj + vj

From these assumptions, it follows E θj e =E θj −e and from this

E(uj) = 0. Then the bias of the jth component of the LS estimator is

bj =E θj−θ = E vj

Now curvature measures for the components of θ following Morton (1987) can
be defined.

Definition 9.6 A measure for the curvature (non-linearity) of the jth compo-
nent θj (j = 1, …, p) of θ in (9.3) with the symbols in (9.30) and (9.31) is given by

Nj =
var vi

var θj
=

var vi
var ui + var vi

We define by linear regression of vj on all
p

2
products ukul for each j a

(p ×p)−matrix Cj so that cov(ukul, v2j) = 0 for each pair (k, l) if

v2j = vj−v1j and v1 j =
1
2
uTCju
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with u = (u1, …, up)
T. The special choice of Cj has the advantage that the two

components v1 and v2 of v are uncorrelated and

var vj = var v1j + var v2j

follows.
In the following we decompose the curvature measure in Definition 9.6 into

two parts. The first part becomes small by a suitable reparametrisation
(theoretically 0).

Definition 9.7 We call

N1j =
var v1j

var θj
9 32

reparametrisation-dependent curvature (non-linearity) of the component θj of
θ and

N2j =
var v2j

var θj
9 33

intrinsically curvature (non-linearity) of the component θj of θ.

It is easy to see that Nj =N1j +N2j.
Morton (1987) made a proposal for finding a suitable reparametrisation.With

the matrix F in (9.4), we write

1
n
FT θ F θ = In θ = mij and I −1n θ = mij

Let L be defined by LTIn(θ)L = Ip. With the symbols in (9.4) we define

tuvj =
n

i=1

kuv xi,θ fi xi,θ , tuvjl =
n

i= 1

kuv xi,θ kjl xi,θ ,

Dj = duvj with duvj =
n

l = 1

mjltuvl

and

aj = N1j

cov u2
j ,vj

var u2
j var vj
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Morton showed that the first-order approximation below pertains to

N1j≈
σ2

2nmjj
tr LTDjL

2
,

N2j≈
σ2

nmjj
u,v,k, l

mjumjvmkl tkluv +
s

tkusdlvs ,

bj≈ −
σ2

2n
tr LTDjL

Further

var uj ≈
σ2

n
mjj,

var v1j ≈
σ4

2n2
tr LTDjL

2
,

var v2j ≈
σ2

n2
u,v,k , l

mjumjvmk l tkluv +
s

tk usdlvs

Definition 9.8 θ∗ = ϑ∗1,…,ϑ∗p
T
is called with

θ∗j =
aj

2 var uj − var v1j − var v2j
j= 1,…,p

N1j − optimal reparametrisation of f(θ) in (9.3) for all Nij.

9.3 Asymptotic Properties and the Bias
of LS Estimators

The properties of LS estimators differ strongly between intrinsically non-linear
and linear (including quasilinear) regression. In the intrinsically non-linear

regression, we know nearly nothing about the distribution of θ= θn, s
2 and σ2

The magnitude

1
σ2

s2 n−p =
1
σ2

σ2 n

is not chi-squared-distributed, even if the error terms are normally distributed.
Also the bias of

vn θ =E θn−θ 9 34

is only approximatively known. Nevertheless, in the next section we propose
confidence estimators and tests, which hold pregiven risks approximately,
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and the larger the sample size, the better. We show this in this section by pre-
senting the important results of Jennrich (1969) and Johansen (1984) and con-
cerning the bias of the estimators’ results from Box (1971).
We assume that the parameter space Ω Rp is compact and f(x, θ) is twice

continuously differentiable concerning θ.
At first we introduce Jennrich’s tail products that simplify the presenta-

tion below.
For finite n the set of measurement points (x1, …, xn) (the support of a discrete

design) can formally be considered as a discrete probability measure with a
distribution function Fn(x) (even if here is no random variable x). If n tends
to infinity (∞), then Fn(x) tends against a limiting distribution function F(x).
Then for some restricted continuous functions s and t with s, t : R Ω R
and (θ, θ) Ω Ω we define

x

s x,θ t x,θ∗ dF x = s θ , t θ∗ 9 35

Definition 9.9 We say the sequence {gi} (i = 1, 2,…) of functions gi : R Ω R
has a tail product (g, g) as in (9.35), if

1
n

n

i= 1

gi θ gi θ
∗ , θ,θ∗ Ω,

tends for n ∞ uniformly in (θ, θ∗) Ω ×Ω against (g, g). If {gi} and {hi} are two
sequences gi : R Ω R, hi ; R Ω R, we say that these sequences have a tailed
cross product (g, h), if

1
n

n

i= 1

gi θ hi θ
∗ , θ,θ∗ Ω,

converges for all (θ, θ∗) Ω Ω uniformly against (g, h).
From the continuity of all gi and hi and the uniform convergence, the conti-

nuity of (g, g) and (g, h) follows.
To understand better the following theorems, we need an extended definition

of an almost sure convergence for the case of a sequence of random functions
depending on a parameter θ.
In the non-stochastic case, uniform convergence (for all θ Ω) is defined by

the demand that for a function sequence {fi(θ)} the quantity

sup
θ Ω

fi θ − f θ

for i ∞ tends against zero.

For random functions we extend this by
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Definition 9.10 If f(θ) and fi(θ) (i = 1, 2,…) are randomfunctions forθ Ω Rp

and if ({Y},Ω, P) is the common probability space of the arguments of f and all fi,
then fi converge uniformly almost sure in Ω against f, if all

sup
θ Ω

f i θ − f θ for i= 1,2,…

are random variables except for a set of P-measure 0 for all elements Y {Y}
(i.e. for all Y {Y}\N with P-null set N) and for all ε > 0 there exists a n0(Y, ε)
so that for i ≥n0 Y ,ε

sup
θ Ω

f i θ,Y − f θ,Y ≤ ε

The proof of Theorem 9.4 is based on

Lemma 9.1 (Borel–Cantelli)
If y and y1, y2,… are random variables with a common probability space
({Y}, Ω, P) and if for all ε > 0

i

P yi−y > ε < ∞ ,

the sequence {yi} converges almost sure against y.

The proof can, for instance, be found in Bauer (2002, p. 73) or in Feller (1961).
The proof of the lemma below can be found in Jennrich (1969, p. 637).

Lemma 9.2 Let R = R(Y, θ) be a real-valued function on Rn ×Ω and Ω a com-
pact subset of Rp and let R(Y, θ) for all θ Ω be a (continuous in θ) measurable
function of Y for all Y {Y}, then a measurable mapping θ of {Y} in Ω exists so
that for all Y {Y}

R Y , θ Y = inf
θ Ω

R Y ,θ

From this lemma it follows that LS estimators really are random variables.

Theorem 9.4 Let gi :Ω R be continuous mappings of the parameter spaceΩ
in R; the sequence {gi} may have a tail product. If {ui} is a sequence of independ-
ent N(0, σ2)-distributed random variables, then

zn =
1
n

n

i= 1

uigi θ n= 1,2,…

converges almost certain uniformly in Ω against 0.

We write the LS estimator introduced in Definition 9.2 now as θ= θn (it is
under normality assumption a MLS), and with R(θ) in (9.5) we write

σ2n =
1
n
R θn
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Theorem 9.5 (Jennrich)
If with the notations of (9.2) to (9.5) ei are pairwise independent and identical
with E(ei) = 0 and var(ei) = σ2 normally distributed and Ω is compact and if

fi = fi θ = f xi,θ

has a tail product and

S θ∗ = f θ∗ , f θ 2, θ,θ∗ Ω Ω

has a unique minimum at θ∗ = θ, then θn converges uniformly in θ almost cer-
tain against θ and σ2n converges uniformly in θ almost certain against σ2.

For testing hypotheses and for confidence estimations, Theorem 9.6 is
important.

Theorem 9.6 (Jennrich)
Let the assumption of Theorem 9.5 be fulfilled and f(Y, θ) be twice
continuously differentiable concerning θ. Let the function sequences {f(yi, θ)},
{fj(yi, θ)} (j = 1,…, p) and {kj l(yi, θ)} (j, l = 1, …, p) in (9.4) have tail products
and tailed cross products, respectively. Let

I θ = lim
n ∞

1
n

n

i=1

FT
i θ Fi θ 9 36

be non-singular.
Then for each θ from the inward of Ω

n θn−θ 9 37

is asymptotically N(0p, σ
2I−1(θ))-distributed.

The proof is given in Jennrich (1969, p. 639).

We formulate the message of Theorem 9.6 so that θn is asymptotically
N(θ, )-distributed with = lim

n ∞
n varA θ and

varA θ = σ2 FT θ F θ
−1

= σ2
n

i=1

FT
i θ Fi θ

−1

9 38

We call varA(θ) the asymptotic covariance matrix of θn and

varA θn =
1

n−p
R θn FT θn F θn

−1
= s2n FT θn F θn

−1
9 39

the estimated asymptotic covariance matrix of θn. Moreover,

s2n =
1

n−p
R θn 9 40

is an estimator of σ2 and asymptotic equivalent with σ2n.
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Simulation results (see Rasch and Schimke, 1983) show that s2n has a smaller
bias than σ2n. In the paper of Malinvaud (1970) it was shown (independent of

Jennrich) that θn is a consistent estimator concerning θ.
Generalisations of the results of Jennrich (mainly with general error distribu-

tions) are given in Wu (1981) and in Ivanov and Zwanzig (1983).

Next we will discuss the bias vn(θ) of θn .

Theorem 9.7 (Box, 1971)
With the assumptions of Theorem 9.6 and if

Δ= θn−θ

approximately (first order) (e = Y − η(θ) with η(θ) from (9.4)) with certain matri-

ces Ap,n,B
1
n,n,…,B p

n,n has the form

Δ=Ap,ne+ eTB 1
n,ne,…, eTB p

n,ne
T
, 9 41

then we get with the notations in (9.4) approximately

vn θ =
1
2σ2

varA θ
n

i= 1

FT
i θ tr FT θ F θ

−1
Ki θ 9 42

The proof can be found in Box (1971), where it is further shown how the

matrices Ap,n,B
1
n,n,…,B p

n,n suitably can be chosen.
Close relations exist between (9.42) and the curvature measures (see Morton,

1987).

9.4 Confidence Estimations and Tests

Confidence estimations and tests for the parameters of intrinsically non-linear
regression functions or even for regression functions cannot so easily be con-
structed as in the linear case. The reason is that the estimators of θ and of func-
tions of θ cannot be explicitly written down in closed form and their distribution
is unknown.

9.4.1 Introduction

Special intrinsically non-linear regression functions in the applications are not
written in the form f(x, θ) as in Definition 9.1 and the theoretical first part of this
chapter. If there are only few (two, three or four) parameters as in Section 9.5, we
often write θ1 = α ; θ2 = β ; θ3 = γ ; θ4 = δ.
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Therefore the first kind risk from now on in this chapter is denoted by α∗ and
consequently we have (1 − α∗) – confidence intervals. Analogous the second
kind risk is β∗.
Regarding properties of (1 − α∗)-confidence intervals and α∗-tests, nearly

nothing is known, we are glad if we can construct them in some cases. We
restrict ourselves at first on the construction of confidence estimations K(Y)
concerning θ and define a test of H0 : θ = θ0 as

k Y =
1, if θ0 K Y

0, otherwise

Concerning confidence estimators for η(θ), we refer to Maritz (1962).
Williams (1962) developed a method for construction of confidence intervals

for the parameter γ in non-linear functions of the type

f x,θ = α+ βg x,γ ,θ = α,β,γ T , 9 43

with a real-valued function g(x, γ), which is twice continuously differentiable for
γ. Halperin (1963) generalised this method in such a way that confidence inter-
vals for all components of θ can be constructed.
We consider the vector

f x1,θ ,…, f xn, θ
T =Bλ 9 44

with

θ = λ1,…,λp−r ,φ1,…,φr
T

Ω=Λ Γ,

φ= φ1,…,φr
T Λ, λ= λ1,…,λp−r

T
Γ

and p < n. The p < n(n × (p − r))-matrix B contains the elements bj(xi, φ). The
bj(xi, φ) do not depend on λ and concerning φ are twice continuously differen-
tiable. The matrix B for φ 0r has the rank r.
We start with the model

Y =Bλ+ e, e N 0n, σ
2In 9 45

with βT λT ,0Tr = θTr ,0
T
r and a (n × r)-matrix D, so that(B,D) is of rank p and

(9.45) can be written as

Y = B,D β + e 9 46

By Theorem 8.1 we obtain LS estimates of θl and 0r from

θl = BTB
−1
BTY − BTB

−1
BTB UTU

−1
UTY

and

0r = UTU
−1
UTY ,

448 Mathematical Statistics



respectively, where

UT =DT In−B BTB
−1
BT ,

as the solutions

β=
BTB BTD

DTB DTD

−1
BT

DT
Y

of the simultaneous normal equations. These estimates depend on φ.
It follows from Theorem 8.2 that θI and 0r are BLUE (because we assumed

normal distribution even LVUE) concerning θI and 0r if λ is known. From
Theorem 8.6 it follows that

F1 =
n−p
p

β−β
T
B,D T B,D β−β

Y TY −βT B,D T B,D β
9 47

is F(p, n − p)-distributed and

F2 =
n−p
r

0T
r U

TY0r

Y TY −βT B,D T B,D β
9 48

is F(r, n − p)-distributed.
With F1 confidence regions concerning θ and with F2 concerning φ can be

constructed, due to

Theorem 9.8 The set of all θ Ω of model (9.45) with

F1 ≤ F p, n−p 1−α∗ 9 49

defines a (1 − α∗) confidence region concerning θ, and the set of all φ Γ with

F2 ≤ F r, n−p 1−α∗ 9 50

defines a (1 − α∗)-confidence region concerning φ if D is independent of λ.

Williams (1962) and Halperin (1963) proposed to chooseD in such a way that
F2 disappears, if φ=φ, that is, φ equals its LS estimate. From (9.7) we see that φ is
solution of

λT
∂BT

∂φj
Y −Bλ = 0 j= 1,…,r ,

el BTY −BTBλ = 0

9 51

With the additional assumption that in each column of B exactly one compo-
nent of φ occurs so that

∂bk xj,φ

∂φj
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differs from zero for exactly one k∗ = k(j), it follows from (9.51)

∂BT

∂φj
Y −Bλ = 0, 1l B

TY −BTBλ = 0,

and we choose for D

d = dij =
p−r

k = 1

∂bk xj,φ

∂φj
9 52

In (9.52) each sum has exactly one summand different from zero. The calcu-
lation of confidence regions as described above is laborious as shown in

Example 9.6 (Williams, 1962). Let

f xi,θ = α+ βeγx1

With

g x,γ = eγx, BT =
1 1 … 1

eγx1 eγx2 … eγxn
and βT = α,β,0 ,

the model has the form (9.46) (p = 3, r = 1, n > 3). Because

dil = di =
∂

∂γ
1 +

∂

∂γ
eγxi = xie

γxi ,

we get

DT = xie
γxi ,…, xne

γxn ,

BTB=
n eγxi

eγxi e2γxi
, BTD= xie

γxi xie
2γxi ,

DTD= x2i e
2γxi ,

BTB
−1

=
1

n e2γxi − eγxi 2

e2γxi − eγxi

− eγxi n

The elements ulk of U are

ulk = xle
γxi −

e2γxi − xl + xk eγ xi + xlxk
n e2γxi − eγxi 2

The corresponding quantities are now inserted in F2 and the values γl(1 − α∗) as
lower and γu(1 − α∗) as upper bound of a realised (1 − α∗)-confidence interval,
respectively, can now be calculated iteratively.
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9.4.2 Tests and Confidence Estimations Based on the Asymptotic
Covariance Matrix

For practical applications the solutions given above are strongly restricted and
awkward. A way out could be to use the asymptotic covariance matrix (9.38) or
the estimated asymptotic covariance matrix (9.39) and in analogy to the linear
case to construct simple tests and confidence estimations with the quantiles of
the central t-distribution or with the normal distribution. This was done by Bliss
and James (1968) for hyperbolic models.
It is not clear whether these tests really are α∗-tests and the confidence inter-

vals are (1 − α∗)-confidence intervals and what the power of those tests is.
Because there is no theoretical solution, such questions can only be answered
by simulation experiments. We here demonstrate the method and in
Section 9.4.3 the verification by simulation experiments.
In Section 9.6 we present results of simulation experiments for special func-

tions. Heuristically tests and confidence estimations based on the asymptotic

covariance matrix varA(θ) of the LS estimator θ can be introduced as follows:
In

varA θ = σ2vjk j, k = 1,…,p ,

let us replace θ by its LS estimator θ and estimate σ2 by

s2 =
R θ

n−p

with R(θ) in (9.5). This gives us the estimated asymptotic covariance matrix in
(9.39) now as

varA θ = s2vjk 9 53

To test for an arbitrary j (j = 1, …, p) the null hypothesisH0j : θj = θj0 againstHAj :
θj θj0 analogously to the linear case, we propose to use the test statistic

t j =
θj−θj0
s vj j

9 54

to define a test with a nominal risk of first kind αnom,

kj Y =
1, if tj > t n−p 1−

αnom
2

0, otherwise
9 55

A confidence interval concerning the component θj of θ is analogously
defined as

θj−s vjjt n−p 1−
αnom
2

; θj + s vjjt n−p 1−
αnom
2

9 56
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Schmidt (1979) proposed to use in place of (9.54) a z-test statistic

zj =
θj−θj0
σ vjj

9 57

But the corresponding test is often non-recommendable if n < 20 but just these
cases are often of interest.

9.4.3 Simulation Experiments to Check Asymptotic Tests
and Confidence Estimations

In mathematics, if we cannot obtain results in an analytic way, we are in the
same situation as scientists in empirical sciences. The most important means
of knowledge acquisition in empirical sciences is the experiment (a trial). To
get from experiments statements with pregiven precision, an experiment has
to be planned. Experiments in statistics are often based on simulated samples;
we could speak about empirical mathematics. How important such an
approach has become in the meantime can be seen from the fact that in
2016 the Eighth International Workshop on Simulation was held in Vienna,
the series of workshops started in May 1994 in St. Petersburg (Russia) (see also
Chapter 1).
Most information below is based on research project by more than 20 statis-

ticians during the years 1980–1990. A summary of the robust results is given in
Rasch and Guiard (2004).
The number of samples (simulations), also called runs, has – in the same way

as in real experiments – to be derived in dependency on precision requirements
demanded in advance.
If it is the aim of a simulation experiment to determine the risk of the first kind

α∗ of tests or the confidence level 1 − α∗ of a confidence estimation based on
asymptotic distributions, we fix a nominal value αnom, called nominal α∗ in
the t-quantile of the tests or the confidence estimator. By simulating the situ-
ation of the null hypothesis repeatedly, we count the relative frequency of reject-
ing the null hypothesis (wrongly of course) and call it the actual risk of the first
kind αact. We remember the Definition 3.8 of ‘robustness’.
If a probability αact shall be estimated by a confidence interval so that the

half expected width of that interval is not above 0.005, then we need about
N = 10 000 runs, if αact = 0.05. Simulation experiments in Section 9.6 are there-
fore based on 10 000 runs. In the parameter space Ω, we define a subspace of
practically relevant parameter values θ(r) (r = 1, …, R), and for each r a simula-
tion experiment with N = 10 000 runs was made. (Components of θ with no
influence on the method have been fixed at some arbitrary value.) If a method
is 100(1 − ε)% robust (in the sense of Definition 3.8) for the R extreme point,
then we argue that this is also the case in the practically relevant part of Ω.
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Let θ∗ be an arbitrary of these vectors θ(r) with θ∗ = θ∗1,…,θ∗p
T
. Due to the

connections between confidence estimations and tests, we restrict ourselves
to tests in the following (Chapter 3).
The hypothesis H0j θj = θ∗j = θj0 has to be tested against HAj θ∗j θj0 with

the test statistic (9.54). For each of the 10 000 runs, we use the same sample
size n ≥ p+ 1 for each test and add to the function f(xi, θ

∗)(i = 1, …, n) at n in
[xl, xo] fixed support points xi pseudorandom numbers ei from a distribution
with expectation 0 and variance σ2. Then for each i

yi = f xi,θ
∗ + ei i= 1,…, n; xi xl,xu

is a simulated observation. We calculate then from the n simulated observation
the LS estimate θ and the estimate s2 of σ2 and the test statistic (9.54). We obtain
10 000 estimations θ and s2 calculate the empirical means, variances, covar-
iances, skewness and kurtosis of the components of θ andof s2.Then we count
how often for a test statistic tj from (9.54)

tj < − t n−1 1−
αnom
2

;− t n−1 1−
αnom
2

≤ tj ≤ t n−1 1−
αnom
2

and

tj > t n−1 1−
αnom
2

j= 1,…, 10 000

occurred (the null hypothesis was always correct), divided by 10 000, giving an
estimate of αact. Further 10 000 runs to test H0 θj = θ∗j =Δl with three Δl values

have been performed to get information about the power. The most simulation
experiment used besides normally distributed ei also error terms ei with the fol-
lowing pairs of skewness γ1 and kurtosis γ2

γ1 0 1 0 1.5 0 2

γ2 1.5 1.5 3.75 3.75 7 7

to investigate the robustness of statistical methods against non-normality. For
the generation of pseudorandom numbers with these moments, we used the fol-
lowing distribution system.

Definition 9.11 A distribution belongs to the Fleishman system (Fleishman,
1978)H if its first fourmoments exist and if it is the distribution of the transform

y= a+ bx+ cx2 + dx3

where x is a standard normal random variable (with mean 0 and variance 1).

By a proper choice of the coefficient a, b, c and d, the random variable y will
have any quadruple of first four moments (μ, σ2, γ1, γ2). For instance, any normal
distribution (i.e. any element of G) with mean μ and variance σ2 can be
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represented as a member of the Fleishman system by choosing a = μ, b = σ and
c = d = 0. This shows that we really have H G as demanded in Definition 3.8.
Nowadays we have convenient computer packages for simulation. A package

described in Yanagida (2017) demonstrates simulation tools and the package
Yanagida (2016) allows the generation of any member of the Fleishman system
H. More information about statistics and simulation can be found in Rasch and
Melas (2017).
Results of simulation experiments for several regression functions are given in

Section 9.6.

9.5 Optimal Experimental Design

We reflect on the definition of experimental design problems in Section 1.5 but
do not consider cost. If we use a quadratic loss function based on R(θ) in (9.5)
and as the statistical approach point estimators concerning θ with the LS esti-
mator θ, in Definition 9.2, the choice of a suitable risk function is the next step.
A good overview about the choice of risk functions is given in Melas (2008).

A functional of the covariance matrix of θ cannot be used because it is
unknown. We may choose a risk function based on the asymptotic covariance
matrix varA(θ) in (9.39) or on the approximate covariance matrix of Clarke
(1980) or on an asymptotic covariance matrix derived from asymptotic expan-
sions of higher order (see Pazman, 1985).
We use the first possibility for which already many results can be found. First

we consider the optimal choice of the support points for a given number n of
measurements and give later hints to the minimal choice of n in such a way that
the value of the risk function is just below a given bound. A disadvantage of the
experimental design in intrinsically non-linear regression is the fact that the
optimal design depends on at least one value of the unknown parameter vector.
For practical purposes we proceed as follows. We use a priori knowledge θ0
about θ defining a region U(θ0) where the parameters θ is conjectured. Then
we determine the optimal design at that value θ U(θ0), leading to the maximal
risk of the optimal designs in U(θ0). The size of the experiment n at this place
gives an upper bound for the risk in U(θ0), because the position of the support
points often only slightly depends on θ (see Rasch, 1993). This must be checked
for each special function separately as done in Section 9.6.

Definition 9.12 A scheme

Vn,m =
x1,…,xm

n1,…,nm
,xi xl,xu ,ni integer,

m

i=1

ni = n

is called a concrete m-point design or a m-point design for short with the
support Sm = (x1, …, xm) and the allocation Nm = (n1, n2, …, nm). The interval
[xl, xo] is called the experimental region.
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If a special regression function

f x,θ ,x xl, ,xu ,θ Ω Rp

is given, then Vn,m is element of all possible concrete designs:

n = Vn =Vn,m p ≤m ≤ n, card Sm =m,
m

j=1

nj = n, nj ≥ 0

If Z n R+ is a mapping Z0(Vn) = Z[varA(θ|Vn)] with θ0 Ω,Vn n,
Z Rp× p R1 and the asymptotic covariance matrix (9.38) can now be written
in dependency on θ0 and Vn,m

varA θ = varA θ Vn ,

then V ∗
n,m is called a locally Z-optimal m-point design at θ = θ0, if

Z0 V ∗
n,m = inf

Vn,m n

Z0 Vn,m 9 58

If n,m is the set of concretem-point designs, thenV ∗
n,m is called concrete locally

Z-optimal m-point design, if

Z0 V ∗
n,m = inf

Vn,m n

Z0 Vn,m 9 59

The mapping Vn varA(θ0| Vn) is symmetric concerning Sm. Therefore
we focus on supports with x1 < x2 < < xm. In place of minimising the (ρ × ρ)-
matrixZ[varA(θ,Vn,m)] =M, we canmaximise its inverse, the so-called asymptotic
information matrixM−1.
Especially V ∗

n,m for r = 1,…, p + 2 with the functionals Zr and the (p × p)-
MatrixM = (mi j) is called

Zr M =mrr r = 1,…,p locally Cθr -optimal,

Zp+ 1 M = M locally D-optimal,

Zp+ 2 M = Sp M locally A-optimal,

and in general for r = 1, … , p + 2 then Zr - optimal.
For some regression functions and optimality criteria, analytical solutions in

closed form of the problems could be found. Otherwise search methods must be
applied.

The first analytical solution can be found in Box and Lucas (1959) as well as in
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Theorem 9.9 (Box and Lucas, 1959).
For the regression model

f x,θ = α+ βeγx 9 60

with n = 3, θ = (α, β, γ)T and x [xl, xu], the locallyD-optimal concrete design V3

depends only on the component γ0 of θ0 = (α0, β0, γ0)T and has the form

V3 =
xu x2 x0

1 1 1

with

x2 =
1
γ0

+
xueγ0xu −xoeγ0xo

eγ0xu −eγ0x0
9 61

Atkinson and Hunter (1968) gave sufficient and for n = kp sufficient and neces-
sary conditions for the function f(x, θ) that the support of a locally D-optimal
design of size n is p = dim(Ω). These conditions are difficult to verify for p > 2.

Theorem 9.10 (Rasch, 1990).
The support of a concrete locally D-optimal p-point design of size n is
independent of n; the ni of this design are as equal as possible (i.e. if n = ap, then
ni = a; otherwise ni differ maximal by 1).

Proof: Ifm=p, the asymptotic covariancematrix in (9.38) is (afterdropping thedesign

independent factor σ2) equal to
1
σ2

varA θ = FT θ F θ
−1

=GT θ NG θ

with G(θ) = {fj(xi, θ)}, i = 1, … , p and N = diag n1,…,np . Now minimising

|[FT(θ)F(θ)]−1| means maximising GT θ NG θ . For quadratic matrices A
and B of the same order, |AB| = |A||B| and |A| = |AT| always hold; therefore

we obtain GT θ NG θ = GT 2
N . This completes the proof, because |GT|

can be maximised independently of N and N = p
i=1ni is a maximum if ni

are equal or as equal as possible.
In Rasch (1990) further theorems concerning the D-optimality can be found.

Theorem 9.11 Let f(x, θ) be an intrinsically non-linear regression function,

x R, θ Ω Rp, with the non-linearity parameter φ= θi1 ,…,θir
T ,0 < r < p

in Definition 9.1 and let F be non-singular. Then the concrete D-optimal design

of size n ≥ p only depends on φ= θi1 ,…,θir
T ,0 < r < p, and not on the linearity

parameters.

Proof: In Definition 9.1,

∂f x,θ
∂θ

=C θ g x,φ

456 Mathematical Statistics



with gT(x, φ) = (g1(x, φ), …, gp(x, φ)). If we put G = (gj(xi, φ)), then

FTF = C θ GTGCT θ = C θ CT θ GTG = C θ 2 GTG

|FTF| is maximal, if |GTG| is maximal, and G only depends

on φ= θi1 ,…,θir
T ,0 < r < p.

If n > 2p, the D-optimal concrete designs are approximately G-optimal in the
sense that the value of theG-criterion for the concreteD-optimal p-point design
even for n tp (t integer) does nearly not differ from that of the concrete
G-optimal design. For the functions in (9.6), we found optimal designs by search
methods, and for n > p + 2 we often found p-point designs. SearchingD-optimal
designs in the class of p-point designs, then varA(θ) in (9.39) becomes

varA θ = BTdiag n1,…,np B
−1
σ2

because

Vn =
x1,…,xp

n1,…,np
, FTF =

n

i= 1

fj xi,θ fk xi, θ j, k = 1,…,p

and

n

i= 1

fj xi,θ fk xi,θ =
p

i= 1

nlfj xl,θ fk xl,θ

with

B= fj xi,θ i, j= 1,…,p

Theorem 9.12 The minimal experimental size nmin so that for a given K > 0

varA θ ≤ K B 2

can be determined as follows. Find the smallest positive integer z with

z ≥
1

Kp

In the case of equality above nmin = pz. Otherwise calculate the largest integer r,
so that

1
zp−r z−1 r ≤ K

Then

nmin = pz−1
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Proof: From the proof of Theorem 9.10 we know that

varA θ =
σ2

B 2
p

i= 1
ni

,

for D-optimal p-point designs and the final proof is left to the reader.

9.6 Special Regression Functions

In this section we discuss some regression functions important in the applica-
tions in biosciences as well as in engineering. Each of the special functions is
discussed by a unique approach. We determine the asymptotic covariance
matrix, determine the experimental size N0 for testing parameters and deter-
mine parts of the parameter space, for which the actual risk of the first kind
of a tests is between 0.04 and 0.06 if the nominal risk αnom = 0.05.

9.6.1 Exponential Regression

The exponential regression is discussed extensively as a kind of pattern; the
other functions follow the same scheme, but their treatment is shorter.
Model (9.2) is called the model of the exponential regression, if fE(x, θ) is given

by (9.60). The derivation of fE(x, θ) concerning θ (θ = (α, β, γ)T) is

∂fE x,θ
∂θ

=

1

eγx

βxeγx
=

1 0 0

0 1 0

0 0 β

1

eγx

xeγx
, 9 62

so that γ by Definition 9.1 is a non-linearity parameter.

9.6.1.1 Point Estimator
For R(θ) in (9.5) we get

R θ =
n

i= 1

yi−α−βe
γxi 2

and determine θ so that

R θ = min
θ Ω

R θ
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Because

A=
n

i= 1

eγxi , B=
n

i= 1

xie
γxi , C =

n

i=1

e2γxi ,

D=
n

i=1

xie
2γxi , E =

n

i= 1

x2i e
2γxi ,

, 9 63

it follows

FTF = β2 n CE−D2 + 2ABD−B2C−A2E = β2Δ,
which means that β 0. For fixingΩ0 we either choose β > 0 or β < 0 depending
on the practical problem. For growth processes, it follows because γ < 0 imme-
diately β < 0; then in this case we choose

Ω0 R− ×R− ×R1 Ω R3

The region Ω0 must be chosen so that the assumptions V2 and V3 in
Section 9.1.1 are fulfilled.
The inverse of FTF has the form

FTF
−1

=
1
Δ

CE−D2 BD−AE
1
β

AD−BC

BD−AE nE−B2 1
β

AD−nD

1
β

AD−BC
1
β

AD−nD
1

β2
nC−A2

9 64

Next we describe a method of Verhagen (1960) that can be used to find initial
values for calculating iteratively the LS estimators by the Gauss–Newton
method. We start with the integrals

J xi =

xi

0

α+ βeγτ dτ = αxi +
ηi−α

γ
−
β

γ

with ηi = α+ βeγxi i= 1,…,n and approximate them by

Ti =T xi =
1
2

i

j= 2

yj−1 + yj xj−xj−1 i= 2,…,n

Now we put

ηi γTi−αγxi + α+ β i= 2,…,n

and estimate the parameters of the approximate linear model

yi = γTi−αγxi + α+ β + e∗i i= 2,…,n
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with the methods of Chapter 8. The LS estimators are

cv = γv =
SPTySSx−SPTxSPxy

SSTSSx− SP2
Tx

av =αv =
cvSPTx−SPxy

cvSSx

and

bv = βv = y−cvT −av cvx−1

with

SPuv =
n

i= 2

uivi−
1

n−1

n

i= 2

ui
n

i= 2

vi , SSu = SPuu

and the arithmetic means y,T and x of the n − 1 values yi, Ti and xi for i = 2, … ,
n, respectively.

9.6.1.2 Confidence Estimations and Tests
Let the assumptions of Section 9.3 be given. The asymptotic covariance matrix

varA θ = σ2 FTF
−1

with (FTF)−1 in (9.64) and the abbreviations (9.63) can be used for the construc-
tion of confidence intervals for α, β and γ and tests of hypotheses about α, β and
γ may be used, respectively.
Following Section 9.5 we test

H0α α= α0 against HAα α α0

with the test statistic

tα =
α−α0 Δ

s CE−D
2

9 65

Further

H0β β = β0 against HAβ β β0

is tested with

tβ =
β−β0 Δ

s nE−B
2

9 66
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and

H0γ γ = γ0 against HAγ γ γ0

with

tγ =
c−γ0 Δ

s nC−A
2

9 67

A,…,E in the formulae of the test statistics are gained from A, … , E in (9.63) by
replacing there the parameter γ by its estimator γ = c. Further

Δ= n CE−D2 + 2ABD−A2E−B2C,

and here also we obtain Δ from Δ by replacing γ by c. Finally s is the square
root of

s2 =
1

n−3

n

i= 1

yi−a−be
cxi 2,

the estimator of σ2.
Tests have the form

kl Y =
1, if tl > t n−3 1−αnom 2 ; l = α,β,γ

0, otherwise

with the 1−αnom 2 -quantile of the central t-distribution with n − 3 degrees of
freedom. Here α∗nom is the nominal risk of the first kind of the tests. Confidence
intervals with a nominal confidence coefficient 1−αnom are defined as follows
putting t n−3 1−αnom 2 = T(n, αnom)
Parameter α:

a−s
CE−D

2

Δ
T n, αnom ,a+ s

CE−D
2

Δ
T n, αnom

Parameter β:

b−s
nE−B

2

Δ
T n, αnom , b+ s

nE−B
2

Δ
T n, αnom

Parameter γ:

c−
s
b

nC−A
2

Δ
T n, αnom , c+

s
b

nC−A
2ΔT n, αnom
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Example 9.7 Let us consider a numerical example. Table 9.3 shows the
growth of leaf surfaces of oil palms observed in Indonesia.

Program Hint
Most calculations and graphs in Section 9.6 have been done by our own special
program Growth, which can be found in the program package CADEMO (see
http://www.swmath.org/software/1144). The program determines initial values
for the iteration to calculate the LS estimates from the data. In Figure 9.10 the LS
estimates with the asymptotic confidence intervals and the estimated residual
variance are given. In Figure 9.11 the curve of the estimated regression function
together with the scatter plot of the observation is given.

Table 9.3 Leaf surface (yi) in m2 of oil palms on a trial area in dependency of age xi in years.

xi 1 2 3 4 5 6 7 8 9 10 11 12

yi 2.02 3.62 5.71 7.13 8.33 8.29 9.81 11.3 12.18 12.67 12.62 13.01

Figure 9.10 LS estimates, asymptotic confidence intervals and estimated residual variance of
the exponential regression with data of Example 9.7.
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9.6.1.3 Results of Simulation Experiments
For the exponential regression, we perform simulation experiments described
in Section 9.4.3. The questions are as follows:

• Is the bias of a, b and c important?

• Differ the asymptotic variances from the empirical ones?

• Is the denominator n − 3 of the estimator of σ2 appropriate?

The results in Rasch et al. (2008) and Rasch and Schimke (1983) for equidistant
xi [0, 65], i = 1, … , n and n = 4, 6, 14 as well as 12 (β, γ)-combinations are
summarised below. W.l.o.g. we choose α = 0 and further σ2 = 1. The number
of runs was 5000. In each α, β and γ have been estimated, and from the 5000
estimates, the empirical means a,b and c and the empirical variances
s2a,s

2
b and s

2
c and covariances have been calculated.

Table 9.4 shows the empirical bias vE,n representing a−α,b−β and c−γ for n =
4, 6 and 14 in comparison with the by (9.42) calculated approximative bias vn(θ).
To calculate vn(θ) by (9.42), we use the notations of (9.4) and the vector

Fi θ = 1,eγxi , βxieγxi
T and the inverse (FTF)−1 from (9.64). For Ki(θ) we get

Ki θ =

0 0 0

0 0 xieγxi

0 xieγxi βx2i e
γxi

–1.00
–1.00

2.00

5.00

8.00

11.00

14.00

2.00 5.00
x

f(x) f(x) =A+B*exp(C*x)

Expo(3)
A  16.4790
B  –16.6501
C  –0.1380

8.00 11.00

Figure 9.11 Curve of the estimated exponential regression function together with the
scatter plot of the observations of Example 9.7.
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Table 9.4 Empirical bias vE , n from 5000 simulated samples of size n and approximate bias vn
from (9.42); the LS estimates of the parameters α, ß and γ of the exponential regression for
n = 4 , 6 and 10 and σ2 = 1.

−β −102γ n

α ß γ

vE , n vn −vE , n −vn −103vE , n −103vn

30 3 4 0.520 0.523 0.252 0.526 0.419 0.251

6 0.644 0.614 0.625 0.622 0.131 0.134

14 0.263 0.238 0.287 0.248 0.003 0.055

5 4 0.147 0.137 0.135 0.139 0.441 0.470

6 0.125 0.102 0.142 0.107 0.096 0.215

14 0.128 0.057 0.166 0.066 −0.170 0.084

7 4 0.055 0.070 0.059 0.071 1.139 0.990

6 0.052 0.048 0.048 0.052 0.338 0.363

14 0.027 0.026 0.035 0.035 0.120 0.129

9 4 0.035 0.047 0.035 0.048 2.821 2.184

6 0.002 0.031 0.019 0.033 0.685 0.610

14 0.012 0.016 −0.025 0.025 0.320 0.189

50 3 4 0.310 0.314 0.323 0.316 0.117 0.091

6 0.279 0.249 0.307 0.253 0.048 0.048

14 0.210 0.143 0.190 0.149 0.058 0.020

5 4 0.070 0.082 0.041 0.083 0.236 0.169

6 0.077 0.061 0.090 0.064 0.050 0.077

14 0.025 0.034 0.042 0.040 0.035 0.030

7 4 0.030 0.042 0.048 0.042 0.358 0.356

6 0.045 0.029 0.033 0.031 0.011 0.131

14 0.010 0.016 0.032 0.021 0.122 0.047

9 4 0.023 0.028 0.039 0.029 0.888 0.786

6 0.020 0.018 0.023 0.020 0.182 0.219

14 0.001 0.010 0.021 0.015 0.077 0.068

70 3 4 0.301 0.224 0.297 0.225 0.015 0.045

6 0.124 0.178 0.125 0.181 0.054 0.025

14 0.021 0.102 0.173 0.106 0.106 0.010

5 4 0.075 0.059 0.081 0.059 0.079 0.086

6 0.054 0.044 0.154 0.046 0.000 0.040

14 0.022 0.025 0.061 0.028 0.044 0.015
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Adding to (9.63) the abbreviations

G =
n

i= 1

x2i e
γxi , H =

n

i= 1

x3i e
2γxi

because of σ2 = 1 and (9.64) we receive

tr FTF
−1
Ki θ =

1
Δβ

2 AB−nD xie
γxi + nC−A2 x2i e

γxi

and finally

vn θ ≈
1

2Δβ
FTF

−1

2B AB−nD +G nC−A2

2D AB−nD + E nC−A2

2βE AB−nD +Hβ nC−A2

9 68

We see in Tables 9.5 and 9.6 that the empirical variances do not differ strongly
from the main diagonal elements of the asymptotic covariance matrix even for
n = 4.
The choice of the denominator n − 3 in estimate s2 of σ2 is analogous to the

linear case. There n − 3 (or in general n − p) is the number degrees of freedom of
the χ2-distribution of the nominator of s2. If we compare expectation, variance,
skewness and kurtosis of a χ2-distribution with n − 3 degrees of freedom with
the corresponding empirical values from the simulation experiment, we see that
even for the smallest possible n = 4, a good accordance is found. This means that
n − 3 is a good choice for the denominator in the estimator of σ2.
Table 9.7 shows the relative frequencies of confidence estimations and tests

with αnom = 0.05 and αnom = 0.1 for a special parameter configuration from
10 000 runs, respectively. As we can see already with n = 4, a sufficient alignment
is found between αnom and αact. Therefore the tests in Section 9.6.1.2 can be used
as approximative αnom-tests and the confidence intervals as approximative

Table 9.4 (Continued)

−β −102γ n

α ß γ

vE , n vn −vE , n −vn −103vE , n −103vn

7 4 0.027 0.029 0.054 0.030 0.194 0.182

6 0.020 0.021 0.014 0.022 0.043 0.067

14 0.038 0.011 0.027 0.015 0.008 0.024

9 4 0.020 0.020 0.018 0.021 0.462 0.401

6 0.026 0.013 0.020 0.014 0.071 0.112

14 0.029 0.007 0.038 0.011 0.060 0.035
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(1 − αnom) confidence intervals. The power function of the tests was evaluated in
Rasch and Schimke (1983) as well as the behaviour of the tests for non-
equidistant supports. Summarising it can be stated that the methods based
on the asymptotic covariance matrix are satisfactory already for n = 4 and about
90% robust against non-normality in the Fleishman system.

9.6.1.4 Experimental Designs
To find locally D-optimal designs, we can use Theorem 9.9. During extensive
searches of optimal designs, not only in the class of three-point designs optimal

Table 9.5 Empirical variances s2aand s
2
b with the asymptotic variances

varA(a) and varA(b) of the estimates of α and β(σ2 = 1) for n = 4 and n = 6.

−102γ n 105s2a 105varA(a) 105s2b 105varA(b)

3 4 878224

680837

800768

613678

853658

611028

780404

5475406

5 4 197339

130694

187157

129982

266298

178729

260565

1825126

7 4 105017

64415

98990

63300

197639

145588

191016

1445336

9 4 71968

44366

73079

44152

170001

137567

170312

1355666

Table 9.6 Empirical variances (upper value) and asymptotic variances
(lower value) of the estimate of γ for n = 4 multiplied by 109, σ2 = 1.

−102γ β = −70 β = −50 β = −30

3 7751

7512

15535

14723

42825

40897

5 10475

10199

20416

19989

57989

55251

7 19087

18873

38258

36992

117038

102754

9 39407

39407

80225

77238

281944

214550
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Table 9.7 Relative frequencies of 10 000 simulated samples for the
(incorrect) rejection (left hand nl, right hand nu) and for the (correct)
acception (nM) of H0 for the exponential regression with α = 0,
β = −50 , γ = − 0.05 , n = 10(−1)4 and αnom = 0.05 and αnom = 0.1.

αnom = 0.05 αnom = 0.1

n nu no nM nu no nM

H0α : α = 0

10 2.71 2.03 95.26 5.36 4.01 90.63

9 3.17 2.07 94.76 6.23 4.44 89.33

8 2.51 2.03 95.46 5.06 4.28 90.66

7 2.59 2.03 95.38 5.24 4.54 90.22

6 2.98 2.04 94.98 5.52 4.26 90.22

5 2.80 2.19 95.01 5.57 4.22 90.21

4 2.66 2.41 94.93 5.12 4.96 89.92

H0β : β = −50

10 2.44 2.31 95.25 4.97 4.48 90.55

9 2.43 2.44 95.13 5.11 4.85 90.04

8 2.46 2.21 95.33 5.01 4.38 90.61

7 2.74 2.01 95.25 5.26 4.46 90.28

6 2.63 2.48 94.89 5.32 4.92 89.76

5 2.37 2.49 95.14 4.87 5.03 90.10

4 2.59 2.27 95.14 5.34 4.80 89.86

H0γ : γ = −0.05

10 2.50 2.26 95.24 4.99 4.48 90.53

9 2.76 2.52 94.72 5.72 4.90 89.38

8 2.85 2.08 95.07 5.39 4.40 90.21

7 2.79 1.82 95.39 5.26 4.33 90.41

6 2.68 2.39 94.93 5.17 4.59 90.24

5 2.63 2.43 94.94 4.80 4.97 90.23

4 2.56 2.35 95.09 5.42 4.72 89.86
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designs have been found, which are three-point designs as derived by Box for
n = 3 in Theorem 9.9. By search methods concerning the locally Cα− ,Cγ− and
A-optimality, we found that the optimal designs always have been three-point
designs in [xl, xu] with x1 = xl and x3 = xu. For the Cβ-optimality often one of the
bounds of the experimental region did not belong to the support of the locally
Cβ-optimal design, but they always have been three-point designs. In Table 9.8
we report some results of our searches using the parameters and experimental
regions of Example 9.7.
We can now compare the criterion values of the D-optimal design
1 5 14 12

4 4 4
(it was 0.00015381 σ6) with the design used in the experiment

1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 1 1 1 1 1 1 1 1
that had a criterion value

0.0004782 σ6, and this is 3.11 times larger than that of the optimal design.
The criterion of the Cγ-optimal design is 0.00154 σ2 and that for the design used
in the experiment is 0.00305 σ2.
It can generally be stated for all models and optimality criteria that an equi-

distant design in the experimental region with one observation at each support
point is far from being optimal.

9.6.2 The Bertalanffy Function

The regression function fB(x) of the model

yi = α+ βeγxi 3 + ei = fB xi + ei, i= 1,…,n, n > 3, 9 69

Table 9.8 Optimal experimental designs in the experimental region [1,12] and n = 12.

Criterion (β, γ) = (−17, −0.14) (β, γ) = (−19, −0.2) (β, γ) = (−14, −0.08)

D 1 5 14 12

4 4 4

1 4 63 12

4 4 4

1 5 7 12

4 4 4

Cα 1 5 08 12

2 5 5

1 4 61 12

2 4 6

1 5 69 12

2 6 4

Cβ 3 87 11 59 12

6 2 4

1 48 11 29 12

6 1 5

1 5 44 12

2 6 4

Cγ 1 5 02 12

3 6 3

1 4 48 12

3 6 3

1 5 63 12

3 6 3
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is called Bertalanffy function and was used by Bertalanffy (1929) to describe the
growth of body weight of animals. This function has two inflection points if α

and β have different signs and are located at xI1 =
1
γ
ln −

α

β
and

xI2 =
1
γ
ln −

α

3β
, respectively, with fB(xI1) = 0 and fB xI2 =

2
3
α

3

With θ = (θ1, θ2, θ3)
T = (α, β, γ)T and with the notation of Definition 9.1, we

obtain

∂fB x,θ
∂θ

=

3 α+ βeγx 2

3 α+ βeγx 2 eγx

3 α+ βeγx 2 eγxβx

,

and by this all components of θ are non-linearity parameters. Analogous to
(9.63) we use abbreviations like

zi = α+ βeγxi 4,

A=
n

i=1

zi, B=
n

i= 1

zie
γxi , C =

n

i=1

xizie
γxi ,

D=
n

i=1

zie
2γxi , E =

n

i= 1

zixie
2γxi , G =

n

i= 1

zix
2
i e

2γxi

Then

FTF = 9

A B βC

B ED βE

βC βE β2G

and

FTF = 93β2 ADG + 2BCE−C2D−E2A−B2G = 93β2Δ

The asymptotic covariance matrix is therefore

varA θ = σ2 FTF
−1

=
σ2

9Δ

DG−E2 EC−BG
1
β

BE−CD

EC−BG AG−C2 1
β

BE−AE

1
β

BE−CD
1
β

BC−AE
1

β2
AD−B2

9 70
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To determine the initial values, it is recommended to transform the yi− values of
(xi, yi) (i = 1, …, n) to

vi = yi3

and estimate from (xi, vi) the parameters α, β, γ of an exponential regression in
Section 9.6.1. These estimates a∗, b∗, c∗ are used as initial values for the iterative
determination of the LS estimates a,b,c of the Bertalanffy function.
Concerning the hypothesis testing, we receive from (9.70) for n > 3 the test

statistics
for H0α : α = α0 against HAα : α α0

tα =
a−a0 3 Δ

s DG−E
,

for H0β : β = β0 against HAβ : β β0

tβ =
b−β0 3 Δ

s AG−C
2
,

for H0γ : γ = γ0 against H0γ : γ γ0

tγ =
c−γ0 3b Δ

s AD−B
2
,

and the confidence intervals in Section 9.4. The symbols A,…,Δ are defined as
in Section 9.6.1 and s is the square root of

s2 =
1

n−3

n

i=1

yi− a+ becxi 3 2
n > 3

Example 9.7 – Continued
We now use the oil palm data to estimate the parameters of the Bertalanffy

function. The results (of the CADEMO package) are shown in Figure 9.12.
The estimated regression curve is shown in Figure 9.13.
Schlettwein (1987) did the simulation experiments described in Section 9.4.3

with normally distributed ei and for several parameter combinations and n-
values. Some results are shown in Table 9.9.
These and the other results of Schlettwein allow the conclusion that for nor-

mally distributed ei in model (9.69), the asymptotic tests and confidence for all
n ≥ 4 are appropriate.
We now give in Table 9.10 optimal designs analogously to those in

Section 9.6.3.
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Figure 9.12 LS estimates, asymptotic confidence intervals and the estimated residual
variance of the Bertalanffy function with data of Example 9.7.
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Figure 9.13 Curve of the estimated Bertalanffy regression function together with the scatter
plot of the observations of Example 9.7.
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Table 9.9 Relative frequencies of 10 000 simulated samples for the (incorrect) rejection (left
hand nl) right hand nu and for the (correct) acception (nM) of H0 for the Bertalanffy function
with several parameter values and for αnom = 0.01 , 0.05 and 0.1 and n = 4.

H0

αnom = 0.01 αnom = 0.05 αnom = 0.10

nu no nM nu no nM nu no nM

α = 5 0.46 0.48 99.06 2.32 2.40 95.28 4.73 5.07 90.20

β = −2 0.43 0.44 99.13 2.48 2.26 95.26 5.10 4.81 90.09

γ = −0.05 0.54 0.42 99.04 2.55 2.39 95.06 5.06 4.51 90.43

α = 5 0.51 0.58 98.91 2.53 2.59 94.88 5.08 4.96 89.96

β = −2 0.61 0.57 98.82 2.65 2.34 95.01 4.98 4.75 90.27

γ = −0.06 0.49 0.44 99.07 2.64 2.26 95.10 5.16 5.78 90.06

α = 5 0.53 0.59 98.88 2.61 2.60 94.79 5.02 5.28 89.70

β = −3 0.49 0.69 98.82 2.46 2.88 94.66 4.97 5.40 89.63

γ = −0.05 0.57 0.66 98.77 2.59 2.64 94.77 5.18 5.17 89.65

α = 5 0.44 0.57 98.99 2.33 2.53 95.14 4.62 5.51 89.87

β = −3 0.47 0.59 98.94 2.32 2.60 95.08 4.81 5.28 89.91

γ = −0.06 0.52 0.58 89.90 2.47 2.40 95.13 5.24 4.72 90.04

α = 6 0.51 0.51 98.98 2.52 2.75 94.73 4.88 5.30 89.82

β = −4 0.50 0.53 98.97 2.38 2.75 94.87 4.47 5.34 90.19

γ = −0.07 0.49 0.52 98.99 2.65 2.38 94.97 5.16 4.85 89.99

α = 6 0.47 0.53 99.00 2.32 2.37 95.31 4.73 4.62 90.65

β = −2 0.54 0.50 98.96 2.54 2.20 95.26 5.04 4.82 90.14

γ = −0.06 0.57 0.57 98.86 2.37 2.33 95.30 4.98 4.78 90.24

Table 9.10 Optimal experimental designs in the experimental region [1,12] and n = 12.

Criterion
(α, β, γ) =
(2.44, −1.43, −0.24)

(α, β, γ) =
(2.35, −1.63, −0.31)

(α, β, γ) =
(2.54, −1.23, −0.17)

D 1 5 39 12

4 4 4

1 19 5 05 12

4 4 4

1 5 88 12

4 4 4

Cα 1 5 55 12

2 4 6

1 5 09 8 07

2 3 7

1 5 72 12

2 5 5

Cβ 1 10 27 12

9 1 2

1 6 97 8 07

10 1 1

1 94 2 69 12

4 4 4

Cγ 1 5 54 12

4 5 3

1 5 23 12

4 5 3

1 5 92 12

4 5 3
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9.6.3 The Logistic (Three-Parametric Hyperbolic Tangent) Function

The function fL(x, θ) of the model

yi =
α

1 + βeγxi
+ ei = fL xi,θ + ei,

i= 1,…,n, n > 3, α 0, β > 0, γ 0,
9 71

is called logistic function. It has an inflection point at

xI = −
1
γ
lnβ

with fL(xI, θ) = α/2.
The function in (9.71) can be written as three-parametric hyperbolic tangent

function with the parameters

αT =
α

2
, βT = −

1
γ
lnβ and γT = −

γ

2

(see Example 9.4). With θ1 = αT, θ2 = βT and θ3 = γT

yi = αT 1+ tanh γT xi−βT + ei,

i= 1,…,n, n ≥ 3, αT 0, βT 0, γT 0,
9 72

is the regression model of a three-parametric hyperbolic tangent function.
From Section 9.2 follows that as the consequence of a reparametrisation other

non-linearity properties can be created. It therefore seems reasonable to find a
reparametrisation with a small curvature measure. We first treat model (9.71)
and receive

∂fL x,θ
∂θ

=

1
1+ βeγx

−αeγx

1 + βeγx 2

−αβxeγx

1 + βeγx 2

and the model can be written with

C θ =

1 0 0

0 −α 0

0 0 −α

in the form (9.1). We see that β and γ are non-linearity parameters. Analogously
this can also be stated for the function in (9.72).
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The information matrix for model (9.71) is

FTF =

A −αB −αβC

−αB α2D α2βE

−αβC α2βE α2β2G

with

Zi = 1 + βeγxi −1

and

A=
n

i= 1

Z2
i , B=

n

i= 1

Z3
i e

γxi , C =
n

i= 1

Z3
i xie

γxi ,

D=
n

i= 1

Z4
i e

2γxi , E =
n

i= 1

Z4
i xie

2γxi , G =
n

i=1

Z4
i x

2
i e

2γxi

Then

FTF = α4β2 ADG + 2BCE−C2D−AE2−B2G = α4β2Δ

follows and the asymptotic covariance matrix is

varA = FTF
−1
σ2

=
σ2

Δ

DG−E2 −
1
α

EC−BG −
1
αβ

BE−CD

−
1
α

EC−BG
1
α2

AG−C2 1
α2β

BC−AE

−
1
αβ

BE−CD
1
α2β

BC−AE
1

α2β2
AD−B2

Initial values for the iterative calculation of the LS estimates are found by
internal regression (see Section 9.1.2). The differential equation with integral
fL(x, θ) is given by

∂fL x,θ
∂θ

= −γfL x,θ 1−
1
α
fL x,θ

Minimising

S1 =
n−1

i= 1

c1yi + c2y
2
i + y

∗
i

2
,c1 0,c2 0 with

y∗i =
yi+ 1−yi
xi+ 1−xi

i= 1,…, n−1

474 Mathematical Statistics



by the LSmethod results in c1 and c2. From these values, initial values a and c for
the estimator of α and γ are given by

c= c1, a= −
c1
c2

The initial value β for the estimator of β is that value b= b, minimising

S2 =
n−1

i=1

y∗i + b
c
α
y2i e

cxi
2

The initial values aT, bT and cT for the hyperbolic tangent function can be
gained from those of the logistic function using the parameter transformation
in front of (9.72).
The information matrix FTF of the model (9.72) has with the abbreviations

ui = tanh γ xi−β ,

AT =
n

i= 1

u2i , BT =
n

i=1

1−u2i ui, CT =
n

i= 1

xi−β 1−u2i ui,

DT =
n

i=1

1−u2i
2
, ET =

n

i=1

xi−β 1−u2i
2
,

GT =
n

i=1

xi−β
2 1−u2i

2

the form

FTF =

AT −αγBT αCT

−αγBT α2γ2DT −α2γET

αCT −α2γET α2GT

with

FTF = α4γ2 ATDTGT + 2BTCTET −C
2
TDT −A

2
TET −B

2
TGT = α4γ2ΔT

The asymptotic covariance matrix of the estimator θTT of θ
T
T = αT ,βT ,γT is

given by

varA θT =
σ2

ΔT

DTGT −E2
T −

1
αγ

ETCT −BTGT
1
α

BTET −DTCT

−
1
αγ

ETCT −BTGT
1

α2γ2
A1G1−C

2
T

1
α2γ

BTCT −ATET

1
α

BTET −CTDT
1
α2γ

BTCT −ATET
1
α2

ATDT −B
2
T
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For n > 3 test statistics and confidence intervals can be written down corre-
spondingly to the sections above.
Further

s2T =
1

n−3

n

i=1

yi−aT −aT tan h cT xi−bT
2

is the residual variance. In Example 9.3 the curve fitting of a logistic function was
demonstrated by SPSS.
In simulation experiments as described in Section 9.4.3 for 15 (α, β, γ)-

combinations (with inflection points at 10, 30 and 50 respectively), xi-values
in [0, 65], normal-distributed ei and αnom = 0.05 and 0.1 have been performed.
For all parameter combinations, the result was that tests and confidence estima-
tions based on the asymptotic covariance matrix can be recommended not only
for n > 3 as well as for normally distributed ei but also for ei following some
Fleishman distributions.
All concrete optimal designs have been three-point designs. In Table 9.11 we

give optimal designs for the estimates of the parameters and for the confidence
bounds in Figure 9.5 (hemp growth of Example 9.3).

9.6.4 The Gompertz Function

The regression function fG(x,θ) of the model

yi = αeβe
yxi + ei = fG xi,θ + ei i= 1,…,n, n > 3, α 0, γ 0, β < 0 9 73

is called Gompertz function. In Gompertz (1825) it was used to describe the
population growth. The function has an inflection point at

xI = −
ln −β

γ
with fG xI =

α

e

Table 9.11 Optimal experimental designs in the experimental region [1,14] and n = 14.

Criterion (α, β, γ) = (126, 20, −0.46) (α, β, γ) = (123, 16, −0.5) (α, β, γ) = (130, 23, −0.42)

D 3 93 8 29 14

5 5 4

3 30 7 39 14

5 5 4

4 42 9 00 14

5 5 4

Cα 1 15 8,07 14

2 3 9

1 73 7 34 14

2 2 10

2 81 9 20 14

3 3 8

Cβ 2 70 8 95 14

11 2 1

2 16 2 37 14

11 1 2

3 11 3 46 9 75

11 1 2

Cγ 2 38 8 31 14

8 4 2

1 81 7 37 14

8 4 2

2 80 9 12 14

8 4 2
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The vector

∂fG x,θ
∂θ

=

1
α
fG x

fG x eγx

fG x βxeγx

; θT = α,β,γ

can be written with

C θ =

1 0 0

0 1 α 0

0 0 1 α

in the form (9.1), where β and γ are non-linearity parameters. We again use
abbreviations

A=
n

i=1

e2βe
γxi , B=

n

i=1

eγxie2βe
γxi , C =

n

i= 1

xie
γxie2βe

γxi ,

D=
n

i=1

e2γxie2βe
γxi , E =

n

i= 1

xie
2γxie2βe

γxi , G =
n

i=1

x2i e
2γxie2βe

γxi ,

so that

FTF =

A αB αβC

αB α2D α2βE

αβC α2βE α2β2G

and

FTF = α4β2Δ= α4β2 ADG + 2BCE−C2D−AE2−B2G 0

The asymptotic covariance matrix is therefore

varA θ = σ2 FTF
−1

=
σ2

Δ

DG−E2 1
a

EC−BG
1
αβ

BE−CD

1
α

EC−BG
1
a2

AG−C2 1
α2β

BC−CD

1
αβ

BE−CD
1
α2β

BC−AE
1

α2β2
AD−B2

Initial values for the iterative calculation of parameter estimates can be found
by reducing the problems to that of the exponential regression using zi = lnyi
(yi > 0).
Because

lnfG x,θ = lnα+ βeγx = αE + βe
γx with αE = lnα
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from the initial values (or LS estimates), aE, bE, cE of the exponential regression
for the (zi, xi) initial values a = eaE , b = bE and c = cE for the Gompertz function
can be obtained.
Tests and confidence regions can analogously be constructed as in the sec-

tions above. Numerous simulation experiments have been performed to show
how good those tests are even for small sample sizes. In Table 9.12 we give the
results for n = 4. In general it can be said that tests and confidence regions
approximately hold the nominal risks and can be always recommended.

Table 9.12 Relative frequencies of 10 000 simulated samples for the (incorrect) rejection (left
hand nl, right hand nu) and for the (correct) acception (nM) of H0 for the Gompertz function
with several parameter values and for αnom = 0.01 , 0.05 and 0.1 and n = 4.

H0

αnom = 0.01 αnom = 0.05 αnom = 0.10

nl nu nM nl nu nM nl nu nM

α = 33.33 0.56 0.48 98.96 2.58 2.03 95.39 5.27 4.17 90.56

β = −6.05 0.58 0.46 98.96 3.33 2.44 94.23 6.11 4.75 89.14

γ = −0.06 0.45 0.52 99.03 2.26 2.73 95.01 4.76 5.65 89.59

α = 33.33 0.47 0.41 99.12 2.61 2.07 95.32 5.01 4.22 90.77

β = −11.023 0.46 0.53 99.01 2.46 2.16 95.38 4.84 4.54 90.62

γ = −0.08 0.50 0.45 99.05 2.17 2.36 95.47 4.47 4.77 90.76

α = 33.33 0.49 0.50 99.01 2.65 2.53 94.82 5.07 5.11 89.82

β = −20.09 0.46 0.45 99.09 2.41 2.80 94.79 4.77 5.28 89.95

β = −0.10 0.44 0.43 99.13 2.64 2.46 94.90 5.24 4.85 89.91

α = 100 0.61 0.51 98.88 2.77 2.49 94.74 5.35 4.53 90.12

β = −36.6 0.49 0.47 99.04 2.68 2.37 94.95 5.21 5.01 89.78

γ = −0.06 0.50 0.56 98.94 2.48 2.55 94.97 4.77 5.20 90.03

α = 25 0.52 0.39 99.09 2.67 1.96 95.37 5.89 3.75 90.36

β = −6.05 0.65 0.43 98.92 2.93 2.43 94.64 6.13 4.73 89.14

β = −0.06 0.44 0.60 98.96 2.46 2.69 94.85 4.70 5.29 90.01

α = 25 0.59 0.50 98.91 2.59 2.12 95.29 5.26 4.39 90.35

β = −11.023 0.47 0.50 99.03 2.68 2.19 95.13 5.20 4.61 90.19

γ = −0.08 0.51 0.47 99.02 2.19 2.43 95.38 4.35 4.86 90.79

α = 25 0.55 0.44 99.01 2.69 1.98 95.33 5.28 4.24 90.48

β = −20.09 0.43 0.50 99.07 2.16 2.24 95.60 4.61 4.39 91.00

γ = −0.10 0.58 0.47 98.95 2.27 2.13 95.60 4.48 4.52 91.00
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Figure 9.14 LS estimates, asymptotic confidence intervals and the estimated residual
variance of the Gompertz function with data of Example 9.7.
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Figure 9.15 Curve of the estimated Gompertz regression function together with the scatter
plot of the observations of Example 9.7.
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Example 9.7 – Continued
We can now use the oil palm data of Table 9.3 to estimate the parameters of

the Gompertz function by the programGrowth (see Section 9.6.1.2). The results
are shown in Figure 9.14. The estimated regression curve is shown in
Figure 9.15.
All concrete optimal designs have been three-point designs. In Table 9.13 we

give optimal designs for the estimates of the parameters and for the confidence
bounds in Figure 9.14 (oil palm growth).

9.6.5 The Hyperbolic Tangent Function with Four Parameters

We consider the regression model

yi = α+ β tan h γ+ δxi + ei = fT xi,θ + ei i= 1,…,n, n > 4, β > 0, δ > 0

9 74

fT(x, θ) has an inflection point at xI = −
γ

δ
with f(xI, θ) = α and two asymptotes at

y = α + β and y = α − β, respectively.
Because

∂fT x,θ
∂θ

=

1

tanh γ+ δx

β 1− tanh2 γ+ δx

βx 1− tanh2 γ+ δx

,

Table 9.13 Optimal experimental designs in the experimental region [1,12] and n = 12.

Criterion
(α, β, γ) =
(14.14, −2.35, −0.285)

(α, β, γ) =
(12.61, −2.83, −0.37)

(α, β, γ) =
(15.68, −1.86, −0.2)

D 1 5 56 12

4 4 4

1 29 5 14 12

4 4 4

1 6 09 12

4 4 4

Cα 1 5 65 12

2 4 6

1 4 90 12

2 2 8

1 6 22 12

2 5 5

Cβ 1 7 94 9 09

10 1 1

1 5 47 5 95

10 1 1

1 51 11 21 12

9 1 1

Cγ 1 5 86 12

4 5 3

1 5 39 12

4 5 3

1 6 26 12

4 5 3
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C(θ) in (9.1) can be chosen so that γ and δ are non-linearity parameters.
With vi = tan h(γ + δxi) and

A=
n

i=1

vi, B=
n

i= 1

v2i , C =
n

i= 1

xi, D=
n

i= 1

xiv
2
i , E =

n

i=1

v3i ,

G =
n

i= 1

v4i , H =
n

i=1

xiv
4
i , I =

n

i= 1

xivi, K =
n

i= 1

x2i ,

L=
n

i= 1

x2i v
2
i , M =

n

i= 1

xiv
3
i , N =

n

i= 1

x2i v
4
i ,

FTF becomes

FTF =

n A β n−B β c−D

A B β A−E β I−M

β n−B β A−E β2 n−2B+G β2 C−B−D+H

β C−D β I−M β2 C−B−D+H β2 K −2L+N

=

n A βP βQ

A B βR βS

βP βR β2T β2U

βQ βS β2U β2W

,

and the asymptotic covariance matrix is

varA θ = σ2 FTF
−1

= σξη , ξ, η= a,b,c,d

To reach numerical stability in simulation experiments, it is favourable to
invert FTF analytically and then to input the xi-values. The formulae for the ele-
ments of varA(θ) are given in Gretzebach (1986). We give below the main diag-
onal elements σξξ = σξ(ξ = a, b, c, d), that is, the asymptotic variances of the LS
estimators a, b, c and d, writing
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Δ=
1

β4
FTF

σ2a =
σ2

Δ
BTW + 2RSU −R2W −S2T −U2B ,

σ2b =
σ2

Δ
nTW + 2QPU −RQ2−P2W −nU2 ,

σ2c =
σ2

Δβ2
nBW + 2AQS−BQ2−A2W −nS2 ,

σ2d =
σ2

Δβ1
nBT + 2ARP−BP2−A2T −nS2

The initial values should be found by internal regression, leading to the LS esti-
mates a, b, c and d for α, β, γ and δ. Test statistics and confidence estimations are
obtained analogously to the sections above.

Example 9.7 – Continued
Nowwe can use the oil palm data to estimate the parameters of the hyperbolic

tangent function with four parameters. The results are shown in Figure 9.16,
and the estimated regression curve is shown in Figure 9.17.
The simulation experiments described in Section 9.4.3 to check the tests and

confidence estimations based on the asymptotic covariance matrix for small n
are performed for α = β = 50 and

• δ = 0.15 with γ = −2.25, −4.5 and −6.75

• δ = 0.1 with γ = −1.5, −3 and −4.5

• δ = 0.05 with γ = −0.75, −1.5 and −2.25

normally distributed ei and n equidistant xi-values in the interval [0, 65] ; n = 5
(1)15.
It was found that the actual risk αact of tests and confidence estimations

differed by maximal 20% from the nominal risk αnom = 0.05 if at least n = 10
measurements were present. For αact = 0.1 this was already the case from n =
9, but for αnom = 0.01 at least 25 measurements have been needed.
For these results let us conjecture that tests and confidence estimations

based on the asymptotic covariance matrix for four-parametric functions
(not as for three-parametric functions) can already be recommended
from n = p + 1 on. This conjecture is supported in the two following
sections.
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Figure 9.16 LS estimates, asymptotic confidence intervals and the estimated residual
variance of the hyperbolic tangent function with data of Example 9.7.
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Figure 9.17 Curve of the estimated hyperbolic tangent regression function together with
the scatter plot of the observations of Example 9.7.
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We finally calculate the locally D-optimal designs for the LS estimates in
Figure 9.16 and the experimental region and sample size of Example 9.7 and
receive

1 3 39 8 36 14

4 4 3 3

9.6.6 The Arc Tangent Function with Four Parameters

We consider the regression model

yi = α+ β arctan γ xi−δ + ei = fA xi,θ + ei
i= 1,…,n, n > 4, β 0, γ > 0, δ 0

9 75

The function fA(x, θ) has an inflection point at xI = δ where fA(xI, θ) = α. fA(x, θ)
has two asymptotes at α + βπ/2 and α − βπ/2. We receive

∂fA x,θ
∂θ

=

1

arctan γ x−δ

β x−δ

1 + γ2 x−δ 2

−βγ
1 + γ2 x−δ 2

Writing this in the form (9.1) shows that γ and δ are non-linearity
parameters.
We put

ui = xi−δ, vi = 1+ γ2 xi−δ , wi = arctan γ xi−δ
and get

FTF =

n A βC −βγD

A B βE −βγG

βC βE β2H −β2γJ

−βγD −βγG −β2γJ β2γ2K

with

A=
n

i= 1

wi, B=
n

i= 1

w2
i , C =

n

i=1

ui
vi
,

D=
n

i= 1

1
vi
, E =

n

i= 1

uiwi

vi
, G =

n

i=1

wi

vi
,

H =
n

i= 1

u2i
v2i

, J =
n

i=1

ui
v2i
, K =

n

i=1

1
v2i
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The asymptotic covariance matrix

varA θ = σ2 FTF
−1

is estimated by

V = s2 FTF
−1

= s2 kij

Further

s2 =
1

n−4

n

i= 1

yi−a−b arctan c xi−d
2

Initial values should be found by internal regression, leading to the LS estimates
a, b, c and d for α, β, γ and δ.. Test statistics and confidence estimations are
obtained analogous to the sections above.

Example 9.7 – Continued
Now we use the oil palm data to estimate the parameters of the arcustangens

function with four parameters. The results are shown in Figure 9.18, and the
estimated regression curve is shown in Figure 9.19.

Figure 9.18 LS estimates, asymptotic confidence intervals and the estimated residual
variance of the arcustangens function with data of Example 9.7.
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The simulation experiments described in Section 9.4.3 to check the tests and
confidence estimations based on the asymptotic covariance matrix for small n
are performed for α = β = 50 and α = 40, β = 20 with

γ = 0 05, 0 1, 0 2 and δ= −50, −30, −10,

normally distributed ei and n equidistant xi-values in the interval [0, 65] using
n = 4(1)20.
It was found that the actual risk αact of tests and confidence estimations

differed by maximal 20% from the nominal risk αnom = 0.05 if at least n =
11 measurements were present. For αact = 0.1 this was already from n =
10 the case.
We finally calculate the locally D-optimal designs for the LS estimates in

Figure 9.18 and the experimental region and sample size of Example 9.7 and
receive

1 2 97 7 68 14

4 4 3 3

–1.00
–1.00

2.00

5.00

8.00

11.00

14.00

2.00 5.00
x

f(x) f(x) =A+B*tanh[D*(x–C)]

Tanh(4)
A  –3.0963
B  18.1668
C  –1.7576
D  0.1064

8.00 11.00

Figure 9.19 17 Curve of the estimated Arcustangens regression function together with the
scatter plot of the observations of Example 9.7.
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9.6.7 The Richards Function

The function fR(x, θ) in the regression model

yi = α 1 + e
γ
α β−xi δ+ 1 1+ 1 δ −1 δ

+ ei = fR xi + ei

i= 1,…,n, n > 4, α 0, γ 0, δ < 0
9 76

in Richards (1959) was used to model the growth of plants; the parametrisation
in (9.76) stems from Schönfelder (1987) and was introduced because the iter-
ative calculation of the LS estimates have been relatively easy and the suitability
of the asymptotic covariance matrix for tests and confidence estimations was
given. Further some parameters can be interpreted: α is the value of the asymp-
tote and β the x-coordinate of the inflection point.
The parameters β, γ, δ are non-linearity parameters. Writing fR(x, θ) in its

original form fR x,θ = α∗ + β∗eγ∗x δ∗, in Richards (1959), then all parameters
are non-linearity parameters.
There are enormous numerical problems with this function, especially for

gaining initial values and for the iterative calculations of the LS estimates.
We recommend the interested reader to read the PhD thesis in Schönfelder
(1987) where FORTRAN programs are given.
Tests and confidence estimations have been checked by Schönfelder as

described in Section 9.4.3 for equidistant xi and for the xi of a locally D-optimal
designs in [1; 65] and the parameter combinations (α, β, γ, δ):

35; 27; 1; 0 7 , 20; 27; 1; 0 7 , 35; 15; 1; 0 7 , 35; 27; 5; 0 7 , 35; 27; 1−0 5 ,

50; 27; 1; 0 7 , 35; 45; 1; 0 7 , 35; 27; 3; 0 7 , 35; 27; 1; 10

for normally distributed ei.
The tests and confidence estimations based on the asymptotic covariance

can be used if for αnom = 0. 05 there is n > 14. For the locally D-optimal design
already with n > 8 satisfying results have been found.

9.6.8 Summarising the Results of Sections 9.6.1–9.6.7

First we summarise the results of the simulation experiments.
The simulation experiments described in Section 9.4.3 to check the tests and

confidence estimations based on the asymptotic covariance matrix give the
inducement to conjecture that for three-parametric regression functions,
n = 4 observations are sufficient for the approximation with the asymptotic
covariance matrix.
For four-parametric regression functions, the minimal number sufficient for

the approximation with the asymptotic covariance matrix depends strongly on
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the function and on the allocation of the support points. Seldom n < 10 is
sufficient.
Next we summarise results concerning locally optimal designs.
For three-parametric regression functions, we conjecture that locally optimal

designs are always three-point designs. For four-parametric regression func-
tions, we conjecture that the D-optimal designs are three-point designs.
Paulo and Rasch (2002) investigated the sensitivity of D-optimal designs if

parameters differ from values used in the locally optimal designs and found that
the support is relatively non-sensitive.

9.6.9 Problems of Model Choice

As we can see from Example 9.7, it is not easy to select a proper regression func-
tion for given (xi, yi) values. Numerical criteria have been proposed by several
authors. Given a class F = {f1(x, θ), …, fr(x, θ)} of functions from which one
has to be chosen as the ‘best’, which of the criteria should be used? Rasch
and vanWijk (1994) considered in a simulation experiment the r = 8 in Sections

9.6.1–9.6.7 handled functions and five criteria. In the following f j xi,θ are the
values of the LS method to get a (xi, yi) fitted function with the estimated para-
meters. The regression function is fj(x, θ) F and pj is the number of the esti-
mated parameters.
The criteria are (n > p, j = 1,…,r):

K1: s2j (residual variance by fitting fj(x, θ) F), with

s2j =
1

n−pj

n

i= 1

yi− f j xi,θ
2

K2: Cpj =
n−pj s2j
n σ2j

+ 2pj−n Cp criterion in Mallows (1973))

σ2j is an estimate of σ2 different from s2j . This could be the MSres in a simple

analysis of variance, if several measurements at support points are available.

K3: Jackknife criterion
Drop in (xi, yi) (i = 1, …, n) the lth pair (l = 1, …, n). With the n − 1 remain-

ing data pairs, the functions fj(x, θ) F are fitted. Let yl j = f l
j xl,θ be the

value of the fitted function at xl.Then

JK j =
1
n

n

i=1

yi−yi j 2

is the value of the Jackknife criterion. The name is chosen analogously to the
Jackknife estimate (Chapter 4).
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K4: Modified Akaike criterion (Akaike, 1974)
With S2j =

n−pj
n s2j is

AICj = n ln S2j +
n n+ pj
n−pj−2

K5: Schwarz criterion (Schwarz, 1978)

With T2
j =

n−pj
n

s2j is

SCj = n ln T2
j + pj ln n

Rasch and vanWijk (1994) found the Jackknife version of themodified Akaike
criterion to be the best one. In the simulation experiment, values have been gen-
erated with each function in F. To the values of the function error terms have
been added. By the LS method each function was fitted to each generated data
set. This was repeated 5000 times. In an 8×8matrix it was shown how often data
of a generating function (in the row of the matrix) was selected by one of the
criteria (in the column) as best fitted. Of course a heavy main diagonal of the
matrix is ideal for a criterion.

9.7 Exercises

9.1 Which of the regression functions below are linear, quasilinear or intrin-
sically non-linear?
a) f(x, θ) = θ1 + θ2x + θ3x

2

b) f x,θ = θ1
1
x
+ θ2 x

c) f(x, θ) = θ0 + θ1x1 + θ2x2
d) f x,θ = θ1xθ2

e) f(x, θ) = θ1x1 + θ2x2 + θ3x1x2
f) f x,θ = θ1 + eθ2x

g) f x,θ = θ1 +
θ2x

θ3x2 + 1

9.2 Determine the non-linearity parameter(s) of the following regression
functions:
a) f(x, θ) = θ1 + sin(θ2x + θ3)

b) f x,θ =
θ1x
θ2 + x

c) f x,θ = θ1eθ2x+ θ3

d) f x,θ = θ1 + θ22θ3

e) f x,θ = θ1 + θ2
1
x
+ θ3 1 + e2θ4

2
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9.3 Fit the exponential regression function

y= f x,θ = α+ βeγx + e, θ = α,β,γ T , γ < 0

to the data below!

Time 0 1 2 3 4 5 6 7 8 9 10

Value 77.2 94.5 107.2 116.0 122.4 126.7 129.2 129.9 130.4 130.8 131.2

Calculate the estimates a, b, c for the parameters by the LS method. Give
further an estimate for the variance σ2.

9.4 For the no-load loss of a generator in dependency of the voltage measure-
ments the data are:

X voltage 230 295 360 425 490 555 620

Loss L (kW) 64.0 66.0 69.5 74.0 80.8 91.0 103.5

Which of the regression models in Section 9.6 fits best?
Find estimates for the parameter of the best fitting function by the LS

method and give an estimate for the error variance.
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10

Analysis of Covariance (ANCOVA)

10.1 Introduction

Analysis of covariance (ANCOVA) as a branch of applied statistics covers sev-
eral objectives. In any case, the observations are influenced by at least two fac-
tors. At least one of these factors has several levels, by which the material is
classified into classes. At least one further factor is a regressor in a regression
model between different variables in the model and called a covariable or a cov-
ariate. One branch of the ANCOVA is to test whether the influence of the cov-
ariable is significant and as the case may be to eliminate it.
If the factor is qualitative (not numeric), this target can be achieved simply by

blocking and using analysis of variance (ANOVA). Another branch of the
ANCOVA is to estimate the parameters of the regression model within the
classes of the classification factor.
If we have just one classification factor and one covariable, then we have four

models of the ANCOVA:

Model I–I: Levels of the classification factor fixed and model I of regression
Model I–II: Levels of the classification factor fixed and model II of regression
Model II–I: Levels of the classification factor random and model I of regression
Model II–II: Levels of the classification factor random and model II of

regression

In statistical (theoretical) textbooks, mainly model I–I was presented. How-
ever, in applications and in many examples, exclusively cases are found for
which model I–II must be used. The results found for model I–I are used for
model I–II. Real practical examples for model I–I can hardly be found. Graybill
(1961) bypasses this difficulty by using a fictive numerical example.
Searle (1971, 2012) uses as levels of the classification factor three kinds of

school education of fathers of a family and the number of children in the family
as a covariable. The observed trait is the amount of expenditures. Here certainly
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a model of an incomplete two-way cross-classification could be used, and the
question whether the covariable ‘number of children’ leads to model I or II
of the regression analysis depends on data collection. Scheffé (1953) considered
an introductory example with the classification factor ‘kind of starch’ and the
covariable the thickness of the starch strata. This is an example where model
I–II can be used although afterwards he discusses model I–I. However, Scheffé
is one of the few recognising and discussing the two models. He gave a heuristic
rationale of the application of the results derived for model I–I but applied for
model I–II. The background for this is the applicability of methods of estimating
and testing of model I of regression to model II of regression as described in
Chapter 8.
In the text below exclusively model I–I as special case of model equation (4.1)

is considered. Model II–II corresponds with problems treated in Chapter 6
(estimation of variance and covariance components).

10.2 General Model I–I of the Analysis of Covariance

We consider the following special case.

Definition 10.1 If Xβ in (5.1) with the assumptions of Definition 5.1 can be
written as

Xβ =Wα+Zγ

with

X = W ,Z , βT = αT ,γT

X X × a+ 1 matrix of rank p < a+ 1

W N × t + 1 matrix of rank r,0 < r < t + 1 < a+ 1

W = 1N ,W
∗

Z N × s matrix of rank 0 < s ≤ p < a+ 1

α= μ,α1,…,αt
T , γ = γ1,…,γs

T t + s= a, r + s= p

then the model equation

Y =Wα+Zγ + e, Ω=R W R Z 10 1

under the distributional assumption

Y N Wα+Zγ, σ2IN , e N 0N , σ
2IN 10 2

is called a model I–I of the ANCOVA. Normality is only needed for testing and
confidence estimation.
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The columns of Z define the covariable.
First we will give an example.

Example 10.1 In a populations G1,…, Ga independent random vectors

Y1,…, Ya of size n1,…, na are available. Let yi = yi1,…,yini
T . In Gi the Yi

are N μi , σ2Ini -distributed with μi = μi1,…,μini
T
.

Case (a). μij can be written as

μij = μ+ αi + γzij i= 1,…,a; j= 1,…,ni

zij are given values of a real (influence) variable Z, the covariable of the model.
Case (b). μij can be written as

μij = μ+ αi + γizij i= 1,…,a; j= 1,…,ni

Then (10.1) has the special form:

Case (a):

yij = μ+ αi + γzij + eij i= 1,…,a; j= 1,…,ni 10 3

Case (b):

yij = μ+ αi + γizij + eij i= 1,…,a; j= 1,…,ni 10 4

In (10.3) and (10.4) (as special case of (10.1)),

W T =

1 1 … 1

1 1 … 1

0 0 … 0

0 0 … 0

n1

1 1 … 1

0 0 … 0

1 1 … 1

0 0 … 0

n2

…

…

…

…

1 1 … 1

0 0 … 0

0 0 … 0

1 1 … 1

na

α = μ,α1,…,αa
T, Y T = Y T

1 ,…,Y T
a and e= e11,…,eana

T
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In (10.3) ZT = z11,…,zana and γ is a scalar. In (10.4) γT = γ1,γ2,…,γa and

Z =

z11 0 … 0

z1n1 0 … 0

0 z21 … 0

0 z21 … 0

0 0 … za1

0 0 … zana

Example 10.2 We consider the situation of Example 10.1 with a populations,
but for yij we use the model equation

μij = μ+ αi + γ1z
2
ij + + γs z

s
ij i= 1,…,a; j= 1,…,ni

so that (10.1) has the special form

yij = μ+ αi + γ1zij + γ1z
2
ij + + γsz

s
ij + eij 10 5

Y, α and e are given in Example 10.1 with γT = γ1,γ2,…,γa and

Z =

z11 z211 … zs11
z12 z212 … zs12

zana z2ana … zsana

With Examples 10.1 and 10.2, all typical problems of the ANCOVAmodel I–I
can be illustrated:

• Testing the hypothesis H0 α1 = = αa

• Testing the hypothesis H0 γ = 0 (Example 10.1. Case (a))

• Testing the hypothesis H0 γ1 = = γs (Example 10.1. Case (b))

• Testing the hypothesisH0 γr = γr +1 = = γs = 0 for 2 ≤ r ≤ s−1 (Example 10.2)

• Estimation of a γ or γ1,…, γs

Going back to the general case, we note that withW also X does not have full
rank. Therefore XTX is singular, and the normal equations in Section 4.1
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XTXβ∗ =XTY

have no unique solution.
For model I–I of the ANCOVA due to

X = W ,Z , βT = αT ,γT

the normal equations have the form

WTW WTZ

ZTW ZTZ

α∗

γ∗
=

WTY

ZTY
10 6

Let GW be a generalised inverse of WTW, and then from (10.6) we obtain

α∗ =GW WTY −WTZγ∗ 10 7

If α∗∗ is the solution of the normal equations of model equation (10.1) for γ = 0s
(without covariable), then

α∗ =α∗∗−GWW TZγ∗ 10 8

where α∗∗ =GWWTY is the solution of the normal equations for an ANOVA
(model I) with model equation (5.1). The formula for α∗ ∗ is up to the notation
identical with (5.3). If we apply α∗ in (10.6), we receive for γ∗ formula (10.10). In
the following theorem we show that γ∗ is uniquely determined and BLUE of the
estimable function γ.

Theorem 10.1 Let model equation (10.1) and the distributional assumption
(10.2) be valid for Y. Then γ is estimable and the solution γ∗ of the normal equa-
tions (10.6) are unique (i.e. independent of the special choice of GW) and BLUE
of γ. We therefore write γ∗ = γ.

Proof: At first we show that γ∗ is unique and write (10.6) detailed as

W TWα∗ +W TZγ∗ =W TY

ZTWα∗ +ZTZγ∗ =ZTY

or using (10.8) and WTWGWW
T = WT as

W TWα∗∗ =W TY

ZTWα∗∗−ZTW GWW TZγ∗ +ZTZγ∗ =ZTY
10 9

Due to Theorem 4.13 the relation α�� =GWWTY follows from the first equa-
tion of (10.9), and appointing this to the second equation of (10.9) leads to

ZTW GWW TY −ZTW GWW TZγ∗ +ZTZγ∗ =ZTY
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With the idempotent matrix A= IN –WGWWT , this gives the solution

γ∗ = ZTAZ
−
ZTAY

where ZTAZ − is a generalised inverse of ZTAZ. Because A is idempotent, we
have rk AZ = rk ZTAZ . Further AZ has a full column rank, so that ZTAZ is

non-singular and ZTAZ − = ZTAZ −1. Therefore

γ∗ = γ = ZTAZ
−1
ZTAY 10 10

is the unique solution component of (10.6).
From Lemma 4.1 we know that γ is estimable if it is a linear function of E γ .

From (10.10) we get

E γ = ZTAZ
−1
ZTAE Y = ZTAZ

−1
ZTA Wα+Zγ

Because AW = IN −WGWWT W =W −W =O we obtain E γ = γ. Therefore
γ is BLUE of γ, and this completes the proof.

Corollary 10.1 The estimator γ of γ in model equation (10.1) is a BLUE con-
cerning γ in the model equation

Y =AZγ + e 10 11

with A= IN −WGWWT where Y,W, Z and e fulfil the conditions of
Definition 10.1.
This follows from the idempotence of A and the results of Chapter 8.
We now test the hypotheses

H0 MTγ = c, rk MT = v < s

and

H0 LTα=R, rk LT = u < r

Because γ is estimable,

H0 MTγ = c

is testable.For the secondhypothesisonlysuchmatricesareadmitted, forwhich the
rows of LTα are estimable. From (10.8) it follows that LTα with α in (10.1) is esti-
mable, if LTα is in the correspondingmodel of the ANOVA (with γ = 0) estimable.
In Chapter 4 the F-test statistic (4.37) was used as a test statistic of the hypoth-

esis H0 γ = 0. From the results of Chapter 4, we can now derive a test statistic
for the general (nonlinear) hypothesis H0 MTγ = c, with a (v × s) matrixM with
v < s and of rank v. The hypothesis H0 MTγ = c defines a subspace ωγ Ω of
dimension s − v.
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WewriteMTγ = c as a special case of the general hypothesis KTβ = a in model
(4.29). To test this hypothesis we obtain with N −p and q = rk K and if
H0 KTβ = a is true the F-distributed test statistic

F =
K Tβ∗−a T

K T XTX
−
K

−1
K Tβ∗−a

Y T IN −X XTX −XT Y

N −p
q

10 12

We now use

K T = Ov, t + 1,M
T , β =

α

γ
, X = W ,Z , a=

0t + 1

c

with a (v × s) matrix MT of rank v < s. For XTX − we write

XTX
−
=

W TW W TZ

ZTW ZTZ

−

10 13

and this becomes with GW = WTW − and with D=ZT IN −WGWWT Z =
ZTAZ

XTX
−
=

GW +GWW TZD−1ZTW GT
W −GWW TZD−1

−D−1ZTW GT
W D−1

10 14

Therefore,

K T XTX
−
K =MT ZTAZ

−1
M

is non-singular (M has full row rank) and

X XTX
−
XT =W GWW T +AZ ZTAZ

−1
ZTA 10 15

That means that (10.12) for our special case becomes

F =
MTγ−c

T
MT ZTAZ

−1
M

−1
MTγ−c

Y T IN −X XTX −XT Y

N −r−s
v

10 16

F is F N −r−s,v,λ -distributed with the non-centrality parameter

λ=
1
σ2

MTγ−c
T
MT ZTAZ

−1
M

−1
MTγ−c

Analogously we obtain the test statistic for the special hypothesisH0 LTα=R as

F =
LTα∗−R T

LT GW +GWW TZ ZTAZ
−1
ZTW GT

W L
−1

LTα∗−R

Y T IN −X XTX −XT Y

N −r−s
u

10 17
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if we put KT = LT ,Ov,s , where rk LT =u < r. The hypothesisH0 LTα=R cor-
responds with a subspace ωα Ω of dimension r−u and F in (10.17) is
F N −r−s,u,λ -distributed with the non-centrality parameter

λ=
1
σ2

LTα−R
T

LT GW +GWW TZ ZTAZ
−1
ZTWGT

W LT
−1

LTα−R

For the special case R= 0v, we write (10.12) as done in this section for model
equation (10.1) where rk LT = r−1 and γ = 0s. In (10.12) we replace X by W,
K by L, β by α∗∗, a by 0v, q by r − 1 and p by r and receive

F =
α∗∗TLT LTGWL

−1
LTα∗∗

Y T IN −W GWW T Y

N −r
r−1

10 12a

as test statistic for the test of the null hypothesis H0 LTα = 0 in model (10.1),
if γ = 0.
If we now consider the hypothesis

H0 LT α+GWW TZγ = 0

for the general model (10.1) and observe

LT α+GWW TZγ =K T
α

γ
=K Tβ = 0

with KT = LT It + 1,GWWTZ in (10.12) for α= 0a+1, we obtain a test statistic
with numerator SS

β∗TK K T XTX
−1
K

−1
K Tβ∗

and we show that this becomes α∗∗TL LTGWL
−1
LTα∗∗. This is true because

KT XTX − = LTGWL after decomposing XTX − as in (10.13) and because

α∗T,γT K T = α∗T,γT
It +1

ZTWGw
L= α∗T,γT ZTWGW L=α∗∗TL

By this we get a F-statistic for testing the hypothesis H0 LTα= 0 in (10.1) and
we have γ = 0s.
In (10.12a) we get the same numerator SS to test the hypothesis

H0 LT α+GWWTZ = 0 for model (10.1).
We use this in Section 10.3.
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10.3 Special Models of the Analysis of Covariance
for the Simple Classification

The general formulae derived in Section 10.2 are now for special cases explic-
itly given.

Definition 10.2 Model equation (10.1) with the side conditions (10.2) is the
model of the simple (one-way) classificationsof the analysis of covariance if in (10.1)

WT =

1 1 … 1 1 1 … 1 … 1 1 … 1

1 1 … 1 0 0 … 0 … 0 0 … 0

0 0 … 0 1 1 … 1 … 0 0 … 0

… … … …

… … … …

… … … …

0 0 … 0 0 0 … 0 … 1 1 … 0

and αT = μ,α1,…,αa is chosen.
From Theorem 5.3 we know that the denominator of (10.12) is

Y TAY =Y T IN −WGWW T Y =
a

i=1

ni

j= 1

y2ij−
a

i= 1

1
ni
Y 2

i = SSresy 10 18

Analogously we write with ZT = z11,…,zana

ZTAZ =
a

i= 1

ni

j= 1

z2ij−
a

i=1

1
ni
Z2
i = SSresz 10 19

and

ZTAY =
a

i= 1

ni

j=1

yijzij−
a

i= 1

1
ni
Y i Zi = SPres 10 20

Further is

SStotal = SST =ZTZ =ZTAZ +
a

i= 1

1
ni
Z2
i −

1
N
Z2 = SSZ + SSresz 10 21

and

SPtotal =Z
TY =ZTAY +

a

i= 1

1
ni
Zi Y i −

1
N
Z Y = SPbetween + SPres

10 22
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Here Y T = Y T
1 ,…,Y T

a is a vector with a independent random samples Y T
i

and the elements of the ith sample are N μ+ αi,σ2 -distributed.

Definition 10.2 is still rather general. Below we discuss special cases of
Example 10.1. Let γ be a scalar and ZT = zT = z11,…, z1n1 ,…,za1,…zana a

row vector, such that (10.1) becomes (10.3). If γ = γ1,…,γa
T and

Z =
a

i= 1
Zi with Zi = zi1,…,zini

T i= 1,…,a

then (10.1) becomes (10.4). If γ = γ11,…,γ1n1 ,…,γa1,…γana
T
and

Z =
a

i= 1

a

j=1
zij

then (10.1) becomes

yij = μ+ αi + γijzij + eij 10 23

If

ZT =
u11 u1n1 ua1 uana
v11 v1n1 va1 vana

and γ =
γ1

γ2

(10.1) becomes

yij = μ+ αi + γ1zij + γ2vij + eij 10 24

Finally we consider the case of Example 10.2. With Z and γ in Example 10.2,
Equation (10.1) becomes (10.5). In applications mainly (10.3) and (10.4) are
used, and these cases are discussed below.

10.3.1 One Covariable with Constant γ

In model equation (10.3) one covariable z occurs, and the factor is the same for
all values zij of this covariable. The BLUE γ of γ is [see (10.10) and (10.18) to
(10.20)] given by

γ =

a

i=1

ni

j= 1
yijzij−

a

i= 1

1
ni
Y i Zi

a

i= 1

ni

j= 1
z2ij−

a

i= 1

1
ni
Z2
i

=
SPres

SSresz
10 25

Formula (10.25) is the estimator of regression coefficients within classes.
We shall test:

a) The null hypothesis H0 γ = 0
b) The null hypothesis H0 α1 = α2 = = αa
c) The null hypothesis H0 α1 + γz1 = α2 + γz2 = = αa + γza
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a) To test the hypothesis H0 γ = 0, we use the test (10.16) withM = 1,c= 0; the
denominator is given by (10.18). If γ is taken from (10.25) and because
Z AZ = SQIz , formula (10.16) becomes

F =
γZTAZγ N −a−1

SSresy
=
SP2

res N −a−1
SSreszSSresy

= t2 10 26

F in (10.26) is F 1,N −a−1,λ with λ=
γ2

σ2
SSres z . If H0 is true, t = F is

t N −a−1 -distributed.
b) To test the hypothesis H0 α1 = = αa, we use a special case of (10.17) with

r = 0a−1 and

LT =

1 −1 0 0

1 0 −1 0

1 0 0 −1

10 27

LT is a a−1 × a matrix of rank a − 1. Because W TY
T
= y ,y1 ,…,ya

and correspondingly W TZ
T
= z ,z1 ,…,za and by (10.8), we obtain

α∗∗T = y1−γz1 ,…,ya −γza

so that (10.17) becomes

F =
SStotal y−

SPtotal

SStotal z
− SSZy−

SP2
res

SSresz

SSZy−
SP2

res

SSresz

N −a−1
a−1

10 28

If the null hypothesis H0 α1 = α2 = = αa is true, F is
F a−1,N −a−1 -distributed.

c) To test the null hypothesisH0 α1 + γz1 = α2 + γz2 = = αa + γza, we writeH0

with LT from (10.27) as

H0 LT α+GWW TZγ = 0a−1

The test statistic of this hypothesis has the numerator SS given in (10.12a),
and because rk LT = a−1, it is equal to

F =

a

i=1

1
ni
Y 2

i −
1
N

Y 2

a

i= 1

ni

j=1
y2ij−

a

i=1

1
ni
Y 2

i
SP2

res

SSresz

N −a−1
a−1

10 29

with SPres in (10.20) and SSresz in (10.19).
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If H0 LT α+GWW TZγ = 0a−1, then F in (10.29) is centrally
F a−1,N −a−1 -distributed.
In the Example 10.3 we demonstrate how ANCOVA tables can be obtained

by SPSS.
Table 10.1 is the ANOVA table for model equation (10.3), a special case of

Table 10.2.
For our data set we obtain an analogue output.

10.3.2 A Covariable with Regression Coefficients γiDepending on the
Levels of the Classification Factor

Similar to Section 10.3.1 the general formulae for special models may be sim-
plified. We leave the derivation for the special cases to the reader.

Table 10.2 SS, df and MS of model (10.1) of analysis of covariance.

Source of variation SS df MS

Components of α Y TWGWW TY −
1
N
Y 2 = SSA r − 1 MSA =

SSA
r−1

Covariable Y TAZ ZTAZ
−1
ZTAY = SScov s MScov =

SScov
s

Residual Y TY −Y TWGWW TY −SScov = SSres N − r − s MSres =
SSres

N −r−s

Total Y TY −
1
N
Y 2 = SStotal N − 1

Table 10.1 Analysis of covariance table for model equation (10.3) of the simple analysis of
covariance.

Source of variation SS df MS

Factor A
a

i= 1

Y 2
i

ni
−
Y 2

N
= SSA a−1 MSA =

SSA

a−1

γ
SP2

res

SSres z
1 MSγ =

SP2
res

SSres z

Residual SSres = SStotal−SSA−
SP2

res

SSres z
N −a−1 MSres =

SSres

N −a−1

Total Y TY −
1
N
Y 2 = SStotal

N − 1
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For model equation (10.4) the null hypotheses below are of interest:

H0 γ1 = γ2 = = γa

H0 γ1 = γ2 = = γa = 0

H0 α1 = α2 = = αa

We write

SSresz, i =
ni

j= 1

z2ij−
1
ni
Z2
i , SPres, i =

ni

j= 1

zijyij−
1
ni
Zi Y i

The components γi of (γ1,…, γa)
T with (10.10) are estimated by

γi =
SPres, i

SSresz, i
10 30

Because

SSres = SSresy−
a

i= 1

SP2
res, i

SSresz, i

is a quadratic form of rank N −2a,

F =

a

i=1

SP2
res, i

SSresz, i
−
SP2

res

SSresz
SSres

N −2a
a−1

10 31

under

H0 γ1 = γ2 = = γa

is F a−1,N −2a -distributed and can be used as test statistic if

H0 γ1 = γ2 = = γa

is true. If the hypothesis is not rejected, then

H0 α1 = α2 = = αa

can be tested with the test statistic (10.28), but the two tests are dependent!

10.3.3 A Numerical Example

Example 10.3 In Figure 10.1 we show laboratory data from four laboratories
after (y) and before (z) some treatments have been applied as SPSS file.
We can either continue with
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Analyze
General Linear Model

Multivariate
(with before and after as two independent variables) or

Analyze
General Linear Model

Univariate

as we did in Figure 10.1 andwill do in this example. In Figure 10.1 under ‘options’,
we use those shown in the syntax in Figure 10.2a where the first results are also
given. Further results are shown in Figure 10.2b and Figure 10.2c.

In Figure 10.2b we find the estimate of the regression coefficient under
‘parameter estimates’ in the row ‘before’ as γ = 1 45663. In Figure 10.2c we find
the estimated means and pairwise comparisons of the character ‘after’ for the
four levels of the factor (labour).
Because the regression coefficients γi (i = 1,…, 4) differ significantly from each

other, we can estimate them via the SPSS syntax:

UNIANOVA after BY level WITH before
/METHOD=SSTYPE(1)
/INTERCEPT=INCLUDE
/PRINT=PARAMETER
/CRITERIA=ALPHA(.05)
/DESIGN=level level*before.

Figure 10.1 Laboratory data after (y) and before (z) some treatments from four laboratories.
Source: Reproduced with permission of IBM.
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We obtain then the four estimates of the γi in Figure 10.3 using (10.30) as

γ1 = 1 56313
γ2 = 1 06604

γ3 = 0 66509

and

γ4 = 1 54462

(a)

(b)

Figure 10.2 (a–c) ANCOVA for the laboratory data in Figure 10.1. Source: Reproduced with
permission of IBM.
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10.4 Exercises

10.1 Give a practical example for model equation (10.24).

10.2 Derive the test statistic (10.12).

(c)

Figure 10.2 (Continued)

Figure 10.3 Results of ANCOVA for the laboratory data in Figure 10.1. Source: Reproduced
with permission of IBM.
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11

Multiple Decision Problems

A multiple decision problem is given if a decision function can take on two or
more values. A good overview about this is given in Gupta and Huang (1981).
In this chapter, mainly the case of more than two decisions is discussed, we
then speak about true multiple decision problems. Two-decision problems
occur only in special cases (for a = 2). Statistical tests as typical statistical
two-decision problems have a decision function with ‘values’ acceptation of
H0 and rejection of H0.
In this chapter we assume that statements about a ≥ 2 populations (distribu-

tions) from a set G = {P1,… , Pa} of populations must be made. These popula-
tions correspond with random variables Yi with distribution functions
F(y, θi) , i = 1 ,… , a, where for each i at least one component θij of
θTi = θi1,…,θip Ω Rp,p ≥ 1 is unknown. By a real-valued score function
g∗ θi = g∗i , the θi are mapped into R1. For independent random samples
Y T

i = yi1,…,yini with positive integer ni, decisions about the g∗i shall be made.
We already have statistical tests for this. For instance, in simple analysis of
variance model I with N(μi, σ

2) normally distributed yi, with θTi = μi,σ
2 for

g∗ θi = g∗i = μi, the null hypothesis

H0 μ1 = μ2 = = μa

has to be tested against

HA: At least one pair i , i exists with i i (i, i = 1,… , a), so that μi μi

by the test statistic

F =
MSA

MSres

(Chapter 5). If F(fA, fres 1 − α) < F with the degrees of freedom fA and fres of
MSA and MSres, respectively, H0 is rejected, or otherwise accepted. This is
an α-test of the solution of a statistical two-decision problems.
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Real multiple decision problems in this situation would be:

• Order the g∗(θi) according to magnitude.

• Select the t < a largest (smallest) g∗(θi) , 1 ≤ t ≤ a − 1.

• Decide which differences g∗(θi) − g∗(θj) , (i j; i, j = 1,… , a) are different
from zero.

• Decide which differences g∗(θ1) − g∗(θi) , (i = 2,… , a) are different from zero.

The number of possible decisions differs in the four examples above, but for
a > 2 it is always larger than two. The number of possible decisions equals

a!,
a

t
, 2

a
2 and 2a − 1, respectively.

11.1 Selection Procedures

To define selection procedures we first have to order the populations in G by
magnitude. For this we need an order relation.

11.1.1 Basic Ideas

Definition 11.1 A population Pk is considered better than the population
Pj (j, k = 1,… , a, j k), if g∗k = g

∗ θk > g∗ θj = g∗j . Pk is considered not worse than
Pj if g∗k ≥ g

∗
j .

The values g∗1 ,…,g∗a can be ordered as the a populations; if g∗i is the ith

ordered (by magnitude) g∗ value, then we have g∗1 ≤ g∗2 ≤ ≤ g∗a .
Next we renumber the populations by permuting the indices 1 ,… , a. To

avoid confusions between the original and the permuted indices, we denote
the populations, the random variables, the parameters and the score functions

afresh. The permutation
1 2 … a

1 2 … a
transforms the population Pj with

its parameter θj and its random variable yj belonging to g∗j into the population

Aj, the random variable xj with parameter ηj, respectively. We write further
g∗(θ(i)) = g(ηi) = gi and by this get the rank order

g η1 ≤ g η2 ≤ ≤ g ηa , 11 1

and Ai is not worse than Ai∗ if i ≥ i
∗. But do not forget that the permutation is

unknown, and we used it only to simplify writing.

Definition 11.2 If the set G = {A1,… , Aa} = {P1,… , Pa} shall be partitioned in
at least two subsets, so that in one of the subsets, the better elements of G
following Definition 11.1 are contained, we have a selection problem.
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A decision function (rule) performing such a partition is called selection rule or
selection procedure.

Definition 11.3 If the elements ofG are fixed (not randomly selected), we call
this model I of selection. But if the elements have been randomly sampled
from a larger universe, we call this model II of selection.

We restrict ourselves in this book to model I of selection. Model II occurs
mainly in animal and plant breeding and is discussed within population genetics
(see Rasch and Herrendörfer, 1990).
The theory of model I is about 65 years old (see Miescke and Rasch, 1996).
We consider the case that G shall be partitioned exactly into two

subsets G1 and G2 so that G =G1 G2 ,G1 G2 = Ø, G1 = {Ga,… ,Ga−t + 1}
and G2 = {Ga − t,… ,G1}.

Problem 1 (Bechhofer, 1954).

For a given risk of wrong decision β with
a

t

−1

< 1−β < 1 and d > 0 from G,

a subset MB of size t has to be selected. Selection is made based on random
samples xi1,…,xini from Ai with xi distributed components. SelectMB in such
a way that the probability P(CS) of a correct selection is

P CS =PC = P MB =G1 d G1,G2 ≥ d ≥ 1−β 11 2

In (11.2) d(ga − t + 1, ga − t) is the distance between Aa − t + 1 and Aa − t.
The distance d(G1,G2) = d(ga − t + 1, ga − t) between G1 and G2 equals at least
to the value d, given in advance. A modified formulation is as follows:

Problem 1A Select a subsetMB of size t corresponding to Problem 1 in such a
way that in place of (11.2),

P∗
C = P MB G∗

1 ≥ 1−β 11 3

Here G∗
1 is the set in G, containing all Ai with gi ≥ ga− t + 1−d.

The condition
a

t

−1

< 1−β above is reasonable, because for 1−β ≤
a

t

−1

no real statistical problem exists.Without experimenting one could then denote

any of the
a

t

−1

subsets of size t by MB and would with
a

t

−1

≥ 1−β fulfil

(11.2) and (11.3).
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Problem 2 (Gupta, 1956).

For a given risk β of an incorrect decision with
a

t

−1

< 1−β < 1, select from

G a subset MG of random size r so that

P G1 MG ≥ 1−β 11 4

By this an optimality criterion has to be considered. For instance, we could
demand that one of the following properties holds:

• E(r) Min ,

• E(w) Min , where w is the number of wrongly selected populations,

• The experimental costs are minimised.

In Problems 1 and 1A, selection is not named incorrect, as long as the distance
between the worst of the t best populations and any non-best population does
not exceed a value d fixed in advance. The region [ga − t + 1 − d, ga − t + 1] is called
indifference zone, and Problem 1 often is called indifference zone formulation
of the selection problem; Problem 2 however is called subset formulation of the
selection problem.
One can ask, which of the two problem formulations for practical purposes

should be used? Often experiments with a technologies, a varieties, medical
treatments and others have the purpose to select the best of them (i.e. t = 1).
If we then have a lot of candidates at the beginning (say about a≈ 500), such
as in drug screening, then it is reasonable, at first, to reduce the number of can-
didates by a subset procedure down to let’s say r ≤ 20 or r ≤ 50 and then in a
second step to use an indifference zone procedure with a = r.
Before special cases are handled,wewould say that in place of Problem1, Prob-

lem 1A can always be used. There are advantages in application. The researcher
could ask what can be said about the probability that we really selected the t best
populations [(concerning g(η)] if d(ga − t + 1, ga − t) < d. An answer to such a prob-
lem is not possible, but it is better to formulate Problem 1A, which can better be
interpreted andwherewenowknowat leastwith probability 1 − β thatwe elected
exactly that t populations not being more than d worse than Aa − t + 1.
Guiard (1994) could show that the least favourable cases concerning the

values of PC and P∗
C for Problem 1 and 1A are identical. By this, the lower bounds

1 − β in (11.2) and (11.3) are equal (for the same d). We call P∗
C the probability of

a d-precise selection.

11.1.2 Indifference Zone Formulation for Expectations

In this section we discuss Problem 1A and restrict ourselves on univariate
random variables yi and xi. Further let be g∗i = g

∗ θ i = g ηi =E xi = μi.
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Then d(gj, ga − t + 1) = |μj − μa − t + 1| (and d(ga − t + 1, ga − t) = μa − t + 1 − μa − t in
Problem 1). For the selection procedure, take from each of a populations a ran-
dom sample xi1,…,xini . These random samples are assumed to be stochasti-
cally independent; the components xij are assumed to be distributed like xi.
Decisions will be based on estimators of μ.
Selection Rule 11.1 From the a independent random samples, the sample

means x1,…,xa are calculated, and then we select the t populations with the
t largest means into the set MB (see Bechhofer, 1954).
Selection Rule 11.1 can be applied if only μi are an unknown component of ηi.

If further components of ηi are unknown, we apply a multistage selection pro-
cedures (see Section 11.1.2.1).

11.1.2.1 Selection of Populations with Normal Distribution

We assume that the xi introduced in Section 11.1.2 are N μi,σ
2
i -distributed

(i.e. p = 2). As mentioned above we renumber the yi so that

μi ≤ μ2 ≤ ≤ μa 11 5

Let the σ2i be known and equal to σ2. Then we have

Theorem 11.1 (Bechhofer, 1954).
Under the assumptions of this section and if ni = n (i = 1,… , a),

P0 =P max x1,…,xa− t < min xa− t + 1,…,xa , 11 6

and μa− t +1−μa− t > d, with d∗ =
d n
σ

P0 ≥ t

∞

−∞

Φ z + d∗ a− t 1−Φ z t−1φ z dz 11 7

always holds. If we apply Selection Rule 11.1, P0 in (11.7) can be replaced by PC.

Proof: P0 is smallest if

μ1 = = μa− t = μa− t + 1−d = = μa−d 11 8

We now consider the t exclusive elements:

max x1 ,…,xa− t < xu < min
a− t + 1≤ v ≤ a

u v
xv u= a− t + 1,…,a 11 9

Under (11.8) all these events have the same probability so that for
μa− t + 1−μa− t > d always P0 ≥ t P1. With f xa− t + 1 , we write as density function
of xa− t + 1

P1 =

∞

−∞

P max x1,…,xa− t < xa− t +1 < min xa− t + 2 ,…,xa f xa− t +1 d xa− t +1
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If φ(z) is as usual the density function of a N(0,1) distribution, then with

A=
n
σ

xa− t +1−μa− t and B=
n
σ

xa− t +1−μa− t + 1

we get

P0 ≥ tP1 = t

∞

−∞

A

−∞

φ u du

a− t ∞

B

φ u du

t−1

1
σ

n
2π

e−
B2
2 d xa− t + 1

Because

A−B=
n
σ

μa− t + 1−μa− t =
n
σ

d

we complete the proof by using the distribution functionΦ of the standard nor-
mal distribution.

For the often occurring special case t = 1 formula (11.7) becomes

P0 ≥

∞

−∞

Φ z + d∗ a−1φ z dz, 11 10

and this can be simplified following Theorem 11.2.

Theorem 11.2 Under the assumptions of Theorem 11.1 with t = 1 andwith μa
− μj = daj ( j = 1,… , a − 1), we receive (without the condition μa − t + 1 − μa − t > d)

P0 = P max x1,…,xa−1 < xa =
1

aπa−1

∞

−Da−1

∞

−D1

e
−
1
2
tTv R−1tv

dtv

with
da, l n

σ 2
=Dl, tv = t1,… ta−1

T
, R= ϱij and

11 11

ϱij =
1, if i= j

1
2
, if i j

i, j= 1,…, a−1

Proof: With zi = x a −x i i= 1,…, a−1 , P0 becomes

P0 =P z1 > 0,…, za−1 > 0

Further E(z1) = da , i.
From the independency of the a random samples,

var zi =
2σ2

n
and for i j

cov zi,zj = var xa =
σ2

n
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Because xik are independentlyN(μi, σ
2)-distributed, z = (z1,… , za − 1)

T is (a − 1)-
dimensional normally distributed with

E z = da,1,…,da,a−1
T =Δ and var z =Σ =

σ2

n
Ia−1 + 1a−1,a−1

Therefore P0 has the form

P0 =
Σ −1

2

2π a−1

∞

0

∞

0

e−
1
2 z−Δ TΣ−1 (z−Δ)dz

From Lemma 6.1 it follows Δ = a
σ2

n

a−1

; and after the substitution

t = n z−Δ σ 2 , we obtain for P0 Equation (11.11) with
R = (Ia − 1 + 1a − 1 , a − 1)/2.
But now da,a−1 ≤ da,a−2 ≤ ≤ da,1 and therefore

P0 ≥
1

aπa−1

∞

z

∞

z

e−
1
2 t

T
v R−1tvdtv 11 12

with z = − nda,a−1 σ 2 , that is, the least favourable case (equality sign in
(11.12)) is that with da, a − 1 = da, 1.
We now define the β-quantile z(a − 1, β) = − z(a − 1, 1 − β) of the (a − 1)-

dimensional normal distribution with expectation vector 0a − 1 and covariance
matrix R by

β =
1

aπa−1

z a−1,β

−∞

z a−1,β

−∞

e−
1
2 t

T
v R−1tvdtv 11 13

Putting in (11.12),

z = z a−1,β 2 = −z a−1, 1−β 2,

gives P0 ≥ 1−β. If da,a−1 ≥ d and if we choose n so that

n ≥
2σ2z2 a−1, 1−β

d2
, 11 14

then Selection Rule 11.1 for t = 1 at least with probability 1 − β gives a correct
selection. Table 11.1 shows the values z(a − 1, 1 − β) for a = 2(1)39.
Table 11.1 is not needed if we solve (11.14) by R. We use the OPDOE pro-

gram with
>size.selection.bechhofer(a=.beta=…delta=…, sigma=…)
This program can also be used to calculate the smallest d from n, σ2, β and a.

Selection Procedures 519



If t > 1, we determine n so that the right-hand side of (11.7) never takes a value
smaller 1 − β. Table 11.2 gives for some (a, t)-combinations the values nd σ.
Later with given d, σ, the proper n can be calculated.
In the examples the populations are given in their original form P1 ,… , Pa.

Example 11.1 Select from a = 10 given populations P1 ,… , P10 the t = 4 with
the largest expectations!
Let us assume that we know from experiments in the past that the character

investigated can be modelled by a N(μi, σ
2)-distributed random variable with

σ2 = 300.
How many observations are needed in each of the ten populations to obtain

for Problems 1 and 1A that PC ≥ 0 95 P∗
C ≥ 0 95 , respectively, if we choose

d = 22?
In Table 11.2 we find for 1 − β = 0.95 , a = 10 , t = 4

n
d
σ
= 3 9184

so that

n=
σ2 3 91842

d2
=

300 3 91842

222
= 9 52 = 10

By R of course we obtain the same value. We now observe 10 data per popula-
tion and receive the sample means in Table 11.3.
Using Selection Rule 11.1 we have to select the populations P1 , P2 , P3 and P7.

Bechhofer for Selection Rule 11.1 showed that PR is a maximal lower bound
for the probability of a correct selection if we have normal distributions with
known equal variances and use ni = n for fixed a , t and d.
If σ2 is unknown for t = 1, a two-stage selection rule is proposed.

Selection Rule 11.2 Calculate from observations (realisations of xij)
xij(i = 1,… , a; j = 1,… , n0) from the a populations A1 ,… ,Aa with 10 ≤ n0 ≤ 30
as in Table 5.2 the estimate s20 =MSres with f = a(n0 − 1) degrees of freedom.
For given d and β = 0.05 , 0.025 or 0.01, respectively, we calculate further with
the (1 – β)-quantile of the (a-1)–dimensional t-distribution with f degrees of
freedom tv(a − 1, f, 1 − β) in Table 11.4 analogously to (11.14) the value

c=
d

t a−1, f , 1−β
11 15

Then we round s20 c2 up to the next integer (no rounding, if s20 c2 is already inte-
ger) and choose the maximum of n0 and the rounded value as final sample size.
If n > n0, we take from each of a populations n − n0 additional observations;
otherwise n0 is the final sample size. With n and n0 we continue as in Selection
Rule 11.1 for t = 1.
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Table 11.1 Quantiles z(a − 1, 1 − β) of the (a − 1)-dimensional standardised normal
distribution with correlation ½.

β

a − 1 0.01 0.025 0.05 0.10 0.25

1 2.326 1.960 1.645 1.282 0.675

2 2.558 2.212 1.916 1.577 1.014

3 2.685 2.350 2.064 1.735 1.189

4 2.772 2.442 2.160 1.838 1.306

5 2.837 2.511 2.233 1.916 1.391

6 2.889 2.567 2.290 1.978 1.458

7 2.933 2.613 2.340 2.029 1.514

8 2.970 2.652 2.381 2.072 1.560

9 3.002 2.686 2.417 2.109 1.601

10 3.031 2.716 2.448 2.142 1.636

11 3.057 2.743 2.477 2.172 1.667

12 3.079 2.768 2.502 2.180 1.696

13 3.100 2.790 2.525 2.222 1.724

14 3.120 2.810 2.546 2.244 1.745

15 3.138 2.829 2.565 2.264 1.767

16 3.154 2.846 2.583 2.283 1.787

17 3.170 2.863 2.600 2.301 1.805

18 3.185 2.878 2.616 2.317 1.823

19 3.198 2.892 2.631 2.332 1.839

20 3.211 2.906 2.645 2.347 1.854

21 3.223 2.918 2.658 2.361 1.869

22 3.235 2.930 2.671 2.374 1.883

23 3.246 2.942 2.683 2.386 1.896

24 3.257 2.953 2.694 2.392 1.908

25 3.268 2.964 2.705 2.409 1.920

26 3.276 2.973 2.715 2.420 1.931

27 3.286 2.983 2.725 2.430 1.942

28 3.295 2.993 2.735 2.440 1.953

29 3.303 3.001 2.744 2.450 1.963

30 3.312 3.010 2.753 2.459 1.972

31 3.319 3.018 2.761 2.467 1.982

32 3.327 3.026 2.770 2.476 1.990

(Continued)



Table 11.1 (Continued)

β

a − 1 0.01 0.025 0.05 0.10 0.25

33 3.335 3.034 2.777 2.484 1.999

34 3.342 3.041 2.785 2.492 2.007

35 3.349 3.048 2.792 2.500 2.015

36 3.355 3.055 2.800 2.507 2.023

37 3.362 3.062 2.807 2.514 2.031

38 3.368 3.069 2.813 2.521 2.038

39 3.374 3.075 2.820 2.528 2.045

Table 11.2 Values nd
σ for the selection of the t best of a populations with normal

distribution with probability of a correct selection at least equal to 1 − β (Bechhofer, 1954).

1 − β

a= 2

t = 1

a= 3

t = 1

a= 4

t = 1

a= 4

t = 2

a= 5

t = 1

0.99 3.2900 3.6173 3.7970 3.9323 3.9196

0.98 2.9045 3.2533 3.4432 3.5893 3.5722

0.97 2.6598 3.0232 3.2198 3.3734 3.3529

0.96 2.4759 2.8504 3.0522 3.2117 3.1885

0.95 2.3262 2.7101 2.9162 3.0808 3.0552

0.94 2.1988 2.5909 2.8007 2.9698 2.9419

0.93 2.0871 2.4865 2.6996 2.8728 2.8428

0.92 1.9871 2.3931 2.6092 2.7861 2.7542

0.91 1.8961 2.3082 2.5271 2.7075 2.6737

0.90 1.8124 2.2302 2.4516 2.6353 2.5997

0.88 1.6617 2.0899 2.3159 2.5057 2.4668

0.86 1.5278 1.9655 2.1956 2.3910 2.3489

0.84 1.4064 1.8527 2.0867 2.2873 2.2423

0.82 1.2945 1.7490 1.9865 2.1921 2.1441

0.80 1.1902 1.6524 1.8932 2.1035 2.0528

0.75 0.9539 1.4338 1.6822 1.9038 1.8463

0.70 0.7416 1.2380 1.4933 1.7253 1.6614

0.65 0.5449 1.0568 1.3186 1.5609 1.4905

0.60 0.3583 0.8852 1.1532 1.4055 1.3287

0.55 0.1777 0.7194 0.9936 1.2559 1.1726



1 − β

a= 5

t = 2

a= 6

t = 1

a= 6

t = 2

a= 6

t = 3

a= 7

t = 1

0.99 4.1058 4.0121 4.2244 4.2760 4.0861

0.98 3.7728 3.6692 3.8977 3.9530 3.7466

0.97 3.5635 3.4528 3.6925 3.7504 3.5324

0.96 3.4071 3.2906 3.5393 3.5992 3.3719

0.95 3.2805 3.1591 3.4154 3.4769 3.2417

0.94 3.1732 3.0474 3.3104 3.3735 3.1311

0.93 3.0795 2.9496 3.2187 3.2831 3.0344

0.92 2.9959 2.8623 3.1370 3.2026 2.9479

0.91 2.9201 2.7829 3.0628 3.1296 2.8694

0.90 2.8505 2.7100 2.9948 3.0627 2.7972

0.88 2.7257 2.5789 2.8729 2.9427 2.6676

0.86 2.6153 2.4627 2.7651 2.8368 2.5527

0.84 2.5156 2.3576 2.6677 2.7411 2.4486

0.82 2.4241 2.2609 2.5784 2.6535 2.3530

0.80 2.3391 2.1709 2.4955 2.5720 2.2639

0.75 2.1474 1.9674 2.3086 2.3887 2.0626

0.70 1.9765 1.7852 2.1421 2.2256 1.8824

0.65 1.8191 1.6168 1.9888 2.0756 1.7159

0.60 1.6706 1.4575 1.8443 1.9342 1.5583

0.55 1.5277 1.3037 1.7054 1.7985 1.4062

1 − β

a= 7

t = 2

a= 7

t = 3

a= 8

t = 1

a= 8

t = 2

a= 8

t = 3

0.99 4.3140 4.3926 4.1475 4.3858 4.4807

0.98 3.9917 4.0758 3.8107 4.0669 4.1683

0.97 3.7895 3.8773 3.5982 3.8668 3.9728

0.96 3.6385 3.7293 3.4390 3.7175 3.8270

0.95 3.5164 3.6097 3.3099 3.5968 3.7093

0.94 3.4130 3.5086 3.2002 3.4946 3.6097

0.93 3.3228 3.4203 3.1043 3.4054 3.5229

0.92 3.2423 3.3417 3.0186 3.3258 3.4456

0.91 3.1693 3.2704 2.9407 3.2537 3.3755

0.90 3.1024 3.2051 2.8691 3.1876 3.3113

(Continued)
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Table 11.2 (Continued)

1 − β

a= 7

t = 2

a= 7

t = 3

a= 8

t = 1

a= 8

t = 2

a= 8

t = 3

0.88 2.9824 3.0880 2.7406 3.0691 3.1963

0.86 2.8764 2.9847 2.6266 2.9644 3.0948

0.84 2.7806 2.8915 2.5235 2.8698 3.0032

0.82 2.6929 2.8061 2.4286 2.7832 2.9194

0.80 2.6113 2.7269 2.3403 2.7027 2.8416

0.75 2.4277 2.5485 2.1407 2.5215 2.6666

0.70 2.2641 2.3899 1.9621 2.3601 2.5111

0.65 2.1137 2.2442 1.7970 2.2116 2.3683

0.60 1.9719 2.1071 1.6407 2.0718 2.2340

0.55 1.8355 1.9754 1.4899 1.9374 2.1051

1 − β

a= 8

t = 4

a= 9

t = 1

a= 9

t = 2

a= 9

t = 3

a= 9

t = 4

0.99 4.5078 4.1999 4.4455 4.5513 4.5950

0.98 4.1972 3.8653 4.1292 4.2423 4.2888

0.97 4.0029 3.6543 3.9308 4.0489 4.0974

0.96 3.8581 3.4961 3.7829 3.9048 3.9548

0.95 3.7412 3.3679 3.6633 3.7885 3.8398

0.94 3.6424 3.2590 3.5620 3.6902 3.7426

0.93 3.5562 3.1637 3.4736 3.6045 3.6579

0.92 3.4794 3.0785 3.3948 3.5280 3.5825

0.91 3.4099 3.0012 3.3234 3.4589 3.5142

0.90 3.3462 2.9301 3.2579 3.3955 3.4516

0.88 3.2322 2.8024 3.1405 3.2820 3.3395

0.86 3.1316 2.6893 3.0368 3.1818 3.2408

0.84 3.0408 2.5868 2.9433 3.0915 3.1518

0.82 2.9577 2.4926 2.8575 3.0088 3.0703

0.80 2.8807 2.4049 2.7778 2.9321 2.9947

0.75 2.7074 2.2067 2.5984 2.7596 2.8249

0.70 2.5535 2.0293 2.4387 2.6064 2.6741

0.65 2.4122 1.8653 2.2919 2.4658 2.5359

0.60 2.2794 1.7102 2.1535 2.3335 2.4059

0.55 2.1520 1.5604 2.0206 2.2066 2.2814



1 − β

a= 10

t = 1

a= 10

t = 2

a= 10

t = 3

a= 10

t = 4

a= 10

t = 5

0.99 4.2456 4.4964 4.6100 4.6648 4.6814

0.98 3.9128 4.1823 4.3037 4.3619 4.3796

0.97 3.7030 3.9854 4.1120 4.1727 4.1911

0.96 3.5457 3.8385 3.9693 4.0319 4.0509

0.95 3.4182 3.7198 3.8541 3.9184 3.9378

0.94 3.3099 3.6193 3.7567 3.8224 3.8422

0.93 3.2152 3.5316 3.6718 3.7387 3.7589

0.92 3.1305 3.4534 3.5962 3.6643 3.6848

0.91 3.0536 3.3826 3.5277 3.5969 3.6177

0.90 2.9829 3.3176 3.4650 3.5351 3.5563

0.88 2.8560 3.2011 3.3526 3.4246 3.4463

0.86 2.7434 3.0983 3.2535 3.3272 3.3494

0.84 2.6418 3.0055 3.1642 3.2395 3.2621

0.82 2.5479 2.9203 3.0824 3.1591 3.1822

0.80 2.4608 2.8413 3.0065 3.0847 3.1082

0.75 2.2637 2.6635 2.8360 2.9174 2.9419

0.70 2.0873 2.5051 2.6845 2.7690 2.7944

0.65 1.9242 2.3595 2.5456 2.6330 2.6592

0.60 1.7700 2.2224 2.4149 2.5052 2.5322

0.55 1.6210 2.0907 2.2896 2.3827 2.4106

1 − β

a= 11

t = 2

a= 11

t = 3

a= 11

t = 4

a= 11

t = 5

a= 12

t = 3

0.99 4.5408 4.6602 4.7229 4.7506 4.7039

0.98 4.2286 4.3560 4.4227 4.4522 4.4016

0.97 4.0329 4.1658 4.2353 4.2660 4.2126

0.96 3.8869 4.0242 4.0958 4.1274 4.0719

0.95 3.7689 3.9099 3.9834 4.0158 3.9584

0.94 3.6691 3.8133 3.8883 3.9214 3.8624

0.93 3.5819 3.7291 3.8055 3.8392 3.7788

0.92 3.5042 3.6541 3.7318 3.7661 3.7043

0.91 3.4338 3.5862 3.6652 3.6999 3.6369

0.90 3.3693 3.5239 3.6041 3.6393 3.5751

(Continued)
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Table 11.2 (Continued)

1 − β

a= 11

t = 2

a= 11

t = 3

a= 11

t = 4

a= 11

t = 5

a= 12

t = 3

0.88 3.2536 3.4126 3.4948 3.5309 3.4645

0.86 3.1514 3.3143 3.3984 3.4354 3.3670

0.84 3.0592 3.2258 3.3117 3.3494 3.2791

0.82 2.9747 3.1447 3.2323 3.2707 3.1986

0.80 2.8963 3.0695 3.1587 3.1978 3.1240

0.75 2.7196 2.9006 2.9934 3.0341 2.9563

0.70 2.5624 2.7505 2.8468 2.8890 2.8075

0.65 2.4179 2.6129 2.7125 2.7560 2.6709

0.60 2.2818 2.4835 2.5863 2.6312 2.5426

0.55 2.1510 2.3594 2.4654 2.5117 2.4196

1 − β

a= 12

t = 4

a= 12

t = 5

a= 13

t = 4

a= 13

t = 5

a= 14

t = 5

0.99 4.7725 4.8083 4.8158 4.8576 4.9005

0.98 4.4746 4.5126 4.5197 4.5641 4.6089

0.97 4.2886 4.3281 4.3350 4.3810 4.4271

0.96 4.1502 4.1909 4.1975 4.2449 4.2919

0.95 4.0387 4.0803 4.0867 4.1353 4.1831

0.94 3.9444 3.9870 3.9932 4.4027 4.0911

0.93 3.8623 3.9057 3.9117 3.9521 4.0111

0.92 3.7893 3.8333 3.8391 3.8904 3.9399

0.91 3.7232 3.7678 3.7735 3.8255 3.8756

0.90 3.6626 3.7079 3.7134 3.7661 3.8166

0.88 3.5543 3.6007 3.6059 3.6599 3.7113

0.86 3.4588 3.5063 3.5111 3.5664 3.6185

0.84 3.3729 3.4213 3.4259 3.4822 3.5350

0.82 3.2942 3.3435 3.3478 3.4052 3.4586

0.80 3.2213 3.2715 3.2755 3.3339 3.3879

0.75 3.0577 3.1098 3.1132 3.1739 3.2292

0.70 2.9125 2.9666 2.9693 3.0321 3.0887

0.65 2.7796 2.8354 2.8374 2.9023 2.9600

0.60 2.6547 2.7122 2.7137 2.7805 2.8394

0.55 2.5352 2.5944 2.5952 2.6640 2.7240



Table 11.3 Sample means of Example 11.1.

Population P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

yi 138 6 132 2 138 4 122 7 130 6 131 0 139 2 131 7 128 0 122 5

Table 11.4 Quantiles t(a − 1, f, 1 − β)of the (a − 1)-dimensional t-distributionwithcorrelation1/2.

β = 0.05 a − 1

f 1 2 3 4 5 6 7 8 9

5 2.02 2.44 2.68 2.85 2.98 3.08 3.16 3.24 3.30

6 1.94 2.34 2.56 2.71 2.83 2.92 3.00 3.07 3.12

7 1.89 2.27 2.48 2.62 2.73 2.82 2.89 2.95 3.01

8 1.86 2.22 2.42 2.55 2.66 2.74 2.81 2.87 2.92

9 1.83 2.18 2.37 2.50 2.60 2.68 2.75 2.81 2.86

10 1.81 2.15 2.34 2.47 2.56 2.64 2.70 2.76 2.81

11 1.80 2.13 2.31 2.44 2.53 2.60 2.67 2.72 2.77

12 1.78 2.11 2.29 2.41 2.50 2.58 2.64 2.69 2.74

13 1.77 2.09 2.27 2.39 2.48 2.55 2.61 2.66 2.71

14 1.76 2.08 2.25 2.37 2.46 2.53 2.59 2.64 2.69

15 1.75 2.07 2.24 2.36 2.44 2.51 2.57 2.62 2.67

16 1.75 2.06 2.23 2.34 2.43 2.50 2.56 2.61 2.65

17 1.74 2.05 2.22 2.33 2.42 2.49 2.54 2.59 2.64

18 1.73 2.04 2.21 2.32 2.41 2.48 2.53 2.58 2.62

19 1.73 2.03 2.20 2.31 2.40 2.47 2.52 2.57 2.61

20 1.72 2.03 2.19 2.30 2.39 2.46 2.51 2.56 2.60

24 1.71 2.01 2.17 2.28 2.36 2.43 2.48 2.53 2.57

30 1.70 1.99 2.15 2.25 2.33 2.40 2.45 2.50 2.54

40 1.68 1.97 2.13 2.23 2.31 2.37 2.42 2.47 2.51

60 1.67 1.95 2.10 2.21 2.28 2.35 2.39 2.44 2.48

120 1.66 1.93 2.08 2.18 2.26 2.32 2.37 2.41 2.45

∞ 1.64 1.92 2.06 2.16 2.23 2.29 2.34 2.38 2.42

β = 0.025 a − 1

f 1 2 3 4 5 6 7 8 9

5 2.57 3.03 3.39 3.66 3.88 4.06 4.22 4.36 4.49

6 2.45 2.86 3.18 3.41 3.60 3.75 3.88 4.00 4.11

(Continued)



Table 11.4 (Continued)

β = 0.025 a − 1

f 1 2 3 4 5 6 7 8 9

7 2.36 2.75 3.04 3.24 3.41 3.54 3.66 3.76 3.86

8 2.31 2.67 2.94 3.13 3.28 3.40 3.51 3.60 3.68

9 2.26 2.61 2.86 3.04 3.18 3.29 3.39 3.48 3.55

10 2.23 2.57 2.81 2.97 3.11 3.21 3.31 3.39 3.46

11 2.20 2.53 2.76 2.92 3.05 3.15 3.24 3.31 3.38

12 2.18 2.50 2.72 2.88 3.00 3.10 3.18 3.25 3.32

13 2.16 2.48 2.69 2.84 2.96 3.06 3.14 3.21 3.27

14 2.14 2.46 2.67 2.81 2.93 3.02 3.10 3.17 3.23

15 2.13 2.44 2.64 2.79 2.90 2.99 3.07 3.13 3.19

16 2.12 2.42 2.63 2.77 2.88 2.96 3.04 3.10 3.16

17 2.11 2.41 2.61 2.75 2.85 2.94 3.01 3.08 3.13

18 2.10 2.40 2.59 2.73 2.84 2.92 2.99 3.05 3.11

19 2.09 2.39 2.58 2.72 2.82 2.90 2.97 3.04 3.09

20 2.09 2.38 2.57 2.70 2.81 2.89 2.96 3.02 3.07

24 2.06 2.35 2.53 2.66 2.76 2.84 2.91 2.96 3.01

30 2.04 2.32 2.50 2.62 2.72 2.79 2.86 2.91 2.96

40 2.02 2.29 2.47 2.58 2.67 2.75 2.81 2.86 2.90

60 2.00 2.27 2.43 2.55 2.63 2.70 2.76 2.81 2.85

120 1.98 2.24 2.40 2.51 2.59 2.66 2.71 2.76 2.80

∞ 1.96 2.21 2.37 2.47 2.55 2.62 2.67 2.71 2.75

β = 0.01 a −1

f 1 2 3 4 5 6 7 8 9

5 3.37 3.90 4.21 4.43 4.60 4.73 4.85 4.94 5.03

6 3.14 3.61 3.88 4.07 4.21 4.33 4.43 4.51 4.59

7 3.00 3.42 3.66 3.83 3.96 4.07 4.15 4.23 4.30

8 2.90 3.29 3.51 3.67 3.79 3.88 3.96 4.03 4.09

9 2.82 3.19 3.40 3.55 3.66 3.75 3.82 3.89 3.94

10 2.76 3.11 3.31 3.45 3.56 3.64 3.71 3.78 3.83

11 2.72 3.06 3.25 3.38 3.48 3.56 3.63 3.69 3.74

12 2.68 3.01 3.19 3.32 3.42 3.50 3.56 3.62 3.67

13 2.65 2.97 3.15 3.27 3.37 3.44 3.51 3.56 3.61

14 2.62 2.94 3.11 3.23 3.32 3.40 3.46 3.51 3.56



11.1.2.2 Approximate Solutions for Non-normal Distributions and t = 1
Let the random variables xi be distributed in populations Ai with the distribu-
tion function F(xi; μi, ηi2,… , ηip). The distribution of the xi may be such that for
the purposes of a practical investigation, it can adequately be characterised by
the expectation μi and the standard deviation σ(μi), and we have

F xi;μi,ηi2,…,ηip ≈G xi;μi, σ μi

For a random samples of size n, the sample means xi are approximately nor-

mally distributed with expectation μi and variance
σ2 μi
n

. For n ≥ 30 the approx-

imation is in most cases sufficient for practical purposes. For t = 1 from (11.10),
by taking into account the variance homogeneity with

γ =
σ μ a −d

σ μ a

,

we obtain

P0 ≥

∞

−∞

Φ
1
γ

y+
d n

σ μ a

a−1

φ y dy 11 16

Table 11.4 (Continued)

β = 0.01 a −1

f 1 2 3 4 5 6 7 8 9

15 2.60 2.91 3.08 3.20 3.29 3.36 3.42 3.47 3.52

16 2.58 2.88 3.05 3.17 3.26 3.33 3.39 3.44 3.48

17 2.57 2.86 3.03 3.14 3.23 3.30 3.36 3.41 3.45

18 2.55 2.84 3.01 3.12 3.21 3.27 3.33 3.38 3.42

19 2.54 2.83 2.99 3.10 3.18 3.25 3.31 3.36 3.40

20 2.53 2.81 2.97 3.08 3.17 3.23 3.29 3.34 3.38

24 2.49 2.77 2.92 3.03 3.11 3.17 3.22 3.27 3.31

30 2.46 2.72 2.87 2.97 3.05 3.11 3.16 3.21 3.24

40 2.42 2.68 2.82 2.92 2.99 3.05 3.10 3.14 3.18

60 2.39 2.64 2.78 2.87 2.94 3.00 3.04 3.08 3.12

120 2.36 2.60 2.73 2.82 2.89 2.94 2.99 3.03 3.06

∞ 2.33 2.56 2.68 2.77 2.84 2.89 2.93 2.97 3.00
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Table 11.5 Approximative values of d n σ μ for the selection of the population with the
largest expectations from a populations for the given minimum probability 1 − β of a correct

selection with γ =
σ μ a −d

σ μ a
.

1 − β
= 0.90 γ

a 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

2 1.495 1.564 1.641 1.724 1.812 1.905 2.002 2.102 2.205

3 1.770 1.877 1.990 2.108 2.230 2.357 2.487 2.620 2.757

4 1.914 2.041 2.173 2.310 2.452 2.597 2.745 2.896 3.050

5 2.010 2.150 2.296 2.446 2.600 2.757 2.918 3.081 3.247

6 2.081 2.231 2.387 2.547 2.710 2.877 3.047 3.219 3.394

7 2.136 2.295 2.459 2.626 2.797 2.971 3.149 3.329 3.511

8 2.182 2.348 2.518 2.692 2.869 3.050 3.233 3.419 3.607

9 2.221 2.393 2.568 2.747 2.930 3.116 3.304 3.496 3.689

10 2.255 2.431 2.611 2.796 2.983 3.173 3.366 3.562 3.760

1 − β = 0.95

2 1.918 2.008 2.106 2.213 2.326 2.445 2.569 2.698 2.830

3 2.178 2.300 2.430 2.567 3.710 2.858 3.011 3.169 3.329

4 2.315 2.456 2.603 2.757 2.916 3.081 3.249 3.422 3.599

5 2.407 2.560 2.719 2.885 3.055 3.231 3.410 3.594 3.781

6 2.475 2.637 2.806 2.980 3.159 3.343 3.531 3.723 3.918

7 2.528 2.699 2.875 3.056 3.242 3.432 3.621 3.825 4.027

8 2.572 2.749 2.931 3.118 3.310 3.506 3.706 3.910 4.117

9 2.610 2.792 2.979 3.171 3.368 3.569 3.774 3.982 4.194

10 2.642 2.829 3.021 3.217 3.418 3.623 3.832 4.045 4.260

1 − β = 0.99

2 2.713 2.840 2.979 3.130 3.290 3.458 3.634 3.816 4.002

3 2.945 3.097 3.261 3.435 3.617 3.808 4.005 4.209 4.418

4 3.070 3.237 3.415 3.602 3.797 4.000 4.210 4.426 4.647

5 3.155 3.332 3.519 3.715 3.920 4.131 4.350 4.574 4.804

6 3.218 3.403 3.598 3.801 4.012 4.231 4.455 4.686 4.922

7 3.268 3.460 3.660 3.869 4.086 4.310 4.540 4.776 5.017

8 3.309 3.506 3.712 3.926 4.147 4.376 4.611 4.851 5.096

9 3.344 3.546 3.756 3.974 4.200 4.432 4.671 4.915 5.164

10 3.375 3.581 3.795 4.017 4.246 4.481 4.723 4.971 5.223



The selection rule below is a modification from Chambers and Jarratt (1964) of
Selection Rule 11.2.

Selection Rule 11.2a Take from each population Ai a random sample of size

n0 (10 ≤ n0 ≤ 30) and determine the maximum sample mean x 0
a , and use it as

estimate of μa. Determine the sample sizes n per population with σ x a in place
of σ(μa) so that the integral in (11.16) is not below 1 − β. Then observe (if n > n0)
n − n0 further values from each population. We then say that the population
with the largest sample mean calculated with n observations is best.

In Selection Rule 11.2a it was assumed that the function σ(μ) is known. If x is
B(n, p)-distributed, we have σ μ = μ 1−μ ; if x is P(λ)-distributed, we have
σ μ = μ If σ(μ) is unknown, we estimate it by regression of s on x. But for
non-normal continuous distributions, we also can use the method described
in Section 11.1.2.1 because it is robust against non-normality as shown in Dom-
röse and Rasch (1987).

The values
d n

σ μ a

needed in (11.16) can be found in Table 11.5.

11.1.3 Selection of a Subset Containing the Best Population with
Given Probability

We discuss now Problem 2 of Section 11.1.1 for t = 1 , Y = y1 = y andΩ = R1. Let
yi in Pi be continuously distributed with distribution function F(y, θ) and density
function f(y, θ). Let F and f be known but the θi of the Pi be unknown. We
assume that g∗(θ) = θ.
In Problem 2 we have to find a (non-empty) subset Ai1 ,…,Air =MG of the

populations A1 ,… ,Aa so that the probability of a correct selection P(CS) that
the best population (with parameter ϑ(a)) is in the subset is at least 1 − β. Again
as in Section 11.1.2, we assume 1

a < 1−β < 1. If for more than one Pi the param-
eter is θ(a) = ηa, any of them is called the best.
The following selection rule (class of selection rules) stems from Gupta and

Panchapakesan (1970, 1979).

Selection Rule 11.3 First we select a proper estimator η of the unknown
parameters η (and θ). With H η,η and h η,η , we denote the distribution
function and the density function of ηi, respectively. We assume that for η
> η , always H η,η ≤H η,η and for at least one η, we have H η,η <H η,η
Further let du , v(x) be a real differentiable function with parameters u ≥ 1,

v ≥ 0, so that for each x from the domain of definitions Ω of H(x, η), the condi-
tions below are fulfilled:
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du,v x ≥ x,

d1,0 x = x,

du,v x is continuous in u and v,

and at least one of the relations

lim
v ∞

du,v x = ∞ for given u,

lim
u ∞

du,v x = ∞ for given v and x 0

is valid.
Then MG contains all populations Ai, for which

du,v η1 ≥ ηa

Analogous to (11.10) is by Selection Rule 11.3

P CS ≥

Ω

H du,v η ,ηa
a−1h η,ηa dη 11 17

We put

Ω

H du,v η ,η ih η,ηa dη= I η,u,v, i+ 1 , 11 18

so that (11.17) can be written as P(CS) ≥ I(ηa, u, v, a). For I in (11.18) it follows
from the conditions of Selection Rule 11.3:

I η,u,v,a ≥
1
a
,

I η,1,0,a =
1
a
,

either lim
v ∞

I η,u,v,a = 1 for fixed u

or lim
u ∞

I η,u,v,a = 1 for fixed v

or both

11 19

From (11.19) it follows that u and v are chosen appropriately so that
P(CS) > 1 − β can be fulfilled for each β. This leads to

Theorem 11.3 For a continuous random variable η with H η,η ≥H η,η for
η < η Ω = R1 and t = 1, Problem 2 of Section 11.1.1 is solvable with Selection

Rule 11.3 for all β with
1
a
< β < 1.

Gupta and Panchapakesan (1970) proved the theorem below under the
assumption that (ηi ≤ ηj)
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∂

∂ηi
H du,v η ,ηi h η,ηj −

∂

∂η
du,v η

∂

∂ηi
H η,ηi h du,v η ,ηj ≥ 0 11 20

Theorem 11.4 (Gupta and Panchapakesan).
By Selection Rule 11.3 and with the assumptions of Theorem 11.3 and (11.20),

the supremum of the expectations E(r) and E(w) is taken for η1 = = ηa. Here
w is the number of those Ai in MG obtained by Selection Rule 11.3, not having
the largest parameter ηa.

Therefore η1 = = ηa is the least favourable parameter constellation for
Problem 2.
We now consider the special case that θ is a location parameter with

Ω = (−∞,∞). Then essential simplifications appear, because H η,η =
G η−η −∞ < η < ∞ . Then (11.20) with

d∗
u,v η =

∂du,v η

∂η

becomes

d∗
u,v η h η,ηi h du,v η ,ηj −h η,ηi h du,v η ,ηi ≥ 0

If the distribution of η has a monotone likelihood ratio in η, then (11.20) is ful-
filled. An appropriate choice of du,v η is d η = η+ d u= 1, v= d with
η= x and η= μ, so that by Selection Rule 11.3, all the Ai are put inMG, for which

xi ≥ x a −d x a largest sample mean 11 21

We have to choose d so that

∞

−∞

H x+ d,μ a−1h x,μ dx= 1−β 11 22

Another important special case is that θ is a scale parameter and H η,η =

G
η

η
. Then Ω = [0,∞) and η ≥ 0, and (11.20) with η= s2,η= σ2 becomes

s2d∗
u,v s2 h s2,σ2i h du,v s2 ,σ2j −du,v s2 h du,v s2 ,σ2i h s2,σ2j ≥ 0

If the distribution of y has a monotone likelihood ratio and

s2d∗
u,v s2 ≥ du,v s2 ≥ 0,

then (11.20) is fulfilled. Therefore
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du,v s2 =us2 u > 1

is a possible (and often used) choice of du , v(s
2).

11.1.3.1 Selection of the Normal Distribution with the Largest Expectation
The most important special case is that x is N(μ, σ2)-distributed; σ2 may be
unknown. From n observations from each of the Ai(i = 1,… , a), the sample
means xi are calculated. The likelihood ratio of the normal distribution and that
of the t-distribution are monotone for known as well as for unknown σ2. There-
fore a selection rule, ‘Choose forMG all Ai, with xi ≥ x a −d’, can be used. x a is
the largest sample mean. We start with the case where σ2 is known. We put
d =Dσ n with a D (analogous to (11.22)) so that

1−β =

∞

−∞

Φ u+D a−1φ u du 11 23

whereΦ and φ are the distribution function and the density function of the stan-
dardised normal distribution, respectively. If σ2 is unknown, we write approx-
imately d≈Ds n, where s2 is an estimate of σ2, based on f degrees of freedom.
(11.23) is replaced by

1−β =

∞

0

∞

−∞

Φ u+Dy a−1φ u hf y dudy, 11 24

where hf (y) is the density function of χ2f f and χ2f is CS( f )-distributed.

In Table 11.2 the values D = d fulfilling (11.23) are given in dependency of α
and β for t = 1. If the experimenter selected the values d, α and β, then n can be
calculated by (11.14).
For independent random samples from a populations with normal distribu-

tion and known variance, Problem 1 for t = 1 is solved by Selection Rule 11.1,
and Problem 2 is solved by Selection Rule 11.3, leading to the same sample size.

11.1.3.2 Selection of the Normal Distribution with Smallest Variance

Let the random variable x in Pi be N μi,σ
2
i -distributed. From n observations

from each population Pi(i = 1,… , a) with known μi

qi =
1
n

n

j= 1

xij−μi
2

and with unknown μi,
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qi =
1

n−1

n

j= 1

xij−xi
2
, i= 1,…,a

are calculated. qiwill be used to select the population with the smallest variance;
each qi has the same number f of degrees of freedom (if μi is known we have f=n,
and if μi is unknown then f = n − 1).
We use du , v(q) = zq and the selection for the smallest variance follows from

Selection Rule 11.4.

Selection Rule 11.4. Put into MG all Ai, for which

s2i ≤
s21
z∗

z−1 = z∗ ≤ 1 ,

s21 is the smallest sample variance. z∗ = z(f, a, β) depends on the degrees of free-

dom f, on the number a of populations and on 1 − β.
For z∗ we choose the largest number, so that the right-hand side of (11.17)

equals 1 − β. We have to calculate P(CS) for the least favourable case given
by s22 = = s2a (monotonicity of the likelihood ratio is given). We denote

the estimates of σ2i as usual by s2i and formulate

Theorem 11.5 Let the yi in a populations beN μi,σ
2
i -distributed. There may

be independent estimators s2i of σ
2
i with f degrees of freedom each. Select from

the a populations a subset NG so that it contains the smallest variance σ21 at
least with probability 1 − β. Using Selection Rule 11.3 with an appropriate
chosen z∗ = z(f, a, β), the probability of a correct selection P(CS) then is

P CS ≥

∞

0

1−Gf z∗v a−1
gf v dv 11 25

In (11.25) Gf and gf are the distribution function and the density function of the
central χ2-distribution with f degrees of freedom, respectively.

Proof: If s2i is the estimate of σ2i , we have (because z
∗ < 1)

P CS = P s21 ≤
1
z∗

min s22,…,s2a

= P
z∗ f s21
σ22

≤
f s22
σ22

,…,
z∗f s21
σ2a

≤
f s2a
σ2a

=
a

j=2

P
f s2j
σ2j

≥
z∗ σ21
σ2j

f s21
σ21

,
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and further

P CS =

∞

0

gf v
a

j= 2

1−Gf
z∗ σ21
σ2j

v dv 11 26

If σ21 = σ
2
2 = = σ2a, then P(CS) is minimum and this completes the proof.

Table 11.6 shows the values z∗ = z(f, a, β) that make the right-hand side of
(11.25) equal to 1−β. Approximately z∗ = z(f, a, β) can also obtained from
Table 11.2 using

n
d
σ
=

1
2
f −1 ln

1
z∗

Table 11.6 Values of 104z = 104z(f, a, β), for which the right-hand side of (11.25) equals
1 − β.

a − 1

f 1 2 3 4 5 6 7 8 9 10

1−β=0 75

2 3333 1667 1111 0833 0667 0556 0476 0417 0310 0333

4 4844 3168 2494 2112 1860 1678 1540 1530 1340 1264

6 5611 4040 3369 2973 2704 2505 2350 2225 2121 2033

8 6099 4628 3978 3587 3317 3116 2957 2828 2720 2627

10 6446 5060 4434 4054 3788 3588 3430 3301 3192 3098

12 6711 5395 4794 4424 4165 3968 3813 3684 3576 3483

14 6921 5667 5087 4728 4475 4283 4130 4004 3898 3806

16 7094 5892 5332 4984 4737 4550 4400 4276 4171 4081

18 7239 6084 5542 5203 4963 4779 4633 4511 4408 4319

20 7364 6250 5724 5394 5160 4980 4837 4718 4616 4529

22 7472 6395 5883 5562 5333 5158 5017 4900 4801 4715

24 7568 6523 6026 5712 5488 5317 5179 5064 4967 4882

26 7653 6635 6153 5847 5628 5460 5325 5212 5117 5034

28 7729 6742 6268 5969 5754 5590 5457 5347 5253 5171

30 7798 6836 6373 6080 5870 5708 5578 5470 5377 5297

32 7861 6922 6469 6182 5976 5817 5689 5583 5492 5413

34 7919 7001 6558 6276 6074 5918 5792 5687 5598 5520
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Table 11.6 (Continued)

a − 1

f 1 2 3 4 5 6 7 8 9 10

36 7972 7074 6640 6363 6164 6011 5887 5784 5696 5619

38 8021 7142 6715 6444 6248 6098 5976 5874 5788 5712

40 8067 7205 6786 6519 6327 6178 6058 5958 5873 5799

42 8109 7264 6852 6590 6400 6254 6136 6038 5952 5880

44 8149 7319 6914 6656 6470 6326 6209 6112 6029 5957

46 8186 7371 6973 6718 6534 6393 6278 6182 6100 6029

48 8221 7420 7028 6777 6596 6456 6343 6248 6167 6097

50 8254 7466 7080 6832 6654 6516 6404 6311 6231 6162

1−β= 0 90

2 1111 0556 0370 0278 0222 0185 0159 0139 0123 0111

4 2435 1630 1297 1106 0979 0886 0816 0759 0713 0674

6 3274 2417 2039 1813 1657 1541 1450 1377 1315 1263

8 3862 3002 2610 2370 2202 2076 1976 1894 1826 1766

10 4306 3457 3062 2818 2645 2515 2410 2325 2252 2190

12 4657 3825 3433 3188 3014 2881 2775 2688 2613 2549

14 4944 4132 3744 3501 3327 3194 3087 2999 2924 2859

16 5186 4392 4011 3770 3597 3464 3358 3270 3194 3129

18 5394 4618 4243 4004 3833 3702 3596 3508 3433 3368

20 5575 4816 4447 4112 4043 3913 3808 3720 3646 3581

22 5734 4992 4629 4397 4230 4101 3997 3911 3837 3772

24 5876 5149 4792 4564 4399 4272 4169 4083 4010 3946

26 6004 5291 4940 4715 4553 4427 4325 4240 4168 4104

28 6119 5420 5076 4854 4693 4569 4468 4384 4312 4250

30 6225 5539 5199 4981 4822 4700 4600 4517 4446 4384

32 6322 5648 5314 5098 4942 4820 4722 4640 4570 4508

34 6411 5749 5419 5207 5052 4933 4836 4754 4684 4624

36 6493 5842 5518 5308 5156 5037 4941 4861 4792 4732

38 6570 5929 5609 5402 5252 5135 5040 4960 4892 4833

40 6642 6011 5695 5491 5342 5227 5133 5054 4987 4928

42 6709 6087 5776 5574 5427 5313 5220 5142 5076 5017

44 6772 6159 5852 5653 5508 5394 5303 5226 5160 5102

46 6831 6227 5924 5727 5583 5472 5381 5304 5239 5182

(Continued)



Table 11.6 (Continued)

1−β= 0 90

48 6887 6291 5992 5797 5655 5544 5454 5379 5314 5258

50 6940 6352 6056 5863 5723 5614 5525 5450 5386 5330

1−β= 0 95

2 0526 0263 0175 0132 0105 0088 0075 0066 0058 0053

4 1565 1062 0851 0728 0646 0586 0540 0504 0473 0448

6 2334 1749 1486 1327 1217 1134 1069 1017 0972 0935

8 2909 2293 2007 1830 1706 1612 1573 1476 1424 1379

10 3358 2732 2436 2250 2119 2018 1938 1872 1815 1767

12 3722 3096 2796 2606 2470 2366 2283 2214 2155 2104

14 4026 3405 3103 2911 2774 2668 2583 2512 2452 2399

16 4285 3671 3370 3178 3039 2933 2847 2775 2714 2661

18 4510 3903 3604 3413 3274 3168 3081 3009 2947 2894

20 4708 4109 3813 3622 3484 3378 3291 3219 3157 3104

22 4883 4294 4000 3811 3674 3568 3481 3409 3348 3294

24 5041 4460 4170 3982 3846 3740 3654 3582 3521 3467

26 5184 4611 4324 4138 4003 3898 3812 3741 3680 3626

28 5313 4749 4465 4281 4147 4043 3958 3887 3826 3773

30 5432 4876 4595 4413 4280 4177 4093 4022 3962 3909

32 5542 4993 4716 4536 4404 4302 4218 4148 4088 4036

34 5643 5102 4828 4649 4519 4418 4335 4265 4206 4154

36 5737 5203 4932 4756 4627 4526 4444 4375 4316 4264

38 5825 5298 5030 4855 4728 4628 4546 4478 4419 4368

40 5907 5387 5122 4949 4822 4724 4643 4575 4517 4466

42 5984 5470 5208 5037 4912 4814 4734 4667 4609 4558

44 6057 5549 5290 5120 4996 4899 4820 4753 4696 4646

46 6126 5624 5367 5199 5076 4980 4901 4835 4778 4729

48 6190 5694 5440 5274 5152 5057 4979 4913 4857 4808

50 6252 5761 5510 5345 5224 5130 5053 4988 4932 4883

1 − β = 0.99

2 0101 0051 0034 0025 0020 0017 0014 0013 0011 0010

4 0626 0434 0351 0302 0269 0245 0226 0211 0199 0189

6 1181 0907 0779 0701 0646 0605 0572 0545 0522 0503

8 1659 1339 1186 1089 1024 0968 0926 0891 0862 0837

10 2062 1717 1548 1440 1362 1303 1255 1215 1181 1152



11.2 Multiple Comparisons

Weknow fromChapter 3 that in a statistical test concerning a parameter θ Ω, a
null hypothesisH0 : θ ω is tested against an alternative hypothesisHA : θ Ω\ω,
and one has to decide between H0 and HA. If however the parameter space Ω is
partitioned into more than two disjoint subsets ω1,…,ωr , r

i= 1ωi =Ω, , we can
call one of the hypothesesHi : θ ωi null hypothesis. For instance, we can accept
one (null) hypothesis (H1 : θ ω1) or reject (H2 : θ ω2) or make no statement
(H3 : θ ω3) (ω3 is then an indifference zone).
Real multiple decision problems (with more than two decisions) are

present. If results of some tests are considered simultaneously, their risks
must be mutually evaluated. Of course we cannot give a full overview about
methods available in this field. For more details, see Miller (1981) and
Hsu (1996).

Table 11.6 (Continued)

1 − β = 0.99

12 2407 2046 1867 1752 1668 1604 1552 1508 1472 1439

14 2704 2334 2149 2029 1942 1874 1820 1774 1734 1700

16 2966 2590 2401 2278 2188 2118 2061 2014 1973 1937

18 3197 2819 2627 2501 2410 2338 2280 2232 2190 2153

20 3404 3025 2831 2704 2612 2539 2480 2431 2388 2351

22 3591 3212 3017 2890 2796 2723 2663 2613 2570 2532

24 3761 3382 3188 3060 2966 2892 2832 2782 2738 2700

26 3916 3539 3344 3216 3122 3048 2988 2937 2894 2855

28 4059 3684 3490 3362 3268 3194 3133 3082 3038 3000

30 4191 3818 3635 3497 3403 3329 3268 3217 3173 3135

32 4314 3943 3750 3623 3529 3455 3395 3344 3300 3261

34 4428 4060 3868 3741 3648 3574 3513 3462 3418 3380

36 4535 4169 3979 3852 3759 3685 3625 3574 3530 3492

38 4636 4272 4089 3957 3864 3791 3730 3680 3636 3598

40 4730 4369 4181 4056 3963 3890 3830 3780 3736 3698

42 4819 4461 4274 4149 4057 3984 3925 3874 3831 3793

44 4903 4548 4362 4238 4146 4074 4014 3964 3921 3883

46 4983 4630 4445 4322 4231 4159 4100 4050 4007 3969

48 5059 4709 4525 4402 4312 4240 4181 4132 4089 4051

50 5131 4784 4601 4479 4389 4318 4259 4210 4167 4129
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We restrict ourselves in this section on hypotheses about expectations of nor-
mal distributions. The set of populations G = (P1,… , Pa) can, for instance, be
interpreted as levels in a simple analysis of variance model I or as level combi-
nations in higher classifications.
Let the random variable yi in Pi be N(μi, σ

2)-distributed.We assume that from
eachpopulationsPi, an independent randomsampleY T

i = yi1,…,yini i= 1,…,a
of size ni is obtained. Concerning the μi we consider several problems.

Problem 3 The null hypothesis

H0 μ1 = μ2 = = μa

has to be tested against the alternative hypothesis

HA there exists at least one pair i, j with i j for that μi μj

with a given first kind risk αe.

Problem 4 Each of the
a

2
null hypotheses

H0ij μi = μj i j; i, j= 1,…,a

has to be tested against the alternative hypothesis

HAij μi μj,

where the first kind risk αij is given. Often we choose αij = α. If we perform
a

2
t-tests, then we speak about the multiple t-procedure.
If for each i j the null hypothesis H0ij is correct, then H0 in Problem 3 is also

correct. Therefore one is often interested in the probability 1 − αe, that none of the
a

2
null hypotheses H0ij is wrongly rejected. We call the αij error probabilities

per comparison (comparison-wise risk of the first kind) and αe error probability
per experiment (global error probability or experiment-wise risk of the
first kind).

Problem 5 One of the populations (w.l.o.g. Pa) is prominent (a standard
method, a control treatment and so on). Each of the a − 1 null hypotheses

H0i μi = μa i= 1,…, a−1

has to be tested against the alternative hypothesis

HAi μi μa
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Again the first kind risk αi is given in advance. Often we choose αi = α. As in
Problem 4 we like to know the probability 1 − αe, that none of the a − 1 null
hypotheses is wrongly rejected; again we call αe the experiment-wise risk of
the first kind.
If we use the term experiment-wise risk of the first kind in Problems 4 and 5,

we must know that it is no first kind risk of a test. Instead αe is the probability

that at least one of the
a

2
and a − 1 null hypotheses, respectively, is wrongly

rejected. Let us consider all possible pairs (null hypothesis–alternative hypoth-
esis) of Problem 4 or 5. Then we have a multiple decision problem with more
than two possible decisions if a > 2.
In general αe and α cannot be converted into each other. In Table 11.7 it is

shown how αe increases if the number of pairs of hypotheses k in Problem 4
or 5 is increasing. For calculating the values of Table 11.7, the asymptotic
(for known σ2) relations for k orthogonal contrast

αe = 1− 1−α k , 11 27

α= 1− 1−αe
1 k , 11 28

have been used. (11.27) and (11.28) follow from elementary rules of probability
theory, because we can assign to the independent contrasts independent F-tests
(transformed z-tests) with f1 = 1 , f2 =∞ degrees of freedom.

Definition 11.4 A (linear) contrast Lr is a linear function

Lr =
a

i= 1
criμi with the condition

a

i=1
cri = 0

Two linear contrasts Lu and Lv are called orthogonal if a
i= 1cuicvi = 0.

Before we solve Problems 3–5, we first construct confidence intervals for dif-
ferences of expectation as well as for linear contrasts in these expectations.With
these confidence intervals, the problems can be handled.
Most of the tables mentioned below can also be found in Rasch et al. (2008).

Program Hint
If data are present in an SPSS file, most of the methods below (and more) can be
applied by the commands

Analyze
Compare Means

One-Way ANOVA
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or for higher classifications by

Analyze
General Linear Model

Univariate

If we use packages like R, SPSS or SAS, no tables of the quantiles are needed,
because the packages give the correct significance value.

11.2.1 Confidence Intervals for All Contrasts: Scheffé’s Method

As we know from Chapter 5, Problem 3 is solved by the F-test of the one-way
analysis of variance.
Using the notation of Chapter 4, Problem 3 is with βT = (μ, α1,… , αa) and X

from Example 4.1 a special case of

H0 Xβ ω Ω with dim ω = 1, dim Ω = a, Ω=R X ,

against

HA Xβ ω

We reformulate Problem 1 as a problem to construct confidence intervals. IfH0

is correct, then all linear contrasts in the μi = μ + αi equal zero. Conversely it fol-
lows that all linear contrasts vanish, the validity of H0 (see Section 4.1.4).

Table 11.7 Asymptotic relation between comparison-wise risk of the first kind (α) and
experiment-wise risk of the first kind (αe) for k orthogonal contrasts.

k
104αe for
α= 0 05

105α for
αe = 0 05 k

104αe for
α= 0 05

105α for
αe = 0 05

1 500 5000 15 5367 341

2 975 2532 20 6415 256

3 1426 1695 30 7854 171

4 1855 1274 50 9231 103

5 2262 1021 80 9835 64

6 2649 851 100 9941 51

7 3017 730 200 9999.6 26

8 3366 639 500 10000 10

9 3698 568 1000 10000 5

10 4013 512 5000 10000 1

12 4596 427
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Therefore confidence intervalsKr for all linear contrasts Lr can be constructed
in such a way that the probability that Lr Kr for all r is at least 1 − αe. We then
reject H0 with a first kind risk αe if at least one of the Kr does not cover Lr.
The method proposed in Scheffé (1953) allows the calculation of simultane-

ous confidence intervals for all linear contrasts for β in Equation (5.1), lying in a
subspace ω Ω where Ω is the rank space R[X] of X in (4.1). The confidence
coefficient 1 − αe is the probability that all linear contrasts in ω lie in the corre-
sponding confidence interval. This confidence interval can easily be derived
from Theorems 4.6 and 4.9 together with Example 4.4.

Theorem 11.6 We use model I of the analysis of variance in Definition 4.1.
Further, let kTi β i= 1,…,q with kTi = ki1,…,ki,k + 1 be estimable functions such
that with the matrix K = (k1,… , kq)

T = XT T by KTβ = 0, a null hypothesis is
given. For all vectors c R[K] with rk(K) = q and rk(X) = dim(Ω) = p

cTβ∗−G, cTβ∗ +G 11 29

a class of simultaneous confidence intervals for the cTβ with confidence
coefficient 1 − αe is defined, if we put

G2 = qF q,N −p 1−αe s2cT XTX
−
c

with β∗ from (5.3) and

s2 =
1

n−p
Y T IN −X XTX

−
XT Y

Proof: We apply Theorem 11.9 and Formula (11.23) and put θ = Xβ (by (5.1)).
Then with TTX = KT by

β∗TXT T −βTXTT TTX XT X
−
XT T

−1
TT Xβ∗−TTXβ

≤ qs2F q,N −p 1−αe ,

a confidence interval with confidence coefficient 1 − αe for K
Tβ is given. There-

fore, all (estimable) linear combinations cTβ lie with probability 1 − αe in the
interval given by (11.29).

Example 11.2 We use Scheffé’s method to test the null hypothesis of
Problem 3 for the one-way analysis of variance in Example 5.1. We have q = a − 1,
p = a = rk(X) , βT = (μ, α1,… , αa), and considering all linear contrasts Lr in the μi,
(11.29) becomes

Lr −s a−1 F a−1,N −a 1−αe
a

i= 1

c2ri
ni
,

Lr + s a−1 F a−1,N −a 1−αe
a

i= 1

c2ri
ni

, 11 30
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and (11.30) contains all Lr with
a
i=1cri = 0 with probability 1 − αe. Here is

s= MSres (from Table 5.2).
From Lemma 5.1 it follows that all differences μi−μi and the linear contrast in

μ + αi are estimable. Using (11.30) to construct confidence intervals for all
a

2
differences of expectations only, then the confidence interval in (11.30) is too
large and contains the differences of expectations with a probability ≥1 − αe.
We say in such cases that the confidence intervals and the corresponding tests
are conservative.

Example 11.3 We consider a two-way cross-classification with model equa-
tion (5.13), that is, we assume interactions and put nij = n for all i = 1 ,… , a ;
j = 1 ,… , b. We denote μ + αi(i = 1,… , a) as row-means and μ + βj (j = 1,… , b)
as column ‘means’. If the null hypothesis in Problem 3 has to be tested against
the corresponding alternative hypothesis for the row-means, we obtain from
(11.29) the confidence interval with confidence coefficient 1 − αe

Lzr −A,Lzr +A

with A= s a−1 F a−1, ab n−1 1−αe
1
bn

a

i= 1

cri2
11 31

for an arbitrary (but fixed) linear contrast in the row-means:

Lzr =
a

i= 1

lri μ+ αi

If

Lsr =
b

j= 1

lsj μ+ βj

correspondingly is a linear contrast in the column-means, so it is analogous
to (11.31),

Lsr −B,Lsr +B,

with B= s b−1 F b−1, ab n−1 1−αe
1
an

b

j= 1

c2sj
11 32
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a confidence interval with confidence coefficient 1 − αe for an arbitrary (but
fixed) linear contrast Lsr.
For estimable functions in ωij, we analogously can construct confidence

intervals.
In (11.31) and (11.32) s2 =MSres is given in Table 5.13. From Lemma 5.1

it follows that all differences and linear contrasts between the row ‘means’
or between the column ‘means’ are estimable functions and (11.31)
and (11.32) can be used. If only differences of the row ‘means’ or
column ‘means’ are of interest, remarks at the end of Example 11.2 are
again valid.
From Theorem 11.6 it follows that by Scheffé’s method, simultaneous confi-

dence intervals for all linear combinations cTβ with c R K can be
constructed.
Of course, if only differences in expectations are of interest, confidence

intervals with Scheffé’s method have a too large expected width, and the power
of the corresponding tests is too small. In those cases, Scheffé’s method will
not be applied. To show this, we consider an example for this and competing
methods.

Example 11.4 A (pseudo-)random number generator has generated ten
samples of size five each. The values of the samples 1–8 are realisations of an
N(50, 64) normally distributed random variables; the two other samples differ
only in expectations. We have μ9 = 52 and μ10 = 56, respectively. The generated
samples are shown in Table 11.8.
Differences between means are given in Table 11.9.

Table 11.8 Simulated observations of Example 11.4.

Number of sample

yij 1 2 3 4 5 6 7 8 9 10

yi1 63.4 49.6 50.3 55.5 62.5 30.7 56.7 64.5 44.4 55.7

yi2 46.7 48.4 52.8 36.1 45.8 48.6 46.2 42.2 38.2 64.7

yi3 59.1 49.3 52.5 54.0 52.8 45.8 41.9 49.6 64.8 61.8

yi4 60.7 48.3 58.6 55.9 44.9 44.9 55.8 48.9 43.7 38.9

yi5 54.9 51.5 48.0 52.9 51.3 52.9 48.9 40.7 61.3 61.8

yi 56.96 49.42 52.44 50.88 51.46 44.58 49.90 49.18 50.48 56.58

Multiple Comparisons 545



The analysis was done with SPSS via

Analyze
Compare Means

One-Way ANOVA

and define sample as factor and the observations as dependent as in
Figure 11.1
If we continue in Figure 11.1 with ok, we obtain the results of a one-way

analysis of variance with ten samples as factor levels in Figure 11.2.

Figure 11.1 Program start of Example 11.4 in SPSS. Source: Reproduced with permission
of IBM.

Table 11.9 Differences yi −yj between means of Example 11.4.

i
2 3 4 5 6 7 8 9 10j

1 7.54 4.52 6.08 5.50 12.38 7.06 7.78 6.48 0.38

2 −3.02 −1.46 −2.04 4.84 −0.48 0.24 −1.06 −7.16

3 1.56 0.98 7.86 2.54 3.26 1.96 −4.14

4 −0.58 6.30 0.98 1.70 0.40 −5.70

5 6.88 1.56 2.28 0.98 −5.12

6 −5.32 4.60 −5.90 −12.00

7 0.72 −0.58 −6.68

8 −1.30 −7.40

9 −6.10
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Because F = 1.041 < F(9.40|0.95) (with αe = 0.05), H0 in Problem 11.1 is
accepted.
If in Figure 11.1 we press ‘post hoc’, we can select Scheffé’smethod in Figure 11.3

(page 542).
If we continue and press ‘OK’, we obtain Table 11.10.

Table 11.10 Confidence intervals by Scheffé’s method of Example 11.4 (shortened).

Multiple comparisons
Dependent variable: observation

Scheffe

(I)
sample

(J)
sample

Mean difference
(I–J)

Std.
error Sig.

95% Confidence interval

Lower
bound

Upper
bound

1 2 7.5400 5.0008 0.983 −14.325 29.405

3 4.5200 5.0008 1.000 −17.345 26.385

4 6.0800 5.0008 0.997 −15.785 27.945

5 5.5000 5.0008 0.998 −16.365 27.365

6 12.3800 5.0008 0.721 −9.485 34.245

7 7.0600 5.0008 0.990 −14.805 28.925

8 7.7800 5.0008 0.980 −14.085 29.645

9 6.4800 5.0008 0.994 −15.385 28.345

10 0.3800 5.0008 1.000 −21.485 22.245

2 1 −7.5400 5.0008 0.983 −29.405 14.325

3 −3.0200 5.0008 1.000 −24.885 18.845

4 −1.4600 5.0008 1.000 −23.325 20.405

5 −2.0400 5.0008 1.000 −23.905 19.825

6 4.8400 5.0008 0.999 −17.025 26.705

7 −.4800 5.0008 1.000 −22.345 21.385

8 0.2400 5.0008 1.000 −21.625 22.105

9 −1.0600 5.0008 1.000 −22.925 20.805

10 −7.1600 5.0008 0.988 −29.025 14.705

Source: Reproduced with permission of IBM.

ANOVA
Observation  

Sum of squares df Mean square F Sig.

Between groups 585.549 9 65.061 1.041 .426

Within groups 2500.784 40 62.520

Total 3086.333 49

Figure 11.2 Output of ANOVA of Example 11.4. Source: Reproduced with permission of IBM.
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11.2.2 Confidence Intervals for Given Contrasts: Bonferroni’s and
Dunn’s Method

Confidence intervals by Scheffé’s method are not appropriate if confidence
intervals for k special but not for all contrasts are wanted. Sometimes shorter
intervals can be obtained using the Bonferroni inequality.

Theorem 11.7 If the k components xi of k-dimensional random variables
xT = (x1,… , xk) with distribution function F(x1,… , xk) have the same marginal
distribution functions F(x), then the Bonferroni inequality

1−F x1,…,xk ≤
k

i= 1

1−F xi 11 33

is valid.

Proof: Given k events A1 ,A2 ,… , Ak of the probability space A,�A,P , that is,
let Ai �A i= 1,…,k . Then by mathematical induction it follows from inclu-
sion and exclusion that

P
k

i= 1
Ai ≤

k

i= 1

P Ai

If Ai = {xi < xi}, then because k
i= 1Ai = k

i= 1Ai (11.33) follows.
If k special linear contrast Lr =

a
j=1crjμj r = 1, …, k is given, then the esti-

mator Lr = crjyj is for each r N(Lr, krσ
2)-distributed with kr =

a
i= 1

c2ri
ni
. Then

tr =
Lr −Lr

krs
r = 1,…,k 11 34

with s= MSres are components of a k-dimensional random variable. The mar-
ginal distributions are central t-distributions with ν= a

i= 1 ni−1 degrees of
freedom and the density f(t, ν).
The Bonferroni inequality allows us to find a lower bound of the probability

that all tr-values (r = 1,… , k) lie between −w and w (w > 0). Due to the symmetry
of t-distribution and Theorem 11.7, we get

P =P −w ≤ tr <w r = 1,…,k ≥ 1−2k

∞

w

f t,ν dt 11 35

We select w so that the right-hand side of (11.35) equals (1 − αe) and obtain
simultaneous (1 − αe) confidence intervals for the Lr as

Lr−w krs,Lr +w krs
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This means we determine w so that

∞

w

f t,ν dt =
αe
2k

= α 11 36

and the Bonferroni inequality (11.33) has the form

P > 1−αe ≥ 1−2kα 11 37

For αe = 0.05 these w-values w(k, f, 0.95) for some k and f are given in
Table 11.11.
Dunn (1961) published a table with cases for which his method was better

than Scheffé’s method. If, among the k contrasts, all
a

2
differences of the

expectations can be found, then Ury and Wiggins (1971, 1974) gave a modifi-
cation and corresponding tables (but see Rodger, 1973).

Table 11.11 1− 0 05
2k -Quantiles of the central t-distribution with f degrees of freedom.

k

f 2 3 4 5 6 7 8 9 10

5 3.163 3.534 3.810 4.032 4.219 4.382 4.526 4.655 5.773

6 2.969 3.287 3.521 3.707 3.863 3.997 4.115 4.221 4.317

7 2.841 3.128 3.335 3.499 3.636 3.753 3.855 3.947 4.029

8 2.752 3.016 3.206 3.355 3.479 3.584 3.677 3.759 3.832

9 2.685 2.933 3.111 3.250 3.364 3.462 3.547 3.622 3.690

10 2.634 2.870 3.038 3.169 3.277 3.368 3.448 3.518 3.581

11 2.593 2.820 2.981 3.106 3.208 3.295 3.370 3.437 3.497

12 2.560 2.779 2.934 3.055 3.153 3.236 3.308 3.371 3.428

15 2.490 2.694 2.837 2.947 3.036 3.112 3.177 3.235 3.286

20 2.423 2.613 2.744 2.845 2.927 2.996 3.055 3.107 3.153

30 2.360 2.536 2.657 2.750 2.825 2.887 2.941 2.988 3.030

40 2.329 2.499 2.616 2.704 2.776 2.836 2.887 2.931 2.971

50 2.311 2.477 2.591 2.678 2.747 2.805 2.855 2.898 2.937

60 2.299 2.463 2.575 2.660 2.729 2.786 2.834 2.877 2.915

80 2.284 2.445 2.555 2.639 2.705 2.761 2.809 2.850 2.887

100 2.276 2.435 2.544 2.626 2.692 2.747 2.793 2.834 2.871

∞ 2.241 2.394 2.498 2.579 2.638 2.690 2.734 2.773 2.807
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11.2.3 Confidence Intervals for All Contrasts for ni = n: Tukey’s
Method

Definition 11.5 IfY = (y1,… , ya)
T is a random sample with independent com-

ponents andN(μ, σ2)-distributed and if νs2/σ2 is independent of Y CS(v)-distrib-
uted, we call the random variable

qa,ν =
w
s

the studentised range of Y, if w = maxi= 1,…,a yi − mini= 1,…,a yi is the range
of Y
The augmented studentised range is the random variable

q∗a,v =
1
s
max w, max yi−μ

Tukey’s method is based on the distribution of qa , ν. We can show that the
distribution function of the studentised range qa , v is given by

2a

Γ ν
2

ν

2

ν
2

∞

0

∞

−∞

φ z Φ z −Φ z−qa,νx
a−1xv−1e−

νx2
2 dzdx 11 38

In (11.38) x = s/σ , φ(z) is the density function andΦ(z) the distribution function
of the standardised normal distribution.
We denote by q(a, ν|1 − αν) the (1 − α)-quantile of the distribution function of

qa, ν in (11.38), which depends on the number a of components of Y and the
degrees of freedom of s2 in Definition 11.5.
Tukey’s method (1953) to construct confidence intervals for the differences

μi−μi between the expectations of a independent N(μi, σ
2)-distributed random

variables yi(i = 1,… , a) is based on the equivalence of the probabilities

P
1
s

yi−yik − μi−μk ≤K for all i k; i, k = 1,…,a

and

P
1
s
max
i,k

yi−μi− yk −μk ≤K i, k = 1,…,a

This equivalence is a consequence of the fact that the validity of the inequality in
the second term is necessary and sufficient for the validity of the inequality in
the first term. The maximum of a set of random variables is understood as its
largest-order statistic, and

max
i,k

i,k = 1,…,a

yi−μi− yk −μk

is the range w of N(0, σ2)-distributed random variables; if yi are independent of
each other, it is N(μi, σ

2)-distributed. From this it follows Theorem 11.8.
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Theorem 11.8 If y1 ,… , ya are independently N μi,σ
2
i -distributed

random variables (i = 1,… , a) with σ2i = σ
2 and s2/σ2 is independent of the yi

(i = 1,… , a) CS(f)-distributed, then

P yi−yik − μi−μk ≤ q a, f 1−αe s i, k = 1,…,a = 1−αe 11 39

Therefore by (11.39) a class of simultaneous confidence intervals with confi-
dence coefficient 1 − αe is given.
The results of Theorem 11.8 are shown in two examples.

Example 11.5 Tukey’s method is used to construct confidence intervals for
differences in expectations and to test the first problem in one-way analysis
of variance (see Example 5.1). For this we have to assume ni = n. y1 ,…,ya are
the means of the observations yij of the a factor levels. For the differences
μ+ αi− μ+ αi = αi−αi , simultaneous confidence intervals can be constructed

with (11.39). For i = 1 ,… , n it holds var yi =
1
n
σ2 We estimate σ2 byMSres = s2

in Table 4.2 (ni = n), that is,

s2 =
1

a n−1

a

i= 1

n

j= 1

y2ij−
1
n

a

i=1

Y 2
i

Now
a n−1

σ2
s2 is CS[a(n − 1)]-distributed and independent of the yi. − yi`. From

Theorem 11.8 with f = a(n − 1) and
σ2

n
for σ2, we obtain the class of simultaneous

confidence intervals with confidence coefficient 1 − αe for μi−μi :

yi −yk −q a, a n−1 1−αe
s
n
, yi −yk + q a, a n−1 1−αe

s
n

i k; i, k = 1,…,a 11 40

Example 11.6 Analogously to Example 11.3 we consider the two-way cross-
classification with model equation (5.13) and construct simultaneous confi-
dence intervals for the differences between the row ‘means’ and column ‘means’
introduced in Example 11.3. Again, let n = nij for all (i, j). Of course, this is a lim-
itation of the method.
For the row ‘means’ we have var yi = σ2 bn and for the column ‘means’

var y j = σ2 an With s2 from Table 5.13 and f = ab(n − 1) from Theorem

11.8, it follows the class of simultaneous intervals for μ + αi − (μ + αk) = αi − αk
with confidence coefficient (1 − αe):

yi −yk −q a, ab n−1 1−αe
s

bn
, yi −yk + q a, ab n−1 1−αe

s

bn

i k; i, k = 1,…,a 11 41
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and analogous to the column ‘means’, the class of confidence intervals

y j −y k −q b, ab n−1 1−αe
s
an

, y j −y k + q b, ab n−1 1−αe
s
an

j k; j, k = 1,…,b 11 42

We can show that for any contrast L= a
i= 1ciμi, ci real, in generalisation of

(11.39) with

L=
a

i= 1

ciyi

the relation

1−αe =P L−
s
n
q a, f 1−αe

1
2

a

i= 1

ci < L <L+
s
n
q a, f 1−αe

1
2

a

i= 1

ci

11 43

holds for all L.

If only the set of
a

2
differences in expectations μi − μj (i j; i, j = 1,… , a) is

considered, Tukey’s method gives smaller simultaneous confidence intervals as
the Scheffé’s method. Tukey’s method is then preferable if ni = n is given. We
continue with Example 11.4 by using now in Figure 11.3 the button ‘Tukey’.
Analogously to Table 11.10 we receive Table 11.12.

Figure 11.3 Post hoc for multiple comparisons of means in SPSS. Source: Reproduced with
permission of IBM.
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11.2.4 Confidence Intervals for All Contrasts: Generalised Tukey’s
Method

Spjøtvoll and Stoline (1973) generalised Tukey’s method of Section 11.2.3
without assuming ni = n.

Definition 11.6 Given a independent N(μ, σ2)-distributed random variables
yi (i = 1,… , a), let s2 be an estimator of σ2 independent of the yi with ν degrees
of freedom. Then the random variable

max yi−μ
1≤ i≤ a

s
= q∗∗ a,ν

is called the augmented studentised range of yi with ν degrees of freedom.

Table 11.12 Confidence intervals by Tukey’s method of Example 11.4 (shortened).

Multiple comparisons
Dependent variable

Tukey HSD

(I)
sample

(J)
sample

Mean difference
(I–J)

Std.
error Sig.

95% Confidence interval

Lower
bound

Upper
bound

1 2 7.54000 5.00078 0.881 −9.2017 24.2817

3 4.52000 5.00078 0.995 −12.2217 21.2617

4 6.08000 5.00078 0.965 −10.6617 22.8217

5 5.50000 5.00078 0.982 −11.2417 22.2417

6 12.38000 5.00078 0.312 −4.3617 29.1217

7 7.06000 5.00078 0.916 −9.6817 23.8017

8 7.78000 5.00078 0.861 −8.9617 24.5217

9 6.48000 5.00078 0.949 −10.2617 23.2217

10 0.38000 5.00078 1.000 −16.3617 17.1217

2 1 −7.54000 5.00078 .881 −24.2817 9.2017

3 −3.02000 5.00078 1.000 −19.7617 13.7217

4 −1.46000 5.00078 1.000 −18.2017 15.2817

5 −2.04000 5.00078 1.000 −18.7817 14.7017

6 4.84000 5.00078 0.993 −11.9017 21.5817

7 −0.48000 5.00078 1.000 −17.2217 16.2617

8 0.24000 5.00078 1.000 −16.5017 16.9817

9 −1.06000 5.00078 1.000 −17.8017 15.6817

10 −7.16000 5.00078 0.910 −23.9017 9.5817

Source: Reproduced with permission of IBM.
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Theorem 11.9 (Spjøtvoll and Stoline)
If all conditions of Theorem 11.8 are fulfilled, all linear contrasts L= a

i=1ciμi
simultaneously are covered with probability 1 − αe by intervals

L−
1
2

ci q
∗ a, f 1−αe s,L+

1
2

ci q
∗ a, f 1−αe s 11 44

In (11.44) L= a
i=1ciyi , and q∗(a, f|1 − α) is the (1 − α)-quantile of the dis-

tribution of the augmented studentised range q∗∗(a, f) corresponding to
Definition 11.6.

The proof is given in Spjøtvoll and Stoline (1973). It is based on the transition

to random variables xi =
1
σi
yi, having the same variance and restoring the prob-

lem to that handled in Section 11.2.3. Spjøtvoll and Stoline approximate the
quantiles q∗(a, f |1 − αe) by the quantiles q(a, f |1 − αe) of the studentised range,
but Stoline (1978) gave tables of q∗(a, f|1 − αe).
The generalised Tukey’s method gives as well shorter as also larger

confidence intervals than the Scheffé’s method, depending on the degree of
unbalancedness.
A further generalisation of Tukey’s method can be found in Hochberg (1974)

and Hochberg and Tamhane (1987).

Theorem 11.10 Theorem 11.9 is still valid if (11.44) is replaced by

L−s
ci
2ni

q∗∗
a

2
, f 1−αe ,L+ s

ci
2ni

q∗∗
a

2
, f 1−αe

11 45

Here q∗∗
a

2
, f 1−αe is the quantile of the distribution of q∗∗ a

2
, f in

Definition 11.6. These quantiles are given in Stoline and Ury (1979).

11.2.5 Confidence Intervals for the Differences of Treatments with a
Control: Dunnett’s Method

Sometimes a – 1 treatments have to be compared with a standard procedure
called control.
Then simultaneous 1 − αe confidence intervals for the a − 1 differences

μi−μa i= 1,…, a−1

shall be constructed. (After renumbering μa is always the expectation of the
control.)
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We consider a independent N(μi, σ
2)-distributed random variables yi inde-

pendent of a CS(f)-distributed random variable
f s2

σ2
.

Dunnett (1955) derived the distribution of
y1−ya

s
,…,

ya−1−ya
s

Dunnett (1964) and Bechhofer and Dunnett (1988) present the quantiles
d(a − 1, f|1 − αe)of the distribution of

d =
max
1 ≤ i≤ a−1

yi−ya− μi−μa

s 2

We see that d ≤ d(a − 1, f|1 − αe) is necessary and sufficient for

1

s 2
yi−ya− μi−μa ≤ d a−1, f 1−αe

For all i by

yi−ya−d a−1, f 1−αe s 2, yi−ya + d a−1, f 1−αe s 2 , 11 46

a class of confidence intervals is given, covering all differences μi − μawith prob-
ability 1 − αe.
For the one-way classification with the notation of Example 11.5, we receive

for equal subclass numbers n the class of confidence intervals:

yi −ya −d a−1, a n−1 1−αe s
2n
n

, yi −ya + d a−1, a n−1 1−αe s
2n
n

i= 1,…, a−1 11 47

For the two-way cross-classification (model (5.13)) with the notation of Exam-
ple 11.6, we receive for equal subclass numbers the class of confidence intervals
for the row ‘means’:

yi −ya −d a−1, ab n−1 1−αe s
2n
bn

, yi −ya + d a−1, ab n−1 1−αe s
2n
bn

i= 1,…, a−1 11 48

and for the column ‘means’

y i −y b −d b−1, ab n−1 1−αe s
2n
an

, y i −y b + d b−1, ab n−1 1−αe s
2n
an

i= 1,…, b−1 11 49

We continue with Example 11.4 using now in Figure 11.3 ‘Dunnett’ and receive
in Table 11.13 analogous to Tables 11.10 and 11.12 taking control as the last
(10-th) sample.
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11.2.6 Multiple Comparisons and Confidence Intervals

We now discuss the problems given at the start of Section 11.2. Let Pi be the a
levels of the factor in a one-way analysis of variance model I. Independent of
random samples Yi, we have for the components the model equation

yij = μi + eij i= 1,…,a; j= 1,…,ni 11 50

with error terms eij that are N(0, σ
2)-distributed.

s2 =MSres in Table 4.2 is a of the a sample ‘means’ yi independent estimator of
σ2. The degrees of freedom of MSres are

a

i= 1

ni−1 =N −a,

and
1
σ2

N −a s2 isCS N −a -distributed

Problem 3 can be handled by the F-test; H0 is rejected, if

MSA

MSres
> F a−1,N −a 1−αe 11 51

Table 11.13 Risk of the first kind multiple comparisons.

Dependent variable: observation

Dunnett t (2-sided) a

(I)
sample

(J)
sample

Mean difference
(I–J)

Std.
error Sig.

95% Confidence interval

Lower
bound

Upper
bound

1 10 0.38000 5.00078 1.000 −13.6810 14.4410

2 10 −7.16000 5.00078 0.629 −21.2210 6.9010

3 10 −4.14000 5.00078 0.964 −18.2010 9.9210

4 10 −5.70000 5.00078 0.829 −19.7610 8.3610

5 10 −5.12000 5.00078 0.893 −19.1810 8.9410

6 10 −12.00000 5.00078 0.125 −26.0610 2.0610

7 10 −6.68000 5.00078 0.698 −20.7410 7.3810

8 10 −7.40000 5.00078 0.594 −21.4610 6.6610

9 10 −6.10000 5.00078 0.778 −20.1610 7.9610

Dunnett t-tests treat one group as a control and compare all other groups against it

Source: Reproduced with permission of IBM.
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Problems 4 and 5 are solved by the methods of construction of confidence
intervals (see Problem 4 and Problem 5 below).

If the
a

2
and a − 1 null hypotheses of Problems 4 and 5, respectively, have

to be tested in particular and not in total so that for each pair of hypotheses
(H0ij,HAij) the first kind risk is αij = α, then we use the multiple t-procedure
or reject H0ij, if

t ij =
yi −yj

s

ninj
ni + nj

> t N −a 1−
α

2
11 52

The risk α must be understood for each of
a

2
and a − 1 single comparisons,

respectively, and we call it therefore a comparison-wise first kind risk. In
Problem 5 the result is always i = a and j = 1 ,… , a − 1; in Problem 4 we have
i j; i , j = 1 ,… , a.
The minimal size of the experimentN = a

i=1ni comes out if ni = n ; i = 1 ,… ,
a. The value n depends on the comparison-wise first kind risk α and on the
comparison-wise second kind risk β and the effect size δ analogous to
Section 3.4.2.1.1 as

n= t a n−1 1−
α

2
+ t a n−1 1−β

2 2σ2

δ2

Example 11.7 We plan pairwise comparisons for a = 8 factor levels and use
α = 0.05; β = 0.1; and δ = σ. We start with n =∞ degrees of freedom and calculate
iteratively

n1 = 2 t ∞ 0 975 + t ∞ 0 9 2 = 2 1 96 + 1 2816 2 = 22

and in the second step

n2 = 2 t 168 0 975 + t 168 0 9 2 = 2 1 9748 + 1 2864 2 = 22

Therefore n = 22.
However, if the first kind risk αij = α shall be chosen so that that the probability

that at least one of the null hypotheses H0ij is wrongly rejected, we proceed as
follows.

Problem 4 If all ni = n, we use the Tukey procedure. For all pairs μi − μj (i j;
i, j = 1,… , a), we calculate a confidence interval by (11.40).
If the corresponding realised confidence interval covers 0, H0ij is rejected. In

other words we reject H0ij if
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yi −yj n

s
> q a, a n−1 1−αe 11 53

For unequal ni we calculate in place of (11.53) a confidence interval with

Mij = min ni, nj and f =N −a by

yi −yj −q
∗ a, f 1−αe

s
Mij

, yi −yj + q
∗ a, f 1−αe

s
Mij

11 54

and continue analogously, that is, we reject H0ij, if

yi −yj Mij

s
> q∗ a, N −a 1−αe 11 55

The minimal size of the experimentN = a
i= 1ni comes out if ni = n ; i = 1 ,… , a.

With experiment-wise error probability αe and comparison-wise risk of the
second kind β, we receive

n= 2
q a,N −a 1−αe

2
+ t a n−1 1−β

2

Alternatively to (11.55) with Rij =
1
ni

+
1
nj

in place of (11.54), we can use

yi −yj −q
∗∗ a

2
, f 1−αe Rijs, yi −yj + q

∗∗ a

2
, f 1−αe Rijs

11 56

and reject H0ij, if

yi −yj

sRij
> q∗∗

a

2
,N −a 1−αe 11 57

(Hochberg procedure).

Problem 5 If ni = n, we use the Dunnett procedure, based on confidence inter-
vals of Dunnett’s method. Then H0i is rejected if

n
yi −ya

2s
> d a−1, a n−1 1−αe 11 58

If ni are not equal, we use a method also proposed by Dunnett (1964) with mod-
ified quantiles.
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To determine the minimal sample sizes in multiple comparisons for the pairs
of hypotheses (H0ij,HAij) and (H0i,HAi), respectively, with α or αe, an upper
bound β0 for the second kind risks βij and βi and |μi − μj| > Δij given in advance,
we use the R-commands in the program OPDOE:

>size.multiple_t.test. for Problem 1 ;
>size.multiple_t.test.comp_standard.

or
>sizes.dunnett.exp_wise. for comparisons with a control.

11.2.7 Which Multiple Comparison Shall Be Used?

To answer the question, which of the different multiple comparison procedures
shall be used, we must at first decide whether Problem 3, 4 or 5 shall be solved
(all corresponding assumptions for the procedures must be fulfilled).
Because Problem 3 is a two-decision problem, we use the F-test here; αe and

1 − βe are probabilities to be understood experiment-wise.
If Problem 4 is to be solved, we at first have to decide whether the first kind

risk shall be comparison-wise α for each test separately or whether it has to be
understood as probability αe (called the experiment-wise first kind risk) that
none of the null hypothesesH0ij is wrongly rejected. If the first kind risk is com-
parison-wise, we use the multiple t-procedure or otherwise the Tukey proce-
dure for ni = n and either the Spjøtvoll–Stoline procedure or the Hochberg
procedure for unequal subclass numbers. Ury (1976) argued to use the
Spjøtvoll–Stoline procedure mainly if small differences between the ni occur.
If ni differs strongly he recommends to use the Hochberg procedure.
For Problem 5 with a comparison-wise α, the multiple t-procedure must be

used; otherwise the Dunnett procedure is recommended.
If all ormany linear contrasts shall be tested, the Scheffé, the Spjøtvoll–Stoline

or the Hochberg procedure is recommended. Occasionally the Dunn procedure
leads to useful intervals and tests. The Bonferroni and the Scheffé procedure can
be used even if the random variables are correlated.

11.3 A Numerical Example

We demonstrate themethods of this chapter by Example 11.4 and solve the pro-
blems below.
Problem (a) Test the null hypotheses H0i j against HAi j. For Problem 5 the

sample 10 corresponds with the control. We use αe = 0.05 ; α = 0.05.
Problem (b) Construct simultaneous (1 − 0.05) confidence intervals for the

contrasts
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L1 = 9μ10−
9

i= 1

μi, L2 = 3μ1−μ2−μ3−μ4,

L2 = 5μ1−3μ2−2μ3, L4 = 25μ1−15μ2−8μ3−2μ4

and for the differences in expectations μi − μ10 (i = 4,… , 9), denoted by L5
bis L10.
Problem (c) Select the population with the largest expectation and select the

2, 3, 4 and 5 populations with the largest expectations.
Problem (a). Due to (11.52), H0i j is rejected, if

yi −yj > s t 40 0 975
2
5
= 10 107,

where s is obtained from Figure 11.2 as s= 62 52 = 7 907 and from Table D.3
t(40|0.975) = 2.0211. We see in Table 11.9 that for Problem 4 with the multiple
t-procedure, the null hypothesis H01 , 6 is wrongly but H06 , 10 is correctly
rejected. Among the 43 accepted null hypotheses, 16 have been wrongly
accepted. The reason for this high percentage is the small subclass number
to hold a reasonable risk of the second kind. In Section 11.2.6 we presented a
formula for the needed subclass number, and this gives for α = 0.05, β = 0.2
and δ = σ the value n = 16, but we simulated in Example 11.4 only a subclass
number n = 5.
For Problem 5H06 is wrongly rejected, but the other eight null hypotheses are

wrongly accepted. Because the subclass numbers are equal, the Tukey proce-
dure can be applied.
Because q(10, 40|0.95) = 4.735, all those H0i j of Problem 4 have to be

rejected, if

yi −yj >
7 907

5
4 735 = 16 744

and this is not the case for any pair (i, j).
For Problem 5 H0i(i = 1,… , 9) is rejected, if [q(9, 40|0.95) = 2.81]

yi −yj >
2 7 907

5
2 81 = 14 05

and neither is this the case for any pair (i, j).
With a subclass number 5 in Example 11.4, many incorrect decisions have

been made. The subclass number for the α- and αe-values above are chosen
so that a difference |μi − μj| > 8 with probability of at most β = 0.1 is not detected.
This is calculated with OPDOE of R.
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Problem 3 We receive from the command in Section 5.2.2.2 (delta = δ/σ)

> size.anova(model="a",a=10, alpha=0.05, beta=0.1,
+delta=1, case="minimin")
n
9
> size.anova(model="a",a=10, alpha=0.05, beta=0.1,
+delta=1, case="maximin")
n
21

and choose n = 15.

Problem 4 Multiple t-procedure: The output of R shows n = 22 observations
per population.
For the Tukey procedure, we receive n = 36.

Problem 5 Multiple t-procedure: We obtain n10 = n0 = 45 and ni = 14 (i < 10).
Dunnett procedure: We obtain n10 = n0 = 63 and ni = 23 (i < 10).
Problem (b). The estimates of the contrast we calculate from the means yi in

Table 11.8:

L1 = 53 92, L2 = 18 14, L3 = 31 66, L4 = 161 42

Scheffé’s method: Using (11.30), we need for each contrast a
i=1

c2ri
ni

=wr

We obtain

w1 = 4 2426, w2 = 1 5492, w3 = 2 7568, w4 = 13 5499

For all contrasts L4 + i = μ3 + i − μ10 (i = 1,… , 6) results, w4 + i = 0.6325. From
F (9, 40|0.95) = 2.1240 results

s a−1 F a−1,N −a 0,95 = 34 5709

The confidence intervals of the contrast have the bounds Lr ±Ds
r

r = 1,…,10, s stands for Scheffé with

Ds
1 = 146 67, Ds

2 = 54 56, Ds
3 = 95 30, Ds

4 = 468 43,

Ds
4 + i = 21 86 i= 1,…,6

All these confidence intervals cover 0, and therefore none of the hypotheses
H0r : Lr = 0 (r = 1,… , 10) is rejected.
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Dunn’s method: Using (11.36), the bounds of the confidence intervals are
Lr ±DD

r with DD
r =wr s w, where w can be found in Table 11.11. Because the

number of contrasts equals 10, we read for f = 40, w = 2.97 Calculating
confidence intervals for L1, L2, L3, L4 only, then w = 2.62. For the complete set
of contrasts, we have

DD
1 = 99 63, DD

2 = 36 38, DD
3 = 64 74, DD

4 = 318 20,

DD
4 + i = 14 85 i= 1,…,6

Simultaneous 0.95 confidence intervals for L1 bis L4 only give

DD∗
1 = 87 89, DD∗

2 = 32 09, DD∗
3 = 57 11, DD∗

4 = 280 70

Tukey’s method: Using (11.43), simultaneous 0.95 confidence intervals are
Lr ±DT

r r = 1,…,10 with

DT
r =

s

2 5
q 10, 40 0 95

a

i=1

ci

Because q(10, 40|0.95) = 4.735, we receive

DT
1 = 150 69, DT

2 = 50 23, DT
3 = 83 72, DT

4 = 418 59,

DT
4 + i = 16 74 i= 1,…,6

Confidence intervals with an individual confidence coefficient 0.95 by the mul-
tiple t-method of course are shorter but not comparable.
From Table 11.14 we see that only the method of DUNN is uniformly better

than the others.
Problem (c). Using Selection Rule 11.1, then

y 10 = y1 = 56 96 = max
1 ≤ i ≤ 10

yi

We wrongly call population 1 the best one. This happens due to the fact that
n = 5 is too small. Also other rules lead to wrong conclusions.
Finally we compare the minimal sample sizes of the methods used for

Example 11.4.

Method

n for α= 0 05, αe = 0 05

β = 0 05; d = σ Remarks

Selection rule 11 1 t = 1

Tukey’s procedure

Dunnett’s procedure

multiple t procedure

F− test

12

40

27 average

17 1 average

15

45 comparisons

9 comparisons

α comparisonwise

1 test

Average means, for instance,n= 9n1 + n10 .
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11.4 Exercises

11.1 Corresponding to Problem 1 and 1A, calculate the sample sizes of eight
populations to obtain

PC ≥ 0 99 PC∗ ≥ 0 99

for the selection of the t = 1 , 2 , 3 , 4 best populations if
d
σ
= 0 1;

0 2; 0 5and 1.

11.2 Calculate the minimal experimental size concerning the multiple t-test
for five groups and the comparison-wise risks α = 0.05 and β = 0.05 ;
0.1 and 0.2 for δ = σ and δ = 0.5 σ.

11.3 Calculate the minimal experimental size concerning the Tukey test for
a = 3 , 4 , 5 , 10 , 20 groups and the experiment-wise risks α = 0.05 and
0.10 as well as the comparison-wise risks β = 0.05 ; 0.1 and 0.2 for δ = σ
and δ = 0.5 σ.
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12

Experimental Designs

Experimental designs originated in the early years of the 20th century mainly in
agricultural field experimentation in connection with open land variety testing.
The centre was Rothamsted Experimental Station near London, where Sir
Ronald Aylmer Fisher was the head of the statistical department (since
1919). There he wrote one of the first books about statistical design of experi-
ments (Fisher, 1935), a book that was fundamental, and promoted statistical
technique and application. The mathematical justification of the methods
was not stressed and proofs were often barely sketched or omitted. In this book
Fisher also outlined the Lady tasting tea, which is now a famous design of a sta-
tistical randomised experiment that uses Fisher’s exact test and is the original
exposition of Fisher’s notion of a null hypothesis.
Because soil fertility in trial fields varies enormously, a field is partitioned

into so-called blocks and each block subdivided in plots. It is expected that
the soil within the blocks is relatively homogeneous so that yield differences
of the varieties planted at the plots of one block are due only to the varieties
and not due to soil differences. To ensure homogeneity of soil within blocks,
the blocks must not be too large. On the other hand, the plots must be large
enough so that harvesting (mainly with machines) is possible. Consequently,
only a limited number of plots within the blocks are possible, and only a
limited number of varieties within the blocks can be tested. If all varieties
can be tested in each block, we speak about a complete block design. The
number of varieties is often larger than the number of plots in a block.
Therefore incomplete block designs were developed, chief among them
completely balanced incomplete block designs, ensuring that all yield differ-
ences of varieties can be estimated with equal variance using models of the
analysis of variance.
If two disturbing influences occur in two directions (as humidity from east to

west and soil fertility from north to south), then the so-called row–column
designs (RCDs) are in use, especially Latin squares (LS).
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The experimental designs originally developed in agriculture soon were used
in medicine, in engineering or more generally in all empirical sciences. Varieties
(v) were generalized to treatments (t), and plots to experimental units. But even
today the number v of treatments or the letter y (from yield) in the models of the
analysis of variance recalls this to the agricultural origin. Sometimes in technical
books or papers, t is used in place of v.
Later experimental designs have been handled not onlywithin statistics but also

within the combinatorics and many were published in statistical journals (as Bio-
metrika) as well as in combinatorial ones (as Journal of Combinatorial Designs).

12.1 Introduction

Experimental designs are an important part in the planning (designing) of
experiments. The main principles are (the three Rs)

1) Replication
2) Randomisation
3) Reduction of the influence of noisy factors (blocking)

Statements in the empirical sciences can almost never be derived based on an
experiment with only one measurement. Because we often use the variance as a
measure of variability of the observed character and then we need at least two
observations (replications) to estimate it (in statistics the term replication
mainly means one measurement; thus, two measurements are two replications
and not one measurement and one replication).
Therefore, two replications are the lower bound for the number the replica-

tions. The sample size (the number the replications) has to be chosen and was
already discussed at several places in previous chapters.
Experimental designs are used mainly for the reduction of possible influences

of known nuisance factors.
This is the main topic of this chapter, but initially we consider the situation

where the nuisance factors are not known or not graspable. In this case, we try to
solve the problem by randomisation here understood as the unrestricted ran-
dom assignment of the experimental units to the treatments (not vice versa!).
Randomisation is (as shown in Chapter 1) also understood as the random selec-
tion of experimental units from a universe. But in this chapter in designing
experiments, we assume that experimental units and blocks are already ran-
domly selected.
Randomisation is used to keep the probability of some bias by some unknown

nuisance factors as small as possible. It shall ensure that statistical models as
base for planning and analysing represent the situation of an experiment ade-
quately and the analysis with statistical methods is justified.
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We distinguish between pure and restricted forms of randomisation experi-
mental designs. We at first assume that the experimental material is unstruc-
tured, which means there is no blocking.
This is the simplest form of an experimental design. If in an experimental

design exactly ni experimental units are randomly allocated to the ith of v treat-
ments (Σni =N), we call this a complete or unrestricted randomisation, and we
call the experimental design a simple or a completely randomised experimental
design. Such designs were used in the previous chapters.
In this chapter we define experimental designs as model independent

(i.e. independent of the models for the analysis, e.g. for the analysis of
variance) and consider experiments with N experimental units, numbered
from 1 to N, and these numbers are used as names of the units. In
an experiment the effects of p treatment factors A(1),…, A(p) have to
be estimated or tested, and the effects of q nuisance factors B(1),
…, B(q) must be eliminated. The possible values of a factor are called fac-
tor levels (levels).
N and p are positive integers, and q is nonnegative and an integer. An exper-

iment is always the combination of an experimental design with a rule of
randomisation.

Definition 12.1 The assignment of a given number N > 2 of experimental

units to the levels A h
i i= 1,…,vh, h = 1,…,p of p ≥ 1 treatment factors A(1),

…, A(p) and the levels B c
j j= 1,…,bc, c= 1,…,q of q ≥ 0 nuisance factors (block

factors) B(1),…, B(q) is called a p-factorial experimental design with q block fac-
tors. If p= 1 the one-factorial experimental design is called a simple experimen-
tal design. If p > 0 we speak about a factorial experiment. If q = 0 we speak about
a completely randomised or a simple experimental design.
Simple experimental designs are, for instance, the base of the methods in

Chapters 2 and 3, the randomisation in these experimental designs means that
N experimental units are randomly assigned (e.g. by random number genera-
tors) to the v level combinations of some treatment factors or the v levels of
one treatment factor.
To illustrate the assignment rules of Definition 12.1, we usematricesUh andZc

combining to the matrix

Z = U1,…,Up, Z1, ,…,Zq 12 1

The elements of the submatrices Uh and Zc are defined as follows:

u h
lk =

1, if the l− th experimental unit is assigned to the k− th level of A h

0, otherwise
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and

z c
lk =

1, if the l− th experimental unit is assigned to the k− th Level of B c

0, otherwise

We obtain

UT
h 1N = r h , r h T

= r h
1 ,…,r h

vh ;ZT
c 1N = k c , k c T

= k c
1 ,…,k c

bc

12 2

We consider mainly one-factorial experimental designs and write then for
A 1 =A and for v1 = v and further

rT = r 1 T
= r h

1 ,…,r h
vh = r1,…, rv

with ri ≥ 1 andN =
v

i= 1
ri ≥ v+ 1.

Example 12.1 We consider the structure of Example 5.12.

Forage crop

Green rye Lucerne

Storage Glass 8.39 9.44

7.68 10.12

9.46 8.79

8.12 8.89

Sack 5.42 5.56

6.21 4.78

4.98 6.18

6.04 5.91

Here isN = 16, q=0 and p = 2. In the first column are the elements 1–8 and in the
second column, the elements 9–16 (numbered from above).
The factors are A(1) and A(2) and further

UT
1 =

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

and

UT
2 =

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
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Besides v1 = 2, v2 = 2 and r h T
= 8, 8 withh= 1 2.

Definition 12.2 A one-factorial experimental design is K-balanced of order t,
if a given operator K transfers the matrix Z = U1, Z1 in (12.1) into a (v×v)-
matrix with identical elements in the main diagonal and exactly t different ele-
ments outside the main diagonal.

12.2 Block Designs

Block designs are experimental designs to eliminate one disturbance variable. In
case of a quantitative nuisance factor, we also can use the analysis of covariance
if the type of the dependency and the underlying function are known (for
instance linear or quadratic). The parameters are estimated from the observed
values of the character and the nuisance factor as already shown in Chapter 10.
A general (i.e. also for qualitative nuisance factors) applicable method is block-
ing or stratification by the levels of the nuisance factor. We restrict ourselves to
one treatment factor. This is no loss of generality. If we have several treatment
factors, we consider all level combinations of these treatment factors as treat-
ments of some new factor.
As already said, a block design helps to eliminate the effects of a disturbance

variable, that is, the matrix Z in (12.1) contains just one matrix Z1 and is of the
form Z = U1,…,Up, Z1 = Z0, Z1 withZ0 = U1,…,Up . We form

ZTZ =
ZT
0 Z0 ZT

0 Z1

ZT
1 Z0 ZT

1 Z1

ZT
0 Z0 is a diagonal matrix and is for one treatment factor of the form

UT
1 U1 = diag r1,…,rv ; ZT

1 Z1 = diag k1,…,kb is also a diagonal matrix. Now
we have

ZTZ =
UT

1 U1 UT
1 Z1

ZT
1 U1 ZT

1 Z1

=
diag r1,…,rv UT

1 Z1

ZT
1 U1 diag k1,…,kb

The submatrix UT
1 Z1 = is called incidence matrix. By this ZTZ has the form

ZTZ =
diag r1,…,rv

T diag k1,…,kb

A block design has therefore a finite incidence structure built up from an inci-
dence matrix. A finite set {1, 2,…, v} of v elements (treatments) and a finite set
{B1, B2,…, Bb} of b sets, called blocks, are the levels of the nuisance and block
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factor. The elements of the incidence matrix = nij lead to the two diagonal

matrices because 1b = diag r1,…,rv and T1v =diag k1,…,kb .

Definition 12.3 Theelementsof the incidencematrix = nij with v rows and
b columns show how often the ith treatment (representing the ith row) occurs
in the jth block (representing the jth column). If all nij are either 0 or 1, the
incidence matrix and the corresponding block design are called binary. The
b column sums kj of the incidence matrix are the elements of diag(k1,…, kb)
and are called block sizes. The v row sums ri of the incidence matrix are the
elements of diag(r1,…, rv) and are called replications. A block design is com-
plete, if the elements of the incidence matrix are all positive (nij ≥ 1). A block
design is incomplete, if the incidence matrix contains at least one zero. Blocks
are called incomplete, if in the corresponding column of the incidence matrix,
there is at least one zero.
In block designs the randomisation has to be done as follows: the experimen-

tal units in each block are randomly assigned to the treatments, occurring in this
block. This randomisation is done separately for each block. In the complete
randomisation in Section 12.1, we only have to replace N by the block size k
and v by the number of plots in the block.
In complete block designs with v plots per block, where each of them is

assigned to exactly one of the v treatments, the randomisation is completed.
If k < v, (incomplete block designs) the abstract blocks, obtained by the math-
ematical construction have to be randomly assigned to the real blocks using the
method in Section 12.1 for N = b, if b is the number of blocks.
For incomplete binary block designs in place of the incidence matrix often a

shorter writing is in use. Each block is represented by a bracket including the
symbols (numbers) of the treatments, contained in the block.

Example 12.2 A block design with v = 4 treatments and b = 6 blocks may have
the incidence matrix:

1 0 1 0 0 0

0 1 0 1 1 1

1 0 1 0 0 0

0 1 0 1 1 1

Because zeros occur, we have an incomplete block design. This can now be writ-
ten as

1,3 , 2,4 , 1,3 , 2,4 , 2,4 , 2,4

The first bracket represents block 1 with treatments 1 and 3 corresponding to the
fact that in column 1 (representing the first block) in row 1 and 3 occurs a one.
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Definition 12.4 (Tocher, 1952)
A block design for which in Definition 12.2 the operator K maps the matrix Z

into the matrix, T is called T -balanced. A T -balanced incomplete
block design of order t is called partially balanced with t association classes.

Definition 12.5 Ablock designwith a symmetric incidencematrix is a symmet-
ric block design. If all treatments in a block design occur equally often (the number
of replications is ri = r for all i), it is called equireplicate. If the number of plots in a
block design is the same in each block (kj = k, for all j), it is called proper.
It can easily be seen that the sum of the replications ri as well as the sum of all

block sizes kj equals the number N of the experimental units of a block design.
Therefore, for each block design we have

v

i= 1

ri =
b

j= 1

kj = N 12 3

especially for equireplicate and proper block designs (ri = r and kj = k); this gives

vr = bk 12 4

In symmetric block designs are b= v and ri = ki i = 1,…, v .

Definition 12.6
a) An incomplete block design is connected, if for each pair (Ak, Al) of treat-

ments A1,…, Av, there exists a chain of treatments starting with Ak and end-
ing withAl, in which each of two adjacent treatments in this chain occur in at
least one block. Otherwise, the block design is disconnected.

b) Alternatively we say: a block design with incidence matrix is disconnected
if, by permuting its rows and columns in a suitable way, can be trans-
formed into a matrix M that can be written as the direct sum of at least
two matrices. Otherwise, it is connected.

Both parts of Definition 12.6 are equivalent; the proof is left to the reader.
Both parts of this definition are very abstract and their meaning is perhaps

unclear. But the feature ‘connected’ is very important for the analysis. Discon-
nected block designs, for instance, cannot be analyzed as a whole by the analysis
of variance (side conditions not fulfilled), but rather as two ormore independent
experimental designs.

Example 12.2 – Continued In the design of Example 12.2, the first and the
second treatments occur together in none of the six blocks. There is no chain of
treatments as in Definition 12.6, and therefore the design is a disconnected
block design. This can be seen if the blocks and the treatments are renumbered,
whichmeans that the columns and the rows of the incidencematrix are properly
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interchanged. We interchange the blocks 2 and 3 and the treatments 1 and 4.
Thus, in the incidence matrix the columns 2 and 3 and the rows 1 and 4 are
interchanged. The result is the matrix:

0 0 1 1 1 1

0 0 1 1 1 1

1 1 0 0 0 0

1 1 0 0 0 0

And this is the direct sum of two matrices, and that means that we have two
designs with two separate subsets of treatments. In the first design there are
two treatments (1 and 2) in four blocks, while in the second design there are
two further treatments (3 and 4) in two other blocks.
In the rest of these chapters, we only consider complete (and by this by def-

inition connected) or connected incomplete block designs. Further, we restrict
ourselves to proper and equireplicate block designs.

Definition 12.7 Let i; i= 1 2 be the incidence matrices of two block designs
with the parameters vi, bi, ki, ri. The Kronecker product = 1 2 is the inci-
dence matrix of a Kronecker product design with the para-
meters v= v1v2,b= b1b2,k = k1k2,r = r1r2.

Theorem 12.1 If the i, i= 1 2 in Definition 12.7 are binary, then the Kro-
necker product design with the incidence matrix = 1 2 is also binary,

and we have T = 1
T
1 2

T
2 . If the Kronecker product designs

with the incidence matrices i; i= 1 2 are both i
T
i -balanced of order ti, so

are = 1 2 and ∗ = 2 1 incidence matrices of T -balanced

and ∗ ∗T -balanced block designs, respectively, of order t∗ ≤ t1 + 1 t2 + 1 −1.

Proof: The first part of the theorem is a consequence of the definition of Kro-

necker product designs. Because the design is i
T
i -balanced of order ti, these

matrices have exactly ti + 1 (with the main diagonal element) different elements.

Because T = 1
T
1 2

T
2 in T (or ∗ ∗T ) all t1 + 1 t2 + 1 pro-

ducts will be found. But all elements in the main diagonal of T are equal,

so that maximal t1 + 1 t2 + 1 −1 different values in T (or ∗ ∗T ) exist.

12.2.1 Completely Balanced Incomplete Block Designs (BIBD)

Definition 12.8 A (completely) balanced incomplete block design (BIBD) is a
proper and equireplicate incomplete blocks design with the additional property
that each pair of treatments occurs in equally many, say, in λ, blocks. Following
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Definition 12.4 it is a T -balanced incomplete Block design with t = 1, a
BIBD with v treatments with r replications in b Blocks of size k < v, is called
a B(v, k, λ)-design. A BIBD for a pair (v, k) is called elementary, if it cannot
be decomposed in at least two BIBD for this pair (v, k). A BIBD for a pair (v, k)
is a smallest BIBD for this pair (v, k), if r (and by this also b and λ) is minimal.

In B(v, k, λ) only three of the five parameters v, b, k, r, λ of a BIBD occur. But
this is sufficient, because exactly three of the five parameters can be fixed, while
the two others are automatically fixed.

This can be seen as follows. The number of possible pairs of treatments in the

design is
v

2
=

v v−1
2

. However, in each of the b blocks exactly

k

2
=

k k−1
2

pairs of treatments exist so that

λv v−1 = bk k−1

if each of the
v

2
pairs of treatments occurs λ -times in the experiment. From

Formula (12.4) we replace bk with vr and after division by v we obtain

λ v−1 = r k−1 12 5

The Equations (12.4) and (12.5) are necessary conditions for the existence of a
BIBD. These necessary conditions reduce the set of possible quintuple of inte-
gers v, b, r, k, λ on a subset of integers, for which the conditions (12.4) and (12.5)
are fulfilled. If we characterize a BIBD by three of these parameters, like {v, k, λ},
the other parameters can be calculated via (12.4) and (12.5).
The necessary conditions are not always sufficient for the existence of a BIBD.

To show this we give a counter example.

Example 12.3 We show that the conditions that are necessary for the exist-
ence of a BIBD must not be sufficient. The values

v= 16, r = 3, b= 8, k = 6, λ= 1

give 16 3 = 8 6 and 1 15 = 3 5 by (12.4) and (12.5), but no BIBD with these para-
meters exists.
Besides (12.4) and (12.5) there is a further necessary condition, Fisher’s

inequality

b ≥ v 12 6
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This inequality is not fulfilled in Example 12.3. But even if (12.4), (12.5) and
(12.6) are valid, a BIBD does not always exist. Examples for that are

v= 22, k = 8, b= 33, r = 12, λ= 4

and

v= 34, k = 12, r = 12, b= 34, λ= 4

The smallest existing BIBD for

v= 22, k = 8 and v= 34 and k = 12

has the parameters

v = 22, k = 8, b = 66, r =24, λ=8 and
v = 34, k = 12, r = 18, b = 51, λ = 6, respectively.

A BIBD (a so-called unreduced or trivial BIBD) for any positive integer v and
k < v can always be constructed by writing down all possible k-tuples from v

elements. Then b =
v

k
, r =

v−1

k−1
and λ =

v−2

k−2
.

Often a smaller BIBD (with fewer blocks than the trivial one) can be found as a
subset of a trivial BIBD. A case where such a reduction is not possible, is that
with v = 8 and k = 3. This is the only one case for v ≤ 25 and 2 < k < v − 1 where no
smaller BIBD than the trivial one exists. Rasch et al. (2016) formulate and sup-
port the following conjecture.

Conjecture:
The cases v = 8 and k = 3 are the only cases for k > 2 and k < v − 2 where the

trivial BIBD is elementary.

This conjecture is even now neither confirmed nor disproved. But the follow-
ing theorem is proved.

Theorem 12.2 The conjecture above is true, if at least one of the following
conditions is fulfilled:

a) v < 26, 2 < k < v − 1
b) k < 6
c) for v > 8 and k a BIBD exists with b= v v−1 .

Proof: For (a) and (b) the theorem is proved constructively that for all parameter
combinations there exists a non-trivial BIBD.
If there exists a BIBD with b = v(v − 1), then for each k ≤ v/2 we write

v

k
=
v
1
v−1
2

v−2
3

…
v−k + 1

k
= v v−1

v−2
6

v−3
4

…
v−k + 1

k
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All factors of
v−2
6

v−3
4

…
v−k + 1

k
are larger than 1, so that v v− 1 <

v

k
.

This completes the proof.

The block designs with b = v(v − 1) blocks often are not the smallest. One
reason is that in some designs each block occursw times. Removingw − 1 copies

of each block leads to a BIBD with
v v−1

w
blocks.

In the meantime F. Teuscher (2017, Constructing a BIBD with v = 26, k = 11,
b = 130, r = 55, λ = 22, personal communication) showed that the conjecture
is true for v = 26, k = 11, because he constructed a design with v = 26,
k = 11, b = 130, r = 55, λ = 22.

In constructing BIBD we can restrict ourselves to k ≤
v
2
due to the defini-

tion below.

Definition 12.9 A complementary block design for a given BIBD for a pair
(v,k) is a block design for (v,v − k) with the same number of blocks, so that each
block of the complementary block design contains just those treatments not
occurring in the corresponding block of the original BIBD.
We receive (parameters of the complementary design are indicated with ∗)

v∗ = v, b∗ = b, k∗ = v – k, r∗ = b – r

The incidence matrix of the complementary design is ∗ = 1vb− , and this
adds up to

∗ ∗T = 1vb− 1vb−
T = b1vv−r1vv− r1vv +

T

= r−λ Iv + b−2r + λ 1vv

That means that the complementary block design of a BIBD is also a BIBD,
with λ∗ = b−2r + λ

Theorem 12.3 The complementary block design to a given BIBD for a pair
(v,k) is a BIBD for (v,v − k) with the parameters v∗, b∗, k∗, r∗, λ∗ and v∗ = v,
b∗ = b, k∗ = v – k, r∗ = b – r, λ∗ = b−2r + λ

From this it follows that a BIBD cannot be complementary to a block design that
is not a BIBD.
Of course smallest (v,k) – BIBD are elementary, but not all elementary BIBD

are smallest, as we will show in Example 12.4.
In applications the number v of treatments and the block size k are often

given, and we like to find the smallest BIBD for a pair (v,k). This is possible with
the R-programme in OPDOE (Rasch et al., 2011) for v ≤ 25.
If k = 1 each of the v elements define a block of a degenerated BIBD with v = b,

r = 1 and λ = 0. These BIBD are trivial and elementary. The same is true for its
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complementary BIBD with v = b, r = k = v − 1 and λ = v – 2. Here in each block
another treatment is missing. Even for k=2 all BIBD and their complementary
BIBD are trivial as well as elementary. That is why in the future, we will confine
ourselves to 3 ≤ k ≤ v/2.

Definition 12.10 A BIBD is said to be α- resolvable or α-RBIBD, if its blocks
can be arranged to form l ≥ 2 classes in such a way that each block occurs exactly
α times in each class. We write RB(v, k, λ). A α-RBIBD is said to be affine α −
resolvable, if each pair of blocks from a given class has exactly α = q1 treatments
in common and pairs of blocks from different classes have q2 treatments in com-
mon, a 1-resolvable BIBD is called resolvable or a RBIBD.

For affine α- resolvable RBIBD we have b = v + r – 1 and α=
k2

v
.

Example 12.4 The BIBD with v = 9, k = 3, λ = 1 and b = 12 is affine
1-resolvable in four classes (the columns of the scheme)

1,2,3 1,4,7 1,5,9 1,6,8

4,5,6 2,5,8 2,6,7 3,5,7

7,8,9 3,6,9 3,4,8 2,4,9

because α=
32

9
= 1.

Definition 12.11 If is the incidence matrix of a BIBD, then T is the inci-
dence matrix of the dual BIBD, obtained by interchanging rows and columns in
the incidence matrix of a BIBD.
The parameters v∗, b∗, r∗, k∗ and λ∗ of the dual BIBD of a BIBD with para-

meters v, b, r, k, and λ are v∗ = b, b∗ = v, r∗ = k, k∗ = r and λ = λ∗.

Example 12.5 For v = 7 and k = 3 the trivial BIBD is given by the following:

1,2,3 1,3,6 1,6,7 2,4,7 3,5,6

1,2,4 1,3,7 2,3,4 2,5,6 3,5,7

1,2,5 1,4,5 2,3,5 2,5,7 3,6,7

1,2,6 1,4,6 2,3,6 2,6,7 4,5,6

1,2,7 1,4,7 2,3,7 3,4,5 4,5,7

1,3,4 1,5,6 2,4,5 3,4,6 4,6,7

1,3,5 1,5,7 2,4,6 3,4,7 5,6,7
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An elementary BIBD has the parameters b = 7, r = 3, λ = 1 and the blocks
{(1,2,4); (1,3,7), (1,5,6), (2,3,5), (2,6,7), (4,5,7), (3,4,6)} – in bold print above.

The incidence matrix is

1 1 1 0 0 0 0

1 0 0 1 1 0 0

0 1 0 1 0 0 1

1 0 0 0 0 1 1

0 0 1 1 0 1 0

0 0 1 0 1 0 1

0 1 0 0 1 1 0

The complementary BIBD is

1,2,3,6 , 1,3,4,5 , 1,4,6,7 , 1,2,5,7 , 2,4,5,6 , 2,3,4,7 , 3,5,6,7

A further elementary BIBD with parameters b = 7, r = 3, λ = 1 is the septuplet
printed italic (but not bold) in the trivial BIBD. It is isomorph to the BIBD with
the italic and bold printed blocks. The set of the residual 21 of the 35 blocks
cannot be split up into smaller BIBD; they also build an elementary BIBD,
but of course not the smallest.
To show that there are no further BIBD with 7 blocks (and by thus no BIBD

with 14 blocks) within the residual 21 blocks, we consider one of the 21 residual
blocks, namely, (1,2,3). Because r = 3 we need two further blocks with a 1, where
(1,4), (1,5), (1,6) and (1,7) are contained. The only possibility is (1,4,5) and
(1,6,7), and other possibilities are already in a block of the two elementary
designs or contradict λ = 1. The block design we are looking for must start with
(1,2,3), (1,4,5) and (1,6,7). Now we need two further blocks with a 2 with the
pairs (2,4), (2,5), 2,6), and (2,7). Possibilities are (2,4,6) with (2,5,7) or (2,4,7) with
(2,5,6).
It means we have two possibilities for the first five blocks:

(1,2,3) or (1,2,3)

(1,4,5) (1,4,5)

(1,6,7) (1,6,7)

(2,4,6) (2,4,7)

(2,5,7) (2,5,6)

Now we need two blocks with a 3 in each to add them to the five blocks. The
blocks (3,6,7) and (3,4,5) are not permissible; the pairs 4,5 and 6,7 are already
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present in the first five blocks, (3,4,7) is in the first quintuple permissible, but the
needed partner (3,5,6) is already in a block of the two elementary designs.
Therefore, the first quintuple must be withdrawn. In the second quintuple
we could continue with (3, 5, 7), but here the needed partner (3, 4, 6) is also gone.
Therefore the remaining 21 blocks build an elementary BIBD.
The dual BIBD of the bold printed elementary design above has the incidence

matrix

1 1 0 1 0 0 0

1 0 1 0 0 0 1

1 0 0 0 1 1 0

0 1 1 0 1 0 0

0 1 0 0 0 1 1

0 0 0 1 1 0 1

0 0 1 1 0 1 0

The corresponding BIBD is

1,2,3 ; 1,4,5 , 1,6,7 , 2,4,7 , 2,5,6 , 3,4,6 3,5,7

and of course elementary as well.
In the following we give some results where the necessary conditions (12.4),

(12.5) and (12.6) are sufficient.

Theorem 12.4 (Hanani, 1961, 1975; Abel and Greig, 1998; Abel et al., 2001)
The necessary conditions (12.4) to (12.6) are sufficient, if

k = 3 and k = 4 for all v ≥ 4 and for all λ
k = 5 with exception of v = 15 and λ = 2
k = 6 for all v ≥ 7 and λ > 1 with exception of v = 21 and λ = 2
k = 7 for all v ≥ 7 and λ = 0, 6, 7, 12, 18, 24, 30, 35, 36 (mod (42)) and all λ > 30 not
divisible by 2 or 3

k = 8 for λ = 1, with 38 possible exceptions for v, namely, the values

113, 169, 176, 225, 281, 337, 393, 624, 736, 785, 1065, 1121, 1128, 1177, 1233,
1240, 1296, 1345, 1401, 1408, 1457, 1464, 1513, 1520, 1569, 1576, 1737, 1793,
1905, 1961, 2185, 2241, 2577, 2913, 3305, 3417, 3473, 3753.
From these 38 values of v exist (v, 8, 2)-BIBD with exception of v = 393, but for

λ = 2 there are further values of v: 29, 36, 365, 477, 484, 533, 540, 589 for which
the existence is not clear. The necessary conditions are sufficient for all λ > 5 and
for λ = 4 if v 22.
Because the proof of this theorem is enormous, we refer to the original liter-

ature. For λ = 4 and v = 22 there exists no BIBD, the smallest BIBD for v = 22 and
k =8 given by the R-programme OPDOE is that for λ = 8, b = 66 and r = 24.
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Theorem 12.5 (Theorem 1.2, Abel et al. (2002a, 2002b, 2004))
The necessary conditions for the existence of a (v, k = 9, λ)-BIBD in the following
cases are sufficient:

a) For λ = 2 (necessary conditions: v≡ 1,9 (mod 36)) with the possible exception
of v = 189, 253, 505, 765, 837, 1197, 1837 and 1845

b) For λ = 3 (necessary conditions: v≡ 1,9 (mod 24)) with the possible exception
of v = 177, 345 and 385

c) For λ = 4 (necessary conditions: v≡ 1,9 (mod 18)) with the possible exception
v = 315, 459 and 783

d) For λ = 6 (necessary conditions: v ≡ 1,9 (mod 12)) with the possible excep-
tion v=213

e) For λ = 8 (necessary conditions: v ≡ 0,1 (mod 9))
f) For λ = 9 (necessary conditions: v ≡1 (mod 8))
g) For λ = 12 (necessary conditions: v ≡ 1,3 (mod 6) with v ≥ 9)
h) For λ = 18, 24, 36, 72 and all further values of λ, not being divisor of 72

The proof is given in Abel et al. (2002a, 2002b, 2004), where it was stated that
the possible exceptions could not be definite shown as exceptions, for all other
block designs the existence was shown. Cases not yet clear are given in
Tables 12.1 and 12.2.
Hanani (1989) showed that the necessary conditions (12.4), (12.5) and (12.6)

are sufficient for the existence of a BIBD with k = 7 and λ =3 and λ =21 with
the possible exception for the values λ = 3 and v = 323, 351, 407, 519, 525,
575, 665.
Sun (2012) showed that if the number of treatments is a prime power, in many

cases the necessary conditions are sufficient for the existence of a BIBD.

Table 12.1 Values of v in not yet constructed (v, k = 9, λ)-BIBD with λ = 1.

145 153 217 225 289 297 361 369 505 793 865 873 945 1017 1081 1305 1441 1513 1585 1593

1665 1729 1809 1881 1945 1953 2025 2233 2241 2305 2385 2449 2457 2665 2737 2745 2881
2889 2961 3025 3097 3105 3241 3321 3385 3393 3601 3745 3753 3817 4033 4257 4321 4393
4401 4465 4473 4825 4833 4897 4905 5401 5473 5481 6049 6129 6625 6705 6769 6777 6913
7345 7353 7425 9505 10017 10665 12529 12537 13185 13753 13833 13969 14113 14473
14553 14625 14689 15049 15057 16497.

Table 12.2 (v, k = 9, λ)-BIBD with λ > 1 not yet constructed.

(177,9,3) (189,9,2) (213,9,6) (253,9,2) (315,9,4) (345,9,3) (385,9,3) (459,9,4) (505,9,2)
(765,9,2) (783,9,4) (837,9,2) (1197,9,2) (1837,9,2) (1845,9,2)
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Results for the existence of symmetric BIBD contains the following theorem:

Theorem 12.6 (Bruck-Ryser-Chowla-Theorem, Mohan et al. (2004))
If the parameters v; k; λ of a BIBD fulfil the existence condition (12.5) for k = r, so
for the existence of a symmetric BIBD, it is necessary that either

a) v is even and k - λ a is a square number or

b) v is odd and z2 = (k− λ)x2+ −1
v−1
2 λy2 has a non-trivial integer solution x; y; z.

Some authors published tables of BIBD; the first for r ≤ 10 stems from Fisher
and Yates (1963). For 11 ≤ r ≤ 15 we find a table in Rao (1961) and for
16 ≤ r ≤ 20 in Sprott (1962). Takeuchi (1962) gives further tables for v ≤ 100,
k ≤ 30, λ ≤ 14. The parameter combinations of further tables are given in Ragha-
varao (1971) for v ≤ 100, k ≤ 15¸ λ ≤ 15; in Collins (1976) v ≤ 50, k ≤ 23¸ λ ≤ 11; in
Mathon and Rosa (2006) for r ≤ 41 and in Mohan et al. (2004) for v ≤ 111 k ≤ 55
λ ≤ 30 (Colbourn and Dinitz, 2006).

12.2.2 Construction Methods of BIBD

In this section we show the multiplicity of methods of the construction of BIBD,
but these are not exhaustive. Further methods are, for instance, given in Abel
et al. (2004) or in Rasch et al. (2011). In the latter R-programme, methods
are described using difference sets and difference families, not described here.

Definition 12.12 Let p be a prime. Then for an integer h put s = p. Each
ordered set X = x0,…,xn of n + 1 elements xi of a Galois field GF(s) is a point
of a (finite) projective geometry PG(n,s). Two sets Y = y0,…,yn and
X = x0,…,xn with yi = qxi i= 0,…,n and an element q of the GF(s) unequal
0 represent the same point. The elements xi i= 0,…,n of X are coordinates
of X. All points of a PG(n,s), fulfilling the n-m linear independent homogeneous

equations
n

i= 0
ajixi = 0; j= 1,…,n−m; aji GF s , create an m-dimensional

subspace of the PG(n,s). Subspaces with x0 = 0 are subspaces in the infinite. In

a PG(n,s) there are Qn =
sn+1−1
s−1

different points and Qm =
sm+1−1
s−1

points in

each m-dimensional subspace. The number of m-dimensional subspaces of a
PG(n,s) is

φ n,m,s =
sn+ 1−1 sn−1 … sn−m+ 1−1

sm+1−1 sm−1 … s−1
, m ≥ 0; n ≥m 12 7

The number of differentm-dimensional subspaces of a PG(n,s), having no point
in common, is

φ n,m,s
sm+ 1−1
sn+ 1−1

=φ n−1,m−1,s if m ≥ 1
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The number of differentm-dimensional subspaces of a PG(n,s) with two differ-
ent points in common is

φ n,m,s
sm+ 1−1 sm−1
sn+ 1−1 sn−1

=φ n−2,m−2,s , ifm≥ 2

Method 12.1 We construct a PG(n,s) and consider their points as the v treat-
ments and for each m, the m-dimensional subspace as a block. This gives a
BIBD with

v=
sn+ 1−1
s−1

,

b=φ n,m,s ,

r =
sm+1−1
sn+ 1−1

φ n,m,s ,

k =
sm+ 1−1
s−1

,

λ=
sm+ 1−1 sm−1
sn+ 1−1 sn−1

φ n,m,s

where φ(n,m, s) is defined in Definition 12.12.

Example 12.6 We construct a PG(3,2) with s =p = 2; h = 1 and n = 3. The
GF (2) is {0, 1}, a minimal function we do not need, because h = 1. The 15 ele-
ments (treatments) of the PG(3,2) are all possible combinations of (0;1)-values
in X = x0,…,x3 with the exception of (0,0,0,0):

1,0,0,0 , 0,1,0,0 , 0,0,1,0 , 0,0,0,1 , 1,1,0,0 , 1,0,1,0 , 1,0,0,1 , 0,1,1,0 ,

0,1,0,1 , 0,0,1,1 , 1,1,1,0 , 1,1,0,1 , 1,0,1,1 , 0,1,1,1 , 1,1,1,1

With m =2 the equation (n – m = 1) for the two dimensional subspaces is
a0 + a1x1 + a2x2 + a3x3 = 0 with all combinations of coefficients of the GF(2)
(except (0,0,0,0)). These are just the same quadruple as the 15 points above.
We create now a (15×15) matrix with rows defined by the treatments and col-
umns defined by the subspaces (blocks). In each cell of the matrix, we insert a 1
if the point lies in the block and a 0 otherwise. We consider the first block
defined by a0 = 0. All points with a0 at the first place are in that block. These are
the points 2, 3, 4, 8, 9, 10 and 14. The second equation is x1 = 0. In that block
are all points with a0 as the second entry. These are the points 1, 3, 4, 6, 7,
10 and 13. So we continue with all 15 blocks and receive the symmetric BIBDwith
v = b = 15, r = k = 7 and λ = 3.
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Block Treatments

1 1 2 4 5 8 10 15

2 2 3 5 6 9 11 1

3 3 4 6 7 10 12 2

4 4 5 7 8 11 13 3

5 5 6 8 9 12 14 4

6 6 7 9 10 13 15 5

7 7 8 10 11 14 1 6

8 8 9 11 12 15 2 7

9 9 10 12 13 1 3 8

10 10 11 13 14 2 4 9

11 11 12 14 15 3 5 10

12 12 13 15 1 4 6 11

13 13 14 1 2 5 7 12

14 14 15 2 3 6 8 13

15 15 1 3 4 7 9 14

Definition 12.13 Let p be a prime. Then for an integer h is s = ph. Each
ordered set X = x1,…,xn of n elements xi of a GF(s) is a point of a (finite)
Euclidean geometry EG(n,s). Two sets Y = y0,…,yn and X = x0,…,xn with
yi = xi i= 0,…,n represent the same point. The elements xi i= 1,…,n of X
are coordinates of X. All points of a EG(n,s), fulfilling the n − m linear

independent equations
n

i= 1
ajixi = 0; j= 1,…,n−m; aji GF s and x0 = 1,

create an m-dimensional subspace of the EG(n,s).

In EG(n,s) there are sn different points and sm points in each m-dimensional
subspace. The number of m-dimensional subspaces of an EG(n,s) passing
through one fixed point is

φ n−1,m−1,s

The number of different m-dimensional subspaces of an EG(n,s) with two dif-
ferent points in common is

φ n−2,m−2,s

Method 12.2 We can construct an EG(n,s) and consider its points as v treat-
ments and for each m, the m-dimensional subspaces as block. This gives a
BIBD with
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v= sn,

b=φ n,m,s −φ n−1,m,s ,

r =
sm+1−1
sn+ 1−1

φ n,m,s ,

k = sm,

λ=
sm+ 1−1 sm−1
sn+ 1−1 sn−1

φ n,m,s

Example 12.7 We construct an EG(3,2) with s =p = 2; h = 1, n = 3 andm = 2.
The parameters of the block design are

v= 23 = 8,

b=φ 3,2,2 −φ 2,2,2 = 15−1 = 14,

r =
s3−1
s4−1

15 = 7,

k = s2 = 4,

λ=
s3−1 s2−1
s4−1 s3−1

15 = 3

and the block design is

Block Treatments

1 1 3 5 7

2 1 2 5 6

3 1 4 5 8

4 1 2 3 4

5 1 3 6 8

6 1 2 7 8

7 1 4 6 7

8 2 4 6 8

9 3 4 7 8

10 2 3 6 7

11 5 6 7 8

12 2 4 5 7

13 3 4 5 6

14 2 3 5 8
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Method 12.3 If is the incidence matrix of a BIBD with parameters

v= b= 4l + 3,r = k = 2l + 1 and λ= l; l = 1 2,…

and if is the incidence matrix of the complementary BIBD, then the matrix

∗=
0Tv 1Tv

is the incidence matrix of a BIBD (4 l + 4, 8 l +6, 4 l + 3, 2 l + 2,

2 l + 1).

Example 12.8 Let l = 1 then

=

1 1 1 0 0 0 0

1 0 0 1 1 0 0

0 1 0 1 0 1 0

1 0 0 0 0 1 1

0 0 1 1 0 0 1

0 0 1 0 1 1 0

0 1 0 0 1 0 1

and =

0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

0 1 1 1 1 0 0

1 1 0 0 1 1 0

1 1 0 1 0 0 1

1 0 1 1 0 1 0

This results in

∗ =

1 1 1 0 0 0 0

1 0 0 1 1 0 0

0 1 0 1 0 1 0

1 0 0 0 0 1 1

0 0 1 1 0 0 1

0 0 1 0 1 1 0

0 1 0 0 1 0 1

0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

0 1 1 1 1 0 0

1 1 0 0 1 1 0

1 1 0 1 0 0 1

1 0 1 1 0 1 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0

This is the incidence matrix of a BIBD with v = 8, b = 14, r = 7, k = 4 and λ = 3,
and it is isomorphic with that in Example 12.7.

As we have seen, different methods can lead to the same block design.
We now need the minimal functions of a GF(ph) as presented in Table 12.3.
A minimal function P(x) can be used to generate the elements of a GF(ph). We
need the function

f x = a0 + a1x+ + ah−1x
h−1
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with integer coefficients ai i= 0,…,h−1 as the elements of a GF(p). The
function

F x = f x + pq x +P x Q x 12 8

with the minimal function P(x) and certain polynomials q(x) and Q(x) creates a
class of functions, the residues modulo p and P(x). We write

F x f x modp;P x 12 9

If p and P(x) are fixed and f(x) is variable F(x) generates just ph classes (func-
tions) representing a GF(ph) iff p is prime and P(x) is a minimal function of
GF(ph).

Method 12.4 If v= pm, where p is prime and m a natural number with the
elements of a GF a0 = 0;a1 = 1;…,av−1 , we construct v – 1 LS (see

Section 12.3) Al = a l
ij ; l = 1, …, v – 1 as follows: A1 = a 1

ij is the addition

table of a group, the elements of A1 = a 1
ij ; t= 2,…,v – 1 are atij = a

1
ij at . We

construct the v(v – 1) matrix A= A1,…,Av−1 . With the desired block size k,
we choose k different elements from the GF. Each column ofA defines one block
of the BIBD; its elements are just the row numbers of A of the k selected ele-
ments of the GF. If each block occurs w ≥ 2 times, we delete w – 1 copies. To
find out, whether blocks occur more than once, we order the elements in the
blocks lexicographically. The parameters of the original BIBD are

v= pm; b= v v−1 ; r = k v−1 ; k; λ= k k−1

Table 12.3 Minimal functions P(x) of a GF(ph).

p h P(x) p h P(x) p h P(x)

2 2 x2 + x+ 1 5 2 x2 + 2x+ 3 11 2 x2 + x+ 7

3 x3 + x2 + 1 3 x3 + x2 + 2 3 x3 + x2 + 3

4 x4 + x3 + 1 4 x4 + x3 + 2x2 + 2 4 x4 + 4x3 + 2

5 x5 + x3 + 1 5 x5 + x2 + 2 5 x5 + x3 + x2 + 9

6 x6 + x5 + 1 6 x6 + x5 + 2 13 2 x2 + x+ 2

3 2 x2 + x+ 2 7 2 x2 + x+ 3 3 x3 + x2 + 2

3 x3 + 2x+ 1 3 x3 + x2 + x+ 2 4 x4 + x3 + 3x2 + 2

4 x4 + x+ 2 4 x4 + x3 + x2 + 3 17 2 x2 + x+ 3

5 x5 + 2x4 + 1 5 x5 + x4 + 4 3 x3 + x+ 3

6 x6 + x5 + 2 6 x6 + x5 + x4 + 3 4 x4 + 4x2 + x+ 3
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The reduced BIBD then has the parameters

v∗ = v, b∗ =
b
w
, r∗ =

r
w
, k∗ = k, λ∗ =

λ

w

Example 12.9 We try to construct a BIBD with v = 9. For v= 9= 32 is p = 3;
m = 2. The minimal function is x2 + x+ 2 and f x = α0 + α1x with coefficients
αi;i= 0 1 from GF(3) = {0, 1, 2}. The function F x f x mod3; x2 + x+ 2
gives the nine elements of GF(9) for all values of f (x):

α0 α1 f(x) = F(x)

0 0 a0 = 0

0 1 a2 = x

0 2 a3 = 2x

1 0 a1 = 1

1 1 a4 = 1 + x

1 2 a5 = x2 = 1 + 2x

2 0 a6 = 2

2 1 a7 = 2 + x

2 2 a8 = 2 + 2x

The addition table of GF(9) is a LS:

0 1 x 2x 1 + x 1 + 2x 2 2 + x 2 + 2x

1 2 1 + x 1 + 2x 2 + x 2 + 2x 0 x 2x

x 1 + x 2x 0 1 + 2x 1 2 + x 2 + 2x 2

2x 1 + 2x 0 x 1 1 + x 2 + 2x 2 2 + x

1 + x 2 + x 1 + 2x 1 2 + 2x 2 x 2x 0

1 + 2x 2 + 2x 1 1 + x 2 2 + x 2x 0 x

2 0 2 + x 2 + 2x x 2x 1 1 + x 1 + 2x

2 + x x 2 + 2x 2 2x 0 1 + x 1 + 2x 1

2 + 2x 2x 2 2 + x 0 x 1 + 2x 1 1 + x
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The seven other matrices are (at first we multiply with a2 = x) the following:

0 x 1 + 2x 2 + x 1 2 + 2x 2x 1 + x 2

x 2x 1 2 + 2x 1 + x 2 0 1 + 2x 2 + x

1 + 2x 1 2 + x 0 2 + 2x x 1 + x 2 2x

2 + x 2 + 2x 0 1 + 2x x 1 2 2x 1 + x

1 1 + x 2 + 2x x 2 2x 1 + 2x 2 + x 0

2 + 2x 2 x 1 2x 1 + x 2 + x 0 2 + 2x

2x 0 1 + x 2 1 + 2x 2 + x x 1 2 + 2x

1 + x 1 + 2x 2 2x 2 + x 0 1 2 + 2x x

2 2 + x 2x 1 + x 0 2 + 2x 2 + 2x x 1

0 2x 2 + x 1 + 2x 2 1 + x x 2 + 2x 1

2x x 2 1 + x 2 + 2x 1 0 2 + x 1 + 2x

2 + x 2 1 + 2x 0 1 + x 2x 2 + 2x 1 x

1 + 2x 1 + x 0 2 + x 2x 2 1 x 2 + 2x

2 2 + 2x 1 + x 2x 1 x 2 + x 1 + 2x 0

1 + x 1 2x 2 x 2 + 2x 1 + 2x 0 2 + x

x 0 2 + 2x 1 2 + x 1 + 2x 2x 2 1 + x

2 + 2x 2 + x 1 x 1 + 2x 0 2 1 + x 2x

1 1 + 2x x 2 + 2x 0 2 + x 1 + x 2x 2

0 1 + x 1 2 2 + x x 2 + 2x 2x 1 + 2x

1 + x 2 + 2x 2 + x x 2x 1 + 2x 0 1 2

1 2 + x 2 0 x 1 + x 2x 1 + 2x 2 + 2x

2 x 0 1 1 + x 2 + x 1 + 2x 2 + 2x 2x

2 + x 2x x 1 + x 1 + 2x 2 + 2x 1 2 0

x 1 + 2x 1 + x 2 + x 2 + 2x 2x 2 0 1

2 + 2x 0 2x 1 + 2x 1 2 1 + x 2 + x x

2x 1 1 + 2x 2 + 2x 2 0 2 + x x 1 + x

1 + 2x 2 2 + 2x 2x 0 1 x 1 + x 2 + x

Block Designs 589



0 1 + 2x 2 + 2x 1 + x x 2 2 + x 1 2x

1 + 2x 2 + x x 2 1 2x 0 2 + 2x 1 + x

2 + 2x x 1 + x 0 2 1 + 2x 1 2x 2 + x

1 + x 2 0 2 + 2x 1 + 2x x 2x 2 + x 1

x 1 2 1 + 2x 2x 2 + x 2 + 2x 1 + x 0

2 2x 1 + 2x x 2 + x 1 1 + x 0 2 + 2x

2 + x 0 1 2x 2 + 2x 1 + x 1 + 2x x 2

1 2 + 2x 2x 2 + x 1 + x 0 x 2 1 + 2x

2x 1 + x 2 + x 1 0 2 + 2x 2 1 + 2x x

0 2 2x x 2 + 2x 2 + x 1 1 + 2x 1 + x

2 1 2 + 2x 2 + x 1 + 2x 1 + x 0 2x x

2x 2 + 2x x 0 2 + x 2 1 + 2x 1 + x 1

x 2 + x 0 2x 2 2 + 2x 1 + x 1 1 + 2x

2 + 2x 1 + 2x 2 + x 2 1 + x 1 2x x 0

2 + x 1 + x 2 2 + 2x 1 1 + 2x x 0 2x

1 0 1 + 2x 1 + x 2x x 2 2 + 2x 2 + x

1 + 2x 2x 1 + x 1 x 0 2 + 2x 2 + x 2

1 + x x 1 1 + 2x 0 2x 2 + x 2 2 + 2x

0 2 + x 1 + x 2 + 2x 2x 1 1 + 2x 2 x

2 + x 1 + 2x 2x 1 2 x 0 1 + x 2 + 2x

1 + x 2x 2 + 2x 0 1 2 + x 2 x 1 + 2x

2 + 2x 1 0 1 + x 2 + x 2x x 1 + 2x 2

2x 2 1 2 + x x 1 + 2x 1 + x 2 + 2x 0

1 x 2 + x 2x 1 + 2x 2 2 + 2x 0 1 + x

1 + 2x 0 2 x 1 + x 2 + 2x 2 + x 2x 1

2 1 + x x 1 + 2x 2 + 2x 0 2x 1 2 + x

x 2 + 2x 1 + 2x 2 0 1 + x 1 2 + x 2x
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0 2 + 2x 2 1 1 + 2x 2x 1 + x x 2 + x

2 + 2x 1 + x 1 + 2x 2x x 2 + x 0 2 1

2 1 + 2x 1 0 2x 2 + 2x x 2 + x 1 + x

1 2x 0 2 2 + 2x 1 + 2x 2 + x 1 + x x

1 + 2x x 2x 2 + 2x 2 + x 1 + x 2 1 0

2x 2 + x 2 + 2x 1 + 2x 1 + x x 1 0 2

1 + x 0 x 2 + x 2 1 2 + 2x 1 + 2x 2x

x 2 2 + x 1 + x 1 0 1 + 2x 2x 2 + 2x

2 + x 1 1 + x x 0 2 2x 2 + 2x 1 + 2x

We now choose the four elements 0; 1;2;x and get the blocks (1,2,3,7) [from the
first row of the addition table] and

1,2,7,8 ; 1,4,6,9 ; 3,4,5,8 ; 4,6,7,9 ; 3,5,8,9 ; 1,2,5,7 ; 2,4,6,9 ; 3,5,6,8

From the next matrix we get

1,2,5,9 ; 1,3,6,7 ; 2,4,6,8 ; 3,5,6,7 ; 1,4,5,9 ; 2,3,4,8 ; 2,3,7,8 ; 3,6,7,9 ; 1,5,8,9

We continue in this way and get

1,5,7,9 ; 2,3,6,7 ; 2,4,8,9 ; 3,6,7,8 ; 1,5,6,9 ; 2,4,5,8 ; 1,2,4,8 ; 3,4,6,7 ; 1,3,5,9 ;

1,3,4,6 ; 4,7,8,9 ; 1,3,4,5 ; 1,2,3,4 ; 3,7,8,9 ; 1,7,8,9 ; 2,5,6,9 ; 2,5,6,8 ; 2,5,6,7 ;

1,5,6,8 ; 3,4,5,7 ; 2,4,5,7 ; 2,3,6,9 ; 1,2,3,9 ; 1,4,6,8 ; 2,3,8,9 ; 1,6,7,8 ; 4,5,7,9 ;

1,2,4,7 ; 1,2,7,9 ; 3,4,6,9 ; 1,3,5,8 ; 4,6,8,9 ; 3,5,7,8 ; 1,2,6,7 ; 4,5,6,9 ; 2,3,5,8 ;

1,6,8,9 ; 4,5,6,7 ; 4,5,7,8 ; 2,3,7,9 ; 2,3,5,9 ; 1,2,6,8 ; 2,3,4,9 ; 1,3,6,8 ; 1,4,5,7 ;

1,3,4,8 ; 5,7,8,9 ; 1,3,4,7 ; 1,3,4,9 ; 2,7,8,9 ; 6,7,8,9 ; 2,3,5,6 ; 1,2,5,6 ; 2,4,5,6

All blocks are different, which means w = 1 and v= 9; b= 72; r = 32; k = 4; λ= 12.
We know from Theorem 12.3 that for k = 4, a BIBD exists with parameter

fulfilling the necessary conditions [v= 9;b= 18;r = 8;k = 4;λ= 3]. This shows that
Method 12.4 even for w = 1 does not necessarily lead to a smallest BIBD. We
recommend, therefore, to use this method only if no other method for the pair
(v,k) is available.

Method 12.5 A BIBD with parameters v= s2,b= s s+ 1 ,k = s can be parti-
tioned into s + 1 groups with s blocks each. The blocks of the groups 2 to
s + 1 are (s – 1) times included into the BIBD to be constructed. The blocks
from group 1 occur once. Finally this so obtained set is complemented by all
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(s – 1)-tuples from the blocks of group 1 complemented by the treatment v + 1.
The so constructed BIBD has the parameters

v= s2 + 1; k = s; b= s s2 + 1 ; r = s2; λ= s−1

Example 12.10 We construct a BIBD with parameters v= 10; k = 3; b= 30;
r = 9;λ= 2. The BIBD with the parameters v= 9; k = 3; b= 12; r = 4; λ= 1 (s = 3)
is written in four groups:

Group 1:

1,2,6

3,4,5

7,8,9

; Group 2:

1,3,7

2,4,9

5,6,8

; Group 3:

1,4,8

2,5,7

3,6,9

.;

Group 4:

1,5,9

2,3,8

4,6,7

.

The blocks of groups 2–4 are used twice for the BIBD to be constructed, and
group 1 is used once giving all together 21 blocks. The nine pairs (1,2), (1,6),
(2,6), (3,4), (3,5), (4,5), (7,8, (7,9) and (8,9) from the blocks of group 1 are com-
plemented by the treatment 10 giving nine more blocks and finally the design
with v= 10; k = 3; b= 30; r = 9; λ= 2.
In this BIBD some (but not all) blocks occur repeatedly.

Definition 12.14 A square matrix Hn of order n with elements –1 and +1 is a
Hadamard matrix, if HnHn

T = nIn.

A necessary condition for the existence of a Hadamard matrix for n > 2 is
n 0 mod4 . This necessary condition is sufficient for all n<201.

Trivially H1 = 1 ; H2 =
1 1

1 −1
.

Each Hadamard matrix w.l.o.g. can be written in a normal form in which the
first row and the first column contains only the elements +1 and the Kronecker
product Hn1 Hn2 =Hn1n2 of two Hadamard matrices Hn1 ;Hn2 is a Hadamard
matrix of order n1 n2.

Method 12.6 LetH be a Hadamardmatrix of order n = 4 t in normal form and
B be thematrix gained fromH by deleting the first row and the first column. In B
we replace the elements −1 by 0 and receive the incidence matrix of a BIBD with
v = b =4 t − 1; r = k = 2 t − 1, λ = t –1.

Example 12.11 A BIBD with v = b =15; r = k = 7, λ = 3 is obtained from a
Hadamard matrix of order 16 (t = 4) in normal form
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1

1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1

1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1

1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1

1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1

1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1

1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1

1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1

1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1

We delete the first row and the first column and replace −1 by 0:

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

0 1 0 0 1 0 1 1 0 1 0 0 1 0 1

1 0 0 0 0 1 1 1 1 0 0 0 0 1 1

0 0 1 0 1 1 0 1 0 0 1 0 1 1 0

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 0 1 0 1 0 1 0 1

1 0 0 1 1 0 0 0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 0 1 1 0 0 1 1 0

1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

0 1 0 0 1 0 1 0 1 0 1 1 0 1 0

1 0 0 0 0 1 1 0 0 1 1 1 1 0 0

0 0 1 0 1 1 0 0 1 1 0 1 0 0 1
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This is the incidence matrix of the design:

2,4,6,8,10,12,14 ; 1,4,5,8,9,12,13 ; 3,4,7,8,11,12,15 ; 1,2,3,8,9,10,11 ; 2,5,7,8,10,13,15 ;

1,6,7,8,9,14,15 ; 3,5,6,8,11,13,14 ; 1,2,3,4,5,6,7 ; 2,4,6,9,11,13,15 1,4,5,10,11,14,15 ;

3,4,7,9,10,13,14 ; 1,2,3,12,13,14,15 ; 2,5,7,9,11,12,14 ; 1,6,7,10,11,12,13 ; 3,5,6,9,10,12,15

We find that all pairs occur three times and each element seven times.

Method 12.7 Let v= pn =m λ−1 + 1, p a prime, m≥ 1 and x a primitive ele-
ment of GF(v). The blocks 0,xi,xi+m,xi+ 2m,…,xi+ λ−2 m , i= 0,…,m−1 are
so-called initial blocks. From these initial blocks we construct a BIBD with v;
b = mv; k =λ; r = mk, λ by adding modulo p after increasing all elements by 1.

Example 12.12 We construct a BIBD for v = p = 29 = 7 4 + 1, with m = 7,
λ = 5. The initial blocks are 0,xi,xi+7,xi+14,xi+ 21 , i= 0,…,6, a primitive ele-
ment of GF(29) is x = 2. We receive a BIBD with b = 203 blocks, k = λ = 5
and r = 35. The initial block for i = 0 is, for instance,
(0,1,27 = 128 = 12,214 = 28, 221 = 17). Adding 1 to these treatments, we obtain
the next of the 29 blocks of this initial block, namely, (1,2,13,0,18). Adding 1
to all treatments, results in the first two blocks, that is, (1,2,13,18,29) and
(1,2,3,14,19). Thus all 203 blocks can be generated.

Method 12.8 In a symmetric BIBD with parameters v = b, k = r, λ, we delete
one block and then delete from all other blocks all the elements occurring in the
deleted block. By this we obtain a BIBD with parameters

v∗ = v−k,b∗ = v−1,k∗ = k−λ,r∗ = k,λ∗ = λ

If particularly v = b =4 t − 1; r = k = 2 t − 1, λ = t – 1, we get a BIBD with

v∗ = 2t,b∗ = 4t−2,k∗ = t,r∗ = 2t−1,λ∗ = t−1

This BIBD is said to be a residual design to the initial BIBD.

Example 12.13 We start with the symmetric BIBD of Example 12.6 with
v = b = 15, r = k = 7 and λ = 3 and delete its first block and then in the other
blocks all treatments occurring in the deleted block (bold print in the scheme):

Block Treatments

1 1 2 4 5 8 10 15

2 2 3 5 6 9 11 1

3 3 4 6 7 10 12 2

4 4 5 7 8 11 13 3

5 5 6 8 9 12 14 4

6 6 7 9 10 13 15 5

7 7 8 10 11 14 1 6
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Block Treatments

8 8 9 11 12 15 2 7

9 9 10 12 13 1 3 8

10 10 11 13 14 2 4 9

11 11 12 14 15 3 5 10

12 12 13 15 1 4 6 11

13 13 14 1 2 5 7 12

14 14 15 2 3 6 8 13

15 15 1 3 4 7 9 14.

We rename the remaining eight treatments with 3 in 1, 6 in 2, 7 in 3, 9 in 4, 11 in
5, 12 in 6, 13 in 7, 14 in 8 and obtain the BIBD:

Block Treatments

1 1 2 4 5

2 1 2 3 6

3 3 5 7 1

4 2 4 6 8

5 2 3 4 7

6 3 5 8 2

7 4 5 6 3

8 4 6 7 1

9 5 7 8 4

10 5 6 8 1

11 6 7 2 5

12 7 8 3 6

13 8 1 2 7

14 1 3 4 8.

Method 12.9 From a symmetric BIBD with parameters v = b, k = r, λ, we
delete one block and in the remaining blocks we drop the treatments, not con-
tained in this block. We obtain a BIBD with parameters v∗ = k,b∗ = v−1,k∗ = λ,
r∗ = k−1,λ∗ = λ−1.

Example 12.14 We choose the design of Example 12.13 with v = b = 15,
r = k = 7 and λ = 3 and delete its first block and then in the other blocks all
treatments not occurring in the deleted block and rename as in Example 12.13.
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We obtain the blocks (1,2,4), (2,3,6), (3,4,5), (3,4,5), (4,6,7), (1,5,6), (2,5,7),
(1,5,6), (2,3,6), (4,6,7), (1,3,7), (1,2,4), (2,5,7) and (1,3,7).
In this BIBD each block occurs twice. We reduce it to a BIBD with 7 blocks

dropping one of these blocks and obtain the BIBD:
(1,2,4), (1,3,7), (1,5,6), (2,3,6), (2,5,7), (3,4,5), (4,6,7) with v = 7, b = 7, k = r = 3

and λ = 1.

12.2.3 Partially Balanced Incomplete Block Designs

Partially balanced incomplete block designs are of less practical interest than
completely balanced ones. They do not allow estimating all treatment differ-
ences with equal precision.

Definition 12.15 We consider v treatments 1,2,…,v, an association scheme
with m classes fulfils the conditions:

1) Two given treatments are either first, second,…or mth associates.
2) Each treatmentw in {1,2,…,v }has ni ith associates (i = 1,…,m); the number ni

does not depend on w.
3) If the treatments w and z are ith associates, then the number of treatments

that are jth associates ofw and lth associates of z is pijl independent ofw and z.

We write this in form of the matrices:

P1 =
p111 p112
p121 p122

andP2 =
p211 p212
p221 p222

The numbers v, ni andpijl are the parameters of the association scheme.

Definition 12.16 An incomplete proper and equireplicate block design with v
treatments in b blocks with k < v elements each is a partially balanced incom-
plete block design PBIBD; if in the case that the treatments w and z are ith
associates, they occur together in exactly λi blocks independent of the pair w
and z.
For a PBIBD beside (12.4), we have

m

i=1

ni = v−1 12 10

and in place of (12.5)

m

i=1

niλi = r k−1 12 11
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ABIBD is a special case of a PBIBDwithm = 1. Then (12.10) and (12.11) become
(12.5). Of special interest are PBIBD(2) with two association classes. A part of
the treatment pairs then occurs together in exactly λ1 and all the rest in exactly
λ2 blocks. We give the following:

Example 12.15 We show a PBIBD with m = 2 and the parameters

v= 8, k = 3, b= 16, r = 6,λ1 = 2, λ2 = 1, n1 = 5, n2 = 2.

Block Treatments

1 1 2 4

2 2 3 5

3 3 4 6

4 4 5 7

5 5 6 8

6 6 7 1

7 7 8 2

8 8 1 3

9 1 2 5

10 2 3 6

11 3 4 7

13 5 6 1

14 6 7 2

15 7 8 3

16 8 1 4

The pair (1,2) occurs twice, but the pair (1,7) only once; the five first associates
of 1 are 2,4,5,6,8 and the two second associates are 3 and 7, the pairs with 1, so as
the pair (1,2), where the partner is a first associates of 1, occur twice, the pair
(1,7) however only once. The pairs with 1 such as pair (1,7) with a partner that
is second associates of 1 occurs once. The PBIBD(2) with v = 8, k = 3 has only
16 blocks, the BIBD has 56.
InRasch et al. (2008) PBIBD(2) are given and close now the topic of construction

methods (with one exception) and define only some special cases with an example.

Example 12.16 Let

1 = 2 =
1 1 0
1 0 1
0 1 1

be incidence matrices of two (identical) BIBD with

parameters v= 3, b= 3, k = 2, r = 2 and λ= 1. Then the incidence matrix of the
Kronecker product design is
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= 1 2 =

1 1 0

1 0 1

0 1 1

1 1 0

1 0 1

0 1 1

0 0 0

0 0 0

0 0 0

1 1 0

1 0 1

0 1 1

0 0 0

0 0 0

0 0 0

1 1 0

1 0 1

0 1 1

0 0 0

0 0 0

0 0 0

1 1 0

1 0 1

0 1 1

1 1 0

1 0 1

0 1 1

This matrix is symmetric and the product equals

=

4 2 2

2 4 2

2 2 4

2 1 1

1 2 1

1 1 2

2 1 1

1 2 1

1 1 2

2 1 1

1 2 1

1 1 2

4 2 2

2 4 2

2 2 4

2 1 1

1 2 1

1 1 2

2 1 1

1 2 1

1 1 2

2 1 1

1 2 1

1 1 2

4 2 2

2 4 2

2 2 4

This matrix corresponds to a PBIBD(2) with parameters v= 9, b= 9, k = 4,
r = 4, λ1 = 1, λ2 = 2, and the necessary conditions (12.10) and (12.11) are fulfilled.

We consider now some subgroups of PBIBD(2).

Definition 12.17 A PBIBD(2) is said to be divisible, if v= qw and the treat-
ments can be arranged into q groups of w elements each so that pairs of treat-
ments in the same group occur in λ1 blocks, and pairs of treatments not from the
same group occur in λ2 blocks.

Example 12.17 A block design with v= 6, b= 4, k = 3, r = 2 and the blocks
(1,3,5), (1,4,6) and (2,3,6) is a divisible PBIBD(2) with q = 3, λ1 = 0, λ2 = 1 and
the three groups [1, 2]; [3, 4]; [5, 6].
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Definition 12.18 A PBIBD(2) is said to be simple, if one of the λi i= 1 2
equals zero.

As we can see the classes of PBIBD(2) in Definitions 12.17 and 12.18 can con-
tain the same design; the design of Example 12.17 is simple.
In the PBIBD(2) with the blocks (1,2,3), (4,5,6), (7,8,9), (1,4,7), (2,5,8), (3,6,9),

(1,5,9), (2,6,7) and (3,4,8), each of the v= 9 treatments occur in three blocks of
r = 3 ; the b= 9 blocks are of size k = 3. Pairs of treatments occur either once
λ1 = 1 or not at all λ2 = 0 together in a block. Therefore the design is a simple
PBIBD(2).

Definition 12.19 A PBIBD(2) is said to be a triangular design, if v=
u u−1

2
,

and the treatments can be arranged in an upper triangular matrix of a square
u× u matrix in such a way that after the triangular matrix is transformed into
a ‘symmetric matrix’without amain diagonal by reflection and if two treatments
in the same row or column occur λ1 - times and two treatments not in the same
row or column occur λ2 - times in the same block.

Triangular design exists for v ≥ 6 only.

Example 12.18 The blocks (1,2,7,8,10), (1,3,5,9,10), (1,4,6,8,9), (2,3,6,7,9),
(2,4,5,6,10) and (3,4,5,7,8) are from a triangular design with parameters
v = 10, b = 6, k = 5, r = 3, λ1 = 1,λ2 = 2 and u = 5. Arranging the treatments as

1 2 3 4
1 5 6 7
2
3
4

5
6
7

8 9
8 10

10

pairs of treatments in the same row or column occur in one block, all others in
two blocks.

Definition 12.20 A PBIBD(2) is said to be cyclic, if v ≥ 5, the PBIBD(2) is not
divisible and v= 4t + 1; n1 = n2 = 2t.

For cyclic designs the association matrices are P1 =
t−1 t

t t

and P2 =
t t

t t−1
.

Example 12.19 We choose t = 3, so that v = 13. The associations matrices are

P1 =
2 3

3 3
and P2 =

3 3

3 2
. Further n1 = n2 = 6. The condition (12.11) reads

n1λ1 + n2λ2 = 6 λ1 + λ2 = r k−1
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We get solutions (λ1 = λ2 is impossible, it gives a BIBD) as the following:

λ1 + λ2 = 1, r = k = 3;

λ1 + λ2 = 5, r = k = 6

λ1 + λ2 = 7, r = k = 7

Each solution defines a cyclic PBIBD(2). Next we give the design for
λ1 = 1, λ2 = 0 and r = k = 3. The 13 blocks are the following:

1,3,9 , 1,6,8 , 1,7,12 , 2,4,10 , 2,7,9 , 2,8,13 , 3,5,11 , 3,8,10 ,
4,6,12 , 4,9,11 , 5,7,13 , 5,10,12 , 6,11,13

The 39 pairs

1 3; 1 6; 1 7; 1 8; 1 9; 1 12; 2 4, 2 7; 2 8; 2 9; 2 10; 2 13; 3 5; 3 8 ; 3 9;
3 10; 3 11; 4 6; 4 9; 4 10; 4 11; 4 12; 5 7; 5 10; 5 11; 5 12; 5 13; 6 8;
6 11; 6 12; 6 13; 7 9; 7 12; 7 13; 8 10; 8 13; 9 11; 10;12; 11 13

are first associates and occur once in the design; the other 39 do not occur.

12.3 Row–Column Designs

We consider now some RCD. These experimental designs are used to eliminate
two nuisance factors in two directions written as rows and columns.
The name RCD stems from the fact that the design can be characterized by a

matrix so that its r rows correspond to the levels of one and its c columns cor-
respond to the levels of the other nuisance factor. The elements represent the
treatments. Construction and analysis depend on the special type of an RCD.
The most important RCD are shown below:

Row–column designs (RCD)

Resolvable RCD Non-resolvable RCD Period designs
(crossover designs)

Lattice squares Latinised RCD

Latin squares Latin rectangles Youden designs

Definition 12.21 Resolvable RCD are experimental designs, with an arrange-
ment of v treatments in tmatrices with r rows and c columns in such a way that
v= rc and all v treatments occur in each matrix. The matrices are not
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understood as levels of a third nuisance factor; they are t replications with chan-
ged order of the treatments in the matrices.
An important group of resolvable RCD are lattice squares with r = c and con-

sequently v a square number, if both the row blocks and the column blocks build
a BIBD, they are called balanced.
Another group is the Latinised RCD. An experimental design constructed

from t replications of a resolvable RCD with tr rows and c > t columns is said
to be columnwise Latinised, if not treatment occurs more often than once in a
column. Analogous rowwise Latinised RCD are defined.

Example 12.20 A balanced lattice square with r = c= 3, v= 9, t = 3 is given by
the replications 1–4 in the schema.

1 2 3 4

1 2 3 1 4 7 1 6 8 1 9 5

4 5 6 2 5 8 9 2 4 6 2 7

7 8 9 3 6 9 5 7 3 8 4 3

Non-resolvable RCD are the LS and Latin rectangles (LR) and the Youden
designs (YD). First we will consider LS.

Definition 12.22 If in an experiment with v treatments a square matrix of
order v is given so that each of the v treatments A1,…,Av occurs exactly once
in each row and in each column, we say it is an LS of side v. If the treatments are
in natural order, then an LS where the Ai in the first row and in the first column
are arranged in this natural order is called an LS in standard form. If Ai are
arranged in this natural order only in the first row, we have an LS in semi-
standard form. In the LS treatments often are represented by letters A, B, C,….

Example 12.21 An LS of side seven is

D E A B C G F

B D E F A B C

A B C D E F G

E C B G F D A

C G F E B A D

F A G C B E D

G F D A C B E

Each complete Sudoku scheme is a LS of side nine with additional conditions.
Randomisation of LS means that we first must determine the set M of pos-

sible standardised LS of a given side. From this set we randomly select one
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element. Some of these LS are isomorphic, which means that one results
from the other by permutation of rows, columns and treatments. Otherwise,
they belong to different classes. Some elements of different classes are con-
jugate, which means that one results from the other by interchanging rows
and columns. For instance, for v = 6 exist M = 9408 different standardised
LS in 22 classes. In ten of these classes per class are two standardised LS
conjugated. But for the randomisation we simply can randomly select one
of the 9408 standardised LS. Then we randomly assign the levels of the
two nuisance factors to the rows and columns, respectively, and the treat-
ments to the numbers 1 to n.
Special LS are used in many applications. The next definition is given in Free-

man (1979).

Definition 12.23 Complete LS are LS with all ordered pairs of experimental
units occurring next to each other once in each row and column. Quasi-
complete LS are LS with all unordered pairs of experimental units occurring
twice in each row and column.
Bailey (1984) gave methods for the construction of quasi-complete LS and

discussed randomisation problems. She could show that randomisation in a
subset is valid while in the whole set is not.

Definition 12.24 Two LS the side v with A= aij and B= bij i, j = 1,…,v,
aij 1,…,v ,bij 1,…,v are orthogonal, if each combination f ,g
f ,g 1,…,v occurs exactly once among the v2 pairs (aij, bij). A set of m > 2
LS of the same side is called a set of mutually orthogonal LS (MOLS), if all pairs
of this set are orthogonal.

There exist maximal v – 1 MOLS. It is not fully clear how many MOLS exist.
Wilson (1974) showed that the maximal number of MOLS is ≥ 6 as long as
v≥ 90 and for large v it is ≥ v

1
17−2.

Up to v = 13 we have the following:

v 3 4 5 6 7 8 9 10 11 12 13

Number of MOLS 2 3 4 1 6 7 8 ≥ 2 10 ≥ 5 12

The case v = 6 was investigated by Leonard Euler (1782). Tsarina Catherine the
Great set Euler the task to arrange six regiments consisting of six officers each of
different ranks in a 6 × 6 square so that no rank or regiment will be repeated in
any row or column. That means one has to construct two orthogonal LS of side
six. Euler conjectured that this is impossible. This conjecture was proved by
Tarry (1900, 1901). However, Euler’s more general conjecture that no orthog-
onal LS of side v = 4 t +2 exist was disproved. Bose and Shrikhande (1960)
showed that two orthogonal LS of side 10 exist.
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Definition 12.25 An RCD with v treatments and two disturbance variables
with r and c levels, respectively, is said to be a LR, if 2≤ r ≤ v; 2 ≤ c ≤ v, and the
design can be written as (r × c) matrix with v different elements (1,…, v) in such
a way, which in each row or column, each of the v elements occurs at most once.

Special cases are the LS and the YD.

Definition 12.26 A YD is an RCD that is generated from a LS by dropping at
least one column so that the rows form a BIBD. Therefore a YD has exactly v
rows and c < v columns.
If one column is dropped, a YD certainly results. If more columns are

dropped, balance must be checked.

Definition 12.27 A groups period design (GPD) is an experimental design, in
which the experimental units are investigated in successive periods, the groups
correspond to the rows and the periods to the columns of an RCD.

GPDwas first used as feeding experiments with animals. The groups of animals
were fed differently in the periods of observation. Generally is a GPD a RCD with
the experimental units as rows and the periods of observation as columns. More
about this can be found in Johnson (2010) and Raghavarao and Padgett (2014).

12.4 Factorial Designs

Factorial designs are only shortly defined here to complete this chapter. Orig-
inally, the idea of such designs was developed in Fisher (1935). A general
description can be found in Mukerjee and Wu (2006). Factorial designs play
a fundamental role in efficient experimentation with multiple input variables
and is used in various fields of application, including engineering, agriculture
and life sciences. The factors are not applied and observed one after the other
but at the same time. This can spare time and costs. Fractional factorial designs
are described in Gunst and Mason (2009).

Definition 12.28 An experiment with p ≥ 2 (treatment) factors Fi i= 1,…,p
arranged so that these p factors occur at the same time with different levels in
this experiment is said to be a factorial experiment or a factorial design with p
factors. If si ≥ 2 are the number of the levels of the ith factor i= 1,…,p , the fac-
torial experiment is called an (s1, s2,…, sp) factorial design. Experiments with
s1 = s2 =…= sp = s are symmetric, all other experiments are asymmetric. Sym-
metric experiments with s levels of p factors are n-experiments. If not all factor
level combinations occur in a factorial design but some conditions are fulfilled,
we speak about fractional factorial designs.

If in a factorial design forN experimental objects it is counted howmany of these
objects belong to the factor level combinations, the result is a contingency table.
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If the factors are qualitative and the observed character is quantitative, we can
analyse the design by ANOVA.
If the factors are quantitative and the observed character is quantitative, we

can analyse the design by the regression analysis.
More details can be found in Rasch et al. (2011) and in Rasch et al. (2008).

12.5 Programs forConstructionofExperimentalDesigns

By the R-programmeOPDOE in CRAN completely and partially balanced block
designs and fractional factorial designs can be constructed. The following is an
example of the construction of a BIBD with v = b =15, k = r = 7, λ = 3:
The command is

> make,BIBD(s=2,n=3,m=2,method=3)

As the result we obtain

Balanced Incomplete Block Design: BIBD(15,15,7,7,3)
(1, 2, 3, 4, 5, 6, 7) (1, 2, 3, 8, 9,10,11)
(1, 2, 3,12,13,14,15) (1, 4, 5, 8, 9,12,13)
(1, 4, 5,10,11,14,15) (1, 6, 7, 8, 9,14,15)
(1, 6, 7,10,11,12,13) (2, 4, 6, 8,10,12,14)
(2, 4, 6, 9,11,13,15) (2, 5, 7, 8,10,13,15)
(2, 5, 7, 9,11,12,14) (3, 4, 7, 8,11,12,15)
(3, 4, 7, 9,10,13,14) (3, 5, 6, 8,11,13,14)
(3, 5, 6, 9,10,12,15),

The method 3 of the program is the method 1 in this chapter.

12.6 Exercises

12.1 Randomise the trivial BIBD:

1,2,3 1,3,6 1,6,7 2,4,7 3,5,6

1,2,4 1,3,7 2,3,4 2,5,6 3,5,7

1,2,5 1,4,5 2,3,5 2,5,7 3,6,7

1,2,6 1,4,6 2,3,6 2,6,7 4,5,6

1,2,7 1,4,7 2,3,7 3,4,5 4,5,7

1,3,4 1,5,6 2,4,5 3,4,6 4,6,7

1,3,5 1,5,7 2,4,6 3,4,7 5,6,7
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12.2 Construct the dual BIBD to the BIBD with the parameters b = 7, r = 3,
λ = 1 and the incidence matrix

1 1 1 0 0 0 0

1 0 0 1 1 0 0

0 1 0 1 0 0 1

1 0 0 0 0 1 1

0 0 1 1 0 1 0

0 0 1 0 1 0 1

0 1 0 0 1 1 0

Write the generated BIBD in bracket form.

12.3 Give the parameters of a BIBD constructed by a PG(3,4).

12.4 Give the parameters of a BIBD constructed by a EG(3,4).

12.5 Construct a BIBD by Method 12.3 with λ = 2.

12.6 Give the parameters of a BIBD constructed by Method 12.4 with m = 4.

12.7 Show the equivalence of a) and b) in Definition 12.6.

12.8 Transform the LS of Example 12.21 by interchanging the rows in a semi-
standardised LS.

12.9 In the LS of Example 12.21, drop the two last columns and check whether
the result is a YD.
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Appendix A: Symbolism

Partially we distinguish in notation from other mathematical disciplines. We do
not use capital letters as in probability theory to denote random variables
but denote them by bold printing. We do this not only to distinguish between
a random variable F with F-distribution and its realisation F but mainly because
linear models are important in this book. In a mixed model in the two-way
cross-classification of the analysis of variance with a fixed factorA and a random
factor B, the model equation with capital letters is written as

Yijk = μ+ ai +Bj + aB ij +Eijk

This looks strange and is unusual. We use instead

yijk = μ+ ai + bj + ab ij + eijk

Functions are never written without an argument to avoid confusion. So is p(y)
often a probability function but p a probability. Further is f (y) a density function
but f the symbol for degrees of freedom.

Sense Symbol

Rounding-up function x = smallest integer ≥ x

Binomial distribution with parameters n, p B(n,p)

Chi-squared (χ2) distribution with f degrees of freedom CS (f)

Determinant of the matrix A |A|, det(A)

Diagonal matrix of order n diag(a1,…, an)

Direct product of the sets A and B A B

Direct sum of the sets A and B A B

Identity matrix of order n In

(n ×m) matrix with only zeros On,m

(Continued)
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Sense Symbol

(n ×m) matrix with only ones 1nm

Euclidean space of dimension n and 1, respectively
(real axis). Positive real axis

Rn; R1 = R; R+

y is distributed as y

Indicator function If A is a set and x A,

then IA x =
1, if x A

0, if x A

Interval on the x-axis

Open a,b a < x< b

Half open a,b a≤ x < b, a,b a < x≤ b

Closed a,b a≤ x ≤ b

ith-order statistic y(i)

Cardinality (number) of elements in S card(S); |S|

Constant in formulae const.

Kronecker product of matrices 1 and 2 = 1 2

Empty set Ø

Multivariate normal distribution with expectation vector
μ and covariance matrix Σ

N(μ,Σ)

Normal distribution with expectation μ and variance σ2 N(μ,σ2)

Null vector with n elements 0n

Vector with n ones 1n

Parameter space Ω

Poisson distribution with parameter λ P(λ)

P-quantile of the N(0, 1) distribution z(P) or zP (see Table D.3 last
line)

P-quantile of the χ2 distribution with f degrees of freedom CS(f|P) (see Table D.4)

P-quantile of the t-distribution with f degrees of freedom t f P (see Table D.3)

P-quantile of the F-distribution with f1 and f2 degrees of
freedom

F f1, f2 P = FP f1, f2 (see
Table D.5)

Rank of matrix A rk(A)

Rank space of matrix A R[A]

Standard normal distribution with
Expectation 0; variance 1

N(0,1)

Trace of matrix A tr(A)

Transposed vector of Y Y
T

Vector (column vector) Y

Distribution function of a N(0,1) distribution Φ(x)

Density function of a N(0,1) distribution φ(x)

Random variable (bold print) y, Y
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Appendix B: Abbreviations

ASN average sample number

BAN best asymptotic normal (estimator)

BIBD balanced incomplete block design

BLUE best linear unbiased estimator

BLUP best linear unbiased prediction

BQUE best quadratic unbiased estimator

df degrees of freedom

iff if and only if

LS Latin square

LSE least squares estimator

LSM least squares method

LVUE locally variance-optimal unbiased
estimator

MINQUE minimum quadratics norm estimator

ML maximum likelihood

MLE maximum likelihood estimator

MS mean squares

MSD mean square deviation

PBIBD partially balanced incomplete block
design

RCD row–column design
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REML restricted maximum likelihood

SLRT sequential likelihood ratio test

SS sum of squares

UMP uniformly most powerful (test)

UMPU uniformly most powerful unbiased (test)

UVUE uniformly variance-optimal unbiased
estimator

W.l.o.g. without loss of generality

YD Youden design
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Appendix C: Probability and Density Functions

Bernoulli distribution p y,p = py 1−p 1−y, 0 < p < 1, y= 0,1

Beta distribution
f y θ =

1
B a,b

ya−1 1−y b−1

0 < y < 1; 0 < a,b < ∞

Binomial distribution p y,p =
n
y

py 1−p n−y; 0 < p < 1; y= 0,…,n

Exponential family f y,θ = h y e
k

i=1
ηi θ Ti y −B θ

Exponential family in
canonical form f y,η = h y e

k

i= 1
ηi Ti y −A η

Exponential distribution f y,λ = λe−λy; λ R+ ;y ≥ 0

Geometrical distribution p y,p = p 1−p y−1; y= 1,2,…; 0 < p < 1

Uniform distribution in (a,b) f y,a,b =
1

b−a
, a < b, a ≤ y≤ b

Hypergeometric distribution p y,M,N ,n =

M
y

N −M
n−y

N
n

,n 1,…,N

y 0,…,N ;M ≤N integer

Negative binomial
distribution

p y,p,r =
y−1
r−1

pr 1−p y−r

0 < p < 1,y ≥ r, r 0,1,…
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Normal distribution f y,μ,σ2 =
1

σ 2π
e−

y−μ 2

2σ2 ;

−∞ < μ,y < ∞ , σ > 0; see Table D.1

Pareto distribution f y,θ =
θaθ

yθ +1
, y > a > 0, θ ϵΩ =R+

Poisson distribution p y, λ =
λy

y
e−λ, λ > 0 y= 0,1,2,…

Weibull distribution
f y,θ = θa θy a−1e− θy a

, a ≥ 0, y ≥ 0
θ ϵΩ=R+
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Table D.1 Density function φ(z) of the standard normal distribution

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 .39894 .39892 .39886 .39876 .39862 .39844 .39822 .39797 .39767 .39733

0.1 .39695 .39654 .39608 .39559 .39505 .39448 .39387 .39322 .39253 .39181

0.2 .39104 .39024 .38940 .38853 .38762 .38667 .38568 .38466 .38361 .38251

0.3 .38139 .38023 .37903 .37780 .37654 .37524 .37391 .37255 .37115 .36973

0.4 .36827 .36678 .36526 .36371 .36213 .36053 .35889 .35723 .35553 .35381

0.5 .35207 .35029 .34849 .34667 .34482 .34294 .34105 .33912 .33718 .33521

0.6 .33322 .33121 .32918 .32713 .32506 .32297 .32086 .31874 .31659 .31443

0.7 .31225 .31006 .30785 .30563 .30339 .30114 .29887 .29659 .29431 .29200

0.8 .28969 .28737 .28504 .28269 .28034 .27798 .27562 .27324 .27086 .26848

0.9 .26609 .26369 .26129 .25888 .25647 .25406 .25164 .24923 .24681 .24439

1.0 .24197 .23955 .23713 .23471 .23230 .22988 .22747 .22506 .22265 .22025

1.1 .21785 .21546 .21307 .21069 .20831 .20594 .20357 .20121 .19886 .19652

1.2 .19419 .19186 .18954 .18724 .18494 .18265 .18037 .17810 .17585 .17360

1.3 .17137 .16915 .16694 .16474 .16256 .16038 .15822 .15608 .15395 .15183

1.4 .14973 .14764 .14556 .14350 .14146 .13943 .13742 .13542 .13344 .13147

1.5 .12952 .12758 .12566 .12376 .12188 .12001 .11816 .11632 .11450 .11270

1.6 .11092 .10915 .10741 .10567 .10396 .10226 .10059 .09893 .09728 .09566

1.7 .09405 .09246 .09089 .08933 .08780 .08628 .08478 .08329 .08183 .08038

1.8 .07895 .07754 .07614 .07477 .07341 .07206 .07074 .06943 .06814 .06687

1.9 .06562 .06438 .06316 .06195 .06077 .05959 .05844 .05730 .05618 .05508



2.0 .05399 .05292 .05186 .05082 .04980 .04879 .04780 .04682 .04586 .04491

2.1 .04398 .04307 .04217 .04128 .04041 .03955 .03871 .03788 .03706 .03626

2.2 .03547 .03470 .03394 .03319 .03246 .03174 .03103 .03034 .02965 .02898

2.3 .02833 .02768 .02705 .02643 .02582 .02522 .02463 .02406 .02349 .02294

2.4 .02239 .02186 .02134 .02083 .02033 .01984 .01936 .01888 .01842 .01797

2.5 .01753 .01709 .01667 .01625 .01585 .01545 .01506 .01468 .01431 .01394

2.6 .01358 .01323 .01289 .01256 .01223 .01191 .01160 .01130 .01100 .01071

2.7 .01042 .01014 .00987 .00961 .00935 .00909 .00885 .00861 .00837 .00814

2.8 .00792 .00770 .00748 .00727 .00707 .00687 .00668 .00649 .00631 .00613

2.9 .00595 .00578 .00562 .00545 .00530 .00514 .00499 .00485 .00470 .00457

3.0 .00443 .00327 .00238 .00172 .00123 .00087 .00061 .00042 .00029 .00020

4.0 .00013 .00009 .00006 .00004 .00002 .00002 .00001 .00001 – –



Table D.2 Distribution function Φ z , z ≥ 0 of the standard normal distribution (the values of Φ z , z < 0 are 1−Φ z , z ≥ 0).

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 .500000 .503989 .507978 .511967 .515953 .519939 .523922 .527903 .531881 .535856

0.1 .539828 .543795 .547758 .551717 .555670 .559618 .563559 .567495 .571424 .575345

0.2 .579260 .583166 .587064 .590954 .594835 .598706 .602568 .606420 .610261 .614092

0.3 .617911 .621719 .625516 .629300 .633072 .636831 .640576 .644309 .648027 .651732

0.4 .655422 .659097 .662757 .666402 .670031 .673645 .677242 .680822 .684386 .687933

0.5 .691462 .694974 .698468 .701944 .705401 .708840 .712260 .715661 .719043 .722405

0.6 .725747 .729069 .732371 .735653 .738914 .742154 .745373 .748571 .751748 .754903

0.7 .758036 .761148 .764238 .767305 .770350 .773373 .776373 .779350 .782305 .785236

0.8 .788145 .791030 .793892 .796731 .799546 .802337 .805106 .807850 .810570 .813267

0.9 .815940 .818589 .821214 .823814 .826391 .828944 .831472 .833977 .836457 .838913

1.0 .841345 .843752 .846136 .848495 .850830 .853141 .855428 .857690 .859929 .862143

1.1 .864334 .866500 .868643 .870762 .872857 .874928 .876976 .878999 .881000 .882977

1.2 .884930 .886860 .888767 .890651 .892512 .894350 .896165 .897958 .899727 .901475

1.3 .903199 .904902 .906582 .908241 .909877 .911492 .913085 .914656 .916207 .917736

1.4 .919243 .920730 .922196 .923641 .925066 .926471 .927855 .929219 .930563 .931888

1.5 .933193 .934478 .935744 .936992 .938220 .939429 .940620 .941792 .942947 .944083

1.6 .945201 .946301 .947384 .948449 .949497 .950529 .951543 .952540 .953521 .954486

1.7 .955435 .956367 .957284 .958185 .959071 .959941 .960796 .961636 .962462 .963273

1.8 .964070 .964852 .965621 .966375 .967116 .967843 .968557 .969258 .969946 .970621

1.9 .971284 .971933 .972571 .973197 .973810 .974412 .975002 .975581 .976148 .976705



2.0 .977250 .977784 .978308 .978822 .979325 .979818 .980301 .980774 .981237 .981691

2.1 .982136 .982571 .982997 .983414 .983823 .984222 .984614 .984997 .985371 .985738

2.2 .986097 .986447 .986791 .987126 .987455 .987776 .988089 .988396 .988696 .988989

2.3 .989276 .989556 .989830 .990097 .990358 .990613 .990863 .991106 .991344 .991576

2.4 .991802 .992024 .992240 .992451 .992656 .992857 .993053 .993244 .993431 .993613

2.5 .993790 .993963 .994132 .994297 .994457 .994614 .994766 .994915 .995060 .995201

2.6 .995339 .995473 .995603 .995731 .995855 .995975 .996093 .996207 .996319 .996427

2.7 .996533 .996636 .996736 .996833 .996928 .997020 .997110 .997197 .997282 .997365

2.8 .997445 .997523 .997599 .997673 .997744 .997814 .997882 .997948 .998012 .998074

2.9 .998134 .998193 .998250 .998305 .998359 .998411 .998462 .998511 .998559 .998605

3.0 .998650 .999032 .999313 .999517 .999663 .999767 .999841 .999892 .999928 .999952



Table D.3 P-quantiles of the t-distribution with df degrees of freedom (for df = ∞ P-quantiles of the standard normal distribution).

df

P

0.60 0.70 0.80 0.85 0.90 0.95 0.975 0.99 0.995

1 0.3249 0.7265 1.3764 1.9626 3.0777 6.3138 12.7062 31.8205 63.6567

2 0.2887 0.6172 1.0607 1.3862 1.8856 2.9200 4.3027 6.9646 9.9248

3 0.2767 0.5844 0.9785 1.2498 1.6377 2.3534 3.1824 4.5407 5.8409

4 0.2707 0.5686 0.9410 1.1896 1.5332 2.1318 2.7764 3.7469 4.6041

5 0.2672 0.5594 0.9195 1.1558 1.4759 2.0150 2.5706 3.3649 4.0321

6 0.2648 0.5534 0.9057 1.1342 1.4398 1.9432 2.4469 3.1427 3.7074

7 0.2632 0.5491 0.8960 1.1192 1.4149 1.8946 2.3646 2.9980 3.4995

8 0.2619 0.5459 0.8889 1.1081 1.3968 1.8595 2.3060 2.8965 3.3554

9 0.2610 0.5435 0.8834 1.0997 1.3830 1.8331 2.2622 2.8214 3.2498

10 0.2602 0.5415 0.8791 1.0931 1.3722 1.8125 2.2281 2.7638 3.1693

11 0.2596 0.5399 0.8755 1.0877 1.3634 1.7959 2.2010 2.7181 3.1058

12 0.2590 0.5386 0.8726 1.0832 1.3562 1.7823 2.1788 2.6810 3.0545

13 0.2586 0.5375 0.8702 1.0795 1.3502 1.7709 2.1604 2.6503 3.0123

14 0.2582 0.5366 0.8681 1.0763 1.3450 1.7613 2.1448 2.6245 2.9768

15 0.2579 0.5357 0.8662 1.0735 1.3406 1.7531 2.1314 2.6025 2.9467

16 0.2576 0.5350 0.8647 1.0711 1.3368 1.7459 2.1199 2.5835 2.9208

17 0.2573 0.5344 0.8633 1.0690 1.3334 1.7396 2.1098 2.5669 2.8982

18 0.2571 0.5338 0.8620 1.0672 1.3304 1.7341 2.1009 2.5524 2.8784

19 0.2569 0.5333 0.8610 1.0655 1.3277 1.7291 2.0930 2.5395 2.8609



20 0.2567 0.5329 0.8600 1.0640 1.3253 1.7247 2.0860 2.5280 2.8453

21 0.2566 0.5325 0.8591 1.0627 1.3232 1.7207 2.0796 2.5176 2.8314

22 0.2564 0.5321 0.8583 1.0614 1.3212 1.7171 2.0739 2.5083 2.8188

23 0.2563 0.5317 0.8575 1.0603 1.3195 1.7139 2.0687 2.4999 2.8073

24 0.2562 0.5314 0.8569 1.0593 1.3178 1.7109 2.0639 2.4922 2.7969

25 0.2561 0.5312 0.8562 1.0584 1.3163 1.7081 2.0595 2.4851 2.7874

26 0.2560 0.5309 0.8557 1.0575 1.3150 1.7056 2.0555 2.4786 2.7787

27 0.2559 0.5306 0.8551 1.0567 1.3137 1.7033 2.0518 2.4727 2.7707

28 0.2558 0.5304 0.8546 1.0560 1.3125 1.7011 2.0484 2.4671 2.7633

29 0.2557 0.5302 0.8542 1.0553 1.3114 1.6991 2.0452 2.4620 2.7564

30 0.2556 0.5300 0.8538 1.0547 1.3104 1.6973 2.0423 2.4573 2.7500

40 0.2550 0.5286 0.8507 1.0500 1.3031 1.6839 2.0211 2.4233 2.7045

50 0.2547 0.5278 0.8489 1.0473 1.2987 1.6759 2.0086 2.4033 2.6778

60 0.2545 0.5272 0.8477 1.0455 1.2958 1.6706 2.0003 2.3901 2.6603

70 0.2543 0.5268 0.8468 1.0442 1.2938 1.6669 1.9944 2.3808 2.6479

80 0.2542 0.5265 0.8461 1.0432 1.2922 1.6641 1.9901 2.3739 2.6387

90 0.2541 0.5263 0.8456 1.0424 1.2910 1.6620 1.9867 2.3685 2.6316

100 0.2540 0.5261 0.8452 1.0418 1.2901 1.6602 1.9840 2.3642 2.6259

300 0.2536 0.5250 0.8428 1.0382 1.2844 1.6499 1.9679 2.3451 2.5923

500 0.2535 0.5247 0.8423 1.0375 1.2832 1.6479 1.9647 2.3338 2.5857

∞ 0.2533 0.5244 0.8416 1.0364 1.2816 1.6449 1.9600 2.3263 2.5758



Table D.4 P-quantiles CS (df, P) of the χ2 distribution.

df

P

0.005 0.010 0.025 0.050 0.100 0.250 0.500 0.750 0.900 0.950 0.975 0.990 0.995

1 3927 10−8 1571 10−7 9821 10−7 3932 10−6 0.01579 0.1015 0.4549 1.323 2.706 3.841 5.024 6.635 7.879

2 0.01003 0.02010 0.05064 0.1026 0.2107 0.5754 1.386 2.773 4.605 5.991 7.378 9.210 1.60

3 0.07172 0.1148 0.2158 0.3518 0.5844 1.213 2.366 4.108 6.251 7.815 9.348 11.34 12.84

4 0.2070 0.2971 0.4844 0.7107 1.064 1.923 3.357 5.385 7.779 9.488 11.14 13.28 14.86

5 0.4117 0.5543 0.8312 1.145 1.610 2.675 4.351 6.626 9.236 11.07 12.83 15.09 16.75

6 0.6757 0.8721 1.237 1.635 2.204 3.455 5.348 7.841 10.64 12.59 14.45 16.81 18.55

7 0.9893 1.239 1.690 2.167 2.833 4.255 6.346 9.037 12.02 14.07 16.01 18.48 2.28

8 1.344 1.646 2.180 2.733 3.490 5.071 7.344 10.22 13.36 15.51 17.53 2.09 21.96

9 1.735 2.088 2.700 3.325 4.168 5.899 8.343 11.39 14.68 16.92 19.02 21.67 23.59

10 2.156 2.558 3.247 3.940 4.865 6.737 9.342 12.55 15.99 18.21 2.48 23.21 25.19

11 2.603 3.053 3.816 4.575 5.578 7.584 10.34 13.70 17.28 19.68 21.92 24.72 26.76

12 3.074 3.571 4.404 5.226 6.304 8.438 11.34 14.85 18.55 21.03 23.34 26.22 28.30

13 3.565 4.107 5.009 5.892 7.042 9.299 12.34 15.98 19.81 22.36 24.74 27.69 29.82

14 4.075 4.660 5.629 6.571 7.790 10.17 13.34 17.12 21.06 23.68 26.12 29.14 31.32

15 4.601 5.229 6.262 7.261 8.547 11.04 14.34 18.25 22.31 25.00 27.49 3.58 32.80

16 5.142 5.812 6.908 7.962 9.312 11.91 15.34 19.37 23.54 26.30 28.85 32.00 34.27

17 5.697 6.408 7.564 8.672 10.09 12.79 16.34 2.49 24.77 27.59 3.19 33.41 35.72

18 6.265 7.015 8.231 9.390 10.86 13.68 17.34 21.60 25.99 28.87 31.53 34.81 37.16

19 6.844 7.633 8.907 10.12 11.65 14.56 18.34 22.72 27.20 3.14 32.85 36.19 38.58



20 7.434 8.260 9.591 10.85 12.44 15.45 19.34 23.83 28.41 31.41 34.17 37.57 4.00

21 8.034 8.897 10.28 11.59 13.24 16.34 20.34 24.93 29.62 32.67 35.48 38.93 41.40

22 8.643 9.542 10.98 12.34 14.04 17.24 21.34 26.04 8.81 33.92 36.78 40.22 42.80

23 9.260 10.20 11.69 13.09 14.85 18.14 22.34 27.14 32.01 35.17 38.08 41.64 44.18

24 9.886 10.86 12.40 13.85 15.66 19.04 23.34 28.24 33.20 36.42 39.36 42.98 45.56

25 10.52 11.52 13.12 14.61 16.47 19.94 24.34 29.34 34.38 37.65 40.65 44.31 46.93

26 11.16 12.20 1384 15.38 17.29 2.84 25.34 30.43 35.56 38.89 41.92 45.64 48.29

27 11.81 12.88 14.57 16.15 18.11 21.75 26.34 31.53 36.74 4.11 43.19 46.96 49.64

28 12.46 13.56 15.31 16.93 18.94 22.06 27.34 32.62 37.92 41.34 44.46 48.28 50.99

29 13.12 14.26 16.05 17.71 19.77 23.57 28.34 33.71 39.09 42.56 45.72 49.59 52.34

30 13.79 14.95 16.79 18.49 20.60 24.48 29.34 34.80 40.26 43.77 46.98 50.89 53.67

40 20.71 22.16 24.43 26.51 29.05 33.66 39.34 45.62 51.80 55.76 59.34 63.69 66.77

50 27.99 29.71 32.36 34.76 37.69 42.94 49.33 56.33 63.17 67.50 71.42 76.15 79.49

60 35.53 37.48 40.48 43.19 46.46 52.29 59.33 66.98 74.40 79.08 83.30 88.38 91.95

70 43.28 45.44 48.76 51.74 55.33 61.70 69.33 77.58 85.53 90.53 95.02 10.42 104.22

80 51.17 53.54 57.15 60.39 64.28 71.14 79.33 88.13 96.58 101.88 106.63 112.33 116.32

90 59.20 61.75 65.65 69.13 73.29 80.62 89.33 98.65 107.56 113.14 118.14 124.12 128.30

100 67.33 70.06 74.22 77.93 82.36 90.13 99.33 109.14 118.50 124.34 129.56 135.81 140.17



Table D.5 95 % quantiles of the F-distribution with f1 and f2 degrees of freedom.

f1
1 2 3 4 5 6 7 8 9f2

1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90

12 4.75 3.89 3.49 3.27 3.11 3.00 2.91 2.85 2.80

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34

23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32

24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25

28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24

29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96

∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88
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f1
10 12 15 20 24 30 40 60 120 ∞f2

1 241.9 243.9 245.9 248.0 249.1 250.1 251.1 252.2 253.3 254.3

2 19.40 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50

3 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53

4 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63

5 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36

6 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67

7 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23

8 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93

9 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71

10 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54

11 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40

12 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30

13 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21

14 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13

15 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07

16 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01

17 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96

18 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92

19 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88

20 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84

21 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81

22 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78

23 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76

24 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73

25 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71

26 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.69

27 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67

28 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65

29 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64

30 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62

40 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51

60 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39

120 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25

∞ 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00

Table D.5 (Continued)
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Solutions and Hints for Exercises

Chapter 1

Exercise 1.1

The sample is not random because inhabitants without entry in the telephone
book cannot be selected.

Exercise 1.2

It is recommended to use SPSS avoiding long-winded calculations by hand.
Write the 81 different quadruples of the numbers 1, 2, 3 due to the random sam-
pling with replacement into the columns y1, y2, y3, y4 of a SPSS data sheet
(Statistics Data Editor). In the command sequence ‘Transform – Compute Var-
iable’, denote the effect variable by ‘Mean’ and form (y1 + y2 + y3 + y4)/4 using
the command MEAN =MEAN(y1,y2,y3,y4). See also the SPSS syntax below.
Now the mean values occur in column 5 of the data sheet. Analogously create
the variable s2 = VARIANCE(y1,y2,y3,y4) and in column 6 of the data sheet
s2 is given.
After performing of the command sequence ‘Analyze–Descriptive Statistics–

Descriptive’, the mean value and the variance of the population are calculated
from the means (set under options) of MEAN and s2. The value of the
VARIANCE of the variable MEAN must be multiplied by N −1 N to get the
population variance of the sample mean (2/3)/4, because from the population
of N = 81 samples of size 4 SPSS calculates a sample variance with denominator
N −1. The corresponding graphical representations are obtained via ‘Graphs –
Legacy Dialogs – Bar’.
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SPSS output

Descriptive statistics

N Minimum Maximum Mean Std. deviation Variance

Mean 81 1.00 3.00 2.0000 .41079 .16875

Valid N (listwise) 81

Descriptive statistics

N Minimum Maximum Mean

s2 81 .00 1.33 .6667

Valid N (listwise) 81

Population mean = 3 and population variance s2 = .6667 are obtained.

Remark
The population variance is σ2 = 2/3. The population variance of a sample

mean of size 4 with replacement is σ2/4. From the population of N = 81 sample
means of possible different samples of size 4, the package SPSS calculates S2/4
with S2 = σ2 N −1 .

Exercise 1.3

The conditional distributions are as follows:

a) P Y =Y M Y = t =
t

nt n

i= 1
yi

I Y Σyi = t ,

b) f Y M =
I y 1 =minyi ,y n =maxyi

n n−1 y n −y 1
n−2 ,

c) f Y M =
I 0 < y 1 =minyi ≤maxyi = y n

n yn−1n ,

d) M(Y) is gamma distributed.

Exercise 1.4

The sufficient statistics are:

a) M = ln n
i=1yi,

b) M = n
i= 1y

a
i ,

c) M = ln n
i=1yi
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Exercise 1.5

The minimal sufficient statistics are:

a) M = n
i=1yi

b) M = y 1 ,…,y n ,

c) i) M = n
i= 1yi

ii) M = y 1 ,…,y n

d) i) M =Πn
i= 1yi

ii) M =Πn
i= 1 1−yi

Exercise 1.6

a) Apply the uniqueness theorem for power series (concerning the fact that the
coefficients of power series are uniquely determined).

b) If
θ2

θ1

h y dy= 0 holds for each interval θ1,θ2 R1, then the integrable func-

tion h(y) has to be almost everywhere identical to 0.

Exercise 1.7

The statistic y(n) has the density function f t =
n
θn

tn−1,0 < t < θ. The family of

these distributions θ R+ is complete. This can be proven as in Exercise
1.6 (b).

Exercise 1.8

Let h(y) be an arbitrary discrete function with E h y = 0 for all θ 0,1 . For
θ = 0 it follows h 0 = 0, and putting y = k further,

∞

k = 1

h k θk−1 = −
h −1

1−θ 2 = −h −1
∞

k = 1

kθk−1, θ 0,1

Because of the uniqueness theorem for power series (compare Exercise 1.6), we
get h k = −kh −1 , k = 1 2,…
If h(y) is bounded, then h(–1) = 0 and therefore h y 0. On the other hand,

for h(–1) = –1, the function

h y =
y for y= −1,0 1,…

0 else

is an unbiased estimator of zero.
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Exercise 1.9

We obtain for the Fisher information the expressions

a) I θ =B θ −
η θ B θ

η θ
b) i) I p =

n
p 1−p

ii) I λ =
1
λ

iii) I θ =
1

θ2

iv) I σ =
2
σ2

Exercise 1.10

a) This follows by considering E
∂

∂θi
L y,θ = 0, i= 1 2,…,p.

b) This can be shown analogously as I θ = −E
∂2

∂θ2
ln L y, θ following the

derivation after Definition 1.10.

Exercise 1.11

Let be M = M(Y).

a) E M = e−θ , var M = e−θ 1−e−θ , I θ =
1
θ
, var M > θ e−2θ .

b) ny is P nθ − distributed Poisson

E M = e−θ, var M = e−2θ eθ n−1 , I θ =
n
θ
, var M >

θ e−2θ

n

c) E M =
1
θ
, var M =

1

nθ2
, I θ =

n

θ2
, var M >

dg
dθ

2

nI θ
=

1

n2θ2
n > 1

with g θ = E M =
1
θ
.

Exercise 1.12

a)

i 1 2 3 4 5 6 7 8 9

R(di(y), θ1) 0 7 3.5 3 10 6.5 1.5 8.5 5

R(di(y), θ2) 12 7.6 9.6 5.4 1 3 8.4 4 6

where R d y , θ = L d 0 , θ pθ 0 + L d 1 , θ pθ 1 .
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b)

i 1 2 3 4 5 6 7 8 9

max
j= 1 2

R di,θj 12 7.6 9.6 5.4 10 6.5 8.4 8.5 6

mini maxj R di,θj =R d4,θ2 = 5 4, minimax decision function dM = d4 y .

c) r di,π = E R di y ,θ =R di y ,θ1 π θ1 +R d1 y ,θ2 π θ2 .

i 1 2 3 4 5 6 7 8 9

r (di, π) 9.6 7.48 8.38 4.92 2.8 3.7 7.02 4.9 5.8

min r di,π = 2 8, Bayesian decision function dB = d5 y .

Exercise 1.13

a) R dr,s y ,θ =

cΦ θ−r n + bΦ θ−s n for θ < 0,

b 1−Φ ns +Φ nr for θ = 0,

bΦ n r−θ + cΦ s−θ n for θ > 0

b) i) R d−1 1 y ,θ =

Φ θ + 1 +Φ θ−1 for θ < 0,

2Φ −1 for θ = 0,

2−Φ θ + 1 −Φ θ−1 for θ > 0

ii) R d−1 2 y ,θ =

Φ θ + 1 +Φ θ−2 for θ < 0,

Φ −2 +Φ −1 for θ = 0,

2−Φ θ + 1 −Φ θ−2 for θ > 0

d−1 1 y is for θ > 0 ‘better’ than d−1 2 y (in the meaning of a smaller risk).

Chapter 2

Exercise 2.1

a) 3
k = −1P y= k = 1

b) U y =

a for y= −1,

0 for y= 0 3,

−2a for y= 1,

2a for y= 2,

a R1
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c) i) S0 y =

0 for y= −1 0

1 for y= 1 3, E S0 = p,

2 for y= 2

S1 y =

−a for y= −1,

0 for y= 0,

1 + 2a for y= 1,

2 + 2a for y= 2,

1 for y= 3,

with a= −
1 + p
3

ii) S0 y =
1
2

for y= −1,

0 for y= 0 1,2 3,
E S0 y = p 1−p

S2 y =

1
2
−a for y= −1,

0 for y= 0 3,

2a for y= 1,

−2a for y= 2,

with a=
1
6

d) S1 y is only a LVUE, and S2 y is even a UVUE with E S2 y U y = 0.

Exercise 2.2

First observe that M Y = yi is completely sufficient.

a) ψ Y =
1
Nn

M Y =
1
N

Y with E ψ Y = p is a UVUE according to Theo-

rem 2.4.

b) S Y =
1
nN

M Y is completely sufficient; therefore also

ψ Y =
nN

Nn−1
S Y 1−S Y with E ψ Y = p 1−p . Because of Theorem

2.4, the function ψ Y is a UVUE.

Exercise 2.3

a)
1
σ2

n

i= 1
yi−y

2 is distributed as CS(n – 1) and has therefore the expecta-

tion n – 1. This implies the assertion.

b) It is S Y =
n

n−1
1−y y. Hence, the assertion follows.
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Exercise 2.4

a) SML Y = y n , SM Y = 2y

b) SML Y =
1
2
y n , SM Y =

2
3
y

c) SML(Y) each value of the interval y n −1,y 1 (MLE not uniquely

determined!), SM Y = y−
1
2
.

Exercise 2.5

a) SML Y = 1+
1
n

, SML Y = 1 +
1
n

y n , SM Y = SM Y

b) SML Y is complete sufficient and unbiased, that is, a UVUE.

S0 Y = SML Y

E0 SML Y = 1, E0 SM Y =
3

n+ 2

Exercise 2.6

a) a= x, b= y, c= z

b) a� = x 1−λ2a + λ2a z−y , b
∗
= y 1−λ2b + λ2b z−x ,

c∗ = z 1−λ2c + λ2c x+ y

with σ2 = σ2a + σ
2
b + σ

2
c and λ2a =

σ2a
σ2

, λ2b =
σ2b
σ2

, λ2c =
σ2c
σ2
.

c) E a = a, E b = b, E c = c, var a =
σ2a
n
, var b =

σ2b
n
, var c =

σ2c
n
,

E a∗ = a, E b
∗

= b, E c∗ = c

var a∗ =
1
n
σ2a 1−λ2a , var b

∗
=
1
n
σ2b 1−λ2b , var c∗ =

1
n
σ2c 1−λ2c

Exercise 2.7

The problems

L Y =
1

2π n 2σn
exp −

1
2σ2

n

i=1

yi− fi xi,θ
2 max

and
n

i= 1

yi− fi xi,θ
2 min

are equivalent.
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Exercise 2.8

a) θM = y

b) αM = y−βMx, βM =

n

i=1
xiyi−nxy

n

i= 1
x2i −nx

2

Exercise 2.9

vn θ,y n = −
θ

n+ 1

Exercise 2.10

Using the Taylor expansion for x y at (η, μ), we obtain

E g =
η

μ
+
σ2η

nμ3
−
ϱστ
nμ2

+O
1
n2

=
η

μ
+O

1
n

,

E J g =
η

μ
+O

1
n n−1

=
η

μ
+O

1
n2

Exercise 2.11

a) By (2.33) we get E y j = μ+
2j

n+ 1
−1 α, j= 1,…,n.

b) The assertion follows using the result of (a).

Exercise 2.12

a) I α =
1
α2

, e S Y =
α2

n var S Y
because of (2.44).

b) nαML Y = n y is gamma distributed with the parameters n, α such that

α Y =
n−1
ny

with var α Y =
α2

n−2
is fulfilled. Finally, we find e αY = 1−

2
n
.

Exercise 2.13

It is

E αML Y =E
1
y

=
n

n−1
α α for n ∞

The consistency can be proven using the Chebyshev inequality

P Y −E Y ≥ ε ≤
1
ε2

var Y .
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Exercise 2.14

It is

θML = 1 +
1
n

n

i= 1

y2i −1

Taking the (weak) law of large numbers into account, we arrive at

1
n

n

i= 1

y2i
P
E y2i = 2θ + θ2 for n ∞

Chapter 3

Exercise 3.1

a) E k1 y H0 =E k2 y H0 = α, πk1 HA = πk2 HA = 1
b) The test

k1 y =
α for L y HA = cL y H0

1 for L y HA > cL y H0

is randomised for c = 0. The test k2(y) cannot be represented in the form (3.5).

Exercise 3.2

We put

a) A= 1+
lncα−n ln

1−p1
1−p0

n ln
p1
p0

i) k Y =

1 for y >A,

γ Y for y=A,

0 for y <A,

if p1 > p0

ii) k Y =

1 for y <A,

γ Y for y=A,

0 for y >A;

if p1 < p0

b) cα = 1 8, γ y = 0 1, β = 0 91
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Exercise 3.3

k Y =

1 for T > 4,

0 413 for T = 4,

0 for T < 4

with T =
10

i=1

yi, β = 0 0214

Exercise 3.4

λ0 < λ1 k Y =
1 for 2nyλ0 <CS 2n α ,

0 for 2nyλ0 >CS 2n α ;

λ0 > λ1 k Y =
1 for 2nyλ0 >CS 2n 1−α ,

0 for 2nyλ0 <CS 2n 1−α

Exercise 3.5

Use

k Y = k∗ M =

1 for M <Mα,

γα for M =Mα,

0 for M >Mα

instead of (3.24) and α instead of 1–α in the inequality for Mα
0 as well as Mα

instead of M1−α. The proof is analogous to that of Theorem 3.8.

Exercise 3.6

a) k Y =
1 for 2λ0ny >CS 2n α ,

0 for 2λ0ny <CS 2n α

b) π λ = Fγ2
2n

λ

λ0
CS 2n α , where Fγ2

2n
is the distribution function ofCS(2n).

c) H0 is accepted.

Exercise 3.7

a) π θ = 1−min 1,
c
θ

n

b) c= 0 95n

c) c= 0 4987
d) β = 0 02; n= 9
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Exercise 3.8

a) The existence follows from Theorem 3.8. Putting M Y =
n

i=1
y2i we get

k Y ≈
1 for M Y > 2 n z1−α + n ,

0 for M Y < 2 n z1−α + n

b) The power function is π θ ≈1−Φ
1

θ2
z1−α + n − n

Exercise 3.9

a) The existence follows from Theorem 3.11.
b) e−λ0 c1 −e−λ0 c2 = 1−α, c1e−λ0 c1 −c2e−λ0 c2 = 0

c) k∗ y =
1 for y < 0 00253 or y > 0 3689,

0 else

π 10,1 = 0 04936 < α= 0 05

Exercise 3.10

a) k Y =
1 for hn≶np np0 1−p0 z

1−
a
2
,

0 else

b) H0 p=
1
2
has to be rejected.

c) H0 p=
1
6
has to be accepted.

Exercise 3.11

a) H0 μ= 3 5 has to be rejected.
b) The probability is 0.68.
c) δ ≥ 0 065
d) H0 μ= 3 5 has to be rejected.

Exercise 3.12

Acception of H0 μ ≤ 9 5.
Rejection of H0 σ2 ≤ 6 25.

Exercise 3.13

In both cases H0 is accepted.

Exercise 3.14

Sample size n = 15.
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Exercise 3.15

a) K1 =
y n

1−α1n
,
y n

α2n
, K2 = y n ,

y n

αn
, K3 =

y n

1−αn
, + ∞ ,

b) l1 =
nθ0
n+ 1

1
α2n

−
1

1−α1n
, l2 =

nθ0
n+ 1

1
αn
−1 , l3 = ∞ , K2 has the smal-

lest mean length.

c) W1 θ θ0 =

0 for θ ≤ 0 or θ ≥
θ0
α2n

,

θ

θ0

n

1−α1 for 0≤ θ ≤
θ0
1−α1n

,

1−
θ

θ0

n

α2 for
θ0
1−α1n

≤ θ ≤
θ0
α2n

W2 θ θ0 =

0 for θ ≤ 0 or θ ≥
θ0
αn
,

θ

θ0

n

1−α for 0 ≤ θ ≤ θ0,

1−
θ

θ0

n

α for θ0 ≤ θ ≤
θ0
αn

W3 θ θ0 =

0 for θ ≤ 0,

θ

θ0

n

1−α for 0 ≤ θ ≤
θ0
1−αn

,

1 for θ ≥
θ0
1−αn

Only K2 is unbiased.

Exercise 3.16

a) KL =
CS 2n α

2ny
; + ∞ , KR = 0;

CS 2n 1−α
2ny

,

b) KL = 0 0065; + ∞ , KR = 0; 0 0189 .

Exercise 3.17

Confidence interval

s21

s22F n1−1,n2−1 1−
α

2

;
s21F n1−1,n2−1 1−

α

2
s22
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Exercise 3.18

a) π p = 1− 1−p n0 ,

b) E n p =
1
p

1− 1−p n0 ,

c) α= 0 0956, β = 0 3487, E n p0 = 9 56, E n p1 = 6 51.

Exercise 3.19

Sample sizes
a) n = 139,
b) n = 45.

Exercise 3.20

a) Use the test statistic of the Welch test, namely, t∗ =
y1−y2

s21
n1

+
s22
n2

.

b) (b1) n1 = 206; n2 = 103,
(b2) n1 = 64; n2 = 32.

Exercise 3.21

Proceed analogously to Section 3.4.2.1.

Chapter 4

Exercise 4.1

The equation CT b = 0p (b Rn) defines the null space of the (p × n) matrix CT.
Since the columns of C are supposed to be an orthonormal basis of the p-
dimensional linear subspace Ω, it is the rank space (range) of C and the null
space of CT is its (n − p)-dimensional orthogonal complement.

Exercise 4.2

We know that the (n × p) matrix X has the rank p > 0. The second derivative of
Y −Xβ2 according to β is equal to 2XTX, and it is therefore positive definite.

Exercise 4.3

We put B= X−XGXTX and obtain

BTB= X−XGXTX
T

X −XGXTX =XTXGTXTXGXTX −XTXGTXTX = O

This implies the assertion.
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Exercise 4.4

Because of XT In−XGXT =XT −XTXGXT , we can continue as in Exercise 4.3.

Exercise 4.5

Obviously the matrix

A=

1
n

…
1
n

1
n

…
1
n

is symmetric, idempotent (A2 =A) and of rank 1.

Chapter 5

Exercise 5.1

Since a normal distribution is supposed, we have only to show that the covar-
iances vanish. We demonstrate this briefly for cov y ..,yi −y .. ; the other cases
follow analogously.

cov y ..,yi −y .. = cov

a

i=1

b

j= 1
yij

ab
,

b

j=1
yij

b
−

a

i= 1

b

j= 1
yij

ab

= cov

a

i=1

b

j= 1
yij

ab
,
a

b

j=1
yij

ab
−

a

i=1

b

j= 1
yij

ab
= 0

Exercise 5.2

The data are fed in as follows (see Figure S1).
Then call ‘Analyze – General Linear Model – Univariate’ and work on the

menu window as follows (see Figure S2).
Now pressing ‘ok’ supplies the result in Table S1. (The original output was

adapted to the text in the book. More information you can find in the SPSS help
under managing a pivot table.)
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Figure S2 Data of Exercise 5.2 and menu. Source: Reproduced with permission of IBM.

Figure S1 Data of Exercise 5.2. Source: Reproduced with permission of IBM.

Table S1 Tests of between-subject effects of Exercise 5.2

Dependent variable: carotene

Source Type III sum of squares df Mean square F Sig.

Storage 41.635 1 41.635 101.696 .000

feedplant .710 1 .710 1.734 .213

Storage feedplant .907 1 .907 2.216 .162

Error 4.913 12 .409

Total 888.730 16

Source: Reproduced with permission of IBM.



Exercise 5.3

Proceed analogously to Exercise 5.2.

Exercise 5.4

See the solution of Exercise 4.3.

Exercise 5.5

Obviously all threematrices are symmetric.The idempotence canbe shownbyper-
forming the products B2−B3 B2−B3 , B1−B2 B1−B2 and In−B1 In−B1 .
The remaining assertion can be easily seen by calculation.

Exercise 5.6

Use the brand new R-packages via https://cran.r-project.org/ and download for
your computer (see Figure S3).

Further, activate at the left-hand side ‘Packages’ and list of available packages by
name. Then a list with R-packages appears, which contains also OPDOE (see
Figure S4).

Figure S3 Start of the R-program.
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Exercise 5.7

Maximin 40

Minimin 14

Exercise 5.8

Maximin 9

Minimin 4

Exercise 5.9

Factor A

Maximin 9

Minimin 4

Factor B

Maximin 51

Minimin 5

Exercise 5.10

Maximin 48

Minimin 5

Figure S4 List of program packages in R.

Solutions and Hints for Exercises 643



Exercise 5.11

Maximin 7

Minimin 3

Chapter 6

Exercise 6.1

First we put the data in a SPSS data sheet (statistics data editor) and choose
‘Analyze – General Linear Model – Univariate’. Then we get with our special
data (see Figure S5).

Now we continue with ‘Paste’ and modify the command sequence as described
in Chapter 5 in the part concerning the nested classification. We push on the
button ‘Execute’ and obtain the following results (see Figure S6).

Figure S5 Data of Exercise 6.1 with menu. Source: Reproduced with permission of IBM.
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Estimate the variance components via
Analyze

General Linear Model
Variance Components

Exercise 6.2

First we find a2 = 83.67.
Choosing a2 = 83, the expression

A 200,83 =
2
82

0 5 +
0 5
200

2

+
4
117

0 52 + 2
0 5
200

1−
0 5
200

199 const

turns out to be greater than the corresponding expression

A 200,84 =
2
83

0 5 +
0 5
200

2

+
4
116

0 52 + 2
0 5
200

1−
0 5
200

199 const

for a2 = 84. Now look for the optimal solution starting with the pairs

a = 83,n = 2 ; a = 83,n = 3 ; a = 84,n = 2 ; a = 83,n = 3

Exercise 6.3

The completed data table is given as follows (see Table S2).

Figure S6 SPSS-ANOVA table of Exercise 6.1. Source: Reproduced with permission of IBM.
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If you like you can calculate the variance components by hand using the
described method of analysis of variance. Alternatively you can use statistical
software as SPSS or R.

Chapter 7

Exercise 7.1

Use the completed data table of Exercise 6.3. In the solution of Exercise 6.3, it is
Table S2.
The random division into two classes can be realised with pseudo-random

numbers that are uniformly distributed in the interval (0,1). A sire is assigned
to class 1 if the result is less than 0.5, or otherwise to class 2. If in one of the two
classes are 6 sires, then the remaining sires are put into the other class. We have
a mixed model of twofold nested classification with the fixed factor ‘Location’
and the random factor ‘Sire’.

Exercise 7.2

We recommend using SPSS for the solution. Observe the necessary syntax
modification described in Chapter 5 for nested classification.

Table S2 Data of Exercise 6.3.

Sire

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

120 152 130 149 110 157 119 150 144 159

155 144 138 107 142 107 158 135 112 105

131 147 123 143 124 146 140 150 123 103

130 103 135 133 109 133 108 125 121 105

140 131 138 139 154 104 138 104 132 144

140 102 152 102 135 119 154 150 144 129

142 102 159 103 118 107 156 140 132 119

146 150 128 110 116 138 145 103 129 100

130 159 137 103 150 147 150 132 103 115

152 132 144 138 148 152 124 128 140 146

115 102 154 122.70 138 124 100 122 106 108

146 160 139.82 122.70 115 142 135.64 154 152 119
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Exercise 7.3

It suffices to estimate the variance components of the factor ‘Sire’ using the
method of analysis of variance by hand. Of course you can do it also with SPSS.

Chapter 8

Exercise 8.1

The partial derivatives of S according to β0 and β1 are

∂S
∂β0

= − 2
n

i=1

yi−β0−β1xi

∂S
∂β1

= −2
n

i= 1

xi yi−β0−β1xi

If these derivatives are put to 0, we get the simultaneous equations

n

i= 1

yi−nb0−b1
n

i= 0

xi = 0

n

i= 1

xiyi−b0
n

i= 0

xi−b1
n

i=0

xi
2 = 0

The first equation supplies (8.10) (if we replace the realisations by random vari-
ables). If we put b0 = y−b1x into the second equation and use random variables
instead of realisations, the Equation (8.9) is obtained after rearrangement.

Exercise 8.2

Because of b= β= XT X
−1
XTY (see Theorem 8.1), we get

E b =E XTX
−1
XTY = XT X

−1
XT E Y = XT X

−1
XTXβ = β

and as special cases E b0 = β0 and E b1 = β1. Further, it is

var b = XTX
−1
XTvar Y X XTX

−1

Considering now var Y = σ2In, we find var b = σ2 XTX −1.
In our special case it is

X =

1 x1

1 xn
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and therefore

XTX =

n
n

i= 1

xi

n

i= 1

xi
n

i=1

x2i

as well as

XTX
−1

=
1

n
n

i=1
x2i −

n

i= 1
xi

2

n
n

i= 1

x2i −
n

i=1

xi

−
n

i= 1

xi n

=
1

n
n

i=1
xi−x

2

n

i= 1

x2i −
1
n

n

i= 1

xi

−
1
n

n

i=1

xi 1

This implies (8.14) and (8.15).

Exercise 8.3

Substituting x1 = cos 2x , x2 = ln 6x , the case is traced back to a twofold linear

regression. In b= β= XT X
−1
XT Y , we have now to put

X =

1 cos 2x1 ln 6x1

1 cos 2x2 ln 6x2

1

1

cos 2xn−1

cos 2xn

ln 6xn−1

ln 6xn

Exercise 8.4

After feeding the data of Example 8.3 concerning the storage in glass in a SPSS
data sheet (see Figure S7), we select ‘Analyze – Regression – Linear’ and fill the
appearing box correspondingly.
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Under ‘Statistics’ we request the covariance matrix of the estimations. Then the
result is presented after pressing the button ‘ok’. There we deleted the correla-
tion coefficients, since we dealt with model I (see Figure S8).

Figure S8 SPSS-output of Exercise 8.4. Source: Reproduced with permission of IBM.

Figure S7 Data of Exercise 8.4 with menu. Source: Reproduced with permission of IBM.
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Exercise 8.5

Since we have an odd number (5) of control points, a concrete D – optimal plan
is given by

1 303

3 2

and the concrete G – optimal plan is given by

1 152 303

2 1 2

For the D – optimal plan it is

X =XD =

1 1

1 1
1

1

1

1

303

303

and for the G – optimal plan it is

X =XG =

1 1

1 1
1

1

1

152

303

303

Therefore the determinant XT
GXG = 456010 of the G – optimal plan is smaller

than the corresponding determinant XT
DXD = 547224 of the D – optimal plan,

which maximises |XTX| for n = 5 in the interval [1; 303].

Chapter 9

Exercise 9.1

a) Quasilinear
b) Quasilinear
c) Linear
d) Intrinsically non-linear
e) Quasilinear
f) Intrinsically non-linear
g) Intrinsically non-linear
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Exercise 9.2

The non-linearity parameters are
a) θ2, θ3
b) θ2
c) θ2, θ3
d) θ3
e) θ4

Exercise 9.3

The normal equations for the given n = 11 points serving to determine a, b, c
are non-linear in c. If the first two equations are solved for a and b and if the
corresponding values are put into the third equation, then a non-linear equation
g(c) = 0 for c follows, which has to be iteratively solved.
If one of the usual iterative methods is used initialised, for example, with

c0 = −0 5, then after a few iterations a value c≈ −0 406 is obtained. If you want
to check the quality of iterates ck, you can calculate the values f(ck), which should
lie nearby 0. If c is replaced in the solution formulas for the two other parameters
a and b by its approximate value −0.406, then a = 132.96 and b =−56.43 is
obtained. Hence, the estimated regression function is

f ∗ x,θ∗ = 132 96−56 43 e−0 406x

The estimate for the variance can be calculated using the formula

s2 =
1

n−3

n

i= 1

yi−a−be
cxi 2

The result is s2 = 0.761.
In SPSS we edit the data in a data matrix and program the exponential func-

tion as shown in Figure S9.

Figure S9 Menu for ‘Non-linear Regression’ in SPSS for Exercise 9.3. Source: Reproduced with
permission of IBM.
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The result is as follows (see Figure S10).

Exercise 9.4

First, we select a model using the criterion of residual variance. The best fit is
reached for the arc tan (4) function.
We now use initial values in SPSS – Non-linear Regression as in Figure S11.

Figure S11 The SPSS-program non-linear regression with data of Exercise 9.4.
Source: Reproduced with permission of IBM.

Figure S10 SPS-output ‘Non-linear Regression’. Source: Reproduced with permission of IBM.
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We obtain the results given in Figure S12.

Chapter 10

Exercise 10.1

Since the storage type is a fixed factor and the instants of time were prescribed
by the experimenter, a model I–I of the form

μij = μ+ αi + γzij; i= 1, 2; j= 1,…,5

is given with the main effects α1 and α2 for the both storage types and the con-
tents zij of carotene.

Exercise 10.2

After the command sequence ‘Analyze – General Linear Model – Univariate’,
the fixed factor and the covariate is entered, as Figure S13 shows.

Figure S12 Menu for ‘Non-linear Regression’ in SPSS for Exercise 9.4. Source: Reproduced
with permission of IBM.
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Pressing ‘OK’ the result follows (see Figure S14).

Figure S14 SPSS-output for the analysis of covariance for Exercise 10.2. Source: Reproduced
with permission of IBM.

Figure S13 Data and menu in SPSS for Exercise 10.2. Source: Reproduced with permission
of IBM.
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Chapter 11
The results are given in this chapter in form of tables (see Table S3, Table S4 and
Table S5).

Exercise 11.1

Exercise 11.2

Exercise 11.3

The remaining sample sizes for other values of β and d are omitted here.

Table S3 Sample sizes for Exercise 11.1.

t

d/σ 1 2 3 4

0.1 1721 1654 1738 1762

0.2 431 414 435 441

0.5 69 67 70 71

1 18 17 18 18

Table S5 Sample sizes for Exercise 11.3 (β = 0.05, d = σ)

a

3 4 5 10 20

α 0.05 28 31 33 40 47

0.1 23 27 29 36 43

Table S4 Sample sizes for Exercise 11.2 (α = 0.05).

β

0.05 0.1 0.2

d 0.5 105 85 64

1 27 22 17
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Chapter 12

Exercise 12.1

Without computer use you can encode the 35 blocks into the numbers from 1 to
35, write these numbers down on corresponding sheets of paper, lay down these
sheets into a bowl and draw these sheets without replacement by random. The
block belonging to the first drawn number gets the first place. The randomisa-
tion within the blocks can be realised by throwing the dice. For each treatment
the dice is once thrown: 1 or 4 means position 1; 2 or 5 means position 2; and
finally 3 or 6 supplies position 3. This can lead to a repeated rearrangement
within the blocks.

Exercise 12.2

The dual balanced incomplete block design (BIBD) has the parameters k = r = 4
and λ = 2. The design is

1,2,4,6 ; 1,2,5,7 ; 1,3,4,7 ; 1,3,5,6 ; 2,3,4,5 ; 2,3,6,7 ; 4,5,6,7

Exercise 12.3

We choose m = 2 and obtain

v= 85, b= 85, r = 21, k = 21, λ= 5

Exercise 12.4

We choose m = 1, which supplies

v= 64, b= 336, r = 21, k = 4, λ= 1

Exercise 12.5

Analogously to Example 12.3, a BIBD is obtained with the parameters

v= 12, b= 22, r = 11, k = 6, λ= 5

Exercise 12.6

The parameters of the original BIBD are

v= 8, b= 56, r = 21, k = 3, λ= 6
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Exercise 12.7

In the LS (Latin square)

D E A B C G F

B D E F A B C

A B C D E F G

E C B G F D A

C G F E B A D

F A G C B E D

G F D A C B E

the columns have to be exchanged such that in the first row the sequence A,B,C,
D,E,F,G appears.

Exercise 12.8

If we cancel in the LS of Exercise 12.7 the last both columns, then we get the
design

D E A B C

B D E F A

A B C D E

E C B G F

C G F E B

F A G C B

G F D A C

This is no Youden design, since, for example, the pair (A,B) occurs four times,
while the pair (A,E) occurs only three times.
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a
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Addition table 587, 588, 591
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decision function 28, 32
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Alternative hypothesis 80, 83, 88,

96, 103, 111, 536
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Analysis of variance 179, 193,

207, 341, 403, 573
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Analysis of variance
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Mixed model 200, 202
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Antitone likelihood ratio 100
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Approximate confidence
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Asymptotic
covariance matrix 446, 451,

454, 485
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α-test 84, 354, 514
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uniformly most powerful 85

unbiased 85

b
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320, 341, 349, 362, 587
BAN estimator 74
Basis 181, 190
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Basis 181, 190 (cont’d)
orthonormal 180, 190, 192

Bayesian
approach 9, 40
decision function 36
method 9
risk 31, 36, 40

Berry-Esseen inequality 73
Bertalanffy function 468
Best asymptotically normal distributed

estimator 74
Best α-test 85
Best linear unbiased estimator

(BLUE) 53, 194, 209, 214, 239,
252, 266, 380, 449, 500, 611

Best linear unbiased prediction
(BLUP) 53, 200, 611

Best population 516
Best quadratic unbiased estimator

(BQUE) 53, 315
Beta
distribution 145, 613
Function 128

Bias 41, 69, 72, 443, 447, 463
Empirical 463

Biased 63
Estimator 185, 304, 311
sample 63
test 123, 172

BIBD 574
Complementary 575
Dual 578
elementary 576
trivial 576

Binary block design 573
Binomial distribution 10, 15,

18, 42, 50, 108, 143, 609, 613
Block 568, 571, 584
Initial 594

Block design 571, 579
Balanced 244, 574
Binary 572
complementary 577

complete 224, 572
completely balanced

incomplete 574
connected 573
equireplicate 574, 596
incomplete 574
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224, 598, 604
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size 572
symmetrical 573, 594

Block factor 569
BLUE 194, 209, 214, 239, 252, 266,

380, 449, 500, 611
BLUP 200, 611
Bonferrony inequality 547, 549, 565
Bounded complete 18, 112

Sufficient 19
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c
Canonical form 9, 16, 99, 188, 304, 613
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Central

χ2-distributed 63, 81, 354, 535
F-distributed 138, 187, 191, 198,

255, 309, 354, 398, 506
t-distributed 111, 117, 128, 398,

404, 451, 461, 548, 549
Characteristic

equation 432
function 174
value 378

Chi-squared (χ2) distribution
13, 19, 63, 354

non-central 63, 186, 280
Class 4, 62
Classification

mixed 283
nested 232, 260, 266
one-way 231
three-way 272, 276
three-way mixed 272, 282
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three-way nested 272, 279
two-way 232, 233, 235, 248, 256
two-way nested 260, 266, 271

Closed sequential test 149
Cluster sampling 4
Cochran’s Theorem 186
Combinatorics 568
Common boundary 84, 110
Comparison 536, 556

with a standard 559
Comparisonwise

error probability 537
risk 558
of (the) first kind 537, 541

Complementary
BIBD 577
block design 577

Complete 34
block design 244, 567
cross classification 232, 272
minimal sufficient 47, 49
sufficient 54, 116, 124, 185
randomisation 572
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Completeness 9, 18, 19, 34, 47, 112
Composite hypothesis 80
Concrete design 28, 395, 455
Concrete sample 2, 8
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Confidence estimation 209, 410,

446, 447
Confidence interval 32, 133,

139, 169
Approximate 297, 414
one-sided 140
simultaneous 543
two-sided 141, 143
uniformly most powerful 141

Confidence level 139, 452
Confidence region 139, 190
Connected cross classification 245
Consistency 72
Consistent 71

estimation 72
Construction 190
method 146
of BIBD 582

Contingency table 603
Continuous design 395
Contrast 189
linear 189
orthogonal linear 189

Convergence 433
almost sure 444

C-optimal design 338
Correlation coefficient 162, 300
Partial 411
within classes 300

Cost 29
Covariable 495
Covariance 311
analysis 196, 495, 503, 571
component 495
within classes 300

Covariance matrix 17, 519, 610
estimated 199

CRAN 119, 604
Critical function 84
Cross classification 232
Complete 232, 272
Connected 243, 245
Disconnected 243
incomplete 243
three-way 272
two-way 233
two-way incomplete 324, 496
disconnected 244

Cyclic design 599

d
Decision
function 28, 32, 80, 513, 515
problem 28, 513, 536
rule 82, 164
space 28
theory 28
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Decomposition theorem 11, 13, 16,
33, 60

Degrees of freedom 13, 98, 120,
128, 188, 611

Density function 8, 33, 81, 610, 611
of the non-central

F-distribution 228
of order statistics 65

Design
A-optimal 326, 337, 396, 455
continuous 395
C-optimal 338, 396
cyclic 599
discrete 338, 395, 444
D-optimal 396, 397, 455, 456,

466, 488
fractional factorial 603, 604
G-optimal 397, 457
locally optimal 31, 45, 488
triangular 599
matrix 394

Differential equation 424, 431
Direct sum 197, 267, 269, 302,

573, 609
Disconnected cross

classification 244
Discrete design 338, 395, 444
Distribution
beta 33, 145, 613
binomial 10, 15, 18, 22, 50, 58
exponential 32, 34, 613
gamma 16
geometric 33
hypergeometric 33, 613
negative binomial 33
normal 22, 51, 517, 521, 529,

534, 610
Pareto 33, 614
Poisson 32, 107, 610, 614
uniform 32, 613
Weibull 33, 614

D-optimal
concrete 457

design 396, 397, 458, 468
locally 455, 484, 487

Dual BIBD 578
Dunnett

method 555
procedure 559, 560, 563

Dunn’s method 547

e
Effect 208, 231, 282, 341

conditional 235
fixed 53, 179, 207, 215, 231
random 53, 199, 293,

336, 351
size 86, 87, 117

Efficiency 1, 69
asymptotic relative 72
function 69
relative 52, 69

Efficient estimator 52
Elementary BIBD 575
Empirical 2, 136

ASN function 168
Bayes method 9
Bias 463
power function 169

Equivalent likelihood function
12, 57

Equivariant 54
estimator with minimal MSD

56, 71
Error

distribution 447
of (the) first kind 79, 82, 83
of (the) second kind 79, 82, 83
random 60, 236
term 155, 274, 282, 289, 344,

379, 429, 453
variance 356

Error probability
comparisonwise 541
experimentwise 541, 559
theory 61
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Estimable Function 194, 198, 213,
217, 221, 239, 499, 543

Estimated asymptotic covariance
matrix 446, 451

Estimation 39, 40
consistent 71
Jackknife 63, 488
point 39
unbiased 41
of variance components 202,

293, 300
Estimator 40

BAN 74, 611
best asymptotic normally

distributed 74
best quadratic unbiased 315, 611
efficient 52
Hodges-Lehmann 68
Jackknife 63
linear 41
linear unbiased 41
locally variance optimal

unbiased 45
with minimal MSD 56, 71
quadratic unbiased 41

unbiased 42
uniformly variance optimal

unbiased 45, 48, 49
of variance components 315
variance-invariant 53
variance optimal unbiased 43

Euclidian
geometry 584
norm 203
space 8

Exact
D-optimal design 396
test 145, 354, 567

Expectation vector 124, 194, 437,
519, 610

Expected
length 174
random loss 29

sample size 157
width 140, 408, 414, 452, 545

Experiment
factorial 207, 569, 603
sequential 2, 147

Experimental design 28, 567
optimal 336–338, 394
statistical 415

Experimental unit 148, 568
Exponential distribution 613
Exponential family 9, 613
five-parametric 51
four-parametric 17, 124
k-parametric 9, 11, 18, 48, 57
one-parametric 19, 27, 48, 99, 103
three-parametric 125
two-parametric 125

Exponential regression 458, 463
function 490

f
Factor 3, 207, 215
fixed 230, 355
levels 207, 232, 273, 569
nested 260, 279, 344
noisy (nuisance) 122, 568, 571
random 293, 348, 355, 362, 390
superordinated 260, 279, 344

Factorial experiment 207
fractional 603

Factor level 3, 207
combination 3, 208, 230

F-distribution 138, 225, 320, 609,
610, 624

non-cental 228, 230
Finite measure 11
Finite projective geometry 582
First order interaction 274
Fisher information 1, 20, 21, 69, 74,

156, 630
Fixed sample size 83, 154, 165
Fleishman system 453, 466
Frequency distribution 8
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g
Galois field 582
Gamma distribution 16, 628, 634
Gauss-Markov theorem 181
Gauss-Newton method 425
Generalised
inverse 193, 500
Tukey method 553

General linear model 179, 209, 496
Global minimum 30, 425, 429
Global R-optimal 29, 68
Gompertz function 476
G-optimal design 397, 457
Group family 55

h
Hadamard matrix 592
Hartley’s algorithm 425
Hartley’s procedure 426, 431
Hodges-Lehmann estimator 68
Hypergeometric distribution

33, 613
Hypothesis 80
composite 80
linear 179
one-sided 103, 121, 147
testable 195, 213, 221, 244,

270, 500
two-sided 103, 121

i
IBM SPSS statistics 208
Idempotent matrix 181, 185, 198,

308, 500
Identifiable 423
Inadmissible 32
Incidence matrix 571, 574, 577,

586, 597
Incomplete
block design 244, 567, 572, 604, 611
cross classification 232, 243,

324, 496
Indifference zone 516, 536

Inferior factor see nested factor
Inflection point 438, 469, 473, 476,

479, 484, 487
Information 1, 5, 9, 20, 69, 74, 156, 285

matrix 24, 75, 455, 474
Interaction 207, 280, 235, 239, 250,

273, 276, 285, 293, 326, 344
of first order 274
of second order 274, 278

Internal regression 431, 474
Interval estimation 32, 139
Intrinsically nonlinear regression 424

Function 424
Invariant 55, 154

estimation 53, 195, 202, 305
test 154, 188

Isotone likelihood ratio 101
Iteration 121, 165, 353, 425, 651

j
Jackknife criterion 409, 488
Jackknife estimation 63, 488

k
k-dimensional normally

distributed 52, 413
k-parametric exponential family 9, 12,

16, 57, 112
Kronecker product design 574, 594
Kurtosis 203, 453, 465

l
Latin rectangle 600
Latin square 600, 611
Lattice square 600, 601
Least Squares

estimator 382, 422, 611
method 60, 76, 180, 198, 274, 380,

417, 424, 611
L-estimator 66
Level

of a block factor 571, 600
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of a factor 3, 6, 207, 215, 231, 244,
260, 273, 293, 315, 341,
495, 603

Levene test 139
Likelihood

decomposition 14
function 8, 11, 57, 149, 154, 163
equivalent 12, 57

ratio 150, 154
antitone 99
isotone 99
monotone 99

ratio test 149, 156
statistic 14
Linear

Combination 190, 195, 201, 241,
296, 344

Contrast 189, 221, 396
estimator 182
hypothesis 179, 185, 192
model 61, 179, 191, 199, 293
regression 282, 379
statistical model 61
subspace 179, 185
transformation 181
unbiased estimator 182

Linearity parameter 456
Locally

A-optimal 455
Cθr -optimal 455, 468
D-optimal 455, 456, 466, 484
optimal design 488
R-optimal 29
variance-optimal unbiased

estimator 45, 611
Location parameter 63 66
Logistic

function 39, 383, 429, 438, 473
regression 429, 431

Log-likelihood function 153, 155,
158, 184

Loss 29
expected random 39

random 29, 39
Loss function 28, 39, 57, 200
quadratic 39, 454

m
Main effect 230, 273, 293, 362
Mallows criterion 488
Mann-Whitney test 133
Mathematical model 8, 79, 207, 216
Maximin size 230, 255
Maximum-likelihood 611
estimation 203

restricted 203
modified 203

estimator 70, 75, 155, 611
method 1, 57, 60, 184, 295, 353

restricted 203
Maximum minimal size see

Maximin size
Mean 40, 517, 542, 544, 546, 552
difference 548, 557
loss 39
square deviation (MSD) 55, 69,

70, 611
trimmed 66
Winsorised 67

Measure
finite 11

Measurable mapping 10, 28, 84,
139, 445

Median 66, 67, 68, 72, 77
M-estimator 67, 68
Method of moments 62, 63, 76
Minimal
function 583, 586–588
MSD 56, 71
norm 203
sample size 31, 175, 416, 559, 563
sufficient 9, 14–19, 33, 47, 48,

56, 58, 60, 116
Minimax
decision function 32, 36, 631
estimator 41
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Minimax (cont’d)
Minimin size 231

Minimum
difference of practical interest 208

global 30, 425, 429
local 30
probability 531
relative 337, 425
sample size 120, 121

Minimum chi-squared (χ2)
method 61, 62

modified 62
Minimum χ2 estimator 62
MINQUE 203, 204, 295, 305, 308,

313, 339, 611
Mixed classification 272, 282, 286,

288, 289, 292, 334, 349, 369,
370, 372-374

Mixed model 199, 295, 341, 348,
350, 354, 360, 364, 366, 368,
375, 416

of analysis of variance 200
of regression analysis 200, 416

ML-estimator 57, 58–60, 76–78, 312
Model 79, 173, 198
of the analysis of covariance

(ANCOVA) 204, 495, 496,
503, 506, 571, 654

of analysis of variance
(ANOVA) 179, 188, 193,
207, 215, 232, 293, 300, 341

mixed 348
Model I
of the analysis of variance

(ANOVA) 200, 207, 209,
267, 286, 290

of (multiple) linear regression
379, 381, 384, 385, 400

of regressions analysis 199, 377,
417, 421

Model II 199
of the analysis of variance

(ANOVA) 40, 200, 293, 294,
315, 326, 334

of (multiple) linear regression 410
of regression analysis 199,

377, 417
of selection 515

Modified
maximum-likelihood

estimation 203
minimum-χ2 method 62

Monotone likelihood ratio 96,
99, 103, 533, 534

m-point design 395, 454, 455
discrete 395

MS-estimation 220, 256, 267, 276,
281, 286, 290, 343, 359

Multiple
comparisons 536, 556, 548, 553,

556, 559
decision problem 513, 514,

536, 541
linear regression 384, 385, 410
problem 433
t-procedure 540, 557, 560, 562

Multistage sampling 5, 6
Mutually orthogonal LS (MOLS) 602

n
Natural parameter 9, 12, 17, 57, 59,

103–112, 124, 125, 137
Negative binomial distribution

33, 613
Nested classification 233, 260, 279,

324, 334, 358, 365
Neyman-Pearson lemma 84, 87–88,

91, 96, 171
Neyman structure 111–113
Non-central

CS-distributed 63, 186, 280
F-distributed 187, 193, 196, 219,

400, 501
t-distributed 111, 117, 120, 126

Non-centrality parameter 117, 120,
126, 186, 189, 231, 502

Non-linearity
measure 441, 442
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parameter 421, 422, 456, 458,
469, 473, 487

Non-linear regression function 40,
378, 379, 384, 421, 437, 447, 458

Non-parametric test 134, 176
Normal

distribution 11, 13, 22, 54, 72,
154, 163, 302, 517, 534, 536

n-dimensional 184, 209
two-dimensional 16, 51, 124

equation 193, 194, 203, 210, 211,
216, 238, 242–246

Null space 189, 639
Number of replications 255, 568,

572–575, 601

o
One factorial (experimental)

design 569, 570
One-parametric exponential

family 19, 27, 34, 48, 99,
103, 107, 113, 149

One sample
problem 126, 161
t-test 137

One-sided
confidence interval 140, 147
hypothesis (test) 94, 96, 99, 113,

126, 404
Open sequential test 149
Optimal

choice of sample sizes 126, 338, 415
choice of support points 454–458
experimental design 336–338,

394–397, 454
Optimal design of experiments

(OPDOE) 119, 121, 126, 153,
161, 208, 231, 250, 278, 520,
559, 604

Optimality criterion (condition) 57,
143, 336, 395, 455

Order statistic 64–68, 551
Orthogonal

(linear) contrast 189, 227, 541

polynomials 385–388
projection (projector) 180, 182, 187,

190, 197, 400, 434
Orthonormal basis 183, 190
Outlier 66

p
Parameter
space 16, 29, 53, 96, 113
vector 9, 51, 144, 189

Parametrisation 159, 437, 487
Pareto distribution 33, 614
Partial
correlation coefficient 411, 412
regression coefficient 412

Partially balanced incomplete block
design see PBIBD

Partially non-linear regression
function 421

PBIBD 244, 573, 596
Permutation 514, 602
p-factorial (experimental) design 569
Pitmann efficiency 71
Point estimation 2, 32, 39–77, 139, 209
Poisson distribution 107, 610
Polynomial regression

function 385, 388
Population 2, 8, 341, 517, 530
statistical 2–4

Power 83, 118, 355, 451
function 84, 85–87, 102, 104, 118,

123, 150, 169
p-point design 456–458
Practically interesting Mimimal

(minimum) difference 86, 117
Precision requirement 117, 118, 126,

128, 147, 165, 230, 255
Prediction
best linear unbiased (BLUP) 200

Primary unit 5, 6
Primitive element 594
Probability
distribution 8, 11, 14, 31
function 8, 11
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Probability (cont’d)
measure 41, 139, 395

Program
OPDOE see OPDOE
package R 119, 208

Projection
Orthogonal see orthogonal

projection
Pseudo random number 545, 646

q
Quadratic
estimation (estimator) 41, 53,

202, 305
form 186, 187, 219, 267, 294,

305, 351
loss function 39, 55, 454
unbiased estimator 202, 203, 315

Quantile 81, 90, 98, 110, 111, 120
Quasilinear
polynomial regression 388, 405
regression 388, 421, 443

function 384, 385

r
Radon-Nicodym density 11
Random 4, 360, 361, 377, 410
loss 29, 39
sample 1, 6, 8, 9
variable 1, 8

Randomisation 568, 569, 572, 601,
602, 656

complete (or unrestricted) 569
Randomised test 83, 84, 96, 145
Random sampling (procedure) 4–7
stratified 4, 6, 7
unrestricted 6

Random sampling
with replacement 6
without replacement 6, 7

Range 64, 66
augmented studentised 553
studentised 550, 554

Rank
space 191, 197, 210, 379,

543, 610
statistic 64
vector 66

Rao-Blackwell theorem 47
Rao-Cramér inequality 26, 27, 35,

69, 70
Rayleigh distribution 172
RCDs 567, 600–603, 611
Realisation 8, 9, 14, 28
Rectangle

Latin 600, 601
Latinised 600, 601

Rectangular distribution 170
Region critical 80

Regressand 202, 378, 417, 421
Regression

analysis 31, 179, 191, 199, 377,
417, 421

coefficient 384, 391, 411, 506
partial 412

coefficient within classes 458, 504
internal 431, 474, 482, 485
intrinsically non-linear 393, 421,

431, 443, 447, 456
line 381, 383, 393, 402, 405,

409, 417
logistic 427, 429–431
model 200, 396, 405, 456, 473,

479, 495
multiple linear 384, 385, 410, 433
problem 433
quasi-linear (see Quasilinear

regression)
quasi-linear polynomial (see

Quasilinear polynomial
regression)

simple linear 381, 396, 400, 401
Regression function 378, 384, 458

exponential 463
intrinsically non-linear 421, 431,

447, 456
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non-linear 384, 421, 431, 435,
447, 456

polynomial 385
quasilinear 384, 385

Regressor 200, 377, 410, 421, 495
Rejection region 80, 115, 142
Relative

efficiency 52, 69, 72
minimum see Minimum, relative

Reparametrisation 159, 220, 440, 473
optimal 443

Replication 255, 568, 601
Residual variance 312, 314, 407, 433,

462, 476, 488
R-estimator 68
Restricted maximum likelihood

estimator 203
Restricted maximum likelihood method

(REML) 203, 295, 304, 315,
353, 362

Result
asymptotic 69

Richards function 487
Risk 29–31, 36, 79, 117

of the first kind 79, 117
function 29, 30, 32, 39
of the second kind 79, 117

Risk function
of the first kind 84
of the second kind 84

Robust 136, 452
Robustness 32, 124, 135
Row–column designs (RCDs) 567,

600–603, 611

s
Sample 3

censored 4
concrete 3
median 66, 67, 72
random 4, 8
representative 3
small 69

space 8, 10, 14, 19
Sample size 5
determination 208
expected 157
fixed 83, 154, 165
minimal 31, 416, 559, 563

Sample variance 111, 118, 535, 627
Sampling 4
arbitrary 5
cluster 4, 7
multistage 5, 6
procedure 4, 6
random 4, 5
with replacement 6
sequential 5
simple random 4
stratified 4, 6, 7
systematic with random start 6
without replacement 6

Scale parameter 533
Scatter plot 462, 463, 471, 480,

483, 486
Scheffé method 542, 552, 554, 562
Schwarz criterion 489
Schwarz’s inequality 26, 27,

46, 260
Secondary unit 5, 6
Second order interaction 274,

275, 278
Selection 417, 517, 530
of the normal distribution with

the largest expectation 534
of the normal distribution with

the smallest variance 535
problem 79, 515
procedure 514
rule 32, 515, 517, 530, 563

Sequential
likelihood-ratio test

(SLRT) 149, 156
test 147, 159, 414
triangular test 160
t-test 153
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Sequential path 160
Sequential test
closed 149
open 149

Side condition 210, 237, 254, 280,
294, 319, 341, 358

Simple
analysis of variance 488, 513, 536
classification

of analysis of covariance 503
of analysis of variance
(one-way) 297

experimental design 569
linear regression see Regression,

simple linear
PBIBD 599

Simulation experiment 136, 138,
146, 329, 451, 452, 463

Simultaneous
confidence interval 543
confidence region 408
(normal) equations 57, 62, 107,

155, 214, 319, 425
Size
of experiment
maximin 230, 255, 282, 355
mean 150
minimin 230
minimal see mimimum sample size

Skewness 24, 134, 137, 408, 440,
453, 465

SLRT 149, 612
Small sample 3, 5, 69, 160, 478
Solution surface see Expectation

surface
Space
Euclidian 8

SPSS 108, 129, 146, 208, 228, 244, 271,
295, 314, 356, 390

SS see Sum of squares
between 218, 227, 266, 284
total 218, 275, 402
within 218, 266, 285

Standard
normal distribution 81, 110, 135,

414, 518, 610
State space 28
Statistic 10

ancillary 19
sufficient 10, 20, 23, 47

Statistical
decision problem 28
decision theory 28
experimental design 28
model 179, 568
test 5, 79

Stratified sampling 4, 6, 7
Stratum 6
Strength of a sequential test 148
Studentised

augmented range 550, 553
range 550, 554

Student’s test 116 see also t-test
Subclass number 244, 281, 302

equal 315, 326
unequal 315

Subset formulation 516
Sufficiency 9, 11
Sufficient statistic 9, 11, 14, 23
Sum of squares 188, 220, 260, 313,

320, 358, 547, 612
of deviation see MSD

Support 68, 395, 434, 444, 453,
466, 488

of an experiment 28
Systematic sampling 6

t
Tangent hyperbolic (tanh)

function 479
four parametric 479
three parametric 438, 473

Tangent plane 434
Taylor expansion 155
t-distribution 406

central 111, 117, 120, 126, 451, 461
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Test
α-similar 84, 110
approximate 128, 149, 158, 404
invariant 154, 188
with Neyman structure

see Neyman structure
non-parametric 134
of parallelism 405, 416
randomised 83, 96, 145
statistical 5, 79
uniformly best 85

Testable hypothesis 196, 214,
245, 250

Three-parametric tanh (hyperbolic
tangent) function
see Tangent hyperbolic
function

Three-point design 466
Three-way analysis of variance 272

cross classification 272, 282,
288, 290

mixed classification 282
nested classification 279

Total mean 207, 215, 218, 234,
247, 261

t-procedure
multiple 540, 557, 560

Trapezium (trapezoidal) method 433
Treatment 2, 147, 160, 215, 417,

458, 555
Treatment factor 569, 571, 603
Triangular design 599
Triangular test 159, 160

sequential 160
Trimmed mean 66
Trivial BIBD 576, 578
Truncation 417
t-Test 115, 127, 136, 154, 404
Tukey method 550

Generalised 553
Tukey procedure 558, 560
Two-dimensional normal

distribution 16, 51

Two-parametric exponential
family 125, 153

Two-point distribution 10
Two-sample
problem 124, 133, 158
t-Test 126

Two-sided alternative 103, 105, 121
Two-way
analysis of variance 232
cross classification 233
incomplete cross

classification 232
nested classification 260

u
UMPU, α-test 104, 105
Unbiased
estimator 41, 52, 69

with minimal variance 47, 182,
305, 315

α-Test 106, 123
Unequal subclass number

see Subclass number, unequal
Uniform
convergence 444
distribution 613

Uniformly best
optimal 40
test 85
unbiased test 106, 123
Uniformly distributed 95

Universe 4, 208, 216, 293, 417
Unrestricted random sample see

Random sampling,
unrestricted

v
Variance
asymptotic 72
component (estimation) 202, 239,

300, 310
invariant 53
optimal 42
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Variance (cont’d)
optimal unbiased 43, 44, 69
optimal unbiased estimator 44

Vector space 181, 211, 397

w
Weibull distribution 614
Weight (function, discrete)

41, 395

Welch test 127, 145, 296
Wilcoxon test 133
Winsorised mean 67, see also Mean,

winsorised
Within class correlation

coefficient 300

y
Youden design 600, 612
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