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PREFACE

This book introduces methods for censored data, some simple and some more

complex, to potential users who until now were not aware of their existence, or

perhaps not aware of their utility. These methods are directly applicable to air quality,

water quality, soils, and contaminants in biota, among other types of data. Most of the

methods come from the field of survival analysis, where the primary variable being

investigated is length of time. Here they are instead applied to environmental

measures such as concentration. The first edition (under the name Nondetects And

Data Analysis) has influenced themethods used by scientists in several disciplines, as

reflected in guidance documents and usage in journals. It is my hope that the second

edition of this book will continue this progress, broadening the readership to

statisticians who are just becoming familiar with environmental applications for

these methods.

Within each chapter, examples have been provided in sufficient detail so that

readers may apply these methods to their own work. Readily available software was

used so that methods would be easily accessible. Examples throughout the book were

computed using Minitab� (version 16), one of several software packages providing

routines for survival analysis, and using the freely available R statistical software

system.

The web site linked with this book: http://practicalstats.com/nada contains ma-

terial for the reader that augments this textbook. Located on the web site are

1. answers to exercises computed using Minitab and R,

2. Minitab macros and R scripts,

3. a link to the NADA for R package,

4. data sets used in this book, and

5. as necessary, an errata sheet listing corrections to the text.

Comments and feedback on both theweb site and the bookmay be emailed tome at

nada@practicalstats.com

I sincerely hope that you find this book helpful in your work.

DENNIS HELSEL

April 2011
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Yesterday upon the stair

I saw a man who wasn’t there

He wasn’t there again today

Oh how I wish he’d go away.

Hughes Mearns (1875–1965)



Introduction to the First Edition: An
Accident Waiting To Happen

On January 28, 1986 the space shuttle Challenger exploded 73 seconds after liftoff

from Kennedy Space Center, killing all seven astronauts on board and severely

wounding the US space program. In addition to career astronauts, on board was

America’s Teacher In Space, Christa McAuliffe, who was to tape and broadcast

lessons designed to interest the next generation of children in America’s space

program. Her participation ensured that much of the country, including its school

children, was watching.

What caused the accident? Would it happen again on a subsequent launch? Four

months later the Presidential Commission investigating the accident issued its final

report (Rogers Commission, 1986). It pinpointed the cause as a failure of O-rings to

flex and seal in the 30�F temperatures at launch time. Rocket fuel exploded after

escaping through an opening left by a failed O-ring. An on-camera experiment during

the hearings by physicist Richard Feynman illustrated how a section of O-ring, when

placed in a glass of ice water, failed to recover from being squeezed by pliers. The

experiment’s refreshing clarity contrasted sharply with days of inconclusive testi-

mony by officials who debated what might have taken place.

The most disturbing part of the Commission’s report was that the O-ring failure

had been foreseen by engineers of the booster rockets’manufacturer,whowere unable

to convince managers to delay the launch. Rocket tests had previously shown

evidence of thermal stress in O-rings when temperatures were 65�F and colder. No

data were available for the extremely low temperatures predicted for launch time.

Faxes sent to NASA on January 27th, the night before launch, presented a graph of

damage incidents to one or more rocket O-rings as a function of temperature

(Figure i1). This evidence given in the figure seemed inconclusive to managers—

there were few data and no apparent pattern.

The Rogers Commission noted in its report that the above graph had one major

flaw—flights where damage had not been detected were deleted. The Commission

produced a modified graph, their assessment of what should have been (but was not)

sent to NASA managers. Their graph added back in the censored values (Figure, i2).

By including all recorded data, the Commission proved that the pattern was a bit

more striking.
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What type of graph could the engineers have used to best illustrate the risk they

believed was present? The vast store of information in censored observations is

contained in the proportions at which they occur. A simple bar chart could have

focused on the proportion of O-rings exhibiting damage. For a possible total of three

damage incidents in each rocket, a graph of the proportion of failure incidents by

ranges of 5� in temperature is shown in Figure i3. The increase in the proportion of

damaged O-rings with lower temperatures is clear.

In Figure i1, the information content of data below a (damage) detection threshold

was discounted, and the data ignored. Not recognizing and recovering this informa-

tionwas a serious error by engineers. Today the same types of errors are beingmade by

numerous environmental scientists. Deleting censored observations, concentrations
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below a measurement threshold, obscures the information in graphs and numerical

summaries. Statements such as the one below from the ASTM committee on

intralaboratory quality control are all too common:

Results reported as “less than” or “below the criterion of detection” are virtually useless

for either estimating outfall and tributary loadings or concentrations for example.

(ASTM D4210, 1983)

A second, equally serious error occurred prior to the Challenger launch when

managers assumed that they possessed more information on launch safety than was

contained in their data. They decided to launch without knowing the consequences of

very low temperatures. According to Richard Feynman, their attitude had become “a

kind of Russian roulette . . .. We can lower our standards a little bit because we got

away with it the last time” (Rogers Commission, 1986, p. 148). A similar error is now

frequently made by environmental programs that fabricate numbers, such as one-half

the detection limit, to replace censored observations. Substituting a constant value is

even mandated by some Federal agencies—it seemed to work the last time they used

it. Its primary error lies in assuming that the scientist/regulator knows more informa-

tion than what is actually contained in their data. This can easily result in the wrong

conclusion, such as declaring that an area is “clean” when it really is not. For the

Challenger accident, the consequences were a tragic one-time loss of life. For

environmental sciences, the consequences are likely to be more chronic and con-

tinuous. The health effects of many environmental contaminants occur in the same

ranges as current detection limits. Assuming thatmeasurements are at one valuewhen

they could be at another is not a safe practice, and as we shall see, totally unnecessary.

Fabricating numbers for concentrations could also lead to unnecessary expenditures

for cleanup, declaring an area is worse than it actually is. With the large (but limited)

amounts of funding now spent on environmental measurements and evaluations, it is
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incumbent on scientists to use the best available methodologies. In regards to deleting

censored observations, or fabricating numbers for them, there are better ways.

When interpreting data that include values below a detection threshold, keep in

mind three principles:

1. Never delete censored observations.

2. Capture the information in the proportions.

3. Never assume that you know more than you do.

This book is about what else is possible.
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Introduction to the Second Edition:
Invasive Data

In his satire Hitchhiker’s Guide To The Galaxy, Douglas Adams wrote of his

characters’ search through space to find the answer to “the question of Life, The

Universe and Everything.” In what is undoubtedly a commentary on the inability of

science to answer such questions, the computer built to process it determines that the

answer is 42. Environmental scientists often provide an equally arbitrary answer to a

different question—what to do with censored “nondetect” data?

The most common procedure within environmental chemistry to deal with

censored observations continues to be substitution of some fraction of the detection

limit. This method is better labeled as “fabrication”, as it substitutes a specific value

for concentration data even though a specific value is unknown (Helsel, 2006).Within

the field of water chemistry, one-half is the most commonly- used fraction, so that 0.5

is used as if it had been measured whenever a <1 (detection limit of 1) occurs. For air

chemistry, one over the square root of two, or about 0.7 times the detection limit, is

commonly used. Douglas Adams might have chosen 0.42.

In addition to the environmental sciences where I work, the issue of correctly

handling nondetect data has been of great interest in astronomy (Feigelson and

Nelson, 1985), in risk assessment (Tressou, 2006), and in occupational health (Succop

et al., 2004;Hewett andGanser, 2007; Finkelstein, 2008;Krishnamoorthy et al., 2009;

Flynn, 2010). We all deal with information overload, barely having time to read the

relevant literature of our own discipline. It is next to impossible to keep up with work

in other disciplines, even when they encounter the same issues as we do. Handling

nondetect data is one example.

There is an incredibly strong pull for doing something that is simple and cheap, not

to mention familiar. In 1990, I stated that techniques of survival analysis, statistical

methods for handling right-censored data in medical and industrial applications,

could be turned around and applied to censoring on the low end (Helsel, 1990). The

1990 article clearly states that substitution of values such as one-half the detection

limit is generally a bad idea. Because I mention substitution in it, the article has since

been referenced a myriad of times to justify using substitution! It makes me wonder

whether they read the article at all. As I said, there is an incredibly strong pull for doing

something simple and cheap.

The problem with substitution is what I have come to call “invasive data.”

Substitution is not neutral, but invasive—a pattern is being added to the data that

may be quite different than the pattern of the data itself. It can take over and choke out
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the native pattern. Consider the data of Figure i4, a straight-line relationship between

two variables, Concentration (y) versus distance (x) downstream. The slope of the

relationship is significant, with a strong positive correlation between the variables.

Concentrations are increasing (perhaps with increasing urbanization) downstream.

What happens when the data are reported using two detection limits of 1 and 3, and

one-half the limit is substituted for the censored observations? The result (Figure i5)

includes horizontal lines of substituted values, changing the slope and dramatically

decreasing the correlation coefficient between the variables. Looking only at these

numbers, the data analyst obtains the (wrong) impression that there is no correlation,

no increase in concentration.
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There are many published articles where substitution was used prior to computing

a correlation coefficient. It is cheap and simple. Tajimi et al. (2005), as just one

example, calculated correlation coefficients between dioxin concentrations and

possible causative factors after substituting one-half the detection limit for all

censored observations. A low correlation coefficient was considered evidence that

the factor was not the likely cause of the contamination. They found no significant

correlations. Was this because there were none, or was it the result of their data

substitutions? When adding an invasive flat line to the original data, the original

relationship may easily be missed. Thankfully, there are better ways.

Finkelstein (2008) re-examined a study that compared asbestos in the lungs of

automobile brake mechanics to a control group. The original study decided that no

difference in tremolite asbestos was evident between the two groups, based on

visually comparing group medians. The study was faced with many censored

observations in the two groups, and was not sure how to best incorporate them into

a statistical test. Finkelstein used censoredmaximum likelihood (seeChapter 9) to test

for differences, finding that concentrations of tremolite asbestos were indeed elevated

in the mechanics’ lungs. The message of his paper is clear—ignoring methods that

incorporate censored data leads towrong decisions both economically and for human

or ecosystem health. In the introduction to the first edition, I used the flawed decision

to launch the Challenger shuttle as the example. Finkelstein’s example of missing the

elevated levels of asbestos in the lungs of brake mechanics is equally compelling.

Simple, cheap, easy but ineffective methods today can often lead to expensive, heart-

breaking, difficult consequences later.

Here are at three recommendations to consider while reading this book:

1. In general, do not use substitution. Journals should consider it a flawed method

compared to the others that are available, and reject papers that use it. The lone

exception might be when only estimating the mean for data with one censoring

threshold, but not for other situations or procedures. Substitution is NOT

imputation, which implies using a model such as the relationship with a

correlated variable to impute (estimate) values. Substitution is fabrication. It

may be simple and cheap, but its results can be noxious.

2. We should all become more familiar with the literature on censored data from

survival/reliability analysis. There should be more widespread training in

survival/reliability methods within university programs in both the environ-

mental and public health disciplines.

3. Commercial software should more easily incorporate left- and interval-cen-

sored data into its survival/reliability routines. For example, plots and hypoth-

esis tests of whether censored data fit a normal and other distributions, as

requested by Hewett and Ganser (2007), already exist in many commercial

software packages. But they are sometimes coded to handle only right-censored

data. They usually do not return p-values for the test. They often incorrectly

delete the highest point prior to plotting (see Chapter 5). These and similar

considerations will not change until software users in both environmental

sciences and public health loudly request that they be changed.
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1 Things People Do with Censored
Data that Are Just Wrong

Censored observations are low-level concentrations of organic or inorganic chemicals

with values known only to be somewhere between zero and the laboratory’s detection/

reporting limits. The chemical signal on the measuring instrument is small in relation

to the process noise. Measurements are considered too imprecise to report as a single

number, so the value is commonly reported as being less than an analytical threshold,

for example, “<1.” Long considered second-class data, censored observations

complicate the familiar computations of descriptive statistics, of testing differences

among groups, and of correlation coefficients and regression equations.

Statisticians use the term “censored data” for observations that are not quantified,

but are known only to exceed or to be less than a threshold value. Values known only

to be below a threshold (less-thans) are left-censored data. Values known only to

exceed a threshold (greater-thans) are right-censored data. Values known only to be

within an interval (between 2 and 5) are interval-censored data. Techniques for

computing statistics for censored data have long been employed in medical and

industrial studies, where the length of time is measured until an event occurs, such as

the recurrence of a disease or failure of a manufactured part. For some observations

the eventmay not have occurred by the time the experiment ends. For these, the time is

known only to be greater than the experiment’s length, a right-censored “greater-

than” value. Methods for incorporating censored data when computing descriptive

statistics, testing hypotheses, and performing correlation and regression are all

commonly used in medical and industrial statistics, without substituting arbitrary

values. These methods go by the names of “survival analysis” (Klein and Moesch-

berger, 2003) and “reliability analysis” (Meeker and Escobar, 1998). There is no

reasonwhy these samemethods should also not be used in the environmental sciences,

but until recently their use has been relatively rare. Environmental scientists have not

often been trained in survival analysis methods.

Theworst practicewhen dealing with censored observations is to exclude or delete

them. This produces a strong bias in all subsequentmeasures of location or hypothesis

tests. After excluding the 80% of observations that are left-censored nondetects, for

example, the mean of the top 20% of concentrations is reported. This provides almost

no insight into the original data. Excluding censored observations removes the

Statistics for Censored Environmental Data Using Minitab� and R, Second Edition.
Dennis R. Helsel.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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primary information contained in them—the proportion of data in each group that lies

below the reporting limit(s). And while better than deleting censored observations,

fabricating artificial values as if these had been measured provides its own inaccura-

cies. Fabrication (substitution) adds an invasive signal to the data that was not

previously there, potentially obscuring the information present in the measured

observations.

Studies 25 years ago found substitution to be a poor method for computing

descriptive statistics (Gilliom and Helsel, 1986). Numerous subsequent articles (see

Chapter 6) have reinforced that opinion. Justifications for using one-half the reporting

limit usually point back toHornung andReed (1990), who only considered estimation

of the mean, and assumed that data below the single reporting limit follow a uniform

distribution. Estimating the mean is not the primary issue. Any substitution of a

constant fraction times the reporting limits will distort estimates of the standard

deviation, and therefore all (parametric) hypothesis tests using that statistic. This is

illustrated in a later section using simulations. Also, justifications for substitution

rarely consider the common occurrence of changing reporting limits. Reporting limits

change over time due to methods changes, change between samples due to changing

interferences, amounts of sample submitted, and other causes. Substituting values that

are tied to changing reporting limits introduces an external (exotic) signal into the data

that was not present in the media sampled. Substituted values using a fraction

anywhere between 0 and 0.99 times the detection limit are equivalently arbitrary,

easy, and wrong.

There have been voices objecting to substitution. In 1967, a USGeological Survey

report by Miesch (1967) stated that substituting a constant for censored observations

created unnecessary errors, instead recommending Cohen’s Maximum Likelihood

procedure. Cohen’s procedure was published in the statistical literature in the late

1950s and early 1960s (Cohen, 1957, 1961), so its movement into an applied field by

1967 is a credit indeed toMiesch. Two other early environmental pioneers ofmethods

for censored data are Millard and Deverel (1988) and Farewell (1989). Millard and

Deverel (1988) pioneered the use of two-group survival analysis methods in envir-

onmentalwork, testing for differences inmetals concentrations in the groundwaters of

two aquifers. Many censored values were present, at multiple reporting limits. They

found differences in zinc concentrations between the two aquifers using a survival

analysis method called a score test (see Chapter 9). Had they substituted one-half the

reporting limit for zinc concentrations and run a t-test, they would not have found

those differences. Farewell (1989) suggested using nonparametric survival analysis

techniques for estimating descriptive statistics, hypothesis testing, and regression for

censoredwater quality data.Many of his suggestions have been expanded in the pages

of this book. Since that time, a guide to the use of censored data techniques for

environmental studies was published by Akritas (1994) as a chapter in volume 12 of

the Handbook of Statistics. In an applied setting, She (1997) computed descriptive

statistics of organics concentrations in sediments using a survival analysis method

called Kaplan–Meier. Means, medians, and other statistics were computed without

substitutions, even though 20% of data were observations censored at eight different

reporting limits.

2 THINGS PEOPLE DO WITH CENSORED DATA THAT ARE JUST WRONG



Guidance documents have evolved over the years when recommending methods

to deal with censored observations. In 1991 the Technical Support Document for

Water-Quality Based Toxics Control (USEPA, 1991) recommended use of the delta-

lognormal (also called Aitchison’s or DLOG) method when computing means for

censored data. Gilliom and Helsel (1986) had previously shown that the delta-

lognormal method was essentially the same as substituting zeros for censored

observations, and so its estimated mean was consistently biased low. Hinton

(1993) found that the delta-lognormal method was biased low and had a larger bias

than either Cohen’s MLE or the parametric ROS procedure (see Chapter 6 for more

information on the latter). The 1998Guidance for data quality assessment: Practical

methods for data analysis recommended substitution when there were fewer than

15% censored observations, otherwise using Cohen’s method (USEPA, 1998a).

Cohen’s method, an approximate MLE method using a lookup table valid for only

one reporting limit, may have been innovativewhen proposed byMiesch in 1967, but

by 1998 therewere better methods available.Minnesota’sData Analysis Protocol for

the GroundWater Monitoring and Assessment Program presented an early adoption

of some of the better, simplermethods for censored data (Minnesota PollutionControl

Agency, 1999). In 2002, substitution of the reporting limit was still recommended in

the Development Document for theProposed Effluent Limitations Guidelines and

Standards for the Meat and Poultry Products Industry Point Source Category

(USEPA, 2002c). States have forged their own way at times—in 2005 the California

Ocean Plan recommended use of robust ROS when computing a mean and upper

confidence limit on the mean (UCL95) for determining reasonable potential (Cali-

fornia EPA, 2005, Appendix VI). More recently, the 2009 Stormwater BMP Mon-

itoring Manual (Geosyntec Consultants and Wright Water Engineers, 2009) states

“It is strongly recommended that simple substitution is avoided,” and instead

recommends methods found in this book for estimating summary statistics. And the

2009 Unified Guidance on statistical methods for groundwater quality at RCRA

facilities (USEPA, 2009) recommended the use of survival analysis methods,

although they unfortunately allowed substitution for estimation and hypothesis

testing when the proportion of censored observations was below 15%.

1.1 WHY NOT SUBSTITUTE—MISSING THE SIGNALS THAT
ARE PRESENT IN THE DATA

Statisticians generate simulated data for much the same reasons as chemists prepare

standard solutions—so that the starting conditions are exactly known. Statistical

methods are then applied to the data, and the similarity of their results to the known,

correct values provides ameasure of the quality of eachmethod. Fifty pairs ofX,Y data

were generated by Helsel (2006) with X values uniformly distributed from 0 to 100.

The Y values were computed from a regression equation with slope ¼ 1.5 and

intercept¼ 120. Noisewas then randomly added to each Y value so that points did not

fall exactly on the straight line. The result is data having a strong linear relation

between Y and Xwith a moderate amount of noise in comparison to that linear signal.
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The noise applied to the data represented a “mixed normal” distribution, two

normal distributions where the second had a larger standard deviation than the first.

All of the added noise had a mean of zero, so the expected result over many

simulations is still a linear relationship between X and Y with a slope ¼ 1.5 and

intercept ¼ 120. Eighty percent of data came from the distribution with the smaller

standard deviation, while 20% reflected the second distribution’s increased noise

level, to generate outliers. The 50 generated values are plotted in Figure 1.1a.

The 50 observationswere also assigned to one of the two groups in away that group

differences should be discernible. The first group is mostly of early (low X) data and

second of later (high X) data. The mean, standard deviation, correlation coefficient,

regression slope of Y versus X, a t-test between the means of the two groups, and its

p-value for the 50 generated observations in Figure 1.1a were then all computed and

stored. These “benchmark” statistics are the target values to which later estimates are

compared. The later estimates aremade after censoring the points plotted as squares in

Figure 1.1a.

Two reporting limits (at 150 and 300) were then applied to the data, the black dots

of Figure 1.1a remaining as uncensored values with unique numbers, and the squares

becoming censored observations below one of the two reporting limits. In total, 33 of

50 observations, or 66% of observations, were censored below one of the two

reporting limits. This is within the range of amounts of censoring found in many

environmental studies. Use of a smaller percent censoring would producemany of the

same effects as found here, though not as obvious or as strong. All of the data between

150 and the higher reporting limit of 300 were censored as <300. In order to mimic

laboratory results with two reporting limits, data below 150 were randomly selected

and some assigned <150 while others became <300.

1.1.1 Results

Figure 1.1b–g illustrate the results of estimating a statistic or running a hypothesis test

after substituting numbers for censored observations by multiplying the reporting

limit value by a fraction between 0 and 1. Estimated values for each statistic are

plotted on theY-axes,with the fraction of the reporting limit used in substitution on the

X-axes. A fraction of 0.5 on the X axis corresponds to substituting a value of 75 for all

<150s, and 150 for all <300s, for example. On each plot is also shown the value for

that statistic before censoring, as a “benchmark” horizontal line. The same informa-

tion is presented in tabular form in Table 1.1.

Estimates of the mean of Y are presented in Figure 1.1b. The mean Y before

censoring equals 198.1. Afterwards, substitution across the range between 0 and the

detection limits (DL) produces a mean Y that can fall anywhere between 72 and 258.

For this data set, substituting data using a fraction somewhere around 0.7 DL appears

to mimic the uncensored mean. But for another data set with different characteristics,

another fraction might be “best.” And 0.7 is not the “best” for these data to duplicate

the uncensored standard deviation, as shown in Figure 1.1c. Something larger or

smaller, closer to 0.5 or 0.9 would work better for that statistic, for this set of data.

Performance will also differ depending on the proportion of data censored, as

4 THINGS PEOPLE DO WITH CENSORED DATA THAT ARE JUST WRONG



discussed later. Results for themedian (not shown) were similar to those for themean,

and results for the interquartile range (not shown) were similar to those for the

standard deviation. The arbitrary nature of the choice of fraction, combined with its

large effect on the result, makes the choice of a single fraction an uncomfortable one.

As shown later, it is also an unnecessary one.
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FIGURE 1.1 (a) Data used. Horizontal lines are reporting limits. (b–g) Estimated values for

statistics of censored data (Y) as a function of the fraction of the detection limit (X) used to

substitute values for each nondetect. As an example, 0.5 corresponds to substitution of one-half

the detection limit for all censored values. Horizontal lines are at target values of each statistic

obtained using uncensored values.
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Substitution results in poor estimates of correlation coefficients (Figure 1.1d) and

regression slopes (Figure 1.1e), much further away from their respective uncensored

values than was true for descriptive statistics. The closest match for the correlation

coefficient appears to be near 0.7, while for the regression slope, substituting 0 would

be best!With data having other characteristics, the “best” fractionwill differ. Because

substituted values at a given reporting limit produce a horizontal line, correlation

coefficients and regression slopes are particularly suspect when values are substituted

for censored observations, especially if the statistics are found to be insignificant.

The generated data were split into two groups. In the first group were data with X

values of 0–40 and 60–70, while the second group contained thosewith X values from

40 to 60 and then 70 and above. For the most part, values in the first group plotted on

the left half of Figure 1.1a, and the second group plotted primarily on the right half.

Because the slope change is large relative to the noise, mean Y values for the

two groups are significantly different. Before the data were censored, the two-sided

t-statistic to test equality of the mean Y values was �2.74, with a p-value of 0.009.

This is a small p-value, so before censoring the means for the two groups are

determined to be different.

Figure 1.1f and g, and Table 1.1 report the results of two-group t-tests following

substitution of values for censored observations. The t-statistics never reach as large a

negative value as for the uncensored data, and the p-values are therefore never as

significant. At no time do the p-values go below 0.05, the traditional cutoff for

statistical significance. Results of t-tests after using substitution, if found to be

insignificant, should not be relied on. Much of the power of the test has been lost, as

substitution is a poor method for recovering the information contained in censored

observations. Figure 1.1f and g show a strong drop-off in performance when the best

choice of substituted fraction, which in practice is always unknown, is not chosen.

Clearly, no single fraction of the reporting limit, when used as substitution for a

nondetect, does an adequate job of reproducing more than one of these statistics. This

exercise should not be used to pick 0.7 or some other fraction as “best”; different

fractions may do a better job for data with different characteristics. The process of

substituting a fraction of the reporting limits has repeatedly been shown to produce

TABLE 1.1 Statistics and Test Results Before and After Censoring

Procedure Before Censoring

Range Using

Substitution Using MLE

Mean 198.1 72–258 191.3

Standard deviation 52.4 41–106 54.0

Correlation coefficient 0.77 0.29–0.54 0.55

Regression slope 1.46 0.62–1.12 1.46

t Statistic �2.74 �1.8 to �0.68 �1.81

p-value for t 0.009 0.08–0.50 0.07

Data in the middle two columns are also shown in Figure 1.1. The right column reports the results of MLE

tests expressly designed to work with censored data, without requiring substitution for censored

observations.
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poor results in simulation studies (Gilliom and Helsel, 1986; Singh and Nocerino,

2002; and many others—see Chapter 6). As demonstrated by the long list of research

findings and this simple exercise, substitution of a fraction of the reporting limit for

censored observations should rarely be considered acceptable in a quantitative

analysis. There are better methods available.

When substitution might be acceptable? Research scientists tend to use chemical

analyses with relatively high precision and low reporting limits. These chemical

analyses are often performed by only one operator and piece of equipment, and

reporting limits stay fairly constant. Research data sets may include hundreds of data

points, and in comparison our 50 observations appears small. For large data sets with

a censoring percentage below 60% censored observations, the consequences of

substitution should be less severe than those presented here. In contrast, scientists

collecting data for regulatory purposes rarely have as many as 50 observations in

any one group; sizes near 20 are much more common. Reporting limits in monitoring

studies can be relatively high compared to ambient levels, so that 60% or greater

censored observations is not unusual. Multiple reporting limits arise from several

common causes, all of which are generally unrelated to concentrations of the

analyte(s) of interest. These include using data from multiple laboratories, varying

dilutions, and varying sample characteristics such as dissolved solids concentrations

or amounts of lipids present. Resulting data like that of She (1997) with 8 different

reporting limits out of 11 censored observations is quite typical. In this situation, the

cautions given here must be taken very seriously, and results based on substitution

severely scrutinized before publication. Reviewers should suggest that the better

methods available from survival analysis be used instead.

Is there a censoring percentage below which the use of substitution can be

tolerated? The short answer is “who knows?” The US Environmental Protection

Agency (USEPA) has recommended substitution of one-half the reporting limit when

censoring percentages are below 15% (USEPA, 1998a). This appears to be based on

opinion rather than any published article. Even in this case, answers obtained with

substitutionwill havemore error than those using bettermethods (see Chapter 6).Will

the increase in error with substitution be small enough to be offset by the cost of

learning to use better, widely available methods of survival analysis? Answering that

question depends on the quality of result needed, but substitution methods should be

considered at best “semiquantitative,” to be used only when approximate answers are

required. Their current frequency of use in research publications is certainly

excessive, in light of the availability of methods designed expressly for analysis of

censored data.

1.1.2 Statistical Methods Designed for Censored Data

Methods designed specifically for handling censored data are standard procedures in

medical and industrial studies. Results for the current data using one of thesemethods,

maximum likelihood estimation (MLE), are reported in the right-hand column of

Table 1.1. The method assumes that data have a particular shape (or distribution),

which in Table 1.1 was a normal distribution, the familiar bell-shaped curve.
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The right-hand column of Table 1.1 shows that a method designed for censored

data produces values for each statistic as good or better than the best of the estimates

produced by substitution. MLE accomplishes this without substituting arbitrary

values for censored observations. Instead, it fits a distribution to the data that matches

both the values for uncensored observations, and the proportion of observations

falling below each reporting limit. The information contained in censored observa-

tions is efficiently captured by the proportion of data falling below each reporting

limit. The specific procedures used, such as the likelihood r correlation coefficient, are

described in subsequent chapters. Table 1.1 shows that for two-group tests, correlation

coefficients and regression slopes, true differences and nonzero slopes can be

missed when substitution is used for censored observations.

1.2 WHY NOT SUBSTITUTE?—FINDING SIGNALS THAT

ARE NOT THERE

Comparing two groups of data, one a possibly contaminated test group and the other a

control group, is a basic design in environmental science. Trace metal concentrations

in the bodies of mayflies in pristine streams could be contrasted to those in streams

with industrial outfalls. Particulates in the atmosphere are compared inside and

outside of a national park. Cadmium concentrations in soils are tested upwind and

downwind of an old smelter site. Blood lead levels in children are contrasted between

homes with old and peeling paint to those in homes with lead-free paint. Are

concentrations in the test group higher than in the control group?

The classic approach for this design is the two-sample t-test. If data distributions do

not follow a normal distribution, the nonparametric Mann–Whitney (also called

Wilcoxon rank-sum) test is used instead. With either test, a roadblock looms in the

data shown in Table 1.2—there are values below detection limits; several

detection limits.

Substitution for the Table 1.2 data produces the data of Table 1.3, and a

Mann–Whitney test p-value of 0.015. The equivalence of the groups is rejected, and

the test group is declared higher than the control group. Expensive remediation

actions might be mandated for conditions that have caused the elevated concentra-

TABLE 1.2 Contaminant Concentrations with Multiple

Reporting Limits in a Test and a Control Group

Control Group Test Group

<1 <1 <2 <5

<1 <1 <2 <5

<1 <1 3.3 <5

<1 4.1 3.4 <5

1.0 7.0 <2 4.7

1.8 7.5 12.2 <5

2.2 15.4 <5 22.5

<2 6.6
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tions in the test group. Soil is removed. Industrial equipment is modified. Wells are

abandoned. People are given new medications.

Now let us pull back a curtain. These data were not field data, but were computer

generated. By generating data, the true situation is known. All of the data in Table 1.2

came from the same distribution—there is actually NO difference in their mean or

median levels (see Figure 1.2). For the original uncensored data, the Mann–Whitney

test produced a one-sided p-value of 0.43, stating that there is no evidence for

difference between the two groups. Any reasonable method for analyzing the data

with censored observations should also find no difference in the two groups. For

example, in Chapter 9 a Wilcoxon score test is presented, a nonparametric test to

compare two groups of datawith multiple thresholds. No substitution is involved, and

the test produces a p-value of 0.47 for the censored Table 1.2 data. No difference. No

contamination.No remediation. But following substitution, a differencewas declared.

The examples in these two sections have demonstrated that substitution for

censored observations can lead to “finding” either false differences that are not

there, or false no-differenceswhen data are truly not equivalent. Substitution implants

TABLE 1.3 Contaminant Concentrations in a Test and a

Control Group After Substituting One-Half the Reporting

Limit for Censored Observations

Control Group Test Group

0.5 0.5 1.0 2.5

0.5 0.5 1.0 2.5

0.5 0.5 3.3 2.5

0.5 4.1 3.4 2.5

1.0 7.0 1.0 4.7

1.8 7.5 12.2 2.5

2.2 15.4 2.5 22.5

1.0 6.6
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FIGURE 1.2 Boxplots for data of Table 1.2 prior to setting artificial reporting limits.

Mann–Whitney test p-value (uncensored data) ¼ 0.43.
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an invasive pattern into the data that may be quite different than the pattern of the data

itself. Substitution is not neutral.

1.3 SO WHY NOT SUBSTITUTE?

The only conclusion possible based on these two simulations is that substitution of

values tied to the reporting limit, still the most commonly used method in environ-

mental studies today, is NOTa reasonable method for interpreting censored data. The

first simulation demonstrated that an invasive pattern not present in the original data

was implanted by substitution, hiding signals that are really there. Causes of

contamination are missed, and human or ecosystem health is needlessly endangered.

The second simulation shows that the invasive pattern of substitution can introduce a

signal that is not there in the data. Expensive cleanup measures may be implemented

where none are needed. Substituting values as “real data” that are a function of the

process used by the laboratory, are a function of time, or of the dilution of the samples,

or of interferences in some samples but not others, or of themass ofmaterial submitted

to the laboratory, can easily impose an artificial, invasive pattern that originally was

not there. The result is not just an incorrect conclusion by a hypothesis test. In the real

world, contamination goes unnoticed. Remediation goes undone. Public health is

unknowingly threatened.

There are better ways.

1.4 OTHER COMMON MISUSES OF CENSORED DATA

In addition to the two previous misuses of censored data:

(1) deleting/ignoring nondetects and computing the mean of what’s left, or

(2) substituting a fraction of the reporting limit for censored observations,

these two flawed approaches to evaluating censored data are fairly common:

. substituting a value for the variance, standard deviation, or coefficient of

variation (CV)

. interpreting changes in the percent of detections while the reporting limit is

changing.

There are methods for estimating the variability of censored data (see Chapter 6),

and measures of location such as mean and median. Unknowingly, people have

instead fabricated a number that seems “reasonable” to them. Fabricated values have

made their way into some environmental regulations, where 0.6 for the CV (the ratio

of the standard deviation to the mean) is currently popular. Douglas Adams would no

doubt have chosen 0.42. These guessed values could be very far off, with unwarranted

consequences either to human or ecological health, or to the cost of monitoring

programs. The three methods in Chapter 6—MLE, Kaplan–Meier, and ROS—will

each estimate the mean and standard deviation, and so the CV, for censored

environmental data. There is little reason to guess a value.
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Scientists also draw conclusions based on the percent of detected values, as that

statistic changes between groups or through time. We will recommend the practice

later in this book. However, this analysis is suspect when the definition of “detection”

changes—the reporting limit changes—between groups or through time. Envision

two sets of identical concentrations where the first wasmeasured 10 years ago, and the

second measured this year. They are exactly the same concentrations. There has been

no physical or chemical change. The early data were censored with a mix of two

reporting limits, at 1 and 10 mg/L:

<1 <1 <1 3 5 7 9 <10 <10 <10 <10 <10

while this year’s data were measured with better instruments. Now the only reporting

limit is at 1mg/L:

<1 <1 <1 3 5 7 9 <1 2 2 3 5

The analyst then computes that there were only 33% detects 10 years ago, but now

there are 67% detects of this dangerous chemical. The percentage has dramatically

increased, and something must be done to correct it! As you can see, this change is

entirely due to the change in the mix of reporting limits used in the two groups.

Comparing percent detections between groups, over space or over time only makes

sense when the mix of reporting limits is constant.

Government agencies have routinely reported percent detections of pesticides and

other organics in drinking water supplies, surface waters, or ground waters by

compiling existing data from multiple sources. Detection limits for each chemical

usually varies by source of data and over time. Maps of percent detections purport to

give a regional picture of where water quality is better or worse. Decreased detection

rates are cited as evidence for improving quality. Yet with the definition of “detection”

changing, a change in the proportion of data sources or amounts of recent versus

early data at each site can severely skew the resulting statistics. Rather than

summarizing the “percent detections,” statements about “the percent of concentra-

tions above 1mg/L” or another well-defined threshold are much more easily inter-

preted. In the midst of moving detection thresholds, statements such as “Data was

closely checked and itwas confirmed that the detection limit changes did not affect the

trend [in percent detections] significantly” (Ontario Ministry of the Environment,

2010) are hard for a reader to evaluate or believe.

Instead of computing the percent detections above a moving target, this book

recommends either doing so only after recensoring all data to the highest reporting

limit in the data set, a simple procedure but which may lose information, or instead

using survival analysis methods that correctly account for differing reporting limits.

If the metric reported and discussed is the percent of detected observations, inspect

the definition of “detection” to certify that the reporting limit has not changed as in

the small example above. If it has, it and not the underlying concentrations may be the

cause of any shift in the percent of detections observed.
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2 Three Approaches for Censored
Data

Substitution is quick and easy. The lack of care it represents is evidence of a general

skepticism about the information content of observations below reporting limits.

In truth, a great deal of information is available in censored data. If efficient methods

are used, the information extracted from them is almost equal to that for data with

single known values. Their information is primarily contained in the proportion of

data below the threshold value(s). Knowing that for one data set, three quarters of

the data are below the detection limit, while a second data set has only 10% below the

same limit, strongly indicates that the first data set contains lower values than the

second. This is evident without any knowledge of values above the detection limit.

Efficient procedures for censored data combine the values above the detection limit(s)

with the information contained in the proportion of data below the detection limit(s) in

order to reach a result.

Example—Information Content of Censored Observations:

Estimate the center (median) of the following data.

<1 <1 <1 <1 <1 <1 <1 5 12 22

If there were no information content in censored observations, the seven censored

values could be discarded and the median of the three remaining values would equal

12. However, 12 is a very poor estimate of the center of a data set in which 70% of the

observations are below 1. Amuch better estimatewould be <1. There is a great deal of
information in the lowest values in the data set—the issue is how to best extract that

information.

There are three approaches that are far better than substitution for extracting

information from data sets that include censored observations.

1. Nonparametric methods after censoring at the highest reporting limit.

2. Maximum likelihood estimation—survival analysis procedures assuming a

specific distribution.

3. Nonparametric survival analysis procedures.

Statistics for Censored Environmental Data Using Minitab� and R, Second Edition.
Dennis R. Helsel.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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The first approach, nonparametric methods after censoring at the highest

reporting limit, can be used as an alternate to substitution when the desire is to

keep it simple. This approach does not have the power of the other two approaches,

but may be all that you need without learning a new vocabulary. The other two

approaches are standard survival analysis procedures. A general description of each

approach follows. The methods representing all three approaches are found in the

later chapters of this book.

2.1 APPROACH 1: NONPARAMETRIC METHODS AFTER
CENSORING AT THE HIGHEST REPORTING LIMIT

Substitution is simple. Yet there are other simple procedures that work far better for

data with censored observations. Unlike substitution, the methods represented by this

approach do not add artificial, invasive data that create a pattern alien to the original

observations. They do not declare that you knowmore than you actually do. Theywill

not introduce and then “find” a signal such as a trend or difference among groups that

is not there in the original data. So before delving into the more complex methods of

survival analysis, these procedures can be applied to data containing censored

observations, are relatively simple and familiar, and yet do not involve substituting

a value for censored observations.

Nonparametric methods deal with ranks (or percentiles) of the data. The position

each observation holds in the data set is used for analysis. Nonparametric methods are

distribution-free—data are not assumed to follow any one distribution, such as the

normal, in order that test results be accurate. Censored data can be directly used if

there is only one reporting limit, or recensored to the highest reporting limit, to apply

these relatively simple methods. The survival analysis methods described in the next

two approaches better utilize the information in censored data, especially when there

is more than one detection limit. In particular, survival analysis methods will

incorporate the information available from uncensored observations below the

highest reporting limit. The methods of this first approach treat those uncensored

observations only as tied with all other observations below the highest reporting limit.

However, if you wish to stay simple, this approach is familiar and may be all that you

need. It will produce far more reliable results than when fabricating data, such as

substituting one-half the detection limits and running a t-test or regression. Two types

of simple nonparametric procedures are presented, binary methods and standard

nonparametric methods.

2.1.1 Binary Methods: Above Versus Below the Reporting Limit

Methods based on the binomial distribution deal with data categorized into one of the

two classes. To use binary methods, first recode censored data into two classes, either

above or below the highest reporting limit (if there is just one reporting limit, it is

above and below that single limit). Then compute descriptive statistics, perform

APPROACH 1: NONPARAMETRIC METHODS AFTER CENSORING 13



hypothesis tests, and build regression models using a binary response (y) variable.

Familiar methods in this category include the test of proportions (also known as

contingency tables) and logistic regression.

2.1.2 Ordinal Methods, First Censoring at the Highest Reporting Limit

Binarymethods do not use all of the information available for data above the reporting

limit, instead categorizing all detected/quantified observations as only “equal to or

above the reporting limit.” This results in a loss of power, a lower ability to detect a

signal if present, as compared to methods that use the relative order of uncensored

observations. Standard nonparametricmethods such as theMann–Whitney test assign

separate ranks to all uncensored values, preserving the information in their ordering,

without either assuming a specific distribution for the data or inserting fabricated

values. All data below the highest detection limit, or below a single detection limit if

there is only one, are represented by tied ranks. Familiar nonparametric methods such

as the Mann–Whitney (rank-sum) and Kruskal–Wallis tests can be easily applied to

censored data with one reporting limit. If a signal (differences between groups, a

significant regression relationship) is found, it can be believed, unlikewhen fabricated

values have been substituted.

2.2 APPROACH 2: MAXIMUM LIKELIHOOD ESTIMATION

Maximum likelihood estimation (MLE) is increasingly used in environmental

studies—Owen and DeRouen (1980) for air quality and Miesch (1967) for geochem-

istry are two early examples. MLE uses three pieces of information to perform

computations: (a) numerical values above reporting limits, (b) the proportion of data

below each reporting limit, and (c) the mathematical formula for an assumed

distribution. Data both below and above the reporting limit are assumed to follow

a distribution such as the lognormal. Parameters are computed that best match a fitted

distribution to the observed values above each reporting limit and to the percentage of

data below each limit.

The most crucial consideration for MLE is how well data fit the assumed

distribution. A major problem with MLE is that for small data sets there is often

insufficient information to determine whether the assumed distribution is correct or

not, and so whether parameters are estimated reliably. MLE has been shown to

perform poorly for data sets with less than 25–50 observations (Gleit, 1985; Shumway

et al., 2002). For larger data sets, MLE is an efficient way to estimate parameters,

given that the chosen distribution is correct. The term “efficient” means that the fitted

parameters have relatively small variability, so that their confidence limits are as small

as possible. For data sets of at least 50 observations, and where either the percent

censoring is small (so that the distributional shape can be evaluated) or the distribution

can be assumed from knowledge outside the data set, MLE methods are the methods

of choice.
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MLE methods are computed by solving a likelihood function L, where for a

distribution with two parameters b1 (mean) and b2 (variance), L(b1, b2) defines the

likelihood of matching the observed distribution of data. The function L increases

as the fit between the estimated distribution and the observed data improves. The

parameters b1 and b2 are varied in an optimization routine, choosing values to

maximize L. In practice, it is the natural logarithm ln(L) rather than L itself that is

maximized, where ln(L) is the “log-likelihood”, usually (though not necessarily)

a negative number. Maximizing ln(L) is accomplished by setting the partial

derivatives of ln(L) with respect to the two parameters equal to zero.

dðlnL½b1�Þ
dðb1Þ

¼ 0 and
dðlnL½b2�Þ
dðb2Þ

¼ 0 ð2:1Þ

The exact equation for L will change depending on the assumed distribution and

the process under study (estimation of a mean, linear regression, etc.). However, in

each case the likelihood function L is the product of two component pieces, one for

censored observations and one for uncensored (detected) observations. In the

uncensored piece is the probability density function p[x], the equation describing

the frequency of observing individual values of x. In the censored piece is the survival

function S[x], which is the probability of exceeding the value x. S[x] equals 1�F[x],

where F[x] is the cumulative empirical distribution function (edf) of the distribution,

the probability of being less than or equal to x. Either S[x] or F[x] can be used when

writing the likelihood function.

In the most general case, L can be considered to be the product of three pieces,

where the censored data component is split into two, one for left-censored and one for

right-censored data:

L ¼
Y

p½x�
Y

ðF½x�Þ
Y

S½x� ð2:2Þ

where p[x] is the pdf as estimated from the uncensored observations, (F[x]) is the edf

as determined by left-censored observations, and S[x] is the survival function as

determined by right-censored observations (“greater-thans”). Greater-thans are not

typically found among environmental data, and so likelihood functions in environ-

mental studies typically deal with only the first two pieces.

For censored data, two variables x and d are required to represent each observa-

tion. The value for the measurement, or for the reporting limit, is given by x. The

indicator variable d is a 0/1 variable that designates whether an observation is

censored (0) or detected (1). As one of the simpler likelihood functions, the equation

for Lwhen estimating the mean and standard deviation of a normal distribution using

MLE is

L ¼
Y

p½xi�di �F½xi�1� di ð2:3Þ
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where d is as defined above, and for a normal distribution the pdf is

p x½ � ¼
exp ð�1=2Þ ðx�mÞ=sð Þ2

h i

s
ffiffiffiffiffiffi
2p

p ð2:4Þ

For uncensored observations, d¼ 1 and the second term in equation 2.3 becomes 1 and

so drops out. For censored observations, d¼ 0 and the first term becomes 1 and so

drops out. The cumulative distribution function for a normal distribution is

F x½ � ¼ F
x�m

s

h i
ð2:5Þ

where F is the cdf of the standard normal distribution

F y½ � ¼ 1ffiffiffiffiffiffi
2p

p
ðy

0

expð�u2=2Þdu ð2:6Þ

After substituting in the above and setting the partial derivatives of ln(L) equal to 0

(equation 2.1), the nonlinear equations are solved by iterative approximation using the

Newton–Raphson method. The solution provides the parameters mean and standard

deviation for thedistribution that bestmatchesboth thepdf andcumulativedistribution

function (or 1 � survival function) estimated from the data. In other words, the

estimates of mean and standard deviation will be the parameters for the assumed

distributionalshape thathadthehighest likelihoodofproducing theobservedvaluesfor

the uncensored observations and the observed proportion of data given below each of

the reporting limits.

Likelihoodmethods can be usedwhen performing an hypothesis test. The test is set

up to determine whether b¼ 0, where b is the parameter of interest. This could be a

slope coefficient in regression, or an estimate of the difference between two popula-

tionmeans. The null hypothesis ofb¼ 0 is compared to an alternative thatb 6¼ 0 using

one of two types of test procedures, either likelihood-ratio tests or Wald’s tests.

Likelihood-ratio tests are based on the value for the log of the likelihood function,

ln(L). The test compares the log-likelihoods for two models, one where b¼ the value

chosen by MLE, and the second for the “null” state, b¼ 0. The test statistic takes the

form of –2 lnL(b) – (–2 lnL(0)), resulting in a positivevalue ifb 6¼ 0. This difference is

the likelihood-ratio test statistic, and is compared to a chi-squared distribution to

produce the p value for the test. Likelihood-ratio tests are the form used by most

statistical software that perform maximum likelihood.

Wald’s test statistics take a form similar to t-tests in regression. The numerator of

the test statistic is the MLE value for the coefficient b, and the denominator is the

standard error of b. Their ratio is compared to a standard normal distribution. Wald’s

tests are generally not considered as accurate as are likelihood-ratio tests and the latter

are preferred, though the differences in p values are often small.
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2.3 APPROACH 3: NONPARAMETRIC SURVIVAL ANALYSIS

METHODS

Nonparametric methods are so named because they do not involve computing

“parameters,” such as the mean or standard deviation, of an assumed distribution.

Instead they use the relative positions (ranks) of data, a reflection of the data’s

percentiles. Because these methods do not require an assumption about the distribu-

tion of data, they are also called “distribution-free” methods. Nonparametric methods

are especially useful for censored data because they efficiently use the available

information. Censored observations are known to be lower than values above their

reporting limit, and so are ranked lower. Thesemethods do not require estimates of the

unknown distances between censored observations and uncensored values, but only

their relative order.

Nonparametric methods are now commonly used in the environmental sciences.

There is general recognition that many variables measured in natural systems have

skewed distributions, and nonparametric procedures have greater power than para-

metric procedures for skewed data, especially data with outliers. Normal theory tests

may work well after transforming data, but a transformation that corrects non-

normality for all groups of data is often difficult to find. Textbooks such as Gilbert

(1987) and Helsel and Hirsch (2002) have demonstrated nonparametric procedures

and their usefulness to environmental studies. However, nonparametric score tests,

developed for data with multiple thresholds, are still not familiar to most environ-

mental scientists, and are woefully underutilized. Score tests are extensions of the

more familiar rank-sum, sign, and contingency table tests to situations with multiple

thresholds. They are found in statistical software along with other methods for

survival analysis.

2.4 APPLICATION OF SURVIVAL ANALYSIS METHODS

TO ENVIRONMENTAL DATA

Consider a typical survival analysis problem, a test of whether light bulbs with a new

filament composition last longer than those with the existing filament. A group of 15

light bulbs for each filament type is connected to power, and the length of time each

burns is measured. After 48 h, it is decided that this sample size is too small, and 20

additional light bulbs of each type are added to the test. After 6 weeks (1008 h) from

when it was begun, the experiment is stopped. By that time, many of the bulbs have

burnt out, and their burn lengths recorded. However, some of the bulbs started in the

second batch are still burning when the experiment ends. Their burn lengths are

recorded as “greater than 960 h,” because they were still burning after 1008–48 h of

use. A few of the bulbs in the original batch are also still burning, and their lengths are

recorded as “greater than 1008 h.”

Of interest is whether bulbs of both filament types have the same mean or median

burn length. If all bulbs had burnt out, the lengths for every bulbwould be known and a

t-test or rank-sum test could be used to test for differences. However, for some of the
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bulbs the actual length is not known, but are censored as “greater-thans.” Because

there are two different thresholds resulting from the different times a bulb entered into

the experiment, these data sets are also “multiply censored.” Survival analysis

methods were designed for such right-censored data sets with multiple censoring

thresholds.

Environmental data are also often censored, with a number of nondetect values

included in the data set. They are often multiply censored, as detection limit

thresholds change over time orwith varying sample characteristics or among different

laboratories. The primary difference between environmental and industrial/medical

data is that concentration data are dominantly left-censored, where low-level con-

centrations are known only to be below a laboratory reporting threshold. There are

examples of right-censored environmental data: flood magnitudes that are known

based on historical records to be at least a certain cubic feet per second, but probably

more; or transmissivity estimates based on specific capacity measurements. Specific

capacity is affected by the well, resulting in an estimated transmissivity (T) that is

lower than the true value in the aquifer. T is “greater than” the estimate, but the amount

greater is unknown. For these right-censored examples, survival analysis software can

be used directly. The situation is a little more complicated for left-censored data with

censored observations, the focus of this book.

Nonparametric survival analysis software is often hard-wired for right-censored

data. Left-censored environmental data must be transformed into right-censored data

before these routines can be used. Parametric maximum likelihood methods for

censored data usually allow interval-censored data to be input. Interval censoring is

the most flexible format for censored data entry (see Chapter 3), and data with

censored observations can be entered directly with these methods.

To demonstrate the transformation from left to right censoring, consider a left-

censored data set with five observations shown as a bar graph on the left side of

Figure 2.1. The censored observations are shown as open white bars and the

uncensored detected values as gray-shaded bars. These data have the following

values:

<1, 3, <10, 12, 17

The data measured when the detection limit was 1 are the values of <1, 3, and 12. The
data measured when the detection limit was 10 are the values of <10 and 17.

Figure 2.1 also shows these same data as dark bars drawn down from the upper end

of the plot in addition to those from the lower end. The only difference is the datum of

the base of the bar, which is now 25 and looking down rather than at 0 and looking up.

The new data at 25 was chosen simply because it is larger than the largest value in the

data set, so a finite bar length occurs when looking down from the new datum. The

lengths of the new dark bars are 8, 13, and 22 corresponding to the uncensored values

of 17, 12, and 3 (25–17, 25–12, and 25–3). The lengths of the two dark bars for the

censored values are > 15 and > 24.
The bars drawn down from the top represent the same data, on an alternate

measurement scale. These new bars, which include greater-thans, are right-censored
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data. Left-censored data (the gray and white bars) can be transformed to right-

censored data (the dark bars) by subtracting each value from the same large number

(equation 2.7), in this case 25. The constant can be any value larger than themaximum

in the original data. This left-to-right transformation is called “flipping” the data

distribution and is a linear transformation—the transformation does not alter the

shape of the data distribution other than to reverse its direction. For example,

Figure 2.2 shows a boxplot of concentration on the left, and a boxplot of its flipped

values on the right. They have the same shape, except one is the mirror image of the

other in the vertical direction. They are “the same data”—one is a simple linear

transformation of the other.

5

4

3

2

1

<10 >15

>24

0 5 10 15 20 25
Concentration

<1

S
am

pl
es

FIGURE 2.1 Five observations, including two observations recorded below one of the two

detection limits. Bars from the top–down show conversion to right-censored data.
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FIGURE 2.2 Copper (Cu) concentration data on the left. Flipped Cu concentrations on the

right. Flipping converts left- to right-censored data.
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If the survival analysis software available to you is designed only for right-

censored data, environmental data can be “flipped” into a right-censored form, and the

data analyzed.

Flipped Data ¼ Constant�Original Data ð2:7Þ

For example, SAS’s PROC LIFETEST performs nonparametric tests of differ-

ences between groups of survival data. The procedure handles only right-censored

“greater-thans”. Data with censored observations must first be flipped in order to use

these routines. Nonparametric hypothesis tests on flipped data will have the same test

results for determining significance, the same p values, as if the software had allowed

the original left-censored data to be used as input. The p values can be directly used to

compare differences between distributions, and so on. Data are transformed by

flipping only to accommodate the software input requirements. Measures of location

(mean, median, and other percentiles) using flipped data must go through a reverse

transformation to obtain estimates in the original units. Measures of spread or

variability, such as the standard deviation and IQR, are the same for both original

and flipped data, requiring no retransformation. Slopes of regression equations using

flipped response (Y) variables must have their signs reversed to represent slopes of the

original data. Perhaps with sufficient interest from environmental scientists, software

TABLE 2.1 Parallel Statistical Methods for Uncensored and Censored Data

Methods for Uncensored Data Sets Methods for Censored Data

Computing summary statistics

Descriptive statistics Kaplan–Meier, MLE, or ROS estimates

Comparing two groups

t-test Censored regression with 0/1 group indicator

Wilcoxon rank-sum test Wilcoxon rank-sum test

Paired t-test Censored CI on differences

(Paired) sign or signed-rank test PPWtest

Comparing three or more groups

ANOVA Censored regression with 0/1 group indicators

Kruskal–Wallis test Generalized Wilcoxon test

Correlation

Pearson’s r Likelihood r

Kendall’s t Kendall’s t
Linear regression

Linear regression Censored regression

Logistic regression Logistic regression

Theil–Sen median line Akritas–Theil–Sen median line

Exploration of multivariate patterns

PCA, factor analysis PCA, factor analysis on ranks and u-scores

NMDS NMDS on ranks and u-scores

MANOVA ANOSIM on ranks and u-scores

Least-squares tests for trend Test of seriation on ranks and u-scores
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companieswill code their routines to allow left-censored and right-censored data to be

input. Alternatively, input of interval-censored data may become standard for both

parametric and nonparametric routines. But neither of these expanded input formats is

generally available today.

2.4.1 Power Transformations with Survival Analysis

Parametric survival analysis methods, those computed using maximum likelihood,

require that data follow a specific distribution. If after looking at plots or normality

tests the data do not appear to follow this distribution, prior transformation of the data

is necessary. Flipping the data from left- to right-censored does nothing to alter the

skewness or outliers of a data set. Power transformations such as the square root or

logarithm that change the shape of a distributionmust be done prior to flipping the data

into a right-censored format. The order of processing is therefore, as follows:

1. Decide whether a power transformation is necessary to alter the data’s shape to

be closer to the assumed distribution. If so, transform the data.

2. Flip the transformeddata toproducea right-censoreddistribution (equation2.7).

3. Compute the survival analysis test and interpret the test results.

4. Convert estimates of mean or median back to left-censored format by sub-

tracting from the constant used to flip the data. If necessary, retransform using

the reverse power transformation to get parameter estimates in original units.

2.5 PARALLELS TO UNCENSORED METHODS

A list of maximum likelihood and nonparametric survival analysis methods that can

be used to analyze censored data is given in Table 2.1. On the left are familiarmethods

used for uncensored data sets, datawithout censored observations. On the right are the

equivalent methods used for censored data. Some of the censored methods are direct

extensions of the uncensored procedure. Others are computationally very different,

but perform the same function.
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3 Reporting Limits

“Reporting limit” is an intentionally generalized term that represents a variety of

thresholds used to censor analytical results. It is a limit above which data values are

reported as single numbers without qualification by the analytical laboratory. Un-

fortunately, the terms “detection limit,” “detected value,” and “nondetect” are

ubiquitous and used in both a specific and general sense. In this edition of the book

I have attempted to be specific inmeaningwhenever possible. I have reserved the term

“detection limit” for its more specific meaning described in this chapter, and used

“reporting limit” whenever I refer to a censoring limit that might be either a detection

or quantitation limit. The difference between detection limits and other types of

reporting limits is an important one to understand. I have not tried to invent new terms,

however, so a “nondetect” is a value belowa reporting limit, and a “detected value” is a

measurement above the reporting limit.

Reporting limits are set in a variety of ways, and for a variety of purposes. As stated

in a report summarizing the calculation of reporting limits (USEPA, 2003): “one

conclusion that can be drawn is that detection limits are somewhat variable and not

easy to define.” Yet there are several things each type of reporting limit has in

common. Each is a threshold computed so that measured values falling below that

threshold are reported differently than those falling above. Most reporting limits are

based on a measure of the variability or noise inherent in the laboratory process. The

two general classes of reporting limits are split between those that assume this noise is

constant over different concentrations, versus those that model the noise as a function

of concentration. The standard deviation of repeatedmeasurements is used to quantify

the noise of the analytical process. First we discuss reporting limits based on constant

standard deviation, and then those based on varying standard deviation.

From the data users’ point of view, anymethod that changes an observed numerical

measurement into a censored value prior to reporting the data to the user is a

“reporting limit.” It may have been developed in a variety of ways, but all require

the user to somehow interpret data labeled as a “nondetect” or “less-than.” The focus

of this book is to provide methods that deal with data censored at reporting limits,

regardless of the type of limit employed. However, knowledge by the data user of the

type of limit employed can lead to better data analysis. Chapter 4 presents methods
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that distinguish data below a detection limit from those between the detection and

quantitation limit.

3.1 LIMITS WHEN THE STANDARD DEVIATION
IS CONSIDERED CONSTANT

Reporting limits are computedwith a single value for the standard deviationwhen it is

assumed that the noise of the measurement process is constant from concentrations of

zero up to the highest reporting limit. Reporting limits for constant standard deviation

can be classified into two general types, most often called detection limits and

quantitation limits. The two types of limits differ in how they are computed, and in

what they represent.

3.1.1 The Detection Limit

Values measured above this threshold are unlikely to result from a true concentration

of zero.

A detection limit is a threshold below which measured values are not considered

significantly different from a blank signal, at a specified level of probability. Measure-

ments above the detection limit evidence a nonzero signal (at a given probability),

indicating that the analyte is present in the sample. Other terms used for this type of

threshold have included the “critical value” and “decision level” of Currie (1968), as

well as the “method detection limit” or MDL (USEPA, 1982) and the “limit of

detection” orLOD (Keith, 1992). The basic ideaswere established in the seminal paper

by Currie (1968), and variations since then still depend heavily on Currie’s concepts.

USEPA (2003) and USEPA (2007) discuss the differences among variations of what is

generally recognized as thresholds having the same objective—to distinguish samples

with a concentration signal from those without a signal. Br€uggemann et al. (2010)

review the variations usedwithin the EuropeanUnion, including thosewhere limits are

set using tolerance intervals rather than using the t-distribution.

The first step in computing a detection limit is to estimate the inherent variation to

be expected at a concentration of zero, where no analyte is present. Currie (1968)

envisioned repeated measurements of blank solutions, but this is difficult to do

successfully. Instead, repeated measurements of a standard solution of low concen-

tration is usually substituted for blanks. Figure 3.1 illustrates the process, using a

standard at a concentration value of 2. The analyst is assuming that the measurement

error at zero concentration is the same as at the low standard concentration—the

standard deviation is constant between zero and the concentration standard. Mea-

surement variation is almost always assumed to follow a normal distribution around

the true value. The left-hand curve in Figure 3.1 illustrates the possible measured

concentrations when the true concentration is zero. One-half of the measurements

would be negative. The y-axis in the figure is the number of measurements for each

value of concentration. Though the most frequently observed value is the true

concentration at the center of each normal curve (assuming 100% recovery and no
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other bias), a variety of other measurements result from the same sample, due to

random variation in the measurement process. A limit called the “critical value”

(USEPA, 2007, Appendix D; IUPAC, 1997), abbreviated LC, is set near the upper end

of the distribution (Figure 3.2).When an instrumentmeasures a value above this limit,

the concentration is unlikely to have resulted from a true concentration of zero—

unlikely to be a false positive.

The curve in Figure 3.2 describes the possible measured values that may result

from a true concentration of zero. Due to random variability, half will be positive and

half negative. Of most interest is how far away from zero in the positive direction

those measurements are likely to fall. This can be described using the standard

deviation of the data, relating the distance from the center to a statement of

probability through the t-distribution. The mean signal has about an 18% probability

of falling at least 1 standard deviation above zero when the true concentration is

zero, given that the standard deviation was computed using a sample size of seven

replicates. The probability of falling at least 2 standard deviations above zero, when

the true concentration is zero, is about 5%. At a distance of 3 standard deviations, the

0 2

Measured

FIGURE 3.1 Error distribution of a measured standard at a concentration of 2, which is then

imputed to also apply to a true zero concentration.

3.14* s

0 0.78
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1% chance of
exceeding
0.78

1

FIGURE 3.2 Setting a critical level LC at 3.14 times the standard deviation above zero. This

protects against false positives.
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probability is just over 1%. The choice of a distance to represent the detection limit

is made so that no more than a small percentage of the measured mean values truly

originating from a zero concentration will fall above the limit. As one example of

setting a detection limit, USEPA (1982) describes the procedure for computing what

it calls the MDL. Seven or more replicate analyses are performed on a standard

where the chemical is present at a low concentration. The standard deviation

(abbreviated s) of these measurements is then multiplied by 3.14, the one-sided

t-statistic for a sample size of n¼ 7 and probability of exceedance of 1% (a¼ 0.01).

This false exceedance rate is called the false positive or Type I error, the rate of

measuring a mean further to the right than the dashed line pictured in Figure 3.2. For

a standard deviation (s) equal to 0.25, the critical level (LC, also USEPA’s MDL) is

set at a value of 3.14 � 0.25, or 0.78. Current USEPA guidelines are to use LC as the

detection limit (USEPA, 2007). Any measurement falling above 0.78 would be

declared to have a concentration that is significantly different from zero at a 1%

false-positive rate, and the analyte is declared to be present in the sample.

IUPAC guidelines differ from this (IUPAC, 1997). The critical level is just the first

step in calculating their definition of the detection limit. Rather than using LC to

distinguish the measurement from a true value of 0, IUPAC recommends that the

detection limit be set sufficiently high that a detected value can be distinguished from

the measurement response of blanks. The distribution of measurement responses of

blanks is the bell-shaped curve centered on 0. Therefore, the detection limit is raised to

the point (Figure 3.3)where there is only a small probability that a concentration at the

detection limit would be mistakenly measured as below LC. This is sometimes

referred to as protecting against false negatives. Using the same probability of error

as when computing the critical level, the IUPAC detection limit would be twice the

critical level. IUPAC guidelines calculate the distance using a probability of error of

5% for both LC and the detection limit, while USEPA guidelines use an error rate of

1% for computing the LC/detection limit single value.

1 1.56

3.14 s6.28 * s

Critical
level

Higher
limit

Probability of
false negative

0

FIGURE 3.3 Establishing a higher limit at twice the critical level, or 6.28 times the standard

deviation, to protect against false negatives.
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These two definitions of a detection limit assume that the underlying laboratory

variability can be described by a single standard deviation. In practice, measurement

variability changes from day to day, analyst to analyst, instrument to instrument, and

from sample to sample as a function of the sample matrix. This is particularly true in a

production lab, where any given sample entering the door may be assigned to one of a

number of people and instruments. One approach to account for these changes was

devised by the U.S. Geological Survey and called the “Long-Term Method Detection

Level” or LT-MDL (Oblinger-Childress et al., 1999). The standard deviation used to

compute the LT-MDL incorporates the variability among the multiple instruments and

multiple operators any given sample may be assigned to upon entering the laboratory.

TheLT-MDL is re-evaluated each year, as equipment and operating conditions change.

This and similar processes that more correctly track the precision of production

laboratories make it even more likely that reporting limits will change over time

(multiply-censored data). This in turn means that end-users must understand and use

interpretationmethods that correctly incorporate data havingmultiple reporting limits.

False negatives, also called Type II errors, are one motivation to use a higher

reporting limit than the critical level. The concept of a false negative provides an

important example of the difference in perspective between laboratories and data

users. From a laboratory’s point of view, a serious error is made if an individual

sample whose true value is at or above the detection limit is reported as below the

critical level, and so in the range of measurement responses for blanks. The argument

goes that a true concentration exactly at the critical level has a 50% chance of being

recorded as below the critical level, and so erroneously reported as a nondetect

(Figure 3.4). To avoid this, a higher threshold is instituted.

However, there are two counterarguments that lead tomaking no adjustment for false

negatives, as per theUSEPAdefinition. First, creating ahigher thresholdvaluedoesnot in

itself reduce the likelihood of false negatives. A true concentration at a higher detection
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FIGURE3.4 Probability of a “false negative”when the true concentration is at a critical level

of 10. Shaded probability equals 50%.
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limit has a 50% chance of being erroneously reported as a censored value below that

higher limit. The limit is higher, but the effect is the same. In fact, for any concentration

there is a 50% chance that the measured value will be below the true level, assuming

100% recovery. Creating a higher threshold does not in itself solve this problem.

Second, if the true concentration were just a hairs-breadth below a detection limit,

there is an almost 50% chance that the measured valuewill exceed the limit, and so be

erroneously reported as a detected value. The same error characteristics surround each

true concentration. Looking at measurement errors from a collective standpoint, as a

data user would do, the positive and negative errors will tend to balance out

(Figure 3.5). Without adjusting for false negatives, the proportion of values falling

within each interval of concentration remains correct if each measurement has the

same variability. The same percent of values near each boundary will by chance fall

into a higher category as those falling into a lower category. So from a perspective of

the overall data set, there is little need to censor data based on an avoidance of false

negatives. They are balanced by errors in the opposite direction.

Perhaps the most helpful way to distinguish these two philosophies is that the

critical level/USEPA definition provides a (1 � a)% probability that a true (mean)

concentration of zero will be below this limit, while the IUPAC higher definition

provides a (1� a)% probability that a mean concentration at the detection limit will

not overlap measurements of blanks.

3.1.2 The Quantitation Limit

Thresholds abovewhich single numerical values (rather than an interval) are reported.

Quantitation limits specify a threshold above which reliable single numbers can be

reported. Thresholds with this purpose have been given names such as the “limit of

quantitation (LOQ)” (Keith, 1992), and the “practical quantitation limit (PQL).” They

are not generally computed with a statistical definition, but more of an experienced feel
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FIGURE 3.5 Balanced probabilities of false negatives and positives for true concentrations

just below and above a detection limit of 10.
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for where the method precision warrants reporting single values. A common rule is that

the quantitation limit is 10 times the standard deviation of a low standard such as the one

used to define themethod detection limit. The factor of 10 has been around for a number

of years (USEPA, 2003), and a concentration 10 times the background variability is

considered large enough by most chemists that a single number might be reliably

reported. The result is a threshold that is a little over three times the value of the USEPA

detection limit ((10/3.14)¼ 3.18). Another commonly used rule is that the quantitation

limit is twice the detection limit. This rule is often used with the IUPAC guidelines.

Quantitation limits are used becausematrix effects or other causes of variationmay

occur in environmental samples that are not present in the prepared standards used to

establish a detection limit. With organic analyses, for example, peaks from other

compounds may interfere with an exact determination of the amount of the target

compound, and at low levels whether the target compound is actually present. The

analyst determines how low concentrations can be before a reliable single value can be

reported, given that the standard deviation of repeatedmeasurements is still somewhat

large in comparison to the signal itself. For measurements between the detection and

quantitation limits the analyst believes that there is a signal (the analyte is present at a

trace amount), but that the signal is small in comparison to the variability of the

measurement process. To avoid reporting an unreliable single number, the analyst

constructs the threshold above which a single number may be reliably reported.

Measurements above this threshold may be quantified by a single value; those below

are usually not.

3.1.3 Data Between the Limits

There isgeneralagreementamonglaboratories thatnonumericvaluesshouldbeplaced

onmeasurementsbelowthedetection limitbecauseof the riskoffalsepositives,and the

confusionof reportingzeroandnegativereadings.There isagreement thatsinglevalues

above the quantitation limit should be reported asmeasured.Disagreement remains on

what to do with measurements in the region between the two thresholds. Here

the chemist generally believes that the analyte is present in the sample, but at

concentrations that cannot be quantified with precision. Older analyses in this region

were reportedas simply“trace”or“detected.”The largeamountof informationpresent

in these data is contained in the proportion of values below specific thresholds, so

reporting the numeric value of the threshold is crucial for capturing and analysis of this

information. Recent analyses (say since 1980) generally do report a threshold value,

usually the higher quantitation limit, resulting in a value of<QL for these in-between

measurements.

Data users have lobbied to get numerical values between the detection and

quantitation limits (Gilliom et al., 1984). Several labs now report these values,

qualified by a remark (ASTM, 1983; Oblinger-Childress, 1999). This remark

indicates that the relative error for these measurements is high, and so the individual

values might be somewhat smaller or larger. Most data users incorporate these values

as if they were equivalent to values above the quantitation limit, effectively resetting

the detection limit as the reporting limit. Most laboratories would consider this risky,

as calibration standards are usually not available or accurate in this range.
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If data between the limits are not handled correctly a bias may be introduced. This

bias is discussed in Section 3.1.4. Three methods for handling data between the limits

without introducing a bias are as follows:

1. Use the Quantitation Limit as the Reporting Limit. All values below the

quantitation limit are considered censored observations labeled “<QL”. Values

between the limits are considered too unreliable to report as single numbers, and

are reported as<QL, as are all values measured below the detection limit. Data

analysis methods of this bookmay then be applied directly. However, measure-

ments that signal presence of the analyte are lumped with measurements not

distinguishable from zero. Some information is lost in comparison to the next

two methods.

2. Use theDetection Limit as theReporting Limit. This is the de facto result when

data users take values reported between the thresholds as similar in precision to

those above the quantitation limit, ignoring the qualifier. Values “<DL” are

censored. Values between the limits are used as individual values. The

advantage over method 1 is that measurements different than zero are recog-

nized as higher than true censored observations. The risk is that theremay be too

much variability to reliably treat the data between the limits as anything other

than tied with one another.

3. Use Interval-Censoring Methods. Data between the limits are assigned tied

ranks (nonparametric methods) or assigned to an interval (parametric methods)

higher in value than those assigned to data below the detection limit. The

ordering of data is preserved—the<DLgroup is considered lower than the “DL

to QL” group—without assigning single values to observations in either group.

Data in the “DL toQL” group between the two limits are not distinguished from

one another—all are reported as “DL toQL” and the interval-censoredmethods

provided in this book can be used for data analysis.

The decision of which of these three methods to use is a decision that should be

made by the data user in consultation with the laboratory scientist. Understanding the

relative precision of the data between the limits is key for determining how best to

represent them. All three methods are unbiased—the probability distribution (the

percentiles) of data are not consistently shifted below or above their true values.

Unfortunately, a fourth method that does introduce a bias is now sometimes used to

report censored data. Called “insider censoring,” it is a method that in other

disciplines is called “informative censoring.”

3.2 INSIDER CENSORING–BIASING INTERPRETATIONS

One of the assumptions behind all methods for interpreting censored data is that the

measurement value does not influence the type of censoring process used. One does

not decide to use one method of censoring for one range of concentrations, and

another method for another range of concentrations. The process of censoring should

be “noninformative” in regards to the concentrations themselves. When this assump-
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tion is met, the proportion of data below any threshold can be validly computed and

compared to the proportion below another threshold. These proportions are another

way of stating the percentiles of the data set, and represent the primary information

present in data with censored values. Percentiles can be correctly computed and

interpreted when the censoring mechanism is noninformative.

Insider censoring invalidates the computation of percentiles (and other summary

statistics or tests). An example of informative censoring from the medical sciences

may help to illustrate the problem. Informative censoring is when the survival length

of patients following diagnosis of a disease, the variable being measured, influences

how the data are censored (Collett, 2003). Suppose the survival lengths of two groups

of patients is to be compared, one group that has received a particular medical

treatment, and another which has not. The goal is to determine if receiving the

treatment is beneficial and generally lengthens a patient’s lifespan. Informative

censoring occurs if it is known that an individual’s expected survival time is short,

and so the patient is refused (or is not considered for) treatment. In a feedback loop,

persons who are projected to live longer are treated, and so the outcome that persons

live longer with treatment cannot be ascribed just to the treatment. It may be due to the

selection process itself.

A process similar to the feedback loop above is currently implemented by some

laboratories in an effort to provide information their data users are requesting, while

preserving a sense of protection from false-negative (Type II) errors. One such process

is the Laboratory Reporting Level (LRL) of the U.S. Geological Survey (Oblinger-

Childress, 1999). Another is found in the RAGS risk assessment guidelines of the

Superfund program (USEPA, 1989). Such processes have not yet been widely

recognized as a problem, but as insider (informative) censoring they produce biased

results as interpretation methods are applied to these data. Numerical values between

the detection and quantitation limits are reported, though qualified. So for values

measured between the limits, the detection limit is the effective reporting threshold.

For observations measured as less than the detection limit, however, values are

reported as less than the quantitation limit, <QL. These data are reported using the

(higher) quantitation limit in order to avoid false negatives. The choice of reporting

limit is therefore a function of the measured concentration of the sample. The result is

that all interpretations of data reported in this manner, from computation of means to

hypothesis tests, will be biased. This is pictured in Figure 3.6.

Figure 3.6a shows the original measured concentrations as a bar graph. Suppose

that 40% of observations are measured between 0 and the detection limit (the white

bar in Figure 3.6a). Twenty-five percent are measured between the detection and

quantitation limits (light gray bar), and the remaining higher measurements reported

as uncensored values (dark bars). The measurements between the limits are reported

along with a qualifier that these observations are “estimated,” but still reside between

the two limits. This bar graph applies as long as the values measured below the

detection limit are reported as “<DL”. Figure 3.6b then shows the same data after

insider censoring. The difference is that valuesmeasured below the detection limit are

now reported as being below the quantitation limit or “<QL”, as if they might belong

anywhere from zero up to the quantitation limit. The probability (40%) that
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observations may fall below the detection limit is spread evenly along the entire range

from zero to the quantitation limit. This is pictured in Figure 3.6b as white bars

totaling 40% evenly split between two categories, 20% of observations in each

category. The result of insider censoring is that the probability that an observation

might fall between the detection and quantitation limits is exaggerated, and the

probability that it would fall below the detection limit is underestimated, in compar-

ison to the proportions actually measured. The shape of the histogram has been

changed, and so too will all interpretations that follow. This upward bias is picked up

by any subsequent procedure, from the simplest computation of means or percentiles

to more complex methods such as maximum likelihood.
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FIGURE 3.6 (a) Proportions of data within ranges of concentrations as originally measured.

(b) Proportions of the (a) data within the same ranges after insider censoring. The lower end of

the distribution has been shifted dramatically upward.
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Laboratories that attempt to satisfy data users while avoiding false negatives may fall

into the trap of insider censoring. Figure 3.7 (from Helsel, 2005) illustrates the bias

resulting from insider censoring. Maximum likelihood estimation (see Chapter 6) was

used to compute 1000 estimates of the mean of 50 observations with censored

observations that had an overall truemean of 3.08. Four different censoringmechanisms
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FIGURE3.7 Histograms of 1000 estimates of themean (fromHelsel, 2005). (a) Censoring at

the detection limit. Unbiased estimates around the true mean of 3.08. (b) Censoring at the

quantitation limit. Unbiased estimates with a bit higher variability. (c) Interval censoring “0–2”

and “2–4.” Unbiased estimates with errors similar to (a). (d) Insider censoring. Data measured

below 2 reported as <4. Biased estimates almost 0.4 units above the true mean.
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are shown in graphs (a)–(d). The first three graphs show the results of the three

recommended methods of the last section. All three resulted in unbiased estimates of

the mean. Graph (d) shows the effect of insider censoring, where all values measured

below the detection limit were reported as <QL while data between the limits were

reported as single (qualified, “J-value”) numbers. An approximate 10% upward bias

results from how the datawere censored. This bias may not be the largest source of error

in the sampling and analytical process, but it is totally avoidable. Any of the three valid

options of the previous sectionwould avoid this bias. For labs that report data in thisway,

it is imperative that data users recensor their data using oneof the three unbiasedmethods

listed in the previous section prior to performing statistical analysis.

3.3 REPORTINGTHEMACHINEREADINGSOFALLMEASUREMENTS

Gilbert (1987) and Porter et al. (1988)were early advocates that laboratories report the

original machine readings instead of censoring data in any way. Accompanying the

original readings would also be a measure of their analytical error (i.e., 0.3� 0.8). If

the machine readings are negatives or zeros, so be it. More recently, Davis and Grams

(2006) also recommend reporting uncensored values regardless of whether the signal is

being swamped out by the measurement noise. This is at first glance an attractive idea,

especially given the opportunity for bias and inconsistency between laboratories in the

censoring process. There are at least two issues with reporting uncensored machine

readings to the user. They are of concern not in estimating a mean, the situation usually

being discussed when the suggestion to not censor arises, but in performing hypothesis

tests or other situationswhere the relative orderingof individual observations is important.

First, reporting machine readings gives a false sense of precision. When the

quantitation limit equals 1, for example, readings of 0.3 and 0.4 appear to be distinct

with one higher than the other. Any usual statistical routine will consider the 0.4 as

reliably larger than the 0.3. Yet the actual concentrations might easily be the same, or

even reversed, with the concentration resulting in the 0.4 in fact lower than the one

resulting in 0.3. The “precision” indicated by the machine readings may in fact be

misleading information. It is more than you actually can know about the data. Over

time and many samples the random nature of which measurement is higher than

another will even out. For computations of the mean or other statistics with large data

sets where the ordering of individual values is not important, the errors even out. Yet

for the one small data set provided to you, the user looking at whether concentrations

in one group are higher than another, it certainlymay not.Antweiler andTaylor (2008)

demonstrated the problems of depending on this misleading information. They

analyzed a series of trace constituents using two methods, a research-grade ultralow

detection limit laboratory analysis, and amore typically available method resulting in

censored observations. Various censored data techniques were used to compute a

mean for the typical method’s data (see Chapter 6). One of those was to use the

machine readings from the typical method. Estimated statistics were compared to the

“true mean” of the research-grade data. Machines readings produced estimates

markedly less reliable than using Kaplan–Meier and other censored techniques on
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data that had been censored. Machine readings followed by a standard computation

were not as good as considering the data tied within low-level intervals.

Second, machine readings must be combined with estimates of the precision in

order to correctly interpret data in this low signal to noise range. Amean, for example,

could be computed by weighting each observation by the inverse of the variance of

each measurement. Less reliable data would have less influence on the estimate.

Using both the measurement values and their variability is necessary for a statistical

analysis to recognize that two low-level observations are essentially indistinguish-

able, even though one is reported as 0.3 and the next as 0.4. These more complicated,

weighted analyses are rarely if ever performed by the typical user. A study comparing

variance-weightedmethods to the established censored datamethods of the remainder

of this book needs to be done before the use of uncensored machine readings can be

recommended with assurance.

3.4 LIMITS WHEN THE STANDARD DEVIATION CHANGES

WITH CONCENTRATION

Many papers in analytical chemistry have over the years modeled the variation of

concentration as a function of concentration itself. Variation takes on a form some-

thing like plus or minus a percentage of the measurement, rather than plus or minus a

constant number across the range of concentrations. Higher concentrations have

higher variability. Logarithm or square root transformations of concentration are

often used to convert measured concentrations to data approaching a more constant

variance. Figure 3.8 is an example of data where the variability of measurements of
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prepared standards increases as the concentration of those standards increase. There

are five measurements for each standard solution. The five replicates for a standard

concentration of 3 overlap to the extent that not all five can be distinguished on the

plot, while the five at higher concentrations show much more scatter.

Gibbons and Coleman (2001) state that this situation is common—variation

increases as concentration increases. If this is true, detection and quantitation limits

calculated assuming a constant standard deviation will often be inaccurate. Those

computed using a higher concentration standard will obtain a higher estimate for the

standard deviation. Projecting this higher standard deviation all theway down to zero,

higher detection and quantitation limits are estimated than would be obtained with a

lower concentration standard. Two laboratories that have the same underlyingmethod

precision will get different estimates for detection and quantitation limits when they

use different concentration standards to set those limits.

This last statement should be of great interest to data users. Labs with the same

precision characteristics should have the same detection and quantitation limits, but

may set different limits due to the use of different standard concentrations. Censored

observations from identical samples sent to these labs will be assigned different

numbers if substitution is used! The variety of reporting limits resulting from causes

unrelated to characteristics of a submitted sample is a strong reason to avoid

substitution methods. The substituted number may be more strongly influenced by

the concentration standard used 2 months prior to set the detection limit than it is by

the concentration of the analyte present in the sample.

Gibbons and Coleman (2001) propose five steps for calculating censoring limits

when the standard deviation varies with concentration (calling these “calibration-

based limits”):

1. Measure the concentrations of replicates for several concentration standards

ranging from very low to above the level expected for the quantitation limit.

2. Perform a weighted least-squares regression of measured concentration (Y)

versus concentration of the standards (X). Weights may be computed as the

inverse of the observed variance of the replicates at each concentration

standard. Or they may be modeled using a regression of the variance versus

the concentration standard values.

3. Guess a concentration for the detection and quantitation limits, and compute

initial estimates of the standard deviation for those concentrations.

4. Use these initial estimates to compute initial values for the detection and

quantitation limits.

5. Iterate between steps 3 and 4, alternatively computing estimates of standard

deviation and subsequent censoring levels, until the estimates converge.

Using weighted least-squares, measurements with higher variability further from a

concentrationof zerohave less influenceon thefinal estimateof standarddeviation than

do those with lower variability closer to zero concentration. So if variability indeed

increases with concentration, weighting produces a better estimate for the standard
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deviation near zero concentration, and therefore a better estimate of the detection limit,

than does an assumption that the measurement variation is constant. Recently, this

approach for determining detection limits was used by the USEPA to define the

LCMRL, the lowest concentration minimum reporting level (Martin et al., 2007;

Winslow et al., 2006). It is unclear as of late 2010 whether the LCMRL will replace

USEPA’s recommendation to use the single-standard MRL, or whether it will go

alongside the MRL with the choice to use one or the other in differing circumstances.

3.5 FOR FURTHER STUDY

A summary of the development and history of detection and quantitation limits from

the perspective of the USEPA is found in USEPA (2003). Ideas to date on how to set

analytical censoring limits are reviewed, though limits computed with a single

standard deviation are emphasized. They also discuss both analytical and statistical

issues raised by a variety of people involved with Clean Water Act determinations.

This is primarily a review of how definitions of censoring thresholds have changed

over time.

Currie’s seminal 1968 article first called for standardization of methods for

computing censoring limits of radiochemical data. His concepts have since been

adapted for use inmany subdisciplines of environmental science. Currie’s subsequent

articles over the years have clarified and amplified elements of the topic. See

Lindstrom (2001) for a summary of Currie’s contributions.

GibbonsandColeman(2001)andGibbonsetal. (1997)presentadetaileddiscussion

of the process for setting detection and quantitation limitswhen the standard deviation

is judged to be a function of the concentration value, rather than assuming that the

standard deviation is constant between zero and the concentration standard. These

concepts have been adopted by the American Society of Testing Materials

(ASTM,1991, 2000) and given the acronyms “interlaboratory detection estimate” or

IDE and “interlaboratory quantitation estimate” or IQE. Several comments on the

1997 article have also appeared; see Kahn et al. (1998) and Rigo (1999) as well as the

responses from the original authors that follow those comments.

Another paper by Gibbons (1995) on the deficiencies of then-current practices of

setting detection and quantitation limits is followed by several discussion papers

debating the points which Gibbons makes. Of special note is the discussion byWhite

and Kahn (1995) who defend USEPA practices. The original and discussion papers

together provide a history of the current debate over the process of setting reporting

limits. Themore recent direction of using changing variance atmultiple concentration

standards for setting a LCMRL is discussed in detail, withmany references, byMartin

et al. (2007) and Winslow et al. (2006).

Other papers of note include Hyslop andWhite’s (2008) simultaneous determina-

tion of detection limits for multiple analytes using X-ray fluorescence, the Kaus

(1998) review of practices for setting reporting limits within commercial laboratories

in the European Union, and the tutorial on detection and quantitation limits by

Thomsen et al. (2003).
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4 Reporting, Storing, and Using
Censored Data

What is the best way to report data that include censored values to users, and store

them in a database? Can they be stored in such a way as to make analysis easier?

What kind of analyses will be available when the project interpretation is ready to

be performed?

4.1 REPORTING AND STORING CENSORED DATA

Goals for database storage of censored data sets include

. detections and censored observations are both clearly identified and

distinguished;

. left censored (nondetect) data can be distinguished from right-censored (greater-

than) values;

. data are easily incorporated and used by statistical software;

. censoring by detection versus quantitation limits can be distinguished and

recorded.

4.1.1 The Key: Storing the Reporting Limit Values

All of the methods discussed in this text require a numerical value for the reporting

limit. The knowledge that an observation is below a specific threshold (the reporting

limit) is the primary information contained in censored observations. Without the

threshold value, no information is available. Older data sets reporting censored

observations as “0” or “trace,” or newer recommendations to report data between

the detection and quantitation limits as “DNQ”—detected but not quantified—do not

have the necessary information to be used in numerical computations. To use

nondetect data when the thresholds have not been reported, either a record of

the reporting limits used by the laboratory at that time of analysis must be obtained,

Statistics for Censored Environmental Data Using Minitab� and R, Second Edition.
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or the trace values can be designated as <min(d), where min(d) is the minimum

detected value recorded for that location and time. These attempts to later recover a

threshold value are inferior to reporting the threshold values as the data are stored. In

short, the numerical values of the censoring thresholds must be reported in order to

fully utilize nondetect data.

On paper, designating a value as a nondetect is trivial—a text character is used, the

less-than sign (<). However if the text character “<” is placed into a database or

spreadsheet cell, the entire entry is considered text and therefore not available for

computations. Another method of data storage is required. Two easily used methods

for storing data with censored observations provide the necessary information:

1. Indicator variables

2. Interval endpoints

Both methods require two columns of data for each data entry. The indicator

variable approach is consistent with representing values as left-censored. The

approach is commonly used by nonparametric procedures in statistical software,

particularly the Kaplan–Meier and related methods. The interval endpoints format

represents each observation as interval-censored data. This is the more flexible and

intuitive format of the two. It is most often used by parametric maximum likelihood

methods, though some nonparametric procedures (Turnbull) will use this format as

well. The data analyst may have to use both the indicator variable and interval

endpoint formats for the same data set in order to compute both parametric and

nonparametric analyses.

4.1.2 Method 1: Indicator Variables for Left-Censored Data

Using an indicator variable, two columns are required to represent each observation.

In the first column is the numerical value for a detected observation, or the numerical

value of the reporting limit for that observation. In the second column is an indicator of

whether the value in the first column is a detected concentration or the reporting limit

for a censored observation. The indicator may be either a number or text. In this book,

a value of 0 will generally designate a detected observation, while a 1 designates a

nondetect. Examples of using text as an indicator include phrases such as “censored”

and “uncensored,” “above” and “below,” or letters (qualifiers) such as “E” or “J”. If

text phrases are not allowed in the database or statistical software, the variable name

for the numerical indicator should remind the user which state refers towhich number.

A column name such as “BDLeq1” reminds the user that below detection or reporting

limit, data have values equal to 1. Zeros must then be uncensored values. If the

indicator variable is ignored, summary statistics will be biased high, because the

reporting limit will be erroneously considered as the measured value for all censored

observations.

Differing text indicators have been used to designate different types of censored

data. One letter may indicate that values are below a reporting limit, while another

used for values between the detection and quantitation limits. A “DNQ” is a valid
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indicator of values between the detection and quantitation limits, as long as the

numerical values of both limits are correspondingly stored as well. A different letter

could indicate a right-censored “greater than” value. Within statistics software these

letters are used to translate the data into the interval censoring format, such as “0 to 1”

(below a detection limit of 1mg/L) or “1–3” (between the detection and quantitation
limits) in order to use the data in a statistical routine.

The indicator variable method is able to meet all four of the listed goals for

storage of censored observations if multiple indicators are used to distinguish

data between the limits from true censored observations, and greater-thans from

less-thans. The simpler binary 0/1 indicator is only able to meet the first and

third goals for data storage. The indicator method’s primary disadvantage is that

it can sometimes be difficult to remember which state each numerical indicator

value refers to.

A Simple Example Three values of<1,<5, and a detected 10 are represented by the

two columns below. A 1 in column 2 indicates a censored observation. If a fourth

observation that was between the detection limit of 1 and the quantitation limit of 3

were also present, the indicator variable format would not easily handle it.

Column 1: Concentration Column 2: BDLeq1

1 1

5 1

10 0

4.1.3 Method 2: Interval Endpoints for Interval-Censored Data

The interval endpoints format is the easiest and most flexible way to store censored

data. It is also the format that most closely represents how software uses censored

data. All values in the data set are represented by the interval those data fall within.

Endpoints for the interval, high and low, are stored in separate columns. For

uncensored observations the values in both columns are identical. For censored data

the values differ.

Interval endpoint storage is a flexible storage system that meets all four of the

goals for data storage listed previously. Left-censored data (censored observations)

can be distinguished from right-censored (greater-thans) data, so that both may be

possible within the same data set. The format is illustrated below.

A Simple Example, Cont. For the data set consisting of a <1, <5, and 10, two

variables represent each observation, one at the lower end (Start) of an interval within

which themeasured values lie, and a second at the upper end (End) of the interval. For

left-censored concentration data, a value of 0 is entered in the Start variable to denote

that the nondetect is no lower than zero, and the detection limit is entered as the largest

possible value in the End variable. The detected observation of 10 has the same value

for both variables.
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Start End

0 1

0 5

10 10

Nondetects have a lower bound of 0 because concentrations do not go negative. If it

is possible for data to extend belowzero, amissing value indicator is used by statistical

software to represent minus infinity. Common missing value indicators include an

asterisk (�) or a period (.), but check the indicator your software uses. The missing

value states that there is no known boundary. A right-censored value of >100 would

have the missing value in the upper End column, and so be designated as

Start End

100 �

while a “DNQ” value that is detected above the detection limit of 1, but below the

quantitation limit of 3, would be listed as

Start End

1 3

Where there is a boundary, such aswith a lower bound of 0, that boundary should be

used. Maximum likelihood methods (discussed later) will produce different results

depending on whether 0 or a missing value is found in the Start variable. Entering a

missing value indicator for the Start variable produces estimates that are too low

because values below zero are considered possible by the procedure when they

actually are not possible for bounded environmental data.

Measurements where negative values are truly possible can be represented using

the interval endpoints format.

Start End

�10 5

“DNQ” observations between the detection limit of 1 and the quantitation limit of

3 (second entry below) will be recognized as higher than true nondetects below

the detection limit of 1 (first entry below).

Start End

0 1

1 3
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The interval endpoints format is entirely numeric—no text is needed to designate

censoring. Reading a direct printout of the data set is clear—it is perhaps the least

confusing and most efficient data storage format for censored data.

4.2 USING INTERVAL-CENSORED DATA

Data between the detection and quantitation limits contain sufficient noise that

chemists are hesitant to place a single number on them, even though users have

been requesting this for years. Using the interval endpoints notation may be the

best solution for reporting these data. All values in the interval DL to QL are given

the same value, the same interval—they are not distinguished from one another.

This recognizes the noise of data in this region—an estimated or nonquantified 1.8

cannot really be distinguished from a nonquantified 1.5 or 1. Yet they are recognized

as being higher than measurements below the detection limit of 1, and lower than

quantified values.

For an example of how interval-censored data can be used in calculations, consider

a data set with five measurements below the detection limit of 1 mg/L, seven

measurements above 1 but below the quantitation limit of 2, and seven values

measured and reported as individual numbers above the quantitation limit. There

are 19 observations in all. The top line shows the data as theywere originally reported,

with a “J” value for data between the detection and quantitation limits. The bottom

lines are the same data in interval-censored format. The (1,2) format is an interval-

censored value falling between 1 and 2mg/L.
Original format:

<1 <1 <1 <1 <1 1.1J 1.2J 1.3J 1.5J 1.8J 1.9J

1.3J 2.2 2.4 2.7 3.0 3.3 3.9 4.8

Interval-censored format:

(0,1)(0,1)(0,1)(0,1)(0,1)(1,2)(1,2)(1,2)(1,2)(1,2)(1,2)

(1,2) 2.2 2.4 2.7 3.0 3.3 3.9 4.8

The nonparametric approach to interval censoring assigns the average rank of all

values below the detection limit to those measurements. All five (0,1) values below

the detection limit are assigned the average of ranks 1 through 5, or 3. Values

between the two thresholds are similarly assigned the average of their ranks,

recognizing that they are higher than values below the detection limit. The seven

values are assigned the average of ranks 6 through 12, or a rank of 9. Values above

the quantitation limit are represented by the same ranks as those they would have

received if there had been no censoring, starting with the rank of 13 and going up to a

rank of 19. Ranks of the observations are shown in italics below the interval-censored

data themselves:
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(0,1) (0,1) (0,1) (0,1) (0,1) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2)

3 3 3 3 3 9 9 9 9 9 9

(1,2) 2.2 2.4 2.7 3.0 3.3 3.9 4.8

9 13 14 15 16 17 18 19

These ranks would be used in a nonparametric test, say if some of these data belonged

to one group and some to a second group. See Chapters 9 and 10 for more on testing

among groups. The median is the central value in the data set. With 19 observations,

the median is the 10th ranked observation from the bottom. Counting up to the 10th

ranked observation, a (1,2), the median of these data is a value between the detection

and quantitation limits. The ranks of interval-censored datawill be computed and used

in a variety of nonparametric procedures presented later in this book.

Parametric methods solve for parameters using maximum likelihood estimation

(MLE).MLEmethods easily incorporate interval-censored observations. They do not

need individual quantified values for every observation in order to compute a mean or

test a hypothesis. The mean of the above interval-censored data is 1.89 by maximum

likelihood assuming a normal distribution. Below is the output using Minitab�:

Characteristics of Distribution

Standard 95.0% Normal CI

Estimate Error Lower Upper

Mean(MTTF) 1.88636 0.279905 1.33776 2.43497

Standard Deviation 1.19779 0.198577 0.865493 1.65767

Median 1.88636 0.279905 1.33776 2.43497

First Quartile(Q1) 1.07847 0.314310 0.462431 1.69450

Third Quartile(Q3) 2.69426 0.306238 2.09405 3.29448

Interquartile Range(IQR) 1.61579 0.267876 1.16753 2.23616

Chapter 6 will provide more details on MLE, and later chapters expand the idea to

testing for differences between group means. Whether using parametric or nonpara-

metric methods, computations can be performed without substituting a single value

for interval-censored observations.

EXERCISES

All data sets for the exercises in this book are found on the web site http://www.

practicalstats.com/nada in both Minitab (�.mtw) and Excel (�.xls) file formats. Also

found there are all Minitab macros (�.mac) used throughout the book for computing

the in-text examples and exercises.

4-1 Millard and Deverel (1988) measured copper and zinc concentrations in shallow

groundwaters from two geological zones underneath the San Joaquin Valley of

California. One zone was named the Alluvial Fan, the other the Basin Trough.

Their data are found in the data set CuZn (use CuZn.xls if using software other

than Minitab). In addition to the two columns of concentrations, there are paired
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columns in the Indicator Variable format designating which of the observations

represent detected concentrations, and which are “less-thans.” The indicator

variable names (CuLT¼ 1 and ZnLT¼ 1) show that “less-than” observations

have a value of 1, while uncensored observations are indicated by a 0.

Create two newvariables in the Interval Endpoints format, StartCu andEndCu,

that will contain the same information given by the current variables Cu and

CuLT¼ 1.

4-2 What problem may have occurred with the following censored data set? What

characteristics lead to that conclusion?

0:55 0:6 0:8 0:85 0:9

< 1 < 1 < 1 < 1 < 1 1:0 1:2 1:7 1:8 2:2 2:6 3:5

4-3 Flip the copper concentrations for the Alluvial Fan zone to a right-censored

format and store in a new variable named something like “FlipCu.” Plot both Cu

and FlipCuwith either a boxplot or a histogram (ignoring the less-than indicators

at this point). How do the plots of the two variables compare? Given that the

variable Cu is skewed, take logarithms and repeat the process.
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5 Plotting Censored Data

Plots that display percentage information can be extended to censored data, as that

information is still available even though individual values are not. Boxplots can

illustrate the distribution (shape, typical values, outliers) of censored data. An

empirical distribution function (edf) depicts individual observations with more

precision, but perhaps less familiarity, than does a boxplot. A survival function plot

is an edf specifically developed for censored data. Probability plots provide a visual

check of conformance to a specific distribution such as the normal, and associated

tests quantify the goodness of fit. Scatterplots for X–Y data can be adapted for

displaying interval-censored values. Commercial statistics software will compute

some of these for you, while macros for Minitab� and R are available on this book’s

web site for all of them. Become familiar with the survival analysis section of the

software you use, and if these plots are not available there, they are not difficult to

construct using a few sequential commands.

5.1 BOXPLOTS

Boxplots (Helsel and Hirsch, 2002, Chapter 2) are one of the most intuitive ways to

visualize a data set. They employ three percentiles (25th, 50th, and 75th) that define

the central box. The relative positions of the percentiles show the center, spread, and

skewness of the data. Boxplots also represent outliers as individual points. Censored

observations can be incorporated into boxplots by using the information in the

proportion of data below the highest reporting limit. Boxplots should never be drawn

by deleting censored observations, drawing the graphic using only uncensored values.

Deleting censored observations destroys all meaning of the percentiles of the data set,

which is what the box of a boxplot represents. There is a better way.

To draw a boxplot for data with a single reporting limit, all censored observations

are set to any single value lower than the limit. A horizontal line is drawn at the

reporting limit. All uncensored values will be represented correctly, but the distribu-

tion below the reporting limit is unknown and should not be represented in the same

way as the portions above the limit. The portions of the box below the reporting limit

line are blanked out, usually by covering with a rectangle of the same color as

background. This “boxplot at sunrise” (Figure 5.1) is an accurate representation of

Statistics for Censored Environmental Data Using Minitab� and R, Second Edition.
Dennis R. Helsel.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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the information contained in the data set. The proportion of data censored is indicated

by howmuch of the graphic is below the horizon. In Figure 5.1, the lack of a lower line

for the box, but presence of the central median line, shows that between 25 and 50%of

the data are censored observations (there are 9 of 24 values or 38% below 0.01 for the

atrazine data set).

For multiple reporting limits, only data above the maximum reporting limit is

known exactly. Portions of the box above this limit are drawn with solid lines. In the

most conservative approach, everything below the maximum reporting limit would

not be shown (Figure 5.2). However, if too much of the box is invisible below the
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FIGURE 5.1 Boxplot of censored atrazine data. The proportion of censored data is between

25 and 50%, as shown by the presence of a line for the 50th, but not the 25th, percentile.
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FIGURE 5.2 Censored boxplot for altered atrazine data with reporting limits at 0.01 and

0.05. The 25th, 50th, and 75th percentiles are all below the higher reporting limit and not shown.
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horizon, the 25th, 50th, and 75th percentiles can be estimated if necessary and drawn

with dashed lines (Figure 5.3). Percentiles are estimated using either Kaplan–Meier

(KM) or robust ROS (see Chapter 6). These methods incorporate the proportion of

observations occurring below each reporting limit when calculating percentiles.

The cenboxplot command in the NADA for R package will draw censored

boxplots. Here the ShePyrene data set is used to illustrate the procedure. There are

two arguments to the command, first the name of the column containing the detected

values plus reporting limits, in this case Pyrene. The second argument is the column of

censoring indicators, PyreneCen. A value of 1 (TRUE) for the censoring column

indicates a censored nondetect value, so that the corresponding reporting limit is

located in that row of the Pyrene column. To draw the boxplot, the command is

> cenboxplot(Pyrene, PyreneCen)

resulting in Figure 5.4. Note that the estimated lower portions of the box are shown

below the maximum reporting limit line. ROS is used to estimate the lower portions.

5.2 HISTOGRAMS

Histograms are not particularly useful plots for depicting censored data. This is partly

because there is not one histogram that is unique to a data set—many equally valid

histograms might be drawn from the same data. In Figure 5.5, the censored

observations are drawn with their own (dark) bar to show that 38% of the data set

is below the single reporting limit. For data with multiple reporting limits the bar

would include all data below the highest limit. Above that limit, uncensored

observations are categorized into ranges and the percentage in each category shown
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FIGURE 5.3 Boxplot for altered atrazine data with reporting limits at 0.01 and 0.05. The

25th, 50th, and 75th percentiles have been estimated using the robust ROSmethod of Chapter 6.
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(gray bars in Figure 5.5). The reporting limit (it would need to be the maximum

reporting limit for multiply-censored data) is represented by a vertical line in

Figure 5.5.

5.3 EMPIRICAL DISTRIBUTION FUNCTION

A plot of the empirical distribution function, also called a quantile plot, shows the

sample percentiles (quantiles) of each observation in the data set. Edfs are sample

approximations of the true cumulative distribution function (cdf) of a continuous
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FIGURE 5.4 Boxplot for the ShePyrene data set with amaximum reporting limit of 174. The

25th, 50th, and 75th percentiles have been estimated using the robust ROSmethod of Chapter 6.
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FIGURE 5.5 A censored histogram of the June atrazine data.

EMPIRICAL DISTRIBUTION FUNCTION 47



random variable. The vertical axis lists the quantiles (median¼ 0.5 or 50%, etc.)

ranging between 0 and 1 (or 100%). The horizontal axis covers the range of numerical

values of the data. Data points are plotted in sequence from low to high, and connected

by straight lines to form the graph. By selecting one percentile value (say 50%) and

reading across to the curve, the percent of observations below that value in the data set

is obtained.

To construct an edf, the data are ranked from smallest to largest. The smallest value

is assigned a rank i¼ 1, and the largest a rank i¼ n, where n is the sample size of the

data set. Ranks are converted to percentiles using a “plotting position”p. For the cdf of

a population where all possible data are known, the plotting position is p¼ i/n. With a

sample of data instead of the entire population, the edf should use a plotting position

where the largest value is slightly less than i/n. When data are tied, as for censored

observations, each is assigned a separate plotting position (the plotting positions are

not averaged). Tied values are seen as a vertical “cliff” on the plot, like the one in

Figure 5.6 for atrazine data at the reporting limit of 0.01.

The plotting position for an edf is an estimated percentile, the probability of being

less than or equal to that observation. With commercial software, the largest

observation is usually assigned the plotting position i/n¼ 1 (the 100th percentile),

having a zero probability of being exceeded. For the cdf of the total population this is

appropriate, but with a sample of only part of the total population it would be wise to

recognize that there is a likelihood of exceeding the largest value observed to date.

This can be represented on the graph by using a plotting position less than i/n on the

vertical axis, although unfortunately, commercial statistics software almost always

uses i/n as the plotting position.

Different plotting positions can be used depending on the purpose and the tradition

of a procedure. Numerous plotting position formulae have been suggested that will

assign the highest observation a percentile below 100% (Helsel and Hirsch, 2002),

many having the general formula
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FIGURE 5.6 Empirical distribution function of the June atrazine data.

48 PLOTTING CENSORED DATA



p ¼ ði� aÞ=ðnþ 1� 2aÞ

where a varies from 0 to 0.5. Each differs in the probability of exceedance above the

largest observation. Five of the most common formulae are

Name a Formula

Weibull 0 i/(n þ 1)

Blom 0.375 (i� 0.375)/(n þ 0.25)

Cunnane 0.4 (i� 0.4)/(n þ 0.2)

Gringorten 0.44 (i� 0.44)/(n þ 0.12)

Hazen 0.5 (i� 0.5)/n

TheWeibull formula is used in many areas of science. The Blom plotting position

is used most often on probability plots to compare data to a theoretical normal

distribution.

Commercial survival analysis software will draw edfs when there are one or

multiple censoring thresholds. Percentiles are estimated using Kaplan–Meier meth-

ods and plotted on a “survival function plot”, which is in essence an edf. However, the

i/n plotting position is usually employed for these plots.

5.4 SURVIVAL FUNCTION PLOTS

Survival function plots (Figure 5.7) are an edf plot flipped side to side, plotting (1� p),

the probabilities of exceedance of an observation. For left-censored data flipped

and plotted using software for right-censored survival analysis, the largest

observations are represented on the left side of the plot. In Figure 5.7, the detected

atrazine observations are plotted as open circles. The atrazine scale was added

to the bottom of Figure 5.7 for reference, and shows the largest values at the

left side of the plot. Survival plots will typically label the x-axis as “Time” or

“Survival time.”

The survival function presents the probabilities of exceeding a value of “ Survival

time.” Figure 5.7 shows a 97% probability of exceeding a “time” of 0.62. Time was

created by subtracting atrazine from a value of 1.0, so that this point is also an

atrazine concentration of (1� 0.62)¼ 0.38mg/L. The concentration of 0.38 repre-

sents the 97th percentile of the atrazine distribution, and so has a 97% probability that

atrazine will be less than or equal to 0.38. Percentiles plotted on the y-axis are

calculated with the Kaplan–Meier method described in Chapter 6.

Left-censored environmental data can be converted to right-censored “Time” data

by subtracting each observation from a number larger than the maximum in the data

set (see Chapter 2). This changes the “Atrazine Concentration” scale into the

“Survival Time” scale of flipped data. In Figure 5.7, a survival time of 0.99

corresponds to an atrazine concentration of 0.01, the reporting limit. The jagged

survival-function probability line intersects the vertical reporting limit at a

“Cumulative proportion surviving” or probability of 0.38. Survival probabilities,
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equal to percentiles of the original observations, are found on the y-axis. There is a

38% probability of “surviving” to a value greater than 0.99, as well as a 38%

probability of being less than the reporting limit, just as previously calculated. Only

the uncensored data are plotted on a survival function, but their positions are

influenced by the censored as well as the uncensored observations. Further detail

on Kaplan–Meier computations is given in Chapter 6.

Some survival analysis software will also compute the “cumulative failure time”

probability p as well as the survival time (1� p). “Failures” or “deaths” in survival

analysis are the “detects” of environmental science—the observations with a single

known value. Representing the data as interval censored and plotting a cumulative

failure time plot results in Figure 5.8, again an edf where the atrazine data are plotted

in the usual “low values on the left” format. This format is more familiar to

environmental scientists than the reversed survival plot format.

In Figure 5.9, the edf for groups of lead concentrations in the blood of herons is

plotted by dosage groups, one group using a dashed line and one using a solid line.

This is accomplished with the plot command in NADA for R, operating on the results

of the cenfit command.

> bloodPb = cenfit(Blood, BloodCen, DosageGroup)

> plot(bloodPb)

Cenfit computes Kaplan–Meier percentiles for left-censored data. See Chapter 6 for

more on the cenfit command.
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FIGURE 5.7 Survival function plot of the June atrazine data, with an additional atrazine

concentration scale added for reference at the bottom.

50 PLOTTING CENSORED DATA



Turnbull method
Arbitrary censoring

June atrazine

90

80

70

60

50

40

30

20

10

0
0.0 0.1 0.2 0.3 0.4 0.5

P
er

ce
n

t

FIGURE 5.8 An edf for the atrazine data produced as a “cumulative failure time” plot for

interval (or arbitrary) censored data.
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FIGURE 5.9 Empirical distribution functions for lead concentrations of the Golden data set

produced by plotting the results of the cenfit command in NADA for R.
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5.5 PROBABILITY PLOT

Probability plots check the similarity of data to a normal or other specified distribu-

tion. The linear percentile scale of an edf is altered to match the percentiles of the

assumed distribution. If the data follow that distribution, then the plotted points will

fall along a straight line. For a normal distribution, the percentile scale is stretched out

at both ends (see Figure 5.10). Each observation is then plotted individually.

Waller and Turnbull (1992) surveyed several types of plots including probability

(orQ–Q) plots for censored data. For censored data, only uncensored observations are

plotted because the location at which to place a censored value is unknown.

Substitution of numbers such as one-half the reporting limit is invalid, as the shape

of the plot will change depending on the values substituted. Worse yet, some casual

readers will thenmiss the fact that no numerical values are actually available for these

data. However, the proportion of data below each reporting limit is computed in order

to determine the placement of the uncensored data, including those that fall between

reporting limits. So censored data affect the positions of the uncensored data on the

plot. All uncensored values above the highest reporting limit have probabilities

(percentiles or “normal quantiles”) that are identical to what they would have been if

all the data had been uncensored. Positions of uncensored data below the highest

reporting limit will be affected by the censored values. They should be. Probability

plots should not be drawn by simply deleting the censored values, plotting only the

uncensored observations. Doing this will result in incorrect calculated percentiles for

the plotted, uncensored observations, distorting the shape of the distribution.

A probability plot computed only using uncensored observations will not evaluate

whether the entire data set fits that distribution.

A probability plot for the June atrazine data is shown in Figure 5.10. Note that no

individual points are plotted for the lowest 35% or so of data. That is the effect of the

censored values. Had the censored data been deleted and a probability plot drawn, the
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FIGURE 5.10 Probability plot for the censored June atrazine data.
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lowest uncensored value at 0.02 (natural log of approx. �4) would have plotted at

the 5th percentile. This is obviously incorrect—33% of the original data are known to

be below 0.02. The lowest uncensored observation plots above the 33rd percentile

when the censored observations are correctly accounted for. Based on Figure 5.10,

the atrazine data appear to reasonably fit a lognormal distribution (the straight line).

For multiple reporting limits, statistical software will again assign percentile

values to uncensored observations while taking into account the proportion of

censored data below each reporting limit. All uncensored observations can be plotted,

even those located between reporting limits. Either Kaplan–Meier or robust ROS

(see Chapter 6) is used to estimate percentiles for the uncensored observations.

A probability plot for the atrazine data, altered to add a higher reporting limit at 0.05,

is shown in Figure 5.11. Note that seven uncensored observations are shown between

the two reporting limits.

Figures 5.8 and 5.10 were drawn using the %cros macro. This uses the ROS

estimates of percentiles with the Weibull plotting position. These are lognormal

probability plots, as the logarithms of data are compared to percentiles of the normal

distribution. Variations on probability plots include transforming the nonlinear

percentile scale to a linear “normal quantile” scale of a standard normal distribution,

as in Figure 5.12. Figure 5.12 is identical to Figure 5.10 except for the scale used on the

horizontal axis representing the normal distribution. In Figure 5.12, the median and

mean are at a standardized value of 0, and the slope of the line is in standard deviation

units. A point plotting at a normal quantile of 1 is one standard deviation above the

mean, or at about the 84th percentile. The linear scale is not as intuitive for the user as a

percentile scale, but is helpful in procedures where regression is computed on a

probability plot, as with ROS (see Chapter 6). TheWeibull plotting position results in

the largest value of 0.38 plotting approximately at the 96th percentile, and it is shown

to be somewhat of an outlier, lying off the center line representing the (log)normal

distribution.
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FIGURE 5.11 Probability plot for logarithms of censored data with two reporting limits.
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A probability plot for the June atrazine data is drawn using Minitab’s Survival

Analysis software in Figure 5.13 using the command.

Stat>Reliability/Survival>Distribution Analysis

(arbitrary censoring)>Distribution ID Plot

There are four differences between this plot and the ROS probability plot of

Figure 5.10, two important and two a matter of preference. The most important
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FIGURE 5.13 Probability plot of the atrazine data using Minitab’s survival analysis soft-

ware. A plotting position of i/n is used, so the largest observation is not shown.
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FIGURE 5.12 Probability plot of the atrazine data using quantiles of the standard normal

distribution on the horizontal axis instead of a nonlinear percentile scale.
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difference is that a plotting position of i/nwas used, resulting in a percent value of 1.0

that is off the scale of the plot. Therefore the largest value is not shown! This is not

good practice for empirical sample data, but is standard practice with commercial

software. The second important difference is that tied values are overplotted, assign-

ing all of them the same median percentile value rather than individual percentiles.

There is no reason not to assign individual percentiles to tied data as long as it is

obvious that there is noway to determinewhich percentile is associated with which of

the tied observations. Using themedian percentile and representingmultiple points as

one point tends to increase the correlation coefficient shown on the plot (see next

section). Third, Kaplan–Meier estimates of percentiles are used, which are slightly

different than the ROS estimates. Kaplan–Meier has much more theoretical support.

KM percentiles result in a slightly different value for the correlation coefficient than

the similar (but not identical) ROS percentiles. Finally, the axes are reversed from

Figure 5.10, with the data values on the horizontal scale and the percentiles on the

vertical scale. This is just a matter of preference.

A fourth version of a probability plot is shown for the atrazine data in Figure 5.14.

Here the fit to the distribution is performed by maximum likelihood (see Chapter 6)

rather than computing a least-squares line on the probability plot. Rather than using

the correlation coefficient of plotted data as the test for similarity to the lognormal

distribution, the Anderson–Darling (AD) test is used. Again note that due to the i/n

plotting position, the largest observation is missing.

5.5.1 Know the Procedures Used by Your Software

To allow plotting of the highest point in the data set, Waller and Turnbull (1992)

recommended using the Weibull i/(n þ 1) plotting position, and provided a similar

modification to Kaplan–Meier percentiles for data with censoring. One way to
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FIGURE 5.14 Probability plot of the atrazine data using maximum likelihood.
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accomplish this using commercial software is to add one artificial value higher than

the highest data value to the data set, and replotting. The artificial observation is then

the one not shown, and the actual data are plotted using the Weibull plotting position

of i/(n þ 1). The highest true observation will have a percentile less than 1 and be

shown on the plot. This fix-up may work, or not, depending on how and whether the

software is using that artificial, highest point. Make sure you understand what your

software is doing before taking this step! Many attributes of the plot may not be

correct if the numerical value of the artificial observation is used. Estimates of mean

and standard deviation, for example, will change if the added observation is included

in the computations. The test statistic for distributional fitting may no longer be valid.

But the plot will be correct.

Using Minitab as an example of one commercial software package, the mean,

standard deviation, and distribution-fitting test statistic will change based on the

value of the added artificial point IF the analysis is performed using maximum

likelihood. It will not matter as long as least-squares computations are performed.

Minitab’s least-squares software does not use the highest, 100th percentile observa-

tion at all! It was not using the highest of your original data valueswhen estimating the

mean, standard deviation, or correlation coefficient if you did not add the artificial

point! Without adding an additional point, the estimates given by Minitab’s least-

squares procedure are incorrect because an inappropriate plotting position is being

used. Therefore to obtain a plot and test equivalent to Figure 5.8, but computed with

Minitab’s built-in software for interval-censored data with a least-squares fit (allow-

ing the highest true atrazine observation to be at the 96th percentile), add an artificial

observation higher in value than all of your data and run the procedure. The value of

the artificial point will not matter, because the 100th percentile point is not used in the

least-squares calculations. Figure 5.15 shows the resulting probability plot, againwith

axes switched from those in Figure 5.8, andwith one point and percentile representing

all tied observations. The resulting PPCC of 0.973 is the equivalent to one of 0.951 in

Figure 5.8, with the difference being the different percentiles used (Turnbull/

Kaplan–Meier in Figure 5.15; ROS in Figure 5.8) and the single point representing

tied observations. The latter is the more important effect, tending to produce a higher

correlation coefficient as seen in Figure 5.15.

For the maximum likelihood fitting procedure in Minitab, however, DO NOTadd

an artificial, high point. The highest point is used in MLE calculations, resulting in

incorrect estimates.With an added point, the line estimate of the fitted distributionwill

change depending on the value of the artificial point. Instead, the mean, standard

deviation, and Anderson–Darling coefficient using the original input data set is

correct. Unfortunately, the highest point in the data set will have a plotting position of

i/n and not be shown on the plot (Figure 5.14).

Using NADA for R, a probability plot for the censored TCE data (Figure 5.16) is

drawn by plotting the results of an ROS analysis performed with the cenros command

(see Chapter 6 for more on the cenros command):

> tceros=cenros(TCEConc, TCECen)

> plot(tceros)
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FIGURE 5.16 Probability plot for the TCE data set using NADA for R.
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Note that a large proportion of the data are censored below reporting limits of 1, 2, and

5mg/L. Therefore, the first detected value (a detected 1) is plotted as a point at a

normal quantile of about 0.5, or near the 70th percentile. Seventy percent of

observations are less than 1 mg/L.

5.5.2 Testing Adherence of Censored Data to a Distribution Such

as the Lognormal

In addition to plots, hypothesis tests can provide a numeric measure of whether or not

data follow a specific distribution. Tests based on probability plots, including tests

applied to censored data, have been used for decades.

The Kolmorgorov–Smirnov (K–S) test for adherence to a distribution was applied

to censored data by Barr and Davidson (1973). The K–S test is considered lower in

power thanmost other tests for distributional adherence today, but amodification of it,

the Anderson–Darling test, was applied to censored data in 1976 (Pettitt, 1976). The

Anderson–Darling test is one of several tests commonly used today for this purpose.

Another popular test is the probability-plot correlation coefficient (PPCC) test. This

test is essentially the same as the Shapiro–Wilk test, the standard procedure for testing

distributional shape hypotheses over the past several decades. The PPCC test is easy to

compute. It is Pearson’s correlation coefficient between the data and their quantiles of

a distribution such as the normal—the data on a probability plot. If the data fall exactly

on a straight line, the correlation coefficient equals 1. As the correlation coefficient

decreases below 1, evidence builds against the hypothesis that data follow the

assumed distribution. PPCC is today one of the most commonly used tests for

distributional shape. It was applied to censored data by Verrill and Johnson (1988).

Royston (1993, 1995) showed that the PPCC test can adapt to provide a p-value when

there is one censoring limit. Unfortunately, commercial software has not often taken

advantage of this fact. Hawkins and Oehlert (2000) provided tables of critical values

for PPCC with two censoring thresholds, plotting the Kaplan–Meier percentiles for

uncensored values on the probability plot.

Figure 5.17 shows the fit of the June atrazine data to four distributions. An artificial

point was added to the top so that the i/(n þ 1) Weibull plotting position is used, and

the largest actual point is visible on the plot. In addition to the visual evaluation of

which plot is most straight, the value of PPCC closest to 1.0 provides a numerical

measure. The lognormal distribution appears to be the best choice among these four

distributions. In particular, a comparison of the lognormal to the normal distribution is

a common decision to be made in environmental studies. The higher PPCC here

indicates that the lognormal is a better choice for the atrazine data than is the normal

distribution.

A major difficulty with these procedures is that even though test statistics can be

calculated, with censoring there are currently no closed-form solutions to provide a

calculated p-value for the test.When the testswere developed, their authors conducted

MonteCarlo experiments to tabulate the p-values for a given test statistic, sample size,

and percent of censoring. The resulting tables are awkward to place into statistical

software, and so are not; p-values for censored data procedures are generally not
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calculated in commercial software. The user may take test statistics such as AD or

PPCC and go to a published table for tests on censored data. But p-values are

not generally reported in commercial software when testing the distribution of

censored data. As one newer approach, Ren (2003) used a bootstrapped approach

to compute p-values for tests on data that include interval-censored values.

5.6 X–Y SCATTERPLOTS

Scatterplots compare the values of two continuous variables, usually denotedX for the

variable plotted along the horizontal axis and Y for the variable on the vertical axis.

The paired X–Y values are visually inspected for patterns of correlation or trend—are

values of Y predictably high or low for given values of X? A dilemma comes when

either variable is censored—what numeric value should be used to place that

observation on the plot?

Unfortunately, the most common practice is to substitute one-half the reporting limit

and plot the fabricated data as if it were measured. The result is a false impression that

thesevalues are actually known, and that they are in all cases the same number.Neither is

true. For multiple reporting limits, plotting a fabricated value gives a false impression of

the comparison between observations. Avalue of<10 plotted as a 5 is shown as if it were

larger than a <3, when in fact the reverse might be true. All of the disadvantages of

substitution in numeric procedures carry over into scatterplots. A signal that is present

may be obscured. A signal may be shown that in reality does not exist.
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FIGURE 5.17 Probability plots for four possible distributions of the June atrazine data.

The lognormal distribution fits best. Its PPCC is closest to 1.0.
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Since censored values are known to be within an interval between zero and the

reporting limit, representing these values by an interval, such as with a line segment,

provides a visual picture of what is actually known about the data. Figure 5.18 shows a

scatterplot of dissolved iron concentrations in summer samples from theBrazosRiver,

TX, reported by Hughes and Millard (1988). They investigated whether trends

occurred in iron concentrations over a 10-year period. Iron concentrations were

censored at two reporting limits during the study, at 10mg/L in the earlier years and at

3mg/L in later years. Uncensored observations are shown as single points, as usual.
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FIGURE 5.18 Scatterplot of dissolved iron concentrations over time. Censored observations

shown as dashed lines. Data from Hughes and Millard (1988).
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cenxyplot in NADA for R. Data from Hughes and Millard (1988).
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Censored observations are shown as dashed gray lines between zero and the

reporting limit.

Censored scatterplots clearly illustrate the interval-censoring of the data. Lines are

best shown as grayed-out or dashed rather than fully dark to emphasize that any one

location within the interval is less likely than the single location shown for each

detected observation. InNADA for R, the cenxyplot command produces a similar plot

(Figure 5.19), where the arguments for the command line are (x, x censoring indicator,

y, y censoring indicator).

> cenxyplot(Year, YearCen, Summer, SummerCen)

EXERCISES

5-1 Plot a censored boxplot and censored histogram forMillard andDeverel’s (1988)

zinc concentration data found in the data set CuZn. Use theMinitabmacros chist.

mac and cbox.mac. The zinc concentrations will need to be split into two

columns, one for each zone, to plot the censored histograms. The censored

boxplots can be plotted with one command

%cbox c3 c4 c5 ðor abbreviating; %cbox c3-c5Þ

and a boxwill be drawn for each group listed in column c5.Describe the results—

what characteristics of the data will likely be important for further data analysis?

5-2 The atrazine data used in this chapter are found in the data set Atra. Draw an

empirical distribution function plot (also called a cdf) for the June atrazine data.

In Minitab this is done using the Graph > Empirical cdf command. Using

the Distribution dialog box, select “lognormal” as the best-fitting distribu-

tion. A lognormal distribution will be plotted as a blue line, and the edf with a red

step function. Compare the resulting plot to the survival function plot (black solid

line) of Figure 5.7. How are the two plots related?
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6 Computing Summary Statistics
and Totals

More articles have been written comparing and recommending methods to compute

summary statistics than for any other type of analysis of censored environmental data.

As early as 1967, Miesch recommended use of an approximate maximum likelihood

estimation (MLE) for computing estimates ofmean abundances (mass) ofmetals with

censored measurements in rock samples (Miesch, 1967). Nehls and Akland (1973)

recommended using one-half the reporting limit (RL) to compute summary statistics

for air quality data. Gilbert and Kinnison (1981) applied several methods, including

probability plotting procedures, to censored radiochemical data. Chung and Spirito

(1989) found that MLE provided better estimates of summary statistics than did

substitution. Helsel (1990) recommended the use of survival analysis methods for

censored data, though the idea of transforming left-censored data to right-censored

values had already been published by Ware and DeMets (1976). Use of each of these

methods continues today. A review of several papers testing these methods and

variations thereof for estimation of means, medians, variances, and other parameters

is found at the end of this chapter. First, however, the primary methods available for

computing summary statistics of censored data are introduced. Methods are classed

into the three approaches of Chapter 2—simple nonparametric methods after

censoring at the highest reporting limit, maximum likelihood methods for survival

analysis, and nonparametric survival analysis methods. Imputation procedures

(robust ROS, robust MLE) are also included. Following a detailed description of

each method, articles comparing their performance under a variety of conditions are

reviewed and summarized.

6.1 NONPARAMETRIC METHODS AFTER CENSORING

AT THE HIGHEST REPORTING LIMIT

6.1.1 Binary Methods

Consider a small example data set of 11 observations:

< 1 < 1 3 < 5 7 8 8 8 12 15 22

Statistics for Censored Environmental Data Using Minitab� and R, Second Edition.
Dennis R. Helsel.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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To perform binary methods the data are recoded as either less than the highest

reporting limit (LT), or greater than or equal to the highest limit (GE). For the 11

observations with a highest reporting limit of 5, there are four LTs and seven GEs:

<1 <1 3 <5 7 8 8 8 12 15 22

LT LT LT LT GE GE GE GE GE GE GE

The binary summary of data is stated as follows: there are 7 of 11 or 64%of the data

equal to or exceeding a value of 5. A mean, a median, a standard deviation are not

computed. There are 64% “detects” at a reporting limit of 5.

6.1.2 Ordinal Methods

Ordinal methods are those that use the ordering (or ranking) of data to perform a

procedure. Ordinal methods have the advantage that they can be used on data without

a numeric value, but which can be ranked as smaller or larger than other data.

Examples of ordinal data include qualitative measurements on a scale such as low/

medium/high. Censored observations below a threshold are ranked as smaller than

uncensored observations above the threshold.With censoring there will be many ties.

Again consider the small set of 11 observations, along with their ranks:

Data: <1 <1 3 <5 7 8 8 8 12 15 22

Ranks: 2.5 2.5 2.5 2.5 5 7 7 7 9 10 11

The ranks for data tied at the same value are themselves tied at a value equal to the

average ormedian of the ranks theywould have had if there had been no ties. So for the

three tied uncensored values at 8, which would have had ranks 6, 7, and 8 if they could

be distinguished, all three are assigned a rank of 7, the median of the three ranks. This

preserves the sum of the ranks, a statistic used inmany nonparametric tests. Similarly,

all four of the lowest values are recensored as below the highest reporting limit of 5,

and assigned a rank of 2.5, the median/mean of ranks 1–4. Note that we know that the

detected 3 is higher than the <1s, but we do not know which of these are higher or

lower than a<5, so we cannot uniquely assign ranks to them.We do know that all are

below 5, and must consider them all tied below 5 until we understand the concept of

scores in nonparametric survival analysis procedures. If we erroneously assigned half

the reporting limit to the<5 it becomes a 2.5 and would be considered lower than the

detected 3. That is a possibly false ordering that is not known from the data; it is

fabricated and is more than what we truly know. This fabricated ordering could

contribute to a false result in a subsequent test if substitution were used. Instead,

identical ranks below the highest reporting limit state no more than what is known,

that these are the four lowest values in the data set, below the remaining detected data.

Following this with a nonparametric test using the ranks gives a result that will not

give a false positive (false rejection), as substitution could. It is simple and reliable. To

obtain more power, and therefore fewer false negatives (not seeing a signal that is

there), use the later survival analysis methods.
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Percentiles can be computed using the ordinal approach. The 50th percentile

(median) is the observation whose position is one-half the way between 0 and

n þ 1¼ 12, or the 6th observation from the bottom. Half of the 11 observations are

equal to or above the 6th ranked value, and half are equal to or below. The 50th

percentile is therefore an 8, one of the three observations tied at that level. Note

that if we knew the numerical value of the <5, the median would still be 8. If we

knew the numerical values of the <1s, the median would still be 8. Therefore,

we can confidently state that the sample median of this small data set is 8, and

the 75th percentile is 12. The 25th percentile is <5. Percentiles for all values

above the highest reporting limit are known. The percentiles for these data can be

listed as follows, with a range of percentages representing the censored and

tied observations.

Data: <1 <1 3 <5 7 8 8 8 12 15 22

Ranks: 2.5 2.5 2.5 2.5 5 7 7 7 9 10 11

Percentiles: [0.08 to 0.33] 0.42 [0.50to0.67] 0.75 0.83 0.92

6.2 MAXIMUM LIKELIHOOD ESTIMATION

Maximum likelihood estimation requires the assumption that a distribution (normal,

lognormal, or some other distribution)will closely fit the shape of the observed data.A

mean and standard deviation for the distribution are computed based on the observed

uncensored values, and the observed proportions of data below one ormore censoring

thresholds. Optimization of the mean and standard deviation produces the specific

distribution that best fits the observed data.

In the late 1950s and early 1960s, several papers by A.C. Cohen introduced MLE

for determination of the mean and variance of censored data. The method was fairly

computer intensive, beyond the computing power available to most people at that

time. So Cohen developed a version that uses a lookup table to estimate the mean

and variance of a singly censored (one reporting limit) normal distribution by

adjusting downward the statistics for uncensored (detected) observations in response

to the amount of censoring (Cohen, 1959). He presented an expanded lookup table

with more detail in a subsequent article (Cohen, 1961). Though used by Miesch

(1967) to estimate statistics of geochemical data, the method was not popularized for

environmental sciences until Gilbert’s 1987 book on environmental pollution

monitoring.

Cohen’s table-adjustment method is unnecessary today, since more accurate and

versatile solutions of the likelihood equations are possible with modern statistical

software. It has one serious drawback—the tables are restricted to the case of one

reporting limit. Most environmental data today contain multiple limits. These are

easily handled by MLE methods available in commercial statistical software, but not

by Cohen’s method. However, the table-adjustment method is still sometimes

recommended (USEPA, 2002a), and was considered “new” in some fields as late

as 1990 (Perkins et al., 1990).
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Environmental data are more often similar to a lognormal than to a normal

distribution, so the mean and variance of the logarithms are more typically estimated

by MLE and subsequently reconverted to estimates in original units. The traditional

formulae for reconversion are derived from the mathematics of the lognormal

distribution, and are found inmany textbooks, includingGilbert (1987) andAitchison

and Brown (1957):

m̂ ¼ exp m̂ln þ
ŝ2
ln

2

� �
ð6:1Þ

ŝ2 ¼ m̂½expðŝ2
lnÞ� 1� ð6:2Þ

C:V: ¼ ½expðŝ2
lnÞ� 1�1=2 ð6:3Þ

where m̂ln and ŝ
2
ln are estimates of the mean and variance, respectively, of the natural

logarithms of the data. These equations will work reasonably well if the data are close

to lognormal in shape, and if the estimates in log units (m̂ln and ŝ
2
ln) are close to their

true values. However, for small samples the estimates are typically poor enough to

bias estimates in original units (Cohn, 1988), leading to overestimation of the mean

and variance.MLEmethods have not been found toworkwell for estimating themean

or variance of small (n< 30; 50–70 for skewed populations) samples in the papers

reviewed later, particularly those assuming a lognormal distribution.

Estimates for percentiles are obtained by computing the percentiles in log units,

assuming that the logarithms follow a normal distribution, and then retransforming.

The kth percentile is therefore computed as

pk ¼ expðmln þ zkslnÞ ð6:4Þ

where pk is the kth percentile value in original units, and zk is the kth percentile of a

standard normal distribution. For the median, k¼ 0.5 and zk ¼ 0, so that

p0:5 ¼ expðmlnÞ. The exponentiated mean of the logarithms is sometimes given a

special name, the geometric mean. When the logarithms of data follow a normal

distribution, the geometricmean estimates themedian of the data’s original units (and

not the mean).

6.2.1 An Example

Arsenic concentrations were measured in urban streams on the island of Oahu by

Tomlinson (2003). The 24 arsenic concentrations (in mg/L) making up the Oahu data

set are

0.5 0.5 0.5 0.6 0.7 0.7 <0.9 0.9 <1.0 <1.0 <1.0 <1.0

1.5 1.7 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 2.8 3.2
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Three reporting limits are listed, along with uncensored observations below the

lowest reporting limit. It is likely that these data have been subjected to insider

censoring (the<0.9 was actually a nondetect of<0.45, etc.), but that is not dealt with

here. MLE estimates can be thought of as the statistics of the distribution most likely

to have produced the observed data, both censored and uncensored, given that the

underlying process follows the assumed distribution. Checking this distribution

assumption before computing estimates is a crucial first step. One method for

checking the shape of a distribution is the probability plot (see Chapter 5). Figure 6.1

is a probability plot for the Oahu arsenic data. Uncensored values are plotted as solid

circles, and a lognormal distributionwith the samemean and standard deviation as the

data is represented by the straight line. The data points follow a straight line pattern

reasonably well for all but the lowest concentration. Therefore, an assumption of a

lognormal distribution for these data should produce reasonable estimates for

summary statistics.

6.2.2 Cohen’s Table Adjustment Method—Example

To illustrate how Cohen’s table adjustment method is computed, the procedure of

Gilbert (1987) is applied to theOahu data. In order to do this, all data below the highest

reporting limit must be considered censored, as the method works only for one

reporting limit. In otherwords, all values below 2 become<2, resulting in a data set of

<2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0

<2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 2.8 3.2

1. Compute h, the proportion of measurements censored. For the above data,

h¼ 22/24 or 0.917. 91.7% of the observations are “censored” below the highest

limit.
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FIGURE 6.1 Lognormal probability plot for the Oahu arsenic data.

66 COMPUTING SUMMARY STATISTICS AND TOTALS



2. Compute the mean and variance from the uncensored observations. Given that

most concentration data more closely follow a lognormal than a normal

distribution, first convert the data to natural logarithms and then compute the

meanu and varianceu of the uncensored observations: meanu ¼ 1:096 and
varu ¼ 0:0089 ðlogunitsÞ:

3. Compute g ¼ ððvaruÞ=ðmeanu �DLÞ2Þ, where DL is the reporting limit (in log

units).

¼ 0:0089

ð1:096� 0:693Þ2 ¼ 0:0549

4. Estimate l from the table in either Cohen (1961) or Gilbert (1987). For h¼ 0.90

and g ¼ 0:05, l̂ ¼ 3:314.

5. Estimate the mean and variance of the log-transformed data.

mln ¼ meanu � lðmeanu �DLÞ ¼ 1:096� 3:314ð0:403Þ ¼ � 0:24
s2
In ¼ varu þ lðmeanu �DLÞ2 ¼ 0:0089þ 3:314ð0:162Þ ¼ 0:547

6. Estimate the mean and variance in original units using equations 6.1 and 6.2:

m̂ ¼ expð� 0:24þ 0:547=2Þ ¼ 1:034
ŝ2 ¼ ð1:034Þ2 � ½expð0:547Þ� 1� ¼ 0:778

For a given data set and assumed distribution, differences in summary statistics

between Cohen’s table-lookup estimates and MLE estimates using statistical soft-

ware can be attributed both to the approximations built into the lookup table, and to the

additional censoring required by table lookup for data sets with more than one

reporting limit.

6.2.3 MLE Using Statistical Software—Example

MLE methods are available in commercial statistics packages for data in the interval

endpoints format (see Chapter 3). For true nondetects or values reported with a less-

than indicator (such as <1), the lower bound is considered to be zero. Minitab�’s

Stat > Reliability/Survivalmenu selection includes routines for interval-

censored data in its MLE procedures. The appropriate option is Parametric

Distribution Analysis – Arbitrary Censoring. This is a parametric

analysis because a distribution will be assumed. It is arbitrary censoring because the

data are not right-censored—“arbitrary” censoring covers the other options, including

left- and interval-censored data. A lower and upper endpoint must be specified for

each observation. For censored observations the lower endpoint (“Start”) is often set

at zero, and the upper endpoint (“End”) is set to the reporting limit. This states that

censored observations are located between zero and the reporting limit (the

“censoring interval”). Uncensored observations have the same value in both the

Start and End variables. The resulting parameter estimates describe the distribution
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with the maximum likelihood of having produced a data set with the observed

uncensored values and the proportions of censored data below each reporting limit.

Applying MLE to the Oahu data results in the output shown in Table 6.1.

6.2.4 MLE Methods Using R

The R statistical software package (see Chapter 14) contains functions for computing

distributional characteristics and performing regressions with interval-censored data.

The contributed package NADA simplifies and standardizes the data input structure

for censored data routines in R. Using the NADA package, compute the MLE

estimates by typing

data(Oahu)

attach(Oahu)

LowAs=As*(1-AsCen)

AsStats=cenmle(As,AsCen, dist="gaussian")

AsStats

n n.cen median mean sd

24.0000000 13.0000000 1.0200176 1.0200176 0.7451676

and if assuming a lognormal distribution,

AsLog=cenmle(As,AsCen, dist="lognormal")

AsLog

n n.cen median mean sd

24.0000000 13.0000000 0.7766007 0.9452585 0.6559261

6.2.5 Interval Censoring with Detection and Quantitation Limits

Both detection and quantitation limits can be incorporated into a parametric frame-

work by differentiating between the interval endpoints for the two types of data being

TABLE 6.1 Summary Statistics for the Oahu Data Using the Lognormal MLE

Method in Minitab

95.0% Normal CI

Estimate Standard Error Lower Upper

Mean (MTTF) 0.9453 0.1511 0.6910 1.2931

Standard deviation 0.6559 0.1979 0.3631 1.1849

Median 0.7766 0.1325 0.5559 1.0850

First quartile (Q1) 0.5088 0.1098 0.3334 0.7766

Third quartile (Q3) 1.1854 0.1903 0.8653 1.6238

Interquartile

range (IQR)

0.6766 0.1472 0.4417 1.0363
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input to maximum likelihood. In the data set below, a quantitation limit of 1 was used

to censor results. Values measured between the detection limit of 0.5 and the

quantitation limit were reported as qualified with a remark code signaling a warning.

The remark code was dropped by the user, as is often the case, and numbers between

0.5 and 1 used as though they were measured as precisely as values above the

quantitation limit of 1. Values measured below 0.5 were reported as <1, an insider

censoring procedure. The resulting data set is given in the left-most column named

“Values from the lab.”

Value from the lab StartInt EndInt Start End

<1 0 0.5 0 0.5

<1 0 0.5 0 0.5

<1 0 0.5 0 0.5

<1 0 0.5 0 0.5

<1 0 0.5 0 0.5

<1 0 0.5 0 0.5

<1 0 0.5 0 0.5

<1 0 0.5 0 0.5

<1 0 0.5 0 0.5

<1 0 0.5 0 0.5

0.5 0.5 1.00 0.5 0.5

0.55 0.5 1.00 0.55 0.55

0.6 0.5 1.00 0.6 0.6

0.6 0.5 1.00 0.6 0.6

0.7 0.5 1.00 0.7 0.7

0.7 0.5 1.00 0.7 0.7

0.9 0.5 1.00 0.9 0.9

1.5 1.5 1.5 1.5 1.5

1.7 1.7 1.7 1.7 1.7

2.8 2.8 2.8 2.8 2.8

3.2 3.2 3.2 3.2 3.2

5.7 5.7 5.7 5.7 5.7

8.1 8.1 8.1 8.1 8.1

Biased (high) estimates of the mean and percentiles will result from insider

censoring if the data are used as reported in the left-hand column. To more correctly

compute amean for these data, maximum likelihoodwill be performed after recoding

censored values into intervals (theStartInt andEndInt columns).All values reported as

<1 (actuallymeasured as below 0.5) are considered to bewithin the interval 0 and 0.5,

showing that they were true nondetects. This restores the original measured range of

values and avoids insider censoring. To address uncertainty in the values between the

two limits, all valuesmeasured between 0.5 and 1 are recoded to bewithin the interval

0.5–1—betweenthelimits.Quantifieddata,valuesmeasuredabove1,are inputwith the

same value in both the StartInt and EndInt columns. The software reads this as a

quantified singlevalue rather than an interval.Minitabproduces the summary statistics

of Table 6.2 using MLE and arbitrary censoring, assuming a lognormal distribution:
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If insider censoring had been incorrectly used so that the 10 censored observations

were assigned an interval between 0 and 1 instead of 0–0.5, a biased-high estimate of

the mean would have been produced. Interval censoring methods for data analysis

may alleviate the perceived need for insider censoring, resolving some of the conflict

between a user’s request for “numbers” and a laboratory analyst’s protective reporting

measures. Of course if the values measured between the limits of 0.5 and 1.0 are

considered sufficiently reliable, those numbers can be considered individual values

(Start and End columns at the right-hand side of the data set) rather than using an

interval for data between the limits. The reporting limit is then the detection limit.

MLE estimates become those of Table 6.3. Note there is little difference for parameter

estimates using the two coding schemes. This should provide confidence that interval

censoring captures most of the information present in the data between the limits.

6.3 THE NONPARAMETRIC KAPLAN–MEIER AND TURNBULL

METHODS

The standardmethod for estimating summary statistics of censored survival data is the

nonparametric Kaplan–Meier (KM) method. Yet asWare and DeMets stated in 1976,

TABLE 6.2 Summary Statistics from the Lognormal MLE Method for

Interval-Censored Data

Standard
95.0% Normal CI

Estimate Error Lower Upper

Mean (MTTF) 1.35667 0.517576 0.642303 2.86557

Standard deviation 2.81139 2.09520 0.652472 12.1138

Median 0.589618 0.184836 0.318957 1.08995

First quartile (Q1) 0.246835 0.103307 0.108682 0.560605

Third quartile (Q3) 1.40842 0.425117 0.779488 2.54482

Interquartile range (IQR) 1.16158 0.383806 0.607862 2.21973

Data below the reporting limit and data between the limits were input as different intervals.

TABLE 6.3 Summary Statistics from the Lognormal MLE Method Where Only

Values Below the Detection Limit are Censored

Standard
95.0% Normal CI

Estimate Error Lower Upper

Mean (MTTF) 1.31499 0.502001 0.622270 2.77888

Standard deviation 2.74088 2.04200 0.636402 11.8045

Median 0.568820 0.178298 0.307726 1.05143

First quartile (Q1) 0.237544 0.0993348 0.104663 0.539132

Third quartile (Q3) 1.36208 0.411049 0.753931 2.46081

Interquartile range (IQR) 1.12454 0.371099 0.588954 2.14719

70 COMPUTING SUMMARY STATISTICS AND TOTALS



“Although the Kaplan–Meier estimate is fundamental to survival data analysis, it is

often overlookedwhen a left or right censored data [sic] arises in other settings” (Ware

and DeMets, 1976). This has certainly been true in the setting of environmental

sciences.

Kaplan–Meier is implemented in commercial statistics packages offering routines

for survival analysis. However, it only accepts right-censored data. Interval-censored

data such as the Oahu arsenic data must either be treated as left-censored and flipped,

or the Turnbull method for interval-censored data (a variation of Kaplan–Meier) is

used to compute summary statistics. Minitab (version 16) has the KM method in its

Stat > Reliability/Survival menu, under a submenu selection named

Distribution Analysis – Right Censoring > Nonparametric Dis-

tribution Analysis. If all interval-censored data have a lower bound of 0,

nonparametric analyses can incorporate them as flipped left-censored values, ignor-

ing the magnitude of the lower bound. The lowest values are simply the lowest values

with the lowest ranks, and when flipped become the highest flipped values with the

mirror image ordering of ranks. Information that a lower bound of zero exists is not

used. However, when some of the interval-censored values have a nonzero lower

bound as with data between the detection and quantitation limits, interval-censored

methods such as the Turnbull estimator should be used.

To illustrate the use of Kaplan–Meier, the maximum value in the Oahu data is 3.2,

so 5 is arbitrarily chosen as a value larger than themaximum. LetM equal this flipping

constant of 5. Right-censored data are constructed by subtracting all observations

from M

Flipi ¼ Mi � xi ð6:5Þ

for all observations xi. The result is stored in a column labeled Flip in Table 6.4.

The KM method produces estimates of the survival probability function S for

right-censored data. The survival function S is the probability that a data value

TABLE 6.4 Computation of Kaplan–Meier Survival Probabilities for the Oahu

Data (n¼ 24)

As

(mg/L)
(detects) Flip

Rank

r

Number

at Risk

b, b¼
(n � r þ 1)

Number of

Detects

d at

that Value

Incremental

Survival

p¼ (b � d)/b

S, Survival

Probabilities

3.2 1.8 1 24 1 23/24 0.9583

2.8 2.2 2 23 1 22/23 0.9167

1.7 3.3 11 14 1 13/14 0.8512

1.5 3.5 12 13 1 12/13 0.7857

0.9 4.1 17 8 1 7/8 0.6875

0.7 4.3 19 6 2 4/6 0.4583

0.6 4.4 21 4 1 3/4 0.3438

0.5 4.5 22 3 3 0/3 0.0000

Censored observations are accounted for through the rank statistic r.
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T > y for any specific values y. If computed using flipped data, S¼ Prob(Flip > y), or

Prob(M� x > y), or Prob(x<M� y). The latter expression shows that survival

probabilities are also the cumulative distribution function of the original x data.

Computation of the survival function after flipping the Oahu data is illustrated in

Table 6.4.

Table 6.4 has one row for each unique value of uncensored observations in the data

set (tied data get one row). The survival probabilities S are computed for each unique

value. Using the flipped values, the uncensored observations (“failures” or “deaths” in

survival analysis terminology) are ranked from small to large, accounting for the

number of censored data in between each detected observation. For example, there are

eight censored values for the Oahu data at<2.0, between the flipped values of 2.2 and

3.3 (see Table 6.4). The rank of the surrounding flipped observations therefore jumps

from 2 to 11; KM places each nondetect at its reporting limit prior to ranking. The

“number at risk” b equals the number of observations, both detected and censored, at

and below each detected concentration. The number of uncensored observations at

that concentration is d, where d is greater than 1 for tied values. The incremental

survival probability is the probability of “surviving” to the next lowest uncensored

concentration, given the number of data at and below that concentration, or ðb� dÞ=b.
The survival function probability is the product of the j¼ 1 to k incremental

probabilities to that point, going from high to low concentration for the k uncensored

observations.

S ¼
Yk
j¼1

bj � dj

bj
ð6:6Þ

For example, the survival function probability of 0.6875 for the concentration at 0.9

equals 0.7857(7/8). Note that for the case of ties, KM assigns the smallest rank

possible to each observation, rather than the average rank as is done for most

nonparametric tests. KM will assign a probability of 0 to the smallest observation

(largest flipped value), if there are no censored observations below this value in the

data set. This represents a plotting position of i/n for the empirical distribution

function (edf) of flipped values, so that the probability of exceeding the last value is 0.

If the smallest concentration is a censored value, as is usually the case, the smallest

detected observation will have a nonzero exceedance probability, while probabilities

are indeterminate for all censored observations below the lowest detected

observation.

A plot of the survival function for the Oahu data is shown in Figure 6.2. The KM

analysis of Flip produces the following estimates of summary statistics:

Standard 95.0% Normal CI

Mean(MTTF) Error Lower Upper

4.0510 0.1647 3.7283 4.3738

Median ¼ 4.3000

IQR ¼ 0.4000 Q1 ¼ 4.1000 Q3 ¼ 4.5000
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Location estimates for flipped data (mean, median, other percentiles) must be

retransformed back into the original scale by subtraction from the constant M

used to flip the data. When the above estimates for mean, median, and Q1 and Q3

are subtracted from the flipping constant of 5, the results are those printed in

Table 6.5. Estimates of variability (variance, standard deviation, standard error,

IQR) are the same for both the flipped and original units; no retransformation is

needed.

How were these summary statistics estimated by KM? For percentiles, the

estimate is the minimum X-value on the survival function graph that is intersected

by the line drawn at the probability value from the Y-axis. It is the smallest flipped

observation having a survival probability equal to or less than the stated prob-

ability of the percentile. The 25th percentile (Q1) has a survival probability

(probability of exceedance) of 0.75. A horizontal line drawn from 0.75 on the

Y-axis intersects the vertical line at an X-value of 4.1. Looking at Table 6.4, the

flipped observation at 4.1 is the smallest flipped value for which the survival

probability is 0.75 or less. Subtracting this from the flipping constant of 5, the 75th

percentile of the original data is 0.9. The process is similar for other percentiles.

When more than 50% of data are below the lowest reporting limit, and the smallest

observation (largest flipped value) is censored, the median cannot be estimated as a

single number. It is simply <RL, where RL is the lowest reporting limit. The KM

software will report this as a missing value. A method that assumes some sort of

model for the data distribution must be employed if a single number estimate for

TABLE 6.5 Summary Statistics Using Kaplan–Meier for the Oahu Arsenic Data

Mean Standard Deviation Standard Error Q1 Median Q3

0.949 0.807 0.1647 0.500 0.700 0.900
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FIGURE 6.2 Survival function plot (Kaplan–Meier method) for the flipped Oahu data.
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the median is required. Two possible methods for doing so include parametric

MLE (previous section) and robust ROS (next section).

KM methods include an estimate for the standard error of the survival function.

Like the function S itself, the standard error is a step function that changes for each

detected (uncensored) observation. Standard errors are computed most often to

estimate confidence intervals around the estimated percentiles, describing the cer-

tainty with which that percentile value is known (see Chapter 7). Plots of survival

functions often include the interval boundaries based on the standard error. The

standard error formula, known as Greenwood’s formula, is derived in many books on

survival analysis, including Collett (2003),

Std: error of S ¼ s:e: S½ � ¼ S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
j¼1

dj

bjðbj � djÞ

vuut ð6:7Þ

where bj is the “number at risk” and d j is the number of uncensored observations

(see Table 6.4) at each of the k values for uncensored observations.

6.3.1 KM Estimates of Mean, Variance, and Standard Error

The mean is generally considered less useful than the median in survival analysis, as

distributions of medical or other “lifetime” data are sufficiently skewed that the mean

is not a typical value, but is strongly influenced by a few unusual values. The mean is

often not reported by the software. However, the Kaplan–Meier estimate of the mean

is unbiased and as efficient or more so than parametric methods for estimation (Meier

et al., 2004). It may be computed by integrating the area under the KM survival curve.

To see why this is so, consider the usual equation for the mean of n observations,

m ¼ P
x=n. The equation can be stated as m ¼ Pðfi=nÞxi, where fi is the number of

observations at each of the i uniquevalues ofx, so that fi=n is the proportion of the data
set at that value. Themean is the sum of the products of the proportion of data for each

value times the magnitude of the observation’s value. This is just what is accom-

plished when integrating under the KM survival curve (Figure 6.3). The curve is

divided by drawing horizontal lines at the value of each detected observation. The

resulting multiple rectangles have as their height the estimated proportion of data at

that value, with the proportions summing to 1. The width of the rectangle is the

magnitude of the observation, x. The mean is estimated by multiplying the width of

each rectangle by its height to get the area, and then summing the areas over all

rectangles.

When the smallest observation (largest flipped value) is censored, the end of the

edf/survival function is unknown. This is not an issue with establishing percentiles,

but is when integrating areas to compute the mean because thewidth of the final bar is

unknown. To estimate the mean, the convention in survival analysis is to use the

censoring threshold to represent the censored value. A<1 stops thewidth of the bar at

1, as it is unknown how much farther down toward zero the concentration actually

goes. This convention is called “Efron’s bias correction” (Klein and Moeschberger,
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2003, p. 100) because it is less biased than stopping the final bar at the lowest detected

value somewhere above 1. It produces an estimate of the mean in original units that is

biased high (the mean of the flipped data is biased low). If there is only one reporting

limit, the result is that the mean is identical to a substitution of the reporting limit for

censored observations. As this occurs only at the smallest reporting limit when there

are multiple limits, the positive bias in the KMmean is much less than with simplistic

substitution of the reporting limit when there are multiple reporting limits. However,

the “stubbornness” of a nonparametric procedure in not extrapolating below the

lowest reporting limit reduces the usefulness of the KM method for data when

estimating the mean (not the percentiles) with one reporting limit.

Estimates of the standard error of the mean are often produced by survival analysis

software to establish a confidence limit around the mean. These limits assume either

that the data follow a normal distribution, or that there are sufficient numbers of

observations to invoke the Central Limit Theorem (CLT). The CLT states that even if

the data do not follow a normal distribution, with sufficient data the distribution of the

samplemean itself follows a normal distribution. The theorem is usedwith parametric

approaches to data analysis, and is becoming less important as bootstrap procedures

replace purely parametric approaches. Lee (2003) shows that for m uncensored

values, n total observations, and the cumulative areas Ar, r¼ 1,. . ., m under the

Kaplan–Meier curve, the variance of the mean is computed using the formula inside

the square root sign of equation (6.8).Note themultiplication by the ratio ofm/(m� 1)

to obtain an unbiased sample estimate of the variance. Finally, the standard error is the

square root of the variance of the mean.

Std: error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m

m� 1

� �Xm
r¼1

A2
r

ðn� rÞðn� rþ 1Þ

s
ð6:8Þ
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FIGURE 6.3 Computing the mean by integrating under the Kaplan–Meier survival curve.

The total area is the KM estimate of the mean.
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Estimates of standard deviation of observations are even of less interest than themean

in traditional survival analysis due to the skewness found in most survival data. It

provides a poormeasure of thevariability of datawhen those data are strongly skewed.

Environmental data are similarly skewed, but if an estimate for the standard deviation

is justified, it can be computed “through the back door” using equation (6.9). For

uncensored data, the standard error of the mean equals the standard deviation (s.d.)

divided by the square root of the sample size n.

Std: error ¼ s:d:ffiffiffi
n

p ð6:9Þ

Therefore, multiplying the standard error by
ffiffiffi
n

p
will estimate the standard deviation.

The standard deviation for the Oahu data estimated by this method is shown in

Table 6.5.

6.3.2 Minitab Calculation of Kaplan–Meier Procedures

The Minitab macro KMStats (available on the Practical Stats web site practicalstats.

com/nada) performs all of the flipping, computation, and retransformation of results

back to the original units. If your censored data all have a lower bound of 0, and so can

be considered left-censored, they can be flipped to right-censored data and Kaplan–

Meier computations performed in one easy step. If some of your censored data have a

nonzero lower bound, instead use the interval-censored methods of the next section.

For the Oahu data the command

%kmstats c1 c2;

cens 0.

produces the output

Statistics using Kaplan–Meier, with Efron bias correction

Left-Censored data

Mean Arsenic 0.948958

Standard error 0.164689

Standard Deviation 0.806807

95th Percentile 2.80000

90th Percentile 1.70000

75th Percentile 0.900000

Median 0.700000

25th Percentile �

10th Percentile �

6.3.3 Calculation of Kaplan–Meier Procedures Using R

The NADA for R function cenfit will compute nonparametric Kaplan–Meier esti-

mates of summary statistics. For the Oahu data,
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Askm=cenfit(As,AsCen)

Askm

n n.cen median mean sd

24.0000000 13.0000000 0.7000000 0.9489583 0.8068068

and typing summary of a cenfit object will give the table of percentiles (prob)

summary(Askm)

obs n.risk n.event prob std.err 0.95LCL 0.95UCL
1 0.5 3 3 0.0000000 NaN NaN NaN

2 0.6 4 1 0.3437500 0.15381284 0.04228238 0.6452176

3 0.7 6 2 0.4583333 0.15669579 0.15121522 0.7654514

4 0.9 8 1 0.6875000 0.12592662 0.44068835 0.9343116

5 1.0 12 0 0.7857143 0.09842664 0.59280161 0.9786270

6 1.5 13 1 0.7857143 0.09842664 0.59280161 0.9786270

7 1.7 14 1 0.8511905 0.08200806 0.69045764 1.0000000

8 2.0 22 0 0.9166667 0.05641693 0.80609151 1.0000000

9 2.8 23 1 0.9166667 0.05641693 0.80609151 1.0000000

10 3.2 24 1 0.9583333 0.04078938 0.87838763 1.0000000

Figure 6.4 shows that plotting a cenfit object in NADA for R results in an edf of

the data.
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FIGURE 6.4 Empirical distribution function (edf) of the censored Oahu arsenic data, using

NADA for R’s cenfit command.
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6.3.4 Turnbull Interval-Censored Method: Statistics for Data that Include

(DL to RL) Values

Censored environmental data are most easily represented as interval-censored, with a

lower and upper boundary of concentration. Data that are true nondetects have a lower

boundary of zero—concentrations might truly be zero—and the data can be con-

sidered left-censored as well as interval-censored. Censored data above the detection

limit, such as those between the detection and quantitation limits, have a nonzero

lower boundary. These data are interval—rather than left-censored. In an important

paper, Turnbull (1976) demonstrated how to define a survival function (edf)

for interval-censored data and thereby establish percentiles. Mathematical details

of the procedure may be found in Turnbull’s original article or in the book by

Sun (2006).

For n observations within the intervals [ai, bi], i¼ 1 to n, where ai are the lower

bounds and bi are the upper bounds, the survival function S [ai, bi] can be computed

where

S ½ai; bi� ¼ S ½ai� � S ½bi� ð6:10Þ

In other words, the probability of being between ai and bi equals the probability of

exceeding the lower bound aiminus the probability of exceeding the upper bound bi.

Percentiles for the Oahu data are estimated using the Turnbullmethod inMinitab’s

Stat > Reliability/Survival > Distribution analysis (arbitrary

censoring) > Nonparametric distribution analysis

procedure. Data are input as intervals, and no flipping is required. The lower end of

each interval is 0 for this data set, so results should agree with those using

Kaplan–Meier after flipping. Shown below from the output are the values for

uncensored observations, and the “cumulative failure probability” or 1� S, which

estimates the probability of being at or below each value, in essence their percentiles:

Value Probability
0.5 0.343749

0.6 0.458333

0.7 0.687500

0.9 0.785714

1.5 0.851190

1.7 0.916667

2.8 0.958333

A concentration of 0.5 is at the 34th percentile, of 0.6 at the 46th percentile, and so on.

For values of specific percentiles such as the median with p¼ 0.5, the convention is to

use the observation whose cumulative failure probability is at or above the desired

percentile. The median would then equal 0.7. The 75th percentile would similarly
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equal 0.9 and the 90th percentile equal 1.7. Percentiles below the 34th are less than the

lowest value, or <0.5. Note that only percentiles are calculated by the method—it

does not estimate a mean or standard deviation. Comparing the results to the

Kaplan–Meier procedure used earlier after flipping the data, we get

Left-Censored (KM) Interval-Censored (Turnbull)
Mean Arsenic 0.949

Standard error 0.165

Standard Deviation 0.807

95th Percentile 2.8 2.8

90th Percentile 1.7 1.7

75th Percentile 0.90 0.90

Median 0.70 0.70

25th Percentile � <0.5

10th Percentile � <0.5

Although not demonstrated here, right-censored observationsmay also be input to the

Turnbull procedure, where a “ > 100” is represented as [100, �]. The missing value

indicator � represents infinity. The nonparametric Turnbull method, like the para-

metric maximum likelihood methods discussed elsewhere, may be used when both

less-thans and greater-thans are present in the same data set. This is because the

Turnbull procedure is the nonparametric maximum likelihood solution, where the

likelihood function is (Collett, 2003):

Ylc
i¼1

f1� SiðbiÞg
Ylcþ rc

i¼lcþ 1

SiðaiÞ
Yn

i¼lcþ rcþ 1

fSiðaiÞ� SiðbiÞg ð6:11Þ

Here there are lc left-censored observations, rc right-censored observations, and n

observations overall. The first term 1� Si(bi) is the product of cumulative failure rates

for the upper bound (probability of being at or below the reporting limit) for left-

censored observations. The second term Si(ai) is the probability of exceeding the

lower bound of right-censored observations. The final term is the probability of being

within the interval of interval-censored observations. The probabilities that best

match the observed percentages of data are the Turnbull solution to this equation.

The Turnbull procedure and parametric MLE methods are perhaps the best

solutions to incorporating values between the detection and quantification limits,

the “J” values over which there is so much controversy as to their reliability. To use

interval-censored procedures, report “J” values as an interval where a is the lower

(detection) limit and b is the higher (quantification) limit.

6.4 ROS: A “ROBUST” IMPUTATION METHOD

Methods that calculate summary statistics with least-squares regression on a prob-

ability plot are called “regression on order statistics,” (ROS). One version is fully
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parametric, the method found in Minitab when “least-squares” is selected for

probability plot routines, and is generally less efficient than maximum likelihood.

In this fully parametric mode (described in the next paragraph) ROS has little

advantage over MLE for computing numerical statistics, though the plot itself is a

useful guide as long as the procedure plots the highest observation (see Chapter 5). A

second “robust” implementation of ROS uses sample data whenever possible,

assuming a distribution to impute values for the censored portion of the distribution.

Uncensored observations are used in their own right. In the robust form, abbreviated

MR by Helsel and Cohn (1988) and LPR by Hewitt and Ganser (2007), ROS is an

attractive alternative to the more restrictive parametric assumptions of maximum

likelihood. Its most common application is to small data sets (n< 30), where MLE

estimation of parameters becomes inaccurate.

ROS computes a linear regression for data or logarithms of data versus their normal

scores, the coordinates found on a normal probability plot (e.g., see Figure 5.12). The

regression parameters (slope and intercept) are computed using the uncensored

observations. Due to the definition of normal scores, fitting this line is fitting a

normal distribution (a lognormal distribution if logs are used on the y-axis) to the

observed data. For the fully parametric version of this method, the intercept and slope

of the regression line estimate the mean and standard deviation, respectively, of the

data or their logarithms. The intercept, the y value associated with a normal score of 0

(50th percentile) at the center of the plot, estimates the mean of the distribution. The

slope of the line equals the standard deviation, as normal scores are scaled to units of

standard deviation. The parametric and robust forms ofROShave often been confused

in the literature. Travis and Land (1990) recommended the fully parametric method,

though for justification they reference the results of Gilliom and Helsel (1986), who

actually used the robust ROS. The two forms of ROS have different performance

characteristics, and care should be taken to treat them separately.

If logarithms are used for the y-axis, the intercept and slope of a probability-plot

regression estimate the mean and standard deviation of the logarithms. These

summary statistics must be retransformed to provide estimates of statistics in original

units. Transforming moment statistics (mean and standard deviation) across scales

with power transformations such as the logarithm results in transformation bias. The

mean in one set of units will not provide an accurate estimate of the mean when

converted to a second set of units using a power transformation. A simple example of

transformation bias is given in Table 6.6. The mean logarithm of 2, retransformed

back to 100 in the original units, is biased low when compared to the mean of over

2000 for data in the original units.

Transformation bias is just as much of concern for parametric ROS as it was for

MLE. If the estimates in log units are simply exponentiated, the resulting geometric

mean estimates the median, just as the 100 in Table 6.6 is biased low as an estimate of

the mean. If equations 6.1 and 6.2 are used for retransformation to avoid transforma-

tion bias, the resulting estimates are biased high (Cohn, 1988) for small samples due to

the inaccuracy in estimating the standard deviation of the logarithms.

To avoid transformation bias, summary statistics can be computed by imputing

numbers for the censored observations based on a parametricmodel. Imputation is the
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process of guessing values for observations based on a statistical model. Combining

imputed estimates with uncensored observations to compute summary statistics

avoids transforming calculated means and standard deviations across scales, from

logarithms to original units. Avoiding the resulting transformation bias is why the

imputation procedure was labeled as “robust.” Using this approach, a more limited

assumption of normality (or lognormality) is used—only values below reporting

limits follow a specified distribution (Helsel and Cohn, 1988).

After fitting a regressionequationusing the uncensoredobservations ona probability

plot, values for individual censored observations are predicted from the regression

model based on their normal scores (the explanatory or x variable in the regression

equation). Predicted values from the equation are imputed (or logs imputed and

exponentiated if y is in log units) and combined with uncensored observations to

compute summary statistics as if no censoring had occurred. Retransforming individual

values instead of the fitted parameters, and calculating summary statistics only after

returning to the original units, avoids the problemof transformation bias. Computations

by robust ROS for the Oahu arsenic data are given in Table 6.7 as an example.

Multiple reporting limits are accounted for in the following way. First the

probability of exceeding each reporting limit is computed using the proportion of

values in the data set that are at or exceed each limit. For the Oahu data there are 2 out

of 24 observations at or above the highest reporting limit of 2mg/L. So the probability
of detection at 2mg/L is 2/24 or 0.083. Then the probability of detection at the next

highest limit (1mg/L) is computed. There are 14 observations below2 mg/L that can be

compared to a reporting limit of 1mg/L. Of these, 2 observations are at or exceed 1 mg/
L and 12 observations are below 1 mg/L. So an estimate of the probability of detection

at a limit of 1mg/L is (2/14)� 0.917 þ 0.083¼ 0.214, where 0.917 is the probability

of being at or below 2mg/L (or 1� 0.083). Finally, to determine the probability of

detection at the lowest reporting limit of 0.9 mg/L, of the eight observations below

1mg/L there is one at or exceeding 0.9mg/L. So an estimate of the probability of

detection at a limit of 0.9mg/L is (1/8)� 0.786 þ 0.214, or 0.313.

In general, the probability of exceeding the jth reporting limit is

pej ¼ pejþ 1 þ Aj

Aj þBj

1� pejþ 1

� � ð6:12Þ

TABLE 6.6 An Illustration of Transformation Bias

Original Units Logarithms (base 10)

1 0

10 1

100 2

1000 3

10000 4

Mean 2222.2 2

10mean log 100
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where Aj is the number of observations detected between the jth and (j þ 1)th

reporting limits, and Bj is the number of observations, censored and uncensored,

below the jth reporting limit.

When j is the highest reporting limit, pejþ 1 ¼ 0 and Aj þBj ¼ n. The number of

censored observations below the jth reporting limit is defined as Cj:

Cj ¼ Bj �Bj� 1 �Aj� 1 ð6:13Þ

Plotting positions are then calculated in order to compute a normal score for each

observation (see Table 6.7). Normal scores for uncensored observations are used to

construct the regression equation relating the log of concentration to normal scores.

Normal scores for censored observations are input to that regression equation to

predict a log concentration,which is then retransformed to estimate concentrations for

the set of censored observations. So plotting positions and normal scores are needed

TABLE 6.7 Computation of Summary Statistics Using Robust ROS for the Oahu

Data (n¼ 24)

As (mg/L)
(Detects)

log e

Conc

Prob of

Detection

Plot pos

Percentile Rank r

Predicted

logs

Observed þ
Estimated

Concentration

3.2 1.163 0.972 24 3.2

2.8 1.030 0.945 23 2.8

<2 0.083 0.815 0.349 1.42

<2 0.713 0.134 1.14

<2 0.611 �0.047 0.95

<2 0.509 �0.215 0.81

<2 0.407 �0.381 0.68

<2 0.306 �0.559 0.57

<2 0.204 �0.766 0.46

<2 0.102 �1.05 0.35

1.7 0.531 0.873 14 1.7

1.5 0.405 0.829 13 1.5

<1 0.214 0.629 �0.018 0.98

<1 0.471 �0.276 0.76

<1 0.314 �0.543 0.58

<1 0.157 �0.881 0.41

0.9 �0.105 0.737 8 0.9

<0.9 0.313 0.344 �0.49 0.61

0.7 �0.357 0.589 6 0.7

0.7 �0.357 0.491 6 0.7

0.6 �0.511 0.393 4 0.6

0.5 �0.693 0.295 3 0.5

0.5 �0.693 0.196 3 0.5

0.5 �0.693 0.098 3 0.5
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for both censored and uncensored observations. Plotting positions are at values spread

equally between exceedance probabilities, and are computed separately for uncen-

sored and censored observations. For the two uncensored observations above the

highest reporting limit of 2mg/L, plotting positions are two values equispaced

between (1� 0.083¼ 0.917) and 1.0, or at 0.917 þ (1/3)� 0.083 and 0.917 þ (2/3)�
0.083¼ 0.972. The C3 ¼ 8 censored observations known to be <2mg/L are spread

evenly between probabilities of 0 and 0.917, or (i/9)� 0.917, where 9 ¼ C3 þ 1 and

i¼ 1 to 8. The two uncensored values between the reporting limits of 1 and 2mg/L are

spread evenly at 1/3 and 2/3 the distance between probabilities of (1� 0.214)¼ 0.786

and 0.917. TheC2 ¼ 4 censored observations known to be<1mg/L are spread evenly

between probabilities of 0 and 0.786, or at (i/5)� 0.786, where 5 ¼ C2 þ 1 and i¼ 1

to 4. The one detected observation between a <0.9 and 1mg/L plots at a position

halfway between detection probabilities of (1� 0.313)¼ 0.687 and 0.786. The

C1 ¼ 1 nondetect at<0.9 plots halfway between probabilities of 0 and 0.687. Finally,

the six uncensored values below 0.9 plot at probabilities of 0 þ (i/7)� 0.687, where

i¼ 1 to 6.

In general, plotting positions for uncensored observations are

pdi ¼ ð1� pejÞþ i

Aj þ 1

	 

� pej � pejþ 1

� �
for i ¼ 1 to Aj ð6:14Þ

and for censored observations are

pci ¼ i

Cj þ 1

	 

� 1� pej
� �

for i ¼ 1 to Cj ð6:15Þ

These equations follow the pattern of Hirsch and Stedinger (1987), who extended the

traditional use of probability plotting in flood hydrology to the case of censored

records of historical floods. After considering Bayesian and other methods for

assigning plotting positions, their Appendix C provides equations 6.12 and 6.14 for

determining plotting positionswithmultiple censoring levels.Helsel andCohn (1988)

extended these to equation 6.15 for censored data.

Estimated values produced for censored observations (the right-most column of

Table 6.7) should not be assigned to any individual sample. For data sets withmultiple

observations below the same reporting limit, there is no valid way to do so. Which

estimate belongs to which sample is unknown. The corporate collection of estimates

below each reporting limit is sufficient to compute overall statistics, and yet does not

allow the scientist to fall into the trap of indicating that the value for an individual

censored observation is known, as is implied with simple substitution methods. Even

when there is only one nondetect below a reporting limit, declaring that a value is

known for it is untrue. The value is known only to be within the interval from zero to

the reporting limit.

For the Oahu arsenic data, ROS estimates assuming a lognormal distribution

produced by the %cros macro in NADA for Minitab are given in Table 6.8.
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Use the cenros function in NADA for R to get the same result, also assuming a

lognormal distribution:

> Asros=cenros(As,AsCen)

> Asros

n n.cen median mean sd

24.0000000 13.0000000 0.7000000 0.9698429 0.7185456

And the summary function provides details on the regression equation versus normal

quantiles on the x-axis:

> summary(Asros)

Call:

lm(formula = obs.transformed ~ pp.nq)

Residuals:

Min 1Q Median 3Q Max

-0.28975 -0.11613 0.02519 0.12463 0.37624

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.23712 0.06971 -3.402 0.00785 **

pp.nq 0.64876 0.06790 9.555 5.22e-06 ***

—

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.2192 on 9 degrees of freedom

Multiple R-squared: 0.9103, Adjusted R-squared: 0.9003

F-statistic: 91.3 on 1 and 9 DF, p-value: 5.22e-06

while the plot function provides the probability plot (Figure 6.5) and fitted regression

equation:

> plot(Asros)

Shumway et al. (2002) improved the robustROSmethod by determiningwhether data

best fit a lognormal, normal, or square root–normal distribution prior to performing

ROS. This was done by choosing the units that produced the largest log-likelihood

statistics when fit by MLE. They state that one of these three distributions generally

matches the observed shape of environmental data. With this prior evaluation of

distributional shape, they found that robust ROS produced estimates of the same

quality as did MLE for moderate (n¼ 50) sized data sets, and of better quality than

MLE for small (n¼ 20) data sets.

TABLE 6.8 Summary Statistics Using ROS for the Oahu Arsenic Data

MEAN STD DEV Pct25 MEDIAN Pct75

0.972 0.718 0.518 0.700 1.103
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A side-by-side comparison of the estimates computed in this chapter for theOahu

arsenic data is given in Table 6.9. The simple ordinal method is not that helpful for

this data set, as the highest reporting limit was quite high as compared to uncensored

measurements, so that most statistics would be <2. The Kaplan–Meier method,

independent of any distributional assumption, is themost generally applicable of the

methods. If data appear to follow a lognormal distribution (the Oahu data are close

except for the highest “outlier” observation) and there is a “large” set of uncensored

data to adequately estimate parameters for the distribution (there is not here), then

MLE should provide the best estimates. The value for “large” increases with

increased skewness, but is generally 30–50 uncensored observations. These
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FIGURE 6.5 Probability plot and ROS line using the cenros function in NADA for R.

TABLE 6.9 Summary Statistics Using Several Estimation Methods in Minitab—Oahu

Arsenic Data

METHOD MEAN STD DEV Pct25 MEDIAN Pct75

Simple ordinal --- --- <2 <2 <2

Cohen’s(ln)a
1.034 0.882

MLE(ln) 0.945 0.656 0.509 0.777 1.185

robust ROS(ln) 0.972 0.718 0.518 0.700 1.103

KM 0.949 0.807 0.500 0.700 0.900

aMethod is approximate and so not recommended for use.
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conditions are notmet inmany environmental studies, where small samples sizes are

the norm. The ROS method, less dependent on a distributional assumption than

MLE, is most useful for smaller data sets. It can be an alternative to Kaplan–Meier

when more than 50% of the data are censored and an estimate of the median is

desired. Cohen’s MLE method is not recommended as it never is better than a true

MLE estimate.

A similar summary table (Table 6.10) is available inNADA forR using the censtats

command:

> censtats (As,AsCen)

6.5 METHODS IN EXCEL

An Excel worksheet is available for computing the Kaplan–Meier estimates for

summary statistics, atwww.practicalstats.com/nada.Worksheets forROSmay also be

found on the web. An approximate MLE solution can be performed using Excel’s

SOLVER function (Flynn, 2010). However, Excel does not always perform computa-

tions in theway true statistical software should. For example, Excel does not calculate

percentiles as a linear interpolation between two bracketing points, the typical

definition in statistics programs. Instead, it uses the observation value that is closest

to but below the desired percentile. If the 90th percentile were to be calculated, Excel

would select and report the value of the next lowest observation at the 88th percentile,

as one example, instead of interpolating between observations located at the 88th and

94th percentiles. Excel ranks tied observations differently than what was described in

this chapter. If using Excel, investigate and understand the procedures that it is

following—they will likely differ from standard procedures available in commercial

statistics software.

6.6 HANDLING DATA WITH HIGH REPORTING LIMITS

A “high nondetect” value, a censored observation whose reporting limit is higher than

all uncensored values in the data set, has no information content. “High nondetects”

can be dropped from the data set without penalty. For example, if a value of <100 is

TABLE 6.10 Summary Statistics Using Three Estimation Methods in NADA

for R—Oahu Arsenic Data

Median Mean sd

KM 0.7000000 0.9489583 0.8068068

ROS 0.7000000 0.9698429 0.7185456

MLE 0.7766007 0.9452585 0.6559261
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included in data where the highest value is a detected 55, the <100 is of no use. KM

and any other statistics-based (as opposed to substitution) procedure will ignore high

nondetects when computing percentiles or themean. There is noway to determine the

probability of the <100 being above or below the detected 55 or any other detected

observation, and so it adds nothing to the determination of the proportion of data

below each detected observation. A<20 is known to be below the detected 55, and so

is used when computing the percentile for the detected 55. The location of a<100 is

indeterminate in relation to the observed detections of that data set.MLE, ROS or KM

software will give identical estimates of mean and percentiles whether indeterminate

high nondetects are included or not. This is one great advantage of thesemethods over

substitution. Just one high nondetect, when one-half of that reporting limit is

substituted, can radically (and incorrectly) alter estimates of the mean and standard

deviation.

High nondetects do notmeet the quality control standards of the rest of the data set.

Because they contain no information, they may be dropped from the analysis. Or

methods such as ROS,MLE andKM that appropriately discount them should be used.

6.7 A REVIEW OF COMPARISON STUDIES

Summary statistics for censored data is the most studied topic in the treatment of

censored environmental data. The confusing element is that each article seems to find

a different method to be “best.” Why do conclusions differ so much on the choice of

methods? Four important characteristics that strongly influence findings have varied

among these studies. They are as follows:

1. Sample Size. MLEmethods work far better for larger sample sizes (at or above

50) than smaller sizes. Some studies have used small samples, others larger.

2. Transformation Bias. Some studies have computed estimates assuming a

normal distribution, and simply stated that the results apply to lognormal or

other distributions after transformation. This ignores transformation bias, the

additional error resulting frommoment statistics (mean and standard deviation)

not being invariant to scale changes. The robust ROS and robust MLEmethods

attempt to overcome transformation bias.

3. Robustness. Some studies generate data only from the same distribution that

will be assumed in computing parametric methods. Method errors then reflect

only the best-case scenario for parametric methods, ignoring the real-life errors

involved when the underlying distributions of data are mis-specified.

4. Details of Method Computation and Terminology. For ROS, some studies use

the fully parametric approach, others the robust approach, and both are called by

the same name. For MLE, older studies used Cohen’s table lookup, while most

now use the computer solution to likelihood equations. Some studies have

incorrectly named substitution as “imputation,” while others appropriately use

that name for results from statistical modeling.
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The 15 papers reviewed below have directly compared methods for computing

summary statistics using simulated data, to evaluate their performances. Root

mean squared error (RMSE) and bias are usually computed as measures of the

inadequacy of each method, with the best methods having low values for both.

While this list of papers is not exhaustive, it does provide a summary of the major

findings on this topic in environmental statistics to date. Many of the studies

generated data from a single distribution, usually the lognormal distribution—

Gleit (1985) used a normal distribution—and so do not evaluate errors due to mis-

specifying the distribution of the data. This gives a great advantage to the

parametric MLE and ROS methods, at the expense of robust and nonparametric

methods. Gilliom and Helsel (1986), Helsel and Cohn (1988), Kroll and Stedinger

(1996), and She (1997) compared methods where the data distribution was not the

same as the distribution assumed by maximum likelihood or ROS, to evaluate the

robustness of each method.

1. Owen and DeRouen (1980) estimated means for air contaminant data, finding

thatMLEmethods had high errors, especially for data of small sample size and

a large proportion of censored values. They generated data of n¼ 5 to 50

having some true zeros, and found that the delta estimator, which assigns zeros

to all censored values while modeling uncensored data as a lognormal

distribution, had less error thanMLE. This successmight be attributed (though

they did not do so) to the negative bias of assuming zeros counteracting the

positive transformation bias produced when using formula 6.1 to retransform

the estimate of the mean, which each of their methods used. The delta

estimator was also favored when the data representing “truth” were generated

to include true zeros.

2. Gilbert and Kinnison (1981) evaluated deleting censored values, substitution,

Cohen’s table lookup and the fully parametric ROS method to estimate

statistics of radionuclide data. They assumed lognormal data, and recom-

mended Cohen’s method and parametric ROS for larger data sets with less

than 50% censoring. With more censoring, they gave up trying to produce

reasonable estimates, instead substituting the reporting limit and reporting the

mean as an upper limit. Their study showed that even by 1981 there were

methods known to be better than substitution.

3. Gleit (1985) generated small (n¼ 5 to 15) data sets from normal distributions

censored at one reporting limit and found that MLEmethods did not fare well

for such small sample sizes. Even though the assumed distributionwas correct,

MLE had difficulty estimating parameters with such little information. Sub-

stitution methods also had high errors—substituting the reporting limit

performed better than one-half or zero substitution, though no reasons are

evident. The consistently best-performing method of the ones tested was a

“fill-inwith expected values” imputation,where an initial estimate of themean

and standard deviation are guessed, and using order statistics aswith the robust

ROS method in this chapter, estimates for individual observations imputed.
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Using the filled-in data set, the mean and standard deviation are recomputed,

and the process repeated until convergence of themean and standard deviation

is achieved. Unfortunately, no evaluation was made of how to retransform

estimates if logarithms of the data were used. No evaluation of robustness was

made if the data were not normally distributed. Yet Gleit’s study sounded

themes that echo through later simulations—“fill-in” or imputation methods

can work well, substitution methods work poorly, and MLE methods work

poorly for small sample sizes.

4. Gilliom and Helsel (1986) compared substitution, MLE, and the robust ROS

procedures for a variety of generating data shapes censored at one censoring

level. Substitution methods worked poorly. MLE methods worked well when

the distribution assumed by the method reasonably matched that of the data.

MLE methods assuming lognormal or normal distributions did not work well

when the generating distributions were gamma with high standard deviation

and skew. The robust ROS method performed better on these high-skew

distributions than didMLE, and performed similarly on the other distributions,

and so was judged best overall.

5. Helsel and Cohn (1988) extended the results of Gilliom and Helsel (1986) to

more than one reporting limit. Whenever data did not follow the distribution

assumed by maximum likelihood, and particularly with small sample sizes,

the robust ROS generally produced better estimates for the mean and standard

deviation than did MLE. Percentile estimates generally had smaller errors

using a bias-corrected MLE than any other method. They introduced multiply

censored plotting positions to the ROS method that previously had been used

only for flood frequency analysis. They also correctedMLE for transformation

bias using Cohn’s (1988) method.

6. Shumway et al. (1989) compared variations in computing maximum like-

lihood estimates of the mean and confidence interval on themean. Originating

data were from normal, lognormal, and square-root normal distributions of

sample sizes 20 and 50, all with small variance and skew compared to some

environmental data. Estimates improved when first determining from sample

data to use either untransformed data, or log or square-root transformations

based on selecting the maximum log-likelihood of the three MLE equations,

rather than always assuming a lognormal or normal distribution. Confidence

intervals for the mean were smaller (better) when an asymptotic optimization

procedure was used instead of bootstrapping.

7. Haas and Scheff (1990) applied a Type II bias correction to estimates from

Cohen’s table lookup (even though censored environmental data are Type I)

and found the result to be better than the parametric ROS method for small

sample sizes (n¼ 12) generated from normal distributions. As the percent

of censored data increased, a “restricted maximum likelihood” adjustment

performed slightly better than Cohen’s method. When applied to a log-

normal data set, none of the methods worked well, presumably due to

transformation bias.
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8. Rao et al. (1991) applied Cohen’s table method to data generated from a

normal distribution, comparing it to several substitution methods such as

DL=
ffiffiffi
2

p
and fill-in methods from normal and uniform distributions. Their goal

was to estimate the mean and confidence interval on the mean for skewed air-

quality data. A bootstrap method was also employed to produce confidence

bounds for the uniform fill-in. The bootstrap and MLE methods consistently

produced better estimates ofmean and confidence intervals. They then applied

MLE to the logs of air data, and retransformed using equation 6.1, finding that

the MLE no longer produced acceptable values. As they may not have

recognized this to be due to transformation bias and not the MLE itself, it

kept them from recommending MLE for regular use.

9. El-Shaarawi and Esterby (1992) computed exact biases for common sub-

stitution methods, stating that there is no further need to use Monte Carlo

studies to evaluate these methods (though many continue to do so). They used

an example to illustrate the fully parametric ROS and MLE methods, though

retransformation bias was ignored. Two problems were highlighted:

(a) The value of the reporting limit is not used in computing estimates by

parametric ROS, and they stated that ROS is therefore more directly related

to Type II than Type I censoring.

(b) No estimates of standard error are computed with ROS and therefore

confidence limits cannot be directly constructed [this was later solved by

Shumway et al. (2002)].

10. Kroll and Stedinger (1996) implemented a robust imputation procedure not

only for ROS, but also for MLE and a probability-weighted moments

estimator. They showed that the procedure used for circumventing transfor-

mation bias with robust ROS—retransforming single estimates from log space

and computing summary statistics in the original units—could be done just as

easily withMLE. Their “robustMLE” performed somewhat better than robust

ROS (the third method was not as good as these two). The advantages cited by

Helsel and Cohn (1988) for robust ROS overMLEwere shown to be due to the

“robust” imputation of data, avoiding the transformation bias inherent in

equation 6.1 for highly skewed and/or smaller sample sizes. Their work

clearly shows the advantages of a “robust” imputation, and that the order of

choice for MLE and ROS methods should be robust MLE > robust ROS > >
lognormal MLE > (fully parametric) lognormal ROS.

11. She (1997) compared the lognormal MLE, the (fully parametric) lognormal

ROS, Kaplan–Meier and one-half substitution methods on both lognormal

data and data from a gamma distribution. The nonparametric Kaplan–Meier

was consistently the best or close to the best method for data from both

distributions. The MLE performed well for data from the lognormal distribu-

tion when the skew was low. For highly skewed distributions, the moderate

sample size (n¼ 21) resulted in poor parameter estimates using MLE, even

when the assumed distribution matched that of the data generated. The fully

parametric ROS performed no better, and usually worse, than MLE.
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12. Shumway et al. (2002) found that the robust ROS method (“robust regression

ROS”) had smaller errors than standard MLE for data from lognormal

distributions for sample sizes of 25 and 50. ROS had similar errors to MLE

when the MLE was followed by a jackknife method to compensate for

retransformation bias, rather than using equations 6.1 and 6.2. When the

original data were from a gamma distribution, however, they found that MLE

estimates had less error than ROS when first transformed to approximate

normality, especially for sample sizes of 50. They found, as did Cohn (1988),

that the theoretical lognormal retransformation using equation 6.1 over-

compensates for transformation bias and itself produces biased estimates.

A jackknife correction for bias performed far better.

13. Lubin et al. (2004) compared substitution to imputation methods, both when

estimating a mean and for computing regression equations. They found that

substitution was “. . . ill-advised unless there are relatively few measurements

belowDLs.” Single imputation, performing the imputation step just once as in

the robust MLE method of Kroll and Stedinger (1996), produced excellent

estimates of the mean but estimates of variance or standard deviation were too

low. They instead recommended multiple imputation, a bootstrap approach

resulting in many imputed sets of numbers for each censored observation, for

the case when an imputed value is required for censored data. When a single

number is not required, but only parameter estimates for the mean or

regression slope, standard MLE procedures worked well. They noted that

their epidemiologic applications had an ample numbers of observations so that

MLE performed well.

14. Hewitt and Ganser (2007) evaluated methods to estimate the mean and the

95th percentile using data generated from lognormal and contaminated-

lognormal distributions with one and three reporting limits. They found that

MLE estimates performed best, with ROS a close second. Robust MLE and

ROS were less biased but had greater RMSE, so that the regular methods

outperformed their robust counterparts. Substitution results were strongly

biased, and KM did not perform well overall. This study is an interesting

contrast to the next one, which obtained almost the opposite results. Perhaps

the data generated here were of lower skew and more similar to a lognormal

distribution even after a mild contamination than those of Antweiler and

Taylor, explaining why MLE methods optimized for the lognormal distribu-

tion performed best?

15. Antweiler and Taylor (2008) analyzed a series of trace constituents using two

chemical methods, a research-grade ultralow detection limit analysis, and a

more typically available laboratory method resulting in censored observa-

tions. Estimated statistics for analyses by the typical procedure with censored

values, computed using a variety of methods, were then compared to the “true

mean” of the research-grade data. Since the “true” parameter estimates were

chemical measurements rather than computer-generated values, they did not

necessarily follow any specific distribution. Kaplan–Meier performed best for
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estimating a mean, while substituting half the reporting limit, imputing a

uniform randomnumber between zero and the reporting limit, and robust ROS

all provided reasonably good estimates. MLE did not perform well, presum-

ably because the data did not consistently follow the assumed distributions. In

an interesting and unique result, using machine readings (the raw result from

the chemical instrument, including negative numbers) from the typical

laboratory method followed by a standard computation did not perform as

well as other methods. This point is an important one, as reporting all machine

readings is one of the suggested solutions to the censoring issue today.

Antweiler and Taylor noted that using one-half RL in their study may have

given better results than in a typical study because their reporting limits were

single-machine method detection limits rather than quantitation limits from

multiple instruments and laboratories, and were not multiplied by 2 or another

factor in an insider-censoring mode.

Additional papers to those above could certainly be cited:

. Baccarelli et al. (2005) reviewed a variety of methods for handling censored

observations in a study of dioxin exposure, finding that imputation methods

designed for censored data far outperformed substitution of values such as one-

half the reporting limit.

. Ganser and Hewitt (2010) developed a new substitution method that they state

provides resultswith similar accuracy and precision toMLE.However, theyused

smaller sample sizes so thatMLEwould not be expected to performwell, and did

not compare their new method to Kaplan–Meier, which is its most logical

competitor as both can be considered “simple to compute.”

. El-Makari and Aboueissa (2009) developed a new, modified MLE method.

. Jain et al. (2008) compared a variety of imputation methods, including those of

Lubin (2004).

6.7.1 A Recommended Course of Action

A recommended course of action that takes these fifteen articles into account (though

undoubtedly it would not be endorsed by all of the above researchers) is given below,

both in text and as Table 6.11. The recommendation of the Kaplan–Meier or Turnbull

method for multiply censored data with up to 50% censoring follows its predominant

use in other disciplines as well as its well-developed theory. KM is the nonparametric

maximum likelihood estimator for constructing the survival function (Klein and

Moeschberger, 2003). It requires no assumption of a particular distributional shape.

If there were no censoring, KM produces the familiar sample estimates for mean and

percentiles. The Turnbull procedure allows interval-censored data with a nonzero

lower bound to be incorporated.

The cutoff at 50% censoring in Table 6.11 reflects the fact that Kaplan–Meier or

Turnbull does not provide an estimate for the median (other than <RL) when more

than 50% of observations are below the lowest, or single, reporting limit. Some
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distribution must be assumed in that case, at least for the censored portion of the

distribution, to obtain a value other than<RL. The recommendation of othermethods

than KM with one reporting limit is a recognition of the “stubborn” nonparametric

refusal to identify any values outside the range of known data. Consequently, KM in

essence substitutes the reporting limit for data below the lowest, or single, reporting

limit. The cutoff at a sample size of 50 reflects the inability of MLE to accurately

estimate parameters with small, skewed data sets. Several of the above studies found

that estimation errors increase dramatically between 60 and 80% censoring, and that

above 80% censoring any estimates are merely guesses. Therefore at 80% censoring

and above, methods that dichotomize the data into proportions of detect/nondetect

should replace attempts to estimate the central location or spread of a censored data

set. Note that for other purposes such as hypothesis testing and regression, it is shown

later that a simple percent censoring cutoff for methods is not helpful, and (relatively

large) signals can still be distinguished when censoring levels are near 80%.

For Less Than 50% Censoring. If there are multiple reporting limits, compute

Kaplan–Meier or Turnbull estimates, the standard procedure in other disci-

plines and one that does not depend on the assumption of a distributional shape.

For single reporting limits use either the multiple imputation of Lubin et al.

(2004) or the single imputation of robust ROS or robust MLE.

For Large Sample Sizes (�50) and 50–80% Censoring. Use MLE or multiple

imputation.

For Smaller Sample Sizes (<50) and 50–80% Censoring. Use either multiple

imputation, robust MLE, or robust ROS so that estimates of the median and

other useful percentilesmay bemade. If considering distributions other than the

lognormal, check goodness of fit to the distribution either by maximizing

the probability plot correlation coefficient (seeChapter 5), or bymaximizing the

(negative) log-likelihood statistic produced bymaximum likelihood (Shumway

et al., 2002).

Above 80% Censoring. Report the proportions of data below or above the

maximum reporting limit, rather than estimating statistics that are unreliable.

Sample estimates of high percentiles such as the 90th or 95th may be available

for large data sets, even with this much censoring. Any other estimates will

be highly dependent on whichever distribution the data are assumed to follow.

TABLE 6.11 Recommended Methods for Estimation of Summary Statistics

Amount of Available Data

Percent Censored <50 Observations > 50 Observations

< 50% censored observations Imputation or KM/Turnbull Imputation or KM/

Turnbull

50–80% censored observations Robust MLE, robust ROS or

multiple imputation

Maximum likelihood or

multiple imputation

> 80% censored observations Report only % above a

meaningful threshold

May report high sample

percentiles (90th, 95th)
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6.8 SUMMING DATA WITH CENSORED OBSERVATIONS

One of the common tasks in data analysis is to sum a series of numbers, as when

estimating the yearly total mass of a contaminant entering a water body. Twelve

monthly measured values are summed to produce the total. A more complicated

summation iswhen individual values areweighted unequally, and theweighted values

summed to a total. The latter is what is involved in performing ecological risk

assessments (USEPA, 1998b).

In risk assessments an overall numerical measure of the effects on organisms of

chemicals such as PCBs, dioxins, and furans is needed. These chemicals are actually

each a class of compounds, with each compound (congener) having a different

toxicity to organisms. Toxicity equivalent concentrations (TECs) are calculated to

summarize the general toxicity from all congeners in the class by assuming that

toxicities of individual congeners are additive (USEPA, 2001). TECs are a critical

component in issuing fish consumption advisories to protect human health, and so

their computation may have significant environmental and economic consequences.

Chemical congeners have differing toxicities to organisms, and so each dioxin or

furan congener is “normalized” to the toxicity level of the most toxic congener,

2,3,7,8-tetrachlorodibenzo-p-dioxin or TCDD, using a toxic equivalent weighting

factor (TEF) of relative toxicity (USEPA, 2001). TEFs were developed by consensus

by panels of scientists for each class of organism (Van den Berg et al., 1998). TCDD

has a TEF of 1 while less toxic congeners have TEFs closer to 0. Measured

concentrations are multiplied by the TEF to obtain the TEC for that congener. The

total TEC is the sum of the individual congener TEC values in the sediment or soil. At

times, congener concentrations are below their respective reporting limits, and the

issue at hand is how to use these censored observations in the summing process when

computing a total TEC.

Current USEPA draft guidance for computing toxicity equivalents is silent on

how to incorporate censored data, other than that 0 and the reporting limit can be

substituted and the range of possible TEC values reported (USEPA, 2008). When

the range of possible values is wide this method is not very helpful, tempting

scientists to substitute one-half of each reporting limit to obtain a single total TEC.

An example of using substitution when computing a TEC is shown in Table 6.12.

One-half the reporting limit is multiplied by the TEF to estimate the toxic equivalent

concentration. TECs are then summed to produce the total TEC for this location.

Substitution of one-half the reporting limit before computing a sum produces a

serious problem—the least precise measurements, data with high reporting limits,

often have a strong influence on the resulting total TEC. For example, suppose a

less precise method had been used for analysis of 1,2,3,7,8-PeCDF and instead of a

<0.8 the lab had reported a value of <5. One-half of this or 2.5 would have been

used to compute the TEC for this (toxic) congener, and the total TEC would have

increased by 0.63 or by 19% over the current TEC. This increase is caused only by

falsely translating a loss in precision (higher reporting limit) into a higher con-

centration by using substitution. The KM estimate in the same situation increases

only by 1.5%.
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6.8.1 An Alternate Method for Summing Data with Censored Observations

A sum and a sample mean are the same phenomenon—the mean is the sum,

standardized by the number of values summed. Reversing the equation, the sum

equals themeanmultiplied by n. For datawith censored observations, themean can be

estimated using a reliable method that does not involve substitution, and the total is

then computed by multiplying by the mean by n. The reliable method used here for

censored data is the Kaplan–Meier (KM) procedure. Table 6.13 provides an example

data set of six congener TEC values, two of which are censored.

TABLE 6.12 TEC Calculations Using Substitution of One-Half the Reporting Limit

and Using Kaplan–Meier

Compound Concentration One-Half RL TEF TEC 1/2 RL TEC KM

1,2,3,4,6,7,8-HpCDD 25 0.01 0.25 0.25

1,2,3,4,6,7,8-HpCDF 1.8 0.01 0.018 0.018

1,2,3,4,7,8,9-HpCDF <0.56 0.28 0.01 0.003 <0.006

1,2,3,4,7,8-HxCDD 0.26 0.1 0.026 0.026

1,2,3,4,7,8-HxCDF <0.6 0.3 0.1 0.03 <0.06

1,2,3,6,7,8-HxCDD 2.1 0.1 0.21 0.021

1,2,3,6,7,8-HxCDF 0.33 0.1 0.033 0.033

1,2,3,7,8,9-HxCDD 0.77 0.1 0.077 0.077

1,2,3,7,8,9-HxCDF 0.37 0.1 0.037 0.037

1,2,3,7,8-PeCDD 0.18 1 0.18 0.18

1,2,3,7,8-PeCDF 0.24 0.03 0.007 0.007

2,3,4,6,7,8-HxCDF <0.14 0.07 0.1 0.007 <0.014

2,3,4,7,8-PeCDF <0.8(<5.0) 0.4(2.5) 0.3 0.12(0.75) <0.24(<1.5)

2,3,7,8-TCDD 1.7 1 1.7 1.7

2,3,7,8-TCDF 5.1 0.1 0.51 0.51

OCDD 220 0.0003 0.066 0.066

OCDF 44 0.0003 0.013 0.013

[0,1-6]

Sum 3.29(3.92) 3.21(3.26)

Values in parenthesis are the result of increasing the reporting limit for one congener from 0.8 to 5.

TABLE 6.13 Quantiles for Six Observations when Censoring Is and Is Not Ignored, as

Computed by Kaplan–Meier

Concentration TEF TEC

Quantile

Ignoring the

< Symbol

Quantile Accounting

for Nondetects

2.10 0.10 0.2100 0.833333 0.833333

0.77 0.10 0.0770 0.666667 0.666667

<0.60 0.10 0.0600 0.500000
�

0.33 0.10 0.0330 0.333333 0.444444

<0.14 0.10 0.0140 0.166667
�

0.24 0.03 0.0072 0.000000 0.000000

These data are illustrated in Figures 6.6 and 6.7. (� ¼ percentiles not computed)
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First ignoring the less-than symbol and using the reporting limit, each observation

is assigned quantiles 1/n apart from each other, and so have quantiles at 5/6, 4/6, 3/6,

2/6, 1/6, and 0 to form the edf (column titled “Quantile ignoring the < symbol”).

Looking at the rectangles in Figure 6.6 that make up this area, the height of each

rectangle is 1/n, or 0.16667 for n¼ 6. The area of each rectangle is 1/6 times the data

value, and so the area under the cdf curve equals the mean, 0.067. The data are plotted

from right to left, seemingly backward from typical plots, because the left-censored

data have been flipped to perform theKManalysis. If the height of each rectanglewere

set to be 1 rather than 1/n, the area equals the sum of the six numbers, 0.4012 and the

histogram is a picture of the sum itself. Themean is simply a scaled version of the sum.

Now recognize that two observations are actually censored. KM computes

quantiles only for uncensored observations, but the number and position of censored

observations influences the quantile calculated for uncensored observations (column

titled “Quantile accounting for nondetects”). For the highest observation of 0.21 there

are still six observations at and below it, with five below, so its quantile is 5/6, just as it

was when the nondetect designation was ignored. It is clear that the two censored

observations at<0.06 and<0.014 are both below a detected 0.21. The second highest

detected observation is also as before, and so has the same quantile at 0.667. The third

highest value is a < 0.06. Its position relative to all values below 0.06 cannot be

known, so a quantile is not calculated for it. However its influence shows in the

calculation for the next lower value, a detected 0.033. This observation has three

values that are known to be at or below it, including a lower nondetect. Its quantile is

therefore calculated as 2/3 the previous quantile of 0.667 or 0.444. This is higher than

the quantile assigned to the same observation when the two censored observations

were treated as uncensored values because there is some chance that the <0.06 lies

below this detected 0.033. The lowest detected observation lies at a quantile of 0, as

before. Figure 6.7 shows the resulting histogram and area (i.e., KM mean) when the
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FIGURE 6.6 Kaplan–Meier method for estimating the mean without nondetects. The mean

equals the total area inside the bars. Percentile equals the quantile �100.
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censored observations are accounted for. With these KM percentiles the rectangles in

Figure 6.7 have unequal heights corresponding to the unequal difference in percentile

values between the uncensored observations. These unequal differences reflect the

information available in the censored observations—their relative positions in regards

to uncensored observations. TheKaplan–Meier mean for the four uncensored and two

censored observations is 0.058, which when multiplied by n¼ 6 observations results

in a sum of 0.35 for this data set. This KM estimate of 0.35 lies between the estimates

that result when 0 (0.327) and the reporting limit (0.401) are substituted for all

censored observations. It was obtained without substituting any values for the

censored observations, and without assuming that the six observations follow any

specific distributional shape.

6.8.2 When NOT to Use Kaplan–Meier for Summing Data

with Censored Observations

Other methods than KM are available for summing censored observations in specific

cases. If strong correlations exist between congeners in a series of samples so that the

concentrations of one congener can be reliably predicted from others, the correlation

can be used to predict values for concentrationsmeasured as below the reporting limit.

This procedure has been used when insufficient amounts of sample prevented

concentrations from being measured for some congeners (Cook et al., 2003).

The resulting sumwill be more accurate than by using Kaplan–Meier if the estimated

concentrations are close to the unknown, true concentrations for the respective

congeners. Criteria for how strong a correlation should be to produce estimates with

this method versus Kaplan–Meier are not known.

Two other situations exist in which KM should not be used to sum censored data.

The first iswhen there is only one censoring threshold. As shown in a previous section,

with one limit theKMestimate of themeanwill equal that of substituting the reporting

0.30 0.25 0.20 0.15 0.10

TEC

P
er

ce
n

ti
le

0.05 0.00

100

80

60

40

20

0

FIGURE6.7 Kaplan–Meiermethod for estimating themean, with two nondetects. Themean

again equals the total area inside the bars. Percentile equals the quantile �100.
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limit for censored values. Having a single threshold is unlikely in the case of

computing total TECs, as the thresholds for different congeners are computed by

multiplying the reporting limit by theTEFweighting factor,which differs for different

congeners. But this may happen with other applications.

The second situation is when a high nondetect value, higher than all TECs from

detected concentrations, occurs for one of the highest toxicity congeners with TEFs

close to 1. In this situation no calculation procedure can give a reliable estimate of the

total TEC. KM and any other statistics-based (as opposed to substitution) procedure

will ignore this high nondetect, as it has no information content. A lower reporting

limit must be implemented before reliable estimates of the total TEC can be made

using any calculation method. All that can be done in this situation is to substitute the

reporting limit in order to provide a worst-case value for the total TEC, realizing that

the true total may be far lower.

EXERCISES

6-1 The copper data from the Alluvial Fan zone of Millard and Deverel (1988) is

found in the data set MDCuþ (use either MDCuþ .mtw or MDCuþ .xls). One

observation has been changed from the data in their article. The largest reporting

limit of <20 was altered to become a <21, larger than all of the uncensored

observations reported (the largest detected observation is a 20). Compute

Kaplan–Meier estimates of the mean and median for two situations, one with

the <21 in the data set and a second with the <21 removed from the data set.

Demonstrate from the results that a censored observation whose threshold is

above the largest detected observation has zero information content and can

always be discarded. Also demonstrate why this is so by computing plotting

positions by the robust ROS method for these data.

6-2 The silver.mtw data set contains analyses from 56 laboratories for a quality

control standard silver solution (Helsel and Cohn, 1988). There are 12 reporting

limits reported by the different labs. Produce a survival function plot for the silver

data using Kaplan–Meier software. Also produce a censored probability plot

using robust ROS and with lognormal MLE. The ROS method can be computed

using the Minitab macro Cros.mac. Compare and contrast the three plots. Which

better illustrates how well the data are fit by the assumed distribution? Which

would you use to get a rough estimate for the percentiles of the distribution?

6-3 Estimate the mean, standard deviation, median, 25th, and 75th percentiles of

the silver data using (lognormal) maximum likelihood estimation, Kaplan–

Meier, and the robust ROS methods. Compare and contrast the three results.

How must the KM percentiles be rescaled in order to compare them with those

from the other methods? Based on the percent of data censored, the sample

size and the fit to the distribution, which method would you choose to use?
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7 Computing Interval Estimates

Confidence, prediction, and tolerance intervals are often needed for data that include

censored observations. Two-sided confidence intervals bracket the likely values for a

parameter such as themean. The likelihood is represented by a confidence coefficient,

a statement about how likely it is that the process used resulted in an interval that

contains the truemean.A “95%confidence interval around themean” is a statement of

belief that the unknown true mean, a target of the investigation, is contained with a

95% probability between the lower and upper ends of the interval. The truth of that

probability will rest on some assumptions about the distribution of the data if the

method used is a parametric interval.When the data do not fit the assumed distribution

well, the truth of the probability associated with parametric intervals will be in doubt.

A “95% confidence interval” for an ill-fitting data set may in fact have a much higher

probability than 5% of not including the true mean within the interval. Or it may be so

wide that it is of little use.

One-sided confidence bounds are of interest when the concern is whether

values are too large, or too small, but not both. An upper 95% confidence bound

on the mean (sometimes abbreviated UCL95) is a statement that the true mean should

be below the UCL95 with a 95% probability. If the UCL95 is below the relevant

regulatory limit, there ismore than a 95%probability that the truemean of the data lies

below that limit. If the UCL95 is greater than the limit, there is more than a 5%

probability that the true mean exceeds the limit, even though the observed sample

mean may be below the limit. Confidence bounds such as the UCL95 have at times

beenwritten into environmental regulations. Of course, our interest is how to compute

these bounds when some of the data are censored observations.

Prediction intervals provide a range bracketing the likely values for one or more

individual observations not currently in the data set. Prediction intervals are wider

than confidence intervals for the same set of data and same confidence coefficient.

Intervals can be computed to enclose the range likely to hold one new observation, or

many new observations, with a specified confidence. As with confidence intervals,

parametric prediction intervals rely on the assumption that data come from a specific

distribution, often the normal distribution. For parametric prediction intervals both
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the data used to construct the interval and the new data that are to fall within the

interval are assumed to originate from the same distribution. If data do not fit the

assumed distribution, they should be transformed prior to constructing the interval.

Otherwise the intervals may be too large, or the stated confidence of inclusion may

overstate the probability actually attained by the interval.

Tolerance intervals bracket possible values for percentiles of the distribution, and

so include within their range a specified proportion of observations. Sample percen-

tiles can be computed for the observed data (e.g., the sample 90th percentile equals or

exceeds 90%of themeasured values), but aswith all other sample statistics, these only

estimate the true underlying population statistic. A tolerance interval puts boundaries

on the location of the true population percentile. An upper 95% tolerance bound on the

90th percentile, for example, provides a limit beyond which there is 95% confidence

that no more than 10% of all population values fall.

Hahn and Meeker (1991) provide detailed descriptions of these three types of

intervals. In the following sections, calculation of each type of interval is illustrated

when some proportion of the data are recorded as censored observations. Each of the

three types of intervals can be computed using one of the general approaches for

censored data discussed so far—substitution, maximum likelihood, or nonparametric

methods. Use of the first approach, substitution, is strongly discouraged.

7.1 PARAMETRIC INTERVALS

Parametric confidence, prediction, and tolerance intervals are built using estimates of

the mean and standard deviation, along with an assumption that data follow a normal

distribution. If the distribution of data does not follow this shape, estimates of the

interval endpoints can be severely in error. Parametric two-sided intervals follow the

general equation of

x� ks; xþ ks

where x is themean, s is the standard deviation, and k is a constant that is a function of

the sample size n, the two-sided confidence coefficient (1�a/2), and the type of

interval desired (confidence, prediction, or tolerance interval). One-sided bounds

concentrate the possible error rate a onto one side of the mean, following the general

equation of xþ ks for an upper confidence bound, and x� ks for the lower bound.

For these one-sided bounds, k is a function of the sample size n, the one-sided

confidence coefficient (1�a), and the type of interval desired.

Estimates for the mean and standard deviation may be computed using any of the

techniques discussed in Chapter 6. Better parameter estimates will produce better

interval estimates. Therefore, estimates of mean and standard deviation from max-

imum likelihood (for large samples) or from the robust ROS or robustMLE estimators

should produce the best interval estimates when the shape of data follows a

normal distribution.
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7.1.1 Validity of Assuming a Normal Distribution

Parametric intervals discussed in this book require that the data (or transformed data)

used to construct the interval were randomly sampled from a population possessing

the shape of a normal distribution, the familiar “bell-shaped curve.” In that case most

of the data will be in the center, with outlying data symmetrically departing from the

center to more and more infrequent values. The center is defined by the mean and

median, both of which are at the same value. The probability of being more than two

standard deviations above the mean is identical to the probability of being more

than two standard deviations below it.

Most investigators have found air, water, soils, and tissue concentrations to be

somewhat skewed, unlike a normal distribution. A lower bound of zero concentration

prevents the distribution from looking symmetric—concentrations can only go down

so far, and no further. Infrequently occurring observations–outliers—occur primarily

on the high (right) side, and so data are right-skewed. Due to both right-skewness and

variability that is often proportional to the concentration, logarithms (and less

frequently, square roots) are more often nearly symmetric, and a normal distribution

for these transformed data can be more reasonably invoked than for the original data

prior to transformation.

Parametric prediction intervals for one or more observations, and tolerance

intervals around a specified proportion of data, are highly sensitive to the assumption

of normality. If the data are skewed and these intervals computed directly using

untransformed data, the endpoints of the intervals will not reflect the desired

confidence level. The interval lengths will be unrealistic, perhaps going negative in

the lower direction, an impossible result. The process of attempting to summarize a

skewed distribution with symmetric intervals may produce an interval that is

noticeably too large. A more insidious problem is that the interval may not contain

the desired result as frequently as indicated by the confidence level. A supposed 95%

confidence level for a prediction interval may in fact have only a 60% probability of

containing the next observation, as one example.

However if prediction and tolerance intervals are cursed with strict dependence on

the normality assumption, they also are blessed with an easy solution. Once the data

are transformed to approximate normality and interval endpoints constructed on

transformed data, those endpoints can be directly retransformed back to original units

while preserving their meaning and purpose. If natural logarithms of concentration

have a nearly normal distribution, a 95% upper tolerance bound computed on the

90th percentile of logarithms may be retransformed by exponentiating its value. The

result is a 95% tolerance bound on the 90th percentile of concentration. Prior to

constructing prediction or tolerance intervals theBox–Cox transformation series, also

called the Ladder of Powers (Velleman and Hoaglin, 1981), should be used to find a

suitable transformation to near-normality. Then construct the desired interval, apply

the reverse transformation and the result is the desired interval in original units.

Confidence intervals whose target is estimation of the mean have a different

blessing and a different curse. Their curse is that an interval around the mean of data

transformed using a power or other nonlinear transformation cannot be directly
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retransformed to produce a confidence interval around themean in original units. This

is because the mean of transformed data once retransformed does not estimate the

mean of the original data. The mean and median of transformed data are identical

when the transformed data are symmetric. Once retransformed the resulting value

remains an estimate of the median in original units, but not of the mean. So the

geometric mean, the mean of logarithms retransformed back to original units,

estimates the median (if the log-transformed data were symmetric) rather than the

mean. Therefore transformation does not help in constructing confidence intervals on

the mean, as it does for prediction and tolerance intervals. Confidence intervals

constructed around the mean of the logs when retransformed become confidence

intervals for the median and not the mean, assuming the logs were symmetric.

How then can a confidence interval on the mean of skewed data be reliably

estimated? An often-invoked blessing is the Central Limit Theorem, the property of a

mean that states that the variability in estimates of the mean follows a normal

distribution under certain conditions, even when the underlying data do not. When

data sets are “large” and data “not too skewed,” a normal theory confidence interval

can be directly computed without transformation (Hahn and Meeker, 1991). But how

large must “large” be, and how much skewness is allowed? Boos and Hughes-Oliver

(2000) show that the sample size required to invoke the theorem is a function of the

type of interval and the severity of skewness. For two-sided confidence intervals based

on the t-statistic built from data of moderate skewness (skewness coefficient¼ 1),

somewhere around 30 observations is large enough. However for a one-sided interval

such as the upper 95%confidence bound on themean (UCL95), a skewness coefficient

of 1 results in a requirement of about 126 observations!With smaller sample sizes and

right-skewed data, an upper confidence bound computed using the t-statisticwillmost

often be too small (Boos and Hughes-Oliver, 2000), undershooting the true value

(“miss on the left”). Environmental data generally havemore than amoderate amount

of skew (with a skew coefficient >1), so that a sample size of 50 or more is not an

unreasonable requirement to invoke the Central Limit Theorem for two-sided

intervals. For one-sided confidence bounds, sample size requirements are quite large,

greater than 126. If the skewness coefficient is known or can be estimated from past

data, approximate sample size requirements can be determined from equations in

Boos and Hughes-Oliver (2000). Even when sample sizes are sufficient, the resulting

t-statistic confidence intervals must be considered approximate rather than exact,

with the approximation getting appreciably worse as the confidence coefficient

increases—as a gets small (Hahn and Meeker, 1991, p. 65).

Without invoking the Central Limit Theorem, Land (1972) developed a procedure

to translate confidence intervals in log units back into intervals around the mean in

original units. Land’s method is discussed in the section on maximum likelihood.

However, for small sample sizes and skewed data the estimate of standard deviation in

log units is often poor. A poor estimate of this standard deviation causes Land’s

method to produce a confidence interval that is too wide (Singh et al., 1997).

Bootstrapping (Efron and Tibshirani, 1986) is a newer and more efficient method

than Land’s for constructing confidence intervals on the mean of skewed data.

Bootstrapping is a nonparametric method discussed in later sections.
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7.2 NONPARAMETRIC INTERVALS

Rather than computing intervals using parameter estimates, traditional nonparametric

intervals are based on the values of one or more observations in the data set.

Observations are chosen to be interval endpoints by their positions in the data set,

called their order statistics. First the data are ordered from low to high. Interval

endpoints are chosen at specific order statistics based on the sample size n, the desired

confidence coefficient (1�a) or (1�a/2), and the type of interval (confidence,

prediction, or tolerance) to be computed. The values of observations located at each

endpoint define the shape and width of the nonparametric interval.

Nonparametric intervals do not depend on an assumption of a normal distribution

for their validity. The shape of the interval will reflect the shape of the data set. The

trade-off for this flexibility or robustness is that nonparametric intervals will be

wider than parametric intervals when data do follow the assumed distribution.

The distributional assumption is another piece of information used to construct a

parametric interval. That additional information shortens the interval length when the

data follow the assumed distribution. It will be misleading information producing

misleading intervals when the data do not follow the distribution assumed by the

process. In the latter case a nonparametric interval or an interval following appropriate

transformation will provide better results.

A newer approach to computing nonparametric intervals is called bootstrapping.

With bootstrapping the targeted statistic (mean, median, percentile, etc.) is repeatedly

computed and the estimates stored. A thousand or more replications is typical. The

collection of estimates approximates the distribution of the target statistic. The mean

ormedian of estimates becomes the bootstrapped estimate at the center of the interval,

and the appropriate low and high percentiles of the estimates forms the interval

endpoints. For a 95% confidence interval, the 2.5th and 97.5th percentiles are used,

leaving a total of 5% of the computed estimates outside the interval.

7.3 INTERVALS FOR CENSORED DATA BY SUBSTITUTION

As shown in Chapter 1, substitution of an arbitrary constantmaywidelymiss themark

when estimating a standard deviation. Computations of parametric t-intervals based

on this substitution standard deviation will vary widely in quality. For example,

Table 7.1 shows 95% confidence t-intervals for the mean of the Oahu data set

TABLE 7.1 Confidence Intervals (95%) for the Mean of the Oahu Data Set

Using Substitution

Substitution Method Lower Limit Upper Limit

Zero 0.19 0.94

One-half RL 0.70 1.30

RL 1.12 1.76
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following substitution. The three substitutions result in three quite different intervals,

with the lower end of the RL (substitution of the reporting limit) interval being higher

than the upper end of the Zero-substitution interval. Yet there is no valid justification

for arguing that one of these intervals is any better than another based on the data at

hand. There is no knowledge that any of the substitution standard deviations comes

close to the underlying standard deviation of the data. Substitution has added external,

invasive data into the computations whose values are strongly influenced by the

operating characteristics of the laboratory (the reporting limits they settle on),

interferences from other analytes, the size of the sample submitted, and by the choice

of an arbitrary fraction of that reporting limit to substitute, rather than by the

concentration of the target chemical that was in any given sample.

Substituting the possible extremes of zero and the reporting limit will not

necessarily produce intervals that bracket the range of possible interval widths.

Though themeanvaries monotonically as the substitutionvalue changes, the standard

deviation does not (see Chapter 1). For the Oahu data, the standard deviation

resulting from substitution of one-half DL was smaller than that when substituting

zero or the reporting limit. Interval widths of t-intervals using substitution follow the

same pattern, and so will not change monotonically. The maximum or minimum

interval width may occur at an unknown substituted value somewhere between zero

and the reporting limit. So it is not possible to easily “bracket the extremes” of

intervals using substitution.

Substitution should be avoided when computing interval estimates. There are

better ways.

7.4 INTERVALS FOR CENSORED DATA BY MAXIMUM

LIKELIHOOD

Parametric intervals can be computed using maximum likelihood estimates of the

mean and standard deviation of a censored data distribution, placing these into the

standard formulae for interval endpoints. The assumed distribution for the MLE is

specified within the software. Example computations using Minitab� for many types

of intervals follow. The data used are lead concentrations in the blood of herons in

Virginia (Golden et al., 2003). The data are found in bloodlead.xls.

7.4.1 Confidence Interval for the Mean (Two-Sided) Assuming a Normal

Distribution

Assuming the data follow a normal distribution, upper and lower confidence limits for

the mean are computed as

x� tð1�a=2Þ;n� 1

sffiffiffi
n

p ; xþ tð1�a=2Þ;n� 1

sffiffiffi
n

p ð7:1Þ

where tð1�a=2Þ;n is the 1�a/2th quantile of the t-distribution, n is the sample size,

and s=
ffiffiffi
n

p
is the standard error of the mean. If the interval is computed using data
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that are not normally distributed, the true probability of including the unknown

population mean within this interval will be somewhat lower than 1�a%. The

dependence on the normality assumption can be relaxed as sample sizes increase.

According to the Central Limit Theorem, the probability of inclusion approaches

1�a% as n gets “large,” where large increases as the skewness of data increases.

For the skewness found in environmental data, “large” is often around 50–100

observations.

In Minitab the mean, standard error, and confidence intervals are estimated and

printed using maximum likelihood with the menu command:

Stat > Reliability/Survival > Distribution analysis (arbitrary

censoring) > Parametric distribution analysis

Data are input in interval endpoint format with Blood as the start variable and

BloodPb as the end variable. The resulting output is

Standard 95.0% Normal CI

Estimate Error Lower Upper

Mean(MTTF) 0.0397452 0.0123321 0.0155748 0.0639156

Standard Deviation 0.0639343 0.0087089 0.0489537 0.0834990

Median 0.0397452 0.0123321 0.0155748 0.0639156

First Quartile(Q1) �0.0033778 0.0136753 �0.0301810 0.0234253

Third Quartile(Q3) 0.0828682 0.0136438 0.0561268 0.109610

Interquartile

Range(IQR)

0.0862460 0.0117481 0.0660376 0.112638

Using NADA for R, the mean function on a censored data object will provide

confidence intervals. The confidence coefficient can be changed from the default 95%

when first computing the object using the conf.int option. Here is an example of

computing the 90% interval:

> data(Golden)

> attach(Golden)

> BldPb=cenmle(Blood,BloodCen,conf.int=0.90, dist="gaussian")

> mean(BldPb)

mean se 0.9LCL 0.9UCL

0.03974518 0.01233205 0.01946075 0.06002960

The 95% confidence interval on the mean extends from 0.016 to 0.064 mg/g lead.

A normal probability plot (Figure 7.1) shows that the data are not normally

distributed; they do not follow a straight line on the probability plot. The data set

is of moderate size (27 observations). Therefore, the probability that the population

mean is somewherewithin the 95% confidence interval is likely to be somewhat lower

than 95%.
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7.4.2 Confidence Bound for the Mean (One-Sided) Assuming a Normal

Distribution

A one-sided confidence bound on the mean places the entire error probability a on

either the upper or lower side. An upper confidence bound is computed using

equation (7.2), assuming a normal distribution.

xþ tð1�a=2;n� 1Þ
sffiffiffi
n

p ð7:2Þ

A lower confidence bound is obtained by subtracting rather than adding from the

estimate of themean. A 95%upper confidence bound on themean, assuming a normal

distribution, is computed using censored MLE in Minitab by selecting the “upper

bound” option in the “Estimate” dialog box:

95.0% Normal

Estimate

Standard

Error Upper Bound

Mean(MTTF) 0.0397452 0.0123321 0.0600296

Standard Deviation 0.0639343 0.0087089 0.0799908

Median 0.0397452 0.0123321 0.0600296

First Quartile(Q1) �0.0033778 0.0136753 0.0191161

Third Quartile(Q3) 0.0828682 0.0136438 0.105310

Interquartile

Range(IQR)

0.0862460 0.0117481 0.107906
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FIGURE 7.1 Probability plot of the censored blood lead data. Note the curvature, indicating

non-normality.
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The 95% upper confidence bound on the mean, assuming data follow a normal

distribution, is 0.060.

7.4.3 Confidence Interval for the Median Assuming a Normal Distribution

If the data are believed to follow a normal distribution the mean and median are the

same. Therefore confidence intervals for the two are identical, as shown in the above

Minitab output. A 90% confidence interval on the median is identical to the 90%

interval on the mean printed by NADA for R, above. More typically, confidence

intervals on themedian are computed using the nonparametric process shown in a later

section. The nonparametric intervals will have a true 95%probability of enclosing the

population median, unlike parametric intervals, when the data are skewed.

7.4.4 Confidence Bound for the Median Assuming a Normal Distribution

A one-sided confidence bound for the median will be identical to that for the mean

if data follow a normal distribution. The Minitab results shown above for the one-

sided upper bound on the mean have identical values in the row for the median.

7.4.5 Confidence Interval for a Percentile (Quantile) Assuming a Normal

Distribution

Confidence intervals around a percentile (also known as a quantile) bracket the range

of values within which the true population percentile is expected to be located, with

(1�a)% confidence. Assuming that data follow a normal distribution, the sample

estimate of the pth percentile is

xþ zp � s ð7:3Þ

where zp is the pth percentile of the standard normal distribution. A two-sided

confidence interval around a percentile larger than the median (p> 0.5) follows the

formula:

xþ g0ða=2Þ;p;n � s; xþ g0ð1�a=2Þ;p;n � s ð7:4Þ

where g0 values are the percentiles of a noncentral t-distribution. The noncentral

t-distribution is a function of the confidence coefficient (1�a), the percentage p of

the desired percentile, and the sample size n. Tables of the g0-statistic for commonly

used values of a and p are found in Tables A.12a–A.12d of Hahn andMeeker (1991).

Some statistical software, including Minitab, will also produce values for the

noncentral t-distribution.

For percentiles below the median (p< 0.5), a two-sided confidence interval is

x� g0ð1�a=2Þ;p;n � s; x� g0ða=2Þ;p;n � s ð7:5Þ
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Minitab reports confidence intervals around the first quartile (25th percentile) and

the third quartile (75th percentile) as part of its MLE distributional analysis.

For other percentiles the intervals will need to be computed using equations (7.4)

and (7.5).

The sample 90th percentile of the blood lead data is

0:0397þ 1:28� 0:064; or 0:122

where 1.28 is the 90th percentile of a standard normal distribution (p¼ 0.9). The 95%

confidence interval around this estimate for the 90th percentile is

ð0:0397þ 0:846� 0:064; 0:0397þ 1:932� 0:064Þ; or

ð0:094; 0:163Þ

where 0.846 and 1.932 are the 2.5th and 97.5th percentiles of a noncentral

t-distribution from Tables A.12a and A.12d of Hahn and Meeker (1991) for a/2
¼ 0.025, p¼ 0.9 and n¼ 27. Therefore, the population 90th percentile of blood lead

levels is between 0.094 and 0.163mg/g with 95% confidence if the data follow a

normal distribution.

Using NADA for R, the modeled percentiles or quantiles can be computed by

> Pbmle=cenmle(Blood, BloodCen, dist="gaussian")

> quantile(Pbmle)

quantile value

1 0.05 �0.065417328

2 0.10 �0.042189878

3 0.25 �0.003377829

4 0.50 0.039745176

5 0.75 0.082868181

6 0.90 0.121680231

7 0.95 0.144907680

Confidence intervals on the quantiles can also be reported using the “conf.int¼
TRUE” option. However, a normal instead of the noncentral t-distribution is currently

used in computing these intervals.

7.4.6 One-Sided Confidence Bound for a Percentile Assuming a Normal

Distribution

One-sided confidence bounds for percentiles are computed in much the same way as

the two-sided intervals. In environmental studies the objective for computing this one-

sided bound is usually to define a limit that contains below (or above) it a specified
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proportion of the data. The equation for a one-sided upper confidence bound on a

percentile is

x� g0ð1�a=2Þ;p;n � s ð7:6Þ
where g0 is the (1�a)� 100th percentile of a noncentral t-distribution from

Table A.12d in Hahn and Meeker (1991).

Supposewewant to determine a threshold that is higher than 90% of the blood lead

levels in the population of herons. An upper 95% confidence bound on the 90th

percentile of lead concentrations will provide a threshold with only a 5% chance that

the 90th percentile of the population these data represent is higher than our estimate.

This confidence bound for the heron blood lead data, assuming that they follow a

normal distribution, is

0:0397þ 1:811� 0:064; or 0:156

where 1.811 is g00:95; 0:9; 27 from Table A.12d of Hahn and Meeker (1991). We expect

that 90% of all lead concentrations in the heron population represented by these birds

would be below 0.156 mg/g, if the assumption of a normal distribution were reason-

able. However, the data do not appear to follow a normal distribution, so this estimate

is likely to be incorrect.

7.4.7 Tolerance Interval to Contain a Central Proportion of the Data

Tolerance intervals bracket values containing a specified proportion of the data. Two-

sided tolerance intervals are rarely used in environmental studies, perhaps because

there are fewapplications that attempt to determine the location of a central proportion

of data, with allowable exceedances at both high and low ends. Assuming the data

follow a normal distribution, a two-sided tolerance interval follows the formula:

x� gð1�a=2Þ;p;n � s; xþ gð1�a=2Þ;p;n � s ð7:7Þ

where tables of the g-statistic (different than the g0-statistic) are found in TableA.10 of
Hahn and Meeker (1991). Note that the tables are set up to use a rather than a/2 for
determining the g-statistic for each end of the (1�a)% confidence interval. The

g-statistic is also a function of the proportion p of the distribution to be includedwithin

the interval and the total sample size n. Neither Minitab nor other standard statistical

software computes tolerance intervals for a central proportion directly.

A tolerance interval expected to contain the central 90%of the blood lead datawith

95% confidence is

ð0:0397� 2:184� 0:064; 0:0397þ 2:184� 0:064Þ; or

ð� 0:100; 0:179Þ

where 2.184 is the g-statistic fromTableA.10a ofHahn andMeeker (1991) for p¼ 0.9

and n¼ 27. No more than 5% of the population of blood lead concentrations are
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expected to be less than the lower limit, and no more than 5% greater than the upper

limit, with 95% confidence. The negative lower limit of the interval is a reminder that

these data do not follow a normal distribution, and that a transformation should have

been applied prior to computing this interval. This will be done in the later section on

intervals for lognormal distributions.

7.4.8 Tolerance Bound for a Proportion of the Data

One-sided upper tolerance bounds estimate a value that exceeds p%of the population

with (1�a)% confidence. The percent of data ( p) designed to be below the bound is

often called the coverage. A one-sided tolerance bound is identical to the one-sided

confidence limit for the equivalent (pth) percentile. So a 95% upper tolerance bound

covering at least 90% of the data is identical to the 95% upper confidence bound for

the 90th percentile. Both are higher than p% of the data with (1�a)% confidence.

The equation for a one-sided tolerance bound with coverage p is the same as

equation (7.6), above.

A 95% upper tolerance bound with 90% coverage of blood lead levels, assuming

data follow a normal distribution, is

0:0397þ 1:811� 0:064; or 0:156

where 1.811 is the noncentral t-statisticg00:95; 0:9; 27 from Table A.12d of Hahn and

Meeker (1991). This is the same value obtained previously for the 95% upper

confidence bound on the 90th percentile. We would expect that at least 90% of

blood lead concentrations in the population these data represent lie below 0.156, with

95% confidence, assuming these data follow a normal distribution.

7.4.9 Prediction Interval for One New Observation, Assuming a Normal

Distribution

Prediction intervals bracket the range of locations for one or more new observations

not currently in the data set. Two-sided intervals are of interest if both extreme high

and extreme low values of new observations are of concern. Obtaining a new

observation beyond the limits of the prediction interval should happen only a% of

the time if nothing has changed and the new observation(s) come from the same

distribution as did the existing data, in this case a normal distribution.

A two-sided prediction interval for normal distributions that covers the likely

values for one new observation with (1�a)% confidence is

x� tð1�a=2; n� 1Þ �
ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

r
� s; xþ tð1�a=2; n� 1Þ �

ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

r
� s ð7:8Þ

where t is from a Student’s t-distribution with n� 1 degrees of freedom. Note this is

similar to the equation for the confidence interval around a mean, except that
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an additional term (a 1) appears under the square root sign. The uncertainty in

prediction for a single new observation includes both the variability of the data (the

standard deviation s) and the variability of the estimated mean (the standard errorffiffiffiffiffiffiffiffiffiffiffið1=nÞp � s). While the width of a confidence interval is determined only by the

standard error, both terms contribute to the width of a prediction interval. Unlike a

confidence interval, as sample sizes increase thewidth of a prediction interval goes no

lower than t�s.
A 95% prediction interval for the range of probable values for a new blood lead

observation is

ð0:0397� 2:056�
ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

27

q
� 0:064; 0:0397þ 2:056�

ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

27

q
� 0:064Þ; or ð� 0:094; 0:174Þ

where 2.056 is the 0.975th quantile of a t-distribution with 26 degrees of freedom.

The unrealistic negative lower end of the interval is a signal that these data do not fit a

normal distribution well, and that a normal-theory prediction interval should not be

used without prior transformation of the data.

7.4.10 Prediction Interval for Several New Observations, Assuming

a Normal Distribution

An approximate prediction interval that covers the likely range of values for m new

observations with (1�a)% confidence is

x� t1�a=ð2mÞ;n� 1 �
ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

r
� s; xþ t1�a=ð2mÞ;n� 1 �

ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

r
� s ð7:9Þ

Including multiple predicted observations within the interval is accomplished by

dividinga for the t-statistic by 2m rather than by 2. The t-statistic increases in value as

m increases, widening the prediction interval. Tables for more exact and slightly

smaller prediction intervals than those using equation (7.9) are found in Hahn and

Meeker (1991).

A 95% prediction interval that should include values for three new blood lead

observations is

ð0:0397� 2:577�
ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

27

q
� 0:064; 0:0397þ 2:577�

ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

27

q
� 0:064Þ; or ð� 0:128; 0:208Þ

where 2.577 is the 0.992th quantile (1� 0.05/6) of a t-distribution with 26 degrees

of freedom.

Prediction intervals get very wide very quickly asm increases. Users often decide

rather than to accept suchwide intervals to use a tolerance interval instead. In this case,
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the tolerance interval can be interpreted as giving the range of values that will include

p%of all new observations, rather than allm observations, with (1�a)% confidence.

7.4.11 Prediction Bound for New Observations, Assuming a Normal

Distribution

A one-sided prediction bound states the probable extreme in one direction for one or

more new observations not currently in the data set. One example of its application is

to determine a limit not likely to be exceeded by a new observation, based on an

existing set of observations. For example, concentrations are measured in field blanks

representing contamination due to the sampling and analytical processes. We might

like to define a limit that, if exceeded, would indicate that the concentration in a new

observation was greater than those in a blank. A one-sided 95% prediction interval

would have only a 5% chance of being exceeded by a new observation similar to the

blanks. That is a sufficiently small probability that an exceedance would be grounds

for declaring that the concentration in a new observation was not simply due to

contamination.

An upper prediction bound (assuming a normal distribution) that exceeds the likely

values for m new observations, with (1�a)% confidence, is

xþ tð1�a=mÞ;n� 1 �
ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

r
� s ð7:10Þ

A one-sided lower bound can be found by changing the plus sign following the mean

in equation (7.10) to a minus sign.

For example, an upper prediction bound that should not be exceeded by one new

blood lead observation with 95% confidence is

ð0:0397� 1:706�
ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

27

q
� 0:064Þ; or 0:151

where 1.706 is the 0.95th (1� 0.05/1) quantile of a t-distribution with 26 degrees of

freedom.

All of the above intervals, confidence, prediction, and tolerance, were for the

situation where the data can be assumed to come from a normal distribution. We turn

our attention now to the situation where the data do not appear to do so. First this

situation is addressed by transforming the data to better fit a normal distribution, prior

to using the equations already presented for a normal distribution. Later, nonpara-

metric intervals are created that require no assumption about the shape of the data

distribution.

7.5 INTERVALS FOR THE LOGNORMAL DISTRIBUTION

The lognormal distribution is a skewed distribution of a variable x whose natural

logarithms y¼ ln(x) follow a normal distribution. The lognormal distribution has
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been used by many investigators in environmental studies, as well as in other

disciplines, to describe the shapes seen when a lower limit of zero is combined with

the occurrence of infrequent yet annoyingly regular large outliers. The distribution

has a flexible shape, appearing similar to a normal distribution when the skew is small

(Figure 7.2, upper left), and much like an exponential decay function when skew is

large (Figure 7.2, bottom right). To evaluate whether data follow a lognormal

distribution the logarithms y are plotted on a normal probability plot, and the resulting

pattern tested to see if it follows a straight line using the probability plot correlation

coefficient, an analog to the standard Shapiro–Wilks test for normality (Looney and

Gulledge, 1985).

Tolerance and prediction intervals follow a simple process for lognormal dis-

tributions. The data are log-transformed, intervals are computed in the transformed

units, and the interval endpoints are retransformed back into the original units.

The resulting intervals can be directly interpreted as prediction and tolerance

intervals in the original units. Unfortunately, confidence intervals are not so simply

computed.

Each of the intervals for a lognormal distribution uses estimates of the mean and

standard deviation of the logarithms. InMinitab these are calculated for censored data

using MLE with the menu command

Stat > Reliability/Survival > Distribution analysis

(arbitrary censoring) > Parametric distribution analysis
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FIGURE 7.2 Histograms of four lognormal distributions with increasing skewness. Lowest

skew at top left; highest skew at bottom right.
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while selecting lognormal as the fitted distribution. Results for the blood lead data are

plotted in Figure 7.3 and listed in the following output:

Standard 95.0% Normal CI

Parameter Estimate Error Lower Upper

Location �4.26595 0.357922 �4.96746 �3.56443

Scale 1.40747 0.313299 0.909849 2.17728

Log-Likelihood ¼ 7.548

Characteristics of Distribution

Standard 95.0% Normal CI

Estimate Error Lower Upper

Mean(MTTF) 0.0377996 0.0153122 0.0170874 0.0836181

Standard Deviation 0.0944994 0.0786706 0.0184844 0.483118

Median 0.0140384 0.0050247 0.0069607 0.0283127

First Quartile(Q1) 0.0054329 0.0027094 0.0020443 0.0144385

Third Quartile(Q3) 0.0362750 0.0112877 0.0197124 0.0667537

Interquartile

Range(IQR)

0.0308422 0.0100925 0.0162407 0.0585712

The mean and standard deviation of the (natural) logarithms are reported as the

location and scale parameter estimates, respectively. So the mean of the logarithms y

is estimated as �4.26 and the standard deviation of the logarithms sy as 1.407.

Estimates listed under “Characteristics of Distribution” are in the original units. The

mean (0.0377) was estimated by (same as equation 6.1)

x ¼ exp yþ s2y

2

 !
ð7:11Þ
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FIGURE 7.3 Probability plot of logarithms of the censored blood lead data.
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and the standard deviation (0.094) as

s ¼ x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp s2y

� �
� 1

r
ð7:12Þ

The median (0.014) is the mean of the logarithms, retransformed

medianx ¼ expðyÞ ð7:13Þ

Similarly, a two-sided confidence interval for the mean (by the Cox method, equation

7.14) for an assumed lognormal distribution is computed in NADA for R by typing

> Pbmlelog=cenmle(Blood, BloodCen, dist="lognormal")

> mean(Pbmlelog)

mean sd 0.95LCL 0.95UCL

0.03779965 0.0944994 0.0170874 0.0836181

Equations (7.11) and (7.12) are correct for large samples, but do not perform well

for small (n< 50) sample sizes. In particular, the estimate for the standard deviation of

the logarithms sy is inaccurately estimated by MLE for small samples. The result is a

biased estimate of the mean; its value is generally too large when data are right-

skewed. Various methods have been devised for correcting this bias (e.g., see

Shumway et al., 2002; Cohn, 1988) but these are not implemented in standard

statistical software.

7.5.1 Confidence Interval for the Mean Assuming a Lognormal Distribution

If the data follow a lognormal distribution, Cox’s method (Olsson, 2005) can be used

to calculate upper and lower confidence limits for the mean of lognormal data. The

equation for Cox’s method is shown as equation (7.14).

exp yþ s2y

2
� z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2y

n
þ s4y

2ðn� 1Þ

s2
4

3
5; exp yþ s2y

2
þ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2y

n
þ s4y

2ðn� 1Þ

s2
4

3
5 ð7:14Þ

This is the most commonly reported method for computing confidence intervals for

lognormal data. Olsson (2005) proposed a slight modification by using a t-statistic

rather than a normal z-statistic in computing the intervals, resulting in a slightly wider

interval. This modification improved the coverage of the interval for smaller sample

sizes. However, the modification is not yet commonly found in software, including

Minitab and NADA for R.

Gibbons and Coleman (2001) report several approximate or less satisfactory

methods for producing confidence intervals of lognormal data. All of them either

assume that the distribution of a statistic is normal when it is known not to be, or
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assume that the standard deviation of the logarithms is known, when in reality it is

only estimated by sy. This mis-specification of the standard deviation introduces large

errors when sample sizes are small. One of those methods commonly used in the past

is Land’s method (Gibbons and Coleman, 2001). Land’s upper and lower two-sided

confidence limits are computed as

exp yþ s2y

2
þ sy �Haffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

 !
; exp yþ s2y

2
þ sy �H1�affiffiffiffiffiffiffiffiffiffiffi

n� 1
p

 !
ð7:15Þ

where tables of Land’s H-statistic are provided in an appendix by Gibbons and

Coleman (2001). Land’sH-statistic is a function of both the desired confidence levela
and of the standard deviation sy of natural logarithms. When sample sizes are smaller

orwhen the coefficient of variation is greater than 1 (even for large sample sizes) these

H-limits will not perform well (Singh et al., 1997). This includes most of the cases

found in practice in environmental sciences, and therefore Land’smethod is rarely the

best procedure. Singh et al. (1997) conclude that “for samples of size 30 or less, the

H-statistic-based UCL results in unacceptably high estimates of the threshold levels

such as the background level contamination.”

Currently, bootstrapping (Efron, 1981) is the most satisfactory method for

computing confidence limits around the mean of lognormal data. Bootstrapping

involves repeated computations of the same statistic thousands of times, each time on

a temporary set of data chosen with replacement from the original data set. The mean

of the computed estimates is the bootstrapped estimate of that statistic. Though there

are several ways to compute a bootstrapped confidence interval, the method that

assumes nothing about the distribution of the estimates is to take the 2.5th and 97.5th

percentiles of the estimates as the 95% confidence interval endpoints. This was called

the “percentile method” by its developer (Efron, 1981). Singh et al. (1997) strongly

recommended the bootstrap or other nonparametric methods over Lands’ H-statistic

when computing confidence intervals for lognormal means.

Bootstrapped two-sided 95% confidence intervals for the mean of lognormal data

can be computed by

1. From the original set of n observations, sample with replacement to obtain a

temporary set of n observations. Because some observations will be chosen

more than once, the temporary set is rarely identical to the original data set.

2. Compute an MLE (or other method) estimate of the mean of the temporary set

of data.

3. Save the estimate and repeat the processmany timeswith new temporary sets of

data. One thousand to ten thousand replicates is a commonly used range.

4. Compute the mean of the replicate estimates for the mean. This is the boot-

strapped estimate of the mean. It has no advantage over the mean of the original

n observations.
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5. Locate the 2.5th and 97.5th percentiles of the estimates of the mean. These are

the endpoints of the two-sided 95% confidence interval for the mean. Gen-

erating confidence intervals when data do not necessarily follow a standard

distribution is one of the major contributions of the bootstrapping process.

Five percent of the estimates (2.5% on each side) are outside of the bootstrapped

interval endpoints. The confidence interval may be asymmetric around the mean,

reflecting that the distribution of the mean for small skewed data sets may not

approach a normal distribution. More detail on bootstrapping is given in Section 7.8.

MLE bootstrapping for the mean of left-censored data can be implemented with the

Minitab macro BootMLE, available online at www.practicalstats.com in the package

of Minitab macros for NADA (NADA for Mtb). For the blood lead data, the

bootstrapped 95% two-sided confidence interval for the mean, assuming a lognormal

distribution, is computed by

> %bootmle ’blood Pb’ ’blood LT1’

producing both the written output below and Figure 7.4, which shows the two-sided

interval superimposed on a histogram of all of the bootstrapped estimates of themean.

Note that the distribution of means in Figure 7.4 is skewed and unlike a normal

distribution. Therefore the Central Limit Theorem is unlikely to apply here, and the

bootstrapped interval, with an upper bound further from the mean than the lower

bound reflecting the skewness of the data, will provide a more accurate interval than

by using the standard t-interval formula.
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FIGURE 7.4 Bootstrapped lognormal MLE estimates and 95% confidence interval on the

mean of censored blood lead data using the BootMLE macro for Minitab.
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MLE(lognormal) mean = 0.028549

*****************************

Bootstrap estimate of the 95% confidence interval around the mean

Row LWR95 UPPR95

1 0.0145136 0.0490597

*****************************

Bootstrap estimates of one-sided upper confidence bounds on the mean

UCL95 = Upper 95% conf bound 0.0441785

UCL99 = Upper 99% conf bound 0.0578734

*****************************

7.5.2 Confidence Bound for the Mean Assuming a Lognormal Distribution

Either the original or modified Cox’s method can be used to compute an upper

confidence bound on the lognormal mean. The original Cox’s formula for a one-sided

bound is given in equation (7.16).

exp yþ s2y

2
þ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2y

n
þ s4y

2ðn� 1Þ

s2
4

3
5 ð7:16Þ

A lower confidence bound is obtained by substituting aminus for the plus sign prior to

the z-statistic of equation (7.16). The modified Cox’s method (Olsson, 2005) replaces

the z-statistic with a t-statistic for the chosen confidence coefficient and degrees of

freedom (n� 1). If other methods are chosen, the cautions of the previous section

including the comments by Singh (1997) onLand’smethod apply equallywell to one-

sided bounds as to two-sided confidence intervals for lognormal data.

A more robust method for computing confidence bounds is bootstrapping. The

one-sided upper 95% bound is the 0.95 quantile of the estimates of the means

produced by the bootstrapping procedure. The lower 95% confidence bound is found

at the 0.05 quantile of the bootstrapped means. Figure 7.5 illustrates the bootstrapped

95% upper confidence limit on the mean for the blood lead data. Note that the values

for the UCL95 and bootstrappedmean are slightly different than for Figure 7.4 and its

associated text. This is inherent in bootstrapping methods, and gives an idea of the

precision that can be obtained for a given number of repetitions. To obtain a more

precise and consistent estimate of the mean and UCL95, perform a larger number

of repetitions.

7.5.3 Confidence Interval for the Median Assuming a Lognormal

Distribution

If the data follow a lognormal distribution the same central value is both the mean

and median of the logarithms. The mean of the logarithms retransformed back

into original units is the geometric mean, an estimate for the median of a

lognormal distribution. A confidence interval around this median is calculated by
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retransforming the confidence interval for the mean of the logarithms back into

original units.

xlo ¼ exp y� tð1�a=2Þ;n�1 � syffiffiffi
n

p
� �

; xhi ¼ exp yþ tð1�a=2Þ;n�1 � syffiffiffi
n

p
� �

ð7:17Þ

This interval has probability (1�a) of enclosing the populationmedian as long as the

data reasonably follow a lognormal distribution.

A confidence interval for the median blood lead concentration, assuming a

lognormal distribution, is

xlo ¼ exp � 4:266� 2:056� 1:407ffiffiffiffiffi
27

p
� �

; xhi ¼ exp � 4:266þ 2:056� 1:407ffiffiffiffiffi
27

p
� �

; or

ð0:008; 0:024Þ

where 2.056 is the t-statistic for (1�a/2)¼ 0.975 and 26 degrees of freedom.

7.5.4 Confidence Bound for the Median Assuming a Lognormal Distribution

An upper confidence bound around the median is computed by retransforming the

upper confidence bound on the mean of the logarithms.

xhi ¼ exp yþ tð1�aÞ;n� 1 � syffiffiffi
n

p
� �� �

ð7:18Þ
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FIGURE 7.5 Bootstrapped lognormal MLE estimates and 95% upper confidence bound on

the mean of censored blood lead data using the BootMLE macro for Minitab.
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The lower confidence bound substitutes a subtraction sign for the plus sign following

y. As before, the y values are logarithms and thex values are data in their original units.

An upper 95% confidence bound on the median blood lead concentrations is

xhi ¼ exp � 4:266þ 1:706 � 1:407=
ffiffiffiffiffi
27

p� �
; or

ð0:022Þ
where 1.706 is the t-statistic for (1�a)¼ 0.95 and 26 degrees of freedom. The

median blood lead concentration is expected to be no higher than 0.022 mg/gwith 95%
confidence if the data follow a lognormal distribution.

7.5.5 Confidence Interval for a Percentile Assuming a Lognormal

Distribution

Confidence intervals around a percentile of a lognormal distribution are computed in

log units using themethod for a normal distribution, and then retransformed back into

original units. The sample estimate of the pth percentile is computed as

xp ¼ expðyþ zp � syÞ ð7:19Þ
where zp is the pth percentile of the standard normal distribution.

A two-sided confidence interval around a percentile larger than the median

(p> 0.5) follows the formula:

expðyþ g0ða=2Þ;p;n � sy; yþ g0ð1�a=2Þ;p;n � syÞ ð7:20Þ

where tables of the g0-statistic may be found in Tables A.12a–A.12d of Hahn and

Meeker (1991). The g0-statistic is based on a noncentral t-distribution, and is a

function of the confidence coefficient (1�a), the percentage p corresponding to the
desired percentile, and the sample size n. For percentiles less than the median

(p< 0.5), the interval is

expðy� g0ð1�a=2Þ;p;n � sy; y� g0ða=2Þ;p;n � syÞ ð7:21Þ

For example, the sample 90th percentile of the blood lead data, assuming the data are

lognormal, is

expð� 4:266þ 1:28� 1:407Þ; or ð0:085Þ
where 1.28 is the 90th percentile of the standard normal distribution (p¼ 0.9). The

95% confidence interval around this estimate for the 90th percentile is

expð� 4:266þ 0:846� 1:407; � 4:266þ 1:932� 1:407Þ; or

ð0:046; 0:213Þ
where 0.846 and 1.932 are the g0-statistics from Tables A.12a and A.12d of Hahn and

Meeker (1991) for a/2¼ 0.025, p¼ 0.9, and n¼ 27. Therefore, the 90th percentile of
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the population of blood lead levels lies between 0.046 and 0.213 mg/g, with 95%

confidence, if the data follow a lognormal distribution.

7.5.6 Confidence Bound for a Percentile Assuming a Lognormal Distribution

One-sided confidence bounds for percentiles are computed in much the same way as

the two-sided intervals. A confidence bound is appropriate if the objective is to define

a limit that exceeds (or is lower than) a specified proportion (p) of the data, with

a specified confidence a. The equations for one-sided confidence bounds on a

percentile are

xhi ¼ expðyþ g0ð1�aÞ;p;n � syÞ upper bound for p > 0:5

xlo ¼ expðy� g0ð1�aÞ;1� p;n � syÞ lower bound for p < 0:5
ð7:22Þ

where g0 is from Tables A.12a–A.12d in Hahn and Meeker (1991).

Suppose a threshold must be determined that is higher than 90% of the blood lead

levels in herons represented by the sample data. An upper 95% confidence bound will

reflect the uncertainty in the true 90th percentile of lead concentrations. The

confidence bound, assuming that the data follow a lognormal distribution, is

expð� 4:266þ 1:811� 1:407Þ; or ð0:179Þ

where 1.811 is g00:95; 0:9; 27 from Table A.12d of Hahn and Meeker (1991). We expect

that at least 90%of all lead concentrations in blood of herons represented by this study

will be below 0.179 mg/g, if the assumption of a lognormal distribution is reasonable

for these data.

7.5.7 Tolerance Interval to Contain a Central Proportion of Lognormal Data

Two-sided tolerance intervals to contain a specified central proportion of the data,

rarely used in environmental studies, provide allowable exceedances at both high and

low ends. Assuming the data follow a lognormal distribution, a two-sided tolerance

interval follows the formula:

expðy� g0ð1�a=2Þ;p;n � syÞ; expðyþ g0ð1�aÞ;p;n � syÞ ð7:23Þ

where tables of the g-statistic (different than the g0-statistic) are found in Hahn and

Meeker (1991). Note that the tables are set up to use a rather than a/2 for determining

the g-statistic for each end of the (1�a)% confidence interval. The g-statistic is also a

function of the proportion p of the distribution to be includedwithin the interval and of

the total sample size n. Neither Minitab nor other standard statistical software

computes tolerance intervals for a central proportion directly.

A tolerance interval expected to contain the central 90% of the heron blood lead

data with 95% confidence is
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expð� 4:266� 2:184� 1:407Þ; expð� 4:266þ 2:184� 1:407Þ; or

ð0:0006; 0:303Þ

where 2.184 is the g-statistic from Table A.10 of Hahn andMeeker (1991) for p¼ 0.9

and n¼ 27. Nomore than 5% of blood lead concentrations in the population of herons

are expected to be less than the lower limit of the interval, and nomore than 5% above

the upper limit, with 95% confidence. Unlike the two-sided tolerance interval for a

normal distribution, the lower end of a lognormal interval is not negative. The

lognormal distribution therefore is a more reasonable assumption than the normal

distribution for these data. But perhaps a better fitting distribution than the lognormal

could be found, improving the resulting intervals.

7.5.8 Tolerance Bound for a Proportion of Lognormal Data

One-sided upper tolerance bounds estimate a value that exceeds p%of the population

values with (1�a)% confidence. The percent of data ( p) designed to be below the

bound is often called the coverage. A one-sided tolerance bound is identical to a one-

sided confidence limit for the equivalent (pth) percentile. So a 95% upper tolerance

bound covering at least 90%of the data is identical to the 95%upper confidence bound

for the 90th percentile. Both contain p% of the data with (1�a)% confidence. The

equation for a one-sided tolerance bound with coverage p is simply equation (7.22),

above.

A 95% upper tolerance bound below which is at least 90% of blood lead levels,

assuming that the data follow a lognormal distribution, is

expð� 4:266þ 1:811� 1:407Þ; or ð0:179Þ

where 1.811 is g00:95; 0:9; 27 from Table A.12d of Hahn and Meeker (1991). This result

is the samevalue obtained previously for the 95% upper confidence bound on the 90th

percentile.

7.5.9 Prediction Interval for One New Observation, Assuming

a Lognormal Distribution

Prediction intervals bracket the range of locations for one or more new observations

not currently in the data set. Two-sided intervals are of interest if both extreme high

and extreme low values of new observations are of concern. Obtaining a new

observation beyond the limits of the prediction interval should happen only a% of

the time if nothing has changed and the new observation(s) come from the same

distribution as did the existing data.

A lognormal prediction interval that covers the likely values for one new

observation with (1�a)% confidence is

exp y� tð1�a=2Þ;n�1 �
ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

r
� sy

 !
; exp yþ tð1�a=2Þ;n�1 �

ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

r
� sy

 !
ð7:24Þ
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where t is from a Student’s t-distribution with n� 1 degrees of freedom. See

the discussion on prediction intervals in the normal distribution section for more

detail.

A 95% prediction interval for the range of probable values for one new blood lead

observation is

exp �4:266�2:056 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

27

r
�1:407

 !
; exp �4:266þ2:056 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

27

r
�1:407

 !
;

or ð0:0007; 0:267Þ

where 2.056 is the 0.975th quantile of a t-distributionwith 26 degrees of freedom. The

lower end of a lognormal prediction interval will not go below zero, avoiding one of

the primary problems for prediction intervals when assuming data follow a normal

distribution.

7.5.10 Prediction Interval for Several New Observations, Assuming

a Lognormal Distribution

An approximate prediction interval that covers the likely range of values for m new

observations with (1�a)% confidence is

x� t1�a=ð2mÞ;n� 1 �
ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

r
� s; xþ t1�a=ð2mÞ;n� 1 �

ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

r
� s ð7:25Þ

assuming that data follow a lognormal distribution. Tables for more exact interval

coefficients are found in Hahn and Meeker (1991).

A prediction interval with 95% confidence of including values for three new blood

lead observations is

exp �4:266�2:577 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

27

r
�1:407

 !
; exp �4:266þ2:577 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

27

r
�1:407

 !
;

or ð0:0003; 0:563Þ

where 2.577 is the 0.992th quantile (1� 0.05/6) of a t-distribution with 26 degrees of

freedom.

7.5.11 Prediction Bound for m New Observations, Assuming a Lognormal

Distribution

A one-sided prediction bound is used to determine a limit not to be exceeded by (or

lower than) one or more new observations, based on an existing set of observations.

Exceedance signifies that the new observation represents a different population than
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the existing data, with (1�a)% confidence. See the section on normal distribution

prediction bounds for more detail.

A one-sided upper prediction bound for a lognormal distribution that exceeds the

likely values for m new observations, with (1�a)% confidence is

xhi ¼ exp yþ tð1�a=mÞ;n� 1 �
ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n

r
� sy

 !
ð7:26Þ

A one-sided lower bound xlo can be found by changing the plus sign to a minus sign

following y, the mean of the logarithms in equation (7.26).

An upper prediction bound that will likely not be exceeded by one new

blood lead observation from the same population as the original data, with 95%

confidence, is

exp � 4:266þ 1:706 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

27

r
� 1:407

 !
; or ð0:162Þ

where 1.706 is the 0.95th (1� 0.05/1) quantile of a t-distribution with 26 degrees of

freedom.

7.5.12 Using Other Transformations

Other transformations may be used to construct intervals similar in purpose to those

listed for the lognormal distribution, above. The general procedure is to

1. Find a transformation that produces data close to a normal distribution.

2. Compute an interval on the transformed data.

3. For confidence intervals on percentiles, prediction intervals, and tolerance

intervals, retransform the interval endpoints directly back into original units.

Confidence intervals on the mean and standard deviation are best performed

using bootstrapping (see later section on bootstrapped intervals). Alternatively,

complicated procedures based on the mathematics of the transformation itself

may be possible, though the limited success with Land’s method for small to

moderate sized lognormal data sets should caution against using those type of

methods.

Severalmethods can be used to determinewhich transformation best produces data

that follow a normal distribution. Modern statistical software will easily produce a

probability plot of the transformed data, comparing percentiles of the transformed

data set to percentiles of a normal distribution. If the transformed data follow a normal

distribution their points will plot on a straight line. In addition to choosing the units

that visually produce the straightest data, there are several numerical measures for

judging the adequacy of alternate transformations.

124 COMPUTING INTERVAL ESTIMATES



A. The probability plot correlation coefficient (PPCC—see Looney andGulledge,

1985) increases to a value of 1.0 as data on the probability plot approach a

straight line. Choosing the transformation that produces a PPCC closest to 1.0

is the measure most closely associated with the probability plot itself.

The coefficient is also used in a test for normality.

B. Two other popular tests for normality are the Anderson–Darling (Stephens,

1974) and Shapiro–Wilk (Shapiro and Wilk, 1965) tests. In each case the

null hypothesis is that the data follow a normal distribution. The trans-

formation with the least-significant test statistic (largest p-value) would be

produced from the transformation closest to a normal distribution by this

measure.

C. After transforming data to approximate normality, compute the MLE for

estimating mean and standard deviation assuming a normal distribution. The

highest log-likelihood statistic will result from the transformation producing

data closest to a normal distribution (Shumway et al., 2002).

Any of these criteria should lead to a reasonable transformation for the data.

Several authors recommend limitingBox–Cox power transformations to values on the

Ladder of Powers—transformations easy to interpret. Shumway et al. (2002) re-

commend considering only the log and square root transformations when computing

summary statistics and interval estimates of environmental data, because these

transformations mitigate the effects of the severity of right-skewness commonly

seen in these data.

7.6 INTERVALS USING “ROBUST” PARAMETRIC METHODS

Methods other than maximum likelihood may also be used to estimate the mean and

standard deviation of data or of its transformed values. Equations from the previous

sections are then used with these estimates to compute the intervals. Huybrechts et al.

(2002) found that robust methods performed better than MLE for the small, skewed

data sets common to environmental studies. Using either the robust ROS method

described inChapter 6, or the “robustMLE”method described byKroll and Stedinger

(1996) should produce estimates for interval calculations that are as good as or better

than MLE for small (<50), skewed data sets.

Using the %BootROS macro for Minitab, a bootstrapped 95% confidence interval

on the mean as estimated by robust ROS can be computed.

MTB > %bootros ’blood Pb’ ’blood LT1’

Results are given below, along with the plot of all the bootstrapped estimates in

Figure 7.6. Again notice that the distribution of estimated means is not a normal

distribution, but skewed, signifying that the Central Limit Theorem cannot be

invoked, and that the t-interval formula will not provide a good estimate of the

confidence bounds. Bootstrapping is the only method to compute ROS confidence
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intervals other than using the t-interval formula and assuming a normal distribution of

data. For more on bootstrapping, see Section 7.8.

ROS (lognormal) mean for blood Pb 0.042818

*****************************

Bootstrap estimate of the 95% confidence interval around the mean

Row LWR95 UPR95

1 0.0229111 0.0698897

*****************************

Bootstrap estimates of one-sided upper confidence bounds on the mean

UCL95 = Upper 95% conf bound 0.0659566

UCL99 = Upper 99% conf bound 0.0740089

*****************************

7.7 NONPARAMETRIC INTERVALS FOR CENSORED DATA

Nonparametric intervals assume no shape for the underlying data when computing

locations of interval endpoints. The interval shape generally reflects the shape of the

observed data, whatever that may be. The primary benefit of a nonparametric interval

is that the probabilities of the targeted measure being within and outside the interval

are correct regardless of the shape of the underlying data. A 95% nonparametric

confidence interval for themedian will have a 5% probability of not including the true

value, whether the underlying data were normal, lognormal, or some other distribu-

tional shape.
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FIGURE 7.6 Bootstrapped ROS estimates and 95% confidence interval on the mean of

censored blood lead data.
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The primary drawback of a nonparametric interval is that it makes no use of the

information present in a distributional assumption. Therefore if the data do follow a

known distribution, the width of a nonparametric interval will be larger than

necessary—larger than the width of a parametric interval based on the correct data

distribution at the same confidence level. The choice of whether to use a nonpara-

metric interval should be made based on how uncertain the analyst is that the data

follow a specific distribution. If the data do not fit the assumed distribution well, the

parametric interval may be wider, and will be less accurate, than a nonparametric

interval.

The primary method for computing nonparametric intervals is to order the data

from smallest to largest, counting in from the ends a specific number of observa-

tions. The number of observations is determined by binomial probabilities. The

ordered observations are called the “order statistics” of the data set, and for one

reporting limit are known as well as for any data that contain ties. For example,

counting in approximately 20 observations from each end of a data set of 50

observations, selecting the 20th and 30th smallest observations, produces an

approximate 90% confidence interval on the median. If the low end of the interval

drops below the one reporting limit, the low end may always be specified as “<RL”

without making any unfounded assumptions or statements. For multiple reporting

limits a simple nonparametric interval may always be obtained after recensoring

all observations below the highest reporting limit (HRL). Any interval endpoints

below that threshold are called “<HRL.” However, nonparametric intervals for

multiply censored data can be obtained with more precision by using methods

based on Kaplan–Meier (KM) statistics rather than by censoring at the highest

reporting limit.

As the width of nonparametric intervals jumps from point to point, the associated

confidence coefficients jump aswell. The result is an intervalwith only approximately

the same confidence level as what is desired. If a 95% confidence interval around the

median is desired, the closest interval may either be a 96% interval when counting in

five points from each end, or a 93% interval when counting in six points. A typical

decision is to use the interval that has no more than an a% error. So the 96% interval

with a 4% error rate would be chosen. Alternatively some software will interpolate

between the two sets of endpoints in order to provide a pseudo-95% interval. Jumping

fromone confidence coefficient to the next ismost severewhen sample sizes are small;

for larger sample sizes a set of observations can usually be found that are quite close to

the desired level of confidence.

7.7.1 Nonparametric Binomial Confidence Interval for the Median

Nonparametric interval estimates for the median and other percentiles can be

computed using binomial probabilities. Interval endpoints are chosen using binomial

tables where the proportion p in the table is the percentage corresponding to the

targeted percentile at the center of the interval. For an interval surrounding the

median, the binomial table is entered at p¼ 0.5. Binomial tables are also programmed

into most statistical software.
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A two-sided confidence interval on the median is computed using

½xL þ 1; n� xL� ð7:27Þ

where xL is the entry in a binomial table with p¼ 0.5 whose probability is closest to

but not exceeding a/2. The confidence interval endpoints are data values xL þ 1 in

from both ends of the list of ordered observations.

For the heron blood lead data there are 15 censored observations at<0.02 aswell as

4 uncensored observations below 0.02, so the smallest 19 observations are all<0.02.

The sample median of the 27 observations is the (n þ 1)/2¼ 14th smallest observa-

tion, and so <0.02. A 95% confidence interval on this median is found using a

binomial table with p¼ 0.5 (representing the median), a/2¼ 0.025 and n¼ 27. In

Minitab the binomial table is accessed by the command

Calc > Probability distributions > Binomial

Tabled entries are obtained by specifying input values as shown in Figure 7.7.

The Minitab output is

Binomial with n = 27 and p = 0.5

x P( X < = x ) x P( X < = x )

7 0.0095786 8 0.0261195

Minitab reports two possible values for xL, either 7 or 8, because neither produce an

exactly 95% confidence interval. If 7 is used the resulting significance level will be

2 � (0.0096)¼ 0.019, or a confidence level of 98.1%, larger than the desired level.

If 8 is used the resulting significance level will be 2 � (0.026)¼ 0.052, or a 94.8%

FIGURE 7.7 Minitab dialog box to obtain the order statistics value for a 95% nonparametric

confidence interval on the median (p¼ 0.5) of 27 blood lead observations.
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confidence interval, slightly less than the desired 95% level.Most practitioners would

choose the latter as being quite close to 95%. To obtain interval endpoints, count in

8 þ 1¼ 9 observations from each end of the ordered data set. These would be the 9th

and (27� 9)¼ 18th smallest observations, with values of [<0.02, <0.02]. Using

binomial probabilities the nonparametric interval estimate states only that the median

is somewhere below 0.02 with 95% confidence.

Minitab also provides a nonlinear interpolation between these values to obtain an

approximate 95% confidence interval, using the

Stat > Nonparametrics > 1-sample sign

procedure. This interval around the median is directly related to the sign test.

Observations outside the (1�a)% interval are sufficiently far from the center that

the sign test would declare their value to be significantly different than the observed

median at the a% level. Values within the interval are not significantly different.

The interpolated 95% confidence interval is given as [<0.02, 0.020], as shown in the

output below.

Sign confidence interval for median

Confidence

Interval

N Median Achieved

Confidence

Lower Upper Position

blood Pb 27 0.01999 0.9478 0.01999 0.02000 9

0.9500 0.01999 0.02009 NLI

0.9808 0.01999 0.02352 8

“NLI” stands for nonlinear interpolation. Both the values of 0.01999 and 0.02000

should be read as actually <0.02—the sign test does not read less-than signs.

The upper interval endpoint of 0.02009 appears to be above the reporting limit of

0.02, but is actually an interpolation between values of <0.02 and 0.02352, one of

the uncensored observations. Whenever the interpolation is between a censored

and uncensored observation, the reported value is not exactly known. Avalue of 0.02

was used as the low end of the interpolation, which is too high. Unless both

interval endpoints are above the reporting limit, using an interpolated interval remains

inexact. Use the closest exact interval, here the 94.8% interval, rather than the

interpolation.

Nonparametric intervals based on binomial probabilities work reasonably well for

one reporting limit, but cannot be used for more than one limit except by censoring all

values below the highest reporting limit as <HRL. If an upper bound is all that is

desired, and binomial probabilities result in an upper bound that is higher than the

HRL, all is fine. However, nonparametric intervals that account for multiple reporting

limits can also be produced using Kaplan–Meier statistics. KM methods have the

advantage of being the standard methods in medical statistics, and do not require

recensoring to the highest limit. KM intervals are illustrated in the next section.
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7.7.2 Nonparametric Confidence Intervals Based on

Kaplan–Meier Methods

Kaplan–Meier methods estimate the survival function (or edf or percentiles) of the

data without assuming that data follow any particular distribution. KM methods are

coded in statistics software assuming that data will be right-censored. Left-censored

environmental data must first be flipped into right-censored format (see Chapter 2)

prior to computing the estimates. The blood lead data were flipped to a right-censored

format by subtracting the lead concentrations from 1.0, a value larger than the

maximum concentration. The flipped data are processed using the Kaplan–Meier

procedure, invoked in Minitab using

Stat > Reliability/Survival > Distribution analysis (right-

censoring) > Nonparametric Distribution Analysis

A plot of the survival function with confidence bands around the function is shown in

Figure 7.8.

The KM table of survival probabilities and their 95% confidence intervals are

shown below. Added to the table is a column of retransformed blood lead values

(Lead), computed as (1-Time) where Time represents the flipped data. The Kaplan–

Meier estimate for the pth percentile is the observation with the largest survival

probability �p. For this example, the KM estimate of the median is at the

observation with a survival probability of 0.35, the largest probability �0.5.

The median is therefore at a Time of 0.984, or a lead concentration of

(1� 0.984)¼ 0.016.
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FIGURE 7.8 Survival function for the flipped blood lead data.
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Standard 95.0% Normal CI

Mean(MTTF) Error Lower Upper

0.957310 0.0125752 0.932663 0.981957

Median ¼ 0.984483

IQR ¼ 0.0102426 Q1 ¼ 0.975472 Q3 ¼ 0.985714

Kaplan-MeierEstimates

Number Number Survival Standard 95.0% Normal CI

Time Lead at Risk Failed Probability Error Lower Upper

0.731034 0.261 27 1 0.962963 0.036345 0.891729 0.99999

0.822951 0.177 26 1 0.925926 0.050401 0.827142 0.99999

0.825926 0.174 25 1 0.888889 0.060481 0.770348 0.99999

0.893939 0.106 24 1 0.851852 0.068367 0.717854 0.98584

0.950847 0.049 23 1 0.814815 0.074757 0.668294 0.96133

0.966038 0.034 22 1 0.777778 0.080009 0.620963 0.93458

0.975472 0.025 21 1 0.740741 0.084337 0.575443 0.90603

0.976471 0.024 20 1 0.703704 0.087877 0.531468 0.87593

0.981356 0.019 4 1 0.527778 0.166001 0.202422 0.85312

0.984483 0.016 3 1 0.351852 0.181330 0.000000 0.70724

0.985714 0.014 2 1 0.175926 0.153932 0.000000 0.47762

0.986275 0.014 1 1 0.000000 0.000000 0.000000 0.00000

The “95.0% Normal CI” KM intervals are confidence intervals on survival

probabilities rather than on data values. They represent vertical distances on a

survival plot such as Figure 7.8, rather than the horizontal interval that would provide

a confidence interval around themedian or other percentiles. Klein andMoeschberger

(2003) note that these probability confidence intervals (“linear confidence intervals”)

are quite inaccurate for “small” data sets of less than 200 observations! See Klein and

Moeschberger (2003) for more information if intervals around survival probabilities

are of interest. Confidence intervals around the median or other percentiles are

provided in the next sections.

7.7.3 Nonparametric Confidence Intervals for the Median Based
on Kaplan–Meier

Three methods of computing intervals for the median of a multiply censored variable

are presented below. All avoid assumptions about the shape of the data distribution,

though the first method assumes that the variation in estimates of a single survival

probability is asymptotically normal. The secondmethod is based on an adaptation of

the sign test for multiply censored data. It is fully nonparametric, but uses a large-

sample normal approximation for the test statistic. The third method is bootstrapping,

which makes no assumptions about the distribution of data or any test statistic.

Bootstrapping is discussed in its own section. The bootstrap and sign-test methods

provide reliable nonparametric estimates of confidence intervals for percentiles of

data with censored observations.
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The first type of nonparametric interval based on Kaplan–Meier statistics uses

Greenwood’s formula for the standard error of the survival function, s.e.[Ŝ] (equation

6.6), as themeasure of the vertical variability around the survival curve. Greenwood’s

standard error is usually printed in output from KM software as a column of standard

errors, one value for each survival probability. The standard error for a percentile, the

variability in a horizontal direction on a plot of the survival curve, is related to

Greenwood’s standard error by estimating the probability density function or pdf at

that percentile (Collett, 2003).

The standard error of themedian is related toGreenwood’s standard error s.e.[Ŝ] by

equation (7.28) (Collett, 2003).

s:e: median½ � ¼ s:e:½Ŝ�
pdf½median� ð7:28Þ

where pdf[median] is the probability density function evaluated at the median. The

pdf is approximated using equation (7.29) (Collett, 2003).

pdf median½ � ¼ ŜðT þ ð0:55ÞÞ� ŜðT � ð0:45ÞÞ
T � ð0:45Þ� T þ ð0:55Þ ð7:29Þ

where T þ ð0:55Þ is the largest survival time whose estimated survival probability

exceeds 0.55, T � ð0:45Þ is the smallest survival time whose estimated survival

probability is less than or equal to 0.45, and Ŝ is the estimated survival probability.

The (1�a)% confidence interval around the sample median T̂(0.5) is then

T̂ð0:5Þ� z1�a=2 � s:e:½median�; T̂ð0:5Þþ z1�a=2 � s:e:½median� ð7:30Þ

As an example, the 95% confidence interval on the median blood lead concentration

computed with equations 7.28–7.30 is

pdf median½ � ¼ ŜðT þ ð0:55ÞÞ� ŜðT � ð0:45ÞÞ
T � ð0:45Þ� T þ ð0:55Þ ¼ 0:704� 0:352

0:984� 0:976
¼ 44

s:e: median½ � ¼ s:e:½Ŝ�
pdf½median� ¼

0:1813

44
¼ 0:0041

where 0.1813 is the Greenwood estimate of the standard error at the observation

selected to be the median.

Once the standard error is estimated, a z-interval is computed as the confidence

interval for themedian survival time (themedian offlipped data). The 95%confidence

interval using a t-statistic of 1.96 is computed as

½0:016� 1:96� 0:0041; 0:016þ 1:96� 0:0041� ¼ ½0:008; 0:024�
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Klein and Moeschberger (2003) discourage use of the Greenwood pdf-Z interval,

calling equation (7.29) a “crude” estimate of the pdf, sufficiently unreliable for small

sample sizes that they avoid its use and compute intervals by the inverted sign test

method. This second type of interval inverts a sign test for multiply censored data to

avoid estimating the pdf, was originally developed by Brookmeyer and Crowley

(1982), and so is called the B–C sign method.

The B–C sign method computes an estimate of the sign test statistic for multiply

censored data as a ratio whose variation is approximately normal (equation (7.31)).

This ratio at the center of equation (7.31) is computed for each detected observation in

theKM table. All observationswhose ratios lie between the criticalZ-statistics at each

end are considered inside the sign-test confidence interval. The extreme observations

still within the limits of the Z-statistics become the endpoints of the (1�a)% interval.

The B–C sign equation (Klein and Moeschberger, 2003) is

�z1�a=2 � Ŝ�ðpÞ
s:e:½Ŝ� � þ z1�a=2 ð7:31Þ

where Ŝ is the estimated survival probability for each detected observation, p is the

percentage of the target percentile at the center of the interval, and s.e.[Ŝ] is

Greenwood’s standard error given in equation 6.7. Ŝ and s.e.[Ŝ] are printed for each

observation by KM software. It should be noted that the percentage p is in the same

direction as the survival probabilities, and as are the original concentration data prior

to flipping. So the 25th percentile of concentration is the observation with a 25%

survival probability, and is the (1� p)¼ 75th percentile of the flipped Time variable.

Table 7.2 lists the B–C sign test statistic for the median in the column “B–C sign,”

calculated at each uncensored observation (here the flipped blood lead data) using

equation (7.31).

TABLE 7.2 B–C Inverted Sign Test Statistics for Determining Confidence Intervals

for the Median of the Blood Lead Concentrations

Time Lead

Survival

Probability Standard Error B-C Sign

0.731034 0.261 0.962963 0.036345 12.7380

0.822951 0.177 0.925926 0.050401 8.4507

0.825926 0.174 0.888889 0.060481 6.4299

0.893939 0.106 0.851852 0.068367 5.1465

0.950847 0.049 0.814815 0.074757 4.2112

0.966038 0.034 0.777778 0.080009 3.4718

0.975472 0.025 0.740741 0.084337 2.8545

0.976471 0.024 0.703704 0.087877 2.3180

0.981356 0.019 0.527778 0.166001 0.1673

0.984483 0.016 0.351852 0.181330 -0.8170

0.985714 0.014 0.175926 0.153932 -2.1053

0.986275 0.014 0.000000 0.000000 �
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For a two-sided 95%confidence interval, 2.5%of the error is placed on each side of

the interval. The (1�a/2) Z (standard normal) statistic is Z(0.975) or 1.96. Any

observation with a value in the B–C sign column between and including �1.96 and

þ 1.96 is within the 95% inverted sign test confidence interval for the median.

Because the B–C sign statistic jumps in value from one detected observation to

the next, the confidence interval should also include part of the region extending to the

first observation with a B–C sign statistic greater in absolute value than 1.96 (unless

the statistic for the endpoints were exactly equal to 1.96). To account for this,

Brookmeyer and Crowley (1982) use the convention that the interval shall include the

first observation on the highTime sidewith absolute value of its statistic>1.96. This is

the low side for concentration. From Table 7.2, the set of observations with B–C sign

statistics less than 1.96 in absolute value are the lead concentrations between 0.016

and 0.019 mg/L. Including the next observation on the high Time (low concentration)

side, the lead concentration of 0.014 with B–C sign statistic of �2.1, the 95%

confidence interval on the median lead concentration is [0.014, 0.019] using the

inverted sign test.

Klein and Moeschberger (2003) suggest transforming the sign test ratio when

determining which observations are within the (1�a)% interval. Two alternative

transformations are log–log and arcsine transformations (Borgan and Liestfl, 1990).
The choice of these transformations arose out of the shape of hazard functions in

survival analysis for producing confidence intervals on probabilities, rather than

intervals for survival times. Borgan and Liestfl (1990) claim that more accurate

coverage probabilities (1�a) are obtained using one of these two transformed test

statistics for small data sets that follow aWeibull distribution. Their applicability has

not yet been demonstrated for use in intervals for environmental data sets, whose

shape is generally close to a lognormal distribution. So the original B–C sign test

method should be used for environmental data until these variations have been tested

further.

Table 7.3 summarizes the Greenwood pdf-Z and B–C sign test results for a 95%

two-sided confidence interval around themedian for themultiply censored blood lead

data. Also shown is the “binomial” confidence interval for singly censored data,

applied to the blood lead concentrations by treating all data below the highest

reporting limit of 0.02 as simply<0.02. The bootstrap confidence interval is discussed

in a later section. The B–C sign interval is shorter than the Greenwood pdf-Z interval,

is fully nonparametric, and does not require a highly variable estimate of the pdf of the

TABLE 7.3 Nonparametric Two-Sided 95% Confidence Intervals on the Median

Blood Lead Concentrations

Method Lower limit Median Upper Limit

Binomial (94.6%) <0.02 <0.02 <0.02

Greenwood pdf-Z 0.008 0.016 0.024

B–C sign 0.014 0.016 0.019

Bootstrap KM 0.014 0.016 0.019

The binomial interval only handles one reporting limit.
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distribution as doesGreenwood. The usefulness and precision of the binomial interval

is greatly diminished by its requirement of increased censoring—the only information

is that the entire interval is less than 0.02. Of the three, the B-C sign interval provides

the greatest precision and information content for multiply censored data.

7.7.4 Nonparametric Confidence Intervals for Percentiles Other than

the Median

Nonparametric interval estimates for percentiles other than the median can be

computed by the same methods used for the median—intervals based on binomial

probabilities, Greenwood pdf-Z, the B–C inverted sign interval, and bootstrapping.

With binomial intervals all data below the highest reporting limit are again treated as

<HDL. The binomial table provides interval endpoints, where p is the percentage

related to the percentile of interest at the center of the interval.

Forother percentiles than themedian theGreenwood standard error (equation7.28)

becomes equation (7.32)

s:e: p½ � ¼ s:e:½Ŝp�
pdf½p� ð7:32Þ

where p is the survival probability or percentage for the percentile at the center of the

interval. The pdf is estimated using probabilities slightly larger and smaller than p,

analogous to equation (7.29). The variability in Ŝp is assumed to follow a normal

distribution as in equation (7.30). This will be a poorer approximation at extreme

percentiles near 0 and 1.

The B–C inverted sign test interval of equation (7.31) can be used without

modification for confidence intervals on other percentiles. Ŝ is evaluated at the pth

percentile location, not at the median. The percentage p is in the same scale as are

survival probabilities and original concentrations, andwill correspond to the (1� p)th

percentile of the flipped Time variable.

These intervals are briefly illustrated by computing a one-sided upper 95%

confidence bound on the 90th percentile of the lead data. This is a value in which

there is 95% confidence of being exceeded in no more than 10% of the population.

Endpoint positions for the binomial interval are found by entering a binomial table

with probability p¼ 0.9, along with the sample size and confidence coefficient. For a

95% upper bound the input constant is the confidence coefficient, 0.95. The output

from Minitab’s table is

Binomial with n = 27 and p = 0.9

x P( X < = x ) x P( X < = x )

26 0.941850 27 1

There is a 94.18% probability of being less than or equal to the 26th observation, and

so a (1� 0.9418)¼ 6% chance of exceeding this value. If this is close enough to 5%,

the 26th observation from the low end, or 0.177, is the endpoint for a 94%
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nonparametric upper confidence bound on the 90th percentile. As this lead concen-

tration is well above the highest reporting limit, no confusion is caused by the

censoring, and more complex intervals are not necessary. But to illustrate the other

intervals we go on.

The KM estimate of the 90th percentile is the observation with the highest survival

probability �0.9. This is the observation with Ŝ ¼ 0:888, and lead¼ 0.174. A 95%

upper bound on this value using Greenwood’s pdf-Z interval is

s:e: p ¼ 0:9½ � ¼ s:e:½Ŝ�
pdf½0:9� ¼

0:0605

0:6820
¼ 0:0887

where

pdf 0:9½ � ¼ ŜðT þ ð0:95ÞÞ� ŜðT � ð0:85ÞÞ
T � ð0:85Þ� T þ ð0:95Þ ¼ 0:9630� 0:8519

0:8939� 0:7310
¼ 0:1111

0:1629
¼ 0:6820

and so the 95% upper bound on the 90th percentile is

T̂ð0:9Þþ z1�a � s:e:½median� ¼ 0:174þ 1:64� 0:0887 ¼ 0:319

This bound is much higher than the binomial endpoint, lending support to caution

when using thismethod for smaller sample sizes and percentiles close to the endpoints

of the distribution.

The B–C sign endpoint is computed using a one-sided version of equation (7.31)

and p¼ 0.9 rather than 0.5 for the median.

Ŝ�ð0:9Þ
s:e:½Ŝ� � þ z1�a

From Table 7.4, comparing the B–C sign statistic to the (1�a) normal quantile

Z0.95¼ 1.64, the one-sided 95% upper confidence bound on lead is at the observation

whose B–C sign statistic is the largest value<1.64, or the second highest observation

of 0.177. This agrees with the binomial interval.

7.8 BOOTSTRAPPED INTERVALS

An alternative method of obtaining unbiased nonparametric estimates of parameters

and their confidence intervals is called bootstrapping (Efron, 1981). Bootstrap

estimates are produced by computing statistics on repeated random samples taken

with replacement from the observed data. The repeated samples have the same

number of observations as in the observed data set. Censored and uncensored

observations are equally available for sampling. The summary statistic is computed

for each random sample either by Kaplan–Meier or another censored data procedure.

The distribution of the statistic is then estimated by the percentiles of the collection of
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computed values. For example, if 1000 means were computed by performing robust

ROS 1000 times, a two-sided 95% confidence interval for the mean could be

determined from the 2.5th and 97.5th percentiles of these means, the 25th and 975th

of the 1000 mean values when ordered from low to high. Akritas (1986) and Efron

(1981) demonstrated the utility of bootstrap estimates for censored data.

To continue our example of estimating the median blood lead level in herons

(Golden et al., 2003), the median along with a 95% confidence interval is estimated

without assuming a distributional shape for the data by bootstrapping. To begin with,

the median of the original 27 observations can be calculated using the KM procedure

in Minitab. The output was listed in Table 7.2. The median is the observation whose

survival probability is the largest value less than or equal to 0.5. For these 27

observations, that corresponds to a lead concentration of 0.016 after rounding.

The same method can be repeatedly used on random samples from these sample

data in order to provide a bootstrap estimate of the median, and a 95% nonparametric

confidence interval around this estimate. Bootstrapping methods are beginning to be

provided in statistical software, and if not present, are easy to add with a macro or

script. The Minitab macro for bootstrapping Kaplan–Meier estimates of median is

called KMBoot, and is invoked by the command

%KMBoot c1 c2

where c1 is the column of left-censored observations and c2 is the column of

censoring indicators. One thousand random samples from the data in c1 are created

by sampling with replacement, and temporarily stored within the macro. That is, a

sample of 27 observations is selected from the original 27 data values. Each of the 27

values has an equal chance of being selected at every step, so some of them are chosen

more than once for the new sample. For each of the 1000 new samples, an estimate of

TABLE 7.4 Calculations for a One-Sided Upper Bound on the 90th Percentile Using

the B–C method

Time Lead

Survival

Probability

Standard

Error B-C Sign

0.731034 0.261 0.962963 0.036345 1.73237

0.822951 0.177 0.925926 0.050401 0.51438

0.825926 0.174 0.888889 0.060481 -0.18370

0.893939 0.106 0.851852 0.068367 -0.70425

0.950847 0.049 0.814815 0.074757 -1.13949

0.966038 0.034 0.777778 0.080009 -1.52759

0.975472 0.025 0.740741 0.084337 -1.88836

0.976471 0.024 0.703704 0.087877 -2.23375

0.981356 0.019 0.527778 0.166001 -2.24228

0.984483 0.016 0.351852 0.181330 -3.02292

0.985714 0.014 0.175926 0.153932 -4.70384

0.986275 0.014 0.000000 0.000000 �
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the median is computed using Kaplan–Meier. The median of these 1000 estimates is

the bootstrap estimate of the KM median, and as shown by the output below is

approximately equal to 0.016, the original sample median. The 95% confidence

interval for the bootstrap KM estimate is formed from the 25th and 975th smallest

estimates out of the 1000 estimates computed. The results of the KMBoot macro are

printed below, and shown in Figure 7.9

Endpoints of 90%, 95%, 99% confidence intervals

based on bootstrap samples

of the KM median

Bootstrap Kaplan-Meier median = 0.015517

*****************************

Bootstrap estimates of the 90% confidence interval of the median

UPPER90 also = UCL95, the upper 95% CI on the median.

Row LOWER90 UPPER90

1 0.0142857 0.0186441

*****************************

Bootstrap estimates of the 95% confidence interval of the median

Row LOWER95 UPPER95

1 0.0142857 0.0186441

*****************************
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FIGURE7.9 Histogram of 1000 bootstrap estimates of themedian blood lead concentrations

using Kaplan–Meier.
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Bootstrap estimates of the 99% confidence interval of the median

Row LOWER99 UPPER99

1 0.0137255 0.0235294

*****************************

Note that because Kaplan–Meier selects an observed value as its estimate of the

median rather than interpolating, the possiblevalues for themedian are few in number.

This is characteristic of procedures that do not assume a distribution for the sample

statistic, but instead use the observed data repeatedly. It is especially true for data sets

with a relativelymodest number of observations, aswith the 27 observations available

here. The 95% confidence interval on the median spans values between 0.014 and

0.019mg/L. This agrees well with the B–C inverted sign test interval presented

previously (Table 7.3). Bootstrapping is certainly expected to be a better procedure

than either the Greenwood pdf-Z method, or the binomial procedure that requires

censoring to the highest reporting limit. Either the bootstrap or B–C inverted sign test

methods can provide efficient nonparametric estimates for the median and other

percentiles, along with their confidence intervals, for multiply censored data.

Kaplan–Meier may also be used to provide bootstrapped estimates of confidence

intervals around the mean. The procedure is similar to that for the median above, and

to bootstrapping ROS and MLE confidence bounds presented earlier in the chapter.

Bootstrapping Kaplan–Meier estimates was one of the best of numerous methods for

estimating the UCL95 evaluated in the large simulation study by Singh et al. (2006).

They found that this method has less error in the coverage, thewidth of the confidence

bound for a given confidence level, than did estimates usingROS,MLE (for small data
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FIGURE 7.10 Histogram of 1000 bootstrap estimates of the mean and 95% confidence

intervals for the Golden blood lead concentrations using Kaplan–Meier.
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sets), and far less error than substitution procedures. To compute bootstrapped KM

intervals for the mean in Minitab, use the BootKM macro:

%bootKM ’blood Pb’ ’blood LT1’

and for the Golden blood lead data, the results are below and in Figure :

ENDPOINTS OF 90%, 95%, 99% CONFIDENCE INTERVALS

BASED ON 1000 BOOTSTRAP SAMPLES OF THE

K-M MEAN (Efron bias correction)

Kaplan-Meier mean = 0.045087
�����������������������������

Bootstrap estimate of the 90% confidence interval around the mean

Row LWR90 UPR90

1 0.0269158 0.0649108
�����������������������������

Bootstrap estimate of the 95% confidence interval around the mean

Row LWR95 UPR95

1 0.0246337 0.0704344
�����������������������������

Bootstrap estimate of the 99% confidence interval around the mean

Row LWR99 UPR99

1 0.0210309 0.0805647
�����������������������������

Bootstrap estimates of one-sided upper confidence bounds on

the mean

UCL95 = Upper 95% conf bound, UCL99 = Upper 99% conf bound

UCL95 0.0649108

UCL99 0.0794907
�����������������������������

7.9 FOR FURTHER STUDY

Confidence intervals for Kaplan–Meier estimates are an active area of research.

The probability intervals printed by Minitab’s output are “pointwise” intervals to

be used only around a single probability estimate. When the entire pattern of the

survival function is of interest, joint confidence bands analogous to multiple

comparisons for ANOVA must be computed instead. More information on joint

confidence bands is found in Chapter 4 of Klein and Moeschberger (2003), as well

as in Nair (1984), Weston and Meeker (1991), and Jeng and Meeker (2001).

Methods for computing intervals by inverting likelihood-ratio tests and other

procedures have been developed by Emerson (1982), Simon and Lee (1982),

Murphy (1995), and Slud et al. (1984), among others. Akritas (1986) discusses

bootstrapping to compute KM confidence intervals in greater detail than

given here.
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EXERCISES

7-1 Using the zinc data from the Alluvial Fan zone of Millard and Deverel (1988)

found in the data set CuZn, compute a 95% confidence interval on the mean

zinc concentration, assuming the data follow a normal distribution. Based

on a probability plot, is this assumption reasonable? If not, estimate a 95%

confidence interval using bootstrapping and by using Land’s method. How do

these two intervals compare?

7-2 Estimate a 90% nonparametric confidence interval around the median of the

zinc data using the binomial method (first recensoring at the highest reporting

limit). Then compute the interval using the B–C sign method. How do these

intervals compare? Which would you choose to use?

7-3 Construct a flow chart of themethods of this chapter for computing confidence

intervals. Ignore methods known to be inadequate, such as the Greenwood

pdf-Zmethod.Make sure that determiningwhether the data follow a normal or

lognormal distribution figures prominently in your chart.Whichmethod could

appear throughout the chart, and work well regardless of the shape of the data

distribution?
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8 What Can Be Done When All Data
Are Below the Reporting Limit?

Measured concentrations may be consistently low in comparison to analytical

reporting limits, and all observations recorded as below the reporting limit. Some

scientists have felt in these circumstances that they have no data toworkwith, because

they have no single numbers reported to them. Is this correct? Absolutely not! For

certain questions there is a lot of information in the fact that data are consistently

below one or more thresholds. This information is contained in the proportion of data

below versus above the specified thresholds.Methods based on binomial probabilities

look at the probabilities of being above and belowone ormore thresholds. They can be

used to answer several relevant questions about censored data.

For example, suppose 2 years of monthly samples of drinking water delivered by a

supply system were tested for arsenic concentrations, and all 24 samples had

concentrations reported as <3mg/L. Three types of questions for which these data

provide answers are as follows:

1. Point Estimates. What is an estimate of the typical arsenic concentrations

being delivered in these waters?

2. Exceedance Probability of the Reporting Limit. How often might a detected

concentration above 3mg/L be measured in next year’s samples?

3. Exceedance Probability for a StandardHigher than the Reporting Limit. How

confident canwe be that if current conditions aremaintained, the drinkingwater

standard of 10 mg/L will not be exceeded in more than 5% of samples?

Each of these three types of questions can be addressed when the data set consists

of all censored observations.

With the exceptionof the example in thenext section, there is nodistinctionmade in

thischapterbetweendetectionandreporting limits.The terms“censoredobservations”

and “uncensored observations” refer to data below and above the reporting threshold.

This is consistent with their (overly relaxed) use by most environmental scientists.

Statistics for Censored Environmental Data Using Minitab� and R, Second Edition.
Dennis R. Helsel.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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8.1 POINT ESTIMATES

There are at least twoways to compute an estimate of themean ormedian for data sets

that are entirely censored observations. A point estimate for the mean or median can

(but should not) be computed using MLE when all data are below reporting thresh-

olds. The MLE estimate will be extremely unreliable. As a second approach, a

nonparametric estimate of the median can be calculated by stating that the median is

below the reporting limit.

The (artificial) data set AsExample.xls consists of 13 measurements below the

reporting limit of 1, and so reported as within the interval of 0–1, and 11 measure-

ments between the detection and quantitation limits and reported aswithin the interval

of 1–3. Using maximum likelihood and assuming a lognormal distribution, summary

statistics estimated for these data include

95.0% Normal CI

Estimate Standard Error Lower Upper

Mean(MTTF) 0.994679 30255.3 0 �

Standard Deviation 0.121099 1839229 0 �

Median 0.987388 188559 0 �

First Quartile(Q1) 0.909821 1293760 0 �

Third Quartile(Q3) 1.07156 1114491 0 �

Interquartile

Range(IQR)

0.161747 2408251 0 �

Summary statistics for the same data, assuming a normal distribution, are

95.0% Normal CI

Estimate Standard Error Lower Upper

Mean(MTTF) 0.988121 25147.3 �49286.8 49288.8

Standard Deviation 0.113527 240337 0 �

Median 0.988121 25147.3 �49286.8 49288.8

First Quartile(Q1) 0.911549 187252 �367006 367008

Third Quartile(Q3) 1.06468 136957 �268430 268433

Interquartile

Range(IQR)

0.153145 324209 0 �

The most important numbers to notice in these tables are the confidence intervals.

When all observations are below the reporting limit the reliability of MLE parameter

estimates is very poor. Confidence intervals are either undefined or extremely wide,

showing that in reality there is insufficient information to compute reliable estimates

of parameters such as the mean and standard deviation. Estimates will strongly

depend on which distribution has been selected, even though observed data give no

information on which distribution might be most appropriate. If an estimate known

only as somewhere between �49,000 and þ 49,000 is considered too imprecise,

individual parameter estimates by MLE for such data should be avoided.

Themedian of data that are all censored observations can always be stated as being

<RL, where RL is the median reporting limit when ranked in order from low to high
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limits. A similar procedure is possible for other percentiles. For the AsExample data,

the median of 24 observations would fall at the value midway between the 12th and

13th ranked observations. Since there are 13 values known to be <1, the median of

these 24 observations is<1. No assumptions are madewith this approach, and what is

known about a single value is accurately presented.

In general, it is not very helpful to calculate point estimates for data that are entirely

censored observations. Instead, inferences can be made concerning probabilities of

exceeding the reporting limit(s), based on binomial probabilities. And if one group of

data is entirely censored observations while another has some uncensored observa-

tions, tests of differences in the probabilities of exceedance can be performed.

8.2 PROBABILITY OF EXCEEDING THE REPORTING LIMIT

When all data are censored observations the observed proportion of data exceeding

the reporting limit is 0%.However, this is a sample percentage, only an estimate of the

percentage above the reporting limit for the underlying population. If p is the

proportion of the population below the reporting limit, 1� p is the proportion above.

The certaintywithwhich p is known is a function of the number of observations n. As n

increases, the confidence interval around p decreases. The methods of this section

involve estimating a confidence interval around the population proportion p, based on

binomial probabilities.

Answers to the following four questions illustrate what can be accomplished when

all data are censored observations. These questions come in pairs, with questions 1

and 3 estimating a confidence interval for p, and questions 2 and 4 testing to see if a

specific value for p iswithin a confidence interval. The first two questions dealwith the

proportion p, while the second two questions deal with numbers of occurrences (p�n).

1. What is the range of possible proportions of censored observations actually in

the population from which these data came?

The sample estimate for the proportion of data below the reporting limit is p¼ c/n,

where c is the number of censored observations and n is the sample size. The estimated

proportion above the reporting limit is 1� (c/n). When all measured values are below

the reporting limit, c¼ n and the observed proportion below is p¼ 1. A two-sided

confidence interval around p is constructed using quantiles of theF distribution (Hahn

and Meeker, 1991).

½LL; UL� ¼ ½ð1þðn� cþ 1Þ F1=cÞ� 1; ð1þðn� cÞ=ðcþ 1ÞF2Þ� 1� ð8:1Þ
where LL is the lower limit of the confidence interval,¼ 0when c¼ 0; UL is the upper

limit of the confidence interval,¼ 1 when c¼ n; F1¼F(1� a/2, 2n� 2c þ 2, 2c); and

F2¼F(1� a/2, 2c þ 2, 2n� 2c).

When all measurements are censored observations, so that c¼ n and the observed

probability equals the maximum of 1, all error must be placed on one side of the

interval, and F1�a, rather than F1�a/2 is used in the above equations.
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For the example of c¼ 24 censored observations in 2 years of monthly measure-

ments of arsenic in drinking water (n¼ 24), a two-sided 95% confidence interval for

the proportion of arsenic concentrations below the reporting limit of 3 mg/L is

½LL; UL� ¼ ½ð1þð24� 24þ 1ÞF1=24Þ�1; ð1þð24� 24Þ=ð24þ 1ÞF2Þ� 1�
¼ ½ð1þFð0:95; 2; 48Þ=24Þ�1; ð1Þ� 1�
¼ ½ð1þ 3:19=24Þ� 1; ð1Þ�
¼ ½0:88; 1�

At a 95% confidence level, between 88 and 100% of arsenic concentrations in the

population of delivered drinking waters can be expected to be below the reporting

limit of 3mg/L, based on the data collected. No more than 12% of measurements are

expected to exceed 3mg/L.
In Minitab�, this confidence interval can be obtained with the command

Stat > Basic Statistics > 1 proportion

entering n¼ 24 as the number of “trials,” and c¼ 24 as X, the number of “events”:

Sample X N Sample p 95% CI Exact

P-Value

1 24 24 1.000000 (0.882654, 1.000000) 0.000

The 95%confidence interval states that based on the evidence in these data, the true

proportion of censored observations lies (with 95% confidence) between 88 and

100%. The p-value reported by Minitab is for a test of whether the proportion of

censored observations is significantly different than 0.5. The small p-value shows that

it is different, but this is not a question of particular interest here.

2. Are fewer than 10% (or some other proportion) of values in the population

above the reporting limit?

The test ofwhether (1� p), the proportion of uncensored observations, equals 10%

or less is identical to a test for whether p, the proportion of censored observations, is

90% or greater. The motivation for doing so is often the presence of some legal

standard or corporate guideline—10%ormore uncensored observations is considered

too high for some reason, and if true a change would need to be implemented to lower

the proportion. The null hypothesis is assumed to be true until proven otherwise, and

could be set to assume there is a problem unless the data prove otherwise (it also could

be set as the reverse). Assuming the proportion is high until proven otherwise, the null

hypothesis would state that there are 10% or more uncensored observations in the

underlying population, and therefore fewer than 90% of observations below 3mg/L.
The alternative hypothesis is the statement to be demonstrated—there are fewer than

10% uncensored observations, or greater than 90% of observations in the population
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are below 3mg/L. This one-sided test is conducted by Minitab with the same

command as above, after setting a directional option for the alternative hypothesis

in the Options dialog box. The percentile of censored observations p is set to 0.9, and

the alternative is set to greater than 0.9. The data measured (c¼ 24) were the number

of censored observations, so the null and alternative hypotheses are stated in terms of

the proportion of censored observations expected. The result is

Test of p = 0.9 vs p > 0.9

95%

Lower Exact

Sample X N Sample p Bound P-Value

1 24 24 1.000000 0.882654 0.080

This tells us again that the lower bound of the 95%confidence interval for p is 88%,

and a p-value for the test is 0.08. Because the proportion 0.9 was entered, this test

determines whether the proportion of censored observations equals 0.9, just as stated

in the first line of the output. Interpreting the p-value, 24 out of 24 nondetections

would occur about 8%of the timewhen the true proportion of censored observations is

0.9. Eight percent is larger than the traditional 5% significance level, so the null

hypothesis that there are 10% or more detections cannot be rejected. If we need to

prove that there are fewer than 10% detections for legal or other purposes, more data

are required. For example, after 6moremonths andwith all 30 observations below the

reporting limit, the result for the same test would be

Test of p = 0.9 vs p > 0.9

95%

Lower Exact

Sample X N Sample p Bound P-Value

1 30 30 1.000000 0.904966 0.042

and since p< 0.05 the null hypothesis is rejected. As stated by the alternative

hypothesis, fewer than 10% uncensored observations are expected from this popula-

tion. Also note the direct correspondence between the p-value and the confidence

bound. When the 95% (0.95) lower confidence bound is below (and so includes) the

tested proportion of 0.9 as a possible proportion, the p-value will be above (1� 0.95)

¼ 0.05. When as with the 30 observations the confidence bound is higher than (does

not include) the tested proportion of 0.9, the p-value is below 0.05.

3. Howmany values above 3mg/L can be expected in a new set of 12 observations

from this same population?

This one-sided prediction interval for the number of possible exceedances is com-

puted using the hypergeometric distribution, a variation on the binomial distribution

for samplingwithout replacement (Hahn andMeeker, 1991, page 113). The question is
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rephrased as “out of 36 total observations (N), how many exceedances could be

expected to occur and yet none occur in the first n¼ 24 measurements?” Find the

smallest number of exceedances that has no more than a 5% chance of producing 0

exceedances in the first 24 measurements. UsingMinitab, if there were 3 exceedances

in 36, the chance of observing 0 exceedances in the first 24 is 0.0308

MTB > InvCDF 0;

SUBC> Hypergeometric 36 3 24.

Hypergeometric with N ¼ 36, M ¼ 3, and n ¼ 24

x P( X <¼ x ) x P( X <¼ x )

0 0 0 0.0308123

If there were 2 exceedances out of 36, the chance of observing 0 exceedances in the

first 24 is 0.1047.

MTB > InvCDF 0;

SUBC> Hypergeometric 36 2 24.

Hypergeometric with N ¼ 36, M ¼ 2, and n ¼ 24

x P( X <¼ x ) x P( X <¼ x )

0 0 0 0.104762

Therefore we could expect a 95% probability (actually a1� 0.03 ¼ 97% with this

discretemethod) that nomore than 3 of the 12 new sampleswould have a concentration

above 3mg/L.

4. What is the probability that more than 1 (or some other number of) detected

value(s) occur in the next 12 (or some other number of) samples?

This question specifies the number of uncensored observations as a “standard” or

“quality control measure.” One detect out of the next 12 will be allowed; more than 1

will not be. Of interest is whether the probability of failing the standard is less than a

specified risk levela. If based on the 24 existing observations the probability of failing
the standard in the next 12 observations exceeds a, some treatment might be

implemented right away. Assume a is the traditional risk level of 5%. The probability

of measuring 2 or more uncensored observations out of 12 new samples can be

calculated with binomial tables.

To compute the probability of getting 2 or more uncensored observations, first

compute the 95% confidence interval on the proportion of uncensored observations

using the 24 existing values. From the answer to question 1, between 0 and 12%of new

data can be expected to be uncensored observations, with 95% probability. The two

percentages 0 and 12, the endpoints of the 95% confidence interval on (1� p), will be

used to compute the risk of failing the standard.

For the percentage (1� p)¼ 12% uncensored observations, the probability of

measuring 2 or more uncensored observations out of the next 12 measurements is
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Prob ðx � 1Þ ¼ Binomial ð1; nNEW; ½1� p�Þ ¼ Binomial ð1; 12; 0:12Þ
where the function Binomial is the binomial cumulative distribution function

(equation 8.2):

Binomial ðx0; n; pÞ ¼ Prob ðx � x0Þ ¼
Xx0
i¼0

n!

i!ðn� iÞ!
� �

pi ð1� pÞn� i ð8:2Þ

where n!¼ nðn� 1Þ � � � � � 1.

Both of the 95% interval endpoints, 0 and 0.12, are used as p in equation 8.2 to

determine the range of probabilities. Therefore, the probability that there will be 1 or

fewer uncensored values in the next 12 samples is between

X1
i¼0

12!

i!ð12� iÞ!
� �

0:12ið0:88Þn� i ¼ ð1Þ1ð0:88Þ12þð12Þ0:12ð0:88Þ11 ¼ 0:569 for p ¼ 0:12

X1
i¼0

12!

i!ð12� iÞ!
� �

0ið1Þn� i ¼ ð1Þ1ð1Þ12þð12Þ0ð1Þ11 ¼ 1 for p ¼ 0

and so the probability of compliance, of getting 1 or fewer uncensored observations

out of the 12 new observations, is between 57 and 100%. There is somewhere

between a 0 and 43% probability of noncompliance. This is understandable given

that if the true proportion of uncensored observations is as high as 12% (the upper

end of the confidence interval), the expected number of uncensored observations is

1.4 out of 12, and so it should not be very unusual to see 2 uncensored observations.

But the 43% probability is higher than the traditional risk level of 5%.

More information on computing binomial confidence, tolerance, and prediction

intervals is found in Hahn and Meeker (1991).

8.3 EXCEEDANCE PROBABILITY FOR A STANDARD HIGHER

THAN THE REPORTING LIMIT

Observing that all data fall below the reporting limit provides information about the

likelihood of exceeding a legal limit at or higher than the reporting limit. If the value is

below the reporting limit, it is also below the legal standard. Two approaches may be

taken. In the first and simplest, the data are recorded as either exceeding or not

exceeding the legal limit and the binomial methods of the previous section applied.

The advantage of doing so is that no distribution need be assumed for the data. The

disadvantage is that the proportion of data exceeding the reporting limit is only an

upper bound on the proportion of data exceeding the standard. If there are no more

than 12% uncensored observations, as in the previous section, then the probability of

exceeding a higher legal limit is also no more than 12%. But it may be considerably

smaller than 12%. How much smaller than 12% is unknown unless it is reasonable to

assume a distribution for the data, allowing the difference in probabilities between

exceeding the reporting limit and exceeding the legal limit to be modeled. This is the

second approach.

148 WHAT CAN BE DONE WHEN ALL DATA ARE BELOW THE REPORTING LIMIT?



8.3.1 Binomial (Nonparametric) Tests

The binomial test determines whether a percentile of the data distribution exceeds the

legal limit at a stated confidence level. For the special case of testing themedian or 50th

percentile the test is also called the sign test, and is discussed in detail in Chapter 9.

To test whether the median of 24 arsenic concentrations, all below 3 mg/L,
exceeds the legal limit of 10 mg/L, the null hypothesis is stated as the proportion of
data above the legal limit of 10 is 0.50. In other words, the median is at the legal

limit. The binomial test uses the number of times (“events”) the data exceed the limit

out of the total number of “trials.” If there were many more exceedances than 50%,

the null hypothesis would be rejected. In the arsenic example, all of the 24 “trials”

are below both the reporting limit and the legal limit—there are 0 exceedances.

Using the 1 Proportion routine within Minitab and testing the proportion of

uncensored observations¼ 0.5 versus the alternative that it is greater than 0.5, the

test results are

95%

Lower Exact

Sample X N Sample p Bound P-Value

1 0 24 0.000000 � 1.000

With a p-value of essentially 1, the binomial test states that there is no reason to

reject the null hypothesis. There is no evidence that themedian concentration is above

the legal limit of 10. With all the observations below the reporting limit, this is not a

surprising result.

If instead of the median a regulation states that another percentile of the distribu-

tion shall not exceed the standard, the quantile test (Conover, 1999) may be used. The

quantile test is the binomial test applied to a proportion other than 50%, where the

quantile¼ the percentile/100. So the 50th percentile is the 0.5 quantile. Suppose that a

regulation asserts that 90% or more of observations must be below the limit—the

proportion of exceedances must be no more than 10%. The null hypothesis (of

compliance) states that there are 10% or fewer exceedances, p¼ 0.1, with the

alternative hypothesis that there are greater than 10% exceedances. The binomial

test is run again using the proportion tested equal to 0.1 (10% exceedances) and the

“event” being an exceedance, of which there are none. The result is

95%

Lower Exact

Sample X N Sample p Bound P-Value

1 0 24 0.000000 � 1.000

and so there is also insufficient evidence to reject the null hypothesis and declare that

the legal standard of no more than 10% uncensored observations has been violated.

If the true proportion were 10% exceedances, 2.4 exceedances would be expected.

From the width of a binomial confidence interval, 5 exceedances would need to

be observed to have enough evidence to prove that p was at least 10%, with 24

observations.
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Of course the test against a standard could also be run assuming noncompliance, by

reversing the direction of the alternate hypothesis. The burden of proof would be to

determine if 0 out of 24 exceedances were enough evidence to declare that the

probability of exceedance is less than 10%. TheMinitab output for this perspective is

Test and CI for One Proportion

Test of p = 0.1 vs p < 0.1

95%

Upper Exact

Sample X N Sample p Bound P-Value

1 0 24 0.000000 0.117346 0.080

The p-value for the test is 0.08. This indicates that the probability of observing 0 out

of 24 exceedances just due to chance is 8%when the true proportion of exceedances is

10%. If the acceptable error ratea is 0.05, the null hypothesis of noncompliance is not

rejected. The small p-value would indicate a preference toward compliance, but the

strength of the evidence is insufficient. If there were six more samples all of which

were censored observations, the test becomes

Test and CI for One Proportion

Test of p = 0.1 vs p < 0.1

95%

Upper Exact

Sample X N Sample p Bound P-Value

1 0 30 0.000000 0.095034 0.042

and noncompliance is rejected at the acceptable error rate a of 0.05.

8.3.2 Parametric Tests of Exceedance

The parametric approach to comparing all censored observations to a standard is to

estimate the exceedance probability of a standard as a function of the difference

between the reporting limit and the legal standard. This requires an assumption about

the shape of the data distribution. Smith andBurns (1998) present amethod to estimate

exceedance probabilities of a legal standard assuming a normal distribution when all

data are censored observations. The assumption of a normal distribution is not

commonly adhered to by environmental data. However, they state that it is more

applicable for composite samples, where observations measured in the laboratory are

the mean values of several individual samples composited together prior to analysis.

Typically, 10–20 individual samples are combined into one composite sample in

environmental studies. For the large skewness found in environmental data, composites

of a small number of individual samples can still exhibit considerable skewness, so the

assumption of a normal distribution for composite samples should be demonstrated.

A more reasonable assumption might be that data follow a lognormal distribution.

In a brief side comment, Smith and Burns (1998) suggest a method for estimating

exceedance probabilities when assuming data follow a lognormal distribution. The
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estimated lower bound for the percentile associated with the legal standard is a

function of the difference between the standard (abbreviated Std) and the reporting

limit (DL), divided by the standard deviation sL, all in log units. This standardized

distance is subtracted from the normal quantile of the binomial exceedance prob-

ability, the probability calculated in question 1 for exceeding the reporting limit. Their

estimator is

F F� 1ða1=nÞ ¼ ðln½Std� � ln½DL�Þ
sL

� �
ð8:3Þ

where F is the cumulative distribution function for the standard normal distribution

and (1�a) is the desired confidence level for the lower bound. This equation assumes

that data follow a lognormal distribution, but more importantly that a reasonable

estimate of sL can be obtained.When all data are below the reporting limit, obtaining

a reasonable estimate ofsL is unlikely. The Smith andBurns estimator in equation 8.3

comes from an unrefereed proceedings document rather than from a refereed journal

article, and so should be approached with caution until validated by further work.

Equation 8.3 agrees with their proceedings document. Aminus sign rather than a plus

sign appears between the twomain components in Smith and Burns (1998); theminus

sign is an error (D.E. Smith, personal communication, 2004).

Note that if a reasonable estimate of the standard deviation is doubtful, the first part

of equation 8.3 is the binomial estimate of the lower confidence bound for the

proportion of the population less than the reporting limit, previously produced by the

1 proportion software:

F½F� 1ða1=nÞ� ¼ a1=n ¼ 0:051=24 ¼ 0:8826

This estimate requires no distributional assumption and so can be used instead of

equation 8.3 as a lower bound for the proportion of the population less than the

legal standard.

8.4 HYPOTHESIS TESTS BETWEEN GROUPS

The subject of hypothesis tests for differences inmean or median between two groups

is covered at length in Chapter 9, and for three or more groups in Chapter 10. When

one of the groups contains only censored observations, it can be a strong indication

that there are differences among the groups. If so, the methods in those chapters can

make that determination. If all groups consist entirely of censored observations, it is

evidence that the distributions of data must be considered similar, at least within the

analytical precision available to the scientist. With many censored observations it is

difficult to determine whether data follow any specific distribution, so nonparametric

tests are useful. Contingency tables (see Chapter 10) test differences between the

proportions of uncensored observations among groups. These tests work well for one

reporting limit. The score tests of Chapters 9 and 10 determine differences in the

distribution functions of data with multiple reporting limits, even if one group

contains all censored observations. For testing among groups there is no need to
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avoid using a nonparametric test because of “too many” censored observations. If the

proportion of censored observations differs significantly between groups, nonpara-

metric score and contingency table tests will respond to that difference.

8.5 SUMMARY

When all observations are recorded below the reporting limit, methods based on

binomial probabilities can produce confidence intervals and hypothesis tests con-

cerning the proportion and number of uncensored or censored observations in the

population being measured. Though estimates of mean or median are not really

available, statements about the probability of exceeding the reporting limit or other

threshold can be made. The quantile test can determinewhether a specified percentile

is proven to be above or below a legal standard, even when all observations are

censored observations. When testing data of all censored observations against other

data containing some uncensored observations, binary and ordinal nonparametric

methods such as contingency tables, the sign test, or the Kruskal–Wallis test (see

Chapters 9 and 10) provide considerable power for determining whether one group

generally produces higher values than another.

EXERCISES

8-1 Thurman et al. (2002) measured concentrations of antibiotics in discharges from

fish hatcheries across the United States. A summary of the data are found in

hatchery.xls. Twenty-five samples contained no concentrations of tetracycline

above the reporting limit of 0.05mg/L. Two samples did contain detectable

concentrations, but these were believed to be analytical artifacts from another

compound, and the observations were discounted. Based on 25 censored

observations, and assuming that these hatcheries represent the conditions found

at others to be sampled in the future, what is the likelihood of getting at least one

detection in the next 15 samples analyzed?

8-2 Assuming these 25 locations reasonably represent fish hatcheries across the

United States, estimate a 90% confidence interval on the proportion of con-

centrations of tetracycline below 0.05mg/L in waters draining fish hatcheries in

the United States.

8-3 Use a contingency table analysis (seeChapter 10) to determine if the proportion of

detections for oxytetracycline is significantly different than that for tetracycline.

8-4 MTBE in groundwater is a concern for drinkingwater supplies in stateswhere the

compound has been used as a gasoline additive. If in a survey of a county’s

drinking water supply wells, all 36 measurements have been recorded as below

the reporting limit of 3 ppb, the data are assumed to be lognormal, and the

standard deviation of the logarithms (based on other data) is estimated to be 1.0,

what is an estimated probability of exceeding the “level of concern” of 13 ppb in

groundwater?

152 WHAT CAN BE DONE WHEN ALL DATA ARE BELOW THE REPORTING LIMIT?



9 Comparing Two Groups

In their classic paper on methods for censored data, Millard and Deverel (1988)

studied copper and zinc concentrations in shallow groundwaters from two geologic

zones underneath the San Joaquin Valley of California. Throughout this chapter these

data will be used to illustrate whether methods can determine that zinc concentrations

differ between the two zones. Zinc concentrations were subject to two reporting limits

at 3 and 10 mg/L, with a number of values detected between these limits during the

time when the lower reporting limit was in effect. Using nonparametric methods

discussed later in this chapter, Millard and Deverel found that zinc concentrations

were different in the two zones. Methods that work reasonably well should also find

this difference. Censored boxplots of the two data sets are shown in Figure 9.1.

Comparing two groups is a basic design in many environmental studies. In some

cases, a “treatment” group is compared to a “control.” The control group represents

background, or historical conditions. The treatment group represents conditions

where, for example, contaminant concentrations are suspected to be higher, or

numbers of healthy organisms lower. Differences are tested in one direction—

treatment conditions are suspected to be worse in comparison to the control. Because

a difference is expected in only one direction, these are called one-sided tests, tests

where the direction of difference is specified as part of the study design. One-sided

tests are also appropriate where the expected direction is an improvement over

existing conditions—a new lab method with more accuracy, air concentrations

following implementation of new scrubber technology, and so on. The key to a

one-sided test is not in which direction the change is expected, but that there is only

one direction expected.

In other cases, the two groups are inspected for differences where either may be

better or worse than the other. Neither group can be labeled as a control group. The

interest is truly in whether measurement levels in the two groups are the same, or

different. These are two-sided tests—differences are investigated in two directions.

Two-sided tests are appropriate for comparing the concentrations in different loca-

tions, for example, where if either location has significantly higher values the outcome

is of interest. The zinc data are like this—the question stated was whether the two

groups had different concentrations of zinc—no direction was specified. For either

one to be higher is of interest. This is a two-sided test.

Statistics for Censored Environmental Data Using Minitab� and R, Second Edition.
Dennis R. Helsel.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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For both one and two-sided tests, the procedures used when there is no censoring

are familiar to data analysts—the parametric two-sample t-test, and the nonpara-

metric Mann–Whitney (or its alternate name, the Wilcoxon rank-sum) test. When

censored values are present, options for analysis include binary methods, ordinal

nonparametric methods, and both parametric and nonparametric methods of survival

analysis.

9.1 WHY NOT USE SUBSTITUTION?

The only way that a standard two-sample t-test can be run on data with censored

observations is to fabricate (substitute) values prior to computing the test. One

approach used in some environmental reports (please do not claim that it is supported

here!) is to run the test twice, first substituting zero, and then the reporting limit.

The argument goes that if the results of the two tests agree, then perhaps these are the

correct results. Perhaps, but this is far from a sure thing. Though themeanwill change

monotonically as the substituted value goes from the reporting limit down to zero,

the standard deviation will not (see Chapter 1). The t-test statistic is a function of both

the mean and the standard deviation, and will vary in an indeterminate pattern when

different values are substituted. Regardless of which value is substituted, the process

implies that more “information” (the invasive pattern caused by substituted values)

is known about the data than is truly known by the analyst. Because this “information”

is not correct, the test result will likely not be correct either.

Setting all censored observations equal to zero, the t-test does not indicate a

difference between zinc concentrations within the two zones (p¼ 0.995):
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FIGURE 9.1 Boxplots of zinc (Zn) concentrations. Note that a greater percentage of the

Basin Trough data are above the higher 10mg/L limit.

154 COMPARING TWO GROUPS



Two-sample T for Zn0

Zone N Mean StDev SE Mean

Alluvial Fan 67 21.2 75.0 9.2

Basin Trough 50 21.3 19.3 2.7

Difference¼mu (Alluvial Fan) - mu (Basin Trough)

Estimate for difference: �0.06

95% CI for difference: (�19.08, 18.97)

T-Test of difference¼0 (vs not ¼): T-Value¼�0.01 P-Value¼0.995

DF¼77

Setting all censored observations equal to their reporting limits (some 3, some

10mg/L), the t-test again indicates no difference between the groups (p¼ 0.869):

Two-sample T for Zn_dl

Zone N Mean StDev SE Mean

Alluvial Fan 67 23.5 74.4 9.1

Basin Trough 50 21.9 18.7 2.6

Difference¼mu (Alluvial Fan) - mu (Basin Trough)

Estimate for difference: 1.57

95% CI for difference: (�17.29, 20.43)

T-Test of difference¼0 (vs not ¼): T-Value¼0.17 P-Value¼0.869

DF¼76

Does this mean that there is no true difference between the two groups of zinc

concentrations? No, it certainly does not. It was previously mentioned that the

correct result is that the distribution of concentrations does differ between the two

groups. Neither extreme of substituted value is likely to be close to the true

concentrations actually present in the samples. As a third attempt at substitution,

the common method of setting all censored observations equal to one-half of their

reporting limits is tried. This time, logarithms are taken following substitution to

address the skewness of the data. Data with values close to zero are usually skewed,

lowering the power of parametric t-tests to detect differences. A t-test on logarithms

following one-half DL substitution again produces a nonsignificant p-value. The

t-test fails to find differences in the mean of the logarithms following substitution

(p¼ 0.109):

Two-sample T for lnZn1/2

Zone N Mean StDev SE Mean

Alluvial Fan 67 2.444 0.816 0.10

Basin Trough 50 2.707 0.911 0.13

Difference¼mu (Alluvial Fan) - mu (Basin Trough)

Estimate for difference: �0.263101

95% CI for difference: (�0.586284, 0.060081)

T-Test of difference¼0 (vs not ¼):T-Value¼�1.62 P-Value¼0.109

DF¼98
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Clearly, if the true result is that there are differences between the zinc concentra-

tions in these two geologic zones, substitution followed by a t-test is an inadequate

procedure for detecting it, regardless of the value being substituted.

9.2 SIMPLE NONPARAMETRIC METHODS AFTER CENSORING

AT THE HIGHEST REPORTING LIMIT

In Chapter 6, a small example data set of 11 observations was presented, along with

the binary coding of being less than (LT) or greater than or equal to (GE) the highest

reporting limit of 5:

<1 <1 3 <5 7 8 8 8 12 15 22

LT LT LT LT GE GE GE GE GE GE GE

Now consider a second data set of 12 observations and its binary classification at

the reporting limit of 5. Are these data sets significantly different?

<1 <1 2 3 3 <5 <5 <5 <5 7 8 10

LT LT LT LT LT LT LT LT LT GE GE GE

9.2.1 Binary Methods

The percent of “uncensored observations”—detects at a specified single threshold—

in two or more groups can be tested to determine whether they are the same (null

hypothesis), or not the same (alternate hypothesis). This test of binomial proportions

is given either the name “test of proportions” or “contingency table test.” The test

determines whether the proportion of data above versus below the threshold is

contingent upon (changes with) the group classification.

There are 3 out of 12 or 25% uncensored observations above 5 in the second data

set. Is this 25% significantly different than the 64%of the first group (Figure 9.2)? The

test of proportions can be computed using the %detects macro, part of the NADA for

Minitab� collection.

Pearson Chi-Square = 3.486, DF = 1, P-Value = 0.062

Likelihood Ratio Chi-Square = 3.576, DF = 1, P-Value = 0.059

The p-values just above 0.05 indicate that there is not enough of a difference between

the two proportions in this small collection of data. The proportions are almost, but not

quite, discerned as different. Comparisons of proportions between three and more

groups can also be performed with this test and macro, without substitution.
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9.2.2 Ordinal Methods

The standard two-group nonparametric test is the Mann–Whitney test, also called the

rank-sum test. It is found in most introductory statistics texts. Like other nonpara-

metric methods it can be directly applied to censored data once all values below

the highest reporting limit are considered tied. The first step in performing the

Mann–Whitney test is to jointly rank the data from 1 to n þ m, where n is the number

of data in first group andm in the second group. For the two small data sets previously

listed, their 23 observations produce the following joint ranks.

Group 1 Data: <1 <1 3 <5 7 8 8 8 12 15 22

Ranks: 7 7 7 7 14.5 17.5 17.5 17.5 21 22 23

Group 2 Data: <1 <1 2 3 3 <5 <5 <5 <5 7 8 10

Ranks: 7 7 7 7 7 7 7 7 7 14.5 17.5 20

All 13 observations below 5 are ranked as tied with each other, and so are assigned

ranks of 7, the median (andmean) of numbers 1–13. The detected values above 5 then

receive differing ranks, unlike the ordinal test where they are considered identical.

The two detected 7s are also tied. Theywould receive the ranks 14 and 15 if they could

be distinguished from each other, but since not they both are assigned a rank of 14.5.

The four detected 8s are similarly assigned the median of ranks 16—19, or 17.5.

Above this the remaining values are untied, and receive individual ranks 20 through

23. The Mann–Whitney test sums the ranks in one of the groups, and if the sum is

unexpectedly low or high, will reject the null hypothesis. If the sum is a moderate

number, wheremoderate is a function only of the sample size, the null hypothesis will

not be rejected. With ties, commercial software should include a tie correction for

computation of the p-value. Minitab’s output for these data
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FIGURE 9.2 The percent of observations above 5 in two groups.
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W = 161.0

Test of ETA1 = ETA2 vs ETA1 not = ETA2 is significant at 0.0794

The test is significant at 0.0520 (adjusted for ties)

shows a p-value of 0.052 after correcting for ties. The null hypothesis of similarity

between the data in these two groups cannot be rejected at the usual alpha of 0.05,

though the p-value is extremely close to the rejection criteria. No data were fabricated

to perform this test, unlike substitution followed by something like a t-test. The data

are illustrated with censored boxplots in Figure 9.3.

To account for the variation in data below the highest reporting limit of 5, survival

analysis methods will be discussed in sections 9.3 and 9.4. If simplicity is paramount,

however, this ordinal method is simple and yet, unlike the t-test, does not require you

to fabricate invasive values.

9.2.3 Ordinal Methods Versus Substitution by ROS Prior

to Hypothesis Testing

Whenthere is onlyone reporting limit, standard (ordinal) nonparametric tests suchas the

rank-sumtestcanbecomputeddirectly fromthedata.Whenthe testconvertsdata to their

ranks, censored observations are represented as a tied rank lower than the rank for the

lowest detected observation. These ranks will efficiently capture the information in the

data, including the proportion of censored observations, accurately representing what

is actuallyknownabout thedata.Test resultsare reliable,notbasedon“information” that

is not known, and not dependant on the substitution of arbitrary values.

Evaluations ofmethods for testing differences between groups of censored data are

scarce. However, in a noteworthy paper, Clarke (1998) evaluated 10 methods for

comparing two groups of singly censored data. Sample sizes were small, less than 10

observations in each group. Methods included substitution, and several “robust”

methods estimating single values for censored observations by MLE or ROS

(presumably using normal scores, but details were not included). Following the
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FIGURE 9.3 Censored boxplots for the two groups of example data.
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creation of artificial values for each censored observation, the two groups of datawere

evaluated by the least significant difference (LSD) multiple comparison test,

essentially a two-group t-test. In addition to the standard normal-theory test, the

LSD test was computed on the logarithms of the data, and on the “rankits,” a rank

transformation. The best test in the greatest number of cases was one using rankits

after substituting tied values (1/2RL) for nondetects.

Given the small sample sizes of the study, MLE methods may not have been

expected to work well. But the good performance of substitution of a single number

over “robust” methods seems to contradict the findings of Chapter 6. Are they

contradictory?No, but the choice ofmethod names in Clarke’s studywas unfortunate.

The “rankit substitution” method was in essence the rank-sum test.

First, simple substitution of a single tied low value for censored observations

followed by converting to rankits and then testing with LSD is in essence the

Mann–Whitney rank-sum test, the ordinal nonparametric method recommended

here. Parametric tests on ranked data approximate their equivalent nonparametric

procedures (Conover and Iman, 1981). Substitution of a single value followed by a

nonparametric procedure is the ordinal methodwhen there is one reporting limit. The

problems with substitution occur either when different values are assigned to

observations that are all “<1,” or parametric tests are used. Parametric tests require

an estimate of how far less a <1 is below a 5. Nonparametric methods do not.

Second, all the other methods that performed poorly somehow assigned unequal

values to censored data that were known only to be equal. In essence, Clarke found that

anymethodofassigningunequal values to individual samples observedas“<RL” could

produce a signal that was not in the original data. These fabricated values could also

obscureasignal thatwaspresent.Theyare invasivedata.This includes the“placeholder”

estimates used internally to estimate summary statistics by ROS. Millard and Deverel

(1988) stated a similar finding when methods generated uniform placeholder values

between 0 and the reporting limit, prior to hypothesis testing. Clarke’s paper is strong

evidence for using nonparametric methods on small censored data sets, and for NOT

using methods such as ROS or uniform distributions to assign unequal numbers to

identical censored samples followed by parametric hypothesis tests.

9.2.4 Example: Rank-Sum Test for Data with One Reporting Limit

Dissolved organic carbon (DOC) concentrations were measured by Junk et al. (1980)

in background wells and in other wells affected by cropland irrigation, in September

1978 (Figure 9.4). Of interest is whether concentrations are higher in the

wells affected by irrigation. Three values are censored at the single reporting limit

of 0.2mg/L. The data are found in doc.xls and shown in Table 9.1.

The three censored observations would have had the ranks of 1 through 3 if

analytical precision had allowed their concentrations to be quantified. However, with

the available precision the three are tied with each other. Therefore each is assigned

the rank of 2, the median of ranks 1 through 3. TheMann–Whitney (or rank-sum) test

can be easily applied to these data, without any changes. This should be set up as a one-

sided test—the question was “Are concentrations higher in wells affected by

irrigation?”—so a difference in only one direction is of interest. The results below
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show that DOC concentrations are higher in irrigation-influenced wells, with a

p-value of 0.0064. No substitutions or assumptions of a distributional shape for

these data were required to run the test.

Mann-Whitney Test and CI: Irrigation, Background

Irrigation N¼10 Median ¼ 2.250

Background N¼4 Median ¼ < 0.200

Point estimate for ETA1-ETA2 is 2.000

96.0 Percent CI for ETA1-ETA2 is (0.601,3.700)

W¼93.0

Test of ETA1¼ETA2 vs ETA1 > ETA2 is significant at 0.0067

The test is significant at 0.0064 (adjusted for ties)
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FIGURE 9.4 DOC concentrations in two types of wells. (Data from Junk et al., 1980.)

TABLE 9.1 DOC Concentrations in Two Sets of Wells

Background Irrigation Background Rank Irrigation Rank

< 0.2 3.4 2 12

1.5 1.9 6 7.5

< 0.2 3.7 2 13

< 0.2 2.1 2 9

3.2 11

2.4 10

1.2 5

4.1 14

1.9 7.5

0.6 4

From Junk et al. (1980).
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9.3 MAXIMUM LIKELIHOOD ESTIMATION

Standard parametric tests for differences between groups of uncensored data, such as

analysis of variance (ANOVA) and t-tests, can be computed using simple linear

regression where the explanatory variables are coded to indicate group membership.

For the simple case of testing the difference between themean of two groups, only one

explanatory variable (X) is needed. X is a binary variable, coded as a 0 if the data

come from the first group, and a 1 if the data are from the second group. Solving the

regression produces an estimate for the slope of the X variable. This slope equals

the difference between the two group means. The regression t-test of significance for

this slope (assuming equal group variances) is the test to determine whether this

difference equals zero. In this way, a two-sample t-test can be computed using

regression software. This type of procedure will now be used to test for differences in

groups of censored data.

Computation of parametric hypothesis tests between group means of censored

data is accomplished using software for censored regression. Censored regression

methods use maximum likelihood estimation to compute estimates of slope and

intercept, and to conduct hypothesis tests on the significance of the slope coefficient.

The benefits in using MLE methods include the fact that they work for data

with multiple reporting limits, and do not require substitution of fabricated data in

order to perform the tests. The caution with MLE methods is that the validity of

their results depends on selecting the correct distribution. For a small amount of

censoring, the fit of data to the distribution can be evaluated with probability plots

or hypothesis tests. For larger amounts of censoring, it is difficult to judge which type

of distribution the data might have come from. In this case, use of parametric MLE

methods requires that the choice of distribution be based on other knowledge, such as

distributions for similar data in previous studies. For environmental data, the

lognormal distribution is most often assumed when evidence is not available in

the data themselves.

As noted in Chapter 6, the usefulness of MLE methods is limited if the sample

size is small. In addition to the difficulty in determining whether small data sets

follow a particular distribution, the optimization procedures of MLE do not have

enough information with small data sets to accurately estimate parameters. As

shown by many simulation studies (including Helsel and Cohn, 1988; Gleit,

1985) errors associated with MLE methods increase dramatically as sample sizes

decrease below 50 or so observations. For smaller data sets, methods other than

MLE are recommended.

To estimate a slope and intercept using maximum likelihood, possible values for

the two parameters are adjusted until the values most likely to produce the observed

measurements are determined. Matching of possible parameters to observations is

done through the likelihood function. Parameters chosen by MLE maximize the

likelihood function for censored regression, evaluated by setting the derivatives of the

likelihood function L with respect to each parameter equal to zero, simultaneously

solving the two equations:
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d LðbÞ
db0

¼ 0
d LðbÞ
db1

¼ 0 ð9:1Þ

where b0 is the intercept and b1 is the slope.

MLE also estimates the standard errors of both parameters, so that confidence

intervals around each can be constructed. Standard errors of coefficients are the

square root of the entries on themain diagonal of the covariancematrix (Allison, 1995,

p. 84). The distributional assumption for the procedure has a strong influence on

the resulting confidence intervals, much as the normality assumption does for

intervals around the parameters for simple least-squares regression. If a normal

distribution is assumed, symmetry of the input data is critical for the results to

make sense. If the input data are skewed, variance estimates will be too large, tests

for parameters will be too often insignificant, and confidence intervals may

have negative lower bounds even when this is physically impossible. When these

difficulties occur, a log or other transformation should be considered before

using MLE.

Due to the skewness ofmany environmental variables, the assumption of normality

for data is often not a good one. In many cases, the logarithms of data more

closely follow a symmetric distribution than do the original data. In hypothesis

testing, taking logarithms prior to conducting the test is a common practice, for

uncensored aswell as censored data. Yet doing so changes the hypothesis being tested.

For two-group tests in original units, the null hypothesis is that means of two

distributions are identical. The alternative hypothesis is that they differ by an additive

constant. With logarithms, the null hypothesis becomes a statement concerning the

means of the logarithms of the data. The alternative hypothesis that the mean

logarithms are offset by an additive constant translates to multiplication in the

original units. When logarithms are used in a two-group test, the null hypothesis

is therefore that the ratio of the geometric means (the mean logarithms exponentiated

back to original units) equals one. The alternative is that this ratio is not equal to one,

and so the groups differ by a multiplicative constant. Finally, if the distribution of the

logarithms is symmetric, as would be hoped in order to assume normality, the

geometric mean estimates the median of the original units, not the mean. A two-

group parametric test on the logarithms becomes a test for equality ofmedians. This is

true whether the test is a standard t-test for uncensored data, or a censored regression

with parameters computed by maximum likelihood.

9.3.1 Example: The Zn Data

Censored regression is found in the survival analysis section of statistical software.

Correct results for left-censored data require their entry as arbitrarily or interval-

censored values using the interval endpoints format. The endpoints span the range of

possible values for the censored data. InMinitab this is accomplished by entering two

columns as response variables. The explanatory variable is a column namedGeoZone

with 0 for data from the Basin Trough and 1 for data from the Alluvial Fan. The
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censored regression procedure, found inMinitab under the Reliability/Survivalmenu,

tests whether the mean zinc concentration in groundwater of the two zones differs,

using maximum likelihood. The output from the procedure is

Estimation Method: Maximum Likelihood

Distribution: Normal

Relationship with accelerating variable(s): Linear

Regression Table

Standard 95.0% Normal CI

Predictor Coef Error Z P Lower Upper

Intercept 21.6125 8.11997 2.66 0.008 5.69774 37.5274

GeoZone 0.762958 10.7311 0.07 0.943 �20.2697 21.7956

Scale 57.4123 3.75329 50.5078 65.2607

Log-Likelihood¼�596.254

The slope coefficient value of 0.76 estimates the difference between the two group

means, and the Z statistic (0.07) tests whether 0.76 is significantly different from zero.

The test is equivalent in function to the t-test for explanatory variables in simple least-

squares regression. The p-value of 0.943 indicates that the null hypothesis of no

difference cannot be rejected—there is insufficient evidence of a true difference in

mean Zn concentrations between the two zones using this test. “Using this test” is an

important qualifier.

This test assumed that both groups of Zn concentrations follow a normal

distribution. That assumption can be checked using a probability plot, after the

group mean is subtracted from both group’s data. Differences between the observed

data and their group mean are called residuals, and it is these residuals that are

assumed to follow a specific distribution by parametric tests. The probability plot of

residuals in Figure 9.5 appears nonlinear, indicating that the data do not follow a

normal distribution. Therefore, the test might have failed to indicate a true difference

because it had low power resulting from non-normal data.

Note that for software that does not include an interval-endpoint format for use

with left-censored data, the data could be flipped and run as right-censored values.

However, this will not produce the appropriate test. Right-censored survival analysis

methods assume data have no upper bound. Values up to positive infinity convert back

to concentrations down to negative infinity on the original scale; the lower bound of

zero is not recognized. Without this lower bound, test results are incorrect. When

using MLE procedures assuming a normal distribution, left-censored data must be

entered as interval-censored values. However, as shown later, this is not the case for

tests assuming a lognormal distribution.

Given that these data are right skewed, a log transformationwill be employed prior

to running another two-group test. The test will determine whether the mean of

logarithms (the geometric mean) differs between the two groups. Minitab and

other statistical software can do this step automatically by creating a likelihood

function for the lognormal distribution. The assumed distribution in the dialog box is

changed from normal to lognormal. For software that is unable to perform maximum
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likelihood for a lognormal distribution, data can be log-transformed and the normal

distribution assumed for the logarithms.

For the zinc example the lognormal distribution is selected as the assumed

distribution, and the results for the censored regression procedure are

Estimation Method: Maximum Likelihood

Distribution: Lognormal

Relationship with accelerating variable(s): Linear

Regression Table

Standard 95.0% Normal CI

Predictor Coef Error Z P Lower Upper

Intercept 2.72375 0.120325 22.64 0.000 2.48792 2.95958

GeoZone �0.257408 0.161211 �1.60 0.110 �0.573377 0.0585604

Scale 0.842529 0.0618053 0.729698 0.972806

Log-Likelihood¼�407.296

The Z statistic for GeoZone has a much lower p-value (0.11) than when the normal

distribution was assumed, but this value still leads to a conclusion of no difference

between the two groups’ geometric means. A probability plot (Figure 9.6) indicates

that most data follow the straight line representing a lognormal distribution, though

one or two points are outside the 95% confidence interval boundaries for the location

of the distribution. Concern that there may be an effect due to violating the

distributional assumption could lead to either use of yet another distribution, or to

using a nonparametric approach.
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FIGURE 9.5 Probability plot of residuals from the censored regression of Zn concentrations

against group membership. The data do not appear to follow a normal distribution.
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Whensoftwaredoesnot allow inputof interval-censoreddata, log-transformeddata

can be flipped and the procedure run. The result will be identical to a test on log-

transformed data (or when assuming a lognormal distribution) had the interval

endpoints format been available. The procedure is to take logarithms, flip the data

bysubtracting fromavalue larger than the largest logarithm, and run the right-censored

regression. The lack of an upper boundary for right-censored data will map into

negative infinity when the data are reflipped back to the original log scale. Negative

infinity for logarithms becomes a lower limit of zerowhen data are exponentiated back

intounitsofconcentration.Fordatawitha lowerboundofzero,censoredregressioncan

be correctly performed by software that does not allow interval-censored input by first

taking logarithms, and then flipping to produce the required right censoring.

To illustrate the process when regression on right-censored data is the only option,

the natural logs of Zn are computed, and then subtracted from 7, a number larger than

the maximum logarithm, to produce right-censored data. The values are stored in a

column named “FliplnZn.” The indicator column format is used by the software to

designate which values of FliplnZn are censored. The MLE regression output for the

flipped natural logs of Zn includes

Distribution: Normal

Response Variable: FliplnZn

Regression Table

Standard 95.0% Normal CI

Predictor Coef Error Z P Lower Upper

Intercept 4.2763 0.1204 35.52 0.000 4.0403 4.5122

GeoZone 0.2575 0.1613 1.60 0.110 �0.0587 0.5736

Scale 0.84292 0.06188 0.72996 0.97335
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FIGURE 9.6 Probability plot for residuals from a regression of the Zn data versus group

membership, compared to a lognormal distribution (center straight line).
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The slope coefficient for GeoZone and test results agree with those above when

untransformed data were input as interval endpoints and a lognormal distribution

was assumed.

In summary, for data with one or multiple censoring thresholds a two-group

parametric test can be computed using censored regression, where a binary 0/1 variable

is theonlyexplanatoryvariable.Caremustbe taken, however, to judge thevalidityof the

test’s assumptions of a normal distribution and equal variance. Censored data are

frequently non-normal.Violating the normality assumptionwill result in a loss of power

to detect differences between the two groups. Environmental data are often fit better by

lognormaldistributions,andtakinglogarithmshastheaddedbenefitofallowingsoftware

with input only of right-censored data to correctly test data with a zero lower bound.

However, the user must be aware that transforming data to logarithms (or assuming a

lognormal distribution) changes the basic form of the test, determiningwhether the two

groups’ geometric means (medians) differ from a ratio of one.

The same test is available using NADA for R, where CuZn is one of the data sets

that comes with the package. The cenmle function can be used to perform the

parametric test of whether there is a significant difference in the mean of the zinc

concentrations in the two zones. Internally, it performs a censored regression on a

binary group as the explanatory variable, estimating the slope using maximum

likelihood. Note that now the grouping variable (Zone) must be specified as the

explanatory variable in the third argument.

> cenmle(Zn, ZnCen, Zone, dist¼“gaussian”)

Value Std. Error z p

(Intercept) 22.376 7.0160 3.1892 0.00143

ZoneBasinTrough �0.763 10.7312 �0.0711 0.94332

Log(scale) 4.050 0.0654 61.9549 0.00000

Scale¼57.4

Gaussian distribution

Loglik(model)¼ �596.3 Loglik(intercept only)¼ �596.3

Loglik-r: 0.006572786

Chisq¼ 0.01 on 1 degrees of freedom, p¼ 0.94

Number of Newton-Raphson Iterations: 1

n ¼117 (1 observation deleted due to missingness)

The likelihood-ratio p-value of 0.94 (a two-sided p-value) indicates that the means

for the two groups are not different. Using logarithms, the same procedure finds no

significant difference in the mean of the logarithms, with a p-value of 0.11

> cenmle(Zn, ZnCen,Zone, dist¼“lognormal”)

Value Std. Error z p

(Intercept) 2.466 0.1078 22.88 6.65e�116

ZoneBasinTrough 0.257 0.1613 1.60 1.10e�01

Log(scale) �0.171 0.0734 �2.33 1.99e�02

Scale¼0.843
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Log Normal distribution

Loglik(model)¼ �407.3 Loglik(intercept only)¼ �408.6

Loglik-r: 0.1467494

Chisq¼ 2.55 on 1 degrees of freedom, p¼ 0.11

Number of Newton-Raphson Iterations: 3

n ¼117 (1 observation deleted due to missingness)

The slope coefficient for Basin Trough zone of 0.257measures the difference in the

mean logarithm between the two groups. So in natural log units, themean of the Basin

Trough group is 0.257 log units higher than the mean of the Alluvial Fan group. The

group not written out in the output is the “base” group to which the named group is

being compared. This translates into a ratio of their geometricmeans, so that theBasin

Trough group has a geometric mean (median) averaging e0.257¼ 1.29 times that for

the Alluvial Fan group. However, the nonsignificant hypothesis test states that this

increase between geometric means of 29% is not significantly different from

no change, which is the null hypothesis.

9.4 NONPARAMETRIC METHODS

Nonparametric methods do not require an assumption that data follow a specific

distribution. They use no information on the shape of the distribution in conducting

tests. Instead, data are ranked, providing information on the relative positions of each

observation. Tests determine whether one group generally has more frequent high or

low values, a test for whether percentiles of the data differ between the groups. For

censored data, positions are represented by scores, which are ranks of the data

adjusted for the information missing because some values are censored. Nonpara-

metric tests using these methods are called score tests.

9.4.1 Ordinal Nonparametric Test After Censoring at the Highest Limit

An ordinal nonparametric test can always be computed on censored environmental

data by censoring all values below the highest reporting limit to a common value. The

advantage of this procedure is that it uses standard software. The disadvantage is that it

loses information in comparison to score tests, described below, and so has less power

than those more complicated procedures. However, when there are sufficient differ-

ences between groups, this simple method may provide all the power needed to reject

the hypothesis of no difference. As with other nonparametric methods, the assump-

tions of a normal distribution and equal variance are not necessary. These assumptions

are difficult to check with censored data, as the entire distribution of data cannot be

determined.

For the zinc data from the San Joaquin Valley, all <3s, all <10s, and all detected

values between 3 and10 are considered to be<10, resulting in tied ranks for all, and the

rank-sum test performed. Censoring data in this way uses the same information

portrayed in the censored boxplot of Figure 9.1, where only the frequencies of
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observations below 10 in each group, and not the values themselves, are used to

compute the positions of the box. Each of the 20 observations (30%) in theAlluvial Fan

zone below10mg/L, and the 12 observations (24%) in theBasinTrough zone below10,

is assigned a rank of 16.5, the median of numbers 1 through 32. Then the Mann–

Whitney test is computed. It is essential that software be able to compute tie corrections

to test statistics for the many tied values resulting from censored observations.

The Mann–Whitney test on these recensored zinc data finds a definite and reliable

difference in the distributions of zinc concentration between the two zones

(p¼ 0.0185). Median concentrations are higher in the Basin Trough zone. Unlike

MLE methods, no distributional assumption was required, and therefore no loss of

power results if the data are non-normal (which they are).

Mann-Whitney test for ZnMaxDL

Alluv_Zn N ¼ 67 Median ¼ 10.00

Basin_Zn N ¼ 50 Median ¼ 18.50

Point estimate for ETA1-ETA2 is �5.00

95.0 Percent CI for ETA1-ETA2 is (�10.00,�0.00)

W¼3533.5

Test of ETA1¼ETA2 vs ETA1 not¼ETA2 is significant at 0.0210

The test is significant at 0.0185 (adjusted for ties)

9.4.2 Survival Analysis: Score Tests

Score tests are nonparametric tests that determine whether distribution functions

differ among groups of censored data. The distribution function of each group is

pictured by its edf or survival function. Some score tests are direct extensions of the

rank-sum test, including the “generalized Wilcoxon test,” the “Peto–Prentice test,”

and the “Gehan test.” If uncensored data are input to these Wilcoxon-type tests, the

results are similar to the Wilcoxon rank-sum (Mann–Whitney) results. Score tests

were designed to handle data censored at multiple reporting limits, using the

information contained in uncensored values between reporting limits in addition to

the information in the proportion of values below each reporting limit. The survival

function for left-censored environmental data estimates the cumulative distribution

function i/n, wherevalues for i are the ranks of data from smallest to largest. For values

below a detection threshold, the survival probability i/n cannot be calculated because

the ranks of these values are not known. But the scores or ranks of detected

observations are computed by taking into consideration the presence of censored

observations below them.

9.4.3 The Gehan Test

To illustrate exactly how a score test works, the Gehan test statistic (Gehan, 1965) will

be manually computed for cadmium concentrations in fish livers (Cd.xls) in the

Southern Rocky Mountain and Colorado Plateau physiographic regions. This data

set is small and therefore easy to use for demonstrating how the Gehan test works.

The rocks of the Southern Rocky Mountains are more mineralized, and contain
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considerably more trace metals including cadmium, than do rocks of the Colorado

Plateau. Of interest is whether fish livers show this same pattern, indicating that

concentrations in the host rock showup in streamwaters, and subsequently in the biota

of the two regions. The null hypothesis is that there is no difference in cadmium

concentrations in livers of fish from the two regions. The alternative hypothesis is that

concentrations in fish from the Southern RockyMountains are higher than those from

the Colorado Plateau, a one-sided test.

There are 9 observations from the Colorado Plateau region, and 10 observations in

the Southern Rocky Mountain region. The data are listed in the top row and left

column of Table 9.2.

For the n¼ 9 values x1 toxn in the Colorado Plateau, and them¼ 10 values y1 to ym
in the Southern Rocky Mountains, there are n�m¼ 90 possible comparisons. These

comparisons, shown in the center cells of the table, are called Uij, where

Uij ¼ � 1 for xi > yj ðyj may be a nondetectÞ
þ 1 for xi < yj ðxi may be a nondetectÞ; and
0 for xi ¼ yj or for indeterminate comparisons ð< 10 to a 5Þ

ð9:2Þ

The Gehan test statistic W is the sum of the values for Uij, or

W ¼
Xn

i¼

Xm

j¼
Uij ð9:3Þ

For Table 9.2, there are 75 þ 1s and 12� 1s, soW¼ 63. If the null hypothesis were

true, approximately half of these comparisons would be positive, and half negative,

and W would be something close to 0. After computing W, it is standardized by

dividing by a measure of its standard error (the square root of the variance),

Z ¼ Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½W �p ð9:4Þ

TABLE 9.2 Comparison of Cadmium Concentrations in Fish Livers of the

Rocky Mountain Region

Southern Rocky Mountains

CO Plateau 81.3 4.9 4.6 3.5 3.4 3 2.9 0.6 0.6 <0.2

1.4 1 1 1 1 1 1 1 �1 �1 �1

0.8 1 1 1 1 1 1 1 �1 �1 �1

0.7 1 1 1 1 1 1 1 �1 �1 �1

<0.6 1 1 1 1 1 1 1 1 1 0

0.4 1 1 1 1 1 1 1 1 1 �1

0.4 1 1 1 1 1 1 1 1 1 �1

0.4 1 1 1 1 1 1 1 1 1 �1

<0.4 1 1 1 1 1 1 1 1 1 0

<0.3 1 1 1 1 1 1 1 1 1 0
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and the ratio Z is compared to a standard normal distribution. When the two

distributions are not equal, U, W, and Z are large in absolute value, and the null

hypothesis is rejected. Note that if therewere no censoring, all n�m comparisons could

be quantified, and U would equal the rank-sum test statistic.

Two alternative formulae for the variance are common, the permutation and the

hypergeometric estimates. Most software uses the hypergeometric variance. Permu-

tation estimates are simpler, but are invalid when the censoring rate differs between

the groups (one group has generally higher reporting limits than the other).

The permutation variance of W is:

Var W½ � ¼ mnSh2

ðmþ nÞðmþ n� 1Þ ð9:5Þ

In this equation, the sample sizes m and n are the numbers of observations in the

two groups. h2 is the sum of squared values for h, the u-score related to the ranks of the

data. To compute h (Table 9.3), count the number of observations known to be greater

than each observation (G), and the number known to be less than each observation (L),

when the data are sorted in ascending order (see Table 9.3). The difference between

these two numbers is the u-score, h,

h ¼ G� L ð9:6Þ

TABLE 9.3 Calculations for the Variance of the Gehan Test Statistic

Cd G L h h2

<0.2 15 0 15 225

<0.3 15 0 15 225

<0.4 15 0 15 225

0.4 12 3 8 64

0.4 12 3 8 64

0.4 12 3 8 64

<0.6 12 0 12 144

0.6 10 7 3 9

0.6 10 7 3 9

0.7 9 9 0 0

0.8 8 10 �2 4

1.4 7 11 �4 16

2.9 6 12 �6 36

3 5 13 �8 64

3.4 4 14 �10 100

3.5 3 15 �12 144

4.6 2 16 �14 196

4.9 1 17 �16 256

81.3 0 18 �18 324

S¼ 2169
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which when squared and summed over all data, equals
P

h2. For the cadmium data,P
h2 equals 2169. The variance of W is (9� 10� 2169)/((19)(18))¼ 570.79. The

standard error of W is the square root of the permutation variance, or 23.89. Gehan

(1965) provides a more complicated formula when ties occur, as they do here. Due to

the three 0.4s and two 0.6s, the tie-corrected standard error becomes 23.53.

The Gehan test statistic Z is therefore

Z ¼ 63

23:53
¼ 2:68

producing a p-value from the standard normal distribution¼ 0.0037. The conclusion

is therefore to reject the null hypothesis of equality, finding that cadmium concentra-

tions in fish livers are higher in the Southern Rocky Mountains than in the Colorado

Plateau.

9.4.4 The Generalized Wilcoxon Test

Peto andPeto (1972) proposed amodification to theGehan test called the “generalized

Wilcoxon test.” Prentice (1978) and Prentice and Marek (1979) elaborated on its

properties, so the test is also called the Peto–Prentice or Peto-Peto test. Scores for the

generalized Wilcoxon test are a weighted version of the Gehan test, adjusting the U-

scores of þ1 or �1 by the survival function (edf) at that observation to create a new

score. The U-score for the generalized Wilcoxon test is

Uij ¼ SðtiÞþ Sðti� 1Þ� 1 for all uncensored observations t

Sðti� 1Þ� 1 for all censored observations t*
ð9:7Þ

where S(ti�1) is the value of the survival function for the previous uncensored

observation. For the first observation in the data set i¼ 1, and the value of S(t0)

equals 1. There is a 100% probability of exceeding a value smaller than the smallest

observation in the data set. Klein and Moeschberger (2003) note that S is often

multiplied by n/(nþ 1).

The scores for one group are summed to obtain the test statistic W:

W ¼
Xn

i¼1

Ui ð9:8Þ

DividingW by the square root of the variance for this statistic produces a Z statistic

that can be compared to a table of the standard normal distribution. The permutation

variance of W (assuming no ties) is

Var W½ � ¼ mnSU2

ðmþ nÞðmþ n� 1Þ ð9:9Þ

where the sample sizes m and n are as before.

To continue the cadmium in fish livers example, computations for the generalized

Wilcoxon test are listed in Table 9.4. Scores for the Colorado Plateau region are
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summed to produce the test statistic. If the score for the S. Rocky Mt. had been

selected instead, U would be the same magnitude, with the opposite sign.

Flipping theCddata into a right-censored variable (the “FlipCd” column) produces

values that look like t or “time to censoring” of traditional survival analysis. The

“Number At Risk” column lists the number of observations greater than or equal to

the value of t. This equals the ranks of the cadmium observations, assuming no ties.

The survival function S(t) is the probability of surviving beyond each observation of

FlipCd. This survival function is the empirical distribution function of the original

data, and equals i/(nþ 1), where i is the rank of the original observations from low to

high. Here tied observations were assigned tied ranks, as is standard in hypothesis

testing. For example, the three uncensored observations at a cadmium concentration

of 0.4 would have had the ranks of 3, 4, and 5 had there been enough precision in the

measurements to tell the observations apart. Without that precision, any of the three

observations could be the highest or lowest. All three are therefore given a rank of 4,

the median of the three possible ranks. In the survival analysis literature, tied values

often follow another convention, assigning the minimum value for S, rather than the

median value used here. Using the median assures that the sum of ranks for data with

ties is the same as it would have been without ties, an important property for

hypothesis tests.

TABLE 9.4 Computation of the Generalized Wilcoxon Test for the Cadmium Data

Cd Censoring Region FlipCd

Number

At Risk S(t)*n(nþ 1) U

81.3 0 S RKY MT 18.7 19 0.903 0.903

4.9 0 S RKY MT 95.1 18 0.855 0.758

4.6 0 S RKY MT 95.4 17 0.808 0.663

3.5 0 S RKY MT 96.5 16 0.760 0.568

3.4 0 S RKY MT 96.6 15 0.713 0.473

3 0 S RKY MT 97 14 0.665 0.378

2.9 0 S RKY MT 97.1 13 0.618 0.283

1.4 0 COLO PLT 98.6 12 0.570 0.188

0.8 0 COLO PLT 99.2 11 0.523 0.093

0.7 0 COLO PLT 99.3 10 0.475 �0.003

0.6 0 S RKY MT 99.4 9 0.404 �0.144

0.6 0 S RKY MT 99.4 8 0.404 �0.144

0.6 1 COLO PLT 99.4 * * �0.620

0.4 0 COLO PLT 99.6 6 0.271 �0.403

0.4 0 COLO PLT 99.6 5 0.271 �0.403

0.4 0 COLO PLT 99.6 4 0.271 �0.403

0.4 1 COLO PLT 99.6 * * �0.783

0.3 1 COLO PLT 99.7 * * �0.783

0.2 1 S RKY MT 99.8 * * �0.783

W(CO Plateau)¼ �3.12

Std Error¼ 1.165

Z¼ �2.677
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If the null hypothesis is true, observations for each groupwill be randomly scattered

through the list in Table 9.4,with about half of the scores positive and half negative. So

W, the sum of the scores, will be near zero. If the null hypothesis is not true, the data

fromonegroupwill bepredominatelynear the top,or thebottom,of the list inTable9.4.

Consequently the absolute value ofWwill be larger than zero. FromTable 9.4, the test

statistic Z equals �2.677, and from a table of the standard normal distribution the

associated one-sided p-value is 0.0037. The null hypothesis is soundly rejected, and it

is concluded that cadmium concentrations in fish livers in the Southern Rocky

Mountains are higher than those in fish from streams in the Colorado Plateau.

Using the right-censored flipped data, Minitab’s survival analysis software

computes the generalized Wilcoxon (Gehan) test for the cadmium data. Notice

that the test statistic for the test is 7.17 (see below).Minitab uses an alternate form of

the test statistic that follows a chi-square distribution rather than the normal

distribution. The value of the chi-square test statistic will equal the square of the

test statistic computed using the normal approximation. For the cadmiumdata, 2.672

equals the 7.17 produced by Minitab. The p-values for the two forms of the test will

either be the same or very similar. Note that the generalized Wilcoxon test can also

be used to compare three or more distributions, analogous to the Kruskal–Wallis

test. Therefore the p-values for the chi-square test statistic in Minitab are always

two-sided, as they would be for a Kruskal–Wallis test. To obtain a one-sided p-value

when comparing two groups, first check that the observed differences are in the

same direction as expected by the alternate hypothesis. If so, divide the reported

p-value (0.0074) by two to obtain the one-sided p-value (0.0037). The formula for

the chi-square version of the test is easier to follow, and found in Klein and

Moeschberger (2003) and other texts.

Comparison of Survival Curves

Test Statistics

Method Chi-Square DF P-Value

Log-Rank 5.5260 1 0.0187

Wilcoxon 7.1707 1 0.0074

9.4.5 Score Test for the Zn Data from Two Geologic Zones

To test the multiply censored zinc data of Millard and Deverel (1988) for differences

between geologic zones, each Zn observation is subtracted from a large number in

order to produce right-censored data. This large number could be any value larger than

the maximum Zn observation. The maximum observation is 620 mg/L, so 623 is

arbitrarily chosen. The flipped data are stored in a new column labeled “FlipZn,”

where FlipZn¼ 623�Zn.

The generalized Wilcoxon score test determines whether the survival distribution

of FlipZn is the same in the two zones. The test is therefore determining whether there

are differences in the cumulative distributions of the original data. If the p-value for

the test is small, the distribution of zinc concentrations differs between the groups.

The test is computed in Minitab using the command:
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Stat > Reliability/Survival > Distribution Analysis (Right

censoring) > Nonparametric Distribution Analysis

where the grouping variable “Zone” is entered in the “By variable” dialog box.

The procedure results in the following output:

Distribution Analysis: FlipZn by Zone

Comparison of Survival Curves

Test Statistics

Method Chi-Square DF P-Value

Log-Rank 2.84260 1 0.092

Wilcoxon 5.54396 1 0.019

The Wilcoxon test statistic is 5.54, and the two-sided p-value is 0.019. The null

hypothesis that the two groups have zinc concentrations with the same distribution is

rejected. Note that the p-value is essentially the same as for the rank-sum test on data

censored at the highest reporting limit, reported earlier in this chapter. The additional

information in these data attributable to the arrangement of uncensored values below

10mg/L is small, compared to the information in the proportion of observations in

each group above and below 10, and in the values for observations above 10 in each

group. In other data sets the information contained in the multiply censored pattern

might be crucial to detecting differences, producing a p-value for the score test

considerably smaller than for the one-threshold rank-sum test.

In Figure 9.7, the empirical distribution functions (survival functions) for the two

groups are plotted. The vertical Percent scale tracks the estimated percentiles for each

group (median¼ 0.5, etc.). The curves are similar at low concentrations (large flipped
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FIGURE 9.7 Survival plot of flipped zinc concentrations. Higher values of “FlipZn” (flipped

data) correspond to lower concentrations.
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values), but are different for values around the 70th to 95th percentiles. For these

percentiles the Alluvial Fan zone has generally larger flipped values, and thus lower

Zn concentrations, than does the Basin Trough zone. This is consistent with what was

seen in the boxplots of Figure 9.1.

Estimates of mean, median, and interquartile range are given by Minitab for the

flipped data in each group. Location estimates (mean, median) must be rescaled to

concentration units by subtracting them from the large constant used to flip the data.

This has been done and is presented in Table 9.5. Estimates of variability (standard

deviation, variance, interquartile range) do not need to be rescaled; they are the same

on both the flipped and original scales.

A Minitab macro named gw performs the generalized Wilcoxon test after

internally flipping the data, and plots an edf of the left-censored values in the familiar

left to right scale. For the zinc data, edited output from the gw macro is below, along

with the generated edf plot in Figure 9.8.
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FIGURE 9.8 Empirical distribution function (edf) of censored zinc concentrations. The

name “Cumulative Failure Plot” is a term in survival analysis for (1 � survival function),

reversing the right-to-left orientation seen in Figure 9.7.

TABLE 9.5 Summary Statistics (Kaplan–Meier Estimates) for Zn Concentrations

in the Two Geologic Zones

Mean Median IQR

Alluvial Fan 22.82 (600.18) 10 (613) 11 (11)

Basin Trough 21.61 (601.39) 20 (603) 20 (20)

Statistics for the flipped data are in parentheses.
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MTB > %gw ’Zn’ ’ZnLT¼1’ ’Zone’

Comparison of Survival Curves

Test Statistics

Method Chi-Square DF P-Value

Log-Rank 2.84261 1 0.092

Wilcoxon 5.54397 1 0.019

Aversion of the generalizedWilcoxon test can also be performed using NADA for

R. The command is cendiff. Arguments are the same three columns as for the cenmle

command: a column of detections plus reporting limits (Zn), a column of logical

TRUE/FALSE values where TRUE is a censored observation (ZnCen), and the group

identifier (Zone).

> Zntest¼cendiff(Zn,ZnCen,Zone)

> Zntest

N Observed Expected (O-E)̂2/E (O-E)̂2/V

Zone¼Alluvial Fan 67 31.9 38.7 1.20 5.18

Zone¼Basin Trough 50 30.1 23.3 1.98 5.18

Chisq¼ 5.2 on 1 degrees of freedom, p¼ 0.0228

The test results in a p-value of 0.0228, so the edfs of the zinc concentrations are

found to differ between the two groups. The cenfit command

> Znfit=cenfit(Zn,ZnCen,Zone)

> summary(Znfit)

will list the Kaplan–Meier percentiles for each group separately, showing that the

median of the Alluvial Fan group equals 10, while the median of the Basin Trough

group equals 20. The edf for the Basin Trough group is shifted to the right on the

edf plot (Figure 9.9) produced by the commands below, showing that concentra-

tions in the Basin Trough group are generally higher than the equivalent

percentiles in the Alluvial Fan group, at least above about the 35th percentile.

Below that, data in both the groups are censored, and so not able to be

distinguished. There is more detail in Figure 9.9 than Figure 9.8 because

concentrations are plotted on a log scale in Figure 9.9, minimizing the long tail

on the right side due to one outlier.

> plot(Znfit, xlab="Zinc concentration")

> legend(50,0.4,legend=c("Alluvial Fan","Basin Trough"),

lty=c(1:2))

9.4.6 Comparisons Among Score Tests

The cendiff command computes HF-1, of the Harrington–Fleming class of score tests

(Harrington and Fleming, 1982). The user chooses a parameter rho that controls a

weighting factor for each detected observation’s contribution to the test statistic.
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When rho equals 0 the log-rank test is produced, while rho equaling 1 results in a

versionof thegeneralizedWilcoxon test. The cendiff commanduses a rhoof1,making

it “essentially equivalent to Peto and Peto’s (1972) generalization of the Wilcoxon

test” (Harrington and Fleming, 1982). A rho of 1 produces the most powerful test for

data where differences between groups are of a logistic shape, such as when multi-

plicative differences between groups occur. Collett (2003) notes that the generalized

Wilcoxon test ismore appropriate than the log-rank test when proportional hazards do

not hold—when hazard functions for the two groups cross. Without going into detail

on hazard functions here, this means that the Wilcoxon test is the more generally

applicable of the two types of tests for lognormal and near-lognormal shaped data,

such as found in environmental applications. Minitab’s version of the generalized

Wilcoxon test is theGehan test, and shouldproduce similar thoughnot identical results

as the rho¼ 1 test of the cendiff command. For the zinc data, Minitab’s test statistic

¼ 5.54 versus 5.2 from the cendiff command in R, as one example.

Latta (1981) evaluated the power of a number of two-sample score tests under

conditions that included unequal sample sizes in the two groups, and unequal

censoring (mix of reporting limits) between the groups. The latter is a particularly

difficult trait to overcome, because thepatternproducedbyunequal levels of censoring

appears to be a signal instead of a designflaw.As seen inChapter 1 this is a particularly

severe problem for substitution methods. Gehan, Peto–Prentice, log-rank and other

score tests were compared in Latta’s large Monte Carlo experiment. Several versions

of the test statistic variance (denominator of the standardized test statistic) were used,
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FIGURE 9.9 Empirical distribution functions (edfs) of the censored Zn concentrations,

illustrating the results of the two-sample score test.
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including asymptotic variance and permutation variance estimates. Of these tests,

the Gehan and Peto–Prentice tests exhibited the most power when the underlying

data were lognormal, the distribution most often used to model environmental data.

The test with the overall best performance, including being able to accommodate

unequal sample sizes and some measure of unequal censoring mechanisms, was the

Peto–Prentice test using the asymptotic variance estimate. Environmental scientists

would do well to look for software performing this version of a score test.

Recognizing that water-quality data often exhibit shapes similar to a lognormal

distribution, Millard and Deverel (1988) employed a Peto–Prentice score test (Pre-

ntice and Marek, 1979) with a permutation variance estimate, and found it to be the

“best behaved” score test for censored lognormal data. This test produces a p-value of

0.02 (rounded) for the zinc data used in this chapter, similar to the Peto–Peto test

results from of cendiff’s HF-1 test reported above. When using other statistical

software, look for the Peto–Prentice or Peto–Peto tests to achieve high power for

multiply censored environmental data that are shaped something close to a lognormal

distribution.

9.4.7 Transformations with Score Tests

Like other nonparametric tests, score test results are invariant when applied to data

transformed using power functions such as the square root, logarithm, or inverse.

Thus, there is little reason to use transformations when performing score tests.

However, one possible reason to transform data prior to a score test is to produce

survival and edf plots where the differences between groups are more easily seen.

Data with high outliers produce survival functions and edfs having a long “tail,” as

seen in the Zn concentrations of Figure 9.8. Computing the graphs using logarithms,

or using a log scale such as in Figure 9.9, can clarify the tested differences between the

grouped data.

9.5 VALUE OF THE INFORMATION IN CENSORED OBSERVATIONS

Some scientists have felt that censored observations carry no information, and so the

fewer the uncensored values in a data set, the less information is present. This is not

correct. To illustrate, Zn concentrations in the Alluvial Fan zone, the zone with

lower median, were altered by changing some of the uncensored values above 10 to

a<10, and some of the<10s to<3s. The result is that the Alluvial Fan zone contains

54% censored observations, while the Basin Trough zone remains at 24% censored

observations. The overall effect is to lower the zinc distribution in the Alluvial

Fan zone, while increasing the proportion of censored observations. The signal in the

data should be stronger, and should result in a lower p-value than for the original

Zn concentrations, even though there are fewer uncensored values. Using the

generalized Wilcoxon test in Minitab on the altered data, the resulting p-value is

<0.001, more than an order of magnitude lower than the p-value of 0.019 for the

unaltered data.
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Distribution Analysis: FlipZn2 by Zone

Comparison of Survival Curves

Test Statistics

Method Chi-Square DF P-Value

Log-Rank 17.6936 1 0.000

Wilcoxon 14.4449 1 0.000

The increased separation in the altered data is seen in their survival

functions (Figure 9.10), where flipped data for the Alluvial Fan zone are now

higher than in the original data, and more separate from the Basin Trough zone

data. Higher flipped concentrations result from lower Zn concentrations in the

original units.

Several guidance documents have recommended that statistical tests not be run

with data having a high proportion of censored observations. For example, USEPA

(2002b, p. A-9) recommends that if there are more than 40% censored observations

in any group, the rank-sum test should not be used. There appears to be little

justification for setting these types of rules. If the proportion of censored observations

is similar in the two groups, the weight of evidence favors the null hypothesis.

If the proportion differs significantly, as with 54% versus 24% censored observations

for the altered zinc data, the null hypothesiswill likely be rejected. InChapter 10, TCE

concentrations averaging 80% censored observations can be differentiated among

three groups using the Kruskal–Wallis test, themultigroup equivalent of the rank-sum

test. Tests that efficiently extract information from censored data, such as Wilcoxon

score tests, will respond to the information contained in the data. There is no need

to limit their use.
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observations in the Alluvial Fan zone. Compare with Figure 9.7.
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9.6 INTERVAL-CENSORED SCORE TESTS: TESTING DATA THAT

INCLUDE (DL TO RL) VALUES

As seen earlier in this chapter, there is a parametric method (MLE) to test data

whose lower endpoint is nonzero, primarily data recorded as between the detection

and quantitation/reporting limits. All values are expressed as an interval (low, high).

Values below a detection limit of 1 are expressed as (0, 1). Values between

the detection limit and quantitation limit of 3 are expressed as (1, 3). Detected

values possess the same number for both low and high values, so that a detected

5 is (5, 5).

Fay and Shaw (2010) have provided software (the contributed package “interval”

for R) for performing interval-censored nonparametric procedures, both log-rank

and Wilcoxon type linear rank tests. They apply these procedures to the medical

statistics discipline. Peto and Peto (1972) described these tests, but software to

accomplish them was not easily available until this contributed R package was

released. These procedures extend the rank-sum type score tests to data expressed in

the interval endpoints format, allowing environmental scientists to test data sets with

“detected but not quantified” data directly. Interestingly, in their paper Fay and

Shaw refer to an evaluation by Law and Brookmeyer (1992) on substituting one-

half the interval width for interval-censored data—the equivalent of substituting

one-half the reporting limit when the lower endpoint is zero. Not surprisingly, it did

not work very well. Hence the need for this software to avoid substitution when a

disease occurs somewhere between time A and time B. Environmental scientists can

use the same procedures to test concentrations that fall betweenA and B mg/L. In fact,
one of the first papers discussing interval-censored tests had applied them to left-

censored chemical data, concentrations of PCBs built up in the human body (Self and

Grossman, 1986).

Linear rank tests estimate the survival curve (percentiles) and determine if this

differs between the two groups of data. Estimates for each group of the probability

of exceeding each cut point (detection limits and detected observations) is

compared to the overall probability of exceeding those cut points if the null

hypothesis is true and the data homogenous among the groups. A score is

computed summarizing the differences between the within-group exceedance and

the overall exceedance probabilities. One option in the interval package is to use

the “wmw” score statistic, producing an interval-censored analog to the general-

ized Wilcoxon test.

For the zinc data of Millard and Deverel (1988), the interval-censored Wilcoxon

test is computed after first computing the low end of the interval. For these data, the

low end was zero in each case.

CuZn$ZnLow=Zn*(1-ZnCen)

The default format in the interval package is that the low end of intervals is just

below the range of possible values, while the upper is included in the range of
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possible values. This is the opposite of the situation for environmental data, where the

low end is a possible value, but the high end is just below the censoring limit for

censored values. If the high end is a<5 the range of possible values does not include 5.

This default format can be changed using the Lin and Rin options if a vector is

supplied for each. The Lin vector states for each observation whether the value at the

left (low end) of the interval should be included (TRUE) or not (FALSE) in the

range of possible values. The Rin vector states the same for the right (high end) of

the interval. For censored environmental data the Lin vector should all be TRUE,

while the Rin vector should be FALSE for the censored observations. To create the

right vector named Rt,

CuZn$Rt=Zlow!=0

states that for all uncensored observations where Zlow is not equal to 0 (!¼ 0), Rt is

TRUE.Where (Zlow not equal to 0) is false, and so censored, Rt is FALSE. To create

the Lt vector of all TRUE values,

CuZn$Lt=Zn<1000

as all Zn concentrations are lower than 1000. The test is then run with the ictest

command:

> zntest¼ictest(Zlow,Zn,Zone,scores¼"wmw",Lin¼Lt,Rin¼Rt)

> zntest

Asymptotic Wilcoxon two-sample test (permutation form)

data: {Zlo,Zn} by Zone

Z¼2.2269, p-value¼0.02596

alternative hypothesis: survival distributions not equal

n Score Statistic�

Alluvial Fan 67 6.799756

Basin Trough 50 �6.799756
� like Obs-Exp, positive implies earlier failures than expected

The Z statistic and p-value are very similar to those reported in the original article

by Millard and Deveral for the Wilcoxon or Peto–Prentice type procedures, where

they found test statistics of 2.37–2.42 and p-values of 0.02. The two will not

be identical because the original paper did not employ an interval-censored version

of the test. The default type of test with ictest is a permutation procedure. An

exact version can be computed using the exact¼TRUE option. With this option

either all possible permutations of the test statistic are computed, resulting in

an exact p-value, or a large number of possible test statistics randomly selected

are chosen.

The cadmium data can also be tested with the ictest command. Note that the

rho¼ 1 option is specified below rather than the scores¼ “wmw” option. These
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are equivalent and produce the same test. Both are using the rho¼ 1 option of

the Harrington–Fleming class of tests.

> Cadmium$Rt¼!Cadmium$CdCen

> Cadmium$Lt¼Cd<1000

> Cadmium$Cdlo¼Cd�Cadmium$Rt
> attach(Cadmium)

> cdtest¼ictest(Cdlo,Cd,Region,rho¼1,Lin¼Lt,Rin¼Rt,exact¼TRUE)

> cdtest

Exact Wilcoxon two-sample test (permutation form)

data: {Cdlo,Cd} by Region

p-value¼0.007989

alternative hypothesis: survival distributions not equal

n Score Statistic�

SRKYMT 10 �3.289474

COLOPLT 9 3.289474

� like Obs-Exp, positive implies earlier failures than expected

To demonstrate the procedure on nondetects recorded as (0, 0.4) and values

between the detection and reporting limits as (0.4, 0.6), several observations in the

data set are changed. Any censored value gets an upper end indicator Rt¼ FALSE.

The data set now looks like:

> Cd2

CD REGION LT.1 Cdlo Rt Lt

1 81.3 S RKY MT 0 81.3 TRUE TRUE

2 3.5 S RKY MT 0 3.5 TRUE TRUE

3 4.6 S RKY MT 0 4.6 TRUE TRUE

4 0.6 S RKY MT 0 0.4 FALSE TRUE

5 2.9 S RKY MT 0 2.9 TRUE TRUE

6 3.0 S RKY MT 0 3.0 TRUE TRUE

7 4.9 S RKY MT 0 4.9 TRUE TRUE

8 0.6 S RKY MT 0 0.4 FALSE TRUE

9 3.4 S RKY MT 0 3.4 TRUE TRUE

10 0.4 COLO PLT 0 0.0 FALSE TRUE

11 0.8 COLO PLT 0 0.8 TRUE TRUE

12 0.4 COLO PLT 1 0.0 FALSE TRUE

13 0.4 COLO PLT 0 0.0 FALSE TRUE

14 0.4 COLO PLT 0 0.0 FALSE TRUE

15 0.4 COLO PLT 1 0.0 FALSE TRUE

16 1.4 COLO PLT 0 1.4 TRUE TRUE

17 0.6 COLO PLT 1 0.4 FALSE TRUE

18 0.7 COLO PLT 0 0.7 TRUE TRUE

19 0.4 S RKY MT 1 0.0 FALSE TRUE

and the ictest is again run:

> cd2test¼ictest(Cdlo,CD,REGION,rho¼1,Lin¼Lt,Rin¼Rt,exact¼TRUE)

> cd2test

Exact Wilcoxon two-sample test (permutation form)
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data: {Cdlo,CD} by REGION

p-value¼0.00747

alternative hypothesis: survival distributions not equal

n Score Statistic�

S RKY MT 10 �3.315789

COLO PLT 9 3.315789

� like Obs-Exp, positive implies earlier failures than expected

The last line obliquely tells the observed difference between the groups. A positive

score statistic implies “earlier failures” or lower detected values than a negative score.

The Colorado Plateau therefore exhibits generally lower concentrations than the

Southern Rocky Mountains. This test successfully used data expressed as intervals,

testing differences between the groups in a fully nonparametricmode. No substitution

was required; no numbers were estimated between the detection (at 0.4) and

quantitation (at 0.6) limits. None was required.

9.7 PAIRED OBSERVATIONS

A variation on the two-group design occurs when observations in each group are

purposely paired with one another to block out sources of background noise and focus

on the effect being studied (Helsel and Hirsch, 2002, Chapter 6). With this structure,

both groups have the same number of observations, and the first observation in the first

group is linked to the first observation in the second group. Similarly, the second

observation in the first group is linked to the second observation in the second group,

the third with the third, and so on. Observations in the first groupmay be thought of as

the “starting point,” and in the second group as the “ending point.” The test determines

if there are differences between the starting and ending points, even though the

starting points may differ from pair to pair.

For uncensored data the standard tests for this design are the one-sample (or paired)

t-test, and the nonparametric signed-rank test. Differences between each pair of

observations are tested to see if their mean (t-test) or median (signed-rank test)

difference is significantly different from zero. A binary nonparametric test sometimes

used with paired observations is the sign test. The sign test does not compute the

magnitude of differences between pairs of observations, but records only whether

there is an increase or decrease between the two values. This test determines if the

proportion of increases, or decreases, is significantly different than the expected

frequency of 50%. Not requiring an estimate of the magnitude of difference makes

the sign test very useful for censored data.

With censored data the differences between pairs having one or more censored

observations cannot be determined exactly. The same options are open to the scientist

for testing differences between paired groups—for binary methods, the sign test

(appropriately modified for many tied pairs) may be computed. The ordinal signed-

rank test is not very applicable here, as even with one reporting limit the resulting
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differences between pairs will havemagnitudes such as > 3 and > 5when one value is
censored and other not. This is not easily incorporated into the signed-rank test

procedure. Happily, there are survival analysis methods, maximum likelihood, and

nonparametric score tests that can fully incorporate multiply censored data. As has

been presented in other chapters of this book, substitution methods are fraught with

problems and are best avoided.

9.7.1 Binary Methods for Paired Data—The Modified Sign Test

The sign test determines whether paired values from one group generally are higher

than the values from the other (Helsel and Hirsch, 2002, p. 138). Comparisons

between paired observations are recorded only as an increase, a decrease, or a tie.

These are shown in the “Sign of Difference” column in Table 9.6. Because the

magnitude of the difference is not used, the sign test is directly applicable to paired

censored observations. Due to its paired structure, the sign test can be performed

whenever one reporting limit is used per x–y pair. Though the test cannot evaluate a

TABLE 9.6 Atrazine Concentration Pairs

June September September � June Sign of Difference

0.38 2.66 2.28 þ
0.04 0.63 0.59 þ

<0.01 0.59 0.58 to 0.59 þ
0.03 0.05 0.02 þ
0.03 0.84 0.81 þ
0.05 0.58 0.53 þ
0.02 0.02 0.00 0

<0.01 <0.01 0.00 to 0.01 þ
<0.01 <0.01 �0.01 to 0.01 0

<0.01 <0.01 �0.01 to 0.01 0

0.11 0.09 �0.02 �
0.09 0.31 0.22 þ

<0.01 0.02 0.01 to 0.02 þ
<0.01 <0.01 �0.01 to 0.01 0

<0.01 0.5 0.49 to 0.50 þ
<0.01 0.03 0.02 to 0.03 þ
0.02 0.09 0.07 þ
0.03 0.06 0.03 þ
0.02 0.03 0.01 þ
0.02 <0.01 �0.01 to �0.02 �
0.05 0.10 0.05 þ
0.03 0.25 0.22 þ
0.05 0.03 �0.02 �

<0.01 88.36 88.35 to 88.36 þ
Do concentrations increase from June to September?
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pair of observations (x, y) at (<1,<3), it can evaluate data where one pair is (<1, 10)

and a second pair (<3, 5). Both increase from x to y. Therefore multiple reporting

limits can in limited fashion be incorporated into the sign test. Thoughmore powerful

and more complicated score tests have been developed for multiple censoring

thresholds, the sign test remains the easiest test to employ for the situation of one

reporting limit per x–y pair.

As an example of paired data, atrazine concentrations in groundwater were

measured at 24 wells in June, and at the same wells again in September, to determine

whether concentrations had increased due to application of atrazine at the surface

(Junk et al., 1980). Well to well differences are not of concern, and are “blocked out”

by the pairing process. All that is of interest is determining whether concentrations

have increased for any given well during the time period. Several values are

censored at the single reporting limit of 0.01 mg/L. The data are found in atra.xls

and shown in Table 9.6.

The sign test determines whether the pattern of pluses andminuses differs from the

expected frequency of 50% for eachwhen the null hypothesis is true. This example is a

one-sided test—the question was “is there an increase from June to September?”—so

change in only one direction is of interest. The results below are the standardMinitab

output for the sign test, and indicates that there is indeed a difference, at a p-value of

0.0022. No substitutions or assumptions of a distributional shape for these data were

required.

Sign Test for Median: S-J

Sign test of median¼0.00000 versus > 0.00000

N Below Equal Above P Median

S-J 24 3 5 16 0.0022 0.02500

The standard sign test procedure deals with ties by deleting the tied pairs from

all calculations. The sample size n is just decreased by the number of tied pairs

when computing p-values for the test. In essence, it is testing “for paired values that

are not tied, is there a consistency in the pattern of increases and decreases?” For the

atrazine example, the test computed the p-value as the likelihood of seeing 16

increases and 3 decreases out of a total of 19 pairs, ignoring the other 5 tied pairs.

This may be acceptable for the small proportion of ties typically encountered in

uncensored data, but for a larger proportion of ties it is not. Ignoring tied pairs will

inflate the Type I error rate, artificially lowering the reported p-values (Fong et al.,

2003). Data sets with a large proportion of ties should reflect their greater evidence for

similarity than for data without tied values.

Fong et al. (2003) provide twomethods for adjusting the sign test in the presence of

tied pairs. Their “modified sign test” is implemented in the Minitab macro Csign,

producing p-values using the formula

p ¼ Prob½N � maxðnþ ; n� Þ�
Prob½N � hðn� n0 þ 1Þ=ð2Þi� ð9:10Þ
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where n is the number of data pairs, nþ is the number of increases, n� is the number of

decreases, and n0 is the number of ties. Capital N represents the binomial distribution

with n observations evaluated at the central 0.5 proportion, the probability of

exceedance (p-values) for the sign test. The angle brackets in the denominator of

equation (9.10) represent the floor function, so that hXi is the largest integer smaller

than or equal to X. The modified p-value adjusted for ties is printed for the atrazine

data by the Csign macro as

p-value (adjusted for ’Equal’ ties) = 0.0448

The 5 tied pairs out of a total of 24 pairs of data are evidence favoring the null

hypothesis of equality, which when incorporated rather than deleted increase the p-

value from 0.002 to 0.04. When computing the sign test for censored data, the

modified sign test should be used rather than the default test computed by commercial

statistical software so that ties, such as <DL versus<DL, are correctly incorporated

into the test results.

While the signed-rank test is not as applicable as is the sign test to censored

data due to its need to compute and rank the magnitude of the paired differences,

Pratt (1959) provided a modification to the signed-rank test for the case of many

tied values.

9.7.2 Survival Analysis—MLE for Paired Data

With maximum likelihood estimation, the mean difference between the starting and

ending points is tested to determine if it is significantly different from zero. To do this,

a confidence interval is constructed around the mean difference using MLE. If the

confidence interval does not include zero, the differences are declared nonzero, and

the two columns of data are declared to be different.

For censored data, differences must be calculated as an interval; the differences

are interval-censored data. MLE can be used to compute the mean and standard

deviation, and therefore a t-interval around themean difference, for interval-censored

data. For paired data,MLE requires an assumption that the paired differences follow a

specified distribution. This assumption should first be checked before accepting the

results of the MLE procedure.

Consider again the atrazine data of Table 9.6. Twenty-four pairs of concentrations

were measured with a reporting limit of 0.01mg/L. To test whether zero is included in
the confidence interval around the mean difference, the differences are calculated

(column 3 of Table 9.6). For censored observations there is a range of differences; the

lowest and highest possible differences for the pair are stored separately in two

columns. For pairs of uncensored observations, the same value for the difference is

entered in each column. The two columns become the interval endpoints columns for

MLE, with the column of smallest differences designated the Start column and the

largest differences the End column. The actual difference is somewhere within that

interval. Using maximum likelihood, the mean difference and its 95% confidence
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interval are estimated; the output appears below. If data follow a normal distribution,

this procedure is the equivalent for censored data to the paired t-test. The Minitab

macro PMLE.mac computes the confidence interval around the mean, and reports the

p-value for the null hypothesis that the mean difference equals zero:

Location parameter for

Variable Lower Estimate Upper --------þ---------þ---------þ--------

Sept - June �3.119 3.927 10.97 (-----------------�----------------)
--------þ---------þ---------þ--------

0.0 4.0 8.0

Test for Location Equal to 0

Chi-Square DF P

1.19336 1 0.275

The 95% confidence interval extends from �3.1 to a 10.97, which includes zero.

Therefore, the mean difference September � June is not significantly different from

zero ata¼ 0.05. For the test ofwhether themean equals zero, the p-value of 0.275 also

indicates that no significant difference from zero was found.

These data are severely non-normal, as shown by a probability plot of the

differences (Figure 9.11). An assumption of a lognormal distribution may be

better than using the normal distribution. The logarithm of each month’s data is

calculated, and the differences in the logarithms computed and tested. The test for

whether the mean difference in log units equals zero is identical to a test for whether

the ratio of the two geometric means equals one. This test is appropriate as long as
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FIGURE 9.11 Probability plot of the paired atrazine differences September � June.
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the geometric mean (median) rather than the arithmetic mean is an appropriate

measure of the center. If the data must remain in original units, some accommoda-

tion for the one large outlier in the last row of Table 9.6, a point that inflates the

standard error of the mean and therefore lengthens the confidence interval, must

be made.

9.7.3 Nonparametric Method for Multiply Censored Paired

Data—The PPW Test

For multiple reporting limits, score tests have been developed for the matched-pair

design. These tests use a score statistic as a measure of the position of the observation

in a data set. Scores are generally computed to be negative and positive, centered at

zero on the midpoint of the data set. These scores are related to the ranks of the data

by the equation

Rank ¼ n½0:5þ 0:5� Score� ð9:11Þ

O’Brien and Fleming (1987) introduced the paired Prentice–Wilcoxon, or PPW,

test. It uses the same form of scores used in the generalizedWilcoxon test for unpaired

data, and is the standard test for the case of censored matched pairs. Akritas (1992)

proposed an alternate test, performing a paired t-test on the ranks as defined in

equation (9.11). Both tests have similar power (Akritas, 1992) for the situation of

skewed data common in environmental studies. Neither the PPW nor the Akritas tests

are found in commercial statistical software. However, a Minitab macro (PPW.mac)

to perform the paired Prentice–Wilcoxon test is included on the web page that

accompanies this book.

To compute the PPW test, the data are stacked into one column, and a Kaplan–

Meier estimate of the survival function for the combined data is computed. Scores,

the estimated percentiles of the survival function minus 0.5, are computed for each

observation, both censored and uncensored. The scores are then split back up into

their respective groups. If the null hypothesis is true and the two distributions are the

same, differences between pairs of scores should be small, hovering around zero. In

other words, the two paired observations should be located at similar places in the

combined distribution; therefore their score values should be similar. If the dis-

tributions of the two groups differ, the paired observations will be located at

different points of the combined survival distribution, with the scores from one

data set consistently higher than the paired score from the other. The PPW test

computes the differences between the paired scores, and determines whether the

sum of these differences is significantly different from zero, using a normal

approximation for the test statistic.

Four observations from the atrazine data of Table 9.6 were altered to produce

paired data with two reporting limits, at 0.01 and 0.05 mg/L. The altered data are

shown in Table 9.7, with the altered observations at <0.05. Alterations were in

the direction of stronger differences between the 2 months.
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PPW scores for each pair are also shown in Table 9.7. The scores are computed on

flipped data, so their signs are the reverse of what is expected from the original

observations.

For uncensored observations:

Score ¼ 1� 2S

where S is the Kaplan–Meier estimate for the percentile of the survival function.

For censored observations:

Score ¼ 1� Sj

where Sj is the Kaplan–Meier estimate for the percentile of the survival function for

the next smallest (in flipped units) uncensored observation.

Scores can be considered as scaled ranks of observations, although in the reverse

order from the original units due to flipping the data. For example, the largest

observation of 88.36 has the largest negative score, of �0.96. The second largest

TABLE 9.7 Atrazine Concentration Pairs from Table 9.6 Altered to Add a Second

Reporting Limit

June September June Score S1

September

Score S2

June � September

Score S1 � S2

0.38 2.66 �0.67 �0.92 0.24

<0.05 0.63 0.41 �0.84 1.24

<0.01 0.59 0.66 �0.80 1.45

0.03 0.05 0.04 �0.18 0.23

0.03 0.84 0.04 �0.88 0.92

0.05 0.58 �0.18 �0.76 0.57

0.02 0.02 0.32 0.32 0

<0.01 <0.01 0.66 0.66 0

<0.01 <0.01 0.66 0.66 0

<0.01 <0.01 0.66 0.66 0

0.11 0.09 0.55 �0.39 �0.16

0.09 0.31 0.39 �0.63 0.24

<0.01 0.02 0.66 0.32 0.34

<0.01 <0.01 0.66 0.66 0

<0.01 0.50 0.66 �0.71 1.37

<0.01 0.03 0.66 0.04 0.61

0.02 0.09 0.32 �0.39 0.70

<0.05 0.06 0.41 �0.35 0.76

0.02 0.03 0.32 0.04 0.27

0.02 <0.01 0.32 0.66 �0.34

0.05 0.10 �0.18 �0.51 0.33

0.03 0.25 0.04 �0.59 0.64

0.05 <0.05 �0.18 0.41 �0.59

<0.01 88.36 0.66 �0.96 1.62
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observation of 2.66 has the second largest negative score, of�0.92.All concentrations

tied at a reporting limit have scores identical to one another. Notice that the difference

in scores equals 0 for pairs with tied data. As the number of ties increases, Z will

get smaller, providing less evidence against the null hypothesis. Differences in scores

are largest for pairs with large differences in ranks of the original observations. For

the PPW test, the difference in the paired scores (d¼ S1� S2) is tested using the

test statistic

ZPPW ¼
P

dffiffiffiffiffiffiffiffiffiffiffiP
d2

p ð9:12Þ

by comparing Z to a table of the normal distribution. The output below shows that

the September atrazine concentrations are significantly higher than their paired

June concentrations (p¼ 0.001). This is stronger evidence than that for the sign test,

where the p-value was an order of magnitude larger.

Paired Prentice-Wilcoxon test

(NonPar test for equality of paired left-censored data)

Ho: distribution of Sept¼June

vs Ha: greater than

Test Statistic: 2.999

p value: 0.001

The larger differences between groups createdwhen the datawere altered is picked

up by the PPW test’s ability to incorporatemultiple reporting thresholds, at least in the

case where both groups have data below both reporting limits. The PPW test is not

built to handle the case where each group has a predominantly different reporting

limit, so that <0.01s dominate one group while <0.05s dominate the other. For this

situation, the best procedure is to recensor all data in both groups to the higher

reporting limit before computing the test (O’Brien and Fleming, 1987). If this is not

done, the values assigned to the higher reporting limit (e.g.,<0.05) will be considered

a higher score than those assigned to the lower limit (e.g., <0.01). This is more than

what is actually known and can contribute falsely to a decision that the paired values

are different. Recensoring at the higher reporting limit is easily available in the PPW

macro by invoking the HighDL subcommand.

9.7.4 A Second Score Test for Multiply Censored Data—The Akritas Test

For uncensored data, the nonparametric signed-rank test can be approximated by

computing a paired t-test on the signed-ranks (Conover and Iman, 1981). The Akritas

test (Akritas, 1992) extends this idea to data with censored values. Ranks of

uncensored values are computed much as in the PPW test, using Kaplan–Meier

statistics for the entire data set. Ranks of censored observations are computed by
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calculating Kaplan–Meier survival functions separately for each group and averaging

the survival probabilities for the pair of observations that includes the censored value.

The rank of the censored observation is computed from this averaged probability

(Akritas, 1992). A paired t-test is then computed on the calculated ranks to evaluate

the similarity of the set of paired observations.

As found by Conover and Iman (1981), rank-transform tests generally produce

p-values slightly lower than those of the exact tests for the same situation. Null

hypotheses are rejected a little more frequently than they should in simulation studies

evaluating these tests. As a rank-transform test, this characteristic may also be true for

the Akritas test. More detail on its computation is found in Akritas (1992).

9.7.5 Comparing Data to a Standard Using Paired Tests

Methods for paired observations can be used to determine whether the mean or

median of one column of data equals or exceeds a fixed standard. The paired t-test,

signed-rank test, and sign test can be usedwith uncensored data to test compliance to

a standard. Similarly for censored data, the MLE confidence interval and nonpara-

metric PPW test can serve the same purpose, even for data with multiple

reporting limits.

Instead of two columns of data, comparisons to a standard are made by placing

the value of the standard in every entry of the second data column. Differences are

computed between the data and the standard, and the mean or median difference

tested to determine whether or not it equals zero. Tests for compliance are often set

up assuming compliance; the alternate hypothesis is that the mean or median

difference exceeds zero. If so, the mean or median of the column of data exceeds

the standard.

As an example, consider whether the mean or median of the altered atrazine data

for June of Table 9.7 exceeds a standard of 0.05mg/L. There are two reporting limits,

at 0.01 and 0.05. Differences between the data and the standard are interval-censored

values. The endpoints of the interval are identical when the data are above the

reporting limit. Endpoints differ for censored observations, representing the range of

possible differences. Using maximum likelihood (the %PMLE macro) and assuming

a normal distribution, the mean concentration does not exceed the standard of 0.05.

The chi-square test statistic is a two-sided test: for a one-sided test the p-value is 0.583

divided by 2, or 0.29. Also note that the lower 95% confidence bound extends below

zero, so that zero is included as a possible estimate for the difference—this is the

confidence interval window into the test procedure.

Test for Location Equal to 0

Chi-Square DF P

0.300634 1 0.583

Bonferroni 95.0% (indiv 95.00%) Simultaneous Lower Bound

Location parameter for

Variable Lower Estimate --------þ---------þ---------þ--------

June - Std �0.03388 �0.008472 (--------------------�---------------
--------þ---------þ---------þ--------

�0.024 �0.012 �0.000
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Using the nonparametric PPW test, the median June atrazine concentration also

does not significantly exceed the standard of 0.05; the null hypothesis of equality of

medians is not rejected (p¼ 1.0). Both the mean and the median of these multiply

censored data are within the standard set for them.

Paired Prentice-Wilcoxon test

(NonPar test for equality of paired left-censored data)

Ho: distribution of June¼Std

vs Ha: greater than

Test Statistic: �3.713

p value: 1.000

9.8 SUMMARY OF TWO-SAMPLE TESTS FOR CENSORED DATA

Two-sample tests corresponding to the t-test, rank-sum and sign tests are available for

use with censored data. The decision whether to use a parametric or nonparametric

test is made in the same way as for uncensored data, judging how closely the data, or

their transformed values, follow a normal distribution. Censored t-tests are available

in survival analysis by solving for regression parameters with maximum likelihood.

The slope coefficient estimates the difference between the means of the two groups,

and testing this coefficient determines whether the difference is significant. For

nonparametric tests, the generalized Wilcoxon test expands on the uncensored

Wilcoxon rank-sum (or Mann–Whitney) test, adjusting the ranks to incorporate

information contained in censored observations. Wilcoxon tests can be used on both

singly and multiply censored data. However, for a single reporting limit the standard

rank-sum or sign test could also be used. Therefore standard nonparametric tests can

be used for data with one reporting limit.

Paired tests analogous to the paired t-test and signed-rank tests are available for

multiply censored data. They can also be used to test whether one set of multiply

censored data exceed a legal or other standard. The sign test provides the simplest

binary approach, while a MLE confidence interval on the mean and the paired

Prentice–Wilcoxon test allow data with multiple reporting limits to be analyzed.

EXERCISES

9-1 Eppinger et al. (2003) measured metals concentrations in stream sediments at 82

sites in New Mexico in 1996. After wildfires occurred throughout the region in

2000, each site was resampled to determine if concentrations had changed

following the fires. Several mechanisms were proposed for why this might be

so. Data for lead are found in SedPb.xls. Test to determine whether lead

concentrations, some of which are recorded as below a single reporting limit

of 4mg/L, have changed pre- and postfire. Note that the data are paired

by sampling location.

192 COMPARING TWO GROUPS



9-2 Yamaguchi et al. (2003) measured concentrations of the pesticide lindane in fish

and eels collected at several sites in the United Kingdom. One site was below

Swindon, an active industrial area draining to the Ray River, a tributary to the

Thames. To avoid differences due to types of fish, data presented here are for only

one species (Roach) at two sites, Swindon and a site further downstream on the

Thames River, in the file Roach.xls. Therewas one reporting limit, at 0.08 mg/kg.
Test whether lindane concentrations are the same or different at the two sites,

using both the parametric “t-test” performed with censored regression and a

nonparametric Wilcoxon score test.

9-3 Squillace et al. (1999) related VOC concentrations in groundwater throughout

the United States to population density. The data for one compound, chloroform,

in the state of California is presented in ChlfrmCA.xls. Observations are grouped

by whether they are from urban areas (population density > 386 people per acre)

or rural areas (population density<386 people per acre). Determine if the mean/

median concentration of chloroform is higher in the urban areas than in the rural

areas. Use both a parametric and nonparametric test. There are two reporting

limits.
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10 Comparing Three or
More Groups

Scientists must at times evaluate environmental data that are classified into more than

two groups. Are the means, or medians, or probabilities of observing a detected value

the same within each group, or is at least one different? What can be said when there

are censored observations below several reporting limits scattered throughout

the groups? For uncensored data, comparisons among groups are made using the

parametric analysis of variance (AOVor ANOVA) and the nonparametric Kruskal–

Wallis (KW) test. For data with censored observations, the methods surveyed in

Chapter 9 for differentiating between two groups—binary, ordinal, maximum like-

lihood, and score test methods—can be extended to three or more groups and

employed here. Differences betweenmeans can be tested usingmaximum likelihood,

using software for censored regression. Nonparametric Wilcoxon score tests look

for differences in the empirical distribution functions (or survival distributions)

among the groups.

As the primary example for this chapter, concentrations of trichloroethylene (TCE)

in shallow ground waters of Long Island, NYwere reported by Eckhardt et al. (1989).

Thewaters sampled were fromwells surrounded by one of three land-use types: low-,

medium-, or high-density residential lands. Sources of TCE were expected in each

land-use type due to the past use of TCEas a septic systemcleaner, and as a solvent in a

variety of residential and light industrial uses. At issue is whether the occurrence of

TCE is similar in waters under the three land-use types, or whether concentrations

appear to differ in at least one land use. Because samples were sent to different

laboratories, and because precision changed over time, four reporting limits at 1, 2, 4,

and 5mg/L are found in the data. Boxplots of the data are shown in Figure 10.1, where

the boxes for all three land-use groups lie below the highest reporting limit.

The percentage of values above the highest reporting limit of 5 mg/L in each of the

three groups is listed in Table 10.1.

These data can be found in TCE.xls. Concentrations or reporting limits are stored

in the column named TCEConc. The column named BDL¼1 indicates a censored

observation with a value of 1, and a detected value with a 0. The land-use groups are

listed in the column named Density.

Statistics for Censored Environmental Data Using Minitab� and R, Second Edition.
Dennis R. Helsel.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

194



10.1 SUBSTITUTION DOES NOT WORK—INVASIVE DATA

Substituting the reporting limit for all censored observations can quickly be accom-

plished by ignoring the indicator variable, and using only the values stored in the

concentration column. An ANOVA run directly on the concentration column pro-

duces an ANOVAwith substitution of the reporting limits. This produces a high bias

for themeans of each group.As already shown in previous chapters, substitution in the

case of multiple reporting limits can either artificially produce patterns not seen in the

data themselves or obscure patterns that should be detected. ANOVAon the column of

TCE concentrations produces the following results:

One-way Analysis of Variance

Analysis of Variance for TCEConc

Source DF SS MS F P

Density 2 1120 560 0.60 0.547

Error 244 225876 926

Total 246 226996

ANOVA compares a ratio of the mean square (MS) for the signal (Density) to

the MS of the background noise (Error). This ratio is the F statistic for the test,
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FIGURE 10.1 TCE concentrations in ground water under three land-use types (Eckhardt

et al., 1989).

TABLE 10.1 Percent of TCE Concentrations in Long Island Groundwater

Greater than 5mg/L

Land-Use Density Low Medium High

Percent above 5mg/L 0 9 20

Data from Eckhardt et al. (1989).
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560/926¼ 0.60. The expected value for F when there is no difference among the

group means is approximately 1. If the F statistic is much larger than 1, the null

hypothesis of no difference among means can be rejected. For the TCE data with

substitution, theF statistic of 0.60 is not large. Themagnitude of difference inmeans it

represents can be expected to occur about 55% of the timewhen the null hypothesis is

true (p¼ 0.547). This is insufficient evidence to reject the null hypothesis, and

therefore mean TCE concentrations for the three groups are considered to be similar

by this test. This result could also be due, however, to either the non-normality of the

data (censored data sets are often quite skewed) or to the inaccuracy of fabricating

the pattern of concentrations by substitution. Substituting a constant for all nondetects

declares that you know that all these values are exactly the same, an invasive pattern

that is unlikely to have been in the original data.

Substitution of either one-half the reporting limit or zero also results in insignif-

icant F-tests. It should be noted that the simplest nonparametric test for these data, a

contingency table test presented in the next section, finds significant differences in the

proportions of data above 5mg/L among the three land-use groups. Substitution’s

failure to see anydifferences emphasizes again theweaknesses of themethod. There is

no need to use substitution. There are better ways.

10.2 NONPARAMETRIC METHODS AFTER CENSORING

AT THE HIGHEST REPORTING LIMIT

10.2.1 Binary Methods: Contingency Tables

If the censored response variable is collapsed into two values, below and above the

maximum reporting limit, contingency tables will test whether the proportion of

values in those two categories changes among groups. Collapsing data into two

response categories loses information, but (depending on where the highest reporting

limit is located) the information that remains may be the major component of what is

available. Contingency tables are easily understood, and easily illustrated with a

simple bar chart. The proportions above and below the highest reporting limit are

unambiguous, and the test results definitive. The test is available in all commercial

statistical software. This is the simplest test to perform with a censored response

variable, but it has less power than score tests. Themechanics of themethod are found

in many statistics textbooks, including Conover (1999).

For the TCE data, observations greater than or equal to the highest reporting limit

of 5mg/L are assigned a uniquevalue, either numeric or text, and those below assigned

a second value. The test determines whether the percentage of response values in each

category is similar across all groups. Figure 10.2 shows the observed percentages of

TCE concentrations at or above 5mg/L for the three density groups.

A contingency table test of theTCEdata can be produced by invoking theMinitab�

macro “detects” by typing

> %detects ’TCECONC’ ’BDL_1’ ’Density’
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where TCECONC is the column of data plus reporting limits, BDL_1 is the

indicator variable for censoring, and Density is the group assignment. This produces

the output:

Test whether % GTE 5 is the same in all groups

Pearson Chi-Square = 9.238, DF = 2, P-Value = 0.010

Likelihood Ratio Chi-Square = 11.697, DF = 2, P-Value = 0.003

The two chi-square tests use alternate equations for comparing the observed

number of counts to the expected number of counts in each cell of the table. Expected

counts are the numbers expected when the null hypothesis is true. If the observed

counts are similar to expected, the test statistic is small and the null hypothesis is

not rejected. If the observed counts differ from what is expected, the test statistic is

large and the null hypothesis is rejected. Both tests indicate that the proportions of

data at or above 5mg/L differ among the three land-use groups, with a p-value of no

more than 0.01. The chi-square test detected differences that were obscured

when an analysis of variance on substituted data was performed. If a “quick and

dirty” test is required, this test of proportions is just as quick, and far less dirty, than

substitution.

10.2.2 Ordinal Methods: Kruskal–Wallis Test

A second approach to analyzing these data without a distributional assumption is the

KW test. The KW test determines whether the distribution functions (edfs) of three or

more groups of data are similar, or if at least one is different. The test is applied to

censored data by setting all observations below the highest reporting limit to the same
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FIGURE10.2 Percent of TCEconcentrations at or above the highest reporting limit of 5mg/L
for three land-use categories (data from Eckhardt et al., 1989).
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value.When ranked, these observations become tied at the lowest rank. Data above the

highest reporting limit are ranked using the same method as for uncensored data.

If survival analysis software is not available, theKWtest provides avalid nonparametric

alternative.However, score tests in survival analysis softwarewill providegreater power

for multiply censored data, without recensoring data to the highest reporting limit.

For the TCE data, all observations below the highest reporting limit of 5mg/L are

assigned the same value, any value less than 5. All <1, <2, and so on, as well as all

detected values of 1, 2, 3, and 4 are assigned an identical low number to represent that

they are less than 5. The Minitab macro censKWassigns a�1 to these lowest values.

In this way, all values censored below the highest reporting limit are given tied ranks.

A negative number is used to reinforce that this is an assigned value, rather than an

actual measurement. The KW p-value of 0.01 shows that even with approximately

80% censoring, differences among the edfs of the three groups can be discerned.

As mentioned in Chapter 9, a large proportion of censoring is not in itself a reason to

avoid performing a rank-based test like the KW test. If the proportion of censoring

differs significantly among the groups, as it does here, that difference can be discerned

by the test.

Kruskal-Wallis Test on TCEConc-

Density- N Median Ave Rank Z

Low 25 �1.000 109.0 �1.11

Medium 130 �1.000 120.4 �0.84

High 92 �1.000 133.2 1.56

Overall 247 124.0

H¼2.95 DF¼2 P¼0.228

H¼9.17 DF¼2 P¼0.010 (adjusted for ties)

Use the tie adjustment. All values below the max dl were set

as tied at �1.

Note the estimatedmedian of�1 for all three groups results from the assignment of

that value to all censored observations. The�1 values are to be interpreted as censored

values, so the median is <5.

10.2.3 The Kruskal–Wallis Test in R

The Kruskal–Wallis test is available in Rwith the kruskal.test command. But first, the

TCE data must be recensored so that all values below 5 are set to a low number such as

�1. This can be done relatively easily in R and gives insight into how data can be

managed using R.

The TCE data set is one of the data sets that is packaged with NADA for R. So after

loading NADA for R, the data set can be activated using

> data(TCE)

> attach(TCE)
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and variable names plus the first 6 rows of data can be seen using the head command:

> head(TCE)

Density LowEq1 MedEq1 HiEq1 TCEConc TCECen

1 Low 1 0 0 1 TRUE

2 Low 1 0 0 1 TRUE

3 Low 1 0 0 1 TRUE

4 Low 1 0 0 1 TRUE

5 Low 1 0 0 1 TRUE

6 Low 1 0 0 1 TRUE

It takes only two steps to recensor all values below 5 to equal�1. In the first step,

all TCEConc data below 5 are set to�1. In the second, all censored<5 values are set

equal to �1. Note the use of brackets to define a subset of a column’s data. Read

“TCE5[TCEConc<5]” as “TCE5 values for rows where TCEConc is less than 5.”

Also note that a declaration of equality other than numeric is defined using ¼¼.

> TCE5=TCEConc

> TCE5[TCEConc<5]=-1

> TCE5[TCECen==TRUE]=-1

Now the Kruskal–Wallis test is computed on the recensored TCE5 variable.

> kruskal.test(TCE5,Density)

Kruskal-Wallis rank sum test

data: TCE5 and Density

Kruskal-Wallis chi-squared = 9.1725, df = 2, p-value = 0.01019

The p-value reported is the one corrected for ties, showing that the group edfs are

significantly different.

10.3 MAXIMUM LIKELIHOOD ESTIMATION

Maximum likelihood estimation (MLE) can be used with censored data to perform

hypothesis tests similar to analysis of variance. As with other parametric methods, the

results will be valid if the data used for the test closely follow the distribution assumed

by the MLE. When the data do not match the distribution assumed by MLE,

hypothesis tests may have low power to discern differences present between groups.

In order to use MLE, the data are usually coded as interval-censored data in the

Interval Endpoints format described in Chapter 4. Censored observations have a

lower bound of either 0 or the method detection limit (if it is detected but not

quantified). The upper bound is usually the reporting limit. Hypothesis tests will then

recognize that data cannot go negative. Uncensored quantified observations have the
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same value in each of the two endpoint columns. Alternatively, for skewed distribu-

tions the data (or their reporting limits) can be log-transformed and then flipped. In

addition to accounting for skewness, this transformation allows software for right-

censored data to be used to conduct the test.

10.3.1 Likelihood-Ratio Tests

Parametric hypothesis tests for differences among groups in the means of censored

data can be accomplished using censored regression methods available in survival

analysis software. A likelihood-ratio test equivalent in purpose to ANOVA’s F-test

determines whether there is a significant increase in the log-likelihood of data

classified by group in comparison to the log-likelihood for data when unclassified

(the null likelihood). In other words, does the classification by group explain a

significant portion of the variation observed in the data? If so, the means of the groups

are not all similar, and classification reflects that the location of at least one group is

not identical to the others. When the log-likelihood statistic with classification

is significantly greater (less negative) than that for no classification, the null

hypothesis of no difference among means is rejected. The test statistic is the “�2

log-likelihood”

�2 log-likelihood ¼ �2ðLnull � LgroupsÞ ð10:1Þ

where L is the log-likelihood of each situation. Because these are logs of the

likelihood, subtracting one from the other is equivalent to a ratio of likelihoods,

hence the name “likelihood-ratio test.”

Some software packages compute both the log-likelihood L and the �2 log-

likelihood, comparing the latter to a chi-square distribution with k� 1 degrees of

freedom, where k is the number of groups. It is a one-step process. Other packages

require separate commands to print the model and null likelihoods, requiring you to

compute the test statistic using equation (10.1), and its p-value. However this is not an

onerous task. Before the TCE data are used as an example, the first step in computing a

likelihood-ratio test is to represent the data in the interval endpoints format.

10.3.2 Representing Interval-Censored Data

TCE concentrations have a lower bound of zero, as domost environmental data. Some

statistical software allows entry of low and high endpoints for censored data, called

“interval censored” or “arbitrary censored” data. Setting the lower bound at zero is

important in accurately representing the possible values of the data and for returning

correct values for coefficients and tests. If no lower bound is set (the lower end is a

missing value), values are assumed to be able to go as low as minus infinity. This

produces a low bias for estimates of the mean, high bias for standard deviation, and

incorrect test results in parametric hypothesis tests.

Data in the indicator format are often assumed to be right-censored with no upper

bound. This is not an issue with nonparametric methods—the highest observation
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receives the highest rank. However, flipping left-censored environmental data and

runningMLE survival analysis procedureswith no upper bound can produce incorrect

results. If a normal distribution is assumed, a lower bound must be represented.

This can be done with software that allows interval censoring, such as Minitab, R,

and SAS. When using a lognormal distribution, however, the lower end of the

logarithms can go to minus infinity because this translates into a lower bound of

zero in original units. If available software only allows right-censored data, compute

the logarithms of data, flip the logarithms by subtracting from any number larger than

the maximum log value, and run the procedure on these right-censored values (yflip in

equation (10.2).

yflip ¼ C� lnðxÞ ð10:2Þ

where C is any number larger than the maximum of ln(x). The result when retrans-

formed back into units of x will be correct for lognormal data with a lower bound of

zero, the latter represented by the plus infinity value for yflip. As most environmental

data more closely follow a lognormal rather than normal distribution, this procedure

should work well for many data sets if interval-censored software is not available.

Using Minitab’s Regression with Life Data procedure, interval-censored

data can be directly entered as the response variable in a censored regression

(Figure 10.3). For the TCE data, the low end of the interval is the variable TCE0,

where all censored observations are represented by a value of 0. The high end of the

interval is the variable TCEConc, with censored observations set to the reporting

limit. The format is the “interval endpoints” format of Chapter 4. As shown later,

FIGURE 10.3 Entry window for censored regression in Minitab. Interval (“arbitrary”)

censoring results from use of the Start and End variables.
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censored regression softwarewill produce a parametric test for differences among the

means of these grouped data.

10.3.3 Representing Data Groups with Regression Software

Minitab and several other survival analysis packages allow explanatory variables in a

regression to be specified as a “factor” or “grouped variable” or a “category.” These

variables have a single value for every observation in a group and so define the group

identity for each observation. These may be numeric or text variables—in the TCE

example the group identifier is the text variable Density. Explanatory variables

entered into the Model dialog box are designated as factors in Minitab by also

entering them into the Factors dialog box, as shown in Figure 10.3.

Specification of variables as factors in regression can be accomplished by hand if

the software does not have an option to do so automatically. To do this, the group

identifier is recoded into binary (0/1) variables, using the same process as for analysis

of covariance with regression software (Helsel and Hirsch, 2002, Chapter 11).

Membership in one of k groups is represented by (k� 1) binary variables, each with

values either as 0 or 1. Membership is usually indicated as the value 1. It takes two

binary variables to represent the same information contained in the three groups

designated by the variable Density. One variable is namedMedEq1, and has a value of

1 for every observation in the medium density group. Observations from the low- or

high-density groups have a value of 0 for theMedEq1 variable. Similarly, the variable

HiEq1 has the value 1 for all data from the high-density group, and zeros otherwise.

The low-density group is defined as the “baseline” situation, with values for both

MedEq1 and HiEq1 equal to 0. Thankfully, most statistics software will do this for

you by declaring Density as a factor.

10.3.4 The TCE Example

With TCE concentrations in the interval zero to the reporting limits represented by

TCE0 and TCEConc, Density groups entered as a factor (Figure 10.3), and the

assumed distribution set to a normal distribution, Minitab’s MLE life-regression

procedure will estimate an overall likelihood ratio used in determining whether the

means of the three groups are significantly different. In essence it produces an

ANOVA-type test where differences and their significance are estimated bymaximum

likelihood. The output of the procedure is

Standard 95.0% Normal CI

Predictor Coef Error Z P Lower Upper

Intercept 1.01988 6.08187 0.17 0.867 �10.9003 12.9401

Density

High 6.74525 6.85866 0.98 0.325 �6.69748 20.1879

Medium 7.00662 6.64111 1.06 0.291 �6.00971 20.0229

Scale 30.4048 1.36799 27.8383 33.2078

Log-Likelihood¼�1069.163
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To determine whether significant differences in mean TCE are found between

Density groups, the log-likelihood for no grouping (the null log-likelihood) is

obtained by running the

Stat > Reliability/Survival > Distribution Analysis

(Arbitrary Censoring) > Parametric Distribution Analysis

procedure, setting the assumed distribution to the same as for the grouping results,

here a normal distribution. The output from the procedure estimates the mean and

standard deviation for the entire TCEConc column without breaking it into groups,

and produces the null log-likelihood:

Standard 95.0% Normal CI

Parameter Estimate Error Lower Upper

Mean 7.21985 1.93959 3.41830 11.0213

StDev 30.4761 1.37120 27.9037 33.2857

Log-Likelihood¼�1069.741

To test for whether there are significant differences in mean TCE among the three

Density groups, compute the likelihood-ratio test statistic (equation 10.1)

�2 log-likelihood¼�2ðLnull�LgroupsÞ ¼ 2ð�1069:741�½�1069:163�Þ ¼ 1:156

This statistic is compared to a chi-square distribution with (k� 1)¼ 2 degrees of

freedom. The number of degrees of freedom is the number of binary variables added to

the null equation, and so equals (k� 1). The resulting p-value is 0.56, indicating that

no significant differences are found among the three group means.

If there had been no designation for a grouping variable (factor) available in

Minitab, the two binary variables MedEq1 and HiEq1 described previously could

have been entered as explanatory variables in themodel dialog box (Figure 10.4). The

resulting output shown below is identical to that producedwhen the factor designation

was used. Internally, the software designates all but one of the values for the factor

variable as a 0/1 binary variable and enters those as explanatory variables in the

regression model.

Standard 95.0% Normal CI

Predictor Coef Error Z P Lower Upper

Intercept 1.01988 6.08187 0.17 0.867 �10.9003 12.9401

MedEq1 7.00662 6.64111 1.06 0.291 �6.00971 20.0229

HiEq1 6.74525 6.85866 0.98 0.325 �6.69748 20.1879

Scale 30.4048 1.36799 27.8383 33.2078

Log-Likelihood¼�1069.163

10.3.5 Importance of the Assumed Distribution

The validity of results for a parametric method, whether involving censored data or

not, depends on the adherence of the observed data to the assumed distribution. One

of the common procedures for evaluating adherence to the assumed distribution is a
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probability plot of the residuals. Figure 10.5 is a probability plot of residuals from the

censored regression for the TCE data. The departure of the residuals from the straight

line indicates that it is unlikely they arose from a normal distribution. When data

depart from the assumed distribution, the power of parametric procedures is low and

findings of no difference between group means can result. Therefore, the TCE data

should be tested again, this time with a lognormal distribution.

FIGURE 10.4 Entry window for censored regression using 0/1 binary variables instead of

a factor.
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FIGURE 10.5 Probability plot of residuals from the MLE test for differences in TCE group

means. The data do not appear linear, indicating the residuals do not follow a normal distribution.
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Testing for differences between the mean logarithms of the three TCE groups can

be quickly accomplished in Minitab by choosing the lognormal distribution in the

dialog box. First, the probability plot of residuals (Figure 10.6) is much more linear

than Figure 10.5. The data are more appropriately analyzed in log units.

Second, the overall test determines whether there are any difference among the

threemean logarithms (geometricmeans). To obtain the overall test wemust compute

the�2 log-likelihood test. The null log-likelihood has a value of�316.40. The output

from the three-group model is below.

Standard 95.0% Normal CI

Predictor Coef Error Z P Lower Upper

Intercept �3.78195 1.15396 �3.28 0.001 �6.04369 �1.52021

Density

High 3.05966 1.13781 2.69 0.007 0.829594 5.28974

Medium 1.40339 1.11891 1.25 0.210 �0.789640 3.59642

Scale 2.85286 0.317678 2.29349 3.54867

Log-Likelihood¼�308.700

The �2 log-likelihood¼ �2ðLnull�LgroupsÞ ¼ 2ð�316:40�½�308:70�Þ ¼ 15:40,
which when compared to a chi-square distribution with 2 degrees of freedom,

corresponds to a p-value for the test of 0.0005. The groups do differ in their geometric

means. Now, which groups differ from the others?

Some of the relevant individual comparisons are printed in the three-group output.

The test identified with the high row is the test for whether the high geometric mean
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FIGURE 10.6 Probability plot of residuals from the MLE test for differences in TCE group

means, assuming a lognormal distribution. The linear pattern indicates that a lognormal

distribution is a reasonable assumption.
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(median) differs from the low (base, not shown) group geometric mean. The p-value

of 0.007 shows that these two groups are significantly different. The test identified

with the medium row is the test for whether the medium group geometric mean is

significantly different than the low group geometric mean. With a p-value of 0.210, it

is not. The final pairwise significance test (does the high geometric mean differ from

the medium geometric mean?) is not printed on the output, but by rearranging the

terms and rerunning, the resulting p-value of 0.003 shows that these groups are

significantly different as well.

10.3.6 Censored Regression “ANOVA” Using NADA for R

The cenmle command computes a censored regression, estimating slopes by MLE.

Using this command, the overall chi-square test of significance is reported, as well as

some of the individual group mean comparisons.

> tcemle¼cenmle(TCEConc, TCECen, Density, dist¼“lognormal”)

> tcemle

Value Std. Error z p

(Intercept) �0.722 0.416 �1.73 8.28e�02

DensityLow �3.060 1.138 �2.69 7.17e�03

DensityMedium �1.656 0.553 �2.99 2.76e�03

Log(scale) 1.048 0.111 9.41 4.76e�21

Scale¼2.85

Log Normal distribution

Loglik(model)¼�308.7 Loglik(intercept only)¼�316.4

Loglik-r: 0.2459125

Chisq¼15.41 on 2 degrees of freedom, p¼0.00045
Number of Newton-Raphson Iterations: 4

n¼247

The chi-square test statistic is the �2 log-likelihood, twice the difference of the

log-likelihoods for the density factor model minus the null (intercept-only) model.

The resulting p-value of 0.0004 leads us to reject the null hypothesis that themean log

of concentrations in all three groups are equal. The cenboxplot command produces a

picture of the differences, given that the box portions below the highest reporting limit

are estimated using the ROS method (Figure 10.7)

> cenboxplot(TCEConc, TCECen, Density)

10.3.7 Censored Regression “ANOVA” with Other Software Packages

How would this “censored ANOVA” test be computed if the software only allowed

input of right-censored data, and could not construct the 0/1 factor indicators from

grouping variables? The same results would be obtained as above, assuming a

lognormal distribution, using these steps:
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1. Take logarithms of the TCE data.

2. Flip the logs by subtracting from a large constant. This produces a right-

censored data set whose maximum at infinity will map back to a zero lower

bound for TCE.

3. Create the two binary variables MedEq1 and HiEq1. Use these as the two

explanatory variables in the regression equation. The entry window for the

setup using Minitab is given in Figure 10.8.

4. From the output (shown below) compare the log-likelihood of the model to the

null log-likelihood. The test statistic value is the same 15.40 found for the more

automated procedure above. Also note that the slopes for the two explanatory

variables are just (�1) times the values found above for the same variables. The

sign is now negative because the data have been flipped.

Standard 95.0% Normal CI

Predictor Coef Error Z P Lower Upper

Intercept 13.7819 1.15396 11.94 0.000 11.5201 16.0436

MedEq1 �1.40339 1.11891 �1.25 0.210 �3.59642 0.789640

HiEq1 �3.05966 1.13781 �2.69 0.007 �5.28974 �0.829594

Scale 2.85286 0.317678 2.29349 3.54867

Log-Likelihood¼�197.761

�2 log-likelihood ¼ �2ðLnull � LgroupsÞ ¼ 2ð�205:46� ½�197:76�Þ ¼ 15:40

Either the automated grouping or the manual creation of binary variables results in

the same likelihood-ratio test and p-value, the same individual slope coefficients
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FIGURE 10.7 Censored boxplots of the TCE data using the cenboxplot command of NADA

for R.
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(multiplied by �1 if the data were flipped), and the same tests of significance on

the individual pairwise comparisons between groups. Pairwise comparisons are the

way in which multiple comparisons can be computed using MLE software for

censored data.

10.3.8 Multiple Comparison Tests

If an overall test is found to be significant, the next question is often “which groups

differ from the others?” A series of individual comparisons between groupmeans can

be performed to answer this question. To determine the entire pattern of k group

means requires g¼ k(k� 1)/2 comparisons. For three groups, the g¼ 3 comparisons

are between groups 1 and 2, groups 1 and 3, and groups 2 and 3. The end result might

be something like “groups 1 and 2 are not significantly different, but both are lower

than the mean of group 3.” If an overall error rate of 5% is desired, so that there is no

more than a 5% chance of making one error in the ordering of the means, each group

comparison must be made at an individual error rate smaller than 5%. One commonly

used formula for determining the individual error rate is Bonferroni’s formula in

equation (10.3):

individual error rate ¼ a

g
ð10:3Þ

where a is the desired overall error rate (often 5%, 0.05) and g is the number of

comparisons between means to be made. Any p-values for tests of differences

between two means that are below the Bonferroni-adjusted level are considered

significantly different at a 5% error rate for the overall pattern.

FIGURE 10.8 Entry window for right-censored flipped logarithms of TCE data.
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For the test of logarithms of the TCE data with an overall rate of a¼ 0.05, the

p-values for individual comparisons must be less than 0.05/3¼ 0.017. Both of

the tests found significant at the 0.05 level are still significant when a¼ 0.017

because their p-values are less than this. For the tests found to be significant, the

slope coefficient describes by how much they differ. The difference between mean

(logarithms) of the high and low groups is 3.06. To express this in the original units

of concentration, the mean logarithm (geometric mean) for the high-density group

is typically e3:06 ¼ 21:3 times higher than the geometric mean for the low-

density group.

Bonferroni’s procedure for multiple comparisons is a “conservative” method,

because the individual a-levels may be lower than necessary in order to achieve an

overall 5%error rate. An alternative toBonferroni’smultiple comparison procedure is

Tukey’s honest significant difference test (Zar, 1999). Tukey’s test uses the sample

sizes in each group to adjust the distances by which two means must be separated in

order to call them significantly different. The test statistic q for comparing the means

of any two groups (groups a and b) is shown in equation (10.4):

q ¼ xb � xaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs2=2Þðð1=naÞþ ð1=nbÞÞ
p ð10:4Þ

where s is the scale coefficient printed in the regression output from maximum

likelihood regression. The calculated statistic q is compared to a table of qa,n,k, the

Studentized range statistic, which is a function ofa (the overall error rate), n (the error
degrees of freedom¼ n� k), and k (the total number of groups to be compared).

However, this test is not currently setup to function under MLE software for survival

analysis, so it must be computed by hand.

10.4 NONPARAMETRIC METHOD—THE GENERALIZED

WILCOXON TEST

Nonparametric tests do not assume the data follow any particular distribution, and

therefore no transformations are required prior to computing the tests. With

many commercial statistics packages, nonparametric censored methods allow only

right-censored data to be entered. If this is true, the data must be flipped to become

right-censored before using these methods. The resulting p-values will be identical

to those that would be computed if left-censored data were allowed. Flipping data

for nonparametric tests merely changes the order of ranking from high to low

instead of from low to high. Flipping censored data was previously discussed in

Chapter 2.

10.4.1 The Generalized Wilcoxon Score Test

The generalized Wilcoxon score test for three or more groups is an extension of the

score test for two groups presented in Chapter 9. Like the KW test, score tests
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determine whether distributions (edfs) of groups are the same, or if at least one is

different. Unlike the KW test, score tests extract more information from the data by

assigning estimated percentiles (or scores) to uncensored observations falling be-

tween multiple censoring thresholds. When data have multiple reporting limits, a

score test will have more power (ability to see differences between edfs) than the KW

test because no additional censoring is required.

Using Minitab, the TCE data were first flipped by subtracting each concentration

from 400 to produce a right-censored variable “FlipTCE.” The Gehan version of the

generalized Wilcoxon test is computed on FlipTCE using the

Reliability/Survival > Distribution Analysis (Right Censoring) >
Nonparametric Distribution Analysis

command.

Comparison of Survival Curves

Test Statistics

Method Chi-Square DF P-Value

Log-Rank 16.2794 2 0.000

Wilcoxon 16.0761 2 0.000

The generalized Wilcoxon (Gehan) test statistic is 16.076, with a corresponding

p-value of <0.001, indicating that the distributions of concentrations differ signifi-

cantly among the three groups. The lower p-value of the score test as compared to

the KW test (p¼ 0.01) illustrates the greater power of the score test, as it uses the

information below the highest reporting limit of 5mg/L more efficiently.

Flipping data is tedious, so a Minitab macro called “gw” will perform the

generalized Wilcoxon test after invisibly flipping the data. The command

and resulting output for the TCE data are given below. The interim output,

Kaplan–Meier statistics on the data in flipped units, is not repeated here. The final

resulting p-value is seen as identical to the one above that required flipping the

data by hand.

> %gw ’TCECONC’ ’BDL_1’ ’Density’

Method Chi-Square DF P-Value

Log-Rank 16.2795 2 0.000

Wilcoxon 16.0762 2 0.000

Another benefit of the macro is that the edfs for each group are plotted (Fig-

ure 10.9). These are plots of 1minus the survival functions, or the “cumulative failure”

probabilities of the data. Following a line across the graph at the 90th percentile

clearly shows that for this upper end of the distributions, the high-density group has

larger concentrations than the other two groups. This reflects the larger proportion of

detected concentrations originally seen in the boxplots of Figure 10.1. The spread

between the curves of the three edfs is the significant difference identified by the

Wilcoxon score test.
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FIGURE 10.9 Cumulative failure plot (edf) of TCE concentrations for three land-use

categories. Differences appear substantial between the 80th and 99th percentiles.

10.4.2 The Wilcoxon Score Test Using NADA for R

The cenfit command reports descriptive statistics estimated using the Kaplan–Meier

procedure for data in each factor group NA means ‘below the RL’.

> cenfit(TCEConc, TCECen, Density)

n n.cen median mean sd

Density¼High 92 58 NA 7.778019 19.4895231

Density¼Low 25 23 NA 1.166667 0.6364688

Density¼Medium 130 113 NA 7.867264 38.5791132

Plotting the cenfit object produces the left-censored edf plot for each group

(Figure 10.10):

> plot(cenfit(TCEConc, TCECen, Density),xlab="TCE concentration")

> legend(20,0.4,legend=c("High","Low","Medium"),lty=c(1:3))

The Peto-Prentice orHF-1 version of the generalizedWilcoxon test is computed using

the cendiff command:

> cendiff(TCEConc, TCECen, Density)

N Observed Expected (O-E)̂2/E (O-E)̂2/V

Density¼High 92 30.45 18.2 8.26 15.65

Density¼Low 25 1.73 5.7 2.76 3.62

Density¼Medium 130 15.47 23.8 2.89 6.76

Chisq¼16.3 on 2 degrees of freedom, p¼0.000295
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The HF-1 test statistic is 16.3 while the Gehan version was 16.08, both strongly

significant. This nonparametric test handling multiple reporting limits without

substitution of any kind has determined that these data with 70–80% censored values

show significant differences between the edfs of the three groups. The high-density

group tends to produce higher concentrations and higher probabilities of detected

concentrations than the other two groups.

10.4.3 Multiple Comparison Tests

Multiple comparison procedures are a logical next step following rejection of the null

hypothesis of similarity by the Wilcoxon score test. To date, the only approach

available with commercial software for nonparametric multiple comparisons for

censored data is to perform a series of two-group score tests between each pair of

groups. If the p-value is less than the Bonferroni individual comparison level obtained

using equation (10.3), the two groups can be declared to have different distribution

functions at the chosen overall error rate.

For the k¼ 3 groups of TCE data there are g¼ 3 pairwise comparisons.

Using Bonferroni’s method, each pairwise comparison must have a p-value below

0.05/g¼ 0.017 for the group edfs to be considered different at the overall error rate of

5%. Computing each of these pairwise comparisons for the TCE data using the gw

macro in Minitab results in
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FIGURE 10.10 Plot of edfs for TCE concentrations (log scale) for three land-use categories.

Differences are substantial between the 80th and 99th percentiles.
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Low versus Medium

Method Chi-Square DF P-Value

Wilcoxon 0.68890 1 0.407

Low versus High

Method Chi-Square DF P-Value

Wilcoxon 7.09906 1 0.008

Medium versus High

Method Chi-Square DF P-Value

Wilcoxon 11.5275 1 0.001

Both the low- and medium-density areas have significantly different TCE

concentrations than the high-density area, using nonparametric score tests.

The low- and medium-density areas are not different from each other. These

are the same results assuming a lognormal distribution using the parametric

MLE test.

Other methods for nonparametric multiple comparisons exist, but are not coded

into survival analysis software. These include the Dwass et al. test (Hollander and

Wolfe, 1999, p. 240), a test computed using ranks of the data. For censored data the

Wilcoxon scores can be used rather than the ranks. A second nonparametric

multiple comparison test is the slippage test (Conover, 1968), a test that counts the

number of observations in a group that are greater than the highest observation in

the next lowest group. If more observations than expected exceed the top of the

next group, that group has “slipped” significantly lower and a difference is

declared. Because the test statistic is based primarily on observations at the

high end of each group, left censoring is not often an issue when computing the

slippage test.

To illustrate the slippage test, the k¼ 3 residential-density groups of TCE

concentrations are ordered based on the magnitude of their maximum observations

(see Table 10.2). By this criteria the medium-density group is “higher” than the high-

density group. Starting with the highest group, the number of observations ri is

counted that exceed the maximum of the next lowest group. For example, three TCE

concentrations in the medium-density group exceed 130 mg/L, the highest concen-

tration in the high-density group.

TABLE 10.2 Computation of the Slippage Test for the TCE Data

Density Medium High Low

Maximum TCE 382 130 <5 or 4

# exceedances ri 3 18 –

Sample size, n 130 92 25

Prob (edfi¼ edfj) 0.275 0.016 –
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The probability that the distribution of the ith group Gpi is identical to the

distribution of the next lowest group Gpiþ 1, is (Conover, 1968)

Prob ðGpi >Gpiþ 1Þ ¼
ni � 1Pk
j¼i nj

� �
� 1

2
4

3
5
r� 1

ð10:5Þ

This is equivalent to the p-value for the individual comparison test. For the

comparison between the (i¼ 1) medium-density group and the next lowest (high-

density) group,

Prob ðGp1 >Gp2Þ ¼
129

ð130þ 92þ 25Þ� 1

� �2
¼ 0:275

and between the (i¼ 2) high-density group and the (i¼ 3) low-density group,

Prob ðGp2 >Gp3Þ ¼
91

ð92þ 25Þ� 1

� �17
¼ 0:016

The p-values get smaller as the test statistic r, the number of exceedances, gets larger.

When r equals 1, the p-value resulting from equation 10.5 equals 1.

Individual comparisons are declared different if their p-values are less than

a=ðk� 1Þ, where k is the number of groups and a is the desired overall error rate.

Fora¼ 0.05 and k¼ 3, the p-values are compared to an individual error rate of 0.05/2,

or 0.025. Therefore, the slippage test concludes that there is a significant difference

between the high- and low-density groups, but not between the medium and high-

density groups.

The results of different multiple comparison tests do not always agree. The

slippage test and individual Wilcoxon tests did not agree as to which groups

differed from others. The slippage test focuses more on the high end of each group

than does the Wilcoxon test, and is insensitive to differences occurring in the

central and lower portions of each group. The results of the slippage test seem to

agree with the visual impression of the boxplots of Figure 10.1, which only show

the high-end values above the highest reporting limit. The choice of which test to

use should be based on which characteristic of each group is the most appropriate

to distinguish.

Perhaps in future releases, softwarewill provide more in theway of nonparametric

multiple comparison procedures for censored data.

10.4.4 Interval-Censored Score Tests: Testing Data That Include

(DL to RL) Values

The interval-censored form of the generalizedWilcoxon test coded into the “interval”

contributed package for R (Fay and Shaw, 2010) will perform equally as well for three
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and more groups of data as it did in Chapter 9 for two groups. Data with censored

values reported as (0 to DL) for nondetects and (DL to QL) for data between the

detection and quantitation limits can be directly input to these procedures.

> TCE$TCElo¼with(TCE, TCEConc�(1-TCECen))
> TCE$Lt¼with(TCE, TCE$TCEConc<1000)

> TCE$Rt¼with(TCE,!TCECen)

> TCEtest¼ictest(TCElo,TCEConc,Density,rho¼1,Lin¼TCE$Lt,Rin¼TCE$Rt)

> TCEtest

Asymptotic Wilcoxon k-sample test (permutation form)

data: {TCElo,TCEConc} by Density

Chi Square¼16.4905, p-value¼0.0002625

alternative hypothesis: survival distributions not equal

n Score Statistic�

Low 25 3.966279

Medium 130 8.291785

High 92 �12.258064
� like Obs-Exp, positive implies earlier failures than expected

Test results are the same as the Harrington–Fleming rho¼ 1 form of the test in the

previous section. The ictest command adds the important ability to incorporate data

at nonzero low ends of the censoring interval (though this data set does not contain

any of those). No substitution is required; no numbers need be estimated between

the detection and quantitation limits. Censored data are designated as either below the

detection limit or in between the two limits. The resulting test is completely without

a distributional assumption. While becoming familiar with the software takes

adjustment if you are not used to using R and its contributed packages, the result

is well worth the time. This test strongly finds a difference, as opposed to the “no

difference” result from substituting one-half of each limit and running analysis of

variance shown at the beginning of this chapter. The last sentence tells the direction of

difference, believe it or not—“positive implies earlier failures than expected” refers to

the score statistic for each group. The two groups with positive scores have “earlier

failures,” or lower detected values, than expected if all showed the same distribution

of concentrations. The high group’s negative scoremeans that it has “later failures” or

higher detects than what is expected on average if all groups are the same.

The contributed package “interval” with its ictest command is a major advance in

handling censored data that has occurred since the first edition of this book was

published in 2005.

10.5 SUMMARY

Tests for differences in the distributions of three or more groups of censored

environmental data can be carried out in several ways. Simpler tests consider all

values below the highest reporting limit to be identical. The binary contingency table

test and the ordinal Kruskal–Wallis test can then be computed on the recensored
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values. While losing some information, these simpler tests avoid all of the problems

due to the invasive patterns introduced by substitution methods.

Maximum likelihood estimation provides parametric tests of hypotheses without

substitution.When the assumption of a distributional shape such as the lognormal can

be verified, MLE methods perform well. These MLE analogs of analysis of variance

are directly conducted on left-censored data usingmethods for “arbitrary” or interval-

censored data,where censored observations are considered to bewithin two ends of an

interval. Group differences can be tested using either a “factor” designation for the

group variable or with binary variables representing group membership. Tests for

whether regression slopes are different from zero are in this case parametric tests for

differences in group means of censored data.

Nonparametric score tests extract the maximum information for determining

group differences from multiply censored data without assuming a distributional

shape. The generalized Wilcoxon test, an extension of the Kruskal–Wallis test to

multiply-censored data, efficiently detects differences in the distributions of groups

without assuming normality. With most commercial software, data must still be

flipped into a right-censored format prior to testing. However, with more advanced

software packages such as the “interval” package in R, nonparametricmethods can be

computed directly using interval-censored data.

Reasonable methods for plotting multiply-censored data are available, starting

with survival function plots, which plot from right to left the edfs of censored data.

Cumulative failure plots will reverse this, plotting the edfs in the expected direction.

These plots show the results of theWilcoxon score test, much as censored boxplots do

for the Kruskal–Wallis test and bar graphs of percentages above the highest reporting

limit do for contingency table analyses.

EXERCISES

10-1 Golden et al. (2003) measured concentrations of lead in the blood and in several

organs of herons in Virginia, in order to relate those concentrations to levels

found in feathers. The objective was to determine whether feathers were a

sensitive indicator of exposure to lead. If so, feathers could be collected in the

future so that the birdswould not need to be sacrificed in order for their exposure

to lead to be evaluated. The herons received different doses of lead—exposure

was categorized into one of four groups: a control group receiving no additional

lead, and groups receiving 0.01, 0.05, and 0.25 mg lead per g of body weight.

Determine whether the lead found in feathers of these birds differed among the

four exposure groups at ana¼ 0.05 level. If so, run amultiple comparison test to

determine which groups differ from the others. Use the methods of this chapter

(not substitution!) to test for differences, using the data found in Golden.xls.

10-2 Brumbaugh et al. (2001) measured mercury concentrations in fish of approxi-

mately the same trophic level across the United States, as well as characteristics

for the watersheds they lived in. The data are found in HgFish.xls. The variable
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“LandUse” reflects the dominant land use within the watershed, and includes

categories of Ag/Forested (or “A/F”), Ag, Mining, Urban, and Background.

Test to see if mercury concentrations in fish (variable “Hg”) differ among the

five land-use categories. The mercury concentrations have been censored at

three reporting limits, as indicated with a value of 1 for the variable “HgBDL1.”

Note that the A/F land-use includes watersheds containing the largest propor-

tion of wetlands.

10-3 Yamaguchi et al. (2003) measured concentrations of PCBs in fish collected at

four sites draining to the Thames River, UK. Three sites are below Swindon, an

active industrial area draining to the Ray River, a tributary to the Thames. The

fourth site, Burford, is on the Windrush tributary and not downstream of

Swindon. Test whether PCB concentrations are the same or different in fish

at the four sites, using both parametric (censored regression) and nonparametric

(Wilcoxon score) tests. The data are found in Thames.xls.
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11 Correlation

How strong is the association between two variables? As X increases, how likely is it

that Y consistently increases, or decreases? The strength of the association or

dependence between two variables, how predictably they covary, is measured by a

correlation coefficient. Correlation coefficients can take on values between �1 and

þ 1. At zero, no correlation is observed. As the coefficient moves away from 0 in

either direction, evidence for correlation increases. At values of þ 1 or �1 perfect

dependence is observed, with the sign denoting whether the two variables move in the

same direction (þ ) or in opposite directions (�). One of the most common uses for

correlation coefficients in environmental studies has been for investigation of trends.

When X represents time, the test for significance of the correlation between Y and X is

a test for a trend in Y. Do the observations consistently increase or decrease over the

time period of collection?

11.1 TYPES OF CORRELATION COEFFICIENTS

The traditional (parametric) correlation coefficient is Pearson’s r. Pearson’s coeffi-

cient measures the linear correlation between Y and X. As seen in equation (11.1),

Pearson’s r involves computing both the mean and standard deviation for both X and

Y, as well as a measure of the distance each observation is from its mean. All three

items are difficult to calculatewith censored data. Software for censored data does not

attempt to compute Pearson’s r.

Pearson0s r ¼ 1

n� 1

Xn
i¼1

xi � �x

sx

� �
yi ��y

sy

� �
ð11:1Þ

Spearman’s rho (r) is a nonparametric correlation coefficient that is computed by

calculating Pearson’s r on the ranks of the original data. Where those ranks can be

computed unequivocally, as when there is only one reporting limit, Spearman’s rho

provides a feasible alternative to Pearson’s r for censored data. For multiple reporting

limits, however, computation of Spearman’s rho involves deciding how to rank

observations such as a<1, a detected 3 and a<5. r is not usedwhere there aremultiple

reporting limits.

Statistics for Censored Environmental Data Using Minitab� and R, Second Edition.
Dennis R. Helsel.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Kendall’s tau (t) is another nonparametric correlation coefficient that is commonly

used in tests for trend, and can easily be applied to censored data. No computation of

means, or distances from means, is required. t is computed for a data set of n (X, Y)

observations as the number of concordant pairs of observations (Nc)minus the number

of discordant pairs (Nd), divided by the number of total pairs, or

Kendall
0
s t ¼ Nc �Nd

nðn� 1Þ=2 ð11:2Þ

One great advantage of Kendall’s tau is that it can be adapted for usewith multiple

reporting limits.

Finally, correlation coefficients can be computed for binomial data, data whose

values are categorized as a 0 or 1. These coefficients are applied to data analyzed by

contingency tables (see Chapter 10 for more on contingency tables). For censored

data, if all values below a single reporting limit are assigned a 0, and all uncensored

observations assigned a 1, these coefficients indicate the correlation of the percent

detections to a grouping variable. Does the frequency of detection change from one

group to the next? Two coefficients useful in this situation are againKendall’s tau, and

a measure called the phi (f) coefficient.
In parallel to the discussions in other chapters, binary and ordinal methods for

computing correlation coefficients are first demonstrated, followed by maximum

likelihood and nonparametric survival analysis methods.

11.2 NONPARAMETRIC METHODS AFTER CENSORING AT THE

HIGHEST REPORTING LIMIT

11.2.1 Binary Methods—The Phi Coefficient

For singly censored data, or data recensored to the highest reporting limit, observa-

tions can be classified into two categories, either greater than or equal to (GTE), or less

than the reporting limit. The phi coefficient is a correlation coefficient for paired

binomial data—in fact it is identical to Pearson’s r computed on data represented as

one number per class (Conover, 1999, p. 234). When observations have a high

proportion of censoring, the preponderance of information contained in the data is

represented by the proportions in each category, rather than by numerical values of

individual observations. Binomial methods efficiently capture this proportion in-

formation. f may be the easiest measure of association to explain when data are

severely censored, though it is not required in that situation—r and t may also be

computed for severely censored data. For example, Kolpin et al. (2002) computed r
for the relation between censored/uncensored observations and values of single

explanatory variables.

To compute f, consider variables X and Y, each consisting of observations

classed as either high or low. Four combinations of the two variables are possible,

as shown below.
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X Y

High High

High Low

Low High

Low Low

fwill have the largest positive value when both variables are high together, and both

low together. Large negativevalues result from consistent classifications into opposite

categories. A mix of conditions will produce f values close to 0, as with any

correlation coefficient. Counts of occurrences of the four combinations may be

visualized as a table (Table 11.1). The order of the columns and rows of the table

should be such that cells a and d represent positive correlation, and cells b and c

negative correlation.

Table 11.1 contains the counts of pairs of low (<0.01) and high (detected, GTE

0.01) values for the 10 observations in the atrazine data of Table 11.2. There are six

pairs where atrazine was detected in both June and September, and two where both

were censored observations. There are two pairs where atrazine was below the

reporting limit in June, but above in September (even though one was just barely

above, detected at 0.01). There are no cases where atrazine was detected in June but

not in September.

If r1¼ the sum of counts in row 1 of Table 1.1, r2 the sum of counts for row 2, c1 the

sum of counts for column 1 and c2 the sum of counts for column 2, then the phi

coefficient is computed as

f ¼ ad � bcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1r2c1c2

p ð11:3Þ

For Table 11.1 classes,

f ¼ ð2� 6Þ� ð0� 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 8� 4� 6

p ¼ 12ffiffiffiffiffiffiffiffi
384

p ¼ 0:61

The test ofwhetherf is significantly different from0 is computed bymultiplyingf
by the square root of n, where n is the number of paired observations, and comparing

TABLE 11.1 Two Variables Classified into Two Categories Each

June

Low High

September Low a¼ 2 b¼ 0

High c¼ 2 d¼ 6

A 2� 2 contingency table.
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the product to a standard normal distribution (Conover, 1999). If we are looking for

correlation in only one direction, a one-sided test is performed. When both positive

and negative correlations are of interest, a two-sided test is performed. For Table 11.1,

the test statistic is f
ffiffiffiffi
N

p ¼ 0:61
ffiffiffiffiffi
10

p ¼ 1:93. For the case where only a positive

correlation between June and September concentrations is of interest, the one-sided

p¼ 0.027 and we conclude that there is an association, a positive correlation. If both

positive or negative correlationswere of scientific interest, themore general two-sided

p-value equals twice this, or p¼ 0.054, right on the edge of the default 0.05 criteria

for significance.

The p-value for f is generally larger than (less significant than) the p-values for r
and t. This is because less information is used, and less required, to compute f. In
particular, the rank ordering of values above the reporting limit is ignored by f. All
values above the reporting limit are only considered equivalent; they are in the same

category. f is appropriate for data below and above a single threshold for each

variable. For multiple reporting limits, either use counts above and below the highest

reporting limit, or instead computeKendall’s tau. There is little reason to preferf over

t, and t will make use of the information in the ranks above the reporting limits.

11.2.2 Ordinal Methods for Correlation—Rho and Tau

Nonparametric ordinal methods for correlation are widely used in the environmental

sciences. Spearman’s rho and Kendall’s tau correlation coefficients both meet this

definition. Both can easily be computed for data with one reporting limit. Kendall’s

tau is also applicable to data with multiple reporting limits. However, standard

commercial software for Kendall’s tau is not coded to compare values when multiple

limits are present. This unfortunately requires the data to be recensored below

the highest reporting limit unless routines such as those available in NADA for R

and theMinitab� ckendmacro are used. Both coefficients will be first discussed in the

context of one reporting limit, or recensored data at the one highest reporting limit.

TABLE 11.2 A Subset of the Atrazine Concentrations Reported by Junk et al. (1980)

June September Rank of June Rank of September

0.38 2.66 10 10

0.04 0.63 8 8

<0.01 0.59 2.5 7

0.03 0.05 6.5 5

0.03 0.84 6.5 9

0.05 0.58 9 6

0.02 0.02 5 4

<0.01 0.01 2.5 3

<0.01 <0.01 2.5 1.5

<0.01 <0.01 2.5 1.5

Used as an example of data having one reporting limit.
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11.2.3 Spearman’s Rho

Spearman’s rho is a rank-transform measure of the monotonic association between Y

and X (Helsel and Hirsch, 2002). A positive monotonic correlation means that as X

increases, Y consistently increases, although the pattern may or may not be linear.

Thus, r (and t) are more general measures of correlation than is Pearson’s r, which

measures the strength of linear associations.

r is calculated by ranking each variable separately, and then computing Pearson’s

correlation coefficient on the ranks. The rankswhen data have only one reporting limit

are uniquely defined. To illustrate the computation of r, 10 paired observations from
the atrazine data of Junk et al. (1980) were listed in Table 11.2 (also see Figure 11.1).

Their ranks were reported in the two right-hand columns. Values less than the

reporting limit are considered ties and given their average rank; the four June

observations at <0.01 are each given the rank of 2.5, the average of ranks 1 through

4. The two censored September observations are each given the rank of 1.5; they are

tied and are the two lowest values for that group.

Computing Pearson’s r on the two columns of ranks produces a Spearman’s rho of

0.74 for the atrazine data, as shown in the following output from Minitab:

Pearson correlation of rankJune and rankSept = 0.743

P-Value = 0.014

The R command for computing Spearman’s rho correlation is cor.test:

> cor.test(June, September, method="spearman")

Spearman’s rank correlation rho

data: AtraSubset$June and AtraSubset$September

S = 42.4866, p-value = 0.01390

Ju
ne

0.0 0.5 1.0 1.5

Sept
(one Sept outlier not shown)

2.0 2.5 3.0

0.4

0.3

0.2

0.1

0.0

FIGURE 11.1 Censored scatterplot of the atrazine subset data of Table 11.2. Censored

observations shown as dashed lines.
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alternative hypothesis: true rho is not equal to 0

sample estimates:

rho

0.7425056

The small p-value (0.014) and positive slope are evidence that concentrations in June

are correlated with concentrations in September. Wells with high concentrations in

June are generally also high in September (Figure 11.1). This correlation may or may

not be linear, but it is monotonic.

When Y and X are both censored and have one reporting limit each (though not

necessarily the same reporting limit), r can easily be computed. This was the case

with the data in Table 11.2.WhenX or Y havemultiple reporting limits, however, the

data must be recensored at the highest reporting limit in order to compute

Spearman’s rho. This is because it is difficult to judge the relative rank of a <10

as opposed to a 5, or a<1. Though some adaptations of r have been suggested in this
situation, such as using Kaplan-Meier scores in the place of ranks, no standard

software implements adaptations of r, and its characteristics are not well described
in the literature.

11.2.4 Kendall’s Tau for Data with One Reporting Limit

The standard implementation in software of Kendall’s tau also operates on data

censored at one reporting limit. As seen in equation (11.2), t is computed using the

number of concordant and discordant pairs of observations. Concordant pairs are

those pairs of observations where Y increases as X increases, or where there is a

positive slope. Discordant pairs are those where X and Y are going in opposite

directions, or where there is a negative slope. Pairs of observations with ties in eitherX

or Y are assigned a 0. Numerous ties can occur with censored data, as when Y values of

<0.01 and <0.01 are compared. Unlike Pearson’s r, t measures relations that are

curved aswell as linear. In otherwords, the rate of change between pointsmay change,

resulting in a curved relationship, or the rate of changemay stay constant, producing a

straight line. Whether straight or curved, t detects monotonic (one consistent

direction) relationships. And if Y increases only about half the time as X increases,

and decreases half the time, t is close to zero and no significant monotonic correlation

between the two variables is found.

Kendall’s tau for the Figure 11.1 data is computed using the R command cor.test:

> cor.test(June, September, method="kendall")

Kendall’s rank correlation tau

data: AtraSubset$June and AtraSubset$September

z = 2.4299, p-value = 0.01510

alternative hypothesis: true tau is not equal to 0

sample estimates:

tau

0.6358508
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The p-value of 0.015 for t indicates a significant monotonic correlation between June

and September atrazine concentrations, as did Spearman’s rho. The lower value for t
(0.64) than for r does not indicate a lower sensitivity of t; as Helsel and Hirsch (2002)
note, t is measured on a different scale than r. Like centigrade and Fahrenheit, the

same phenomenon may be represented by different numbers on different scales.

Kendall’s tau is generally 0.15 or so lower than r and Pearson’s r for the same strength

of correlation (Helsel and Hirsch, 2002).

11.3 MAXIMUM LIKELIHOOD CORRELATION COEFFICIENT

Onemeasure of the quality of a regression equation is the coefficient of determination

(r2). Modern textbooks on statistics caution against overdependence on this statistic,

noting that poor regression models can have high r2, and vice versa. However, r2 is a

reasonable measure as long as the data follow a straight-line pattern, the residuals are

close to a normal distribution, and no single point overly affects the position of the

regression line (Ryan, 1997).Maximum likelihoodmethods are capable of producing

several measures similar in concept to r2, the most popular being the likelihood r2.

Computation of the likelihood r2 (called the generalized r2by Allison, 1995) is very

different from the process used by standard least-squares regression with uncensored

data. The process is similar to that for likelihood testing of group differences in

Chapters 9 and 10. The log-likelihood statistic is determined for the regression of Y

versus one or more X variables (the “full model”) computed using maximum

likelihood. A second log-likelihood statistic is determined for the “null model,”

using no X variables. For the null model, the variation of Y is only noise around the

mean of Y. The difference between these two likelihood statistics measures the

explanatory power of the X variable. The magnitude of the difference is multiplied by

�2 to produce the “�2 log-likelihood” or G2
0. G

2
0 measures the increase in the

likelihood of producing the observed pattern of Y when the relationship with the X

variables is taken into consideration. For large values of G2
0 the null hypothesis of no

linear relationship between Y and the X variables is rejected, and the slope and

correlation of the relationship are determined to be nonzero. In order to evaluate its

significance, G2
0 is compared to a chi-square distribution with degrees of freedom

equal to the number of X variables in the full model. For correlation, only one X

variable is usually considered at a time.

The value of G2
0 is used to compute the likelihood r2:

likelihood r2 ¼ 1� exp �G2
0

n

� �
ð11:4Þ

where n is the number of (X,Y) paired observations. For largevalues ofG2
0, thevalue of

r2 will be close to 1. The likelihood-r correlation coefficient is the square root of the

likelihood r2, with algebraic sign identical to that for the slope of the relationship.

likelihood r ¼ sgnðslopeÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� exp �G2

0

n

� �s
ð11:5Þ
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This correlation coefficient expresses the strength of the relationship between Y

and X as measured by maximum likelihood.

As an example of data with multiple reporting limits, Hughes and Millard (1988)

presented dissolved iron concentrations collected during summers from the Brazos

River, Texas:

Dissolved iron (Y ): 20 <10 <10 <10 <10 7 3 <3 <3

Time (years) (X): 1977 1978 1979 1980 1981 1982 1983 1984 1985

Do summer dissolved iron concentrations exhibit a trend during this period? The

data are plotted in Figure 11.2.

Censored regression by maximum likelihood assuming a normal distribution of

residuals in Minitab is computed (for further information, see Chapter 12) using

Stat > Reliability/Survival > Regression with Life Data

A log-likelihood of�13.184 was produced and the slope was negative with a Wald’s

p-value of <0.001. The Wald’s test is not considered as accurate as the likelihood-

ratio test for measuring the response of a censored variable. The log-likelihood of the

null model was �16.858 by fitting a normal distribution to the data without an

explanatory variable using

Stat>Reliability/Survival > Distribution Analysis (Arbitrary

Censoring)> Parametric Distribution Analysis

The resultingG2
0 ¼ 7.35, the slope is negative, and from equation (11.5) the likelihood

r2¼ 0.56. The likelihood r is therefore¼�0.75. The test of the null hypothesis that

r¼ 0 is identical to the test for whether the slope equals 0, just as in ordinary linear

regression. Therefore we reject the null hypothesis that X and Y are uncorrelated, and

conclude that there is a significant linear correlation.
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FIGURE 11.2 Censored scatterplot of summer dissolved iron concentrations from Hughes

and Millard (1988). Censored observations are shown as dashed lines.

MAXIMUM LIKELIHOOD CORRELATION COEFFICIENT 225



In NADA for R the cenreg command will perform a regression of a censored Y

variable versus an uncensored X variable, reporting the likelihood-r correlation and

the p-value for the likelihood-ratio test of significance, rather than using the Wald’s

test of Minitab. The format of the arguments is cenreg (Y, Y censoring indicator� X)

where the tilde (�) denotes amodel ofY versus an explanatory variableX. The data set

DFe is included with NADA for R package. The names command lists the names of

the stored variables.

> data(DFe)

> attach(DFe)

> names(DFe)

[1]"Year" "YearCen" "Summer" "SummerCen"

> DFeReg¼cenreg(Cen(Summer, SummerCen)�Year, dist¼"gaussian")

> DFeReg

Value Std. Error z p

(Intercept) 3426.07 859.278 3.99 6.69e�05

Year �1.73 0.434 �3.98 6.90e�05

Log(scale) 1.13 0.315 3.60 3.15e�04

Scale¼3.11

Gaussian distribution

Loglik(model)¼ �13.2 Loglik(intercept only)¼ �16.9

Loglik-r: 0.747004

Chisq¼ 7.35 on 1 degrees of freedom, p¼ 0.0067

The p-value of 0.0067 for the significance test for slope and correlation coefficient

differs from theWald’s test result given byMinitab. NADA for R provides the p-value

for the likelihood-ratio test, comparing the �2 log-likelihood G2
0 to a chi-squared

distribution with 1 degree of freedom, as there is one X variable. The correlation of Y

and X variables is significant.

If a lognormal distribution were found to be a better fit to the data, the command to

test the correlation ofY in log units versusX is just as above except that the distribution

is set to “lognormal.” Just as with Pearson’s r, the changed units of Y used will change

the value of the likelihood-r coefficient and its p-value. The likelihood-r correlation of

the natural log of iron concentration versus year is found to be 0.737, with a p-value of

0.0079. The correlation is again strongly significant.

> DFeReg¼cenreg(Cen(Summer,SummerCen)�Year, dist¼"lognormal")

> DFeReg

Value Std. Error z p

(Intercept) 507.472 106.3237 4.77 1.82e�06

Year �0.255 0.0537 �4.76 1.97e�06

Log(scale) �1.118 0.4106 �2.72 6.48e�03

Scale¼0.327

LogNormaldistribution

Loglik(model)¼ �9.3 Loglik(intercept only)¼ �12.8

Loglik-r: 0.7371631

Chisq¼ 7.06on1degreesof freedom,p¼ 0.0079
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For this example, the value of the likelihood r (�0.75) for summer iron concentrations

versus year happens to be between the values for Pearson’s r computed by substitution

of the maximum (reporting limit) and minimum (zero) values possible for censored

data. This is not always the case, due to the vagaries of substitution methods’

computation of standard deviations. Do not depend on substitution of zero and the

reporting limit to bracket the possible values for correlation! The likelihood-r

correlation and associated significance test have the advantage that they can be

computed for data subject to multiple censoring limits. Their validity will depend on

whether there are enough data to determine that the relationship is in fact linear, and

whether the variation around the line is normally distributed. These are the same

constraints required of Pearson’s r.

11.4 NONPARAMETRIC CORRELATION

COEFFICIENT—KENDALL’S TAU

Kendall’s tau (ta, equation (11.2)) can also be applied to multiply censored data. t is
computed by comparing all pairs of observations, counting the number of positive

slopes minus the number of negative slopes, and dividing by the total number of

comparisons between pairs of observations. Kendall (1955) gives a complete

description of the coefficient. Brown et al. (1974) adapted t for use with censored

data in heart transplant studies. Kendall’s tau has several advantages over the

likelihood-r correlation coefficient.

1. t can use a censored explanatory variable.

2. It does not require a normal distribution.

3. It will have the same value and significance test before and after a power

transformation such as the logarithm.

To compute Kendall’s tau, the first Y observation is compared to all subsequent

observations. Concordant observations are those where Y increases (a positive slope,

as X is increasing). Assign a þ to those comparisons. Discordant observations are

those where Y decreases as X increases, a negative slope. Assign a � to those

observations. Comparisons to the first observation (20) of the dissolved iron data are

shown below their respective observation. All are decreasing.

Dissolved Iron (Y): 20 <10 <10 <10 <10 7 3 <3 <3

sign of difference: – – – – – – – –

Multiple reporting limits have posed no problem for these comparisons. Going

from a 20 down to a <10 is a decrease, as is going down to a <3.

Next, the secondYobservation is compared to all subsequent values. Consider each

observation in its interval endpoints format. If the intervals overlap, the data are tied

and assigned a zero difference. Here none of the comparisons is clearly an increase or
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decrease. It is impossible to determine whether a (0–10) is higher or lower than a

detected 7, or a (0–3). All of the comparisons with the second observation are given

zeros, neither concordant nor discordant.

Dissolved Iron (Y): 20 < 10 <10 <10 <10 7 3 <3 <3

asintervals (20,20)(0,10)(0,10)(0,10)(0,10)(7,7)(3,3)(0,3)(0,3)

sign of difference: 0 0 0 0 0 0 0

The scores for all 9� (8/2)¼ 36 comparisons are shown below:

Dissolved Iron (Y): 20 <10 <10 <10 <10 7 3 <3 <3

sign of difference: – – – – – – – –

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

– – –

– –

0

Thereare0concordantpairs and13discordantpairs, so thenumerator fort¼�13.The

denominator is 36 comparisons. Kendall’s tau for the dissolved iron data is therefore

Kendall0s t ¼ 0� 13

ð9ð8ÞÞ=2 ¼ � 0:361

The test for significance of Kendall’s tau is computed using the numerator S¼
Nc�Nd, divided by its standard error. The square of the standard error is the variance

of S, which for the case of no ties equals

var S½ � ¼ NðN� 1Þð2Nþ 5Þ
18

The test statistic Z is compared to values of the standard normal distribution.

Z ¼ S� sgnðSÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðNðN � 1Þð2N þ 5ÞÞ=18p ð11:6Þ

where sgn is the algebraic sign function. The numerator uses a continuity correction of

sgn(S) to better calculate p-values from a smooth normal distribution function, adding

or subtracting a value of 1 from S (Kendall, 1955).

With many ties resulting from comparisons among censored values, a correction

is required for the variance of S. Software that performs this adjustment is crucial for

censored data, because censored observations produce many tied comparisons. For

censored data, the tie correction is more complex than if all ties resulted from

uncensored observations. This is because when there are four observations tied at

10, all comparisons between the four observations are ties, so there are 4(3)/2¼ 6

ties among the four observations. Tie corrections in commercial software usually
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compute the number of ties as ð obs ð obs� 1ÞÞ=2 for a set of tied observations. But
there are fewer ties among a set of four observations that include both censored and

uncensored values, such as<1, 4, 7,<10. In this case there are three ties: [<1,<10],

[4,<10], and [7,<10]. The other three comparisons are known to be pluses: [<1, 4],

[<1, 7], and [4, 7].

The ckend macro for Minitab computes Kendall’s tau and its significance test as

described above, adjusting both t and Z for ties originating from multiply censored

data. The output from the ckend macro for the dissolved iron data is

S �13.0000

tau �0.361111

taub �0.600925

z �1.50787

pval 0.131587

For these data, t is not significantly different from zero (p¼ 0.13). There is not

sufficient evidence of monotonic correlation to declare that there is a trend in

concentration.

Kendall (1955) proposed an alternate correlation coefficient when tied values are

considered as “no information” that has been given the name Kendall’s tb (equa-

tion (11.7)). Note that this is not the usual situation in environmental science, when an

early <1 tied with a later <1 (or a detected 7 with a later detected 7) indicates a

situation with no change. However in some disciplines, a tie is noninformative. In that

case, tb is computed by dropping out the tied observations from both the numerator

and denominator.

Kendall0s tb ¼ Nc �NdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiððNðN � 1Þ=2Þ� #tiesXÞððNðN� 1Þ=2Þ� tiesYÞ
p ð11:7Þ

where tiesX is the number of ties in theX variable and tiesY is the number of ties in the

Y variable. An alternate way to state tb is equation (11.8):

Kendall0s tb ¼ Nc �Nd

Nc þNd

ð11:8Þ

For the dissolved iron data, there are no ties among the values ofX, but 23 ties in the

comparisons between Y observations, including the comparisons that were unclear

due to censoring. Kendall’s tb for these data is therefore

Kendall0s tb ¼ 0� 13ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiððð9ð8ÞÞ=2Þ� 0Þððð9ð8ÞÞp
=2Þ� 23Þ ¼ � 0:60

tb is analogous to the tie adjustment in other nonparametric procedures that delete

zero observations, as in the sign test (Chapter 9). As was true for the sign test,

dropping zero observations artificially and often incorrectly makes the statistic too
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significant. It slights the information that favors the null hypothesis. For the case

of censored data, a tie does not mean zero information, but in fact is evidence

for the null hypothesis of no correlation. Therefore, Kendall’s original coefficient

(ta, equation (11.2), called simply t in this book) should generally be used for

censored data rather than tb.

11.5 INTERVAL-CENSORED SCORE TESTS: TESTING

CORRELATION WITH (DL TO RL) VALUES

The interval-censored form of the generalized Wilcoxon test is one of a class of

procedures called linear-rank tests (Klein and Moeschberger, 2003) in survival

analysis. Different scores such as varying the Harrington–Fleming rho statistic from

zero to one change the type of test conducted, but all of them have the same general

goal. The goal is to discern whether the proportion of detected values, and proportion

of data above cut points of detected values, change with an explanatory variable, or

whether that variable has no effect. In essence this tests whether the distribution

function of the Y variable changes asX changes. In Chapters 9 and 10, the explanatory

variablewas a group assignment. But linear-rank tests also allow an ordinal variable, a

variable with a finite number of ordered classes, to serve as the explanatory variable.

In this situation the test determines whether the edf changes as the explanatory

variable increases or decreases, and so serves much the same function as does a test

for significance of correlation. As nonparametric tests, linear-rank tests will not

provide an equation analogous to the censored regression or ATS lines presented in

Chapter 12, but they do provide a test of association between an interval-censored

variable such as concentration, and an explanatory variable whose values can be

ordered or ranked in value. Kendall’s tau correlation can serve the same purpose, but

standard correlation software is not set up to allow input of data in the interval format.

Software for interval-censored data such as the “interval” contributed package for R is

designed for this purpose, allowing data coded as (0 to DL) and other values (DL to

QL) to be combined with uncensored numbers to determine whether concentration

changes with changing values of the explanatory variable.

To illustrate the procedure, the TCE data from Eckhardt et al. (1989) used

extensively in Chapter 12 is tested for correlation with population density, one of

the explanatory variables considered in the next chapter. The data set is called

TCEReg. Values for population density go from 1 to 19 as a series of integers, and so

are ordered categories. After reading in the data, the lower end of the interval is set to 0

for all censored values, creating the new variable TCElo. The lt and rt variables define

inclusion of the value at the low end of the censoring interval, and exclusion of the

value at the upper end of the interval, just as in Chapters 9 and 10. The linear-rank test

is computed using the ictest command, and the Wilcoxon score used. The Surv

function represents the interval-censored Y values by declaring TCElo as the low end,

TCEConc as the high end, and type¼“interval2” to designate interval censoring. This

joint-Y variable is modeled (as represented by the tilde “�”) using the PopDensity

variable as the X variable.
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> data(TCEReg)

> attach(TCEReg)

> head(TCEReg)

> TCEReg$TCElo=with(TCEReg, TCEConc�(1-TCECen))
> TCEReg$Lt=with(TCEReg, TCEReg$TCEConc<1000)

> TCEReg$Rt=with(TCEReg,!TCECen)

> mk=ictest(Surv(TCEReg$TCElo,TCEConc, type="interval2")

+ �Pop Density, scores="wmw", lin=TCEReg$lt, rin=TCEReg$rt)

> mk

Asymptotic Wilcoxon trend test(permutation form)

data:Surv(TCEReg$TCElo,TCEConc,type="interval2")byPopDensity

Z = -4.4698, p-value = 7.83e-06

alternative hypothesis: survival distributions not equal

n Score Statistic�

[1,] 247 -100.8901
� negativesolargercovariatevaluesgivelaterfailuresthanexpected

Because the explanatory variable is ordinal, this is a test for trend of Y with X. The

Z-test statistic is a comparison of the observed percent exceedances above various cut

points compared towhat is expected if the null hypothesis is true, and nothing changes

as X changes. The resulting p-value is very low (0.000007). Therefore, the TCE

concentrations do evidence a trend with PopDensity. The final sentence tells the

direction—“larger covariate values give later failures than expected.” In other words,

for larger values of the explanatory variable (PopDensity, the covariate), “failures” or

detected values are “later” or larger than expected if the null hypothesis had been true.

So concentrations increase with increasing PopDensity (not the clearest statement to

the eyes of an environmental scientist, right?).

Finally, the dissolved iron data of Millard and Deveral is slightly altered to

contain two intervals, as if the detection limit had been 3mg/L and the reporting

limit 10 mg/L. The change is that the <10 values now become (3, 10) interval values

between the detection and reporting limits. The ictest procedure is run to illustrate a

nonparametric trend test for data coded (0, DL) and (DL, RL) as well as detected

values.

> data(DFe)

> attach(DFe)

> DFe$FElo¼with(DFe, Summer�(1-SummerCen))
> DFe$Lt¼with(DFe, DFe$Summer<1000)

> DFe$Rt¼with(DFe,!SummerCen)

> DFe$FElo[2]¼3

> DFe$FElo[3]¼3

> DFe$FElo[4]¼3

> DFe$FElo[5]¼3

> DFe
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Year YearCen Summer SummerCen FElo Lt Rt

1 1977 FALSE 20 FALSE 20 TRUE TRUE

2 1978 FALSE 10 TRUE 3 TRUE FALSE

3 1979 FALSE 10 TRUE 3 TRUE FALSE

4 1980 FALSE 10 TRUE 3 TRUE FALSE

5 1981 FALSE 10 TRUE 3 TRUE FALSE

6 1982 FALSE 7 FALSE 7 TRUE TRUE

7 1983 FALSE 3 FALSE 3 TRUE TRUE

8 1984 FALSE 3 TRUE 0 TRUE FALSE

9 1985 FALSE 3 TRUE 0 TRUE FALSE

> mk¼ictest(Surv(DFe$FElo,Summer, type¼"interval2")�Year, scores¼"wmw",

þ lin¼DFe$Lt, rin¼DFe$Rt)

> mk

Exact Wilcoxon trend test(permutation form)

data: Surv(DFe$FElo, Summer, type¼"interval2") by Year

p-value¼0.004

alternative hypothesis: survival distributions not equal

n Score Statistic�

[1,] 9 10.66667
� positive so larger covariate values give earlier failures than expected

p-value estimated from 999 Monte Carlo replications

99 percent confidence interval on p-value:

1.003509e-05 1.482735e-02

The p-value for the trend test is 0.004, showing that dissolved iron concentrations

do changewith year. Note that the change in lower limit of the<10s to (3, 10) moves

these data to a position higher than the two (0, 3) values, so adds strength to the

signal over what was tested with Kendall’s tau. The “larger covariate values give

earlier failures than expected” should be interpreted as “as Year increases, summer

iron concentrations decrease over what is expected if there were no trend.” A

downtrend is found.

11.6 SUMMARY: A COMPARISON AMONG METHODS

Maximum likelihood estimation and the likelihood-r correlation coefficient are

limited to data where only the Y variable is censored. Correlation where both the

X and Y variables are censored can be accounted for directly with Kendall’s tau, and

can be accounted for with Spearman’s rho and the phi coefficient if there is only

one reporting limit per variable, and with the interval-censored Wilcoxon test for

trend if there is one or no reporting limit for the explanatory variable. For the atrazine

data in Table 11.2 censored at one reporting limit (both June and September data

were censored so the likelihood-r coefficient is not applicable), Table 11.3 compares

the possible correlation coefficients.

Spearman’s rho and Kendall’s tau both measure monotonic correlation, and give

similar results. Note the similarity of their p-values. The two coefficients aremeasured

on different scales, with r on the same scale as the traditional Pearson’s r coefficient.

t is expected to be about 0.15 smaller than r for the same strength of correlation
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(Helsel andHirsch, 2002). Kendall’s taumight be preferred due to its ability to be used

for multiply censored data.

f measures the association between variables after reducing the data into two

categories. This is a heavy price to pay in information content unless the data are

strongly censored. The loss of information from classifying all observation sat or

above 0.01 in this data set as merely “GTE 0.01” produces the higher p-value for f as

compared to t or r.
For data with multiple reporting limits, options are somewhat more limited.

Spearman’s rho and phi cannot be computed unless the data are recensored at the

highest reporting limit, which greatly reduces the information content of the data. If

only one variable is censored the likelihood r can be computed byMLE. Kendall’s tau

can be computed for multiply censored data if the software is coded for that situation.

The interval-censored Wilcoxon test is the most adaptable, allowing multiple

censoring levels for the Y variable. For the multiply censored dissolved iron data

the likelihood r, Kendall’s tau and interval-censoredWilcoxon test results are listed in

Table 11.4. Note that the interval-censored Wilcoxon test was performed on the

original values of (0, 10) below, unlike the illustrative example given previously.

The difference in p-values between the first two coefficients is due to the

“information” contained in the assumptions of linearity and normality used by the

likelihood-r coefficient. The choice of which to use is a choice of whether to use a

“data only” method (the nonparametric Kendall’s tau) or a “data plus model”

method, the parametric likelihood-r coefficient. If the data are linear with a normal

distribution, the four <10s at the early part of the record must be close to the higher

end of their range. If so, a strong correlation results. This is the “information”

generated by the model that is used by the parametric (model-based) likelihood-r

coefficient. Kendall’s tau makes no assumption of linearity or normality of residuals.

It allows the uncertainty of the positions of these four values to remain. It calls a<10

tied with a <3, for example, when stating what is known (or more importantly, not

TABLE 11.3 Correlation Coefficients for Table 11.2 Atrazine Data

Correlation Coefficient Two-Sided p-Value

Likelihood r NA NA

Spearman’s rho 0.74 0.014

Kendall’s tau 0.58 0.018

phi 0.61 0.054

NA: not applicable.

TABLE 11.4 Correlation Coefficients for the Summer Dissolved Iron Data

Correlation Coefficient Two-Sided p-Value

Likelihood r �0.75 <0.001

Kendall’s tau �0.36 0.132

icens Wilcoxon 5.33 (score statistic) 0.122
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known) about the data. The interval-censoredWilcoxon test also does not differentiate

between the (0 to 10) and (0 to 3) values. The likelihood-r coefficient should be used

only if the assumptions of linearity and normality of residuals can be assumed to be

true. Based only on the information in this small data set, there is insufficient

information to make that assumption; the likelihood-r coefficient gives a strongly

significant test statistic even though there are only three detected observations to base

the answer upon. The information in the assumed model is being too heavily counted

by likelihood r. This effect of the model will not be as large if the data set is larger, but

small data sets often occur in environmental studies, so scientists should be aware of

the possible effects of making an unverifiable model assumption.

11.7 FOR FURTHER STUDY

Hughes and Millard (1988) computed the significance test for Kendall’s tau in a

different way than described here, determining all possible permutations of ranks

allowed by the censoring scheme and computing t and its significance test using the
average of the possible ranks for each observation. Computations for this “expected

rank statistic” method are quite complex, as thousands of permutations are possible

for even a moderate sized data set. The values for S and t will be the same as for the

procedures to compute Kendall’s tau outlined in this chapter, because t is defined as
the average of possible values for all permutations (Kendall, 1955). The test of

significance for the permutation procedure will differ, however, from the Brown et al.

(1974) tie correction method used by the Ckend macro. For the summer iron data,

Hughes and Millard report a test statistic Z of �2.27 with the corresponding p-value

of 0.012, declaring a trend for the period. This is greater evidence for a trend

(smaller p-value) than found by the Brown et al. procedure. They state that their

expected rank method recovers some of the information lost by the Brown et al.

procedure when comparing a <DL to a small detected value or to another censored

value. Further investigation of the two methods and their applications to environ-

mental data is warranted.

Oakes (1982) presents the Brown et al. procedure in more detail and applies it to

two example data sets. Oakes’ results differ from those of the Ckend macro in that he

did not use a continuity correction, and did not account for ties in both X and Y. When

ties in X occurred, as happened in the example data he presents, he randomly chose an

ordering for the tied observations, giving them untied ranks. Therefore his results are

not as accurate as those presented here using theCkendmacro,which incorporates ties

in both X and Y.

Isobe et al. (1986) first applied the Brown et al. procedure for censored correlation

to left-censored data in the field of astronomy. They argued for routine adoption of

these methods in the field of astronomy, much as this book does for the field of

environmental sciences.

Akritas and Siebert (1996) derived a test for partial correlation using a partial

Kendall’s tau. This allows the correlation of X and Y (when one or both include

censored values) to be adjusted to account for the influence of one or more covariates.
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Libiseller and Grimvall (2002) applied the partial t correlation concept to trend

detection of environmental data. Effects of covariates were removed in a mechanism

analogous to multiple regression, and so relevant to the situations in the next chapter.

EXERCISES

11-1 Golden et al. (2003) measured concentrations of lead in the blood and in several

organs of herons in Virginia, in order to relate those concentrations to levels

found in feathers. The objective was to determine whether feathers were a

sensitive indicator of exposure to lead. If so, feathers could be collected in the

future so that the birdswould not need to be sacrificed in order for their exposure

to lead to be evaluated. Compute a correlation coefficient to determine whether

lead concentrations in feathers are associated with concentrations in blood.

Note that both have censored values. The data are found in Golden.xls.

11-2 Brumbaugh et al. (2001) measured mercury concentrations in fish of approxi-

mately the same age and trophic level across the United States. Even so, the size

of fish varied due to differences in age and species. Determinewhether there is a

significant correlation between mercury concentrations (“Hg”) and fish length.

The data are found in HgFish.xls.

11-3 Yamaguchi et al. (2003) measured concentrations of dieldrin and lindane in fish

collected at four sites draining to the Thames River, United Kingdom. Deter-

mine whether concentrations of the two contaminants in fish are correlated.

Note that both concentrations contain censored values. The data are found in

Thames.xls.
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12 Regression and Trends

One of the most frequently used techniques in statistics is linear regression—relating

a response variable to one or more explanatory variables by use of a linear model.

Estimates of slopes and intercept are computed by least squares, with partial t-tests

determining if slope estimates differ significantly from zero. Those that do are worth

including in the model. The least-squares procedure produces optimal estimates of

slope and intercept if the residuals, the distances in the y-direction between observa-

tions and the fitted line, follow a normal distribution, have constant variance across

the range of x values, and the data are linear. The resulting regression line is a

conditional mean of y given x; the parametric regression line can be thought of as a

“linear mean.” If one of the explanatory variables is a measure of time, the test for

significance of the slope of that variable is a test for (temporal) trend.

A nonparametric analog to linear regression, commonly used in trend analysis of

environmental data, is the Theil–Sen line and slope estimator (Helsel and Hirsch,

2002). The slope and intercept for the Thiel–Sen line are estimated by an entirely

different method than least squares. The slope is related to the nonparametric

Kendall’s tau correlation coefficient—the slope is the ratio Dy/Dx that, if subtracted

from the response variable y, would produce a set of residuals having a Kendall’s tau

correlation coefficient of zero. The significance test for the Theil–Sen slope is the

same test as that for the Kendall’s tau correlation coefficient. The Theil–Sen line is

a “linear median” not strongly influenced by the presence of outliers. When the

explanatory variable is ameasure of time, the significance test for the slope is a test for

(temporal) trend.

There are several methods for incorporating censored observations into linear

models. Maximum likelihood estimates of slope and intercept produce a parametric

regression model without resorting to substitution. MLE methods provide a best-fit

line for data with one or more reporting limits, assuming the residuals follow the

chosen distribution. For a nonparametric approach, a variation of the Thiel-Sen line

can be computed for censored data. One advantage of this line is that it can be

computed when values for both x and y are censored. A third approach—binary

logistic regression—is performed after the y variable is classified as either detect or

nondetect, analogous to the contingency table process for testing group differences.

Statistics for Censored Environmental Data Using Minitab� and R, Second Edition.
Dennis R. Helsel.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Logistic regression is used to model how the proportions of uncensored and censored

observations change as a function of one or more explanatory variables. Each of these

methods is examined in turn.

12.1 WHY NOT SUBSTITUTE?

By now there should be no doubt that substitution methods are inadequate. The

example below demonstrates this in the context of regression.

Consider again the summer dissolved iron (DFe) data presented in Table 5 of

Hughes and Millard (1988):

DFe: 20 <10 <10 <10 <10 7 3 <3 <3

Year: 1977 1978 1979 1980 1981 1982 1983 1984 1985

To determine whether there is a trend in dissolved iron over time, a regression of

DFe (Y variable) versus Year (X variable) can be computed and the slope tested to

determine if it is significantly different from zero. One analyst might set censored

observations to the value of their reporting limits, while another sets all

censored observations to 0. The results for both are given below.

censored observations ¼ dl

The regression equation is

DFe¼3508 - 1.77 YEAR

Predictor Coef SE Coef T P

Constant 3508.2 662.4 5.30 0.001

Year �1.7667 0.3344 �5.28 0.001

S¼2.590 R-Sq¼80.0% R-Sq(adj)¼77.1%

censored observations ¼ 0

The regression equation is

DFeZero¼2215 - 1.12 YEAR

Predictor Coef SE Coef T P

Constant 2215 1627 1.36 0.215

Year �1.1167 0.8211 �1.36 0.216

S¼6.360 R-Sq¼20.9% R-Sq(adj)¼9.6%

When substituting the reporting limit for all censored observations, the slope of

DFe versus Year (�1.77) appears significantly different from zero with a t-test

statistic of�5.28 and a p-value of 0.001. A significant trend of decreasing dissolved

iron is declared. However when zeros are substituted for censored observations,
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the slope for Year (�1.12) is not significantly different from zero (p¼ 0.216),

so no trend is found. The values for the intercept change by about one-third. The

r-squared statistic changes from 80 to 21%. Neither equation is necessarily correct.

Even if both had produced the same result of nonsignificance, the choice to

substitute values somewhere in-between these two could produce a significant test

result. Clearly substitution produces inadequate information on which to base

any decision.

In contrast, survival analysis software can be used to compute regression

equations for left-censored data. The result is a unique solution, with a defensible

test for whether the slope coefficient differs from zero given the assumptions of

the method. Assuming a normal distribution for the residuals, MLE produces

the estimates for slope and intercept below. These estimates are defensible as the

best-fit parameters, given censored data and the assumptions of normality and

linearity. The slope for Year (�1.73) has a p-value of essentially zero; a downtrend

in summer iron concentrations occurs over this time period if a linear trend is

assumed.

Coefficients estimated by mle

DFe¼3426 - 1.73 YEAR

Estimation Method: Maximum Likelihood

Distribution: Normal

Regression Table

Standard 95.0% Normal CI

Predictor Coef Error Z P Lower Upper

Intercept 3426.1 859.3 3.99 0.000 1741.9 5110.2

Year �1.7260 0.4337 �3.98 0.000 �2.5760 �0.8760

Scale 3.1083 0.9785 1.6771 5.7607

Log-Likelihood¼�13.184

Chung (1990) compared substitution versus MLE for regression of trace ele-

ments in geochemical exploration. He found that MLE provided slope coefficients

quite close to the true values, while none of the substitutions (0, 0.1, 0.2, . . . to 1

times the reporting limit) worked nearly as well. Thompson and Nelson (2003)

compared the bias and precision of MLE regression results to that of substituting

one-half the reporting limit and found that substitution produced biased estimates of

slope, as well as producing confidence intervals that were too small. Their study

used simulations with consistently defined limits, and therefore the errors they

found were likely not as large as would be found in practice for environmental data,

given the inconsistencies among laboratories in the determination of reporting

limits (see Chapter 3). A more realistic setting would be to first censor at several

higher reporting limits for some proportion of the data, and then substitute

fabricated numbers based on those limits. Errors from substitution in this more

realistic scenario would likely be considerably larger than those found in their

study. Yet even with their smaller errors, their study strongly advocated the

238 REGRESSION AND TRENDS



method of maximum likelihood over substitution for performing regression with

censored data.

12.2 NONPARAMETRIC METHODS AFTER CENSORING

AT THE HIGHEST REPORTING LIMIT

12.2.1 Binary Method—Logistic Regression

Standard regression methods use a continuous variable such as concentration as their

response variable. With logistic regression, the response variable is a probability p,
such as the probability of the concentration being greater than or equal to (GTE)

the reporting limit. The probability of falling below the reporting limit is then 1� p
(the Greek letter p is used here to avoid using the letter p and so avoid confusing the

probability of detection with a p-value). Logistic regression models the probability p
as a function of the effects of one or more explanatory variables. Observations for the

response variable are recorded as belonging either in one category or another, either

below or GTE a reporting limit. The regression equation predicts the probability of

falling into one category.

Logistic regression can be written in a form that appears much like least-squares

regression:

lnð p
1� p

Þ ¼ b0 þ bjXj ð12:1Þ

Logistic regression relates this logistic (or logit) transformation of the Y variable

(the left-hand side of equation 12.1) to a linear function of the X variable(s). The

right-hand side of equation 12.1 looks similar to a least-squares multiple regression

equation, where Xj represents a vector of j¼ one or more explanatory variables,

and the bj are the fitted slope coefficients. The left-hand side of the equation is

called the logit or logistic transform, the natural logarithm of the odds p/(1� p) for
the occurrence of an event. If p¼ 0.8 or four-fifths, then the odds for the event are

0.8/0.2, or 4 to 1.

The logistic transform in equation 12.1 can be solved for the probability p,
producing equation 12.2.

p ¼ expðb0 þ bjXjÞ
1þ expðb0 þ bjXjÞ ð12:2Þ

For a unit increase in the jth explanatory variable Xj, the odds p/(1� p) increase by
a multiplicative factor of ebj . When p is plotted versus an explanatory variable as in

Figure 12.1, the result is an S-shaped curve. The S-curve is flexible, becoming almost

linear at the central portion near p¼ 0.5 while changing valuemuchmore slowly near

the extremes of p¼ 0 or 1. At the inflection point of p¼ 0.5 where the probability of

detection equals 50%, the logit function on the left-hand side of equation 12.1 equals

ln(0.5/(1� 0.5)), or 0.
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The S-curve that best fits observed frequencies of detection is determined by

maximum likelihood. Equation 12.3 is the log-likelihood equation for i¼ 1 to n

observations where p is the probability of a detect.

L ¼
Xn
i¼1

ðYi ln½1� p� þ ð1� YiÞln½p�Þ ð12:3Þ

The Y value for each observation is either a 1 (nondetect) or a 0 (detect). For a

nondetect, the right-hand side of the expression inside the summation sign is zero

and the left-hand side becomes ln(1� p). This will be a maximum of ln(1) for p¼ 0,

which fits the observed value the best. For a detected observation Y¼ 0, the left-hand

side becomes zero and the right-hand side becomes ln(p). This will fit the observed
data best at ln(1) when p¼ 1. Maximum likelihood is a matching process, aiming

for a perfect match of a detect with the probability of a detect¼ 1, and the match of

a nondetect with the probability of a detect¼ 0. Maximizing the log-likelihood

function is a search for values of the intercept b0 and the slopes bj that produce

a value for L closest to the perfect match of ln(1)¼ 0. For a less than perfect

match, L will be negative. The solution maximizes the match between the esti-

mated probabilities, which are a function of the j explanatory variables Xj, and the

observed data.

A single log-likelihood value tells the investigator very little. As a sum of

numbers for each observation, the log-likelihood value is primarily a function of the

sample size n for any given data set. Instead, what is informative are comparisons

between two or more models for the same data set. The two models are compared

using a likelihood-ratio test, to determine which model is preferred—which
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explanatory variables should be included in the logistic regression equation. The test

for determining the overall significance of a logistic regression model, similar in

concept to the overall F-test in least-squares regression, is the overall likelihood-

ratio test. This test determines whether the entire model is an improvement over

using nomodel at all, that is over the “null model”where the slope coefficients for all

explanatory variables equal 0. For the null model, the best estimate of p is the

average proportion of detections, regardless of the value of X. The overall test

statistic is

G2
0 ¼ 2½LðbÞ� Lð0Þ�

¼ ½�2 Lð0Þ�� ½�2 LðbÞ� ð12:4Þ

whereb represents the population slope coefficients being estimated,L(b) is the log-
likelihood of the tested model and L(0) is the log-likelihood of the null model. The

test statistic G2
0 is compared to a chi-square distribution with k degrees of freedom,

where k is the number of explanatory variables in the model, to determine a p-value

for the overall test.

Note that whileMinitab� andmost other software computes p as the probability of
observing a value of 1, SAS considersp as the probability of observing a 0. The results
in one direction can be directly converted to the other, yet confusion results from not

knowing which direction is being used. Hypothesis tests results (log-likelihood

statistics and p-values) will be identical, but the slope coefficients themselves will

have the opposite sign if the modeled event is switched from a 1 (detect) to a 0

(nondetect). Estimates for p will equal 1 � p for the other direction. Estimated odds

ratios will be the inverse of the other (3 to 1 versus 1 to 3). If your software is

computing logistic regression in the opposite direction from what you expect, the

easiest remedy is to reverse the binary 0/1 assignment of the response variable and run

the procedure again.

12.2.2 Example: TCE Concentrations in Groundwater

Is the probability of detecting TCE in the shallow groundwaters of Long Island, NY

related to population density and/or depth to the water table? The 247 observations

from Eckhardt et al. (1989) are found in TCEReg.xls. Logistic regression is run in

Minitab using the command

Stat > Regression > Binary Logistic Regression

The original data have several reporting limits, so a binary response variable GTE5

was calculated to recordwhether or not each observationwasGTE (1) or below (0) the

maximum reporting limit of 5 mg/L. The overall likelihood-ratio test determines

whether the two variables Popden and Depth together significantly effect the prob-

abilities of TCE concentrations being equal to or above 5. If not, the best estimate

of p for all depths and population densities is the average exceedance probability of

30/247 or 12.1%. The results are printed below.
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Binary Logistic Regression: GTE5 versus PopDensity, Depth

Link Function: Logit

Variable Value Count

GTE5 1 30 (Event)

0 217

Total 247

Logistic Regression Table

Odds 95% CI

Predictor Coef SE Coef Z P Ratio Lower Upper

Constant �2.81967 0.535295 �5.27 0.000

PopDensity 0.156350 0.0514576 3.04 0.002 1.17 1.06 1.29

Depth �0.0013185 0.0017043 �0.77 0.439 1.00 1.00 1.00

Log-Likelihood¼�84.961

Test that all slopes are zero: G¼12.768, DF¼2, P-Value¼0.002

The (Event) designation for the value of 1 on the output shows that Minitab is

computing the probabilities of observing a 1. The log-likelihood L(b) of this model

equals�84.961.G2
0 is reported as 12.768, which is significant at a very low p-value of

0.002. Therefore, the two variables Popden andDepth together significantly affect the

probabilities of TCE being at or above 5 mg/L in groundwater.

Using R, the logistic regression model is estimated using the generalized linear

model (glm) command. GLM.2 is the null model. GLM.3 is the two variable,

Depth þ PopDensity model. The �2 log-likelihood test to compare the two models

is computed using an ANOVA command:

GLM.2<-glm(formula¼GTE5 � 1, family¼binomial(logit))

GLM.3<-glm(formula¼GTE5 � Depth þ PopDensity, family¼binomial

(logit))

> anova(GLM.2, GLM.3, test¼“Chisq”)

resulting in

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.819673 0.535304 -5.267 1.38e-07 ���

Depth -0.001319 0.001704 -0.774 0.43918

PopDensity 0.156350 0.051458 3.038 0.00238 ��

---

Signif. codes: 0 ’���’ 0.001 ’��’ 0.01 ’�’ 0.05 ’.’ 0.1 ’ ’ 1

Null deviance: 182.69 on 246 degrees of freedom

Residual deviance: 169.92 on 244 degrees of freedom

AIC: 175.92

Analysis of Deviance Table

Model 1: GTE5 � 1

Model 2: GTE5 � Depth þ PopDensity
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Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 246 182.69

2 244 169.92 2 12.768 0.001689 ��

The other tests for significance that are important in logistic regression are partial

tests, which determine whether the effect of each independent variable on p is

significant. Partial tests are used for model building, determining which explanatory

variables to keep in the model and which to ignore. Both Minitab and R print out the

results of partial Wald’s tests. Wald’s tests compute an estimate of the slope for each

explanatory variable, and an estimate of the standard error of that slope. Test statistics

are commonly printed out in computer software in a similar location to partial t-tests in

linear regression. The Wald’s ratio of slope to its standard error is approximately

normally distributed. Minitab and R report a partial Wald’s test for Popden that is

significant at a p-value of 0.00238. The partial test for Depth is not significant

(p¼ 0.439). Therefore, a model with Popden as the sole explanatory variable would

be preferable to the two-variablemodel above.Hosmer andLemeshow (2000) state that

Wald’s estimates of standard error are unreliable for all but large sample sizes, with test

statistics that are often too small, resulting in p-values larger than they actually should

be. They recommend using partial likelihood-ratio tests instead of Wald’s tests.

A partial likelihood-ratio test for each b coefficient can be obtained by running the

MLE procedure twice, one model with and onewithout the explanatory variable to be

tested. The difference in log-likelihoods measures how the fit to the data is improved

by the use of that variable. A p-value for the test is computed by comparing twice the

difference in log-likelihoods to a chi-square distribution with one degree of freedom

(equation 12.5):

G2
partial ¼ 2½LðbwithÞ� LðbwithoutÞ�

¼ ½�2LðbwithoutÞ� � ½�2LðbwithÞ�
ð12:5Þ

If the p-value is less than the significance level a, the null hypothesis that the

coefficient b equals 0 is rejected, and the explanatory variable provides a significant

improvement inmodel fit. If the p-value is large and the null hypothesis is not rejected,

the variable is dropped from the list of useful predictor variables.

The log-likelihood test for whether Depth significantly affects the exceedance

probability of TCE can be computed by hand ifa logistic regressionmodel is run using

Popden as the only explanatory variable, and its log-likelihood statistic recorded.

Binary Logistic Regression: GTE5 versus PopDensity

Link Function: Logit

Response Information

Variable Value Count

GTE5 1 30 (Event)

0 217

Total 247
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Logistic Regression Table

Odds 95% CI

Predictor Coef SE Coef Z P Ratio Lower Upper

Constant -3.10111 0.419878 -7.39 0.000

PopDensity 0.170198 0.0493273 3.45 0.001 1.19 1.08 1.31

Log-Likelihood¼�85.296

Test that all slopes are zero: G¼12.099, DF¼1, P-Value¼0.001

The log-likelihood without Depth as an explanatory variable is�85.296. Compar-

ing this to the log-likelihood for the model with both Popden and Density, the partial

likelihood-ratio test statistic for Depth is

G2
partial ¼ 2ð� 84:961� ½� 85:296�Þ ¼ 0:67

From Minitab’s

Calc > Probability Distributions > chi-square

command, the probability of exceeding 0.67 in a chi-square distributionwith 1 degree

of freedom is 0.413. Because this p-value ismuch larger than an alpha of 0.05, the null

hypothesis of no effect is not rejected; Depth is adding little to the model and can be

dropped. Similarly, to compute a log-likelihood test of the effect of Popden, drop

Popden from the two-variable model. With Depth as the only explanatory variable, a

log-likelihood of �89.765 results. Subtracting from the log-likelihood of �84.961

when both variables were in the model, and multiplying by 2, produces a test statistic

of 9.608 and a p-value of 0.002. The effect of Popden is significant, and should remain

in the model. Note that for this relatively large data set of 247 observations the results

of the Wald tests and log-likelihood tests, as measured by their p-values, are

essentially the same.

12.2.3 Likelihood r-Squared

An overall measure of the ‘strength’ of the regression relationship for logistic regres-

sion is the likelihood r-squared (equation 11.4, repeated here as equation 12.6):

likelihood r2 ¼ 1� exp
G2

0

n

� �
ð12:6Þ

where G2
0 is the overall likelihood-ratio test statistic for the comparison between the

selected model and the null model. For the TCE exceedance data with Popden as the

sole explanatory variable (our preferred model), G2
0 ¼ 12:099 and the likelihood

r-squared equals
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likelihood r2 ¼ 1� exp
12:099

247

� �
¼ 0:048

Though this model is better than no model, there is still much variability left to

explain in these data.

12.2.4 Confidence Interval for the Slope

A confidence interval associated with the slope of an explanatory variable can be

computed using the Wald’s normal approximation for large samples (equation 12.7).

Ryan (1997, p. 272) comments that the Wald’s confidence intervals “should be used

cautiously, especially if the sample size is not large.”

CI on b : b� z1�a=2 � seb ð12:7Þ

For the TCE exceedance data a 95% confidence interval on the slope for Popden is

0:170� 1:96� 0:049 ¼ ½0:074; 0:266�

12.2.5 Rate of Change of the Odds—the Odds Ratio

In the logistic regression equation the slope b1 describes the change in the log of the

odds (logit) per unit change in x1. Exponentiating, exp(b1) is the amount by which the

odds changes for a unit change in x1. For TCE exceedances, the odds increases for a

unit change in Popden by a multiplicative factor of exp(0.170)¼ 1.19, where 0.170

is the estimated slope for Popden. For example, at a population density of 5 the

probability of exceeding 5 mg/L TCE is 9%. The odds is 0.09/0.91, or 0.10. For the

same conditions but at a population density of 6, the odds will increase to 0.10 times

1.19, or 0.119. Using equation 12.2, this equals a probability of exceedance p of

0.119/1.119, or 10.7%.

Though exp(b) is the best point estimate for the rate of change of the odds (usually

called the “odds ratio”) as a function of the explanatory variable, a 95% confidence

interval for that change also can be calculated. If the Wald’s estimates of standard

deviation are acceptable, the confidence interval on the slope can be exponentiated

into a confidence interval around the odds ratio:

CI on the change in the odds½pL; pH� ¼ exp½b� z1�a=2 � seb� ð12:8Þ

For the TCE data, the 95% confidence interval on the odds ratio for PopDensity,

as a function of a unit change in population density, is

exp½b� z1�a=2 � seb� ¼ exp½0:170� 1:96� 0:049; 0:170þ 1:96� 0:049�

¼ exp½0:074; 0:266� ¼ ½1:08; 1:31�
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With 95% confidence, the rate of change of the odds is between 1.08 and 1.31 for a

unit change in population density. This is how the confidence interval printed out by

Minitab on the line for each explanatory variable in logistic regression is computed.

12.2.6 Confidence Interval for the Proportion pp

Ofgreat interest is the estimated or predicted probability of detectionp as a function of
reasonable values for the explanatory variables: the S-shaped logistic surface. This is

provided by equation 12.2. Also of interest is a confidence interval around the fitted

surface. How precisely is the estimate of p known? An estimated probability of

exceedance of 40%, or 0.4, may lead to different consequences if it is known with

relative precision, say 0.4� 0.05, than if it can be estimated only crudely, say as

0.4� 0.5. In the latter case, the commitment of scarce resources or expensive

solutions would probably not be justified.

First the point on the logistic regression surface p is estimated. The tenth

observation in the TCE data set has a population density of 11. The estimated

probability of detection p for this observation based on the model with Popden as the

sole explanatory variable is

p ¼ expð�3:10þ 0:170� 11Þ
1þ expð�3:10þ 0:170� 11Þ ¼

expð�1:23Þ
1þ expð�1:23Þ ¼ 0:226

Overall, 22.6% of the samples collected for that population density are expected to

have TCE concentrations greater than 5mg/L.
An approximate (1�a)% confidence interval around p based onWald’s statistics,

can be computed as equation 12.9 (Ryan, 1997):

pL; pU½ � ¼ expðb0 þ biXi � z1�a=2s
ffiffiffiffiffi
hii

p Þ
1þ expðb0 þ biXi � z1�a=2s

ffiffiffiffiffi
hii

p Þ ð12:9Þ

where hii is the leverage statistic for the ith observation (a statistic that is large for

outlying observations), and s is an estimate of the error around the estimated

proportions. Ryan (1997) notes that this equation is only close to a true (1�a)%
interval when sample sizes are “very large.” I would propose that “very large” be at

least 100 observations total, with no fewer than 20 in either category. Fortunately, the

TCE data meet this criteria.

The leverage statistic is a multivariate measure of the influence each individual

observation has on the final regression model. Leverage measures by how much the

estimates of slope and interceptwould changewhen an observation is deleted from the

data set. Outlying observations away from the main “cloud” of data have higher

leverage, and deleting those observations changes the estimates of slope and intercept

more so than observations closer into the bulk of the data. Minitab will compute and

save hii as the leverage (Hi), if requested after clicking on the “Storage” button. Other

software packages do much the same.
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However, the value for s is a matrix, and software programs do not print it out.

Towork around this, the standard error of the logit s
ffiffiffiffiffi
hii

p
, which changes based on the

values of the explanatory variable(s), can be computed using the variance–covariance

matrix. This matrix is output by logistic regression software. The standard error of

the logit can be computed using equation 12.10 (based on Hosmer and Lemeshow,

2000, p. 19):

s
ffiffiffiffiffi
hii

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðb0Þþ x2Varðb1Þþ 2xCovðb0; b1Þ

p
ð12:10Þ

where the variance of the intercept b0 and slope b1 are the squares of their respective

standard errors provided in the table of partial statistics. Equation 12.10 describes the

standard error of the logit SE½lnðp=ð1� pÞÞ�, or equivalently, the standard error of

the linear estimates SE½b0 þ bjXj�. Variance estimates for each parameter, along

with the covariance between all pairs of parameters Cov(b0, b1) can be stored as an

option within Minitab.

For the TCE–Popden model, the variance-covariance matrix is stored as matrix

M1 and printed:

Matrix XPWX5

0.183850 �0.0188711

-0.018871 0.0025017

Thevalue 0.183850 is the variance of b0, and equals the square of the standard error

0.428778 reported in the table of partial statistics. The value 0.0025017 is the variance

of b1, and equals the square of the standard error 0.0500166 reported in the table of

partial statistics. The value �0.0188711 is the covariance between b0 and b1. The

estimated standard error of the logit is therefore (following equation 12.18):

s
ffiffiffiffiffi
hii

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:183850þ x2 � 0:0025017� 2x� 0:0188711

p

The probability of exceedance p for a population density (x) of 11 was previously

computed to be 0.226. A 95% confidence interval around this estimate is computed as

s
ffiffiffiffiffi
hii

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:183850þð11Þ2 � 0:0025017� 22� 0:0188711

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0714

p
¼ 0:267

p ¼ expð�3:10þ 0:170� 11� 1:96� 0:267Þ
1þ expð�3:10þ 0:170� 11� 1:96� 0:267Þ ¼

expð�1:23� 0:524Þ
1þ expð�1:23� 0:524Þ

¼ 0:173

1:173
;
0:4936

1:4936

� �
¼ 0:147; 0:330½ �:

At a population density of 11, a 95% confidence interval for the probability of TCE

concentrations exceeding 5 mg/L is between 14.7 and 33%, with the best single

estimate of the probability at 22.6%. This confidence interval will be accurate when
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there are good estimates of thevariances and covariance of the parameters, resulting in

a good approximation to the true standard error. This is more likely for large sample

sizes, such as for the TCE data.

Formultiple explanatory variables the process is similar to the above. Therewill be

multiple covariance estimates between pairs of parameters. For a further discussion of

how confidence intervals on p might be computed using the variance–covariance

matrix output by statistical software, see Chapter 2 of Hosmer and Lemeshow (2000).

As an alternative for computing confidence intervals with smaller samples,

repeated logistic regressions can be performed to produce bootstrapped estimates

forp. Thiswill obviously be computer intensive, but the 100�a/2th and 100(1�a/2)
th percentiles of the bootstrapped estimates of p will form the ends of an a%
confidence interval for the desired proportion. This bootstrapped interval does not

require an assumption of normality for Wald’s statistics that cannot be adequately

tested by the smaller sample sizes common to most environmental studies.

12.2.7 Ordinal Methods for One Reporting Limit

A nonparametric alternative to the estimate of slope in linear regression is the median

of all possible slopes between pairs of data points (Helsel and Hirsch, 2002).

Suggested first by Theil (1950), Sen (1968) placed the estimator in the context of

being a Hodges–Lehman estimator, determining its confidence interval and establish-

ing it as a robust alternative to the least-squares slope of ordinary linear regression.

Hirsch and Slack (1984) used the Theil–Senmethod to estimate the trend slope for the

Seasonal–Kendall test, which has become one of the most popular tests in environ-

mental studies for determining changes over time. The Theil–Sen slope and con-

fidence interval are related to Kendall’s tau correlation coefficient (for more on tau,

see Chapter 11). The test for whether the Theil–Sen slope is significantly different

from zero is also the test for whether Kendall’s tau is significantly different from zero.

Neither relies on an assumption of normality for their validity. If the trend Dy/Dx
measured by the Theil–Sen slope is subtracted from the y variable, the correlation

between the residuals and the x variable will have a tau coefficient of zero.

With one reporting limit the Kendall’s tau correlation coefficient available in

commercial software will produce a unique and accurate result. The Theil–Sen line

will not. Both the slope and intercept are affected by any value chosen to represent

censored observations, making the Theil–Senmethod invalid for censored data unless

there are very few censored observations. Helsel (1990) stated that for asmany as 15%

censored values, the standard Theil–Sen approach would be fine.While a guess at the

time, it is not true. Depending on the arrangement of the data, 15% censored values

could effect the computation of amedian slope. Thankfully, since then a version of the

Theil–Sen line called the Akritas–Theil–Sen (ATS) procedure was developed that

solves for the slope in a different manner, one that does not require a substituted or

estimated value for censored observations. It is described more fully later in this

chapter. ATS and not Theil–Sen should be themethod used to obtain a “linearmedian”

with censored data, and is valid for one or multiple censoring limits. ATS is available

in theNADAMinitabmacros andNADA forR routines on the Practical Statsweb site,
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but is not yet found as part of commercial statistics software. In this instance of the

Theil–Sen ordinal nonparametric method for censored regression, keeping things

simple is just not possible.

12.3 MAXIMUM LIKELIHOOD ESTIMATION

Maximum likelihood methods are used in a variety of disciplines to compute

regression models. In reliability analysis, they are called “failure time models”

(Meeker and Escobar, 1998). The response variable in that case is the time until a

product fails, that is, until a light bulb burns out. In medical statistics, “accelerated

failure time models” are used to predict the time until the recurrence of a disease, or

until death (Collett, 2003). In economics, “censoredmaximum likelihoodmodels” are

used to predict the time until an event such as an interest rate change occurs, but have

also been used with a response variable other than time. For example, Chay and

Honore (1998) modeled incomes using MLE regression, where records were right-

censored at tax-category ceilings. For the specific case of left-censored data that can

include true zeros and whose residuals follow a normal distribution, MLE is some-

times called “Tobit analysis” after the economist Tobin (1958). All of these methods

are fundamentally identical. Terminology, as always, can be confusing.

For regression of right-censored failure time models, uncensored observations are

thosewhere the subject’s length of time, such as the time until death, is known exactly.

The event has occurred and is recorded.What is known as a “death” or “failure” in that

literature is a “detect” in environmental applications. Censored data are observations

where the event has not yet happened by the time the experiment is finished. For these

observations the time to occurrence is known only to be greater than some value.

Regression analysis determines the significance of the effects of explanatory variables

on the time until occurrence of the event - for example, does life expectancy increase

with the amount of daily exercise?

In environmental science MLE can be used to model the response of left-censored

variables other than time, such as concentrations or streamflows. For example,

Slyman et al. (1994) modeled the concentrations of the trace element tin in minnows

as a function of exposure time to wastewaters. Twenty percent of tin concentrations

were below reporting limits. Liu et al. (1996)modeled atrazine concentrations in near-

surface aquifers using Tobit regression. Kroll and Stedinger (1999) estimated low-

flow quantiles in streams using censored regression. To be sure, there are environ-

mental studies where the response variable is time, such as time until death of a

sentinel species organism. Chaloupka et al. (2004) modeled time to failure of

transmitters on sea turtles, for example (the turtles outlived the transmitters). These

models use standard right-censored failure-time analysis. However, the primary

interest in this book is in using MLE for left-censored variables where something

other than time is modeled.

MLE regression software incorporates left-censored observations using an interval

endpoints or “interval censored” or “arbitrary censored” format. In order to correctly

model variables that do not go negative such as concentration, the lower bound of zero
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must be specified. In left-censored survival analysis applications the left boundary is

negative infinity. This would produce biased parameter estimates for variables that

actually could not go below zero.Of course the lower bound of concentrationmay be a

value higher than zero, as in the data “flagged” as being between detection and

quantitation limits. For these data, the lower bound would be the detection limit.

As a parametricmethod, hypothesis tests usingMLE require that the data follow an

assumed distribution. For skewed environmental data where most variables have

values spanning two or more orders of magnitude, a lognormal distribution is most

often assumed. The lognormal distribution has the additional benefit that estimated

values cannot go negative, a problem that is often encountered when assuming a

normal distribution for low-level contaminants. Parameter estimates for the slopes

and intercept of a linear regression are computed by MLE (also see Chapter 2). A

likelihood function is written as

L ¼
Y

p½ei�1� di �F½ei�di ð12:11Þ

where di is the indicator of 1 for a censored observation and 0 for a detected

observation, F[ei] is the cumulative distribution function of the residuals, equaling

Probðei 	 tÞ for limit t, p[ei] is the probability density function of the residuals, and ei
are the residuals from the regression equation

ei ¼ yi �
X

bjxij ð12:12Þ

where the bs are the coefficients for the j explanatory variables.

The derivative of L with respect to the bs is set to 0. Solving these equations

produces the coefficientsbjwith the highest likelihood ofmatching the observed data,

both censored and uncensored. The optimization is something like varying the

regression surface (a line for one b, a plane for two bs, and a higher dimensional

surface in more than two dimensions) as it slices through the data until it finds the

position with the smallest residual error.

12.3.1 Testing Relative Merits of MLE Models

Statistics software usually provide Wald’s partial tests for the significance of each

coefficient in MLE regression. Wald’s tests estimate each coefficient along with an

estimate of their standard error. The ratio of the coefficient to its standard error

approximately follows a normal distribution, at least asymptotically (for large sample

sizes) and when the distribution of the regression residuals follows the assumed

distribution. Likelihood-ratio tests have been recommended instead of Wald’s tests

for MLE survival analysis procedures, due to the uncertainty in how quickly the

Wald’s ratios converge on their true value for small data sets that only approximately

fit the assumed distribution. Likelihood-ratio tests still require that data follow the

assumed distribution, but unlike Wald’s tests, their validity does not depend on

whether the coefficients themselves follow a normal distribution.
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The test for determining the overall significance of an MLE regression model,

similar in concept to the overall F-test in least-squares regression, is the overall

likelihood-ratio test. This test determines whether the entire model being tested is an

improvement over using no model at all, that is, over the “null model” where all bs
equal 0. The overall test statistic is

G2
0 ¼ 2½LðbÞ� Lð0Þ�

¼ ½�2 Lð0Þ�� ½�2 LðbÞ� ð12:13Þ

where L(0) represents the log-likelihood of the null model. Statistical software that

does not report G2
0 will report either the log-likelihood, L(b) or the “�2 log-like-

lihood,” �2 L(b). For example, Minitab prints the log-likelihood L(b) for each

regression model, as well as G2
0. When it is not reported, G2

0 can be computed by

first obtaining the log-likelihood for the null model (sometimes done by having no

explanatory variables except the number 1). The test statisticG2
0 is compared to a chi-

square distribution with k degrees of freedom, where k is the number of explanatory

variables in the model, to determine a p-value for the overall test. As with least-

squares regression, the overall test is not of much help in deciding which of the

individual explanatory variables should be retained in the final MLE regression

model.

Partial likelihood tests for the b coefficients of each explanatory variable in the

model are alternatives to the partial Wald’s tests. They are similar in concept

to the partial t-tests of least-squares regression (though the statistic used is com-

pared to a chi-squared rather than t distribution). To evaluate the effect of

parameter B, for example, a model of all proposed variables A þ B þ C is com-

pared to a model without the variable to be evaluated, so A þ C. The difference

in log-likelihoods of the two models is a measure of the effect of variable B. The

test statistic is twice the difference in log-likelihoods between the two models

(equation 12.14), measuring how the fit to the data is improved by the use of that

variable:

G2
partial ¼ 2½LðbwithÞ� LðbwithoutÞ�

¼ ½�2 LðbwithoutÞ� � ½�2 LðbwithÞ�
ð12:14Þ

A p-value is obtained by comparing the test statistic to a chi-square distribution

with one degree of freedom (a difference of one explanatory variable between the two

models). If the p-value is less than the significance levela, the null hypothesis that the
coefficient b equals 0 is rejected, and including the explanatory variable provides a

significant improvement in model fit. If the p-value is large and the null hypothesis is

not rejected, then the variable can be dropped from the list of useful predictor

variables.

Partial likelihood orWald’s tests allow comparisons between nestedmodels, sets

of variables where the more complex equation (“with”) contains all the variables

of the simpler model (“without”). To compare models that are not nested, say a
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model with variables A þ B þ C against a model containing variables B þ D,

other criteria are needed. Akaike’s Information Criterion (AIC) and its corrected

version (AICc) are two of the common tools for deciding among models (Harrell,

2001). Like Mallow’s Cp and adjusted r-squared for least-squares regression,

these statistics perform a cost-benefit analysis on the addition of variables to an

equation. Adding a variable introduces a cost, which may or may not be offset by a

reduction in the residual noise unexplained by the model. AIC for MLE models has

the formula

AIC ¼ �2 L� 2p ð12:15Þ

where �2 L is the �2 log-likelihood, expressing the attained error level, and 2p

is twice the number of estimated parameters (p¼ # of explanatory variables plus 1

for the intercept), representing the cost. The best model is the one with the lowest

AIC for a given data set. AIC is said to favor more complicated models than

necessary for smaller data sets (Harrell, 2001). This complaint led to the corrected

version, AICc

AICc ¼ �2 L�2p 1þ pþ 1

n� pþ 1

� �
ð12:16Þ

which tends to favor smaller models when there are smaller amounts of data.

12.3.2 Example: MLE Regression of TCE in Groundwater Data

Are TCE concentrations in groundwater a function of population density, land use, or

depth to the water surface? The data set TCEReg contains information on TCE

concentrations in ground waters of Long Island, NY, along with data on three

explanatory variables (Eckhardt et al., 1989). Of interest is determining whether

any of the explanatory variables significantly affect TCE concentrations, and if so,

estimating their slopes.

The relationship between TCE concentration and the three explanatory vari-

ables—%IndLU (percent industrial land use), Depth (depth to water), and Popden

(population density surrounding the well location)—is measured without substitu-

tion of values for censored data byMLE regression. The column TCEConc contains

the concentrations and reporting limits for TCE. There aremultiple reporting limits.

The column BDL0 is the indicator column for TCE, having a value of 0 for data

below reporting limits (hence the name) and a 1 for uncensored observations. MLE

software for left-censored or arbitrarily censored data requires a start and an end

column, the interval endpoints format of Chapter 3. The TCEConc column is the end

column, containing the upper limit value of the reporting limit for censored

observations. A start column must be created by multiplying TCEConc times

BDL0. The result is stored in the column TCE0. In TCE0 all censored observations
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are represented by a value of 0. All uncensored observations have the same TCE

concentration in both the start and end columns.A few example entries for these data

are given below. As an example, the last entry is a detected concentration of 1 mg/L,
the smallest possible detected concentration for the time period when the reporting

limit was 1.

BDL0 TCEConc LU Popden %IndLU Depth TCE0

0 1.000 9 9 10 103 0.000

0 1.000 9 11 0 32 0.000

0 1.000 8 3 4 142 0.000

1 32.00 9 11 3 69 32.000

0 1.000 9 11 0 32 0.000

1 13.00 9 14 7 89 13.000

0 1.000 5 6 1 23 0.000

1 150.0 8 6 6 177 150.000

1 1.000 8 3 4 207 1.000

The maximum likelihood equation is solved by using the

Stat > Reliability/Survival > Regression with Life Data

command of Minitab. With start variable TCE0 and end variable TCEConc, and the

three explanatory variables entered into the Model window, the output from MLE

regression assuming a normal distribution is

Estimation Method: Maximum Likelihood

Distribution: Normal

Regression Table

Predictor Coef Error Z P Lower Upper

Intercept 6.31118 4.55867 1.38 0.166 �2.62366 15.2459

Popden 0.373907 0.538686 0.69 0.488 �0.681899 1.42970

%IND LU 0.0791126 0.439033 0.18 0.857 �0.781377 0.939602

Depth -0.0091394 0.0129492 -0.71 0.480 -0.0345193 0.0162406

Scale 30.3921 1.36742 27.8267 33.1939

Log-Likelihood¼�1069.059

The probability plot of residuals for the regression (Figure 12.2) indicates that a

transformation is necessary. The residuals do not match the straight line representing

the normal distribution.

A lognormal distribution is assumed for the residuals and the procedure run again.

The residuals are essentially linear (Figure 12.3), so that a lognormal distribution

is suitable for MLE regression of the TCE data. The output from the procedure is

given below.
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FIGURE 12.2 Probability plot of residuals for MLE regression of the TCE data, assuming

a normal distribution.
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FIGURE 12.3 Probability plot of residuals for MLE regression of the TCE data, assuming

a lognormal distribution.
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Estimation Method: Maximum Likelihood

Distribution: Lognormal

Regression Table

Standard 95.0% Normal CI

Predictor Coef Error Z P Lower Upper

Intercept �2.88026 0.823547 -3.50 0.000 -4.49438 -1.26613

Popden 0.250904 0.0745204 3.37 0.001 0.104846 0.396961

%IND LU 0.0406455 0.0526390 0.77 0.440 -0.0625251 0.143816

Depth -0.0043726 0.0023329 -1.87 0.061 -0.0089450 0.0001998

Scale 2.81166 0.311129 2.26345 3.49264

Log-Likelihood¼�302.931

To compute the overall test for whether this three-variable model predicts TCE

concentrations better than simply the mean concentration (the null model), the log-

likelihood for no explanatory variables is calculated using the

Stat > Reliability=Survival > Distribution Analysis

ðArbitrary censoringÞ > Parametric Distribution Analysis

command. Assuming a lognormal distribution, the null model produces a log-like-

lihood of �316.404:

Estimation Method: Maximum Likelihood

Distribution: Lognormal

Parameter Estimates

Standard 95.0% Normal CI

Parameter Estimate Error Lower Upper

Location �1.77893 0.415959 �2.59420 �0.963676

Scale 2.93033 0.327988 2.35311 3.64913

Log-Likelihood¼�316.404

Using equation 12.13, the test statistic G2
0 is computed for the overall test as

G2
0 ¼ 2½LðbÞ� Lð0Þ� ¼ 2½�302:931�ð�316:404Þ� ¼ 26:95

Comparing 26.95 to a table of the chi-square distribution with k¼ 3 degrees of

freedom (three explanatory variables), the resulting p-value equals <0.001, less

than the alpha of 0.05. So the three-variable model is considered better than no

model at all.

The Wald’s tests (Z statistics) for coefficients of the three explanatory variables

previously indicated that Popden is a significant predictor of TCE concentration

(p¼ 0.001), that %IndLU is not (p¼ 0.440), and that Depth is on the edge with a
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p-value of 0.06. Since theWald’s tests are believed bymany to be only approximate, a

likelihood-ratio test can be conducted for a variable such as Depth whose Wald’s test

conclusion might be in doubt. To do this, the lognormal MLE regression is again

computed, this timewithoutDepth as an explanatory variable. The output for this two-

variable regression model is below.

Distribution: Lognormal

Relationship with accelerating variable(s): Linear, Linear

Regression Table

Standard 95.0% Normal CI

Predictor Coef Error Z P Lower Upper

Intercept �3.82240 0.767808 �4.98 0.000 �5.32727 �2.31752

Popden 0.300775 0.0740682 4.06 0.000 0.155604 0.445946

%IndLU 0.0376751 0.0529982 0.71 0.477 �0.0661996 0.141550

Scale 2.83152 0.314002 2.27838 3.51896

Log-Likelihood¼�305.035

Following equation 12.14, the partial log-likelihood test for Depth is computed

as

G2
partial ¼ 2½LðbwithÞ� LðbwithoutÞ� ¼ 2½�302:931�ð�305:035Þ� ¼ 4:208

with an associated p-value from a chi-square distribution with 1 degree of freedom of

0.04. This p-value is smaller than for the Wald’s test (and the log-likelihood test is

to be preferred), so that Depth is considered a significant variable and should be

retained in the model. Based on the partial log-likelihood tests, the best regression

model for these data has Popden and Depth as explanatory variables. The final model

for explaining TCE concentrations is

ln TCE ¼ �2:79þ 0:260� Popden� 0:004� Depth

Distribution: Lognormal

Relationship with accelerating variable(s): Linear

Regression Table

Standard 95.0% Normal CI

Predictor Coef Error Z P Lower Upper

Intercept �2.79066 0.810181 -3.44 0.001 -4.37859 -1.20273

Popden 0.259589 0.0740544 3.51 0.000 0.114445 0.404733

DEPTH -0.0043407 0.0023406 -1.85 0.064 �0.0089282 0.0002468

Scale 2.81474 0.311546 2.26582 3.49665

Log-Likelihood¼�303.227
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The MLE lognormal regression model is pictured as a jagged curve in Fig-

ure 12.4. Most of the data are censored observations, and plot on top of one another

as the dashed vertical lines. The curve has responded to the predominance of

censored data at low population densities. The jags on the curve result from wells of

different depths at the same Popden value. An additional variable, which would

improve this model is one that would explain the high concentrations seen at lower

population densities.

The cenreg procedure performs the same test in NADA for R. Partial tests are

Wald’s tests.

> tcemle2¼ with(TCEReg,cenreg(Cen(TCEConc,TCECen)

�PopDensityþDepth,dist¼“lognormal”))

> tcemle2

Value Std. Error z p

(Intercept) �2.79067 0.81018 -3.44 5.72e-04

PopDensity 0.25959 0.07405 3.51 4.56e-04

Depth -0.00434 0.00234 �1.85 6.37e-02

Log(scale) 1.03487 0.11068 9.35 8.78e-21

Scale¼2.81

Log Normal distribution

Loglik(model)¼�303.2 Loglik(intercept only)¼ �316.4

Loglik-r: 0.318126

Chisq¼ 26.35 on 2 degrees of freedom, p¼ 1.9e-06

Number of Newton-Raphson Iterations: 4

n¼247
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FIGURE 12.4 Log of TCE concentration plotted as a function of population density

(Popden). Censored observations plotted as vertical dashed lines. The lognormal MLE two-

variable regression model is shown as the jagged curve.
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To determine which MLE regression to use, AIC and/or AICc is easily computed

from the �2 � log-likelihood statistic to compare the two-variable model with the

following PopDensity-only model:

> tcemle1¼with(TCEReg, cenreg(Cen(TCEConc, TCECen)

�PopDensity,dist¼“lognormal”))

> tcemle1

Value Std. Error z p

(Intercept) �3.734 0.7493 �4.98 6.23e-07

PopDensity 0.309 0.0736 4.20 2.71e-05

Log(scale) 1.042 0.1109 9.39 5.88e-21

Scale¼2.83

Log Normal distribution

Loglik(model)¼�305.3 Loglik(intercept only)¼ �316.4

Loglik-r: 0.2934194

Chisq¼22.24 on 1 degrees of freedom, p¼2.4e-06

Number of Newton-Raphson Iterations: 4

n¼247

AIC for the two-variable model¼�2� (�303.2)�2� 3¼ 606.4�6¼ 600.4

AIC for the one-variable model¼�2� (�305.3) �2� 2¼ 610.6�4¼ 606.6

AICc for the two-variable model¼�2� (�303.2)�2� 3� [1 þ 4/243]

¼ 606.4�6.1¼ 600.3

AICc for the one-variable model¼�2� (�305.3)�2� 2� [1 þ 3/244]

¼ 610.6�4.05¼ 606.55

By either criterion, choose the two-variable PopDensity þ Depth model as

it has smaller AIC values. The correction makes little difference with a data set

this large.

12.4 AKRITAS–THEIL–SEN NONPARAMETRIC REGRESSION

For censored data, a Theil–Sen type of slope estimate can be calculated as the slope

that when subtracted from the Y variable most closely produces a tau correlation

coefficient of zero between the residual and theX variable. Developed byAkritas et al.

(1995), the Akritas–Theil–Sen slope estimate is implemented in the ATS Minitab

macro and the cenken routine in NADA for R. A major advantage of the ATS slope

estimator over the MLE estimator is that ATS can be computed for doubly censored

data, data where X and Y are both censored. The more traditional estimators of slope

for censored data, including Buckley–James regression (see next section) and MLE

methods, allow only the Y variable to be censored.
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A major disadvantage of the ATS estimator is that the procedure has not yet been

generalized to multiple X variables, and so for now is only available in the context of

one explanatory variable. Dietz and Killeen (1981) described a multivariate applica-

tion of the Theil–Sen slope to test for trend in uncensored data. Libiseller and

Grimvall (2002) used the partial Kendall’s tau correlation concept to separately

evaluate the effects of multiple explanatory variables, in essence a multivariate

Theil–Sen procedure. Akritas and Siebert (1996) derived Kendall’s tau for partial

correlation with censored data, leading to possibilities of implementing an ATS

approach for multivariate censored data. Wahlin and Grimvall (2010) extended the

partial Kendall’s tau of Libiseller andGrimvall (2002) to the case of interval-censored

observations. This last article in essence presents a multivariate ATS computation for

censored (and uncensored) data. To date, it has been implemented only in the authors’

visual Basic code but has great promise for extending the methods of this section to a

multiple regression context.

Akritas et al. (1995) found that their method had lower bias and standard error than

several alternatives, including a weighted least-squares approach and a median of

pairwise slopes method. A later study by Wilcox (1998) showed that the Akri-

tas–Theil–Sen slope had a “substantial advantage” in bias and precision over

Buckley–James regression, the most commonly used nonparametric regression

method for censored data (see Section 12.5). The Akritas–Theil–Sen method has

as much utility for trend analysis and other regression models for censored data as

does the original Theil–Sen slope for uncensored data.

To compute the Akritas–Theil–Sen slope estimator, set an initial estimate for the

slope, subtract this from the Y variable to produce the Y residuals, and then determine

Kendall’s S statistic between the residuals and the X variable. Next, conduct an

iterative search to find the slope thatwill produce an S of zero. Because the distribution

function of the test statistic S is a step function, there may be more than one slope that

will produce a value of zero S. Therefore, the final Akritas–Theil–Sen slope is

considered to be the one halfway between the maximum and minimum slopes that

produce a value of zero for S.

12.4.1 Example: TCE in Groundwater

The nonparametric ATS slope estimate of TCE concentration as a function of

population density (Popden) is computed using the macro ats.mac. The same four

arguments used for the ckend macro are required: X, Y, and censoring indicators for

X and Y (Figure 12.5).

%ats c4 c2 c7 c1; cens 0.

The subcommand cens is used because the indicator for censored data is a 0 in this data

set, rather than the default of 1. The subcommand allows any designator, numeric or

text, to be used to specify which observations are censored.
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A-T-S line

stau 4431.00

tau 0.145848

TCEConc¼�11.7522 þ 2.75025�PopDensity
Slope 2.75025

Intercept �11.7522

As a nonparametric test, ATS makes no assumption about the distribution of the

residuals of the data. Yet computing a slope implies that the data follow a linear

pattern. If the data do not follow a linear pattern, either the Y orX variables should be

transformed to produce one before a slope is computed.Otherwise the statement that

a single slope describes the change in value for data in the original units is not

correct. If the data are curved, the rate of change DY/DX changes as X increases. A

straight line, whether by MLE or ATS, implies a constant rate of change in those

units. Logarithms of TCE were previously used with MLE to improve the linear

relationship with population density. After taking the natural logs of the TCE

concentrations, the ATS macro for ln TCE versus population density produces

(Figure 12.6):

A-T-S line

stau 4431.00

tau 0.145848

lnTCE¼�2.83228 þ 0.383507�PopDensity
Slope 0.383507

Intercept �2.83228

400

300

200

100

0
0 5

TCEConc = –11.7522 + 2.75025*PopDensity
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FIGURE 12.5 ATS line relating censored TCE concentrations to population density (Pop-

Density). Censored observations plotted as vertical dashed lines.
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The equation indicates that the natural log of TCEconcentrations increase by 0.384

units for every unit increase in population density. This translates into an average

increase of 47% per unit increase in population density, using the formula

percent change in Y per year ¼ ðeb1 � 1Þ � 100 ð12:17Þ
where b1 is the slope in natural log units.

The ATS procedure is implemented in NADA for R with the cenken command.

With cenken, the last argument of a censoring indicator for the X variable is optional.

If omitted, all values of the X variable are considered detected. For the untransformed

TCE data the results are

> data(TCEReg)

> attach(TCEReg)

> ats=cenken(TCEConc,TCECen,PopDensity)

> ats

slope

[1] 2.75025

intercept

[1] -11.75225

tau

[1] 0.1458477

p

[1] 0.0003007718
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InTCE.
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C
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PopDensity

InTCE = –2.83228 + 0.383507*PopDensity

FIGURE 12.6 ATS line relating natural log of TCE concentrations to population density

(PopDensity). Censored observations plotted as vertical dashed lines are easier to see here than

in Figure 12.5.
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A censored scatterplot with superimposed ATS line can be drawn after typing three R

commands. The first “with” command draws the scatterplot in a graphics device. Note

that the order of arguments for the cenxyplot command are (X, Xcen, Y, Ycen), a

different order than in the cenken command. The second “with” command computes

the cenken line and saves it as the object “reg” (or any name you choose). Then the

lines command adds the cenken line to the scatterplot. The result is Figure 12.7.

> with(TCEReg, cenxyplot(PopDensity,PopCen,TCEConc,TCECen))

> reg=with(TCEReg, cenken(TCEConc,TCECen,PopDensity))

> lines(reg)

Previously we instead settled on using the log TCEmodel. Taking logarithms of TCE

and solving using the commands below, the result is

> lnTCE=log(TCEConc)

> atslog=cenken(lnTCE,TCECen,PopDensity)

> atslog

slope

[1] 0.3835066

intercept

[1] -1.150520

tau

[1] 0.1458477

p

[1] 0.0003007718

30
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20
0

y

10
0

5 10 15
x

0

FIGURE 12.7 ATS line relating censored TCE concentrations to population density (Pop-

Density) using the cenxyplot and cenken commands in NADA for R.

262 REGRESSION AND TRENDS



12.4.2 Nonparametric Estimates of Intercept

Several possible nonparametric estimates for an intercept to accompany the

Theil–Sen slope have been evaluated for uncensored data (Dietz,1987, 1989;

Hollander and Wolfe, 1999, Section 9.4). However, their use has not been explicitly

evaluated for the case of censored data. Dietz (1987, 1989) found that the median

residual (equation 12.18)was a relatively efficientmeasure of the intercept for a linear

equation based on the Theil–Sen slope bTS.

b̂0 ¼ median½Yi � bTS �Xi� for i ¼ 1; . . . ; n ð12:18Þ

A second estimator had slightly lower mean squared error under specific circum-

stances. It was the median of all pairwise (Walsh) averages of residuals, in the

Hodges–Lehmann class of estimators (equation 12.19):

b̂HL ¼ median
½Yi � bTS �Xi� þ ½Yj � bTS �Xj �

2

� �
for i; j ¼ 1; . . . ; n and j 6¼ i

ð12:19Þ
A third estimator was attributed toConover (1999). It had highermean square error

but is simpler to compute. Remember from basic statistics that the least-squares

regression line goes through the point (X; Y ). The Theil–Sen line is often placed

through the median of X (Xmed) and median of Y (Ymed) by using the intercept in

equation 12.20:

â ¼ Ymed � bTS �Xmed ð12:20Þ

where bTS is the Theil–Sen slope estimator. This is the form of the trend line in the

Seasonal–Kendall trend analysis process of Hirsch and Slack (1984). For censored

data, it would require that the median of both X and Y variables be computed by

Kaplan–Meier (see Chapter 6) or another method appropriate for censored data.

Additional information on these three estimates of intercept using uncensored data is

found in Hettsmansperger et al. (1997).

The median residual intercept of equation 12.18 was implemented in the ATS

Minitab macro and cenken R routine, as it is more efficient than equation 12.20

and simpler to compute for censored data than is equation 12.19. Note that though

Akritas et al. (1995) derived the slope estimate, their paper looked only at slope

estimates and did not evaluate any corresponding estimates for intercept. Until a study

of intercept terms is conducted specifically for censored data, the uncensored results

favoring equations 12.18 or 12.19 is all that is available. Censored Y observations

produce interval-censored residuals, and so to solve the equivalent of equation 12.18;

the median residual is computed using a Turnbull estimate (see Chapter 6).

The result of using any of these intercept estimates, along with the ATS slope

estimate, is a line less strongly affected by outliers than is regression that assumes

a normal error distribution, such as MLE regression. The ATS line predicts the con-

ditional median of Y (the median of Y for any given X), rather than the conditional
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mean ofY provided byMLEmethods. If the residuals follow a normal distribution, the

ATS line and the MLE line should be quite similar. A comparison of MLE and ATS

results for fitting a straight line to the logarithms of theTCEdata is listed inTable 12.1,

and plotted in Figure 12.8.

The ATS line has a higher slope than MLE, and with a log model the differences

increase with increasing population density. Remember that most of the data are

censored observations, with the proportion of censored observations decreasing as

population density increases. The lines are sensitive to those data, keeping the esti-

mated values low for low densities, as a result of using those proportions in computing

the final result.

12.5 ADDITIONAL METHODS FOR CENSORED REGRESSION

Other methods have also been used for regression models with censored data. Three

examples are Cox proportional hazards models, Buckley–James regression, and

quantile regression. The first two methods are regularly applied to censored data in

the field of survival analysis. Proportional hazards is a standard tool for the

TABLE 12.1 Comparison of slopes and intercepts for straight lines fit to the

natural logarithms of TCE concentrations

Method Slope Intercept p-Value

MLE (lognormal) 0.309 �3.73 <0.000

ATS (log of TCE; p from ckend macro) 0.383 �2.83 <0.000

The single explanatory variable is population density.
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FIGURE 12.8 ATS and MLE models for log of TCE concentrations versus population

density. Data are from Eckhardt et al. (1989).
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biostatistician, and is discussed in essentially all textbooks on survival analysis.

Buckley–James regression is a more specialized procedure found in some software

and textbooks. Quantile regression is a newer method used for analysis of uncensored

data, and appears in current statistical journals, but not yet inmany statistics textbooks.

Cox proportional hazards is a semiparametric method used to estimate the

proportional effect of one or more explanatory variables Xk on the censored Y

variable, without modeling the underlying relationship between Y and the Xs. As

such it does not result in a regression equation–there is no intercept and no functional

form that will predict Y from the Xs. Instead, a rate increase is modeled, the change in

the “hazard function” h(Y), as a function of the explanatory variables X:

hðYÞ ¼ h0ðYÞebiXi ð12:21Þ

Ahazard function is the ratio of the probability density function f(Y) to the survival

function S(Y). It is the “’approximate’ probability of an individual of age X

experiencing the event in the next instant” (Klein and Moeschberger, 2003). Trans-

lated into environmental applications, it is the approximate probability of a con-

centration falling below a reporting limit as concentration decreases aminute amount.

The concept of a hazard function has not translated well to environmental studies,

perhaps leading to the lack of its use there.

However, the frequent use of proportional hazards models in medical studies may

warrant a new look at these models for environmental applications. The focus of

interest would be in the slope coefficientb. Theb slope coefficient in equation 12.19 is

the source of statements reported to the general public in a form something like “the

medication resulted in a threefolddecrease in riskof heart attack.”Bykeeping the exact

formof the h0 base functionunspecified, no functional formof the relationship between

X and Y need be assumed. The risk of heart attack for individuals may be high, or low,

and may or may not be linear with respect to diet and exercise. None of that matters,

because it is all contained in the unspecified base risk term h0.What is of interest is that,

given whatever risk there may be, that risk proportionally changes as X changes. All

terms but the effect of X are “blocked out” by putting them into the base risk h0.

Proportional hazards might be of use in environmental studies with censored

data for performing procedures similar in purpose to analysis of covariance. With

analysis of covariance, all effects on concentration other than the one to be studied

are adjusted for. If X were a measure of exposure, such as industrial activity or

proportion of soils with high metals content, the rate of risk for increasing the

resultant concentration Y as X changes could be determined without assuming an

underlying model for other effects that might be occurring. Proportional hazards

could also be useful as a screening tool for determining which of several X

variables has a significant effect on the distribution of concentrations Y, in a mode

not unlike stepwise regression is now often (though perhaps inappropriately) used.

The reader is referred to textbooks on survival analysis such as Lee and Wang

(2003), Klein and Moeschberger (2003), Kalbfleisch and Prentice (2002), or

Collett (2003) for a much more thorough treatment of hazard functions and

proportional hazard models.

ADDITIONAL METHODS FOR CENSORED REGRESSION 265



Buckley and James (1979) presented a method to construct a linear regression

model for right-censored response variables (the x variables cannot be censored)

without assumption of a normal distribution. The method is an iterative procedure to

find a slope b that fits a weighted combination of uncensored values for Y and the

censored survival function for right-censored data. Ireson and Rao (1985) compared

this method to the Theil–Sen slope, finding that Buckley–James regression always

had larger confidence intervals than the Theil–Sen method, and so comparatively

lacked precision. Buckley–James also suffers from a possible failure for the algorithm

to converge to an answer. Wilcox (1998) showed that a modified form of Buckley–-

James regression had much larger bias than did Theil–Sen regression. From these

studies there appears little reason to prefer Buckley–James regression over the

Theil–Sen methods described in this chapter.

Quantile regression (Cade and Noon, 2003) estimates the conditional quantiles or

percentiles of a distribution as a linear function of explanatory variables. The impetus

in ecology seems to be for fitting data with heterogeneous errors—residuals that show

a pattern of increasing variance. For such data the slope of Ywith Xmay be moderate

for central data, such as near the mean or median, but larger slopes would better

characterize the datawhen higher quantiles are of interest. The objective is something

like “How do concentrations that are exceeded only 25 and 10% of the time change as

a function of X?” Multiple equations for simultaneously fitting different quantiles are

usually constructed.

Quantile regression has not often been applied to censored data. Slope coefficients

are normally calculated for uncensored data usingweighted absolute deviation. These

equations would have to be solved by maximum likelihood in order to correctly

incorporate censored observations. In any case, quantile regression is not yet found in

most commercial statistical software, and routine application to censored data will

require further study.

EXERCISES

12-1 Atrazine concentrations were measured in streams across the Midwestern

United States (Mueller et al., 1997). Data are found in recon.xls.Measured at

each site were the following explanatory variables:

Name Description

Area Basin size

Applic Atrazine application rate, estimated from statewide estimates

Corn% Percent of land area of watershed planted in corn

Soilgp Soil hydrologic group, a measure of soil permeability found in

STATSGO

Temp Annual average temperature (a north–south indicator)

Precip Annual average precipitation (mostly an east–west indicator)

Dyplant Days since planting (and therefore since last atrazine application)

Pctl Percentile of streamflow (standardizes across streams of varying size)

Atraconc Atrazine concentration, in mg/L
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Using censored parametric regression, build a multiple regression model to

relate atrazine concentrations to the variables in the list above. Determine

what units are the best to beworking in before settling on a final model. Find

the explanatory variables that are all significant at a¼ 0.05.

12-2 Brumbaugh et al. (2001) measured mercury concentrations in fish of

approximately the same age and trophic level across the United States.

Determine a regression equation for the dependence of mercury (“Hg”) on

one or more of the possible explanatory variables listed below. Transforma-

tion of the explanatory variables may be required. All explanatory variables

included in the model should have a p-value of 0.05 or less. The data are

found in HgFish.xls.

Name Description

WatMeHg Methyl mercury concentrations in stream water

WatTotHg Total mercury concentrations in stream water

SedMeHg Methyl mercury concentrations in stream sediments

SedTotHg Total mercury concentrations in stream sediments

WatDOC Dissolved organic carbon concentrations in stream water

SedLOI Loss of ignition (a measure of organic carbon content) in stream

sediment

SedAVS Sediment acid–volatile sulfides

% wetland Percent of the basin occupied by wetlands

12-3 Using the data in recon.xls collected by Mueller et al. (1997), compute a

logistic regression equation for predicting the probability of observing an

atrazine concentration above1mg/L.ThevariableGE_1has avalue equal to 1

for all atrazine concentrations greater than 1 mg/L, and 0 otherwise. Candi-

date explanatory variables are the same as those considered in Exercise 12-1.
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13 Multivariate Methods
for Censored Data

Environmental studies usually involve measurement of more than one contaminant,

and more than one explanatory or causative agent. A suite of trace elements is

measured on soils at both background and possibly affected areas. A suite of organics

is measured in waters across the state to see if patterns are related to population and

land use. Biological community structure, including counts ofmany types of indicator

organisms, is combined with chemical and physical measures at a number of

watersheds to better understand the effects of those measures on the patterns of

community health. Looking only at each chemical or type of organism individually

comes nowhere close to providing the information available in such data sets.

Multivariate statistical methods provide insight and clarity into the patterns and

relationships among numerous measures. Similar patterns among contaminants

indicate that those chemicals are routinely found together. Similar patterns among

contaminants and explanatory variables provide insight into possible causes. Group-

ing of variables into “factors” aids in understanding of the processes operating in the

system.Groupings of locations based on similar patterns in chemistry and community

structure indicate how geology or elevation or other characteristics interact with

anthropogenic influences, or might be used to decrease costs by sampling only a

subset of the sites that are similar to many others.

While terminology and concepts present one hurdle to using multivariate methods

(training in the methods has not been sufficient in many undergraduate programs in

environmental science), another serious hurdle is how to employ themwhen chemical

data include censored observations. Documented deficiencies when substituting

fabricated values for nondetects in the univariate case (see Chapter 6) are reflected

in multivariate findings. Hopke et al. (2001) compared imputation procedures to

substitution prior to running multivariate methods. They found that substituting zero

or RL produced a significant bias. Substituting one-half or 1/(square root of 2) times

the RL underestimated the variance for those variables. Both effects caused problems

with later interpretations. Farnham et al. (2002) found with a simulation study

that with as little as 20% censoring, slopes of principal components were not

correctly computed. Substitution produced problems for principal components

analysis (PCA) and cluster methods with percent censoring of 30% and higher.

Statistics for Censored Environmental Data Using Minitab� and R, Second Edition.
Dennis R. Helsel.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Their recommendation was to not use variables with 30% or more censoring. The

level at which problems occur is likely lower, as their censoring simulation did not

mimic most of the common sources of variation in reporting limits found in field

studies such as changing sample amounts, changing lipid content, and so on. As noted

by Reimann et al. (2002), the results of PCA and factor analysis can change radically

depending onwhich variables are included and excluded. Excluding variables just due

to a specific level of censoring will have important but unrecognized negative

consequences on the findings. Aruga (1997) found that estimating values for non-

detects from a PCA on only detected observations, dropping the nondetects, gave

“unacceptable results” with less than 5% censoring.

Scientists have struggled with what to do with censored data when applying

multivariate methods. Gr€unfeld (2005) simply deleted the nondetect data, with

unknown consequences. O’Connell et al. (2010) used methods from this book for

their univariate procedures, but fell back into substitution prior to performing PCA.

Stetzenbach et al. (1999) stated that when running PCA “. . . if the distribution cannot
be determined from the data (as in the case in this study), a substitution method is the

only available alternative,” which as you will see in this chapter is not correct. They

then justified substitution based on a USEPA guidance document that recommended

it for univariate methods. Griffith et al. (2002) substituted one-half the RL before

performing correspondence analysis and redundancy analysis. After collecting

volumes of chemical, physical and biological data using state of the art methods,

they employed a back of the envelope interpretation procedure whose effect on their

conclusions is unknown. There are better ways.

Rather than using flawedmethods, use multivariate tools that capture the informa-

tion in the pattern of detected values along with the pattern in the frequency of data

below each reporting limit. The same classes of procedures as in other chapters are

available: binary methods, ordinal nonparametric methods, and methods that operate

on scores or percentiles while adjusting for frequencies of censored observations.

13.1 A BRIEF OVERVIEW OF MULTIVARIATE PROCEDURES

Multivariate procedures can be classified into one of two groups depending on their

objective. The first class of “interdependent” procedures treats all variables as equal in

function, discerning patterns of covariance. Methods in this class include PCA,

exploratory factor analysis, cluster analysis, correspondence analysis, and multi-

dimensional scaling (MDS). The patterns of interest may be between variables (R

mode analysis) or between samples/sites (Q mode analysis). There generally are no

hypothesis tests involved with “interdependent” procedures, but only an exploration

of the inherent patterns of the data. When there are no hypothesis tests there are no

required assumptions of a normal distribution. PCA, factor analysis, and classical

MDS are however linear procedures, modeling linear relationships among variables.

Transformations are sometimes required to make relationships within the data more

linear so that a linear model fits well, or to reduce the effect of one or a few outliers on

the outcome.
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In the second class of multivariate procedures, some variables are response

variables and some explanatory variables,much like inmultiple regression or analysis

of variance but operating on multiple y (response) variables. These can be called

“analysis of dependence” procedures. Example explanatory variables include group

assignments, continuous physical variables such as light intensity or pollution index,

or time or spatial sequences. These are used tomodel and/or explain observed patterns

in the response variables. Discriminant function analysis (DFA), canonical correla-

tion, multivariate analysis of variance (MANOVA), partial least squares, analysis of

similarity (ANOSIM), and tests for seriation (a nonparametric trend test) are some of

the procedures in this class. Some procedures such as MANOVA are parametric,

requiring an assumption of multivariate normality. This assumption is difficult to

check when there are censored observations, though the issue has been addressed

(Tempelman and Akritas, 1996). Other procedures such as ANOSIM are nonpara-

metric, employing permutation tests to obtain p-values rather than requiring multi-

variate normality. Nonparametric multivariate procedures have more utility for

censored data, operating on ranks of resemblances rather than absolute magnitudes.

Permutation tests are computer intensive, so were envisioned before but not routinely

implemented until computing power was sufficient, coming into common use in the

1990s. Multivariate permutation procedures are found in the commercial software

Primer, as well as in R.

This rich collection of multivariate procedures cannot be fully described and

illustrated in one chapter, including this one. The objective of this chapter will be to

focus on how to include censored observations into representative examples of

multivariate procedures. For a more comprehensive description of multivariate

procedures, see Everitt and Dunn (2001). Implementation of multivariate procedures

in environmental sciences can be found in Shaw (2003) and Zuur et al. (2007), as well

as in the third edition of Davis’ classic text (Davis, 2001). Nonparametric procedures

using permutation methods are presented in Clarke and Warwick (2001) as imple-

mented in their software program Primer. Many of the examples in this chapter were

computed using Primer (http://www.primer-e.com/), a nonparametric multivariate

software package used primarily by ecologists, but also very useful for analysis of

censored data.

13.1.1 The Structure of Multivariate Procedures

Table 13.1 illustrates the standard layout of multivariate data. Rows in the table

present instances, locations, or times of observations. Columns represent variables,

whichmay be chemical measures, counts of organisms, or physical characteristics. In

Table 13.1, six columns contain concentrations for variants of the toxic chemical

compounds DDT, DDE, and DDD found in fish. Use of these compounds was banned

in the 1970s in the United States, but still found their way into fish and other biota

decades later. The seventh column classes the fish into one of two age groups, Young

or Mature. Of interest might be to determine groupings of stations with similar

patterns of the six chemicals (Q mode), patterns of covariance between chemicals
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(R mode), or to test whether the pattern of chemicals differs between Young and

Mature fish.

The first step is to construct a resemblance matrix, a concise summary of the

similarities or distances between rows or between columns.A triangular-shapedmatrix

results from computing numerical measures of similarity (or conversely, the distance)

between all pairs of rows or columns. To investigate similarities among sites (rows), a

similarity measure would be computed between each pair of rows (Figure 13.1).

In Table 13.1, there are six columns of chemical variables, so six comparisons are

made for each pair of rows, together resulting in one number that describes the

resemblance between these two sites. Resemblance may either be a measure of

TABLE 13.1 DDT and Related Compounds in Fish

Site opDDD ppDDD opDDE ppDDE opDDT ppDDT Age

1 <5 <5 <5 14 <5 <5 Young

2 <5 42 8.4 130 <5 31 Mature

3 5.3 38 <5 250 <5 11 Mature

4 <5 12 <5 57 <5 <5 Mature

5 <5 <5 <5 16 <5 <5 Young

6 <5 <5 <5 <5 <5 <5 Young

7 <5 14 <5 52 <5 14 Mature

8 <5 15 <5 48 <5 <5 Mature

9 <5 12 <5 110 <5 20 Mature

10 5.1 39 <5 100 <5 24 Mature

11 <5 5.7 <5 87 18 <5 Mature

12 <5 9.4 <5 53 <5 7.3 Mature

13 <5 18 <5 210 <5 30 Mature

14 5.1 27 <5 140 <5 33 Mature

15 <5 10 <5 24 <5 5.8 Mature

16 <5 7.6 <5 15 <5 10 Mature

17 9 46 <5 110 <5 21 Mature

18 <5 22 <5 51 <5 7.4 Mature

19 9.8 41 6.9 50 <5 11 Mature

20 <5 13 <5 66 <5 8.6 Mature

21 <5 26 <5 110 <5 26 Mature

22 5.1 24 250 38 <5 11 Mature

23 8 100 8 160 <5 <5 Mature

24 <5 <5 <5 23 <5 <5 Young

25 <5 <5 <5 17 <5 <5 Young

26 <5 <5 <5 16 <5 <5 Young

27 5.7 27 <5 140 <5 14 Mature

28 <5 15 6 8.1 <5 <5 Mature

29 <5 20 7.5 22 <5 6.4 Mature

30 <5 22 <5 190 5.2 27 Mature

31 <5 31 <5 42 <5 25 Mature

32 <5 15 <5 23 <5 5.6 Mature
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similarity (larger numbers for more similar pairs of sites) or distance (larger numbers

for less similar pairs of sites). The resemblance between Site 1 and Site 2 is computed

and stored in the first cell of the triangular matrix. Values for each of the n(n� 1)/2

similarities between the n rows of observations are entered into the matrix. Resem-

blancemeasures include correlation coefficients such as Pearson’s r, Spearman’s rho,

or Kendall’s tau, Euclidean distances between points in multidimensional space

(where small distances indicate similar sites), or more specialized measures from the

biological sciences. Resemblance measures particularly suited to censored data are

listed in Table 13.2. A more complete discussion of resemblance measures is given in

Zuur et al. (2007) and Clarke and Warwick (2001).

Once the resemblancematrix is complete, eachmultivariate procedure operates on

thatmatrix in its ownway.Cluster analysis links rowswith higher similarities together

in the same cluster, and rows with lower similarities into different clusters. ANOSIM

tests for significantly higher similarities between rows within the same predefined

group (e.g., Young or Mature fish in Table 13.1) than between rows in differing

groups. Examples of these procedures are given in the following sections where

binary, ordinal, or u-score resemblance matrices are computed.

An R-mode triangular-shaped matrix measures the similarity or differences

between columns (Figure 13.2). Here the intent is to learn whether groups of variables

cluster together in patterns. Operating on this matrix, exploratory factor analysis or a

clustering procedure might be used to indicate groups of chemicals that covary

Site opDDD ppDDD opDDE opDDTppDDE ppDDT
S1

S2

S30.95-0.06

-0.19

S4

S5

S6

1

2

3

4

5

6

FIGURE 13.1 Construction of the top portion of a Q-mode resemblance matrix for DDT

data.

TABLE 13.2 Resemblance Measures Suited to Analysis of Censored Data

Resemblance Measure Type of Data Resulting Procedures

Simple matching Presence/absence Binomial methods

Euclidean distance Ranks of data Ordinal methods

Euclidean distance u-Scores Wilcoxon-type methods
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(factors), or groups of organisms with similar spatial patterns. Plots of these

associations using either MDS or, if the relationships are linear, PCA can provide

insight into which variables appear similar to and different from others.

The following sections illustrate several Q- and R-mode approaches using

censored data. The data used in this chapter include a Date variable and Age variable

that were created just to illustrate the types of analysis that can be performed with

censored data.

13.2 NONPARAMETRIC METHODS AFTER CENSORING

AT THE HIGHEST REPORTING LIMIT

13.2.1 Binary Method–Using Symmetrical Matching Coefficients

A simple procedure to employ multivariate methods for censored data is to recensor

data into two groups, below versus greater than or equal to the highest reporting limit.

A binary multivariate resemblance matrix can then be computed.

Several similarity coefficients are used in the biological sciences for presence/

absence (0/1) data. The commonly used asymmetric coefficients such as Jaccard and

Sorensen (Clarke andWarwick, 2001) do not count occurrences that are absent/absent

(0/0), so as not to heavily weight correlations between sites based on species that are

absent in both cases. This is appropriate for species occurrence, so that (for example)

the correlation between fauna of two streams in North America is not increased

because water buffalo are absent at both locations! Yet coefficients disregarding joint

absences are not appropriate for 0/1 data derived from concentrations reduced to

being recorded as either below or above a reporting limit. Consider the casewhere a 1

indicates that the concentration of a particular chemical is below the highest reporting

limit, and a 0 indicates the concentration is above that reporting limit. Two streams

which both have high concentrations for that chemical, and therefore both have 0s

recorded, should count toward the correlation between sites. Therefore a symmetric

coefficient, one which counts both joint zeros and joint ones equally, gives the same

Site

1

opDDD

opDDD

-0.190

0.955-0.063 opDDE

opDDE opDDTppDDD

ppDDD

ppDDE

ppDDE ppDDT

2

3

4

5

6

FIGURE 13.2 Construction of the top portion of an R-mode resemblance matrix for DDT

data. Comparison of the first and third columns produces one of the similarity coefficients.
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similarity result regardless of whether high concentrations are assigned a 0 or 1. The

“simple matching coefficient” between points j and k is a symmetric coefficient

defined as

Sjk ¼ 100� aþ d

aþ bþ cþ d
ð13:1Þ

where a equals the number of joint occurrences of a 1, d equals the joint occurrences of

a 0, and b and c are mismatches where one site in the pair has a presence and one an

absence of a detection at and above the highest limit. If a high value is switched from

the designation of a 0 to that of a 1, a and d switch places, as do b and c, but the

computed matching coefficient stays the same.

The highest (and only) reporting limit in Table 13.1 is 5. Table 13.3 shows

Table 13.1 data when coded as a 1 for concentrations greater than or equal to 5, and

a 0 for concentrations below 5.

The top six rows of the triangular resemblance matrix using the simple matching

coefficient on the 0/1 values of Table 13.3 is given in Table 13.4. In a triangularmatrix,

the trivial 100% match of a cell with itself (Site 2 versus Site 2, Site 3 versus Site 3,

etc.) is left blank. The top half of the square 32� 32matrix is also blank because it is a

mirror image of the bottom half. In Table 13.4, the match between Sites 1 and 2 has an

S of 50, and between 2 and 3 an S of 66.67, and so on. Therefore, the presence/absence

pattern of DDT compounds at Site 2 is more similar to Site 3 than to Site 1. Note the

100% similarity between Sites 1 and 5, which in Table 13.1 are seen to have the same

pattern of concentrations below and above 5.

Several operations can now be performed on this resemblance matrix to provide

insight into the DDT data. First a plot or “map” of the similarities between sites

(Figure 13.3) is provided by nonmetric multidimensional scaling (NMDS) (Clarke

andWarwick, 2001). NMDSwas first proposed byKruskal (1964) and plots distances

between points in the same rank order as distances (or 100-similarities) in the

resemblance matrix. From Table 13.3 it is seen that Sites 1, 5, and 24 through 26

all have the same pattern–concentrations below 5 for all compounds except ppDDE.

These five sites plot essentially on top of one another at the right of Figure 13.3. Site 6

has nondetects below 5 for all six compounds, and plots just to the right of the other

five sites. These sites have triangles pointing up on the plot, showing they are the fish

of Young age. Sites 4 and 8 have detected concentrations for ppDDE and one other

compound, ppDDT, and plot to the left of theYoung group. Sites with five compounds

above 5mg/L plot at the left side of the NMDS.

There are no axis names or scales onNMDS as the distances reported are just ranks

of the (100-similarities). By investigating the pattern of where points plot it is often

possible to interpret what the directions along the axes mean. In Figure 13.3, the

horizontal axis represents the number of compounds with detections, with infrequent

detections to the right. The vertical axis provides insight on which compounds are

detected. At the top, Site 23 contains detections for DDD and DDE metabolite

compounds, but not DDT. Site 30 at the bottom has detections above 5 for both DDT

compounds. So the vertical axis is a gradation between detections for DDTand those

for its metabolites DDE andDDD.Note that the direction of both axes is arbitrary–the
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TABLE 13.3 DDT and Related Compounds in Fish, Coded as 0 for Concentrations

Below 5 and 1 for Concentrations Greater than or Equal to 5

Site opDDD ppDDD opDDE ppDDE opDDT ppDDT Age

1 0 0 0 1 0 0 Young

2 0 1 1 1 0 1 Mature

3 1 1 0 1 0 1 Mature

4 0 1 0 1 0 0 Mature

5 0 0 0 1 0 0 Young

6 0 0 0 0 0 0 Young

7 0 1 0 1 0 1 Mature

8 0 1 0 1 0 0 Mature

9 0 1 0 1 0 1 Mature

10 1 1 0 1 0 1 Mature

11 0 1 0 1 1 0 Mature

12 0 1 0 1 0 1 Mature

13 0 1 0 1 0 1 Mature

14 1 1 0 1 0 1 Mature

15 0 1 0 1 0 1 Mature

16 0 1 0 1 0 1 Mature

17 1 1 0 1 0 1 Mature

18 0 1 0 1 0 1 Mature

19 1 1 1 1 0 1 Mature

20 0 1 0 1 0 1 Mature

21 0 1 0 1 0 1 Mature

22 1 1 1 1 0 1 Mature

23 1 1 1 1 0 0 Mature

24 0 0 0 1 0 0 Young

25 0 0 0 1 0 0 Young

26 0 0 0 1 0 0 Young

27 1 1 0 1 0 1 Mature

28 0 1 1 1 0 0 Mature

29 0 1 1 1 0 1 Mature

30 0 1 0 1 1 1 Mature

31 0 1 0 1 0 1 Mature

32 0 1 0 1 0 1 Mature

TABLE 13.4 Top Six of 32 Rows of the Triangular Similarity Matrix for DDT and

Related Compounds in Fish

Site 1 2 3 4 5 6

2 50

3 50 66.67

4 83.33 66.67 66.67

5 100 50 50 83.33

6 83.33 33.33 33.33 66.67 83.33

7 66.67 83.33 83.33 83.33 66.67 50
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orientation of the plots may be reversed left–right or up–down with no change

in meaning.

The NMDS is computed in R as follows, after loading two libraries:

> library("vegan")

> library("MASS")

> data(DDT01)

> attach(DDT01)

> fish=data.frame(opDDD,ppDDD,opDDE,ppDDE,opDDT,ppDDT)

> ddt.symm=designdist(fish, method"1.00001-((a+d)/(a+b+c+d))",

+ terms = c("binary"),abcd=TRUE,"symm")

> ddt.mds=metaMDS(ddt.symm,zerodist="add", autotransform=FALSE)

> plot(ddt.mds,type="n")

> text(ddt.mds$points,labels=as.character(1:32))

The designdist command computes a user-defined distance matrix, which here is

1–similarity (with a very small constant added to ensure no distances are exactly zero).

It appears in Figure 13.3 that the pattern for the six chemicals differs between the

Young and Mature fish groups. To test the hypothesis of no difference in the pattern

between the two groups, the nonparametric ANOSIM test (Clarke, 1999) can be

employed. ANOSIM determines whether the cells in the resemblance matrix are

significantly different for sites within the same group in comparison to sites overall. It

functions as a nonparametric multivariate analysis of variance. Because the test

operates on the resemblance matrix, it uses all of the information in the entire pattern

of chemical occurrences (Clarke andWarwick, 2001). In contrast, an older parametric

approach might have been to compute an analysis of variance on the first principal

component of multivariate data (after the unfortunate practice of replacing censored

values with one-half the reporting limit). By using only the first component, only a
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FIGURE 13.3 NMDS of 32 sites for the DDT in fish data.
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portion of the information in the pattern of occurrences would be captured and used.

ANOSIM instead for this data set uses all 6� 32 dimensions of the multivariate

information present in the data.

ANOSIM is computed by ranking the similarities in thematrix. Ranks are averaged

for the siteswithin the samegroup (youngfish to youngfish,mature tomature), and for

sites across groups (young to mature). The test statistic R (equation 13.2) divides the

difference in these average ranks by one-half the number of cells in the triangular

similarity matrix. When data within groups are self-similar the numerator becomes

large, indicating a difference between the patterns in the two groups.

R ¼ ðrankb � rankwÞ
nðn� 1Þ=4 ð13:2Þ

where the b subscript indicates average ranks for similarities between different

groups, and the subscript w indicates average ranks of similarities within the same

group. ANOSIM is a permutation test, where p-values for the test are determined not

by using an assumption of normality of data, but by computing a large number of

permutations representing the null hypothesis and comparing their distribution to the

one observed test statistic R. For even this moderate sized data set there are 906,192

different ways in which 32 rows can be assigned to the two groups. The null

hypothesis of no difference between groups implies that each of these assignments

is equally likely. ANOSIM randomly selects a subset of these possible assignments

and compares the resulting R for each to the one observed R statistic for the original

data. A histogram of the resulting test statistics is shown in Figure 13.4.

The histogramofRvalues in Figure 13.4 represents thevariation invalues expected

when the null hypothesis is true—when observations called Young and those called

Mature are just a chance occurrence and there is no difference in pattern between the

groups. The observed ANOSIM R of 0.69 is larger than all of the 999 R statistics
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FIGURE 13.4 Observed ANOSIM R of 0.69 compared to test statistics (histogram)

computed after randomly assigning the 32 sites to Young and Mature fish groups.
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resulting from the random assignment of chemical patterns to groups. Therefore, the

resulting probability of obtaining an R statistic of 0.69 or larger when the null

hypothesis is true is estimated as 1/1000, or a p-value of 0.001 for the test. The null

hypothesis that the patterns of the six chemicals is the same in both Young andMature

fish is rejected, and the two groups are determined (without substitution for nondetects

of any kind) to have different patterns of DDT and metabolites.

ANOSIM can be computed within the vegan package of R with the following

command:

> anosim(ddt.symm,Age)

with the resulting output:

Dissimilarity: symm

ANOSIM statistic R: 0.6876

Significance: 0.001

Based on 999 permutations

A third procedure to extract information on groupings of sites based on a

resemblance matrix for binary data is cluster analysis. Clustering involves using the

pattern of similarities or differences to sort the sites into collections of sites, or

clusters. The goal is to place sites into the same cluster that are more similar to one

another than to sites in different clusters. Clustering is an unstructured classification

scheme–no a priori information on groupings is used (such as Young versus Mature

fish) to classify sites, but only the numbers within the resemblance matrix. In addition

to the distance/similarity measure chosen (the simple matching coefficient for these

detect/nondetect data), clusteringmethods require a choice of the type of linkage used

to build up clusters from individual sites or smaller clusters (Shaw, 2003). Three

methods are common in software: single linkage, complete linkage, and average

linkage orWard’s. The first twomethodsmay too easily put sites that are far away into

the same cluster, or sites nearby into different clusters, depending on the arrangement

of the data (Shaw, 2003). Therefore, average linkage or Ward’s methods (two very

similar methods) have become standard operating procedure in most cluster applica-

tions. Figure 13.5 presents the result of using average linkage clustering on the DDT

fish similarity matrix, resulting in a dendrogram of sites.

The vertical axis is the similarity between sites or clusters. Starting at the top and

working down, the strongest difference between groups of sites results in the first split

into two clusters. The first cluster contains Sites 6, 24, 25, 26, 1, and 5, with remaining

sites in the second cluster. Note that this six-site cluster is composed of theYoung fish,

so the unstructured classification discerns the difference in patterns observed between

the two classifications of fish.

Using R, the distance matrix ddt.symm created above for the binary detection/

nondetection data can be clustered with the hclust command, and the dendrogram

plotted:

> ddt.clust=hclust(ddt.symm,"average")

> plot(ddt.clust)
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and the dendrogram may be reordered by the Age group to appear something like

Figure 13.5 by

> ddt.den=as.dendrogram(ddt.clust)

> dage=reorder(ddt.den,Age)

> plot(dage)

Similar methods may be used to look at similarities among the variables, here the six

DDT-related compounds. A newR-mode similaritymatrix using the simple matching

similarity coefficient is computed and shown in Table 13.5.

The NMDSmap computed from this similarity matrix (Figure 13.6) illustrates the

relationships among the six DDT-related compounds.

A separation between the op-compounds and the pp-compounds is seen along the

horizontal axis. There is a strong difference in the pp- and op-compound patterns. The

vertical axis increases from DDT at the bottom to the DDE and DDD metabolites

further up.
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FIGURE 13.5 Dendrogram of clustering the binary low/high DDT-related data.

TABLE 13.5 R-Mode Similarity Matrix for the Six DDT-Related Compounds

opDDD ppDDD opDDE ppDDE opDDT

opDDD

ppDDD 43.75

opDDE 75 37.5

ppDDE 28.125 84.375 21.875

opDDT 68.75 25 75 9.375

ppDDT 53.125 84.375 40.625 68.75 34.375
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A joint look at the pattern of sites and pattern of compounds is available with a

biplot. Biplots are plots of the projections of sites and compounds onto the first two

principal components. Biplots present a two-dimensional slice through multivariate

space. They picture the two largest directions of data variation as defined by PCA.

However, they leave out information in other dimensions (picture some points

actually closer to you in front of the page, and other points behind the page). A

biplot constructed from the Table 13.3 presence/absence data is shown in Figure 13.7.

PCA employs a different similarity coefficient, Pearson’s correlation coefficient r, to

opDDE
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opDDT
ppDDT

ppDDD
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2D Stress: 0

Resemblance: S1 Simple matching

FIGURE 13.6 NMDS for the six DDT-related compounds.
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FIGURE 13.7 PCA biplot for the DDT in fish (presence/absence at 5) data.
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measure similarities among rows and separately among columns. Pearson’s r

measures linear correlations, so patterns of variation should be linear to use PCA

on untransformed data. Linearity for binary 0/1 patterns is difficult to evaluate, but the

pattern observed in Figure 13.7 is a useful one, and similar to the patterns observed in

the two earlier NMDS plots.

Component 1 is a contrast between higher concentrations of pp forms of the

compounds to the right, and low concentrations to the left. This is evident from the

direction the ppDDT, ppDDD and ppDDE vectors are pointing—vectors on a biplot

point toward the direction of higher values. The sites for Young fish are to the left,

showing lower concentrations for these compounds. The second component is based

on the op forms of the compounds, with higher values of opDDT toward the top

(high component 2 values) and higher values of opDDD and opDDE generally toward

the bottom (low values of component 2). So this second component splits the patterns

in the Mature fish by whether opDDT (Sites 11 and 30) or its metabolites (Site 23 and

others) are more often present in concentrations above the reporting limit. As with

NMDS, the assignment of these patterns to positive and negative values of the

components, and so their directions on the biplot, is arbitrary. A biplot that is a mirror

image in the horizontal or vertical directions is a totally equivalent plot, and could be

produced by alternate software.

The PCA biplot is produced in R with the following commands:

> ddt.pca=princomp(fish,cor=TRUE)

> biplot(ddt.pca)

13.2.2 Ordinal Methods for One Reporting Limit

Portraying concentrations in a binary format above and below the highest reporting

limit, following with multivariate procedures using the simple matching coefficient,

provides great utility for analysis of censored data without substitution. There is

however additional information in the relative order (ranks or percentiles) of values

above the highest reporting limit. Ordinal nonparametric methods capture this

additional information by assigning unique ranks to data at and above that limit,

while ranks of all data below the highest limit are tied with one another. There is no

reason not to go this second step if your data include detected concentrations.

However as we will see, the binary approach of the previous section captures much

of the information, the information in proportions that is contained in censored data.

The data of Table 13.1 are ranked within each compound separately, and presented

in Table 13.6. Note that within each compound all values originally reported as <5

have the same average rank, which is below the ranks of concentrations detected at

and above 5 for that compound. Many nonparametric methods can be thought of as

tests on the average rank (Conover and Iman, 1981). The Kruskal–Wallis test can be

approximated by whether the average rank is similar or different in each of k groups,

as one example. So the ordinal methods of this section apply routine multivariate

procedures to the ranks of censored data, rather than to the observations themselves. If

the multivariate procedure is a nonparametric method, the results are identical
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whether applied to the original values or the ranks. If the multivariate procedure is a

parametric procedure, computation on the ranks produces an approximate nonpara-

metric procedure. Nonparametric methods are useful with multivariate-censored data

because a <5 is known to be less than a detected 10, but the exact distance between

them used by standard parametric procedures (other than MLE) is not known.

For i rows or columns of data, the Euclidean distance measure E (equation 13.3)

can be computed on the ranks of censored data. Euclidean distance is the straight-line

distance in i dimensions between two points.

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i
ðyi1 � yi2Þ2

q
ð13:3Þ

TABLE 13.6 Ranks of the DDT in Fish Data of Table 13.1

Site opDDD ppDDD opDDE ppDDE opDDT ppDDT Age Date

1 12.5 3.5 13.5 3 15.5 6 Young 1996

2 12.5 30 31 26 15.5 31 Mature 1990.5

3 28 27 13.5 32 15.5 20 Mature 1993.5

4 12.5 11.5 13.5 19 15.5 6 Mature 2001.5

5 12.5 3.5 13.5 5.5 15.5 6 Young 2000.5

6 12.5 3.5 13.5 1 15.5 6 Young 1999.5

7 12.5 14 13.5 17 15.5 22.5 Mature 1998

8 12.5 16 13.5 14 15.5 6 Mature 2002

9 12.5 11.5 13.5 24 15.5 24 Mature 1997

10 26 28 13.5 22 15.5 26 Mature 1994.5

11 12.5 7 13.5 21 32 6 Mature 1999

12 12.5 9 13.5 18 15.5 15 Mature 2000

13 12.5 18 13.5 31 15.5 30 Mature 1995.5

14 26 24.5 13.5 27.5 15.5 32 Mature 1992.5

15 12.5 10 13.5 11 15.5 13 Mature 2002.5

16 12.5 8 13.5 4 15.5 18 Mature 2003

17 31 31 13.5 24 15.5 25 Mature 1991.5

18 12.5 20.5 13.5 16 15.5 16 Mature 1998.5

19 32 29 28 15 15.5 20 Mature 1992

20 12.5 13 13.5 20 15.5 17 Mature 1999.5

21 12.5 23 13.5 24 15.5 28 Mature 1996

22 26 22 32 12 15.5 20 Mature 1995

23 30 32 30 29 15.5 6 Mature 1991

24 12.5 3.5 13.5 9.5 15.5 6 Young 1998.5

25 12.5 3.5 13.5 7 15.5 6 Young 1997

26 12.5 3.5 13.5 5.5 15.5 6 Young 1999.5

27 29 24.5 13.5 27.5 15.5 22.5 Mature 1994

28 12.5 16 27 2 15.5 6 Mature 2000.5

29 12.5 19 29 8 15.5 14 Mature 1997.5

30 12.5 20.5 13.5 30 31 29 Mature 1993

31 12.5 26 13.5 13 15.5 27 Mature 1996.5

32 12.5 16 13.5 9.5 15.5 12 Mature 2000.5
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In two dimensions it is the familiar hypotenuse of a triangle. Table 13.7 presents the

top six rows of the triangular resemblance matrix formed by computing Euclidean

distances between pairs of sites for the ranks of the fish DDT data in Table 13.6. With

Euclidean distances, smaller values in the matrix represent sites that are closer together

in six-dimensional space. Now the same multivariate methods used in the previous

sectionon the resemblancematrix computed frombinarydata can beapplied to this new

resemblance matrix to better understand and test patterns in the data. Following a short

presentation of the same multivariate methods used previously with binary data, a

multivariate trend test using the Date values in Table 13.6 will be presented. Called the

“test of seriation” (Clarke and Warwick, 2001), the test is in essence a multivariate

analog of the popular univariateMann–Kendall test for trend (Helsel andHirsch, 2002).

Note that Site 1 shows a small distance to Sites 5 and 6, which are very similar in

ranks of concentration. Figure 13.8 presents an NMDS plot for the DDT rank data.

Note the similarity in patterns of sites to that for the binary results in Figure 13.4. The

Young andMature groups offish stand out separately on different areas of Figure 13.8,

illustrating their difference.

TABLE 13.7 The Top Six Rows of aQ-Mode Resemblance (EuclideanDistance)Matrix

of Ranked DDT Concentrations

Site 1 2 3 4 5 6

2 46.50

3 42.77 26.69

4 17.89 36.37 29.08

5 2.5 45.32 41.12 15.69

6 2 47.52 44.15 19.70 4.5

7 24.05 26.75 25.31 16.81 22.69 25.27
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FIGURE 13.8 NMDS of ranked DDT concentrations by site number.
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In R, the NMDS plot is computed on the Euclidean distance matrix of the ranks by

load("DDTrank.rda")

attach(DDTrank)

> frank=data.frame(opDDD,ppDDD,opDDE,ppDDE,opDDT,ppDDT)

> f.mds=metaMDS(frank,distance="euclidean",zerodist="add",

autotransform=FALSE)

> plot(f.mds, type="n")

> text(f.mds$points,labels=as.character(1:32))

An ANOSIM test of the difference in the two groups produces a p-value of 0.005,

showing that the two groups have differing patterns of ranked concentrations (without

substituting any values for censored observations). Figure 13.9 pictures the observed

test statistic of 0.288 along with the histogram of 999 test statistics from randomized

group assignments characteristic of the null hypothesis.

The ANOSIM test on the ranks is computed using:

> rankfish=data.frame(opDDD,ppDDD,opDDE,ppDDE,opDDT,ppDDT)

> anosim(rankfish,Age,distance="euclidean")

with the resulting output:

Dissimilarity: euclidean

ANOSIM statistic R: 0.2884

Significance: 0.008

Based on 999 permutations

APCA biplot of the ranks (Figure 13.10) illustrates the same patterns. PCA computes

Pearson’s r correlation as its similarity measure, here applied to the ranks of the data

and so in essence a PCA using Spearman’s rho correlation coefficient on the original

data. It finds the two primary linear directions through multidimensional space that
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FIGURE 13.9 Observed ANOSIM R of 0.288 compared to test statistics (histogram)

computed after randomly assigning the 32 sites to Young and Mature fish groups.
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best describe the variability of the data. In essence, these two components maximize

the spread of the data on the plot in comparison to any other viewpoint. A biplot is

more restrictive thanNMDS in that it assumes linear axes, so a constant rate of change

between points in space. But the benefit of a biplot over NMDS is that it produces axes

interpretable as linear combinations of the original variables. The first principal

component captures the variation in ppDDE and ppDDT with lesser contributions

from ppDDD. High ranked concentrations are found for Sites 2, 3, 14, and 17, among

others, while low ranked concentrations are found at the Young fish sites. The second

principal component combines the effects of opDDTwith its metabolites opDDE and

to a much lesser extent, opDDD. Sites 11 and 30 have high ranks for opDDT, while

Sites 19, 22, 23, 28, and 29 have low ranks for opDDT but high ranks for the

metabolites.

The PCA biplot on ranks is computed in R with the commands:

> f.pca=princomp(rankfish,cor=TRUE)

> biplot(f.pca)

Nowwewill look at only theMature fish group to determinewhether concentrations in

these fish are changing over time. The term “trend test” is usually applied to testing

changes over time. However, the mechanics are applicable to change in concert with

any explanatory variable. Clarke and Warwick (2001) used the more general term

“seriation” to describe a consistent change in multivariate pattern along an axis of

one external explanatory variable not used to construct the multivariate resemblance

matrix. Here the external variable is Date, a time sequence, but it need not be so.

As a nonparametric test, a change inpattern is tested against the ranks of the explanatory

variable, and so is applicable to any ordinal or continuous variable, including time.

The test for seriation is computed by constructing an aggregate rank correlation

coefficient such as Kendall’s tau between each element of two triangular matrices
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FIGURE 13.10 PCA biplot of the ranked DDT data.
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(Clarke and Warwick, 2001). The first matrix is the resemblance matrix of multi-

variate patterns partly shown in Table 13.7. The secondmatrix is the rank of distances

between pairs of points in the direction of the explanatory variable. Two points close

together in time have a small rank, while comparisons between an early point and late

point will have larger rank distance. If there is a correlation between the resemblance

pattern and the pattern of rank distances along the explanatory axis, the null

hypothesis of no seriation is rejected and a significant association between resem-

blance pattern and explanatory variable is established. In essence this is much like a

Mann–Kendall test for trend (Helsel andHirsch, 2002) in the jointmultivariate pattern

of all variables used to construct the resemblance matrix. As with ANOSIM, the test

for seriation uses all of the multivariate information in the data, a distinct advantage

over using only a subset by regressing the first principal component scores as the

response variable versus time.

The results of the test for seriation in the pattern of DDTandmetabolites over time

(Date) are given in Figure 13.11. The Kendall’s correlation between elements of the

two matrices is 0.49, with a permutation significance of 0.001. Kendall’s tau between

the two matrices was higher than all the randomly generated tau values computed by

first randomizing the order of dates. A visual picture of the trend is shown in

Figure 13.12, an NMDS plot where the Date variable has been split into three groups

of approximately 4 years each. A progression from the left to the right illustrates that

Date is strongly correlated with the left to right change on the NMDS map.

The test for seriation is one of a class of tests calledMantel tests that are available in

R. The test of seriation on the Mature age fish can be computed by first subsetting the

data into only the Mature fish (first three commands), then computing a distance

matrix between Dates (time.dist) and a separate distance matrix between rows of the

six chemical compounds (ddt.dist). Finally, the test of seriation is performed by

computing Kendall’s tau correlation between the elements of the two distance

matrices. This is accomplished using themantel commandwith method¼ “Kendall”.
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FIGURE 13.11 Observed Kendall’s tau of 0.49 compared to tau values (histogram)

computed after randomly assigning Dates to data at the 32 sites.
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> mat=subset(DDTrank,subset=Age=="Mature")

> matddt=data.frame(mat$opDDD,mat$ppDDD,mat$opDDE,mat$ppDDE,

mat$opDDT,mat$ppDDT)

> matdate=data.frame(mat$Date)

> time.dist=dist(matdate,method="manhattan")

> ddt.dist=dist(matddt,method="euclidean")

> seriation=mantel(time.dist,ddt.dist,method="kendall")

> seriation

producing the test results:

Mantel statistic based on Kendall’s rank correlation tau

Mantel statistic r: 0.4889

Significance: 0.001

Empirical upper confidence limits of r:

90% 95% 97.5% 99%

0.0610 0.0787 0.0992 0.1283

Based on 999 permutations

Other multivariate procedures can be performed by ranking data censored at the

highest reporting limit and computing a Euclidean resemblance matrix on the ranks.

R-mode analyses can investigate relationships among the variables (chemicals).

Factor analysis could be computed on the ranks to determine if groups of chemicals

show a similar pattern, and so are part of the same factor. Hren et al. (1984) performed

discriminant analysis on the ranks of several chemical variables to discern groupings

of sites in order to prioritize cleanup efforts. The principle should be clear–rank

censored data with all values below the highest reporting limit given tied ranks.

Compute the Euclidean distance between rows, or between columns, and apply the

same multivariate procedures that are suitable for uncensored data.
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FIGURE 13.12 NMDS for ranks of the DDT in fish data, classed by Date category.
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13.3 MULTIVARIATE METHODS FOR DATA WITH MULTIPLE

REPORTING LIMITS

At least three types of multivariate methods have been applied to censored environ-

mental data without recensoring values to the common highest limit. Software for the

first two, maximum likelihood and multiple imputation methods, is somewhat

difficult to find. Multiple imputation methods are available in R, but both types of

methods are fairly complex to understand and implement. As the focus in this book

is on procedures that can be understood and used by scientists with the typical training

in statistics, most of this section focuses on the third procedure, methods based on

u-scores. u-scores undergird many nonparametric procedures including the rank-sum

test. While simple, they are a powerful tool in the analysis of censored multivariate

data.

13.3.1 Multivariate Maximum Likelihood Methods for Data

with Multiple Reporting Limits

If assumptions about the distributional shape of data for each variable can be

realistically made, censored maximum likelihood procedures could be used to model

the variables, and then determinewhether there are any significant patterns in the joint

distributions of variables. Maximum likelihood methods have been used with

uncensored data to produce exploratory factor analysis and principal component

solutions (Wentzell and Lohnes, 1999). Those procedures are found in a few statistics

software programs. Andrews andWentzell (1997) applied maximum likelihood PCA

to censored data by assigning large variances to the estimated censored values.

Kamakura and Wedel (2001) performed a multivariate-censored likelihood factor

analysis using Tobit models, censored non-negative distributions, in solving for a

factor analysis solution describing inter-relationships among variables. However,

MLE that accounts for both censoring and the joint distributions of multiple variables

is sufficiently complex to be a computational challenge, evenwith today’s computers.

It is especially difficult with data that have a high degree of censoring. While

restrictions and simplifications can be used to cut down the complexity of computa-

tions, this advanced modeling approach is currently not generally applicable by the

environmental scientist. Instead, imputation methods have become morewidely used

by numerical modelers.

13.3.2 Multivariate Multiple Imputation and EM Methods for Data

with Multiple Reporting Limits

The concept of imputation was introduced in Chapter 6, where ROS was used to

estimate summary statistics. Imputation is model-based estimation of values for

missing or censored observations. Models for the context of environmental data

include a distributional assumption and/or a correlation structurewith other variables.

The resulting imputed values are “placeholders” representing the general expectation

for data in aggregate, rather than values actually expected for that particular
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observation, unless the correlation with other variables is strong. The use of the

imputed value for one particular observation in addition to its use in representing the

overall pattern of interaction between variables and sites is a judgment call based on

science, rather than a numerical decision from the statistical output. If there is

sufficient strength in the correlation between the censored variable and a suitable

explanatory variable, the imputed value might be considered a plausible estimate for

that specific observation. Otherwise it is only used collectively with other imputed

values to fill in the overall distribution.

Maul and El-Shaarawi (1993) used the expectation maximization (EM) algorithm

to impute values for censored halocarbon concentrations in water. After doing this

they used cluster analysis to determine which locations in Lake Ontario were similar

to others. EM uses an assumed distribution (such as normal or lognormal) and

assumed parameters (mean and standard deviation) for each variable to estimate

expected values for censored observations. With EM usually the mean of the

distribution for that variable is used as the placeholder. Then a statistic that computes

the fit between the set of observed data plus imputed means to the assumed

distribution is evaluated, and the parameter estimates adjusted. The process is

repeated until the fit between the set of observed data plus imputed means and the

assumed distribution cannot be improved. This becomes the EM solution for fitting

distributions to each variable.

Francis et al. (2009) used a similar procedure called Markov Chain Monte Carlo

(MCMC) to impute values for censored disinfection by-product concentrations in

drinking waters. MCMC uses both the distributional assumptions and cross-correla-

tions between variables to estimate imputed values. By taking the correlations among

variables into account, MCMChas amuch greater chance of imputing realistic values

for censored observations. As an interactive procedure, MCMC repeatedly evaluates

the match between imputed plus observed data and the initial assumptions, adjusting

the generating function until the best match is obtained. The product is a probability

distribution of concentrations for each variable. From these the mean and other

summary statistics can be reported, clustering or other multivariate procedures

performed, or as Francis et al. did, sum individual variables that were components

of similar chemicals to arrive at a total concentration. MCMC methods applicable to

censored data are available in the R package MCMCglmm, where general linear

models follow the MCMC imputation to perform parametric analysis such as a

multivariate analysis of variance.

The two references just cited applied single imputation methods, where one

solution is found and one individual value is imputed for each censored observation.

As Hopke et al. (2001) observe, “no matter how carefully it is done and how

knowledgeable the imputer may be, results from the analysis of singly imputed

completed data are generally misleading because the single values being imputed

cannot reflect sampling variability about the actual values . . ..” The one estimated

number is not the “truth,” and cannot in itself provide an estimate of how close to the

truth it might be. This is the rationale for multiple imputation, “. . . which replaces

each censored value with two or more plausible values, where each is drawn from the

joint distribution of possible values” (Hopke et al., 2001). The same equations are
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combined with models of the variability of data to generate multiple possible values

for each censored observation. Standard multivariate methods are applied to each

equivalent possible outcome to provide the range of plausible results for a PCA,

clustering, or other procedure. If the original assumptions about distributions and

correlations among variables are imperfect (which they are), multiple imputation can

produce an evaluation of how sensitive the outcomes are to these assumptions.

While the software to perform multiple imputation is becoming more easily

available, it is a complex method requiring a number of parameters to be chosen.

There is a niche remaining for simpler methods that capture the information in

multivariate data, do not use substitution, and can computed and understood relatively

easily. The multivariate scoring methods of the next section fill that niche.

13.3.3 Multivariate Score and Ranking Methods for Data with Multiple
Reporting Limits

Ranks place observations in order from low to high.When there is no censoring and no

ties, each observation is given a unique rank and so a unique place in the order from

low to high. Ranks form the basis of nonparametric methods, where observations are

judged to be higher or lower than other observations, but the numeric scale of those

differences may not be constant, or may not even be known. Censoring at multiple

thresholds complicates the issue. While a<1 should be ranked lower than a detected

3, how should it be ranked in comparison to a 0.8? Multiple variables further

complicate the picture. How can information for six different measures be combined

to form one overall analysis?

Workingwithin onevariable for themoment, one of the simplest scoring statistics is

the u-score (equation 13.4). The u-score is the sum of the algebraic sign of differences

comparing the ith observation to all other observations within the same variable:

ui ¼
X
i 6¼ k

sign xi � xkð Þ ð13:4Þ

The u-score forms the basis for theMann–Whitney test, and is related to Kendall’s

tau and other nonparametric methods. Kaplan–Meier percentiles for censored

observations use this score. It is the number of observations known to be lower than

xi, minus the number of observations known to be higher. With censoring, where

xi¼ 7 cannot be determined to be higher or lower than xk¼<10, the sign of the

difference is zero. The median observation will have a score ui of zero, with negative

scores for observations below the median and positive scores above the median.

Multivariate m-score (called “mu-score”) procedures have been developed by

Wittkowski et al. (2008) and applied to ranking sports teams or individual players

across multiple measures. The same methods are applied in genomics (Morales et al.,

2008) to look at gene trait relationships to observable outcomes. In these applications,

the goal has been to produce one overall ranking of observations. If the interest here

were in ranking all 32 observed fish to determine where each was located on a ranked

scale of contamination, the u-score methods could be applied directly. Here instead
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u-scores (or their ranks) will be constructed variable by variable. Using a Euclidean

distance measure on the u-scores or their ranks, NMDS, clustering, PCA, and other

procedures can be applied to find and illustrate patterns in the data. Similar in

concept to what was done after censoring at the highest reporting limit, the

difference now is that the scoring process accommodates censoring at multiple

reporting limits.

If u-scores are computed for data with one reporting limit, with the lower end of

that interval being a 0 (0 to RL), then the ranks of the u-scores will be identical to the

ranks computed in the previous section for ordinal methods with one reporting limit.

But u-scores can also be computed for data with multiple limits. Table 13.8 is an

TABLE 13.8 Fish DDT Data from Table 13.1 Altered to be Censored at Two Reporting

Limits

Site opDDD ppDDD opDDE ppDDE opDDT ppDDT Age Date

1 0–5 0–5 0–5 14 0–5 0–5 Young 1996

2 0–5 42 8.4 130 0–5 31 Mature 1990.5

3 5.3 38 0–5 250 0–5 11 Mature 1993.5

4 0–2 12 0–2 57 0–2 0–2 Mature 2001.5

5 0–2 0–2 0–2 16 0–2 0–2 Young 2000.5

6 0–2 0–2 0–2 0–2 0–2 0–2 Young 1999.5

7 2–5 14 2–5 52 2–5 14 Mature 1998

8 0–2 15 0–2 48 0–2 0–2 Mature 2002

9 2–5 12 2–5 110 0–2 20 Mature 1997

10 5.1 39 0–5 100 0–5 24 Mature 1994.5

11 0–2 5.7 2–5 87 18 0–2 Mature 1999

12 0–2 9.4 0–2 53 0–2 7.3 Mature 2000

13 0–5 18 0–5 210 0–5 30 Mature 1995.5

14 5.1 27 0–5 140 0–5 33 Mature 1992.5

15 0–2 10 0–2 24 0–2 5.8 Mature 2002.5

16 0–2 7.6 0–2 15 0–2 10 Mature 2003

17 9 46 0–5 110 0–5 21 Mature 1991.5

18 0–2 22 2–5 51 0–2 7.4 Mature 1998.5

19 9.8 41 6.9 50 0–5 11 Mature 1992

20 0–2 13 2–5 66 0–2 8.6 Mature 1999.5

21 0–5 26 0–5 110 0–5 26 Mature 1996

22 5.1 24 250 38 0–5 11 Mature 1995

23 8 100 8 160 0–5 0–5 Mature 1991

24 0–2 0–2 0–2 23 0–2 0–2 Young 1998.5

25 0–2 0–2 0–2 17 0–2 0–2 Young 1997

26 0–2 0–2 0–2 16 0–2 0–2 Young 1999.5

27 5.7 27 0–5 140 0–5 14 Mature 1994

28 0–2 15 6 8.1 0–2 0–2 Mature 2000.5

29 0–2 20 7.5 22 0–2 6.4 Mature 1997.5

30 0–5 22 0–5 190 5.2 27 Mature 1993

31 2–5 31 2–5 42 0–2 25 Mature 1996.5

32 0–2 15 0–2 23 0–2 5.6 Mature 2000.5
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alteration of Table 13.1 to mimic a situation where before mid-1996, data were

censored below a reporting limit of 5—concentrations reported as (0–5). In mid-

1996, the laboratory began reporting values as either below the method detection

limit (0–2) or as remarked values between 2 and 5 (3.1J, etc.) below the

quantitation limit of 5. These in-between data are here coded to be between the

detection and quantitation limits (2–5), respecting the signal-to-noise issue that

caused the remark—see Chapter 3. (Scientists should speak with their laboratory

chemist to determine whether or not remarked data should be treated as intervals.

Can a 3.1J be considered reliably smaller than 3.5J, for example? If not, record

them as interval censored.) The purpose of altering the data is to demonstrate the

multivariate scoring process for data censored at two different levels, here the

detection and quantitation limits.

Table 13.9 presents the u-scores of the ordering within each column of chemical

compounds computed using theMinitab�macro%u-score (the NADA for R function

u-score performs the same computation). Each observation is compared to all the

others within the same column. Comparisons between two entries recorded as (0–2)

would be tied and the sign of that difference zero. A zero sign also results from

comparing (0–5) with (2–5), and (0–5) with a detected 4. A sign of þ 1 results from

comparing a (2�5) cell to a (0–2) observation elsewhere in the column. Summing the

signs within a cell, higher observations have a higher score. Note that in Table 13.9,

the 16 values for opDDD at (0–2) end up tied with each other at a score of�11 while

the five (0–5) values receive a score of �8.Why? The (0–2) values are known to be

below the (2–5) values, and so are below more observations than the (0–5) values.

Wider intervals are less precisemeasurements, andwill result in less extreme u-scores

than those with more precise analytical results.

Table 13.9 scores were ranked to bring the values back to a familiar and non-

negative scale (Table 13.10). Either the u-score itself or its rank could be used in

subsequent computations such as NMDS, clustering, ANOSIM, and tests for

seriation.

Euclidean distances were computed on the Table 13.10 ranks and stored in a

triangular resemblance matrix. Figure 13.13 shows the NMDS plot computed on

that resemblance matrix. Recall that the altered concentrations are now censored at

two reporting limits, 2 and 5, and that no substitution has been done. The pattern is

very similar to the one in Figure 13.8 for the data censored at the reporting limit of

5. The only changes in concentration were to shift some 0–5 censored values to

either (0–2) or (2–5). Yet the change in reporting limit has had a measurable effect.

Site 1 was a pre-1996 observation with a reporting limit of 5. All other Young data

used a reporting limit of 2. Separation of Site 1 from the other Young fish is easily

visible in Figure 13.13 because of this. Sites 13 and 31 were not too far apart in

Figure 13.8, both Mature fish with moderate concentrations. Site 13 was pre-1996

and kept the (0–5) level for censored values. Site 31 was after mid-1996 and low

concentrations were recorded as (0–2). In Figure 13.13, the two sites are much

farther apart.

The R commands for producing the equivalent NMDS plot to Figure 13.13

are
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>load("FishDDTalt.rda")

> attach(FishDDTalt)

> lo=data.frame(opDDD,ppDDD,opDDE,ppDDE,opDDT,ppDDT)

> hi=data.frame(opDDD_Hi,ppDDD_Hi,opDDE_Hi,ppDDE_Hi,opDDT_Hi,

ppDDT_Hi)

> urk=uscores(lo,hi,out="ranks")

> u.mds=metaMDS(urk,distance="euclidean",zerodist="add",

autotransform=FALSE)

> plot(u.mds, type="n")

> text(u.mds$points,labels=as.character(1:32))

TABLE 13.9 u-Scores for the Altered Fish DDT Data from Table 13.8

Site

u-Score

opDDD

u-Score

ppDDD

u-Score

opDDE

u-Score

ppDDE

u-Score

opDDT

u-Score

ppDDT Age Date

1 �8 �26 �6 �27 �2 �21 Young 1996

2 �8 27 29 19 �2 29 Mature 1990.5

3 23 21 �6 31 �2 7 Mature 1993.5

4 �11 �10 �12 5 �3 �21 Mature 2001.5

5 �11 �26 �12 �22 �3 �21 Young 2000.5

6 �11 �26 �12 �31 �3 �21 Young 1999.5

7 8 �5 5 1 15 12 Mature 1998

8 �11 �1 �12 �5 �3 �21 Mature 2002

9 8 �10 5 15 �3 15 Mature 1997

10 19 23 �6 11 �2 19 Mature 1994.5

11 �11 �19 5 9 31 �21 Mature 1999

12 �11 �15 �12 3 �3 �3 Mature 2000

13 �8 3 �6 29 �2 27 Mature 1995.5

14 19 16 �6 22 �2 31 Mature 1992.5

15 �11 �13 �12 �11 �3 �7 Mature 2002.5

16 �11 �17 �12 �25 �3 3 Mature 2003

17 29 29 �6 15 �2 17 Mature 1991.5

18 �11 8 5 �1 �3 �1 Mature 1998.5

19 31 25 23 �3 �2 7 Mature 1992

20 �11 �7 5 7 �3 1 Mature 1999.5

21 �8 13 �6 15 �2 23 Mature 1996

22 19 11 31 �9 �2 7 Mature 1995

23 27 31 27 25 �2 �21 Mature 1991

24 �11 �26 �12 �14 �3 �21 Young 1998.5

25 �11 �26 �12 �19 �3 �21 Young 1997

26 �11 �26 �12 �22 �3 �21 Young 1999.5

27 25 16 �6 22 �2 12 Mature 1994

28 �11 �1 21 �29 �3 �21 Mature 2000.5

29 �11 5 25 �17 �3 �5 Mature 1997.5

30 �8 8 �6 27 29 25 Mature 1993

31 8 19 5 �7 �3 21 Mature 1996.5

32 �11 �1 �12 �14 �3 �9 Mature 2000.5
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ANOSIM can again test for whether the Young and Mature age groups have

significantly different concentration patterns. The ANOSIM on Table 13.10 ranks

produces a test statistic of 0.362 and a p-value of 0.001 (Figure 13.14). The groups are

strongly significantly different. The R command to perform the ANOSIM test is

> anosim(urk,Age,distance="euclidean")

Figure 13.15 shows the result of a cluster analysis on Table 13.10 ranks of u-scores.

The Young fish are clustered with one another except for Site 1 with the higher

reporting limit. Figure 13.5 previously showed the clustering of data classed as simply

TABLE 13.10 Ranks of the Table 13.9 u-Scores for the Altered Fish DDT Data

Site

Rank

opDDD

Rank

ppDDD

Rank

opDDE

Rank

ppDDE

Rank

opDDT

Rank

ppDDT Age Date

1 19 3.5 16 3 23.5 6 Young 1996

2 19 30 31 26 23.5 31 Mature 1990.5

3 28 27 16 32 23.5 20 Mature 1993.5

4 8.5 11.5 6 19 9 6 Mature 2001.5

5 8.5 3.5 6 5.5 9 6 Young 2000.5

6 8.5 3.5 6 1 9 6 Young 1999.5

7 23 14 23.5 17 30 22.5 Mature 1998

8 8.5 16 6 14 9 6 Mature 2002

9 23 11.5 23.5 24 9 24 Mature 1997

10 26 28 16 22 23.5 26 Mature 1994.5

11 8.5 7 23.5 21 32 6 Mature 1999

12 8.5 9 6 18 9 15 Mature 2000

13 19 18 16 31 23.5 30 Mature 1995.5

14 26 24.5 16 27.5 23.5 32 Mature 1992.5

15 8.5 10 6 11 9 13 Mature 2002.5

16 8.5 8 6 4 9 18 Mature 2003

17 31 31 16 24 23.5 25 Mature 1991.5

18 8.5 20.5 23.5 16 9 16 Mature 1998.5

19 32 29 28 15 23.5 20 Mature 1992

20 8.5 13 23.5 20 9 17 Mature 1999.5

21 19 23 16 24 23.5 28 Mature 1996

22 26 22 32 12 23.5 20 Mature 1995

23 30 32 30 29 23.5 6 Mature 1991

24 8.5 3.5 6 9.5 9 6 Young 1998.5

25 8.5 3.5 6 7 9 6 Young 1997

26 8.5 3.5 6 5.5 9 6 Young 1999.5

27 29 24.5 16 27.5 23.5 22.5 Mature 1994

28 8.5 16 27 2 9 6 Mature 2000.5

29 8.5 19 29 8 9 14 Mature 1997.5

30 19 20.5 16 30 31 29 Mature 1993

31 23 26 23.5 13 9 27 Mature 1996.5

32 8.5 16 6 9.5 9 12 Mature 2000.5
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below versus greater than or equal to a concentration of 5. The new clustering shows

that several clusters can be considered significantly different from one another using

the SIMPROF test (Clarke and Warwick, 2001). Dark black lines are significant

separators between clusters in Figure 13.15, so that Site 1 is by itself and significantly

different from other clusters, as is Site 11. Sites 18, 20, 28, and 29 cluster together

and differ from sites further to the right on the dendrogram. There were no significant

differences between clusters shown in Figure 13.5 for the binary data. The increased

numerical detail provided by the multiple reporting limit procedure provides greater

discrimination between patterns at the sites than with the binary procedure.
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FIGURE 13.14 ANOSIM results for Table 13.10 ranked u-scores from data with multiple

reporting limits.
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The cluster analysis in R is performed by

> u.dist=dist(urk,method="euclidean")

> u.clust=hclust(u.dist,"average")

> plot(u.clust)

13.4 SUMMARY OF MULTIVARIATE METHODS FOR

CENSORED DATA

Analysis methods are available for multivariate data that are censored at multiple

reporting limits, or delineated at both method detection and quantitation limits. Much

can be donewith data classified simply as below or above a single reporting limit, and

the results do not contain invasive patterns placed into the data by fabricating values

with substitutions. Evenmore detail in the patterns ofmultiple chemicals, community

measures, or other attributes is available using ranks of data censored at the highest

reporting limit, or ranks of u-scores for data censored at multiple reporting limits.

Nonparametric methods have been emphasized because ranks can be computed

without fabricating values for censored observations, and without assuming a

distributional shape that is difficult to test for in multiple dimensions.
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14 The NADA for R Software

14.1 A BRIEF OVERVIEW OF R AND THE NADA SOFTWARE

R is a free statistics programming language and environment available online under

the General Public License (GPL). It brings both basic and advanced statistical

capabilities to anyone having a need to use them. R was developed as an aid to teach

statistics by Ross Ihaka and Robert Gentleman at the University of Auckland in New

Zealand. In 1997, the R Core Team of international statisticians and computer

scientists was established to guide and quality control the development of R. The

R Core Team maintains and quality assures the base R program, and oversees the

format and virus-free status of the thousands of user-written programs available as

add-on R packages. The content and accuracy of the user-written programs are the

responsibility of packages’ authors. Compiled versions of R are available for the

Macintosh, Windows, and Unix operating systems. You may use and distribute R

freely, as long as all receiving it maintain the same rights.

R will read and write data in a variety of formats. The standard format is as a set of

data columns, with the first row a text header providing the name for each column,

stored as a text file. There are user-written functions to read data sets output by

commercial statistics software and byExcel, aswell.More information is available on

the sites listed below. The base R software includes basic graphics capabilities, but

more colorful, complex, and sometimes interactive graphics are available in user-

written packages. R can link with other software so that analysis results and complex

color graphics can be automatically output to reports in Microsoft Word or pdf

formats. A number of online presentations of data on Internet sites run R code behind

the scenes.

If you are completely new to R, the best place to learn about it is at the R Project

web site (http://www.r-project.org). The Manuals section provides several free user

manuals for specific purposes, including the Introduction to Rmanual. TheR Journal

is an online journal that includes applications of R to topics of interest, including some

that might interest you! The R Project web site also maintains a list of commercially

available books on using R—click the “Books” link. Base R and each add-on package
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include a help system that provides detailed guidance on available options and

required formats.

The location for downloading base R and user-written packages is at the Com-

prehensive R Archive Network (CRAN) http://cran.r-project.org/.

Mirror sites are located across the globe, and the preference is that a mirror site

near you be used when downloading software. Clicking on the Packages link at

CRAN will bring up an alphabetical list of the many user-contributed software

additions to R. These packages cover a multitude of areas where statistics is applied,

including GIS and geostatistics, biostatistics, and many other specialized applica-

tions. Packages can be installed from within R using

Packages > Install Packages

in the pull-down menu, or by typing install.packages on the command line, followed

by the package name in parentheses and double quotes:

install.packages ("NADA")

Installing a package downloads the software files onto your computer. The modular

form of R means that for any given session, only those packages necessary for the

work at that time need to be active. So at the beginning of each session, the user loads

the packages needed, often only a subset of the ones installed, using

Packages > Load Packages

on the pull-down menu, or by typing the library command

library("NADA")

When you quit R you will need to reload the package again the next time. Scripts can

be set up to automate repeated procedures in R, including loading in a set of several

packages for performing your usual and regular tasks.

The Nondetects And Data Analysis (NADA) user-written package was authored

and is maintained by Lopaka Lee. It is a collection of data sets and R-language

implementations of methods described in this book. In writing the NADA package,

Mr. Lee has made a concerted effort to make function names and usage consistent

with the base R system. Almost all functions begin with the prefix “cen” for

procedures on censored data—for example, “cenfit” and “cenmle.” Also, generic

functions such as “mean,” “quantile,” and “plot” can be used with output objects

from any of the NADA for R functions. For more detail on usage and capabilities,

see the usage in examples throughout the book or download the user manual at

http://cran.r-project.org/web/packages/NADA/index.html

Keep inmind that both R and theNADA for R package are rapidly improving.What is

missing today could be added very shortly. Additionally, development is completely

298 THE NADA FOR R SOFTWARE



open. If there is some functionality that is missing or something you have found to be

wrong, you are welcomed to suggest, or contribute the code, for a solution—

all contributors are properly recognized within the documentation. For suggestions

email us at <mailto:nada@practicalstats.com> for additions to or comments on the

NADA for R package.

14.1.1 Some Basic Commands to Get Started

Most of the commands below are loaded with the NADA package

library("NADA")

The ictest command is part of the interval package, and the ANOSIM and other

multivariate commands are part of the vegan package. The MASS package is also

needed for performing NMDS.

library("interval")

library("vegan")

library("MASS")

One of the data sets that comes with NADA can be loaded (made active and available)

by first identifying it with the data command, and then making it active:

> data (ShePyrene)

> attach(ShePyrene)

Attaching the data set notifies R that these are the data you are working on. Variables

can then be referred to using only the variable name rather than preceding the variable

namewith the name of the data set. To find out which variables are in the data set, type

either the names or head command.

> names(ShePyrene)

[1] "Pyrene" "PyreneCen"

Names lists the short names of variables available in this data set. Pyrene is a vector of

pyrene concentrations where censored observations are represented by their reporting

limit. PyreneCen is an indicator variable, with values of 0 (False) for uncensored

observations and a 1 (True) for censored observations.

> head(ShePyrene)

Pyrene PyreneCen

1 28 TRUE

2 31 FALSE

3 32 FALSE

4 34 FALSE
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5 35 TRUE

6 35 TRUE

Head prints the names plus the first six lines of data. Recordswhere PyreneCen¼True,

such as the first observation of <28, have the reporting limit value listed in the variable

Pyrene. The second row is a detected concentration (PyreneCen¼FALSE) of 31.

An important command is the help command. Typing the name of a functionwithin

the parentheses, such as the cenfit function in NADA, brings up an html page

describing the command and its options.

help(cenfit)

For general help on help in R, type

help(help)

If you are not sure of a command name, but want to search the R help files for items

related to Kendall’s tau, for example, use the help.search function:

> help.search("tau")

14.2 SUMMARY OF THE COMMANDS AVAILABLE IN NADA

14.2.1 Plotting Censored Data

cenboxplot(Y,Yc) plots a censored boxplot of Y on a log scale

cenboxplot(Y,Yc, log¼F) plots a censored boxplot of Y, no log transform

cenboxplot(Y,Yc, Gp) plots censored boxplots of Y for each group in Gp

cenxyplot(X,Xc,Y,Yc) censored scatterplot of Y by X. Requires censoring

indicators

Yobj¼cenfit(Y,Yc)

Plot(Yobj) censored edf of Y

Yros¼cenros(Y,Yc)

Plot(Yros) censored lognormal ROS probability plot of Y

Yros¼cenros(Y,Yc, dist¼"gaussian")

Plot(Yros) censored normal ROS probability plot of Y

Ymle¼cenmle(Y,Yc)

Plot(Ymle) censored lognormal MLE probability plot of Y

14.2.2 Descriptive Statistics for Censored Data

Ymle¼cenmle(Y,Yc)

Ymle MLE summary statistics for a lognormal distribution

Ymle¼cenmle(Y,Yc, dist¼"gaussian")

Ymle MLE summary statistics for a normal distribution
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Ykm¼cenfit(Y,Yc)

Ykm Kaplan–Meier summary statistics

Yros¼cenros(Y,Yc, dist¼"gaussian")

Yros ROS summary statistics for a normal distribution

Yros¼cenros(Y,Yc)

Yros ROS summary statistics for a lognormal distribution

censtats(Y,Yc) computes mean, median with all three methods.

Assumes lognormal distribution.

14.2.3 Confidence Intervals for Censored Data

Ymle¼cenmle(Y,Yc)

mean(Ymle) 95% conf interval assuming a lognormal dist. (Cox method)

Ymle¼cenmle(Y,Yc, conf.int¼0.90, dist¼"gaussian")

mean(Ymle) 90% conf interval assuming a normal distribution

14.2.4 Group Tests for Censored Data

wilcox.test(y�Gp) rank-sum test for 1 RL. <RL value lower than RL

kruskal.test(y,Gp) Kruskal–Wallis test for 1 RL. <RL value lower than RL

A¼cenmle(Y,Yc,Gp) MLE test of mean logs of Y by Gp

plot(A) MLE probability plot of residuals of logarithms

B¼cenmle(Y,Yc,Gp, dist¼"gaussian") MLE test of mean of Y by Gp

plot(B) MLE probability plot of residuals

C¼cendiff(Y,Yc,Gp)

C nonparametric Wilcoxon test on Y by Gp

plot(cenfit(Y,Yc,Gp) edfs for the groups being tested

D¼ictest(Ylow,Yhi,Gp,scores¼"wmw",Lin¼Lt,Rin¼Rt)

D Wilcoxon test on interval-censored Y by Gp

14.2.5 Correlation and Regression for Censored Data

cor.test(X,Y,method¼"spearman") rho and test for data with 1 RL

cor.test(X,Y,method¼"kendall") tau and test for data with 1 RL

A¼cenreg(Cen(Y,Yc)�X, dist¼"gaussian") MLE censored regression

A also reports likelihood r correlation coeff

B¼cenken(Y,Yc,X,Xc) tau and ATS line for data with 1 or more RLs

B the Xc is optional

C¼ictest(Surv(Ylo,Yhi,type¼"interval2")�X,scores¼"wmw",

Lin¼Lt,Rin¼Rt)

C censored regression for interval-censored Y.

D¼glm(formula¼GTrl�X1þX2,family¼binomial(logit))

D logistic regression for data with 1 RL

E¼glm(formula¼GTrl�1,family¼binomial(logit))
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E null logistic regression for data with 1 RL

anova(D,E,test¼"Chisq") test to compare two logistic regression models

14.2.6 Multivariate Methods for Censored Data

library("vegan") loads the vegan and MASS packages, which include the

library("MASS") commands needed for multivariate analysis

A¼data.frame(C1,C2,C3,C4) places data from four columns into one data frame

D¼designdist(A, method¼ "1.00001-((aþd)/(aþbþcþd))", terms¼c("binary"),

þ abcd¼TRUE, "dist") stores symmetric distance matrix into D

D.mds¼metaMDS(D,zerodist¼"add", autotransform¼FALSE) NMDS on D

plot(D.mds,type¼"n") plots the NMDS without points

text(D.mds$points,labels¼as.character(1:32)) adds row number as point locator

anosim(A,Gp,distance¼"euclidean") ANOSIM on data frame A by group Gp

X¼dist(T,method¼"manhattan") distance matrix of explanatory variable X

Y¼dist(A,method¼"euclidean") distance matrix of response variables

ser¼mantel(X,Y, method ¼"kendall") test of seriation

ser prints test of seriation results

u.clust¼hclust(Y,"average") cluster analysis of distance matrix Y with average linkage

plot(u.clust) plots the cluster dendrogram

lo¼data.frame(C1,C2,C3,C4) data frame from columns at low ends of intervals

hi¼data.frame(C11,C12,C13,C14) data frame from columns at upper ends of intervals

urk¼uscores(lo,hi,out¼"ranks") ranks of u-scores from interval-censored data

u.mds¼metaMDS(urk,distance¼"euclidean",zerodist¼"add",

autotransform¼FALSE)

plot(u.mds, type¼"n") NMDS from u-scores of interval-censored data

text(u.mds$points,labels¼as.character(1:32)) adds row labels to NMDS
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Appendix: Datasets

The author’s appreciation is extended to each of the scientists who provided their data

for use in this book, especially to those who directly provided data not available in

published reports. All data sets listed can be found at http://www.practicalstats.com/

nada in bothMicrosoft Excel (.xls) andMinitab�worksheet (.mtw) formats. Many of

the data sets are also included within the NADA for R package. Type

data()

to list the data sets that are availablewithin the packages you have already loaded in R.

AsExample Artificial numbers representing arsenic concentrations in a

drinking water supply.

File Name: AsExample.xls

Reference: None. Generated.

Objective: Determine what can be done with data where all values are

below the reporting limit.

Censoring: A reporting limit at 1, and a reporting limit at 3mg/L.
Used in: Chapter 8

Atra Atrazine concentrations in a series of Nebraska wells before

(June) and after (September) the growing season.

File Name: Atra.xls

Reference: Junk et al., 1980, Journal of Environmental Quality 9, pp.

479–483.

Objective: Determine if concentrations increase from June to September.

Censoring: One reporting limit, at 0.01 mg/L.
Used in: Chapters 4, 5, and 9
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AtraAlt Atrazine concentrations altered from the Atra data set so that

there are more censored observations, adding a second re-

porting limit at 0.05.

File Name: AtraAlt.xls

Reference: Altered from the data of Junk et al., 1980, Journal of Envir-

onmental Quality 9, pp. 479–483.

Objective: Determine if concentrations increase from June to September.

Censoring: Two reporting limits, at 0.01 and 0.05 mg/L.
Used in: Chapters 5 and 9

Atrazine The same atrazine concentrations as in Atra, stacked into one

column (col.1). Column 2 indicates the month of collection.

Column 3 indicates which data are below the reporting

limit—those with a value of 1.

File Name: Atrazine.xls

Reference: Junk et al., 1980, Journal of Environmental Quality 9, pp.

479–483.

Objective: Determine if concentrations increase from June to September.

Censoring: One reporting limit, at 0.01mg/L.
Used in: Chapter 9

Bloodlead Lead concentrations in the blood of herons in Virginia.

File Name: Bloodlead.xls

Reference: Golden et al., 2003, Environmental Toxicology and Chemistry

22, pp. 1517–1524.

Objective: Compute interval estimates for lead concentrations.

Censoring: One reporting limit, at 0.02mg/g.
Used in: Chapter 7

Cd Cadmium concentrations in fish for two regions of the Rocky

Mountains.

File Name: Cd.xls

Reference: none. Data modeled after several reports.

Objective: Determine if concentrations are the same or different in fish

livers of the two regions.

Censoring: Four reporting limits, at 0.2, 0.3, 0.4, and 0.6 mg/L.
Used in: Chapter 9

ChlfmCA Chloroform concentrations in groundwaters of California.

File Name: ChlfmCA.xls

Reference: Squillace et al., 1999, Environmental Science and Technology

33, pp. 4176–4187.

Objective: Determine if concentrations differ between urban and rural

areas.
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Censoring: Three reporting limits, at 0.05, 0.1, and 0.2mg/L.
Used in: Chapter 9

CuZn Copper and zinc concentrations in groundwaters from two zones

in the San Joaquin Valley of California. The zinc concen-

trations were used.

File Name: CuZn.xls

Reference: Millard and Deverel, 1988, Water Resources Research 24, pp.

2087–2098.

Objective: Determine if zinc concentrations differ between the two zones.

Censoring: Zinc has two reporting limits, at 3 and 10 mg/L.
Used in: Chapters 4, 5, and 9

CuZnAlt Zinc concentrations of the CuZn data set; concentrations in the

Alluvial Fan zone have been altered so that there are more

censored observations. This produces a greater signal, even

with more censored observations.

File Name: CuZnAlt.xls

Reference: Altered from the data of Millard and Deverel, 1988, Water

Resources Research 24, pp. 2087–2098.

Objective: Determine if zinc concentrations differ between the two zones.

Censoring: Zinc has two reporting limits, at 3 and 10 mg/L.
Used in: Chapter 9

DFe Dissolved iron concentrations over several years in the Brazos

River, Texas. Summer concentrations were used.

File Name: DFe.xls

Reference: Hughes and Millard, 1988, Water Resources Bulletin 24, pp.

521–531.

Objective: Determine if there is a trend over time.

Censoring: Iron has two reporting limits, at 3 and 10mg/L.
Used in: Chapters 5, 11, and 12

Doc Dissolved organic carbon concentrations in groundwaters of

irrigated and nonirrigated areas.

File Name: DOC.xls

Reference: Junk et al., 1980, Journal of Environmental Quality 9, pp.

479–483.

Objective: Determine if concentrations differ between irrigated and non-

irrigated areas.

Censoring: One reporting limit at 0.2 mg/L.
Used in: Chapter 9

Golden Lead concentrations in the blood and several organs of herons in

Virginia.
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File Name: Golden.xls

Reference: Golden et al., 2003, Environmental Toxicology and Chemistry

22, pp. 1517–1524.

Objective: Determine the relationships between lead concentrations in the

blood and various organs. Do concentrations reflect envir-

onmental lead concentrations, as represented by dosing

groups?

Censoring: One reporting limit, at 0.02mg/g.
Used in: Chapters 10 and 11

Hatchery Proportions of detectable concentrations of antibiotics (mg/L) in
drainage from fish hatcheries across the United States.

File Name: Hatchery.xls

Reference: Thurman et al., 2002, Occurrence of antibiotics in water from

fish hatcheries. USGS Fact Sheet FS 120-02.

Objective: Compute confidence intervals and tests on proportions.

Censoring: One reporting limit for each compound, all at 0.05mg/L.
Used in: Chapters 8 and 9

HgFish Mercury concentrations in fish across the United States.

File Name: HgFish.xls

Reference: Brumbaugh et al., 2001, USGSBiological Science Report BSR-

2001-0009.

Objective: Do mercury concentrations differ by land use of the watershed?

Can concentrations be related to water and sediment char-

acteristics of the streams?

Censoring: Three reporting limits, at 0.03, 0.05, and 0.10 mg/g wet weight.
Used in: Chapters 10, 11, and 12

MDCuþ Copper concentrations in groundwater from the Alluvial Fan

zone in the San Joaquin Valley of California. One observation

was altered to become a <21, larger than all of the uncensored
observations (the largest detected observation is a 20).

File Name: MDCuþ .xls

Reference: Millard and Deverel, 1988, Water Resources Research 24, pp.

2087–2098.

Objective: Calculation of summary statistics when the largest observation

is censored.

Censoring: Five reporting limits, at 1, 2, 5, 10, and 20 mg/L. An additional

artificial reporting limit of 21 was added to illustrate a point.

Used in: Chapter 6

Oahu Arsenic concentrations (mg/L) in an urban stream, Manoa

Stream at Kanewai Field, on Oahu, Hawaii.

File Name: OahuAs.xls
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Reference: Tomlinson, 2003, Effects of Groundwater/Surface-Water In-

teractions and Land Use on Water Quality. Written com-

munication (draft USGS report).

Objective: Characterize conditions by computing summary statistics.

Censoring: Three reporting limits, at 0.9, 1, and 2 mg/L. Uncensored values
reported below the lowest reporting limit indicate that insider

censoring may have been used, and so the results are likely

biased high.

Used in: Chapter 6

Recon Atrazine concentrations in streams throughout the Midwestern

United States.

File Name: Recon.xls

Reference: Mueller et al., 1997, Journal of Environmental Quality 26, pp.

1223–1230.

Objective: Develop a regression of model for atrazine concentrations using

explanatory variables.

Censoring: One reporting limit, at 0.05 mg/L.
Used in: Chapter 12

Roach Lindane concentrations in fish from tributaries of the Thames

River, England.

File Name: Roach.xls

Reference: Yamaguchi et al., 2003, Chemosphere 50, pp. 265–273.

Objective: Determine whether lindane concentrations are the same at all

sites.

Censoring: One reporting limit at 0.08 mg/kg.
Used in: Chapter 9

SedPb Lead concentrations in stream sediments before and after

wildfires.

File Name: SedPb.xls

Reference: Eppinger et al., 2003, USGS Open-File Report 03-152.

Objective: Determine whether lead concentrations are the same pre- and

postfire.

Censoring: One reporting limit at 4 mg/L.
Used in: Chapter 9

Silver Silver concentrations in a standard solution sent to 56 labora-

tories as part of a quality assurance program.

File Name: Silver.xls

Reference: Helsel and Cohn, 1988, Water Resources Research 24,

pp. 1997–2004.
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Objective: Estimate summary statistics for the standard solution. The

median or mean might be considered the “most likely”

estimate of the concentration.

Censoring: Twelve reporting limits, the largest at 25mg/L.
Used in: Chapter 6

Tbl1_1 Contaminant concentrations in test and a control group.

File Name: Tbl1_1.xls

Reference: None. Generated data.

Objective: Determinewhether a test group has higher concentrations than a

control group.

Censoring: Three reporting limits, at 1, 2, and 5mg/L.
Used in: Chapter 1, Table 1.1

TCE TCE concentrations (mg/L) in groundwaters of Long Island,

New York. Categorized by the dominant land use type (low,

medium, or high density residential) surrounding the wells.

File Name: TCE.xls

Reference: Eckhardt et al., 1989, USGS Water Resources Investigations

Report 86-4142.

Objective: Determine if concentrations are the same for the three land use

types.

Censoring: Four reporting limits, at 1,2,4, and 5mg/L.
Used in: Chapter 10

TCEReg TCE concentrations (mg/L) in groundwaters of Long Island,

New York, along with several possible explanatory variables.

File Name: TCEReg.xls

Reference: Eckhardt et al., 1989, USGS Water Resources Investigations

Report 86-4142.

Objective: Determine if concentrations are related to one or more expla-

natory variables.

Censoring: Four reporting limits, at 1, 2, 4, and 5mg/L. One column

indicates whether concentrations are above or below 5.

Used in: Chapter 12

Thames Dieldrin, lindane and PCB concentrations in fish of the Thames

River and tributaries, England.

File Name: Thames.xls

Reference: Yamaguchi et al., 2003, Chemosphere 50, pp. 265–273.

Objective: Determine if concentrations differ among sampling sites. Are

dieldrin and lindane concentrations correlated?

Censoring: One reporting limit per compound.

Used in: Chapters 11 and 12

308 APPENDIX: DATASETS



References

Aitchison, J. and I.A.C. Brown, 1957, The Lognormal Distribution. Cambridge University

Press, Cambridge, 176 pp.

Akritas, M.G., 1986, Bootstrapping the Kaplan–Meier estimator. Journal of the American

Statistical Association 81, 1032–1038.

Akritas, M.G., 1992, Rank transform statistics with censored data. Statistics and Probability

Letters 13, 209–221.

Akritas,M.G., 1994, Statistical analysis of censored environmental data, Chapter 7 in G.P. Patil

and C.R. Rao,eds., Handbook of Statistics,Vol. 12. North-Holland, Amsterdam, 927 pp.

Akritas, M.G. and J. Siebert, 1996, A test for partial correlation with censored astronomical

data. Monthly Notices of the Royal Astronomical Society 278, 919–924.

Akritas, M.G., S.A. Murphy, and M.P. LaValley, 1995, The Theil-Sen estimator with doubly-

censored data and applications to astronomy. Journal of the American Statistical

Association 90, 170–177.

Allison, P.D., 1995, Survival Analysis Using the SAS System: A Practical Guide.SAS Institute,

Inc., Cary, NC, 292 pp.

Andrews, D.T. and P.D. Wentzell, 1997, Applications of maximum likelihood principal

component analysis: incomplete data sets and calibration transfer. Analytica Chimica

Acta 350, 341–352.

Antweiler, R.C. and H.C. Taylor, 2008, Evaluation of statistical treatments of left-censored

environmental data using coincident uncensored data sets: I. Summary statistics.

Environmental Science and Technology 42, 3732–3738.

Aruga, R., 1997, Treatment of responses below the detection limit: some current techniques

compared by factor analysis on environmental data. Analytica Chimica Acta 354, 255–262.

ASTM, 1983, American Society of Testing Materials, Sec. D4210.

ASTM, 1991, Standard practice for 99%/95% interlaboratory detection estimate (IDE) for

analyticalmethodswith negligible calibration error. American Society of TestingMaterials,

Sec. D6091.

ASTM, 2000, Standard practice for interlaboratory quantitation estimate (IQE). American

Society of Testing Materials, Sec. D 6512.

Baccarelli, A., R. Pfeiffer, D. Consonni, et al., 2005, Handling of dioxin measurement data in

the presence of non-detectable values: overview of available methods and their application

in the Seveso chloracne study. Chemosphere 60, 898–906.

Statistics for Censored Environmental Data Using Minitab� and R, Second Edition.
Dennis R. Helsel.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

309



Barr, D.R. and T. Davidson, 1973, A Kolmogorov–Smirnov test for censored samples.

Technometrics 15, 739–757.

Boos, D.D. and J.M. Hughes-Oliver, 2000, How large does n have to be for Z and t intervals?

American Statistician 54, 121–126.

Borgan, O. andK.A. Liestfl, 1990, A note on the confidence intervals and bands for the survival

curve based on transformations. Scandinavian Journal of Statistics 17, 35–41.

Brookmeyer, R. and J. Crowley, 1982, A confidence interval for the median survival time.

Biometrics 38, 29–41.

Brown, B.W., M. Hollander, and R.M. Korwar, 1974, Nonparametric tests of independence

for censored data, with applications to heart transplant studies. Reliability and Biometry

327–354.

Br€uggemann, L., P.Morgenstern andR.Wennrich, 2010,Comparison of international standards

concerning the capability of detection for analytical methods. Accreditation and Quality

Assurance 15, 99–104.

Brumbaugh, W.G., D.P. Krabbenhoft, D.R. Helsel, J.G. Wiener, and K.R. Echols, 2001, A

national pilot study of mercury contamination of aquatic ecosystems along multiple

gradients—bioaccumulation in fish. U.S. Geological Survey Biological Science Report

BSR–2001–0009, 25 pp.

Buckley, J. and I. James, 1979, Linear regression with censored data. Biometrika 66, 429–436.

Cade, B.S. and B.R. Noon, 2003, A gentle introduction to quantile regression for ecologists.

Ecological Environment 1, 412–420.

California Environmental Protection Agency, 2005, California Ocean Plan, 45 p. Available at

http://www.swrcb.ca.gov/water_issues/programs/ocean/docs/oplans/oceanplan2005.pdf.

Chaloupka, M., D. Parker, and G. Balazs, 2004, Modeling post-release mortality of loggerhead

sea turtles exposed to the Hawaii-based pelagic longline fishery.Marine Ecology Progress

Series 280, 285–293.

Chay, K.Y. and B.E. Honore, 1998, Estimation of censored semiparametric regression models:

an application to changes in Black–White earnings inequality during the 1960s. Journal of

Human Resources 33, 4–38.

Chung, C.F., 1990, Regression analysis of geochemical data with observations below detection

limits, in G. Gaal and D.F. Merriam,eds., Computer Applications in Resource Estimation.

Pergammon Press, New York, pp. 421–433.

Chung, C.F. and W.A. Spirito, 1989, Estimation of distribution parameters from data with

observations below detection limit with an example from South Nahanni River area,

District of Mackenzie, in F.P. Agterberg and G.F. Bonham-Carter, eds., Statistical

Applications in the Earth Sciences. Geological Survey of Canada Paper 89-9,

p. 233–242.

Clarke, J.U., 1998, Estimation of censored datamethods to allow statistical comparisons among

very small samples with below reporting limit observations. Environmental Science and

Technology 32, 177–183.

Clarke, K.R., 1999, Nonmetric multivariate analysis in community-level ecotoxicology.

Environmental Toxicology and Chemistry 18, 118–127.

Clarke, K.R. and R.M. Warwick, 2001, Change in Marine Communities: An Approach

to Statistical Analysis and Interpretation, 2nd edition. Primer-E, Ltd., Plymouth, UK, 169 pp.

Cohen, A.C., 1957, On the solution of estimating equations for truncated and censored samples

from normal populations. Biometrika 44, 225–236.

310 REFERENCES



Cohen, A.C., 1959, Simplified estimators for the normal distribution when samples are singly

censored or truncated. Technometrics 1, 217–237.

Cohen, A.C., 1961, Tables for maximum likelihood estimates singly truncated and singly

censored samples. Technometrics 3, 535–541.

Cohn, T.A., 1988, Adjusted maximum likelihood estimation of the moments of lognormal

populations from type I censored samples. U.S. Geological Survey Open-File Report 88-

350, 34 pp.

Collett, D., 2003,Modeling SurvivalData inMedical Research,2nd edition. Chapman andHall/

CRC, London, 391 pp.

Conover, W.J., 1968, Two k-sample slippage tests. Journal of the American Statistical

Association 63, 614–626.

Conover, W.J., 1999, Practical Nonparametric Statistics, 3rd edition. Wiley, New York,

584 pp.

Conover, W.J. and R.L. Iman, 1981, Rank transformations as a bridge between parametric and

nonparametric statistics. American Statistician 35, 124–129.

Cook P, J. Robbins, D. Endicott, K. Lodge, P. Guiney, M. Walker, E. Zabel, and R. Peterson,

2003, Effects of aryl hydrocarbon receptor-mediated early life stage toxicity on lake trout

populations in Lake Ontario during the 20th Century. Environmental Science and

Technology 37, 3864–3877.

Currie, L.A., 1968, Limits for qualitative detection and quantitative determination. Analytical

Chemistry 48, 586–593.

Davis, J.C., 2001, Statistics and Data Analysis in Geology, 3rd edition.Wiley, New York,

NY, 656 pp.

Davis, C.B. and N.E. Grams, 2006, When laboratories should not censor analytical data, and

why. Presented at the 25thNational Conference onManagingEnvironmental Systems,April

24–27, 2006, Austin, TX. Available at http://www.epa.gov/quality/qs-docs/25-3.pdf.

Dietz, E.J., 1987, A comparison of robust estimation in simple linear regression.

Communications in Statistical Simulation 16, 1209–1227.

Dietz, E.J., 1989, Teaching regression in a nonparametric statistics course. American

Statistician 43, 35–40.

Dietz, E.J. and T.J. Killeen, 1981, A nonparametric multivariate test for monotone trend with

pharmaceutical applications. Journal of the American Statistical Association 76, 169–174.

Eckhardt, D.A., W.J. Flipse, and E.T. Oaksford, 1989, Relation between land use and ground-

water quality in the upper glacial aquifer in Nassau and Suffolk Counties, Long Island NY.

U.S. Geological Survey Water Resources Investigations Report 86–4142, 26 pp.

Efron, B., 1981, Censored data and the bootstrap. Journal of the American Statistical

Association 374, 312–319.

Efron, B. and R.J. Tibshirani, 1986, Bootstrapmethods for standard errors, confidence intervals

and other measures of statistical accuracy. Statistical Science 1, 54–77.

El-Makarim, A. and A. Aboueissa, 2009, Maximum likelihood estimators of population

parameters from multiply censored samples. Environmetrics 20, 312–330.

El-Shaarawi, A.H. and S.R. Esterby, 1992, Replacement of censored observations by a

constant: an evaluation. Water Research 26, 835–844.

Emerson, J.D., 1982,Nonparametric confidence intervals for themedian in the presence of right

censoring. Biometrics 38, 17–27.

REFERENCES 311



Eppinger, R.G., P.H. Briggs, B. Rieffenberger, C. Van Dorn, Z.A. Brown, J.G. Crock, P.H.

Hagemann, A. Meier, S.J. Sutley, P.M. Theodorakos, and S.A. Wilson, 2003, Geochemical

data for stream sediment and surface water samples from Panther Creek, the middle fork of

the Salmon River, and the main Salmon River, collected before and after the Clear Creek,

Little Pistol, and Shellrock wildfires of 2000 in Central Idaho. U.S. Geological Survey

Open-File Report 2003-152. Available on CD at http://pubs.er.usgs.gov.

Everitt, B.S. and G. Dunn, 2001, Applied Multivariate Data Analysis,2nd edition.Arnold,

London, 342 pp.

Farewell, V.T., 1989, Some comments on analysis techniques for censored water quality data.

Environmental Monitoring and Assessment 12, 285–294.

Farnham, I.M., A.K. Singh, K.J. Stetzenbach, and K.H. Johannesson, 2002, Treatment of

nondetects in multivariate analysis of groundwater geochemistry data. Chemometrics and

Intelligent Laboratory Systems 60, 265–281.

Fay, M.P. and P.A. Shaw, 2010, Exact and asymptotic weighted logrank tests for interval

censored data: the interval R package. Journal of Statistical Software 36(2), 34.

Feigelson E. and P. Nelson, 1985, Statistical methods for astronomical data with upper limits.

I. Univariate distributions. The Astrophysical Journal 293, 192–206.

Finkelstein, M.M., 2008, Asbestos fibre concentrations in the lungs of brake workers: another

look. Annals of Occupational Hygiene 52, 455–461.

Flynn, M., 2010, Analysis of censored exposure data by constrained maximization of the

Shapiro-Wilk W statistic. Annals of Occupational Hygiene 54, 263–271.

Fong, D.Y.T., C.W. Kwan, K.F. Lam, and K.S.L. Lam, 2003, Use of the sign test for the median

in the presence of ties. American Statistician 57, 237–240.

Francis, R.A.,M.J. Small, and J.M.VanBriesen, 2009,Multivariate distributions of disinfection

by-products in chlorinated drinking water. Water Research 43, 3453–3468.

Ganser, G.H. and P. Hewitt, 2010, An accurate substitutionmethod for analyzing censored data.

Journal of Occupational and Environmental Hygiene 7, 233–244.

Gehan, E.A., 1965, A generalized Wilcoxon test for comparing arbitrarily singly censored

samples. Biometrika 52, 203–223.

Geosyntec Consultants and Wright Water Engineers, 2009, Urban stormwater BMP

performance monitoring manual. A report to the U.S. Environmental Protection Agency

updating EPA-821-B-02-001. Available at http://www.bmpdatabase.org/MonitoringEval.

htm#MonitoringGuidance

Gibbons, R.D., 1995, Some statistical and conceptual issues in the detection of low level

environmental pollutants. Environmental and Ecological Statistics 2, 125–145.

Gibbons, R.D. and D.E. Coleman, 2001, Statistical Methods for Detection and Quantification

of Environmental Contamination.Wiley, New York, 384 pp.

Gibbons, R.D., D.E. Coleman, and R.F. Maddalone, 1997, An alternative minimum level

definition for analytical quantification. Environmental Science and Technology 31,

2071–2077.

Gilbert, R.O., 1987, Statistical Methods for Environmental Pollution Monitoring.Wiley,

New York, 320 pp.

Gilbert, R.O. andR.R.Kinnison, 1981, Statisticalmethods for estimating themean and variance

from radionuclide data sets containing negative, unreported or less-than values. Health

Physics 40, 377–390.

312 REFERENCES



Gilliom, R.J., and D.R. Helsel, 1986, Estimation of distributional parameters for censored trace

level water quality data, 1. Estimation techniques.Water Resources Research 22, 135–146.

Gilliom, R.J., R.M. Hirsch, and E.J. Gilroy, 1984, Effect of censoring trace-level water-quality

data on trend-detection capability. Environmental Science and Technology 18, 530–535.

Gleit, A., 1985, Estimation for small normal data sets with reporting limits. Environmental

Science and Technology 19, 1201–1206.

Golden, N.H., B.A. Rattner, J.B. Cohen, D.J. Hoffman, E. Russek-Cohen, and M.A. Ottinger,

2003, Lead accumulation in feathers of nestling black-crowned night herons (Nycticorax

nycticorax) experimentally treated in the field. Environmental Toxicology and Chemistry

22, 1517–1524.

Griffith, M.B., B.H. Hill, A.T. Herlihy, and P.R. Kaufmann, 2002, Multivariate analysis of

periphyton assemblages in relation to environmental gradients inColoradoRockyMountain

streams. Journal of Phycology 38, 83–95.

Gr€unfeld, K., 2005, Dealing with outliers and censored values in multi-element geochemical

data—a visualization approach using XmdfTool. Applied Geochemistry 20, 341–352.

Haas, C.N., and P.A. Scheff, 1990, Estimation of averages in truncated samples.Environmental

Science and Technology 24, 912–919.

Hahn, G.J. and Meeker, W.Q., 1991, Statistical Intervals: A Guide for Practitioners.

Wiley, New York, 392 pp.

Harrell, F.E., 2001, Regression Modeling Strategies, with Applications to Linear Models,

Logistic Regression, and Survival Analysis.Springer, New York, 568 pp.

Harrington, D.P. and Fleming, T.R., 1982, A class of rank test procedures for censored survival

data. Biometrika 69, 553–566.

Hawkins, D.M. andG.W.Oehlert, 2000, Characterization using normal or log-normal datawith

multiple censoring points. Environmetrics 11, 167–181.

Helsel, D.R. 1990, Less than obvious: statistical treatment of data below the detection limit.

Environmental Science and Technology 24, 1766–1774.

Helsel, D.R., 2005, Insider censoring: distortion of data with censored observations. Human

and Ecological Risk Assessment 11, 1127–1137.

Helsel, D.R., 2006, Fabricating data: how substituting values for censored observations can ruin

results, and what can be done about it. Chemosphere 65, 2434–2439.

Helsel, D.R. and T.A. Cohn, 1988, Estimation of descriptive statistics for multiply censored

water quality data. Water Resources Research 24, 1997–2004.

Helsel, D.R. and R.M. Hirsch, 2002, Statistical Methods in Water Resources. U.S. Geological

Survey Techniques of Water Resources Investigations, Book 4, Chapter A3, 512 pp.

Available at http://water.usgs.gov/pubs/twri/twri4a3/.

Hettsmansperger, T.P., J.W. McKean, and S.J. Sheather, 1997, Rank-based analyses of linear

models, Chapter 7 in G. S. Maddala and C. R. Rao, Handbook of Statistics,Vol. 15. North-

Holland, Amsterdam, 716 pp.

Hewett P. and G.H. Ganser, 2007, A comparison of several methods for analyzing censored

data. Annals of Occupational Hygiene 51, 611–632.

Hinton, S.W., 1993, Delta log-normal statistical methodology performance. Environmental

Science and Technology 27, 2247–2249.

Hirsch, R.M. and J.R. Slack, 1984, A nonparametric trend test for seasonal data with serial

dependence. Water Resources Research 20, 727–732.

REFERENCES 313



Hirsch, R.M. and J.R. Stedinger, 1987, Plotting positions for historical floods and their

precision. Water Resources Research 23, 715–727.

Hollander, M. and D.A. Wolfe, 1999, Nonparametric Statistical Methods, 2nd edition.

Wiley, New York, 787 pp.

Hopke, P.K., C. Liu and D.B. Rubin, 2001, Multiple imputation for multivariate data with

missing and below-threshold measurements: time-series concentrations of pollutants in the

Arctic. Biometrics 57, 22–33.

Hornung, R.W. and L.D. Reed, 1990, Estimation of average concentration in the presence of

nondetectable values. Applied Occupational Environmental Hygiene 5, 46–51.

Hosmer, D.W. and S. Lemeshow, 2000, Applied Logistic Regression, 2nd edition.

Wiley, New York, 375 pp.

Hren, J., K.S. Wilson and D.R. Helsel, 1984, A statistical approach to evaluate the relation of

coal mining, land reclamation, and surface-water quality in Ohio. U.S. Geological Survey

Water-Resources Investigations Report 84–4117, 325 pp.

Hughes, J.P. and S.P. Millard, 1988, A tau-like test for trend in the presence of multiple

censoring points. Water Resources Bulletin 24, 521–531.

Huybrechts, T., O. Thas, J. Dewulf, and H. Van Langenhove, 2002, How to estimate moments

and quantiles of environmental data sets with non-detected observations? A case study on

volatile organic compounds in marine water samples. Journal of Chromatography 975,

123–133.

Hyslop, N.P. andW.H.White, 2008, An empirical approach to estimating detection limits using

collocated data. Environmental Science and Technology 42, 5235–5240.

Ireson, M.J, and P.V. Rao, 1985, Interval estimation of slope with right-censored data.

Biometrika 72, 601–608.

Isobe, T., E.D. Feigelson, and P.I. Nelson, 1986, Statistical methods for astronomical data with

upper limits. II. Correlation and regression. Astrophysical Journal 306, 490–507.

IUPAC, 1997, Detection and quantification capabilities,Chapter 18, Section 4.3.7,

in Compendium of Analytical Nomenclature, 3rd edition.Definitive Rules 1997.

International Union of Pure and Applied Chemistry. Available at http://old.iupac.org/

publications/analytical_compendium/.

Jain, R.B., S.P. Caudill, R.Y. Wang and E. Monsell, 2008, Evaluation of maximum

likelihood procedures to estimate left censored observations. Analytical Chemistry

80, 1124–1132.

Jeng, S.L. and W.Q. Meeker, 2001, Parametric simultaneous confidence bands for cumulative

distributions from censored data. Technometrics 43, 450–461.

Junk, G.A., R.F. Spalding, and J.J. Richard, 1980, Areal, vertical, and temporal differences in

ground-water chemistry: II. Organic constituents. Journal of Environmental Quality 9,

479–483.

Kahn, H.D., W.A. Telliard, and C.E. White, 1998, Comment on “An alternative minimum

level definition for analytical quantification.” Environmental Science and Technology 32,

2346–2348.

Kalbfleisch, J.D. and R.L. Prentice, 2002, The Statistical Analysis of Failure Time Data,

2nd edition.Wiley, New York, 439 pp.

Kamakura, W.A. and M. Wedel, 2001, Exploratory tobit factor analysis for multivariate

censored data. Multivariate Behavioral Research 36, 53–82.

314 REFERENCES



Kaus, R. 1998, Detection limits and quantitation limits in the view of international

harmonization and the consequences for analytical laboratories. Accreditation and

Quality Assurance 3, 150–154.

Keith, L.H., 1992, Environmental Sampling and Analysis: A Practical Guide. Lewis

Publishers, Chelsea, MI, 143 pp.

Kendall, M.G., 1955, Rank Correlation Methods, 2nd edition. Charles Griffin and Company,

London, 196 pp.

Klein, J.P. and M.L. Moeschberger, 2003, Survival Analysis: Techniques for Censored and

Truncated Data,2nd edition.Springer, New York, 536 pp.

Kolpin, D.W., J.E. Barbash, and R.J. Gilliom, 2002 Atrazine and metolachlor occurrence in

shallow ground water of the United States, 1993 to 1995. Relations to explanatory factors.

Journal of the American Water Resources Association 38, 301–311.

Krishnamoorthy K, A Mallick, and T. Matthew, 2009, Model-based imputation approach

for data analysis in the presence of non-detects. Annals of Occupational Hygiene 4,

249–263.

Kroll, C.N. and J.R. Stedinger, 1996, Estimation ofmoments and quantiles using censored data.

Water Resources Research 32, 1005–1012.

Kroll, C.N. and J.R. Stedinger, 1999, Development of regional regression relationships with

censored data. Water Resources Research 35, 775–784.

Kruskal, J.B., 1964, Multidimensional scaling by optimizing goodness of fit to a nonmetric

hypothesis. Psychometrika 29, 1–27.

Land, C.E., 1972, An evaluation of approximate confidence interval estimation methods for

lognormal means. Technometrics 14, 145–158.

Latta, R.B., 1981, A Monte Carlo study of some two-sample rank tests with censored data.

Journal of the American Statistical Association 76, 713–719.

Law, C. and R. Brookmeyer, 1992, Effects of mod-point imputation on the analysis of doubly

censored data. Statistics in Medicine 11, 1569–1578.

Lee, E.T., and J.W. Wang, 2003, Statistical Methods for Survival Data Analysis, 3rd edition.

Wiley, New York, 534 pp.

Libiseller, C.L. and A. Grimvall, 2002, Performance of partial Mann–Kendall tests for trend

detection in the presence of covariates. Environmetrics 13, 71–84.

Lindstrom, R.M., 2001, Limits for qualitative detection and quantitative determination, in D.R.

Lide,ed., A Century of Excellence in Measurements, Standards, and Technology,

NIST Special Publication 958, pp. 164–166. Available at nvl.nist.gov/pub/nistpubs/

sp958-lide/164-166.pdf.

Liu, S., S.T. Yen, and D.W. Kolpin, 1996, Atrazine concentrations in near-surface aquifers: a

censored regression approach. Journal of Environmental Quality 25, 992–999.

Looney, S.W. and T.R. Gulledge, 1985, Use of the correlation coefficient with normal

probability plots. American Statistician 39, 75–79.

Lubin, J.H., J.S. Colt, D. Camann, S. Davis, J.R. Cerhan, R.K. Severson, L. Bernstein, and P.

Hartge, 2004, Epidemiologic evaluation of measurement data in the presence of detection

limits. Environmental Health Perspectives 112, 1691–1696.

Martin, J.J., S.D.Winslow and D.J. Munch, 2007, A NewApproach to Drinking-Water Quality

Data: Lowest-Concentration Minimum Reporting Level. Env. Sci. and Technol. 41,

677–681.

REFERENCES 315



Maul A. andA.H. El-Shaarawi, 1993, Stochastic models applied to cluster analysis of censored

water quality data. Water Resources Research 29, 2705–2711.

Meeker, W.O. and L.A. Escobar, 1998, Statistical Methods for Reliability Data.Wiley,

New York, 680 pp.

Meier, P., T.Karrison, R. Chappell, andH.Xie, 2004, The price ofKaplan–Meier. Journal of the

American Statistical Association 99, 890–897.

Miesch, A., 1967, Methods of computation for estimating geochemical abundance. U.S.

Geological Survey Professional Paper 574-B, 15 pp.

Millard, S.P. and S.J. Deverel, 1988, Nonparametric statistical methods for comparing two sites

based on data with multiple nondetect limits. Water Resources Research 24, 2087–2098.

Minnesota Pollution Control Agency, 1999, Data Analysis Protocol for the Ground Water

Monitoring andAssessment Program. St. Paul,MN, 42 pp. Available at http://www.pca.state.

mn.us/index.php/water/water-types-and-programs/groundwater/groundwater-monitoring-

and-assessment/publications-ambient-groundwater-monitoring-and-assessment.html.

Morales, J.F., T.Song, A.D. Auerbach, and K.M. Wittkowski, 2008, Phenotyping genetic

diseases using an extension of m-scores for multivariate data. Statistical Applications in

Genetics and Molecular Biology 7(1), 19.

Mueller, D.K., B.C. Ruddy, and W.A. Battaglin, 1997, Logistic model of nitrate in streams of

the Upper Midwestern United States. Journal of Environmental Quality 26,

1223–1230.

Murphy, S.A., 1995, Likelihood ratio-based confidence intervals in survival analysis. Journal of

the American Statistical Association 90, 1399–1405.

Nair, V.N., 1984, Confidence bands for survival functions with censored data: a comparative

study. Technometrics 26, 265–275.

Nehls, G.J. and G.G. Akland, 1973, Procedures for handling aerometric data. Journal of the Air

Pollution Control Association 23, 180–184.

Oakes, D., 1982, A concordance test for independence in the presence of censoring.Biometrics

38, 451–455.

Oblinger Childress, C.J., W.T. Foreman, B.F. Connor, and T.J. Maloney, 1999, New reporting

procedures based on long-term method detection levels and some considerations for

interpretations of water-quality data provided by the U.S. Geological Survey National

Water Quality Laboratory. USGS Open-File Report 99-193, 19 pp.

O’Brien, P.C. and T.R. Fleming, 1987, A paired Prentice–Wilcoxon test for censored paired

data. Biometrics 43, 169–180.

O’Connell, S.G., M. Arendt, A. Segars, T. Kimmel, J. Braun-McNeill, L. Avens, B. Schroeder,

L. Ngai, J.R. Kucklick, and J.M. Keller, 2010, Temporal and spatial trends of perfluorinated

compounds in juvenile loggerhead sea turtles (Caretta caretta) along the east coast of the

United States. Environmental and Science Technology 44, 5202–5209.

Olsson, U., 2005, Confidence intervals for the mean of a log-normal distribution. Journal of

Statistics Education 13(1). Available online at http://www.amstat.org/publications/se/

v13n1/0lsson.html.

OntarioMinistry of theEnvironment, 2010, Pesticides inOntario’s TreatedMunicipalDrinking

Water 1986–2006. Ottawa, Ontario, 27 pp. Available at http://www.ene.gov.on.ca/

environment/en/resources/STD01_078819.html.

Owen, W., and T. DeRouen, 1980, Estimation of the mean for lognormal data containing zeros

and left-censored values, with applications to the measurement of worker exposure to air

contaminants. Biometrics 36, 707–719.

316 REFERENCES



Perkins, J.L., G.N. Cutter, and M.S. Cleveland, 1990, Estimating the mean, variance, and

confidence limits from censored (<limit of detection), lognormally-distributed exposure

data. American Industrial Hygiene Association Journal 51, 416–419.

Peto, R. and J. Peto, 1972, Asymptotically efficient rank invariant test procedures (with

discussion). Journal of the Royal Statistical Society, Series A 135, 185–206.

Pettitt, A.N., 1976, Cramer–von Mises statistics for testing normality with censored samples.

Biometrika 63, 475–481.

Porter, P.S., R.C. Ward, and H.F. Bell, 1988, The reporting limit. Environmental Science and

Technology 22, 856–861.

Pratt, J.W., 1959, Remarks on zeros and ties in the Wilcoxon signed rank procedures. Journ.

Amer. Statistical Assoc. 54, 655–667.

Prentice, R.L., 1978, Linear rank tests with right-censored data. Biometrika 65, 167–179.

Prentice, R.L. and P. Marek, 1979, A qualitative discrepancy between censored data rank tests.

Biometrics 35, 861–867.

Rao, S.T., J.Y. Ku, and K.S. Rao, 1991, Analysis of toxic air contaminant data containing

concentrations below the limit of detection. Journal of Air and Waste Management

Association 41, 442–448.

Reimann, C., P. Filzmoser, and R.G. Garrett, 2002, Factor analysis applied to regional

geochemical data: problems and possibilities. Applied Geochemistry 17, 185–206.

Ren, J., 2003, Goodness of fit tests with interval censored data. Scandinavian Journal of

Statistics 30, 211–226.

Rigo, H.G., 1999, Comment on “An alternate minimum level definition for analytical

quantification.” Environmental Science and Technology 33, 1311–1312.

Rogers Commission, 1986, Report to the President by the Presidential Commission on the

Space Shuttle Challenger Accident. June 6th, 1986. Washington, D.C.

Royston, P., 1993, A toolkit for testing non-normality in complete and censored samples. The

Statistician 42, 37–43.

Royston, P., 1995, Remark AS R94: a remark on algorithm AS 181: the W-test for normality.

Journal of the Royal Statistical Society, Series C (Applied Statistics) 44, 547–551

Ryan, T.P., 1997, Modern Regression Methods. Wiley, New York, 515 pp.

Self, S.G. and E.A. Grossman, 1986, Linear rank tests for interval-censored data with

application to PCB levels in adipose tissue of transformer repair workers. Biometrics

42, 521–530.

Sen, P.K., 1968, Estimates of the regression coefficient based on Kendall’s tau. Journal of the

American Statistical Association 63, 1379–1389.

Shapiro, S.S. and M.B. Wilk, 1965, An analysis of variance test for normality (complete

samples). Biometrika 52, 591–611.

Shaw, P.J.A., 2003, Multivariate Statistics for the Environmental Sciences. Arnold, London,

233 pp.

She, N., 1997, Analyzing censored water quality data using a non-parametric approach.

Journal of the American Water Resources Association 33, 615–624.

Shumway, R.H., A.S. Azari, and P. Johnson, 1989, Estimating mean concentrations under

transformation for environmental data with detection limits. Technometrics 31, 347–356.

Shumway, R.H., R.S. Azari, and M. Kayhanian, 2002, Statistical approaches to estimating

mean water quality concentrations with detection limits. Environmental Science and

Technology 36, 3345–3353.

REFERENCES 317



Simon, R. and Y.J. Lee, 1982, Nonparametric confidence limits for survival probabilities and

median survival time. Cancer Treatment Reports 66, 37–42.

Singh, A. and J. Nocerino, 2002, Robust estimation of mean and variance using environmental

data setswith belowdetection limit observations.Chemometrics and Intelligent Laboratory

Systems 60, 69–86.

Singh, A.K., A. Singh, and M. Engelhardt, 1997, The lognormal distribution in environmental

applications. U.S. Environmental Protection Agency Report EPA/600/R–97/006, 19 pp.

Singh, A., R.Maichle, and S.E. Lee, 2006, On the computation of a 95% upper confidence limit

of the unknown population mean based upon data sets with below detection limit

observations. U.S. Environmental Protection Agency Report EPA/600/R-06/022.

Slyman, D.J., A. de Peyster, and R.R. Donohoe, 1994, Hypothesis testing with values below

detection limit in environmental studies. Environmental Science and Technology 28,

898–902.

Smith, D.E. and K.C. Burns, 1998, Estimating percentiles from composite environmental

samples when all observations are nondetectable. Environmental and Ecological Statistics

5, 227–243.

Squillace, P.J., M.J. Moran,W.W. Lapham, C.V. Price, R.M. Clawges, and J.S. Zogorski, 1999,

Volatile organic compounds in untreated ambient groundwater of the United States,

1985–1995. Environmental Science and Technology 33, 4176–4187.

Stephens, M.A., 1974, EDF statistics for goodness of fit and some comparisons. Journal of the

American Statistical Association 69, 730–737.

Stetzenbach, K.J., I.M. Farnham, V.F. Hodge, and K.H. Johannesson, 1999, Using multivariate

statistical analysis of groundwater major cation and trace element concentrations

to evaluate groundwater flow in a regional aquifer. Hydrological Processes 13,

2655–2673.

Succop, P.A., S. Clark, and M. Chen, 2004, Imputation of data values that are less than a

detection limit. Journal of Occupational and Environmental Health 1, 436–441.

Sun, J., 2006, The Statistical Analysis of Interval-Censored Failure Time Data.Springer, New

York, 302 pp.

Tajimi, M., R. Uehara, M. Watanabe, I. Oki, T. Ojima, and Y. Nakamura, 2005, Correlation

coefficients between the dioxin levels inmother’smilk and the distances to the nearest waste

incinerator which was the largest source of dioxins from eachmother’s place of residence in

Tokyo, Japan. Chemosphere 61, 1256–1262.

Tempelman, A.A. andM.G. Akritas, 1996,Model testing formultivariate censored data. Part 1:

Simple null hypotheses. Probability Theory and Related Fields 106, 351–369.

Theil, H., 1950, A rank-invariant method of linear and polynomial regression analysis. Nederl.

Akad. Wetensch, Proceed., 53, 386–392.

Thompson, M.L. and K.P. Nelson, 2003, Linear regression with Type I interval- and left-

censored response data. Environmental and Ecological Statistics 10, 221–230.

Thomsen, V., D. Schatzlein, and D. Mercuro, 2003, Limits of detection in spectroscopy.

Spectroscopy 18(12), 112–114.

Thurman, E.M., J.E. Dietze, and E.A. Scribner, 2002, Occurrence of antibiotics in water from

fish hatcheries. USGS Fact Sheet FS 120-02, 4 pp. Available at http://pubs.water.usgs.gov/

fs–120–02/.

Tobin, J., 1958, Estimation of relationships for limited dependent variables. Econometrica 26,

24–26.

318 REFERENCES



Tomlinson, M.S., 2003, Effects of ground-water/surface-water interactions and land use on

water quality. Written communication in advance of becoming a USGS report.

Travis, C.C. andM.L. Land, 1990, Estimating the mean of data sets with nondetectable values.

Environmental Science and Technology 24, 961–962.

Tressou, J., 2006, Nonparametric modeling of the left censorship of analytical data in food risk

assessment. Journal of the American Statistical Association 101, 1377–1386.

Turnbull, B.W., 1976, The empirical distribution function with arbitrarily grouped, censored

and truncated data. Journal of the Royal Statistical Society, Series B 38, 290–295.

U.S. Environmental Protection Agency, 1982, Definition and procedure for the determination

of the method detection limit—revision 1.11. Code of Federal Regulations 40, Part 136,

Appendix B, pp. 565–567.

U.S.Environmental ProtectionAgency, 1989,RiskAssessmentGuidance for Superfund (RAGS),

Vol. I. Human Health Evaluation Manual (Part A). USEPAOffice of Solid Waste, EPA/540/

1-89/002. Available at http://www.epa.gov/oswer/riskassessment/ragsa/.

U.S. Environmental Protection Agency, 1991, Technical support document for water-quality

based toxics control, EPA/505/2-90-001. USEPA Office of Water, Washington, DC.

Available at http://www.epa.gov/npdes/pubs/owm0264.pdf.

U.S. Environmental Protection Agency, 1998a, Guidance for data quality assessment. Practical

methods for data analysis, EPA/600/R-96/084. Available at http://www.epa.gov/swerust1/

cat/epaqag9.pdf.

U.S. Environmental Protection Agency, 1998b, Guidelines for ecological risk assess-

ment, EPA/630/R-95/002F. Available at http://oaspub.epa.gov/eims/eimscomm.getfile?

p_download_id¼36512.

U.S. Environmental Protection Agency, 2001, Workshop report on the application of 2,3,7,8-

TCDD toxicity equivalence factors to fish and wildlife, EPA/630/R-01/002. Available at

http://cfpub.epa.gov/ncea/raf/pdfs/tefworkshopforum.pdf.

U.S. Environmental Protection Agency, 2002a, Development document for proposed effluent

limitations guidelines and standards for the concentrated aquatic animal production industry

point source category, EPA-821-R-02-016. Available at http://www.epa.gov/waterscience/

guide/aquaculture/tdd/complete.pdf.

U.S. Environmental Protection Agency, 2002b, Guidance for comparing background and

chemical concentrations in soils for CERCLA sites, EPA-540-R-01-003. Available at http://

www.epa.gov/superfund/programs/risk/background.pdf.

U.S. Environmental Protection Agency, 2002c, Development document for the proposed

effluent limitations guidelines and standards for the meat and poultry products industry

point source category (40 CFR 432), EPA-821-B-01-007. Office of Water, U.S.

Environmental Protection Agency.

U.S. Environmental Protection Agency, 2003, Technical support document for the assessment

of detection and quantitation approaches, EPA-821-R-03-005, 71 pp. Available at http://

www.epa.gov/waterscience/methods/det/dgch1–3.pdf.

U.S. Environmental Protection Agency, 2007, Report of the federal advisory committee on

detection and quantitation approaches and uses in Clean Water Act Programs. Final report

12/28/07, 64 pp. plus appendices. Available at http://www.epa.gov/waterscience/methods/

det/faca/final-report-200712.pdf.

U.S. Environmental Protection Agency, 2008, Framework for application of the toxicity

equivalence methodology for polychlorinated dioxins, furans, and biphenyls in

REFERENCES 319



ecological risk assessment, EPA10/R-08/004, USEPA,Washington, DC.Available at http://

www.epa.gov/raf/tefframework/pdfs/tefs-draft-052808.pdf.

U.S. Environmental Protection Agency, 2009, Statistical analysis of groundwater monitoring

data at RCRA facilities, Unified guidance, EPA530-R-09-007. Available at http://www.epa.

gov/waste/hazard/correctiveaction/resources/guidance/sitechar/gwstats/unified-guid.pdf.

Van den Berg, M., L. Birnbaum, B.T.C. Bosveld, B. Brunstrom, P.M. Cook, M. Feeley, J.P.

Giesy, A. Hanberg, R. Hasegawa, S.W. Kennedy, T. Kubiak, J.C. Larsen, F.X.R. van

Leewen, A.K. Djien Liem, C. Nolt, R.E. Peterson, R.E. Poellinger, S. Safe, D. Schrenk, D.

Tillitt, M. Tysklind, F. Waern, and T. Zacherewski, 1998, Toxic equivalency factors (TEFs)

for PCBs, PCDDs, PCDFs for humans and wildlife. Environmental Health Perspectives

106, 775–792.

Velleman, P.F. and D.C. Hoaglin, 1981, Applications, Basics, and Computing of Exploratory

Data Analysis. Duxbury Press, Boston, 354 pp.

Verrill, S. and R.A. Johnson, 1988, Tables and large-sample distribution theory for censored-

data correlation statistics for testing normality. Journal of the American Statistical

Association 83, 1192–1197.

Wahlin, K. and A. Grimvall, 2010, Roadmap for assessing regional trends in groundwater

quality. Environmental Monitoring and Assessment 165, 217–231.

Waller, L.A. and B.W. Turnbull, 1992, Probability plotting with censored data. The American

Statistician 46, 5–12

Ware, J.H. and D.L. DeMets, 1976, Reanalysis of some baboon descent data. Biometrics 32,

459–463.

Wentzell, P.D. andM.T. Lohnes, 1999,Maximum likelihood principal component analysis with

correlatedmeasurement errors: theoretical and practical considerations.Chemometrics and

Intelligent Laboratory Systems 45, 65–85.

Weston, S.A. and W.Q. Meeker, 1991, Coverage probabilities of nonparametric simultaneous

confidence bands for a survival function. Journal of Statistical Computing Simulation, 38,

83–97.

White, C.E. and H.D. Kahn, 1995, Discussion on the paper by R.D. Gibbons, “Some statistical

and conceptual issues in the detection of low level environmental pollutants.”

Environmental and Ecological Statistics 2, 149–154.

Wilcox, R.R., 1998, Simulations on the Theil–Sen regression estimator with right-censored

data. Statistics and Probability Letters 39, 43–47.

Winslow, S.D., B.V. Pepich, J.J. Martin, G.R. Hallberg, D.J. Munch, C.P. Frebis, and E.J.

Hedrick, 2006, Statistical Procedures for Determination and Verification of Minimum

Reporting Levels for Drinking Water Methods, Env. Sci. and Technol. 40, 281–288.

Wittkowski, K.M., T. Song, K. Anderson, and J.E. Daniels, 2008, U-scores formultivariate data

in sports. Journal of Quantitative Analysis in Sports 4(3), article #7.

Yamaguchi, N., D. Gazzard, G. Scholey, and D.W. MacDonald, 2003, Concentrations and

hazard assessment of PCBs, organochlorine pesticides and mercury in fish species from

the upper Thames—River pollution and its potential effects on top predators.Chemosphere

50, 265–273.

Zar, J.H., 1999, Biostatistical Analysis, 4th edition.Prentice-Hall, Upper Saddle River, 875 pp.

Zuur, A.F., E.N. Ieno, and G.M. Smith, 2007, Analyzing Ecological Data.Springer, New York,

NY, 672 pp.

320 REFERENCES



INDEX

accelerated failure time models 249

air quality 14, 62, 90

Akritas test 188, 190

Akritas-Theil-Sen slope 20, See

Theil-Sen slope

all nondetects 142, 143, 144, 150, 151

analysis of variance 194, 195, 216

ANOSIM 20, 270, 272, 276, 277, 278, 284,

286, 292, 294, 295, 299, 302

ANOVA 202

arbitrary censoring 67, 200, 249, 254

astronomy 234, 309

average linkage 278, 296

balanced errors 27

between the limits 28, 29

bias 29, 30, 31, 91, 238

binomial probability 127, 129, 135, 142,

144, 152

binomial test 149, See quantile test

biplot 280, 281, 284, 285

Bonferroni adjustment 208, 209, 212

bootstrapping 90, 102, 103, 116, 131, 136

boxplot 44, 45, 153

Buckley-James regression 258, 265, 266

calibration-based limits 35

canonical correlation 270

cdf 15, 47, See cumulative distribution

function

censored data 2, 10, 15, 18, 19, 20,

21, 315

censored regression 20, 161, 162, 165, 200,

201, 204, 252

Central Limit Theorem 102, 105

Challenger accident xii, xv

cluster analysis 269, 272, 278, 289, 294,

296, 302, 316

coefficient of determination 224

Cohen’s method 64, 66, 67, 88, 89, 90

Cohen’s 2, 64, 66, 85, 87, 88, 89, 90

compliance 191, See legal standard

confidence bound 99, 102, 106, 107, 108,

118, 119, 121, 135

confidence interval 99, 101, 102, 115, 186

confidence interval for percenitles 120

confidence interval for themedian 119,128,

132, 134

confidence intervals for percentiles 135

constant standard deviation 23

contingency table test 196, 215

correlation 20, 218

correspondence analysis 269

coverage 110

critical value 23

cumulative distribution function 15, 16, 47,

72, 148, 151, 168, 250

database 37

decision level 23

deleting nondetects xv, 44

delta-lognormal method 3

detection limit 8, 12, 15, 22, 23

Discriminant function 270

doubly-censored data 258, 309

edf 47, 48, 49, 61, 171, See empirical

distribution function

EM algorithm 288, 289

empirical distribution function 44, 47, 72

Euclidean distance 272, 282, 283, 284,

287, 291

Statistics for Censored Environmental Data Using Minitab� and R, Second Edition.
Dennis R. Helsel.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

321



exceedance probabilities 83

exploratory factor analysis 269, 272, 288

Fabrication 2

factors 202, 203, 216

failure time models 249

false positive 24, See Type I error

flipping data 19,20, 21,49, 72,73,130, 163,

172, 173, 174, 175, 179, 189, 209, 216

Gehan test 168, 171, 178

generalized r2 224

generalized Wilcoxon test 20, 168, 171,

173, 178, 188, 210, 216

geochemistry 14

geometric mean 80, 102, 162, 188, 205

Greenwood’s formula 74, 132

groundwater 163, 185, 193, 242, 318

Guidance documents 3

histogram 46

Hitchhiker’s Guide To The Galaxy xvi

hypothesis tests 151

IDE 36

imputation xvii, 81, 87, 88, 90, 91, 92, 93,

268, 288, 289, 290, 314, 315

Indicator variable 38

informative censoring 29, 30, 31, 69, 70

intercept 263

interlaboratory detection estimate 36

interlaboratory quantitation estimate 36

interval censoring 50, 200, 292, 312, 317

Interval endpoints 38, 39, 68, 104, 162, 165,

186, 199, 201

interval-censored xviii, 1, 18, 21, 29, 38, 39,

41, 42, 44, 56, 57, 68, 70, 71, 76, 78, 79, 92,

163, 165, 180, 181, 186, 191, 199, 200, 201,

214, 216, 230, 232, 233, 234, 259, 263, 301,

302, 318

interval-censored data 29, 163, 186, 199,

200, 201, 216, 249

invasive data xvi, xix, 13, 104, 159

inverted sign test 133

IQE 36

Kaplan-Meier viii, 2, 10, 20, 33, 38, 46, 49,

50, 53, 55, 56, 58, 70, 71, 73, 74, 75, 76, 78,

79, 85, 86, 90, 91, 92, 93, 95, 96, 97, 98,

127, 129, 130, 131, 132, 136, 137, 138, 139,

140, 175, 176, 188, 189, 190, 210, 211, 223,

263, 290, 301, 309, 316

Kendall’s tau ix, 219, 221, 223, 224, 227,

228, 229, 230, 232, 233, 234, 248, 259, 272,

285, 286, 290, 300, 318

Kendall’s tau 20, 219, 227, 228, 229, 234,

236, 248

Kruskal-Wallis test 152, 173, 179, 194, 197,

198, 199, 216, 281, 301

Land’s method 102, 115

left-censored 1

left-censored data 15, 18, 19, 20, 21, 39, 49,

62, 67, 71, 162, 163, 201, 209, 216, 234,

238, 249, 252, 317, 319

legal standard 148, 149, 151

leverage statistic 246

likelihood function 15, 161, 250

likelihood r 224

likelihood r2 224, 244

likelihood-ratio test 16, 200, 203, 240, 241,

244, 250, 256

limit of detection See detection limit

limit of quantitation See quantitation limit

linear regression 20, 163, 225, 236, 237,

248, 251, 310

logarithms 162, 201

logistic regression 20, 239, 241

logit 239, 245

log-likelihood 15, 200, 203, 224,

240, 251

lognormal distribution 65,67,112, 115, 187

lognormal prediction interval 122

lognormal tolerance interval 121

LOQ See quantitation limit

lower bound 163, 165, 199, 200

LRL 30

LT-MDL 26

Mann-Whitney 8, 9, 10, 14, 154, 157, 159,

160, 168, 192, 290

MANOVA 20, 270

Maximum likelihood 12, 14, 38, 64, 104,

161, 162, 164, 186, 202, 216, 224, 239, 253

MCMC 289

MDL 25, See method detection limit

mean 65, 73, 74, 80, 102, 104

median 65, 73, 74, 80, 107

322 INDEX



median residual intercept 263, 264

method detection limit 23, 28

MLE 64, 67, 84, 88, 90, 93, 104, 159, 161,

162, 186, 199, 216, 238

monotonic correlation 222

multidimensional scaling 269, 274

multiple comparison tests 208, 208,

212, 214

multiple detection limits 45, 53, 59, 81, 161,

188, 190, 195

multiply-censored data 18, 26, 47, 89, 127,

131, 133, 134, 139, 173, 174, 178, 192, 198,

216, 227, 229, 233

multivariate methods 268, 269, 273, 283,

288, 290

NMDS 20, 274, 276, 279, 280, 281, 283,

284, 285, 286, 287, 291, 292, 295, 299, 302,

See multidimensional scaling

noncentral t distribution 107, 108, 109,

110, 120

non-compliance See legal standard

nondetects xiii, xiv, xv, 9, 12, 17, 18, 20, 21,

22, 26, 37, 38, 70, 82, 93, 128, 178, 179,

237, 304, 305

information in 179

nonparametric intervals 103, 126

nonparametric methods 12, 38, 41, 116,

167, 200

normal distribution 101

normal scores 82

null hypothesis 16

number at risk 72

occupational health xvi

odds ratio 239, 241

one-sided bound 100, 110, 112, 122, 123

order statistics 103, 127

overall error rate 208

paired differences 186

paired observations 183, 220

paired t-test 187, 190

parametric interval 99

parametric methods 68, 199

partial least squares 270

partial likelihood-ratio tests See likelihood-

ratio tests

PCA 20, 268, 269, 280, 281, 284, 285, 288,

290, 291

Pearson’s r 20, 218, 227

percentiles 17, 30, 44, 47, 48, 52, 65, 73,

100, 107

permutation tests 270

Peto-Prentice test 168, 171, 178

Phi coefficient 219, 221

plotting data 216

plotting positions 48, 72, 82

PPW test 20, 188, 189, 190, 191, 192

PQL See practical quantitation limit

practical quantitation limit 27

precipitation 266

precision 35

prediction interval 99, 101, 110,

111, 113

probability density function 15

probability plot 52, 53, 66, 79, 105, 163,

187, 204, 253

probability plot correlation coefficient 113,

125

proportion xiii, xv, 93, 197, 219

proportional hazards 265

Q mode 269, 270

quantile plot 47

quantile regression 265, 266

quantile test 149

quantitation limit 23, 26, 28, 29, 30, 31, 35,

36, 37, 38, 39, 41, 42, 68, 69, 71, 78, 92,

143, 215, 250, 292, 296, 315

R mode 269, 271

ranks 17, 41, 167, 188

rank-sum test 8, 17, 20, 154, 158, 159, 167,

168, 170, 174, 192

regression See linear regression

regression on order statistics See ROS

reliability analysis xviii, 1, 249

remark 28, 69

reporting limit 29, 30

resemblance matrix 271, 272, 273, 274,

276, 278, 283, 285, 286, 287, 292

residuals 163, 204, 250, 253, 259, 266

restricted maximum likelihood 89

rho 218, See Spearman’s rho

right-censored 1

INDEX 323



right-censored data 15, 18, 19, 20, 21, 37,

39, 40, 43, 49, 62, 67, 71, 130, 163, 165,

172, 173, 200, 206, 207, 208, 209, 216, 249,

266, 314, 317

robust 159

robust MLE 90, 125

robustROS 46,47, 80,81, 84,89, 90,91, 93,

100, 125

ROS 20, 46, 53, 74, 79, 80, 82, 84, 85, 86,

88, 93, 98, 158

sample size 102

scatterplot 59, 60, 257

score tests 17, 151, 167, 168, 176, 177, 178,

179, 185, 188, 194, 198, 209, 212, 216

scores 167

Seasonal-Kendall test 248

sediment 267, 306, 312

seriation 270, 283, 285, 286, 287, 292, 302

sign test 133, 149, 183, 184, 191, 192

modified 185

signed-rank test 20, 183, 190, 191

similarity coefficients 273

Simple matching 272

simple matching coefficient 274, 278, 281

skewness 101, 102, 105, 162

slippage test 213, 214

Spearman’s rho 218, 222

standard deviation 25, 26, 34, 35, 73, 76

standard error 74, 104

standard error of the logit 247

streamflow 249

substitution viii, xvi, xvii, 2, 3, 4, 6, 7,

8, 9, 10, 12, 13, 35, 59, 62, 63, 75, 83, 87,

88, 89, 90, 91, 92, 94, 95, 98, 100, 103,

104, 140, 155, 156, 158, 159, 161, 177, 180,

183, 184, 195, 195, 197, 212, 215, 216,

227, 236, 237, 238, 252, 268, 269, 278, 281,

290, 292, 312

summary statistics 62, 70, 80

survival analysis vii, xi, xvi, 1, 2, 3, 7, 11,

12, 13, 17, 18, 20, 21, 44, 49, 50, 54, 62, 63,

71, 72, 74, 75, 76, 134, 154, 158, 162,

163, 172, 173, 175, 184, 192, 198, 200, 201,

202, 209, 213, 219, 230, 238, 250, 264, 265,

313, 316

survival function 15, 16, 44, 49, 50, 61, 71,

72, 73, 74, 92, 98, 130, 140, 168, 171, 172,

188, 189, 216, 266, 321

survival function plot 174

survival probability 72

tau-b 229, See Kendall’s tau

test for three or more groups 194

Theil See Theil-Sen slope

Theil-Sen slope 20, 236, 248, 258, 259, 263,

266

ties 185, 198, 229

Tobit analysis 249

tolerance interval 100, 101, 109, 113

trace 28

transformation bias 80, 81, 87, 89, 90

transformations 17, 19, 124

trend 11, 13, 20, 59, 218, 219, 225, 229,

231, 232, 234, 236, 237, 238, 248,

259, 263, 270, 283, 285, 286, 305, 311, 313,

314, 316

t-test 8, 17, 20, 154, 155, 156, 159, 161, 162,

163, 183, 187, 191, 192, 237

Turnbull estimator 263

two-group tests 8, 153, 162, 192

two-sided intervals 100

Type I error 25

Type II error 26

UCL95 99, 102

u-score 272, 290, 292

u-scores 20, 21, 272, 288, 291, 292, 293,

294, 295, 296, 302

variance 65, 73

Wald’s tests 16, 243, 250, 251, 255

water-quality 178, 313, 317

324 INDEX



STATISTICS IN PRACTICE

Human and Biological Sciences

Brown and Prescott · Applied Mixed Models in Medicine
Ellenberg, Fleming and DeMets · Data Monitoring Committees in Clinical Trials: 

A Practical Perspective
Lawson, Browne and Vidal Rodeiro · Disease Mapping With WinBUGS and MLwiN
Lui · Statistical Estimation of Epidemiological Risk

*Marubini and Valsecchi · Analysing Survival Data from Clinical Trials and 
Observation Studies

Parmigiani · Modeling in Medical Decision Making: A Bayesian Approach
Senn · Cross-over Trials in Clinical Research, Second Edition
Senn · Statistical Issues in Drug Development
Spiegelhalter, Abrams and Myles · Bayesian Approaches to Clinical Trials and Health-

Care Evaluation
Turner · New Drug Development: Design, Methodology, and Analysis
Whitehead · Design and Analysis of Sequential Clinical Trials, Revised Second Edition
Whitehead · Meta-Analysis of Controlled Clinical Trials

Earth and Environmental Sciences

Buck, Cavanagh and Litton · Bayesian Approach to Interpreting Archaeological Data
Cooke · Uncertainty Modeling in Dose Response: Bench Testing Environmental Toxicity
Gibbons, Bhaumik, and Aryal · Statistical Methods for Groundwater Monitoring, 

Second Edition
Glasbey and Horgan · Image Analysis in the Biological Sciences
Helsel · Nondetects and Data Analysis: Statistics for Censored Environmental Data
Helsel · Statistics for Censored Environmental Data Using Minitab® and R, 

Second Edition
McBride · Using Statistical Methods for Water Quality Management: Issues, Problems 

and Solutions
Webster and Oliver · Geostatistics for Environmental Scientists 

Industry, Commerce and Finance

Aitken and Taroni · Statistics and the Evaluation of Evidence for Forensic Scientists, 
Second Edition

Brandimarte · Numerical Methods in Finance and Economics: A MATLAB-Based 
Introduction, Second Edition

Brandimarte and Zotteri · Introduction to Distribution Logistics
Chan and Wong · Simulation Techniques in Financial Risk Management
Jank · Statistical Methods in eCommerce Research
Jank and Shmueli · Modeling Online Auctions
Lehtonen and Pahkinen · Practical Methods for Design and Analysis of Complex 

Surveys, Second Edition
Lloyd · Data Driven Business Decisions
Ohser and Mücklich · Statistical Analysis of Microstructures in Materials Science
Rausand · Risk Assessment: Theory, Methods, and Applications

*Now available in paperback.

statistics practice-cp_statistics practice-cp.qxd  7/19/2011  11:23 AM  Page 2


